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SUMMARY 

 
The Burkholderia cepacia complex (Bcc) has emerged as a major opportunist pathogen 

for the immunocompromised individuals in particular the patients with cystic fibrosis and 

chronic granulomatous disease. Bcc consist of at least 9 species that are phenotypically 

similar but genetically distinct, and all the species are capable of causing infections.  

Among them, B. cenocepacia constitutes the majority of the transmissible and epidemic 

strains and is highly virulent. In this study, a novel signaling molecule designated as 

BDSF from B. cenocepacia has been identified and characterized. BDSF is a structural 

homologue of DSF, which is the quorum sensing signal produced by the plant bacterial 

pathogen Xanthomonas campestris pv. campestris (Xcc). In addition, the genetic analysis 

has demonstrated that the ORF Bcam0581 is essential for BDSF production and can 

genetically substitute for the DSF synthase gene rpfF in Xcc. Furthermore, the dimorphic 

transition of Candida albicans was shown to be inhibited by exogenous addition of 

BDSF or co-culturing with B. cenocepacia. These data indicate that in addition to 

producing lethal antibiotics, microorganisms may also use a new form of antagonistic 

mechanism in which signal molecules are exported to influence the gene expression and 

hence the ecological competence of their competitors. As B. cenocepatia and C. albicans 

are frequently encountered human pathogens, identification of BDSF signal and its 

activity thus provide a new insight into the molecular grounds of their antagonistic 

interactions, whose importance to microbial ecology and pathogenesis is now becoming 

evident.  

 



 xv

The role of BDSF in the B. cenocepacia intraspecies cell-cell communication was 

subsequently characterized. The results show that production of BDSF is under the 

stringent transcriptional control and the molecule accumulates in a cell density-dependent 

manner, typically found with quorum sensing signals. A B. cenocepacia J2315 mutant 

with a deleted Bcam0581 gene, which encodes an enzyme essential for BDSF production, 

exhibited a growth defect in minimal but not in rich medium, decreased virulence gene 

expression and attenuated virulence in a zebrafish infection model. Exogenous addition 

of BDSF to the mutant rescues virulence gene expression but fails to restore its growth 

defect in minimal medium. Further analysis shows that Bcam0581, but not BDSF, is 

associated with the B. cenocepacia ATP biogenesis. The genetic and biochemical 

analyses showed that some of the BDSF-regulated genes are also controlled by the AHL-

dependent QS system and are thus co-regulated by two cell-cell signaling systems. These 

data demonstrate that in addition to the role in the interspecies signal interference, BDSF 

and its synthase are also important for virulence and physiology of B. cenocepacia. 

 

Pseudomonas aeruginosa usually share the same niche as B. cenocepacia in cystic 

fibrosis patients. As a human pathogen, this bacterium is a major source of opportunistic 

infections in both immunocompromised individuals and cystic fibrosis patients. Besides 

to be a QS signal in B. cenocepacia, BDSF was revealed to interfere with P. aeruginosa 

through inhibiting on its QS systems and type III secretion system (T3SS). The bioassay 

results showed that exogenous addition of BDSF decreased the transcriptional expression 

of lusR, rhlI, rhlR and pqsR, which was consistent with the reduction of the production of 

BHL, PQS and virulence factors. Moreover, treatment with BDSF inhibited the gene 
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expression of master regulators and effectors of T3SS of P. aeruginosa, finally causing 

the attenuation of T3SS-meidated cytotoxicity of P. aeruginosa to HeLa cell model.   

 

Given the important roles of BDSF in the intraspecies and interspecies cell-cell 

communication, it becomes intriguing to determine whether BDSF is conserved in other 

members of the Burkholderia cepacia complex. By using a combination of high 

performance liquid chromatography, spectrometry and biological activity analysis, the 

results showed that five out of the nine genomovars of the B. cepacia complex produce 

BDSF as a sole DSF-family signal, whereas the other four genomovars produce not only 

BDSF but also a new DSF-family signal. This new signal was characterized as cis-11-

methyldodeca-2, 5-dienoic acid (CDSF). Interestingly, it was found that DSF, which was 

originally identified in Xanthomonas campestris, is produced by one member of the B. 

cepacia complex, i.e., B. multivorans. Biological activity analysis showed similar to DSF 

and BDSF, the newly identified CDSF is a potent signal in regulation of biofilm 

formation and virulence factor production of Xcc and B. cenocepacia, and in modulation 

of morphological transition of Candida albicans. These results present further evidence 

that the DSF-like molecules are widely conserved signals with roles not only in the 

bacterial quorum sensing but also in microbial ecology through interspecies cell-cell 

communication.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Quorum sensing (QS) in Bacteria 

1.1.1 AHL-mediated QS in Gram-negative bacteria 

Over the last twenty years, it has become increasingly clear that many microorganisms 

can coordinate their communal behavior in a process known as "quorum sensing" (QS) 

(Fuqua et al., 1994; Fuqua et al., 2001; Miller and Bassler, 2001). This cell-to-cell 

communication mechanism is employed to play a central role in mediating the bacterial 

cooperative behavior. In Gram-negative bacteria, most of the quorum-sensing signals are 

identified as N-acyl homoserine lactones (AHL), which are synthesized by the N-

acylhomoserine lactone synthases known as the LuxI homologs. After diffusing outside 

the bacterial cells, AHL molecules accumulate in the culture supernatants at a rate 

proportional to the increase in cell density. Once the AHL concentration exceeds a certain 

threshold value, these signals return back and bind to the AHL response receptors known 

as the LuxR homologs. These intracellular receptors are transcriptional regulators, whose 

activity alters upon binding the AHL ligand, thereby eliciting a change in target gene 

transcription (Fig. 1-1A). 

