
A SMOOTHING NEWTON-BICGSTAB

METHOD FOR LEAST SQUARES MATRIX

NUCLEAR NORM PROBLEMS

LUO YANYING

(Bsc., NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48633521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to express my deepest thanks and respect to my supervisor Professor

Sun Defeng. He has patiently introduced me into the field of optimization and has

provided guidance and encouragement throughout my study. My sincere respect to

him came from his enthusiasm in the optimization field and his effort in organizing

weekly optimization discussion sessions, which had become a fruitful experience

and a great learning opportunity for me in this research field.

My sincere thanks also go to all the friends in the department of mathematics:

Gao Yan, Liu Yongjin, Zhao Xinyuan, Jiang Kaifeng, Ding Chao and Yang Zhe,

for their kindly help and support throughout the project.

Luo Yanying/Jan 2010

ii

Contents

Acknowledgements ii

Abstract v

1 Introduction 1

2 Preliminaries 6

2.1 The Lagrangian Dual Problem and Optimality Conditions 6

2.2 The Differential Properties of the Smoothing Functions 11

3 A Smoothing Newton-BiCGStab Method 23

4 Numerical Experiments 27

4.1 Implementation Issues . 27

4.2 Numerical Experiments . 28

5 Conclusions 37

iii

Contents iv

Bibliography 38

Contents v

A Smoothing Newton-BiCGStab Method for Least Squares

Matrix Nuclear Norm Problems

Luo Yanying

Department of Mathematics, Faculty of Science

National University of Singapore

Master’s thesis

Abstract

In this thesis, we study a smoothing Newton-BiCGStab method for the least

squares nonsymmetric matrix nuclear norm problems. For this type of problems,

when linear inequality and second-order cone constraints are present, the dual

problem is equivalent to a system of nonsmooth equations. Some smoothing func-

tions are introduced to the nonsmooth layers of the system. We will prove that

the smoothed system of equations for nonsymmetric matrix problems inherits the

strong semismoothness property from the real-valued smoothing functions. As a

result, we show that the smoothing Newton-BiCGStab method which was intro-

duced for solving least squares semidefinite programming problems can be extended

to solve the least squares nonsymmetric matrix nuclear norm problems.

Chapter 1
Introduction

Let ℜn1×n2 be the space of n1×n2 real valued matrices and n1 ≤ n2. Denote the

nuclear norm of X ∈ ℜn1×n2 by ∥X∥∗ =

n1∑
i=1

σi(X), where σ1(X) ≥ σ2(X) ≥ · · · ≥

σn1(X) are singular values of X. Let ∥ ·∥2 stand for the Euclidean norm, and ∥ ·∥F

denote the Frobenius norm which is induced by the standard trace inner product

⟨X,Y ⟩ = trace(Y TX) in ℜn1×n2 . Let {Ae,Al,Aq,Au} be the linear operators used

in four types of constraints respectively: linear equality, linear inequality, second-

order cone, and linear vector space constraints. Each of these operators is a linear

mapping from ℜn1×n2 to ℜm∗ defined respectively by

Ae(X) : ℜn1×n2 → ℜme = [⟨Ae
1, X⟩, · · · ; ⟨Ae

me
, X⟩],

Al(X) : ℜn1×n2 → ℜml = [⟨Al
1, X⟩, · · · ; ⟨Al

ml
, X⟩],

Aq(X) : ℜn1×n2 → ℜmq = [⟨Aq
1, X⟩, · · · ; ⟨Aq

mq
, X⟩],

Au(X) : ℜn1×n2 → ℜmu = [⟨Au
1 , X⟩, · · · ; ⟨Au

mu
, X⟩].

1

2

The least squares matrix nuclear norm problems discussed in this thesis are of the

form:

min ρ∥X∥|∗ +
µ

2
∥xu∥2

2 +
λ

2
∥X − C∥2

F

s.t. Ae(X) − be = 0, be ∈ ℜme ,

Al(X) − bl ≥ 0, bl ∈ ℜml ,

Aq(X) − bq ∈ Kmq , bq ∈ ℜmq ,

Au(X) − bu = xu, bu ∈ ℜmu ,

xu ∈ ℜmu , X ∈ ℜn1×n2 ,

(1.1)

where the constants are required to be ρ ≥ 0, µ > 0, λ > 0, C is some matrix in

ℜn1×n2 and Kmq denotes a second order cone which is defined by

Kmq : = {y ∈ ℜmq | ymq ≥ ∥yt∥2},

where y = [y1; y2; · · · ; ymq−1; ymq] = [yt; ymq]. Let

W(X) : = [Ae; Al; Aq; Au](X),

T (xu) : = [0; 0; 0; xu],

b : = [be; bl; bq; bu]

m : = me +ml +mq +mu

and Q = {0}me × ℜml
+ × Kmq × {0}mu . The feasible set F of the problem (1.1)

becomes

F = {(X, xu) ∈ ℜn1×n2 ×ℜmu | W(X) − T (xu) ∈ b+Q}.

Let f(X, xu) = ρ∥X∥|∗ +
µ

2
∥xu∥2

2 +
λ

2
∥X − C∥2

F . Problem (1.1) is a convex prob-

lem of the form,

min f(X, xu)

s.t W(X) − T (xu) ∈ b+Q,

X ∈ ℜn1×n2 , xu ∈ ℜmu .

(1.2)

3

The dual cone Q+ of the closed convex cone Q is given by Q+ = ℜme × ℜml
+ ×

Kmq ×ℜmu . The dual problem of (1.1) to be derived in Chapter 2 is of the following

form,

min θ(y)

s.t y ∈ Q+.
(1.3)

When consider problem (1.1), in which X is a symmetric positive semidefinite

cone, that is X ∈ Sn
+, instead of X ∈ ℜn1×n2 , Newton type methods have been

used to solve problems with only linear equality and inequality constraints. For

example, the inexact Newton-BiCGStab method has been incorporated with some

smoothing functions to solve the least squares covariance matrix (LSCM) problems

with equality and inequality constraints [6],

(LSCM)

min
1

2
∥X − C∥2

F

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,me,

⟨Ai, X⟩ ≥ bi, i = me + 1, . . . ,me +ml,

X ∈ Sn
+.

The dual problem of (LSCM) is of the same form as (1.3) and Q+ = ℜme × ℜml
+ .

In absence of the inequality constraints, we have Q+ = ℜme , which implies that

the dual of (LSCM) problem is an unconstrained convex optimization problem.

Based on a result of [18], we know that when ▽θ is a strongly semismooth function

though it is not continuously differentiable. One can still find a quadratically con-

vergent method for solving (LSCM) problems [16]. When inequality constraints

are present, the dual problem becomes a constrained problem, which can be trans-

formed into a system of equations,

F (y) : = y − ΠQ+(y − ▽θ(y)) = 0. (1.4)

In this system, the projector ΠQ+(·) is a metric projection from ℜme+ml to Q+.

The function ▽θ involves another metric projector onto the symmetric positive

4

semedefinite cone. The two layers of metric projectors have created obstacles to a

direct use of Newton type of algorithms to achieve a quadratic convergence rate. To

tackle this problem, Gao and Sun [6] applied some smoothing functions to the two

nonsmooth layers of metric projectors in F . A Newton-BiCGStab algorithm is used

to solve a smoothed system of (1.4). Their results have shown a promised quadratic

convergence rate for the (LSCM) problems with linear inequality constraints.

