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Summary

Symmetric or antisymmetric compactly supported wavelets are very much desirable in

various applications, since they preserve linear phase properties and also allow symmetric

boundary conditions in wavelet algorithms which normally perform better. However,

there does not exist any real-valued symmetric or antisymmetric compactly supported

orthonormal wavelet with dyadic dilation except for the Haar wavelet. We resolve the

problem here by relaxing the orthogonality and non-redundancy condition. At the other

end of the spectrum lies the question of whether redundancy could be exploited fully so

that localized information at distinct scales or frequencies could be fully captured by the

wavelet system. This question is partially answered here in the setting of periodic wavelets

using time-localized wavelet frames. In addition, a completely affirmative solution is

obtained here in the setting of periodic wavelets using bandlimited wavelet frames that

resemble Shannon and Meyer wavelets (see [38]) and possess the frequency segmentation

features of wavelet packets (see [46]). Here, we have managed to combine translation and

modulation operations into a multiresolution analysis structure, thereby allowing for fast

wavelet algorithms to be utilized in applications.

In the first section of Chapter 1, we introduce the concept of frames and briefly re-

view the general properties of frames and the frame operator. In the second section, we

introduce the affine system X(Ψ), the shift-invariant quasi-affine system Xq
K(Ψ) at level

K and the concept of multiresolution analysis and their respective periodic equivalents.

In the third section we present an overview of the results found in this thesis.

The approach in Chapter 2 (published in [23]) is developed under the most general

setting of L2(Rs). We begin in Section 2.1 by showing that both the frame property and

frame bounds of affine systems are preserved under the symmetrization process. In Section

2.2, we consider the case when the original wavelets are obtainable from a multiresolution

analysis (MRA), i.e. the setting of framelets. We prove that given an MRA-based tight

frame system, a symmetric and antisymmetric tight frame system can be obtained from a,

but possibly different, MRA generated by symmetric or antisymmetric refinable functions.
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When the original MRA is generated by a symmetric refinable function, the symmetric

and antisymmetric tight frame system is obtained from the same MRA. This enables us

to convert the systematic construction of spline tight framelets of [16] to a systematic

construction of symmetric and antisymmetric spline tight framelets with given orders of

smoothness and vanishing moments. Further, framelets constructed via the oblique or

unitary extension principle are also considered in Section 2.2. Finally, in Section 2.3, we

illustrate with examples the constructions given by our method. We also discuss practical

issues related to minimizing the supports of the resulting refinable functions and wavelets

as well as improving their spreads in the time domain.

In the first section of Chapter 3, we briefly review the coset representation of lattices

and we show that the affine system X(Ψ) is a frame for L2(Rs) if and only if the quasi-

affine system Xq
K(Ψ) is also a frame for L2(Rs) with the same frame bounds. Next, we

prove certain elementary results concerning the frame multiresolution analysis (FMRA),

which is an MRA with uniform frame bounds.

In the second section which is on L2(Ts), we formulate the polyphase space of har-

monics. We show that if the periodic affine system X2π is a frame for L2(Ts), then the

periodic quasi-affine system Xq
2π,K at level K is a frame for L2(Ts). Further, this implies

that X2π is a frame for all the polyphase space of harmonics. We also show analogous

results for the restricted periodic affine system XR
2π and the restricted periodic quasi-affine

system Xq,R
2π,K . In addition, we review certain fundamental results from [24] concerning

periodic MRAs. Then in Section 3.3, we review periodic extension principles from [25]

for tight wavelet frames and generalize these principles under unitary transformations.

In the last section of Chapter 3, we establish the connection between Euclidean space

wavelets and periodic wavelets through the Poisson Summation formula. Here we focus on

obtaining results that relate shift-invariant spaces of L2(Rs) with periodized shift-invariant

spaces of L2(Ts) constructed from uniform frequency samples of functions from the former.

We show that frame properties of shift-invariant spaces of the former are carried over to

the periodized systems of the latter. We also show the correspondence of multiresolution

properties, in particular that of FMRAs for the two systems. We review the construction

of periodic wavelets from periodic FMRAs and show that such constructions could be

used for the Euclidean setting. In particular, we could characterize the existence of

semi-orthogonal tight wavelet frames for the Euclidean space setting, generalizing the

characterization result in [39] to FMRAs constructed from multiple refinable functions.

We end the chapter with the connection of the affine system in L2(Rs) and the periodic

affine system in L2(Ts) using extension principles.
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In Chapter 4, we construct periodic bandlimited wavelet systems and periodic time-

localized wavelet systems with the aim of achieving a flexible time-frequency representa-

tion that could also emulate the short-time Fourier transform, i.e. inclusion of modulation

information into an MRA structure. The main approach used here is to add additional

number of wavelet functions that captures the desired modulation information to the

wavelet system. The bandlimited wavelet systems constructed in Section 4.1 are generic

and allows for a flexible partitioning of the time-frequency plane while the time-localized

wavelet systems of Section 4.2 are constructed from modifying and enlarging existing

time-localized orthonormal wavelet bases or tight wavelet frames while retaining most of

their original properties such as approximation orders and compact support.

The bandlimited wavelet systems are constructed from either Shannon or Meyer kinds

of refinable functions except that we allow freedom of choice on their bandwidths. The

only requirement in the design of the wavelet masks is that they must satisfy the minimum

energy tight frame condition of the periodic unitary extension principle (UEP), i.e. the

perfect reconstruction equation and the anti-aliasing equation.

We begin with a general construction of complex wavelets where we incrementally

increase the number of wavelet masks until the entire spectrum of the multiresolution

analysis is covered. The wavelet masks share the decay properties of Shannon or Meyer

wavelet masks. Some degrees of overlaps in the masks are unavoidable if we are to

allow for their smooth decay in the frequency domain. To achieve real and symmetric

(antisymmetric) properties, the masks are designed to be symmetric (antisymmetric) in

the frequency domain and some mild restrictions on the bandwidths of some of the masks

are imposed so that the anti-aliasing condition could be satisfied. We cancel out aliasing

chiefly by using corresponding pairs of symmetric and antisymmetric wavelet masks at

frequencies where the anti-aliasing condition could not be satisfied by default and this

usually occurs at the middle bands.

The methods used in the construction of time-localized wavelet systems generally

involves manipulation of the masks of existing orthonormal wavelet bases or tight wavelet

frames so that the enlarged and modified wavelet system still satisfies the minimum energy

tight frame condition. A direct and naive construction by the diagonal extension of

the original wavelet masks with modulated masks allows for only a fixed and limited

modulation range and it requires the addition of more refinable functions to the MRA.

We remedy this by considering that the equations of the periodic UEP are modulation

invariant and adding the modulated versions of these equations to the original equations,

thereby expanding the wavelet system without changing the MRA. In the event that
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symmetry (antisymmetry) is absent from the original masks, symmetric (antisymmetric)

properties could also be added by means of reflection in the frequency domain and applying

unitary transformations to the masks. The latter comes at the cost of using twice the

number of masks and using a vector MRA. The modulation range of these constructions

is required to be bounded in order for the wavelet system to be a tight frame.

We remedy the problem of having a bounded modulation range by splitting some of

the wavelet subbands into “packets” using a different set of masks. This idea general-

izes orthogonal wavelet representation by requiring the “packetized” masks to satisfy the

perfect reconstruction equation, i.e. the energy of the packetized masks must satisfy a

sum of constant norm. The frame approximation order is preserved as the MRA is un-

changed and we could choose the packetized masks to be modulated versions of some

existing wavelet masks such as that of the Haar system. The representation is therefore

computationally efficient since the desired representation of the signal could be obtained

adaptively and almost directly.

In Chapter 5, we study the uniqueness of representation by wavelet frames for L2(Ts)

and derive decomposition and reconstruction algorithms for the coefficients of the repre-

sentation. We also study the stationary wavelet transform and its relation to the periodic

quasi-affine system and we analyze the time-frequency properties of some Gabor atoms

and chirp signals using our generic bandlimited wavelet systems.

In Section 5.1, we establish the uniqueness of representation by wavelet frames using

the wavelet expansion in the frequency domain by polyphase harmonics of wavelets. Es-

sentially, we diagonalize the Gramians of these polyphase harmonics by applying unitary

transformations to the wavelet coefficients and the polyphase harmonics. Using these

uniqueness results we derive the reconstruction algorithm.

In Section 5.2, we assume that the multiresolution subspaces and wavelet subspaces

are orthogonal, i.e. we consider the semi-orthogonal setting of FMRA wavelets. We

show that we could represent polyphase harmonics of a finer multiresolution subspace by

polyphase harmonics of a coarser multiresolution subspace and its corresponding wavelet

subspace using decomposition masks. Next, we derive decomposition algorithms using

these masks and establish sufficient conditions for perfect reconstruction.

In Section 5.3, we consider the nonorthogonal setting of MRA wavelets, i.e. we do not

assume the sum of multiresolution subspaces and wavelet subspaces as a direct sum. We

derive the decomposition algorithms using the minimum energy tight frame condition of

the periodic UEP. Here we find that the conjugate transpose of the reconstruction masks

play the role of decomposition masks.
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In Section 5.4, we study the derivation of the stationary wavelet transform by consider-

ing the time domain version of our algorithms. We verify the translation invariant nature

of the transform by showing that the transform includes all the coefficients of various ver-

sions of the decimated wavelet transform. We also derive the quasi-affine representation

of the wavelet expansion based on the stationary wavelet transform.

In Section 5.5, we show that the collection of generic bandlimited refinable functions

constructed in Section 4.1 possesses spectral frame approximation order if the multireso-

lution subspaces grow sufficiently fast, and that the bandlimited wavelet systems derived

from them based on the periodic UEP have global vanishing moments of arbitrarily high

order. We also review an example of compactly supported pseudo-splines, which when pe-

riodized, also provide spectral frame approximation order and global vanishing moments

of arbitrarily high order. We conclude the thesis by explaining the process of plotting the

time-frequency representations of some Gabor atoms and chirp signals using the trans-

forms based on our bandlimited wavelet systems. These time-frequency representations

demonstrate that the transforms designed successfully incorporate strengths of both the

wavelet transforms and the short-time Fourier transform.

viii



Chapter 1

Introduction

In modern signal processing, digital samples of signals are often used to represent or

reconstruct the signals. Therefore, it is practical to expect that if the samples are “close”

to each other, the signals should also be “close” to each other and vice versa. This is

important so that when some terms in the representation of the signal in terms of its

samples are neglected, we can be sure that the reconstructed signal will not differ much

from the original signal. Such requirements are best understood in the context of frames,

where the coefficients of a frame expansion replace the role of the samples of the signals.

1.1 Frames of Hilbert Spaces

A countable system X in a separable Hilbert space H is a frame for H if there exist

constants A, B > 0 such that for every f ∈ H,

A ‖f‖2
H ≤

∑
g∈X

|〈f, g〉H|2 ≤ B ‖f‖2
H . (1.1)

A frame is a special case of a Bessel system, in which only the right inequality of (1.1) is

required to hold for every f ∈ H. The constants A and B are lower and upper bounds of

the frame. The supremum of A and the infimum of B for (1.1) to hold are called frame

bounds. The elements of a frame must satisfy ‖g‖H ≤
√
B. A frame X is said to be

tight if we may take A = B. A tight frame with bound 1 is sometimes referred to as a

normalized tight frame in the literature, see for instance [32]. A frame is a Riesz basis if

every f ∈ H could be represented uniquely by elements of the frame. A tight frame X

for H becomes an orthonormal basis when all the vectors in X have their norms equal to

1.

1



1.1 Frames of Hilbert Spaces 2

Let l2(Zs) be the space of all complex-valued square-summable sequences on Zs en-

dowed with the standard inner product 〈a, b〉l2(Zs) :=
∑
n∈Zs

a(n)b(n) and norm ‖·‖l2(Zs) :=

〈·, ·〉
1
2

l2(Zs). For our purposes in the construction of multiresolution analyses and wavelets,

we shall review the following standard properties of frames which could be found in the

books [6], [14] and [26].

Adding the zero element to a frame does not change the frame condition (1.1). A

sequence {fn} of vectors in a Hilbert space H is a frame for H if and only if there exists

a positive constant C such that, for every h ∈ H,
∑
n∈Z
|〈h, fn〉H|2 is finite and there exists

a sequence a = {an} ∈ l2(Z) such that h =
∑
n∈Z

anfn in H and ‖a‖l2(Z) ≤ C ‖h‖H, i.e.

the closure of the span of {fn} must be H. Let {fn} be a frame for H with frame

bounds A and B. For any sequence a = {an} ∈ l2(Z), h :=
∑
n∈Z

anfn converges in H and

‖h‖2
H ≤ B ‖a‖2

l2(Z).

In a Hilbert space H, the frame operator S : H → H of a frame {fn} for H is defined

for each f ∈ H by

Sf =
∑
n∈Z

〈f, fn〉Hfn in H. (1.2)

The frame operator S is a positive operator satisfying AI ≤ S ≤ BI, where A and B are

frame bounds, i.e. ‖S−1‖−1
H = A and ‖S‖H = B, and I is the identity mapping on H.

Therefore, the frame operator S is bounded and continuous and is an invertible operator

satisfying B−1I ≤ S−1 ≤ A−1I. For each f ∈ H, the element f can be decomposed into

f =
∑
n∈Z

〈f, S−1fn〉Hfn =
∑
n∈Z

〈f, fn〉HS−1fn in H. (1.3)

The sequence {S−1fn} is also a frame with frame operator S−1 and frame bounds B−1

and A−1 and is known as the canonical dual frame. In particular the canonical dual of a

tight frame is {A−1fn}. The formula (1.3) suggests that we can reconstruct f from the

sequences {〈f, fn〉} and {〈f, S−1fn〉}. The frame operator S commutes with all unitary

operators T that are permutations on {fm}m∈Z.

If {fn} is a frame but not a basis, then there exist nonzero sequences {an} ∈ l2(Z) such

that
∑
n∈Z

anfn = 0. Therefore f =
∑
n∈Z

[〈f, S−1fn〉H + an] fn can be represented in many

different ways by the frame elements. During a signal transmission process, suppose that

the frame coefficients {〈f, S−1fn〉H} of the signal are transmitted and are perturbated

into {〈f, S−1fn〉H+ bn} by noise. There exists this possibility that parts of the noise per-

turbation might sum to zero and cancel out. This never occurs if {fn} is an orthonormal
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basis since

∥∥∥∥∑
n∈Z

bnfn

∥∥∥∥
H

= ‖b‖l2(Z), where b = {bn}n∈Z, i.e. additional perturbations make

the reconstruction worse. As in information theory, there is a tradeoff between signal size

and error reduction using the redundancy of a frame.

The preference for using the canonical dual frame in reconstruction could be seen in

the following way. Suppose that {fn} is a frame for a subspace V of the Hilbert space H.

Then the orthogonal projection of H onto V is given by

Pf =
∑
n∈Z

〈f, S−1fn〉Hfn in H,

i.e. the coefficients {〈f, S−1fn〉H} have minimal l2-norm among all sequences {an} ∈ l2(Z)

such that f =
∑
n∈Z

anfn.

Frames possess better stability properties under the application of operators when

compared to bases. If {en} is a basis, then only bounded bijective operators U could

be applied to preserve the basis property, i.e. ensure that {Uen} remains a basis. In

contrast, the application of bounded surjective operators will preserve the frame property.

The surjective property could be extended to any operator with closed range property if

we only require the transformed collection to be a frame for a smaller subspace of the

original space. For example, if {fn} is a frame for H and {gn} is a sequence in H such

that gn = fn except for a finite set of n ∈ Z, then {gn} is a frame for its closed linear

span.

We briefly describe an approach to determine all frames for H as given in [1]. Given

any two frames {fn} and {gm} for H, the bi-infinite matrix U with (m,n)-th entry given

by umn = 〈gm, S−1fn〉H defines a bounded operator on l2(Z). Given a frame {fn} and

a bi-infinite matrix U = {umn} that defines a bounded operator on l2(Z), the sequence

{hm} defined by hm =
∑
n∈Z

umnfn is well defined, in particular {hm} is a frame for H if

and only if there exists a constant C > 0 such that for every f ∈ H,
∑
m∈Z
|〈f, hm〉H|2 ≥

C
∑
n∈Z
|〈f, fn〉H|2. This illustrates the possibility of using appropriate transformations to

obtain new frames from existing frames, which is one of the themes of our thesis.

Riesz bases for H are characterized as collections {Uen} where {en} is an orthonormal

basis for H and U : H 7→ H is a bounded and invertible operator. In a similar way, frames

for H are exactly the collections {Uen} where {en} is an orthonormal basis for H and

U : H 7→ H is a bounded and surjective operator.

The development of frames arises naturally from applications in time-frequency analy-

sis. Continuous time-frequency representations of signals based on the short-time Fourier
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transform and the continuous wavelet transform are helpful from the theoretical perspec-

tives of time-frequency analysis though not always useful for practical applications. The

discretization of these representations by sampling operations lead to non-orthogonal se-

ries expansions in general. The collection of time-frequency atoms used to represent the

signal may not form a Riesz basis and in the event they do, they may have comparably

much poorer time-frequency localization as in the case of the Gabor system, rendering

them not utilizable in time-frequency analysis. We shall be studying the construction

of wavelet frames with useful properties such as symmetry, periodicity and good time-

frequency localization in this thesis.

1.2 Affine Systems and Multiresolution Analysis

Let L2(Rs) be the space of all complex-valued square-integrable functions on the s-

dimensional Euclidean space Rs endowed with the normalized inner product 〈f, g〉 :=

(2π)−s
∫

Rs f(t)g(t)dt and norm ‖·‖ := 〈·, ·〉 12 . The Fourier transform f̂ of a function

f in L1(Rs), the space of all complex-valued integrable functions on Rs, is defined as

f̂(ω) := (2π)−s
∫

Rs f(t)e−iω·tdt, and is extended in the standard manner to a unitary

operator F on L2(Rs).

Let Ψ be a finite ordered subset of L2(Rs). We use Ψ to denote both a set and a

column vector. Following [44], we define the affine system X(Ψ) generated by Ψ to be

X(Ψ) := {d
k
2El

kψ(Mk·) : ψ ∈ Ψ, l ∈ Zs, k ∈ Z}, (1.4)

where El
k : L2(Rs)→ L2(Rs) is the shift operator given by

El
k : f 7→ f(· −M−kl),

with M being a s× s invertible matrix with integer entries such that M is expansive, i.e.

all the eigenvalues of M are greater than 1, and d := |detM |. An affine system that forms

a frame for L2(Rs) is known as a wavelet frame. For a wavelet frame, the functions ψ ∈ Ψ

in (1.4) are known as mother wavelets or simply wavelets. As the affine system X(Ψ)

comprises shifts of dilates of mother wavelets ψ ∈ Ψ, it is sometimes called a stationary

wavelet frame.

For a fixed K ≥ 0, the Zs shift-invariant truncated-affine system XK(Ψ) of an affine

system X(Ψ) is defined to be

XK(Ψ) := E({d
k
2El

kψ(Mk·) : ψ ∈ Ψ, l ∈ Lk, k ≥ K}), (1.5)
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where E(Λ) := E0(Λ) is the collection of all integer Zs shift operations applied to Λ with

Lk denoting a full collection of coset representatives of Zs/MkZs.

The M−KZs shift-invariant quasi-affine system Xq
K(Ψ) of an affine system X(Ψ) at

level K is defined to be

Xq
K(Ψ) := EK(ΛK) (1.6)

which consists of all the M−KZs shifts of

ΛK := {dk−
K
2 ψ(Mk·) : ψ ∈ Ψ, k < K} ∪ {d

k
2El

kψ(Mk·) : ψ ∈ Ψ, l ∈ Lk−K , k ≥ K}. (1.7)

Unlike the quasi-affine system Xq(Ψ) := Xq
0(Ψ) introduced in [44], the affine system X(Ψ)

is not invariant under any lattice shifts since only the M−kZs shifts of ψ(Mk·) are included

in X(Ψ) and these shifts become sparser as k becomes smaller. The smallest closed linear

subspace V K(ΛK) of L2(Rs) that contains EK(ΛK) is the M−KZs shift-invariant space

generated by ΛK , i.e.

V K(ΛK) := spanEK(ΛK).

Let Φ ⊂ L2(Rs) be a finite set and let V (Φ) be the closed shift-invariant linear subspace

generated by Φ, i.e. V (Φ) = span {Elφ : φ ∈ Φ, l ∈ Zs} (where El := El
0). Following [4],

the cardinality of a minimal generating set Φ for V (Φ) is called the length of V which is

denoted by lenV . The space V (Φ) is said to be finitely generated shift-invariant (FSI) if

lenV is finite and is said to be principal shift-invariant (PSI) space if lenV = 1.

Next, we recall some fundamental results on stationary and nonstationary wavelet

frames derived from a multiresolution analysis (MRA) of L2(Rs), i.e. framelets. General-

izing [3], an MRA of L2(Rs) is a sequence of closed subspaces {V k(Φk)} generated by finite

ordered subsets Φk of L2(Rs) with |Φk| = ρ for all k such that (i) V k(Φk) ⊂ V k+1(Φk+1),

(ii)
⋃
k∈Z V

k(Φk) is dense in L2(Rs).

In the event that there exist A,B > 0 such that Ek(Φk) is a frame for V k(Φk) with

uniform bounds A and B for every k ∈ Z, then the MRA is known as a frame multiresolu-

tion analysis (FMRA) with bounds A and B. If for every k ∈ Z, V k(Φk) := {d k2 f(Mk·) :

f ∈ V 0(Φ0)}, the MRA or FMRA is known as a stationary MRA or FMRA respectively

and is denoted by {V k(Φ)}, where Φ := Φ0. For this stationary case, the above notions of

MRA and FMRA are introduced in [3] and [2] respectively. In such a case, we also have

(iii)
⋂
k∈Z V

k(Φ) = {0} since Φ is a finite subset of L2(Rs) (see Corollary 4.14 of [3] and

Theorem 2.2 and Remark 2.6 of [36]).

Condition (i) requires the vector Φk to be refinable for every k ∈ Z, i.e.

Φ̂k = Ĥk+1Φ̂k+1, (1.8)
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where Ĥk+1 is a 2π(MT )k+1Zs-periodic matrix-valued measurable function known as the

refinement mask. The vector Φk is known as a refinable vector and (1.8) is the refinement

equation. For a stationary MRA, the refinement equation simplifies to

Φ̂(MT ·) = ĤΦ̂, (1.9)

where Ĥ is a 2πZs-periodic matrix-valued measurable function.

When Φk satisfies (i) for every k ∈ Z, Condition (ii) requires
⋂
k∈Z
⋂
φk∈Φk

{ω ∈ Rs :

φ̂k(ω) = 0} to be a set of measure zero (see Theorem 4.3 of [3] and Theorem 2.1 and

Remark 2.6 of [36]), which always holds in the stationary case if there exists φ ∈ Φ such

that φ is compactly supported (see [35]). This means that the entire frequency domain is

fully “covered” by the MRA.

Suppose that {V k(Φk)} is an MRA of L2(Rs). Let Ψk be a finite ordered subset of

V k+1(Φk+1). Then there exists a 2π(MT )k+1Zs-periodic matrix-valued measurable func-

tion Ĝk+1 known as the wavelet mask such that

Ψ̂k = Ĝk+1Φ̂k+1. (1.10)

Equation (1.10) defines a vector of pre-wavelets Ψk and is called the wavelet equation. For

a stationary MRA {V k(Φ)} of L2(Rs) with Ψ being a finite ordered subset of V 1(Φ), the

wavelet equation (see [16]) simplifies to

Ψ̂(MT ·) = ĜΦ̂, (1.11)

where the wavelet mask Ĝ is a 2πZs-periodic matrix-valued measurable function.

We define the combined MRA mask to be the |Φk ∪Ψk| × |Φk| matrix

L̂k :=

[
Ĥk

Ĝk

]
, (1.12)

and in the event of Φk being a singleton set, i.e. Φk := {φk}, we denote ĥk := Ĥk.

Under the assumption that the entries of L̂k lie in L∞(Ts), the space of all essentially

bounded complex-valued functions on the s-dimensional circle group Ts := Rs/2πZs, we

define the Fourier coefficients of the masks Ĥk and Ĝk, which we shall term simply as

lowpass filter Hk and highpass filter Gk, by

Ĥk(ω) =
∑
n∈Zs

Hk(n)e−in·ω, Ĝk(ω) =
∑
n∈Zs

Gk(n)e−in·ω.
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We shall generally use the notations ĥk, ĝk, hk and gk in place of Ĥk, Ĝk, Hk and Gk

respectively when Hk(n) and Gk(n), n ∈ Zs, are scalars. The refinement and wavelet

equations (1.8) and (1.10) are equivalent to

Φk =
∑
n∈Zs

Hk+1(n)Φk+1(· − n), Ψk =
∑
n∈Zs

Gk+1(n)Φk+1(· − n), (1.13)

while the refinement and wavelet equations (1.9) and (1.11) for the stationary case are

equivalent to

Φ = |detM |
∑
n∈Zs

H(n)Φ(M · −n), Ψ = |detM |
∑
n∈Zs

G(n)Φ(M · −n). (1.14)

Defining Ψk by (1.10), if the system

XR := {El
kψk : ψk ∈ Ψk, l ∈ Zs, k ∈ Z}

forms a frame for L2(Rs), then XR is known as a wavelet frame. Comparing with (1.4),

this is a more general formulation as the functions ψk ∈ Ψk need not be dilates of functions

in some basic set Ψ, i.e. it includes both stationary and nonstationary cases.

The notions of MRAs and wavelets also have counterparts for 2π-periodic functions

(see for instance [24] and [25]). Let L2(Ts) be the space of all complex-valued square-

integrable functions on Ts endowed with the normalized inner product 〈f, g〉L2(Ts) :=

(2π)−s
∫

Ts f(t)g(t)dt and norm ‖·‖L2(Ts) := 〈·, ·〉
1
2

L2(Ts). Reusing notations, we define the

Fourier coefficients {f̂(n)}n∈Zs of a function f ∈ L2(Ts) as f̂(n) := 〈f, ein·〉L2(Ts). We

define the periodic affine system X2π to be

X2π := {φ0 : φ0 ∈ Φ0} ∪ {T lkψk : ψk ∈ Ψk, l ∈ Lk, k ≥ 0}, (1.15)

where T lk : L2(Ts)→ L2(Ts) is the shift operator given by

T lk : f 7→ f(· − 2πM−kl).

A periodic affine system that forms a frame for L2(Ts) is known as a periodic wavelet

frame. For a periodic wavelet frame, the functions ψk ∈ Ψk in (1.15) are known as

wavelets. Due to the periodic nature of functions in L2(Ts), affine systems in L2(Ts) are

generally nonstationary, i.e. different wavelets for different levels k, which will be the

context that we are dealing with here.

For a fixed K ≥ 0, we introduce the notion of 2πM−KZs shift-invariant periodic quasi-

affine system Xq
2π,K of an affine system X2π at level K as

Xq
2π,K := TK(ΩK) (1.16)
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which consists of all the 2πM−KZs shifts of

ΩK := {d−
K
2 φ0 : φ0 ∈ Φ0} ∪ {d

k
2
−K

2 ψk : ψk ∈ Ψk : 0 ≤ k < K} ∪

{T lkψk : ψk ∈ Ψk, l ∈ Lk−K , k ≥ K}. (1.17)

The smallest closed linear subspace V K
2π (ΩK) of L2(Ts) that contains TK(ΩK) is the

2πM−KZs shift-invariant space generated by ΩK , i.e.

V K
2π (ΩK) := spanTK(ΩK).

The cardinality of a smallest generating set for V K
2π is called the length of V K

2π which is

denoted by lenV K
2π . The space V K

2π is said to be finitely generated shift-invariant (FSI) if

lenV K
2π is finite and is said to be a principal shift-invariant (PSI) space if lenV K

2π = 1.

For R ≥ K ≥ 0, we shall also define the restricted periodic affine system XR
2π to be

XR
2π := {φ0 : φ0 ∈ Φ0} ∪ {T lkψk : ψk ∈ Ψk, l ∈ Lk, 0 ≤ k ≤ R} (1.18)

and the 2πM−KZs shift-invariant restricted periodic quasi-affine system Xq,R
2π,K of an affine

system X2π at level K ≤ R to be

Xq,R
2π,K := TK(ΩR

K) (1.19)

which consists of all the 2πM−KZs shifts of

ΩR
K := {d−

K
2 φ0 : φ0 ∈ Φ0} ∪ {d

k
2
−K

2 ψk : ψk ∈ Ψk : 0 ≤ k < K} ∪

{T lkψk : ψk ∈ Ψk, l ∈ Lk−K , K ≤ k ≤ R}. (1.20)

The notions of the restricted periodic affine and quasi-affine systems are useful in the

context of applications where signals are usually periodic and are of finite dimensions.

Let S(Mk)r×ρ denote the class of Mk-periodic sequences of r × ρ complex-valued ma-

trices, i.e. Hk(l + Mkp) = Hk(l) for all Hk ∈ S(Mk)r×ρ with l, p ∈ Zs. We shall also

denote S(Mk) := S(Mk)1×1.

A periodic MRA {V k
2π(Φk)} of L2(Ts) is a sequence of closed subspaces generated by

finite ordered subsets Φk of L2(Ts) with |Φk| = ρ such that (i) V k
2π(Φk) ⊆ V k+1

2π (Φk+1) and

(ii)
⋃
k≥0 V

k
2π(Φk) is dense in L2(Ts). In the event that there exist A,B > 0 such that

for every k ≥ 0, Tk(Φk) forms a frame for V k
2π(Φk) with uniform bounds A and B, the

periodic MRA is known as a periodic FMRA with bounds A and B.

Condition (i) requires the vector Φk to be refinable for every k ≥ 0, i.e. there exists

Ĥk+1 ∈ S((MT )k+1)ρ×ρ known as the periodic refinement mask such that

Φ̂k(n) = Ĥk+1(n)Φ̂k+1(n), n ∈ Zs. (1.21)
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Equation (1.21) is the periodic refinement equation and is equivalent to

Φk =
∑
l∈Lk+1

Hk+1(l)T lk+1Φk+1. (1.22)

in the time domain with Hk+1 ∈ S(Mk+1)ρ×ρ. When Condition (i) is satisfied, Condition

(ii) is equivalent to the requirement that
⋂
k≥0

⋂
φk∈Φk

{n ∈ Zs : φ̂k(n) = 0} is empty (see

Theorem 3.1 of [24]). This means that the entire frequency domain is fully “covered” by

the MRA.

Suppose that {V k
2π(Φk)} is an MRA of L2(Ts). Let Ψk be a finite ordered subset of

V k+1
2π (Φk+1). Then there exists Ĝk+1 ∈ S((MT )k+1)%k×ρ known as the periodic wavelet

mask such that

Ψ̂k(n) = Ĝk+1(n)Φ̂k+1(n), n ∈ Zs. (1.23)

Equation (1.23) defines a vector of pre-wavelets and is called the periodic wavelet equation

and is equivalent to

Ψk =
∑
l∈Lk+1

Gk+1(l)T lk+1Φk+1 (1.24)

in the time domain with Gk+1 ∈ S(Mk+1)%k×ρ. Likewise to the real line case, we also

define the combined MRA mask to be the |Φk ∪Ψk| × |Φk| matrix

L̂k :=

[
Ĥk

Ĝk

]
, (1.25)

and in the event of Φk being a singleton set, i.e. Φk := {φk}, we denote ĥk := Ĥk.

1.3 Overview of Thesis

Most of the results in this thesis are developed for the general multidimensional multi-

wavelet setting with arbitrary integer dilation matrices. However, in order to provide an

easily accessible overview of the main results, we shall present them in this section by

only considering the one-dimensional scenario, i.e. s = 1 with the dilation matrix M = 2.

References to the full versions of these results in subsequent chapters are indicated. Most

of the time we shall also assume that the generic MRA used here is generated by a single

refinable function, i.e. Φ := φ for the stationary case and Φk := φk for the nonstationary

case with k ≥ 0. In the following, we shall set the notations Lk = Rk = {0, . . . , 2k − 1}.
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Chapter 2 is on the construction of symmetric or antisymmetric compactly supported

wavelets on the real line. The main idea behind our method involves utilizing unitary

transformations of existing wavelet frames with compact support. Given that Ψ :=[
ψm
]%
m=1

is a vector-valued function satisfying the wavelet equation (1.11) of the MRA

{V k(φ)} of L2(R), we define

Ξ :=
1√
2

[
φ

φ(η − ·)

]
, Υ :=

1√
2

[
ψm

ψm(κm − ·)

]%
m=1

, Φ′ := U0Ξ, Ψ′ := U2%Υ, (1.26)

where η, κm ∈ Z and U2% being a 2% × 2% block diagonal matrix with the matrix U0 :=

1√
2

[
1 1

1 −1

]
as their blocks. Therefore, for a given set of wavelets Ψ, we provide a general,

and yet simple, method to derive a new set of wavelets Ψ′ such that each wavelet in Ψ′

is either symmetric or antisymmetric. The affine system generated by Ψ′ is a tight frame

for L2(R) whenever the affine system generated by Ψ is so.

Theorem 1.1. (Theorem 2.7) Let Ψ be a finite set of tight framelets obtained from the

MRA {V k(φ)} of L2(R). Define Φ′ and Ψ′ as in (1.26). Then Ψ′ is a finite set of

symmetric or antisymmetric tight framelets obtained from the MRA generated by Φ′.

In particular, we show that when Ψ is constructed via an MRA, Ψ′ can also be derived

from a, but possibly different, MRA. If moreover the MRA for constructing Ψ is generated

by a symmetric refinable function, then we prove that Ψ′ is obtained from the same

MRA. The proof involves applying unitary transformations to the perfect reconstruction

condition and anti-aliasing condition of the oblique extension principle (OEP) (Theorem

2.8) and the unitary extension principle (UEP) (Theorem 2.10).

Theorem 1.2. (Theorem 2.9) If X(Ψ) is a tight frame for L2(R) derived from an MRA

generated by a symmetric refinable function using the OEP, then X(Ψ′) is also a tight

frame for L2(R) derived from the same MRA using the OEP.

Theorem 1.3. (Theorem 2.11) If X(Ψ) is a tight frame for L2(R) derived from an MRA

generated by a real-valued function φ using the UEP, then X(Ψ′) is also a tight frame for

L2(R) derived from the MRA {V k(Φ′)} using the UEP.

In Chapter 3, we study the connection of wavelet frames of the real line with that of

their periodizations. This involves establishing results concerning affine systems, quasi-

affine systems and MRAs for both the real line and the periodic formulation. We extend

the result of Ron and Shen in [44] concerning quasi-affine systems and affine systems for
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K ≥ 0 as follows. The proof involves ensuring that the frame condition (1.1) is satisfied

for both systems.

Proposition 1.4. (Corollary 3.8) The affine system X(Ψ) is a (Bessel system) frame for

L2(R) if and only if its quasi-affine counterpart Xq
K(Ψ) is a (Bessel system) frame for

L2(R). Further, the two systems have identical (Bessel) frame bounds. In particular, the

affine system X(Ψ) is a tight frame if and only if the quasi-affine system Xq
K(Ψ) is a tight

frame.

We also show that for a finite set Φ in L2(R), E(Φ) being a frame for V (Φ) is sufficient

for the MRA {V k(Φ)} to be an FMRA with uniform bounds. Establishing this result

involves the use of the dilation factor to ensure that the frame condition (1.1) holds

across the different scales.

Proposition 1.5. (Proposition 3.9) Let Φ ⊂ L2(R) be finite. If E(Φ) is a (Bessel system)

frame for V (Φ), then E({2 k
2El

kφ(2k·) : φ ∈ Φ, l ∈ Lk}) is a (Bessel system) frame for

V k(Φ) with the same (Bessel) frame bounds as E(Φ).

Proposition 1.6. (Proposition 3.12) Let Φ ⊂ L2(R) be finite. Let {V k(Φ)} be an FMRA

of L2(R) and W k be the orthogonal complement of V k(Φ) in V k+1(Φ). Let Ψ ⊂ W 0 be

finite. Then X(Ψ) is a (Bessel system) frame for L2(R) if and only if E(Ψ) is a (Bessel

system) frame for W 0 with the same (Bessel) frame bounds.

The above result states that a sufficient and necessary condition for a semi-orthogonal

affine system derived from an FMRA to be a frame is the existence of a shift-invariant

system to be a frame for W 0. The proof involves the orthogonal decomposition of L2(R)

by the wavelet subspaces and the use of the dilation factor across the scales.

Next, we move on to results similar to Proposition 1.4 for the periodic setting.

Proposition 1.7. (Proposition 3.15) Fix K ≥ 0. If the periodic affine system X2π is a

(Bessel system) frame for L2(T), then the periodic quasi-affine system Xq
2π,K is a (Bessel

system) frame for L2(T) with the same (Bessel) frame bounds.

Proposition 1.8. (Proposition 3.17) Fix R ≥ K ≥ 0. If the restricted periodic affine

system XR
2π is a (Bessel system) frame for its closed linear span V R

2π, then the restricted pe-

riodic quasi-affine system Xq,R
2π,K is a (Bessel system) frame for V R

2π with the same (Bessel)

frame bounds.
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For the construction of wavelet frames in L2(T), the periodic analogues of the UEP and

the OEP are derived in [25]. Here, we extend them to the generalized oblique extension

principle (GOEP) for L2(T). This is in the theme of using appropriate transformation

matrices to obtain new wavelet frames from existing ones. Like the periodic UEP, the

GOEP based on the MRA {V k(Φk)} with Φk := {φk} requires the assumption of

lim
k→∞

2k
∣∣∣φ̂k(n)

∣∣∣2 = A > 0, n ∈ Zs, (1.27)

which ensures that {φk}k∈N eventually covers the frequency domain uniformly as k →∞.

Theorem 1.9. (Theorem 3.28) For each k ≥ 0, let Φk,Ψk ⊂ V k+1
2π (Φk+1) with Φk := {φk}

and |Ψk| = %k satisfying the periodic refinement equation (1.21) and periodic wavelet

equation (1.23) for some Ĥk+1 ∈ S(2k+1) and Ĝk+1 ∈ S(2k+1)%k×1 respectively and (1.27)

holds. Define Φ̂′k := Θ̂kΦ̂k and Ψ̂′k := Ω̂kΨ̂k, where Θ̂k ∈ S(2k) and Ω̂k ∈ S(2k)%
′
k×%k with

Θ̂k(n) 6= 0 and limk→∞

∣∣∣Θ̂k(n)
∣∣∣2 = 1 for every n ∈ Z. Suppose that for every k ≥ 0, the

(%′k + 1)× 2 matrix

L̂′k := diag (Θ̂k, Ω̂k)L̂kdiag (Θ̂−1
k+1, Θ̂

−1
k+1) (1.28)

with L̂k(j) :=
[
L̂k(j) L̂k(j + 2k)

]
satisfies L̂′∗k L̂′k = 2I2. Then the periodic affine system

X ′2π := Φ′0∪{T lkψ′k : ψ′k ∈ Ψ′k, l ∈ Lk, k ≥ 0} forms a tight wavelet frame with frame bound

A for L2(T) derived from the MRA {V k
2π(Φ′k)}k≥0.

Suitable choices for Ω̂k are matrices with unitary columns. The choice of Θ̂0(0) = 1

and Ω̂k = I%k for every k ≥ 0 gives the periodic OEP, while the choice of Θ̂k = 1 and

Ω̂k = I%k for every k ≥ 0 gives the periodic UEP.

We define the polyphase harmonics of a function ϕ ∈ L2(T) at level K for j ∈ RK :=

{0, . . . , 2K − 1} to be

ϕK,j(t) :=
∑
n∈Z

ϕ̂(j + 2Kn)ei(j+2Kn)t.

We also introduce subspaces of polyphase harmonics, i.e. ΘK,j
2π := {fK,j : f ∈ L2(T)},

V K,j
2π := ΘK,j

2π ∩ V K
2π and also WK,j

2π := ΘK,j
2π ∩WK

2π. For periodization purposes, we let

L2,α(R) = {f ∈ L2(R) : f(t) = O((1 + |t|)−(1+α)), α > 0}

Next, for k ≥ 0, we define the periodization of functions ϕ, ϕk ∈ L2,α(R) at ω ∈ Ts by

ϕω,k(t) =
∑
n∈Z

ϕ̂ω,k(n)eint
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with ϕ̂ω,k(n) := 2−
k
2 ϕ̂(2−k(ω + 2πn)) for the stationary case and ϕ̂ω,k(n) := ϕ̂k(ω + 2πn)

for the nonstationary case. We employ similar notations for the periodization of a finite

set of functions. We also denote

V K
2π,ω(Λω,k) := V K

2π (Λω,k) := spanTK(Λω,k) and V K,j
2π,ω(Λω,k) := V K,j

2π (Λω,k)

and we leave out writing the generating set Λω,k when the space V K
2π,ω could be inferred

from its context. Here, we make use of the Poisson Summation Formula (see [42]) which

shows that periodization in the time domain is equivalent to sampling in the frequency

domain. We state the connection results of MRAs on the real line with that of the periodic

case. The proof of the following result involves verifying both the MRA conditions of

L2(R) and that of L2(T).

Theorem 1.10. (Theorem 3.43) For k ≥ 0, let Φk ⊂ L2,α(R) be finite. The collection

{V k(Φk)} is an MRA of L2(R) if and only if {V k
2π(Φω,k)} is an MRA of L2(T) for almost

every ω ∈ T. In particular, {V k(Φk)} is an FMRA of L2(R) if and only if {V k
2π(Φω,k)} is

a periodic FMRA of L2(T) with the same bounds for almost every ω ∈ T.

Let ηk := ess sup{ηω,k : ω ∈ T} with ηω,k := max{dimW k,j
2π,ω : j ∈ Rk}, where

W k,j
2π,ω = W k

2π,ω ∩Θk,j
2π and here W k

2π,ω is the orthogonal complement of V k
2π,ω in V k+1

2π,ω . The

collection {ηk}k≥0 is known as the index of an FMRA {V k(Φk)} for the nonstationary

case. For a stationary FMRA {V k(Φ)} it suffices to consider its index as η0,

Theorem 1.11. (Corollary 3.47) For k ≥ 0, let Φk ⊂ L2,α(R) be finite. Suppose that

{V k(Φk)} is an FMRA of L2(R). Let W k be the orthogonal complement of V k(Φk) in

V k+1(Φk+1). There exists Ψk = {ψmk }
ηk
m=1 ⊂ W k such that Ek(Ψk) is a tight frame for W k

with 〈El
kψ

m
k , E

r
kψ

n
k 〉 = 0 for all m,n = 1, . . . , ηk, m 6= n and l, r ∈ Zs.

The proof of the above result involves obtaining the existence of Ψω,k such that Tk(Ψω,k)

is a tight frame for W k
2π,ω for almost every ω ∈ T. The minimum number of wavelets

required is determined by computing dimW k
2π,ω through the use of ηω,k for almost every

ω ∈ T.

Theorem 1.12. (Theorem 3.48) For k ≥ 0, let Φk ⊂ L2,α(R) be finite. Suppose that

{V k(Φk)} is an FMRA of L2(R) with index {ηk}k≥0. Let W k be the orthogonal complement

of V k(Φk) in V k+1(Φk+1) and ρk be the number of pre-wavelets in W k. Then the following

are equivalent for each k ≥ 0.

(i) The set Σ%k :=
⋃
j∈Rk{ω ∈ T : dimW k,j

2π,ω > %k} is of measure zero.
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(ii) There holds ηk ≤ %k.

(iii) There exists Ψk = {ψmk }
%k
m=1 ⊂ W k with 〈El

kψ
m
k , E

r
kψ

n
k 〉 = 0 for all m,n = 1, . . . , %k,

m 6= n and l, r ∈ Zs such that Ek(Ψk) is a tight frame for W k.

(iv) There exists Ψk = {ψmk }
%k
m=1 ⊂ W k such that Ek(Ψk) is a frame for W k.

For a stationary FMRA, it suffices to compute dimW 0
2π,ω for almost every ω ∈ T to

determine the minimum number of wavelets.

Corollary 1.13. (Corollary 3.49) Let Φ ⊂ L2,α(R) be finite. Suppose that {V k(Φ)} is

an FMRA of L2(R) with index η0. Let W k be the orthogonal complement of V k(Φ) in

V k+1(Φ). Then the following are equivalent.

(i) The set Σ%0 := {ω ∈ T : dimW 0,0
2π,ω > %0} is of measure zero.

(ii) There holds η0 ≤ %0.

(iii) There exists Ψ = {ψm}%0m=1 ⊂ W 0 with 〈Elψm, Erψn〉 = 0 for all m,n = 1, . . . , %0,

m 6= n and l, r ∈ Zs such that E(Ψ) is a tight frame for W 0.

(iv) There exists Ψ = {ψm}%0m=1 ⊂ W 0 such that E(Ψ) is a frame for W 0.

For the general case of MRA wavelets (i.e. the underlying MRA is not an FMRA), we

could also examine the connection between the constructions based on the UEP of L2(R)

with those based on the UEP of L2(T). To this end, it suffices to ensure that the periodic

UEP holds for the periodized affine system Xω.

Theorem 1.14. (Theorem 3.52) Let Φ ⊂ L2,α(R) be finite. The affine system X(Ψ) is

a tight frame for L2(R) obtained from the MRA {V k(Φ)} by the UEP if and only if the

corresponding periodized affine system Xω is a tight frame for L2(T) obtained from the

MRA V k
2π(Φω,k) by the periodic UEP for almost every ω ∈ T.

With the above results concerning the connection of real line wavelets with periodic

wavelets, we shall look at periodic constructions of wavelets in Chapter 4. We begin first

with bandlimited constructions of wavelet masks. First, let

β̃nk (j) := β

(
Nk,nj

Lk,n −Nk,n

)
,

where β is the cumulative distribution function of a Beta distribution and 0 ≤ Nk,n <

Lk,n < Nk,n+1 for n ∈ {1, . . . , %k+1}, are used to indicate the bandwidths of our refinement
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and wavelet masks. We have β̃nk

(
Nk,n
Nk,n
− 1
)

= β(0) = 0 and β̃nk

(
Lk,n
Nk,n
− 1
)

= β(1) = 1

for Nk,n < Lk,n. For purposes of convenience, we shall also refer to the refinable mask as

ĝ0
k+1 for k ≥ 0.

Construction 1.15. (Construction 4.1) For k ≥ 0, let φk =
Lk,1∑

n=−Lk,1
φ̂k(n)e−in·, where

φ̂k(j) =


2−

k
2 if j ∈ {−Nk,1, . . . , Nk,1},

2−
k
2 cos

[
π
2
β̃1
k

(
|j|
Nk,1
− 1
)]

if
j∈{−Lk,1, . . . ,−Nk,1 − 1}
∪ {Nk,1 + 1, . . . , Lk,1},

0 otherwise,

and Lk,1 < Nk+1,1 and Lk,1 ≤ 2k. For k ≥ 0, let

ĥk+1(j) =



√
2 if j ∈ {−Nk,1, . . . , Nk,1},

√
2 cos

[
π
2
β̃1
k

(
|j|
Nk,1
− 1
)]

if
j∈{−Lk,1, . . . ,−Nk,1 − 1}
∪ {Nk,1 + 1, . . . , Lk,1},

0 if j ∈ Rk+1\{−Lk,1, . . . , Lk,1}.

Using the above refinement mask and refinable function, we first construct bandlimited

complex wavelets since they require less conditions to be fulfilled.

Construction 1.16. (Construction 4.4) For n ∈ {1, . . . , %k}, let

ĝnk+1(j) =



√
2 sin

[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if j ∈ {Nk,n + 1, . . . , Lk,n},
√

2 if j ∈ {Lk,n, . . . , Nk,n+1},√
2 cos

[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if j ∈ {Nk,n+1 + 1, . . . , Lk,n+1},

0 if j ∈ Rk+1\{Nk,n + 1, . . . , Lk,n+1},

with the conditions 0 ≤ Nk,n ≤ Lk,n < Nk,n+1, Lk,n+1 −Nk,n < 2k, Nk,%k+1 = 2k+1 − Lk,1
and Lk,%k+1 = 2k+1 −Nk,1 and the additional condition Lk,n+1 ≤ Lk+1,1 or Nk,n ≥ 2k+1 −
Lk+1,1 if Lk+1,1 < 2k.

Proposition 1.17. (Proposition 4.5) The periodic affine system X2π constructed from

the refinement and wavelet masks ĥk+1 and ĝnk+1, n ∈ {1, . . . , %k}, in Constructions 1.15

and 1.16 satisfy the periodic UEP (Theorem 1.9) and forms a tight frame for L2(T). The

masks generally have smooth decay with overlapping supports that can be controlled.

All our subsequent constructions of symmetric and antisymmetric real bandlimited

wavelets are based on variations of the above constructions with additional conditions
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imposed to ensure the periodic UEP holds. We refer the reader to Section 4.1 for the

details. Next, we look at time-localized constructions which are modifications of existing

wavelet systems so that they contain modulation information in an MRA structure.

Construction 1.18. (Construction 4.16) For 0 ≤ k < K, define
̂̃
Φk := L

k
2 Φ̂k and̂̃

Ψk :=
̂̃
Gk+1

̂̃
Φk+1, where the combined MRA mask

̂̃
Lk+1(j) :=

̂̃g0,0,0

k+1 (j)̂̃
Gk+1(j)

 is a 2(%k+1)L×1

vector with
̂̃
Gk+1(j) :=


̂̃g0,0,1

k+1 (j)[̂̃g0,µ

k+1(j)
]L−1

µ=1[̂̃gmk+1(j)
]%k
m=1

, ̂̃gmk+1(j) :=
[̂̃gm,µk+1(j)

]L−1

µ=0
and

̂̃gm,µk+1(j) =

[̂̃gm,µ,0k+1 (j)̂̃gm,µ,1k+1 (j)

]
= (2L)−

1
2

[
ĝmk+1(j − Ckµ)

ĝmk+1(j + Ckµ)

]
,

for m ∈ {0, . . . , %k}, µ ∈ {0, . . . , L − 1} and j ∈ Rk+1 and we let CkL = 2k with log2 L

being a nonnegative integer. For k ≥ K, define
̂̃
Φk := L

K
2 Φ̂k and

̂̃
Ψk := L

K
2 Ψ̂k witĥ̃

Lk+1(j) := L̂k+1(j) as the original combined MRA mask.

Theorem 1.19. (Theorem 4.17) Let the affine system X2π be a tight frame for L2(T)

derived from the periodic UEP with {V k
2π(Φk)}k≥0 as the underlying MRA of L2(T). Sup-

pose that Φ̃k and Ψ̃k with the combined MRA mask
̂̃
Lk+1 :=

[̂̃gmk+1

]%k
m=0

are constructed

as in Construction 1.18. Then X̃2π := {φ0} ∪ {T lkψ̃k : ψ̃k ∈ Ψ̃k, l ∈ Lk, k ≥ 0} is a tight

frame for L2(T) derived from the same MRA {V k
2π(Φk)}k≥0 using the periodic UEP.

If the original masks lack symmetry, we are able to introduce symmetry and antisym-

metry by means of unitary transformation and by making this change of definition, i.e.̂̃gm,µ,0k+1 (j) = (2L)−
1
2 ĝmk+1(−j − Ckµ). We refer the reader to Section 4.2 for the details.

It is required in the above construction that the modulation range be bounded in order

for the wavelet system to be a tight frame. This is remedied by using the idea of splitting

the wavelet subbands into “packets” using a different set of masks.

Construction 1.20. (Construction 4.22) For 0 ≤ k < K, define
̂̃
Φk := Φ̂k := φ̂k and̂̃

Ψk := Ψ̂k with
̂̃
Lk+1 := L̂k+1 being the original combined MRA mask. For k ≥ K, definễ

Φk := Φ̂k := φ̂k and
̂̃
Ψk :=

̂̃
Gk+1

̂̃
Φk+1, where the combined MRA mask

̂̃
Lk+1(j) :=

[
ĝ0
k+1(j)̂̃
Gk+1(j)

]
with

̂̃
Gk+1(j) :=

[̂̃gmk+1(j)
]%k
m=1

, ̂̃gmk+1(j) :=
[̂̃gm,µk+1(j)

]rk−1

µ=0
,
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̂̃gm,µk+1(j) := α̂m,µk (j)ĝmk+1(j), for m ∈ {1, . . . , %k} and µ ∈ {0, . . . , rk− 1} and j ∈ Rk+1 with

α̂m,µk ∈ S(2k) and
rk−1∑
µ=0

|α̂m,µk (ν)|2 = 1 for all ν ∈ Rk.

Theorem 1.21. (Theorem 4.23) Let the affine system X2π as defined in (1.15) be a tight

frame for L2(T) derived from the periodic UEP with {V k
2π(Φk)}k≥0 as the underlying MRA

of L2(T) and L̂k+1 :=
[
ĝmk+1

]%k
m=0

as the combined MRA mask. Suppose that Φ̃k and Ψ̃k

with the combined MRA mask
̂̃
Lk+1 :=

[̂̃gmk+1

]%k
m=0

are constructed as in Construction 1.20.

