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SUMMARY 

Seed germination is a critical stage in plant development, as it determines the time 

point when a plant starts its new life cycle. This process is under combinatorial control 

by endogenous and environmental cues. Abscisic acid (ABA) and gibberellin (GA) are 

two critical endogenous factors that integrate signals from biotic and abiotic 

environmental stresses. ABA and GA play antagonistic roles in the regulation of seed 

germination, with the former inhibiting while the latter promoting seed germination. 

 

In this thesis, we demonstrate that MOTHER OF FT AND TFL1 (MFT), which encodes 

a phosphatidylethanolamine-binding protein, acts as a novel regulator of seed 

germination via responding to both ABA and GA signaling pathways in Arabidopsis. 

MFT is specifically induced in the radicle-hypocotyl transition zone of the embryo in 

response to ABA and mft loss-of-function mutants show hypersensitivity to ABA in 

terms of seed germination. Genetic analyses revealed that in germinating seeds, MFT 

expression is directly regulated by ABA-INSENSITIVE3 (ABI3) and ABI5, two key 

transcription factors in ABA signaling pathway. On the other hand, MFT is also 

upregulated by DELLA proteins in the GA signaling pathway. MFT in turn provides 

negative feedback regulation of ABA signaling by directly repressing ABI5.  

 

In summary, we conclude that during seed germination, MFT promotes the embryo 

growth potential by constituting a negative feedback loop in the ABA signaling 

pathway. 
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The first phase transition in the life cycle of a higher plant is seed germination. 

Seed germination sensu stricto (in a strict sense) can be defined as the reactivation 

of metabolism of seed embryo including the growth of embryonic root termed as 

radicle and embryonic leaf (leaves) termed as cotyledon(s). Seed germination is 

blocked by seed dormancy, which is sometimes considered as an adaptive trait that 

optimizes the distribution of germination over time (Bewley, 1997). 

 

Whether a seed should remain dormant or proceed to germination under certain 

circumstances is important with respect to its survival as a species. When the 

environment is nonpermissive for germination, then the seed remains dormant. 

Such dormancy is advantageous for seed survival. For instance, dormancy prevents 

vivipary, a phenomenon of precocious germination prior to fruit harvest, which 

causes losses in fruit yield and is adverse to agricultural plants. However, when the 

environment becomes favorable for seed germination, dormancy must be released 

to allow germination to happen. This is important as seed germination marks the 

beginning of a new life and is prerequisite to agricultural sustainability. 

 

Extensive work aiming to address the question of how seed dormancy and 

germination are regulated has been carried out in the model plant Arabidopsis. An 

Arabidopsis seed is comprised of three components: an embryo and two covering 

layers, that is endosperm and testa. The embryo is the new plant in miniature. The 

endosperm is a nutritive tissue with living cells surrounding and absorbed by the 
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embryo. The testa, or seed coat, usually consisting of dead cells, is mainly a 

protective tissue enclosing the embryo and endosperm. During seed germination, 

the endosperm and testa impose physical restraints on embryo growth. Such coat-

imposed restraints must be overcome by the growth potential of the embryo for the 

successful transition of a seed from dormancy to germination under favorable 

conditions. 

 

The phase transition from dormancy to germination is coordinated by both 

exogenous and endogenous cues (Koornneef et al., 2002). Exogenous cues, which 

include light, temperature, osmotic potential, pH and nutrients availability, in the 

control of seed dormancy and germination are well documented (Bewley and 

Black, 1994). For example, synergistic interaction of light and low temperature has 

been demonstrated to terminate seed dormancy and promote seed germination. 

Endogenous cues, especially phytohormones including abscisic acid (ABA), 

gibberellin (GA), brassinosteriods (BRs), ethylene, auxin, and cytokinin, interact 

with each other to form complicated signaling networks that regulate several 

processes in seed development. Among these phytohormones, ABA and GA are 

particularly well-known for their antagonistic roles in the regulation of seed 

dormancy and germination, with the former inhibiting while the latter promoting 

seed germination (Xie et al., 2006). 
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Basically, either exogenous or endogenous cues are ultimately processed by gene 

regulatory networks. In the past two decades, much effort has been devoted to 

identifying genes involved in the control of seed dormancy and germination. The 

classical technique is forward genetics, and this technique has led to the 

establishment of fundamental signaling networks. Nowadays, reverse genetics is 

widely adopted to discover the function of a specific gene of interest. Using this 

approach, some new genes regulating seed dormancy or germination process have 

come to light. However, considering that the number of genes is huge and lots of 

genes may have subtle or redundant phenotypes, there is a need to identify and 

characterize novel genes which can link those known genes together. Upon the 

combination of all the relevant genes, the genetic mechanism underlying seed 

dormancy and germination will be gradually uncovered. 

 

The subsequent sections provide an overview of seed dormancy and germination, 

followed by the exogenous and endogenous factors influencing these biological 

events, as well as the major regulatory genes involved in these processes. 

 

1.1 Seed Development, Germination and Dormancy 

 

The creation of a seed in a higher plant happens when male and female sex cells 

meet and fuse together, and the plant comes through to nearly the end of its life 
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cycle. After the seed ripens, it can start the life cycle all over again from the very 

beginning step called seed germination. 

 

Most fully ripened and dried seeds go through a quiescent period during which no 

active growth takes place. This property makes seed storage and transportation 

possible, most importantly, it enables the seeds to survive adverse environment 

until the favorable growth conditions occur. When such circumstances appear, the 

metabolism of a viable seed will be activated and the embryo inside starts to grow 

and penetrates the surrounding structures. A dormant seed may achieve virtually all 

of the metabolic steps required to complete germination, yet the embryonic axis 

fails to elongate. This may caused by either the constraints from the surrounding 

tissues or the embryo itself is dormant (Bewley, 1997). 

 

1.1.1 Seed Structure 

 

Before considering seed germination, it is appropriate first to briefly review the 

development of a seed. In angiosperms (flowering plants), seed development is 

initiated with the double fertilization event involving two sperm cells and two 

female gametes. The female gametes consist of a haploid egg cell and a diploid 

central cell, each is fertilized with one sperm cell to form the zygote (later 

differentiated into the embryo) and the endosperm, respectively. Surrounding the 

embryo and the endosperm is the testa, which is maternally derived in response to 
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fertilization. These three components undergo a series of cell division, 

differentiation, or death, and finally give rise to a mature seed. Taking model plant 

Arabidopsis thaliana (called Arabidopsis hereafter) as an example, a fully-

developed embryo makes up most of the mass of a mature seed, while endosperm 

and testa are just two thin layers (Figure 1).  

 

1.1.1.1 Embryo 

 

Embryo development occurs in two distinct phases, morphogenesis and maturation. 

During the first morphogenesis phase, the basic body plan of the plant is 

progressively established. The zygote undergoes cell divisions to produce the 

embryo pattern from octant shape, through dermatogen shape, globular shape, heart 

shape, torpedo shape, to bent-cotyledon shape (Berleth and Chatfield, 2002). 

Thereafter, the embryo starts to accumulate storage macromolecules (lipids, starch, 

and proteins), and is converted to a state of metabolic quiescence as it desiccates 

(Harada, 1997). A mature Arabidopsis embryo consists of two cotyledons and an 

embryonic axis. The embryonic axis composed by a hypocotyl and a radicle 

(embryonic root) is a multilayer tissue (Figure 1), which is developed from a series 

of transverse and periclinal cell divisions (Benfey and Schiefelbein, 1994; Scheres 

et al., 1994). The epidermis is an outer layer of cells that take in water and nutrients 

as well as protect the underlying tissues of the root. Just inside the epidermis are 

two layers of cells known as the cortex, when the radicle protrudes through the 
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covering tissues and grows to postembryonic root, the double cortex layer develops 

into a single cortex layer (Dolan et al., 1993; Scheres et al., 1994). Root cortex has 

diverse functions in different plant species, it mainly serves as the path across 

which water and nutrients from the outside of the root pass and move easily through 

and around them. Root cortex cells also have active transport mechanisms in their 

membranes that keep water and nutrients moving deeper toward the center of the 

root. At the inner boundary of the cortex is a single layer of cells known as the 

endodermis, but it is argued that endodermis is actually a part of the cortex (Lux et 

al., 2004). The endodermis facilitates the movement of water from cortex to the 

center of the root, it also functions as a barrier to apoplastic ion movement and in 

preventing the backflow of ions from the inside of the root (Enstone et al., 2003). 

The endodermis wraps the provasculature, which develops into vascular cylinder or 

stele in the root of a growing plant. The vascular tissue is conducting tissue, which 

transport water and dissolved substances from the root to the aerial parts of the 

plant such as stems and leaves, it also receives organic substances from the leaves. 

 

1.1.1.2 Endosperm 

 

During the embryogenesis process, the nutrition for the embryo growth is 

persistently provided by the surrounding tissue called endosperm. The triploid 

endosperm is formed after double fertilization through the fusion of the diploid 

central cell with a sperm cell. There are three types of endosperm development in 
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flowering plants, termed nuclear, cellular, and helobial types based on their 

respective ontogenesis mode (Raghavan, 2006). In the nuclear mode, repeated free-

nuclear divisions occur without cytokinesis for certain period of time before cell 

wall formation takes place to give rise to cellular structures. In the cellular type, 

nucleus divides with concomitant cytokinesis, i.e. cell plate formatiom, throughout 

the entire course of endosperm development. The helobial type is regarded as an 

intermediate type between the nuclear type and the cellular type, in which the first 

two daughter nuclei derived from the primary endosperm nucleus are first separated 

and then undergo distinct modes of development, one develops along the nuclear 

pattern and the other along the cellular pattern or remains undivided. The nuclear 

endosperm formation is the most common type and occurs in the model plant 

Arabidopsis (Olsen, 2004). During germination in angiosperm seeds, the 

endosperm has two known functions. In cereals, in which the endosperm makes up 

most of the mature seed, the endosperm serves as a source of starch and proteins, 

which provide nutrients to nourish the growing seedling. In Arabidopsis, the 

endosperm is largely absorbed during embryogenesis; therefore, it plays a 

nutritional role in nourishing the developing embryo rather than the seedling. 

During seed germination, this thin layer of endosperm imposes a constraint on 

radicle protrusion (Muller et al., 2006). 

 

1.1.1.3 Testa 
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Enclosing both the embryo and endosperm and serving as a protective tissue is the 

testa. Unlike the embryo and endosperm, which are the products of fertilization, the 

testa is a maternal tissue derived from the differentiation of the integument cells, 

and it is initially developed with five layers in Arabidopsis (Beeckman et al., 2000; 

Windsor et al., 2000). By the time the seed is mature, the cells in all the layers of 

the testa are dead probably due to programmed cell death since those layers do not 

die simultaneously, but instead in a specific order (Nakaune et al., 2005). Mucilage 

is present in the testa of many plant species including Arabidopsis (not shown in 

Figure 1), which starts to accumulate at the torpedo stage and continues during 

maturation in the outermost layer of the testa until desiccates in a mature seed 

(Beeckman et al., 2000; Windsor et al., 2000). The mucilage of the testa provides 

assistance to seed dispersal, germination, and seedling establishment (Penfield et 

al., 2001; Huang et al., 2008). In addition to these aspects, the testa also plays 

important roles in the protection of the embryo from mechanical injury and 

pathogen attack, as well as the maintenance of seed dormancy. 
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Figure 1. Schematic Drawing Showing the Anatomy of A Mature Arabidopsis 
Seed. 

An embryo is enclosed in two layers, the inner one is endosperm (purple color), the 
outer one is testa or seed coat (yellow ochre color).The embryo consists of two 
cotyledons (green color) and an embryonic axis. The tissues of the embryonic axis 
are divided into four cell types, which are formed by highly organized cell arrays. 
These cell types are termed as epidermis, cortex, endodermis and provasculature 
shown in different colors from the outermost layer to the innermost layer. SAM, 
shoot apical meristem. 
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1.1.2 Three Phases of Imbibition Involved in Germination and Post-
germinative Development 

 

Generally, germination commences with water uptake, i.e. imbibition, by the dry 

seed, followed by a series of metabolic changes, and ends with the protrusion of the 

radicle of the embryo through all the surrounding tissues. 

 

Under most circumstances, air-dried seeds must imbibe water to drive subsequent 

metabolic processes. This initial water uptake is a physical process which occurs in 

both living and dead seeds. For viable and nondormant seeds, there is a three-phase 

pattern of water uptake (Figure 2) (Bewley, 1997; Nonogaki et al., 2007).  

 

1.1.2.1 Activation and Resumption of Metabolism 

 

Phase I is primarily a physical process, during which seed water content increases 

sharply, to 5- to 10-fold higher than that in the dry seed. Initially, water absorption 

by the dry seed is dependent on the permeability of the testa, of which the 

microphylar region embracing the radicle is most permeable in many seeds 

(Mcdonald et al., 1994). Besides, it has been reported that the water channel 

proteins may also affect the seed imbibition (Maurel et al., 1997). With the increase 

of moisture content, the seed swells and some physiological activities, such as 

respiration, enzyme synthesis, 
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Figure 2. Three Phases of Seed Imbibition. 

Phase I is characterized by rapid water uptake. During Phase I, seed volume 
increases rapidly and some physiological activities are activated. Phase II is a lag 
phase of imbibition. Physiological activities are speeded up, storage reserves are 
mobilized and endosperm constraint is weakened, and testa splits in this phase. 
Upon radicle penetrates through the covering layers, i.e. endosperm and testa, the 
seed enters Phase III. Radicle emergence indicates that the seed has just finished the 
transition from germination (cell elongation) to seedling growth (cell division). 
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and DNA repair, start to occur in the seed at this phase.  

 

1.1.2.2 Reserve Mobilization and Endosperm Weakening 

 

After Phase I, the rate of water intake slows down and seed water content is 

relatively constant or only slowly increases, which indicates the beginning of Phase 

II. At this plateau phase, the lipid and protein reserves accumulated during seed 

maturation are mobilized to fuel the rapid metabolism, and these storage reserves 

are mobilized first in the micropylar endosperm (Mansfield and Briarty, 1996). 

Meanwhile, new proteins essential for the support of normal cellular metabolism 

are synthesized as germination proceeds (Bewley and Marcus, 1990). 

 

As an embryo is embedded in the endosperm that is further surrounded by the testa, 

the constraints imposed by these covering layers must be overcome by the growth 

potential of the embryo. The testa as a barrier for seed germination has been 

investigated by using testa mutants (Debeaujon et al., 2000). But testa rupture is not 

enough for radicle protrusion, weakening of endosperm is also required to allow 

radicle emergence, this process is associated with hydrolysis by cell wall-loosening 

proteins, such as expansin (Chen and Bradford, 2000), and endo-β-mannanase 

(Nonogaki et al., 2000). Testa rupture and endosperm rupture do not occur 

simultaneously, it has been demonstrated that testa rupture occurs firstly followed 

by endosperm rupture and finally radicle protrusion (Liu et al., 2005), and during 



LITERATURE REVIEW 

 14

this process, ABA specifically inhibit endosperm rupture rather than testa rupture, 

the inhibitory effect of ABA can be counteracted by GA (Muller et al., 2006). 

 

1.1.2.3 Radicle Emergence and Seedling Growth 

 

Following the plateau phase (Phase II), there is a further increase in water uptake, 

with embryonic axis elongates and protrudes from the covering structures, which 

signals the end of germination and the beginning of post-germinative or seedling 

growth. Dead seeds can absorb water like viable seeds, but it cannot complete 

germination; therefore, it will never enter Phase III. Dormant seeds also cannot 

proceed to Phase III until dormancy is broken. Before Phase III, cell elongation is 

believed to be enough for the radicle protrusion since cell division, at most cases, 

takes place after radicle emergence (Barroco et al., 2005; Masubelele et al., 2005). 

Both cell elongation and division are essential for the subsequent seedling growth.  

 

1.1.3 Seed Dormancy 

 

Like many plant species, Arabidopsis possesses seed dormancy, which greatly 

contributes to the development of new species and dispersion of existing species 

(Baskin and Baskin, 1998). Besides, dormancy also helps reduce the risk of 

premature germination before seed harvesting. Thus, seed dormancy is to some 

extent considered as an advantageous trait of plant inherited during evolution. 
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Generally, dormancy can be classified into primary dormancy and secondary 

dormancy, the former occurs in an immature embryo during seed development, the 

latter occurs in a mature seed during seed imbibition (Amen, 1968).  

 

1.1.3.1 Primary Dormancy 

 

The induction of primary dormancy is correlated with the presence of ABA during 

seed maturation process. In many species, there are two peaks of ABA 

accumulation during seed development. Studies in Arabidopsis have showed that 

the first transient increase in ABA content is originated maternally and occurs prior 

to embryo maturation, thereby called maternal ABA; the second peak is present 

during maturation and is regulated by the genome of the embryo, thereby called 

embryonic ABA (Karssen et al., 1983). The accumulation of embryonic ABA, but 

not maternal ABA, is indispensable for the induction of primary dormancy 

(Karssen et al., 1983). Once the dormancy is established, endogenous ABA is not 

required and decreases significantly by seed maturity. In addition, disruption of 

ABA signal transduction also has a great impact on the induction of primary 

dormancy. For example, several ABA response loci like ABA-INSENSITIVE 1 

(ABI1), ABI2, and ABI3, upon loss-of-function, confer reduced dormancy 

phenotype (Koornneef et al., 1984); on the contrary, the ABA-hypersensitive 

mutants named era, short for enhanced responsiveness to ABA, exhibit enhanced 

primary dormancy (Cutler et al., 1996).  
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Primary dormancy ensures an embryo completes development, and prevents 

precocious germination in some species like maize. It has been shown that in the 

Arabidopsis accession Cvi, the seed loses its water content almost 5-fold from 

acquiring primary dormancy during late maturation phase until shed from the 

mother plant upon maturity (Baud et al., 2002). When the moisture content is 

further reduced to a certain level by dry storage, the seed loses primary dormancy. 

This process of breaking dormancy is called after-ripening and has many 

characteristics, including a decrease in ABA concentration and sensitivity, an 

increase in GA and light sensitivity, and a widening of temperature range for seed 

germination (Finch-Savage and Leubner-Metzger, 2006). Therefore, after-ripening 

releases the primary dormancy and determines the germination potential of seeds. 

