

STRUCTURING NPD PROCESSES: ADVANCEMENTS

IN TEST SCHEDULING AND ACTIVITY SEQUENCING

QIAN YANJUN

NATIONAL UNIVERSITY OF SINGAPORE

2009

STRUCTURING NPD PROCESSES: ADVANCEMENTS

IN TEST SCHEDULING AND ACTIVITY SEQUENCING

QIAN YANJUN

(M.Mgt., Xian Jiaotong University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

 2009

 Acknowledgements

i

ACKNOWLEDGEMENTS

First of all, I would like to express my deep and sincere gratitude to my supervisor,

Professor Goh Thong Ngee, for his patience and seasoned guidance of my research,

and for his important support throughout this work. His wide knowledge and logical

way of thinking have been of great value for me. His understanding and encouraging

have provided a good basis for the present thesis. I would also like to thank Professor

Xie Min for his guidance, constructive comments and suggestions on my research.

His enthusiasm in research and hard-working has greatly motivated me throughout

this work.

I wish to thank Associate Professor Tan Kay Chuan and Dr. Wikrom Jaruphongsa

who served on my oral examination committee and provided me helpful comments on

my thesis research. I would like to thank all the other faculty members in the

Department of Industrial and Systems Engineering, from whom I have learnt a lot

through coursework and discussions. I also wish to thank Ms. Ow Lai Chun and Mr.

Lau Pak Kai for their excellent administrative support during my PhD study.

 I must acknowledge the National University of Singapore for offering me a

Research Scholarship. I wish to thank the members of Quality and Reliability Lab, for

their friendship and kind help throughout my thesis research. I also wish to express

my appreciation for the great assistance received from our case study companies.

Last but not least, thanks my husband Lin Jun, my parents and my parents-in-law,

for their unflagging love and support during my PhD study. They have lost a lot due

to my research abroad. Without their encouragement and understanding it would have

been impossible for me to finish this work.

 Table of Contents

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... I

TABLE OF CONTENTS ... II

SUMMARY… .. VI

LIST OF TABLES .. VIII

LIST OF FIGURES ... IX

NOMENCLATURE .. XII

CHAPTER 1 INTRODUCTION .. 1

1.1 NEED FOR MODELING AND STRUCTURING NPD PROCESSES 1

1.2 RESEARCH GAPS .. 3

1.2.1 TEST SCHEDULING .. 3

1.2.2 OVERLAPPING POLICIES .. 5

1.2.3 SEQUENCING DESIGN ACTIVITIES ... 6

1.3 RESEARCH SCOPE AND OBJECTIVES .. 9

1.3.1 OPTIMAL SCHEDULING OF TESTS IN OVERLAPPED NPD PROCESS 10

1.3.2 APPROACHES FOR DSM SEQUENCING PROBLEM .. 11

1.4 STRUCTURE OF THE THESIS .. 12

CHAPTER 2 LITERATURE REVIEW 15

2.1 TEST SCHEDULING ... 15

2.1.1 EMPIRICAL STUDIES ... 15

2.1.2 TEST SCHEDULING PROBLEM.. 16

2.2 OVERLAPPING POLICIES ... 24

2.2.1 MATHEMATICAL MODELS .. 27

2.3 PROJECT SCHEDULING ... 29

 Table of Contents

iii

2.3.1 NETWORK-BASED SCHEDULING TECHNIQUES .. 30

2.3.2 DISCRETE EVENT SIMULATION MODELS .. 32

2.3.3 DESIGN STRUCTURE MATRIX ... 33

2.4 CONCLUDING COMMENTS ... 45

CHAPTER 3 OPTIMAL TESTING STRATEGIES IN

OVERLAPPED DESIGN PROCESS 48

3.1 INTRODUCTION .. 49

3.2 MODEL FORMULATION .. 51

3.2.1 OVERVIEW OF THE MODEL ... 52

3.2.2 MODELING TESTING PROCESSES .. 55

3.2.3 MODELING DOWNSTREAM REWORK .. 57

3.2.4 SUMMARY .. 59

3.3 POLICY ANALYSIS ... 60

3.3.1 MODEL SOLUTION .. 60

3.3.2 IMPACT OF PARAMETERS ON THE OPTIMAL SOLUTION 64

3.3.3 TESTING STRATEGIES IN SEQUENTIAL PROCESS ... 65

3.4 PROBLEM VARIATIONS .. 66

3.5 MODEL APPLICATION .. 67

3.5.1 DATA GATHERING .. 68

3.5.2 RESULTS ... 72

3.6 DISCUSSION AND CONCLUSION .. 74

CHAPTER 4 SCHEDULING TESTS IN N-STAGE

OVERLAPPED DESIGN PROCESS 78

4.1 INTRODUCTION .. 78

4.1.1 A PRACTICAL EXAMPLE ... 79

4.2 MODEL FORMULATION .. 82

4.2.1 OVERVIEW OF THE MODEL ... 83

4.2.2 REWORK DUE TO OVERLAPPING ... 86

4.2.3 SUMMARY .. 89

4.3 ANALYSIS OF TESTING AND OVERLAPPING POLICIES 89

 Table of Contents

iv

4.4 CASE STUDY .. 95

4.4.1 DATA COLLECTION ... 95

4.4.2 RESULTS AND SENSITIVITY ANALYSIS .. 97

4.4.3 COMBINED EFFECT OF TESTING AND OVERLAPPING ON PROJECT PROFIT ... 99

4.5 DISCUSSION AND CONCLUSION .. 100

CHAPTER 5 A DECOMPOSITION APPROACH FOR

SEQUENCING DESIGN ACTIVITIES 103

5.1 INTRODUCTION .. 104

5.2 MATHEMATICAL MODEL ... 107

5.3 PROPOSED SOLUTION STRATEGY ... 110

5.3.1 A HEURISTIC FOR IMPROVING FEASIBLE SOLUTIONS 110

5.3.2 THE BRANCH-AND-BOUND METHOD .. 113

5.3.3 THE HEURISTIC DECOMPOSITION APPROACH ... 115

5.4 COMPUTATIONAL EXPERIMENTS ... 117

5.4.1 TEST EXAMPLES ... 118

5.4.2 CASE STUDIES .. 120

5.5 CONCLUSION ... 130

CHAPTER 6 A NOVEL APPROACH TO LARGE-

SCALE DSM SEQUENCING PROBLEM 132

6.1 INTRODUCTION .. 132

6.2 PROBLEM FORMULATION ... 133

6.3 THE PROPOSED APPROACH .. 134

6.3.1 PRELIMINARIES ... 134

6.3.2 THE SOLUTION STRATEGY .. 140

6.4 COMPUTATIONAL RESULTS ... 143

6.4.1 APPLICATION RESULTS ... 144

6.4.2 NUMERICAL RESULTS ... 145

6.5 CONCLUSION ... 147

 Table of Contents

v

CHAPTER 7 A FUZZY APPROACH TO DSM

SEQUENCING PROBLEM ... 149

7.1 INTRODUCTION .. 149

7.2 PROBLEM FORMULATION ... 151

7.2.1 FUZZY SET BACKGROUND .. 152

7.2.2 THE MATHEMATICAL MODEL ... 154

7.3 THE SOLUTION APPROACH .. 154

7.4 CASE STUDY .. 158

7.4.1 PARAMETER SETTING ... 159

7.4.2 APPLICATION RESULT ... 160

7.5 CONCLUSION ... 160

CHAPTER 8 CONCLUSIONS AND FUTURE STUDY . 162

8.1 SUMMARY OF RESULTS .. 162

8.1.1 OPTIMAL SCHEDULING OF TESTS IN OVERLAPPED NPD PROCESS 162

8.1.2 APPROACHES FOR DSM SEQUENCING PROBLEM 163

8.2 POSSIBLE FUTURE RESEARCH .. 165

BIBLIOGRAPHY .. 169

APPENDIX A PROOFS OF CHAPTER 3 187

APPENDIX B PROOFS OF CHAPTER 4 198

APPENDIX C PROOFS OF CHAPTER 5 208

APPENDIX D PROOFS OF CHAPTER 6 213

APPENDIX E PROOFS OF CHAPTER 7 224

 Summary

vi

SUMMARY

Efficient New Product Development (NPD) processes are critical to the success of

many modern corporations. Motivated by needs of companies and research gaps

identified, this thesis focuses on two key decision problems for structuring NPD

processes: test scheduling and activity sequencing, and consists of two parts.

The first part views the NPD process as consisting of a series of development

stages and deals with the test scheduling problem. Past studies, which are developed

to determine the optimal scheduling of tests, often focused on single-stage testing of

sequential NPD process. Meanwhile, overlapping has become a common mode of

product development. We therefore present two analytical models for the optimal

scheduling of tests in overlapped NPD process.

When the testing set-up time is relatively small, the analytical model in Chapter 3

can help management decide when to stop testing at each stage, and when to start

downstream development (e.g. mold fabrication). The model in Chapter 3 also yields

several useful insights. When the testing set-up time is long, the analytical model in

Chapter 4 can help decision makers determine the optimal number of tests needed at

each stage, together with the optimal overlapping policies. The impact of different

model parameters on the optimal solution is also discussed, which can help the

management adjust testing and overlapping strategies for NPD processes with

different characteristics. These two analytical models are illustrated with two case

studies in consumer electronics companies.

A development stage may be further broken down into smaller activities. Since

 Summary

vii

there are no clear precedence constraints among activities, another key and challenge

issue is how to plan the time and sequence of activities, which is the focus of the

second part of this thesis. Formal network-based techniques, such as CPM and PERT,

cannot effectively model cyclic information flows and iteration, limiting their

capability of planning NPD processes. To address this shortfall, one popular approach

is Design Structure Matrix (DSM), which has spawned many research efforts on

sequencing design activities with the objective of minimizing feedbacks. However,

the problem is NP-complete. To solve large problems, we follow previous

decomposition methods and present two new approaches.

In Chapter 5, we first propose two simple rules for feedback reduction through

activity exchange. After that, a new decomposition approach is presented for solving

large DSM sequencing problem. We have also applied the proposed solution strategy

to three real data sets, and show that compared to the solutions presented in previous

studies, applying our approach results in better solutions with smaller feedbacks. In

Chapter 6, we further establish rules of block-activity exchange and block-block

exchange, for feedback reduction. We find that based on the fold operation, a block

has similar properties to a single activity. Based on these findings, a novel

decomposition approach is presented. One advantage of this approach is that it can

solve the sub-problems in parallel. Finally, in some situations, activity dependencies

may not be precisely estimated, we therefore present a fuzzy approach to DSM

sequencing problem. The methodology is applied to the powertrain development, and

is shown that it can help managers better manage NPD processes with uncertainty.

 List of Tables

viii

LIST OF TABLES

Table 2.1 Comparison of some activity sequencing models 41

Table 3.1 Model parameters and decision variables .. 59

Table 3.2 Design problems in detail design ... 69

Table 3.3 Cumulated design modifications in design evaluation tests 69

Table 3.4 Cumulated design modifications in system tests 69

Table 3.5 Summary of other parameter values .. 71

Table 4.1 Prototype tests in the refrigerator development process 81

Table 4.2 Symbols and decision variables ... 82

Table 4.3 Model inputs for the refrigerator development project 97

Table 4.4 Impact of testing cost on optimal testing policies 99

Table 4.5 Impact of
p

ic

on the optimal solution .. 99

Table 4.6 Impact of opportunity cost on the optimal solution 99

Table 5.1 Computation results of test examples .. 119

Table 6.1 Computation results of the proposed approach (25n) 146

Table 6.2 Computation results of the proposed approach (50n) 146

 List of Figures

ix

LIST OF FIGURES

Figure 1.1 Sequential and overlapped NPD processes .. 6

Figure 1.2 Iterative NPD process: four-activity example.. 8

Figure 1.3 Refrigerator development process ... 11

Figure 1.4 Structure of the thesis .. 14

Figure 2.1 Traditional phase-milestone NPD process ... 25

Figure 2.2 A network diagram for CPM schedule management 30

Figure 2.3 Three possible sequences for two activities (Eppinger et al., 1994) 33

Figure 2.4 DSM representation of UCAV preliminary design process 35

Figure 2.5 NDSM for the burn-in system (from Chen et al., 2004) 36

Figure 2.6 Disadvantage of block decomposition: an example 45

Figure 3.1 Typical testing stages in the development of mobile phones 49

Figure 3.2 Product development processes ... 53

Figure 3.3 The shape of)(tm j and)(tj .. 56

Figure 3.4 Illustration of the formulation of u2 ... 57

Figure 3.5 Effect of upstream testing on total cost: numerical example 62

Figure 3.6 Cumulated design modifications in design evaluation tests 69

Figure 3.7 Cumulated design modifications in system tests 70

Figure 3.8 Optimal solutions for projects with different opportunity cost 72

Figure 3.9 Pareto optimal fronts for handset development projects 73

Figure 4.1 Sequential and overlapped refrigerator development processes 80

Figure 4.2 Rework in stage 1i caused by overlapping stages i and 1i 88

Figure 4.3 Main Components of the Refrigerator ... 95

 List of Figures

x

Figure 4.4 Combined effect of testing and overlapping on project profit 100

Figure 5.1 DSM/NDSM representation of iterative NPD process: an example .. 105

Figure 5.2 Original NDSM for a chemical processing system 111

Figure 5.3 Improved NDSM through exchanging activities 1 and 4 111

Figure 5.4 Improved NDSM through exchanging activities 4 and 8 112

Figure 5.5 Improved feasible solution by applying Procedure 5.1 121

Figure 5.6 Optimal solution by the Branch-and-Bound method 121

Figure 5.7 The decomposition strategy for the turbopump concept design 124

Figure 5.8 Original NDSM for turbopump concept design................................. 126

Figure 5.9 Final NDSM in Ahmadi et al. (2001) for turbopump concept design127

Figure 5.10 Final NDSM for turbopump concept design by our approach 128

Figure 5.11 Original NDSM for PLC design (from Luh et al., 2009) 129

Figure 5.12 Final NDSM for PLC design in Luh et al. (2009) 129

Figure 5.13 Final NDSM for PLC design by our approach 130

Figure 6.1 NDSM representation of the optimization problem 133

Figure 6.2 Definition of a block .. 135

Figure 6.3 Resulting NDSM by folding block JB .. 135

Figure 6.4 Illustration of Theorem 6.3 and Theorem 6.1: a practical example ... 138

Figure 6.5 Illustration of Theorem 6.4 and Theorem 6.2: a practical example ... 140

Figure 6.6 Illustration of Procedure 6.2 .. 143

Figure 6.7 The solution strategy for the turbopump concept design 144

Figure 7.1 Representation of the optimization problem 152

Figure 7.2 Illustration of fuzzy triangular number jid ,

~
 152

Figure 7.3 An iteration of the proposed approach ... 156

Figure 7.4 Original DSM for the powertrain development 158

 List of Figures

xi

Figure 7.5 The solution strategy for the powertrain development 159

Figure 7.6 Solution for the powertrain development by our approach 160

Figure B.1 The scenario used in the proof of proposition 4.1 198

Figure C.1 The scenario used in the proof of Theorem 5.1 208

Figure C.2 The scenario used in the proof of Theorem 5.2 210

Figure D.1 The scenario used in the proof of Theorem 6.1 214

Figure D.2 The scenario used in the proof of Theorem 6.2 217

Figure D.3 The scenario used in the proof of Theorem 6.3 219

Figure D.4 The scenario used in the proof of Theorem 6.4 222

 Nomenclature

xii

NOMENCLATURE

AHP Analytic Hierarchy Process

CE Concurrent Engineering

CPM Critical Path Method

DeMAID Design Manager’s Aid for Intelligent Decomposition

DSM Design Structure Matrix

EOQ Economic Order Quantity

GA Genetic Algorithm

GERT Graphical Evaluation and Review Technique

LIP Linear Integer Program

NDSM Numerical Design Structure Matrix

NHPP Non-Homogeneous Poisson Process

NP Nondeterministic Polynomial time

NPD New Product Development

PERT Program Evaluation and Review Technique

QFD Quality Function Deployment

QIP Quadratic Integer Program

 Chapter 1 Introduction

1

CHAPTER 1

INTRODUCTION

Efficient New Product Development (NPD) processes are critical to the success of

many modern corporations. To model and structure NPD processes, decisions are

often made about the testing strategies for project monitoring and control, the degree

of overlapping, and the planned timing and sequence of design activities. Motivated

by needs of companies and research gaps identified, this thesis contributes to some

methodological issues for scheduling tests in overlapped product development and for

sequencing design activities with iteration loops. In this introductory chapter, we first

show the necessity for modeling and structuring NPD processes in Section 1.1,

followed by the research gaps proposed in Section 1.2. In Section 1.3, we discuss the

scope and objectives of our study. Finally, the structure of this thesis is presented in

Section 1.4.

1.1 Need for Modeling and Structuring NPD Processes

An NPD process is a formal template through which a company can repetitively

convert ideas into new products (Cooper, 1994; Browning, 2009). Such a process

defines and describes the required steps and resources for driving new product

projects from ideas to launch (Rosenau et al., 1996; Biazzo, 2009). Facing intense

competition, rapidly evolving technologies, changing customer needs, and shorter

product life cycles, many firms need to develop lower cost, higher quality products at

a rapid pace (Cooper, 2001; Mitchell and Nault, 2007). An efficient NPD process is

 Chapter 1 Introduction

2

essential to achieve these goals, and thus is critical to the success of many modern

corporations (Rosenau and Githens, 2005; Bhaskaran and Krishnan, 2009).

However, structuring the NPD process is challenging. Part of the difficulty is due

to the following characteristics of the NPD process:

(1) Complex interaction among activities. A typical NPD process can be divided

into a series of development stages. A development stage may further be broken down

into smaller activities. Unlike the manufacturing process, the NPD process often

involves a number of decision-making activities, for example, the design of an

automobile may involve thousands of engineers making millions of design decisions

(Eppinger et al., 1994). Moreover, none of these activities are performed in isolation;

instead, each design choice may affect many other design parameters (Eppinger et al.,

1994; Pich et al., 2002; Pektas and Pultar, 2006).

(2) Iteration. Iteration, the repetition of design activities, is a fundamental

characteristic of the NPD process (Black and Repenning, 2001; Gil, 2009). There are

two main reasons why iteration is commonly occurred in an NPD process. First, the

outputs of activities, such as engineering drawings, specifications and bill of materials,

are often unstable and inaccurate, and need to be reworked when downstream

activities detect some faults in the original design (Gil et al., 2004; Terwiesch and Xu,

2008). Second, downstream activities may be repeated when modified information is

passed along from upstream activities (Smith and Eppinger, 1997b; Loch and

Terwiesch, 2005; Love et al., 2009).

(3) Conflicting product development performance. Generally, there are three

measures of product development performance: completion time, development cost,

and product quality (Cohen et al., 1996; Pollack-Johnson and Liberatore, 2006; Ulrich

 Chapter 1 Introduction

3

and Eppinger, 2008). However, these metrics are often conflict with each other. For

example, changing the development policies may reduce project completion time, but

may at the cost of lower product quality and/or higher development cost (Harter et al.

2000; Harter and Slaughter, 2003; Wu et al., 2009).

In recent years, product development undergoes new trends such as distributed

product development, cross-functional teams, and overlapping product development

stages (Nambisan, 2002; Gerwin and Barrowman, 2002; Zhou et al., 2005; Novak and

Stern, 2008). These new trends further increase the uncertainty and complexity of

NPD processes (O’Sullivan, 2003; Bhuiyan et al., 2006; Kang and Hong, 2009).

Therefore, efficient and effective models are needed to represent above essential

characteristics and new trends of NPD processes so as to systematically analyze the

effect of development policies on the product development performance, then

improve and optimize the product development performance.

1.2 Research Gaps

NPD process modeling has received considerable attention over the last 15 years

from both the academic community and practitioners (MacCormack et al., 2001;

Roemer and Ahmadi, 2004; Levardy and Browning, 2009). To model and structure

NPD processes, decisions are often made about the testing strategies for project

monitoring and control, the degree of overlapping, and the planned timing and

sequence of design activities (Krishnan and Ulrich, 2001; Browning and Ramasesh,

2007). In the following subsections, we will briefly introduce these decision problems,

some existing models and research gaps.

1.2.1 Test Scheduling

 Chapter 1 Introduction

4

A typical NPD process can be viewed as consisting of four consecutive stages: (1)

concept development, (2) product design, (3) process design, and (4) pilot production

(Cooper, 2001; Chakravarty, 2003). For most product development projects, the

initial outputs of these stages inevitably contain design problems, such as mismatches

with customer needs or technical design faults (Thomke and Bell, 2001; Gil et al.,

2008). Testing, which is a primary way to detect and resolve these problems, is

central to product development (Loch et al., 2001; Thomke, 2007; Erat and Kavadias,

2008).

It is known that undetected design problems of an upstream stage (e.g. concept

development) will accumulate and proliferate to downstream stage (e.g. product

design). Thus, the outputs of an upstream stage need to be tested extensively before

releasing them to downstream stage. Inadequate testing would allow design problems

to propagate, and finally deteriorate the product quality. On the other hand, testing

also incurs time and cost. Too much testing at one stage would impede the project’s

progress and increase development costs. Thus, how to optimally schedule various

tests along the NPD process so as to maximize product development performance is

an important decision problem.

Some models have been developed to determine the optimal scheduling of tests

and/or reviews for product development projects (e.g. Ha and Porteus, 1995; Thomke

and Bell, 2001; Xie and Yang, 2001; Dai et al., 2003; Pham and Zhang, 2003; Serich,

2005; Erat and Kavadias, 2008; Yang et al., 2008; Bartels and Zimmermann, 2009).

These models have clearly shed light on the analysis of test scheduling problem.

However, they focus on the testing policies at one development stage and do not take

into account the multi-stage nature of testing process.

 Chapter 1 Introduction

5

An important contribution in modeling the multi-stage testing is due to Cooper

(1980, 1993a, 1993b, 1993c). Their system dynamics models were further extended

by several independent researchers, such as Ford and Sterman (1998), Williams et al.

(2003), Love et al. (2008), and Lin et al. (2008). While these simulation models have

greatly advanced our understanding of the multi-stage testing process, they cannot

find good testing policies quickly and effectively, which is a limitation of most

simulation models (Cho and Eppinger, 2005; Lancaster and Ozbayrak, 2007).

Ahmadi and Wang (1999), as well as Kogan and Raz (2002), built analytical

models and explicitly examined how to optimally schedule tests for multiple

development stages. The former assumed that all development stages are carried out

in fully sequential, while the latter assumed that all stages start and finish

simultaneously. However, in practice, the development stages are often overlapped

(i.e. in partial parallel) rather than fully sequential or parallel (Krishnan, 1996;

Mitchell and Nault, 2007; Gerk and Qassim, 2008). As far as we know, no analytical

model exists for scheduling tests in overlapped NPD process.

1.2.2 Overlapping Policies

Overlapping, which refers to the partial parallel execution of development stages,

has become a common mode of product development over the last decade as a result

of increasing importance of time-to-market (Smith and Reinertsen, 1998; Loch and

Terwiesch, 2005; Yan and Xu, 2007). As illustrated in Figure 1.1, in sequential

process, the second stage starts only after completion of the first stage, while in

overlapped process, the second stage starts earlier with preliminary information of the

first stage. Thus, project completion time may be reduced, see e.g. Smith and

Reinertsen (1998), Sobek et al. (1999) for successful cases. However, studies also

 Chapter 1 Introduction

6

show that overlapping is not applicable to all NPD projects (see e.g. Terwiesch and

Loch, 1999; Gil et al., 2008). Because overlapping requires that downstream stages

start on preliminary information, rework is often necessary to accommodate upstream

design changes (Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et al.,

2000; Gerk and Qassim, 2008). If the uncertainty or the dependency between

development stages is high, most of downstream tasks done on upstream preliminary

information need to be reworked, which makes overlapping unfavorable (Krishnan et

al., 1997; Helms, 2002; Lin et al., 2010). Thus, analytical investigation of the trade-

offs involved is needed.

Figure 1.1 Sequential and overlapped NPD processes

Many independent researchers have examined this key trade-off and derived

optimal overlapping levels for projects with different characteristics (e.g. Krishnan et

al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000; Chakravarty, 2001;

Joglekar et al., 2001; Wang and Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009).

These studies are insightful in many respects. However, all of them assume that

testing policies are predetermined. Analytical models are needed to combine these

two decisions (i.e. test scheduling and overlapping levels) into one modeling

framework since they are interacted.

1.2.3 Sequencing Design Activities

When the NPD process is viewed as consisting of a series of development stages,

Stage 1

Stage 2

Stage 1

Stage 2

Sequential Overlapped

 Chapter 1 Introduction

7

it’s no need to consider the sequencing problem since the execution sequence of

development stages (such as the concept design and the product design) is known.

However, when the NPD process is further broken into smaller activities, then, a key

and challenging issue, i.e. the planned time and sequence of activities, arises because

clear precedence constraints among design activities do not exist and are rarely

known in advance (Eppinger et al., 1994; Ahmadi et al., 2001; Karniel and Reich,

2009).

As reported by many researchers (e.g. Eppinger et al. 1994; Rodrigues and

Bowers, 1996; Anderson and Joglekar, 2005; Karniel and Reich, 2009), traditional

network-based techniques, such as Critical Path Method (CPM) and Program

Evaluation and Review Technique (PERT), cannot effectively model cyclic

information flows among activities, as well as iteration, limiting their capability of

planning for NPD processes. For instance, in the four-activity example shown in

Figure 1.2(a), after completion of activity C, the process may iterate back to activity

A when activity C discovers some design problems or incompatibility. Similarly,

activities A and B may have to be reworked in light of the arrival of new information

from activity D. This iterative process is common in most product development

projects and PERT/CPM could not deal with such loops effectively.

 To address this shortfall, one known method is Design Structure Matrix (DSM).

As illustrated in Figure 1.2(b), DSM is a binary matrix representation of a project

with elements denoting individual activities which are executed in the temporal order

listed from top to bottom (Browning, 2001; Chen and Huang, 2007). Sub-diagonal

marks represent information input from upstream activities to downstream, and super-

diagonal marks denote feedbacks from downstream activities to upstream (Yassine et

 Chapter 1 Introduction

8

A

B

C

D

(a) Graph Representation

al., 1999a; Lancaster and Cheng, 2008). As such, DSM provides a concise way in

describing and investigating information dependencies among design activities, as

well as iteration (Cho and Eppinger, 2005; Abdelsalam and Bao, 2007).

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994)

extended Steward’s work by explicitly including numerical measures of activity

dependencies. Figure 1.2(c) shows an example of Numerical DSM (NDSM), where

the off-diagonal numbers represents the degree of information dependencies among

activities. Since then, many researchers have reported the successful application of

DSM/NDSM in managing NPD projects (see e.g. Eppinger, 2001; Clarkson et al.,

2004; MacCormack et al., 2006; Sosa, 2008; Voss and Hsuan, 2009). Reviews of

DSM approach can be found in Browning (2001), Karniel and Reich (2009).

Figure 1.2 Iterative NPD process: four-activity example

It is known that iteration is a major driver for lengthy and costly product

development (Smith and Eppinger, 1997b; Ahmadi et al., 2001; Love et al., 2009). To

structure NPD processes, the DSM approach suggests to re-sequencing the activities

such that iterative behaviors are minimized in the matrix. Over the years, a number of

studies have examined how to sequence design activities in a DSM. As reported by

Meier et al. (2007), and Lancaster and Cheng (2008), in most of previous studies, the

objective of sequencing is to minimize feedbacks
1
. Except for minimizing feedbacks,

1 For easier explanation, we will refer to such problem as DSM sequencing problem.

 A B C D

A ×

×

 B ×

 ×

 C ×

D ×

 A B C D

A 0.2

0.3

 B 0.8

 0.4

 C 0.9

D 0.5

(c) NDSM Representation (b) DSM Representation

 Chapter 1 Introduction

9

some other considerations have also been incorporated in sequencing design activities

(see e.g. Altus et al., 1996; Smith and Eppinger, 1997a; Abdelsalam and Bao, 2006).

Several independent researchers have reported that DSM sequencing problem is

NP-complete (McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al.,

2007). To solve large-scale sequencing problems, one stream of literature focused on

developing meta-heuristic methods, such as Genetic Algorithm (Altus et al., 1996;

Whitfield et al., 2003; Meier et al., 2007), Simulated Annealing (Abdelsalam and Bao,

2006, 2007), and Evolutionary Algorithm (Lancaster and Cheng, 2008). Another

stream of literature focused on decomposition based methods. More specifically, the

overall problem is first decomposed into smaller sub-problems which are easier to

solve, and then the sub-problem solutions are merged to a solution of the overall

problem. Examples of such studies include McCulley and Bloebaum (1996), Rogers

(1996, 1999), Ahmadi et al. (2001).

1.3 Research Scope and Objectives

Depending on their newness to the company and marketplace, product innovations

can be incremental or radical (Eppinger et al., 1994; Grupp and Maital, 2001; Hauser

et al., 2006). Radical innovation often requires developing products with an entirely

new technology and/or with an entirely new set of performance features, e.g. certain

smart-chip devices (Leifer et al. 2000; Zhou et al. 2005). On the other hand, an

extension or improvement of existing products is termed as incremental product

innovation. This thesis focuses mainly on incremental product innovation. We also

focus product development projects which are economically feasible, in other words,

the decision has been made to design and implement the projects. Finally, motivated

 Chapter 1 Introduction

10

by needs of companies and research gaps identified, we devote our attention to two

key decision problems for structuring NPD processes: test scheduling and activity

sequencing. More specifically, we present some analytical models for the optimal

scheduling of tests in overlapped NPD process, and propose some approaches for

solving large-scale DSM sequencing problem.

1.3.1 Optimal Scheduling of Tests in Overlapped NPD Process

Testing is central to product development (Loch et al., 2001; Erat and Kavadias,

2008). Past studies, which are developed to determine the optimal scheduling of tests,

often focused on single-stage testing of sequential NPD process. Meanwhile,

overlapping has become a common mode of product development (Terwiesch et al.,

2002; Yassine et al., 2008; Roemer and Ahmadi, 2010). We therefore present two

analytical models for the optimal scheduling of tests in overlapped NPD process.

Let us use a practical example to illustrate the problem studied. As shown in

Figure 1.3, the refrigerator development process generally consists of four stages:

concept creation, industrial design, detail design, and mold fabrication. Following

these stages, four types of tests are carried out. Concept tests use CAD model to test

customers’ reaction to the proposed new product. Industrial design tests build digital

mockups to verify the feasibility of the industrial design. Detail design tests construct

engineering prototypes to verify that the design can function, and finally system tests

produce concrete refrigerators to improve the overall performance of the product.

Then, how much budget should be allocated to testing the design at each

development stage? When should we stop testing? In overlapped process, downstream

stages (e.g. mold fabrication) can start at any time after the initial upstream design is

available and before the completion of upstream tests (e.g. detail design tests). Then,

 Chapter 1 Introduction

11

what is the optimal start time of downstream stages (e.g. mold fabrication)? If

overlapping is applied, how should we adjust the testing strategies?

Figure 1.3 Refrigerator development process

Our analytical models can be used to answer these questions which are of concern

to design managers. According to literature review and field study, testing may be

modeled as a continuous Non-Homogeneous Poisson Process (NHPP) (e.g. Serich,

2005; Lin et al., 2008; Love et al., 2008), or a discrete cyclic process (e.g. Ha and

Porteus, 1995; Dahan and Mendelson, 2001; Erat and Kavadias, 2008). In this thesis,

the continuous and discrete testing processes are examined separately, since the

models and policies for these processes are different.

1.3.2 Approaches for DSM Sequencing Problem

To structure NPD processes, another key and challenging decision faced by the

management is how to plan the sequence of design activities with iteration loops

(Krishnan and Ulrich, 2001; Anderson and Joglekar, 2005). In recent years, there has

been a growing interest in applying DSM for planning design activities (Browning

and Ramasesh, 2007; Sharman and Yassine, 2007; Karniel and Reich, 2009). One

important objective of planning is to find an activity sequence with minimum

System

Tests

Volume

Production

Concept

Creation

Concept

Tests

Industrial

Design

Detail

Design Tests

Industrial

Design Tests

Mold

Fabrication

Detail

Design

 Chapter 1 Introduction

12

feedbacks. Since the problem is NP-complete, there is almost no chance to develop

solution algorithms with a polynomial-time complexity (Li and Sun, 2006).

To solve large DSM sequencing problem, we follow previous decomposition

methods (e.g. McCulley and Bloebaum, 1996; Rogers, 1996, 1999; Ahmadi et al.,

2001), and extend this line of research by developing some rules for feedback

reduction, and by proposing two new decomposition approaches. The proposed

approaches outperform previous ones in their flexibility and well construction of sub-

problems. We have also applied the proposed approaches to three real data sets, and

show that applying our approaches result in better solutions with smaller feedbacks.

In some real world situations, the information dependencies among activities may

be difficult to estimate accurately (Chen et al., 2004; Luh et al., 2009). To address this

issue, we resort to fuzzy set theory to represent uncertain activity dependencies and

present a fuzzy approach to DSM sequencing problem. To demonstrate its utility, the

proposed approach has been applied to a data set published in Eppinger (2001).

1.4 Structure of the Thesis

As shown in Figure 1.4, this thesis focuses on two decision problems for

structuring NPD processes: test scheduling and activity sequencing, and consists of

eight chapters:

Chapter 1: Introduction presents the research motivation, research gaps,

research scope and objectives, and finally the overall structure of this thesis.

Chapter 2: Literature Review provides a review of relevant literature. Based on

the decision problems considered, we categorize previous literature into three groups:

 Chapter 1 Introduction

13

test scheduling, overlapping policies, and project scheduling.

Chapter 3: Optimal Testing Strategies in Overlapped Design Process treats

testing as a continuous NHPP, and presents an analytical model for scheduling tests in

overlapped process. Analysis of the model yields several useful insights, which can be

used to improve NPD processes where the testing set-up time is relatively small. The

methodology is validated with a case study at a handset design company.

Chapter 4: Scheduling Tests in N-stage Overlapped Design Process deals with

discrete cyclic testing process, and develops a model for determining optimal number

of tests needed at each stage, together with the optimal overlapping policies, in N-

stage overlapped process. The model yields several useful insights, which can be used

to structure NPD processes where the testing set-up time is long. The methodology

was applied to a refrigerator development at a consumer electronics company.

While Chapter 3 to 4 deal with the test scheduling problem, Chapter 5 to 7 are

concerned with the activity sequencing problem.

Chapter 5: A Decomposition Approach for Sequencing Design Activities first

introduces a 0-1 quadratic integer program for DSM sequencing problem. After that,

we establish two simple rules for feedback reduction, and show that small-scale

sequencing problem can be solved by a Branch-and-Bound method. A heuristic

decomposition procedure is then presented to extend the Branch-and-Bound method

to solve large-scale problems. To demonstrate its utility, the proposed solution

strategy has been applied to three real data sets, and benchmarked with the solutions

presented in previous studies.

Chapter 6: A Novel Approach to Large-scale DSM Sequencing Problem

 Chapter 1 Introduction

14

further deals with DSM sequencing problem. Based on the results proved, a novel

approach is presented for solving large-scale problems. Comparison of application

results between the approach in this chapter and the one in Chapter 5 is also presented.

Chapter 7: A fuzzy Approach to DSM Sequencing Problem applies some

fuzzy set theory to represent imprecise activity dependencies and presents a fuzzy

approach to DSM sequencing problem. To illustrate its utility, the proposed approach

is applied to the powertrain development at General Motors (Eppinger, 2001).

Chapter 8: Conclusions and Future Study gives a conclusion of this thesis and

some possible future research topics.

Figure 1.4 Structure of the thesis

Chapter 1 Introduction

Chapter 2 Literature Review

Chapter 4

Scheduling Tests in

N-stage Overlapped Design Process

Chapter 5

A Decomposition Approach for

Sequencing Design Activities

Chapter 8

Conclusions and Future Study

Test Scheduling Activity Sequencing

Chapter 6

A Novel Approach to Large-scale

DSM Sequencing Problem

Chapter 7

A Fuzzy Approach to DSM

Sequencing Problem

Chapter 3

Optimal Testing Strategies in

Overlapped Design Process

 Chapter 2 Literature Review

15

CHAPTER 2

LITERATURE REVIEW

NPD process modeling has received considerable attention over the last 15 years

from both the academic community and practitioners (Roemer and Ahmadi, 2004;

Shane and Ulrich, 2004; Chao et al., 2009). To model and structure NPD processes,

decisions are often made about the test scheduling for project monitoring and control,

the degree of overlapping and mechanisms for coordination, and the planned timing

and sequence of design activities (Krishnan and Ulrich, 2001; Browning and

Ramasesh, 2007). In this chapter, an extensive review of the relevant literature is

presented. Based on the decisions considered, we categorize previous literature into

three groups. Section 2.1 reviews the literature on test scheduling. Section 2.2

discusses previous studies on overlapping policies. Section 2.3 presents a review on

different methods on project scheduling. Finally, Section 2.4 summarizes the

concluding comments.

2.1 Test Scheduling

2.1.1 Empirical Studies

The importance of testing for successful NPD has been emphasized by many

researchers. First, testing usually accounts for the majority of project completion time

and development cost. For example, Shooman (1983), as well as Cusumano and Selby

(1995), showed that testing activities can account for nearly half of total development

effort. Thomke (2003) reported that project teams spent nearly 50% of their time on

 Chapter 2 Literature Review

16

testing and related analysis. Second, for most product development projects, the initial

outputs inevitably contain design problems, such as mismatches with customer needs,

technical design faults, or issues regarding manufacturability and maintainability of

the product (Thomke and Bell, 2001; Dahan and Hauser, 2002; Gil et al., 2008).

Testing, which is a primary way to detect and resolve these problems, is central to

product development (Loch et al., 2001; Thomke, 2007).

As reported by Loch et al. (2001), because testing is so central to NPD, a growing

number of researchers have started to study testing strategies or test scheduling

problem. Recent qualitative and empirical studies focused on the effect of “Front-

Loading” on product development performance. Front-Loading refers to the recent

emerging testing methodologies which allow an earlier detection of potential

engineering problems. For example, Thomke (1998) studied the costs and benefits of

such advanced testing methods as rapid prototyping and computer simulation. Dahan

and Srinivasan (2000) observed that compared with the traditional paper-and-pencil

testing methods, internet-based tests are more effective in measuring market potential,

and lower in cost. Thomke and Fujimoto (2000) reported that the use of computer

simulation tests allowed the Toyota Motor Corporation solving about 80% of all

problems by stage two (overall of eight development stages), and thus resulted in

about 30-40% reduction in development costs and lead time.

2.1.2 Test Scheduling Problem

A typical NPD process often involves a series of development stages, followed by

testing activities performed to detect and remove design problems in each stage’s

outputs. It is known that undetected design problems of an upstream stage (e.g.

concept development) will accumulate and proliferate to downstream stage (e.g.

 Chapter 2 Literature Review

17

product design). Thus, the outputs of an upstream stage need to be tested extensively

before releasing them to downstream stage. Inadequate testing would allow design

problems to propagate, and finally deteriorate the product quality. On the other hand,

testing also incurs time and cost. Too much testing at one stage would impede the

project’s progress and increase development costs. Thus, how to optimally schedule

various tests along the NPD process so as to maximize product development

performance is an important decision problem (Krishnan and Ulrich, 2001; Thomke

and Bell, 2001; Qian et al., 2009).

Some mathematical models have been developed to determine the optimal

scheduling of tests and/or reviews for product development projects. We categorize

them into two groups. The first group of studies, which is discussed in Section 2.1.2.1,

focused on test scheduling problem at one development stage, while the second group

of studies, which are discussed in Section 2.1.2.2, examined the test scheduling

problem for multiple development stages.

2.1.2.1 Mathematical Models for Single-stage Test Scheduling

Ha and Porteus (1995) studied the costs and benefits of design reviews for two

overlapped design phases. In their work, frequent reviews enabled earlier detection of

upstream flaws and concurrent execution of downstream phase, but would require

additional time spent on the reviews. Given these trade-offs, they developed a model

to decide the optimal timing and frequency of design reviews so as to minimize the

project completion time. Their model was based on two main assumptions. First, no

flaw would arise in the downstream phase. Second, the design reviews were perfect,

in other words, each review could detect all the existing design flaws.

Dahan and Mendelson (2001) modeled the concept testing as a probabilistic

 Chapter 2 Literature Review

18

search process and proposed an extreme-value model to determine the optimal

number of tests and total budget for the concept development phase. Thomke and Bell

(2001) developed a mathematical model to decide the optimal frequency, and fidelity

of sequential testing activities. Their model was based on two main assumptions. First,

the number of cumulated problems increased linearly with development time. Second,

the cost of a test depended only on fidelity, where a test with higher fidelity would

tend to uncover most currently detectable design problems. They showed optimal

testing strategies should balance several tensions, including redesign cost, the cost of

a test, and the correlation between sequential tests. A simple form of their model

yielded an EOQ-like result: the optimal number of tests was the square root of the

ratio of avoidable cost and the cost of a test.

Loch et al. (2001) developed a model to determine the optimal mix of parallel and

serial testing strategies that would minimize the total testing costs. In their model, the

design team gradually learned through sequential tests, and so sequential testing

strategy would require smaller number of tests to be carried out than parallel testing

strategy. However, sequential testing strategy had the disadvantage of proceeding

more slowly than parallel testing. A dynamic programming model was then presented

to address this trade-off. Recently, Erat and Kavadias (2008) extended the work of

Loch et al. (2001) by considering the design space structure and the correlations

among design performances.

Serich (2005) considered a three-phase project beginning with an optional

prototyping phase, followed by a construction phase, and a rework phase. In their

work, prototyping would reduce uncertainty and the resulting rework, but at the cost

of additional time spent in prototyping. An analytical model was proposed to decide

 Chapter 2 Literature Review

19

the optimal amount of time spent in prototype tests such that the overall project

duration would be minimized.

Bartels and Zimmermann (2009) stated that in some industries, such as the

automobile and the aircraft industry, the majority of testing costs were incurred by the

final prototype testing stage since the construction of one experimental vehicle could

be very expensive. At this testing stage, many different items of tests, such as the

functional test and drop test, were conducted before launching the new product into

market. They then introduced an approach to determine the optimal sequence of these

tests such that the number of required experimental vehicles would be minimized.

Test scheduling problem has been studied extensively in software development

literature, and a recent review can be found in Xie et al. (2007). For instances,

Yamada et al. (1995) considered the optimal allocation of testing resources among

software modules based on a NHPP. Hou et al. (1997) investigated the cost optimal

release policy for software systems with scheduled delivery time under Hyper-

Geometric distribution software reliability growth model with exponential or logistic

learning factor. Xie and Yang (2001) investigated the problem of optimal allocating

testing resources among software modules to maximize reliability of whole system.

Dai et al. (2003) presented a genetic algorithm for multi-objective test resource

allocation problem. Pham and Zhang (2003) developed an analytical model to

determine the optimal testing stop rules so as to achieve the required reliability at

minimal cost. Huang and Lyu (2005) studied the impact of software testing effort and

efficiency on the cost for optimal release time. Tamura and Yamada (2006) examined

optimal software release problems by using a flexible stochastic differential equation

model based on the reusable rate in the system testing phase of the distributed

 Chapter 2 Literature Review

20

development environment. Kapur et al. (2007) discussed the testing resource

allocation problem among modules to maximize the total number of faults removed

from software consisting of several independent modules. Yang et al. (2008) proposed

a risk-control approach to examine the uncertainty in software cost and its impact on

testing strategies and optimal software release time.

The above models have clearly shed light on the analysis of test scheduling

problem. However, they focus on the testing policies at one development stage and do

not take into account the multi-stage nature of testing process. It is known that the

testing activities at different development stages are interacted and should be adjust

coordinately. For example, in refrigerator development, engineers can do one round

of prototype test at concept development stage, or many rounds of tests. Spending

more time in prototype tests of concept development stage will reduce the potential

problems in detail design. Therefore, the project completion time may be reduced.

Then, how to balance the testing activities in concept development, detail design, and

process design? It should be valuable to investigate it in detail.

2.1.2.2 Mathematical Models for Multi-stage Test Scheduling

An important contribution in modeling multi-stage testing for product

development projects is due to Cooper (1980, 1993a, 1993b, 1993c). Based on his

experience as a consultant, he distinguished between the initial design of development

stages and testing. In the initial design, development stages were performed at

different but usually less than perfect quality. In other words, the initial outputs of

development stages, such as the product specifications and bill of materials, contained

design faults and would to be reworked when these design faults were identified by

the following testing activities. Testing activities were not perfect and could not find

 Chapter 2 Literature Review

21

all design faults. Therefore, design faults would propagate across development stages,

and resulting in downstream tasks done on these design faults. Finally, when tests at

the downstream stage identified these upstream design faults, not only the design

faults need to be corrected, but also the relevant downstream tasks need to be

reworked. Such a fault discovery delay could therefore substantially increase the cost

of rectifying errors and project completion time. Except for the design faults, rework

may also caused by customer changes. He then defined completion quality as the

proportion of work being done which will not require rework, and testing quality as

the percentage of design faults identified in the testing process. Based on these

definitions, he simulated the major development stages of shipbuilding operation

using system dynamics approach, and concluded that testing quality at earlier stages

of project life increased testing cost, but reduced project completion time

considerably and increased the probability of meeting the customer's specifications.

Ford and Sterman (1998, 2003a, 2003b), as well as Joglekar and Ford (2005),

extended the works of cooper (1993a, 1993b, 1993c) by including process structure

and resource allocation in their system dynamics models. Williams et al. (2003)

presented a system dynamics model to structure the delay and disruption claims.

Based on system dynamics approach, William (2005) analyzed a number of failed

projects to explore why the common project-management discourse could give rise to

failed projects. They found that for projects that were complex, uncertain, and time-

limited, conventional methods might be inappropriate, and aspects of newer

methodologies in which the project “emerges” rather than being fully preplanned

would be more appropriate. More recently, Love et al. (2008) examined how and why

design-induced rework occurred in a commercial construction project since design-

induced rework could contribute up to 70% of the total amount of rework. In their

 Chapter 2 Literature Review

22

work, the underlying behavioral dynamics that contributed to design errors, such as

the experience and skill of engineers, schedule pressure and information technology,

were modeled and simulated using system dynamics approach. In Love et al. (2009),

they further present a system dynamics model to examine the underlying factors that

contribute to omission errors in construction and engineering projects. Here omission

errors are resulted from pathogens within a system (such as time pressure,

understaffing, fatigue, and inexperience) that translate into error provoking conditions

within the firm and project.

Lin et al. (2008) complemented previous system dynamics models by including

overlapping in their model. They explicitly defined and modeled two types of rework:

Rework due to Development Errors, which referred to rework or rectification of

design errors, and Rework Due to Corruption, which referred to rework or

rectification of relevant downstream tasks due to the change of tasks in an upstream

stage. Based on these concepts, they proposed a Dynamic Development Process

Model for managing overlapped iterative product development, and validated the

model with an in-depth case study at a handset design company.

The above system dynamics simulation models have greatly advanced our

understanding on the multi-stage testing process. Given a set of testing strategies,

these models can be used to compare the solutions and identify which one is best.

However, it is often impossible to tell how far the current solution is from optimality

(Sterman, 2004; Cho and Eppinger, 2005). Moreover, for problems with continuous

decision variables, it’s unlikely to get a good solution quickly and efficiently.

In literature on analytical approaches, Ahmadi and Wang (1999) explicitly

modeled the multi-stage review process, and examined how to optimally schedule

 Chapter 2 Literature Review

23

reviews and engineering resources along the design process so as to achieve the

required level of process confidence at minimal development cost. While their work is

useful for managing the sequential process, the solutions and insights they get may

not be applicable to overlapped process where downstream stages start before the

completion of upstream stages.

Kogan and Raz (2002) examined how to optimally schedule the inspection

activities in an N-stage system so as to minimize the sum of inspection costs and

penalty costs caused by undetected defects. An efficient algorithm was proposed to

solve the problem. However, their work assumes that all stages start and finish

simultaneously, which is less common in practice.

