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SUMMARY 

The primary objective of this dissertation is to address a number of key challenges and issues in 

the detection, resequencing and evolutionary analysis of viruses. Using novel ideas to improve 

upon existing approaches, it aims to develop better technologies and bioinformatics tools that 

would have a greater impact on clinical decision-making. 

 Amplification of viral genomes is a necessary first step of diagnosis and sequence 

analysis. The thesis explores the pitfalls of using specific primers for amplification and proposes 

to use random-tagged primers, particularly for amplification of unknown viruses. Although it is 

theoretically possible for random-tagged primers to bind to any sequence, the blind use of such 

primers without careful design does not guarantee genome-wide amplification of the virus. In the 

second chapter, the thesis introduces a model to predict amplification efficiency of random-

tagged primers and developed an algorithm, LOMA, to design random-tagged primers with 

optimal amplification efficiency. Experiments show that the random-tagged primers generated 

by LOMA can amplify up to 90% of the genomes of the target viruses. 

 In the third chapter, the thesis argues the advantages of using DNA microarrays for 

diagnostics over traditional PCR methods. To increase the sensitivity and specificity of 

microarray diagnostics, the thesis makes use of random-tagged primers for amplification and 

proposes an algorithm (PDA) that analyzes the distribution of probe signal intensities of in-silico 

recognition signatures probe sets of each virus based on a novel weighted Kullback-Leibler 

divergence that is sensitive to the tail of the distribution. Validation experiments show that PDA 

is able to accurately detect and identify co-infections of multiple viruses, as well as unknown 

viruses initially missed by PCR tests. 



VII 

 In the fourth chapter, the thesis demonstrates the feasibility of using resequencing 

microarrays as a large scale bio-surveillance tool. In the wake of the 2009 H1N1 influenza 

pandemic, a novel resequencing kit that is capable of interrogating all eight segments of the 

H1N1 2009 influenza, with accommodation for mutation hotspots, was developed. The 

accompanying base-calling software EvolSTAR is a new method that utilizes neighbourhood 

hybridization intensity profiles and substitution bias of probes on the microarray for mutation 

confirmation and recovery of ambiguous base queries. Validation experiments show that 

EvolSTAR can achieve a much higher accuracy and call rate than existing competing methods. 

 The fifth chapter discusses the role that recombination plays in the emergence of novel or 

more virulent strains of viral pathogens. Understanding the mechanisms of viral evolution will 

aid in the development of better anti-viral drugs, vaccines, as well as diagnostics and surveillance 

tools. The thesis presents an algorithm (RB-Finder) that uses a more informative distance metric 

that overcomes the inaccuracies of methods that uses base-by-base comparisons. Experiments 

show that RB-Finder is able to achieve accuracies comparable to the most accurate phylogeny-

based methods but within a much shorter time. In addition, RB-Finder is able to distinguish 

regions of high mutation rates from recombination breakpoints. 

 In summary, the thesis has contributed several technologies and novel methods that have 

significantly improved existing bioinformatics approaches in virology research.  
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Chapter 1 

INTRODUCTION 

1.1 The Threat of Human Viruses 

Viruses are one of the main classes of microscopic agents which cause infectious disease in 

humans. They are made up of genetic material known as DNA or RNA and require a host to 

survive. By means of proteins on its outermost surface, a virus can recognize and attach itself to 

the appropriate host cells. The virus then multiplies by tricking the healthy cell to duplicate the 

viral nucleic acid as well as enzymes needed by the virus for enveloping and coat protein 

formation, killing or altering the functions of the cell in the process. New viruses are released via 

lysis of the host cells and begin infecting other cells, causing disease. 

 Viruses have the potential to spread rapidly in a locality or even worldwide and infect a 

large proportion of the human population. One of the most widespread disease affecting humans 

is influenza, commonly referred to as the flu, caused by RNA viruses of the family 

Orthomyxoviridae. They affect millions of people and result in the deaths of hundreds of 

thousands worldwide annually. However, there is another virus, the human immunodeficiency 

virus (HIV) that causes acquired immunodeficiency syndrome (AIDS) in humans and it has 

become one of the most serious health threat to the human population over the last few decades. 

Believed to have originated from non-human primates [1], HIV targets the T cells of the immune 

system, severely weakening it. As the immune system weakens, common organisms such as 

bacteria and viruses become fatal as the body can no longer defend against them. Since its 

discovery in 1981, AIDS has infected an estimated 33.4 million people and killed more than 25 
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million people [2]. Besides causing diseases, viruses are also responsible for certain cancers. 

Recently, a new virus, Merkel cell polyomavirus, has been identified to cause cancer in humans 

[3]. This adds to the list of five other cancer-linked viruses: papillomaviruses [4], human T-

lymphotropic virus Type I [5], hepatitis B virus [6], Epstein-Barr virus [7] and Kaposi’s Sarcoma 

Herpesvirus [8]. While there is much circumstantial evidence that viruses can cause certain types 

of cancer, it is still unclear exactly how viruses trigger cancer. It is most likely that tumors are 

formed when viruses integrated their genetic material with that of the host cells [9].  

To reduce disease mortality and risk of certain cancers in humans, early detection of viral 

infections is vital. As such, there has been continual development of virological tests to provide 

fast, accurate and cost-effective diagnosis. So far, these virological tests have proven to be 

essential for the management of viral infections and administration of treatment. 

 The genetic arms race between viruses and host cells is never-ending. As host cells 

produce stronger immune responses to counteract the invading viruses, viruses evolve to enhance 

their ability to infect. Mechanisms of viral evolution include point mutations, genome 

rearrangements, as well as recombination and translocation events that may result in gene 

acquisition, gene creation and gene deletion [10]. As viruses evolve, they may become new 

variants or novel viruses with unpredictable virulence. In some cases, these new viruses become 

so virulent that they resulted in pandemics with high levels of mortality. For example, influenza 

viruses evolve into new strains almost yearly via mutations or re-assortment of their genes with 

other flu viruses. One such new strain of influenza A virus of subtype H1N1 is responsible for 

the 1918 Spanish flu pandemic, the worst pandemic in history that resulted in the deaths of over 

50 million people [11]. Other notable influenza pandemics include the 1957 Asian flu pandemic, 

1968 Hong Kong flu pandemic and most recently, the 2009 H1N1 pandemic. Besides influenza, 
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other novel or mutant viruses can also cause serious viral outbreaks. In 2003, a novel coronavirus 

emerged from the Guangdong province in China and caused the Severe Acute Respiratory 

Syndrome (SARS) outbreak that claimed the lives of 774 individuals in 37 countries around the 

world in a matter of weeks [12]. Based on historical data since 1901, studies have shown that on 

average, more than two new species of human virus are reported every year [13]. By fitting a 

statistical model to these data, it is predicted that 10 to 40 new species of virus will be discovered 

by 2020 [14]. As such, the health threat that these new viruses will present cannot be overlooked.  

Early detection and continual biosurveillance of viruses, as well as understanding their 

evolution, are the solutions for preventing viral pandemics and controlling emerging infectious 

diseases. Over the years, a myriad of technology and methods have been developed to detect, 

obtain and analyze the genetic information of viruses to understand their virulence and evolution. 

This thesis presents new tools and methods that improve upon existing approaches. 

 

1.2 Diagnostic and Detection of Viruses 

In viral diagnosis, a virus is detected directly via detection of its proteins or nucleic acids, or 

indirectly via an immunological response to the virus. Generally, each method presents a 

different set of pros and cons with respect to sensitivity, efficiency and feasibility. Depending on 

the circumstances at which the viral sample was collected, virus type and concentration, certain 

methods may be more effective than others. As such, timely, accurate and sensitive detection of 

viruses is still difficult today.  
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 One widely-used method is to “grow” the virus in cell cultures [15]. When the virus 

infects a host cell, the host cell may undergo changes such as cell rounding, disorientation, 

swelling, shrinking, or death. These cytopathic effects may be a defense mechanism used by the 

host cell against the virus or induced by the virus to enhance its survivability and reproduction. 

Since different viruses produce different cytopathic effects on different cells, the identity of the 

virus may be deduced from the cytopathic effects observed. Although large concentrations of 

viral products can be obtained in a successful culture, the process is labour-intensive and may 

potentially take up to 4 weeks to complete. Contamination is always a risk and sensitivity is 

often poor as it depends largely on the compatibility between the live virus and the cell lines 

chosen. Furthermore, a number of viruses such as hepatitis B, parvovirus and papillomavirus will 

not grow in cell cultures.  

 Another widely-used approach to detect viruses is to detect the presence of antigens or 

antibodies in bodily fluids. Such antibodies are typically produced in response to an infection 

and can be detected using techniques such as direct or immune fluorescence assays or enzyme 

immuno assays (ELISA). However, the effectiveness varies with different viruses. For example, 

ELISA has proven to be a highly sensitive test for HIV [16]. On the other hand, such an 

approach would not be useful in the diagnosis of certain viruses such as respiratory viruses, 

enteroviruses and diarrhoeal viruses because antibodies are produced only after the onset of 

clinical disease [17].  

A direct method to detect viruses is to view them using electron microscopes. This 

method requires a purified or high concentration of virus that can be obtained directly from 

clinical sample. An experienced technician then discerns the virus by its physical structure 

features. Viruses such as poxviruses and herpesviruses can be easily identified using this 
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technology [18]. The high cost in equipment and maintenance and low sensitivity are the major 

drawbacks of this method.  

 In recent years, molecular methods based on the detection of the viral genome have been 

touted as the future direction of viral diagnosis [19]. One of the most commonly used methods 

for virus detection is polymerase chain reaction (PCR) [20]. PCR is used to amplify a single or 

few copies of the target nucleic sequence many folds using synthetic oligonucleotides flanking 

the target nucleic sequence, generating thousands to millions of copies of the target sequence. 

Detection of sequence product of the PCR assay may be achieved by gel electrophoresis. 

Although PCR is highly sensitive (may detect down to one viral genome per sample volume) and 

fast, the selection of suitably specific oligonucleotides (primers) that flank the target nucleic 

sequence may be difficult. Furthermore, sequence information of the suspected viruses must also 

be known in order to select the primers for amplification. Consequently, PCR cannot be used to 

detect novel viruses. A promising technology that has began to establish itself as an important 

diagnostic tool is the microarray or DNA chip [21]. A microarray consists of thousands, even 

millions, of fluorescence-labeled nucleic acid probes that bind (hybridize) with high specificity 

to complementary sequences of nucleic acid. By analyzing the microarray data, the virus present 

in the sample is easily identified since only probes that are complementary to the sequences of 

the virus will show high levels of fluorescence. Using microarrays, it is now possible to detect a 

large number of viruses at one time by designing and including specific probes complementary 

to sequences of all viruses of interest. Thus, compared to traditional methods, microarrays are far 

less reliant on clinical prediction of the infectious source for diagnosis [22]. Unfortunately, 

microarrays are susceptible to non-specific hybridization noise and its sensitivity is usually not 

higher than traditional detection methods such as cell cultures, antibody-based detection and 
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PCR. In order to make microarrays a sensitive and reliable viral detection tool, there is much 

interest in developing new sample preparation and hybridization protocols, as well as analysis 

methods to overcome the shortcomings of microarrays. 

 

1.3 Resequencing of Viruses 

Sequencing of viral genomes is historically performed using standard dye termination 

technologies. In dye-terminator (capillary) sequencing, negatively-charged DNA fragments are 

labeled with fluorescent dyes and applied with a high voltage to make them move through 

capillaries filled with polymer toward a positively-charged electrode in the sequencing machine. 

A laser beam is then shone on the DNA fragments just before they reach the positive electrode. 

The laser beam causes the dyes on the fragments to fluoresce. These fluorescence signals are 

detected by an optical device and converted to digital data. Since each dye emits light at different 

wavelengths, the four different bases (A, C, G, T) can be detected and distinguished [23]. 

Although capillary sequencing produces highly accurate base calls, it is slow and costly. The first 

15-40 bases and 700-900 bases thereafter of the sequences generated tend to be poor quality.  

 The drawbacks of traditional capillary sequencing have motivated the development of 

high-throughput sequencing technologies that are capable of producing millions of sequences by 

parallelization of the sequencing process [24]. This dramatically lowers the cost of DNA 

sequencing with respect to the amount of throughput, prompting many researchers to utilize 

high-throughput sequencing technologies such as 454 sequencing [25], sequencing by 

oligonucleotide ligation and detection (SOLiD) [26], and Solexa sequencing [27] for a variety of 

genome projects. High-throughput sequencing technologies are best suited to provide deep 
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sequencing data of a few samples. In our experience with the 454 system, much of the amplified 

material is still human (as the bulk of the patient sample material is human RNA with very little 

influenza RNA), requiring very deep sequencing to obtain a complete flu genome sequence, with 

one compartment of a run not yielding sufficient viral information. Furthermore, assembly of the 

sequence fragments is required before any analysis can be done. Any abnormalities or gaps in the 

assembly would then require additional runs of 454, incurring more cost and time. Hence, they 

may be ill-suited for use in viral outbreaks, where the impetus is to obtain complete genome 

sequences from as many infected individuals as possible to monitor them for potential mutations 

or recombinations that might affect drug resistance or virulence. 

 Contrary to the above mentioned sequencing technologies, sequencing by hybridization is 

a novel non-enzymatic method in which a solution of target DNA sequence is fluorescently 

labeled and hybridized to a microarray containing short known sequences (probes) [28]. A 

combinatorial method is then used to reconstruct the DNA sequence from probes with strong 

hybridization signals that bind to the target sequence [29]. Since the introduction of sequencing 

by hybridization in the late 1980s, continual research and advancement over the years have 

alleviated some of the limitations of resequencing arrays, such as cost, accuracy and high-

throughput processing. Currently, a single multiplexed resequencing array is capable of 

generating viral genomic sequences from multiple infected individuals. This translates to 

dramatic savings in cost, labour and time taken to continually obtain relatively high quality viral 

genomic sequences from infected individuals needed for evolutionary surveillance and studies in 

viral outbreaks. One major concern of using microarrays for resequencing is their susceptibility 

to non-specific hybridizations that may result in inaccurate sequence calls. As such, more 

research is needed to develop methods to analyze microarray data that may be noisy, so as to 
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achieve accuracies comparable to the “gold standard” traditional capillary sequencing 

techniques.  

 

1.4 Recombination Detection in Viruses 

Recombination is an important evolutionary mechanism for the continual survival of viruses. In 

addition to the ability to change its own genetic material rapidly via mutation, recombination 

allows viruses to add the capacity to exchange genetic material with one another, and to acquire 

genes from their hosts. Such capability enables viruses to (1) remove deleterious genes from 

their genomes and (2) create and spread advantages traits in an efficient manner [30]. A number 

of studies have shown that viruses do benefit from the effects of recombination. For example, a 

study on Sindbis viruses demonstrated that weaker strains of certain viruses can recombine to 

form stronger, more infectious strains [31]. Some viruses such as the bovine viral diarrhoea virus 

can also generate new variations by borrowing genetic material from their hosts [32]. Viruses 

with high recombination rates are a serious threat to human health. Antiviral drugs or vaccines 

for some viruses, such as influenza viruses, that target certain proteins have to be updated every 

few years to ensure they do not become less effective or even obsolete once these viruses 

undergo mutation or recombination [33]. For some viruses with very high evolutionary rates 

such as HIV, drugs or vaccines development have proven to be extremely difficult and may even 

be impossible without significant breakthrough in understanding virus evolution mechanisms 

[34]. 

  The identification of the locations of the recombination events is the first step to an 

accurate phylogenetic analysis, which gives us important clues on the origins, pathogenicity and 
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treatments of viruses. This led to the development of numerous sequence analysis methods and 

phylogenetic techniques that have proven to be effective and accurate for detecting and 

characterizing recombination events among viruses. Traditionally, an accurate and reliable 

multiple sequence alignment of a given set of sequences is an essential starting point for many 

tools that analyze evolution, including phylogenetics and recombination detection [35]. The 

primary focus of a multiple sequence alignment is to identify, within several related sequences, 

regions that are highly conserved in identity or similarity, and therefore probably have functional 

and/or structural significance. Conversely, sequences that share a common ancestor but have 

since diverged may have clusters of mismatches and gaps that indicate the time since they 

diverged from one another. As such, a multiple sequence alignment of the query sequences is the 

de facto input for recombination detection tools.  

The main goal of recombination detection tools is to find recombination breakpoints, the 

exact locations where a recombination event occurs in a sequence. Generally, the detection of 

breakpoints depends on the strength of a recombination event, which is affected by factors such 

as the mutation rate and the time at which the recombination event took place [36]. The 

unpredictable conditions at which recombination events occur make the task of finding 

breakpoints difficult. For recombination events which make little changes to the sequence, the 

detection of breakpoints may even be impossible [37]. Thus, in order to pinpoint the precise 

locations where recombination events may have taken place, regardless of when they happened 

or frequency, and to test their correctness, it is vital to develop sensitive and accurate methods 

for detecting recombination. 
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1.5 Literature Survey 

1.5.1 Diagnostic and Detection of Viruses 

DNA microarrays have become an essential tool in clinical diagnostics. In recent years, 

microarrays have been used to detect and subtype a multitude of human viruses such as 

herpesviruses [38], respiratory viruses [39], human rotaviruses [40], papillomaviruses [41], 

orthopoxviruses [42], hepatitis [43], cytomegalovirus [44], and the influenza virus [45, 46]. 

Comprehensive pan-viral detection microarrays have also aided in the discovery of novel viruses 

[46, 47].  

Though virus detection by microarray is a young field, a number of different platforms 

and approaches have been described, each with important attributes. For example, the array 

described by Wang et. al. [46] is based on probes designed to recognize the most conserved viral 

domains, facilitating the detection of a taxonomic fingerprint that provides powerful clues to 

viral identity with minimal probe usage. Lin et. al. [39], on the other hand, described a probe-

dense resequencing array capable of detecting a smaller set of predefined pathogens, but with 

higher detection specificity, including the ability to discern highly related subtypes. Thus, it is 

important to devise a probe design strategy that allows us to detect viruses in accordance to the 

intended use of the detection array. 

The accuracy of virus detection depends largely on the algorithms used to analyze 

microarray data. Simple algorithms usually determine whether a particular virus is present or not 

depending on the relative abundance of probes with high hybridization intensities [45, 47, 48]. 

The pathogen predictions made by these simple algorithms may be affected by systematic and 

cross-hybridization errors frequently experienced by microarrays. Unfortunately, few other 
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algorithms exist. One such algorithm that has been reported and validated, E-predict [46], 

matches hybridization signatures with predicted pathogen signatures derived from the theoretical 

free energy of hybridization for each microarray probe. E-predict is less geared towards 

identifying and distinguishing specific pathogen strains, and aimed more at elucidating the best 

possible candidates as supported by the available probes. As such, this approach is particularly 

advantageous in situations where the sequence of the virus is not fully known. Another approach 

[49] uses tiling resequencing microarrays to obtain sequence fragments from consecutive (≥ 3) 

high confidence base calls. BLAST is then used to match these sequence fragments to a public 

database of viruses for diagnosis. However, due to the high number of probes required for tiling 

the viral genomes, this approach can only detect a limited number of viruses. 

 

1.5.2 Resequencing of Viruses 

Resequencing microarrays offer a low-cost, efficient and high-throughput solution to obtain 

whole-genome primary sequences of viruses for practical large-scale bio-surveillance and 

epidemiology studies. For example, resequencing microarrays have been used to generate 

complete sequences of the severe acute respiratory syndrome (SARS) coronavirus [50, 51] and 

poxviruses [52]. Recently, resequencing microarrays have also been used successfully to 

generate primary sequences for highly dangerous biothreat agents such as filoviruses of the 

Ebola Zaire group, or the Machupo and Lassa arenaviruses [53]. 

 Base-calling is a critical step in analyzing resequencing microarrays. There are two main 

base-calling software commonly used in the reported studies, namely the ABACUS algorithm 

[54] and Nimblescan PBC algorithm [50]. Both algorithms employ a gain-of-signal approach 
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[55] based on relative hybridization to allele-specific probes complementary to each of the four 

possible nucleotides at interrogated nucleotide position for base-calling. A probability based on 

the degree of differentiation of hybridization intensities among the querying probes is then 

computed for each base call. A base call is of high confidence if they exceed a pre-defined 

significance or probability threshold. This approach is statistically sound but is susceptible to a 

myriad of factors such as mutations, random noise, probe quality, sample quality and 

experimental conditions. These artifacts can cause poor hybridization performance, resulting in 

ambiguous and sometimes false-positive calls. 

