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Summary

Symmetric or antisymmetric compactly supported wavelets are very much desirable in
various applications, since they preserve linear phase properties and also allow symmetric
boundary conditions in wavelet algorithms which normally perform better. However,
there does not exist any real-valued symmetric or antisymmetric compactly supported
orthonormal wavelet with dyadic dilation except for the Haar wavelet. We resolve the
problem here by relaxing the orthogonality and non-redundancy condition. At the other
end of the spectrum lies the question of whether redundancy could be exploited fully so
that localized information at distinct scales or frequencies could be fully captured by the
wavelet system. This question is partially answered here in the setting of periodic wavelets
using time-localized wavelet frames. In addition, a completely affirmative solution is
obtained here in the setting of periodic wavelets using bandlimited wavelet frames that
resemble Shannon and Meyer wavelets (see [38]) and possess the frequency segmentation
features of wavelet packets (see [46]). Here, we have managed to combine translation and
modulation operations into a multiresolution analysis structure, thereby allowing for fast
wavelet algorithms to be utilized in applications.

In the first section of Chapter 1, we introduce the concept of frames and briefly re-
view the general properties of frames and the frame operator. In the second section, we
introduce the affine system X (), the shift-invariant quasi-affine system X3 (¥) at level
K and the concept of multiresolution analysis and their respective periodic equivalents.
In the third section we present an overview of the results found in this thesis.

The approach in Chapter 2 (published in [23]) is developed under the most general
setting of L?(R*). We begin in Section 2.1 by showing that both the frame property and
frame bounds of affine systems are preserved under the symmetrization process. In Section
2.2, we consider the case when the original wavelets are obtainable from a multiresolution
analysis (MRA), i.e. the setting of framelets. We prove that given an MRA-based tight
frame system, a symmetric and antisymmetric tight frame system can be obtained from a,

but possibly different, MRA generated by symmetric or antisymmetric refinable functions.
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When the original MRA is generated by a symmetric refinable function, the symmetric
and antisymmetric tight frame system is obtained from the same MRA. This enables us
to convert the systematic construction of spline tight framelets of [16] to a systematic
construction of symmetric and antisymmetric spline tight framelets with given orders of
smoothness and vanishing moments. Further, framelets constructed via the oblique or
unitary extension principle are also considered in Section 2.2. Finally, in Section 2.3, we
illustrate with examples the constructions given by our method. We also discuss practical
issues related to minimizing the supports of the resulting refinable functions and wavelets
as well as improving their spreads in the time domain.

In the first section of Chapter 3, we briefly review the coset representation of lattices
and we show that the affine system X (V) is a frame for L?(R®) if and only if the quasi-
affine system X% () is also a frame for L?(R®) with the same frame bounds. Next, we
prove certain elementary results concerning the frame multiresolution analysis (FMRA),
which is an MRA with uniform frame bounds.

In the second section which is on L?(T*), we formulate the polyphase space of har-
monics. We show that if the periodic affine system Xo, is a frame for L?(T*), then the
periodic quasi-affine system XJ_ - at level K is a frame for L*(T*). Further, this implies
that X5, is a frame for all the polyphase space of harmonics. We also show analogous
results for the restricted periodic affine system X1 and the restricted periodic quasi-affine
system Xg;fK. In addition, we review certain fundamental results from [24] concerning
periodic MRAs. Then in Section 3.3, we review periodic extension principles from [25]
for tight wavelet frames and generalize these principles under unitary transformations.

In the last section of Chapter 3, we establish the connection between Euclidean space
wavelets and periodic wavelets through the Poisson Summation formula. Here we focus on
obtaining results that relate shift-invariant spaces of L?(R*) with periodized shift-invariant
spaces of L2(T?) constructed from uniform frequency samples of functions from the former.
We show that frame properties of shift-invariant spaces of the former are carried over to
the periodized systems of the latter. We also show the correspondence of multiresolution
properties, in particular that of FMRAs for the two systems. We review the construction
of periodic wavelets from periodic FMRAs and show that such constructions could be
used for the Euclidean setting. In particular, we could characterize the existence of
semi-orthogonal tight wavelet frames for the Euclidean space setting, generalizing the
characterization result in [39] to FMRAs constructed from multiple refinable functions.
We end the chapter with the connection of the affine system in L?(R?®) and the periodic

affine system in L?*(T*®) using extension principles.



In Chapter 4, we construct periodic bandlimited wavelet systems and periodic time-
localized wavelet systems with the aim of achieving a flexible time-frequency representa-
tion that could also emulate the short-time Fourier transform, i.e. inclusion of modulation
information into an MRA structure. The main approach used here is to add additional
number of wavelet functions that captures the desired modulation information to the
wavelet system. The bandlimited wavelet systems constructed in Section 4.1 are generic
and allows for a flexible partitioning of the time-frequency plane while the time-localized
wavelet systems of Section 4.2 are constructed from modifying and enlarging existing
time-localized orthonormal wavelet bases or tight wavelet frames while retaining most of
their original properties such as approximation orders and compact support.

The bandlimited wavelet systems are constructed from either Shannon or Meyer kinds
of refinable functions except that we allow freedom of choice on their bandwidths. The
only requirement in the design of the wavelet masks is that they must satisfy the minimum
energy tight frame condition of the periodic unitary extension principle (UEP), i.e. the
perfect reconstruction equation and the anti-aliasing equation.

We begin with a general construction of complex wavelets where we incrementally
increase the number of wavelet masks until the entire spectrum of the multiresolution
analysis is covered. The wavelet masks share the decay properties of Shannon or Meyer
wavelet masks. Some degrees of overlaps in the masks are unavoidable if we are to
allow for their smooth decay in the frequency domain. To achieve real and symmetric
(antisymmetric) properties, the masks are designed to be symmetric (antisymmetric) in
the frequency domain and some mild restrictions on the bandwidths of some of the masks
are imposed so that the anti-aliasing condition could be satisfied. We cancel out aliasing
chiefly by using corresponding pairs of symmetric and antisymmetric wavelet masks at
frequencies where the anti-aliasing condition could not be satisfied by default and this
usually occurs at the middle bands.

The methods used in the construction of time-localized wavelet systems generally
involves manipulation of the masks of existing orthonormal wavelet bases or tight wavelet
frames so that the enlarged and modified wavelet system still satisfies the minimum energy
tight frame condition. A direct and naive construction by the diagonal extension of
the original wavelet masks with modulated masks allows for only a fixed and limited
modulation range and it requires the addition of more refinable functions to the MRA.

We remedy this by considering that the equations of the periodic UEP are modulation
invariant and adding the modulated versions of these equations to the original equations,

thereby expanding the wavelet system without changing the MRA. In the event that
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symmetry (antisymmetry) is absent from the original masks, symmetric (antisymmetric)
properties could also be added by means of reflection in the frequency domain and applying
unitary transformations to the masks. The latter comes at the cost of using twice the
number of masks and using a vector MRA. The modulation range of these constructions
is required to be bounded in order for the wavelet system to be a tight frame.

We remedy the problem of having a bounded modulation range by splitting some of
the wavelet subbands into “packets” using a different set of masks. This idea general-
izes orthogonal wavelet representation by requiring the “packetized” masks to satisfy the
perfect reconstruction equation, i.e. the energy of the packetized masks must satisfy a
sum of constant norm. The frame approximation order is preserved as the MRA is un-
changed and we could choose the packetized masks to be modulated versions of some
existing wavelet masks such as that of the Haar system. The representation is therefore
computationally efficient since the desired representation of the signal could be obtained
adaptively and almost directly.

In Chapter 5, we study the uniqueness of representation by wavelet frames for L?(T*)
and derive decomposition and reconstruction algorithms for the coefficients of the repre-
sentation. We also study the stationary wavelet transform and its relation to the periodic
quasi-affine system and we analyze the time-frequency properties of some Gabor atoms
and chirp signals using our generic bandlimited wavelet systems.

In Section 5.1, we establish the uniqueness of representation by wavelet frames using
the wavelet expansion in the frequency domain by polyphase harmonics of wavelets. Es-
sentially, we diagonalize the Gramians of these polyphase harmonics by applying unitary
transformations to the wavelet coefficients and the polyphase harmonics. Using these
uniqueness results we derive the reconstruction algorithm.

In Section 5.2, we assume that the multiresolution subspaces and wavelet subspaces
are orthogonal, i.e. we consider the semi-orthogonal setting of FMRA wavelets. We
show that we could represent polyphase harmonics of a finer multiresolution subspace by
polyphase harmonics of a coarser multiresolution subspace and its corresponding wavelet
subspace using decomposition masks. Next, we derive decomposition algorithms using
these masks and establish sufficient conditions for perfect reconstruction.

In Section 5.3, we consider the nonorthogonal setting of MRA wavelets, i.e. we do not
assume the sum of multiresolution subspaces and wavelet subspaces as a direct sum. We
derive the decomposition algorithms using the minimum energy tight frame condition of
the periodic UEP. Here we find that the conjugate transpose of the reconstruction masks

play the role of decomposition masks.
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In Section 5.4, we study the derivation of the stationary wavelet transform by consider-
ing the time domain version of our algorithms. We verify the translation invariant nature
of the transform by showing that the transform includes all the coefficients of various ver-
sions of the decimated wavelet transform. We also derive the quasi-affine representation
of the wavelet expansion based on the stationary wavelet transform.

In Section 5.5, we show that the collection of generic bandlimited refinable functions
constructed in Section 4.1 possesses spectral frame approximation order if the multireso-
lution subspaces grow sufficiently fast, and that the bandlimited wavelet systems derived
from them based on the periodic UEP have global vanishing moments of arbitrarily high
order. We also review an example of compactly supported pseudo-splines, which when pe-
riodized, also provide spectral frame approximation order and global vanishing moments
of arbitrarily high order. We conclude the thesis by explaining the process of plotting the
time-frequency representations of some Gabor atoms and chirp signals using the trans-
forms based on our bandlimited wavelet systems. These time-frequency representations
demonstrate that the transforms designed successfully incorporate strengths of both the

wavelet transforms and the short-time Fourier transform.
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Chapter 1
Introduction

In modern signal processing, digital samples of signals are often used to represent or
reconstruct the signals. Therefore, it is practical to expect that if the samples are “close”
to each other, the signals should also be “close” to each other and vice versa. This is
important so that when some terms in the representation of the signal in terms of its
samples are neglected, we can be sure that the reconstructed signal will not differ much
from the original signal. Such requirements are best understood in the context of frames,

where the coefficients of a frame expansion replace the role of the samples of the signals.

1.1 Frames of Hilbert Spaces

A countable system X in a separable Hilbert space H is a frame for H if there exist

constants A, B > 0 such that for every f € 'H,

Al < D190 < BlIFIlze - (1.1)
geX

A frame is a special case of a Bessel system, in which only the right inequality of (1.1) is
required to hold for every f € H. The constants A and B are lower and upper bounds of
the frame. The supremum of A and the infimum of B for (1.1) to hold are called frame
bounds. The elements of a frame must satisfy ||g|,, < V/B. A frame X is said to be
tight if we may take A = B. A tight frame with bound 1 is sometimes referred to as a
normalized tight frame in the literature, see for instance [32]. A frame is a Riesz basis if
every f € H could be represented uniquely by elements of the frame. A tight frame X
for H becomes an orthonormal basis when all the vectors in X have their norms equal to
1.
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Let [(Z*) be the space of all complex-valued square-summable sequences on Z° en-

dowed with the standard inner product (a,b)izs) := >_ a(n)b(n) and norm ||-2(z.) =
nezs

(-, ) l% z5): For our purposes in the construction of multiresolution analyses and wavelets,
we shall review the following standard properties of frames which could be found in the
books [6], [14] and [26].

Adding the zero element to a frame does not change the frame condition (1.1). A
sequence {f,} of vectors in a Hilbert space H is a frame for H if and only if there exists

a positive constant C' such that, for every h € H, 3 |(h, f)x|* is finite and there exists
nez
a sequence a = {a,} € [*(Z) such that h = >_ a,f, in H and lallzzy < Cllhllyy, ie.
nez
the closure of the span of {f,} must be H. Let {f,} be a frame for H with frame

bounds A and B. For any sequence a = {a,} € [*(Z), h := Y. a,f, converges in ‘H and
nez

||h||§{ <B ||a||l22(Z)‘
In a Hilbert space H, the frame operator S : H — H of a frame {f,} for H is defined
for each f € ‘H by

Sf=> f, fadrfn in H. (1.2)

nez

The frame operator S is a positive operator satisfying Al < S < BI, where A and B are
frame bounds, i.e. HS‘IH;{l = A and ||S]|,;, = B, and [ is the identity mapping on H.
Therefore, the frame operator S is bounded and continuous and is an invertible operator
satisfying B~ < S7! < A7'I. For each f € H, the element f can be decomposed into

F=Y (58 fasdn =D _(fs FadrS ™ fu in H. (1.3)
nez nez
The sequence {S™!f,} is also a frame with frame operator S~! and frame bounds B!
and A~! and is known as the canonical dual frame. In particular the canonical dual of a
tight frame is {A™'f,}. The formula (1.3) suggests that we can reconstruct f from the
sequences {(f, fn)} and {(f,S7'f,)}. The frame operator S commutes with all unitary
operators T that are permutations on { f,, }mez-
If {f,.} is a frame but not a basis, then there exist nonzero sequences {a,} € [*(Z) such

that > a,f, = 0. Therefore f = > [(f,S7'f.)x + an] f can be represented in many
nez nez

different ways by the frame elements. During a signal transmission process, suppose that
the frame coefficients {(f, S™!f,)»} of the signal are transmitted and are perturbated
into {(f, S f.)2 + bn} by noise. There exists this possibility that parts of the noise per-

turbation might sum to zero and cancel out. This never occurs if {f,,} is an orthonormal
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basis since || 3 bnfu|| = [bll;2(z), where b= {b,}nez, i.e. additional perturbations make
neL H

the reconstruction worse. As in information theory, there is a tradeoff between signal size

and error reduction using the redundancy of a frame.

The preference for using the canonical dual frame in reconstruction could be seen in
the following way. Suppose that {f,} is a frame for a subspace V' of the Hilbert space H.
Then the orthogonal projection of H onto V is given by

Pf="(f, 5 fu)afn i H,

nez

i.e. the coefficients {(f, S™!f,)#} have minimal /2>-norm among all sequences {a, } € I*(Z)
such that f = > a,fn.

nez
Frames possess better stability properties under the application of operators when

compared to bases. If {e,} is a basis, then only bounded bijective operators U could
be applied to preserve the basis property, i.e. ensure that {Ue,} remains a basis. In
contrast, the application of bounded surjective operators will preserve the frame property.
The surjective property could be extended to any operator with closed range property if
we only require the transformed collection to be a frame for a smaller subspace of the
original space. For example, if {f,} is a frame for H and {g,} is a sequence in H such
that g, = f, except for a finite set of n € Z, then {g,} is a frame for its closed linear
span.

We briefly describe an approach to determine all frames for H as given in [1]. Given
any two frames {f,} and {g,,} for H, the bi-infinite matrix U with (m,n)-th entry given
bY Umn = (gm, S~ fn)x defines a bounded operator on [*(Z). Given a frame {f,} and
a bi-infinite matrix U = {u,,,} that defines a bounded operator on [*(Z), the sequence
{hm} defined by h,, = > tmnfn is well defined, in particular {h,,} is a frame for H if

nel

and only if there exists a constant C' > 0 such that for every f € H, S |(f, hp)n|* >
mez

C >, fn>H\2. This illustrates the possibility of using appropriate transformations to
nez
obtain new frames from existing frames, which is one of the themes of our thesis.

Riesz bases for H are characterized as collections {Ue,, } where {e,} is an orthonormal
basis for H and U : ‘H — H is a bounded and invertible operator. In a similar way, frames
for H are exactly the collections {Ue,} where {e,} is an orthonormal basis for H and
U :H +— H is a bounded and surjective operator.

The development of frames arises naturally from applications in time-frequency analy-

sis. Continuous time-frequency representations of signals based on the short-time Fourier
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transform and the continuous wavelet transform are helpful from the theoretical perspec-
tives of time-frequency analysis though not always useful for practical applications. The
discretization of these representations by sampling operations lead to non-orthogonal se-
ries expansions in general. The collection of time-frequency atoms used to represent the
signal may not form a Riesz basis and in the event they do, they may have comparably
much poorer time-frequency localization as in the case of the Gabor system, rendering
them not utilizable in time-frequency analysis. We shall be studying the construction
of wavelet frames with useful properties such as symmetry, periodicity and good time-

frequency localization in this thesis.

1.2 Affine Systems and Multiresolution Analysis

Let L?(R®) be the space of all complex-valued square-integrable functions on the s-
dimensional Euclidean space R®* endowed with the normalized inner product (f,g) :=
(2m)7° [ f(t)g()dt and norm ||-| := (,-)2. The Fourier transform f of a function
f in LY(R®), the space of all complex-valued integrable functions on R?, is defined as
f\(w) = (2m)7° [o. f(t)e7*dt, and is extended in the standard manner to a unitary
operator F on L?(RR?).

Let U be a finite ordered subset of L*(R®). We use ¥ to denote both a set and a

column vector. Following [44], we define the affine system X (V) generated by ¥ to be
X(U) = {d2ELp(M*) :p € U1 € Z° &k € 7}, (1.4)
where EL : L*(R®) — L*(R?) is the shift operator given by
By : fr f(— MM,

with M being a s x s invertible matrix with integer entries such that M is expansive, i.e.
all the eigenvalues of M are greater than 1, and d := |det M|. An affine system that forms
a frame for L?(R?®) is known as a wavelet frame. For a wavelet frame, the functions ¢ € ¥
in (1.4) are known as mother wavelets or simply wavelets. As the affine system X (V)
comprises shifts of dilates of mother wavelets ) € U, it is sometimes called a stationary
wavelet frame.

For a fixed K > 0, the Z* shift-invariant truncated-affine system X (V) of an affine
system X (V) is defined to be

Xi (V) := E({d2 ELp(M®) cp € U1 € Ly, k > K}), (1.5)
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where E(A) := Ey(A) is the collection of all integer Z° shift operations applied to A with
L}, denoting a full collection of coset representatives of Z5/M*Z.

The M~K7Z* shift-invariant quasi-affine system X%.(¥) of an affine system X (¥) at
level K is defined to be

X?((‘I’) = EK(AK> (1-6)
which consists of all the M %75 shifts of
Ag = {d" 2 (M) € Uk < KYU{d2ELp(M*) :9p € U1 € Ly_ie k> K}, (1.7)

Unlike the quasi-affine system X (V) := XJ(¥) introduced in [44], the affine system X (V)
is not invariant under any lattice shifts since only the M ~*Z* shifts of 1)(M*-) are included
in X (V) and these shifts become sparser as k becomes smaller. The smallest closed linear
subspace VE(Ag) of L?(R®) that contains Fx(Ag) is the M~XZ* shift-invariant space
generated by Ag, i.e.

V*(Ak) := span Eg (Ag).

Let ® C L*(R®) be a finite set and let V(®) be the closed shift-invariant linear subspace
generated by @, i.e. V(®) =span{E'¢: ¢ € ®,1 € Z°} (where E' := E}). Following [4],
the cardinality of a minimal generating set ® for V(®) is called the length of V' which is
denoted by len V. The space V(®) is said to be finitely generated shift-invariant (FSI) if
len V' is finite and is said to be principal shift-invariant (PSI) space if len V' = 1.

Next, we recall some fundamental results on stationary and nonstationary wavelet
frames derived from a multiresolution analysis (MRA) of L*(R®), i.e. framelets. General-
izing [3], an MRA of L?(IR?) is a sequence of closed subspaces {V*(®;)} generated by finite
ordered subsets ®; of L2(IR?) with |®;| = p for all k such that (i) V*(®) C VF(D;,,),
(ii) Upez V*(®y) is dense in L*(R*).

In the event that there exist A, B > 0 such that Ey(®;) is a frame for V*(®;) with
uniform bounds A and B for every k € Z, then the MRA is known as a frame multiresolu-
tion analysis (FMRA) with bounds A and B. If for every k € Z, VF(®y) := {d2 f(M*.) :
f € V9dy)}, the MRA or FMRA is known as a stationary MRA or FMRA respectively
and is denoted by {V*(®)}, where ® := ®,. For this stationary case, the above notions of
MRA and FMRA are introduced in [3] and [2] respectively. In such a case, we also have
(iil) Nyez V*(®) = {0} since @ is a finite subset of L*(R*) (see Corollary 4.14 of [3] and
Theorem 2.2 and Remark 2.6 of [36]).

Condition (i) requires the vector @y, to be refinable for every k € Z, i.e.

O = Hyp1Ppp, (1.8)
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where Hyyi is a 2m(MT)kH1Z5-periodic matrix-valued measurable function known as the
refinement mask. The vector @ is known as a refinable vector and (1.8) is the refinement

equation. For a stationary MRA, the refinement equation simplifies to
d(MT) = HO, (1.9)

where H is a 2nZ°-periodic matrix-valued measurable function.
~ When @, satisfies (i) for every k € Z, Condition (ii) requires (o7 (N4, ca, 1w € R* :
or(w) = 0} to be a set of measure zero (see Theorem 4.3 of [3] and Theorem 2.1 and
Remark 2.6 of [36]), which always holds in the stationary case if there exists ¢ € ® such
that ¢ is compactly supported (see [35]). This means that the entire frequency domain is
fully “covered” by the MRA.

Suppose that {V¥(®,)} is an MRA of L?(R®). Let ¥, be a finite ordered subset of
VEFL(®;, ). Then there exists a 2m(M7T)*1Z5periodic matrix-valued measurable func-

tion @k’-i-l known as the wavelet mask such that
Uy = Grp1 Pppr. (1.10)

Equation (1.10) defines a vector of pre-wavelets ¥y and is called the wavelet equation. For
a stationary MRA {V*(®)} of L?(R?®) with ¥ being a finite ordered subset of V1(®), the

wavelet equation (see [16]) simplifies to
U(MT) =G, (1.11)

where the wavelet mask G is a 2nZ°-periodic matrix-valued measurable function.
We define the combined MRA mask to be the |®, U Ug| x |®x| matrix

H,

G

~

Ly = , (1.12)

and in the event of ®; being a singleton set, i.e. ® := {1}, we denote /f;k = ﬁk

Under the assumption that the entries of Ek lie in L>°(T*), the space of all essentially
bounded complex-valued functions on the s-dimensional circle group T*® := R*/277Z*, we
define the Fourier coefficients of the masks }AIk and (/J\k, which we shall term simply as
lowpass filter Hy and highpass filter Gy, by

Hy(w) =Y Hy(n)e™, Giw) =Y Gi(n)e ™.

nezs nezs
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We shall generally use the notations ﬁk, Jk, hr and g in place of ﬁk, @k, H; and Gy,
respectively when Hy(n) and Gi(n), n € Z°, are scalars. The refinement and wavelet

equations (1.8) and (1.10) are equivalent to

P, = Z Hy1(n)®@pa (- —n), ¥y = Z Grg1(n)Ppqr (- — 1), (1.13)

nezs nezs
while the refinement and wavelet equations (1.9) and (1.11) for the stationary case are
equivalent to
= [det M| > H(n)®(M - —n), ¥=|det M|> G(n)®(M - —n). (1.14)
nezs nezs

Defining ¥y, by (1.10), if the system
Xp = {El :hp € Uy 1 € Z° k € 7}

forms a frame for L*(R®), then X is known as a wavelet frame. Comparing with (1.4),
this is a more general formulation as the functions 1, € Uy need not be dilates of functions
in some basic set ¥, i.e. it includes both stationary and nonstationary cases.

The notions of MRAs and wavelets also have counterparts for 27-periodic functions
(see for instance [24] and [25]). Let L?(T*) be the space of all complex-valued square-
integrable functions on T endowed with the normalized inner product (f,g)p2(rs) =

=5 foe S g(t)dt and norm |- lp2esy = -)%Q(TS). Reusing notations, we define the
Fourler Coefﬁments {F(n)}nezs of a function f € L*(T*) as f(n) = (f, &™) p2(ps). We
define the periodic affine system Xa, to be

Xor = {0 : do € ®o} U{Tiahy : oy € Wy, 1 € Ly, k > 0}, (1.15)
where T} : L?(T®) — L*(T®) is the shift operator given by
T} : frs f(- =20 M "),

A periodic affine system that forms a frame for L?(T*) is known as a periodic wavelet
frame. For a periodic wavelet frame, the functions ¢ € ¥y in (1.15) are known as
wavelets. Due to the periodic nature of functions in L?(T*), affine systems in L*(T*®) are
generally nonstationary, i.e. different wavelets for different levels k, which will be the
context that we are dealing with here.

For a fixed K > 0, we introduce the notion of 27 M ~%7Z* shift-invariant periodic quasi-

affine system X3 - Of an affine system Xy, at level K as

Xng = TK(QK) (116)
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which consists of all the 27 M ~X7Z# shifts of

Qp == {d 2dy:do€ Pl U{d> 2y by €Uy 0< k< K} U
{Tib Yy € Uil € Lo, k> K} (1.17)

The smallest closed linear subspace Vi (Q) of L?(T®) that contains Tk(Qf) is the

2w M K7 shift-invariant space generated by Qg, i.e.
%I;(QK) = Span TK(QK)

The cardinality of a smallest generating set for VX is called the length of VX which is

denoted by len V,E. The space V£ is said to be finitely generated shift-invariant (FSI) if

len VX is finite and is said to be a principal shift-invariant (PSI) space if len VX = 1.
For R > K > 0, we shall also define the restricted periodic affine system Xﬁr to be

X2 =y : o € O} U{Tiby, 1 by € Uyl € L1,,0 < k < R} (1.18)

and the 27 M ~5Z# shift-invariant restricted periodic quasi-affine system XQq;TRK of an affine

system Xo, at level K < R to be
X4 = Ty () (1.19)
which consists of all the 27 M ~57Z# shifts of

OF = {d2¢y: o€ Pl U{d> 2y hp € Ui 0< k< K}U
{Tiy - bp € Uyl € Ly, K < k < R). (1.20)

The notions of the restricted periodic affine and quasi-affine systems are useful in the
context of applications where signals are usually periodic and are of finite dimensions.

Let S(M")™** denote the class of M*-periodic sequences of r x p complex-valued ma-
trices, i.e. Hy(l + M¥p) = H(l) for all H, € S(M*)™** with I,p € Z°*. We shall also
denote S(M*) := S(M*)1*1,

A periodic MRA {VE (®,)} of L?(T?) is a sequence of closed subspaces generated by
finite ordered subsets ®;, of L?(T*) with |®;| = p such that (i) Vi (®;) C VE (@) and
(i1) Upso Vo (®r) is dense in L*(T*). In the event that there exist A, B > 0 such that
for every k > 0, Tj,(®x) forms a frame for V} (®;) with uniform bounds A and B, the
periodic MRA is known as a periodic FMRA with bounds A and B.

Condition (i) requires the vector ®; to be refinable for every k > 0, i.e. there exists

Hi1 € S((MT)H1)2% known as the periodic refinement mask such that

~

®(n) = Hy1(n)®pyi(n), n ezl (1.21)
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Equation (1.21) is the periodic refinement equation and is equivalent to

Op= > Hpn()Tjy Prpa. (1.22)
I€L) 41

in the time domain with Hy,; € S(M**1)?*¢. When Condition (i) is satisfied, Condition
(i) is equivalent to the requirement that (5o (s, ca, {7 € Z° (Ek(n) = 0} is empty (see
Theorem 3.1 of [24]). This means that the entire frequency domain is fully “covered” by

the MRA.
Suppose that {V{F (®;)} is an MRA of L*(T*). Let Uy be a finite ordered subset of
VI (@),11). Then there exists Gyq € S((MT)¥1)e:xP known as the periodic wavelet

mask such that

~

Uy, (n) = Gry1(n)Oppa(n), n e 2. (1.23)

Equation (1.23) defines a vector of pre-wavelets and is called the periodic wavelet equation

and is equivalent to

U= > Grn(DTE P (1.24)

l€£k+1
in the time domain with Gy, € S(M*1)ex*r. Likewise to the real line case, we also
define the combined MRA mask to be the | @) U ¥y | x | x| matrix
Hy
G

~

k=

: (1.25)

and in the event of ®; being a singleton set, i.e. Oy := {¢r}, we denote hy = Hy.

1.3 Overview of Thesis

Most of the results in this thesis are developed for the general multidimensional multi-
wavelet setting with arbitrary integer dilation matrices. However, in order to provide an
easily accessible overview of the main results, we shall present them in this section by
only considering the one-dimensional scenario, i.e. s = 1 with the dilation matrix M = 2.
References to the full versions of these results in subsequent chapters are indicated. Most
of the time we shall also assume that the generic MRA used here is generated by a single
refinable function, i.e. ® := ¢ for the stationary case and &, := ¢, for the nonstationary

case with k£ > 0. In the following, we shall set the notations £, = Ry = {0,...,2F — 1}.
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Chapter 2 is on the construction of symmetric or antisymmetric compactly supported
wavelets on the real line. The main idea behind our method involves utilizing unitary
transformations of existing wavelet frames with compact support. Given that ¥ :=
[wm} ‘ is a vector-valued function satisfying the wavelet equation (1.11) of the MRA

m=1

{V¥(¢)} of L3(R), we define

e
1 ) 1 P
2= — , T :=— , D i=UpZ, V' :=0,,T, (1.26)
where 7, Kk, € Z and Us, being a 2p x 2p block diagonal matrix with the matrix Uy :=
\/LE [ ) as their blocks. Therefore, for a given set of wavelets ¥, we provide a general,

and yet simple, method to derive a new set of wavelets U’ such that each wavelet in W’
is either symmetric or antisymmetric. The affine system generated by ¥’ is a tight frame

for L?(R) whenever the affine system generated by W is so.

Theorem 1.1. (Theorem 2.7) Let U be a finite set of tight framelets obtained from the
MRA {V*(¢)} of L*(R). Define ® and V' as in (1.26). Then V' is a finite set of

symmetric or antisymmetric tight framelets obtained from the MRA generated by ®'.

In particular, we show that when ¥ is constructed via an MRA, ¥’ can also be derived
from a, but possibly different, MRA. If moreover the MRA for constructing ¥ is generated
by a symmetric refinable function, then we prove that W' is obtained from the same
MRA. The proof involves applying unitary transformations to the perfect reconstruction
condition and anti-aliasing condition of the oblique extension principle (OEP) (Theorem

2.8) and the unitary extension principle (UEP) (Theorem 2.10).

Theorem 1.2. (Theorem 2.9) If X (V) is a tight frame for L*(R) derived from an MRA
generated by a symmetric refinable function using the OEP, then X (V') is also a tight
frame for L*(R) derived from the same MRA using the OEP.

Theorem 1.3. (Theorem 2.11) If X(V) is a tight frame for L*(R) derived from an MRA
generated by a real-valued function ¢ using the UEP, then X (V') is also a tight frame for
L*(R) derived from the MRA {V*(®')} using the UEP.

In Chapter 3, we study the connection of wavelet frames of the real line with that of
their periodizations. This involves establishing results concerning affine systems, quasi-
affine systems and MRAs for both the real line and the periodic formulation. We extend

the result of Ron and Shen in [44] concerning quasi-affine systems and affine systems for
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K > 0 as follows. The proof involves ensuring that the frame condition (1.1) is satisfied

for both systems.

Proposition 1.4. (Corollary 3.8) The affine system X (V) is a (Bessel system) frame for
L*(R) if and only if its quasi-affine counterpart X} (V) is a (Bessel system) frame for
L*(R). Further, the two systems have identical (Bessel) frame bounds. In particular, the
affine system X (V) is a tight frame if and only if the quasi-affine system X (V) is a tight

frame.

We also show that for a finite set ® in L?(R), E(®) being a frame for V(®) is sufficient
for the MRA {V*(®)} to be an FMRA with uniform bounds. Establishing this result
involves the use of the dilation factor to ensure that the frame condition (1.1) holds

across the different scales.

Proposition 1.5. (Proposition 3.9) Let ® C L*(R) be finite. If E(®) is a (Bessel system)
frame for V(®), then E({2:ELp(2%) : ¢ € ®,1 € L}}) is a (Bessel system) frame for
VE(®) with the same (Bessel) frame bounds as E(®).

Proposition 1.6. (Proposition 3.12) Let ® C L*(R) be finite. Let {V*(®)} be an FMRA
of L*(R) and W* be the orthogonal complement of VF(®) in VEFL(®). Let ¥ C WO be
finite. Then X (V) is a (Bessel system) frame for L*(R) if and only if E(¥) is a (Bessel

system) frame for W° with the same (Bessel) frame bounds.

The above result states that a sufficient and necessary condition for a semi-orthogonal
affine system derived from an FMRA to be a frame is the existence of a shift-invariant
system to be a frame for W°. The proof involves the orthogonal decomposition of L?*(RR)
by the wavelet subspaces and the use of the dilation factor across the scales.

Next, we move on to results similar to Proposition 1.4 for the periodic setting.

Proposition 1.7. (Proposition 3.15) Fiz K > 0. If the periodic affine system Xor is a
(Bessel system) frame for L*(T), then the periodic quasi-affine system X3 _, is a (Bessel
system) frame for L?(T) with the same (Bessel) frame bounds.

Proposition 1.8. (Proposition 3.17) Fix R > K > 0. If the restricted periodic affine
system X £ is a (Bessel system) frame for its closed linear span V,&, then the restricted pe-
riodic quasi-affine system Xg;fK is a (Bessel system) frame for V& with the same (Bessel)

frame bounds.
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For the construction of wavelet frames in L?(T), the periodic analogues of the UEP and
the OEP are derived in [25]. Here, we extend them to the generalized oblique extension
principle (GOEP) for L*(T). This is in the theme of using appropriate transformation
matrices to obtain new wavelet frames from existing ones. Like the periodic UEP, the
GOEP based on the MRA {V*(®;)} with @ := {¢;} requires the assumption of

lim 2¢ ‘QAﬁk(n)‘z —A>0, neZ, (1.27)

which ensures that {¢ }ren eventually covers the frequency domain uniformly as k — oo.

Theorem 1.9. (Theorem 3.28) For each k > 0, let @y, U, C Vit (Oh41) with @, := {1}
and || = ok satisfying the periodic refinement equation (1.21) and periodic wavelet
equation (1.23) for some Hyp1 € S(2841) and Giyq € S(281)X1 respectively and (1.27)
holds. Define (/15;6 = (:)kZI\)k and (I\/; = ﬁk@k, where C:)k € S(2%) and ﬁk € S(2F)%xer qith
Or(n) # 0 and limy_. ‘(:)k(n)r
(0, + 1) x 2 matriz

=1 for every n € Z. Suppose that for every k > 0, the

L, := diag (O, ) Lydiag (6;1,,6;1) (1.28)

with Ly, (j) := [Zk(]) Li(j + 2’“)] satisfies ]i;:f[:% = 2I5. Then the periodic affine system
X! o= ®LU{TI), - Y, € Wy, 1 € Ly, k > 0} forms a tight wavelet frame with frame bound
A for L*(T) derived from the MRA {VJ (®})}i>0.

Suitable choices for € are matrices with unitary columns. The choice of @0(0) =1
and @k = I, for every k > 0 gives the periodic OEP, while the choice of @k = 1 and
Q=1 op for every k > 0 gives the periodic UEP.

We define the polyphase harmonics of a function ¢ € L*(T) at level K for j € Ry :=
{0,...,25 — 1} to be

N i(j4+25n
K j(t) = Z P(j + 28n)ell+27mt,
nez

We also introduce subspaces of polyphase harmonics, i.e. @ﬁ;j = {fx; : [ € L*(T)},

VT = 05T NV and also Wit := ©57 N W, For periodization purposes, we let
L*(R) = {f € L*(R) : f(t) = O((1 + [¢)""**),a > 0}
Next, for k£ > 0, we define the periodization of functions ¢, ¢r € L**(R) at w € T* by

Cuk(t) =) Pun(n)e™

neZ
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with @or(n) := 2723(27%(w + 27n)) for the stationary case and @ 1(n) == Pr(w + 27n)
for the nonstationary case. We employ similar notations for the periodization of a finite

set of functions. We also denote
V2I7§,w(Aw,k) = ‘GI;(AMk) ‘= Spall TK(Aw,k> and VQI;:gJ(Aw,k) = V;;’j(Aw,k)

and we leave out writing the generating set A, when the space V;{w could be inferred
from its context. Here, we make use of the Poisson Summation Formula (see [42]) which
shows that periodization in the time domain is equivalent to sampling in the frequency
domain. We state the connection results of MRAs on the real line with that of the periodic
case. The proof of the following result involves verifying both the MRA conditions of
L*(R) and that of L*(T).

Theorem 1.10. (Theorem 3.43) For k > 0, let ®;, C L**(R) be finite. The collection
{VF(®)} is an MRA of L*(R) if and only if {VE (®,x)} is an MRA of L*(T) for almost
every w € T. In particular, {V*(®.)} is an FMRA of L*(R) if and only if {Vy (®y %)} is
a periodic FMRA of L*(T) with the same bounds for almost every w € T.

Let np = ess sup{n,x : w € T} with n,; = max{dimWQI’i’r{w : j € Ry}, where
W;;{w = WQI‘;’W N @’;ﬁ and here WQI‘;M is the orthogonal complement of VQIjW in V;ﬁj The

collection {m }x>0 is known as the index of an FMRA {V*(®;)} for the nonstationary
case. For a stationary FMRA {V*(®)} it suffices to consider its index as 7o,

Theorem 1.11. (Corollary 3.47) For k > 0, let &, C L**(R) be finite. Suppose that
{VF(®)} is an FMRA of L*(R). Let W be the orthogonal complement of V¥(®y) in
VFHY (D) 1), There exists Uy = {¢p"}™_ C WF such that E(Vy) is a tight frame for W*
with (ELym, Erpy =0 for allm,n=1,....,m, m#n and l,r € Z*.

The proof of the above result involves obtaining the existence of U, ; such that 7} (V,, 1)

is a tight frame for Wk

orw for almost every w € T. The minimum number of wavelets

required is determined by computing dim mew through the use of 7, for almost every

weT.

Theorem 1.12. (Theorem 3.48) For k > 0, let ®, C L**(R) be finite. Suppose that
{VF(®)} is an FMRA of L*(R) with index {n }r>0. Let W* be the orthogonal complement
of VE(®y) in VEHL(®y, 1) and py be the number of pre-wavelets in W*. Then the following

are equivalent for each k > 0.

(i) The set 3y, := Ujep, {w € T : dim W;;{w > o} is of measure zero.
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(ii)  There holds n < ok.

(iii)  There exists Uy, = {2 C W* with (Bl Epy)y = 0 for allm,n = 1,..., o,
m #n and l,r € Z° such that Ey(Vy) is a tight frame for W*.

(iv)  There exists Wy, = {7} C WF such that En(¥},) is a frame for W*.

m=1

For a stationary FMRA, it suffices to compute dim W3, , for almost every w € T to

determine the minimum number of wavelets.

Corollary 1.13. (Corollary 3.49) Let ® C L**(R) be finite. Suppose that {VF(®)} is
an FMRA of L*(R) with index ng. Let W* be the orthogonal complement of V*(®) in
VEHL(®). Then the following are equivalent.

(i) The set ¥,, == {w € T : dim ng’r?w > 00} is of measure zero.
(ii)  There holds ny < go.

(iii)  There exists ¥ = {¢y™}2°_ C WO with (E'W™, E™¢") =0 for allm,n=1,..., g,
m #n and l,r € Z* such that E(V) is a tight frame for W°.

(iv)  There exists U = {¢™}2_ C W° such that E(V) is a frame for W°,

For the general case of MRA wavelets (i.e. the underlying MRA is not an FMRA), we
could also examine the connection between the constructions based on the UEP of L?(R)
with those based on the UEP of L*(T). To this end, it suffices to ensure that the periodic
UEP holds for the periodized affine system X,,.

Theorem 1.14. (Theorem 3.52) Let ® C L**(R) be finite. The affine system X (V) is
a tight frame for L*(R) obtained from the MRA {V*(®)} by the UEP if and only if the

corresponding periodized affine system X,, is a tight frame for L*(T) obtained from the
MRA V§(®,,1) by the periodic UEP for almost every w € T.

With the above results concerning the connection of real line wavelets with periodic
wavelets, we shall look at periodic constructions of wavelets in Chapter 4. We begin first

with bandlimited constructions of wavelet masks. First, let

g . Nk,n]
where (3 is the cumulative distribution function of a Beta distribution and 0 < Ni, <

Lipn < Nigpyr forn € {1,..., o, +1}, are used to indicate the bandwidths of our refinement
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and wavelet masks. We have 7 (N’“’" - 1) — 3(0) = 0 and 57 (L’“’” - 1) =p6(1) =1

Nk,n Nk,n
for Nj,, < Lj,. For purposes of convenience, we shall also refer to the refinable mask as

§2+1 for k£ > 0.

Lgyr '
Construction 1.15. (Construction 4.1) For k >0, let ¢p, = >,  ¢p(n)e™™, where
n=—Lp,
273 if j€{~Nia,...,Ni1},
R o i€ {—Lpy,. . —Npy — 1
Bu3) = 4 2 beos [5 ( —1)] oS T B e 2
k.1 U{Nkﬂ—i—l,...,Lk,l},
0 otherwise,

and Li1 < Nigy11 and Ly ; < 2k For k>0, let
\/i Zf] 6{_Nk’,17-"7Nk‘,1}7
~ ‘ ~ ; LJ€{-Lr1,..,—Nk1—1}
his1(j) = { V2cos [E l(ﬂ—l)} if ’ ’
k"rl( ) 2Mk Nk,l U{Nhl—i—l,...?Lk,l},
0 ij c Rk+1\{_Lk,17 .. ’Lk,l}'

Using the above refinement mask and refinable function, we first construct bandlimited

complex wavelets since they require less conditions to be fulfilled.

