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SUMMARY 

Efficient New Product Development (NPD) processes are critical to the success of 

many modern corporations. Motivated by needs of companies and research gaps 

identified, this thesis focuses on two key decision problems for structuring NPD 

processes: test scheduling and activity sequencing, and consists of two parts. 

The first part views the NPD process as consisting of a series of development 

stages and deals with the test scheduling problem. Past studies, which are developed 

to determine the optimal scheduling of tests, often focused on single-stage testing of 

sequential NPD process. Meanwhile, overlapping has become a common mode of 

product development. We therefore present two analytical models for the optimal 

scheduling of tests in overlapped NPD process. 

When the testing set-up time is relatively small, the analytical model in Chapter 3 

can help management decide when to stop testing at each stage, and when to start 

downstream development (e.g. mold fabrication). The model in Chapter 3 also yields 

several useful insights. When the testing set-up time is long, the analytical model in 

Chapter 4 can help decision makers determine the optimal number of tests needed at 

each stage, together with the optimal overlapping policies. The impact of different 

model parameters on the optimal solution is also discussed, which can help the 

management adjust testing and overlapping strategies for NPD processes with 

different characteristics. These two analytical models are illustrated with two case 

studies in consumer electronics companies. 

A development stage may be further broken down into smaller activities. Since 
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there are no clear precedence constraints among activities, another key and challenge 

issue is how to plan the time and sequence of activities, which is the focus of the 

second part of this thesis. Formal network-based techniques, such as CPM and PERT, 

cannot effectively model cyclic information flows and iteration, limiting their 

capability of planning NPD processes. To address this shortfall, one popular approach 

is Design Structure Matrix (DSM), which has spawned many research efforts on 

sequencing design activities with the objective of minimizing feedbacks. However, 

the problem is NP-complete. To solve large problems, we follow previous 

decomposition methods and present two new approaches. 

In Chapter 5, we first propose two simple rules for feedback reduction through 

activity exchange. After that, a new decomposition approach is presented for solving 

large DSM sequencing problem. We have also applied the proposed solution strategy 

to three real data sets, and show that compared to the solutions presented in previous 

studies, applying our approach results in better solutions with smaller feedbacks. In 

Chapter 6, we further establish rules of block-activity exchange and block-block 

exchange, for feedback reduction. We find that based on the fold operation, a block 

has similar properties to a single activity. Based on these findings, a novel 

decomposition approach is presented. One advantage of this approach is that it can 

solve the sub-problems in parallel. Finally, in some situations, activity dependencies 

may not be precisely estimated, we therefore present a fuzzy approach to DSM 

sequencing problem. The methodology is applied to the powertrain development, and 

is shown that it can help managers better manage NPD processes with uncertainty.  
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CHAPTER 1  

INTRODUCTION 

Efficient New Product Development (NPD) processes are critical to the success of 

many modern corporations. To model and structure NPD processes, decisions are 

often made about the testing strategies for project monitoring and control, the degree 

of overlapping, and the planned timing and sequence of design activities. Motivated 

by needs of companies and research gaps identified, this thesis contributes to some 

methodological issues for scheduling tests in overlapped product development and for 

sequencing design activities with iteration loops. In this introductory chapter, we first 

show the necessity for modeling and structuring NPD processes in Section 1.1, 

followed by the research gaps proposed in Section 1.2. In Section 1.3, we discuss the 

scope and objectives of our study. Finally, the structure of this thesis is presented in 

Section 1.4. 

1.1 Need for Modeling and Structuring NPD Processes  

An NPD process is a formal template through which a company can repetitively 

convert ideas into new products (Cooper, 1994; Browning, 2009). Such a process 

defines and describes the required steps and resources for driving new product 

projects from ideas to launch (Rosenau et al., 1996; Biazzo, 2009). Facing intense 

competition, rapidly evolving technologies, changing customer needs, and shorter 

product life cycles, many firms need to develop lower cost, higher quality products at 

a rapid pace (Cooper, 2001; Mitchell and Nault, 2007). An efficient NPD process is 
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essential to achieve these goals, and thus is critical to the success of many modern 

corporations (Rosenau and Githens, 2005; Bhaskaran and Krishnan, 2009). 

However, structuring the NPD process is challenging. Part of the difficulty is due 

to the following characteristics of the NPD process: 

(1) Complex interaction among activities. A typical NPD process can be divided 

into a series of development stages. A development stage may further be broken down 

into smaller activities. Unlike the manufacturing process, the NPD process often 

involves a number of decision-making activities, for example, the design of an 

automobile may involve thousands of engineers making millions of design decisions 

(Eppinger et al., 1994). Moreover, none of these activities are performed in isolation; 

instead, each design choice may affect many other design parameters (Eppinger et al., 

1994; Pich et al., 2002; Pektas and Pultar, 2006).  

(2) Iteration. Iteration, the repetition of design activities, is a fundamental 

characteristic of the NPD process (Black and Repenning, 2001; Gil, 2009). There are 

two main reasons why iteration is commonly occurred in an NPD process. First, the 

outputs of activities, such as engineering drawings, specifications and bill of materials, 

are often unstable and inaccurate, and need to be reworked when downstream 

activities detect some faults in the original design (Gil et al., 2004; Terwiesch and Xu, 

2008). Second, downstream activities may be repeated when modified information is 

passed along from upstream activities (Smith and Eppinger, 1997b; Loch and 

Terwiesch, 2005; Love et al., 2009). 

(3) Conflicting product development performance. Generally, there are three 

measures of product development performance: completion time, development cost, 

and product quality (Cohen et al., 1996; Pollack-Johnson and Liberatore, 2006; Ulrich 
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and Eppinger, 2008). However, these metrics are often conflict with each other. For 

example, changing the development policies may reduce project completion time, but 

may at the cost of lower product quality and/or higher development cost (Harter et al. 

2000; Harter and Slaughter, 2003; Wu et al., 2009).  

In recent years, product development undergoes new trends such as distributed 

product development, cross-functional teams, and overlapping product development 

stages (Nambisan, 2002; Gerwin and Barrowman, 2002; Zhou et al., 2005; Novak and 

Stern, 2008). These new trends further increase the uncertainty and complexity of 

NPD processes (O’Sullivan, 2003; Bhuiyan et al., 2006; Kang and Hong, 2009). 

Therefore, efficient and effective models are needed to represent above essential 

characteristics and new trends of NPD processes so as to systematically analyze the 

effect of development policies on the product development performance, then 

improve and optimize the product development performance. 

1.2 Research Gaps  

NPD process modeling has received considerable attention over the last 15 years 

from both the academic community and practitioners (MacCormack et al., 2001; 

Roemer and Ahmadi, 2004; Levardy and Browning, 2009). To model and structure 

NPD processes, decisions are often made about the testing strategies for project 

monitoring and control, the degree of overlapping, and the planned timing and 

sequence of design activities (Krishnan and Ulrich, 2001; Browning and Ramasesh, 

2007). In the following subsections, we will briefly introduce these decision problems, 

some existing models and research gaps. 

1.2.1 Test Scheduling 
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A typical NPD process can be viewed as consisting of four consecutive stages: (1) 

concept development, (2) product design, (3) process design, and (4) pilot production 

(Cooper, 2001; Chakravarty, 2003). For most product development projects, the 

initial outputs of these stages inevitably contain design problems, such as mismatches 

with customer needs or technical design faults (Thomke and Bell, 2001; Gil et al., 

2008). Testing, which is a primary way to detect and resolve these problems, is 

central to product development (Loch et al., 2001; Thomke, 2007; Erat and Kavadias, 

2008).  

It is known that undetected design problems of an upstream stage (e.g. concept 

development) will accumulate and proliferate to downstream stage (e.g. product 

design). Thus, the outputs of an upstream stage need to be tested extensively before 

releasing them to downstream stage. Inadequate testing would allow design problems 

to propagate, and finally deteriorate the product quality. On the other hand, testing 

also incurs time and cost. Too much testing at one stage would impede the project’s 

progress and increase development costs. Thus, how to optimally schedule various 

tests along the NPD process so as to maximize product development performance is 

an important decision problem. 

Some models have been developed to determine the optimal scheduling of tests 

and/or reviews for product development projects (e.g. Ha and Porteus, 1995; Thomke 

and Bell, 2001; Xie and Yang, 2001; Dai et al., 2003; Pham and Zhang, 2003; Serich, 

2005; Erat and Kavadias, 2008; Yang et al., 2008; Bartels and Zimmermann, 2009). 

These models have clearly shed light on the analysis of test scheduling problem. 

However, they focus on the testing policies at one development stage and do not take 

into account the multi-stage nature of testing process.  
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An important contribution in modeling the multi-stage testing is due to Cooper 

(1980, 1993a, 1993b, 1993c). Their system dynamics models were further extended 

by several independent researchers, such as Ford and Sterman (1998), Williams et al. 

(2003), Love et al. (2008), and Lin et al. (2008). While these simulation models have 

greatly advanced our understanding of the multi-stage testing process, they cannot 

find good testing policies quickly and effectively, which is a limitation of most 

simulation models (Cho and Eppinger, 2005; Lancaster and Ozbayrak, 2007).  

Ahmadi and Wang (1999), as well as Kogan and Raz (2002), built analytical 

models and explicitly examined how to optimally schedule tests for multiple 

development stages. The former assumed that all development stages are carried out 

in fully sequential, while the latter assumed that all stages start and finish 

simultaneously. However, in practice, the development stages are often overlapped 

(i.e. in partial parallel) rather than fully sequential or parallel (Krishnan, 1996; 

Mitchell and Nault, 2007; Gerk and Qassim, 2008). As far as we know, no analytical 

model exists for scheduling tests in overlapped NPD process.  

1.2.2 Overlapping Policies 

Overlapping, which refers to the partial parallel execution of development stages, 

has become a common mode of product development over the last decade as a result 

of increasing importance of time-to-market (Smith and Reinertsen, 1998; Loch and 

Terwiesch, 2005; Yan and Xu, 2007). As illustrated in Figure 1.1, in sequential 

process, the second stage starts only after completion of the first stage, while in 

overlapped process, the second stage starts earlier with preliminary information of the 

first stage. Thus, project completion time may be reduced, see e.g. Smith and 

Reinertsen (1998), Sobek et al. (1999) for successful cases. However, studies also 
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show that overlapping is not applicable to all NPD projects (see e.g. Terwiesch and 

Loch, 1999; Gil et al., 2008). Because overlapping requires that downstream stages 

start on preliminary information, rework is often necessary to accommodate upstream 

design changes (Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et al., 

2000; Gerk and Qassim, 2008). If the uncertainty or the dependency between 

development stages is high, most of downstream tasks done on upstream preliminary 

information need to be reworked, which makes overlapping unfavorable (Krishnan et 

al., 1997; Helms, 2002; Lin et al., 2010). Thus, analytical investigation of the trade-

offs involved is needed.  

 

 

Figure 1.1 Sequential and overlapped NPD processes 

 

Many independent researchers have examined this key trade-off and derived 

optimal overlapping levels for projects with different characteristics (e.g. Krishnan et 

al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000; Chakravarty, 2001; 

Joglekar et al., 2001; Wang and Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009). 

These studies are insightful in many respects. However, all of them assume that 

testing policies are predetermined. Analytical models are needed to combine these 

two decisions (i.e. test scheduling and overlapping levels) into one modeling 

framework since they are interacted.  

1.2.3 Sequencing Design Activities  

When the NPD process is viewed as consisting of a series of development stages, 

Stage 1 

Stage 2 

Stage 1 

Stage 2 

Sequential Overlapped 
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it’s no need to consider the sequencing problem since the execution sequence of 

development stages (such as the concept design and the product design) is known. 

However, when the NPD process is further broken into smaller activities, then, a key 

and challenging issue, i.e. the planned time and sequence of activities, arises because 

clear precedence constraints among design activities do not exist and are rarely 

known in advance (Eppinger et al., 1994; Ahmadi et al., 2001; Karniel and Reich, 

2009).  

As reported by many researchers (e.g. Eppinger et al. 1994; Rodrigues and 

Bowers, 1996; Anderson and Joglekar, 2005; Karniel and Reich, 2009), traditional 

network-based techniques, such as Critical Path Method (CPM) and Program 

Evaluation and Review Technique (PERT), cannot effectively model cyclic 

information flows among activities, as well as iteration, limiting their capability of 

planning for NPD processes. For instance, in the four-activity example shown in 

Figure 1.2(a), after completion of activity C, the process may iterate back to activity 

A when activity C discovers some design problems or incompatibility. Similarly, 

activities A and B may have to be reworked in light of the arrival of new information 

from activity D. This iterative process is common in most product development 

projects and PERT/CPM could not deal with such loops effectively. 

 To address this shortfall, one known method is Design Structure Matrix (DSM). 

As illustrated in Figure 1.2(b), DSM is a binary matrix representation of a project 

with elements denoting individual activities which are executed in the temporal order 

listed from top to bottom (Browning, 2001; Chen and Huang, 2007). Sub-diagonal 

marks represent information input from upstream activities to downstream, and super-

diagonal marks denote feedbacks from downstream activities to upstream (Yassine et 
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A 

B 

C 

D 
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al., 1999a; Lancaster and Cheng, 2008). As such, DSM provides a concise way in 

describing and investigating information dependencies among design activities, as 

well as iteration (Cho and Eppinger, 2005; Abdelsalam and Bao, 2007). 

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994) 

extended Steward’s work by explicitly including numerical measures of activity 

dependencies. Figure 1.2(c) shows an example of Numerical DSM (NDSM), where 

the off-diagonal numbers represents the degree of information dependencies among 

activities. Since then, many researchers have reported the successful application of 

DSM/NDSM in managing NPD projects (see e.g. Eppinger, 2001; Clarkson et al., 

2004; MacCormack et al., 2006; Sosa, 2008; Voss and Hsuan, 2009). Reviews of 

DSM approach can be found in Browning (2001), Karniel and Reich (2009). 
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some other considerations have also been incorporated in sequencing design activities 

(see e.g. Altus et al., 1996; Smith and Eppinger, 1997a; Abdelsalam and Bao, 2006).  

Several independent researchers have reported that DSM sequencing problem is 

NP-complete (McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al., 

2007). To solve large-scale sequencing problems, one stream of literature focused on 

developing meta-heuristic methods, such as Genetic Algorithm (Altus et al., 1996;  

Whitfield et al., 2003; Meier et al., 2007), Simulated Annealing (Abdelsalam and Bao, 

2006, 2007), and Evolutionary Algorithm (Lancaster and Cheng, 2008). Another 

stream of literature focused on decomposition based methods. More specifically, the 

overall problem is first decomposed into smaller sub-problems which are easier to 

solve, and then the sub-problem solutions are merged to a solution of the overall 

problem. Examples of such studies include McCulley and Bloebaum (1996), Rogers 

(1996, 1999), Ahmadi et al. (2001).  

1.3 Research Scope and Objectives 

Depending on their newness to the company and marketplace, product innovations 

can be incremental or radical (Eppinger et al., 1994; Grupp and Maital, 2001; Hauser 

et al., 2006). Radical innovation often requires developing products with an entirely 

new technology and/or with an entirely new set of performance features, e.g. certain 

smart-chip devices (Leifer et al. 2000; Zhou et al. 2005). On the other hand, an 

extension or improvement of existing products is termed as incremental product 

innovation. This thesis focuses mainly on incremental product innovation. We also 

focus product development projects which are economically feasible, in other words, 

the decision has been made to design and implement the projects. Finally, motivated 
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by needs of companies and research gaps identified, we devote our attention to two 

key decision problems for structuring NPD processes: test scheduling and activity 

sequencing. More specifically, we present some analytical models for the optimal 

scheduling of tests in overlapped NPD process, and propose some approaches for 

solving large-scale DSM sequencing problem.   

1.3.1 Optimal Scheduling of Tests in Overlapped NPD Process 

Testing is central to product development (Loch et al., 2001; Erat and Kavadias, 

2008). Past studies, which are developed to determine the optimal scheduling of tests, 

often focused on single-stage testing of sequential NPD process. Meanwhile, 

overlapping has become a common mode of product development (Terwiesch et al., 

2002; Yassine et al., 2008; Roemer and Ahmadi, 2010). We therefore present two 

analytical models for the optimal scheduling of tests in overlapped NPD process. 

Let us use a practical example to illustrate the problem studied. As shown in 

Figure 1.3, the refrigerator development process generally consists of four stages: 

concept creation, industrial design, detail design, and mold fabrication. Following 

these stages, four types of tests are carried out. Concept tests use CAD model to test 

customers’ reaction to the proposed new product. Industrial design tests build digital 

mockups to verify the feasibility of the industrial design. Detail design tests construct 

engineering prototypes to verify that the design can function, and finally system tests 

produce concrete refrigerators to improve the overall performance of the product.  

Then, how much budget should be allocated to testing the design at each 

development stage? When should we stop testing? In overlapped process, downstream 

stages (e.g. mold fabrication) can start at any time after the initial upstream design is 

available and before the completion of upstream tests (e.g. detail design tests). Then, 
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what is the optimal start time of downstream stages (e.g. mold fabrication)? If 

overlapping is applied, how should we adjust the testing strategies?   

 

 

Figure 1.3 Refrigerator development process 

Our analytical models can be used to answer these questions which are of concern 

to design managers. According to literature review and field study, testing may be 

modeled as a continuous Non-Homogeneous Poisson Process (NHPP) (e.g. Serich, 

2005; Lin et al., 2008; Love et al., 2008), or a discrete cyclic process (e.g. Ha and 

Porteus, 1995; Dahan and Mendelson, 2001; Erat and Kavadias, 2008). In this thesis, 

the continuous and discrete testing processes are examined separately, since the 

models and policies for these processes are different.  

1.3.2 Approaches for DSM Sequencing Problem 

To structure NPD processes, another key and challenging decision faced by the 

management is how to plan the sequence of design activities with iteration loops 

(Krishnan and Ulrich, 2001; Anderson and Joglekar, 2005). In recent years, there has 

been a growing interest in applying DSM for planning design activities (Browning 

and Ramasesh, 2007; Sharman and Yassine, 2007; Karniel and Reich, 2009). One 

important objective of planning is to find an activity sequence with minimum 
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feedbacks. Since the problem is NP-complete, there is almost no chance to develop 

solution algorithms with a polynomial-time complexity (Li and Sun, 2006). 

To solve large DSM sequencing problem, we follow previous decomposition 

methods (e.g. McCulley and Bloebaum, 1996; Rogers, 1996, 1999; Ahmadi et al., 

2001), and extend this line of research by developing some rules for feedback 

reduction, and by proposing two new decomposition approaches. The proposed 

approaches outperform previous ones in their flexibility and well construction of sub-

problems. We have also applied the proposed approaches to three real data sets, and 

show that applying our approaches result in better solutions with smaller feedbacks. 

In some real world situations, the information dependencies among activities may 

be difficult to estimate accurately (Chen et al., 2004; Luh et al., 2009). To address this 

issue, we resort to fuzzy set theory to represent uncertain activity dependencies and 

present a fuzzy approach to DSM sequencing problem. To demonstrate its utility, the 

proposed approach has been applied to a data set published in Eppinger (2001). 

1.4 Structure of the Thesis 

As shown in Figure 1.4, this thesis focuses on two decision problems for 

structuring NPD processes: test scheduling and activity sequencing, and consists of 

eight chapters:  

Chapter 1: Introduction presents the research motivation, research gaps, 

research scope and objectives, and finally the overall structure of this thesis.  

Chapter 2: Literature Review provides a review of relevant literature. Based on 

the decision problems considered, we categorize previous literature into three groups: 
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test scheduling, overlapping policies, and project scheduling.  

Chapter 3: Optimal Testing Strategies in Overlapped Design Process treats 

testing as a continuous NHPP, and presents an analytical model for scheduling tests in 

overlapped process. Analysis of the model yields several useful insights, which can be 

used to improve NPD processes where the testing set-up time is relatively small. The 

methodology is validated with a case study at a handset design company.  

Chapter 4: Scheduling Tests in N-stage Overlapped Design Process deals with 

discrete cyclic testing process, and develops a model for determining optimal number 

of tests needed at each stage, together with the optimal overlapping policies, in N-

stage overlapped process. The model yields several useful insights, which can be used 

to structure NPD processes where the testing set-up time is long. The methodology 

was applied to a refrigerator development at a consumer electronics company.  

While Chapter 3 to 4 deal with the test scheduling problem, Chapter 5 to 7 are 

concerned with the activity sequencing problem.  

Chapter 5: A Decomposition Approach for Sequencing Design Activities first 

introduces a 0-1 quadratic integer program for DSM sequencing problem. After that, 

we establish two simple rules for feedback reduction, and show that small-scale 

sequencing problem can be solved by a Branch-and-Bound method. A heuristic 

decomposition procedure is then presented to extend the Branch-and-Bound method 

to solve large-scale problems. To demonstrate its utility, the proposed solution 

strategy has been applied to three real data sets, and benchmarked with the solutions 

presented in previous studies. 

Chapter 6: A Novel Approach to Large-scale DSM Sequencing Problem 
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further deals with DSM sequencing problem. Based on the results proved, a novel 

approach is presented for solving large-scale problems. Comparison of application 

results between the approach in this chapter and the one in Chapter 5 is also presented. 

Chapter 7: A fuzzy Approach to DSM Sequencing Problem applies some 

fuzzy set theory to represent imprecise activity dependencies and presents a fuzzy 

approach to DSM sequencing problem. To illustrate its utility, the proposed approach 

is applied to the powertrain development at General Motors (Eppinger, 2001). 

Chapter 8: Conclusions and Future Study gives a conclusion of this thesis and 

some possible future research topics. 

 

 

Figure 1.4 Structure of the thesis 
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CHAPTER 2  

LITERATURE REVIEW 

 

NPD process modeling has received considerable attention over the last 15 years 

from both the academic community and practitioners (Roemer and Ahmadi, 2004; 

Shane and Ulrich, 2004; Chao et al., 2009). To model and structure NPD processes, 

decisions are often made about the test scheduling for project monitoring and control, 

the degree of overlapping and mechanisms for coordination, and the planned timing 

and sequence of design activities (Krishnan and Ulrich, 2001; Browning and 

Ramasesh, 2007). In this chapter, an extensive review of the relevant literature is 

presented. Based on the decisions considered, we categorize previous literature into 

three groups. Section 2.1 reviews the literature on test scheduling. Section 2.2 

discusses previous studies on overlapping policies. Section 2.3 presents a review on 

different methods on project scheduling. Finally, Section 2.4 summarizes the 

concluding comments. 

2.1 Test Scheduling 

2.1.1 Empirical Studies 

The importance of testing for successful NPD has been emphasized by many 

researchers. First, testing usually accounts for the majority of project completion time 

and development cost. For example, Shooman (1983), as well as Cusumano and Selby 

(1995), showed that testing activities can account for nearly half of total development 

effort. Thomke (2003) reported that project teams spent nearly 50% of their time on 
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testing and related analysis. Second, for most product development projects, the initial 

outputs inevitably contain design problems, such as mismatches with customer needs, 

technical design faults, or issues regarding manufacturability and maintainability of 

the product (Thomke and Bell, 2001; Dahan and Hauser, 2002; Gil et al., 2008). 

Testing, which is a primary way to detect and resolve these problems, is central to 

product development (Loch et al., 2001; Thomke, 2007). 

As reported by Loch et al. (2001), because testing is so central to NPD, a growing 

number of researchers have started to study testing strategies or test scheduling 

problem. Recent qualitative and empirical studies focused on the effect of “Front-

Loading” on product development performance. Front-Loading refers to the recent 

emerging testing methodologies which allow an earlier detection of potential 

engineering problems. For example, Thomke (1998) studied the costs and benefits of 

such advanced testing methods as rapid prototyping and computer simulation. Dahan 

and Srinivasan (2000) observed that compared with the traditional paper-and-pencil 

testing methods, internet-based tests are more effective in measuring market potential, 

and lower in cost. Thomke and Fujimoto (2000) reported that the use of computer 

simulation tests allowed the Toyota Motor Corporation solving about 80% of all 

problems by stage two (overall of eight development stages), and thus resulted in 

about 30-40% reduction in development costs and lead time.  

2.1.2 Test Scheduling Problem 

A typical NPD process often involves a series of development stages, followed by 

testing activities performed to detect and remove design problems in each stage’s 

outputs. It is known that undetected design problems of an upstream stage (e.g. 

concept development) will accumulate and proliferate to downstream stage (e.g. 
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product design). Thus, the outputs of an upstream stage need to be tested extensively 

before releasing them to downstream stage. Inadequate testing would allow design 

problems to propagate, and finally deteriorate the product quality. On the other hand, 

testing also incurs time and cost. Too much testing at one stage would impede the 

project’s progress and increase development costs. Thus, how to optimally schedule 

various tests along the NPD process so as to maximize product development 

performance is an important decision problem (Krishnan and Ulrich, 2001; Thomke 

and Bell, 2001; Qian et al., 2009). 

Some mathematical models have been developed to determine the optimal 

scheduling of tests and/or reviews for product development projects. We categorize 

them into two groups. The first group of studies, which is discussed in Section 2.1.2.1, 

focused on test scheduling problem at one development stage, while the second group 

of studies, which are discussed in Section 2.1.2.2, examined the test scheduling 

problem for multiple development stages. 

2.1.2.1   Mathematical Models for Single-stage Test Scheduling 

Ha and Porteus (1995) studied the costs and benefits of design reviews for two 

overlapped design phases. In their work, frequent reviews enabled earlier detection of 

upstream flaws and concurrent execution of downstream phase, but would require 

additional time spent on the reviews. Given these trade-offs, they developed a model 

to decide the optimal timing and frequency of design reviews so as to minimize the 

project completion time. Their model was based on two main assumptions. First, no 

flaw would arise in the downstream phase. Second, the design reviews were perfect, 

in other words, each review could detect all the existing design flaws.  

Dahan and Mendelson (2001) modeled the concept testing as a probabilistic 
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search process and proposed an extreme-value model to determine the optimal 

number of tests and total budget for the concept development phase. Thomke and Bell 

(2001) developed a mathematical model to decide the optimal frequency, and fidelity 

of sequential testing activities. Their model was based on two main assumptions. First, 

the number of cumulated problems increased linearly with development time. Second, 

the cost of a test depended only on fidelity, where a test with higher fidelity would 

tend to uncover most currently detectable design problems. They showed optimal 

testing strategies should balance several tensions, including redesign cost, the cost of 

a test, and the correlation between sequential tests. A simple form of their model 

yielded an EOQ-like result: the optimal number of tests was the square root of the 

ratio of avoidable cost and the cost of a test.  

Loch et al. (2001) developed a model to determine the optimal mix of parallel and 

serial testing strategies that would minimize the total testing costs. In their model, the 

design team gradually learned through sequential tests, and so sequential testing 

strategy would require smaller number of tests to be carried out than parallel testing 

strategy. However, sequential testing strategy had the disadvantage of proceeding 

more slowly than parallel testing. A dynamic programming model was then presented 

to address this trade-off. Recently, Erat and Kavadias (2008) extended the work of 

Loch et al. (2001) by considering the design space structure and the correlations 

among design performances. 

Serich (2005) considered a three-phase project beginning with an optional 

prototyping phase, followed by a construction phase, and a rework phase. In their 

work, prototyping would reduce uncertainty and the resulting rework, but at the cost 

of additional time spent in prototyping. An analytical model was proposed to decide 
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the optimal amount of time spent in prototype tests such that the overall project 

duration would be minimized.  

Bartels and Zimmermann (2009) stated that in some industries, such as the 

automobile and the aircraft industry, the majority of testing costs were incurred by the 

final prototype testing stage since the construction of one experimental vehicle could 

be very expensive. At this testing stage, many different items of tests, such as the 

functional test and drop test, were conducted before launching the new product into 

market. They then introduced an approach to determine the optimal sequence of these 

tests such that the number of required experimental vehicles would be minimized. 

Test scheduling problem has been studied extensively in software development 

literature, and a recent review can be found in Xie et al. (2007). For instances, 

Yamada et al. (1995) considered the optimal allocation of testing resources among 

software modules based on a NHPP. Hou et al. (1997) investigated the cost optimal 

release policy for software systems with scheduled delivery time under Hyper-

Geometric distribution software reliability growth model with exponential or logistic 

learning factor. Xie and Yang (2001) investigated the problem of optimal allocating 

testing resources among software modules to maximize reliability of whole system. 

Dai et al. (2003) presented a genetic algorithm for multi-objective test resource 

allocation problem. Pham and Zhang (2003) developed an analytical model to 

determine the optimal testing stop rules so as to achieve the required reliability at 

minimal cost. Huang and Lyu (2005) studied the impact of software testing effort and 

efficiency on the cost for optimal release time. Tamura and Yamada (2006) examined 

optimal software release problems by using a flexible stochastic differential equation 

model based on the reusable rate in the system testing phase of the distributed 
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development environment. Kapur et al. (2007) discussed the testing resource 

allocation problem among modules to maximize the total number of faults removed 

from software consisting of several independent modules. Yang et al. (2008) proposed 

a risk-control approach to examine the uncertainty in software cost and its impact on 

testing strategies and optimal software release time.  

The above models have clearly shed light on the analysis of test scheduling 

problem. However, they focus on the testing policies at one development stage and do 

not take into account the multi-stage nature of testing process. It is known that the 

testing activities at different development stages are interacted and should be adjust 

coordinately. For example, in refrigerator development, engineers can do one round 

of prototype test at concept development stage, or many rounds of tests. Spending 

more time in prototype tests of concept development stage will reduce the potential 

problems in detail design. Therefore, the project completion time may be reduced. 

Then, how to balance the testing activities in concept development, detail design, and 

process design? It should be valuable to investigate it in detail. 

2.1.2.2   Mathematical Models for Multi-stage Test Scheduling 

An important contribution in modeling multi-stage testing for product 

development projects is due to Cooper (1980, 1993a, 1993b, 1993c). Based on his 

experience as a consultant, he distinguished between the initial design of development 

stages and testing. In the initial design, development stages were performed at 

different but usually less than perfect quality. In other words, the initial outputs of 

development stages, such as the product specifications and bill of materials, contained 

design faults and would to be reworked when these design faults were identified by 

the following testing activities. Testing activities were not perfect and could not find 
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all design faults. Therefore, design faults would propagate across development stages, 

and resulting in downstream tasks done on these design faults. Finally, when tests at 

the downstream stage identified these upstream design faults, not only the design 

faults need to be corrected, but also the relevant downstream tasks need to be 

reworked. Such a fault discovery delay could therefore substantially increase the cost 

of rectifying errors and project completion time. Except for the design faults, rework 

may also caused by customer changes. He then defined completion quality as the 

proportion of work being done which will not require rework, and testing quality as 

the percentage of design faults identified in the testing process. Based on these 

definitions, he simulated the major development stages of shipbuilding operation 

using system dynamics approach, and concluded that testing quality at earlier stages 

of project life increased testing cost, but reduced project completion time 

considerably and increased the probability of meeting the customer's specifications.  

Ford and Sterman (1998, 2003a, 2003b), as well as Joglekar and Ford (2005), 

extended the works of cooper (1993a, 1993b, 1993c) by including process structure 

and resource allocation in their system dynamics models. Williams et al. (2003) 

presented a system dynamics model to structure the delay and disruption claims. 

Based on system dynamics approach, William (2005) analyzed a number of failed 

projects to explore why the common project-management discourse could give rise to 

failed projects. They found that for projects that were complex, uncertain, and time-

limited, conventional methods might be inappropriate, and aspects of newer 

methodologies in which the project “emerges” rather than being fully preplanned 

would be more appropriate. More recently, Love et al. (2008) examined how and why 

design-induced rework occurred in a commercial construction project since design-

induced rework could contribute up to 70% of the total amount of rework. In their 
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work, the underlying behavioral dynamics that contributed to design errors, such as 

the experience and skill of engineers, schedule pressure and information technology, 

were modeled and simulated using system dynamics approach. In Love et al. (2009), 

they further present a system dynamics model to examine the underlying factors that 

contribute to omission errors in construction and engineering projects. Here omission 

errors are resulted from pathogens within a system (such as time pressure, 

understaffing, fatigue, and inexperience) that translate into error provoking conditions 

within the firm and project.  

Lin et al. (2008) complemented previous system dynamics models by including 

overlapping in their model. They explicitly defined and modeled two types of rework: 

Rework due to Development Errors, which referred to rework or rectification of 

design errors, and Rework Due to Corruption, which referred to rework or 

rectification of relevant downstream tasks due to the change of tasks in an upstream 

stage. Based on these concepts, they proposed a Dynamic Development Process 

Model for managing overlapped iterative product development, and validated the 

model with an in-depth case study at a handset design company. 

The above system dynamics simulation models have greatly advanced our 

understanding on the multi-stage testing process. Given a set of testing strategies, 

these models can be used to compare the solutions and identify which one is best. 

However, it is often impossible to tell how far the current solution is from optimality 

(Sterman, 2004; Cho and Eppinger, 2005). Moreover, for problems with continuous 

decision variables, it’s unlikely to get a good solution quickly and efficiently.  

In literature on analytical approaches, Ahmadi and Wang (1999) explicitly 

modeled the multi-stage review process, and examined how to optimally schedule 
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reviews and engineering resources along the design process so as to achieve the 

required level of process confidence at minimal development cost. While their work is 

useful for managing the sequential process, the solutions and insights they get may 

not be applicable to overlapped process where downstream stages start before the 

completion of upstream stages.  

Kogan and Raz (2002) examined how to optimally schedule the inspection 

activities in an N-stage system so as to minimize the sum of inspection costs and 

penalty costs caused by undetected defects. An efficient algorithm was proposed to 

solve the problem. However, their work assumes that all stages start and finish 

simultaneously, which is less common in practice.  

As far as we know, no analytical model exists for scheduling tests in overlapped 

NPD process. Meanwhile, overlapping development stages has become a common 

mode of product development (Terwiesch et al., 2002; Loch and Terwiesch, 2005; 

Yassine et al., 2008), and the testing strategies combined with overlapping policies 

may affect project performance differently compared with testing strategies in the 

sequential process. Therefore, it is meaningful and worthwhile to investigate the 

testing strategies in overlapped NPD process.  

In modeling testing processes, one stream of existing literature (e.g., Cooper, 

1993a, 1993b, 1993c; Yamada et al., 1995; Kogan and Raz, 2002; Pham and Zhang, 

2003; Serich, 2005; Lin et al., 2008; Love et al., 2008; Love et al., 2009) modeled 

testing as a continuous NHPP process of discovering and solving design problems. It 

is justified that when design problems arise from many components or modules, the 

set-up time of a test is relatively small and can be ignored such that the rate of 

discovering and solving design faults is approximately continuous. On the other hand, 
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the second group of studies postulated that each time a test takes place, a certain 

amount of set-up time (such as the time to get organized for the test, to construct 

prototypes and to prepare documents) is required, and modeled testing as a discrete 

cyclic process (see e.g. Ha and Porteus, 1995; Dahan and Mendelson, 2001; Loch et 

al., 2001; Erat and Kavadias, 2008). This stream of literature echoed previous 

empirical studies (e.g. Thomke, 1998; Thmoke and Fujimoto, 2000), which showed 

that the execution of testing often involved a three-step iterative cycle: (1) build 

virtual or physical prototypes that embody the key aspects of the design; (2) test the 

prototypes to identify design problems; and (3) modify the design to remove these 

design problems.  