 Efforts have been made to improve the call rates and accuracies of existing base-calling 

algorithms. For example, Zhan and Kulp used sequences of the probe and target to predict probe 

intensities in resequencing microarrays [56]. By accounting for probes may be noisy, they were 

able to achieve a higher call rate and accuracy than ABACUS. Another approach proposed by 

Pandya et al. involves a post-processing strategy to filter low confidence base calls made by 

ABACUS that reside in problematic regions such as highly mutative and repeat regions [57]. 

Although the number of false positive base calls was reduced, the call rate may suffer if too 

stringent filters are used. Most recently, Zheng et al. identified “dips” in hybridization intensities 

of probes near/at mutation sites of variant samples when compared against non-variant control 

samples [58]. As such, they were able to identify variations in the sequence more accurately.  

 

1.5.3 Recombination Detection in Viruses 

Over the years, a wide range of tools to detect recombination have been developed using many 

different strategies. Most of these tools adopted strategies that detected changes in phylogeny or 
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distance metrics at different parts of the input sequences as an indication of the presence of 

recombination. There are also tools that use probabilistic methods, substitution models or cost 

models to infer recombination. Comparative studies on the performances of different 

recombination detection methods have also been carried out [59, 60]. Regardless of the strategies 

they used, recombination detection tools employ (as an initial step) a multiple sequence 

alignment of all input sequences. A multiple sequence alignment tries to align all sequences in a 

given query set. If two sequences in an alignment are descendents of a common ancestor, 

mismatches can be interpreted as point mutations and gaps as insertions/deletions introduced in 

one or both lineages in the time since they diverged from one another. The absence of 

substitutions, or the presence of only very conservative substitutions in a particular region of the 

sequence, suggest that this region is structural or functional importance. Multiple alignments are 

often used in identifying conserved sequence regions across a group of sequences hypothesized 

to be evolutionarily related. 

 We focus on a particular class of methods which uses a sliding window to detect 

recombination. Sliding window approaches are preferred over those that use a global reference 

tree because they can localize breakpoints more accurately and thus detect weak recombination 

events in the presence of strong recombination events [61]. Typically, recombination is detected 

by comparing and noting significant differences in distance measures (distance-based) or in 

phylogenetic trees’ topologies (phylogeny-based) computed for the alignments in adjacent 

windows. 

 Distance-based window methods such as PhyPro [36] and DSS [62] are fast and fairly 

accurate. PhyPro computes, for every sliding window, a test statistic known as the minimum 

distance vector correlation using only non-conserved sites of an alignment. Then, they estimated 
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the p-value for the null hypothesis of no recombination by permuting the alignment 1000 times 

and counting the number of times the original minimum distance vector correlation was smaller 

than the minimum distance vector correlation for each permutation. In DSS, a length-500 

window is slid along an alignment of DNA sequences. For each window, two distance matrices 

(one for each half of the window) are calculated according to some Markov model of nucleotide 

substitution. A sum-of-squares statistic is then computed for each distance matrix. Since each 

distance matrix encodes the phylogenetic relationships in its corresponding window, the presence 

of recombination will result in a big difference in the two sum-of-squares statistics for the two 

matrices. Unfortunately, distance-based methods tend to suffer from information loss when 

estimating recombination. Phylogenetic information is lost when only pair-wise distance 

comparisons are made using conventional distance metrics that measures only the global 

homology between two sequences. 

On the other hand, phylogeny-based window methods such as PDM [63], Pruned-PDM 

[64] and RECOMP [65] try to generate the most likely phylogenetic trees for the alignments 

enclosed in neighboring windows and compare them to estimate recombination more accurately. 

The PDM and Pruned-PDM methods focused on estimating the topology changes based on a 

likelihood score. To reduce the uncertainty of tree estimation from short sequence alignments 

enclosed by the sliding window, they used a distribution of trees instead of a single tree as 

reference. Although accurate, their methods are very slow due to the need for Markov chain 

Monte Carlo simulations and hence intractable for larger datasets. RECOMP was then developed 

to provide a faster means of detecting recombination. Using a sliding window, a set of trees is 

generated for each window based on a maximum parsimony heuristic. Recombination is 

determined by comparing four different measures such as the Robinson-Foulds distance [66] of 
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sets of trees in adjacent windows. An accuracy comparable to Pruned-PDM is claimed but the 

interpretation of the four measures as an indication of recombination is sometimes not straight-

forward and may even be ambiguous at times. 

Regardless of distance-based or phylogeny-based methods, a sliding window approach 

has a major concern: the selection of window length. In previous works, the window length is 

usually arbitrary chosen within the range of 200–500. However, window length affects the 

sensitivity and accuracy of window-based methods to detect recombination. Recent works have 

shown that their results are most accurate when the given window length is approximately the 

recombinant subsequence length [62, 64]. If the length of the recombinant is not known in 

advance, an algorithm using different window lengths may produce vastly different analysis 

results on the same dataset. Furthermore, there may be problems in detecting recombinant 

regions shorter than the given window length due to the noise caused by the original sequence on 

either side of the recombinant subsequence included in the window. 

Recently, a method to detect recombination without the use of sliding windows was 

introduced. Recco [67] uses a model of cost minimization and dynamic programming to detect 

recombination breakpoints. The basic model is to construct each sequence in the alignment in 

turn, from the other sequences in the alignment using only the mutation and recombination 

operators such as insertion and deletion. The minimum cost solution identifies the best 

recombination breakpoints and also the parental sequences. The performance of Recco is 

enhanced by a succeeding sensitivity analysis that provides an intuitive visualization of the 

solution. A major limitation of this method is that a recombinant sequence may not be detected if 

there is another similar sequence in the alignment. Consequently, the user needs to manually 

remove the closest sequence to the putative recombinant sequence iteratively. 
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1.6 Overview of Thesis 

The rest of the thesis contains details on the detection and resequencing of viruses, and how their 

genomes are analyzed. Through the use of microarray technology, we are able to detect and 

resequence viruses in a cost-effective, efficient and high-throughput manner. However, more 

research is required to address accuracy and sensitivity issues faced by existing microarray data 

analysis methods. Downstream interpretation of sequence information also poses interesting 

challenges. An accurate interpretation may provide valuable insights on viral evolution and aid 

the development of viral treatments and vaccines. 

In Chapter 2, we describe how PCR techniques are used to amplify DNA fragments of a 

virus to a magnitude required for a successful microarray hybridization. We also present the 

difficulties and limitations of various PCR amplification techniques on viruses. The main novel 

contribution of this chapter is a way to predict how well a random primer can amplify a given set 

of viruses. We then describe a fast algorithm to design better primers for amplification, along 

with wet-lab validation results. Implications of amplification efficiency on microarray probe 

selection and quality of data are also discussed. 

In Chapter 3, we describe how microarrays are used to detect viruses and study the 

factors that affect detection accuracy. We report the results of a systematic investigation of the 

complex relationships between viral amplification efficiency, hybridization signal output, target-

probe annealing specificity, and reproducibility of viral detection using a custom designed 

microarray platform. The novel contributions are a methodology for the in silico prediction of 

viral “signatures” and a statistics-based virus detection algorithm that can identify sequence-

characterized and co-infecting viruses with low false positive rate. 
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In Chapter 4, we explore the capabilities of microarrays to generate whole-genome 

primary sequences of viruses for large-scale evolutionary biosurveillance. In response to the 

most recent H1N1 pandemic, we developed a resequencing kit that is capable of interrogating all 

eight segments of the H1N1 2009 influenza A virus genome and its variants. The novel 

contribution is a base-calling software (EvolSTAR) that introduces new methods that utilizes 

neighbourhood hybridization intensity profiles and substitution bias of probes on the microarray 

for mutation confirmation and recovery of ambiguous base queries. We demonstrate that 

EvolSTAR is highly accurate and has high call rates with a pilot study of 15 patient samples. 

In Chapter 5, we describe various techniques to detect recombination events from 

genomic sequences of viruses. Recombination detection is important for a better understanding 

of viral evolution, more accurate genotyping and advancements in drug and vaccine 

developments. The main contribution of this chapter is a fast and accurate distance-based sliding-

window method to detect recombination in a multiple sequence alignment. Using synthetic and 

biological datasets, we show that our method is more accurate than existing phylogeny-based 

methods. We also discuss how our method has potential use in other related applications such as 

genotyping. 

 In Chapter 6, we discuss the practical implications of this thesis in the field of 

evolutionary research and clinical decision making. We then present and summarize the main 

contributions made in this thesis. Lastly, we describe some of the future work stemming from 

our research. 
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Chapter 2 

AMPLIFICATION OF VIRAL GENOMES 

2.1 Polymerase Chain Reaction and its Limitations on Viral 

Genome Amplification 

The Polymerase Chain Reaction (PCR) is a laboratory technique that “amplifies” a particular 

DNA sequence, generating millions of copies of it in the process. PCR uses specifically designed 

primers that are complementary to the sequence to be amplified. The primers provide a starting 

point for the extension of the DNA by a DNA polymerase (usually Taq or Pfu polymerase). 

Amplification is carried out in cycles. First, the DNA sample is heated up to separate the double 

strands. The sample is cooled slowly, allowing the primers to bind. Then, the sample is incubated 

at 72°C so that the DNA polymerase can extend the primers, creating a long complementary 

strand of DNA. As PCR progresses, the DNA generated is itself used as a template for 

replication, setting in motion a chain reaction in which the DNA template is exponentially 

amplified [68]. Furthermore, PCR requires only a minute amount of DNA sample for 

amplification. This extremely high efficiency and sensitivity has made PCR an essential tool for 

many applications such as forensic analysis [69], genome sequencing [70] and cancer diagnostics 

[71].  

Another important application of PCR is the amplification and subsequent detection and 

identification of viruses for disease diagnosis [72, 73]. PCR-based virus detection is highly 

sensitive and accurate, with the capability to detect viruses soon after infection and even before 
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the onset of disease. In practice, there are several factors that may cause PCR-based detection to 

fail. PCR needs to use primers that are specific to the targeted sequence for a successfully 

amplification. These primers are typically designed from sequence information stored in public 

databases. However, as some viruses mutate or recombine, their sequence information may 

become inaccurate. Moreover, sequence information for novel viruses such as severe acute 

respiratory syndrome (SARS) and H1N1 2009 influenza virus will not be available until much 

later. Even if the virus is not novel, a clinical prediction of the infectious source would have to be 

made before PCR can be conducted [22]. 

 

2.2 Tagged-random Primer Amplification 

The limitations of PCR in amplifying novel, unknown or highly mutative viruses have led to the 

development of an alternative amplification strategy known as tagged-random primer 

amplification (T-PCR). Unlike PCR which requires the use of specific primers chosen from 

target sequences, T-PCR uses a tagged-random primer consisting of a constant 17 bp at the 5’-

end known as the 5’ tag and a random oligomer (unknown base N) of length 9-15 at the 3’-end 

which could theoretically bind to any DNA sequence [74]. However, many viruses, such as 

influenza viruses and retroviruses, are composed of RNA rather than DNA. As a result, tagged-

random primers cannot be used directly to amplify such viruses. To amplify RNA viruses, a 

variant of PCR known as reverse transcription polymerase chain reaction (RT-PCR) is needed. In 

RT-PCR, RNA is first reverse transcribed into cDNA using the enzyme reverse transcriptase. In 

theory, the random oligomer now binds indiscriminately to the nucleic acids template. The 

resulting cDNA is then amplified using the 17-mer 5’ tag to generate PCR products (Figure 1). 
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Figure 1: RT-PCR binding process of tagged-random primers on a RNA viral sequence followed by 
PCR. 

 

In practice, T-PCR does not guarantee the genome-wide amplification of the virus in the 

sample. The exact locations where the random primers bind could be influenced by the presence 

of intra-primer secondary structure formation (ie the 5’-end tag forms a dimer or hairpin with the 

3’-end random oligomer) or melting temperatures [75]. This differential binding of the tagged-

random primers to different parts of the viral genome creates an amplification bias that prevents 

certain regions from being amplified, resulting in incomplete amplification of the target virus. 

Several studies involving microarray experiments using T-PCR that have reported the lack of 

hybridization signals in tiling probes that reside in certain regions of the viruses in their samples, 

most likely attributed to incomplete T-PCR amplification [76, 77]. 
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2.3 Amplification Efficiency Model of the RT-PCR Process 

The binding affinity of a primer pair to the target genome impacts RT-PCR efficiency. In the 

case of using tagged-random primers, the quality of the RT-PCR product depends on how well a 

tagged-random primer instantiation pair binds to the target genome. Here, we termed a particular 

configuration of the given tagged-random primer as a tagged-random primer instance. For 

example, (5’-GTT TCC CAG TCA CGA TA TTTTAAAAG-3’) and (5’-GTT TCC CAG TCA 

CGA TA CATCATCAT-3’) are instantiations of the tagged-random primer (5’-GTT TCC CAG 

TCA CGA TA NNNNNNNNN-3’). Some instantiations of the tagged-random primer can bind 

better to the target genome than others. The identification of such tagged-random primer 

instantiations and where they bind to the target genome gives us an indication of how likely a 

particular region of the target genome will be amplified. Using this approach, we proposed an 

amplification efficiency model which computes an Amplification Efficiency Score (AES) for 

every position of a target genome.  

As a concrete example for our modeling, we use a tagged-random primer that has a fixed 

17-mer header and a variable 9-mer tail of the form (5’-GTT TCC CAG TCA CGA TAN NNN 

NNN NN-3’). This tagged-random primer is commonly used in virus detection experiments [78, 

79, 80]. Let va be the actual virus in the sample. To get a RT-PCR product in a region between 

positions i and j of va, we require (1) a forward primer binding to position i, (2) a reverse primer 

binding to position j and (3) λl ≤ |i – j| ≤ λu where λl and λu are the lower and upper bounds of the 

desired PCR product length respectively (Figure 2). 
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Figure 2: Amplification efficiency model of the RT-PCR binding process of an instantiation of a tagged-

random primer on a RNA virus va. 

 

Consider a pair of forward and reverse tagged-random primer instantiations where the 

forward primer is at a particular position i of va, the reverse primer is at position j of va and |i – j| 

is the product length. Let Pf(i) and Pr(j) be the probability that the forward primer can bind to 

position i and the probability that the reverse primer can bind to position j respectively. For 

simplicity, we assume that a random (forward or reverse) primer instantiation can bind to a 

particular position i of va only if 9-mer of the instantiated nonamers of the random primer is a 

reverse complement of the length-9 substring at position i of va (Note that other binding criteria 

such as 75% similarity rule or nearest-neighbour binding free energy [81] can be used as well). 

Thus, all other instantiations of the given tagged-random primer whose instantiated nonamers is 

not a subsequence of va, do not contribute to the amplification process and thus omitted from the 

computation of AES. We compute Pf(i) and Pr(j) based on well-established primer design criteria 
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[82]. The idea is that Pf(i) and Pr(j) will be small if the forward primer or reverse primer forms 

self-dimers or has extreme melting temperatures, or form a significant primer-dimer with each 

other. Another consideration is that if the fixed 17 basepairs 5-end tag of the given random 

primer is similar to va, it may lead to mispriming and thus results in a lower Pf(i) and Pr(j) for all 

i and j. 

It is difficult to assess the exact extent of influence of primer-dimers and melting 

temperatures on amplification. Hence, we estimate Pf(i) and Pr(j) using a simple model: 

1. A primer cannot bind to the sequence efficiently if it folds onto itself. A primer is a self-

dimer if it forms a 3’-end or internal hairpin with three or more bases. Thus, Pf(i) = 0 if 

the forward primer at i forms a self-dimer. Similarly, Pr(j) = 0 if the reverse primer at j 

forms a self-dimer. 

2. The RT-PCR process is performed at a certain temperature, normally 55 oC to 60oC. If the 

melting temperature of a primer is not at this ideal temperature, then the primer may not 

bind to the sequence. Hence, we model this observation by decreasing P
f(i) and P

r(j) 

proportionally to the difference in the melting temperature of the forward primer and 

reverse primer to the ideal experimental temperature respectively. Specifically, Pf(i) = 1 – 

(|Tm(forward primer) – TM|/TM) and Pr(j) = 1 – (|Tm(reverse primer) – TM|/TM) where 

TM is the ideal experimental temperature and Tm(x) is the melting temperature of a 

primer x. We compute Tm(x) = 81.5 + 16.6 (log M) + 0.41 (% G+C) - 0.72 (% 

formamide) where M is the monovalent salt molarity, and (% G+C) the percentage of 

guanine plus cytosine residues in DNA [83]. 

3. To avoid mispriming, if the 17bp fixed tag of the tagged-random primer has more than 

75% similarity to any subsequence of the target genome, we discard this random primer. 
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That is, Pf(i) = 0 if the forward primer at i has a fixed tag with more than 75% similarity 

to any subsequence of the target genome. Similarly, Pr(j) = 0 if the reverse primer at j has 

a fixed tag with more than 75% similarity to any subsequence of the target genome.  

  

Based on our model, the probability that a pair of random primer instantiations give a 

good quality PCR product from position i to j on va is P
f(i) × P

r(j). Due to the abundance of 

random primer instantiations used in a RT-PCR process, it is likely that all pairs of random 

primer instantiations that can effectively bind to va will contribute a PCR product. Thus, for a 

valid forward primer at position i, we must compute the above probabilities for a range of 

positions j at which a valid reverse primer exists, ie λl ≤ |i – j| ≤ λu. Thus, an Amplification 

Efficiency Score, AESx, for every position x of va can be computed by considering the combined 

effect of all forward and reverse primer-pairs that amplifies it:  
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Once we compute the AES for all positions of va, we plot the AES against the genomic positions 

of va. This generates a graph which indicates the regions in va predicted to be amplified 

efficiently by the given tagged-random primer (represented by peaks) and regions that do not 

(represented by troughs). To validate the algorithm, we conducted two parallel experiments using 

two microarrays, each consisting of 1948 probes tiled across the RSV B genome. Two 

biologically identical samples of RSV B are amplified using two different tagged-random 

primers:  
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1. Primer A1 (5'-GTT TCC CAG TCA CGA TA NNNNNNNNN-3'): A commercially 

available tagged-random primer. 

2. Primer A2 (5'-GAT GAG GGA AGA TGG GG NNNNNNNNN-3'): Primer with 

highest AES among 10000 randomly generated tags. 

Next, we ranked the hybridization signal intensities for all 1,948 probes tiled across the RSV B 

genome in each microarray experiment and compared them to the AES values of the tagged-

random primer used for amplification (Figure 3). We observed that high AES significantly 

correlates to probe hybridization signal intensity above the detection threshold (P=2.2x10-16; 

Fisher’s Exact Test). In another set of experiments involving a patient sample positive for 

metapneumovirus (hMPV), the probes tiled across the hMPV genome showed a similar result, 

P=1.3x10-9. Repeatedly, we observed that higher AES correlated with greater probe detection, 

with, on average, >70% detection for probes in the top 20% AES. 

Our model allows us to predict how successful the amplification on a target viral genome 

will be given a particular tagged-random primer. An ideal tagged-random primer would generate 

high AES values uniformly across the whole target genome. This quantification of the efficiency 

of amplification of a tagged-random primer on a target genome in the form of AES also enables 

us to compare the effectiveness of different tagged-random primers if they are to be used to 

amplify the genome. For example, tagged-random primer r1 is predicted to work better than 

tagged-random primer r2 if the average AES of r1 across a target genome is higher than that of r2. 

An important application of our AES model is in the design of probes for a virus-detection 

microarray. Probes should be chosen in regions in the target viral genomes that can be amplified 

efficiently by the tagged-random primer used. Conversely, we should omit probes from regions 



 27

in the target genomes which are predicted not to amplify efficiently since we cannot tell if these 

probes did not hybridize due to the absence of the target viruses in the sample or just that the 

amplification by the random primers failed. 

 

 

Figure 3: Correlation of probe hybridization signals with AES of tagged-random primers A1 and A2 in a 
RSV B sample. 

 

2.4 Generating the Tag of a Tagged-Random Primer using LOMA 

Amplification failure may occur if there are many regions of the target genome where the 

tagged-random primer cannot bind. As such, using any available commercial tagged-random 

primer or a tagged-random primer that was used in other publications may not guarantee a 

successful amplification on a target genome. Although the computation of AES allowed us to 
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compare the amplification efficiency of different tagged-random primers on a target genome, it 

would be most useful if we know the tagged-random primer that binds to the given genome 

optimally. 