Although the exact molecular mechanisms that regulate after-ripening process are 

unclear, initial attempt has shed some light on our understanding of such processes 

by a transcriptome profiling approach (Carrera et al., 2008). Another method to 

release dormancy is to subject seeds to moist chilling (cold stratification), or moist 

warming (warm stratification), depending on the species. In Arabidopsis, it has 

been recently found that cold treatment of imbibed seeds could increase 

endogenous GA level by inducing the GA biosynthesis genes (Yamauchi et al., 

2004). Such cold-stimulated GA is more effective than exogenously-applied GA on 

dormancy breakage (Alonso-Blanco et al., 2003). Although as mentioned above 

that ABA is no longer required after the induction of primary dormancy, strong 

evidence suggests that de novo-synthesized ABA in dormant seeds during 
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imbibition maintain seed dormancy (Grappin et al., 2000; Ali-Rachedi et al., 2004) 

and such dormancy can be released with the decline of ABA content via ABA 

catabolism (Millar et al., 2006). Therefore, ABA-GA balance during imbibition is 

essential for the primary dormancy release. 

 

1.1.3.2 Secondary Dormancy 

 

After imbibed after-ripening seeds have lost primary dormancy, secondary 

dormancy might occur when improper conditions, such as unfavorable temperature, 

anoxia, inadequate light or nitrate, come into existence. Secondary dormancy is 

commonly observed in lots of species (Karssen, 1980; Hilhorst, 1998). In the soil 

seed bank, secondary dormancy enables cycling, through which different depths of 

dormancy are progressively gained or lost, until the environment is favorable for 

germination, and then seedling establishment (Baskin and Baskin, 1998; Hilhorst, 

2007). 

 

It is well-known that ABA plays a vital important role in the induction and 

maintenance of primary dormancy; however, whether it is also involved in the 

acquisition of secondary dormancy is largely unknown. Until recently, it has been 

reported that ABA is involved in the induction of secondary dormancy in Barley as 

exogenous ABA could significantly inhibit the germination of seeds which had lost 

primary dormancy (Leymarie et al., 2008). But the authors did not exclude the 
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possibility that the induction of secondary dormancy might due to reduced amount 

and sensibility of GA. Like its function in breaking primary dormancy, GA is also 

capable of releasing secondary dormancy as was discovered as early as 1970s 

(Bewley, 1979). 

 

Since ABA and GA are involved in the control of both primary and secondary 

dormancy, a question was raised as to whether the molecular bases for the 

regulation of these two kinds of dormancy are different or not. Whole-genome 

microarrays have been developed as a powerful tool to address this question. Using 

this technology, people analyzed global transcript profiles of Arabidopsis seeds 

during dormancy and observed that significant differences exist in the 

transcriptomes of primary and secondary dormant seeds (Cadman et al., 2006; 

Finch-Savage et al., 2007). 

 

1.2 Environmental Factors 

 

Environment has a profound influence on seeds ranging from acquisition of 

dormancy to initiation of germination. Earlier research on the control of seed 

dormancy and germination was mainly focused on the environmental factors, 

including temperature, water, light, oxygen, etc. It was found that certain 

environmental condition may favor the germination of seeds in some species, but 

not other species. Therefore, no generalizations can be made as to which 
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environmental factor plays a constant role in the control of seed dormancy and 

germination over a variety of species. In view of this, the aim of this section is to 

review current knowledge concerning how environmental factors affect seed 

behavior in Arabidopsis. 

 

1.2.1 Temperature 

 

Temperature is a primary environmental cue affecting many aspects of plant 

development, including seed germination. In nature, the changes in seasonal 

temperature result in different germination timing of different plants. A well-known 

example is annual plants, which are principally classified into two categories, 

summer-annuals and winter-annuals. Summer-annuals overwinter as seeds and 

complete their life cycle during the same summer season; while winter-annuals 

germinate in the autumn, overwinter as seedlings before flowering in the spring. In 

other words, these two types of annual plants adopt different germination strategies 

in response to ambient temperature changes. 

 

As an annual weed, Arabidopsis has both summer-annual accessions and winter-

annual accessions in the field. In greenhouse conditions, winter-annual accessions 

of Arabidopsis are late flowering and summer-annual accessions flower early. The 

flowering time of winter-annuals can be greatly accelerated by an extended 

exposure to cold temperature, a process called vernalization. Genetic studies have 
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revealed that vernalization negatively regulates the expression of FLOWERING 

LOCUS C (FLC) to promote flowering time (Michaels and Amasino, 1999; 

Sheldon et al., 1999). Since then, FLC has long been regarded as a flowering 

repressor, but recently it has been reported that FLC also plays a critical role in the 

control of temperature-dependent seed germination (Chiang et al., 2009). It was 

found that high expression of FLC greatly increased the seed germination 

percentage under low temperature condition, and such enhancement of germination 

was substantially weakened when seeds were imbibed in a warm temperature 

(Chiang et al., 2009). Thus, in winter-annual Arabidopsis, highly expressed FLC 

responds to cool temperature to promote seed germination. On the contrary, FLC 

level is very low in summer-annual Arabidopsis, seeds remain dormant over winter 

and prepare for germination when ambient temperature reaches a proper level. Cold 

stratification is therefore a means to simulate overwintering to relieve seed 

dormancy and subsequently induces synchronized germination in Arabidopsis.  

 

Opposite to cold treatment, which results in good germination performance of after-

ripened Arabidopsis seeds, high temperature inhibits seed germination. Such 

suppression of seed germination at supraoptimal temperature is called 

thermoinhibition. The phenomenon of thermoinhibition was first found in lettuce 

seeds almost half a century ago (Berrie, 1966). In the case of winter-annual 

Arabidopsis, seed germination is inhibited by high temperature in summer, but the 

inhibition will be lost and germination occurs when the temperature falls into a 
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suitable range in autumn. Five genes have been identified to be involved in the 

germination response to supraoptimal temperature during imbibition through a 

screening in fully after-ripened seed pools in Arabidopsis. The mutants of these 

genes show resistance to thermoinhibition on seed germination, besides, the 

mutants exhibit reduced dormancy at harvest ripeness (Tamura et al., 2006). Four 

out of these five mutations have been mapped to their respective loci. One mutant is 

a new allele of abi3, an important ABA-insensitive mutant (Koornneef et al., 1984); 

a new mutant named as thermoinhibition-resistant germination 2 (trg2) also 

exhibits ABA-insensitive germination phenotype (Tamura et al., 2006). These 

findings provide genetic evidence for the role of ABA in the thermoinhibition of 

seed germination. 

 

1.2.2 Water 

 

As described in section 1.1.2, a dry seed must first absorb water to initiate 

subsequent physiological and metabolic processes. Water can soften the seed coat 

and cause the endosperm to swell. Meanwhile, nutrients in the endosperm are 

dissolved for embryo growth. But a seed with hard seed coat which is impermeable 

to water remains quiescent until the seed coat is forced to open by weathering or 

scarification. Therefore, water penetration is essential in the Phase I of seed 

imbibition.  
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Besides, the ability of a seed to uptake water also determines the efficiency of seed 

germination. The mucilage on the seed coat plays an indispensable role in 

enhancing water uptake during germination. It has been reported that in atsbt1.7 

mutant seeds that are unable to release mucilage upon imbibition, the germination 

rate is strongly reduced under water-limiting conditions (Rautengarten et al., 2008). 

Water uptake during seed imbibition may also be controlled by aquaporins (a class 

of major intrinsic proteins), among which some members in the plasmamembrane 

intrinsic proteins (PIP) subgroup and the tonoplast intrinsic proteins (TIP) subgroup 

have been suggested to be involved in the regulation seed germination (Gao et al., 

1999; Vander Willigen et al., 2006; Liu et al., 2007b). Transcript of PIP1 in 

Brassica napus (BnPIP1) is expressed in seeds, and its abundance is correlated well 

with the germination rate of seeds primed with various stress treatment (Gao et al., 

1999). Furthermore, functional study on one rice PIP1 (OsPIP1) gene showed that 

overexpressing or knocking-down this OsPIP1 results in elevated or reduced 

germination, respectively (Liu et al., 2007b). In addition to PIP genes, TIP genes 

may also contribute to seed germination. Certain TIP genes in Arabidopsis are 

exclusively expressed in seeds and may function in controlling the rate of water 

uptake during Phase II and therefore the onset of Phase III, thus regulating the 

speed of seed germination (Vander Willigen et al., 2006). Despite these attempts to 

initiate the study of the relationship between aquaporins and seed germination, 

much effort needs to be made towards a better understanding of the function of 
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aquaporins in seed germination and the underlying mechanism of aquaporin-

regulated seed germination. 

 

Water potential (ψ) is another important factor that controls seed water content. 

Reducing the ψ of the water supply exerts osmotic effects, creating a water stress 

for seeds. Polyethylene glycol (PEG) is commonly used to make a stress condition 

of low ψ without causing other side effects. Using solutions of PEG, people have 

established the correlation between ψ and germination rate (Bradford, 1990). If the 

ψ is sufficiently low, seed germination will be inhibited. This is because firstly, 

reduced ψ lowers seed water content, extending the time for seed hydration level to 

reach a certain threshold to allow germination to occur. Secondly and more 

importantly, reduced ψ alters the expression of a majority of genes associated with 

germination (Gallardo et al., 2001), which affects the embryo growth potential or 

testa/endosperm restraint.  

 

1.2.3 Oxygen 

 

Apart from suitable temperature and moisture status, the presence of oxygen is also 

of great importance to ensure the success of seed germination. Oxygen is an 

atmospheric gas, which means that it is deprived in deep soil or waterlogged 

environment. Therefore, seeds buried too deeply in the soil or immersed in water 
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can be oxygen starved, and most of them will eventually die although some can 

survive by going into dormancy. 

 

Oxygen uptake occurs concurrently with water uptake during three phases of seed 

imbibition. Meanwhile, oxygen is consumed by seed respiration and energy (ATP) 

is produced in order to decompose the storage materials in the seed (Hourmant and 

Pradet, 1981). The correlation between a high ATP level and oxygen availability 

means that oxidative phosphorylation should occur during the beginning of seed 

germination, which is the case in lettuce seeds (Hourmant and Pradet, 1981). 

Although oxidative phosphorylation is good for ATP synthesis, it also has some 

detrimental effects like the production of reactive oxygen species (ROS). ROS is 

deleterious and will cause damage to seed; therefore, a natural antioxidant defense 

mechanism is adopted by aerobic organisms to provide repair and protection. The 

enzymes involved in such mechanism include superoxide dismutase (SOD), which 

catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide, and 

catalases and some peroxidases, which catalyze the decomposition of hydrogen 

peroxide. It has been shown that in soybean seeds, a SOD activity peak occurs 

during early imbibition (Phase I) and peroxidase activities significantly 

accumulate during later stage (Phase II and III) (Gidrol et al., 1994). Thus, the 

superoxide is gradually detoxified during seed imbibition and such fine tuning of 

oxidative stress seems to be beneficial for seed germination. 
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1.2.4 Light  

 

Since plants are photosynthetic, their development from seed germination to 

flowering is tightly regulated by light. Light characteristics can be composed of 

intensity, wavelength, duration and direction, plants sense these different 

parameters of light to adapt themselves to the environment and to control various 

aspects of growth and development, such regulation is usually via the phytochrome 

family of photoreceptors (Quail et al., 1995). 

 

Phytochrome is a pigmented protein encoded by five phytochrome genes called 

PhyA to PhyE in Arabidopsis (Mathews, 2006). It exists in two forms: a red-

absorbing form (Pr) with maximum absorption at 660 nm and a far-red absorbing 

form (Pfr) with maximum absorption at 730 nm (Quail et al., 1995). Pr is 

considered as an inactive form, it is converted to the active form, i.e. Pfr, by red 

light (Seo et al., 2009). Thus, exposure of seeds to a high red light to far-red light 

ratio results in larger Pfr/P, which stimulates germination since the most 

dormancy-breaking wavelengths exist in the red region of the spectrum. It has 

been reported that in the dark, phyB mutant seeds do not germinate (Shinomura et 

al., 1994), but an increase in Pfr/P ratio induces PhyB activity. Active PhyB 

thereafter triggers the degradation of PIL5, a PhyB-interacting protein acting as a 

negative regulator of seed germination in Arabidopsis, to promote seed 

germination (Oh et al., 2004; Oh et al., 2006). In addition to PhyB, PhyA is also 
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involved in the control seed germination. It promotes seed germination in response 

to continuous far-red light in the absence of PhyB activity in the dark (Shinomura 

et al., 1994). Other phytochrome genes have little, if any, effect on seed 

germination. But once five phytochrome genes are simultaneously mutated, the 

resulted quintuple mutant does not germinate regardless the presence of light or 

not (Strasser et al., 2010).  

 

Environmental factors are essential regulators in the process of seed germination, 

and their signalings can be tightly coupled at the molecular level. For example, it 

has been reported that two bHLH transcription factors SPATULA (SPT) and 

PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5) are involved in a 

regulatory network and mediate the germination response to temperature and light 

(Penfield et al., 2005). 

 

1.3 Hormone Signaling Pathways 

 

Plant hormones or phytohormones, including abscisic acid (ABA), gibberellins 

(GA), brassinosteroids (BRs), ethylene, auxins, and cytokinins (CKs), are signalling 

molecules synthesized within the plant. They exert profound effects on many 

fundamental processes during plant growth and development even at extremely low 

concentrations. Among the phytohormones, ABA is a primary endogenous cue for 

the induction and maintenance of seed dormancy, resulting in the inhibition of seed 
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germination. On the contrary, GA acts antagonistically to ABA during seed 

development and germination. GA plays a vital role in releasing dormancy and 

promoting germination and thereby counteracts the inhibitory effect of ABA on 

seed germination. Other phytohormones are not as crucial as ABA and GA in the 

seed germination process, while they act synergistically with or antagonistically to 

ABA and/or GA in the control of seed dormancy maintenance and alleviation. 

Therefore, the regulatory roles of ABA and GA are in part achieved through 

interactions with other phytohormones. Such hormonal cross-talk forms a complex 

signaling web in which the interconnected processes that control dormancy release 

and germination initiation are well coordinated. 

 

This section mainly outlines the roles of ABA and GA in regulating seed 

development and germination, followed by a brief discussion of the roles of other 

phytohormones and in controlling dormancy and germination and the interaction 

among the phytohormone signaling pathways. 

 

1.3.1 Abscisic Acid 

 

ABA is a sesquiterpene hormone that plays an integral part in mediating the 

adaptation of the plant to biotic and abiotic environmental stresses, and regulation 

of seed development and germination. It is ubiquitous in seed and fruit tissues. 

ABA levels decline with the maturation of seeds concomitantly with the decrease of 
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seed water content. Its levels increase dramatically during the first half period of 

seed development in response to environmental stresses, which plays a vital role in 

a series of physiological changes during embryogenesis, such as accumulation of 

storage reserves, inhibition of precocious germination, acquisition of desiccation 

tolerance, induction of seed dormancy for normal seed development (Finkelstein et 

al., 2002). The effect of ABA on seed dormancy can be efficiently alleviated by 

chilling (stratification treatment) so that endogenous ABA content drops 

precipitously with a concurrent increase in germination rate (Ali-Rachedi et al., 

2004; Teaster et al., 2007). ABA can also enhance the tolerance of plants to adverse 

environmental conditions like drought, salinity, and temperature, and stimulate 

stomatal closure. 

 

Although a direct relationship between ABA content and its physiological function 

in seed dormancy and germination is lacking, mechanisms about ABA-mediated 

inhibition of seed germination have been investigated to some extent. In Brassica 

napus, it has been suggested that one of the roles that ABA plays in seed 

germination is to inhibit water uptake by preventing loosening of the embryo cell 

wall, indicating that ABA is somehow capable of reducing embryo growth potential 

(Schopfer and Plachy, 1985). In addition, ABA has also been found to specifically 

inhibit endosperm rupture instead of testa rupture. This inhibitory effect can be 

partially counteracted by the antagonistic action of GA (White et al., 2000; Muller 

et al., 2006) . 
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Apart from the direct effect of ABA content on the inhibition of seed germination, 

sensitivity to ABA is also critical in determining whether a seed remains dormant or 

begins to germinate. Sensitivity is a reflection of the efficiency of both signal 

perception and transduction. During the past years, much effort has been devoted 

toward the identification of receptors for ABA perception and signaling factors 

involved in ABA transduction. Although a variety of proteins has been reported as 

ABA receptors (Razem et al., 2006; Shen et al., 2006; Liu et al., 2007e; Ma et al., 

2009; Pandey et al., 2009; Park et al., 2009), so far no consensus has been reached 

as to the efficacy of these so-called receptors (Gao et al., 2007; Johnston et al., 

2007; Liu et al., 2007d; Guo et al., 2008; McCourt and Creelman, 2008; Muller and 

Hansson, 2009; Risk et al., 2009). Therefore, the issue of ABA receptors has to be 

further clarified. With respect to signal transduction, genetic studies have greatly 

facilitated the elucidation of regulatory genes involved in ABA-regulated seed 

germination. The most well-known genes are probably the ABA-INSENSITIVE 

(ABI) genes, namely ABI1 to ABI5. They were identified by selecting for mutant 

Arabidopsis seeds displaying ABA-resistant germination (Koornneef et al., 1984). 

Subsequent studies revealed that these ABI genes are primary signaling components 

responsible for ABA signal transduction. 

 

Based on the insensitivity to ABA-mediated inhibition of germination, abi1-1 and 

abi2-1 mutants were identified. In addition, these mutants also exhibit reduced 

dormancy (Koornneef et al., 1984). Later, it was revealed that both ABI1 and ABI2 
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encode protein phosphatases (Leung et al., 1994; Meyer et al., 1994; Leung et al., 

1997), indicating that ABI1 and ABI2 may control phosphorylation state of cell 

signaling components in ABA signaling pathway. However, because the abi1-1 and 

abi2-1 mutations are both dominant, it was impossible to conclude whether ABI1 

and ABI2 contribute to ABA signaling. To solve this problem, subsequent research 

using recessive mutants of ABI1 and ABI2 suggested that ABI1 and ABI2 played 

redundant roles in controlling ABA responsiveness, and these two genes negatively 

regulated ABA signaling (Gosti et al., 1999; Merlot et al., 2001). However, such 

conclusion was inferred from the observations on intragenic revertants of abi1-1 or 

abi2-1, and it was questioned by other researchers whose finding did not agree with 

this conclusion (Wu et al., 2003). Thus, due to lack of null mutants of ABI1 and 

ABI2, it remains unclear about the exact function of these two genes in ABA 

signaling. 