 

The first QS system was described in Vibrio fischeri (Neaslon et al., 1970; Eberhard, 

1972), a symbiotic species that provides its marine eukaryotic hosts with light. Light 

emission depends on the transcription of the luciferase operon, which occurs when the 

concentration of the autoinducer reaches a threshold level. The working model of QS in V. 
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fischeri is that LuxI constitutively produces N-(3-oxohexanoyl)-L-homoserine lactone 

(OHHL), which passively diffuses across the membrane. Hence, along with the increase 

of bacterial cell density, the OHHL signal molecules accumulate accordingly in the 

culture supernatants. At the same time, LuxR is expressed and intracellularly binds to 

OHHL. Upon binding to the lignad OHHL, LuxR undergoes a conformational change, 

which in turn promotes the multimerized protein to bind to the operator region called the 

lux box, which is localized at upstream of luxICDABEG, thereby stimulating the binding 

of RNA polymerase to the intervening promoter region (Urbanowski et al., 2004). In 

1995, the second AHL molecule was identified in V. fischeri as N-octanoyl-(L)-

homoserine lactone (OHL) (Gilson and Dunlap, 1995). Intriguingly, the synthesis of this 

molecule was found to be catalyzed by AinS, which has no similarity to LuxI. AinS 

employs the same basic substrates for OHL synthesis (SAM and octanoyl-ACP) as LuxI 

(Hanzelka et al., 1999). This finding suggests that the QS signalling systems have 

evolved at least twice during evolutionary history in V. fischeri. The AinS-derived OHL 

is produced at relatively low cell densities when the bacteria do not need to luminescence. 

At higher cell densities, the induction of luxR expression activates the expression of 

luxICDABEG. Thus, the QS in V. fischeri is a finely-tuned, sequential process that 

ensures the proper timing of the gene expression during bacterial growth. 

 

After discovery of the AHL-mediated QS systems in V. fischeri, subsequently, similar 

AHL quorum sensing signals were identified in some other bacterial species, including 

Agrobacterium tumefaciens (Zhang et al., 1991; Zhang et al., 1993; Piper et al., 1993), 

Erwinia carotovora (Bainton et al., 1992; Jones et al., 1993) and Pseudomonas 
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aeruginosa (Passador et al., 1993). These discoveries indicate that a common gene 

regulation mechanism similar to the V. fischeri bioluminescence autoinduction system 

indeed exists in diverse bacterial species. After that, many more bacterial species have 

been known to produce the AHL-family quorum sensing signals (Pearson et al., 1994; 

Throup et al., 1995; Bassler et al., 1997; Cha et al., 1998; Costa and Loper, 1997; Swift 

et al., 1997; Gotschlich et al., 2001). These bacteria utilize the AHL-dependent quorum 

sensing systems to regulate different biological functions, which include bioluminescence, 

plasmid transfer, biofilm formation, virulence, antibiotics production and swarming 

motility. Taken together, the accumulated lines of evidences have indicated that the 

AHL-dependent system is a global gene regulation mechanism in Gram-negative bacteria 

 

1.1.2 Oligopeptide-mediated QS in Gram-positive bacteria 

Similar to the AHL-dependent QS in Gram-negative bacteria, there are also several 

processes in Gram-positive bacteria which are regulated in a cell-density-dependent 

manner. These quorum sensing systems promote the genetic competence of Bacillus 

subtilis and Streptococcus pneumoniae, as well as the virulence response in 

Streptococcus aureus and the production of antimicrobial peptides (AMPs) by several 

other Gram-positive species. Different from the AHL-type QS in Gram-negative bacteria 

which use fatty acid derivatives as signals, Gram-positive bacteria utilize amino acids and 

short peptides usually existing as oligopeptides which are about 5-17 residues in length 

(Lazazzera and Grossman, 1998).  
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The regulation model of the oligopeptide-mediated QS in Gram-positive bacteria is 

distinct from the LuxRI type in Gram-negative bacteria. They usually utilize a two-

component regulatory system based bacterial QS circuit. In this regulatory process, the 

secreted peptide signals are detected by the input domain of a membrane-bound sensor 

histidine kinase, which is a typical sensor component of the two-component signal 

transduction system consisting of a sensor and response-regulator protein. This sensing 

will use phosphorylation to transfer information to the cognate response regulator, which 

then regulates the target gene expression directly or indirectly (for reviews see Stock et 

al., 2000; Parkinson and Kofoid, 1992) (Fig. 1-1B). Another common feature in many of 

these quorum-sensing modes is the involvement of a dedicated ATP-binding cassette 

(ABC) exporter in the secretion of the peptide signal. Furthermore, in the AIP two-

component QS system, before being secreted out, the precursor peptide is modified to 

generate the final AIP signals, which then are exported by the corresponding ABC 

transporter to start the QS regulation process (Fig. 1-1B). 

