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ABSTRACT 

 

The Metal-Insulator-Metal (MIM) capacitor has been proposed as the next 

generation capacitors for precision Radio Frequency (RF) and Analog/Mixed-Signal 

(AMS) ICs applications, due to its advantages of depletion–free, high–conductance 

electrodes and minimized capacitance loss to Si substrate.   Conventional dielectric 

materials for MIM capacitors, such as SiO2, Si3N4, cannot satisfy the requirements of 

both high-quality and high-density MIM capacitors in the near future according to 

ITRS roadmap.  The integration of high-κ materials to realize high capacitance density 

and low Voltage Coefficient of Capacitance (VCC) in a cost effective way is 

imperative.   

In this thesis, a systematic research has been done for high-κ MIM capacitors 

using Sm2O3 dielectric as base dielectrics.  Firstly, the electrical characteristics of 

Sm2O3 MIM capacitors with various Sm2O3 thicknesses are investigated, including 

voltage linearity and leakage current density.  The physical characteristics of Sm2O3 

based high-κ MIM capacitor is studied by using techniques such as Transmission 

Electron Microscopy (TEM), X-Ray Diffraction (XRD) and X-ray Photoelectron 

Spectroscopy (XPS), in which the dielectric constant, crystalline structure  are 

examined.   

Secondly, the effects of Plasma Treatments (PT) with O2 and/or N2 on the 

performance of MIM capacitors with Sm2O3 dielectric are investigated.   It will be 

shown that plasma treatment after Sm2O3 dielectric formation can effectively reduce 
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both the quadratic and linear VCC, hysteresis.  Also the leakage current density can be 

significantly improved.  These results indicate that plasma treatment after dielectric 

formation is an effective way to improve the performance of high-κ dielectric MIM 

capacitors for precision circuit applications.  The excellent electrical characteristics of 

Sm2O3 MIM capacitors indicate that it is a promising candidate for the application of 

high-κ dielectric MIM capacitors.  

Thirdly, the MIM capacitors of Sm2O3 stacked with a thin SiO2 layer to 

modulate the effective VCC are investigated.  By using the “cancelling effect” of the 

positive quadratic VCC of Sm2O3 and the negative quadratic VCC of SiO2, MIM 

capacitors with high capacitance density, low quadratic VCC and leakage current 

density are successfully demonstrated.  Such “cancelling effect” of SiO2 and Sm2O3 

dielectrics can be further optimized to obtain higher capacitance density and near zero 

quadratic VCC.   

Finally, a systematic study of the influence of metal electrodes on the 

performance of Sm2O3 MIM capacitors is performed.   The improvement of electrical 

characteristics is demonstrated by using high work-function metal electrodes while 

low work-function metal electrodes show negative effects.    The possible reasons of 

the interfacial layer formation are discussed. 
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CHAPTER  1 

INTRODUCTION 

 

 

1.1.   Radio Frequency and Analog/Mixed-Signal Technology 

1.1.1. Background 

Radio Frequency (RF) and Analog/Mixed-Signal (AMS) technologies show 

essential and critical technologies for many semiconductor and Integrated Circuits 

(ICs) products.  Such technologies now serve the rapidly growing market of both 

internet and wireless communications, such as hand phones and other wireless devices. 

RF/AMS circuits process radio signals (analog signals) and digital data, some of 

which includes RF, analog, digital to analog and analog to digital conversions.  

These technologies depend on many materials and processing technologies, some of 

which are compatible with Complementary Metal Oxide Semiconductor (CMOS) 

processing and others are not, e.g., those compound semiconductors. 

The drivers for most of RF/AMS products are cost, frequency bands, power 

consumption, functionality, size, production volume, standards and protocols.  

Considering these requirements and also being required to perform according to 

preset standard specifications, scaling transistor dimensions alone is insufficient for 



Chapter 1: Introduction 

2 
 

these products.  Therefore, a technology of “System-on-a-Chip (SoC)” to integrate 

the Digital Signal Processors (DSP) with other analog functions was developed.  

This technology can maintain a competitive edge for these RF/AMS products with 

comparable cost and performance.  

1.1.2. On chip and Embedded Passives for RF and Analog Technology 

Passive components include resistors, capacitors, inductors, varactors, 

transformers, and transmission lines.  These components are frequently used for 

impedance matching, resonance circuits, filters, and bias circuits in Radio Frequency 

Integrated Circuits (RFICs).  Unlike active devices such as Metal Oxide 

Semiconductor Field Emission Transistor (MOSFET) in the Ultra Large Scale 

Integrated circuit (ULSI) technology for digital CMOS ICs, the performance of many 

RF/AMS circuits are mainly determined by the performance of these passive elements.  

This is because that even in some RF circuits, the performance of RF/AMS CMOS 

transistors is usually good enough for most of the applications well beyond 10 GHz 

[1.1].   

Integrating passives components into RF/AMS ICs has been now progressing in 

the era of SoC in order to realize RF/AMS CMOS technology with high performance 

and low cost, particularly for some consumer electronic devices.  When 

incorporating such passives component into a standard CMOS process, some 

additional processing steps such as photolithography are needed.  Moreover, new 
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materials such as using high-permittivity (κ) dielectrics may be also required to obtain 

better passive performance.  This is because that these passive components, such as 

capacitors and inductors, usually occupy much more chip area than active devices.  

To obtain smaller die size, another optimization scheme or research should be 

performed to increase the capacitance density.  This might be realized by extra 

process steps or adding process complexity such as introducing new materials or new 

device structures.  The requirements for embedded passive components are the same 

to those of surface mount passive components.  Embedded passives technologies 

involve additional material such as using high-κ dielectric for capacitors, resistive 

layer for resistors, and high permeability material for inductors.  

1.2.   Metal-Insulator-Metal Capacitors for Applications of RF and Analog ICs 

Among these basic passive devices, capacitor is one of the essential elements, 

which are usually employed for decoupling, filtering and oscillating in the 

applications of RF/AMS ICs [1.2]. Conventional capacitors are 

Polysilicon-Insulator-Polysilicon (PIP) and MOS devices [1.3, 1.4].  However, 

polysilicon electrode has the unavoidable depletion effects and large sheet resistance, 

which cannot be accepted for the high precision requirements for scaled processing 

technologies [1.5, 1.6].  Therefore, a capacitor with metal electrodes, which is 

known as Metal-Insulator-Metal (MIM) capacitor, has been developed.  

The key parameters of MIM capacitors for RF applications are capacitance 
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density, voltage linearity, leakage, matching and quality (Q) factor [1.1].  Higher 

capacitance density is required because of capacitor area scaling.  The matching 

tolerances become smaller also due to the capacitance area scaling down.  According 

to the International Technology Roadmap for Semiconductors 2007 (ITRS roadmap), 

the main requirements and specifications of short term and long term for MIM 

capacitors are summarized in Table 1.1 and Table 1.2, respectively, where aggressive 

projections have been extent to year 2022 with ever increased performance 

requirements. The detailed requirements will be presented in Chapter 2.  

Table 1.1.  On-Chip Passive Technology Requirements ― Short-term.  

Year of Production 2009 2010 2011 2012 2013 2014 2015 

Metal-Insulator-metal Capacitor 

Density (fF/µm2) 4 5 5 5 7 7 7 

Voltage linearity (ppm/V2) <100 <100 <100 <100 <100 <100 <100 

Leakage (A/cm2) <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 <1e-8 

σ Matching (%•µm) 0.5 0.5 0.4 0.4 0.3 0.3 0.3 

Q (5GHz for 1pF) >50 >50 >50 >50 >50 >50 >50 

MOM Capacitor 

Density (fF/µm2) 5.3 6.2 7.0 6.5 7.5 8.6 9.9 

Voltage linearity (ppm/V2) <100 <100 <100 <100 <100 <100 <100 

s Matching (% for 1pF) <0.15 <0.15 <0.15 <0.15 <0.1 <0.1 <0.1 
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Table 1.2.  On-Chip Passive Technology Requirements ― Long-term. 

Year of Production 2018 2020 2022 

Metal-Insulator-metal Capacitor 

Density (fF/µm2) 10 12 12 

Voltage linearity (ppm/V2) <100 <100 <100 

Leakage (A/cm2) <1e-8 <1e-8 <1e-8 

σ Matching (%•µm) 0.2 0.2 0.2 

Q (5GHz for 1pF) >50 >50 >50 

MOM Capacitor 

Density (fF/µm2) 15.1 20.0 26.4 

Voltage linearity (ppm/V2) <100 <100 <100 

s Matching (% for 1pF) <0.1 <0.08 <0.08 

 

Manufacturable Solutions Exist, and are being optimized 

Manufacturable Solutions are known 

Manufacturable Solutions are no known 

 

1.3.  Thesis Outline and Contributions 

In Chapter 2, the key parameters of MIM capacitors for high precision circuit 

applications are detailedly introduced and a systematic review of recent studies on 
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high-κ dielectric MIM capacitors is presented. 

In Chapter 3, the electrical and physical characteristics of MIM capacitors with a 

single Sm2O3 dielectric have been systematically investigated. Moreover, the 

influence of plasma treatment on the performance of Sm2O3 MIM capacitors has been 

described.  Plasma treatment in N2 ambient after dielectric formation can be utilized 

to improve the performance of high-κ dielectric MIM capacitors. 

In Chapter 4, the MIM capacitors of Sm2O3 stacked with a Physical Vapor 

Deposition (PVD) or a Plasma Enhanced Chemical Vapor Deposition (PECVD) SiO2 

layer have been fabricated and characterized.  The application of using a thin SiO2 

layer to modulation the voltage linearity of whole dielectric stack is presented.   

In Chapter 5, the influence of metal electrodes on the performance of Sm2O3 

MIM capacitors has been systematically investigated.  The improvement of electrical 

characteristics by using high work-function metal electrodes is presented. 

Finally, Chapter 6 concludes with suggestions for future work based on the 

conclusion of this thesis. 
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CHAPTER  2  

LITERATURE AND TECHNOLIGY REVIEW 

 

 

2.1.   Metal-Insulator-Metal Capacitors 

For the capacitors used in the applications of RF/AMS ICs, precision capacitance 

control within different bias voltage and temperature is required.  Traditional 

Polysilicon-Insulator-Polysilicon (PIP) capacitors cannot be tolerated in RF/AMS ICs 

due to the undesirable depletion effects of polysilicon electrodes [2.1-2.4].  Although 

cross-coupled capacitors have been employed to alleviate the capacitance variation 

[2.1], the resistivity of capacitors is large, and quality factor (Q) is poor due to the 

excessive capacitance-loss to the substrate.  Therefore, the requirement of capacitor 

electrodes with little or no depletion effects motives the employment of metal 

electrodes.  It is generally known as Metal-Insulator-Metal (MIM) structures. 

The MIM capacitor has been proposed as the next generation capacitor for 

RF/AMS ICs applications, due to its advantages of depletion–free, high–conductance 

electrodes and minimized capacitance loss to Si substrate [2.5-2.9].  Fig. 2.1 shows 

the typical schematic of MIM capacitor in the AlCu Back-End of Line (BEoL).  

There is a thin metal electrode inserted between the two metal layers.  The 

conventional dielectrics used in industries are usually SiO2 or Si3N4 which are 
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deposited by PECVD at the low-temperature process below 500 oC.  The capacitors 

are usually done between the last top two metal layers so as to reduce the substrate 

coupling effect. 

Top metal layer

Standard BEOL metal layer of
Ti/TiN/AlCu.

PECVD SiO2 or Si3N4

MIM top plate

 

Fig. 2.1.  Typical schematic of MIM capacitor used in the AlCu BEoL. 

2.2.   Parameters of MIM Capacitors for the Applications of RF/AMS ICs 

The key parameters for MIM capacitors in the application of RF/AMS ICs are 

capacitance density, voltage linearity, leakage current density, matching and Q factor 

[2.10].  The details of specified requirements are list below:  
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(1) Capacitance density 

Capacitance density is one of the essential issues of MIM capacitors because 

capacitors usually occupy much area in a chip.  The areal percentage of capacitor 

significantly increases within the scaling down of ICs.  To increase the capacitance 

per unit area can improve the capacitor integration and thus reduce the cost. 

(2) Voltage linearity 

The variation of capacitance with the applied voltage is known as the Voltage 

Coefficient of Capacitance (VCC), as shown in Fig. 2.2.  The precision capacitance 

control needs small capacitance variation with the applied voltage varied.  

-4 -2 0 2 4

0.000

0.003

0.006

0.009

0.012

0.015

0.018

C(V) = C0 (αV2+βV+1)

  

 

Bias (V)

Δ
C

/C
0 Polynomial fit

 

Figure 2.2.  Polynomial fitting of a typical C-V curve.  The fitting is performed from 
positive voltage to negative or reverse. 
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Usually VCC can be approximated by equation 2.1.  

C(V) = C0 (αV2+βV+1) [2.9],   (2.1) 

where V is the voltage applied between the electrodes of the capacitor, and C0 is 

the capacitance at zero voltage.  α, β are the quadratic and linear VCC, respectively.  

The quadratic VCC (α value) is critical for the dynamic range of analog circuit [2.10].  

The linear VCC (β value) can be cancelled out by differential techniques such as 

cross-coupled arrangement [2.1]. 

(3) Temperature coefficient of capacitance (TCC) 

The temperature coefficient of capacitance (TCC) is an important parameter of 

MIM capacitors as the actual device temperature during the circuit operation is 

usually much higher than room temperature and is usually expressed in ppm/ºC.  