 

Different from ABI1 and ABI2, which encode enzymes, ABI3, ABI4 and ABI5 all 

encode transcription factors of the B3, APETALA2 (AP2) and basic leucine zipper 

(bZIP) domain, respectively (Giraudat et al., 1992; Finkelstein et al., 1998; 

Finkelstein and Lynch, 2000). Their mutants all show decreased sensitivity to the 

ABA inhibition of seed germination, but null mutations in ABI3 are more severe 

than those in ABI4 or ABI5. Besides, only abi3 mutants have reduced dormancy 

(Koornneef et al., 1984; Finkelstein, 1994; Nambara et al., 1994; Parcy et al., 

1994). During the past two decades, intensive research has been focused on the 
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functions of ABI3, ABI4, and ABI5 in ABA signaling transduction. Since the 

embryos of abi3 null mutant seeds remain green until maturation and immature 

seeds are completely non-dormant (Giraudat et al., 1992; Nambara et al., 1994), 

ABI3 is thereby considered as a key regulator of the embryogenesis and seems to be 

involved in mediating the inhibitory role of endogenous ABA on seed germination. 

ABI4 is a versatile gene involved in a variety of responses including ABA responses 

during seed germination (Finkelstein, 1994), salt responses during seed germination 

(Quesada et al., 2000), sugar responses in seedling growth (Arenas-Huertero et al., 

2000), and chloroplast retrograde signaling (Koussevitzky et al., 2007). As ABI4 is 

involved in regulating such a wide spectrum of developmental processes, whether it 

should be regarded as a key ABA signaling component is open to discussion. ABI5 

sets in after breakage of seed dormancy but prior to autotrophic growth, and it is 

essential to execute an ABA-dependent growth arrest (Lopez-Molina et al., 2001). 

Such growth arrest occurs through recruiting of de novo late embryogenesis 

programs, and confers the plant osmotic tolerance in harsh environment (Lopez-

Molina et al., 2002). 

 

With the identification of these transcription factors, intensive effort was also 

undertaken to study their interactions in ABA signaling. Being transcription factors, 

ABI3, ABI4, and ABI5 regulate downstream events via modulating the expression 

of their target genes. It has been shown that ABI3 acts upstream of ABI5 and 

mediates the induction of ABI5 activity by ABA (Lopez-Molina et al., 2002). On 
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the other hand, ectopic ABI4 expression confers ABA inducible expression of ABI3 

and ABI5 (Soderman et al., 2000). Considering these observations, it is not likely 

that these ABI genes act in a simple linear pathway, but rather in a combinatorial 

network. Apart from their cross-regulation, they also regulate many of the same 

downstream genes, in particular, those “seed-specific” genes, but in different 

manners during seed germination in response to ABA (Parcy et al., 1994; 

Finkelstein and Lynch, 2000; Soderman et al., 2000).  

 

1.3.2 Gibberellins 

 

Gibberellins are a group of tetracyclic diterpene acids that are well-known for their 

capability to promote plant growth. The gibberellins are named as GA1 to GAn 

according to the sequence of their discovery. GA3, or gibberellic acid, is most 

frequently used in laboratory to trigger seed germination. In plants, GA 

biosynthesis and response are well coordinated during seed development and seed 

germination. In the process of seed development, GA levels are usually high during 

the embryo morphogenesis phase and decreased during the embryo maturation 

phase (Hedden and Kamiya, 1997). Active GAs may help promote the growth of 

embryo and later GAs are deactivated to avoid precocious germination (vivipary) 

(Hays et al., 2002). In fact, GA is likely to antagonize the ABA effect on seed 

development, particularly dormancy induction (White et al., 2000). It was found 

that in ABA-deficient or ABA-insensitive mutants of maize, when GA biosynthesis 
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is blocked during early seed development, vivipary is suppressed, indicating that 

GA can positively regulate vivipary (White and Rivin, 2000). In Arabidopsis, 

embryonic regulators FUS3 and LEC2 have been demonstrated to play vital roles in 

the control of GA and ABA biosynthesis during embryogenesis (Curaba et al., 

2004; Gazzarrini et al., 2004). In immature seeds of fus3 and lec2, GA levels are 

higher than that in wild-type and such misactivated GA biosynthesis results in some 

altered phenotypes (Curaba et al., 2004). Similarly, Gazzarrini et al. also showed 

that FUS3 negatively regulates GA biosynthesis, moreover, it positively regulates 

ABA biosynthesis (Gazzarrini et al., 2004). FUS3 on the one hand, modulates the 

GA/ABA ratio during seed development and, on the other hand, is negatively or 

positively regulated by GA and ABA, respectively. Such regulation loop helps 

regulate maturation events during seed development (Gazzarrini et al., 2004). Thus, 

GA/ABA ratio during seed development determines, to a large extent, whether seed 

dormancy and maturation can be induced and maintained. In addition, GA/ABA 

ratio is also of great importance in the control of seed germination. Accumulation 

of GA is accompanied with reduction of ABA during seed imbibition, suggesting 

that GA and ABA play antagonistic roles in germination process (Olszewski et al., 

2002; Nambara and Marion-Poll, 2005). In Arabidopsis, ABA-deficient or ABA-

insensitive mutants are able to rescue the germination of GA-deficient ga1 mutant 

or seeds treated with GA biosynthetic inhibitor (Koornneef et al., 1982; Nambara et 

al., 1991; Leon-Kloosterziel et al., 1996).  
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GA counteracts the effect of ABA by promoting the embryo growth potential and 

the weakening of tissues covering the embryo (Bentsink and Koornneef, 2008; 

Holdsworth et al., 2008). It is known that GA upregulates the expression of two 

expansin genes in tomato, namely LeEXPA8 and LeEXPA10, to promote the 

embryo growth potential (Chen et al., 2001). Expansins are so called because of 

their capability to cause expansion of cell walls. LeEXPA8 is specifically expressed 

in the radicle cortex during and after germination, and LeEXPA10 is expressed 

throughout the embryo during early stage of embryogenesis and germination. In 

GA-deficient gib-1 mutant, the expression of both genes is suppressed and upon 

GA application, their expression is resumed to promote embryo growth (Chen et al., 

2001). In Arabidopsis, microarray analysis revealed that many expansions are also 

rapidly upregulated by GA in GA-deficient ga1-3 mutant upon imbibition. Besides, 

a large number of xyloglucan endotransglycosylase/hydrolase (XTH) genes, which 

function in loosening cell wall, and pectin methylesterase (PME) genes, which may 

be involved in cell elongation by modifying cell wall pectin, are upregulated by GA 

during seed germination (Ogawa et al., 2003). Expression of some XTH and PME 

genes are shown to be localized in the embryo. These data suggest that GA may 

induce some cell wall-modifying proteins in the embryo to promote the growth 

potential of the embryo during seed germination (Ogawa et al., 2003). On the other 

hand, weakening of covering tissues is also necessary for achieving germination. 

When GA biosynthesis is inhibited, both testa and endosperm rupture are blocked. 

Testa as a constraint to radicle protrusion has been shown by testa mutants that 
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have reduced seed dormancy (Debeaujon et al., 2000). On the contrary, GA-

deficient mutants that have defects in GA biosynthesis cannot germinate in the 

absence of exogenous GA. But when some testa mutants are introduced into GA-

deficient ga1 mutant background, the resulting double mutants are able to fully 

germinate without exogenously-applied GA. Similarly, removal of the envelopes of 

ga1 mutant seeds also makes them germinate successfully (Debeaujon and 

Koornneef, 2000). However, although ABA and GA have opposite effects during 

seed germination, ABA does not inhibit testa rupture. Instead, ABA specifically 

inhibits endosperm rupture, and such inhibitory effect of ABA can be counteracted 

by GA (Muller et al., 2006). In Arabidopsis, it is known that testa rupture and 

endosperm rupture are two sequential steps during germination (Liu et al., 2005). 

After testa rupture, endosperm must be further weakened prior to radicle protrusion. 

Extensive studies have been focused on cell wall-modifying proteins involved in 

endosperm weakening, including expansins, XTHs, PMEs, mannanase, cellulase, 

etc. (Nonogaki et al., 2007). Strong evidence show that de novo-synthesized GA in 

the micropylar endosperm after imbibition is required to induce the expression of 

the genes encoding the above-mentioned enzymes or cell wall proteins to weaken 

endosperm, thus relieving the inhibitory effect imposed by ABA (Ogawa et al., 

2003; Muller et al., 2006).  

 

GA signaling is regulated by a group of repressors collectively called DELLA 

proteins including REPRESSOR OF GA1-3 (RGA), GA-INSENSITIVE (GAI), 
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and RGA-LIKE 1-3 (RGL1-3) (Peng and Harberd, 1997; Dill and Sun, 2001; Lee et 

al., 2002; Wen and Chang, 2002; Tyler et al., 2004). DELLA proteins have been 

found to function in mediating cotyledon expansion to overcome seed dormancy 

imposed by the seed coat in Arabidopsis (Penfield et al., 2006). Although all 

DELLA proteins seem to participate in the regulation of seed germination, RGL2 

appears as the major DELLA factor involved in repressing seed germination (Lee et 

al., 2002; Tyler et al., 2004). Among all the della single mutants except rgl3, it was 

found that only the germination of rgl2 mutants is strongly resistant to the effects of 

GA biosynthesis imhibitor, paclobutrazol (PAC). Moreover, Loss of RGL2 function 

suppresses the nongerminating phenotype of GA-deficient ga1-3 mutant (Lee et al., 

2002). Recent studies have shown that RGL2 stimulates ABA biosynthesis and 

ABI5 activity, while ABA enhances the RGL2 expression (Ko et al., 2006; Zentella 

et al., 2007; Piskurewicz et al., 2008), indicating that RGL2 plays a role in 

mediating the interaction of GA and ABA during seed germination.  

 

1.3.3 Brassinosteroids 

 

BRs are a class of polyhydroxysteroids that are found in a wide variety of plant 

species. They can be detected in almost every plant tissue, while the most abundant 

BRs are present in the pollen and seeds (Schmidt et al., 1997). The most active 

component in the family of BRs is 24-epibrassinolide (BL), it is detected in dry 

seeds and capable of activating BR signaling (Schmidt et al., 1997). Although BRs 
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production is plentiful in seeds, they are generally not considered as major 

regulators of seed dormancy and germination, but they are involved in these 

processes through the communication with other hormones.  

 

In Arabidopsis, BL is able to rescue the nongerminating phenotypes of GA-

deficient mutants ga1-1, ga2-1, and ga3-1 and greatly increase the germination of 

GA-insensitive sly1 mutants. In addition, it was found that BR biosynthetic det2-1 

mutant and BR responsive bri1-1 mutant are more sensitive to ABA on seed 

germination than wild-type (Steber and McCourt, 2001). In Nicotiana, both BL and 

GA have the ability to promote seed germination and their actions are suggested to 

be independent to each other, and BL counteracts the inhibitory effect of ABA on 

endosperm rupture (Leubner-Metzger, 2001). An inference is that BR and GA act 

in parallel to promote germination, and they antagonize ABA during seed 

germination. Recently, it was further found that exogenous ABA rapidly and 

directly inhibits BR signaling outputs through modulating the phosphorylation 

status of BES1, a BR signaling marker, and the expression of many BR-responsive 

genes. Such regulation is through ABI1 and ABI2 in the ABA signaling pathway, 

and through BIN2 in the BR signaling pathway (Zhang et al., 2009). Thus, the 

molecular mechanism of the interaction between BR and ABA signaling pathways 

is partially unveiled. 
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1.3.4 Ethylene 

 

Ethylene is an organic compound with the molecular formula C2H4. It has been 

reviewed that ethylene might play a role in the release of dormancy and the 

promotion of germination of non-dormant seeds of many species (Kepczynski and 

Kepczynska, 1997; Matilla, 2000). Ethylene production is higher in non-dormant 

seeds than dormant seeds, and is induced during seed imbibition before radicle 

emergence. Since the ethylene production is correlated well with the progress of 

seed germination, it has been proposed that the primary action of ethylene in 

germinating seeds may be in the promotion of radial cell expansion in the 

embryonic axis, increasing seed respiration, or increasing water potential (Kucera et 

al., 2005).  

 

Studies on ethylene-insensitive etr1 and ein2 mutants show that they display 

enhanced dormancy and low germination rate. Both mutants are ABA-

hypersensitive, and ein2 is able to suppress the high germination rate of abi1-1. 

(Beaudoin et al., 2000). In addition to disrupting ABA signaling, ein2 and ert1 

mutants also accumulate ABA to higher levels (Ghassemian et al., 2000; Chiwocha 

et al., 2005). On the contrary, another ethylene-hypersensitive mutant ctr that 

exhibits slightly reduced dormancy is ABA-insensitive, and can enhance the 

germination rate of abi1-1 (Beaudoin et al., 2000). Therefore, ethylene counteracts 

ABA during the control of seed dormancy and germination.  
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Ethylene also interacts with GA to synergistically promote the transition from seed 

dormancy to germination. It was found that ethephon, a compound that releases 

ethylene in solution, has similar effect like GA on suppressing the expression of 

genes encoding GA 20-oxidase in Fagus sylvatica L. seeds, thus releasing 

dormancy (Calvo et al., 2004). Indeed, it has already been found in earlier research 

that ethylene can restore the germination of ga1 mutant (Karssen et al., 1989). On 

the other hand, GA can also promote the germination of etr1 mutant (Bleecker et 

al., 1988). Thus, ethylene acts in concert with GA to promote seed germination. 

 

1.3.5 Auxins 

 

Auxins are the first plant hormones discovered. In auxin family, the most important 

member produced by plants is indole-3-acetic acid (IAA). Auxins play a vital role 

in embryogenesis, providing positional information for the establishment of the 

basic body plan of the embryo (Fischer-Iglesias et al., 2001; Friml et al., 2003; 

Weijers and Jurgens, 2005). It has been reported that IAA might be involved in the 

control of dormancy and preharvest sprouting in wheat seeds (Ramaih et al., 2003).  

 

Although present in the seed during imbibition, auxin itself seems not to directly 

regulate germination since auxin-related mutants do not reportedly have obvious 

defects in seed germination. However, the involvement of auxin in the control of 

seed germination is reflected through the crosstalk with other hormones. 
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Germination of auxin response mutants axr1 and ibr5 is slightly more insensitive to 

low ABA concentrations compared with the response of wild-type seeds (Tiryaki 

and Staswick, 2002; Monroe-Augustus et al., 2003). Another study also show the 

interaction between auxin and ABA by a detailed investigation of an AUXIN 

RESPONSE FACTOR called ARF10 in the process of seed germination (Liu et al., 

2007c). When expression of ARF10 is repressed by overexpression of 

microRNA160 (miR160), the seeds exhibits reduced sensitivity to ABA. 

Conversely, in transgenic seeds expressing an miR160-resistant form of ARF10, 

germination is more sensitive to ABA.  

 

The interaction between auxin and GA during seed germination is largely inferred 

by an microarray analysis of GA-regulated genes during Arabidopsis seed 

germination. It was found that the expression of several auxin transporter genes, 

including AUX1, PIN2, and PIN7, and some CYP genes that are necessary for the 

biosynthesis of auxin, is highly upregulated in ga1-3 mutant seeds treated with 

exogenous GA (Ogawa et al., 2003). Therefore, GA activity may affect auxin 

biosynthesis and transport to regulate seed germination. 

 

1.3.6 Cytokinins 

 

CKs are compounds with an adenine-like structure that promote cell division. 

Kinetin is the first CK discovered, but since it is not synthesized in plants, it is 
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regarded as a “synthetic” CK. Zeatin is named because it was originally isolated 

from Zea mays, it is the most common form of naturally occurring CKs. CKs are 

present in developing seeds and accumulate mainly in the endosperm (Emery et al., 

2000; Mok and Mok, 2001). Like auxin, CKs also participate in embryo pattern 

formation; besides, they control endosperm growth and grain filling (Bewley and 

Black, 1994; Mok and Mok, 2001). 

 

It has been found that CKs alone are able to break dormancy of seeds of various 

species, but whether they play a role in promoting seed germination was largely 

unknown. Until recently, an analysis of a triple mutant in which three Arabidopsis 

cytokinin receptors lose their activities reveals a possible function of CKs in 

germination control (Riefler et al., 2006). The triple cytokinin receptor mutant 

exhibits faster germination rates in white light or red light and increased 

germination percentage in the dark (Riefler et al., 2006). Thus, CKs may act as a 

negative regulator of seed germination. 

 

The interactions between CKs and other hormones in the control of seed dormancy 

and germination have not been well established. However, there are some studies 

suggest the existence of such interactions. For example, some cytokinin-resistant 

mutants in Nicotiana show reduced seed dormancy and lower endogenous ABA 

levels compared with wild-type (Rousselin et al., 1992). Furthermore, a connection 

between CKs and ethylene is suggested in a research that in an Arabidopsis 
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ethylene-insensitive etr1 mutant, the profiles of CKs are considerably different 

from that in wild-type during seed germination (Chiwocha et al., 2005). 

 

1.3.7 Summary 

 

In the past, our knowledge about dormancy and germination was almost zero; 

nowadays, significant progress has been made towards our understanding of the 

factors and processes involved in controlling the transition from dormancy to 

germination. In addition to environmental cues, hormones are also indispensable for 

the balance between dormancy and germination, recent years extensive hormonal 

interactions have been found to modulate downstream physiological events, thus 

control seed germination (Figure 3). Despite the progress made toward elucidating 

hormone signaling, the complexities of “integrated signaling” are still far beyond 

our comprehension and understanding. To gain an in-depth understanding of this 

biological event, much effort can be done, such as searching for the substrates of 

those known kinases and phosphatases, establishing direct or indirect gene-gene 

interaction and protein-protein interaction, and identifying novel signaling 

components linking the known elements need to be further identified and 

incorporated into the hormonal web. 
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Figure 3. Hormonal Control of Seed Germination in Arabidopsis. 

Under favorable environmental conditions, seed germination is also under 
combinatorial control by phytohormones. ABA is a dominant repressor of seed 
germination, while GA is a major promoter of seed germination. Other hormones 
also play a role in the control of seed germination. During Arabidopsis seed 
germination process, testa rupture and endosperm rupture are two sequential steps 
regulated by different hormones. Besides, embryo growth potential is also under 
hormonal regulation. ET, ethylene. 
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1.4 PEBP Family 

 

In this study, a gene called MFT is characterized and its role in the control of seed 

germination has been established. MFT was named after its sequence similarity 

with two important flowering time regulators, FLOWERING LOCUS T (FT) and 

TERMINAL FLOWER 1 (TFL1). FT, one of the floral pathway integrators (Simpson 

and Dean, 2002), is expressed in the leaves, but its protein moves to the shoot 

meristems where it interacts with the bZIP transcription factor FD to induce 

flowering (Abe et al., 2005; Corbesier et al., 2007). Although TFL1 shares high 

sequence similarity with FT, it exerts an opposite action to potently repress 

flowering (Shannon and Meeks-Wagner, 1991). Its expression is restricted to the 

inner cells of mature shoot meristems, while its protein moves to outer cells to 

control shoot meristem identity throughout the plant life cycle (Conti and Bradley, 

2007).  