2.2 Overlapping Policies 

A typical NPD process can be viewed as consisting of four consecutive stages: 

concept design, detail design, process design, and pilot production (Haberle et al., 

2000; Chakravarty, 2003; Yan et al., 2003; Browning, 2009). Generally, concept 

design stage defines the product’s concept, architecture and specifications based on 

market research of customer preferences. Detail design stage involves the 

determination of design parameters and detailed design of components. Process 

design stage constitutes the design of tools, facilities, equipment, and so on. Pilot 

production is the stage where the overall product design is realized as physical 

products with further testing implemented to improve the overall quality of the 

product. 

As shown in Figure 2.1, traditional phase-milestone NPD processes are sequential, 

with check and decision points placed at the end of each stage (Cooper, 1994; 

MacCormack et al., 2001; Nair and Boulton, 2008). Moreover, the process is highly 
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functionally segregated, in other words, different functions are responsible for 

different stages, and communication between the functions are only occurred at the 

end of each stage (Cooper, 1994; Bhuiyan, 2001; Carrillo and Franza, 2006). Clark 

and Fujimoto (1991) stated that such process would be appropriate “…when markets 

were relatively stable, product life cycles were long, and customers concerned most 

with technical performance.” However, such traditional paradigm would increase 

friction among different function groups, and lead to bottlenecks in the flow of 

information through the NPD processes (Clark and Fujimoto, 1991; Swink et al., 1996; 

Browning and Health, 2009), which would further increase the project completion 

time and consume additional resources (Patrashkova-Volzdoska et al., 2003; Bhuiyan 

et al., 2004; Sosa et al., 2007a). 

 

 
 

Figure 2.1 Traditional phase-milestone NPD process 
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the downstream stage starts before the completion of the upstream stage. Through 

executing multiple stages simultaneously rather than sequentially, the project 

completion time may be reduced in overlapped NPD process (Datar et al., 1997; Gerk 

and Qassim, 2008). In recent years, overlapping has become a common mode of 

product development as a result of increasing importance of time-to-market 

(Terwiesch et al., 2002; Yan et al., 2002; Yassine et al., 2008).   

Although large reduction in project completion time may be achieved by applying 

overlapping approach (Smith and Reinertsen, 1998; Sobek et al., 1999; Helms, 2004), 

empirical studies also show that overlapping is not applicable to all NPD projects 

(Eisenhardt and Tabrizi, 1995; Liker et al., 1996; Gil et al., 2008). For example, based 

on the empirical study of 140 development projects in the electronics industries, 

Terwiesch and Loch (1999) concluded that overlapping was effective only if 

uncertainty resolution was fast. Because overlapping requires that downstream stages 

start on preliminary information, rework is often necessary to accommodate upstream 

design changes. If the uncertainty or the dependency between development stages is 

high, most of downstream tasks done on upstream preliminary information need to be 

reworked, which makes overlapping unfavorable (Krishnan et al., 1997; Helms, 2002; 

Minderhoud and Fraser, 2005; Lin et al., 2010). For instance, Terwiesch et al. (2002) 

showed that the downstream rework caused by overlapping frequently consumed as 

much as 50% of total engineering capacity in their case study company. Based on 

survey data from a sample of 120 projects in healthcare and telecommunications, 

Mitchell and Nault (2007) indicated that project delay was primarily due to 

downstream rework and downstream delay. Therefore, a key trade-off involved in 

overlapping development stages is time reduction versus additional effort for 

downstream rework.  
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2.2.1 Mathematical Models  

Some mathematical models have examined the key trade-off involved in 

overlapping development stages and its associated drivers. Krishnan et al. (1997) 

developed an integer program to determine the optimal number of information 

transfer between two consecutive development stages, as well as the start time of 

downstream rework, such that project completion time would be minimized. The 

authors proposed that the optimal overlapping policies should be determined by two 

properties of the NPD process, “upstream evolution” and “downstream sensitivity”, 

where “upstream evolution” denoted the speed at which upstream information 

narrows from an interval value to a final solution, and “downstream sensitivity” 

referred to the expected time needed for the downstream stage to incorporate 

upstream design changes. This principle was further developed by Loch and 

Terwiesch (1998), where they proposed that the optimal levels of overlapping and 

communication should be decided by the arrival rate of upstream design 

modifications, the impact of each modification (i.e. the percentage of downstream 

tasks would be affected by one upstream design change), and the downstream 

progress, i.e. the number of downstream tasks completed when the design change 

arrived. 

Since then, a number of independent researchers have studied the optimal 

overlapping policies for projects with different characteristics. For example, Yassine 

et al. (1999b) developed a probabilistic model to determine the optimal overlapping 

policy for a set of activities with given information structure. Cantamessa and Villa 

(2000) proposed an analytical model to determine the optimal allocation of product 

and process designers’ time with the objective of minimizing the overall design effort. 
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Roemer et al. (2000) addressed the time-cost trade-off in overlapped product 

development process and introduced an algorithm to determine the optimal amount of 

overlapping. Chakravarty (2001) examined the optimal overlapping policies for three 

overlapping modes and analyzed the impact of parameter values on overlapping 

decisions. Joglekar et al. (2001) proposed a performance generation model to 

determine the optimal overlapping strategies with the goal of maximizing project 

performance with deadline constraints. Chakravarty (2003) developed two approaches 

to determine the optimal start time of downstream rework for continuous and discrete 

upstream design changes, respectively. Yassine et al. (2003) developed a model to 

derive conditions under which churn was observed as an unintended consequence of 

information hiding due to local and system task decomposition. Bhuiyan et al. (2004) 

proposed a discrete event simulation model to study the impact of overlapping and 

functional interaction on project performance which was measured by total person-

days. 

Recently, Roemer and Ahmadi (2004) explicitly studied the interactions between 

overlapping and crashing, which are two common methods for reducing project 

completion time, and provided general guidelines for optimal overlapping and 

crashing policies. Gerk and Qassim (2008) extended the work of Roemer and Ahmadi 

(2004) by including another method of accelerating product development, substitution. 

A mixed-integer non-linear programming model was then presented for 

simultaneously determining the optimal crashing, overlapping, and substitution 

policies. Wang and Yan (2005) focused on the optimization of the overlap degree 

between an upstream stage and downstream stages with the goal of minimizing total 

cost of delay of project completion time and design revision workloads. The authors 

proved that the total cost is convex with respect to the overlap degree between design 
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activities. Jun et al. (2005) classified product development processes into different 

patterns, and developed an approach to estimate the project completion time. Yassine 

et al. (2008) developed optimal decision rules to determine whether to incorporate a 

piece of information that just arrived (i.e. became available) or wait longer. Lin et al. 

(2009) presented an analytical model to derive the optimal amount of overlapping and 

functional interaction by balancing the positive and negative effects of overlapping 

and functional interaction. Lin et al. (2010) extended the work of Loch and Terwiesch 

(1998), and explicitly studied the time-cost trade-off involved in concurrent design 

process in order to derive optimal overlapping and communication policies. 

The results of above overlapping models are insightful in many respects. However, 

all of them assume that testing strategies are predetermined. Analytical models are 

needed to combine these two decisions (i.e. test scheduling and overlapping degrees) 

into one modeling framework since they are interacted.  

2.3 Project Scheduling  

As mentioned earlier, in determining the testing and overlapping policies, the 

NPD process is generally viewed as consisting of a series of development stages. 

When the NPD process is broken down into development stages, it’s no need to 

consider the sequencing problem since the execution sequence of these stages (such 

as the concept design and the detail design) is fixed and will not change. However, a 

development stage may further be broken down into smaller activities, and a complex 

NPD process may involves hundreds of decision-making activities with cyclic 

information flows among them (Eppinger et al., 1994; Chen et al., 2004; Meixell et al., 

2006). Therefore, if the NPD process is further broken down into smaller design 

activities, then a key and challenging issue often faced by the management is how to 
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plan the time and sequence of these activities (Krishnan and Ulrich, 2001; Anderson 

and Joglekar, 2005; Browning and Ramasesh, 2007). Over the years, various models 

for scheduling design activities have been developed. We classify these models from 

the methodological aspect: network-based scheduling techniques (discussed in 

Section 2.3.1), simulation models (discussed in Section 2.3.2), and design structure 

matrix (discussed in Section 2.3.3).  

2.3.1 Network-based Scheduling Techniques 

Network-based scheduling techniques, such CPM and PERT, utilize activity 

duration estimates and precedence relationships representing the network of activities 

(Badiru, 1993; Golenko-Ginzburg and Gonik, 1996). Figure 2.2 shows a simple 

example of such network diagram for CPM schedule management. 

 

 

Figure 2.2 A network diagram for CPM schedule management 

 

CPM enables the identification of a project’s critical path, i.e. the sequence of 

activities whose combined durations define the minimum project completion time, as 

well as earliest and latest possible start and finish times of all activities. Moreover, 
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CPM provides some tools for studying the trade-offs of different performance 

measures, such as the time-cost trade-off.   

PERT complements CPM by incorporating the effect of project uncertainty into 

the estimates of activity duration. Three estimates, i.e. most likely, optimistic and 

pessimistic, are used to describe the variability of activity durations. Based on these 

parameters, the probabilities of a project meeting specific schedule objectives can be 

obtained. The incorporation of duration uncertainty makes PERT more valuable in 

managing projects with uncertainty.  

However, for most development projects, the delay is usually caused by iteration 

instead of uncertain activity duration. Like CPM, PERT cannot explicitly represent 

the dynamic interaction between design activities and the iteration, limiting their 

capability of scheduling for NPD projects (Ahmadi et al., 2001; Denker et al., 2001; 

Kang and Hong, 2009).  

It is known that the outputs of decision-making activities, such as engineering 

drawings, specifications and bill of materials, are often unstable and inaccurate, and 

need to be reworked when downstream activities detect some faults in the original 

design (Loch and Terwiesch, 2005; Love et al., 2008). Second, downstream activities 

may be repeated when modified information is passed along from upstream activities 

(Smith and Eppinger, 1997a; Lin et al., 2008). Thus, cyclic information flows among 

activities are quite common in NPD process and PERT/CPM could not deal with such 

loops effectively (Eppinger, 2001). Moreover, in PERT/CPM, the underlying 

precedence relationships among activities are assumed known and unchanged, but in 

many complex development projects, clear precedence constraints do not exist and 

are rarely known in advance (Ahmadi et al., 2001; Jun and Suh, 2008). 
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CPM and PERT were initially developed to control schedule, and later expanded 

to handle costs and resource allocation (see e.g. Mika et al., 2005; Kolisch and 

Hartmann, 2006; Lancaster and Ozbayrak, 2007; He and Xu, 2008; Waligora, 2008). 

Although an extension of PERT models, known as Graphical Evaluation and Review 

Technique (GERT), enables simulation-based analysis of activity networks with 

iteration loops, direct analysis of any but a simple GERT network is difficult (Smith 

and Eppinger, 1997b; Cho and Eppinger, 2005; Browning and Ramasesh, 2007). 

2.3.2 Discrete Event Simulation Models 

To address the shortfalls of network-based scheduling techniques, one stream of 

research utilizes simulation to model iteration and explores the linkage between 

activity sequences and project performance. Most commonly used method is discrete 

event simulation. For example, Carrascosa et al. (1998) presented a model to estimate 

project completion time for different activity sequences and overlapping degrees 

using concepts of probability of change and impact. Browning and Eppinger (2002) 

examined the effects of varying process architecture by simulating NPD process as a 

network of activities that exchange deliverables. The model outputs sample cost and 

schedule outcome distributions. Each distribution is used with a target and an impact 

function to determine a risk factor. Alternative process architectures can then be 

compared to reveal opportunities to trade cost and schedule risk.  

More recently, Gil et al. (2004) simulated the concept development process for 

semiconductor fabrication facilities, and found that some decision-making 

postponement could help increase the predictability of concept development duration 

and reduce resources spent in design without increasing the risk of exceeding project 

deadlines. Cho and Eppinger (2005) extended the work of Browning and Eppinger 
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(2002) by addressing resource constraints. Kouskouras and Georgiou (2007) 

presented a discrete event simulation model for managing software projects.  

 

2.3.3 Design Structure Matrix 

To address the shortfalls of CPM and PERT, another known method is DSM. As 

illustrated in Figure 2.3, there are three possible sequences of two design activities 

based on the information dependencies between them (Eppinger et al., 1994; 

Carrascosa et al., 1998): (1) if there is a unidirectional information transfer from A to 

B, then activity B is dependent on activity A and would be performed after the 

completion of A; (2) if there is no information exchange between activity A and B, 

then the two activities are independent and can be executed in parallel; finally, (3) if 

there exist cyclic information flows, i.e. activity A needs information from activity B, 

and also activity B requires the output of activity A, then the two activities are 

interdependent or coupled. 

 

 

Figure 2.3 Three possible sequences for two activities (Eppinger et al., 1994) 

The three types of information dependencies among design activities, as well as 

iterative nature of product development can be effectively addressed by using DSM. 

As shown in Figure 2.4, the basic DSM is a binary matrix representation of a project 

with elements denoting individual design activities and off-diagonal marks 

representing the information dependencies among these activities (Eppinger et al., 

1994; Browning, 2001). Along each row, the off-diagonal marks indicate all of the 
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activities whose output information is required to perform the activity corresponding 

to that row; reading down each column reveals that which other activities receive its 

output (Yassine et al., 1999a; Maheswari et al., 2006). When activities are executed in 

the order listed from top to bottom, sub-diagonal marks represent an input from 

upstream activities to downstream activities, and super-diagonal marks denote a 

feedback from downstream activities to upstream activities (Browning and Eppinger, 

2002; Karniel and Reich, 2009). As such, DSM provides a compact representation of 

a complex system by showing information dependencies in a square matrix, as well as 

a useful tool for describing and investigating iteration (Denker et al., 2001; Cho and 

Eppinger, 2005). 

It is known that iteration is a major driver for lengthy and costly product 

development. To improve NPD processes, the DSM approach suggests re-sequencing 

the design activities so as to minimize iterations, i.e. to get the DSM into a lower-

triangular form as possible (Eppinger et al., 1994). If the design activities can be 

ordered such that no super-diagonal marks exist, then no iteration remains, and 

PERT/CPM are still applicable (Eppinger, 2001). However, this seldom occurs 

because of the complexities in product development processes, in other words, cyclic 

flows of information exist and PERT/CPM could not deal with such loops effectively 

(Eppinger, 2001). Moreover, DSM differs from network-based scheduling techniques 

in that it focuses on representing information flows rather than work flows (Yassine et 

al., 1999a; Eppinger, 2001). As reported by Eppinger (2001), conventional tools 

answer the question: “What other activities must be completed before I begin this 

one?” However, the DSM approach addresses the question: “What information do I 

need from other activities before I can complete this one?”  

 



                                                                                          Chapter 2   Literature Review  

                                                                                                                  

35 

 

 

Figure 2.4 DSM representation of UCAV preliminary design process 

(Adapted from Browning and Eppinger, 2002) 

 

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994) 

extended Steward’s work by explicitly including numerical measures of the degree of 

activity dependence, and proposed the Numerical DSM (NDSM). Compared to DSM, 

where “X” mark and empty cells signify the existence and absence of information 

dependencies among activities, NDSM could provide more detailed information on 

the relationships among design activities, and could be used to further improve NPD 

processes (Chen and Li, 2003; Chen et al., 2004). Eppinger et al. (1994) proposed that 

three measures could be used to capture the dependency between activities A and B, 

given that activity B depends on the output information from activity A:  

(1) Variability: If the output information from activity A will change significantly 

(slightly), then the dependency tends to be strong (weak).  

(2) Predictability: If the change of output information from activity A is unpredictable 

(predictable), then the dependency tends to be strong (weak). 
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 (3) Sensitivity: If a slight (substantial) change of output information of activity A will 

lead to a large (small) magnitude of design iteration in B, then the dependency 

tends to be strong (weak).  

Based on the three measures, activity dependencies can then be quantified through 

interviewing the engineers and managers familiar with the system and/or via 

surveying relevant documentation (Eppinger, 2001; Chen et al., 2004). Figure 2.5 

shows an example of NDSM for the burn-in system (Chen et al., 2004), which 

consists of twelve activities, numbered from DT0 to DT11. 

 

 

Figure 2.5 NDSM for the burn-in system (from Chen et al., 2004) 

 

Over the years, several other methods have also been reported on how to reliably 

quantify activity dependencies. For instance, Carrascosa et al., (1998), as well as 

Browning and Eppinger (2002), Zhang et al. (2006), proposed that the dependency of 

activity j on i could be derived by multiplying the probability of change in activity i 

and the impact of that change on j. Chen and Li (2003) applied the analytic hierarchy 

process (AHP) to quantify activity dependencies, and showed that the clustering 

performance of using numerical DSM is better than that of using binary DSM. AHP 
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allows diverse and often incommensurable elements to be compared to one another in 

a rational and consistent way, and has been demonstrated to be a suitable method for 

the selection of functionally most appropriate components of technical systems. Chen 

and Li (2003) reported that “In AHP, the hierarchy usually contains three major levels, 

such as the overall objective, criteria or sub-goals, and decision alternatives. Pairwise 

comparisons are made to determine the relative importance of the elements in each 

level. Relative priorities for decision alternatives can be evaluated under each specific 

criterion. The AHP converts these evaluations to numerical values that can be 

processed and compared over the entire range of the problem.” Chen et al. (2004) 

suggested a way of combining quality function deployment (QFD) and DSM in 

product design process, and proposed a systematic approach to quantify activity 

dependencies. Yassine (2007) developed a methodology that allowed a practical 

estimation of activity dependencies. 

The advantages of DSM/NDSM have led to many successful applications in 

managing product development projects. For example, Osborne (1993) applied 

iteration maps and DSM to describe product development at Intel in terms of project 

completion time. Osborne’s work demonstrates the need for further investigation on 

the impact of activity dependencies on project completion time. Kusiak et al. (1994) 

presented a detailed reengineering approach based on models of DSM and Integration 

DEFinition (IDEF). Extensions of the work of Kusiak et al. (1994) can be found in 

Belhe and Kusiak (1996), Zakarian and Kusiak (2001), and Chin et al. (2006). Kusiak 

et al. (1995) described six patterns of design processes and presented a qualitative 

analysis approach for improving design processes. Morelli et al. (1995) used DSM to 

map and predict information flows among activities. Eppinger (2001) reported several 

successful applications of DSM for managing development projects. Clarkson et al. 

http://en.wikipedia.org/wiki/Numerical
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(2004) used NDSM to map and predict the risk of change propagation for Westland 

Helicopters of rotorcraft design. Lee and Suh (2006) developed a workflow 

structuring method for identifying the reengineering issue and for transforming the 

complex design process into a well-structured workflow, based on DSM approach. 

Chen and Huang (2007) applied DSM approach to supply chain management. Tang et 

al. (2009) presented a tool for enhancing the axiomatic design method with DSM 

approach.  

Recently, there is a growing interest in applying DSM/NDSM for identifying team 

arrangements (see e.g. Chen and Li, 2003; Batallas and Yassine, 2006; Yu et al., 2007; 

Amrit and van Hillegersberg, 2008; Collins et al., 2009; Karimian and Herrmann, 

2009), and for product architecture decisions of developing modular products and 

product families (See e.g. Baldwin and Clark, 2000; Loch et al., 2003; Chen and Li, 

2005; Fixson, 2005; Helo, 2006; Lopes and Bajracharya, 2006; MacCormack et al., 

2006; Veenstra et al., 2006; De Weerd-Nederhof et al., 2007; Sosa et al., 2007b; Sosa, 

2008; Zhuo et al., 2008; Bashir et al., 2009; Voss and Hsuan, 2009). Reviews of 

general areas of DSM application can be found in Browning (2001), Karniel and 

Reich (2009). 

In project scheduling, DSM has spawned many research efforts on sequencing 

design activities (Eppinger et al., 1994; Browning and Ramasesh, 2007). In most of 

previous studies, the objective of sequencing is to find a sequence of activities that 

minimize feedbacks (Meier et al., 2007; Qian and Goh, 2007; Lancaster and Cheng, 

2008). There are several reasons why this is meaningful and important. First, 

feedbacks determine where iteration loops occur (Eppinger et al., 1994; McCulley and 

Bloebaum, 1996). Studies have shown that iteration is a major driver for lengthy and 
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costly product development (Terwiesch et al., 2002; Mihm et al., 2003; Love et al., 

2008). Thus, minimizing feedbacks is a good approximation for concurrently 

reducing project completion time and development costs (Ahmadi et al., 2001; Meier 

et al., 2007; Collins et al., 2009). For example, Ahmadi et al. (2001) showed that the 

average errors resulting from the surrogate objective function of minimizing 

feedbacks was around 2.6% and the maximum error was less than 8%, over 540 

problems solved. Second, as indicated by McCulley and Bloebaum (1996), in practice, 

especially for today’s distributed product development, “the design managers are 

likely to desire choosing an evaluation procedure which requires the least amount of 

information to be guessed initially. Each feedback corresponds to one or more guesses, 

since the feedback input will be required by upstream activities before it is exactly 

known. Therefore, minimizing feedbacks will also minimize the amount of 

information required to be supplied as initial guesses”.  

Except for minimizing feedbacks, some other considerations have also been 

incorporated in sequencing design activities in a DSM, which are summarized as 

follows. Denote: 

n    Total number of activities in a DSM  

i, j, k     Indices for activities  

jid ,         Degree of information dependency of activity i on j ( )0, jid  

f ,  c       The number of feedbacks and crossovers, respectively 

wf , wc     Weights for the number of feedbacks and crossovers, respectively 

wT , wC     Weights for project completion time and development cost, respectively 

L, D, U  The respective lower triangular, diagonal, and upper triangular matrices from 

Gaussian elimination  
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 b           The column vector which contain the normal activity duration  

jif ,     The number of iterations in j caused by activity i  

kb     Normal duration of activity k  

Type I. Minimize feedbacks: 
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Type III. Minimize weighted number of feedbacks and crossovers: 
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Note that above objectives are all approximations for the actual goals of 

decreasing the NPD processes’ time, cost and risk (Meier et al., 2007; Karniel and 

Reich, 2009). Based on the objective and solution approach used, Table 2.1 lists some 

activity sequencing models. 
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Table 2.1    Comparison of some activity sequencing models 
 

References Objective  Solution Approach 

Steward (1981) Type I Partition rules 

Kusiak and Wang (1993) Type I Partition rules  

Altus et al. (1996) Type II GA 

McCulley and Bloebaum (1996) Type III Decomposition rules + GA 

Rogers (1996, 1999) Type IV  Decomposition rules + GA 

Smith and Eppinger (1997a) Type V Enumeration + Heuristic 

Ahmadi et al. (2001) Type I Block Decomposition + Branch-and-Bound 

Whitfield et al. (2003) Type I and II GA 

Abdelsalam and Bao (2006, 2007) Type VI Simulated Annealing 

Banerjee et al. (2007) Type V Heuristic  

Meier et al. (2007) Type II GA 

Lancaster and Cheng (2008) Type II Evolutionary algorithm 

Luh et al. (2009) Type I Heuristic 

 

Several independent researchers have reported that the DSM sequencing problem 

is NP-complete (e.g. McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al., 

2007). To solve large-scale activity sequencing problem, one stream of literature 

focused on developing heuristics and in particular meta-heuristic methods. For 

example, Altus et al. (1996) proposed a GA based model for organizing activities into 

a “satisfying” order such that the “total length of feedbacks” in the system could be 

minimized. Based on the assumption of sequential iteration, Smith and Eppinger 

(1997a) proposed that the expected duration for a sequence of coupled activities could 

be calculated by reward markov chain. For large systems, a heuristic procedure was 

presented to find an activity sequence with minimum expected duration. Banerjee et 

al. (2007) presented a quadratic integer program for the problem examined by Smith 

and Eppinger (1997a), and showed that the problem was NP-hard and its linear 

relaxation could only give a poor lower bound. Whitfield et al. (2003) presented a GA 

by including two criterions of DSM sequencing problem. More recently, Abdelsalam 
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and Bao (2006, 2007) proposed Simulated Annealing approaches to determine the 

sequence of activities with the goal of minimizing iteration time. Meier et al. (2007) 

proposed a competent GA for finding an activity sequence with minimum feedback 

lengths. Lancaster and Cheng (2008) developed an evolutionary algorithm for 

obtaining an activity sequence with minimum feedback lengths. Luh et al. (2009) 

proposed the concept of fuzzy DSM, and developed a heuristic to reorder design 

activities so as to minimize feedbacks. 

Another stream of literature focused on decomposition based methods. For 

instance, based on the rules developed by Steward (1981), Rogers (1989) developed 

an expert system called Design Manager’s Aid for Intelligent Decomposition 

(DeMAID) for performing DSM analysis. In DeMAID, two steps were performed to 

get a hierarchical ordering: (1) Identifying the tightly coupled activities and forming 

them into blocks; and (2) Sequencing the activities within each block so as to 

minimize feedbacks. The DeMAID was further extended to DeMAID/GA by 

incorporating Genetic Algorithm (GA) to sequence the activities within each block 

(McCulley and Bloebaum, 1996; Rogers, 1996, 1999). Kusiak and Wang (1993) 

presented a triangularization algorithm for organizing design activities. Tang et al. 

(2000) presented an algorithm for identifying coupled activities, and an algorithm for 

figuring out the order levels of activities. Some other schemes for identifying coupled 

activities can be found in Gebala and Eppinger (1991), Chen and Li (2003), Chen et al. 

(2005), Chen et al. (2007). 

Ahmadi et al. (2001) explicitly develop mathematical models for solving large-

scale DSM sequencing problem. In their paper, the overall project was first 

decomposed into smaller sub-problems that were easier to solve; a Lagrangian 
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relaxation based Branch-and-Bound method was then used to solve the sub-problems, 

and finally, the solutions of sub-problems were concatenated to a solution of the 

overall problem. They considered block structures as possible sub-problems, and 

presented a Block Decomposition problem with the objective of minimizing 

feedbacks among blocks. In what follows, we will describe in detail the Block 

Decomposition problem.  

Assume that there are overall of N design activities. Let ji,  be the indexes for 

activities ( Nji ,...,2,1,  ), and ka  be the degree of dependency of activity j on 

activity i, where ),( jik   represents an arc from activity j to activity i. Defining 

wnk   if 1ka ; 1kn  otherwise, where w is a large positive number. Let m 

( Mm ,...,2,1 ) be the index for the position of sequenced blocks, where M  is the 

number of blocks to be formed, and C be the maximum number of activities to be 

allowed in a block. The decision variables are: 1mix  if activity i is assigned to the 

mth block, 0mix  otherwise; 1ky  if arc ),( jik   is a feedback arc from a high-

positioned block back to a low-positioned block, 0ky  otherwise. The Block 

Decomposition problem is then formulated as follows: 


Ak

kkk ynaMin                                                                  (2.1) 

s.t. 1
1




M

m

mix , for Ni ,...,2,1                     (2.2) 

Cx
N

i

mi 
1

, for Mm ,...,2,1                       (2.3) 

0
1

 


k

M

mh

hjim yxx , for ),( jik   and each m              (2.4) 

  kmiyx kmi ,,1,0,                   (2.5) 
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The objective function (2.1) minimizes the feedbacks among blocks. Equations 

(2.2) and (2.3) are assignment constraints. Constraint (2.4) guarantees that the 

objective function (2.1) sums only the feedbacks among blocks. In particular, if 

activity j is assigned to a low-positioned block, and activity i is assigned to a high-

positioned block, then 1imx , 0
1




M

mh

hjx , and so 1ky  (since ky  equals either zero 

or one), i.e. ka  is a feedback and is included in (2.1); otherwise, 1
1




M

mh

hjx , and 

consequently 0ky , i.e. ka  is not a feedback and is not included in (2.1). Constraint 

(2.5) indicates that mix  and ky  are binary decision variables. The Block 

Decomposition problem can be solved using the Branch-and-Bound method, and the 

computational effort of sub-problems can be controlled by choosing the value of C.  

The work of Ahmadi et al. (2001) has clearly shed light on the analysis of DSM 

sequencing problem, and has greatly advanced our understanding of managing NPD 

processes. However, a major disadvantage of above Block Decomposition method is 

that the resulting overall sequence of design activities (obtained by solving all sub-

problems) may be a sequence that is worse than the initial one. For example, suppose 

that there are four activities, numbered from 1 to 4. The NDSM representation of the 

initial activity sequence is shown in Figure 2.6(a), where the numbers in the square 

matrix represent the information dependency levels among activities. Assume that 

these four activities need to be grouped into two blocks, and the number of activities 

in each block should be less than three. Then, applying the Block Decomposition 

method will lead to the activity sequence shown in Figure 2.6(b), i.e., the first block 

contains activities 1 and 3, and the second block contains activities 2 and 4, such that 

the total feedbacks among the two blocks is minimized at 0.9. Clearly, the total 
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feedbacks of the NDSM in Figure 2.6(a) are 1.6, while the total feedbacks of the 

NDSM in Figure 2.6(b) are 1.8. In other words, the total feedbacks are increased, 

which imply that the resulting overall activity sequence by the Block Decomposition 

method is worse than the initial one.  

 
 

 

 

 

 

 

 

 

                  (a) Initial solution                                 (b) Solution by Block Decomposition  
 

Figure 2.6 Disadvantage of block decomposition: an example  

 

2.4 Concluding Comments 

How to optimally schedule various tests along the NPD process such that the 

highest product development performance, in terms of time, cost and quality can be 

achieved is an important decision problem. Past analytical models, which are 

developed to determine the optimal scheduling of tests, often focused on single-stage 

testing of sequential NPD process. While these studies are useful for managing the 

sequential process, the solutions and insights they get may not be applicable to 

overlapped NPD process, which has become a common mode of product development 

over the last decade. Moreover, testing strategies combined with overlapping policies 

may affect project performance differently compared with testing strategies in the 

sequential process. Therefore, it is meaningful and worthwhile to investigate the 

testing strategies in overlapped NPD process, which are the objectives of Chapter 3 to 

4 of this thesis. 

 
1 3 2 4 

1   0.5 0.1 0.3 

3 0.9   0.3 0.2 

2 0.2 0.1   0.4 

4 0.6 0.8 0.7   

  1 2 3 4 

1   0.1 0.5 0.3 

2 0.2   0.1 0.4 

3 0.9 0.3   0.2 

4 0.6 0.7 0.8   
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A key trade-off involved in overlapped NPD process is time reduction versus 

additional effort for downstream rework. Previous overlapping models (e.g. Krishnan 

et al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000; Wang and Yan, 2005; 

Lin et al., 2009) have clearly shown that, the optimal overlapping levels is determined 

by the arrival rate of upstream design modifications, the impact of each modification, 

and the downstream progress, i.e. the number of downstream tasks completed when 

the design change arrives. 

Generally, in the testing and overlapping models, the NPD process is viewed as 

consisting of a series of development stages. When the NPD process is broken down 

into development stages, it’s no need to consider the sequencing problem since the 

execution sequence of these stages (such as the concept design and the detail design) 

is fixed and will not change. However, when the NPD process is further broken into a 

number of smaller activities, then, a key and challenging issue, i.e. the planned timing 

and sequence of activities, arises because clear precedence constraints among design 

activities do not exist and are rarely known in advance (Eppinger et al., 1994; Ahmadi 

et al., 2001; Jun and Suh, 2008; Karniel and Reich, 2009).  

Formal network-based planning techniques, such as CPM and PERT, cannot 

effectively model cyclic information flow and iteration, limiting their capability of 

scheduling for NPD projects (Ahmadi et al., 2001; Denker et al., 2001; Krishnan and 

Ulrich, 2001; Browning and Ramasesh, 2007). To address this shortfall, one popular 

approach is DSM, which has spawned many research efforts on sequencing design 

activities with the objective of minimize feedbacks. It is known that DSM sequencing 

problem is NP-complete. Previous decomposition based approaches provide an 

efficient way to solve large-scale problems (e.g. McCulley and Bloebaum, 1996; 
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Rogers, 1996, 1999; Ahmadi et al., 2001). In Chapter 5 and Chapter 6, we extend this 

line of research by developing some rules for feedback reduction, as well as two new 

decomposition approaches for solving large DSM sequencing problem. 

In some real world situations, information dependencies among activities may be 

difficult to predict accurately, especially when the activities have never been 

performed before (Chen et al., 2004; Yassine, 2007; Luh et al., 2009). As reported by 

Dubois et al. (2003a), in dealing with imprecise parameters, fuzzy PERT/CPM 

models have been around for more than two decades (see e.g., Lootsma, 1989; 

Nasution, 1994; Wang, 1999, 2002, 2004; Chanas et al., 2002; Dubois et al., 2003b; 

Zielinski, 2005; Ke and Liu, 2007; Muhuri and Shukla, 2008; Petrovic et al., 2008; 

Liberatore, 2008). Moreover, for product development projects, we are often lack of 

enough data to derive the probability distributions for activity dependencies. 

Therefore, in Chapter 7 of this thesis, we resort to fuzzy set theory for tackling 

uncertain parameters, and present a fuzzy approach to DSM sequencing problem.  



                          Chapter 3   Optimal Testing Strategies in Overlapped Design Process 

                                                                                                                  

48 

 

 

CHAPTER 3  

OPTIMAL TESTING STRATEGIES IN 

OVERLAPPED DESIGN PROCESS 

To model and structure NPD processes, an important decision problem is how to 

optimally schedule various tests along the NPD process so as to maximize the product 

development performance. Past studies, which are developed to determine the optimal 

scheduling of tests, often focused on single-stage testing of sequential design process. 

Meanwhile, overlapping development stages has become a common mode of product 

development (Terwiesch et al., 2002; Loch and Terwiesch, 2005; Mitchell and Nault, 

2007; Yassine et al., 2008), and the testing strategies combined with overlapping 

policies may affect project performance differently compared with testing strategies 

in the sequential process. Thus, it is worthwhile to investigate the testing strategies in 

overlapped NPD process. The purpose of this chapter is therefore to present an 

analytical model for the scheduling of tests in overlapped design process, where a 

downstream stage starts before the completion of upstream testing.  

The outline of this chapter is as follows. After a brief introduction in Section 3.1, 

we formally present the model in Section 3.2. The optimal policies are characterized 

in Section 3.3, followed by two problem variations introduced in Section 3.4. In 

Section 3.5, we illustrate the methodology with a case study at a handset design 

company. Section 3.6 concludes this study. Proofs of all the results in this chapter can 

be found in Appendix A. 
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3.1 Introduction 

For most product development projects, the initial design inevitably contains 

design problems, such as mismatches with customer needs, technical design faults, or 

issues regarding manufacturability of the product (Thomke and Bell, 2001; Dahan and 

Hauser, 2002; Gil et al., 2008). Testing, which is a primary way to detect and resolve 

these problems, is central to product development (Thomke, 2003). 

 

Figure 3.1 Typical testing stages in the development of mobile phones 

Typically, tests are carried out in several stages with increasing fidelity 

(Wheelwright and Clark, 1992; Thomke, 2007). For example, as shown in Figure 3.1, 

there are four stages in the development of mobile phones: Concept Design, Detail 

Design, Tooling Fabrication, and Volume Production. Following these development 

stages, different testing activities are carried out. Concept tests are performed by 

asking customers to evaluate the 3D drawings or digital mock-ups, making sure that 

the design meets their requirements. Design Evaluation Tests are carried out 

separately in each subsystem of the product, to ensure compliance with product 
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specifications and remove variations. In System Tests, physical prototypes are used to 

improve the overall performance of the product.  