Construction 1.16. (Construction 4.4) Forn € {1,..., 0k}, let

V2sin [g@;; (N'Z' _ 1)} ifj € {Nem+1,...,Lpnl,
) = ) vz oo if§ € {Liny - s Nomir }y
V2 cos [g 1 (ﬁ _ 1)] ifj € {Nimor + 1, ..., Lo}
0 if5 € Rt \{Niw + 1, Lionsa ),

\

with the conditions 0 < Nip < Ly < Nenst, Lingt — New < 28, Ny g1 = 280 — Ly
and Ly, p,+1 = 287 — Ny and the additional condition Ly 1 < Lyi11 or Ny, > 281 —

Li1 if Liyrn < 28,

Proposition 1.17. (Proposition 4.5) The periodic affine system Xa, constructed from
the refinement and wavelet masks /l-;k_i'_l and g1, n € {1,..., o}, in Constructions 1.15

and 1.16 satisfy the periodic UEP (Theorem 1.9) and forms a tight frame for L*(T). The

masks generally have smooth decay with overlapping supports that can be controlled.

All our subsequent constructions of symmetric and antisymmetric real bandlimited

wavelets are based on variations of the above constructions with additional conditions
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imposed to ensure the periodic UEP holds. We refer the reader to Section 4.1 for the
details. Next, we look at time-localized constructions which are modifications of existing

wavelet systems so that they contain modulation information in an MRA structure.

Construction 1.18. (Construction 4.16) For 0 < k < K, define ®, = L2®;, and
20,0,0
U, = ékﬂikﬂ, where the combined MRA mask Zkﬂ(j) = i’““ (]) is a 2(ok+1)Lx 1
Gry1(d)
~0,0,1 .
Jk+1 (7)
& ) o JEN am ~map, (P
vector with Gy11(j) = [ng(J)Ll s Ik ) = [gk—i-l(])]“_o and
~m Ok -
[Qkﬂ(])]m:l
1, 4,0 . ~m, .
amp o NGk )] gyt [0 = Cane)
gk+1(])_ ~mapl = (2L)2 PR
Jer1 () Gi1 (7 + Ciep)

form € {0,..., 01}, p € {0,...,L — 1} and j € Riy1 and we let CxL = 2% with log, L
being a nonnegative integer. For k > K, define D), = L%C/Isk and U, = Lg\/l;k with
Zk+1(j) = Zk+1(j) as the original combined MRA mask.

Theorem 1.19. (Theorem 4.17) Let the affine system Xor be a tight frame for L*(T)
derived from the periodic UEP with {Vy (®x)}r>0 as the underlying MRA of L*(T). Sup-

@
pose that <I>k and \I/k with the combined MRA mask Lk+1 = [9k+1] ’ are constructed
m=0

as in Construction 1.18. Then Xop := {po} U {T,i{bvk : Jk € \T/k,l € Ly, k >0} is a tight
frame for L*(T) derived from the same MRA {VE (®y)}rso using the periodic UEP.

If the original masks lack symmetry, we are able to introduce symmetry and antisym-
metry by means of unitary transformation and by making this change of definition, i.e.
ﬁkﬁo( ) = (2L)" %/g”,TH(—j — Cyp). We refer the reader to Section 4.2 for the details.

It is required in the above construction that the modulation range be bounded in order
for the wavelet system to be a tight frame. This is remedied by using the idea of splitting

the wavelet subbands into “packets” using a different set of masks.

Constructlon 1 20. (Construction 4.22) For 0 < k < K, define :ISk = <T>k = (Ek and
\I/k = \I/k with Lk+1 = Lk+1 bemg the original combined MRA mask. For k > K, define
(IDk = <I>k = ¢k and \I/k = Gk+1q>k+1, where the combined MRA mask

. =~ . ~m NI ~m . ~mp re—1
with Gi41(j) = [gk+1(])]m:1’ Grs1(j) = [ng(])LO ,
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ama P . . .
1 (J) =" ()gia (), forme{1,... 0} and p € {0,..., 7, — 1} and j € Ryqq1 with
'I‘k—l

art e S(2F) and Y a7 (v)]? =1 for all v € Ry,
n=0
Theorem 1.21. (Theorem 4.23) Let the affine system Xon as defined in (1.15) be a tight
frame for L*(T) derived from the periodic UEP with {V} (®})}1>0 as the underlying MRA
of L*(T) and Lk+1 = [gk_’_l} as the combined MRA mask. Suppose that ®, and U,
m=0

-~m

with the combined MRA mask Lk+1 = [gkﬂ] o are constructed as in Construction 1.20.
m=0

Then Xop = {do} U{Tl : Up € Uy, 1 € Ly, k > 0} is a tight frame for L*(T) derived

from the same MRA {V (®y)}r>0 using the periodic UEP.

The observant reader will notice that it is actually possible to leverage on portions of
the different constructions to derive other constructions. We have indeed shown this in
an example at the end of Chapter 4.

In order to apply the wavelet frames in L?*(T) to practical problems, in Chapter 5, we
first obtain results concerning the periodic decomposition and reconstruction algorithms
using polyphase harmonics of ¢y and Wy. Let us define vy j := (¢r)r; and ui’; :== (Y7 ).

for m € {1,...,0c}. Let fry1 = fu +gr € Vaul!, where fr = > 8i(j)*vp; € V£ and
JERK

g = 3 te(j) ur,; € WE for some & € S(2*) and f;, € S(2¥)2*!, which are the discrete
JERK

Fourier transforms of s, € S(2%) and t;, € S(2F)e*! and V} = @jeRk span {vy ;} and

Wy = @jenk span {uy’; - m = 1,...,0x}. Our results are obtained chiefly by making

use of the perfect reconstruction condition and anti-aliasing condition of the UEP, i.e.

Proposition 1.22. (Proposition 5.10) If

Jir1 = Z Z Skr1(J + ri)*vk+1,j+2kr

JERK r€ER1

Z Z [Sk “Hipa (G + 2°1) + 1.(5) Gra (5 + ZkT)} Vpp1jrovrs  (1.29)

JERE r€ER1

then there exists [5}(])* tk(j)*} € Ker {Lk(j)diag [1supp$k+1<j + 2’“7’)] _0} for each
Jj € Ry such that

2 [5’“ N Sk] Louppa, () = D 5501 Tsuppa,,, i (G + 27 Lgupp 5, (),
reR1
~ 27 Ok )
2 [tk — tk} diag [%upp&;ﬂ} o (7)
— Nk . . Ok .
= Z Sk+1 1Sllpp$k-+1Gk+1 (] + 2k’[")d1ag |:1supp,$l7€n:| 1 (]);
reR1
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and forr € Ry,
5o Tsupp s, G42°7) =[50 Lupp, () s (742°7)
ANk Ok NN . .
+1y, diag [%upp&g} - (])Gk+1<]+2kr)}lsupp$k+l(j_|_2k7*).
For convenience, we define
HI/“'H(j T 2’%) - 1supp o <j)Hk+1<=7 + 2k7ﬁ)1supp brt1 <] + 2167,)7
o . . Qk . o . .
;Hl(] + 2k71) = dlag |:1supp$21:| me1 (j)Gk—H(j + 2k7“>1supp $k+1 (j —+ QkT),

. NP ~1 . Ok o~
5'0) = Louppa, )0), 'G) = diag [Lguppin| ()G,
51 (7 +257) = quppa,,, U+ 257) 5k (7 + 257).

We shall also let

1

= . . . . gk . = . . .
Li()) = diag(Lupps, () diag [Lsuppgp]  Ee(i)ding [1gupps,, (G+24)]

The upsampling operator Tx: S(2%) — S(2F1) is given by

Tes Ask(D hiecy = ATk sk(r) reci = {sk(D) =2y brecy, -

We shall also write the composition T51*: S(25) i S(2K+F) as

T§+k3:TK+k—1TK+k—2 Tk
We define the periodic convolution ® : S(2%) x S(2%) — S(2%) of ay € Ly and by € Ly, as

{ak X bk(l)}leﬁk = { Z ak(l - T)bk(T)} .
leLy,

reLy

In the time domain, Proposition 1.22 is given as

Proposition 1.23. (Proposition 5.11) If fi.1 is given by (1.29), then

fon= 3 sea Thones = 3 [se) Thon + (1) T

lE£k+1 leLy,

- Z [(Tk s%) @ Her1 (D) 4+ (Tk t7) @ Grar(D)] Tli+1¢k+1~

l€£k+1

Further, there exist [;N;I(])* tf,;/(j)*] € Ker]/l\.,gg(j)*, j € Ry, such that for everyl € L; and

n e [’k—i-l;

i1 (n)” = [(Te 1) ® Hpa[(n) + [(Th 1) © Gyl (n).
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Next, we state the quasi-affine representation for the stationary wavelet transform.

Notice that the representation is translation invariant due to the absence of downsampling.

Proposition 1.24. (Proposition 5.17) Fizx 0 < K < K+ L. If

_ oK +L-1 \
fren= ) > " Sren(j+2 TV VR 4L j s oK L-1p,
jERK+L_1 reR1

then for a given 6 € Ly,

fr+L = Z skl + 6)*T[l(+—|(-sL¢K+L

l€£K+L
K+L
L K+L—k
leLk k=K leLy
K+L

=N S 2 QR ) TR kY Y > 2 b (250 T e,
SrLeLlel k= K(SkELIJEEKJrL k

K+L
=Y 27haD) Tiepupx+y D 27 bin w() Thes Vi1,
leLkyr k=K lelktr,

with ag_y = (5™ Hy) @ ag, bpy = (15 Gp) @ ay, for k € {K,...,K + L} and

=/ =/ *
axir = Skir- Further, for every k € {K,..., K + L — 1}, there exist s () 8 (J)*] c
Kerﬂ:ﬁc(j)*, j € Ry, such that for everyl € Ly and n € Ly,1,

/ ' * / — *
S0 =5t )] = a@F o,
O8] =% oy,

oy (25 6y = (1 27) @ Hpyy + (16 227) @ Gy (n)

~1
~/

. 5 A/ . gk . ~ .
with s}, = Lgupp 3,50 th =diag [1supp$m} ti, a' (7 + 2°v) = 1gypp g, (Dar(j + 2"v)
) ok
and bk( + 2"v) = diag [13111)1)‘22”},,1: (j)bw(j +2k ), where v € Rycip—.

We conclude the thesis with results concerning the approximation properties of our
periodic constructions as well as the time-frequency representations they provide. The
next result is used to justify the sparsity of representations of bandlimited signals by our

bandlimited tight wavelet frame.

Proposition 1.25. (Proposition 5.22) The tight wavelet frame Xonp := {¢o} U {T}4y :
Uy € Uy, l € Ly, k > 0} constructed from the MRA {Vy. (¢x)} via the periodic UEP with
{1 k>0 given in Construction 4.1 satisfying liminfy ... 27¥Ny.; > 0, has spectral frame
approximation order. Hence Xop also has global vanishing moments of arbitrarily high

order.
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Towards the end of Chapter 5, we also review the approximation properties of some
of our time-localized constructions. Using our decomposition and reconstruction algo-
rithms, examples of time-frequency representations of signals based on our bandlimited
constructions are provided. These time-frequency representations highlight the strengths
of these nonstationary periodic transforms which capture the features of both the tra-
ditional wavelet transform and the short-time Fourier transform. For more details, the

reader is referred to Section 5.5 of this thesis.



Chapter 2

Symmetric and Antisymmetric Tight

Wavelet Frames

Linear phase filtering is important in that it preserves the relative positions of signals
without distortion after convolution, i.e. the filtering process, up to a phase shift. The
design of linear phase filters involves the inclusion of symmetry or antisymmetry in the fil-
ters. With the exception of the Haar wavelet, real-valued orthogonal conjugate quadrature
mirror filters do not preserve linear phase as they are not symmetric. Many construc-
tions sought to remedy this problem by relaxing some restrictions. The resolution of this
problem in this thesis, which is published in [23], involves relaxing the orthogonality and

non-redundancy condition so that symmetrization of the filters could be performed.

2.1 Symmetric and Antisymmetric Construction

Symmetry is obtained in [11] by using two compactly supported dual refinable functions
only one of which could be a spline function. In [10], similar dual symmetric spline
wavelet bases are used with only one of them being compactly supported. Symmetry,
orthonormality and compact support are achieved in [21] and [20] by using a vector
MRA and in [34] by using non-dyadic dilations. In [44], symmetry and compact support
are obtained by relaxing the non-redundancy condition with one of the wavelets having
a vanishing moment of order one. In [16] and [8], examples of symmetric compactly
supported tight wavelet frames with high orders of vanishing moments are obtained but
those from systematic constructions are not symmetric. This is remedied in [8], [15], [16]

and [27] at the cost of using two dual frame systems. In [29], three compactly supported

21
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symmetric or antisymmetric tight frame wavelets are constructed from B-splines with the
order of vanishing moments being the same as that of the B-spline. This construction
is extended in [30] using compactly supported symmetric functions with stable shifts.
In [28] and [41], the authors focus on finding conditions that the refinement and wavelet
masks should satisfy for the construction of compactly supported symmetric tight wavelet
frames and this reveals the difficulties of obtaining such a systematic construction.

The approach in this thesis is entirely different and overcomes the above difficulties.
Our objective is to obtain symmetric and antisymmetric wavelets through appropriate
modifications and transformations of known wavelets. The main idea here originates
from the following simple, but highly useful, observation for the case on the real line.
Consider a wavelet 1 € L?*(R) that is not symmetric. Assume that the affine system
X(¢) = {28228 - —1) : k,1 € 7} generated by v forms a tight frame for L?(R). Let
U = {V, *'}, where

1. 1 2/ 1
i S U)W = S (=),

Then 9" is symmetric and ¥?’ is antisymmetric about the origin. Further, the orders of
the smoothness and vanishing moments of ¢ are not reduced. It turns out that X (¥’) :=
X (') U X (4% also forms a tight frame for L?(R). Therefore this method converts any
nonsymmetric wavelet that generates an affine tight frame to a pair of symmetric and
antisymmetric wavelets that generate an affine tight frame. The idea here can be refined
to ensure that the supports of the new wavelets ¢! and 12" are almost the same, if not
identical, as that of 1. In particular, if we begin with an orthonormal basis generated by
one wavelet 1, then the method gives a tight frame generated by two wavelets ¢* and ¢/’
with symmetry and of similar support as 1. It can also be adjusted easily to suit the case
when the original affine tight frame is generated by more than one wavelet. The number
of new wavelets is at most twice the number of the original wavelets. The general setup
is as follows.

e

Construction 2.1. Let ¥ := [wm] C L*(R?®) be a finite set of functions. Consider
1

m=

T := [ \/Liwm ] ,
\/Liwm(ﬁm - ) m=1

where K, € Z°, as a 20 x 1 vector arranged in the order of \%wm followed by \%wm(/ﬁm —)



2.1 Symmetric and Antisymmetric Construction 23

form =1 ... 0. Define V' :=U,, Y, where Us, is the 20 x 20 unitary matriz given by

Uo

1 (1 1
UQQ = 5 UO = — [1 _1] . (21)

Then V' consists of symmetric and antisymmetric functions, where a typical symmetric
function %(wm+wm(/<cm —-)) is symmetric about = and a typical antisymmetric function

%(W” — Y™ (K — +)) is antisymmetric about 3.

The above is a very natural way of obtaining symmetric and antisymmetric functions
from a given collection of functions. The main issue here is to show that whenever X (V)
is a frame for L?(R®), Construction 2.1 gives a frame X (¥’) for L*(R®) with the same
frame bounds. Our proof will utilize the following elementary lemma obtained from the
frame condition (1.1) and a change of variables.

e

Lemma 2.2. Let the ordered set ¥ := [¢m] be a subset of L*(R?). If the affine system
m=1
X (V) as in (1.4) is a frame for L*(R?®), then the affine system X ([ (Km — +)]%_,), where

m=1

Km € Z°, is also a frame for L?(R®) with the same frame bounds.

The next lemma will also be used. Although it is a special case of Theorem 4 in [1],

we include its simple proof for completeness.

Lemma 2.3. Let {g, }nex be a frame for L*(R®). Then {h,}ner := U{gn tnex, where U
1S a unitary matriz with finitely many nonzero entries in each row and column, is also a

frame for L*(R®) with the same frame bounds as {gn }nex -

Proof. The matrix U defines a unitary operator from ly(K), the space of all complex

square-summable sequences indexed by K, onto ly(K) by

Uu: {ck}keK — {Z ujkck}jEK-

keK

Indeed, HU{Ck}keKlez(K) = ||{Ck}keK||122(K) for all finite sequences {ci}rex, which also
holds for all sequences in [3(K) since U is a bounded linear operator on the densely

defined subspace of finite sequences in ly(K). For f € L?(R?®), since
keK keK

the result follows from the fact that U is a unitary operator on lo(K) and the frame

condition (1.1). O
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Theorem 2.4. Let ¥ := [wm] © such that the affine system X (V) as in (1.4) is a frame
m=1

for L*(R®). Let W' be constructed from ¥ as in Construction 2.1. Then the affine system

X(¥') is also a frame for L*(R®) with the same frame bounds as X (V). In particular, if

X (V) is a tight frame for L*(R®), then X (V') is also a tight frame for L*(R?®).

Proof. Let U= [wm(mm — -)]Q , km € Z°, and T be as in Construction 2.1. Lemma 2.2

shows that X (V) is a frame for L?(R®) with the same frame bounds as X (¥). When we
combine X (¥) with X (¥) under the appropriate normalization as X (Y), X(T) remains a
frame for L?(R*) with the same frame bounds. This is because the frame condition (1.1)

implies that

AlfIP< Y2

geEX(¥)

2

>

gEX (D)

2

. = <BIfIP. feI*®),

\/§Q>

1

where A and B are the frame bounds of X (V).

We order the functions in X () such that the 2o wavelets ¢!, ! (k1 —-), ..., e, (K, —
-) are always grouped together under the various applications of the dilation matrix M and
the shift operator E!. By selecting the same ordering for the functions in X ('), it follows
that X (V') = UX(Y), where U is the block diagonal matrix of bi-infinite order with the
matrix Us, as the diagonal blocks. Then we apply Lemma 2.3 to X (Y) to conclude that
X (¥) is a frame with the same frame bounds as X (7). O

2.2 Construction of Framelets

A straightforward calculation gives explicit expressions of the lowpass and highpass fil-
ters for refinable functions and wavelets under certain affine transformations. We record
them in the following proposition, which will be used in our subsequent construction of

symmetric and antisymmetric framelets.

Proposition 2.5. Let & := [gbm} and ¥ = [¢m]g satisfy the refinement and
m=1

p

m=1 o

wavelet equations in (1.14) respectively with matriz filters H = [Hm”"]mr_l and G =
o,p ~ 14

[var] . Let @ := [¢m(>\ : +77m)]m

m=1,r=1

and Ny, km € Z°. Then

and ¥ := [wmo\ : —|—,‘§;m>:| ’ y where A € {£1}

® = |det M| Y H(n)®(M-—n), ¥ =|det M| G(n)d(M-—n),

nezs neZLs
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p 0.,p

where f](n) =|H™"(Mn,, —n,+ )\n)]
forn € Z°. Further,

~

and é(n) = [Gm’T(M/Qm — 0y + )\n)]

m,r=1 m=1,r=1

H(w) = diag [eiM"m')‘w] ’ B H(\w) diag [e_i"*‘)‘w] p_l ,

~

G(w) = diag [eiMﬁmM] o

m=1

G(\w) diag [e_inr'MK

-1

Now, consider the affine system X (¥) in (1.4) generated by W. Theorem 2.4 shows
that if X (V) is a tight frame for L*(R®), then X (¥’) is also a tight frame for L?*(R®),
where U’ is constructed from U as in Construction 2.1. Given, in addition, that X (V) is
derived from an MRA, we are interested to know whether X (¥’) comes from an MRA,
and further, the same MRA or a different MRA. In this connection, we need the following

lemma.

Lemma 2.6. Suppose that {V*(®)} is an MRA of L*(R®), where ® = [¢m]p . Let

m=1

b= [¢m(nm _ .)]p , where ny, € Z°. Then {V*(® U )} is an MRA of L2(R®).

m=1
Proof. Proposition 2.5 shows that ® is a refinable vector-valued function. By (1.9) for
both ® and ®, ® U ® is also refinable. The density of Usez VF(®) in L*(R®) implies the
density of ey V(P U ®). Therefore {V#(® U ®)} is an MRA of L2(R®). O

We shall build upon Construction 2.1 in the following way. Given that ¥ := [wm] i_l
is a vector-valued function satisfying the wavelet equation (1.11) of the MRA {V*(®)}
of LA(R®), let & := [gbm(nm — ~)Kn_1 and ¥ := [qﬁm(/@m - -)Lgn_l, for some 1y, Ky, € Z°.
Then we define

A T
= E [gbm(nm B )] - , T = E me(/{m B )] - , D= Up, =, U= Us, T, (2.2)
where Uy, and Us, are 2p x 2p and 29 x 2p block diagonal matrices respectively with the
matrix Uj in (2.1) as their blocks.

[1]

Theorem 2.7. Let ¥ = [W”r be a finite set of tight framelets obtained from the
m=1
MRA {VF(®)} of L*(R®) generated by ® := [gbmr Define @ and V' as in (2.2).
m=1

Then V' is a finite set of symmetric or antisymmetr;c tight framelets obtained from the

MRA generated by .

p

Proof. Let ® := [Cbm(??m - )]
that {V*(2)} is an MRA of L2(R?). By Proposition 2.5,

and U := [me(/{m — )} ® . From Lemma 2.6, we know
1

~

O(MT)=HP, V(M) =G
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Combining with (1.9) and (1.11), we obtain

oM™ [H o] [@
oM™y o H| ||

Rearranging the rows of the vectors in (2.3) based on the ordering in = and T gives

o

o

G 0
0 G

~

T(MT)

(2.3)

@(MT.)]

[

(MT) = PE, T(M")=QE, (2.4)

where P and @ are the refinement and wavelet masks of = and T respectively. By Theorem
2.4, X(V') is a tight frame for L*(R®). Note that ®' generates the same MRA as = with
refinement mask H' := UQPﬁng because @’ is obtained from a unitary transformation of
=. Similarly, the wavelet mask of ¥’ is G = UQQ@UJP with the tight frame X (') arising
from the MRA {V*(®)}. O

In practice, fast wavelet decomposition and reconstruction algorithms are needed.
These algorithms exist for tight framelets derived from the oblique extension principle
(OEP) (see [44], [8] and [16]). In [16], tight framelets are constructed from an MRA
generated by a refinable B-spline with the desired approximation order using the OEP.
However, the framelets are not symmetric even though B-splines are symmetric. Next,
we shall prove that when the refinable function in the OEP is symmetric, Construction
2.1 gives symmetric and antisymmetric tight framelets arising from the same MRA, and
the corresponding new fundamental function in the OEP can also be found. Knowing the
fundamental function is important in applying the fast decomposition and reconstruction
algorithms (see [16]) for tight framelets derived from the OEP.

Before we state the OEP, recall that the spectrum of a shift-invariant space V(®) is
defined (up to measure zero sets) as

o(V(®)) :={weT*: Z la(w +7)]? > 0 for some ¢ € ®},

JjE€2nLs

where ) \(Z(w + 7)|* is well defined for almost every w € T* since ¢ € L*(R®). The
JjE2TLS
spectrum of V(®) only depends on the space and is independent of the choice of generators

of the space (see [4] and [43]). In all our discussion that follows, we shall assume that

every ¢ € ® satisfies
o(V(9)) = a(V(¢(n—-))) (2.5)

for some n € Z°. Equation (2.5) holds when 3;11 the funct%ons ¢ € & are compactly

supported (since o(V (¢)) = T®) or satisty ’g/b\(w)‘ = ‘éﬁ\(—w)‘

for real-valued or symmetric ¢.

a.e. on R which is valid
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The following theorem is known as the oblique extension principle (OEP). It is stated

in the setting of ® being a singleton set {¢}.

Theorem 2.8. [16] (Oblique Extension Principle) Let {V*(¢)} be an MRA of L*(R®) with
combined mask L defined as in (1.12) having entries in L=(T*) and such that E(¢) is a
Bessel system. Suppose that lim,,_ gb\(w) = 1 and there exists a 2nZ°-periodic nonnegative
essentially bounded function ©, which is continuous at the origin, with ©(0) = 1 and
satisfies

=

hw)O(MTw)h(w +v) + Gw) G(w +v) = 6,0(w), (2.6)

whenever w € o(V(¢)) and v € 2m(M~T7Z°JZ°) is such that w + v € o(V(¢)). Then the
affine system X (W) as in (1.4) defined by L is a tight frame for L3 (R?).

The function © in Theorem 2.8 is known as the fundamental function. The OEP is
also proved independently in [8]. We shall now show that if X (V) is a tight frame for
L?(R?) derived from an MRA generated by a symmetric refinable function using the OEP,
then for W' constructed from ¥ as in Construction 2.1, X (¥') is also a tight frame for
L*(R?®) derived from the same MRA using the OEP. In view of various available examples
in the literature (see also Section 2.3), instead of the more general case as discussed in
Theorem 2.7, here we only deal with the situation in which the MRA is generated by a

single symmetric refinable function.

o
Theorem 2.9. Let V := [wm} such that X (V) as in (1.4) is a tight frame for L?(R*)
m=1

derived from the OEP with {V*(¢)} as the underlying MRA of L*(R?), ¢ being symmetric

about 7, where n € Z°, © as the fundamental function, and L=

h
| as the combined
G

MRA mask. Let the set of symmetric and antisymmetric wavelets V' be constructed from
U as in Construction 2.1. Then X (V') is a tight frame for L*(R®) derived from the same
MRA {V*(¢)} using the OEP with the fundamental function ©' := 1[0 4+ ©(—-)] and the

o~

combined MRA mask L' =

h ~
a/] , where G’ is the 20 x 1 vector given by

G'(w) == (2.7)

. o
1 [7(w) + e i mnnrrgm( )
2 [§(w) — e Otmmrwgn( )|

Km € Z.°.

~ ~ 4
Proof. We first apply Proposition 2.5 to see that for ¢:=¢(n—-) and U:= [wm(ﬁm — )} ,

m=1

= A~ ~ A~

h(w)h(w + v) = " h(—w)h(—w — v), Gw) G(w+v) =" G(—w)*G(—w — 1), (2.8)
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where v € 2r(M~17Z°/7%), since e M1 = ¢7IMrmv — 1 By the symmetry of ¢, w €
o(V(¢)) if and only if —w € o(V(¢)) for almost every w € T®. Thus

=~ ~

T(6)O (=M ) h(w + 1) + G(w) Glw + v) = 6,0(-w) (2.9)

~

holds for w € o(V(¢)) and v € 2rn((M~TZ*/Z?) such that w + v € o(V(¢)) as we may
replace w by —w and v by —v in (2.6). Let T be as in Construction 2.1. Since 5 = @,
adding (2.6) and (2.9) leads to

=

h(w)O' (M w)h(w + 1) + Qw)* Q(w + v) = 6,0 (w), (2.10)

with Q given as in (2.4) whenever w € o(V(¢)) and v € 2r(M~TZ*/Z#) is such that
w+veaV(p)).

Next, as V' := U, Y, where Uy, is the constant unitary matrix in (2.1), it follows that
the final wavelet mask is given by G’ 1= UQQ@. Let w € 0(V(¢)) and v € 2n(M~T7°)7°)
such that w + v € o(V(4)). Then G/ (w)* G (w + 1) = Q(w)*Q(w + v) and so (2.10) yields

=

h(w)O' (M w)h(w + v) + G (w)* G (w + v) = 6,0 (w).

Hence by Theorem 2.8, X (V') is a tight frame for L?(R®) derived from the MRA {V*(¢)}
using the OEP with the fundamental function ©'. O

Let us highlight an application of Theorem 2.9 which gives a systematic approach to
constructing symmetric and antisymmetric framelets, with given approximation order, for
the univariate case with dilation factor 2. In Section 3.2 of [16], starting from a B-spline
¢ of order m (which is symmetric), tight frame systems are constructed by choosing
appropriate trigonometric polynomials © to be the fundamental function in the OEP,
according to m and the approximation order of the system required. The approximation
order is closely related to the order of vanishing moments of the framelets, which in turn
depends on ¢ and © (see Theorems 2.8 and 2.11 of [16]). One choice of the fundamental
function © gives a total of three mother wavelets, while another choice produces two.
None of the wavelets is symmetric, though both fundamental functions are symmetric.
Applying Theorem 2.9 to these two sets of wavelets, we see that Construction 2.1 gives
three symmetric and three antisymmetric wavelets for the first set, and two symmetric
and two antisymmetric wavelets for the second. In both instances, since ¢ and © are
unchanged, the approximation order of the resulting tight frame system remains the

salne.
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In [29], three symmetric and antisymmetric framelets are constructed directly from
the B-spline of order m. This method is extended to constructions based on a com-
pactly supported symmetric refinable function with stable shifts in [30]. Our construction
does not require the stability assumption of the refinable function and reduces the con-
struction of symmetric tight framelets to the construction of tight framelets, which is
casier. It combines the procedure in [16] with Construction 2.1 to give a systematic
procedure for obtaining symmetric and antisymmetric framelets with at least the same
vanishing moments, smoothness and approximation orders as the original wavelets. While
the construction in [29] results in framelets with the highest possible order of vanishing
moments, the flexibility of our construction allows us to tailor the approximation order
of our framelet system and the order of vanishing moments of the framelets according to
the needs of our application.

Let us now return to the general setting of L*(R®) and arbitrary dilation matrix M.
We have shown that when ¢ € L?(R®) is symmetric, the new set of symmetric and
antisymmetric framelets is obtained from the same MRA generated by ¢. However, in
many cases, the scaling function ¢ such as one of the Daubechies scaling functions or a
pseudo-spline (see [16]) is not symmetric, and the corresponding wavelets are obtainable
from the unitary extension principle (UEP), i.e. the OEP with fundamental function
© = 1. We shall see that in these instances, notwithstanding that the scaling function
¢ is not symmetric, it is still possible to construct a symmetric and antisymmetric tight
frame system from the UEP. However, the set of framelets comes from an MRA generated
by two functions, which is different from the original MRA {V*(¢)}, and the proof requires
the following vector version of the UEP (see [44]).

Theorem 2.10. [44] (Unitary Extension Principle). Let {V*(®)} be an MRA of L?(R?)
with combined mask L defined as in (1.12) having entries in L™ (T*) and such that E(®)
is a Bessel system. Suppose that lim,_o(®*®)(w) = 1 and

L(w)*L(w + v) = 6,1, (2.11)
whenever w € o(V(®)) and v € 2mr(M~17Z5/7°) is such that w + v € o(V(®)). Then the
affine system X (V) defined by Lisa tight frame for L?(R?).

Our next result is analogous to Theorem 2.9 for the UEP setting, except that the
refinable function ¢ may not be symmetric but satisfies (2.5). Again, based on examples
of interest (see Section 2.3), we focus on the case when the original MRA is generated by

a single refinable function.
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Theorem 2.11. Let ¥ := [wm * such that X (W) as in (1.4) is a tight frame for L*(R®)
dm=1

derived from the UEP with {V*(¢)} as the underlying MRA of L*(R®) under the condition

¢

I n—"-)
where n € Z°. Suppose that &' := Uy=, where Uy is the unitary matriz in (2.1), and the

=)

that ¢ satisfies (2.5) and L := | ~ ,

V2

as the combined MRA mask. Let = = -+ Lb(

Q

set of symmetric and antisymmetric wavelets V' is constructed from ¥ as in Construction
2.1. Then X (V') is a tight frame for L*(R®) derived from the MRA {V*(®")} using the

~
!/

UEP with the combined MRA mask L' = |

, where H' and G’ are the 2x 2 and 20X 2

matrices given by

km € Z.°, respectively.

Proof. By Lemma 2.6, {V*(Z)} is an MRA of L?(R®). Further, F(Z) is also a Bessel

P
system. Let T be as in Construction 2.1. The combined MRA mask [@] has entries in

L*>(T*) and Pisa2x?2 diagonal matrix and @ is a vector of p 2 x 2 diagonal matrices
given as in (2.4). In addition, lim,_o(Z*Z)(w) = 1. We shall show that

P(w)*P(w+ 1)+ Qw)* Q(w + v) = 6,1, (2.14)

whenever w € o(V(E)) and v € 2r(M~TZ°/Z*) is such that w + v € o(V(E)). We
note from (2.5) that o(V(¢)) = o(V(¢)), where ¢ := ¢(n — -), and hence o(V(Z)) =
o(V(¢) Ua(V(9)) = a(V(9)).

The (1,1)-entry of (2.14) is exactly (2.11). By the structure of the 2 x 2 diagonal
matrices in P and @, we see that the (1,2)- and (2, 1)-entries of (2.14) are both zero. It
remains to prove the equality of the (2,2)-entry on both sides of (2.14), i.e

=~  ~ ~

h(w)h(w + v) + G(w)* G(w + v) = 6, (2.15)
where U := [1/;7" (Km — ] . As in the proof of Theorem 2.9, we use Proposition 2.5 to

obtain (2.8). Since w € J(V(gb)) if and only if —w € o(V()) for almost every w € T*, it
follows from (2.5) that w € o(V(¢)) if and only if —w € o(V(¢)) for almost every w € T*.
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Thus in view of (2.8), (2.15) holds for w € o(V(¢)) and v € 2r(M~TZ*/Z*) such that
w+vea(V(p)), because we can replace w by —w and v by —v in (2.11).

Now, let ¥ := U, Y, where Uy, is the constant unitary matrix in (2.1). We first observe
from the refinement equation (1.9) that the vector @' is refinable with refinement mask
H = UoﬁU{f, generating the same MRA as =. Using the wavelet equation (1.11), the final
wavelet mask is given by G = Ugg@U{f . Clearly, the entries of the combined MRA mask

~
!/

L= lie in L*°(T*). Also, we have lim,_o(®"*®')(w) = 1. Let w € o(V(E)) and v €

~
i

2m(M =172 /7°) such that w+v € o(V(Z)). Then ﬁ'(w)*ﬁ]’(w+y) = Uoﬁ(w)*ﬁ(w—l—y)US‘
and G'(w)*G'(w+v) = UpQ(w)*Q(w +v)Ug. This enables us to conclude from (2.14) that
(2.11) holds for L', i.e.

H (W) H (w+v) + G (w) G (w+v) =6,1.

Applying Theorem 2.10 to r gives the result. ]

2.3 Examples

We shall now illustrate the results in Section 2.2 with concrete examples for the univariate
case with dilation factor 2. We begin with a discussion on practical issues related to the
flexibility we have in the construction of symmetric and antisymmetric wavelets. When
we utilize Construction 2.1 to construct our wavelets, we need to consider the positions
of reflection of the original wavelets. Since we have the freedom of reflecting the wavelets
about any half-integer point, we may choose to reflect them about half-integer points
around the midpoints of their individual supports. This minimizes the supports of the
resulting wavelets, in the sense that they are almost the same as the supports of the
original wavelets. However, this may not always be ideal since we may obtain more
than one peak or have more oscillations when we essentially take the sum and difference,
using the matrix Up in (2.1), of the original wavelets and their reflections. Therefore it
could be more desirable to reflect about the positions where their peaks occurred so that
the resulting wavelets will have better spreads in the time domain. It should also be
mentioned that in some cases, other positions may be even more appropriate, depending
on the graphs of the original wavelets. For situations when the original refinable functions

are not symmetric, similar considerations in choosing the positions of reflection apply.
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Symmetrized Cubic B-Spline Wavelet 1 . Symmetrized Cubic B-Spline Wavelet 2 Symmetrized Cubic B-Spline Wavelet 3

Antisymmetrized Cubic B-Spline Wavelet 1 Antisymmetrized Cubic B-Spline Wavelet 2
T T T T T T T T 04 T T T T T

Figure 2.1: Symmetric and antisymmetric wavelets obtained in Example 2.3.1 from a

systematic construction based on the cubic B-spline.

Example 2.3.1. This example, illustrated in Figure 2.1, is based on the systematic con-
struction in Example 3.7 of [16]. The original wavelets are obtained from an MRA gener-
ated by a symmetric refinable function using the OEP, and we apply Theorem 2.9. Here
the lowpass filter h is that of the cubic B-spline ¢ supported on [0, 4], and there are three
wavelets !, 9? and 13 in the construction with filters ¢!, ¢? and ¢* respectively. The
approximation order of the framelet system generated by !, 1% and v® is 4. We define
i [ 9(6 — ) 0223 — ) P A — ) " and W' = Uy, where U is the 6 x 6
block diagonal matrix with the matrix Uy defined in (2.1) as its blocks. For ¢!, we reflect
at the midpoint of its support as this happens to reduce the oscillations in the resulting
antisymmetric wavelet. As for ¢? and 13, we choose to reflect at the nearest half-integers
where their peaks occur. It follows from (2.7) that the matrix filter of ¥’ is given by
3 g™ (n) + g™ (pm — n)

&= [o] g (n) — g™ (jy — )

m=1

, where G™ (n) := 1 [ ] for m = 1,2,3 with p; =8,

po = 2 and usz = 4.

FExample 2.3.2. Consider the Daubechies-4 refinable function ¢ with filter h supported on

{1,...,4} and the corresponding wavelet ¢ with filter g given by g(n) := (—1)>""h(3 —

n) (see [13] and [14]). As ¢ is not symmetric, we apply Theorem 2.11. Let & :=
T T

Llooa—] v = LvewE -] @ = U and ¥ = Ugl, where Uy is as
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Symmetrized Daubechies-4 Refinable Function

Antisymmetrized Daubechies-4 Refinable Function

-o. L -0, L L .
0 1 2 3 a ] 1 2 3

Symmetrized Daubechies-4 Wavelet Antisymmetrized Daubechies-4 Wavelet

Figure 2.2: Symmetric and antisymmetric refinable functions and wavelets obtained in

Example 2.3.2 from the Daubechies-4 refinable function and wavelet.

defined in (2.1). Using (2.13), the matrix filter G’ of ¥’ can be expressed as G'(n) =
(—=1)3"H'(3 — n), where the matrix filter H' of @ is given by

h(n) 4+ h(4—n) h(n)—h(4—n)

H'(n) := !
2 |h(n) —h(4—n) h(n)+h(4—n)

from (2.12). The graphs of the resulting refinable functions and wavelets are shown in
Figure 2.2. Both the original refinable function and wavelet are reflected around their
peaks. The supports of the resulting wavelets are the same as that of the original, since

the reflection point occurs at the midpoint.



Chapter 3

Connection Between Wavelet Frames
of L?(R%) and L*(T®)

The Poisson summation formula is the bridge connecting the theory of wavelet frames of
the real line to that of periodic ones. This makes it necessary to study the harmonics or
uniform samples of functions in the frequency domain. The conditions for obtaining peri-
odic wavelet frames from periodic MRAs could be expressed in terms of the harmonics of
periodic functions. The wavelet frames could either be semi-orthogonal or nonorthogonal
to the MRA subspaces. These wavelet frames could then be extended back to the real
line by ensuring that these conditions hold for arbitrary collection of harmonics, i.e. the

construction of real line wavelets subtly involves the construction of periodic wavelets.

3.1 Euclidean Space Formulation

Let M be a s x s invertible matrix with integer entries such that M is expansive, i.e. all

the eigenvalues of M are greater than 1. We set
D:=M" d:=|det(M)| = |det(D)].

For k > 0, let £, denote a full collection of coset representatives of Z°/M*Z* and Ry,
denote a full collection of coset representatives of Z°/D*Z*. Then d* = |L;| = | Ry,

7= Ju+Mz)= ] (j+ D'z, (3.1)

leLy JERK

and for any distinct Iy, ls € Ly, j1, j2 € R,

(L + M*Z°) 0 (Iy + M*Z%) = 0 = (5, + D*Z°) N (j, + D*Z%).

34
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As preparation of our study in this multidimensional setup, let us first derive several

lemmas on the properties of the collections £ and Ry.

Lemma 3.1. Let s € N and {\;, i};_, C N. Suppose that for every i € {2,...,s},
Nic1| Ay picalps and TT_y Nl 11—y i Then N\ for every i € {1,...,s}.

Proof. The lemma is clearly true for s = 1. Suppose that the result is true for all i < s.
Given the hypothesis for the case of i = s, we have \i|([[._, A:) and pr|(J];_, p;) and
(M T M) (rer TT5—y 124)- By induction, we would have Ay |py and (TT;_, Ai)[(IT;_, p:) and
consequently X;|u; for {2,...,s}. O

Lemma 3.2. For k > K > 0, there exists a choice of coset representatives of 7.5 | M*7?
and 7.5 | DZ* such that Ly = Ly_ i+ M* KL and Ry, = Ry_x + D¥ KRy respectively.

Proof. We construct a canonical choice of £ and Ry as follows. Let {e;}7_; be the
standard basis of the free abelian group Z° and f;, and g, be the i" columns of the
matrices M* and D" respectively. Therefore, {fx;};; and {gr;};_, are generators of
MP*Z# and D*Z? respectively. There exist invertible matrices Py, Q) € M,(Z), the ring of

all s X s matrices with integer entries, such that
QD"Pt = Ny = (P M Qi = BT MAQy, (3.2)

with N, := diag [)\Ek)} € M, (Z) having positive diagonal entries such that )\Z(-ﬁ)1|)\§k) for
i=1
i €{2,...,s} and det N}, = d* is the invariant factor form of M* and D* (see [33]). Let
e, and €] ; be the i™™ columns of the matrices P} and Q' respectively, i.e. {e} ;};_; and
{ek.i}i=, are bases of Z°. We define the set of s-tuples {f; ;};_, and {g; ;}i—; by
[flg,l"'fllf,s} :Mk ga [g;c,l"'g;c,s] :kal;lu

ie. {fi;}iz) and {g; };_, generate M*Z* and D*Z® respectively. Since M*Q] = PNy
and D*P,;' = Q' Ni, we conclude that f; ; = )\gk)e;’i and g ; = )\Z(»k)e’,;i forie {1,...,s},
respectively. We choose £, and Ry such that

Ek:{zmi€;,¢30§mi <>\§k),i=1,...,s}7

i=1

Ry = {Z rieg; 0 <1 < /\Ek),z' =1,...,s}, (3.3)
i=1

and order them in such a way that

S S S S

/ / 2 1
E miey ; < E Ni€ i E ri€g; < E i€k
i=1 i=1 i=1 i=1
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if and only if there exists a least integer i € {1,...,s} for which m; < n; and r; < t;
respectively. Therefore, we could list £; = {l;;}% 5" and Ry = {rg,;}"5" in ordered sets.