As far as we know, no analytical model exists for scheduling tests in overlapped

NPD process. Meanwhile, overlapping development stages has become a common

mode of product development (Terwiesch et al., 2002; Loch and Terwiesch, 2005;

Yassine et al., 2008), and the testing strategies combined with overlapping policies

may affect project performance differently compared with testing strategies in the

sequential process. Therefore, it is meaningful and worthwhile to investigate the

testing strategies in overlapped NPD process.

In modeling testing processes, one stream of existing literature (e.g., Cooper,

1993a, 1993b, 1993c; Yamada et al., 1995; Kogan and Raz, 2002; Pham and Zhang,

2003; Serich, 2005; Lin et al., 2008; Love et al., 2008; Love et al., 2009) modeled

testing as a continuous NHPP process of discovering and solving design problems. It

is justified that when design problems arise from many components or modules, the

set-up time of a test is relatively small and can be ignored such that the rate of

discovering and solving design faults is approximately continuous. On the other hand,

 Chapter 2 Literature Review

24

the second group of studies postulated that each time a test takes place, a certain

amount of set-up time (such as the time to get organized for the test, to construct

prototypes and to prepare documents) is required, and modeled testing as a discrete

cyclic process (see e.g. Ha and Porteus, 1995; Dahan and Mendelson, 2001; Loch et

al., 2001; Erat and Kavadias, 2008). This stream of literature echoed previous

empirical studies (e.g. Thomke, 1998; Thmoke and Fujimoto, 2000), which showed

that the execution of testing often involved a three-step iterative cycle: (1) build

virtual or physical prototypes that embody the key aspects of the design; (2) test the

prototypes to identify design problems; and (3) modify the design to remove these

design problems.

2.2 Overlapping Policies

A typical NPD process can be viewed as consisting of four consecutive stages:

concept design, detail design, process design, and pilot production (Haberle et al.,

2000; Chakravarty, 2003; Yan et al., 2003; Browning, 2009). Generally, concept

design stage defines the product’s concept, architecture and specifications based on

market research of customer preferences. Detail design stage involves the

determination of design parameters and detailed design of components. Process

design stage constitutes the design of tools, facilities, equipment, and so on. Pilot

production is the stage where the overall product design is realized as physical

products with further testing implemented to improve the overall quality of the

product.

As shown in Figure 2.1, traditional phase-milestone NPD processes are sequential,

with check and decision points placed at the end of each stage (Cooper, 1994;

MacCormack et al., 2001; Nair and Boulton, 2008). Moreover, the process is highly

 Chapter 2 Literature Review

25

functionally segregated, in other words, different functions are responsible for

different stages, and communication between the functions are only occurred at the

end of each stage (Cooper, 1994; Bhuiyan, 2001; Carrillo and Franza, 2006). Clark

and Fujimoto (1991) stated that such process would be appropriate “…when markets

were relatively stable, product life cycles were long, and customers concerned most

with technical performance.” However, such traditional paradigm would increase

friction among different function groups, and lead to bottlenecks in the flow of

information through the NPD processes (Clark and Fujimoto, 1991; Swink et al., 1996;

Browning and Health, 2009), which would further increase the project completion

time and consume additional resources (Patrashkova-Volzdoska et al., 2003; Bhuiyan

et al., 2004; Sosa et al., 2007a).

Figure 2.1 Traditional phase-milestone NPD process

Over the last two decades, intense competition, rapidly evolving technologies,

changing customer needs, and shorter product life cycles force many firms to develop

lower cost, higher quality products at a rapid pace (Eppinger et al., 1994; Wagner and

Hoegl, 2006; Cooper and Edgett, 2008). Many corporations have responded to these

challenges through using Concurrent Engineering (CE) approach. Overlapping

development stages and cross-functional development teams are two of the most

important components of CE (Clark and Fujimoto, 1991; Atuahene-Gima and

Evangelista, 2000; Cooper and Kleinschmidt, 2007).

Overlapping refers to the partial parallel execution of development stages where

Concept

Design
C/D C/D

C/D

C/D

Detail

Design

Process

Design

Pilot

Production

C/D: Checking & Decision

Product

launch

 Chapter 2 Literature Review

26

the downstream stage starts before the completion of the upstream stage. Through

executing multiple stages simultaneously rather than sequentially, the project

completion time may be reduced in overlapped NPD process (Datar et al., 1997; Gerk

and Qassim, 2008). In recent years, overlapping has become a common mode of

product development as a result of increasing importance of time-to-market

(Terwiesch et al., 2002; Yan et al., 2002; Yassine et al., 2008).

Although large reduction in project completion time may be achieved by applying

overlapping approach (Smith and Reinertsen, 1998; Sobek et al., 1999; Helms, 2004),

empirical studies also show that overlapping is not applicable to all NPD projects

(Eisenhardt and Tabrizi, 1995; Liker et al., 1996; Gil et al., 2008). For example, based

on the empirical study of 140 development projects in the electronics industries,

Terwiesch and Loch (1999) concluded that overlapping was effective only if

uncertainty resolution was fast. Because overlapping requires that downstream stages

start on preliminary information, rework is often necessary to accommodate upstream

design changes. If the uncertainty or the dependency between development stages is

high, most of downstream tasks done on upstream preliminary information need to be

reworked, which makes overlapping unfavorable (Krishnan et al., 1997; Helms, 2002;

Minderhoud and Fraser, 2005; Lin et al., 2010). For instance, Terwiesch et al. (2002)

showed that the downstream rework caused by overlapping frequently consumed as

much as 50% of total engineering capacity in their case study company. Based on

survey data from a sample of 120 projects in healthcare and telecommunications,

Mitchell and Nault (2007) indicated that project delay was primarily due to

downstream rework and downstream delay. Therefore, a key trade-off involved in

overlapping development stages is time reduction versus additional effort for

downstream rework.

 Chapter 2 Literature Review

27

2.2.1 Mathematical Models

Some mathematical models have examined the key trade-off involved in

overlapping development stages and its associated drivers. Krishnan et al. (1997)

developed an integer program to determine the optimal number of information

transfer between two consecutive development stages, as well as the start time of

downstream rework, such that project completion time would be minimized. The

authors proposed that the optimal overlapping policies should be determined by two

properties of the NPD process, “upstream evolution” and “downstream sensitivity”,

where “upstream evolution” denoted the speed at which upstream information

narrows from an interval value to a final solution, and “downstream sensitivity”

referred to the expected time needed for the downstream stage to incorporate

upstream design changes. This principle was further developed by Loch and

Terwiesch (1998), where they proposed that the optimal levels of overlapping and

communication should be decided by the arrival rate of upstream design

modifications, the impact of each modification (i.e. the percentage of downstream

tasks would be affected by one upstream design change), and the downstream

progress, i.e. the number of downstream tasks completed when the design change

arrived.

Since then, a number of independent researchers have studied the optimal

overlapping policies for projects with different characteristics. For example, Yassine

et al. (1999b) developed a probabilistic model to determine the optimal overlapping

policy for a set of activities with given information structure. Cantamessa and Villa

(2000) proposed an analytical model to determine the optimal allocation of product

and process designers’ time with the objective of minimizing the overall design effort.

 Chapter 2 Literature Review

28

Roemer et al. (2000) addressed the time-cost trade-off in overlapped product

development process and introduced an algorithm to determine the optimal amount of

overlapping. Chakravarty (2001) examined the optimal overlapping policies for three

overlapping modes and analyzed the impact of parameter values on overlapping

decisions. Joglekar et al. (2001) proposed a performance generation model to

determine the optimal overlapping strategies with the goal of maximizing project

performance with deadline constraints. Chakravarty (2003) developed two approaches

to determine the optimal start time of downstream rework for continuous and discrete

upstream design changes, respectively. Yassine et al. (2003) developed a model to

derive conditions under which churn was observed as an unintended consequence of

information hiding due to local and system task decomposition. Bhuiyan et al. (2004)

proposed a discrete event simulation model to study the impact of overlapping and

functional interaction on project performance which was measured by total person-

days.

Recently, Roemer and Ahmadi (2004) explicitly studied the interactions between

overlapping and crashing, which are two common methods for reducing project

completion time, and provided general guidelines for optimal overlapping and

crashing policies. Gerk and Qassim (2008) extended the work of Roemer and Ahmadi

(2004) by including another method of accelerating product development, substitution.

A mixed-integer non-linear programming model was then presented for

simultaneously determining the optimal crashing, overlapping, and substitution

policies. Wang and Yan (2005) focused on the optimization of the overlap degree

between an upstream stage and downstream stages with the goal of minimizing total

cost of delay of project completion time and design revision workloads. The authors

proved that the total cost is convex with respect to the overlap degree between design

 Chapter 2 Literature Review

29

activities. Jun et al. (2005) classified product development processes into different

patterns, and developed an approach to estimate the project completion time. Yassine

et al. (2008) developed optimal decision rules to determine whether to incorporate a

piece of information that just arrived (i.e. became available) or wait longer. Lin et al.

(2009) presented an analytical model to derive the optimal amount of overlapping and

functional interaction by balancing the positive and negative effects of overlapping

and functional interaction. Lin et al. (2010) extended the work of Loch and Terwiesch

(1998), and explicitly studied the time-cost trade-off involved in concurrent design

process in order to derive optimal overlapping and communication policies.

The results of above overlapping models are insightful in many respects. However,

all of them assume that testing strategies are predetermined. Analytical models are

needed to combine these two decisions (i.e. test scheduling and overlapping degrees)

into one modeling framework since they are interacted.

2.3 Project Scheduling

As mentioned earlier, in determining the testing and overlapping policies, the

NPD process is generally viewed as consisting of a series of development stages.

When the NPD process is broken down into development stages, it’s no need to

consider the sequencing problem since the execution sequence of these stages (such

as the concept design and the detail design) is fixed and will not change. However, a

development stage may further be broken down into smaller activities, and a complex

NPD process may involves hundreds of decision-making activities with cyclic

information flows among them (Eppinger et al., 1994; Chen et al., 2004; Meixell et al.,

2006). Therefore, if the NPD process is further broken down into smaller design

activities, then a key and challenging issue often faced by the management is how to

 Chapter 2 Literature Review

30

plan the time and sequence of these activities (Krishnan and Ulrich, 2001; Anderson

and Joglekar, 2005; Browning and Ramasesh, 2007). Over the years, various models

for scheduling design activities have been developed. We classify these models from

the methodological aspect: network-based scheduling techniques (discussed in

Section 2.3.1), simulation models (discussed in Section 2.3.2), and design structure

matrix (discussed in Section 2.3.3).

2.3.1 Network-based Scheduling Techniques

Network-based scheduling techniques, such CPM and PERT, utilize activity

duration estimates and precedence relationships representing the network of activities

(Badiru, 1993; Golenko-Ginzburg and Gonik, 1996). Figure 2.2 shows a simple

example of such network diagram for CPM schedule management.

Figure 2.2 A network diagram for CPM schedule management

CPM enables the identification of a project’s critical path, i.e. the sequence of

activities whose combined durations define the minimum project completion time, as

well as earliest and latest possible start and finish times of all activities. Moreover,

(4, 4) (7, 7)

1

2

3

4

6

5

(0, 0) (11, 11)

(6, 6) (8, 10)

A

D

2

B

E

4

3

1

2

2

C

G

H
4

F

1

1 Nodes 2 … A, B, Activities

1, 2, 3 Durations (0, 0), (6, 6)

…

… … Earliest feasible start and latest

feasible end time of an activity

6 H

 Chapter 2 Literature Review

31

CPM provides some tools for studying the trade-offs of different performance

measures, such as the time-cost trade-off.

PERT complements CPM by incorporating the effect of project uncertainty into

the estimates of activity duration. Three estimates, i.e. most likely, optimistic and

pessimistic, are used to describe the variability of activity durations. Based on these

parameters, the probabilities of a project meeting specific schedule objectives can be

obtained. The incorporation of duration uncertainty makes PERT more valuable in

managing projects with uncertainty.

However, for most development projects, the delay is usually caused by iteration

instead of uncertain activity duration. Like CPM, PERT cannot explicitly represent

the dynamic interaction between design activities and the iteration, limiting their

capability of scheduling for NPD projects (Ahmadi et al., 2001; Denker et al., 2001;

Kang and Hong, 2009).

It is known that the outputs of decision-making activities, such as engineering

drawings, specifications and bill of materials, are often unstable and inaccurate, and

need to be reworked when downstream activities detect some faults in the original

design (Loch and Terwiesch, 2005; Love et al., 2008). Second, downstream activities

may be repeated when modified information is passed along from upstream activities

(Smith and Eppinger, 1997a; Lin et al., 2008). Thus, cyclic information flows among

activities are quite common in NPD process and PERT/CPM could not deal with such

loops effectively (Eppinger, 2001). Moreover, in PERT/CPM, the underlying

precedence relationships among activities are assumed known and unchanged, but in

many complex development projects, clear precedence constraints do not exist and

are rarely known in advance (Ahmadi et al., 2001; Jun and Suh, 2008).

 Chapter 2 Literature Review

32

CPM and PERT were initially developed to control schedule, and later expanded

to handle costs and resource allocation (see e.g. Mika et al., 2005; Kolisch and

Hartmann, 2006; Lancaster and Ozbayrak, 2007; He and Xu, 2008; Waligora, 2008).

Although an extension of PERT models, known as Graphical Evaluation and Review

Technique (GERT), enables simulation-based analysis of activity networks with

iteration loops, direct analysis of any but a simple GERT network is difficult (Smith

and Eppinger, 1997b; Cho and Eppinger, 2005; Browning and Ramasesh, 2007).

2.3.2 Discrete Event Simulation Models

To address the shortfalls of network-based scheduling techniques, one stream of

research utilizes simulation to model iteration and explores the linkage between

activity sequences and project performance. Most commonly used method is discrete

event simulation. For example, Carrascosa et al. (1998) presented a model to estimate

project completion time for different activity sequences and overlapping degrees

using concepts of probability of change and impact. Browning and Eppinger (2002)

examined the effects of varying process architecture by simulating NPD process as a

network of activities that exchange deliverables. The model outputs sample cost and

schedule outcome distributions. Each distribution is used with a target and an impact

function to determine a risk factor. Alternative process architectures can then be

compared to reveal opportunities to trade cost and schedule risk.

More recently, Gil et al. (2004) simulated the concept development process for

semiconductor fabrication facilities, and found that some decision-making

postponement could help increase the predictability of concept development duration

and reduce resources spent in design without increasing the risk of exceeding project

deadlines. Cho and Eppinger (2005) extended the work of Browning and Eppinger

 Chapter 2 Literature Review

33

(2002) by addressing resource constraints. Kouskouras and Georgiou (2007)

presented a discrete event simulation model for managing software projects.

2.3.3 Design Structure Matrix

To address the shortfalls of CPM and PERT, another known method is DSM. As

illustrated in Figure 2.3, there are three possible sequences of two design activities

based on the information dependencies between them (Eppinger et al., 1994;

Carrascosa et al., 1998): (1) if there is a unidirectional information transfer from A to

B, then activity B is dependent on activity A and would be performed after the

completion of A; (2) if there is no information exchange between activity A and B,

then the two activities are independent and can be executed in parallel; finally, (3) if

there exist cyclic information flows, i.e. activity A needs information from activity B,

and also activity B requires the output of activity A, then the two activities are

interdependent or coupled.

Figure 2.3 Three possible sequences for two activities (Eppinger et al., 1994)

The three types of information dependencies among design activities, as well as

iterative nature of product development can be effectively addressed by using DSM.

As shown in Figure 2.4, the basic DSM is a binary matrix representation of a project

with elements denoting individual design activities and off-diagonal marks

representing the information dependencies among these activities (Eppinger et al.,

1994; Browning, 2001). Along each row, the off-diagonal marks indicate all of the

A

B

A

B

A B

(a) Dependent

 Serial
(b) Independent

 Parallel

(c) Interdependent

 Coupled

 Chapter 2 Literature Review

34

activities whose output information is required to perform the activity corresponding

to that row; reading down each column reveals that which other activities receive its

output (Yassine et al., 1999a; Maheswari et al., 2006). When activities are executed in

the order listed from top to bottom, sub-diagonal marks represent an input from

upstream activities to downstream activities, and super-diagonal marks denote a

feedback from downstream activities to upstream activities (Browning and Eppinger,

2002; Karniel and Reich, 2009). As such, DSM provides a compact representation of

a complex system by showing information dependencies in a square matrix, as well as

a useful tool for describing and investigating iteration (Denker et al., 2001; Cho and

Eppinger, 2005).

It is known that iteration is a major driver for lengthy and costly product

development. To improve NPD processes, the DSM approach suggests re-sequencing

the design activities so as to minimize iterations, i.e. to get the DSM into a lower-

triangular form as possible (Eppinger et al., 1994). If the design activities can be

ordered such that no super-diagonal marks exist, then no iteration remains, and

PERT/CPM are still applicable (Eppinger, 2001). However, this seldom occurs

because of the complexities in product development processes, in other words, cyclic

flows of information exist and PERT/CPM could not deal with such loops effectively

(Eppinger, 2001). Moreover, DSM differs from network-based scheduling techniques

in that it focuses on representing information flows rather than work flows (Yassine et

al., 1999a; Eppinger, 2001). As reported by Eppinger (2001), conventional tools

answer the question: “What other activities must be completed before I begin this

one?” However, the DSM approach addresses the question: “What information do I

need from other activities before I can complete this one?”

 Chapter 2 Literature Review

35

Figure 2.4 DSM representation of UCAV preliminary design process

(Adapted from Browning and Eppinger, 2002)

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994)

extended Steward’s work by explicitly including numerical measures of the degree of

activity dependence, and proposed the Numerical DSM (NDSM). Compared to DSM,

where “X” mark and empty cells signify the existence and absence of information

dependencies among activities, NDSM could provide more detailed information on

the relationships among design activities, and could be used to further improve NPD

processes (Chen and Li, 2003; Chen et al., 2004). Eppinger et al. (1994) proposed that

three measures could be used to capture the dependency between activities A and B,

given that activity B depends on the output information from activity A:

(1) Variability: If the output information from activity A will change significantly

(slightly), then the dependency tends to be strong (weak).

(2) Predictability: If the change of output information from activity A is unpredictable

(predictable), then the dependency tends to be strong (weak).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Prepare DR&O 1 × × × × ×

Create Design Architecture 2 ×

Distribute Models and Drawings 3 ×

Analyses & Evaluation 4 × × × × × ×

Create Structural Geometry 5 ×

Prepare for FEM 6 ×

Structural Design Conditions 7 ×

Weights & Inertial Analyses 8 × × ×

S&C Analyses & Evaluation 9

Free-body Diagrams & Loads 10

Internal Load Distributions 11

Strength, Stiffness, & Life 12

Manufacturing Planning 13 ×

UCAV Proposal 14 ×

Serial

Parallel

Coupled

 Chapter 2 Literature Review

36

 (3) Sensitivity: If a slight (substantial) change of output information of activity A will

lead to a large (small) magnitude of design iteration in B, then the dependency

tends to be strong (weak).

Based on the three measures, activity dependencies can then be quantified through

interviewing the engineers and managers familiar with the system and/or via

surveying relevant documentation (Eppinger, 2001; Chen et al., 2004). Figure 2.5

shows an example of NDSM for the burn-in system (Chen et al., 2004), which

consists of twelve activities, numbered from DT0 to DT11.

Figure 2.5 NDSM for the burn-in system (from Chen et al., 2004)

Over the years, several other methods have also been reported on how to reliably

quantify activity dependencies. For instance, Carrascosa et al., (1998), as well as

Browning and Eppinger (2002), Zhang et al. (2006), proposed that the dependency of

activity j on i could be derived by multiplying the probability of change in activity i

and the impact of that change on j. Chen and Li (2003) applied the analytic hierarchy

process (AHP) to quantify activity dependencies, and showed that the clustering

performance of using numerical DSM is better than that of using binary DSM. AHP

 Chapter 2 Literature Review

37

allows diverse and often incommensurable elements to be compared to one another in

a rational and consistent way, and has been demonstrated to be a suitable method for

the selection of functionally most appropriate components of technical systems. Chen

and Li (2003) reported that “In AHP, the hierarchy usually contains three major levels,

such as the overall objective, criteria or sub-goals, and decision alternatives. Pairwise

comparisons are made to determine the relative importance of the elements in each

level. Relative priorities for decision alternatives can be evaluated under each specific

criterion. The AHP converts these evaluations to numerical values that can be

processed and compared over the entire range of the problem.” Chen et al. (2004)

suggested a way of combining quality function deployment (QFD) and DSM in

product design process, and proposed a systematic approach to quantify activity

dependencies. Yassine (2007) developed a methodology that allowed a practical

estimation of activity dependencies.

The advantages of DSM/NDSM have led to many successful applications in

managing product development projects. For example, Osborne (1993) applied

iteration maps and DSM to describe product development at Intel in terms of project

completion time. Osborne’s work demonstrates the need for further investigation on

the impact of activity dependencies on project completion time. Kusiak et al. (1994)

presented a detailed reengineering approach based on models of DSM and Integration

DEFinition (IDEF). Extensions of the work of Kusiak et al. (1994) can be found in

Belhe and Kusiak (1996), Zakarian and Kusiak (2001), and Chin et al. (2006). Kusiak

et al. (1995) described six patterns of design processes and presented a qualitative

analysis approach for improving design processes. Morelli et al. (1995) used DSM to

map and predict information flows among activities. Eppinger (2001) reported several

successful applications of DSM for managing development projects. Clarkson et al.

http://en.wikipedia.org/wiki/Numerical

 Chapter 2 Literature Review

38

(2004) used NDSM to map and predict the risk of change propagation for Westland

Helicopters of rotorcraft design. Lee and Suh (2006) developed a workflow

structuring method for identifying the reengineering issue and for transforming the

complex design process into a well-structured workflow, based on DSM approach.

Chen and Huang (2007) applied DSM approach to supply chain management. Tang et

al. (2009) presented a tool for enhancing the axiomatic design method with DSM

approach.

Recently, there is a growing interest in applying DSM/NDSM for identifying team

arrangements (see e.g. Chen and Li, 2003; Batallas and Yassine, 2006; Yu et al., 2007;

Amrit and van Hillegersberg, 2008; Collins et al., 2009; Karimian and Herrmann,

2009), and for product architecture decisions of developing modular products and

product families (See e.g. Baldwin and Clark, 2000; Loch et al., 2003; Chen and Li,

2005; Fixson, 2005; Helo, 2006; Lopes and Bajracharya, 2006; MacCormack et al.,

2006; Veenstra et al., 2006; De Weerd-Nederhof et al., 2007; Sosa et al., 2007b; Sosa,

2008; Zhuo et al., 2008; Bashir et al., 2009; Voss and Hsuan, 2009). Reviews of

general areas of DSM application can be found in Browning (2001), Karniel and

Reich (2009).

In project scheduling, DSM has spawned many research efforts on sequencing

design activities (Eppinger et al., 1994; Browning and Ramasesh, 2007). In most of

previous studies, the objective of sequencing is to find a sequence of activities that

minimize feedbacks (Meier et al., 2007; Qian and Goh, 2007; Lancaster and Cheng,

2008). There are several reasons why this is meaningful and important. First,

feedbacks determine where iteration loops occur (Eppinger et al., 1994; McCulley and

Bloebaum, 1996). Studies have shown that iteration is a major driver for lengthy and

 Chapter 2 Literature Review

39

costly product development (Terwiesch et al., 2002; Mihm et al., 2003; Love et al.,

2008). Thus, minimizing feedbacks is a good approximation for concurrently

reducing project completion time and development costs (Ahmadi et al., 2001; Meier

et al., 2007; Collins et al., 2009). For example, Ahmadi et al. (2001) showed that the

average errors resulting from the surrogate objective function of minimizing

feedbacks was around 2.6% and the maximum error was less than 8%, over 540

problems solved. Second, as indicated by McCulley and Bloebaum (1996), in practice,

especially for today’s distributed product development, “the design managers are

likely to desire choosing an evaluation procedure which requires the least amount of

information to be guessed initially. Each feedback corresponds to one or more guesses,

since the feedback input will be required by upstream activities before it is exactly

known. Therefore, minimizing feedbacks will also minimize the amount of

information required to be supplied as initial guesses”.

Except for minimizing feedbacks, some other considerations have also been

incorporated in sequencing design activities in a DSM, which are summarized as

follows. Denote:

n Total number of activities in a DSM

i, j, k Indices for activities

jid , Degree of information dependency of activity i on j ()0, jid

f , c The number of feedbacks and crossovers, respectively

wf , wc Weights for the number of feedbacks and crossovers, respectively

wT , wC Weights for project completion time and development cost, respectively

L, D, U The respective lower triangular, diagonal, and upper triangular matrices from

Gaussian elimination

 Chapter 2 Literature Review

40

 b The column vector which contain the normal activity duration

jif , The number of iterations in j caused by activity i

kb Normal duration of activity k

Type I. Minimize feedbacks:

 
 

n

i

n

ij

jidMin
1 1

,

Type II. Minimize feedback lengths:

 
 


n

i

n

ij

jidijMin
1 1

,)(

Type III. Minimize weighted number of feedbacks and crossovers:

 cwfwMin cf 

Type IV. Minimize weighted feedbacks, crossovers, time and cost:

 CostwTimewcwfwMin CTcf 

Type V. Minimize project completion time:

 



n

i

ixMin
1

 bLDx 11 

Type VI. Minimize iteration time:

  
  








n

i

n

ij

j

ik

kji bfMin
1 1

,

Note that above objectives are all approximations for the actual goals of

decreasing the NPD processes’ time, cost and risk (Meier et al., 2007; Karniel and

Reich, 2009). Based on the objective and solution approach used, Table 2.1 lists some

activity sequencing models.

 Chapter 2 Literature Review

41

Table 2.1 Comparison of some activity sequencing models

References Objective Solution Approach

Steward (1981) Type I Partition rules

Kusiak and Wang (1993) Type I Partition rules

Altus et al. (1996) Type II GA

McCulley and Bloebaum (1996) Type III Decomposition rules + GA

Rogers (1996, 1999) Type IV Decomposition rules + GA

Smith and Eppinger (1997a) Type V Enumeration + Heuristic

Ahmadi et al. (2001) Type I Block Decomposition + Branch-and-Bound

Whitfield et al. (2003) Type I and II GA

Abdelsalam and Bao (2006, 2007) Type VI Simulated Annealing

Banerjee et al. (2007) Type V Heuristic

Meier et al. (2007) Type II GA

Lancaster and Cheng (2008) Type II Evolutionary algorithm

Luh et al. (2009) Type I Heuristic

Several independent researchers have reported that the DSM sequencing problem

is NP-complete (e.g. McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al.,

2007). To solve large-scale activity sequencing problem, one stream of literature

focused on developing heuristics and in particular meta-heuristic methods. For

example, Altus et al. (1996) proposed a GA based model for organizing activities into

a “satisfying” order such that the “total length of feedbacks” in the system could be

minimized. Based on the assumption of sequential iteration, Smith and Eppinger

(1997a) proposed that the expected duration for a sequence of coupled activities could

be calculated by reward markov chain. For large systems, a heuristic procedure was

presented to find an activity sequence with minimum expected duration. Banerjee et

al. (2007) presented a quadratic integer program for the problem examined by Smith

and Eppinger (1997a), and showed that the problem was NP-hard and its linear

relaxation could only give a poor lower bound. Whitfield et al. (2003) presented a GA

by including two criterions of DSM sequencing problem. More recently, Abdelsalam

 Chapter 2 Literature Review

42

and Bao (2006, 2007) proposed Simulated Annealing approaches to determine the

sequence of activities with the goal of minimizing iteration time. Meier et al. (2007)

proposed a competent GA for finding an activity sequence with minimum feedback

lengths. Lancaster and Cheng (2008) developed an evolutionary algorithm for

obtaining an activity sequence with minimum feedback lengths. Luh et al. (2009)

proposed the concept of fuzzy DSM, and developed a heuristic to reorder design

activities so as to minimize feedbacks.

Another stream of literature focused on decomposition based methods. For

instance, based on the rules developed by Steward (1981), Rogers (1989) developed

an expert system called Design Manager’s Aid for Intelligent Decomposition

(DeMAID) for performing DSM analysis. In DeMAID, two steps were performed to

get a hierarchical ordering: (1) Identifying the tightly coupled activities and forming

them into blocks; and (2) Sequencing the activities within each block so as to

minimize feedbacks. The DeMAID was further extended to DeMAID/GA by

incorporating Genetic Algorithm (GA) to sequence the activities within each block

(McCulley and Bloebaum, 1996; Rogers, 1996, 1999). Kusiak and Wang (1993)

presented a triangularization algorithm for organizing design activities. Tang et al.

(2000) presented an algorithm for identifying coupled activities, and an algorithm for

figuring out the order levels of activities. Some other schemes for identifying coupled

activities can be found in Gebala and Eppinger (1991), Chen and Li (2003), Chen et al.

(2005), Chen et al. (2007).

Ahmadi et al. (2001) explicitly develop mathematical models for solving large-

scale DSM sequencing problem. In their paper, the overall project was first

decomposed into smaller sub-problems that were easier to solve; a Lagrangian

 Chapter 2 Literature Review

43

relaxation based Branch-and-Bound method was then used to solve the sub-problems,

and finally, the solutions of sub-problems were concatenated to a solution of the

overall problem. They considered block structures as possible sub-problems, and

presented a Block Decomposition problem with the objective of minimizing

feedbacks among blocks. In what follows, we will describe in detail the Block

Decomposition problem.

Assume that there are overall of N design activities. Let ji, be the indexes for

activities (Nji ,...,2,1, ), and ka be the degree of dependency of activity j on

activity i, where),(jik  represents an arc from activity j to activity i. Defining

wnk  if 1ka ; 1kn otherwise, where w is a large positive number. Let m

(Mm ,...,2,1) be the index for the position of sequenced blocks, where M is the

number of blocks to be formed, and C be the maximum number of activities to be

allowed in a block. The decision variables are: 1mix if activity i is assigned to the

mth block, 0mix otherwise; 1ky if arc),(jik  is a feedback arc from a high-

positioned block back to a low-positioned block, 0ky otherwise. The Block

Decomposition problem is then formulated as follows:


Ak

kkk ynaMin (2.1)

s.t. 1
1




M

m

mix , for Ni ,...,2,1 (2.2)

Cx
N

i

mi 
1

, for Mm ,...,2,1 (2.3)

0
1

 


k

M

mh

hjim yxx , for),(jik  and each m (2.4)

  kmiyx kmi ,,1,0,  (2.5)

 Chapter 2 Literature Review

44

The objective function (2.1) minimizes the feedbacks among blocks. Equations

(2.2) and (2.3) are assignment constraints. Constraint (2.4) guarantees that the

objective function (2.1) sums only the feedbacks among blocks. In particular, if

activity j is assigned to a low-positioned block, and activity i is assigned to a high-

positioned block, then 1imx , 0
1




M

mh

hjx , and so 1ky (since ky equals either zero

or one), i.e. ka is a feedback and is included in (2.1); otherwise, 1
1




M

mh

hjx , and

consequently 0ky , i.e. ka is not a feedback and is not included in (2.1). Constraint

(2.5) indicates that mix and ky are binary decision variables. The Block

Decomposition problem can be solved using the Branch-and-Bound method, and the

computational effort of sub-problems can be controlled by choosing the value of C.

The work of Ahmadi et al. (2001) has clearly shed light on the analysis of DSM

sequencing problem, and has greatly advanced our understanding of managing NPD

processes. However, a major disadvantage of above Block Decomposition method is

that the resulting overall sequence of design activities (obtained by solving all sub-

problems) may be a sequence that is worse than the initial one. For example, suppose

that there are four activities, numbered from 1 to 4. The NDSM representation of the

initial activity sequence is shown in Figure 2.6(a), where the numbers in the square

matrix represent the information dependency levels among activities. Assume that

these four activities need to be grouped into two blocks, and the number of activities

in each block should be less than three. Then, applying the Block Decomposition

method will lead to the activity sequence shown in Figure 2.6(b), i.e., the first block

contains activities 1 and 3, and the second block contains activities 2 and 4, such that

the total feedbacks among the two blocks is minimized at 0.9. Clearly, the total

 Chapter 2 Literature Review

45

feedbacks of the NDSM in Figure 2.6(a) are 1.6, while the total feedbacks of the

NDSM in Figure 2.6(b) are 1.8. In other words, the total feedbacks are increased,

which imply that the resulting overall activity sequence by the Block Decomposition

method is worse than the initial one.

 (a) Initial solution (b) Solution by Block Decomposition

Figure 2.6 Disadvantage of block decomposition: an example

2.4 Concluding Comments

How to optimally schedule various tests along the NPD process such that the

highest product development performance, in terms of time, cost and quality can be

achieved is an important decision problem. Past analytical models, which are

developed to determine the optimal scheduling of tests, often focused on single-stage

testing of sequential NPD process. While these studies are useful for managing the

sequential process, the solutions and insights they get may not be applicable to

overlapped NPD process, which has become a common mode of product development

over the last decade. Moreover, testing strategies combined with overlapping policies

may affect project performance differently compared with testing strategies in the

sequential process. Therefore, it is meaningful and worthwhile to investigate the

testing strategies in overlapped NPD process, which are the objectives of Chapter 3 to

4 of this thesis.

1 3 2 4

1 0.5 0.1 0.3

3 0.9 0.3 0.2

2 0.2 0.1 0.4

4 0.6 0.8 0.7

 1 2 3 4

1 0.1 0.5 0.3

2 0.2 0.1 0.4

3 0.9 0.3 0.2

4 0.6 0.7 0.8

 Chapter 2 Literature Review

46

A key trade-off involved in overlapped NPD process is time reduction versus

additional effort for downstream rework. Previous overlapping models (e.g. Krishnan

et al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000; Wang and Yan, 2005;

Lin et al., 2009) have clearly shown that, the optimal overlapping levels is determined

by the arrival rate of upstream design modifications, the impact of each modification,

and the downstream progress, i.e. the number of downstream tasks completed when

the design change arrives.

Generally, in the testing and overlapping models, the NPD process is viewed as

consisting of a series of development stages. When the NPD process is broken down

into development stages, it’s no need to consider the sequencing problem since the

execution sequence of these stages (such as the concept design and the detail design)

is fixed and will not change. However, when the NPD process is further broken into a

number of smaller activities, then, a key and challenging issue, i.e. the planned timing

and sequence of activities, arises because clear precedence constraints among design

activities do not exist and are rarely known in advance (Eppinger et al., 1994; Ahmadi

et al., 2001; Jun and Suh, 2008; Karniel and Reich, 2009).

Formal network-based planning techniques, such as CPM and PERT, cannot

effectively model cyclic information flow and iteration, limiting their capability of

scheduling for NPD projects (Ahmadi et al., 2001; Denker et al., 2001; Krishnan and

Ulrich, 2001; Browning and Ramasesh, 2007). To address this shortfall, one popular

approach is DSM, which has spawned many research efforts on sequencing design

activities with the objective of minimize feedbacks. It is known that DSM sequencing

problem is NP-complete. Previous decomposition based approaches provide an

efficient way to solve large-scale problems (e.g. McCulley and Bloebaum, 1996;

 Chapter 2 Literature Review

47

Rogers, 1996, 1999; Ahmadi et al., 2001). In Chapter 5 and Chapter 6, we extend this

line of research by developing some rules for feedback reduction, as well as two new

decomposition approaches for solving large DSM sequencing problem.

In some real world situations, information dependencies among activities may be

difficult to predict accurately, especially when the activities have never been

performed before (Chen et al., 2004; Yassine, 2007; Luh et al., 2009). As reported by

Dubois et al. (2003a), in dealing with imprecise parameters, fuzzy PERT/CPM

models have been around for more than two decades (see e.g., Lootsma, 1989;

Nasution, 1994; Wang, 1999, 2002, 2004; Chanas et al., 2002; Dubois et al., 2003b;

Zielinski, 2005; Ke and Liu, 2007; Muhuri and Shukla, 2008; Petrovic et al., 2008;

Liberatore, 2008). Moreover, for product development projects, we are often lack of

enough data to derive the probability distributions for activity dependencies.

Therefore, in Chapter 7 of this thesis, we resort to fuzzy set theory for tackling

uncertain parameters, and present a fuzzy approach to DSM sequencing problem.

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

48

CHAPTER 3

OPTIMAL TESTING STRATEGIES IN

OVERLAPPED DESIGN PROCESS

To model and structure NPD processes, an important decision problem is how to

optimally schedule various tests along the NPD process so as to maximize the product

development performance. Past studies, which are developed to determine the optimal

scheduling of tests, often focused on single-stage testing of sequential design process.

Meanwhile, overlapping development stages has become a common mode of product

development (Terwiesch et al., 2002; Loch and Terwiesch, 2005; Mitchell and Nault,

2007; Yassine et al., 2008), and the testing strategies combined with overlapping

policies may affect project performance differently compared with testing strategies

in the sequential process. Thus, it is worthwhile to investigate the testing strategies in

overlapped NPD process. The purpose of this chapter is therefore to present an

analytical model for the scheduling of tests in overlapped design process, where a

downstream stage starts before the completion of upstream testing.

The outline of this chapter is as follows. After a brief introduction in Section 3.1,

we formally present the model in Section 3.2. The optimal policies are characterized

in Section 3.3, followed by two problem variations introduced in Section 3.4. In

Section 3.5, we illustrate the methodology with a case study at a handset design

company. Section 3.6 concludes this study. Proofs of all the results in this chapter can

be found in Appendix A.

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

49

3.1 Introduction

For most product development projects, the initial design inevitably contains

design problems, such as mismatches with customer needs, technical design faults, or

issues regarding manufacturability of the product (Thomke and Bell, 2001; Dahan and

Hauser, 2002; Gil et al., 2008). Testing, which is a primary way to detect and resolve

these problems, is central to product development (Thomke, 2003).

Figure 3.1 Typical testing stages in the development of mobile phones

Typically, tests are carried out in several stages with increasing fidelity

(Wheelwright and Clark, 1992; Thomke, 2007). For example, as shown in Figure 3.1,

there are four stages in the development of mobile phones: Concept Design, Detail

Design, Tooling Fabrication, and Volume Production. Following these development

stages, different testing activities are carried out. Concept tests are performed by

asking customers to evaluate the 3D drawings or digital mock-ups, making sure that

the design meets their requirements. Design Evaluation Tests are carried out

separately in each subsystem of the product, to ensure compliance with product

Finalize Product
Specifications

Volume
Production

Concept

Tests

Detail Design

 Printed Circuit Board Layout

Mechanical Design

Software Design

Tooling

 Fabrication

System
Tests

Design

Evaluation

Tests

Concept

Design

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

50

specifications and remove variations. In System Tests, physical prototypes are used to

improve the overall performance of the product.

Due to the accumulative and proliferous nature of design problems, the outputs of

an upstream stage need to be tested extensively before releasing them to downstream

stages. Inadequate testing would allow design problems to propagate, and finally

deteriorate the product quality. On the other hand, testing also incurs time and cost.

Too much testing at one stage would impede the project’s progress and increase

development costs. Hence, the key issue is how to optimally schedule various testing

activities along the design process so that the best project performance, in terms of

time, cost and quality, can be achieved.

Some models have been developed to determine the optimal scheduling of tests

and/or reviews for product development projects. For example, Ha and Porteus (1995)

developed a dynamic program to determine the optimal frequency of upstream design

reviews within two overlapped design phases. Dahan and Mendelson (2001) modeled

the concept testing as a probabilistic search process and proposed an extreme-value

model to determine the optimal number of tests for concept development. Thomke

and Bell (2001) developed a model to decide the optimal timing, frequency and

fidelity of sequential tests. They showed that the optimal testing strategy should

balance several things, including the testing cost and the cost of redesign. Test

scheduling problem has been studied extensively in software development literature

(see e.g. Xie and Yang, 2001; Dai et al., 2003; Pham and Zhang, 2003; Xie and Yang,

2003; Serich, 2005; Kapur et al., 2007; Wu et al., 2007; Yang et al., 2008). These

models have clearly shed light on the analysis of test scheduling problem. However,

they focus on the testing policies at one design stage and do not take into account the

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

51

multi-stage nature of testing process.

Ahmadi and Wang (1999), as well as Kogan and Raz (2002), built analytical

models and explicitly examined how to optimally schedule tests for multiple

development stages. The former assumed that all development stages are carried out

in fully sequential, while the latter assumed that all stages start and finish

simultaneously. However, in practice, the development stages are often overlapped

(i.e. in partial parallel) rather than in fully sequential or parallel (Krishnan, 1996;

Terwiesch and Loch, 1999; Roemer and Ahmadi, 2004; Yassine et al., 2008). As far

as we know, no analytical model exists for scheduling tests in overlapped NPD

process.

Recently, Lin et al. (2008) built a simulation model for overlapped iterative

product development. Given a set of testing strategies and overlapping policies, their

work can be used to compare these solutions and identify which one is best. However,

in their model, verifying the optimality of a solution requires enumerating all possible

solutions. Thus, for problems with continuous decision variables, it’s unlikely to get a

good solution quickly and efficiently. Unlike their research, we built an analytical

model to examine the test scheduling in overlapped process, and to help management

derive the optimal testing and overlapping strategies. Moreover, analysis of our model

yields several useful insights (Propositions 3.1-3.5 and Corollaries 3.1-3.3) which

cannot be derived from their model.

3.2 Model Formulation

In this section, we first formulate the tradeoffs involved in scheduling tests in

overlapped design process: product quality improvement versus additional costs

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

52

caused by testing and overlapping. Based on existing literature, we then model testing

as a continuous NHPP process of discovering and solving design problems, and

establish functions of product quality and downstream rework duration caused by

overlapping. The objective function, constraints, model parameters, and decision

variables are summarized at the end of this section.

3.2.1 Overview of the Model

Consider the product development process with two design stages, we call the first

stage upstream and the second downstream. The downstream stage (e.g. Tooling

Fabrication) depends on the output information from the upstream stage (e.g. Detail

Design). Figure 3.2(a) shows the product development process where testing and

overlapping are not applied. Clearly, the completion time for this process is:

210 TTT  , where 1T and 2T respectively denote the regular durations for

performing initial development of upstream and downstream stages.

Figure 3.2(b) shows the product development process where testing and

overlapping are applied. For most development projects, the initial outputs of each

stage inevitably contain design problems, such as mismatches with customer needs or

technical design faults (Thomke and Bell, 2001). We assume that testing activities are

then carried out to detect and resolve these problems. Moreover, we assume that these

design problems can only be detected by testing activities. There are three decision

variables: 1t and 2t , the respective testing durations at the upstream and downstream

stages, and st , the time elapsed between beginning the upstream tests and beginning

the downstream development. In an overlapped process, downstream stage can start at

any time after the initial upstream design is available and before the completion of

upstream testing (i.e. 10 tts ), and so project completion time may be reduced.

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

53

However, because the downstream stage starts on the preliminary information of the

upstream, some of the downstream tasks completed during the overlapped period may

have to be reworked when upstream design changes. Hence, the time savings from

overlapping must be weighed against the additional effort caused by downstream

rework (Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer et al., 2000;

Chakravarty, 2001; Lin et al., 2009). The downstream rework duration due to

overlapping is captured by),(1ttR s . To ensure that all design changes are absorbed

by downstream stage, upstream testing should be terminated before the completion of

downstream initial development, i.e. 21 Ttt s  .

Figure 3.2 Product development processes

We define product quality as the number of design problems remaining in the

system. Clearly, product quality is not only influenced by design problems introduced

at the downstream stage, but also by the propagated variations from upstream stage.

Preliminary information

Modified information

Regular duration for performing

upstream initial development

Regular duration for performing

downstream initial development
 2T

1T

Completion time for the process

without testing and overlapping
 0T

Rework duration due to overlapping),(1ttR s

st The time elapsed between beginning upstream

tests and beginning downstream initial design

Downstream testing duration 2t

1t Upstream testing duration

Decision variables

Completion time for the process with

testing and overlapping
 T

(a) No testing and overlapping

1T

Upstream

Initial Design

2T

Downstream

Initial Design

0T

Upstream

Initial Design

1t

2T),(1ttR s 2t

Upstream

Testing

Rework due to

Overlapping

Downstream

Initial Design

Downstream

Testing

T

st

1T

(b) With testing and overlapping

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

54

Let 0N be the product quality for the process where testing and overlapping are not

applied (shown in Figure 3.2(a)), i.e. the number of design problems cumulated at the

end of downstream initial design. Let),(21 ttN be the product quality for the process

with testing and overlapping (shown in Figure 3.2(b)), i.e. the number of residual

design problems at the end of downstream testing. It is clear that design problems are

reduced through testing, and thus),(21 ttN is smaller than 0N , i.e. product quality is

improved. Let qc be the expected cost of removing one remaining problem after

downstream testing. The benefits of product quality improvement can then be written

as:  ),(210 ttNNcq  .

However, the benefits of product quality improvement must be weighed against

the additional costs caused by testing and overlapping, which include opportunity

costs (i.e. the financial loss of delaying the new product’s time-to-market), testing

costs, and downstream rework costs. We first consider opportunity costs. Clearly, the

completion time for the process with testing and overlapping is:

),(1221 ttRttTTT ss 

(3.1)

Hence, the increased completion time is:),()(120 ttRttTT ss  . Let  be the

opportunity cost (per unit of time). As in previous paper (e.g. Chakravarty, 2001;

Wang and Yan, 2005; Lin et al., 2009), we assume  is constant, the overall

opportunity costs can then be written as:  ),(12 ttRtt ss  . Let 1c and 2c

respectively denote the unit testing costs at the upstream and downstream stages, rc

denote the downstream rework cost (per unit of time). The additional costs caused by

testing and overlapping DC can then be represented as:

 ),(),(1221112 ttRctctcttRttC srssD  

(3.2)

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

55

The overall gain from testing and overlapping is:   Dq CttNNc ),(210 . The

objective is thus to determine the optimal 1t , 2t , and st so as to maximize the overall

gain. Since 0N is constant,   Dq CttNNc ),(:max 210 is equivalent to minimize the

overall cost:

 ),(),(),(211221112 ttNcttRctctcttRttCMin qsrss   (3.3)

The functions of),(21 ttN and),(1ttR s will be established in the following

subsections.

3.2.2 Modeling Testing Processes

In this study, we treat testing as a continuous process of identifying and solving

design problems. Previous studies (e.g. Boehm, 1981; Shooman, 1983; Thomke, 1998)

have shown that with increasing amount of testing, the number of residual design

problems tends to decrease, and thus the rate of discovering and solving design

problems should decrease. In accordance with these empirical studies, in the System

Dynamics models of testing in product development (e.g. Cooper, 1980; Ford and

Sterman, 1998; Lin et al., 2008; Love et al., 2008), the problem discovering and

solving rate is modeled as proportional to the number of residual problems at that

time. Consistent with these studies, the problem discovering and solving rate

)(tj is

modeled as:

 )(
)(

)(tmub
dt

tdm
t jjj

j

j  (3.4)

2,1j is the index of upstream and downstream stages.)(tm j denotes the

cumulated number of problems eliminated by time t . ju represents the number of

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

56

design problems cumulated before testing, and so)]([tmu jj  is the number of

residual design problems in stage j by time t . Parameter 0jb denotes degree by

which problems are solved per time unit in stage j : higher jb represents faster

problem-solving.

Solving the equation (3.4), together with the initial condition 0)0(jm , we get:

 tb

jj
jeutm


 1)((3.5)

Figure 3.3(a) and Figure 3.3(b) show the shape of)(tm j and)(tj , respectively.