Then X̃2π := {φ0} ∪ {T lkψ̃k : ψ̃k ∈ Ψ̃k, l ∈ Lk, k ≥ 0} is a tight frame for L2(T) derived

from the same MRA {V k
2π(Φk)}k≥0 using the periodic UEP.

The observant reader will notice that it is actually possible to leverage on portions of

the different constructions to derive other constructions. We have indeed shown this in

an example at the end of Chapter 4.

In order to apply the wavelet frames in L2(T) to practical problems, in Chapter 5, we

first obtain results concerning the periodic decomposition and reconstruction algorithms

using polyphase harmonics of φk and Ψk. Let us define vk,j := (φk)k,j and umk,j := (ψmk )k,j

for m ∈ {1, . . . , %k}. Let fk+1 = fk + gk ∈ V k+1
2π , where fk =

∑
j∈Rk

ŝk(j)
∗vk,j ∈ V k

2π and

gk =
∑
j∈Rk

t̂k(j)
∗uk,j ∈ W k

2π for some ŝk ∈ S(2k) and t̂k ∈ S(2k)%k×1, which are the discrete

Fourier transforms of sk ∈ S(2k) and tk ∈ S(2k)%k×1 and V k
2π =

⊕⊥
j∈Rk span {vk,j} and

W k
2π =

⊕⊥
j∈Rk span {umk,j : m = 1, . . . , %k}. Our results are obtained chiefly by making

use of the perfect reconstruction condition and anti-aliasing condition of the UEP, i.e.

L̂k(j)
∗L̂k(j) = 2I2 with j ∈ Rk.

Proposition 1.22. (Proposition 5.10) If

fk+1 =
∑
j∈Rk

∑
r∈R1

ŝk+1(j + 2kr)∗vk+1,j+2kr

=
∑
j∈Rk

∑
r∈R1

[
ŝk(j)

∗Ĥk+1(j + 2kr) + t̂k(j)
∗Ĝk+1(j + 2kr)

]
vk+1,j+2kr, (1.29)

then there exists
[ ̂̃sk(j)∗ ̂̃tk(j)∗]∗ ∈ Ker

[
L̂k(j)diag

[
1supp bφk+1

(j + 2kr)
]1

r=0

]∗
for each

j ∈ Rk such that

2
[
ŝk − ̂̃sk]∗ 1supp bφk(j) =

∑
r∈R1

ŝk+1
∗1supp bφk+1

Ĥ∗k+1(j + 2kr)1supp bφk(j),
2
[
t̂k − ̂̃tk]∗ diag

[
1supp bψmk

]%k
m=1

(j)

=
∑
r∈R1

ŝk+1
∗1supp bφk+1

Ĝ∗k+1(j + 2kr)diag
[
1supp bψmk

]%k
m=1

(j),
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and for r ∈ R1,

ŝk+1
∗1supp bφk+1

(j+2kr) =
[
ŝk
∗1supp bφk(j)Ĥk+1(j+2kr)

+t̂k
∗
diag

[
1supp bψmk

]%k
m=1

(j)Ĝk+1(j+2kr)
]
1supp bφk+1

(j+2kr).

For convenience, we define

Ĥ ′k+1(j + 2kr) = 1supp bφk(j)Ĥk+1(j + 2kr)1supp bφk+1
(j + 2kr),

Ĝ′k+1(j + 2kr) = diag
[
1supp bψmk

]%k
m=1

(j)Ĝk+1(j + 2kr)1supp bφk+1
(j + 2kr),

ŝk
′(j) = 1supp bφk(j)ŝk(j), t̂k

′
(j) = diag

[
1supp bψmk

]%k
m=1

(j)t̂k(j),

ŝk+1
′(j + 2kr) = 1supp bφk+1

(j + 2kr)ŝk+1(j + 2kr).

We shall also let

L̂′k(j) = diag(1supp bφk(j), diag
[
1supp bψmk

]%k
m=1

(j))L̂k(j)diag
[
1supp bφk+1

(j + 2kr)
]1

r=0
.

The upsampling operator ↑k: S(2k)→ S(2k+1) is given by

↑k: {sk(l)}l∈Lk 7→ {↑k sk(r)}r∈Lk+1
:= {sk(l)1{r=2l}}r∈Lk+1

.

We shall also write the composition ↑K+k
K : S(2K) 7→ S(2K+k) as

↑K+k
K :=↑K+k−1↑K+k−2 · · · ↑K .

We define the periodic convolution ⊗ : S(2k)× S(2k)→ S(2k) of ak ∈ Lk and bk ∈ Lk as

{ak ⊗ bk(l)}l∈Lk =

{∑
r∈Lk

ak(l − r)bk(r)

}
l∈Lk

.

In the time domain, Proposition 1.22 is given as

Proposition 1.23. (Proposition 5.11) If fk+1 is given by (1.29), then

fk+1 =
∑
l∈Lk+1

sk+1(l)∗T lk+1φk+1 =
∑
l∈Lk

[
sk(l)

∗T lkφk + tk(l)
∗T lkΨk

]
=
∑
l∈Lk+1

[(↑k s∗k)⊗Hk+1(l) + (↑k t∗k)⊗Gk+1(l)]T lk+1φk+1.

Further, there exist
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗∈ Ker L̂′k(j)∗, j ∈ Rk, such that for every l ∈ Lk and

n ∈ Lk+1, [
s′k(l)− s̃k

′(l)
]∗

= [s′∗k+1 ⊗H ′∗k+1](2l),[
t′k(l)− t̃k

′
(l)
]∗

= [s′∗k+1 ⊗G′∗k+1](2l),

s′k+1(n)∗ = [(↑k s′∗k )⊗H ′k+1](n) + [(↑k t′∗k )⊗G′k+1](n).
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Next, we state the quasi-affine representation for the stationary wavelet transform.

Notice that the representation is translation invariant due to the absence of downsampling.

Proposition 1.24. (Proposition 5.17) Fix 0 ≤ K ≤ K + L. If

fK+L =
∑

j∈RK+L−1

∑
r∈R1

ŝK+L(j + 2K+L−1r)∗vK+L,j+2K+L−1r,

then for a given δ ∈ LL,

fK+L =
∑

l∈LK+L

sK+L(l + δ)∗T l+δK+LφK+L

=
∑
l∈LK

sδK(l)∗T 2Ll+δ
K+L φK +

K+L∑
k=K

∑
l∈Lk

tδk(l)
∗T 2K+L−kl+δ

K+L Ψk

=
∑
δL∈LL

∑
l∈LK

2−LaK(2Ll+δL)∗T 2Ll+δL
K+L φK+

K+L∑
k=K

∑
δk∈Lk

∑
l∈LK+L−k

2−kbK+L−k(2
kl+δk)

∗T 2kl+δk
K+L ΨK+L−k

=
∑

l∈LK+L

2−LaK(l)∗T lK+LφK+
K+L∑
k=K

∑
l∈LK+L

2−kbK+L−k(l)
∗T lK+LΨK+L−k,

with ak−1 = (↑K+L
k Hk) ⊗ ak, bk−1 = (↑K+L

k Gk) ⊗ ak for k ∈ {K, . . . ,K + L} and

aK+L = sK+L. Further, for every k ∈ {K, . . . ,K + L− 1}, there exist
[ ̂̃
sδk

′
(j)∗

̂̃
tδk

′
(j)∗

]∗
∈

Ker L̂′k(j)∗, j ∈ Rk, such that for every l ∈ Lk and n ∈ Lk+1,[
sδk
′
(l)− s̃δk

′
(l)
]∗

= a′k(2
K+L−kl + δ)∗,[

tδk
′
(l)− t̃δk

′
(l)
]∗

= b′k(2
K+L−kl + δ)∗,

a′k+1(2K+L−k−1n+ δ)∗ = [(↑k sδk
′∗

)⊗H ′k+1 + (↑k tδk
′∗

)⊗G′k+1](n)

with ŝδk
′
= 1supp bφk ŝδk, t̂δk

′
=diag

[
1supp bψmk

]%k
m=1

t̂δk, âk
′(j + 2kν) = 1supp bφk(j)âk(j + 2kν)

and b̂k
′
(j + 2kν) = diag

[
1supp bψmk

]%k
m=1

(j)b̂k(j + 2kν), where ν ∈ RK+L−k.

We conclude the thesis with results concerning the approximation properties of our

periodic constructions as well as the time-frequency representations they provide. The

next result is used to justify the sparsity of representations of bandlimited signals by our

bandlimited tight wavelet frame.

Proposition 1.25. (Proposition 5.22) The tight wavelet frame X2π := {φ0} ∪ {T lkψk :

ψk ∈ Ψk, l ∈ Lk, k ≥ 0} constructed from the MRA {V k
2π(φk)} via the periodic UEP with

{φk}k≥0 given in Construction 4.1 satisfying lim infk→∞ 2−kNk,1 > 0, has spectral frame

approximation order. Hence X2π also has global vanishing moments of arbitrarily high

order.
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Towards the end of Chapter 5, we also review the approximation properties of some

of our time-localized constructions. Using our decomposition and reconstruction algo-

rithms, examples of time-frequency representations of signals based on our bandlimited

constructions are provided. These time-frequency representations highlight the strengths

of these nonstationary periodic transforms which capture the features of both the tra-

ditional wavelet transform and the short-time Fourier transform. For more details, the

reader is referred to Section 5.5 of this thesis.



Chapter 2

Symmetric and Antisymmetric Tight

Wavelet Frames

Linear phase filtering is important in that it preserves the relative positions of signals

without distortion after convolution, i.e. the filtering process, up to a phase shift. The

design of linear phase filters involves the inclusion of symmetry or antisymmetry in the fil-

ters. With the exception of the Haar wavelet, real-valued orthogonal conjugate quadrature

mirror filters do not preserve linear phase as they are not symmetric. Many construc-

tions sought to remedy this problem by relaxing some restrictions. The resolution of this

problem in this thesis, which is published in [23], involves relaxing the orthogonality and

non-redundancy condition so that symmetrization of the filters could be performed.

2.1 Symmetric and Antisymmetric Construction

Symmetry is obtained in [11] by using two compactly supported dual refinable functions

only one of which could be a spline function. In [10], similar dual symmetric spline

wavelet bases are used with only one of them being compactly supported. Symmetry,

orthonormality and compact support are achieved in [21] and [20] by using a vector

MRA and in [34] by using non-dyadic dilations. In [44], symmetry and compact support

are obtained by relaxing the non-redundancy condition with one of the wavelets having

a vanishing moment of order one. In [16] and [8], examples of symmetric compactly

supported tight wavelet frames with high orders of vanishing moments are obtained but

those from systematic constructions are not symmetric. This is remedied in [8], [15], [16]

and [27] at the cost of using two dual frame systems. In [29], three compactly supported

21
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symmetric or antisymmetric tight frame wavelets are constructed from B-splines with the

order of vanishing moments being the same as that of the B-spline. This construction

is extended in [30] using compactly supported symmetric functions with stable shifts.

In [28] and [41], the authors focus on finding conditions that the refinement and wavelet

masks should satisfy for the construction of compactly supported symmetric tight wavelet

frames and this reveals the difficulties of obtaining such a systematic construction.

The approach in this thesis is entirely different and overcomes the above difficulties.

Our objective is to obtain symmetric and antisymmetric wavelets through appropriate

modifications and transformations of known wavelets. The main idea here originates

from the following simple, but highly useful, observation for the case on the real line.

Consider a wavelet ψ ∈ L2(R) that is not symmetric. Assume that the affine system

X(ψ) := {2k/2ψ(2k · −l) : k, l ∈ Z} generated by ψ forms a tight frame for L2(R). Let

Ψ′ := {ψ1′, ψ2′}, where

ψ1′ :=
1

2
(ψ + ψ(−·)), ψ2′ :=

1

2
(ψ − ψ(−·)).

Then ψ1′ is symmetric and ψ2′ is antisymmetric about the origin. Further, the orders of

the smoothness and vanishing moments of ψ are not reduced. It turns out that X(Ψ′) :=

X(ψ1′) ∪X(ψ2′) also forms a tight frame for L2(R). Therefore this method converts any

nonsymmetric wavelet that generates an affine tight frame to a pair of symmetric and

antisymmetric wavelets that generate an affine tight frame. The idea here can be refined

to ensure that the supports of the new wavelets ψ1′ and ψ2′ are almost the same, if not

identical, as that of ψ. In particular, if we begin with an orthonormal basis generated by

one wavelet ψ, then the method gives a tight frame generated by two wavelets ψ1′ and ψ2′

with symmetry and of similar support as ψ. It can also be adjusted easily to suit the case

when the original affine tight frame is generated by more than one wavelet. The number

of new wavelets is at most twice the number of the original wavelets. The general setup

is as follows.

Construction 2.1. Let Ψ :=
[
ψm
]%
m=1
⊂ L2(Rs) be a finite set of functions. Consider

Υ :=

[
1√
2
ψm

1√
2
ψm(κm − ·)

]%
m=1

,

where κm ∈ Zs, as a 2%×1 vector arranged in the order of 1√
2
ψm followed by 1√

2
ψm(κm−·)
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for m = 1, . . . , %. Define Ψ′ := U2%Υ, where U2% is the 2%× 2% unitary matrix given by

U2% :=


U0

. . .

U0

 , U0 :=
1√
2

[
1 1

1 −1

]
. (2.1)

Then Ψ′ consists of symmetric and antisymmetric functions, where a typical symmetric

function 1
2
(ψm+ψm(κm−·)) is symmetric about κm

2
and a typical antisymmetric function

1
2
(ψm − ψm(κm − ·)) is antisymmetric about κm

2
.

The above is a very natural way of obtaining symmetric and antisymmetric functions

from a given collection of functions. The main issue here is to show that whenever X(Ψ)

is a frame for L2(Rs), Construction 2.1 gives a frame X(Ψ′) for L2(Rs) with the same

frame bounds. Our proof will utilize the following elementary lemma obtained from the

frame condition (1.1) and a change of variables.

Lemma 2.2. Let the ordered set Ψ :=
[
ψm
]%
m=1

be a subset of L2(Rs). If the affine system

X(Ψ) as in (1.4) is a frame for L2(Rs), then the affine system X([ψm(κm − ·)]%m=1), where

κm ∈ Zs, is also a frame for L2(Rs) with the same frame bounds.

The next lemma will also be used. Although it is a special case of Theorem 4 in [1],

we include its simple proof for completeness.

Lemma 2.3. Let {gn}n∈K be a frame for L2(Rs). Then {hn}n∈K := U{gn}n∈K, where U
is a unitary matrix with finitely many nonzero entries in each row and column, is also a

frame for L2(Rs) with the same frame bounds as {gn}n∈K.

Proof. The matrix U defines a unitary operator from l2(K), the space of all complex

square-summable sequences indexed by K, onto l2(K) by

U : {ck}k∈K → {
∑
k∈K

ujkck}j∈K .

Indeed, ‖U{ck}k∈K‖2
l2(K) = ‖{ck}k∈K‖2

l2(K) for all finite sequences {ck}k∈K , which also

holds for all sequences in l2(K) since U is a bounded linear operator on the densely

defined subspace of finite sequences in l2(K). For f ∈ L2(Rs), since

{〈hj, f〉}j∈K = {〈
∑
k∈K

ujkgk, f〉}j∈K = {
∑
k∈K

ujk〈gk, f〉}j∈K = U{〈gk, f〉}k∈K ,

the result follows from the fact that U is a unitary operator on l2(K) and the frame

condition (1.1).
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Theorem 2.4. Let Ψ :=
[
ψm
]%
m=1

such that the affine system X(Ψ) as in (1.4) is a frame

for L2(Rs). Let Ψ′ be constructed from Ψ as in Construction 2.1. Then the affine system

X(Ψ′) is also a frame for L2(Rs) with the same frame bounds as X(Ψ). In particular, if

X(Ψ) is a tight frame for L2(Rs), then X(Ψ′) is also a tight frame for L2(Rs).

Proof. Let Ψ̃ :=
[
ψm(κm − ·)

]%
m=1

, κm ∈ Zs, and Υ be as in Construction 2.1. Lemma 2.2

shows that X(Ψ̃) is a frame for L2(Rs) with the same frame bounds as X(Ψ). When we

combine X(Ψ) with X(Ψ̃) under the appropriate normalization as X(Υ), X(Υ) remains a

frame for L2(Rs) with the same frame bounds. This is because the frame condition (1.1)

implies that

A ‖f‖2 ≤
∑

g∈X(Ψ)

∣∣∣∣〈f, 1√
2
g〉
∣∣∣∣2 +

∑
g∈X(eΨ)

∣∣∣∣〈f, 1√
2
g〉
∣∣∣∣2 ≤ B ‖f‖2 , f ∈ L2(Rs),

where A and B are the frame bounds of X(Ψ).

We order the functions in X(Υ) such that the 2% wavelets ψ1, ψ1(κ1−·), . . . , ψ%, ψ%(κ%−
·) are always grouped together under the various applications of the dilation matrix M and

the shift operator El
k. By selecting the same ordering for the functions in X(Ψ′), it follows

that X(Ψ′) = UX(Υ), where U is the block diagonal matrix of bi-infinite order with the

matrix U2% as the diagonal blocks. Then we apply Lemma 2.3 to X(Υ) to conclude that

X(Ψ′) is a frame with the same frame bounds as X(Υ).

2.2 Construction of Framelets

A straightforward calculation gives explicit expressions of the lowpass and highpass fil-

ters for refinable functions and wavelets under certain affine transformations. We record

them in the following proposition, which will be used in our subsequent construction of

symmetric and antisymmetric framelets.

Proposition 2.5. Let Φ :=
[
φm
]ρ
m=1

and Ψ :=
[
ψm
]%
m=1

satisfy the refinement and

wavelet equations in (1.14) respectively with matrix filters H :=
[
Hm,r

]ρ
m,r=1

and G :=[
Gm,r

]%,ρ
m=1,r=1

. Let Φ̃ :=
[
φm(λ ·+ηm)

]ρ
m=1

and Ψ̃ :=
[
ψm(λ ·+κm)

]%
m=1

, where λ ∈ {±1}
and ηm, κm ∈ Zs. Then

Φ̃ = |detM |
∑
n∈Zs

H̃(n)Φ̃(M · −n), Ψ̃ = |detM |
∑
n∈Zs

G̃(n)Φ̃(M · −n),
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where H̃(n) :=
[
Hm,r(Mηm − ηr + λn)

]ρ
m,r=1

and G̃(n) :=
[
Gm,r(Mκm − ηr + λn)

]%,ρ
m=1,r=1

for n ∈ Zs. Further,̂̃
H(ω) = diag

[
eiMηm·λω

]ρ
m=1

Ĥ(λω) diag
[
e−iηr·λω

]ρ
r=1

,̂̃
G(ω) = diag

[
eiMκm·λω

]%
m=1

Ĝ(λω) diag
[
e−iηr·λω

]ρ
r=1

.

Now, consider the affine system X(Ψ) in (1.4) generated by Ψ. Theorem 2.4 shows

that if X(Ψ) is a tight frame for L2(Rs), then X(Ψ′) is also a tight frame for L2(Rs),

where Ψ′ is constructed from Ψ as in Construction 2.1. Given, in addition, that X(Ψ) is

derived from an MRA, we are interested to know whether X(Ψ′) comes from an MRA,

and further, the same MRA or a different MRA. In this connection, we need the following

lemma.

Lemma 2.6. Suppose that {V k(Φ)} is an MRA of L2(Rs), where Φ :=
[
φm
]ρ
m=1

. Let

Φ̃ :=
[
φm(ηm − ·)

]ρ
m=1

, where ηm ∈ Zs. Then {V k(Φ ∪ Φ̃)} is an MRA of L2(Rs).

Proof. Proposition 2.5 shows that Φ̃ is a refinable vector-valued function. By (1.9) for

both Φ and Φ̃, Φ ∪ Φ̃ is also refinable. The density of
⋃
k∈Z V

k(Φ) in L2(Rs) implies the

density of
⋃
k∈Z V

k(Φ ∪ Φ̃). Therefore {V k(Φ ∪ Φ̃)} is an MRA of L2(Rs).

We shall build upon Construction 2.1 in the following way. Given that Ψ :=
[
ψm
]%
m=1

is a vector-valued function satisfying the wavelet equation (1.11) of the MRA {V k(Φ)}
of L2(Rs), let Φ̃ :=

[
φm(ηm − ·)

]ρ
m=1

and Ψ̃ :=
[
ψm(κm − ·)

]%
m=1

, for some ηm, κm ∈ Zs.

Then we define

Ξ :=
1√
2

[
φm

φm(ηm − ·)

]ρ
m=1

, Υ :=
1√
2

[
ψm

ψm(κm − ·)

]%
m=1

, Φ′ := U2ρΞ, Ψ′ := U2%Υ, (2.2)

where U2ρ and U2% are 2ρ× 2ρ and 2%× 2% block diagonal matrices respectively with the

matrix U0 in (2.1) as their blocks.

Theorem 2.7. Let Ψ :=
[
ψm
]%
m=1

be a finite set of tight framelets obtained from the

MRA {V k(Φ)} of L2(Rs) generated by Φ :=
[
φm
]ρ
m=1

. Define Φ′ and Ψ′ as in (2.2).

Then Ψ′ is a finite set of symmetric or antisymmetric tight framelets obtained from the

MRA generated by Φ′.

Proof. Let Φ̃ :=
[
φm(ηm − ·)

]ρ
m=1

and Ψ̃ :=
[
ψm(κm − ·)

]%
m=1

. From Lemma 2.6, we know

that {V k(Ξ)} is an MRA of L2(Rs). By Proposition 2.5,̂̃
Φ(MT ·) =

̂̃
H
̂̃
Φ,

̂̃
Ψ(MT ·) =

̂̃
G
̂̃
Φ.
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Combining with (1.9) and (1.11), we obtain[
Φ̂(MT ·)̂̃
Φ(MT ·)

]
=

[
Ĥ 0

0
̂̃
H

][
Φ̂̂̃
Φ

]
,

[
Ψ̂(MT ·)̂̃
Ψ(MT ·)

]
=

[
Ĝ 0

0
̂̃
G

][
Φ̂̂̃
Φ

]
. (2.3)

Rearranging the rows of the vectors in (2.3) based on the ordering in Ξ and Υ gives

Ξ̂(MT ·) = P̂ Ξ̂, Υ̂(MT ·) = Q̂Ξ̂, (2.4)

where P̂ and Q̂ are the refinement and wavelet masks of Ξ and Υ respectively. By Theorem

2.4, X(Ψ′) is a tight frame for L2(Rs). Note that Φ′ generates the same MRA as Ξ with

refinement mask Ĥ ′ := U2ρP̂U
∗
2ρ because Φ′ is obtained from a unitary transformation of

Ξ. Similarly, the wavelet mask of Ψ′ is Ĝ′ := U2%Q̂U
∗
2ρ with the tight frame X(Ψ′) arising

from the MRA {V k(Φ′)}.

In practice, fast wavelet decomposition and reconstruction algorithms are needed.

These algorithms exist for tight framelets derived from the oblique extension principle

(OEP) (see [44], [8] and [16]). In [16], tight framelets are constructed from an MRA

generated by a refinable B-spline with the desired approximation order using the OEP.

However, the framelets are not symmetric even though B-splines are symmetric. Next,

we shall prove that when the refinable function in the OEP is symmetric, Construction

2.1 gives symmetric and antisymmetric tight framelets arising from the same MRA, and

the corresponding new fundamental function in the OEP can also be found. Knowing the

fundamental function is important in applying the fast decomposition and reconstruction

algorithms (see [16]) for tight framelets derived from the OEP.

Before we state the OEP, recall that the spectrum of a shift-invariant space V (Φ) is

defined (up to measure zero sets) as

σ(V (Φ)) := {ω ∈ Ts :
∑
j∈2πZs

|φ̂(ω + j)|2 > 0 for some φ ∈ Φ},

where
∑

j∈2πZs
|φ̂(ω + j)|2 is well defined for almost every ω ∈ Ts since φ ∈ L2(Rs). The

spectrum of V (Φ) only depends on the space and is independent of the choice of generators

of the space (see [4] and [43]). In all our discussion that follows, we shall assume that

every φ ∈ Φ satisfies

σ(V (φ)) = σ(V (φ(η − ·))) (2.5)

for some η ∈ Zs. Equation (2.5) holds when all the functions φ ∈ Φ are compactly

supported (since σ(V (φ)) = Ts) or satisfy
∣∣∣φ̂(ω)

∣∣∣2 =
∣∣∣φ̂(−ω)

∣∣∣2 a.e. on Rs, which is valid

for real-valued or symmetric φ.
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The following theorem is known as the oblique extension principle (OEP). It is stated

in the setting of Φ being a singleton set {φ}.

Theorem 2.8. [16] (Oblique Extension Principle) Let {V k(φ)} be an MRA of L2(Rs) with

combined mask L̂ defined as in (1.12) having entries in L∞(Ts) and such that E(φ) is a

Bessel system. Suppose that limω→0 φ̂(ω) = 1 and there exists a 2πZs-periodic nonnegative

essentially bounded function Θ, which is continuous at the origin, with Θ(0) = 1 and

satisfies

ĥ(ω)Θ(MTω)ĥ(ω + ν) + Ĝ(ω)∗Ĝ(ω + ν) = δνΘ(ω), (2.6)

whenever ω ∈ σ(V (φ)) and ν ∈ 2π(M−TZs/Zs) is such that ω + ν ∈ σ(V (φ)). Then the

affine system X(Ψ) as in (1.4) defined by L̂ is a tight frame for L2(Rs).

The function Θ in Theorem 2.8 is known as the fundamental function. The OEP is

also proved independently in [8]. We shall now show that if X(Ψ) is a tight frame for

L2(Rs) derived from an MRA generated by a symmetric refinable function using the OEP,

then for Ψ′ constructed from Ψ as in Construction 2.1, X(Ψ′) is also a tight frame for

L2(Rs) derived from the same MRA using the OEP. In view of various available examples

in the literature (see also Section 2.3), instead of the more general case as discussed in

Theorem 2.7, here we only deal with the situation in which the MRA is generated by a

single symmetric refinable function.

Theorem 2.9. Let Ψ :=
[
ψm
]%
m=1

such that X(Ψ) as in (1.4) is a tight frame for L2(Rs)

derived from the OEP with {V k(φ)} as the underlying MRA of L2(Rs), φ being symmetric

about η
2
, where η ∈ Zs, Θ as the fundamental function, and L̂ :=

[
ĥ

Ĝ

]
as the combined

MRA mask. Let the set of symmetric and antisymmetric wavelets Ψ′ be constructed from

Ψ as in Construction 2.1. Then X(Ψ′) is a tight frame for L2(Rs) derived from the same

MRA {V k(φ)} using the OEP with the fundamental function Θ′ := 1
2
[Θ + Θ(−·)] and the

combined MRA mask L̂′ :=

[
ĥ

Ĝ′

]
, where Ĝ′ is the 2%× 1 vector given by

Ĝ′(ω) :=
1

2

[
ĝm(ω) + e−i(Mκm−η)·ωĝm(−ω)

ĝm(ω)− e−i(Mκm−η)·ωĝm(−ω)

]%
m=1

, (2.7)

κm ∈ Zs.

Proof. We first apply Proposition 2.5 to see that for φ̃:=φ(η−·) and Ψ̃:=
[
ψm(κm − ·)

]%
m=1

,

̂̃
h(ω)

̂̃
h(ω + ν) = eiη·ν ĥ(−ω)ĥ(−ω − ν),

̂̃
G(ω)∗

̂̃
G(ω + ν) = eiη·νĜ(−ω)∗Ĝ(−ω − ν), (2.8)
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where ν ∈ 2π(M−TZs/Zs), since e−iMη·ν = e−iMκm·ν = 1. By the symmetry of φ, ω ∈
σ(V (φ)) if and only if −ω ∈ σ(V (φ)) for almost every ω ∈ Ts. Thus

̂̃
h(ω)Θ(−MTω)

̂̃
h(ω + ν) +

̂̃
G(ω)∗

̂̃
G(ω + ν) = δνΘ(−ω) (2.9)

holds for ω ∈ σ(V (φ)) and ν ∈ 2π((M−TZs/Zs) such that ω + ν ∈ σ(V (φ)) as we may

replace ω by −ω and ν by −ν in (2.6). Let Υ be as in Construction 2.1. Since φ̃ = φ,

adding (2.6) and (2.9) leads to

ĥ(ω)Θ′(MTω)ĥ(ω + ν) + Q̂(ω)∗Q̂(ω + ν) = δνΘ
′(ω), (2.10)

with Q̂ given as in (2.4) whenever ω ∈ σ(V (φ)) and ν ∈ 2π(M−TZs/Zs) is such that

ω + ν ∈ σ(V (φ)).

Next, as Ψ′ := U2%Υ, where U2% is the constant unitary matrix in (2.1), it follows that

the final wavelet mask is given by Ĝ′ := U2%Q̂. Let ω ∈ σ(V (φ)) and ν ∈ 2π(M−TZs/Zs)

such that ω + ν ∈ σ(V (φ)). Then Ĝ′(ω)∗Ĝ′(ω + ν) = Q̂(ω)∗Q̂(ω + ν) and so (2.10) yields

ĥ(ω)Θ′(MTω)ĥ(ω + ν) + Ĝ′(ω)∗Ĝ′(ω + ν) = δνΘ
′(ω).

Hence by Theorem 2.8, X(Ψ′) is a tight frame for L2(Rs) derived from the MRA {V k(φ)}
using the OEP with the fundamental function Θ′.

Let us highlight an application of Theorem 2.9 which gives a systematic approach to

constructing symmetric and antisymmetric framelets, with given approximation order, for

the univariate case with dilation factor 2. In Section 3.2 of [16], starting from a B-spline

φ of order m (which is symmetric), tight frame systems are constructed by choosing

appropriate trigonometric polynomials Θ to be the fundamental function in the OEP,

according to m and the approximation order of the system required. The approximation

order is closely related to the order of vanishing moments of the framelets, which in turn

depends on φ and Θ (see Theorems 2.8 and 2.11 of [16]). One choice of the fundamental

function Θ gives a total of three mother wavelets, while another choice produces two.

None of the wavelets is symmetric, though both fundamental functions are symmetric.

Applying Theorem 2.9 to these two sets of wavelets, we see that Construction 2.1 gives

three symmetric and three antisymmetric wavelets for the first set, and two symmetric

and two antisymmetric wavelets for the second. In both instances, since φ and Θ are

unchanged, the approximation order of the resulting tight frame system remains the

same.
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In [29], three symmetric and antisymmetric framelets are constructed directly from

the B-spline of order m. This method is extended to constructions based on a com-

pactly supported symmetric refinable function with stable shifts in [30]. Our construction

does not require the stability assumption of the refinable function and reduces the con-

struction of symmetric tight framelets to the construction of tight framelets, which is

easier. It combines the procedure in [16] with Construction 2.1 to give a systematic

procedure for obtaining symmetric and antisymmetric framelets with at least the same

vanishing moments, smoothness and approximation orders as the original wavelets. While

the construction in [29] results in framelets with the highest possible order of vanishing

moments, the flexibility of our construction allows us to tailor the approximation order

of our framelet system and the order of vanishing moments of the framelets according to

the needs of our application.

Let us now return to the general setting of L2(Rs) and arbitrary dilation matrix M .

We have shown that when φ ∈ L2(Rs) is symmetric, the new set of symmetric and

antisymmetric framelets is obtained from the same MRA generated by φ. However, in

many cases, the scaling function φ such as one of the Daubechies scaling functions or a

pseudo-spline (see [16]) is not symmetric, and the corresponding wavelets are obtainable

from the unitary extension principle (UEP), i.e. the OEP with fundamental function

Θ = 1. We shall see that in these instances, notwithstanding that the scaling function

φ is not symmetric, it is still possible to construct a symmetric and antisymmetric tight

frame system from the UEP. However, the set of framelets comes from an MRA generated

by two functions, which is different from the original MRA {V k(φ)}, and the proof requires

the following vector version of the UEP (see [44]).

Theorem 2.10. [44] (Unitary Extension Principle). Let {V k(Φ)} be an MRA of L2(Rs)

with combined mask L̂ defined as in (1.12) having entries in L∞(Ts) and such that E(Φ)

is a Bessel system. Suppose that limω→0(Φ̂∗Φ̂)(ω) = 1 and

L̂(ω)∗L̂(ω + ν) = δνI, (2.11)

whenever ω ∈ σ(V (Φ)) and ν ∈ 2π(M−TZs/Zs) is such that ω + ν ∈ σ(V (Φ)). Then the

affine system X(Ψ) defined by L̂ is a tight frame for L2(Rs).

Our next result is analogous to Theorem 2.9 for the UEP setting, except that the

refinable function φ may not be symmetric but satisfies (2.5). Again, based on examples

of interest (see Section 2.3), we focus on the case when the original MRA is generated by

a single refinable function.
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Theorem 2.11. Let Ψ :=
[
ψm
]%
m=1

such that X(Ψ) as in (1.4) is a tight frame for L2(Rs)

derived from the UEP with {V k(φ)} as the underlying MRA of L2(Rs) under the condition

that φ satisfies (2.5) and L̂ :=

[
ĥ

Ĝ

]
as the combined MRA mask. Let Ξ := 1√

2

[
φ

φ(η − ·)

]
,

where η ∈ Zs. Suppose that Φ′ := U0Ξ, where U0 is the unitary matrix in (2.1), and the

set of symmetric and antisymmetric wavelets Ψ′ is constructed from Ψ as in Construction

2.1. Then X(Ψ′) is a tight frame for L2(Rs) derived from the MRA {V k(Φ′)} using the

UEP with the combined MRA mask L̂′ :=

[
Ĥ ′

Ĝ′

]
, where Ĥ ′ and Ĝ′ are the 2×2 and 2%×2

matrices given by

Ĥ ′(ω) :=
1

2

[
ĥ(ω) + e−i(Mη−η)·ωĥ(−ω) ĥ(ω)− e−i(Mη−η)·ωĥ(−ω)

ĥ(ω)− e−i(Mη−η)·ωĥ(−ω) ĥ(ω) + e−i(Mη−η)·ωĥ(−ω)

]
, (2.12)

Ĝ′(ω) :=
1

2

[
ĝm(ω) + e−i(Mκm−η)·ωĝm(−ω) ĝm(ω)− e−i(Mκm−η)·ωĝm(−ω)

ĝm(ω)− e−i(Mκm−η)·ωĝm(−ω) ĝm(ω) + e−i(Mκm−η)·ωĝm(−ω)

]%
m=1

, (2.13)

κm ∈ Zs, respectively.

Proof. By Lemma 2.6, {V k(Ξ)} is an MRA of L2(Rs). Further, E(Ξ) is also a Bessel

system. Let Υ be as in Construction 2.1. The combined MRA mask

[
P̂

Q̂

]
has entries in

L∞(Ts) and P̂ is a 2× 2 diagonal matrix and Q̂ is a vector of % 2× 2 diagonal matrices

given as in (2.4). In addition, limω→0(Ξ̂∗Ξ̂)(ω) = 1. We shall show that

P̂ (ω)∗P̂ (ω + ν) + Q̂(ω)∗Q̂(ω + ν) = δνI, (2.14)

whenever ω ∈ σ(V (Ξ)) and ν ∈ 2π(M−TZs/Zs) is such that ω + ν ∈ σ(V (Ξ)). We

note from (2.5) that σ(V (φ)) = σ(V (φ̃)), where φ̃ := φ(η − ·), and hence σ(V (Ξ)) =

σ(V (φ)) ∪ σ(V (φ̃)) = σ(V (φ)).

The (1, 1)-entry of (2.14) is exactly (2.11). By the structure of the 2 × 2 diagonal

matrices in P̂ and Q̂, we see that the (1, 2)- and (2, 1)-entries of (2.14) are both zero. It

remains to prove the equality of the (2, 2)-entry on both sides of (2.14), i.e.

̂̃
h(ω)

̂̃
h(ω + ν) +

̂̃
G(ω)∗

̂̃
G(ω + ν) = δν , (2.15)

where Ψ̃ :=
[
ψm(κm − ·)

]%
m=1

. As in the proof of Theorem 2.9, we use Proposition 2.5 to

obtain (2.8). Since ω ∈ σ(V (φ)) if and only if −ω ∈ σ(V (φ̃)) for almost every ω ∈ Ts, it

follows from (2.5) that ω ∈ σ(V (φ)) if and only if −ω ∈ σ(V (φ)) for almost every ω ∈ Ts.
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Thus in view of (2.8), (2.15) holds for ω ∈ σ(V (φ)) and ν ∈ 2π(M−TZs/Zs) such that

ω + ν ∈ σ(V (φ)), because we can replace ω by −ω and ν by −ν in (2.11).

Now, let Ψ′ := U2%Υ, where U2% is the constant unitary matrix in (2.1). We first observe

from the refinement equation (1.9) that the vector Φ′ is refinable with refinement mask

Ĥ ′ := U0P̂U
∗
0 , generating the same MRA as Ξ. Using the wavelet equation (1.11), the final

wavelet mask is given by Ĝ′ := U2%Q̂U
∗
0 . Clearly, the entries of the combined MRA mask

L̂′ :=

[
Ĥ ′

Ĝ′

]
lie in L∞(Ts). Also, we have limω→0(Φ̂′∗Φ̂′)(ω) = 1. Let ω ∈ σ(V (Ξ)) and ν ∈

2π(M−TZs/Zs) such that ω+ν ∈ σ(V (Ξ)). Then Ĥ ′(ω)∗Ĥ ′(ω+ν) = U0P̂ (ω)∗P̂ (ω+ν)U∗0

and Ĝ′(ω)∗Ĝ′(ω+ν) = U0Q̂(ω)∗Q̂(ω+ν)U∗0 . This enables us to conclude from (2.14) that

(2.11) holds for L̂′, i.e.

Ĥ ′(ω)∗Ĥ ′(ω + ν) + Ĝ′(ω)∗Ĝ′(ω + ν) = δνI.

Applying Theorem 2.10 to L̂′ gives the result.

2.3 Examples

We shall now illustrate the results in Section 2.2 with concrete examples for the univariate

case with dilation factor 2. We begin with a discussion on practical issues related to the

flexibility we have in the construction of symmetric and antisymmetric wavelets. When

we utilize Construction 2.1 to construct our wavelets, we need to consider the positions

of reflection of the original wavelets. Since we have the freedom of reflecting the wavelets

about any half-integer point, we may choose to reflect them about half-integer points

around the midpoints of their individual supports. This minimizes the supports of the

resulting wavelets, in the sense that they are almost the same as the supports of the

original wavelets. However, this may not always be ideal since we may obtain more

than one peak or have more oscillations when we essentially take the sum and difference,

using the matrix U0 in (2.1), of the original wavelets and their reflections. Therefore it

could be more desirable to reflect about the positions where their peaks occurred so that

the resulting wavelets will have better spreads in the time domain. It should also be

mentioned that in some cases, other positions may be even more appropriate, depending

on the graphs of the original wavelets. For situations when the original refinable functions

are not symmetric, similar considerations in choosing the positions of reflection apply.
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Figure 2.1: Symmetric and antisymmetric wavelets obtained in Example 2.3.1 from a

systematic construction based on the cubic B-spline.

Example 2.3.1. This example, illustrated in Figure 2.1, is based on the systematic con-

struction in Example 3.7 of [16]. The original wavelets are obtained from an MRA gener-

ated by a symmetric refinable function using the OEP, and we apply Theorem 2.9. Here

the lowpass filter h is that of the cubic B-spline φ supported on [0, 4], and there are three

wavelets ψ1, ψ2 and ψ3 in the construction with filters g1, g2 and g3 respectively. The

approximation order of the framelet system generated by ψ1, ψ2 and ψ3 is 4. We define

Ψ := 1√
2

[
ψ1, ψ1(6− ·), ψ2, ψ2(3− ·), ψ3, ψ3(4− ·)

]T
and Ψ′ := U6Ψ, where U6 is the 6×6

block diagonal matrix with the matrix U0 defined in (2.1) as its blocks. For ψ1, we reflect

at the midpoint of its support as this happens to reduce the oscillations in the resulting

antisymmetric wavelet. As for ψ2 and ψ3, we choose to reflect at the nearest half-integers

where their peaks occur. It follows from (2.7) that the matrix filter of Ψ′ is given by

G′ :=
[
Gm′

]3

m=1
, where Gm′(n) := 1

2

[
gm(n) + gm(µm − n)

gm(n)− gm(µm − n)

]
for m = 1, 2, 3 with µ1 = 8,

µ2 = 2 and µ3 = 4.

Example 2.3.2. Consider the Daubechies-4 refinable function φ with filter h supported on

{1, . . . , 4} and the corresponding wavelet ψ with filter g given by g(n) := (−1)3−nh(3 −
n) (see [13] and [14]). As φ is not symmetric, we apply Theorem 2.11. Let Φ :=

1√
2

[
φ, φ(4− ·)

]T
, Ψ := 1√

2

[
ψ, ψ(3− ·)

]T
, Φ′ := U0Φ and Ψ′ := U0Ψ, where U0 is as
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Figure 2.2: Symmetric and antisymmetric refinable functions and wavelets obtained in

Example 2.3.2 from the Daubechies-4 refinable function and wavelet.

defined in (2.1). Using (2.13), the matrix filter G′ of Ψ′ can be expressed as G′(n) =

(−1)3−nH ′(3− n), where the matrix filter H ′ of Φ′ is given by

H ′(n) :=
1

2

[
h(n) + h(4− n) h(n)− h(4− n)

h(n)− h(4− n) h(n) + h(4− n)

]

from (2.12). The graphs of the resulting refinable functions and wavelets are shown in

Figure 2.2. Both the original refinable function and wavelet are reflected around their

peaks. The supports of the resulting wavelets are the same as that of the original, since

the reflection point occurs at the midpoint.



Chapter 3

Connection Between Wavelet Frames

of L2(Rs) and L2(Ts)

The Poisson summation formula is the bridge connecting the theory of wavelet frames of

the real line to that of periodic ones. This makes it necessary to study the harmonics or

uniform samples of functions in the frequency domain. The conditions for obtaining peri-

odic wavelet frames from periodic MRAs could be expressed in terms of the harmonics of

periodic functions. The wavelet frames could either be semi-orthogonal or nonorthogonal

to the MRA subspaces. These wavelet frames could then be extended back to the real

line by ensuring that these conditions hold for arbitrary collection of harmonics, i.e. the

construction of real line wavelets subtly involves the construction of periodic wavelets.

3.1 Euclidean Space Formulation

Let M be a s× s invertible matrix with integer entries such that M is expansive, i.e. all

the eigenvalues of M are greater than 1. We set

D := MT , d := |det(M)| = |det(D)| .

For k ≥ 0, let Lk denote a full collection of coset representatives of Zs/MkZs and Rk

denote a full collection of coset representatives of Zs/DkZs. Then dk = |Lk| = |Rk|,

Zs =
⋃
l∈Lk

(l +MkZs) =
⋃
j∈Rk

(j +DkZs), (3.1)

and for any distinct l1, l2 ∈ Lk, j1, j2 ∈ Rk,

(l1 +MkZs) ∩ (l2 +MkZs) = ∅ = (j1 +DkZs) ∩ (j2 +DkZs).

34
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As preparation of our study in this multidimensional setup, let us first derive several

lemmas on the properties of the collections Lk and Rk.

Lemma 3.1. Let s ∈ N and {λi, µi}si=1 ⊂ N. Suppose that for every i ∈ {2, . . . , s},
λi−1|λi, µi−1|µi and

∏s
i=1 λi|

∏s
i=1 µi. Then λi|µi for every i ∈ {1, . . . , s}.

Proof. The lemma is clearly true for s = 1. Suppose that the result is true for all i < s.

Given the hypothesis for the case of i = s, we have λ1|(
∏s

i=2 λi) and µ1|(
∏s

i=2 µi) and

(λ1

∏s
i=2 λi)|(µ1

∏s
i=2 µi). By induction, we would have λ1|µ1 and (

∏s
i=2 λi)|(

∏s
i=2 µi) and

consequently λi|µi for {2, . . . , s}.

Lemma 3.2. For k ≥ K ≥ 0, there exists a choice of coset representatives of Zs/MkZs

and Zs/DkZs such that Lk = Lk−K +Mk−KLK and Rk = Rk−K +Dk−KRK respectively.

Proof. We construct a canonical choice of Lk and Rk as follows. Let {ei}si=1 be the

standard basis of the free abelian group Zs and fk,i and gk,i be the ith columns of the

matrices Mk and Dk respectively. Therefore, {fk,i}si=1 and {gk,i}si=1 are generators of

MkZs and DkZs respectively. There exist invertible matrices Pk, Qk ∈Ms(Z), the ring of

all s× s matrices with integer entries, such that

QkD
kP−1

k = Nk = (P−1
k )TMkQT

k = P−Tk MkQT
k , (3.2)

with Nk := diag
[
λ

(k)
i

]s
i=1
∈Ms(Z) having positive diagonal entries such that λ

(k)
i−1|λ

(k)
i for

i ∈ {2, . . . , s} and detNk = dk is the invariant factor form of Mk and Dk (see [33]). Let

e′k,i and e′′k,i be the ith columns of the matrices P T
k and Q−1

k respectively, i.e. {e′k,i}si=1 and

{e′′k,i}si=1 are bases of Zs. We define the set of s-tuples {f ′k,i}si=1 and {g′k,i}si=1 by[
f ′k,1 · · · f ′k,s

]
= MkQT

k ,
[
g′k,1 · · · g′k,s

]
= DkP−1

k ,

i.e. {f ′k,i}si=1 and {g′k,i}si=1 generate MkZs and DkZs respectively. Since MkQT
k = P T

k Nk

and DkP−1
k = Q−1

k Nk, we conclude that f ′k,i = λ
(k)
i e′k,i and g′k,i = λ

(k)
i e′′k,i for i ∈ {1, . . . , s},

respectively. We choose Lk and Rk such that

Lk = {
s∑
i=1

mie
′
k,i : 0 ≤ mi < λ

(k)
i , i = 1, . . . , s},

Rk = {
s∑
i=1

rie
′′
k,i : 0 ≤ ri < λ

(k)
i , i = 1, . . . , s}, (3.3)

and order them in such a way that

s∑
i=1

mie
′
k,i <

s∑
i=1

nie
′
k,i,

s∑
i=1

rie
′′
k,i <

s∑
i=1

tie
′′
k,i
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if and only if there exists a least integer i ∈ {1, . . . , s} for which mi < ni and ri < ti

respectively. Therefore, we could list Lk = {lk,i}d
k−1
i=0 and Rk = {rk,i}d

k−1
i=0 in ordered sets.

We claim that for all k ∈ N, Nk = Nk, where N := N1. This is clearly true for k = 1.

For ease of writing, we let λi := λ
(1)
i for every i ∈ {1, . . . , s}. Suppose that the result

is also true for all i < k. We have detNk = dk−1d, i.e.
∏s

i=1 λ
(k)
i =

∏s
i=1 λ

(k−1)
i λi =∏s

i=1 λ
k−1
i λi =

∏s
i=1 λ

k
i by the induction hypothesis. By Lemma 3.1, we have λ

(k)
i = λki

for every i ∈ {1, . . . , s}.
Using our canonical choice of Lk and Rk for k ≥ K, we choose l and j such that

l ∈ P T
k−KLk−K and j ∈ QT

k−KLK . Consider the coset representatives P−Tk−K l =
s∑
i=1

mie
′
k−K,i

and Q−Tk−Kj =
s∑
i=1

rie
′
K,i, where 0 ≤ mi ≤ λk−Ki − 1 and 0 ≤ ri ≤ λKi − 1 for i ∈ {1, . . . , s}.

This shows that 0 ≤ mi+λk−Ki ri ≤ λki −1 and P−Tk−K l+Nk−KQ−Tk−Kj lies in Lk. Therefore

l+Mk−Kj lies in P T
k−KLk. In the event that l+Mk−Kj = 0, i.e. P−Tk−K l+N

k−KQ−Tk−Kj = 0,

since for i ∈ {1, . . . , s}, each mi is a multiple of λk−Ki , P−Tk−K l must be the zero element

and this shows that any possible representation is unique. Finally, since |Lk| = dk =

dk−KdK = |Lk−K | |LK |, the representation existence is verified.

Lemma 3.3. For 0 ≤ k ≤ K, the kernel of the surjective mapping ι : LK × Lk → LK
given by ι : (l, j) 7→ l +MK−kj has dk elements.

Proof. Using the canonical construction as described in Lemma 3.2, let the set of coset

representatives Lk := {lk,i}d
k−1
i=0 be chosen as in (3.3). We shall also use the invariant

factor form Nk of Mk as given in (3.2), where Nk = Nk
1 . Let P−TK−kl =

s∑
i=1

mie
′
K,i ∈ LK

and Q−TK−kj =
s∑
i=1

rie
′
k,i ∈ Lk, where 0 ≤ mi ≤ λKi −1 and 0 ≤ ri ≤ λki −1 for i ∈ {1, . . . , s}

and the matrices PK−k and QK−k are given in (3.2). We shall consider the corresponding

epimorphism τ : P T
K−kLK×QT

K−kLk → P T
K−kLK given by τ : (l, j) 7→ l+MK−kj. Suppose

that P−TK−kτ(l, j) = 0. Since P−TK−kl = NK−k(−Q−TK−kj), for each j, there are exactly dk

choices for l and hence the kernel of τ has dk elements.

Let the s-dimensional circle group at level K be Ts
K := Rs/DK(2πZs) and for each

ω ∈ Ts
K , define the pre-Gramian of the M−KZs shift-invariant system EK(ΛK) at level

K, given by (1.6) and (1.7), to be the matrix-valued function

JK,ΛK (ω) :=
[
ϕ̂K,ω,0

]
ϕ∈ΛK

,

where the sequence

ϕ̂oK,ω,k := d−
k
2 {ϕ̂(D−k(ω + 2πDKn))}n∈Zs , (3.4)
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reduces to the standard fibre of ϕ at ω (denoted by ϕ̂||ω) when K = k = 0 (see [4]) and

satisfies

ϕ̂0,ω,k =
∑
j∈RK

ϕ̂K,ω+2πj,k,

ϕ̂K,ω+2πj,k = {ϕ̂o0,ω,k(n)1j+DKZs(n)}n∈Zs ,

ϕ̂oK,ω,k = d−
K
2 d

K
2
− k

2 {ϕ̂(D−(k−K)(D−Kω + 2πn))}n∈Zs = d−
K
2 ϕ̂0,D−Kω,k−K . (3.5)

The pre-Gramian JK,ΛK (ω) is well defined for almost every ω since ΛK ⊂ L2(Rs) implies

that ‖ϕ̂K,ω,0‖l2(Zs) is well defined for almost every ω ∈ Ts
K and every ϕ ∈ ΛK as shown

later in Lemma 3.5. The K-fibre of a closed M−kZs shift-invariant subspace V k(Λk) of

L2(Rs) for k ≥ K generated by some countable set Λk ⊂ V k ≡ V k(Λk) (V k(Λk) is written

as V k when the generating set is inferred from the context) at ω ∈ Ts
K is defined to be

V̂ k
K||ω(Λk) := span {ϕ̂K,ω,0 : ϕ ∈ Λk}, (3.6)

and the definition is independent of the generating set and is well-defined for almost every

ω ∈ Ts
K (see [4]). In the event that Λk = {d k2−K2 El

k−Kϕ(Mk−K ·) : ϕ ∈ ΛK , l ∈ Lk−K},
then

V̂ k
K||ω(Λk) = span {e−iω·MK−klMl

K,k−Kϕ̂K,ω,k−K : ϕ ∈ ΛK , l ∈ Lk−K}, (3.7)

where the modulation operator Ml
K,k : l2(Zs)→ l2(Zs) at level K is given by

Ml
K,k : a 7→ {e−i2πDKn·M−kla(n)}n∈Zs .

The Gramian of the set EK(ΛK) at level K for each ω ∈ Ts
K is defined to be

MK,ΛK (ω) := JK,ΛK (ω)J∗K,ΛK (ω) =
[
〈ϕ̂K,ω,0, φ̂K,ω,0〉l2(Zs)

]
ϕ,φ∈ΛK

.

Like the pre-Gramian, the Gramian MK,ΛK (ω) is well defined for almost every ω ∈ Ts
K .

The spectrum of the M−KZs shift-invariant space V K(ΛK) is defined (up to modulo mea-

sure zero sets) as

σK(V K(ΛK)) := {ω ∈ Ts
K : ‖ϕ̂K,ω,0‖l2(Zs) > 0 for some ϕ ∈ ΛK} (3.8)

and only depends on the space and is independent of the choice of generators of the space

(see [4] and [43]).

We view the bi-infinite matrices MK,ΛK (ω), ω ∈ Ts
K , as linear operators and in the event

of they being boundedly invertible, we denote their bounded inverses by MK,ΛK (ω)−1. (For
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those ω such that the underlying operator is not well defined or is unbounded, we take

the norm of the underlying operator to be ∞.) For the functions

MK,ΛK : ω 7→ ‖MK,ΛK (ω)‖ , M−K,ΛK : ω 7→
∥∥MK,ΛK (ω)−1

∥∥
defined on measurable subsets F ⊆ Ts

K , we consider their L∞(F )-norm, where L∞(F )

denotes the space of all essentially bounded complex-valued functions on F . These L∞(F )-

norms are used to characterize the Bessel and frame properties of EK(ΛK). With the

exception of the modulation operator Ml
K,k and the sequence ϕ̂K,ω,0, we shall leave out

writing the level K when K is 0. We shall let K ≥ 0 for the rest of this chapter.