TCC describes the maximum change in capacitance over a specified temperature 

range.  TCC can be usually defined as: 

 Cppm
dT
dC

T
TCC o/106

= [2.11, 2.12]         (2.2) 

TCC is usually positive because of the effect of larger inter-atomic space at 

higher temperature, which allows a larger dipole moment in the presence of an 

electric field [2.13, 2.14].  A TCC parameter which is under about 200 ppm/ºC is 

considered low. 
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(4) Leakage current density (J) 

Leakage current density (J) is defined at room temperature and for the highest 

end of the supply voltage range for precision analog device.  The requirement of low 

leakage current density is obvious. 

(5) Quality factor (Q) 

The quality factor (Q) is the reciprocal of the dissipation factor.  If the mobile 

charges cannot respond enough to the changing fields or if there are resistive losses in 

the dielectric or capacitor electrodes, the current and voltage might deviate from the 

ideal value of 90o.  The difference of this angular and 90o is called the loss angle (δ).  

The tangent of this loss angle is called the loss tangent (dissipation factor), and is zero 

for a capacitor that does not dissipate wasted energy. 

Planar structures were usually implemented for MIM capacitors integrated in 

BEOL process, and positioning the capacitors beneath the final metal level could 

further minimize the loss to the substrate.  Moreover, the fabrication of MIM 

capacitors needs to be compatible to the existing ULSI BEoL technology.  That is, 

high quality dielectrics and electrodes have to be formed at a low temperature of 

~400oC which is limited by backend process. 
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2.3.   Literature Review 

As the continuous scaling down of CMOS technology, it is inevitable to increase 

the capacitance per unit area to save chip area, especially in the applications of 

RF/AMS ICs.  Therefore, MIM capacitors draw great attentions among 

semiconductor industry companies in the very recent years.  Conventional dielectric 

materials for MIM capacitors in current technology node, such as SiO2, Si3N4, have 

been investigated and optimized to meet this requirement [2.6-2.10, 2.15, and 2.16].  

Si3N4 has a higher dielectric permittivity (κ) of 7 as compared to that of SiO2 (~3.9), 

which usually provides relatively higher capacitance density than SiO2 MIM 

capacitors [2.17].  Much effort has been performed to improve the performance, 

including voltage linearity and breakdown field [2.18-2.21].  

SiO2 and Si3N4 MIM capacitors with excellent electrical performance have been 

successfully demonstrated in Al and Cu BEoL process.  However, the capacitance 

density are low, usually ≤ 2 fF/μm2 due to the small dielectric permittivity (κ) of SiO2 

(~3.9) and Si3N4 (~7).  Although further reduced dielectric thicknesses of SiO2 and 

Si3N4 can increase the capacitance density, it may offset leakage current, breakdown 

voltage, and voltage linearity properties.  In short, the capacitance density of MIM 

capacitors using conventional SiO2 and Si3N4 dielectrics cannot satisfy the 

requirements of both high-quality and high-density MIM capacitors in the near future 

according to ITRS roadmap [2.10].  The integration of new materials to realize high 

capacitance density and low VCC in a cost effective way is imperative. 
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Therefore, high-permittivity (κ) dielectrics have been introduced for MIM 

capacitors applications.  These high-κ dielectrics are usually metal oxides, such as 

HfO2, which have been developed for gate dielectrics of future node.  The most 

important advantage of the high-k dielectrics rather than SiO2 or Si3N4 is to provide a 

physically thicker film for leakage current reduction while improving the capacitance 

by higher permittivity, as described in equation 2-3, 

2
,

SiO
high k phy

high k

EOT T
ε
ε −

−

=                               (2-3) 

where EOT is the Equivalent Oxide Thickness of high-k dielectric, εSiO2 and εhigh-k 

are the permittivity of SiO2 (3.9) and the high-k dielectrics, respectively, and Thigh-k,phy 

is the physical thickness of the high-k film. 

In searching suitable high-κ dielectric materials for MIM capacitors, a simple 

criterion is high dielectric permittivity (κ) and high band-gap.  The decrease of 

band-gap is usually coupled with the reduction of breakdown voltage for dielectric 

materials.  Table 2.1 summarizes the experimental band gaps and dielectric 

permittivity for a compilation of a few potential high-κ dielectric candidates [2.22, 

2.23].  

The relationship of dielectric permittivity (κ) versus band-gap is summarized in 

Fig. 2.3 [2.22].  With the increasing of κ value for dielectrics, the band-gap is usually 

reduced. 
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Table 2.1.  Comparison of dielectric permittivity, gap energy and for different high-κ 
dielectric candidates, including SiO2 and Si3N4.  

Material Dielectric permittivity (κ) Gap energy Eg (eV) 

SiO2 3.9 8.9 

Si3N4 7 5.1 

Al2O3 9 8.7 

Y2O3 15 5.6 

La2O3 30 4.3 

Ta2O5 26 4.5 

TiO2 80 3.05 

HfO2 25 5.7 

ZrO2 25 7.8 

ZrSiO4 10 – 12 ~6 

HfSiO4 ~10 ~6 

 

 

Figure 2.3. Dielectric permittivity κ versus band gap for oxides [2.22]. It is observed that 
dielectric with higher permittivity usually has lower band-gap. 
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Among these high-κ dielectrics, binary dielectrics such as Al2O3, HfO2, and 

Ta2O5, are the most popular high-κ dielectrics studied in recent years to explore high 

capacitance density.  Moreover, ternary or even fourfold metal oxides have been 

attempted to obtain higher capacitance density and high quality dielectrics. 

Furthermore, in order to reduce voltage linearity and leakage current density, the 

stacking of different high-κ dielectrics or a thin SiO2 layer has been also fabricated 

and characterized. 

However, these single or stacked high-κ dielectric MIM capacitors were often 

done with different unit capacitance, and thus these reported electrical characteristics, 

such as VCC, are at different frequencies, i.e., 100 kHz, 1 MHz, or even 1 GHz.  It is 

difficult to compare and judge their performance. 

2.3.1. Binary Metal Oxides 

Binary metal oxides are known the most popular high-κ dielectrics investigated 

for future gate dielectrics.  The application of these binary high-κ dielectrics in MIM 

capacitors has been demonstrated recently [2.22-2.25].  Al2O3 MIM capacitor has 

exhibited the great characteristics of low TCC, low loss tangent and small frequency 

dispersion [2.26, 2.27].  As the dielectric energy band-gap of Al2O3 is high (8.7 eV), 

it also gives rise to low leakage current density [2.23].  The capacitance of 5.2 

fF/μm2 and low leakage current density of 4.3×10-8 A/cm2 at 1 V was demonstrated 

with sputter (PVD) Al2O3 [2.26].  The quadratic and linear VCC reported are 2051 
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ppm/V2 and 1888 ppm/V at 1 MHz, respectively.  However, its dielectric 

permittivity (~9) is pretty low, as compared to those of other high-κ dielectrics, such 

as Ta2O5 (~26) and HfO2 (~25).  This makes it less attractive to be employed in the 

application of high-κ dielectric MIM capacitors. Moreover, its voltage and 

temperature linearity are poor [2.28, 2.29]. 

Ta2O5 appears to be the candidate of MIM capacitor dielectrics since it has been 

used in DRAM for more than one decade.  Ta2O5 can be deposited at temperature of 

low than 500 oC, which is suitable for MIM capacitors in the BEoL.  Moreover, the 

dielectric permittivity of Ta2O5 (~26) is about 2 times higher than that of Al2O3 (~9).  

There are several deposition techniques available for this dielectric, such as 

Metal-Organic Chemical Vapor Deposition (MOCVD) [2.30], Atomic-Layer 

Deposition (ALD) [2.31], PECVD [2.32] [2.33], and Low Pressure Chemical Vapor 

Deposition (LPCVD) [2.33].  The best reported Ta2O5 MIM is with 4 fF/μm2 of 

capacitance density, -9.9 [2.34] to 13 ppm/V2 [2.28] of quadratic VCC and 106-84 

ppm/oC of TCC.  However, its leakage current density at 3.3 V and 125 oC is about 5

×10-5 A/cm2, which is much larger than other high-κ dielectrics, such as Al2O3, HfO2.  

The poor leakage performance makes it difficult to be accepted in the RF/AMS 

applications. 

HfO2 for gate dielectrics of Metal-Oxide-Semiconductor (MOS) devices has 

been widely studied.  It has the advantages of high dielectric constant (~25), high 

heat of formation (271 Kcal/mol), and large band gap (5.7 eV) [2.22].  The excellent 
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thermal stability and high band gap make it a promising candidate for high-κ 

dielectric MIM capacitors.    The reported capacitance density of HfO2 MIM capacitor 

is varied from 5 to 13.7 fF/μm2 by using ALD-deposited HfO2 [2.35-2.37].  For the 

HfO2 MIM capacitors with capacitance density of 5 fF/μm2, the quadratic and linear 

VCC can reach 238 ppm/V2 and 206 ppm/V, respectively, at the frequency of 1 MHz 

[2.35].  Another reported HfO2 for MIM capacitor application were demonstrated by 

using a Pulsed-Laser Deposition (PLD) [2.36] and PVD methods [2.37]. 

Other binary metal oxides for high-κ MIM capacitors, such as Y2O3 [2.38], 

La2O3 [2.39] and TiO2 [2.40], have been also fabricated and characterized to study the 

electrical characteristics in the applications of RF/AMS ICs.  Their reported 

capacitance densities are 2.2, 9.2, and 28 fF/μm2 for Y2O3, La2O3 and TiO2 MIM 

capacitors, respectively.  In these reports, their corresponding quadratic VCC are 110, 

3000 and 5010 ppm/V2, respectively. 

Table 2.2 summarizes the electrical characteristics of binary high-κ dielectrics 

for MIM capacitors.  The defaulted measured frequency is 100 kHz. Those 

un-reported characteristics are marked with “−”. 

Table 2.2.  List of electrical characteristics of binary high-κ dielectric MIM capacitors 
reported recently. 

 High-κ dielectric 

Top/bottom metal 

Cap. Density 

(fF/μm2) 

Leakage (A/cm2) Q.VCC  

α (ppm/V2) 

L.VCC    

β (ppm/V) 

TCC  

(ppm/oC) 

1 PVD Al2O3 [2.26] 

Al/ Pt 

5.2 4.3×10-8@ 1V 2051  

@ 1 MHz 

1888  

@ 1 MHz  

− 
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2 Al2O3 [2.34] 

TiN/ TiN 

4 5×10-9@ 3.3V, 

125C 

468 − 254 

3 MOCVD Ta2O5  

[2.34] TiN/ TiN 

4 6×10-5@ 3.3V, 

125C 

-9.9 − 106 

4 MOCVD Ta2O5  

[2.28] Cu/ Cu 

4 5×10-5@ 3.3V, 

125C 

13 25 84 

5 MOCVD HfO2  

[2.34] TiN/ TiN 

4 7×10-9@ 3.3V, 

125C 

468 − 254 

6 ALD HfO2 [2.35] 

Ta/ Ta 

13 1.55×10-6@ 1V, 

125C 

5000 6000 − 

7 ALD HfO2 [2.35] 

Ta/ Ta 

8 − 1800 4000 − 

8 ALD HfO2 [2.35] 

Ta/ Ta 

5 − 700 2500 − 

9 ALD HfO2 [2.35] 

Ta/ Ta 

13  − 800  

@ 1 MHz 

600  

@ 1 MHz 

− 

10 ALD HfO2 [2.35] 

Ta/ Ta 

8  − 400 

@ 1 MHz 

110 

@ 1 MHz 

− 

11 ALD HfO2 [2.35] 

Ta/ Ta 

5  − 238 

@ 1 MHz 

100 

@ 1 MHz 

− 

12 PVD HfO2 [2.37] 

Ta/ TaN 

13.7 4×10-4@ 3.3V, 

125C 

4631 -4843 135 

13 MOCVD Y2O3 [2.38] 

TiN/ TiN 

2.2 1×10-8@ 10V 120 470 − 

14 PVD La2O3 [2.39] 

Al/ Pt 

9.2 <1×10-5@ -1V ~ 3000 ~3000 347 

15 PVD TiO2 [2.40] 

Ir/ TaN 

28  3×10-8@ -1V 5010 

@ 500 kHz 

− 353 
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2.3.2. Ternary Metal Oxides and Above 

The aforementioned binary metal oxides for high-κ dielectric MIM capacitors 

can obtain high capacitance density up to 28 fF/μm2.  However, the requirements for 

both small VCC and low leakage current density cannot be satisfied.  Most of these 

high-κ dielectrics show large positive quadratic VCC, which cannot be accepted for 

precision analog circuit applications.  Moreover, the improvement of the leakage 

current density is limited by the low band-gap, such as Ta2O5 (4.5 eV), TiO2 (3.05 eV) 

[2.23].  Although Al2O3 has comparable band-gap (8.7 eV) with that of SiO2 (8.9 

eV), its dielectric permittivity is too low to obtain high capacitance density.  

Therefore, people have attempted to introduce other elements into binary metal oxides 

or combine these dielectrics to utilize their own advantages to improve voltage 

linearity and leakage current density. 

The intermixing of HfO2 and Al2O3 to form Hf-Al-O dielectrics is investigated 

for the merits of high permittivity of HfO2 and high energy band-gap of Al2O3 [2.41].  