Figure 3.3 The shape of)(tm j and)(tj

From equation (3.5), we know the expected number of remaining design problems

at the upstream stage after testing is: 11

1

tb
eu


. These undetected design problems will

accumulate and then have negative impact on the relevant tasks at the downstream

stage. Let 2w be the work content or the total number of tasks at the downstream

stage, and k be the percentage of downstream tasks affected by one upstream design

problem, 2a be the number of incorrectly done tasks (i.e. design problems) by

downstream designers in the initial design. Then, the total number of downstream

Problem Discovering and

Solving Rate

0 Testing Duration

tb

jjj

jebut


)(

t

(b)

)1()(
tb

jj

jeutm




ju

Cumulated Number of

Problems Resolved

0 Testing Duration

(a)

t

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

57

design tasks which are “flawed” by these upstream design problems is: 11

12

tb
eukw
 . As

shown in Figure 3.4, there is an overlap between the design problems introduced by

downstream designers and the downstream design tasks that are “flawed” by upstream

design problems, and so we should not double count these design problems. Thus, the

number of design problems cumulated at the downstream stage before testing, 2u , can

be written as:

11

12222)(
tb

euawkau


 (3.6)

In other words, 2u is the sum of (1) the number of design problems introduced by

downstream designers, and (2) the relevant tasks that are correctly performed by

downstream designers but are “flawed” by undetected design problems at the

upstream stage.

Figure 3.4 Illustration of the formulation of u2

Product quality for the process with testing and overlapping, i.e. the expected

remaining design problems at the end of downstream testing, is:

2211])([)(),(122222221

tbtb
eeuawkatmuttN


 (3.7)

3.2.3 Modeling Downstream Rework

For sequential process, downstream stage starts only when most of the upstream

design problems have been resolved. For example, in a fully sequential process,

Number of design problems introduced by

downstream designers 2a

11

12
tb

euka


Number of downstream design tasks that are

“flawed” by upstream design problems 11

12

tb
eukw


 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

58

tooling design only starts after the design evaluation tests have been completed and

most of the quality problems in detail design stage have been removed. However, in

practice, tooling design usually starts before the design evaluation tests have been

completed in order to reduce project completion time. Hence, during the overlapped

period, certain percentage of tooling design tasks is completed based on wrong

information (i.e. design problems) of detail design stage, and will have to be reworked

when these detail design problems are identified and resolved.

Previous research (e.g. Krishnan et al., 1997; Loch and Terwiesch, 1998; Roemer

et al., 2000; Chakravarty, 2001; Lin et al., 2008) have clearly shown that, the amount

of downstream rework is determined by the arrival rate of upstream design

modifications, the impact of each modification, and the downstream progress, i.e. the

number of downstream tasks completed when the design modification arrives. More

downstream work will be reworked when the modification rate and/or impact are high.

Consistent with past studies (e.g. Chakravarty, 2001; Roemer and Ahmadi, 2004; Lin

et al., 2009), we focus on the development projects where the information exchange

between design stages is costless. In other words, when an upstream design problem

is identified and design modification is made, this design modification will be

incorporated immediately by downstream stage. The downstream rework duration

),(1ttR s can then be represented as:

  
























11

1
11

1
1

1

1

11111

1
)(),(

tb

s

tb
tT

tT
ss e

b
tt

b

e
kudxtTxkTxttR

s

s

 (3.8)

Where x represents the time elapsed since beginning upstream initial development.

The upstream tests start on time 1T , and so the problem discovering and solving rate

of the upstream stage at time x is)(11 Tx  , which equals to:)(

11
11 Txb

ebu
 . k is the

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

59

impact factor, i.e. the percentage of downstream tasks affected by one upstream

design problem, and)(1 stTx  represents the downstream progress at time x.

3.2.4 Summary

We summarize the model parameters and decision variables in Table 3.1, and

state the optimization problem as follows:

      221111

1

][
1

1222

1

1

1

12

tbtb

q

tb

s

tb

rs eeuawkace
b

tt
b

e
ckuttMinC

s





















 

2211 tctc  (3.9)

Subject to:

 210 Ttt s  (3.10)

0,, 21 sttt

(3.11)

Table 3.1 Model parameters and decision variables

Parameters Definition

1T , 2T
Regular duration for performing initial development of upstream and

downstream stages, respectively

1u , 2u
The respective number of design problems cumulated at the upstream and

downstream stages before testing

 2a The amount of problems introduced by downstream designers

2w Total number of tasks at the downstream stage

1b , 2b Problem-solving capacity at upstream and downstream stages, respectively

k The percentage of downstream tasks affected by one upstream design problem

 Opportunity cost (per unit of time)

rc Downstream rework cost (per unit of time)

1c , 2c Unit testing cost at upstream and downstream stages, respectively

qc The expected cost of removing one remaining design problem after

downstream testing

Decision Variables Definition

st
The time elapsed between beginning the upstream tests and beginning the

downstream development

1t , 2t The respective testing durations at upstream and downstream stages

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

60

3.3 Policy Analysis

3.3.1 Model Solution

In this section, we will describe how to solve the optimization problem. We first

derive the optimal time elapsed between beginning the upstream tests and beginning

the downstream development
*

st , and optimal downstream testing duration *

2t , by

assuming the optimal upstream testing duration *

1t has been derived. The results are

stated in Proposition 3.1.

Let
 






rcku1

1 ,
 2212

2
2

awkubc

c

q 





 , and

 221

2
3

awku

a


 .

PROPOSITION 3.1 Suppose that *

1t is given,

 (a)
*

st can be determined by the following equation:

 









 *
11

1

1

* ln
1

,0max
tb

s e
b

t  (3.12)

 (b) If 11  , then 0* st for any value of *

1t .

(c) The optimal downstream testing duration *

2t is:



























 




2

3

2

*

2

*
11

ln
1

,0max


 tb
e

b
t (3.13)

 (d) If 132  , then 0*

2 t for any value of *

1t .

The proof of all the results in this chapter can be found in Appendix A.

Proposition 3.1(a) characterizes
*

st when *

1t is fixed. Part (b) generalizes the

sufficient condition for complete overlapping (0* st), i.e. starting downstream stage

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

61

as soon as preliminary information is available. Since this conclusion is independent

on *

1t , it is useful for managers to decide whether complete overlapping policy should

be applied to a development project. Proposition 3.1(c) defines the optimal

downstream testing duration *

2t when *

1t is given. Similarly, we generalize the

sufficient condition for 0*

2 t in Proposition 3.1(d), which is independent on *

1t .

Our next result expresses the optimal product quality  *

2

*

1 , ttN as a function of the

model’s parameters.

COROLLARY 3.1 If
*
11

32

tb
e


 , i.e. 0*

2 t , then  
2

2*

2

*

1 ,
bc

c
ttN

q


 .

Corollary 3.1 shows that when 0*

2 t , with lower downstream testing cost 2c and

opportunity cost  , the company should increase its target product quality. Higher qc

as well as higher downstream problem-solving capacity 2b also lead to higher target

level of product quality. For many development projects in practice, qc

can be very

costly and so 0*

2 t . Therefore, this result is of high applicability.

With the result from Proposition 3.1, our next proposition determines the optimal

upstream testing duration *

1t . By substituting (3.12) and (3.13) into (3.9) and (3.10),

we get:

      















 

























2

3

2

21

11

1

11

11

11

ln
1

,0maxln
1

,0max1








tb
tb

tb
e

b
ce

b

e
tMinC

     
























11

11

1111

3

2

3

2111

11

11 ,1min11,1min
tb

tb

q

tbtb

e

e
caetbe

b
tc












(3.14)

Subject to:

  21

1

1
11ln

1
,0max0 Te

b
t

tb











 (3.15)

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

62

PROPOSITION 3.2 Let
 221

1
4

awkuc

c

q 
 ,    










 11

1

1

11 ln
1

,0max
tb

e
b

tt  .

(a)  1t is strictly increasing in 1t .

(b) if 











1
,1min

3

2

1

4





b
, the total cost in (3.14) is strictly increasing in 1t , leading to

0*

1 t , which is illustrated in Figure 3.5(a). Otherwise, the total cost is first convex

then concave increasing in 1t , which is shown in Figure 3.5(b).

Figure 3.5 Effect of upstream testing on total cost: numerical example

Proposition 3.2(a) reveals that in constraint (3.15),  1t strictly increases with 1t .

Therefore, there exist a unique value of 1t which satisfies:   21 Tt  . This value,

denoted as 1t , is the upper bound of *

1t . We can easily find 1t using the Binary Search

method. The idea behind the Binary Search method is that whether  1t is greater or

less than 2T at a trail solution indicates whether 1t should be decreased or increased.

Specifically, if   21 Tt  , then 1t should be decreased, otherwise, if   21 Tt  , then

1t should be increased. Note that because 01  , the left side of constraint (3.15),

 10 t , will automatically hold for all feasible 1t .

},,,,,,,,,,{ 2122211 qr cccckbwabu 

{30,0.2,150,300,0.1,0.03,1000,30,200,150,350}

 C (×103 $)

 (a):

1t (day)

10

20

30

40

30

50

60

10 20 40 60 0 1t (day)

18.0
1

,56.0
3

2

1

4 







b

0*

1 t

},,,,,,,,,,{ 2122211 qr cccckbwabu 

{30,0.05,80,150,0.9,0.03,3000,100,150,50,200}

10 20 30 40
34

35

36

37

C (×103 $)

0

(b):

12.0
1

,0032.0
3

2

1

4 







b

1.8*

1 t

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

63

Proposition 3.2(b) implies that there exists a unique value of *

1t which minimizes

the total cost in (3.14). When 











1
,1min

3

2

1

4





b
, the optimal upstream testing

duration *

1t locates in  1,0 t . Here the total cost in (3.14) is first convex then concave

increasing in 1t . This implies that for 1x and 2x (1210 txx ), if    21 xCxC  ,

then],[11

*

1 txt  ; conversely, if    21 xCxC  , then],0[2

*

1 xt  . To identify *

1t , the

method of Golden Section Search is employed to generate points 1x and 2x , see

Hillier and Lieberman (2001) for more details of the classical Binary and Golden

Section Search techniques.

Notation

1t lower bound of 

1t , 1t upper bound of 

1t , M large positive value,  small

positive value.

Step 1. Calculate
1 ,

2 ,
3 ,

4 . If 











1
,1min

3

2

1

4





b
, 0*

1 t ; Else, let 01 t , Mt 1 ,

2

15 
r .

Step 2. Iteration 1 [Binary Search for 1t]:

(a) Let   2/
~

111 ttt  . Calculate  1

~
t .

(b) If   21

~
Tt  , then 11

~
tt  , go to Step (a); if   21

~
Tt  , then 11

~
tt  , go to Step

(a). Else, let 01 t , 11

~
tt  .

Step 3. Iteration 2 [Golden Section Search for *

1t]:

(a) If  11 tt , then   2/11

*

1 ttt  , stop.

(b) Let  1111 ttrtx  ,  1112 ttrtx  . Calculate  1xC and  2xC .

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

64

(c) If    21 xCxC  , then 11 xt  , else, 21 xt  . Go to Step (a).

3.3.2 Impact of Parameters on the Optimal Solution

In this section, we will discuss the influence of model parameters on the optimal

solution, where the optimal solution does not take the boundary values, i.e. 0* st ,

0*

2 t , 0*

1 t and   21

1

*

1

*
11ln

1
Te

b
t

tb


 . Proposition 3.3 lists the factors that

directly affect the optimal upstream testing duration *

1t . Corollaries 3.2 and 3.3

discuss the factors that affect
*

st
and the optimal downstream testing duration *

2t ,

respectively.

PROPOSITION 3.3

(a) *

1t increases with 1u and k , and decreases with rc .

(b) There exists a critical 0

1b such that: if 0

11 bb  , *

1t increases with 1b ; if 0

11 bb  , *

1t

decreases with 1b .

 (c) If 12 cccr  , then 

1t increases with  . Otherwise, there exists a critical 0

such that: if 0  , *

1t decreases with  ; if 0  , *

1t increases with  .

In the above, 0

1b and 0 are defined in Appendix A.

COROLLARY 3.2
*

st increases with 1u and k .

COROLLARY 3.3 *

2t decreases with 2c , and increases with 2a .

Note that if we define overlapping degree 11 tts , then based on above

results, our model suggests that the optimal degree of overlapping decreases with 1u

and k . This result is consistent with Loch and Terwiesch (1998).

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

65

3.3.3 Testing Strategies in Sequential Process

In this section, we compare the testing strategies in a concurrent design process

with those in a sequential development process. Let 1 and 2 be the respective

testing durations of upstream and downstream stages in sequential process. By setting

1tts  in (3.9), the test scheduling problem in sequential process can be represented

as:

    2211][1222221121

 bb

q eeuawkacccCMin 
 (3.16)

Subject to 0, 21 

(3.17)

PROPOSITION 3.4 The optimal testing durations for upstream and downstream stages

in the sequential process, denoted as *

1 and *

2 , differ from *

1t and *

2t . In particular,

(a) *

1

*

1 t , and *

2

*

2 t .

(b) if 12 cc  , then *

2

*

1

*

2

*

1   tt .

Proposition 3.4(a) reveals that compared with sequential process, in overlapped

process, the upstream testing duration is increased, while the downstream testing

duration is reduced. Part (b) states that if the unit testing cost at the downstream stage

is not less than the unit testing cost at the upstream stage, then compared with

sequential process, the whole testing time in overlapped process is increased. The

intuitive interpretation of Proposition 3.4 is that: in a sequential process, increasing

upstream testing will significantly delay downstream start time, while in a concurrent

process, downstream stage can start before the completion of upstream testing, and

thus the impact is much smaller. Hence, compared with a sequential process, in an

overlapped process, the testing duration of upstream stage is increased.

More importantly, Proposition 3.4 shows that the optimal testing strategies in

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

66

overlapped process differ from those in sequential process. In other words, testing and

overlapping are interacted. Thus, to improve project performance, testing strategies

and overlapping policies should be adjusted coordinately. For example, in practice,

some companies may intend to shift from sequential to overlapped development

process. Then, according to Proposition 3.4, these companies may also need to adjust

their existing testing policies (even existing testing policies are optimal in the

sequential process). Proposition 3.4 can be used as a guideline for structuring product

development processes.

3.4 Problem Variations

In the previous sections, we have developed a model for minimizing the total cost,

which we refer to as the cost minimization problem. However, in some situations,

Pareto-optimal solutions should be considered. These are strategies that achieve the

required product quality at minimum cost, or conversely, strategies whose product

quality is best for a given budget, which we refer to as the target quality problem and

the budget constraint problem, respectively. In this section, we will present these two

variations of the cost minimization problem, and show that these two variations can

then be solved by the same approach as the cost minimization problem.

Target Quality Problem

In this version of problem, we assume that product quality, i.e., the target number

of remaining design problems after downstream testing N is given, and the problem

is to determine the optimal 1t , 2t , and st so as to achieve the required product quality

at minimal cost:

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

67

 ),(),(1221112 ttRctctcttRttCMin srssD  

Subject to: 210 Ttt s  ,

0,, 21 sttt ,

NeeuawkattN
tbtb


 2211])([),(122221

Budget Constraint Problem

In this version of the problem, we need to determine the optimal 1t , 2t , and st so

as to achieve the highest product quality for a given budget C . This problem, which

can described as the “dual” of the target quality problem, can be formulated as

follows:

2211])([),(122221

tbtb
eeuawkattNMin




Subject to: 210 Ttt s  ,

0,, 21 sttt ,

  CttRctctcttRttC srssD ),(),(1221112

PROPOSITION 3.5 The target quality problem in (3.18) and budget constraint problem

in (3.19) have similar solution structure as the cost minimization problem.

3.5 Model Application

In this section, we illustrate the model on the completed projects at a handset

design company in China. The company designs mobile phones according to market

and technology trends and sells the design to manufacturers. As of July 2006, this

company employs approximately 2,600 professionals, of whom 90% are engineers,

and has provided more than 100 design solutions for companies such as NEC,

Kyocera, and Mitsubishi. However, in recent years, it has been facing increasing

(3.18)

(3.19)

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

68

pressure to develop better products in short intervals. The development process of

cellular phones has been shown in Figure 3.1. Our focus is on the Design Evaluation

Tests at the Detail Design stage (i.e. upstream stage) and the system tests at the

Tooling Fabrication stage (i.e. downstream stage), since they consume a large

proportion of design resources.

3.5.1 Data Gathering

The data collection was quite challenging since the company did not know how

past project data could be used in guiding future projects. Multiple sources were used

to estimate the model parameters, including available company documents, extensive

interviews and so on. We analyzed five projects with similar technical complexity.

The projects were completed in the first half of 2006. Without special explanation, the

data presented in this subsection were average values of these five projects. We now

describe our data collection efforts in detail.

Our first step was to collect the data of testing, and derive the functions of design

modifications at the Detail Design stage and at the Tooling Fabrication stage. This

information was obtained by interviewing project managers, design engineers, tooling

engineers, and by checking the project schedules and the quality control system of the

projects. After completing the preliminary detail design, the drawings were reviewed

by the experienced engineers, as well as tested by dozens of working samples

fabricated using soft dies. The design drafts were continuously modified to remove

identified design problems. On the average, the tests at this stage lasted for 12

working days. Tooling was made by suppliers. Faced with high time pressure, the

engineers released 2D and 3D drawings to suppliers and pushed them to start Tooling

Fabrication before the completion of Design Evaluation Tests. The cost of

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

69

information transformation in our application was relatively low. System tests were

performed after product designs were realized as physical prototypes. At this stage,

more than 100 different items of tests were conducted, and the average testing

duration was 15 weeks (6 days per week).

Table 3.2 Design problems in detail design

Table 3.3 Cumulated design modifications in design evaluation tests

Days 0 1 2 3 4 5 6 7 8 9 10 11 12

Cumulated
Modifications

0 12 20 27 32 35 38 40 42 45 47 49 50

Table 3.4 Cumulated design modifications in system tests

Figure 3.6 Cumulated design modifications in design evaluation tests

No. Issue Severity Root Cause Action Picture
Closure

Date

1 B1, B2,

and B3

whistle.

 A Microphone rubber holder

is inside the housing, which

results in a loop between

the speaker and the

microphone.

Extend the microphone

holder and make it out of the

housing. Lay the microphone

holder on the housing

surface.

10 Apr. 2006

2 ESD

failed.

 A Metal LCD holder is

contacted with PCB pad.

Add a pad on the metal LCD

holder.

20 Apr. 2006

Weeks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cumulated

Modifications
0 33 53 117 129 135 146 194 203 211 223 245 248 256 260 261

Cumulated Design Modifications

Output of Fitted Model:

)1(52)(23.0

1

tetm 

Field Data

(Day)

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

70

Figure 3.7 Cumulated design modifications in system tests

As an integral part of quality control system, all the design problems detected

during tests, together with their severity level and root causes, their closure dates and

the person in charge, the cost and time delay of each problem, were well documented

in the company. Table 3.2 lists two examples of design problems detected in the

Design Evaluation Tests. Such historical records provide us invaluable information on

the problem identification and solution process (Lin et al., 2009). With the help of

project managers, design engineers, and tooling engineers, we analyzed these

problems in detail and derived the number of design modifications at two stages (See

Table 3.3 and 3.4). Note that in practice, a design modification can be large or small

according to their impact on downstream progress. To make different design

modifications comparable, we together with the engineers standardized all the design

modifications into dimensions. For example, if a slot is revised at time t and it affects

6 dimensions of the size and position of the slot, we record that 6 engineering changes

occur at time t. Thus, here a design modification refers to the change of one

dimension. Based on the collected data, we conducted a regression analysis to derive

the functions of design modifications by minimizing Sum of Squared Residuals (SSE).

The outputs of the regression analysis are shown in Figure 3.6 and Figure 3.7.

Then, we operationalized the estimation of qc . In our application, after completion

Cumulated Design Modifications

(Week)

)1(321)(12.0

2

tetm 

Field Data

Output of Fitted Model:

15

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

71

of system tests, the products were launched into the market. Thus, qc denotes the

expected cost of removing one remaining design problem in the operational phase.

When customers found design problems, the defective products were sent back to the

company, and thus qc can be calculated based on the service record of the projects.

Let c be the expected cost of fixing one faulty product, D be the cumulated number

of defective products be sent back to the company, and N be the overall number of

design problems reported by the service center. Mathematically,
N

Dc
cq


 . The

average value of qc in our data set is $3,000.

Table 3.5 Summary of other parameter values

Items Estimated value

2T
Regular duration for performing initial development at

the Tooling Fabrication
 30 days

2w Number of tasks at the Tooling Fabrication 740

k
Percentage of Tooling Fabrication tasks affected by one detail

design problem
 0.013

rc Rework cost at the Tooling Fabrication (per unit of time) $700

1c Unit testing cost at the Detail Design stage $500

2c Unit testing cost at the Tooling Fabrication $1,100

 Opportunity cost (per unit of time) Less than $5,000

Finally, the estimations of other model parameters were relatively simple (Table

3.5). For instance, 2T and 2w can be directly obtained from the previous projects. The

costs of rework were largely dominated by the engineering hours spent on the

activities, and so rc was estimated by adding the average hourly wage of involved

engineers. Testing costs were derived by adding the expenses of using equipment,

materials and engineering resources. Parameter  was obtained by interviewing

project managers. They were asked to provide the values of what amount of money

the company would lose, if the new product is delayed into the market for one month.

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

72

We then obtained the values of  , i.e. the financial loss of delaying the new

product’s time-to-market for one day.

3.5.2 Results

After getting the parameters, we applied the proposed method, and supplied

management with the testing and overlapping strategies for the projects with different

values of opportunity cost. The effect of inaccurate estimate of parameters was also

evaluated and shown in Figure 3.8. In the worst case, all the estimated values were

changed by 20% in the unfavorable direction, while in the best case, the parameter

values were changed in favorable direction.

Figure 3.8 Optimal solutions for projects with different opportunity cost

The Time Elapsed between Beginning Design Evaluation Tests

and Beginning Tooling Fabrication (day)

Testing Duration of Tooling Fabrication (day) Testing Duration of Detail Design (day)

(a)

Opportunity Cost 

($)

(b)

Opportunity Cost  ($)

(c)

Opportunity Cost  ($)

Base case

Best case

Worst case

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

73

Although the results may not be very accurate because of estimation errors of the

parameters, they are sufficient to guide the management of similar development

projects in the company. Previously, the average testing duration of Detail Design

was 12 days. Our research shows that it should be increased, as illustrated in Figure

3.8(a). In the past, the start time of Tooling Fabrication was intuitively decided by the

engineers and managers. The Tooling Fabrication starts one or two days before the

completion of Design Evaluation Tests. In other words, low level of overlapping was

applied for all the projects in the company. The overlapping policy made by intuition

is far from optimal. Our research defines that even in the worst case, high level of

overlapping should be adopted when 1000 , as illustrated in Figure 3.8(c).

To facilitate the decision making of the management, we also plot the Pareto

optimal fronts for the handset development projects. In particular, for a given

opportunity cost  , the value of qc is changed from $250 to $6000, and the optimal

1t , 2t , and st are then identified by the method developed in this study. The Pareto

optimal fronts for 0 , 000,1 , 000,3 and 000,5 are shown in Figure 3.9.

 Figure 3.9 Pareto optimal fronts for handset development projects

Additional Costs Caused by Testing and Overlapping (Dollar)

Number of Residual Problems after System Tests

In
cr

ea
se

d
 P

ro
d

u
ct

 Q
u

a
li

ty

0

1000

3000

5000

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

74

3.6 Discussion and Conclusion

A product, to be competitive, needs to be introduced expeditiously without

compromising product quality (Chakravarty 2001). Testing has been regarded as a

primary way to detect design problems and improve product quality. However, testing

can also be costly and time-consuming. Therefore, some researchers have developed

models to determine the optimal scheduling of tests (e.g Ahmadi and Wang 1999;

Thomke and Bell 2001; Serich 2005). We extend previous research by developing an

analytical model for the optimal scheduling of tests in overlapped process which is a

common practice to reduce project completion time. The propagation of design

problems within development stages, as well as the cost-quality trade-offs of project

performance, are explicitly studied.

Analysis of the model in this chapter yields following results:

 We provide closed-form expressions for the optimal time elapsed between

beginning the upstream tests and beginning the downstream development, and the

optimal downstream testing duration (Proposition 3.1).

 We find that the overall cost is first convex then concave increasing with respect to

upstream testing duration, and prove that there exists a unique optimum that

minimizes the overall cost (Proposition 3.2). Based on these properties, a one-

dimensional search algorithm is proposed for solving the problem.

 The impact of different model parameters, such as problem-solving capacity and

opportunity cost, on the optimal solution is discussed (Proposition 3.3, Corollaries

3.2-3.3). For instance, with higher upstream design problems and/or higher impact

of upstream design change on downstream rework, the optimal upstream testing

duration should be increased.

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

75

 We prove that the testing strategies in overlapped process differ from those in

sequential process. Thus, to improve project performance, testing strategies and

overlapping policies should be adjusted coordinately, and the results in Proposition

3.4 can be used as a guideline for structuring NPD processes.

 We present two variations of the cost minimization model, the target quality

problem and the budget constraint problem, and show that both of these problems

have similar solution structure as the cost minimization problem (Proposition 3.5).

It should be pointed out that there are two major limitations for the application of

the results in this chapter. First, the testing process is modeled as a continuous NHPP

process of discovering and solving design problems. To apply the NHPP model, the

testing process must have independent and stationary increments. Specifically,

numbers of design problem identified and resolved in disjoint intervals are

independent, and the number of design problem identified and resolved in any interval

of time depends only on the length of the testing time. The NHPP model is frequently

made in models of quality and reliability (Xie et al., 2007), and in system dynamic

models of NPD testing process (see e.g. Cooper, 1993a, 1993b, 1993c; Ford and

Sterman, 1998; Serich, 2005; Lin et al., 2008; Love et al., 2008). It is justified that

when design problems arise from many components or modules, each being a

potential source of design modifications. Although the NHPP model has been proved

to hold in many product development cases, there are still projects where this

modeling may not appropriate, especially when the testing set-up time is long.

Second, as in previous papers (e.g. Ha and Porteus, 1995; Loch and Terwiesch,

1998; Chakravarty, 2001; Joglekar et al., 2001; Lin et al., 2009), we examine the

concurrent execution of two consecutive development stages in this chapter. We call

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

76

the first stage “upstream” and the second “downstream”. For a development project

consisting of a series of consecutive stages, our analysis and results are valid for any

“upstream/downstream” overlap. For example, for a typical project consisting of four

consecutive stages: (1) Concept Development, (2) Product Design, (3) Process Design,

and (4) Pilot Production, the “upstream” stage could refer to stage 2, Product Design,

and the “downstream” stage could refer to stage 3, Process Design; or the “upstream”

stage could include stages 1 and 2, and the “downstream” stage could include stages 3

and 4. Nonetheless, in some cases decision makers may be more interested in the

whole NPD process rather than in two stages.

Motivated by above two issues, in Chapter 4, we further explore the test

scheduling problem for N-stage overlapped design process.

Future research may also be carried out in the areas discussed below. Firstly, like

most previous studies that focus on the test scheduling problem, the present models

are deterministic and therefore do not directly address risk. In the future, we may

extend our model by taking into account the estimation errors of model parameters

into decision making. Secondly, we assume the opportunity cost of time is constant.

Although it should be constant in short run, it may change in long run. Hence, it may

be worthwhile to investigate in detail how will the opportunity cost of time affect the

product development performance, as well as the optimal testing and overlapping

polices. Thirdly, like previous studies, e.g. Loch and Terwiesch (1998), Pham and

Zhang (2003), Roemer and Ahmadi (2004), Huang and Lyu (2005), Ji et al. (2005),

Wang and Yan (2005), Lin et al. (2009), we assume that the expected cost of

removing one remaining design problem after downstream testing qc , and the

percentage of downstream tasks affected by one upstream design problem k, are

 Chapter 3 Optimal Testing Strategies in Overlapped Design Process

77

constant for all problems/faults. As mentioned earlier, to make different design

problems/faults comparable, all design problems/faults are standardized into

dimensions. Hence, such assumption is likely to hold in real situations. Finally, to

keep the model simple, we assume that the overall testing cost is a linear function of

the time spent on testing, and overall rework cost is a linear function of the amount of

rework. As demonstrated by many studies, e.g. Thomke and Bell (2001), Loch et al.

(2001), Chakravarty (2001), Wang and Yan (2005), Gerk and Qassim (2008), Lin et

al. (2010), the linear functions are appropriate approximations of many real situations.

Future research can relax these assumptions and discuss the corresponding testing and

overlapping policies.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

78

CHAPTER 4

SCHEDULING TESTS IN N-STAGE

OVERLAPPED DESIGN PROCESS

4.1 Introduction

Testing has been regarded as an important tool for evaluating and improving

product design. Its importance for successful NPD has been emphasized by many

researchers (Loch and Terwiesch, 2001; Erat and Kavadias, 2008). At the same time,

testing can also be expensive and time-consuming: researches have shown that testing

activities can account for nearly half of total development effort (Cusumano and

Selby, 1995; Thomke, 2003). Therefore, these studies highlighted a key trade-off

involved in testing: the quality improvement versus additional time and cost spent on

testing.

Some mathematical models have examined this key trade-off. We categorize them

into two groups. The first group of studies assumed that the testing set-up time can be

ignored, and modeled testing as a continuous process of discovering and solving

design problems. Examples of such studies include Pham and Zhang (2003), Serich

(2005), Love et al. (2008), Lin et al. (2008), Yang et al. (2008). These models have

clearly shed light on the analysis of trade-off involved in testing, and are useful for

guiding NPD projects where there is very little time wasted on setting up the tests.

However, for projects with long testing set-up time, the methodologies and results

may not be applied.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

79

On the contrary, the second group of studies postulated that each time a test takes

place, a certain amount of set-up time (such as the time to get organized for the test, to

construct prototypes and to prepare documents) is required (Ha and Porteus, 1995;

Thomke, 1998, 2003), and modeled testing as a discrete cyclic process. Examples of

such studies include Ha and Porteus (1995), Dahan and Mendelson (2001), Erat and

Kavadias (2008). Following this line of research, the model presented in this chapter

considers testing set-up time and treats testing as a discrete cyclic process. The model

investigates the test scheduling problem for N-stage overlapped design process, where

downstream stages start before the completion of upstream tests. Such investigation is

of practical importance since overlapping development stages has become a common

mode of product development (Terwiesch et al., 2002; Gerk and Qassim, 2008; Gil et

al., 2008). Moreover, the two decisions, test scheduling and overlapping policies, are

interacted. Therefore, analytical models are needed to examine their combined effect

on product development performance. However, the optimization problem becomes

more complex, not only because the nonlinearity of functions involved, but also

because the simultaneous presence of both discrete and continuous decision variables.

4.1.1 A Practical Example

Here we use a practical example to further illustrate the problem studied in this

chapter. As shown in Figure 4.1, the refrigerator development usually consists of four

stages: concept creation, industrial design, detail design, and mold fabrication. We

distinguish between the initial design of these stages and testing activities that are

carried out after the initial design. There are four types of tests which are performed

in cycles. During each cycle, virtual or physical prototypes are built, tested to identify

the design problems, and then modifications are made to remove the problems. As

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

80

shown in Table 4.1, concept tests use CAD model to test customers’ reaction to the

proposed new product. Industrial design tests build digital mockups to verify the

feasibility of the industrial design. Detail design tests construct engineering

prototypes to verify that the design can function, and finally system tests produce

concrete refrigerators to improve the overall performance of the product. Completion

of the system tests at last stage signals that the product is ready for volume production.

Figure 4.1 Sequential and overlapped refrigerator development processes

(a) Sequential refrigerator development process

1st
cycle

2nd
cycle

…

System
Tests

Mold
Fabrication

Concept
Creation

Concept
Tests

Industrial
Design

Detail
Design Tests

Industrial
Design Tests

Detail
Design

1st
cycle

2nd
cycle

…

1st
cycle

2nd
cycle

…

1st
cycle

2nd
cycle

…

(b) Overlapped refrigerator development process

System
Tests

Concept
Creation

Concept
Tests

Industrial
Design

Detail
Design Tests

Industrial
Design Tests

Mold
Fabrication

Detail
Design

1st
cycle

2nd
cycle

…

1st
cycle

2nd
cycle

…

1st
cycle

2nd
cycle

…

1st
cycle

2nd
cycle

…

Preliminary information

Modified information

Rework due to overlapping

Initial design of development stages

Tests

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

81

Table 4.1 Prototype tests in the refrigerator development process

Prototype types Form Fidelity Cost (Per cycle)

Concept Tests CAD Model Low About $3,000

Industrial Design Tests Digital Mockups Medium About $4,000

Detail Design Tests Engineering Prototype High About $10,000

System Tests Physical Prototype High About $18,000

Typically, tests at earlier development stages (e.g. industrial design tests) are

cheaper, but are of lower representativeness or fidelity, than the system tests at the

last stage. Then, how much budget should be allocated to testing the initial design at

each stage? Or how many rounds of tests should be conducted? Figure 4.1(a) shows

the sequential refrigerator development process, where downstream stages (e.g. mold

fabrication) start after the completion of upstream tests (e.g. detail design tests), and

after most of the design problems are identified and resolved. While in overlapped

process, as illustrated in Figure 4.1(b), downstream stages (e.g. mold fabrication) start

earlier and can start at any time after the initial upstream design is available and

before the completion of upstream tests (e.g. detail design tests). However, because

downstream stages start on preliminary information, rework is often necessary to

accommodate upstream design changes. Then, what is the optimal start time of

downstream stages (e.g. mold fabrication)? If overlapping is applied, how should we

adjust the testing strategies? In this chapter, we present an analytical model to answer

these questions which are of concern to design managers.

The remainder of this chapter is organized as follows. Section 4.2 presents a

mixed-integer programming model which captures the relationship between project

properties, test scheduling, overlapping policies, and project profit. Section 4.3

introduces an algorithm to solve the problem. To illustrate the proposed methodology,

we present a case study at a consumer electronics company in Section 4.4.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

82

Discussions and conclusions are summarized in Section 4.5. Proofs of all the results

in this chapter can be found in Appendix B.

4.2 Model Formulation

Table 4.2 Symbols and decision variables

Symbols Definition

n Number of development stages

i Index for development stages)1(ni 

id Regular duration for initial design of stage i

ia Number of design problems introduced in the initial design of stage i

ip Testing quality

s

it Set-up time for a test in stage i

r

it Average time for solving one design problem in stage i

ib Impact factor

t

ic Testing cost in stage i (per test)

p

ic Penalty cost incurred per undetected design problem in stage i

h

ic Rework cost per time unit in stage i due to overlapping

 Opportunity cost (per time unit)

iz
 Number of tests completed in stage i before starting stage i+1

Decision Variables Definition

ix Number of tests to be conducted in stage i

1iy Overlap between development stages i and i+1

)(ii xT
 Accumulated testing duration after ix rounds of tests in stage i

),(11  iii yxH
 Rework duration in stage i+1 due to overlapping

The model presented in this section examines the projects with a “nominal

sequential” structure, i.e. the principal information exchange between consecutive

stages is unidirectional: from upstream to downstream (Krishnan et al., 1997; Kogan

and Raz, 2002; Lin et al., 2010). Moreover, to keep our analysis simple, we impose

the additional constraint that at most two stages can be performed concurrently. Such

model setting is consistent with previous papers (e.g. Roemer et al., 2000; Roemer

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

83

and Ahmadi, 2004), and is an extension of Qian et al. (2007) that deals with two

development stages.

Before formulating an analytic model, we define in Table 4.2 the notation used

throughout the rest of this chapter. In the following subsections, we first formulate the

trade-offs involved in scheduling tests for N-stage overlapped process. Then we

establish the functional relationship between project properties and rework caused by

overlapping development stages. The objective function and constraints are

summarized at the end of this section.

4.2.1 Overview of the Model

Consider an NPD process consisting of a series of n development stages. As

previous papers (e.g. Cooper, 1993a, 1993b, 1993c; Ford and Sterman, 1998;

Williams et al., 2003; Lin et al., 2008), we distinguish between the initial design of

development stages and testing activities. When the initial design at each stage is

finished, its output inevitably contains design problems (such as mismatches from

customer needs or technical design faults), certain type of tests is then carried out to

detect and remove these problems. Tests are conducted in cycles, and tests will not

introduce design problems. The product is launched into the market after the

completion of testing in the last stage n. Figure 4.1 shows an example of refrigerator

NPD process with four development stages.

It is known that tests are often imperfect and cannot find all design problems

through a single round of test. To capture this, let ia

denote the number of design

problems introduced in the initial design of stage i , ip denote the testing quality, i.e.,

the proportion of residual design problems detected by a single test, which is same as

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

84

the testing fidelity in Thomke and Bell (2001), and testing quality in Ford and

Sterman (1998), Lin et al. (2008). Then, in the first round of test in stage i , an amount

of ii pa design problems are detected and resolved, leaving)1(ii pa  unsolved. In the

second round of test, an amount of)1(iii ppa  design problems are resolved, leaving

2)1(ii pa  unsolved. In general, after ix rounds of tests, the overall number of design

problems removed are:])1(1[ix

ii pa  , and the residual design problems in stage i

are: ix

ii pa)1( .

In accordance with previous papers (e.g. Ha and Porteus 1995; Thomke and Bell

2001), we assume that if a design problem is detected in stage i , then an additional

time r

it must be spent on resolving the problem. Let s

it be the set-up time for a test in

stage i . The accumulated testing duration after ix rounds of tests in stage i ,)(ii xT ,

can then be formulated as:

 ]11[)(ix

ii

r

ii

s

iii patxtxT  (4.1)

As stated earlier, for sequential process, downstream stages (e.g. mold fabrication)

only start after the completion of upstream testing (e.g. detail design tests). However,

in practice, downstream stages (e.g. mold fabrication) usually start earlier and before

the completion of upstream testing (e.g. detail design tests) in order to reduce project

completion time. Consequently, during the overlapped period, certain percentage of

downstream design tasks is completed based on wrong information, and will have to

be reworked when these design problems are discovered and resolved. Defining

),(11  iii yxH
 be the rework duration in stage i+1 caused by overlapping stages i and

i+1. We will formally establish this function in Section 4.2.2.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

85

The trade-off in our model is as follows: increasing tests will decrease the residual

design problems and improve design quality at that stage, but requires additional time

and cost spending on the tests. If conducting too many repeated tests at one stage, the

marginal benefit of design quality improvement may not be compensated for the time

and cost required for the additional round of test. Overlapping helps to reduce project

completion time, i.e. help to reduce part of the negative effect of testing, but requires

additional effort (including time and cost) spent on downstream rework. To balance

these tensions, we define project profit as the gain from conducting tests minus

additional costs caused by testing and overlapping. The objective is thus to determine

the optimal number of tests needed at each stage and the optimal overlap between

consecutive stages, such that project profit will be maximized. To keep our analysis

simple and aligned to previous papers, we define p

ic be the penalty cost for each

undetected design fault in stage i . In practice, p

ic can be estimated as the cost of

rework that design fault would cause in the operational phase (for more details, see

e.g. Slaughter et al., 1998; Kogan and Raz, 2002; Ji et al., 2005). Clearly, without any

test, the overall penalty costs would be: 


n

i

i

p

i ac
1

. Thus, the overall gain from

conducting tests can be expressed as:

 



n

i

x

ii

p

ii

p

i
ipacac

1

)1((4.2)

We next consider the additional costs caused by testing and overlapping.

Compared with the process where testing and overlapping are not applied, the

additional costs associated with testing and overlapping include opportunity costs,

costs of tests, and downstream rework costs. Clearly, the project completion time for

the processes with testing and overlapping, can be represented as:

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

86

 




 
1

1

111),()()(
n

i

iiiiiiinnn yxHyxTdxTd (4.3)

It is clear that without testing and overlapping, the project completion time is:




n

i

id
1

. Let  be the opportunity cost per time unit. As previous papers (e.g.

Chakravarty, 2001; Wang and Yan, 2005; Lin et al. 2009), we assume  is constant.

Therefore, the overall opportunity costs is:  




 
1

1

111)(),()(
n

i

nniiiiii xTyxHyxT .

Let t

ic be the cost for a test in stage i , h

ic 1 be the rework cost per time unit in stage

i+1 caused by overlapping. The additional costs caused by testing and overlapping are:

   









1

1

1111

1

),()()(
n

i

iiii

h

i

n

i

iii

t

i yyxHcxTxc  (4.4)

Thus, profit maximization objective can be represented as:

   









1

1

1111

1

),()()()1(
n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

ii

p

i yxHcyxTxcpacacGMax i  (4.5)

4.2.2 Rework due to Overlapping

In overlapped process, downstream stages (e.g. mold fabrication) start before the

completion of upstream tests (e.g. detail design tests). Hence, some downstream tasks

completed during the overlapped period, might based on incorrect information of

upstream stages. When tests identify upstream design problems, we not only need to

correct the design problems but also need to redo these downstream tasks. Consistent

with previous papers (e.g. Loch and Terwiesch, 1998; Wang and Yan, 2005; Lin et al.,

2009), we assume that the speed of performing the workload of a development stage

(including initial design and rework caused by overlapping), is constant and equals

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

87

one. Based on this assumption, the workload of a development stage can be described

as duration, in other words, they are equivalent.

Previous model-based overlapping studies (e.g. Loch and Terwiesch, 1998;

Chakravarty, 2003; Roemer and Ahmadi, 2004; Wang and Yan, 2005; Lin et al., 2009)

have shown that the amount of rework caused by overlapping is decided by: the

number of upstream design changes, the impact of each change, and the downstream

progress, i.e. the number of downstream tasks completed when the upstream design

change arrives. Following these studies, we define ib be the impact factor, i.e. the

percentage of tasks in stage 1i that will be affected by one design change in stage i .

Figure 4.2 graphically represents the impact of design changes in stage i on the

downstream rework in stage 1i . For easier explanation, suppose that preliminary

information of upstream stage i is available at time pt , and downstream stage 1i

starts at time 0t . Let 1iy be the overlap between stages i and 1i , where

)(0 1 iii xTy   , iz be the number of tests completed in stage i before starting stage

1i . It is clear that during the overlapped period, there are)(ii zx  bursts of design

changes transferred from stage i to stage 1i . To ensure that all design changes are

absorbed in the initial design of stage 1i , tests in stage i should be terminated

before the completion of initial design in stage 1i , i.e. 11   ii dy .

After the completion of th

iz)1( test in stage i , the first batch of design changes

are transferred to stage 1i at time 1t . At that time, the progress of stage 1i is:

)]()1([1 iiiii xTzTy  . Then, if one design change of stage i arrives at 1t , the

amount of rework caused in stage 1i will be)]()1([1 iiiiii xTzTyb  . In the

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

88

th

iz)1( test of stage i , an expected number of iz

iii ppa)1(

design problems are

identified and resolved, and the amount of rework required in stage 1i is:

)]()1([)1(1 iiiii

z

iiii xTzTyppba i   . Similarly, there are
1

)1(


 iz

iii ppa design

changes arrive at time 2t , and the expected rework caused by these changes is

)]()2([)1(1

1

iiiii

z

iiii xTzTyppba i  


. In general, rework duration in stage 1i

caused by overlapping stages i and 1i ,),(11  iii yxH , can be represented as:

  








 
)(

1

1

1

11)]()([)1(,
ii

i

zx

k

iiiii

kz

iiiiiii xTkzTyppbayxH

(4.6)

Figure 4.2 Rework in stage 1i caused by overlapping stages i and 1i

),(11  iii yxH

Stage i th

ix Test

th

iz)1( Test 1st Test
th

iz)2( Test

)(ii xT

)(ii zT

th

iz Test

1iy

 1
st
 Test

pt 0t
2t Time

1t

),(11  iii yxH

1id

 1st Test

Stage i+1

Rework duration in stage i+1 due to

overlapping stages i and i+1

Regular duration for initial design

of stage i+1
1id

Accumulated testing duration after

ix rounds of tests in stage i

)(ii xT

Design changes

Rework due to overlapping

Initial design of development stages

Tests

1t

2t The arrival time of second batch

design changes

The arrival time of first batch

design changes

Starting time of stage i+1 0t

1iy Overlapped period between stages

i and i+1

Decision Variables

ix Number of tests to be conducted in

stage i

Preliminary information available pt

iz Number of tests completed in stage

i before start stage i+1
Accumulated testing duration after

iz rounds of tests in stage i

)(ii zT

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

89

4.2.3 Summary

Based on the elements discussed above, we summarize the optimization problem

as following non-linear mixed-integer program:

   









1

1

1111

1

),()()(])1(1[
n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

i yxHcyxTxcpacGMax i 

Subject to:

Equations (4.1) and (4.6),

ix nonnegative integer, for ni ,,2,1 

1iy nonnegative real number, for 1,,2,1  ni 

11   ii dy

for 1,,2,1  ni 

)(1 iii xTy 
 for 1,,2,1  ni 

In the optimization problem (4.7), the objective is to maximize project profit by

selecting appropriate number of tests ix and appropriate overlap 1iy . The functions

of)(ii xT and),(11  iii yxH are established in Equations (4.1) and (4.6), respectively.

The constraints)(1 iii xTy 
and

 11   ii dy defines the maximum overlap between

stages i and 1i .

4.3 Analysis of Testing and Overlapping Policies

The difficulty for solving problem (4.7) lies not only in the nonlinearity of

functions involved, but also in the simultaneous presence of both discrete and

continuous decision variables. Moreover, the objective function in the optimization

problem is non-concave, which further increases the difficulty of finding optimal

solutions. In this section, we will describe how to solve problem (4.7).

PROPOSITION 4.1 Given
*

ix and
*

iz , downstream stage starts directly after the

(4.7)

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

90

completion of an upstream test, i.e., for 1,,2,1  ni  ,

])1()1([)()()(
**

1
ii x

i

z

ii

r

iii

s

iiiiii ppatzxtzTxTy  (4.8)

The proof of all the results in this chapter can be found in Appendix B.

Proposition 4.1 shows that it is optimal to start initial design of downstream stage

1i directly after the completion of a test in stage i. This is so because otherwise the

gain from overlapping development stages will be decreased, without any other

changes. Based on the result of Proposition 4.1, (4.6) can be rewritten as:








 


i

x

i

z

ix

iiiii

s

iiii
p

pp
pxzbatzxH

ii

i
)1()1(

)1)((),(1



















ii

ii
zx

i

i

x

i

z

i
ii

r

i p
p

pp
bat)1(

2

)1()1(
122

2 (4.9)

The mixed-integer problem in (4.7) can then be simplified as following integer

program over decision variables ix and iz :

   ])1(1[])1(1[
1

ni x

nn

r

nn

s

n

n

i

i

t

i

x

ii

p

i patxtxcpacGMax 




 





1

1

11),()(])1(1[
n

i

iii

h

i

z

ii

r

ii

s

i zxHcpatzt i  (4.10)

Subject to: Equation (4.9),

ii xz 0 , for 1,,2,1  ni  (4.11)

1])1()1[()( i

x

i

z

ii

r

iii

s

i dppatzxt ii , for 1,,2,1  ni  (4.12)

iz (1,,2,1  ni ) and ix (ni ,,2,1 ) are integers (4.13)

In the optimization problem (4.10)-(4.13), the testing strategies are determined by

ix , i.e., the number of tests to be conducted at each stage, and the overlapping polices

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

91

are determined by iz , i.e., the number of upstream tests completed before starting the

downstream stage. Our next result characterizes *

iz that solves the optimization

problem, by assuming that
*

ix has been derived.

PROPOSITION 4.2 For 1,,2,1  ni  , given
*

ix ,

 (a)

*

iz

can be decided as follows:

if 01 F , then l

ii zz * ; if 02 F , then **

ii xz  ;

otherwise, setting 0




iz

G

yields a unique value of c

iz , and  c

ii zz *

or   1*  c

ii zz .

(b)

c

iz increases with ia , ib , s

it , and decreases with r

it .

In the above, l

iz , 1F and 2F are defined in Appendix B.

Proposition 4.2(a) characterizes the optimal number of tests completed in stage i

before starting stage 1i , *

iz , when
*

ix

is fixed. If 01 F , then project profit in (4.10)

decreases monotonically in iz , leading to l

ii zz * , in other words, it’s optimal to start

initial design of stage 1i as early as possible. On the other hand, if 02 F , then the

project profit increases monotonically in iz , and so **

ii xz  , i.e., it is optimal to

perform stages i and 1i sequentially. Otherwise, the project profit first increases

then decreases in iz , and is maximized at c

iz . *

iz can then be identified through

comparing project profits at  c

iz and   1c

iz .