The (LSCM) problem has recently been used by Gao and Sun [7] to iteratively

solve the H-Weighted least squares semidefinite programming problems with an

additional rank constraint,

min
1

2
∥H ◦ (X − C)∥2

F

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,me,

⟨Ai, X⟩ ≥ bi, i = me + 1, . . . ,me +ml,

rank(X) ≤ k,

X ∈ Sn
+,

(1.5)

where H ≥ 0 is a given matrix and ” ◦ ” denotes the Hadamard product of two

matrices. Note that
n∑

i=k+1

σi(X) = 0 iff rank(X) ≤ k. The rank constraint may

be replaced by putting a penalty term ρ(
n∑

i=1

σi(X) −
k∑

i=1

σi(X)) to the objective

function. The idea of the majorized penalty approach given in [7] is to solve a

sequence of (LSCM) problems of the form,

min
1

2
∥X − C∥2

F + ρ
n∑

i=1

σi(X) − ⟨Cρ, X⟩

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,me,

⟨Ai, X⟩ ≥ bi, i = me + 1, . . . ,me +ml,

X ∈ Sn
+,

where ⟨Cρ, X⟩ is some linearized form of ρ
k∑

i=1

σi(X).

5

Problem (1.5) is a type of structure preserving low rank problems for symmetric

positive semidefinite matrices. On the other hand, there are a lot of applications

of the structure preserving low rank approximation problems for nonsymmetric

matrices [3], which are of the form,

min
1

2
∥H ◦ (X − C)∥2

F

s.t. X ∈ Ω,

rank(X) ≤ k,

X ∈ ℜn1×n2 ,

where Ω is closed convex set containing some structures to be preserved. Once the

ideas in [7] are applied to the above structure preserving low rank approximation

problems, we will obtain problems of the form (1.1) if Ω is properly chosen. For

this, see the last section in [7].

Given its potential importance of problem (1.1) for solving structure preserving

low rank approximation problems and beyond, we will focus on solving problem

(1.1).

In this thesis, the least squares matrix nuclear norm minimization problems will

be shown to have similar properties as the (LSCM) problems. The smoothing

Newton-BiCGStab method will be applied to solve problem (1.1). Preliminaries

such as derivations of the dual problem, optimality conditions, constructions of

smoothing functions, the continuous and differentiable properties of nonsymmetric

matrix-valued functions that are involved in solving problem (1.1) will be presented

in the next chapter. In Chapter 3, the smoothing Newton-BiCGStab method

is illustrated with the convergence analysis. Implementation related issues and

numerical experiments will be discussed in Chapter 4, and followed by conclusions

in Chapter 5.

Chapter 2
Preliminaries

2.1 The Lagrangian Dual Problem and Optimal-

ity Conditions

In this chapter, we denote the primal problem (1.2) by (P).

The Lagrangian function L(X, xu, y) : ℜn1×n2 ×ℜmu ×ℜm → ℜ for (P) is defined

by

L(X, xu, y) : = f(X, xu) − ⟨W(X) − T (xu) − b, y⟩ . (2.1)

Let Q+ = ℜme × ℜml
+ × Kmq × ℜmu be the dual cone of Q. The dual objective

function g(y) can be derived from the Lagrangian function (2.1) by

6

2.1 The Lagrangian Dual Problem and Optimality Conditions 7

g(y) = inf
X,xu

L(X, xu, y)

= inf
X,xu

{f(X, xu) − ⟨W(X) − T (xu) − b, y⟩}

= inf
X,xu

{ρ∥X∥∗ +
µ

2
∥xu∥2

2 +
λ

2
∥X − C∥2

F + ⟨b, y⟩

−⟨Ae(X), ye⟩ − ⟨Al(X), yl⟩ − ⟨Aq(X), yq⟩ − ⟨Au(X) − xu, y
u⟩}

= inf
X,xu

{ρ∥X∥∗ +
λ

2
(∥X∥2

F − 2⟨1
λ
W∗y + C,X⟩ + ∥1

λ
W∗y + C∥2

F)

−λ
2
∥1

λ
W∗y + C∥2

F +
λ

2
∥C∥2

F + ⟨b, y⟩ +
µ

2
∥xu∥2

2 + ⟨xu, y
u⟩}

= inf
X,xu

{ρ∥X∥∗ +
λ

2
∥X − C − 1

λ
W∗y∥2

F − λ

2
∥1

λ
W∗y + C∥2

F

+
λ

2
∥C∥2

F + ⟨b, y⟩ +
µ

2
∥xu∥2

2 + ⟨xu, y
u⟩}

= inf
X
{ρ∥X∥∗ +

λ

2
∥X − C − 1

λ
W∗y∥2

F} −
λ

2
∥1

λ
W∗y + C∥2

F

+
λ

2
∥C∥2

F + ⟨b, y⟩ − 1

2µ
∥yu∥2

2,

where y = [ye; yl; yq; yu], and W∗ = [Ae∗ Al∗ Aq∗ Au∗] is the adjoint operator of

W .

In order to get the infimum of ρ∥X∥∗ +
λ

2
∥X − C − 1

λ
W∗y∥2

F in g(y), we need

to introduce the singular value shrinkage operator Dτ (·). Let X ∈ ℜn1×n2 have the

singular value decomposition (SVD) such that

X = UΣV T
1 , Σ = diag({σi}1≤i≤n1),

where σ1 ≥ . . . ≥ σn1 ≥ 0 are singular values of X. For any τ ≥ 0, Dτ (X) is

defined by:

Dτ (X) : = UDτ (Σ)V T
1 , Dτ (Σ) = diag({(σi − τ)+}),

where t+ : = max(0, t). The singular value thresholding operator is a proximity

operator associated with nuclear norm. Details of proximity operator can be found

2.1 The Lagrangian Dual Problem and Optimality Conditions 8

in [9]. The following proposition1 allows us to obtain the result of infX{ρ∥X∥∗ +

λ
2
∥X − C − 1

λ
W∗y∥2

F}. Its proof can be found in [2, 12].

Proposition 2.1.1. For each τ ≥ 0 and Y ∈ ℜn1×n2 , the singular value threshold-

ing operator obeys

Dτ (Y) = arg min
X

{1

2
∥X − Y ∥2

F + τ∥X∥∗}. (2.2)

�

Proposition 2.1.1 implies that

g(y) = ρ∥D ρ
λ
(C +

1

λ
W∗y)∥∗ +

λ

2
∥D ρ

λ
(C +

1

λ
W∗y) − C − 1

λ
W∗y∥2

F

−λ
2
∥C +

1

λ
W∗y∥2

F +
λ

2
∥C∥2

F + ⟨b, y⟩ − 1

2µ
∥yu∥2

2

= −λ
2
∥D ρ

λ
(C +

1

λ
W∗y)∥2

F +
λ

2
∥C∥2

F + ⟨b, y⟩ − 1

2µ
∥yu∥2

2.

Let

θ(y) : = −g(y) =
λ

2
∥D ρ

λ
(C +

1

λ
W∗y)∥2

F +
1

2µ
∥yu∥2

2 − ⟨b, y⟩ − λ

2
∥C∥2

F .

Then we obtain the dual problem (D),

(D)
min θ(y)

s.t y ∈ Q+

The objective function θ in the dual problem (D) is a continuously differentiable

convex function. However it is not twice continuously differentiable. Its first order

derivative is given by

▽θ(y) = WD ρ
λ
(C +

1

λ
W∗y) +

1

µ
T (yu) − b , (2.3)

where T (yu) = [0; 0; 0; yu].

1Donald Goldfard first reported the formula (2.2) at the ”Foundations of Computational

Mathematics Conference’08” held at the City University of Hong Kong, June 2008

2.1 The Lagrangian Dual Problem and Optimality Conditions 9

The dual problem (D) of problem (P) is a convex constrained vector-valued

problem, in contrast to the matrix-valued problem (P). When it is easier to apply

optimization algorithms to solve for solutions for (D) than for (P), one can use

Rockafellar’s dual approach [17] to find an optimal solution ȳ for (D) first. An

optimal solution X for (P) can then be obtained by

(X, x̄u) = arg inf
X,xu

L(X, xu, ȳ) = (D ρ
λ
(C +

1

λ
W∗ȳ),−µ−1ȳu).