The capacitance density of 3.5 fF/μm2 and low quadratic VCC of 190 ppm/V2 are 

obtained by varying the chemical composition of HfO2 or Al2O3.  Another way is to 

use lanthanide-doped HfO2 to suppress leakage current density [2.37].  The reported 

leakage current density with the capacitance density of 13.3 fF/μm2 for Hf-Tb-O MIM  

capacitors is successfully reduced from 4×10-4 A/cm2 to 2×10-7 A/cm2 at 3.3 V by 

doping 4% Tb into HfO2.  Other ternary metal oxides, such as TaZrO [2.42], SrTaO 

[2.43], and BiTaO [2.43], have also demonstrated low leakage current density.  
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Leakage current densities of lower than 1×10-8 A/cm2 at 3 V were reported for SrTaO 

and BiTaO MIM capacitors by using Pt electrodes.  However, Pt electrode is hard to 

be dry-etched as the by-product is nonvolatile.  

To further increase the capacitance density, TiO2 dielectric mixed with other 

high-κ dielectrics have been studied as TiO2 has relatively high dielectric permittivity 

(~80) but with low energy band-gap [23].  AlTiOX MIM capacitor with high 

capacitance density of around 10 fF/μm2 was reported [2.26].  However, the leakage 

current density is still poor.  Other Ti doped metal oxides for MIM capacitors, such 

as PrTiXOY [2.44], TaTiO [2.45], TiHfO, [2.46], Sm2Ti2O7 [2.47], BaSm2Ti4O12 [2.47], 

and SrTiO3 [2.48], can obtain high capacitance densities and relatively low leakage 

current densities as compared to that of TiO2 MIM capacitors.  For example, TaTiO 

MIM capacitor can demonstrate the capacitance density of 23 fF/μm2 and leakage 

current density of 1×10-6 A/cm2 at 1V.  Although some performance improvement 

have been obtained by combining TiO2 with other high-κ dielectrics, the leakage 

current density is still an issue due to the low band-gap of TiO2. 

The electrical characteristics of the ternary or above high-κ dielectrics have been 

summarized, as shown in Table 2.3.  The defaulted measured frequency is 100 kHz. 

The “one side fit” means that the VCCs are extracted from C-V curves by data fitting 

at only one side, i.e., positive voltage side.  Conventional data fitting for VCCs is 

done from positive to negative sides (or reverse).  The results with “one side fit” are 

not comparable to those extracted at both sides. 
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Table 2.3.  List of electrical characteristics of ternary and above high-κ MIM capacitors 
reported recently. 

 High-κ dielectric 

Top/bottom metal 

Cap. Density 

(fF/μm2) 

Leakage (A/cm2) Q.VCC  

α (ppm/V2) 

L.VCC    

β (ppm/V) 

TCC  

(ppm/oC) 

1 ALD HfAlO [2.41] 

Ta/ Ta 

3.5 <1.1×10-6@ 3V ~190 ~300 − 

2 PVD Hf-Tb-O [2.37] 

Ta/ TaN 

13.3 2×10-7@ 3.3V 2667 332 −  

3 TaZrO [2.42] 

TaN/ Ta 

12 <1×10-8@ 1V 1236 − 240 

4 SrTaO [2.43] 

Pt/ Pt 

10  1×10-8@ 3V 200 

@ 1 MHz 

300 

@ 1 MHz 

− 

5 BiTaO [2.43] 

Pt/ Pt 

10 1×10-8@ 3V 300 

@ 1 MHz 

40 

@ 1 MHz 

−  

6 PVD AlTiOX [2.26] 

Al/ Pt 

10 1 @1V − − − 

7 PVD PrTiXOY [2.44] 

Al/ TiN 

5 − >1000 

@ 1 MHz 

− − 

8 PVD TaTiO [2.45] 

Al/ TaN 

23 1.2×10-6@ 1V 81 

@ 1 GHz 

98 

@ 1 GHz 

391 

@1 MHz 

9 PVD TiHfO [2.46] 

TaN/ Ni 

10.8 9×10-9@ 2V 447 

One side fit 

132 − 

10 PVD TiHfO [2.46] 

TaN/ Al 

10.6 2×10-7@ 2V 935 

One side fit 

3620 −  

11 Sm2Ti2O7 [2.47] 

Pt/ Pt 

4.84 1.63×10-9@ 1V -295 684 -136 

12 BaSm2Ti4O12 [2.47] 

Pt/ Pt 

3.47 0.26×10-9@ 2V -89.3 -0.9 -122 
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13 BaTi4O9 [2.48] 

Pt/ Pt 

4.58 1.07×10-9@ 1V -65.4 -44 126.6 

14 PVD SrTiO3 [2.49] 

TaN/ TaN 

28 3×10-8@ 2V 589 

One side fit 

− 747 

 

2.3.3. Stacked or Multi-layered Metal Oxides 

Although by introducing another element into binary metal oxides can obtain 

some performance improvements, these achievements are not prominent to satisfy the 

ITRS’s requirements of high capacitance density, low leakage current density and 

small voltage linearity.  Most of these MIM capacitors with single high-κ dielectric 

are found to show large positive quadratic VCC.  Recently, numerous attempts have 

been performed to engineer these dielectrics, such as bi-layer or multiple laminated 

dielectric structures, particularly for those binary metal oxides, to improve the leakage 

current density and voltage linearity. 

The stacking of Ta2O5 with other high-κ dielectrics for MIM capacitors have 

been fabricated and characterized [2.28, 2.34, and 2.50].  This is because Ta2O5 

dielectrics demonstrate excellent VCC characteristics and relative high dielectric 

permittivity but poor leakage current density.  The capacitance density of 4.4 ~ 9.2 

fF/μm2 and leakage current density lower than 1×107 A/cm2 for Ta2O5/Al2O3 MIM 

capacitors are demonstrated.  The laminating of Ta2O5/Al2O3 or sandwiching of 

Ta2O5 between Al2O3 [2.50] can successfully reduce the leakage current density as 

Al2O3 can be an barrier for oxygen diffusion to bottom metal contact interface during 
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Ta2O5 deposition.   

Moreover, Ta2O5/Al2O3/Ta2O5 and Ta2O5/HfO2/Ta2O5 MIM capacitors [34] for 

MIM capacitors were recently investigated with the consideration of the excellent 

leakage current density of Al2O3 and HfO2 dielectric layers.  Furthermore, after NH3 

plasma treatment on the electrodes, both leakage current density and VCC can be 

significantly improved.  This is possible due to the elimination of parasitic capacitors 

which originated from the depletion or defects between top/bottom electrodes and 

dielectrics.  After NH3 plasma treatment, the capacitance density of 4 fF/μm2 and 

quadratic VCC of 16.9 ppm/V2 for Ta2O5/HfO2/Ta2O5 stacked MIM capacitor are 

demonstrated.  The reported leakage current density is midrange between the single 

layer of Ta2O5 and HfO2 MIM capacitors, ~1×10-7 A/cm2 at voltage of 3.3 V and 

temperature of 125 oC. 

A multiple laminated Al2O3/HfO2/Al2O3/HfO2/Al2O3 MIM capacitor with 

thicknesses of 1nm/5 nm/1 nm/5 nm/1 nm has been evaluated [2.51].  This dielectric 

stack aims to reduce the leakage current density via increasing the energy band-gap in 

the intermixed film after the addition of Al2O3 and improving the interface condition 

between electrodes and dielectrics.  Another laminated Al2O3/Pr2O3/Al2O3 MIM 

capacitor for RF applications has been developed for the consideration of high 

band-gap of Al2O3 and large dielectric permittivity of Pr2O3 (15-30) [2.52].  This 

dielectric stack demonstrates the capacitance density of 5.7 fF/μm2 and low leakage 

current density of 5×10-9 A/cm2 at 1V.  
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Another well engineered high-κ dielectric stack is HfO2/SiO2 dielectric stack 

[2.53].  It makes use of the “cancelling effect” of negative quadratic VCC of SiO2 

and the large positive quadratic VCC of HfO2 for RF MIM capacitors.  Such 

compensation effect produced a MIM capacitor with the quadratic VCC of 14 ppm/V2 

and the capacitance density of 6 fF/μm2.  This excellent result demonstrates the 

realization of low quadratic VCC with high capacitance density. The electrical 

characteristics of these reported high-κ dielectric stacks for MIM capacitors are 

summarized in Table 2.4. 

Table 2.4.  List of electrical characteristics of stacked high-κ MIM capacitors reported. 

 High-κ dielectric 

Top/bottom metal 

Cap. Density 

(fF/μm2) 

Leakage (A/cm2) Q.VCC  

α (ppm/V2) 

L.VCC    

β (ppm/V) 

TCC  

(ppm/oC) 

1 Ta2O5/Al2O3 [2.28] 

Cu/ Cu 

3 ~1×10-8@ 3V < 100 250 147 

2 Ta2O5/Al2O3 [2.50]  

Ta/ Ta 

9.2 ~1×10-7@ 3V 3580 2060 200 

3 Ta2O5/Al2O3 [2.50]  

Ta/ Ta 

4.4 ~1×10-8@ 1V 400 150 − 

4 Ta2O5/HfO2/Ta2O5 

[2.34] TiN/ TiN 

4 ~1×10-7@ 3.3V, 

125C 

16.9 5.2 − 

5 Al2O3/HfO2/Al2O3 

[2.51] TaN/ TaN 

12.8 ~3.2×10-8@ 

3.3V 

1990 

@1 MHz 

211 182 

6 Al2O3/HfO2/Al2O3 

[2.51] TaN/ TaN 

6 − 405 

@1 MHz 

-95 196 

7 Al2O3/HfO2/Al2O3 

[2.51] TaN/ TaN 

4 − 207 

@1 MHz 

-65 199 
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8 Al2O3/Pr2O3/Al2O3 

[2.52] Au/ TiN 

5.7 5×10-9@ 1V − − − 

9 HfO2/SiO2 [2.53] 

TaN/ TaN 

6 1×10-8@ 3.3V 14 − 54 

 

2.4.   Summary 

The single and stacked high-κ dielectric MIM capacitors have demonstrated 

much improvement in achieving high capacitance density, low leakage current density, 

and low voltage linearity.  However, there are still areas need to be explored, 

especially on capacitance density and the quality of the interface between dielectrics 

and electrode.  According to the requirements of ITRS 2007 [10], the capacitance 

density should be at least 5 and 7 fF/μm2 through the year of 2010 and 2013 

respectively and also keeping the quadratic VCC within the range of ±100 ppm/V2.  

The solutions have not been found yet due to the large positive quadratic VCC of 

high-κ dielectrics, especially at high capacitance density.  Although the stacking of 

HfO2 with thin SiO2 (having negative quadratic VCC) can obtain high capacitance 

density of up to 6 fF//μm2, the further improvement of higher capacitance density is 

limited by the large quadratic VCC of HfO2.  It is essential to explore other suitable 

high-κ dielectrics which have lower quadratic VCC as compared to that of HfO2 and 

high dielectric quality, especially at high capacitance density.  

Not only the capacitance density, but also most high-κ materials are generally 
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more ionic due to the nature of metal oxides and more highly coordinated as 

compared to SiO2 and Si3N4, the electrical characteristics are different from these 

amorphous dielectric films.  The electrical performance is regarded to be dependent 

on the quality of the dielectrics and the dielectric/electrode interface.  In addition, the 

high-κ dielectrics and dielectric stack are generally dispersive which leads to the 

frequency dependence (frequency dispersion) in VCC.  This dispersive behavior is 

believed related to the existence of bulk-dielectric traps near the interface.  Different 

traps might induce charges with different time constants and thus modulate capacitor 

charges at certain frequencies.  When the applied frequency is high, VCC would be 

low since the induced charges are unable to follow the fast AC signal.  Therefore, it 

is also essential to investigate the interface of the high-κ dielectric/electrode, 

especially the bottom electrode which would be exposed directly to dielectrics targets 

or the precursors during the dielectric deposition.  

Moreover, the leakage current density is related to the interface and 

bulk-dielectric quality.  The process temperature for MIM capacitors is limited by 

the temperature requirement of BEoL.  Therefore, other treatments, such as 

post-deposition annealing and low temperature treatment, are needed to improve the 

dielectric quality and to suppress the leakage current density.  
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CHAPTER  3 

SAMARIUM OXIDE (Sm2O3) HIGH-κ DIELECTRIC FOR 

HIGH PERFORMANCE MIM CAPACITORS 

 

 
3.1.   Introduction 

As discussed in Chapter 2, many high-κ dielectrics have been screened and 

investigated for MIM capacitors in the applications of RF/AMS ICs.  High 

capacitance density can be realized by reducing the thickness and/or increasing the 

permittivity (κ) of the MIM dielectric materials.  Moreover, some higher-κ 

dielectrics, such as TiO2 [3.1], can demonstrate much higher capacitance density.  

However, leakage current density and reliability issues still limit thickness scaling of 

the MIM dielectrics.  In addition, there are stringent requirements on the voltage 

coefficients of capacitance (VCC), including the quadratic VCC (α) and the linear 

VCC (β), for precision analog circuit applications. 

According to the ITRS 2007 [3.2], the requirement for the capacitance density 

would be 7 fF/µm2 by 2013 while the quadratic VCC should be kept within ±100 

ppm/V2.  The leakage current should be below 10-8 A/cm2 at room temperature and 

at maximum supply voltage VDD.  Although the capacitance density and leakage 

current density can be tailored with different high-κ dielectrics in different 

combinations, most of these high-κ dielectrics are found to show large positive 



Chapter 3: Sm2O3 Dielectric for High Performance MIM Capacitors 

36 
 

quadratic VCC.  This makes it difficult to achieve a high capacitance density while 

maintaining a quadratic VCC of less than ±100 ppm/V2 as the quadratic VCC 

usually increases with decreasing MIM dielectric thickness.  Therefore, it is 

necessary to explore new high-κ dielectrics with smaller quadratic VCC and low 

leakage current density for future high-κ dielectric MIM capacitors. 

