

VIDEO INPAINTING FOR NON-REPETITIVE MOTION

GUO JIAYAN

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48633588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

VIDEO INPAINTING FOR NON-REPETITIVE MOTION

GUO JIAYAN

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2010

iii

Acknowledgments

I would like to express my gratitude to all those who helped me during the writing of this

thesis.

My deepest gratitude goes first and foremost to Dr. LOW Kok Lim, my supervisor, who

has offered me valuable suggestions in the academic studies. He has spent much time

discussing the topic with me and provided me with inspiring advice. Without his

illuminating instruction, insightful criticism and expert guidance, the completion of this

thesis would not have been possible.

I also owe my sincere gratitude to my friends and my fellow lab mates who gave me their

help and offered me precious suggestions and comments.

Last but not least, my gratitude would go to my beloved family for their loving

considerations and great confidence in me, helping me out of difficulties and supporting

me without any complaint.

iv

Table of Contents

ACKNOWLEDGMENTS iii

SUMMARY vi

LISTS OF FIGURES viii

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1

1.2 THESIS OBJECTIVE AND CONTRIBUTION... 3

1.3 THESIS ORGANIZATION ... 6

CHAPTER 2 BACKGROUND KNOWLEDGE .. 7

2.1 BASIC CONCEPTS .. 8

2.2 IMAGE INPAINTING, TEXTURE SYNTHESIS, IMAGE COMPLETION 12

2.2.1 Image Inpainting .. 13

2.2.2 Texture Synthesis .. 19

2.2.3 Image Completion ... 24

2.3 VIDEO INPAINTING AND VIDEO COMPLETION ... 30

2.3.1 Video Logos Removal ... 31

2.3.2 Defects Detection and Restoration in Films .. 32

2.3.3 Objects Removal ... 34

2.3.4 Video Falsifying and Video Story Planning .. 40

2.4 OPTICAL FLOW ... 42

2.5 MEAN-SHIFT COLOR SEGMENTATION ... 44

CHAPTER 3 RELATED WORK ... 45

3.1 LAYER-BASED VIDEO INPAINTING .. 45

3.2 MOTION FIELD TRANSFER AND MOTION INTERPOLATION .. 47

3.3 SPATIO-TEMPORAL CONSISTENCY VIDEO COMPLETION ... 48

CHAPTER 4 OUR VIDEO INPAINTING APPROACH .. 49

4.1 OVERVIEW OF OUR APPROACH ... 51

4.2 ASSUMPTIONS AND PREPROCESSING .. 53

4.2.1 Assumptions .. 53

4.2.2 Preprocessing .. 53

v

4.3 MOTION INPAINTING ... 55

4.3.1 Review of Priority-based Scheme ... 56

4.3.2 Orientation Codes for Rotation-Invariant Matching 57

4.3.3 Procedure of Motion Inpainting .. 66

4.4 BACKGROUND INPAINTING ... 68

4.4.1 Using Background Mosaic .. 68

4.4.2 Texture Synthesis .. 69

CHAPTER 5 EXPERIMENTAL RESULTS AND DISCUSSION .. 70

5.1 EXPERIMENTAL RESULTS .. 70

5.2 DISCUSSION .. 74

CHAPTER 6 CONCLUSION ... 75

REFERENCES .. 77

vi

Summary

In this thesis, we present an approach for inpainting missing/damaged parts of a video

sequence. Compared with existing methods for video inpainting, our approach can handle

the non-repetitive motion in the video sequence effectively, removing the periodicity

assumption in many state-of-the-art video inpainting algorithms. This periodicity

assumption claims that the objects in the missing parts (the hole) should appear in some

parts of the frame or in other frames in the video, so that the inpainting can be done by

searching the entire video sequence for a good match and copying suitable information

from other frames to fill in the hole. In other words, the objects should move in a repetitive

fashion, so that there is sufficient information to use to fill in the hole. However, repetitive

motion may be absent or imperceptible. Our approach uses the orientation codes for

matching to solve this problem.

Our approach consists of a preprocessing stage and two steps of video inpainting. In the

preprocessing stage, each frame is segmented into moving foreground and static

background using the combination of optical flow and mean-shift color segmentation

methods. Then this segmentation is used to build three image mosaics: background mosaic,

foreground mosaic and optical flow mosaic. These three mosaics are to help maintaining

the temporal consistency and also improving the performance of the algorithm by reducing

the searching space. In the first video inpainting step, a priority-based scheme is used to

choose the patch with the highest priority to be inpainted, and then we use orientation code

vii

matching to find the best matching patch in other frames, and calculate the approximated

rotation angle between these two patches. Then rotate and copy the best matching patch to

fill the moving objects in the foreground that are occluded by the region to be inpainted. In

the second step, the background is filled in by temporal copying and priority based texture

synthesis. Experimental results show that our approach is fast and easy to be implemented.

Since it does not require any statistical models of the foreground or background, it works

well even when the background is complex. In addition, it can effectively deal with non-

repetitive motion in damaged video sequence, which, has not been done by other people

before, surpassing some state-of-the-art algorithms that cannot deal with such types of

data. Our approach is of practical value.

Keywords: Video inpainting, foreground/background separation, non-repetitive motion,

priority-based scheme, orientation code histograms, orientation code matching.

viii

List of Figures

 Figure 1: Repetitive motion in damaged video sequence [50]…………………………3

 Figure 2: Non-repetitive motion in damaged video sequence………………………….4

 Figure 3: Image inpainting example from [4]………………………………………….9

 Figure 4: Texture synthesis example from [14]………………………………………10

 Figure 5: Image completion example from [5]……………………………………….10

 Figure 6: Video inpainting example from [6]………………………………………...11

 Figure 7: Video completion example from [7]………………………………….…….12

 Figure 8: Image inpainting problem…………………………………………….……..13

 Figure 9: One possible propagation direction as the normal to the boundary of the

 region to be inpainted……………………………………………………….15

 Figure 10: Unsuccessful choice of the information propagation direction……………15

 Figure 11: Limitation of the method in [4]…………………………………………….16

 Figure 12: Structure propagation by exemplar-based texture synthesis………………27

 Figure 13: Notation diagram…………………………………………………………..27

 Figure 14: Priority-BP method in [5] in comparison to the exemplar-based method in

 [46]………………………………………………………………………...29

 Figure 15: An example of mean-shift color segmentation……………….……………44

 Figure 16: Some damaged frames extracted from the video sequence………………..50

 Figure 17: Overview of our video inpainting approach……………………………….52

 Figure 18: Block diagram for the framework………………………………………….59

 Figure 19: Illustration of orientation codes……………………………………………61

ix

 Figure 20: A template and the corresponding object from the scene which appears

 rotated counterclockwise………………………………………………..….63

 Figure 21: An example of histogram and shifted histogram, radar plot in [73]……….64

 Figure 22: Some damaged frames in non-repetitive motion video sequence………….70

 Figure 23: Some frames of the completely filled-in sequence………………………...71

 Figure 24: Some damaged frames in repetitive motion video sequence………………71

 Figure 25: Some frames of the completely filled-in sequence………………………...72

 Figure 26: Some damaged frames in non-repetitive motion video sequence……….…73

 Figure 27: Some frames of the completely filled-in sequence………………………...74

1

Chapter 1 Introduction

1.1 Motivation

Image inpainting, a closely related problem to video inpainting, the technique of modifying

an image in an undetectable form, commenced very long time ago. In Renaissances, artists

updated medieval artwork by filling the gaps. This was called inpainting, or retouching. Its

purpose was to fill in the missing or damaged parts of the artistic work, and restore its

unity [1, 2, 3]. This practice was eventually extended from paintings to digital applications,

such as removing scratches, dust spot, or even unwanted objects in photography and

moving pictures. This time, the scratches in photos and dust spots in films were to be

corrected. It was also possible to add or remove objects and elements.

Researchers have been looking for a way to carry out digital image inpainting process

automatically. By applying various techniques and after years of effort, they have achieved

promising results, even with the images containing complicated objects. However, video

inpainting, unlike image inpainting, has just started receiving more attention recently.

Videos are an important medium of communication and expression in today's world. Video

data are widely used in a variety of areas, such as movie industry, home videos,

surveillance and so on. Since most of the video post processing is done manually at the

expense of a huge amount of time and money, advanced video post processing techniques,

2

such as automatic old films restoration, automatic unwanted object removal, film

postproduction and video editing, began to attract the attention of many researchers.

Video inpainting, a key problem in the field of video post processing, is the process of

removing unwanted objects from the video clip or filling in the missing/damaged parts of a

video sequence with visual plausible information. Compared with image inpainting, video

inpainting has a huge number of pixels to be inpainted. Moreover, not only must we ensure

the spatial consistencies but we also have to maintain the temporal consistencies between

video frames. Applying image inpainting techniques directly to video inpainting without

taking into account the temporal factors will ultimately lead to failure because it will result

in the inconsistencies between frames. These difficulties make video inpainting a much

more challenging problem than image inpainting.

Many existing video inpainting methods are computationally intensive and cannot handle

large holes. And some methods make several assumptions on the kind of video sequences

they are able to restore. It would be desirable to have some of these assumptions removed.

One of the assumptions is that the objects should move in a repetitive fashion. In other

words, the objects in the missing parts (the hole) should appear in some parts of the frame

or in other frames in the video, so that the inpainting can be done by searching the entire

video sequence for a good match and copying suitable information from other frames to fill

in the hole. In this thesis, we propose an approach to remove this periodicity assumption.

As far as we concern, no one has done this before.

3

1.2 Thesis Objective and Contribution

The objective of this thesis is to develop an approach for inpainting missing/damaged parts

of a video sequence. And this approach should be able to handle the non-repetitive motion

in the video sequence effectively, removing the periodicity assumption in many state-of-

the-art video inpainting algorithms. In Figure 1 we can see the girl is walking in a periodic

manner. Some video inpainting methods are dealing with this type of video sequence, in

which the object repeats its motion, so that it is easier to find a good match in other frames

by searching the entire video sequence. In our thesis, we focus on the damaged video

sequence which contains non-repetitive motion. As seen in Figure 2, the woman is playing

badminton. Her motion is non-repetitive.

Figure 1: Repetitive motion in damaged video sequence [50]

4

Figure 2: Non-repetitive motion in damaged video sequence

Our approach follows the workflow in [50]: foreground and background separation, motion

inpainting, and finally background inpainting. However, our approach has made significant

improvement in each step. Our approach consists of a preprocessing stage and two steps of

video inpainting. In the preprocessing stage, each frame is segmented into moving

foreground and static background using the combination of optical flow and mean-shift

color segmentation methods. Then this segmentation is used to build three image mosaics:

background mosaic, foreground mosaic and optical flow mosaic. These three mosaics are

to help maintaining the temporal consistency and also improving the performance of the

algorithm by reducing the searching space. In the first video inpainting step, a priority-

5

based scheme is used to choose the patch with the highest priority to be inpainted, and then

we use orientation code matching to find the best matching patch in other frames, and

calculate the approximated rotation angle between these two patches. Then rotate and copy

the best matching patch to fill the moving objects in the foreground that are occluded by

the region to be inpainted. In the second step, the background is filled in by temporal

copying and priority based texture synthesis.

The main contribution of this thesis is the idea of using the orientation codes for matching

to handle the non-repetitive motion in video sequence. In traditional methods, the

inpainting is done by searching the entire video sequence for a good match and copying

suitable information from other frames to fill in the hole, assuming objects move in a

repetitive fashion, and the objects in the missing parts (the hole) should appear in some

parts of the frame or in other frames in the video. For the video sequence in which the

repetitive motion is absent, we perform the orientation code matching. Instead of simple

window-based matching, our approach allows matching by rotating the target patch by

certain angles and finding the best match with the minimum difference. The gradient

information of the target patch in the form of orientation codes is utilized as the feature for

approximating the rotation angle as well as for matching. The color information is also

incorporated to improve the matching. In addition, the combination of optical flow and

mean-shift color segmentation help to improve the foreground/background separation,

obtaining better final results.