  

1.1.3 Other QS signals   

AI-2 was originally recognized as a quorum-sensing signal in Vibrio harveyi by Bassler 

et al. (1993). Since then, this type of signaling system has been discovered in many gram-

negative bacteria. The AI-2-type signaling is involved in the regulation of the 

bioluminescence in V. harveyi (Bassler et al., 1994), the type III secretion in Escherichia 

coli O157:H7 (Sperandio et al., 1999), and the virulence factor VirB in Shigella flexneri 

(Day and Maurelli, 2001). Over 400 genes could be influenced by AI-2 as indicated by 

the microarray analysis conducted with E. coli strains (DeLisa et al., 2001; 
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Fig. 1-1. Quorum sensing models in bacteria (copied from Zhang and Dong, 2004). (A) 

The LuxIR type QS system in Gram-negative, the LuxI protein (I) catalyses the synthesis 

of AHL signals. As bacterial cells proliferate, the accumulated AHL signals initiate QS 

signalling by binding to LuxR-type transcription factors (R). The LuxR-AHL complex 

induces the expression of target genes. (B) The AIP two-component system QS in Gram-

positive QS system, precursor peptide (PP) are modified and the resulting QS signals 

(AIP) exported by an ABC transporter (T). The AIP signals are detected by sensor-

histidine kinases (S), and the sensory information is transferred to the cognate response 

regulator (RR) by phosphorylation relay (P), which induces the target gene expression. 
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Sperandio et al., 2001). Furthermore, it has been previously shown that AI-2 signals from 

Salmonella enterica cross communicate and activate the V. harveyi indicator strain 

(Surette et al., 1998). This describes AI-2 as a signal not only for intracellular regulation 

but also for interspecies communication. 

 

A new class of autoinducers was recently identified in strains of Pseudomonas based on 

their ability to activate the AHL biosensors. Structural analysis indicated that these new 

signal molecules were the diketopiperazines (DKPs) cyclo(L-Ala-L-Val) and cyclo(L-

Pro-L-Tyr), respectively (Holden et al., 1999). Additional DKPs have also been 

identified in Proteus mirabilis, Citrobacter freundii, Enterobacter agglomerans, 

Pseudomonas fluorescens, and Pseudomonas alkaligenes (Degrassi et al., 2002; Holden 

et al., 1999). However, the DKPs need a much higher concentration to activate AHL 

biosensors (Holden et al., 1999), which indicates that these compounds may not play a 

significant role in the natural environment. Another report of cyclic dipeptides from 

Pseudomonas putida suggests that the DKPs are copurified with AHLs and are capable of 

activating various bacterial AHL biosensors (Degrassi et al., 2002). Interestingly, DKPs 

act as AHL antagonists in some strains and as agonists in others. This ability of DKPs 

from one bacterial strain to cross-communicate with the quorum-sensing networks of 

unrelated bacteria adds complexity and diversity to the quorum-sensing languages. 

 

Another cell density factor was proposed to be involved in the population density-

dependent regulation of the nod genes in Bradyrhizobium japonicum, which is a gram-

negative, nitrogen-fixing symbiont of many leguminous plants. The nod genes are 
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repressed at high population densities, and this is mediated by small diffusible signal 

molecules present in conditioned media of wild-type bacterial cultures (Loh et al., 2002b). 

Structural characterization elucidated that the cell density factor is 2-{4-[[4-(3-

aminooxetan-2-yl) henyl] (imino) methyl] phenyl} oxetan-3-yl amine, which has been 

named as bradyoxetin. This structure of bradyoxetin is similar to that of a siderophore, 

mugeneic acid. In accordance with this similarity, bradyoxetin appears to be regulated by 

iron concentrations in the medium. It is maximally produced under iron-deficient 

conditions and repressed when Fe3+ is provided in excess (Loh et al., 2002a). A 

preliminary analysis suggested that bradyoxetin-like signal molecules were present in the 

extracts of various Rhizobium strains as well as other species of the α-proteobacterial 

group (Loh et al., 2002a). 

 

 Additionally, besides the signals mentioned above, a few more QS signals have been 

identified in bacteria, including the AI-3 autoinducer in E. coli (Sperandio et al., 2003), 

and the diffusible signal factor (DSF) in Xanthomonas campestris (Barber et al., 1997; 

Wang et al., 2004). The structure of DSF was recently identified as cis-11-methyl-2-

dodecenoic acid (Wang et al., 2004). A detailed literature review of the DSF signals will 

be described in the later section of this chapter.  