Proposition 4.2(b) discusses the impact of parameters on c

iz . With higher initial

design problems in stage i, ia , higher impact factor ib , and higher testing set-up time

in stage i, s

it , the company should delay the start time of stage 1i , i.e. reduce the

overlap between stages i and 1i . Slower problem solving in stage i , r

it , also reduce

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

92

the optimal overlap.

In some real situations, the overlapping policies are fixed, and managers are faced

with the problem of determining the number of tests to be conducted at each stage.

Our next proposition can help managers make such decisions.

PROPOSITION 4.3 For 1,,2,1  ni  , given *

iz ,

 (a) The optimal number of tests to be conducted in stage i , *

ix , can be decided as

follows:

if 03 F , then **

ii zx  ; if 04 F , then u

ii xx * ; otherwise, setting 0




ix

G

yields a unique value of c

ix , and  c

ii xx *

or   1*  c

ii xx .

(b)

c

ix decreases with r

it , s

it , and ib .

(c) If ii aa  , then c

ix decreases with ia . Otherwise if ii aa  , there exists a unique

ix such that: if i

c

i xx  ,

c

ix increases with ia ; if i

c

i xx  ,

c

ix decreases with ia .

In the above,
 3F , 4F , u

ix , ia , and ix are defined in Appendix B.

Proposition 4.3(a) describes the optimal *

ix

when *

iz

is fixed. If 03 F , then the

project profit in (4.10) decreases monotonically in ix , leading to **

ii zx  . On the other

hand, if 04 F , then u

ii xx * , i.e. it is optimal to conduct as many tests in stage i as

possible. Otherwise, the project profit first increases then decreases in ix , and is

maximized at c

ix . The optimal *

ix can then be derived through comparing project

profits at  c

ix

and   1c

ix . Proposition 4.3(b) and 4.3(c) discuss the impact of

parameters on c

ix . Part (b) shows that with faster problem solving r

it , longer set-up

time of a test s

it , and/or higher impact factor ib , the number of tests in stage i should

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

93

be reduced. Part (c) shows that higher initial design problems ia may increase or

decrease the optimal number of tests needed in stage i . Based on the result of

Proposition 4.3(b) and 4.3(c), the decision makers can easily adjust the testing

strategies for NPD projects with different characteristics.

We have shown the respective effect of testing strategies or overlapping policies

on project profit. However, testing strategies and overlapping policies are interacted,

and their combined effect on project profit is much more complex. In the rest of this

section, we will discuss how to solve the optimization problem.

PROPOSITION 4.4

(a) *

ix must satisfy the following condition:

t

i

i

p

i
i

c

ac
x *

for 1,,2,1  ni 

 (4.14)

(b) If p

n

r

n ct  , else if)1ln()(nn

p

n

r

n

s

n

t

n pacttc   , then 0* nx ; otherwise,

 c

nn xx *

or   1*  c

nn xx .

In the above,
)1ln(

)]1ln()ln[()ln(

n

nn

p

n

r

n

s

n

t

nc

n
p

pacttc
x








(4.15)

Proposition 4.4(a) defines the upper bound of *

ix for 1,,2,1  ni  . To

maximize project profit, testing costs should be less than the potential benefit, and so

we get equation (4.14). Proposition 4.4(b) characterizes the optimal number of tests to

be conducted at final stage n , *

nx . Defining *G be the optimal project profit, and

)(*

ixG be the optimal project profit for a given value of ix . We now introduce the

following algorithm 4.1 to solve the optimization problem:

Algorithm 4.1

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

94

Step 1. Determine *

nx : If p

n

r

n ct  , else if)1ln()(nn

p

n

r

n

s

n

t

n pacttc   , then

0* nx ; Else, calculate c

nx , compare  c

nx and   1c

nx , and identify the one

yields higher project profit.

For 1,,2,1  ni  , do:

Step 2 . Set 0* ix and 0* iz , calculate *G . Let 1ix .

Step 3. If
t

i

i

p

i
i

c

ac
x  , stop.

Step 4. For the current value of ix , determine *

iz according to Proposition 4.2(a).

(a) Identify iz that satisfies 1])1()1[()(


 i

x

i

z

ii

r

iii

s

i dppatzxt ii . Let

  i

l

i zz  ,0max .

(b) If 01 F , then l

ii zz  , calculate)(*

ixG , go to Step 5; if 02 F , then ii xz  ,

calculate)(*

ixG , go to Step 5. Else, identify the unique c

iz that satisfies

0




iz

G
. Compare  c

iz and   1c

iz , and identify the one yields higher project

profit)(*

ixG .

Step 5. If **)(GxG i  , then ii xx * , ii zz * , and)(**

ixGG  .

Step 6. 1 ii xx . Go to Step 3.

In Step 1 of above algorithm, we determine *

nx according to Proposition 4.4(b).

The main loop from Step 2 to Step 6 identifies the optimal testing strategies and

overlapping policies, *

ix

and *

iz , for 1,,2,1  ni  . We first let 0* ix , 0* iz , and

get an initial *G in Step 2. Then, in Step 3, we check whether ix exceeds its upper

bound, and in Step 4, we determine *

iz for the current value of ix according to

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

95

Proposition 4.2(a). Step 5 compares)(*

ixG with *G . If)(*

ixG is larger, then *

ix

and

*

iz will be adjusted accordingly. *

ix

and *

iz can then be identified after all possible

values of ix are examined.

4.4 Case Study

In this section, we apply the model to the refrigerator design process at a

consumer electronics company. The corporation manufactures a wide range of

household electrical appliances, such as refrigerators, air conditioners, washing

machines, televisions, and so on, and its global revenue in 2005 was more than 12

billion US dollars. There are six types of refrigerator projects in the company, one of

which is analyzed in this section to illustrate the proposed methodology. The main

components of the refrigerator are shown in following Figure 4.3.

Figure 4.3 Main Components of the Refrigerator

The refrigerator development process has been shown in Figure 4.1. In the

refrigerator development, four types of tests: concept tests, industrial design tests,

detail design tests, and system tests, are carried out, and the main characteristic of

these tests have been listed in Table 4.1.

4.4.1 Data Collection

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

96

In order to illustrate our model, we collected detailed data based on historical

records, such as project schedule and documents of design problems detected and

resolved over the entire period of the project. These data were double checked

together with the engineers familiar with this project. In most companies, these data

are available which allows us to derive the parameter values with reasonable validity

(Krishnan et al., 1997; Kogan and Raz, 2002; Jun et al., 2005; Gerk and Qassim,

2008).

The regular duration for initial design id , and testing set-up time s

it , were directly

derived from the project schedule. Consistent with previous studies (e.g. Cooper,

1993b, 1993c; Thomke and Bell, 2001; Lin et al., 2008; Love et al., 2009), the initial

design problems ia , testing quality ip , and average time for solving one design

problem r

it were derived based on the historical records of the quality problems found

and solved over the entire period of the project.

As is common in consumer electronics industry, concurrent engineering was

applied in the case study company. For example, two rounds of detail design tests

were conducted in the project, and mold fabrication started after the completion of

first round of test. In the second round of test, more than 80 detail design problems

were resolved and transferred, resulting in about 15% of rework in mold fabrication.

We then derived the impact of each modification 3b 0.18%. We got ib for other

stages in the same way (Consistent with Krishnan et al., 1997; Roemer et al., 2000;

Jun et al., 2005; Lin et al., 2009).

The other parameters are commonly used in past models (e.g. Slaughter et al.,

1998; Thomke and Fujimoto, 2000; Kogan and Raz, 2002; Lin et al., 2008).

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

97

Following these studies, we got these parameters together with engineers who were

familiar with the project. For example, the costs of a test t

ic were derived by adding

the expenses of building prototypes, using equipment, materials and engineering

resources. The penalty cost per undetected design problem p

ic was estimated as the

cost of rework that design problem would cause in the operational phase. The rework

cost per time unit were largely dominated by the engineering hours spent on the

activities, and so h

ic was estimated by adding the average hourly wage of the involved

engineers from industrial design, mechanic design, hardware design, and so on. We

summarize parameter values of the project in Table 4.3.

Finally, we checked the testing and overlapping policies adopted by the company.

For the previous projects, three rounds of concept tests, two rounds of industrial

design tests and detail design tests, and three rounds of system tests were conducted.

Usually, the industrial design started after the completion of two rounds of concept

tests, the detail design and mold fabrication started after the completion of one round

of industrial design test, and one round of detail design test, respectively.

Table 4.3 Model inputs for the refrigerator development project

Stages
id

(day)

ia ip s

it
(day)

r

it
(day)

ib
t

ic

(×10
3
)

p

ic

(×10
3
)

h

ic

(×10
3
)

Concept Creation 9 47 0.4 3 0.229 1.4% 3 20 -

Industrial Design 12 120 0.52 12 0.086 0.6% 4 10 0.35

Detail Design 20 420 0.7 4 0.103 0.18% 10 5 0.8

Mold Fabrication 40 259 0.75 6 0.082 - 18 3.5 7

4.4.2 Results and Sensitivity Analysis

After deriving the data, we investigated the optimal testing and overlapping

policies using the Algorithm 4.1 in Section 4.3. The optimal testing strategies

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

98

identified are: 6*

1 x , 2*

2 x , 4*

3 x , 2*

4 x . Previously, three rounds of concept

tests, two rounds of industrial design tests, two rounds of detail design tests, and three

rounds of system tests were conducted in the project, i.e., 31 x , 22 x , 23 x ,

34 x . Our study shows that the company should add three more rounds of concept

tests and two more rounds detail design tests, while reduce system tests to two rounds.

The optimal overlapping policies identified by Algorithm 4.1 are: 3*

1 z , 1*

2 z ,

1*

3 z , i.e., it is optimal to start industrial design after three rounds of concept tests,

and to start detail design after one round of industrial design test, and start mold

fabrication after one round of detail design test. Compared with the existing

overlapping policy, i.e. 21 z , 12 z , 13 z , the company should delay the start of

industrial design. The benefit from the optimal testing and overlapping policies

identified by our research can be increased from US$ 2,725,600 to US$ 3,007,500.

Meanwhile, the project completion time can be decreased slightly from 190 days to

189 days.

The sensitivity of the optimal solution to cost parameters, including penalty cost

per undetected design problem
p

ic , opportunity cost per time unit  , cost for a test

t

ic , and rework cost per time unit h

ic , were evaluated. Note that changing the value

of h

ic from 50% to 200% will not affect the optimal solution, and changing the value

of t

ic will not affect *

iz . The results are presented in Table 4.4-4.6, which suggest that

the sensitivity of the optimal solution with respect to cost parameters is relatively low.

For example, as shown in Table 4.4, the optimal solution is not affected when t

ic

change from 125% to 200%.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

99

Table 4.4 Impact of testing cost on optimal testing policies

Stages 50% t

ic 75% t

ic 100% t

ic 125% t

ic 150% t

ic 175% t

ic 200% t

ic

Concept Creation 6 6 6 6 6 6 6

Industrial Design 2 2 2 2 2 2 2

Detail Design 5 5 4 4 4 4 4

Mold Fabrication 2 2 2 1 1 1 1

Table 4.5 Impact of
p

ic

on the optimal solution

Stages
50% p

ic 75% p

ic 100% p

ic 125% p

ic 150% p

ic 175% p

ic 200% p

ic

*

ix *

iz *

ix *

iz *

ix *

iz *

ix *

iz *

ix *

iz
*

ix *

iz
*

ix *

iz

Concept Creation 3 1 3 1 6 3 6 3 6 3 6 3 6 3

Industrial Design 1 0 2 1 2 1 2 1 3 2 3 2 3 2

Detail Design 4 1 4 1 4 1 5 1 5 1 5 1 5 1

Mold Fabrication 0 - 1 - 2 - 2 - 2 - 2 - 2 -

Table 4.6 Impact of opportunity cost on the optimal solution

Stages
50%  75%  100%  125%  150%  175%  200% 

*

ix *

iz *

ix *

iz *

ix *

iz *

ix *

iz *

ix *

iz
*

ix *

iz
*

ix *

iz

Concept Creation 6 3 6 3 6 3 3 1 3 1 3 1 3 1

Industrial Design 3 2 2 1 2 1 2 1 1 0 1 0 1 0

Detail Design 5 1 4 1 4 1 4 1 4 1 4 1 4 1

Mold Fabrication 2 - 2 - 2 - 1 - 1 - 1 - 1 -

4.4.3 Combined Effect of Testing and Overlapping on Project Profit

We solve a series of numerical examples in this section to illustrate the complex

relationship between project profits, and testing and overlapping policies. Figure 4.4(a)

shows that the project profit is “M shaped” with the increase of concept tests. Figure

4.4(b) and 4.4(c) indicate that project profit first increases then decreases as the

number of industrial design tests or detail design tests increase.

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

100

0 2 4 6 8 10 12 14 16

Figure 4.4 Combined effect of testing and overlapping on project profit

4.5 Discussion and Conclusion

In Chapter 3, we have presented an analytical model for the scheduling of tests in

overlapped design process, where a downstream stage starts before the completion of

upstream testing. In this chapter, we further explore the test scheduling problem for

N-stage overlapped design process. The model presented in this chapter can be used

to determine the optimal number of tests needed at each development stage, together

with the optimal overlapping policies. It complements the work in Chapter 3 by

taking testing set-up time into consideration, and by examining the testing and

overlapping polices for the whole NPD process.

Analysis of the model in this chapter yields following results some of which may

not be intuitive:

(a) Number of Concept Tests x1

0%

-20%

-40%

-60%

-80%

-100%

(b) Number of Industrial Design Tests x2

0 1 2 3 4 5 6

0%

-20%

-40%

-60%

-80%

-100%

%
 -

d
ev

ia
ti

o
n

 f
ro

m

o
p

ti
m

a
l

p
ro

fi
t

(c) Number of Design Evaluation Tests x3

0 2 4 6 8 10 12 14 16

0%

-20%

-40%

-60%

-80%

-100%

%
 -

d
ev

ia
ti

o
n

 f
ro

m

o
p

ti
m

a
l

p
ro

fi
t

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

101

 Proposition 4.1 shows that it is optimal to start downstream stages directly

after the completion of an upstream test. This is so because otherwise the gain from

overlapping development stages will be decreased, without any other changes.

 Proposition 4.2 describes the optimal overlapping policies when the number of

tests is predetermined. It also shows that with higher initial design problems, higher

impact factor, higher test set-up time, and/or slower problem solving, the company

should delay the downstream initial design.

 In some real situations, the overlapping policies are fixed, and managers are

faced with the problem of determining the number of tests at each stage. Proposition

4.3 can help managers make such decisions. The impact of model parameters on the

optimal testing policies is also discussed.

 Finally, an efficient algorithm is proposed for solving a practical problem that

has not been addressed so far in the literature.

Nonetheless, we would like to point out following limitations for application of

the results in this chapter:

 Firstly, our model can only be built and analyzed when historical data is

available. For derivative projects which account for the majority of product

development projects (Leifer et al., 2000; Jun and Suh, 2008), these data are typically

available (see e.g. Krishnan et al., 1997; Thomke and Fujimoto, 2000; Jun et al.,

2005). However, for totally new projects, we can only build a model based on

estimated data which may lead to inaccurate results. For instance, if a manager wants

to apply our methodologies to improve the refrigerator development process, then

he/she should collect the data from previous similar refrigerator development projects.

 Secondly, in the data collection process, we find that many firms are unwilling

to share their product development experiences for security reasons. Even for the firm

 Chapter 4 Scheduling Tests in N-stage Overlapped Design Process

102

that has participated in our study, the data collection was quite challenging and time-

consuming since the companies did not know how past project data could be used in

guiding future projects. Therefore, in spite of our best effort, we were able to do only

a case study of refrigerator development. In the future, it is meaningful to apply the

proposed methodologies to other development projects and processes.

 Thirdly, our model is deterministic and therefore does not directly address risk,

although we have addressed many facets of risk through sensitivity analysis of the

optimal solution to parameters.

 Finally, to keep the model simple, we assume that the overall penalty cost is a

linear function of the number of remaining design faults, and overall rework cost is a

linear function of the amount of rework. Even with such linear assumptions, our

model is complex and is difficult to solve. Moreover, the linear functions are

appropriate approximations of many real situations, as demonstrated by many studies

(see e.g. Kogan and Raz, 2002; Roemer and Ahmadi, 2004; Ji et al., 2005; Wang and

Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009). Future research can relax these

assumptions and discuss the corresponding testing and overlapping policies.

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

103

CHAPTER 5

A DECOMPOSITION APPROACH FOR

SEQUENCING DESIGN ACTIVITIES

To structure NPD processes, in addition to the test scheduling problem discussed

in Chapter 3 to 4, the management is often faced with another important decision

problem, i.e., how to plan the sequence of many interrelated activities (Krishnan and

Ulrich, 2001; Karniel and Reich, 2009). Formal scheduling techniques, such as CPM

and PERT, cannot deal with interrelated activities (Eppinger et al., 1994; Browning

and Ramasesh, 2007). One effective tool for addressing this shortfall is DSM, which

has spawned many research efforts on sequencing design activities with the objective

of minimizing feedbacks. It is known that DSM sequencing problem is NP-complete

and difficult to solve. Since many real world NPD projects often involve

dozens/hundreds of interrelated activities, the development and improvement of

solution procedures for large DSM-based activity sequencing problem is very

important. As such, in this chapter a new approach is proposed for solving this

problem.

The organization of this chapter is as follows. After a brief introduction, we

introduce a 0-1 Quadratic Integer Program (QIP) for DSM sequencing problem in

Section 5.2. Section 5.3 presents a decomposition based solution strategy for solving

the problem. In Section 5.4, we perform a number of experiments, and apply the

solution strategy to three real data sets. Conclusions are summarized in Section 5.5.

Proofs of all the results in this chapter are provided in Appendix C.

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

104

5.1 Introduction

Many researchers have highlighted weaknesses of network-based approaches,

such as PERT and CPM, for scheduling NPD projects. First, PERT/CPM cannot

effectively model iteration, which is a fundamental characteristic of NPD processes.

Iteration occurs in an NPD process for two main reasons: (1) the outputs of activities,

such as engineering drawings, specifications and bill of materials, are often unstable

and inaccurate, and need to be reworked when downstream activities detect some

problems in the original design (Loch and Terwiesch, 2005; Love et al., 2009); (2)

downstream activities may be repeated when modified information is passed along

from upstream activities (Smith and Eppinger, 1997a; Jun et al., 2005; Lin et al.,

2008). Thus, cyclic information flows are quite common in NPD processes and

PERT/CPM could not deal with such loops effectively. Second, in PERT/CPM, the

underlying precedence relationships among activities are assumed known and

unchanged. However, for most complex development projects, clear precedence

constraints do not exist and are rarely known in advance (Eppinger et al., 1994;

Ahmadi et al., 2001; Jun and Suh, 2008).

To address these shortfalls, one known method is DSM. As illustrated in Figure

5.1, the basic form of DSM is a binary matrix representation of a project with

elements denoting individual design activities which are executed in the temporal

order listed from top to bottom (Eppinger et al., 1994; Chen et al., 2004). Sub-

diagonal marks represent inputs from upstream activities to downstream, and super-

diagonal marks denote feedbacks from downstream activities to upstream (Denker et

al., 2001; Karniel and Reich, 2009). As such, DSM provides a compact representation

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

105

of a complex system by showing information dependencies in a square matrix, as well

as a useful tool for describing and investigating iteration (Cho and Eppinger, 2005).

 (a) DSM Representation (b) NDSM Representation

Figure 5.1 DSM/NDSM representation of iterative NPD process: an example

The DSM approach was first introduced by Steward (1981). Eppinger et al. (1994)

extended Steward’s work by explicitly including numerical measures of the degree of

activity dependence, and introduced NDSM, such that more complex analytical

procedures could be used to further improve the design process. Since then, many

practitioners and researchers have reported successful applications of DSM approach

in managing NPD projects (see e.g. Eppinger, 2001; Sharman and Yassine, 2004;

MacCormack et al., 2006; Veenstra et al., 2006; De Weerd-Nederhof et al., 2007;

Amrit and van Hillegersberg, 2008; Sosa, 2008). Reviews of DSM approach can be

found in Browning (2001), Karniel and Reich (2009).

In project scheduling, DSM has spawned many research efforts on sequencing

design activities (Eppinger et al., 1994; Browning, 2001; Karniel and Reich, 2009). In

most of previous studies, the objective of sequencing is to minimize feedbacks (Meier

et al., 2007; Lancaster and Ozbayrak, 2008). There are several reasons why this is

meaningful and important. First, feedbacks determine where iteration loops occur

(Eppinger et al., 1994; McCulley and Bloebaum, 1996). Iteration is a major driver for

1 2 3 4

1 × ×

2 × ×

3 ×

4 × ×

1 2 3 4

1 0.6 0.5

2 0.9 0.3

3 0.4

4 0.8 0.7 (a)

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

106

lengthy and costly product development (Mihm et al., 2003; Lee and Suh, 2006; Love

et al., 2008). Thus, minimizing feedbacks is a good approximation for concurrently

reducing cycle time and development costs (Ahmadi et al., 2001; Collins et al., 2009).

For instance, Ahmadi et al. (2001) showed that the average errors resulting from the

surrogate objective function of minimizing feedbacks was only 2.6% and 2.7%, and

the maximum error was less than 8%, over 540 problems solved. Second, as reported

by McCulley and Bloebaum (1996), in practice, especially for distributed product

development, “the design manager is likely to desire choosing an evaluation

procedure which requires the least amount of information to be guessed initially. Each

feedback corresponds to one or more guesses. Therefore, minimizing feedbacks will

also minimize the amount of information required to be supplied as initial guesses”.

Several independent researchers have reported that DSM sequencing problem is

NP-complete (e.g. McCulley and Bloebaum, 1996; Ahmadi et al., 2001; Meier et al.,

2007). Therefore, there is almost no chance to develop solution algorithms with a

polynomial-time complexity (Li and Sun, 2006). To solve large-scale sequencing

problem, one stream of research focused on meta-heuristic methods, such as Genetic

Algorithm (Altus et al., 1996; Whitfield et al., 2003; Meier et al., 2007), Simulated

Annealing (Abdelsalam and Bao, 2006, 2007), and Evolutionary Algorithm

(Lancaster and Cheng, 2008).

Another stream of research focused on decomposition based methods. For

instance, Rogers (1989) developed DeMAID which involved two steps: (1) grouping

activities into blocks; and (2) sequencing the activities within each block so as to

minimize feedbacks. The DeMAID was further extended to DeMAID/GA by

incorporating GA for sequencing the activities within each block (McCulley and

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

107

Bloebaum, 1996; Rogers, 1996, 1999). Ahmadi et al. (2001) complemented this line

of research by explicitly developing mathematical models for solving large-scale

DSM sequencing problem. In their paper, a Block Decomposition method was

presented for grouping activities into blocks, with the objective of minimizing

feedbacks among blocks. A Branch-and-Bound algorithm was then used to identify

optimal solutions of sub-problems, and finally, the sub-problem solutions were

concatenated to a solution of the overall problem. Their work has clearly shed light on

the analysis of DSM sequencing problem, and has greatly advanced our

understanding of managing NPD processes. However, a major disadvantage of their

Block Decomposition method is that the resulting overall activity sequence (obtained

by solving all sub-problems) may be a sequence that is worse than the initial one.

In this study we therefore develop a new decomposition approach for solving

large-scale DSM sequencing problem. Based on the approach proposed, the overall

activity sequence can be gradually improved. Another contribution of this study lies

in that it establishes two simple rules for direct feedback reduction, and presents a

heuristic for improving feasible solutions through activity exchange. Finally, we

perform a number of random examples, and apply the proposed methodology to three

real data sets. Solutions presented in previous studies are used to benchmark the

effectiveness of the proposed methodology.

5.2 Mathematical Model

Consider a product development project consisting of n design activities, where

each individual design activity can be viewed as information-processing units that

receives information from upstream activities and transform it into new information to

be passed on to downstream activities (Clark and Fujimoto, 1991; Browning, 2009).

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

108

We assume that the degree to with each activity depends on the output information of

other activities is known. Let parameter jid , (0, jid) denote the dependence level of

activity i on activity j . Note that the model and methodologies developed in this

study can be applied to either a binary DSM or a numerical DSM. In binary DSM,

jid , only takes binary values, while in numerical DSM, parameter jid , can take real

numbers. In practice, the following three measures, which are proposed by Eppinger

et al. (1994) and extended by Browning and Eppinger (2002), Yassine (2007) and so

on, can be used to estimate the value of jid , :

(1) Variability: if the output from activity j will change significantly (slightly),

then the dependency tends to be strong (weak).

(2) Predictability: if the change of output from activity j is unpredictable

(predictable), then the dependency tends to be strong (weak).

(3) Sensitivity: If a slight (substantial) change of output of activity j will lead to a

large (small) magnitude of design iteration in activity i, then the dependency tends to

be strong (weak).

Based on above measures, activity dependencies can then be quantified through

interviewing the engineers and managers familiar with the projects and/or via

surveying relevant documentation (Eppinger, 2001; Chen et al., 2004). Activity

dependencies can also be effectively quantified by applying the well-known

techniques, such as AHP (see Chen and Li, 2003), and QFD (see Chen et al., 2004).

To formulate the DSM sequencing problem, we introduce following notation:

ji, index for activities, nji ,...,2,1, 

hm, index for activity positions, nhm ,...,2,1, 

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

109

Decision Variables (for ni ,...,2,1 ; nm ,...,2,1):

The objective of DSM sequencing problem is to find an activity sequence so as to

minimize feedbacks, which can be formulated as following 0-1 Quadratic Integer

Program (QIP):

 



  











n

i

n

ij
j

ji

n

m

n

mh

hjmi dxxxfMin
1 1

,

1 1

)((5.1)

Subject to:

1
1




n

i

mix m (5.2)

1
1




n

m

mix i (5.3)

  mix mi ,1,0  (5.4)

The objective (5.1) minimizes feedbacks or the sum of super-diagonal numbers in

a NDSM. For instance, in the NDSM shown in 5.1(b), the total feedbacks for the

activity sequence of {1, 2, 3, 4} are 1.8. The feedback minimization objective works

as follows: if activity j is assigned to precede activity i, then we get 0
1




n

mh

hjx , in

other words, jid , is not included in the objective (5.1); on the other hand, if activity i

is assigned to precede activity j, then 1
1




n

mh

hjx , in other words, jid , is a feedback

and is included in (5.1). Constraints (5.2) and (5.3) are assignment constraints. As

mentioned earlier, DSM sequencing problem is NP-complete. Therefore, it’s hard to

solve the optimization problem (5.1)-(5.4).

if activity i is assigned to the m
th

 position,

Otherwise. 




0

1
mix

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

110

5.3 Proposed Solution Strategy

In this section, we will describe how to solve the problem in (5.1)-(5.4). We first

develop a heuristic for improving feasible solutions, and show that optimal solutions

of small-scale problems can be obtained by a Branch-and-Bound method. This

Branch-and-Bound method is then extended by a heuristic decomposition approach

for solving large-scale problems. More specifically, the heuristic decomposition

approach iteratively (1) selects a sub-problem from a feasible solution of the main

problem, (2) employs the Branch-and-Bound method to find the optimal solution of

the sub-problem, and (3) reincorporates the sub-problem solution into the solution of

the main problem.

5.3.1 A Heuristic for Improving Feasible Solutions

In this subsection, we first develop two simple rules (Theorem 5.1 and 5.2) for

direct feedback reduction. Based on the results, a heuristic is then presented for

improving feasible solutions through activity exchange.

THEOREM 5.1 For an activity sequence of }...,,1,,1...,,2,1{ niii  , if iiii dd ,11,   ,

then through exchanging activity i and activity 1i , the total feedbacks can be

reduced by  iiii dd ,11,   .

The proof of all the results in this chapter can be found in Appendix C.

Theorem 5.1 shows that for two adjacent activities i and 1i , if the dependency

level of activity i on activity 1i is larger than that of activity 1i on activity i,

i.e., iiii dd ,11,   , then the execution sequence of activity i and activity 1i should be

exchanged. Let us use a real NDSM published in Chen and Li (2003) to further

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

111

illustrate this. Figure 5.2 shows the original NDSM of nine activities for a chemical

processing system, which is built based on the well-known technique of AHP. The

total feedbacks for the original activity sequence of {1,4,5,8,10,11,17,18,19} are

3.837. Clearly, the dependency level of activity 1 on activity 4 is larger than that of

activity 4 on activity 1. Thus, by exchanging the positions of activity 1 and activity 4 ,

the total feedbacks can be reduced to 3.678. The result is shown in Figure 5.3.

1 4 5 8 10 11 17 18 19

Operating Structure Design 1

0.654

0.232

0.140

0.253

Shipping Design 4 0.495

0.451 0.310

0.165

Structure Lifting Design 5 0.286

0.161 0.136 0.224

Structural Documentation 8

0.137 0.351

0.089

0.118

Wind Load Design 10 0.117

0.194

0.119

Seismic Design 11

0.200

0.300

Foundation Load Design 17

0.160

0.485

Insulation Structural Design 18 0.177

0.239

0.071

Structural Bill of Materials 19

0.128

0.795

0.193

Figure 5.2 Original NDSM for a chemical processing system

(From Chen and Li, 2003)

4 1 5 8 10 11 17 18 19

Shipping Design 4

0.495 0.451 0.310

0.165

Operating Structure Design 1 0.654

0.232

0.140

0.253

Structure Lifting Design 5

0.286

0.161 0.136 0.224

Structural Documentation 8 0.137

0.351

0.089

0.118

Wind Load Design 10

0.117

0.194

0.119

Seismic Design 11

0.200

0.300

Foundation Load Design 17 0.160

0.485

Insulation Structural Design 18

0.177

0.239

0.071

Structural Bill of Materials 19

0.128

0.795

0.193

Figure 5.3 Improved NDSM through exchanging activities 1 and 4

Our next result further establishes the rule for exchanging two arbitrary activities.

Given an activity sequence of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  , defining:















1

1

,

1

,

1

1

,

1

,,

i

jk

ki

i

jk

jk

i

jk

kj

i

jk

ikij dddd (5.5)

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

112

THEOREM 5.2 If 0, ij , then through exchanging activity j and activity i, the total

feedbacks can be reduced by ij , .

Theorem 5.2 describes that for an initial activity sequence of

}...,,1,,1,...,1,,1...,,2,1{ niiijjj  , if 0, ij , then the execution sequence of

activity j and activity i should be exchanged. For example, for the NDSM shown in

Figure 5.3, inspection of activity 4 and activity 8 shows that

346.0351.0137.0654.0232.0310.0451.0495.08,4  . Hence, through

exchanging activities 4 and 8, the feedbacks can be reduced to 3.332. The result is

shown in Figure 5.4.

8 1 5 4 10 11 17 18 19

Structural Documentation 8

0.351 0.137

0.089

0.118

Operating Structure Design 1 0.232

0.654

0.140

0.253

Structure Lifting Design 5

0.286

0.161 0.136 0.224

Shipping Design 4 0.310 0.495 0.451

0.165

Wind Load Design 10 0.194 0.117

0.119

Seismic Design 11

0.200

0.300

Foundation Load Design 17

0.160

0.485

Insulation Structural Design 18 0.239 0.177

0.071

Structural Bill of Materials 19

0.128

0.795

0.193

Figure 5.4 Improved NDSM through exchanging activities 4 and 8

Based on the results of Theorems 5.1 and 5.2, we now introduce following

Procedure 5.1 for improving feasible solutions of DSM sequencing problem:

Procedure 5.1

Step 1. Calculate the total feedbacks f for an initial activity sequence, and store it as

the best sequence.

Step 2. Set mobile-activity j to activity 1.

Step 3. Calculate ij , for ni ...,,2,1 , and ji  . Identify activity k that gives the

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

113

maximum kj , . If 0, kj , exchange activity j and activity k, save the result as

the new best sequence and set kjff , .

Step 4. Set the next activity as the new mobile-activity, and go back to Step 3 until all

the activities have been set as the mobile-activity.

5.3.2 The Branch-and-Bound Method

In this subsection, a Lagrangian relaxation based Branch-and-Bound method is

presented to solve small DSM Sequencing problem instances. The main features of

the Branch-and-Bound method are based on those proposed by Ahmadi et al. (2001).

We first show that the 0-1 QIP in (5.1)-(5.4) can be transferred into following

equivalent 0-1 Linear Integer Program (LIP):








n

i

n

ij
j

jiji zdzxfMin
1 1

,,),((5.6)

Subject to: Equations (5.2)-(5.4),







1

1

,

m

h

hjimji xxz , m (5.7)

 1,0, jiz ji, (5.8)

THEOREM 5.3 The optimal objective value of the 0-1 QIP is equal to that of the 0-1

LIP.

Based on the result in Theorem 5.3, the 0-1 QIP in (5.1)-(5.4) is transferred to the

0-1 LIP. By using non-negative Lagrangian multipliers m

ji , to relax constraints (5.7),

the following Lagrangian relaxation problem is obtained:

 



























n

i

n

ij
j

ji

m

h

hjim

n

m

m

jijiji zxxzdd
1 1

,

1

11

,,,min)( (5.9)

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

114

 Subject to: Equations (5.2)-(5.4), (5.8).

It has been shown in Ahmadi et al. (2001) that the Lagrangian relaxation of DSM

sequencing problem can be reduced to an assignment problem. Their result is adapted

and presented in the following Theorem 5.4.

THEOREM 5.4 For given non-negative Lagrangian multipliers m

ji , that satisfy:

ji

N

m

m

ji d ,

1

, 


 , the Lagrangian relaxation problem can be reduced to the following

assignment problem:

im

n

i

n

m

n

ij
j

n

mh

h

ij

n

ij
j

m

ji xd   
 


 


 

















1 1 1 1

,

1

,min)( (5.10)

Subject to: Equations (5.2)-(5.4).

It is well-known that assignment problem can be effectively solved by the

Hungarian method (Burkard et al., 2009). Therefore, for given non-negative

Lagrangian multipliers m

ji , that satisfy ji

N

m

m

ji d ,

1

, 


 , the Hungarian method can be

used to solve the problem and obtain a lower bound for the 0-1 LIP. The best lower

bound can be derived by choosing Lagrangian multipliers m

ji , to be the solution of the

following Lagrangian dual problem:

)(max d (5.11)

Subject to:

ji

n

m

m

ji d ,

1

, 


 , for all non-zero jid , (5.12)

0, m

ji , for all m and non-zero jid , (5.13)

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

115

The Lagrangian dual problem can then be solved by the well-known subgradient

method. Based on the lower bounds identified by the Lagrangian relaxation and

subgradient method, the following Branch-and-Bound procedures can then be used to

find optimal solutions of DSM sequencing problem (Ahmadi et al., 2001).

Procedure 5.2

Step 1. Compute a feasible solution by Procedure 5.1, save the result as optx , and save

the corresponding objective value as optf . Compute the Lagrangian bound

)(*d . If optfd )(* , stop.

Step 2. If all the variables have been fixed, then stop and optx is the optimal solution.

Otherwise, generate two new nodes by setting an unfixed variable to 0 or 1,

and choose one of the two nodes to be explored first.

Step 3. Compute the Lagrangian bound)(*d for the current node. If optfd )(* ,

then the current node is fathomed, go to Step 2; Else, go to Step 4.

Step 4. Let *x be the respective optimal solution to the Lagrangian relaxation

problem corresponding to the optimal Lagrangian multipliers. If optfxf )(* ,

set *xxopt  and)(*xffopt  . Go to Step 2.

5.3.3 The Heuristic Decomposition Approach

We now explain our heuristic decomposition approach in detail. First, given a

feasible solution of the main problem, select a block of consecutive activities from

position 1M to position 2M (12 MM ) such that a smaller sub-problem is obtained.

Second, solve this sub-problem by the Branch-and-Bound method. Third,

reincorporate the sub-problem solution into the solution of the main problem. After an

iteration of these three steps, we can get an improved solution of the main problem.

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

116

We use this improved solution to restart and iteratively change the value of 1M and

2M such that the new sub-problem focuses on a later part of the main sequence and

also has an overlap with the subsequence of the previous iteration. The process is

repeated until 2M reaches the last activity n. These deliberations give rise to the

following Procedure 5.3 for solving large-scale DSM sequencing problem. Denote:

N Number of activities contained in a sub-problem

L The iteration step length, where L is a positive integer and NL 

S Activity set that store the sequence of activities from position 1 to position n

S1 Activity set that store the sequence of activities from position 1 to position 1M

S2 Activity set that store the sequence of activities from position 2M to position n

Sb Activity set that store the sequence of activities from position 1M to position 2M

*

bS Activity set that stores the optimal activity sequence of the sub-problem

Procedure 5.3

Step 0. Compute a feasible solution by Procedure 5.1, save the result as S. Initialize

N and L . Set 11 M , NM 2 .

While nM 2 , do:

Step 1. Based on S, construct S1, Sb and S2.

Step 2. Compute the optimal solution for Sb by Procedure 5.2, save the result as *

bS .

Step 3. Combine S1,
*

bS and S2, save the result as S.

Step 4. LMM  11 , LMM  22 .

In the above procedure, parameter N defines the size of the sub-problem.

Theoretically, the optimal value of N is n (i.e. the number of activities in the main

problem), such that the main problem can be solved to optimality. If the value of N

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

117

is too small, then solving the sub-problem by the Branch-and-Bound method may not

improve the solution of the main problem. However, the activity sequencing problem

is NP-complete, and thus if N is too large, it will be computationally infeasible for the

Branch-and-Bound method, because the calculation time increases drastically with the

problem size. Therefore, in choosing the value of N, we need to avoid the extreme

cases of setting N too large or too small. Parameter L defines the iteration step length.

We select L such that the new sub-problem has an overlap with the subsequence of

the previous iteration. To get an overlap, we set NL  .

5.4 Computational Experiments

As mentioned earlier, a major disadvantage of previous decomposition-based

method in Ahmadi et al. (2001) is that the resulting overall activity sequence may be a

sequence that is worse than the initial one, whereas the proposed solution strategy

guarantees that the final activity sequence is better than the initial one. To fully

understand how the proposed solution strategy is significantly different and better

than previous method, in this section, we first perform a number of experiments to

examine how previous method could lead to a sequence that is worse than the original

one. After that, the proposed solution strategy is applied to three real-world NDSMs:

(1) a NDSM for a chemical processing system (Chen and Li, 2003); (2) a NDSM for

the turbopump concept design (Ahmadi et al., 2001), and (3) a NDSM for Power Line

Communication (PLC) (Luh et al., 2009). Solutions presented in previous studies are

used to benchmark the effectiveness of the proposed solution strategy. All the

experiments are performed on a Pentium Dual-Core 2.1GHz Compaq laptop with 2G

memory. Our objective in this section is to provide some insight, but not conclusive

evidence, into the efficiency of our approach.

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

118

5.4.1 Test Examples

Previous decomposition-based methods in Ahmadi et al. (2001) involve two steps:

(1) decomposing the interrelated activities into smaller blocks (i.e. sub-problems)

with the objective of minimizing the sum of super-diagonal numbers among blocks,

and (2) within each block, sequencing the interrelated activities so as to minimize the

sum of super-diagonal numbers. We code this procedure in Matlab and perform four

groups of experiments. Note that the decomposition problem (i.e. the first step),

which is equivalent to the problem of partitioning N nodes into k disjoint subsets in a

graph of G=(N, E)(where N is the number of nodes, and E is a set of weighted edges),

is known to be NP-hard (Yu et al., 2007).

To perform more experiments and to be able to report our computational findings

within reasonable time, in each group of experiments, the number of activities is set to

8, and the maximum number of activities allowed in a block is set to 4. We believe

that the better the initial solution, the higher the probability that the procedure in

Ahmadi et al. (2001) leads to a sequence that is worse than the original sequence.

Consequently, we perform four groups of experiments with different initial solutions.

In the first group of experiments, the degree of information dependency among

activities are uniformly distributed on the interval (0,1). In the second group of

experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly

distributed on the interval (0.1,1) and (0,0.9), respectively. In the third group of

experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly

distributed on the interval (0.2,1) and (0,0.8), respectively. In the fourth group of

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

119

experiments, the degree of information dependency among activities in the sub-

diagonal region and those in the super-diagonal region of a DSM, are uniformly

distributed on the interval (0.3,1) and (0,0.7), respectively.

We generate 1,000 random instances for each group. The computational results

are shown in Table 5.1. In the first group of experiments, we observe 6 instances

where the procedure in Ahmadi et al. (2001) leads to a sequence that is worse than the

original sequence. As the initial solutions get better, the number of observations

increases dramatically. For instance, in the fourth group of experiments, the number

of observations increases to 420.

Table 5.1 Computation results of test examples

Groups Dependency levels
Occurrence

Rate
1

1 The dependency levels are uniformly distributed on (0,1) 0.6%

2

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.1,1) and (0,0.9),

respectively

3.9%

3

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.2,1) and (0,0.8),

respectively
25.3%

4

The dependency levels in the sub-diagonal region and those in the super-

diagonal region of a DSM, are uniformly distributed on (0.3,1) and (0,0.7),

respectively
42.0%

1
Occurrence rate is calculated as the number of observations where the procedure in Ahmadi et al.

(2001) leads to a sequence that is worse than the original sequence divided by 1,000.

In our approach, we do not perform the first step of the procedure in Ahmadi et al.

(2001), i.e. decomposing the interrelated activities into smaller blocks (i.e. sub-

problems) with the objective of minimizing the sum of super-diagonal numbers

among blocks. Instead, we use activity exchange (Procedure 5.1) to directly reduce

the sum of super-diagonal numbers in a DSM. Based on the improved activity

sequence identified by Procedure 5.1, Procedure 5.3 is then used to further improve

the sequence. In other words, the proposed approach guarantees that the final activity

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

120

sequence is better than the initial one. In practice, the initial solutions are provided by

experienced project managers, and thus the initial activity sequence is often better

than the randomly generated activity sequence. In such cases, using the procedure in

Ahmadi et al. (2001) is inappropriate because the probability that the final activity

sequence is worse than the original one could be quite high. The proposed approach

can be used for scheduling these projects.

Moreover, the complexity of the first step in Ahmadi et al. (2001) is NP-hard,

while the complexity of our Procedure 5.1 is O(n
2
). Thus, the procedure in Ahmadi et

al. (2001) may not be applicable for large problem instances because the calculation

time increases quickly with the number of activities. For instance, we try a random

example of decomposing 25 activities into two groups where the maximum number of

activities allowed in a block is set to 13, and find that the computation time for the

first step in the procedure in Ahmadi et al. (2001) is more than 72 hours. For the same

number of activities, the computation time for our Procedure 5.1 is several seconds.

5.4.2 Case Studies

Because feedbacks cause rework, it is accepted that in most cases, finding an

activity sequence with minimum feedbacks can lead to considerable savings in both

development time and costs of complex projects, see e.g. Steward (1981), Kusiak and

Park (1990), Kusiak and Wang (1993), Tang et al. (2000), Ahmadi et al. (2001), Chen

and Li (2003), Luh et al. (2009), Tang et al. (2009) for successful cases. Therefore,

quite a few studies have examined this classic problem. Among them, Ahmadi et al.

(2001), Chen and Li (2003), and Luh et al. (2009) proposed approaches for solving

this problem, and also presented case studies to illustrate their approaches. Hence, we

apply our approach to these three data sets, and benchmark our solutions with those

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

121

presented in Ahmadi et al. (2001), Chen and Li (2003), and Luh et al. (2009). A short

description of each case and our application results are presented below.

5.4.2.1 Case 1: The Chemical Processing System

5 8 17 4 18 11 1 10 19

Structure Lifting Design 5

0.224

0.136 0.286 0.161

Structural Documentation 8 0.351

0.137 0.118 0.089

Foundation Load Design 17

0.160

0.485

Shipping Design 4 0.451 0.310 0.165

0.495

Insulation Structural Design 18

0.239

0.071 0.177

Seismic Design 11 0.200

0.300

Operating Structure Design 1

0.232

0.654

0.140

0.253

Wind Load Design 10

0.194

0.117

0.119

Structural Bill of Materials 19 0.128

0.193

0.795

Figure 5.5 Improved feasible solution by applying Procedure 5.1

5 8 18 10 19 11 17 4 1

Structure Lifting Design 5
0.161

0.136 0.224

0.286

Structural Documentation 8 0.351

0.118

0.089

0.137

Insulation Structural Design 18

0.239

0.071

0.177

Wind Load Design 10

0.194

0.119

0.117

Structural Bill of Materials 19 0.128

0.193 0.795

Seismic Design 11 0.200

0.300

Foundation Load Design 17

0.485

0.160

Shipping Design 4 0.451 0.310

0.165

0.495

Operating Structure Design 1

0.232

0.253 0.140

0.654

Figure 5.6 Optimal solution by the Branch-and-Bound method

Figure 5.2 shows the original NDSM of nine activities for a chemical processing

system published in Chen and Li (2003). The information dependencies among the

activities in the NDSM are quantified through the well-known technique of AHP

(Chen and Li, 2003). We use this data set to illustrate Procedure 5.1 and the Brach-

and-Bound method. By applying Procedure 5.1, we get the improved feasible solution

shown in Figure 5.5, where the activity sequence is }19,10,1,11,18,4,17,8,5{ . Note that

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

122

in this activity sequence, activities 8 and 17, as well as activities 4 and 18, can be

carried out in parallel since there is no information exchange between the activities.

Based on this improved activity sequence, the total feedbacks are reduced by more

than 20%, from original 3.837 to 2.911.

The optimal solution identified by Procedure 5.2 is shown in Figure 5.6, where the

optimal activity sequence is }1,4,17,11,19,10,18,8,5{ . Here the computation time is

970.8 minutes. Clearly, from Figure 5.6, we can conclude that there is no information

exchange between activities 18 and 10, and so these two activities can be performed

in parallel. Similarly, activities 19 and 11 can also be performed in parallel. Based on

this optimal activity sequence, the total feedbacks are minimized at 2.29, and thus the

optimal activity sequence can be used to improve the chemical processing system.

5.4.2.2 Case 2: The Turbopump Concept Design

In this subsection, we apply the proposed heuristic decomposition approach to the

data set published in Ahmadi et al. (2001). Figure 5.8 shows the initial NDSM for the

concept design of the turbopump at Rocketdyne, which consists of 27 activities. The

NDSM was constructed based on a questionnaire, and all the parameters were double

checked by senior project managers (Ahmadi et al., 2001). Based on the proposed

method, they get the final NDSM shown in Figure 5.9, where the total feedbacks are

reduced to 5.35. As reported by Ahmadi et al. (2001), the new activity sequence in

Figure 5.9, {1,10,9,2,7,8,17,11,12,6,16,20,21,19,15,13,4,3,27,14,18,22,5,23,24,25,26}

had led to considerable savings in both development time and costs.

 Note that in this data set, the dependency level 0.1, jid represents a hard

dependency, in other words, activity j must be scheduled before activity i (Ahmadi et

al., 2001). For example, Design Pump Housing (activity 4) must be scheduled before

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

123

CST Assess Pump Housing (activity 3), since the dependency level of activity 3 on

activity 4, 0.14,3 d . To ensure this, we associate the hard dependencies with a large

positive value. Figure 5.7(a) shows the improved initial solution by applying

Procedure 5.1. As an example, we set the number of activities contained in each sub-

problem 11N , and the step length at each iteration 4L . More specifically, in the

first iteration, (1) activities from position 1 to position 11 form the sub-problem bS ,

and activities from position 12 to position 27 constitute S2; (2) the Branch-and-Bound

method is then used to solve the sub-problem and identify the optimal activity

sequence *

bS , while the activity sequence in S2 remains unchanged; (3) integrating *

bS

and S2 results in the improved activity sequence shown in Figure 5.7(b).