Theorem 3.4. [43, 45] Let ΛK ⊂ L2(Rs) be countable and consider the M−KZs shift-

invariant system EK(ΛK).

(i) The system EK(ΛK) is a Bessel system if and only if ‖MK,ΛK‖L∞(TsK) < ∞. Fur-

ther, the Bessel bound is equal to dK ‖MK,ΛK‖L∞(TsK).

(ii) Assume that EK(ΛK) is a Bessel system. The system EK(ΛK) is a frame for

V K(ΛK) if and only if 1/
∥∥M−K,ΛK∥∥L∞(σK(V K(ΛK)))

< ∞. Further, the lower frame

bound is given by dK/
∥∥M−K,ΛK∥∥L∞(σK(V K(ΛK)))

. In particular, EK(ΛK) is a tight

frame for V K(ΛK) if and only if its Gramian MK,ΛK (ω) is an orthogonal projector

for almost every ω ∈ Ts.

Theorem 3.4 outlines the main approach in our attempt to establish the connection of

real line signals to their periodization, i.e. we shall look at the properties of frequency

samples of functions, which in this case is the Gramian of fibres.

Lemma 3.5. Let K ≥ 0, k ∈ Z, l ∈ Zs, f, g ∈ L2(Rs) and fk := d
k
2 f(Mk·). We have

(i) for almost every ω ∈ Rs, (̂fk)
o

K,ω,0(n) = f̂ oK,ω,k(n),

(ii) for almost every ω ∈ Rs, (El
kf)∧(ω) = e−iω·M−klf̂(ω),

(iii) for almost every ω ∈ Ts
K, (El

kf)∧ oK,ω,0 = e−iω·M−klMl
K,kf̂

o
K,ω,0,

(iv) 〈El
kf, g〉 =

∫
TsK

e−iω·M−kl〈Ml
K,kf̂

o
K,ω,0, ĝ

o
K,ω,0〉l2(Zs)dω,

(v) ‖f‖2 =
∫

TsK

∥∥∥f̂ oK,ω,0∥∥∥2

l2(Zs)
dω.
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Proof. We show (i) by evaluating for n ∈ Zs,

(̂fk)
o

K,ω,0(n) = f̂k(ω + 2πDKn) = d−
k
2 f̂(D−k(ω + 2πDKn)) = f̂ oK,ω,k(n). (3.9)

Part (ii) is established from

(El
kf)∧(ω) =

1

(2π)s

∫
Rs
f(t−M−kl)e−iω·tdt =

1

(2π)s

∫
Rs
f(t)e−iω·(t+M−kl)dt

= e−iω·M−klf̂(ω).

Letting n ∈ Zs, we show (iii) using (ii), i.e.

(El
kf)∧ oK,ω,0(n) = (El

kf)∧(ω + 2πDKn) = e−i(ω+2πDKn)·M−klf̂(ω + 2πDKn)

= e−iω·M−klMl
K,kf̂

o
K,ω,0(n).

By utilizing parts (ii) and (iii) and Plancherel’s theorem (see [42]), we show

〈El
kf, g〉 = (2π)s〈e−iγ·M−klf̂(γ), ĝ(γ)〉 =

∑
n∈Zs

∫
TsK+2πDKn

e−iγ·M−klf̂(γ)ĝ(γ)dγ

=
∑
n∈Zs

∫
TsK

e−i(ω+2πDKn)·M−klf̂(ω + 2πDKn)ĝ(ω + 2πDKn)dω

=

∫
TsK

∑
n∈Zs

e−iω·M−klMl
K,kf̂

o
K,ω,0(n)ĝoK,ω,0(n)dω,

and hence (iv) holds and is justified by the verification of (v). The proof of (v) using

Parseval’s identity (see [42]) is as follows:∫
TsK

∥∥∥f̂ oK,ω,0∥∥∥2

l2(Zs)
dω =

∫
TsK

∑
n∈Zs

∣∣∣f̂(ω + 2πDKn)
∣∣∣2 dω =

∑
n∈Zs

∫
TsK

∣∣∣f̂(ω + 2πDKn)
∣∣∣2 dω

=
∑
n∈Zs

∫
TsK+2πDKn

∣∣∣f̂(ω)
∣∣∣2 dω =

∫
Rs

∣∣∣f̂(ω)
∣∣∣2 dω = ‖f‖2 .

Now, recall the quasi-affine system Xq
K(Ψ) at level K as defined in (1.6) and (1.7). We

observe that it can be expressed as follows:

Xq
K(Ψ) = {dk−

K
2 ψ(Mk(· −M−Kr)) : ψ ∈ Ψ, r ∈ Zs, k < K} ∪

{d
k
2ψ(Mk · −(Mk−Kr + l)) : ψ ∈ Ψ, l ∈ Lk−K , r ∈ Zs, k ≥ K}

= {dk−
K
2 ψ(Mk · −Mk−Kr) : ψ ∈ Ψ, r ∈ Zs, k < K} ∪

{d
k
2ψ(Mk · −r) : ψ ∈ Ψ, r ∈ Zs, k ≥ K}.
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In particular, Xq(Ψ) := Xq
0(Ψ) is given as

Xq(Ψ)={dkψ(Mk(· − r)) :ψ∈Ψ, r ∈ Zs, k < 0} ∪ {d
k
2ψ(Mk · −r) :ψ∈Ψ, r ∈ Zs, k ≥ 0}.

The following result shows that the quasi-affine system Xq(Ψ) has identitical frame prop-

erties as the affine system X(Ψ).

Theorem 3.6. [44] The affine system X(Ψ) is a (Bessel system) frame for L2(Rs) if and

only if its quasi-affine counterpart Xq(Ψ) is a (Bessel system) frame for L2(Rs). Further,

the two systems have identical (Bessel) frame bounds. In particular, the affine system

X(Ψ) is a tight frame if and only if the quasi-affine system Xq(Ψ) is a tight frame.

We shall illustrate below the similarity in the structure of the quasi-affine systems

Xq(Ψ) and Xq
K(Ψ).

Proposition 3.7. The quasi-affine system Xq(Ψ) is a (Bessel system) frame for L2(Rs)

if and only if the quasi-affine system Xq
K(Ψ) is a (Bessel system) frame for L2(Rs) with

the same (Bessel) frame bounds. In particular, Xq(Ψ) is a tight frame for L2(Rs) if and

only if Xq
K(Ψ) is a tight frame for L2(Rs).

Proof. Suppose that Xq(Ψ) is a Bessel system with Bessel bound B. Using the right

inequality of (1.1) on the function g := d−
K
2 f(M−K ·) ∈ L2(Rs), where f ∈ L2(Rs), we

have

B ‖g‖2 ≥
∑
k<0

∑
r∈Zs

∑
ψ∈Ψ

∣∣〈g, dkErψ(Mk·)〉
∣∣2 +

∞∑
k=0

∑
r∈Zs

∑
l∈Lk

∑
ψ∈Ψ

∣∣∣〈g, d k2ErEl
kψ(Mk·)〉

∣∣∣2
=
∑
r∈Zs

∑
ψ∈Ψ

[∑
k<0

∣∣〈g, dkψ(Mk(· − r))〉
∣∣2 +

∞∑
k=0

∑
l∈Lk

∣∣∣〈g, d k2ψ(Mk(· − r)− l)〉
∣∣∣2] (3.10)

=
∑
r∈Zs

∑
ψ∈Ψ

[∑
k<0

∣∣∣〈f, dK2 +kψ(MK+k · −Mkr)〉
∣∣∣2+

∞∑
k=0

∑
l∈Lk

∣∣∣〈f, dK2 + k
2ψ(MK+k · −Mkr − l)〉

∣∣∣2]

=
∑
r∈Zs

∑
ψ∈Ψ

∑
k<K

∣∣∣〈f, dk−K2 ψ(Mk · −Mk−Kr)〉
∣∣∣2+

∞∑
k=K

∑
l∈Lk−K

∣∣∣〈f, d k2ψ(Mk · −Mk−Kr − l)〉
∣∣∣2
 .

Hence, we obtain

B‖f‖2 ≥
∑
r∈Zs

∑
ψ∈Ψ

∑
k<K

∣∣∣〈f, dk−K2 Er
Kψ(Mk·)〉

∣∣∣2+ ∞∑
k=K

∑
l∈Lk−K

∣∣∣〈f, d k2Er
KE

l
kψ(Mk·)〉

∣∣∣2
. (3.11)

As f is arbitrary, Xq
K(Ψ) is a Bessel system with the same Bessel bound as Xq(Ψ). In

a similar manner, the lower frame bound condition in (1.1) is shown to hold for Xq
K(Ψ)
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in the event that Xq(Ψ) is a frame for L2(Rs). For the converse, the inequality (3.11) is

equivalent to (3.10), if we let f := d
K
2 g(MK ·).

Hence, the quasi-affine system Xq
K(Ψ) is a frame for L2(Rs) for every K ≥ 0 if and only

if the quasi-affine system Xq(Ψ) is a frame for L2(Rs) with the same frame bounds. There-

fore, Theorem 3.6 is extended in the following corollary as a consequence of Proposition

3.7.

Corollary 3.8. The affine system X(Ψ) is a (Bessel system) frame for L2(Rs) if and only

if its quasi-affine counterpart Xq
K(Ψ) is a (Bessel system) frame for L2(Rs). Further, the

two systems have identical frame bounds. In particular, the affine system X(Ψ) is a tight

frame if and only if the quasi-affine system Xq
K(Ψ) is a tight frame.

In other words, Corollary 3.8 shows that the wavelet representation of a function could

be expressed either in terms of the affine system X(Ψ) or in terms of the many choices of

the shift-invariant quasi-affine system Xq
K(Ψ).

Next, we consider the semi-orthogonal setup of obtaining wavelets for L2(Rs) from

FMRAs. The following proposition (found in [2] for the 1-dimensional single-generator

case of dilation factor M = 2) shows that as long as E(Φ) is a frame for V (Φ), then the

MRA {V k(Φ)} is an FMRA with uniform bounds.

Proposition 3.9. If E(Φ) is a (Bessel system) frame for V (Φ), then E({d k2El
kφ(Mk·) :

φ ∈ Φ, l ∈ Lk}) is a (Bessel system) frame for V k(Φ) with the same (Bessel) frame bounds

as E(Φ).

Proof. Let g ∈ V k(Φ) and f = d−
k
2 g(M−k·) ∈ V (Φ) and E(Φ) be a Bessel system for

V (Φ) with Bessel bound B. Then∑
l∈Zs

∑
φ∈Φ

∣∣〈f, Elφ〉
∣∣2 =

∑
l∈Zs

∑
φ∈Φ

∣∣∣〈d− k2 g(M−k·), Elφ〉
∣∣∣2 =

∑
l∈Zs

∑
φ∈Φ

∣∣∣〈g, d k2 (Elφ)(Mk·)〉
∣∣∣2

=
∑
l∈Zs

∑
φ∈Φ

∣∣∣〈g, d k2El
kφ(Mk·)〉

∣∣∣2 =
∑
r∈Zs

∑
l∈Lk

∑
φ∈Φ

∣∣∣〈g, d k2ErEl
kφ(Mk·)〉

∣∣∣2 ,
where the last two sums follows from (3.1). Using the right inequality of (1.1), we have∑

r∈Zs

∑
l∈Lk

∑
φ∈Φ

∣∣∣〈g, d k2ErEl
kφ(Mk·)〉

∣∣∣2 ≤ B ‖f‖2 = B ‖g‖2 ,

and so E({d k2El
kφ(Mk·) : φ ∈ Φ, l ∈ Lk}) is a Bessel system for V k(Φ) with the same

Bessel bound as E(Φ). Similarly, in the event that E(Φ) is also a frame, we could show

that the lower frame bound inequality of (1.1) carries over as well.
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Lemma 3.10. Let W k be the orthogonal complement of V k(Φ) in V k+1(Φ). We have

W k = {f ∈ L2(Rs) : f(M−k·) ∈ W 0}. (3.12)

Proof. For any f ∈ V k(Φ) and g ∈ W k ⊆ V k+1(Φ), we have f(M−k·) ∈ V (Φ) and

g(M−k·) ∈ V 1(Φ). Since f(M−k·) is arbitrary in V (Φ) and 〈d− k2 f(M−k·), d− k2 g(M−k·)〉 =

〈f, g〉 = 0, we deduce that g(M−k·) lies in W 0.

Lemma 3.11. Let {V k(Φ)} be an MRA of L2(Rs). For each k ∈ Z, let W k be the orthog-

onal complement of V k(Φ) in V k+1(Φ). Then the subspaces W k are pairwise orthogonal

and L2(Rs) =
⊕⊥

k∈ZW
k.

Proof. For k < n, and given any fk ∈ W k ⊆ V k+1(Φ) ⊆ V n(Φ) and fn ∈ W n, clearly

we have 〈fk, fn〉 = 0. Let Pk be the orthogonal projector from L2(Rs) onto V k(Φ). Then

W k = {f − Pkf : f ∈ V k+1(Φ)}. Observing that limk→∞ Pkf = f and limk→−∞ Pkf = 0,

we deduce that for any f ∈ L2(Rs), we have

f =
∑
k∈Z

(Pk+1f − Pkf).

Therefore, the result of the direct sum follows since Pk+1−Pk is the orthogonal projector

from L2(Rs) onto W k.

Proposition 3.12. Let {V k(Φ)} be an FMRA of L2(Rs) and W k be the orthogonal com-

plement of V k(Φ) in V k+1(Φ). Let Ψ ⊂ W 0 be finite. Then X(Ψ) is a (Bessel system)

frame for L2(Rs) if and only if E(Ψ) is a (Bessel system) frame for W 0 with the same

(Bessel) frame bounds.

Proof. (⇒) Assume that X(Ψ) is a Bessel system with Bessel bound B. By Lemma

3.10, for every ψ ∈ Ψ, d
k
2El

kψ(Mk·) lies in W k. Let f ∈ W 0 be an arbitrary function.

Applying Lemma 3.11 shows that
∑
k∈Z

∑
r∈Zs

∑
l∈Lk

∣∣∣〈f, d k2ErEl
kψ(Mk·)〉

∣∣∣2 =
∑
r∈Zs
|〈f, Erψ〉|2,

where ψ ∈ Ψ. Consequently, using the right inequality of (1.1) for X(Ψ) on f , we obtain∑
r∈Zs

∑
ψ∈Ψ

|〈f, Erψ〉|2 ≤ B ‖f‖2 ,

and it follows that E(Ψ) is a Bessel system with the same Bessel bound as X(Ψ). In a

similar manner, the lower frame bound condition in (1.1) is shown to hold for E(Ψ) in

the event that X(Ψ) is also a frame for L2(Rs).

(⇐) Suppose that E(Ψ) is a Bessel system with Bessel bound B. Lemma 3.10 shows
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that given a fixed k ∈ Z, for any f ∈ W k, we have f(M−k·) ∈ W 0. Using the fact

that 〈f, d k2El
kψ(Mk·)〉 = 〈f, d k2 (Elψ)(Mk·)〉 = 〈d− k2 f(M−k·), Elψ〉 for every ψ ∈ Ψ and

applying (3.1) and the right inequality of (1.1) for E(Ψ) on d−
k
2 f(M−k·), we have∑

r∈Zs

∑
l∈Lk

∑
ψ∈Ψ

∣∣∣〈f, d k2ErEl
kψ(Mk·)〉

∣∣∣2 =
∑
l∈Zs

∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2
≤ B

∥∥∥d− k2 f(M−k·)
∥∥∥2

= B ‖f‖2 . (3.13)

Hence, for a given k ∈ Z, E({d k2El
kψ(Mk·) : ψ ∈ Ψ, l ∈ Lk}) is a Bessel system for W k

with the Bessel bound B.

Next, for an arbitrary f ∈ L2(Rs), by Lemma 3.11, f =
∑
k∈Z

fk, where for each k ∈ Z,

fk ∈ W k, and if k 6= n, 〈fn, d
k
2El

kψ(Mk·)〉 = 0 for all ψ ∈ Ψ and l ∈ Lk. Therefore,

∑
k∈Z

∑
l∈Zs

∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2 =
∑
k∈Z

∑
l∈Zs

∑
ψ∈Ψ

∣∣∣∣∣∑
n∈Z

〈fn, d
k
2El

kψ(Mk·)〉

∣∣∣∣∣
2

=
∑
k∈Z

∑
l∈Zs

∑
ψ∈Ψ

∣∣∣〈fk, d k2El
kψ(Mk·)〉

∣∣∣2 . (3.14)

It follows from (3.13) and Lemma 3.11 that∑
k∈Z

∑
l∈Zs

∑
ψ∈Ψ

∣∣∣〈fk, d k2El
kψ(Mk·)〉

∣∣∣2 ≤ B
∑
k∈Z

‖fk‖2 = B ‖f‖2 . (3.15)

In a similar manner, the lower frame bound condition in (1.1) is shown to hold for X(Ψ)

in the event that E(Ψ) is also a frame for W 0.

Proposition 3.12 (found in [2] for the 1-dimensional single-generator case of dilation

factor M = 2) shows that it suffices to ensure that E(Ψ) is a frame for W 0 in order

for the affine system X(Ψ) derived from an FMRA to be a frame. We shall describe in

Section 3.4 on the construction of such frames using the corresponding periodic analogue

of FMRAs.

3.2 Periodic Formulation

For each j ∈ RK , define the pre-Gramian of the 2πM−KZs shift-invariant system TK(ΩK)

at level K given by (1.16) and (1.17) to be the matrix-valued function

JK,ΩK (j) :=
[
ϕ̂K,j

]
ϕ∈ΩK

,
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where

ϕ̂K,j := {ϕ̂(n)1j+DKZs(n)}n∈Zs .

Based on the sequence ϕ̂K,j, we define the jth-polyphase harmonic of the function ϕ at

level K as

ϕK,j(t) :=
∑
n∈Zs

ϕ̂K,j(n)ein·t. (3.16)

We also define the jth-space of polyphase harmonics at level K, ΘK,j
2π ⊂ L2(Ts) con-

sisting of all functions with Fourier coefficients sampled on the lattice j +DKZs to be

ΘK,j
2π := {fK,j : f ∈ L2(Ts)}. (3.17)

We further define the jth-V K
2π subspace of polyphase harmonics at level K to be

V K,j
2π := ΘK,j

2π ∩ V K
2π , (3.18)

where V K
2π is a 2πM−KZs shift-invariant subspace of L2(Ts) generated by some countable

subset ΩK of L2(Ts), i.e. V K
2π := V K

2π (ΩK).

The Gramian of the set TK(ΩK) at level K for each j ∈ RK is defined to be

MK,ΩK (j) := JK,ΩK (j)J∗K,ΩK (j) =
[
〈ϕ̂K,j, φ̂K,j〉l2(Zs)

]
ϕ,φ∈ΩK

.

The spectrum of the 2πM−KZs shift-invariant space V K
2π (ΩK) is defined as

σK(V K
2π (ΩK)) := {j ∈ RK : ‖ϕ̂K,j‖l2(Zs) > 0 for some ϕ ∈ ΩK}. (3.19)

We view the matrices MK,ΩK (j), j ∈ RK , as linear operators and in the event of they

being boundedly invertible, we denote their bounded inverses by MK,ΩK (j)−1. (For those

j such that the underlying operator is not well defined or is unbounded, we take the norm

of the underlying operator to be ∞.) For the RK-periodic sequences

MK,ΩK : j 7→ ‖MK,ΩK (j)‖ , M−K,ΩK : j 7→
∥∥MK,ΩK (j)−1

∥∥
on S ⊆ RK , we consider their L∞(S)-norm, where L∞(S) denotes the space of all bounded

complex-valuedRK-periodic sequences on S. These L∞(S)-norms are used to characterize

the Bessel and frame properties of TK(ΩK).

The next theorem is the periodic analogue of Theorem 3.4 and likewise we shall look

at properties of the frequency samples of the periodic functions.
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Theorem 3.13. [5] Let ΩK ⊂ L2(Ts) be countable and consider the shift-invariant system

TK(ΩK).

(i) The system TK(ΩK) is a Bessel system if and only if ‖MK,ΩK‖L∞(RK) is finite.

Further, the Bessel bound is equal to dK ‖MK,ΩK‖L∞(RK).

(ii) Assume that TK(ΩK) is a Bessel system. The system TK(ΩK) is a frame for

V K
2π (ΩK) if and only if 1/

∥∥M−K,ΩK∥∥L∞(σK(V K2π(ΩK)))
is finite. Further, the lower

frame bound is given by dK/
∥∥M−K,ΩK∥∥L∞(σK(V K2π(ΩK)))

. In particular, TK(ΩK) is

a tight frame for V K
2π (ΩK) if and only if its Gramian MK,ΩK (j) is d−K times an

orthogonal projector for every j ∈ RK.

Lemma 3.14. Let K, k ≥ 0, and f, g ∈ L2(Ts). We have

(i) (T lkf)∧ =Ml
0,kf̂ ,

(ii) for every l ∈ Lk and j ∈ RK, (T lkf)∧ oK,j = e−i2πj·M−klMl
K,kf̂

o
K,j,

(iii) for every l ∈ Lk, T lkf =
∑

j∈RK
T lkfK,j =

∑
j∈RK

e−i2πj·M−kl ∑
n∈Zs

(Ml
K,kf̂K,j)(n)ei(j+DKn)·.

(iv) for every l ∈ Lk, where k ≤ K, T lkf =
∑

j∈RK
T lkfK,j =

∑
j∈RK

e−i2πj·M−klfK,j.

(v) for every j ∈ RK, 〈fK,j, g〉L2(Ts) = 〈fK,j, gK,j〉L2(Ts).

(vi)
∑
l∈LK

∣∣〈T lKf, g〉L2(Ts)
∣∣2 = dK

∑
j∈RK

∣∣〈fK,j, g〉L2(Ts)
∣∣2 and ‖f‖2

L2(Ts) =
∑

j∈RK
‖fK,j‖2

L2(Ts).

Proof. Part (i) is shown using (ii) for the case of K = j = 0. For (ii), let n ∈ Zs. Then

we have

(T lkf)∧ oK,j(n) = (T lkf)∧(j +DKn) = 〈T lkf, ei(j+DKn)·〉L2(Ts)

= e−i2π(j+DKn)·M−kl〈f, ei(j+DKn)·〉L2(Ts) = e−i2π(j+DKn)·M−klf̂(j +DKn)

= e−i2π(j+DKn)·M−klf̂ oK,j(n).

For (iii), using (3.16) and (3.17), it is clear that T lkf =
∑

j∈RK
T lkfK,j. It remains to check

that

T lkfK,j(t)=
∑
n∈Zs

f̂K,j(n)ei(j+DKn)·(t−2πM−kl) =e−i2πj·M−kl
∑
n∈Zs

e−i2πDKn·M−klf̂K,j(n)ei(j+DKn)·t.

We obtain (iv) as a consequence of (iii). Part (v) follows from Plancherel’s theorem, i.e.

〈fK,j, g〉L2(Ts) = 〈{f̂K,j(n)}n∈Zs , {ĝ(n)}n∈Zs〉l2(Zs) = 〈f̂K,j, ĝK,j〉l2(Zs) = 〈fK,j, gK,j〉L2(Ts).
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For (vi), we use (iv) to show that∑
l∈LK

∣∣〈T lKf, g〉L2(Ts)
∣∣2 =

∑
l∈LK

〈
∑
j∈RK

e−i2πj·M−K lfK,j, g〉L2(Ts)〈g,
∑
r∈RK

e−i2πr·M−K lfK,r〉L2(Ts)

=
∑
j∈RK

∑
r∈RK

∑
l∈LK

ei2π(r−j)·M−K l〈fK,j, g〉L2(Ts)〈g, fK,r〉L2(Ts)

=
∑
j∈RK

∑
r∈RK

dKδj,r〈fK,j, g〉L2(Ts)〈g, fK,r〉L2(Ts).

Moreover, ‖f‖2
L2(Ts) = 〈

∑
j∈RK

fK,j, f〉L2(Ts) =
∑

j∈RK
〈fK,j, f〉L2(Ts) =

∑
j∈RK
〈fK,j, fK,j〉L2(Ts).

Next, we examine the periodic quasi-affine system Xq
2π,K at level K given in (1.16) and

(1.17). This system could be expressed as follows:

Xq
2π,K = {d−

K
2 φ0(· − 2πM−Kr) : φ0 ∈ Φ0, r ∈ LK} ∪

{d
k
2
−K

2 ψk(· − 2πM−Kr) : ψk ∈ Ψk, r ∈ LK , 0 ≤ k < K} ∪

{ψk(· − 2πM−kr) : ψk ∈ Ψk, r ∈ Lk, k ≥ K},

since Lemma 3.2 shows that for k ≥ K, j ∈ LK and l ∈ Lk−K , ψk(· − 2πM−k(Mk−Kj +

l)) = ψk(· − 2πM−kr) for some r ∈ Lk. In contrast with the quasi-affine systems of

L2(Rs), we already have Xq
2π,0 = X2π, i.e. the quasi-affine structure of Xq

2π,K for K > 0 is

different from that of Xq
2π,0. Therefore, we cannot expect to obtain results in the periodic

setting fully analogous to that of L2(Rs).

The next proposition is a partial periodic analogue of Corollary 3.8.

Proposition 3.15. Fix K ≥ 0. The periodic quasi-affine system Xq
2π,K is a (Bessel

system) frame for L2(Ts) if the periodic affine system X2π is a (Bessel system) frame for

L2(Ts) with the same (Bessel) frame bounds. In particular, Xq
2π,K is a tight frame for

L2(Ts) if X2π is a tight frame for L2(Ts).

Proof. Suppose that X2π is a Bessel system for L2(Ts) with Bessel bound B. Using the

right inequality of (1.1) on a function f ∈ L2(Ts), we have

B
∥∥T−rK f

∥∥2

L2(Ts) ≥
∑
φ0∈Φ0

∣∣〈f, T rKφ0〉L2(Ts)
∣∣2 +

∞∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2 .

Then we have

BdK ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣〈f, T rKφ0〉L2(Ts)
∣∣2 +

K−1∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2+

∞∑
k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2] . (3.20)
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Since Lemma 3.3 shows that each element in the codomain of ι : LK × Lk → LK given

by ι : (r, l) 7→ r +MK−kl has a preimage of dk elements, we could express the sum of the

second summand on the right hand side of (3.20) as

K−1∑
k=0

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2

=
K−1∑
k=0

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, ψk(· − 2πM−K(r +MK−kl)〉L2(Ts)
∣∣2 (3.21)

=
K−1∑
k=0

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, ψk(· − 2πM−Kr)〉L2(Ts)
∣∣2 =

K−1∑
k=0

∑
r∈LK

∑
ψk∈Ψk

∣∣∣〈f, d k2T rKψk〉L2(Ts)

∣∣∣2 ,
independently of our choice of coset representatives. Next, the sum of the third summand

on the right hand side of (3.20) could be expressed as

∞∑
k=K

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2 = dK

∞∑
k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T lkψk〉L2(Ts)
∣∣2 .

Therefore, (3.20) is equivalent to

B ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣∣〈f, d−K2 T rKφ0〉L2(Ts)

∣∣∣2+ K−1∑
k=0

∑
ψk∈Ψk

∣∣∣〈f, d k2−K2 T rKψk〉L2(Ts)

∣∣∣2]

+
∞∑
k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T lkψk〉L2(Ts)
∣∣2 . (3.22)

As f is arbitrary, Xq
2π,K is a Bessel system for L2(Ts) with the same Bessel bound as X2π.

In a similar manner, the lower frame bound condition in (1.1) is shown to hold for Xq
2π,K

in the event that X2π is a frame for L2(Ts).

Proposition 3.16 shows that the periodic affine system X2π must satisfy the frame

condition for all the jth spaces of polyphase harmonics ΘK,j
2π given in (3.17), i.e.

A‖fK,j‖2
L2(Ts)≤

∑
φ0∈Φ0

∣∣〈fK,j, φ0〉L2(Ts)
∣∣2+ ∞∑

k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈fK,j, T lkψk〉L2(Ts)
∣∣2≤B‖fK,j‖2

L2(Ts)(3.23)

for all fK,j ∈ ΘK,j
2π , in order for the periodic quasi-affine system Xq

2π,K to be a frame for

L2(Ts).

Proposition 3.16. Fix K ≥ 0. The periodic affine system X2π satisfies the (Bessel)

frame condition for ΘK,j
2π for every j ∈ RK if the periodic quasi-affine system Xq

2π,K is
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a (Bessel system) frame for L2(Ts) with the same (Bessel) frame bounds. In particular,

X2π satisfies the tight frame condition for ΘK,j
2π for every j ∈ RK if Xq

2π,K is a tight frame

for L2(Ts).

Proof. Suppose that Xq
2π,K is a Bessel system for L2(Ts) with Bessel bound B. Next,

with the help of Lemma 3.14, the equivalence of (3.20) and (3.22) and using the right

inequality of (1.1) on a function f ∈ ΘK,j
2π , where j ∈ RK , we have

B ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣∣〈f, d−K2 T rKφ0〉L2(Ts)

∣∣∣2+ ∞∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣∣〈f, d−K2 T rKT lkψk〉L2(Ts)

∣∣∣2]

=
∑
r∈RK

[ ∑
φ0∈Φ0

∣∣〈fK,r, φ0〉L2(Ts)
∣∣2 +

∞∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈fK,r, T lkψk〉L2(Ts)
∣∣2] ,

and so (3.23) holds. As f is arbitrary, X2π satisfies the Bessel condition for ΘK,j
2π with the

same Bessel bound as Xq
2π,K . In a similar manner, the lower frame bound condition for

ΘK,j
2π in (3.23) is shown to hold for X2π in the event that Xq

2π,K is a frame for L2(Ts).

In practical applications, we could only utilize the restricted periodic affine system XR
2π

given in (1.18) and also the restricted periodic quasi-affine system Xq,R
2π,K given in (1.19)

and (1.20). Henceforth, it is also desirable to establish the analogue of Propositions 3.15

and 3.16 for these systems.

Proposition 3.17. Fix R ≥ K ≥ 0. The restricted periodic quasi-affine system Xq,R
2π,K

is a (Bessel system) frame for its closed linear span V R
2π if the restricted periodic affine

system XR
2π is a (Bessel system) frame for V R

2π with the same (Bessel) frame bounds. In

particular, Xq,R
2π,K is a tight frame for V R

2π if XR
2π is a tight frame for V R

2π.

Proof. Suppose that XR
2π is a Bessel system for V R

2π with Bessel bound B. Using the right

inequality of (1.1) on a function f ∈ V R
2π, we have

B
∥∥T−rK f

∥∥2

L2(Ts) ≥
∑
φ0∈Φ0

∣∣〈f, T rKφ0〉L2(Ts)
∣∣2 +

R∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2 .

Then we have

BdK ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣〈f, T rKφ0〉L2(Ts)
∣∣2 +

K−1∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2+

R∑
k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2] . (3.24)
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Computing in a manner similar to (3.21), the sum of the second summand on the right

hand side of (3.24) could be expressed as

K−1∑
k=0

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2 =

K−1∑
k=0

∑
r∈LK

∑
ψk∈Ψk

∣∣∣〈f, d k2T rKψk〉L2(Ts)

∣∣∣2 ,
independently of our choice of coset representatives. Next, the sum of the third summand

on the right hand side of (3.24) could be expressed as

R∑
k=K

∑
r∈LK

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T rKT lkψk〉L2(Ts)
∣∣2 = dK

R∑
k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T lkψk〉L2(Ts)
∣∣2 .

Therefore, (3.24) is equivalent to

B ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣∣〈f, d−K2 T rKφ0〉L2(Ts)

∣∣∣2+ K−1∑
k=0

∑
ψk∈Ψk

∣∣∣〈f, d k2−K2 T rKψk〉L2(Ts)

∣∣∣2]

+
R∑

k=K

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈f, T lkψk〉L2(Ts)
∣∣2 . (3.25)

As f is arbitrary, Xq,R
2π,K is a Bessel system V R

2π with the same Bessel bound as XR
2π. In a

similar manner, the lower frame bound condition in (1.1) is shown to hold for Xq,R
2π,K in

the event that XR
2π is a frame for V R

2π.

Likewise Proposition 3.18 shows that the restricted periodic affine system XR
2π must

satisfy the frame condition for all the jth spaces of polyphase harmonics ΘK,j
2π ∩ V R

2π given

in (3.17), i.e.

A‖fK,j‖2
L2(Ts)≤

∑
φ0∈Φ0

∣∣〈fK,j, φ0〉L2(Ts)
∣∣2+ R∑

k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈fK,j, T lkψk〉L2(Ts)
∣∣2≤B‖fK,j‖2

L2(Ts)(3.26)

for all fK,j ∈ ΘK,j
2π ∩ V R

2π, in order for the restricted periodic quasi-affine system Xq.R
2π,K to

be a frame for V R
2π.

Proposition 3.18. Fix R ≥ K ≥ 0. The restricted periodic affine system XR
2π satisfies

the (Bessel) frame condition for ΘK,j
2π ∩ V R

2π for every j ∈ RK if the restricted periodic

quasi-affine system Xq,R
2π,K is a (Bessel system) frame for its closed linear span V R

2π with

the same (Bessel) frame bounds. In particular, XR
2π satisfies the tight frame condition for

ΘK,j
2π ∩ V R

2π for every j ∈ RK if Xq,R
2π,K is a tight frame for V R

2π.



3.2 Periodic Formulation 50

Proof. Suppose that Xq,R
2π,K is a Bessel system V R

2π with Bessel bound B. With the help of

Lemma 3.14, the equivalence of (3.24) and (3.25) and using the right inequality of (1.1)

on a function f ∈ ΘK,j
2π ∩ V R

2π, where j ∈ RK , we have

B ‖f‖2
L2(Ts) ≥

∑
r∈LK

[ ∑
φ0∈Φ0

∣∣∣〈f, d−K2 T rKφ0〉L2(Ts)

∣∣∣2+ R∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣∣〈f, d−K2 T rKT lkψk〉L2(Ts)

∣∣∣2]

=
∑
r∈RK

[ ∑
φ0∈Φ0

∣∣〈fK,r, φ0〉L2(Ts)
∣∣2 +

R∑
k=0

∑
l∈Lk

∑
ψk∈Ψk

∣∣〈fK,r, T lkψk〉L2(Ts)
∣∣2] ,

and (3.26) holds. As f is arbitrary, XR
2π satisfies the Bessel condition for ΘK,j

2π ∩ V R
2π with

the same Bessel bound as Xq,R
2π,K . In a similar manner, the lower frame bound condition

for ΘK,j
2π ∩ V R

2π in (3.26) is shown to hold for XR
2π in the event that Xq,R

2π,K is a frame for

V R
2π.

We remark that a finite dimensional spanning set always forms a frame for its linear

span. Hence the conditions and results of Propositions 3.17 and 3.18 always hold. The

additional information supplied by these two propositions is about the preservation of the

(Bessel) frame bounds of the respective systems.

Let us now review several results on periodic MRAs and periodic affine systems con-

structed from them. The following states the requirements for Condition (i), i.e. nesting

property, of a periodic MRA to be satisfied.

Proposition 3.19. [24] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

be a subset of L2(Ts) and

vmk,j := (φmk )k,j be the corresponding polyphase harmonics given by (3.16). Then the fol-

lowing are equivalent for each k ≥ 0.

(i) V k
2π(Φk) ⊆ V k+1

2π (Φk+1).

(ii) There exists Hk+1 ∈ S(Mk+1)ρ×ρ such that

Φk =
∑
l∈Lk+1

Hk+1(l)T lk+1Φk+1. (3.27)

(iii) There exists Ĥk+1 ∈ S(Dk+1)ρ×ρ such that

Φ̂k(n) = Ĥk+1(n)Φ̂k+1(n), n ∈ Zs. (3.28)

(iv) There exists Ĥk+1 ∈ S(Dk+1)ρ×ρ such that

vk,j =
∑
r∈R1

Ĥk+1(j +Dkr)vk+1,j+Dkr, j ∈ Rk, (3.29)

where vk,j :=
[
v1
k,j, . . . , v

ρ
k,j

]T
.



3.2 Periodic Formulation 51

Our next proposition gives conditions which enable the affine system X2π to be derived

from the MRA {V k
2π(Φk)}.

Proposition 3.20. [24] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

and Ψk :=
[
ψnk

]%k
n=1

be

subsets of L2(Ts) with W k
2π(Ψk) := spanTk(Ψk) and vmk,j := (φmk )k,j and unk,j := (ψnk )k,j be

the corresponding polyphase harmonics given by (3.16). Then the following are equivalent

for each k ≥ 0.

(i) W k
2π(Ψk) ⊆ V k+1

2π (Φk+1).

(ii) There exists Gk+1 ∈ S(Mk+1)%k×ρ such that

Ψk =
∑
l∈Lk+1

Gk+1(l)T lk+1Φk+1. (3.30)

(iii) There exists Ĝk+1 ∈ S(Dk+1)%k×ρ such that

Ψ̂k(n) = Ĝk+1(n)Φ̂k+1(n), n ∈ Zs. (3.31)

(iv) There exists Ĝk+1 ∈ S(Dk+1)%k×ρ such that

uk,j =
∑
r∈R1

Ĝk+1(j +Dkr)vk+1,j+Dkr, j ∈ Rk, (3.32)

where uk,j :=
[
u1
k,j, . . . , u

%k
k,j

]T
and vk,j :=

[
v1
k,j, . . . , v

ρ
k,j

]T
.

It is shown in [24] that

V k
2π(Φk) =

⊕
j∈Rk

⊥
span {vmk,j : m = 1, . . . , ρ},

W k
2π(Ψk) =

⊕
j∈Rk

⊥
span {umk,j : m = 1, . . . , %k}. (3.33)

For j ∈ Rk, the Gramians of the sets Tk(Φk) and Tk(Ψk) are given by

Mk(j) =
[
〈vmk,j, vnk,j〉

]ρ
m,n=1

,

Nk(j) =
[
〈umk,j, unk,j〉

]%k
m,n=1

(3.34)

respectively. As in (3.18), for j ∈ Rk, let us define the following subspaces of polyphase

harmonics

Uk+1,j
2π (Φk+1) :=

⊕
r∈R1

⊥ [
Θk+1,j+Dkr

2π ∩ V k+1
2π

]
=span {vmk+1,j+Dkr : m = 1, . . . , ρ, r ∈ R1},

V k,j
2π (Φk) := Θk,j

2π ∩ V k
2π = span {vmk,j : m = 1, . . . , ρ},

W k,j
2π (Ψk) := Θk,j

2π ∩W k
2π = span {umk,j : m = 1, . . . , %k}. (3.35)
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It is further shown in [24] that V k+1
2π (Φk+1) = V k

2π(Φk)⊕⊥W k
2π(Ψk) if and only if

Uk+1,j
2π (Φk+1) = V k,j

2π (Φk)⊕⊥W k,j
2π (Ψk) (3.36)

for all j ∈ Rk and (3.36) is equivalent to∑
r∈R1

Ĝk+1(j +Dkr)Mk+1(j +Dkr)Ĥk+1(j +Dkr)∗ = 0 (3.37)

and

dimUk+1,j
2π (Φk+1) = dimV k,j

2π (Φk) + dimW k,j
2π (Ψk) (3.38)

for j ∈ Rk. It is also inferred from (3.29) and (3.32) that

Mk(j) =
∑
r∈R1

Ĥk+1(j +Dkr)Mk+1(j +Dkr)Ĥk+1(j +Dkr)∗, (3.39)

Nk(j) =
∑
r∈R1

Ĝk+1(j +Dkr)Mk+1(j +Dkr)Ĝk+1(j +Dkr)∗. (3.40)

We cite below from [24] the characterization of Tk(Φk) being a tight frame in terms of

polyphase harmonics and the existence of a canonical choice of generators to satisfy the

criterion.

Theorem 3.21. [24] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

be a subset of L2(Ts) and

vmk,j := φmk k,j be the corresponding polyphase harmonics given by (3.16). Then Tk(Φk) is a

tight frame for V k
2π(Φk) and 〈T lkφmk , T rkφnk〉L2(Ts) = 0 for all m,n = 1, . . . , ρ, m 6= n, and

l, r ∈ Lk if and only if for all j ∈ Rk, 〈vmk,j, vnk,j〉L2(Ts) = 0 if m 6= n and
∥∥vmk,j∥∥2

L2(Ts) = 0

or d−k, for all m,n = 1, . . . , ρ, that is, Mk(j) given in (3.34) is a diagonal matrix with

diagonal entries 0 or d−k for j ∈ Rk.

Theorem 3.22. [24] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

be a subset of L2(Ts). There

exist functions θ1
k, . . . , θ

ρ
k in V k

2π(Φk) such that {T lkθmk : m = 1, . . . , ρ, l ∈ Lk} forms a tight

frame for V k
2π(Φk), and for all m,n = 1, . . . , ρ and l, r ∈ Lk,

〈T lkθmk , T rk θnk 〉L2(Ts) = 0 if m 6= n. (3.41)

Theorem 3.23. [24] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

be a subset of L2(Ts). The

length of V k
2π(Φk) is given by

len(V k
2π(Φk)) = max{dimV k,j

2π (Φk) : j ∈ Rk}. (3.42)

With ρk = len(V k
2π(Φk)), there exist functions θ1

k, . . . , θ
ρk
k in V k

2π(Φk) such that {T lkθmk :

m = 1, . . . , ρk, l ∈ Lk} forms a tight frame for V k
2π(Φk), and for all m,n = 1, . . . , ρk and

l, r ∈ Lk, (3.41) holds.
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Theorem 3.24. [24] Let {V k
2π(Φk)} be an MRA of L2(Ts) such that |Φk| = ρ, and for

m = 1, . . . , ρ, with φmk ∈ Φk and associated vk,j := (φmk )k,j given by (3.16) and Ĥk+1 ∈
S(Dk+1)ρ×ρ. Suppose that for each k ≥ 0, Mk(j) given in (3.34) is a diagonal matrix

with diagonal entries 0 or d−k for all j ∈ Rk. Then for every k ≥ 0, there exists Ĝk+1 ∈
S(Dk+1)ρd×ρ that satisfies the conditions (3.37) and (3.38), and that Nk(j) given in (3.34)

and (3.40) is a diagonal matrix with diagonal entries 0 or d−k for all j ∈ Rk.

As remarked in [24], Theorem 3.24 holds even when we begin with an arbitrary MRA

of L2(Ts) as we can always change the spanning set Tk(Φk) of the space V k
2π(Φk) to a tight

frame satisfying Theorem 3.21. Consequently, by Proposition 3.20, there always exists

Ψk such that Tk(Ψk) is a tight frame for its closed linear span W k
2π whenever W k

2π is the

orthogonal complement of V k
2π(Φk) in V k+1

2π (Φk+1).

3.3 Extension Principles

The conditions described from Theorem 3.21 to Theorem 3.24 are rather stringent for

obtaining tight wavelet frames since they eventually require (3.36) to hold for all possible

cases. Here, we shall describe extension principles for constructing tight wavelet frames

that allow us to preserve properties of the original MRA by relaxing the condition which

requires the finite dimensional spanning sets to be tight frames.

The following theorem which is essential to the proof of the unitary extension princi-

ple for L2(Ts) has an equivalent formulation in Proposition 3.26 which requires weaker

conditions (i.e. (3.47) instead of (3.43) needs to be satisfied). The conditions given in the

theorem are known as minimum energy tight frame conditions.

Theorem 3.25. [25] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

and Ψk :=
[
ψnk

]%k
n=1

be subsets

of V k+1
2π (Φk+1). Then the following are equivalent.

(i) There exist Ĥk+1 ∈ S(Dk+1)ρ×ρ and Ĝk+1 ∈ S(Dk+1)%k×ρ such that (3.28) and

(3.31) hold respectively, and

L̂k(j)
∗L̂k(j) = dIρd, j ∈ Rk, (3.43)
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where for j ∈ Rk, the (ρ+ %k)× ρd matrix L̂k(j) is given by

L̂k(j) :=

[
Ĥk(j)

Ĝk(j)

]
=
[
L̂k+1(j +Dkr1) · · · L̂k+1(j +Dkrd)

]
,

Ĥk(j) :=
[
Ĥk+1(j +Dkr1) · · · Ĥk+1(j +Dkrd)

]
, (3.44)

Ĝk(j) :=
[
Ĝk+1(j +Dkr1) · · · Ĝk+1(j +Dkrd)

]
,

and r1, . . . , rd denote all the elements of R1.

(ii) For all f ∈ L2(Ts) with %k ≥ ρ(d− 1), we have

ρ∑
m=1

∑
l∈Lk+1

∣∣〈f, T lk+1φ
m
k+1〉

∣∣2 =

ρ∑
m=1

∑
l∈Lk

∣∣〈f, T lkφmk 〉∣∣2 +

%k∑
m=1

∑
l∈Lk

∣∣〈f, T lkψmk 〉∣∣2 . (3.45)

(iii) For all f ∈ L2(Ts) with %k ≥ ρ(d− 1), we have

ρ∑
m=1

∑
l∈Lk+1

〈f, T lk+1φ
m
k+1〉T lk+1φ

m
k+1 =

∑
l∈Lk

[
ρ∑

m=1

〈f, T lkφmk 〉T lkφmk +

%k∑
m=1

〈f, T lkψmk 〉T lkψmk

]
. (3.46)

Proposition 3.26. Given that there exist Ĥk+1 ∈ S(Dk+1)ρ×ρ and Ĝk+1 ∈ S(Dk+1)%k×ρ

such that (3.28) and (3.31) hold. For each j ∈ Rk, suppose that rank Mk(j) = q(j),

rank Nk(j) = p(j) − q(j) and rank Mk+1(j + Dkr) = p(j, r), where r ∈ Rk, and there

exist ρ × ρ unitary matrices Uk+1(j + Dkr) such that the 1st p(j, r) × p(j, r) block of

Mk+1(j+Dkr)′ = Uk+1(j+Dkr)Mk+1(j+Dkr)Uk+1(j+Dkr)∗ consists of nonzero diagonal

entries with the remaining blocks being zero matrices. Let r1, . . . , rd ∈ R1 and define

the ρ × ρ block diagonal matrix I ′q(j) = diag(Iq(j), 0ρ−q(j)), the %k × %k block diagonal

matrix I ′p(j)−q(j) = diag(Ip(j)−q(j), 0%k−(p(j)−q(j))) and the ρd × ρd block diagonal matrix

I ′p(j) = diag(I ′p(j,r1), . . . , I
′
p(j,rd)), where for µ = 1, . . . , d, the ρ × ρ block diagonal matrix

I ′p(j,rµ) = diag(Ip(j,rµ), 0ρ−p(j,rµ)). Assume that

I ′p(j)L̂′k(j)∗
[
I ′q(j) 0

0 I ′p(j)−q(j)

][
I ′q(j) 0

0 I ′p(j)−q(j)

]
L̂′k(j)I ′p(j) = dI ′p(j), (3.47)

for all j ∈ Rk with L̂k(j) defined as in (3.44) where

L̂′k(j) = diag(Uk(j), Vk(j))L̂k(j)diag(Uk+1(j +Dkr1), . . . , Uk+1(j +Dkrd))
∗,

Uk(j) and Vk(j) are ρ×ρ and %k×%k unitary matrices such that the 1st q(j)×q(j) block of

Uk(j)Mk(j)Uk(j)
∗ and the 1st p(j)−q(j)×p(j)−q(j) block of Vk(j)Nk(j)Vk(j)

∗ consist of

nonzero diagonal entries with the remaining blocks being zero matrices respectively. Then

the equivalent conditions of Theorem 3.25 are satisfied.
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Proof. It suffices to verify that (3.43) holds for any given j ∈ Rk. We define the ρ × ρ
matrices

̂̃
G
m

k+1(j + Dkr) for m = 1, . . . , d and r ∈ R1, such that
̂̃
G
m

k+1(j + Dkrm) =
√
d(I − I ′p(j,rm)) =

√
d diag (0p(j,rm), Iρ−p(j,rm)) and

̂̃
G
m

k+1(j+Dkr) = 0 for r 6= rm. Next we

define

̂̄Lk(j) :=

 ̂̄H ′k+1(j +Dkr1) · · · ̂̄H ′k+1(j +Dkrd)̂̃
G
′

k+1(j +Dkr1) · · · ̂̃
G
′

k+1(j +Dkrd)

 ,
where ̂̄H ′k+1(j + Dkr) = I ′q(j)Ĥ

′
k+1(j + Dkr)I ′p(j,r),

̂̄G′k+1(j + Dkr) = I ′p(j)−q(j)Ĝ
′
k+1(j +

Dkr)I ′p(j,r), Ĥ
′
k+1(j + Dkr) = Uk(j)Ĥk+1(j + Dkr)Uk+1(j + Dkr)∗, Ĝ′k+1(j + Dkr) =

Vk(j)Ĝk+1(j +Dkr)Uk+1(j +Dkr)∗ and the extended wavelet mask

̂̃
G
′

k+1(j +Dkr)∗ =
[̂̄G′k+1(j +Dkr)∗

̂̃
G

1

k+1(j +Dkr)∗ · · · ̂̃
G
d

k+1(j +Dkr)∗
]
.

We could verify that

̂̄Lk(j)
∗ ̂̄Lk(j) = I ′p(j)L̂′k(j)∗

[
I ′q(j) 0

0 I ′p(j)−q(j)

][
I ′q(j) 0

0 I ′p(j)−q(j)

]
L̂′k(j)I ′p(j) +

̂̃
G

1

k+1(j +Dkr1)∗ · · · ̂̃
G
d

k+1(j +Dkr1)∗

...
...̂̃

G
1

k+1(j +Dkrd)
∗ · · · ̂̃

G
d

k+1(j +Dkrd)
∗



̂̃
G

1

k+1(j +Dkr1) · · · ̂̃
G

1

k+1(j +Dkrd)
...

...̂̃
G
d

k+1(j +Dkr1) · · · ̂̃
G
d

k+1(j +Dkrd)


= dI ′p(j) + d(I − I ′p(j)) = dIρd.

We remark that the unitary matrices Uk+1(j +Dkr), Uk(j) and Vk(j) always exists as

the matrices Mk+1(j+Dkr), Mk(j) and Nk(j) are Hermitian matrices. We also note from

(3.40) that the number of wavelets generating the wavelet subspace remain unchanged

since

Ñ′k(j) =
∑
r∈R1

̂̃
G
′

k+1(j +Dkr)M′k+1(j +Dkr)
̂̃
G
′

k+1(j +Dkr)∗ = diag(Nk(j), 0ρd),

i.e. the rank of the matrix Ñ′k(j) is the same as the rank of Nk(j).

We state the unitary extension principle (UEP) for L2(Ts) here. The main require-

ments for the UEP to hold are the refinable functions eventually “covering” the frequency

domain “uniformly” and the columns of the extended mask L̂k(j) being orthonormal on

the spectrum of V k+1
2π (Φk+1) for every k ≥ 0.
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Theorem 3.27. [25] For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

and Ψk :=
[
ψnk

]%k
n=1

be subsets of

V k+1
2π (Φk+1) with %k ≥ ρ(d− 1) satisfying (3.28) and (3.31) for some Ĥk+1 ∈ S(Dk+1)ρ×ρ

and Ĝk+1 ∈ S(Dk+1)%k×ρ respectively, and

lim
k→∞

dk
ρ∑

m=1

∣∣∣φ̂mk (n)
∣∣∣2 = A > 0, n ∈ Zs. (3.48)

If for every k ≥ 0 and for each j ∈ Rk, the (ρ + %k) × ρd matrix L̂k(j) as defined in

(3.44) satisfies L̂k(j)
∗L̂k(j) = dIρd, then the periodic affine system X2π := {φ0 : φ0 ∈

Φ0}∪ {T lkψk : ψk ∈ Ψk, l ∈ Lk, k ≥ 0} as defined in (1.15) forms a tight wavelet frame for

L2(Ts) with frame bound A derived from the MRA {V k
2π(Φk)}k≥0.

Next, in the theme of using appropriate transformations to obtain new wavelet frames

from existing ones, we derive the generalized oblique extension principle (GOEP) for

L2(Ts).

Theorem 3.28. For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

and Ψk :=
[
ψnk

]%k
n=1

be subsets of

V k+1
2π (Φk+1) with %k ≥ ρ(d− 1) satisfying (3.28) and (3.31) for some Ĥk+1 ∈ S(Dk+1)ρ×ρ

and Ĝk+1 ∈ S(Dk+1)%k×ρ respectively, and suppose that (3.48) holds. Define Φ̂′k := Θ̂kΦ̂k

and Ψ̂′k := Ω̂kΨ̂k, where Θ̂k ∈ S(Dk)ρ×ρ and Ω̂k ∈ S(Dk)%
′
k×%k with %′k ≥ ρ(d − 1), Θ̂k(j)

being invertible for each j ∈ Rk and

lim
k→∞

Θ̂k(j)
∗Θ̂k(j) = Iρ, j ∈ Zs. (3.49)

If for every k ≥ 0 and for each j ∈ Rk, the (ρ+ %′k)× ρd matrix

L̂′k(j) := diag (Θ̂k(j), Ω̂k(j))L̂k(j)diag
[
Θ̂k+1(j)−1

]d
m=1

(3.50)

with L̂k(j) as defined in (3.44) satisfies L̂′k(j)∗L̂′k(j) = dIρd, then the periodic affine system

X ′2π := {φ′0 : φ′0 ∈ Φ′0} ∪ {T lkψ′k : ψ′k ∈ Ψ′k, l ∈ Lk, k ≥ 0} forms a tight wavelet frame with

frame bound A for L2(Ts) derived from the MRA {V k
2π(Φ′k)}k≥0.