The best way to obtain the most efficient tagged-random primer to amplify a target 

genome is to compute the AES graph for all possible combinations of the 17-bp 5'end tag and 

choose the tag that has the highest average AES with the target genome. This is impractical as 

this would require 417 runs of the AES computation algorithm. A naïve approach would be to 

randomly generate a large number of tags (eg. 10000) and choose the one that has the highest 

average AES with the target genome. Other similar randomization approaches could also be used 

to improve the chances of getting a more efficient tag to amplify the target genome. However, 

these approaches are still slow especially when we need to choose an efficient tagged-random 

primer for multiple genomes. 

We propose LOMA (Least Occurrence Merging Algorithm), a more deterministic and 

faster algorithm to generate an efficient tag for a target genome va. The idea is to use a "divide 

and conquer" strategy to generate n-bp tags by concatenating m shorter k-mers where m = n/k. 

Recall that the 5'end tag of the tagged-random primer should be not similar to va to avoid 

mispriming. To form such a tag, the constituent k-mers should also be dissimilar to va. Based on 

this criterion, we compute the number of occurrences with more than 75% similarity in va for 

each of the 4k k-mers. Then, we sort the k-mers based on their occurrence count in va in 

ascending order. Tags are generated using the top ranking k-mers whose number of occurrences 

in va is lower than some threshold T. Ideally, we want to generate tags using only k-mers with no 

occurrence in va, ie T = 0. 
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Figure 4: Flowchart of LOMA with n = 17, k = 9 and T = 0. 

 

Suppose x k-mers have occurrences in va less than T. We generate a tag by concatenating 

any m of the x k-mers. This results in xm possible tags. Since x is small and m is typically 2 or 3, 

the total number of tags generated is much less compared to a brute force or randomized 



 30

approach. Furthermore, the xm tags generated by our method are guaranteed to be dissimilar to va. 

Thus, all there is left to do is to compute the AES with va of each of the xm tags and choose the 

one with the highest average AES across va. Figure 4 shows the flowchart of our algorithm. 

Unlike randomized approaches, LOMA is easily extended to generate an efficient tag for 

multiple genomes. Specifically, given a set of genomes V, we need only to modify step one of 

the algorithm to compute the number of occurrences with more than 75% similarity in every 

genome in V for each of the 4k k-mers. Once candidate random-tags are generated, we compute 

their AES with each of the genomes in V and choose the one with the highest average AES for 

all the genomes in V. 

 

2.5 Experimental Evaluation of LOMA 

We describe experiments to test the hypothesis that different tagged-random primers have 

different amplification efficiencies and to assess the effectiveness of our algorithm to generate a 

good tagged-random primer. In our experiments, we use eight human nasopharyngeal aspirate 

patient samples obtained from children under 4 years of age with lower respiratory tract 

infections. Using real-time PCR with specific primers, we confirmed that five samples contain 

human respiratory syncytial virus (RSV) while the remaining three samples contain human 

metapneumovirus (HMPV). 

Three tagged-random primers are then used to amplify the eight samples: 

1. Primer A1 (5'-GTT TCC CAG TCA CGA TA NNNNNNNNN-3'): A commercially 

available tagged-random primer. 
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2. Primer A2 (5'-GAT GAG GGA AGA TGG GG NNNNNNNNN-3'): Primer with 

highest AES among 10000 randomly generated tags. 

3. Primer A3 (5'-TAG GTC GGT CGG TAG GT NNNNNNNNN-3'): Primer generated 

using our proposed algorithm LOMA. 

Subsequently, the samples are hybridized onto our virus detection chip. Since our virus 

detection chip contains tiling 40-mer probes of both RSV and HMPV, the number and 

distribution of the probes with high signal intensities would give a good indication of the amount 

of PCR products generated across the target genome by a tagged-random primer. We expect that 

a tagged-random primer with desirable amplification efficiency that generates sufficient PCR 

products uniformly across the whole target genome would result in high signal intensity probes 

distributed evenly across the whole genome. 

We present the first set of experiments involving the amplification of five RSV patient 

samples by the three tagged-random primers A1, A2 and A3. In each experiment involving a 

particular pair of RSV patient sample and random-tagged primer, hybridization signal intensities 

for the 1948 probes tiled across the 15225 bp RSV genome were compared to their 

corresponding AES along the genome. When using primer A1, we obtained AES with values less 

than 5000 with an average of 3300. However, when primers A2 and A3 are used, the AES 

averages are 110000 and 140000, respectively. This dramatic increase in predicted amplification 

efficiency gave an indication that in theory, our designed tagged-random primers A2 and 

particularly A3 perform much better than A1. 
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Figure 5: Application of AES on a RSV sample. An RSV patient sample was amplified separately using 
primer A1, primer A2 and primer A3. Hybridization signals of probes after amplification by each primer 
are shown as a heatmap. The probes that have detectable signals above threshold are shown in 
orange/yellow in the corresponding heatmaps. The graph below the heatmaps shows our AES prediction 
for the three primers: A1 (orange line), primer A2 (pink line) and primer A3 (dark blue line). Our AES 
predictions closely matches the actual hybridization results, ie primer A3 performs slightly better than 
primer A2 but both A3 and A2 performs significantly better than A1 on RSV. 

 

Recall that probes in regions of high AES are expected to be least affected by a poor 

amplification and thus have the correct high hybridization signals if the virus is present in the 

sample. For all the experiments, we observed that high AES significantly correlates to probe 

hybridization signal intensity above the detection threshold with a p-value of 2.2 × 10-16 using 
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the Fisher's exact test. About 80% of the probes with high signal intensities (≥ mean + 3 standard 

deviation) have high AES values. We also observed that primers A2 and A3 showed a 

tremendous improvement in overall PCR efficiency in amplifying RSV over primer A1. This 

increase in PCR efficiency resulted in increased hybridization of DNA to the probes and is 

reflected in the uniformly higher signal intensities observed using primer A2 and A3. This is 

illustrated in Figure 5. Further analysis of the RSV experiments revealed that only 20% to 30% 

of the 1948 RSV probes had signal intensities above detection threshold when primer A1 was 

used. By contrast, the use of primer A2 resulted in 60% to 71% of probes with signal intensities 

above detection threshold. Primer A3 fared slightly better than primer A2, resulting in more than 

70% of the probes having signal intensities above detection threshold. 

We conducted another set of experiments to verify that the observations made involving 

RSV and the three tagged-random primers are not isolated observations and that they can be 

replicated in other genomes as well. Following the experimental procedure used in the previous 

set of experiments, three patient samples containing HMPV are subjected to amplification by 

primers A1, A2 and A3. Similarly, in each experiment involving a particular pair of HMPV 

patient sample and tagged-random primer, hybridization signal intensities for the 1705 probes 

tiled across the 13335bp HMPV genome were compared to their corresponding AES along the 

genome. Figure 6 shows the heatmaps and AES plots of the HMPV genome when amplified by 

primers A1, A2 and A3. The results are similar to that of the first set of experiments on RSV. In 

the three samples, Primer A1 performs worse on HMPV than RSV, causing only < 8% of the 

1705 probes to be detected above threshold. Primers A2 and A3 performed much better than 

primer A1, causing >80% and > 88% of the probes to be detected above threshold respectively. 
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Figure 6: Application of AES on a HMPV sample. An HMPV patient sample was amplified separately 
using primer A1, primer A2 and primer A3. Hybridization signals of probes after amplification by each 
primer are shown as a heatmap. The probes that have detectable signals above threshold are shown in 
orange/yellow in the corresponding heatmaps. The graph below the heatmaps shows our AES prediction 
for the three primers: A1 (orange line), primer A2 (pink line) and primer A3 (dark blue line). Our AES 
predictions closely matches the actual hybridization results, ie primer A3 performs slightly better than 
primer A2 but both A3 and A2 performs significantly better than A1 on HMPV. 

 

Our experiments have shown that the commonly used primer A1 amplify RSV and 

HMPV poorly. Further analysis reveals that many instances of the primer A1 that are supposed 

to bind to RSV and HMPV form self-dimers and hence unable to amplify the genome efficiently. 

On the other hand, primers A2 and A3 amplified RSV and HMPV efficiently. However, 

compared to primer A2, primer A3 was generated in a much shorter time by LOMA and 

performs just as well, if not better. 
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2.6 Multiplexing Tagged-random Primers 

LOMA generates random-tagged primers that are capable of amplifying their target genomes 

efficiently with coverage of more than 70% up to 90%. We explore the possibility of using 

multiple tagged-random primers to achieve a more complete amplification of the target genome. 

In our experiments, we observed that one tagged-random- primer may amplify a 

particular region of a target genome more efficiently than another tagged-random primer. For 

example in Figure 6 at genomic positions 1500–1900 of HMPV, the heatmap shows that primer 

A3 performs much better than primer A2. On the other hand, on the same genome at positions 

2000–2200, the heatmap shows that primer A2 performs better than primer A3. This suggests 

that it is possible to design multiple collaborating tagged-random primers to amplify a target 

genome. The idea is to design additional tagged-random primers that have regions with high 

AES covering the regions with low AES of existing random-tagged primers. This is shown in 

Figure 7. 

Although this approach is highly viable as suggested by our experimental results, 

achieving a successful multiplexing of multiple random-tagged primers in the laboratory may not 

be as straight-forward as the traditional multiplexing of specific primers [84]. Recall that a 

tagged-random primer consists of random oligomers that could theoretically bind to all possible 

sequences. Using two or more tagged-random primers simultaneously in a PCR amplification 

reaction may result in the formation of primer-dimers among all instances of the tagged-random 

primers and cause the amplification to fail. To ensure higher success of multiplexing tagged-

random primers, an alternative solution is to perform the PCR reaction with the first tagged-

random primer, then perform another PCR reaction with the second tagged-random primer and 
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so on. In other words, we multiplex n tagged-random primers by performing n PCR reactions in 

series. This will avoid the problem of primer-dimers when multiplexing tagged-random primers. 

 

Figure 7: Design of multiple random-tagged primers to amplify a target genome g. Original tagged-
random primer p has a region with low AES on g. We design additional tagged-random primer q such that 
it has high AES in that region. 

 

2.7 Conclusion 

New generation genomic and diagnostic applications require the amplification of a wide range of 

known viruses and potentially novel viruses as an initial step. As it is not cost-effective to design 

specific primers for all known viruses and quite impossible to design specific primers for yet to 

be known viruses, tagged-random primer amplification is preferred over primer-specific 

amplification. However, genome-wide amplification bias of tagged-random primers is a serious 

yet commonly overlooked problem. 

In this chapter, we described a model to predict the amplification efficiency of a random-

tagged primer given a target genome(s). The AES provided us with a measurement that we can 

use to compare the amplification efficiency of different tagged-random primers on the target 
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genome. This paved the way for the development of LOMA, a fast and effective tagged-random 

primer generator. Through experiments, we have shown that the random-tagged primer 

generated by LOMA performs significantly better than a commonly used random-tagged primer 

on different genomes. Furthermore, LOMA is able to generate good tagged-random primers 

much faster than randomized approaches. 

Unlike specific primers that are almost always selected from the target genome under 

stringent primer design criteria [85], people tend to use tagged-random primers without checking 

their suitability with the target genome. This is a serious oversight that may cause inaccuracies in 

downstream work such as microarray analysis. Our research has shown that the blind use of a 

tagged-random primer in a PCR reaction on a virus sample may not lead to a successful 

amplification. Thus, the design of tagged-random primers is an important consideration when 

performing PCR and should be a common practice when using tagged-random primers. 

LOMA is available at http://www.comp.nus.edu.sg/~bioinfo/AES_LOMA/ 
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Chapter 3 

VIRUS DETECTION AND IDENTIFICATION 

3.1 DNA Microarrays in Virus Detection 

Developed in the 1990s, DNA microarrays detect and identify viruses through hybridization of 

their DNA against millions of oligomers (known as probes). Since each probe is designed to 

hybridize only to its intended sequence, we can easily determine if a particular virus is present in 

the sample by analyzing its probes (Figure 8). Hence by analyzing different sets of probes, 

microarrays have the ability to detect multiple viruses in a single experiment, co-infections and 

novel virus infections. Currently, viral detection by microarrays can rapidly decrease laboratory 

turnaround times so that results can be available within 2–6 hours. Future developments may see 

this reduced even further; and through the development of point-of-care devices, perhaps enable 

the clinician to make the diagnosis directly at the bed-side [86]. This would no doubt reduce 

morbidity and mortality, for example, through the earlier implementation of appropriate 

antimicrobial treatment. 

While pathogen microarrays and their utility in discovering emerging infectious diseases 

such as SARS have been described, technical problems related to accuracy and sensitivity of the 

assay prevent their routine use in patient care [87, 88, 89, 90]. For microarrays to become a 

standard diagnostic tool, the following questions must be addressed: (1) What are the factors that 

influence probe design and performance? (2) How is a pathogen “signature” measured and 

detected? (3) What is the specificity and sensitivity of an optimized detection platform? (4) Can 

detection algorithms distinguish co-infecting pathogens and closely related viral strains [91, 92]? 
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Figure 8: Microarray hybridization process. Viral RNA is first reversed transcribed to cDNA. The cDNA 
is then amplified, fragmented, end-labeled with biotin and applied to the microarray. The cDNA binds to 
complementary probes on the microarray, a process known as hybridization. A special scanner is then 
used to measure the fluorescent areas on the microarray. Probes that successfully bind to the cDNA 
fragments will generate a very bright fluorescent area, thus indicating what viruses are present in the 
sample. 

 

Noisy signals caused by cross-hybridization artifacts present a major obstacle to the 

interpretation of microarray data, particularly for the identification of rare virus sequences 

present in a complex mixture of nucleic acids [93]. For example, in clinical specimens, 

contaminating nucleic acid sequences such as those derived from the host tissue, will cross-

hybridize with virus-specific microarray probes above some threshold of sequence 

complementarities. This can result in false-positive signals that lead to erroneous conclusions. 

Similarly, the virus sequence, in addition to binding its specific probes, may cross-hybridize with 

other non-target probes (i.e., designed to detect other viruses). This latter phenomenon, though 

seemingly problematic, could provide useful information for virus identification to the extent 

Virus 
RNA cDNA Hybridization to 

microarray 

Measure fluorescent 

intensities 
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that such cross-hybridization can be accurately predicted. With various metrics to assess 

annealing potential and sequence specificity, microarray probes have traditionally been designed 

to ensure maximal specific hybridization (to a known target) with minimal cross-hybridization 

(to non-specific sequences). However, in practice we have found that many probes, though 

designed using optimal in silico parameters, do not perform according to expectations for reasons 

that are unclear. 

 

3.2 Design of Virus Recognition Probe Sets 

The accuracy and sensitivity of a pathogen detection microarray depend on its composition of 

probes. The practicality of a microarray as a low-cost pathogen detection tool also places a 

restriction on the number of probes that can be included on the microarray. Hence, the selection 

of a minimal number of “good” probes that can detect and identify a set of viruses of interest, to 

be synthesized onto the microarray is vital. The main challenge in probe design involves 

selecting probes that bind only to their intended cDNA and not to others (cross-hybridizations). 

In addition, proper probe design must also take into account other factors such secondary 

structure formation, CG-content and melting temperatures of probes that may cause 

hybridization errors [94].  

 

3.2.1 Empirical Determination of Cross-Hybridization Thresholds of Probes 

To systematically investigate the dynamics of array-based pathogen detection, we created an 

oligonucleotide array using Nimblegen array synthesis technology [95]. The array was designed 
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to detect up to 35 RNA viruses using 40-mer probes tiled at an average 8-base resolution across 

the full length of each genome. Together with 7 replicates for each viral probe, and control 

sequences for array synthesis and hybridization, the array contained a total of 390,482 probes. 

Initially, we studied virus samples purified from cell lines, reverse-transcribed and PCR-

amplified with virus-specific primers (instead of random primers). This allowed us to study array 

hybridization dynamics in a controlled fashion, without the complexity of cross-hybridization 

from human RNA and random annealing dynamics which occur with random primers. We then 

applied our findings to clinical samples amplified using random primers. 

 

Figure 9: Heatmap of microarray probe signal intensities. Cells corresponding to probes are aligned in 
genomic order and colored according to the signal intensity-color scales shown. Hybridization signatures 
corresponding to SARS Sin850 (a) and Dengue I Hawaiian isolate (b) are shown.  
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SARS coronavirus and Dengue serotype 1 genomic cDNA were amplified in entirety (as 

confirmed by sequencing), labeled with Cy3 and hybridized separately on microarrays. The 

SARS sample hybridized well to the SARS tiling probes, with all 3,805 SARS-specific probes 

displaying fluorescent (Cy3) signal well above the detection threshold (determined by probe 

signal intensities > 2 standard deviations (SD) above the mean array signal intensity; Figure 9a). 

Cross-hybridization with other pathogen probe sets was minimal, observed only for other 

members of Coronaviridae and a few species of Picornaviridae and Paramyxoviridae, consistent 

with the observation that SARS shares little sequence homology with other known viruses [96]. 

The hybridization pattern of Dengue 1, on the other hand, was more complex (Figure 9b). First, 

we observed that hybridization to the Dengue 1 probe set was partially incomplete (i.e., regions 

absent of signal) due to sequence polymorphisms. The Dengue 1 sample hybridized on the array 

was cultured from a 1944 Hawaiian isolate, whereas the array probe set was based on the 

sequence of a Singaporean strain S275/90, isolated in 1990 [97]. Sequencing the entire genomes 

of these 2 isolates revealed that the array probes which failed to hybridize each contained at least 

3 mismatches (within a 15-base stretch) to the sample sequence. Second, we observed that cross-

hybridization occurred to some degree with almost all viral probe sets present on the array, 

particularly with probes of other Flaviviridae members, consistent with the fact that the 4 

Dengue serotypes share 60-70% homology. To understand the relationship between 

hybridization signal output and annealing specificity, we first compared all probe sequences to 

each viral genome using 2 measures of similarity: probe hamming distance (HD) and maximum 

contiguous match (MCM). HD measures the overall similarity distance of two sequences, with 

low scores for similar sequences [98, 99]. MCM measures the number of consecutive bases 

which are exact matches, with high scores for similar sequences [99, 100]. 
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We calculated the HD and MCM scores for every probe relative to the Hawaiian Dengue 

1 isolate and observed that these scores were negatively correlated (HD) and positively 

correlated (MCM) to probe signal intensity (Figure 10). All probes on the array with high 

similarity to the Hawaiian Dengue I genome, i.e. H ≤ 2 (n = 942) or MCM ≥ 27 (n = 627), 

hybridized with median signal intensity 3 SD above detection threshold. Although 98% of probes 

were detectable at the low HD range from 0-4, or high MCM range from 18-40, median probe 

signal intensity decreased at every increment of sequence distance (Figure 10). Median signal 

intensity dropped off sharply to background levels at HD = 7 and MCM = 15, with 43% and 46% 

detectable probes, respectively. The majority of probes (> 96%, n > 51,000) had HD scores 

between 8-21 and/or MCM scores between 0-15, of which only 1.23% and 1.57% respectively, 

were detectable. 

At the optimal similarity thresholds HD ≤ 4 and MCM ≥ 18, > 98% of probes could be 

detected with median signal intensity 2 SD above detection threshold, whereas adjusting the 

similarity threshold down 1 step to HD ≤ 5 and MCM ≥ 17 would result in only ~ 85% probe 

detection and median signal intensity ~ 1.2 SD above detection threshold (Figure 10). Using 

these optimal HD and MCM thresholds to guard against cross-hybridization, we binned all 

probes into specific “recognition signature probe sets” (i.e., r-signatures) most likely to 

specifically detect a given pathogen, and we defined r-signatures for each of the 35 pathogen 

genomes represented on the array. Each pathogen’s r-signature comprised tiling probes derived 

from its genome sequence (HD = 0, MCM = 40), as well as cross-hybridizing probes derived 

from other pathogens (HD ≤ 4, MCM ≥ 18). According to these criteria, a given probe could 

belong to multiple different r-signatures, thereby maximizing probe-level evidence for pathogen 

detection.  
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Figure 10: Relationship between probe Hamming Distance (HD), probe Maximum Contiguous Match 
(MCM) and probe signal intensity. Average probe signal intensity and percentage of detectable probes 
(signal intensity > mean + 2 SD) decreases as HD increases and MCM decreases. The optimal cross-
hybridization thresholds HD ≤ 4 or MCM ≥ 18, where > 98% of probes can be detected, is shaded in blue. 

 

We next considered other non-specific hybridization phenomena that could affect 

performance of our r-signature probes. For example, we observed a linear relationship between 

probe signal and %GC content. Consistent with previous observations, we found that probes < 

40% GC hybridized with diminished signal intensities, while probes > 60% GC content showed 

higher signal intensities [50, 101]. Thus, we censored probes with GC < 40% or > 60% from the 

r-signatures, despite optimal HD or MCM values. Furthermore, as cross-hybridization with 
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human sequences could also confound results, we compared all probes to the human genome 

assembly (build 17) by BLAST using a word size of 15 [102]. Probes with expectation value of 

100 were also censored. 