Recently, lanthanoid oxides have been attracting people’s attentions for high-κ 

dielectric applications in CMOS technology due to their high permittivity (κ) ranging 

from 10 to 30.5 and large energy band-gap [3.3-3.21].  These advantages make the 

potential using of lanthanoid oxides with high capacitance density and low leakage 

current density for high-κ dielectric MIM capacitors.  Therefore, firstly, we have 

done a material screening by fabricating MIM capacitors with various lanthanoid 

oxides to explore the electrical and physical characteristics of lanthanoid oxides MIM 

capacitors in high precision applications.  Among them, for the first time, we 

demonstrate the use of samarium oxide (Sm2O3) for high-κ dielectric MIM capacitors 

with a smaller quadratic VCC at a given high capacitance density, as compared to 

other high-κ dielectrics.   

The MIM capacitors with a single Sm2O3 dielectric layer were fabricated and 

characterized in this chapter.  The electrical characteristics of Sm2O3 MIM capacitors 

with various Sm2O3 thicknesses (various capacitance densities) are investigated for 

the first time, including the relationship of quadratic VCC and capacitance density, the 

dependence of quadratic VCC on frequency and the leakage current density.  
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Moreover, the physical characteristics of Sm2O3 MIM capacitors is studied by using 

techniques such as Transmission Electron Microscopy (TEM), X-Ray Diffraction 

(XRD) and X-ray Photoelectron Spectroscopy (XPS), in which the dielectric 

permittivity, crystalline structure, et,al, are examined.   Furthermore, the effects of 

plasma treatments (PT) with O2 and/or N2 on the performance of MIM capacitors with 

Sm2O3 dielectric are investigated for the first time.  It will be shown that plasma 

treatment on Sm2O3 dielectric in either O2 or N2 ambient can effectively reduce both 

the quadratic and linear VCC.  The effects on leakage current density and hysteresis 

have been also evaluated. 

3.2.   Experiments 

MIM capacitors were fabricated on Si wafers covered with a 400 nm thick 

thermally-grown SiO2.  A TaN/Ta layer as bottom electrode with the thickness of 50 

nm/150 nm was deposited on the 400 nm thick SiO2 layer by reactive sputtering in an 

Argon/Nitrogen (Ar/N2) ambient.  To form MIM capacitors with a single Sm2O3 

dielectric, a Sm2O3 layer was directly deposited on the TaN bottom electrode by 

sputtering at room temperature in Ar ambient.  The thickness of the Sm2O3 layer was 

controlled by adjusting the sputtering time.  For the investigation of plasma 

treatment (PT) effects, plasma treatments were performed in N2 or O2 ambient by an 

Inductively Coupled Plasma (ICP) at different steps of the capacitor formation: after 

bottom electrode formation; after dielectric formation; or in both steps.  Following 
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that, Post- Deposition Annealing (PDA) at 400 °C for 120 s in an N2 ambient was then 

performed for all samples.  Finally, a 150 nm thick top TaN layer was sputtered and 

patterned to form the top electrode.   

Capacitance and leakage current were measured by using a HP4284A precision 

LCR meter and a HP4156A precision semiconductor parameter analyzer, respectively 

on 200×200 µm2 capacitors.  

3.3.  Properties of Sm2O3 High-κ Dielectric for the Applications of MIM 

Capacitors 

3.3.1.  Electrical Characteristics of Sm2O3 MIM Capacitors 

Fig. 3.1 (a) shows the normalized capacitance (ΔC/C0) versus DC voltage of 

Sm2O3 MIM capacitors with the capacitance density of 9.5, 7.9, and 5.8 fF/μm2, 

respectively.  The capacitance is measured by sweeping the voltage from -4 to +4 V 

with a 0.1 V step at the frequency of 100 kHz.  Note that these samples have not 

been performed any post deposition treatments except PDA.  The quadratic VCC (α) 

and linear VCC (β) are extracted from the experimental C-V curves by using the 

equation of C(V) = C0(αV2+βV+1), which we have mentioned in Chapter 2.  It is 

observed that both the quadratic VCC (α) and the linear VCC (β) decrease with 

decreasing the capacitance density.  A quadratic VCC of lower than 500 ppm/V2 

with a high capacitance density of near 8 fF/μm2 are demonstrated for MIM capacitors 

with a single Sm2O3 layer.   
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Figure 3.1. (a) Normalized capacitance (ΔC/C0) measured at 100 kHz for MIM capacitors 
with a single Sm2O3 dielectric layer with the capacitance density varied.  By fitting a 
second-order polynomial equation to the experimental curves, the quadratic VCC (α) and the 
linear VCC (β) are obtained.  (b) Summary of both quadratic VCC and linear VCC versus 
capacitance density. 
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The asymmetric experimental C-V curves are believed to be due to the different 

interfacial status at the interface of dielectric/bottom electrode and dielectric/top 

electrode, which have experienced different process, i.e., dielectric deposition at 

bottom electrode not at top electrode.  This also causes large linear VCC (β).  The 

relationship of the capacitance density versus both quadratic VCC and linear VCC of 

Sm2O3 MIM capacitors is summarized in Fig. 3.1 (b).   

The obtained quadratic VCCs of Sm2O3 MIM capacitors are comparable or less 

than those reported high-κ dielectric MIM capacitors [3.22-3.30].  Fig. 3.2 compares 

the values of quadratic VCC of MIM capacitors with a Sm2O3 dielectric layer 

obtained in this work with other reports for binary high-κ dielectric MIM capacitors 

measured at 100 kHz.   
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Figure 3.2.  The values of quadratic VCC extracted from MIM capacitors with a single 
Sm2O3 dielectric layer in this work are compared with data published in the literature. 
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For a given capacitance density, MIM capacitors with a Sm2O3 dielectric are 

found to have smaller positive quadratic VCC than those of most of the other high-κ 

dielectrics.  When compared with the extensively studied HfO2, Sm2O3 shows a 

smaller quadratic VCC at the same capacitance density in the region where the 

capacitance density is larger than 6.5 fF/μm2.  This makes Sm2O3 a potential 

dielectric candidate for MIM capacitors in precision analog circuit applications.   

Fig. 3.3 shows the dependence of leakage current density J on direct current 

bias voltages for Sm2O3 MIM capacitors with various capacitance densities at room 

temperature.  The leakage current densities at both +3.3 V and –3.3 V are under 10-6 

A/cm2.  The J-V curves are similar with the normalized C-V curves shown in Fig. 3.1 

(a).  As we have discussed before, the different interface quality causes asymmetric 

C-V curves and this also causes asymmetric J-V curves.  The different interface 

quality of Sm2O3/TaN electrodes is believed due to different deposition process, i.e., 

bottom electrode experiences dielectric deposition and an additional PDA process.  

The J-V curves show that at high bias region, the leakage current increases 

sensitively with increasing in the applied voltage.  Fig. 3.4 plot ln(J/E) versus E1/2 at 

different capacitance density for high positive bias.  It is shown that at each 

capacitance density, the ln(J/E) value increases linearly with the increasing of E1/2.  

The conduction process at high bias is likely dominated by Poole-Frenkel (P-F) 

emission.  It is believed that the P-F emission is due to field-enhanced thermal 

excitation of trapped electrons. 
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Figure 3.3.  J-V characteristics at room temperature of MIM capacitors with a single Sm2O3 
dielectric layer at the capacitance of 9.5, 7.9, and 5.7 fF/μm2, respectively.  The J-V curve 
becomes asymmetric at higher DC bias, indicating that the MIM capacitor may have 
physically asymmetric, i.e. different electrode-dielectric interface quality for the bottom and 
top interfaces. 

800 1000 1200 1400 1600

-29.5

-29.0

-28.5

-28.0

-27.5

-27.0

-26.5

Poole-
Fren

kel e
miss

ion

 

 

L
n 

(J
/E

)

E1/2 (V/cm)1/2

Sm2O3 MIM Capacitors

 9.5 fF/μm2

 7.9 fF/μm2

 5.8 fF/μm2

 

Figure 3.4.  Plot of ln(J/E) versus E1/2 of the capacitor with different capacitance density, 
together with the linear fitting for the leakage current at positive bias.  



Chapter 3: Sm2O3 Dielectric for High Performance MIM Capacitors 

43 
 

20 40 60 80 100 120

0

3000

6000

9000

 

 

Δ
C

/C
0 (p

pm
)

Temperature (oC)

91 ppm/oC

@ 100 KHz

Cap. Density ~ 7.9 fF/μm2

Linear Fit

 

Figure 3.5.  TCC characteristic of Sm2O3 MIM capacitors measured from 27 to 120 °C.  
The capacitance variation increases linearly with the increasing of the temperature. 

Furthermore, the characteristic of temperature coefficient of capacitance (TCC) 

with a capacitance density of around 7.9 fF/μm2 was studied with the temperature 

change from 27 to 120 °C, as shown in Fig. 3.5.  Low TCC characteristic of 91 

ppm/oC are comparable or even smaller to those reported [3.25, 3.31]. 

3.3.2.  Physical Characterization of Sm2O3 MIM Capacitors 

Fig. 3.6 shows a cross-sectional transmission electron microscopy (TEM) image 

of the MIM capacitor with a single Sm2O3 dielectric without any post deposition 

treatment except PDA.  This capacitor has a capacitance density of around 15.5 

fF/µm2 with a physical thickness of around 12.5 nm.   
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Figure 3.6.  The TEM image of the MIM capacitor with a single Sm2O3 layer. It should be 
noted that the Sm2O3 layer is poly-crystalline.  

The calculated dielectric permittivity of Sm2O3 is around 22, which is within the 

range of 10 to 30.5 as reported in the literature [3.11, 3.20 and 3.21].  The κ value of 

Sm2O3 is also comparable to that of the widely researched HfO2 dielectric (22~25) 

[3.32].   

The crystalline structure of the Sm2O3 dielectric has been investigated by using 

XRD, as shown in Fig. 3.7.  A thick Sm2O3 (80 nm) film was deposited directly on a 

200 nm thick TaN layer with as-deposited or annealing at the temperatures of 400 oC 

for 60 s before XRD analysis.  The Sm2O3 film for analysis is thicker than the 

typical used Sm2O3 film for MIM capacitors.   

5 nm Bottom Electrode (TaN) 

Top Electrode (TaN)

Sm2O3
 

 



Chapter 3: Sm2O3 Dielectric for High Performance MIM Capacitors 

45 
 

20 40 60 80

As Deposited

400 oC

TaN(220)

Sm
2O

3 (6
22

)

Sm
2O

3 (1
13

)
TaN(200)

 

 

In
te

ns
ity

 (a
. u

.)

2θ (Degree)

T
aN

(1
11

)

Sm
2O

3 (0
03

)

 
 

TaN Film

 

Figure 3.7.  X-Ray Diffraction (XRD) spectra of as-deposited Sm2O3 dielectric on TaN, as 
well as Sm2O3/TaN after being annealed at 400 ºC for 60 s.  XRD spectrum of an exposed 
TaN surface is also obtained.  As-deposited Sm2O3 on TaN is shown to be likely 
poly-crystalline.  

In the XRD result, it is shown that a bare TaN surface (prior to Sm2O3 deposition) 

is likely poly-crystalline.  The as-deposited Sm2O3 film formed on the TaN surface is 

also poly-crystalline.  In comparison with as-deposited film, the Sm2O3 peaks after 

being annealed at 400 ºC did not differ much, indicating the phase and composition 

were not affected by the temperature.  The result of poly-crystalline of Sm2O3 film 

after being annealed at 400 ºC is consistent with the observation from the TEM image 

with a thinner film. 
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3.4.  Performance Improvement of Sm2O3 MIM Capacitors by Using Plasma 

Treatment after Dielectric Formation 

Due to the thermal budget limitation for the back-end CMOS process, the post 

deposition annealing (PDA) temperature should be kept below 400 oC.  This is a 

limitation for forming high quality high-κ dielectrics with low leakage current density.  

In order to improve the quality of high-κ dielectrics, other post-deposition treatments 

with low thermal budget such as plasma treatment have been investigated [3.23, 3.33].  

Results indicate that plasma treatment is promising for further investigation.  It has 

also been demonstrated that Sm2O3 dielectric is an excellent candidate for high-κ 

MIM capacitors in precision analog circuit application.  In this work, the effects of 

Plasma Treatments (PT) with O2 and/or N2 on the performance of MIM capacitors 

with Sm2O3 dielectric are investigated.  Plasma treatment directly on Sm2O3 

dielectric in either O2 or N2 ambient can effectively reduce both the quadratic and 

linear VCC.  Furthermore, the leakage current density and hysteresis can be 

significantly improved. 

3.4.1. Voltage Linearity 

Fig. 3.8 shows the quadratic VCC versus capacitance density of Sm2O3 MIM 

capacitors with or without 2 minutes of PT after Sm2O3 dielectric formation.  

Effective quadratic VCC reduction can be obtained by using PT in either O2 or N2 

ambient, especially PT in N2 ambient.   
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Figure 3.8.  Quadratic VCC versus capacitance density of Sm2O3 MIM capacitors without or 
with plasma treatment (PT).  The inset shows the influence of PT duration on the quadratic 
VCC.  