Due to the accumulative and proliferous nature of design problems, the outputs of 

an upstream stage need to be tested extensively before releasing them to downstream 

stages. Inadequate testing would allow design problems to propagate, and finally 

deteriorate the product quality. On the other hand, testing also incurs time and cost. 

Too much testing at one stage would impede the project’s progress and increase 

development costs. Hence, the key issue is how to optimally schedule various testing 

activities along the design process so that the best project performance, in terms of 

time, cost and quality, can be achieved.  

Some models have been developed to determine the optimal scheduling of tests 

and/or reviews for product development projects. For example, Ha and Porteus (1995) 

developed a dynamic program to determine the optimal frequency of upstream design 

reviews within two overlapped design phases. Dahan and Mendelson (2001) modeled 

the concept testing as a probabilistic search process and proposed an extreme-value 

model to determine the optimal number of tests for concept development. Thomke 

and Bell (2001) developed a model to decide the optimal timing, frequency and 

fidelity of sequential tests. They showed that the optimal testing strategy should 

balance several things, including the testing cost and the cost of redesign. Test 

scheduling problem has been studied extensively in software development literature 

(see e.g. Xie and Yang, 2001; Dai et al., 2003; Pham and Zhang, 2003; Xie and Yang, 

2003; Serich, 2005; Kapur et al., 2007; Wu et al., 2007; Yang et al., 2008). These 

models have clearly shed light on the analysis of test scheduling problem. However, 

they focus on the testing policies at one design stage and do not take into account the 
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multi-stage nature of testing process.  

Ahmadi and Wang (1999), as well as Kogan and Raz (2002), built analytical 

models and explicitly examined how to optimally schedule tests for multiple 

development stages. The former assumed that all development stages are carried out 

in fully sequential, while the latter assumed that all stages start and finish 

simultaneously. However, in practice, the development stages are often overlapped 

(i.e. in partial parallel) rather than in fully sequential or parallel (Krishnan, 1996; 

Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004; Yassine et al., 2008). As far 

as we know, no analytical model exists for scheduling tests in overlapped NPD 

process.  

Recently, Lin et al. (2008) built a simulation model for overlapped iterative 

product development. Given a set of testing strategies and overlapping policies, their 

work can be used to compare these solutions and identify which one is best. However, 

in their model, verifying the optimality of a solution requires enumerating all possible 

solutions. Thus, for problems with continuous decision variables, it’s unlikely to get a 

good solution quickly and efficiently. Unlike their research, we built an analytical 

model to examine the test scheduling in overlapped process, and to help management 

derive the optimal testing and overlapping strategies. Moreover, analysis of our model 

yields several useful insights (Propositions 3.1-3.5 and Corollaries 3.1-3.3) which 

cannot be derived from their model. 

3.2 Model Formulation 

In this section, we first formulate the tradeoffs involved in scheduling tests in 

overlapped design process: product quality improvement versus additional costs 
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caused by testing and overlapping. Based on existing literature, we then model testing 

as a continuous NHPP process of discovering and solving design problems, and 

establish functions of product quality and downstream rework duration caused by 

overlapping. The objective function, constraints, model parameters, and decision 

variables are summarized at the end of this section. 

3.2.1 Overview of the Model 

Consider the product development process with two design stages, we call the first 

stage upstream and the second downstream. The downstream stage (e.g. Tooling 

Fabrication) depends on the output information from the upstream stage (e.g. Detail 

Design). Figure 3.2(a) shows the product development process where testing and 

overlapping are not applied. Clearly, the completion time for this process is: 

210 TTT  , where 1T  and 2T  respectively denote the regular durations for 

performing initial development of upstream and downstream stages.  

Figure 3.2(b) shows the product development process where testing and 

overlapping are applied. For most development projects, the initial outputs of each 

stage inevitably contain design problems, such as mismatches with customer needs or 

technical design faults (Thomke and Bell, 2001). We assume that testing activities are 

then carried out to detect and resolve these problems. Moreover, we assume that these 

design problems can only be detected by testing activities. There are three decision 

variables: 1t  and 2t , the respective testing durations at the upstream and downstream 

stages, and st , the time elapsed between beginning the upstream tests and beginning 

the downstream development. In an overlapped process, downstream stage can start at 

any time after the initial upstream design is available and before the completion of 

upstream testing (i.e. 10 tts  ), and so project completion time may be reduced. 
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However, because the downstream stage starts on the preliminary information of the 

upstream, some of the downstream tasks completed during the overlapped period may 

have to be reworked when upstream design changes. Hence, the time savings from 

overlapping must be weighed against the additional effort caused by downstream 

rework (Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000; 

Chakravarty, 2001; Lin et al., 2009). The downstream rework duration due to 

overlapping is captured by ),( 1ttR s . To ensure that all design changes are absorbed 

by downstream stage, upstream testing should be terminated before the completion of 

downstream initial development, i.e. 21 Ttt s  . 

 

 

 

Figure 3.2 Product development processes 

We define product quality as the number of design problems remaining in the 

system. Clearly, product quality is not only influenced by design problems introduced 

at the downstream stage, but also by the propagated variations from upstream stage. 
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Let 0N  be the product quality for the process where testing and overlapping are not 

applied (shown in Figure 3.2(a)), i.e. the number of design problems cumulated at the 

end of downstream initial design. Let ),( 21 ttN  be the product quality for the process 

with testing and overlapping (shown in Figure 3.2(b)), i.e. the number of residual 

design problems at the end of downstream testing. It is clear that design problems are 

reduced through testing, and thus ),( 21 ttN  is smaller than 0N , i.e. product quality is 

improved. Let qc  be the expected cost of removing one remaining problem after 

downstream testing. The benefits of product quality improvement can then be written 

as:  ),( 210 ttNNcq  . 

However, the benefits of product quality improvement must be weighed against 

the additional costs caused by testing and overlapping, which include opportunity 

costs (i.e. the financial loss of delaying the new product’s time-to-market), testing 

costs, and downstream rework costs. We first consider opportunity costs. Clearly, the 

completion time for the process with testing and overlapping is:  

),( 1221 ttRttTTT ss 
                  

(3.1) 

Hence, the increased completion time is: ),()( 120 ttRttTT ss  . Let   be the 

opportunity cost (per unit of time). As in previous paper (e.g. Chakravarty, 2001; 

Wang and Yan, 2005; Lin et al., 2009), we assume   is constant, the overall 

opportunity costs can then be written as:  ),( 12 ttRtt ss  . Let 1c  and 2c  

respectively denote the unit testing costs at the upstream and downstream stages, rc
 

denote the downstream rework cost (per unit of time). The additional costs caused by 

testing and overlapping DC  can then be represented as: 

  ),(),( 1221112 ttRctctcttRttC srssD  
                                                 

(3.2) 
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The overall gain from testing and overlapping is:   Dq CttNNc  ),( 210 . The 

objective is thus to determine the optimal 1t , 2t , and st  so as to maximize the overall 

gain. Since 0N  is constant,   Dq CttNNc  ),(:max 210  is equivalent to minimize the 

overall cost:  

  ),(),(),( 211221112 ttNcttRctctcttRttCMin qsrss                               (3.3) 

The functions of ),( 21 ttN and ),( 1ttR s  will be established in the following 

subsections. 

3.2.2 Modeling Testing Processes 

In this study, we treat testing as a continuous process of identifying and solving 

design problems. Previous studies (e.g. Boehm, 1981; Shooman, 1983; Thomke, 1998) 

have shown that with increasing amount of testing, the number of residual design 

problems tends to decrease, and thus the rate of discovering and solving design 

problems should decrease. In accordance with these empirical studies, in the System 

Dynamics models of testing in product development (e.g. Cooper, 1980; Ford and 

Sterman, 1998; Lin et al., 2008; Love et al., 2008), the problem discovering and 

solving rate is modeled as proportional to the number of residual problems at that 

time. Consistent with these studies, the problem discovering and solving rate
 

)(tj  is 

modeled as:  

 )(
)(

)( tmub
dt

tdm
t jjj

j

j                     (3.4) 

2,1j  is the index of upstream and downstream stages. )(tm j  denotes the 

cumulated number of problems eliminated by time t . ju  represents the number of 
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design problems cumulated before testing, and so )]([ tmu jj   is the number of 

residual design problems in stage j  by time t . Parameter 0jb  denotes degree by 

which problems are solved per time unit in stage j : higher jb  represents faster 

problem-solving. 

Solving the equation (3.4), together with the initial condition 0)0( jm , we get: 

 tb

jj
jeutm


 1)(                                 (3.5)  

Figure 3.3(a) and Figure 3.3(b) show the shape of )(tm j  and )(tj , respectively.   

 

 

Figure 3.3 The shape of )(tm j  and )(tj  
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design tasks which are “flawed” by these upstream design problems is: 11

12

tb
eukw
 . As 

shown in Figure 3.4, there is an overlap between the design problems introduced by 

downstream designers and the downstream design tasks that are “flawed” by upstream 

design problems, and so we should not double count these design problems. Thus, the 

number of design problems cumulated at the downstream stage before testing, 2u , can 

be written as:  

11

12222 )(
tb

euawkau


                                                 (3.6) 

In other words, 2u  is the sum of (1) the number of design problems introduced by 

downstream designers, and (2) the relevant tasks that are correctly performed by 

downstream designers but are “flawed” by undetected design problems at the 

upstream stage.  

 

 

Figure 3.4 Illustration of the formulation of u2 

Product quality for the process with testing and overlapping, i.e. the expected 

remaining design problems at the end of downstream testing, is: 

2211 ])([)(),( 122222221

tbtb
eeuawkatmuttN


                                             (3.7) 

3.2.3 Modeling Downstream Rework 

For sequential process, downstream stage starts only when most of the upstream 

design problems have been resolved. For example, in a fully sequential process, 

Number of design problems introduced by 
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tooling design only starts after the design evaluation tests have been completed and 

most of the quality problems in detail design stage have been removed. However, in 

practice, tooling design usually starts before the design evaluation tests have been 

completed in order to reduce project completion time. Hence, during the overlapped 

period, certain percentage of tooling design tasks is completed based on wrong 

information (i.e. design problems) of detail design stage, and will have to be reworked 

when these detail design problems are identified and resolved.  

Previous research (e.g. Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer 

et al., 2000; Chakravarty, 2001; Lin et al., 2008) have clearly shown that, the amount 

of downstream rework is determined by the arrival rate of upstream design 

modifications, the impact of each modification, and the downstream progress, i.e. the 

number of downstream tasks completed when the design modification arrives. More 

downstream work will be reworked when the modification rate and/or impact are high. 

Consistent with past studies (e.g. Chakravarty, 2001; Roemer and Ahmadi, 2004; Lin 

et al., 2009), we focus on the development projects where the information exchange 

between design stages is costless. In other words, when an upstream design problem 

is identified and design modification is made, this design modification will be 

incorporated immediately by downstream stage. The downstream rework duration 

),( 1ttR s  can then be represented as:  
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Where x represents the time elapsed since beginning upstream initial development. 

The upstream tests start on time 1T , and so the problem discovering and solving rate 

of the upstream stage at time x is )( 11 Tx  , which equals to: )(

11
11 Txb

ebu
 . k  is the 
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impact factor, i.e. the percentage of downstream tasks affected by one upstream 

design problem, and )( 1 stTx   represents the downstream progress at time x. 

3.2.4 Summary 

We summarize the model parameters and decision variables in Table 3.1, and 

state the optimization problem as follows:  

      221111
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2211 tctc                       (3.9) 

Subject to:       

 210 Ttt s                                                                              (3.10)  

0,, 21 sttt
                                                                          

(3.11) 

 
Table 3.1 Model parameters and decision variables 

Parameters Definition 

1T , 2T  
Regular duration for performing initial development of upstream and 

downstream stages, respectively 

 

1u , 2u  
The respective number of design problems cumulated at the upstream and  

downstream stages before testing 

  

 2a  The amount of problems introduced by downstream designers 

2w  Total number of tasks at the downstream stage 

1b , 2b  Problem-solving capacity at upstream and downstream stages, respectively 

k  The percentage of downstream tasks affected by one upstream design problem 

  Opportunity cost (per unit of time) 

rc  Downstream rework cost (per unit of time) 

1c , 2c  Unit testing cost at upstream and downstream stages, respectively 

qc  The expected cost of removing one remaining design problem after 

downstream testing 

Decision Variables Definition 

st  
The time elapsed between beginning the upstream tests and beginning the 

downstream development 

 
1t , 2t  The respective testing durations at upstream and downstream stages 
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3.3 Policy Analysis  

3.3.1 Model Solution 

In this section, we will describe how to solve the optimization problem. We first 

derive the optimal time elapsed between beginning the upstream tests and beginning 

the downstream development 
*

st , and optimal downstream testing duration *

2t , by 

assuming the optimal upstream testing duration *

1t  has been derived. The results are 

stated in Proposition 3.1.   

Let 
 






rcku1

1 , 
 2212

2
2

awkubc

c

q 





 , and 

 221

2
3

awku

a


 . 

PROPOSITION 3.1 Suppose that *

1t  is given, 

 (a) 
*

st  can be determined by the following equation: 

 









 *
11

1

1

* ln
1

,0max
tb

s e
b

t                                                         (3.12) 

 (b) If 11  , then 0* st  for any value of *

1t .  

(c) The optimal downstream testing duration *

2t  is: 



























 




2

3

2

*

2

*
11

ln
1

,0max


 tb
e

b
t                                                        (3.13) 

 (d) If 132  , then 0*

2 t  for any value of *

1t . 

The proof of all the results in this chapter can be found in Appendix A. 

Proposition 3.1(a) characterizes 
*

st  when *

1t  is fixed. Part (b) generalizes the 

sufficient condition for complete overlapping ( 0* st ), i.e. starting downstream stage 
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as soon as preliminary information is available. Since this conclusion is independent 

on *

1t , it is useful for managers to decide whether complete overlapping policy should 

be applied to a development project. Proposition 3.1(c) defines the optimal 

downstream testing duration *

2t  when *

1t  is given. Similarly, we generalize the 

sufficient condition for 0*

2 t  in Proposition 3.1(d), which is independent on *

1t .  

Our next result expresses the optimal product quality  *

2

*

1 , ttN  as a function of the 

model’s parameters.  

COROLLARY 3.1 If 
*
11

32

tb
e


 , i.e. 0*

2 t ,  then  
2

2*

2

*

1 ,
bc

c
ttN

q


 . 

Corollary 3.1 shows that when 0*

2 t , with lower downstream testing cost 2c  and 

opportunity cost  , the company should increase its target product quality. Higher qc
 

as well as higher downstream problem-solving capacity 2b  also lead to higher target 

level of product quality. For many development projects in practice, qc
 
can be very 

costly and so 0*

2 t . Therefore, this result is of high applicability. 

With the result from Proposition 3.1, our next proposition determines the optimal 

upstream testing duration *

1t . By substituting (3.12) and (3.13) into (3.9) and (3.10), 

we get: 

      









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
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
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(3.14)  

Subject to:  

  21

1

1
11ln

1
,0max0 Te

b
t

tb









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                                     (3.15) 
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PROPOSITION 3.2 Let 
 221

1
4

awkuc

c

q 
 ,    










 11

1

1

11 ln
1

,0max
tb

e
b

tt  . 

(a)  1t  is strictly increasing in 1t . 

(b) if 











1
,1min

3

2

1

4





b
, the total cost in (3.14) is strictly increasing in 1t , leading to 

0*

1 t , which is illustrated in Figure 3.5(a). Otherwise, the total cost is first convex 

then concave increasing in 1t , which is shown in Figure 3.5(b). 

 

 

Figure 3.5 Effect of upstream testing on total cost: numerical example 

 

Proposition 3.2(a) reveals that in constraint (3.15),  1t  strictly increases with 1t . 

Therefore, there exist a unique value of 1t  which satisfies:   21 Tt  . This value, 

denoted as 1t , is the upper bound of *

1t . We can easily find 1t  using the Binary Search 

method. The idea behind the Binary Search method is that whether  1t   is greater or 

less than 2T  at a trail solution indicates whether 1t  should be decreased or increased. 

Specifically, if   21 Tt  , then 1t  should be decreased, otherwise, if   21 Tt  , then 

1t  should be increased. Note that because 01  , the left side of constraint (3.15), 

 10 t , will automatically hold for all feasible 1t .  
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Proposition 3.2(b) implies that there exists a unique value of *

1t  which minimizes 

the total cost in (3.14). When 











1
,1min

3

2

1

4





b
, the optimal upstream testing 

duration *

1t  locates in  1,0 t . Here the total cost in (3.14) is first convex then concave 

increasing in 1t . This implies that for 1x  and 2x  ( 1210 txx  ), if    21 xCxC  , 

then ],[ 11

*

1 txt  ; conversely, if    21 xCxC  , then ],0[ 2

*

1 xt  . To identify *

1t , the 

method of Golden Section Search is employed to generate points 1x  and 2x , see  

Hillier and Lieberman (2001) for more details of the classical Binary and Golden 

Section Search techniques. 

Notation 

1t  lower bound of 

1t , 1t  upper bound of 

1t , M large positive value,   small 

positive value. 

Step 1. Calculate 
1 , 

2 , 
3 , 

4 . If 











1
,1min

3

2

1

4





b
, 0*

1 t ; Else, let 01 t , Mt 1 , 

2

15 
r . 

Step 2. Iteration 1 [Binary Search for 1t ]: 

(a) Let   2/
~

111 ttt  . Calculate  1

~
t . 

(b) If   21

~
Tt  , then 11

~
tt  , go to Step (a); if   21

~
Tt  , then 11

~
tt  , go to Step 

(a). Else, let 01 t , 11

~
tt  . 

Step 3. Iteration 2 [Golden Section Search for *

1t ]: 

(a) If   11 tt ,  then   2/11

*

1 ttt  , stop. 

(b) Let  1111 ttrtx  ,  1112 ttrtx  . Calculate  1xC  and  2xC . 
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(c) If    21 xCxC  , then 11 xt  , else, 21 xt  . Go to Step (a).  

3.3.2 Impact of Parameters on the Optimal Solution 

In this section, we will discuss the influence of model parameters on the optimal 

solution, where the optimal solution does not take the boundary values, i.e. 0* st , 

0*

2 t , 0*

1 t  and   21

1

*

1

*
11ln

1
Te

b
t

tb


 . Proposition 3.3 lists the factors that 

directly affect the optimal upstream testing duration *

1t . Corollaries 3.2 and 3.3 

discuss the factors that affect 
*

st  
and the optimal downstream testing duration *

2t , 

respectively.  

PROPOSITION 3.3  

(a) *

1t  increases with 1u  and k , and decreases with rc .  

(b) There exists a critical 0

1b  such that: if 0

11 bb  , *

1t  increases with 1b ; if 0

11 bb  , *

1t  

decreases with 1b . 

 (c) If 12 cccr  , then 

1t  increases with  . Otherwise, there exists a critical 0  

such that: if 0  , *

1t  decreases with  ; if 0  , *

1t  increases with  . 

In the above, 0

1b  and 0 are defined in Appendix A. 

COROLLARY 3.2  
*

st  increases with 1u  and k .   

COROLLARY 3.3  *

2t  decreases with 2c , and increases with 2a .  

Note that if we define overlapping degree 11 tts , then based on above 

results, our model suggests that the optimal degree of overlapping decreases with 1u  

and k . This result is consistent with Loch and Terwiesch (1998).  
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3.3.3 Testing Strategies in Sequential Process 

In this section, we compare the testing strategies in a concurrent design process 

with those in a sequential development process. Let 1  and 2  be the respective 

testing durations of upstream and downstream stages in sequential process. By setting 

1tts   in (3.9), the test scheduling problem in sequential process can be represented 

as: 

    2211 ][ 1222221121

 bb

q eeuawkacccCMin 
                         (3.16) 

Subject to 0, 21 
                            

(3.17) 

PROPOSITION 3.4  The optimal testing durations for upstream and downstream stages 

in the sequential process, denoted as *

1  and *

2 , differ from *

1t  and *

2t . In particular,  

(a) *

1

*

1 t , and *

2

*

2 t . 

(b) if 12 cc  , then *

2

*

1

*

2

*

1   tt . 

Proposition 3.4(a) reveals that compared with sequential process, in overlapped 

process, the upstream testing duration is increased, while the downstream testing 

duration is reduced. Part (b) states that if the unit testing cost at the downstream stage 

is not less than the unit testing cost at the upstream stage, then compared with 

sequential process, the whole testing time in overlapped process is increased. The 

intuitive interpretation of Proposition 3.4 is that: in a sequential process, increasing 

upstream testing will significantly delay downstream start time, while in a concurrent 

process, downstream stage can start before the completion of upstream testing, and 

thus the impact is much smaller. Hence, compared with a sequential process, in an 

overlapped process, the testing duration of upstream stage is increased.  

More importantly, Proposition 3.4 shows that the optimal testing strategies in 
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overlapped process differ from those in sequential process. In other words, testing and 

overlapping are interacted. Thus, to improve project performance, testing strategies 

and overlapping policies should be adjusted coordinately. For example, in practice, 

some companies may intend to shift from sequential to overlapped development 

process. Then, according to Proposition 3.4, these companies may also need to adjust 

their existing testing policies (even existing testing policies are optimal in the 

sequential process). Proposition 3.4 can be used as a guideline for structuring product 

development processes. 

3.4 Problem Variations 

In the previous sections, we have developed a model for minimizing the total cost, 

which we refer to as the cost minimization problem. However, in some situations, 

Pareto-optimal solutions should be considered. These are strategies that achieve the 

required product quality at minimum cost, or conversely, strategies whose product 

quality is best for a given budget, which we refer to as the target quality problem and 

the budget constraint problem, respectively. In this section, we will present these two 

variations of the cost minimization problem, and show that these two variations can 

then be solved by the same approach as the cost minimization problem. 

Target Quality Problem 

In this version of problem, we assume that product quality, i.e., the target number 

of remaining design problems after downstream testing N  is given, and the problem 

is to determine the optimal 1t , 2t , and st  so as to achieve the required product quality 

at minimal cost: 
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  ),(),( 1221112 ttRctctcttRttCMin srssD  
                                                            

Subject to:  210 Ttt s  ,                                                                              

0,, 21 sttt ,    
                                         

 

NeeuawkattN
tbtb


 2211 ])([),( 122221    

Budget Constraint Problem 

In this version of the problem, we need to determine the optimal 1t , 2t , and st  so 

as to achieve the highest product quality for a given budget C . This problem, which 

can described as the “dual” of the target quality problem, can be formulated as 

follows: 

2211 ])([),( 122221

tbtb
eeuawkattNMin



                                                            

Subject to:  210 Ttt s  ,                                                                                  

0,, 21 sttt ,    
 

  CttRctctcttRttC srssD  ),(),( 1221112            

 

PROPOSITION 3.5  The target quality problem in (3.18) and budget constraint problem 

in (3.19) have similar solution structure as the cost minimization problem. 

3.5 Model Application  

In this section, we illustrate the model on the completed projects at a handset 

design company in China. The company designs mobile phones according to market 

and technology trends and sells the design to manufacturers. As of July 2006, this 

company employs approximately 2,600 professionals, of whom 90% are engineers, 

and has provided more than 100 design solutions for companies such as NEC, 

Kyocera, and Mitsubishi. However, in recent years, it has been facing increasing 

(3.18) 

(3.19) 
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pressure to develop better products in short intervals. The development process of 

cellular phones has been shown in Figure 3.1. Our focus is on the Design Evaluation 

Tests at the Detail Design stage (i.e. upstream stage) and the system tests at the 

Tooling Fabrication stage (i.e. downstream stage), since they consume a large 

proportion of design resources. 

3.5.1 Data Gathering 

The data collection was quite challenging since the company did not know how 

past project data could be used in guiding future projects. Multiple sources were used 

to estimate the model parameters, including available company documents, extensive 

interviews and so on. We analyzed five projects with similar technical complexity. 

The projects were completed in the first half of 2006. Without special explanation, the 

data presented in this subsection were average values of these five projects. We now 

describe our data collection efforts in detail. 

Our first step was to collect the data of testing, and derive the functions of design 

modifications at the Detail Design stage and at the Tooling Fabrication stage. This 

information was obtained by interviewing project managers, design engineers, tooling 

engineers, and by checking the project schedules and the quality control system of the 

projects. After completing the preliminary detail design, the drawings were reviewed 

by the experienced engineers, as well as tested by dozens of working samples 

fabricated using soft dies. The design drafts were continuously modified to remove 

identified design problems. On the average, the tests at this stage lasted for 12 

working days. Tooling was made by suppliers. Faced with high time pressure, the 

engineers released 2D and 3D drawings to suppliers and pushed them to start Tooling 

Fabrication before the completion of Design Evaluation Tests. The cost of 
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information transformation in our application was relatively low. System tests were 

performed after product designs were realized as physical prototypes. At this stage, 

more than 100 different items of tests were conducted, and the average testing 

duration was 15 weeks (6 days per week).   

 

Table 3.2 Design problems in detail design 

 

 

 

Table 3.3 Cumulated design modifications in design evaluation tests 

Days 0 1 2 3 4 5 6 7 8 9 10 11 12 

Cumulated 
Modifications 

0 12 20 27 32 35 38 40 42 45 47 49 50 
 

 

Table 3.4 Cumulated design modifications in system tests 

 

 

 

Figure 3.6 Cumulated design modifications in design evaluation tests  

 

No.   Issue Severity   Root Cause   Action   Picture 
Closure 

Date 

1 B1, B2, 

and B3 

whistle. 

  A Microphone rubber holder 

is inside the housing, which 

results in a loop between 

the speaker and the 

microphone. 

Extend the microphone 

holder and make it out of the 

housing. Lay the microphone 

holder on the housing 

surface. 

 

10 Apr. 2006 

2 ESD 

failed. 

  A Metal LCD holder is 

contacted with PCB pad. 

Add a pad on the metal LCD 

holder. 

 

20 Apr. 2006 

Weeks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Cumulated 

Modifications 
0 33 53 117 129 135 146 194 203 211 223 245 248 256 260 261 

Cumulated Design Modifications 

Output of Fitted Model: 

)1(52)( 23.0

1

tetm   

Field Data 

(Day) 
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Figure 3.7 Cumulated design modifications in system tests  

 

As an integral part of quality control system, all the design problems detected 

during tests, together with their severity level and root causes, their closure dates and 

the person in charge, the cost and time delay of each problem, were well documented 

in the company. Table 3.2 lists two examples of design problems detected in the 

Design Evaluation Tests. Such historical records provide us invaluable information on 

the problem identification and solution process (Lin et al., 2009). With the help of 

project managers, design engineers, and tooling engineers, we analyzed these 

problems in detail and derived the number of design modifications at two stages (See 

Table 3.3 and 3.4). Note that in practice, a design modification can be large or small 

according to their impact on downstream progress. To make different design 

modifications comparable, we together with the engineers standardized all the design 

modifications into dimensions. For example, if a slot is revised at time t and it affects 

6 dimensions of the size and position of the slot, we record that 6 engineering changes 

occur at time t. Thus, here a design modification refers to the change of one 

dimension. Based on the collected data, we conducted a regression analysis to derive 

the functions of design modifications by minimizing Sum of Squared Residuals (SSE). 

The outputs of the regression analysis are shown in Figure 3.6 and Figure 3.7. 

Then, we operationalized the estimation of qc . In our application, after completion 

Cumulated Design Modifications 

(Week) 

)1(321)( 12.0

2

tetm   

Field Data 

Output of Fitted Model: 

15 
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of system tests, the products were launched into the market. Thus, qc  denotes the 

expected cost of removing one remaining design problem in the operational phase. 

When customers found design problems, the defective products were sent back to the 

company, and thus qc  can be calculated based on the service record of the projects. 

Let c  be the expected cost of fixing one faulty product, D  be the cumulated number 

of defective products be sent back to the company, and N  be the overall number of 

design problems reported by the service center. Mathematically, 
N

Dc
cq


 . The 

average value of qc  in our data set is $3,000.  

 
Table 3.5 Summary of other parameter values 

Items  Estimated value 

2T  
Regular duration for performing initial development at  

the Tooling Fabrication 
 30 days 

2w  Number of tasks at the Tooling Fabrication   740 

k  
Percentage of Tooling Fabrication tasks affected by one detail  

design problem 
 0.013 

rc  Rework cost at the Tooling Fabrication  (per unit of time)  $700 

1c  Unit testing cost at the Detail Design stage  $500 

2c  Unit testing cost at the Tooling Fabrication  $1,100 

  Opportunity cost (per unit of time)  Less than $5,000 

 

Finally, the estimations of other model parameters were relatively simple (Table 

3.5). For instance, 2T  and 2w  can be directly obtained from the previous projects. The 

costs of rework were largely dominated by the engineering hours spent on the 

activities, and so rc  was estimated by adding the average hourly wage of involved 

engineers. Testing costs were derived by adding the expenses of using equipment, 

materials and engineering resources. Parameter   was obtained by interviewing 

project managers. They were asked to provide the values of what amount of money 

the company would lose, if the new product is delayed into the market for one month. 
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We then obtained the values of  , i.e. the financial loss of delaying the new 

product’s time-to-market for one day.  

3.5.2 Results 

After getting the parameters, we applied the proposed method, and supplied 

management with the testing and overlapping strategies for the projects with different 

values of opportunity cost. The effect of inaccurate estimate of parameters was also 

evaluated and shown in Figure 3.8. In the worst case, all the estimated values were 

changed by 20% in the unfavorable direction, while in the best case, the parameter 

values were changed in favorable direction.  

 
 

                          
 

    

 
 

  

 

 
Figure 3.8 Optimal solutions for projects with different opportunity cost 

The Time Elapsed between Beginning Design Evaluation Tests 

and Beginning Tooling Fabrication (day) 

Testing Duration of Tooling Fabrication (day) Testing Duration of Detail Design (day) 

(a) 

Opportunity Cost 
 
($) 

(b) 

Opportunity Cost   ($) 

(c) 

Opportunity Cost   ($) 

Base case 

Best case 

Worst case 
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Although the results may not be very accurate because of estimation errors of the 

parameters, they are sufficient to guide the management of similar development 

projects in the company. Previously, the average testing duration of Detail Design 

was 12 days. Our research shows that it should be increased, as illustrated in Figure 

3.8(a). In the past, the start time of Tooling Fabrication was intuitively decided by the 

engineers and managers. The Tooling Fabrication starts one or two days before the 

completion of Design Evaluation Tests. In other words, low level of overlapping was 

applied for all the projects in the company. The overlapping policy made by intuition 

is far from optimal. Our research defines that even in the worst case, high level of 

overlapping should be adopted when 1000 , as illustrated in Figure 3.8(c). 

To facilitate the decision making of the management, we also plot the Pareto 

optimal fronts for the handset development projects. In particular, for a given 

opportunity cost  , the value of qc  is changed from $250 to $6000, and the optimal 

1t , 2t , and st  are then identified by the method developed in this study. The Pareto 

optimal fronts for 0 , 000,1 , 000,3  and 000,5  are shown in Figure 3.9.  

 

 

           
 

          Figure 3.9 Pareto optimal fronts for handset development projects 
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3.6 Discussion and Conclusion 

A product, to be competitive, needs to be introduced expeditiously without 

compromising product quality (Chakravarty 2001). Testing has been regarded as a 

primary way to detect design problems and improve product quality. However, testing 

can also be costly and time-consuming. Therefore, some researchers have developed 

models to determine the optimal scheduling of tests (e.g Ahmadi and Wang 1999; 

Thomke and Bell 2001; Serich 2005). We extend previous research by developing an 

analytical model for the optimal scheduling of tests in overlapped process which is a 

common practice to reduce project completion time. The propagation of design 

problems within development stages, as well as the cost-quality trade-offs of project 

performance, are explicitly studied. 

Analysis of the model in this chapter yields following results:  

 We provide closed-form expressions for the optimal time elapsed between 

beginning the upstream tests and beginning the downstream development, and the 

optimal downstream testing duration (Proposition 3.1).  

 We find that the overall cost is first convex then concave increasing with respect to 

upstream testing duration, and prove that there exists a unique optimum that 

minimizes the overall cost (Proposition 3.2). Based on these properties, a one-

dimensional search algorithm is proposed for solving the problem.  

 The impact of different model parameters, such as problem-solving capacity and 

opportunity cost, on the optimal solution is discussed (Proposition 3.3, Corollaries 

3.2-3.3). For instance, with higher upstream design problems and/or higher impact 

of upstream design change on downstream rework, the optimal upstream testing 

duration should be increased.  
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 We prove that the testing strategies in overlapped process differ from those in 

sequential process. Thus, to improve project performance, testing strategies and 

overlapping policies should be adjusted coordinately, and the results in Proposition 

3.4 can be used as a guideline for structuring NPD processes. 

 We present two variations of the cost minimization model, the target quality 

problem and the budget constraint problem, and show that both of these problems 

have similar solution structure as the cost minimization problem (Proposition 3.5). 

 

It should be pointed out that there are two major limitations for the application of 

the results in this chapter. First, the testing process is modeled as a continuous NHPP 

process of discovering and solving design problems. To apply the NHPP model, the 

testing process must have independent and stationary increments. Specifically, 

numbers of design problem identified and resolved in disjoint intervals are 

independent, and the number of design problem identified and resolved in any interval 

of time depends only on the length of the testing time. The NHPP model is frequently 

made in models of quality and reliability (Xie et al., 2007), and in system dynamic 

models of NPD testing process (see e.g. Cooper, 1993a, 1993b, 1993c; Ford and 

Sterman, 1998; Serich, 2005; Lin et al., 2008; Love et al., 2008). It is justified that 

when design problems arise from many components or modules, each being a 

potential source of design modifications. Although the NHPP model has been proved 

to hold in many product development cases, there are still projects where this 

modeling may not appropriate, especially when the testing set-up time is long. 

 

Second, as in previous papers (e.g. Ha and Porteus, 1995; Loch and Terwiesch, 

1998; Chakravarty, 2001; Joglekar et al., 2001; Lin et al., 2009), we examine the 

concurrent execution of two consecutive development stages in this chapter. We call 



                          Chapter 3   Optimal Testing Strategies in Overlapped Design Process 

                                                                                                                  

76 

 

the first stage “upstream” and the second “downstream”. For a development project 

consisting of a series of consecutive stages, our analysis and results are valid for any 

“upstream/downstream” overlap. For example, for a typical project consisting of four 

consecutive stages: (1) Concept Development, (2) Product Design, (3) Process Design, 

and (4) Pilot Production, the “upstream” stage could refer to stage 2, Product Design, 

and the “downstream” stage could refer to stage 3, Process Design; or the “upstream” 

stage could include stages 1 and 2, and the “downstream” stage could include stages 3 

and 4. Nonetheless, in some cases decision makers may be more interested in the 

whole NPD process rather than in two stages.   

 

Motivated by above two issues, in Chapter 4, we further explore the test 

scheduling problem for N-stage overlapped design process. 

Future research may also be carried out in the areas discussed below. Firstly, like 

most previous studies that focus on the test scheduling problem, the present models 

are deterministic and therefore do not directly address risk. In the future, we may 

extend our model by taking into account the estimation errors of model parameters 

into decision making. Secondly, we assume the opportunity cost of time is constant. 