Proof. It is clear that Φ̂′k and Ψ̂′k satisfy (3.28) and (3.31) with

Φ̂′k(j) = Θ̂k(j)Φ̂k(j) = Θ̂k(j)Ĥk+1(j)Θ̂k+1(j)−1Θ̂k+1(j)Φ̂k+1(j) = Ĥ ′k+1(j)Φ̂′k+1(j) (3.51)

and

Ψ̂′k(j) = Ω̂k(j)Ψ̂k(j) = Ω̂k(j)Ĝk+1(j)Θ̂k+1(j)−1Θ̂k+1(j)Φ̂k+1(j) = Ĝ′k+1(j)Φ̂′k+1(j) (3.52)
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for j ∈ Zs.

For a given j ∈ Zs and ε > 0, (3.48) implies that there exists K > 0 such that for all

k ≥ K, ∣∣∣dkΦ̂k(j)
∗Φ̂k(j)− A

∣∣∣ < ε. (3.53)

The condition (3.49) implies that there exists K ′ > 0 such that for every k ≥ K ′,∥∥∥Θ̂k(j)
∗Θ̂k(j)− Iρ

∥∥∥
max

:= max
m,n∈{1,...,ρ}

∣∣∣(Θ̂k(j)
∗Θ̂k(j))m,n − δm,n

∣∣∣ < ε (3.54)

From (3.53) and (3.54), we are able to make the following estimate∣∣∣dkΦ̂′k(j)∗Φ̂′k(j)− A∣∣∣ ≤ ∣∣∣dkΦ̂k(j)
∗(Θ̂k(j)

∗Θ̂k(j)− Iρ)Φ̂k(j)
∣∣∣+
∣∣∣dkΦ̂k(j)

∗Φ̂k(j)− A
∣∣∣ .(3.55)

For the sake of convenience, let us denote Φ̂k(j) =
[
φ̂mk (j)

]ρ
m=1

as a vector in Rρ. For all

k ≥ max{K,K ′}, we could utilize (3.54) and the Cauchy-Schwarz inequality to bound∣∣∣dkΦ̂k(j)
∗(Θ̂k(j)

∗Θ̂k(j)− Iρ)Φ̂k(j)
∣∣∣ ≤ dk

∥∥∥Φ̂k(j)
∥∥∥

Rρ

∥∥∥(Θ̂k(j)
∗Θ̂k(j)− Iρ)Φ̂k(j)

∥∥∥
Rρ

≤ ρdk
∥∥∥(Θ̂k(j)

∗Θ̂k(j)− Iρ)
∥∥∥

max

∥∥∥Φ̂k(j)
∥∥∥2

Rρ
< ρεdkΦ̂k(j)

∗Φ̂k(j).

Since (3.53) and (3.55) imply that
∣∣∣dkΦ̂′k(j)∗Φ̂′k(j)− A∣∣∣ < ε[ρ(A + ε) + 1] for all k ≥

max{K,K ′}, consequently

lim
k→∞

dk
ρ∑

m=1

∣∣∣φ̂′mk (j)
∣∣∣2 = lim

k→∞
dk
∥∥∥Φ̂′k(j)

∥∥∥2

Rρ
= A > 0, j ∈ Zs.

Hence the MRA {V k
2π(Φ′k)}k≥0 satisfies the hypothesis of Theorem 3.27 and X ′2π will be a

tight wavelet frame for L2(Ts) if L̂′k(j)∗L̂′k(j) = dIρd for every k ≥ 0 and each j ∈ Rk.

Suitable choices for Θ̂k and Ω̂k from S(Dk)ρ×ρ and S(Dk)%
′
k×%k in Theorem 3.28 could

be unitary matrices and matrices with unitary columns respectively. This leads us to the

following construction and corollary.

Corollary 3.29. For each k ≥ 0, let Φk :=
[
φmk

]ρ
m=1

and Ψk :=
[
ψnk

]%k
n=1

be subsets

of V k+1
2π (Φk+1) with %k ≥ ρ(d − 1). Let the affine system X2π as defined in (1.15) be a

tight frame for L2(Ts) derived from the UEP with {V k
2π(Φk)}k≥0 as the underlying MRA

of L2(Ts) and L̂k+1 :=

[
Ĥk+1

Ĝk+1

]
as the combined MRA mask. Define Φ̂′k := ÛΦkΦ̂k and

Ψ̂′k := ÛΨkΨ̂k, where ÛΦk ∈ S(Dk)ρ×ρ and ÛΨk ∈ S(Dk)%
′
k×%k are unitary matrices and



3.3 Extension Principles 58

matrices with unitary columns such that %′k ≥ ρ(d − 1) respectively. Then X ′2π := {φ′0 :

φ′0 ∈ Φ′0} ∪ {T lkψ′k : ψ′k ∈ Ψ′k, l ∈ Lk, k ≥ 0} is a tight frame for L2(Ts) derived from

the MRA {V k
2π(Φ′k)}k≥0 using the GOEP with the combined MRA mask L̂′k+1 :=

[
Ĥ ′k+1

Ĝ′k+1

]
,

where Ĥ ′k+1 = ÛΦkĤk+1Û
∗
Φk+1

and Ĝ′k+1 = ÛΨkĜk+1Û
∗
Φk+1

.

Proof. In order to utilize Theorem 3.28, we let Θ̂k = ÛΦk and Ω̂k = ÛΨk . Since Θ̂k(j) is

unitary for each j ∈ Rk, (3.49) holds. Next, it is clear from (3.51) and (3.52) that Φ̂′k and

Ψ̂′k satisfy (3.28) and (3.31) with

Φ̂′k(j) = Ĥ ′k+1(j)Φ̂′k+1(j), Ψ̂′k(j) = Ĝ′k+1(j)Φ̂′k+1(j), j ∈ Zs.

This shows that by Propositions 3.19 and 3.20, the affine system X ′2π is obtained from

the MRA {V k
2π(Φ′k)}k≥0. Let L̂k(j) and L̂′k(j) be given as in (3.44) and (3.50). We verify

that for all k ≥ 0,

L̂′k(j)∗L̂′k(j) = Ĥ′k(j)∗Ĥ′k(j) + Ĝ′k(j)∗Ĝ′k(j) = dIρd

holds for all j ∈ Rk. This is true since for a given k ≥ 0 and j ∈ Rk+1,

Ĥ ′k+1(j)∗Ĥ ′k+1(j) + Ĝ′k+1(j)∗Ĝ′k+1(j) = ÛΦk+1
(j)
[
Ĥk+1(j)∗ÛΦk(j)

∗ÛΦk(j)Ĥk+1(j)

+Ĝk+1(j)∗ÛΨk(j)
∗ÛΨk(j)Ĝk+1(j)

]
ÛΦk+1

(j)∗ = ÛΦk+1
(j)dIρÛΦk+1

(j)∗ = dIρ,

and for a given k ≥ 0, j ∈ Rk and r, s ∈ R1 with r 6= s,

Ĥ ′k+1(j +Dkr)∗Ĥ ′k+1(j +Dks) + Ĝ′k+1(j +Dkr)∗Ĝ′k+1(j +Dks)

= ÛΦk+1
(j +Dkr)

[
Ĥk+1(j +Dkr)∗ÛΦk(j)

∗ÛΦk(j)Ĥk+1(j +Dks)

+Ĝk+1(j +Dkr)∗ÛΨk(j)
∗ÛΨk(j)Ĝk+1(j +Dks)

]
ÛΦk+1

(j +Dks)∗

= ÛΦk+1
(j +Dkr)0ρÛΦk(j +Dks)∗ = 0ρ.

Therefore, by Theorem 3.28 (GOEP), our result is true.

The choice of the matrices Θ̂0(0) = Iρ and Ω̂k(j) = I%k for all j ∈ Rk and k ≥ 0 in

Theorem 3.28 leads to the following oblique extension principle for L2(Ts).

Corollary 3.30. [25] For each k ≥ 0, let Φk :=
[
φmk

]ρk
m=1

and Ψk :=
[
ψnk

]%k
n=1

be subsets of

V k+1
2π (Φk+1) with %k ≥ ρ(d− 1) satisfying (3.28) and (3.31) for some Ĥk+1 ∈ S(Dk+1)ρ×ρ
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and Ĝk+1 ∈ S(Dk+1)%k×ρ respectively, and suppose that (3.48) holds. Define Φ̂′k := Θ̂kΦ̂k

where Θ̂k ∈ S(Dk)ρ×ρ are invertible matrices such that

lim
k→∞

Θ̂k(j)
∗Θ̂k(j) = Iρ, j ∈ Zs, (3.56)

and Θ̂0(0) = Iρ. If for every k ≥ 0 and for each j ∈ Rk, the (ρ+ %k)× ρd matrix

L̂′k(j) := diag (Θ̂k(j), I%k)L̂k(j)diag
[
Θ̂k+1(j)−1

]d
m=1

(3.57)

with L̂k(j) as defined in (3.44) satisfies L̂′k(j)∗L̂′k(j) = dIρd, then the periodic affine system

X2π := {φ0 : φ0 ∈ Φ0}∪{T lkψk : ψk ∈ Ψk, l ∈ Lk, k ≥ 0} as defined in (1.15) forms a tight

wavelet frame for L2(Ts) with frame bound A, derived from the MRA {V k
2π(Φ′k)}k≥0.

Proof. Since Θ̂0 ∈ S(D0)ρ×ρ, it follows that Θ̂0(j) = Θ̂0(0) = Iρ for all j ∈ Zs. Conse-

quently, Φ̂′0(j) = Φ̂0(j) for all j ∈ Zs, i.e. Φ′0 = Φ0 and the result is verified.

3.4 Periodization Connection

The Poisson summation formula (see [42]) states that periodization in the time domain

is the same as sampling in the frequency domain and this will be our chief motivation of

this section. Since the formula requires a certain amount of decay in the time domain, we

need to impose a decay condition on our function spaces. To this end, let K, k ≥ 0 and

for every ϕk ∈ Λk ⊂ L2,α(Rs), where Λk is given as in (1.7) and

L2,α(Rs) := {f ∈ L2(Rs) : f(t) = O((1 + |t|)−(1+α)), α > 0}

we define the 2πM−KZs-periodic function

ϕK,ω,k(t) :=
∑
n∈Zs

ϕ̂K,ω,k(n)ein·MKt, (3.58)

where ω ∈ Ts
K\∆ is such that |∆| = 0 and the Fourier coefficients

ϕ̂K,ω,k(n) := (̂ϕk)
o

K,ω,0(n) (3.59)

given in (3.4) lie in l2(Zs). In the event that ϕk = d
k
2ϕ(Mk·), then according to Lemma

3.5, ϕ̂K,ω,k = ϕ̂oK,ω,k. Formally, the Poisson summation formula shows that ϕK,ω,k =

P2πM−K
[
ϕk
( ·

2π

)
e−i ω·

2π

]
, where P2πM−K : L1(Rs)→ L1(Ts) is the 2πM−KZs-periodization

operator given by

P2πM−K : f 7→ (2π)−1
∑
n∈Zs

f(· − 2πM−Kn).
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The verification formally is as follows:

ϕ̂K,ω,k(n) =
1

(2π)s+1

∫
Ts−K

∑
m∈Zs

ϕk

(
1

2π
(t− 2πM−Km)

)
e
−i
2π
ω·(t−2πM−Km)e−iDKn·tdt

=
1

(2π)s+1

∑
m∈Zs

∫
Ts−K

ϕk

(
1

2π
(t− 2πM−Km)

)
e
−i
2π
ω·(t−2πM−Km)e−iDKn·tdt

=
1

(2π)s+1

∑
m∈Zs

∫
Ts−K−2πM−Km

ϕk

( x
2π

)
e
−i
2π
ω·xe−iDKn·(x+2πM−Km)dx

=
1

(2π)s+1

∫
Rs
ϕk

( x
2π

)
e
−i
2π

(ω+2πDKn)·xdx =
1

(2π)s

∫
Rs
ϕk (t) e−i(ω+2πDKn)·tdt.

In the event that ϕk = d
k
2ϕ(Mk·), we have

(2π)sϕ̂K,ω,k(n) = d
k
2

∫
Rs
ϕ
(
Mkt

)
e−i(ω+2πDKn)·tdt = d−

k
2

∫
Rs
ϕ (x) e−i(ω+2πDKn)·M−kxdx

= d−
k
2

∫
Rs
ϕ (t) e−iD−k(ω+2πDKn)·tdt = d−

k
2 ϕ̂(D−k(ω + 2πDKn)).

(Note that (̂ϕω,k)
o

K,j(n) = ϕ̂ω,k(j+DKn) = (̂ϕk)0,ω,0(j+DKn).) Since 2πM−KZs-periodic

functions are 2πZs-periodic functions, it suffices to study the periodization connection for

the 2πZs-periodic case. To this end, let us denote ϕω,k := ϕ0,ω,k and define the set of

functions Λω,k by

Λω,k := {ϕω,k : ϕk ∈ Λk}

and its closed 2πM−KZs shift-invariant span V K
2π,ω(Λω,k) by

V K
2π,ω(Λω,k) := V K

2π (Λω,k) := spanTK(Λω,k).

We shall now consider the shift-invariant system E(Φ) ∪ X0(Ψ) obtained from the

MRA {V k(Φ)}, where X0(Ψ) is given in (1.5). Define the periodized affine system Xω of

a shift-invariant system E(Φ) ∪X0(Ψ), where ω ∈ Ts, to be

Xω := {φω,0 : φ ∈ Φ} ∪ {T lkψω,k : ψ ∈ Ψ, l ∈ Lk, k ≥ 0}. (3.60)

The corresponding periodized quasi-affine system Xq
K,ω of a shift-invariant system E(Φ)∪

X0(Ψ) at level K ≥ 0 is defined to be

Xq
K,ω := TK(ΩK,ω)

which consists of all the 2πM−KZs shifts of

ΩK,ω := {d−
K
2 φω,0 : φ ∈ Φ} ∪ {d

k
2
−K

2 ψω,k : ψ ∈ Ψ : 0 ≤ k < K} ∪

{T lkψω,k : ψ ∈ Ψ, l ∈ Lk−K , k ≥ K}.
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Lemma 3.31. Let k, l ∈ Zs and fk ∈ L2,α(Rs). Then

(i) P2π

[
El
kfk
( ·

2π

)
e−i ω·

2π

]
= e−iω·M−klT lkfω,k.

(ii) for almost every ω ∈ Ts, (e−iω·M−klT lkfω,k)
∧ = e−iω·M−klMl

0,kf̂ω,k.

Proof. Part (i) follows from P2π

[
El
kfk
( ·

2π

)
e−i ω·

2π

]
= P2π

[
fk(

·
2π
−M−kl)e−i ω·

2π

]
. Since

Lemma 3.14 shows that Ml
0,kf̂ω,k is the sequence of Fourier coefficients of T lkfω,k for

almost every ω ∈ Ts and Lemma 3.5 shows that (El
kfk)

∧
0,ω,0 = e−iω·M−klMl

0,kf̂ω,k, part (ii)

holds.

A range function is a mapping J : Ts → {closed subspaces of l2(Zs)}. The mapping

J is measurable if ω 7→ 〈P(ω)a, b〉l2(Zs) is a measurable function for each a, b ∈ l2(Zs),

where P(ω) is the associated orthogonal projection from l2(Zs) onto J (ω). Therefore,

this means that measurability of J depends on the measurability of the projection of

uniform samples in the frequency domain.

Theorem 3.32. [4] The closed subspace S of L2,α(Rs) is shift-invariant if and only if

S = {f ∈ L2,α(Rs) : f̂0,ω,0 ∈ J (ω) for a.e. ω ∈ Ts}, (3.61)

where J is a measurable range function. There is a one-to-one correspondence between S

and J by identifying range functions which are equal almost everywhere. Furthermore if

Λ ⊂ S is a countable set that generates S, then

J (ω) = span {ϕ̂0,ω,0 : ϕ ∈ Λ} for a.e. ω ∈ Ts.

Theorem 3.32 essentially says that two functions f and g lie in the same closed shift-

invariant space if and only if their corresponding uniform frequency samples differ by a

set of measure zero.

Theorem 3.33. [4] Let V be a closed shift-invariant subspace of a closed shift-invariant

subspace S of L2,α(Rs) and let W be the orthogonal complement of V in S. Then W is a

closed shift-invariant space, Ŝ||ω and S2π,ω are the orthogonal sums of V̂||ω and Ŵ||ω, and

V2π,ω and W2π,ω respectively for almost every ω ∈ Ts.

Theorem 3.33 says that uniform frequency samples and the corresponding periodization

of two signals are orthogonal except for a set of measure zero if the signals are orthogonal

to each other.
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Corollary 3.34. Let V be a closed shift-invariant subspace of a closed shift-invariant

subspace S of L2,α(Rs). Then V̂||ω and V2π,ω are subspaces of Ŝ||ω and S2π,ω respectively

for almost every ω ∈ Ts.

Proposition 3.35. Let V and S be closed shift-invariant subspaces of L2,α(Rs). If V̂||ω

is a subspace of Ŝ||ω or V2π,ω is a subspace of S2π,ω for almost every ω ∈ Ts, then V is a

subspace of S.

Proof. Suppose that V̂||ω ⊆ Ŝ||ω for almost every ω ∈ Ts and let f ∈ V . By Theorem 3.32,

f̂0,ω,0 ∈ J (ω) for almost every ω ∈ Ts, where J is a measurable range function given as

in (3.61). If f 6∈ S, then there exists ∆ ⊆ Ts such that |∆| > 0 and f̂0,ω,0 6∈ J (ω) for all

ω ∈ ∆, which is a contradiction.

Corollary 3.34 and Proposition 3.35 state that periodized subspaces constructed us-

ing uniform frequency samples of signals satisfy the nesting property except on a set of

measure zero if and only if the subspaces containing the signals also satisfy the nesting

property.

Theorem 3.36 and Corollary 3.37 state that a set of functions is a frame for their

closed linear span if and only if the periodization of these functions is a frame for the

corresponding periodized subspaces constructed using their uniform frequency samples

for almost all possible samples.

Theorem 3.36. Let V (Λ) be a closed shift-invariant space generated by some countable

set Λ ⊂ L2,α(Rs). Then E(Λ) is a (Bessel system) frame for V (Λ) if and only if Λω,0 is

a (Bessel system) frame for V2π(Λω,0) with the same bounds for almost every ω ∈ Ts. In

particular, the former is a tight frame if and only if the latter is a tight frame for almost

every ω ∈ Ts.

Proof. Suppose that E(Λ) is a Bessel system with bound B. By Theorem 3.4, the norm

of its Gramian MΛ(ω) =
[
〈ϕ̂ω,0, φ̂ω,0〉l2(Zs)

]
ϕ,φ∈Λ

is bounded above by B for almost every

ω ∈ Ts. Since the Gramian of Λω,0 satisfy MΛω,0(0) = MΛ(ω), we conclude using Theorem

3.13 that Λω,0 is a Bessel system with bound B for almost every ω ∈ Ts. Similarly, if

E(Λ) is a frame for V (Λ) with lower bound A, Theorem 3.4 shows that ‖MΛ(ω)−1‖ is

bounded above by A−1 for almost every ω ∈ σ(V (Λ)) and Λω,0 is deduced to be a frame

for V2π(Λω,0) with lower bound A for almost every ω ∈ Ts after a repeated application of

Theorem 3.13. For the converse, from Theorem 3.13, we shall have
∥∥MΛω,0(0)

∥∥ bounded

above by B in the former and
∥∥MΛω,0(0)−1

∥∥ bounded above by A−1 in the latter for almost

every ω ∈ Ts and the argument is reversed using Theorem 3.4.
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For the rest of this chapter on the periodization of wavelets from FMRAs, we shall

consider the more general setting of nonstationary wavelets as periodic wavelets are non-

stationary.

Corollary 3.37. For k ≥ 0, let Φk ⊂ L2,α(Rs) be countable. Then E({El
kϕk : ϕk ∈

Φk, l ∈ Lk}) is a frame for V k(Φk) if and only if Tk(Φω,k) is a frame for V k
2π(Φω,k)

with the same bounds for almost every ω ∈ Ts. In particular, the former is a tight

frame if and only if the latter is a tight frame for almost every ω ∈ Ts. In addition,

V k
2π(Φω,k) = {fω,0 : f̂ω,0 ∈ V̂ k

||ω(Φk)} for almost every ω ∈ Ts.

Proof. For a given k ≥ 0, let Λ = {El
kϕk : ϕk ∈ Φk, l ∈ Lk}. Using Lemma 3.5 and

according to (3.59), the fibre V̂ k
||ω(Φk) is the closed linear span of {e−iω·M−klMl

0,kϕ̂ω,k :

ϕk ∈ Φk, l ∈ Lk}, which relates to the Fourier coefficients of Λω,0 = {e−iω·M−klT lkϕω,k :

ϕk ∈ Φk, l ∈ Lk} for almost every ω ∈ Ts, as verified by Lemma 3.31. Therefore, Theorem

3.36 shows that E(Λ) is a frame for V k(Φk) if and only if Tk(Φω,k) is a frame for V k
2π(Φω,k)

with the same bounds for almost every ω ∈ Ts.

Lemma 3.38. [43] Let A(ω) be a measurable Hermitian matrix-valued function for almost

every ω ∈ Ts. Then there exists a measurable unitary matrix-valued function U(ω) such

that U(ω)∗A(ω)U(ω) is a diagonal matrix for almost every ω ∈ Ts.

Corollary 3.39. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. There exist functions

{θmk }
ρ
m=1 ⊂ V k(Φk) such that E({El

kθ
m
k : m = 1, . . . , ρ, l ∈ Lk}) is a tight frame for

V k(Φk) and for all m,n = 1, . . . , ρ and l, r ∈ Lk,

〈El
kθ
m
k , E

r
kθ
n
k 〉 = 0, if m 6= n. (3.62)

Proof. The proof is essentially that of Theorem 3.22 with the additional requirement that

the functions {θmk }
ρ
m=1 are constructed in the following way to be measurable. With

Corollary 3.37 in mind, we shall only consider an arbitrary ω ∈ Ts\∆, where ∆ ⊂ Ts with

|∆| = 0 such that for every ω ∈ Ts\∆ and k ≥ 0, V k
2π(Φω,k) is a subspace of L2(Ts). Fix

j ∈ Rk. By the positive semi-definiteness and Hermitian property of Mω,k(j) expressed

in (3.34), Lemma 3.38 shows that there exists a ρ× ρ measurable unitary matrix Uω,k(j)

such that

Uω,k(j)Mω,k(j)Uω,k(j)
∗ = diag

[
λmω,k(j)

]ρ
m=1

, (3.63)
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where λ1
ω,k(j), . . . , λ

ρ
ω,k(j) are the eigenvalues of Mω,k(j) which are always nonnegative.

For m = 1, . . . , ρ, define βmω,k(j) by

βmω,k(j) :=

{
d−

k
2 [λmω,k(j)]

− 1
2 ifλmω,k(j) 6= 0,

1 ifλmω,k(j) = 0.

Letting Bω,k(j) := diag
[
βmω,k(j)

]ρ
m=1

and Cω,k(j) := Bω,k(j)Uω,k(j) =
[
cm,nω,k (j)

]ρ
m,n=1

,

(3.63) shows that

Cω,k(j)Mω,k(j)Cω,k(j)
∗ = diag

[
δmω,k(j)

]ρ
m=1

, (3.64)

where δmω,k(j) = 0 or d−k for m = 1, . . . , ρ. For m = 1, . . . , r, we define

wmω,k,j :=

ρ∑
n=1

cm,nω,k (j)vnω,k,j, (3.65)

which lies in V k
2π(Φω,k) using (3.33). With the invertibility of Cω,k(j), we have V k

2π(Φω,k) :=

span {wmω,k,j : m = 1, . . . , ρ, j ∈ Rk}. For m = 1, . . . , ρ, define

θmω,k :=
∑
j∈Rk

wmω,k,j. (3.66)

Therefore {θmω,k}
ρ
m=1 ⊂ V k

2π(Φω,k) and {wmω,k,j : m = 1, . . . , ρ, j ∈ Rk} is the corresponding

collection of polyphase harmonics. Since (3.64) and (3.65) show that the matrix[
〈wmω,k,j, wnω,k,j〉L2(Ts)

]ρ
m,n=1

= Cω,k(j)Mω,k(j)Cω,k(j)
∗ (3.67)

is diagonal with diagonal entries 0 or d−k for all j ∈ Rk, Theorem 3.21 implies that for

almost every ω ∈ Ts, {T lkθmω,k : m = 1, . . . , ρ, l ∈ Lk} forms a tight frame for V k
2π(Φω,k),

and for all m,n = 1, . . . , ρ and l, r ∈ Lk,

〈T lkθmω,k, T rk θnω,k〉L2(Ts) = 0 if m 6= n.

Consequently, Lemmas 3.5 and 3.14 show that for all m,n = 1, . . . , ρ with m 6= n and

l, r ∈ Lk,

〈El
kθ
m
k , E

r
kθ
n
k 〉 =

∫
Ts

e−iω·M−k(l−r)〈Ml
0,kθ̂

m
k 0,ω,0,M

r
0,kθ̂

n
k 0,ω,0〉l2(Zs)dω

=

∫
Ts

eiω·M−k(r−l)〈Ml
0,kθ̂

m
ω,k,M

r
0,kθ̂

n
ω,k〉l2(Zs)dω

=

∫
Ts

eiω·M−k(r−l)〈T lkθmω,k, T rk θnω,k〉L2(Ts)dω = 0,

and E({El
kθ
m
k : m = 1, . . . , ρ, l ∈ Lk}) being a tight frame for V k(Φk) follows from

Corollary 3.37.
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We emphasize that the “almost every” condition in Corollary 3.37 is essential. The

result does not hold, for instance, if the lower frame bound of Tk(Φω,k) is arbitrarily close

to zero for some ω belonging to a set of positive measure. This could be seen from the

following example for s = 1 and M = 2.

Example 3.4.1. Let c,N ∈ N be such that c ≥ 3 and c mod 2 = 1. Noting that⌈
log2 c2

N
⌉
≥
⌈
log2 2N

⌉
= N and k ≥

⌈
log2 c2

N
⌉

implies that 2k > c2N , construct the

L2(R) functions φk = 2
k
2 1[0,c2N )(2

k·) = 2
k
2 1[0,c2N−k), whose corresponding Fourier trans-

forms are given by

φ̂k(ω) = 2−
k
2

1

i2−kω

[
1− e−i2−kωc2N

]
=

2
k
2

iω

[
1− e−ic2N−kω

]
,

which leads to ∣∣∣φ̂k(ω)
∣∣∣2 =

2k

ω2

[
2− 2 cos c2N−kω

]
=

2k+2

ω2

[
sin2 c2N−k

ω

2

]
,

whose zeros are located at ω = 2π n
c
2k−N , where n ∈ Z\{0}. Observe that ω + 2π2k =

2π n+c2N

c
2k−N and this shows that the zeros are 2π2k periodic.

Since

φk = 2
k
2

[
1[0,c2N−(k+1)) + 1[c2N−(k+1),c2N−k)

]
= 2−

1
2φk+1 + 2−

1
2φk+1(· − c2N2−(k+1)) = 2−

1
2φk+1 + 2−

1
2Ec2N

k+1φk+1,

we have refinability for the φ′ks.

Since
∣∣∣φ̂k(ω + 2π2kn)

∣∣∣2 ≤ 2k(4)
(2π2kn)2

for n ∈ N,
∣∣∣φ̂k(ω + 2π2kn)

∣∣∣2 ≤ 2k(4)
[2π2k(1+n)]2

for n ≤ −2

and
∣∣∣φ̂k(ω − 2π2k)

∣∣∣2 ≤ 2k+2
[
c2N−k

2

]2

, by Weierstrass M-Test, the Gramian Mk,φk(ω) of the

set Ek(φk) is a continuous function. For k ≥ 0, as φ̂k has 2π2k-periodic zeros Mk,φk(ω) is

not bounded below away from zero and by Theorem 3.4, the Bessel system Ek(φk) is not

a frame. Using the periodization method given in (3.58), we obtain

(2π)φω,k(t) =

{
2
k
2 (1− e−iωc2N−k)(1− e−iω)−11[0,2π)(t)e

−i ωt
2π if 0 ≤ k <

⌈
log2 c2

N
⌉
,

2
k
2 1[0,2πc2N−k)(t)e

−i ωt
2π if k ≥

⌈
log2 c2

N
⌉
.

Noting that for 0 ≤ k <
⌈
log2 c2

N
⌉
, we have

(2π)P2π[2
k
2 1[0,c2N−k)((2π)−1·)e−

iω·
2π ](t) = 2

k
2

c2N−k−1∑
m=0

1[−2πm,−2πm+2πc2N−k)(t)e
−iωme−

iωt
2π

=

2
k
2

c2N−k−1∑
m=0

e−iωm

 e−
iωt
2π .
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For ω ∈ (0, 2π) or n 6= 0, the Fourier coefficients of φω,k are given as

(2π)φ̂ω,k(n) =


2
k
2

i(ω+2πn)

[
1− e−iωc2N−k

]
if 0 ≤ k <

⌈
log2 c2

N
⌉
,

2
k
2

i(ω+2πn)

[
1− e−i(ω+2πn)c2N−k

]
if k ≥

⌈
log2 c2

N
⌉
,

which leads to∣∣∣(2π)φ̂ω,k(n)
∣∣∣2 =

{
2k(2)

(ω+2πn)2

[
1− cosωc2N−k

]
if 0 ≤ k <

⌈
log2 c2

N
⌉
,

2k(2)
(ω+2πn)2

[
1− cos c2N−k(ω + 2πn)

]
if k ≥

⌈
log2 c2

N
⌉
,

=

{
2k(4)

(ω+2πn)2

[
sin2 1

2
ωc2N−k

]
if 0 ≤ k <

⌈
log2 c2

N
⌉
,

2k(4)
(ω+2πn)2

[
sin2 1

2
c2N−k(ω + 2πn)

]
if k ≥

⌈
log2 c2

N
⌉
.

We also confirm that for k =
⌈
log2 c2

N
⌉
− 1, φω,k is refinable, i.e.

φω,k =
∑
l∈Lk+1

(1− e−iωc2N−k)(1− e−iω)−1T lk+1φω,k+1.

Let j ∈ Rk\{0} and p ∈ Z. For 0 ≤ k <
⌈
log2 c2

N
⌉
, we have

(2π)φ̂ω,k(j + 2kp) =
2
k
2

i [ω + 2π(j + 2kp)]

[
1− e−iωc2N−k

]
,

and φ̂ω,k(j + 2kp) = 0 if ω = 0. For k ≥
⌈
log2 c2

N
⌉
, we have

(2π)φ̂ω,k(j + 2kp) =
2
k
2

i [ω + 2π(j + 2kp)]

[
1− e−i(ω+2πj)c2N−k

]
.

Therefore φ̂ω,k(j + 2kp) = 0 if ω + 2πj = 2π n
c
(2k−N). Since j ∈ Rk\{0}, we must have

ω = 0 and j = n
c
2k−N , where n ∈ {c, 2c, . . . , (2N−1)c}, i.e. j ∈ {2k−N , . . . , (2N−1)2k−N}.

Hence for such j’s, the polyphase harmonics (φ0,k)k,j = 0, which also shows that even when

φ0,k is compactly supported within [0, 2π], σk(V
k

2π(φ0,k)) is only a proper subset of Rk.

Using Weierstrass M-Test again, we conclude that for j ∈ {2k−N , . . . , (2N − 1)2k−N},
‖(φω,k)k,j‖2

L2(T) is a continuous function having zeros in [0, 2π) whenever ω = 0 and this

shows that ‖(φω,k)k,j‖2
L2(T) is not bounded below on ω ∈ [0, 2π). Therefore, by Theorem

3.13, Tk(φω,k) is not a frame for almost every ω ∈ [0, 2π) with uniform bounds since the

lower bound of Tk(φω,k) is arbitrarily close to zero for ω belonging to some subset of [0, 2π)

with positive measure.

In Example 3.4.1, we observe that for k ≥
⌈
log2 c2

N
⌉
, even when φ0,k is compactly

supported within [0, 2π] and refinable, σk(V
k

2π(φ0,k)) is only a proper subset of Rk. The

implication is that we could not represent functions belonging to Rk\σk(V k
2π(φ0,k)) by
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using Ek(φ0,k) alone. This situation does not occur in the nonperiodic setting of compactly

supported functions φk ∈ L2(R) with φ̂k having mild decay properties such as φ′k ∈ L1(R),

i.e. we have σk(V
k(φk)) = Tk (modulo measure zero sets). In particular, if Ek(φk) is a

Riesz basis, we have σk(V
k(φk)) = Tk exactly since φ̂k is an entire function and Mk,φk

will be continuous on Ts and bounded below away from zero everywhere. In this case,

σk(V
k

2π(φω,k)) is always the set Rk.

A consequence of Corollaries 3.37 and 3.39 is an alternative proof for a similar result

from [4] for the stationary setting concerning the orthogonal decomposition of an FSI

space into PSI spaces. Our formulation takes care of both stationary and nonstationary

cases.

Theorem 3.40. For k ≥ 0, let V k(Φk) be a closed M−kZs shift-invariant space of L2,α(Rs)

with |Φk| = ρ. Then lenV k(Φk) = ρk := ess sup {dimV k,j
2π,ω : j ∈ Rk, ω ∈ Ts} and there

exist functions {θmk }
ρk
m=1 ⊂ V k(Φk) such that Ek({θmk }

ρk
m=1) is a tight frame for V k(Φk)

and for all m,n = 1, . . . , ρk, and l, r ∈ Lk, (3.62) holds. Consequently, V k(Φk) can be

written as the orthogonal sum of ρk M
−kZs PSI spaces.

Proof. The proof is essentially that of Theorem 3.23 with the additional requirement that

the functions {θmk }
ρk
m=1 are constructed in the following way to be measurable. Corollary

3.39 shows that there exist functions {θmk }
ρ
m=1 ⊂ V k(Φk) such that Ek({θmk }

ρ
m=1) is a

tight frame for V k(Φk) and for all m,n = 1, . . . , ρ and l, r ∈ Lk, (3.62) holds. Let

ρω,k := max{dimV k,j
2π (Φω,k) : j ∈ Rk} and hence ρk = ess sup{ρω,k : ω ∈ Ts}. Observe

from (3.34) that the number of nonzero eigenvalues of Mω,k(j) is bounded by ρω,k. For

each j ∈ Rk, after interchanging rows followed by columns on both sides of (3.63) by

multiplying on the left and on the right a ρ × ρ permutation matrix and its transpose

respectively, the resulting eigenvalues satisfy λmω,k(j) = 0 for all m = ρω,k + 1, . . . , ρ. As

a result, (3.64) and (3.67) shows that the corresponding
∥∥wmω,k,j∥∥2

L2(Ts) = 0, which means,

by (3.66), that θmω,k = 0 for m = ρω,k + 1, . . . , ρ for almost every ω ∈ Ts. Consequently,

(3.59) together with Lemma 3.5 shows that θmk = 0 for m = ρk + 1, . . . , ρ. Therefore,

V k(Φk) =
⊕ρk⊥

m=1 V
k(θmk ) and Lk := lenV k(Φk) ≤ ρk. There exists {ϑmk }

Lk
m=1 such that

E({El
kϑ

m
k : m = 1, . . . , Lk, l ∈ Lk}) spans V k(Φk). Let ymω,k,j, m = 1, . . . , Lk, j ∈ Rk be

the polyphase harmonics of {ϑmω,k}
Lk
m=1, which by Corollary 3.37, spans V k

2π(Φω,k). Using

(3.35), for j ∈ Rk, span {ymω,k,j}
Lk
m=1 = V k,j

2π (Φω,k). Hence, Lk ≥ ρk.

Our next result shows that two function spaces are the same if their corresponding
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periodized spaces constructed from uniform frequency samples are the same for almost

all possible samples.

Corollary 3.41. Let V be the FSI space generated by a finite subset Λ of a FSI space S

of L2,α(Rs). Suppose that dim V̂||ω = dim Ŝ||ω (or dimV2π,ω = dimS2π,ω) for almost every

ω ∈ Ts. Then V = S.

Proof. Since Λ ⊂ S and S is a closed shift-invariant space, therefore V ⊆ S. By Theorem

3.33, W := S 	 V is also a FSI space and Ŝ||ω = V̂||ω ⊕⊥ Ŵ||ω for almost every ω ∈ Ts.

Using our hypothesis that dim Ŵ||ω = 0 for almost every ω ∈ Ts, Theorem 3.40 shows

that W is an FSI space with lenW = 0. Therefore, W = {0} and V = S.

The rest of the results are on wavelets obtained from the semi-orthogonal setting of

FMRAs and the nonorthogonal setting of MRAs using the UEP.

Lemma 3.42. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. The union
⋃
k≥0 V

k(Φk) is

dense in L2(Rs) if and only if
⋃
k≥0 V

k
2π(Φω,k) is dense in L2(Ts) for almost every ω ∈ Ts.

Proof. (⇒) Corollary 3.34 shows that there exists a set ∆ ⊂ Ts with |∆| = 0 such that for

every ω ∈ Ts\∆ and k ≥ 0, V k
2π(Φω,k) is a subspace of L2(Ts). Let F :=

⋂
k∈Z
⋂
φk∈Φk

{ω ∈
Rs : φ̂k(ω) = 0} and for n ∈ Zs, define Fn := F − 2πn =

⋂
k∈Z
⋂
φk∈Φk

{ω ∈ Rs :

φ̂k(ω + 2πn) = 0}. Since |F | = 0 by Condition (ii) of an MRA, therefore |Fn| = 0. For

ω ∈ Ts\(∆∪
⋃
n∈Zs Fn) and n ∈ Zs, there exist k ≥ 0 and φk ∈ Φk depending on ω and n

such that φ̂ω,k(n) 6= 0. By Condition (ii) of a periodic MRA,
⋃
k≥0 V

k
2π(Φω,k) is dense in

L2(Ts).

(⇐) By Condition (ii) of a periodic MRA, there exists a set F ⊂ Ts with |F | = 0 such

that for ω ∈ Ts\F ,
⋂
k≥0

⋂
φω,k∈Φω,k

{n ∈ Zs : φ̂ω,k(n) = 0} = ∅. For n ∈ Zs, define

Fn := F + 2πn. For a given l ∈ Zs and ω ∈ (Ts + 2πl)\Fl, equivalently ω − 2πl ∈ Ts\F ,

since
⋂
k≥0

⋂
φk∈Φk

{m+ l ∈ Zs : φ̂k(ω+ 2πm) = 0} is an empty set, it follows that the set⋂
k≥0

⋂
φk∈Φk

{m ∈ Zs : φ̂k(ω+ 2πm) = 0} is also empty. Therefore, for ω ∈ Rs\
⋃
n∈Zs Fn,

there exist k ≥ 0 and φk ∈ Φk depending on ω such that
∣∣∣φ̂k(ω)

∣∣∣ > 0 and the result holds

by Condition (ii) of an MRA.

Theorem 3.43. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. The collection {V k(Φk)}
is an MRA of L2(Rs) if and only if {V k

2π(Φω,k)} is an MRA of L2(Ts) for almost every

ω ∈ Ts. In particular, {V k(Φk)} is an FMRA of L2(Rs) if and only if {V k
2π(Φω,k)} is a

periodic FMRA of L2(Ts) with the same bounds for almost every ω ∈ Ts.
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Proof. In our proof, by virtue of Corollary 3.34, we shall only consider an arbitrary

ω ∈ Ts\∆, where |∆| = 0, such that for every k ≥ 0, V k
2π(Φω,k) is a subspace of L2(Ts)

and V̂ k
||ω(Φ) is a subspace of l2(Zs).

(⇒) Corollary 3.34 implies that for every k ≥ 0, V̂ k
||ω(Φk) ⊆ V̂ k+1

||ω (Φk+1). Consequently,

Corollary 3.37 shows that for every k ≥ 0, V k
2π(Φω,k) ⊆ V k+1

2π (Φω,k+1). The density require-

ment of
⋃
k≥0 V

k
2π(Φω,k) in L2(Ts) is satisfied using Lemma 3.42. Therefore, {V k

2π(Φω,k)} is

a periodic MRA of L2(Ts). If {V k(Φk)} is also an FMRA of L2(Rs), then Corollary 3.37

shows that {V k
2π(Φω,k)} is a periodic FMRA of L2(Ts) with the same bounds as {V k(Φk)}.

(⇐) By Corollary 3.37, since for every k ≥ 0, V̂ k
||ω(Φk) ⊆ V̂ k+1

||ω (Φk+1), Proposition 3.35

shows that V k(Φk) ⊂ V k+1(Φk+1). Next, Lemma 3.42 shows that
⋃
k≥0 V

k(Φk) is dense

in L2(Rs). Therefore, {V k(Φk)} is an MRA of L2(Rs). If {V k
2π(Φω,k)} is also a periodic

FMRA of L2(Ts), then Corollary 3.37 shows that Ek(Φk) is a frame for V k(Φk) with the

same bounds as {V k
2π(Φω,k)} and hence {V k(Φk)} is an FMRA of L2(Rs) with the same

bounds as {V k
2π(Φω,k)}.

Theorem 3.43 states that a collection of subspaces is an MRA if and only if their

corresponding periodized subspaces constructed from uniform frequency samples is an

MRA for almost all possible samples. Our next result is the analogue of Proposition 3.12

after periodization.

Theorem 3.44. Let Φ ⊂ L2,α(Rs) be a finite set. Suppose that {V k(Φ)} is an MRA of

L2(Rs). Let W k be the orthogonal complement of V k(Φ) in V k+1(Φ) and Ψ ⊂ W 0 be a

finite set. Then E(Ψ) forms a frame for W 0 if and only if for every k ≥ 0, Tk(Ψω,k) is a

frame for W k
2π,ω with the same bounds for almost every ω ∈ Ts.

Proof. In our proof, by virtue of Theorem 3.33 and Corollary 3.34, we only consider an

arbitrary ω ∈ Ts\∆, where |∆| = 0, such that for every k ≥ 0, V k
2π(Φω,k) and W k

2π,ω are

subspaces of L2(Ts) and V̂ k
||ω(Φ) and Ŵ k

||ω are subspaces of l2(Zs).

(⇒) The proof of Proposition 3.12 shows that E({d k2El
kψ(Mk·) : ψ ∈ Ψ, l ∈ Lk}) is

a frame for W k with the same bounds as E(Ψ). The fibre Ŵ k
||ω according to (3.59) is

the closed linear span of {e−iω·M−klMl
0,kψ̂ω,k : ψ ∈ Ψ, l ∈ Lk}, which corresponds to the

Fourier coefficients of {e−iω·M−klT lkψω,k : ψ ∈ Ψ, l ∈ Lk} as verified by Lemma 3.31. In

addition, Lemma 3.10 shows that the subspace W k satisfies (3.12). Hence, Corollary 3.37

implies that Tk(Ψω,k) is a frame for W k
2π,ω with the same bounds as E(Ψ).

(⇐) Corollary 3.37 shows that E(Ψ) is a frame for the subspace W 0 with the same bounds

as Ψω,0.
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We shall adapt the proof of a result in [37] concerning the extension of columns of

a matrix with Laurent polynomial entries. With the same essential steps, this gives

Proposition 3.45, which is on extending columns of a matrix with measurable functions

as entries.

Proposition 3.45. Let A(ω) := [A1(ω)| · · · |Aq(ω)] be a p × q measurable matrix-valued

function with orthonormal columns for almost every ω ∈ F ⊆ Ts, where p > q. Then

there exists a p× p measurable unitary matrix Q(ω) such that for almost every ω ∈ F ,

Q(ω)A(ω) =

[
Iq

0

]
,

where Q = QqQq−1 · · ·Q1 and for i = 1, . . . , q, Qi =

[
Ii−1 0

0 Pi

]
is a p × p measurable

unitary matrix and Pi is a (p− i+ 1)× (p− i+ 1) measurable unitary matrix.

Proof. Consider an arbitrary ω ∈ F\∆ where |∆| = 0 such that the columns of A(ω)

are orthonormal while on the set ∆, for i ∈ {1, . . . , q}, Qi and Pi are defined to be the

identity matrix. Let Y1(ω) := A1(ω)−‖A1(ω)‖Cp e
1
p, f1(ω) := ‖Y1(ω)‖−2

Cp 1{‖Y1(ω)‖Cp>0} and

Q1(ω) := I − 2f1(ω)Y1(ω)Y1(ω)∗, where e1
p = [1, 0, . . . , 0]T in Cp endowed with the usual

Euclidean 2-norm and I is the identity matrix. Then Q1(ω) is a unitary p×p Householder

reflector matrix and Q1 is measurable as f1 is measurable. By our rhombus construction,

Q1(ω)A1(ω) = e1
p. Since Q1(ω) is unitary, it follows that for i, j ∈ {1, . . . , q},

〈Q1(ω)Ai(ω), Q1(ω)Aj(ω)〉 = δij.

Thus, the first entry (Q1(ω)Ak(ω))1 of Q1(ω)Ak(ω) is zero for k ∈ {2, . . . , q}. Conse-

quently, we have

Q1(ω)A(ω) =

[
1 0 · · · 0

0 A
(2)
2 (ω) · · · A

(2)
q (ω)

]
,

where for k ∈ {2, . . . , q}, A(2)
k (ω) are (p−1)×1 matrices with 〈A(2)

i (ω), A
(2)
j (ω)〉Cp−1 = δij.

Suppose that there are measurable unitary matrices Q1(ω), . . . , Qk−1(ω) such that

Qk−1(ω) · · ·Q2(ω)Q1(ω)A(ω) =

[
Ik−1 0 · · · 0

0 A
(k)
k (ω) · · · A

(k)
q (ω)

]
,

where A
(k)
i (ω) are (p − k + 1) × 1 matrices with 〈A(k)

i (ω), A
(k)
j (ω)〉Cp−k+1 = δij for i, j ∈

{k, . . . , q}. For induction purposes, let us define Yk(ω) := A
(k)
k (ω)−

∥∥∥A(k)
k (ω)

∥∥∥
Cp−k+1

e1
p−k+1,
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fk(ω) := ‖Yk(ω)‖−2
Cp−k+1 1{‖Yk(ω)‖Cp−k+1>0} and Pk(ω) be a unitary (p− k+ 1)× (p− k+ 1)

Householder reflector matrix given by Pk(ω) := I−2fk(ω)Yk(ω)Yk(ω)∗. Consequently, we

obtain PkA
(k)
k (ω) = e1

p−k+1 and 〈PkA(k)
i (ω), PkA

(k)
j (ω)〉Cp−k+1 = δij for i, j ∈ {k, . . . , q} and

(PkA
(k)
i (ω))1 = 0 for i ∈ {k+ 1, . . . , q}. Let Qk =

[
Ik−1 0

0 Pk

]
. Then Qk(ω) is measurable

and unitary and

Qk(ω)Qk−1(ω) · · ·Q1A(ω) =

[
Ik 0 · · · 0

0 A
(k+1)
k+1 (ω) · · · A

(k+1)
q (ω)

]
,

where A
(k+1)
i (ω) are (p − k) × 1 matrices with 〈A(k+1)

i (ω), A
(k+1)
j (ω)〉Cp−k = δij for i, j ∈

{k + 1, . . . , q}. Letting Q = QqQq−1 · · ·Q1, we have Q(ω)A(ω) =

[
Iq

0

]
.

Our next theorem establishes the existence of tight frames in L2(Rs) from periodized

tight frames in L2(Ts) both of which are derived from FMRAs.

Theorem 3.46. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. Suppose that {V k(Φk)} is

an FMRA of L2(Rs). Let W k be the orthogonal complement of V k(Φk) in V k+1(Φk+1).

Suppose that for almost every ω ∈ Ts, there exists Gω,k+1 ∈ S(M)%k×ρ such that Tk(Ψω,k)

is a frame for W k
2π,ω with bounds C and D, where Ψω,k :=

∑
l∈Lk+1

Gω,k+1(l)T lk+1Φω,k+1.

In addition, if the 2πDk+1Zs-periodic matrix-valued function Ĝk+1 defined by Ĝk+1(ω +

2πj) := Ĝω,k+1(j), where j ∈ Rk+1, lies in L2(Ts), then Ek(Ψk) is a frame for W k with

bounds C and D, where Ψ̂k = Ĝk+1Φ̂k+1.

Proof. Assuming that the matrix-valued function Ĝk+1 lies in L2(Ts), we have Ψk ⊂
V k+1(Φk+1). In our proof, by virtue of Theorem 3.33 and Corollary 3.34, we only consider

an arbitrary ω ∈ Ts\∆, where |∆| = 0, such that for every k ≥ 0, V k
2π(Φω,k) and W k

2π,ω are

a pair of orthogonal subspaces of L2(Ts) and V̂ k
||ω(Φk) and Ŵ k

||ω are a pair of orthogonal

subspaces of l2(Zs) and for every j ∈ Rk+1, Ĝω,k+1(j) is finite. For almost every ω ∈ Ts,

according to (3.59), {Ml
0,kψ̂k0,ω,0 : ψk ∈ Ψk, l ∈ Lk} forms a frame for Ŵ k

||ω with bounds

C and D. By Lemma 3.5 and Theorem 3.33, since for any f ∈ V k(Φk) and ψk ∈ Ψk and

l ∈ Lk, we have

〈El
kψk, f〉 =

∫
Ts

e−iω·M−kl〈Ml
0,kψ̂k0,ω,0, f̂0,ω,0〉l2(Zs)dω =

∫
Ts

0dω = 0,

therefore Ek(Ψk) ⊂ W k. Finally, Corollaries 3.37 and 3.41 show that Ek(Ψk) is a frame

for W k with bounds C and D.
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We now describe the construction of Ĝk+1 in Theorem 3.46 using the proof of Theorem

3.24 as follows. Without loss of generality, using Theorem 3.22, for every k ≥ 0, we may

assume that Tk(Φω,k) with |Φω,k| = ρ is a tight frame satisfying Theorem 3.21 for every

ω ∈ Ts\∆ with |∆| = 0 as in the proof of Theorem 3.46. Note that in steps (1) and (2)

of the algorithm that follows, we shall make use of the result in the proof of Lemma 3.38

which shows that the rank of a matrix is a measurable function.

(1) Fix k ≥ 0 and j ∈ Rk. For ω ∈ Ts\∆, let Sω,k and Ĥω,k be the ρd× ρd and ρ× ρd
matrices defined by

Sω,k(j) := diag
[√

dkMω,k+1(j +Dkr)
]rd
r=r1

,

Ĥω,k(j) :=
[
Ĥω,k+1(j +Dkr1)

∣∣∣ . . .
∣∣∣Ĥω,k+1(j +Dkrd)

]
(3.68)

respectively, where r1, · · · , rd denote all the elements of R1. Consider Ts\∆ as a

finite disjoint union of measurable subsets (up to measure zero sets) with a typical

subset of the form ∆S,p = {ω ∈ Ts\∆ : rank(Sω,k(j)) = pk(j)}.

(2) For ω ∈ ∆S,p, let A∗ω := Sω,kĤ∗ω,k be the ρd × ρ matrix whose nonzero columns are

all orthonormal such that

Aω(j)A∗ω(j) = dkMω,k(j). (3.69)

Consider ∆S,p as a finite disjoint union of measurable subsets (up to measure zero

sets) such that a typical subset is of the form ∆A,q = {ω ∈ ∆S,p : rank(A∗ω) =

qk(j) andA∗ω has nonzero entries in specific rows and columns}. Perform column in-

terchange operations (justified by the specific positions of nonzero entries) using a

ρ× ρ permutation matrix F (∆A,q) such that

A∗ωF =
[
A∗q,ω 0

]
,

where Aq,ω is a q × ρd matrix such that Aq,ωA
∗
q,ω = Iq, the q × q identity matrix.

(3) Perform row interchange operations using a ρd × ρd permutation matrix E(∆A,q)

such that
√
d(ESω,k) is in reduced row-echelon form and let A′∗ω = EA∗ωF . Hence

A′∗ω = E
[
A∗q,ω 0

]
=
[
EA∗q,ω 0

]
=

[
A∗qp,ω 0

0 0

]
,

where Aqp,ω is a q×p matrix of measurable functions on ∆A,q such that Aqp,ωA
∗
qp,ω =

Iq.
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(4) Construct a p × p unitary matrix Qω of measurable functions on ∆A,q using the

procedure given in the proof of Proposition 3.45 such that

QωA
∗
qp,ω =

[
Iq

0

]
.