 

1.2 Quorum Sensing in Burkholderia cenocepacia 

1.2.1 The Burkholderia cepacia complex 

Burkholderia cepacia is an opportunistic pathogen that infects the immunocompromised 

patients with cystic fibrosis and chronic granulomatous disease (McDowell et al., 2004; 
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Mohr et al., 2001). It was first discovered in 1949 by Walter Burkholder at the Cornell 

University in rotting onions and described as a human pathogen in 1950 (Burkholder, 

1950). The first “epidemic” strain of Burkholderia cepacia was isolated in the UK in 

1986 (Govan et al., 1993). Infected with B. cepacia, cystic fibrosis patients will suffer 

from cepacia syndrome, a necrotizing peneumonia with fever and occasionally 

bacteremia, which causes a rapid and pulmonary decline (Isles et al., 1984). Although the 

clinical outcomes are different for individuals, infections in some patients cause serious 

outcomes and even fatal disease (Mahenthiralingam et al., 2001; Mahenthiralingam et al., 

2002). Moreover, isolates of the Burkholderia cepacia complex (Bcc) can spread 

between CF patients through contact, which mostly occurs inside hospital. Sequence 

variation in the 16S rRNA gene is generally useful for differentiating bacterial species. 

However, among the Bcc species there is limited sequence diversity in this gene, which 

share a high similarity of more than 97.7%. Nevertheless, recA shows a high level of 

variation and becomes one of the main methods to distinguish members of the Bcc 

complex (Coenye et al., 2001). A taxonomic approach based on multiple tests known as 

polyphasic taxonomy was used to define the species diversity of Bcc, which includes 

tests such as biochemical profile analysis, whole-cell protein profile and fatty acid 

analysis, 16S rRNA and recA gene sequencing, as well as DNA-DNA hybridization 

(Coenye et al., 2001; Vandamme et al., 1997). These taxonomic methods divided the 

Burkholderia cepacia complex into at least nine distinct genomic species or genomovars. 

They are Burkholderia cepacia, Burkholderia multivorans, Burkholderia cenocepacia, 

Burkholderia stabilis, Burkholderia vietnamiensis, Burkholderia dolsa, Burkholderia 

ambifaria, Burkholderia anthina, and Burkholderia pyrrocinia (Lipuma 2005). Within 
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this group, the most transmissible and epidemic strains are B. cenocepacia and B. 

multivorans, which are highly virulent, causing significant mortality among CF patients 

(Mahenthiralingam et al., 2001; Mahenthiralingam et al., 2002; Rebecca et al., 2005).  

 

1.2.2 Burkholderia cenocepacia and its pathogenicity   

Burkholderia cenocepacia belongs to the genomovars III of the B. cepacia complex. It 

comprises about 83% of all the B. cepacia complex strains isolated from the CF patients 

in Canada (Speert et al., 2002), and 50% of the isolates in the United States (Lipuma et 

al., 2001). Unlike most other pathogens in CF, which typically remain confined to the 

endobronchial spaces, B. cenocepacia can traverse airway epithelium to cause bacteremia 

and sepsis.  

 

Besides humans, B. cenocepacia can also infect a wide range host such as rodents 

(Bernier et al., 2003; Speert et al., 1999), nematodes (Kothe et al., 2003), unicellular 

organisms (Fehlner-Gardier et al., 2002), and plants (Bernier et al., 2003), suggesting that 

B. cenocepacia is likely to produce multiple, potentially novel virulence factors, which 

consist of lipase, protease, chitinase and siderophores (Gotschlich et al., 2001). Several 

putative genomic DNA fragments enriched for the virulence genes of B. cenocepacia 

have been identified; and sequences analysis demonstrated that some of these putative 

genomic DNA fragments are unique for this genomovars genus. 

 

1.2.3 QS systems in Burkholderia cenocepacia 
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Studies showed that B. cenocepacia utilizes the N-acyl homoserine lactones (AHL)-

dependent quorum-sensing system to regulate particular genes in a cell density-dependent 

mechanism. It has the LuxI/R homologs, CepIR, which is widely distributed among the B. 

cepacia complex strains (Lewenza et al., 1999; Gotschlich et al., 2001; Lutter et al., 

2001). This regulatory system consists of the AHL synthase CepI and the transcriptional 

regulator CepR (Gotschlich et al., 2001; Lewenza et al., 1999). CepI directs the synthesis 

of N-octanoylhomoserine lactones (C8-HSL, OHL) and minor amount of N-

hexanoylhomoserine lactones (C6-HSL, HHL). At a low density, the cells produce basal 

levels of AHLs by the CepI synthase, which then diffuse to the environment across the 

cell membrane. As the cell density increases, the diffusible AHL signals molecules 

accumulate in the growth medium; when it reaches the threshold level, these signals 

interact with the cognate receptor CepR; and the CepR-AHL complex then in turn 

increase or repress the expression of the target genes. An interesting feature of the CepIR 

system is that CepR negatively regulates its own expression but positively regulates the 

cepI expression at the transcriptional level (Lewenza and Sokol, 2001). Additionally, this 

QS system positive controls expression of extracellular proteases, chitinases, swarming 

motility, and biofilm formation (Lewenza et al., 1999; Huber et al., 2001). 

  

B. cenocepacia strains contain a genomic island designated as the cenocepacia island 

(cci). This pathogenicity island is a horizontally acquired genomic region. It has an 

atypical GC content; and it is the first pathogenicity island that actually encodes classical 

LuxRI homologs (Baldwin et al., 2004). The cci island contains an N-acylhomoserine 

lactones synthase gene named cciI, and a response regulator gene, cciR. Phylogenetic 
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analysis demonstrated that the CepIR and CciIR systems are distinct from each other. 