Although it should be constant in short run, it may change in long run. Hence, it may 

be worthwhile to investigate in detail how will the opportunity cost of time affect the 

product development performance, as well as the optimal testing and overlapping 

polices. Thirdly, like previous studies, e.g. Loch and Terwiesch (1998), Pham and 

Zhang (2003), Roemer and Ahmadi (2004), Huang and Lyu (2005), Ji et al. (2005), 

Wang and Yan (2005), Lin et al. (2009), we assume that the expected cost of 

removing one remaining design problem after downstream testing qc , and the 

percentage of downstream tasks affected by one upstream design problem k, are 
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constant for all problems/faults. As mentioned earlier, to make different design 

problems/faults comparable, all design problems/faults are standardized into 

dimensions. Hence, such assumption is likely to hold in real situations. Finally, to 

keep the model simple, we assume that the overall testing cost is a linear function of 

the time spent on testing, and overall rework cost is a linear function of the amount of 

rework. As demonstrated by many studies, e.g. Thomke and Bell (2001), Loch et al. 

(2001), Chakravarty (2001), Wang and Yan (2005), Gerk and Qassim (2008), Lin et 

al. (2010), the linear functions are appropriate approximations of many real situations. 

Future research can relax these assumptions and discuss the corresponding testing and 

overlapping policies.    
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CHAPTER 4  

SCHEDULING TESTS IN N-STAGE 

OVERLAPPED DESIGN PROCESS 

 

4.1 Introduction 

Testing has been regarded as an important tool for evaluating and improving 

product design. Its importance for successful NPD has been emphasized by many 

researchers (Loch and Terwiesch, 2001; Erat and Kavadias, 2008). At the same time, 

testing can also be expensive and time-consuming: researches have shown that testing 

activities can account for nearly half of total development effort (Cusumano and 

Selby, 1995; Thomke, 2003). Therefore, these studies highlighted a key trade-off 

involved in testing: the quality improvement versus additional time and cost spent on 

testing. 

Some mathematical models have examined this key trade-off. We categorize them 

into two groups. The first group of studies assumed that the testing set-up time can be 

ignored, and modeled testing as a continuous process of discovering and solving 

design problems. Examples of such studies include Pham and Zhang (2003), Serich 

(2005), Love et al. (2008), Lin et al. (2008), Yang et al. (2008). These models have 

clearly shed light on the analysis of trade-off involved in testing, and are useful for 

guiding NPD projects where there is very little time wasted on setting up the tests. 

However, for projects with long testing set-up time, the methodologies and results 

may not be applied. 
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On the contrary, the second group of studies postulated that each time a test takes 

place, a certain amount of set-up time (such as the time to get organized for the test, to 

construct prototypes and to prepare documents) is required (Ha and Porteus, 1995; 

Thomke, 1998, 2003), and modeled testing as a discrete cyclic process. Examples of 

such studies include Ha and Porteus (1995), Dahan and Mendelson (2001), Erat and 

Kavadias (2008). Following this line of research, the model presented in this chapter 

considers testing set-up time and treats testing as a discrete cyclic process. The model 

investigates the test scheduling problem for N-stage overlapped design process, where 

downstream stages start before the completion of upstream tests. Such investigation is 

of practical importance since overlapping development stages has become a common 

mode of product development (Terwiesch et al., 2002; Gerk and Qassim, 2008; Gil et 

al., 2008). Moreover, the two decisions, test scheduling and overlapping policies, are 

interacted. Therefore, analytical models are needed to examine their combined effect 

on product development performance. However, the optimization problem becomes 

more complex, not only because the nonlinearity of functions involved, but also 

because the simultaneous presence of both discrete and continuous decision variables. 

4.1.1 A Practical Example 

Here we use a practical example to further illustrate the problem studied in this 

chapter. As shown in Figure 4.1, the refrigerator development usually consists of four 

stages: concept creation, industrial design, detail design, and mold fabrication. We 

distinguish between the initial design of these stages and testing activities that are 

carried out after the initial design. There are four types of tests which are performed 

in cycles. During each cycle, virtual or physical prototypes are built, tested to identify 

the design problems, and then modifications are made to remove the problems. As 



                            Chapter 4   Scheduling Tests in N-stage Overlapped Design Process 

                                                                                                                  

80 

 

shown in Table 4.1, concept tests use CAD model to test customers’ reaction to the 

proposed new product. Industrial design tests build digital mockups to verify the 

feasibility of the industrial design. Detail design tests construct engineering 

prototypes to verify that the design can function, and finally system tests produce 

concrete refrigerators to improve the overall performance of the product. Completion 

of the system tests at last stage signals that the product is ready for volume production. 

 
 

Figure 4.1 Sequential and overlapped refrigerator development processes 
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Table 4.1 Prototype tests in the refrigerator development process             

Prototype types Form Fidelity Cost (Per cycle) 

Concept Tests CAD Model Low About $3,000 

Industrial Design Tests Digital Mockups Medium About $4,000 

Detail Design Tests Engineering Prototype High About $10,000 

System Tests Physical Prototype High About $18,000 

 

Typically, tests at earlier development stages (e.g. industrial design tests) are 

cheaper, but are of lower representativeness or fidelity, than the system tests at the 

last stage. Then, how much budget should be allocated to testing the initial design at 

each stage? Or how many rounds of tests should be conducted? Figure 4.1(a) shows 

the sequential refrigerator development process, where downstream stages (e.g. mold 

fabrication) start after the completion of upstream tests (e.g. detail design tests), and 

after most of the design problems are identified and resolved. While in overlapped 

process, as illustrated in Figure 4.1(b), downstream stages (e.g. mold fabrication) start 

earlier and can start at any time after the initial upstream design is available and 

before the completion of upstream tests (e.g. detail design tests). However, because 

downstream stages start on preliminary information, rework is often necessary to 

accommodate upstream design changes. Then, what is the optimal start time of 

downstream stages (e.g. mold fabrication)? If overlapping is applied, how should we 

adjust the testing strategies? In this chapter, we present an analytical model to answer 

these questions which are of concern to design managers. 

The remainder of this chapter is organized as follows. Section 4.2 presents a 

mixed-integer programming model which captures the relationship between project 

properties, test scheduling, overlapping policies, and project profit. Section 4.3 

introduces an algorithm to solve the problem. To illustrate the proposed methodology, 

we present a case study at a consumer electronics company in Section 4.4. 
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Discussions and conclusions are summarized in Section 4.5. Proofs of all the results 

in this chapter can be found in Appendix B. 

4.2 Model Formulation 

 

Table 4.2 Symbols and decision variables 

Symbols Definition 

n Number of development stages 

i  Index for development stages )1( ni   

id  Regular duration for initial design of stage i  

ia  Number of design problems introduced in the initial design of stage i  

ip  Testing quality 

s

it  Set-up time for a test in stage i 

r

it  Average time for solving one design problem in stage i 

ib  Impact factor  

t

ic  Testing cost in stage i (per test) 

p

ic  Penalty cost incurred per undetected design problem in stage i  

h

ic  Rework cost per time unit in stage i due to overlapping 

  Opportunity cost (per time unit) 

iz
 Number of tests completed in stage i before starting stage i+1   

Decision Variables Definition 

ix  Number of tests to be conducted in stage i  

1iy  Overlap between development stages i and i+1 

)( ii xT
 Accumulated testing duration after ix  rounds of tests in stage i 

),( 11  iii yxH
 Rework duration in stage i+1 due to overlapping  

 

The model presented in this section examines the projects with a “nominal 

sequential” structure, i.e. the principal information exchange between consecutive 

stages is unidirectional: from upstream to downstream (Krishnan et al., 1997; Kogan 

and Raz, 2002; Lin et al., 2010). Moreover, to keep our analysis simple, we impose 

the additional constraint that at most two stages can be performed concurrently. Such 

model setting is consistent with previous papers (e.g. Roemer et al., 2000; Roemer 
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and Ahmadi, 2004), and is an extension of Qian et al. (2007) that deals with two 

development stages. 

Before formulating an analytic model, we define in Table 4.2 the notation used 

throughout the rest of this chapter. In the following subsections, we first formulate the 

trade-offs involved in scheduling tests for N-stage overlapped process. Then we 

establish the functional relationship between project properties and rework caused by 

overlapping development stages. The objective function and constraints are 

summarized at the end of this section. 

4.2.1 Overview of the Model 

Consider an NPD process consisting of a series of n development stages. As 

previous papers (e.g. Cooper, 1993a, 1993b, 1993c; Ford and Sterman, 1998; 

Williams et al., 2003; Lin et al., 2008), we distinguish between the initial design of 

development stages and testing activities. When the initial design at each stage is 

finished, its output inevitably contains design problems (such as mismatches from 

customer needs or technical design faults), certain type of tests is then carried out to 

detect and remove these problems. Tests are conducted in cycles, and tests will not 

introduce design problems. The product is launched into the market after the 

completion of testing in the last stage n. Figure 4.1 shows an example of refrigerator 

NPD process with four development stages.  

It is known that tests are often imperfect and cannot find all design problems 

through a single round of test. To capture this, let ia
 
denote the number of design 

problems introduced in the initial design of stage i , ip  denote the testing quality, i.e., 

the proportion of residual design problems detected by a single test, which is same as 
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the testing fidelity in Thomke and Bell (2001), and testing quality in Ford and 

Sterman (1998), Lin et al. (2008). Then, in the first round of test in stage i , an amount 

of ii pa  design problems are detected and resolved, leaving )1( ii pa   unsolved. In the 

second round of test, an amount of )1( iii ppa   design problems are resolved, leaving 

2)1( ii pa   unsolved. In general, after ix  rounds of tests, the overall number of design 

problems removed are: ])1(1[ ix

ii pa  , and the residual design problems in stage i  

are: ix

ii pa )1(  .  

In accordance with previous papers (e.g. Ha and Porteus 1995; Thomke and Bell 

2001), we assume that if a design problem is detected in stage i , then an additional 

time r

it  must be spent on resolving the problem. Let s

it  be the set-up time for a test in 

stage i . The accumulated testing duration after ix  rounds of tests in stage i , )( ii xT , 

can then be formulated as:  

  ]11[)( ix

ii

r

ii

s

iii patxtxT                                       (4.1) 

As stated earlier, for sequential process, downstream stages (e.g. mold fabrication) 

only start after the completion of upstream testing (e.g. detail design tests). However, 

in practice, downstream stages (e.g. mold fabrication) usually start earlier and before 

the completion of upstream testing (e.g. detail design tests) in order to reduce project 

completion time. Consequently, during the overlapped period, certain percentage of 

downstream design tasks is completed based on wrong information, and will have to 

be reworked when these design problems are discovered and resolved. Defining 

),( 11  iii yxH
 be the rework duration in stage i+1 caused by overlapping stages i and 

i+1. We will formally establish this function in Section 4.2.2.  
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The trade-off in our model is as follows: increasing tests will decrease the residual 

design problems and improve design quality at that stage, but requires additional time 

and cost spending on the tests. If conducting too many repeated tests at one stage, the 

marginal benefit of design quality improvement may not be compensated for the time 

and cost required for the additional round of test. Overlapping helps to reduce project 

completion time, i.e. help to reduce part of the negative effect of testing, but requires 

additional effort (including time and cost) spent on downstream rework. To balance 

these tensions, we define project profit as the gain from conducting tests minus 

additional costs caused by testing and overlapping. The objective is thus to determine 

the optimal number of tests needed at each stage and the optimal overlap between 

consecutive stages, such that project profit will be maximized. To keep our analysis 

simple and aligned to previous papers, we define p

ic  be the penalty cost for each 

undetected design fault in stage i . In practice, p

ic  can be estimated as the cost of 

rework that design fault would cause in the operational phase (for more details, see 

e.g. Slaughter et al., 1998; Kogan and Raz, 2002; Ji et al., 2005). Clearly, without any 

test, the overall penalty costs would be: 


n

i

i

p

i ac
1

. Thus, the overall gain from 

conducting tests can be expressed as:  

 



n

i

x

ii

p

ii

p

i
ipacac

1

)1(                                                                        (4.2) 

 

We next consider the additional costs caused by testing and overlapping. 

Compared with the process where testing and overlapping are not applied, the 

additional costs associated with testing and overlapping include opportunity costs, 

costs of tests, and downstream rework costs. Clearly, the project completion time for 

the processes with testing and overlapping, can be represented as: 
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 




 
1

1

111 ),()()(
n

i

iiiiiiinnn yxHyxTdxTd                      (4.3)            

 
It is clear that without testing and overlapping, the project completion time is: 




n

i

id
1

. Let   be the opportunity cost per time unit. As previous papers (e.g. 

Chakravarty, 2001; Wang and Yan, 2005; Lin et al. 2009), we assume   is constant. 

Therefore, the overall opportunity costs is:  




 
1

1

111 )(),()(
n

i

nniiiiii xTyxHyxT . 

Let t

ic  be the cost for a test in stage i , h

ic 1  be the rework cost per time unit in stage 

i+1 caused by overlapping. The additional costs caused by testing and overlapping are:  

   









1

1

1111

1

),()()(
n

i

iiii

h

i

n

i

iii

t

i yyxHcxTxc                 (4.4) 

Thus, profit maximization objective can be represented as: 

   









1

1

1111

1

),()()()1(
n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

ii

p

i yxHcyxTxcpacacGMax i   (4.5)  

4.2.2 Rework due to Overlapping  

In overlapped process, downstream stages (e.g. mold fabrication) start before the 

completion of upstream tests (e.g. detail design tests). Hence, some downstream tasks 

completed during the overlapped period, might based on incorrect information of 

upstream stages. When tests identify upstream design problems, we not only need to 

correct the design problems but also need to redo these downstream tasks. Consistent 

with previous papers (e.g. Loch and Terwiesch, 1998; Wang and Yan, 2005; Lin et al., 

2009), we assume that the speed of performing the workload of a development stage 

(including initial design and rework caused by overlapping), is constant and equals 



                            Chapter 4   Scheduling Tests in N-stage Overlapped Design Process 

                                                                                                                  

87 

 

one. Based on this assumption, the workload of a development stage can be described 

as duration, in other words, they are equivalent. 

Previous model-based overlapping studies (e.g. Loch and Terwiesch, 1998; 

Chakravarty, 2003; Roemer and Ahmadi, 2004; Wang and Yan, 2005; Lin et al., 2009) 

have shown that the amount of rework caused by overlapping is decided by: the 

number of upstream design changes, the impact of each change, and the downstream 

progress, i.e. the number of downstream tasks completed when the upstream design 

change arrives. Following these studies, we define ib  be the impact factor, i.e. the 

percentage of tasks in stage 1i  that will be affected by one design change in stage i .  

Figure 4.2 graphically represents the impact of design changes in stage i  on the 

downstream rework in stage 1i . For easier explanation, suppose that preliminary 

information of upstream stage i  is available at time pt , and downstream stage 1i  

starts at time 0t . Let 1iy  be the overlap between stages i  and 1i , where 

)(0 1 iii xTy   , iz  be the number of tests completed in stage i  before starting stage 

1i . It is clear that during the overlapped period, there are )( ii zx   bursts of design 

changes transferred from stage i  to stage 1i . To ensure that all design changes are 

absorbed in the initial design of stage 1i , tests in stage i  should be terminated 

before the completion of initial design in stage 1i , i.e. 11   ii dy .   

After the completion of th

iz )1(   test in stage i , the first batch of design changes 

are transferred to stage 1i  at time 1t . At that time, the progress of stage 1i  is: 

)]()1([ 1 iiiii xTzTy  . Then, if one design change of stage i  arrives at 1t , the 

amount of rework caused in stage 1i  will be )]()1([ 1 iiiiii xTzTyb  . In the 
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th

iz )1(   test of stage i , an expected number of iz

iii ppa )1( 
 
design problems are 

identified and resolved, and the amount of rework required in stage 1i is: 

)]()1([)1( 1 iiiii

z

iiii xTzTyppba i   . Similarly, there are 
1

)1(


 iz

iii ppa  design 

changes arrive at time 2t , and the expected rework caused by these changes is 

)]()2([)1( 1

1

iiiii

z

iiii xTzTyppba i  


. In general, rework duration in stage 1i  

caused by overlapping stages i and 1i , ),( 11  iii yxH , can be represented as: 

  








 
)(

1

1

1

11 )]()([)1(,
ii

i
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k

iiiii

kz

iiiiiii xTkzTyppbayxH

                

(4.6) 
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design changes 

Starting time of stage i+1 0t  

1iy  Overlapped period between stages 

i and i+1 

Decision Variables 

ix  Number of tests to be conducted in 

stage i  

Preliminary information available pt  

iz  Number of tests completed in stage 

i before start stage i+1 
Accumulated testing duration after 

iz  rounds of tests in stage i 

 

)( ii zT  
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4.2.3 Summary  

Based on the elements discussed above, we summarize the optimization problem 

as following non-linear mixed-integer program: 

   









1

1

1111

1

),()()(])1(1[
n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

i yxHcyxTxcpacGMax i   

Subject to:

 

Equations (4.1) and (4.6),

 

ix  nonnegative integer, for ni ,,2,1              

1iy  nonnegative real number, for 1,,2,1  ni              

11   ii dy
         

for 1,,2,1  ni                                                                           

)(1 iii xTy      
  for 1,,2,1  ni          

In the optimization problem (4.7), the objective is to maximize project profit by 

selecting appropriate number of tests ix  and appropriate overlap 1iy .  The functions 

of )( ii xT  and ),( 11  iii yxH are established in Equations (4.1) and (4.6), respectively. 

The constraints )(1 iii xTy   
and

 11   ii dy  defines the maximum overlap between 

stages i and 1i . 

4.3 Analysis of Testing and Overlapping Policies 

The difficulty for solving problem (4.7) lies not only in the nonlinearity of 

functions involved, but also in the simultaneous presence of both discrete and 

continuous decision variables. Moreover, the objective function in the optimization 

problem is non-concave, which further increases the difficulty of finding optimal 

solutions. In this section, we will describe how to solve problem (4.7).  

PROPOSITION 4.1 Given 
*

ix  and 
*

iz , downstream stage starts directly after the 

(4.7) 
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completion of an upstream test, i.e., for 1,,2,1  ni  , 

])1()1([)()()(
**

*****

1
ii x

i

z

ii

r

iii

s

iiiiii ppatzxtzTxTy                 (4.8) 

The proof of all the results in this chapter can be found in Appendix B. 

Proposition 4.1 shows that it is optimal to start initial design of downstream stage 

1i  directly after the completion of a test in stage i. This is so because otherwise the 

gain from overlapping development stages will be decreased, without any other 

changes. Based on the result of Proposition 4.1, (4.6) can be rewritten as:  








 


i

x

i

z
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iiiii

s

iiii
p
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pxzbatzxH
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i
)1()1(

)1)((),(1

 






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









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zx

i

i

x

i

z

i
ii

r

i p
p

pp
bat )1(

2

)1()1(
122

2                                     (4.9) 

The mixed-integer problem in (4.7) can then be simplified as following integer 

program over decision variables ix  and iz : 

   ])1(1[])1(1[
1

ni x

nn

r

nn

s

n

n

i

i

t

i

x

ii

p

i patxtxcpacGMax 




 

  

 





1

1

11 ),()(])1(1[
n

i

iii

h

i

z

ii

r

ii

s

i zxHcpatzt i                             (4.10)  

Subject to: Equation (4.9), 

ii xz 0 ,     for 1,,2,1  ni                                        (4.11) 

1])1()1[()(  i

x

i

z

ii

r

iii

s

i dppatzxt ii ,     for 1,,2,1  ni                             (4.12)     

iz ( 1,,2,1  ni  ) and ix  ( ni ,,2,1  ) are integers                                     (4.13)  

 

In the optimization problem (4.10)-(4.13), the testing strategies are determined by 

ix , i.e., the number of tests to be conducted at each stage, and the overlapping polices 
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are determined by iz , i.e., the number of upstream tests completed before starting the 

downstream stage. Our next result characterizes *

iz  that solves the optimization 

problem, by assuming that 
*

ix  has been derived.  

 

PROPOSITION 4.2  For 1,,2,1  ni  , given 
*

ix ,  

 (a)
 

*

iz
 
can be decided as follows:

 
if 01 F , then l

ii zz * ; if 02 F , then **

ii xz  ; 

otherwise, setting 0




iz

G

 

yields a unique value of c

iz , and  c

ii zz *

 
or   1*  c

ii zz . 

(b)
 

c

iz  increases with ia , ib , s

it , and decreases with r

it . 

In the above, l

iz , 1F  and 2F  are defined in Appendix B. 

 

Proposition 4.2(a) characterizes the optimal number of tests completed in stage i 

before starting stage 1i , *

iz , when 
*

ix
 
is fixed. If 01 F , then project profit in (4.10) 

decreases monotonically in iz , leading to l

ii zz * , in other words, it’s optimal to start 

initial design of stage 1i  as early as possible. On the other hand, if 02 F , then the 

project profit increases monotonically in iz , and so **

ii xz  , i.e., it is optimal to 

perform stages i  and 1i  sequentially. Otherwise, the project profit first increases 

then decreases in iz , and is maximized at c

iz . *

iz  can then be identified through 

comparing project profits at  c

iz  and   1c

iz .  

Proposition 4.2(b) discusses the impact of parameters on c

iz . With higher initial 

design problems in stage i, ia , higher impact factor ib , and higher testing set-up time 

in stage i, s

it , the company should delay the start time of stage 1i , i.e. reduce the 

overlap between stages i  and 1i . Slower problem solving in stage i , r

it , also reduce 
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the optimal overlap.  

In some real situations, the overlapping policies are fixed, and managers are faced 

with the problem of determining the number of tests to be conducted at each stage. 

Our next proposition can help managers make such decisions.  

PROPOSITION 4.3  For 1,,2,1  ni  , given *

iz , 

 (a) The optimal number of tests to be conducted in stage i , *

ix , can be decided as 

follows:
 
if 03 F , then **

ii zx  ; if 04 F , then u

ii xx * ; otherwise, setting 0




ix

G

  

yields a unique value of c

ix , and  c

ii xx *

 
or   1*  c

ii xx . 

(b)
 

c

ix  decreases with r

it , s

it , and ib . 

(c) If ii aa  , then c

ix  decreases with ia . Otherwise if ii aa  ,  there exists a unique 

ix  such that: if i

c

i xx   ,
 

c

ix  increases with ia ; if i

c

i xx   ,
 

c

ix  decreases with ia .  

In the above,
 3F , 4F , u

ix , ia , and ix  are defined in Appendix B. 

Proposition 4.3(a) describes the optimal *

ix
 
when *

iz
 
is fixed. If 03 F , then the 

project profit in (4.10) decreases monotonically in ix , leading to **

ii zx  . On the other 

hand, if 04 F , then u

ii xx * , i.e. it is optimal to conduct as many tests in stage i as 

possible. Otherwise, the project profit first increases then decreases in ix , and is 

maximized at c

ix . The optimal *

ix  can then be derived through comparing project 

profits at  c

ix
 
and   1c

ix . Proposition 4.3(b) and 4.3(c) discuss the impact of 

parameters on c

ix . Part (b) shows that with faster problem solving r

it , longer set-up 

time of a test s

it , and/or higher impact factor ib , the number of tests in stage i  should 
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be reduced. Part (c) shows that higher initial design problems ia  may increase or 

decrease the optimal number of tests needed in stage i . Based on the result of 

Proposition 4.3(b) and 4.3(c), the decision makers can easily adjust the testing 

strategies for NPD projects with different characteristics. 

We have shown the respective effect of testing strategies or overlapping policies 

on project profit. However, testing strategies and overlapping policies are interacted, 

and their combined effect on project profit is much more complex. In the rest of this 

section, we will discuss how to solve the optimization problem.  

PROPOSITION 4.4  

(a) *

ix  must satisfy the following condition: 

t

i

i

p

i
i

c

ac
x *

 

for 1,,2,1  ni 

 

                                                                          (4.14) 

(b) If p

n

r

n ct  , else if )1ln()( nn

p

n

r

n

s

n

t

n pacttc   , then 0* nx ; otherwise,  

 c

nn xx *

 
or   1*  c

nn xx .  

In the above, 
)1ln(

)]1ln()ln[()ln(

n

nn

p

n

r

n

s

n

t

nc

n
p

pacttc
x







                        

(4.15) 

Proposition 4.4(a) defines the upper bound of *

ix  for 1,,2,1  ni  . To 

maximize project profit, testing costs should be less than the potential benefit, and so 

we get equation (4.14). Proposition 4.4(b) characterizes the optimal number of tests to 

be conducted at final stage n , *

nx . Defining *G  be the optimal project profit, and 

)(*

ixG  be the optimal project profit for a given value of ix . We now introduce the 

following algorithm 4.1 to solve the optimization problem: 

Algorithm 4.1 
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Step 1. Determine *

nx : If p

n

r

n ct   , else if )1ln()( nn

p

n

r

n

s

n

t

n pacttc   , then  

0* nx ; Else, calculate c

nx , compare  c

nx  and   1c

nx , and identify the one 

yields higher project profit.  

For 1,,2,1  ni  , do: 

Step 2 . Set 0* ix  and 0* iz , calculate *G . Let 1ix .  

Step 3. If 
t

i

i

p

i
i

c

ac
x  , stop. 

Step 4. For the current value of ix , determine *

iz  according to Proposition 4.2(a). 

(a) Identify iz  that satisfies 1])1()1[()( 


 i

x

i

z

ii

r

iii

s

i dppatzxt ii . Let 

  i

l

i zz  ,0max . 

(b) If 01 F , then l

ii zz  , calculate )(*

ixG , go to Step 5; if 02 F , then ii xz  , 

calculate )(*

ixG , go to Step 5. Else, identify the unique c

iz  that satisfies  

    

0




iz

G
. Compare  c

iz  and   1c

iz , and identify the one yields higher project 

profit )(*

ixG . 

Step 5. If ** )( GxG i  , then ii xx * , ii zz * , and )(**

ixGG  .  

Step 6. 1 ii xx . Go to Step 3. 

In Step 1 of above algorithm, we determine *

nx  according to Proposition 4.4(b). 

The main loop from Step 2 to Step 6 identifies the optimal testing strategies and 

overlapping policies, *

ix

 

and *

iz , for 1,,2,1  ni  . We first let 0* ix , 0* iz , and 

get an initial *G  in Step 2. Then, in Step 3, we check whether ix  exceeds its upper 

bound, and in Step 4, we determine *

iz  for the current value of ix  according to 
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Proposition 4.2(a). Step 5 compares )(*

ixG  with *G . If )(*

ixG  is larger, then *

ix

 

and 

*

iz  will be adjusted accordingly. *

ix

 

and *

iz  can then be identified after all possible 

values of ix  are examined.  

4.4 Case Study 

In this section, we apply the model to the refrigerator design process at a 

consumer electronics company. The corporation manufactures a wide range of 

household electrical appliances, such as refrigerators, air conditioners, washing 

machines, televisions, and so on, and its global revenue in 2005 was more than 12 

billion US dollars. There are six types of refrigerator projects in the company, one of 

which is analyzed in this section to illustrate the proposed methodology. The main 

components of the refrigerator are shown in following Figure 4.3.  

 
 

 

Figure 4.3 Main Components of the Refrigerator  

The refrigerator development process has been shown in Figure 4.1. In the 

refrigerator development, four types of tests: concept tests, industrial design tests, 

detail design tests, and system tests, are carried out, and the main characteristic of 

these tests have been listed in Table 4.1. 

4.4.1 Data Collection 
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In order to illustrate our model, we collected detailed data based on historical 

records, such as project schedule and documents of design problems detected and 

resolved over the entire period of the project. These data were double checked 

together with the engineers familiar with this project. In most companies, these data 

are available which allows us to derive the parameter values with reasonable validity 

(Krishnan et al., 1997; Kogan and Raz, 2002; Jun et al., 2005; Gerk and Qassim, 

2008).   

The regular duration for initial design id , and testing set-up time s

it , were directly 

derived from the project schedule. Consistent with previous studies (e.g. Cooper, 

1993b, 1993c; Thomke and Bell, 2001; Lin et al., 2008; Love et al., 2009), the initial 

design problems ia  , testing quality ip , and average time for solving one design 

problem r

it  were derived based on the historical records of the quality problems found 

and solved over the entire period of the project.  

As is common in consumer electronics industry, concurrent engineering was 

applied in the case study company. For example, two rounds of detail design tests 

were conducted in the project, and mold fabrication started after the completion of 

first round of test. In the second round of test, more than 80 detail design problems 

were resolved and transferred, resulting in about 15% of rework in mold fabrication. 

We then derived the impact of each modification 3b   0.18%. We got ib  for other 

stages in the same way (Consistent with Krishnan et al., 1997; Roemer et al., 2000; 

Jun et al., 2005; Lin et al., 2009).  

The other parameters are commonly used in past models (e.g. Slaughter et al., 

1998; Thomke and Fujimoto, 2000; Kogan and Raz, 2002; Lin et al., 2008). 
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Following these studies, we got these parameters together with engineers who were 

familiar with the project. For example, the costs of a test t

ic  were derived by adding 

the expenses of building prototypes, using equipment, materials and engineering 

resources. The penalty cost per undetected design problem p

ic  was estimated as the 

cost of rework that design problem would cause in the operational phase. The rework 

cost per time unit were largely dominated by the engineering hours spent on the 

activities, and so h

ic  was estimated by adding the average hourly wage of the involved 

engineers from industrial design, mechanic design, hardware design, and so on. We 

summarize parameter values of the project in Table 4.3. 

Finally, we checked the testing and overlapping policies adopted by the company. 

For the previous projects, three rounds of concept tests, two rounds of industrial 

design tests and detail design tests, and three rounds of system tests were conducted.  

Usually, the industrial design started after the completion of two rounds of concept 

tests, the detail design and mold fabrication started after the completion of one round 

of industrial design test, and one round of detail design test, respectively. 

 

Table 4.3 Model inputs for the refrigerator development project 

Stages 
id
 

(day) 

ia  ip  s

it  
(day) 

r

it  
(day) 

ib  
t

ic
 

(×10
3
) 

p

ic
 

(×10
3
) 

h

ic
 

(×10
3
) 

Concept Creation 9 47 0.4 3 0.229 1.4% 3 20 - 

Industrial Design 12 120 0.52 12 0.086 0.6% 4 10 0.35 

Detail Design 20 420 0.7 4 0.103 0.18% 10 5 0.8 

Mold Fabrication 40 259 0.75 6 0.082 - 18 3.5 7 

 

4.4.2 Results and Sensitivity Analysis 

After deriving the data, we investigated the optimal testing and overlapping 

policies using the Algorithm 4.1 in Section 4.3. The optimal testing strategies 
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identified are: 6*

1 x , 2*

2 x , 4*

3 x , 2*

4 x . Previously, three rounds of concept 

tests, two rounds of industrial design tests, two rounds of detail design tests, and three 

rounds of system tests were conducted in the project, i.e., 31 x , 22 x , 23 x , 

34 x . Our study shows that the company should add three more rounds of concept 

tests and two more rounds detail design tests, while reduce system tests to two rounds.  

The optimal overlapping policies identified by Algorithm 4.1 are: 3*

1 z , 1*

2 z , 

1*

3 z , i.e., it is optimal to start industrial design after three rounds of concept tests, 

and to start detail design after one round of industrial design test, and start mold 

fabrication after one round of detail design test. Compared with the existing 

overlapping policy, i.e. 21 z , 12 z , 13 z , the company should delay the start of  

industrial design. The benefit from the optimal testing and overlapping policies 

identified by our research can be increased from US$ 2,725,600 to US$ 3,007,500. 

Meanwhile, the project completion time can be decreased slightly from 190 days to 

189 days.  

The sensitivity of the optimal solution to cost parameters, including penalty cost 

per undetected design problem 
p

ic , opportunity cost per time unit  , cost for a test 

t

ic  , and rework cost per time unit h

ic  , were evaluated. Note that changing the value 

of h

ic  from 50% to 200% will not affect the optimal solution, and changing the value 

of t

ic  will not affect *

iz . The results are presented in Table 4.4-4.6, which suggest that 

the sensitivity of the optimal solution with respect to cost parameters is relatively low. 

For example, as shown in Table 4.4, the optimal solution is not affected when t

ic  

change from 125% to 200%.  
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Table 4.4 Impact of testing cost on optimal testing policies  

Stages 50% t

ic  75% t

ic  100% t

ic  125% t

ic  150% t

ic  175% t

ic  200% t

ic  

Concept Creation 6 6 6 6 6 6 6 

Industrial Design 2 2 2 2 2 2 2 

Detail Design 5 5 4 4 4 4 4 

Mold Fabrication 2 2 2 1 1 1 1 

 

Table 4.5 Impact of 
p

ic
 
on the optimal solution 

Stages 
50% p

ic  75% p

ic  100% p

ic  125% p

ic  150% p

ic  175% p

ic  200% p

ic  

*

ix  *

iz  *

ix  *

iz  *

ix  *

iz  *

ix  *

iz  *

ix  *

iz  
*

ix  *

iz  
*

ix  *

iz  

Concept Creation 3 1 3 1 6 3 6 3 6 3 6 3 6 3 

Industrial Design 1 0 2 1 2 1 2 1 3 2 3 2 3 2 

Detail Design 4 1 4 1 4 1 5 1 5 1 5 1 5 1 

Mold Fabrication 0 - 1 - 2 - 2 - 2 - 2 - 2 - 
 

 

Table 4.6 Impact of opportunity cost on the optimal solution  

Stages 
50%   75%   100%   125%   150%   175%   200%   

*

ix  *

iz  *

ix  *

iz  *

ix  *

iz  *

ix  *

iz  *

ix  *

iz  
*

ix  *

iz  
*

ix  *

iz  

Concept Creation 6 3 6 3 6 3 3 1 3 1 3 1 3 1 

Industrial Design 3 2 2 1 2 1 2 1 1 0 1 0 1 0 

Detail Design 5 1 4 1 4 1 4 1 4 1 4 1 4 1 

Mold Fabrication 2 - 2 - 2 - 1 - 1 - 1 - 1 - 

 

4.4.3 Combined Effect of Testing and Overlapping on Project Profit  

We solve a series of numerical examples in this section to illustrate the complex 

relationship between project profits, and testing and overlapping policies. Figure 4.4(a) 

shows that the project profit is “M shaped” with the increase of concept tests. Figure 

4.4(b) and 4.4(c) indicate that project profit first increases then decreases as the 

number of industrial design tests or detail design tests increase. 
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Figure 4.4 Combined effect of testing and overlapping on project profit 

4.5 Discussion and Conclusion 

In Chapter 3, we have presented an analytical model for the scheduling of tests in 

overlapped design process, where a downstream stage starts before the completion of 

upstream testing. In this chapter, we further explore the test scheduling problem for 

N-stage overlapped design process. The model presented in this chapter can be used 

to determine the optimal number of tests needed at each development stage, together 

with the optimal overlapping policies. It complements the work in Chapter 3 by 

taking testing set-up time into consideration, and by examining the testing and 

overlapping polices for the whole NPD process.  

Analysis of the model in this chapter yields following results some of which may 

not be intuitive:  
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(c) Number of Design Evaluation Tests x3 
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 Proposition 4.1 shows that it is optimal to start downstream stages directly 

after the completion of an upstream test. This is so because otherwise the gain from 

overlapping development stages will be decreased, without any other changes.  