Since Qω is an extension of Aqp,ω, we can replace its first q rows by Aqp,ω and write

Qω =

[
Aqp,ω

Bω

]
,

QωQ
∗
ω =

[
Aqp,ωA

∗
qp,ω Aqp,ωB

∗
ω

BωA
∗
qp,ω BωB

∗
ω

]
=

[
Iq 0

0 Ip−q

]
,

where Bω is a (p − q) × p matrix with orthonormal rows. In the event that q = 0,

we let Bω be the p×p identity matrix and in the event that p = q, we skip the steps

involving the construction of Bω and its utility.

(5) Define a ρd× ρd matrix B′ω for ω ∈ ∆A,q by

B′ω :=

[
Bω 0

0 0

]
E.

(6) Construct the matrix Ĝω,k for ω ∈ ∆A,q in this manner. If (i1, i1), . . . , (ip, ip) entries

of Sω,k are the nonzero diagonal entries, where 1 ≤ i1 < · · · < ip ≤ ρd, then for

each α ∈ {1, . . . , p}, set the first p − q entries of the ithα column of Ĝω,k to be the

αth column of the matrix
√
dBω and the remaining ρd− (p− q) entries to be zero.

The entries of each of the remaining ρd − p columns of Ĝω,k are chosen arbitrarily

so that Ĝk+1 lies in L2(∆A,q). Since
√
d(Sω,kE

T ) is in reduced column-echelon form,

Ĝω,k satisfies

Ĝω,kSω,kE
T =

[
Bω 0

0 0

]
,

i.e. B′ω = Ĝω,kSω,k.

(7) Define the ρd× ρ matrices Ĝω,k+1(j +Dkr) for r ∈ R1 and for ω ∈ ∆A,q by

Ĝω,k(j) =
[
Ĝω,k+1(j +Dkr1) · · · Ĝω,k+1(j +Dkrd)

]
.

Since we have

Ĝω,kSω,kS
∗
ω,kĤ∗ω,k =B′ωA

∗
ω = (B′ωE

T )(EA∗ωF )F T =

[
BωA

∗
qp,ω 0

0 0

]
F T = 0,

Ĝω,kSω,kS
∗
ω,kĜ∗ω,k =B′ωB

′∗
ω = (B′ωE

T )(B′ωE
T )∗ =

[
BωB

∗
ω 0

0 0

]
=

[
Ip−q 0

0 0

]
, (3.70)
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hence (3.37) is satisfied and from (3.40), we infer that Nω,k(j) is a ρd× ρd diagonal

matrix with diagonal entries 0 or d−k. Since

dimUk+1,j
2π,ω =

∑
r∈R1

rank(Mω,k+1(j +Dkr)) = rank(Sω,k(j)) = pk(j), (3.71)

dimV k,j
2π,ω = rank(Mω,k(j)) = qk(j), (3.72)

dimW k,j
2π,ω = rank(Nω,k(j)) = pk(j)− qk(j), (3.73)

follow from (3.68), (3.69) and (3.70), we conclude that (3.38) is satisfied.

(8) Repeat all the above steps for all measurable subsets ∆S,p and ∆A,q.

(9) Finally, extend periodically the values of the matrices Ĝω,k+1(j + Dkr) for r ∈ R1

to obtain Ĝω,k+1 ∈ S(Dk+1)ρd×ρ on Ts\∆.

We define the index {ηk}k≥0 of the FMRA {V k(Φk)} as

ηk := ess sup{ηω,k : ω ∈ Ts}, (3.74)

where ηω,k := max{dimW k,j
2π,ω : j ∈ Rk}. Therefore, the index {ηk}k≥0 of an FMRA

{V k(Φk)} consists of positive integers satisfying ηk ≤ |Φk| d.

As a consequence of our construction given above, we are able to establish the existence

of a tight wavelet frame in L2(Rs) derived from an FMRA.

Corollary 3.47. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. Suppose that {V k(Φk)} is

an FMRA of L2(Rs) with index {ηk}k≥0. Let W k be the orthogonal complement of V k(Φk)

in V k+1(Φk+1). There exists Ψk = {ψmk }
ηk
m=1 ⊂ W k such that Ek(Ψk) is a tight frame for

W k with 〈El
kψ

m
k , E

r
kψ

n
k 〉 = 0 for all m,n = 1, . . . , ηk, m 6= n and l, r ∈ Zs.

Proof. It is shown in (3.40), (3.70) and (3.73) that for m = ηk + 1, . . . , ρd and almost

every ω ∈ Ts, we have
∥∥ψmω,k∥∥2

L2(Ts) = 0 as
∥∥(ψmω,k)k,j

∥∥2

L2(Ts) = 0 for all j ∈ Rk. Since

(̂ψmk )0,ω,0 = ψ̂mω,k, by Lemma 3.5, ‖ψmk ‖
2 =

∫
Ts

∥∥∥(̂ψmk )0,ω,0

∥∥∥2

l2(Zs)
dω = 0 and we have

ψmk = 0. Furthermore, for all m,n = 1, . . . , ηk, m 6= n and l, r ∈ Zs, by Lemma 3.5 and

Theorem 3.21 and Lemma 3.31, we have

〈El
kψ

m
k , E

r
kψ

n
k 〉 =

∫
Ts

e−iω·(l−r)〈Ml−r
0,k (̂ψmk )0,ω,0, (̂ψ

n
k )0,ω,0〉l2(Zs)dω

=

∫
Ts

eiω·(r−l)〈T l−rk ψmω,0, ψ
n
ω,0〉L2(Ts)dω = 0.

Finally, using Theorem 3.13, since (3.40), (3.70) and (3.73) imply that Tk(Ψω,k) is a tight

frame of W k
2π,ω for almost every ω ∈ Ts, Corollary 3.37 implies that Ek(Ψk) is a tight

frame for W k.
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Theorem 3.48. For k ≥ 0, let Φk ⊂ L2,α(Rs) with |Φk| = ρ. Suppose that {V k(Φk)} is

an FMRA of L2(Rs) with index {ηk}k≥0. Let W k be the orthogonal complement of V k(Φk)

in V k+1(Φk+1). Then the following are equivalent for each k ≥ 0.

(i) The set Σ%k :=
⋃
j∈Rk{ω ∈ Ts : dimUk+1,j

2π,ω − dimV k,j
2π,ω > %k} is of measure zero.

(ii) There holds ηk ≤ %k.

(iii) There exists Ψk = {ψmk }
%k
m=1 ⊂ W k with 〈El

kψ
m
k , E

r
kψ

n
k 〉 = 0 for all m,n = 1, . . . , %k,

m 6= n and l, r ∈ Zs such that Ek(Ψk) is a tight frame for W k.

(iv) There exists Ψk = {ψmk }
%k
m=1 ⊂ W k such that Ek(Ψk) is a frame for W k.

Proof. Assume that (i) holds. Then for almost every ω ∈ Ts and any j ∈ Rk, using (3.71)

and (3.72), since

dimUk+1,j
2π,ω − dimV k,j

2π,ω =
∑
r∈R1

rank(Mω,k+1(j +Dkr))− rank(Mω,k(j)) ≤ %k,

it follows from (3.73) and (3.74) that (ii) holds. Next, we apply the algorithm after

Theorem 3.46 and also Corollary 3.47 to construct the required ψmk for m = 1, . . . , ηk. For

m = ηk + 1, . . . , %k, we set ψmk := 0. Hence, (iii) holds and implies (iv). To establish that

(iv) implies (i), we again utilize (3.71), (3.72) and (3.73) to show that in the event that

there exist j ∈ Rk and a set σ%k ⊂ Σ%k such that |σ%k | > 0 and

dimW k,j
2π,ω = dimUk+1,j

2π,ω − dimV k,j
2π,ω > %k

for almost every ω ∈ σ%k , this will lead to a contradiction with (iv) since Corollary 3.37

and Theorem 3.40 show otherwise.

For the case of a stationary FMRA {V k(Φ)}, Theorem 3.48 leads to the following

corollary.

Corollary 3.49. Let Φ ⊂ L2,α(Rs) be finite. Suppose that {V k(Φ)} is an FMRA of

L2(Rs) with index η0. Let W k be the orthogonal complement of V k(Φ) in V k+1(Φ). Then

the following are equivalent.

(i) The set Σ%0 := {ω ∈ Ts : dimU1,0
2π,ω − dimV 0,0

2π,ω > %0} is of measure zero.

(ii) There holds η0 ≤ %0.

(iii) There exists Ψ = {ψm}%0m=1 ⊂ W 0 with 〈Elψm, Erψn〉 = 0 for all m,n = 1, . . . , %0,

m 6= n and l, r ∈ Zs such that E(Ψ) is a tight frame for W 0.



3.4 Periodization Connection 76

(iv) There exists Ψ = {ψm}%0m=1 ⊂ W 0 such that E(Ψ) is a frame for W 0.

Corollary 3.49 generalizes a similar result in [39]. In [39], the set Φ := {φ} is a singleton

and the dilation matrix M = 2I. For k ≥ 0, we define

Γ := {ω ∈ Ts : rank(Mω,0(0)) = 0} = {ω ∈ Ts : Mω,0(0) = 0}, (3.75)

∆p := {ω ∈ Ts :
∑
r∈R1

rank(Mω,1(r)) = p}, (3.76)

where Mω,1(r) is a scalar. If an integer p satisfies both |∆p| > 0 and |∆r| = 0 for r > p,

then the index η0 of the stationary FMRA {V k(Φ)} is given as follows:

η0 :=

{
p if |∆p ∩ Γ| > 0,

p− 1 if |∆p ∩ Γ| = 0,

i.e. either for every r > 0, |∆η0+r| = 0 with |∆η0 | > 0 or for every r > 1, |∆η0+r| = 0 with

|∆η0+1| > 0 and |∆η0+1 ∩ Γ| = 0.

Corollary 3.50. [39] Suppose that {V k(φ)} is an FMRA of L2(Rs) with index η0 and

dilation matrix M = 2I. Let W k be the orthogonal complement of V k(φ) in V k+1(φ). If

there exists Ψ = {ψm}%0m=1 ⊂ W 0 such that E(Ψ) is a frame for W 0, then %0 ≥ η0. If

%0 ≥ η0, then there exists Ψ = {ψm}%0m=1 ⊂ W 0 such that E(Ψ) is a tight frame for W 0.

We conclude this chapter with the connection of the affine system in L2(Rs) and the

periodic affine system in L2(Ts) using extension principles. Let us state a lemma con-

cerning the minimum energy tight frame condition for wavelets derived from an MRA for

L2(Rs).

Lemma 3.51. [6] Let Φ,Ψ ⊂ L2,α(Rs) be finite with |Φ| = ρ, |Ψ| = % satisfying (1.8)

and (1.10) for some Ĥk+1 := d
1
2 Ĥ(D−(k+1)·) and Ĝk+1 := d

1
2 Ĝ(D−(k+1)·) respectively,

where Ĥ, Ĝ ∈ L2(Ts) are 2πZs-periodic matrix-valued measurable functions. For k ∈
Z, define Ĥω,k+1(j) := Ĥk+1(ω + 2πj) and Ĝω,k+1(j) := Ĝk+1(ω + 2πj). Assume that

limω→0

∑
φ∈Φ

∣∣∣φ̂(ω)
∣∣∣2 = A > 0 and the (ρ + %) × ρd matrix L̂ω,k(j) as defined in a manner

similar to (3.44) satisfies L̂ω,k(j)
∗L̂ω,k(j) = dIρd for each j ∈ Rk and almost every ω ∈ Rs.

Then for all k ∈ Z and all f ∈ L2(Rs) for which f̂ is a compactly supported continuous

function, we have the minimum energy tight frame condition, i.e.∑
l∈Zs

∑
φ∈Φ

∣∣∣〈f, d k+1
2 El

k+1φ(Mk+1·)〉
∣∣∣2=∑

l∈Zs

[∑
φ∈Φ

∣∣∣〈f, d k2El
kφ(Mk·)〉

∣∣∣2+∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2]

and for all f ∈ L2(Rs), we have limk→−∞
∑
l∈Zs

∑
φ∈Φ

∣∣∣〈f, d k2El
kφ(Mk·)〉

∣∣∣2 = 0.
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Theorem 3.52. Let Φ ⊂ L2,α(Rs) with |Φ| = ρ. The affine system X(Ψ) as defined in

(1.4) is a tight frame for L2(Rs) obtained from the MRA {V k(Φ)} by the UEP if and only

if the corresponding periodized affine system Xω as defined in (3.60) is a tight frame for

L2(Ts) obtained from the MRA V k
2π(Φω,k) by the periodic UEP for almost every ω ∈ Ts.

Proof. We shall consider only an arbitrary ω ∈ Ts\∆ where |∆| = 0 such that for every

k ≥ 0, V k
2π(Φω,k) is a subspace of L2(Ts) and Ĥω,k+1 := Ĥk+1(ω+2π·) := d

1
2 Ĥ(D−(k+1)(ω+

2π·)) and Ĝω,k+1 := Ĝk+1(ω + 2π·) := d
1
2 Ĝ(D−(k+1)(ω + 2π·)) lie in l2(Zs) for some

2πDk+1Zs-periodic matrix-valued measurable functions Ĥk+1, Ĝk+1 ∈ L2(Ts) satisfying

(1.8) and (1.10) respectively. Therefore, we obtain

Φ̂ω,k=(̂Φk)0,ω,0 = Φ̂k(ω + 2π·) = Ĥk+1(ω + 2π·)Φ̂k+1(ω + 2π·) = Ĥω,k+1Φ̂ω,k+1,

Ψ̂ω,k=(̂Ψk)0,ω,0 = Ψ̂k(ω + 2π·) = Ĝk+1(ω + 2π·)Φ̂k+1(ω + 2π·) = Ĝω,k+1Φ̂ω,k+1,

where Φ̂k := d−
k
2 Φ̂(D−k·) and Ψ̂k := d−

k
2 Ψ̂(D−k·), i.e. (3.28) and (3.31) are satisfied.

Here, we have utilized Theorem 3.43, Corollary 3.34, Propositions 3.35, 3.19 and 3.20 to

confirm the MRA structure and derive the corresponding affine system from the MRA.

In addition, the conditions of the UEP, i.e. L̂ω,k(j) as defined in a manner similar to

(3.44) satisfies L̂ω,k(j)
∗L̂ω,k(j) = dIρd for each j ∈ Rk and

lim
k→∞

∑
φ∈Φ

∣∣∣φ̂(D−kω)
∣∣∣2 = lim

k→∞

∑
φ∈Φ

∣∣∣φ̂(D−k(ω + 2πn))
∣∣∣2

= lim
k→∞

dk
∑
φ∈Φ

∣∣∣φ̂ω,k(n)
∣∣∣2 = A > 0

for all n ∈ Zs are satisfied for both directions. By Theorem 3.36, the shift-invariant

system E(Φ)∪X0(Ψ) as defined in (1.5) is a frame for L2(Rs) if and only if Xω is a frame

for L2(Ts) with the same frame bounds for almost every ω ∈ Ts. It remains to see using

Lemma 3.51 that the affine system X(Ψ) is also a frame for L2(Rs) could be inferred

by “telescoping” from the shift-invariant system E(Φ) ∪ X0(Ψ). With this in mind, we

confirm that∑
l∈Zs

∑
φ∈Φ

∣∣∣〈f, dK2 El
Kφ(MK ·)〉

∣∣∣2=∑
l∈Zs

[∑
φ∈Φ

∣∣∣〈f, d k2El
kφ(Mk·)〉

∣∣∣2+K−1∑
p=k

∑
ψ∈Ψ

∣∣∣〈f, d p2El
pψ(Mp·)〉

∣∣∣2]

for all f ∈ L2(Rs) such that f̂ is a compactly supported continuous function. By letting

k → −∞, we obtain

∑
l∈Zs

∑
φ∈Φ

∣∣∣〈f, dK2 El
Kφ(MK ·)〉

∣∣∣2=∑
l∈Zs

K−1∑
k=−∞

∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2 ,
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which implies that

∑
l∈Zs

[∑
φ∈Φ

∣∣〈f, Elφ〉
∣∣2+ ∞∑

k=0

∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2] = ‖f‖2 .

This is equivalent to

∑
l∈Zs

∞∑
k=−∞

∑
ψ∈Ψ

∣∣∣〈f, d k2El
kψ(Mk·)〉

∣∣∣2 = ‖f‖2 ,

and it holds on a dense subset of L2(Rs). Thus the relation holds for all f ∈ L2(Rs).

We remark that Theorem 3.52 could be generalized to nonstationary MRAs that pre-

serve a dilation structure, i.e. for instance φ̂k(2
k·) = ĥk+1φ̂k+1 for k ∈ N, for the case of

the dilation matrix D = 2I. This may be achieved by using a recent result from [31] that

generalizes the UEP for L2(R) to nonstationary settings. This will be helpful in the event

that we utilize the periodic constructions in Chapter 4 to obtain constructions on the real

line.



Chapter 4

Constructions in L2(T)

The Gabor system is based on the short-time Fourier transform of shifts and modulates

of a window function to represent signals with regular time-frequency atoms. To achieve

a similar time-frequency representation with the wavelet system, one usually applies the

wavelet decomposition process repeatedly on wavelet subbands and obtains “packets” of

wavelet atoms. We could achieve a similar and possibly more flexible representation if

we introduce modulation to the wavelet system by means of using additional number of

wavelet functions, i.e. we combine translation and modulation into an MRA structure.

Thus, this incorporates the strengths of both the wavelet transform and the short-time

Fourier transform. All the constructions in this chapter are for the one-dimensional peri-

odic case with dilation factor 2.

4.1 Bandlimited Construction

We shall construct a bandlimited multiresolution {V k
2π(φk)} of L2(T) where {T lkφk : l ∈

Lk} forms a tight frame for a subspace of V k
2π(φk) and φ̂k(0) = 2−

k
2 . For k ≥ 0, let

β̃nk (j) := β

(
Nk,nj

Lk,n −Nk,n

)
, j ∈ Q,

where β is the cumulative distribution function of a Beta distribution and 0 ≤ Nk,n ≤
Lk,n ≤ Nk,n+1 for n ∈ {1, . . . , %k+1} are used to indicate the bandwidths of our refinement

and wavelet masks with %k being the number of wavelet masks. We will impose additional

conditions on the bandwidths of the masks in our constructions later. If Nk,n = Lk,n, we

shall let β̃nk = 0 instead. Since

β(ω) + β(1− ω) = 1,

79
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we have β̃nk

(
Nk,n
Nk,n
− 1
)

= β(0) = 0 and β̃nk

(
Lk,n
Nk,n
− 1
)

= β(1) = 1 for Nk,n < Lk,n. We

describe our construction of the refinable function and its mask below, which we shall use

exclusively for our bandlimited constructions of wavelets.

Construction 4.1. For k ≥ 0, let φk =
Lk,1∑

n=−Lk,1
φ̂k(n)e−in·, where

φ̂k(j) =


2−

k
2 if j ∈ {−Nk,1, . . . , Nk,1},

2−
k
2 cos

[
π
2
β̃1
k

(
|j|
Nk,1
− 1
)]

if
j∈{−Lk,1, . . . ,−Nk,1 − 1}
∪ {Nk,1 + 1, . . . , Lk,1},

0 otherwise,

and Lk,1 < Nk+1,1 and Lk,1 ≤ 2k. For k ≥ 0, let

ĥk+1(j) =



√
2 if j ∈ {−Nk,1, . . . , Nk,1},

√
2 cos

[
π
2
β̃1
k

(
|j|
Nk,1
− 1
)]

if
j∈{−Lk,1, . . . ,−Nk,1 − 1}
∪ {Nk,1 + 1, . . . , Lk,1},

0 otherwise.

(4.1)

In the event that Nk,1 = Lk,1, we would redefine

ĥk+1(j) =


√

2 if j ∈ {−Nk,1 + 1, . . . , Nk,1 − 1},
1 if j ∈ {−Nk,1} ∪ {Nk,1},
0 otherwise.

(4.2)

For purposes of convenience, we shall also refer to ĥk+1 as ĝ0
k+1. Note that φ̂k(n) =

ĥk+1(n)φ̂k+1(n) for all n ∈ Z.

Remark. In this chapter, when we set the values of a mask in S(2k+1) such as in (4.1),

under the case indicated as “otherwise”, we refer to the remaining values of Rk+1 from

those already defined.

The mask ĥk+1 in Construction 4.1 filters away completely high frequency data be-

longing to the bands {−2k, . . . ,−Lk,1} ∪ {Lk,1, . . . , 2k}, dampens data belonging to the

transition bands {−Lk,1, . . . ,−Nk,1 − 1} ∪ {Nk,1 + 1, . . . , Lk,1} and allows low frequency

data belonging to {−Nk,1, . . . , Nk,1} to pass through unchanged, i.e. behaves like the fre-

quency response of the ideal filter. We verify that for j ∈ {−Lk,1, . . . , Lk,1} or equivalently

j − 2k ∈ {−2k, . . . , Lk,1 − 2k} and j + 2k ∈ {2k − Lk,1, . . . , 2k}, we have ĥk+1(j ± 2k) = 0,

since Lk,1 ≤ 2k+1 − Lk,1.
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Lemma 4.2. Assume that Nk,λ < Lk,λ and Nk,µ < Lk,µ. Suppose that Nk,λ +Lk,µ = 2k+1

and Nk,µ + Lk,λ = 2k+1. Then

cos

[
π

2
β̃λk

(
2k+1 − |j|
Nk,λ

− 1

)]
= sin

[
π

2
β̃µk

(
|j|
Nk,µ

− 1

)]
.

Proof. The verification is as follows. Indeed,

cos

[
π

2
β̃λk

(
2k+1 − |j|
Nk,λ

− 1

)]
= cos

[
π

2
β

(
Nk,λ

Lk,λ −Nk,λ

(
2k+1 − |j|
Nk,λ

− 1

))]
= cos

[
π

2
β

(
Lk,µ − |j|
Lk,µ −Nk,µ

)]
= sin

[
π

2

[
1− β

(
Lk,µ − |j|
Lk,µ −Nk,µ

)]]
= sin

[
π

2
β

(
1− Lk,µ − |j|

Lk,µ −Nk,µ

)]
= sin

[
π

2
β

(
|j| −Nk,µ

Lk,µ −Nk,µ

)]
= sin

[
π

2
β

(
Nk,µ

Lk,µ −Nk,µ

(
|j|
Nk,µ

− 1

))]
= sin

[
π

2
β̃µk

(
|j|
Nk,µ

− 1

)]
.

Lemma 4.3. If Nk,λ < Lk,λ and Nk,λ + Lk,λ = 2k, then we have

cos
π

2
β̃λk

(
2k − |j|
Nk,λ

− 1

)
= sin

π

2
β̃λk

(
|j|
Nk,λ

− 1

)
.

Proof. Since

1− β̃λk
(

2k − |j|
Nk,λ

− 1

)
= 1− β

(
Nk,λ

Lk,λ −Nk,λ

(
2k − |j|
Nk,λ

− 1

))
= β

(
Lk,λ −Nk,λ − 2k + |j|+Nk,λ

Lk,λ −Nk,λ

)
= β

(
|j| −Nk,λ

Lk,λ −Nk,λ

)
= β̃λk

(
|j|
Nk,λ

− 1

)
,

this implies our result.

We shall make use of Theorem 3.25 to construct framelets by ensuring the masks ĥk+1,

ĝnk+1 satisfy (3.47) or equivalently

∣∣∣ĥk+1(j)
∣∣∣2 +

%k∑
n=1

∣∣ĝnk+1(j)
∣∣2 = 2, (4.3)

ĥk+1(j)ĥk+1(j + 2k) +

%k∑
n=1

ĝnk+1(j)ĝnk+1(j + 2k) = 0. (4.4)

for all j ∈ σk+1(V k+1
2π (φk+1)). Equation (4.3) says that the masks must cover the frequency

domain “uniformly” while (4.4) requires the masks to be orthogonal to their modulates

with a shift of 2k in the frequency domain. In signal processing literature (see [38]), the
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former is known as the perfect reconstruction condition while the latter is known as the

anti-aliasing condition, which is necessary to remove aliasing caused by downsampling.

We shall now describe the construction of complex framelets with smooth decay and

controlled overlap in the frequency domain. The masks are essentially like that of the

frequency response of the ideal filter except that only data belonging to certain high

frequency bands are allowed through unchanged or dampened. Such a construction allows

us to introduce modulation to the wavelet system by partitioning the frequency domain

into the required subbands.

Construction 4.4. Let φ̂k+1 and ĥk+1 be defined as in Construction 4.1. For n ∈
{1, . . . , %k}, let

ĝnk+1(j) =



√
2 sin

[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if j ∈ {Nk,n + 1, . . . , Lk,n},
√

2 if j ∈ {Lk,n, . . . , Nk,n+1},√
2 cos

[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if j ∈ {Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise,

(4.5)

with the conditions 0 ≤ Nk,n ≤ Lk,n < Nk,n+1, Lk,n+1 −Nk,n < 2k, Nk,%k+1 = 2k+1 − Lk,1
and Lk,%k+1 = 2k+1 −Nk,1 and the additional condition Lk,n+1 ≤ Lk+1,1 or Nk,n ≥ 2k+1 −
Lk+1,1 if Lk+1,1 < 2k. In the event that Nk,n = Lk,n for all n ∈ {1, . . . , %k}, we would

redefine

ĝnk+1(j) =


1 if j ∈ {Lk,n},√
2 if j ∈ {Lk,n + 1, . . . , Nk,n+1 − 1},

1 if j ∈ {Nk,n+1},
0 otherwise.

(4.6)

In Construction 4.4, the last wavelet mask ĝ%kk+1 is constructed so that it comple-

ments the refinement mask ĥk+1. The additional condition of Lk,n+1 ≤ Lk+1,1 or Nk,n ≥
2k+1 − Lk+1,1 is used to ensure that the bandwidths of the wavelet masks lie within

σk+1(V k+1
2π (φk+1)). The masks are in general complex as we did not impose any additional

conditions of conjugate symmetry in the frequency domain.

Proposition 4.5. The refinement and wavelet masks ĥk+1, ĝnk+1 for n ∈ {1, . . . , %k}
defined by (4.1) and (4.5) or (4.2) and (4.6) respectively as in Construction 4.4 satisfy

(4.3) and (4.4). They generally have smooth decay with overlapping supports that can be

controlled. Hence by the periodic UEP, the affine system X2π is a tight frame for L2(T).
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Proof. Since Lk,n+1 −Nk,n < 2k, for ĝnk+1(j) 6= 0 such that Nk,n ≤ 2k and Lk,n+1 ≥ 2k, we

have ĝnk+1(j + 2k) = 0 and ĝnk+1(j − 2k) = 0 respectively. For other ĝlk+1(j) 6= 0 such that

Lk,l+1 ≤ 2k or Nk,l ≥ 2k, we have ĝlk+1(j + 2k) = 0 and ĝlk+1(j − 2k) = 0 respectively. Let

n ∈ {1, . . . , %k}. If Nk,n < Lk,n, then for j ∈ {Nk,n, . . . , Lk,n}, we verify that

∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 2 sin2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
+ 2 cos2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n− 1, n}. If j = Nk,n = Lk,n, we check that∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 12 + 12 = 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. For j ∈ {Lk,n + 1, . . . , Nk,n+1 − 1}, we have∣∣ĝnk+1(j)
∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. If Nk,%k+1 < Lk,%k+1, then for j ∈

{Nk,%k+1, . . . , Lk,%k+1}, using the condition that Nk,%k+1 = 2k+1 − Lk,1 and Lk,%k+1 =

2k+1 − Nk,1, since
∣∣∣ĥk+1(j)

∣∣∣2 = 2 cos2 π
2
β̃1
k

(
2k+1−|j|
Nk,1

− 1
)

, we apply Lemma 4.2 to deduce

that∣∣ĝ%kk+1(j)
∣∣2 +

∣∣∣ĥk+1(j)
∣∣∣2= 2

[
cos2 π

2
β̃%k+1
k

(
|j|

Nk,%k+1

− 1

)
+ sin2 π

2
β̃%k+1
k

(
|j|

Nk,%k+1

− 1

)]
= 2

with all other ĝnk+1(j) = 0. If j = Nk,%k+1 = Lk,%k+1 instead, we could verify that

∣∣ĝ%kk+1(j)
∣∣2 +

∣∣∣ĥk+1(j)
∣∣∣2 = 12 + 12 = 2

with all other ĝnk+1(j) = 0. For j ∈ {0, . . . , Nk,1 − 1} ∪ {Lk,%k+1 + 1, . . . , 2k+1 − 1}, we

have
∣∣∣ĥk+1(j)

∣∣∣2 = 2 and ĝnk+1(j) = 0 for n ∈ {1, . . . , %k}. Since (4.3) and (4.4) hold for all

j ∈ σk+1(V k+1
2π (φk+1)), we conclude that they also hold for j+ 2k ∈ σk+1(V k+1

2π (φk+1)).

The next construction involves real symmetric framelets with controlled overlap and

smooth decay in the frequency domain. Here, we impose conditions of symmetry on the

masks in the frequency domain. In order for the anti-aliasing condition to be satisfied by

the masks at the middle bands around j = ±2k−1, i.e. ĝλ0
k+1 and ĝµ0

k+1, where λ0 =
⌊
%k
2

⌋
and µ0 = λ0 + 1, we impose a “balancing condition” on their supports.

Construction 4.6. Let φ̂k+1 and ĥk+1 be given as in Construction 4.1. Let λ0 =
⌊
%k
2

⌋
,

µ0 = λ0 + 1 and 0 ≤ Nk,n ≤ Lk,n < Nk,n+1, Nk,µ0 < Lk,µ0, Nk,µ0 + Lk,µ0 = 2k and
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Nk,%k+1 = Lk,%k+1 ≤ Lk+1,1. For n ∈ {1, . . . , %k}\{µ0}, let

ĝnk+1(j) =



√
2 sin

[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

√
2 if

j ∈{−Nk,n+1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1},

√
2 cos

[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise.

(4.7)

For n = µ0, let

ĝnk+1(j) =



e−
i2πj

2k+1
√

2 sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

e−
i2πj

2k+1
√

2 if
j ∈{−Nk,n+1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1},

e−
i2πj

2k+1
√

2 cos
[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise.

(4.8)

If Nk,n = Lk,n for n ∈ {1, . . . , %k}\{µ0}, then for n ∈ {1, . . . , %k − 1}\{λ0, µ0}, let

ĝnk+1(j) =


1 if j ∈{−Lk,n}∪{Lk,n},√
2 if j ∈{−Nk,n+1 + 1, . . . ,−Lk,n − 1}∪{Lk,n + 1, . . . , Nk,n+1 − 1},

1 if j ∈{−Nk,n+1}∪{Nk,n+1},
0 otherwise.

(4.9)

For n = λ0, let

ĝnk+1(j) =



1 if j ∈{−Lk,n}∪{Lk,n},
√

2 if
j ∈{−Nk,n+1, . . . ,−Lk,n − 1}
∪{Lk,n + 1, . . . , Nk,n+1},

√
2 cos

[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise.

(4.10)
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For n = µ0, let

ĝnk+1(j) =



e−
i2πj

2k+1
√

2 sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

e−
i2πj

2k+1
√

2 if
j ∈{−Nk,n+1 + 1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1 − 1},

e−
i2πj

2k+1 if j ∈{−Nk,n+1}∪{Nk,n+1},
0 otherwise.

(4.11)

Finally, under the condition that µ0 < %k, let

ĝ%kk+1(j) =


1 if j ∈{−Lk,%k}∪{Lk,%k},√
2 if j ∈{−Nk,%k+1, . . . ,−Lk,%k − 1}∪{Lk,%k + 1, . . . , Nk,%k+1},

0 otherwise.

(4.12)

Remark. In the event that Nk,µ0 = 2k−1− 1 and Lk,µ0 = 2k−1 + 1, we have the liberty of

setting ĝµ0

k+1(j) = e−
i2πj

2k+1 ĝλ0
k+1(j) = e−

i2πj

2k+1 for j = ±2k−1.

Proposition 4.7. The refinement and wavelet masks ĥk+1, ĝnk+1 for n ∈ {1, . . . , %k}
defined by (4.1), (4.7) and (4.8) or (4.2), (4.9), (4.10), (4.11) and (4.12) respectively as

in Construction 4.6 satisfy (4.3) and (4.4). They are real and symmetric and generally

have smooth decay with overlapping supports that can be controlled. Hence, by the periodic

UEP, the affine system X2π is a tight frame for L2(T).

Proof. The condition Nk,µ0 + Lk,µ0 = 2k implies that for m = 1, . . . , λ0 and n = µ0 +

1, . . . , %k, we have

2Lk,m ≤ Nk,µ0 + Lk,µ0 = 2k = Nk,µ0 + Lk,µ0 ≤ Nk,n +Nk,n,

i.e. we have the following increasing sequences

{Nk,m − 2k, Lk,m − 2k,−2k−1,−Lk,m,−Nk,m, Nk,m, Lk,m, 2
k−1, 2k − Lk,m, 2k −Nk,m}

{−Lk,n,−Nk,n,−2k−1, Nk,n − 2k, Lk,n − 2k, 2k − Lk,n, 2k −Nk,n, 2
k−1, Nk,n, Lk,n}

{Nk,λ0 − 2k,−Lk,µ0 ,−Nk,µ0 ,−Nk,λ0 , Nk,λ0 , Nk,µ0 , Lk,µ0 , 2
k −Nk,λ0}

{−Lk,µ0+1,−Lk,µ0 ,−Nk,µ0 , Lk,µ0+1 − 2k, 2k − Lk,µ0+1, Nk,µ0 , Lk,µ0 , Lk,µ0+1}

of integers. The result is that for n = 1, . . . , λ0 − 1, with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪
{Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n − 2k, . . . , Lk,n+1 − 2k} and j + 2k ∈
{2k − Lk,n+1, . . . , 2

k − Nk,n}, we have ĝnk+1(j ± 2k) = 0. Also, for n = µ0 + 1, . . . , %k,
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with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n −
2k, . . . , Lk,n+1 − 2k} and j + 2k ∈ {2k − Lk,n+1, . . . , 2

k −Nk,n}, we have ĝnk+1(j ± 2k) = 0.

Since Nk,µ0 < Lk,µ0 , for j ∈ {−Nk,µ0 , . . . ,−Nk,λ0} ∪ {Nk,λ0 , . . . , Nk,µ0}, or equivalently

j − 2k ∈ {Nk,λ0 − 2k, . . . ,−Lk,µ0} and j + 2k ∈ {Lk,µ0 , . . . , 2
k −Nk,λ0}, we have ĝλ0

k+1(j ±
2k) = 0 = ĝµ0

k+1(j). For j ∈ {−Lk,µ0+1, . . . ,−Lk,µ0} ∪ {Lk,µ0 , . . . , Lk,µ0+1}, or equivalently

j − 2k ∈ {−Nk,µ0 , . . . , Lk,µ0+1 − 2k} and j + 2k ∈ {2k − Lk,µ0+1, . . . , Nk,µ0}, we have

ĝλ0
k+1(j) = 0 = ĝµ0

k+1(j ± 2k).

Since Nk,µ0 < Lk,µ0 , for j ∈ {−Lk,µ0 , . . . ,−Nk,µ0} ∪ {Nk,µ0 , . . . , Lk,µ0}, which is essen-

tially equivalent to j − 2k ∈ {−Lk,µ0 , . . . ,−Nk,µ0} and j + 2k ∈ {Nk,µ0 , . . . , Lk,µ0}, we

have

ĝλ0
k+1(j)ĝλ0

k+1(j ± 2k) = 2 cos
π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
cos

π

2
β̃µ0

k

(
2k − |j|
Nk,µ0

− 1

)
,

ĝµ0

k+1(j)ĝµ0

k+1(j ± 2k) = −2 sin
π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
sin

π

2
β̃µ0

k

(
2k − |j|
Nk,µ0

− 1

)
,

and hence by Lemma 4.3,

ĝλ0
k+1(j)ĝλ0

k+1(j ± 2k) + ĝµ0

k+1(j)ĝµ0

k+1(j ± 2k) = 0. (4.13)

We have shown that for n ∈ {1, . . . , λ0 − 1, µ0 + 1, . . . , %k} such that ĝnk+1(j) 6= 0, we

have ĝnk+1(j ± 2k) = 0, and for ĝλ0
k+1(j) 6= 0 or ĝµ0

k+1(j) 6= 0, (4.13) must hold. Therefore,

(4.4) holds for all j ∈ σk+1(V k+1
2π (φk+1)).

Let n ∈ {1, . . . , %k}. If Nk,n < Lk,n, then for j ∈ {−Lk,n, . . . ,−Nk,n}∪{Nk,n, . . . , Lk,n},
we verify that∣∣ĝnk+1(j)

∣∣2 +
∣∣ĝn−1
k+1 (j)

∣∣2 = 2 sin2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
+ 2 cos2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. If j = Nk,n = Lk,n or j = −Nk,n = −Lk,n, then

clearly ∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 1 + 1 = 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n − 1} ∪ {Lk,n +

1, . . . , Nk,n+1 − 1}, we have
∣∣ĝnk+1(j)

∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. For j ∈
{−Nk,%k+1} ∪ {Nk,%k+1}, clearly,

∣∣ĝ%kk+1(j)
∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= %k. For

j ∈ {−Nk,1 + 1, . . . , Nk,1− 1}, we have
∣∣∣ĥk+1(j)

∣∣∣2 = 2 and ĝnk+1(j) = 0 for n ∈ {1, . . . , %k}.
Since (4.3) holds for all j ∈ σk+1(V k+1

2π (φk+1)), we conclude that it also holds for j + 2k ∈
σk+1(V k+1

2π (φk+1)).
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Remark. We may vary our symmetric construction in several ways. Although the proofs

of these variations may be similar, each one of them has its delicate details. For com-

pleteness and clarity, we shall include them here.

Construction 4.6 could be modified by permitting one of our framelet masks, i.e. ĝµ0

k+1

in (4.8) to be antisymmetric instead. To this end let us define

sgnk+1(j) := sign(j mod 2k+1 − 2k).

Construction 4.8. Let φ̂k+1 and ĥk+1 be given as in Construction 4.1. Let λ0 =
⌊
%k
2

⌋
,

µ0 = λ0 + 1 and 0 ≤ Nk,n ≤ Lk,n < Nk,n+1, Nk,µ0 < Lk,µ0, Nk,µ0 + Lk,µ0 = 2k and

Nk,%k+1 = Lk,%k+1 ≤ Lk+1,1. For n ∈ {1, . . . , %k}\{µ0}, let ĝnk+1 be given as in (4.7). For

n = µ0, let

ĝnk+1(j) =



i sgnk+1(j)
√

2 sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪ {Nk,n + 1, . . . , Lk,n},

i sgnk+1(j)
√

2 if
j ∈{−Nk,n+1, . . . ,−Lk,n}
∪ {Lk,n, . . . , Nk,n+1},

i sgnk+1(j)
√

2 cos
[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪ {Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise.

(4.14)

If Nk,n = Lk,n for n ∈ {1, . . . , %k}\{µ0}, then for n ∈ {1, . . . , %k − 1}\{λ0, µ0}, let ĝnk+1

be given as in (4.9). For n = λ0, let ĝnk+1 be given as in (4.10). For n = µ0, let

ĝnk+1(j) =



i sgnk+1(j)
√

2 sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

i sgnk+1(j)
√

2 if
j ∈{−Nk,n+1 + 1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1 − 1},

i sgnk+1(j) if j ∈{−Nk,n+1}∪{Nk,n+1},
0 otherwise.

(4.15)

Finally, let ĝ%kk+1 be given as in (4.12) only if µ0 < %k.

Remark. In the event that Nk,µ0 = 2k−1−1 and Lk,µ0 = 2k−1 +1, we are at the liberty of

setting ĝµ0

k+1(−2k−1) = −i with ĝλ0
k+1(−2k−1) = 1 and ĝµ0

k+1(2k−1) = i with ĝλ0
k+1(2k−1) = 1.

Proposition 4.9. The refinement and wavelet masks ĥk+1, ĝnk+1 for n ∈ {1, . . . , %k}
defined by (4.1), (4.7) and (4.14) or (4.2), (4.9), (4.10), (4.15) and (4.12) respectively

as in Construction 4.8 satisfy (4.3) and (4.4) and are real and symmetric except for
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one antisymmetric framelet mask. They generally have smooth decay with overlapping

supports that can be controlled. Hence, by the periodic UEP, the affine system X2π is a

tight frame for L2(T).

Proof. The condition Nk,µ0 + Lk,µ0 = 2k implies that for m = 1, . . . , λ0 and n = µ0 +

1, . . . , %k, we have

2Lk,m ≤ Nk,µ0 + Lk,µ0 = 2k = Nk,µ0 + Lk,µ0 ≤ Nk,n +Nk,n,

i.e. we have the following increasing sequences

{Nk,m − 2k, Lk,m − 2k,−2k−1,−Lk,m,−Nk,m, Nk,m, Lk,m, 2
k−1, 2k − Lk,m, 2k −Nk,m}

{−Lk,n,−Nk,n,−2k−1, Nk,n − 2k, Lk,n − 2k, 2k − Lk,n, 2k −Nk,n, 2
k−1, Nk,n, Lk,n}

{Nk,λ0 − 2k,−Lk,µ0 ,−Nk,µ0 ,−Nk,λ0 , Nk,λ0 , Nk,µ0 , Lk,µ0 , 2
k −Nk,λ0}

{−Lk,µ0+1,−Lk,µ0 ,−Nk,µ0 , Lk,µ0+1 − 2k, 2k − Lk,µ0+1, Nk,µ0 , Lk,µ0 , Lk,µ0+1}

of integers. The result is that for n = 1, . . . , λ0 − 1, with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪
{Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n − 2k, . . . , Lk,n+1 − 2k} and j + 2k ∈
{2k − Lk,n+1, . . . , 2

k − Nk,n}, we have ĝnk+1(j ± 2k) = 0. Also, for n = µ0 + 1, . . . , %k,

with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n −
2k, . . . , Lk,n+1 − 2k} and j + 2k ∈ {2k − Lk,n+1, . . . , 2

k −Nk,n}, we have ĝnk+1(j ± 2k) = 0.

Since Nk,µ0 < Lk,µ0 , for j ∈ {−Nk,µ0 , . . . ,−Nk,λ0} ∪ {Nk,λ0 , . . . , Nk,µ0}, or equivalently

j − 2k ∈ {Nk,λ0 − 2k, . . . ,−Lk,µ0} and j + 2k ∈ {Lk,µ0 , . . . , 2
k −Nk,λ0}, we have ĝλ0

k+1(j ±
2k) = 0 = ĝµ0

k+1(j). For j ∈ {−Lk,µ0+1, . . . ,−Lk,µ0} ∪ {Lk,µ0 , . . . , Lk,µ0+1}, or equivalently

j − 2k ∈ {−Nk,µ0 , . . . , Lk,µ0+1 − 2k} and j + 2k ∈ {2k − Lk,µ0+1, . . . , Nk,µ0}, we have

ĝλ0
k+1(j) = 0 = ĝµ0

k+1(j ± 2k).

Since Nk,µ0 < Lk,µ0 , for j ∈ {−Lk,µ0 , . . . ,−Nk,µ0} ∪ {Nk,µ0 , . . . , Lk,µ0}, which is essen-

tially equivalent to j − 2k ∈ {−Lk,µ0 , . . . ,−Nk,µ0} and j + 2k ∈ {Nk,µ0 , . . . , Lk,µ0}, we

have

ĝλ0
k+1(j)ĝλ0

k+1(j ± 2k) = 2 cos
π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
cos

π

2
β̃µ0

k

(
2k − |j|
Nk,µ0

− 1

)
,

ĝµ0

k+1(j)ĝµ0

k+1(j ± 2k) = −2 sin
π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
sin

π

2
β̃µ0

k

(
2k − |j|
Nk,µ0

− 1

)
,

and hence by Lemma 4.3,

ĝλ0
k+1(j)ĝλ0

k+1(j ± 2k) + ĝµ0

k+1(j)ĝµ0

k+1(j ± 2k) = 0. (4.16)
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We have shown that for n ∈ {1, . . . , λ0 − 1, µ0 + 1, . . . , %k} such that ĝnk+1(j) 6= 0, we

have ĝnk+1(j ± 2k) = 0, and for ĝλ0
k+1(j) 6= 0 or ĝµ0

k+1(j) 6= 0, (4.16) must hold. Therefore,

(4.4) holds for all j ∈ σk+1(V k+1
2π (φk+1)).

Let n ∈ {1, . . . , %k}. If Nk,n < Lk,n, then for j ∈ {−Lk,n, . . . ,−Nk,n}∪{Nk,n, . . . , Lk,n},
we verify that

∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 2 sin2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
+ 2 cos2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. If j = Nk,n = Lk,n or j = −Nk,n = −Lk,n, then

clearly ∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 1 + 1 = 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n − 1} ∪ {Lk,n +

1, . . . , Nk,n+1 − 1}, we have
∣∣ĝnk+1(j)

∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. For j ∈
{−Nk,%k+1} ∪ {Nk,%k+1}, clearly,

∣∣ĝ%kk+1(j)
∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= %k. For

j ∈ {−Nk,1 + 1, . . . , Nk,1− 1}, we have
∣∣∣ĥk+1(j)

∣∣∣2 = 2 and ĝnk+1(j) = 0 for n ∈ {1, . . . , %k}.
Since (4.3) holds for all j ∈ σk+1(V k+1

2π (φk+1)), we conclude that it also holds for j + 2k ∈
σk+1(V k+1

2π (φk+1)).

We may remove the restriction that Nk,µ0 +Lk,µ0 = 2k by using two pairs of symmetric

and antisymmetric framelets instead, i.e. we replace the masks at the middle bands around

j = ±2k−1 by symmetric masks ĝλ0
k+1 and ĝµ0

k+1 and their corresponding antisymmetric ones

ĝ
eλ0
k+1 and ĝeµ0

k+1. The redundancy provided by the antisymmetric masks is used for anti-

aliasing purposes.

Construction 4.10. Let φ̂k+1 and ĥk+1 be given as in Construction 4.1. Let µ0 = λ0 + 1

such that 0 ≤ Nk,n ≤ Lk,n < Nk,n+1, Nk,µ0 < 2k−1 < Lk,µ0 and Nk,%k+1 = Lk,%k+1 ≤ Lk+1,1.

For n ∈ {1, . . . , %k}\{λ0, µ0}, let ĝnk+1 be given as in (4.7). For the labels n ∈ {λ0, µ0}, let

ĝnk+1(j) =



sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

1 if
j ∈{−Nk,n+1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1},

cos
[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise,

(4.17)
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and

ĝen
k+1(j) = i sgnk+1(j)ĝnk+1(j). (4.18)

If Nk,n = Lk,n for n ∈ {1, . . . , %k}\{µ0}, then for n ∈ {1, . . . , %k − 1}\{λ0, µ0}, let ĝnk+1

be given as in (4.9). For n = λ0, let

ĝnk+1(j) =



2−
1
2 if j ∈{−Lk,n}∪{Lk,n},

1 if
j ∈{−Nk,n+1, . . . ,−Lk,n − 1}
∪{Lk,n + 1, . . . , Nk,n+1},

cos
[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 otherwise.

(4.19)

For n = µ0, let

ĝnk+1(j) =



sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

1 if
j ∈{−Nk,n+1 + 1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1 − 1},

2−
1
2 if j ∈{−Nk,n+1}∪{Nk,n+1},

0 otherwise.

(4.20)

For the labels n ∈ {λ0, µ0}, let

ĝen
k+1(j) = i sgnk+1(j)ĝnk+1(j). (4.21)

Finally, let ĝ%kk+1 be given as in (4.12) only if µ0 < %k.

Proposition 4.11. The refinement and wavelet masks ĥk+1, ĝnk+1 for n ∈ {1, . . . , %k}
defined by (4.1), (4.7) and (4.17), (4.18) or (4.2), (4.9), (4.19), (4.20), (4.12) together

with (4.21) for n ∈ {λ0, µ0} respectively as in Construction 4.10 satisfy (4.3) and (4.4)

and are real and symmetric except for two antisymmetric framelet masks. They generally

have smooth decay with overlapping supports that can be controlled. Hence, by the periodic

UEP, the affine system X2π is a tight frame for L2(T).

Proof. For m = 1, . . . , λ0 and n = µ0 + 1, . . . , %k, we have

Lk,m ≤ Nk,µ0 < 2k−1 < Lk,µ0 < Nk,n,
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i.e. we have the following increasing sequences

{Nk,m − 2k, Lk,m − 2k,−2k−1,−Lk,m,−Nk,m, Nk,m, Lk,m, 2
k−1, 2k − Lk,m, 2k −Nk,m}

{−Lk,n,−Nk,n,−2k−1, Nk,n − 2k, Lk,n − 2k, 2k − Lk,n, 2k −Nk,n, 2
k−1, Nk,n, Lk,n}

of integers. The result is that for n = 1, . . . , λ0 − 1, with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪
{Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n − 2k, . . . , Lk,n+1 − 2k} and j + 2k ∈
{2k − Lk,n+1, . . . , 2

k − Nk,n}, we have ĝnk+1(j ± 2k) = 0. Also, for n = µ0 + 1, . . . , %k,

with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n −
2k, . . . , Lk,n+1 − 2k} and j + 2k ∈ {2k − Lk,n+1, . . . , 2

k −Nk,n}, we have ĝnk+1(j ± 2k) = 0.

Let n ∈ {λ0, µ0}. For j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n+1}, we have

ĝen
k+1(j)ĝen

k+1(j ± 2k) = −ĝnk+1(j)ĝnk+1(j ± 2k)

and hence

ĝnk+1(j)ĝnk+1(j ± 2k) + ĝen
k+1(j)ĝen

k+1(j ± 2k) = 0. (4.22)

We have shown that for n ∈ {1, . . . , λ0− 1, µ0 + 1, . . . , %k} such that ĝnk+1(j) 6= 0, we have

ĝnk+1(j ± 2k) = 0, and for ĝλ0
k+1(j) 6= 0 or ĝµ0

k+1(j) 6= 0, (4.22) must hold. Therefore, (4.4)

holds for all j ∈ Rk.

Let n ∈ {1, . . . , λ0−1, µ0+1, . . . , %k}. If Nk,n < Lk,n, then for j ∈ {−Lk,n, . . . ,−Nk,n}∪
{Nk,n, . . . , Lk,n}, we verify that

∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 2 sin2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
+ 2 cos2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. If j = Nk,n = Lk,n or j = −Nk,n = −Lk,n, then

clearly ∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 1 + 1 = 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n − 1} ∪ {Lk,n +

1, . . . , Nk,n+1 − 1}, we have
∣∣ĝnk+1(j)

∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. For j ∈
{−Nk,%k+1} ∪ {Nk,%k+1}, clearly,

∣∣ĝ%kk+1(j)
∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= %k. For

j ∈ {−Nk,1 + 1, . . . , Nk,1− 1}, we have
∣∣∣ĥk+1(j)

∣∣∣2 = 2 and ĝnk+1(j) = 0 for n ∈ {1, . . . , %k}.
For n = λ0 and j ∈ {−Lk,n, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n}, we could show in a likewise

manner that ∣∣ĝλ0−1
k+1 (j)

∣∣2 +
∣∣ĝλ0
k+1(j)

∣∣2 +
∣∣∣ĝfλ0
k+1(j)

∣∣∣2 = 2.
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For j ∈ {−Nk,n+1, . . . ,−Lk,n − 1} ∪ {Lk,n + 1, . . . , Nk,n+1}, we could show that∣∣ĝλ0
k+1(j)

∣∣2 +
∣∣∣ĝfλ0
k+1(j)

∣∣∣2 = 2.

For n = µ0 and j ∈ {−Lk,n, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n}, we could confirm that∣∣ĝλ0
k+1(j)

∣∣2 +
∣∣∣ĝfλ0
k+1(j)

∣∣∣2 +
∣∣ĝµ0

k+1(j)
∣∣2 +

∣∣∣ĝfµ0

k+1(j)
∣∣∣2 = 2.

For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n} ∪ {Lk,n, . . . , Nk,n+1 − 1}, we could ensure that∣∣ĝµ0

k+1(j)
∣∣2 +

∣∣∣ĝfµ0

k+1(j)
∣∣∣2 = 2.

For j ∈ {−Lk,n+1, . . . ,−Nk,n+1} ∪ {Nk,n+1, . . . , Lk,n+1}, we are assured that∣∣ĝµ0

k+1(j)
∣∣2 +

∣∣∣ĝfµ0

k+1(j)
∣∣∣2 +

∣∣ĝµ0+1
k+1 (j)

∣∣2 = 2.

Since (4.3) holds for all j ∈ σk+1(V k+1
2π (φk+1)), we conclude that it also holds for j + 2k ∈

σk+1(V k+1
2π (φk+1)).

We may further remove the redundancy of two pairs of symmetric and antisymmetric

framelets by using a pair of symmetric and antisymmetric framelets ψλ0 and ψµ0 instead

and imposing the condition that the signal is processed unchanged at the middle bands

around j = ±2k−1.