6

1.3 Thesis Organization

The rest of the thesis is organized as follows,

• Chapter 2 introduces some background knowledge in image inpainting, texture

synthesis, image completion, video inpainting, and video completion research

areas. The relationship among these five areas is explored. Some pioneering works

in image inpainting, texture synthesis and image completion will also be discussed

because they can be extended to video inpainting and video completion. Since

optical flow and mean-shift color segmentation are used in our approach, we will

introduce the idea of these two methods briefly.

• Chapter 3 describes the related research work for video inpainting and video

completion.

• Chapter 4 presents the details of our video inpainting approach.

• Chapter 5 shows the experiment results of our approach. And after that will be

discussion on the results.

• Chapter 6 concludes the whole thesis.

7

Chapter 2 Background Knowledge

This chapter introduces some background knowledge in image inpainting, texture synthesis,

image completion, video inpainting, and video completion research areas. The relationship

among these five areas is explored. Techniques in image inpainting, texture synthesis,

image completion areas are discussed because they are closely related to video inpainting

and video completion, and some techniques in these areas can be extended to video

inpainting and video completion. The video inpainting research area will be explored and

the general ideas of the existing methods for solving the problems in this research area are

examined. The comparative strengths and weaknesses of the existing methods will also be

discussed. Since optical flow and mean-shift color segmentation are used in our approach,

we will discuss the idea of these two methods briefly.

In section 2.1, some basic concepts are introduced. It includes the definitions of the

problems in image inpainting, texture synthesis, image completion, video inpainting, and

video completion areas, and the relationship among these five areas. In section 2.2, some

pioneering works in image inpainting, texture synthesis and image completion will be

discussed because they can be extended to video inpainting and video completion. In

section 2.3 the existing methods for video inpainting and video completion are explored. In

section 2.4 and section 2.5, optical flow and mean-shift color segmentation are discussed

respectively.

8

2.1 Basic Concepts

The problem of filling in the 2D holes - image inpainting and image completion has been

well studied in the past few years. Video inpainting and video completion can be

considered as an extension of 2D image inpainting and image completion to 3D.

The difference between image inpainting and image completion is that image inpainting

approaches typically handle smaller or thinner holes compared to image completion

approaches. Texture synthesis is an independent research area which is related to image

inpainting. It reproduces a new texture from a sample texture. Image completion can be

viewed as a combination of image inpainting and texture synthesis, filling in larger gaps

which involve both texture and image structure.

As an active research topic, image inpainting has many applications including

automatically detecting and removing scratches in photos and dust spots in films, removal

of overlaid text or graphics, scaling up images by superresolution, reconstructing old

photographs, and so on. In image inpainting, parts of the image are unknown. These

missing parts are called gaps, holes, artifacts, scratches, strips, speckles, spots, occluded

objects, or simply the unknown regions, depending on the application area. The unknown

region is commonly denoted by Ω , and the whole image is denoted by 𝐼, then the known

region (the source region) is 𝐼 − Ω. The known information is used to fill in the unknown

region. Some image inpainting approaches will be discussed in details in section 2.2.1.

9

Figure 3 shows an example of image inpainting. The left image is a damaged image with

many white thin strips on it. The right one is the inpainted image which removed the white

thin strips using the image inpainting method in [4].

Figure 3: Image inpainting example from [4]

Texture synthesis techniques generate an output texture from an example input. Let us

define texture as some visual pattern on an infinite 2-D plane which, at some scale, has a

stationary distribution. Given a finite sample from some texture (an image); the goal is to

synthesize other samples from the same texture [15]. Potential applications of texture

synthesis including occlusion fill-in, lossy image and video compression, foreground

removal, and so on. Some texture synthesis approaches will be discussed in section 2.2.2.

Figure 4 shows an example of texture synthesis. The left image is an example input. The

right one is output texture using graph cuts method in [14].

10

Figure 4: Texture synthesis example from [14]

Comparing with image inpainting, image completion tends to fill in larger holes by

preserving both image structure and texture while image inpainting only focus on the

continuity of the geometrical structure of an image. The application of image completion

includes filling in the image blocks which are lost in transmission, adding/removing person

or large objects to/from images, and so on. Some image completion approaches will be

discussed in details in section 2.2.3. Figure 5 shows an example of image completion. The

left image is the original image and we want to remove the leopard. In the middle image

the leopard is manually selected and removed, leaving a large hole in the image. The right

one is the result image using the global optimization image completion method in [5].

Figure 5: Image completion example from [5]

The 3D version of image inpainting and image completion, video inpainting and video

11

completion is the process of filling the missing or damaged parts of a video with visually

plausible data so that the viewer cannot know if the video is automatically generated or not.

Like image inpainting and image completion, video inpainting approaches typically handle

smaller holes compared to video completion approaches. However, many papers use them

as the same term. There is no clear distinction between these two terms. To make it clearer,

in this paper we refer to the methods that inpaint smaller holes in video as video inpainting

methods, and those that inpaint larger holes in video as video completion methods, no

matter what the original paper titles are.

The applications of video inpainting includes erasing video logos, detection of spikes and

dirt in video sequence, detection of defect vertical lines and line scratches in video

sequence and restore the video clip, missing data detection and interpolation for video,

restoration of historical films, object adding or removal in video, and so on. Some video

inpainting approaches will be discussed in details in section 2.3. Figure 6 shows an

example of video inpainting. The top row contains some frames extracted from the original

video clip. Here we want to remove the map board. The bottom row is the result using the

layer based video inpainting method in [6].

Figure 6: Video inpainting example from [6]

12

Comparing with video inpainting, video completion tends to fill in larger holes. The

application of video completion includes filling in the missing frames which are lost in

transmission, adding or removing person or large objects to/from videos, and so on. Some

video completion approaches will be discussed in details in section 2.3. Figure 7 shows an

example of video completion. The top row contains some frames extracted from the

original video clip. Here we want to remove the girl who is blocking the show. The middle

row shows the girl removed and leaving a large hole across the frames. The bottom row is

the result using the motion field transfer video completion method in [7].

Figure 7: Video completion example from [7]

2.2 Image Inpainting, Texture Synthesis, Image Completion

In this section, some pioneering and influential techniques that were developed for digital

image inpainting, texture synthesis and image completion are explored.

13

2.2.1 Image Inpainting

Masnou and Morel [8] firstly introduced the level lines (also called isophotes) to solve the

image inpainting problem. However, early in 1998, since the term “digital image inpainting”

has not been invented, they considered the problem as a “disocclusion” problem, instead of

image inpainting.

The term “digital image inpainting” was first introduced by Bertalmio et al. [4] in 2000.

They defined image inpainting as a distinct area of study, which is different from image

denoising. In image denoising, the image can be considered as the real image plus noise.

That is, the noisy parts of the image contain both the real information and the noise.

However, in image inpainting, the holes contain no information at all. In Figure 8, we can

see the whole image 𝐼 , Ω is a “hole” we want to repair, ∂Ω is the border of the hole with

pixel intensities. The idea is to propagate information from ∂Ω inside to Ω. Bertalmio et al.

[4] also proposed a second-order Partial Differential Equation (PDE) based method in their

paper, and showed it connection with another field of study, fluid dynamic [9]. Their

approach is simple and clever, even though it is not perfect, it does spawn many follow up

works.

Figure 8: Image inpainting problem

14

The image inpainting area has been well studied in these few years, and there are a number

of techniques in this area. Among these methods, the PDE-based approaches were always

dominant in image inpainting.

PDE-based Methods

The idea of image inpainting was firstly introduce by Bertalmio et al. [4] in their paper.

They proposed an image inpainting technique based on partial differential equations

(PDEs). It is a pioneering work and has inspired many methods in image inpainting. After

the user selects the regions to be restored, the algorithm automatically fills in these regions

with information surrounding them. The basic idea is that at each step the boundary ∂Ω

pixels is propagated in isophote direction (orthogonal to the image gradient direction). The

boundary will slowly shrink. This slowly fills in the hole and propagates gradient thus

maintaining the isophote direction.

The choice of information propagation direction is very important. In Figure 9, we can see

one possible propagation direction as the normal to the signed distance to the boundary of

the region to be inpainted. This choice is motivated by the belief that the propagation

normal to the boundary would lead to the continuity of the isophotes at the boundary [4].

Sometimes, this choice makes sense. However, in Figure 10, we can see an unsuccessful

example of using the normal to the signed distance to the boundary of the region to be

inpainted as the propagation direction. Therefore, propagating in isophote direction

(orthogonal to the image gradient direction) would be a good choice if we want to maintain

15

the linear structure.

Figure 9: One possible propagation direction as the normal to the boundary of the region to

be inpainted

Figure 10: Unsuccessful choice of the information propagation direction

The limitation of this work is the edges are blurred out due to diffusion and good

continuation is not satisfied. As in Figure 11, we can see the microphone is removed. But

the inpainted region is blurry due to the method cannot reproduce texture.

16

Figure 11: Limitation of the method in [4]

There are other PDE-based methods which improved the algorithm in [4]. M. Bertalmio

[10] derived the optimal third-order PDE for image inpainting which is much better than

their method in [4]. Their idea was inspired by the excellent work of Caselles et al. [13].

They treated the image inpainting problem as a special case of image interpolation in

which the level lines were to be propagated. The propagation of the level lines is expressed

in terms of local neighborhoods and a third-order PDE is derived using Taylor expansion.

This third order PDE is optimal because it is the most accurate third order PDE which can

ensure continuation of level lines and restoring thin structures occluded by a wide gap, and

it is also contrast invariant.

Even though the image inpainting basics are straightforward, most image inpainting

techniques published in the literature are complex to understand and implement. A. Telea

17

[11] presented an algorithm for digital image inpainting based on propagating an image

smoothness estimator along the image gradient, which is similar to [4]. They estimated the

image smoothness as a weighted average over a known image neighborhood of the pixel to

inpaint, and treated the missing regions as level sets and used the fast marching method

(FMM) described in [16] to propagate the image information. The algorithm is very simple

to implement and detailed, fast to produce nearly identical results to more complex, and

usually slower, known methods. The source code is available online.

Many high quality image inpainting methods are based on nonlinear higher-order partial

differential equations; we can see an example above in [10]. These methods are iterative

with a time variable serving as iteration parameter. When a large number of iterations are

needed, the computational complexity will be very high. To overcome this problem, F.

Bornemann et al. [12] developed a fast noniterative method for image inpainting based on

a detailed analysis of stationary first order transport equations. This method is fast and

produces high quality results as high order PDE based methods. The only limitation is it is

a bit complicated and there are some magic parameters we have to figure out during the

implementation.

The above two methods [11] and [12] are the speed up versions for PDE method in [4].

There are other PDE-based methods. Ballester et al. [17] derived their own partial

differential equations by formulating the image inpainting problem in a variational

18

framework. Bertalmio et al. [18] proposed to decompose an image into two components.

The first component is representing structure and is filled by using a PDE based method,

while the second component represents texture and is filled by use of a texture synthesis

method. Chan and Shen [19] incorporated an elastica based variational model to handle

curve structures. Levin et al. [20] performed image inpainting in gradient domain using an

image-specified prior.

Other Methods

The PDE-based approaches were always dominant in variational inpainting, but there are

also alternatives such as explicit detection of edges around the unknown region [21], or

direct application of a global physics principle to an image [22].

Summary

Among these methods, the PDE-based approaches were always dominant in image

inpainting. Since the commencement of the image inpainting problem, state-of-the-art in

image inpainting has considerably advanced in of both quality and speed. For example, in

[9], results are obtained in few seconds of time, and the results presented in [10] have a

superior quality.

However, the main drawback of almost all PDE-based methods is that they are only

suitable for image inpainting problems, which refers to the case where the missing parts of

the image consist of thin, elongated regions. In addition, PDE-based methods implicitly

19

assume that the content of the missing region is smooth and non-textured. For this reason,

when these methods are applied to images where the missing regions are large and textured,

they usually oversmooth the image and introduce blurry artifacts [23].

Therefore, we are looking for some methods which are able to handle images that contain

possibly large missing parts. In addition to that, we would also like our method to be able

to fill arbitrarily complex natural images, for example, images containing texture, structure

or even a combination of both. For these reasons, we will investigate techniques in the

image completion area in section 2.2.3. Before that, we firstly discuss the techniques in

texture synthesis in section 2.2.2 because image completion can be viewed as a

combination of image inpainting and texture synthesis, filling in larger gaps which involve

both texture and image structure.