 Proposition 4.2 describes the optimal overlapping policies when the number of 

tests is predetermined. It also shows that with higher initial design problems, higher 

impact factor, higher test set-up time, and/or slower problem solving, the company 

should delay the downstream initial design.  

 In some real situations, the overlapping policies are fixed, and managers are 

faced with the problem of determining the number of tests at each stage. Proposition 

4.3 can help managers make such decisions. The impact of model parameters on the 

optimal testing policies is also discussed.  

 Finally, an efficient algorithm is proposed for solving a practical problem that 

has not been addressed so far in the literature. 

Nonetheless, we would like to point out following limitations for application of 

the results in this chapter: 

 Firstly, our model can only be built and analyzed when historical data is 

available. For derivative projects which account for the majority of product 

development projects (Leifer et al., 2000; Jun and Suh, 2008), these data are typically 

available (see e.g. Krishnan et al., 1997; Thomke and Fujimoto, 2000; Jun et al., 

2005). However, for totally new projects, we can only build a model based on 

estimated data which may lead to inaccurate results. For instance, if a manager wants 

to apply our methodologies to improve the refrigerator development process, then 

he/she should collect the data from previous similar refrigerator development projects.  

 Secondly, in the data collection process, we find that many firms are unwilling 

to share their product development experiences for security reasons. Even for the firm 



                            Chapter 4   Scheduling Tests in N-stage Overlapped Design Process 

                                                                                                                  

102 

 

that has participated in our study, the data collection was quite challenging and time-

consuming since the companies did not know how past project data could be used in 

guiding future projects. Therefore, in spite of our best effort, we were able to do only 

a case study of refrigerator development. In the future, it is meaningful to apply the 

proposed methodologies to other development projects and processes. 

 Thirdly, our model is deterministic and therefore does not directly address risk, 

although we have addressed many facets of risk through sensitivity analysis of the 

optimal solution to parameters.  

 Finally, to keep the model simple, we assume that the overall penalty cost is a 

linear function of the number of remaining design faults, and overall rework cost is a 

linear function of the amount of rework. Even with such linear assumptions, our 

model is complex and is difficult to solve. Moreover, the linear functions are 

appropriate approximations of many real situations, as demonstrated by many studies 

(see e.g. Kogan and Raz, 2002; Roemer and Ahmadi, 2004; Ji et al., 2005; Wang and 

Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009). Future research can relax these 

assumptions and discuss the corresponding testing and overlapping policies. 

 



                     Chapter 5   A Decomposition Approach for Sequencing Design Activities 

 

103 

 

 

CHAPTER 5  

A DECOMPOSITION APPROACH FOR 

SEQUENCING DESIGN ACTIVITIES 

 

To structure NPD processes, in addition to the test scheduling problem discussed 

in Chapter 3 to 4, the management is often faced with another important decision 

problem, i.e., how to plan the sequence of many interrelated activities (Krishnan and 

Ulrich, 2001; Karniel and Reich, 2009). Formal scheduling techniques, such as CPM 

and PERT, cannot deal with interrelated activities (Eppinger et al., 1994; Browning 

and Ramasesh, 2007). One effective tool for addressing this shortfall is DSM, which 

has spawned many research efforts on sequencing design activities with the objective 

of minimizing feedbacks. It is known that DSM sequencing problem is NP-complete 

and difficult to solve. Since many real world NPD projects often involve 

dozens/hundreds of interrelated activities, the development and improvement of 

solution procedures for large DSM-based activity sequencing problem is very 

important. As such, in this chapter a new approach is proposed for solving this 

problem. 

The organization of this chapter is as follows. After a brief introduction, we 

introduce a 0-1 Quadratic Integer Program (QIP) for DSM sequencing problem in 

Section 5.2. Section 5.3 presents a decomposition based solution strategy for solving 

the problem. In Section 5.4, we perform a number of experiments, and apply the 

solution strategy to three real data sets. Conclusions are summarized in Section 5.5. 

Proofs of all the results in this chapter are provided in Appendix C.  
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5.1 Introduction 

Many researchers have highlighted weaknesses of network-based approaches, 

such as PERT and CPM, for scheduling NPD projects. First, PERT/CPM cannot 

effectively model iteration, which is a fundamental characteristic of NPD processes. 

Iteration occurs in an NPD process for two main reasons: (1) the outputs of activities, 

such as engineering drawings, specifications and bill of materials, are often unstable 

and inaccurate, and need to be reworked when downstream activities detect some 

problems in the original design (Loch and Terwiesch, 2005; Love et al., 2009); (2) 

downstream activities may be repeated when modified information is passed along 

from upstream activities (Smith and Eppinger, 1997a; Jun et al., 2005; Lin et al., 

2008). Thus, cyclic information flows are quite common in NPD processes and 

PERT/CPM could not deal with such loops effectively. Second, in PERT/CPM, the 

underlying precedence relationships among activities are assumed known and 

unchanged. However, for most complex development projects, clear precedence 

constraints do not exist and are rarely known in advance (Eppinger et al., 1994; 

Ahmadi et al., 2001; Jun and Suh, 2008). 

To address these shortfalls, one known method is DSM. As illustrated in Figure 

5.1, the basic form of DSM is a binary matrix representation of a project with 

elements denoting individual design activities which are executed in the temporal 

order listed from top to bottom (Eppinger et al., 1994; Chen et al., 2004). Sub-

diagonal marks represent inputs from upstream activities to downstream, and super-

diagonal marks denote feedbacks from downstream activities to upstream (Denker et 

al., 2001; Karniel and Reich, 2009). As such, DSM provides a compact representation 
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of a complex system by showing information dependencies in a square matrix, as well 

as a useful tool for describing and investigating iteration (Cho and Eppinger, 2005). 

 
 

 

 

 

 

         (a) DSM Representation                     (b) NDSM Representation 

 

Figure 5.1 DSM/NDSM representation of iterative NPD process: an example 

 

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994) 

extended Steward’s work by explicitly including numerical measures of the degree of 

activity dependence, and introduced NDSM, such that more complex analytical 

procedures could be used to further improve the design process. Since then, many 

practitioners and researchers have reported successful applications of DSM approach 

in managing NPD projects (see e.g. Eppinger, 2001; Sharman and Yassine, 2004; 

MacCormack et al., 2006; Veenstra et al., 2006; De Weerd-Nederhof et al., 2007; 

Amrit and van Hillegersberg, 2008; Sosa, 2008). Reviews of DSM approach can be 

found in Browning (2001), Karniel and Reich (2009). 

In project scheduling, DSM has spawned many research efforts on sequencing 

design activities (Eppinger et al., 1994; Browning, 2001; Karniel and Reich, 2009). In 

most of previous studies, the objective of sequencing is to minimize feedbacks (Meier 

et al., 2007; Lancaster and Ozbayrak, 2008). There are several reasons why this is 

meaningful and important. First, feedbacks determine where iteration loops occur 

(Eppinger et al., 1994; McCulley and Bloebaum, 1996). Iteration is a major driver for 
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lengthy and costly product development (Mihm et al., 2003; Lee and Suh, 2006; Love 

et al., 2008). Thus, minimizing feedbacks is a good approximation for concurrently 

reducing cycle time and development costs (Ahmadi et al., 2001; Collins et al., 2009). 

For instance, Ahmadi et al. (2001) showed that the average errors resulting from the 

surrogate objective function of minimizing feedbacks was only 2.6% and 2.7%, and 

the maximum error was less than 8%, over 540 problems solved. Second, as reported 

by McCulley and Bloebaum (1996), in practice, especially for distributed product 

development, “the design manager is likely to desire choosing an evaluation 

procedure which requires the least amount of information to be guessed initially. Each 

feedback corresponds to one or more guesses. Therefore, minimizing feedbacks will 

also minimize the amount of information required to be supplied as initial guesses”.  

Several independent researchers have reported that DSM sequencing problem is 

NP-complete (e.g. McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al., 

2007). Therefore, there is almost no chance to develop solution algorithms with a 

polynomial-time complexity (Li and Sun, 2006). To solve large-scale sequencing 

problem, one stream of research focused on meta-heuristic methods, such as Genetic 

Algorithm (Altus et al., 1996; Whitfield et al., 2003; Meier et al., 2007), Simulated 

Annealing (Abdelsalam and Bao, 2006, 2007), and Evolutionary Algorithm 

(Lancaster and Cheng, 2008). 

Another stream of research focused on decomposition based methods. For 

instance, Rogers (1989) developed DeMAID which involved two steps: (1) grouping 

activities into blocks; and (2) sequencing the activities within each block so as to 

minimize feedbacks. The DeMAID was further extended to DeMAID/GA by 

incorporating GA for sequencing the activities within each block (McCulley and 
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Bloebaum, 1996; Rogers, 1996, 1999). Ahmadi et al. (2001) complemented this line 

of research by explicitly developing mathematical models for solving large-scale 

DSM sequencing problem. In their paper, a Block Decomposition method was 

presented for grouping activities into blocks, with the objective of minimizing 

feedbacks among blocks. A Branch-and-Bound algorithm was then used to identify 

optimal solutions of sub-problems, and finally, the sub-problem solutions were 

concatenated to a solution of the overall problem. Their work has clearly shed light on 

the analysis of DSM sequencing problem, and has greatly advanced our 

understanding of managing NPD processes. However, a major disadvantage of their 

Block Decomposition method is that the resulting overall activity sequence (obtained 

by solving all sub-problems) may be a sequence that is worse than the initial one.  

In this study we therefore develop a new decomposition approach for solving 

large-scale DSM sequencing problem. Based on the approach proposed, the overall 

activity sequence can be gradually improved. Another contribution of this study lies 

in that it establishes two simple rules for direct feedback reduction, and presents a 

heuristic for improving feasible solutions through activity exchange. Finally, we 

perform a number of random examples, and apply the proposed methodology to three 

real data sets. Solutions presented in previous studies are used to benchmark the 

effectiveness of the proposed methodology. 

 

5.2 Mathematical Model  

Consider a product development project consisting of n design activities, where 

each  individual design activity can be viewed as information-processing units that 

receives information from upstream activities and transform it into new information to 

be passed on to downstream activities (Clark and Fujimoto, 1991; Browning, 2009). 
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We assume that the degree to with each activity depends on the output information of 

other activities is known. Let parameter jid ,  ( 0, jid ) denote the dependence level of 

activity i on activity j . Note that the model and methodologies developed in this 

study can be applied to either a binary DSM or a numerical DSM. In binary DSM, 

jid ,  only takes binary values, while in numerical DSM, parameter jid ,  can take real 

numbers. In practice, the following three measures, which are proposed by Eppinger 

et al. (1994) and extended by Browning and Eppinger (2002), Yassine (2007) and so 

on, can be used to estimate the value of jid , :  

(1) Variability: if the output from activity j will change significantly (slightly), 

then the dependency tends to be strong (weak). 

(2) Predictability: if the change of output from activity j is unpredictable 

(predictable), then the dependency tends to be strong (weak). 

(3) Sensitivity: If a slight (substantial) change of output of activity j will lead to a 

large (small) magnitude of design iteration in activity i, then the dependency tends to 

be strong (weak). 

Based on above measures, activity dependencies can then be quantified through 

interviewing the engineers and managers familiar with the projects and/or via 

surveying relevant documentation (Eppinger, 2001; Chen et al., 2004). Activity 

dependencies can also be effectively quantified by applying the well-known 

techniques, such as AHP (see Chen and Li, 2003), and QFD (see Chen et al., 2004).  

To formulate the DSM sequencing problem, we introduce following notation: 

ji, index for activities, nji ,...,2,1,   

hm, index for activity positions, nhm ,...,2,1,    
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Decision Variables (for ni ,...,2,1 ; nm ,...,2,1 ): 

 

 

The objective of DSM sequencing problem is to find an activity sequence so as to 

minimize feedbacks, which can be formulated as following 0-1 Quadratic Integer 

Program (QIP): 
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The objective (5.1) minimizes feedbacks or the sum of super-diagonal numbers in 

a NDSM. For instance, in the NDSM shown in 5.1(b), the total feedbacks for the 

activity sequence of {1, 2, 3, 4} are 1.8. The feedback minimization objective works 

as follows: if activity j is assigned to precede activity i, then we get 0
1




n

mh

hjx , in 

other words, jid ,  is not included in the objective (5.1); on the other hand, if activity i 

is assigned to precede activity j, then 1
1




n

mh

hjx , in other words, jid ,  is a feedback 

and is included in (5.1). Constraints (5.2) and (5.3) are assignment constraints. As 

mentioned earlier, DSM sequencing problem is NP-complete. Therefore, it’s hard to 

solve the optimization problem (5.1)-(5.4).  
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5.3 Proposed Solution Strategy 

In this section, we will describe how to solve the problem in (5.1)-(5.4). We first 

develop a heuristic for improving feasible solutions, and show that optimal solutions 

of small-scale problems can be obtained by a Branch-and-Bound method. This 

Branch-and-Bound method is then extended by a heuristic decomposition approach 

for solving large-scale problems. More specifically, the heuristic decomposition 

approach iteratively (1) selects a sub-problem from a feasible solution of the main 

problem, (2) employs the Branch-and-Bound method to find the optimal solution of 

the sub-problem, and (3) reincorporates the sub-problem solution into the solution of 

the main problem.   

5.3.1 A Heuristic for Improving Feasible Solutions  

In this subsection, we first develop two simple rules (Theorem 5.1 and 5.2) for 

direct feedback reduction. Based on the results, a heuristic is then presented for 

improving feasible solutions through activity exchange. 

THEOREM 5.1 For an activity sequence of }...,,1,,1...,,2,1{ niii  , if iiii dd ,11,   , 

then through exchanging activity i and activity 1i , the total feedbacks can be 

reduced by  iiii dd ,11,   . 

The proof of all the results in this chapter can be found in Appendix C. 

Theorem 5.1 shows that for two adjacent activities i and 1i , if the dependency 

level of activity i on activity 1i  is larger than that of activity 1i  on activity i, 

i.e., iiii dd ,11,   , then the execution sequence of  activity i and activity 1i  should be 

exchanged. Let us use a real NDSM published in Chen and Li (2003) to further 
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illustrate this. Figure 5.2 shows the original NDSM of nine activities for a chemical 

processing system, which is built based on the well-known technique of AHP. The 

total feedbacks for the original activity sequence of {1,4,5,8,10,11,17,18,19} are 

3.837. Clearly, the dependency level of activity 1 on activity 4 is larger than that of 

activity 4 on activity 1. Thus, by exchanging the positions of activity 1 and activity 4 , 

the total feedbacks can be reduced to 3.678. The result is shown in Figure 5.3. 
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Figure 5.2 Original NDSM for a chemical processing system  

(From Chen and Li, 2003) 
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Figure 5.3 Improved NDSM through exchanging activities 1 and 4 

 

Our next result further establishes the rule for exchanging two arbitrary activities. 

Given an activity sequence of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  , defining:  
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THEOREM 5.2  If 0, ij , then through exchanging activity j and activity i, the total 

feedbacks can be reduced by ij , . 

Theorem 5.2 describes that for an initial activity sequence of 

}...,,1,,1,...,1,,1...,,2,1{ niiijjj  , if 0, ij , then the execution sequence of 

activity j and activity i  should be exchanged. For example, for the NDSM shown in 

Figure 5.3, inspection of activity 4 and activity 8 shows that 

346.0351.0137.0654.0232.0310.0451.0495.08,4  . Hence, through 

exchanging activities 4 and 8, the feedbacks can be reduced to 3.332. The result is 

shown in Figure 5.4.  
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Figure 5.4 Improved NDSM through exchanging activities 4 and 8 

Based on the results of Theorems 5.1 and 5.2, we now introduce following 

Procedure 5.1 for improving feasible solutions of DSM sequencing problem: 

Procedure 5.1  

Step 1. Calculate the total feedbacks f  for an initial activity sequence, and store it as 

the best sequence. 

Step 2. Set mobile-activity j  to activity 1.  

Step 3. Calculate ij ,  for ni ...,,2,1 , and ji  . Identify activity k that gives the 
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maximum kj , . If 0, kj , exchange activity j and activity k, save the result as 

the new best sequence and set kjff , . 

Step 4. Set the next activity as the new mobile-activity, and go back to Step 3 until all 

the activities have been set as the mobile-activity. 

5.3.2 The Branch-and-Bound Method  

In this subsection, a Lagrangian relaxation based Branch-and-Bound method is 

presented to solve small DSM Sequencing problem instances. The main features of 

the Branch-and-Bound method are based on those proposed by Ahmadi et al. (2001). 

We first show that the 0-1 QIP in (5.1)-(5.4) can be transferred into following 

equivalent 0-1 Linear Integer Program (LIP): 
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THEOREM 5.3 The optimal objective value of the 0-1 QIP is equal to that of the 0-1 

LIP.  

Based on the result in Theorem 5.3, the 0-1 QIP in (5.1)-(5.4) is transferred to the 

0-1 LIP. By using non-negative Lagrangian multipliers m

ji ,  to relax constraints (5.7), 

the following Lagrangian relaxation problem is obtained:  
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 Subject to: Equations (5.2)-(5.4), (5.8). 

It has been shown in Ahmadi et al. (2001) that the Lagrangian relaxation of DSM 

sequencing problem can be reduced to an assignment problem. Their result is adapted 

and presented in the following Theorem 5.4. 

THEOREM 5.4 For given non-negative Lagrangian multipliers m

ji ,  that satisfy: 
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Subject to: Equations (5.2)-(5.4).  

It is well-known that assignment problem can be effectively solved by the 

Hungarian method (Burkard et al., 2009). Therefore, for given non-negative 

Lagrangian multipliers m

ji ,  that satisfy ji

N

m

m

ji d ,

1

, 


 , the Hungarian method can be 

used to solve the problem and obtain a lower bound for the 0-1 LIP. The best lower 

bound can be derived by choosing Lagrangian multipliers m

ji ,  to be the solution of the 

following Lagrangian dual problem: 
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The Lagrangian dual problem can then be solved by the well-known subgradient 

method. Based on the lower bounds identified by the Lagrangian relaxation and 

subgradient method, the following Branch-and-Bound procedures can then be used to 

find optimal solutions of DSM sequencing problem (Ahmadi et al., 2001).  

Procedure 5.2 

Step 1. Compute a feasible solution by Procedure 5.1, save the result as optx , and save 

the corresponding objective value as optf . Compute the Lagrangian bound 

)( *d . If optfd )( * , stop. 

Step 2. If all the variables have been fixed, then stop and optx  is the optimal solution. 

Otherwise, generate two new nodes by setting an unfixed variable to 0 or 1, 

and choose one of the two nodes to be explored first. 

Step 3. Compute the Lagrangian bound )( *d  for the current node. If optfd )( * , 

then the current node is fathomed, go to Step 2; Else, go to Step 4. 

Step 4. Let *x  be the respective optimal solution to the Lagrangian relaxation 

problem corresponding to the optimal Lagrangian multipliers. If optfxf )( * , 

set *xxopt   and )( *xffopt  . Go to Step 2. 

5.3.3 The Heuristic Decomposition Approach  

We now explain our heuristic decomposition approach in detail. First, given a 

feasible solution of the main problem, select a block of consecutive activities from 

position 1M  to position 2M  ( 12 MM  ) such that a smaller sub-problem is obtained. 

Second, solve this sub-problem by the Branch-and-Bound method. Third, 

reincorporate the sub-problem solution into the solution of the main problem. After an 

iteration of these three steps, we can get an improved solution of the main problem. 
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We use this improved solution to restart and iteratively change the value of 1M  and 

2M  such that the new sub-problem focuses on a later part of the main sequence and 

also has an overlap with the subsequence of the previous iteration. The process is 

repeated until 2M  reaches the last activity n. These deliberations give rise to the 

following Procedure 5.3 for solving large-scale DSM sequencing problem. Denote:  

N     Number of activities contained in a sub-problem 

L      The iteration step length, where L  is a positive integer and NL   

S      Activity set that store the sequence of activities from position 1 to position n 

S1    Activity set that store the sequence of activities from position 1 to position 1M  

S2    Activity set that store the sequence of activities from position 2M  to position n 

Sb    Activity set that store the sequence of activities from position 1M  to position 2M  

*

bS    Activity set that stores the optimal activity sequence of the sub-problem 

Procedure 5.3 

Step 0. Compute a feasible solution by Procedure 5.1, save the result as S. Initialize 

N and L . Set 11 M , NM 2 . 

While nM 2 , do: 

Step 1. Based on S, construct S1, Sb and S2.  

Step 2. Compute the optimal solution for Sb by Procedure 5.2, save the result as *

bS .  

Step 3. Combine S1, 
*

bS  and S2, save the result as S. 

Step 4. LMM  11 , LMM  22 . 

In the above procedure, parameter N defines the size of the sub-problem. 

Theoretically, the optimal value of N is n (i.e. the number of activities in the main 

problem), such that the main problem can be solved to optimality. If the value of N  
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is too small, then solving the sub-problem by the Branch-and-Bound method may not 

improve the solution of the main problem. However, the activity sequencing problem 

is NP-complete, and thus if N is too large, it will be computationally infeasible for the 

Branch-and-Bound method, because the calculation time increases drastically with the 

problem size. Therefore, in choosing the value of N, we need to avoid the extreme 

cases of setting N too large or too small. Parameter L defines the iteration step length. 

We select L such that the new sub-problem has an overlap with the subsequence of 

the previous iteration. To get an overlap, we set NL  . 

5.4 Computational Experiments 

As mentioned earlier, a major disadvantage of previous decomposition-based 

method in Ahmadi et al. (2001) is that the resulting overall activity sequence may be a 

sequence that is worse than the initial one, whereas the proposed solution strategy 

guarantees that the final activity sequence is better than the initial one. To fully 

understand how the proposed solution strategy is significantly different and better 

than previous method, in this section, we first perform a number of experiments to 

examine how previous method could lead to a sequence that is worse than the original 

one. After that, the proposed solution strategy is applied to three real-world NDSMs: 

(1) a NDSM for a chemical processing system (Chen and Li, 2003); (2) a NDSM for 

the turbopump concept design (Ahmadi et al., 2001), and (3) a NDSM for Power Line 

Communication (PLC) (Luh et al., 2009). Solutions presented in previous studies are 

used to benchmark the effectiveness of the proposed solution strategy. All the 

experiments are performed on a Pentium Dual-Core 2.1GHz Compaq laptop with 2G 

memory. Our objective in this section is to provide some insight, but not conclusive 

evidence, into the efficiency of our approach.  
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5.4.1 Test Examples 

Previous decomposition-based methods in Ahmadi et al. (2001) involve two steps: 

(1) decomposing the interrelated activities into smaller blocks (i.e. sub-problems) 

with the objective of minimizing the sum of super-diagonal numbers among blocks, 

and (2) within each block, sequencing the interrelated activities so as to minimize the 

sum of super-diagonal numbers. We code this procedure in Matlab and perform four 

groups of experiments. Note that the decomposition problem (i.e. the first step), 

which is equivalent to the problem of partitioning N nodes into k disjoint subsets in a 

graph of G=(N, E)(where N is the number of nodes, and E is a set of weighted edges), 

is known to be NP-hard (Yu et al., 2007).  

To perform more experiments and to be able to report our computational findings 

within reasonable time, in each group of experiments, the number of activities is set to 

8, and the maximum number of activities allowed in a block is set to 4. We believe 

that the better the initial solution, the higher the probability that the procedure in 

Ahmadi et al. (2001) leads to a sequence that is worse than the original sequence. 

Consequently, we perform four groups of experiments with different initial solutions. 

In the first group of experiments, the degree of information dependency among 

activities are uniformly distributed on the interval (0,1). In the second group of 

experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly 

distributed on the interval (0.1,1) and (0,0.9), respectively. In the third group of 

experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly 

distributed on the interval (0.2,1) and (0,0.8), respectively. In the fourth group of 
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experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly 

distributed on the interval (0.3,1) and (0,0.7), respectively.  

We generate 1,000 random instances for each group. The computational results 

are shown in Table 5.1. In the first group of experiments, we observe 6 instances 

where the procedure in Ahmadi et al. (2001) leads to a sequence that is worse than the 

original sequence. As the initial solutions get better, the number of observations 

increases dramatically. For instance, in the fourth group of experiments, the number 

of observations increases to 420.  

Table 5.1 Computation results of test examples 

Groups Dependency levels  
Occurrence 

Rate
1
 

1 The dependency levels are uniformly distributed on (0,1) 0.6% 

2 

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.1,1) and (0,0.9), 

respectively 

3.9% 

3 

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.2,1) and (0,0.8), 

respectively 
25.3% 

4 

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.3,1) and (0,0.7), 

respectively 
42.0% 

1
Occurrence rate is calculated as the number of observations where the procedure in Ahmadi et al. 

(2001) leads to a sequence that is worse than the original sequence divided by 1,000. 

In our approach, we do not perform the first step of the procedure in Ahmadi et al. 

(2001), i.e. decomposing the interrelated activities into smaller blocks (i.e. sub-

problems) with the objective of minimizing the sum of super-diagonal numbers 

among blocks. Instead, we use activity exchange (Procedure 5.1) to directly reduce 

the sum of super-diagonal numbers in a DSM. Based on the improved activity 

sequence identified by Procedure 5.1, Procedure 5.3 is then used to further improve 

the sequence. In other words, the proposed approach guarantees that the final activity 
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sequence is better than the initial one. In practice, the initial solutions are provided by 

experienced project managers, and thus the initial activity sequence is often better 

than the randomly generated activity sequence. In such cases, using the procedure in 

Ahmadi et al. (2001) is inappropriate because the probability that the final activity 

sequence is worse than the original one could be quite high. The proposed approach 

can be used for scheduling these projects.  

Moreover, the complexity of the first step in Ahmadi et al. (2001) is NP-hard, 

while the complexity of our Procedure 5.1 is O(n
2
). Thus, the procedure in Ahmadi et 

al. (2001) may not be applicable for large problem instances because the calculation 

time increases quickly with the number of activities. For instance, we try a random 

example of decomposing 25 activities into two groups where the maximum number of 

activities allowed in a block is set to 13, and find that the computation time for the 

first step in the procedure in Ahmadi et al. (2001) is more than 72 hours. For the same 

number of activities, the computation time for our Procedure 5.1 is several seconds.  

5.4.2 Case Studies  

Because feedbacks cause rework, it is accepted that in most cases, finding an 

activity sequence with minimum feedbacks can lead to considerable savings in both 

development time and costs of complex projects, see e.g. Steward (1981), Kusiak and 

Park (1990), Kusiak and Wang (1993), Tang et al. (2000), Ahmadi et al. (2001), Chen 

and Li (2003), Luh et al. (2009), Tang et al. (2009) for successful cases. Therefore, 

quite a few studies have examined this classic problem. Among them, Ahmadi et al. 

(2001), Chen and Li (2003), and Luh et al. (2009) proposed approaches for solving 

this problem, and also presented case studies to illustrate their approaches. Hence, we 

apply our approach to these three data sets, and benchmark our solutions with those 
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presented in Ahmadi et al. (2001), Chen and Li (2003), and Luh et al. (2009). A short 

description of each case and our application results are presented below. 

5.4.2.1 Case 1: The Chemical Processing System 
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Figure 5.5 Improved feasible solution by applying Procedure 5.1 
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Figure 5.6 Optimal solution by the Branch-and-Bound method  

Figure 5.2 shows the original NDSM of nine activities for a chemical processing 

system published in Chen and Li (2003). The information dependencies among the 

activities in the NDSM are quantified through the well-known technique of AHP 

(Chen and Li, 2003). We use this data set to illustrate Procedure 5.1 and the Brach-

and-Bound method. By applying Procedure 5.1, we get the improved feasible solution 

shown in Figure 5.5, where the activity sequence is }19,10,1,11,18,4,17,8,5{ . Note that 
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in this activity sequence, activities 8 and 17, as well as activities 4 and 18, can be 

carried out in parallel since there is no information exchange between the activities. 

Based on this improved activity sequence, the total feedbacks are reduced by more 

than 20%, from original 3.837 to 2.911.  

The optimal solution identified by Procedure 5.2 is shown in Figure 5.6, where the 

optimal activity sequence is }1,4,17,11,19,10,18,8,5{ . Here the computation time is 

970.8 minutes. Clearly, from Figure 5.6, we can conclude that there is no information 

exchange between activities 18 and 10, and so these two activities can be performed 

in parallel. Similarly, activities 19 and 11 can also be performed in parallel. Based on 

this optimal activity sequence, the total feedbacks are minimized at 2.29, and thus the 

optimal activity sequence can be used to improve the chemical processing system. 

5.4.2.2   Case 2: The Turbopump Concept Design  

In this subsection, we apply the proposed heuristic decomposition approach to the 

data set published in Ahmadi et al. (2001). Figure 5.8 shows the initial NDSM for the 

concept design of the turbopump at Rocketdyne, which consists of 27 activities. The 

NDSM was constructed based on a questionnaire, and all the parameters were double 

checked by senior project managers (Ahmadi et al., 2001). Based on the proposed 

method, they get the final NDSM shown in Figure 5.9, where the total feedbacks are 

reduced to 5.35. As reported by Ahmadi et al. (2001), the new activity sequence in 

Figure 5.9, {1,10,9,2,7,8,17,11,12,6,16,20,21,19,15,13,4,3,27,14,18,22,5,23,24,25,26} 

had led to considerable savings in both development time and costs. 

 Note that in this data set, the dependency level 0.1, jid  represents a hard 

dependency, in other words, activity j must be scheduled before activity i (Ahmadi et 

al., 2001). For example, Design Pump Housing (activity 4) must be scheduled before 
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CST Assess Pump Housing (activity 3), since the dependency level of activity 3 on 

activity 4, 0.14,3 d . To ensure this, we associate the hard dependencies with a large 

positive value. Figure 5.7(a) shows the improved initial solution by applying 

Procedure 5.1. As an example, we set the number of activities contained in each sub-

problem 11N , and the step length at each iteration 4L . More specifically, in the 

first iteration, (1) activities from position 1 to position 11 form the sub-problem bS , 

and activities from position 12 to position 27 constitute S2; (2) the Branch-and-Bound 

method is then used to solve the sub-problem and identify the optimal activity 

sequence *

bS , while the activity sequence in S2 remains unchanged; (3) integrating *

bS  

and S2 results in the improved activity sequence shown in Figure 5.7(b).  

Based on the improved activity sequence, in the second iteration, (1) activities 

from position 1 to position 4 constitute S1, activities from position 5 to position 15  

form the sub-problem Sb, activities from position 16 to position 27 form S2; (2) again, 

the Branch-and-Bound method is used to solve the sub-problem Sb and identify the 

optimal activity sequence *

bS , while the activity sequence in S1 and S2 remain 

unchanged; (3) combining S1, 
*

bS  and S2 results in the improved activity sequence 

shown in Figure 5.7(c). Repeating these three steps in the third and fourth iteration, 

we get the improved activity sequence shown in Figure 5.7(d) and Figure 5.7(e), 

respectively. Finally, in the fifth iteration, activities from position 17 to position 27 

constitute the sub-problem, and the final result is shown in Figure 5.10, where the 

total feedbacks are reduced to 5. The total computation time for the proposed 

approach is 770.4 minutes. Since the activity sequence identified by our approach, 

{8,2,1,10,11,7,17,12,9,6,20,16,15,13,21,19,27,5,14,4,3,18,22,23,24,25,26}, has 

smaller total feedbacks, it can be utilized to further improve the turbopump concept 
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design. Note that here activities 11 and 7, activities 12, 9, 6, 20 and 16, activities 13 

and 21, activities 5, 14 and 4, activities 3 and 18, as well as activities 22 and 23, can 

be performed in parallel since there is no information exchange among them. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.7 The decomposition strategy for the turbopump concept design 

 

5.4.2.3   Case 3: The Power Line Communication  

In this section, we apply the heuristic decomposition approach to the data set 

published in Luh et al. (2009). Figure 5.11 shows the initial NDSM for the 

development of Power Line Communication (PLC), which consists of 22 activities.  

The NDSM was constructed based on a survey and detailed interview with different 

departments managers (Luh et al., 2009). Here the positions of activity 1 and activity 

2 can be fixed in the top of the NDSM since these two activities do not need 
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(e) Improved solution after the fourth iteration 
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information input from all other activities. By applying the proposed heuristic, they 

get the final result shown in Figure 5.12, where the total feedbacks are reduced from 

original 16.4 to 12.6. As reported by Luh et al. (2009), because iteration is a major 

driver for lengthy and costly product development of Power Line Communication, the 

new activity sequence with smaller total feedbacks in Figure 5.12, i.e., 

{1,2,6,8,7,3,5,4,10,9,16,11,12,13,14,15,22,19,17,18,20,21}, had considerably reduced 

the development time and costs. 

In this example, we set the number of activities in each sub-problem 8N , and 

the step length at each iteration 4L . Applying our approach results in the final 

NDSM shown in Figure 5.13, which suggests that the activities should executed in the 

sequence of {1,2,6,8,7,3,4,10,16,9,5,11,12,13,14,15,22,19,17,18,20,21}. The total 

computation time is 1586.2 minutes. From Figure 5.13, we can conclude that 

activities 9 and 5, activities 13 and 14, as well as activities 15 and 22, can be executed 

in parallel because there is no information exchange between the activities. Based on 

the activity sequence identified by our approach, the total feedbacks are reduced to 

12.5, and so it can be used to further improve the development process of Power Line 

Communication. 
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Figure 5.8 Original NDSM for turbopump concept design (from Ahmadi et al., 2001) 
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Figure 5.9 Final NDSM in Ahmadi et al. (2001) for turbopump concept design 
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Figure 5.10 Final NDSM for turbopump concept design by our approach
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Figure 5.11 Original NDSM for PLC design (from Luh et al., 2009) 
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Figure 5.12 Final NDSM for PLC design in Luh et al. (2009) 
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Figure 5.13 Final NDSM for PLC design by our approach 

5.5 Conclusion 

In this chapter, we have presented a new decomposition approach for large-scale 

DSM sequencing problem with the objective of minimizing feedbacks. The 

contribution of this work is threefold. First, we establish two simple rules (Theorem 

5.1 and 5.2) for direct feedback reduction. Based on the results, a heuristic is then 

proposed for improving feasible solutions through activity exchange. Second, we 

show that the 0-1 QIP formulation of the DSM sequencing problem can be transferred 

to an equivalent 0-1 LIP problem, which can then be solved by a Branch-and-Bound 

method (Theorem 5.3 and 5.4). Third, we present a new decomposition approach to 

extend this Branch-and-Bound method for solving large-scale problems. The 

proposed decomposition approach has more flexibility than previous ones.  

More importantly, based on the computational experiments in section 5.4.1, we 
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show that in many cases, the probability that previous decomposition-based approach 

in Ahmadi et al. (2001) leads to a sequence that is worse than the original one is quite 

high. Thanks to the well construction of sub-problems, the proposed approach 

guarantees that the final activity sequence is better than the initial one. In practice, the 

initial solutions are provided by experienced project managers, and thus the initial 

activity sequence is often better than the randomly generated activity sequence, and 

thus using the approach in Ahmadi et al. (2001) is inappropriate. The proposed 

approach can be used for scheduling these projects. 