Before introducing optimality conditions, we assume that the Slater condition holds

for the primal problem (P): {Ai}me
i=1 are linearly independent,

∃(X0, x
0
u) ∈ F such that W(X0) − T (x0

u) ∈ b+ ri(Q),
(2.4)

where ri(Q) denotes the relative interior of Q. When the Slater condition is satis-

fied, the following proposition, which is a straightforward application of Rockafel-

lar’s results in [17], holds.

Proposition 2.1.2. Under the Slater condition (2.4), the following results hold:

(i) There exists at least one ȳ ∈ Q+ that solves the dual problem (D). The unique

solution to the primal problem (P) is given by

(X, x̄u) = (D ρ
λ
(C +

1

λ
W∗ȳ),−µ−1ȳu). (2.5)

(ii) For every real number ε, the constrained level set {y ∈ Q+| θ(y) ≤ ε} is closed,

bounded and convex.

�

The convexity in the second part of Proposition 2.1.2 allows us to apply any gradi-

ent based optimization method to obtain an optimal solution for the dual problem

(D). When a solution is found for (D), one can always use (2.5) to obtain a unique

optimal solution to the primal problem (P).

2.1 The Lagrangian Dual Problem and Optimality Conditions 10

With respect to problem (D), the Lagrange function may be defined by L(y, α) =

θ(y)−⟨α, y⟩. For some Lagrange multiplier ᾱ, the Karush-Kuhn-Tucker conditions

require the optimal solutions ȳ of problem (D) to satisfy:

▽Ly(ȳ, ᾱ) = ▽θ(ȳ) − ᾱ = 0,

ȳ ∈ Q+, −ᾱ ∈ NQ+(ȳ),

where NQ+(ȳ) denotes the normal cone of Q+ at ȳ. It implies that ȳ solves problem

(D) if and only if it satisfies,

⟨y − ȳ,▽θ(ȳ)⟩ ≥ 0, ∀y ∈ Q+. (2.6)

On the other hand, we define F : ℜm → ℜm by

F (y) : = y − ΠQ+(y − ▽θ(y)), ∀y ∈ ℜm. (2.7)

It can be verified with the results from [4] that solving the variational inequality

(2.6) is equivalent to solving the system of

F (y) = 0, y ∈ ℜm. (2.8)

It is known that F is globally Lipschitz continuous but not everywhere continuously

differentiable. One may use Clarke’s generalized Jacobian based Newton’s methods

to solve problem (2.8). However those methods can not be globalized because

F does not have any real-valued gradient mapping function. Nevertheless, the

smoothing Newton-BiCGStab method has been shown to resolve such difficulty for

the least squares semidefinite programming problems [6]. Similarly we may also

introduce smoothing functions for the least squares nonsysmetric matrix nuclear

problems and design a Newton-BiCGStab method for solving a smoothed system

of (2.8).

2.2 The Differential Properties of the Smoothing Functions 11

2.2 The Differential Properties of the Smoothing

Functions

Consider a real-valued nonsmooth function

f(t) = max(0, t), t ∈ ℜ,

which we denote by (t)+. (t)+ is not differentiable at t = 0. The two smoothing

functions used in this thesis for (t)+ are the Huber function ϕH : ℜ× ℜ → ℜ,

ϕH(ε, t) =


t, if t ≥ |ε|

2
1

2|ε|
(t+

|ε|
2

)2, if − |ε|
2
< t <

|ε|
2

0, if t ≤ −|ε|
2

; (2.9)

and the Smale smoothing function ϕS : ℜ× ℜ → ℜ,

ϕS(ε, t) = [t+
√
ε2 + t2]/2, (ε, t) ∈ ℜ × ℜ. (2.10)

Discussions on the properties of the smoothing functions can be found in [16, 21].

The concept of semismoothness plays an important role in (quadratic) conver-

gence analysis of generalized Newton methods for nonsmooth equations. It was

introduced by Mifflin [13], and extended by Qi and Sun [16], for cases when a

vector-valued function is not differentiable, but locally Lipschitz continuous.

Definition 2.2.1. Suppose that a vector-valued function f : ℜm1 → ℜm2 is locally

Lipschitz continuous at x ∈ ℜm1 . f is said to be semismooth at x, if f is direc-

tionally differentiable at x; and for any V ∈ ∂f(x + ∆x), the generalized Clarke

Jacobian of f at x+ ∆x, f satisfies,

f(x+ ∆x) − f(x) − V (∆x) = o(∥∆x∥).

Furthermore, f is said to be strongly semismooth at x, if f is semismooth at x and

for any V ∈ ∂f(x+ ∆x), f satisfies,

f(x+ ∆x) − f(x) − V (∆x) = O(∥∆x∥2).

2.2 The Differential Properties of the Smoothing Functions 12

It has been known that both ϕH and ϕS are globally Lipschitz continuous, con-

tinuously differentiable around (ε, t) whenever ε ̸= 0, and are strongly semismooth

at (0, t) (see [21] and references therein for details). The outer layer vector-valued

functions defined in (2.7), when they are composite functions of (t)+ and a linear

function, can be smoothed by using a smoothing function either ϕH or ϕS. Un-

der certain conditions, the smoothing functions inherit the Lipschitz continuity,

differentiability, and semismoothness properties of either ϕH or ϕS. With respect

to the inner layer of F in (2.7), where the singular value thresholding operator

is involved, we will also show that the nonsymmetric matrix-valued functions can

be smoothed by applying the smoothing function either ϕH or ϕS to the singular

values of the matrix. The resulting matrix-valued function will be shown to inherit

the related differential properties from ϕH (or ϕS). Since ϕH and ϕS share similar

differential properties, in the following, unless we specify we will use ϕ to denote

the smoothing function either ϕH or ϕS.

The function F (y) in (2.7) is given by

F (y) = y − ΠQ+

(
y −WD ρ

λ
(C +

1

λ
W∗y) − 1

µ
T (yu) + b

)
, (2.11)

where T (yu) = [0; 0; 0; yu]. F contains a composition of two nonsmooth func-

tions. In the outer layer, ΠQ+(·) is a metric projection operator from ℜm to Q+.

ΠQ+(·) is given by

ΠQ+(z) =


ze

(zl)+

ΠKmq (zq)

zu

 . (2.12)

where z = [ze; zl; zq; zu] and ΠKmq (z) denotes the projection of z onto the second-

order cone Kmq . The properties of second order cone have been well studied. The

2.2 The Differential Properties of the Smoothing Functions 13

following well known proposition gives an analytical solution to ΠKn(·), the metric

projection onto a second order cone Kn of dimension n. See [14] and references

therein for more discussions on ΠKmq (·).

Proposition 2.2.1. For any z ∈ ℜn, let z = [zt; zn] where zt ∈ ℜn−1 and zn ∈ ℜ.

Then z has the following spectral decomposition

z = λ1(z)c1(z) + λ2(z)c2(z),

λi(z) = zn + (−1)i∥zt∥2,

ci(z) =


1

2
((−1)i zt

∥zt∥2

, 1)T , if zt ̸= 0

1

2
((−1)iw, 1)T , if zt = 0

,

where w ∈ ℜn−1 satisfies ∥w∥2 = 1. Then ΠKn(z) is given by

ΠKn(z) = (λ1(z))+c1(z) + (λ2(z))+c2(z).

�

With Proposition 2.2.1, for ΠKn(·), we may introduce a smoothing function ϕKn

associated with Kn,

ϕKn(ε, z) = ϕ(ε, λ1(z))c1(z) + ϕ(ε, λ2(z)))c2(z).

It has been shown in [21, Theorem 5.1] that ϕKn(·, ·) is globally Lipschitz continu-

ous, and strongly semismooth on ℜ+ ×ℜn, if the smoothing function ϕ is globally

Lipschitz continuous, and strongly semismooth. Furthermore, a smoothing func-

tion ψ : ℜ × ℜm → ℜm for the outer layer of metric projector (2.12) may now be

defined by,

ψ(ε, z) =


ze

ϕ(ε, zl)

ϕKmq (ε, zq)

zu

 . (2.13)

2.2 The Differential Properties of the Smoothing Functions 14

With the above known results, ψ is a globally Lipschitz continuous, and strongly

semismooth function on ℜ× ℜm.