Construction 4.12. Let φ̂k+1 and ĥk+1 be given as in Construction 4.1. Assume that

0 ≤ Nk,n ≤ Lk,n < Nk,n+1 for n 6= µ0, Lk,λ0 < 2k−1 < Nk,µ0 = Nk,µ0+1 ≤ Lk,µ0 = Lk,µ0+1

and Nk,%k+1 = Lk,%k+1 ≤ Lk+1,1 with µ0 = λ0 + 1. For n ∈ {1, . . . , %k}\{λ0, µ0}, let ĝnk+1

be defined by (4.7). We define (or redefine) ĝnk+1 for n ∈ {λ0, µ0} by

ĝnk+1(j) =



inmod 2(sgnk+1(j))n sin
[
π
2
β̃λ0
k

(
|j|

Nk,λ0
− 1
)]

if
j ∈{−Lk,λ0 , . . . ,−Nk,λ0 − 1}
∪{Nk,λ0 + 1, . . . , Lk,λ0},

inmod 2(sgnk+1(j))n if
j ∈{−Nk,µ0 , . . . ,−Lk,λ0}
∪{Lk,λ0 , . . . , Nk,µ0},

inmod 2(sgnk+1(j))n cos
[
π
2
β̃µ0

k

(
|j|

Nk,µ0
− 1
)]

if
j ∈{−Lk,µ0 , . . . ,−Nk,µ0 − 1}
∪{Nk,µ0 + 1, . . . , Lk,µ0},

0 otherwise.

(4.23)

In the event that Nk,n = Lk,n for all n ∈ {1, . . . , %k}, we would redefine ĝnk+1 for n ∈
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{1, . . . , %k − 1}\{λ0, µ0} by (4.9) and ĝnk+1 for n ∈ {λ0, µ0} by

ĝnk+1(j) =



2−
1
2 inmod 2(sgnk+1(j))n if j ∈{−Lk,λ0} ∪ {Lk,λ0},

inmod 2(sgnk+1(j))n if
j ∈{−Nk,µ0 + 1, . . . ,−Lk,λ0 − 1}
∪{Lk,λ0 + 1, . . . , Nk,µ0 − 1},

2−
1
2 inmod 2(sgnk+1(j))n if j ∈{−Nk,µ0} ∪ {Nk,µ0},

0 otherwise.

(4.24)

We would also redefine ĝ%kn+1 by (4.12).

Proposition 4.13. The masks ĥk+1, ĝnk+1 for n ∈ {1, . . . , %k}\{λ0, µ0} and ĝnk+1 for

n ∈ {λ0, µ0} defined by (4.1), (4.7) and (4.23) or (4.2), (4.9), (4.24) and (4.12) respec-

tively as in Construction 4.12 satisfy (4.3) and (4.4) and are all real with symmetry or

antisymmetry. They generally have smooth decay with overlapping supports that can be

controlled. Hence, by the periodic UEP, the affine system X2π is a tight frame for L2(T).

Proof. The condition Lk,λ0 < 2k−1 < Nk,µ0 implies that for m = 1, . . . , λ0 and n =

µ0, . . . , %k, we have Lk,m ≤ 2k−1 ≤ Nk,n, i.e. we have the following increasing sequences

{Nk,m − 2k, Lk,m − 2k,−2k−1,−Lk,m,−Nk,m, Nk,m, Lk,m, 2
k−1, 2k − Lk,m, 2k −Nk,m}

{−Lk,n,−Nk,n,−2k−1, Nk,n − 2k, Lk,n − 2k, 2k − Lk,n, 2k −Nk,n, 2
k−1, Nk,n, Lk,n}

of integers. The consequence is that for n = 1, . . . , λ0−1, with j ∈ {−Lk,n+1, . . . ,−Nk,n}∪
{Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n − 2k, . . . , Lk,n+1 − 2k} and j + 2k ∈
{2k − Lk,n+1, . . . , 2

k − Nk,n}, we have ĝnk+1(j ± 2k) = 0. Also, for n = µ0 + 1, . . . , %k,

with j ∈ {−Lk,n+1, . . . ,−Nk,n} ∪ {Nk,n, . . . , Lk,n+1}, or equivalently j − 2k ∈ {Nk,n −
2k, . . . , Lk,n+1 − 2k} and j + 2k ∈ {2k − Lk,n+1, . . . , 2

k −Nk,n}, we have ĝnk+1(j ± 2k) = 0.

For j ∈ {−Lk,µ0 , . . . ,−Nk,λ0} ∪ {Nk,λ0 , . . . , Lk,µ0}, or equivalently j − 2k ∈ {Nk,λ0 −
2k, . . . , Lk,µ0 − 2k} and j + 2k ∈ {2k − Lk,µ0 , . . . , 2

k −Nk,λ0}, we have

ĝλ0
k+1(j)ĝλ0

k+1(j ± 2k) + ĝµ0

k+1(j)ĝµ0

k+1(j ± 2k) = 0. (4.25)

We have shown that for n ∈ {1, . . . , λ0 − 1, µ0 + 1, . . . , %k} such that ĝnk+1(j) 6= 0, we

have ĝnk+1(j ± 2k) = 0, and for ĝλ0
k+1(j) 6= 0 or ĝµ0

k+1(j) 6= 0, (4.25) must hold. Therefore,

(4.4) holds for all j ∈ σk+1(V k+1
2π (φk+1)).

Let n ∈ {1, . . . , λ0 − 1}. If Nk,n = Lk,n, then for j ∈ {−Lk,n} ∪ {Lk,n}, we have∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 1 + 1 = 2
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and all ĝlk+1(j) = 0 for l 6∈ {n− 1, n}. If Nk,n < Lk,n, then for j ∈ {−Lk,n, . . . ,−Nk,n} ∪
{Nk,n, . . . , Lk,n}, we verify that

∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn−1
k+1 (j)

∣∣2 = 2 sin2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
+ 2 cos2 π

2
β̃nk

(
|j|
Nk,n

− 1

)
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n − 1, n}. For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n − 1} ∪ {Lk,n +

1, . . . , Nk,n+1 − 1}, we have
∣∣ĝnk+1(j)

∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. Let n ∈
{µ0 + 1, . . . , %k − 1}. For j ∈ {−Nk,n+1 + 1, . . . ,−Lk,n − 1} ∪ {Lk,n + 1, . . . , Nk,n+1 − 1},
we have

∣∣ĝnk+1(j)
∣∣2 = 2 and ĝlk+1(j) = 0 for all l 6= n. If Nk,n+1 < Lk,n+1, then for

j ∈ {−Lk,n+1, . . . ,−Nk,n+1} ∪ {Nk,n+1, . . . , Lk,n+1}, we verify that

∣∣ĝnk+1(j)
∣∣2 +

∣∣ĝn+1
k+1 (j)

∣∣2= 2

[
cos2 π

2
β̃n+1
k

(
|j|

Nk,n+1

− 1

)
+ sin2 π

2
β̃n+1
k

(
|j|

Nk,n+1

− 1

)]
= 2

and all ĝlk+1(j) = 0 for l 6∈ {n, n + 1}. If Nk,n+1 = Lk,n+1, then for j ∈ {−Nk,n+1} ∪
{Nk,n+1}, we have ∣∣ĝnk+1(j)

∣∣2 +
∣∣ĝn+1
k+1 (j)

∣∣2 = 1 + 1 = 2

and all ĝlk+1(j) = 0 for l 6∈ {n, n+1}. If Nk,λ0 < Lk,λ0 , then for j ∈ {−Lk,λ0 , . . . ,−Nk,λ0}∪
{Nk,λ0 , . . . , Lk,λ0}, we have

∣∣ĝµ0

k+1(j)
∣∣2+∣∣ĝλ0

k+1(j)
∣∣2+∣∣ĝλ0−1

k+1 (j)
∣∣2=2

[
sin2 π

2
β̃λ0
k

(
|j|
Nk,λ0

− 1

)
+cos2 π

2
β̃λ0
k

(
|j|
Nk,λ0

− 1

)]
= 2

and all other ĝlk+1(j) = 0 for l 6∈ {λ0− 1, λ0, µ0}. If Nk,λ0 = Lk,λ0 , then for j ∈ {−Lk,λ0}∪
{Lk,λ0}, we have∣∣ĝµ0

k+1(j)
∣∣2 +

∣∣ĝλ0
k+1(j)

∣∣2 +
∣∣ĝλ0−1
k+1 (j)

∣∣2 =
1

2
+

1

2
+ 1 = 2

and all other ĝlk+1(j) = 0 for l 6∈ {λ0 − 1, λ0, µ0}. If Nk,µ0 = Lk,µ0+1, then for j ∈
{−Nk,µ0} ∪ {Nk,µ0}, we have

µ0+1∑
n=λ0

∣∣ĝnk+1(j)
∣∣2 =

1

2
+

1

2
+ 1 = 2

and all other ĝlk+1(j) = 0 for l 6∈ {λ0, µ0, µ0 + 1}. If Nk,µ0 < Lk,µ0 , then for j ∈
{−Lk,µ0 , . . . ,−Nk,µ0} ∪ {Nk,µ0 , . . . , Lk,µ0}, we have

µ0+1∑
n=λ0

∣∣ĝnk+1(j)
∣∣2 = 2 cos2 π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
+ 2 sin2 π

2
β̃µ0

k

(
|j|
Nk,µ0

− 1

)
= 2
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and all other ĝlk+1(j) = 0 for l 6∈ {λ0, µ0, µ0 + 1}. For j ∈ {−Nk,µ0 + 1, . . . ,−Lk,λ0 − 1} ∪
{Lk,λ0 + 1, . . . , Nk,µ0 − 1}, we have∣∣ĝλ0

k+1(j)
∣∣2 +

∣∣ĝµ0

k+1(j)
∣∣2 = 1 + 1 = 2

and all ĝlk+1(j) = 0 for l 6∈ {λ0, µ0}. For j ∈ {−Nk,%k+1, . . . ,−Lk,%k − 1} ∪ {Lk,%k +

1, . . . , Nk,%k+1}, we have
∣∣ĝ%kk+1(j)

∣∣2 = 2 and all ĝnk+1(j) = 0 for n < %k. For j ∈ {−Nk,1 +

1, . . . , Nk,1 − 1}, we have
∣∣∣ĥk+1(j)

∣∣∣2 = 2 and ĝnk+1(j) = 0 for n ∈ {1, . . . , %k}. Since

(4.3) holds for all j ∈ σk+1(V k+1
2π (φk+1)), we conclude that it also holds for j + 2k ∈

σk+1(V k+1
2π (φk+1)).

Remark. As the reader would have already observed, there can be variations in the

constructions by assuming that Nk,n = Lk,n for only some of the n ∈ {1, . . . , %k} subject

to the usual constraints of the respective constructions.

4.2 Time-Localized Construction

Time-localized wavelets in L2(T) are analogous to compactly supported wavelets in L2(R),

i.e. they could be obtained by periodizing compactly supported wavelets in L2(R). The

techniques discussed in this section are used to include modulation information into the

wavelet system while preserving the time-localized nature of the wavelets. These tech-

niques are also applicable to the bandlimited case but they are not necessary for the

inclusion of modulation information.

Suppose that the periodic affine system X2π as defined in (1.15) is a tight frame of

real functions for L2(T) derived from the MRA {V k
2π(Φk)} such that the minimum energy

condition (3.45) holds for each k ∈ N, i.e.

ρ∑
m=1

∑
l∈Lk+1

∣∣〈f, T lk+1φ
m
k+1〉

∣∣2 =

ρ∑
m=1

∑
l∈Lk

∣∣〈f, T lkφmk 〉∣∣2 +

%k∑
m=1

∑
l∈Lk

∣∣〈f, T lkψmk 〉∣∣2 , f ∈ L2(T).

Hence for any K ≥ 0, the collection of real functions {T lKφK : φK ∈ ΦK , l ∈ LK , }∪{T lkψk :

ψk ∈ Ψk, l ∈ Lk, k ≥ K} is also a tight frame for L2(T). For simplicity, we assume that

ρ = 1, i.e. for each k ≥ 0, let Φk := φk and Ψk :=
[
ψmk

]%k
m=1

be subsets of L2(T) satisfying

(3.28) and (3.31) for some Ĥk+1 = ĥk+1 = ĝ0
k+1 ∈ S(2k+1) and Ĝk+1 =

[
ĝmk+1

]%k
m=1

∈
S(2k+1)%k×1 respectively. We shall also assume in this section that (3.48) holds.

In our following construction, we shall add modulation features to our wavelet system

by enlarging the MRA using “diagonal” extension of the masks.
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Construction 4.14. For k ≥ 0, define
̂̃
Φ
T

k :=

[̂̃
φ
−T

k
̂̃
φ

+T

k

]
with

̂̃
φ
−

k =
[̂̃
φ
λ

k

]0

λ=−L+1
and

̂̃
φ

+

k =
[̂̃
φ
µ

k

]L−1

µ=0
, where

̂̃
φ
λ

k(j) = φ̂k(−j − cλ) and
̂̃
φ
µ

k(j) = φ̂k(j + cµ). Similarly, we de-

fine
̂̃
Ψ
T

k :=

[̂̃
ψ
−T

k
̂̃
ψ

+T

k

]
with

̂̃
ψ
−

k =
[̂̃
ψ
λ

k

]0

λ=−L+1
and

̂̃
ψ

+

k =
[̂̃
ψ
µ

k

]L−1

µ=0
, where

̂̃
ψ
λ

k(j) =[
ψ̂mk (−j − cλ)

]%k
m=1

and
̂̃
ψ
µ

k(j) =
[
ψ̂mk (j + cµ)

]%k
m=1

. For k ≥ 0, the masks
̂̃
Hk+1 ∈

S(2k+1)ρ×ρ and
̂̃
Gk+1 ∈ S(2k+1)f%k×ρ where ρ = 2L and %̃k = 2L%k are defined such that

̂̃
Hk+1 :=

diag
[̂̃
h
λ

k+1

]0

λ=−L+1
0

0 diag
[̂̃
h
µ

k+1

]L−1

µ=0


̂̃
Gk+1:=

diag
[̂̃gλk+1

]0

λ=−L+1
0

0 diag
[̂̃gµk+1

]L−1

µ=0

 (4.26)

with
̂̃
h
λ

k+1(j) = ĥk+1(−j − cλ),
̂̃
h
µ

k+1(j) = ĥk+1(j + cµ), ̂̃gλk+1(j) =
[
ĝmk+1(−j − cλ)

]%k
m=1

and ̂̃gµk+1(j) =
[
ĝmk+1(j + cµ)

]%k
m=1

for all j ∈ Rk+1.

Theorem 4.15. For each k ≥ 0, let Φ̃k and Ψ̃k be constructed from Φk and Ψk as in

Construction 4.14. Then X̃2π := {φ̃λ0 , φ̃
µ
0 : φ0 ∈ Φ0, λ = −L+ 1, . . . , 0, µ = 0, . . . , L− 1}∪

{T lkψ̃
λ,m
k , T lkψ̃

µ,m
k : ψk ∈ Ψk, l ∈ Lk, λ = −L+ 1, . . . , 0, µ = 0, . . . , L− 1,m = 1, . . . , %k, k ≥

0} is a tight frame for L2(T) derived from the MRA {V k
2π(Φ̃k)}k≥0 using the periodic UEP.

Proof. The density of
⋃
k∈Z V

k
2π(Φk) in L2(T) implies the density of

⋃
k∈Z V

k
2π(Φ̃k) in L2(T).

The refinability condition (3.28) is shown by verifying that for k ≥ 0, λ ∈ {−L+1, . . . , 0}
and µ ∈ {0, . . . , L− 1}, we have

̂̃
φ
λ

k(j) = φ̂k(−j − cλ) = ĥk+1(−j − cλ)φ̂k+1(−j − cλ) =
̂̃
h
λ

k+1(j)
̂̃
φ
λ

k+1(j),̂̃
φ
µ

k(j) = φ̂k(j + cµ) = ĥk+1(j + cµ)φ̂k+1(j + cµ) =
̂̃
h
µ

k+1(j)
̂̃
φ
µ

k+1(j).

Thus {V k
2π(Φ̃k)}k≥0 is an MRA of L2(T). Clearly, (3.48) holds for the MRA {V k

2π(Φ̃k)}k≥0.

We also have for k ≥ 0, λ ∈ {−L+ 1, . . . , 0}, µ ∈ {0, . . . , L− 1}, and m ∈ {1, . . . , %k},

̂̃
ψ
λ,m

k (j) = ψ̂mk (−j − cλ) = ĝmk+1(−j − cλ)φ̂k+1(−j − cλ) = ̂̃gλ,mk+1(j)
̂̃
φ
λ

k+1(j),̂̃
ψ
µ,m

k (j) = ψ̂mk (j + cµ) = ĝmk+1(j + cµ)φ̂k+1(j + cµ) = ̂̃gµ,mk+1(j)
̂̃
φ
µ

k+1(j).

Therefore (3.31) holds and {T lkψ̃
λ,m
k , T lkψ̃

µ,m
k : ψk ∈ Ψk, l ∈ Lk, λ = −L + 1, . . . , 0, µ =

0, . . . , L−1,m = 1, . . . , %k} is derived from the MRA {V k
2π(Φ̃k)}k≥0. The masks

̂̃
Hk+1 and



4.2 Time-Localized Construction 97

̂̃
Gk+1 satisfy

̂̃
Hk+1(j + ν)∗

̂̃
Hk+1(j) +

̂̃
Gk+1(j + ν)∗

̂̃
Gk+1(j) = 2δ0,νIρ,

where ν ∈ {0, 2k}, 2δ0,νIL = diag
[̂̃
h
λ

k+1(j + ν)∗
̂̃
h
λ

k+1(j) + ̂̃gλk+1(j + ν)∗̂̃gλk+1(j)

]0

λ=−L+1
and

2δ0,νIL = diag
[̂̃
h
µ

k+1(j + ν)∗
̂̃
h
µ

k+1(j) + ̂̃gµk+1(j + ν)∗̂̃gµk+1(j)

]L−1

µ=0
. Consequently, (3.43) of

Theorem 3.25 holds and hence the conditions of the periodic UEP are satisfied. Thus

X̃2π is a tight frame for L2(T) derived from the MRA {V k
2π(Φ̃k)}k≥0 using the periodic

UEP.

Construction 4.14 only allows for a fixed and limited range of modulation and re-

quires the expansion in the MRA. We shall remedy this by constructing minimum energy

time-localized wavelets {ψ̃m,µk }
%k,2L
m,µ=1 which, like our bandlimited construction, contribute

modulation information to the wavelet system and satisfy

∑
l∈Lk+1

∣∣〈f, T lk+1φk+1〉
∣∣2 =

2L∑
µ=1

∑
l∈Lk

∣∣∣〈f, T lkφ̃µk〉∣∣∣2 +

%k∑
m=1

2L∑
µ=1

∑
l∈Lk

∣∣∣〈f, T lkψ̃m,µk 〉
∣∣∣2 , f ∈ L2(T).

First we look at complex constructions, where the additional masks constructed are

modulates of the original masks.

Construction 4.16. For 0 ≤ k < K, define
̂̃
Φk := L

k
2 Φ̂k and

̂̃
Ψk :=

̂̃
Gk+1

̂̃
Φk+1, where

the combined MRA mask

̂̃
Lk+1(j) :=

̂̃g0,0,0

k+1 (j)̂̃
Gk+1(j)

 (4.27)

is a 2(%k + 1)L× 1 vector with
̂̃
Gk+1(j) :=


̂̃g0,0,1

k+1 (j)[̂̃g0,µ

k+1(j)
]L−1

µ=1[̂̃gmk+1(j)
]%k
m=1

, ̂̃gmk+1(j) :=
[̂̃gm,µk+1(j)

]L−1

µ=0
and

̂̃gm,µk+1(j) =

[̂̃gm,µ,0k+1 (j)̂̃gm,µ,1k+1 (j)

]
= (2L)−

1
2

[
ĝmk+1(j − Ckµ)

ĝmk+1(j + Ckµ)

]
,

for m ∈ {0, . . . , %k}, µ ∈ {0, . . . , L− 1} and j ∈ Rk+1 and we let CkL = 2k. For k ≥ K,

define
̂̃
Φk := L

K
2 Φ̂k and

̂̃
Ψk := L

K
2 Ψ̂k with

̂̃
Lk+1(j) := L̂k+1(j) as the original combined

MRA mask.
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Theorem 4.17. For each k ≥ 0, let Φ̃k and Ψ̃k be constructed from Φk and Ψk as

in Construction 4.16 with
̂̃
Lk+1 as in (4.27) and L̂k+1 :=

[
ĝmk+1

]%k
m=0

as their respective

combined MRA masks. Then X̃2π := {φ0} ∪ {T lkψ̃k : ψ̃k ∈ Ψ̃k, l ∈ Lk, k ≥ 0} is a tight

frame for L2(T) derived from the same MRA {V k
2π(Φk)}k≥0 using the periodic UEP.

Proof. By verifying that
̂̃
Φk = L−

1
2 ĝ0
k+1
̂̃
Φk+1 for 0 ≤ k < K and

̂̃
Φk = ĝ0

k+1
̂̃
Φk+1 for k ≥ K,

we confirm that Φ̃k and Ψ̃k of Construction 4.16 satisfy (3.28) and (3.31) respectively

for all k ≥ 0. Clearly, (3.48) holds for the MRA {V k
2π(Φ̃k)}k≥0. The UEP condition

L̂k(j)
∗L̂k(j) = 2I2 with L̂k(j) as defined in (3.44) is equivalent to

%k∑
m=0

ĝmk+1(j)ĝmk+1(j + ν) = 2δ0,ν

for j ∈ Rk+1 and ν ∈ {0, 2k}, which leads to the following condition

%k∑
m=0

L−1∑
µ=0

ĝmk+1(j ± Ckµ)ĝmk+1(j ± Ckµ+ ν) = 2Lδ0,ν (4.28)

that is independent of the choice of CkL. Using (4.28) for 0 ≤ k < K, we deduce that

%k∑
m=0

L−1∑
µ=0

[∣∣∣̂̃gm,µ,0k+1 (j)
∣∣∣2 +

∣∣∣̂̃gm,µ,1k+1 (j)
∣∣∣2]

=
1

2L

%k∑
m=0

L−1∑
µ=0

[∣∣ĝmk+1(j − Ckµ)
∣∣2 +

∣∣ĝmk+1(j + Ckµ)
∣∣2] =

1

2L
(2L+ 2L) = 2

and

%k∑
m=0

L−1∑
µ=0

[̂̃gm,µ,0k+1 (j)̂̃gm,µ,0k+1 (j + 2k) + ̂̃gm,µ,1k+1 (j)̂̃gm,µ,1k+1 (j + 2k)

]

=
1

2L

%k∑
m=0

L−1∑
µ=0

[
ĝmk+1(j − Ckµ)ĝmk+1(j − Ckµ+ 2k) + ĝmk+1(j + Ckµ)ĝmk+1(j + Ckµ+ 2k)

]
= 0 + 0 = 0,

and it follows that
̂̃Lk(j)

∗ ̂̃Lk(j) = 2I2, where
̂̃Lk(j) =

[̂̃
Lk+1(j)

̂̃
Lk+1(j + 2k)

]
and

̂̃
Lk+1

is defined as in (4.27). Therefore by Theorem 3.27 (periodic UEP), X̃2π is a tight frame

for L2(T) derived from the MRA {V k
2π(Φk)}k≥0.

We say that a function f ∈ L2(T) is symmetric (up to linear phase κ) if

f̂(−j) = e−ij·κf̂(j)
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for some κ ∈ T. Correspondingly, a periodic sequence gk ∈ S(2k) is symmetric (up to

linear phase κ) if

ĝk(−j) = e
−i2πj·κ

2k ĝk(j)

for some κ ∈ Z.

The wavelets in Construction 4.16 are not real and symmetric. It is possible to achieve

this requirement if we modify Construction 4.16 slightly.

Construction 4.18. For 0 ≤ k < K, define
̂̃
Φk := L

k
2

[
φ̂k(−·) φ̂k

]T
and

̂̃
Ψk :=̂̃

Gk+1
̂̃
Φk+1, where the combined MRA mask

̂̃
Lk+1(j) :=

̂̃g0,0

k+1(j)̂̃
Gk+1(j)

 (4.29)

is a 2(%k + 1)L× 2 matrix with
̂̃
Gk+1(j) :=


[̂̃g0,µ

k+1(j)
]L−1

µ=1[̂̃gmk+1(j)
]%k
m=1

, ̂̃gmk+1(j) :=
[̂̃gm,µk+1(j)

]L−1

µ=0
and

̂̃gm,µk+1(j) :=

[̂̃gm,µ,0k+1 (j) 0

0 ̂̃gm,µ,1k+1 (j)

]
:= L−

1
2

[
ĝmk+1(−j − Ckµ) 0

0 ĝmk+1(j + Ckµ)

]
,

for m ∈ {0, . . . , %k}, µ ∈ {0, . . . , L− 1} and j ∈ Rk+1 and we let CkL = 2k. For k ≥ K,

define
̂̃
Φk := L

K
2

[
φ̂k(−·) φ̂k

]T
and

̂̃
Ψk :=

̂̃
Gk+1

̂̃
Φk+1 with ̂̃g0,0

k+1 :=

[
ĝ0
k+1(−·) 0

0 ĝ0
k+1

]
as

the refinement mask and
̂̃
Gk+1 :=

[̂̃gm,0k+1

]%k
m=1

:=

[
ĝmk+1(−·) 0

0 ĝmk+1

]%k
m=1

as the wavelet mask.

Theorem 4.19. For each k ≥ 0, let Φ̃k and Ψ̃k be constructed from Φk and Ψk as in

Construction 4.18 with
̂̃
Lk+1 :=

[̂̃gmk+1

]%k
m=0

and L̂k+1 :=
[
ĝmk+1

]%k
m=0

as their respective

combined MRA masks. Then X̃2π := {φ0, φ0(−·)} ∪ {T lkψ̃k : ψ̃k ∈ Ψ̃k, l ∈ Lk, k ≥ 0} is a

tight frame for L2(T) derived from the MRA {V k
2π(Φ̃k)}k≥0 using the periodic UEP.

Proof. By verifying that
̂̃
Φk = ̂̃g0,0

k+1
̂̃
Φk+1 for 0 ≤ k < K and for k ≥ K, we confirm

that Φ̃k and Ψ̃k of Construction 4.18 satisfy (3.28) and (3.31) respectively for all k ≥ 0.

Clearly, (3.48) holds for the MRA {V k
2π(Φ̃k)}k≥0. The UEP condition L̂k(j)

∗L̂k(j) = 2I2

with L̂k(j) as defined in (3.44) is equivalent to

%k∑
m=0

ĝmk+1(±j)ĝmk+1(±j + ν) = 2δ0,ν
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for j ∈ Rk+1 and ν ∈ {0, 2k}, which leads to the following condition

%k∑
m=0

L−1∑
µ=0

ĝmk+1(±(j + Ckµ))ĝmk+1(±(j + Ckµ) + ν) = 2Lδ0,ν (4.30)

that is independent of the choice of CkL. Using (4.30) for 0 ≤ k < K, we deduce that

%k∑
m=0

L−1∑
µ=0

∣∣∣̂̃gm,µ,0k+1 (j)
∣∣∣2 = L−1

%k∑
m=0

L−1∑
µ=0

∣∣ĝmk+1(−j − Ckµ)
∣∣2 = L−1(2L) = 2,

%k∑
m=0

L−1∑
µ=0

∣∣∣̂̃gm,µ,1k+1 (j)
∣∣∣2 = L−1

%k∑
m=0

L−1∑
µ=0

∣∣ĝmk+1(j + Ckµ)
∣∣2 = L−1(2L) = 2,

and

%k∑
m=0

L−1∑
µ=0

̂̃gm,µ,0k+1 (j)̂̃gm,µ,0k+1 (j + 2k) = L−1

%k∑
m=0

L−1∑
µ=0

ĝmk+1(−j − Ckµ)ĝmk+1(−j − Ckµ+ 2k) = 0,

%k∑
m=0

L−1∑
µ=0

̂̃gm,µ,1k+1 (j)̂̃gm,µ,1k+1 (j + 2k) = L−1

%k∑
m=0

L−1∑
µ=0

ĝmk+1(j + Ckµ)ĝmk+1(j + Ckµ+ 2k) = 0.

It follows that
̂̃Lk(j)

∗ ̂̃Lk(j) = 2I4, where
̂̃Lk(j) =

[̂̃
Lk+1(j)

̂̃
Lk+1(j + 2k)

]
, since

̂̃
Lk+1(j)∗

̂̃
Lk+1(j) =


%k∑
m=0

L−1∑
µ=0

∣∣∣̂̃gm,µ,0k+1 (j)
∣∣∣2 0

0
%k∑
m=0

L−1∑
µ=0

∣∣∣̂̃gm,µ,1k+1 (j)
∣∣∣2
 = 2I2,

̂̃
Lk+1(j)∗

̂̃
Lk+1(j + 2k)=


%k∑
m=0

L−1∑
µ=0

̂̃gm,µ,0k+1 (j)̂̃gm,µ,0k+1 (j + 2k) 0

0
%k∑
m=0

L−1∑
µ=0

̂̃gm,µ,1k+1 (j)̂̃gm,µ,1k+1 (j + 2k)

=0

and in a similar manner,
̂̃
Lk+1(j + 2k)∗

̂̃
Lk+1(j) = 0 and

̂̃
Lk+1(j + 2k)∗

̂̃
Lk+1(j + 2k) = 2I2

with
̂̃
Lk defined as in (4.29). Similarly, for k ≥ K, we have

̂̃Lk(j)
∗ ̂̃Lk(j) = 2I4 since

̂̃
Lk+1(j)∗

̂̃
Lk+1(j) =


%k∑
m=0

∣∣ĝmk+1(−j)
∣∣2 0

0
%k∑
m=0

∣∣ĝmk+1(j)
∣∣2
 = 2I2,

̂̃
Lk+1(j)∗

̂̃
Lk+1(j + 2k)=


%k∑
m=0

ĝmk+1(−j)ĝmk+1(−j + 2k) 0

0
%k∑
m=0

ĝmk+1(j)ĝmk+1(j + 2k)

=0
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and in a similar manner,
̂̃
Lk+1(j + 2k)∗

̂̃
Lk+1(j) = 0 and

̂̃
Lk+1(j + 2k)∗

̂̃
Lk+1(j + 2k) = 2I2.

Therefore by Theorem 3.27 (periodic UEP), X̃2π is a tight frame for L2(T) derived from

the MRA {V k
2π(Φ̃k)}k≥0.

We shall now symmetrize Construction 4.18 by the same procedure found in Chapter

2. Although this general procedure could be fully developed for the periodic setting, we

shall only consider its specific application here.

Construction 4.20. For each k ≥ 0, let Φ̃k and Ψ̃k be constructed from Φk := φk and

Ψk :=
[
ψmk

]%k
m=1

as in Construction 4.18. For 0 ≤ k < K and k ≥ K, consider the new

combined MRA masks L̂′k(j) := U2(%k+1)L
̂̃
Lk(j)U

∗
0 and L̂′k(j) := U2(%k+1)

̂̃
Lk(j)U

∗
0 respec-

tively, where
̂̃
Lk(j) is given as in Construction 4.18 and U2(%k+1)L := diag

[
U0

]2(%k+1)L

m=1
and

U2(%k+1) := diag
[
U0

]2(%k+1)

m=1
are 2(%k + 1)L× 2(%k + 1)L and 2(%k + 1)× 2(%k + 1) unitary

matrices respectively with U0 := 1√
2

[
1 1

1 −1

]
. Define Φ̂′k := U0

̂̃
Φk and Ψ̂′k := U2%kL

̂̃
Ψk for

0 ≤ k < K and Φ̂′k := U0
̂̃
Φk and Ψ̂′k := U2%k

̂̃
Ψk for k ≥ K.

Theorem 4.21. For each k ≥ 0, let Φ′k and Ψ′k be constructed from Φk and Ψk as in

Construction 4.20 with L̂′k+1 and L̂k+1 as their respective combined MRA masks. Then

X ′2π := {φ0} ∪ {T lkψ′k : ψ′k ∈ Ψ′k, l ∈ Lk, k ≥ 0} is a tight frame with real and sym-

metric or antisymmetric elements (up to linear phase) for L2(T) derived from the MRA

{V k
2π(Φ′k)}k≥0 using the periodic UEP.

Proof. Theorem 4.19 shows that X̃2π is a tight frame for L2(T) derived from the MRA

{V k
2π(Φ̃k)}k≥0, and {V k

2π(Φ′k)}k≥0 is the same MRA as {V k
2π(Φ̃k)}k≥0 as Φ̂′k is obtained from

a unitary transformation of
̂̃
Φk. By Corollary 3.29, X ′2π is a tight frame for L2(Ts) derived

from the MRA {V k
2π(Φ′k)}k≥0 with combined MRA mask L̂′k given as in Construction 4.20.

The symmetric and antisymmetric properties of the frame elements is clear from the choice

of the unitary matrices.

Although Constructions 4.16, 4.18 and 4.20 give the flexibility of extending the range

of modulation by the wavelet system, it is required that the modulation range be bounded

in order for the wavelet system to be a tight frame. We shall remedy this by introducing

a slight modification to the wavelet masks based on the idea of splitting the wavelet

subbands into “packets” using a different set of masks.
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Construction 4.22. For 0 ≤ k < K, define
̂̃
Φk := Φ̂k and

̂̃
Ψk := Ψ̂k with

̂̃
Lk+1 :=

L̂k+1 being the original combined MRA mask. For k ≥ K, define
̂̃
Φk := Φ̂k and

̂̃
Ψk :=̂̃

Gk+1
̂̃
Φk+1, where the combined MRA mask

̂̃
Lk+1(j) :=

[
ĝ0
k+1(j)̂̃
Gk+1(j)

]
with

̂̃
Gk+1(j) :=

[̂̃gmk+1(j)
]%k
m=1

, ̂̃gmk+1(j) :=
[̂̃gm,µk+1(j)

]rk−1

µ=0
,

̂̃gm,µk+1(j) := α̂m,µk (j)ĝmk+1(j), for m ∈ {1, . . . , %k} and µ ∈ {0, . . . , rk− 1} and j ∈ Rk+1 with

α̂m,µk ∈ S(2k) and
rk−1∑
µ=0

|α̂m,µk (ν)|2 = 1 for all ν ∈ Rk.

Theorem 4.23. For each k ≥ 0, let Φ̃k and Ψ̃k be constructed from Φk and Ψk as in

Construction 4.22 with
̂̃
Lk+1 and L̂k+1 as their respective combined MRA masks. Then

X̃2π := {φ0} ∪ {T lkψ̃k : ψ̃k ∈ Ψ̃k, l ∈ Lk, k ≥ 0} is a tight frame for L2(T) derived from the

same MRA {V k
2π(Φk)}k≥0 using the periodic UEP.

Proof. It is clear that Φ̃k and Ψ̃k of Construction 4.22 satisfy (3.28) and (3.31) respectively

for all k ≥ 0 and (3.48) holds for the MRA {V k
2π(Φ̃k)}k≥0. Next, since for m ∈ {1, . . . , %k},

rk−1∑
µ=0

∣∣ĝm,µk+1(j)
∣∣2 =

rk−1∑
µ=0

∣∣α̂m,µk (j)ĝmk+1(j)
∣∣2 =

∣∣ĝmk+1(j)
∣∣2 ,

rk−1∑
µ=0

ĝm,µk+1(j)ĝm,µk+1(j + 2k) =

rk−1∑
µ=0

ĝmk+1(j)α̂m,µk (j)α̂m,µk (j + 2k)ĝmk+1(j + 2k)

= ĝmk+1(j)ĝmk+1(j + 2k)

rk−1∑
µ=0

|α̂m,µk (j)|2 = ĝmk+1(j)ĝmk+1(j + 2k),

therefore
%k∑
m=0

̂̃gmk+1(j)∗̂̃gmk+1(j + ν) = 2δ0,ν , where ̂̃g0

k+1 = ĝ0
k+1 and it follows that (3.43)

holds. Therefore, by Theorem 3.27, X̃2π is a tight frame for L2(T) derived from the same

MRA {V k
2π(Φk)}k≥0 using the periodic UEP.

In the event that the wavelets of the packetized system X̃2π of Theorem 4.23 do not pos-

sess properties of symmetry or antisymmetry, we could symmetrize X̃2π by the procedure

found in Chapter 2 using the application of Corollary 3.29 and unitary transformations.

We shall now see as follows that orthogonal wavelet packet representation using conjugate

mirror filters as described in [38] and [46] is a special case of Construction 4.22.

Theorem 4.24. For k ≥ 0, let {T lkθk : l ∈ Lk} be an orthonormal basis of a space

Sk ⊂ L2(T) and ĥk := ĝ0
k ∈ S(2k) and ĝk := e−

i2π·
2k ĥk(·+ 2k−1) := ĝ1

k ∈ S(2k) satisfy
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(3.43). For m ∈ {0, 1}, define θ̂mk−1 := ĝmk θ̂k. The family {T lk−1θ
m
k−1 : m = 0, 1, l ∈ Lk−1}

is an orthonormal basis of Sk.

Proof. By Theorem 3.13, the Gramian, as given in (3.34), Mk(j) :=
∥∥∥θ̂k,j∥∥∥2

l2(Z)
= 2−k

for every j ∈ Rk. Similarly, the two families {T lk−1θ
m
k−1 : l ∈ Lk−1} for m ∈ {0, 1} are

orthonormal bases if
∥∥∥θ̂0

k−1,j

∥∥∥2

l2(Z)
=
∥∥∥θ̂1

k−1,j

∥∥∥2

l2(Z)
= 2−k+1 for every j ∈ Rk−1 and they

yield orthogonal spaces if 〈θ̂0
k−1,j, θ̂

1
k−1,j〉l2(Z) = 0 for every j ∈ Rk−1. The former could be

seen easily since for m ∈ {0, 1},∥∥∥θ̂mk−1,j

∥∥∥2

l2(Z)
=
∑
n∈Z

∣∣∣θ̂mk−1(j + 2k−1n)
∣∣∣2 =

∑
n∈Z

∣∣ĝmk (j + 2k−1n)
∣∣2 ∣∣∣θ̂mk (j + 2k−1n)

∣∣∣2
=
∑
n∈Z

∣∣ĝmk (j + 2kn)
∣∣2 ∣∣∣θ̂mk (j + 2kn)

∣∣∣2 +
∑
n∈Z

∣∣ĝmk (j + 2k−1 + 2kn)
∣∣2 ∣∣∣θ̂mk (j + 2k−1 + 2kn)

∣∣∣2
= |ĝmk (j)|2 (2−k) +

∣∣ĝmk (j + 2k−1)
∣∣2 (2−k) = 2(2−k) = 2−k+1.

Similarly, the latter could be shown by

〈θ̂0
k−1,j, θ̂

1
k−1,j〉l2(Z) =

∑
n∈Z

θ̂0
k−1(j + 2k−1n)θ̂1

k−1(j + 2k−1n)

=
∑
n∈Z

ĝ0
k(j + 2k−1n)θ̂k(j + 2k−1n)ĝ1

k(j + 2k−1n)θ̂k(j + 2k−1n)

=
∑
n∈Z

ĝ0
k(j + 2kn)ĝ1

k(j + 2kn)
∣∣∣θ̂k(j + 2kn)

∣∣∣2
+
∑
n∈Z

ĝ0
k(j + 2k−1 + 2kn)ĝ1

k(j + 2k−1 + 2kn)
∣∣∣θ̂k(j + 2k−1 + 2kn)

∣∣∣2
= ĝ0

k(j)ĝ
1
k(j)(2

−k) + ĝ0
k(j + 2k−1)ĝ1

k(j + 2k−1)(2−k) = 0.

Finally, the two families span Sk since∑
l∈Lk

sk(l)T
l
kθk =

∑
l∈Lk−1

s0
k−1(l)T lk−1θ

0
k−1 +

∑
l∈Lk−1

s1
k−1(l)T lk−1θ

1
k−1,

where 2ŝmk−1(j) =
[
ŝk(j)ĝ

m
k (j) + ŝk(j + 2k−1)ĝmk (j + 2k−1)

]
. The coefficients are computed

according to the decomposition and reconstruction algorithms given in Chapter 5.

Corollary 4.25. For k ≥ 0, let {T lkθk : l ∈ Lk} be an orthonormal basis of a space

Sk ⊂ L2(T) and ĥk := ĝ0
k ∈ S(2k) and ĝk := e−

i2π·
2k ĥk(·+ 2k−1) := ĝ1

k ∈ S(2k) satisfy

(3.43). For i ≤ k and ε ∈ {0, . . . , 2i − 1}, define θ̂εk−i := ĝ
εi−1

k−i+1 · · · ĝ
ε0
k θ̂k, where the binary

representation of ε is ε0 · · · εi−1. Then the family {T lk−iθεk−i : ε = 0, . . . , 2i − 1, l ∈ Lk−i}

is an orthonormal basis of Sk that satisfies 2−i
2i−1∑
ε=0

∣∣ĝεi−1

k−i+1

∣∣2 · · · |ĝε0k |2 = 1.
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Proof. We are only required to verify that 2−i
2i−1∑
ε=0

∣∣ĝεi−1

k−i+1

∣∣2 · · · |ĝε0k |2 = 1 since the rest of

the proof is a consequence of Theorem 4.24 applied iteratively. We shall obtain our proof

by induction. Clearly,
∣∣∣θ̂0
k−1(j)

∣∣∣2+
∣∣∣θ̂1
k−1(j)

∣∣∣2 = 2
∣∣∣θ̂k(j)∣∣∣2 since 2−1

[
|ĝ0
k(j)|

2
+ |ĝ1

k(j)|
2
]

= 1

for every j ∈ Rk. Without loss of generality, let us assume that
2i−1−1∑
ε=0

∣∣∣θ̂εk−i+1(j)
∣∣∣2 =

2i−1
∣∣∣θ̂k(j)∣∣∣2. Next, we check that

2i−1∑
ε=0

∣∣∣θ̂εk−i(j)∣∣∣2 =
[∣∣ĝ0

k−i+1(j)
∣∣2 +

∣∣ĝ1
k−i+1(j)

∣∣2] 2i−1−1∑
ε=0

∣∣∣θ̂εk−i+1(j)
∣∣∣2 = 2(2i−1)

∣∣∣θ̂k(j)∣∣∣2
and this confirms our result.

Although Construction 4.22 may not be as flexible as our bandlimited constructions,

it is certainly more flexible than orthogonal wavelet packet representations typified by

that of Corollary 4.25 since there are no special constraints on the packet filters other

than the requirement that the energy of the packet masks must satisfy a sum of unit

norm. This means that the packet filters of Construction 4.22 could be chosen to be

either time-localized or bandlimited and the representation is computationally efficient

as a desired representation of a signal could be obtained almost directly without going

through the iterative process of applying orthogonal wavelet packets. Furthermore, since

the refinable function and hence the MRA remains unchanged, the frame approximation

order is preserved and at the same time, finer partitioning in the frequency domain could

be obtained by modifying the number of wavelet masks adaptively.

The linear phase preserving time-limited L2(R) constructions of [7] and [16] using

the UEP typically involves a symmetric refinable function and three wavelets with the

first wavelet being an orthogonal flip of the refinable function. We could visualize their

time-frequency plot by comparing with their analogous bandlimited counterpart after

considering where they are localized in the frequency domain. The refinable function is

mainly localized in a subset of [−π
2
, π

2
] and the first wavelet mainly occupies a subset of

[−π, π
2
] ∪ [π

2
, π]. The frequency localization of the remaining wavelets varies with con-

structions. For illustration purposes, let us just assume that they are basically localized

in the middle bands, i.e. [−π
2
− ω0,−π

2
+ ω0] ∪ [π

2
− ω0,

π
2

+ ω0] with |ω0| < π
2
. For a

reasonable construction of the bandlimited analogue of the lowpass filter, we shall utilize

the restriction that the refinable mask is localized in [0, ω0].
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Construction 4.26. Let ĥk+1 be given as in Construction 4.1, i.e.

ĥk+1(j) =


√

2 if j ∈ {−Nk, . . . , Nk},√
2 cos

[
π
2
β̃k

(
|j|
Nk
− 1
)]

if j ∈ {−Lk, . . . ,−Nk − 1} ∪ {Nk + 1, . . . , Lk},

0 otherwise,

with β̃k = β
(

Nk·
Lk−Nk

)
, Nk =

⌊
ω0

π

⌋
× 2k ≤ 2k−1 ≤ Lk ≤ 2k −Nk to reflect the time-limited

nature of the original filters. For j ∈ Rk+1, let ĝ1
k+1(j) = e−

i2πj

2k+1 ĥk+1(j + 2k), i.e.

ĝ1
k+1(j) =



e−
i2πj

2k+1
√

2 if j ∈ {−2k, . . . , Nk − 2k},

e−
i2πj

2k+1
√

2 cos

[
π
2
β̃k

(
|j+2k|
Nk
− 1

)]
if j ∈ {Nk + 1− 2k, . . . , Lk − 2k},

e−
i2πj

2k+1
√

2 cos

[
π
2
β̃k

(
|j−2k|
Nk
− 1

)]
if j ∈ {2k − Lk, . . . , 2k −Nk − 1},

e−
i2πj

2k+1
√

2 if j ∈ {2k −Nk, . . . , 2
k},

0 otherwise,

and 4 |Ak+1(j)|2 = 2−
∣∣∣ĥk+1(j)

∣∣∣2 − ∣∣∣ĥk+1(j + 2k)
∣∣∣2, i.e.

2 |Ak+1(j)|2=



sin2 π
2
β̃k

(
|j+2k|
Nk
− 1

)
if j ∈ {Nk + 1− 2k, . . . ,−Lk},

sin2 π
2
β̃k

(
|j+2k|
Nk
− 1

)
− cos2 π

2
β̃k

(
|j|
Nk
− 1
)

if j ∈ {1− Lk, . . . , Lk − 2k − 1},

sin2 π
2
β̃k

(
|j|
Nk
− 1
)

if
j∈{Lk − 2k, . . . ,−Nk}
∪ {Nk, . . . , 2

k − Lk},

sin2 π
2
β̃k

(
|j−2k|
Nk
− 1

)
− cos2 π

2
β̃k

(
|j|
Nk
− 1
)

if j ∈ {2k − Lk + 1, . . . , Lk − 1},

sin2 π
2
β̃k

(
|j−2k|
Nk
− 1

)
if j ∈ {Lk, . . . , 2k −Nk − 1},

0 otherwise,

with Ak+1(j) =
2k−1∑
r=−2k

are
− i2πjr

2k , Ak+1(j+2k) = Ak+1(j) and all the computed ar being real,

and let ĝ2
k+1(j) = Ak+1(j) + e−

i2πj

2k+1Ak+1(−j) and ĝ3
k+1(j) = e−

i2πj

2k+1Ak+1(−j)− Ak+1(j).

The standard orthogonal flip ensures that ĝ1
k+1(j)ĝ1

k+1(j+ 2k) = −ĥk+1(j+ 2k)ĥk+1(j).

We remark that both ĥk+1 and ĝ1
k+1 could be modified by the fundamental mask Θ̂k of

the periodic OEP (Corollary 3.30) acting as a Fourier multiplier with the corresponding

|Ak+1|2 modified appropriately without changing their localizations. Observe that if Nk ≥
2k−1, we automatically have |Ak+1|2 ≤ 0 and there is no need to construct ĝ2

k+1 and
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ĝ3
k+1 as above. Both ĝ2

k+1 and ĝ3
k+1 are symmetric and antisymmetric respectively up to

linear phase since ĝ2
k+1(−j) = Ak+1(−j) + e

i2πj

2k+1Ak+1(j) = e
i2πj

2k+1 ĝ2
k+1(j) and ĝ3

k+1(−j) =

e
i2πj

2k+1Ak+1(j) − Ak+1(−j) = −e
i2πj

2k+1 ĝ3
k+1(j). Furthermore, ĝ3

k+1(j) = e−
i2πj

2k+1 ĝ2
k+1(j + 2k)

with Ak+1(−j) = Ak+1(j), which implies that ĝ3
k+1(j)ĝ3

k+1(j+ 2k) = −ĝ2
k+1(j+ 2k)ĝ2

k+1(j).

We observe that for j ∈ Rk+1,∣∣ĝ2
k+1(j)

∣∣2 +
∣∣ĝ3
k+1(j)

∣∣2 =
∣∣∣Ak+1(j) + e−

i2πj

2k+1Ak+1(−j)
∣∣∣2 +

∣∣∣Ak+1(j)− e−
i2πj

2k+1Ak+1(−j)
∣∣∣2

= |Ak+1(j)|2 + |Ak+1(−j)|2 + Ak+1(j)Ak+1(−j)e
i2πj

2k+1 + Ak+1(−j)Ak+1(j)e−
i2πj

2k+1

+ |Ak+1(j)|2 + |Ak+1(−j)|2 − Ak+1(j)Ak+1(−j)e
i2πj

2k+1 − Ak+1(−j)Ak+1(j)e−
i2πj

2k+1

= 4 |Ak+1(j)|2 ,

which leads to ∣∣∣ĥk+1(j)
∣∣∣2 +

∣∣ĝ1
k+1(j)

∣∣2 +
∣∣ĝ2
k+1(j)

∣∣2 +
∣∣ĝ3
k+1(j)

∣∣2 = 2.

Therefore, (3.43) is satisfied and Construction 4.26 provides the masks of a tight frame.

We shall utilize Construction 4.26 to typify a construction of time-localized masks and

we shall modify the Haar refinable mask and wavelet mask according to Construction

4.16 for use as packet masks to illustrate an actual implementation of packet filters in

Construction 4.22.

Example 4.2.1. Let ĥk+1 := ĝ0
k+1, ĝmk+1 for m ∈ {1, 2, 3} be given as in Construction 4.26

with Nk = 2k−2 and Lk = 3 · 2k−2 and let CkL = 2k−1. For µ = 0, . . . , L − 1, let the

modulated Haar refinable and wavelet masks be given as

α̂µ+
k (j) = (4L)−

1
2

[
1 + e−i2π2−k(j+Ckµ)

]
, α̂µ−k (j) = (4L)−

1
2

[
1− e−i2π2−k(j+Ckµ)

]
respectively. We could easily verify that

L−1∑
µ=0

[∣∣α̂µ+
k (j)

∣∣2 +
∣∣α̂µ−k (j)

∣∣2] =
L−1∑
µ=0

(4L)−1
{[

1 + e−i2π2−k(j+Ckµ)
] [

1 + ei2π2−k(j+Ckµ)
]

+
[
1− e−i2π2−k(j+Ckµ)

] [
1− ei2π2−k(j+Ckµ)

]}
=

L−1∑
µ=0

(4L)−1
[
2 + 2 cos 2π2−k(j + Ckµ) + 2− 2 cos 2π2−k(j + Ckµ)

]
=

L−1∑
µ=0

(4L)−1(4) = 1,

which shows that {α̂µ+
k , α̂µ−k : µ = 0, . . . , L − 1} satisfies the criteria for utilization as

packet masks for {ĝmk+1 : m = 1, . . . , 3} as in Construction 4.22.
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Since ĝ1
k+1 is “supported” on {−2k, . . . , Lk − 2k} ∪ {2k −Lk, . . . , 2k} and Ak+1 is “sup-

ported” on {Nk− 2k, . . . ,−Nk}∪ {Nk, . . . , 2
k−Nk}, we determine the bandwidths of the

original masks gmk+1 for m ∈ {1, 2, 3} to be the following:

bandwidth of ĝ1
k+1 is localized on {−2k, . . . ,−2k−2} ∪ {2k−2, . . . , 2k},

bandwidth of ĝ2
k+1 and ĝ3

k+1 is localized on {−3 · 2k−2, . . . ,−2k−2} ∪ {2k−2, . . . , 3 · 2k−2}.

Next, we determine the bandwidths of the packetized masks {α̂µ+
k ĝmk+1, α̂

µ−
k ĝmk+1 : µ =

0, . . . , L − 1,m = 1, 2, 3}. Without loss of generality, we assume that α̂0+
k and α̂0−

k

are essentially localized on {−2k−2, . . . , 2k−2} and {−2k−1, . . . ,−2k−2} ∪ {2k−2, . . . , 2k−1}
respectively since they are conjugate mirror masks.

For Ckµ ≤ 2k−2 and m ∈ {2, 3},

bandwidth of α̂µ+
k is localized on


{−2k, . . . ,−3 · 2k−2 − Ckµ},
{−2k−2 − Ckµ, . . . , 2k−2 − Ckµ},
{3 · 2k−2 − Ckµ, . . . , 2k},

bandwidth of α̂µ−k is localized on

{
{−3 · 2k−2 − Ckµ, . . . ,−2k−2 − Ckµ},
{2k−2 − Ckµ, . . . , 3 · 2k−2 − Ckµ},

bandwidth of α̂µ+
k ĝ1

k+1 is localized on


{−2k, . . . ,−3 · 2k−2 − Ckµ},
{−2k−2 − Ckµ, . . . ,−2k−2},
{3 · 2k−2 − Ckµ, . . . , 2k},

bandwidth of α̂µ−k ĝ1
k+1 is localized on

{
{−3 · 2k−2 − Ckµ, . . . ,−2k−2 − Ckµ},
{2k−2, . . . , 3 · 2k−2 − Ckµ},

bandwidth of α̂µ+
k ĝmk+1 is localized on

{
{−2k−2 − Ckµ, . . . ,−2k−2},
{3 · 2k−2 − Ckµ, . . . , 3 · 2k−2},

bandwidth of α̂µ−k ĝmk+1 is localized on

{
{−3 · 2k−2, . . . ,−2k−2 − Ckµ},
{2k−2, . . . , 3 · 2k−2 − Ckµ}.