2.2.2 Texture Synthesis

In this section, some techniques that were developed for texture synthesis are explored.

Texture synthesis techniques generate an output texture from an example input. It can be

roughly categorized into three classes. The first class is the statistical-based methods which

use a fixed number of parameters within a compact parametric statistical model to describe

a variety of textures. The second class methods are non-parametric, which means that

20

rather than having a fixed number of parameters, they use a collection of exemplars to

model the texture. The third, most recent class of techniques is patch-based, which

generates textures by copying whole patches from the input. Here we focus on the third

one, patch-based methods, since it is related to our thesis.

Statistical-based Methods

Statistical-based methods use a fixed number of parameters within a compact parametric

model to describe a variety of textures.

Heeger and Bergen [24] proposed a pyramid-based analysis and synthesis of texture, which

made use of color histograms at multiple resolutions. Portilla and Simoncelli [26] used

joint statistics of wavelet coefficients. Their model includes a variety of wavelet features

and their relationships, and successfully captures global statistics. These two methods [24,

26] typically start with an output image containing pure noise, and keep perturbing that

image until its statistics match the estimated statistics of the input texture. These methods

work well on highly stochastic textures, but they fail to represent more structured texture

patterns such as bricks.

Besides the synthesis of still images, parametric statistical models have also been proposed

for image sequences. Szummer and Picard [25], Soatto et al. [27], and Wang and Zhu [29]

proposed parametric representations for video. These parametric models for video have

been mainly used for modeling and synthesizing dynamic stochastic processes, such as

21

smoke, fire or water. Parametric models cannot synthesize as large a variety of textures as

other models described here, but provide better model generalization and are more

amenable to introspection and recognition [28]. Therefore, they perform well for analysis

of textures and can provide a better understanding of the perceptual process.

Doretto and Soatto [30] proposed a method which can edit the speed, as well as other

properties of a video texture. Kwatra et al. [31] developed a global optimization algorithm

and formulated texture synthesis as an energy minimization problem. This approach is not

based on statistical filters like the previous ones, but similar to statistical methods in the

formulation of the problem as a global optimization. It yields good quality results for

stochastic and structured textures in few minutes of computation, but bears the problem of

sticking to a local minima depending on the initialization values.

The main drawback of all methods that are based on parametric statistical models is that,

they are applicable only to the problem of texture synthesis, and not to the general problem

of image completion.

Image-based Methods

This class of texture synthesis methods is non-parametric, which means that rather than

having a fixed number of parameters, they use a collection of exemplars to model the

texture. DeBonet [32] pioneered this group of techniques, samples from a collection of

multi-scale filter responses to generate textures. Efros and Leung [15] were the first to use

22

an even simpler approach, directly generating textures by copying pixels from the input

texture. Wei and Levoy [33] extended this approach to multiple frequency bands and used

tree-structured vector quantization to speed up the processing. These techniques all have in

common that they generate textures one pixel at a time.

In [34], Ashikhmin proposed a special-purpose algorithm for synthesizing natural textures.

Their coherent synthesis was a pixel-based method, but it favored copying neighbor pixels

for preserving larger texture structures. Capturing the analogy between images is a more

general conceptualization that was proposed in [35]. Another pixel-based approach is

presented by Lefebvre and Hoppe [36], which replaced the pointwise colors in the sample

texture with appearance vectors that incorporate nonlocal information such as feature and

radiance-transfer data. Then a dimensionality is performed to create a new appearance-

space exemplar. Their appearance space is low-dimensional and Euclidean. Remarkably,

they achieve all these functionalities in real-time.

Patch-based Methods

The third, most recent class of techniques generates textures by copying whole patches

from the input. Ashikmin [34] made an intermediate step towards copying patches by using

a pixel-based technique that favors transfer of coherent patches. Inspired by [34], Zelinka

et al. [40] proposed a jump maps approach. Jump map is a representation for marking

similar neighborhoods in the sample texture. This approach produces a similar result to that

of [34], but it is very fast, in the order of tens of milliseconds.

23

Efros et al. [38] and Liang et al. [39] explicitly copied whole patches of input texture at a

time. Schodl et al. [37] performed video synthesis by rearranging the recorded frames of

the input video sequence. Kwatra et al. [14] managed to synthesize a variety of textures by

making use of computer vision graph-cut techniques. Their work is very impressive and

famous.

This class of techniques arguably creates the best synthesis results on the largest variety of

textures. These methods, unlike the parametric methods described above, yield a limited

amount of information for texture analysis.

Summary

In this section, three classes of texture synthesis techniques are investigated. Statistical-

based methods made substantial contributions for the understanding of the underlying

stochastic processes of textures. However, there are some local structures of textures could

not be represented statistically, which, affect the quality of the results. Image-based

methods, the nonparametric sampling methods, are pixel-based, since they copied pixels

from sample texture. Compared to statistical-based methods, this class of methods greatly

improves the quality of the results. Texture structures were well preserved, except for some

bigger structures that could not be preserved by copying pixels. Patch-based methods gave

faster and better results in terms of structure. A recent evaluation of patch-based synthesis

algorithms on near-regular textures showed that special-purpose algorithms are necessary

24

to handle special types of textures [41].

Current texture synthesis algorithms are mature both in quality and speed. Especially the

patch-based techniques can handle a wide variety of textures in real-time. However, there

are still types of textures that could not be covered by a general approach.

2.2.3 Image Completion

Image inpainting techniques aims to fill an unknown region by smoothly propagating

image geometry inward in isophote direction to preserve linear structure, but they are

limited to relatively smaller unknown region with smooth gradient and no texture. Texture

synthesis produces new texture from a sample, and can possibly fill a large unknown

region, but it is desirable to figure out a way to detect and force the process to fit the

structure of the surrounding information. Image completion techniques emerged by

combining these two fields. Image completion tends to complete larger holes which

involve both texture and image structure, and can be viewed as a combination of image

inpainting and texture synthesis. In this section, some pioneering work and the exemplar-

based methods and global MRF approaches will be discussed. Since we use the exemplar-

based methods in our thesis, we will discuss it in details.

Exemplar-based Methods

Bertalmio et al. [18] pioneered by proposing an algorithm to decompose an image into two

25

components. The first component is representing structure and is filled by using a PDE

based method in [4], while the second component represents texture and is filled by the use

of the texture synthesis method in [15]. The advantages of two methods are combined in

this algorithm. However, due to diffusion, this algorithm produces blurry results, and is

slow and limited to small gaps.

Recent exemplar-based methods work at the image patch level. In [42, 43, and 44],

unknown regions are filled in more effectively by augmenting texture synthesis under

some automatic guidance. This guidance determines the synthesis ordering, which

improves the quality of completion significantly by preserving some salient structures.

Another influential work is an exemplar-based inpainting technique proposed by Criminisi

et al. [44]. They assign each patch in the hole with a priority value, which determines the

filled in order of the patch. They give those patches which are on the continuation of strong

edge and are surrounded by high-confidence pixels higher priorities. Then they search for

the best matching patch in the source region and copy it to the hole and finally update the

confidence of the patch. Since this work is very important, we now discuss it in details.

Criminisi et al. [44] were inspired by the work Efros and Leung [15] proposed. And they

also noted that the filling order of the pixels in the hole is critical; therefore, they proposed

an inpainting procedure which is basically that of Efros and Leung [15] with a new

ordering scheme that allows maintaining and propagating the line structures from outside

26

the hole to inside the hole Ω.

Suppose there is an image hole Ω in a still image 𝐼. For each pixel 𝑃 on the boundary 𝛿Ω of

the hole Ω (also called the target contour, or the fill front), consider its surrounding

patch 𝛹𝑃 , a square centered in 𝑃. Compare this patch with every possible patch in the

image, using a simple metric such as the sum of squared differences (SSD), there will be a

set of patches with small SSD distance to patch 𝛹𝑃 . Choose the best matching patch

𝛹𝑞 from this set, and copy its central pixel 𝑞 to the current pixel 𝑃. We have filled 𝑃, and

then we proceed to the next pixel on the boundary 𝛿Ω.

The ordering scheme proposed by Criminisi et al. [44] is as follows. They compute a

priority value for each pixel on the boundary 𝛿Ω, and at each step the pixel chosen for

filling is the one with the highest priority. For any given pixel 𝑃 , its priority 𝑃𝑟(𝑃)is the

product of two terms: a confidence term 𝐶(𝑃) and a data term 𝐷(𝑃): 𝑃𝑟(𝑃) = 𝐶(𝑃)𝐷(𝑃).

The confidence term 𝐶(𝑃) is proportional to the number of undamaged and reliable pixels

surrounding 𝑃. The data term 𝐷(𝑃) is high if there is an image edge arriving at 𝑃, and

highest if the direction of this edge is orthogonal to the boundary 𝛿Ω. In a nutshell, they

give those pixels which are on the continuation of strong edge and are surrounded by high-

confidence pixels higher priorities. Figure 12 and Figure 13 show the details of their

method.

27

Figure 12: Structure propagation by exemplar-based texture synthesis. (a) Original image,
with the target region Ω, its contour 𝛿Ω, and the source region Ф clearly marked. (b) We
want to synthesize the area delimited by the patch 𝛹𝑃 centered on the pixel 𝑃 ∈ 𝛿Ω. (c)
The most likely candidate matches for 𝛹𝑃 lie along the boundary between the two textures
in the source region, e.g., 𝛹𝑞′ and 𝛹𝑞′′ . (d) The best matching patch in the candidates set
has been copied into the position occupied by 𝛹𝑃 , thus achieving partial filling of Ω.
Notice that both texture and structure (the separating line) have been propagated inside the
target region. The target region Ω has, now, shrunk and its front 𝛿Ω has assumed a different
shape [44].

Figure 13: Notation diagram. Given the patch 𝛹𝑃, 𝑛𝑃 is the normal to the contour 𝛿Ω of
the target region Ω and ∇𝐼𝑃⊥ is the isophote direction at point 𝑃, orthogonal to the gradient
direction. The entire image is denoted with 𝐼 [44].

This method is impressive and been extended to video inpainting and video completion,

which we will discuss in section 2.3.

28

While previous approaches have achieved some amazing results, they have difficulties

completing images where complex salient structures exist in the missing regions. Such

salient structures may include curves, T-junctions, and X-junctions. Sun et al. [45] took

advantage of human visual system which has the ability to perceptually complete missing

structures. They asked the user to manually specify important missing structure

information by extending a few curves or line segments from the known to the unknown

regions. Then they synthesized image patches along these user-specified curves in the

unknown region using patches selected around the curves in known region. Structure

propagation is formulated as a global optimization problem by enforcing structure and

consistency constraints. After the completion of structure propagation, the remaining

unknown regions are completed by using patch-based texture synthesis.

Global MRF Model

Despite the simplicity and efficiency of the exemplar-based image completion methods,

they are greedy algorithms that use heuristics with ad hoc principles, and the quality of the

results are not guaranteed because there are no global principles or strong theoretical

grounds. Komodakis et al. pointed out this basic problem in exemplar-based methods and

proposed a global optimization approach [5]. They also presented a more detailed version

in [23]. They posed the task in the form of a discrete global optimization problem with a

well defined objective function. Then, the optimal solution is found by Priority-BP

algorithm, an accelerated belief propagation technique introduced in this paper. Priority-

BP includes two very important extensions over standard belief propagation (BP):

29

“priority-based message scheduling” and “dynamic label pruning”. “Dynamic label

pruning” accelerates the process by allowing less number of source locations that can be

copied to more confident points, while “priority-based message scheduling” also speeds up

the process by giving high priority to belief propagation from more confident points. Their

results are better and more consistent in comparison to exemplar-based methods. As we

can see in Figure 14, the first column is the original image; the second column is masked

image which shows the objects to be removed. The third column shows the visiting order

during first forward pass. The fourth column shows the results of the Priority-BP method in

[5], in comparison to the exemplar-based method in [46].