We claim that for all £ € N, N, = N*, where N := N;. This is clearly true for & = 1.
For ease of writing, we let \; := )\El) for every i € {1,...,s}. Suppose that the result

is also true for all i < k. We have det Ny = d*d, i.e. T, A" = T, AF VN =
[T, M\ = [[_, \F by the induction hypothesis. By Lemma 3.1, we have /\Z(k) =\
for every i € {1,...,s}.

Using our canonical choice of £, and R, for £k > K, we choose [ and jssuch that

l € Pl gLy i and j € Qf_ L. Consider the coset representatives Pyl = > mi€y .,
i=1
and Qi = > Ti€l;, where 0 <m; < MK _Tand 0<r <Af—1forie{l,...,s}.
i=1
This shows that 0 < m; + A %r; <A —1 and P70+ NFKQ, T, j lies in L. Therefore

[+ M*Kjliesin PL ;L. In the event that [+ M*Kj =0, ie. P I+ N*"5Q. 1 j=0,

since for i € {1,...,s}, each m; is a multiple of /\f_K , P,;TKZ must be the zero element
and this shows that any possible representation is unique. Finally, since |Ly| = d* =
d*Ed¥ = |L,_k||LKk]|, the representation existence is verified. O

Lemma 3.3. For 0 < k < K, the kernel of the surjective mapping ¢ : Lx X L — Lk
given by v : (1,7) — L+ ME=%j has d* elements.

Proof. Using the canonical construction as described in Lemma 3.2, let the set of coset

representatives Ly 1= {lkﬂ-}fio_l be chosen as in (3.3). We shall also use the invariant

factor form N* of M* as given in (3.2), where N¥ = Nf. Let Pl 0 = Y miel, € Lg
i=1

and Q" ,J = irieﬁm € Ly, where 0 <m; < A —Tand0<r; < Ne—1forie{1,...,s}
and the matriéz; Pk and Qk_y are given in (3.2). We shall consider the corresponding
epimorphism 7 : PL , Lxe x Q% , Ly — PL_, Ly given by 7: (1, j) — [+M%=*j. Suppose
that Pi’,7(1,7) = 0. Since Pl = NE*(—Qi",7), for each j, there are exactly d*

choices for [ and hence the kernel of 7 has d* elements. O

Let the s-dimensional circle group at level K be TS := R*/D¥(277Z°%) and for each
w € T3, define the pre-Gramian of the M~K7Z? shift-invariant system Ex(Ag) at level
K, given by (1.6) and (1.7), to be the matrix-valued function
‘]KyAK (Cd) = [@K,w,O] )
pEAK

where the sequence

P = dH{B(DF(w + 20 D"n)) bnez, (3.4)
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reduces to the standard fibre of ¢ at w (denoted by @) when K =k = 0 (see [4]) and

satisfies
S/O\O,w,k = Z ()/O\K,w+2ﬂ'j,k;
JERK
95K,w+27rj,k = {@S,W,k(")ljJrDKZs(”)}neZS>

k K

K K_ ko, (L _ K
@?{,w,k = d zd2"2{p(D G K)(D KW+27T”))}neZS =d 2Py p-Kyk—K- (3.5)

The pre-Gramian Jg 5, (w) is well defined for almost every w since Ax C L*(R?®) implies
that || @k .woll (z#) 18 well defined for almost every w € T} and every ¢ € Ag as shown
later in Lemma 3.5. The K-fibre of a closed M ~*Z* shift-invariant subspace V*(Ay) of
L*(R?®) for k > K generated by some countable set A, C V* = VE(A,) (VF(Ay) is written

as V¥ when the generating set is inferred from the context) at w € T% is defined to be
vf?l\w(Ak) = Span {Prwo ¢ € Ai}, (3.6)

and the definition is independent of the generating set and is well-defined for almost every
w € T% (see [4]). In the event that Ay = {d%%E}C_K(p(Mk_K) cp € Ak, l € Ly_k},
then

V;’?Hw(/\k) = Spﬁ{e*i‘“'MK_klMkk,K@K,w,k,K cp € A, 1 € Li_k}, (3.7)
where the modulation operator MY, : 1*(Z*) — I(Z*) at level K is given by
My a— {e DI M (Y o,
The Gramian of the set Fx(Ag) at level K for each w € T% is defined to be

MK,AK(W> = JK,AK(C‘))J;(,AK((‘U) = <$K,w,07¢K,w,0>l2(ZS) o, bEA K ’

Like the pre-Gramian, the Gramian Mg a, (w) is well defined for almost every w € T%.
The spectrum of the M ~5Z# shift-invariant space V(Ag) is defined (up to modulo mea-

sure zero sets) as
ox(VE(Ak)) == {w e T3 : [Pk wollizzsy > 0 for some ¢ € Ag} (3.8)

and only depends on the space and is independent of the choice of generators of the space
(see [4] and [43]).
We view the bi-infinite matrices Mg A, (w), w € T, as linear operators and in the event

of they being boundedly invertible, we denote their bounded inverses by My 4, (w)™!. (For
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those w such that the underlying operator is not well defined or is unbounded, we take

the norm of the underlying operator to be oo.) For the functions

MK:AK Wi ||MK7AK(W)|| ’ MI_(,AK FW ||MK7AK(W)_1H

defined on measurable subsets F' C T%, we consider their L. (F)-norm, where Lo (F)
denotes the space of all essentially bounded complex-valued functions on F'. These L., (F')-
norms are used to characterize the Bessel and frame properties of Ex(Ag). With the
exception of the modulation operator /\/llKk and the sequence @k, o, we shall leave out
writing the level K when K is 0. We shall let K > 0 for the rest of this chapter.

Theorem 3.4. [43, 45] Let A C L*(R®) be countable and consider the M~X7Z2 shift-

invariant system Er(Ak).

(i) The system Ex(Ak) is a Bessel system if and only if HMK,AKHLoo(T;{) < o0o. Fur-

ther, the Bessel bound is equal to d¥ HMK,AK“Loo(T;()-

(ii)  Assume that Ex(Ak) is a Bessel system. The system Ex(Ak) is a frame for
VE(Ak) if and only if 1/ HM;(7AKH
bound is given by d¥/ HMI_<,AK

Lo (o (VE(Ag)) < O Further, the lower frame

HL°°(0K(VK(AK)))' In particular, Ex(Ag) is a tight
frame for VE(Ag) if and only if its Gramian Mgz, (w) is an orthogonal projector

for almost every w € T?.

Theorem 3.4 outlines the main approach in our attempt to establish the connection of
real line signals to their periodization, i.e. we shall look at the properties of frequency

samples of functions, which in this case is the Gramian of fibres.

Lemma 3.5. Let K >0, k€ Z, | € Z*, f,g € LAR*) and f, := d> f(M*-). We have

—_—

(i) for almost every w € R?, (fk’);(wo(n) = f;’(wk(n),
(ii) for almost every w € R®, (ELf)"(w) = e MM (),
(iii) for almost every w € T%, (E,lff)%?w’0 = e_iw'MfklMlKkJ?f(’w,o,

. —iw- —k o~
(IV) <E]lgfa g> = f']r;(e w M Z<MlK,kff(,w,07/g\?(,w,0>lz(zs)dw7

2

f" dw.
K,w,0 12(z9)

© A=y




3.1 Fuclidean Space Formulation 39

Proof. We show (i) by evaluating for n € Z°,

—0 ~ ~

(f)gwo(m) = filw +20DXn) = d~2 f(D~*(w + 27 D%n)) = ., (). (3.9)

Part (ii) is established from

1

(BLNN@) = e [ S eat =

_ efiw-M—li/c\(w).

1

(27T) f( ) —iw-(t+M~ l)dt

Letting n € Z*, we show (iii) using (ii), i.e.

(BLE)Xo0(n) = (BLf)Mw + 27 D% n) = e e42mDEm M F (4 o D)
= e WML kawO(n)

By utilizing parts (ii) and (iii) and Plancherel’s theorem (see [42]), we show

(ELf0) = oy g = 2 [ e gt

nezs T

_ Z / —ilw2m D) M E 4 0 DERYG(w + 27 DEn)dw

nezs
i M=k -~ —
= [ e MY T o)l
;(nGZS

and hence (iv) holds and is justified by the verification of (v). The proof of (v) using

Parseval’s identity (see [42]) is as follows:

/ v / Z‘fw—i—QﬂDK dw—Z/
i 7 nezs
B Z /’H‘§(+27rDKn (W)‘ o= /S

Fle| do =112
nezs
Now, recall the quasi-affine system X7 (¥) at level K as defined in (1.6) and (1.7). We

observe that it can be expressed as follows:

2
(w+27rD%n)| dw

]

XL(W) = {d" 2p(M*(-—M %) e U, reZ k< K}U
{@3p(M* - —(M*Kr 4 1)) € U1 € Ly g,r € Z°,k > K}
= {dkfgw(Mk MRy e U r € 28k < K} U
{dep(M* - —r)  p € U, r € Z°,k > K}
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In particular, X?(V) := XJ(¥) is given as
X9 ={dFp(M*(- = 1)) p €W, r € Z° k < 0} U {d2p(M* - —r):pe W, r € Z°, k > 0}

The following result shows that the quasi-affine system X9(V) has identitical frame prop-
erties as the affine system X (V).

Theorem 3.6. [44] The affine system X (W) is a (Bessel system) frame for L*(R®) if and
only if its quasi-affine counterpart X4(W) is a (Bessel system) frame for L*(R®). Further,
the two systems have identical (Bessel) frame bounds. In particular, the affine system
X (V) is a tight frame if and only if the quasi-affine system X9(V) is a tight frame.

We shall illustrate below the similarity in the structure of the quasi-affine systems
X9(¥) and X7 ().

Proposition 3.7. The quasi-affine system X9(U) is a (Bessel system) frame for L?(R?)
if and only if the quasi-affine system X.(¥) is a (Bessel system) frame for L*(R®) with
the same (Bessel) frame bounds. In particular, X9(V) is a tight frame for L*(R?®) if and
only if X3 (V) is a tight frame for L*(R?).

Proof. Suppose that X%(W¥) is a Bessel system with Bessel bound B. Using the right
inequality of (1.1) on the function g := d~= f(M~%.) € L2(R®), where f € L%(R?), we
have

Bllgl’ = 303 > g d Bro( )+ 30 ST 30 S (g, db BT Bl (M)

:

k<0 reZs el k=0 r€Zs leLy, YET

=3 [Z (g, (=) + 30 3 (g dE (M =) - Z)ﬂ (3.10)
reZs e [ k<o k=0 leLy,

-2 Z[Z (g af et a3 S [(r af St —ar \]
rezs pevl k<o k=0 leLy,

= Z Z Z ’<f7 dk—%w(Mk . _Mk—Kr>>’2+Z Z‘OC’ dgl/}(Mk . —Mk_Kr o l)>)2
reZs Yev| k<K k=K lELy_K

Hence, we obtain

BIFE =3 S| S [ a S mrwariy [+ S0 S| atEpmwor| | @)

reZs Ypev | k<K k=K IleLy_ K

‘ 2

As f is arbitrary, X% (¥) is a Bessel system with the same Bessel bound as X?(V). In

a similar manner, the lower frame bound condition in (1.1) is shown to hold for X} (¥)
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in the event that X9(¥) is a frame for L?(R?®). For the converse, the inequality (3.11) is
equivalent to (3.10), if we let f:= d= g(M*.). O

Hence, the quasi-affine system X% (¥) is a frame for L?(R®) for every K > 0 if and only
if the quasi-affine system X (W) is a frame for L?(R®) with the same frame bounds. There-
fore, Theorem 3.6 is extended in the following corollary as a consequence of Proposition
3.7.

Corollary 3.8. The affine system X (¥) is a (Bessel system) frame for L*(R®) if and only
if its quasi-affine counterpart X (0) is a (Bessel system) frame for L*(R®). Further, the
two systems have identical frame bounds. In particular, the affine system X (V) is a tight

frame if and only if the quasi-affine system X3 (V) is a tight frame.

In other words, Corollary 3.8 shows that the wavelet representation of a function could
be expressed either in terms of the affine system X (W) or in terms of the many choices of
the shift-invariant quasi-affine system X3 ().

Next, we consider the semi-orthogonal setup of obtaining wavelets for L*(R®) from
FMRAs. The following proposition (found in [2] for the 1-dimensional single-generator
case of dilation factor M = 2) shows that as long as F(®) is a frame for V(®), then the
MRA {V*(®)} is an FMRA with uniform bounds.

Proposition 3.9. If E(®) is a (Bessel system) frame for V(®), then E({dgEligb(Mk) ;
¢ € ®,1 € Ly}) is a (Bessel system) frame for V(®) with the same (Bessel) frame bounds
as E(P).

Proof. Let g € V¥(®) and f = d~2g(M~*.) € V(®) and E(®) be a Bessel system for
V(®) with Bessel bound B. Then

SIS EG =D 3 gt

=Y i@ ary|

€75 pd €75 $ped €75 ped
k 2 - 2
=3 > | diEe | =3 3> \<g,dzE E,igzs(M'f-»( ,
IEZS $ped reZs leLy ped

where the last two sums follows from (3.1). Using the right inequality of (1.1), we have

S S S| dteEsar)| < BIAE =Bl

reZs €Ly, pED

and so E({dgE,igzﬁ(Mk) 1 ¢ € ®,1 € L}}) is a Bessel system for V¥(®) with the same
Bessel bound as E(®). Similarly, in the event that E(®) is also a frame, we could show

that the lower frame bound inequality of (1.1) carries over as well. [
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Lemma 3.10. Let W* be the orthogonal complement of VF(®) in VEF1(®). We have
={fe L*R%: f(M*)ec W’} (3.12)

Proof. For any f € VF(®) and g € Wk C Vk1(®), we have f(M~*) € V(®) and
g(M~*) € VY(®). Since f(M~*.) is arbitrary in V(®) and (d~2 f(M~*.),d 5 g(M~*.)) =
(f,g) =0, we deduce that g(M~—*.) lies in WP, O

Lemma 3.11. Let {V*(®)} be an MRA of L*(R®). For each k € Z, let W* be the orthog-
onal complement of VF(®) in VFL(®). Then the subspaces W* are pairwise orthogonal
and L*(R®) = @iey W

Proof. For k < n, and given any f, € W* C VF¥1(®) C V*(®) and f, € W", clearly
we have (fy, fn) = 0. Let Py be the orthogonal projector from L?(R?®) onto V¥(®). Then
Wk ={f—P.f : f € VF(®)}. Observing that limy .., P.f = f and limy_, o, Pp.f = 0,
we deduce that for any f € L*(R®), we have

f =Y (Peaf — Pif).

keZ

Therefore, the result of the direct sum follows since Py, — Py is the orthogonal projector
from L?(R®) onto W*. O

Proposition 3.12. Let {V*(®)} be an FMRA of L*(R%) and W* be the orthogonal com-
plement of V¥(®) in VEt(®). Let ¥ C WO be finite. Then X (V) is a (Bessel system)
frame for L2(R®) if and only if E(V) is a (Bessel system) frame for W° with the same

(Bessel) frame bounds.

Proof. (=) Assume that X (V) is a Bessel system with Bessel bound B. By Lemma
3.10, for every ¢ € W, dgE,lggZ)(Mk) lies in W*. Let f € W° be an arbitrary function.
Applying Lemma 3.11 shows that S 30 7 |(f, déErEw(Mk-» = 3 |{f,E"),

kEZ reZs leLy, rezs
where 1) € U. Consequently, using the right inequality of (1.1) for X(¥) on f, we obtain

YOS KL E W< B|fIP,

reZs v

and it follows that E (V) is a Bessel system with the same Bessel bound as X (V). In a
similar manner, the lower frame bound condition in (1.1) is shown to hold for E(¥) in
the event that X (¥) is also a frame for L?(R®).

(<) Suppose that E(¥) is a Bessel system with Bessel bound B. Lemma 3.10 shows
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that given a fixed k € Z, for any f € W* we have f(M~*.) € WY Using the fact
that (f,dz B (M) = (f,d2 (E')(M*)) = (d"5 f(M "), E') for every ¢ € ¥ and
applying (3.1) and the right inequality of (1.1) for E(¥) on d~2 f(M~*.), we have

MY dgErEéw(M’“-D’z =33 i db Bt 2

rELS IEL), YEY 1€Zs eV

< Bla-trar || = Bl (3.13)

Hence, for a given k € Z, E({d* ELy(M*.) : ¢ € W,1 € £;}) is a Bessel system for W*
with the Bessel bound B.

Next, for an arbitrary f € L?*(R®), by Lemma 3.11, f = > fi, where for each k € Z,
kEZ

fo € WE and if k # n, (fn, d2 ELp(M*.)) = 0 for all ¢ € U and [ € £;. Therefore,

MRS NI

kEZ 1EL5 peV kEZ LELs peV

=SS [t di B

kEZ IETS YT

2

S " dZ BLp(M*))

ne”

’2 (3.14)

It follows from (3.13) and Lemma 3.11 that

S [t dtBwrt| < BY 1407 = B IS (3.15)

k€EZ I€ZLs eV keZ

In a similar manner, the lower frame bound condition in (1.1) is shown to hold for X ()
in the event that F(¥) is also a frame for W?°.
[l

Proposition 3.12 (found in [2] for the 1-dimensional single-generator case of dilation
factor M = 2) shows that it suffices to ensure that E(¥) is a frame for W° in order
for the affine system X (V) derived from an FMRA to be a frame. We shall describe in
Section 3.4 on the construction of such frames using the corresponding periodic analogue
of FMRAs.

3.2 Periodic Formulation

For each j € R, define the pre-Gramian of the 2m M ~X7Z* shift-invariant system Ty ()
at level K given by (1.16) and (1.17) to be the matrix-valued function

Jian(5) = |Bucs]

)
PEQK
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where
Pr.j = {P(n) 1 przs(n) tnezs.
Based on the sequence Jk ;, we define the j™-polyphase harmonic of the function ¢ at

level K as

pri(t) =) Prcj(n)e™ (3.16)

nezs

We also define the j*'-space of polyphase harmonics at level K, @55;3' C L?(T*) con-

sisting of all functions with Fourier coefficients sampled on the lattice j + DXZ* to be
Oy = {fxy: [ € L(T")}. (3.17)
We further define the j*%-V,K subspace of polyphase harmonics at level K to be
Vor? == 057 NV, (3.18)

where VI is a 2r M K7 shift-invariant subspace of L?(T*) generated by some countable
subset Qg of L?(T?), i.e. V£ = VE(Qg).
The Gramian of the set Tk ({2x) at level K for each j € R is defined to be

MK,QK(j) = JK7QK(j)J;(,QK(j> = [<(1/5K,ja¢K,j>12(ZS) :
907¢GQK

The spectrum of the 2 M ~K7Z* shift-invariant space V5 (Qp) is defined as
ox(VE(Qk)) == {j € Rk : 1@k ll2ze) > 0 for some ¢ € Qp}. (3.19)

We view the matrices Mk o, (j), 7 € Rk, as linear operators and in the event of they
being boundedly invertible, we denote their bounded inverses by Mg o, (j)~'. (For those
j such that the underlying operator is not well defined or is unbounded, we take the norm

of the underlying operator to be cc.) For the Rx-periodic sequences

Moy 0 J = Mk, G, Mo, i d = | Mo ()|

on S C Ry, we consider their L (S)-norm, where L, (S) denotes the space of all bounded
complex-valued R g-periodic sequences on S. These L., (S)-norms are used to characterize
the Bessel and frame properties of T (k).

The next theorem is the periodic analogue of Theorem 3.4 and likewise we shall look

at properties of the frequency samples of the periodic functions.
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Theorem 3.13. [5] Let Qi C L*(T?) be countable and consider the shift-invariant system
TK<QK).

(i) The system Tk (k) is a Bessel system if and only if Mgl poc(r,) @ finite.

Further, the Bessel bound is equal to d% Ml poo (0 -

(ii)  Assume that Tk (k) is a Bessel system. The system Tk () is a frame for
VE(Qk) if and only if 1/ HMKQKHLoo (o (VE @) is finite. Further, the lower

frame bound is given by d /HM In particular, Tk (Qg) is

K| b e g @)
a tight frame for V& (Qx) if and only if its Gramian Mg o, (j) is d~5 times an

orthogonal projector for every j € Ri.
Lemma 3.14. Let K,k >0, and f,g € L*(T%). We have
() (TN = Mif,
(i) for everyl € Ly, and j € R, (TLf)R% = e_iQ“j'Mfkl./\/llK’ka;}J,

(i) for every L€ Ly, THf = 32 Tifiy = 3 e 27 M52 (Mg fic ) (n)el+P" )

JERK JERK nezs

(iv)  for everyl € Ly, where k < K, Ti.f = > Tifx;= > e_ﬁ”j'M_klfKJ.

JERK JERK

(v)  forevery j € Ry, (frj,9)r2(rsy = ([K.j» 9K.j) 12(T%) -

: 2 2
(Vi) X UTkf gews| = d% 3 [(fxg 9ras|” and [flzawy = 2 1fxillizeme

lelk JERK JERK

Proof. Part (i) is shown using (ii) for the case of K = j = 0. For (ii), let n € Z°. Then

we have

[ 3 K
(Tof)x5 () = (Tif)"(j + D"n) = (T}.f, ¢ iG+D%n)- >L2(']1‘S)
_ e—i27r(j+DKn)~M*kl<f7 ei(j+DKn)~>L2(TS) — e —i27(j+D¥n) klf(j + DEn, )

_ e—i27r(j+DKn)-M_li’c\[o( (n)
7.] :

For (iii), using (3.16) and (3.17), it is clear that T} f = > T} fx ;. It remains to check

JERK
that
l ]+DK t—2r M~k —i2wj-M k] —i2rDEn- M~k 7 i(j+DEn)-t
Ty fr (1) E fK ) J=e e fK,j(n)e( )t
T'LEZS neZS

We obtain (iv) as a consequence of (iii). Part (v) follows from Plancherel’s theorem, i.e.

(fK,j, >L2 Ts) = <{fK]( )}neZSa {/g\(n)}nEZS>l2(ZS) = <]/E\K,ja§K,j>12(ZS) = <fK,jng,j>L2(TS)-
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For (vi), we use (iv) to show that

2 —i2mj- M~ —i2mr- MK
Z |<T;cf,9>L2(1rs) = Z<Z e 2 lfK,jaQ)LZ(TS)<g> Z et lfK,r>L2(1rs)

leLk leLig jJERK reERK

— Z Z Z ei27r(7’—j)~M7Kl<fK7j’g)LQ('H‘s)<g,fK’T>L2(TS)

jERK reERK ZGL‘,K

= > d6,(frg 92w (9, Frer) 2.

JERK r€RK

Moreover, ||fl|7amey = ( 2 frjs Frzeey = 5 (frg Pz = % (Frgs Frog)rams).

JERK JERK JERK
]

Next, we examine the periodic quasi-affine system XJ_ . at level K given in (1.16) and

(1.17). This system could be expressed as follows:

ng,K = _gﬁbo(' - QWM_KT) t¢o € $g,r € LT U
{d2= 2oy (- — 20 M Kr) i ahy, € Upor € Ly, 0< k < K} U
{p(- — 2 M Fr) sy € Uy, € Ly, k > K,

since Lemma 3.2 shows that for k > K, j € Lx and | € Ly_g, ¥p(- — 2 M F(M*Ej +
) = (- — 2eM~Fr) for some r € L. In contrast with the quasi-affine systems of
L*(R®), we already have X3, = Xor, i.e. the quasi-affine structure of XJ_, for K > 0is
different from that of Xgmo. Therefore, we cannot expect to obtain results in the periodic
setting fully analogous to that of L*(IR®).

The next proposition is a partial periodic analogue of Corollary 3.8.

Proposition 3.15. Fiz K > 0. The periodic quasi-affine system X3 . is a (Bessel
system) frame for L*(T*) if the periodic affine system Xor is a (Bessel system) frame for
L3(T*) with the same (Bessel) frame bounds. In particular, X3, i 15 a tight frame for
L*(T*) if Xor is a tight frame for L*(T¢).

Proof. Suppose that Xs, is a Bessel system for L?*(T*) with Bessel bound B. Using the
right inequality of (1.1) on a function f € L*(T?), we have

B HTIETJC”i%Ts) > Z |<f7 T;(¢0>L2(’]I‘S) ? + Z Z Z |<f7 T;(Tliwk>L2(Tb)

$0E€Po k=0 leLy YTy

2

Then we have

K-1
BdK||f||i2(qrs) > Z Z |(f, T o) L2(r+) 2+ZZ Z |(f, Tie Tibw) 12 (re)

reLrg LopoEDg k=0 lEL) PV

YD D KA TRTiw) ey

k=K leLy YV

2
+

2

(3.20)
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Since Lemma 3.3 shows that each element in the codomain of ¢ : Lx X L — Lk given
by ¢ : (r,1) — 7+ ME~*] has a preimage of d* elements, we could express the sum of the

second summand on the right hand side of (3.20) as

K1
Z Z Z Z |(f, T Titow) L2 ’

k=0 reli €Ly eV

K—-1
=33 3N [ —2r MR (o MEED) o
k=0 r€Ly IEL), Y€V},
ZZ > ‘fd TKl/)kLmrs ;

? (3.21)

- Z Z Z |<f’1/}k('—27TM LQTS

k=0 relg leLy YipeVy k=0 reLg eV

independently of our choice of coset representatives. Next, the sum of the third summand

on the right hand side of (3.20) could be expressed as

SIS A TRT ) s | =dS 30N ST U Tk a0 |

k=K rcLy €Ly, YL, €V, k=K leLy YreVy

Therefore, (3.20) is equivalent to

B||f||L2T5 >Z[Z’ f.d™% i) L2(T) Z Z ‘de 5TK¢k>L2Ts

reL i LpoePo k=0 eV ]

+ Z Z Z ‘(fv Tli¢k>L2(TS) ?

k=K leL eV

(3.22)

As f is arbitrary, XJ . is a Bessel system for L*(T*) with the same Bessel bound as Xo.
In a similar manner, the lower frame bound condition in (1.1) is shown to hold for XJ_

in the event that X, is a frame for L*(T*). O

Proposition 3.16 shows that the periodic affine system X, must satisfy the frame

condition for all the j*" spaces of polyphase harmonics @27r given in (3.17), i.e

Allfie il G2 < D I Fics b0} r2ces) ONS re The) raesy

PoEPo k=0 I€ELhLEVy,

2
<B| fx il 72(1+(3-23)

for all fr; € ©%7, in order for the periodic quasi-affine system XI_ x to be a frame for
L*(T*).

Proposition 3.16. Fiz K > 0. The periodic affine system Xo. satisfies the (Bessel)

frame condition for @;;’j for every j € Rk if the periodic quasi-affine system XSW’K is
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a (Bessel system) frame for L*(T®) with the same (Bessel) frame bounds. In particular,
Xor satisfies the tight frame condition for eﬁi;j for every 7 € Ry if XquK s a tight frame
for L*(T?).

Proof. Suppose that X27T x is a Bessel system for L?(T*) with Bessel bound B. Next,
with the help of Lemma 3.14, the equivalence of (3.20) and (3.22) and using the right
inequality of (1.1) on a function f € ©X7, where j € Ry, we have

K 2 & K, 2
BIf e 2 Z[Z!U,d S Thao)a| + D0 D 3 (4 TRT ) 12
rel i

poEPo k=0 l€ELyr €Ty, ]
- Z Z ’(fK,T7 ¢0>L2(’]I‘s) ? + Z Z Z }<fK,r7 Tlil/}k>L2(’]TS) 2
r€ERK

)
RIS ) k=0 leL eV ]

and so (3.23) holds. As f is arbitrary, Xo, satisfies the Bessel condition for ©47 with the
same Bessel bound as XJ_ .. In a similar manner, the lower frame bound condition for

©%7 in (3.23) is shown to hold for X, in the event that X3, i is a frame for L*(T%). O

In practical applications, we could only utilize the restricted periodie affine system X2
given in (1.18) and also the restricted periodic quasi-affine system X% % given in (1.19)
and (1.20). Henceforth, it is also desirable to establish the analogue of Propositions 3.15
and 3.16 for these systems.

Proposition 3.17. Fix R > K > 0. The restricted periodic quasi-affine system Xg;fK
is a (Bessel system) frame for its closed linear span Vi if the restricted periodic affine
system X2 is a (Bessel system) frame for VI with the same (Bessel) frame bounds. In

is a tight frame for V&,

2w

particular, X » k18 a tight frame for VEif XE

Proof. Suppose that X2 is a Bessel system for V! with Bessel bound B. Using the right

inequality of (1.1) on a function f € V}, we have

R
Z Z (f, T Tik) 2|
k=0 leLy,

Yr€eWg

BT ey 2 2 10 Thcbobuaces [+

PoEPo
Then we have

K-1
Ba¥ (|5 > S0 | D [ Ttz |+ 3 S N [ T Tie) paes |

reLig LopoEDg k=0 l€ELy YV

R
Z Z Z |(f, Tie Tatow) 12 ?

k=K leLy YV

(3.24)
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Computing in a manner similar to (3.21), the sum of the second summand on the right
hand side of (3.24) could be expressed as

K-
Z Z Z Z |(fs TR Tir) 12crs) Z Z Z ‘(fy dgT}}Wﬁ?(Ts) 2,

k=0 reli leLy YV k=0 relg VeV

independently of our choice of coset representatives. Next, the sum of the third summand
on the right hand side of (3.24) could be expressed as

k=K relLi leLy VeV k=K IleLy VeV

Therefore, (3.24) is equivalent to

BHfHLQ(T)>Z[Z’ f.d7% Tiego) 12y Z > ‘f,d?’? K WUk) L2(1)

2]
reL i LooEdo k=0 eV

R
+ Z Z Z ‘(fv Tli¢k>L2(TS) ?

k=K leL eV

(3.25)

As f is arbitrary, qu;f}( is a Bessel system V;% with the same Bessel bound as X2. In a
similar manner, the lower frame bound condition in (1.1) is shown to hold for X&* Lk in

the event that X£ is a frame for V2. O

Likewise Proposition 3.18 shows that the restricted periodic affine system X must

satisfy the frame condition for all the j*" spaces of polyphase harmonics @ TN VR given

n (3.17), i.e

R
AllFrsl 72 s G0) e 40 0 D [ fics Thoe)

po€Po k=0 l€Lhr €Yy,

1(3.26)

for all fx; € @g;j N V,E, in order for the restricted periodic quasi-affine system Xg;rRK to

be a frame for V.

Proposition 3.18. Fiz R > K > 0. The restricted periodic affine system X1 satisfies
the (Bessel) frame condition for @K’] Vi for every j € Ry if the restricted periodic
quasi-affine system X K 1S Q (Bessel system) frame for its closed linear span Vi with
the same (Bessel) frame bounds. In partzcular X satisfies the tight frame condition for

@ N VE for every j € Ry if X2 x s a tight frame for VR
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Proof. Suppose that XQq;fK is a Bessel system V,% with Bessel bound B. With the help of
Lemma 3.14, the equivalence of (3.24) and (3.25) and using the right inequality of (1.1)

on a function f € ©X7 NV, where j € Ry, we have

R
B fl72s) > Z[Z]U,d-? ;¢0>L2m>\2+22 > | d T T e

2]
reL i LopoePo k=0 leLiypr €V

R
= Z [Z ‘(fK,T7¢O>L2(TS) 2 + Z Z Z }<fK,r7T]i¢k>L2(’]I‘S) 2

rERK LpoEDo k=0 leLy eV

Y

and (3.26) holds. As f is arbitrary, X2 satisfies the Bessel condition for ©57 N V,E with
the same Bessel bound as Xg;fK. In a similar manner, the lower frame bound condition
for ©57 NV in (3.26) is shown to hold for X£ in the event that Xg;fK is a frame for

Vir- O

We remark that a finite dimensional spanning set always forms a frame for its linear
span. Hence the conditions and results of Propositions 3.17 and 3.18 always hold. The
additional information supplied by these two propositions is about the preservation of the
(Bessel) frame bounds of the respective systems.

Let us now review several results on periodic MRAs and periodic affine systems con-
structed from them. The following states the requirements for Condition (i), i.e. nesting

property, of a periodic MRA to be satisfied.

Proposition 3.19. [24] For each k > 0, let @) = [gb?]p be a subset of L*(T*) and
m=1

vpy = (9§ )y be the corresponding polyphase harmonics given by (3.16). Then the fol-

lowing are equivalent for each k > 0.

(1) V(i) C Vo (Purn).

(ii)  There exists Hy1 € S(M*1)P%P such that

Op= Y Hei(DThy Ppsr- (3.27)

l€£k+1

(iii)  There exists Hyyy € S(D¥1)P*P such that

-~

Op(n) = Hyp1(n)®psr(n), neZ’. (3.28)
(iv)  There exists Hysy € S(DF)P*¢ such that

Ve = ) Hiy1(j + DFr)ogsrjeper, 5 € Ra, (3.29)

reER1

T
S P
where vy, j = [vk’j, . ,vk’j] .
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Our next proposition gives conditions which enable the affine system X5, to be derived
from the MRA {Vf ()}

Proposition 3.20. [24] For each k > 0, let O = [¢Zl]p and ¥y := [w,ﬂ " e
m=1 n=1

subsets of L*(T*) with W3, (V) := span Ti(¥;) and vf'; == (i )k and uf ; = (V) )k be

the corresponding polyphase harmonics given by (3.16). Then the following are equivalent

for each k > 0.
(0 WE(Ph) C Ve (Prs).
(ii)  There exists Gypq € S(M* )% such that

U= Y Grpa(DT Pryr- (3.30)

l€£k+1
(ili)  There ezists Gyy € S(DFT1)e*P such that

-~

Uy(n) = Grpr(n)Pria(n), n ez, (3.31)

(iv)  There exists Gyy € S(DF)e%P such that

Uk,j = Z ékﬂ(j + D*r)vgrjiptes  J € R (3.32)
reR1
) 1 ox 17T ) 1 p 1T
where uy, ; 1= [u,m-, - ,u,w} and vy ; = [vk’j, o ,vk’j}

It is shown in [24] that

L
‘/2]jr(q)k> = @ Spall {UIZ?] tmo= 17 s 710}7

JERE
1
W (U,) = @ span{up’; :m=1,..., 0} (3.33)
JERK

For j € Ry, the Gramians of the sets Ty (®;) and Tj(Vy) are given by

Mk(]) = |:<’Uk,j7 UkJ>i| =1 )
, ok
NG) = Gpa)] (3.34)
respectively. As in (3.18), for j € Ry, let us define the following subspaces of polyphase
harmonics
. 1 .
UStHI (@) = @ [@’;:1*”’3” N VQI’;H} =span {v;'; ;, pe, M =1,...,0,7 € Ry},
reER1
Vor (®1) 1= 03 NVyr =span{v:m=1,....p},

Wyl(0y) == 65/ NWE =span {ugy; -m=1,..., 01} (3.35)
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It is further shown in [24] that Vit (@) = VIE (@) @+ WE (¥,) if and only if
Use ' (i) = Vi’ (B1) &1 Wy (W) (3:36)

for all j € Ry, and (3.36) is equivalent to

Z Grr1(j + D*r)Myga (j + DFr) Hyga (j + DFr)* = 0 (3.37)
reER1
and
dim US 7 (@ 1) = dim Voo/ (D) + dim Wa (T},) (3.38)

for j € Ry. It is also inferred from (3.29) and (3.32) that

Mi(j) = Y Hir(j + D*r)My1 (j + DFr)Hi iy ( + DPr)*, (3.39)
reRq

Ne(i) = > Grsr(G + D*r)Mysr (j + D*r)Grga (j + DFr)*. (3.40)
reRq

We cite below from [24] the characterization of Ty (®y) being a tight frame in terms of
polyphase harmonics and the existence of a canonical choice of generators to satisfy the

criterion.

Theorem 3.21. [24] For each k > 0, let &) = [gbﬂ fn_l be a subset of L*(T®) and
U = Oy be the corresponding polyphase harmonics given by (3.16). Then Ti(®y) is a
tight frame for Vi (®y) and (Lo, o) r2ers) = 0 for allm,n = 1,...,p, m # n, and
l,r € Ly if and only if for all j € Ry, (vﬁj,vg’jhz@s) =0if m#n and HUZ?]»H;(TS) =0
or d7%, for all m,n = 1,...,p, that is, My(j) given in (3.34) is a diagonal matriz with

diagonal entries 0 or d=% for j € Ry,.

k
exist functions 0}, ..., 07 in VI (®y,) such that {T07 :m =1,...,p,1 € L.} forms a tight
frame for Vi (®y), and for allm,n=1,...,p and l,r € Ly,

Theorem 3.22. [24] For each k > 0, let @) = [¢m]p X be a subset of L*(T*). There

(TLO, TL0) oy = 0 if m # n. (3.41)

p

Theorem 3.23. [24] For each k > 0, let &) = [d)?]

be a subset of L*(T*). The
1
length of VF (®y) is given by

len(VE (®4)) = max{dim V;77/ (®;,) : j € Ry} (3.42)

With p, = len(Vy (®y)), there exist functions 0}, ...,0%% in Vi (®y) such that {T}07 :
m=1,...,px, 1 € Ly} forms a tight frame for V. (®y), and for allm,n =1,...,p. and
l,r € Ly, (3.41) holds.
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Theorem 3.24. [24] Let {VE (®,)} be an MRA of L*(T®) such that |Py| = p, and for
m=1,...,p, with ¢]' € &y and associated vy ; = (P} )k,; given by (3.16) and Hp €
S(DF)P*P . Suppose that for each k > 0, My(j) given in (3.34) is a diagonal matriz
with diagonal entries 0 or d= for all j € Ry,. Then for every k > 0, there exists @Hl €
S(DFL)rdxe that satisfies the conditions (3.37) and (3.38), and that Ny(j) given in (3.34)
and (3.40) is a diagonal matriz with diagonal entries 0 or d=* for all j € Ry.

As remarked in [24], Theorem 3.24 holds even when we begin with an arbitrary MRA
of L?(T*) as we can always change the spanning set T;(®;,) of the space V} (®;) to a tight
frame satisfying Theorem 3.21. Consequently, by Proposition 3.20, there always exists
W), such that T(Uy) is a tight frame for its closed linear span W4 whenever Wi is the

orthogonal complement of Vi (®;) in Vi (0y41).

3.3 Extension Principles

The conditions described from Theorem 3.21 to Theorem 3.24 are rather stringent for
obtaining tight wavelet frames since they eventually require (3.36) to hold for all possible
cases. Here, we shall describe extension principles for constructing tight wavelet frames
that allow us to preserve properties of the original MRA by relaxing the condition which
requires the finite dimensional spanning sets to be tight frames.

The following theorem which is essential to the proof of the unitary extension princi-
ple for L?*(T?%) has an equivalent formulation in Proposition 3.26 which requires weaker
conditions (i.e. (3.47) instead of (3.43) needs to be satisfied). The conditions given in the
theorem are known as minimum enerqgy tight frame conditions.

Ok

Theorem 3.25. [25] For each k > 0, let & = [qﬁ?]p and ¥y, = [zﬁg} be subsets
m=1

n=1
of VR ®,,1). Then the following are equivalent.

(i) There exist Hyyy € S(DM™N)P0 and Gy € S(DFM)0%P such that (3.28) and
(3.31) hold respectively, and

~

Le(j)*Li(j) = dla, j € R, (3.43)
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where for j € Ry, the (p+ or) X pd matriz ﬂk(j) is given by

Li(j) = Iiﬂk@] - [Zkﬂ(j +DFry) o L (j+ Dk'f’d)] ’
_Gk<J)
Be(j) i= |Huna(G + DAr) o B+ Drg)| (3.44)
Gr(j) = :ék+1<j +DFry) oo Grn(j+ Dk?”d)] )
and 11, ...,rq denote all the elements of R,.