We have also applied the proposed solution strategy to three real data sets, the 

conceptual design of the turbopump at Rocketdyne (Ahmadi et al., 2001), the 

development of a chemical processing system (Chen and Li, 2003), and the 

development of power line communication (Luh et al., 2009). It is shown that in all 

three cases, compared to the solutions presented in previous studies, applying our 

approach results in better solutions with smaller feedbacks.  
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CHAPTER 6  

A NOVEL APPROACH TO LARGE-SCALE DSM 

SEQUENCING PROBLEM 

6.1 Introduction 

As was discussed in Chapter 5, DSM provides a compact representation of 

iterative NPD process by showing information dependencies in a square matrix. To 

accelerate NPD processes, DSM suggests to re-sequencing the activities such that 

iterative behaviors are minimized in the matrix. In recent years, there has been a 

growing interest in applying the DSM approach for planning product development 

projects (Karniel and Reich, 2009). However, a major difficulty lies in that DSM 

sequencing problem is NP-complete (McCulley and Bloebaum, 1996; Ahmadi et al., 

2001; Meier et al., 2007). 

To solve large-scale problem, one line of research focuses on meta-heuristic 

methods. Another line focuses on decomposition based approaches. More specifically, 

the overall project is first decomposed into smaller sub-problems which are easier to 

solve, and sub-problem solutions are then merged into a solution of the overall 

problem. Examples of such studies include McCulley and Bloebaum (1996), Rogers 

(1996, 1999), and Ahmadi et al. (2001). This chapter also follows previous 

decomposition based approaches. In particular, we extend the activity exchange rules 

(Theorem 5.1 and 5.2) to a group of activities, and find that through the fold operation, 

a block has similar properties to a single activity. Based on these findings, a novel 
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decomposition approach is presented for solving large-scale DSM sequencing 

problem.  

In the next section, a mathematical formulation is presented for the DSM 

sequencing problem. In Section 6.3, we prove several properties of the solution, and 

propose a novel approach for solving the problem. In Section 6.4, we apply the 

proposed approach to the turbopump concept design (Ahmadi et al., 2001), and to the 

development power line communication (Luh et al., 2009). Solutions provided in 

Chapter 5 of this thesis are used to benchmark the effectiveness of the approach in 

this chapter. Section 6.5 concludes this study. Proofs of all the results in this chapter 

can be found in Appendix D. 

6.2 Problem Formulation  

Again consider an NPD project consisting of n design activities. Let jid ,  ( 0, jid ) 

denote the information dependence level of activity i on activity j, where ni ,...,2,1  

and nj ,...,2,1  are indexes for activities. Let nm ,...,2,1  denote the index for 

activity positions. Defining the decision variables (for ni ,...,2,1 ; nm ,...,2,1 ): 

 

 

 

 

 

 

 

  
 

 
 

Figure 6.1 NDSM representation of the optimization problem 

Activities 1 2 … i … n 

1 0 2,1d  … 
id ,1  … 

nd ,1  

2 1,2d  0 … 
id ,2  … 

nd ,2  

… … … 0 … … … 

i 1,id  2,id  … 0 … 
nid ,  

… … … … … 0 … 

n 1,nd  2,nd  … 
ind ,  … 0 

if activity i is assigned to the m
th

 position, 

Otherwise. 

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
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1
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As illustrated in Figure 6.1, the DSM sequencing problem is to find an activity 

sequence that minimize feedbacks, which can be formulated as follows: 

 



  











n

i

n

ij
j

ji

n

m

n

mh

hjmi dxxxfMin
1 1

,

1 1

)(                                 

Subject to: 

 1
1




n

i

mix ,   for nm ,...,2,1                                (6.1) 

1
1




n

m

mix ,    for ni ,...,2,1                              

 1,0mix ,   for ni ,...,2,1  and nm ,...,2,1  

6.3 The Proposed Approach 

6.3.1 Preliminaries  

This section describes the theoretical basis of the proposed approach for solving 

problem (6.1). We first introduce following definitions: 

Definition 6.1 (block). A block is a smaller NDSM that contains a series of 

consecutive activities. For instance, Figure 6.2 shows a block JB  which contains 

activities from j to 1i . 

Definition 6.2 (fold). Fold is the operations of treating the activities in a block as a 

single activity, summing up the activities’ feedbacks and inputs. For example, let 

)1,...,(  ijJ  denote the activities that belong to block JB . Folding the block JB  in 

Figure 6.2(b) into a single activity J', we get the NDSM shown in Figure 6.3. 
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(a) An nn  NDSM                                                       (b) A block JB  

Figure 6.2 Definition of a block  

 

Activities 1 … 1j  J' i … n 

1 0 … 1,1 jd  
Jk
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Figure 6.3 Resulting NDSM by folding block JB  

 

Assume that in a nn  NDSM, activities are executed in the sequence of 

}...,,,1,...,...,1{ niij  , let )1,...,(  ijJ  be the activities that belong to block JB :  

THEOREM 6.1 (block-activity exchange). If 



Jk

ki

Jk

ik dd ,, , then through 

exchanging block JB  and activity i , the feedbacks in the NDSM can be reduced by 
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1 0 … 
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nd ,1  
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njd ,  

1j  1,1jd  … 
jjd ,1  0 … 1,1  ijd
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1, ind  … 0 
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j  0 1, jjd  … 1, ijd  

1j  jjd ,1  0 … 1,1  ijd

 … … … 0 … 

i −1 jid ,1
 

1,1  jid  … 0 
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 



Jk

kiik dd ,, . 

Proofs of all the results in this chapter are provided in Appendix D. 

Theorem 6.1 shows that if the sum of feedbacks from activity i  to block JB  are 

larger than the sum of inputs from block JB  to activity i , i.e., if 



Jk

ki

Jk

ik dd ,, , then 

the sequence of block JB  and activity i  should be exchanged.  

In a nn NDSM, suppose that activities are executed in the order of 

},...,1,,1...,,1,...,,1...,1{ nhhhiijj  , let )1,...,(  ijJ  be the activities that 

belong to block JB , and )1,...,(  hiI  denote the activities from i to 1h . Define: 

     
 


Ir

rhhr

Jk

khhk

Jk Ir

krrk

h

J dddddd ,,,,,,      (6.2) 

THEOREM 6.2 (block-activity exchange). In the NDSM, if 0h

J , then exchanging 

the sequence of block JB  and activity h  results in a feedback reduction of h

J . 

Theorem 6.2 establishes the rule of exchanging a block with a non-adjacent 

activity for feedback reduction. It shows that in a NDSM, if 0h

J , then the sequence 

of block JB  and activity h should be exchanged. In what follows, we will establish 

the rule of exchanging two blocks of activities in a NDSM. The results are 

summarized in Theorem 6.3 and 6.4.  

Suppose that in a nn  NDSM, activities are executed in the sequence of 

},...,,1...,,,1,...,,1...,,1{ nhhiijj  . Let )1,...,(  ijJ  denote the activities that 

belong to block JB , and )1,...,(  hiI  denote the activities that belong to block IB : 
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 THEOREM 6.3 (block-block exchange). If 
  


Jk Ir

kr

Jk Ir

rk dd ,, , then through 

exchanging block JB  and block IB , the feedbacks in the NDSM can be reduced by 

 
 


Jk Ir

krrk dd ,, . 

Theorem 6.3 reveals that, in a NDSM, if the feedbacks from block IB  to block 

JB  are larger than the inputs from block JB  to IB , i.e., if 
  


Jk Ir

kr

Jk Ir

rk dd ,, , then 

the sequence of block JB  and block IB  should be exchanged. Note that if we fold the 

activities in block IB  into a single activity, then the result in Theorem 6.3 is 

equivalent to that in Theorem 6.1. Let us use a real NDSM published in Chen et al. 

(2004) to further illustrate these. The original DSM of the burn-in system, which is 

systematically constructed based on the information contained in QFD, consists of 

twelve activities. For easy presentation, we select nine activities whose dependencies 

relations are shown in Figure 6.4(a).  

Let block JB  contains activities (3,4,5), and block IB  contains activities 6 and 7, 

mathematically, )5,4,3(J  and )7,6(I . The sum of feedbacks from block IB  to 

JB , which is highlighted in grey in Figure 6.4(a), is 46.1, 
 Jk Ir

rkd . The sum of 

inputs from block JB  to block IB , which is highlighted in blue in Figure 4(a), is 

89.0, 
 Jk Ir

krd . Based on Theorem 6.3, exchanging blocks JB  and IB  would lead 

to a feedback reduction of 0.57. The resulting NDSM is shown in Figure 6.4(b). If we 

fold activities 6 and 7 in block IB  into a single activity 6', by definition 6.2, we can 

get the folded NDSM in Figure 6.4(c). Clearly, the sum of feedbacks from activity 6' 

to block JB , highlighted in grey in Figure 6.4(c), is 46.1'6, 
Jk

kd . The sum of inputs 
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from JB  to activity 6', which is highlighted in blue in Figure 6.4(c), is 89.0,'6 
Jk

kd . 

Then according to Theorem 6.1, exchanging block JB  and activity 6' would lead to a 

feedback reduction of 0.57. The resulting NDSM is presented in Figure 6.4(d).  

 
 

 

 

 

 

 

 

 

 

  
 
 

 
(a) Original NDSM (from Chen et al., 2004)           (b) Improved NDSM based on Theorem 6.3 

 

 
  

 

 

 

 

 

 

 

 

 

 

(c) Folded NDSM                           (d) Improved folded NDSM based on Theorem 6.1 

 

Figure 6.4 Illustration of Theorem 6.3 and Theorem 6.1: a practical example 

 

Suppose that in a nn  NDSM, activities are executed in the sequence of 

}...,,1,...,,1...,,,1,...,,1...,1{ nkkhhiijj  . Let )1,...,(  ijJ  be the activities 

that belong to block JB , and )1,...,(  khH  be the activities that belong to block 

HB . Let )1,...,(  hiI  denote the activities from i to 1h . Define: 

     
   


Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd ,,,,,,                                   (6.3)  

Activities 1 2 6 7 3 4 5 8 9 

1 0 0.34 0.29 0.04 0 0 0 0.33 0 

2 0 0 0 0 0.24 0 0.02 0.04 0 

6 0 0.05 0 0 0.14 0.3 0 0 0 

7 0.2 0.02 0 0 0.41 0 0.04 0 0.12 

3 0.15 0 0.02 0.55 0 0 0.14 0.26 0 

4 0.34 0.35 0.53 0 0.04 0 0 0 0 

5 0.34 0.27 0.16 0.2 0.19 0.2 0 0 0 

8 0 0 0 0 0.42 0 0 0 0.18 

9 0 0 0 0.21 0 0 0.11 0.24 0 

Activities 1 2 3 4 5 6 7 8 9 

1 0 0.34 0 0 0 0.29 0.04 0.33 0 

2 0 0 0.24 0 0.02 0 0 0.04 0 

3 0.15 0 0 0 0.14 0.02 0.55 0.26 0 

4 0.34 0.35 0.04 0 0 0.53 0 0 0 

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0 0 

6 0 0.05 0.14 0.3 0 0 0 0 0 

7 0.2 0.02 0.41 0 0.04 0 0 0 0.12 

8 0 0 0.42 0 0 0 0 0 0.18 

9 0 0 0 0 0.11 0 0.21 0.24 0 

Activities 1 2 3 4 5 6' 8 9 

1 0 0.34 0 0 0 0.33 0.33 0 

2 0 0 0.24 0 0.02 0 0.04 0 

3 0.15 0 0 0 0.14 0.57 0.26 0 

4 0.34 0.35 0.04 0 0 0.53 0 0 

5 0.34 0.27 0.19 0.2 0 0.36 0 0 

6' 0.2 0.07 0.55 0.3 0.04 0 0 0.12 

8 0 0 0.42 0 0 0 0 0.18 

9 0 0 0 0 0.11 0.21 0.24 0 

Activities 1 2 6' 3 4 5 8 9 

1 0 0.34 0.33 0 0 0 0.33 0 

2 0 0 0 0.24 0 0.02 0.04 0 

6' 0.2 0.07 0 0.55 0.3 0.04 0 0.12 

3 0.15 0 0.57 0 0 0.14 0.26 0 

4 0.34 0.35 0.53 0.04 0 0 0 0 

5 0.34 0.27 0.36 0.19 0.2 0 0 0 

8 0 0 0 0.42 0 0 0 0.18 

9 0 0 0.21 0 0 0.11 0.24 0 
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THEOREM 6.4 (block-block exchange). In a NDSM, if 0H

J , then exchanging 

block JB  and  block HB  leads to a feedback reduction of H

J . 

Theorem 6.4 further establishes the rule of exchanging a block with a non-

adjacent block for feedback reduction. It reveals that if 0H

J , then the sequence of 

block JB  and block HB  should be exchanged. Similarly, if block HB  is folded into a 

single activity, then the result in Theorem 6.4 is equivalent to that in Theorem 6.2.  

To illustrate the results of Theorem 6.2 and Theorem 6.4, consider the original 

DSM shown in Figure 6.5(a). Let block JB  contains activities 4 and 5, and block HB  

contains activities 8 and 9, mathematically, )5,4(J , )7,6(I , and )9,8(H .  From 

(6.3), we can get:       35.0,,,,,,  
    Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd . 

To make our statement more legible, in Figure 6.5(a), the positive items in H

J  are 

highlighted in grey, while the negative items are highlighted in blue. According to 

Theorem 6.4, the sequence of block JB  and block HB  should be exchanged. The 

resulting NDSM is presented in Figure 6.5(b) where the feedbacks are reduced by 

0.35. Folding activities 8 and 9 in block HB  into a single activity 8', we get the DSM 

shown in Figure 6.5(c). Inspection of block JB  and activity 8' shows that 

      35.0,'8'8,,'8'8,,,

'8  
  Ir

rr

Jk

kk

Jk Ir

krrkJ dddddd , where in Figure 6.5(c) 

the positive items are highlighted in grey, and the negative items are highlighted in 

blue. Based on Theorem 6.2, the sequence of block JB  and activity 8' should be 

exchanged. The resulting NDSM is shown in Figure 6.5(d) where the feedbacks are 

reduced by 0.35. These results imply that through the fold operation, a block has 

similar properties to a single activity.  
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(a) Original NDSM (from Chen et al., 2004)               (b) Improved NDSM based on Theorem 6.4

  

 

(c) Folded DSM                                        (d) Improved folded DSM based on Theorem 6.2 

 

Figure 6.5 Illustration of Theorem 6.4 and Theorem 6.2: a practical example 

 
 

6.3.2 The Solution Strategy 

In this section, we will propose a novel solution strategy for large-scale DSM 

sequencing problem. The proposed solution strategy consists of two heuristic 

procedures. The first heuristic Procedure 6.1 is to improve a feasible solution by using 

exchange. Based on the solution identified, Procedure 6.2 can be utilized to solve 

large-scale DSM sequencing problem. 

Procedure 6.1  

Step 0 (Initiation). Given an initial activity sequence, calculate the total feedbacks f , 

and store it as the best sequence. Set the first activity as the mobile-activity j .   

Activities 1 2 3 4 5 6 7 8 9 

1 0 0.34 0 0 0 0.29 0.04 0.33 0 

2 0 0 0.24 0 0.02 0 0 0.04 0 

3 0.15 0 0 0 0.14 0.02 0.55 0.26 0 

4 0.34 0.35 0.04 0 0 0.53 0 0 0 

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0 0 

6 0 0.05 0.14 0.3 0 0 0 0 0 

7 0.2 0.02 0.41 0 0.04 0 0 0 0.12 

8 0 0 0.42 0 0 0 0 0 0.18 

9 0 0 0 0 0.11 0 0.21 0.24 0 

Activities 1 2 3 8 9 6 7 4 5 

1 0 0.34 0 0.33 0 0.29 0.04 0 0 

2 0 0 0.24 0.04 0 0 0 0 0.02 

3 0.15 0 0 0.26 0 0.02 0.55 0 0.14 

8 0 0 0.42 0 0.18 0 0 0 0 

9 0 0 0 0.24 0 0 0.21 0 0.11 

6 0 0.05 0.14 0 0 0 0 0.3 0 

7 0.2 0.02 0.41 0 0.12 0 0 0 0.04 

4 0.34 0.35 0.04 0 0 0.53 0 0 0 

5 0.34 0.27 0.19 0 0 0.16 0.2 0.2 

 

Activities 1 2 3 4 5 6 7 8' 

1 0 0.34 0 0 0 0.29 0.04 0.33 

2 0 0 0.24 0 0.02 0 0 0.04 

3 0.15 0 0 0 0.14 0.02 0.55 0.26 

4 0.34 0.35 0.04 0 0 0.53 0 0 

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0 

6 0 0.05 0.14 0.3 0 0 0 0 

7 0.2 0.02 0.41 0 0.04 0 0 0.12 

8' 0 0 0.42 0 0.11 0 0.21 0 

Activities 1 2 3 8' 6 7 4 5 

1 0 0.34 0 0.33 0.29 0.04 0 0 

2 0 0 0.24 0.04 0 0 0 0.02 

3 0.15 0 0 0.26 0.02 0.55 0 0.14 

8' 0 0 0.42 0 0 0.21 0 0.11 

6 0 0.05 0.14 0 0 0 0.3 0 

7 0.2 0.02 0.41 0.12 0 0 0 0.04 

4 0.34 0.35 0.04 0 0.53 0 0 0 

5 0.34 0.27 0.19 0 0.16 0.2 0.2 0 
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Step 1. Set )( jJ  .  

Step 2. For each activity h that follows activity j, calculate h

J  by equation (6.2): if 

0h

J , exchange block JB  with activity h, save the result as the new best 

sequence, and set h

Jff  ; otherwise, add activity h to J.  

Step 3. Set the next activity as the new mobile-activity j , and go back to Step 1 until 

all the activities have been set as the mobile-activity. 

As stated earlier, decomposition method can provide an efficient way to solve 

large-scale DSM sequencing problem. The basic idea of such method is to break the 

original problem into small sub-problems that are easier to solve, and then combine 

the sub-problem solutions into a solution to the original problem. As we discussed in 

previous section, through the fold operation, a block has similar properties to a single 

activity. Based on these ideas, we develop the following Procedure 6.2. Let kN  be the 

number of activities contained in a sub-problem k. 

Procedure 6.2  

Step 1 (Construct sub-problems). Based on the feasible solution identified by 

Procedure 6.1, select activities from position 1 to position 1N  to obtain block 

1B  and the first sub-problem. Fold the activities in block 1B  into a single 

activity 1', and update activity dependencies. Select activity 1' and activities 

from position 11 N  to position 121  NN  to obtain block 2B  and the 

second sub-problem. Fold the activities in block 2B  into a single activity 2', 

and update activity dependencies. Repeat until the last activity n is reached. 

Step 2 (Solve sub-problems). For each sub-problem, compute the optimal 

solution by the branch-and-bound method. 
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Step 2 (Solve sub-problems). The sub-problems are solved to optimality by 

commercial solvers, leading to improved sub-problem sequences *

kS  

( Kk ,...,2,1 ). 

Step 3. The improved sub-problem sequences are concatenated into an improved 

sequence of the overall problem. In particular, in the improved sub-problem 

sequence *

kS , replace activity k' with the improved sub-problem sequence *

1kS . 

Repeat until activity 1' is replaced with the improved sub-problem sequence 

*

1S . 

In Step 1 of above procedure, when the sub-problems are constructed and solved, 

the sum of super-diagonal numbers that locates outside each sub-problem (i.e. block) 

will not be affected. In Step 3, when the improved sub-problem sequences are 

concatenated, we can get an improved sequence of the overall problem. The amount 

of improvement of the objective values in the overall problem equals to the sum of 

improvements of the objective values of the sub-problems. Thus, Procedure 6.2 

guarantees that the final activity sequence is better than the initial one. Note that in 

Step 2, the sub-problems are solved in parallel.  

To illustrate Procedure 6.2, consider the DSM in Figure 6.5(b). Set 5kN  , we 

get the first sub-problem in Figure 6.6(a). Folding the activities in the first sub-

problem into a single activity 1', we obtain the second sub-problem in Figure 6.6(b). 

We then solve the two sub-problems in parallel and obtain the optimal solutions of 

{3,8,9,2,1} and {7,6,1',4,5}. Based on the optimal sub-problem solutions, the sum of 

super-diagonal numbers in sub-problem 1 is reduced from 1.39 to 0.59, and the sum 

of super-diagonal numbers in sub-problem 2 is reduced from 1.72 to 1.55. Finally, by 

combining these two solutions, we get the solution of the overall problem shown in 
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Figure 6.6(c), where the sum of super-diagonal numbers is reduced from 3.11 to 2.14. 

Clearly, the amount of improvement of the objective values in the overall problem 

equals to the sum of improvements of the objective values of the sub-problems. In the 

next section, we will show that based on above procedure, relatively good solutions 

can be easily obtained. 

            
 

 

 

 

 

 

 

                           (a) Sub-problem 1                                   (b) Sub-problem 2  

  

 

 

 

 

 

 

 
 

 

(c) Final solution by applying Procedure 2 

Figure 6.6 Illustration of Procedure 6.2 

 

6.4 Computational Results 

In this section, we first apply the proposed Procedure 6.2 to the turbopump 

concept design (Ahmadi et al., 2001), and to the development power line 

communication (Luh et al., 2009). Solutions provided in Chapter 5 of this thesis are 

used to benchmark the effectiveness of Procedure 6.2. After that we generate six 

groups of random problems in order to further examine the performance of the 

proposed procedure. All the experiments are performed on a Pentium Dual-Core 

Activities 1 2 3 8 9 

1   0.34 0 0.33 0 

2 0   0.24 0.04 0 

3 0.15 0   0.26 0 

8 0 0 0.42   0.18 

9 0 0 0 0.24 

 

Activities 1' 6 7 4 5 

 1'   0.31 0.8 0 0.27 

6 0.19   0 0.3 0 

7 0.75 0   0 0.04 

4 0.73 0.53 0   0 

5 0.8 0.16 0.2 0.2   

Activities 7 6 3 8 9 2 1 4 5 

7   0 0.41 0 0.12 0.02 0.2 0 0.04 

6 0   0.14 0 0 0.05 0 0.3 0 

3 0.55 0.02   0.26 0 0 0.15 0 0.14 

8 0 0 0.42   0.18 0 0 0 0 

9 0.21 0 0 0.24   0 0 0 0.11 

2 0 0 0.24 0.04 0   0 0 0.02 

1 0.04 0.29 0 0.33 0 0.34   0 0 

4 0 0.53 0.04 0 0 0.35 0.34   0 

5 0.2 0.16 0.19 0 0 0.27 0.34 0.2   
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2.1GHz Compaq laptop with 2G memory. 

6.4.1 Application Results 

Case 1. The NDSM for the turbopump concept design has been shown in Figure 

5.8. To compare the application results, we use the same initial solution as has been 

shown in Figure 5.7(a), and set the same value of 11N .  

 

 

 
 

 
 

 

 
 

Figure 6.7 The solution strategy for the turbopump concept design 

 

We then apply Procedure 6.2. As illustrated in Figure 6.7, the activities from 

position 1 to position 11, i.e. activities )20,6,12,11,17,7,2,9,10,1,8( , constitute block B1 

and sub-problem 1. Then, fold block 1B  into a single activity 1', and choose activity 1' 

and activities from position 12 to position 21 to get block 2B  and sub-problem 2. 

Similarly, fold block 2B  into a single activity 2', and select activity 2' and the 

remaining activities to obtain sub-problem 3. The Branch-and-Bound method is then 

used to solve the sub-problems. The optimal sub-problem solutions are then merged 

into a solution of the overall problem. Based on these steps, we get the same result as 

has shown in Figure 5.10. The computation time for Procedure 6.2 is 319.5 minutes. 

Case 2. The data set for the development power line communication has been 

shown in Figure 5.11. Similarly, we choose the same initial solution, and set the same 

8 1 10 9 2 7 17 11 12 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26 

1' 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26 

2' 18 22 23 24 25 26 

Sub-problem 1 

Sub-problem 2 

 

Sub-problem 3 

 

(a) 

(b) 

(c) 
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value of 8N . By applying Procedure 6.2 in this chapter, we also get the same result 

as has been illustrated in Figure 5.13. Here the computation time is 804.3 minutes. 

6.4.2 Numerical Results 

We perform six groups of random problems to examine how different problem 

structures (such as modularity, size and density) affect the performance of our 

proposed approach and the solution. The Procedure 6.2 was coded in Matlab. The 

matrices that are tested include 25n  and 50n  activities. The information 

dependency among activities, jid , , are uniformly distributed in the interval )1,0[ .  Let 

)1( 


nn

D
  be the density level in a DSM, where D  is the number of non-zero jid ,  

in a DSM. Three levels of density, i.e., %33 , %67 , and %100  are 

investigated.   

We generate 10 random instances for each group. For each random instance, the 

sizes of a sub-problem we test are kNk  3 , kNk  4 , kNk  5 , kNk  6 , 

 kk DN 200 , where kD  is the number of non-zero jid ,  in a sub-problem k. The 

reasons that we set kN  equal to the maximum integer that less than  kD200  are 

twofold. First, such setting allows kN  varying between sub-problems. Second, from 

our computational experience, the computation time for solving a sub-problem to 

optimality is mainly determined by the number of inequality constraints in the 

optimization problem (1)-(5), i.e. kk DN  . To be able to report our computational 

findings within reasonable time, we set 200 kk DN , and so  kk DN 200 .  Note 

that when %100 ,  kD200  equals to 6. 

To report our computational results, let fv be the sum of super-diagonal numbers 
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obtained from the proposed approach, IfvfvIfvP )(   be the percentages of 

reduction of the sum of super-diagonal numbers, where Ifv is the initial values of the 

sum of super-diagonal numbers. The computational results for each group of trials are 

shown in Tables 6.1-6.2.  

Table 6.1 Computation results of the proposed approach ( 25n ) 

 

Density   kN  
Average 

Computation time 

(minutes) 

Average fv Average P 

33% 

3 0.001 28.01 42.16% 

4 0.006 27.98 42.23% 

5 0.108 27.81 42.56% 

6 3.385 27.65 42.91% 

 kD200  158.627 27.41 43.38% 

67% 

3 0.014 73.66 25.49% 

4 0.016 73.64 25.51% 

5 0.201 73.51 25.64% 

6 4.808 73.44 25.72% 

 kD200  77.044 73.38 25.77% 

100% 

3 0.001 127.35 15.29% 

4 0.015 127.22 15.38% 

5 0.487 127.02 15.51% 

6 29.176 126.88 15.61% 

 

Table 6.2 Computation results of the proposed approach ( 50n ) 

Density   kN  
Average Computation 

time (minutes) 
Average fv Average P 

33% 

3 0.051 134.19 33.02% 

4 0.057 133.89 33.16% 

5 0.11 133.2 33.5% 

6 1.5 133.34 33.43% 

 kD200  551.717 132.6 33.79% 

67% 

3 0.056 326.23 20.71% 

4 0.062 325.78 20.82% 

5 0.306 325.69 20.84% 

6 23.88 325.34 20.92% 

 kD200  31.381 325.21 20.95% 

100% 

3 0.054 544.54 12.05% 

4 0.069 544.43 12.06% 

5 0.532 544.02 12.13% 

6 47.217 543.57 12.2% 
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Overall, Procedure 6.2 performs quite well. For instance, as shown in Table 6.1, 

for 25n , %33 , and  kk DN 200 , the average reduction of the sum of super-

diagonal numbers is 43.38%. Generally, the amount of reduction of the sum of super-

diagonal numbers decreases with the density level and with the size of the matrix. For 

instance, when the size of the matrix is increased to 50 (for %33 , and 

 kk DN 200 ), the average reduction of the sum of super-diagonal numbers is 

decreased to 33.79%. In many cases, increasing the size of a sub-problem will lead to 

better final solutions, but not always. For instance, for 50n , %33 , when kN  is 

increased from 5 to 6, the average reduction of the sum of super-diagonal numbers is 

decreased from 33.5% to 33.43%. This is so because increasing the size of a sub-

problem decreases the total number of sub-problems. Another advantage of Procedure 

6.2 is that the impact of the size of the matrix on the computation time is quite small. 

This is so because the complexity of our Procedure 6.1 is O(n
2
), and all the sub-

problems in Procedure 6.2 can be solved in parallel.  

6.5 Conclusion 

In this chapter, we have presented a novel approach to large-scale DSM 

sequencing problem. The contribution of the work is threefold. First, it establishes 

block-activity exchange rules (Theorem 6.1 and 6.2), and block-block exchange rules 

(Theorem 6.3 and 6.4), for direct feedback reduction. Second, a heuristic is proposed 

for improving feasible solutions by using exchange. Third, the results of theorems 

imply that through the fold operation, a block has similar properties to a single 

activity. In other words, we may treat the activities in a block as a single activity. 

Based on this idea, a new decomposition procedure is presented for solving large-

scale DSM sequencing problem. To investigate its utility in solving real world 
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problems, the proposed solution strategy has been applied to the turbopump 

conceptual design (Ahmadi et al., 2001), and to the development of power line 

communication (Luh et al., 2009).  

We also perform six groups of random examples and show that good solutions can 

be easily obtained by Procedure 6.2. Compared to the decomposition approach 

presented in Chapter 5, one advantage of the approach in this chapter is that it can 

solve the sub-problems independently and in parallel.  

There are two major limitations for the application of the methodologies 

developed in this chapter and Chapter 5. First, the present models only examine the 

activity sequencing problem with the objective of minimizing feedbacks, because it is 

simple and of practical importance. Moreover, it is also a common practice in 

previous activity sequencing models. As has been mentioned earlier, except for the 

objective of minimizing feedbacks, some other considerations have also been 

incorporated in sequencing design activities in a DSM. Therefore, our models may be 

extended to explore the activity sequencing problem with some other objectives.  

Second, the studies presented in Chapter 5 and 6 of this thesis, assume that the 

information dependencies among activities can be estimated with reasonable accuracy. 

This assumption has been proved to hold in dozens of development projects, see e.g. 

Eppinger et al. (1994), Eppinger (2001), Browning and Eppinger (2002), Batallas and 

Yassine (2006), Yu et al. (2007), Sosa (2008), Tang et al. (2009), Collins et al. (2009), 

Voss and Hsuan (2009). However, there are still some projects where precise 

information of activity dependencies is not available (Chen et al., 2004; Karniel and 

Reich, 2009; Luh et al., 2009). To address this issue, in Chapter 7, we present a fuzzy 

approach for solving DSM sequencing problem with imprecise activity dependencies. 
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CHAPTER 7  

A FUZZY APPROACH TO DSM SEQUENCING 

PROBLEM 

7.1 Introduction 

DSM provides a concise representation of an NPD process by showing 

information dependencies in a square matrix (Cho and Eppinger, 2005). In recent 

years, DSM has been regarded as an effective tool for modeling and improving NPD 

processes (Browning, 2001; Karniel and Reich, 2009; To et al., 2009). To accelerate 

NPD processes, the DSM approach suggests to re-sequencing the activities such that 

iterative behaviors are minimized in the matrix.  

Quite a few studies have examined the activity sequencing problem in a DSM. For 

example, Rogers (1989) developed an expert system called DeMAID. The DeMAID 

was further extended to DeMAID/GA by incorporating GA to organize the activities 

(see e.g. Altus et al., 1996; McCulley and Bloebaum, 1996; Rogers, 1996). Kusiak 

and Wang (1993) presented an algorithm for ordering design activities in a DSM. 

Extensions of their work can be found in Kusiak et al. (1994), Kusiak et al. (1995), 

Tang et al. (2000), Zakarian and Kusiak (2001). Recently, there has been a growing 

interest in ordering design activities in a numerical DSM. Examples of such studies 

include Smith and Eppinger (1997a, 1997b), Ahmadi et al. (2001), Browning and 

Eppinger (2002), Chen and Li (2003), Abdelsalam and Bao (2006), Banerjee et al. 

(2007), Meier et al. (2007), Yu et al., (2007), Lancaster and Cheng (2008). These 
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works have clearly shed light on the analysis of activity sequencing problem, and are 

useful to guide the practice when activity dependencies can be precisely estimated. 

However, all of these models, including the ones presented in Chapter 5 and 6 of this 

thesis, assume that activity dependencies can be accurately estimated. 

As reported by Chen et al. (2004), as well as Karniel and Reich (2009), in many 

NPD processes, precise information of activity dependencies is not available, 

especially when the activities have never been performed before. To address this issue, 

one natural approach is to treat uncertain activity dependencies as random variables 

with specified probability distributions. However, for NPD processes, we are often 

lack of enough data to derive the probability distributions for activity dependencies. 

Fortunately, in such cases, fuzzy set theory can help us tackle uncertain activity 

dependencies. Moreover, compared to probability distributions, fuzzy sets are often 

easier to compute (Zimmermann, 1996; Dubois et al., 2003a; Wang, 2004; Liberatore, 

2008).  

Recently, Luh et al. (2009) proposed the concept of fuzzy DSM, and developed a 

heuristic to reorder design activities so as to minimize feedbacks. In this study we also 

resort to fuzzy set theory for tackling uncertain parameters. More specifically, our 

study complements the work of Luh et al. (2009) by developing a mathematical 

model for activity sequencing problem with a fuzzy representation of activity 

dependencies. The model can be utilized to predict the most likely, pessimistic and 

optimistic values of feedbacks. Since the problem is NP-complete, we have also 

developed a new hybrid approach, which embed an exact algorithm within a 

framework of local search heuristic, for solving large-scale problems. The proposed 

approach is applied to a real data set published in Eppinger (2001). Application result 
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shows that the approach can help decision makers better manage NPD processes with 

uncertainty. 

In the next section, we review concepts of fuzzy set theory used in this research, 

and formulate the activity sequencing problem with imprecise activity dependencies. 

Section 7.3 presents a methodology for solving the problem. In Section 7.4, we 

illustrate the methodology with a case study of the powertrain development at General 

Motors (Eppinger, 2001). Section 7.5 concludes this research.  

 

7.2 Problem Formulation 

We first introduce the following notation: 

n        Total number of activities 

ji,      Indexes for activities, ni ,...,2,1 ; nj ,...,2,1  

jid ,

~
    Fuzzy information dependence of activity i on activity j 

hm,    Indexes for activity positions, nm ,...,2,1 ;  nh ,...,2,1  

Decision Variables:  

 

 
 

 

 

 

As shown in Figure 7.1, we consider the NPD process consisting of n activities, 

numbered from 1 to n. Given uncertain activity dependencies defined by fuzzy sets, 

the objective is to find an activity sequence with minimum fuzzy total feedbacks, 

 
 

n

i

n

ij

jid
1 1

,

~
.  

if activity i is assigned to the m
th

 position, 

Otherwise. 




0

1
mix

if activity i is assigned to precede activity j, 

Otherwise. 




0

1
, jiz
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Figure 7.1 Representation of the optimization problem 

 

7.2.1 Fuzzy Set Background 

We use fuzzy triangular numbers to represent the uncertain activity dependencies. 