While the ideal pathogen r-signature would be one where all probes would hybridize to 

the target sequence at detectable levels, polymorphic variation between the probes (derived from 

a consensus sequence) and the actual target would be expected to impede the performance of the 

r-signature probes at some level. To test this hypothesis, we compared the ratios of detectable to 

undetectable probes across all r-signatures in the context of the hybridization involving the 

Hawaiian Dengue 1 isolate. Although the Dengue 1 sequence used to derive the Dengue 1 r-

signature was ~ 5% different from the Hawaiian isolate, the detectable probe ratio of the Dengue 

1 specific probes was 151/152 (99%), 12 times higher then that for the nearest Dengue serotype 

signature, suggesting that moderate polymorphic variation is quite tolerable, allowing, in this 

case, for discernment of the correct pathogen. 

 

3.2.2 Genome-wide Amplification Bias and its Implications on Viral 

Detection 

Random priming amplification, rather than primer-specific amplification is preferred for 

identifying unknown pathogens in clinical specimens. However, in initial experiments using 

random priming amplification to identify known pathogens, we frequently observed incomplete 

hybridization of the pathogen genome marked by interspersed genomic regions not detected by 

the probes. An example of a hybridization heatmap from a microarray experiment involving the 

amplification of respiratory syncytial virus (RSV) B using a commercially available tagged-
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random primer (5’-GTT TCC CAG TCA CGA TAN NNN NNN-3’) is shown in Figure 11a. In 

preliminary analyses, sequence polymorphisms, probe GC content and genome secondary 

structure failed to explain why most probes did not light up, suggesting that it might be due to a 

PCR-based amplification bias stemming from differential abilities of the random primers to bind 

to the viral genome at the reverse transcription (RT) step. Hence, we used LOMA (described in 

chapter 2) to design an alternative primer (5-TAG GTC GGT GGG TAG GTN NNN NNN-3’) 

that had a much better AES (that takes into account dimer formation and melting temperatures 

[77, 103]) than the original primer. The microarray experiment was then repeated using the 

primer designed by LOMA for amplification of RSV B (Figure 11b). From Figure 11, it is clear 

that amplification of RSV B using the primer designed by LOMA resulted in a dramatic increase 

in the number of lighted-up probes as opposed to using the original primer. A similar observation 

was made when the two primers were used to amplify another virus (hMPV). 

 

Figure 11: Heatmap of probe signal intensity for a RSV B sample following random RT-PCR by original 
primer and LOMA designed primer. Red regions correspond to probes that did not have signal intensities 
above threshold. As probe signal intensity increases, the heatmap changes from red to orange to yellow to 
white. LOMA primer performs significantly better than the original primer as there are less red regions 
indicating that most probes had high signal intensities. 

 



 47

 The discovery and validation of amplification bias when using tagged-random primers 

have serious implications on viral detection via microarrays. We have shown that PCR 

amplification bias could cause entire regions of probes, regardless of probe homology, specificity 

and sensitivity properties, to fail to hybridize to its target sequences. Hence, proper probe design 

is no longer sufficient for an accurate interpretation of the microarray data. The tagged-random 

primer used for amplification must also be chosen with care. By ensuring the chosen tagged-

random primer has uniformly high AES over whole genome sequences of the target viruses, we 

can reduce the chances of probe signal inaccuracies and ultimately improve viral detection 

accuracy and confidence. 

 

3.3 PDA – A Statistical-Based Algorithm for Virus Detection 

We observed that while the signal intensities for all pathogen r-signatures approximate a normal 

distribution (Figure 12a). We reasoned that analysis of the tails of the signal intensity 

distributions for each r-signature might better enable not only the identification of an infecting 

pathogen, but also the presence of co-infecting pathogens in the same sample. Thus, we devised 

a robust statistics-based pathogen detection algorithm (PDA), which analyzes the distribution of 

probe signal intensities relative to the in silico r-signatures. The PDA software comprises 2 parts: 

(1) Evaluation of signal intensity of probes in each pathogen r-signature using a modified 

Kullback-Leibler Divergence (KL), and (2) statistical analysis of modified KL scores using the 

Anderson-Darling test.  
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Figure 12: Distribution of probe signal intensities and WKL scores. RNA isolated from a RSV-infected 
patient was hybridized onto the array. (A) Distribution of probe signal intensities of all 53555 probes 
(red) and r-signature probes for an absent pathogen, eg. parainfluenza-1 (dotted line) show a normal 
distribution. The distribution of signal intensity for RSV r-signature probes are positively skewed, with 
higher signal intensities in the tail of the distribution. (B) Distribution frequency of WKL scores for the 
35 pathogen r-signatures with majority ranging between -5 and 3. A non-normal WKL score distribution 
is observed (P<0.05 by Anderson Darling test). The presence of a pathogen is indicated by a non-normal 
distribution caused by outlier WKL=17, corresponding to RSV. Excluding the RSV r-signature WKL 
score results in a normal distribution. From this computation, we conclude that RSV is present in the 
hybridized sample. 

 

Consider the virus va. Let Pa be the set of probes of a virus va and aP = P - Pa. Let [rlow , 

rhigh] be the signal intensity range. We partition it into c bins 
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To compare the signal difference of the tail of the probability distribution, we set 

alowr µ= , the mean signal intensity of the probes in aP , and rhigh = maximum signal intensity. 

We set the default number of bins, c = 20. Since the original KL cannot reliably determine 

differences in the tails of a probability distribution, and is highly dependent on the number of 

probes per genome and the size of each signal intensity bin, we incorporated the Anderson-

Darling statistic to give more weight to the tails of each distribution. By using a cumulative 

distribution function instead of the original probability distribution, the p-value generated is 

independent of the binning criteria, eliminating errors which occur if a particular signal intensity 

bin is empty [104, 105]. We call our modified KL divergence the Weighted Kullback-Leibler 

divergence (WKL): 
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where )( jQa  is the cumulative distribution function of the signal intensities of the probes in Pa 

found in bin bj; )( jQ
a

 is the cumulative distribution function of the signal intensities of the 

probes in 
aP  found in bin bj. R-signatures representing absent pathogens should have normal 

signal intensity distributions and thus relatively low WKL scores, whereas those representing 

present pathogens should have high, statistically significant outlying WKL scores (Figure 12b).  

Next, we claim that the distribution of WKL scores of all viruses va ∈ V is 

approximately normal if there is no virus present in a sample. We empirically verify if our claim 

is correct by a bootstrapping process: Let n be the number of viruses in V. For each virus vk ∈ V 

where k = 1, …, n, we choose |vk| probe signal intensities from a real dataset randomly with 

replacement to form a “perturbed” signal intensity distribution of vk. Such distribution can mimic 

the situation where virus vk is not present in the sample. Thereafter, n WKL scores are generated 

for the set of n viruses. Next, we check if the n WKL scores follow a normal distribution by the 

Anderson-Darling test for normality at 95% confidence interval. The bootstrap is repeated 

100,000 times. The distribution is found to be normal in more than 99% of the time. (NB: since 

there are 35 viral genomes represented on our microarray, n =35)  

Based on the above discussion, we can test if a sample contains virus(es) by making the 

following null and alternative hypothesis:  

H0: The distribution of WKL scores is normal, i.e. viruses are not present in the sample. 

H1: The distribution of WKL scores is not normal, i.e. at least 1 virus is present in the 

sample. 

We proceed to apply the Anderson-Darling test for normality on the distribution of WKL scores 

to reject H0 with 95% confidence interval. If p < 0.05, the WKL distribution is considered not 
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normal, implying that the pathogen with outlying WKL scores is present. Upon identification of 

a pathogen, that pathogen’s WKL score is left out, and a separate Anderson-Darling test is 

performed to test for the presence of co-infecting pathogens. In this manner, the procedure is 

iteratively applied until only normal distributions remain (i.e., p > 0.05). The PDA algorithm is 

extremely fast, capable of making a diagnosis from a hybridized microarray in less than 10 

seconds. Figure 13 shows the pseudo-code for our virus-detection algorithm. 

Figure 13: Analysis framework of pathogen detection microarray data. 

 

3.4 Microarray Performance on Clinical Specimens 

To assess the clinical utility of the pathogen prediction platform, we analyzed 36 nasal wash 

specimens according to the workflow illustrated in Figure 14. These specimens were obtained 

from children under 4 years of age with lower respiratory tract infections (LRTI) of which 14 

were hospitalized for severe disease and 22 with ambulatory LRTI. The clinical diagnosis of 

these patients was bronchiolitis or pneumonia. All 36 specimens had been previously analyzed 
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for the presence of hMPV, RSV A and B using real-time PCR. Twenty-one specimens tested 

positive for one or more viruses, while 15 were PCR-negative for all three. All specimens were 

analyzed by microarray in a blinded fashion (Table 1).  

 

Figure 14: Schema of pathogen detection process. 
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Table 1: Comparison of microarray and real-time PCR performance in detection of pathogen genera 
(HRV, pneumovirus). ND=none detected. *Hospitalized patients. †RSV A patient samples. 
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As RSV A full-genome sequence is not published, our array was not designed to 

specifically detect this virus. Thus we first assessed array performance using only results from 

the 16 patients diagnosed with either hMPV or RSV B by PCR (Table 2). Of this cohort, the 

microarray correctly detected the presence of hMPV or RSV B in 13/16 samples. This 

corresponds to an assay specificity of 100%, sensitivity of 76%, and diagnostic accuracy of 94%. 

All 4 false negative samples (patient #374, 841, 892, 924) had Ct values > 33.5, which is near the 

detection limit of real-time PCR, and thus perhaps beyond the range of detection by microarray. 

 

 

Table 2: Comparison of microarray and real-time PCR performance in detecting RSV B or hMPV. 
ND=none detected. *Hospitalized patients. 

 

We next assessed array performance in the group of patients PCR-positive for RSV A 

(n=7) and PCR-negative for all tested viruses (n=15). The microarray made only 2 positive calls 

in this group, both for RSV B. Interestingly, both RSV B calls corresponded to high-titre RSV A 
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specimens by PCR (#414, 913) suggesting that certain probe sets can detect the presence of 

related, but unspecified, viruses. Analysis of the published RSV A partial genome sequence (923 

bp, GenBank ID: AF516119) revealed that 7 probes on our microarray had 100% identity to 

RSV A. We created an “RSV A r-signature” comprising these 7 probes, enabling the specific 

detection of RSV A by microarray in 4/7 patient samples PCR-positive for RSV A (#414, 832, 

913 and 924). Although the performance of this small r-signature was not as robust as the other 

virus r-signatures (median size: 249 probes), it suggested that it was feasible to pursue a “viral 

discovery” approach using r-signatures created to detect viruses at the family or genus level, that 

were related to those species already represented on the microarray. Specifically, we binned 

probes into family- or genus level r-signatures by relaxing our similarity criteria (to HD≤5 or 

MCM≥25) and selecting probes common to genome sequences within families and genera for 

the picornaviridae family, paramyxoviridae family, rhinovirus genus (HRV) and pneumovirus 

genus (inclusive of RSV and hMPV). 

Upon re-analysis of all 36 samples, we identified the presence of pneumovirus in 17 

specimens as expected (1 false positive, #283), and additionally detected the presence of HRV in 

9 specimens (Table 1). As HRV was a novel discovery, we re-screened all 36 samples by PCR 

and found HRV in 11 specimens. All 9 HRV calls by microarray were confirmed by PCR except 

for 1. This finding was intriguing given that the genomic diversity of the over 100 known 

rhinovirus serotypes makes detection by PCR notoriously difficult [106]. As the real-time PCR 

primers were capable of identifying only ~70% of rhinovirus strains, it is possible that the 

microarray correctly detected a rhinovirus strain that PCR failed to detect. Similarly, the 

pneumovirus genus detected in patient #283 could not be verified by RT-PCR, possibly owing to 

subtle genetic variations that prevented primer annealing. Thus, the greater genomic coverage 
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afforded by the microarray might, in some cases, provide a more sensitive and accurate detection 

capability than pathogen-specific PCR.  

Though the microarray identified the majority of HRV and RSV A samples using the 

genus-level r-signatures, the array failed to detect 3 samples positive for HRV and 3 positive for 

RSV A by real-time PCR. These false negatives had an average Ct value > 32, again suggesting 

a detection threshold close to that of real-time PCR. However, the microarray also made a 

number of accurate discoveries in the 30-35 Ct range, suggesting a considerable degree of 

detection variability in the titre range above a ~30 Ct equivalency. Notably, the microarray 

correctly detected the presence of co-infecting pathogens in 2 samples (#337, #832), 

demonstrating the unique potential of this microarray platform to reveal complex disease 

etiologies. 

 

3.5 Conclusion 

DNA microarrays have the potential to revolutionize clinical diagnostics through their ability to 

simultaneously investigate thousands of potential pathogens in order to make a diagnosis. 

However, questions remain regarding their sensitivity and reliability. In this work, we 

investigated the myriad of factors that influence microarray performance in the context of virus 

detection in clinical specimens, and describe an optimized platform capable of identifying 

individual and co-infecting viruses with high accuracy and sensitivity that brings microarray 

technology closer to the clinic. 
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Future improvements will include significant reductions in microarray manufacturing and 

usage costs. Multiplex microarray formats and “re-usable” arrays are developing technologies 

that promise to drive down these costs. Furthermore, alternative technologies such as beads 

[107], microfluidics [108, 109] and nanotube microarrays [110], might provide advantages in 

both assay cost and speed relative to traditional microarray platforms. Technology considerations 

aside, the advantages of a highly parallel, nucleic acid-based screening approach for detecting 

disease pathogens are clear. Validations in larger patient cohorts and in diverse clinical settings 

will be an important next step towards establishing the clinical role of pathogen detection 

microarrays. 
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Chapter 4 

RESEQUENCING OF VIRAL GENOMES 

4.1 Resequencing Microarrays as a Large-scale Bio-surveillance 

Tool  

Historically, sequencing of viral genomes is performed using standard dye termination 

technologies. These conventional sequencing technologies produce accurate data but are too 

slow, costly, labour-intensive and low throughput to be practical for large-scale epidemiologic or 

evolutionary investigations in viral outbreaks. In recent years, next-generation sequencing 

technologies that can produce millions of sequences at once have emerged. Through massive 

parallelization of the sequencing process, technologies such as 454 are able to achieve high 

throughput at a progressively lower cost. However, next-generation technologies that are more 

suited for deep sequencing of a few samples, become less cost-effective when used to sequence a 

large number of samples. Oligonucleotide resequencing microarrays that are capable of 

identifying nucleotide sequence variants may offer a low-cost rapid solution for whole-genome 

sequencing of viruses [111]. 

 In April 2009, a novel influenza virus (H1N1) emerged from Mexico and rapidly spread 

to the rest of the world [112]. The global infection quickly forced the World Health Organization 

(WHO) to declare the outbreak an pandemic. As of December 2009, more than 414000 

confirmed cases and nearly 5000 deaths worldwide have been reported (http://www.who.int/en/). 

Nevertheless, the 2009 H1N1 pandemic did provide an unique opportunity to find out if 
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resequencing microarrays can be used as a practical, large-scale tool for bio-surveillance. In fact, 

resequencing microarrays have already been used for detecting and subtyping influenza viruses 

in recent years [113, 114]. However, only sequences from partial fragments of the hemagglutinin 

(HA) and neuraminidase (NA) genes were obtained for analysis. Hence, the full genome 

sequencing of a influenza A virus using microarrays remains a novelty. 

To address if microarrays can be used as a practical, large scale resequencing tool, we 

have developed a system comprising customized sequence amplification primers, a 12-plex DNA 

resequencing array for 2009 influenza A H1N1 and an automated base-calling and variant 

analysis software (EvolSTAR). In subsequent sections, we describe the development of the 

various genetic analysis components, and their validation using clinical samples. 

 

4.2 Design of Resequencing Microarrays 

We generated a consensus sequence for each segment of the H1N1(2009) virus by aligning all 

1715 complete and partial sequences available from the NCBI H1N1 flu resources database 

(http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html) as of June 11th 2009 using MAFFT 

[115] with high accuracy option.  

Tiling probes spanning the entire genome segments on both the forward and reverse 

strands were created at 1 base resolution [50]. Analysis of the sequence alignments revealed that 

there were no deletions, insertions or recombination. However, we found 36 mutation hotspots in 

the alignments where mutations occurred near one another (within 20 bp). A perfect match (PM) 

probe residing in a mutation hotspot may contain mismatches that will have a detrimental effect 
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on its hybridization intensity. To avoid this problem, we designed additional PM probes that 

contain all possible combinations of mutations found in each mutation hotspot. Thus, if 2 

mutations are found within 20bp of each other in the alignments, then we need in total 4 (22) PM 

probes to encode them. In general, 2x PM probes are needed to completely encode a cluster of x 

mutations that occur within 20bp of one another in the alignments. 

 

Furthermore, to ensure that we have accurate sequence of the drug binding pocket 

targeted by neuraminidase inhibitors [116] such as oseltamivir (Tamiflu®) and zanamivir 

(Relenza®) in the neuraminidase gene of the H1N1(2009) virus, additional probes were added. 

In total, the array contains 8,236 control probes and 121,928 H1N1(2009) probes, which 

provides 2x coverage of the entire H1N1(2009) genome, and up to 8x coverage of the regions 

comprising the 36 mutation hotspots and 10 drug-binding sites. 

 

4.3 Optimization of RT-PCR Primers and Conditions 

Due to the small amount of virus present in samples relative to human or cell-line total RNA, it 

was necessary to amplify the viral RNA through PCR. We employed a combination of sequence-

specific and random PCR approaches using LOMA-optimized primers as previously described in 

chapter 2. The addition of random primers ensured complete genome amplification, even if 

mutations were present at the specific-primer binding sites. PCR conditions were optimized by 

conducting 5 duplicate hybridizations of the same virus sample cultured from a patient sample 

under different PCR conditions. The optimized method was then tested on RNA isolated directly 
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from nasal swabs obtained from the same patient and from virus grown in cell culture. 

Microarray sequences generated from these replicate experiments were compared with capillary 

sequencing to estimate sequencing accuracy. 

 

4.4 Evolution Surveillance and Tracking Algorithm for 

Resequencing arrays 

Following PCR product labeling, hybridization and scanning, signal intensities for each probe 

was generated using Genepix 4.0 software, and annotated using Nimblescan 2.5 software. 

Initially, the standard Nimblescan software which employs a gain-of-signal approach (PBC 

algorithm [50]), was used to determine the viral sequence. The PBC algorithm assumes that the 

signal intensity of the perfect match (PM) probe (which matches exactly to the sequence in the 

sample) will be significantly higher than that of the mismatch (MM) probes. While this approach 

sufficed for ~90% of base queries, we observed that the discrimination between the PM and MM 

signals was not clear for the remaining probes. 

These ambiguous signals were caused by the presence of multiple mutations in the probe 

sequence, homopolymers and hybridization artifacts. We developed a novel algorithm, Evolution 

Surveillance and Tracking Algorithm for Resequencing arrays (EvolSTAR), to resolve this 

problem. EvolSTAR improves upon PBC by adding an analysis of the neighbourhood 

hybridization signal intensity profile (NHIP) and nucleotide substitution bias. 

 

 



 62

4.4.1 Neighbourhood Hybridization Intensity Profile 

Due to the use of tiling probes in resequencing arrays, a single nucleotide mutation at a particular 

query base could cause a dramatic reduction in the hybridization intensities of neighbouring PM 

probes up to 6 bases away [58]. This effect can be measured by studying the neighbourhood 

hybridization intensity profile (NHIP) of each query base. We defined the NHIP of each query 

base as the observed pattern of hybridization intensities of its PM and MM probes and 

neighbouring (± 6 bases from query base) PM and MM probes. To study the effects of sequence 

variation (mutation) and noise on the NHIP of a query base, we sequenced RNA from 

H1N1(2009) patient 380 by capillary sequencing and on duplicate microarrays. We compared 

sequence calls generated using by Nimblescan or by capillary sequencing and compiled a list of 

true (correct) calls, error calls and ‘N’ (unknown) calls. In total, of the expected 13588 bases of 

the H1N1 virus (based on genome described at 

http://www.ncbi.nlm.nih.gov/genomes/taxg.cgi?tax=211044) the microarray called 13449 bases 

while capillary sequence was able to call 12832 bases. 