(ii)  For all f € L*(T*%) with ox > p(d — 1), we have

SN AT =S e S [ T [P (3.45)
leLy,

m=11eLy4 m= m=11eLy

=

(iii)  For all f € L*(T*) with ox > p(d — 1), we have

p p ok
Yo D LTt ) T bt =) | D AL Tol) Tioy + Y (. Tt Tyt |- (3.46)
m=11€Ly 11 leLyLlm=1 m=1
Proposition 3.26. Given that there exist Hy1 € S(D*™1)P and Gyyy € S(DFT1)erxe
such that (3.28) and (3.31) hold. For each j € Ry, suppose that rank My(j) = q(j),
rank Ny, (j) = p(j) — ¢(j) and rankMy41(j + D*r) = p(j,r), where r € Ry, and there
exist p X p unitary matrices Uy 1(j + D*r) such that the 15¢ p(j,7) x p(j,7) block of
M1 (j+DFr) = Upy1 (54 DFr)My i1 (5 + DFr)Upy1 (j+ D*r)* consists of nonzero diagonal
entries with the remaining blocks being zero matrices. Let ri,...,7q € Ry and define
the p x p block diagonal matriz I(’](j) = diag(Zy(j), 0p—q()), the or x or block diagonal
matriz I o) = diag(Lp(j)—q(j)> Oor—(w()—q())) and the pd x pd block diagonal matriz
Ly = a8y - Do)
[z’)(j’ru) = diag(Lp(jru)s Op—p(ir,)) - Assume that

N ()" Ly 0 Ly 0
N 0 I
p(7)—a(d)

p(4)—aq()
for all j € Ry with Ly(j) defined as in (3.44) where

where for p = 1,....d, the p X p block diagonal matrix

p(J

L, (j) = diag(Ux(5), Va(5))La(j)diag(Ups1 (j + D*r1), ..., Upa (5 + DFry)),

Ur(j) and Vi(j) are pX p and ox X o unitary matrices such that the 15 q(j) x q(j) block of
Ur(7)Mi(7)Uk()" and the 1% p(j) — q(j) x p(j) — a(j) block of Vi(7)Nk(j)Vi(j)* consist of
nonzero diagonal entries with the remaining blocks being zero matrices respectively. Then

the equivalent conditions of Theorem 3.25 are satisfied.
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Proof. 1t suffices to verify that (3.43) holds for any given j € R;. We define the p x p
matrices Gy, ,(j + D¥r) for m = 1,...,d and r € Ry, such that G, (j + DFr,,) =
V(I - L)) = Viddiag (0p(; o)y Lp—p(irm)) and ék+1(j + D*r) = 0 for r # r,,. Next we
define

~1/ =~/
IE () : Hy oy (j+ DFry) -+ Hyyy(j+ DFrg)
k\J) = | 2~ o~
G (J + Dkrl) o G (Ut Dkrd)

~/ ~ ~/ ~
where Hy ., (j + Dbr) = Ly Hia (G + Dkr)lg/)(j,r)7 G (4 + DFr) = Ly —a() G (U +
Dkr)lzg(j,r)’ Hi (G + D7) = Up(j)Hrsr(j + D*r)Upia(j + D¥r)*, G+ Dfr) =
Vie(3)Gri1(j + DFr)Upy 1 (j + DPr)* and the extended wavelet mask

~/
~ . k \* ~/ =1 ~d
Gep(J + D) = [Gk+1<j + Dkr>* GG+ Dk?”)* o Gt Dkr)*] '

We could verify that

Ly (j) L (5) = L)L ()"

/ !
0 Lgi—an) L O Logy—ap)
=1 =~d ~1 ~1
Gk+1(j —l—Dkrl)* Gk+1(j + Dkrl)* Gk+1(j +Dk7,1) Gk+1(j —l—D’“rd)
~1 ' ~d . ~d ' ~d
GG+ D) oo GG+ DMra) | [Gra G+ DFra) oo G (j+ DPra)

0

We remark that the unitary matrices Uy, 1(j + D*r), Up(j) and Vi (j) always exists as
the matrices Myy1(j+ D*r), My (j) and Ni(j) are Hermitian matrices. We also note from
(3.40) that the number of wavelets generating the wavelet subspace remain unchanged

since

~ e~ =/
NL() = Y GG+ DM, (G + DF7) Gy ( + DFr)” = diag(Ni (), 0pa),
reRq
i.c. the rank of the matrix Nj(j) is the same as the rank of Ny ().
We state the unitary extension principle (UEP) for L?*(T*) here. The main require-
ments for the UEP to hold are the refinable functions eventually “covering” the frequency
domain “uniformly” and the columns of the extended mask I/[:k(j ) being orthonormal on

the spectrum of Vi (®y.,,) for every k > 0.
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Theorem 3.27. [25] For each k > 0, let Oy, := [gbﬂp and Wy, := [gﬁ}g}
VE (Dy01) with op > p(d — 1) satisfying (3.28) and (3.31) for some Hyyq € S(DFH1)pxe
and Gry1 € S(DM1)exr respectively, and

Ok
be subsets of
n=1

k "L~ 2
]}Lrgod mX::l ‘gb’,f(n)‘ =A>0, neZ. (3.48)
If for every k > 0 and for each j € Ry, the (p + or) X pd matriz ﬁ:k(j) as defined in
(3.44) satisfies Ly(j)"Ly(j) = dl,q, then the periodic affine system Xon = {¢o : ¢ €
O} U{Tiby Yy, € Uy, l € Ly, k > 0} as defined in (1.15) forms a tight wavelet frame for
L*(T*) with frame bound A derived from the MRA {VE (®1)}rso-

Next, in the theme of using appropriate transformations to obtain new wavelet frames

from existing ones, we derive the generalized oblique extension principle (GOEP) for
L3(T#).

Theorem 3.28. For each k > 0, let &) = [qbzn] ;:1 and Wy, = [w}g] ik:l be subsets of
VE (Dy01) with op > p(d — 1) satisfying (3.28) and (3.31) for some Hypq € S(DF+1)pxe
and Gpp1 € S(DF)0%P respectively, and suppose that (3.48) holds. Define EI;?~C = 0,
and {I\/; = Uy, where O, € S(D*)P** and O, € S(DF)ekxer with 0, > p(d—1), O1(j)
being invertible for each 7 € Ry and

~

lim ©,(j)0r(j) =1, jez. (3.49)

k—o0

If for every k > 0 and for each j € Ry, the (p+ ¢,) X pd matric

£4.) = ding (64.(7), (1) Ex()lins (6401 () 1] (3.50)

m=1
with Ly (j) as defined in (3.44) satisfies ]/I:%(j)*f[:%(j) = dl 4, then the periodic affine system
Xbo=Agy: oh € DY U{Ti, ), € Wi, l € Ly, k > 0} forms a tight wavelet frame with
frame bound A for L*(T?) derived from the MRA {VF (®})}x0.

Proof. 1t is clear that EIS;C and {I\/; satisfy (3.28) and (3.31) with

~ ~ -~

®},(5) = 0k () Pr(§) = Ok(1) Hip1(5)Oki1(7) 1 Ok1 (1) @1 () = Hyppy ()@}, (4) (3.51)

~ ~ ~

() = () T(5) = () Grrr (7)Ons1 (1) 1 () Brr (5) = Gryr (7)Phy1 () (3.52)
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for j € Z°.
For a given j € Z° and € > 0, (3.48) implies that there exists K > 0 such that for all
e

(dkcbk Y, (j A‘ <e (3.53)

The condition (3.49) implies that there exists K’ > 0 such that for every k > K,

18k0)8G) = 1| = max |@4(7) Okli))man — S| < € (3.54)
max m,ne{l,....p}

From (3.53) and (3.54), we are able to make the following estimate

‘dkc/IS;( KA A‘ ‘d’“(I)k ) (Or(j)O(j) — L)y ‘ ’dkcbk ) d(j A‘ (3.55)

For the sake of convenience, let us denote (/I\Dk( ) = [gbm( )} as a vector in R”. For all
m=1

k> max{K, K'}, we could utilize (3.54) and the Cauchy-Schwarz inequality to bound
847" (Bk()Bkh) — 1,)Bu ()| < & [8u(i)| [|B1()Beh) — 1)8u)
2

)|, < pedBus)"Buly):

Re RP

-~

< pdk H(@)k(J)*@k(]) —1,)

max

Since (3.53) and (3.55) imply that ’d@;( CID’ A‘ < €lp(A+¢€) + 1] for all £ >
max{ K, K}, consequently

P
lim d* § :
k—oo

m=1

Hence the MRA {V} (®),) }r>0 satisfies the hypothesis of Theorem 3.27 and X}, will be a
tight wavelet frame for L?(T?) if L, (7 )*IL/ (j) = dl,q for every k > 0 and each j € Ry. O

2
=A>0, jeZ
Rp

)| = ()

k—o0 ’

Suitable choices for O and € from S(DF)P*r and S(D*)%*¢ in Theorem 3.28 could
be unitary matrices and matrices with unitary columns respectively. This leads us to the

following construction and corollary.

Corollary 3.29. For each k > 0, let @) := [¢}}]pﬂ and Uy = [djg} Qlil be subsets
of VI (®y,41) with o, > p(d —1). Let the affine system Xar as defined in (1.15) be a
tight frame for L*(T®) derived from the UEP with {V{ (®)} x>0 as the underlying MRA

~ H ~ ~ o~
of L*(T®) and Ly, := [AkH as the combined MRA mask. Define @ = Us, ®), and
k+1

\Tfﬁe = ﬁq,k\flk, where ﬁq;k € S(D*)P** and ﬁ\pk € S(DF)%xe are unitary matrices and
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matrices with unitary columns such that o, > p(d — 1) respectively. Then X} = {¢ :
Gy € LY ULTI), < oy, € Wil € Ly, k > 0} is a tight frame for L*(T*) derived from

the MRA {VE (®))}r>0 using the GOEP with the combined MRA mask Lkle =

where [/-LQH = ﬁ@kﬁk+1ﬁ$k+l and @;H = ﬁq’k@k+1ﬁ$k+1'
Proof. In order to utilize Theorem 3.28, we let @k = l/j@k and (Alk = (A]\I,k Since @k(j) is
unitary for each j € Ry, (3.49) holds. Next, it is clear from (3.51) and (3.52) that (/15; and
U satisfy (3.28) and (3.31) with

() = s (DPs (), U0 = Grna(DWnn (), €2

This shows that by Propositions 3.19 and 3.20, the affine system X} _ is obtained from
the MRA {VF (®})}r>0. Let Li(j) and L .(7) be given as in (3.44) and (3.50). We verify
that for all £ > 0,

L) Lh() = B BLG) + GL(5) Gil) = dl
holds for all j € Ry. This is true since for a given £ > 0 and j € Ry1,
i G) i (G) + Groin () Cra () = Uy (5) [ B () U, (3) Ui, () i ()
+Gi1 (1)U, () O (DG (3)| Uy ()" = Uy ()L, 0o, () = .
and for a given k£ > 0, j € Ry and r, s € Ry with r # s,
Hiy1 (5 + D) Hi 3 (j + D*s) + Gy (5 + D) Gl (7 + D)
= Us,..,( 4+ D) | Hia( + D¥1)" U ()" U (1) B (G + D)
+Gr1(J + D) U, () U ()G (G + D) | Us,., (G + D)
= Usy,,(j + D*1)0,Us, (j + D*s)* = 0,.
Therefore, by Theorem 3.28 (GOEP), our result is true. O

The choice of the matrices Oy(0) = I, and Q) = I, for all j € Ry and k > 0 in
Theorem 3.28 leads to the following oblique extension principle for L*(T*).

Corollary 3.30. [25] For each k > 0, let ), := [(ﬁm} and Uy, := [zpk} be subsets of
-1 n=1
VI (®pyr) with op > p(d — 1) satisfying (3.28) and (3.31) for some Hyyq € S(DFF1)rxe
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and Gy € S(DF)0%P respectively, and suppose that (3.48) holds. Define ;I\Dj,€ = 0, Py,
where O, € S(D*)P** are invertible matrices such that

lim 6,(j)0r(j) =1, jez, (3.56)

k—o0

and C:)O(O) = 1,. If for every k > 0 and for each j € Ry, the (p + o) X pd matriz

~ A ~ . d
Li(j) = diag (Oc(7). L) Le(y)ding |Sen() ] (3.57)
with L, (7) as defined in (3.44) satisfies ]/I:;g(])*f[:;(j) = dl,q, then the periodic affine system
Xop = {o : ¢o € Do} U{T}py : b € Uy, 1 € Ly, k > 0} as defined in (1.15) forms a tight
wavelet frame for L*(T*) with frame bound A, derived from the MRA {VJ (®})}r>0-

Proof. Since O, € S(D%)P**, it follows that Og(j) = Op(0) = I, for all j € Z°. Conse-
quently, EI\D()(j) = @O(j) for all j € Z°, i.e. ) = @y and the result is verified. O

3.4 Periodization Connection

The Poisson summation formula (see [42]) states that periodization in the time domain
is the same as sampling in the frequency domain and this will be our chief motivation of
this section. Since the formula requires a certain amount of decay in the time domain, we
need to impose a decay condition on our function spaces. To this end, let K,k > 0 and

for every ¢ € Ay C L**(R®), where Ay, is given as in (1.7) and
L2(R*) = {f € LAR®) : f(t) = O((1 + [t])~ "), > 0}
we define the 27 M ~XZs-periodic function
Prwi(t) =Y Pran(n)e™M (3.58)

nezs

where w € T%\A is such that |A| = 0 and the Fourier coefficients

Pra(n) = (P o) (3.59)
given in (3.4) lie in I2(Z*). In the event that o), = d2(M*-), then according to Lemma
3.5, Prwk = $% ox- Formally, the Poisson summation formula shows that ¢, =
Py as-x [(pk (%) e_i%}, where Py p-x @ LY(R®) — LY(T*®) is the 2r M % Z5-periodization
operator given by

Poenr-x o f > (2m)7! Z f(- =2 M %n).

nezs
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The verification formally is as follows:

Prcui(n) 27r @) / 2 o ( (¢ —2mM” m>> oz (12 Hm) oiDfnt gy

—K meZs
1
2 s+1 Z/ ( (t—27rM m)> eanw (t=2r M~ Km) _IDKntdt
ﬂ) mezs
1 / O < €T > e%w me—lDKn (a;+27rM7Km)dx
27r)s+1 — ar K o

1 T . 1 | B}
S (wt2rDEn)w 3. —i(w+2rDKn)-t
(27T)SH /]Rs vk (27r> ¢ dz = (27)® /Rs i (t)e dt.

In the event that ¢, = d2@(M*), we have

eryamatn =dt [ o (b ey = gt [ @i,

E]

IMES

e / o (t) e DM AmD gy — =3 5(D M (w + 20 DK n)).

(Note that (o) ;(n) = @ur(j+D%n) = (To\k)o’w’o(j—l—DKn).) Since 2 M ~EZs-periodic
functions are 2wZ*-periodic functions, it suffices to study the periodization connection for
the 2wZ’-periodic case. To this end, let us denote ¢, 1 = ¢ and define the set of

functions A, x by
Ao = {Quk - 0 € Ak}
and its closed 27 M~ Z* shift-invariant span V5 (A, k) by
‘/QI;w(A k) = Vos (Ao ) :=8pan Tk (Aup)-

We shall now consider the shift-invariant system E(®) U Xo(V) obtained from the
MRA {V*(®)}, where Xo(¥) is given in (1.5). Define the periodized affine system X, of
a shift-invariant system F(®)U Xo(V), where w € T%, to be

X, = {tuo: ¢ € PYU{Tibos 0 €V, 1€ Ly, k >0} (3.60)

The corresponding periodized quasi-affine system X?(,w of a shift-invariant system E(®)U
Xo(V) at level K > 0 is defined to be

X}I{M = TK(QK,w)
which consists of all the 27 M ~57Z# shifts of

Qkw = {d 2¢ug:d€PIU{d? 2 €V:0< k< K}U
{Tibop v €V, 1€ Ly g, k> K}
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Lemma 3.31. Let k,l € Z° and f,, € L>*(R®). Then
() Por [Bifi (55) e7'5] = e M T f
(ii) for almost every w € T, (e” M Tl f ) = e*i“"M_klMé’kﬁ.

Proof. Part (i) follows from Por [ELf (5=) 72| = Par [fu(5= — M *l)e7"5]. Since
Lemma 3.14 shows that Mékﬁ\k is the sequence of Fourier coefficients of T} f, s for
almost every w € T* and Lemma 3.5 shows that (E}fi)(,,0 = e_iw'M_kle)’kf/w\,k, part (ii)

holds. [l

A range function is a mapping J : T® — {closed subspaces of 1>(Z*)}. The mapping
J is measurable if w — (P(w)a,b)z2(z+ is a measurable function for each a, b € I*(Z?),
where P(w) is the associated orthogonal projection from [?(Z*) onto J(w). Therefore,
this means that measurability of J depends on the measurability of the projection of

uniform samples in the frequency domain.

Theorem 3.32. [4] The closed subspace S of L**(R?%) is shift-invariant if and only if
S ={f € L*R°): fng € J(w) for a.e. we T}, (3.61)

where J is a measurable range function. There is a one-to-one correspondence between S
and J by identifying range functions which are equal almost everywhere. Furthermore if

A C S is a countable set that generates S, then
J(w) =span{@owo:p € A} forae weT.

Theorem 3.32 essentially says that two functions f and ¢ lie in the same closed shift-
invariant space if and only if their corresponding uniform frequency samples differ by a

set of measure zero.

Theorem 3.33. [4] Let V be a closed shift-invariant subspace of a closed shift-invariant
subspace S of L>*(R®) and let W be the orthogonal complement of V in S. Then W is a
closed shift-invariant space, §Hw and Sar,, are the orthogonal sums of ‘A/Hw and /I/I7||w, and

Vorw and Wy, respectively for almost every w € T¢.

Theorem 3.33 says that uniform frequency samples and the corresponding periodization
of two signals are orthogonal except for a set of measure zero if the signals are orthogonal

to each other.
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Corollary 3.34. Let V be a closed shift-invariant subspace of a closed shift-invariant
subspace S of LQ’O‘(]RS). Then ‘A/Hw and Var,, are subspaces of §Hw and Sor,, respectively

for almost every w € T*.

Proposition 3.35. Let V and S be closed shift-invariant subspaces of L*>*(R®). If 17||w
is a subspace of §Hw or Var o 15 a subspace of Sax . for almost every w € T°, then V is a

subspace of S.

Proof. Suppose that ‘A/Hw C §||w for almost every w € T* and let f € V. By Theorem 3.32,
J?o,w,o € J(w) for almost every w € T*, where J is a measurable range function given as
in (3.61). If f ¢ S, then there exists A C T*® such that |[A| > 0 and ]?o,w,o ¢ J(w) for all

w € A, which is a contradiction. O

Corollary 3.34 and Proposition 3.35 state that periodized subspaces constructed us-
ing uniform frequency samples of signals satisfy the nesting property except on a set of
measure zero if and only if the subspaces containing the signals also satisfy the nesting
property.

Theorem 3.36 and Corollary 3.37 state that a set of functions is a frame for their
closed linear span if and only if the periodization of these functions is a frame for the
corresponding periodized subspaces constructed using their uniform frequency samples

for almost all possible samples.

Theorem 3.36. Let V(A) be a closed shift-invariant space generated by some countable
set A C L**(R®). Then E(A) is a (Bessel system) frame for V(A) if and only if A, is
a (Bessel system) frame for Vor(Ay o) with the same bounds for almost every w € T*. In
particular, the former is a tight frame if and only if the latter is a tight frame for almost

every w € T°.

Proof. Suppose that E(A) is a Bessel system with bound B. By Theorem 3.4, the norm
of its Gramian My (w) = (@0, @)lz(zs) sen is bounded above by B for almost every
w € T°. Since the Gramian of A, satisfy My, ,(0) = Mj(w), we conclude using Theorem
3.13 that A, is a Bessel system with bound B for almost every w € T®. Similarly, if
E(A) is a frame for V(A) with lower bound A, Theorem 3.4 shows that ||[Ms(w)™!|| is
bounded above by A~! for almost every w € o(V(A)) and A, ¢ is deduced to be a frame
for Var(Ay) with lower bound A for almost every w € T* after a repeated application of
Theorem 3.13. For the converse, from Theorem 3.13, we shall have HMA%O(O)H bounded
above by B in the former and HMAw,O 0)~* || bounded above by A~! in the latter for almost

every w € T°® and the argument is reversed using Theorem 3.4. O]
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For the rest of this chapter on the periodization of wavelets from FMRAs, we shall
consider the more general setting of nonstationary wavelets as periodic wavelets are non-

stationary.

Corollary 3.37. For k > 0, let &, C L*>*(R®) be countable. Then E({ELpx : @1 €
i, l € Ly}) is a frame for VE(®) if and only if Tp(Puy) is a frame for Vi (P, )
with the same bounds for almost every w € T*. In particular, the former is a tight

frame if and only if the latter is a tight frame for almost every w € T*. In addition,
VE(Dur) = {fuo: ﬁ; € \Zﬁ(@k)} for almost every w € T*.

Proof. For a given k > 0, let A = {ELpy : ¢ € ®,1 € L;}. Using Lemma 3.5 and
according to (3.59), the fibre ‘A/”’fu(@k) is the closed linear span of {e_i“"MfklM&k@ :
or € Dy, l € Ly}, which relates to the Fourier coefficients of A, = {e*iw'M_le,igow,k :
o € Pr, 1 € Ly} for almost every w € T?, as verified by Lemma 3.31. Therefore, Theorem
3.36 shows that F(A) is a frame for V*(®y,) if and only if Tj,(®,, ;) is a frame for V¥ (P, 1)

with the same bounds for almost every w € T*. O]

Lemma 3.38. [43] Let A(w) be a measurable Hermitian matriz-valued function for almost
every w € T*. Then there exists a measurable unitary matriz-valued function U(w) such

that U(w)*A(w)U(w) is a diagonal matriz for almost every w € T*°.

Corollary 3.39. For k > 0, let ®;, C L*>%(R®) with |®| = p. There exist functions
{0myr . C VF(®y) such that E({ELOP - m = 1,...,p,1 € Ly}) is a tight frame for
VE(®y) and for allm,n=1,...,p and l,r € Ly,

(ELOR, BiO7) =0, if m # . (3.62)

Proof. The proof is essentially that of Theorem 3.22 with the additional requirement that
the functions {07"}" _, are constructed in the following way to be measurable. With
Corollary 3.37 in mind, we shall only consider an arbitrary w € T*\ A, where A C T* with
|A] = 0 such that for every w € T*\A and k > 0, Vi (®,,) is a subspace of L?(T*). Fix
j € Ri. By the positive semi-definiteness and Hermitian property of M, x(j) expressed
in (3.34), Lemma 3.38 shows that there exists a p x p measurable unitary matrix U, ()
such that

Uk (Map()Uas () = diag [x2 ()] (3.63)

m=1
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where AL ,(7),..., A ,(j) are the eigenvalues of M, x(j) which are always nonnegative.
Form =1,...,p, define 37, (j) by

n () e { DS EG) £ 0,
ok 1 A7 (5) = 0.

. . . p . . . m.n .
Letting Bu(j) = diag |37,(7)|  and Cup() i= Bus)Uus(i) = |25(7)]
(3.63) shows that

. . o\ K . m . P
Co()Ma()Cu)” = ding [7,()] (3.64)
where 67 (j) = 0 or d*form=1,...,p. Form=1,...,r, we define
p
Wy ;= ZCT,}?(j)vﬁ,k,p (3.65)
n=1

which lies in Vi (®,, ;) using (3.33). With the invertibility of C,, (j), we have VJ¥ (@, ;) :=

span{wly ;:m=1,...,p,j € Ry}. Form =1,...,p, define
O o= > Wl (3.66)
JERK

Therefore {07}, C Vi (P x) and {w]y . :m =1,...,p,j € Ry} is the corresponding
collection of polyphase harmonics. Since (3.64) and (3.65) show that the matrix
p . . -\ %k
(wgfkﬂ., wZ,kJ)Lz(Ts)] T Cok(J)Mu k(1) Cu () (3.67)
is diagonal with diagonal entries 0 or d=* for all j € R, Theorem 3.21 implies that for
almost every w € T*, {T}0]), : m = 1,...,p,l € L} forms a tight frame for Vi (P, ),

and for all m,n=1,...,pand [,r € Ly,

<Tli9:;n7k’

T£037k>L2(TS) =0 lf m 7é n.

Consequently, Lemmas 3.5 and 3.14 show that for all m,n = 1,...,p with m # n and
l,r € Ly,

m AN —jw-M~k(l—r Am r /;l
<Ell€9k7Ek6k>:/ e M )<Mé,k9k 0,w,0 O,keko,w,0>12(zs)dw
:/ eiw'Mik(T_l)<Mf),k9/wm,\ka S,k@;ﬁ?(zﬂdw
:/ eiw-M*k(rfl)<T]i Zk7T£QZ,k>L2(TS)dw:0’

and E{ELOT : m = 1,...,p,l € L;}) being a tight frame for V*(®;) follows from
Corollary 3.37. O
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We emphasize that the “almost every” condition in Corollary 3.37 is essential. The
result does not hold, for instance, if the lower frame bound of T (P, x) is arbitrarily close
to zero for some w belonging to a set of positive measure. This could be seen from the

following example for s = 1 and M = 2.

Example 3.4.1. Let ¢, N € N be such that ¢ > 3 and ¢ mod 2 = 1. Noting that
[log, c2V] > [log,2V] = N and k > [log, 2V implies that 28 > ¢2V, construct the
L?*(R) functions ¢, = 251[0,021\@(2’“-) = 251[0 coN-ky, Whose corresponding Fourier trans-

forms are given by

[STE

— o _k 1 _ —i2_kwc2N:| . |: . _iCQN—k:wi|
Orlw) =27 i2-kw [1 © T iw L—e )
which leads to
’Cbk(w)) = E [2 — 2C0802N_kw] = 7 [Sln ON- k;] ’

whose zeros are located at w = 2r225N where n € Z\{0}. Observe that w + 272" =
QW@ZIC_N and this shows that the zeros are 2m2* periodic.

Since

k
Gp = 22 |:1[0’CQN—(I€+1)) + 1[62N—(k+1)’62N7k)]
1 1 1 1
= 273 + 2 2 (- — 2V ) =272 273 ER 6y,

we have refinability for the ¢)s

— 2
Since‘¢k(w—l—27r2kn)’ < (222(,64) forn € N, )m + 2m2Fn )‘ <[27r2ik(—§+n)]2forn< -2

— 2

and ‘¢k(w — 27r2k)‘ < ok+2 [%} , by Weierstrass M-Test, the Gramian My, 4, (w) of the
set Ej(¢r) is a continuous function. For k& > 0, as or has 212F-periodic zeros My ¢, (W) is
not bounded below away from zero and by Theorem 3.4, the Bessel system Ej(¢y) is not

a frame. Using the periodization method given in (3.58), we obtain

25 (1 — e 2" ") (1 — ) Mgom(t)e 5 if0 < k < [log, 2"],
wt

23 Lo 2rean—k)(t)e ™ 2x itk > [log2 CQN—‘ )

(27) pu i (t) = {

Noting that for 0 < k < ﬂog2 CQN—‘, we have

c2N-k_1

& - — . —iwm,  — et
(27)Par (22 1 g con 1y ((2) 1 )e™ 2 ](1) = 2

1 [—2mm,—2mm+2mc2N k) (t) e

NES

3
Il
o

e2N=k_1
k : iwt
2 e WM | o7 o,

3
Il
=)
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For w € (0,27) or n # 0, the Fourier coefficients of ¢, are given as

25 —iwc2N—Fk : N
—[1—6“’6 ] 1f0§k:<’—log202 -‘,

o i(w+27n)
(Zﬁ)gbw,k(n) - k .
i(w—?—;rn) [1 - e—l(w+27m)c2N_k:| itk 2 [10g2 C2N—‘,

which leads to

‘(2W)$\(n) 2 B (wikQ(Wz_zlP [1 — COS chN_k] if0< k< ﬂog2 CQN—‘,
w,k - .
(wifi)? [1—cosc2¥F(w +2mn)] ifk > [log, 2V],
B (wikz(:ip [sin® w2V ] if0 < k < [log, 2V,
a (wikZ(jZl)Q [sin® 22V F(w + 2mn)|  ifk > [log, c2V].

We also confirm that for k = ﬂog2 CQN—‘ — 1, ¢, is refinable, i.e.

—iwc2N—k —iw\—
Do = Z (1—e™ ) (1 —e™™) 1Tli+1¢w,k+1'

l€ﬁk+1

Let j € Ri\{0} and p € Z. For 0 < k < [log, ¢2"|, we have

k
—_ 25 i M
27) o e (j + 2°p) = - ; [1_e_“"‘32 },
(27) oo e (7 p) i[w+27(5 + 25p)]

and QTw\k(j +2Fp) =0if w=0. For k > ’—log2 CQN-‘, we have

925
ijw+2m(j + 2Fp)]

(QW)@(]' + 2kp) = [1 — e_i(w+27rj)c2N*k} .

Therefore ¢y 4(j + 26p) = 0 if w + 27j = 2m2(2FN). Since j € Ry \{0}, we must have
w=0and j = 225N where n € {¢,2¢,..., (2" =1)c},ie. je {28V .. (2N —1)2F- N}
Hence for such j’s, the polyphase harmonics (¢o)r,; = 0, which also shows that even when
¢ox is compactly supported within [0, 27], 0% (Vi (¢ox)) is only a proper subset of Ry.
Using Weierstrass M-Test again, we conclude that for j € {28~ .. . (2N — 1)2k=NV}
||(¢w,k)k,j||igm is a continuous function having zeros in [0, 27) whenever w = 0 and this
shows that H(¢w,k)k,jHi2(T) is not bounded below on w € [0,27). Therefore, by Theorem
3.13, Ti(¢w k) is not a frame for almost every w € [0, 27) with uniform bounds since the
lower bound of T} (¢, x) is arbitrarily close to zero for w belonging to some subset of [0, 27)

with positive measure.

In Example 3.4.1, we observe that for & > ﬂog2 2N L even when ¢ is compactly
supported within [0, 27] and refinable, o4 (V3% (¢ 1)) is only a proper subset of Ry. The

implication is that we could not represent functions belonging to Ri\ox(Va:(dox)) by
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using Ej (¢ ) alone. This situation does not occur in the nonperiodic setting of compactly
supported functions ¢, € L?(R) with g/b; having mild decay properties such as ¢, € L;(R),
i.e. we have o1, (V*(¢x)) = T (modulo measure zero sets). In particular, if Eg(¢y) is a
Riesz basis, we have o, (V*(¢r)) = Ty exactly since or is an entire function and My, 4,
will be continuous on T® and bounded below away from zero everywhere. In this case,
or(VE (dor)) is always the set Ry,

A consequence of Corollaries 3.37 and 3.39 is an alternative proof for a similar result
from [4] for the stationary setting concerning the orthogonal decomposition of an FSI
space into PSI spaces. Our formulation takes care of both stationary and nonstationary

cases.

Theorem 3.40. Fork > 0, let V*(®},) be a closed M~ Z* shift-invariant space of L*>*(R?)
with |®x| = p. Then len VE(®,) = py := ess sup {dim V;]w Jj € Ri,w € T*} and there
exist functions {0 }r_ C VF(®y) such that Ep({07}0%_,) is a tight frame for VF(®y)
and for all m,n = 1,...,p, and l,r € Ly, (3.62) holds. Consequently, V*(®;) can be

written as the orthogonal sum of py M~*Z°* PSI spaces.

Proof. The proof is essentially that of Theorem 3.23 with the additional requirement that
the functions {0;"}7*_, are constructed in the following way to be measurable. Corollary
3.39 shows that there exist functions {0"}7 | C V¥(®;) such that Ex({07}0,_,) is a
tight frame for V*(®;) and for all m,n = 1,...,p and I,r € L, (3.62) holds. Let
ok = max{dim V;7 (1) : j € Ry} and hence pj, = ess sup{p, : w € T*}. Observe
from (3.34) that the number of nonzero eigenvalues of M, x(j) is bounded by p, . For
each j € Ry, after interchanging rows followed by columns on both sides of (3.63) by
multiplying on the left and on the right a p X p permutation matrix and its transpose
respectively, the resulting eigenvalues satisfy A7, (j) = 0 for all m = p,, +1,...,p. As

a result, (3.64) and (3.67) shows that the corresponding ||w, = 0, which means,

Cball ey =
by (3.66), that 07, = 0 for m = p, +1,...,p for almost every w € T°. Consequently,
(3.59) together with Lemma 3.5 shows that 6" = 0 for m = p, + 1,...,p. Therefore,
VE(®@y) = @, VEO) and Ly, = len V¥(®;) < pj. There exists {97"}2%, such that

E{EW -m=1,..., Lyl € Ly}) spans VF(®y). Let y7 ., m=1,..., Ly, j € Ry, be
the polyphase harmonics of {ﬁw & Lx which by Corollary 3.37, spans Vi (®,, ;). Using

m=1
(3 35) for j € Rk’ Span {ywk] Véljrj(q)w,k)' HGHCG, Lk > Pk

ml_

[]

Our next result shows that two function spaces are the same if their corresponding
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periodized spaces constructed from uniform frequency samples are the same for almost

all possible samples.

Corollary 3.41. Let V be the FSI space generated by a finite subset A of a F'SI space S
of L**(R®%). Suppose that dim ‘7||w = dim gl\w (or dim Vi, = dim Sar ) for almost every
weT. ThenV = 5.

Proof. Since A C S and S is a closed shift-invariant space, therefore V' C S. By Theorem
3.33, W := 56V is also a FSI space and §Hw = ‘7||w et /I/[?Hw for almost every w € T*.
Using our hypothesis that dim /I/I7Hw = 0 for almost every w € T*, Theorem 3.40 shows
that W is an FSI space with len W = 0. Therefore, W = {0} and V = S. O

The rest of the results are on wavelets obtained from the semi-orthogonal setting of
FMRAs and the nonorthogonal setting of MRAs using the UEP.

Lemma 3.42. For k >0, let &, C L**(R®) with |®y| = p. The union s V*(Pr) is
dense in L*(R®) if and only if ;o Vi (Pu ) is dense in L*(T®) for almost every w € T*.

Proof. (=) Corollary 3.34 shows that there exists a set A C T® with |A| = 0 such that for
every w € T*\A and k > 0, V5 (P, 1) is a subspace of L*(T*). Let F := ez Ny, co W €
]1}:* D ¢p(w) = 0} and for n € Z°, define F,, :== F —2mn = (g, ca,iw € R® :
¢r(w + 2mn) = 0}. Since |F| = 0 by Condition (ii) of an MRA, therefore |F,,| = 0. For
w € T\(AUU, ez Fn) and n € Z*, there exist k > 0 and ¢, € ®;, depending on w and n
such that q?u;(n) # 0. By Condition (ii) of a periodic MRA, J;5q Vai(®uk) is dense in
L2(T¥).

(<) By Condition (ii) of a periodic MRA, there exists a set F' C T*® with |F'| = 0 such
that for w € T\F, V59, co, AN € Z° : gw\k(n) = 0} = 0. For n € Z*, define
F, := F + 2mn. For a given [ € Z° and w € (T* 4 27l)\ F}, equivalently w — 27l € T*\ F,
since [Ny [y, ca Am+1 € Z°: gﬁ;(w +27m) = 0} is an empty set, it follows that the set
Miso Ngca, M € Z° : ¢p(w + 2mm) = 0} is also empty. Therefore, for w € R¥\ U,z Fi,
there exist £ > 0 and ¢ € P, depending on w such that ‘@(w)‘ > 0 and the result holds
by Condition (ii) of an MRA. O

Theorem 3.43. For k > 0, let ®;, C L**(R®) with |®.| = p. The collection {V*(®;)}
is an MRA of L*(R®) if and only if {VE (®,x)} is an MRA of L*(T*) for almost every
w € T*. In particular, {V*(®y)} is an FMRA of L*(R®) if and only if {VE (P, 4)} is a
periodic FMRA of L*(T#) with the same bounds for almost every w € T®.
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Proof. In our proof, by virtue of Corollary 3.34, we shall only consider an arbitrary
w € T*\A, where |A| = 0, such that for every k > 0, V£ (®,,) is a subspace of L?*(T?)
and \A/H’fu(@) is a subspace of I?(Z*).

(=) Corollary 3.34 implies that for every k& > 0, ‘Zﬁ)(fbk) C ‘//\Y‘tj_l((bk_i_l). Consequently,
Corollary 3.37 shows that for every k > 0, V£ (®,, ;) C Vi7" (@, ,.1). The density require-
ment of (Jy, Vai (Puk) in L?(T*) is satisfied using Lemma 3.42. Therefore, {V3; (P, x)} is
a periodic MRA of L*(T®). If {V*(®;)} is also an FMRA of L*(R?), then Corollary 3.37
shows that {VJf (@, %)} is a periodic FMRA of L?(T*) with the same bounds as {V*(®},)}.
(<) By Corollary 3.37, since for every k > 0, ‘Zﬁ}(@k) - Vlffjl(q)kﬂ), Proposition 3.35
shows that V*(®;) C V*(®414). Next, Lemma 3.42 shows that (J,-, V*(®x) is dense
in L?(R?®). Therefore, {V*(®;)} is an MRA of L*(R?®). If {VF (®, )} is also a periodic
FMRA of L%(T?), then Corollary 3.37 shows that E,(®;) is a frame for V*(®;) with the
same bounds as {Vi¥ (®,,;)} and hence {V*(®;)} is an FMRA of L*(R?®) with the same

bounds as {V{F (P, 1)} O

Theorem 3.43 states that a collection of subspaces is an MRA if and only if their
corresponding periodized subspaces constructed from uniform frequency samples is an
MRA for almost all possible samples. Our next result is the analogue of Proposition 3.12

after periodization.

Theorem 3.44. Let ® C L>*(R®) be a finite set. Suppose that {VF(®)} is an MRA of
L*(R®). Let W* be the orthogonal complement of VF(®) in VEH(®) and ¥ C WO be a
finite set. Then E(¥) forms a frame for W° if and only if for every k > 0, T, (¥, 1) is a
frame for Wk

orw With the same bounds for almost every w € T*.

Proof. In our proof, by virtue of Theorem 3.33 and Corollary 3.34, we only consider an
arbitrary w € T*\A, where |A| = 0, such that for every k > 0, V. (®, ) and W5, are
subspaces of L?*(T?®) and ?H’fu((b) and /I/I7|’fw are subspaces of [?(Z?).

(=) The proof of Proposition 3.12 shows that E({d*ELp(M*) : ¢ € U,1 € L;}) is
a frame for W* with the same bounds as E(V¥). The fibre /I/I7|’fw according to (3.59) is
the closed linear span of {e_i”'ﬂrkl/\/lfwJL;c 1) € U, 1 € L}, which corresponds to the
Fourier coefficients of {e=M "I}, : b € W1 € L} as verified by Lemma 3.31. In
addition, Lemma 3.10 shows that the subspace W* satisfies (3.12). Hence, Corollary 3.37
implies that Tj,(¥,, ;) is a frame for W3, with the same bounds as E(¥).

(<) Corollary 3.37 shows that E(¥) is a frame for the subspace W° with the same bounds
as W, 0. ]
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We shall adapt the proof of a result in [37] concerning the extension of columns of
a matrix with Laurent polynomial entries. With the same essential steps, this gives
Proposition 3.45, which is on extending columns of a matrix with measurable functions

as entries.

Proposition 3.45. Let A(w) = [A1(w)| - |A,(w)] be a p x ¢ measurable matriz-valued
function with orthonormal columns for almost every w € F C T?, where p > q. Then

there exists a p X p measurable unitary matriz Q(w) such that for almost every w € F,

;1 O
where Q) = QqQq—1---CQ1 and fori =1,...,q, Q; = [ 01 .

unitary matriz and P; is a (p —i+ 1) x (p — i+ 1) measurable unitary matriz.

] s a p X p measurable

Proof. Consider an arbitrary w € F\A where |A| = 0 such that the columns of A(w)
are orthonormal while on the set A, for i € {1,...,¢}, Q; and P; are defined to be the
identity matrix. Let Vi(w) i= A41(@) = [41(@)ller €k f1(w) = [Va(@) 52 Lgvifp o0y and
Q1(w) =1 = 2f1(w)Y1(w)Yi(w)*, where e, = [1,0, ... ,0]" in C? endowed with the usual
Euclidean 2-norm and [ is the identity matrix. Then ();(w) is a unitary p x p Householder
reflector matrix and (), is measurable as f; is measurable. By our rhombus construction,
Q1(w)Ai(w) = e} Since Q1(w) is unitary, it follows that for 7, j € {1,..., ¢},

(Q1(W)Ai(w), Q1 (W) A;(w)) = by

Thus, the first entry (Qq(w)Axr(w)): of Q1(w)Ax(w) is zero for k € {2,...,q}. Conse-

quently, we have

10 0
Q1 (W)A(w) =
WA= apw) AP
where for k € {2,...,q}, Agf) (w) are (p—1) x 1 matrices with (AEQ) (w), AEQ) (W))er—1 = 0y
Suppose that there are measurable unitary matrices Q1(w), ..., Qr_1(w) such that
I . 0 . 0
_1(w) - w w)A(w) = ,
Qr-1(w) - Q2(w)Q1 (W) A(w) [ 0 APW) ... At(lk)(wJ

where Agk) (w) are (p — k + 1) x 1 matrices with (Agk) (w) 5
{k,...,q}. Forinduction purposes, let us define Y (w) := A,gk) (w)— A,gk) (w)

o
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Fr(@) = | Ya () omrir 1{||Yk(W)HCp—k+1>O} and Py(w) be a unitary (p—k+1) x (p—k+1)
Householder reflector matrix given by Py(w) := I —2fi(w)Yk(w)Yi(w)*. Consequently, we
obtain PkAgf) (w) =e¢,_j, and (PkAgk) (w), PkA§k) (W))gp-r+1 = 05 for 4,5 € {k,...,q} and

Iy
(PkAgk)(w))l =0forie{k+1,...,q}. Let Qx = [ o . Then Q(w) is measurable
ke
and unitary and
I, 0 . 0
w (w) - Alw) = :
Qk( )Qk 1( ) @ ( ) 0 Al(c]:l)(w) L Agkﬂ)(w)]

where A§k+1)(w) are (p — k) x 1 matrices with <A§k+1)((U),A§k+1)(u)>>((:p—k = 9;j fori,j €
Iy
ol

{k+1,...,¢}. Letting Q = Q,Q4-1--- @1, we have Q(w)A(w) = [ ]

Our next theorem establishes the existence of tight frames in L?(R®) from periodized
tight frames in L?(T*) both of which are derived from FMRAs.