For capacitors with high capacitance densities, the effect of post-dielectric 

plasma treatment on the quadratic VCC is compared in the inset of Fig. 3. 8.  By 

adjusting the duration of the post-dielectric Plasma Treatment in N2 ambient (PTN), 

an optimal quadratic VCC was obtained after a 5 minute treatment.  PTN led to a 

minor change in the capacitance density (from 15.5 fF/μm2 to 14.5 fF/μm2), but 

significantly improved the quadratic VCC from ~1800 ppm/V2 to 1100 ppm/V2.  

PTN after Sm2O3 deposition is effective for reducing quadratic VCC.  On the other 

hand, PT in O2 ambient after Sm2O3 deposition did no change the quadratic VCC 

appreciably.   
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Figure 3.9.  (a) Normalized C-V curves of Sm2O3 MIM capacitors with Plasma Treatment in 
N2 (PTN) after bottom electrode formation, PTN after dielectric formation, PTN in both steps, 
and with no PTN.  (b) Summary of the quadratic and linear VCC of Sm2O3 MIM capacitors 
after various PTN conditions.  The best VCC values are obtained by using PTN after 
dielectric formation.  
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Recent report showed that plasma treatment (PT) performed on lower electrode 

in O2 ambient, i.e. before dielectric formation, can improve both the quadratic VCC 

and leakage current density [3.33].  To investigate further, we examine the effects of 

PTN on Sm2O3 MIM capacitors by inserting the PTN process at various stages of the 

device fabrication: after bottom electrode formation, after dielectric formation, or 

after each of the two steps.  

The normalized C-V curves of Sm2O3 MIM capacitors with PTN inserted at 

various stages of the process flow are shown in Fig. 3.9 (a).  Note that there is a split 

in which PTN is performed only after dielectric formation, and a thick Sm2O3 layer 

(giving a capacitance density of ~7.5 fF/μm2) was used for all the capacitors so that 

the effect on the bottom electrode is minimized.  The VCC values were extracted 

from C-V data by a fit performed over a wide voltage range (-5 to +5 V).  The 

capacitance densities of Sm2O3 MIM capacitors obtained are 7.85, 7.7, 7.35, and 7.76 

fF/μm2 for the capacitors with Plasma Treatment in N2 (PTN) after bottom electrode 

formation, PTN after dielectric formation, and PTN after both bottom electrode 

formation and after dielectric formation, and with no PTN, respectively.   

Fig. 3.9 (b) summarizes both the quadratic and linear VCC obtained.  The 

quadratic VCC for a control capacitor without any PT is 498 ppm/V2, and this is 

reduced to 234 ppm/V2 with PTN performed after Sm2O3 deposition, and to 307 

ppm/V2 with PTN performed after bottom electrode as well as after Sm2O3 deposition. 

The linear VCC for a control capacitor without any plasma treatment is 742.3 ppm/V.  
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This is reduced to 172 ppm/V with PTN performed after Sm2O3 deposition, and to 

308 ppm/V with PTN performed after bottom electrode as well as Sm2O3 deposition.  

This demonstrates that PTN after Sm2O3 formation can effectively improve the 

quality of Sm2O3 MIM capacitors and thus the VCC.  The quadratic VCC of 

capacitors after PTN at both steps is slightly larger than that of capacitors with PTN 

after dielectric formation.  This is possibly due to interfacial layer formation at the 

dielectric/bottom electrode interface after 2-step PTN, which also caused the 

capacitance density to be reduced to 7.35 fF/μm2.  

3.4.2.  Leakage Current Density 

The typical J-V curves of Sm2O3 MIM capacitors with different PTN conditions 

are shown in Fig. 3.10 (a).  PTN generally reduces the leakage current density.  The 

leakage current density values measured at +3.3 V for the various device splits are 

compared in Fig. 3.10 (b).  As compared to capacitors without PTN, the leakage 

current density at +3.3 V is significantly reduced from 3.44×10-7 A/cm2 to 6.05×10-8, 

5.79×10-8, and 1.60 ×10-8 A/cm2 for the capacitors with PTN after bottom electrode 

formation, after dielectric formation, and in both steps, respectively.  Over one order 

leakage current density reduction is obtained by using PTN on both bottom electrode 

and dielectric  
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Figure 3.10.  (a) The J-V curves of Sm2O3 MIM capacitors after different PTN.  (b) 
Summary of the leakage current density J obtained at +3.3 V for MIM capacitors with Sm2O3 
dielectric.   
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The result of leakage current density reduction demonstrates the significant 

performance improvement of Sm2O3 MIM capacitors by introducing PTN on Sm2O3 

MIM capacitors.  PTN should be performed after bottom electrode formation and 

after dielectric formation to achieve the largest leakage reduction of about one order 

of magnitude.  

3.4.3.  Frequency Dependence 

The frequency dependence of the capacitance density and the quadratic VCC 

(α) are shown in Fig. 3.11 (a) & (b), respectively.  A small amount of capacitance 

reduction for Sm2O3 MIM capacitors with or without PTN is found over the entire 

frequency range from 500 Hz to 100 kHz.  The quadratic VCC decreases linearly 

with a logarithmic increase in frequency [Fig. 3.11 (b)].  At each frequency, the 

quadratic VCC of Sm2O3 MIM capacitors with PTN after dielectric deposition are 

smaller than that of with only PTN on bottom electrode and with no PTN.  The slope 

of the quadratic VCC (α) versus log(f) is approximately constant for MIM capacitors 

with various PTN conditions.  The frequency dependence of α can be explained as 

the change of relaxation time with different carrier mobility in the dielectric [3.34]. 
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Figure 3.11.  Frequency dispersion of the capacitance density (a) and the quadratic VCC (b) 
of Sm2O3 MIM capacitors with or without PTN.  The capacitance density shows small 
dependence on the frequency while the quadratic VCC has a linear relationship with the 
frequency.  
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3.4.4.  Hysteresis and TCC 

The capacitance hysteresis of Sm2O3 MIM capacitors with different PTN 

conditions is summarized in Fig 3.12.  CM+ and CM- are the minimum values of the 

capacitance obtained by sweeping the Direct Current (DC) voltage from +4 to -4 V 

and from -4 to +4 V, respectively.  It can be observed that low capacitance variation 

(<40 ppm) is obtained by performing PTN after dielectric formation.  
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Figure 3.12.  Hysteresis of the capacitance density of Sm2O3 MIM capacitors after various 
PTN conditions.  

Fig. 3.13 depicts the temperature dependence of Sm2O3 MIM capacitors with 

different PTN.  The extracted Temperature Coefficient of Capacitance (TCC) is 115, 

90, and 74 ppm/oC for the capacitors with PTN after bottom electrode formation, after 

dielectric formation, and in both steps, respectively.  The TCC values of the 
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capacitors with PTN after dielectric formation is comparable or less than that with no 

PTN (91 ppm//oC), indicating that PTN after dielectric formation does not deteriorate 

the TCC value. 
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Figure 3.13.  Temperature dependence of Sm2O3 MIM capacitors after various PTN 
conditions. 

We performed further material analysis using cross-sectional TEM and XPS on 

the Sm2O3 MIM capacitors, as shown in Fig. 3.5 and Fig. 3.14 (a) & (b). The TEM 

photograph of Sm2O3 MIM without PTN [Fig. 3.5] shows that there is no obvious 

interfacial layer at Sm2O3/bottom electrode interface, which means that the large 

quadratic VCC is probably not contributed by interfacial layer effects [3.35].  The 

effective reduction of the VCC, leakage current densities, and hysteresis of 

capacitance is believed to be due to the improvement of dielectric quality by using 

plasma treatment after dielectric formation.  
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Figure 3.14.  Bonding energy of O 1s (a) and Sm 3d5 (b) of Sm2O3 dielectric with or 
without PTN after Sm2O3 dielectric formation.   
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Fig. 14 (a) and (b) shows the O 1s and Sm 3d5 spectra of Sm2O3 after exposure 

to atmospheric air with or without PTN after dielectric formation.  The hydroxide 

formation, revealed by the peak of O 1s near 534 eV, is effectively suppressed by the 

introduction of PTN on the dielectric. Moreover, the bonding energy of Sm 3d5 

slightly shifts lower after PTN on the dielectric.  This is probably due to the lower 

bonding energy of N 1s (around 400 eV) as compared to that of O 1s (around 533 eV).  

The larger improvement in VCC of Sm2O3 MIM capacitors using PT in N2 ambient 

on dielectrics rather than using PT in O2 ambient is probably due to the smaller 

electronegativity of N (3.04) as compared to that of O (3.44).  The smaller difference 

in electronegativity between Sm (1.17) and N indicates a less polar bond between 

them which might have an influence on the VCC [3.36, 3.37]. 

3.5.  Summary 

MIM capacitors using Sm2O3 dielectric were first found to have lower 

quadratic VCC as compared to other high-κ dielectrics with the same capacitance 

density.  The electrical and physical characteristics of MIM capacitors with a single 

Sm2O3 dielectric were systematically investigated in this chapter. The excellent 

electrical characteristics of Sm2O3 MIM capacitors indicate that it is a promising 

candidate for the application of high-κ dielectric MIM capacitors.  Moreover, we 

have successfully demonstrated the performance improvement of plasma treatment on 

Sm2O3 MIM capacitors, including quadratic VCC, linear VCC, hysteresis and leakage 
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current density.  By performing PTN after Sm2O3 dielectric formation, the effective 

quadratic VCC and linear VCC can be reduced from 498 ppm/V2 to 234 ppm/V2 and 

from 742.3 ppm/V to 172 ppm/V, respectively.  In addition, more than one order of 

magnitude reduction in leakage current density at +3.3 V can be obtained by applying 

PTN at both steps.  These results indicate that PTN after dielectric formation is an 

effective way to improve the performance of high-κ dielectric MIM capacitors for 

high precision applications. 
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CHAPTER  4  

 

Sm2O3/SiO2 LAMINATED DIELECTRICS FOR MIM 

CAPACITORS IN PRECISION ANALOG CIRCUIT 

APPLICATIONS 

 

 

4.1.  Introduction 

Sm2O3 dielectric has already demonstrated excellent electrical characteristics, 

including small quadratic VCC and low leakage current density, as shown in Chapter 

2.  Plasma treatment on Sm2O3 dielectrics can obtain significant reduction of 

quadratic VCC, linear VCC, hysteresis and leakage current density.  However, the 

obtained capacitance density and corresponding quadratic VCC still cannot satisfy the 

specified requirements of MIM capacitors for precision analog circuit applications 

according to ITRS 2007 [4.1].  The requirement for the capacitance density should 

be 7 fF/µm2 by 2013, while the quadratic VCC (α) should be kept below 100 ppm/V2.  

Recently, MIM capacitors with HfO2/SiO2 stack have been studied [4.2].  The 

compensation or ‘cancelling effect’ in the stack of HfO2 (having positive α) and the 

thin SiO2 (having negative α) can achieve reduction of the effective α value.  

According to the theory of “cancelling effect”, the ratio of effective oxide thickness 
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(EOT) of each dielectric layer to the whole EOT of stacked dielectrics plays a 

significant role in determining the effective quadratic VCC value.  For a dual layer 

dielectric stack, i.e. laminate structure, the relationship between the α value and the 

thicknesses (or EOT) of the dielectrics is given by equation 4.1: 

 3 3
1 1 2 2α δ α δ α= + ,  

, 1, 2i
i

total

EOT i
EOT

δ = =
    .                      (4.1) 

EOTi is the EOT of the ith layer, and EOTtotal is the EOT of the entire dielectric 

stack.  The quadratic VCC (α) values of both dielectrics at each thickness are derived 

from the experimental data of MIM capacitors with a single high-κ layer or a single 

SiO2 layer. 

With “canceling effect”, HfO2/SiO2 MIM capacitors with capacitance density of 

around 6 fF/μm2 and α value of 14 ppm/V2 have been successfully demonstrated. 

[4.2]. However, further improvement is limited by the large positive α value of HfO2 

dielectrics.  There is a need for further material exploration.  MIM capacitors with 

Sm2O3 dielectric, especially those with PTN, are found to show smaller positive 

quadratic VCC as compared to those with HfO2 layer, as shown in Fig. 4.1.  The 

smaller quadratic VCC of MIM capacitors with Sm2O3 dielectric as compared to that 

with HfO2 dielectric implies that Sm2O3 is more suitable than HfO2 for exploitation of 

the “cancelling effect” using SiO2.  In this section, Sm2O3 dielectric is laminated 

with SiO2 dielectric of Physical Vapor Deposition (PVD) by sputtering or Plasma 
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Enhanced Chemical Vapor Deposition (PECVD) to modulate the effective quadratic 

VCC.  Various thickness combinations of Sm2O3 and SiO2 have been studied and 

analyzed.  
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Fig. 4.1. Quadratic VCC (α value) versus capacitance density of HfO2 and Sm2O3 (with or 
without PTN).  Sm2O3 MIM with PTN on Sm2O3 dielectrics can obtain much lower 
quadratic VCC.  

4.2.  Sm2O3/PVD SiO2 Laminated Dielectrics MIM Capacitors 

4.2.1.  Experiments  

Both PVD SiO2 and PVD SiO2/Sm2O3 MIM capacitors are fabricated on Si 

wafers covered with a 400 nm thick thermal SiO2.  A 200 nm thick TaN layer was 
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deposited by sputtering in Ar/N2 ambient as bottom electrode.  For PVD SiO2 MIM 

capacitors, the SiO2 layer was deposited at room temperature by sputtering at RF 

power in Ar ambient. After PVD SiO2 deposition, an optional plasma treatment in N2 

ambient (PTN) was performed to investigate the effect of PTN on PVD SiO2 MIM 

capacitors.  For PVD SiO2/Sm2O3 MIM capacitors, Sm2O3 layer was first deposited 

directly on bottom TaN electrode by sputtering in Ar ambient and followed by PVD 

SiO2 deposition.  After Sm2O3 and SiO2 dielectric deposition, a PTN was performed 

on the samples and followed by PDA at 400 oC for 60 ~ 120 s within N2 ambient.  