By analyzing base calls from PBC that have been confirmed by capillary sequencing, we 

identified five distinct types of neighbourhood hybridization intensity profile belonging to true 

non-mutations (wild-type), true mutations, isolated errors/’N’s, long consecutive errors/’N’s, and 

unknown errors/’N’s respectively. For each non-high confidence query base, we determine the 

type of its NHIP by the following criteria: 

a) True-non-mutation – The PM probe (of both strands) of the query base must be a high 

confidence call (i.e., it has hybridization intensity ≥ 1.4 fold that of its MM probes). 

Neighbourhood PM probes are also high confidence calls. Let the mean hybridization 
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intensity of the three nearest PM probes to the immediate left of the mutation base (at 

position -1, -2 and -3), denoted as µ{-1,-2,-3}, the mean hybridization intensity of the three 

PM probes to the far left of the mutation base (at position -4, -5 and -6), denoted as µ{-4,-5,-

6}, the mean hybridization intensity of the three nearest PM probes to the immediate right 

of the mutation base (at position 1, 2 and 3), denoted as µ{1,2,3}, and the mean 

hybridization intensity of the three PM probes to the far right of the mutation base (at 

position 4, 5 and 6), denoted as µ{4,5,6}. We impose that µ{-1,-2,-3} ≈ µ{-4,-5,-6} and µ{1,2,3} ≈ 

µ{4,5,6} . 

b) True-mutation – The PM probe (of both strands) of the query base must have 

hybridization intensity ≥ 1.4 fold that of its MM probes. To detect the characteristic dip, 

we check 4 mean hybridization intensities: the mean hybridization intensity of the three 

nearest PM probes to the immediate left of the mutation base (at position -1, -2 and -3), 

denoted as µ{-1,-2,-3}, the mean hybridization intensity of the three PM probes to the far left 

of the mutation base (at position -4, -5 and -6), denoted as µ{-4,-5,-6}, the mean 

hybridization intensity of the three nearest PM probes to the immediate right of the 

mutation base (at position 1, 2 and 3), denoted as µ{1,2,3}, and the mean hybridization 

intensity of the three PM probes to the far right of the mutation base (at position 4, 5 and 

6), denoted as µ{4,5,6}. If µ{-1,-2,-3} < µ{-4,-5,-6} and µ{1,2,3}< µ{4,5,6}, we say this is a dip pattern 

and the query base is likely to be mutated. 

c) Isolated error/’N’ – The PM probe (of both strands) of the query base has hybridization 

intensity < 1.4 fold that of its MM probes. Neighbourhood PM probes are high 

confidence calls. 
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d) Long consecutive errors/’N’s – The PM probe (of both strands) of the query base has 

hybridization intensity < 1.4 fold that of its MM probes. A majority of neighbourhood 

PM probes are non-high confidence calls. 

e) Unknown error/’N’ – All other neighbourhood hybridization profile patterns that do not 

fall under the previous categories. 

 

 

Figure 15: Observed neighborhood hybridization intensity profiles for true-non-mutation calls. A 
representative set of observed NHIPs for true-non-mutation calls from patient sample 380. This 
representative set consists of 5 true-non-mutation calls randomly selected from each segment. Each line 
represents the NHIP (± 6 bp from query base position) of a true-non-mutation call. 

 

Figure 15 shows the NHIPs of a representative set of 40 randomly selected query bases 

that result in true-non-mutation calls (wild-type calls). We observed that in these NHIPs, the PM 

probe of the query base together with neighbouring PM probes, have hybridization intensities 
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significantly higher (> 1.4-fold) than that of their MM probes in general. We also identified 10 

mutations using capillary sequencing in the patient sample. The NHIPs of these 10 true-mutation 

calls (Figure 16) are very different from NHIPs of wild-type calls. The presence of a mutation at 

the query base created a mismatch in neighbouring PM probes and caused a drop in their 

hybridization intensities. The closer this mutation is to the centre of a neighbouring PM probe, 

the bigger the drop in hybridization intensity. This results in a distinctive dip to the immediate 

left and right of the centre of the NHIP where the mutation is. 

 

 

Figure 16: The observed NHIPs for all 10 identified true-mutation calls from patient sample 380. 
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Figure 17: Observed neighborhood hybridization intensity profiles for unknown error/’N’ calls. A 
representative set of observed NHIPs for unknown error/’N’ calls from patient sample 380. This 
representative set consists of 2 unknown error/’N’ calls randomly selected from each segment. 

 

Unlike the NHIPs of wildtype and true-mutation calls, the NHIPs of most errors and ‘N’ 

calls appear haphazard (Figure 17). However, when we traced the locations of these errors and 

‘N’ calls on the genome, we found that some are isolated among good calls while others are 

conjugated in a small locality of the genome. We investigated the NHIPs of isolated errors and 

‘N’ calls that occurred among good calls and found that in these NHIPs, only the PM probe of 

the query base that is an error or ‘N’ call has poor hybridization differentiation with its MM 

probes while other PM probes have hybridization intensities significantly higher than that of 

their MM probes in general (Figure 18). This suggests that for such calls, only the PM and MM 

probes of the query base are noisy while neighbouring PM and MM probes are unaffected. In 

addition, we also found that long chains of consecutive error and ‘N’ calls (especially at the 5’ 

and 3’ end of the sample sequences) often have NHIPs where the PM probe of the query base 
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together with neighbouring PM probes, have poor hybridization differentiation with their MM 

probes (Figure 19). These error and ‘N’ calls usually occur at the ends of the genome segments. 

In summary, NHIP analysis showed that all true mutation calls had a characteristic profile 

(Figure 20b) that differed from wild-type sequence calls (Figure 20a). Ambiguous calls arising 

from different causes, such as homopolymers, isolated errors and hybridization artifacts also 

have profiles that are distinct from true mutation profiles (Figure 20). 

 

 

Figure 18: The observed NHIPs for all 3 identified isolated error/’N’ calls from patient sample 380. 
These errors are flanked by true (correct) calls. 
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Figure 19: The observed NHIPs for 5 regions where there are long consecutive (≥ 5) error/’N’ calls from 
patient sample 380. 
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Figure 20: Summary of the characteristics of the NHIP for five types of call (true-non-mutation, true-
mutation, isolated error or ‘N’, long chains of consecutive errors or ‘N’, unknown error or ‘N’) based on 
their respective observed neighbourhood hybridization intensity profiles. The PM probe (red circle) of 
query base is at position 0 while neighbourhood PM probes (black circles) are numbered according to 
their distance away from the query base. A PM probe is significantly differentiated from its MM probes if 
its hybridization intensity is at least t fold that of all its MM probes. 
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4.4.2 Nucleotide Substitution Bias 

The presence of nucleotide substitution bias in Nimblegen resequencing arrays has been 

previously described [117]. However, this knowledge has so far been used only to improve probe 

design. In this paper, we propose a novel method that makes use of nucleotide substitution bias 

in the array to improve base-calling accuracy and call rate. The key idea is to build a likelihood 

model of the substitution bias among the probes of non-ambiguous calls on the array; then use 

this to call bases with ambiguous signals.  

To build the likelihood model, we first determined the substitution bias on our platform 

by comparing the PM and MM probes (of both strands) of 25028 true calls made by PBC from 

the two replicate microarray experiments of patient sample 380 mentioned in the previous 

section. For each true call, we generated a hybridization intensity reduction order by ranking the 

PM and MM probes of a particular strand in decreasing order of hybridization intensity and 

recording their respective frequencies (Table 3). Table 3 shows that for each PM probe encoding, 

certain hybridization intensity reduction orders occur much more frequently than others. For 

example, if the PM probe encoding is ‘A’ (regardless of strand), then it is most likely that the 

hybridization intensity reduction order is ‘TGC’ or ‘GTC’. Thus, by matching the hybridization 

intensity reduction orders of its PM/MM probes with that in Table 3, we can compute the 

likelihood that the putative base call for a query base with ambiguous signals is correct. 

 

 

 



 71

PM probe 

encoding 

Hybridization 

intensity 

reduction 

order 

Forward strand Reverse strand 

Frequency Frequency 

A 

CGT 547 246 

CTG 558 237 

GCT 957 367 

GTC 2215 1407 

TCG 1049 611 

TGC 3015 2873 

C 

AGT 2035 2712 

ATG 1752 2400 

GAT 382 341 

GTA 159 134 

TAG 360 377 

TGA 165 129 

G 

ACT 1474 1043 

ATC 976 624 

CAT 1639 1534 

CTA 868 788 

TAC 594 410 

TCA 542 454 

T 

ACG 432 529 

AGC 562 636 

CAG 623 841 

CGA 1066 1616 

GAC 1421 1878 

GCA 1637 2841 

 

Table 3: Hybridization intensity reduction orders found in two replicated hybridization experiments of 
patient sample 380. Hybridization intensity reduction orders found in 25028 true calls from two replicated 
hybridization experiments of patient sample 380. For each true call, for each strand, we rank the PM 
probe and its MM probes based on their hybridization intensities in decreasing order. We count the 
frequency of each hybridization intensity reduction order. 

 

Specifically, we define that a probe encodes the base b if b is located in the centre-most 

position of the probe and is the base to be interrogated. For a given query base, suppose the PM 

probe encodes b1 while the MM probes encode b2, b3 and b4 respectively where {b1, b2, b3, 
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b4}={A, C, G, T} and the hybridization intensity reduction order is b1b2b3b4. To validate if the 

observed PM probe encoding b1 is indeed the true PM probe of the sample sequence, we 

compute the likelihood ratio of fobs and frand, where fobs is probability of observing the 

hybridization intensity reduction order b1b2b3b4 given that the PM probe encodes b1 and frand is 

the probability of observing the hybridization intensity reduction order b1b2b3b4 by chance. 

Precisely, 
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where #(wxyz) is the number of observed hybridization intensity reduction orders from high 

confidence base calls and t is the total number of hybridization intensity reduction orders 

excluding b1b2b3b4 obtained from high confidence base calls. If the likelihood ratio > 2, we 

expect that the observed PM probe encoding b1 is indeed the true PM probe of the sample 

sequence. In this way, we can recover base calls of ambiguous query bases exceeding a 

reasonably high likelihood threshold and achieve better accuracy and call rate than PBC. 

 

4.4.3 Grading the Quality of the Sequence Calls 

EvolSTAR employs a two-step process for base-calling (Figure 21).  In the first step, each base 

query is scrutinized for signs of hybridization intensity abnormalities. If the gain-of-signal of the 

query base is strong and has no mutation, the base is called. In the second step, EvolSTAR then 
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tries to recover base queries that have any hybridization intensity abnormalities with two analysis 

methods, namely neighbourhood hybridization intensity profile analysis and nucleotide 

substitution bias analysis. 

 

Figure 21: Flowchart of EvolSTAR. Bold arrows are “Yes” paths, while normal arrows are “No” paths. 
In the first step, each base query is scrutinized for signs of hybridization intensity abnormalities. Base 
queries with hybridization intensity abnormalities are passed to step 2 for further analysis. 

 

Step 1: Identification of Base Queries with Ambiguity 

On our array platform, the hybridization intensity of each probe is given by the mean and 

standard deviation of the fluorescence intensities of 9 individually scanned pixels. Hence, we 
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define the signal-to-noise ratio (SNR) of a probe as the ratio of the mean to the standard 

deviation of the intensities of the 9 pixels associated with the probe. In our experiments, we 

found that >95% of all probes had SNR less than TSNR (TSNR = µSNR + 2σSNR where µSNR and 

σSNR are the mean and standard deviation of SNR of all probes on the array). The remaining 5% 

of probes with SNR ≥ TSNR are unreliable. Hence, base queries with one or more probes with 

SNR ≥ TSNR are analyzed further in step 2. Furthermore, all base queries whose PM probe in the 

forward strand and PM probe in the reverse strand are non-complementary, or have weak 

PM/MM hybridization intensity differentiation (< 1.4 fold) are also passed to step 2. Lastly, we 

also pass all putative mutation calls to step 2 for confirmation.  

 

Step 2: Mutation confirmation and base query recovery 

A high-confidence mutation call may be a result of coincidental non-specific hybridization of the 

same MM probe in both strands. As such, it may be inadequate to discern true mutations based 

solely on differences in the hybridization intensities of PM and MM probes. From our analysis of 

true-mutation calls made by PBC, we have found that true mutations have a signature NHIP type 

as per described in Figure 20(b). Thus, query bases that result in a mutation call must have this 

signature NHIP. Finally, to confirm the mutation, we perform nucleotide substitution bias 

analysis on these query bases. For each of the query bases with NHIP of type described in Figure 

20(b), we compute the likelihood ℓ that the observed PM probe (representing the mutation) is 

indeed the true PM probe of the sample sequence given the hybridization intensity-based 

ordering of its MM probes (see Method section). If ℓ > 2, the query base results in a strong 

mutation call (represented by upper case base calls ‘A’, ‘C’, ‘G’ or ‘T’). If ℓ > 1, the query base 



 75

results in a mutation call with weak support (represented by lower case base calls ‘a’, ‘c’, ‘g’ or 

‘t’). Otherwise, they are re-assigned an unknown ‘N’ call. 

For query bases that results in a mutation call but have NHIP of type described in Figure 

20(c), they are most likely isolated errors caused by poor PM probe quality. Hence, we correct 

the base-calls of these query bases to their respective reference bases (but represented by lower 

case base calls ‘a’, ‘c’, ‘g’ or ‘t’) in the reference sequences. We also perform the same 

correction to non-high-confidence query bases with NHIP of type described in Figure 20(c). 

We try to recover the remaining query bases that have NHIP of type described in Figure 

20(d) or Figure 20(e) by analyzing the substitution bias from their PM and MM probes in the 

forward and reverse strands separately. Similar to how a mutation is confirmed, we compute the 

likelihood ℓf that the observed PM probe (representing the unsure base call) is indeed the true PM 

probe of the sample sequence given the hybridization intensity-based ordering of its MM probes 

in the forward strand. We also compute a similar likelihood ℓr for the PM probe in the reverse 

strand. If the PM probes in both strands are complementary and ℓf, ℓr > 2, the query base results 

in a strong base call (represented by upper case base calls ‘A’, ‘C’, ‘G’ or ‘T’). However, in 

many cases, the PM probes in both strands are not complementary due to non-specific 

hybridization of MM probes in one or both strands. For such query bases, we make base calls 

based on ℓf and ℓr: If ℓf > ℓr and ℓf > 2, a base call with weak support (represented by lower case 

base calls ‘a’, ‘c’, ‘g’ or ‘t’) is made from the PM probe in the forward strand. Else, if ℓr > ℓf  and 

ℓr > 2, a base call with weak support is made from the PM probe in the reverse strand. Otherwise, 

they are assigned an unknown ‘N’ call. 
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Note that since nucleotide substitution biases may vary depending on the experimental 

conditions, experimental reagents or input samples, for each experiment, we obtain a set of high 

confidence base calls and use them to infer the hybridization intensity reduction orders for each 

PM probe encoding. This is then used to compute likelihood scores for base-calling non-high 

confidence query bases and mutation confirmation. 

 

4.5 Performance of EvolSTAR 

To validate the software, we hybridized 14 patient samples in duplicate onto the microarray. The 

microarrays were analyzed in parallel using Nimblescan (PBC algorithm) and EvolSTAR, and 

the sequences obtained were compared to Sanger capillary sequencing. We counted the number 

of true-non-mutation calls, true-mutation calls, error calls and ambiguous (‘N’) calls for both 

methods (Table 4). We also confirmed that the substitution bias in all 14 duplicate hybridization 

experiments (Table 5) were consistent with that found in Table 3. Compared with the available 

capillary sequences for the 14 samples, EvolSTAR had an average error rate of 0.0029% and 12 

ambiguous calls per sample (346 in total). This is far superior than Nimblescan PBC, where we 

obtained an average error rate of 0.083% and 158 ambiguous calls per sample (4434 in total). 

Furthermore, EvolSTAR called all true mutations correctly. The genome coverage attained by 

EvolSTAR (99.02±0.82%) is also much higher than that of Nimblegen PBC (94.3±6.06%). 
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Sample Program Rep. 

Total Sites 

Verified by 

Capillary 

Mutations 

(Verified 

by 

Capillary) 

True-Non-

Mutation 

Calls 

True 

Mutation 

Calls 

Missed 

Mutations 

Error 

Calls 

129 

EvolSTAR 1 4767 6 4737 6 0 0 

PBC 1 4767 6 4500 6 0 3 

EvolSTAR 2 4767 6 4737 6 0 0 

PBC 2 4767 6 4474 6 0 6 

141 

EvolSTAR 1 4051 6 4026 6 0 0 

PBC 1 4051 6 3832 6 0 10 

EvolSTAR 2 4051 6 4021 6 0 0 

PBC 2 4051 6 3808 6 0 4 

279 

EvolSTAR 1 693 2 670 2 0 0 

PBC 1 693 2 358 1 1 8 

EvolSTAR 2 693 2 682 2 0 0 

PBC 2 693 2 645 2 0 0 

354 

EvolSTAR 1 8950 9 8942 9 0 0 

PBC 1 8950 9 8802 9 0 1 

EvolSTAR 2 8950 9 8944 9 0 0 

PBC 2 8950 9 8851 9 0 0 

380 

EvolSTAR 1 12832 10 12803 10 0 0 

PBC 1 12832 10 12466 10 0 6 

EvolSTAR 2 12832 10 12816 10 0 0 

PBC 2 12832 10 12542 10 0 4 

384 

EvolSTAR 1 6002 6 5992 6 0 0 

PBC 1 6002 6 5888 6 0 0 

EvolSTAR 2 6002 6 5993 6 0 0 

PBC 2 6002 6 5895 6 0 1 

507 

EvolSTAR 1 3921 8 3913 8 0 0 

PBC 1 3921 8 3736 8 0 3 

EvolSTAR 2 3921 8 3916 8 0 0 

PBC 2 3921 8 3758 8 0 2 

581 

EvolSTAR 1 8574 10 8567 10 0 0 

PBC 1 8574 10 8458 10 0 2 

EvolSTAR 2 8574 10 8566 10 0 0 

PBC 2 8574 10 8461 10 0 5 

582 

EvolSTAR 1 3057 4 3051 4 0 0 

PBC 1 3057 4 2986 4 0 0 

EvolSTAR 2 3057 4 3053 4 0 0 

PBC 2 3057 4 3001 4 0 0 

593 

EvolSTAR 1 3054 3 3053 3 0 0 

PBC 1 3054 3 3007 2 1 0 
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EvolSTAR 2 3054 3 3053 3 0 0 

PBC 2 3054 3 2992 2 1 0 

9061364 

EvolSTAR 1 5129 5 5123 5 0 0 

PBC 1 5129 5 5064 5 0 0 

EvolSTAR 2 5129 5 5122 5 0 0 

PBC 2 5129 5 5042 5 0 0 

9061365 

EvolSTAR 1 3000 3 2993 3 0 0 

PBC 1 3000 3 2956 3 0 1 

EvolSTAR 2 3000 3 2991 3 0 0 

PBC 2 3000 3 2941 3 0 0 

9061366 

EvolSTAR 1 1683 3 1683 3 0 0 

PBC 1 1683 3 1649 3 0 1 

EvolSTAR 2 1683 3 1682 3 0 1 

PBC 2 1683 3 1636 3 0 1 

923 

EvolSTAR 1 4373 5 4365 5 0 0 

PBC 1 4373 5 4187 5 0 1 

EvolSTAR 2 4373 5 4330 5 0 1 

PBC 2 4373 5 3738 5 0 6 

 

Table 4: Comparison of Calls made by EvolSTAR and PBC for 14 samples. Types of calls and their 
frequencies generated by EvolSTAR and PBC in replicated microarray hybridizations of 14 patient 
samples. Partial or complete capillary sequences were generated for each sample and used to verify the 
calls made by EvolSTAR and PBC on each replicate. We then count the frequency of true-non-mutation, 
true-mutation, error and ‘N’ calls in each replicate. 

 

We wondered if, and by how much, incorporating NHIP and substitution biases analysis 

to the PBC results would improve the performance of the PBC algorithm.  We observed that 

more than 70% of the 65 error calls (false mutation calls) made by PBC did not have the 

characteristic NHIP of a true-mutation shown in Figure 20(b). The remaining 30% of the error 

calls had a NHIP reminiscent of a true-mutation NHIP but did not satisfy the substitution bias 

rule. Using NHIP and substitution biases analysis together, we were able to reduce the number of 

false mutation calls to only two.  Most of the 4434 ‘N’ calls made by PBC were due to 

conflicting base calls from the forward and reverse strand. By analyzing the NHIP and 

hybridization intensity reduction order of the query base in the forward and reverse strand 
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individually, we were able to identify the noisy strand and hence, make the base call only from 

the non-noisy strand. We were able to recover 92% of the ‘N’ calls made by PBC using this 

approach.  