Theorem 3.46. For k > 0, let ®;, C L>*(R®) with |®| = p. Suppose that {VF(®)} is
an FMRA of L*(R®). Let W be the orthogonal complement of VF(®y,) in VF(Dyyy).
Suppose that for almost every w € T®, there exists G, 41 € S(M)%*? such that Ty,(V, k)
is a frame for Wé"’mw with bounds C' and D, where V) = > Gw7k+1(l)T,i+1(I>w,k+1.

leLit1
In addition, if the 2x D**YZ5 -periodic matriz-valued function Gyi1 defined by Giiq(w +

21j) = @w’k_i_l(j), where j € Ryi1, lies in L*(T*), then Ex(Vy,) is a frame for W* with
bounds C' and D, where \f/k = ak—f-l&\)k—&-l-

Proof. Assuming that the matrix-valued function ék-}-l lies in L*(T*), we have ¥, C
VEFL(®,1). In our proof, by virtue of Theorem 3.33 and Corollary 3.34, we only consider
an arbitrary w € T*\A, where |A| = 0, such that for every k > 0, V55 (®,,x) and Wy, are
a pair of orthogonal subspaces of L*(T*) and ‘7||’Z)(<I>k) and W\llfw are a pair of orthogonal
subspaces of I2(Z*) and for every j € Rys1, @w,kﬂ( j) is finite. For almost every w € T,
according to (3.59), {Mé7k@0,w,0 D) € Wy, l € Ly} forms a frame for W\"fw with bounds
C and D. By Lemma 3.5 and Theorem 3.33, since for any f € V*(®,) and ¢, € ¥}, and

[ € L, we have

<E’l€¢k’ f) = / e_iw.Mikl<Mé7k7z;07w70, %7w70>l2(zs)dw - / Odw == O,

s s

therefore Ej(V;) C W*. Finally, Corollaries 3.37 and 3.41 show that Ey(¥}) is a frame
for W* with bounds C' and D. O
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We now describe the construction of @kﬂ in Theorem 3.46 using the proof of Theorem

3.24 as follows. Without loss of generality, using Theorem 3.22, for every k£ > 0, we may

assume that T (P, ) with |®, x| = p is a tight frame satisfying Theorem 3.21 for every
w € T*\A with |A] = 0 as in the proof of Theorem 3.46. Note that in steps (1) and (2)

of the algorithm that follows, we shall make use of the result in the proof of Lemma 3.38

which shows that the rank of a matrix is a measurable function.

(1)

Fix k> 0 and j € Rg. For w € T*\A, let S, and I/H\Ing be the pd x pd and p x pd
matrices defined by

Td
Sunli) = diag [ /AN + D]
Bor() = [HaniG+ Dkrl)‘ (ﬁmﬂ(]‘ + Dhry) (3.68)
respectively, where r1,--- 74 denote all the elements of R;. Consider T*\A as a

finite disjoint union of measurable subsets (up to measure zero sets) with a typical

subset of the form Ag, = {w € T*\A : rank(S, x(j)) = pr(j)}-

For w € Ag,, let A} = wk]ﬁ[zk be the pd x p matrix whose nonzero columns are

all orthonormal such that

Consider Ag,, as a finite disjoint union of measurable subsets (up to measure zero
sets) such that a typical subset is of the form Ay, = {w € Ag, : rank(A4}) =
qr(j) and AX has nonzero entries in specific rows and columns}. Perform column in-
terchange operations (justified by the specific positions of nonzero entries) using a

p X p permutation matrix F'(A,,) such that
A::F = |:Az,w 0:| Y
where A, is a ¢ X pd matrix such that A, A7 , = I, the ¢ x ¢ identity matrix.

Perform row interchange operations using a pd X pd permutation matrix E(Ay4 )
such that Vd(ES,, ;) is in reduced row-echelon form and let A”* = EA*F. Hence

Zp7w O
0 0

where Ay, is a ¢ X p matrix of measurable functions on A4, such that Ay, A7, , =

A* = B [A;w o} - [EA;w 0} -
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(4) Construct a p X p unitary matrix (), of measurable functions on A, , using the
procedure given in the proof of Proposition 3.45 such that

o.ar = ||,
W tgp,w 0

Since @), is an extension of A, ,, we can replace its first ¢ rows by A,, ., and write

Q — A‘]PW

w i Bw ?
Q.Q" = quva;p,w qu,wB:) _ Iq 0
o | BLA:,, B.B 0 Iy’

where B, is a (p — ¢) X p matrix with orthonormal rows. In the event that ¢ = 0,
we let B, be the p X p identity matrix and in the event that p = ¢, we skip the steps

involving the construction of B, and its utility.

(5) Define a pd x pd matrix B!, for w € Ay, by

/= Bo Ol g
0 0
(6) Construct the matrix G, for w € A4, in this manner. If (iy,iy), . .., (ip,,) cntries
of S, are the nonzero diagonal entries, where 1 < 4; < --- < 4, < pd, then for

each o € {1,...,p}, set the first p — ¢ entries of the i column of @w,k to be the
o column of the matrix v/dB, and the remaining pd — (p — ) entries to be zero.
The entries of each of the remaining pd — p columns of @%k are chosen arbitrarily
so that Gy lies in L?(Aa,). Since Vd(S, xE") is in reduced column-echelon form,
@%k satisfies

B, 0

@w,ksw,kET =
0 0

Y

~

i.e. B:u == (G%kSw,k.

efine the p XpmatrlcesAwk+1j+ r) for r € Ry and for w € Ay, by
7) Define the pd ices G, DFr) £ R, and f Aygqb

Gw,k(j) = [éw,k—i-l (] + Dkrl) Tt a(.u,k:—i—l (] + Dkrd) .
Since we have
. . B,A* (]
Gk SuwSh HE = BLAL = (BLET)(EALF)FT = qu’” 0 FT =0,
N . B,B- 0ol [I,. 0
GukSurSiyGh = BLB) = (BLE")(BLE")" = 0 “ ol = poq 0] , (3.70)
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hence (3.37) is satisfied and from (3.40), we infer that N, x(j) is a pd x pd diagonal

matrix with diagonal entries 0 or d=*. Since

dim Uf:}u] = Z rank(M,, x41(j + D*r)) = rank (S, x(5)) = pr(j), (3.71)

reR1
dim V37, = rank(Mo (7)) = @ (), (3.72)
dim Wy, = rank(No (7)) = pe(j) — a(4), (3.73)

follow from (3.68), (3.69) and (3.70), we conclude that (3.38) is satisfied.
(8) Repeat all the above steps for all measurable subsets Ag, and Ay,.

(9) Finally, extend periodically the values of the matrices @w’k+1( j+ DFr) for r € Ry
to obtain @%kﬂ € S(DFF)rdxe on T*\ A.

We define the index {ny}x>o of the FMRA {V*(®;)} as
Ny = ess sup{nux : w € T°}, (3.74)

where 7, = max{dim WQI‘;{W : J € Ri}. Therefore, the index {ny}r>0 of an FMRA
{V¥(®},)} consists of positive integers satisfying n, < |®| d.

As a consequence of our construction given above, we are able to establish the existence
of a tight wavelet frame in L?(R®) derived from an FMRA.

Corollary 3.47. For k > 0, let ®;, C L>*(R®) with |Px| = p. Suppose that {V*(®;)} is
an FMRA of L*(R®) with index {ng }x>0. Let W* be the orthogonal complement of V*(®y)
in VFY (D). There exists Uy = {7 }%_ C W* such that E(Vy) is a tight frame for
W* with (Bl Efy =0 for allm,n =1,...,m,, m#n and l,r € Z°.

Proof. 1t is shown in (3.40), (3.70) and (3.73) that for m = n, + 1,..., pd and almost

every w € T°, we have mek”iz ) = 0 as H Vo) ijQLQ = 0 for all j € Rg. Since
@o,w,o = Y7, by Lemma 3.5, 45 || = fqrs wk 0,w,0 lQ(Zs)dw = 0 and we have

Y = 0. Furthermore, for all m,n =1,...,n,, m # n and [,r € Z°, by Lemma 3.5 and

Theorem 3.21 and Lemma 3.31, we have

—

(ERoy, Biu) = / MG (U o000 (VDo) de
:/ W DT W0 o) p2rsydw = 0.

Finally, using Theorem 3.13, since (3.40), (3.70) and (3.73) imply that T, (¥, x) is a tight
frame of mew for almost every w € T®, Corollary 3.37 implies that Ei(Vy) is a tight
frame for W*. [
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Theorem 3.48. For k > 0, let ®;, C L>*(R®) with |®| = p. Suppose that {V*(®)} is
an FMRA of L*(R®) with index {ny }r>0. Let W* be the orthogonal complement of V*(®y)
in VFY(®y,1). Then the following are equivalent for each k > 0.

(i) The set %y, := U, cp, {w € T° : dim UStT _ dim V;;jw > or} is of measure zero.

2m,w

(ii)  There holds ny < ok.

(i) There exists Uy, = {7} C W* with (Bl Epy) = 0 for allm,n = 1,..., o,
m #n and l,r € Z° such that Ey(Vy) is a tight frame for W*.

(iv)  There exists Uy, = {7} C WF such that E(¥},) is a frame for W*.

m=1

Proof. Assume that (i) holds. Then for almost every w € T® and any j € Ry, using (3.71)
and (3.72), since

dim USH — dim V7 = Z rank(M,, s 11(j + D*r)) — rank(M,,x(5)) < ox,

2m,w 2m,w
re€R1

it follows from (3.73) and (3.74) that (ii) holds. Next, we apply the algorithm after
Theorem 3.46 and also Corollary 3.47 to construct the required ;" for m =1,...,n;. For
m=nmnr+1,..., 0k, we set Y7 := 0. Hence, (iii) holds and implies (iv). To establish that
(iv) implies (i), we again utilize (3.71), (3.72) and (3.73) to show that in the event that
there exist j € Ry, and a set 0,, C X, such that |0, | > 0 and

dim Wy, = dim Uy 7 — dim Vol > oy,

2T ,w 21w

for almost every w € o, , this will lead to a contradiction with (iv) since Corollary 3.37

and Theorem 3.40 show otherwise. O

For the case of a stationary FMRA {V*(®)}, Theorem 3.48 leads to the following

corollary.

Corollary 3.49. Let ® C L*>*(R®) be finite. Suppose that {VF(®)} is an FMRA of
L*(R®) with index ny. Let W* be the orthogonal complement of VE(®) in V*+1(®). Then

the following are equivalent.

(i) The set By, := {w € T* : dim U,°  — dim V;l;?w > o0} is of measure zero.

2m,w

(i)  There holds ny < go.

(iil)  There exists ¥ = {¢y™}2*_ C W with (E'"™, E™y") =0 for allm,n =1,..., g,
m #n and l,r € Z* such that E(V) is a tight frame for W°.
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(iv)  There exists U = {¢™}2_ C W° such that E(V) is a frame for W°,

Corollary 3.49 generalizes a similar result in [39]. In [39], the set ® := {¢} is a singleton
and the dilation matrix M = 2I. For k > 0, we define

I' :== {weT :rank(M,(0)) =0} = {w € T°: M, (0) = 0}, (3.75)
A, = {weT": Z rank(M,,1(r)) = p}, (3.76)

where M, 1(r) is a scalar. If an integer p satisfies both [A,| > 0 and |A,| = 0 for r > p,
then the index 1y of the stationary FMRA {V*(®)} is given as follows:

[ p i|ANT>0,
T p=1 A, NT =0,
i.e. either for every r > 0, |A, ;.| = 0 with |A,,| > 0 or for every r > 1, |A, 4,| = 0 with
|Apy+1] > 0 and |A, 41 NI = 0.

Corollary 3.50. [39] Suppose that {V*(¢)} is an FMRA of L*(R®) with index 1y and
dilation matriz M = 2I. Let W* be the orthogonal complement of VF(¢) in VFi(¢). If
there exists U = {¢™}%_ C WO such that E(¥) is a frame for W°, then oo > no. If
00 > 1o, then there exists U = {¢p™}*_ C WO such that E(¥) is a tight frame for W°.

We conclude this chapter with the connection of the affine system in L?(R?®) and the
periodic affine system in L?*(T*) using extension principles. Let us state a lemma con-

cerning the minimum energy tight frame condition for wavelets derived from an MRA for
L3 (R?).

Lemma 3.51. [6] Let &,V C L*%(R®) be finite with |®| = p, |V| = o satisfying (1.8)
and (1.10) for some Hyp1 := dzH(D=®.) and Gypy = d2G(D~*®+1.) respectively,
where ﬁ,@ € L*(T*®) are 2wZ*-periodic matriz-valued measurable functions. For k €
7, define ﬁ%kﬂgj) = f[kﬂ(w + 27j) and Gw k+1(d) = Gkﬂ(w + 27j). Assume that

lim, o > gg(w)‘ = A > 0 and the (p + o) x pd matriz L%k(j) as defined in a manner
ped

similar to (3.44) satisfies IEwk( )* L, k(J) = dl,q for each j € Ry and almost every w € R®.
Then for all k € Z and all f € L*(R®) for which f 1s a compactly supported continuous

function, we have the minimum energy tight frame condition, 1.e.

S0 tart ) [ X ot <3 .t v
leZs

I€Zs ped pcd

and for all f € L*(R®), we have limy,__os 3> 3 |(f, d? E! to(M*- )))2 = 0.

€75 ¢
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Theorem 3.52. Let ® C L?>%(R®) with |®| = p. The affine system X (V) as defined in
(1.4) is a tight frame for L*(R®) obtained from the MRA {V*(®)} by the UEP if and only
if the corresponding periodized affine system X, as defined in (3.60) is a tight frame for
L%(T*) obtained from the MRA Vi (®,x) by the periodic UEP for almost every w € T¢.

Proof. We shall consider only an arbitrary w € T*\A where |A| = 0 such that for every
k>0, VE (D) is a subspace of LA(T*) and H, g1 = Hyyy (w+2m) := d2 H(D~+D (w+
27)) and Gyps1 = Gri(w + 21) == d2G(D~*(w + 27-)) lie in 12(Z*) for some
27 D*175-periodic matrix-valued measurable functions Hy.1, Gepr € L2(T?) satisfying
(1.8) and (1.10) respectively. Therefore, we obtain

Do = (Pr)owo = Pp(w + 2m) = Hy1 (w + 27) D (w + 27) = Hyp o1 Qs

—_ ~ ~

U, = (Vk)gwo = Yr(w +27) = Gror(w + 2m) By (w + 27) = G g1 Purer

where @ = d~2®(D~*) and V), := d~2U(D~*), i.e. (3.28) and (3.31) are satisfied.
Here, we have utilized Theorem 3.43, Corollary 3.34, Propositions 3.35, 3.19 and 3.20 to
confirm the MRA structure and derive the corresponding affine system from the MRA.

In addition, the conditions of the UEP, i.e. L, ,(j) as defined in a manner similar to
(3.44) satisfies I/[:wk( )* I/[:wk( ) = dl,q for each j € Ry and

Jim 3 foo-t|
ped
= lim dkz

— 00
pED

2

= lim Z ’qb (w+2mn))

k—o0

%Mm‘:A>O

for all n € Z° are satisfied for both directions. By Theorem 3.36, the shift-invariant
system E(®)U X(¥) as defined in (1.5) is a frame for L?(IR?) if and only if X, is a frame
for L?(T*®) with the same frame bounds for almost every w € T?®. It remains to see using
Lemma 3.51 that the affine system X (¥) is also a frame for L?(R?®) could be inferred
by “telescoping” from the shift-invariant system E(®) U Xo(W). With this in mind, we

confirm that
ZZ‘fd ELo(ME.) ‘_ [Z‘fd ELo(M*)) ‘+ZZ‘N SRy MP)M
IEZS peD IEZS LpeD

for all f € L*(R®) such that fis a compactly supported continuous function. By letting

k — —oo, we obtain

S5 0% B[S Y Sfurat v

€75 $ed €75 k=—o0 T

9
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which implies that

EJEJ%E%WQSZJUJH%MMMwi:ww?

1€75Lped k=0 pew
This is equivalent to
2
2
I

>3 So|undi Bt

€25 k=—o00 e

and it holds on a dense subset of L?(R®). Thus the relation holds for all f € L*(R%). O

We remark that Theorem 3.52 could be generalized to nonstationary MRAs that pre-
serve a dilation structure, i.e. for instance &(2’“) = /};k+1gb\k+1 for k € N, for the case of
the dilation matrix D = 2. This may be achieved by using a recent result from [31] that
generalizes the UEP for L?(R) to nonstationary settings. This will be helpful in the event
that we utilize the periodic constructions in Chapter 4 to obtain constructions on the real

line.



Chapter 4
Constructions in L?(T)

The Gabor system is based on the short-time Fourier transform of shifts and modulates
of a window function to represent signals with regular time-frequency atoms. To achieve
a similar time-frequency representation with the wavelet system, one usually applies the
wavelet decomposition process repeatedly on wavelet subbands and obtains “packets” of
wavelet atoms. We could achieve a similar and possibly more flexible representation if
we introduce modulation to the wavelet system by means of using additional number of
wavelet functions, i.e. we combine translation and modulation into an MRA structure.
Thus, this incorporates the strengths of both the wavelet transform and the short-time
Fourier transform. All the constructions in this chapter are for the one-dimensional peri-

odic case with dilation factor 2.

4.1 Bandlimited Construction

We shall construct a bandlimited multiresolution {VJ¥ (¢r)} of L*(T) where {Ti¢ : | €
L.} forms a tight frame for a subspace of V¥ (¢) and &Ek(O) — 275, For k > 0, let

. Ny j .
B () ::ﬁ(#>a je€Q,

where (3 is the cumulative distribution function of a Beta distribution and 0 < N, <
Lipn < Nipy1 forn e {1,..., op+1} are used to indicate the bandwidths of our refinement
and wavelet masks with g5 being the number of wavelet masks. We will impose additional
conditions on the bandwidths of the masks in our constructions later. If Ny, = Ly, we
shall let 37 = 0 instead. Since

B(w) + Bl —w) =1,

79
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Nk,n
describe our construction of the refinable function and its mask below, which we shall use

we have 7 (h - 1> — 3(0) = 0 and 37 (f;l;z - ) = B(1) =1 for Ny, < Ly,. We

exclusively for our bandlimited constructions of wavelets.

Lpi .
Construction 4.1. For k>0, let ¢, = >, o¢r(n)e™, where
n=—Lg
2_5 Zf je {_Nk‘,17---,Nk71},
~ ~ . je{—Lg1,...,—Np1—1
Cbk;(]) = 2_% CcOSs [% ]1 (]\Z'l — 1)} ij { k,1 k1 }
’ U{Nk1+1,..., i1},
0 otherwise,

and L1 < Niy1q and Ly, < 2k For k>0, let

\/5 ij S {_Nk,l7-"7Nk,1}7
~ ) ~ . .jE{—Lkl,...,—Nkl—l}
hi(j) = § V2cos [ﬁ : (ﬂ - 1)] if ’ ’
" 278 \ Nk U{Nk,l+17"'va,1}7

0 otherwise.

In the event that N1 = L1, we would redefine

V2 ifj € {=Np1+1,...,Npq — 1},
hiv1(J) = 1 ifj € {=Np1} U{Ni1}, (4.2)

0 otherwise.

For purposes of convenience, we shall also refer to /];k_l'_l as ’g\gﬂ. Note that (;Aﬁk(n) =
hi41(n)dr41(n) for alln € Z.

Remark. In this chapter, when we set the values of a mask in S(2¥*!) such as in (4.1),
under the case indicated as “otherwise”, we refer to the remaining values of R4 from

those already defined.

The mask ﬁkﬂ in Construction 4.1 filters away completely high frequency data be-
longing to the bands {—2% ..., —Ly,} U {L1,...,2"}, dampens data belonging to the
transition bands {—Lg1,...,—Ng1 — 1} U{Ng1 + 1,..., Lg1} and allows low frequency
data belonging to {—Nj1,..., Ni1} to pass through unchanged, i.e. behaves like the fre-
quency response of the ideal filter. We verify that for j € {—Ly1,..., L1} or equivalently
=28 e {=2F . Lpi—2"} and j+ 25 € {25 — Ly, ..., 2%}, we have 1 (j & 2%) = 0,

since Ly; < 28 — Ly 4.
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Lemma 4.2. Assume that Ny < Ly and Ny, < Ly,. Suppose that Ny + Ly, = Qk+1
and Ny, + Ly = 2871, Then

2k — |4 ||
()] e ()
[ F Ni "\ Nip
Proof. The verification is as follows. Indeed,
2k+1 . N 2k+1_ :
o [0 (5 )= [ (5 (5 )]
Ni 20 \Lgx — Nia Ni
m Lku_m )} { { (Lku_m )H
= COoS |— _— = sin 1-— _—
[26 <Lk,u - Nk,u 2 v Lk,u - le
o5 (- ) = ()
=sin | - 1] - — - =sin |=(3 | =—
|:2ﬁ( Lk,,u_Nk,u 2 Lku_Nkp,

[x N, i - il
- {56 (Lk,u _l}vlw (Nk,u N 1))} - [ ﬁk (Nk,u 1)} '

O
Lemma 4.3. If Ny » < Lix and Ny + Ly = 2% then we have
T ox 2k_|j| ) < || )
cos — — =1 sin — —1].
2 k ( Nk,)\ ﬁk Nk,)\
Proof. Since
k . N 2k _ .
Ni Ly — Nia \ Nia
_5 (Lk)\ — Njox — 28 4 |5 +Nk:,)\) _5 ( 7] = Niea ) R ( ] )
Ly — N Ly — Npa F Nia ’
this implies our result. O

We shall make use of Theorem 3.25 to construct framelets by ensuring the masks /f;kﬂ,

Gy satisfy (3.47) or equivalently

~ N 2
’hk+1(j)’ +Z|gk+1(j)’ =2, (4.3)
n=1
P N Ok -
T (Dhiea (G425 + ) Gr i (Ddia (G +25) = 0. (4.4)
n=1

for all j € opy1 (Vi (¢ry1)). Equation (4.3) says that the masks must cover the frequency
domain “uniformly” while (4.4) requires the masks to be orthogonal to their modulates

with a shift of 2% in the frequency domain. In signal processing literature (see [38]), the
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former is known as the perfect reconstruction condition while the latter is known as the
anti-aliasing condition, which is necessary to remove aliasing caused by downsampling.
We shall now describe the construction of complex framelets with smooth decay and
controlled overlap in the frequency domain. The masks are essentially like that of the
frequency response of the ideal filter except that only data belonging to certain high
frequency bands are allowed through unchanged or dampened. Such a construction allows
us to introduce modulation to the wavelet system by partitioning the frequency domain

into the required subbands.

Construction 4.4. Let q/gk-_’_l and /f;kﬂ be defined as in Construction 4.1. For n €
{1, cey Qk}; let

[ Vasin |3 (L 1)) W7 e tNa+ Lo Liad,
i) = e 07€ e M (15
V2 cos [%ﬁ,?“ (%ﬂ‘“ - 1)] ifj € {Nkps1+1,..., Lin1},
0 otherwise,

\

with the conditions 0 < Ny, < Ly < Nint1, Lint1 — Nin < 2k Niopt1 = ok+1 _ Ly,
and Ly, g, +1 = 28T — Ny.1 and the additional condition Ly, 1 < Lpy11 or Ny, > 28 —
Liv11 if Lgyia < 2%, In the event that Ny, = Ly, for alln € {1,...,0x}, we would

redefine

L ifj € {Lin},

S V2 ifj €{Lgn+1,... Npmyr — 1},

9k+1(]) = o (4~6)
1 Zf] € {Nk,n+1}>

0  otherwise.

In Construction 4.4, the last wavelet mask ’g\,ﬁil is constructed so that it comple-
ments the refinement mask ﬁkﬂ. The additional condition of Ly 41 < Lgy11 or Ni, >
ok+1 _ Lyy1,1 is used to ensure that the bandwidths of the wavelet masks lie within
k1 (Vi (dr41)). The masks are in general complex as we did not impose any additional

conditions of conjugate symmetry in the frequency domain.

Proposition 4.5. The refinement and wavelet masks ﬁkﬂ, Gpyq form € {1,..., 01}
defined by (4.1) and (4.5) or (4.2) and (4.6) respectively as in Construction 4.4 satisfy
(4.3) and (4.4). They generally have smooth decay with overlapping supports that can be
controlled. Hence by the periodic UEP, the affine system Xo, is a tight frame for L*(T).
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Proof. Since Ly p1 — Ny < 2%, for g1t 1 (j) # 0 such that Ny, < 2% and Ly, > 2%, we
have g, (7 + 2%) = 0 and g, (j — 2¥) = 0 respectively. For other g, ,(j) # 0 such that
Lyye1 < 2% or Ny > 2%, we have gi (7 + 2%) = 0 and @}, (j — 2¥) = 0 respectively. Let
ne{l,...,or}. If Np» < Ly, then for j € {Ni,, ..., Ly}, we verify that

2 4] 7]
| ‘ + k+1(])| = 2sin’ 5k (Nk’n—1>—i—2(;os Bk (Nk,n_l =9
and all g}, ,(j) =0 for I & {n —1,n}. If j = Nj,, = Lin, we check that
2
| ‘ + k+1(])| =1"+1°=2

and all g ,,(j) = 0 for I & {n —1,n}. For j € {Ly, +1,...,Nynp1 — 1}, we have

’ng ])‘2 = 2 and g,,(j) = 0 for all [ # n. If Nk7gk+1 < Lj .41, then for j €
{Nkopt1s--s Ligp+1} usinzg the condition that Ny, 1 = 2" — Ly and Li 1 =
28 — Ny 4, since ‘ﬁkﬂ(j)‘ = 2cos? gﬁ} (W — 1), we apply Lemma 4.2 to deduce
that

gita (g ‘ + ‘hk—i-l ‘ = Q{COS 9 i (% - 1) +sinzg~1§k+1 (% - 1)} =2

with all other g, ,(j) = 0. If j = Ny p,+1 = Ly p,+1 instead, we could verify that
GO + ()] =12 412 =2

with all other gi' ;(j) = 0. For j € {0,...,Np1 — 1} U{Lp 41 + 1,..., 28 — 1} we
N 2

have ‘hkﬂ(j)‘ =2and g,,(j) =0forn € {1,...,0}. Since (4.3) and (4.4) hold for all

§ € ops1 (Ve (¢rg1)), we conclude that they also hold for j+ 2% € o4t (VI (psr)). O

The next construction involves real symmetric framelets with controlled overlap and
smooth decay in the frequency domain. Here, we impose conditions of symmetry on the
masks in the frequency domain. In order for the anti-aliasing condition to be satisfied by
the masks at the middle bands around j = +2¢! i.e. ng and g,.%,, where \g = L%’“J
and g = Ao + 1, we impose a “balancing condition” on their supports.

Construction 4.6. Let akﬂ and EkH be given as in Construction 4.1. Let \g = L%’“J,

o = )\0 +1 and 0 < Nk,n < Lk,n < Nk,nJrl; Nk,,uo < Lk,,uo; Nk,,uo =+ Lk,,uo = 2k and
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Nior+1 = Ligp11 < Lgy11. Forn e {1,..., 0x}\{1o}, let
4
- A ) €{—Lyny...,—Npp—1
Vasin 55 (- -1)] o’ U o =1
k,n U{Nk,n+1a---7Lk,n}7
\/5 ’lf ] e{_Nk,n+17-”7_Lk,n}
§Z+l<j) = U{Lk,nu'-ka,n-i-l}a (47)
- .  €{—Linit,--s —Ngni1 — 1
V2 cos [%@?H (Nm _ 1)] if J €{—Lins kn+l }
Fontt U{Nk,nJrl + 17 ) Lk,n+1}:
\ 0 otherwise.
Forn = pyg, let
4
2 ~ , ) €{—Lyny...,—Npp—1
e i yVasin [307 (L 1)) i’ e o = 1)
k,n U{Nk,n_'_l,--',Lk,n}y
o efzi’%jl\/ﬁ if J€{—Nint1,---,—Lin}
gk+l<j) = U{Lk,na o 7N/€,n+1}7 (48)
i2m ~ - ) Ed—Lpnat1y ooy —Nppne1 — 1
e_ziﬁ\/ﬁcos [%ﬁ,’;“ (—N gl 1)] if 7 bl Fm+l }
Fontt U{Nk,nJrl + 17 ) Lk,n+1}>
L 0 otherwise.
If Nyw = Ly, form e {1,... 06 \{po}, then forn e {1,..., 060 — 1}\{ o, pto}, let
1 if je{—Le,JU{Lin},
() = V2 if je{=Nins1+1, ..., =L — 130{Lpn+1,. .., Njps1 — 1}, (49)
k1\J) = o .
1 Zf ] G{_Nk,n+l}U{Nk,n+l}7
0  otherwise.
Forn = )\, let
4
1 if je{—Lin,}U{Lin},
\/5 i J G{_Nkm-f—la---a_Lk,n_l}
S U{Lkn +1,..., Npnt1},
G () = , { = (4.10)
x Antl Fi o] e{_Lk,n+17-"7_Nk,n+1 -1}
\/ECOS |:§ A (W — 1)] Zf
e U{Nk,n-i-l + ]-7 ) Lk,n+1}7
0 otherwise.
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Forn = pyg, let
(
27 ~ . e{—L n;"'7_Nn_1
e ¥ vasin [30; (L -1)] o7 U o
k,n U{Nk,n+17""Lk1”}7
im o J €{=Niwn +1,.. ~ Ly
Grali) = o /3 jp 1Nk o
U{kan,- . -,Nk,n+1 - 1}7
_ 27y . .
= if § €{=Nkni1 }IH{ N i1},
\ 0 otherwise.

Finally, under the condition that pg < oy, let

U if je{—Lig JU{Lrg},
() =4 V2 i JE{=Nigro oo —Lig = YU{Lrg + 1 Nigon ), (412)

0 otherwise.

Remark. In the event that Ny ,, = 287! — 1 and Ly ,, = 2"~' + 1, we have the liberty of

3 SHO ; _m/\)\ - _ d2mg . k—1
setting g;.4,(j) = e 1g.1,(j) = e 281 for j = £2771.

Proposition 4.7. The refinement and wavelet masks ﬁkﬂ, Gpy1 formoe {1,..., 01}
defined by (4.1), (4.7) and (4.8) or (4.2), (4.9), (4.10), (4.11) and (4.12) respectively as
in Construction 4.6 satisfy (4.3) and (4.4). They are real and symmetric and generally
have smooth decay with overlapping supports that can be controlled. Hence, by the periodic
UEP, the affine system Xar is a tight frame for L*(T).

Proof. The condition Ny, + Lk, = 2% implies that for m = 1,..., A and n = pg +

1,..., 0, we have
2Lk,m < Nk,/,Lo + Lk,,uo - 2k = Nk,,ug + Lk,,ug < Nk,n + Nk,nv
i.e. we have the following increasing sequences

{Nk‘,m - 2k7 Lk‘,m - 2k7 _Qk_la _Lk‘,ma _Nk‘,ma Nk,ma Lk,m7 2k_1a Qk - Lk,ma Qk - Nk‘,m}
{_Lk,n; _Nk,n7 _2k717 Nk,n - 2k7 Lk,n - 2k7 2k - Lk,n; 2k - Nk,n7 2k717 Nk,n7 Lk,n}
{Nk,)\o - 2k7 _Lk,,um _Nk,uoa _Nk,)\m Nk,)\m Nk,uoa Lk,uoa Qk - Nk,/\o}
{_Lk7uo+1’ _Lk,um _Nk,uov Lk,uo-i-l - 2k7 Qk - Lk,uo-l-l? N/wtoa Lk,uov Lk,uo-i—l}

of integers. The result is that for n = 1,..., g — 1, with j € {—Lgnt1,..., —Ngn} U

{Nins--sLin1}, or equivalently j — 2% € {Ny,, — 2% ... Ly, — 28} and j + 2% €
{2% — Lins1, .-, 28 — Ni,}, we have [ == 28y = 0. Also, for n = o +1,..., o,
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with j € {~Lins1,---s —Nint U{Nins-- s Lini1}, or equivalently j — 28 € {N;, —
28 Lppy1 — 28 and j+ 28 € {28 — Ly, ..., 28 — Ny}, we have g, (5 £2%) = 0.

Since Ng o < Lk o, f0r § € {=Nipos s —Nixo } U{Nk g, - - s Ny | OF equivalently
=28 € {Nipo — 2% ..., =Ly} and j + 28 € {Ly 0, .-, 28 — Nixo ), we have G329, (j &
28) =0 =109,2,(j). For j € {—Lipo+1s---» Ly} U{Lkypo,- - Lipo+1}, or equivalently

j—28 € {~Niposr- s Lijorr — 25} and j + 2% € {2% — Ly 41, -+, Niyo b, We have
G () =0=gp2,( £ 25).

Since Ni o < L, for j € {—=Liygs - —Nipo } U {Nkpuos - - - » Lo}, which is essen-
tially equivalent to j — 2% € {—Lg g, .-, —Niuo} and 5+ 28 € {Ny,o,- s Liyo b, We
have

X0 (AN (54 oky T 2o (7] o (20 ‘j_‘
9.0.(7)g.5 () £2%) = 2cos < ( — 1) cos— -1,
k+1( ) kJrl( ) 2 k Nk,p,o D) k Nk,,u,o

7 (1) (j £ 2F ——2sinzﬂ~“°< | —1)Sinz~”0( . —1),
gk+1(])9k+1(] ) ok New ok Neow

and hence by Lemma 4.3,

PSW

9k+1(])/g\1;\9rl(] + 2k) + 9k+1(j)fq\gil(j + Qk) =0. (4.13)

We have shown that for n € {1,..., g — 1,00 + 1,..., 0} such that gp ,(j) # 0, we
have g7, (j +2%) = 0, and for §p9,(j) # 0 or gi%,(j) # 0, (4.13) must hold. Therefore,
(4.4) holds for all j € opyp1 (Ve (drs1)).

Letne{l,...,0k}. If Nipy < Lgy, thenfor j € {—Lgn,. .., —Nent U{Nims-- s Lin},

we verify that

|G+ ‘+|9k+1 {:25111 ﬁk(A]\Z!n_1>+2CS 5k(]\|[k|n 1>:2

and all %H(j) =0forl g {n—1,n}. If j = Ny, = Lg, or j = =Ny, = —Lg,, then

clearly

} |+‘k+1 ‘:14‘1:2

and all g} ,(j) = 0for | & {n —1,n}. For j € {=Nynt1+1,...,— Ly, — 1} U{Lin +
1,..., Nint1 — 1}, we have [g7,, j)|2 = 2 and g,,,(j) = 0 for all I # n. For j €
{— ngkﬂ} U {Ni,opt1}, clearly, |25, (j) |2 = 2 and g},,(j) = 0 for all [ # g4 For
jE€{—Nr1+1,...,Ni1 —1}, we have ‘hkﬂ(j)r =2and gy ,(j) =0forn e {1,..., 01}
Since (4.3) holds for all j € o441 (Vi (¢rs1)), we conclude that it also holds for j + 2F €
o1 (Vg (Pr41))- 0
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Remark. We may vary our symmetric construction in several ways. Although the proofs
of these variations may be similar, each one of them has its delicate details. For com-

pleteness and clarity, we shall include them here.

Construction 4.6 could be modified by permitting one of our framelet masks, i.e. g9,

in (4.8) to be antisymmetric instead. To this end let us define
sgny, 1 (j) = sign(j mod 28t — 2F).

Construction 4.8. Let $k+1 and /}\Lk+1 be given as in Construction 4.1. Let \g = L%’CJ,

Lo = )\0 +1 and 0O < Nk,n < Lk,n < Nk,nJrl; Nk,,uo < Lk,um Nk,uo + Lk,,uo = 2k and
Niowt1 = Liop41 < Liy1a. Forn € {1,..., 0x\{1o}, let gi,y be given as in (4.7). For

n = o, let
4 .
. . . T An 1 L 6{_L/€7n7"‘7_Nk,n_1}
OB g ()] S
k.n sy kng,
) . L JE€{=Nint1,.-.,—Lin}
. g (7)V2 if »
ngrl(j) - U {Lk,na"'ka,n-i-l}a ( . )
. . T B i . ,] 6{_Lk,n+1a'~'7_Nk,n+1 - 1}
1sgnk+1(])\/§cos [5 kH (ﬁlﬂ B 1” i U {Nins1 +1 Liny1}
n+ PRI n+1Ss
0 otherwise.

\
If Njjw = Ly forn € {1,...,0e}\{so}, then forn € {1,..., 00 — 1}\{ Ao, pto}, let gi,4
be given as in (4.9). Forn = X, let gi,, be given as in (4.10). For n = pyo, let

(

. . . P j . je{_Lknaa_Nkn_l}
isgn V2 sin [E ”(i—lﬂ /) ’ '
© k+1(]) 26k Mo f U{Nk,n—i_lw"a[’k,n}’
. . . g E{_Nk,n+1 +17~-7_Lk,n}
§2+1(J) = 1Sgnk+1(9)\/§ if U{L Niner — 1} (4.15)
RO n+1l T )
isgn () if 7 €{=Nenr1}H{ Ninsr},
| 0 otherwise.

Finally, let g%, be given as in (4.12) only if 1o < 0.
Remark. In the event that Ny ,, = 287! —1 and Ly ,, = 2" 41, we are at the liberty of

setting gpo, (—2"71) = —i with g9, (—2""!) = 1 and g}%,(2"!) =1 with g9, (2"!) = L.

Proposition 4.9. The refinement and wavelet masks /ﬁkﬂ, Gpyq form € {1,..., 01}
defined by (4.1), (4.7) and (4.14) or (4.2), (4.9), (4.10), (4.15) and (4.12) respectively

as in Construction 4.8 satisfy (4.3) and (4.4) and are real and symmetric except for
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one antisymmetric framelet mask. They generally have smooth decay with overlapping
supports that can be controlled. Hence, by the periodic UEP, the affine system Xo. is a
tight frame for L*(T).

Proof. The condition Ny ,, + Liu, = 2F implies that for m = 1,..., g and n = o +

1,..., 0, we have
2Lk,m < Nk,uo + Lk’,uo = Qk = Nk,uo + Lk,uo < Nk,n + Nk,n:
i.e. we have the following increasing sequences

{Nim = 2%, L — 2%, =251, = Lim, = Nigmy Nigms Ly 277128 — Lo, 25 — Nijm}
{_Lk,na _Nk,n; _2k_17 Nk,n - 2k7 Lk,n - Qka 2k - Lk,na 2k - Nk,na 2k_17 Nk,nu Lk,’n}
{Nk,)\o - 2k7 _Lk),,u,o7 _Nk,,uoa _Nk,)\07 Nk,)\07 Nk,uou Lk,,u,(w 2k - Nk,)\o}
{_Lk7l*’/0+1’ _Lk7u07 _Nk7MO7 Lk,MO‘f‘l - 2k7 2k - Lk,MO‘f‘l? Nk7ﬂ0’ Lk7/'l/07 Lk,MO‘f‘l}

of integers. The result is that for n = 1,..., g — 1, with j € {—Lgns1,..., —Ngn}t U

{Nins-s Lini1}, or equivalently j — 2% € {Ny,, — 2% ... Ly, — 28} and j + 2% €
{2 — Ly i1, ..., 28 = Nip}, we have gy (j £2%) = 0. Also, for n = po + 1,..., ok,

with j € {=Likns1,---s —Nin} U{Nins -y Lint1}, or equivalently j — 28 € {Ny, —
. Ligper — 2% and j+ 28 € {28 — Ly, ... 25 — Ny}, we have gp,,(j £ 2) = 0.

Since Ny o < L gy for 7€ {=Nipos- s —Nexg } U{Nkrgs - - » Nko }» OF equivalently
=28 € {Nipn — 2%, ..., =Ly} and j + 28 € {Ly .- .., 28 — Ny}, we have G39,(j &
28) =0=10,2,0j). For j € {—Lipo+1s---» =Ly} U{Lkyo, - - Lpo+1}, Or equivalently

j—28 € {~=Nipos- s Lijor1 — 2%} and j + 2% € {2 — Ly 41, -+, Niyo b We have
@2\110) =0= 5511(] + 2k)-

Since Ng o < Lipg, for € {—=Lipgs - —Nipo } U {Nkuos - - - » Lo}, which is essen-
tially equivalent to j — 2% € {—Lg g, ..., —Niyuo} and 5+ 28 € {Ny o, Liye b, we
have

. k .
PSS S kN T =10 |]| T =10 2 _‘]|
g J)g JE£2%)=2cos - (——1)005— (——1 )
k—l—l( ) k—l—l( ) 9 k Nk,p,o D) k Nk,,uo

<~ . k T ‘]| T —2k_‘j|
@\gil(j)gzgrl(j +2%) = _281115 ZO (Nk,uo - 1) SIH§ ;:0 ( Nie,o )

and hence by Lemma 4.3,

G0 (N3G £ 28) + 32, )k (G £ 2F) = 0. (4.16)
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We have shown that for n € {1,..., g — 1,10 + 1,..., 0} such that gp ,(j) # 0, we
have gy, (j = 2%) = 0, and for §p9,(j) # 0 or gi%,(j) # 0, (4.16) must hold. Therefore,
(4.4) holds for all j € o1 (Vo (drs1)).

Letn € {1, RN Qk} If Nk,n < Lkma then fOI'j € {_Lkma ey _Nk,n}U{Nk,n7 R 7Lk,n};

we verify that

|67+ ‘+|k+1 |—2sm —5k(]\‘£n—1)+20 —5k(]\|]k|n—1>:2

and all gk+1( )=0forl & {n—1,n}. If j = Ny, = L or j = —Ng, = —Ly, then

clearly

N2 _ 12
}/Q\ZH(]) + ZI\ZHI(])‘ =1+1=

and all g, ,(j) =0for I & {n—1,n}. For j € {~Nyppy1 +1,...,—Lin — 1} U{Lpn +

1,..., Nin1 — 1}, we have |gp, ( j)!z = 2 and G,,,(j) = 0 for all I # n. For j €
{—Nigpr1} U {Nigs1}, clearly, |G, (j | 2 and gi.,(j) = 0 for all | # g For
jge{—=Ng1+1,...,Np1—1}, we have ‘hkﬂ ‘ =2and gy (j) =0forn e {1,..., 0}
Since (4.3) holds for all j € o441 (Ve (¢ry1)), we conclude that it also holds for j + 2% €
o1 (Vg (Pr41))- O

We may remove the restriction that Ny ,, + L, = 2% by using two pairs of symmetric
and antisymmetric framelets instead, i.e. we replace the masks at the middle bands around
j = 2kt by symmetric masks g; gk ©, and g0, and their corresponding antisymmetric ones
§,§il and g gk %1. The redundancy provided by the antisymmetric masks is used for anti-

aliasing purposes.