Next we will construct a smoothing function for the inner layer on the nonsym-

metric matrix operator D ρ
λ
(·). Let X ∈ ℜn1×n2 , and n1 ≤ n2. Suppose that X has

the following SVD

X = U [Σ 0]V T = U


σ1 0 0 0

0
. . . 0

...

0 0 σn1 0

 [V1 V2]
T . (2.14)

In order to properly define the smoothing function for nonsymmetric matrix-valued

functions, we will transform a nonsymmetric matrix into a symmetric matrix and

make use of the known properties of the symmetric matrix-valued functions. Given

the SVD of X, we let a symmetric matrix YX ∈ S(n1+n2)×(n1+n2) be defined by

YX =

 0 X

XT 0

 .

Let

PY =
1√
2

 U U 0

V1 −V1

√
2V2

 , (2.15)

where U ∈ ℜn1×n1 , V1 ∈ ℜn2×n1 and V2 ∈ ℜn2×(n2−n1). Then YX has the following

eigenvalue decomposition:

YX = PY


Σ 0 0

0 −Σ 0

0 0 0

P T
Y .

For some β > 0, we define a real-valued function gβ and a corresponding matrix-

valued function Gβ(YX) : S(n1+n2)×(n1+n2) → S(n1+n2)×(n1+n2) such that

gβ(t) : = (t− β)+ − (−t− β)+, (2.16)

Gβ(YX) : = (YX − βI)+ − (−YX − βI)+. (2.17)

2.2 The Differential Properties of the Smoothing Functions 15

Here I denotes an identity matrix of dimension (n1+n2) and the matrix-valued op-

erator (·)+ is the metric projection ΠSn
+
(·) onto the symmetric positive semidefinite

cone. Then one can check [10] that

Gβ(YX) = PY



gβ(σ1) 0 0 0 . . . 0 0

0
. . . 0

...
...

...
...

0 0 gβ(σn1) 0 . . .
...

...

0 . . . 0 gβ(−σ1) 0
...

...
...

...
... 0

. . .
...

...

0 gβ(−σn1) 0

0 0 0


P T

Y .

Applying the transformation functions (2.16) and (2.17) onto the singular value

shrinkage operator D ρ
λ
(X) = U [Diag((σi − ρ

λ
)+) 0][V1 V2]

T for X ∈ ℜn1×n2 , we

have that

G ρ
λ
(YX) =

 0 D ρ
λ
(X)

D ρ
λ
(X)T 0

 . (2.18)

As a result of (2.18), the smoothing functions ϕg for gβ and ΦG for Gβ may be

defined, respectively by

ϕg(ε, t) : = ϕ(ε, t− β) − ϕ(ε,−t− β) (2.19)

2.2 The Differential Properties of the Smoothing Functions 16

and

ΦG(ε, YX) : =

PY



ϕg(ε, σ1) 0 0 0 . . . 0 0

0
. . . 0

...
...

...
...

0 0 ϕg(ε, σn1) 0 . . .
...

...

0 . . . 0 ϕg(ε,−σ1) 0
...

...
...

...
... 0

. . .
...

...

0 ϕg(ε,−σn1) 0

0 0 0


P T

Y .

One can easily derive that ΦG has the following form

ΦG(ε, YX) =

 0 ΦD ρ
λ

(ε,X)

(ΦD ρ
λ

(ε,X))T 0

 ,

where

ΦD ρ
λ

(ε,X) : = U [Diag(ϕg(ε, σi)) 0][V1 V2]
T . (2.20)

We have known that the smoothing function (2.13) for the outer layer of F in

(2.7) is strongly semismooth at (0, y). Next we will show the strong semismoothness

of ΦDβ
, which is a smoothing function for the inner layer of F .

Let ∆X ∈ ℜm×n and

H =

 0 ∆X

∆XT 0

 . (2.21)

For any Y ∈ Sn, λ(Y) ∈ ℜn denotes the vector of eigenvalues of Y . Let Y =

Pdiag(λ(Y))P T be the eigenvalue decomposition of Y . A Löwner function F : Sn →

Sn is then defined with respect to a real-valued function f(·),

F (Y) : = Pdiag[f(λ1(Y)), f(λ2(Y)), . . . , f(λn(Y))]P T . (2.22)

2.2 The Differential Properties of the Smoothing Functions 17

When f is differentiable at µ, a first divided difference function F [1] at µ ∈ ℜn is

defined by

(F [1](µ))i,j =


f(µi) − f(µj)

µi − µj

, if µi ̸= µj

f ′(µi), if µi = µj

. (2.23)

With the results of Löwner (see [1] for details), we have the following lemma.

Lemma 2.2.1. If a real-valued function f(·) is continuously differentiable in an

open interval (a1, a2) containing all the eigenvalues {λi(Y)} of Y , then the Löwner

function F (·) is differentiable at Y. For any H ∈ Sn, the derivative of F (·) is given

by

F ′(Y)H = P (F [1](λ(Y)) ◦ (P THP))P T .

�

With Lemma 2.2.1, we have that ΦG is differentiable at (ε, YX) for any ε > 0, and

its derivative is given by

(ΦG)′Y (ε, YX)H = PY (Ω(ε, λ(YX)) ◦ (P T
Y HPY))P T

Y ,

(ΦG)′ε(ε, YX) = PY diag(ϕ
′
ε(ε, λ1(YX)), · · · , ϕ′

ε(ε, λn1+n2(YX))P T
Y ,

(2.24)

where PY is the same as in (2.15). Ω(ε, λ(YX)) is the first divided difference matrix

of ΦG at λ(ΦG(ε, YX)) such that

λ(ΦG(ε, YX)) = [ϕg(ε, σ1); ... ϕg(ε, σn1); ϕg(ε,−σ1); ... ϕg(ε,−σn1); 0; ...; 0],

and σ = [σ1; . . . ;σn1] are singular values of X. Since

PY =
1√
2

 U U 0

V1 −V1

√
2V2

 n1

n2

, (2.25)

n1 n1 n2

2.2 The Differential Properties of the Smoothing Functions 18

we divide Ω(ε, λ(YX)) into nine parts,

Ω(ε, λ(YX)) = ΩD(ε, σ) =


Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33


n1

n1

n2 − n1

.

n1 n1 n2 − n1

It can be verified that Ω11 = Ω22, Ω13 = Ω23. Explicitly for (2.24), we have that

(ΦG)′Y (ε, YX)H

= PY (ΩD(ε, σ) ◦ 1

2


UT V T

1

UT −V T
1

0
√

2V T
2


 0 ∆X

∆XT 0

 U U 0

V1 −V1

√
2V2

)P T
Y

=
1

2
PY


(AT + A) ◦ Ω11 (AT − A) ◦ Ω12

√
2B ◦ Ω13

(A− AT) ◦ Ω21 −(AT + A) ◦ Ω22

√
2B ◦ Ω23

√
2BT ◦ Ω31

√
2BT ◦ Ω32 0

P T
Y

=

 0 P12

P T
12 0

 ,

where A stands for UT ∆XV1, B stands for UT ∆XV2, and

P12 = (ΦDβ
)′X(ε,X)∆X

=
1

2
U((A+ AT) ◦ Ω11 + (A− AT) ◦ Ω12)V

T
1 + U(B ◦ Ω13)V

T
2 .