For 2k−2 ≤ Ckµ ≤ 2k−1 and m ∈ {2, 3},

bandwidth of α̂µ+
k is localized on

{
{−2k−2 − Ckµ, . . . , 2k−2 − Ckµ},
{3 · 2k−2 − Ckµ, . . . , 5 · 2k−2 − Ckµ},

bandwidth of α̂µ−k is localized on


{−2k, . . . ,−2k−2 − Ckµ},
{2k−2 − Ckµ, . . . , 3 · 2k−2 − Ckµ},
{5 · 2k−2 − Ckµ, . . . , 2k},
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bandwidth of α̂µ+
k ĝ1

k+1 is localized on

{
{−2k−2 − Ckµ, . . . ,−2k−2},
{3 · 2k−2 − Ckµ, . . . , 5 · 2k−2 − Ckµ},

bandwidth of α̂µ−k ĝ1
k+1 is localized on


{−2k, . . . ,−2k−2 − Ckµ},
{2k−2, . . . , 3 · 2k−2 − Ckµ},
{5 · 2k−2 − Ckµ, . . . , 2k},

bandwidth of α̂µ+
k ĝmk+1 is localized on

{
{−2k−2 − Ckµ, . . . ,−2k−2},
{3 · 2k−2 − Ckµ, . . . , 3 · 2k−2},

bandwidth of α̂µ−k ĝmk+1 is localized on

{
{−3 · 2k−2, . . . ,−2k−2 − Ckµ},
{2k−2, . . . , 3 · 2k−2 − Ckµ}.

Remark. Since the combined bandwidths of α̂µ+
k and α̂µ−k is from {−2k, . . . , 2k}, i.e.

Rk+1, this means that the combined bandwidths of α̂µ+
k ĝmk+1 and α̂µ−k ĝmk+1 for m ∈ {1, 2, 3}

must be the bandwidth of the respective ĝmk+1. Therefore, although the input signal is now

processed differently by α̂µ+
k ĝmk+1 and α̂µ−k ĝmk+1 for m ∈ {1, 2, 3}, no information concerning

the signal is lost and new insight into the processed data is available.



Chapter 5

Applications

The representation of a signal as a function of time fails to provide the spectrum of

frequencies present while its Fourier analysis hides the point of transmission and the du-

ration of each of the signal’s harmonics. The preferred approach should aim to combine

the advantages of these two complementary representations, i.e. constructing an instan-

taneous spectrum as a function of time. The instantaneous spectrum should also be easily

discretized by fast algorithms so that it is more compatible with modern digital commu-

nication theory. Due to the uncertainty principle, the design of such a spectrum using

wavelet representations is only possible provided that the observation of the signal as a

function of time and frequency is not arbitrarily precise.

This chapter explains how wavelet frames on L2(Ts) could be applied to practical

situations. Periodic wavelets are considered as signals occuring in practice are often

extended periodically. Sections 5.1 to 5.3 describe the decomposition and reconstruction

algorithms for different setups of the general multidimensional multiwavelet setting of

L2(Ts). For practical purposes, Section 5.4 narrows down to the 1-dimensional setting

with arbitrary integer dilation factor M and Section 5.5 further restricts to the setting of

a single refinable function with dilation factor M = 2 for the time-frequency analysis of

some Gabor atoms and chirp signals.

5.1 Uniqueness of Representation

We shall first focus on understanding the representation of a function in V k+1
2π using its

underlying subspaces V k
2π and W k

2π given in (3.33) . Let fk+1 = fk + gk ∈ V k+1
2π , where

fk =
∑
j∈Rk

ŝk(j)
∗vk,j ∈ V k

2π and gk =
∑
j∈Rk

t̂k(j)
∗uk,j ∈ W k

2π for some ŝk ∈ S(Dk)ρ×1

109
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and t̂k ∈ S(Dk)%k×1, which are the discrete Fourier transforms of sk ∈ S(Mk)ρ×1 and

tk ∈ S(Mk)%k×1, with the polyphase harmonics vk,j and uk,j given as in Propositions 3.19

and 3.20 respectively. Therefore,

fk+1 =
∑

j∈Rk+1

ŝk+1(j)∗vk+1,j =
∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗vk+1,j+Dkr

=
∑
j∈Rk

ŝk(j)
∗vk,j +

∑
j∈Rk

t̂k(j)
∗uk,j

=
∑
j∈Rk

∑
r∈R1

[
ŝk(j)

∗Ĥk+1(j +Dkr) + t̂k(j)
∗Ĝk+1(j +Dkr)

]
vk+1,j+Dkr, (5.1)

with Ĥk+1 and Ĝk+1 given as in Propositions 3.19 and 3.20 respectively.

Our next two results show that the representation of fk ∈ V k
2π and gk ∈ W k

2π by

polyphase harmonics is not unique and there is a minimal representation (up to ordering)

by equivalent polyphase harmonics whose Gramian is diagonal and consists of eigenvalues

of Mk and Nk respectively, where Mk and Nk are given as in (3.34). First, we shall state

the assumptions used in the following common setups.

Setup 5.1. For a given k ≥ 0, let j ∈ Rk and r ∈ R1. Suppose that rank Mk(j) = q(j),

rank Nk(j) = p(j) − q(j), rank Mk+1(j + Dkr) = p(j, r). There exist unitary matrices

Uk(j) ∈ Cρ×ρ, Vk(j) ∈ C%k×%k and Uk+1(j +Dkr) ∈ Cρ×ρ such that

Uk(j)Mk(j)Uk(j)
∗ = diag(M′k(j), 0ρ−q(j)),

Vk(j)Nk(j)Vk(j)
∗ = diag(N′k(j), 0%k−[p(j)−q(j)]), (5.2)

Uk+1(j +Dkr)Mk+1(j +Dkr)Uk+1(j +Dkr)∗ = diag(M′k+1(j +Dkr), 0ρ−p(j,r)),

where M′k(j), N′k(j) and M′k+1(j +Dkr) are invertible diagonal q(j)× q(j), p(j)− q(j)×
p(j) − q(j) and p(j, r) × p(j, r) matrices respectively. We shall also define the following

diagonal matrices, i.e. the ρ × ρ diagonal matrix I ′q(j) = diag(Iq(j), 0ρ−q(j)), the %k × %k
diagonal matrix I ′p(j)−q(j) = diag(Ip(j)−q(j), 0%k−[p(j)−q(j)]), the ρ×ρ diagonal matrix I ′p(j,r) =

diag(Ip(j,r), 0ρ−p(j,r)) and the ρd×ρd diagonal matrix I ′p(j) = diag(I ′p(j,r1), . . . , I
′
p(j,rd)), where

r1, . . . , rd ∈ R1 are distinct coset representatives of Zs/DZs.

Setup 5.2. Assume Setup 5.1. Let ŝk
′(j)=Uk(j)ŝk(j), t̂k

′
(j)=Vk(j)t̂k(j), ŝk+1

′(j+Dkr)=

Uk+1(j + Dkr)ŝk+1(j + Dkr), v′k,j = Uk(j)vk,j, u
′
k,j = Vk(j)uk,j, v

′
k+1,j+Dkr

= Uk+1(j +

Dkr)vk+1,j+Dkr,

Ĥ ′k+1(j +Dkr) = Uk(j)Ĥk+1(j +Dkr)Uk+1(j +Dkr)∗ and

Ĝ′k+1(j +Dkr) = Vk(j)Ĝk+1(j +Dkr)Uk+1(j +Dkr)∗,
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where ŝk, t̂k, vk,j, uk,j, Ĥk+1 and Ĝk+1 are given as in (5.1).

Setup 5.3. Assume Setup 5.1. Let ŝk
′(j) = I ′q(j)Uk(j)ŝk(j), t̂k

′
(j) = I ′p(j)−q(j)Vk(j)t̂k(j),

ŝk+1
′(j + Dkr) = I ′p(j,r)Uk+1(j + Dkr)ŝk+1(j + Dkr), v′k,j = Uk(j)vk,j, u

′
k,j = Vk(j)uk,j,

v′
k+1,j+Dkr

= Uk+1(j +Dkr)vk+1,j+Dkr,

Ĥ ′k+1(j +Dkr) = I ′q(j)Uk(j)Ĥk+1(j +Dkr)Uk+1(j +Dkr)∗I ′p(j,r) and

Ĝ′k+1(j +Dkr) = I ′p(j)−q(j)Vk(j)Ĝk+1(j +Dkr)Uk+1(j +Dkr)∗I ′p(j,r),

where ŝk, t̂k, vk,j, uk,j, Ĥk+1 and Ĝk+1 are given as in (5.1). We shall also let

L̂′k(j) = diag(I ′q(j)Uk(j), I
′
p(j)−q(j)Vk(j))L̂k(j)diag(Uk+1(j+Dkr1), . . . , Uk+1(j+Dkrd))

∗I ′p(j)

with the assumption that L̂k(j) defined as in (3.44) satisfies (3.43).

The difference between Setups 5.2 and 5.3 is that in the latter, values of the masks and

frame coefficients of signals outside the spectrum of the refinable functions and wavelets

have been set to zero and the masks also satisfy the minimum energy tight frame condition.

Lemma 5.4. Assume Setup 5.2. If
∑
j∈Rk

ŝk(j)
∗vk,j = 0 and

∑
j∈Rk

t̂k(j)
∗uk,j = 0, then for

each j ∈ Rk, the first q(j) entries and the first p(j)− q(j) entries of ŝk
′(j) and t̂k

′
(j) are

identically zero respectively with the remaining entries being arbitrary. In particular, we

have∑
j∈Rk

ŝk
′(j)∗I ′q(j)v

′
k,j =

∑
j∈Rk

ŝk(j)
∗vk,j, and

∑
j∈Rk

t̂k
′
(j)∗I ′p(j)−q(j)u

′
k,j =

∑
j∈Rk

t̂k(j)
∗uk,j. (5.3)

Proof. For a given l ∈ Rk, since
[
〈ŝk(l)∗vk,l, vµk,l〉

]ρ
µ=1

=
∑
j∈Rk

[
〈ŝk(j)∗vk,j, vµk,l〉

]ρ
µ=1

= 0, we

infer our result from the observation that

[Uk(l)ŝk(l)]
∗

[
M′k(l) 0

0 0

]
= 0.

and that Mk(l)
′ is a q(l)× q(l) diagonal matrix. The proof for t̂k

′
(j) is similar.

The reconstruction algorithm is derived using Lemma 5.4 without the use of Proposition

3.26 and Theorem 3.27 (periodic UEP).

Proposition 5.5. Assume Setup 5.2. If∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗vk+1,j+Dkr =

∑
j∈Rk

∑
r∈R1

[
ŝk(j)

∗Ĥk+1(j +Dkr) + t̂k(j)
∗Ĝk+1(j +Dkr)

]
vk+1,j+Dkr, (5.4)
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then for j ∈ Rk and r ∈ R1,

ŝk+1
′(j +Dkr)∗I ′p(j,r) =

[
ŝk
′(j)∗Ĥ ′k+1(j +Dkr) + t̂k

′
(j)∗Ĝ′k+1(j +Dkr)

]
I ′p(j,r) (5.5)∑

j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)v

′
k+1,j+Dkr =

∑
j∈Rk

∑
r∈R1

[
ŝk
′(j)∗Ĥ ′k+1(j +Dkr) + t̂k

′
(j)∗Ĝ′k+1(j +Dkr)

]
I ′p(j,r)v

′
k+1,j+Dkr. (5.6)

The p(j, r) + 1, . . . , ρ entries of ŝk+1
′(j + Dkr) could be arbitrary and (5.4) is equivalent

to (5.6). In particular, for j ∈ Rk and r ∈ R1, we have

ŝk+1
′(j+Dkr)∗I ′p(j,r)=

[
ŝk
′(j)∗I ′q(j)Ĥ

′
k+1(j+Dkr)+t̂k

′
(j)∗I ′p(j)−q(j)Ĝ

′
k+1(j+Dkr)

]
I ′p(j,r) (5.7)∑

j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)v

′
k+1,j+Dkr =

∑
j∈Rk

∑
r∈R1

[
ŝk
′(j)∗I ′q(j)Ĥ

′
k+1(j +Dkr)+t̂k

′
(j)∗I ′p(j)−q(j)Ĝ

′
k+1(j +Dkr)

]
I ′p(j,r)v

′
k+1,j+Dkr (5.8)

and (5.4) is equivalent to (5.8).

Proof. By the proof of Lemma 5.4, the ρ× ρ unitary matrix Uk+1(j + Dkr) diagonalizes

Mk+1(j +Dkr) as in (5.2) and results in

[
ŝk+1

′(j+Dkr)∗−ŝk ′(j)∗Ĥ ′k+1(j+Dkr)− t̂k
′
(j)∗Ĝ′k+1(j+Dkr)

] [M ′
k+1(j+Dkr) 0

0 0

]
= 0.

Hence (5.5) and (5.6) hold and (5.6) is equivalent to (5.4). This is true even if Uk(j) and

Vk(j) are arbitrary ρ× ρ and %k × %k unitary matrices respectively.

Next, assuming that Uk(j) and Vk(j) are chosen as in Setup 5.1, we make use of Lemma

5.4, (5.1), and (5.6) to show that

fk+1=
∑
j∈Rk

∑
r∈R1

ŝk+1
′(j+Dkr)∗I ′p(j,r)v

′
k+1,j+Dkr =

∑
j∈Rk

ŝk
′(j)∗I ′q(j)v

′
k,j+

∑
j∈Rk

t̂k
′
(j)∗I ′p(j)−q(j)u

′
k,j

=
∑
j∈Rk

∑
r∈R1

[
ŝk
′(j)∗I ′q(j)Ĥ

′
k+1(j +Dkr) + t̂k

′
(j)∗I ′p(j)−q(j)Ĝ

′
k+1(j +Dkr)

]
v′k+1,j+Dkr, (5.9)

where v′k,j=
∑
r∈R1

Ĥ ′k+1(j+Dkr)I ′p(j,r)v
′
k+1,j+Dkr

and u′k,j=
∑
r∈R1

Ĝ′k+1(j+Dkr)I ′p(j,r)v
′
k+1,j+Dkr

.

Apply Lemma 5.4 to (5.9) again gives us our result.

The masks Ĥ ′k+1 and Ĝ′k+1 are therefore known as reconstruction masks since they are

used to reconstruct ŝk+1
′ from ŝk

′ and t̂k
′

in (5.5).
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5.2 Semi-Orthogonal Representation

For the results in this section, we shall assume that V k+1
2π = V k

2π ⊕⊥ W k
2π and they are

applicable to wavelet frame constructions derived from FMRAs. Our next proposition

represents the spanning members of Uk+1,j
2π given in (3.35) by spanning members of V k,j

2π

and W k,j
2π .

Proposition 5.6. Assume Setup 5.2. There exist P̂k+1 ∈ S(Dk+1)ρ×ρ and Q̂k+1 ∈
S(Dk+1)ρ×%k such that for j ∈ Rk and r ∈ R1,

vk+1,j+Dkr = P̂k+1(j +Dkr)vk,j + Q̂k+1(j +Dkr)uk,j. (5.10)

In particular, we have

P̂ ′k+1(j +Dkr)

[
M′k(j) 0

0 0

]
=

[
M′k+1(j +Dkr) 0

0 0

]
Ĥ ′k+1(j +Dkr)∗, (5.11)

Q̂′k+1(j +Dkr)

[
N′k(j) 0

0 0

]
=

[
M′k+1(j +Dkr) 0

0 0

]
Ĝ′k+1(j +Dkr)∗, (5.12)

where P̂ ′k+1(j+Dkr) = Uk+1(j+Dkr)P̂k+1(j+Dkr)Uk(j)
∗ and Q̂′k+1(j+Dkr) = Uk+1(j+

Dkr)Q̂k+1(j + Dkr)Vk(j)
∗. Therefore, the first q(j) and p(j)− q(j) columns of P̂ ′k+1(j +

Dkr) and Q̂′k+1(j +Dkr) respectively are uniquely determined.

Proof. Since V k+1
2π = V k

2π ⊕⊥W k
2π, for a given j ∈ Rk and r ∈ R1, there exist A(l) ∈ Cρ×ρ

and B(l) ∈ Cρ×%k , where l ∈ Rk, such that

vk+1,j+Dkr =
∑
l∈Rk

[A(l)vk,l +B(l)uk,l]

=
∑
l∈Rk

∑
n∈R1

[
A(l)Ĥk+1(l +Dkn) +B(l)Ĝk+1(l +Dkn)

]
vk+1,l+Dkn.

Let j0 ∈ Rk and r0 ∈ R1. We have

δj+Dkr,j0+Dkr0Mk+1(j0 +Dkr0) =
[
〈vm
k+1,j+Dkr

, vµ
k+1,j0+Dkr0

〉
]ρ
m,µ=1

=∑
l∈Rk

∑
n∈R1

[
A(l)Ĥk+1(l +Dkn) +B(l)Ĝk+1(l +Dkn)

] [
〈vm
k+1,l+Dkn

, vµ
k+1,j0+Dkr0

〉
]ρ
m,µ=1

=
[
A(j0)Ĥk+1(j0 +Dkr0) +B(j0)Ĝk+1(j0 +Dkr0)

]
Mk+1(j0 +Dkr0). (5.13)

Since rank Mk+1(j0 + Dkr0) = p(j0, r0) and the unitary matrix Uk+1(j0 + Dkr0) ∈ Cρ×ρ

diagonalizes Mk+1(j0 +Dkr0) such that

Uk+1(j0 +Dkr0)Mk+1(j0 +Dkr0)Uk+1(j0 +Dkr0)∗ =

[
M′k+1(j0 +Dkr0) 0

0 0

]
,
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with M′k+1(j0 + Dkr0) being an invertible p(j0, r0) × p(j0, r0) diagonal matrix, we let

A′(j0) = Uk+1(j0 + Dkr0)A(j0)Uk(j0)∗, B′(j0) = Uk+1(j0 + Dkr0)B(j0)Vk(j0)∗, Ĥ ′k+1(j0 +

Dkr0) = Uk(j0)Ĥk+1(j0 +Dkr0)Uk+1(j0 +Dkr0)∗ and Ĝ′k+1(j0 +Dkr0) = Vk(j0)Ĝk+1(j0 +

Dkr0)Uk+1(j0 +Dkr0)∗ to obtain

[
A′(j0)Ĥ ′k+1(j0 +Dkr0) +B′(j0)Ĝ′k+1(j0 +Dkr0)

] [M′k+1(j0 +Dkr0) 0

0 0

]
= 0

for j0 6= j or r0 6= r. We conclude that the first p(j0, r0) columns of A′(j0)Ĥ ′k+1(j0 +

Dkr0) + B′(j0)Ĝ′k+1(j0 + Dkr0) are equal to zero for j0 6= j or r0 6= r. For convenience,

we choose the A′(j0) and B′(j0) to be zero matrices whenever j0 6= j or r0 6= r hold. This

leads to

vk+1,j+Dkr = A(j)vk,j +B(j)uk,j, (5.14)

Let m,µ ∈ {1, . . . , ρ}. Since the refinement equation (3.29) shows that

〈vmk+1,j+Dkr, v
µ
k,j〉 = 〈vmk+1,j+Dkr,

∑
l∈R1

ρ∑
i=1

Ĥµ,i
k+1(j +Dkl)vik+1,j+Dkl〉

=
∑
l∈R1

ρ∑
i=1

〈vmk+1,j+Dkr, v
i
k+1,j+Dkl〉Ĥ

µ,i
k+1(j +Dkl)∗

=

ρ∑
i=1

〈vmk+1,j+Dkr, v
i
k+1,j+Dkr〉Ĥ

µ,i
k+1(j +Dkr)∗

=
([
〈vm
k+1,j+Dkr

, vi
k+1,j+Dkr

〉
]ρ
i=1

)T [
Ĥµ,i
k+1(j +Dkr)∗

]ρ
i=1

,

which leads to[
〈vm
k+1,j+Dkr

, vµk,j〉
]ρ
m,µ=1

=
[
〈vm
k+1,j+Dkr

, vi
k+1,j+Dkr

〉
]ρ
m,i=1

[
Ĥµ,i
k+1(j +Dkr)∗

]ρ
i,µ=1

,

= Mk+1(j +Dkr)Ĥk+1(j +Dkr)∗,

we deduce using (5.14) that[
〈vm
k+1,j+Dkr

, vµk,j〉
]ρ
m,µ=1

= P̂k+1(j +Dkr)
[
〈vmk,j, v

µ
k,j〉
]ρ
m,µ=1

= P̂k+1(j +Dkr)Mk(j),

where P̂k+1(j+Dkr) = A(j). Consequently, (5.11) follows from diagonalizing Mk(j) with

Uk(j).
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In a similar manner, let m ∈ {1, . . . , ρ} and µ ∈ {1, . . . , %k}. Since (3.32) shows that

〈vmk+1,j+Dkr, u
µ
k,j〉 = 〈vmk+1,j+Dkr,

∑
l∈R1

ρ∑
i=1

Ĝµ,i
k+1(j +Dkl)vik+1,j+Dkl〉

=
∑
l∈R1

ρ∑
i=1

〈vmk+1,j+Dkr, v
i
k+1,j+Dkl〉Ĝ

µ,i
k+1(j +Dkl)∗

=

ρ∑
i=1

〈vmk+1,j+Dkr, v
i
k+1,j+Dkr〉Ĝ

µ,i
k+1(j +Dkr)∗

=
([
〈vm
k+1,j+Dkr

, vi
k+1,j+Dkr

〉
]ρ
i=1

)T [
Ĝµ,i
k+1(j +Dkr)∗

]ρ
i=1

,

which leads to[
〈vm
k+1,j+Dkr

, uµk,j〉
]ρ,%k
m,µ=1

=
[
〈vm
k+1,j+Dkr

, vi
k+1,j+Dkr

〉
]ρ
m,i=1

[
Ĝµ,i
k+1(j +Dkr)∗

]ρ,%k
i,µ=1

= Mk+1(j +Dkr)Ĝk+1(j +Dkr)∗,

we deduce using (5.14) that[
〈vm
k+1,j+Dkr

, uµk,j〉
]ρ,%k
m,µ=1

= Q̂k+1(j +Dkr)
[
〈umk,j, u

µ
k,j〉
]%k
m,µ=1

= Q̂k+1(j +Dkr)Nk(j),

where Q̂k+1(j+Dkr) = B(j). Consequently, (5.12) follows from diagonalizing Nk(j) with

Vk(j).

As we shall observe why from the following results, the masks P̂ ′k+1 and Q̂′k+1 are known

as decomposition masks. The next proposition essentially corresponds to Theorem 3.25

and Proposition 3.26 for the semi-orthogonal case.

Proposition 5.7. Assume Setup 5.2. The masks P̂k+1 ∈ S(Dk+1)ρ×ρ and Q̂k+1 ∈
S(Dk+1)ρ×%k in (5.10) satisfy[
P̂ ′k+1(j+Dkn)I ′q(j)Ĥ

′
k+1(j+Dkr)+Q̂′k+1(j+Dkn)I ′p(j)−q(j)Ĝ

′
k+1(j+Dkr)

]
I ′p(j,r)=δn,rI

′
p(j,r)(5.15)

for j ∈ Rk, n, r ∈ R1, where P̂ ′k+1(j + Dkn) = Uk+1(j + Dkn)P̂k+1(j + Dkn)Uk(j)
∗ and

Q̂′k+1(j +Dkn) = Uk+1(j +Dkn)Q̂k+1(j +Dkn)Vk(j)
∗.

Proof. For a given j ∈ Rk and r1 ∈ R1, by (5.10) of Proposition 5.6, (3.29) and (3.32),

we have

vk+1,j+Dkr1 = P̂k+1(j +Dkr1)vk,j + Q̂k+1(j +Dkr1)uk,j

=
∑
n∈R1

[
P̂k+1(j +Dkr1)Ĥk+1(j +Dkn) + Q̂k+1(j +Dkr1)Ĝk+1(j +Dkn)

]
vk+1,j+Dkn.
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Let r2 ∈ R1. Using a similar reasoning as in (5.13), we have

δr1,r2Mk+1(j +Dkr2) =
[
〈vm
k+1,j+Dkr1

, vµ
k+1,j+Dkr2

〉
]ρ
m,µ=1

=∑
n∈R1

[
P̂k+1(j +Dkr1)Ĥk+1(j +Dkn) + Q̂k+1(j +Dkr1)Ĝk+1(j +Dkn)

]
[
〈vm
k+1,j+Dkn

, vµ
k+1,j+Dkr2

〉
]ρ
m,µ=1

=
[
P̂k+1(j+Dkr1)Ĥk+1(j+Dkr2)+Q̂k+1(j+Dkr1)Ĝk+1(j+Dkr2)

]
Mk+1(j+Dkr2).(5.16)

The unitary matrix Uk+1(j +Dkr2) ∈ Cρ×ρ diagonalizes Mk+1(j +Dkr2) such that

Uk+1(j +Dkr2)Mk+1(j +Dkr2)Uk+1(j +Dkr2)∗ =

[
M′k+1(j +Dkr2) 0

0 0

]
,

where M′k+1(j +Dkr2) is an invertible p(j, r2)× p(j, r2) diagonal matrix. Premultiplying

and postmultiplying (5.16) by Uk+1(j +Dkr2) and Uk+1(j +Dkr2)∗ respectively with the

appropriate normalization leads to[
P̂ ′k+1(j +Dkn)Ĥ ′k+1(j +Dkr) + Q̂′k+1(j +Dkn)Ĝ′k+1(j +Dkr)

]
I ′p(j,r) = δn,rI

′
p(j,r).

Using the observation from Proposition 5.6 that only the first q(j) and p(j)−q(j) columns

of P̂ ′k+1(j+Dkr1) and Q̂′k+1(j+Dkr1) are respectively unique shows that (5.15) is valid.

Assuming Setup 5.2 and referring to (5.1), if (5.10) holds as well, then we also have

fk+1 =
∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗
[
P̂k+1(j +Dkr)vk,j + Q̂k+1(j +Dkr)uk,j

]
=
∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)

[
P̂ ′k+1(j +Dkr)v′k,j + Q̂′k+1(j +Dkr)u′k,j

]
,(5.17)

with P̂ ′k+1(j +Dkr) and Q̂′k+1(j +Dkr) given as in Proposition 5.7.

We derive below the decomposition algorithms of the low pass and high pass coefficients

for the semi-orthogonal case in the frequency domain.

Proposition 5.8. Assume Setup 5.2 and (5.1) and (5.17) to hold. If∑
j∈Rk

ŝk(j)
∗vk,j =

∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗P̂k+1(j +Dkr)vk,j and (5.18)∑
j∈Rk

t̂k(j)
∗uk,j =

∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗Q̂k+1(j +Dkr)uk,j, (5.19)
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then

ŝk
′(j)∗I ′q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗P̂ ′k+1(j +Dkr)I ′q(j), j ∈ Rk,∑

j∈Rk

ŝk
′(j)∗I ′q(j)v

′
k,j =

∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗P̂ ′k+1(j +Dkr)I ′q(j)v

′
k,j and (5.20)

t̂k
′
(j)∗I ′p(j)−q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗Q̂′k+1(j +Dkr)I ′p(j)−q(j), j ∈ Rk,∑

j∈Rk

t̂k
′
(j)∗I ′p(j)−q(j)u

′
k,j =

∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗Q̂′k+1(j +Dkr)I ′p(j)−q(j)u

′
k,j, (5.21)

where P̂ ′k+1(j+Dkr) = Uk+1(j+Dkr)P̂k+1(j+Dkr)Uk(j)
∗ and Q̂′k+1(j+Dkr) = Uk+1(j+

Dkr)Q̂k+1(j+Dkr)Vk(j)
∗. The q(j)+1, . . . , ρ entries of ŝk

′(j) and the p(j)−q(j)+1, . . . , %k

entries of t̂k
′
(j) could be arbitrary and (5.18) is equivalent to (5.20) and (5.19) is equivalent

to (5.21). In particular, we have

ŝk
′(j)∗I ′q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)P̂

′
k+1(j +Dkr)I ′q(j), j ∈ Rk,∑

j∈Rk

ŝk
′(j)∗I ′q(j)v

′
k,j =

∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)P̂

′
k+1(j +Dkr)I ′q(j)v

′
k,j and

t̂k
′
(j)∗I ′p(j)−q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Q̂

′
k+1(j +Dkr)I ′p(j)−q(j), j ∈ Rk,∑

j∈Rk

t̂k
′
(j)∗I ′p(j)−q(j)u

′
k,j =

∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Q̂

′
k+1(j +Dkr)I ′p(j)−q(j)u

′
k,j.

Proof. We use Lemma 5.4 to obtain (5.20) and (5.21). Using Lemma 5.4, Proposition 5.5,

(5.1) and (5.17), since (5.4) and (5.6) are equivalent, we show that

fk+1=
∑
j∈Rk

∑
r∈R1

ŝk+1
′(j+Dkr)∗I ′p(j,r)v

′
k+1,j+Dkr=

∑
j∈Rk

ŝk
′(j)∗I ′q(j)v

′
k,j+

∑
j∈Rk

t̂k
′
(j)∗I ′p(j)−q(j)u

′
k,j

=
∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)

[
P̂ ′k+1(j +Dkr)v′k,j + Q̂′k+1(j +Dkr)u′k,j

]
and the remaining result follows from the fact that V k+1

2π = V k
2π ⊕⊥W k

2π.

We show below that we have perfect reconstruction under certain scenarios.

Proposition 5.9. Let j ∈ Rk, r ∈ R1 and assume Setup 5.2. If the following information[
ŝk
′(j)
]∗
em,

[
t̂k
′
(j)
]∗
em and

[
ŝk+1

′(j +Dkr)
]∗
em are known a priori for m ∈ {q(j) +
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1, . . . , ρ}, m ∈ {p(j) − q(j) + 1, . . . , %k} and m ∈ {p(j, r) + 1, . . . , ρ} respectively, where

em is the mth unit vector, then we have perfect reconstruction and

ŝk+1
′(j +Dkr)∗I ′p(j,r) = ŝk+1

′(j +Dkr)∗P̂ ′k+1(j +Dkr)I ′q(j)Ĥ
′
k+1(j +Dkr)I ′p(j,r) +

ŝk+1
′(j +Dkr)∗Q̂′k+1(j +Dkr)I ′p(j)−q(j)Ĝ

′
k+1(j +Dkr)I ′p(j,r). (5.22)

Proof. Using (5.20), (5.21) and (5.7), we obtain

ŝk+1
′(j +Dkr)∗I ′p(j,r) =

∑
l∈R1

ŝk+1
′(j +Dkl)∗P̂ ′k+1(j +Dkl)I ′q(j)Ĥ

′
k+1(j +Dkr)I ′p(j,r) +∑

l∈R1

ŝk+1
′(j +Dkl)∗Q̂′k+1(j +Dkl)I ′p(j)−q(j)Ĝ

′
k+1(j +Dkr)I ′p(j,r),

which leads to (5.22) with the application of Proposition 5.7.

5.3 Nonorthogonal Representation

For the following results, we shall only assume that V k+1
2π = V k

2π + W k
2π. The decomposi-

tion algorithm is derived using Proposition 3.26 and the decomposed coefficients are not

unique, i.e. they are dependent on the choice of masks. However, their variations do not

affect the reconstruction process.

Proposition 5.10. Assume Setup 5.2. For j ∈ Rk, let

L̂′k(j) = diag(Uk(j), Vk(j))L̂k(j)diag(Uk+1(j +Dkr1), . . . , Uk+1(j +Dkrd))
∗

with the assumption that L̂k(j) defined as in (3.44) satisfies (3.43). If

fk+1 =
∑
j∈Rk

∑
r∈R1

ŝk+1(j +Dkr)∗vk+1,j+Dkr

=
∑
j∈Rk

∑
r∈R1

[
ŝk(j)

∗Ĥk+1(j +Dkr) + t̂k(j)
∗Ĝk+1(j +Dkr)

]
vk+1,j+Dkr, (5.23)

then for each j ∈ Rk, there exists
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗ ∈ Ker

[
L̂′k(j)I ′p(j)

]∗
such that

d
[
ŝk
′(j)− ̂̃sk ′(j)]∗ I ′q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĥ

′
k+1(j +Dkr)∗I ′q(j), (5.24)

d

[
t̂k
′
(j)− ̂̃tk ′(j)]∗ I ′p(j)−q(j) =

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĝ

′
k+1(j +Dkr)∗I ′p(j)−q(j), (5.25)

and for r ∈ R1,

ŝk+1
′(j+Dkr)∗I ′p(j,r)=

[
ŝk
′(j)∗I ′q(j)Ĥ

′
k+1(j+Dkr) + t̂k

′
(j)∗I ′p(j)−q(j)Ĝ

′
k+1(j+Dkr)

]
I ′p(j,r). (5.26)

The p(j, r) + 1, . . . , ρ entries of ŝk+1
′(j +Dkr) could be arbitrary.
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Proof. Let r1, . . . , rd ∈ R1 be distinct coset representatives of Zs/DZs. Using (5.7), we

have

d
[
ŝk
′(j)∗I ′q(j) t̂k

′
(j)∗I ′p(j)−q(j)

]
L̂′k(j)I ′p(j) = d

[
ŝk+1

′(j +Dkrµ)
]d ∗
µ=1

I ′p(j)

=
[
ŝk+1

′(j +Dkrµ)
]d ∗
µ=1

I ′p(j)L̂′k(j)∗L̂′k(j)I ′p(j). (5.27)

As ρd = rank (L̂′k(j)∗L̂′k(j)) ≤ rank L̂′k(j)∗, L̂′k(j)∗ has full column rank and p(j) =

rank
[
L̂′k(j)I ′p(j)

]∗
. Thus

d
[
ŝk
′(j)∗I ′q(j) t̂k

′
(j)∗I ′p(j)−q(j)

]
=
[
ŝk+1

′(j+Dkrµ)
]d ∗
µ=1

I ′p(j)L̂′k(j)∗ + d
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗] ,

where
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗ ∈ Ker

[
L̂′k(j)I ′p(j)

]∗
. This leads to

dŝk
′(j)∗I ′q(j)=

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĥ

′
k+1(j +Dkr)∗I ′q(j) + d ̂̃sk ′(j)∗I ′q(j),

dt̂k
′
(j)∗I ′p(j)−q(j)=

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĝ

′
k+1(j +Dkr)∗I ′p(j)−q(j) + d ̂̃tk ′(j)∗I ′p(j)−q(j),

which we rewrite as

d
[
(ŝk
′(j)−̂̃sk ′(j))∗I ′q(j) (t̂k

′
(j)−̂̃tk ′(j))∗I ′p(j)−q(j)]=[ŝk+1

′(j+Dkrµ)
]d ∗
µ=1
I ′p(j)L̂′k(j)∗

[
I ′q(j) 0

0 I ′p(j)−q(j)

]
.(5.28)

Since
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗ ∈ Ker

[[
I ′q(j)

I ′p(j)−q(j)

]
L̂′k(j)I ′p(j)

]∗
by observing from (5.5) and

(5.7) that
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗] L̂′k(j)I ′p(j) =

[ ̂̃sk ′(j)∗I ′q(j) ̂̃tk ′(j)∗I ′p(j)−q(j)] L̂′k(j)I ′p(j), we make

use of either Proposition 3.26 or (5.27) to show that

d
[
(ŝk
′(j)− ̂̃sk ′(j))∗ (t̂k

′
(j)− ̂̃tk ′(j))∗]

[
I ′q(j) 0

0 I ′p(j)−q(j)

]̂
L′k(j)I ′p(j)=d

[
ŝk+1

′(j+Dkrµ)
]d ∗
µ=1
I ′p(j).(5.29)

Without loss of generality, we shall assume that
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗ is the zero vector. Now,

d
[
ŝk
′(j)∗I ′q(j) t̂k

′
(j)∗I ′p(j)−q(j)

] [Ĥ ′k+1(j +Dkr1)I ′p(j,r1) · · · Ĥ ′k+1(j +Dkrd)I
′
p(j,rd)

Ĝ′k+1(j +Dkr1)I ′p(j,r1) · · · Ĝ′k+1(j +Dkrd)I
′
p(j,rd)

]

=


ŝk+1

′(j +Dkr1)
...

ŝk+1
′(j +Dkrd)


∗ 
I ′p(j,r1)Ĥ

′
k+1(j +Dkr1)∗I ′q(j) I ′p(j,r1)Ĝ

′
k+1(j +Dkr1)∗I ′p(j)−q(j)

...
...

I ′p(j,rd)Ĥ
′
k+1(j +Dkrd)

∗I ′q(j) I ′p(j,rd)Ĝ
′
k+1(j +Dkrd)

∗I ′p(j)−q(j)


[

I ′q(j)Ĥ
′
k+1(j +Dkr1)I ′p(j,r1) · · · I ′q(j)Ĥ

′
k+1(j +Dkrd)I

′
p(j,rd)

I ′p(j)−q(j)Ĝ
′
k+1(j +Dkr1)I ′p(j,r1) · · · I ′p(j)−q(j)Ĝ

′
k+1(j +Dkrd)I

′
p(j,rd)

]
.
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This implies that

d
[
ŝk
′(j)∗I ′q(j) t̂k

′
(j)∗I ′p(j)−q(j)

] [Ĥ ′k+1(j +Dkr1)I ′p(j,r1) · · · Ĥ ′k+1(j +Dkrd)I
′
p(j,rd)

Ĝ′k+1(j +Dkr1)I ′p(j,r1) · · · Ĝ′k+1(j +Dkrd)I
′
p(j,rd)

]

=

[∑
r∈R1̂

sk+1
′(j+Dkr)∗I ′p(j,r)Ĥ

′
k+1(j+Dkr)∗I ′q(j)

∑
r∈R1̂

sk+1
′(j+Dkr)∗I ′p(j,r)Ĝ

′
k+1(j+Dkr)∗I ′p(j)−q(j)

]
[

I ′q(j)Ĥ
′
k+1(j +Dkr1)I ′p(j,r1) · · · I ′q(j)Ĥ

′
k+1(j +Dkrd)I

′
p(j,rd)

I ′p(j)−q(j)Ĝ
′
k+1(j +Dkr1)I ′p(j,r1) · · · I ′p(j)−q(j)Ĝ

′
k+1(j +Dkrd)I

′
p(j,rd)

]
.

Hence, for a given rµ ∈ R1,

dŝk
′(j)∗I ′q(j)Ĥ

′
k+1(j +Dkrµ)I ′p(j,rµ) + dt̂k

′
(j)∗I ′p(j)−q(j)Ĝ

′
k+1(j +Dkrµ)I ′p(j,rµ)

=
∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĥ

′
k+1(j +Dkr)∗I ′q(j)Ĥ

′
k+1(j +Dkrµ)I ′p(j,rµ)

+
∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĝ

′
k+1(j +Dkr)∗I ′p(j)−q(j)Ĝ

′
k+1(j +Dkrµ)I ′p(j,rµ).

Therefore[
dŝk
′(j)∗I ′q(j) −

∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĥ

′
k+1(j +Dkr)I ′q(j)

]
Ĥ ′k+1(j +Dkrµ)I ′p(j,rµ)

=

[
(
∑
r∈R1

ŝk+1
′(j +Dkr)∗I ′p(j,r)Ĝ

′
k+1(j +Dkr)− dt̂k

′
(j)∗)I ′p(j)−q(j)

]
Ĝ′k+1(j +Dkrµ)I ′p(j,rµ)

and the expressions in brackets must be equal to zero for a fixed j ∈ Rk and a given

rµ ∈ R1 that could vary freely. So we infer from (5.28) and (5.29) that (5.24), (5.25) and

(5.26) hold.

Comparing the nonorthogonal representation with the semi-orthogonal representation,

we find that this time Ĥ ′∗k+1 and Ĝ′∗k+1 play the role of decomposition masks while the role

of Ĥ ′k+1 and Ĝ′k+1 as reconstruction masks remain unchanged.

5.4 Stationary Wavelet Transform

In practice, we apply the wavelet transform to 1-dimensional data and for 2-dimensional

data, we construct tensor product equivalents of the 1-dimensional wavelets and apply the

corresponding wavelet transform. To simplify matters, we shall now restrict our discussion

to the 1-dimensional setting with arbitrary integer dilation factor M .

The analysis of the data using the decomposition algorithm given in Proposition 5.10 is

not translation invariant in time, i.e. not modulation invariant in frequency, due to down-

sampling of the filtered coefficients in the time domain. If we apply a single level transform
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of such kind in regression, then this will lead to only the even numbered coefficients being

processed for the case of the dilation factor M = 2. Due to the misalignments between

features in the signal and in the transform representation, artifacts near neighbourhoods

of discontinuities will be introduced with the thresholding of the wavelet coefficients for

the elimination of high frequency noise. The artifacts introduced in the processing could

be eliminated with the use of the stationary wavelet transform (SWT) [40] by an averaging

process described in [12].

First, let us define the shift operator Srk : S(Mk)→ S(Mk) given by

{(Srksk)(l)}l∈Lk = {sk(l − r)}l∈Lk ,

where r ∈ Lk. We shall also identify SrK with SrK+k|S(MK) : S(MK) → S(MK) for every

r ∈ LK . The upsampling operator ↑k: S(Mk)→ S(Mk+1) is given by

↑k: {sk(l)}l∈Lk 7→ {↑k sk(r)}r∈Lk+1
:= {sk(l)1{r=Ml}}r∈Lk+1

.

We shall also write the composition ↑K+k
K : S(MK) 7→ S(MK+k) as

↑K+k
K :=↑K+k−1↑K+k−2 · · · ↑K .

The general downsampling operator ↓k,r: S(Mk) → S(Mk−1) for a given r ∈ Lk is given

by

↓k,r: {sk(l)}l∈Lk 7→ {↓k,r sk(l)}l∈Lk−1
:= {↓k,0 S−rk sk(l)}l∈Lk−1

= {sk(Ml + r)}l∈Lk .

In the event that r = 0, then we simply write ↓k,0 as ↓k. For a given r ∈ LK , we shall

also write the composition ↓KK+k,r: S(MK+k)→ S(MK) as

↓KK+k,r:=↓K+1,r↓K+2,r · · · ↓K+k,r .

We define the periodic convolution ⊗ : S(Mk) × S(Mk) → S(Mk) of ak ∈ Lk and

bk ∈ Lk as

{ak ⊗ bk(l)}l∈Lk =

{∑
r∈Lk

ak(l − r)bk(r)

}
l∈Lk

.

Recall also that the discrete Fourier transform of sk ∈ S(Mk)ρ×1 is defined as

ŝk(j) :=
∑
l∈Lk

sk(l)e
−i2πj·M−kl.

We shall now rewrite the decomposition and reconstruction process of (5.24), (5.25) and

(5.26) given in Proposition 5.10 in the time domain using the discrete Fourier transform.
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Proposition 5.11. Assume Setup 5.3. If fk+1 is given by (5.1), then

fk+1 =
∑
l∈Lk+1

sk+1(l)∗T lk+1Φk+1 =
∑
l∈Lk

[
sk(l)

∗T lkΦk + tk(l)
∗T lkΨk

]
=
∑
l∈Lk+1

[(↑k s∗k)⊗Hk+1(l) + (↑k t∗k)⊗Gk+1(l)]T lk+1Φk+1. (5.30)

Further, there exist
[ ̂̃sk ′(j)∗ ̂̃tk ′(j)∗]∗∈ Ker L̂′k(j)∗, j ∈ Rk, such that for every l ∈ Lk and

n ∈ Lk+1, [
s′k(l)− s̃k

′(l)
]∗

= [s′∗k+1 ⊗H ′∗k+1](Ml), (5.31)[
t′k(l)− t̃k

′
(l)
]∗

= [s′∗k+1 ⊗G′∗k+1](Ml), (5.32)

s′k+1(n)∗ = [(↑k s′∗k )⊗H ′k+1](n) + [(↑k t′∗k )⊗G′k+1](n). (5.33)

Proof. First, let us apply Lemma 3.2 to the definition of polyphase harmonics given in

(3.16) to express (5.1) as

fk+1(t) =
∑

j∈Rk+1

ŝk+1(j)∗

[∑
n∈Zs

Φ̂k+1(j +Dk+1n)ei(j+Dk+1n)·t

]
=
∑
n∈Zs

∑
j∈Rk+1

ŝk+1(j +Dk+1n)∗Φ̂k+1(j +Dk+1n)ei(j+Dk+1n)·t =
∑
n∈Zs

ŝk+1(n)∗Φ̂k+1(n)ein·t

=
∑
n∈Zs

∑
l∈Lk+1

sk+1(l)∗e−i2πn·M−(k+1)l(2π)−s
∫

Ts
Φk+1(x)e−in·xdxein·t (5.34)

=
∑
l∈Lk+1

sk+1(l)∗
∑
n∈Zs

(2π)−s
∫

Ts
Φk+1(x)e−in·[x+2πM−(k+1)l]dxein·t

=
∑
l∈Lk+1

sk+1(l)∗
∑
n∈Zs

(2π)−s
∫

Ts
Φk+1(x− 2πM−(k+1)l)e−in·xdxein·t

=
∑
l∈Lk+1

sk+1(l)∗T lk+1Φk+1(t).

A similar computation of (5.34) with sk and tk and φk and ψk respectively leads to the

second equality of (5.30). To show the third equality of (5.30), we express (5.1) as
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fk+1(t) =
∑
j∈Rk

∑
r∈R1

∑
n∈Zs

[
ŝk(j +Dkr +Dk+1n)∗Ĥk+1(j +Dkr +Dk+1n)

+t̂k(j+D
kr+Dk+1n)∗Ĝk+1(j+Dkr+Dk+1n)

] [
Φ̂k+1(j+Dkr+Dk+1n)ei(j+Dkr+Dk+1n)·t

]
=
∑
n∈Zs

[
ŝk(n)∗Ĥk+1(n) + t̂k(n)∗Ĝk+1(n)

]
Φ̂k+1(n)ein·t

=
∑
n∈Zs

∑
r∈Lk

∑
l∈Lk+1

[sk(r)
∗Hk+1(l) + tk(r)

∗Gk+1(l)] e−i2πn·M−kre−i2πn·M−(k+1)lΦ̂k+1(n)ein·t

=
∑
r∈Lk

∑
l∈Lk+1

[sk(r)
∗Hk+1(l) + tk(r)

∗Gk+1(l)]

∑
n∈Zs

(2π)−s
∫

Ts
Φk+1(x)e−in·xdxein·te−i2πn·M−(k+1)(l+Mr)

=
∑
l∈Lk+1

∑
r∈Lk

[sk(r)
∗Hk+1(l −Mr) + tk(r)

∗Gk+1(l −Mr)]

∑
n∈Zs

(2π)−s
∫

Ts
Φk+1(x)e−in·[x+2πM−(k+1)l]dxein·t

=
∑
l∈Lk+1

[(↑k s∗k)⊗Hk+1(l) + (↑k t∗k)⊗Gk+1(l)]T lk+1Φk+1(t).

To confirm (5.31), we apply Lemma 3.2 and the inverse DFT to (5.24) in Proposition

5.10 to get

dk+1
[
s′k(l)− s̃k

′(l)
]∗

=
∑
j∈Rk

∑
r∈R1

ŝk+1
′(j +Dkr)∗Ĥ ′k+1(j +Dkr)∗ei2π(j+Dkr)·M−kl

=
∑

j∈Rk+1

ŝk+1
′(j)∗Ĥ ′k+1(j)∗ei2πj·M−kl

=
∑

j∈Rk+1

∑
r∈Lk+1

s′k+1(r)∗e−i2πj·M−(k+1)r
∑

n∈Lk+1

H ′k+1(n)∗e−i2πj·M−(k+1)nei2πj·M−kl

=
∑

j∈Rk+1

∑
n∈Lk+1

∑
r∈Lk+1

s′k+1(r)∗H ′k+1(n− r)∗e−i2πj·M−(k+1)nei2πj·M−kl

=
∑

j∈Rk+1

∑
n∈Lk+1

[s′∗k+1 ⊗H ′∗k+1](n)e−i2πj·M−(k+1)nei2πj·M−(k+1)Ml

= dk+1[s′∗k+1 ⊗H ′∗k+1](Ml).

Similarly, we could show that (5.25) is equivalent to (5.32). Finally, (5.33) could be shown
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to be equivalent to (5.26) since

dk+1s′k+1(l)∗ =
∑
j∈Rk

∑
r∈R1

[
ŝk
′(j +Dkr)∗Ĥ ′k+1(j +Dkr)

+t̂k
′
(j +Dkr)∗Ĝ′k+1(j +Dkr)

]
ei2π(j+Dkr)·M−(k+1)l

=
∑

j∈Rk+1

[
ŝk
′(j)∗Ĥ ′k+1(j) + t̂k

′
(j)∗Ĝ′k+1(j)

]
ei2πj·M−(k+1)l

=
∑

j∈Rk+1

∑
r∈Lk

∑
n∈Lk+1

[
s′k(r)

∗e−i2πj·M−(k+1)MrH ′k+1(n)e−i2πj·M−(k+1)n

+t′k(r)
∗e−i2πj·M−(k+1)MrG′k+1(n)e−i2πj·M−(k+1)n

]
ei2πj·M−(k+1)l

=
∑

j∈Rk+1

∑
n∈Lk+1

∑
r∈Lk

[
s′k(r)

∗H ′k+1(n) + t′k(r)
∗G′k+1(n)

]
e−i2πj·M−(k+1)(n+Mr−l)

=
∑

j∈Rk+1

∑
n∈Lk+1

∑
r∈Lk

[
s′k(r)

∗H ′k+1(n−Mr)

+t′k(r)
∗G′k+1(n−Mr)

]
e−i2πj·M−(k+1)nei2πj·M−(k+1)l

=
∑

j∈Rk+1

∑
n∈Lk+1

[
[(↑k s′∗k )⊗H ′k+1](n) + [(↑k t′∗k )⊗G′k+1](n)

]
e−i2πj·M−(k+1)(n−l)

= dk+1
[
[(↑k s′∗k )⊗H ′k+1](l) + [(↑k t′∗k )⊗G′k+1](l)

]
.

We shall have uniqueness in the reconstruction process in Proposition 5.11 if for every

j ∈ Rk and r ∈ R1 the matrices Mk(j), Nk(j) and Mk+1(j +Dkr) as defined in Setup 5.1

have full rank.

Corollary 5.12. Assume Setup 5.3 with rank Mk+1(j + Dkr) = ρ, rank Mk(j) = ρ and

rank Nk(j) = %k for every j ∈ Rk and r ∈ R1. If fk+1 is given by (5.1), then

fk+1 =
∑
l∈Lk+1

sk+1(l)∗T lk+1Φk+1 =
∑
l∈Lk

[
sk(l)

∗T lkΦk + tk(l)
∗T lkΨk

]
=
∑
l∈Lk+1

[(↑k s∗k)⊗Hk+1(l) + (↑k t∗k)⊗Gk+1(l)]T lk+1Φk+1. (5.35)

Further, for every l ∈ Lk and n ∈ Lk+1, we have

sk(l)
∗ = [s∗k+1 ⊗H∗k+1](Ml), (5.36)

tk(l)
∗ = [s∗k+1 ⊗G∗k+1](Ml), (5.37)

sk+1(n)∗ = [(↑k s∗k)⊗Hk+1](n) + [(↑k t∗k)⊗Gk+1](n). (5.38)
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The next proposition, which concerns the upsampling, downsampling, periodic convo-

lution and shift operations, will be used to relate the stationary wavelet transform with

the ordinary wavelet transform.

Proposition 5.13. The upsampling, downsampling, periodic convolution and shift oper-

ations satisfy

Srk−1 ↓k sk =↓k SMr
k sk (5.39)

↓KK+k [(↑K+k
K HK)⊗ sK+k] = HK ⊗ (↓KK+k sK+k) (5.40)

Srk(Hk ⊗ sk) = Hk ⊗ (Srksk). (5.41)

Proof. The verification of (5.39), (5.40) and (5.41) is as follows:

Srk−1 ↓k {sk(l)}l∈Lk = Srk−1{sk(Ml)}l∈Lk = {sk(M(l − r))}l∈Lk =↓k {SMr
k sk(l)}l∈Lk ,

↓KK+k [(↑K+k
K HK)⊗ sK+k](l) =↓KK+k {[

∑
r∈LK+k

(↑K+k
K HK)(r)sK+k(l − r)]}l∈LK+k

(l)

=↓KK+k {[
∑
r∈LK

(↑K+k
K HK)(Mkr)sK+k(l −Mkr)]}l∈LK+k

(l)

=
∑
r∈LK

(↑K+k
K HK)(Mkr)sK+k(M

kl −Mkr) =
∑
r∈LK

HK(r)sK+k(M
k(l − r))

= HK ⊗ (↓KK+k sK+k)(l),

Srk(Hk ⊗ sk)(l) = Hk ⊗ sk(l − r) =
∑
ν∈Lk

Hk(ν)sk(l − r − ν) =
∑
ν∈Lk

Hk(ν)(Srksk)(l − ν)

= Hk ⊗ (Srksk)(l).