As shown in Figure 7.2, a fuzzy triangular number jid ,

~
 is characterized by a triplet 

( 1

, jid , 2

, jid , 3

, jid ), and its membership function )(
,

~ x
jid

  is defined as:  

              
1

,

2

,

1

,

jiji

ji

dd

dx




    if 2

,

1

, jiji dxd  , 

 

)(
,

~ x
jid

    
2

,

3

,

3

,

jiji

ji

dd

xd




     if 3

,

2

, jiji dxd  ,               (7.1) 

 

 
 
 

 
 

Figure 7.2 Illustration of fuzzy triangular number jid ,

~
 

The above membership function specifies the degree of belief that the activity 
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dependence value is x. For example, the vague and imprecision statement that 

information dependence of activity i on activity j is “low”, might be represented by 

)3.0,2.0,0( . For 2.0x , 1)(
,

~ x
jid

 , which means that most likely, the information 

dependence of activity i on activity j is 0.2. For 1.0x , 5.0)(
,

~ x
jid

 , which means 

that the degree of belief that the information dependence of activity i on activity j 

equals 0.1, is 0.5.  

Let A
~

 and B
~

 be two fuzzy triangular numbers characterized by ),,( 321 aaa  and 

),,( 321 bbb , respectively. In the activity sequencing problem, the main arithmetic 

operations involved are fuzzy addition and fuzzy multiplication, which are defined as 

follows: 

),,(
~~

332211 bababaBA                                         (7.2) 

),,(
~~

332211 bababaBA                                         (7.3) 

Quite a few defuzzification methods can be used to rank fuzzy numbers. As 

reported by Dubois et al. (2003a), one of them, proposed by Yager (1981), turned out 

to be the most natural and convincing. In addition, Fortemps and Roubens (1996) 

proved that the method could also be derived using the area compensation method. 

These observations motivated us to use the method by Yager (1981) to compare the 

fuzzy total feedbacks of various activity sequences. The method calculates the 

integral of the mean of the -cut of a fuzzy number M
~

, i.e. 

 
1

0
)(

2

1
)

~
(  dmmMD RL                                                                                        (7.4) 

Where ],[ RL mm   is the -cut of M
~

. More specifically, the -cut of M
~

 is crisp subset 

of elements whose degree of membership is not less than  ( 10  ). For the two 
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fuzzy triangular numbers A
~

 and B
~

 that are characterized by ),,( 321 aaa  and 

),,( 321 bbb , it can be verified that definition (7.4) satisfies following desirable 

properties: 

P1.    )
~

()
~

(
~~

BDADBAD                                            (7.5) 

P2.  )
~

()
~

( ArDArD  , for any real r               (7.6) 

P3.    )
~

()
~

(
~~

2121 BDrADrBrArD  , for any real r1 and r2            (7.7) 

The proofs of above properties are provided in Appendix E.  

7.2.2 The Mathematical Model 

As mentioned earlier, the objective is to find an activity sequence with minimum 

fuzzy total feedbacks, which can be formulated as:  







n

i

n

ij
j

jiji zdMin
1 1

,,

~
                                             (7.8) 

 s.t.  





1

1

,

m

h

hjimji xxz ,   for nm ,...,2,1                           (7.9) 

1
1




n

i

mix ,   for nm ,...,2,1                   (7.10) 

1
1




n

m

mix ,   for ni ,...,2,1                (7.11)  

 1,0, , jimi zx ,  for ni ,...,2,1 ; nj ,...,2,1 ; nm ,...,2,1           (7.12)                 

 

7.3 The Solution Approach  

Previous studies (McCulley and Bloebaum, 1996; Ahmadi et al., 2001) have 

reported that the activity sequencing problem with deterministic activity dependencies 
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is NP-complete. Therefore, it is difficult to solve the problem in (7.8)-(7.12). For 

small activity sequencing problem, we may apply exact methods, such as the Branch-

and-Bound method (Ahmadi et al., 2001), to find global optimal solution. However, it 

is known that exact methods are computationally infeasible for large problems. 

Therefore, some heuristic methods have been developed, such as Genetic Algorithm 

(Altus et al., 1996; McCulley and Bloebaum, 1996; Whitfield et al., 2003; Meier et al., 

2007), Simulated Annealing (Abdelsalam and Bao, 2006), and Evolutionary 

algorithm Lancaster and Cheng, 2008). While these heuristic methods can obtain 

reasonably solutions in a relatively short time, generally, they cannot guarantee the 

optimality of the solution, and may suffer from convergence problems.  

As reported by Talbi (2002) and Jourdan et al. (2009), in recent years, there is a 

growing interest in combining exact and heuristic methods, termed as hybrid 

optimization approaches, for solving NP problems. Such solution strategies can take 

advantage of both types of methods, and have been successfully applied to many real-

world problems, such as the job-shop scheduling problem, the resource-constrained 

project scheduling problem, the travelling salesman problem and so on. In the activity 

sequencing problem, Ahmadi et al. (2001) proposed one such hybrid optimization 

approach, which was successfully applied to the turbopump development process at 

Rocketdyne with nearly 350 activities. However, the final activity sequence identified 

by their approach may be a sequence that is worse than the initial one.  

Motivated by these issues, in this section we introduce a new hybrid approach for 

solving the activity sequencing problem in (7.8)-(7.12). We first introduce following 

notation: 

S       Activity set that store the sequence of activities from position 1 to position n 
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S0     Activity set that store the sequence of activities from position 1 to position 

1M  

P      Number of activities contained in a sub-problem, where nP   

kS     Activity set that store the sequence of activities in a sub-problem k ( Kk ,...,1 ) 

*

kS     Activity set that stores the optimal activity sequence of the sub-problems 

L       The iteration step length, where L is a positive integer, and PL   

maxI   Maximum number of iterations  

 

 
 

Figure 7.3 An iteration of the proposed approach 

 

As illustrated in Figure 7.3, an iteration of the proposed approach consists of three 

steps: (1) based on an initial activity sequence, select the activities from position M to 

position n , and separate them into several sub-problems such that each sub-problem 

includes a number of P consecutive activities; (2) solve the sub-problems by the 

Branch-and-Bound method (note that here the sub-problems are solved in parallel); (3) 

combine the sub-problem solutions into a solution of the main problem.  

1 M−1 … M … M+P−1 

S0 Sub-problem S1 

 

M+P … M+2P−1 

Sub-problem S2 

 

…  … n 

 Sub-problem SK 

 
… 

Keep S0 unchanged  Solve sub-problems S1, S2, …, SK by Branch-and-Bound method 

 

S0 Optimal solution 
*

1S  Optimal solution 
*

2S  … Optimal solution 
*

KS  

Initial activity sequence of the main problem 

Improved activity sequence of the main problem 
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After an iteration of above three steps, we can get an improved activity sequence 

of the main problem. We then use this improved activity sequence to restart, and 

iteratively change the value of M such that new sub-problems, which are different 

from those of the previous iteration, can be derived. The process is repeated until the 

maximum number of iterations is reached. We now describe the hybrid approach in 

details as follows.  

Procedure 7.1 

Step 0. Initialize S, calculate the corresponding objective value and save the result as 

minF . Initialize P and L. Set 1M , 1I . 

While maxII  , do: 

Step 1. If PM  , reset 1M . 

Step 2. Based on S, select activities from position 1 to position )1( M  to form S0; 

choose activities from position M  to position )1(  PM  to form sub-

problem 1S , and activities from position )( PM   to position )12(  PM  to 

form sub-problem 2S , repeat until the last activity n is reached. 

Step 3. Solve the sub-problems kS  independently by the Branch-and-Bound method, 

and save the corresponding results as *

kS . 

Step 4. Combine S0 and optimal sub-problem solutions *

kS , save the result as S. 

Update minF . 

Step 5. LMM  , 1 II . 

In the above procedure, parameter P defines the size of sub-problems. As 

discussed in Chapter 5 and Chapter 6, two extreme cases need to be avoided in 

choosing the size of sub-problems: (1) if P is set to be too small, then solving the sub-
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problems by commercial solvers may not improve the solution of the main problem; 

(2) if P is too large, then it will be computationally infeasible. After an iteration of 

Step 2 to Step 4, we use the improved schedule S to restart Step 1. To get new sub-

problems that are different from those of the previous iteration, we iteratively change 

the value of M  and L. Parameter maxI  determines the total number of iterations. 

Generally, the higher the value of maxI , the better the final solution. However, the 

calculation time also increases linearly with the value of maxI . 

7.4 Case Study 

 
 Activities A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 

 Engine Block A1  
H. L. H. L. H. H. H. H. L. 

 
H. 

   
L. L. 

 
H. 

 
H. M. 

 Crankshaft  A2 H. 
 

H. H. H. H. L. L. L. 
  

M. 
      

M. L. 
 

M. 

 Flywheel  A3 L. H. 
   

L. 
              

M. M. 

 Pistons A4 H. M. L. 
 

M. M. H. M. M. L. M. 
       

L. 
  

H. 

 Connecting Rods A5 M. H. 
 

H. 
 

M. L. 
 

L. 
            

M. 

 Lubrication  A6 H. M. L. M. L. 
 

L. M. L. 
  

L. 
   

L. 
  

L. 
 

M. H. 

 Cylinder Heads A7 H. L. 
 

M. 
 

L. 
 

H. H. H. 
 

H. 
      

M. 
 

L. H. 

 Camshaft/Valve Train A8 H. L. 
 

L. 
 

M. H. 
 

L. L. 
        

L. 
 

L. M. 

 Water Pump/Cooling  A9 H. 
  

M. 
 

M. H. M. 
 

M. L. H. L. 
 

L. 
 

L. 
   

L. M. 

 Intake Manifold A10 M. 
    

L. H. L. H. 
  

H. 
      

M. M. 
 

H. 

 Fuel System A11         
L. 

  
M. L. L. L. 

 
L. L. 

  
M. M. 

 Accessory Drive A12 H. M. 
   

L. H. L. H. H. H. 
 

M. H. H. M. M. L. L. L. L. M. 

 Air Cleaner A13           
L. H. 

 
M. H. L. 

      

 AIR A14 L. 
       

L. 
  

H. M. 
 

L. H. L. 
  

M. L. M. 

 Throttle Body A15         
M. 

 
M. M. H. L. 

  
M. H. L. H. 

 
M. 

 Exhaust A16 L. 
    

L. 
  

L. 
 

M. L. L. H. 
  

H. 
 

M. M. L. M. 

 EGR A17 L. 
       

L. 
 

L. L. 
 

L. L. H. 
  

L. H. L. M. 

 EVAP A18           
M. 

   
H. 

    
M. L. 

 

 Ignition A19 H. H. H. L. 
 

L. H. H. L. M. H. M. 
  

L. H. L. 
  

H. H. H. 

 ECM A20 L. M. L. 
  

L. L. L. H. M. H. L. 
 

M. M. L. M. H. H. 
 

H. M. 

 Electrical System A21 H. L. M. L. 
 

M. L. M. L. L. M. L. 
 

L. 
 

H. L. L. H. H. 
 

H. 

 Engine Assembly A22 H. H. M. H. M. H. H. M. M. H. H. M. 
 

M. M. M. M. L. H. M. H. 
 

 

Figure 7.4 Original DSM for the powertrain development  

(from Eppinger, 2001) 

 

In order to demonstrate the utility of the proposed methodology, we apply it to a 

real DSM of the powertrain development at General Motors (Eppinger, 2001). Figure 
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Iteration 1  

S1 

 
S2 

 
Iteration 2  

S1 

 

S2 

 

S3 

 
  S0 Iteration 3  

Iteration 4  S1 

 

S2 

 

S3 

 

S1 

 

S2 

 

S3 

 
  S0 Iteration 5  

S1 

 

S2 

 

S3 

 
  S0 Iteration 6  

S1 

 

S3 

 
S2 

 

  S0 S3 

 

7.4 shows the original DSM, which consists of 22 activities, numbered from A1 to A22. 

Here “L.”, “M.” and “H.” denote the “low”, “medium” and “high” activity 

dependencies, respectively.  

 

7.4.1 Parameter Setting 

The imprecise activity dependencies in Figure 7.4 are represented by fuzzy 

triangular numbers, which are defined as follows: 

Low: (0, 0.2, 0.4). 

Medium: (0.3, 0.5, 0.7). 

High: (0.6, 0.8, 1). 

To apply Procedure 7.1, we first set the parameter values. As an example, the 

number of activities contained in a sub-problem P  is fixed at 7, the iteration step 

length L  is set to be 2, and the maximum number of iterations maxI  is set to be 6. 

Based on the parameter values, the solution strategy for the powertrain development 

is illustrated in Figure 7.5. 

  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 7.5 The solution strategy for the powertrain development 

Activities A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 
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7.4.2 Application Result 

Figure 7.6 shows the improved solution by applying Procedure 7.1, where the 

total fuzzy feedbacks is (30, 53.4, 76.8). Based on the criterion (7.4), the total 

feedbacks are reduced by about 10%.  

 
 

 

 

Figure 7.6 Solution for the powertrain development by our approach 

 

 

7.5 Conclusion 

We have presented a mathematical model for activity sequencing problem with a 

fuzzy representation of activity dependencies. The model can be used to decide an 

optimal activity sequence with minimum feedbacks, as well as to predict the most 

likely, pessimistic and optimistic values of feedbacks. We have also developed a new 

hybrid approach, which embed an exact algorithm within a framework of local search 

 Activities 
 

A11 A18 A6 A7 A8 A1 A3 A9 A10 A14 A4 A2 A20 A17 A16 A15 A12 A5 A19 A21 A22 A13 

 Fuel System A11  
L. 

     
L. 

 
L. 

   
L. 

 
L. M. 

  
M. M. L. 

 EVAP A18 M. 
           

M. 
  

H. 
   

L. 
  

 Lubrication  A6    
L. M. H. L. L. 

  
M. M. 

  
L. 

 
L. L. L. M. H. 

 
 Cylinder Heads A7   

L. 
 

H. H. 
 

H. H. 
 

M. L. 
    

H. 
 

M. L. H. 
 

 Camshaft/Valve Train A8   
M. H. 

 
H. 

 
L. L. 

 
L. L. 

      
L. L. M. 

 
 Engine Block A1   

H. H. H. 
 

L. H. L. 
 

H. H. 
 

L. L. 
 

H. L. H. H. M. 
 

 Flywheel  A3   
L. 

  
L. 

     
H. 

       
M. M. 

 
 Water Pump/Cooling  A9 L. 

 
M. H. M. H. 

  
M. 

 
M. 

  
L. 

 
L. H. 

  
L. M. L. 

 Intake Manifold A10   
L. H. L. M. 

 
H. 

    
M. 

   
H. 

 
M. 

 
H. 

 
 AIR A14      

L. 
 

L. 
    

M. L. H. L. H. 
  

L. M. M. 

 Pistons A4 M. 
 

M. H. M. H. L. M. L. 
  

M. 
     

M. L. 
 

H. 
 

 Crankshaft  A2   
H. L. L. H. H. L. 

  
H. 

 
L. 

   
M. H. M. 

 
M. 

 
 ECM A20 H. H. L. L. L. L. L. H. M. M. 

 
M. 

 
M. L. M. L. 

 
H. H. M. 

 
 EGR A17 L. 

    
L. 

 
L. 

 
L. 

  
H. 

 
H. L. L. 

 
L. L. M. 

 
 Exhaust A16 M. 

 
L. 

  
L. 

 
L. 

 
H. 

  
M. H. 

  
L. 

 
M. L. M. L. 

 Throttle Body A15 M. H. 
     

M. 
 

L. 
  

H. M. 
  

M. 
 

L. 
 

M. H. 

 Accessory Drive A12 H. L. L. H. L. H. 
 

H. H. H. 
 

M. L. M. M. H. 
  

L. L. M. M. 

 Connecting Rods A5   
M. L. 

 
M. 

 
L. 

  
H. H. 

        
M. 

 
 Ignition A19 H. 

 
L. H. H. H. H. L. M. 

 
L. H. H. L. H. L. M. 

  
H. H. 

 
 Electrical System A21 M. L. M. L. M. H. M. L. L. L. L. L. H. L. H. 

 
L. 

 
H. 

 
H. 

 
 Engine Assembly A22 H. L. H. H. M. H. M. M. H. M. H. H. M. M. M. M. M. M. H. H. 

  
 Air Cleaner A13 L. 

        
M. 

    
L. H. H. 
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heuristic, for solving large-scale problems. The proposed approach has been applied 

to a real data set published in Eppinger (2001). Application result shows that the 

approach can help decision makers better manage product development processes 

with uncertain activity dependencies. 

Future study should consider testing of the proposed scheduling methodology on 

additional project management problems. These problem sets could include activity 

dependencies represented by fuzzy trapezoidal numbers, since these are sometimes 

used in practice to represent fuzzy numbers. We may also extend the proposed 

scheduling methodology to handle multiple development projects or explore some 

other approaches for addressing the uncertainties. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE STUDY 

This thesis contributes to some methodological issues for scheduling tests in 

overlapped NPD process and for sequencing design activities with iteration loops. In 

this chapter, we will summarize the main results of our study as described in previous 

chapters, and discuss some possible future research.  

8.1 Summary of Results 

8.1.1  Optimal Scheduling of Tests in Overlapped NPD Process 

To model and structure NPD processes, an important decision problem is how to 

optimally schedule various tests along the NPD process so as to maximize the product 

development performance. Past studies, which are developed to determine the optimal 

scheduling of tests, often focused on single-stage testing of sequential design process. 

Meanwhile, overlapping has become a common mode of product development 

(Terwiesch et al., 2002; Yassine et al., 2008; Roemer and Ahmadi, 2010). We 

therefore present two analytical models for the optimal scheduling of tests in 

overlapped NPD process. 

When the testing set-up time is relatively small, the analytical model in Chapter 3 

can help management decide when to stop testing at each stage, and when to start 

downstream development (e.g. mold fabrication). Analysis of the model also yields 

several useful management insights (Proposition 3.1-3.5, Corollaries 3.1-3.3). For 

instance, Proposition 3.2 reveals that the total cost is first convex then concave 
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increasing with respect to upstream testing duration. In practice, some companies may 

intend to shift from sequential to overlapped process. Then, Proposition 3.4 can be 

used as a guideline for these companies to adjust their existing testing and 

overlapping policies coordinately. Proposition 3.5 indicates that our methodology can 

also be used to derive optimal testing and overlapping strategies that achieve the 

required product quality at minimum cost, or optimal testing and overlapping 

strategies whose product quality is best for a given budget. We have also applied the 

methodology to the handset design process at our case study company. 

When the testing set-up time is long, the analytical model in Chapter 4 can help 

decision makers determine the optimal number of tests needed at each stage, together 

with the optimal overlapping policies. The work in this chapter yields several useful 

results (Proposition 4.1-4.4). For instance, Proposition 4.1 reveals that it is optimal to 

start downstream stages directly after the completion of an upstream test, which is 

useful to guide the practice. Proposition 4.2 and 4.3 discuss the impact of different 

model parameters, such as the testing set-up time and unit problem-solving time, on 

the optimal solution, which can help the management adjust testing and overlapping 

strategies for NPD projects with different characteristics. Finally, our model was 

applied to improve the refrigerator development process at our case study company. 

8.1.2  Approaches for DSM Sequencing Problem 

Generally, in test scheduling models, the NPD process is viewed as consisting of a 

series of development stages. In such cases, it’s no need to consider the sequencing 

problem since the execution sequence of these stages (such as the concept design and 

the detail design) is known. However, when the NPD process is further broken into a 

number of smaller activities, then, a key and challenging issue, i.e. the planned timing 
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and sequence of activities, arises because clear precedence constraints among design 

activities do not exist and are rarely known in advance (Eppinger et al., 1994; Ahmadi 

et al., 2001; Jun and Suh, 2008; Karniel and Reich, 2009).  

Unlike the manufacturing process, the NPD process often involves a number of 

activities with cyclic information flow among them (Cho and Eppinger, 2005; Karniel 

and Reich, 2009). Traditional network-based scheduling techniques, such as CPM and 

PERT, cannot effectively model cyclic information and iteration, limiting their 

capability of planning for NPD projects (Eppinger et al. 1994; Ahmadi et al., 2001; 

Karniel and Reich, 2009). To address this shortfall, one known method is DSM, 

which has spawned many research efforts on sequencing design activities with the 

objective of minimizing feedbacks. It is known that the problem is NP-complete, and 

thus is difficult to solve. While previous decomposition method provides an efficient 

way to solve large-scale problems, a major disadvantage of these methods is that the 

resulting overall activity sequence may be a sequence that is worse than the initial one. 

To address this issue, we therefore propose two new decomposition approaches for 

solving large problem. 

In Chapter 5, we first propose two simple rules (Theorem 5.1 and 5.2) for 

feedback reduction. A heuristic is then proposed for improving feasible solutions 

through activity exchange. After that, a new decomposition approach is presented for 

solving large DSM sequencing problem. The proposed decomposition approach 

outperforms previous ones in its flexibility and well construction of sub-problems. 

We have also applied the proposed solution strategy to three real data sets. Compared 

to the solutions presented in previous studies, applying our approach results in better 

solutions with smaller feedbacks. 



                                                                      Chapter 8   Conclusions and Future Study 

                                                                                                                  

165 

 

In Chapter 6, we further establish rules of block-activity exchange (Theorem 6.1 

and 6.2) and block-block exchange (Theorem 6.3 and 6.4), for feedback reduction. 

We find that based on the fold operation, a block has similar properties to a single 

activity. Based on these findings, a novel decomposition approach is presented for 

large DSM sequencing problems. We also perform six groups of random examples 

and show that good solutions can be easily obtained by Procedure 6.2. Compared to 

the decomposition approach presented in Chapter 5, one advantage of the approach in 

this chapter is that it can solve the sub-problems independently and in parallel.  

Finally, in some situations, activity dependencies may not be precisely estimated. 

In Chapter 7, we resort to fuzzy set theory for tackling uncertain parameters, and 

present a fuzzy approach to DSM sequencing problem. The model can be utilized to 

predict the most likely, pessimistic and optimistic values of feedbacks, and can help 

managers better manage NPD processes with uncertainty. To demonstrate its utility, 

the methodology has been applied to the prowerchain development at General Motors 

(Eppinger, 2001). 

8.2 Possible Future Research 

In spite of the contributions described in previous section, we would like to point 

out some limitations for application of the results in this thesis. Future research may 

be carried out in the areas discussed below.  

In Chapter 3 and Chapter 4, we present two analytical models for the optimal 

scheduling of tests in overlapped development processes. As mentioned earlier, the 

work in Chapter 4 complements the work in Chapter 3 by taking testing set-up time 

into consideration, and by examining the testing and overlapping polices for the 
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whole NPD process rather than two development stages. In the future, we may further 

extend the work in Chapter 4 as follows.  

Firstly, our models can only be built and analyzed when historical data is available. 

For derivative projects which account for the majority of product development 

projects (Leifer et al., 2000; Rizova, 2006; Jun and Suh, 2008), these data are 

typically available (see e.g. Krishnan et al., 1997; Thomke and Fujimoto, 2000; Gerk 

and Qassim, 2008; Ni et al., 2008; Love et al., 2009). However, for totally new 

projects, we can only build a model based on estimated data which may lead to 

inaccurate results. Secondly, in spite of our best effort, we were able to do only a 

small number of case studies. In the data collection process, we find that many firms 

are unwilling to share their product development experiences for security reasons. 

Even for the two firms that have participated in our study, the data collection was 

quite challenging and time-consuming since the companies did not know how past 

project data could be used in guiding future projects. In the future, it is meaningful to 

test the broader application of the models by applying them to other development 

projects and processes. Thirdly, the present models are deterministic and therefore do 

not directly address risk, although we have addressed many facets of risk through 

sensitivity analysis of the optimal solution to parameters. Consequently, we may 

extend our models by taking into account the estimation errors of model parameters 

into decision making. Fourthly, we assume the opportunity cost of time is constant. 

However, although the opportunity cost should be constant in short run, it may change 

in long run. Hence, it may be worthwhile to investigate in detail how will the 

opportunity cost of time affect the product development performance, as well as the 

optimal testing and overlapping polices. Finally, to keep the model simple, we assume 

that the overall penalty cost is a linear function of the number of remaining design 
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faults, and overall rework cost is a linear function of the amount of rework. Even with 

such linear assumptions, our model is complex and is difficult to solve. Moreover, the 

linear functions are appropriate approximations of many real situations, as 

demonstrated by many studies (see e.g. Kogan and Raz, 2002; Roemer and Ahmadi, 

2004; Ji et al., 2005; Wang and Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009). 

Future research can relax these assumptions and discuss the corresponding testing and 

overlapping policies.  

In Chapter 5 and Chapter 6, we propose several simple rules for reducing 

feedbacks and present two decomposition-based approaches for solving DSM 

sequencing problem. There are two major limitations for the application of the 

methodologies developed in these two chapters. Firstly, the present studies only 

examine the activity sequencing problem with the objective of minimizing feedbacks, 

because it is simple and of practical importance. Moreover, it is also a common 

practice in previous activity sequencing models. As has been mentioned earlier, 

except for the objective of minimizing feedbacks, some other considerations have also 

been incorporated in sequencing design activities in a DSM. Therefore, our models 

may be extended to explore the activity sequencing problem with some other 

objectives. Second, the studies presented in Chapter 5 and 6 of this thesis, assume that 

the information dependencies among activities can be estimated with reasonable 

accuracy. This assumption has been proved to hold in dozens of development projects, 

see e.g. Eppinger et al. (1994), Eppinger (2001), Browning and Eppinger (2002), 

Batallas and Yassine (2006), Yu et al. (2007), Sosa (2008), Tang et al. (2009), Collins 

et al. (2009), Voss and Hsuan (2009). However, there are still some projects where 

precise information of activity dependencies is not available (Chen et al., 2004; 

Karniel and Reich, 2009; Luh et al., 2009). Hence, the present studies may not be 
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applicable for these projects. 

In Chapter 7, we propose a fuzzy approach to incorporate imprecise parameters, 

and present a scheduling methodology for activity sequencing problem with a fuzzy 

representation of activity dependencies. Future study should consider testing of the 

proposed scheduling methodology on additional project management problems. These 

problem sets could include activity dependencies represented by fuzzy trapezoidal 

numbers, since these are sometimes used in practice to represent fuzzy numbers. 

Moreover, the present model considers only one project within a company. However, 

spending resource for testing and downstream rework for one project inevitably 

causes delay in other projects. Therefore, we may also extend the proposed model to 

handle multiple development projects since it has become increasingly important 

(Roemer and Ahmadi, 2010; Song and Kusiak, 2010), or explore some other 

approaches for addressing the uncertainties. 
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APPENDIX A        

PROOFS OF CHAPTER 3 

 

Proof of Proposition 3.1  

(a) The first and second partial derivatives of (3.9) in st  are: 
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(b) Since the maximum value of  *
111
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  is 1, we can get the result in 

Proposition 3.1(b).   

(c) The first and second partial derivatives of (3.9) with respect to 2t  
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Proof of Corollary 3.1  
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As above, we get following equations:  
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The second partial derivatives of (3.14) with respect to 1t  for all four situations 

are: 
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Observe from (3.30) to (3.33), the second derivatives for all four cases decrease 

from a positive value to a negative global minimum value, then increases 

monotonically with 1t , and finally they approach zero when 1t  approaches positive 

infinity. The first derivatives for all four cases strictly increase to a global maximum 

value, then decrease to 1c  (positive) when 1t  approaches positive infinity. 

Consequently, the total cost in (3.14) is first convex then concave increasing with 

respect to 1t .  
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Therefore, *

1t  increases with 1u  and k . Similarly, we have:  
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(3.37) 

When 0
*
11

3

*

131 
 tb

etb  , the above expression is negative. Moreover, (3.37) 

strictly increases with 1b  when 0
*
11

3

*

131 
 tb

etb  . Therefore, there exists a unique 

value of 0

1b  such that: if 0

11 bb  , then the optimal upstream testing duration *

1t  

increases with 1b ; if 0

11 bb  , *
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Let 
)(

)(

)(
)( *

11

*
11

*
11

*
11

32

12

1

1 tb

tb

r

tb

tb

r

eb

ebcc

e

ec
c


















 . It can be verified that )(  strictly 

increases in  . If 12 cccr  , then )(

 

is positive, and so *
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with  . Otherwise, there exists a critical 0  such that: if 0  ,  *
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Proof of Corollary 3.2  
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Therefore, 
*

st  increases with 1u  and k .  

Defining overlapping degree between upstream and downstream stages 

11 tts , and *  be the optimal overlapping degree. Then, based on the above 

results of (3.34), (3.35), (3.39), and (3.40), our model suggests that *  decreases with 
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1u  and k . This result is consistent with Loch and Terwiesch (1998). The proof is 

given below: 

The first partial derivatives of *
 
with respect to 1u  and k  are: 
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Proof of Corollary 3.3  
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downstream testing cost 2c , and increases with 2a .   

 

Proof of Proposition 3.4  

(a) The Hessian matrix of (3.16) is: 
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The above ),( 21 H is symmetric. Moreover, the first leading principle minor of 
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and 2 . Thus, ),( 21 H  is positive definite, and the objective function (3.16) is 

strictly convex.  

The first partial derivatives of (3.16) with respect to 1  and 2  are: 
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Since the objective (3.16) is convex and the constraint (3.17) is linear, we get: 
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Obviously, the conditions for 0*
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Since 0 , it is clear that (3.51) does not hold. It follows that *
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From (3.49), we get:  
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Substitute (3.53) into (3.52), we get:   
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The first and second derivatives of (3.54) with respect to y  are: 
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Proof of Proposition 3.5  

To solve the problem (3.18), we associate a nonnegative multiplier 1  with the 
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By the first order conditions, we have: 
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The solutions to the cost minimization problem are: 
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Where Equation (3.66) is the summary of Equations (3.26)-(3.29). By comparing 
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(3.62) with (3.12), (3.63) with (3.13), (3.65) and (3.66), we can conclude that the 

target quality problem in (3.18) have same solution structure as the cost minimization 

problem in (3.9)-(3.11). If 
Nb

c
cq

2

2
1





 , then the target quality problem and the 

cost minimization problem have exact same solutions.   

To solve the budget constraint problem in (3.19), we associate a nonnegative 

multiplier 2  with the constraint   CttRctctcttRttC srssD  ),(),( 1221112 , 

and obtain the following Lagrangian function: 
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By the first order conditions, we get: 
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Clearly, if 0*

2 t , then the optimal *

1t  and *

st  to the budget constraint problem are 

exactly same with those to the cost minimization problem, and so can be derived by 

the same approach. If 
2

1


qc , then the budget constraint problem and the cost 

minimization problem have exact same solutions.   
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APPENDIX B        

PROOFS OF CHAPTER 4 

 

Proof of Proposition 4.1 

 As illustrated in Figure B.1, defining 
*

1iy  be the optimal overlap between stage i  

and 1i , 
*

iz  be the optimal number of tests completed in stage i  before starting stage 

1i , and 
*

ix  be the optimal number of tests needed in stage i , that solve the problem 

(4.7). Given 
*

ix  and 
*

iz , suppose that )()( ***

1 iiiii zTxTy  , and there exist a positive 

u  such that: 

uzTxTy iiiii  )()( ***

1                                  
(4.16) 

Where )()1( **

iiii zTzTu  . In other words, in (4.16), we assume that it’s optimal to 

start initial design of stage 1i  u
 
time units after the completion of 

th

iz  test in stage 

i . In what follows, we will prove u  must equal to zero. 

 

 

Figure B.1 The scenario used in the proof of proposition 4.1 

Stage i+1 

Stage i th

ix Test 

 

th

iz )1(  Test 1st  Test 
th

iz )2(   Test th

iz Test  1
st
 Test 

 

)( *

ii xT  

 

)( *

ii zT  
*

1iy  u  

'

1iy    
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Assume that there exist a positive   such that )()1( **

iiii zTzTu  . Let: 




*

11 ii yy                                 (4.17) 

Substitute (4.16) into (4.5) and (4.6), we get: 
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Similarly, substitute (4.17) into (4.5) and (4.6), we get: 
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Where ),( *

1

*

ii yxG  is the corresponding optimal project profit for 
*

ii xx  , 
*

11   ii yy ; 

),( '

1

*

ii yxG  is the corresponding project profit for 
*

ii xx  , 
'

11   ii yy . 

From (4.18)-(4.21), we get: 
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The first derivative of ),( *

1

*

ii yxG  in (4.18) with respect to u
 
is: 
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Clearly, if (4.23) holds, then 0
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
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for all possible values of u . In other 

words, project profit in (4.18) decreases monotonically in u , and so 0u . A conflict 

arises. Thus,
 

)()( ***

1 iiiii zTxTy  , i.e., it’s optimal to start initial design of stage 1i  

directly after the completion of *

iz  rounds of tests in stage i .  

 

Proof of Proposition 4.2  

(a) Given ix , the item in constraint (4.12), ])1()1[()( ii x
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decreases monotonically in iz . Thus, there exists a unique value of iz  such that: 
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iz , 

can then be calculated as follows:
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The first and second partial derivatives of (4.10) with respect to iz  are: 
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For easier explanation, define: 
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ii zziz

G
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

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the project profit in (4.10) decreases monotonically in iz , and so l
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 Otherwise, 
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G

 

iz , and l

ii zz * ; otherwise if 
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ii zz *

 
or   1*  c

ii zz . 
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The above results are summarized in Proposition 4.2(a). 

 (b) Given ix , the mixed partials:  
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Since 0
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 c
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It follows that 0
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Proof of Proposition 4.3  

(a) Given iz , the left side of (4.12), ])1()1[()( ii x

i

z
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r

iii

s

i ppatzxt  , 

increases monotonically in ix . Thus, there exists a unique value of ix  such that: 
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ix  be the upper bound of ix  

that satisfies constraint (4.12), mathematically,   1 i

u

i xx .  

The first and second partial derivatives of (4.10) with respect to ix  are: 
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The above results are summarized in Proposition 4.3(a). 

(b) Given iz , the mixed partial:  
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(c) Given iz , the mixed partial:  
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Proof of Proposition 4.4  

(a) It is clear that the cost of conducting ix  rounds of tests is larger than i

t

i xc . 

Inspection of (4.2) shows that the maximum gain from conducting tests is no more 

than: i
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i ac . To maximize project profit, the testing costs should be less than the 

potential benefit. Therefore, 
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x * .   

(b) The first and second derivatives of (4.10) with respect to nx  are: 
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 Inspection of (4.42) and (4.43) shows that: 
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The above results are summarized in Proposition 4.4(b). 