After that, a 100 nm thick TaN was deposited and patterned to form the top electrode.  

Fig. 4.2 shows the schematic of PVD SiO2/Sm2O3 MIM capacitors.  The thicknesses 

of SiO2 and Sm2O3 layers are adjusted by controlling the sputtering time. 

Bottom TaN/Ta (50nm/250nm)

Sm2O3 (5~9 nm)

SiO2 (2~3 nm)

Top TaN (100nm)

 

Figure 4.2.  Schematic of PVD SiO2/Sm2O3 MIM capacitors.  Note that Sm2O3 layer was 
deposited prior to SiO2 layer. 
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4.2.2.  Electrical Characteristics 

Fig 4.3 shows the typical C-V curves of PVD SiO2 MIM capacitors with 10 nm 

and 5 nm thick SiO2 measured at 100 kHz.  The quadratic VCC (α) and linear VCC 

(β) were extracted by fitting the C-V curves with voltage ranging of +5 to –5 V.  The 

quadratic VCC of PVD SiO2 MIM capacitors with 10 nm and 5 nm thick SiO2 shows 

negative value, which implies that it can be utilized to cancel the positive quadratic 

VCC of high-κ dielectric MIM capacitors.  Form 10 nm SiO2 MIM capacitors, the 

extracted effective quadratic VCC are -79 and -94 ppm/V2 for the capacitors with and 

with no PTN on SiO2, respectively.  

For 5 nm thick SiO2 MIM capacitors, the effective quadratic VCC can be 

reduced significantly from -296 to -399 ppm/V2 by performing PTN on SiO2 [Fig. 

4.3(b)].  It is noticed that after PTN on SiO2, the quadratic VCC of the capacitors 

with SiO2 thicknesses at 5 nm and 10 nm shows different direction change.  This is 

probably due to the asymmetric C-V curves of capacitors with no PTN.   After PTN 

on SiO2, the C-V curves of both of 5 nm and 10 nm SiO2 MIM capacitors become 

symmetric, especially for capacitors with 5 nm thick SiO2.   The linear VCC (β) can 

be significantly reduced after plasma treatment. 
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Figure 4.3.  Typical C-V curves of PVD SiO2 MIM capacitors with (a) 10 nm and (b) 5 nm 
sputtered SiO2.  PTN shows improvement on both quadratic VCC and linear VCC. 
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Fig. 4.4 shows the normalized C-V curves of Sm2O3/PVD SiO2 MIM capacitors 

with SiO2 thicknesses at 2 nm (a) and 3 nm (b), respectively.  The thicknesses of 

Sm2O3 layer are at 5, 7 and 9 nm by controlling the deposition time.  The quadratic 

VCC of Sm2O3/PVD SiO2 MIM capacitors are modulated with the corresponding 

change of Sm2O3 (or SiO2) thickness.   

We have summarized the capacitance density versus quadratic VCC extracted 

from the normalized C-V curves, as shown in Fig. 4.4 (c).  By decreasing the 

capacitance density, the quadratic VCC decrease slightly.  The Sm2O3/PVD SiO2 

MIM capacitors with SiO2 thickness at 3 nm can obtain quadratic VCC of 432 

ppm/V2 at 8 fF/μm2 as compared to that of 574 ppm/V2 of MIM capacitors with 2 nm 

thick SiO2 at same capacitance density.  The modulation of the effective quadratic 

VCC is the reason that the ratio of SiO2 thickness to the whole dielectric stack 

increases when increasing the SiO2 thickness.  Therefore, the negative quadratic 

VCC of SiO2 tunes the effective quadratic VCC of whole stack toward lower value. 

This result demonstrates the effective modulation of quadratic VCC by inserting a 

SiO2 layer.  Moreover, after PTN on dielectrics, the quadratic VCC can be tuned to 

more negative direction for the capacitors with 3 nm thick SiO2.  This is due to the 

reduction of the effective quadratic VCC of both Sm2O3 and PVD SiO2 after PTN on 

dielectrics. 
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(c) 

Figure 4.4.  Normalized C-V curves of Sm2O3/PVD SiO2 MIM capacitors with SiO2 
thicknesses at (a) 2 nm and (b) 3 nm.  (c) Summary of capacitance density versus quadratic 
VCC.  By increasing the thickness of SiO2 from 2 nm to 3 nm, the effective quadratic VCC 
is modulated from 545 to 432 ppm/V2 at the capacitance density at 8 fF/μm2. 

Fig 4.5 (a) and (b) summarize the electrical characteristics of the leakage current 

density (@+5 V) and breakdown voltage versus capacitance density, respectively.  

The leakage current densities are around 2×10-7 A/cm2 at +3.3 V, which is 

comparable to that of MIM capacitors with a single Sm2O3 layer shown in Chapter 2. 

Plasma treatment shows no much improvement in the leakage current density and 

breakdown voltage.  At each capacitance density, the leakage current density shows 

no much change.  This might be the trap assistant tunneling in PVD SiO2 as the 

quality of sputter SiO2 is not good. 
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Figure 4.5.  Summary of the electrical characteristics of (a) leakage current densities at +5 V 
and (b) breakdown voltage versus capacitance density. 
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In this work, MIM capacitors with Sm2O3/PVD SiO2 laminated structure have 

been fabricated and characterized.  The modulation of quadratic VCC of MIM 

capacitors by inserting a SiO2 layer has been demonstrated.  However, the 

modulation effect of PVD SiO2 to the whole dielectric stack is not enough to satisfy 

the requirement of ITRS.  Moreover, the quality of PVD SiO2 is poor, which limits 

the performance of Sm2O3/PVD SiO2 MIM capacitors.  Therefore, a high quality 

SiO2 with a larger quadratic VCC is needed. 

4.3.  Sm2O3/PECVD SiO2 Laminated Dielectrics MIM Capacitors 

The quality of SiO2 layer is essential to determine the performance of MIM 

capacitors with Sm2O3/SiO2 laminated dielectrics.  Therefore, in this section, plasma 

enhanced chemical vapor deposition (PECVD) SiO2 stacked with sputtered Sm2O3 

high-κ dielectric for MIM capacitors was fabricated and characterized.  The 

deposition temperature of PECVD SiO2 is around 350oC, which is under the 

temperature limitation of BEoL.  As a result, at given quadratic VCC, 

Sm2O3/PECVD SiO2 MIM capacitors with superior capacitance densities are 

successful demonstrated, in comparison to the HfO2/SiO2 stack. 

4.3.1.  Experiments 

PECVD SiO2 was deposited directly on 200 nm thick TaN electrodes.  For 

Sm2O3/PECVD SiO2 MIM capacitors, PECVD SiO2 was deposited with thickness 
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varying from 3 to 7 nm, and Sm2O3 was then deposited on PECVD SiO2 with 

thicknesses varying form 6 nm to 10 nm.  After dielectric deposition, a plasma 

treatment in N2 ambient (PTN) was carried out.  Post deposition annealing (PDA) at 

400 °C for 120 s within N2 ambient was then performed for all samples.  Following 

that, a 100 nm thick top TaN layer was sputtered and patterned using lithography. 

4.3.2.  Electrical Characteristics of PECVD SiO2 MIM Capacitors 

Fig 4.6 (a) shows the C-V curves of PECVD SiO2 MIM capacitors with a 

capacitance density of around 10 fF/μm2.  A large negative value of the quadratic 

VCC (~ - 2775 ppm/V2) is obtained.  This is much larger than those of PVD SiO2 

MIM capacitors.  The large negative quadratic indicates that it is promising to be 

used to cancel the large quadratic VCC of Sm2O3 dielectrics.  Moreover, PECVD 

SiO2 MIM capacitors shows better asymmetric C-V curve as compared to PVD SiO2 

MIM capacitors and can be fitted well by using polynomial fitting.  Fig 4.6 (b) 

summarizes both quadratic VCC (α) and linear VCC (β) versus capacitance density of 

the MIM capacitors with a single PECVD SiO2 layer.  The PECVD SiO2 MIM 

capacitors with a capacitance density of 0 fF/μm2 is assumed to have α and β with 

zero values.  Both of the quadratic VCC and linear VCC are changed to more 

negative value by increasing the capacitance density. 
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Figure 4.6. (a) C-V curve of MIM capacitors with a single PECVD SiO2 layer.  (b) 
Summary of both quadratic and linear VCC versus the capacitance density. 
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According to the equation 4.1, the effective quadratic VCC (α) of the whole 

dielectric stack is determined by the thickness ratio of each dielectric to the whole 

stack and their corresponding α values.  A simulation is first carried out to determine 

the relationship between the effective quadratic VCC (α) and the stacked dielectric 

thicknesses.  Fig. 4.7 shows the relation between the quadratic VCC of a 

Sm2O3/SiO2 stack and the thicknesses of each layer.  
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Figure 4.7.  Simulated α versus SiO2 thickness plot for different Sm2O3 thicknesses from 3 
to 10 nm.  The value of α should preferably be within the range of ±100 ppm/V2, as 
indicated by the horizontal dashed lines.  The quadratic VCC is sensitive to the thicknesses 
of both SiO2 and Sm2O3. 

The quadratic VCC (α) values of both dielectrics at each thickness are derived 

from data that obtained from MIM capacitors with a single Sm2O3 layer or a single 

PECVD SiO2 layer.  The region between the two dashed lines is where quadratic 
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VCC is within ±100 ppm/V2.  For a thinner Sm2O3 thickness, a more precise 

thickness control for SiO2 is needed.  It is shown that by controlling the Sm2O3 

thickness in the range of 6 to 10 nm, the quadratic VCC can be modulated in the range 

of ±100 ppm/V2.  The simulation, nevertheless, ignores the process and structural 

differences between MIM capacitors with single layer and laminate dielectrics.  

4.3.3.  Electrical Characteristics of Sm2O3/PECVD SiO2 MIM Capacitors 

The split table for MIM capacitors with Sm2O3/PECVD SiO2 laminated 

dielectrics is shown in Table 4.1.  The thickness of PECVD SiO2 and Sm2O3 is 

controlled by adjusting the deposition time.  

Table 4.1.  Split table for MIM capacitors with Sm2O3/SiO2 laminate dielectric. 

SiO2 Thickness  

Sm2O3 Thickness (PTN on Sm2O3) 

6.5 nm 7.5 nm 8.5 nm 10 nm 

3.0 nm √ √ √ √ 

3.5 nm √ √ √ √ 

4.0 nm √ √ √ √ 

5.0 nm √ √ √ √ 

7.0 nm √ √ √ √ 
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Fig. 4.8 depicts the TEM image of a Sm2O3/SiO2 stack with their thicknesses at 

7.5 nm/3.5 nm.  The structure of TaN/Sm2O3/SiO2/TaN MIM stack is successfully 

demonstrated.  

Sm2O3 
7.5  nm

SiO2 3.5 nm

Bottom Electrode (TaN)

Top Electrode (TaN)

 

Figure 4.8.  TEM image of Sm2O3/PECVD SiO2 MIM capacitor. 

Fig.4.9 shows the extracted effective oxide thickness (EOT) of Sm2O3/SiO2 MIM 

capacitors versus the thickness of PECVD SiO2.  A linear relationship of the 

thickness of SiO2 with EOT is observed, indicating that the physical thickness of 

deposited SiO2 is well controlled. 
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Figure 4.9.  EOT versus SiO2 thickness of Sm2O3/SiO2 MIM capacitors with the Sm2O3 
thickness at 6, 7.5, 8.5 and 10 nm, respectively. 

Fig.4.10 shows the normalized C-V curves of Sm2O3/PECVD SiO2 MIM 

capacitors with Sm2O3 thickness at 7.5 nm and SiO2 thickness varying from 3 nm to 7 

nm.  The dark lines are C-V curves of Sm2O3 and SiO2 MIM capacitors with 

comparable capacitance densities.  Increasing the SiO2 thickness can effectively 

modulate the effective quadratic VCC from positive to negative values.  The 

quadratic VCC is effectively modulated with the introduction of SiO2 under-layer.  

The experimental C-V curves with SiO2 thickness varying from 3.5 nm to 5 nm are 

modulated in the region where their corresponding α values are within ±100 ppm/V2.  

It can be observed that for larger SiO2 thicknesses used, i.e., 5 nm and 7 nm thick 

SiO2, the quadratic VCC actually turns negative.  This is due to the large thickness 

ratio of SiO2 to the whole dielectric stack. 
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Figure 4.10.  Normalized C-V curves of Sm2O3/SiO2 MIM capacitors with SiO2 thickness 
varying from 3, 3.5, 4, 5, to 7 nm, and Sm2O3 thicknesses being fixed at 7.5 nm.  Sm2O3 and 
SiO2 MIM with comparable capacitance densities are also included.  The effective quadratic 
VCC (α value) is modulated from positive to negative values by increasing SiO2 thickness. 