Similarly to (2.24), we have that ΦDβ
is differentiable at (ε,X) when ε > 0, and

its derivative is given by

(ΦDβ
)′X(ε,X)∆X = 1

2
U((A+ AT) ◦ Ω11 + (A− AT) ◦ Ω12)V

T
1 + U(B ◦ Ω13)V

T
2 ,

(ΦDβ
)′ε(ε,X) = U [diag(ϕ′

ε(ε, σi(X) − β)) 0][V1 V2]
T ,

(2.26)

The function ΦG in (2.17) is a symmetric matrix-valued function where eigen-

values of the matrix are given by ϕg, which is a sum of two strongly semismooth

2.2 The Differential Properties of the Smoothing Functions 19

functions. The sum of two strongly semismooth functions is also strongly semis-

mooth. From the results of [21], we know that the smoothing matrix-valued func-

tion ΦG inherits the globally Lipschitz continuous and strong semismoothness of

ϕg. We have seen from above that the derivative of ΦDβ
has an analogous trans-

formation form to the derivative of ΦG as from X to YX . Thus ΦDβ
analogously

inherit the globally Lipschitz continuous and strongly semismooth properties at

any (0, X) ∈ ℜ × ℜn1×n2 . In particular, for any ∆X → 0 and ε → 0 and

V ∈ ∂ΦDβ
(ε,X + ∆X),

ΦDβ
(ε,X + ∆X) − ΦDβ

(0, X) − V (ε,∆X) = O(∥(ε,∆X)∥2). (2.27)

Now we are ready to introduce a smoothing function Υ: ℜ × ℜm → ℜm for F

defined in (2.7) with (2.13) and (2.20),

Υ(ε, y) : = y − ψ(ε, y −WΦD ρ
λ

(ε, C +
1

λ
W∗y) − 1

µ
T (yu) + b), (2.28)

where T (yu) = [0; 0; 0; yu].

The differential properties of Υ, which will be used for the convergence analysis

of our algorithm, are summarized in the following proposition.

Proposition 2.2.2. Let Υ: ℜ × ℜm be defined by (2.28). Let y ∈ ℜm. Then it

holds that

(i) Υ is globally Lipschitz continuous on ℜ× ℜm.

(ii) Υ is continuously differentiable around (ε, y) where ε ̸= 0. If mq = 0, then

any fixed ε ∈ ℜ, Υ(ε, ·) is P0-function, i.e. for any y, h ∈ ℜm with y ̸= h, it holds

that

max
yi ̸=hi

(yi − hi)(Υi(ε, y) − Υi(ε, h)) ≥ 0. (2.29)

(iii) Υ is strongly semismooth at (0, y). In particular, for any ε ↓ 0, and h ∈ ℜm,

2.2 The Differential Properties of the Smoothing Functions 20

h→ 0 we have that

Υ(ε, y + h) − Υ(0, y) − Υ′(ε, y + h)

 ε

h

 = O(∥(ε, h)∥2).

(iv) For any h ∈ ℜm,

∂BΥ(0, y)(0, h) ⊆ h− ∂Bψ(0, y − ▽θ(y))(0, z), (2.30)

where z = h− 1
λ
W∂BΦDβ

(0, C+ 1
λ
W∗y)(0,W∗h)− 1

µ
T (hu) and T (hu) = [0; 0; 0;hu].

Proof. (i) Since both ψ and ΦD ρ
λ

are globally Lipschitz continuous, Υ is also

globally Lipschitz continuous.

(ii) From the definitions of ψ (2.13), Φ (2.20) and Υ (2.28), we know that ψ is

continuously differentiable for any (ε, y) ∈ ℜ × ℜm when ε ̸= 0. For any ε ̸= 0.

Define gε : ℜm → ℜm such that

gε(y) = WΦD ρ
λ

(ε, C +
1

λ
W∗y) +

1

µ
T (yu) − b, y ∈ ℜm,

where T (yu) = [0; ,0; 0; yu], gε is continuously differentiable on ℜm. Furthermore,

we have that

⟨h, (gε)
′(y)h⟩ = ⟨h,W(ΦD ρ

λ

)′X(ε,X)(
1

λ
(W∗h)) +

1

µ
T (hu)⟩

=
1

λ
⟨W∗h, (ΦD ρ

λ

)′X(ε,X)(W∗h)⟩ +
1

µ
(T (hu) · T (hu))

=
1

2λ
⟨Z, PY [Ω(ε, σ) ◦ (P T

Y ZPY)]P T
Y ⟩ +

1

µ
< hu, hu >

≥ 0,

where X = C + 1
λ
W∗y, T (hu) = [0;0; 0; hu] and

Z :=

 0 W∗h

(W∗h)T 0

 .

2.2 The Differential Properties of the Smoothing Functions 21

This implies that gε is a P0 function on ℜm. Let y, h ∈ ℜm with y ̸= h. Then there

exists i ∈ {1, . . . ,m} with yi ̸= hi such that

(yi − hi)((gε)i(y) − (gε)i(h)) ≥ 0.

Noted that mq = 0, then for any z ∈ ℜm,

ψ′
zi
(ε, zi) ∈ [0, 1], i = 1, . . . ,m.

As a result,

(yi − hi)(Υi(ε, y) − Υi(ε, h)) ≥ 0.

Thus Υ is a P0-function and (2.29) holds for any y, h ∈ ℜm such that y ̸= h.

(iii) We have shown that the smoothing functions ψ defined in (2.13) is strongly

semismooth at any (0, y) ∈ ℜ × ℜm; and ΦD ρ
λ

defined in (2.13) is strongly semis-

mooth at any (0, X) ∈ ℜ × ℜn1×n2 . With the known result that a composite

functionof strongly semismooth function is also strongly semismooth [5], we can

conclude that Υ is strongly semismooth at (0, y).

(iv) Both ψ and ΦDβ
are directionally differentiable. For any (ε, y′) ∈ ℜ × ℜm

such that Υ is Fréchet differentiable at (ε, y′), the directional derivative gives that

Υ′((ε, y′); (0, h)) = h−ψ′((ε, z′); (0, h− 1

λ
WΦ′

Dβ
((ε,

1

λ
W∗y′); (0,W∗y))− 1

µ
T (hu)),

where T (hu) = [0; 0; 0;hu] and z′ = y′ − ▽θ(y′). With the semismoothness of ψ

and ΦDβ
, it implies that

Υ′((ε, y′); (0, h)) ∈ h−∂Bψ((ε, z′); (0, h−1

λ
W∂BΦDβ

((ε,
1

λ
W∗y′); (0,W∗y))− 1

µ
T (hu)).

By taking (ε, y′) → (0, y), we obtain (2.30).

�

2.2 The Differential Properties of the Smoothing Functions 22

Note that in (ii) of the Proposition 2.2.2, we assume mq = 0 in order to prove

that for any ε ̸= 0, Υ(ε, ·) is P0-function. When mq > 0, this conclusion may not

hold. However, it is possible to show that for any ε ̸= 0, Υ(ε, ·) is a generalized

P0-function and that for any y ∈ ℜm, Υ′
y(ε, y) is a quasi P0-matrix, using the

techniques introduced in [19]. For simplicity, we omit the details here.

Chapter 3
A Smoothing Newton-BiCGStab Method

Recall that in the system of equations F (y) = 0 in (2.7), F is defined by

F (y) = y − ΠQ+(y − ▽θ(y)), y ∈ ℜm. (3.1)

The function F is globally Lipschitz continuous but not everywhere continuously

differentiable. A smoothing function Υ has been defined in the last chapter by,

Υ(ε, y) : = y − ψ(ε, y −WΦD ρ
λ

(ε, C +
1

λ
W∗y) − 1

µ
T (yu) + b), (3.2)

where T (yu) = [0; 0; 0; yu].

Let κ ∈ (0,∞) be a constant. Define G : ℜ× ℜm → ℜm by

G(ε, y) : = Υ(ε, y) + κ|ε|y, (ε, y) ∈ ℜ × ℜm. (3.3)

From Proposition 2.2.2, we know that for any (ε, y) ∈ ℜ × ℜm with ε ̸= 0, Υ(ε, ·)

is P0-function. It implies that Υ′
y(ε, y) is only a P0-matrix, which may be singular.