 

Both FT and TFL1 encode small proteins similar with phosphatidylethanolamine -

binding proteins (PEBPs) or Raf kinase inhibitor proteins (RKIPs) (Kardailsky et 

al., 1999; Kobayashi et al., 1999). Initially a basic cytosolic protein with a 

molecular weight of 23 kDa was isolated, and binding studies indicated that it has a 

preference for binding to phosphatidylethanolamine compared to other 

phospholipids (Bernier et al., 1986). Based on sequence homology, all other similar 
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proteins isolated were assigned to this PEBP family. The first structural information 

was derived from human PEBP, from which a novel fold topology was found, and 

the regions that likely execute biological function were suggested (Banfield et al., 

1998). Members of the PEBP family have diverse roles in animals, yeast and 

bacteria, and they are small peptide precursors, inhibitors of various enzymes and 

modulators of signaling complexes (Tohdoh et al., 1995; Bruun et al., 1998; Hengst 

et al., 2001; Chautard et al., 2004). Among the PEBP family, RKIP is the most 

extensively studied protein that is widely expressed in mammals. It can bind to Raf-

1 kinase and interfere with Raf activity, thus affecting relevant signaling pathways 

to control numerous biological processes including growth and differentiation (Park 

et al., 2006). It can also facilitate membrane associated heterotrimeric G protein 

coupled signaling to trigger subsequent cellular responses (Kroslak et al., 2001). 

Structural analysis on PEPBs from both human and bovine identified a highly 

conserved phosphate-binding site, which may be the crucial domain for the 

inhibitory activity of PEPBs on Raf-1 (Banfield and Brady, 2000). Crystal structure 

of a plant PEBP family member, Antirrhinum CENTRORADIALIS (CEN), 

confirmed the structural similarity of CEN with other known PEBP members 

(Banfield and Brady, 2000). Although the plant CEN homologues, including MFT, 

form a distinctive cluster, the striking conservation of a ligand binding site and 

accessory features in PEBP members strongly supports the hypothesis that the CEN 

members share a common biological function with their mammalian PEBP 
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counterparts as regulators of cell differentiation mediated by their interaction with 

kinase cascades (Banfield and Brady, 2000).  

 

While FT and TFL1 proteins share high sequence similarity (~59% identity), their 

function is surprisingly different. Domain swapping strategy has been applied to 

reveal the molecular basis for their opposite function. Hanzawa et al. (2005) 

showed that a single amino acid exchange can convert FT or TFL1 protein into a 

new form with TFL1-like or FT-like function, respectively. Ahn et al. (2006) 

further expanded our knowledge on this antagonistic activity by defining an 

external loop along with an adjacent peptide that is responsible for the opposite 

function of FT and TFL1. The key residue identified by Hanzawa et al. (2005) can 

interact with the external loop. The proposed model that FT and TFL1 compete for 

common interacting partner(s) that may have some intermediate levels of activity in 

the absence of FT or TFL1 (Ahn et al., 2006) still awaits evidence.  

 

In addition to FT and TFL1, MFT also has several other homologs, including 

BROTHER OF FT AND TFL1 (BFT), TWIN SISTER OF FT (TSF), and 

ARABIDOPSIS THALIANA CENTRORADIALIS HOMOLOGUE (ATC) (Kobayashi 

et al., 1999; Mimida et al., 2001; Yamaguchi et al., 2005). Among these homologs, 

TSF has been suggested as another floral pathway integrator with redundant 

function with FT (Yamaguchi et al., 2005). BFT has recently been found to act 

redundantly with TFL1 in inflorescence meristem development (Yoo et al., 2010). 
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Apart from the well characterized FT and TFL1, the function of other members of 

this small gene family is yet to be further explored. 

 

Although MFT was ascribed as a weak floral inducer (Yoo et al., 2004), the 

characteristics of this gene, such as spatial expression of its mRNA and protein 

localization, are largely unknown. 

 

1.5 Objectives and Significance of the Study 

 

Bioinformatics analyses revealed that there are thousands of ABA-responsive genes 

in Arabidopsis imbibed seeds. But till now less than 100 genes have been well 

investigated. This means that studies regarding the overwhelming majority of genes 

remain untouched hitherto. Among these yet-to-be characterized genes, MFT, short 

for MOTHER OF FT AND TFL1, appeared as one of the ABA-upregulated genes. 

MFT was named after its high sequence similarity with two important flowering 

time regulators, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). 

However, it was found that MFT had little, if any, effect on the flowering time. 

Thus, this molecule is intriguing and is worthy of further investigation. 

 

To gain a comprehensive understanding of how MFT participates in the control of 

seed germination in the ABA signaling pathway, we sought to characterize MFT by 
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genetic, molecular, biochemical, and physiological approaches. Our specific 

objectives were listed as follows: 

• Generation of loss- and gain-of-function mutants of MFT 

• Examination of the temporal and spatial expression of MFT by RT-PCR and in 

situ hybridization methods 

• Determination of the protein localization of MFT by GFP-tagging and confocal 

microscopy 

• Identification of upstream regulatory factors of MFT by screening assay 

• Identification of downstream target genes of MFT by microarray and chromatin 

immunoprecipitation (ChIP) techniques 

Since our study focused on the interaction of MFT with ABA signaling factors 

during seed germination, particular attention was paid to the identified genes or 

proteins that are in the ABA pathway. Thereafter, more detailed analyses between 

MFT and these genes/proteins were further performed.  

 

The achievement of the above-mentioned objectives will disclose the detailed 

characteristics of MFT that are largely unknown so far. This information would be 

useful for other relevant research, such as studies on MFT homologs in 

Arabidopsis, or MFT orthologs in other plant species. More importantly, the results 

of how MFT affects seed germination in response to ABA should provide valuable 

information for expanding our current understanding of the genetic regulation of 
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seed germination, and make a nice contribution to further research in the underlying 

mechanism of seed germination. 

 

This thesis focuses on the function of MFT during seed germination in response to 

ABA. But it is known that a gene may respond to multiple signals to execute its 

function in certain biological process, as is the case for MFT. In fact, bioinformatics 

analyses showed that besides ABA, MFT is upregulated by salt and osmotic stresses 

as well in imbibed Arbidopsis seeds. However, it is impossible for us to perform 

detailed investigation of all the factors in a single research study. From this thesis, 

we should be able to understand how MFT affects seed germination in response to 

ABA. Such information could shed light on further studies of how MFT is regulated 

by other factors during seed germination. 
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2.1 Plant Materials 

 

Arabidopsis thaliana ecotype Columbia (Col-0) was used in the generation of all 

transgenic plants. abi1-1, abi2-1, and abi3-1 are in Landsberg erecta (Ler) 

background; abi4-1, mft-2, mft-3, aba1-5, cyp707a1-1, and cyp707a2-1 are in Col 

background; and abi5-1 is in Wassilewskija (Ws) background. mft-2 introgressed 

into Ler was obtained by three backcrosses of mft-2 into Ler. Different 

combinations of DELLA mutants in ga1-3 background (Ler) have been described 

previously (Yu et al., 2004b).  

 

2.2 Plant Growth Conditions, Seed Germination Assay and Stress 

Treatment 

 

Plants were grown at 22°C under long days (16 h of light/8 h of dark). Dry seeds 

were collected and stored at a dehumidifier cabinet for at least 2 months before seed 

germination test was carried out. After-ripened seeds were washed with 70% (v/v) 

ethanol for 30 seconds, sterilized with 10% (v/v) commercial Clorox bleach for 15 

min, and washed three times with sterile water. Sterilized seeds were subsequently 

plated on MS medium (Sigma) containing 0.8% (w/v) Bacto Agar (Difco/BD) 

supplemented with ABA, NaCl or GA3. Stock solution of ABA (mixed isomers, 

Sigma) was in methanol, while GA3 (Sigma) was in ethanol. Control plates 
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contained equal amount of the corresponding solvents. Plates were kept at 4°C in 

darkness for 3 d for stratification and then transferred to a tissue culture room set at 

22°C with a 16 h light/8 h dark photoperiod. For the germination assay, at least 100 

seeds for each genotype were sterilized and sown on MS medium supplemented 

with or without phytohormones or chemicals. Germination was defined as the first 

sign of radicle tip emergence and scored daily until the 7th day of the incubation, 

and the germination results were calculated based on at least three independent 

experiments with seeds from independent batches grown under same conditions. 

The standard deviation was calculated based on the results from three independent 

experiments. Drought treatment and measurement of transpiration rate were 

performed as previously described (Kang et al., 2002). 

 

2.3 Plasmid Construction 

 

2.3.1 Fragment Amplification and Cloning 

 

To construct 35S:MFT, the MFT coding region was amplified using primers 

MFT_P1_PstI (5'-CCCTGCAGATATATATCTCCCTCCCCGC-3') and 

MFT_P2_SpeI (5'-CCACTAGTTTTTTGTACTAGCGTCTGCG-3'). The PCR 

products were digested with PstI and SpeI and inserted into the corresponding sites 

of the pGreen 0229-35S binary vector (Yu et al., 2004a).  
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To construct MFT(P2)-GUS, the 1.8 kb MFT 5’ upstream sequence was amplified 

with MFTGUS_P1_HindIII (5'-CCAAGCTTCTACGCGATTGGACGTTGC-3') 

and MFTGUS-P5-XmaI (5’-ACCCGGGCGATCAGCGGGGAGGGAGAT-3’) 

primer pairs. To construct MFT(P6)-GUS, the 900 bp MFT 5’ upstream sequence 

was amplified with the primers MFTGUS-P4-HindIII (5’-CCAAGCTTCGATGAA 

TATGCGACCGACC-3’) and MFTGUS-P5-XmaI. The digested PCR products 

were cloned into pHY107 (Liu et al., 2007). These constructs were mutagenized to 

produce the mutated ABA response elements (Figure 22) using the QuikChange II 

XL Site-Directed Mutagenesis Kit (Stratagene). Two MFT genomic fragments 

(gMFT-P2 and gMFT-P6) were used for the complementation test. gMFT-P2 was 

comprised of the 1.8 kb upstream sequence and the 2.1 kb coding sequence plus 

introns, and amplified using the primers MFTGUS_P1_HindIII and 

MFT_P2'_XmaI (5'-ACCCGGGCTAGCGTCTGCGTGAAGCAGGTTCC-3'). 

gMFT-P6 contained the 900 bp upstream sequence and the 2.1 kb coding sequence 

plus introns, and was amplified by MFTGUS-P4-HindIII and MFT_P2'_XmaI. 

These fragments were digested and inserted into pHY105 (Liu et al., 2007a).  

 

To construct gMFT-HA, a single HA tag was incorporated into pHY105-gMFT-P2 

construct using the primers MFT_inverse_RC (5'-CAGCGAATTATCTAG 

AACTAGCTAGCGTCTGCGTGAAGCAGGTTCC-3') and gMFT-HA_R (5'-

AGCGTAATCTGGAACGTCATATGGATAGCGTCTGCGTGAAGCAGGTTCC

-3') by the mutagenesis PCR method.  
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To construct 35S:ABI3-6HA, the ABI3 cDNA was amplified with the primers 

ABI3-6HA_P1_XhoI (5'-CCCTCGAGCCACTTCAACGATGAAAAGCTTGCAT 

GTGG-3') and ABI3-6HA_P2_SpeI (5'-GGACTAGTTTTAACAGTTTGAGAAG 

TTGGTGAAGCGACCAC-3'). The resulting products were digested by SpeI and 

XhoI, and cloned into pGreen-35S-6HA to obtain an in-frame fusion of ABI3-6HA 

under the control of 35S promoter (Liu et al., 2008). Similarly, 35S:ABI5-6HA and 

35S:RGL2-6HA were constructed using the primers ABI5-6HA_P1_XhoI (5'-

CCCTCGAGGCAGTTGTTAAATGGTAACTAGAG-3') and ABI5-6HA_P2_SpeI 

(5'-GGACTAGTGAGTGGACAACTCGGGTTCCTCATC-3'), and the primers 

RGL2_EcoRV_F (5’-GGGATATCAACAAGAAAGATGAAGAGAGGATACGG 

AG-3’) and RGL2_XmaI_R2 (5’-CCCCCCGGGGGCGAGTTTCCACGCCGAGG 

-3’), respectively.  

 

2.3.2 Preparation and Transformation of E. coli Competent Cells 

 

The method for the preparation of competent cells of Escherichia coli for heat-

shock transformation was modified based on a previous published protocol (Inoue 

et al., 1990). The XL1-Blue strain of E. coli (Stratagene, USA) that is both 

endonuclease (endA) and recombination (recA) deficient is known to significantly 

improve the quality of miniprep DNA and insert stability, thus it is used in our lab.  
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The procedures are briefly summarized as follows: Single colony of XL1-Blue cells 

is inoculated into 1.5 ml of SOB medium (yeast extract 5 g/l, Tryptone 20 g/l, NaCl 

0.58 g/l, KCl 0.19 g/l, MgCl2·6H2O 2.03 g/l, MgSO4·7H2O 2.46 g/l) and incubated 

for 12 h by vigorously shaking at 37°C. An aliquot of 500 µl of the overnight 

culture was transferred to 100 ml fresh SOB medium and cultured at 20°C until an 

OD600 value reached 0.6. The culture was then cooled on ice for 10 min before 

centrifuged at 3000 rpm for 5 min at 4°C. The pellet was gently re-suspended in 20 

ml of freshly-prepared TB medium (10 mM PIPES, 55 mM MnCl2, 15 mM CaCl2, 

250 mM KCl, pH 6.7), placed on ice for 10 min, and centrifuged for 5 min at 4°C. 

The cell pellet was gently re-suspended again in 4 ml of fresh ice-cold TB medium. 

DMSO was added (to a final concentration of 7%) with gentle swirling to the cell 

suspension as a stabilizer. Subsequently, 100 µl of cell suspension was aliquoted 

into a pre-chilled 1.5 ml tube. The tubes were then quick-frozen by liquid nitrogen, 

and kept at -80°C for long term storage up to several months without dramatic 

decrease of competency. 

 

A tube of frozen XL1-Blue competent cells was thawed and placed on ice. 5 µl of 

ligation reaction was pipetted to the tube and mixed sufficiently by gentle tapping 

of the tube. After incubation on ice for 15 min, the mixture was then placed in a 

water bath preheated to 42°C to do heat-shock for 90 sec. The tube was then placed 

on ice for an incubation of another 2 min before added 1 ml LB medium (yeast 

extract 5 g/l, Tryptone 10 g/l, NaCl 10 g/l). The bacteria were cultured at 37°C for 1 
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h with shaking, and centrifuged for 3 min at 3000 rpm. The cell pellet was re-

suspended in 100 µl LB and spread evenly onto an LB agar plate containing a 

specific antibiotic for selection. The LB agar plate was then incubated overnight at 

37°C. 

 

2.3.3 PCR Verification and Sequence Analysis 

 

The verification of pGreen binary vector based constructs was taken as an example 

here. For clones with the inserted DNA in E. coli, single colony was suspended in 5 

µl H2O. 1 µl of bacterial suspension was added to a buffered PCR reaction mix 

containing 0.2 mM dNTP, 1 unit of Taq DNA Polymerase, 0.2 mM of each primer 

(PG-P1: 5’-CGACGGCCAGTGAATTGTAATACG-3’ and PG-P2: 5’-

CCTTATCGGGAAACTACTCACAC-3’). Polymerase chain reaction (PCR) was 

performed as follows: denaturation at 94°C for 4 min, followed by 30 cycles of 

denaturation at 94°C for 15 sec, annealing at 52.5°C for 15 sec, and elongation at 

72°C for 1 min, and final elongation at 72°C for 5 min. PCR products were viewed 

on a 1% agarose gel by electrophoresis. Colonies with PCR products of expected 

size were grown for plasmid extraction and DNA sequencing. 

 

Plasmid DNA was extracted with the High-Speed Plasmid Minikit (Geneaid, 

Taiwan) according to manufacturer’s instruction. DNA sequences were determined 

by BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). About 
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100-200 ng of purified plasmid was added into a reaction mix with 3.2 pmols of 

PG-P1 or PG-P2 primer. PCR program for sequencing was performed as follows: 

25 cycle of denaturation at 96°C for 10 sec, annealing at 50°C for 5 sec, and 

extension at 60°C for 30 sec. The resulting PCR products were then precipitated 

with 80 µl of 75% isopropanol, pelleted by centrifugation, washed with 500 µl of 

70% ethanol, and finally air-dried. The pelleted DNA was sequenced by a 

sequencing machine. The sequence returned was subject to BLAST search at the 

web site of National Centre for Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov). 

 

2.4 Plant Transformation 

 

2.4.1 Preparation of A. tumefaciens Competent Cells 

 

The Agrobacteria tumefaciens GV3101 strain was used in our lab for making 

electroporation-competent cells. The procedures are briefly summarized as follows. 

as follows: Single colony of A. tumefaciens cells is inoculated into 1.5 ml of LB 

medium and incubated for 12 h by vigorously shaking at 28°C. An aliquot of 500 µl 

of the overnight culture was transferred to 100 ml fresh LB medium and cultured at 

28°C until an OD600 value reached 0.6. The culture was then cooled on ice for 10 

min before centrifuged at 3000 rpm for 10 min at 4°C. The pellet was gently re-

suspended in 32 ml of ice-cold sterile H2O, placed on ice for 10 min, and 
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centrifuged for 10 min at 4°C. The cell pellet was gently re-suspended again in 8 ml 

of fresh ice-cold sterile H2O and placed on ice for 10 min. 50 µl of cell suspension 

was aliquoted into a pre-chilled 1.5 ml tube. The tubes were then quick-frozen by 

liquid nitrogen, and kept at -80°C for long term storage up to several months 

without dramatic decrease of competency. 