Figure 14: Priority-BP method in [5] in comparison to the exemplar-based method in [46]

Summary

Being simple and efficient, exemplar-based methods became influential due to their

simplicity and efficiency. The global image completion approach, which is not a greedy

algorithm like exemplar-based methods, does not bear several related quality problems,

such as visual inconsistencies.

30

2.3 Video Inpainting and Video Completion

In this section, some techniques that were developed for video inpainting and video

completion are explored.

Video inpainting and video completion, which can be viewed as the 3D version of image

inpainting and image completion problem, have been getting increasing attention. Video

inpainting and video completion is the process of filling the missing or damaged parts of a

video with visually plausible data so that the viewer cannot know if the video is

automatically generated or not. Like image inpainting and image completion, video

inpainting approaches typically handle smaller holes compared to video completion

approaches. However, many papers use them as the same term. There is no clear

distinction between these two terms. Therefore, we discuss them in the same section. But

to make it clearer, we refer to the methods which inpaint smaller holes in video as video

inpainting methods, and which inpaint larger holes in video as video completion methods.

We noticed that the applications of video inpainting includes erasing video logos, detection

of spikes and dirt in video sequence, detection of defect vertical lines and line scratches in

video sequence and restore the video clip, missing data detection and interpolation for

video, restoration of historical films, object adding or removal in video, and so on. The

application of video completion includes filling in the missing frames which are lost in

transmission, adding or removing person or large objects to/from videos, and so on.

31

This section is organized according to the applications of the video inpainting and video

completion methods. In section 2.3.1, video inpainting techniques aims to erase the video

logos will be investigated. In section 2.3.2, video inpainting methods for defects detection

and restoration in films will be discussed. And in section 2.3.3, we will have a look at the

video inpainting and video completion methods for objects removal. Techniques for other

applications such as video falsifying and video story planning will be discussed in section

2.3.4.

2.3.1 Video Logos Removal

 A video logo is usually a trademark or a symbol that declares the copyright of the video.

However, it sometimes causes visual discomfort to the viewers due to the presence of

multiple logos in videos that have been filed and exchanged by different channels.

Yan et al. [58] noticed that logos are generally small and in a fixed position. Thus,

detecting the position of logos is much easier than tracing spikes or lines. They proposed

an approach to erase logos from video clips. Firstly, a logo region is selected and the

histogram of this region is analyzed for all frames in the video clip. The frame with the

highest histogram energy, which means this frame is with the best logo, is selected. After

that, the logo areas in the entire sequence of frames are marked and each frame of the

video logo is inpainted based on color interpolation.

32

Similarly, Yamauchi et al. [59] used an image inpainting technique to remove the logos in

all frames.

2.3.2 Defects Detection and Restoration in Films

Aged films may have defects. The problem in video inpainting is to detect defects in video

frames and restore the films. There are four types of defects that make the quality of film

not visually acceptable [66]. The first type of defects is intensity fluctuation, which may

occur in consecutive frames. It is possible to recover this type of drawbacks by

normalizing the average intensity of frames in the entire video.

The second type of defects is due to shaking of camera. Optical flow can be computed and

image can be shifted to a reference position, with the rest empty areas to be recovered by

using image inpainting techniques.

The third type of defects is random spikes, due to dust and dirt, which occurs randomly and

mostly appears in a short duration, for one or two frames. Usually, spikes are in bright or

dark intensity. Temporal behavior and pixel properties can be used to detect spikes. Once

the spikes are detected, image inpainting technique can be used to repair them

approximately. However, it is also possible to use realistic data in different frames to

achieve a better repairing result. Thus, motion estimation can be used to find suitable

33

blocks among continuous frames. Mechanisms that can detect and remove spikes on aged

films are presented in [60] and [64].

The last type of defects is long vertical scratch lines, which usually appear in a dark

intensity and in a large length. This type of defect is produced during film development,

and usually occurs in the same position last for an unknown duration, from several seconds

to several minutes.

Based on the temporal continuity of scratches on consecutive frames, long vertical scratch

lines can be detected. Since scratch occurs in bright or in dark intensity, intensity can be

used to estimate location of vertical lines, with additional heuristics to deal with the

detection process [61, 62]. Bruni et al. [61] pointed out that detection of line artifacts

cannot just rely on temporal discontinuity in image brightness, or on purely spatial line

detection. They used the luminance cross-section to detect scratch lines and scratch lines

are treated as partially missing data. It assumed that scratch lines can be moved in a

horizontal distance from frame to frame in a distance in 3 to 10 pixels and lines ending

roughly on the image are not treated as defects. Joyeux et al. [62, 63] detected the scratches

by using a mathematical model, the Kalman filter. They proposed an interpolation

technique, dealing with both low and high frequencies around the line artifacts, to achieve

a nearby invisible reconstruction of damaged areas.

Shih et al. [65] proposed an algorithm based on localized intensity projection and dynamic

34

watching windows to track scratches. Firstly, a frame is subdivided into several horizontal

bands. Then, each band is further subdivided into several watching windows in dynamic

positions. Local minimal or maximal of intensity projection are accumulated on the nearby

positions of scratches. However, this algorithm cannot inpaint defects precisely after the

area of defect is decided. The damaged pixels are inpainted in both horizontal directions

toward inner because of the shape of scratch line defects. To overcome this limitation, Kao

et al. [66] used the scratch detection algorithm proposed in [65] and they proposed a new

restoration algorithm, which simultaneously considering the outmost patches/pixels which

are going to be inpainted. They achieved better result than [65].

2.3.3 Objects Removal

Compared with logos removal and defects detection and restoration, objects removal is

much more challenging since objects are usually much larger than logos and all kinds of

defects. In addition, logos tend to appear in fixed position while objects are moving around

in the scene across the video sequence. Objects detection and removal require a reasonable

combination of object tracking and image completion. However, object tracking in videos

is another challenging problem in computer vision. Many techniques for objects tracking in

video rely on global statistics, lacking the ability to deal with complex and diverse scenes.

In addition, they treat segmentation as a global optimization, thus lacking a practical

workflow that can guarantee the convergence of the systems to the desired results. Bai et

al. [69] presented a robust video cutout system recently. The segmentation is achieved by

35

the collaboration of a set of local classifiers, each adaptively integrating multiple local

image features. And this segmentation framework supports local user editing and

propagates them across time. Their system advances the state-of-the-art. Since objects

tracking and cutout is a difficult and complicated problem, current techniques in video

inpainting and video completion mainly focus on the completion of the video, rather than

the tracking of objects in the video. The objects they want to remove are usually manually

selected. Or, they specify a large hole in fixed position in the video to simulate the damage

or frames missing in transmission of the video.

Note that in this section, video inpainting and video completion are treated as the same

term, which handle filling in the missing frames which are lost in transmission, adding or

removing person or large objects to/from videos.

Early methods

Early methods extend the image inpainting techniques directly to video inpainting by

considering a video sequence as a set of independent still images. These frame-by-frame

partial differential equations (PDEs) based video inpainting methods [9, 18] extend the

PDE-based image inpainting method in [4]. In [9], the PDE is applied spatially, and

completes the video frame-by-frame. However, these methods may yield unpleasant

artifacts since they have not considered the temporal information that a video provides, and

only adequate to remove small area in video. In addition, the PDE-based methods

interpolate edges in a smooth manner, but temporal edges are often more abrupt than

36

spatial edges.

Spatio-temporal Consistency

More effective approaches for video inpainting have been developed, which exploit high

spatio-temporal consistency in a video sequence. Rare et al. [57] inpainted spatially by

interpolating the edges of a static image and inpainted temporally based on the motion

compensation.

Wexler et al. [47] formulated the video completion problem as a global optimization

problem with a well-defined objective function, extending the pioneering technique of

nonparametric sampling developed for still images by Efros and Leung [15] to space-time.

The missing portions are filled in by sampling spatio-temporal patches from the available

parts of the video, while enforcing global spatio-temporal consistency between all patches

in and around the hole. The method worked well when the video contains periodic motion

because otherwise the “copy and paste” approach of [15] would fail. This method is also

computationally very expensive due to the exhaustive search of appropriate texture patches

in the entire spatio-temporal domain. In addition, this method produces blurring artifact

because pixels are synthesized by a weighted average of the best candidates, and this

averaging produces blurring.

Lee et al. [52] recently proposed an algorithm which fills a mask region with source blocks

from unmasked areas, while keeping spatio-temporal consistency. Firstly, a 3-dimensional

37

graph is constructed over consecutive frames. It defines a structure of nodes over which the

source blocks are pasted. Then, temporal block bundles are formed using the motion

information. The best block bundles, which minimize an objective function, are arranged in

the 3-dimensional graph.

Layer-based Methods

Some approaches to ensure temporal consistency is to first separate the input video into

foreground and background layers. Zhang et al. [6] used motion layer segmentation

algorithm to separate a video sequences to several layers according to the amount of

motion to achieve layer extraction. Each separated layer is completed by applying motion

compensation and image completion algorithms. Except the layer with objects to be

removed, all the rest of layers are combined in order to restore the final video. However,

temporal consistency among inpainted areas between adjacent frames was not taken care of.

In contrary to [6], Jia et al. [56] and Patwardhen et al. [48, 50] separated the video into a

static background and dynamic foreground, and filled the holes separately. Since their

work is quite similar to ours, it will be discussed in details in section 3.1.

Cheung et al. [49] applied different strategies to handle static and dynamic portions of the

hole. The static portion is inpainted by using background replacement and image inpainting

techniques. To inpaint moving objects in the hole, background subtraction and object

segmentation are used to extract a set of object templates and perform optimal object

38

interpolation using dynamic programming.

Chang et al. [67] developed an algorithm based on temporal continuations and exemplar-

based image inpainting techniques. This proposed algorithm involves the elements of

removing the moving objects on stationary and non-stationary background.

These above methods [6, 54, 56, 48, 50, 49, 67] rely on segmentation, they work well if the

layers are correctly estimated. They are inefficient for handling video sequences with

dynamic and complex scenes.

Motion Field Transfer and Motion Interpolation

Unlike prior methods, Shiratori et al. [7] proposed an approach for video completion using

motion field transfer. Their approach is an extension of the exemplar-based image

inpainting method in [44]. This approach searches all the frames in the video to find the

most similar source patch given the target patch in order to assign the motion vectors to the

missing pixels in the target patch. Their results turn out to be blurry, and looking for the

best matching motion vectors patch in all the frames may be incorrect if the objects have

different motion in all the frames and there is nowhere to find the most similar one.

Shih et al. [51] proposed a method to change the behavior of actors in a video, such as the

running speed of competitors. Very interestingly, they used continuous stick figures and

thinning algorithm to obtain smooth motion interpolation of target objects, then the

39

interpolated target objects and background layers are fused by using graph cut.

Other Methods

Cheung et al. [53] proposed an interesting probabilistic video modeling technique with

application to video inpainting. They defined “epitomes” as patch based probability models

that are learnt by compiling together a large number of examples of patches from input

images. These epitomes are used to synthesize data in the areas of video damage or object

removal. The video inpainting results are low resolution, and blurry artifacts are also

observed.

Jia et al. [55] proposed a video inpainting technique also adopted the priority scheme in the

nonparametric sampling of Efros and Leung [15]. Fragments, also called patches, on the

boundary of the target area are selected with a higher priority. However, a fragment is

completed using texture synthesis instead of copying from a similar source. A graph cut

algorithm is used to maintain the smooth boundary between two fragments. To maintain a

smooth temporal continuity between two target fragments, two continuous source

fragments are selected with a preference. The limitation of this work is complex camera

motion is not considered and they assumed objects move in a periodic manner and also

they do not change scale. Their results suffer from artifacts at boundaries of the hole, and

the filling process may fail when tracking is lost.

40

2.3.4 Video Falsifying and Video Story Planning

An interesting application of video inpainting emerged recently, called video falsifying and

video story planning. Shih et al. [51] firstly introduced the idea of altering the behavior of

people in a video, such as the running speed of athletes in a competition, to falsify the

content of the video. Even though this research may create a potential sociological problem,

it is interesting and challenge to investigate video falsifying technology if it is used in good

intend, such as special effects of a movie. They implemented object tracking, motion

interpolation, video inpainting, and video layer fusing in their framework. Very

interestingly, they used continuous stick figures and thinning algorithm to obtain smooth

motion interpolation of target objects, then the interpolated target objects and background

layers are fused by using graph cut.