Fig. 4.11(a) summarizes the obtained quadratic VCC (α) of Sm2O3/SiO2 

dielectric stacks versus varying SiO2 thickness (from 3 nm to 7 nm) at different 

Sm2O3 thicknesses (6.5 nm, 7.5 nm, 8.5 and 10 nm).  For each Sm2O3 thickness, the 

capacitance density of Sm2O3/SiO2 MIM capacitors decreases with increasing SiO2 

thickness.  Consequently, the quadratic VCC (α) of Sm2O3/SiO2 MIM capacitors are 

effectively modulated from positive to negative values because of the increasing 

thickness (or EOT) ratio of SiO2 layer to Sm2O3/SiO2 dielectric stacks, as shown in 

Fig. 4.11(b).  This result is similar to the aforementioned simulation result shown in 

Fig. 4.7.   
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Figure 4.11. (a) Quadratic VCC versus capacitance density and (b) quadratic VCC versus 
SiO2 thickness (3 to 7 nm) for Sm2O3 thicknesses being varied (6.5, 7.5, 8.5, and 10 nm).  
Inset of (b) shows linear VCC versus SiO2 thickness with varying the thickness of SiO2 and 
Sm2O3. The linear VCC can be modulated to near zero by increasing the thickness of SiO2. 
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High capacitance densities of above 7.3 fF/μm2 and quadratic VCC within ±100 

ppm/V2 are successfully demonstrated with Sm2O3/SiO2 thickness of 7.5 nm/4 nm, 

6.5 nm/4 nm and 6.5 nm/3.5 nm, respectively.  Moreover, from the change of α value 

with capacitance density, it is possible to achieve high capacitance density of over 8 

fF/μm2 and α of near zero ppm/V2 by optimizing the ratio of SiO2 thickness to whole 

thickness of the dielectric stack.  The above experimental results satisfy the 

requirements of MIM capacitors for precision analog circuit applications until year 

2013 [4.1].  Furthermore, the modulation of linear VCC (β) due to a varying SiO2 

thickness in a Sm2O3/SiO2 dielectric stack is summarized in the inset of Fig. 4.11 (b).  

It is shown that the linear VCC can be also modulated by tuning the thickness of SiO2.  

These results indicate the effective modulation of both quadratic and linear VCC of 

Sm2O3/SiO2 MIM capacitors by inserting a thin PECVD SiO2 layer.  

Fig. 4.12 shows the frequency dispersion of the capacitance and the loss tangent 

of Sm2O3/SiO2 MIM capacitors, with Sm2O3 being fixed at 7.5 nm and with SiO2 

thicknesses varying from 3 to 7 nm.  Small capacitance variation is observed for 

these dielectric stacks.  The loss tangent obtained at various frequencies is 

comparable to those reported [4.3, 4.4]. 
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Figure 4.12.  Frequency dispersion of the capacitance density and loss tangent of 
Sm2O3/SiO2 MIM capacitors, with Sm2O3 being fixed at 7.5 nm while varying SiO2 thickness 
from 3 to 7 nm. 

Fig. 4.13 summarizes the leakage current densities of the capacitors with the 

Sm2O3 thickness (6.5, 7.5, 8.5 and 10 nm) and the SiO2 thickness (3 to 7 nm) being 

varied.  The typical J-V curves of the laminate MIM capacitors with three different 

thickness combinations are shown in the inset of Fig. 4.13.  The leakage current 

density at +3.3 V are 1.86×10-7, 1.03×10-7, and 6.48×10-8 A/cm2, respectively, for the 

splits with Sm2O3/SiO2 thicknesses of 8.5 nm/3.5 nm, 6.5 nm/4.0 nm, and 8.5 nm/4.0 

nm.  Leakage current densities can be maintained at around 1.0× 10-7 A/cm2 at +3.3 

V (room temperature) or even less.  Furthermore, the breakdown field is about 6 

MV/cm for the capacitors with SiO2 thickness at 4 nm and Sm2O3 thickness at 6.5, 7.5 

and 8.5 nm, as illustrated in the cumulative probability of breakdown field shown in 

Fig. 4.14.  These results indicate the high quality of Sm2O3/SiO2 dielectric stacks. 
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Figure 4.13.  Summary of the leakage current densities of Sm2O3/SiO2 MIM capacitors with 
various combinations of Sm2O3 (6.5, 7.5, 8.5, and 10 nm) and SiO2 thicknesses.  Inset shows 
the typical J-V curves 

5.5 6.0 6.5 7.0

0

20

40

60

80

100

6.5 nm
Sm2O3

 
 

          7.5 nm
           Sm2O3

         8.5 nm
          Sm2O3

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Breakdown Field (V)

4 nm SiO2

 

Figure 4.14.  Cumulative probability of breakdown field of Sm2O3 MIM capacitors. 
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The temperature dependence of the J-V curves is shown in Fig. 4. 15.  The J-V 

curves for the Sm2O3/SiO2 laminate capacitors with Sm2O3 at 8.5 nm and SiO2 at 3.5 

nm are measured from room temperature to 120 °C. The asymmetric J-V 

characteristic of the capacitors is found for all temperatures.  This is due to the 

asymmetric dielectric stacks and the different dielectric-electrode band offsets on the 

top and bottom electrodes [4.5].  The electron barrier between TaN and Sm2O3 is 

smaller than that at SiO2/TaN interface.  More of the electric field is dropped across 

the SiO2 layer due to the differences in κ values and thicknesses.  
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Figure 4.15.  J-V curves of Sm2O3/SiO2 capacitors with an 8.5 nm thick Sm2O3 and a 3.5 nm 
thick SiO2 measured from 27 to 120 °C. 
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4.4.  Summary 

In this chapter, the MIM capacitors of Sm2O3 stacked with PVD and PECVD 

SiO2 were investigated.  Both of PVD and PECVD SiO2 show negative quadratic 

VCC.  Due to the small negative quadratic VCC of PVD SiO2, the modulation of the 

effective quadratic VCC is not enough to meet the requirement of ITRS.  On the 

contrary, by using PECVD SiO2, we successfully demonstrate the stacked Sm2O3/ 

SiO2 MIM capacitors with high capacitance densities (over 7.3 fF/cm2), low quadratic 

VCCs (~-50 ppm/V2), and low leakage current densities at +3.3 V (1×10-7 A/cm2) by 

using the “cancelling effect” of SiO2 and Sm2O3 dielectrics.  Such “cancelling 

effect” of SiO2 and Sm2O3 dielectrics can be further optimized to obtain higher 

capacitance density and near zero quadratic VCC.  The characteristics of reported 

high capacitance density and low quadratic VCC satisfy the requirements of MIM 

capacitors in precision analog circuit applications till year 2013 according to ITRS 

2007.  
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CHAPTER  5 

INFLUENCE OF METAL ELECTRODES ON THE 

PERFORMANCE OF Sm2O3 MIM CAPACITORS 

 

 

5.1.  Introduction 

MIM capacitors have been demonstrated high capacitance density by employing 

high-κ dielectrics [5.1-5.18].  The electrical characteristics of high-κ dielectrics for 

MIM capacitors in precision circuit applications have been reviewed in Chapter 2.  

By introducing other elements into binary metal oxides to form ternary or even 

fourfold metal oxides, the leakage current density and voltage linearity can be 

improved at a certain extent.  Furthermore, the stacking of high-κ dielectrics with 

other dielectrics, especially with a thin SiO2 layer which has a large negative 

quadratic VCC, can obtain significant reduction of quadratic VCC and also keep low 

leakage current density [5.12, 5.13].  

These researches have been performed mainly on bulk dielectrics themselves.  

However, these reported high-κ MIM capacitors were fabricated on various metal 

electrodes, such as TiN [5.14, 5.15], TaN [5.11-5.13], Cu [5.16], and Pt [5.18].  

Different electrical characteristics of the capacitors, including voltage linearity and 

leakage current density, have been reported by using different metal electrodes.  
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Recently, it is shown that by using a high work-function metal (Ni) to replace a low 

work-function metal (Al) as the top electrode can significantly improve the leakage 

current density [5.10].  These results indicate that the metal electrodes might 

influence significantly the performance of high-κ dielectric MIM capacitors.  

Therefore, it is necessary to investigate systematically the effect of different metal 

electrodes on high-κ MIM capacitors.  In this chapter, Sm2O3 MIM capacitors with a 

series of metal electrodes, ranging from high work-function metals (Ni: 5.2 eV, Pt: 5.5 

eV) [5.19] to low work-function metals (Al: 4.1 eV, HfN: 4.3 eV), have been 

fabricated and characterized.  The results of electrical characteristics, including 

voltage linearity, leakage current density, temperature dependence of the capacitance, 

and hysteresis of the capacitance have been compared and analyzed with the 

capacitors with TaN electrodes.  

5.2.  Experiments  

Sm2O3 MIM capacitors were fabricated on Si wafers covered with a 400 nm 

thick thermally-grown SiO2.  Various metal electrodes, such as Al, HfN, TaN, Ni, 

and Pt, with the thickness of 50, 150, 150, 50, and 50 nm were deposited by reactive 

sputtering in an Ar ambient (Al, Ni, and Pt) or Ar/N2 ambient as bottom electrodes 

(HfN, TaN), respectively.  For Al, Ni and Pt metals, a 150 nm TaN layer was 

deposited on the 400 nm thick SiO2 layer as a buffer layer before metal deposition.  

After bottom electrode formation, a single Sm2O3 layer was directly deposited on the 

bottom electrodes by sputtering at room temperature in Ar ambient.  The thickness of 
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the Sm2O3 layer was controlled by adjusting the sputtering time.  Following that, 

Post-Deposition Annealing (PDA) at 400 °C for 120 s in an N2 ambient was 

performed for all samples.  After dielectric formation, corresponding metal 

electrodes (Al, HfN, TaN, and Ni,) were deposited on Sm2O3 dielectrics as top 

electrodes.  For the capacitors with Al and Ni electrodes, a 100 nm TaN layer was 

deposited after Al and Ni deposition.  For the capacitors with a Pt bottom electrode, 

a 150 nm thick TaN layer was sputtered as the top electrode due to the ease of etching 

TaN for electrode definition.  The top electrodes for Al, HfN, and TaN were defined 

by lithography and dry-etching.  For the capacitors with a Ni electrode, the top 

electrode was defined by lithography and wet-etched by using diluted HNO3 (5%). 

5.3.  Properties of Sm2O3 MIM Capacitors with Different Metal Electrodes 

5.3.1.  Sm2O3 MIM Capacitors with High Work-Function Metal Electrodes 

Fig 5.1 shows the normalized C-V curves of Sm2O3 MIM capacitors with metal 

electrodes of TaN, Ni and Pt respectively.  It is observed that the capacitor with Pt 

bottom electrode has smaller capacitance variations with the voltage changing, as 

compared to those with TaN and Ni electrodes.  Moreover, the capacitor with Pt 

bottom electrode shows more symmetric C-V curves, indicating less interfacial layer 

at the interface of dielectric/bottom electrode.  
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Figure 5.1.  Normalized C-V curves of Sm2O3 MIM capacitors with TaN, Ni and Pt 
electrodes, respectively. 

Fig 5.2 (a) & (b) compares the quadratic and linear VCC of Sm2O3 MIM 

capacitors with Ni and Pt electrodes and that with a TaN electrode.  Low quadratic 

VCC values of 280 and 553 ppm/V2 of the capacitors by using Pt as bottom electrodes 

are obtained, for the capacitance densities of 7.4 and 9.9 fF/μm2 respectively.  The 

obtained quadratic VCC is smaller than those of 477 and 586 ppm/V2 for the 

capacitors by using TaN and Ni electrodes with the capacitance densities of 7.9 and 

9.25 fF/μm2, respectively.  The result of quadratic VCC reduction is similar to [5.10], 

which shows that the reduction of the quadratic VCC from 953 to 447 ppm/V2 by 

using Ni to replace Al as top electrodes.  Moreover, the linear VCC can be also 

reduced by using Pt electrodes [Fig. 5.2 (b)].  This is probably due to the suppression 

of interface react during dielectric deposition and PDA. 
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Figure 5.2.  Summary of quadratic VCC (a) and linear VCC (b) of Sm2O3 with Ni, Pt and 
TaN bottom electrode.  Both the quadratic and linear VCC can be reduced by using Pt 
electrodes. 
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The typical J-V characteristics of the capacitors by using TaN, Ni and Pt 

electrodes are plotted in Fig 5.3 (a).  A significant reduction of the leakage current 

density is observed by using Pt metal electrodes, in comparison with those by using 

TaN and Ni electrodes.  More than two orders of magnitude reduction in leakage 

current density is obtained by using Pt electrodes, especially at positive bias (bottom 

injection from Pt electrode).  This result is similar to [5.10].  We believe that it is 

due to the larger conduction band offset of Pt with Sm2O3 and better interface of 

dielectric/Pt bottom electrode.  The leakage at +3.3 V versus capacitance density is 

summarized in Fig. 5.3 (b).  The obtained leakage current density at +3.3 V of the 

capacitors with Pt bottom electrode is around 7×10-9 A/cm2, which satisfy the 

requirement of leakage current density according to ITRS 2007 [5.20].  
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Figure 5.3.  (a) J-V curves of Sm2O3 MIM capacitors with TaN, Ni, and Pt electrodes.  
Significantly leakage reduction of the capacitor by using Pt electrode can be obtained. (b) 
Summary of leakage at +3.3 V versus capacitance density.   

Note that the capacitor with a Ni electrode exhibits high leakage current density.  