 

2.4.2 Plasmid Transformation of A. tumefaciens Competent Cells 

 

A tube of frozen GV3101 competent cells was thawed and topped up to 100 µl with 

sterile H2O. 1-2 µl of purified plasmid was pipetted to the tube and mixed 

sufficiently by gentle tapping of the tube. The mixture was transferred into a 1 mm 

Gene Pulser® cuvette (Bio-Rad) and subject to electroporation at 25 µF, 2.5 kV, 

200Ω. The electroporated bacteria were then cultured in 1 ml of LB medium for 3 h 

with shaking at 28°C and precipitated at 3000 rpm for 10 min. The cell pellet was 

re-suspended in 100 µl LB and spread evenly onto an LB agar plate containing 

25µg/ml gentamycin, 10 µg/ml tetracycline and 25 µg/ml rifampicin for the 

selection of the GV3101 strain and a specific antibiotic for the selection of the 

plasmid. For pGreen-based plasmids, 50 µg/ml kanamycin was used. The plate was 

incubated for 2-3 days at 28°C. The colonies were verified by PCR and the 

confirmed colonies with the transgene were grown for subsequent floral dip. 
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2.4.3 Floral Dip and Selection of Transgenic Plants 

 

Agrobacterium-mediated floral dip method was established previously (Clough and 

Bent, 1998). GV3101 cells transformed by a desired construct were cultured at 

28°C until an OD600 value reached 0.8 and then pelleted at 4000 rpm for 10 min. 

The cell pellet was re-suspended completely in a solution containing 5% sucrose 

and 0.015% surfactant Silwet L-77. Flower buds of desired plants that were ready 

for transformation were dipped and submerged in Agrobacterium cell suspension 

for several seconds. The dipping can be repeated once more. The inoculated plants 

were then covered in a black plastic bag overnight to improve the transformation 

efficiency. The dipped plants were then grown under normal growth conditions and 

their seeds were later collected as T1 generation, which was grown and screened by 

3% BASTA (for the selection of pGreen-based constructs) after the emergence of 

the first rosette leaf. 

 

2.5 Expression Analysis 

 

2.5.1 RNA Extraction and Reverse Transcription for cDNA Synthesis 

 

Total RNAs from seeds were extracted using the RNAqueous® Small Scale Phenol-

Free Total RNA Isolation Kit (Ambion) according to the manufacturer’s 
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instructions. RNase-free DNase (Roche) was used to eliminate genomic DNA 

contamination. The RNAs were reverse-transcribed with SuperScript RT-PCR 

System (Invitrogen) according to the manufacturers’ instructions. For future 

expression analysis, if TUBULIN (TUB2) was included as an internal control, 

Oligo(dT)20 was used to synthesize first-strand cDNA; if 18S rRNA was included as 

an internal control, random hexamers were used to synthesize first-strand cDNA. 

 

2.5.2 Semi-quantitative RT-PCR 

 

For checking the expression of MFT in two T-DNA insertion lines designated as 

mft-2 and mft-3, semi-quantitative RT-PCR analysis was employed. PCR 

amplification of cDNA templates using using a pair of primers flanking the T-DNA 

insertion sites in mft-2 and mft-3 was performed. The amplified PCR products were 

viewed on a 1% agarose gel by electrophoresis, the expression of TUB2 was 

adjusted to give approximately equal intensities in different cDNA samples.  

 

2.5.3 Quantitative Real-time RT-PCR 

 

For all the other expression analyses, quantitative real-time RT-PCR was 

performed. Samples were run in triplicate on 7900HT Fast Real-Time PCR system 

(Applied Biosystems) using the Power SYBR® Green PCR Master mix (Applied 
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Biosystems). Either TUB2 or 18S rRNA was used as an internal control. Taking 

TUB2 as an example, the difference between the cycle threshold (Ct) of the target 

gene and the Ct of TUB2 (ΔCt = Cttarget gene - Cttubulin) was used to obtain the 

normalized expression of target genes, which correspond to 2-ΔCt. The specificity of 

real-time primers was evaluated by examining the plot of dissociation curve for any 

abnormal amplification or bimodal dissociation curve, while the efficiency were 

determined by plotting a standard curve base on a series of 10-fold dilutions of 

DNA templates for each pair of primers. All real-time RT-PCR primers used for 

detecting gene expression levels are listed in Table 1. 

 

2.6 Non-radioactive In Situ Hybridization 

 

2.6.1 Preparation of RNA Probes 

 

A fragment of DNA sequence that is unique to MFT was amplified using forward 

primer 5’-CCTCTCTGTTTCTCTCTCTCTC-3’ and reverse primer 5’- 

AAGTATCTCTTTTCCTCTTGAG-3’. Full-length ABI5 coding sequence was 

amplified to synthesize ABI5 RNA probe. The PCR products were cloned into 

pGEM-T Easy vector (Promega) for subsequent synthesis of RNA probes. A 

Digoxigenin (DIG) RNA Labeling Kit (Roche) was used for synthesizing RNA 

probes. Transcription and labeling reaction was set up by mixing 2 μl of 

transcription buffer, 1μl of 10× DIG labelling Mix, 0.5 μl of RNase inhibitor, 1 μl 
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RNA polymerase, 1 μg of linerized plasmid DNA and RNase H2O to a total volume 

of 10 μl. After incubation at 37°C for 2 h, 1 μl of RNase free DNase was added to 

the reaction mixture for another 30 min at 37°C to degrade the template DNA. For 

the verification of the RNA production, 0.5 μl of the reaction product was analyzed 

by 1% agarose gel. The synthesized DIG-labeled probe was hydrolysed into 75-100 

bp fragments using carbonate hydrolysis as follows: the RNA products were mixed 

with 50 μl of 2× carbonate buffer (80 mM NaHCO3 and 120 mM Na2CO3) and 

topped up to 50 μl with 0.1% diethylpyrocarbonate (DEPC)-treated H2O. The 

mixture was then incubated at 60°C for a period of time calculated using the 

following formula. 

Incubation time (min) =  
0.15 kb)(in  probe oflength  initial  0.11

0.15- kb)(in  probe oflength  Initial
x x

 

After RNA hydrolysis, 5 μl of 10% acetic acid was added to neutralize the solution. 

Subsequently, neutralized solution was mixed with 10 µl of 3 M NaAc (pH 5.2), 

250 µl of ethanol and 1 μl of 10 mg/ml tRNA, followed by incubation at -80°C 

overnight. The RNA was precipitated at 13k rpm for 20 min at 4°C. The RNA 

pellet was washed with 80% ethanol and spun down for 5 min at 4°C. The pellet 

was finally resuspended in 40 μl of 50% formamide and kept in -80°C fridge. 

 

2.6.2 Tissue Preparation 
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The fixative solution for imbibed seeds was prepared as follows: 1× PBS buffer was 

adjusted to pH 11 using saturated NaOH and heated to 60°C. Paraformaldehyde 

was added to a final concentration of 4% (w/v). After paraformaldehyde was 

completely dissolved, the solution was cooled on ice and adjusted to pH 7.0 with 

H2SO4. Freshly collected imbibed seeds were immersed in the ice-cold fixative in a 

glass bottle and under vacuum 1 h. The fixative was replaced and the seeds were 

incubated overnight at 4°C on a shaker. 

 

After fixation, dehydration was performed at 4°C on a shaker as follows: 2×30 min 

1×PBS, 60 min 30% ethanol, 60 min 40% ethanol, 60 min 50% ethanol, 60 min 

60% ethanol, 60 min 70% ethanol, 60 min 85% ethanol, and finally 95% ethanol 

with 0.05 g/ml of eosin for overnight. 

 

After dehydration, staining and clearing steps were performed at room temperature 

on a shaker as follows: 2×30 min 100% ethanol with 0.05 g/ml of eosin, 2×60 min 

100% ethanol with 0.05 g/ml of eosin twice, 60 min 25% Histoclear in ethanol, 60 

min 50% Histoclear in ethanol, 60 min 75% Histoclear in ethanol, 2×60 min 100% 

Histoclear. At last, the seeds were immersed in 100% Histoclear with 1/4 volume of 

paraplast chips for overnight without shaking. 

 

After staining, the seeds in the glass bottle was transferred to an incubator set at 

42°C until paraplast chips were completely melted, another 1/4 volume of paraplast 
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chips were added and the temperature was increased to 55°C. Subsequently, the 

mixture of Histoclear and paraplast was removed and replaced with freshly melted 

paraplast for overnight at 55°C. In the following three days, the paraplast was 

replaced by newly-melted paraplast twice a day. The well embedded-seeds in 

paraplast were transferred to a plastic container and hardened at room temperature. 

 

2.6.3 Sectioning 

 

The paraplast blocks were secured on sectioning molds using melted paraplast. 

Sectioning was performed on a Leica RM2165 microtome with a section thickness 

set at 8 μm. The tissue ribbons were arranged on a ProbeOn Plus glass slide (Fisher 

Biotechnology) and a few drops of DEPC-treated H2O were added to float the 

ribbon. The slide was then placed on the top of a 42°C heated slide warmer to allow 

evaporation of H2O and allow the ribbon to flatten out on the slide. Excessive H2O 

was then removed and the slide was kept on the slide warmer at 42°C overnight to 

achieve complete drying and tight adherence of tissues on the slide. 

 

2.6.4 Section Pre-treatment 

 

All solutions in this step were made RNase-free, tips and a glass slide container was 

autoclaved at 121°C for 1 h, a plastic container was treated with 0.1 M NaOH 
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overnight and rinsed with sterile H2O before use. All washing steps were done on a 

platform rocker. 

 

The slides were placed in the glass slide holder. The sections were deparaffinised 

by warm Histoclear for 10 min twice. Rehydration of slides were carried out at 

room temperature with the following washes: 2×1 min 100% ethanol, 1 min 95% 

ethanol, 1 min 90% ethanol, 1 min 80% ethanol, 1 min 60% ethanol, 1 min 30% 

ethanol and 1 min RNase-free H2O. After rehydration, slides were incubated in 2× 

SSC buffer (150 mM NaCl, 15 mM Sodium Citrate, pH 7.0) for 15-20 min at room 

temperature followed by proteinase K solution (1 µg/ml proteinase K in 100 mM 

Tris pH 8, 50 mM EDTA) for 30 min at 37°C. After proteinase K treatment, the 

slide holder was returned to room temperature for the following steps. The solution 

was replaced by 2 mg/ml glycine in 1× PBS buffer for 2 min to quench the 

remaining proteinase K, followed by 1× PBS washing for 2 min twice. Next, slides 

were fixed with freshly-made 4% (w/v) paraformaldehyde in 1× PBS solution (pH 

7) for 10 min and washed with 1×PBS for 5 min twice. Slides were incubated for 10 

min in triethanolamine solution (freshly-prepared by adding 2.68 ml of 

triethanolamine into 200 ml RNase-free H2O containing 0.8 ml of 37% HCl and 1 

ml of acetic anhydride, mix vigorously) and followed by 2× 5 min washes with 1× 

PBS. Dehydration of slides was done with the following washes: 30 sec 30% 

ethanol, 30 sec 60% ethanol, 30 sec 80% ethanol, 30 sec 90% ethanol, 30 sec 95% 

ethanol and 2×30 sec 100% ethanol.  
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2.6.5 Hybridization 

 

Hybridization buffer contains 100 µl 10× in situ salts, 400 µl deionised formamide, 

200 µl 50% dextran sulphate, 20 µl 50× Denhardt’s solution (warm to 50°C before 

pipetting), 10 µl tRNA (10 mg/ml) and 70 µl H2O (DEPC-treated). The total 

volume of 800 μl hybridization buffer was enough for 3 pairs of slides. The probe 

solution was prepared as follows: 1-2 µl of RNA probe from stock at -80°C was 

topped up to 60 µl with 50% formamide, followed by heating at 80°C for 2 min and 

immediate cooling with ice. For each pair of slides, 240 µl of hybridization buffer 

was mixed with 60 µl of probe solution to make the hybridization solution. 

 

Slides were completely dried in a clean laminar flow cabinet before application of 

hybridization solution. 300 µl of hybridization solution was added to one slide and 

another slide was slowly placed onto the previous slide so that the probe can spread 

throughout the slides interface. Slides were elevated on a rack in a sealed plastic 

container containing sterile H2O and incubated between 50-55°C in a hybridization 

oven overnight. 

 

2.6.6 Post-hybridization 

 

Each pair of slides was separated by dipping in 55°C pre-warmed 0.2× SSC buffer 

before placing in the glass slide holder. The slides were washed three times with 
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0.2× SSC for 60 min at 55°C in the hybridization oven equipped with a shaker. 

Thereafter, the slides were washed with 1× PBS buffer at room temperature for 5 

min. Subsequently, the slides were blocked for 45min with 1% Boehringer blocking 

reagent dissolved in 100 mM Tris pH 7.5, 150 mM NaCl, followed by another 45 

min incubation with a second blocking solution (BSA/Tris/NaCl/Triton) containing 

1.0% Bovine Serum Albumin (BSA) dissolved in 100 mM Tris pH 7.5, 150 mM 

NaCl, 0.3% Triton X-100. All incubation steps were performed at room 

temperature on a platform rocker.  

 

After blocking, anti-DIG antibody (Roche) was diluted 1:500 in 4 ml of new 

BSA/Tris/NaCl/Triton solution described in previous washing step, and the 

antibody solution was poured in a plastic weighing dish. Slides were sandwiched 

together and dipped into the antibody solution, which would be drawn by capillary 

action. Solution was drained on Kimwipes and the dipping process was repeated. 

Great care was taken to avoid bubbles between two slides. Slides were elevated on 

a rack in a sealed plastic container containing sterile H2O and allowed to sit at room 

temperature for 2 h. After antibody incubation, slides were drained on Kimwipes 

and separated in the glass slide holder containing BSA/Tris/NaCl/Triton solution. 

This washing step was repeated 4 times for 15 min each at room temperature on a 

platform rocker, followed by washing with 100 mM Tris pH 9.5, 100 mM NaCl, 50 

mM MgCl2 solution (Tris pH 9.5/NaCl/MgCl2) for 10 min to remove detergent. The 

substrate solution Tris-NaCl-PVA for color development was prepared as follows: 



MATERIALS AND METHODS 

 68

10% (w/v) 40kD polyvinyl alcohol (PVA) (Sigma) was dissolved in Tris pH 

9.5/NaCl/MgCl2 solution, which was then heated to 50°C, mixed vigorously, and 

cooled down to room temperature. 60 µl of NBT/BCIP stock solution (Roche) was 

mixed with 3 ml of Tris-NaCl-PVA stock solution and the solution was spun down 

briefly to remove the bubbles. 270 µl of prepared substrate solution was added to 

each pair of slides which were then sandwiched with face-to-face manner. Slides 

were elevated on a rack in the plastic container containing sterile H2O in total 

darkness overnight at room temperature. 

 

On the next day, slides were separated and placed in the glass slide holder. The 

slides were rinsed with tap water for three times to stop the reaction. The slides 

were dehydrated by washing with 70% ethanol for 5 sec and 2 times 100% ethanol 

for 2 sec each. Slides were air dried before being mounted with 50% glycerol for 

maintenance of signals for at least three months and observation under 

microscopes. 

 

2.7 GUS Activity Analysis 

 

For each MFT-GUS reporter construct, we checked at least 15 independent 

transgenic lines at the T3 generation. A representative line for each MFT-GUS 

construct was selected for further analysis. GUS (β-glucuronidase) staining was 

performed according to the method described previously (Sieburth and Meyerowitz, 
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1997). The GUS substrate X-Gluc (cyclohexylammonium salt) (Gold 

Biotechnology) was dissolved in N-N-Dimethylformamide to make a 100 mM 

stock solution, which was kept at -20°C in darkness. The solution went bad if the 

color turned to light red. The staining procedures are briefly summarized as 

follows: plant tissues were fixed in 90% acetone for 15-20 min on ice, followed by 

three times washes with rinse buffer (50 mM sodium phosphate pH 7.0, 0.5 mM 

K3Fe(CN)6, 0.5 mM K4Fe(CN)6). The staining solution is the rinse buffer 

supplemented with 2mM X-Gluc, the tissues in the staining solution were under 

vacuum for 30 min before incubated in a 37°C oven overnight. After staining, the 

tissues were cleared in an ethanol series. 

 

2.8 ChIP Assay 

 

2.8.1 Fixation 

 

About 300 mg germinating seeds were fixed for 45 min at 4°C with 1% 

formaldehyde in MC buffer (10 mM potassium phosphate, pH 7.0, 50 mM NaCl, 

0.1 M sucrose) under vacuum. After adding glycine to a concentration of 150 mM, 

the fixed seeds were shaken for 20 min at 4°C, washed three times with MC buffer. 

The fixed seeds were kept at -80°C or used directly for ChIP assay. 
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2.8.2 Homogenization and Sonication 

 

The fixed seeds were homogenized in 500 µl reaction buffer (50 mM HEPES, pH 

7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS) supplemented with 

PMSF and Protease Inhibitor Cocktail Tablets (Roche). The mixture was sonicated 

to produce DNA fragments between 200 bp and 1 kb. After sonication, the mixture 

was spun down at 14k rpm for 5 min at 4°C and the supernatant was transferred to a 

new 1.5 ml tubes. The pellet was washed by another 500 µl reaction buffer and the 

supernatant was combined with the previous one. 10% solubilized chromatin was 

saved as an input control. 

 

2.8.3 Immunoprecipitation and DNA Recovery 

 

The solubilized chromatin was incubated with anti-HA or anti-myc agarose beads 

(Sigma) for 1.5 h at 4°C. Beads were washed twice with IP buffer (50 mM HEPES, 

pH 7.5, 150 mM KCl, 5 mM MgCl2, 10 μM ZnSO4, 1% Triton X-100, 0.05% SDS), 

twice with high salt IP buffer with the concentration of KCl increased to 500 mM, 

once with LNDET buffer (0.25 M LiCl, 1% Nonidet P-40, 1% deoxycholate, 1 mM 

EDTA, 10 mM Tris pH 8.0), and once with IP buffer again. Beads were then 

incubated with the elution buffer (50 mM Tris, pH 8.0, 1% SDS, 10 mM EDTA) for 

30 min at 65°C. The eluted supernatant and the input control that was topped up 
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with the elution buffer to a final volume equal to that of the eluted supernatant were 

added with NaCl to a final concentration of 200 mM. They were incubated at 65°C 

for 6 h for reverse crosslinking followed by 40 mM proteinase K treatment for 1 h 

at 45°C. DNA was then recovered using the QIAquick PCR Purification Kit 

(Qiagen). For each ChIP assay, three independent experiments were performed 

using seeds collected separately. 

 

2.8.4 Calculation of Fold Enrichment 

 

DNA enrichment was examined by quantitative real-time PCR in triplicates as 

previously described (Liu et al., 2008). The enrichment of a TUB genomic fragment 

was used as negative control. Primer pairs used for ChIP enrichment test are listed 

in Table 2. 