AHL production analysis indicated that CciI catalyzes the synthesis of N-hexanoyl-L-

homoserine (C6-HSL, HHL) and minor amounts of N-octanoyl-L-homoserine lactones 

(C8-HSL, OHL) (Malott et al., 2005), which is in direct contrast to the CepIR system. 

Research shows that the CciIR QS system is involved in regulation of some virulence 

factors production and the bacterial swarming motility (Hacker and Kaper, 2000). It is 

also required for persistence and inflammation in rat lung infection model 

(Mahenthiralingam et al., 2005). 

 

In addition, B. cenocepacia as well as other Burkholderia species have been reported to 

produce 2-heptyl-4-quinolone (HHQ), the precursor of the Pseudomonas aeruginosa 

quinolone signal molecule (PQS); and it has been suggested that HHQ may also be used 

for cell-cell communication (Diggle et al., 2006a; Diggle et al., 2006b). In the case of the 

human pathogen Burkholderia pseudomallei, loss of HHQ production was shown to 

affect colony morphology and increase the elastase production (Diggle et al., 2006a; 

Diggle et al., 2006b). 

 

1.3 DSF cell-cell communication system 

1.3.1 The wide distribution of the DSF-family signals in bacteria 

Recently, the diffusible signal factor (DSF) family signals have been implicated as a 

novel family of cell-cell communication signals in many bacteria species (Table 1-1) (He 

and Zhang, 2008). DSF was originally recognized in Xanthomonas campestris pv. 

campestris (Xcc) as a novel regulatory system required for pathogenicity (Barber et al., 
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1997). Subsequently, the DSF-like activity or similar signals were identified in  

Xanthomonas axonopodis pv citri (Andrade et al., 2006), Stenotrophomonas maltophilia 

(Fouhy et al., 2007), Xanthomonas oryzae pv. oryzae (Tang et al., 1996; Chatterjee and 

Sonti, 2002) and Xylella fastidiosa (Newman et al., 2004). Wang et al. (2004) tested 31 

bacterial strains from 13 bacterial species, and found that 25 strains from 10 species 

produce the DSF-like activity, including Xcc, Xanthomonas oryzae pv. oryzae, 

Xanthomonas oryzae pv. oryzicola, Xanthomonas albilineans, Pseudomonas aeruginosa, 

Mycobacterium avium, Mycobacterium chelonae, Mycobacterium smegmatis, 

Mycobacterium intracellulare and Mycobacterium kansasii. These evidences support the 

notion that the DSF-family signals are a new family of QS “language” which appears to 

be widely distributed in bacteria.  

 

1.3.2 Regulatory mechanisms of DSF signaling systems  

1.3.2.1 DSF signaling pathway in X. campestris 

Similar to the QS system in Gram-positive bacteria, the DSF-dependent cell-cell 

communication system in Xcc employs a two-component system in the signal detection 

and transduction. In Xcc, RpfF is responsible for DSF signal production, while RpfC and 

RpfG constitute a two-component system for DSF perception and signal transduction 

(Barber et al., 1997; Slater et al., 2000; He et al., 2006a). In the RpfC/RpfG two-

component system, RpfC is a hybrid sensor kinase consisting of five transmembrane 

domains (TM), a histidine kinase (HK) domain, a receiver (REC) domain, and a histidine 

phosphotransfer (HPT) domain. RpfG contains two major domains: a receiver domain  
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Table 1-1.  The DSF family signals are widely conserved and modulate various 

biological functions in the Gram-negative bacterial pathogens. 

    Bacterium  
 

DSF-like Signal  
 

  RpfF 
similarity 

   DSF-mediated  
Biological functions 
 

     Reference 
 

Xanthomonas campestris 
pv. campestris 

cis-Δ2-11-methyl- 
dodecenoic acid 

100% 
 

Virulence and biofilm 
dispersal 

Wang et al., 2004 
 

Xanthomonas campestris 
pv. vesicatoria 

ND 97% ND Thieme et al., 2005 

Xanthomonas axonopodis  
pv. glycines 

ND 97% ND Thomthampitak et 
al., 2008 

Xanthomonas oryzae pv. 
oryzicola 

ND 96% ND ND 

Xanthomonas  oryzae pv. 
oryzae 
 

ND 95% Virulence, tetracycline 
resistance and iron 
uptake 

Chatterjee & Sonti, 
2002 
 

Stenotrophomonas 
maltophilia 
 

cis-Δ2-11-methyl- 
dodecenoic acid and 
seven other similar 
signals 

80% 
 

Virulence, antibiotic 
resistance and  ferric 
citrate uptake  

Huang & Wang, 
2007b 

Xylella  fastidiosa 
 

12-methyl- 
tetradecanoic acid 

67% Virulence, Biofilm 
formation and vector 
transmission 

Colnaghi Simionato 
et al., 2007 

Xanthomonas  axonopodis 
pv. citri 

ND 54% Virulence Andrade et al., 2006 

Methylobacillus flagellatus ND 40% ND Chistoserdova et al., 
2007 

Thiobacillus denitrificans ND 40% ND Beller et al., 2006 

Leptospirillum sp. ND 39% ND Lo et al., 2007 

Mariprofundus 
ferrooxydans 

ND 37% ND ND 

Sulfurovum sp. ND 37% ND Nakagawa et al., 
2007 
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and an HD-GYP domain, with conserved HD and GYP motifs (Ponting et al., 1999). The 

signaling mechanism by which RpfC/RpfG employs to transmit the DSF signal has been 

characterized. Substitution of the conserved residues associated with phosphorelay in the 