Based on the improved activity sequence, in the second iteration, (1) activities

from position 1 to position 4 constitute S1, activities from position 5 to position 15

form the sub-problem Sb, activities from position 16 to position 27 form S2; (2) again,

the Branch-and-Bound method is used to solve the sub-problem Sb and identify the

optimal activity sequence *

bS , while the activity sequence in S1 and S2 remain

unchanged; (3) combining S1,
*

bS and S2 results in the improved activity sequence

shown in Figure 5.7(c). Repeating these three steps in the third and fourth iteration,

we get the improved activity sequence shown in Figure 5.7(d) and Figure 5.7(e),

respectively. Finally, in the fifth iteration, activities from position 17 to position 27

constitute the sub-problem, and the final result is shown in Figure 5.10, where the

total feedbacks are reduced to 5. The total computation time for the proposed

approach is 770.4 minutes. Since the activity sequence identified by our approach,

{8,2,1,10,11,7,17,12,9,6,20,16,15,13,21,19,27,5,14,4,3,18,22,23,24,25,26}, has

smaller total feedbacks, it can be utilized to further improve the turbopump concept

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

124

design. Note that here activities 11 and 7, activities 12, 9, 6, 20 and 16, activities 13

and 21, activities 5, 14 and 4, activities 3 and 18, as well as activities 22 and 23, can

be performed in parallel since there is no information exchange among them.

Figure 5.7 The decomposition strategy for the turbopump concept design

5.4.2.3 Case 3: The Power Line Communication

In this section, we apply the heuristic decomposition approach to the data set

published in Luh et al. (2009). Figure 5.11 shows the initial NDSM for the

development of Power Line Communication (PLC), which consists of 22 activities.

The NDSM was constructed based on a survey and detailed interview with different

departments managers (Luh et al., 2009). Here the positions of activity 1 and activity

2 can be fixed in the top of the NDSM since these two activities do not need

8 1 10 9 2 7 17 11 12 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

8 2 1 10 11 7 17 12 9 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

8 2 1 10 11 7 17 12 9 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

8 2 1 10 11 7 17 12 9 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

8 2 1 10 11 7 17 12 9 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

First Iteration

Second Iteration

Third Iteration

Fourth Iteration

Fifth Iteration

(a)

(b)

(c)

(d)

(e)

(a) Initial solution by applying Procedure 5.1; (b) Improved solution after the first iteration;

(c) Improved solution after the second iteration; (d) Improved solution after the third iteration;

(e) Improved solution after the fourth iteration

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

125

information input from all other activities. By applying the proposed heuristic, they

get the final result shown in Figure 5.12, where the total feedbacks are reduced from

original 16.4 to 12.6. As reported by Luh et al. (2009), because iteration is a major

driver for lengthy and costly product development of Power Line Communication, the

new activity sequence with smaller total feedbacks in Figure 5.12, i.e.,

{1,2,6,8,7,3,5,4,10,9,16,11,12,13,14,15,22,19,17,18,20,21}, had considerably reduced

the development time and costs.

In this example, we set the number of activities in each sub-problem 8N , and

the step length at each iteration 4L . Applying our approach results in the final

NDSM shown in Figure 5.13, which suggests that the activities should executed in the

sequence of {1,2,6,8,7,3,4,10,16,9,5,11,12,13,14,15,22,19,17,18,20,21}. The total

computation time is 1586.2 minutes. From Figure 5.13, we can conclude that

activities 9 and 5, activities 13 and 14, as well as activities 15 and 22, can be executed

in parallel because there is no information exchange between the activities. Based on

the activity sequence identified by our approach, the total feedbacks are reduced to

12.5, and so it can be used to further improve the development process of Power Line

Communication.

1
2

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

SSP Engine Balance 1

0.15

0.1

0.1

CMT Make Preliminary Material Selection 2

0.1

0.1

0.1 0.1

0.1

CST Assess Pump Housing 3

1.0

Design Pump Housing 4

0.5 0.2

1.0

1.0

0.1 1.0

0.1

CST Assess Turbine Housing 5

1.0

CST Compare Design Annulus Area 6

1.0

CAX Determine Optimum Turbine Staging 7 1.0 0.1

0.1

0.1

1.0

0.2

0.1

CST Compare Design Pitchline Velocities 8

CST Compare Design Impeller Tip Speed 9

1.0

CHX Determine Pumping Components 10 1.0 0.1

0.2

0.1

0.15

CDE Design Pumping Elements 11

0.5

1.0

0.3

0.1

CST Evaluate Rotor Sizing 12

1.0

1.0

CDE Incorporate Bearing Dimensions 13

1.0

CDE Design Rotor 14

0.2

1.0

1.0

1.0 0.1 1.0

0.2

0.1

CBR Determine Bearing Geometry 15

0.1

1.0

0.2

1.0

0.1

0.1

CDE Position Bearings and Selection 16

0.2

1.0

1.0

0.2

CDE Design Turbine 17

0.2

1.0

0.3

0.1

CDE Integrate Rotor and Structure Layout 18

1.0

1.0

0.1 1.0

CDE Incorporate Seal Dimensions 19

1.0

CSL Define Seal System 20

0.2

0.1

1.0

1.0

0.3

CSL Define Individual Sealing Elements 21

0.1

0.2

1.0

0.05

0.1

CDE Develop Thrust Balance 22

0.15

1.0

CRD Build Finite Element Model 23

0.1

0.3

1.0

CRD Define Linear Rotordynamic Behavior 24

1.0

1.0

1.0

1.0

1.0

CRD Evaluate Design 25

1.0

CDE Analyze Weight 26

1.0

0.2

Design Turbine Housing 27

0.5

0.1

1.0

1.0

0.2 1.0

0.1

Figure 5.8 Original NDSM for turbopump concept design (from Ahmadi et al., 2001)

1
2

7

1 10 9 2 7 8 17 11 12 6 16 20 21 19 15 13 4 3 27 14 18 22 5 23 24 25 26

SSP Engine Balance 1

0.1

0.15 0.1

CHX Determine Pumping Components 10 1.0

0.1 0.1 0.2

0.15

CST Compare Design Impeller Tip Speed 9

1.0

CMT Make Preliminary Material Selection 2

0.1

0.1

0.1 0.1

0.1

CAX Determine Optimum Turbine Staging 7 1.0 1.0

0.1

0.1 0.2

0.1

0.1

CST Compare Design Pitchline Velocities 8

CDE Design Turbine 17

0.2 1.0

0.3

0.1

CDE Design Pumping Elements 11

1.0

0.5

0.3

0.1

CST Evaluate Rotor Sizing 12

1.0 1.0

CST Compare Design Annulus Area 6

1.0

CDE Position Bearings and Selection 16

1.0

0.2 1.0

0.2

CSL Define Seal System 20

1.0

0.2 1.0

0.3

0.1

CSL Define Individual Sealing Elements 21

0.1

1.0

0.1 0.2

0.05

CDE Incorporate Seal Dimensions 19

1.0

CBR Determine Bearing Geometry 15

1.0

1.0

0.1

0.1 0.2

0.1

CDE Incorporate Bearing Dimensions 13

1.0

Design Pump Housing 4

1.0

0.5

1.0

1.0

0.2

0.1 0.1

CST Assess Pump Housing 3

1.0

Design Turbine Housing 27

0.5 1.0

1.0

1.0

0.2 0.1 0.1

CDE Design Rotor 14

0.2

1.0 1.0

1.0

1.0

0.1 0.2

0.1

CDE Integrate Rotor and Structure Layout 18

1.0

1.0 1.0

0.1

CDE Develop Thrust Balance 22

0.15

1.0

CST Assess Turbine Housing 5

1.0

CRD Build Finite Element Model 23

0.1

1.0

0.3

CRD Define Linear Rotordynamic Behavior 24

1.0

1.0

1.0

1.0

1.0

CRD Evaluate Design 25

1.0

CDE Analyze Weight 26

1.0

0.2

Figure 5.9 Final NDSM in Ahmadi et al. (2001) for turbopump concept design

1
2

8

8 2 1 10 11 7 17 12 9 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

CST Compare Design Pitchline Velocities 8

CMT Make Preliminary Material Selection 2 0.1

0.1 0.1 0.1

0.1

SSP Engine Balance 1

0.15

0.1

0.1

CHX Determine Pumping Components 10

0.1 1.0

0.15 0.2

0.1

CDE Design Pumping Elements 11

0.5

1.0

0.3

0.1

CAX Determine Optimum Turbine Staging 7 0.1 0.1 1.0 1.0

0.2

0.1

0.1

CDE Design Turbine 17

0.2

1.0

0.3

0.1

CST Evaluate Rotor Sizing 12

1.0

1.0

CST Compare Design Impeller Tip Speed 9

1.0

CST Compare Design Annulus Area 6

1.0

CSL Define Seal System 20

0.2

1.0

1.0

0.3

0.1

CDE Position Bearings and Selection 16

0.2

1.0

1.0

0.2

CBR Determine Bearing Geometry 15

1.0

1.0

0.1

0.2 0.1

0.1

CDE Incorporate Bearing Dimensions 13

1.0

CSL Define Individual Sealing Elements 21

0.1

1.0

0.1

0.2

0.05

CDE Incorporate Seal Dimensions 19

1.0

Design Turbine Housing 27

0.5

1.0

1.0

1.0

0.1

0.2 0.1

CST Assess Turbine Housing 5

1.0

CDE Design Rotor 14

0.2

1.0

1.0

1.0

1.0

0.1 0.2

0.1

Design Pump Housing 4

0.5

1.0

1.0

1.0

0.2 0.1 0.1

CST Assess Pump Housing 3

1.0

CDE Integrate Rotor and Structure Layout 18

1.0

1.0 1.0

0.1

CDE Develop Thrust Balance 22

0.15

1.0

CRD Build Finite Element Model 23

0.1

0.3 1.0

CRD Define Linear Rotordynamic Behavior 24

1.0

1.0

1.0

1.0

1.0

CRD Evaluate Design 25

1.0

CDE Analyze Weight 26

1.0

0.2

Figure 5.10 Final NDSM for turbopump concept design by our approach

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

129

Figure 5.11 Original NDSM for PLC design (from Luh et al., 2009)

1 2 6 8 7 3 5 4 10 9 16 11 12 13 14 15 22 19 17 18 20 21

Product planning 1

1.0

Market analysis 2 1.0

Concept design 6 0.9 0.5

0.9

Industrial design 8 0.9 0.9 0.9

0.9

Concept evaluation 7

0.9 0.9

Cost analysis 3 0.6

0.5

0.8

Sales & profit 5 0.6 0.4

0.2 0.8

0.8

Product spec. 4 0.4 0.5 0.3

0.5 0.8 0.8

Components layout 10

0.5

0.9 0.8

Mechanical design 9

0.5 0.9

0.9 0.9

Packing design 16

0.4

0.9 0.8

Electronic design 11

0.5 0.8 0.9 0.4

0.9

IC design 12

0.4 0.4

0.9

0.9

Software design 13

0.6 0.9

Prototype making 14

0.2

0.4 0.5

0.6

0.8

Mold design 15

0.4 0.1 0.3

0.4 0.5

0.8

Inspection criteria 22

0.2

0.3

0.3

0.7 0.7

Production tooling 19

0.2

0.2 0.3

0.2

0.7 0.8

0.7

Design pilot run 17

0.4 0.4

0.7 0.7 0.7

Production pilot run 18

0.3

0.7 0.8 0.7 0.5

Customer authorize 20

0.3

0.3

0.5 0.5

Mass production 21

0.4 0.5

Figure 5.12 Final NDSM for PLC design in Luh et al. (2009)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Product planning 1

1.0

Market analysis 2 1.0

Cost analysis 3 0.6

0.8

0.5

Product spec. 4 0.4 0.5 0.8

0.8 0.3 0.5

Sales & profit 5 0.6 0.4 0.8 0.8

0.2

Concept design 6 0.9 0.5

0.9

Concept evaluation 7

0.9

0.9

Industrial design 8 0.9 0.9

0.9 0.9

Mechanical design 9

0.5

0.9 0.9

0.9

Components layout 10

0.5

0.9

0.8

Electronic design 11

0.5

0.9 0.8

0.9

0.4

IC design 12

0.4 0.4 0.9

0.9

Software design 13

0.6 0.9

Prototype making 14

0.2 0.5 0.4 0.6

0.8

Mold design 15

0.4 0.3 0.1 0.5 0.4

0.8

Packing design 16

0.4 0.8 0.9

Design pilot run 17

0.4

0.7 0.4

0.7

0.7

Production pilot run 18

0.7 0.3 0.5

0.7

0.8

Production tooling 19

0.2

0.2

0.2

0.7 0.3

0.7

0.8

Customer authorize 20

0.3

0.5 0.5

0.3

Mass production 21

0.4

0.5

Inspection criteria 22

0.2

0.3

0.3

0.7

0.7

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

130

1 2 6 8 7 3 4 10 16 9 5 11 12 13 14 15 22 19 17 18 20 21

Product planning 1
1.0

Market analysis 2 1.0

Concept design 6 0.9 0.5

0.9

Industrial design 8 0.9 0.9 0.9

0.9

Concept evaluation 7

0.9 0.9

Cost analysis 3 0.6

0.5

0.8

Product spec. 4 0.4 0.5 0.3

0.5 0.8

0.8

Components layout 10
0.5

0.8 0.9

Packing design 16

0.4

0.9

0.8

Mechanical design 9
0.5 0.9 0.9

0.9

Sales & profit 5 0.6 0.4

0.2 0.8 0.8

Electronic design 11

0.5 0.8 0.4 0.9

0.9

IC design 12
0.4

0.4

0.9

0.9

Software design 13

0.6 0.9

Prototype making 14
0.2

0.4

0.5

0.6

0.8

Mold design 15

0.4 0.1 0.3

0.4

0.5

0.8

Inspection criteria 22
0.2

0.3

0.3

0.7 0.7

Production tooling 19

0.2

0.3 0.2

0.2

0.7 0.8

0.7

Design pilot run 17
0.4 0.4

0.7 0.7 0.7

Production pilot run 18

0.3

0.7 0.8 0.7 0.5

Customer authorize 20
0.3

0.3

0.5 0.5

Mass production 21

0.4 0.5

Figure 5.13 Final NDSM for PLC design by our approach

5.5 Conclusion

In this chapter, we have presented a new decomposition approach for large-scale

DSM sequencing problem with the objective of minimizing feedbacks. The

contribution of this work is threefold. First, we establish two simple rules (Theorem

5.1 and 5.2) for direct feedback reduction. Based on the results, a heuristic is then

proposed for improving feasible solutions through activity exchange. Second, we

show that the 0-1 QIP formulation of the DSM sequencing problem can be transferred

to an equivalent 0-1 LIP problem, which can then be solved by a Branch-and-Bound

method (Theorem 5.3 and 5.4). Third, we present a new decomposition approach to

extend this Branch-and-Bound method for solving large-scale problems. The

proposed decomposition approach has more flexibility than previous ones.

More importantly, based on the computational experiments in section 5.4.1, we

 Chapter 5 A Decomposition Approach for Sequencing Design Activities

131

show that in many cases, the probability that previous decomposition-based approach

in Ahmadi et al. (2001) leads to a sequence that is worse than the original one is quite

high. Thanks to the well construction of sub-problems, the proposed approach

guarantees that the final activity sequence is better than the initial one. In practice, the

initial solutions are provided by experienced project managers, and thus the initial

activity sequence is often better than the randomly generated activity sequence, and

thus using the approach in Ahmadi et al. (2001) is inappropriate. The proposed

approach can be used for scheduling these projects.

We have also applied the proposed solution strategy to three real data sets, the

conceptual design of the turbopump at Rocketdyne (Ahmadi et al., 2001), the

development of a chemical processing system (Chen and Li, 2003), and the

development of power line communication (Luh et al., 2009). It is shown that in all

three cases, compared to the solutions presented in previous studies, applying our

approach results in better solutions with smaller feedbacks.

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

132

CHAPTER 6

A NOVEL APPROACH TO LARGE-SCALE DSM

SEQUENCING PROBLEM

6.1 Introduction

As was discussed in Chapter 5, DSM provides a compact representation of

iterative NPD process by showing information dependencies in a square matrix. To

accelerate NPD processes, DSM suggests to re-sequencing the activities such that

iterative behaviors are minimized in the matrix. In recent years, there has been a

growing interest in applying the DSM approach for planning product development

projects (Karniel and Reich, 2009). However, a major difficulty lies in that DSM

sequencing problem is NP-complete (McCulley and Bloebaum, 1996; Ahmadi et al.,

2001; Meier et al., 2007).

To solve large-scale problem, one line of research focuses on meta-heuristic

methods. Another line focuses on decomposition based approaches. More specifically,

the overall project is first decomposed into smaller sub-problems which are easier to

solve, and sub-problem solutions are then merged into a solution of the overall

problem. Examples of such studies include McCulley and Bloebaum (1996), Rogers

(1996, 1999), and Ahmadi et al. (2001). This chapter also follows previous

decomposition based approaches. In particular, we extend the activity exchange rules

(Theorem 5.1 and 5.2) to a group of activities, and find that through the fold operation,

a block has similar properties to a single activity. Based on these findings, a novel

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

133

decomposition approach is presented for solving large-scale DSM sequencing

problem.

In the next section, a mathematical formulation is presented for the DSM

sequencing problem. In Section 6.3, we prove several properties of the solution, and

propose a novel approach for solving the problem. In Section 6.4, we apply the

proposed approach to the turbopump concept design (Ahmadi et al., 2001), and to the

development power line communication (Luh et al., 2009). Solutions provided in

Chapter 5 of this thesis are used to benchmark the effectiveness of the approach in

this chapter. Section 6.5 concludes this study. Proofs of all the results in this chapter

can be found in Appendix D.

6.2 Problem Formulation

Again consider an NPD project consisting of n design activities. Let jid , (0, jid)

denote the information dependence level of activity i on activity j, where ni ,...,2,1

and nj ,...,2,1 are indexes for activities. Let nm ,...,2,1 denote the index for

activity positions. Defining the decision variables (for ni ,...,2,1 ; nm ,...,2,1):

Figure 6.1 NDSM representation of the optimization problem

Activities 1 2 … i … n

1 0 2,1d …
id ,1 …

nd ,1

2 1,2d 0 …
id ,2 …

nd ,2

… … … 0 … … …

i 1,id 2,id … 0 …
nid ,

… … … … … 0 …

n 1,nd 2,nd …
ind , … 0

if activity i is assigned to the m
th

 position,

Otherwise. 




0

1
mix

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

134

As illustrated in Figure 6.1, the DSM sequencing problem is to find an activity

sequence that minimize feedbacks, which can be formulated as follows:

 



  











n

i

n

ij
j

ji

n

m

n

mh

hjmi dxxxfMin
1 1

,

1 1

)(

Subject to:

 1
1




n

i

mix , for nm ,...,2,1 (6.1)

1
1




n

m

mix , for ni ,...,2,1

 1,0mix , for ni ,...,2,1 and nm ,...,2,1

6.3 The Proposed Approach

6.3.1 Preliminaries

This section describes the theoretical basis of the proposed approach for solving

problem (6.1). We first introduce following definitions:

Definition 6.1 (block). A block is a smaller NDSM that contains a series of

consecutive activities. For instance, Figure 6.2 shows a block JB which contains

activities from j to 1i .

Definition 6.2 (fold). Fold is the operations of treating the activities in a block as a

single activity, summing up the activities’ feedbacks and inputs. For example, let

)1,...,( ijJ denote the activities that belong to block JB . Folding the block JB in

Figure 6.2(b) into a single activity J', we get the NDSM shown in Figure 6.3.

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

135

(a) An nn NDSM (b) A block JB

Figure 6.2 Definition of a block

Activities 1 … 1j J' i … n

1 0 … 1,1 jd 
Jk

kd ,1

id ,1 … nd ,1

… … 0 … … … … …

1j
1,1jd … 0 





Jk

kjd ,1

ijd ,1 … njd ,1

J' 
Jk

kd 1,
 … 





Jk

jkd 1,
 0 

Jk

ikd ,
 … 

Jk

nkd ,

i 1,id … 1, jid 
Jk

kid ,
 0 … nid ,

… … … … … … 0 …

n 1,nd … 1, jnd 
Jk

knd ,

ind , … 0

Figure 6.3 Resulting NDSM by folding block JB

Assume that in a nn NDSM, activities are executed in the sequence of

}...,,,1,...,...,1{ niij  , let)1,...,( ijJ be the activities that belong to block JB :

THEOREM 6.1 (block-activity exchange). If 



Jk

ki

Jk

ik dd ,, , then through

exchanging block JB and activity i , the feedbacks in the NDSM can be reduced by

Activities 1 … j 1j … i −1 … n

1 0 …
jd ,1 1,1 jd …

1,1 id …
nd ,1

… … 0 … … … … … …

j 1,jd … 0 1, jjd … 1, ijd …
njd ,

1j 1,1jd …
jjd ,1 0 … 1,1  ijd

…
njd ,1

… … … … … 0 … … …

i −1 1,1id …
jid ,1 1,1  jid … 0 …

nid ,1

… … … … … … … 0 …

n 1,nd …
jnd , 1, jnd …

1, ind … 0

Activities j 1j … i −1

j 0 1, jjd … 1, ijd

1j jjd ,1 0 … 1,1  ijd

 … … … 0 …

i −1 jid ,1

1,1  jid … 0

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

136

 



Jk

kiik dd ,, .

Proofs of all the results in this chapter are provided in Appendix D.

Theorem 6.1 shows that if the sum of feedbacks from activity i to block JB are

larger than the sum of inputs from block JB to activity i , i.e., if 



Jk

ki

Jk

ik dd ,, , then

the sequence of block JB and activity i should be exchanged.

In a nn NDSM, suppose that activities are executed in the order of

},...,1,,1...,,1,...,,1...,1{ nhhhiijj  , let)1,...,( ijJ be the activities that

belong to block JB , and)1,...,( hiI denote the activities from i to 1h . Define:

     
 


Ir

rhhr

Jk

khhk

Jk Ir

krrk

h

J dddddd ,,,,,, (6.2)

THEOREM 6.2 (block-activity exchange). In the NDSM, if 0h

J , then exchanging

the sequence of block JB and activity h results in a feedback reduction of h

J .

Theorem 6.2 establishes the rule of exchanging a block with a non-adjacent

activity for feedback reduction. It shows that in a NDSM, if 0h

J , then the sequence

of block JB and activity h should be exchanged. In what follows, we will establish

the rule of exchanging two blocks of activities in a NDSM. The results are

summarized in Theorem 6.3 and 6.4.

Suppose that in a nn NDSM, activities are executed in the sequence of

},...,,1...,,,1,...,,1...,,1{ nhhiijj  . Let)1,...,( ijJ denote the activities that

belong to block JB , and)1,...,( hiI denote the activities that belong to block IB :

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

137

 THEOREM 6.3 (block-block exchange). If 
  


Jk Ir

kr

Jk Ir

rk dd ,, , then through

exchanging block JB and block IB , the feedbacks in the NDSM can be reduced by

 
 


Jk Ir

krrk dd ,, .

Theorem 6.3 reveals that, in a NDSM, if the feedbacks from block IB to block

JB are larger than the inputs from block JB to IB , i.e., if 
  


Jk Ir

kr

Jk Ir

rk dd ,, , then

the sequence of block JB and block IB should be exchanged. Note that if we fold the

activities in block IB into a single activity, then the result in Theorem 6.3 is

equivalent to that in Theorem 6.1. Let us use a real NDSM published in Chen et al.

(2004) to further illustrate these. The original DSM of the burn-in system, which is

systematically constructed based on the information contained in QFD, consists of

twelve activities. For easy presentation, we select nine activities whose dependencies

relations are shown in Figure 6.4(a).

Let block JB contains activities (3,4,5), and block IB contains activities 6 and 7,

mathematically,)5,4,3(J and)7,6(I . The sum of feedbacks from block IB to

JB , which is highlighted in grey in Figure 6.4(a), is 46.1, 
 Jk Ir

rkd . The sum of

inputs from block JB to block IB , which is highlighted in blue in Figure 4(a), is

89.0, 
 Jk Ir

krd . Based on Theorem 6.3, exchanging blocks JB and IB would lead

to a feedback reduction of 0.57. The resulting NDSM is shown in Figure 6.4(b). If we

fold activities 6 and 7 in block IB into a single activity 6', by definition 6.2, we can

get the folded NDSM in Figure 6.4(c). Clearly, the sum of feedbacks from activity 6'

to block JB , highlighted in grey in Figure 6.4(c), is 46.1'6, 
Jk

kd . The sum of inputs

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

138

from JB to activity 6', which is highlighted in blue in Figure 6.4(c), is 89.0,'6 
Jk

kd .

Then according to Theorem 6.1, exchanging block JB and activity 6' would lead to a

feedback reduction of 0.57. The resulting NDSM is presented in Figure 6.4(d).

(a) Original NDSM (from Chen et al., 2004) (b) Improved NDSM based on Theorem 6.3

(c) Folded NDSM (d) Improved folded NDSM based on Theorem 6.1

Figure 6.4 Illustration of Theorem 6.3 and Theorem 6.1: a practical example

Suppose that in a nn NDSM, activities are executed in the sequence of

}...,,1,...,,1...,,,1,...,,1...,1{ nkkhhiijj  . Let)1,...,( ijJ be the activities

that belong to block JB , and)1,...,( khH be the activities that belong to block

HB . Let)1,...,( hiI denote the activities from i to 1h . Define:

     
   


Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd ,,,,,, (6.3)

Activities 1 2 6 7 3 4 5 8 9

1 0 0.34 0.29 0.04 0 0 0 0.33 0

2 0 0 0 0 0.24 0 0.02 0.04 0

6 0 0.05 0 0 0.14 0.3 0 0 0

7 0.2 0.02 0 0 0.41 0 0.04 0 0.12

3 0.15 0 0.02 0.55 0 0 0.14 0.26 0

4 0.34 0.35 0.53 0 0.04 0 0 0 0

5 0.34 0.27 0.16 0.2 0.19 0.2 0 0 0

8 0 0 0 0 0.42 0 0 0 0.18

9 0 0 0 0.21 0 0 0.11 0.24 0

Activities 1 2 3 4 5 6 7 8 9

1 0 0.34 0 0 0 0.29 0.04 0.33 0

2 0 0 0.24 0 0.02 0 0 0.04 0

3 0.15 0 0 0 0.14 0.02 0.55 0.26 0

4 0.34 0.35 0.04 0 0 0.53 0 0 0

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0 0

6 0 0.05 0.14 0.3 0 0 0 0 0

7 0.2 0.02 0.41 0 0.04 0 0 0 0.12

8 0 0 0.42 0 0 0 0 0 0.18

9 0 0 0 0 0.11 0 0.21 0.24 0

Activities 1 2 3 4 5 6' 8 9

1 0 0.34 0 0 0 0.33 0.33 0

2 0 0 0.24 0 0.02 0 0.04 0

3 0.15 0 0 0 0.14 0.57 0.26 0

4 0.34 0.35 0.04 0 0 0.53 0 0

5 0.34 0.27 0.19 0.2 0 0.36 0 0

6' 0.2 0.07 0.55 0.3 0.04 0 0 0.12

8 0 0 0.42 0 0 0 0 0.18

9 0 0 0 0 0.11 0.21 0.24 0

Activities 1 2 6' 3 4 5 8 9

1 0 0.34 0.33 0 0 0 0.33 0

2 0 0 0 0.24 0 0.02 0.04 0

6' 0.2 0.07 0 0.55 0.3 0.04 0 0.12

3 0.15 0 0.57 0 0 0.14 0.26 0

4 0.34 0.35 0.53 0.04 0 0 0 0

5 0.34 0.27 0.36 0.19 0.2 0 0 0

8 0 0 0 0.42 0 0 0 0.18

9 0 0 0.21 0 0 0.11 0.24 0

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

139

THEOREM 6.4 (block-block exchange). In a NDSM, if 0H

J , then exchanging

block JB and block HB leads to a feedback reduction of H

J .

Theorem 6.4 further establishes the rule of exchanging a block with a non-

adjacent block for feedback reduction. It reveals that if 0H

J , then the sequence of

block JB and block HB should be exchanged. Similarly, if block HB is folded into a

single activity, then the result in Theorem 6.4 is equivalent to that in Theorem 6.2.

To illustrate the results of Theorem 6.2 and Theorem 6.4, consider the original

DSM shown in Figure 6.5(a). Let block JB contains activities 4 and 5, and block HB

contains activities 8 and 9, mathematically,)5,4(J ,)7,6(I , and)9,8(H . From

(6.3), we can get:       35.0,,,,,,  
    Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd .

To make our statement more legible, in Figure 6.5(a), the positive items in H

J are

highlighted in grey, while the negative items are highlighted in blue. According to

Theorem 6.4, the sequence of block JB and block HB should be exchanged. The

resulting NDSM is presented in Figure 6.5(b) where the feedbacks are reduced by

0.35. Folding activities 8 and 9 in block HB into a single activity 8', we get the DSM

shown in Figure 6.5(c). Inspection of block JB and activity 8' shows that

      35.0,'8'8,,'8'8,,,

'8  
  Ir

rr

Jk

kk

Jk Ir

krrkJ dddddd , where in Figure 6.5(c)

the positive items are highlighted in grey, and the negative items are highlighted in

blue. Based on Theorem 6.2, the sequence of block JB and activity 8' should be

exchanged. The resulting NDSM is shown in Figure 6.5(d) where the feedbacks are

reduced by 0.35. These results imply that through the fold operation, a block has

similar properties to a single activity.

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

140

(a) Original NDSM (from Chen et al., 2004) (b) Improved NDSM based on Theorem 6.4

(c) Folded DSM (d) Improved folded DSM based on Theorem 6.2

Figure 6.5 Illustration of Theorem 6.4 and Theorem 6.2: a practical example

6.3.2 The Solution Strategy

In this section, we will propose a novel solution strategy for large-scale DSM

sequencing problem. The proposed solution strategy consists of two heuristic

procedures. The first heuristic Procedure 6.1 is to improve a feasible solution by using

exchange. Based on the solution identified, Procedure 6.2 can be utilized to solve

large-scale DSM sequencing problem.

Procedure 6.1

Step 0 (Initiation). Given an initial activity sequence, calculate the total feedbacks f ,

and store it as the best sequence. Set the first activity as the mobile-activity j .

Activities 1 2 3 4 5 6 7 8 9

1 0 0.34 0 0 0 0.29 0.04 0.33 0

2 0 0 0.24 0 0.02 0 0 0.04 0

3 0.15 0 0 0 0.14 0.02 0.55 0.26 0

4 0.34 0.35 0.04 0 0 0.53 0 0 0

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0 0

6 0 0.05 0.14 0.3 0 0 0 0 0

7 0.2 0.02 0.41 0 0.04 0 0 0 0.12

8 0 0 0.42 0 0 0 0 0 0.18

9 0 0 0 0 0.11 0 0.21 0.24 0

Activities 1 2 3 8 9 6 7 4 5

1 0 0.34 0 0.33 0 0.29 0.04 0 0

2 0 0 0.24 0.04 0 0 0 0 0.02

3 0.15 0 0 0.26 0 0.02 0.55 0 0.14

8 0 0 0.42 0 0.18 0 0 0 0

9 0 0 0 0.24 0 0 0.21 0 0.11

6 0 0.05 0.14 0 0 0 0 0.3 0

7 0.2 0.02 0.41 0 0.12 0 0 0 0.04

4 0.34 0.35 0.04 0 0 0.53 0 0 0

5 0.34 0.27 0.19 0 0 0.16 0.2 0.2

Activities 1 2 3 4 5 6 7 8'

1 0 0.34 0 0 0 0.29 0.04 0.33

2 0 0 0.24 0 0.02 0 0 0.04

3 0.15 0 0 0 0.14 0.02 0.55 0.26

4 0.34 0.35 0.04 0 0 0.53 0 0

5 0.34 0.27 0.19 0.2 0 0.16 0.2 0

6 0 0.05 0.14 0.3 0 0 0 0

7 0.2 0.02 0.41 0 0.04 0 0 0.12

8' 0 0 0.42 0 0.11 0 0.21 0

Activities 1 2 3 8' 6 7 4 5

1 0 0.34 0 0.33 0.29 0.04 0 0

2 0 0 0.24 0.04 0 0 0 0.02

3 0.15 0 0 0.26 0.02 0.55 0 0.14

8' 0 0 0.42 0 0 0.21 0 0.11

6 0 0.05 0.14 0 0 0 0.3 0

7 0.2 0.02 0.41 0.12 0 0 0 0.04

4 0.34 0.35 0.04 0 0.53 0 0 0

5 0.34 0.27 0.19 0 0.16 0.2 0.2 0

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

141

Step 1. Set)(jJ  .

Step 2. For each activity h that follows activity j, calculate h

J by equation (6.2): if

0h

J , exchange block JB with activity h, save the result as the new best

sequence, and set h

Jff  ; otherwise, add activity h to J.

Step 3. Set the next activity as the new mobile-activity j , and go back to Step 1 until

all the activities have been set as the mobile-activity.

As stated earlier, decomposition method can provide an efficient way to solve

large-scale DSM sequencing problem. The basic idea of such method is to break the

original problem into small sub-problems that are easier to solve, and then combine

the sub-problem solutions into a solution to the original problem. As we discussed in

previous section, through the fold operation, a block has similar properties to a single

activity. Based on these ideas, we develop the following Procedure 6.2. Let kN be the

number of activities contained in a sub-problem k.

Procedure 6.2

Step 1 (Construct sub-problems). Based on the feasible solution identified by

Procedure 6.1, select activities from position 1 to position 1N to obtain block

1B and the first sub-problem. Fold the activities in block 1B into a single

activity 1', and update activity dependencies. Select activity 1' and activities

from position 11 N to position 121  NN to obtain block 2B and the

second sub-problem. Fold the activities in block 2B into a single activity 2',

and update activity dependencies. Repeat until the last activity n is reached.

Step 2 (Solve sub-problems). For each sub-problem, compute the optimal

solution by the branch-and-bound method.

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

142

Step 2 (Solve sub-problems). The sub-problems are solved to optimality by

commercial solvers, leading to improved sub-problem sequences *

kS

(Kk ,...,2,1).

Step 3. The improved sub-problem sequences are concatenated into an improved

sequence of the overall problem. In particular, in the improved sub-problem

sequence *

kS , replace activity k' with the improved sub-problem sequence *

1kS .

Repeat until activity 1' is replaced with the improved sub-problem sequence

*

1S .

In Step 1 of above procedure, when the sub-problems are constructed and solved,

the sum of super-diagonal numbers that locates outside each sub-problem (i.e. block)

will not be affected. In Step 3, when the improved sub-problem sequences are

concatenated, we can get an improved sequence of the overall problem. The amount

of improvement of the objective values in the overall problem equals to the sum of

improvements of the objective values of the sub-problems. Thus, Procedure 6.2

guarantees that the final activity sequence is better than the initial one. Note that in

Step 2, the sub-problems are solved in parallel.

To illustrate Procedure 6.2, consider the DSM in Figure 6.5(b). Set 5kN , we

get the first sub-problem in Figure 6.6(a). Folding the activities in the first sub-

problem into a single activity 1', we obtain the second sub-problem in Figure 6.6(b).

We then solve the two sub-problems in parallel and obtain the optimal solutions of

{3,8,9,2,1} and {7,6,1',4,5}. Based on the optimal sub-problem solutions, the sum of

super-diagonal numbers in sub-problem 1 is reduced from 1.39 to 0.59, and the sum

of super-diagonal numbers in sub-problem 2 is reduced from 1.72 to 1.55. Finally, by

combining these two solutions, we get the solution of the overall problem shown in

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

143

Figure 6.6(c), where the sum of super-diagonal numbers is reduced from 3.11 to 2.14.

Clearly, the amount of improvement of the objective values in the overall problem

equals to the sum of improvements of the objective values of the sub-problems. In the

next section, we will show that based on above procedure, relatively good solutions

can be easily obtained.

 (a) Sub-problem 1 (b) Sub-problem 2

(c) Final solution by applying Procedure 2

Figure 6.6 Illustration of Procedure 6.2

6.4 Computational Results

In this section, we first apply the proposed Procedure 6.2 to the turbopump

concept design (Ahmadi et al., 2001), and to the development power line

communication (Luh et al., 2009). Solutions provided in Chapter 5 of this thesis are

used to benchmark the effectiveness of Procedure 6.2. After that we generate six

groups of random problems in order to further examine the performance of the

proposed procedure. All the experiments are performed on a Pentium Dual-Core

Activities 1 2 3 8 9

1 0.34 0 0.33 0

2 0 0.24 0.04 0

3 0.15 0 0.26 0

8 0 0 0.42 0.18

9 0 0 0 0.24

Activities 1' 6 7 4 5

 1' 0.31 0.8 0 0.27

6 0.19 0 0.3 0

7 0.75 0 0 0.04

4 0.73 0.53 0 0

5 0.8 0.16 0.2 0.2

Activities 7 6 3 8 9 2 1 4 5

7 0 0.41 0 0.12 0.02 0.2 0 0.04

6 0 0.14 0 0 0.05 0 0.3 0

3 0.55 0.02 0.26 0 0 0.15 0 0.14

8 0 0 0.42 0.18 0 0 0 0

9 0.21 0 0 0.24 0 0 0 0.11

2 0 0 0.24 0.04 0 0 0 0.02

1 0.04 0.29 0 0.33 0 0.34 0 0

4 0 0.53 0.04 0 0 0.35 0.34 0

5 0.2 0.16 0.19 0 0 0.27 0.34 0.2

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

144

2.1GHz Compaq laptop with 2G memory.

6.4.1 Application Results

Case 1. The NDSM for the turbopump concept design has been shown in Figure

5.8. To compare the application results, we use the same initial solution as has been

shown in Figure 5.7(a), and set the same value of 11N .

Figure 6.7 The solution strategy for the turbopump concept design

We then apply Procedure 6.2. As illustrated in Figure 6.7, the activities from

position 1 to position 11, i.e. activities)20,6,12,11,17,7,2,9,10,1,8(, constitute block B1

and sub-problem 1. Then, fold block 1B into a single activity 1', and choose activity 1'

and activities from position 12 to position 21 to get block 2B and sub-problem 2.

Similarly, fold block 2B into a single activity 2', and select activity 2' and the

remaining activities to obtain sub-problem 3. The Branch-and-Bound method is then

used to solve the sub-problems. The optimal sub-problem solutions are then merged

into a solution of the overall problem. Based on these steps, we get the same result as

has shown in Figure 5.10. The computation time for Procedure 6.2 is 319.5 minutes.

Case 2. The data set for the development power line communication has been

shown in Figure 5.11. Similarly, we choose the same initial solution, and set the same

8 1 10 9 2 7 17 11 12 6 20 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

1' 16 15 13 21 19 27 5 14 4 3 18 22 23 24 25 26

2' 18 22 23 24 25 26

Sub-problem 1

Sub-problem 2

Sub-problem 3

(a)

(b)

(c)

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

145

value of 8N . By applying Procedure 6.2 in this chapter, we also get the same result

as has been illustrated in Figure 5.13. Here the computation time is 804.3 minutes.

6.4.2 Numerical Results

We perform six groups of random problems to examine how different problem

structures (such as modularity, size and density) affect the performance of our

proposed approach and the solution. The Procedure 6.2 was coded in Matlab. The

matrices that are tested include 25n and 50n activities. The information

dependency among activities, jid , , are uniformly distributed in the interval)1,0[. Let

)1(


nn

D
 be the density level in a DSM, where D is the number of non-zero jid ,

in a DSM. Three levels of density, i.e., %33 , %67 , and %100 are

investigated.

We generate 10 random instances for each group. For each random instance, the

sizes of a sub-problem we test are kNk  3 , kNk  4 , kNk  5 , kNk  6 ,

 kk DN 200 , where kD is the number of non-zero jid , in a sub-problem k. The

reasons that we set kN equal to the maximum integer that less than  kD200 are

twofold. First, such setting allows kN varying between sub-problems. Second, from

our computational experience, the computation time for solving a sub-problem to

optimality is mainly determined by the number of inequality constraints in the

optimization problem (1)-(5), i.e. kk DN  . To be able to report our computational

findings within reasonable time, we set 200 kk DN , and so  kk DN 200 . Note

that when %100 ,  kD200 equals to 6.

To report our computational results, let fv be the sum of super-diagonal numbers

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

146

obtained from the proposed approach, IfvfvIfvP)( be the percentages of

reduction of the sum of super-diagonal numbers, where Ifv is the initial values of the

sum of super-diagonal numbers. The computational results for each group of trials are

shown in Tables 6.1-6.2.

Table 6.1 Computation results of the proposed approach (25n)

Density  kN
Average

Computation time

(minutes)

Average fv Average P

33%

3 0.001 28.01 42.16%

4 0.006 27.98 42.23%

5 0.108 27.81 42.56%

6 3.385 27.65 42.91%

 kD200 158.627 27.41 43.38%

67%

3 0.014 73.66 25.49%

4 0.016 73.64 25.51%

5 0.201 73.51 25.64%

6 4.808 73.44 25.72%

 kD200 77.044 73.38 25.77%

100%

3 0.001 127.35 15.29%

4 0.015 127.22 15.38%

5 0.487 127.02 15.51%

6 29.176 126.88 15.61%

Table 6.2 Computation results of the proposed approach (50n)

Density  kN
Average Computation

time (minutes)
Average fv Average P

33%

3 0.051 134.19 33.02%

4 0.057 133.89 33.16%

5 0.11 133.2 33.5%

6 1.5 133.34 33.43%

 kD200 551.717 132.6 33.79%

67%

3 0.056 326.23 20.71%

4 0.062 325.78 20.82%

5 0.306 325.69 20.84%

6 23.88 325.34 20.92%

 kD200 31.381 325.21 20.95%

100%

3 0.054 544.54 12.05%

4 0.069 544.43 12.06%

5 0.532 544.02 12.13%

6 47.217 543.57 12.2%

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

147

Overall, Procedure 6.2 performs quite well. For instance, as shown in Table 6.1,

for 25n , %33 , and  kk DN 200 , the average reduction of the sum of super-

diagonal numbers is 43.38%. Generally, the amount of reduction of the sum of super-

diagonal numbers decreases with the density level and with the size of the matrix. For

instance, when the size of the matrix is increased to 50 (for %33 , and

 kk DN 200), the average reduction of the sum of super-diagonal numbers is

decreased to 33.79%. In many cases, increasing the size of a sub-problem will lead to

better final solutions, but not always. For instance, for 50n , %33 , when kN is

increased from 5 to 6, the average reduction of the sum of super-diagonal numbers is

decreased from 33.5% to 33.43%. This is so because increasing the size of a sub-

problem decreases the total number of sub-problems. Another advantage of Procedure

6.2 is that the impact of the size of the matrix on the computation time is quite small.

This is so because the complexity of our Procedure 6.1 is O(n
2
), and all the sub-

problems in Procedure 6.2 can be solved in parallel.

6.5 Conclusion

In this chapter, we have presented a novel approach to large-scale DSM

sequencing problem. The contribution of the work is threefold. First, it establishes

block-activity exchange rules (Theorem 6.1 and 6.2), and block-block exchange rules

(Theorem 6.3 and 6.4), for direct feedback reduction. Second, a heuristic is proposed

for improving feasible solutions by using exchange. Third, the results of theorems

imply that through the fold operation, a block has similar properties to a single

activity. In other words, we may treat the activities in a block as a single activity.

Based on this idea, a new decomposition procedure is presented for solving large-

scale DSM sequencing problem. To investigate its utility in solving real world

 Chapter 6 A Novel Approach to Large-scale DSM Sequencing Problem

148

problems, the proposed solution strategy has been applied to the turbopump

conceptual design (Ahmadi et al., 2001), and to the development of power line

communication (Luh et al., 2009).

We also perform six groups of random examples and show that good solutions can

be easily obtained by Procedure 6.2. Compared to the decomposition approach

presented in Chapter 5, one advantage of the approach in this chapter is that it can

solve the sub-problems independently and in parallel.

There are two major limitations for the application of the methodologies

developed in this chapter and Chapter 5. First, the present models only examine the

activity sequencing problem with the objective of minimizing feedbacks, because it is

simple and of practical importance. Moreover, it is also a common practice in

previous activity sequencing models. As has been mentioned earlier, except for the

objective of minimizing feedbacks, some other considerations have also been

incorporated in sequencing design activities in a DSM. Therefore, our models may be

extended to explore the activity sequencing problem with some other objectives.

Second, the studies presented in Chapter 5 and 6 of this thesis, assume that the

information dependencies among activities can be estimated with reasonable accuracy.

This assumption has been proved to hold in dozens of development projects, see e.g.

Eppinger et al. (1994), Eppinger (2001), Browning and Eppinger (2002), Batallas and

Yassine (2006), Yu et al. (2007), Sosa (2008), Tang et al. (2009), Collins et al. (2009),

Voss and Hsuan (2009). However, there are still some projects where precise

information of activity dependencies is not available (Chen et al., 2004; Karniel and

Reich, 2009; Luh et al., 2009). To address this issue, in Chapter 7, we present a fuzzy

approach for solving DSM sequencing problem with imprecise activity dependencies.

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

149

CHAPTER 7

A FUZZY APPROACH TO DSM SEQUENCING

PROBLEM

7.1 Introduction

DSM provides a concise representation of an NPD process by showing

information dependencies in a square matrix (Cho and Eppinger, 2005). In recent

years, DSM has been regarded as an effective tool for modeling and improving NPD

processes (Browning, 2001; Karniel and Reich, 2009; To et al., 2009). To accelerate

NPD processes, the DSM approach suggests to re-sequencing the activities such that

iterative behaviors are minimized in the matrix.

Quite a few studies have examined the activity sequencing problem in a DSM. For

example, Rogers (1989) developed an expert system called DeMAID. The DeMAID

was further extended to DeMAID/GA by incorporating GA to organize the activities

(see e.g. Altus et al., 1996; McCulley and Bloebaum, 1996; Rogers, 1996). Kusiak

and Wang (1993) presented an algorithm for ordering design activities in a DSM.

Extensions of their work can be found in Kusiak et al. (1994), Kusiak et al. (1995),

Tang et al. (2000), Zakarian and Kusiak (2001). Recently, there has been a growing

interest in ordering design activities in a numerical DSM. Examples of such studies

include Smith and Eppinger (1997a, 1997b), Ahmadi et al. (2001), Browning and

Eppinger (2002), Chen and Li (2003), Abdelsalam and Bao (2006), Banerjee et al.

(2007), Meier et al. (2007), Yu et al., (2007), Lancaster and Cheng (2008). These

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

150

works have clearly shed light on the analysis of activity sequencing problem, and are

useful to guide the practice when activity dependencies can be precisely estimated.

However, all of these models, including the ones presented in Chapter 5 and 6 of this

thesis, assume that activity dependencies can be accurately estimated.

As reported by Chen et al. (2004), as well as Karniel and Reich (2009), in many

NPD processes, precise information of activity dependencies is not available,

especially when the activities have never been performed before. To address this issue,

one natural approach is to treat uncertain activity dependencies as random variables

with specified probability distributions. However, for NPD processes, we are often

lack of enough data to derive the probability distributions for activity dependencies.

Fortunately, in such cases, fuzzy set theory can help us tackle uncertain activity

dependencies. Moreover, compared to probability distributions, fuzzy sets are often

easier to compute (Zimmermann, 1996; Dubois et al., 2003a; Wang, 2004; Liberatore,

2008).

Recently, Luh et al. (2009) proposed the concept of fuzzy DSM, and developed a

heuristic to reorder design activities so as to minimize feedbacks. In this study we also

resort to fuzzy set theory for tackling uncertain parameters. More specifically, our

study complements the work of Luh et al. (2009) by developing a mathematical

model for activity sequencing problem with a fuzzy representation of activity

dependencies. The model can be utilized to predict the most likely, pessimistic and

optimistic values of feedbacks. Since the problem is NP-complete, we have also

developed a new hybrid approach, which embed an exact algorithm within a

framework of local search heuristic, for solving large-scale problems. The proposed

approach is applied to a real data set published in Eppinger (2001). Application result

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

151

shows that the approach can help decision makers better manage NPD processes with

uncertainty.