The same group of people, Tan et al. [70] extended their work in [51] to create video

scenes using existing videos; they called this video story generation. A panorama is

generated from background video, with foreground objects removed by video inpainting

technique. A video planning script is provided by the user on the panorama with accurate

timing of actors. Since the actions of these actors are extensions of existing cyclic motions,

such as walking, tracked and extrapolated, the types of video story generated are limited.

Tan et al. [71] proposed new mechanisms to reproduce sceneries based on existing videos

using digital technology. Motion inpainting technologies are used; actors with repeated

motion can be interpolated or extrapolated and incorporated into the falsified scenery.

41

Dynamic texture are altered and reused under control.

In conclusion, many existing video inpainting methods are computationally intensive and

cannot handle large holes. For some techniques which claimed to be able to handle large

holes, they make several assumptions on the kind of video sequences they are able to

restore. They are efficient only for static and parallel camera motions and periodic moving

objects. The methods based on motion segmentation may have defective motion analysis,

which in turn produces poor, undesired results for dynamic scenes. In addition, the

optimization methods are not suitable for dynamic situations. Therefore, the development

of a video inpainting technique that keeps the spatio-temporal consistency without the

constraints is a still challenging issue.

42

2.4 Optical Flow

In this section we introduce the concept of optical flow, which is used in our approach to

compute the pixelwise motion in each frame in the video except at the holes.

Almost all work in image sequence processing begins by attempting to find the vector field

which describes how the image is changing with time. Ideally, the projection into the two

dimensional image plane of the three dimensional velocity field seen by the camera should

be computed. However, this is not just difficult to achieve in practice, it is usually

impossible to achieve (perfectly) even in theory. The reasons for this are well understood;

Horn and Schunk in [74] give the example of a rotating sphere with no surface markings,

which, under constant illumination, causes no changes in the image intensity over time,

even though there is motion in the world. Related to this is the well known aperture effect.

For example, when a pole moves behind a window, only the component of motion

perpendicular to the pole can be found. These problems have led to careful definitions of

optical flow being made; it is frequently necessary to make the distinction between the

motion perceived in the image and the theoretical projection of the world velocities into the

image.

With 2D feature-based optical flow, the need for making explicit which sort of optical flow

is being discussed does not arise. Neither does the question of whether the full flow is

being found, or just a component of it. This is for two reasons. Firstly, optical flow is

43

found by matching two dimensional features. One of the strongest advantages of this

approach is the fact that it does not suffer from the problems of the aperture effect, for

obvious reasons. Secondly, the work is largely aimed at producing good results from

images of real events, mostly taken outside. Thus there is rarely a difference in practice

between the image flow and the projected world motion. Thus the term optical flow will be

used freely and generally.

In our approach, we used optical flow computation method in paper [72]. It describes a

framework based on robust estimation that addresses violations of the brightness constancy

and spatial smoothness assumptions caused by multiple motions. This work focuses on the

recovery of multiple parametric motion models within a region as well as the recovery of

piecewise-smooth flow fields.

44

2.5 Mean-Shift Color Segmentation

After we compute the optical flow of each pixel in each frame, we can segment each frame

into moving foreground and static background roughly. However, it is not enough. If the

foreground/background separation is not perfect, the background mosaic will contain some

foreground information in it and the foreground mosaic contain some background

information in it. When we use these mosaics to inpaint the hole, we may introduce some

background information into the foreground and some foreground information into the

background, which produces unpleasant visible results. Therefore, we corporate the mean-

shift color segmentation [75] to refine the foreground/background separation. The details

of mean-shift color segmentation will not be discussed here. We only show an example of

it. In Figure 15, we can see the left ones are the original images, and the right ones are the

segmented images.

Figure 15: An example of mean-shift color segmentation

45

Chapter 3 Related Work

In this chapter, some video inpainting and video completion methods are discussed in

details since they are dealing with similar problem as in our approach.

3.1 Layer-based Video Inpainting

In video inpainting, some approaches first separate the input video into foreground and

background layers to ensure temporal consistency. In contrary, Jia et al. [56] and

Patwardhen et al. [48, 50] separated the video into a static background and dynamic

foreground, and filled the holes separately.

The algorithm proposed by Jia et al. [56] repairs static background as well as moving

foreground. This algorithm involves two phases: sampling phase, to predict motion of

moving foreground; and alignment phase, to align the repaired foreground with the

damaged background. Since this algorithm can be extended to use a reference video

mosaic, with proper alignment, the algorithm can also work for different intrinsic camera

motions. However, the background video generated based on the reference video mosaic is

important. Mistreatment of a generated background video will result in ghost shadows of

the repaired video.

In [54], Jia et al. [56] further extended their algorithm to deal with variable illumination.

46

Their method is very complicated, and part of the process is semi-automatic (require user

interaction), while the completion process is automatic. Firstly, the user has to manually

draw the boundaries of the different depth layers of the sequence. Also, this method has to

“learn” the statistics of the background. The limitation of this method is that the motion of

the objects in the background should be in repetitive fashion, which means that objects do

not change size when they move, and movement is approximately parallel to the projection

plane of the camera.

Patwardhen et al. [48, 50] separated the video into a static background and moving

foreground, and filled the holes separately to ensure temporal consistency. Their algorithm

consists of a simple preprocessing stage and two steps of video inpainting. In the

preprocessing stage, they roughly segment each frame into foreground and background,

and use this segmentation to build three image mosaics. In the first video inpainting step,

they inpaint the hole in the foreground by copying information from the moving

foreground in other frames, using a priority-based scheme adopt from the image

completion approach proposed in [44]. In the second step, they inpaint the remaining hole

with the background by aligning the frames and directly copy when possible. According to

the authors, the experimental results are good. However, after implementation of their

algorithm, this algorithm was found that it was not as good as the authors described. First

of all, the simple moving foreground and static background segmentation method leads to

visible artifact when we use the mosaic to inpaint the hole. The authors simply assume that

the median shift of all the blocks in the image is the camera shift in image, which in fact, is

47

not accurate. Not every scene can be decomposed into moving foreground and static

background. Since the separation is so rough, the background mosaic contains some

foreground information in it and the foreground mosaic contains some background

information in it. When we use these mosaics to inpaint the hole, we may introduce some

background information into the foreground and some foreground information into the

background, which produces unpleasant visible results. Secondly, since the illumination is

changing in all the frames, building one background mosaic, which is the average of the

background in all the frames, and copying it to fill the hole is not a good idea, because the

result shows that this method resulted in a color inconsistency. Finally, this algorithm

makes several assumptions on the kind of video sequences they are able to restore, which

contribute to the limitations of this algorithm.

3.2 Motion Field Transfer and Motion Interpolation

Unlike prior methods, Shiratori et al. [7] proposed an approach for video completion using

motion field transfer. Their approach is an extension of the exemplar-based image

inpainting method in [44]. This approach searches all the frames in the video to find the

most similar source patch given the target patch in order to assign the motion vectors to the

missing pixels in the target patch. Their results turn out to be blurry, and looking for the

best matching motion vectors patch in all the frames may be incorrect if the objects have

different motion in all the frames and there is nowhere to find the most similar one.

48

Shih et al. [51] proposed a method to change the behavior of actors in a video, such as the

running speed of competitors. Very interestingly, they used continuous stick figures and

thinning algorithm to obtain smooth motion interpolation of target objects, then the

interpolated target objects and background layers are fused by using graph cut.

3.3 Spatio-temporal Consistency Video Completion

Wexler et al. [47] formulated the video completion problem as a global optimization

problem with a well-defined objective function, extending the pioneering technique of

nonparametric sampling developed for still images by Efros and Leung [15] to space-time.

The missing portions are filled in by sampling spatio-temporal patches from the available

parts of the video, while enforcing global spatio-temporal consistency between all patches

in and around the hole. The method worked well when the video contains periodic motion

because otherwise the “copy and paste” approach of [15] would fail. This method is also

computationally very expensive due to the exhaustive search of appropriate texture patches

in the entire spatio-temporal domain. In addition, this method produces blurring artifact

because pixels are synthesized by a weighted average of the best candidates, and this

averaging produces blurring.

49

Chapter 4 Our Video Inpainting Approach

Based on background studies in previous sections, we found out that existing video

inpainting methods are computationally intensive and cannot handle large holes. And many

methods make several assumptions on the kind of video sequences they are able to restore:

(1) the scene essentially consists of stationary large background with some moving small

foreground. (2) Camera motion is approximately parallel to the plane of image projection.

(3) Foreground objects move in a repetitive fashion. This is the “periodicity” assumption.

This restriction ensures that we have sufficient information to fill in the hole. (4) Moving

objects should not significantly change size.

It would be desirable to have some of these assumptions removed. In this thesis, we choose

to remove the third assumption- the periodicity assumption in many state-of-the-art video

inpainting algorithms. This periodicity assumption claims that the objects should move in a

repetitive fashion, so that there is sufficient information to use to fill in the hole. In other

words, the objects in the missing parts (the hole) should appear in some parts of the frame

or in other frames in the video, so that the inpainting can be done by searching the entire

video sequence for a good match and copying suitable information from other frames to fill

in the hole. We believe our video inpainting approach is able to remove this periodicity

assumption.

50

We define our problem as follows. We assume that the object motion (the deformable of

the object) is continuous in the video sequence. Given a damaged video sequence with a

missing part in it, this unknown region can be a fixed size hole across all the frames, or

marked objects which we want to remove from the video. The objects in the video move in

a non-repetitive fashion (can also be repetitive), when part of it is occluded by the hole

during its movement, there is nowhere in the video we could find information to copy from

and fill in the hole since the object exhibits different shape in all the frames. In Figure 16,

there are some damaged frames extracted from the video sequence with a woman playing

badminton. The hole occluded the moving right arm and the white wrist band.

Figure 16: Some damaged frames extracted from the video sequence

51

4.1 Overview of Our Approach

Our approach consists of a preprocessing stage and two steps of video inpainting. In the

preprocessing stage, each frame is segmented into moving foreground and static

background using the combination of optical flow and mean-shift color segmentation

methods. Then this segmentation is used to build three image mosaics: background mosaic,

foreground mosaic and optical flow mosaic. These three mosaics are to help maintaining

the temporal consistency and also improving the performance of the algorithm by reducing

the searching space. In the first video inpainting step, a priority-based scheme is used to

choose the patch with the highest priority to be inpainted, and then we use orientation code

matching to find the best matching patch in other frames, and calculate the approximated

rotation angle between these two patches. Then rotate and copy the best matching patch to

fill the moving objects in the foreground that are occluded by the region to be inpainted. In

the second step, the background is filled in by temporal copying and priority based texture

synthesis. Figure 17 gives an overview of our approach. The subsequent sections describe

in detail each step in the proposed video inpainting approach.

52

Figure 17: Overview of our video inpainting approach

53

4.2 Assumptions and Preprocessing

4.2.1 Assumptions

This approach is based on several assumptions on the kind of video sequences we are able

to restore. The assumptions are as follows:

(1) The scene essentially consists of stationary large background with some moving small

foreground.

(2) Camera motion is approximately parallel to the plane of image projection. This

restriction ensures that background objects will not significantly change size, allowing for

texture synthesis in the spirit of [15], which cannot deal with changes in size or perspective.

(3) Moving objects should not significantly change size. This restriction is imposed by the

use of the nonparametric texture synthesis of [15].

Compared with some state-of-the-art methods, our approach do not need foreground

objects to move in a repetitive way.

4.2.2 Preprocessing

In the preprocessing stage, we first calculate the optical flow [72] of each pixel in each

frame. And base on the simple assumption in section 4.2.1- the motion of the camera does

not produce any transformation of the static background besides translation, we first

simply compute the camera motion in each frame by taking the median shift of all the

optical flow of each pixel in the frame. Then any pixel that has considerable shift after

54

subtracting this median camera motion is assumed to belong to the moving foreground,

while the rest belong to the background.