Construction 4.10. Let ggkﬂ and /}\lk+1 be given as in Construction 4.1. Let pg = Ao+ 1
such that 0 < Nk,n < Lk,n < Nk,n—i-l; Nk,,uo < 2kl < Lk,,uo and Nk,gk+1 = Lk,gk+1 < Lk+1,1'
Forn e {1,..., 06}\{ )Xo, tto}, let Gty e given as in (4.7). For the labels n € {Ao, o}, let

(

sin [g@g (L _ 1)} 9 €L =N = 1)

N, U{Nk,n+17"-7Lk,n}7
1 i J €{—Nems1, s —Lin}
§{I;L+1(j) = U{Lk,na s )Nk,n—i-l}a (417)
; ) Ed—Lpnat1s ooy —Npne1 — 1
oS |:7rﬁn+1 (Nk‘:]n‘Jrl B 1)] if J €{—Lrnt k1 — 1}

U{Ngnt1+1,..., Li i},

0 otherwise,
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and

-n

Jk+1 (j) = 1sgny (j>§z+1(j>- (4.18)

If Niw = Liy forn e {1,..., 0e}\{po}, then forn € {1,..., 00 — 1}\{ o, o}, let gi 4
be given as in (4.9). Forn = Ay, let

(

1 o
272 if 3 €{=Lin,}U{Lin},
7 €{=Nint1,- s —Lgn— 1}
! L iLiwt 1 Newir)
U Uilkn + 1,0 Negntag,
G () = , (4.19)
Sl i o J e{_Lk,n+17-“7_Nk,n+1 _1}
cos [% s (N& — 1)] if
fontt U{Nk,n—i—l + ]-7 B Lk,n+1}7
\ 0 otherwise.
Forn = pyg, let
( .
sin [z@g (L _ 1)} i 4 UL =N = 1)
2 Nk’n U{Nk,n+17---7Lk,n}7
e{—Ngps1+1,...,— L,
Gin () = 1 i I SN kit (4.20)
U{Lk,n7 CI) Nk,n+1 - 1}7
27z if j €{=Nint1 }U{Nent1},
\ 0 otherwise.
For the labels n € {Xo, o}, let
§?+1(j) = ngnk+1(j)§z+1(j)' (4.21)

Finally, let g%, be given as in (4.12) only if 1o < 0.

Proposition 4.11. The refinement and wavelet masks /f;kﬂ, Giy1 form e {1,..., 0}
defined by (4.1), (4.7) and (4.17), (4.18) or (4.2), (4.9), (4.19), (4.20), (4.12) together
with (4.21) for n € { o, po} respectively as in Construction 4.10 satisfy (4.3) and (4.4)
and are real and symmetric except for two antisymmetric framelet masks. They generally
have smooth decay with overlapping supports that can be controlled. Hence, by the periodic
UEP, the affine system Xop is a tight frame for L*(T).

Proof. Form=1,... Agand n=po+1,..., 0, we have

k—1
Lk,m < Nkvl% <2 < L]wm < Nk,na
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i.e. we have the following increasing sequences

{Nk‘,m - 2k7 Lk‘,m - 2k7 _Qk_la _Lk‘,ma _Nk‘,ma Nk,’ma Lk:,my 2k_17 Qk - Lk,’ma Qk - Nk‘,m}
{_Lk,n; _Nk,na _2k_17 Nk,n - 2k7 Lk,n - 2167 2k - Lk,n7 2k - Nk,?% 2k_17 Nk,n7 Lk,n}
of integers. The result is that for n = 1,..., g — 1, with j € {—Lgns1,..., —Ngn}t U

{Nins-s Lini1}, or equivalently j — 2% € {Ny,, — 2% ... Ly, — 28} and j + 2% €
{2% — Lint1,...,2" — Ny»}, we have g, (j £ 2%) = 0. Also, for n = pg +1,..., g,

with j € {~Likns1,--s —Nin} U{Nins -y Lint1}, or equivalently j — 28 € {Ny,, —
2k, ey Lk7n+1 - 2k} and ] -+ Qk € {2k - Lk-’n_;'_]_, ce ,2k — Nk7n}, we have /g\g_"_l(j + Qk) =0.
Let n € {)\0, /LU} For j € {_Lk-’nJrl? RN _Nk,n} U {Nk,rm ey Lk,n+1}7 we have

aﬁﬂ(f)@fﬂ(.f + Qk) - _glrelﬂ(j)ﬁgﬂ(j + Qk)

and hence

1 (G2 (G £ 25 + 571 ()1 (5 £ 28) =0, (4.22)
We have shown that for n € {1,..., g — 1,0+ 1,..., 0x} such that g7, ,(j) # 0, we have
gro1(j £ 25) = 0, and for g9, (j) # 0 or gi%,(j) # 0, (4.22) must hold. Therefore, (4.4)
holds for all j € R,;.

Letn € {1, c ,)\0—1,,u0—|—1,. . ,Qk} Ika,n < Lk,na then fOI'j S {_Lk,na - -7_Nk,n}U
{Nkn, .., Lgn}, we verify that
e+ [t = 25w T (2l = 1) + 2o 2 (1) =
k+1 Nk,n Nkn

and all ng( )=0forl & {n—1,n}. If j = Ng,, = Ly or j = —Ng,, = —Ly, then

clearly

GG + GO =1+1=
and all g, ,(j) =0for I & {n—1,n}. For j € {~Nypy1 +1,...,— Ly, — 1} U{Lg, +
L,...,Ngpi1 — 1}, we have |g,€+1 ])!2 2 and g,4(j) = 0 for all I # n. For j €
{=Ni g1} U { Nk .11}, clearly, §,ﬁ’i1(])| = 2 and ng( ) = 0 for all | # ;. For

2
je€{—=Ng1+1,...,Np1— 1}, we have ‘th Jj ‘ =2and gy, (j) =0forn e {1,..., 0}
Forn=MXand j € {—Lin,..., —Nin} U{Ngn, ..., Ly}, we could show in a likewise

manner that

~\o— 1

A ) 2
o v SN
9k+1 | +19 k+1 ‘ + ‘9k+1 ’ = 2.
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For j € {—Ngnt1s--os—Lkn —1}U{Lkn+1,..., Ngpni1}, we could show that
~\ N NL
{gkil ‘ + ’gkgrl =2
For n = o and j € {—Lgn,. .., —Ngnt U{Nkn,..., Lk}, we could confirm that
Ao Ao (s 2 ~io (]2 SO [ 2
‘9k+1 } + ‘gk—H ‘ + |9k+1(])| + 9k+1<.7)’ =2.

For je {—Ngns1+1,...,—Lin} U{Lkn,..., Nent1 — 1}, we could ensure that

_ 2 | NE
O+ o) =2

For j € {—Likn+1,-- s —Nint1} U{Ninst1s- -+, Lins1}, we are assured that

I’ =2

G| + @)

g2, )| + |9k

Since (4.3) holds for all j € o441 (V™ (¢rs1)), we conclude that it also holds for j 4+ 2F €
o1 (Vg (Pr41))- 0

We may further remove the redundancy of two pairs of symmetric and antisymmetric
framelets by using a pair of symmetric and antisymmetric framelets 15, and v, instead
and imposing the condition that the signal is processed unchanged at the middle bands
around j = +2F1,

Construction 4.12. Let $k+1 and ﬁkﬂ be given as in Construction 4.1. Assume that
0 < Niw < Ly < Nyt forn # pg, Liy, < 28! < Nijo = Nijo+1 < Lo = L o1
and Ny g1 = Lig+1 < Liy1,1 with g = Ao + 1. Forn € {1,..., 0x}\{ Ao, o}, let iy
be defined by (4.7). We define (or redefine) gi,, for n € {Xo, o} by

(
o N7 s x5 ; . j E{—Lk,)\ ,...,—Nk’)\ —l}
o2 (sgn (7)) sin |35 (52— 1) | of ’ ’
70 U{Nk7)\0+1,...,Lk7)\0},
1 Mo . n - .] E{_Nk’, 7"‘7_Lk’,)\ }
o i (sgny 4 (7)) if " ’
Gra(J) = U{Lkrgs > Ny}, (4.23)
~ ;  €{—Lguyy---,—N —1
iandz(SgnkH(j))" cos [% ]l:O (NLJI _ 1)} ifj ;N k.o 1 Lk,/to} }
"o U k,u0+ y oy Mo S
0 otherwise.

\

In the event that Ny, = Ly, for alln € {1,..., 0k}, we would redefine gy, for n €
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{1, 0 — 13\{ o, o} by (4.9) and g7, for n € {Xo, o} by

(

lenmo N e
272070 2(sgny (7)™ if §€{—Lrr} U {Lir},
o o L J€{=Npu +1,...,—Lgy, — 1}
S imed 2 (sgny 4 (7)) if Ho ’
g () = U{Lkry + 1, Nepo — 1}, (4.24)
l'7’111'[10 s n o -
2721 d2(sgnk+l(.]>> Zf J E{_Nk,po}U{Nk7#O}7
0 otherwise.

\

We would also redefine gt , by (4.12).

n

Proposition 4.13. The masks hy.1, Gry1 Jor no€ {1,..., 0k }\{ Ao, o} and gy for
n € { o, o} defined by (4.1), (4.7) and (4.23) or (4.2), (4.9), (4.24) and (4.12) respec-
tiwely as in Construction 4.12 satisfy (4.3) and (4.4) and are all real with symmetry or
antisymmetry. They generally have smooth decay with overlapping supports that can be

controlled. Hence, by the periodic UEP, the affine system Xo is a tight frame for L*(T).

Proof. The condition Ly, < 2k-1 < Nj o implies that for m = 1,..., g and n =

s - - -, Ok, We have Ly, < k-1 < N, i.e. we have the following increasing sequences
{Nim — 28, L — 28, =251 — Ly s — Nions Niny Lo 2571, 28 — Ly, 28 — N}
{_Lk‘,na _Nk,n; _2k_17 Nk‘,n - 2k7 Lk‘,n - 2k7 2k - Lk‘,na 2k - Nk‘,na 2k_17 Nk‘,nu Lk,n}
of integers. The consequence is that forn = 1,..., Ag—1, with j € {—Lg 41, .., —Ngn U

{Nkn, -, Lgnt1}, or equivalently j — 2k € {Nin — 2k . Lignt1 — 2’“} and j + 2F €
{28 = Lint1, ..., 2" — Nyn}, we have gy, (j £ 2%) = 0. Also, for n = po +1,..., o,

with j € {~Lins1, s =Nint U{Npns- s Lini1}, or equivalently j — 28 € {N;, —
2k Lgny1 — 28} and j+ 28 € {2F — Ly i1, ..., 28 — Ny}, we have g (5 £ 2%) = 0.
For j € {=Lipos--s—Nixo} U{Nkrgs--s Ly s O equivalently j — 2% € {Ny,, —

2k Lpyu, — 2} and j+ 2% € {2F — Ly o, ..., 28 — Niao b, we have
Ger1 (1G5 £ 2°) + G151 (DG ( £ 25) = 0. (4.25)

We have shown that for n € {1,..., g — 1,10 + 1,..., 0} such that gp ,(j) # 0, we
have g7, (j = 2%) = 0, and for §39,(j) # 0 or gi%,(j) # 0, (4.25) must hold. Therefore,
(4.4) holds for all j € oy 1 (Vo (drs1))-

Let n e {1,..., Ao — 1}. If Ni,, = Ly, then for j € {—Ly,} U{Lg,}, we have
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and all gk+1( )=0for { & {n—1,n}. If Ny, < Lgn, then for j € {—Lg,,...,—Ngn} U
{Nkn, .-, Len}, we verify that

[ ‘ + k+1(1)| = 2sin’ —5k (J\ZL_1>+QCO —Bk (]J]’Jn 1>:2

and all g}, (j) =0for I & {n—1,n}. For j € {~Nyppy1 +1,...,—Lin — 1} U{Lp, +
1,..., Ngps1 — 1}, we have |G, ( j)|2 = 2and g,,,(j) = 0 for all I # n. Let n €
{o+1,... 00 —1}. For j € {~Npmp1+1,...,—Lpn — 13 U{Lppn +1,. .., Ngs1 — 1},
we have ‘ﬁ,’g‘+1(j)|2 = 2and g,,(j) = 0 for all I # n. If Nypy1 < Lyyi1, then for
J€{—Lint1,--s —Nint1} U{Nens1, -, Lini1}, we verify that

+ ~n+1 2 2|:COS n+1 ( |j‘ _ 1) + Sin2 E n+1 ( ‘]| _ 1):| — 2
Z ‘ = 2%\ Nennt 2%\ N
and all g ,,(j) = 0 for | & {n,n+ 1}. If Nypi1 = Lint1, then for j € {=Ny,1} U

{Nkn+t1}, we have

)+ O] =141 -2

and all g, (j) = 0for I & {n,n+1}. If Ny, < Ly, then for j € {—Ly s, ..., =Ny U
{Nk,)\07"‘7Lk7)\0}7 we have

U0 2 ~A\o 2 ~\o 1 2_ <2 ™ 20 ( |]‘ ) 2 ™ 20 ( ’]‘ ):| .
+ + =2[sin“ — ——— — 1 |4cos” = — =1 =2
‘9k+1 )| |9k+1 )‘ ‘ngrl )‘ [ ok Nixe o 1k Nirg
and all other g} ,,(j) = 0 for I & {Ao—1, Ao, po}. If Nix, = Ly, then for j € {—Ly,} U
{Lk ., }, we have

R
— g tl=

_ 2 (s .

G2 (D] + (322 ‘ +[ge37 ()
and all other gi.,(j) = 0 for I & {Ao — 1, Ao, p0}. If Nipy = Ly yot1, then for j €
{=Ni o } U { Nk, }» we have

po+1

1 1
Z|gk+1 _—+2+1—2

n=>\g

and all other gi,,(j) = 0 for I & {Xo,po,p0 + 1}. If Nipy < Ly, then for j €
{_Lk,#m ey _Nk,,uo} U {Nk‘,uov Ce 7Lk,,uo}a we have

g?hlﬂw 2 27TWO(M Q+2'WPW(U| Q D
71| = 2cos® = — sin® — L 1=
k+1 2 k Nk,p,o 9 k Nk,uo

n=>Xg
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and all other g}, (j) = 0 for I & {Xo, pto, to + 1}. For j € {=Ny o +1,..., =Ly, — 1} U
{Lgx, +1,..., Nk, — 1}, we have

GLO + GG =1+1=2

and all g, ,(j) = 0 for I & {Xo,po}. For j € {—Nyoet1s---s =Ly — 1} U {Ly,, +
1,..., Nigu1}, we have [g2% j){ - 2 and all gi,,(j) = 0 for n < gj. For j € {—=Ny1 +
1,...,Ny1 — 1}, we have ’hkﬂ(j)’ = 2 and g; ,(j) = 0 for n € {1,...,0x}. Since
(4.3) holds for all j € 051 (Vi (¢ri1)), we conclude that it also holds for j + 2¢ €
o1 (Vg (Pr41))- 0

Remark. As the reader would have already observed, there can be variations in the
constructions by assuming that Ny, = Ly, for only some of the n € {1,..., gx} subject

to the usual constraints of the respective constructions.

4.2 Time-Localized Construction

Time-localized wavelets in L?(T) are analogous to compactly supported wavelets in L*(R),
i.e. they could be obtained by periodizing compactly supported wavelets in L?(R). The
techniques discussed in this section are used to include modulation information into the
wavelet system while preserving the time-localized nature of the wavelets. These tech-
niques are also applicable to the bandlimited case but they are not necessary for the
inclusion of modulation information.

Suppose that the periodic affine system Xy, as defined in (1.15) is a tight frame of
real functions for L?(T) derived from the MRA {VJ% (®;)} such that the minimum energy
condition (3.45) holds for each k € N, i.e.

SN AT = D T P+ Y0 S A TP f e LA(T).

m=1 l€£k+1 m=11eLy m=11eLy

Hence for any K > 0, the collection of real functions {Tll(gbK Cox € Ol € Lk, }U{T,izbk :
Vp € Uyl € L,k > K} is also a tight frame for L?*(T). For simplicity, we assume that
p=1,1e. foreach k > 0, let &, := ¢, and ¥, := [wk ] “ be subsets of L?(T) satisfying
m=1
(3.28) and (3.31) for some Hypy = hier = 30, € S(251) and Gpyy = [fg*glﬂ] e
m=1
S(2k1)ex1 respectively. We shall also assume in this section that (3.48) holds.

In our following construction, we shall add modulation features to our wavelet system

by enlarging the MRA using “diagonal” extension of the masks.
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) ~T T 4T -~ ~270
Construction 4.14. For k > 0, define ¢, := {(bk o } with ¢;, = [gbk},\—ul and
~+ i L1 = ~ ’ Dy ~ —

Py, [%] o where ¢ (7) = ou(—j — cX) and ¢ (j) = ox(j + cp). Similarly, we de-
~T " T 4T . ~— ~A\ 0 ~+ ~puqL-1 A )
fine ¥, = {wk U, ] with ¢, = [wk]/\:_LH and ¢, = [wk]uo’ where ¢ (j) =

- 0 =~ ~ 0 =
p-i—eN)|and 0G) = [GpGiten)| . Fork = 0, the masks Hypy €
S(2H1)exe and ék-{-l € S(2FNexr where p = 2L and o = 2Ly, are defined such that

diag [ ] 0
2 1ag [h }
Hyr = bl x——r41 oy D1
0 diag [thL:O
diag [3.] 0
- [l
Gk-{—l'_ k+1 A=—L+1 - 1 (426)
0 diag [F., |
188 1 g 11 =0

. =r ~ ‘ 2 .
(=5 = N, hya () = Bana G+ ), Gaa () = [ (5 — )]
Ok

Tt
|:/g\/::n+1(j + CM)}mzl forall j € Riya.

Ok

m=1

with ?Lk+1(j ) =
and Gy (7) =

Theorem 4.15. For each k > 0, let EISk and E/k be constructed from @y and Vi as in
Construction 4.14. Then X, 1= {58, 5’5 to € Po, \=—L+1,...,0,u4=0,...,L—1}U
{TLM™ Thp™ iy € Uyl € Ly A= —L+1,...,0,0=0,...,L—1,m=1,... 0 k>
0} is a tight frame for L*(T) derived from the MRA {VE (®})}xs0 using the periodic UEP.

Proof. The density of J,..;, Vai(®)) in Lo(T) implies the density of (J,., Vgljr(zlv)k) in Lo(T).
The refinability condition (3.28) is shown by verifying that for k > 0, A € {—L+1,...,0}
and p € {0,...,L — 1}, we have

A ~ ~ ~ oA A
¢k(]) = Gbk(—j - C)‘) = hk+1(—j - C)\)Qbk+1(_j - C)‘) = hk+1(j)¢k+1(j)a
< ~p

br(j) = 5}«(] +cp) = ﬁk-ﬁ-l(j + C/i)gkﬂ(j +cp) = ﬁ:+1(j)¢k+l(j)'

Thus {VE(®4) }eso is an MRA of Ly(T). Clearly, (3.48) holds for the MRA {VF (®;) }is0.
We also have for k >0, A e {—L+1,...,0}, pe€{0,...,L—1}, and m € {1,..., 01},

A

~Am 2Am

Vv () = {ﬁn(_] —c\) = %n+1<_j - C)\)akﬂ(_j —c\) = 9k+1(j) k-l—l(j)a
~p,m ~ ~ A
Ve (G) =00+ o) =G0 G+ )P (G + ctt) = G () (4)-

Therefore (3.31) holds and {T,ﬁ@f/;,?’m,T,i?’:’m s €Vl € L A= —L+1,...,0,u =

~

0,....,L—1,m=1,..., 0} is derived from the MRA {VQIZ(&%)}@O The masks f]kﬂ and
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CNJkH satisfy
Hi1 (G 4+ 0) Hyr (§) + Gra (5 + ) Gy () = 2001,
h 2k 25 ] _ d =A . A . A . A .
where v € {0,2%}, 200, 1L = diag |\, (j + ) by 1 () + G (G + 1) T ()
. ot o ~ ~ L—-1
Wo.ls = diag [y (G + 1) Pys (7) + Gia (F + )T (7)]_,+ Consequently, (3.43) of

Theorem 3.25 holds and hence the conditions of the period_ic UEP are satisfied. Thus
Xo, is a tight frame for L2(T) derived from the MRA {%ﬁ(%k)}kzo using the periodic
UEP. m

0
] and
A=—L+1

Construction 4.14 only allows for a fixed and limited range of modulation and re-

quires the expansion in the MRA. We shall remedy this by constructing minimum energy

0k,2L

time-localized wavelets {¢]"" | St

which, like our bandlimited construction, contribute

modulation information to the wavelet system and satisfy

2L o 2L
S e =S S man + S | ferm.
leLyq1 p=11eLly m=1 p=11eL;

First we look at complex constructions, where the additional masks constructed are

modulates of the original masks.

Construction 4.16. For 0 < k < K, define &)k = LgCT)k and \le = CNJkH(TDkH, where
the combined MRA mask

~0,0,0
= w1 (7
Lii(j) = |21 (4.27)
Gri1(d)
20,0,1
Jr+1 (7)
_ . , ~op  JEH om am L1
is a 2(or + 1)L x 1 vector with Gy41(j) = |:gk+1(j)]#:1 s Gp () = [9k+1(])L_0 and
. Ok -
[9k+1(])} 1
2,0 P
cmp G ()] )+ Gii1 (G — Cip)
9k+1(]>_ ~mupl = (2L)> ~m [z ’
Grs1 (9) G (J + Crpr)

form € {0,..., 01}, p€40,...,L —1} and j € Ry, and we let C,,.L = 2%. For k > K,
define (ik = LgEI\)k and {Iv/k = L%{I\lk with zk+1(j) = Zk+1(j) as the original combined
MRA mask.
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Theorem 4.17. For eachAk > 0, let 5k and \Tfk be constructed from ®; and Vi as
in Construction 4.16 with Zk_l,_l as in (4.27) and Ek+1 = [’g\'ﬁlrk_o as their respective
combined MRA masks. Then Xon = {¢o} U {T,@Zk : sz € \Tfk,l g_ﬁk,k > 0} is a tight
frame for L*(T) derived from the same MRA {V¥ () }r>o using the periodic UEP.

Proof. By verifying that $k = L_%/g\2+1$k+1 for0 <k < K and (?)k = /g\gﬂglik“ for k > K,
we confirm that &, and W, of Construction 4.16 satisfy (3.28) and (3.31) respectively
for all k > 0. Clearly, (3.48) holds for the MRA {V} (®;)}rs0. The UEP condition
Le(j)*Le(j) = 2L, with Ly (j) as defined in (3.44) is equivalent to

ng+1 ]+V)_250V

for j € Ry, and v € {0,2%}, which leads to the following condition

or L-1
> G G Ce)gia (G £ Cup + v) = 2160, (4.28)
m=0 p=0

that is independent of the choice of CyL. Using (4.28) for 0 < k < K, we deduce that

o Lo AmuO 2 Am7u71 12
Z Z Jerr (G| + |Gk ()
m=0 pu=0
=37 [‘gk—&-l]_ckll‘ +‘9k+1j+0ku)‘ } 2L(2L+2L):2
m=0 pu=0
and
ok L-1 T a0 Tl
{ghﬂ (g1 G+ 2°) + Ies1 (Gr G+ Qk)}
m=0 pu=0
1 or L—1 - -
= 57 D |G = Cua)i (G = O+ 2°) + G+ Curt)ia (G + Gt + 29|
m= /,L:O
=04+0=0,

and it follows that Lk( )*Lk( ) = 215, where Ek(j) = zkﬂ(j) karl(j 4 2‘?)] and Zk—f—l
is defined as in (4.27). Therefore by Theorem 3.27 (periodic UEP), X, is a tight frame
for L?(T) derived from the MRA {V}f (®;)}iso. O

We say that a function f € L*(T) is symmetric (up to linear phase ) if

F(=5) = e £ (5)
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for some x € T. Correspondingly, a periodic sequence g, € S(2) is symmetric (up to
linear phase k) if

e 7127rj~li/\

ge(—J) =e 2 Gr(j)

for some k € Z.
The wavelets in Construction 4.16 are not real and symmetric. It is possible to achieve
this requirement if we modify Construction 4.16 slightly.

k
2

= ~ AT =
Construction 4.18. For 0 < k < K, define &, = L [@(—-) qﬁk] and Yy =

ékﬂzﬁk“, where the combined MRA mask

20,0

o~

=y Iry1lJ
Lin(j) == |27 (4.29)
Gk+l(])
~op , JEL
: o o [9k+1<])} I = PN E~U VTN R
is a 2(or + 1)L X 2 matriz with Gy1(j) == o BT Grs1(j) = |:gk+1(j>:| » and
|:gk+1(])] el a
2m,p,0 .
o [g G) o ] o [@;’11(—; - Cin) 0
k+1 T ~m,p,l T . J
0 Gr11 (]) 0 /g\lranrl (J + Ckzﬂ)

forme{0,..., 01}, p €40,...,L —1} and j € Riy1 and we let CxL = 2%. For k > K,
§2 1(_') 0
* as

0 -~0

~ . AT =~ ~ = 0,0
define &y = L5 [¢k(_.) ¢k] and Uy, = Gioo1®pey with Gy =
Jk+1

Tra(—) 0 ]

0 g%

= ~m,0] %k
the refinement mask and Gy := [’“ 0] =

Irs1| as the wavelet mask.

m=1

Theorem 4.19. For each k > 0, let Zi% and \le be constructed from @5 and Vi as in
= USRS B ~ 2

Construction 4.18 with Ly, = ['ngL::O and Ly, = [@C"HL::O as their respective

combined MRA masks. Then Xop 1= {bo, po(—*)} U {T,i@fbvk Dy € \T/k,l € Ly, k>0}isa
tight frame for L*(T) derived from the MRA {V} (®,)}iso using the periodic UEP.

Proof. By verifying that ék = §2£1$k+1 for 0 < k < K and for £ > K, we confirm
that @, and U, of Construction 4.18 satisfy (3.28) and (3.31) respectively for all k£ > 0.
Clearly, (3.48) holds for the MRA {V} (®;)}x0. The UEP condition Le(j)Le(j) = 25
with Ly (j) as defined in (3.44) is equivalent to

Ok
N G ENT (£ + v) = 200,

m=0
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for j € Ry, and v € {0,2%}, which leads to the following condition

or L—1

YD G (EG + Cup)) g (£ + Cpr) +v) = 2L, (4.30)

m=0 p=0

that is independent of the choice of CyL. Using (4.30) for 0 < k < K, we deduce that

or L—-1 or L—1

AmuO 2 _
PP It ! — LYY i - G = L7 2L) = 2
m=0 p=0 m=0 p=0
or L—1 1 or L—1
~m,u,
ZZ Jerr ()| =L7 ZZ’%H J+ Cp) ’ =L7'(2L) =2,
m=0 pu=0 m=0 pu=0
and
ok L~ 1/\muO ’\T)’LMO o L7l
Zzgk—f—l 7)1 (G+2%=1L" 122 i ( j_CkH)/g\?i?+1(_j_Ck#+2k):O7
m=0 p=0 m=0 pu=0
ok L~ 1/\m,ul Am,ul %k L_l—
Zzgk—i—l N (G+25) =L 911 (G + Cep) G, (7 + G+ 2°) = 0.
m=0 pu=0 m=0 pu=0

It follows that Ly (5)*Le(j) = 214, where Ly (j) = [fk+l(j) fkﬂ(j + 2’6)], since

or L—1 ~m, 1,0 2
~ ~ > 2 |Gk (])‘ 0
L1 () L (5) = |"7017° ok L=1\mp1 2| T 21,
0 > 2 |Gk ()
m=0 u=0
ok L1000 ~m
. SN ARIEED 0
Lies1(§) Ly (j + 28) =| ™07 o L=l T ol =0
0 mzjol;)ﬁk;{ (1)Irs1 (G+2%)

and in a similar manner, Zk+1(j + 2k)*Zk+1( ) =0 and Zk+1(j + 2’“)*Zk+1(j + 28y = 21,
with Ly defined as in (4.29). Similarly, for k > K, we have Ly ()" Ly (j) = 21, since

o o
~ = . 2 ‘gk-;-l(_])‘ 0
Li1(§) L (j) = |™=° o o| T 215,

0 Zo |9k+1(])‘
~ ~ Z 9k+1( )9k+1( J+ Qk) 0

Li+1(4) Ly (5 + 2F) =| =0

Qk
0 > G +2°)
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and in a similar manner, Zk+1(j + 2k)*zk+1(j) =0 and Zk+1(j + 2”‘)*Zk+1(j +2F) = 21,.
Therefore by Theorem 3.27 (periodic UEP), X, is a tight frame for L2(T) derived from
the MRA {V} (®4)}izo0- O

We shall now symmetrize Construction 4.18 by the same procedure found in Chapter
2. Although this general procedure could be fully developed for the periodic setting, we

shall only consider its specific application here.

Construction 4.20. For each k > 0, let ZIVDk and \Tfk be constructed from @y = ¢ and
0
Uy, = [%T] * as 1n Construction 4.18. For 0 < k < K and k > K, consider the new

m=1 ~

combined MRA masks E;C(]) = Ug(gk+1)LZk(j)Ug and Z;C(]) = Us(op+1) L (j)Ug respec-

~ 2(ox+1)L
tively, where Ly(7) is given as in Construction 4.18 and Uy(y, 1)1, := diag [UO] ' and
m=1
2(ox+1)
Us(gp+1) = diag [Uo] e 2(0r + 1)L x 2(o + 1)L and 2(or + 1) X 2(ox + 1) unitary

o

matrices respectively with Uy := 7 . Define &5; = Uy®;, and \le,g = UQQkL\TJk for

0<k<K and ®, := Uy®y, and V), := Up, Wy for k > K.

Theorem 4.21. For each k > 0, let @} and V) be constructed from @y and Uy, as in
Construction 4.20 with Z%H and Ekﬂ as their respective combined MRA masks. Then
Xioi={oo} U{Ti, : ¥}, € Wi, l € Ly, k > 0} is a tight frame with real and sym-
metric or antisymmetric elements (up to linear phase) for L*(T) derived from the MRA
{VE (D) }rs0 using the periodic UEP.

Proof. Theorem 4.19 shows that X, is a tight frame for L2(T) derived from the MRA
{X/er(ffk)}kzg, and {V{;((I);)}\kzo is the same MRA as {VQI;(EIV)k)}kZO as <T>§C is obtained from
a unitary transformation of ®,. By Corollary 3.29, X _is a tight frame for L?(T*) derived
from the MRA {Vf (®})}x>0 with combined MRA mask EZ; given as in Construction 4.20.
The symmetric and antisymmetric properties of the frame elements is clear from the choice

of the unitary matrices. O

Although Constructions 4.16, 4.18 and 4.20 give the flexibility of extending the range
of modulation by the wavelet system, it is required that the modulation range be bounded
in order for the wavelet system to be a tight frame. We shall remedy this by introducing
a slight modification to the wavelet masks based on the idea of splitting the wavelet

subbands into “packets” using a different set of masks.
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~

Construction 4.22. For 0 < k < K, define :ISk = &, and ‘Z[}k = \T/k with Ekﬂ =
Lk+1 bemg the original combined MRA mask. For k > K, define <I>k; = (IDk and \Ifk =
Gk+1q)k+l; where the combined MRA mask

= . )| = . omo (% om ~mp (T
Lii(j) = |2 ) with Gry1(j) = |:gk+1(j)] ) 9k+1(]) = [9k+1(3)} )
Gt (J m=1 #=0
Go (7)== Qg (7), form e {1,..., o6} and p € {0,...,r—1} and j € Ry with
rp—1
a,t e §(2%) and Z A" ()P =1 for all v € Ry.
n=0

Theorem 4.23. For eagh k>0, let :ng and \Tfk be constructed from @y and ¥, as in
Construction 4.22 with EkH and Ek+1 as their respective combined MRA masks. Then
Xor :={¢o} U {T,i@gk 0y € Wi, l € Ly, k> 0} is a tight frame for L2(T) derived from the
same MRA {V () }r>0 using the periodic UEP.

Proof. It is clear that ®; and U}, of Construction 4.22 satisfy (3.28) and (3.31) respectively
for all k > 0 and (3.48) holds for the MRA {V (®;)}y=0. Next, since for m € {1,..., o},

Te— 1 Te— 1
-~ ~m 2 . 2

DA = 3 A GOl = |50

n=0

re—1 re—1

DG a G 25 = Y G AT Gayt (i + 2998 G + 2Y)

n=0 n=0
T'k—l

s . ~m, N2 B .

= G (g1 (0 + 2k) Z @) = G (g (U + Qk)v

pn=0

therefore Z §k+1( )* ng(j +v) = 26, where g, ng = gy, and it follows that (3.43)

holds. Therefore, by Theorem 3.27, X, is a tight frame for L*(T) derived from the same
MRA {VF (®4)}r>0 using the periodic UEP. O

In the event that the wavelets of the packetized system )?% of Theorem 4.23 do not pos-
sess properties of symmetry or antisymmetry, we could symmetrize Xor by the procedure
found in Chapter 2 using the application of Corollary 3.29 and unitary transformations.
We shall now see as follows that orthogonal wavelet packet representation using conjugate

mirror filters as described in [38] and [46] is a special case of Construction 4.22.

Theorem 4.24. For k > 0, let {T}0x : | € Ly} be an orthonormal basis of a space
Si C LA(T) and hy, == 30 € S(2) and G, = e_%ﬁk(-+2k*1) = g1 € S(2%) satisfy
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(3.43). For m € {0,1}, define 5,2”_1 = §,’€”§k The family {T},_ 07, :m =0,1,1 € Ly}
is an orthonormal basis of Sy.

2

Proof. By Theorem 3.13, the Gramian, as given in (3.34), M (j) := = 27F

Ok ;
12(2)
for every j € Ry. Similarly, the two families {T} 0, .1 € L1} for m € {0,1} are
= 1|6} = 27K+ f, € Ry d th
H ] or every j k-1 and they

yield orthogonal spaces if <0k 145 Qk 1 j>l2(Z) = 0 for every 5 € Ry_1. The former could be

orthonormal bases if Hé’k 14

seen easﬂy since for m € {0, 1},

Hek 1,7

. 1 2 B 1P
‘0 (j + 21 )) Z|§Z‘(y+2’“ 'n)| ‘ek (j + 2 ln)‘

l2(Z
neL

=S lgrGi+ 2’%)} G+ 2| + Z GG + 2 2 [+ 2 2|
nez

=[G 27%) + g1 + 25 )P (2 >—2<2 k) =97k,

Similarly, the latter could be shown by

<é\2—l,j’é\ll<: 1,7 12(2 Zek 1 j+2k 1 )9]}: 1(]+2k ln)

nez

= "G00 + 25 )0 + 25 )G ( + 26 Tn)Bi(j + 24 1n)

nez

2

= G + 25 )G + 2Fn) ‘9w+2’“ )

nez

~ 2

F GG 2 20T 2T+ 2 [+ 2+ 2

nez

= (I + 906 + 2 NgiG + 2 )(27F) = 0.

Finally, the two families span S, since

ZskU)Tliek: Z s (DT 100, + Z e (DT 1031,

leLy €Ly 1 €Ly

where 257", (5) = [5k()9"(j) + Sk(j + 25719 (j + 2871)]. The coefficients are computed

according to the decomposition and reconstruction algorithms given in Chapter 5. [

Corollary 4.25. For k > 0, let {T}0y : | € Ly} be an orthonormal basis of a space
Si C LA(T) and hy, == 30 € S(2) and G, = e 3 Iy (- + 2671) = g1 € S(2%) satisfy
(3.43). Fori <k and e € {0,...,2' — 1}, define 5Z_Z =0 ﬁzogk, where the binary
representation of € is ey - €;_1. Then the family {T}_,0¢ .:e€=0,...,2 — 1,1 € L}_;}

2t—1

is an orthonormal basis of Sy that satisfies 27" > |G, 711, 2. g = 1.

€=
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2i—1
~Ei—1

Proof. We are only required to verify that 27 Z | [ +1 R o[> = 1 since the rest of

the proof is a consequence of Theorem 4.24 applfed iteratively. We shall obtain our proof

by induction. Clearly, )gg_l(j)‘2+ A,};_l(j)r =2 ak(J)F since 271 [@2(]”2 + |§i(])|2} =1
for every j € Ry. Without loss of generality, let us assume that 2i_21:0_1 A,‘j;_i +1(j)‘2 =
2i-1 é\k(j)r Next, we check that
201 9 9
S| = (B + e D[] Z Conl)] =227 [6.0)
e=0 =0
and this confirms our result. [

Although Construction 4.22 may not be as flexible as our bandlimited constructions,
it is certainly more flexible than orthogonal wavelet packet representations typified by
that of Corollary 4.25 since there are no special constraints on the packet filters other
than the requirement that the energy of the packet masks must satisfy a sum of unit
norm. This means that the packet filters of Construction 4.22 could be chosen to be
either time-localized or bandlimited and the representation is computationally efficient
as a desired representation of a signal could be obtained almost directly without going
through the iterative process of applying orthogonal wavelet packets. Furthermore, since
the refinable function and hence the MRA remains unchanged, the frame approximation
order is preserved and at the same time, finer partitioning in the frequency domain could
be obtained by modifying the number of wavelet masks adaptively.

The linear phase preserving time-limited L?(R) constructions of [7] and [16] using
the UEP typically involves a symmetric refinable function and three wavelets with the
first wavelet being an orthogonal flip of the refinable function. We could visualize their
time-frequency plot by comparing with their analogous bandlimited counterpart after
considering where they are localized in the frequency domain. The refinable function is

mainly localized in a subset of [~7, 7] and the first wavelet mainly occupies a subset of

[—m, 3] U [§.7]. The frequency localization of the remaining wavelets varies with con-

structions. For illustration purposes, let us just assume that they are basically localized
in the middle bands, i.e. [~ —wo, =5 + wo] U [§ — wo, § + wo] with |wy| < F. For a
reasonable construction of the bandlimited analogue of the lowpass filter, we shall utilize

the restriction that the refinable mask is localized in [0, wy.
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Construction 4.26. Let ﬁkﬂ be given as in Construction 4.1, i.e.

V2 ifj € {—Ng, ..., N},
hea(j) = VZeos |55 (B =1)] i € {=Luve o, =Ne =1 U N+ 1, I,
0 otherwise,

with Bk =0 <Lk Nk) N, = L%J x 2F <okl < [, < 2F — Ny, to reflect the time-limited

27 =< _
nature of the original filters. For j € Ry, let gpyqi(j) = e_‘z’TthkH(j + 2k), d.e.

( = NG ifj € {—2F ... Ny — 2~}
N . k k
e2+1\/§COS 26k N—k_l Zf]e{Nk+1—2,,Lk—2},
~1 S\ i27j ~ i_ok
Ir1lJ) = e /2 cos |25, |JN—2| 1) ifjeft— Ly, ... 2"~ N, -1},
e HIT /2 ifj € {28 — Ny, ..., 2"},
0 otherwise,

\

~ 2 ~ 2
and 4144 G)F =2 = [P ()] = [P G +2)

( k
sin? Z 3 (‘”—” 1> ifj € {Ny+1—2% .. —L.},
k ~ .
n* 23, ('”2 | 1) — cos? gﬁk% - 1) ifj € {1 —Ly,...,Ly —2F =1},
i€ {Ly—2% ... —N
o 2#5 (‘J‘_l) ij { k . k}
2|Ak+1<.])| = U{Nk772 _Lk}a
~ :_ ok ~
SiHQ% k(bN—il — 1) —(:082’—2r k(% ) ifj € {28 — Ly +1,..., Ly — 1},
. or j—2F iy
sm2§ﬂk<‘]Nk | —1) ijE{Lk,...72k—Nk—1},
\ 0 otherwise,
2k71 1271']'r
with Ap1(7) = > are” ¢, Ap1(5+2F) = Apy1(5) and all the computed a, being real,
r=—2k

27y

and let Gi 1 (j) = Ars1(j) + e i Api1(=7) and Gi oy (j) = € 2T Ay (=) — A ().

The standard orthogonal flip ensures that mg]\éﬂ(j +2F) = —/}Zk+1( Jj+ Qk)ﬁkﬂ( 7).
We remark that both /f\zkﬂ and gy, could be modified by the fundamental mask Oy of
the periodic OEP (Corollary 3.30) acting as a Fourier multiplier with the corresponding
|Ajiq |2 modified appropriately without changing their localizations. Observe that if N, >

25-1 we automatically have |[A;;;|> < 0 and there is no need to construct g7,, and
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gry1 as above. Both g7, and g}, are symmetrio and antisymmetric respectively up to
linear phase since g7, ,(—j) = Ak+1( J)+ @2k TT A (y) = ezi’z%/g\k+l( ) and Grii(—J) =
e A1 (j) — Arpr(—j) = —e¥7T g, (j). Furthermore, g, (j) = e %7 g, (j + 25)
with Agi1(—j) = Aps1(4), which implies that G2, ,(7)35 1 +2%) = —32,.( +2)32,, ().

We observe that for j € Ry1,

~ ) 2 ) _i2mj NG ) i2mj 2
G+ [3800) = [Aka () + e A ()] + Ak () — e FF Apa ()
= |Apn ()" + lAkH(—j)F + A () A (=) + Ay (=) Apia (e 200

i27j

Ak G + 1Ak (=) = Appr () Apia (=9)e T = Apya (=) Apgr (f)e” 2
= 4| A (),

which leads to

. 2
)]+ 3 O + G + 3G =2

Therefore, (3.43) is satisfied and Construction 4.26 provides the masks of a tight frame.