HK-, REC-, HPT-domain in RpfC or the receiver domain in RpfG abolishes the DSF- 

dependent functions, such as modulation of virulence factor production and biofilm 

dispersal (He et al., 2006a). Deletion of the signal receiver domain in RpfC and RpfG 

caused the same results. The addition of DSF to the rpfG or rpfC mutant can not restore 

the production of EPS and extracellular enzymes to the levels of wild-type strain (He et 

al., 2006a). Based on these results, it was concluded that the RpfC/RpfG system uses the 

conserved phosphorelay mechanisms to transduce the DSF signal in modulation of 

virulence factors production (He et al., 2006a). The conclusion was further strengthened 

by the reconstruction of the RpfC/RpfG mediated DSF signaling in Pseudomonas 

aeruginosa (Ryan et al., 2006). 

 

Besides functioning as the DSF sensor, RpfC negatively controls the DSF production 

through a novel posttranslational mechanism involving protein-protein interaction (He et 

al., 2006a). It has been shown that RpfC interacts with RpfF tightly and specifically (He 

et al., 2006a; Andrade et al., 2006). This coupled with the fact that the rpfC mutants 

produce higher level of DSF than the wild type suggesting a novel model of 

autoregulation of QS signal biosynthesis. At a lower cell density, the extracellular 

concentration of DSF is below a threshold and RpfC is locked in an unphosphorylated 

state. To keep the basal level of DSF synthesis, RpfC tightly binds to RpfF to limit its 

DSF synthase activity. At high cell density, the accumulated DSF triggers the 
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autophosphorylation of RpfC and release of RpfF, leading to the enhance production of 

DSF signals.  

 

Several lines of evidences support the notion that RpfG acts as a downstream 

phosphodiesterase to degrade the second messenger cyclic-di-GMP through HD-GYP 

domain. Purified HD-GYP domain can degrade cyclic-di-GMP to generate GMP, 

whereas it does not have any effect on other nucleotide analogues, including ATP, GTP, 

GMP, cGMP, and cAMP (Ryan et al., 2006). Point mutation of the conserved residues H 

and D of the HD-GYP domain abrogates both the enzymatic activity against cyclic-di-

GMP and the regulatory activity on the virulence factor production. Combined with the 

finding that the HD-GYP domain alone can substitute RpfG in regulation of EPS and 

extracellular enzymes production (He et al., 2006b; Ryan et al., 2006), it becomes clear 

that the response regulator RpfG performs its regulatory activity by enzymatic 

degradation of cyclic-di-GMP to coordinate the expression of the downstream genes in 

the DSF signaling pathway.  

 

The conserved global regulator Clp, which shows a strong homology to the cAMP 

nucleotide receptor protein Crp of Escherichia coli, is essential for the DSF-dependent 

regulation of virulence factor production (He et al., 2007). The expression of clp is 

slightly upregulated by DSF through the RpfC/RpfG two-component system, although its 

expression in the rpfF mutant remains relatively high (He et al., 2007). Clp is a c-di-GMP 

effector. It specifically binds to c-di-GMP with high affinity and induces the allosteric 
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conformational changes, which finally abolishs the interaction between Clp and its target 

gene promoter (Tao et al., 2009).  

 

1.3.2.2 DSF signaling pathway in X. fastidiosa 

Cell–cell signaling in Xylella fastidiosa is mediated by a different fatty acid, 12-methyl-

tetradecanoic acid, which is a homologue of DSF of Xcc (Colnaghi Simionato et al., 

2007). Similar to Xcc, RpfF and RpfC are found to be employed for the production and 

perception of putative DSF signal (Newman et al., 2004; Chatterjee et al., 2008). 

However, two distinct pathways for DSF perception in X. fastidiosa have been indicated 

by the divergent expression patterns of biofilm and virulence related genes (Chatterjee et 

al., 2008). It was proposed that RpfF/RpfC share the same downstream pathway for the 

negative regulation of virulence genes, but use different pathways for the activation or 

inhibition of genes required for biofilm formation. The next challenge will be to identify 

the downstream regulators specifically responsible for the different pathways in biofilm 

and virulence. It also remains unclear that whether Clp is involved in the DSF signaling 

pathways in X. fastidiosa. The results from Xcc and X. fastidiosa seem to suggest that the 

DSF-signaling systems may share a general role in the modulation of virulence but they 

may differ in the regulatory mechanisms among different bacterial pathogens. 