 

2.9 Accession Numbers 

 

Sequence data from this article can be found in the Arabidopsis Genome Initiative 

or GenBank/EMBL databases under the following accession numbers: MFT 

(At1g18100), ABI3 (At3g24650), ABI4 (At2g40220), ABI5 (At2g36270), RGL2 

(At3g03450), RD29A (At5g52310), RD29B (At5g52300), AtEm6 (At2g40170), 

CRC (At4g28520), At2S3 (At4g27160), OsMFT1 (Os06g0498800), OsMFT2 

(Os01g0111600), ZCN9 (Eu241925), ZCN10 (Eu241926), and ZCN11 (Eu241927). 
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Table 1. Primers for real-time RT-PCR. 

 

Primers pairs used for real-time RT-PCR (Sequence 5’→3’) 
 

MFT CGAGCCGAACATGAGAGAAT 
AAGTATCTCTTTTCCTCTTGAGGG 
 

 

ABI3 CGGGAGGGACCTGGATGTATT 
CCATCACTGGCGGTAATTGAG 
 

 

ABI4 GCTCACTGATGTTCCGGTAACTAA 
TTACACCCACTTCCTCCTTGTTC 
 

 

ABI5 CAGCTGCAGGTTCACATTCTG 
CACCCTCGCCTCCATTGTTAT 
 

 

RGL2 GCCCTTACCTGAAGTTCGCTC 
TGCATTAAAGCAGGCCATTGC 
 

 

RD29A CCTGAAGTGATCGATGCACCAG 
TGGTGTAATCGGAAGACACGAC 
 

 

RD29B GTGAAGATGACTATCTCGGTGG 
CACCACTGAGATAATCCGATCC 
 

 

AtEm6 AGGATATCAGCAGATGGGACGC 
CGTCTATCTCGACTCCTTCCTC 
 

 

CRC CGTGTTAAGGGACCTTTCCAGG 
ATAGTCTCCTCAAGGCCGTTGC 
 

 

At2S3 GCACGATGATCATGAGTGTTGC 
AGTGCTAATTACATTAGCCTC 
 

 

18S rRNA CCTCTGTGCTGGCGACGCAT 
CCAGACTTGCCCTCCAATGGA 
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Table 2. Primers for ChIP assays. 

 

Primers pairs used for ChIP assays (Sequence 5’→3’) 
 
MFT-1 GTTCCTCCTGATTATTCTACG 

GAAACCGTGAATTTCATGCCA 
 

 

MFT-2 ATGATCCTCCTAACCGACGGC 
AACCTATAGGCCATGCATAGG 
 

 

MFT-3 TAACGACAAAATAACGCACAT 
TCACGTGTTGCATGATTAGCC 
 

 

MFT-4 AGAGGAAATTATCGCCAACGT 
ATGGGCATCTATGTCATGGTT 
 

 

ABI5-1 TTGTCCCTGTGACTCTGCAAC 
ACCATACCTGGAGCAAACGG 
 

 

ABI5-2 CTCCCAATGGAAGTTCGGAA 
AGAATTACGTTTAGTGAGACA 
 

 

ABI5-3 TTGACCTTCACGCCTCTCTTC 
GCTTCTTGTTATGGAGGTTC 
 

 

ABI5-4 ATCTTGTGTTGATAAGTTCGC 
AAGAACGGTCCACATCGTGAC 
 

 

ABI3-1 GTTCGTGCATGATGGTAATGG 
AACACTTGTACGTCGAGATGG 
 

 

ABI3-2 CTGCTGAGGTAATTGAATGCTGC 
ATAAGAGAGCCCATGTGTTCC 
 

 

ABI3-3 TTCGATGATAGCCAAGTTGGG 
TTTTGTACGGACAGATAGGG 
 

 

TUB2 ATCCGTGAAGAGTACCCAGAT 
AAGAACCATGCACTCATCAGC 
 

 

AtEm6 AAGAAGTACGGCCACTACCAC 
TGGTGACTCAGGGACAATCG 
 

 

ACTIN CGTTTCGCTTTCCTTAGTGTTAGCT 
AGCGAACGGATCTAGAGACTCACCTTG 
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3.1 Phenotypic Characterization of mft Mutants in Arabidopsis 

 

To examine the spatial expression pattern of MFT in Arabidopsis, quantitative real-

time RT-PCR analysis was carried out with total RNA extracted from various plant 

tissues. It was found that MFT was expressed highly in developing siliques, 

moderately in roots and rosette leaves, but weakly in other tissues (Figure 4A). To 

better define the expression of MFT in siliques, we further dissected siliques into 

developing seeds and pods & placentas. The result showed that MFT was 

preferentially expressed in the developing seeds (Figure 4B), implying a possible 

role of MFT in seed development.  

 

To investigate the biological function of MFT, two T-DNA insertion alleles of MFT 

in Col-0 background were isolated (Figure 5A). Since mft-1 has been adopted in a 

previous publication (Yoo et al., 2004), thus these two new alleles were designated 

as mft-2 and mft-3, respectively. Semi-quantitative RT-PCR analysis showed that 

there was no detectable expression of MFT in these two homozygous mutant lines, 

suggesting that mft-2 and mft-3 are null alleles (Figure 5B). Next, we compared the 

phenotypes between mft mutants and wild-type plants under normal growth 

conditions, it turned out that the mft homozygous mutants did not show obvious 

defects. Considering the high expression of MFT in the developing seeds and the 

well-known role of ABA in the control of seed development and seed germination,  

 



RESULTS 

 76

 
 
 
 

 
 

Figure 4. Spatial Expression of MFT. 

(A) Quantitative real-time PCR analysis of MFT expression in various tissues. 
Results were normalized against the expression of TUB2. Rt, roots; RL, rosette 
leaves; CL, cauline leaves; IF, inflorescences without open flowers; OF, open 
flowers; Sil, siliques. 
(B) MFT expression in developing siliques dissected into seeds and pods plus 
placentas. 
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Figure 5. T-DNA Insertion Alleles of MFT. 

(A) Schematic diagram indicating the T-DNA insertions in two mft loss-of-function 
mutants, mft-2 (SALK_147675) and mft-3 (SALK_024298). Black and white boxes 
indicate exons and introns of MFT, respectively.  
(B) Semi-quantitative RT-PCR analysis using a pair of primers flanking the T-DNA 
insertion sites did not detect MFT expression in mft-2 and mft-3, indicating that 
both of them are null alleles. 
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we thereafter carefully observed the response of mft mutants to exogenous ABA. 

We found that in the presence of exogenous ABA, the germination rate of both mft-

2 and mft-3 seeds was much lower than that of wild-type seeds (Figure 6), 

indicating that MFT is involved in seed germination in response to ABA. To further 

assess the role of MFT in seed germination, we generated 35S:MFT transgenic 

plants. Among 23 lines generated, 16 lines showed higher germination rates to 

different extents particularly at early stages of seed germination when exogenous 

ABA was applied (Figure 7). These results suggest that MFT regulates seed 

germination in response to exogenous ABA. As endogenous ABA levels in mft-2 

seeds after imbibition were comparable to those in wild-type (Figure 8), MFT may 

not be directly involved in regulating ABA levels during seed germination. 

 

As ABA induces growth retardation and stomata closure, we further studied 

whether MFT is also involved in regulating other ABA-related physiological 

responses. After seed germination, both mft-2 and wild-type seedlings showed 

similar degree of growth retardation when exogenous ABA was applied (Figure 9). 

In addition, there was no significant difference in ABA-induced drought tolerance 

among wild-type plants and the plants with altered MFT expression (Figure 10), 

implying that MFT might have a specific function in seed germination. 
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Figure 6. Germination Rate of mft Mutants in Response to ABA. 

Germination phenotype of wild-type, mft-2, and mft-3 treated with different 
concentrations of ABA (0, 1, and 10 μM). 
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Figure 7. Germination Rate of Seeds Overexpressing MFT. 

Germination phenotype of two representative 35S:MFT lines (3 and 5) in response 
to 10 μM ABA. 
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Figure 8. Quantification of Endogenous ABA Levels in Wild-type and mft-2 
Seeds after Imbibition. 

Endogenous ABA levels were measured using a Plant Hormone ABA ELISA kit 
(Cusabio biotech). The values were calculated based on three independent batches 
of seed samples. DW, dry weight. 
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Figure 9. Post-germination Growth of mft Is Not Hypersensitive to ABA 
Treatment. 

Seeds were germinated firstly on common MS medium. Two days after 
germination, they were transferred to MS medium supplemented with different 
concentrations of ABA (0, 0.1, 0.3, 1, 3, and 10 μM). Phenotypes of seedling 
growth were compared 10 days after the transfer. 
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Figure 10. mft Is Not Hypersensitive to Drought Stress. 

(A) Transpiration rates of wild-type, mft-2, and 35S:MFT (No.3) plants. Young 
rosette leaves of similar developmental stages (2-week-old; n = 4 each) were 
excised and weighed at different time points as indicated. 
(B) Drought tolerance of wild-type, mft-2, and 35S:MFT (No.3) plants. 2-week-old 
plants (n = 50 each) grown in soil under the same growth conditions were withheld 
from water for 11 days, and re-watered. The photos were taken 3 days after re-
watering. 
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3.2 MFT Expression Is Upregulated in Response to ABA 

 

Because the germination of mft mutant seeds was hypersensitive to exogenously 

applied ABA, we further examined MFT expression levels in response to ABA. 

Information retrieved from public Arabidopsis microarray database 

(http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) showed that MFT was greatly 

upregulated by ABA (Figure 11A), which is in agreement with our observation that 

MFT expression levels in germinating seeds were gradually elevated along with 

increased concentrations of ABA (Figure 11B). To reveal the exact location where 

MFT is upregulated by ABA, in situ hybridization assay was further performed. 

The results showed that MFT was not detectable in both the embryo and endosperm 

of seeds collected 6 h post-stratification, which is an early stage of germinating 

seeds (Figure 12), whereas its upregulation by ABA occurred strongly in the 

epidermis and cortex and weakly in the provasculature of the radicle-hypocotyl 

transition zone of seeds collected at a later germination stage (Figure 13). 

Furthermore, we checked the time-course expression of MFT during seed 

imbibition in two cyp707a mutants with high levels of endogenous ABA (Okamoto 

et al., 2006). Our results demonstrated that the expression of MFT in both 

cyp707a1-1 and cyp707a2-1 mutants was much higher than that in wild-type, 

especially at 24 h after imbibition (Figure 14). Thus, MFT is also upregulated by 

endogenous ABA. These findings indicate that MFT is highly upregulated at late  
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Figure 11. MFT Is Upregulated by ABA. 

(A) Public microarray data showing upregulation of MFT by ABA in germinating 
seeds (http://www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). The colors from yellow 
to red indicate the increased absolute signal values of MFT expression retrieved 
from microarray data. 
(B) MFT expression in germinating seeds treated with different concentrations of 
ABA. All seeds were collected 16 h post-stratification.  
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Figure 12. In Situ Localization of MFT in Germinating Seeds at An Early 
Stage.  

Seeds were collected 6 h post-stratification treated without or with 10 µM ABA. 
The right panels show the magnified views of the micropylar endosperm 
surrounding the radicle. Bars = 100 µm. 
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Figure 13. In Situ Localization of MFT in Germinating Seeds at Later Stages. 

Seeds without ABA treatment were collected 12 h post-stratification, while other 
seeds treated with 1 and 10 μM ABA were collected 24 h post-stratification. These 
seeds at the same developmental stage were hybridized with the antisense or sense 
MFT probe as indicated. Bar = 100 µm. 
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Figure 14. Expression of MFT, RGL2, ABI3, and ABI5 in Wild-type, cyp707a1-
1, and cyp707a2-1 Seeds after Imbibition. 

Expression levels of MFT (A), RGL2 (B), ABI3 (C), and ABI5 (D) were compared 
in wild-type, cyp707a1-1, and cyp707a2-1 seeds sown on MS medium. The 
expression levels were normalized against the expression of 18S rRNA. In each 
panel, the relative expression in wild-type dry seeds (0 h) is set as 1. 
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stages of germinating seeds to promote germination. 

 

As high salinity prevents seed germination and stimulates the biosynthesis and 

accumulation of ABA by activating genes encoding ABA biosynthetic enzymes 

(Xiong et al., 2002; Xiong and Zhu, 2003), we next investigated whether MFT 

could affect seed germination in response to high salinity. The germination of mft 

seeds was also hypersensitive to NaCl treatment (Figure 15). In addition, high salt 

concentrations caused dramatic upregulation of MFT expression, which is similar to 

the ABA effect (Figure 16A). To test if upregulation of MFT by high salinity was 

mediated via the ABA pathway, we treated seeds of aba1-5 mutants, in which the 

ABA biosynthesis was severely impaired (Leon-Kloosterziel et al., 1996), with high 

salinity. Upregulation of MFT by high salinity was significantly attenuated in aba1-

5 seeds as compared with wild-type (Figure 16A), suggesting that high salinity 

induces MFT expression mainly through the ABA signaling pathway. Furthermore, 

MFT was markedly upregulated in just germinated seeds compared with geminating 

seeds treated with high concentrations of ABA (e.g. 10 μM), whereas high salinity 

upregulated MFT in just germinated seeds to the same level as in geminating seeds 

(Figure 16B). This demonstrates a cumulative effect of ABA on promoting MFT 

expression during seed germination. Taken together, these results show that MFT is 

upregulated by ABA during seed germination, but loss of MFT function results in 

ABA hypersensitivity, suggesting an antagonistic function of MFT against the 

inhibitory effect of ABA on seed germination. 
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Figure 15. Germination Rate of mft Mutants in Response to NaCl. 

Germination phenotype of wild-type, mft-2, and mft-3 treated with different 

concentrations of NaCl. 
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Figure 16. Expression of MFT in Response to NaCl and ABA. 

(A) MFT expression in wild-type and aba1-5 germinating seeds treated with 
different concentrations of NaCl. All seeds were collected 16 h post-stratification. 
(B) MFT expression in germinating and just-germinated seeds treated with NaCl 
and ABA. All germinating seeds were collected 16 h post-stratification. Seeds with 
visible protrusion of the radicle tip through all the covering layers were collected as 
just-germinated seeds. 
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3.3 The Response of MFT to ABA Is Directly Mediated by ABI3 

and ABI5 

 

Next we sought to understand the molecular mechanism by which ABA regulates 

MFT expression. ABI loci (ABI1 to ABI5) have been identified as essential 

regulators in the ABA signaling network (Koornneef et al., 1984; Finkelstein, 

1994). The expression of ABI3-5 had a similar trend as that of MFT in wild-type 

seeds during imbibition under normal growth conditions (Figure 17). We further 

tested whether these ABI genes are involved in the regulation of MFT by ABA by 

examining MFT transcript levels in various abi mutant seeds in the absence or 

presence of exogenous ABA. Upregulation of MFT by ABA was completely 

abolished in abi3-1 and attenuated in abi5-1 (Figure 18), suggesting that ABI3 and 

ABI5 mediate the expression of MFT in response to ABA. It is noteworthy that with 

or without ABA treatment, MFT expression in abi3-1 mutant was strikingly higher 

than that in wild-type (Figure 18), indicating that ABI3 negatively regulates MFT. 

On the contrary, MFT expression in abi5-1 was the lowest among all the mutants 

treated with high concentrations of ABA (Figure 18), indicating that ABI5 promotes 

MFT expression in response to ABA. As the expression levels of MFT in abi3-1 

abi5-1 were similar to those in abi3-1 (Figure 18), abi3-1 is epistatic to abi5-1 in 

terms of regulating MFT expression.  
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Figure 17. Expression of MFT, ABI3, ABI4, and ABI5 in Wild-type Seeds after 
Imbibition. 

Expression levels of MFT, ABI3, ABI4, and ABI5 were compared in wild-type seeds 
sown on MS medium. The expression levels were normalized against the 
expression of 18S rRNA. The relative expression of MFT in dry seeds (0 h) is set as 
1. 
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Figure 18. Expression of MFT in Wild-type and abi Mutant Seeds. 

Expression levels of MFT were analyzed in wild-type and various abi mutants 
mock-treated or treated with 10 μM ABA. Because abi3-1 seeds germinated around 
14 h post-stratification, we collected all germinating seeds 12 h post-stratification 
for comparing MFT expression. 
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To elucidate the relationship between ABI3, ABI5, and MFT, we created 35S:ABI3-

6HA and 35S:ABI5-6HA transgenic lines. To test the functionality of these two 

transgenic lines, germination assay was performed. The results showed that when 

low concentrations (1 µM or 5 µM) of ABA was applied, the germination rates of 

these two transgenic plants were significantly lowered, which is in agreement with 

previous reports on 35S:ABI3 and 35S:ABI5 (Lopez-Molina et al., 2001; Zhang et 

al., 2005), suggesting that both ABI3-6HA and ABI5-6HA fusion proteins are 

biologically functional (Figure 19).  

 

We further checked the expression of ABI3, ABI5, and MFT in the germinating 

seeds of these two functional transgenic plants in the absence or presence of 

exogenous ABA. It was found that when ABI3 was overexpressed, ABI5 expression 

was upregulated, whereas MFT expression was downregulated in the presence of 

ABA (Figure 20). Overexpression of ABI5 did not affect ABI3 expression, but did 

lead to upregulated MFT expression in the presence of ABA (Figure 20). As it has 

been reported that ABA prevents the degradation of ABI3 and ABI5 proteins 

(Zhang, 2005; Lopez-Molina, 2001), these results, together with the observation on 

MFT expression in abi3-1 and abi5-1, suggest that ABI3 activity inhibits MFT 

expression, whereas ABI5 has an opposite effect. 
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Figure 19. Biological Functional Lines of 35S:ABI3-6HA and 35S:ABI3-6HA. 

Germination phenotype of wild-type, 35S:ABI3-6HA and 35S:ABI5-6HA treated 
with 1 or 5 μM ABA. 
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Figure 20. Expression of ABI3, ABI5, and MFT in Germinating Seeds of 
35S:ABI3-6HA and 35S:ABI3-6HA. 