The term κ|ε|y is used to avoid the singularity of Υ(ε, ·). In order to solve F (y) = 0,

a system of smoothing equations,

E(ε, y) = 0, (ε, y) ∈ ℜ × ℜm (3.4)

23

24

is constructed, where E : ℜ× ℜm → ℜ×ℜm, is defined by

E(ε, y) : =

 ε

G(ε, y)

 =

 ε

Υ(ε, y) + κ|ε|y

 . (3.5)

For any (0, ȳ) satisfying the system of smoothing equations E(ε, y) = 0, ȳ is also

a solution of the system of F (y) = 0. Because of the differential properties which

have been summarized in Proposition 2.2.2, the following algorithm introduced in

Gao and Sun [6] can be used to solve the system (3.4).

Define a merit function φ : ℜ× ℜm → ℜ+ such that

φ(ε, y) : = ∥E(ε, y)∥2. (3.6)

Algorithm 3.1: A Smoothing Newton-BiCGStab Method

1. Set k = 0. A scaler r is chosen to be r ∈ (0, 1) . Let η ∈ (0, 1) be such that

δ : =
√

2 max{rε̂, η} < 1.

Select constants ρ ∈ (0, 1
2
), σ ∈ (0, 1

2
), τ ∈ (0, 1), and τ̂ ∈ [1,∞). Let ε0 : = ε̂

and y0 ∈ ℜm be an arbitrary starting point.

2. If E(εk, yk) = 0, then stop. Otherwise, compute

ζk : = rmin{1, φ(εk, yk)} and ηk : = min{τ, τ̂∥E(εk, yk)∥}.

3. For an inexact Newton’s direction, the BiCGStab iterative solver by Van der

Vorst [20] is used to solve the following equation

E(εk, yk) + E ′(εk, yk)

 ∆εk

∆yk

 =

 ζkε̂

0

 , (3.7)

approximately such that

∥Rk∥ ≤ min{ηk∥G(εk, yk) +G′(εk, yk)∆εk∥, η∥E(εk, yk)∥},

25

where

∆εk : = −εk + ζkε̂,

and

Rk := G(εk, yk) +G′(εk, yk)

 ∆εk

∆yk

 .
4. Line Search: Let lk be the smallest nonnegative integer l satisfying

φ(εk + ρl∆εk, yk + ρl∆yk) ≤ [1 − 2ρ(1 − δ)ρl]φ(εk, yk).

Then update the search point by,

(εk+1, yk+1) = (εk + ρlk∆εk, yk + ρlk∆yk).

5. Let k = k + 1, and go to step 2.

�

Let N be

N : = {(ε, y)| ε ≥ η(ε, y)ε̂}. (3.8)

We have the following global and local convergence results for solving the system

of smoothing equations (3.4).

Theorem 3.0.1. Let E(ε, y) be defined by (3.5). Suppose that the Slater condition

(2.4) holds. For the system (3.4), Algorithm 3.1 is well defined and generates a

bounded infinite sequence {(εk, yk)} ∈ N such that any accumulation point (ε̄, ȳ)

of {(εk, yk)} is a solution of E(ε, y) = 0.

Proof. This follows from Proposition 2.2.2, Theorem 4.1 in Gao and Sun [6],

and the fact that the solution set to the dual problem (D) is bounded under the

Slate condition.

�

26

Theorem 3.0.2. Let E(ε, y) be defined by (3.5). Let (ε̄, ȳ) be an accumulation

point generated by Algorithm 3.1. If V is nonsingular for any V ∈ ∂E(0, ȳ), then

the sequence {(εk, yk)} generated by Algorithm 3.1 converges to (ε̄, ȳ) quadratically,

i.e,

∥(εk+1 − ε̄, yk+1 − ȳ)∥ = O(∥(εk − ε̄, yk − ȳ)∥2). (3.9)

Proof. This follows from that fact that Υ is strongly semismooth and [6, The-

orem 4.5].

�

In the above Theorem 3.0.2, for the quadratic convergence of Algorithm 3.1, we

need the nonsingularity of V for any V ∈ ∂E(0, ȳ). It is possible to verify that

this assumption holds as in Theorem 4.5 in [6], if the constraint non-degenerate

condition holds at X. Again, we omit the details here.

Chapter 4
Numerical Experiments

4.1 Implementation Issues

The least squares nonsymmetric matrix nuclear problem

(NS)

min ρ∥X∥∗ +
µ

2
∥xu∥2

2 +
λ

2
∥X − C∥2

F

s.t. W(X) − T (xu) ∈ b+Q,

X ∈ ℜn1×n2

(4.1)

has an analogous form of the least squares semidefinite programming problem

(S)

min ρ⟨X, I⟩ +
µ

2
∥xu∥2

2 +
λ

2
∥X − C∥2

F

s.t. W(X) − T (xu) ∈ b+Q,

X ∈ Sn1
+ .

(4.2)

In Chapter 2, we have seen that the dual objective function gNS of (NS) is given

by

gNS(y) = −λ
2
∥D ρ

λ
(C +

1

λ
W∗y)∥2

F − 1

2µ
∥yu∥2

2 + ⟨b, y⟩ +
λ

2
∥C∥2

F . (4.3)

One can verify that the dual objective function gS for (S) is of the form,

gS(y) = −λ
2
∥ΠSn

+
(C +

1

λ
W∗y − ρ

λ
I)∥2

F − 1

2µ
∥yu∥2

2 + ⟨b, y⟩ +
λ

2
∥C∥2

F . (4.4)

27

4.2 Numerical Experiments 28

Observe that gNS and gS have only one different term. Thus we may define a

general operator Pβ : = ℜn1×n2 → ℜn1×n2 with some β ∈ ℜ for both (NS) and (S)

such that

Pβ(X) =

 Dβ(X) for (NS)

ΠSn
+
(X − βI) for (S)

. (4.5)

Let

θ(y) : = −g⋆(y) =
λ

2
∥P ρ

λ
(C +

1

λ
W∗y)∥2

F +
1

2µ
∥yu∥2

2 − ⟨b, y⟩ − λ

2
∥C∥2

F .

The dual problem to be solved for both (NS) and (S) is of the form

min θ(y)

s.t y ∈ Q+.

The (LSCM) problems is a special case of (S), where ρ = 0, µ = 0, and only

equality and inequality constraints are present. In [6], Gao and Sun’s implementa-

tion has been shown to efficiently solve a special type of (LSCM) problems, in which

{Ae
s,Al

s} are of simple sparse forms. The analogy between (NS) and (S) indicates

that both types of problems can be solved by the same algorithmic framework. For

this thesis, an implementation Smh NewtonBICG.m for solving both (NS) and (S)

with general forms of {Ae
∗,Al

∗,Aq
∗,Au

∗} has been rewritten in Matlab.

4.2 Numerical Experiments

The algorithm is implemented in MATLAB R2009a, with experiments running on

Intel Core 2 Duo at 2.00 GHz CPU with RAM of 2GB. The code Smh NewtonBICG.m

reads in six inputs:

{ρ, µ, λ, C, W, options},

4.2 Numerical Experiments 29

where ρ, µ and λ are the scalar parameters to define the objective function of the

problem. The matrix C has to be a structure variable with an element ’type’ given

by n or s to indicate the type of Problem (NS) or (S) respectively, another element

’dim’ indicating the dimension and an element ’val’ to store the matrix value of

C. W is a structure array to define the four types of constraints. Each member in

the array of W is a structure variable with four structure elements {’type’, ’dim’,

’A’ and ’b’} which are used to define the form of some type of constraints. The

’type’ with options in {e, q, l, u} is used to indicate the type of a constraint. The

’dim’ is used to define the dimension of the constraints. The ’A’ is used to input

the matrix form of W . And ’b’ is used for the vector form of b in Problem (NS)

or (S).