Then we refine these segments by using mean-shift color segmentation [75] method. We

segment each frame based on the assumption that every object in the frame has one or very

few color. In the implementation, the return results are some masks, one mask for each

frame. There are two colors in the masks, black color denotes the background and white

color denotes the foreground. However, since the parameters are different for each frame,

to solve this problem, we first set the same parameter (threshold) for all the frames, then

find out the bad masks, and refine them by choosing other parameters. Finally we obtain

the good masks of all the frames.

After motion segmentation and color segmentation, we combine these two kinds of

segments and obtain the final foreground segments and background segments for all the

frames.

Once the foreground and background are separated, we can build three mosaics: a

background mosaic, a foreground mosaic, and an optical flow mosaic. A mosaic is a

panoramic image obtained by stitching a number of frames together. As we mentioned

earlier, we use image mosaics to be able to deal with some camera motion and to speed up

the inpainting process. In the case of foreground and background mosaics, we use camera

shift to align the frames. Each mosaic is built from the set of aligned overlapping frames in

55

the following way: each pixel of the mosaic is the average of the overlapping components.

For the optical flow mosaic, it consists of the residual optical flow, which are motion

vectors from which we have subtracted the camera shift. We use a two-channel image to

store the horizontal and vertical components of the residual optical flow.

This mosaic generation step allows us to do a quick search for possible candidate frames

from where to copy information when filling in the moving object, thereby speeding up the

implementation by limiting our search to only these candidate frames instead of the entire

sequence. The next section discusses the moving foreground inpainting step in detail.

4.3 Motion Inpainting

In the first video inpainting step, a priority-based scheme is used to choose the patch with

the highest priority to be inpainted, and then we use orientation code matching to find the

best matching patch in other frames, and calculate the approximated rotation angle

between these two patches. Then rotate and copy the best matching patch to fill the moving

objects in the foreground that are occluded by the region to be inpainted. The above three

mosaics are also used to speed up the searching. Here, we are going to use the method for

still images inpainting proposed by Efros and Leung [15] and refined by Criminisi et al.

[44], so let us briefly review their methods.

56

4.3.1 Review of Priority-based Scheme

Efros and Leung [15] proposed a simple but extremely effective algorithm to solve the

problem of inpainting an image hole Ω in a still image 𝐼 . For each pixel 𝑃 on the

boundary 𝛿Ω of the hole Ω (also called the target contour, or the fill front), consider its

surrounding patch 𝛹𝑃 , a square centered in 𝑃. Compare this patch with every possible

patch in the image, using a simple metric such as the sum of squared differences (SSD),

there will be a set of patches with small SSD distance to patch 𝛹𝑃 . Choose the best

matching patch 𝛹𝑞 from this set, and copy its central pixel 𝑞 to the current pixel 𝑃. We

have filled 𝑃, and then we proceed to the next pixel on the boundary 𝛿Ω.

Criminisi et al. [44] noted that the filling order of the pixels in the hole is critical; therefore,

they proposed an inpainting procedure which is basically that of Efros and Leung [15] with

a new ordering scheme that allows maintaining and propagating the line structures from

outside the hole to inside the hole Ω. The ordering scheme proposed by Criminisi et al. [44]

is as follows. They compute a priority value for each pixel on the boundary 𝛿Ω, and at each

step the pixel chosen for filling is the one with the highest priority. For any given pixel 𝑃 ,

its priority 𝑃𝑟(𝑃) is the product of two terms: a confidence term 𝐶(𝑃) and a data

term 𝐷(𝑃): 𝑃𝑟(𝑃) = 𝐶(𝑃)𝐷(𝑃). The confidence term 𝐶(𝑃) is proportional to the number

of undamaged and reliable pixels surrounding 𝑃. The data term 𝐷(𝑃) is high if there is an

image edge arriving at 𝑃, and highest if the direction of this edge is orthogonal to the

57

boundary 𝛿Ω. In a nutshell, they give those pixels which are on the continuation of strong

edge and are surrounded by high-confidence pixels higher priorities. For more details,

please refer to Figure 12, Figure 13 in section 2.2.3.

4.3.2 Orientation Codes for Rotation-Invariant Matching

Back to our motion inpainting step, a priority-based scheme is used to choose the patch

with the highest priority to be inpainted, and then we use orientation code matching to find

the best matching patch in other frames, and calculate the approximated rotation angle

between these two patches. In this section, we explain the orientation code matching in

details, since it is the core of our approach. After we introduce the orientation code

matching method, we will continue the description of our motion inpainting steps in

section 4.3.3.

To use orientation code matching, we first convert the target patch (the patch with the

highest priority to be inpainted) to gray scale image, as well as all the frames. This method

is based on the utilization of gradient information in the form of orientation codes as the

feature for approximating the rotation angle as well as for matching. The reason to use

gradient information is to avoid the illumination fluctuations resulting from shadowing or

highlighting. However, for large and smooth texture, it is difficult to use only gradient

information for matching. Therefore, we also incorporate color information in matching, to

increase the correctness of matching.

58

There are two stages in this rotation-invariant orientation code matching. In the first stage,

histograms of orientation codes are employed for approximating the rotation angle of the

object in target patch. And then in the second stage, matching is performed by rotating the

target patch by the estimated angle. Matching in the second stage is performed only for the

positions which have higher similarity results in the first stage, thereby pruning out

insignificant locations to speed up the search.

Note that here we call the target patch with the highest priority to be inpainted as

“template”. We search all the frames for the best matching, and we call each the frame as

“image”. Subimage is same size as the template in each frame (image).

Overview of Orientation Codes for Rotation-Invariant Matching

In this method [73], orientation codes are used as the feature for approximating the rotation

angle as well as for pixel-based matching. First, we construct the histograms of orientation

codes for the template (target patch) and a subimage of the same size and compute the

similarity between the two histograms for all the possible orientations by shifting the

subimage histogram bins relative to the template histogram. The similarity evaluation

values corresponding to the shift which maximizes this similarity measure are noted for

every location along with the information of shift in order to provide an estimate of

similarity between the template and the subimage as well as the expected angle of rotation.

In the second stage, the orientation code image of the template is matched against the

59

locations whose similarity in the first stage exceeds some specified threshold level. The

estimate of the rotation angle in the first stage eliminates the need for matching in every

possible orientation at all candidate positions. Also, insignificant locations are pruned out

based on the similarity function in the first stage.

For the matching stage, we select the candidate positions based on a pruning threshold

level 𝜌 on the dissimilarity function obtained for the whole scene in the first stage. In the

experiment, we used a criterion level corresponding to the 90th percentile for a subimage

position to be considered in the second stage (i.e. best 10% candidate positions are used for

matching stage). Figure 18 shows the row of the framework as in block diagram.

Figure 18: Block diagram for the framework

60

Orientation codes

For discrete images, the orientation codes are obtained as quantized values of gradient

angle around each pixel by applying some differential operator for computing horizontal

and vertical derivatives like Sobel operator, and then applying the function to their ratio to

obtain the gradient angle, such as 𝜃 = (𝜕𝑓
𝜕𝑦

)/(𝜕𝑓
𝜕𝑥

). For a pixel location (𝑖, 𝑗), let 𝜃𝑖𝑗 be

gradient angle, for a preset section width ∆𝜃 , the orientation code for this pixel is

 𝑐𝑖𝑗 = ��
𝜃𝑖𝑗
∆𝜃
�

𝑁
� , |∇𝐼𝑥| + �∇𝐼𝑦� > Г, (1)

where [.] is the rounding.

If there are 𝑁orientation codes, then 𝑐𝑖𝑗 is assigned values {0,1, … ,𝑁 − 1}. We assign the

particular code 𝑁 for low contrast regions (defined by the threshold) for which it is not

possible to stably compute the gradient angles. In the experiment, we use 16 orientation

codes, the sector width ∆𝜃 is 𝜋
8

 radians. Figure 19 shows the illustration of orientation

codes.

61

Figure 19: Illustration of orientation codes

The orientation codes for all pixel locations are computed as a separate orientation code

image 𝑂 = {𝑐𝑖𝑗}. The threshold Г is important for suppressing the effects of noise and has

to be selected according to the problem at hand; very large values can cause suppression of

the texture information. We used a small threshold value of 10, but for noisy images or

images involving occurrences of occlusion, larger values are recommended.

Orientation code histograms

The similarity between a subimage and the template is based on the difference between

their orientation code histograms. For subimage 𝐼𝑚𝑛 at a position (𝑚,𝑛), the 𝑖th bin of the

orientation code histogram is denoted by ℎ𝑚𝑛(𝑖) . The bins corresponding to 𝑖 =

0,1, … ,𝑁 − 1 represent the frequency of occurrence of the orientation codes computed by

gradient operation. And the last bin (𝑖 = 𝑁) is the number of the codes corresponding to

62

low contrast regions. The histograms for the subimage ℎ𝑚𝑛, and for the template ℎ𝑇 can be

written as

 ℎ𝑚𝑛 = {ℎ𝑚𝑛(𝑖)}𝑖=0𝑁 , ℎ𝑇 = {ℎ𝑇(𝑖)}𝑖=0𝑁 . (2)

To check the similarity (or dissimilarity) between two histograms, there are different

approaches such as the Chi-Square statistic, Euclidean distance or city-block distance. We

use the city-block metric (sum of absolute differences) which is equivalent to the histogram

intersection technique based on max–min strategy for the cases when the subimage and the

template histograms are of the same size.

The dissimilarity function 𝐷1 between the template and the subimage histograms can be

written as

 𝐷1 = 1 −𝑚𝑎𝑥𝑘𝑆𝑘 (3)

𝑆𝑘 is the normalized area under the curve obtained by the intersection between the

template histogram and the subimage histogram shifted left by k bins (symbolized by the

superscript k). This intersection area 𝑆𝑘 is maximized to find the closest approximation of

the angle by which the object may appear rotated in the scene. Since the intersection and

city block differences are complementary, the maximization of 𝑆𝑘 is equivalent to

minimization of the dissimilarity 𝐷1 in above equation. 𝑆𝑘 is given by

 𝑆𝑘 = 1
𝑀

[∑ min{ℎ𝑚𝑛
𝑘 (𝑖),ℎ𝑇(𝑖)}𝑁−1

𝑖=0 + min{ ℎ𝑚𝑛(𝑁),ℎ𝑇(𝑁)}], 𝑘 = 0,1, …𝑁 − 1, (4)

where, 𝑀 is the template size and ℎ𝑘 represents the histogram ℎ shifted by 𝑘 bins

computed as

63

 ℎ𝑘(𝑖) = ℎ(𝑖 + 𝑘 𝑚𝑜𝑑 𝑁). (5)

The last bin of the histogram, corresponding to the low contrast pixels, is not shifted and its

intersection with the corresponding bin is added separately as shown in the above

expression. The orientation maximizing the intersection evaluation of Eq. (4) is stored

along with the dissimilarity function values for reference at the matching stage.

A typical example of orientation code histograms is shown in Figure 20, where (a) and (b)

show a template and the corresponding object from the scene which appears rotated

counterclockwise. We use a circular mask for employing only the pixels lying within the

circles shown on the images.

 (a) (b)

Figure 20: A template and the corresponding object from the scene which appears rotated

counterclockwise

The plot in Figure 21(a) shows the orientation code histograms for some template [73] and

the subimage along with the intersection curve; the plot in Figure 21(b) shows the same

64

histograms and intersection curve with the difference that subimage histogram is shifted

cyclically by 3 bins. As can be seen, the shifted histogram closely resembles the template

histogram with a larger area under the intersection curve. The radar plot in Figure 21(c)

shows the values for areas under the intersection curve for all possible shifts. The

maximum value corresponds to code 3, indicating the possibility of the subimage being

rotated by about 3 × 22.5° counterclockwise relative to the template. In this example 22.5

is the value for ∆𝜃 implying 16 orientation codes spanning the whole circle as mentioned

earlier. Note that the last bin, reserved for the cases of low contrast pixel codes, is excluded

from the shifting operation and is used directly with the corresponding bin of the other

histogram.