 

1.3.2.3 DSF signaling pathway in S. maltophilia 

The pathogen Stenotrophomonas maltophilia has also evolved a DSF system for 

coordinating the gene expression. Besides producing the DSF of Xcc, S. maltophilia WR-

C employ RpfF and RpfB to produce seven other structural derivatives that are not shared 
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by Xcc (Ryan et al., 2008). In addition, a cyclic AMP (cAMP) receptor protein (CRP) 

acts to positively regulate the rpfF expression, possible by binding the upstream regions 

of the rpfF promoter (Huang and Wong, 2007). Through this transcription regulation, 

DSF positively regulates the expression of FecA, a ferric citrate receptor important for 

acquisition of iron from the environment. Whether the RpfC/RpfG two-component 

system is involved in the regulation of fec by DSF signal is unknown. In addition, the 

direct binding of the rpfF promoter by Crp remains to be investigated.  

 

1.3.3 Biological functions of the DSF signaling systems 

Numorous studies of the Xcc DSF-deficient mutants have established the importance of 

the DSF signaling system in regulation of the production of virulence factors and of the 

bacterial virulence. Reduced production of EPS and extracellular enzymes, such as 

proteases and cellulases, were observed in the mutant rpfF::Tn5lac of Xcc strain 8004 

and the rpfF deletion mutant of XC1 (Tang et al., 1991; Barber et al., 1997; He et al., 

2006b). Null mutation of rpfF in Xcc 8004 or XC1 results in the substantial decrease in 

the production of EPS and extracellular enzymes and notable reduction of virulence to 

plant hosts (Barber et al., 1997; He et al., 2007), suggesting that DSF positively controls 

the production of virulence factors and regulates the bacterial virulence. Another 

important DSF-dependent biological function is the biofilm dispersal. Mutation of the 

rpfF gene in both Xcc strains 8004 and XC1 causes the formation of cell aggregates 

(biofilm) (Dow et al., 2003; He et al., 2006b). Moreover, addition of DSF to the rpfF 

mutant abolishes biofilm formation and the mutant grows in planktonic form, suggesting 

a critical role of DSF in the modulation of Xcc switching between the planktonic grow 
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mode and the biofilm growth form. Although the mechanism of DSF in the regulation of 

biofilm dispersal remains unclear, genome scale analysis of DSF regulon appears to 

provide rich information on the potential genetic pathways and the associated biological 

functions (He et al., 2006b). In addition to the role of virulence and biofilm dispersal, 

DSF is also involved in regulation of other biological functions of importance such as 

flagellum synthesis, resistance to toxin and oxidative stress, iron uptake and aerobic 

respiration (He et al., 2006b). 

 

In X. oryzae pv. oryzae, a pathogen of rice, the DSF signaling system positively regulates 

the pathogenesis. However, different from Xcc, insertion mutation of rpfF of Xoo leads to 

proficient production of EPS and extracellular enzymes, and the mutant exhibits an 

unusual tetracycline susceptibility phenotype and growth deficiency under low iron 

conditions (Chatterjee and Sonti, 2002). Mutation of rpfC in Xoo has no effect on the 

production of extracellular enzymes, but reduces the level of the EPS biosynthesis and 

virulence (Tang et al., 1996).  

 

The DSF signaling system in S. maltophilia plays a role in regulation of various 

biological functions. Mutation of rpfF in S. maltophilia gives rise to reduced motility, 

decreased production of extracellular protease, decreased tolerance to a range of 

antibiotics and heavy metals, altered LPS structure and formation of cell aggregates, 

which are functionally connected with the virulence of S. maltophilia (Fouhy et al., 2007). 

The study from other group indicates that inactivation of rpfF or rpfB in S. maltophilia 

strain WR-C decreases the transcription of fecA, which encodes a ferric citrate receptor 
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that transports exogenous siderophore-ferric citrate from the environment into the 

bacterial periplasm, and addition of synthetic DSF restores the fecA expression (Huang 

and Wong, 2007), suggesting a link between the rpf/DSF system and ferric citrate uptake.  

 

In X. fastidiosa, RpfF is sufficient for biosynthesis of a DSF-like signal, which appears to 

be different from the DSF of Xcc in the chemical structure. It was tentatively identified as 

12-methyl-tetradecanoic acid (Colnaghi Simionato et al., 2007). Mutation of rpfF in X. 

fastidiosa gives rise to enhanced virulence, impaired insect transmission, and inability of 

biofilm formation in the insect foregut but not in plant (Newman et al., 2004). In contrast 

to the rpfF mutants, the rpfC mutants are deficient in virulence, migration along xylem 

vessels, insect transmission and have a hyper-attachment phenotype (Chatterjee et al., 

2008). Consistent with their differences in virulence, the expression patterns of many 

downstream genes are not always the same in the rpfF and the rpfC mutants. RpfF and 

RpfC both positive regulate the virulence related genes such as tolC , pglA, PD0279; 

however, they show the opposite effects on the expression of the biofilm related genes 

such as fimA, hxfA-B, gumJ, indicating the gene regulation may be occurred by two 

different pathways involving the DSF signaling system in X. fastidiosa. 