In the next section, we review concepts of fuzzy set theory used in this research,

and formulate the activity sequencing problem with imprecise activity dependencies.

Section 7.3 presents a methodology for solving the problem. In Section 7.4, we

illustrate the methodology with a case study of the powertrain development at General

Motors (Eppinger, 2001). Section 7.5 concludes this research.

7.2 Problem Formulation

We first introduce the following notation:

n Total number of activities

ji, Indexes for activities, ni ,...,2,1 ; nj ,...,2,1

jid ,

~
 Fuzzy information dependence of activity i on activity j

hm, Indexes for activity positions, nm ,...,2,1 ; nh ,...,2,1

Decision Variables:

As shown in Figure 7.1, we consider the NPD process consisting of n activities,

numbered from 1 to n. Given uncertain activity dependencies defined by fuzzy sets,

the objective is to find an activity sequence with minimum fuzzy total feedbacks,

 
 

n

i

n

ij

jid
1 1

,

~
.

if activity i is assigned to the m
th

 position,

Otherwise. 




0

1
mix

if activity i is assigned to precede activity j,

Otherwise. 




0

1
, jiz

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

152

Figure 7.1 Representation of the optimization problem

7.2.1 Fuzzy Set Background

We use fuzzy triangular numbers to represent the uncertain activity dependencies.

As shown in Figure 7.2, a fuzzy triangular number jid ,

~
 is characterized by a triplet

(1

, jid , 2

, jid , 3

, jid), and its membership function)(
,

~ x
jid

 is defined as:

1

,

2

,

1

,

jiji

ji

dd

dx




 if 2

,

1

, jiji dxd  ,

)(
,

~ x
jid


2

,

3

,

3

,

jiji

ji

dd

xd




 if 3

,

2

, jiji dxd  , (7.1)

Figure 7.2 Illustration of fuzzy triangular number jid ,

~

The above membership function specifies the degree of belief that the activity

Activities 1 2 … i … n

1
 2,1

~
d …

id ,1

~
 …

nd ,1

~

2 1,2

~
d

…

id ,2

~
 …

nd ,2

~

… … …

… … …

i 1,

~
id 2,

~
id …

…

nid ,

~

… … … … …

…

n 1,

~
nd 2,

~
nd …

ind ,

~
 …

)(
,

~ x
jid



1

, jid 2

, jid 3

, jid

1

0

jid ,

~

0 otherwise.

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

153

dependence value is x. For example, the vague and imprecision statement that

information dependence of activity i on activity j is “low”, might be represented by

)3.0,2.0,0(. For 2.0x , 1)(
,

~ x
jid

 , which means that most likely, the information

dependence of activity i on activity j is 0.2. For 1.0x , 5.0)(
,

~ x
jid

 , which means

that the degree of belief that the information dependence of activity i on activity j

equals 0.1, is 0.5.

Let A
~

 and B
~

 be two fuzzy triangular numbers characterized by),,(321 aaa and

),,(321 bbb , respectively. In the activity sequencing problem, the main arithmetic

operations involved are fuzzy addition and fuzzy multiplication, which are defined as

follows:

),,(
~~

332211 bababaBA  (7.2)

),,(
~~

332211 bababaBA  (7.3)

Quite a few defuzzification methods can be used to rank fuzzy numbers. As

reported by Dubois et al. (2003a), one of them, proposed by Yager (1981), turned out

to be the most natural and convincing. In addition, Fortemps and Roubens (1996)

proved that the method could also be derived using the area compensation method.

These observations motivated us to use the method by Yager (1981) to compare the

fuzzy total feedbacks of various activity sequences. The method calculates the

integral of the mean of the -cut of a fuzzy number M
~

, i.e.

 
1

0
)(

2

1
)

~
( dmmMD RL (7.4)

Where],[RL mm  is the -cut of M
~

. More specifically, the -cut of M
~

 is crisp subset

of elements whose degree of membership is not less than  (10 ). For the two

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

154

fuzzy triangular numbers A
~

 and B
~

 that are characterized by),,(321 aaa and

),,(321 bbb , it can be verified that definition (7.4) satisfies following desirable

properties:

P1.  )
~

()
~

(
~~

BDADBAD  (7.5)

P2.)
~

()
~

(ArDArD  , for any real r (7.6)

P3.  )
~

()
~

(
~~

2121 BDrADrBrArD  , for any real r1 and r2 (7.7)

The proofs of above properties are provided in Appendix E.

7.2.2 The Mathematical Model

As mentioned earlier, the objective is to find an activity sequence with minimum

fuzzy total feedbacks, which can be formulated as:







n

i

n

ij
j

jiji zdMin
1 1

,,

~
 (7.8)

 s.t. 





1

1

,

m

h

hjimji xxz , for nm ,...,2,1 (7.9)

1
1




n

i

mix , for nm ,...,2,1 (7.10)

1
1




n

m

mix , for ni ,...,2,1 (7.11)

 1,0, , jimi zx , for ni ,...,2,1 ; nj ,...,2,1 ; nm ,...,2,1 (7.12)

7.3 The Solution Approach

Previous studies (McCulley and Bloebaum, 1996; Ahmadi et al., 2001) have

reported that the activity sequencing problem with deterministic activity dependencies

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

155

is NP-complete. Therefore, it is difficult to solve the problem in (7.8)-(7.12). For

small activity sequencing problem, we may apply exact methods, such as the Branch-

and-Bound method (Ahmadi et al., 2001), to find global optimal solution. However, it

is known that exact methods are computationally infeasible for large problems.

Therefore, some heuristic methods have been developed, such as Genetic Algorithm

(Altus et al., 1996; McCulley and Bloebaum, 1996; Whitfield et al., 2003; Meier et al.,

2007), Simulated Annealing (Abdelsalam and Bao, 2006), and Evolutionary

algorithm Lancaster and Cheng, 2008). While these heuristic methods can obtain

reasonably solutions in a relatively short time, generally, they cannot guarantee the

optimality of the solution, and may suffer from convergence problems.

As reported by Talbi (2002) and Jourdan et al. (2009), in recent years, there is a

growing interest in combining exact and heuristic methods, termed as hybrid

optimization approaches, for solving NP problems. Such solution strategies can take

advantage of both types of methods, and have been successfully applied to many real-

world problems, such as the job-shop scheduling problem, the resource-constrained

project scheduling problem, the travelling salesman problem and so on. In the activity

sequencing problem, Ahmadi et al. (2001) proposed one such hybrid optimization

approach, which was successfully applied to the turbopump development process at

Rocketdyne with nearly 350 activities. However, the final activity sequence identified

by their approach may be a sequence that is worse than the initial one.

Motivated by these issues, in this section we introduce a new hybrid approach for

solving the activity sequencing problem in (7.8)-(7.12). We first introduce following

notation:

S Activity set that store the sequence of activities from position 1 to position n

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

156

S0 Activity set that store the sequence of activities from position 1 to position

1M

P Number of activities contained in a sub-problem, where nP 

kS Activity set that store the sequence of activities in a sub-problem k (Kk ,...,1)

*

kS Activity set that stores the optimal activity sequence of the sub-problems

L The iteration step length, where L is a positive integer, and PL 

maxI Maximum number of iterations

Figure 7.3 An iteration of the proposed approach

As illustrated in Figure 7.3, an iteration of the proposed approach consists of three

steps: (1) based on an initial activity sequence, select the activities from position M to

position n , and separate them into several sub-problems such that each sub-problem

includes a number of P consecutive activities; (2) solve the sub-problems by the

Branch-and-Bound method (note that here the sub-problems are solved in parallel); (3)

combine the sub-problem solutions into a solution of the main problem.

1 M−1 … M … M+P−1

S0 Sub-problem S1

M+P … M+2P−1

Sub-problem S2

… … n

 Sub-problem SK

…

Keep S0 unchanged Solve sub-problems S1, S2, …, SK by Branch-and-Bound method

S0 Optimal solution
*

1S Optimal solution
*

2S … Optimal solution
*

KS

Initial activity sequence of the main problem

Improved activity sequence of the main problem

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

157

After an iteration of above three steps, we can get an improved activity sequence

of the main problem. We then use this improved activity sequence to restart, and

iteratively change the value of M such that new sub-problems, which are different

from those of the previous iteration, can be derived. The process is repeated until the

maximum number of iterations is reached. We now describe the hybrid approach in

details as follows.

Procedure 7.1

Step 0. Initialize S, calculate the corresponding objective value and save the result as

minF . Initialize P and L. Set 1M , 1I .

While maxII  , do:

Step 1. If PM  , reset 1M .

Step 2. Based on S, select activities from position 1 to position)1(M to form S0;

choose activities from position M to position)1( PM to form sub-

problem 1S , and activities from position)(PM  to position)12( PM to

form sub-problem 2S , repeat until the last activity n is reached.

Step 3. Solve the sub-problems kS independently by the Branch-and-Bound method,

and save the corresponding results as *

kS .

Step 4. Combine S0 and optimal sub-problem solutions *

kS , save the result as S.

Update minF .

Step 5. LMM  , 1 II .

In the above procedure, parameter P defines the size of sub-problems. As

discussed in Chapter 5 and Chapter 6, two extreme cases need to be avoided in

choosing the size of sub-problems: (1) if P is set to be too small, then solving the sub-

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

158

problems by commercial solvers may not improve the solution of the main problem;

(2) if P is too large, then it will be computationally infeasible. After an iteration of

Step 2 to Step 4, we use the improved schedule S to restart Step 1. To get new sub-

problems that are different from those of the previous iteration, we iteratively change

the value of M and L. Parameter maxI determines the total number of iterations.

Generally, the higher the value of maxI , the better the final solution. However, the

calculation time also increases linearly with the value of maxI .

7.4 Case Study

 Activities A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22

 Engine Block A1
H. L. H. L. H. H. H. H. L.

H.

L. L.

H.

H. M.

 Crankshaft A2 H.

H. H. H. H. L. L. L.

M.

M. L.

M.

 Flywheel A3 L. H.

L.

M. M.

 Pistons A4 H. M. L.

M. M. H. M. M. L. M.

L.

H.

 Connecting Rods A5 M. H.

H.

M. L.

L.

M.

 Lubrication A6 H. M. L. M. L.

L. M. L.

L.

L.

L.

M. H.

 Cylinder Heads A7 H. L.

M.

L.

H. H. H.

H.

M.

L. H.

 Camshaft/Valve Train A8 H. L.

L.

M. H.

L. L.

L.

L. M.

 Water Pump/Cooling A9 H.

M.

M. H. M.

M. L. H. L.

L.

L.

L. M.

 Intake Manifold A10 M.

L. H. L. H.

H.

M. M.

H.

 Fuel System A11
L.

M. L. L. L.

L. L.

M. M.

 Accessory Drive A12 H. M.

L. H. L. H. H. H.

M. H. H. M. M. L. L. L. L. M.

 Air Cleaner A13
L. H.

M. H. L.

 AIR A14 L.

L.

H. M.

L. H. L.

M. L. M.

 Throttle Body A15
M.

M. M. H. L.

M. H. L. H.

M.

 Exhaust A16 L.

L.

L.

M. L. L. H.

H.

M. M. L. M.

 EGR A17 L.

L.

L. L.

L. L. H.

L. H. L. M.

 EVAP A18
M.

H.

M. L.

 Ignition A19 H. H. H. L.

L. H. H. L. M. H. M.

L. H. L.

H. H. H.

 ECM A20 L. M. L.

L. L. L. H. M. H. L.

M. M. L. M. H. H.

H. M.

 Electrical System A21 H. L. M. L.

M. L. M. L. L. M. L.

L.

H. L. L. H. H.

H.

 Engine Assembly A22 H. H. M. H. M. H. H. M. M. H. H. M.

M. M. M. M. L. H. M. H.

Figure 7.4 Original DSM for the powertrain development

(from Eppinger, 2001)

In order to demonstrate the utility of the proposed methodology, we apply it to a

real DSM of the powertrain development at General Motors (Eppinger, 2001). Figure

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

159

Iteration 1

S1

S2

Iteration 2

S1

S2

S3

 S0 Iteration 3

Iteration 4 S1

S2

S3

S1

S2

S3

 S0 Iteration 5

S1

S2

S3

 S0 Iteration 6

S1

S3

S2

 S0 S3

7.4 shows the original DSM, which consists of 22 activities, numbered from A1 to A22.

Here “L.”, “M.” and “H.” denote the “low”, “medium” and “high” activity

dependencies, respectively.

7.4.1 Parameter Setting

The imprecise activity dependencies in Figure 7.4 are represented by fuzzy

triangular numbers, which are defined as follows:

Low: (0, 0.2, 0.4).

Medium: (0.3, 0.5, 0.7).

High: (0.6, 0.8, 1).

To apply Procedure 7.1, we first set the parameter values. As an example, the

number of activities contained in a sub-problem P is fixed at 7, the iteration step

length L is set to be 2, and the maximum number of iterations maxI is set to be 6.

Based on the parameter values, the solution strategy for the powertrain development

is illustrated in Figure 7.5.

Figure 7.5 The solution strategy for the powertrain development

Activities A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

160

7.4.2 Application Result

Figure 7.6 shows the improved solution by applying Procedure 7.1, where the

total fuzzy feedbacks is (30, 53.4, 76.8). Based on the criterion (7.4), the total

feedbacks are reduced by about 10%.

Figure 7.6 Solution for the powertrain development by our approach

7.5 Conclusion

We have presented a mathematical model for activity sequencing problem with a

fuzzy representation of activity dependencies. The model can be used to decide an

optimal activity sequence with minimum feedbacks, as well as to predict the most

likely, pessimistic and optimistic values of feedbacks. We have also developed a new

hybrid approach, which embed an exact algorithm within a framework of local search

 Activities

A11 A18 A6 A7 A8 A1 A3 A9 A10 A14 A4 A2 A20 A17 A16 A15 A12 A5 A19 A21 A22 A13

 Fuel System A11
L.

L.

L.

L.

L. M.

M. M. L.

 EVAP A18 M.

M.

H.

L.

 Lubrication A6
L. M. H. L. L.

M. M.

L.

L. L. L. M. H.

 Cylinder Heads A7

L.

H. H.

H. H.

M. L.

H.

M. L. H.

 Camshaft/Valve Train A8
M. H.

H.

L. L.

L. L.

L. L. M.

 Engine Block A1

H. H. H.

L. H. L.

H. H.

L. L.

H. L. H. H. M.

 Flywheel A3
L.

L.

H.

M. M.

 Water Pump/Cooling A9 L.

M. H. M. H.

M.

M.

L.

L. H.

L. M. L.

 Intake Manifold A10
L. H. L. M.

H.

M.

H.

M.

H.

 AIR A14

L.

L.

M. L. H. L. H.

L. M. M.

 Pistons A4 M.

M. H. M. H. L. M. L.

M.

M. L.

H.

 Crankshaft A2
H. L. L. H. H. L.

H.

L.

M. H. M.

M.

 ECM A20 H. H. L. L. L. L. L. H. M. M.

M.

M. L. M. L.

H. H. M.

 EGR A17 L.

L.

L.

L.

H.

H. L. L.

L. L. M.

 Exhaust A16 M.

L.

L.

L.

H.

M. H.

L.

M. L. M. L.

 Throttle Body A15 M. H.

M.

L.

H. M.

M.

L.

M. H.

 Accessory Drive A12 H. L. L. H. L. H.

H. H. H.

M. L. M. M. H.

L. L. M. M.

 Connecting Rods A5
M. L.

M.

L.

H. H.

M.

 Ignition A19 H.

L. H. H. H. H. L. M.

L. H. H. L. H. L. M.

H. H.

 Electrical System A21 M. L. M. L. M. H. M. L. L. L. L. L. H. L. H.

L.

H.

H.

 Engine Assembly A22 H. L. H. H. M. H. M. M. H. M. H. H. M. M. M. M. M. M. H. H.

 Air Cleaner A13 L.

M.

L. H. H.

 Chapter 7 A Fuzzy Approach to DSM Sequencing Problem

161

heuristic, for solving large-scale problems. The proposed approach has been applied

to a real data set published in Eppinger (2001). Application result shows that the

approach can help decision makers better manage product development processes

with uncertain activity dependencies.

Future study should consider testing of the proposed scheduling methodology on

additional project management problems. These problem sets could include activity

dependencies represented by fuzzy trapezoidal numbers, since these are sometimes

used in practice to represent fuzzy numbers. We may also extend the proposed

scheduling methodology to handle multiple development projects or explore some

other approaches for addressing the uncertainties.

 Chapter 8 Conclusions and Future Study

162

CHAPTER 8

CONCLUSIONS AND FUTURE STUDY

This thesis contributes to some methodological issues for scheduling tests in

overlapped NPD process and for sequencing design activities with iteration loops. In

this chapter, we will summarize the main results of our study as described in previous

chapters, and discuss some possible future research.

8.1 Summary of Results

8.1.1 Optimal Scheduling of Tests in Overlapped NPD Process

To model and structure NPD processes, an important decision problem is how to

optimally schedule various tests along the NPD process so as to maximize the product

development performance. Past studies, which are developed to determine the optimal

scheduling of tests, often focused on single-stage testing of sequential design process.

Meanwhile, overlapping has become a common mode of product development

(Terwiesch et al., 2002; Yassine et al., 2008; Roemer and Ahmadi, 2010). We

therefore present two analytical models for the optimal scheduling of tests in

overlapped NPD process.

When the testing set-up time is relatively small, the analytical model in Chapter 3

can help management decide when to stop testing at each stage, and when to start

downstream development (e.g. mold fabrication). Analysis of the model also yields

several useful management insights (Proposition 3.1-3.5, Corollaries 3.1-3.3). For

instance, Proposition 3.2 reveals that the total cost is first convex then concave

 Chapter 8 Conclusions and Future Study

163

increasing with respect to upstream testing duration. In practice, some companies may

intend to shift from sequential to overlapped process. Then, Proposition 3.4 can be

used as a guideline for these companies to adjust their existing testing and

overlapping policies coordinately. Proposition 3.5 indicates that our methodology can

also be used to derive optimal testing and overlapping strategies that achieve the

required product quality at minimum cost, or optimal testing and overlapping

strategies whose product quality is best for a given budget. We have also applied the

methodology to the handset design process at our case study company.

When the testing set-up time is long, the analytical model in Chapter 4 can help

decision makers determine the optimal number of tests needed at each stage, together

with the optimal overlapping policies. The work in this chapter yields several useful

results (Proposition 4.1-4.4). For instance, Proposition 4.1 reveals that it is optimal to

start downstream stages directly after the completion of an upstream test, which is

useful to guide the practice. Proposition 4.2 and 4.3 discuss the impact of different

model parameters, such as the testing set-up time and unit problem-solving time, on

the optimal solution, which can help the management adjust testing and overlapping

strategies for NPD projects with different characteristics. Finally, our model was

applied to improve the refrigerator development process at our case study company.

8.1.2 Approaches for DSM Sequencing Problem

Generally, in test scheduling models, the NPD process is viewed as consisting of a

series of development stages. In such cases, it’s no need to consider the sequencing

problem since the execution sequence of these stages (such as the concept design and

the detail design) is known. However, when the NPD process is further broken into a

number of smaller activities, then, a key and challenging issue, i.e. the planned timing

 Chapter 8 Conclusions and Future Study

164

and sequence of activities, arises because clear precedence constraints among design

activities do not exist and are rarely known in advance (Eppinger et al., 1994; Ahmadi

et al., 2001; Jun and Suh, 2008; Karniel and Reich, 2009).

Unlike the manufacturing process, the NPD process often involves a number of

activities with cyclic information flow among them (Cho and Eppinger, 2005; Karniel

and Reich, 2009). Traditional network-based scheduling techniques, such as CPM and

PERT, cannot effectively model cyclic information and iteration, limiting their

capability of planning for NPD projects (Eppinger et al. 1994; Ahmadi et al., 2001;

Karniel and Reich, 2009). To address this shortfall, one known method is DSM,

which has spawned many research efforts on sequencing design activities with the

objective of minimizing feedbacks. It is known that the problem is NP-complete, and

thus is difficult to solve. While previous decomposition method provides an efficient

way to solve large-scale problems, a major disadvantage of these methods is that the

resulting overall activity sequence may be a sequence that is worse than the initial one.

To address this issue, we therefore propose two new decomposition approaches for

solving large problem.

In Chapter 5, we first propose two simple rules (Theorem 5.1 and 5.2) for

feedback reduction. A heuristic is then proposed for improving feasible solutions

through activity exchange. After that, a new decomposition approach is presented for

solving large DSM sequencing problem. The proposed decomposition approach

outperforms previous ones in its flexibility and well construction of sub-problems.

We have also applied the proposed solution strategy to three real data sets. Compared

to the solutions presented in previous studies, applying our approach results in better

solutions with smaller feedbacks.

 Chapter 8 Conclusions and Future Study

165

In Chapter 6, we further establish rules of block-activity exchange (Theorem 6.1

and 6.2) and block-block exchange (Theorem 6.3 and 6.4), for feedback reduction.

We find that based on the fold operation, a block has similar properties to a single

activity. Based on these findings, a novel decomposition approach is presented for

large DSM sequencing problems. We also perform six groups of random examples

and show that good solutions can be easily obtained by Procedure 6.2. Compared to

the decomposition approach presented in Chapter 5, one advantage of the approach in

this chapter is that it can solve the sub-problems independently and in parallel.

Finally, in some situations, activity dependencies may not be precisely estimated.

In Chapter 7, we resort to fuzzy set theory for tackling uncertain parameters, and

present a fuzzy approach to DSM sequencing problem. The model can be utilized to

predict the most likely, pessimistic and optimistic values of feedbacks, and can help

managers better manage NPD processes with uncertainty. To demonstrate its utility,

the methodology has been applied to the prowerchain development at General Motors

(Eppinger, 2001).

8.2 Possible Future Research

In spite of the contributions described in previous section, we would like to point

out some limitations for application of the results in this thesis. Future research may

be carried out in the areas discussed below.

In Chapter 3 and Chapter 4, we present two analytical models for the optimal

scheduling of tests in overlapped development processes. As mentioned earlier, the

work in Chapter 4 complements the work in Chapter 3 by taking testing set-up time

into consideration, and by examining the testing and overlapping polices for the

 Chapter 8 Conclusions and Future Study

166

whole NPD process rather than two development stages. In the future, we may further

extend the work in Chapter 4 as follows.

Firstly, our models can only be built and analyzed when historical data is available.

For derivative projects which account for the majority of product development

projects (Leifer et al., 2000; Rizova, 2006; Jun and Suh, 2008), these data are

typically available (see e.g. Krishnan et al., 1997; Thomke and Fujimoto, 2000; Gerk

and Qassim, 2008; Ni et al., 2008; Love et al., 2009). However, for totally new

projects, we can only build a model based on estimated data which may lead to

inaccurate results. Secondly, in spite of our best effort, we were able to do only a

small number of case studies. In the data collection process, we find that many firms

are unwilling to share their product development experiences for security reasons.

Even for the two firms that have participated in our study, the data collection was

quite challenging and time-consuming since the companies did not know how past

project data could be used in guiding future projects. In the future, it is meaningful to

test the broader application of the models by applying them to other development

projects and processes. Thirdly, the present models are deterministic and therefore do

not directly address risk, although we have addressed many facets of risk through

sensitivity analysis of the optimal solution to parameters. Consequently, we may

extend our models by taking into account the estimation errors of model parameters

into decision making. Fourthly, we assume the opportunity cost of time is constant.

However, although the opportunity cost should be constant in short run, it may change

in long run. Hence, it may be worthwhile to investigate in detail how will the

opportunity cost of time affect the product development performance, as well as the

optimal testing and overlapping polices. Finally, to keep the model simple, we assume

that the overall penalty cost is a linear function of the number of remaining design

 Chapter 8 Conclusions and Future Study

167

faults, and overall rework cost is a linear function of the amount of rework. Even with

such linear assumptions, our model is complex and is difficult to solve. Moreover, the

linear functions are appropriate approximations of many real situations, as

demonstrated by many studies (see e.g. Kogan and Raz, 2002; Roemer and Ahmadi,

2004; Ji et al., 2005; Wang and Yan, 2005; Gerk and Qassim, 2008; Lin et al., 2009).

Future research can relax these assumptions and discuss the corresponding testing and

overlapping policies.

In Chapter 5 and Chapter 6, we propose several simple rules for reducing

feedbacks and present two decomposition-based approaches for solving DSM

sequencing problem. There are two major limitations for the application of the

methodologies developed in these two chapters. Firstly, the present studies only

examine the activity sequencing problem with the objective of minimizing feedbacks,

because it is simple and of practical importance. Moreover, it is also a common

practice in previous activity sequencing models. As has been mentioned earlier,

except for the objective of minimizing feedbacks, some other considerations have also

been incorporated in sequencing design activities in a DSM. Therefore, our models

may be extended to explore the activity sequencing problem with some other

objectives. Second, the studies presented in Chapter 5 and 6 of this thesis, assume that

the information dependencies among activities can be estimated with reasonable

accuracy. This assumption has been proved to hold in dozens of development projects,

see e.g. Eppinger et al. (1994), Eppinger (2001), Browning and Eppinger (2002),

Batallas and Yassine (2006), Yu et al. (2007), Sosa (2008), Tang et al. (2009), Collins

et al. (2009), Voss and Hsuan (2009). However, there are still some projects where

precise information of activity dependencies is not available (Chen et al., 2004;

Karniel and Reich, 2009; Luh et al., 2009). Hence, the present studies may not be

 Chapter 8 Conclusions and Future Study

168

applicable for these projects.

In Chapter 7, we propose a fuzzy approach to incorporate imprecise parameters,

and present a scheduling methodology for activity sequencing problem with a fuzzy

representation of activity dependencies. Future study should consider testing of the

proposed scheduling methodology on additional project management problems. These

problem sets could include activity dependencies represented by fuzzy trapezoidal

numbers, since these are sometimes used in practice to represent fuzzy numbers.

Moreover, the present model considers only one project within a company. However,

spending resource for testing and downstream rework for one project inevitably

causes delay in other projects. Therefore, we may also extend the proposed model to

handle multiple development projects since it has become increasingly important

(Roemer and Ahmadi, 2010; Song and Kusiak, 2010), or explore some other

approaches for addressing the uncertainties.

 Bibliography

169

BIBLIOGRAPHY

Abdelsalam, H.M.E., Bao, H.P., 2006. A simulation-based optimization framework

for product development cycle time reduction. IEEE Transactions on Engineering

Management 53 (1), 69-85.

Abdelsalam, H.M.E., Bao, H.P., 2007. Re-sequencing of design processes with

activity stochastic time and cost: An optimization-simulation approach. Journal

of Mechanical Design 129 (2), 150-157.

Ahmadi, R., Roemer, T.A., Wang, R.H., 2001. Structuring product development

processes. European Journal of Operational Research 130 (3), 539-558.

Ahmadi, R., Wang, H., 1999. Managing development risk in product design processes.

Operations Research 47 (2), 235-246.

Altus, S.S., Kroo, I.M., Gage, P.J., 1996. A genetic algorithm for scheduling and

decomposition of multidisciplinary design problems. Journal of Mechanical

Design 118 (4), 486–489.

Amrit, C., van Hillegersberg, J., 2008. Detecting coordination problems in

collaborative software development environments. Information Systems

Management 25 (1), 57-70.

Anderson, E.G., Joglekar, N.R., 2005. A hierarchical product development planning

framework. Production and Operations Management 14(3), 344-361.

Atuahene-Gima, K., Evangelista, F., 2000, Cross-Functional influence in new product

development: An exploratory study of marketing and R&D perspectives.

Management Science 46 (10), 1269-1284.

Badiru, A.B, 1993. Quantitative Models for Project Planning, Scheduling, and

Control. Quorum Books, Westport, Conn.

Baldwin, C.Y., Clark, K.B., 2000. Design rules: Volume 1, the power of modularity.

MIT Press, Cambridge, Massachusetts.

Banerjee, A., Carrillo, J., Paul, A., 2007. Projects with sequential iteration: Models

and complexity. IIE Transactions 39 (5), 453-463.

Bartels, J.H., Zimmermann, J., 2009. Scheduling tests in automotive R&D projects.

European Journal of Operational Research 193 (3), 805-819.

Bashir, H.A., AlZebdeh, K., Abdo, J., 2009. An Eigenvalue Based Approach for

Assessing the Decomposability of Interdependent Design Project Tasks.

Concurrent Engineering: Research and Applications 17 (1), 35-42.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=Y1I9mgNNOi2JfkoLHkj&page=1&doc=3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=Y1I9mgNNOi2JfkoLHkj&page=1&doc=3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=1&doc=7&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=1&doc=7&cacheurlFromRightClick=no

 Bibliography

170

Batallas, D.A., Yassine, A.A., 2006. Information leaders in product development

organizational networks: Social network analysis of the design structure matrix.

IEEE Transactions on Engineering Management 53 (4), 570-582.

Belhe, U., Kusiak, A., 1996. Modeling relationships among design activities. Journal

of Mechanical Design 118 (4), 454-460.

Bhaskaran, S.R., Krishnan, V., 2009. Effort, revenue, and cost sharing mechanisms

for collaborative new product development. Management Science, 55 (7), 1152-

1169.

Bhuiyan, F., 2001. Dynamic models of concurrent engineering processes and

performance. Ph.D. dissertation, Department of Mechanical Engineering, McGill

University, Montreal.

Bhuiyan, N., Gerwin, D., Thomson, V., 2004. Simulation of the new product

development process for performance improvement. Management Science 50

(12), 1690-1703.

Bhuiyan, N., Thomson, V., Gerwin, D., 2006. Implementing concurrent engineering.

Research Technology Management 49 (1), 38-43.

Biazzo, S., 2009. Flexibility, structuration, and simultaneity in new product

development. Journal of Product Innovation Management 26 (3), 336-353.

Black, L.J., Repenning, N.R., 2001. Why firefighting is never enough: Preserving

high-quality product development. System Dynamics Review 17 (1), 33-62.

Boehm, B.W., 1981. Software engineering economics. Englewood Cliffs, Prentice-

Hall.

Browning, T.R., 2001. Applying the Design Structure Matrix to system

decomposition and integration problems: a review and new directions. IEEE

Transactions on Engineering Management 48 (3), 292-306.

Browning, T.R., Eppinger, S.D., 2002. Modeling impacts of process architecture on

cost and schedule risk in product development. IEEE Transactions on

Engineering Management 49 (4), 428-442.

Browning, T.R., Ramasesh, R. V., 2007. A survey of activity network-based process

models for managing product development projects. Production and Operations

Management 16 (2), 217-240.

Browning, T.R., 2009. The many views of a process: Toward a process architecture

framework for product development processes. Systems Engineering 12 (1), 69-

90.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=4&doc=40
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=4&doc=40
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=T2NOoIkGb2EJ3BKc7IO&name=Biazzo%20S&ut=000264552300008&pos=1
http://linc.nus.edu.sg:2084/search/aBoehm%2C+Barry+W/aboehm+barry+w/-2,-1,0,B/browse

 Bibliography

171

Browning, T.R., Health, R.D., 2009. Reconceptualizing the effects of lean on

production costs with evidence from the F-22 program. Journal of Operations

Management 27 (1), 23-44.

Burkard, R.E., Dell'Amico, M., Martello, S., 2009. Assignment Problems. Society for

Industrial and Applied Mathematics, Philadelphia.

Cantamessa, M., Villa, A., 2000. Product and process design effort allocation in

concurrent engineering. International Journal of Production Research 38 (14),

3131-3147.

Carrascosa, M., Eppinger, S.D., Whitney, D.E., 1998. Using the design structure

matrix to estimate product development time. ASME Design Engineering

Technical Conferences, Atlanta, GA.

Carrillo, J.E., Franza, R.M., 2006. Investing in product development and production

capabilities: The crucial linkage between time-to-market and ramp-up time.

European Journal of Operational Research 171 (2), 536-556.

Chakravarty, A.K., 2001. Overlapping design and build cycles in product

development. European Journal of Operational Research 134 (2), 392-424.

Chakravarty, A.K., 2003. Optimizing prototyping effort with an evolving product

design. IIE Transactions 35 (10), 921-932.

Chanas, .S, Dubois, D., Zielinski, P., 2002. On the sure criticality of tasks in activity

networks with imprecise durations. IEEE Transactions on Systems Man and

Cybernetics 32 (4), 393-407.

Chao, R.O., Kavadias, S., Gaimon, C., 2009. Revenue driven resource allocation:

Funding authority, incentives, and new product development portfolio

management. Management Science 55 (9), 1556-1569.

Chen, C.H., Khoo, L.P., Jiao, L., 2004. Information deduction approach through

quality function deployment for the quantification of the dependency between

design tasks. International Journal of Production Research 42 (21), 4623-4637.

Chen, L., Ding, Z.D., Li, S., 2005. A formal two-phase method for decomposition of

complex design problems. Journal of Mechanical Design 127 (2), 184-195.

Chen, L., Li, S. 2005. Analysis of decomposability and complexity for design

problems in the context of decomposition. Journal of Mechanical Design 127 (4),

545-557.

Chen, L., Macwan, A., Li, S., 2007. Model-based rapid redesign using decomposition

patterns. Journal of Mechanical Design 129 (3), 283-294.

Chen, S.J., Li, L., 2003. Decomposition of interdependent task group for concurrent

engineering. Computers and Industrial Engineering 44 (3), 435-459.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=R2mlp@Ipp3oGp6LoI88&page=1&doc=6
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=R2mlp@Ipp3oGp6LoI88&page=1&doc=6
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=4
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=4
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=4&doc=33&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=4&doc=33&cacheurlFromRightClick=no

 Bibliography

172

Chen, S.J., Huang, E., 2007. A systematic approach for supply chain improvement

using design structure matrix. Journal of Intelligent Manufacturing 18 (2), 285-

299.

Chin, K.S., Zu, X., Mok, C.K., Tam, H. Y., 2006. Integrated Integration Definition

Language 0 (IDEF) and coloured Petri nets (CPN) modelling and simulation tool:

a study on mould-making processes. International Journal of Production Research

44 (16), 3179-3205.

Cho, S., Eppinger, S.D., 2005. A simulation-based process model for managing

complex design projects. IEEE Transactions on Engineering Management 52 (3),

316-328.

Clark, K.B., Fujimoto, T., 1991. Product Development Performance Strategy,

Organization and Management in the World Auto Industry. Harvard Business

School Press, Boston, MA.

Clarkson, P.J., Simons, C., Eckert, C., 2004. Predicting change propagation in

complex design. Journal of Mechanical Design 126 (5), 788-797.

Cohen, M.A., Eliashberg, J., Ho, T-H., 1996. New product development: the

performance and time-to-market tradeoff. Management Science 42 (2), 173-186.

Collins, S.T., Yassine, A.A., Borgatti, S.P., 2009. Evaluating product development

systems using network analysis. Systems Engineering 12 (1), 55-68.

Cooper, K.G., 1980. Naval ship production: A claim settled and a framework built.

Interface 10 (6), 20-36.

Cooper, K.G., 1993a. The rework cycle: Benchmarks for the project manager. Project

Management Journal 24 (1), 17-22.

Cooper, K.G., 1993b. The rework cycle: How projects are mismanaged. PMNETwork,

February, 5-7.

Cooper, K.G., 1993c. The rework cycle: How it really works…and reworks….

PMNETwork, February, 25-28.

Cooper, R.G., 1994. Third generation of new product processes. Journal of Production

Innovation Management 11 (1), 3-14.

Cooper, R.G., 2001. Winning at new products: Accelerating the process from idea to

launch (3rd ed.). Perseus Publishing, Cambridge, Massachusetts.

Cooper, R.G., Kleinschmidt, E.J., 2007. Winning businesses in product development:

The critical success factors. Research-Technology Management 50 (3), 52-66.

Cooper, R.G., Edgett, S.J., 2008. Maximizing productivity in product innovation.

Research-Technology Management 51 (2), 47-58.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=3&doc=30
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=3&doc=30
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=6&SID=N1kDo12bOBBhbFeib2b&page=2&doc=14
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=6&SID=N1kDo12bOBBhbFeib2b&page=2&doc=14
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=6&SID=N1kDo12bOBBhbFeib2b&page=2&doc=14

 Bibliography

173

Cusumano, M.A., Selby, R.W., 1995. Microsoft secrets: how the world's most

powerful software company creates technology, shapes markets, and manages

people. Free Press, New York.

Dahan, E., Srinivasan, V., 2000. The predictive power of internet-based product

concept testing using visual depiction and animation. Journal of Product

Innovation Management 17 (2), 99-109.

Dahan, E., Mendelson, H., 2001. An extreme-value model of concept testing.

Management Science 47 (1), 102-116.

Dahan, E., Hauser, J.R., 2002. The virtual customer. Journal of Product Innovation

Management 19 (5), 332-353.

Dai, Y.S., Xie, M., Poh, K.L., Yang, B., 2003. Optimal testing-resource allocation

with genetic algorithm for modular software systems. Journal of Systems and

Software 66 (1), 47–55.

Datar, S., Jordan, C., Kekre, S., Rajiv, S., Srinivasan, K., 1997. New product

development structures and time-to-market. Management Science 43 (4), 452-

464.

De Weerd-Nederhof, P.C., Wouters, M.J.F., Teuns, S.J.A., Hissel, P.H., 2007. The

architecture improvement method: cost management and systemic learning about

strategic product architectures. R&D Management, 37 (5), 425-439.

Denker, D., Steward, D.V., Browning, T.R, 2001. Planning concurrency and

managing iteration in projects. Project Management Journal 32(3), 31-38.

Dubois, D., Fargier, H., Fortemps, P., 2003a. Fuzzy scheduling: Modelling flexible

constraints vs. coping with incomplete knowledge. European Journal of

Operational Research 147 (2), 231-252.

Dubois, D., Fargier, H., Galvagnon, V., 2003b. On latest starting times and floats in

activity networks with ill-known durations. European Journal of Operational

Research 147 (2), 266-280.

Eisenhardt, K.M., Tabrizi, B.N., 1995. Accelerating adaptive processes: Product

innovation in the global computer industry. Administrative Science Quarterly 40

(1), 84-110.

Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A., 1994. A model-based

method for organizing tasks in product development. Research in Engineering

Design 6 (1), 1-13.

Eppinger, S.D., 2001. Innovation at the speed of information. Harvard Business

Review 79 (1), 149-158.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=V2P48jbC1baagHlkElF&page=2&doc=12
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=V2P48jbC1baagHlkElF&page=2&doc=12
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=V2P48jbC1baagHlkElF&page=2&doc=12
mailto:tyson.browning@lmco.com
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=Z23k2hDnom9JOj6NfOh&page=1&doc=3

 Bibliography

174

Erat, S., Kavadias, S., 2008. Sequential testing of product designs: Implications for

learning. Management Science 54 (5), 956-968.

Fixson, S.K., 2005. Product architecture assessment: a tool to link product, process,

and supply chain design decisions. Journal of Operations Management 23 (3-4),

345-369.

Ford, D.N., Sterman, J.D., 1998. Dynamic modeling of product development

processes. System Dynamics Review 14 (1), 31-68.

Ford, D.N., Sterman, J.D., 2003a. Overcoming the 90% syndrome: Iteration

management in concurrent development projects. Concurrent Engineering:

Research and Applications 11 (3), 177-186.

Ford, D.N., Sterman, J.D., 2003b. The liar’s club: Concealing rework in concurrent

development. Concurrent Engineering: Research and Applications 11 (3), 211-

219.

Fortemps, P., Roubens, M., 1996. Ranking and defuzzification methods based on area

compensation. Fuzzy Sets and Systems 82 (3), 319-330.

Fulkerson, D.R., 1961. A network flow computation for project cost curves.

Management Science 7 (2), 167-178.

Gebala, D.A., Eppinger, S.D., 1991. Methods for analyzing design procedures,

Proceedings of ASME 3rd International Conference on Design Theory and

Methodology, 227-233.

Gerk, J.E.V., Qassim, R.Y., 2008, Project acceleration via activity crashing,

overlapping, and substitution. IEEE Transactions on Engineering Management

55(4), 590-601.

Gerwin, D., Barrowman, N.J., 2002. An evaluation of research on integrated product

development. Management Science 48 (7), 938-953.

Gil, N., Tommelein, I.D., Beckman, S., 2004. Postponing design processes in

unpredictable environments. Research in Engineering Design 15 (3), 139–154.

Gil, N., Beckman, S., Tommelein, I.D., 2008. Upstream problem solving under

uncertainty and ambiguity: Evidence from airport expansion projects. IEEE

Transactions on Engineering Management 55 (3), 508-522.

Gil, N., 2009. Project Safeguards: Operationalizing Option-Like Strategic Thinking in

Infrastructure Development. IEEE Transactions on Engineering Management, 56

(2), 257-270.

Golenko-Ginzburg, D., Gonik, A., 1996. On-line control model for cost simulation

network projects. Journal of the Operational Research Society 47 (2), 266-283.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=6&SID=V2P48jbC1baagHlkElF&page=1&doc=7
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=6&SID=V2P48jbC1baagHlkElF&page=1&doc=7
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=2&SID=N1K8Pa1AAe@JBlcgBjL&page=1&doc=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=2&SID=N1K8Pa1AAe@JBlcgBjL&page=1&doc=2

 Bibliography

175

Grupp, H., Maital, S., 2001. Managing New Product Development and Innovation: A

Microeconomic Toolbox. Edward Elgar, Cheltenham, UK.

Ha, A.Y., Porteus, E.L., 1995. Optimal timing of reviews in concurrent design for

manufacturability. Management Science 41 (9), 1431-1447.

Haberle, K.R., Burke, R.J., Graves, R.J., 2000. A note on measuring parallelism in

concurrent engineering. International Journal of Production Research 38 (8),

1947-1952.

Harter, D.E., Krishnan M.S., Slaughter, S.A., 2000. Effects of process maturity on

quality, cycle time, and effort in software product development. Management

Science 46 (4), 451-466.

Harter, D.E., Slaughter, S.A., 2003. Quality improvement and infrastructure activity

costs in software development: A longitudinal analysis. Management Science

49(6), 784-800.

Hauser, J., Tellis, G.J., Griffin A., 2006. Research on innovation: A review and

agenda for marketing science. Marketing Science 25 (6), 687-717.

He, Z.W., Xu, Y., 2008. Multi-mode project payment scheduling problems with

bonus-penalty structure. European Journal of Operational Research 189 (3),

1191-1207.

Helms, R., 2002. Product data management as enabler for concurrent engineering.

Ph.D. dissertation, Department of Technology Management, Technical

University Eindhoven, The Netherlands.

Helms, R., 2004. Framework for releasing preliminary information in product

development. Advanced Engineering Informatics 18 (4), 231-240.

Helo, P.T., 2006. Product configuration analysis with design structure matrix.

Industrial Management and Data Systems 106 (7), 997-1011.

Hillier, F.S., Lieberman, G.J., 2001. Introduction to operations research (7th ed.).

McGraw-Hill, Boston.

Hou, R.H., Kuo, S.Y., Chang, Y.P., 1997. Optimal release times for software systems

with scheduled delivery time based on the HGDM. IEEE Transactions on

Computers 46 (2), 216-221.

Huang, C.Y., Lyu, M.R., 2005. Optimal release time for software systems considering

cost, testing-effort, and test efficiency. IEEE Transactions on Reliability 54 (4),

583-591.

Ji, Y.H., Mookerjee, V.S., Sethi, S.P., 2005. Optimal software development: A

control theoretic approach. Information Systems Research 16(3), 292-306.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=10&SID=T1ck2fffBoIBk79iiLj&page=5&doc=42&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=Y2KMdcjl7B3Fl@BngCJ&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=Y2KMdcjl7B3Fl@BngCJ&page=1&doc=1

 Bibliography

176

Joglekar, N.R., Yassine, A.A., Eppinger, S.D., Whitney, D. E., 2001. Performance of

coupled product development activities with a deadline. Management Science 47

(12), 1605-1620.

Joglekar, N.R., Ford, D.N., 2005. Product development resource allocation with

foresight. European Journal of Operational Research 160 (1), 72-87.

Jourdan, L., Basseur, M., Talbi, E.G., 2009. Hybridizing exact methods and

metaheuristics: A taxonomy. European Journal of Operational Research 199 (3),

620-629.

Jun, H.B., Ahn, H.S., Suh, H.W., 2005. On identifying and estimating the cycle time

of product development process. IEEE Transactions on Engineering Management

52 (3), 336-349.

Jun, H.B., Suh, H.W., 2008. A modeling framework for product development process

considering its characteristics. IEEE Transactions on Engineering Management

55(1), 103-119.

Kang, C., Hong, Y.S., 2009. Evaluation of acceleration effect of dynamic sequencing

of design process in a multiproject environment. Journal of Mechanical Design

131(2), article number: 021008.

Kapur, P.K., Bardhan, A.K., Yadavalli, V.S.S., 2007. On allocation of resources

during testing phase of a modular software. International Journal of Systems

Science 38 (6), 493-499.

Karimian, P., Herrmann, J.W., 2009. Separating design optimization problems into

decision-based design processes. Journal of Mechanical Design 131 (1), Article

Number: 011007.

Karniel, A., Reich, Y. 2009. From DSM-based planning to design process simulation:

A review of process scheme logic verification issues. IEEE Transactions on

Engineering Management, 56 (4), 636-649.

Ke, H., Liu, B.D., 2007. Project scheduling problem with mixed uncertainty of

randomness and fuzziness. European Journal of Operational Research 183 (1),

135-147.

Kelley, J.E., 1961. Critical-path planning and scheduling: mathematical basis.

Operations Research 9, 296-320.

Kogan, K., Raz, T., 2002. Optimal allocation of inspection effort over a finite

planning horizon. IIE Transactions 34 (6), 515-527.

Kolisch, R., Hartmann, S., 2006. Experimental investigation of heuristics for

resource-constrained project scheduling: An update. European Journal of

Operational Research 174 (1), 23-37.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=V2P48jbC1baagHlkElF&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=V2P48jbC1baagHlkElF&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S19DI7Ki7A59l6hFNp2&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S19DI7Ki7A59l6hFNp2&page=1&doc=1

 Bibliography

177

Kouskouras, K.G., Georgiou, A.C., 2007. A discrete event simulation model in the

case of managing a software project. European Journal of Operational Research

181(1), 374-389.

Krishnan, V., 1996. Managing the simultaneous execution of coupled phases in

concurrent product development. IEEE Transactions on Engineering

Management 43 (2), 210-217.

Krishnan, V., Eppinger, S.D., Whitney, D.E., 1997. A model-based framework to

overlap product development activities. Management Science 43 (4), 437-451.

Krishnan, V., Ulrich, K.T., 2001. Product development decisions: A review of the

literature. Management Science 47 (1), 1-21.

Kusiak, A., and Wang, J., 1993. Efficient organizing of design activities. International

Journal of Production Research 31(4), 753-769.

Kusiak, A., Larson, T.N., Wang, J.R., 1994. Reengineering of design and

manufacturing processes. Computers and Industrial Engineering 26 (3), 521-

536.

Kusiak, A., Wang, J., He, D.W., Feng, C.X., 1995. A structured approach for analysis

of design processes. IEEE Transactions on Components, Packaging and

Manufacturing technology-Part A 18 (3), 664-673.

Lancaster, J., Ozbayrak, M., 2007. Evolutionary algorithms applied to project

scheduling problems - a survey of the state-of-the-art. International Journal of

Production Research 45 (2), 425-450.

Lancaster, J., Cheng, K., 2008. A fitness differential adaptive parameter controlled

evolutionary algorithm with application to the design structure matrix.

International Journal of Production Research 46 (18), 5043-5057.

Lee, H., Suh, H.W., 2006. Workflow structuring and reengineering method for design

process. Computers and Industrial Engineering 51 (4), 698-714.