 

PM probe 

encoding 

Hybridization 

intensity reduction 

order 

Forward strand Reverse strand 

Frequency Frequency 

A 

CGT 2618 1030 

CTG 2347 975 

GCT 4848 1870 

GTC 12571 8889 

TCG 4417 2624 

TGC 16805 16692 

C 

AGT 10843 14309 

ATG 10606 14473 

GAT 1777 1567 

GTA 748 618 

TAG 2006 1784 

TGA 790 623 

G 

ACT 9114 7403 

ATC 5490 3647 

CAT 9369 8811 

CTA 4104 3143 

TAC 2839 1976 

TCA 2458 1790 

T 

ACG 1926 2080 

AGC 2489 2524 

CAG 3211 3721 

CGA 6191 8656 

GAC 7550 9533 

GCA 10713 17092 

 

Table 5: Hybridization intensity reduction orders found in 14 hybridization experiments. Hybridization 
intensity reduction orders found in 135830 true calls from 14 hybridization experiments. For each true 
call, for each strand, we rank the PM probe and its MM probes based on their hybridization intensities in 
decreasing order. We count the frequency of each hybridization intensity reduction order. 
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Sample Program Rep. 

Total 

Sites 

Verified 

by 

Capillary 

Mutations 

(Verified 

by 

Capillary) 

True-Non-

Mutation 

Calls 

True 

Mutation 

Calls 

Missed 

Mutations 

Error 

Calls 

305_Na

sal 

EvolSTAR 1 6676 9 6601 9 0 0 

PBC 1 6676 9 6066 9 0 32 

EvolSTAR 2 6676 9 6569 9 0 1 

PBC 2 6676 9 5946 9 0 45 

305_ce

ll_con

d1 

EvolSTAR 1 6676 9 6667 9 0 0 

PBC 1 6676 9 6515 9 0 3 

EvolSTAR 2 6676 9 6659 9 0 0 

PBC 2 6676 9 6427 9 0 7 

305_ce

ll_con

d2 

EvolSTAR 1 6676 9 6652 9 0 0 

PBC 1 6676 9 6495 9 0 6 

EvolSTAR 2 6676 9 6656 9 0 0 

PBC 2 6676 9 6474 9 0 7 

305_ce

ll_con

d3 

EvolSTAR 1 6676 9 6664 9 0 0 

PBC 1 6676 9 6551 9 0 4 

EvolSTAR 2 6676 9 6663 9 0 0 

PBC 2 6676 9 6503 9 0 4 

305_ce

ll_con

d4 

EvolSTAR 1 6676 9 6658 9 0 0 

PBC 1 6676 9 6531 9 0 6 

EvolSTAR 2 6676 9 6664 9 0 0 

PBC 2 6676 9 6529 9 0 4 

305_ce

ll_con

d5 

EvolSTAR 1 6676 9 6660 9 0 0 

PBC 1 6676 9 6571 9 0 3 

EvolSTAR 2 6676 9 6660 9 0 0 

PBC 2 6676 9 6523 9 0 5 

 

Table 6: Comparison of Calls made by EvolSTAR and PBC for 6 pairs of isolates belonging to patient 
sample 305. Types of calls and their frequencies generated by EvolSTAR and PBC in replicated 
microarray hybridizations of sample 305. Partial or complete capillary sequences were generated for each 
sample and used to verify the calls made by EvolSTAR and PBC on each replicate. We then count the 
frequency of true-non-mutation, true-mutation, error and ‘N’ calls in each replicate. 

 

In addition, we evaluate the robustness and repeatability of EvolSTAR by employing six 

pairs of replicate experiments consisting of one pair nasal swab and five pairs of cell culture 

isolates, belonging to the same patient sample 305 (Table 6). Of the experiments, two pairs of 

replicates (305_nasal and 305_cell_cond1) were amplified under the same optimal experimental 

conditions while each of the other pairs (305_cell_cond2, 305_cell_cond3, 305_cell_cond4, 
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305_cell_cond5) were amplified under different sub-optimal experimental conditions (simulating 

experimental volatility). Compared with the available capillary sequences for sample 305, 

EvolSTAR had an average error rate of 0.0012% and 28 ambiguous calls per sample (338 in 

total). On the other hand, Nimblescan PBC obtained a relatively higher average error rate of 

0.169% and 237 ambiguous calls per sample (2855 in total). Our results showed that EvolSTAR 

is robust and performs well when samples are prepared under sub-optimal conditions. Even for 

nasal swab samples that tend to have much less concentration of virus RNA than cell cultures, 

EvolSTAR suffered only a slight drop in performance compared to Nimblescan PBC. 

In conclusion, we have shown that EvolSTAR is robust and generates sequence calls of 

high accuracy and reproducibility in this pilot study consisting of 40 microarray experiments. 

Meanwhile, efforts will be put in to continually evaluate EvolSTAR with more samples and 

update it on a regular basis as the H1N1 (2009) influenza virus evolves. 

 

4.5.1 Visualization of Sequence Calls 

Besides a FASTA output of the virus sequence, EvolSTAR generates a visualization map of the 

sequence calls using a heat map based on the percentage identity of the called sequence to the 

reference sequence measured at 50 bp windows (Figure 22). The map template consists of all 

eight segments of the 2009 influenza A(H1N1) virus and the locations of known drug binding 

sites (marked with green lines) on the neuraminidase gene. Locations of all mutation calls are 

denoted by red triangles beneath the heat map bar. Sequences that are of low coverage (< 90%) 

are automatically flagged, and the overall PM/MM discrimination ratio for each segment is 

displayed. The heat map bar allows the technician to rapidly assess the quality of the sequence 
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data obtained from the microarray and identify regions where PCR did not work well, or 

presence of potential recombination/reassortment events. Mutations, especially those in close 

proximity to drug binding sites, can be quickly visualized. Other details such as coverage, 

number of base calls successfully made, number of mutations and number of ‘N’ calls for each 

sequence call are also shown on the visualization map. 

 

 

Figure 22: Visualization map of all eight segments of the 2009 influenza A(H1N1) virus and the 
locations of known drug binding sites (marked with green lines) on the neuraminidase (NA) gene 
(Segment 6). A heat map bar is used to represent the quality and coverage of its sequence calls. The 
locations of all mutation calls made by EvolSTAR are represented by red triangles beneath the heat map 
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bar. Sequences with coverage < 90% are automatically flagged as “Low Coverage”. Other details such as 
Coverage: percentage of base calls successfully made, Match: number of base calls that match the 
reference sequence ie non-mutation base calls, Strong Mismatch: number of high confidence base calls 
that do not match the reference sequence ie mutation base calls, Weak Mismatch: number of low 
confidence base calls that do not match the reference sequence ie mutation base calls and Ns: number of 
‘N’ calls, for each sequence call are also shown on the visualization map. 

 

4.6 Discussion and Conclusion 

Traditional statistical and probabilistic sequence-calling techniques ascertain that a base call is of 

high confidence if they exceed pre-defined significance or probability thresholds. This approach 

works well for high confidence base calls but is inadequate to extract sufficient information from 

noisy base calls. It is also difficult to determine the validity of a mutation call purely based on 

the distribution of hybridization intensities of its PM and MM probes. In this work, we have 

described two new hybridization intensity analysis methods that enable us to confidently identify 

true mutations and recover some noisy base calls. Compared to PBC, EvolSTAR has achieved 

superior call rates and accuracies, especially in low concentration samples with high CT values. 

The robustness of the base calls enables our approach to be a practical large-scale evolutionary 

surveillance tool. 

Although we are confident that our resequencing array can successfully generate 

complete sequences for the H1N1(2009) virus and its variants at the current stage, we cannot rule 

out the possibility of reassortments between the H1N1(2009) virus and other influenza viruses. 

Clearly, our resequencing array cannot fully sequence such events and will generate sequences 

with poor quality and coverage of the reassorted segments. To investigate the effects of a 

reassortment event on our array, we independently amplified segments 1, 2, 3, 5, 6 and 7 of the 

2009 influenza A(H1N1) virus and segment 4 of a H3N2 influenza A virus, and hybridized them 
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onto our array. The visualization map of this experiment is shown in Figure 23. As expected, the 

sequence call for segment 4 (based on PM/MM probes from the segment 4 consensus of the 2009 

influenza A(H1N1) virus) is poor in quality and coverage. However, we observed that we were 

able to get good base calls from region 1150-1547. This region turns out to be the only 

significantly similar (70% matched) region between the segment 4 consensus of the 2009 

influenza A(H1N1) virus and segment 4 of a H3N2 virus (CY039087). This shows that 

identifying regions of high similarity between the 2009 influenza A(H1N1) virus with other 

influenza viruses and checking if these regions have good sequence calls may be a plausible way 

of detecting reassortments. The drawback of this approach is that it will fail to detect 

reassortment of certain segments where there are no regions of high similarity between the 

H1N1(2009) virus and the parental influenza virus. It is also difficult to annotate and 

differentiate every region that the H1N1(2009) virus and all other influenza viruses share 

similarity with. We propose an alternative approach to detect reassortments. By analyzing the 

PM/MM hybridization intensity fold-change of high confidence calls of all 8 segments, we found 

that the average PM/MM hybridization intensity foldchange of high confidence calls in segments 

1, 2, 3, 5, 6, and 7 belonging to the 2009 influenza A(H1N1) virus is approximately 4.5 while the 

average PM/MM hybridization intensity fold-change of high confidence calls in segment 4 

belonging to the H3N2 influenza A virus is only 1.9. The most likely reason for this huge drop in 

the average PM/MM hybridization intensity fold-change of high confidence calls is that the 

signal gained by most of the segment 4 PM probes on our array are through cross-hybridization 

to the segment 4 sequence of the H3N2 influenza A virus, and thus much lower than signal 

gained from true specific binding. Thus, by computing and comparing the average PM/MM 

hybridization intensity fold-change of high confidence calls in each segment, we can identify 
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potential reassortments in a given H1N1(2009) virus sample. Virus samples with possible 

reassortments can then be sequenced using capillary sequencing or customized reassortment 

resequencing arrays. 

 

 

Figure 23: Visualization map of a 2009 influenza A(H1N1) virus with artificial reassortment of H3N2 
segment 4. We independently amplified segments 1, 2, 3, 5, 6 and 7 of the 2009 influenza A(H1N1) virus 
and segment 4 of a H3N2 influenza A virus, and hybridized them onto our array. As expected, the 
sequence call for segment 4 (based on PM/MM probes from the segment 4 consensus of the 2009 
influenza A(H1N1) virus) is poor in quality and coverage. 

 



 86

 So far, the sequence diversity of H1N1 2009 influenza virus has been rather limited. 

From our analysis, it would be possible to resequence all the published isolates using this 

resequencing approach.  However, as antigenic drift is expected to occur, it is likely that the 

resequencing array would need to be updated at least annually.  Updating the array requires only 

bioinformatics input, and does not require any other additional manufacturing costs. Thus, this 

combination of sample amplification primers, low-cost multiplex array and robust interpretation 

software allows sustainable, rapid, large-scale biosurveillance of the influenza H1N1(2009) 

virus.
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Chapter 5 

RECOMBINATION DETECTION IN VIRAL GENOMES 

5.1 Sources of Inaccuracy of Distance-based Window Methods 

Accurate phylogenetic analysis gives us important clues on the origins, pathogenicity and 

treatments of viruses and bacteria. The first crucial step in carrying out an accurate phylogenetic 

analysis is the identification of recombination breakpoints. A breakpoint is defined as the 

location where a recombination event occurs in a sequence.  

A hugely popular technique is to slide a window along a sequence alignment and look for 

differences in distance metrics or phylogenetic trees within each window. More specifically, a 

length-w “sliding window” is defined as a window enclosing the alignments from positions i to i 

+ w. Suppose b is a breakpoint, we would expect the immediate left and right neighboring 

windows [b – w …b – 1], [b …b + w] of b to enclose alignments that are significantly different. 

Hence, to find the exact positions of the breakpoints (if any), the sliding window approach 

performs an exhaustive search by sliding a length-w window across the alignment and for every 

possible position i (w ≤ i ≤ N – w), it compares the alignments enclosed by neighboring windows 

[i – w …i – 1] and [i …i + w]. There are two main ways to compare alignments, namely by 

distance measures (distance-based) or phylogenetic trees’ topologies (phylogeny-based). 

Although phylogeny-based measures are widely accepted as more accurate than distance-based 

measures, distance-based measures are often much faster and more scalable for large datasets. 

However, for distance-based window methods to be as reliable as phylogeny-based methods, 

their accuracy issues must be addressed.  
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There are two sources of inaccuracy when using distance-based window methods to 

detect recombination. Firstly, the use of conventional distance metrics, such as hamming-

distance and edit-distance that measure overall homology results in phylogenetic information 

loss. Secondly, recombination detection is too sensitive on the choice of window length. Recent 

works have shown that their results are most accurate when the given window length is 

approximately the recombinant subsequence length [62, 64]. If the length of the recombinant is 

not known in advance, an algorithm using different window lengths may produce vastly different 

analysis results on the same dataset. Furthermore, there may be problems in detecting 

recombinant regions shorter than the given window length due to the noise caused by the original 

sequence on either side of the recombinant subsequence included in the window (Figure 24). 

 

Figure 24: Window length sensitivity problem when window length w is longer than the recombinant 
subsequence (S’2) length. (a) and (b) show the introduction of alignment noise into the computation of 
any distance measure or phylogenetic tree of the alignment in [i…i+w]. (c) shows the result of running 
Pruned-PDM on a synthetic dataset SD3 with breakpoints at site 1000, 2000, 3000 and 4000 using a 
length-500 window. (d) shows the result of running Pruned-PDM on the same dataset using a length-600 
window. Here, the breakpoints are inaccurately detected at sites 700, 2600, 3200 and 4200. 

 
To improve the information content of conventional distance measures and to reduce the 

impact of different window lengths on recombination detection, we employed three techniques:  
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1. Instead of using base-by-base comparison, the similarity of an alignment is computed 

using the number of shared (k,m)-mers, that is, length-k alignments with at most m 

mismatches. This measure takes into account the different mutation rates along the 

alignment by varying its mismatch threshold m automatically. This avoids the effect of 

random point mutations which causes inaccuracy in distance measures using base-by-

base comparison. 

 

2. Given a window instance, we use a weighting strategy that assigns heavier weights to 

positions nearer the putative breakpoint and lighter weights to positions further away 

from the putative breakpoint. This reduces the effect of alignment noise as seen in Figure 

24(a)(b) when computing the similarity score. 

 

3. Use contiguous chains of (k,m)-mers to form Contigs. Contigs have even distribution of 

mismatches and thus, are better estimations of long common subsequences in an 

alignment. 

 

5.2 Using (k, m)-mers as the Basic Unit of Similarity Measurement 

Conventional distance measures such as hamming-distance and edit-distance that perform base-

by-base comparisons are susceptible to noise caused by random mutations. Furthermore, they 

compute only overall sequence homology and omit important details about the distribution of 

mismatches and the distribution of contiguous matches that may provide further indication of 

recombination. A possible solution is to use shared (k,m)-mers as the basic unit of similarity 

measurement in place of base-by-base comparisons. 
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Definition 1. Let A be a length-n alignment of two sequences S1, S2. Let A[x… x+k-1] be a 

length-k sub-alignment from position x to position (x + k-1) of A. A[x…x+k-1] is a shared (k,m)-

mer iff A[x…x+k-1] has less than m mismatches. This is shown in Figure 25. 

 

Essentially, by counting the number of shared (k,m)-mers, we can identify homologous 

regions of two sequences with an underlying rate of random mutation. Here, the selection of 

values for k and m is vital as k determines the specificity of homologous regions found and m 

estimates the underlying random mutation rate. Note that k should be small but at least of length 

(log2n + 1) to ensure specificity. Clearly, the selection of a global value for m is not feasible 

because the underlying rate of random mutations varies across the alignment. Hence, a localized 

value of m must be chosen for each sub-alignment enclosed by a window instance. We describe a 

heuristic to automatically determine m for a window instance: Given a length-w window 

[i…i+w] with parameters k and m, let Km and K’m be the number of shared (k,m)-mers and the 

number of non-shared (k,m)-mers respectively (note that Km + K’m = w – k + 1). Starting with m 

= 0, we iteratively increase m until Km > K’m. Denote }'|min{ mmi KKmm >= . At this point of time, 

a majority of (k,m)-mers in the window are shared (k,m)-mers having less than mi random 

mutations. This becomes a reasonable estimate of the underlying random mutation rate of the 

alignment enclosed by [i…i+w]. Hence, we use mi as the mismatch threshold in [i…i+w]. 
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Figure 25: A diagram showing how shared (k, m)-mers are defined in each window of a putative 

breakpoint i of an alignment A of two sequences S1, S2. Top: Shared (k, m)-mers for [i-w…i-1] and 

[i…i+w] using mismatch thresholds mi,L = 1 and mi,R = 0 respectively. Bottom: After normalization (mi = 

1), the number of shared (5,1)-mers in each window reflects more accurately the relative sequence 

homology. Hence, kmdi,L = 13 and kmdi,R = 17. Note that consecutive shared (k, m)-mers form a Contig 

which we will elaborate in Section 5.1.2. 

 

To detect recombination in an alignment of two sequences S1 and S2, we compute and 

compare a similarity score based on the shared (k,m)-mers of the two neighboring windows [i-

w…i-1] and [i…i+w] of a putative breakpoint i. Let mi,L and mi,R  be the mismatch thresholds of 

[i-w…i-1] and [i…i+w] respectively. Clearly, we cannot compare any similarity score of [i-w…i-

1] and [i…i+w] when mi,L  ≠ mi,R . Thus, we need to normalize mi,L and mi,R  so that shared (k,m)-
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mers in [i-w…i-1] and [i…i+w] are defined based on a single mismatch threshold under the 

assumption of a common random mutation rate. Note that if i is a breakpoint or has high 

mutation rates, then the sequence homologies in the alignment enclosed by one window would 

be quite different from that enclosed in the other window (ie mi,L  ≠ mi,R). We exploit this 

observation and use the normalized mismatch threshold at i, mi = max(mi,L, mi,R) to define shared 

(k,m)-mers in both [i-w…i-1] and [i…i+w] (Figure 25). In this way, the window with the lower 

mismatch threshold will have many more shared (k,m)-mers than the other window with the 

higher mismatch threshold. Thus, any irregularities at i such as recombination and high mutation 

rates would be shown as a huge discrepancy in the number of shared (k,m)-mers in [i-w…i-1] 

and [i…i+w]. Formally, we denote the number of shared (k,m)-mers between S1 and S2 in each 

neighboring window of a putative breakpoint i as the km-distance (kmd): 

For the left window [i-w…i-1], kmdi,L(S1, S2) = |Pi,L| 

For the right window [i…i+w], kmdi,R(S1, S2) = |Pi,R| 

where Pi,L = {j | i-w ≤ j ≤ i-1-k and A[j…j+k-1] is a shared (k, m)-mer} and Pi,L = {j | i ≤ j ≤ i+w-k 

and A[j…j+k-1] is a shared (k, m)-mer}. Recombination is then inferred by some metric 

computed based on the magnitude of difference between kmdi,L and kmdi,R. This is further 

elaborated in Section 5.5. 

 

5.3 Contigs as a Better Estimation of Long Common Subsequences 

The previous section championed the use of shared (k,m)-mers over base-by-base comparisons 

when measuring homology between two sequences. However, they are too short to truly 

represent the degree of homology between two sequences. A better indication of homology 
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between two sequences would be the number and length distributions of long common 

subsequences. Now, the question is how do we obtain long common subsequences of two 

sequences enclosed by a window with only short shared (k,m)-mers? Note that a length-L 

common subsequence of S1 and S2 is a tiling of (L – k + 1) consecutive shared (k,m)-mers when k 

≤ L. In this paper, we define a common subsequence of S1, S2 as a chain of consecutive shared 

(k,m)-mers, which is known as a Contig. 

 

Definition 2. A Contig is a length-L common subsequence of two sequences S1 and S2 formed by 

a chain of consecutive shared (k,m)-mers shared by S1 and S2. It has two parameters, namely the 

starting position p and the member size s. Here, p refers to the position of the Contig nearest to a 

putative breakpoint i and s = L – k + 1, that is, the number of consecutive shared (k,m)-mers 

chained to form the Contig. Thus a Contig can be written as Contig(p, s). (See Figure 25) 

 

It is easy to see that any length-L’ sub-Contig of a length-L Contig where k ≤ L’ ≤ L is 

guaranteed to have less than (m/k * L’) mismatches. In addition, Contigs have an even 

distribution of mismatches. On the contrary, long common subsequences may have 

concentrations of mismatches in localized regions, despite passing the overall mismatch 

threshold. This creates a dilemma of whether to split a long common subsequence into shorter 

ones at regions where there are many mismatches. Our definition of Contigs avoids this problem 

and thus is more reflective of the localized similarity between two sequences.  