Expression of ABI3, ABI5 and MFT in germinating seeds of wild-type, 35S:ABI3-
6HA and 35S:ABI5-6HA mock-treated or treated with 1 or 5 μM ABA. All 
germinating seeds were collected 16 h post-stratification. 
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To further investigate whether ABI3 and ABI5 directly regulate MFT, chromatin 

immunoprecipitation (ChIP) assays were carried out. We first did promoter analysis 

and identified several putative ABA-responsive elements (ABREs) in the MFT 

promoter. There is a single ABRE and a separate cluster of 5 ABREs located about 

700 bp and 1.7 kb upstream of the initiation codon, respectively (Figure 21, upper 

panel). The presence of several ABREs in the MFT promoter implies that ABI3 and 

ABI5 may directly regulate MFT expression, since both ABI3 and ABI5 have been 

shown to regulate ABRE-containing genes (Kim et al., 1997; Ezcurra et al., 1999; 

Ezcurra et al., 2000; Finkelstein and Lynch, 2000; Kim et al., 2002; Lopez-Molina 

et al., 2002). Hence, 35S:ABI3-6HA and 35S:ABI5-6HA tagging lines were applied 

for ChIP assays using four pairs of the primers designed in the MFT promoter 

(MFT-1 to MFT-4). ChIP enrichment test revealed that ABI3-6HA was mainly 

associated with the genomic region near MFT-2, while ABI5-6HA bound to the 

regions near both MFT-2 and MFT-3 (Figure 21, middle and lower panels), 

suggesting that both ABI3 and ABI5 directly bind to the MFT promoter in vivo.  
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Figure 21. ChIP Enrichment Test Showing the Binding of ABI3-6HA and 
ABI5-6HA to the MFT Promoter. 

The upstream region and the first intron of MFT are represented by white boxes, 
while the first exon is represented by a black box. The arrowheads in the upper 
panel indicate the sites containing putative ABREs on the MFT promoter. Hatched 
boxes represent the DNA fragments amplified in ChIP assays. ChIP assay results of 
35S:ABI3-6HA and 35S:ABI5-6HA are shown in the lower panels. Seeds were sown 
on MS medium supplemented with 10 μM ABA and harvested 16 h post-
stratification for ChIP assays. AtEm6, which has been identified as a direct target of 
ABI5 (Lopez-Molina et al., 2001; Lopez-Molina et al., 2002), is used as a positive 
control for ABI5-6HA ChIP assay. Significant differences in comparison with the 
enrichment of a TUB2 fragment are indicated with asterisks (P < 0.05, Student’s t 
test). 
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3.4 A G-box Motif Mediates Spatial Regulation of MFT in 

Response to ABA 

 

To further understand how ABA regulates MFT through ABI3 and ABI5 during 

seed germination, we generated two versions of MFT:GUS constructs, MFT(P2)-

GUS and MFT(P6)-GUS, in which 1.8 kb and 900 bp promoter sequences with 6 

and 1 ABREs upstream of the translational start site, respectively, were fused with 

the GUS reporter gene (Figure 22, upper panel). The MFT coding sequence driven 

by the 1.8 kb promoter was able to rescue the low germination phenotype of mft-2 

in response to ABA (Figure 23A), implying that this promoter region contains 

essential cis-elements required for the regulation of MFT expression by ABA. The 

MFT coding sequence driven by the 900 bp promoter could partially rescue the low 

germination phenotype of mft-2 in response to ABA (Figure 23B), suggesting that 

this promoter region also functions to certain extent. For both MFT(P2)-GUS and 

MFT(P6)-GUS, moderate GUS signals were detected in embryos without ABA 

treatment (Figure 24). In agreement with MFT gene expression profiles (Figures 11 

and 13), when exogenous ABA was applied, GUS staining in these two reporter 

lines was enhanced throughout the embryos, especially in the radicle-hypocotyl 

transition zone (Figure 24). Since the sensitivity of GUS staining is higher than that 

of in situ hybridization, thus, ABA upregulates MFT in the whole embryo 

particularily in the radicle-hypocotyl transition zone. While GUS staining was also  
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Figure 22. Schematic Diagram of MFT(P2)-GUS and MFT(P6)-GUS 
Constructs. 

The upper panel shows the constructs in which 5’ upstream sequences of MFT 
containing ABREs were transcriptionally fused with the GUS gene (left panel). The 
lower panel shows the mutagenesis of the RY-repeat and the G-box in the ABRE 
that is located 700 bp upstream of the ATG start codon. 
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Figure 23. Complementation of mft-2 by Two MFT Genomic Fragments 
gMFT-P2 and gMFT-P6. 

(A) gMFT-P2 comprises of the 1.8 kb upstream sequence with 6 ABREs (Fig. 4A) 
and the 2.1 kb coding sequence plus introns rescues the low germination phenotype 
of mft-2 in response to 10 μM ABA. 
(B) gMFT-P6 comprises of the 900 bp upstream sequence with 1 ABRE (Fig. 4A) 
and the 2.1 kb coding sequence plus introns only partially rescues the low 
germination phenotype of mft-2 in response to 10 μM ABA. 
The germination percentage was scored 7 day post-stratification. The number of 
independent transgenic lines tested for statistical analysis was indicated. 
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Figure 24. GUS Staining in Germinating Seeds of MFT-GUS Transgenic 
Plants. 

GUS staining in germinating seeds of the transformants containing MFT(P2)-GUS, 
MFT(P6)-GUS and their derived constructs with the mutated RY-repeat (mRY) and 
G-box motif (mGbox). Seeds from T3 homozygous plants with a single insertion of 
the transgene for each construct were analyzed and representative images are 
shown. Germinating seeds mock-treated or treated with 10 μM ABA, which were at 
the same developmental stage, were stained 12 h or 24 h post-stratification, 
respectively. 
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observed in the seed coat with the endosperm, it was not affected by ABA. 

 

Although MFT(P6)-GUS showed weaker staining in whole embryos than MFT(P2)-

GUS in response to ABA, increased GUS staining was specifically observable in 

the radicle-hypocotyl transition zone of MFT(P6)-GUS (Figure 24). This implies 

that the 5 clustered ABREs at about 1.7 kb upstream of the start codon may 

modulate the extent of MFT upregulation throughout the embryo, while the single 

ABRE close to the start codon may confer the spatial upregulation of MFT in the 

radicle-hypocotyl transition zone in response to ABA. To test this hypothesis, we 

further mutagenized the single ABRE in both MFT(P2)-GUS and MFT(P6)-GUS to 

evaluate the function of this single ABRE in response to ABA (Figure 22, lower 

panel). Sequence analysis revealed that this ABRE contains one RY repeat that can 

be recognized by ABI3 and one G-box that can be recognized by both ABI3 and 

ABI5 (Figure 22, lower panel) (Kim et al., 1997; Ezcurra et al., 2000). Our results 

demonstrated that mutation of the RY motif had no obvious effect on the GUS 

staining of either MFT(P2)-GUS or MFT(P6)-GUS in response to ABA, whereas 

mutation of the G-box motif notably attenuated the responses to ABA, for both 

MFT(P2)-GUS and MFT(P6)-GUS (Figure 24). In particular, upregulation of GUS 

staining in the radicle-hypocotyl transition zone was significantly abolished when 

the G-box motif was mutated (Figure 24). Therefore, the G-box in this single 

ABRE is essential for upregulating MFT expression particularly in the radicle-

hypocotyl transition zone in response to ABA.  



RESULTS 

 105

3.5 MFT Is Promoted by ABI5 but Suppressed by ABI3 

 

As ChIP assays demonstrated that ABI3 and ABI5 physically bound to the MFT 

promoter, we crossed MFT:GUS lines into the plants with overexpression or loss of 

function of ABI3 and ABI5 to monitor how they control MFT expression in 

response to ABA during seed germination. Since the germination of 35S:ABI3 and 

35S:ABI5 seeds was hypersensitive to low ABA concentrations (Figure 19) (Lopez-

Molina et al., 2001; Zhang et al., 2005), GUS staining of MFT:GUS lines in these 

backgrounds was examined under the treatment of 1 or 3 µM ABA.  

 

The staining results clearly demonstrated that MFT(P2)-GUS exhibited enhanced 

staining specifically in the radicle-hypocotyl transition zone in the background of 

35S:ABI5-6HA in response to ABA, while mutation of the G-box in MFT(P2)-GUS 

did not show any change of GUS staining in the background of 35S:ABI5-6HA in 

response to ABA (Figure 25A). This finding, together with the previous ChIP result 

showing the binding of ABI5 to the promoter region near MFT-3 (Figure 21), 

strongly suggests that ABI5 directly and specifically regulates MFT expression in 

the radicle-hypocotyl transition zone through the G-box motif in the single ABRE 

near the start codon of MFT. To further confirm this notion, abi5-1 mutation was 

introduced into MFT(P2)-GUS, and it was observed that the resulting GUS staining 

was decreased in the radicle elongation zone compared with that in wild-type 

background in response to ABA (Figure 25B). 
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Figure 25. GUS Staining in Germinating Seeds of MFT(P2)-GUS in Different 
Genetic Background. 

(A) GUS staining in germinating seeds of MFT(P2)-GUS, 35S:ABI3-6HA 
MFT(P2)-GUS, 35S:ABI5-6HA MFT(P2)-GUS and 35S:ABI5-6HA MFT(P2)-GUS-
mGbox. Germinating seeds treated with 1 and 3 μM ABA, which were at the same 
developmental stage, were stained 24 h post-stratification. 
(B) GUS staining in germinating seeds of MFT(P2)-GUS, abi3-1 MFT(P2)-GUS, 
abi5-1 MFT(P2)-GUS and abi3-1 abi5-1 MFT(P2)-GUS. To examine GUS 
expression in seeds at the same developmental stage, MFT(P2)-GUS and abi5-1 
MFT(P2)-GUS treated with 10 μM ABA were stained 24 h post-stratification, while 
other germinating seeds mock-treated or treated with 10 μM ABA were stained 12 
h post-stratification. 
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On the other hand, MFT(P2)-GUS showed slightly reduced GUS staining in the 

35S:ABI3-6HA background in response to ABA (Figure 25A), but exhibited an 

extraordinarily strong GUS staining in the whole embryo of abi3-1 independently 

of ABA treatment (Figure 25B). Further loss of ABI5 in abi3-1 had little effect on 

the intensity of GUS staining in MFT(P2)-GUS (Figure 25B). These GUS staining 

patterns are in agreement with the MFT expression in the corresponding transgenic 

plants or mutants (Figures 18 and 20), suggesting that ABI3 plays a dominant role 

in suppressing MFT expression in the whole embryo, while ABI5 recognizes the G-

box motif to promote MFT expression particularly in the radicle-hypocotyl 

transition zone. 

 

3.6 MFT Is Regulated by DELLA Proteins 

 

Since GA functions as a major counteracting hormone against ABA to promote 

both embryo growth potential and endosperm weakening during seed germination 

(Ogawa et al., 2003; Muller et al., 2006), we asked whether MFT is involved in the 

crosstalk of ABA and GA signaling. We firstly examined if GA could rescue the 

low germination rate of mft-2 caused by ABA. In the presence of 10 μM ABA, 

increasing the concentration of exogenously applied GA from 1 to 10 μM clearly 

elevated the germination rate of wild-type seeds, but had little effect on the 

germination of mft-2 (Figure 26), implying that MFT plays a role in mediating the  
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Figure 26. Germination Rate of mft-2 in Response to ABA and GA. 

Germination phenotype of wild-type and mft-2 treated with 10 μM ABA plus 
different concentrations (1 μM and 10 μM) of GA. 
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interaction between ABA and GA signals during seed germination. We next 

examined MFT expression in the GA-deficient ga1-3 mutant, in which GA 

biosynthesis is blocked (Wilson et al., 1992). It was shown that MFT was highly 

expressed in ga1-3 seeds, and exogenously applied GA downregulated MFT 

(Figure 27A), suggesting that GA represses MFT expression in seeds. As it is 

known that DELLA proteins are a major family of growth-restricting nuclear 

proteins mediating the GA effect on growth, and RGA and RGL2 are predominant 

DELLA proteins involved in the control of seed germination (Lee et al., 2002; 

Tyler et al., 2004), we thereafter tested if DELLA proteins mediate GA regulation 

of MFT by checking MFT expression in various DELLA mutants in the ga1-3 

background. The results showed that further loss of RGL2 or RGA activity 

noticeably reduced MFT expression in ga1-3 seeds with a stronger effect exerted by 

RGL2 (Figure 27B). In ga1-3 rga-t2 rgl2-1 triple mutants, MFT expression was 

much reduced (Figure 27B). Further loss of the activity of other two DELLA 

proteins, GAI and RGL1, reduced MFT expression to a level comparable to that in 

wild-type (Figure 27B). GA treatment that resulted in the degradation of DELLA 

proteins considerably downregulated MFT expression in almost all the mutants 

tested except the penta mutant ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 (Figure 27B). 

Taken together, these results suggest that all DELLA proteins tested contribute to 

the upregulation of MFT in ga1-3 in which GA is absent, and that RGL2 and RGA 

are two major regulators controlling MFT expression with the former as the most 

important regulator. 
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Figure 27. Expression of MFT in Various DELLA Mutants. 

(A) MFT expression in wild-type and ga1-3 seeds mock-treated or treated with 10 
μM GA. All germinating seeds were collected 16 h post-stratification. 
(B) MFT expression in wild-type and various DELLA mutant seeds in ga1-3 
background mock-treated or treated with 10 μM GA. All germinating seeds were 
collected 16 h post-stratification. penta indicates the ga1-3 gai-t6 rga-t2 rgl1-1 
rgl2-1 mutant. Inset shows the comparison of MFT expression between wild-type 
and penta mutants. 
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To examine if DELLA proteins directly modulate MFT transcription, we created 

ga1-3 rgl2-1 rga-t2 35S:RGL2-GR inducible lines, in which glucocorticoid receptor 

(GR) fusion protein could be activated by its ligand dexamethasone (DEX). 

Application of DEX delayed the germination rate of ga1-3 rgl2-1 rga-t2 

35S:RGL2-GR (Figure 28A), suggesting that RGL2-GR is biologically functional in 

inhibiting seed germination. Using this system, we checked MFT expression by 

inducing RGL2 activity. Combined treatment of ga1-3 rgl2-1 rga-t2 35S:RGL2-GR 

by DEX and cycloheximide (CYC), an inhibitor of protein synthesis, resulted in an 

increase in MFT expression. This demonstrates that RGL2 modulates MFT 

expression independently of protein synthesis, indicating that MFT may be an 

immediate target of RGL2 (Figure 28B).  

 

Since it was shown that RGL2 may directly regulate MFT expression, we further 

tested whether RGL2 could be associated with the MFT promoter. To this end, we 

created 35S:RGL2-6HA tagging lines for ChIP analysis. 35S:RGL2-6HA was 

introduced into ga1-3 rgl2-1 background, and the functional lines that mimicked 

ga1-3 phenotypes were chosen for further ChIP assays. ChIP enrichment test 

showed that RGL2-6HA was associated with the region near the MFT-2 fragment 

(Figure 29), indicating that RGL2 is directly involved in the regulation of MFT 

expression. 

 
In addition, we found that both ABI3 and ABI5 expression was elevated in ga1-3 
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Figure 28. A Biologically Active RGL2-GR Fusion. 

(A) Surface-sterilized ga1-3 rgl2-1 rga-t2 35S:RGL2-GR seeds were subject to 
vacuum infiltration in 30 μM dexamethasone (DEX) solution or MOCK solution 
(0.09% ethanol) for 0.5 h or 1 h. Seeds were subsequently washed three times and 
sown on common MS medium. The plates were transferred to a tissue culture room 
and germination percentage was scored over time. Mock-treated seeds show higher 
germination rate than DEX-treated seeds, suggesting that RGL2-GR is biologically 
functional in inhibiting seed germination. 
(B) MFT expression in ga1-3 rgl2-1 rga-t2 35S:RGL2-GR seeds. Seeds were 
treated with 30 μM dexamethasone (DEX) plus 30 μM cycloheximide (CYC) or 
MOCK (0.09% ethanol) plus CYC under vacuum for 1 h. They were subsequently 
washed three times, and collected 4 h and 8 h after sowing on MS medium. 
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Figure 29. ChIP Enrichment Test Showing the Binding of RGL2-6HA to the 
MFT Promoter. 

Seeds were sown on MS medium and harvested 16 h post-stratification for ChIP 
assays. A significant difference in comparison with the enrichment of a TUB2 
fragment is indicated with an asterisk (P < 0.05, Student’s t test). 
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seeds, and that their expression levels in ga1-3 lacking DELLA proteins 

(particularly RGL2 and RGA) decreased to the same levels as in wild-type seeds 

(Figure 30). GA treatment of these mutant seeds downregulated ABI3 and ABI5 

expression to the levels comparable to those of wild-type seeds (Figure 30). These 

results suggest that DELLA proteins promote ABA signaling, which is consistent 

with the previous findings showing that DELLA proteins stimulate endogenous 

ABA synthesis (Ko et al., 2006; Zentella et al., 2007; Piskurewicz et al., 2008). 

Thus, it is likely that in addition to direct regulation of MFT expression, RGL2 also 

indirectly affects MFT expression through the ABA signaling pathway.  

 

To understand the biological significance of the upregulation of MFT by DELLA 

proteins, we crossed mft-2 in Ler background with ga1-3 to remove MFT activity. 

As ga1-3 germinates only upon GA treatment, seed germination was examined in 

the presence of 1 µM GA. Under the same growth conditions, ga1-3 mft-2 

germinated at a lower rate than ga1-3 in response to GA treatment, especially 

within 5 days after stratification (Figure 31A). When GA levels are low, DELLA 

proteins accumulate, thus concomitantly promoting MFT expression and ABA 

signaling. The lower germination rate in ga1-3 mft-2 than in ga1-3 indicates that 

when GA biosynthesis is impaired and ABA signaling is stimulated, MFT is 

required to maintain the seed germination potential. In agreement with this, ga1-3 

rgl2-1 mft-2 exhibited a lower germination rate than ga1-3 rgl2-1 in the absence of 

exogenous GA (Figure 31B). 
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Figure 30. Expression of ABI3 and ABI5 in Various DELLA Mutants. 

(A) ABI3 expression in seeds of wild-type and ga1-3 lacking DELLA proteins that 
were mock-treated or treated with 10 μM GA. 
(B) ABI5 expression in seeds of wild-type and ga1-3 lacking DELLA proteins that 
were mock-treated or treated with 10 μM GA. 
All germinating seeds were collected 16 h post-stratification. penta indicates the 
ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant.  
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Figure 31. MFT Maintains the Germination Potential when GA Levels Are 
Low. 