Leifer, R., McDermott, C.M., O’Connor, G.C., Peters, L.S., Rice, M., Veryzer, R.W.,

2000. Radical Innovation: How Mature Companies Can Outsmart Upstarts.

Harvard Business School Press, Cambridge, Massachusetts.

Levardy, V., Browning, T.R., 2009. An adaptive process model to support product

development project management. IEEE Transactions on Engineering

Management, 56 (4), 600-620.

Li, D., Sun, X.L., 2006. Nonlinear integer programming. Springer, New York.

Liberatore, M.J., 2008. Critical path analysis with fuzzy activity times. IEEE

Transactions on Engineering Management 55 (2), 329-337.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=7&SID=T2NOoIkGb2EJ3BKc7IO&page=6&doc=55
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=7&SID=T2NOoIkGb2EJ3BKc7IO&page=6&doc=55
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=6&SID=N1kDo12bOBBhbFeib2b&page=2&doc=11
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=6&SID=N1kDo12bOBBhbFeib2b&page=2&doc=11
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=17&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=1&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=17&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=1&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=S19DI7Ki7A59l6hFNp2&page=1&doc=6

 Bibliography

178

Liker, J.K., Sobek, D.K., Ward, A.C., Cristiano, J.J., 1996. Involving suppliers in

product development in the United States and Japan: evidence for set-based

concurrent engineering. IEEE Transactions on Engineering Management 43 (2),

165-178.

Lin, J., Chai, K.H., Wong, Y.S., Brombacher, A.C., 2008. A dynamic model for

managing overlapped iterative product development. European Journal of

Operational Research 185 (1), 378-392.

Lin, J., Chai, K.H., Brombacher, A.C., Wong, Y.S., 2009. Optimal overlapping and

functional interaction in product development. European Journal of Operational

Research 196 (3), 1158-1169.

Lin, J., Qian, Y.J., Cui, W.T., Miao, Z.L., 2010. Overlapping and communication

policies in product development. European Journal of Operational Research 201

(3), 737-750.

Loch, C.H., Terwiesch, C., 1998. Communication and uncertainty in concurrent

engineering. Management Science 44 (8), 1032-1048.

Loch, C.H., Terwiesch, C., Thomke, S., 2001. Parallel and sequential testing of design

alternatives. Management Science 47 (5), 663-678.

Loch, C., Mihm, J., Huchzermeier, A., 2003. Concurrent engineering and design

oscillations in complex engineering projects. Concurrent Engineering: Research

and Applications 11 (3), 187-199.

Loch, C.H., Terwiesch, C., 2005. Rush and be wrong or wait and be late? A model of

information in collaborative processes. Production and Operations Management

14(3), 331-343.

Lootsma, F.A., 1989. Stochastic and fuzzy PERT. European Journal of Operational

Research 43 (2) 174-183.

Lopes, C.V., Bajracharya, S.K., 2006. Assessing aspect modularizations using design

structure matrix and net option value. Transactions on Aspect-Oriented Software

Development I, 3880, 1-35.

Love, P.E.D., Edwards, D.J., Irani, Z., 2008. Forensic project management: An

exploratory examination of the causal behavior of design-induced rework. IEEE

Transactions on Engineering Management 55 (2), 234-247.

Love, P.E.D., Edwards, D.J., Irani, Z., Walker, D.H.T., 2009. Project pathogens: the

anatomy of omission errors in construction and resource engineering project.

IEEE Transactions on Engineering Management 56 (3), 425-435.

Luh, D.B., Ko, Y.T., Ma, C.H., 2009. A dynamic planning approach for new product

development. Concurrent Engineering: Research and Applications, 17 (1), 43-59.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=V2P48jbC1baagHlkElF&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=V2P48jbC1baagHlkElF&page=1&doc=1

 Bibliography

179

MacCormack, A., Verganti, R., Iansiti, M., 2001. Developing products on "Internet

Time": The anatomy of a flexible development process. Management Science

47(1), 133-150.

MacCormack, A., Rusnak, J., Baldwin, C.Y., 2006. Exploring the structure of

complex software designs: An empirical study of open source and proprietary

code. Management Science 52 (7), 1015-1030.

Maheswari, J.U., Varghese, K., Sridharan, T., 2006. Application of dependency

structure matrix for activity sequencing in concurrent engineering projects.

Journal of Construction Engineering and Management 132 (5), 482-490.

McCulley, C., Bloebaum, C.L., 1996. A genetic tool for optimal design sequencing in

complex engineering systems. Structural Optimization 12 (2-3), 186-201.

Meier, C., Yassine, A.A., Browning, T.R., 2007. Design process sequencing with

competent genetic algorithms. Journal of Mechanical Design 129 (6), 566-585.

Meixell, M.J., Nunez, M., Talalayevsky, A., 2006. Activity structures in a project-

based environment: A coordination theory perspective. IEEE Transactions on

Engineering Management 53 (2), 285-296.

Mihm, J., Loch, C., Huchzermeier, A. 2003, Problem-Solving oscillations in complex

engineering projects. Management Science 46(6), 733-750.

Mika, M., Waligora, G., Weglarz, J., 2005. Simulated annealing and tabu search for

multi-mode resource-constrained project scheduling with positive discounted

cash flows and different payment models. European Journal of Operational

Research, 164(3), 639-668.

Minderhoud, S., Fraser, P., 2005. Shifting paradigms of product development in fast

and dynamic markets. Reliability Engineering and System Safety 88 (2), 127-135.

Mitchell, V.L., Nault, B.R., 2007. Cooperative planning, uncertainty, and managerial

control in concurrent design. Management Science 53 (3), 375-389.

Morelli, M.D., Eppinger S.D., Gulati R.K., 1995. Predicting technical

communications in product development organizations. IEEE Transactions on

Engineering Management 42 (3), 215-222.

Muhuri, P.K., Shukla, K.K., 2008. Real-time task scheduling with fuzzy uncertainty

in processing times and deadlines. Applied Soft Computing 8 (1), 1-13.

Nair, A., Boulton, W.R., 2008. Innovation-oriented operations strategy typology and

stage-based model. International Journal of Operations and Production 28 (7-8),

748-711.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=13&doc=124&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=13&doc=124&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=S19DI7Ki7A59l6hFNp2&page=5&doc=45
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=S19DI7Ki7A59l6hFNp2&page=5&doc=45
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=7&SID=T2NOoIkGb2EJ3BKc7IO&page=6&doc=56
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=7&SID=T2NOoIkGb2EJ3BKc7IO&page=6&doc=56

 Bibliography

180

Nambisan, S., 2002. Designing virtual customer environments for new product

development: Toward a theory. Academy of Management Review 27 (3), 392-

413.

Nasution, S.H., 1994. Fuzzy critical path method. IEEE Transactions on Systems Man

and Cybernetics 24 (1), 48-57.

Novak, S., Stern, S., 2008. How does outsourcing affect performance dynamics?

Evidence from the automobile industry. Management Science, 54 (12), 1963-

1979.

Ni, M., Luh, P.B., Moser, B., 2008. An optimization-based approach for design

project scheduling. IEEE Transactions on Automation Science and Engineering

5(3), 3940406.

O’Sullivan, A., 2003. Dispersed collaboration in a multi-firm, multi-team product-

development project. Journal of Engineering and Technology Management 20 (1-

2), 93-116.

Osborne, S.M., 1993. Product Development Cycle Time Characterization through

Modeling of Process Change. Unpublished master’s thesis, Sloan School of

Management, MIT, Cambridge, Massachusetts.

Patrashkova-Volzdoska, R., McComb, S.A., Green, S.G., Compton, W.D., 2003.

Examining a curvilinear relationship between communication frequency and

team performance in cross-functional project teams. IEEE Transactions on

Engineering Management 50 (3), 262-269.

Pektas, S.T., Pultar, M., 2006. Modelling detailed information flows in building

design with the parameter-based design structure matrix. Design Studies 27 (1),

99-122.

Petrovic, S., Fayad, C., Petrovic, D., 2008. Sensitivity analysis of a fuzzy

multiobjective scheduling problem. International Journal of Production Research

46 (12), 3327-3344.

Pham, H., Zhang, X.M., 2003. NHPP software reliability and cost models with testing

coverage. European Journal of Operational Research 145 (2), 443–454.

Pich, M.T., Loch, C.H., Meyer, A.D., 2002. On uncertainty, ambiguity, and

complexity in project management. Management Science 48 (8) 1008-1023.

Pollack-Johnson, B., Liberatore, M.J., 2006. Incorporating quality considerations into

project time/cost tradeoff analysis and decision making. IEEE Transactions on

Engineering Management 53 (4), 534-542.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=16&doc=152
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=16&doc=152
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=S19DI7Ki7A59l6hFNp2&page=3&doc=28
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=S19DI7Ki7A59l6hFNp2&page=3&doc=28

 Bibliography

181

Qian, Y.J., Goh, T.N., 2007. Development projects scheduling and Design Structure

Matrix. Proceeding of 2007 IEEE International Conference on Industrial

Engineering and Engineering Management. Singapore.

Qian, Y.J., Xie, M., Goh, T.N., 2007. A model for streamlining overlapped iterative

design processes. Proceeding of the Asia-Pacific Systems Engineering

Conference. Singapore.

Qian, Y.J., Xie, M., Goh, T.N., Lin, J., 2010. Optimal testing strategies in overlapped

design process. European Journal of Operational Research 206 (1), 131-143.

Rizova, P., 2006. Are you networked for successful innovation? MIT Sloan

Management Review 47 (3), 49-55.

Rodrigues, A., Bowers, J., 1996. System dynamics in project management: a

comparative analysis with traditional methods. System Dynamics Review 12 (2),

121-139.

Roemer, T.A., Ahmadi, R., Wang, R.H., 2000. Time-cost tradeoffs in overlapped

product development. Operations Research 48 (6), 858-865.

Roemer, T.A., Ahmadi, R., 2004. Concurrent crashing and overlapping in product

development. Operations Research 52 (4), 606-622.

Roemer, T.A., Ahmadi, R., 2010. Models for concurrent product and process design.

European Journal of Operational Research, 203 (3), 601-613.

Rogers, J.L., 1989. A knowledge-based tool for multilevel decomposition of a

complex design problem. NASA TP-2903.

Rogers, J.L., 1996. Integrating a genetic algorithm into a knowledge-based system for

ordering complex design processes. NASA TM-110247.

Rogers, J.L., 1999. Tools and techniques for decomposing and managing complex

design projects. Journal of Aircraft 36 (1), 266-274.

Rosenau, M.D., Griffin, A., Castellion, G., Anschuetz, N., (Eds.), 1996. The PDMA

handbook of new product development. John Wiley, New York.

Rosenau, M.D., Githens, G. D., 2005. Successful project management: a step-by-step

approach with practical examples. John Wiley, New York.

Serich, S., 2005. Prototype stopping rules in software development projects, IEEE

Transactions on Engineering Management, 52 (4): 478-485.

Shane, S.A., Ulrich, K.T., 2004. Technological innovation, product development, and

entrepreneurship in management science. Management Science 50 (2), 133-144.

Sharman, D., Yassine A., 2004. Characterizing complex product architectures.

Systems Engineering 7 (1), 35-60.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=T2NOoIkGb2EJ3BKc7IO&name=Rizova%20P&ut=000236922900009&pos=1
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science?_ob=ArticleURL&_udi=B6VCT-4X7YNGB-1&_user=111989&_coverDate=06%2F16%2F2010&_alid=1103149455&_rdoc=13&_fmt=high&_orig=search&_cdi=5963&_sort=r&_st=4&_docanchor=&_ct=369&_acct=C000008700&_version=1&_urlVersion=0&_userid=111989&md5=e8f3daba438ed648c2cb555cbfe5085a
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=7&SID=Y1CkCCOFIDAHLmG1iH7&page=3&doc=23
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=7&SID=Y1CkCCOFIDAHLmG1iH7&page=3&doc=23

 Bibliography

182

Sharman, D.M., Yassine, A.A., 2007. Architectural valuation using the design

structure matrix and real options theory. Concurrent Engineering: Research and

Applications 15 (2), 157-173.

Shooman, M.L., 1983. Software engineering: design, reliability, and management,

McGraw-Hill, New York.

Slaughter, S.A., Harter, D.E., Krishnan, M.S., 1998. Evaluating the cost of software

quality. Communications of the ACM 41(8), 67-73.

Smith, P.G., Reinertsen, D.G., 1998. Developing Products in Half the Time, 2nd ed.

Van Nostrand Reinhold, New York.

Smith, R.P., Eppinger, S.D., 1997a. A predictive model of sequential iteration in

engineering design. Management Science 43 (8), 1104-1120.

Smith, R.P., Eppinger, S.D., 1997b. Identifying controlling features of engineering

design iteration. Management Science 43 (3), 276-293.

Sobek, D.K., Ward, A.C., Liker, J.K., 1999. Toyota’s principles of set-based

concurrent engineering. Sloan Management Review 40 (2), 67-83.

Song, Z. Kusiak, A., 2010. Mining Pareto-optimal modules for delayed product

differentiation. European Journal of Operational Research 201 (1), 123-128.

Sosa, M.E., Eppinger, S.D., Rowles, C.M., 2004. The misalignment of product

architecture and organizational structure in complex product development.

Management Science 50 (12), 1674-1689.

Sosa, M.E., Eppinger, S.D., Rowles, C.M., 2007a. Are your engineers talking to one

another when they should? Harvard Business Review 85 (11), 133-142.

Sosa, M.E., Eppinger, S.D., Rowles, C.M., 2007b. A network approach to define

modularity of components in complex products. Journal of Mechanical Design

129 (11), 1118-1129.

Sosa, M.E., 2008. A structured approach to predicting and managing technical

interactions in software development. Research in Engineering Design 19(1), 47-

70.

Sterman, J.D., 2004. Business Dynamics: Systems Thinking and Modeling for a

Complex World. Irwin/McGraw-Hill, Boston.

Steward, D.V., 1981. The design structure system: A method for managing the design

of complex systems. IEEE Transactions on Engineering Management 49 (4),

428-442.

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science?_ob=ArticleURL&_udi=B6VCT-4VNH3X8-7&_user=111989&_coverDate=02%2F16%2F2010&_alid=1103149455&_rdoc=11&_fmt=high&_orig=search&_cdi=5963&_sort=r&_st=4&_docanchor=&_ct=369&_acct=C000008700&_version=1&_urlVersion=0&_userid=111989&md5=32e10d25aef1d73dbbbe3db73053db96
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science?_ob=ArticleURL&_udi=B6VCT-4VNH3X8-7&_user=111989&_coverDate=02%2F16%2F2010&_alid=1103149455&_rdoc=11&_fmt=high&_orig=search&_cdi=5963&_sort=r&_st=4&_docanchor=&_ct=369&_acct=C000008700&_version=1&_urlVersion=0&_userid=111989&md5=32e10d25aef1d73dbbbe3db73053db96
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=X2cDbo7df7L32I1FAOi&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=X2cDbo7df7L32I1FAOi&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=9
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=9

 Bibliography

183

Swink, M.L., Sandvig, C., Mabert, V.A., 1996. Customizing concurrent engineering

processes: five case studies. Journal of Production Innovation Management 13

(3), 229-244.

Talbi, E.G., 2002. A taxonomy of hybrid metaheuristics. Journal of Heuristics 8 (5),

541-564.

Tamura, Y., Yamada, S., 2006. A flexible stochastic differential equation model in

distributed development environment. European Journal of Operational Research

168 (1), 143-152.

Tang, D.B., Zheng, L., Li, Z.Z., Zhang, S.Q., 2000. Re-engineering of the design

process for concurrent engineering. Computers and Industrial Engineering 38 (4),

479-491.

Tang, D.B., Zhu, R.M., Dai, S., Zhang, G.J., 2009. Enhancing axiomatic design with

design structure matrix. Concurrent Engineering: Research and Applications 17

(2), 129-137.

Terwiesch, C., Loch, C.H., 1999. Measuring the effectiveness of overlapping

development activities. Management Science 45 (4), 455-465.

Terwiesch, C., Loch, C.H., De Meyer, A., 2002. Exchanging preliminary information

in concurrent engineering: Alternative coordination strategies. Organization

Science 13 (4), 402-419.

Terwiesch, C., Xu, Y., 2008. Innovation contests, open innovation, and multiagent

problem solving. Management Science 54 (9), 1529-1543.

Thomke, S., 1998. Simulation, learning, and R&D performance: Evidence from

automotive development. Research Policy 27 (1), 55-74.

Thomke, S., Fujimoto, T., 2000. The effect of “Front-Loading” problem-solving on

product development performance. Journal of Production Innovation

Management 17 (2), 128-142.

Thomke, S., Bell, D.E., 2001. Sequential testing in product development.

Management Science 47 (2), 308-323.

Thomke, S., 2003. Experimentation Matters: Unlocking the Potential of New

Technologies for Innovation. Harvard Business School Press, Boston.

Thomke, S., 2007. Managing Product and Service Department: Text and Cases.

McGraw-Hill, Boston.

To, C.K.M., Fung, H.K., Harwood, R.J., Ho, K.C., 2009. Coordinating dispersed

product development processes: A contingency perspective of project design and

modelling. International Journal of Production Economics 120 (2), 570-584.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=T1n4649@p88M@8MBm59&page=1&doc=7
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=V2P48jbC1baagHlkElF&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=V2P48jbC1baagHlkElF&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=W1Fp@f7iKOMBgG4G@2P&name=Terwiesch%20C&ut=000259080900001&pos=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=W1Fp@f7iKOMBgG4G@2P&name=Xu%20Y&ut=000259080900001&pos=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=16&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=16&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=3
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&colname=WOS&search_mode=CitingArticles&qid=16&SID=T2NOoIkGb2EJ3BKc7IO&page=1&doc=3

 Bibliography

184

Ulrich, K.T., Eppinger S.D., 2008. Product Design and Development (4th ed.).

McGraw-Hill, Boston.

Veenstra, V.S., Halman, J.I.M., Voordijk, J.T., 2006. A methodology for developing

product platforms in the specific setting of the housebuilding industry. Research

in Engineering Design 17 (3), 157-173.

Voss, C.A., Hsuan, J., 2009. Service Architecture and Modularity. Decision Sciences

40 (3), 541-569.

Wagner, S.M., Hoegl, M., 2006. Involving suppliers in product development: insights

from R&D directors and project managers. Industrial Marketing Management 35

(8), 936-943.

Waligora G., 2008. Discrete-continuous project scheduling with discounted cash

flows - A tabu search approach. Computers and Operations Research 35(7),

2141-2153.

Wang, J., 1999. A fuzzy set approach to activity scheduling for product development.

Journal of the Operational Research Society 50 (12), 1217-1228.

Wang, J., 2002. A fuzzy project scheduling approach to minimize schedule risk for

product development. Fuzzy Sets and Systems 127 (2), 99-116.

Wang, J., 2004. A fuzzy robust scheduling approach for product development projects.

European Journal of Operational Research 152 (1), 180-194.

Wang, Z., Yan, H.S., 2005. Optimizing the Concurrency for a group of design

activities. IEEE Transactions on Engineering Management 52 (1), 102-118.

Wheelwright, S.C., Clark, K.B., 1992. Revolutionizing Product Development. The

Free Press, New York.

Whitfield, R.I., Duffy, A.H.B., Coates, G., Hills, B. 2003. Efficient process

optimization. Concurrent Engineering: Research and Applications 11 (2), 83-92.

Williams, T., Ackermann, F., Eden, C., 2003. Structuring a delay and disruption claim:

An application of cause-mapping and system dynamics. European Journal of

Operational Research 148 (1), 192-204.

Williams, T., 2005. Assessing and moving on from the dominant project management

discourse in the light of project overruns. IEEE Transactions on Engineering

Management 52 (4), 497-508.

Wu, L.F., De Matta, R., Lowe, T.J., 2009. Updating a modular product: How to set

time to market and component quality. IEEE Transactions on Engineering

Management 56 (2), 298-311.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=8&SID=V2P48jbC1baagHlkElF&page=2&doc=14
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=8&SID=V2P48jbC1baagHlkElF&page=2&doc=14
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=17&SID=U28HpBOIiP712ckgdKp&page=9&doc=86
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S2Ebd7@Lm9c6onj9KcA&page=1&doc=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S2Ebd7@Lm9c6onj9KcA&page=1&doc=2
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=R1CmEpi4646pA1fL8Df&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=R1CmEpi4646pA1fL8Df&page=1&doc=1

 Bibliography

185

Wu, Y.P., Hu, Q.P., Xie, M., Ng, S.H., 2007. Modeling and analysis of software fault

detection and correction process by considering time dependency. IEEE

Transactions on Reliability 56 (4), 629-642.

Xie, M., Yang, B., 2001. Optimal testing-time allocation for modular systems.

International Journal of Quality and Reliability Management 18 (8), 854-863.

Xie, M., Yang, B., 2003. A Study of the Effect of Imperfect Debugging on Software

Development Cost. IEEE Transactions on Software Engineering 29 (5), 471-473.

Xie, M., Hu, Q.P., Wu, Y.P., 2007. A study of the modeling and analysis of software

fault-detection and fault-correction processes. Quality and Reliability

Engineering 23 (4), 459-470.

Yager, R.R., 1981. A procedure for ordering fuzzy subsets of the unit interval.

Information Sciences 24 (2), 143-161.

Yamada, S., Ichimori, T., Nishiwaki, M., 1995. Optimal allocation policies for

testing-resource based on a software reliability growth model. Mathematical and

Computer Modelling 22 (10-12), 295-301.

Yan, H.S., Wang, Z., Jiang, M., 2002. A quantitative approach to the process

modeling and planning in concurrent engineering. Concurrent Engineering:

Research and Applications 10 (2), 97-111.

Yan, H.S., Wang, Z., Jiao, X.C., 2003. Modeling, scheduling and simulation of

product development process by extended stochastic high-level evaluation Petri

nets. Robotics and Computer-Integrated Manufacturing 19 (4), 329-342.

Yan, H.S., Xu, D., 2007. An approach to estimating product design time based on

fuzzy v-support vector machine. IEEE Transactions on Neural Networks 18(3),

721-731.

Yang, B., Hu, H., Jia, L., 2008. A study of uncertainty in software cost and its impact

on optimal software release time. IEEE Transactions on Software Engineering

34(6), 813-825.

Yassine A.A., Falkenburg, D., Chelst, K., 1999a. Engineering design management: an

information structure approach. International Journal of Production Research

37(13), 2957-2975.

Yassine, A.A., Chelst, K.R., Falkenburg, D.R., 1999b. A decision analytic framework

for evaluating concurrent engineering. IEEE Transactions on Engineering

Management 46 (2), 144–157.

Yassine, A., Joglekar, N., Braha, D., Eppinger, S., Whitney, D., 2003. Information

hiding in product development: the design churn effect. Research in Engineering

Design 14 (3), 145-161.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/x/Xu:Duo.html
http://www.informatik.uni-trier.de/~ley/db/journals/tnn/tnn18.html#YanX07
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=8&SID=R1CmEpi4646pA1fL8Df&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=8&SID=R1CmEpi4646pA1fL8Df&page=1&doc=1

 Bibliography

186

Yassine, A.A., 2007. Investigating product development process reliability and

robustness using simulation. Journal of Engineering Design 18 (6), 545-561.

Yassine, A.A., Sreenivas, R.S., Zhu, J., 2008. Managing the exchange of information

in product development. European Journal of Operational Research 184 (1), 311-

326.

Yu, T.L., Yassine, A.A., Goldberg, D.E., 2007. An information theoretic method for

developing modular architectures using genetic algorithms. Research in

Engineering Design 18 (2), 91-109.

Zakarian, A., Kusiak, A., 2001. Process analysis and reengineering. Computers and

Industrial Engineering 41 (2), 135-150.

Zhang, H.P., Qiu, W.H., Zhang, H.F., 2006. An approach to measuring coupled tasks

strength and sequencing of coupled tasks in new product development.

Concurrent Engineering: Research and Applications 14 (4), 305-311.

Zhang, X.M., Ding, H., 2007. Interval finite element method for complex eigenvalues

of closed-loop systems with uncertain parameters. Structural Engineering and

Mechanics 26 (2) 163-178.

Zhou, K.Z., Yim, C.K., Tse, D.K., 2005. The effects of strategic orientations on

technology- and market-based breakthrough innovations. Journal of Marketing,

69 (2), 42-60.

Zhuo, L., San, W.Y., Seng, L.K., 2008. Integrated approach to modularize the

conceptual product family architecture. International Journal of Advanced

Manufacturing 36 (1-2), 83-96.

Zielinski, P., 2005. On computing the latest starting times and floats of activities in a

network with imprecise durations. Fuzzy Sets and Systems 150 (1), 53-76.

Zimmermann, H.-J., 1996. Fuzzy set theory and its applications (3rd ed.). Kluwer

Academic Publishers, Boston.

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=12&SID=N1kDo12bOBBhbFeib2b&page=1&doc=1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=5&doc=42
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=11&SID=T2NOoIkGb2EJ3BKc7IO&page=5&doc=42
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=V2P48jbC1baagHlkElF&page=2&doc=11
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=Refine&qid=12&SID=V2P48jbC1baagHlkElF&page=2&doc=11
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S2Ebd7@Lm9c6onj9KcA&page=1&doc=1&cacheurlFromRightClick=no
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S2Ebd7@Lm9c6onj9KcA&page=1&doc=1&cacheurlFromRightClick=no

 Appendix A Proofs of Chapter 3

187

APPENDIX A

PROOFS OF CHAPTER 3

Proof of Proposition 3.1

(a) The first and second partial derivatives of (3.9) in st are:

  stbtb

r

s

eecku
t

C
111

1







 (3.20)

  stb

r

s

ecbku
t

C
1

112

2






 (3.21)

Let
)(1

1








rcku
. Clearly, 022  stC for all feasible values of st . Hence, if

*

1t is given, and if
*
1111

tbe
 , then 0 stC for all st . In such case, 0* st . On

the other hand, if
*
1111

tbe
 , then setting (3.20) to zero yields:

 *
11

1

1

* ln
1 tb

s e
b

t


  (3.22)

(b) Since the maximum value of  *
111
tbe

 is 1, we can get the result in

Proposition 3.1(b).

(c) The first and second partial derivatives of (3.9) with respect to 2t
are:

  1122

221222

2

tbtb

q eawkuaecbc
t

C 





 (3.23)

  1122

2212

2

22

2

2
tbtb

q eawkuaecb
t

C 





 (3.24)

 Appendix A Proofs of Chapter 3

188

Let
 2212

2
2

awkubc

c

q 





 , and

 221

2
3

awku

a


 . Obviously, 02

2

2  tC for all

2t . If *

1t is given, and if
*
11

32

tb
e


 , then 02  tC for all 2t , leading to 0*

2 t .

Otherwise, setting (3.23) to zero yields:













 




2

3

2

*

2

*
11

ln
1



 tb
e

b
t (3.25)

(d) The maximum value of
*
11tb

e


 is 1. Hence if 132  , 0*

2 t .

Proof of Corollary 3.1

When 0*

2 t , by substituting (3.25) into (3.7), we get  
2

2*

2

*

1 ,
bc

c
ttN

q


 .

Proof of Proposition 3.2

(a) Obviously,
 

1

01

1

*






st
t

t
, and

 
11

* 1

1

01

1

tb

t
et

t

s














. Thus,

 
0

1

1 




t

t
 1t .

(b) If 0* st , 0*

2 t , the first partial derivative of (3.14) with respect to 1t is:

     1

32

12
1111

0,01)(

)(
ln

11

11

1111

*
2

*

c
eb

ebc
etbekuc

t

C
tb

tb
tbtb

r

tt s



















 (3.26)

As above, we get following equations:

        12211111

0,01

1111

*
2

*

ln cawbcetbceku
t

C
q

tb

r

tb

tt s




 



 (3.27)

 
 

1

32

12
111

0,01)(11

11

11

*
2

*

c
eb

ebc
etbkuc

t

C
tb

tb
tb

r

tt s



















 (3.28)

     122111

0,01

11

*
2

*

cawctcebku
t

C
qr

tb

tt s




 



 (3.29)

 Appendix A Proofs of Chapter 3

189

The second partial derivatives of (3.14) with respect to 1t for all four situations

are:

     

  








































2

32

231
111

1

1
11

0,0

2

1

2

11

11

11

11

*
2

*

ln
tb

tb

tbr

tb

tt eb

cb
etb

e
ckueb

t

C

s








 (3.30)

     























 







221111

1

1
11

0,0

2

1

2

11

11

11

*
2

*

ln awbcetb
e

cebku
t

C
q

tb

tbr

tb

tts





 (3.31)

  
 

  

























2

32

231
1111

0,0

2

1

2

11

11

*
2

*

1
tbr

tb

tt eb

cb
tbckueb

t

C

s



 (3.32)

     2211111

0,0

2

1

2

111

*
2

*

awbctbcebku
t

C
qr

tb

tts




 



 (3.33)

Observe from (3.30) to (3.33), the second derivatives for all four cases decrease

from a positive value to a negative global minimum value, then increases

monotonically with 1t , and finally they approach zero when 1t approaches positive

infinity. The first derivatives for all four cases strictly increase to a global maximum

value, then decrease to 1c (positive) when 1t approaches positive infinity.

Consequently, the total cost in (3.14) is first convex then concave increasing with

respect to 1t .

Let
 221

1
4

awkuc

c

q 
 . Clearly, if 0

01
1






t
t

C
, i.e. 












1
,1min

3

2

1

4





b
, then

01  tC for all 1t , resulting in 0*

1 t .

Proof of Proposition 3.3

(a) When   21

1

*

1

*
11ln

1
Te

b
t

tb


 , and 0* st , 0*

2 t , 0*

1 t , by the implicit

function theorem:
*
1

*
1

2

1

2

11

2

1

*

1

tt
t

C

ut

C

u

t













, and

*
1

*
1

2

1

2

1

2*

1

tt
t

C

kt

C

k

t













, we can get:

 Appendix A Proofs of Chapter 3

190

     

 

     

 
11

2

32

231
1

*

11

1

1
11

2

321

231
1

*

11

1

1

1

*

1 1

ln

ln

*
11

*
11

*
11

*
11

*
11

*
11

*
11

*
11

bu

eb

cb
etb

e
ckueb

ebu

cb
etb

e
cke

u

t

tb

tb

tbr

tb

tb

tb

tbr

tb


















































































































(3.34)

     

 

     

 
1

2

32

231
1

*

11

1

1
11

2

32

231
1

*

11

1

1
1

*

1 1

ln

ln

*
11

*
11

*
11

*
11

*
11

*
11

*
11

*
11

kb

eb

cb
etb

e
ckueb

ekb

cb
etb

e
cue

k

t

tb

tb

tbr

tb

tb

tb

tbr

tb


















































































































(3.35)

Therefore, *

1t increases with 1u and k . Similarly, we have:

 
*
1

*
11

*
11

*
11

2

1

2

1

*

11

1

1
1

*

1 ln

t

tb

tb

tb

r t

C
etb

e
eku

c

t



















 



 



 (3.36)

It can be verified that:   *

11

*

11

1

1 ,0ln
*
11

*
11

tetb
e

tb

tb












. Thus, 0

*

1 




rc

t
.

(b) When 0* st , 0*

2 t , 0*

1 t and   21

1

*

1

*
11ln

1
Te

b
t

tb


 , the mixed partial:

     
2

32

3

*

1312
1

*

11

1

1*

11

11

2

)(

)(
ln *

11

*
11

*
11

*
11

*
11

*
11

*
1

tb

tbtb
tb

tb

tb

r

t
eb

eetbc
etb

e
ectku

bt

C












































(3.37)

When 0
*
11

3

*

131 
 tb

etb  , the above expression is negative. Moreover, (3.37)

strictly increases with 1b when 0
*
11

3

*

131 
 tb

etb  . Therefore, there exists a unique

value of 0

1b such that: if 0

11 bb  , then the optimal upstream testing duration *

1t

increases with 1b ; if 0

11 bb  , *

1t decreases with 1b .

(c) When 0* st , 0*

2 t , 0*

1 t and   21

1

*

1

*
11ln

1
Te

b
t

tb


 , the mixed partial:

 Appendix A Proofs of Chapter 3

191

 

































)()(
ln *

11
*
11

*
11

*
11

*
1 32

1

1

1
1

*

111

1

2

tbtb

rtbtb

t
eb

b

e

c
etbkue

t

C









































)(

)(

)(

1
*
11

*
11

*
11

*
11

32

12

1

1 tb

tb

r

tb

tb

r

r eb

ebcc

e

ec
c

c 

(3.38)

Let
)(

)(

)(
)(*

11

*
11

*
11

*
11

32

12

1

1 tb

tb

r

tb

tb

r

eb

ebcc

e

ec
c


















 . It can be verified that)( strictly

increases in  . If 12 cccr  , then)(

is positive, and so *

1t strictly increases

with  . Otherwise, there exists a critical 0 such that: if 0  , *

1t decreases with

 ; if 0  , 

1t increases with  .

Proof of Corollary 3.2

When 0* st , 0*

2 t , 0*

1 t and   21

1

*

1

*
11ln

1
Te

b
t

tb


 , the first partial

derivatives of (3.22) with respect to 1u and k are:

 

 

 

 
11

1

1

11

12

1

1

1

1

*

1
12

1

1

* 1

1

*
11

*
11

*
11

*
11

bu
e

cku
b

bu
eb

cku

e
cku

b

u

t
eb

cku

u

t

tb

r

tb

r

tb

r

tb

rs 



















































































 (3.39)

 

 

 

 
1

1

1

1

1

1

2

1

1

*

1
1

1

2* 1

1

*
11

*
11

*
11

*
11

kb
e

cku
b

kb
eb

cuk

e
cku

b

k

t
eb

cuk

k

t

tb

r

tb

r

tb

r

tb

rs 



















































































 (3.40)

Therefore,
*

st increases with 1u and k .

Defining overlapping degree between upstream and downstream stages

11 tts , and * be the optimal overlapping degree. Then, based on the above

results of (3.34), (3.35), (3.39), and (3.40), our model suggests that * decreases with

 Appendix A Proofs of Chapter 3

192

1u and k . This result is consistent with Loch and Terwiesch (1998). The proof is

given below:

The first partial derivatives of *

with respect to 1u and k are:

2*

1

11

*

1

*

2*

1

1

*

1*

1

*
*

1

1

*

)(

1
)(

)(t

bu
tt

t

u

t
t

u

t
t

u

ss
s 

















(3.41)

2*

1

1

*

1

*

2*

1

*

1*
*

*

1*

)(

1
)(

)(t

kb
tt

t
k

t
t

k

t
t

k

ss
s 















 (3.42)

Clearly,   0ln
1 *

11

1

*

1

*
*
11 


te

b
tt

tb

s  . Thus, 0
1

*






u


, and

0
*






k


.

Proof of Corollary 3.3

When 0* st , 0*

2 t , 0*

1 t and   21

1

*

1

*
11ln

1
Te

b
t

tb


 , the first partial

derivatives of (3.25) with respect to 2c and 2a are:

























)(

1

)1(

1

23

2

*

1
1

22

*

2
*
11  ce

ct
b

bc

t
tb

 (3.43)

 

)(

1

*
11

*
11

*
11

322

2

*

1
2113

2

*

2

tb

tbtb

eba

a

t
eabeku

a

t




















 (3.44)

In (3.43),
*
1

*
11

2

1

2

32

1

2

*

1

)1(t

tb t

C

eb

b

c

t













, which is larger than zero, we get: 0

2

*

2 




c

t
.

Similarly,
*
1

*
11

*
11

2

1

2

2

3

2

2212

212

2

*

1

)()(

)(

t

tb

tb

t

C

eawkub

ewbc

a

t




















, which is less than zero, we

get: 0
2

*

2 




a

t
. Thus, the optimal downstream testing duration

*

2t decreases with

 Appendix A Proofs of Chapter 3

193

downstream testing cost 2c , and increases with 2a .

Proof of Proposition 3.4

(a) The Hessian matrix of (3.16) is:

 




























































3

2

22

3

212

3

212

3

2

12

2

2

2

12

2
21

2

2

1

2

21

11222211

22112211

1

),(















bb

q

bbq

bbqbbq

eecbae
cbba

e
cbba

e
cba

CC

CC

H

(3.45)

The above),(21 H is symmetric. Moreover, the first leading principle minor of

),(21 H , 2211

3

2

12 



bbq
e

cba


, is positive for all feasible 1 and 2 . The second leading

principle minor of),(21 H , 2211 2

3

22

2

2

1

2

2 



bbq
e

cbba


, is also positive for all feasible 1

and 2 . Thus,),(21 H is positive definite, and the objective function (3.16) is

strictly convex.

The first partial derivatives of (3.16) with respect to 1 and 2 are:

2211)(22111

1




bb

q eawcbkuc
C 





 (3.46)

 1122)(221222

2




bb

q eawkuaecbc
C 





 (3.47)

Since the objective (3.16) is convex and the constraint (3.17) is linear, we get:



























 




2

3

2

*

2

*
11

ln
1

,0max





b
e

b
 (3.48)

If 











1
,1min

3

2

1

4





b
, then 0*

1  . Otherwise,
















3123

21

1

*

1

1

)(

)(
ln

1






cb

cb

b
 (3.49)

 Appendix A Proofs of Chapter 3

194

Obviously, the conditions for 0*

1  and 0*

2  are same as those for 0*

1 t and

0*

2 t . Therefore, we only need to prove that *

1

*

1 t and *

2

*

2 t , when 0*

1  and

0*

2  . Suppose that *

1

*

1 t , then
)(

)(

)(

)(
*
11

*
11

*
11

*
11

32

21

32

21

tb

tb

b

b

eb

ceb

eb

ceb




























. It follows that:

*
22

*
11

*
22

*
11)()(22112211

tbtb

q

bb

q eawcbkueawcbku    (3.50)

Let  *
11

1

1

*

1 ln
1 tb

e
b

t


  . If (3.50) holds, then
*
11)(1111

tb

r ecbkucc 
  ,

resulting in:

11
1  

be
b

 (3.51)

Since 0 , it is clear that (3.51) does not hold. It follows that *

1

*

1 t . Inspection

of (3.13) and (3.48) shows that if *

1

*

1 t , then *

2

*

2 t .

(b) Defining *

1

*

1  ty , and *

2

*

2

*

1

*

1)(  ttyF . In Proposition 3.4(a), we

have proved that *

1

*

1 t , and thus we get 0y . We have also shown that the

conditions for 0*

1  and 0*

2  are same as those for 0*

1 t and 0*

2 t . Thus, in

what follows, we only consider the case that 0*

1  and 0*

2  .

Substitute












 




2

3

2

*

2

*
11

ln
1



 tbe

b
t , and













 




2

3

2

*

2

*
11

ln
1






be

b

into)(yF , we get:













































*
11

*
11

*
11

*
11

3

)(

3

23

3

2

ln
1

ln
1

)(




 






b

yb

b

tb

e

e

b
y

e

e

b
yyF (3.52)

From (3.49), we get:

)()(

)(

1221

123
*
11










cbcb

cb
e b

 (3.53)

Substitute (3.53) into (3.52), we get:

 Appendix A Proofs of Chapter 3

195

















)(

)1)(()(
ln

1
)(

21

1221

2

1





cb

ecbcb

b
yyF

yb

 (3.54)

The first and second derivatives of (3.54) with respect to y are:

)1)(()(

)(
1

)(
1

1

1221

11










yb

yb

ecbcb

ecb

dy

ydF




 (3.55)

2

1221

12211

2

1

2

2

)]1)(()([

)]()()[()(
1

1










yb

yb

ecbcb

ecbcbcb

dy

yFd




 (3.56)

Inspection of (3.53) shows that 0)()(1221   cbcb , leading to 0
)(

2

2


dy

yFd
,

and
dy

ydF)(
 increases monotonically in y . If 0

)(

0


y

dy

ydF
, i.e. if 12 cc  , then

0
)(


dy

ydF
, and)(yF increases monotonically in y . When 0y , 0)(yF . Thus,

if 12 cc  , then 0)(yF for all y , leading to *

2

*

1

*

2

*

1   tt .

Proof of Proposition 3.5

To solve the problem (3.18), we associate a nonnegative multiplier 1 with the

constraint NeeuawkattN
tbtb


 2211])([),(122221 , and obtain the following

Lagrangian function:

   NttNttRctctcttRttL srss ),(),(),(21112211121  (3.57)

Where 





















11

1

1

1

1

11

1
),(

tb

s

tb

s e
b

tt
b

e
kuttR

s

.

The first derivatives of (3.57) with respect to st , 1t , 2t and 1 are:

  stbtb

r

s

eecku
t

L
111

1
1 





 (3.58)

 Appendix A Proofs of Chapter 3

196

)()()(111221111

1

1 112211

s

tb

r

tbtb
ttebkuceawbkuc

t

L




   (3.59)

])([1122

2212212

2

1 tbtb
eawkuaebc

t

L 





 (3.60)

Neeawkua
L tbtb




  2211])([2212

1

1


 (3.61)

By the first order conditions, we have:

  





















 11

11

ln
1

,0max
tb

r

s e
ckub

t



 (3.62)

 
















 




N

eawkua

b
t

tb 11

2212

2

2 ln
1

,0max (3.63)

Nb

c

2

2
1





 (3.64)

 
  



















11

11

2212

2211

2

2
1 ,1min

tb

tb

eawkua

N
eawbku

Nb

c
c



 
 

0ln
1

,0max 1111

11

111 


































 tb

r

tb

r e
ckub

tebkuc



 (3.65)

The solutions to the cost minimization problem are:

 
  































 *
11

*
11

11

1

1

* ln
1

,0maxln
1

,0max
tb

r

tb

s e
ckub

e
b

t



 (3.12)




























































 




2

22122

22

3

2

*

2

])([
ln

1
,0maxln

1
,0max

*
11

*
11

c

eawkuacb

b

e

b
t

tb

q
tb




 (3.13)

 





















])([
,1min

11

11

22122

2
22111 tb

q

tb

q
eawkuacb

c
eawbkucc



  0
)(

ln
1

,0max 1111

11

111 


































 tb

r

tb

r e
ckub

tebkuc



 (3.66)

Where Equation (3.66) is the summary of Equations (3.26)-(3.29). By comparing

 Appendix A Proofs of Chapter 3

197

(3.62) with (3.12), (3.63) with (3.13), (3.65) and (3.66), we can conclude that the

target quality problem in (3.18) have same solution structure as the cost minimization

problem in (3.9)-(3.11). If
Nb

c
cq

2

2
1





 , then the target quality problem and the

cost minimization problem have exact same solutions.

To solve the budget constraint problem in (3.19), we associate a nonnegative

multiplier 2 with the constraint   CttRctctcttRttC srssD ),(),(1221112 ,

and obtain the following Lagrangian function:

 CCeeuawkaL D

tbtb




212222
2211])([ (3.67)

By the first order conditions, we get:

  





















 11

11

ln
1

,0max
tb

r

s e
ckub

t



 (3.68)






































11

1

1

1

1

111

2

2

1
)(

1 tb

s

tb

rs e
b

tt
b

e
kuctctC

c
t

s




(3.69)

)(

])([

2

21222
2

2211











c

ebeuawka
tbtb

 (3.70)

 
  

































 1111

11

111 ln
1

,0max
tb

r

tb

r e
ckub

tebkuc





0
])([

)()(
11

11

22122

22112
1 










tb

tb

eawkuab

eawbkuc
c


 (3.71)

Clearly, if 0*

2 t , then the optimal *

1t and *

st to the budget constraint problem are

exactly same with those to the cost minimization problem, and so can be derived by

the same approach. If
2

1


qc , then the budget constraint problem and the cost

minimization problem have exact same solutions.

 Appendix B Proofs of Chapter 4

198

APPENDIX B

PROOFS OF CHAPTER 4

Proof of Proposition 4.1

 As illustrated in Figure B.1, defining
*

1iy be the optimal overlap between stage i

and 1i ,
*

iz be the optimal number of tests completed in stage i before starting stage

1i , and
*

ix be the optimal number of tests needed in stage i , that solve the problem

(4.7). Given
*

ix and
*

iz , suppose that)()(***

1 iiiii zTxTy  , and there exist a positive

u such that:

uzTxTy iiiii )()(***

1
(4.16)

Where)()1(**

iiii zTzTu  . In other words, in (4.16), we assume that it’s optimal to

start initial design of stage 1i u

time units after the completion of

th

iz test in stage

i . In what follows, we will prove u must equal to zero.

Figure B.1 The scenario used in the proof of proposition 4.1

Stage i+1

Stage i th

ix Test

th

iz)1( Test 1st Test
th

iz)2( Test th

iz Test 1
st
 Test

)(*

ii xT

)(*

ii zT
*

1iy u

'

1iy 

 Appendix B Proofs of Chapter 4

199

Assume that there exist a positive  such that)()1(**

iiii zTzTu  . Let:




*

11 ii yy (4.17)

Substitute (4.16) into (4.5) and (4.6), we get:

   








 
1

1

*

1

*

11

*

1

1

1

*),()()()1(),(
*

n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

ii

p

iii yxHcyxTxcpacacyxG i  (4.18)

 























**

**

**

)1(
2

)1()1(
])1()1[(,

122
2*

1

*

1
ii

ii

ii zx

i

i

x

i

z

i
ii

r

i

x

i

z

iiiiii p
p

pp
batppubayxH











 


i

x

i

z

ix

iii

s

iii
p

pp
pxztba

ii

i

**

*)1()1(
)1)((** (4.19)

Similarly, substitute (4.17) into (4.5) and (4.6), we get:

   








 
1

1

'

1

*

11

'

1

1

**'

1

*),()()()1(),(
*

n

i

iii

h

ii

n

i

iii

t

i

x

ii

p

ii

p

iii yxHcyxTxcpacacyxG i 

(4.20)

 























**

**

**

)1(
2

)1()1(
])1()1[()(,

122
2'

1

*

1
ii

ii

ii zx

i

i

x

i

z

i
ii

r

i

x

i

z

iiiiii p
p

pp
batppubayxH 

 









 


i

x

i

z

ix

iii

s

iii
p

pp
pxztba

ii

i

**

*)1()1(
)1)((** (4.21)

Where),(*

1

*

ii yxG is the corresponding optimal project profit for
*

ii xx  ,
*

11   ii yy ;

),('

1

*

ii yxG is the corresponding project profit for
*

ii xx  ,
'

11   ii yy .

From (4.18)-(4.21), we get:

])1()1)[((),(),(
**

11

**

1

* ii x

i

z

i

h

iiiiiii ppcbayxGyxG    (4.22)

Since),(),('

1

**

1

*

  iiii yxGyxG , we get:

])1()1)[((
**

1
ii x

i

z

i

h

iii ppcba    (4.23)

The first derivative of),(*

1

*

ii yxG in (4.18) with respect to u

is:

 Appendix B Proofs of Chapter 4

200

u

yxH
c

u

yxG iiih

i
ii








 


),(
)(

),(*

1

*

1
1

*

1

*



])1()1)[((
**

1
ii x

i

z

i

h

iii ppcba   

(4.24)

Clearly, if (4.23) holds, then 0
),(*

1

*




 

u

yxG ii

for all possible values of u . In other

words, project profit in (4.18) decreases monotonically in u , and so 0u . A conflict

arises. Thus,

)()(***

1 iiiii zTxTy  , i.e., it’s optimal to start initial design of stage 1i

directly after the completion of *

iz rounds of tests in stage i .

Proof of Proposition 4.2

(a) Given ix , the item in constraint (4.12),])1()1[()(ii x

i

z

ii

r

iii

s

i ppatzxt  ,

decreases monotonically in iz . Thus, there exists a unique value of iz such that:

1])1()1[()(


 i

x

i

z

ii

r

iii

s

i dppatzxt ii . Let  iz be the minimum integer greater

than or equal to iz . The lower bound of iz that satisfies constraints (4.11)-(4.13), l

iz ,

can then be calculated as follows:

  i

l

i zz  ,0max

(4.25)

The first and second partial derivatives of (4.10) with respect to iz are:

ii

i

i x

i

h

iii

s

i

s

ii

z

ii

i

z

ix

i

h

iii

r

i

i

pcbattpp
p

p
pcbat

z

G
)1)(()1ln()1(

2

)1(2
)1()(11

2 

















 

 (4.26)

)1(ln)1(
2

)1(4
)1()(2

1

2

2

2

i

z

ii

i

z

ix

i

h

iii

r

i

i

pp
p

p
pcbat

z

G
i

i

i 

















  (4.27)

Where
ii

r

i

s

i

h

iii

i
pat

t

cba





)(1 


 .