We shall utilize Construction 4.26 to typify a construction of time-localized masks and
we shall modify the Haar refinable mask and wavelet mask according to Construction
4.16 for use as packet masks to illustrate an actual implementation of packet filters in

Counstruction 4.22.

Example 4.2.1. Let /h\JkH = Gptr» gpvy for m € {1,2,3} be given as in Construction 4.26
with NV, = 282 and L, = 3- 22 and let C,L = 2. For u = 0,...,L — 1, let the

modulated Haar refinable and wavelet masks be given as
at(j) = (L) [1 + e*””?"““ck“)] . A (j) = (40)": [1 _ e*ﬁﬂ"“(ﬂcﬂ

respectively. We could easily verify that

L-1 L—1
S [P ot ] = Yty { [t e 0s0m) [1-+ gorr-“Gecun]
n=0 pn=0
i [1 oi2m27R( ;+Oku)} [1 _ ei27r2’k(j+0ku)]}
L1
= "2+ 2c082727F(j + Cpp) + 2 — 2 cos 2127 F(j + Cpp)]
pn= O
L1
=S (L)) = 1,
n=0
which shows that {ozk ,ay  :p=0,...,L — 1} satisfies the criteria for utilization as

packet masks for {g;, : m =1,...,3} as in Construction 4.22.
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Since gj_ is “supported” on {—2%,... L, — 2"} U{2% — L;, ..., 2"} and Ay is “sup-
ported” on {N, — 2% ... =N} U{Ny,...,2" — Ni}, we determine the bandwidths of the
original masks g;"; for m € {1,2,3} to be the following:

bandwidth of G ., is localized on {—2% ... —2F2} U {2F2 ... 2F}
bandwidth of g;.; and g}, , is localized on {—3-2F72 ... —2F2} u {2F=2 .. 3.2 2}

Next, we determine the bandwidths of the packetized masks {a} gy, a4 g7, : p =
0,...,L —1,m = 1,2,3}. Without loss of generality, we assume that a)* and &}~
are essentially localized on {—2%72 ... 2F2} and {21 .. . —2F2} y{2k=2 . 2k 1}
respectively since they are conjugate mirror masks.

For Cyppu < 272 and m € {2, 3},

{=2F ..., =3.2F2_Cyu},
bandwidth of @1 is localized on { {—28"2 — Cyp, ..., 2572 — Cyp},
{3 : 2k_2 — Ckﬂ, ey Qk},

{_3 ’ 2k_2 - Ck:uu cey _2k_2 - Ck:u}u

bandwidth of @/~ is localized on L s
{2 - _Ckﬂ,...,3’2 B _Ck:u}7

{=2F ..., =3.2F2_Cyu},
bandwidth of &1 g} is localized on ¢ {—28-2 — Cyp, ..., —2F2},

{3 : 2k_2 — Cku, “ee ,2k},

{_3 : 2k_2 - Ok,ua ) _Qk_2 - Ck:u}a

bandwidth of &~ g1, is localized on
S { {Qk_27 s 73 : 2k_2 - Ck:u}a

o2 Oy —2k2)

bandwidth of @ g" , is localized on { i }
{3.282 - Cyu,..., 3282}
{_3 ’ 2k_27 R _2k_2 - Oklu’}a

bandwidth of &%~ g7 , is localized on
ki { {252 3.2F2 — Gyl

For 282 < Cyp < 281 and m € {2, 3},
{_2k_2 - Cklu’a s 72k_2 - Cklvb}v

{3 AR Ckl% cee 5 2k=2 — Ok#’})

{_2k7 sy —2k=2 _ Cklu}v
bandwidth of &/~ is localized on ¢ {272 — Cyp, ..., 3282 — Cyu},
{5 . 2k_2 — C’k,u, NN ,Qk},

bandwidth of &ZJF is localized on {
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_2k_2—0 ,...,_Qk_2 )
bandwidth of @G, is localized on ¢ k2 o k}2
{3-2F2 — Cpp,...,5-282 — Oy},
{2k ..., =22 — Gy},

bandwidth of &%~ gy, is localized on { {2k=2 . 3.2k2 _ Cppul,
{5 - Crpby - .., 2k},

—2K2 Oy, —252),

bandwidth of @ g ; is localized on { i }
{3-2F2 — Cyp, ..., 32872}
{_3 ’ 2k_27 R _2k_2 - Ck:u}a

bandwidth of &/ g;" , is localized on
bk { {262 3.2k2 _ Gyl

Remark. Since the combined bandwidths of &} and @~ is from {—2* ... 2F} ie.

Ri+1, this means that the combined bandwidths of @ g, and @}~ g, for m € {1,2,3}

must be the bandwidth of the respective g;", ;. Therefore, although the input signal is now

processed differently by & gr, and @t~ g, for m € {1,2, 3}, no information concerning

the signal is lost and new insight into the processed data is available.



Chapter 5
Applications

The representation of a signal as a function of time fails to provide the spectrum of
frequencies present while its Fourier analysis hides the point of transmission and the du-
ration of each of the signal’s harmonics. The preferred approach should aim to combine
the advantages of these two complementary representations, i.e. constructing an instan-
taneous spectrum as a function of time. The instantaneous spectrum should also be easily
discretized by fast algorithms so that it is more compatible with modern digital commu-
nication theory. Due to the uncertainty principle, the design of such a spectrum using
wavelet representations is only possible provided that the observation of the signal as a
function of time and frequency is not arbitrarily precise.

This chapter explains how wavelet frames on L?*(T?®) could be applied to practical
situations. Periodic wavelets are considered as signals occuring in practice are often
extended periodically. Sections 5.1 to 5.3 describe the decomposition and reconstruction
algorithms for different setups of the general multidimensional multiwavelet setting of
L?(T#). For practical purposes, Section 5.4 narrows down to the 1-dimensional setting
with arbitrary integer dilation factor M and Section 5.5 further restricts to the setting of
a single refinable function with dilation factor M = 2 for the time-frequency analysis of

some Gabor atoms and chirp signals.

5.1 Uniqueness of Representation

We shall first focus on understanding the representation of a function in V3™ using its
underlying subspaces V¥ and WE given in (3.33) . Let fiy1 = fr +gr € Vo', where

fo = X &)y € Vi and g = 2 G(j) ur; € WE for some 5 € S(DF)r!
JERs JERy,

109
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and 1, € S(D¥)@*! which are the discrete Fourier transforms of s, € S(M*)?*! and
ty € S(MF)eex1 with the polyphase harmonics vy, ; and uy ; given as in Propositions 3.19

and 3.20 respectively. Therefore,

ferr=D_ () g = 3 D i+ D) g g

jERk+1 JERE rER1
= Zsk Uk]—|— Ztk uk,j
JER JERK
= Z Z [Sk “Hi1 (G + DFr) + 6(3) Crn (G + Dk?")] Ukt1jiprr  (5.1)
JERE r€ER1

with }AI;CH and @k;—i-l given as in Propositions 3.19 and 3.20 respectively.

Our next two results show that the representation of f; € VJf and g, € Wy by
polyphase harmonics is not unique and there is a minimal representation (up to ordering)
by equivalent polyphase harmonics whose Gramian is diagonal and consists of eigenvalues
of My, and Ny respectively, where M, and Ny, are given as in (3.34). First, we shall state

the assumptions used in the following common setups.

Setup 5.1. For a given k > 0, let j € Ry and r € Ry. Suppose that rank My(5) = q(j),
rank Ni.(j) = p(j) — q(j), rank My, 1(j + DFr) = p(j,r). There exist unitary matrices
Ur(j) € C**P, Vi(j) € C&*e and Uyyq(j + DFr) € CP*P such that

Ur(7)Mi(5)Ur(j)" = diag(M}(4), 0p—q(s))
Vk(]>Nk(j)Vk(])* = diag(N;(j), ng—[p(j)—q(j)])a (52)
Ui1(j + D*r)Mys1(j + D r)Uss1(j + D*r)* = diag(Mj,, (7 + D*r), 0p—p(jr))s

where M},(5), Nj.(7) and M}, (j + D*r) are invertible diagonal q(5) x q(j), p(j) — q(j) X
p(j) — q(y) and p(j,r) x p(j,r) matrices respectively. We shall also define the following
diagonal matrices, i.e. the p X p diagonal matriz ]’ = diag(14(), 0p—g(j)), the or X o
diagonal matriz I, = diag(Ip;)—q(j): Oop—(p)—a(i) ) the pxp dzagonal matriz L . =
diag(Lp(jr), 0p—p(jry) and the pdx pd dzagonal matrix [ dlag([p(jml), o 711/7(3 . )) where
r1,...,7q € R are distinct coset representatives of ZS/DZS.

Setup 5.2. Assume Setup 5.1. Let 5 ())=Us(5)51(j), tr ()=Ve()ir(5), 5mi1’ (j + DFr)=
Ups1(§ + DFr)sea (G + DFr), vy = Ur(G)vngs why = Vi), vy opry = Uk (G +

k
D r)vk+1,j+Dkr;

Hyy(j + D*r) = Up(j) Hya(j + DFr)Usa (j + DFr)* and
Croir(j + D) = Vi) Gra (G + D) Ui (j + DPr)*,
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where S, i1, Vkjs Uk js Hk+1 and Gk+1 are given as in (5.1).

Setup 5.3. Assume Setup 5.1. Let §,/(j) = Ly Ui(5)56(5), b (]) = Ly q(y Vil Nee(7),
Sep1 (J + D) = LUk (G + DFr)sea(j + D ), Vs = U(§)vry, up; = Vi(j)ury,

U;c—l-l,j-i-Dkr =Upa(j + DkT)”k+1,j+ka
ﬁllc—s—l( A + Dkr) = I, )Uk(])ﬁ/ﬁ‘l(] + Dkr)Uk’-i-l( + Dk ) p(j r) and

A;g+1(3 + D" r) =1, p(G)—q(j Vk( )akﬂ(j + DkT)UkH(j + Dk?") I;;(j,r)’
where S, iy, Ukjs Ukjs ﬁkﬂ and Gkﬂ are giwen as in (5.1). We shall also let
L) = diag (I Uk(3) Iy g Vi) Lk () diag (Ui i1 (G+DFr1), ., Upsa (j+DFra))* I
with the assumption that ILk( ) defined as in (3.44) satisfies (3.43).

The difference between Setups 5.2 and 5.3 is that in the latter, values of the masks and
frame coefficients of signals outside the spectrum of the refinable functions and wavelets
have been set to zero and the masks also satisfy the minimum energy tight frame condition.

Lemma 5.4. Assume Setup 5.2. If 3. &.(5)*vk,; = 0 and Y. th(5)*ur,; = 0, then for

JER JERk
each j € Ry, the first q(j) entries and the first p(j) — q(j) entries of 5 (j) and ﬁ,(j) are
wdentically zero respectively with the remaining entries being arbitrary. In particular, we

have

()T Uk] Zsk vkj,cdetk uk] Ztk “ug ;. (5.3)

JERK JERK JERK JERK
p p
Proof. For a given | € Ry, since [(@(Z)*vw,v,’:l)} = > [(@(j)*vk,j,vfjl)} = 0, we
’ H= JER ’ Hn=
infer our result from the observation that
M(1) 0

UeDs (D) | " =0.

wamor [0 9
and that My (1) is a ¢(1) x ¢(1) diagonal matrix. The proof for &, (j) is similar. O

The reconstruction algorithm is derived using Lemma 5.4 without the use of Proposition
3.26 and Theorem 3.27 (periodic UEP).

Proposition 5.5. Assume Setup 5.2. If

Z Z Ser1(j + D*r) vy jipre =

JERK TER1

Z Z [Sk Hk+l j+ DFr) + 4(j )*ékﬂ(j + Dk?“)] Uk41,j4DFr> (5.4)

JERE r€ER1
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then for j € Ry and r € R4,

PPN . e )
S G+ D) Ty = [ G) Hia (G + D7)+ 5 (5)' GG + D) By (55)
D D 5wt G D) Ly Vi e =

JERK TER:

~ A
Z Z [ Hllerl j+ DFr) + 1 ()" Glir ( + Dr) L.y k1, DPr- (5.6)
JERKL TER1

The p(j,r) +1,...,p entries of 5g11 (j + D*r) could be arbitrary and (5.4) is equivalent

o (5.6). In particular, for j € Ry and r € Ry, we have

Sen (D ) Iy ):[é;c/(j) v By GEDM T (3) Iy o) Glosa (4D r):|[/(]7“) (5.7)

ZZS’““ (G + Dbr)’ PG Uk 1,4 Dby =

JERKTERL

PIDIEAE

Hk+1(J + D" 7’)+tk (J )*I;(j)—q(j) ke (7 Dkr)] [;z/)(j,r)vllc—l—l,j—i—Dkr (5.8)
JERKTERL

and (5.4) is equivalent to (5.8).

Proof. By the proof of Lemma 5.4, the p X p unitary matrix Uy, (j + D¥r) diagonalizes
M 1(j + DFr) as in (5.2) and results in

. NPT ~ My, (j+DFr) 0
[8k+1,(J+Dk'f’) — 5 (5) H2+1(3+Dkr)_tk/(j) ;f“(j—i_Dkr)} [ " 0 0 =0

Hence (5.5) and (5.6) hold and (5.6) is equivalent to (5.4). This is true even if Ug(j) and

Vi(j) are arbitrary p x p and g X g unitary matrices respectively.

Next, assuming that Uy () and Vi (j) are chosen as in Setup 5.1, we make use of Lemma
5.4, (5.1), and (5.6) to show that

fk+1:Z Zs/k:l/(j+Dkr)*[zlv(j,r)v;c+1,j+Dkr = ' Il Uk J+Z t’“ )ukﬂ
JERKLTERL jGRk JERK
—Z Z[Sk o) Hk;+1(] +DFr) + 4 ( ) L) —a(h) Gl ( + Dkr)} gy 1,44 D (5.9)
JERKTERL

where v} ;= 27; Hk:+1(] +D* P 0y Vst g oy A0 U = A;c+1(j+Dk7")I/
reRi

p(Js T)Uk+1,j+D’“r‘
reR;
Apply Lemma 5.4 to (5.9) again gives us our result. O

The masks H_ , and G, are therefore known as reconstruction masks since they are
— ~ ~.
used to reconstruct 5,4, from 3’ and #, in (5.5).
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5.2 Semi-Orthogonal Representation

For the results in this section, we shall assume that Vo= = V£ @+ Wk and they are
applicable to wavelet frame constructions derived from FMRAs. Our next proposition
represents the spanning members of UQka Y given in (3.35) by spanning members of VQIZJ
and W;;j .
Proposition 5.6. Assume Setup 5.2. There exist ]3k+1 € S(DFYYP*r and Q\k+1 €
S(DFF)P*ew sych that for j € Ry and r € Ry,

Ukt j+pbr = Pep1(§ + D*r)o; + Qusa(j + DFr)u. (5.10)

In particular, we have

- M. (7)) o] M. i+ D) o] ~

P,;H<J’+D'fr>[ ’“0“) | = “1“0 ) N G DR G
S N (j) 0] M, GG+ D) o] 5 ,

0L, (j + D'r) k0<> | = ’f“(o ) N G+ Dy Ga2)

where By (j+ D) = Ugsa(j+ D¥r) Pesa(+ D) U(G)* and Qi (j+ D*r) = Upa (G +
D*r)Qui1(j + DFr)\Vi(j)*. Therefore, the first q(j) and p(j) — q(j) columns of P,gﬂ(j +
D*r) and @;H(j + DFr) respectively are uniquely determined.

Proof. Since Vit = VFE @+ WE  for a given j € Ry and r € Ry, there exist A(l) € CP*?
and B(l) € CP*% where | € Ry, such that

Uk41,j4Dkr = Z [A(D vk + B(l)up,]
lER

=3 > [AWH W+ D) + BOGa + D) vis i
lERE nER1

Let jo € Ry and rg € R1. We have

, p
854 Do+ Diro Mig1(Jo + D¥ro) = [<UZ:-1,j+Dkr7 UZ+1,j0+DkTO>:|m#_1 =
- k =~ k m P
S 3 [AO il + Do) + BO)Grea(l + D) [@MHDWUg+17j0+ka>]m’#zl
lERL nER1
= [A(]O)ﬁk.i_]_ (]0 + Dkro) + B(jg)ék_H (]0 + DkTo)] Mk+l (]0 + Dk’l“o). (513)

Since rank My 1(jo + D*rg) = p(jo,70) and the unitary matrix Uy ,(jo + DFry) € CP*?
diagonalizes My1(jo + D*rg) such that

; : , M), (jo + D*rg) 0
Uk+1(jo + D*ro)Mys1(jo + D*ro)Ups1 (jo + DFro)* = [ k+1(.700 0) O] ’
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with My (jo + D*rq) being an invertible p(jo,70) X p(jo,70) diagonal matrix, we let
A'(jo) = Urs1(jo + D*r0) A(jo)Uk(jo)*, B'(jo) = U+1(jo + D*ro) B(jo)Vi(jo)*, ﬁ]/c+1(j0 +
DFry) = Uk(jo)ﬁk—&-l(jO + D*rg)Us11(jo + D¥rg)* and a;ngl(jO + DFrg) = Vk(jo)akﬂ(jo +
D*1)Ur1(jo + D*rg)* to obtain

M;c+1(j0 + DkTO) O] =0

(A Go) 1o + Dr) + B (50) Gy (i + Dro)| [ ! .

for jo # j or 1o # r. We conclude that the first p(jo,ro) columns of A/(jo)ﬁ];+1<j0 +
D¥rq) + B’(jo)éﬁﬁl(jo + D¥ry) are equal to zero for jy # j or rq # r. For convenience,
we choose the A'(jy) and B’(jo) to be zero matrices whenever jy # j or rg # r hold. This

leads to

Uk+1,j4+Dkr = A(j)vr,; + B(j)ur,j, (5.14)

Let m,u € {1,..., p}. Since the refinement equation (3.29) shows that

m o _ m ) k
<Uk+1,j+Dkrka,j> = <Uk+1,j+Dkra E : § :Hk—i—l J+ D )Uk:+1 ]+Dkl>
leR, i=1

P
_ m 7 Ty [ k\*
= E E (Uk+1,j+kaUk+1,j+Dkz>Hk+1(]+D )
leRy 1=1
p

- Z@Znﬂ,jwkw Vi rr g o) Hity (7 4+ DFr)*
=1

‘ P \T ; L7
= ([<UIT+1,j+Dkr’Ulzc+17j+Dkr>L:1> [HlljJrl(j + D*r) ]i:1’
which leads to

p [ , P ~ P
_ . k,.\*
= [{(v™ vl s } [H“ ' (j + Dkr ]
S { k+1,5+Dkr Yk+1,54+D r> i1 k+1(J ) ipm1’

= My11(j + D*r)Hyr (5 + DFr),

[<UITHJ+D’€W UZ,j)]

we deduce using (5.14) that

m i " =BG+ D) [ ot )T = Bl + DML()
<Uk+1,j+Dk7"Uk,j> —— k+1\J r <Uk7j7vk,j> 1 k+1\J r k\J)s

m,pu=

where Py1(j + D¥r) = A(j). Consequently, (5.11) follows from diagonalizing My,(j) with
U(7)-
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In a similar manner, let m € {1,...,p} and p € {1,..., ox}. Since (3.32) shows that

m W _ m k
<vk:+1,j+Dkr7uk,j> = <Uk+1,j+ka E E :Gk+1 J+ D" )Uk+1 J+Dkz>
leER, =1

P
= Z Z(Ulszrl,jJrD’fr?Ullc+1,j+Dkl>GZil(j + Dkl)*

lER =1

- Z<U/T+1,j+Dkr7 Uli+1,j+Dkr>Ggi1<j + DFr)*
i=1

) p \T e .17
([<Ul:;n+1,j+Dkr7Uli:+1,j+Dkr>]i:1> [Gz;l(J‘FDkT) ] L

which leads to

P50k

, p
[<U2n+1,j+mwuz,j>]m#:1 = [(UZ}FL%LD;CT,U,ZHJJFD;CT)}mi: [Gﬁ;jl(g + DFr)* ]

= Myy1(j + DFr)Gryr (j + DFr)™,

P50k

t,p=1

we deduce using (5.14) that

P50k

-~ . Ok o . .
[<,Ugl+1,j+Dkr7 UZJ>] L Qr+1(j + Dr) [<umj7ug,j>}muzl = Qrr1(j + D*r)Nk(5),

m,pu=
where @kﬂ(j + D¥r) = B(j). Consequently, (5.12) follows from diagonalizing Ny (j) with
Vi(j)- o

As we shall observe why from the following results, the masks 13,2 41 and @C 41 are known
as decomposition masks. The next proposition essentially corresponds to Theorem 3.25

and Proposition 3.26 for the semi-orthogonal case.
Proposition 5.7. Assume Setup 5.2. The masks ISkH € S(DFHexr and @\k+1 €
S(DFhypxer i (5.10) satisfy
Pk+1(J+Dk )I/ ])Hk+1(J+D T)+Qk+1(J+Dk )I ()— q])Gk+1(J+Dk )]]I _§nTI/]T)(5‘15)
for j € Ry, n,r € Ry, where ﬁéﬂ(j + DFn) = Upyr(j + D"’n)ﬁkﬂ(j + DFn)Ui(5)* and
kp1(J + D) = U (5 + D) Qi1 (7 + D ) Vi(5)*

Proof. For a given j € Ry, and r; € Ry, by (5.10) of Proposition 5.6, (3.29) and (3.32),

we have

Uk+1,j+Dkry = ﬁkﬂ(j + Dkrl)vk,j + @k+1(j + Dkﬁ)uk,j
= Z [ﬁk’-i‘l(j + D*r1) Hiy1 (j + D) + Quga (j + D*r1) G (j + DFn) Uk+1,j+DFn-

neER,
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Let 7 € Ry. Using a similar reasoning as in (5.13), we have

. k _ m g =
Oy Miy1(J + D) = [<Uk+1,j+D’”’1’U;:HJ*D'”"2> mp=1
Z |:ﬁk+1(j + Dkﬁ)ﬁkﬂ(j + D"n) + @k+1(j + Dle)ék+1(j + Dkn)}
neER1
m H g
[<Uk+1,j+D’“n’ Uk+1,j+D"’7“2>] m,pu=1

= [ﬁkz—i-l (j+Dk7’1)ﬁk+1(j+DkT2) +@k+1 (j+Dk7’1)ak+1 (]+Dk7’2)}Mk+1 (j+D"rs)(5.16)

The unitary matrix Uy, (j + D¥ry) € CP*P diagonalizes My, (j + D*ry) such that

, , , . M, ., (j + DFry) 0
Uk1(j + D¥ra)My i1 (5 + Dr9)Upyr (j + DFra)* = [ . 0 ! 0] ,
where M}, (j + D¥ry) is an invertible p(j,75) X p(j,r2) diagonal matrix. Premultiplying
and postmultiplying (5.16) by Uy11(j + D*ry) and Uy11(j + D*ry)* respectively with the

appropriate normalization leads to

Pk+1(]+D n)Hk+1(J+D T)+Qk+1(]+Dk ) k+1(]‘i‘Dlc )] _5nr], o)

Using the observation from Proposition 5.6 that only the first ¢(j) and p(j) —q(j) columns
of P,éﬂ(j +D%r;) and Qk+1(9 +DFry) are respectively unique shows that (5.15) is valid. [

Assuming Setup 5.2 and referring to (5.1), if (5.10) holds as well, then we also have

fron=>_ Y &n(i+ D) [ﬁkﬂ(j + DFr)vg; + Qrar(j + Dk?”)uk,y}

JERK TERA
= Z Z St (7 + Dkr>*[}/7(j,r) |:Plé+1(j + Dkr)vllc,j + Qe (U + Dkr>u;c,ji| ,(5.17)
JERL TER1
with ﬁ,gﬂ(j + D*r) and Q\%H(j + DFr) given as in Proposition 5.7.
We derive below the decomposition algorithms of the low pass and high pass coefficients

for the semi-orthogonal case in the frequency domain.

Proposition 5.8. Assume Setup 5.2 and (5.1) and (5.17) to hold. If

&G v = D Y i+ D) P (G + DMr)oggand - (5.18)

JER JER, TERL

Z tk( g, = Z Z S (J + DF r)* Qk+1(] + DF "YU s (5.19)

JERK JERK TER1
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then
ﬁq/(j)*];(j) = Z S (j+ DFr)y Pl (G + DkT)IQ(jy J € Ry,
reR1

Z sk ()" o()Vhj = Z Z Ser1 (j+ D) Pl (G + Dkr)[é(j)v,;j and (5.20)
JERE JERL TERL

L{\/(.)*I/ ' o Z;\/(_FDkT)*@/ (_'_Dkr)I/ ) ) ‘ER

k1) Lp)—q() k+1 J k+1\J p()—alG)r J ks

reR1
B (3) Ty —q() Uy = Yo s+ DR Qi (5 + DFr) Ly iy (5:21)
JERE JERK rER1

where 13,;+1(j +DFr) = Upy1 (+ Dkr)ﬁkﬂ(j + DFr)Ui(5)* and @Hl(j +DFr) = Up (G +

kr)@k_t'_l(j"_DkT)‘/k( N . Theq(j)+1,...,p entries of 5’ (j) and the p(5)—q(3)+1,. .., ok
entries off;\c/(j) could be arbitrary and (5.18) is equivalent to (5.20) and (5.19) is equivalent
o (5.21). In particular, we have

SAk/(j) Z Sen'(J + D) [/(] r)PiéH(J + D), o) J € Ru
reR1
> S G) Iy Z > st G+ DFr) L Py 5+ D*r) L v 5 and
JER JERL TER1

~ . .
B (1) Tygy—ay = D St (G + D) T Qi G+ D)y s € Ra

reRy

A~ — . * AN .
b () Dy ay g = D D 5k (G + D) Ly Qi (4 DFr) Iy -

JER JERK rE€ER1

Proof. We use Lemma 5.4 to obtain (5.20) and (5.21). Using Lemma 5.4, Proposition 5.5,
(5.1) and (5.17), since (5.4) and (5.6) are equivalent, we show that

f’““:Z Zs/k\ﬂl(j"‘Dkr)*fzr/)(j,r)vgwl,ﬁDkr: ' q(J UkJ+ Ztk u’”

JERKTERL jERk JER

—Z Zsk+1 j+Dfr) I [P (G + DFr)vy ;4 Qi (5 + Dkr)uﬁw}

JERETrERL

and the remaining result follows from the fact that Vi = VE @+ Wi O

We show below that we have perfect reconstruction under certain scenarios.

Proposition 5.9. Let j € Ry, r € Ry and assume Setup 5.2. If the following information
(5 ()] em, [E}?(])} em and [’ (j +Dkr)]*em are known a priori for m € {q(j) +
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L...,p}, me{p(j) —q(4) +1,..., 0k} and m € {p(j,r) + 1,...,p} respectively, where

th

em 1S the m™ unit vector, then we have perfect reconstruction and

‘@%] + Dkr)*‘[}/)(j,r) = S/k:l/(j + Dk ) Pk+1(.] + Dk )I/ HkJrl(j + Dk ) p(4,r) +
01 G+ D) Qs G+ D)y gy Groan G+ DM . (5.22)

Proof. Using (5.20), (5.21) and (5.7), we obtain

Sen' (7 + D) Z Sk (7 + Dkl)*ﬁéﬂ(j + Dkl)[(lg(j)ﬁl/c-',—l(j + DkT)I],O(j,T) +
lER,
Y s (U + D Qs (4 DD Loy G (G + DF1) L),
leERy
which leads to (5.22) with the application of Proposition 5.7. O

5.3 Nonorthogonal Representation

For the following results, we shall only assume that Vit = VE + WE . The decomposi-
tion algorithm is derived using Proposition 3.26 and the decomposed coefficients are not
unique, i.e. they are dependent on the choice of masks. However, their variations do not

affect the reconstruction process.

Proposition 5.10. Assume Setup 5.2. For j € Ry, let
L (j) = diag(Us(5), Vi())Li () diag(Us1 (j + D¥r1), -, Uksa (j + D¥rq))*

with the assumption that Lk( ) defined as in (3.44) satisfies (3.43). If

Jor1 = Z Z Sk+1(J + Dk?“)*vk+1,j+pkr

JERE r€R1

=> > [sk ) Hi1(j + Dbr )+ﬁ(j)*@k+1(j+D'fr)] Vpi1jiphe  (5.23)
JERK TERY

~/

then for each j € Ry, there exists [§/<])* i (J>*] € Ker [ﬂ;(j)]}’)(j)} such that

. = * . " = . "
d [Skl(]) — Sk (J)] L) = Z Swt (7 + D) Ly o Hiar (7 + D) I, (5.24)
reRq
~/, . =/ . * / _ . k * 7/
A0 50| By = 5 TG+ D B Gl + DY Ty e (529
reRy

and for r € Ry,
. N ~t = ) ~1 . ~
S (+D"r) I,',(j,r)Z[Sk/(]) I;(j)H1/q+1(J+Dk7") +t () Tp)—ats) s (D) Ly (5.26)

The p(j,r) +1,...,p entries of 511 (7 + D*r) could be arbitrary.
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Proof. Let r1,...,74 € Ry be distinct coset representatives of Z°/DZ?. Using (5.7), we

have
R d *
A~y . o — .
d [ ( ) IC,I(J) 123 (]) I;;(j)fq(j)] L;e(]) g/)(j) =d 3k+1/(] + DkTﬂ) p=1 II,)(
d *
= [550+ ] B T T 527

As pd = rank (IL/( )Ly (7)) < rankL(j)*, Li(5)* has full column rank and p(j) =
rank [I/[:;C(j)];(j)] . Thus

S0V Iy B0 Ty |~ |50 D m)]d* LTy +d |5 Gy & Gy
where [Q;il(])* i/(j)*]* € Ker []IA,, (L )] . This leads to
A5 () Tyg= D st G+ DFr) Iy Hica G+ D7) T+ dS3 () T,
reR1
Aty () L= 5601 (G + D) I Gyt (G 4+ DEr) Iy gy + dzi/(j)*fé(j)fq(j)v
reRq

which we rewrite as

@501 GO0 - Hm G047 BTty |0

p(5)—aq(5)

I 0
a9 ](5.28)

Since ?l( _— 40)
k(7)) th 7
p(3)—aq(J)

= . =T _ = . =’
(5.7) that [Sk ()t () } L;f(j)]zlﬂ(j) - [Sk’ (7) [(/1(]') b ()" ];D(j) a(j)
use of either Proposition 3.26 or (5.27) to show that

(])*] " € Ker L (])I’(])] by observing from (5.5) and

} Ly,(j)1,;), we make

~1/ o~/ =/ I
(&G & G @G~k () ][ “w,

p(3)—aq(5)

-~ d *
Lz(j)lg(j):d[s?ﬂ’(ﬂz)km)} L)-(5.29)

~/

Without loss of generality, we shall assume that [ ;v;c/( ) i ( ])*] is the zero vector. Now,

Hl::+1(j + Dleﬂ;/;(J 1) Hl,c+1(j + Dkrd)[;( ,

d[ (]) )i t/];(j) T :| ~ . J\rd)
a(9) p7)=a() G’H(j + D¥ )Gy o G+ Dkrd)jzla(jm)

Sont (G + Drra) | {1y Hiad G+ Do) Ty T Gr G+ DEe) I

(G (G + DFra)* I

. k *
vra i G+ Dira) Iy 1 P(i)—ai)
[ I, )H,;_H(j + D* )Gy [/(,)H,’CH(] + D* ra) Ly ] |

p(] —q(7) Gk’-i-l( + D Tl)‘[ I/ () —a() k?-i-l(j + ‘D Td)]l(] rd)

p(dr1)

i1 (7 + DFry) I

p(J )
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This implies that

-~ -\ % ~/ 1\ *
d [Sk ) Loy te () féu%q(j)]

Hl/~€+1 (] + Dkrl)‘[/(] 7“1) e H’/€+1(j + Dkrd)]/(] rd)]

ip1(J + D" 1)L jp1(J + DF ra)l;

p(4,r1) p(j,ra)

/(= * * * ; *
:L;;fk-kl (j+D"r )III?(J r)HI/sH(JWLDk )I/ T;;lskﬂ (J+Dr )I/( r) ;gﬂ(ﬁ“Dk )]110(]) Q(j):|

I >HIQ+1<J + DFro) Ly i (G + DMra) Ty, ]
GraG+ D )Gy Dy GG+ Dira) I

Hence, for a given r, € R,

I

p(5)—q(4)

p
= Z 5/k\+1,<.7 + Dkr)*l;t/)(j,r)Hl/c+1(j + Dkr)*jz;(j)Hl/chl(] + Dkrﬂ)[p(j,ru)
reR1
+ > 51/ G+ D) L Gy G+ D) Iy Groa (G + Do) I -
reR1

1 s ~ . ~1
sy’ (5)* Iy Hir (7 + DFr) I+ dbe (5) Iy o) Gk+1(] + Dr,)L

Jiru)

Therefore

[dﬁg/(j)*fé(j) = 2 s (G + Dby IIIJ(] T)Hkﬂ(] +D rﬂq(ﬂ} Hk+1(] + D" ru)l, p(iru)

reRy

— . * o . ~/, . *
= {( > Sk—i-l/(] + DkT) I,;(j,r) §€+1(J + DkT) — dty () )Ip(j —q(j) } Gk+1(j + D ru)[’(] )

reRq

and the expressions in brackets must be equal to zero for a fixed j € Ry and a given
r, € Ry that could vary freely. So we infer from (5.28) and (5.29) that (5.24), (5.25) and
(5.26) hold. O

Comparing the nonorthogonal representation with the semi-orthogonal representation,
we find that this time H 1 and Gl i1 Play the role of decomposition masks while the role

of H jg1 and € k41 as reconstruction masks remain unchanged.

5.4 Stationary Wavelet Transform

In practice, we apply the wavelet transform to 1-dimensional data and for 2-dimensional
data, we construct tensor product equivalents of the 1-dimensional wavelets and apply the
corresponding wavelet transform. To simplify matters, we shall now restrict our discussion
to the 1-dimensional setting with arbitrary integer dilation factor M.

The analysis of the data using the decomposition algorithm given in Proposition 5.10 is
not translation invariant in time, i.e. not modulation invariant in frequency, due to down-

sampling of the filtered coefficients in the time domain. If we apply a single level transform



5.4 Stationary Wavelet Transform 121

of such kind in regression, then this will lead to only the even numbered coefficients being
processed for the case of the dilation factor M = 2. Due to the misalignments between
features in the signal and in the transform representation, artifacts near neighbourhoods
of discontinuities will be introduced with the thresholding of the wavelet coefficients for
the elimination of high frequency noise. The artifacts introduced in the processing could
be eliminated with the use of the stationary wavelet transform (SWT) [40] by an averaging
process described in [12].
First, let us define the shift operator Sy : S(M*) — S(M*) given by

{(Sesk)(Dhec, = {sr(l = ) hec,,
where r € £;. We shall also identify Sj with Si_|sax) 1 S(M®) — S(MF) for every
r € L. The upsampling operator Tp: S(M*) — S(M**1) is given by
Tre {se(Dhecy = {Tr su(r) breciys = {8k(DLp=nmy brecy -
We shall also write the composition T5™: S(MK) s S(ME+F) as

=Tk TRh—2 - Tre -

The general downsampling operator |, S(M*) — S(M*1) for a given r € L}, is given
by

Lert {se(D) biee, = ks k(D ey = {lko Sy s6(D) e, = {sk(MI+7) e, -

In the event that » = 0, then we simply write | as |;. For a given r € Lk, we shall

also write the composition |, - S(M*+") — S(M*) as

K
lK+k,r3:lK+1,rlK+2,r o Kk

We define the periodic convolution ® : S(M*) x S(M*) — S(M*) of a;, € Ly and
b, € Ly as

{ak®bk }legk—{Zakl—rbk } .
leLy,

reLly

Recall also that the discrete Fourier transform of s, € S(M*)?*! is defined as
Si(7) = Y se(l)e 2
Ly

We shall now rewrite the decomposition and reconstruction process of (5.24), (5.25) and

(5.26) given in Proposition 5.10 in the time domain using the discrete Fourier transform.
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Proposition 5.11. Assume Setup 5.3. If fri1 is given by (5.1), then

fk+1 = Z SkJrl(l)*T]iJrlq)kJrl = Z [Sk(l)*T]iq)k + tk(l)*Té‘yk}

€Lyt leLy,
= > [Tk s2) @ Hea (D) + (T 1) ® Grpa (D] Ty @i (5.30)

l€£k+1

Further, there exist [@’(j)* tzk/(j)*] € Ker]/l\.,;(j)*, j € Ry, such that for everyl € L) and

n € Lyi1,
[s:(0) = (D] = [s551 © HyZ (M) (5.31)
5.0 =5/ (0)] = sk @ Gl (M) (5.32)
S;C-‘rl(n)* =[(Tr s7) ® H1;+1](”) +[(Te ) ® G;H—l](n)' (5.33)

Proof. First, let us apply Lemma 3.2 to the definition of polyphase harmonics given in

(3.16) to express (5.1) as

Jer1(t) = Z Sir1(g [Z Dpiq(J +Dk+1 Je (J+Dk+1n)-t]

JERK+1 nezs
_ Z Z @(j+Dk+1n)*$k+1(j+Dk+l ) i(j+D*n)-t _ Z 5k:+1 (I)k+ ) in-t
nezs

nezs jERk+1

= Z Z Sk+l<l)*e—i27rn~M<k+1>l(27_r)—s/ (I)k+1($)e—in~:cdxein-t (534)

s

n€EZS €Ly

= 3 s Y (2n) / Bjp () 2N it
lE[,k+1 nezs s

= Z Sp (1) Z(Q?T)_S/ By (z — 2r M~ B )e e qgelnt
l€Lyyr nezZs Ts

= D s (D) T @ (8).
ZGE}C+1

A similar computation of (5.34) with s, and ¢, and ¢, and 1y, respectively leads to the

second equality of (5.30). To show the third equality of (5.30), we express (5.1) as
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fra1(t) Z Z Z [sk j 4+ DFr + DFFin)* H +1(j + DFr + D*n)

JEREK r€R1 nEL?

+£l\c(j+Dk7"+Dk+1n)*ék+l (]—i-Dkr—i—Dan)} |:(/Isk+1 (j+DkT+Dk+1n)ei(j+DkT+Dk+1n)_t]

= 3 [50) Bia(m) + () Cro ()] B (m)e™
_ Z Z Z Sk: Hk—i—l l) ‘I‘tk(r)*Glﬁ-l(l)] e—i27rn-M*kre—iQWn-M*(’”l)l@kJrl(n)ein-t

n€ZS rely l€Lyyq

= > [sk(r) Hea (1) + ta(r)* G (1)]

re€L) l€£k+1

Z<27T)s/ (Dk+1(l’)efin'xdxei”'te*iQ’T”'M_(k“)(l+Mr)

nezs °

= ) ) [sk(r) Hysa (I = Mr) + t4(r)* Graa (I = Mr)]

l€£k+1 rely

Z (271_)73 / (I)kJrl(x)e—in-[x-&-ZwM*(kH)l] dxein-t

nezs °

= > [k si) ® Hin(D) + (T 1) @ Gt (D] Ty P (1)

l€£k+1

To confirm (5.31), we apply Lemma 3.2 and the inverse DFT to (5.24) in Proposition
5.10 to get

A [ (1) =S (D] = 30 3 s (G + D) Hiyy ( + Dbyyre2r0r P

JERKL TER1
/ * 127TjM ky
E 5k+1 Hk+1(j)
JERK+1
. / * —i2mj - M—(k+1)p / % —i2rj-M—(F+Dn 275 M k]
= E E Sk+1(T) € Hk+1(n) € e
JERK+1 r€LK 1 nELyky1

_ % —i27j- M~ 275 M—Fk]
= § E § 8k+1 Hk+1(n —r)%e €

JERKk4+1 NELKy1 TELK 1

1% I —i2mj - M~ A0y o.M —(k+1) ppg
E E [3k+1 ® Hkﬂ](n)e S

jERk+1 n€£k+1

= dk“[skﬂ ® Hiiq](M1).

Similarly, we could show that (5.25) is equivalent to (5.32). Finally, (5.33) could be shown
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to be equivalent to (5.26) since

dk+15k+1 t = Z Z |:§7€/(j+DkT)*ﬁl/c+l(j+Dkr)

JERL rER1L

. * i2m(j r).-M~(k+1)
+i, (j—i—Dk?”) k+1(]+Dk )} 27 (j+DFr)-M—F+1)]

~ 17\ . ~ Nk A . i27. M —(k+1)
= 3 SO Hn () + B G) G ()] e

JERK+1

1Nk =127 - M~ BT D My p gy —i2nj- M~ (k+1)p
> Y Y [se Hip(n)e

jERk+1 reLly n6£k+1

% —i27j- M~ +D Ay —i2nj- M~ Dn | j2mj. M~ (k1))
+y(r)"e Gk+1( n)e e

= 3 X D SO i () + £yl Gy )] e e

JEREL+1 n6£k+1 reLly

Z Z Z r) Hjq(n — Mr)

JERK+1 n€£k+1 rely

i (r) Gl (n —MT)} o127 MO i M~ (D)

= > Dk ) ® Hyal(n) + (16 #) ® Ghpy](n)] e 200D

JERk+1 NELE 41

= A" [[(Th 5i7) © Hi ) (1) + (1 87) @ G )] -
]

We shall have uniqueness in the reconstruction process in Proposition 5.11 if for every
j € Ry and r € R, the matrices My (j), Ni(5) and My, 1(j + D*r) as defined in Setup 5.1

have full rank.