Therefore, we observe that (i) a shift of Mr units followed by downsampling is the

same as downsampling followed by a shift of r units, (ii) performing convolution with

an upsampled filter followed by downsampling is the same as performing downsampling

first followed by convolution with the filter, and (iii) shifts applied before convolution is

equivalent to shifts applied after convolution.

Following the convention used by [40], let us also define the ε-decimated discrete wavelet

transform (ε-DWT), where the M -nary representation of ε is ε0 · · · εK+L. Let the M -nary

representations of ε0ε1 · · · εK and εK+1 · · · εK+L be denoted by l1 and l2 respectively. For

the standard discrete wavelet transform (DWT), we deal with the sequence tK =↓K+1

GK+1

⊗K+L
k=K+2 ↓k Hk ⊗ sK+L. In the ε-DWT, using Proposition 5.13, we handle the



5.4 Stationary Wavelet Transform 126

sequence tεK given by

tεK := ↓K+1,εK+1
GK+1

K+L⊗
k=K+2

↓k,εk Hk ⊗ sK+L=↓K+1 S
−εK+1

K+1 GK+1

K+L⊗
k=K+2

↓k S−εkk Hk ⊗ sK+L

= ↓K+1 S
−εk+1

k+1 GK+1

k=K+L⊗
k=K+2

S
−εk−1

k−1 ↓k Hk ⊗ (S
−εK+L

K+L sK+L)

= ↓K+1 S
−εk+1

k+1 GK+1

K+L⊗
k=K+2

↓k S−Mεk−1

k−1 Hk ⊗ (S
−εK+L

K+L sK+L)

= ↓K+1 GK+1

K+L⊗
k=K+2

↓k Hk ⊗ (S
−ML−1εK+1

K+1 · · ·S−MεK+L−1

K+L−1 S
−εK+L

K+L sK+L)

= ↓K+1 GK+1

K+L⊗
k=K+2

↓k Hk ⊗ (S−l2
K+LsK+L).

If we apply the operator S−l1
K+L to tεK , then we have

S−l1
K+Lt

ε
K = S−l1

K+L ↓K+1 GK+1

K+L⊗
k=K+2

↓k Hk ⊗ (S−l2
K+LsK+L)

= ↓K+1 S
−M l1
K+L GK+1

K+L⊗
k=K+2

↓k Hk ⊗ (S−l2
K+LsK+L)

= ↓K+1 GK+1

K+L⊗
k=K+2

↓k Hk ⊗ S−M
Ll1

K+L (S−l2
K+LsK+L)

= ↓K+1 GK+1

K+L⊗
k=K+2

↓k Hk ⊗ (S−εK+LsK+L).

Therefore S−l1
K+Lt

ε
K is the l1-shifted Kth detail sequence of the standard DWT applied to

S−εK+LsK+L. Similarly, we would obtain the l1-shifted Kth smooth part S−l1
K+Ls

ε
K as

S−l1
K+Ls

ε
K =

K+L⊗
k=K+1

↓k Hk ⊗ (S−εK+LsK+L).

We define the stationary wavelet transform (SWT) of aK+L := sK+L at level k ∈
{K + L, . . . , 1} recursively by

ak−1 = (↑K+L
k Hk)⊗ ak and bk−1 = (↑K+L

k Gk)⊗ ak. (5.42)

Due to the absence of downsampling, ak−1 and bk−1 for k ∈ {1, . . . , K + L} are still in

S(MK+L). Using (5.42), we could show that the SWT of aK+L contains the coefficients
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of the ε-DWT for every choice of ε. Indeed, for each k ∈ {K + L− 1, . . . , 1},

S−M
−(K−k+1)l1

K+L ↓kK+L S
ε
K+Lbk =↓kK+L S

−MLl1+ε
K+L bk =↓kK+L S

l2
K+Lbk

=↓kK+L S
l2
K+L(↑K+L

k+1 Gk+1)⊗ (↑K+L
k+2 Hk+2)⊗ · · · ⊗HK+L ⊗ sK+L

=↓kK+L [(↑K+L
k+1 Gk+1)⊗ (↑K+L

k+2 Hk+2)⊗ · · · ⊗HK+L ⊗ Sl2K+LsK+L]

=↓kk+1↓k+1
K+L [(↑K+L

k+1 Gk+1)⊗ (↑K+L
k+2 Hk+2)⊗ · · · ⊗HK+L ⊗ Sl2K+LsK+L]

=↓kk+1 [Gk+1⊗ ↓k+1
K+L

[
(↑K+L
k+2 Hk+2)⊗ · · · ⊗HK+L ⊗ Sl2K+LsK+L]

]
=↓kk+1

[
Gk+1⊗ ↓k+1

k+2↓
k+2
K+L [(↑K+L

k+2 Hk+2)⊗ · · · ⊗HK+L ⊗ Sl2K+LsK+L]
]

=↓kk+1

[
Gk+1⊗ ↓k+1

k+2

[
Hk+2 ⊗ · · ·⊗ ↓K+L−1

K+L [HK+L ⊗ Sl2K+LsK+L]
]
· · ·
]

=↓k+1

[
Gk+1⊗ ↓k+2

[
Hk+2 ⊗ · · ·⊗ ↓K+L [HK+L ⊗ Sl2K+LsK+L]

]
· · ·
]

=↓k+1 Gk+1

K+L⊗
n=k+2

↓n Hn ⊗ Sl2K+LsK+L = SM
−(K+L−k+1)l2

K+L tεk.

The SWT contains all the 2πM−K−L shifts of the refinable function and the corre-

sponding wavelet system. We shall see that this essentially leads to the quasi-affine

representation of fK+L.

Proposition 5.14. Assume Setup 5.3. If fk+1 is given by (5.1), then for ε ∈ L1,

fk+1 =
∑
l∈Lk+1

sk+1(l + ε)∗T l+εk+1Φk+1 =
∑
l∈Lk

[
sεk(l)

∗TMl+ε
k+1 Φk + tεk(l)

∗TMl+ε
k+1 Ψk

]
= d−1

∑
ε∈L1

∑
l∈Lk

[
sεk(l)

∗TMl+ε
k+1 Φk + tεk(l)

∗TMl+ε
k+1 Ψk

]
= d−1

∑
ε∈L1

∑
l∈Lk

[
ak(Ml + ε)∗TMl+ε

k+1 Φk + bk(Ml + ε)∗TMl+ε
k+1 Ψk

]
,

=
∑
l∈Lk+1

[(↑k sεk
∗)⊗Hk+1(l) + (↑k tεk

∗)⊗Gk+1(l)]T l+εk+1Φk+1. (5.43)

Further, there exist
[ ̂̃sεk ′(j)∗ ̂̃tεk ′(j)∗]∗∈ Ker L̂′k(j)∗, j ∈ Rk such that[
sεk
′(l)− s̃εk

′
(l)
]∗

= [s′∗k+1 ⊗H ′∗k+1](Ml + ε) = a′k(Ml + ε)∗, (5.44)[
tεk
′(l)− t̃εk

′
(l)
]∗

= [s′∗k+1 ⊗G′∗k+1](Ml + ε) = b′k(Ml + ε)∗, (5.45)

s′k+1(n+ ε)∗ = [(↑k sεk
′∗)⊗H ′k+1 + (↑k tεk

′∗)⊗G′k+1](n), (5.46)

for every l ∈ Lk and n ∈ Lk+1, where ŝεk
′
(j)=I ′q(j)Uk(j)ŝ

ε
k(j), t̂εk

′
(j) = I ′p(j)−q(j)Vk(j)t̂

ε
k(j),

âk
′(j+Dkr) = I ′q(j)Uk(j)âk(j+Dkr), b̂k

′
(j+Dkr) = I ′p(j)−q(j)Vk(j)b̂k(j+Dkr) and ak and

bk are given as in (5.42).
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Proof. By Proposition 5.11, we could utilize (5.30) and (5.33) to obtain

T−εk+1fk+1 =
∑
l∈Lk+1

sk+1(l)∗T l−εk+1Φk+1 =
∑
l∈Lk+1

sk+1(l + ε)∗T lk+1Φk+1

=
∑
l∈Lk

[
sεk(l)

∗T lkΦk + tεk(l)
∗T lkΨk

]
=
∑
l∈Lk+1

[(↑k sεk
∗)⊗Hk+1(l) + (↑k tεk

∗)⊗Gk+1(l)]T lk+1Φk+1

and so

fk+1 =
∑
l∈Lk+1

sk+1(l + ε)∗T l+εk+1Φk+1 =
∑
l∈Lk

sεk(l)
∗TMl+ε

k+1 Φk +
∑
l∈Lk

tεk(l)
∗TMl+ε

k+1 Ψk.

which justifies (5.43) and (5.46). Consequently, we infer from Lemma 5.4, (5.31) and

(5.32) of Proposition 5.11 that[
sεk
′(l)− s̃εk

′
(l)
]∗

= [s′k+1(·+ ε)∗ ⊗H ′∗k+1](Ml) =
∑

n∈Lk+1

s′k+1(n+ ε)∗H ′k+1(Ml − n)∗

=
∑

n∈Lk+1

sk+1(n)∗H ′k+1(Ml + ε− n)∗ = [s′∗k+1 ⊗H ′∗k+1](Ml + ε) = a′k+1(Ml + ε)∗

and [
tεk
′(l)− t̃εk

′
(l)
]∗

= [s′k+1(·+ ε)∗ ⊗G′∗k+1](Ml) =
∑

n∈Lk+1

s′k+1(n+ ε)∗G′k+1(Ml − n)∗

=
∑

n∈Lk+1

sk+1(n)∗G′k+1(Ml + ε− n)∗ = [s′∗k+1 ⊗G′∗k+1](Ml + ε) = b′k+1(Ml + ε)∗

and the above computation proves (5.44) and (5.45).

Before we proceed further, it is necessary to consider the frequency domain formulation

of Proposition 5.14 in order to establish the uniqueness aspect of the transform.

Proposition 5.15. Assume Setup 5.3. If fk+1 is given by (5.1), then for ε ∈ L1,

fk+1 =
∑

j∈Rk+1

[
ŝεk(j)

∗e−i2πj·M−(k+1)ε(Φk)k+1,j + t̂εk(j)
∗e−i2πj·M−(k+1)ε(Ψk)k+1,j

]
,

= d−1
∑
ε∈L1

∑
j∈Rk+1

[
ŝεk(j)

∗e−i2πj·M−(k+1)ε(Φk)k+1,j + t̂εk(j)
∗e−i2πj·M−(k+1)ε(Ψk)k+1,j

]
. (5.47)

Further, for each j ∈ Rk, there exists
[ ̂̃sεk ′(j)∗ ̂̃tεk ′(j)∗]∗∈ Ker L̂′k(j)∗ such that

d

[
ŝεk
′
(j)− ̂̃sεk ′(j)]∗ =

∑
r∈R1

ŝk+1
′(j +Dkr)∗ei2π(j+Dkr)·M−(k+1)εĤ ′k+1(j +Dkr)∗, (5.48)

d

[
t̂εk
′
(j)− ̂̃tεk ′(j)]∗ =

∑
r∈R1

ŝk+1
′(j +Dkr)∗ei2π(j+Dkr)·M−(k+1)εĜ′k+1(j +Dkr)∗, (5.49)
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and for r ∈ R1,

ŝk+1
′(j+Dkr)∗ei2π(j+Dkr)·M−(k+1)ε=ŝεk

′
(j)∗Ĥ ′k+1(j+Dkr) + t̂εk

′
(j)∗Ĝ′k+1(j+Dkr), (5.50)

where ŝεk
′
(j) = I ′q(j)Uk(j)ŝ

ε
k(j), t̂εk

′
(j) = I ′p(j)−q(j)Vk(j)t̂

ε
k(j).

Proof. We show the two equalities of (5.47) by applying Lemma 3.2 to (5.43) of Proposi-

tion 5.14, i.e. fk+1 = f εk + gεk, where f εk =
∑
l∈Lk

sεk(l)
∗TMl+ε

k+1 Φk, g
ε
k =

∑
l∈Lk

tεk(l)
∗TMl+ε

k+1 Ψk, so

that

f εk =
∑
l∈Lk

sεk(l)
∗
∑

j∈Rk+1

∑
n∈Zs

(̂Φk)k+1,j(n)ei(j+Dk+1n)·[t−2πM−(k+1)(Ml+ε)]

=
∑

j∈Rk+1

∑
n∈Zs

∑
l∈Lk

sεk(l)
∗e−ij·2πM−kl(̂Φk)k+1,j(n)ei(j+Dk+1n)·te−ij·2πM−(k+1)ε

=
∑

j∈Rk+1

∑
n∈Zs

ŝεk(j)
∗(̂Φk)k+1,j(n)ei(j+Dk+1n)·te−ij·2πM−(k+1)ε

=
∑

j∈Rk+1

ŝεk(j)
∗e−ij·2πM−(k+1)ε(Φk)k+1,j

and similarly gεk =
∑

j∈Rk+1

t̂εk(j)
∗e−ij·2πM−(k+1)ε(Ψk)k+1,j. Using Lemma 3.2, we show that

(5.44) of Proposition 5.14 is equivalent to

d

[
ŝεk
′
(j)− ̂̃sεk ′(j)]∗ = d

∑
l∈Lk

∑
n∈Lk+1

s′k+1(n+ ε)∗H ′k+1(Ml − n)∗e−i2πj·M−kl

=
∑
l∈Lk

∑
n∈Lk+1

d−k
∑

ν∈Rk+1

ŝk+1
′(ν)∗ei2πν·M−(k+1)(n+ε)H ′k+1(Ml − n)∗e−i2πj·M−kl

=
∑
l∈Lk

∑
ν∈Rk+1

∑
n∈Lk+1

d−kŝk+1
′(ν)∗H ′k+1(Ml − n)∗e−i2πν·M−(k+1)(Ml−n)ei2πν·M−(k+1)εe−i2π(j−ν)·M−kl

=
∑
l∈Lk

∑
ν∈Rk+1

d−kŝk+1
′(ν)∗Ĥ ′k+1(ν)∗ei2πν·M−(k+1)εe−i2π(j−ν)·M−kl

=
∑
l∈Lk

∑
ν∈Rk

∑
r∈R1

d−kŝk+1
′(ν +Dkr)∗Ĥ ′k+1(ν +Dkr)∗ei2π(ν+Dkr)·M−(k+1)εe−i2π(j−ν−Dkr)·M−kl

=
∑
ν∈Rk

∑
r∈R1

ŝk+1
′(ν +Dkr)∗Ĥ ′k+1(ν +Dkr)∗ei2π(ν+Dkr)·M−(k+1)εδj,ν

and this confirms that (5.48) is valid. Similarly, we could show that (5.45) is equivalent

to (5.49). Finally, (5.50) is easily shown by following the same proof found in Proposition

5.10.

As in Corollary 5.12, we shall have uniqueness in the reconstruction process in Propo-

sition 5.14 if for every j ∈ Rk and r ∈ R1 the matrices Mk(j), Nk(j) and Mk+1(j +Dkr)

as defined in Setup 5.1 have full rank.
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Corollary 5.16. Assume Setup 5.3 with rank Mk+1(j + Dkr) = ρ, rank Mk(j) = ρ and

rank Nk(j) = %k for every j ∈ Rk and r ∈ R1. If fk+1 is given by (5.1), then for ε ∈ L1,

fk+1 =
∑
l∈Lk+1

sk+1(l + ε)∗T l+εk+1Φk+1 =
∑
l∈Lk

[
sεk(l)

∗TMl+ε
k+1 Φk + tεk(l)

∗TMl+ε
k+1 Ψk

]
= d−1

∑
ε∈L1

∑
l∈Lk

[
sεk(l)

∗TMl+ε
k+1 Φk + tεk(l)

∗TMl+ε
k+1 Ψk

]
= d−1

∑
ε∈L1

∑
l∈Lk

[
ak(Ml + ε)∗TMl+ε

k+1 Φk + bk(Ml + ε)∗TMl+ε
k+1 Ψk

]
,

=
∑
l∈Lk+1

[(↑k sεk
∗)⊗Hk+1(l) + (↑k tεk

∗)⊗Gk+1(l)]T l+εk+1Φk+1. (5.51)

Further, for every l ∈ Lk and n ∈ Lk+1, we have

sεk(l)
∗ = [s∗k+1 ⊗H∗k+1](Ml + ε) = ak(Ml + ε)∗, (5.52)

tεk(l)
∗ = [s∗k+1 ⊗G∗k+1](Ml + ε) = bk(Ml + ε)∗, (5.53)

sk+1(n+ ε)∗ = [(↑k sεk
∗)⊗Hk+1](n) + [(↑k tεk

∗)⊗Gk+1](n). (5.54)

Using Proposition 5.14 and Corollary 5.16, we could derive the quasi-affine represen-

tation for the stationary wavelet transform in the following proposition.

Proposition 5.17. Fix 0 ≤ K ≤ L. Assume Setup 5.3 with rank Mk(j) = qk(j),

rank Nk(j) = pk(j)− qk(j) and rank Mk+1(j +Dkr) = pk(j, r) for every k ∈ {K, . . . ,K +

L− 1}, j ∈ Rk and r ∈ R1. If

fK+L =
∑

j∈RK+L−1

∑
r∈R1

ŝK+L(j +DK+L−1r)∗vK+L,j+DK+L−1r,

then for δ ∈ LL,

fK+L =
∑

l∈LK+L

sK+L(l + δ)∗T l+δK+LΦK+L

=
∑
l∈LK

sδK(l)∗TM
Ll+δ

K+L ΦK +
K+L∑
k=K

∑
l∈Lk

tδk(l)
∗TM

K+L−kl+δ
K+L Ψk (5.55)

=
∑
δL∈LL

∑
l∈LK

d−LaK(MLl+δL)∗TM
Ll+δL

K+L ΦK+
K+L∑
k=K

∑
δk∈Lk

∑
l∈LK+L−k

d−kbK+L−k(M
kl+δk)

∗TM
kl+δk

K+L ΨK+L−k

=
∑

l∈LK+L

d−LaK(l)∗T lK+LΦK+
K+L∑
k=K

∑
l∈LK+L

d−kbK+L−k(l)
∗T lK+LΨK+L−k,
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for a given δ ∈ LL. Further, for any k ∈ {K, . . . ,K+L−1}, there exist
[ ̂̃
sδk

′
(j)∗

̂̃
tδk

′
(j)∗

]∗
∈

Ker L̂′k(j)∗, j ∈ Rk, such that for every l ∈ Lk and n ∈ Lk+1,[
sδk
′
(l)− s̃δk

′
(l)
]∗

= a′k(M
K+L−kl + δ)∗, (5.56)[

tδk
′
(l)− t̃δk

′
(l)
]∗

= b′k(M
K+L−kl + δ)∗, (5.57)

a′k+1(MK+L−k−1n+ δ)∗ = [(↑k sδk
′∗

)⊗H ′k+1 + (↑k tδk
′∗

)⊗G′k+1](n) (5.58)

with ŝδk
′
(j) = I ′qk(j)Uk(j)ŝ

δ
k(j), t̂δk

′
(j)=I ′pk(j)−qk(j)Vk(j)t̂

δ
k(j), âk

′(j+Dkν)=I ′qk(j)Uk(j)âk(j+

Dkν) and b̂k
′
(j + Dkν) = I ′pk(j)−qk(j)Vk(j)b̂k(j + Dkν), where ν ∈ RK+L−k and ak and bk

are given as in (5.42).

Proof. Utilizing Proposition 5.11, we are led to

T−δK+LfK+L =
∑

l∈LK+L

sK+L(l)∗T l−δK+LΦK+L =
∑

l∈LK+L

sK+L(l + δ)∗T lK+LΦK+L

=
∑
l∈LK

sδK(l)∗T lKΦK +
K+L∑
k=K

∑
l∈Lk

tδk(l)
∗T lkΨk.

Therefore,

fK+L =
∑

l∈LK+L

sK+L(l + δ)∗T l+δK+LΦK+L

=
∑
l∈LK

sδK(l)∗TM
Ll+δ

K+L ΦK +
K+L∑
k=K

∑
l∈Lk

tδk(l)
∗TM

K+L−kl+δ
K+L Ψk,

which justifies the first two equalities of (5.55). Applying Lemma 3.2 to the above com-

putation gives us

fK+L = f δ1K+L−1 + gδ1K+L−1,

where δ1 = ε1 ∈ L1 and

f δ1K+L−1 =
∑

l∈LK+L−1

aK+L−1(Ml + δ1)∗TMl+δ1
K+L ΦK+L−1,

gδ1K+L−1 =
∑

l∈LK+L−1

bK+L−1(Ml + δ1)∗TMl+δ1
K+L ΨK+L−1.

We show in a similar manner that

f δ1K+L−1 = f δ2K+L−2 + gδ2K+L−2,
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where δ2 = Mε1 + ε2 ∈ L2 for some ε2 ∈ L1 and

f δ2K+L−2 =
∑

l∈LK+L−2

aK+L−2(M2l + δ2)∗TM
2l+δ2

K+L ΦK+L−2,

gδ2K+L−2 =
∑

l∈LK+L−2

bK+L−2(M2l + δ2)∗TM
2l+δ2

K+L ΨK+L−2.

If we sum over the ε, i.e. δ, for each level separately, then we would obtain

fK+L =
∑
ε1∈L1

d−1f δ1K+L−1 +
∑
δ1∈L1

d−1gδ1K+L−1

=
∑
ε1∈L1

d−1[f δ2K+L−2 + gδ2K+L−2] +
∑
δ1∈L1

d−1gδ1K+L−1

=
∑
ε1∈L1

∑
ε2∈L1

d−2[f δ2K+L−2 + gδ2K+L−2] +
∑
δ1∈L1

d−1gδ1K+L−1

=
∑
δ2∈L2

d−2f δ2K+L−2 +
∑
δ2∈L2

d−2gδ2K+L−2 +
∑
δ1∈L1

d−1gδ1K+L−1

=
∑
δL∈LL

d−Lf δLK +
K+L∑
k=K

∑
δk∈Lk

d−kgδkK+L−k,

where δk = Mk−1ε1 + . . .+Mk−kεk for some ε1, . . . , εk ∈ L1 and

f δLK =
∑
l∈LK

aK(MLl + δL)∗TM
Ll+δL

K+L ΦK ,

gδkK+L−k =
∑

l∈LK+L−k

bK+L−k(M
kl + δk)

∗TM
kl+δk

K+L ΨK+L−k.

This shows the penultimate equality of (5.55). Next, Lemma 3.2 shows the last equality

of (5.55). Consequently, we infer from Proposition 5.13, (5.44), (5.45) and (5.46) of

Proposition 5.14 that

sδK
′
(l)− s̃δK

′
(l) =↓K+1 H

′
K+1

K+L⊗
n=K+2

↓n H ′n ⊗ a′K+L(l + δ)

=↓K+1 H
′
K+1

K+L−1⊗
n=K+2

↓n H ′n ⊗ a′K+L−1(Ml + δ)

=↓K+1 H
′
K+1⊗ ↓K+2 H

′
K+2 ⊗ a′K+2(ML−2l + δ) = a′K(MLl + δ),
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tδk
′
(l)− t̃δk

′
(l) =↓k+1 G

′
k+1

K+L⊗
n=k+2

↓n H ′n ⊗ a′K+L(l + δ)

=↓k+1 G
′
k+1

K+L−1⊗
n=k+2

↓n H ′n ⊗ a′K+L−1(Ml + δ)

=↓k+1 G
′
k+1⊗ ↓k+2 H

′
k+2 ⊗ a′k+2(MK+L−k−2l + δ)

=↓k+1 G
′
k+1 ⊗ a′k+1(MK+L−k−1l + δ) = b′k(M

K+L−kl + δ)

and

a′k+1(MK+L−k−1n+ δ)∗ = s′k+1(n+ δ)∗ =
[
(↑k sδk

′∗
)⊗H ′k+1 + (↑k tδk

′∗
)⊗G′k+1

]
(n),

and the above computation proves (5.56), (5.57) and (5.58).

5.5 Time-Frequency Analysis

We shall now look at the simplified 1-dimensional setting of dilation factor M = 2. For

ν ∈ R, let Hν(T) be the Sobolev space of all 2π-periodic tempered distributions f such

that ‖f‖2
Hν(T) :=

∑
n∈Z

(1 +n2)ν
∣∣∣f̂(n)

∣∣∣2 is finite. For ν ≥ 0, the Sobolev seminorm is defined

by |f |2Hν(T) :=
∑
n∈Z

n2ν
∣∣∣f̂(n)

∣∣∣2, where f ∈ Hν(T). For ν ≥ 0, the Sobolev norm and

seminorm satisfy 2min{1−ν,0} ‖f‖2
Hν(T) ≤ ‖f‖

2
L2(T) + |f |2Hν(T) ≤ 2max{1−ν,0} ‖f‖2

Hν(T).

Following [22], for R ≥ 1, the frame approximation operator QR associated with the

restricted periodic affine system XR
2π mentioned in (1.18) derived from a single refinable

function φ0 is defined to be

QR(f) =
∑
l∈Lk

〈f, φ0〉L2(T)φ0 +
R−1∑
k=0

%k∑
m=1

∑
l∈Lk

〈f, T lkψmk 〉L2(T)T
l
kψ

m
k , f ∈ L2(T).

The periodic affine system X2π as defined in (1.15) is said to provide frame approximation

order p if there exist a positive constant C and a positive integer K such that for all

k ≥ K,

‖f −Qk(f)‖L2(T) ≤ 2−kpC |f |Hp(T) , f ∈ Hp(T). (5.59)

Furthermore, the periodic affine system provides spectral frame approximation order if it

provides frame approximation order p for every p > 0.

The concept of vanishing moments for functions on the real line is extended to functions

in L2(T) in [22]. The authors define that Ψk :=
[
ψnk

]%k
n=1
⊂ L2(T) for k ≥ 0 has p vanishing
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moments for some p ≥ 0 if there exist positive constants C and K, independent of k and

j such that

%k∑
m=1

2k
∣∣∣ψ̂mk (j)

∣∣∣2 ≤ C
∣∣2−kj∣∣2p , j ∈ Rk, k ≥ K. (5.60)

Following a more general extension from [22], Ψk ⊂ L2(T) is said to have global vanishing

moments of order p for some p ≥ 0 if there exist positive constants C and K, independent

of k and n such that
%k∑
m=1

2k
∣∣∣ψ̂mk (0)

∣∣∣2 ≤ C2−2kp and

%k∑
m=1

|n|−2p 2k
∣∣∣ψ̂mk (n)

∣∣∣2 ≤ C2−2kp, n ∈ Z\{0}, k ≥ K.(5.61)

We cite the following lemma, which says that in the limiting case, the refinable function

and the wavelets derived from the corresponding MRA must cover the frequency domain

“uniformly”.

Lemma 5.18. [22] For each k ≥ 0, let Φk := φk and Ψk :=
[
ψnk

]%k
n=1

be subsets of L2(T)

satisfying Theorem 3.27 with frame bound 1. Then

2k
∣∣∣φ̂k(n)

∣∣∣2 +
∞∑
r=k

%r∑
m=1

2r
∣∣∣ψ̂mr (n)

∣∣∣2 = 1

for each n ∈ Z.

The next theorem supplies a sufficient condition on the frame approximation order for

smooth functions provided by the tight wavelet frames derived from the periodic UEP.

Theorem 5.19. [22] For each k ≥ 0, let Φk := φk and Ψk :=
[
ψnk

]%k
n=1

be subsets of L2(T)

satisfying Theorem 3.27 with frame bound 1. The tight wavelet frame X2π as defined in

(1.15) provides frame approximation order p as in (5.59) if there exist positive constants

ε, C,K with ε ∈ (0, 2−1] such that for all k ≥ K,

22kp max

{
|j|−2p

(
1− 2k

∣∣∣φ̂k(j)∣∣∣2) : j ∈ (Rk ∩ (−2kε, 2kε])\{0}
}
≤ C. (5.62)

We present the following result that relates frame approximation order and vanishing

moments.

Theorem 5.20. [22] For each k ≥ 0, let Φk := φk and Ψk :=
[
ψnk

]%k
n=1

be subsets of L2(T)

satisfying Theorem 3.27 with frame bound 1. The tight wavelet frame X2π as defined in

(1.15) provides frame approximation order at least p > 0 as in (5.59) if Ψk has p vanishing

moments. Conversely, if the tight wavelet frame X2π provides frame approximation order

p, then Ψk has at least p/2 vanishing moments.
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Next, we point out how sparsity of frame expansion coefficients is influenced by global

vanishing moments.

Theorem 5.21. [22] Let Ψk :=
[
ψnk

]%k
n=1
⊂ L2(T) possess global vanishing moments of

order p > 0 as in (5.61), where C and K are positive constants. Then for any q > p+2−1,

there exists a positive constant C̃ := max{4C, 4C ′, 2C ′′} such that

%k∑
m=1

∣∣〈f, T lkψmk 〉L2(T)

∣∣2 ≤ C̃2−(2p+1)k

(∣∣∣f̂(0)
∣∣∣2 + |f |2Hq(T)

)
, f ∈ Hq(T), k ≥ K, (5.63)

where C ′ := C
∑

n∈Z\{0}
|n|−2(q−p), C ′′ := C sup

{ ∑
n∈Z\{0}

|ω + n|−2(q−p) : ω ∈ [−2−1, 2−1]

}
and l ∈ Lk.

We apply the above results to show that the bandlimited constructions in Chapter 4

have spectral frame approximation order, global vanishing moments of arbitrarily high

order, and sparse representation.

Proposition 5.22. Any bandlimited tight wavelet frame X2π constructed from the MRA

{V k
2π(φk)} with {φk}k≥0 given in Construction 4.1 such that lim infk→∞ 2−kNk,1 > 0 holds

and satisfies Theorem 3.27 with frame bound 1 has spectral frame approximation order.

Hence X2π also has global vanishing moments of arbitrarily high order and (5.63) holds.

Proof. The additional condition of lim infk→∞ 2−kNk,1 > 0 implies that there exist ε ∈
(0, 2−1) and K > 0 such that 2−kNk.1 ≥ ε for every k ≥ K, i.e. Nk,1 ≥ 2kε. Since

for all j ∈ {−Nk,1, . . . , Nk,1}, we have 2k
∣∣∣φ̂k(j)∣∣∣2 = 1, it means that 2k

∣∣∣φ̂k(j)∣∣∣2 = 1 for

all j ∈ Rk ∩ (−2kε, 2kε]. Therefore, for any p > 0, (5.62) holds and by Theorem 5.19,

the tight wavelet frame X2π has frame approximation p, i.e. it possesses spectral frame

approximation order. By Theorem 5.20, it also has p vanishing moments for any p > 0.

By Lemma 5.18, for every k ≥ K, we have

2k
%k∑
m=1

∣∣∣ψ̂mk (n)
∣∣∣2 ≤ 1− 2k

∣∣∣φ̂k(n)
∣∣∣2 ≤ 1

for all n ∈ Z. In particular, 2k
%k∑
m=1

∣∣∣ψ̂mk (0)
∣∣∣2 = 0. Furthermore for n = j + 2kr ∈ Z\Rk,

where j ∈ Rk and r ∈ Z\{0}, since
∣∣2−kj + r

∣∣ ≥ 2−1, it also follows that

2k
%k∑
m=1

∣∣j + 2kr
∣∣−2p

∣∣∣ψ̂mk (j + 2kr)
∣∣∣2 ≤ 2k22p2−2kp

%k∑
m=1

∣∣∣ψ̂mk (j + 2kr)
∣∣∣2 ≤ 22p2−2kp.

Consequently, the tight wavelet frame has global vanishing moments of order p as defined

in (5.61) for any p > 0. Therefore by Theorem 5.21, (5.63) holds.
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Next, we look at the frame approximation order of some time-localized constructions.

For positive integers s, l, we denote

Ps,l(t) :=
l−1∑
κ=0

(
s+ κ− 1

κ

)
tκ =

l−1∑
κ=0

(s+ κ− 1)!

κ!(s− 1)!
tκ, t ∈ R.

The masks of the compactly supported filters for pseudo-splines of type II with order (s, l)

in [19] are given by

As,l(ω) := cos2s(ω/2)Ps,l(sin
2(ω/2)), ω ∈ R, s ≥ 1, l ∈ {1, . . . , s}.

For k ≥ 0, we define ĥk+1 ∈ S(2k+1) by setting

ĥk+1(j) := Ask+1,lk+1
(2π2−(k+1)j), j ∈ Rk, (5.64)

where lk+1 ∈ {1, . . . , sk+1}, limk→∞ sk+1 = ∞,
∞∑
k=1

2−ksk < ∞. Then ĥk+1(0) = 1 and∣∣∣ĥk+1(j)
∣∣∣2 +

∣∣∣ĥk+1(j + 2k)
∣∣∣2 ≤ 1.

It is shown in [22] that the infinite products

ϕ̂k(n) := 2
−k
2

∞∏
r=k+1

ĥr(n), n ∈ Z, k ≥ 0, (5.65)

are well defined and
∣∣1− 2k |ϕ̂k(n)|2

∣∣ ≤ ∞∑
r=k+1

∣∣∣∣1− ∣∣∣ĥr(n)
∣∣∣2∣∣∣∣ for every n ∈ Z. As noted

in [22], this formulation arising from pseudo-splines includes many of the time-localized

refinable functions in L2(T) that are of interest.

Proposition 5.23. The time-localized tight wavelet frame X2π constructed as in Con-

struction 4.22 from the MRA {V k
2π(ϕk)} with {ϕk}k≥0 given in (5.65) such that it satisfies

Theorem 3.27 with frame bound 1 has spectral frame approximation order. Hence X2π

also has global vanishing moments of arbitrarily high order and (5.63) holds.

Proof. It is shown in Lemma 3.3 of [31] that for any p > 0, there exist C,K ≥ 0 such

that for all k ≥ K,

0 ≤ 1− |Ask,lk(ω)|2 ≤ C |ω|2p , ω ∈ [−π, π] .

It follows from (5.64) that for k ≥ K and j ∈ Rk\{0},
∞∑

r=k+1

∣∣∣∣1− ∣∣∣ĥr(j)∣∣∣2∣∣∣∣ ≤ C
∞∑

r=k+1

∣∣2π2−rj
∣∣2p = 2−2kp |j|2p (2π)2pC/(22p − 1),
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i.e. 22kp |j|−2p

[
∞∑

r=k+1

∣∣∣∣1− ∣∣∣ĥr(j)∣∣∣2∣∣∣∣] ≤ (2π)2pC/(22p − 1). Hence (5.62) is satisfied for

any p > 0 with ε := 1
2

and by Theorem 5.19, the tight wavelet frame X2π has frame

approximation order p, i.e. it possesses spectral frame approximation order. Using the

reasoning similar to Proposition 5.22, we conclude that X2π has global vanishing moments

of arbitrarily high order and hence (5.63) holds.

We shall follow the convention as described in [38] to visualize the time-frequency (TF)

representation of a signal. In order to visualize the time-frequency plots of signals using

the decimated wavelet transform and the stationary wavelet transform of the bandlimited

wavelet frames of Section 4.1, we sample the signals to be plotted at the rate of N samples

per unit time on a prescribed time interval, where the sampling rate N = 2K . Next, we

collect the sampled data into a finite sequence. We consider only using the bandlimited

constructions as we intend to utilize the fast Fourier transform in our implementations.

We construct the refinement mask ĥk+1 as in (4.1) from Construction 4.1, i.e.

ĥk+1(j) =



√
2 if j ∈{−Nk,1, . . . , Nk,1},

√
2 cos

[
π
2
β̃1
k

(
|j|
Nk,1
− 1
)]

if
j ∈{−Lk,1, . . . ,−Nk,1 − 1}
∪{Nk,1 + 1, . . . , Lk,1},

0 if j ∈Rk+1\{−Lk,1, . . . , Lk,1}.

Here, we choose the regularized β-function to be

β[4, 4](t) :=
4+4−1∑
j=4

Γ(4 + 4)

Γ(j + 1)Γ(4 + 4− j)
tj(1− t)4+4−1−j,

where the Γ-function is given as Γ(t) =
∫∞

0
xt−1e−xdx.

For the wavelet masks, we shall utilize Constructions 4.10 and 4.12 which will be

chosen appropriately depending on our partitioning of the frequency domain, i.e. for

n ∈ {1, . . . , %k}\{λ0, µ0} with µ0 = λ0 + 1, let

ĝnk+1(j) =



√
2 sin

[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

√
2 if

j ∈{−Nk,n+1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1},

√
2 cos

[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 if
j ∈Rk+1\{−Lk,n+1, . . . ,−Nk,n − 1}
∩Rk+1\{Nk,n + 1, . . . , Lk,n+1}.
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If Nk,µ0 < 2k−1 < Lk,µ0 , for n ∈ {λ0, µ0}, choose

ĝnk+1(j) =



sin
[
π
2
β̃nk

(
|j|
Nk,n
− 1
)]

if
j ∈{−Lk,n, . . . ,−Nk,n − 1}
∪{Nk,n + 1, . . . , Lk,n},

1 if
j ∈{−Nk,n+1, . . . ,−Lk,n}
∪{Lk,n, . . . , Nk,n+1},

cos
[
π
2
β̃n+1
k

(
|j|

Nk,n+1
− 1
)]

if
j ∈{−Lk,n+1, . . . ,−Nk,n+1 − 1}
∪{Nk,n+1 + 1, . . . , Lk,n+1},

0 if
j ∈Rk+1\{−Lk,n+1, . . . ,−Nk,n − 1}
∩Rk+1\{Nk,n + 1, . . . , Lk,n+1},

and

ĝen
k+1(j) = i sgnk+1(j)ĝnk+1(j), ñ ∈ {λ̃0, µ̃0}.

If Lk,λ0 < 2k−1 < Nk,µ0 = Nk,µ0+1 ≤ Lk,µ0 = Lk,µ0+1, for n ∈ {λ0, µ0}, choose

ĝnk+1(j)=



inmod 2(sgnk+1(j))n sin
[
π
2
β̃λ0
k

(
|j|

Nk,λ0
− 1
)]

if
j ∈{−Lk,λ0 , . . . ,−Nk,λ0 − 1}
∪{Nk,λ0 + 1, . . . , Lk,λ0},

inmod 2(sgnk+1(j))n if
j ∈{−Nk,µ0 , . . . ,−Lk,λ0}
∪{Lk,λ0 , . . . , Nk,µ0},

inmod 2(sgnk+1(j))n cos
[
π
2
β̃µ0

k

(
|j|

Nk,µ0
− 1
)]

if
j ∈{−Lk,µ0 , . . . ,−Nk,µ0 − 1}
∪{Nk,µ0 + 1, . . . , Lk,µ0},

0 if
j ∈Rk+1\{−Lk,µ0 , . . . ,−Nk,λ0−1}
∩Rk+1\{Nk,λ0 + 1, . . . , Lk,µ0}.

The stationary wavelet transform is used as in (5.42) in the frequency domain and

it is related to the decimated wavelet transform as in Proposition 5.17. For the deci-

mated wavelet transform, we use the algorithm as given in Proposition 5.10, which is

the frequency domain version of Proposition 5.11. The quasi-affine representation of the

stationary wavelet transform is given as

fK+L =
∑

l∈LK+L

2−LaK(l)∗T lK+LφK+
K+L∑
k=K

∑
l∈LK+L

2−kbK+L−k(l)
∗T lK+LΨK+L−k
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with a′k−1 = (↑K+L
k H ′k)⊗ a′k and b′k−1 = (↑K+L

k G′k)⊗ a′k, which is equivalent to

â′k−1(j)∗ =
∑

l∈LK+L

∑
r∈LK+L

a′k(l − r)∗(↑K+L
k H ′k)(r)

∗e−i2π2−(K+L)lj

=
∑

l∈LK+L

∑
r∈LK

a′k(l − 2K+L−kr)∗H ′k(r)
∗e−i2π2−(K+L)lje−i2π2−krjei2π2−krj

=
∑

l∈LK+L

a′k(l)
∗e−i2π2−(K+L)(l+2K+L−kr)jei2π2−krj

∑
r∈LK

H ′k(r)
∗e−i2π2−krj

= â′k(j)
∗Ĥ ′k(j)

∗,

b̂′k−1(j)∗ = â′k(j)
∗Ĝ′k(j)

∗,

with Ĥ ′k+1(j + 2kr) = 1supp bφk(j)Ĥk+1(j + 2kr)1supp bφk+1
(j + 2kr) and Ĝ′k+1(j + 2kr) =

diag
[
1supp bψmk (j)

]%k
m=1

Ĝk(j + 2kr)1supp bφk+1
(j + 2kr) and Hk ∈ S(2k), Gk ∈ S(2k)%k×1,

ak ∈ S(2K+L) and bk ∈ S(2K+L)%k×1. The decimated wavelet transform used is given as

fk+1 =
∑
l∈Lk+1

[(↑k s∗k)⊗Hk+1(l) + (↑k t∗k)⊗Gk+1(l)]T lk+1φk+1,

with s′k(l)
∗ = s′∗k+1 ⊗H ′∗k+1(2l) and t′k(l)

∗ = s′∗k+1 ⊗G′∗k+1(2l), which is equivalent to

2ŝk
′(j)∗ =

∑
r∈R1

ŝk+1
′(j + 2kr)∗1supp bφk+1

(j + 2kr)Ĥ ′k+1(j + 2kr)∗,

2t̂k
′
(j)∗ =

∑
r∈R1

ŝk+1
′(j + 2kr)∗1supp bφk+1

(j + 2kr)Ĝ′k+1(j + 2kr)∗.

In the above computations, we note that ŝk
′ = 1supp bφk ŝk, t̂k ′ = diag

[
1supp bψmk

]%k
m=1

t̂k,

âk
′(j+2kν) = 1supp bφk(j)âk(j+2kν) and b̂k

′
(j+2kν) = diag

[
1supp bψmk

]%k
m=1

(j)b̂k(j+2kν),

where ν ∈ RK+L−k.

Since our filters are real and they preserve linear phase, it suffices to consider only

positive frequencies and since the magnitude of the antisymmetric band coefficients is the

same as the corresponding symmetric band coefficients in the Fourier domain for [0, π
2
],

we shall utilize only the symmetric band data for our time-frequency plots and normalize

their values by multiplying by two. For the stationary wavelet transform, the time axis

is divided into 2K intervals of constant step length 2π2−K . For the decimated wavelet

transform, the time axis is divided into 2K−1 intervals of step length 2π2−(K−1) and at

the kth level (k < K), the time intervals are collated into partitions with step lengths of

2π2−k and they become larger as k decreases, i.e. the time step is multiplied by 2 each

time. For both transforms, the frequency axis is divided into 2K−1 bands with the angular
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Nyquist frequency π identified with 2K−1. The collation of the frequency bands depends

on the frequency localization of the respective filters.

We consider ĥk+1 and ĝmk+1 to be localized on {0, . . . , Nk,1} and {Lk,m, . . . , Nk,m+1}
respectively for m ∈ {1, . . . , %k} since “most” of the energy of the mask is located in

this band. Let TF s(fK)(l, j) be the time-frequency content of fK at time l ∈ LK and

frequency j ∈ RK using the stationary wavelet transform and let TF d(fK)(l, j) be the

time-frequency content of fK at time l ∈ Lk and frequency j ∈ RK and 0 ≤ k <

K using the decimated wavelet transform. For the former, we assign TF s(fK)(l, j) :=

amk (l) for (l, j) ∈ [2π2−K l, 2π2−K(l + 1)] × [0, π2−KNk,1] and TF s(fK)(l, j) := bmk (l) for

(l, j) ∈ [2π2−K l, 2π2−K(l + 1)]× [π2−KLk,m, π2−KNk,m+1], where 0 ≤ k ≤ K denotes the

decomposition level. In a similar way, for the latter, we assign TF d(fK)(l, j) := smk (l)

for (l, j) ∈ [2π2−kl, 2π2−k(l + 1)] × [0, π2−KNk,1] and TF d(fK)(l, j) := tmk (l) for (l, j) ∈
[2π2−kl, 2π2−k(l + 1)]× [π2−KLk,m, π2−KNk,m+1].

In Figures 5.1 to 5.4, time-frequency representations of the decimated and stationary

wavelet transforms using our bandlimited wavelet frames are compared with those using

decimated and stationary wavelet bases, wavelet packets, short-time Fourier transform,

analytic wavelet transform, Wigner-Ville distribution and Choi-William distribution. Test

signals are two Gabor atoms, two linear chirps, a combination of one linear chirp with

one quadratic chirp and two Gabor atoms, and two hyperbolic chirps. The two Gabor

atoms in Figure 5.1 are given by

f1(t) = 3e−100N−2(t−2−1N)2 cos 16−1πt, f2(t) = 3e−100N−2(t−4−13N)2 cos 4−1πt.

The two linear chirps considered in Figure 5.2 are

f1(t) =
[
(t−N−1)(1− t)

]− 1
2 cos 250π1024−1N−1t2,

f2(t) =
[
(t−N−1)(1− t)

]− 1
2
[
cos 100π1024−1t+ cos 250π1024−1N−1t2

]
.

In Figure 5.3, the signal analyzed comprises of one linear chirp, one quadratic chirp and

two Gabor atoms given by

f1(t) = F (t) cos 100π21024−1N−1t2, f2(t) = F (t) cos 30π31024−1N−2(N − t)3,

f3(t) = F (t)e−1600N−11024−1(t−2−1N)2 cos 50π1024−1t,

f4(t) = F (t)e−1600N−11024−1(t−8−17N)2 cos 350π1024−1t,
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where the envelope

F (t) =


1 + sin

[
π (0.125−N−1)

−1
(t−N−1)− 2−1π

]
if t ∈ [N−1, 0.125],

2 if t ∈ [0.125, 0.875+N−1],

1 + sin
[
π (0.125−N−1)

−1
(1− t)− 2−1π

]
if t ∈ [0.875 +N−1, 1],

0 otherwise.

Finally, the two hyperbolic chirps in Figure 5.4 are

f1(t) = E(t)1[0.1,0.75−N−1]

[
sin 15Nπ1024−1(0.8− t)−1

]
1(0.1,0.68),

f2(t) = E(t)1[0.1,0.75−N−1]

[
sin 5Nπ1024−1(0.8− t)−1

]
1(0.1,0.75),

where the envelope

E(t)=


1 + sin

[
π (0.1625−N−1)

−1
(t−N−1)− 2−1π

]
if t ∈ [N−1, 0.1625],

2 if t ∈ [0.1625, 0.4875+N−1],

1 + sin
[
π (0.1625−N−1)

−1
(0.65− t)− 2−1π

]
if t ∈ [0.4875 +N−1, 0.65],

0 otherwise.

The time-frequency representations of the Gabor atoms, linear chirps, multichirp sig-

nals computed using the WAVELAB toolbox (http://www-stat.stanford.edu/˜wavelab/)

are shown in Figures 5.1, 5.2, 5.3 (left to right order). The transforms using wavelet

bases are unable to resolve the three sets of signals properly due to poor frequency res-

olutions. This is in particular more severe at high frequencies and this also occurs with

the analytic wavelet transform. Our bandlimited wavelet frame transforms, in particu-

lar the stationary version, resolve the chirps and Gabor atoms as well as the continuous

short-time Fourier transform and do not create complex interference patterns present in

the representations using the Wigner-Ville and Choi-William distributions. Our trans-

forms also preserve most of the features of the signals unlike that of the wavelet packet

transform. This is due to the choice of partitioning the frequency domain into subbands

of the same bandwidth by setting the number of bands noBands = 32, the bandwidth

∆ω = samplesize/(2× noBands), Lk,m = m∆ω and Nk,m = Lk,m− 15 for m = 1, . . . , %k+1

where %k = noBands.

Our bandlimited wavelet frame transforms perform fairly well for the hyperbolic chirps

as shown in Figure 5.4. The analytic wavelet transform performs much better for the

hyperbolic chirps due to its continuous nature even though the choice of the partitioning

of the frequency domain in our transforms behave like that of the analytic wavelet trans-

form. However, unlike the continuous transforms, the inverse of our transforms are easily

computed by our wavelet algorithms and are not computationally intensive.
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Figure 5.1: Gabor atoms signal representations using (a) Decimated Wavelet Basis Trans-

form, (b) Stationary Wavelet Basis Transform, (c) Decimated Wavelet Frame Transform,

(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time

Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)

Choi-William Distribution.
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Figure 5.2: Linear chirps signal representations using (a) Decimated Wavelet Basis Trans-

form, (b) Stationary Wavelet Basis Transform, (c) Decimated Wavelet Frame Transform,

(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time

Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)

Choi-William Distribution.
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Figure 5.3: Multichirp signal representations using (a) Decimated Wavelet Basis Trans-

form, (b) Stationary Wavelet Basis Transform, (c) Decimated Wavelet Frame Transform,

(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time

Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)

Choi-William Distribution.
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Figure 5.4: Hyperbolic chirps signal representations using (a) Decimated Wavelet Ba-

sis Transform, (b) Stationary Wavelet Basis Transform, (c) Decimated Wavelet Frame

Transform, (d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f)

Short-Time Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distri-

bution, (i) Choi-William Distribution.
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We remark that in all the representations, the stationary version of our transforms per-

forms better than the decimated version by improving the time resolution with translation

invariant sampling. The good time-frequency representations of the different signals in

Figures 5.1 to 5.4 also demonstrate that our transforms incorporate the strengths of both

the wavelet transform and the short-time Fourier transform.

We conclude the thesis by describing the partitioning of the frequency domain for

our bandlimited wavelet frame transforms as an algorithm below. Ideally, we would

keep ∆ω/ω as an invariant so that our transform approximates the analytic wavelet

transform. Due to the discretized nature of our transforms, we use the recurrence formula

∆ω4m/ω4m = ∆ω4m−4/(ω4m−4−∆ω4m−4) with ω4m−4 = ω4m−∆ω4m/2 and we use a fixed

∆ω = 16 when ω ≤ 32.

(1) Set ∆ω = 64, noBands = 4, ω = samplesize/2 + b∆ω/2c, m = %k+1.

(2) While ω > 32 and ∆ω > 32, repeat the following steps:

Set γ = ω − b∆ω/2c, ∆ω = bγ∆ω/(ω + ∆ω)c, ω = γ.

For i = 1 to noBands, set Lk,m = ω, Nk,m = Lk,m−b∆ω/4c, ω = ω−∆ω, m = m−1.

(3) Set ∆ω = 16. While Nk,m ≥ 4, repeat the following steps:

Set Lk,m = Lk,m+1 −∆ω, Nk,m = Nk,m+1 −∆ω, m = m− 1.
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[9] C.K. Chui, X. Shi, J. Stöckler, Affine frames, quasi-affine frames, and their duals,

Adv. Comput. Math. 8 (1998) 1–17.

[10] C.K. Chui, J. Wang, On compactly supported spline wavelets and a duality principle,

Trans. Amer. Math. Soc. 330 (1992) 903–915.

[11] A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported

wavelets, Comm. Pure Appl. Math. 45 (1992) 485–560.

147



Bibliography 148

[12] R.R. Coifman, D.L. Donoho, Translation-invariant de-noising, Lect. Notes. Statist.

103 (1995) 125–150.

[13] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure

Appl. Math. 41 (1988) 909–996.

[14] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[15] I. Daubechies, B. Han, Pairs of dual wavelet frames from any two refinable functions,

Constr. Approx. 20 (2004) 325–352.

[16] I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of

wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1–46.

[17] S. Dekel, D. Leviatan, Nonstationary wavelets, Wavelet analysis (Hong Kong, 2001),

Ser. Anal., 1, World Sci. Publishing, River Edge, NJ, 2002 81–99.

[18] S. Dekel, D. Leviatan, Wavelet decompositions of nonrefinable shift invariant spaces,

Appl. Comput. Harmon. Anal. 12 (2002) 230–258.

[19] B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon.

Anal. 22 (2007) 78–104.

[20] G.C. Donovan, J.S. Geronimo, D.P. Hardin, Intertwining multiresolution analyses

and the construction of piecewise-polynomial wavelets, SIAM J. Math. Anal. 27

(1996) 1791–1815.

[21] J.S. Geronimo, D.P. Hardin, P.R. Massopust, Fractal functions and wavelet expan-

sions based on several scaling functions, J. Approx. Theory 78 (1994) 373–401.

[22] S.S. Goh, B. Han, Z. Shen, Tight periodic wavelet frames and approximation orders,

preprint, 2009.

[23] S.S. Goh, Z.Y. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames,

Appl. Comput. Harmon. Anal. 20 (2006) 411–421.

[24] S.S. Goh, K.M. Teo, Wavelet frames and shift-invariant subspaces of periodic func-

tions, Appl. Comput. Harmon. Anal. 20 (2006) 326–344.

[25] S.S. Goh, K.M. Teo, Extension principles for tight wavelet frames of periodic func-

tions, Appl. Comput. Harmon. Anal. 25 (2008), 168–186.



Bibliography 149
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