(A) Germination phenotype of ga1-3 and ga1-3 mft-2 treated with 1 μM GA. 
(B) Germination phenotype of ga1-3 rgl2-1 and ga1-3 rgl2-1 mft-2 in the absence 
of exogenous GA. 
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3.7 MFT Represses ABI5 Expression during Seed Germination 

 

To understand the mechanism by which MFT regulates seed germination, we first 

checked MFT intracellular localization by examining the localization of gMFT-

GFP, in which the MFT coding sequence driven by the 1.8 kb promoter was fused 

with the GFP reporter gene. Among 16 mft-2 gMFT-GFP transgenic lines obtained, 

10 lines could rescue the ABA hypersensitivity phenotype of mft-2, indicating that 

the MFT-GFP fusion protein is biologically functional (Figure 32A). Using the 

functional gMFT-GFP transgenic plants, we were able to visualize the localization 

of MFT by confocal microscopy. Although according to the sequence analysis, 

MFT is not designated as a transcription factor, we found that MFT-GFP signals in 

the cells of the radicle-hypocotyl transition zone were located in the nucleus, 

implying that MFT may function as a transcription co-regulator that modulates the 

expression of downstream genes (Figure 32B). The similar nuclear localization has 

also been observed in another MFT homolog, FT, which functions in the nucleus to 

regulate the expression of other flowering genes (Abe et al., 2005; Wigge et al., 

2005). 



RESULTS 

 118

 

 

 

 

 

Figure 32. MFT Is Localized in the Nucleus. 

(A) Two representative mft-2 gMFT-GFP transgenic lines showing rescued 
germination phenotype in response to 10 μM ABA. The percentage of germination 
was scored 7 day post-stratification. 
(B) MFT-GFP localization in the cells of the radicle-hypocotyl transition zone. 
DAPI, fluorescence of 4’,6-diamino-2-phenylindol; Merged, merge of DAPI and 

GFP. Bar = 50 μm. 
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To evaluate how MFT affects the expression of other genes during seed 

germination, we tested a group of ABA marker genes and found that the expression 

of RD29A, RD29B, and AtEm6 was higher in mft-2 than in wild-type in response to 

ABA (Figure 33). Since AtEm6 is a known direct downstream target of ABI5 

(Finkelstein and Lynch, 2000; Lopez-Molina et al., 2002) and ABI5 expression in 

the radicle overlaps with MFT expression in response to ABA (Piskurewicz et al., 

2008) (Figure 13), we asked if MFT regulates ABI5, thus affecting AtEm6 

expression. We found that in germinating seeds, ABI5 expression in mft-2 was 

higher than in wild-type in response to exogenous ABA (Figure 34A). Furthermore, 

in situ hybridization revealed higher ABI5 expression levels in the radicle of mft-2 

than in wild-type (Figure 34B). These suggest that MFT negatively regulates ABI5 

in the radicle of germinating seeds in response to ABA.  

 

To test whether MFT is directly associated with the ABI5 promoter, we created mft-

2 gMFT-HA transgenic plants that fully rescued the mft-2 phenotype (data not 

shown). ChIP assays showed the enrichment of MFT-HA at the promoter region 

near the ABI5-2 fragment (Figure 35), whereas no binding was observed on the 

ABI3 promoter (Figure 36), suggesting that MFT antagonizes ABA signaling by 

directly repressing ABI5. This was supported by the expression analysis showing 

that ABI3 upregulation of ABI5 in 35S:ABI3-6HA was enhanced in mft-2 in 

response to ABA (Figure 37). Furthermore, abi5-1 mft-2 double mutants could fully 

rescue the low germination defects of mft-2 in response to ABA (Figure 38). 
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Figure 33. Expression of Several ABA Marker Genes in Wild-type and mft-2 in 
Response to ABA. 

Expression levels of RD29A, RD29B, AtEm6, CRC, and At2S3 were compared in 
wild-type and mft-2 germinating seeds treated with 10 μM ABA. Inset at left corner 
shows the RD29A expression. The expression levels were normalized to TUB2. 
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Figure 34. MFT Suppresses ABI5 Expression in Response to ABA. 

(A) Expression of ABI5 in wild-type and mft-2 seeds treated with 10 μM ABA at 1 
day or 2 day post-stratification. 
(B) In situ localization of ABI5 in wild-type and mft-2 seeds treated with 10 μM 
ABA. Seeds were collected 24 h post-stratification. Bar = 100 µm. 
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Figure 35. ChIP Enrichment Test Showing the Binding of MFT-HA to the 
ABI5 Promoter. 

(A) Schematic diagram of the ABI5 promoter region. White and black boxes 
represent the upstream region and part of the first exon, respectively. Hatched 
boxes represent the DNA fragments amplified in ChIP assays  
(B) ChIP enrichment test showing the binding of MFT-HA to the ABI5 promoter. 
Seeds were sown on MS medium supplemented with 10 μM ABA and harvested 24 
h post-stratification for ChIP assays. A significant difference in comparison with 
the enrichment of a TUB2 fragment is indicated with an asterisk (P < 0.05, 
Student’s t test). 
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Figure 36. ABI3 Promoter Is Not Directly Bound by MFT-HA. 

(A) Schematic diagram of the ABI3 promoter region. White and black boxes 
represent the upstream region and part of the first exon, respectively. The hatched 
boxes represent the DNA fragments amplified in the ChIP assay. 
(B) ChIP assay shows no binding of MFT-HA on the ABI3 promoter. 
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Figure 37. ABI5 Expression in Germinating Seeds of 35S:ABI3-6HA and mft-2 
35S:ABI3-6HA.  

Germinating seeds were treated with ABA (1 and 10 μM) and collected 24 h post-
stratification. 
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Figure 38. Germination Rate of mft-2 and abi5-1 mft-2 Mutants in Response to 
ABA.  

Germination phenotype of mft-2 and abi5-1 mft-2 in response to 10 μM ABA. 
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The primary objective of this research study was to characterize the role of MFT 

during plant growth and development in Arabidopsis. MOTHER OF FT AND TFL1 

(MFT) is named after its sequence homology with two important flowering time 

genes, FT and TFL1 (Bradley et al., 1997; Kardailsky et al., 1999; Kobayashi et al., 

1999). But loss of MFT function does not result in observable defects in flowering 

time (Yoo et al., 2004), indicating that MFT might be involved in other biological 

processes. Dedicated to investigating the exact function of MFT, our study is the 

first to report that MFT regulates seed germination in response to ABA. 

 

4.1 MFT Expression Is Mediated by ABA and GA Signaling 

Pathways 

 

Seed germination starts with the uptake of water by the dry seed and terminates 

with the visible penetration of the structures surrounding the embryo by the tip of 

the embryonic axis, i.e. radicle (Bewley, 1997). This process is governed by two 

major counteracting phytohormones, ABA and GA, in response to various 

environmental factors. As these two hormones act through a complex crosstalk 

rather than through independent pathways (Kucera et al., 2005), integration of their 

mutual interaction is critical for a plant to make a decision on whether it should 

initiate the vegetative growth of its life cycle. The DELLA protein RGL2 and ABA 

biosynthesis are two known factors involved in such integration, in which they 

promote each other via a positive feedback regulatory loop (Piskurewicz et al., 
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2008). In this study, we show that MFT responds to ABA and GA signaling to 

modulate ABI5 expression in the radicle of the embryo, thus specifically regulating 

the timing of seed germination in response to environmental factors (Figure 39). 

 

Several pieces of evidence suggest that MFT serves as a convergence point of ABA 

and GA signaling pathways during seed germination. First, ABI5, which represses 

seed germination in response to ABA and GA (Piskurewicz et al., 2008), directly 

upregulates MFT in the radicle-hypocotyl transition zone of the embryo. In the 

absence of ABI5, upregulation of MFT in response to ABA is abolished, while 

overexpression of ABI5 increased MFT expression. ABI5 binds to the MFT 

promoter region close to the start codon, where there is a single ABRE. Mutation of 

the G-box in this ABRE abolishes the upregulation of MFT expression in the 

radicle-hypocotyl transition zone by increased ABI5 activity. These results strongly 

suggest that ABI5 specifically regulates MFT expression in the radicle-hypocotyl 

transition zone through the G-box in the ABRE near the start codon. It is 

noteworthy that in abi5-1, GUS staining of MFT(P2)-GUS in the whole embryo 

still increased in response to ABA (Figure 25B). This is consistent with the 

expression analysis showing slightly upregulated MFT expression in abi5-1 in 

response to ABA (Figure 18), implying that some other factor(s) act concomitantly 

with ABI5 to upregulate MFT in the ABA pathway. In addition to ABI5, there are 

other four bZIP ABRE-Binding Factors (ABFs) that recognize the G-box motif 

(Choi et al., 2000). Among them, ABF3 has  
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Figure 39. A Proposed Model of Seed Germination Mediated by MFT. 

ABA regulates MFT expression via ABI3 and ABI5 with the former acting as a 
repressor and the latter as a promoter. MFT confers a negative feedback regulation 
of the ABA signaling pathway through directly repressing ABI5. On the other hand, 
GA downregulates MFT expression and inhibits ABA synthesis via DELLA 
proteins (i.e. RGL2). Therefore, MFT serves as a mediator in response to ABA and 
GA signals to promote seed germination through constituting a negative feedback 
regulation of ABA signaling. Asterisks represent direct transcriptional regulation. 
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been shown to function redundantly with ABI5 during seed germination 

(Finkelstein et al., 2005), and thus it might be another potential upstream regulator 

of MFT.  

 

Second, ABI3, another key transcription factor in the ABA pathway, also directly 

represses MFT. MFT is downregulated in 35S:ABI3 germinating seeds treated with 

ABA which has been revealed by both expression analysis and GUS staining assay. 

Furthermore, ChIP results show that the genomic region near the MFT-2 fragment, 

where several ABREs are located, is associated with ABI3-6HA (Figure 21). 

Therefore, these data suggest that ABI3 plays a role in directly repressing MFT in 

response to ABA during seed germination. Interestingly, MFT was found to be 

dramatically upregulated in the germinating seeds of abi3-1 mutant even without 

the treatment of exogenous ABA (Figures 18 and 25B). It is known that ABI3 is an 

essential embryogenesis factor, and when the activity of ABI3 is impaired, it will 

cause global changes in transcription profiling during embryo development 

(McCourt, 1999). Thus, we speculate that such extraordinarily high expression of 

MFT in abi3-1 may partly result from a failure in establishing seed maturation in 

abi3-1. In agreement with this idea, GUS staining demonstrates that MFT 

expression is particularly strong in the whole embryo of the germinating seeds of 

abi3-1 (Figure 25B), which resembles its expression pattern in wild-type immature 

seeds (Figure 40F). Thus, the significantly elevated MFT expression in abi3-1 may 

reflect ABI3 regulation of MFT expression in the underdeveloped embryo. 
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Figure 40. GUS Staining Pattern of MFT(P2)-GUS in Different Tissues. 

(A) A 5-day-old seedling.  
(B) A 2-week-old seedling. Insets show tiny GUS staining signals in the tip of a 
rosette leaf (upper) and the basal region of the seedling (lower). 
(C) An inflorescence apex. 
(D) A developing silique. 
(E) A developing seed from an immature silique. 
(F) and (G) An immature embryo (F) and a seed coat with the endosperm (G) 
dissected from a developing seed. 
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Third, our data suggest that among all the DELLA proteins involved in the 

regulation of MFT, RGL2 is the main one that directly modulates MFT expression. 

When GA levels are low, RGL2 promotes ABA biosynthesis through stimulating 

the expression of XERICO, which encodes a RING-H2 zinc finger factor (Ko et al., 

2006; Zentella et al., 2007; Piskurewicz et al., 2008). In turn, an elevation of 

endogenous ABA levels promotes the mRNA expression of RGL2 and ABI5 and 

the protein expression and activity of ABI5 (Piskurewicz et al., 2008). Thus, direct 

upregulation of MFT by RGL2 allows MFT to respond to both GA and ABA 

pathways when they generate a signal output that does not permit germination 

under unfavorable environmental conditions.  

 

4.2 Negative Feedback Regulation of ABI5 

 

ABI5 has been identified as the final and common downstream repressor of seed 

germination in response to ABA and GA (Piskurewicz et al., 2008). The function of 

ABI5 is modulated by phosphorylation mediated by SnRK2-type kinases, and 

sumoylation mediated by SUMO E3 ligase (Lopez-Molina et al., 2001; Fujii et al., 

2007; Miura et al., 2009). ABI5 prevents seed germination partly by activating a 

group of LATE EMBRYOGENESIS ABUNDANT (LEA) genes, including AtEm1 

and AtEm6 (Finkelstein and Lynch, 2000; Lopez-Molina et al., 2002), which 

encode hydrophilic proteins possibly required for desiccation tolerance (Vicient et 

al., 2000). So far several upstream regulators of ABI5 have been reported. ABI3 



DISCUSSION 

 133

function as an upstream promoter of ABI5 to regulate the growth arrest of 

germinating seed (Lopez-Molina et al., 2002). Because 35S:ABI5 could rescue 

ABA insensitivity of abi3 during germination, ABI5 has been suggested as an 

essential factor acting downstream of ABI3 and executing an ABA-dependent 

growth arrest (Lopez-Molina et al., 2002). Genetic analysis has also suggested that 

ABF1 and ABF3 participate in antagonizing ABI5 expression (Finkelstein et al., 

2005). In addition, HY5, a light-signaling mediator, directly activates ABI5 to 

integrate light and ABA signaling (Chen et al., 2008). 

 

Here we show that MFT responds to the signals from ABA and GA pathways and 

generates a negative feedback loop in the ABA pathway by directly repressing 

ABI5 (Figure 39). When ABA levels are high, ABI5 directly promotes the 

expression of MFT, which in turn directly represses ABI5 expression in the radicle 

of the embryo, thus maintaining the embryo growth potential even under high levels 

of ABA. Upon ABA treatment, mft mutants exhibit enhanced upregulation of ABI5 

in the radicle of the embryo, thus resulting in the ABA hypersensitive phenotype. 

As MFT protein does not contain any DNA-binding domain, there are likely to be 

other transcription factor(s) involved in guiding the MFT protein to the ABI5 

promoter. A bZIP transcription factor FD has been shown to interact with the MFT 

homolog, FT, and such protein complex participates in activating a floral homeotic 

gene APETALA1 (AP1) (Abe et al., 2005; Wigge et al., 2005). However, our 

preliminary test did not show an interaction between FD and MFT (data not 
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shown), and the MFT-interacting partner(s) remain to be identified. To this end, 

yeast two-hybridization screening, in vitro pull-down assay can be carried out in the 

future. Among all the putative MFT protein partners identified, particular attention 

should be paid to those transcription factors which play a role in the process of seed 

dormancy and seed germination. To verify the interaction between MFT and those 

transcription factors of interest, bimolecular fluorescence complementation (BiFC) 

and co-immunoprecipitation (Co-IP) assays can be further utilized. 

 

4.3 MFT-like Genes May Have Conserved Function in Plants 

 

The PEBP family is evolutionarily conserved in a wide range of multi-cellular land 

plants, and phylogenetic studies of PEBP-like genes in angiosperms have divided 

them into three main subfamilies, FT-like, TFL1-like and MFT-like clades 

(Kobayashi et al., 1999; Carmel-Goren et al., 2003; Chardon and Damerval, 2005; 

Carmona et al., 2007; Hedman et al., 2009). A recent study on MFT-like genes in a 

basal plant lineage Physcomitrella patens (bryophyte) has suggested that the MFT-

like clade is ancestral to the other two clades (Hedman et al., 2009). In Arabidopsis, 

three PEBP members, FT, TFL1, and TWIN SISTER OF FT (TSF), have been 

shown to regulate flowering time and shoot meristem identity (Bradley et al., 1997; 

Kardailsky et al., 1999; Kobayashi et al., 1999; Yamaguchi et al., 2005). Although 

MFT shares sequence similarity with FT and TFL1, its loss-of-function mutant in 

Ws-2 ecotype background does not exhibit relevant defects in flowering and 
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meristem development (Yoo et al., 2004), which is consistent with what we have 

observed in mft-2 and mft-3 in Col. A comparison of protein sequences has revealed 

a critical amino acid residue (tryptophan) in MFT that differs from tyrosine or 

histidine in FT or TFL1, respectively, in which this residue is located in a potential 

ligand binding pocket and determines the protein function as a flowering inducer or 

repressor (Hanzawa et al., 2005). Notably, this residue is well conserved in most 

MFT-like genes (Hedman et al., 2009). Furthermore, almost all MFT-like proteins 

share another conserved proline residue near the C-terminus, which is absent in FT-

like or TFL1-like proteins (Hedman et al., 2009). These observations imply that 

MFT may have different roles in plant development as compared with FT and 

TFL1. 

 

In this study, we show that MFT functions as an antagonistic factor of ABA 

signaling during seed germination. MFT expression is boosted by ABA and 

inhibited by GA, and promotes seed germination particularly when ABA levels are 

elevated under unfavorable environmental stresses. Like MFT expression in 

Arabidopsis (Figures 4A, 4B, and 40), most of the identified MFT-like genes in 

various plant species show preferential expression in seeds (Chardon and Damerval, 

2005; Danilevskaya et al., 2008), implying a highly conserved function of MFT-like 

genes in seed development across the plant kingdom. Analysis of the genomic 

sequences of MFT-like genes in maize and rice have revealed that they all contain 

several ABREs near their coding regions, which is comparable to the ABREs 
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identified in MFT in Arabidopsis (Figure 41). The presence of many ABREs in 

those MFT orthologs in rice and maize indicates that they may have similar 

function like Arabidopsis MFT in the control of seed germination in response to 

ABA. Here we only performed promoter analysis on MFT-like genes in two 

monocots, in order to gain more information, promoter studies could also be 

extended to those species which are more closely related to Arabidopsis such as 

papaya, Populus, and grapevine. Thus, it will be interesting and of practical 

importance to study further whether MFT-like genes in other plants have a 

conserved function in tuning seed sensitivity to ABA, thus modulating the growth 

potential of the embryo in response to environmental cues. To achieve this goal, we 

can first check whether the expression of MFT-like genes in other plants is 

responsive to ABA treatment, upon the confirmation of ABA regulation on the 

expression of certain MFT-like genes, further focus can be put on the detailed 

analysis of the ABREs in those genes by mutagenesis method and phenotypic 

analysis of those mft-like mutants, especially in the process of seed development 

and seed germination. Our findings in Arabidopsis should shed light on the studies 

of MFT-like genes in other plant species and a broader picture of MFT evolution is 

expected to be built. 
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Figure 41. Promoter Analysis of MFT-like Subfamily Genes in Arabidopsis, 
Rice and Maize. 

The sequences for osMFT1 and osMFT2 were derived from Oryza sativa 
ssp.japonica, and those of ZCN9, ZCN10, and ZCN11 were identified from bacterial 
artificial chromosome (BAC) clones in Zea mays. Putative ABREs were identified 
using online MatInspector software (http://www.genomatix.de/) and marked by 
inverted triangles. Upstream regions and introns are represented by white boxes, 
while exons are represented by black boxes. 
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