This leads to the assessment of a position i being a true breakpoint by two criteria: 

1. If i  is a breakpoint, the Contig length distributions in [i-w…i-1] and [i…i+w] will be 

significantly different due to the distinct difference in sequence homology of the 
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alignment enclosed by each window. Hence, we can assess if position i is a 

breakpoint by perform a Kolmogorov-Smirnov test [118] on the Contig length 

distributions in [i-w…i-1] and [i…i+w] at 99% confidence interval. 

 

2. There should be a significant difference between similarity scores computed for the 

alignment in [i-w…i-1] and [i…i+w]. 

Note that in the previous section, the km-distances, kmdi,L and kmdi,R, were used as the 

similarity scores for the alignment enclosed by [i-w…i-1] and [i…i+w]. Next section describes a 

weighting strategy to improve the km-distance to incorporate the concept of Contigs. Similarly, 

we elaborate on the metric to detect recombination in Section 5.5. 

 

5.4 Breakpoint Specific Positional Weighted Distance Measure 

Depicted in Figure 24(a)(b), the alignment noise affect the detection of breakpoint. We solve the 

issue by assigning weights to all positions enclosed by [i-w…i-1] and [i…i+w] with respect to a 

putative breakpoint i. More specifically, we assign heavier weights to positions in [i-w…i-1] and 

[i…i+w] near to the putative breakpoint i while lighter weights to positions in [i-w…i-1] and 

[i…i+w]  that are further away from the putative breakpoint. We justify our proposed weighting 

strategy to solve the window length sensitivity problem based on Figure 24(a)(b):  In Figure 

24(a) where i is a true breakpoint, positions that are furthest away from i are most likely to 

contribute to alignment noise if the window length is too large. Thus, by assigning these 

positions the lightest weights when computing the km-distance for each window, alignment 

noise is reduced. In Figure 24(b) where i is not a true breakpoint, the alignment near i in [i-w…i-
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1] and [i…i+w] will not experience a sudden significant change. Since positions near i are 

assigned heavier weights, the km-distance in [i-w…i-1] and [i…i+w] will most likely not have a 

sudden significant change too. 

Clearly, a good implementation of our weighting strategy requires a suitable function or a 

suitable family of functions that assigns a weight to a position in neighboring windows [i-w…i-

1], [i…i+w] based on its absolute distance from a putative breakpoint i. Let S1 and S2 be two 

aligned length-n sequences with a putative breakpoint at position i with neighboring windows [i-

w…i-1], [i…i+w]. Let x be the relative distance of a position j in [i-w…i-1], [i…i+w] from the 

breakpoint i, that is x = j-i, and -w ≤ x ≤ w. Next, we define a positive weight function Fi : X 

→ +ℜ  where X = {x | -w ≤ x ≤ w}. Fi(x) satisfies the properties that (i) Fi(x) = Fi(-x) and (ii) Fi(x) 

is decreasing when |x| increases. For simplicity, we set Fi(0) = 1 and Fi(w) = Fi(-w) = 0. A family 

of functions satisfies the above properties is as follows: 
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Note that k controls the decreasing rate of Fi(x). In our application, we need moderate 

decreasing rate and hence we set k=2 by default. In this case, Fi(x) is in fact a reverse parabola 

shape.  

Next, we describe how this weighting strategy incorporates the notion of Contigs in the 

km-distance. The idea is to assign a weight to each shared (k, m)-mer based on which Contig it 

belongs to. In this way, shared (k, m)-mers belonging to the more informative Contigs (closer to 

the putative breakpoint) are assigned heavier weights than those belonging to Contigs that are 

more prone to alignment noise (further away from the putative breakpoint). More specifically, 

our weighting strategy assigns each Contig(p, s) and its member shared (k, m)-mers a weight 
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Fi(|i-p|). Since Contigs do not overlap in a window, the weight assigned to each Contig and its 

member shared (k, m)-mers is unique. Consequently, given Contig(p1, s1) and Contig(p2, s2) with 

assigned weights Fi(|i- p1|) and Fi(|i- p2|) respectively, Fi(|i- p1|) > Fi(|i- p2|) iff |i- p1| < |i- p2|. 

Thus, given a putative breakpoint i and the two neighboring windows [i-w…i-1] and 

[i…i+w], we compute the improved Breakpoint specific positional Weighted Contig-Alignment 

(BWCA) score for the alignment of S1 and S2 in each neighboring window of a putative 

breakpoint i: 

For window [i-w…i-1], ∑
∈∈

×−=
LijLij SsPp

jjiLi spiFSSBWCA
,, ;

21, )(),(
  

For window [i…+-w], ∑
∈∈
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where Ci,L = {Contig(pj, sj) | i-w ≤ pj ≤ i -1} and Ci,R = {Contig(pj, sj) | i ≤ pj ≤ i + w} are the sets 

of Contigs in [i-w…i-1] and [i…i+w] respectively; Si,L = {sj | Contig(pj, sj) ∈ Ci,L} and Si,R = {sj | 

Contig(pj, sj) ∈  Ci,R} are the corresponding set of member sizes of the Contigs in Ci,L and Ci,R; 

Pi,L = {pj | Contig(pj, sj) ∈  Ci,L} and Pi,R = {pj | Contig(pj, sj) ∈ Ci,R} are the corresponding set of 

starting positions of the Contigs in Ci,L and Ci,R. 

If the difference between BWCAi,L and BWCAi,R is big, position i is expected to be a 

recombination breakpoint. Section 5.5 elaborates how recombination is inferred based on this 

difference. 
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5.5 The RB-Finder Algorithm to Detect Recombination 

We have presented three techniques to address the main criticisms (accuracy and efficiency) of 

distance-based window methods to detect recombination among two aligned sequences. Next, 

we empirically investigate the effectiveness of our km-distance and BWCA scores to detect 

recombination as opposed to using a conventional distance measure such as the Kronecker delta 

function. Our simulations show that in real datasets where recombination events are more 

complex and harder to detect, our highly sensitive BWCA score stands a better chance of 

detecting the breakpoints than other distance measures.  

We make use of the BWCA score and propose the RB-Finder algorithm to detect 

recombination in a multiple sequence alignment. Given a length-n alignment of M sequences, the 

idea is to move a length-w sliding window along the alignment and, for each position i, computes 

a Recombination Detection Score (RDSi) based on the highly sensitive BWCA score and two key 

observations to differentiate recombination and high mutation rates. At the real breakpoint i, two 

concurrent observations are prevalent: (1) there exists two sequences Sα, Sβ  in the alignment M 

such that the BWCA score increases significantly and suddenly across i, ie BWCAi,L(Sα, Sβ) – 

BWCAi,R(Sα, Sβ) << 0 and (2) there exists yet another sequence Sγ (Sγ ≠ Sβ) such that the BWCA 

score decreases significantly and suddenly across i, ie BWCAi,L(Sα, Sγ) – BWCAi,R(Sα, Sγ) >> 0. 

The first observation is made when there is a transfer of genetic sequence from Sβ to Sα at i 

resulting in a sudden increase in homology between Sα and Sβ. The second observation is that 

after the recombination event at i, Sα is no longer as homologous to some sequence Sγ as 

compared to prior the recombination event. From a phylogeny point of view, the two 

observations are in effect looking for the most divergent branch between the phylogenetic tree in 

[i-w…i-1] and the phylogenetic tree in [i…i+w]. This is shown in Figure 26. 
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Figure 26: Search for most divergent branch in phylogenetic tree across adjacent windows. (a) shows that 

Sα is a recombinant of Sβ at position i to (i+w). (b) shows the phylogenetic trees in [i-w…i-1] and [i…i+w] 

respectively. In [i…i+w], Sα is phylogenetically closer to Sβ, than in [i-w…i-1], resulting in BWCAi,L(Sα, 

Sβ) - BWCAi,R(Sα, Sβ) << 0. Concurrently, Sα is phylogenetically further away from Sγ, resulting in 

BWCAi,L(Sα, Sγ) - BWCAi,R(Sα, Sγ) >> 0. Sα is the most divergent branch between the phylogenetic tree in 

[i-w…i-1] and [i…i+w] and thus detected to most likely contain recombination. 

 

At every putative breakpoint i, we examine each of the M sequences for the two 

observations. Specifically, for each sequence Sα ∈ M at i, we find Contigs with each of the other 

sequences Sβ (Sβ ∈ M and Sα ≠ Sβ) in neighboring windows [i-w…i-1] and [i…i+w]. The KS-test 

is then used to filter sequences whose distributions of contig lengths with Sα in both windows are 

not significantly different at 99% confidence interval. We then compute the BWCA scores of Sα 

with sequences that pass the KS-test in neighboring windows [i-w…i-1] and [i…i+w]. We obtain 

the most significant increase in BWCA score across [i-w…i-1] and [i…i+w] for Sα, that is, 

BWCAi,incr(Sα) = max{BWCAi,R(Sα, Sβ) – BWCAi,L(Sα, Sβ) | Sβ∈ M and  Sα ≠ Sβ}. Similarly, we 

also obtain the most significant decrease in BWCA score across [i-w…i-1] and [i…i+w] for Sα, 

BWCAi,decr(Sα) = max{BWCAi,L(Sα, Sγ) – BWCAi,R(Sα, Sγ) | Sγ∈ M and Sα ≠ Sγ ≠ Sβ}. 
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Subsequently, we compute RDSi(Sα), the recombination detection score for Sα accordingly as 

shown in Table 7: 

 

Scenario 
Observations 

Present 
RDSi(Sα) = Reason 

1 (1) and (2) BWCAi,incr(Sα) * BWCAi,decr(Sα) Recombination 

2 (1) 0 

Homologous regions not 

caused by 

recombination, most 

probably conserved 

regions 

3 (2) - BWCAi,decr(Sα) High rates of mutation 

4 None 0 
No significant change in 

homology 

 

Table 7:  The formula to compute the RDS for a sequence based on the 2 observations. 

 

Note that scenario 1 produces a distinctly high RDSi(Sα) that indicates Sα has a 

recombination event at position i. On the other hand, scenario 3 produces a negative RDSi(Sα) to 

clearly indicate high mutation rates. The other scenarios are deemed uninteresting in 

recombination detection and assigned RDSi(Sα) = 0. 

Finally, we select the highest RDS among the M sequences to representing the RDS for 

breakpoint i: 

RDSi = max(RDSi (Sα)) 

 

It is easy to see that if RDSi(Sα) < 0 for all Sα ∈ M, then RDSi < 0. This would indicate that the 

region around i suffers from high mutation rates. Conversely, a high RDSi would mean that i is 
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most likely a true recombination breakpoint. We present the pseudo-code for the RB-Finder 

algorithm below in Figure 27. 

 

 

Figure 27: The pseudo-code for RB-Finder algorithm. 

 

5.6 Evaluation of the RB-Finder Algorithm 

Evaluation of our recombination detection algorithm is carried out by applying our algorithm to 

three synthetic and one biological datasets used in two previous papers [64, 65]. The three 

synthetic datasets (SD1, SD2 and SD3) each contains a 5500-bp alignment of eight sequences 
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(S1, S2, …., S8) whose evolution was simulated with the Kimura model [119]. For SD1 and SD2, 

two recombination events were simulated: an ancient event affecting the region between sites 

1000 and 1500, and a recent event affecting the region between sites 2500 and 3000. To test 

whether the detection method can successfully differentiate between recombination and rate 

variation, a mutational hotspot between sites 4000 and 4500 was introduced. The average branch 

length of the underlying phylogenetic trees for SD1 and SD2 are 0.1 and 0.01 respectively. The 

third synthetic dataset SD3 contains an ancient event affecting the region between sites 1000 and 

2000, and a recent event between sites 3000 and 4000. The branch lengths of the tree were drawn 

from a uniform distribution on the interval [0.003, 0.005]. SD3 was deliberately created by 

Husmeier et al. [64] to thwart previous algorithms cited in their paper. The biological dataset 

used in our experiment is a length-3049 gap-removed ClustalW [120] alignment of 10 Hepatitis 

B virus sequences. It consists of two recombinant strains (D0329 and X68292) and eight non-

recombinant strains (V00866, M57663, D00330, M54923, X01587, D00630, M32138 and 

L27106). 

We ran our algorithm using (k,m)-mers with k=20 while m is automatically determined 

depending on the point mutation rate, and two window lengths 500 and 600. Note that the 

optimal window length to detect recombination in three of the four datasets (SD1, SD2 and Hep 

B) is 500 since all the recombination events that happened in these three datasets are of span 500 

nucleotides. Thus, a window length of 600 would generate alignment noise and decrease 

accuracy of recombination detection in the three datasets. We shall see from the following results 

that the effects of alignment noise on recombination detection using our algorithm were minimal. 

We compared our results with that from Pruned-PDM since it has the highest accuracy. In 

addition, we also ran our datasets using Recco (default parameters with 1000 iterations), a newly 
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developed windowless method, to investigate the effectiveness of non-sliding-window methods 

in detecting recombination in our setting. 

 

 

Figure 28: Recombination analysis results on SD1. Top: Results of our algorithm on SD1 with window 

lengths of 500 and 600. The circles highlight the recombination breakpoints at position 1000, 1500, 2500 

and 3000 respectively. The rectangles highlight the high mutation regions which we detected. Middle: 

Results of Pruned-PDM on SD1 with window lengths of 500 and 600. When w= 600, recombination 

breakpoints at position 1000 and 1500 were detected at 1100 and 1400 instead. There are also multiple 

peaks around position 2500 and 3000. Bottom: Results of Recco showed that breakpoints at 2500 and 

3000 were detected correctly. The breakpoint at 1500 was detected at position 1400. Breakpoint 1000 was 

not detected and the high mutation region around position 5000 was wrongly detected as a breakpoint. 

 

For SD1 and SD2, when we ran our algorithm with window lengths 500 and 600, we 

detected a pair of weak recombination breakpoints at sites 1000 and 1500, and a pair of strong 

recombination breakpoints at sites 2500 and 3000. This is shown in Figure 28 and Figure 29 

respectively. Note that a majority of the scores at sites 4000 to 5000 are less than 0 which is an 
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indication of high mutation rates. Thus, our algorithm also has a nice property of detection high 

mutation rates that may be mistaken for recombination. Pruned-PDM on the other hand produced 

inaccurate breakpoint positions with window size 600 for both datasets. We also ran Recco on 

the two datasets. For SD1, Recco could only detect the weak recombination breakpoint at 

position 1500 and the strong recombination breakpoints at position 2500 and 3000. Breakpoint at 

position 1000 was not detected and the mutation hotspot around position 5000 was wrongly 

detected as a breakpoint. For SD2, Recco could only detect the two strong recombination 

breakpoints. SD3 is a difficult dataset to analyze because there are only subtle differences in the 

alignment. Despite the very low rate of evolution in SD3, our algorithm detected recombination 

breakpoints at sites 1000, 2000, 3000 and 4000. In addition, our algorithm also detected a 

mutational hotspot around site 5000. The results for SD3 using window lengths 500 and 600 are 

shown in Figure 30. This time, Pruned-PDM not only produced inaccurate breakpoints, but also 

failed to detect the breakpoint at position 2000. Recco did not perform well on this dataset and 

could only detect breakpoints at positions 3000 and 4000. 

For the Hepatitis B dataset, we detected three breakpoints around the sites 600, 1700 and 

2200 for window lengths 500 and 600. In addition, we also detected an unreported recombination 

breakpoint around site 1000, which can be found by DSS and Pruned-PDM only when they use a 

window length of 300. The three breakpoints around the sites 600, 1700 and 2200 were also 

found by Recco. However, Recco also detected several other breakpoints which were previously 

unreported. This is shown in Figure 31. 

 

 



 104

 

Figure 29: Recombination analysis results on SD2. Top: Results of our algorithm on SD2 with window 

lengths of 500 and 600. The circles highlight the recombination breakpoints at position 1000, 1500, 2500 

and 3000 respectively. The rectangles highlight the high mutation regions which we detected. Middle: 

Results of Pruned-PDM on SD2 with window lengths of 500 and 600. When w = 600, the breakpoints are 

inaccurately detected at sites 1100, 1300, 2400 and 3000. Bottom: Results of Recco showed that except 

the strong recombination breakpoints at 2500 and 3000, the rest were not detected. 

 

Our results using the four datasets are consistent with the DSS, Pruned-PDM and 

RECOMP methods. Through the use of our proposed weighting strategy and two key 

recombination-identifying observations, our algorithm is able to compute recombination 

breakpoints of a given alignment in a matter of minutes. Compared to Pruned-PDM which takes 

hours to analyze the same dataset, our algorithm is very much faster and achieves similarly 

accurate results. Unlike RECOMP which gives the user a choice of four graphs to decipher the 

recombination breakpoints, our algorithm generates only a single graph and thus prevents 

ambiguity of deciding which graph best represents the correct recombination breakpoints. An 
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example of this ambiguity is shown in their results for the SD3 dataset [65]. In their analysis, 

three of four graphs wrongly indicated that there is a recombination breakpoint at position 5000. 

Hence, it is difficult for the user to correctly infer that the recombination breakpoint detected at 

position 5000 by the three graphs is incorrect based on the remaining graph. In our analysis, we 

correctly identify the region around position 5000 as a mutational hotspot. This example also 

illustrates another advantage that our algorithm has over previous methods. Previous algorithms 

cannot differentiate normal regions from mutation hotspots. A useful feature of our algorithm is 

that it produces a RDS < 0 when the region has a high mutation rate. This immediately provides 

more biological information about the sequences to aid experimental studies. 

 

 

Figure 30: Recombination analysis results on SD3. Top: Results of our algorithm on SD3 with window 

lengths of 500 and 600. The circles highlight the recombination breakpoints at position 1000, 2000, 3000 

and 4000 respectively. The rectangles highlight the high mutation regions which we detected. Middle: 

Results of Pruned-PDM on SD3 with window lengths of 500 and 600. When w = 600, the breakpoint at 
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position 2000 was undetected. Other breakpoints are also inaccurate. Bottom: Results of Recco showed 

that only breakpoints at 3000 and 4000 were detected.  

 

 

Figure 31: Recombination analysis results on Hep B. Top: Results of our algorithm on Hep B with 

window lengths of 500 and 600. The circles highlight the recombination breakpoints at position 600, 1700 

and 2200 respectively. There is an unreported recombination breakpoint at position 1000. Middle: Results 

of Pruned-PDM on SD3 with window lengths of 500 and 600. The breakpoints are also detected at the 

same positions. Bottom: Results of Recco showed that breakpoints at 600, 1700 and 2200 were detected. 

However, there were several unreported breakpoints detected. 

 

From the experiments, it is interesting to see that the non-window method Recco did not 

perform as well as the sliding window methods presented, with respect to the four datasets. 

Recco uses a cost model which tries to reconstruct the recombinant sequence using other 

sequences in the alignment. In regions where there is weak recombination, this reconstruction is 

often thwarted by noise and thus may be extremely difficult. In such cases, sliding window 
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methods which are able to isolate small regions for separate detection analysis may be a better 

alternative. 

 

5.7 Selection of Optimal Shared (k, m)-mers 

Our algorithm uses shared (k,m)-mers to avoid the effect of random point mutations in an 

alignment which improves the accuracy and sensitivity of detecting recombination. Since the 

underlying mutation rate m is automatically determined, the selection of the parameter k used to 

define a shared (k,m)-mer is crucial in achieving optimal performance for our method. When k ≈ 

1, our algorithm is in fact using hamming distance and hence suffers from noise caused by 

random point mutations. On the other hand, if k is too long, it becomes harder to find shared 

(k,m)-mers in the alignment. Consequently, our algorithm loses sensitivity in detecting 

recombination breakpoints.  

To determine the range of k values where our method works optimally, we ran RBFinder 

on dataset SD1 and the more difficult dataset SD2 with different values of k and window size of 

500. From Figure 32, we see that our algorithm performs optimally when k is between 10 and 20. 

When k = 1, our algorithm detects all the recombination breakpoints in SD1 accurately. 