 Appendix B Proofs of Chapter 4

201

For easier explanation, define:
l
ii zziz

G
F





1 , and

ii xziz

G
F





2 .

It can be verified that given ix , the item in (4.27), i

i

z

ix

i
p

p
p

i

i 





2

)1(4
)1(,

increases monotonically in iz . It follows that:

 If 0
2

)1(4
)1(




 i

i

z

ix

i
p

p
p

l
i

i  , then 0
2

2






iz

G
 for all possible iz , and

0
2

)1(2
)1(




 i

i

z

ix

i
p

p
p

l
i

i  , leading to 0




iz

G
 for all possible iz . In other words,

the project profit in (4.10) decreases monotonically in iz , and so l

ii zz * .

 If 0
2

2






 ii xziz

G
, i.e., 0)1(

2

2





 ix

i

i

i
i p

p

p
 , then 0

2

2






iz

G

iz . It follows

that, if 01 F , then 0




iz

G

iz , and l

ii zz * ; if 02 F , then 0




iz

G

iz , and

**

ii xz  ; otherwise, setting (4.26) to zero yields a unique c

iz , and  c

ii zz *

or

  1*  c

ii zz .

 Otherwise,
2

2

iz

G




 increases monotonically from a negative value to a positive

value. Note that here if 0
2

2






 ii xziz

G
 , then 02 F . Thus,

iz

G





first decreases to a

global minimum value, and then increases monotonically, and finally reaches a

negative value. It follows that: if 01 F , then 0




iz

G

iz , and l

ii zz * ; otherwise if

01 F , then setting (4.26) to zero yields a unique c

iz that maximizes the project

profit, and  c

ii zz *

or   1*  c

ii zz .

 Appendix B Proofs of Chapter 4

202

The above results are summarized in Proposition 4.2(a).

 (b) Given ix , the mixed partials:





























ii

i

i x

i

i

r

i

s

i
i

z

ii

i

z

ix

i

h

iii

r

i

ii

p
at

t
pp

p

p
pcbat

az

G
)1()1ln()1(

2

)1(4
)1(2)(1

2

 (4.28)





























ii

i

i x

i

i

r

i

s

i
i

z

i

ii

r

i

s

i

i

z

ix

i

h

ii

r

i

ii

p
at

t
pp

pat

t

p

p
pcat

bz

G
)1()1ln()1(

2

)1(2
)1()(1

2
2

 (4.29)

When c

ii zz  , 0




iz

G
. Equations (4.28) and (4.29) can then be rewritten as:

)1ln()1(
2

)1(2
)1()(1

2

i

z

i

i

z

ix

i

h

iii

r

i

i

s

i

zzii

pp
p

p
pcbat

a

t

az

G c
i

c
i

i

c
ii





























(4.30)

 )1ln()1(
2

i

z

ii

r

i

s

i

izzii

ppatt
bbz

G c
i

c
ii










(4.31)

Since the maximum value of c

iz is ix , 0
2

)1(2
)1(






i

z

ix

i
p

p
p

c
i

i

c

iz . It follows

that 0
2






 c
ii zzii az

G
. Clearly, 0

2






 c
ii zzii bz

G
, and 0

2

2






 c
ii zziz

G
. By the implicit

function theorem

c
ii

c
ii zzizziii

c

i

z

G

az

G

a

z














2

22

,
c
ii

c
ii zzizziii

c

i

z

G

bz

G

b

z














2

22

, we

get 0




i

c

i

a

z
, and 0





i

c

i

b

z
.

Similarly, the mixed partials:











 













 i

i

z

ix

ih

iii

h

iii

zz

s

ii p

pp
p

cba
cba

tz

G
c
i

i

c
ii

)1ln()1(
)1(

)(
)(

1

1

2






(4.32)











 















 i

i

z

ix

ih

iii

r

i

h

iii

s

i

zz

r

ii p

pp
p

cbat

cbat

tz

G
c
i

i

c
ii

)1ln()1(
)1(

)(

)(

1

1

2





(4.33)

 Appendix B Proofs of Chapter 4

203

Since 0




 c
ii zziz

G
, we get:

)1ln()1(

)1(
2

2

)1(
)()1ln()1(1 i

z

ii

r

i

s

i

z

i

i

i
i

r

i

s

i
x

ih

iiii

z

i

i

ppatt

p
p

p
att

p
cbapp

p
c
i

c
i

i

c
i 
















  



(4.34)

It can be verified that, ii

i

i pp
p

p



0)1ln(

2

2
. It follows that:

1)1(
)()1ln()1(1











 

i

c
i

x

ih

iiii

z

i

i p
cbapp

p





(4.35)

It follows that 0
2






 c
ii zz

s

ii tz

G
, 0

2






 c
ii zz

r

ii tz

G
. Since 0

2

2






 c
ii zziz

G
, by the implicit

function theorem

c
ii

c
ii zzizz

s

ii

s

i

c

i

z

G

tz

G

t

z














2

22

,
c
ii

c
ii zzizz

r

ii

r

i

c

i

z

G

tz

G

t

z














2

22

, we

get 0



s

i

c

i

t

z
, and 0




r

i

c

i

t

z
.

Proof of Proposition 4.3

(a) Given iz , the left side of (4.12),])1()1[()(ii x

i

z

ii

r

iii

s

i ppatzxt  ,

increases monotonically in ix . Thus, there exists a unique value of ix such that:

1])1()1[()(


 i

x

i

z

ii

r

iii

s

i dppatzxt ii . Defining u

ix be the upper bound of ix

that satisfies constraint (4.12), mathematically,   1 i

u

i xx .

The first and second partial derivatives of (4.10) with respect to ix are:

t

ii

x

ii

i

x

i
ii

i

r

i

s

iz

i

h

iii

r

i

i

cpp
p

p
zx

at

t
pcbat

x

G
i

i

i 



















)1ln()1(
2

)1(2
)()1()(

1

1

2 

(4.36)

)1(ln)1(
2

)1(4

)1ln(

1
)1()(2

1

1

2

2

2

i

x

ii

i

x

i

i

ii

i

r

i

s

iz

i

h

iii

r

i

i

pp
p

p

p
zx

at

t
pcbat

x

G
i

i

i 






























 

 (4.37)

 Appendix B Proofs of Chapter 4

204

Where
)()1ln(

11

1 


















h

iii

r

i

p

i

iii

r

i

s

i
i

cbat

c

ppat

t
.

Let i

i

x

i

i

ii

i

r

i

s

iz

ii
p

p

p
zx

at

t
px

i

i 


















2

)1(4

)1ln(

1
)1()(

1

,

ii zxix

G
F





3 ,

and
u
ii xxix

G
F





4 .

It can be clear that given iz ,)(ix increases monotonically in ix . It follows that:

 If 0)( iz , i.e. 0
)1ln(

)1(
2

23








i

ii

r

i

s

iz

i

i

i

pat

t
p

p

p
i  , then 0

2

2






ix

G

ix ,

and 0




ix

G
 ix . Thus, **

ii zx  .

 If 0)( u

ix , i.e., 0
2

)1(4

)1ln(

1
)1(

1




















i

i

x

i

i

i

u

i

i

r

i

s

iz

i
p

p

p
zx

at

t
p

u
i

i  ,

then 0
2

2






ix

G

iz . It follows that: if 03 F , then 0




ix

G

ix , and so **

ii zx  ; if

04 F , then 0




ix

G

ix , resulting in u

ii xx * ; otherwise, setting (4.36) to zero

yields a unique c

ix , and  c

ii xx *

or   1*  c

ii xx .

 Otherwise,
2

2

ix

G




 increases monotonically from a negative value to a positive

value. Note that here if 0)( u

ix , then 04 F . Thus,
ix

G




 first decreases to a global

minimum value, and then increases monotonically, and finally reaches a negative

value. It follows that: if 03 F , then 0




ix

G

ix , and so **

ii zx  ; otherwise if

03 F , then setting (4.36) to zero yields a unique c

ix , and  c

ii xx *

or   1*  c

ii xx .

 Appendix B Proofs of Chapter 4

205

The above results are summarized in Proposition 4.3(a).

(b) Given iz , the mixed partial:

)1ln()1(
2

)1(2
)1()(

1

1

2
2

i

x

i

i

x

iz

i

h

iii

xx

r

ii

pp
p

p
pcba

tx

G c
i

c
i

i

c
ii






























(4.38)

Since the minimum value of c

ix is iz , we get 0
2

)1(2
)1(

1









i

x

iz

i
p

p
p

c
i

i c

ix . It

follows that 0
2






 c
ii xx

r

ii tx

G
. Since 0

2

2






 c
ii xxix

G
, by the implicit function theorem,

c
ii

c
ii xxixx

r

ii

r

i

c

i

x

G

tx

G

t

x














2

22

, we get 0



r

i

c

i

t

x
.

Similarly, given iz , the mixed partials:

)1ln()1(
)1ln(

11
)(1

2

i

x

i

ii

i

c

i

h

iii

xx

s

ii

pp
pp

zxcba
tx

G c
i

c
ii






















(4.39)




































 i

x

i

ii

i

c

i

i

r

i

s

iz

i

h

ii

r

i

xxii p

p

pp
zx

at

t
pcat

bx

G
c
i

i

c
ii

2

)1(2

)1ln(

11
)1()(

1

1

2
2



)1ln()1(i

x

i pp
c
i  (4.40)

Clearly, 0
)1ln(

11





ii pp
 for all positive ip . It follows that 0

2






 c
ii xx

s

ii tx

G
 ,

and 0
2






 c
ii xxii bx

G
. Since 0

2

2






 c
ii xxix

G
, by the implicit function theorem,

c
ii

c
ii xxixx

s

ii

s

i

c

i

x

G

tx

G

t

x














2

22

,
c
ii

c
ii xxixxiii

c

i

x

G

bx

G

b

x














2

22

, we can conclude

0



s

i

c

i

t

x
, 0




i

c

i

b

x
.

 Appendix B Proofs of Chapter 4

206

(c) Given iz , the mixed partial:

)1ln()1(
2

)1(4
)()1(2)(

1

1

2

i

x

ii

i

x

i
ii

i

r

i

s

iz

i

h

iii

r

i

xxii

pp
p

p
zx

at

t
pcbat

ax

G c
i

c
i

i

c
ii































(4.41)

Let

























)1ln(

11

)()1(2

2

1 ii

r

i

s

i

h

ii

r

i

p

i

z

ii

i
i

ppt

t

cbt

c

pp

p
a

i 
. It can be verified that,

)1ln(
2

)1(4
)()1(2

1

ii

i

x

i
ii

i

r

i

s

iz

i p
p

p
zx

at

t
p

i

i 
















 , decreases monotonically in

ix . It follows that: if ii aa  , then 0
2






 c
ii xxii ax

G
 c

ix , and so by the implicit

function theorem,

c
ii

c
ii xxixxiii

c

i

x

G

ax

G

a

x














2

22

, we get 0




i

c

i

a

x
; if ii aa  , then

setting (4.41) to zero yields a unique ix such that: if i

c

i xx  ,

0




i

c

i

a

x
; if i

c

i xx  ,

0




i

c

i

a

x
.

Proof of Proposition 4.4

(a) It is clear that the cost of conducting ix rounds of tests is larger than i

t

i xc .

Inspection of (4.2) shows that the maximum gain from conducting tests is no more

than: i

p

i ac . To maximize project profit, the testing costs should be less than the

potential benefit. Therefore,
t

i

i

p

i
i

c

ac
x * .

(b) The first and second derivatives of (4.10) with respect to nx are:

 s

n

t

nn

x

n

p

n

r

nn

n

tcppcta
dx

dG
n )1ln()1)((

(4.42)

 Appendix B Proofs of Chapter 4

207

)1(ln)1)((2

2

2

n

x

n

p

n

r

nn

n

ppcta
dx

Gd
n  

(4.43)

 Inspection of (4.42) and (4.43) shows that:

 If 0 p

n

r

n ct  , then 0
ndx

dG

nx , leading to 0* nx .

 Otherwise if 0 p

n

r

n ct  , then 0
2

2


ndx

Gd
nx . It follows that: if 0

0



nxndx

dG
,

i.e.)1ln()(n

p

n

r

nn

s

n

t

n pctatc   , then 0
ndx

dG

nx , leading to 0* nx ;

otherwise if)1ln()(n

p

n

r

nn

s

n

t

n pctatc   , then setting (4.42) to zero yields a

unique c

nx that maximizes the project profit, and so  c

nn xx *

or   1*  c

nn xx .

The above results are summarized in Proposition 4.4(b).

 Appendix C Proofs of Chapter 5

208

APPENDIX C

PROOFS OF CHAPTER 5

Proof of Theorem 5.1

Activities 1 2 … 1i i 1i 2i … n

1
 2,1d … 1,1 id id ,1 1,1 id 2,1 id … nd ,1

2 1,2d

… 1,2 id id ,2 1,2 id 2,2 id … nd ,2

… … …

… … … … … …

1i 1,1id 2,1id …
 iid ,1 1,1  iid 2,1  iid … nid ,1

i 1,id 2,id … 1, iid … 1, iid 2, iid … nid ,

1i 1,1id 2,1id … 1,1  iid iid ,1
iid ,1 2,1  iid … nid ,1

2i 1,2id 2,2id … 1,2  iid iid ,2 1,2  iid … nid ,2

… … … … … … … …

…

n 1,nd 2,nd … 1, ind ind , 1, ind 2, ind …

(a) Original NDSM

Activities 1 2 … 1i 1i i 2i … n

1
2,1d …

1,1 id 1,1 id id ,1 2,1 id …
nd ,1

2 1,2d …
1,2 id 1,2 id id ,2 2,2 id …

nd ,2

… … … … … … … … …

1i 1,1id 2,1id …
1,1  iid iid ,1 2,1  iid …

nid ,1

1i 1,1id 2,1id …
1,1  iid

iid ,1 2,1  iid …
nid ,1

i 1,id 2,id …
1, iid 1, iid …

2, iid …
nid ,

2i 1,2id 2,2id …
1,2  iid 1,2  iid

iid ,2
 …

nid ,2

… … … … … … … … …

n 1,nd 2,nd …
1, ind 1, ind ind , 2, ind …

(b) The resulting NDSM after exchanging activity i and activity i +1

Figure C.1 The scenario used in the proof of Theorem 5.1

 Appendix C Proofs of Chapter 5

209

Figure C.1(a) shows the original NDSM where activities are executed in the order

of }...,,1,,1...,,2,1{ niii  . Here the total feedbacks is:  
 

n

k

n

kj

jkd
1 1

, , which can be

written as:   1,

2

,1,

2 1

,

1

1 1

, 





 



 

    ii

n

ij

jiji

n

ik

n

kj

jk

i

k

n

kj

jk ddddd .

Figure C.1(b) shows the resulting NDSM after exchanging activity i and activity

1i , where the total feedbacks can be expressed as:

  ii

n

ij

jiji

n

ik

n

kj

jk

i

k

n

kj

jk ddddd ,1

2

,1,

2 1

,

1

1 1

, 





 



 

    . After cancellation, we are left with

the terms of 1, iid and iid ,1 . Hence, for an initial activity sequence of

}...,,1,,1...,,2,1{ niii  , if iiii dd ,11,   , then through exchanging activity i and

activity 1i , the total feedbacks can be reduced by  iiii dd ,11,   .

Proof of Theorem 5.2

 Figure C.2(a) shows the original NDSM where the activities are executed in the

order of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  . Here the total feedbacks can be

written as:

   






 







 



 


1

1

,

1

,

1

,

2

1

1

1

,

1 1

,

1

1 1

,

i

jk

kj

i

jk

ik

i

jk

n

ih

hk

i

jk

i

kh

hk

n

ik

n

kh

hk

j

k

n

kh

hk dddddd (5.14)

Figure C.2(b) shows the resulting NDSM after exchanging the positions of

activity j and activity i, where the total feedbacks can be written as:

   














 



 

















1

1

,

1

,

1

,,

1

1

,

2

1

1

1

,

1 1

,

1

1 1

,

i

jk

ki

i

jk

jk

n

ih

hjhi

i

jk

hk

i

jk

i

kh

hk

n

ik

n

kh

hk

j

k

n

kh

hk dddddddd (5.15)

Subtracting (5.15) from (5.14), we get 













1

1

,

1

,

1

1

,

1

,,

i

jk

ki

i

jk

jk

i

jk

kj

i

jk

ikij dddd .

 Appendix C Proofs of Chapter 5

210

Thus, for an activity sequence of }...,,1,,1,...,1,,1...,,2,1{ niiijjj  , if 0, ij ,

then through exchanging activity j and activity i, the resulting feedbacks can be

reduced by ij , .

Activities 1 2 … 1j j 1j … 1i i 1i … n

1
2,1d …

1,1 jd jd ,1 1,1 jd …
1,1 id id ,1 1,1 id …

nd ,1

2 1,2d …
1,2 jd jd ,2 1,2 jd …

1,2 id id ,2 1,2 id …
nd ,2

… … … … … … … … … … … …

1j 1,1jd 2,1jd …
jjd ,1 1,1  jjd

…
1,1  ijd ijd ,1 1,1  ijd …

njd ,1

j 1,jd 2,jd …
1, jjd

1, jjd …
1, ijd ijd , 1, ijd …

njd ,

1j 1,1jd 2,1jd …
1,1  jjd

jjd ,1 …
1,1  ijd ijd ,1 1,1  ijd …

njd ,1

… … … … … … … … … … … …

1i 1,1id 2,1id …
1,1  jid jid ,1 1,1  jid …

iid ,1 1,1  iid …
nid ,1

i 1,id 2,id …
1, jid jid , 1, jid …

1, iid …
1, iid …

nid ,

1i 1,1id 2,1id …
1,1  jid jid ,1 1,1  jid …

1,1  iid iid ,1 …
nid ,1

… … … … … … … … … … … …

n 1,nd 2,nd …
1, jnd jnd , 1, jnd …

1, ind ind , 1, ind …

(a) Original NDSM

Activities 1 2 … 1j i 1j … 1i j 1i … n

1
 2,1d … 1,1 jd id ,1 1,1 jd … 1,1 id jd ,1 1,1 id … nd ,1

2 1,2d

… 1,2 jd
id ,2 1,2 jd … 1,2 id jd ,2

1,2 id … nd ,2

… … …

… … … … … … … … …

1j 1,1jd 2,1jd …

ijd ,1 1,1  jjd

… 1,1  ijd jjd ,1 1,1  ijd … njd ,1

i 1,id 2,id … 1, jid

1, jid … 1, iid jid ,
1, iid … nid ,

1j 1,1jd 2,1jd … 1,1  jjd

ijd ,1

… 1,1  ijd jjd ,1 1,1  ijd … njd ,1

… … … … … … …

… … … … …

1i 1,1id 2,1id … 1,1  jid

iid ,1 1,1  jid …

jid ,1
1,1  iid

… nid ,1

j 1,jd 2,jd … 1, jjd ijd , 1, jjd … 1, ijd … 1, ijd … njd ,

1i 1,1id 2,1id … 1,1  jid
iid ,1 1,1  jid … 1,1  iid jid ,1

… nid ,1

… … … … … … … … … … …

…

n 1,nd 2,nd … 1, jnd
ind , 1, jnd … 1, ind jnd ,

1, ind …

(b) The resulting NDSM after exchanging activity j and activity i

Figure C.2 The scenario used in the proof of Theorem 5.2

 Appendix C Proofs of Chapter 5

211

To make our statement more legible, in Figure C.2, we highlight in blue for the

different items between (5.14) and (5.15).

Proof of Theorem 5.3

Defining:





n

mh

hjimji xxz
1

, , m (5.16)

Since imx and 


n

mh

hjx
1

 are all 0-1 binary variables, jiz , is also a binary variable.

Inspection of (5.16) shows that if either 0imx or 0
1




n

mh

hjx , then 0, jiz . It follows

that (5.16) can be rewritten as:









 



n

mh

hjimji xxz
1

, 1,0max , m (5.17)

Where  1,0, jiz .

Clearly, (5.17) is equivalent to:





n

mh

hjimji xxz
1

, 1 , m (5.18)

Since 1
1




n

h

hjx , (5.18) can be rewritten as:







1

1

,

m

h

hjimji xxz , m (5.7)

Substituting (5.16) into (5.1), and adding constraints (5.7)-(5.8), we get the 0-1

LIP.

Proof of Theorem 5.4

 By (5.9), we have:

 Appendix C Proofs of Chapter 5

212

 



























n

i

n

ij
j

ji

m

h

hjim

n

m

m

jijiji zxxzdd
1 1

,

1

11

,,,min)(


































   









 

n

i

n

ij
j

m

h

hjim

n

m

m

ji

n

i

n

ij
j

ji

n

m

m

jiji xxzd
1 1

1

11

,

1 1

,

1

,,min 









































    

 

 





 

im

n

i

n

m

n

ij
j

n

mh

h

ij

n

ij
j

m

ji

n

i

n

ij
j

ji

n

m

m

jiji xzd
1 1 1 1

,

1

,

1 1

,

1

,,min  (5.19)

For given non-negative Lagrangian multipliers that satisfy: ji

n

m

m

ji d ,

1

, 


 , equation

(5.19) can be reduced to:

im

n

i

n

m

n

ij
j

n

mh

h

ij

n

ij
j

m

ji xd   
 


 


 

















1 1 1 1

,

1

,min)( (5.10)

This proves Theorem 5.4.

 Appendix D Proofs of Chapter 6

213

APPENDIX D

PROOFS OF CHAPTER 6

Proof of Theorem 6.1

 Figure D.1(a) shows the original nn NDSM where activities are executed in

the order of }...,,1,,1,...,,1...,,1{ niiijj  . Separate the NDSM into four blocks

and define:























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B



















 ij

i

d

d

B

,1

,1

3,1 ...























njij

ni

dd

dd

B

,11,1

,11,1

4,1

...

.........

...























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B



















 ii

ij

J

d

d

B

,1

,

3, ...























niii

njij

J

dd

dd

B

,11,1

,1,

4,

...

.........

...

]...[1,1,1,3  jii ddB]...[1,,,3  iijiJ ddB]...[,1,4,3 niii ddB 























1,1,

1,11,1

1,4

...

.........

...

jnn

jii

dd

dd

B























1,,

1,1,1

,4

...

.........

...

injn

iiji

J

dd

dd

B





















in

ii

d

d

B

,

,1

3,4 ...

Figure D.1(b) shows the resulting NDSM after exchanging block JB and activity

i . Based on above definitions, the NDSMs in Figure D.1(a) and Figure D.1(b) can be

expressed as following (6.4) and (6.5), respectively:

BJ =

0 …
1, ijd

… 0 …

jid ,1
 … 0

 B4 =

0 …
nid ,1

… 0 …

1, ind … 0

 B3 =

0

B1 =

0 …
1,1 jd

 … 0 …

1,1jd … 0

 Appendix D Proofs of Chapter 6

214



















43,4,41,4

4,33,31,3

4,3,1,

4,13,1,11

BBBB

BBBB

BBBB

BBBB

J

J

JJJJ

J

 (6.4)



















4,43,41,4

4,3,1,

4,3,331,3

4,1,13,11

BBBB

BBBB

BBBB

BBBB

J

JJJJ

J

J

 (6.5)

Activities 1 … 1j j … 1i i 1i … n

1 0 …
1,1 jd jd ,1 …

1,1 id id ,1 1,1 id …
nd ,1

… … 0 … … … … … … … …

1j 1,1jd … 0 jjd ,1 …
1,1  ijd ijd ,1 1,1  ijd …

njd ,1

j 1,jd …
1, jjd 0 …

1, ijd ijd , 1, ijd …
njd ,

… … … … … 0 … … … … …

1i 1,1id …
1,1  jid jid ,1 … 0 iid ,1 1,1  iid …

nid ,1

i 1,id …
1, jid jid ,

 …
1, iid 0 1, iid …

nid ,

1i 1,1id …
1,1  jid jid ,1 …

1,1  iid iid ,1 0 …
nid ,1

… … … … … … … … … 0 …

n 1,nd …
1, jnd jnd , …

1, ind ind , 1, ind … 0

(a) Original NDSM

Activities 1 … 1j i j … 1i 1i … n

1 0 …
1,1 jd id ,1 jd ,1 …

1,1 id 1,1 id …
nd ,1

… … 0 … … … … … … … …

1j 1,1jd … 0 ijd ,1 jjd ,1 …
1,1  ijd 1,1  ijd …

njd ,1

i 1,id …
1, jid 0 jid ,

 …
1, iid 1, iid …

nid ,

j 1,jd …
1, jjd ijd , 0 …

1, ijd 1, ijd …
njd ,

… … … … … … 0 … … … …

1i 1,1id …
1,1  jid iid ,1 jid ,1 … 0 1,1  iid …

nid ,1

1i 1,1id …
1,1  jid iid ,1 jid ,1 …

1,1  iid 0 …
nid ,1

… … … … … … … … … 0 …

n 1,nd …
1, jnd ind , jnd , …

1, ind 1, ind … 0

(b) The resulting NDSM after exchanging block JB and activity i

Figure D.1 The scenario used in the proof of Theorem 6.1

 Appendix D Proofs of Chapter 6

215

Clearly, the different super-diagonal items (i.e. feedbacks) between (6.4) and (6.5)

are 3,JB and JB ,3 . Then, subtracting the feedbacks in the NDSM of Figure D.1(a)

from those in the NDSM of Figure D.1(b), we can get:  



Jk

kiik dd ,, , where

)1,...,( ijJ denotes the activities from position j to position 1i . It follows that if





Jk

ki

Jk

ik dd ,, , then exchanging block JB and activity i results in a feedback

reduction of  



Jk

kiik dd ,, . To make our statement more legible, in Figure D.1(a) and

Figure D.1(b), 3,JB is highlighted in grey and JB ,3 is highlighted in blue.

Proof of Theorem 6.2

Figure D.2(a) shows the original NDSM where activities are executed in the order

of },...,1,,1...,,,1,...,,1...,,1{ nhhhiijj  . Separate the NDSM into five blocks

and define:























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B























1,1,1

1,1,1

3,1

...

.........

...

hjij

hi

dd

dd

B



















 hj

h

d

d

B

,1

,1

4,1 ...























njhj

nh

dd

dd

B

,11,1

,11,1

5,1

...

.........

...























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B























1,1,1

1,,

3,

...

.........

...

hiii

hjij

J

dd

dd

B



















 hi

hj

J

d

d

B

,1

,

4, ...























nihi

njhj

J

dd

dd

B

,11,1

,1,

5,

...

.........

...

 B3 =

0 …
1, hid

… 0 …

ihd ,1
 … 0

BJ =

0 … 1, ijd

 … 0 …

jid ,1

… 0

B1 =

0 … 1,1 jd

 … 0 …

1,1jd

… 0

B4 = 0

 B5 =

0 … nhd ,1

 … 0 …

1, hnd

… 0

 Appendix D Proofs of Chapter 6

216























1,11,1

1,1,

1,3

...

.........

...

jhh

jii

dd

dd

B























1,1,1

1,,

,3

...

.........

...

ihjh

iiji

J

dd

dd

B



















 hh

hi

d

d

B

,1

,

4,3 ...























nhhh

nihi

dd

dd

B

,11,1

,1,

5,3

...

.........

...

]...[1,1,1,4  jhh ddB]...[1,,,4  ihjhJ ddB

]...[1,,3,4  hhih ddB]...[,1,5,4 nhhh ddB 























1,1,

1,11,1

1,5

...

.........

...

jnn

jhh

dd

dd

B























1,,

1,1,1

,5

...

.........

...

injn

ihjh

J

dd

dd

B























1,,

1,1,1

3,5

...

.........

...

hnin

hhih

dd

dd

B





















hn

hh

d

d

B

,

,1

4,5 ...

Figure D.2(b) shows the resulting NDSM after exchanging block JB and activity

h. Based on above definitions, the NDSMs in Figure D.2(a) and Figure D.2 (b) can be

represented as following (6.6) and (6.7), respectively:























54,53,5,51,5

5,443,4,41,4

5,34,33,31,3

5,4,3,1,

5,14,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

J

J

J

JJJJJ

J

 (6.6)























5,53,54,51,5

5,3,4,1,

5,3,334,31,3

5,4,43,441,4

5,1,13,14,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

J

JJJJJ

J

J

J

 (6.7)

The different super-diagonal items between (6.6) and (6.7) are 3,JB , 4,JB , 4,3B

and JB ,3 , JB ,4 , 3,4B . In Figure D.2(a) and Figure D.2(b), 3,JB , 4,JB and 4,3B are

 Appendix D Proofs of Chapter 6

217

highlighted in grey, while JB ,3 , JB ,4 and 3,4B are highlighted in blue.

Activities 1 … j −1 j … i −1 i … h −1 h h+1 … n

1 0 …
1,1 jd

jd ,1 …
1,1 id id ,1 …

1,1 hd hd ,1

1,1 hd …
nd ,1

… … 0 … … … … … … … … … … …

j −1 1,1jd … 0 jjd ,1
 …

1,1  ijd ijd ,1
 … 1,1  hjd

hjd ,1 1,1  hjd …
njd ,1

j 1,jd …
1, jjd 0 …

1, ijd ijd , …
1, hjd hjd , 1, hjd …

njd ,

… … … … … 0 … … … … … … … …

i −1 1,1id …
1,1  jid jid ,1 … 0 iid ,1 …

1,1  hid hid ,1 1,1  hid …
nid ,1

i 1,id …
1, jid jid , …

1, iid 0 …
1, hid hid ,

1, hid …

nid ,

… … … … … … … … 0 … … … … …

h−1 1,1hd …
1,1  jhd jhd ,1 …

1,1  ihd ihd ,1 … 0 hhd ,1 1,1  hhd

…
nhd ,1

h 1,hd …
1, jhd jhd ,

 …
1, ihd

ihd ,
 …

1, hhd 0 1, hhd …
nhd ,

h+1 1,1hd …
1,1  jhd jhd ,1 …

1,1  ihd ihd ,1
 …

1,1  hhd

hhd ,1
 0 …

nhd ,1

… … … … … … … … … … … … 0 …

n 1,nd …
1, jnd jnd , …

1, ind ind , …
1, hnd hnd ,

1, hnd … 0

(a) Original NDSM

Activities 1 … j −1 h i … h −1 j … i −1 h+1 … n

1 0 …
1,1 jd

hd ,1

id ,1 …
1,1 hd jd ,1 …

1,1 id 1,1 hd …
nd ,1

… … 0 … … … … … … … … … … …

j −1 1,1jd … 0 hjd ,1 ijd ,1
 … 1,1  hjd

jjd ,1
 …

1,1  ijd 1,1  hjd …
njd ,1

h 1,hd …
1, jhd 0 ihd ,

 …
1, hhd jhd ,

 …
1, ihd

1, hhd …
nhd ,

i 1,id …
1, jid hid ,

 0 …
1, hid jid , …

1, iid 1, hid …
nid ,

… … … … … … 0 … … … … … … …

h−1 1,1hd …
1,1  jhd hhd ,1 ihd ,1 … 0 jhd ,1 …

1,1  ihd 1,1  hhd

…
nhd ,1

j 1,jd …
1, jjd

hjd , ijd , …
1, hjd 0 …

1, ijd 1, hjd …
njd ,

… … … … … … … … … 0 … … … …

i −1 1,1id …
1,1  jid hid ,1 iid ,1 …

1,1  hid

jid ,1 … 0 1,1  hid …
nid ,1

h+1 1,1hd …
1,1  jhd hhd ,1

 ihd ,1 …
1,1  hhd

jhd ,1 …
1,1  ihd 0 …

nhd ,1

… … … … … … … … … … … … 0 …

n 1,nd …
1, jnd hnd ,

ind , …

1, hnd jnd , …
1, ind 1, hnd … 0

 (b) The resulting NDSM after exchanging block JB and activity h

Figure D.2 The scenario used in the proof of Theorem 6.2

Let)1,...,( ijJ ,)1,...,( hiI . Clearly, subtracting the feedbacks in the

 Appendix D Proofs of Chapter 6

218

NDSM of Figure D.2(a) from those in the NDSM of Figure D.2(b), we can get

     
 


Ir

rhhr

Jk

khhk

Jk Ir

krrk

h

J dddddd ,,,,,, . It follows that if 0h

J , then

through exchanging block JB and activity h , the feedbacks in the NDSM of Figure

D.2(a) can be reduced by h

J .

Proof of Theorem 6.3

Figure D.3(a) shows the original NDSM for an activity sequence of

},...,,1...,,,1,...,,1...,,1{ nhhiijj  . Break the NDSM into four blocks and define:























1,1,1

1,1,1

,1

...

.........

...

hjij

hi

I

dd

dd

B



















 njhj

nh

dd

dd

B

,1,1

,1,1

4,1

...

.........

...























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B























1,1,1

1,,

,

...

.........

...

hiii

hjij

IJ

dd

dd

B



















 nihi

njhj

J

dd

dd

B

,1,1

,,

4,

...

.........

...























1,11,1

1,1,

1,

...

.........

...

jhh

jii

I

dd

dd

B























1,1,1

1,,

,

...

.........

...

ihjh

iiji

JI

dd

dd

B



















 nhhh

nihi

I

dd

dd

B

,1,1

,,

4,

...

.........

...























1,1,

1,1,

1,4

...

.........

...

jnn

jhh

dd

dd

B























1,,

1,,

,4

...

.........

...

injn

ihjh

J

dd

dd

B























1,,

1,,

,4

...

.........

...

hnin

hhih

I

dd

dd

B

Based on above definitions, the NDSM in Figure D.3(a) can be expressed as:

 B I =

0 …
1, hid

… 0 …

ihd ,1
 … 0

BJ =

0 …
1, ijd

 … 0 …

jid ,1

… 0

B1 =

0 …
1,1 jd

 … 0 …

1,1jd

… 0

 B4 =

0 …
nhd ,

… 0 …

hnd ,
 … 0

 Appendix D Proofs of Chapter 6

219



















4,4,41,4

4,,1,

4,,1,

4,1,1,11

BBBB

BBBB

BBBB

BBBB

IJ

IIJII

JIJJJ

IJ

 (6.8)

Activities 1 … j −1 j … i−1 i … h−1 h … n

1 0 …
1,1 jd

jd ,1 …
1,1 id id ,1 …

1,1 hd
hd ,1
 …

nd ,1

… … 0 … … … … … … … … … …

j −1 1,1jd … 0 jjd ,1
 …

1,1  ijd
ijd ,1
 …

1,1  hjd

hjd ,1 …
njd ,1

j 1,jd …
1, jjd 0 …

1, ijd ijd , …
1, hjd hjd , …

njd ,

… … … … … 0 … … … … … … …

i−1 1,1id …
1,1  jid jid ,1 … 0 iid ,1

 …
1,1  hid hid ,1 …

nid ,1

i 1,id …
1, jid jid , …

1, iid 0 …
1, hid hid , …

nid ,

… … … … … … … … 0 … … … …

h−1 1,1hd …
1,1  jhd jhd ,1 …

1,1  ihd
ihd ,1
 … 0 hhd ,1

 …
nhd ,1

h 1,hd …
1, jhd jhd , …

1, ihd
ihd ,
 …

1, hhd 0 …
nhd ,

… … … … … … … … … … … 0 …

n 1,nd …
1, jnd jnd , …

1, ind ind , …
1, hnd

hnd ,
 … 0

(a) Original NDSM

Activities 1 … j −1 i … h−1 j … i−1 h … n

1 0 …
1,1 jd

id ,1 …
1,1 hd

jd ,1 …
1,1 id hd ,1

 …
nd ,1

… … 0 … … … … … … … … … …

j −1 1,1jd … 0 ijd ,1
 …

1,1  hjd jjd ,1
 …

1,1  ijd
hjd ,1 …

njd ,1

i 1,id …
1, jid 0 …

1, hid jid , …
1, iid

hid , …
nid ,

… … … … … 0 … … … … … … …

h−1 1,1hd …
1,1  jhd ihd ,1

 … 0 jhd ,1 …
1,1  ihd

hhd ,1
 …

nhd ,1

j 1,jd …
1, jjd

ijd , …
1, hjd 0 …

1, ijd hjd , …
njd ,

… … … … … … … … 0 … … … …

i−1 1,1id …
1,1  jid

iid ,1
 …

1,1  hid jid ,1 … 0 hid ,1 …
nid ,1

h 1,hd …
1, jhd ihd , …

1, hhd jhd , …
1, ihd 0 …

nhd ,

… … … … … … … … … … … 0 …

n 1,nd …
1, jnd ind , …

1, hnd
jnd , …

1, ind hnd ,
 … 0

 (b) The resulting NDSM after exchanging block JB and block IB

Figure D.3 The scenario used in the proof of Theorem 6.3

 Appendix D Proofs of Chapter 6

220

Figure D.3(b) shows the resulting NDSM after exchanging block JB and block

IB , which can be expressed as:



















4,4,41,4

4,,1,

4,,1,

4,1,1,11

BBBB

BBBB

BBBB

BBBB

JI

JJIJJ

IJIII

JI

 (6.9)

The different super-diagonal items between (6.8) and (6.9) are IJB , and JIB , , and

so subtracting the feedbacks in the NDSM of Figure D.3(a) from those in the NDSM

of Figure D.3(b), we are left with  
 


Jk Ir

krrk dd ,, , where)1,...,( ijJ and

)1,...,( hiI . Thus, if 
  


Jk Ir

kr

Jk Ir

rk dd ,, , exchanging block JB and block IB

leads to a feedback reduction of  
 


Jk Ir

krrk dd ,, . In Figure D.3(a) and Figure D.3(b),

IJB , is highlighted in grey, and JIB , is highlighted in blue.

Proof of Theorem 6.4

Figure D.4(a) shows the original DSM, where activities are in the order of

}...,,1...,,,1,...,,1,...,,1...,,1{ nkkhhiijj  . Let:























1,1,1

1,1,1

,1

...

.........

...

ijjj

ij

J

dd

dd

B























1,1,1

1,1,1

3,1

...

.........

...

hjij

hi

dd

dd

B























1,1,1

1,1,1

,1

...

.........

...

kjhj

kh

H

dd

dd

B

 B3 =

0 …
1, hid

… 0 …

ihd ,1 … 0

BJ =

0 … 1, ijd

… 0 …

jid ,1 … 0

B1 =

0 … 1,1 jd

… 0 …

1,1jd … 0

BH =

0 … 1, khd

… 0 …

hkd ,1 … 0

 B5 =

0 … nkd ,

… 0 …

knd , … 0

 Appendix D Proofs of Chapter 6

221



















 njkj

nk

dd

dd

B

,1,1

,1,1

5,1

...

.........

...























1,11,1

1,1,

1,

...

.........

...

jii

jjj

J

dd

dd

B























1,1,1

1,,

3,

...

.........

...

hiii

hjij

J

dd

dd

B























1,1,1

1,,

,

...

.........

...

kihi

kjhj

HJ

dd

dd

B



















 niki

njkj

J

dd

dd

B

,1,1

,,

5,

...

.........

...























1,11,1

1,1,

1,3

...

.........

...

jhh

jii

dd

dd

B























1,1,1

1,,

,3

...

.........

...

ihjh

iiji

J

dd

dd

B























1,1,1

1,,

,3

...

.........

...

khhh

kihi

H

dd

dd

B



















 nhkh

niki

dd

dd

B

,1,1

,,

5,3

...

.........

...























1,11,1

1,1,

1,

...

.........

...

jkk

jhh

H

dd

dd

B























1,1,1

1,,

,

...

.........

...

ikjk

ihjh

JH

dd

dd

B























1,1,1

1,,

3,

...

.........

...

hkik

hhih

H

dd

dd

B



















 nkkk

nhkh

H

dd

dd

B

,1,1

,,

5,

...

.........

...























1,1,

1,1,

1,5

...

.........

...

jnn

jkk

dd

dd

B























1,,

1,,

,5

...

.........

...

injn

ikjk

J

dd

dd

B























1,,

1,,

3,5

...

.........

...

hnin

hkik

dd

dd

B























1,,

1,,

,5

...

.........

...

knhn

kkhk

H

dd

dd

B

Based on the definitions, the NDSM in Figure D.4(a) can be expressed as:























5,53,5,51,5

5,3,,1,

5,3,33,31,3

5,,3,1,

5,1,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

HJ

HHHJHH

HJ

JHJJJJ

HJ

 (6.10)

Figure D.4(b) shows the resulting NDSM after exchanging block JB and block

HB , which can be written as:























5,53,5,51,5

5,3,,1,

5,3,33,31,3

5,,3,1,

5,1,13,1,11

BBBBB

BBBBB

BBBBB

BBBBB

BBBBB

JH

JJJHJJ

JH

HJHHHH

JH

 (6.11)

 Appendix D Proofs of Chapter 6

222

Activities 1 … j −1 j … i−1 i … h−1 h … k−1 k … n

1 0 …
1,1 jd

jd ,1 …
1,1 id id ,1 …

1,1 hd hd ,1
 …

1,1 kd
kd ,1
 …

nd ,1

… … 0 … … … … … … … … … … … … …

j −1 1,1jd … 0 jjd ,1
 …

1,1  ijd
ijd ,1
 …

1,1  hjd
hjd ,1

 …
1,1  kjd

kjd ,1
 …

njd ,1

j 1,jd …
1, jjd 0 …

1, ijd ijd , …
1, hjd hjd , …

1, kjd kjd , …
njd ,

… … … … … 0 … … … … … … … … … …

i−1 1,1id …
1,1  jid jid ,1 … 0 iid ,1

 …
1,1  hid

hid ,1 …
1,1  kid kid ,1 …

nid ,1

i 1,id …
1, jid jid , …

1, iid 0 …
1, hid

hid , …
1, kid kid , …

nid ,

… … … … … … … … 0 … … … … … … …

h−1 1,1hd …
1,1  jhd jhd ,1 …

1,1  ihd
ihd ,1
 … 0 hhd ,1

 …
1,1  khd

khd ,1
 …

nhd ,1

h 1,hd …
1, jhd

jhd , …
1, ihd

ihd ,
 …

1, hhd 0 …
1, khd

khd ,
 …

nhd ,

… … … … … … … … … … … 0 … … … …

k−1 1,1kd …
1,1  jkd

jkd ,1 …
1,1  ikd

ikd ,1
 …

1,1  hkd
hkd ,1

 … 0 kkd ,1
 …

nkd ,1

k 1,kd …
1, jkd

jkd , …
1, ikd

ikd ,
 …

1, hkd
hkd ,

 …
1, kkd 0 …

nkd ,

… … … … … … … … … … … … … … 0 …

n 1,nd …
1, jnd

jnd , …
1, ind ind , …

1, hnd hnd ,
 …

1, knd
knd ,

 … 0

(a) Original NDSM

Activities 1 … j −1 h … k−1 i … h−1 j … i−1 k … n

1 0 …
1,1 jd

hd ,1
 …

1,1 kd
id ,1 …

1,1 hd jd ,1 …
1,1 id kd ,1

 …
nd ,1

… … 0 … … … … … … … … … … … … …

j −1 1,1jd … 0 hjd ,1
 …

1,1  kjd
ijd ,1
 …

1,1  hjd
jjd ,1
 …

1,1  ijd
kjd ,1

 …
njd ,1

h 1,hd …
1, jhd 0 …

1, khd
ihd ,
 …

1, hhd
jhd , …

1, ihd
khd ,

 …
nhd ,

… … … … … 0 … … … … … … … … … …

k−1 1,1kd …
1,1  jkd

hkd ,1
 … 0 ikd ,1

 …
1,1  hkd

jkd ,1 …
1,1  ikd

kkd ,1
 …

nkd ,1

 i 1,id …
1, jid hid , …

1, kid 0 …
1, hid

jid , …
1, iid

kid , …
nid ,

… … … … … … … … 0 … … … … … … …

h−1 1,1hd …
1,1  jhd hhd ,1

 …
1,1  khd

ihd ,1
 … 0 jhd ,1 …

1,1  ihd
khd ,1
 …

nhd ,1

j 1,jd …
1, jjd

hjd , …
1, kjd ijd , …

1, hjd 0 …
1, ijd kjd , …

njd ,

… … … … … … … … … … … 0 … … … …

i−1 1,1id …
1,1  jid hid ,1 …

1,1  kid iid ,1
 …

1,1  hid
jid ,1 … 0 kid ,1 …

nid ,1

k 1,kd …
1, jkd

hkd ,
 …

1, kkd
ikd ,
 …

1, hkd
jkd , …

1, ikd 0 …
nkd ,

… … … … … … … … … … … … … … 0 …

n 1,nd …
1, jnd

hnd ,
 …

1, knd
ind , …

1, hnd jnd , …
1, ind knd ,

 … 0

 (b) The resulting NDSM after exchanging block JB and block HB

Figure D.4 The scenario used in the proof of Theorem 6.4

 Appendix D Proofs of Chapter 6

223

It is clear that the different super-diagonal items between (6.10) and (6.11) are

3,JB , HJB , , HB ,3 and JB ,3 , JHB , , 3,HB . In Figure D.4(a) and Figure D.4(b), 3,JB ,

HJB , , HB ,3 are highlighted in grey, and JB ,3 , JHB , , 3,HB are highlighted in blue. Let

)1,...,( ijJ ,)1,...,( hiI and)1,...,( khH . Subtracting the feedbacks in the

NDSM of Figure D.4(a) from the feedbacks in the NDSM Figure D.4(b), we get

     
   


Ir Hp

rppr

Jr Hp

rppr

Jr Ip

rppr

H

J dddddd ,,,,,, . Thus, if 0H

J , then

exchanging block JB and block HB results in a feedback reduction of H

J .

 Appendix E Proofs of Chapter 7

224

APPENDIX E

PROOFS OF CHAPTER 7

Proof of P1

For two fuzzy triangular numbers A
~

 and B
~

 that are described by),,(321 aaa and

),,(321 bbb , their -cuts are:  )(,)(233112 aaaaaa  , and

 )()(233112 bbbbbb  , respectively. From (7.4), we get:

 
4

2
)()(

2

1
)

~
(321

1

0
233112

aaa
daaaaaaAD


   (7.13)

 
4

2
)()(

2

1
)

~
(321

1

0
233112

bbb
dbbbbbbBD


   (7.14)

Let BAC
~~~

 . From (7.2) and (7.4), we get: 

),,(
~~~

332211 bababaBAC  (7.15)

  
1

0
223333111122)()(

2

1
)

~
( dbabababababaCD

4

)(2 332211 bababa 
 (7.16)

Clearly,  )
~

()
~

(
~

BDADCD  .

Proof of P2

Let r be a real number, which can be represented as),,(rrr . From (7.3) and (7.4),

we get:

),,(
~

321 rararaAr  (7.17)

 Appendix E Proofs of Chapter 7

225

 
4

2
)()(

2

1
)

~
(321

1

0
233112

aaa
rdrarararararaArD


   (7.18)

From (7.13) and (7.18), we get)
~

()
~

(ArDArD  .

Proof of P3

Let r1 and r2 be two real numbers, which can be expressed as),,(111 rrr and

),,(222 rrr , respectively. Let BrArF
~~~

21  , from (7.2)-(7.4), we get: 

),,(
~~~

32312221121121 brarbrarbrarBrArF  (7.19)

  
1

0
222132313231121112112221)()(

2

1
)

~
( dbrarbrarbrarbrarbrarbrarFD

4

)(2 323122211211 brarbrarbrar 
 (7.20)

From (7.13) and (7.14), we get:

4

2

4

2
)

~
()

~
(321

2
321

121

bbb
r

aaa
rBDrADr





 (7.21)

Inspection of (7.20) and (7.21) shows that)
~

()
~

()
~

(21 BDrADrFD  .