                                                                                    Appendix C   Proofs of Chapter 5 

                                                                                                                  

208 

 

 

APPENDIX C        

PROOFS OF CHAPTER 5 

 

Proof of Theorem 5.1  

 

 

Activities 1 2 … 1i  i 1i  2i  … n 

1 
 2,1d  … 1,1 id  id ,1  1,1 id  2,1 id  … nd ,1  

2 1,2d  
 

… 1,2 id  id ,2  1,2 id  2,2 id  … nd ,2  

… … … 
 

… … … … … … 

1i  1,1id  2,1id  … 
 iid ,1  1,1  iid  2,1  iid  … nid ,1  

i 1,id  2,id  … 1, iid  … 1, iid  2, iid  … nid ,  

1i  1,1id  2,1id  … 1,1  iid  iid ,1  
iid ,1  2,1  iid  … nid ,1  

2i  1,2id  2,2id  … 1,2  iid  iid ,2  1,2  iid   … nid ,2  

… … … … … … … … 
 

… 

n 1,nd  2,nd  … 1, ind  ind ,  1, ind  2, ind  … 
 

 

(a) Original NDSM 

 

Activities 1 2 … 1i  1i  i 2i  … n 

1  
2,1d  … 

1,1 id  1,1 id  id ,1  2,1 id  … 
nd ,1  

2 1,2d   … 
1,2 id  1,2 id  id ,2  2,2 id  … 

nd ,2  

… … …  … … … … … … 

1i  1,1id  2,1id  …  
1,1  iid  iid ,1  2,1  iid  … 

nid ,1  

1i  1,1id  2,1id  … 
1,1  iid   

iid ,1  2,1  iid  … 
nid ,1  

i 1,id  2,id  … 
1, iid  1, iid  … 

2, iid  … 
nid ,  

2i  1,2id  2,2id  … 
1,2  iid  1,2  iid  

iid ,2
  … 

nid ,2
 

… … … … … … … …  … 

n 1,nd  2,nd  … 
1, ind  1, ind  ind ,  2, ind  …  

 

(b) The resulting NDSM after exchanging activity i and activity i +1 

 

Figure C.1 The scenario used in the proof of Theorem 5.1 
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Figure C.1(a) shows the original NDSM where activities are executed in the order 

of }...,,1,,1...,,2,1{ niii  . Here the total feedbacks is:  
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Figure C.1(b) shows the resulting NDSM after exchanging activity i and activity 

1i , where the total feedbacks can be expressed as: 

  ii

n

ij

jiji

n

ik

n

kj

jk

i

k

n

kj

jk ddddd ,1

2

,1,

2 1

,

1

1 1

, 





 



 

    . After cancellation, we are left with 

the terms of 1, iid  and iid ,1 . Hence, for an initial activity sequence of 

}...,,1,,1...,,2,1{ niii  , if iiii dd ,11,   , then through exchanging activity i and 

activity 1i , the total feedbacks can be reduced by  iiii dd ,11,   .  

 

Proof of Theorem 5.2 

 Figure C.2(a) shows the original NDSM where the activities are executed in the 

order of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  . Here the total feedbacks can be 

written as:  

   






 







 



 


1

1

,

1

,

1

,

2

1

1

1

,

1 1

,

1

1 1

,

i

jk

kj

i

jk

ik

i

jk

n

ih

hk

i

jk

i

kh

hk

n

ik

n

kh

hk

j

k

n

kh

hk dddddd                   (5.14) 

Figure C.2(b) shows the resulting NDSM after exchanging the positions of 

activity j and activity i, where the total feedbacks can be written as: 

   














 



 

















1

1

,

1

,

1

,,

1

1

,

2

1

1

1

,

1 1

,

1

1 1

,

i

jk

ki

i

jk

jk

n

ih

hjhi

i

jk

hk

i

jk

i

kh

hk

n

ik

n

kh

hk

j

k

n

kh

hk dddddddd    (5.15) 

Subtracting (5.15) from (5.14), we get 













1

1

,

1

,

1

1

,

1

,,

i

jk

ki

i

jk

jk

i

jk

kj

i

jk

ikij dddd . 
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Thus, for an activity sequence of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  , if 0, ij , 

then through exchanging activity j and activity i, the resulting feedbacks can be 

reduced by ij , .  

 

Activities 1 2 … 1j  j  1j  … 1i  i 1i  … n 

1  
2,1d  … 

1,1 jd  jd ,1  1,1 jd  … 
1,1 id  id ,1  1,1 id  … 

nd ,1  

2 1,2d   … 
1,2 jd  jd ,2  1,2 jd  … 

1,2 id  id ,2  1,2 id  … 
nd ,2  

… … …  … … … … … … … … … 

1j  1,1jd  2,1jd  …  
jjd ,1  1,1  jjd

 

… 
1,1  ijd  ijd ,1  1,1  ijd  … 

njd ,1  

j  1,jd  2,jd  … 
1, jjd   

1, jjd  … 
1, ijd  ijd ,  1, ijd  … 

njd ,  

1j  1,1jd  2,1jd  … 
1,1  jjd

 

jjd ,1   … 
1,1  ijd  ijd ,1  1,1  ijd  … 

njd ,1  

… … … … … … …  … … … … … 

1i  1,1id  2,1id  … 
1,1  jid  jid ,1  1,1  jid  …  

iid ,1  1,1  iid  … 
nid ,1  

i 1,id  2,id  … 
1, jid  jid ,  1, jid  … 

1, iid  … 
1, iid  … 

nid ,  

1i  1,1id  2,1id  … 
1,1  jid  jid ,1  1,1  jid  … 

1,1  iid  iid ,1   … 
nid ,1  

… … … … … … … … … … …  … 

n 1,nd  2,nd  … 
1, jnd  jnd ,  1, jnd  … 

1, ind  ind ,  1, ind  …  

 
(a) Original NDSM 

 

Activities 1 2 … 1j  i 1j  … 1i  j  1i  … n 

1 
 2,1d  … 1,1 jd  id ,1  1,1 jd  … 1,1 id  jd ,1  1,1 id  … nd ,1  

2 1,2d  
 

… 1,2 jd  
id ,2  1,2 jd  … 1,2 id  jd ,2  

1,2 id  … nd ,2  

… … … 
 

… … … … … … … … … 

1j  1,1jd  2,1jd  … 
 

ijd ,1  1,1  jjd

 

… 1,1  ijd  jjd ,1  1,1  ijd  … njd ,1  

i 1,id  2,id  … 1, jid  
 

1, jid  … 1, iid  jid ,  
1, iid  … nid ,  

1j  1,1jd  2,1jd  … 1,1  jjd

 

ijd ,1  
 

… 1,1  ijd  jjd ,1  1,1  ijd  … njd ,1  

… … … … … … … 
 

… … … … … 

1i  1,1id  2,1id  … 1,1  jid

 

iid ,1  1,1  jid  … 
 

jid ,1  
1,1  iid

 

… nid ,1  

j  1,jd  2,jd  … 1, jjd  ijd ,  1, jjd  … 1, ijd  … 1, ijd  … njd ,  

1i  1,1id  2,1id  … 1,1  jid  
iid ,1  1,1  jid  … 1,1  iid  jid ,1  

 
… nid ,1  

… … … … … … … … … … … 
 

… 

n 1,nd  2,nd  … 1, jnd  
ind ,  1, jnd  … 1, ind  jnd ,  

1, ind  … 
 

 
(b) The resulting NDSM after exchanging activity j and activity i 

 

Figure C.2 The scenario used in the proof of Theorem 5.2 
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To make our statement more legible, in Figure C.2, we highlight in blue for the 

different items between (5.14) and (5.15). 

Proof of Theorem 5.3  

Defining:  





n

mh

hjimji xxz
1

, ,  m                                    (5.16) 

Since imx  and 


n

mh

hjx
1

 are all 0-1 binary variables, jiz ,  is also a binary variable. 

Inspection of (5.16) shows that if either 0imx  or 0
1




n

mh

hjx , then 0, jiz . It follows 

that (5.16) can be rewritten as: 









 



n

mh

hjimji xxz
1

, 1,0max ,  m               (5.17) 

Where  1,0, jiz .                             

Clearly, (5.17) is equivalent to: 





n

mh

hjimji xxz
1

, 1 ,  m                           (5.18) 

Since 1
1




n

h

hjx , (5.18) can be rewritten as: 







1

1

,

m

h

hjimji xxz ,  m                  (5.7)                 

Substituting (5.16) into (5.1), and adding constraints (5.7)-(5.8), we get the 0-1 

LIP.  

Proof of Theorem 5.4 

 By (5.9), we have: 
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 



























n

i

n

ij
j

ji

m

h

hjim

n

m

m

jijiji zxxzdd
1 1

,

1

11

,,,min)(                                              

         


































   









 

n

i

n

ij
j

m

h

hjim

n

m

m

ji

n

i

n

ij
j

ji

n

m

m

jiji xxzd
1 1

1

11

,

1 1

,

1

,,min   

         









































    

 

 





 

im

n

i

n

m

n

ij
j

n

mh

h

ij

n

ij
j

m

ji

n

i

n

ij
j

ji

n

m

m

jiji xzd
1 1 1 1

,

1

,

1 1

,

1

,,min           (5.19) 

For given non-negative Lagrangian multipliers that satisfy: ji

n

m

m

ji d ,

1

, 


 , equation 

(5.19) can be reduced to: 

im

n

i

n

m

n

ij
j

n

mh

h

ij

n

ij
j

m

ji xd   
 


 


 

















1 1 1 1

,

1

,min)(                                                                         (5.10)     

This proves Theorem 5.4. 
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APPENDIX D        

PROOFS OF CHAPTER 6 

 

Proof of Theorem 6.1 

 Figure D.1(a) shows the original nn  NDSM where activities are executed in 

the order of }...,,1,,1,...,,1...,,1{ niiijj  . Separate the NDSM into four blocks 

and define: 

 
 

 

 

 
 

 























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B         



















 ij

i

d

d

B

,1

,1

3,1 ...              























njij

ni

dd

dd

B

,11,1

,11,1

4,1

...

.........

...

 























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B          



















 ii

ij

J

d

d

B

,1

,

3, ...               























niii

njij

J

dd

dd

B

,11,1

,1,

4,

...

.........

...

 

]...[ 1,1,1,3  jii ddB             ]...[ 1,,,3  iijiJ ddB            ]...[ ,1,4,3 niii ddB   























1,1,

1,11,1

1,4

...

.........

...

jnn

jii

dd

dd

B             























1,,

1,1,1

,4

...

.........

...

injn

iiji

J

dd

dd

B               





















in

ii

d

d

B

,

,1

3,4 ...  

Figure D.1(b) shows the resulting NDSM after exchanging block JB  and activity 

i . Based on above definitions, the NDSMs in Figure D.1(a) and Figure D.1(b) can be 

expressed as following (6.4) and (6.5), respectively:  

BJ = 

0 … 
1, ijd  

… 0 … 

jid ,1
 … 0 

 

 B4 = 
 

0 … 
nid ,1
 

… 0 … 

1, ind  … 0 

 B3 = 
 

0 

 

B1 = 
 

0 … 
1,1 jd

 … 0 … 

1,1jd  … 0 
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

















43,4,41,4

4,33,31,3

4,3,1,

4,13,1,11

BBBB

BBBB

BBBB

BBBB

J

J

JJJJ

J

          (6.4) 



















4,43,41,4

4,3,1,

4,3,331,3

4,1,13,11

BBBB

BBBB

BBBB

BBBB

J

JJJJ

J

J

        (6.5) 

 

Activities 1 … 1j  j  … 1i  i 1i  … n 

1 0 … 
1,1 jd  jd ,1  … 

1,1 id  id ,1  1,1 id  … 
nd ,1  

… … 0 … … … … … … … … 

1j  1,1jd  … 0 jjd ,1  … 
1,1  ijd  ijd ,1  1,1  ijd  … 

njd ,1  

j  1,jd  … 
1, jjd  0 … 

1, ijd  ijd ,  1, ijd  … 
njd ,  

… … … … … 0 … … … … … 

1i  1,1id  … 
1,1  jid  jid ,1  … 0 iid ,1  1,1  iid  … 

nid ,1  

i 1,id  … 
1, jid  jid ,

 … 
1, iid  0 1, iid  … 

nid ,  

1i  1,1id  … 
1,1  jid  jid ,1  … 

1,1  iid  iid ,1  0 … 
nid ,1  

… … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  jnd ,  … 

1, ind  ind ,  1, ind  … 0 

 

(a) Original NDSM 

 

Activities 1 … 1j  i j  … 1i  1i  … n 

1 0 … 
1,1 jd  id ,1  jd ,1  … 

1,1 id  1,1 id  … 
nd ,1  

… … 0 … … … … … … … … 

1j  1,1jd  … 0 ijd ,1  jjd ,1  … 
1,1  ijd  1,1  ijd  … 

njd ,1  

i 1,id  … 
1, jid  0 jid ,

 … 
1, iid  1, iid  … 

nid ,  

j  1,jd  … 
1, jjd  ijd ,  0 … 

1, ijd  1, ijd  … 
njd ,  

… … … … … … 0 … … … … 

1i  1,1id  … 
1,1  jid  iid ,1  jid ,1  … 0 1,1  iid  … 

nid ,1  

1i  1,1id  … 
1,1  jid  iid ,1  jid ,1  … 

1,1  iid  0 … 
nid ,1  

… … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  ind ,  jnd ,  … 

1, ind  1, ind  … 0 

 

(b) The resulting NDSM after exchanging block JB  and activity i 

Figure D.1 The scenario used in the proof of Theorem 6.1 



                                                                                    Appendix D   Proofs of Chapter 6 

                                                                                                                  

215 

 

Clearly, the different super-diagonal items (i.e. feedbacks) between (6.4) and (6.5) 

are 3,JB  and JB ,3 . Then, subtracting the feedbacks in the NDSM of Figure D.1(a) 

from those in the NDSM of Figure D.1(b), we can get:  



Jk

kiik dd ,, , where 

)1,...,(  ijJ  denotes the activities from position j to position 1i . It follows that if 





Jk

ki

Jk

ik dd ,, , then exchanging block JB  and activity i  results in a feedback 

reduction of  



Jk

kiik dd ,, . To make our statement more legible, in Figure D.1(a) and 

Figure D.1(b), 3,JB  is highlighted in grey and JB ,3  is highlighted in blue. 

 

Proof of Theorem 6.2  

Figure D.2(a) shows the original NDSM where activities are executed in the order 

of },...,1,,1...,,,1,...,,1...,,1{ nhhhiijj  . Separate the NDSM into five blocks 

and define: 

 
 

 

    
 
 
 

 
 

         























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B           























1,1,1

1,1,1

3,1

...

.........

...

hjij

hi

dd

dd

B   



















 hj

h

d

d

B

,1

,1

4,1 ...          























njhj

nh

dd

dd

B

,11,1

,11,1

5,1

...

.........

...

           























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B   























1,1,1

1,,

3,

...

.........

...

hiii

hjij

J

dd

dd

B                 



















 hi

hj

J

d

d

B

,1

,

4, ...            























nihi

njhj

J

dd

dd

B

,11,1

,1,

5,

...

.........

...

 

 

 B3 = 
 

0 … 
1, hid  

… 0 … 

ihd ,1
 … 0 

BJ = 

0 … 1, ijd

 … 0 … 

jid ,1

 

… 0 

 

B1 = 
 

0 … 1,1 jd

 … 0 … 

1,1jd

 

… 0 

B4 = 0 

 

 B5 = 
 

0 … nhd ,1

 … 0 … 

1, hnd

 

… 0 
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





















1,11,1

1,1,

1,3

...

.........

...

jhh

jii

dd

dd

B         























1,1,1

1,,

,3

...

.........

...

ihjh

iiji

J

dd

dd

B                    



















 hh

hi

d

d

B

,1

,

4,3 ...  























nhhh

nihi

dd

dd

B

,11,1

,1,

5,3

...

.........

...

       ]...[ 1,1,1,4  jhh ddB          ]...[ 1,,,4  ihjhJ ddB  

]...[ 1,,3,4  hhih ddB               ]...[ ,1,5,4 nhhh ddB         























1,1,

1,11,1

1,5

...

.........

...

jnn

jhh

dd

dd

B  























1,,

1,1,1

,5

...

.........

...

injn

ihjh

J

dd

dd

B            























1,,

1,1,1

3,5

...

.........

...

hnin

hhih

dd

dd

B                    





















hn

hh

d

d

B

,

,1

4,5 ...  

Figure D.2(b) shows the resulting NDSM after exchanging block JB  and activity 

h. Based on above definitions, the NDSMs in Figure D.2(a) and Figure D.2 (b) can be 

represented as following (6.6) and (6.7), respectively:  























54,53,5,51,5

5,443,4,41,4

5,34,33,31,3

5,4,3,1,

5,14,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

J

J

J

JJJJJ

J

                               (6.6) 























5,53,54,51,5

5,3,4,1,

5,3,334,31,3

5,4,43,441,4

5,1,13,14,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

J

JJJJJ

J

J

J

                             (6.7) 

 

The different super-diagonal items between (6.6) and (6.7) are 3,JB , 4,JB , 4,3B  

and JB ,3 , JB ,4 , 3,4B . In Figure D.2(a) and Figure D.2(b), 3,JB , 4,JB  and 4,3B  are 
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highlighted in grey, while JB ,3 , JB ,4  and 3,4B  are highlighted in blue.  

 

Activities 1 … j −1 j  … i −1 i … h −1 h h+1 … n 

1 0 … 
1,1 jd  

jd ,1  … 
1,1 id  id ,1  … 

1,1 hd  hd ,1
 

1,1 hd  … 
nd ,1  

… … 0 … … … … … … … … … … … 

j −1 1,1jd  … 0 jjd ,1
 … 

1,1  ijd  ijd ,1
 … 1,1  hjd  

hjd ,1  1,1  hjd  … 
njd ,1  

j  1,jd  … 
1, jjd  0 … 

1, ijd  ijd ,  … 
1, hjd  hjd ,  1, hjd  … 

njd ,  

… … … … … 0 … … … … … … … … 

i −1 1,1id  … 
1,1  jid  jid ,1  … 0 iid ,1  … 

1,1  hid  hid ,1  1,1  hid  … 
nid ,1  

i 1,id  … 
1, jid  jid ,  … 

1, iid  0 … 
1, hid  hid ,

 
1, hid  … 

nid ,  

… … … … … … … … 0 … … … … … 

h−1 1,1hd  … 
1,1  jhd  jhd ,1  … 

1,1  ihd  ihd ,1  … 0 hhd ,1  1,1  hhd

 

… 
nhd ,1  

h 1,hd  … 
1, jhd  jhd ,

 … 
1, ihd  

ihd ,
 … 

1, hhd  0 1, hhd  … 
nhd ,

 

h+1 1,1hd  … 
1,1  jhd  jhd ,1  … 

1,1  ihd  ihd ,1
 … 

1,1  hhd

 

hhd ,1
 0 … 

nhd ,1  

… … … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  jnd ,  … 

1, ind  ind ,  … 
1, hnd  hnd ,

 
1, hnd  … 0 

 

(a) Original NDSM 

 

Activities 1 … j −1 h i … h −1 j  … i −1 h+1 … n 

1 0 … 
1,1 jd  

hd ,1
 

id ,1  … 
1,1 hd  jd ,1  … 

1,1 id  1,1 hd  … 
nd ,1  

… … 0 … … … … … … … … … … … 

j −1 1,1jd  … 0 hjd ,1  ijd ,1
 … 1,1  hjd  

jjd ,1
 … 

1,1  ijd  1,1  hjd  … 
njd ,1  

h 1,hd  … 
1, jhd  0 ihd ,

 … 
1, hhd  jhd ,

 … 
1, ihd  

1, hhd  … 
nhd ,

 

i 1,id  … 
1, jid  hid ,

 0 … 
1, hid  jid ,  … 

1, iid  1, hid  … 
nid ,  

… … … … … … 0 … … … … … … … 

h−1 1,1hd  … 
1,1  jhd  hhd ,1  ihd ,1  … 0 jhd ,1  … 

1,1  ihd  1,1  hhd

 

… 
nhd ,1  

j  1,jd  … 
1, jjd  

hjd ,  ijd ,  … 
1, hjd  0 … 

1, ijd  1, hjd  … 
njd ,  

… … … … … … … … … 0 … … … … 

i −1 1,1id  … 
1,1  jid  hid ,1  iid ,1  … 

1,1  hid

 

jid ,1  … 0 1,1  hid  … 
nid ,1  

h+1 1,1hd  … 
1,1  jhd  hhd ,1

 ihd ,1  … 
1,1  hhd

 

jhd ,1  … 
1,1  ihd  0 … 

nhd ,1  

… … … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  hnd ,

 
ind ,  … 

1, hnd  jnd ,  … 
1, ind  1, hnd  … 0 

 

 (b) The resulting NDSM after exchanging block JB  and activity h 
 

Figure D.2 The scenario used in the proof of Theorem 6.2 

 

Let )1,...,(  ijJ , )1,...,(  hiI . Clearly, subtracting the feedbacks in the 
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NDSM of Figure D.2(a) from those in the NDSM of Figure D.2(b), we can get 

     
 


Ir

rhhr

Jk

khhk

Jk Ir

krrk

h

J dddddd ,,,,,, . It follows that if 0h

J , then 

through exchanging block JB  and activity h , the feedbacks in the NDSM of Figure 

D.2(a) can be reduced by h

J .  

 

Proof of Theorem 6.3  

Figure D.3(a) shows the original NDSM for an activity sequence of 

},...,,1...,,,1,...,,1...,,1{ nhhiijj  . Break the NDSM into four blocks and define: 

 

 

 

      























1,1,1

1,1,1

,1

...

.........

...

hjij

hi

I

dd

dd

B        



















 njhj

nh

dd

dd

B

,1,1

,1,1

4,1

...

.........

...

        























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B  























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B        























1,1,1

1,,

,

...

.........

...

hiii

hjij

IJ

dd

dd

B        



















 nihi

njhj

J

dd

dd

B

,1,1

,,

4,

...

.........

...

 























1,11,1

1,1,

1,

...

.........

...

jhh

jii

I

dd

dd

B      























1,1,1

1,,

,

...

.........

...

ihjh

iiji

JI

dd

dd

B      



















 nhhh

nihi

I

dd

dd

B

,1,1

,,

4,

...

.........

...

 























1,1,

1,1,

1,4

...

.........

...

jnn

jhh

dd

dd

B           























1,,

1,,

,4

...

.........

...

injn

ihjh

J

dd

dd

B     























1,,

1,,

,4

...

.........

...

hnin

hhih

I

dd

dd

B  

Based on above definitions, the NDSM in Figure D.3(a) can be expressed as: 

 

 B I = 

 

0 … 
1, hid  

… 0 … 

ihd ,1
 … 0 

BJ = 

0 … 
1, ijd

 … 0 … 

jid ,1

 

… 0 

 

B1 = 

 

0 … 
1,1 jd

 … 0 … 

1,1jd

 

… 0 

 

 B4 = 
 

0 … 
nhd ,  

… 0 … 

hnd ,
 … 0 
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

















4,4,41,4

4,,1,

4,,1,

4,1,1,11

BBBB

BBBB

BBBB

BBBB

IJ

IIJII

JIJJJ

IJ

                                          (6.8) 

 
 

Activities 1 … j −1 j … i−1 i … h−1 h … n 

1 0 … 
1,1 jd  

jd ,1  … 
1,1 id  id ,1  … 

1,1 hd  
hd ,1
 … 

nd ,1  

… … 0 … … … … … … … … … … 

j −1 1,1jd  … 0 jjd ,1
 … 

1,1  ijd  
ijd ,1
 … 

1,1  hjd

 

hjd ,1  … 
njd ,1  

j 1,jd  … 
1, jjd  0 … 

1, ijd  ijd ,  … 
1, hjd  hjd ,  … 

njd ,  

… … … … … 0 … … … … … … … 

i−1 1,1id  … 
1,1  jid  jid ,1  … 0 iid ,1

 … 
1,1  hid  hid ,1  … 

nid ,1  

i 1,id  … 
1, jid  jid ,  … 

1, iid  0 … 
1, hid  hid ,  … 

nid ,  

… … … … … … … … 0 … … … … 

h−1 1,1hd  … 
1,1  jhd  jhd ,1  … 

1,1  ihd  
ihd ,1
 … 0 hhd ,1

 … 
nhd ,1
 

h 1,hd  … 
1, jhd  jhd ,  … 

1, ihd  
ihd ,
 … 

1, hhd  0 … 
nhd ,

 

… … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  jnd ,  … 

1, ind  ind ,  … 
1, hnd  

hnd ,
 … 0 

 
(a) Original NDSM 

 

Activities 1 … j −1 i … h−1 j … i−1 h … n 

1 0 … 
1,1 jd  

id ,1  … 
1,1 hd  

jd ,1  … 
1,1 id  hd ,1

 … 
nd ,1  

… … 0 … … … … … … … … … … 

j −1 1,1jd  … 0 ijd ,1
 … 

1,1  hjd  jjd ,1
 … 

1,1  ijd  
hjd ,1  … 

njd ,1  

i 1,id  … 
1, jid  0 … 

1, hid  jid ,  … 
1, iid  

hid ,  … 
nid ,  

… … … … … 0 … … … … … … … 

h−1 1,1hd  … 
1,1  jhd  ihd ,1

 … 0 jhd ,1  … 
1,1  ihd  

hhd ,1
 … 

nhd ,1
 

j 1,jd  … 
1, jjd  

ijd ,  … 
1, hjd  0 … 

1, ijd  hjd ,  … 
njd ,  

… … … … … … … … 0 … … … … 

i−1 1,1id  … 
1,1  jid  

iid ,1
 … 

1,1  hid  jid ,1  … 0 hid ,1  … 
nid ,1  

h 1,hd  … 
1, jhd  ihd ,  … 

1, hhd  jhd ,  … 
1, ihd  0 … 

nhd ,
 

… … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  ind ,  … 

1, hnd  
jnd ,  … 

1, ind  hnd ,
 … 0 

 

 (b) The resulting NDSM after exchanging block JB  and block IB  

Figure D.3 The scenario used in the proof of Theorem 6.3 
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Figure D.3(b) shows the resulting NDSM after exchanging block JB  and block 

IB , which can be expressed as:  



















4,4,41,4

4,,1,

4,,1,

4,1,1,11

BBBB

BBBB

BBBB

BBBB

JI

JJIJJ

IJIII

JI

                             (6.9) 

The different super-diagonal items between (6.8) and (6.9) are IJB ,  and JIB , , and 

so subtracting the feedbacks in the NDSM of Figure D.3(a) from those in the NDSM 

of Figure D.3(b), we are left with  
 


Jk Ir

krrk dd ,, , where )1,...,(  ijJ  and 

)1,...,(  hiI . Thus, if  
  


Jk Ir

kr

Jk Ir

rk dd ,, , exchanging block JB  and block IB  

leads to a feedback reduction of  
 


Jk Ir

krrk dd ,, . In Figure D.3(a) and Figure D.3(b), 

IJB ,  is highlighted in grey, and JIB ,  is highlighted in blue. 

 

Proof of Theorem 6.4  

Figure D.4(a) shows the original DSM, where activities are in the order of 

}...,,1...,,,1,...,,1,...,,1...,,1{ nkkhhiijj  . Let:  

 
 
            

                      

           

 

 























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B       























1,1,1

1,1,1

3,1

...

.........

...

hjij

hi

dd

dd

B        























1,1,1

1,1,1

,1

...

.........

...

kjhj

kh

H

dd

dd

B         

 

 B3 = 
 

0 … 
1, hid  

… 0 … 

ihd ,1  … 0 

BJ = 

0 … 1, ijd  

… 0 … 

jid ,1  … 0 

 

B1 = 

 

0 … 1,1 jd  

… 0 … 

1,1jd  … 0 

BH = 

0 … 1, khd  

… 0 … 

hkd ,1  … 0 

 

 B5 = 
 

0 … nkd ,  

… 0 … 

knd ,  … 0 



                                                                                    Appendix D   Proofs of Chapter 6 

                                                                                                                  

221 

 



















 njkj
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





















1,11,1

1,1,
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jii
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






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
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
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hiii
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




















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kihi

kjhj
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








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




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 niki
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

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
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
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

















 nhkh
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





















1,11,1

1,1,
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jkk
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












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





1,1,1

1,,

,

...

.........
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

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
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Based on the definitions, the NDSM in Figure D.4(a) can be expressed as: 























5,53,5,51,5

5,3,,1,

5,3,33,31,3

5,,3,1,

5,1,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

HJ

HHHJHH

HJ

JHJJJJ

HJ

                  (6.10) 

Figure D.4(b) shows the resulting NDSM after exchanging block JB  and block 

HB , which can be written as:  























5,53,5,51,5

5,3,,1,

5,3,33,31,3

5,,3,1,

5,1,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

JH

JJJHJJ

JH

HJHHHH

JH

                (6.11) 



                                                                                    Appendix D   Proofs of Chapter 6 

                                                                                                                  

222 

 

 
Activities 1 … j −1 j … i−1 i … h−1 h … k−1 k … n 

1 0 … 
1,1 jd  

jd ,1  … 
1,1 id  id ,1  … 

1,1 hd  hd ,1
 … 

1,1 kd  
kd ,1
 … 

nd ,1  

… … 0 … … … … … … … … … … … … … 

j −1 1,1jd  … 0 jjd ,1
 … 

1,1  ijd  
ijd ,1
 … 

1,1  hjd  
hjd ,1

 … 
1,1  kjd  

kjd ,1
 … 

njd ,1
 

j 1,jd  … 
1, jjd  0 … 

1, ijd  ijd ,  … 
1, hjd  hjd ,  … 

1, kjd  kjd ,  … 
njd ,  

… … … … … 0 … … … … … … … … … … 

i−1 1,1id  … 
1,1  jid  jid ,1  … 0 iid ,1

 … 
1,1  hid  

hid ,1  … 
1,1  kid  kid ,1  … 

nid ,1  

i 1,id  … 
1, jid  jid ,  … 

1, iid  0 … 
1, hid  

hid ,  … 
1, kid  kid ,  … 

nid ,  

… … … … … … … … 0 … … … … … … … 

h−1 1,1hd  … 
1,1  jhd  jhd ,1  … 

1,1  ihd  
ihd ,1
 … 0 hhd ,1

 … 
1,1  khd  

khd ,1
 … 

nhd ,1
 

h 1,hd  … 
1, jhd  

jhd ,  … 
1, ihd  

ihd ,
 … 

1, hhd  0 … 
1, khd  

khd ,
 … 

nhd ,
 

… … … … … … … … … … … 0 … … … … 

k−1 1,1kd  … 
1,1  jkd  

jkd ,1  … 
1,1  ikd  

ikd ,1
 … 

1,1  hkd  
hkd ,1

 … 0 kkd ,1
 … 

nkd ,1
 

k 1,kd  … 
1, jkd  

jkd ,  … 
1, ikd  

ikd ,
 … 

1, hkd  
hkd ,

 … 
1, kkd  0 … 

nkd ,
 

… … … … … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  

jnd ,  … 
1, ind  ind ,  … 

1, hnd  hnd ,
 … 

1, knd  
knd ,

 … 0 

 

(a) Original NDSM 

 

Activities 1 … j −1 h … k−1 i … h−1 j … i−1 k … n 

1 0 … 
1,1 jd  

hd ,1
 … 

1,1 kd  
id ,1  … 

1,1 hd  jd ,1  … 
1,1 id  kd ,1

 … 
nd ,1  

… … 0 … … … … … … … … … … … … … 

j −1 1,1jd  … 0 hjd ,1
 … 

1,1  kjd  
ijd ,1
 … 

1,1  hjd  
jjd ,1
 … 

1,1  ijd  
kjd ,1

 … 
njd ,1

 

h 1,hd  … 
1, jhd  0 … 

1, khd  
ihd ,
 … 

1, hhd  
jhd ,  … 

1, ihd  
khd ,

 … 
nhd ,

 

… … … … … 0 … … … … … … … … … … 

k−1 1,1kd  … 
1,1  jkd  

hkd ,1
 … 0 ikd ,1

 … 
1,1  hkd  

jkd ,1  … 
1,1  ikd  

kkd ,1
 … 

nkd ,1

 i 1,id  … 
1, jid  hid ,  … 

1, kid  0 … 
1, hid  

jid ,  … 
1, iid  

kid ,  … 
nid ,  

… … … … … … … … 0 … … … … … … … 

h−1 1,1hd  … 
1,1  jhd  hhd ,1

 … 
1,1  khd  

ihd ,1
 … 0 jhd ,1  … 

1,1  ihd  
khd ,1
 … 

nhd ,1
 

j 1,jd  … 
1, jjd  

hjd ,  … 
1, kjd  ijd ,  … 

1, hjd  0 … 
1, ijd  kjd ,  … 

njd ,  

… … … … … … … … … … … 0 … … … … 

i−1 1,1id  … 
1,1  jid  hid ,1  … 

1,1  kid  iid ,1
 … 

1,1  hid  
jid ,1  … 0 kid ,1  … 

nid ,1  

k 1,kd  … 
1, jkd  

hkd ,
 … 

1, kkd  
ikd ,
 … 

1, hkd  
jkd ,  … 

1, ikd  0 … 
nkd ,

 

… … … … … … … … … … … … … … 0 … 

n 1,nd  … 
1, jnd  

hnd ,
 … 

1, knd  
ind ,  … 

1, hnd  jnd ,  … 
1, ind  knd ,

 … 0 

 

 (b) The resulting NDSM after exchanging block JB  and block HB  

Figure D.4 The scenario used in the proof of Theorem 6.4 
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It is clear that the different super-diagonal items between (6.10) and (6.11) are 

3,JB , HJB , , HB ,3  and JB ,3 , JHB , , 3,HB . In Figure D.4(a) and Figure D.4(b), 3,JB , 

HJB , , HB ,3  are highlighted in grey, and JB ,3 , JHB , , 3,HB  are highlighted in blue. Let 

)1,...,(  ijJ , )1,...,(  hiI  and )1,...,(  khH . Subtracting the feedbacks in the 

NDSM of Figure D.4(a) from the feedbacks in the NDSM Figure D.4(b), we get 

     
   


Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd ,,,,,, . Thus, if 0H

J , then 

exchanging block JB  and  block HB  results in a feedback reduction of H

J . 
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APPENDIX E        

PROOFS OF CHAPTER 7 

 

Proof of P1  

For two fuzzy triangular numbers A
~

 and B
~

 that are described by ),,( 321 aaa  and 

),,( 321 bbb , their -cuts are:   )(,)( 233112 aaaaaa  , and 

  )()( 233112 bbbbbb  , respectively. From (7.4), we get: 

 
4

2
)()(

2

1
)

~
( 321

1

0
233112

aaa
daaaaaaAD


                            (7.13)  

 
4

2
)()(

2

1
)

~
( 321

1

0
233112

bbb
dbbbbbbBD


                              (7.14)  

Let BAC
~~~

 . From (7.2) and (7.4), we get: 

),,(
~~~

332211 bababaBAC                                                 (7.15) 

  
1

0
223333111122 )()(

2

1
)

~
(  dbabababababaCD  

    
4

)(2 332211 bababa 
                              (7.16)  

Clearly,   )
~

()
~

(
~

BDADCD  .  

Proof of P2  

Let r be a real number, which can be represented as ),,( rrr . From (7.3) and (7.4), 

we get: 

),,(
~

321 rararaAr                              (7.17) 
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 
4

2
)()(

2

1
)

~
( 321

1

0
233112

aaa
rdrarararararaArD


              (7.18) 

From (7.13) and (7.18), we get )
~

()
~

( ArDArD  .  

Proof of P3  

Let r1 and r2 be two real numbers, which can be expressed as ),,( 111 rrr  and 

),,( 222 rrr , respectively. Let BrArF
~~~

21  , from (7.2)-(7.4), we get: 

),,(
~~~

32312221121121 brarbrarbrarBrArF              (7.19) 

  
1

0
222132313231121112112221 )()(

2

1
)

~
(  dbrarbrarbrarbrarbrarbrarFD  

    
4

)(2 323122211211 brarbrarbrar 
                                   (7.20)  

From (7.13) and (7.14), we get: 

4

2

4

2
)

~
()

~
( 321

2
321

121

bbb
r

aaa
rBDrADr





                                               (7.21) 

 

Inspection of (7.20) and (7.21) shows that )
~

()
~

()
~

( 21 BDrADrFD  .  

 

 