It is probably due to the inter-diffusion of Ni and Sm2O3 during post-deposition 

annealing (400 oC) and thus deteriorates the quality of dielectrics.  To investigate 

further, we have done Secondary Ion Mass Spectrometry (SIMS) analysis and Energy 

Dispersive X-ray analysis (EDX) on this MIM structure, as shown in Fig 5.4 (a) and 

(b), respectively.  The SIMS depth profile of TaN/Ni/Sm2O3/Ni/TaN structures 

shows a slightly diffusion of Sm and Ni at the bottom electrode.   Furthermore, the 

EDX results illustrate the presence of both Ni and Sm elements at (or near) the 

interface of Sm2O3/bottom Ni electrode.  The aforementioned results demonstrate 

the inter-diffusion of Ni and Sm elements at the interface of bottom electrode, and this 

is probably the reason of high leakage current density. 
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Figure 5.4.  (a) SIMS depth profile of the Sm2O3 capacitor with TaN/Ni/Sm2O3/Ni/TaN 
structure.  (b) EDX results of Ni/Sm2O3/Ni structures.  The material study shows the 
inter-diffusion of Ni and Sm elements. 
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The hysteresis of the capacitance with different metal electrodes is summarized 

in Fig 5.5.  CM+ and CM- are the minimum values of the capacitance obtained by 

sweeping the DC voltage from +3 to -3 V and from -3 to +3 V, respectively.  It can 

be observed that lower capacitance variation (~40 ppm) is obtained by using Pt and Ni 

metal electrodes, in comparison to that with a TaN electrode (117 ppm).    
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Figure 5.5.  Comparison of the hysteresis of the capacitance density of Sm2O3 MIM 
capacitors with TaN, Ni and Pt electrodes, respectively.  

The Sm2O3 MIM capacitors with Pt electrodes have been demonstrated excellent 

electrical characteristics, including small voltage linearity, low leakage current density, 

and small hysteresis of the capacitance, as compared to those with Ni and TaN 

electrodes.  It is necessary to investigate the influence of Pt electrodes on the TCC 

characteristics.  Fig. 5.6 compares the temperature dependence of the capacitance of 
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Sm2O3 MIM capacitors with TaN, Ni and Pt electrodes.  The capacitance was 

measured at the frequency of 100 kHz with the temperature up to 120 oC.  The 

extracted TCC of the capacitors with a Pt electrode is 49 ppm/oC, which are much 

smaller than that of 94 ppm/oC with a TaN electrode and 220 ppm/ oC with a Ni 

electrode, indicating that Pt electrode can significantly improve the TCC 

characteristics.  
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Figure 5.6.  Comparison of the temperature dependence of the capacitance of Sm2O3 MIM 
capacitors with TaN, Ni and Pt electrodes, respectively.  

The aforementioned results show that by employing Pt as bottom electrodes, the 

electrical characteristics can be significantly improved, including voltage linearity, 

leakage current density, TCC and hysteresis of capacitance.  These improvements 

might be due to the high conduction band offset of dielectric/electrode and robust 

interface of dielectric/electrode as Pt is an inert metal electrode. 
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5.3.2.  Sm2O3 MIM Capacitors with Low Work-Function Metal Electrodes 

  Fig 5.7 shows the normalized C-V curves of Sm2O3 MIM capacitors with Al, 

HfN and TaN electrodes.  A high capacitance variation with the voltage of the 

capacitors with Al electrode is observed, as compared to that with a TaN electrode.  
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Figure 5.7.  Normalized C-V curves of Sm2O3 MIM capacitors with Al, HfN, and TaN, 
electrodes, respectively. 

The extracted quadratic VCC and linear VCC of the capacitors with Al, HfN, and 

TaN electrodes are summarized in Fig 5.8 (a) and (b), respectively.  The capacitor 

with an Al electrode shows large quadratic VCC (1099 ppm/V2), as compared to that 

with a TaN electrode (477 ppm/V2 at 7.9 fF/μm2), indicating that Al is not suitable to 

be the MIM electrodes.  The linear VCC of the capacitors with HfN and TaN 

electrodes are larger than that with Al electrode.  This might be due to the interfacial 

layer at the dielectric/bottom electrode. 
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Figure 5.8.  Summary of quadratic VCC (a) and linear VCC (b) of Sm2O3 with Al, HfN and 
TaN bottom electrodes, respectively.  
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For the capacitors with an HfN electrode, the capacitance density is pretty low 

(~6 fF/μm2), as compared to that with a TaN electrode (7.9 fF/μm2).  Note that the 

dielectric deposition time for the capacitors with HfN and TaN electrodes are the same.  

The dramatic reduction of the capacitance density implies that the interface of 

dielectric/electrode might suffer significant reaction during dielectric deposition and 

post-deposition annealing.  To investigate the interface of dielectric/HfN electrode, 

we have done secondary ion mass spectrometry (SIMS) analysis on this MIM 

structure, as shown in Fig 5.9.  The SIMS depth profile shows a smaller gradient of 

Hf elements at the right side (bottom HfN electrode) as compared to that at left side 

(top HfN electrode).  This result imply that the interface reaction, i.e., Hf diffusion 

into Sm2O3 (oxidation of bottom HfN), occurs at the bottom HfN electrode during 

post deposition annealing.  

To investigate further the interface of the dielectric/HfN electrode, we have also 

done TEM and EDX analysis on it, as shown in Fig 5.10 (a) and (b).  From the TEM 

image, a 5 nm thick interfacial layer at the Sm2O3 dielectric/bottom HfN electrode can 

be clearly observed.  This result is different from the TEM image of the Sm2O3 

capacitor with a TaN electrode [Fig 3.6].  This interfacial layer is Hf-riched dielectric, 

i.e., Hf-Sm-O, as illustrated in Fig 5. 10 (b), indicating that the bottom HfN electrode 

is significantly oxidized during dielectric deposition and post deposition annealing.  

This interfacial layer is believed to result in the significant reduction of the 

capacitance density. 
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Figure 5.9.  SIMS depth profile of the Sm2O3 capacitor with HfN electrodes. 
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Figure 5.10.  (a) TEM image and (b) EDX analysis of HfN/Sm2O3/HfN MIM capacitor.   
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Figure 5.11.  (a) J-V curves of Sm2O3 MIM capacitors with Al, HfN, and TaN electrodes.  
(b) Summary of leakage @ +3.3 V versus capacitance density.  The capacitor with an HfN 
electrode shows a smaller leakage current density.  
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The J-V characteristics of the capacitors with Al, HfN, and TaN electrodes are 

plotted in Fig 5.11 (a).  The leakage current density at +3.3 V versus capacitance 

density is summarized in Fig 5.11 (b).  The capacitor with an Al electrode shows 

larger leakage current density, as compared to that with a TaN electrode.  On the 

contrary, the capacitor with an HfN electrode shows smaller leakage current density.  

We believe that this is because that the interface of dielectric/HfN is better than others, 

i.e., HfON might be better than TaON as Ta2O5 normally exhibit high leakage current 

density [5.16, 5.21] as compared to HfO2. 
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Figure 5.12.  Comparison of the hysteresis of the capacitance density of Sm2O3 MIM 
capacitors with Al, HfN and TaN electrodes.  

Fig 5.12 shows the hysteresis of the capacitance with Al, HfN, and TaN metal 

electrodes.  The capacitors with Al and HfN metal electrodes show much large 
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capacitance variation (~386 ppm for HfN and 172 ppm for Al).  The large hysteresis 

of the capacitors with an HfN electrode might be due to the traps in the interfacial 

layer at the dielectric/bottom HfN elelctrode. 

Fig 5.13 compares the TCC characteristics of the capacitors with Al and TaN 

metal electrodes.  Note that the data of the capacitors with an HfN electrode is not 

included.  This is due to the influence of the interfacial layer at dielectric/bottom 

HfN electrode.  When increasing the temperature, the bottom electrode become 

unstable and thus makes it hard to measure the capacitance.  The extracted TCC 

characteristic of the capacitor with Al electrode is around 196 ppm/oC, which is larger 

than that with TaN electrode, indicating that the Al electrode can be easier influenced 

by the temperature.  
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Figure 5.13.  Comparison of the temperature dependence of the capacitance of Sm2O3 MIM 
capacitors with Al and TaN electrodes, respectively.  
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In short, the electrodes with low work-function show negative effects on the 

performance of Sm2O3 MIM capacitor, as compared to those with high work-function 

electrodes.  

5.3.  Summary 

The influence of the metal electrodes on the performance of Sm2O3 MIM 

capacitors has been investigated.  The metal electrodes with high work-function, 

such as Ni and Pt, can obtain small voltage linearity and hysteresis of the capacitance, 

in comparison with TaN electrodes.  Moreover, by using Pt as bottom electrode, low 

leakage current density and small temperature dependence of the capacitance have 

been demonstrated.  The promising results are believed to be due to the high 

conduction band offset of dielectric/electrode and excellent interface of 

dielectric/electrode.  On the contrary, low work-function metals, such as Al and HfN, 

show the negative effects on the electrical characteristics of Sm2O3 MIM capacitors.  

The results and possible reason have been discussed in this chapter.  The 

aforementioned results indicate a high work-function metal electrode with a robust 

interface at the dielectric/electrode is essential to improve the performance of high-κ 

MIM capacitors. 
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CHAPTER  6 

CONCLUSION AND FUTURE WORKS 

 

 

6.1.  Conclusion 

In this thesis, a novel Sm2O3 based high-κ MIM capacitors for high precision 

applications have been fabricated and characterized.  The properties of MIM 

capacitors with a single Sm2O3 layer and (or) stacked with a thin SiO2 layer have been 

investigated systematically, including the electrical and physical characteristics.  

Moreover, the influence of the post deposition plasma treatment and the metal 

electrodes on the performance of Sm2O3 MIM capacitors has been studied.  The 

important findings and conclusions obtained in the course of the studies can be 

summarized as the following: 

1. The electrical and the physical characteristics of Sm2O3 MIM capacitors with 

various Sm2O3 capacitance densities are systematically investigated for the first 

time.  The physical characteristics of Sm2O3 MIM capacitors are studied by 

using techniques such as TEM, XRD and XPS.  The dielectric permittivity of 

Sm2O3 is calculated to be around 22, which is comparable to that of the widely 

studied HfO2 dielectric.  Sm2O3 dielectric has demonstrated excellent electrical 

characteristics, including small quadratic VCC, TCC and low leakage current 
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density.  Sm2O3 dielectric is a promising candidate for the application of high-κ 

dielectric MIM capacitors in precision analog circuit applications. 

2. The effects of plasma treatments with O2 and/or N2 on the performance of MIM 

capacitors with Sm2O3 dielectric have been investigated for the first time. We 

examine the effects of PTN on Sm2O3 MIM capacitors by inserting the PTN 

process at various stages of the device fabrication: after bottom electrode 

formation, after dielectric formation, or after each of the two steps.  It is shown 

that plasma treatment in N2 ambient after Sm2O3 dielectric formation can 

effectively improve the electrical characteristics, including the voltage linearity, 

hysteresis and leakage current density.  PTN after dielectric formation is an 

effective way to improve the performance of high-κ dielectric MIM capacitors for 

precision analog circuit applications.  

3. The MIM capacitors of Sm2O3 dielectric stacked with a thin PVD or PECVD 

SiO2 layer have been investigated.  The stacked Sm2O3/ PECVD SiO2 MIM 

capacitors with high capacitance densities (over 7.3 fF/cm2), low quadratic VCCs 

(~-50 ppm/V2) and low leakage current densities at +3.3 V (1×10-7 A/cm2) have 

been demonstrated by using the “cancelling effect” of SiO2 (having negative 

quadratic VCC) and Sm2O3 dielectrics.  Such “cancelling effect” of SiO2 and 

Sm2O3 dielectrics can be further optimized to obtain higher capacitance density 

and near zero quadratic VCC.  The characteristics of reported high capacitance 

density and low quadratic VCC satisfy the requirements of MIM capacitors in 
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precision analog circuit applications till year 2013 according to ITRS 2007.  

4. The influence of metal electrodes on the performance of Sm2O3 MIM capacitors 

has been investigated systematically.  High work-function metals are found to 

significantly improve the electrical characteristics of MIM capacitors, especially 

for Pt electrode, including voltage linearity, leakage current, hysteresis and TCC 

characteristics.  By contraries, low work-function metals show negative effects 

on the electrical characteristics.  These results indicate that the metal electrode 

influence significantly the performance of high-κ MIM capacitors.  A metal 

electrode with a high work-function and good interface of dielectric/electrodes is 

much desirable.   

6.2.  Future Works 

More detailed investigation and further exploration will be necessary to further 

optimize the process described in this thesis.  It is suggested further studies on 

high-κ MIM capacitors for high precision applications should center on the 

improvement of the quality of dielectrics and the interface of dielectric/electrodes.  

Due to the temperature limitation of thermal budget of BEOL, the post 

deposition treatments with low temperature is important to improve the quality of 

dielectrics.  It has been demonstrated that PTN can improve the performance of 

MIM capacitors.  This process needs to be further optimized and the effect of plasma 
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treatment is worthy to be analyzed.   

The voltage linearity can be tailored by using a thin SiO2 layer which has a large 

negative quadratic VCC.  This method is effective to achieve a low quadratic VCC 

to meet the requirements of ITRS for MIM capacitors.  However, the leakage current 

is still an issue due to the quality of the thin SiO2 and high-κ dielectrics.  Other 

dielectric deposition tools, such as atomic-layer deposition (ALD), can be utilized to 

improve dielectric quality.  

It has been demonstrated that the metal electrodes influence significantly the 

performance of high-κ MIM capacitors.  The quality of the interfacial layer at the 

dielectric/electrode is essential to improve the performance of high-κ MIM capacitors.  

Although Pt metal electrode can obtain excellent electrical characteristic, the 

economic issue makes it unacceptable in mass production.  It is necessary to explore 

an economical inert metal with high work-function and a robust interface for the 

high-κ MIM capacitors. 
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