The implementation CaliMat.m in [6] for solving covariance matrix problem has

made use of the simple sparse forms of {Ae
s, Al

s}. The elements in the operators

{Ae
s(·), Al

s(·)} are referred by values at the nonzero components and their respec-

tive matrix indices. In this thesis, the code Smh NewtonBICG.m extended the

implementation to solve for problems with general forms of {Ae
∗,Al

∗,Aq
∗,Au

∗}. The

constraint operator W for Problem (NS) or (S) is defined by,

W(X) = [⟨A1, X⟩; · · · ; ⟨Am, X⟩]

= [svec(A1)
T svec(X); · · · ; svec(Am)T svec(X)]

= [svec(A1) · · · svec(Am)]T svec(X),

where svec(·) is operator to transfer matrix X to a vector in which the elements

are formed by stacking up the columns {x1, x2, · · · , xn} of the matrix X. The

matrix form of W(·) = [svec(A1) · · · svec(Am)]T svec(·) is given in the structure

element ’A’ in input W to Smh NewtonBICG.m. When the dimensions (n1, n2)

of the underlying matrix or the number of constraints are large, the difference in

implementation on the forms of {Ae
∗,Al

∗,Aq
∗,Au

∗} would affect the computational

4.2 Numerical Experiments 30

cost of W(·). The first three examples compare the computational time difference

between CaliMat.m and Smh NewtonBICG.m. The results are reported on an

average of five experiments for each example. The Huber smoothing function,

which was shown to be more efficient for symmetric matrix problems in [6], is used

for the first four examples. In the last example, we will compare the performance

between the use of Huber smoothing function (2.9) and the use of Smale smoothing

function (2.10).

Example 4.2.1. Given a symmetric matrix C which is the 1-day correlation matrix

of dimension (387) from the lagged data sets of RiskMestrics. We let ρ = 1.0,

µ = 1.0 and λ = 0.0. The index sets of the constraints are given by

Be = {(i, i)| i = 1, · · · , n1},

Bl = Bq = Bu = Ø,

and the constraint operator W is given by

Wk : E ik,ik = 1, for (ik, jk) ∈ Be, k ∈ 1, · · · ,me.

Example 4.2.2. Let C be randomly generated with entries in the range of [−1, 1]

with uniform probability distribution. ρ = 1.0, λ = 1.0 and µ = 0.0. The index

set is the same as in Example 4.2.1. The constraint operator W is given by

Wk : E ik,ik = rk, for (ik, jk) ∈ Be, k ∈ 1, · · · ,me,

where rk ∈ [0, 1] is randomly generated. Table 4.2 is a comparison in cases of

different dimensions (1) n1 = 500, (2) n1 = 1000 and (3) n1 = 2000.

Example 4.2.3. Similar to Example 4.2.2 where C is randomly generated, let

ρ = 1.0, λ = 1.0 and µ = 0.0. The index sets for equality and linear inequality

4.2 Numerical Experiments 31

constraints associated with n1 × n1 matrices are given by

Be1 = {(i, i)| i = 1, · · · , n1},

Be2 = {(i, j)| 1 ≤ i < j ≤ n1},

Blu = {(i, j)| 1 ≤ i < j ≤ n1},

Bll = {(i, j)| 1 ≤ i < j ≤ n1},

where Be2 is the index set for fixed off-diagonal elements, Blu and Bll are index

sets for off-diagonal elements to which an upper or lower bound are imposed re-

spectively. They are randomly generated at each row of the matrix. The number

of elements in Be2 , Blu and Bll are determined by parameters n̂e2 , n̂u and n̂l, which

are an average number of elements to be constrainted on each row. The constraint

operator W is given by

Wk :



E ik,ik = rk, for (ik, jk) ∈ Be1 , k ∈ 1, · · · ,me1 ,

E ik,ik = rk, for (ik, jk) ∈ Be2 , k ∈ me1 + 1, · · · ,me1 +me2 ,

E ik,ik ≤ rk, for (ik, jk) ∈ Be2 , k ∈ me + 1, · · · ,me +ml1 ,

E ik,ik ≥ rk, for (ik, jk) ∈ Be2 , k ∈ me +ml1 , · · · ,me1 +me2 +ml1 +ml2 ,

and each element in r = [r1; r2; · · · ; rm] is randomly generated in the range of [0, 1].

In this example, we let n̂e2 = n̂u = n̂l = n̂ and n1 = 1000. Comparisons for three

cases are reported in Table 4.3 where 1) n̂ = 1 and me2 = ml1 = ml2 = 999; 2)

n̂ = 5 and me2 = ml1 = ml2 = 4985; 3) n̂ = 10 and me2 = ml1 = ml2 = 9945.

The above three examples compare the computational performance of two dif-

ferent implementations. We can see that the direct access by index referencing to

the nonzero components of the constrained matrices, which was used in CaliMat.m

saves computational time by a scaler factor (< 3 for the three examples here), while

the local convergence rate for Smh NewtonBICG.m retains the same as CaliMat.m.

Now we look at some examples for solving problem (1.1) with Smh NewtonBICG.m.

4.2 Numerical Experiments 32

Example 4.2.4 is a generalized subproblem of solving rank minimization problems

[11] with only equality constraints for both square and nonsquare matrices. In

Example 4.2.5, the other three types of constraints in problem (1.1) are added in

to demonstrate the computational flexibility of the Smh NewtonBICG.m.

Example 4.2.4. Let (n1, n2) be the dimensions of matrices in (NS), r be a pre-

determined rank, and m be the number of sample entries. ρ = 1.0, λ = 1.0 and

µ = 0.0. We generated M = MLM
T
R , where ML and MR are n × r matrices with

i.i.d. standard Gaussian entries. M is used as the matrix with some predetermined

rank. we let ρ = 1.0, λ = 1.0, µ = 0.0 and C = zeros(n1, n2). The index sets for

constraints are given by

Be = {(ik, jk)| k = 1, · · · ,me},

Bl = Bq = Bu = Ø,

and the constraint operator W is given by

Wk : E ik,jk = M(ik, jk) for (ik, jk) ∈ Be, k ∈ 1, · · · ,me.

In the table 4.4, the computational results (average of five cases) are reported for

cases with respect to the ratio (m/dr) between the number of sampled entries (m)

and the degree of freedom (dr : = r(n1 +n2 − r)) of a n1 ×n2 matrix of rank r. So

here me = m. The computational results for square matrix problem and nonsquare

matrix problem are also compared. For square matrix problems, let n1 = n2 = 1000

and 1) m/dr = 4,me = 390000; (2) m/dr = 5,me = 487500. For nonsquare

matrix problems, let n1 = 1000, n2 = 1003 and (3) m/dr = 4,me = 487500;

(4)m/dr = 5,me = 488250.

As seen from the table 4.4, solving the nonsquare matrix problems is comparably

more difficult in achieving the same level of residue as square matrix problems at

4.2 Numerical Experiments 33

a similar number of iterations. Slow convergence shows when the residue of merit

function reaches to 1.0E − 3, thus for nonsquare cases the statistics are obtained

when the residue falls below 1.0E − 3. In the next example, we add in some

inequality constraints, as well as the second order constraints. Comparisons are

also shown between the uses of Huber smoothing function and Smale smoothing

function introduced. Base on the results, we can see that for nonsymmetric matrix

problems, the Smale function seems to be more superior than the Huber function.

Example 4.2.5. Let M be generated as in Example 4.2.4. Let ρ = 1.0, λ = 1.0

and µ = 1.0. The index sets for constraints are randomly generated as in the

previous examples. The constraint operator W is given by

Wk :



E ik,jk −M(ik, jk) = 0,

E ik,jk −M(ik, jk) ≤ bl1 ,

E ik,jk −M(ik, jk) ≥ bl2 ,

E ik,jk −M(ik, jk) ∈ Kk+1,

E ik,jk −M(ik, jk) = bu,

In table 4.5, we have the results for two cases of different dimensions: (1)

n1 = n2 = 1000, m/dr = 5,me = 487500, ml1 = ml2 = 100, mu = 100, and

mq = 10; (2) n1 = n2 = 2000, m/dr = 5,me = 987500, ml1 = ml2 = 500,

mu = 500, and mq = 50.