(a) (b)

(c)

Figure 21: An example of histogram and shifted histogram, radar plot in [73]

65

Orientation code matching (OCM)

The dissimilarity measure for matching in the second stage is defined as the summation of

the difference between the orientation codes of the corresponding pixels. The cyclic

property of orientation codes is taken into account for finding the difference. If 𝑂𝑇

represents the orientation code image of the template, and 𝑂 the orientation code image for

a subimage position then the dissimilarity function between them is given by

 𝐷2 = 1
𝑀𝐸

∑ 𝑑�𝑂(𝑖, 𝑗),𝑂𝑇(𝑖, 𝑗)�,(𝑖,𝑗) (6)

where 𝑀 is the total number of pixels used in the match and 𝐸 is the maximum possible

error between any two orientation codes. The error function 𝑑(.) is based on the cyclic

difference criterion and can be written as

 𝑑(𝑎, 𝑏) = �
min{|𝑎 − 𝑏|, 𝑁 − |𝑎 − 𝑏|} , 0 ≤ 𝑎, 𝑏 ≤ 𝑁 − 1,

𝑁
4

, (𝑎 = 𝑁 𝑎𝑛𝑑 𝑏 ≠ 𝑁) 𝑜𝑟 (𝑎 ≠ 𝑁 𝑎𝑛𝑑 𝑏 = 𝑁),
0 𝑎 = 𝑏 = 𝑁.

� (7)

In the above evaluation of the error function, the folding property of orientation codes is

utilized in order to ensure stability in cases of minor differences between the estimated and

the actual orientation of the object being searched. For example, the cyclic difference

between the codes 0 and 𝑁 − 1 is 1. It is clear that the maximum error between any two

codes is never more than 𝑁/2, which is assigned to 𝐸.

Integrated dissimilarity

The overall dissimilarity is a weighted sum of dissimilarity evaluations at the histogram

matching stage and the OCM stage. This is to be minimized for finding the best match for

the given template by evaluating

66

 𝐷 = 𝛼𝐷1 + (1 − 𝛼)𝐷2 (8)

The weighting factor 𝛼 may be used to attach bias for a particular stage; we used the equal

weighting for most of our experiments (𝛼 = 0.5). Since the ranges ofthe dissimilarity

functions in Eqs. (3) and (6) are between 0 and 1, the overall dissimilarity 𝐷 also varies

between 0 and 1.

4.3.3 Procedure of Motion Inpainting

After introducing orientation code matching, we go back to the procedure of motion

inpainting, which is as follow.

(1) Firstly, instead of the computationally inefficient method of searching the entire

sequence for the best matching, the above three mosaics are used to speed up the searching.

We first search the foreground mosaic (the “image” in orientation code matching) to obtain

a small set of candidate frames (a small subset of frames where we will look for the best

match) which can provide sufficient information to complete those moving object.

To find these candidate frames, (a) First we should select the highest priority location 𝑃

and its surrounding patch 𝛹𝑃in the current damaged frame to be inpainted. (b) Then the

already available camera shifts computed during the preprocessing step are used to find the

corresponding location 𝑃𝑚 for 𝑃 and also its surrounding patch 𝛹𝑃𝑚 in the foreground

67

mosaic. (c) Using 𝛹𝑃𝑚as a template and perform orientation code matching searching in

the foreground mosaic to find the matching patches 𝛹𝑃𝑐𝑎𝑛𝑑. (d) Finally the camera shifts

and the optical flow for each frame are used to identify the frames that have motion at the

location corresponding to the mosaic area specified by the matching patches 𝛹𝑃𝑐𝑎𝑛𝑑. These

frames are the candidate frames for searching a matching patch for the highest priority

location 𝑃 in the current frame.

(2) After we got the highest priority patch 𝛹𝑃 to be inpainted and obtained some candidate

frames, we search each candidate frame using orientation code matching and traditional

window-based matching to find the best matching patch 𝛹𝑞 , the patch with minimum

distance to our target patch.

(3) After we found the best matching patch 𝛹𝑞 and obtain the rotation angle between it and

target patch 𝛹𝑃, instead of fully copying it into the target 𝛹𝑃, we copy only the pixels in

 𝛹𝑞 that correspond to the moving foreground. The remaining un-filled pixels of 𝛹𝑃 must

correspond to the background, so we will fill them at the background inpainting step. For

this reason, we mark them to have zero priority, disable them from any future motion-

filling in.

(4) After inpainted 𝛹𝑃, we need to update the confidence 𝐶(𝑝) at each newly inpainted

pixel 𝑝 as follows:

𝐶(𝑝) =
∑ 𝐶(𝑞)𝑞∈𝛹𝑃∩(𝐼−Ω)

|𝛹𝑃|

68

where |𝛹𝑃| is the area of the patch and Ω is the region to be inpainted. Finally, we update

the foreground and the optical flow mosaics with the newly filled-in data.

(5) We repeat the above steps (1) – (4) until all the pixels in the hole are either filled in or

have zero priority for motion inpainting. This is precisely our indication that moving

objects have been fully inpainted in the current frame. We now repeat this process for all

the frames that require motion inpainting. This gives us a sequence with only moving

objects filled in, and the rest of the missing region needs to be filled in with background.

4.4 Background Inpainting

After the moving objects have been fully inpainted in all frames, we inpaint the

background pixels in the hole of the frames by copying the corresponding pixels from

corresponding frames. If there is still a hole, we copy from the background mosaic. This

additional step will ensure the consistencies of the background across all frames.

4.4.1 Using Background Mosaic

To accomplish background inpainting we first align the frames and directly copy whenever

possible, while the remaining pixels are filled in by extending spatial texture synthesis

techniques to the spatiotemporal domain.

69

When filling in the background, we align all the frames using the precomputed camera

motion shifts, and then look for background information available in nearby frames. We

then copy this temporal information using a “nearest neighbor first” rule, that is, copy

available information from the “temporally nearest” frame.

4.4.2 Texture Synthesis

In some cases, there is a considerable part of the background that remains occluded in all

of the frames. This shows up as a hole in the background mosaic. We fill in this hole

directly on the background mosaic using the priority based texture synthesis scheme in

Criminisi’s paper [44]. The missing information in each frame is then copied from the

inpainted background mosaic, by spatially aligning the frame with the mosaic using the

precomputed camera motion shifts. This leads to a consistent background throughout the

sequence.

70

Chapter 5 Experimental Results and
Discussion

5.1 Experimental Results

We test our video inpainting approach for non-repetitive motion on several kinds of video.

The first one of the video contains non-repetitive motion, and the camera is static. In the

video a woman is playing badminton. The video resolution is 352×288 pixels per frame.

The size of the hole is 20×60. As seen below, some damaged frames in the video are shown

in Figure 22. Some frames of the completely filled-in sequence are shown in Figure 23.

Figure 22: Some damaged frames in non-repetitive motion video sequence

71

Figure 23: Some frames of the completely filled-in sequence

The second video contains repetitive motion, and the camera moving parallel to the camera

plane. This video is from [50]. We use it to show that our approach can also handle

repetitive motion in damaged video sequence. Figure 24 shows some damaged frames in

the video. Some frames of the completely filled-in sequence are shown in Figure 25.

Figure 24: Some damaged frames in repetitive motion video sequence

72

Figure 25: Some frames of the completely filled-in sequence

The third video contains non-repetitive motion, and the camera is static. This video is most

difficult one since the deformation of the boy is unpredictable. Figure 26 shows some

damaged frames in the video. Some frames of the completely filled-in sequence are shown

in Figure 27.

73

Figure 26: Some damaged frames in non-repetitive motion video sequence

74

Figure 27: Some frames of the completely filled-in sequence

5.2 Discussion

The experimental results show that our approach can deal with different kinds of motion

and we successfully remove the periodicity assumption. In addition, our approach is fast

and easy to be implemented. Since it does not require any statistical models of the

foreground or background, it works well even when the background is complex. In

addition, it can effectively deal with non-repetitive motion in damaged video sequence,

which, has not been done by other people before, surpassing some state-of-the-art

algorithms that cannot deal with such types of data. Our approach is of practical value.

75

Chapter 6 Conclusion

Video inpainting, a key technique in the field of video post processing, is the process of

removing unwanted objects from the video clip or filling in the missing/damaged parts of a

video sequence with visual plausible information. Compared with image inpainting, a

closely related problem to video inpainting, video inpainting is much more challenging due

to the temporally continuous nature of the video data.

In this thesis, we present an approach for inpainting missing/damaged parts of a video

sequence. Compared with existing methods for video inpainting, our approach can handle

the non-repetitive motion in the video sequence effectively, removing the periodicity

assumption in many state-of-the-art video inpainting algorithms. This periodicity

assumption claims that the objects in the missing parts (the hole) should appear in some

parts of the frame or in other frames in the video, so that the inpainting can be done by

searching the entire video sequence for a good match and copying suitable information

from other frames to fill in the hole. In other words, the objects should move in a repetitive

fashion, so that there is sufficient information to use to fill in the hole. However, repetitive

motion may be absent or imperceptible. Our approach uses the orientation codes for

matching to solve this problem. Experimental results show that our approach is fast and

easy to be implemented. Since it does not require any statistical models of the foreground

or background, it works well even when the background is complex. In addition, it can

effectively deal with non-repetitive motion in damaged video sequence, which, has not

76

been done by other people before, surpassing some state-of-the-art algorithms that cannot

deal with such types of data. Our approach is of practical value.

Video inpainting is an open and prominent area of research. Removing the assumptions

which are made by the state-of-the-art techniques will have a great impact on video

inpainting research area.

77

References

[1] S. Walden. The Ravished Image. St. Martin’s Press, New York, 1985.

[2] G. Emile-Male. The Restorer’s Handbook of Easel Painting. Van Nostrand Reinhold,

New York, 1976.

[3] Isik Baris¸ Fidaner. A survey on variational image inpainting, texture synthesis and

image completion. http://www.scribd.com/doc/3012627/A-Survey-on-Variational-

Image-Inpainting-Texture-Synthesis-and-Image-Completion, 2008.

[4] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In

SIGGRAPH 2000, pages 417- 424, 2000.

[5] N. Komodakis. Image completion using global optimization. In CVPR 2006:

Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. Washington, DC, USA: IEEE Computer Society, pages 442-

452, 2006.

[6] Y. Zhang, J. Xiao, and M. Shah. Motion layer based object removal in videos. In

Proc. IEEE Workshop on Applications of Computer Vision, pages 516 - 521, 2005.

[7] Takaaki Shiratori, Yasuyuki Matsushita, Sing Bing Kang, and Xiaoou Tang. Video

completion by motion field transfer. In Proc. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2006.

[8] S. Masnou and J. Morel. Level lines based disocclusion. In Image Processing, 1998.

ICIP 98. Proceedings. 1998 International Conference.

http://www.scribd.com/doc/3012627/A-Survey-on-Variational-Image-Inpainting-Texture-Synthesis-and-Image-Completion�
http://www.scribd.com/doc/3012627/A-Survey-on-Variational-Image-Inpainting-Texture-Synthesis-and-Image-Completion�

78

[9] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and

image and video inpainting. In Proc. ICCV 2001, pages 1335-1362, IEEE CS Press 1.

2001.

[10] M. Bertalmio. Strong-continuation, contrast-invariant inpainting with a third-order

Optimal PDE. In IEEE Transactions on Image Processing, Vol. 15, No. 7, pages

1934-1938, 2006.

[11] Alexandru Telea. An image inpainting technique based on the fast marching method.

J. Graphics Tools, Vol. 9, No. 1, pages 25-36, 2004.

[12] Folkmar Bornemann and Tom März. Fast Image Inpainting Based on Coherence

Transport. Journal of Mathematical Imaging and Vision. Vol. 28, No. 3, pages 259-

278, 2007.

[13] V. Caselles, J. Morel, and C. Sbert. An Axiomatic Approach to Image Interpolation.

In IEEE Transactions on Image Processing, Vol. 7, pages 376-386, 1998.

[14] V. Kwatra, A. Schodl, I. Essa, and A. Bobick. Graphcut textures: image and video

synthesis using graph cuts. In SIGGRAPH, 2003.

[15] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In IEEE

Int. Conf. Computer Vision, Corfu, Greece, 1999.