Corollary 5.12. Assume Setup 5.3 with rank My, 1(j + D¥r) = p, rank My(j) = p and
rank N (j) = o for every j € Ry and r € Rq. If fri1 is given by (5.1), then

Jre1 = Z k1 (1) Ty Prgr = Z (55 (D) Ty + te (1) T} 0]

lE[,k_»,_l leLy,

= Z (T s3) @ Hya (1) + (T 1) @ Grya (1)) Tzi+1q)k+1~ (5.35)

l€£k+1

Further, for everyl € L, andn € L1, we have
se(1)” = [sp1 © Hyp](MD), (5.36)
()" = [52+1 ® G;;_H](Ml), (5.37)
sk+1(n)" = [(Te 53) ® Hyea](n) + [(Th 1) ® G (n). (5.38)
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The next proposition, which concerns the upsampling, downsampling, periodic convo-
lution and shift operations, will be used to relate the stationary wavelet transform with

the ordinary wavelet transform.

Proposition 5.13. The upsampling, downsampling, periodic convolution and shift oper-

ations satisfy

SI:—I lk Sk :lk S,i\/”sk (539)
LRk [ORY Hy) @ sgqn] = He @ (Ieik Sk4n) (5.40)

Proof. The verification of (5.39), (5.40) and (5.41) is as follows:

Si1 bk {sv(Whec, = Sk {sn(MDYber, = {se(M (=) biec, =l {8 sk(1) hiery.
Vi [(ORT Hig) @ s (1) =Liear {1 Y (TR Hi)(r)sien(l = 7) ey, (1)

r€L 1k
=Lier A0 R Hi)(Mr)sie i (l = M*r)Yiesye,, (1)
rel i
Z (157 Hi)(MFr)sgep(M*L — MFr) = Z Hic(r)sgu(M* (L= 1))
reLly rely

= Hi @ (Ligr sxc4n) (D),
S};(Hk®sk)(l) Hk®$k l—T ZHk Sk Z—T—I/ ZHk Sksk l—l/)

veLy veLy

= Hy @ (Spsi) (1)
]

Therefore, we observe that (i) a shift of Mr units followed by downsampling is the
same as downsampling followed by a shift of r units, (ii) performing convolution with
an upsampled filter followed by downsampling is the same as performing downsampling
first followed by convolution with the filter, and (iii) shifts applied before convolution is
equivalent to shifts applied after convolution.

Following the convention used by [40], let us also define the e-decimated discrete wavelet
transform (e-DWT), where the M-nary representation of € is €y - - - €54 1. Let the M-nary
representations of €pe; - - - €x and €x 1 - - €x1p be denoted by 1; and 1y respectively. For
the standard discrete wavelet transform (DWT), we deal with the sequence tx =] k11
Gkt ®k kio vk Hi ® sgip. In the e-DWT, using Proposition 5.13, we handle the
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sequence t% given by

K+L K+L
—€L
t% = lkt+1,ex0 Grs1 ® Lher Hi @ sxrr=|r+1 Sy Gra ® L Sy " Hy @ Sgar
k=K +2 h=K+2
k=K +L
Ek 1 —€K+L
= lK+1 Sk+1 GK+1 ® S lk ch & (SK+L 3K+L)
k=K 42
K+L
. _5k+1 Mek 1 _5K+L
= k11 S Graa ® xS Hy, @ (Sl sk+r)
k=K +2
K+L
_ML_15K+1 —Meg -1 g—€K+L
= k41 Gkn ® e Hy ® (Skiq Sk T ST sk
k=K +2
K+L
-1
= lk+1 G4 ® e Hy @ (Sgipskrr)
k=K +2

If we apply the operator SI;&L to t5, then we have

K+L
St = Sghp s Gra ® Lk He ® (Sk2,sK+1)
k=K-+2
K+L
= lr41 S&T;GKH ® e Hy ® (SI_(ELSKJrL)
k=K 42
K+L
= lrk+1 Gkt ® b Hy ® 51_(M ll(SK+L5K+L)
k=K+2
K+L

= |k+1 Gk ® e Hi ® (g5 5x+1)-
k=K+2

Therefore S;(li 5 is the 1j-shifted K" detail sequence of the standard DWT applied to

SrSLSk+r- Similarly, we would obtain the 1;-shifted K" smooth part SI_(E 5% as

K+L
S st = ® e He ® (SgSpskrL)
k=K+1
We define the stationary wavelet transform (SWT) of agx,r := sgip at level k €
{K+L,...,1} recursively by
Qp_1 = (T£(+L Hk) & ag and bk:—l = <T£<+L Gk) X ag. (542)

Due to the absence of downsampling, a1 and by_; for k € {1,..., K + L} are still in
S(MEFTE). Using (5.42), we could show that the SWT of ax, 1 contains the coefficients
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of the eeDWT for every choice of €. Indeed, for each k € {K + L —1,...,1},

Sty T Uan Sieenbe =Ueon Sl b =l S e
=Lierr SELL (T Grn) © (115 Higo) @ -+ ® Hgyp ® 5icq,
=Verr [(TER" Grin) © (105" Hiro) © -+ © Hicyr, ® SRy pskcy1]
=L Ui TR Grn) @ (105" Higo) © -+ ® Hi, ® SR sy
=1F 1 [Gen® 5 [R5 Hin) ® - @ Hyeop @ SR sk
:l]Zﬂ [Gk—f—l@ l;’ii;l’;(JfL [(Tk e Hio)®- Q@ Hgyp ® S§?+LSK+LH
zl’éﬂ [Gk+1® lﬁié [Hk+2 Q& lgiifl [Hgyr ® S}?JrLSKJrLH o }

=lit1 [Gen1®@ liya [Higo @ -+ @ |xip [Hrir S§?+L5K+LH -]

K+L

l M~ (E+L—k+1)1, , ¢

=lit1 Grg1 ® In Hn @ SRy pSk+L = Skyr 1y,
n=k+2

The SWT contains all the 2rM 5~ shifts of the refinable function and the corre-
sponding wavelet system. We shall see that this essentially leads to the quasi-affine

representation of fr .

Proposition 5.14. Assume Setup 5.3. If fri1 is given by (5.1), then for € € L4,

frr =Y sen(l+ € TS @rpr = Y [sp () T @ + (D) T Wy ]

l€£k+1 leﬁk
=d7 30D IO T @+ () T
eeLly leLy,
=d > Y [ar(Ml+ &) TH Ty + bp(MI+ ) TN, ]
el leﬁk
= > (76 s2) ® Hen (D) + (16 67) © G (D] T P (5.43)
l€£k+1

-~/

Further, there exist |:§\/E€/(.7>* £ (J)*] € Kerf[:%(j)*, j € Ry such that

[0 = 5 0] = [ ® H (M4 ) = af (ML + €, (5.44)
/0 =B W] = [0 @ Gl (MU+ ) = b(ML+ o', (5.45)
5;+1(n +o) =[Te st ® Hk+1 + (e ti™) ® Gk+1]( n), (5.46)

for every l € Ly and n € Ly, 1, where Sk( =1 Uk(j)s )se (5), (j)A Ly =gy Vel Nt (5),
a' (j+ DFr )—I;(J Up(§)ar(j + D*r), bk( + DFr) —]]’D(] )—a()) Vk(j) v(j+ D*r) and a;, and

b are given as in (5.42).
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Proof. By Proposition 5.11, we could utilize (5.30) and (5.33) to obtain

T fimn = > semt() TP = Y sear(l+€) T Pra

lE£k+1 le£k+1
=) [sp () Ty + (1) T, ]
leLy,
= > [Tk 559 @ Hepn(D) + (T 157) © Grn ()] Ty @i
l€l:k+1

and so

_ l+e Ml+e € MlJre
Jor1 = E 5k+1(l +€ Tk+1q)k+1 E Sk Tk+1 ¢ + 5 t Tk+1
leLi41 leLy lely

which justifies (5.43) and (5.46). Consequently, we infer from Lemma 5.4, (5.31) and
(5.32) of Proposition 5.11 that

S0 = F W] = sk 0" @ HEA)M) = 3 s+ " Hpsy (ML= )

n€Lpy1
= Z Ser1(n)" Hyp (MU + € = n)" = [si7, ® HZG (MU +€) = aj (M1 +€)”
nE£k+1
and
€l ! * ! ! Yol *
O E O] =[5+ @CEIMY = 3 s+ G (ML= )
nE£k+1
= Z Ser1(n) Gl (M4 € —n)" =[5, @ Gl (Ml+€) = b (M1 + €)"
n€£k+1
and the above computation proves (5.44) and (5.45). O

Before we proceed further, it is necessary to consider the frequency domain formulation

of Proposition 5.14 in order to establish the uniqueness aspect of the transform.

Proposition 5.15. Assume Setup 5.3. If fri1 is given by (5.1), then for € € L4,

o o\k, —i2mj-M—(k+1)¢ 7 o\ —i2mj - M~ (k1)
fr = D0 [0 eI @)+ B ) eI,

JERK41

_ > ook —i2mi-M—( e Sk —i2m) —( )e
=d 12 Z [32(]) e i2mi- M k41 (q)k)kJrl,j—Ftk(j) e—i2mj-M k41 (\Ilk)kJrLj}. (5.47)

€€Ly JERk+1

~/ ~/

Further, for each j € Ry, there exists [% (5)* {i ()| € Ker]ﬁ%(j)* such that

<. ’/‘\“/-* 1/ - * 127(7 r)-M~ €717 . *
d [82 (4) — st (J)] =" 5 (j + DEryre2r UM L (4 DAY, (5.48)

reRq

/ *
d |:til(]) . t6 ( } Z 3k:+1 j + Dk; )* 27 (j4+DFr)-M~ (k+1)€Gk+1(j + Dkr)*, (5.49)

reR1
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and forr € R4,
(i s J2m(j DR M=+ D e =l va T A
i1 (JHDFr)el2m DI MEE De_ge (e [ (DRr) 15 (5)* Gy (DR, (5.50)

where s (7) = I, Un() 5. (), B () = Iy 0y Vi (DT ()

Proof. We show the two equalities of (5.47) by applying Lemma 3.2 to (5.43) of Proposi-

tion 5.14, i.e. fiy1 = ff + g, where ff = > s¢(I)" T Dy, gf = Y () Y0y, so
€Ly leLy

€ € (1) * 0 i(j+D*tin).[t—2x M —(k+1) €
fi= Z s (1) Z Z (q)k)k+1,j(n)e (4+D )-[t—2m M (Ml+e)]

€Ly JERK4+1 NELS

Z Z Z si(l)*e*ij'QﬂMfkl(f/I);)kH '(n)ei(j+D’“+1n)~tefij-27rM*(k+1)e
7]

JERp41 NELS IEL,

DD ) (@) ()l e

jERk+1 nezs

~ /. —ij-. —(k+1)
= Y SOy @y,

JERK+1

that

and similarly g¢ = 3 ¢(j)*e 0 2mM" (Hl)e(klfk)kﬂd.. Using Lemma 3.2, we show that
JERK+1

(5.44) of Proposition 5.14 is equivalent to

o~ = * —i27
d{sg(j)—sk ]} —dz Z S (n + €)*Hy o (M1 — n) e 2™ M” k]

leL n€ELp41

:Z Z d* Z Sert () 2 M g (V] — e 2m MM

leLy n€Lly 1 VERE+1

_E E E d* Skt 1 H' (Ml n)*eﬂz””M ¢ (d1— n) gi2my-M~ (FFDe e i2m(j—v): M~k
+ k+1 -

leLiVER1NELE 11

— (k+1),. _; ANk
_E § d- k8k+1/ H]g+1( )* i2mv-M— €q 27 (j—v)-M~"1

lELy VERk+1

S50 ST v+ DR By (v + D) g izn(o DA

leLy, VEREL rER1

=3 S D) H (v Depyen DA e,

VERL TER1
and this confirms that (5.48) is valid. Similarly, we could show that (5.45) is equivalent
o (5.49). Finally, (5.50) is easily shown by following the same proof found in Proposition
5.10. ]

As in Corollary 5.12, we shall have uniqueness in the reconstruction process in Propo-
sition 5.14 if for every j € Ry and r € Ry the matrices My (), Ni(j) and My (j + DFr)
as defined in Setup 5.1 have full rank.
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Corollary 5.16. Assume Setup 5.3 with rank My, 1(j + D¥r) = p, rank My(j) = p and
rank Ny (j) = o for every j € Ry and r € Ry. If fry1 is given by (5.1), then for e € L,

frr = sen(l+ e TS @rpr = Y [sp (1) Ty + 5, (D) Ty ]

1Lk leLy
=AY N [ T B+ 5 (1) T
c€Ly leLy
= a7 3 [an (MUt ) Ty + by (ML +2) T w,]
c€Ly 1Ly,
B Z (T 85) @ Hipa (1) + (1 £7) @ Grsar (D] T3 P (5.51)
leLpta

Further, for everyl € L, andn € L1, we have

Sp(D)" = [sh1 ® Hpy (M1 +€) = ap(M1 +€), (5.52)
()" = [sp1 ® Gra| (Ml + €) = bp(M1 + €)7, (5.53)
ser1(n+€)" = [(Tr 537) © Hpaa](n) + [(Te 117) © Grpa] (n). (5.54)

Using Proposition 5.14 and Corollary 5.16, we could derive the quasi-affine represen-

tation for the stationary wavelet transform in the following proposition.

Proposition 5.17. Fiz 0 < K < L. Assume Setup 5.3 with rank My(j) = qr(j),
rank Ni(5) = pr(j) — qx(j) and rank My, (j + D¥r) = pp(j,7) for every k € {K,..., K +
L—-1}, € Ry andr € Ry. If

_ (. K+L—1, .\
frvr = § : § : Sk+L(J+ D ) UKLy DRy,

jERK+L_1 reR1

then for 0 € Ly,

Jr+L = Z siarn(l+6) T Preir

leLrir
K+L
D s )T O+ >N B )T, (5.55)
leLk k=K leLy,
. K+L
=N S an ML TR T4y > Y d bk (MEHS) TR e
SLeLlELy k=KépeLileLrcrr—k
K+L

=Y A ta() Ty @4y Y d by k() Ty Vicyros,

leﬁKJrL k=K lELK+L
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~/ ~/

for a givend € L. Further, for any k € {K,..., K+L—1}, there exist ;ti () (J)*] €
Kerﬂ{(j)*, j € Ry, such that for everyl € Ly and n € Ly,1,
~/ *
S0 -5 0] = a ) (5.56)
') - {6'(1)} — B (MEHER] 4 )7, (5.57)
At (M0 4 6)" = (T 8)) @ Hpyy + (T 1)) ® Gy (n) (5.58)

wzthsk( )—f' Uk(j)SAi(j) ( =1,
D*v) and by (j + Dku) =TI

P (5)—ar(5)

() —ai( ‘/;C() 6(j>; d;c,<j+DkV> I Uk( )ak<]+
( bi(J —l— D*v), where v € Rip and ap and by,

are given as in (5.42).

Proof. Utilizing Proposition 5.11, we are led to

T frrr = Z 3K+L(l)*TIl<_-ELCI)K+L = Z skar(l+0) Ty 1 Pryr
l€£K+L lE[:K+L
K+L

= D ST+ Y > 8(1) TV,

lelLk k=K leLy},
Therefore,
Jk+r = Z skr(l + 5)*Tll;r+6L(I)K+L
ZELK+L
K+L
K+L—k

- Z (l) T%ﬂéﬂs@f{ + Z Z t6 I]}4+L l+6qjkv

Lk k=K leL),

which justifies the first two equalities of (5.55). Applying Lemma 3.2 to the above com-

putation gives us

_ 61 01
Jr4L = fK+L—1 T 9x10-15

where 0; = ¢; € £ and

fK+L 1= Z axrr-1(Ml+61)" Tfjﬁzlqhﬁ% b

leLxir—1
01 _ § MI+6;
9K +L-1 = bK+L—1<Ml + 51) TK+L ‘IJK—l—L—l-
leLgyr—1

We show in a similar manner that

é
fK+L 1 fK—l—L 2 I§+L—2’
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where 09 = Mey + €9 € Lo for some €5 € L1 and

R = D e a (M4 6) TR gy s,

leLi L2

02 _ 2 M21+55

IK+1-2 = E bryr—2(M=L+ 02) T Viyr o
leLgir—2

If we sum over the €, i.e. §, for each level separately, then we would obtain

firr = Zdl KL 1+Zd 'gRir

61651 01 €L

5 5
= Z d-! K+L 2 +91§+L—2] + Z d- 19K1+L 1

e1€Lq 61€L1

:Z Zd K+L2 K+L2 Zdlg%—&-Ll

€1€L1 e2€Ly 6 E€Ly

o 2 2 b9 1 61
*E:d K+L2+§:d9K+L2+§:d9K+L1
526[,2 §2€£2 51€£1
K+L

SDIEAT B 3D SR W

dLEL] k=K 6,€Ly
where 8, = M* e, 4+ ...+ M*F¢, for some €1, ..., €, € L1 and

W= ag(MML+ 6, TM g,

leLk
k
gﬁﬁL_k = Z breyr—k (ML + (5k>*TI]gf+lL+6k\DK+Lfk-
leLxir—k
This shows the penultimate equality of (5.55). Next, Lemma 3.2 shows the last equality
of (5.55). Consequently, we infer from Proposition 5.13, (5.44), (5.45) and (5.46) of
Proposition 5.14 that

K+L
, N/
3?{ () = 5% (1) =lrta Hie i ® Lo Hy, ® dley 1 (14 6)
n=K-+2
K+L-1
=K+ H}(H ® ln Hrlz ® a,K-i-L—l(Ml +9)
n=K+2

=lx11 Hy1® Lo Hye g ® i o( M2+ 6) = e (M1 + 6),
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-, K+L
(1) — 8 (1) =lis1 Grpy Q) L Hl @ a1 (1+9)
n=k+2
K+L—1
=lr+1 G;q+1 ® In Hy ® a/K+L—1<Ml +6)
n=k+2

=lit1 Ge1® L2 Hyyp ® a;c+2(MK+L_k_21 +0)
=gt Gy @ @Gy (METEHN 4 6) = 0 (MFHE7RL 4 5)

and
s (M4 ) = (4 0)” = [ sf) @ Hiy + (1) © Gy ] (),

and the above computation proves (5.56), (5.57) and (5.58). O

5.5 Time-Frequency Analysis

We shall now look at the simplified 1-dimensional setting of dilation factor M = 2. For

v € R, let H”(T) be the Sobolev space of all 2m-periodic tempered distributions f such
2

that HinIV(T) = > (1+n?)" ]?(n) is finite. For v > 0, the Sobolev seminorm is defined
nez
~ 2
by |f|§{,,(T) = > n?|f(n)| , where f € HY(T). For v > 0, the Sobolev norm and
nez

: : min{l—v 2 2 2 max{1l—v 2
seminorm satisfy 2 =0} Hf”H”(’ﬂ‘) < Hf”L?(T) + ‘f'H"(T) < gmex{i=v0} Hf”H”('ﬂ‘)'
Following [22], for R > 1, the frame approzimation operator Qg associated with the
restricted periodic affine system XZ mentioned in (1.18) derived from a single refinable

function ¢q is defined to be

R—-1 o
Qr(f) =Y {0 2mdo+ DY Y {f T oDy, feL(T).
leLy, k=0 m=11€L;,

The periodic affine system Xy, as defined in (1.15) is said to provide frame approzimation

order p if there exist a positive constant C' and a positive integer K such that for all
k> K,

1f = Qe 2gr) < 27C | flgogry, [ € HY(T). (5.59)

Furthermore, the periodic affine system provides spectral frame approximation order if it
provides frame approximation order p for every p > 0.

The concept of vanishing moments for functions on the real line is extended to functions
in L?(T) in [22]. The authors define that ¥y, := [qu} ik < L*(T) for k > 0 has p vanishing
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moments for some p > 0 if there exist positive constants C' and K, independent of k£ and
J such that

Ok R 2
S G| <Cl T, jeR k2 K. (5.60)
m=1

Following a more general extension from [22], ¥}, C L*(T) is said to have global vanishing
moments of order p for some p > 0 if there exist positive constants C' and K, independent
of k£ and n such that

Ok N 2 Ok N 2
Yot ‘@Z),T(O)‘ < €2 and Y [n| ¥ 2" ‘zp;y(n)) < 027 e 7\ [0}, k > K.(5.61)
m=1 m=1

We cite the following lemma, which says that in the limiting case, the refinable function
and the wavelets derived from the corresponding MRA must cover the frequency domain

“uniformly”.

Lemma 5.18. [22] For each k > 0, let @) := ¢y, and Uy, := [ID/?]
satisfying Theorem 3.27 with frame bound 1. Then

ok ’ng(n)r + i QZ or

r=k m=1

Ok
be subsets of L*(T)
n=1

2
=

o (n)

for each n € Z.

The next theorem supplies a sufficient condition on the frame approximation order for
smooth functions provided by the tight wavelet frames derived from the periodic UEP.
0
Theorem 5.19. [22] For each k > 0, let Oy := ¢p and Uy, := [wﬂ " be subsets of L*(T)
n=1
satisfying Theorem 3.27 with frame bound 1. The tight wavelet frame X, as defined in
(1.15) provides frame approximation order p as in (5.59) if there exist positive constants

€, C, K with € € (0,271 such that for all k > K,

92k max{|j|_2p (1 ok @(j)f) L je (RN (—2%,2%])\{0}} <C. (562

We present the following result that relates frame approximation order and vanishing
moments.

Ok

Theorem 5.20. [22] For each k > 0, let Oy := ¢y, and Uy, = [w,ﬂ . be subsets of L*(T)
satisfying Theorem 3.27 with frame bound 1. The tight wavelet frame Xo. as defined in
(1.15) provides frame approzimation order at least p > 0 as in (5.59) if Uy, has p vanishing
moments. Conversely, if the tight wavelet frame X, provides frame approximation order

p, then Uy has at least p/2 vanishing moments.
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Next, we point out how sparsity of frame expansion coefficients is influenced by global

vanishing moments.

Theorem 5.21. [22] Let Uy, := [wk] o L*(T) possess global vanishing moments of
n=1

order p > 0 as in (5.61), where C and K are positive constants. Then for any q > p+27",

there exists a positive constant C = max{4C,4C",2C"} such that

>N T e | < C2mCrink (]f(mf + |f|?{q(m) . FEHT), k> K, (5.63)
m=1

neZ\{0} n€Z\{0}

where C' = C S |n|7207P) " = C’Sup{ S w420 we [—2_1,2_1]}
and l € L;,.

We apply the above results to show that the bandlimited constructions in Chapter 4
have spectral frame approximation order, global vanishing moments of arbitrarily high

order, and sparse representation.

Proposition 5.22. Any bandlimited tight wavelet frame Xo, constructed from the MRA
{VFE (ér)} with {dx }r>0 given in Construction 4.1 such that liminfy, .o, 27*Ny, > 0 holds
and satisfies Theorem 3.27 with frame bound 1 has spectral frame approximation order.

Hence Xor also has global vanishing moments of arbitrarily high order and (5.63) holds.

Proof. The additional condition of liminfj .. 2_’“Nk71 > (0 implies that there exist ¢ €
(0,27') and K > 0 such that 27%N,; > € for every k > K, i.e. N1 > 2Fe. Since
for all j € {—Ng1,..., Np1}, we have 2F ‘(}5;@(]) g 1, it means that 2* ‘(/b\k(j)‘2 =1 for
all j € Ry N (—2%¢, 2%¢]. Therefore, for any p > 0, (5.62) holds and by Theorem 5.19,

the tight wavelet frame X5, has frame approximation p, i.e. it possesses spectral frame

approximation order. By Theorem 5.20, it also has p vanishing moments for any p > 0.

By Lemma 5.18, for every k > K, we have

2 ~ 2
n)| <1-2gm)]| <1

o |~ 2
for all n € Z. In particular, 28 > w?(O)’ = 0. Furthermore for n = j + 2%r € Z\Ry,
m=1
where j € Ry, and r € Z\{0}, since [27%j +r| > 271, it also follows that

ka |] +2kr‘

Consequently, the tight wavelet frame has global vanishing moments of order p as defined
in (5.61) for any p > 0. Therefore by Theorem 5.21, (5.63) holds. O

Ok
wm ] + 2k )’ S 2k22p2—2k‘p Z

m=1

~ 2
B+ 2| < 2,
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Next, we look at the frame approximation order of some time-localized constructions.

For positive integers s, [, we denote

1-1 -1
+r-1 I Y CR —1)!
S+ kK (s+k _ leR
kl(s —1)!

k=0 k=0

The masks of the compactly supported filters for pseudo-splines of type II with order (s, 1)
in [19] are given by

Agy(w) := cos®™(w/2) Py (sin*(w/2)), weR,s>1,1€{l,...,s}.

For k > 0, we define ﬁkﬂ € S(2F1) by setting

/ﬁk—&-l (]) = A8k+1,lk+1 (27T2_(k+1)j>7 ] € le (564)
where l11 € {1,...,8k41}, limg_oo k1 = 00, >, 27%s, < 0o. Then /f;kH(O) =1 and
k=1
e ] i (G + 2 )\ <1

It is shown in [22] that the infinite products

Zr(n) =27 [[ h(n), nezk>o, (5.65)
r=k+1
2
are well defined and ‘1 — 2 |@r(n ‘ < Z ( )’ for every n € Z. As noted
r=k+1

n [22], this formulation arising from pseudo-splines includes many of the time-localized

refinable functions in L?(T) that are of interest.

Proposition 5.23. The time-localized tight wavelet frame X, constructed as in Con-
struction 4.22 from the MRA {VE (o)} with {pi rso given in (5.65) such that it satisfies
Theorem 3.27 with frame bound 1 has spectral frame approximation order. Hence Xon

also has global vanishing moments of arbitrarily high order and (5.63) holds.

Proof. 1t is shown in Lemma 3.3 of [31] that for any p > 0, there exist C, K > 0 such
that for all £ > K,

0<1— |4, W) <Clw®,we[-m7].

It follows from (5.64) that for £ > K and j € R;\{0},

o.9] . 9 00
Z 1= r(j)‘ ' <C Z ‘27r2_rj}2p — 9~ 2kp |j|2p (2m)%C/ (2% — 1),
r=k+1 rek-1
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9 oo
fe. 2%p|j|~% {
r=k+1

any p > 0 with € := 5 and by Theorem 5.19, the tight wavelet frame X,, has frame

‘ H (2m)*C/(2*» — 1). Hence (5.62) is satisfied for

approximation order p, i.e. it possesses spectral frame approximation order. Using the
reasoning similar to Proposition 5.22, we conclude that X5, has global vanishing moments
of arbitrarily high order and hence (5.63) holds. O

We shall follow the convention as described in [38] to visualize the time-frequency (TF)
representation of a signal. In order to visualize the time-frequency plots of signals using
the decimated wavelet transform and the stationary wavelet transform of the bandlimited
wavelet frames of Section 4.1, we sample the signals to be plotted at the rate of N samples
per unit time on a prescribed time interval, where the sampling rate N = 2X. Next, we
collect the sampled data into a finite sequence. We consider only using the bandlimited
constructions as we intend to utilize the fast Fourier transform in our implementations.

We construct the refinement mask /l{kﬂ as in (4.1) from Construction 4.1, i.e.

\/§ if ] G{—Nhl,...,Nk’l},
> . ~ i . .]E{_Lkla7_Nk1_]-}
hies1(j) = { V2cos [Eﬁl (M — 1>} if ’ ’
k+1( ) 2~k Nk,l U{Nk71+17...,Lk71},
0 if j eRpi\{—Lia,...,Lra}
Here, we choose the regularized g-function to be
444-1
['4+4) , Add—1—i
4,4](t) := (1 — ¢)1a

where the I-function is given as ['(¢) = [;* 2" e ~"dz.

For the wavelet masks, we shall utilize Constructions 4.10 and 4.12 which will be
chosen appropriately depending on our partitioning of the frequency domain, i.e. for
ne{l,..., 0 }\{ o, o} with pg = Xg+ 1, let

(

V2 sin [E ( Ll 1)} if J€t-Lins o =N = 1)
2 Nkn

U{Nkn+1,..., Lgnt,

\/5 f ] E{_Nk,n+17~-'7_Lk,n}

§n (]) o U{Lk,'ru ey Nk,n+1}7
k+1 = )
\/§cos [ﬂﬁnﬂ ( il 1)] T J 6{_Lk‘,n+17 ceey —Nk,n+1 - 1}
Nt U{Nk,n+l + 1) <. 7Lk’,n+1}a

0 ¢ J Rk \{—Lint1,--- s —Ngn — 1}

ARkt 1 \{ Nk + 1, .., L }-
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If Ni o < 2871 < Ly o, for n € {o, pto}, choose

(

~ . ) €{—Lgny...,—Npp—1
sim |07 (L - 1)t e kn =~ 1)
o U{Nk,n+1a---7Lk,n},
o J€{=Nint1,-- - —Lin}
1 if
afn, (]) o U{Lk,nv"'7Nk,n+l}7
k+1\J) = )
oS [EBZH ( il 1)] f J€{=Lrnt1s-- = Ninyr — 1}
2 Nenty U{Nk,n+l + 17 s 7Lk,n+1}7
0 . J €Rpit\{—Lint1s - s =N — 1}
\ NRk1 \{ Nk + 1, .., L},
and

-~n

Gir1(7) = 158041 ()G (7)1 € { Ao, o}

If Ly, <2870 < Nipo = Nipor1 < Ly = Lic g 11, for n € {Xo, o}, choose

(

o mo S P~ ; o JE{—Likxgs---s—Nipy, — 1}
et 55 s )] ST Yo
k,\o sy e Xo S
‘M Mo \\7y . je{_Nk, 7"’7_Lk,/\ }
it (sgny (7)) if iz " N} ’
~n kXoyr s o9 4VEkuo S
9k+1(]): )
o \n - ; o J{Likyugs--s —Niy, — 1}
o2 (sgny ()" cos [ 33 (52— 1) if o o
’ U{Nk,uo+17"'7Lk7M0}7
0 if j ERk—H\{_Lk,Mov - ’>_Nk,)\0_l}
ﬂRk+1\{Nk7,\0 + 1, . ,L]wm}.

\

The stationary wavelet transform is used as in (5.42) in the frequency domain and
it is related to the decimated wavelet transform as in Proposition 5.17. For the deci-
mated wavelet transform, we use the algorithm as given in Proposition 5.10, which is
the frequency domain version of Proposition 5.11. The quasi-affine representation of the

stationary wavelet transform is given as

K+L

fKH:Z 2_LaK(l)*TIl(+L¢K+Z Z 2 b k(1) T [ Vs

leLkyr k=K leLgyr,
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with a,_, = (T4 H}) ® @}, and b,_, = (T4t G},) ® a},, which is equivalent to

a,, () = Z Z ap(l —r)* K+L H,)(r )*efi27r2_(K+L)lj

leLkyr TGLK-Q—L

— Z Z (Z%(l _2K+L k ) Hl( )* —i272~ (K+L)l] —i272  krj e1271'2 k.

leLgyrrelyk

99— (K+L) K+L—k,\;: 90—k, ook
_ § G;C(l)*e i2m2 (1+2 r)]el27r2 rj § H]/C(T’)*e i2m2=%ry

ZEL‘,K+L TGﬁK
= () ()",
w1 (1) = @) GLi)",

with Hy ,(j + 2’“7“)@2 Lsupp 3, () Hiesr (7 + 2kr)1supp$k+1(j +28r) and Gy, (J + 2'r) =
k
diag [ suppqpm(j)} Gr(j +2 r)lsuppd)k (j + 2Fr) and Hy, € S(2%), G), € S(2F)>1,

ap € S(25TE) and bk E S(28+E)exx1  The decimated wavelet transform used is given as

Jre1 = Z [(Th s%) ® Hia (1) + (Th ) @ Grya (1)) T1i+1¢k+17

lEEk_H

with sy, (1)" = s, @ H 1 (21) and t,(1)* = s, ® Gy, (2), which is equivalent to

2‘97“/(‘7)* - Z ‘S)/"f:l/(j + ri)*lsuppq?kﬂ(j + ri)HIQ:H(j + ri)*,

reR1
A~ — . % . ~ . %
21 (‘7) - Z Sk+1/(j + QkT) 1supp$k+1 (‘7 + QkT) ;c—&-l(j + 2kT) :
reR1

~

~1 Ok
In the above computations, we note that 3’ = Lsupp %SA’“’ t, = diag [1supp$;;] o L,
@/ (1+2) = Laupp s, ()@ (G +24) and b, (+24) = disg [Lagppip] . (Bl +2'0),
where v € Ry k-

Since our filters are real and they preserve linear phase, it suffices to consider only
positive frequencies and since the magnitude of the antisymmetric band coefficients is the
same as the corresponding symmetric band coefficients in the Fourier domain for [0, 7],
we shall utilize only the symmetric band data for our time-frequency plots and normalize
their values by multiplying by two. For the stationary wavelet transform, the time axis
is divided into 2% intervals of constant step length 27275, For the decimated wavelet
transform, the time axis is divided into 25~ intervals of step length 272~ (5~ and at
the k™ level (k < K), the time intervals are collated into partitions with step lengths of
2727% and they become larger as k decreases, i.e. the time step is multiplied by 2 each

time. For both transforms, the frequency axis is divided into 25 ~! bands with the angular
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2K=1 The collation of the frequency bands depends

Nyquist frequency 7 identified with
on the frequency localization of the respective filters.

We consider E,m and g, to be localized on {0,...,Np1} and {Lim, ..., Ngmi1}
respectively for m € {1,..., o} since “most” of the energy of the mask is located in
this band. Let TF*(fx)(l,j) be the time-frequency content of fr at time | € L and
frequency j € Ry using the stationary wavelet transform and let TF4(fx)(l,7) be the
time-frequency content of fx at time | € L and frequency 7 € Rx and 0 < £k <
K using the decimated wavelet transform. For the former, we assign TF*(fx)(l,7) =
a(l) for (1,5) € 272751, 27275 (1 + 1)] x [0,727 K Ny1] and TF*(fx)(l,5) = (1) for
(1I,7) € 22751, 27275 (1 + 1)) x [7275 Ly, 7275 Niny1], where 0 < k < K denotes the
decomposition level. In a similar way, for the latter, we assign TFY(fx)(l,7) := s(l)
for (1,7) € [2r27%1,2727%(1 + 1)] x [0, 727K Ny 1] and TF(fx)(l, ) := t7(I) for (1,5) €
[2m27F1, 227K (1 + 1)] x [727K L,y 7275 N 1)

In Figures 5.1 to 5.4, time-frequency representations of the decimated and stationary
wavelet transforms using our bandlimited wavelet frames are compared with those using
decimated and stationary wavelet bases, wavelet packets, short-time Fourier transform,
analytic wavelet transform, Wigner-Ville distribution and Choi-William distribution. Test
signals are two Gabor atoms, two linear chirps, a combination of one linear chirp with
one quadratic chirp and two Gabor atoms, and two hyperbolic chirps. The two Gabor

atoms in Figure 5.1 are given by
Fi(t) = 3e71OONTPU=2TIN) 005 167 e, fot) = e 1ONTFU—ATIBND® (g 4~y
The two linear chirps considered in Figure 5.2 are

L) =[t-NHa-1)]
f(t) = [(t= N1 -1)]"

N|=

cos 2501024 T N ~1¢2

[N

[cos 10071024 + cos 25071024 N ~1¢*] .

In Figure 5.3, the signal analyzed comprises of one linear chirp, one quadratic chirp and

two Gabor atoms given by

F(t)cos100m°1024 ' N2, fo(t) = F(t) cos 30m°1024 ' N"3(N — t)3,
f3(t) = F(t)e 100N 102471 @=27N) (g 507102471t
Fu(t) = F(t)e 100N 10247 (E=81TN)® (6 350711024 ¢,

=

—
~

N—
Il
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where the envelope
(1 +sin [w (0125 — N~ (¢ — N1y — 2_17r] ift € [N~1,0.125],
2 ift € [0.125,0.875+ N1,

F(t) =
1+ sin [7? (0125 — N"H 711 —¢) - 2—17@ ift € [0.875 + N1, 1],

\ 0 otherwise.

Finally, the two hyperbolic chirps in Figure 5.4 are

fi(t) = E(t) 11075 n-1 [sin 15N7102471(0.8 — )] 1(0.1,0.69),
fo(t) = E(t)1j1.075-n-1) [sin 5N7102471(0.8 — £) ] 1(0.1,0.75),
where the envelope
(1 +sin [7? (0.1625 — N"1) " (1 — N71) — z—ﬂ ift € [N1,0.1625),
9 ift € [0.1625,0.4875+N"1],

E(t)=
1+ sin [w (0.1625 — N~1) 1 (0.65 — t) — 2*%] ift € [0.4875 + N1, 0.65],

\ 0 otherwise.

The time-frequency representations of the Gabor atoms, linear chirps, multichirp sig-
nals computed using the WAVELAB toolbox (http://www-stat.stanford.edu/ wavelab/)
are shown in Figures 5.1, 5.2, 5.3 (left to right order). The transforms using wavelet
bases are unable to resolve the three sets of signals properly due to poor frequency res-
olutions. This is in particular more severe at high frequencies and this also occurs with
the analytic wavelet transform. Our bandlimited wavelet frame transforms, in particu-
lar the stationary version, resolve the chirps and Gabor atoms as well as the continuous
short-time Fourier transform and do not create complex interference patterns present in
the representations using the Wigner-Ville and Choi-William distributions. Our trans-
forms also preserve most of the features of the signals unlike that of the wavelet packet
transform. This is due to the choice of partitioning the frequency domain into subbands
of the same bandwidth by setting the number of bands noBands = 32, the bandwidth
Aw = samplesize/(2 x noBands), L., = mAw and Ny, = Ly, — 15 form=1,..., 0p41
where p, = noBands.

Our bandlimited wavelet frame transforms perform fairly well for the hyperbolic chirps
as shown in Figure 5.4. The analytic wavelet transform performs much better for the
hyperbolic chirps due to its continuous nature even though the choice of the partitioning
of the frequency domain in our transforms behave like that of the analytic wavelet trans-
form. However, unlike the continuous transforms, the inverse of our transforms are easily

computed by our wavelet algorithms and are not computationally intensive.
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Gabor Atoms Wavelet Basis Representation ‘Gabor Atoms Wavelet Basis Representation Gabor Atoms Wavelet Frame Representation

Frequency
Frequency

50 100 150 200 250 300 35 400 450 500 100 200 300 400 500 600 700 800 900 1000 200 250 300 350 400 450 500
Time Time Time

Gabor Atoms Wavelet Frame Representation Gabor Atoms Gaussian Spectrogram

Gabor Atoms Wavelet Packet Representation

1000

Frequency
Frequency

100 200 300 400 500 600 700 800 900 1000 300 400 500 600 700

100 200 300 400 500 600 700 800 900 1000
Time. Time Time

Gabor Atoms Analytic Wavelet Representation Gabor Atoms Wigner-Ville Representation ‘Gabor Atoms Choi-Wiliam Representation

& 200

Time. Time Time

Figure 5.1: Gabor atoms signal representations using (a) Decimated Wavelet Basis Trans-
form, (b) Stationary Wavelet Basis Transform, (¢) Decimated Wavelet Frame Transform,
(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time
Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)
Choi-William Distribution.
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LinChirps Wavelet Basis Representation LinChirps Wavelet Basis Representation LinChirps Wavelet Frame Representation
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Figure 5.2: Linear chirps signal representations using (a) Decimated Wavelet Basis Trans-
form, (b) Stationary Wavelet Basis Transform, (¢) Decimated Wavelet Frame Transform,
(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time
Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)
Choi-William Distribution.
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Multi-Chirp Wavelet Basis Representation Multi~Chirp Wavelet Basis Representation Muli-Chirp Wavelet Frame Representation

50 100 150 200 250 300 35 400 450 500 100 200 300 400 500 600 700 800 900 1000 200 25 300 350 400 450 500
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Figure 5.3: Multichirp signal representations using (a) Decimated Wavelet Basis Trans-
form, (b) Stationary Wavelet Basis Transform, (¢) Decimated Wavelet Frame Transform,
(d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f) Short-Time
Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distribution, (i)
Choi-William Distribution.
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HypChirps Wavelet Basis Representation HypChirps Wavelet Basis Representation HypChirps Wavelet Frame Representation
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Figure 5.4: Hyperbolic chirps signal representations using (a) Decimated Wavelet Ba-
sis Transform, (b) Stationary Wavelet Basis Transform, (c¢) Decimated Wavelet Frame
Transform, (d) Stationary Wavelet Frame Transform, (e) Wavelet Packet Transform, (f)
Short-Time Fourier Transform, (g) Analytic Wavelet Transform, (h) Wigner-Ville Distri-
bution, (i) Choi-William Distribution.
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We remark that in all the representations, the stationary version of our transforms per-
forms better than the decimated version by improving the time resolution with translation
invariant sampling. The good time-frequency representations of the different signals in
Figures 5.1 to 5.4 also demonstrate that our transforms incorporate the strengths of both
the wavelet transform and the short-time Fourier transform.

We conclude the thesis by describing the partitioning of the frequency domain for
our bandlimited wavelet frame transforms as an algorithm below. Ideally, we would
keep Aw/w as an invariant so that our transform approximates the analytic wavelet
transform. Due to the discretized nature of our transforms, we use the recurrence formula
AWy /Wi = Awam—a/ (Wam—a4 — DAwgm—4) With Wy 4 = W — Awy,y, /2 and we use a fixed
Aw = 16 when w < 32.

(1) Set Aw = 64, noBands = 4, w = samplesize/2 + |Aw/2], m = gg41.

(2) While w > 32 and Aw > 32, repeat the following steps:
Set v =w — |[Aw/2|, Aw = |[yAw/(w + Aw) |, w = 7.
For i = 1tonoBands, set Lg,, = w, Ngym = Lgm— [Aw/4], w = w—Aw, m = m—1.

(3) Set Aw = 16. While N, > 4, repeat the following steps:

Set Lim = Limt1 — Aw, Nim = Ngms1 — Aw, m =m — 1.
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