4.2 Numerical Experiments 34

CaliMat.m SmhNewton.m

Iterations 10 8

Func. Evaluation 11 8

BiCG/CG steps 27 14

Residule 4.80e-09 6.78e-07

Time (Precond.) 0.5 0.5

Time (BiCG/CG) 0.6 2.5

Time (SVD/EIG) 2.4 2.1

Total time (seconds) 4.2 7.7

Table 4.1: Example 4.2.1

CaliMat.m SmhNewton.m

n=500 n=1000 n=2000 n=500 n=1000 n=2000

Iterations 9 9 10 9 9 9

Func. Evaluation 10 10 11 9 9 9

BiCG/CG steps 23 23 26 15 15 15

Residule 3.2E-08 4.5E-07 1.4E-08 1.7e-07 1.4E-08 2.8E-08

Time (Precond.) 0.9 4.6 23.6 1.2 7.7 55.2

Time (BiCG/CG) 1.3 5.9 32.6 7.3 48.7 365.7

Time (SVD/EIG) 5.5 54.2 551.2 5.7 59.6 533.0

Total time (seconds) 8.6 67.4 616.2 18.2 133.8 1062.5

Table 4.2: Example 4.2.2

4.2 Numerical Experiments 35

CaliMat.m SmhNewton.m

n̂ = 1 n̂ = 5 n̂ = 10 n̂ = 1 n̂ = 5 n̂ = 10

Iterations 11 12 14 11 12 15

Func. Evaluation 13 15 20 12 14 22

BiCG/CG steps 19 28 38 19 28 40

Residule 1.5E-07 3.5E-07 1.3E-07 1.8e-07 3.5E-07 1.3E-07

Time (Precond.) 2.6 3.0 3.5 10.6 12.6 16.2

Time (BiCG/CG) 9.9 14.8 21.4 65.7 95.4 137.1

Time (SVD/EIG) 68.0 80.1 105.8 73.1 87.8 127.8

Total time (seconds) 84.1 102.1 135.9 189.9 240.0 339.72

Table 4.3: Example 4.2.3

r=50 n1 = n2 = 1000 n1 = 1000, n2 = 1003

m/dr = 4 m/dr = 5 m/dr = 4 m/dr = 5

Iterations 6 6 10 10

Func. Evaluation 6 6 13 14

BiCG/CG steps 7 7.6 17 17

Residule 6.06E-08 1.06E-07 7.24E-04 6.46E-4

Time (BiCG/CG) 30.2 32.3 85.7 95.6

Time (SVD/EIG) 119.6 108.9 234.0 236.6

Total time (seconds) 212.4 181.3 413.4 453.9

Table 4.4: Example 4.2.4

4.2 Numerical Experiments 36

n1 = n2 = 1000 n1 = n2 = 2000

me = 487500, mu = 100 me = 987500, mu = 500

ml1 = ml2 = 100, mq = 10 ml1 = ml2 = 500, mq = 50

1) Huber 2) Smale 1) Huber 2) Smale

Iterations 15 7 10 7

Func. Evaluation 15 7 10 7

BiCG/CG steps 27 12 17 9

Residule 6.68E-07 6.28E-07 7.10E-07 3.03E-07

Time (BiCG/CG) 135.8 56.9 487.1 359.4

Time (SVD/EIG) 247.1 118.0 1404.1 1239.7

Total time 525.5 245.3 2526.6 2041.1

Table 4.5: Example 4.2.5

Chapter 5
Conclusions

In this thesis, we applied a smoothing Newton-BiCGStab method to solve the

least squares nonsymmetric matrix nuclear norm problem (1.1). When the in-

equality and second order cone constraints are present, the corresponding dual

problem is no longer an unconstrained convex problem. Solving the constrained

dual problem is equivalent to solving for zeros of some system of nonsmooth equa-

tions. Smoothing functions are applied to the system of nonsmooth equations. The

differential properties such as the global Lipschitz continuity and the strong semis-

moothness of the smoothed-nonsmooth functions have been presented in Chapter

2. The smoothing Newton-BiCGStab method illustrated in Chapter 3 can be

globalized for solving problem (1.1) and a quadratic local convergence rate can be

achieved under certain assumptions. Numerical experiments in the last chapter has

demonstrated that Algorithm 3.1 can be used to efficiently solve problems (1.1).

37

Bibliography

[1] R. Bhatia Matrix Analysis, Springer-Verlag, New York, 1997.

[2] J. -F. Cai, E. J. Candés, and Z. W. Shen, A Singular Value Thresholding

Algorithm for Matrix Completion, 2008.

[3] M. T. Chu, R. E. Funderlic, R. J. Plemmons, Structured Low Rank Approx-

imation, Linear Algebra and Its Applications 366(2003) 157-172.

[4] B.C. Eaves, On the Basic Theorem for Complemenarity, Mathematical Pro-

gramming 1 (1971), pp. 68-75.

[5] A. Fischer, Solution of Monotone Complementarity Problems with Locally

Lipschitzian Functions, Mathematical Programming 76 (1997), pp 513-532.

[6] Y. Gao and D. F. Sun, Calibrating Least Squares Covariance Matrix Prob-

lems with Equality and Inequality Constraints, SIAM Journal on Matrix

Analysis and Applications 31 (2009), pp. 1432-1457.

[7] Y. Gao and D. F. Sun, A Majorized Penalty Approach for Calibrating Rank

Constrained Correlation Matrix Problems, manuscript, 2010.

38

Bibliography 39

[8] G. H. Golub and C. F. Van Loan Matrix Computations, Johns Hopkins

University Press, 1996.

[9] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Mini-

mization Algorithms , I, volume 305 of Grundlehren der Mathematis-

chen Wissenschaften, Fundamental Principles of Mathematical Sciences.

SpringerVerlag, Berlin, 1993.

[10] K. -F. Jiang, D. F. Sun, and K. C. Toh, A Proximal Point Method for Matrix

Least Squares Problem with Nuclear Norm Regularization, manuscript.

[11] Y. -J. Liu, D. F. Sun, and K. C. Toh, An Implementable Proximal Point

Algorithmic Framework for Nuclear Norm Minimization, July 2009.

[12] S. Q. Ma, D. Goldfarb and L.F. Chen, Fixed Point and Bregman Iterative

Methods for Matrix Rank Minimization, 2008.

[13] R. Mifflin, Semismooth and Semiconvex Functions in Constrained Optimiza-

tion SIAM Journal, Control Optimization 15 957-972.

[14] J. V. Outrata, and D. F. Sun, On the Coderivative of the Projection Operator

onto the Second-order Cone, June 19, 2008.

[15] H. D. Qi and D. F. Sun, A Quadratically Convergent Newton Method for

Computing the Nearest Correlation Matrix, SIAM Journal on Matrix Anal-

ysis and Applications 28 (2006) 360-385.

[16] L. Qi and D. F. Sun, Nonsmooth and Smoothing Methods for NCP and

VI. C. Floudas, P. Pardalos, eds. Encyclopedia of Optimization, Kluwer

Academic Publishers, Norwell, MA, 100C104. 2001.

[17] R. T. Rockfellar, Conjugate Duality and Optimization, SIAM, Philadelphia,

1974.

Bibliography 40

[18] D. F. Sun and J. Sun, Semismooth Matrix-valued Functions, Mathematical

of Operations Reseaxxrch, Vol 27, No. 1 Februray 2002, pp. 150-169.

[19] D. F. Sun and L. Qi, Solving Variational Inequality Problems via Smoothing-

nonsmooth Reformulations, Journal of Computational and Applied Mathe-

matics, 129 (2001) 37–62.

[20] H. A. Van Der Vorst, BI-CGSTAB: A Fast and Smoothly Converging Vari-

ant of BI-CG for the Solution of Nonsymmetric Linear Systems, SIAM

Journal on Scientific and Statistical Computing 13 (1992), pp. 631-644.

[21] J. Y. Zhao The Smoothing Function of the Nonsmooth Matrix Valued Func-

tion, Master Thesis, National University of Singapore, 2004.