[16] J. A. Sethian. A Fast Marching Level Set Method for Monotonically Advancing

Fronts. Proc. Nat. Acad. Sci. Vol. 93, No. 4, pages 1591-1595, 1996.

[17] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera. Filling-in by joint

interpolation of vector fields and gray levels. IEEE Transactions on Image

Processing, Vol. 10, No. 8, pages 1200-1211, 2001.

79

[18] M. Bertalmio, L. A. Vese, G. Sapiro, and S. Osher. Simultaneous structure and

texture image inpainting. In CVPR (2), pages 707–712, 2003.

[19] T. Chan and J. Shen. Non-texture inpaintings by curvature-driven diffusions. J.

Visual Comm. Image Rep., Vol. 12(4), pages 436–449, 2001.

[20] A. Levin, A. Zomet, and Y. Weiss. Learning how to inpaint from global image

statistics. In Proceedings of Inte. Conf. on Comp. Vision, II. 305-313, 2003.

[21] A. Rares, M. J. T. Reinders, and J. Biemond. Edge-based image restoration. IEEE

Transactions on Image Processing, Vol. 14, No. 10, pages 1454-1468, 2005.

[22] M.-F. Auclair-Fortier and D. Ziou. A global approach for solving evolutive heat

transfer for image denoising and inpainting. IEEE Transactions on Image Processing,

Vol. 15, No. 9, pages 2558-2574, 2006.

[23] Komodakis, N. and Tziritas, G. Image completion using efficient belief propagation

via priority scheduling and dynamic pruning. In IEEE Transactions on Image

Processing, Vol. 16, No. 11, pages 2649-2661, 2007.

[24] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In

SIGGRAPH 1995, pages 229-238, 1995.

[25] M. Szummer and R. W. Picard. Temporal texture modeling. In Proc. of Int.

Conference on Image Processing, Vol. 3, pages 823-826, 1996.

[26] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics

of complex wavelet coefficients. International Journal of Computer Vision, Vol. 40,

No. 1, pages 49-70, 2000.

80

[27] Y. W. S. Soatto, G. Doretto, and Y. Wu. Dynamic textures. In Proceeding of IEEE

International Conference on Computer Vision II: 439-446, 2001.

[28] Saisan, P., Doretto, G., Wu, Y., and Soatto, S. Dynamic texture recognition. In

Proceeding of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), II: 58-63, 2001.

[29] Wang, Y., and Zhu, S. A generative method for textured motion: Analysis and

synthesis. In European Conference on Computer Vision. 2002.

[30] G. Doretto and S. Soatto. Editable dynamic textures. In CVPR (2), pages 137-142,

2003.

[31] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example-

based synthesis. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers. New York, NY,

USA: ACM Press, pages 795-802, 2005.

[32] DeBonet, J. S.. Multiresolution sampling procedure for analysis and synthesis of

texture images. Proceedings of SIGGRAPH 97, pages 361-368, 1997.

[33] Wei, L.-Y., and Levoy, M. Fast texture synthesis using tree-structured vector

quantization. Proceedings of SIGGRAPH 2000, pages 479-488, 2000.

[34] M. Ashikhmin. Synthesizing natural textures. In ACM Symposium on Interactive 3D

Graphics 2001, pages 217-226, 2001.

[35] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image

analogies. In SIGGRAPH 2001, Computer Graphics Proceedings, pages 327-340,

2001.

81

[36] S. Lefebvre and H. Hoppe. Appearance-space texture synthesis. In SIGGRAPH '06:

ACM SIGGRAPH 2006 Papers, pages 541-548, 2006.

[37] Schodl, A., Szeliski, R., Salesin, D. H., and Essa, I. Video textures. Proceedings of

SIGGRAPH 2000, pages 489-498, 2000.

[38] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In

SIGGRAPH 2001, Computer Graphics Proceedings, pages 341-346, 2001.

[39] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthesis by

patch-based sampling. In ACM Transactions on Graphics, Vol. 20, No. 3, pages 127-

150, 2001.

[40] S. Zelinka and M. Garland. Jump map-based interactive texture synthesis. In ACM

Transactions on Graphics, Vol. 23, No. 4, pages 930-962, 2004.

[41] W.-C. Lin, J. Hays, C. Wu, Y. Liu, and V. Kwatra. Quantitative evaluation of near

regular texture synthesis algorithms. In CVPR '06: Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pages

427-434, 2006.

[42] J. Jia and C. K. Tang. Image repairing: robust image synthesis by adaptive nd tensor

voting. In Proc. Conf. Comp. Vision Pattern Rec..Vol. 01, pages 643-650, 2003.

[43] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based image completion. In

SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 303-312, 2003.

[44] A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by

exemplar-based inpainting. IEEE Trans. Image Process, Vol. 9, No. 9, pp. 1200 -

1212, Sep. 2004.

82

[45] J. Sun, L. Yuan, J. Jia, and H. Shum. Image completion with structure propagation.

In SIGGRAPH 2005.

[46] A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based

inpainting. In CVPR, 2003.

[47] Y. Wexler, E. Shechtman, and M. Irani. Space-time video completion. In Proc.

Computer Vision and Pattern Recognition, Vol. 1, pages 120 -127, 2004.

[48] K.A. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting of occluding and

occluded objects. In Proc. Int’l Conf. on Image Processing, Jan 2005.

[49] Sen-Ching S. Cheung, Jian Zhao and Venkatesh, M.V. Efficient object-based video

inpainting. In Image Processing, 2006 IEEE International Conference, 2006.

[50] K. A. Patwardhan, G. Sapiro, and M. Bertalmío. Video inpainting under constrained

camera motion. IEEE Trans on Image Processing, Vol. 16, No. 2, pages 545 - 553,

2007.

[51] T. K. Shih, N. C. Tan, J. C. Tsai, and H. Y. Zhong. Video falsifying by motion

interpolation and inpainting. In the 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska, 2008.

[52] S-H Lee, S-Y Lee, J-H Heu, C-S Kim, and S-U Lee. Video inpainting algorithm

using spatio-temporal consistency. In Proceedings of the SPIE, Vol. 7246, pages

72460N-72460N-8, 2009.

[53] V. Cheung, B. J. Frey, and N. Jojic. Video epitomes. In IEEE Conf. Computer Vision

and Pattern Recognition, Vol. 1, pages 42-49, 2005.

83

[54] J. Jia, Y. Tai, T. Wu, and C. Tang. Video repairing under variable illumination using

cyclic motions. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 28, No. 5, pages 832-

883, 2006.

[55] Y.-T. Jia, S.-M. Hu, and R. R. Martin. Video completion using tracking and fragment

merging. In Proc. Pacific Graphics, Vol. 21, No. 8-10, pages 601-610, 2005.

[56] J. Jia, T.P. Wu, Y.W. Tai, and C.K. Tang. Video repairing: Inference of foreground and

background under severe occlusion. In Proc. Computer Vision and Pattern

Recognition, Vol. 1, pages 364-371, 2004.

[57] Rares, A., Reinders, M., Biemond, J., and Lagendijk, R. A spatiotemporal image

sequence restoration algorithm. In Proc. IEEE International Conference on Image

Processing, Vol. 2, pages 857-860, 2002.

[58] Wei-Qui Yan and Mohan S. Kankanhalli. Erasing video logos based on image

inpainting. IEEE International Conference in Multimedia and Expo (ICME 2002),

Vol. 2, 26-29, pages 521-524, 2002.

[59] H. Yamauchi, J. Haber, H.-P. Seidel. Image restoration using multiresolution texture

synthesis and image inpainting. Computer Graphics International, pages 108-113,

2003.

[60] A. Machi and F. Collura. Accurate spatio-temporal restoration of compact single

frame defects in aged motion picture. The 12th International Conference on Image

Analysis and Processing, pages 454 - 459, 2003.

[61] V. Bruni and D. Vitulano. A generalized model for scratch detection. IEEE

Transactions on Image Processing, Vol. 13, pages 44- 50, 2004.

84

[62] L. Joyeux, O. Buisson, B. Besserer, S. Boukir. Detection and removal of line

scratches in motion picture films. International Conference on Computer Vision and

Pattern Recognition, 1999.

[63] L. Joyeux, S. Boukir, and B. Besserer. Film line scratch removal using Kalman

filtering and Bayesian restoration. In Proceedings of WACV2000, 2000.

[64] Timothy K. Shih, Rong-Chi Chang and Yu-Ping Chen. Motion picture inpainting on

aged films. In Proceedings of the 2005 ACM Multimedia Conference, 2005.

[65] Timothy K. Shih, Louis H. Lin, and Wonjun Lee. Detection and removal of long

scratch lines in aged films. In Proceedings of the 2006 IEEE International

Conference on Multimedia & Expo (ICME’2006), Toronto, Canada, July 9 - 12, 2006.

[66] Yang-Ta Kao, Timothy K. Shih, Hsing-Ying Zhong, and Liang-Kuang Dai. Scratch

line removal on aged films. In ism, Ninth IEEE International Symposium on

Multimedia (ISM 2007), pages 147-151, 2007.

[67] Rong-Chi Chang, Tang, N.C. and Chia Cheng Chao. Application of inpainting

technology to video restoration. IEEE, pages 359-364, 2008.

[68] Chih-Chung Hsu, Tzu-Yi Hung, Chia-Wen Lin and Chiou-Ting Hsu. Video forgery

detection using correlation of noise residue. Multimedia Signal Processing, 2008

IEEE 10th Workshop, pages 170-174, 2008.

[69] Xue Bai, Jue Wang, David Simons and Guillermo Sapiro. Video snapcut: robust

video object cutout using localized classifiers. In SIGGRAPH '09: ACM SIGGRAPH

2009 papers, pages 1-11, 2009.

[70] N. C. Tan, T. K. Shih, H-Y Mark Liao, J. C. Tsai, and H. Y. Zhong. Motion

85

extrapolation for video story planning. In Proceeding of the 16th ACM international

conference on Multimedia, pages 685-688, 2008.

[71] N. C. Tan, H. Y. Zhong, J. C. Tsai, T. K. Shih, and Mark Liao. Motion inpainting and

extrapolation for special effect production. In Proceedings of the seventeen ACM

international conference on Multimedia, pages 1037-1040, 2009.

[72] Black, M. J. and P. Anandan. The robust estimation of multiple motions: Parametric

and piecewise-smooth flow fields. Computer Vision and Image Understanding, CVIU,

Vol. 63, No. 1, pages 75 - 104, 1996.

[73] Farhan Ullah and Shun ichi Kaneko. Using orientation codes for rotation-invariant

template matching. In Pattern Recognition, Vol. 37, Issue. 2, pages 201-209, 2004.

[74] B.K.P. Horn and B.G. Schunk. Determining optical flow. Artificial Intelligence,

Vol.17, pages 185-203, 1981.

[75] D. Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space

analysis. In IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5,

pages 603 – 619, May 2002.

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Objective and Contribution
	1.3 Thesis Organization

	Chapter 2 Background Knowledge
	2.2 Image Inpainting, Texture Synthesis, Image Completion
	Image Inpainting
	2.2.2 Texture Synthesis
	2.2.3 Image Completion
	Video Logos Removal
	2.3.2 Defects Detection and Restoration in Films
	2.3.3 Objects Removal
	2.3.4 Video Falsifying and Video Story Planning

	Chapter 3 Related Work
	3.1 Layer-based Video Inpainting
	3.2 Motion Field Transfer and Motion Interpolation
	3.3 Spatio-temporal Consistency Video Completion

	Chapter 4 Our Video Inpainting Approach
	4.1 Overview of Our Approach
	4.2 Assumptions and Preprocessing
	4.2.1 Assumptions
	4.2.2 Preprocessing

	4.3 Motion Inpainting
	4.3.1 Review of Priority-based Scheme
	4.3.2 Orientation Codes for Rotation-Invariant Matching
	4.3.3 Procedure of Motion Inpainting

	4.4 Background Inpainting
	4.4.1 Using Background Mosaic
	4.4.2 Texture Synthesis

	Chapter 5 Experimental Results and Discussion
	Experimental Results
	5.2 Discussion

	Chapter 6 Conclusion
	References