However, the same k did not yield good results when applied on SD2, the dataset with more 

random point mutations. This clearly demonstrates the susceptibility of conventional distance 

metrics such as hamming distance when used in recombination detection. On the other hand, 

when k gets large, our method is less sensitive to subtle local alignment changes. Thus, this 

results in distortions in regions of the graph where the breakpoints are. 
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Figure 32: Results of running RBFinder on dataset SD1 and the more difficult dataset SD2 with different 

values of k for defining shared (k,m)-mers and window size of 500. Our algorithm performs optimally 

when k = 10 and k = 20. 
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5.8 Analysis of Circulating Recombinant Forms of HIV-1 

Acquired Immune Deficiency Syndrome (AIDS) is a worldwide epidemic caused by a virus 

known as human immunodeficiency virus (HIV). Efforts to develop HIV vaccines and medicine 

have been thwarted with difficulties due to the fast mutation and recombination rates of HIV 

[121] There are two types of HIV, namely HIV-1 and HIV-2. HIV-1, which is responsible for 

most human infections, consists of three major groups: M, N and O. The most common group M 

of HIV-1 is further characterized into 9 subtypes (A, B, C, D, F, H, J and K). The ease at which 

HIV-1 subtypes recombine has also resulted in numerous circulating recombinant forms (CRFs) 

of HIV-1 [122]. These CRFs pose more difficulties to finding a cure. Thus, the analysis of 

existing CRFs and the identification of new CRFs will be vital to the efforts against HIV. 

The HIV database (http://www.hiv.lanl.gov/content/hiv-db/mainpage.html) contains a list of 

all existing CRFs to date. Each CRF is classified according to its recombinant subtypes. Eg 

CRF02_AG is a recombinant of subtype A and subtype G. In addition, a graphical representation 

of each CRF in terms of where the recombination occurs at gene level is also available 

(http://hiv-web.lanl.gov/content/hiv-db/CRFs/CRFs.html). From the database, we downloaded 

the sequences of 13 CRFs and 35 reference sequences of the 9 subtypes. Experiments are 

performed in the following manner: 

 

1. For each CRF, download its sequence and several reference sequences of its parent 

subtypes. Align with ClustalW with default parameters. 

2. Run RB-Finder on each alignment. Gaps are not removed because they appear in almost 

all regions of the alignments. Instead, we modified our program so that a length-w sliding 
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window is allowed to have 0.1w gaps. This is to accommodate insertions and deletions in 

our computation of recombination breakpoints. To prevent inaccuracies caused by 

incompletely assemblies, sequences with more than 0.1w gaps in a particular window will 

not be considered. 

3. Identify breakpoints of each CRF and compare with the graphical representation of the 

corresponding CRF. In addition, identify the reference sequences of its parent subtypes 

that contributed to the recombination. 

 

We summarize our findings in Table 8. 

 

CRF 
Reference 

Strain 

Assigned 

Subtypes 

Number of 

breakpoints in 

graphical 

representation 

Number of 

breakpoints 

detected by 

RB-Finder 

Comments 

CRF02_AG L39106 A,G 9 8 

• Breakpoint at LTR not detected 
because reference sequences at LTR 
is incomplete 

• AF286238 belonging to subtype A 
did not contribute to recombination 

CRF03_AB AF193276 A,B 2 2 
• AF286238 belonging to subtype A 

did not contribute to recombination 

CRF05_DF AF193253 D,F 9 9 
• AY371158 belonging to subtype F2 

did not contribute to recombination 

CRF10_CD AF289548 C,D 9 9  

CRF12_BF AF385936 B,F 10 7 

• Breakpoint at LTR not detected 
because reference sequences at LTR 
is incomplete 

• 2 short recombinant regions (≈ 100 
bp) resulted in 1 breakpoint each 
instead of 2 

CRF14_BG AF423756 B,G 2 2  

CRF16_A2D AF457060 A2,D 3 2 

• Breakpoint at LTR not detected 
because reference sequences at LTR 
is incomplete 

• None of the reference sequences 
belonging to subtype A1 contributed 
to recombination 

CRF20_BG AY900577 B,G 6 4 • 2 short recombinant regions (≈ 100 
bp) resulted in 1 breakpoint each 
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instead of 2 

CRF21_A2D AF457051 A2,D 7 7 

• 3 of 4 of the reference sequences 
belonging to subtype A1 (AF069670, 
AF004885, AF484509) contributed to 
recombination 

CRF23_BG AY900571 B,G 6 5 
• 1 short recombinant region (≈ 150 bp) 

resulted in 1 breakpoint each instead 
of 2 

CRF24_BG AY900574 B,G 6 4 
• 2 short recombinant regions (≈ 100 

bp) resulted in 1 breakpoint each 
instead of 2 

CRF28_BF DQ85873 B,F 2 2 
• None of the reference sequences 

belonging to subtype F2 contributed 
to recombination 

CRF29_BF DQ85876 B,F 4 4 
• None of the reference sequences 

belonging to subtype F2 contributed 
to recombination 

 

Table 8: Results of running RB-Finder on 13 CRFs. 

 

RB-Finder finds almost all breakpoints indicated by the literature, except that when the 

recombination region is too short, RB-Finder reports only one breakpoint for that region instead 

of two breakpoints. Furthermore, using RB-Finder to identify reference sequences of parent 

subtypes that contributed to recombination events in the CRFs yielded some interesting findings. 

Firstly, RB-Finder is able to determine that none of the reference sequences belonging to subtype 

F2 contributed to recombination events in CRF28_BF and CRF29_BF. Subsequently, we found 

that although some CRFs are labeled as a recombinant of two subtypes, not all reference 

sequences of the parent subtypes are involved in the recombination events (Eg CRF02_AG, 

CRF03_AB and CRF05_DF). On the other hand, we also found that some reference sequences 

not in the reported parent subtype of a CRF may be involved in some of its recombination events 

(Eg CRF21_A2D may be a recombinant of subtype A1 as well). This suggests that further 

analysis may be needed to more accurately classify CRFs. Based on the results from RB-Finder, 
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we propose a putative phylogenetic network of the 35 reference sequences belonging to the 9 

subtypes and the 6 CRFs which had irregularities with their subtyping in Figure 33. 

 

 

Figure 33: The proposed putative phylogenetic network of 35 reference sequences of the 9 HIV type M 

subtypes and the 6 CRFs which had irregularities with their subtyping. In the diagram, irregularities are 

presented in red, italic font under their respective CRFs. In addition, the red arrow indicates our proposed 

change in genotyping of CRF05_DF, CRF28_BF and CRF29_BF not to include the subtype F2. The other 

7 CRFs which had no irregularities with their subtyping are not shown. 
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Chapter 6 

DISCUSSION AND CONCLUSION 

6.1 Practical Implications 

The current genomic age of biology, powered by high-throughput sequencing technologies, has 

brought about an explosion of genomic data. As a result, the number of complete genomes of 

viruses made available in public databases has increased dramatically in recent years.  Despite 

this new wealth of viral genome sequence data, these data has been largely used for evolution 

and epidemiology studies, with little direct clinical application [123]. Therefore, one of the main 

goals of this thesis is to develop technologies and bioinformatics tools that have a greater impact 

on clinical decision-making. For example, our research in tagged-random primer amplification 

has enabled the design of better tagged-random primers that can uniformly and efficiently 

amplify a large number of known viruses, as well as novel and unknown viruses that specific 

primers cannot amplify. Although random primers are generally not as sensitive as specific 

primers, it is likely that well-designed random primers may have sensitivities comparable to that 

of specific primers. 

 In this thesis, we have used microarray technologies to develop two applications of high 

clinical relevance. The first application, a pathogen detection chip, is aimed at providing 

clinicians with a fast and accurate diagnosis using carefully selected oligonucleotide probes from 

hundreds of reported human viruses in a single experiment. This will eliminate unnecessary lab 

tests based on educated guesses from the patient's symptoms and significantly reduce the cost 

and turnaround time of a medical diagnosis.  Furthermore, the pathogen chip with its 
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accompanying statistical software would be able to detect and distinguish a majority of virus 

variants so that the correct treatment can be administered decisively. The second application, a 

resequencing microarray (H1N1 2009), is a cost-effective and viable tool for large-scale 

biosurveillance in the H1N1 2009 pandemic. The accompanying base-calling software 

EvolSTAR has also greatly improved the accuracy and base-calling rate of existing base-calling 

algorithms. Most importantly, our study has highlighted the feasibility of using resequencing 

microarrays for high-throughput full genome sequencing of viruses. In our application, 

resequencing microarrays are relatively low-cost, costing only a 10th that of a 454 run, and 

equivalent to that of a traditional capillary sequencing run. However, through multiplexing, our 

system can generate full genomes of 24 different H1N1(2009) samples in 30 hours. In 

comparison, capillary sequencing and next-generation technologies such as 454 may obtain full 

genomes of only one or two different samples in the same time-frame. 

  Last but not least, we studied the problem of detecting recombination in a set of aligned 

virus sequences. We have identified and addressed the major causes of inaccuracies pertaining to 

sliding window distance-based methods for detecting recombination. The resulting distance-

based algorithm RBFinder is able to achieve accuracies comparable to phylogeny-based 

methods, but requires a much shorter analysis time. This would enable recombination detection 

analysis to be performed on large datasets, which would otherwise be impractical using 

phylogeny-based methods.   
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6.2 Conclusion 

Viruses have the ability to cause devastating pandemics that may result in high morbidity and 

mortality rates. Thus it is imperative that any viral outbreaks be detected and contained as fast as 

possible. The next step would then be to obtain viral genome sequence information that will give 

us important clues on its lineage, epidemiology, drug resistance and possible vaccine 

development. These factors motivated us to develop a number of bioinformatics tools for viral 

detection, resequencing and evolutionary analysis. A summary of the work accomplished in this 

thesis is as follows: 

• In Chapter 2, we studied how the primer efficiency and biases inherent in random PCR 

amplification affect accuracies in PCR-based detection methods. We describe a model 

that predicts the amplification efficiency of a given tagged-random primer on a target 

viral genome. The prediction allows us to filter false-negative probes of the genome that 

lie in regions of poor random PCR amplification and improves the accuracy of pathogen 

detection. Subsequently, we propose LOMA, an algorithm to generate random primers 

that have good amplification efficiency. Wet-lab validation showed that the generated 

random primers improve the amplification efficiency significantly. The blind use of a 

random primer with attached universal tag in a PCR reaction on a pathogen sample may 

not lead to a successful amplification. Thus, the design of tagged-random primers is an 

important consideration when performing PCR. This work has been published in BMC 

Bioinformatics 2008 [124]. 

• In Chapter 3, we investigated the potential of DNA microarrays as “genomic sensors” in 

clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization 
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effects, and inadequate microarray analysis, however, limit detection sensitivity and 

specificity. We studied the relationships between viral amplification efficiency, 

hybridization signal, and target-probe annealing specificity using a customized 

microarray platform.  Novel features of this platform include the development of a robust 

algorithm that accurately predicts PCR bias during DNA amplification and can be used to 

improve PCR primer design, as well as a powerful statistical concept for inferring 

pathogen identity from probe recognition signatures. Compared to real-time PCR, the 

microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% 

specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be 

used for the robust and accurate diagnosis of pathogens, and further substantiate the use 

of microarray technology in clinical diagnostics. This work has been published in 

Genome Biology 2007 [125]. 

• In Chapter 4, we developed and field-tested a resequencing kit that is capable of 

interrogating all eight segments of the 2009 influenza A(H1N1) virus genome and its 

variants, with added focus on critical regions such as drug-binding sites, structural 

components and mutation hotspots. The accompanying base-calling software 

(EvolSTAR) introduces novel methods that utilize neighbourhood hybridization intensity 

profiles and substitution bias of probes on the microarray for mutation confirmation and 

recovery of ambiguous base queries. Our results demonstrate that EvolSTAR is highly 

accurate and has a much improved call rate. The high throughput and short turn-around 

time from sample to sequence and analysis results (30 hours for 24 samples) makes this 

kit an efficient large-scale evolutionary biosurveillance tool. This work has been 
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published in Nucleic Acids Research 2010 [126]. An application of our tool has also been 

accepted for publication in New England Journal of Medicine 2010 [127]. 

• In Chapter 5, we developed RB-Finder, a distance-based window method for finding 

recombination breakpoints in a set of alignments. By avoiding the computationally 

expensive and complicated comparisons of phylogenetic trees of phylogeny-based 

methods, our algorithm is faster and thus more scalable to analyze big datasets. 

Moreover, we minimize information loss experienced by conventional distance-based 

methods by introducing a new distance metric that takes into consideration important 

details such as the distribution of mismatches, the number of consecutive matches and the 

locations of common subsequences in an alignment. To improve the accuracy, we 

propose using a weighting strategy that assigns different weights to positions enclosed in 

a window with respect to a putative breakpoint. The idea is to lessen the contribution of 

less important regions of a window when computing a distance measure for the 

alignment. Subsequently, we applied our weighting strategy to our new distance metric 

and describe a fast, simple and intuitive algorithm to detect recombination. Experimental 

results using both simulated and real datasets show that the efficiency and accuracy of 

RB-Finder are better than that of most existing methods. In addition, we present an 

application of RB-Finder in genotyping by analyzing a set of 13 HIV recombinant 

sequences. In our analysis, we detected almost all reported breakpoints of the 13 

sequences and made several novel findings regarding their genotypes. Specifically, we 

found irregularities in the genotyping of six sequences which may trigger new 

considerations when assigning genotypes. This work has been published in RECOMB 
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2007 [128]. The extended version of this work is also published in a special issue of 

Journal of Computational Biology 2008 [129]. 

 

6.3 Future Research Work 

The extensive work presented in this thesis on viral detection, resequencing and evolutionary 

analysis has established a large set of paths for future work. We briefly describe some of our new 

discoveries and research developments below. 

 

6.3.1 Tagged-Random Primer Design with Background Amplification 

Avoidance 

In Chapter 2, we discussed how tagged-random primers can theoretically amplify any sequence 

and hence have a higher chance of successfully amplifying novel, unknown and highly 

mutative/recombinative viruses than specific primers in PCR-based detection methods. However, 

this also means that tagged-random primers can amplify the background human genome and 

cause undesirable cross-hybridization noise. To minimize the background cross-hybridization 

noise, the tagged-random primer should be designed such that it has (1) high AES (amplifies 

well) with the target viral genomes and (2) has low AES (amplifies poorly) with the human 

genome. The challenge here is that it may be difficult to find candidates that amplifies the entire 

human genome poorly. One feasible solution is to only consider regions in the human genome 

where the viral probes on the microarray can cross-hybridize to. Our simulations show that we 

need to consider only one-third of the human genome if such an approach is used. This research 
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direction may pave the way for tagged-random primers with improved specificity and sensitivity 

for viral amplification, as well as background amplification avoidance capabilities. 

 

6.3.2 New Generation Pathogen Chip 

In Chapter 3, the pathogen chip consists of probes selected from the refSeq (as indicated by 

NCBI) of a target set of virus genomes. However, this was found to be not representative of a 

virus genome. There are often multiple genomes of a particular virus because various sequencing 

centres deposit complete and partial sequences of the same virus genome into GenBank. 

Using the most current NT and RefSeq database to date (Feb 2010) in GenBank, we 

downloaded all complete genomes, complete sequences and complete cds and genes of 153 

human viruses of interest. In total, 25177 sequences were obtained for the 153 viruses. A 

homology analysis of the sequences of individual viruses revealed the following: 

• For most of the 153 viruses, there are multiple complete genomes. The most recent 

submission to GenBank is assigned as the reference genome for the virus. 

• There are SNPs among different genomes of the same virus. They may be mutations or 

sequencing errors. 

• It is expected that genomes belonging to different strains of a particular virus may differ 

greatly. However, we found that genomes belonging to the same virus without any 

previously reported strains may also differ greatly. This may be unreported strains of the 

virus residing in different parts of the world. It can also be that the same virus underwent 

independent evolutions. 
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The findings have a serious implication on probe selection for the pathogen chip. Probes selected 

based on a reference genome for a particular virus have a high chance of failing. These probes 

may detect one strain of a virus but not the other. 

To avoid the above problem, for each virus, we cluster all the sequences available based 

on homology. Note that this clustering is blind to strain typing. We cluster sequences that have at 

least 98% homology with one another (performed by BLAST). This will ensure that we identify 

all subgroups of a virus based on homology. We then align all sequences in each subgroup and 

obtain the consensus sequence. The consensus sequences of the subgroups of a virus will then be 

collectively taken to represent the virus. In each alignment, we can also identify suspicious 

regions where the bases are not consistent. These regions may be mutagenic regions or prone to 

sequencing or base-calling errors. Thus, probes will not be selected from such regions to 

minimize the risk of failure. Subgrouping the 25177 sequences belonging to 153 viruses resulted 

in 7790 subgroups. 5677 subgroups are singletons while the remaining 2113 subgroups had more 

than one sequence each. In total, 19500 sequences were able to be clustered. 

Due to the number of subgroups that each virus has, probes that cover the most subgroups 

are preferred for selection. In addition, probes that are unique to a subgroup are also important as 

they may help to differentiate the subgroups if needed. The location of the probes may also be 

important. Consecutive probes lighting up may be an indication that the fragment that the probes 

reside in is present. This may help in identifying recombinations or detecting the virus even 

though the full genome was not fully amplified. 
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6.3.3 Pan-Influenza Resequencing Microarray 

In Chapter 4, we have presented a novel approach to obtain the full genome sequence (all 8 

segments) of an influenza virus (H1N1 2009) using resequencing microarrays. However, as 

influenza viruses continuously evolve through mutations and reassortments, we need to 

periodically update (at least annually) our resequencing microarrays with sequence information 

from new variants. One solution is to create a pan-influenza resequencing microarray consisting 

of full genome sequence information from all recent (e.g. 2005 and newer) 

human/avian/mammalian influenza virus strains. Unfortunately, a naïve 1bp resolution tiling 

approach would be infeasible for such a resequencing microarray. Instead, a minimal set of 

probes that covers all target sequences would have to be selected and put on the array. A 

sophisticated assembly algorithm would then be needed to reconstruct high confidence sequence 

calls from the selected probes. A major advantage of this pan-influenza resequencing microarray 

is that it would have a much longer shelf life than existing influenza resequencing microarrays.  

 

6.3.4 Recombination Detection Without Multiple Sequence Alignment 

In Chapter 5, we note that most recombination detection methods require a multiple alignment of 

the input sequences as an initial step. This is problematic in several aspects. First and foremost, 

obtaining the multiple sequence alignment of a set of sequences is slow. The exact solution to the 

multiple sequence alignment problem is NP-complete [130]. Specifically, it takes O(nk) time to 

align k sequences of length n. Hence, heuristic and approximation approaches that seek a 

multiple alignment that maximizes some alignment score are adopted. One of the most popular 

algorithm for multiple sequence alignment is CLUSTALW. It uses a strategy known as 
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progressive alignment and runs in O(k2n2) time. Another multiple sequence alignment program, 

T-Coffee [131], is more accurate than CLUSTALW but is also much slower. Later, MUSCLE 

[132] was developed that outperforms both CLUSTALW and T-Coffee in terms of speed and 

accuracy. However, the inability to scale of current multiple sequence alignment algorithms 

presents an obstacle for recombination analysis involving a large number of sequences. 

Secondly, the multiple sequence alignment of sequences may be inaccurate. 

Misalignments can occur due to various reasons such as using suboptimal scoring parameters. 

The accuracy of the alignment may be even more compromised when analyzing highly evolving 

microorganisms. These microorganisms exhibit high levels of intragenic recombination 

following horizontal gene transfer events, resulting in mosaic-like sequences. Unless these 

sequences have high homology with one another in similar genomic regions, multiple sequence 

alignments may be difficult or impossible to attain. Consequently, important recombination 

events may be lost in the erroneous alignment. Furthermore, multiple alignments of sequences of 

different lengths must necessarily add gaps, which often lead to loss of information and gap 

scoring artifacts, which in turn distort the distance computations and phylogeny constructions. 

There is also a risk that these gaps, which are almost always ignored by recombination detection 

algorithms, contain information about recombination events involving duplications and 

transpositions. In many cases, multiple sequence alignments have to be manually refined to 

improve their accuracy. 

To overcome the problem of using multiple sequence alignments, BLAST-Miner [133] 

was developed. It is a BLAST-based method that finds short segments of highly similar 

sequences among the sequences and uses them to identify sequence duplications, insertions, and 

rearrangements. One major disadvantage is that this approach cannot detect recombination 
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events among highly homologous sequences. Another drawback is that the authors only gave a 

graphical representation of all possible recombination events identified but failed to quantify 

them. Nonetheless, this approach provides an insight of how we can avoid using multiple 

sequence alignments to detect recombination. 
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