 

1.3.4 The role of the DSF-family signals in microbial ecology 

DSF signals not only control a range of biological functions through intraspecies 

signaling; they also play an important role in the microbial ecology (Wang et al., 2004; 

Ryan et al., 2008). Among different Xanthomonads, inter-species scommunication easily 

occurs in may be due to the same or similar chemical structure of DSF signals produced 
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by these closely related bacterial pathogens (Wang et al., 2004). Actually, DSF-

dependent inter-species communication is not restricted to Xanthomonads. Ryan et al. 

(2008) reported that DSF produced by S. maltophilia influenced the biofilm formation of 

P. aeruginosa through PA1396, which encodes a sensor kinase with a similar input 

domain as that of RpfC in X. campestris.  This evidence implicates DSF as the 

“language” in the cross-talk between S. maltophilia and P. aeruginosa. Moreover, 

besides affecting the structure of biofilm, exogenous addition of DSF leads to up-

regulation of a number of proteins involved in stress tolerance; and the enhanced 

tolerance of P. aeruginosa to polymyxins B and E (Ryan et al., 2008).  

 

Besides involving in the inter-species cross-talk, DSF was shown to inhibit the 

morphological transistion of Candida albicans through signal interference (Wang et al., 

2004). DSF is structurally similar to farnesoic acid, which is an autoregulatory substance 

in C. albicans. Farnesoic acid inhibits C. albicans germ tube formation and plays a key 

role on the regulation of morphological transition in C. albicans (Oh et al., 2001). Studies 

showed that DSF is not only structurally similar to farnesoic acid; it can also substitute 

farnesoic acid to inhibit the germ tube formation of C. albicans (Wang et al., 2004). 

These studies support that DSF has dual functions on the genetic regulation at the 

intraspecies level and the cross-talk through inter-species and inter-kingdom 

communications.  

 

1.4 Aims and scope of this study 
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Previous studies indicated that quorum-sensing mechanisms are widely conserved in 

bacteria, and employed to coordinate the communal behaviors such as biofilm formation, 

swarming motility, plasmid transfer, antibiotic resistance and virulence factors 

production (Pearson, et al., 1994; Whiteley, et al., 1999; de Kievit and Iglewski, 2000; 

Williams et al., 2000). Recently, diffusible signal factors (DSF) have emerged as a novel 

family of cell-cell communication signals in a range of bacterial species (He and Zhang, 

2008). Different from the AHL-dependent QS, the DSF signaling system usually utilizes 

a two-component transduction system to perceive and transmit signal to the downstream 

steps (Slater et al., 2000; Newman et al., 2004; He et al., 2006a; Chatterjee et al., 2008). 

Although the functions and the molecular mechanisms of DSF signaling systems have 

been partially elucidated in Xcc and some other Gram-negative bacterial pathogens, there 

are still many unanswered questions that need to be resolved. Additionally, there is no 

any evidence for the interactions between AHL-dependent QS system and DSF signaling 

system; and the knowledge of DSF to be used as a “language” in inter-species and inter-

kingdom communication is also limited. 

 

In this study, our main aim is to characterize a novel DSF signaling system in 

Burkholderia cenocepacia; and to explore its interaction with the AHL-mediated QS 

system. In addition, its role on the microbial ecology will also be investigated. This study 

will enrich our understanding of this novel DSF signaling pathway, and the roles of the 

DSF-familiy signals in the intraspecies and interspecies cell-cell communications. 

Especially, it may also shed light on the potential intriguing relationship between the 

AHL-mediated QS system and the DSF-dependent signaling system in B. cenocepacia.  
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This thesis is divided into 6 chapters.  

Chapter 1 introduces and discusses the literatures related to this study. 

Chapter 2 describes the characterization of BDSF signal and its interference with 

Candida albicans morphological transition. 

Chapter 3 reports the identification of the biological roles of the QS signal BDSF and its 

synthase. 

Chapter 4 states the structural and functional characterization of the DSF-family signals 

produced by the B. cepacia complex. 

Chapter 5 describes the attenuation of virulence of Pseudomonas aeruginosa by BDSF 

through downregulation of the QS and type III secretion systems.  

Chapter 6 is the general discussions and further study. 
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CHAPTER 2 

A NOVEL DSF-LIKE SIGNAL FROM BURKHOLDERIA 

CENOCEPACIA INTERFERES WITH CANDIDA ALBICANS 

MORPHOLOGICAL TRANSITION 

2.1 Introduction  

Microbe–microbe interactions are ubiquitous in various natural ecosystems. Not 

surprisingly, various forms of symbiosis and antagonism have surfaced. It has been 

known for a long time that microorganisms may produce antibiotics to inhibit or stop the 

growth of their competitors to gain competitive advantages. Recently, evidence is 

accumulating for a new form of microbial antagonism, which was tentatively designated 

as signal interference (Zhang and Dong, 2004). This type of antagonism acts not by 

killing, but instead by influencing the signal-mediated gene expression of the competitors 

and thus tips the balance of interaction (Dong et al., 2004; Hogan et al., 2004). For 

keeping up their competitive advantages, many microorganisms appear to produce, 

release and respond collectively to species-specific small signal molecules to coordinate a 

range of important activities, such as virulence factor production, antibiotics biosynthesis 

and biofilm formation. This cell–cell communication mechanism is commonly known as 

quorum sensing (Whitehead et al., 2001; Fuqua and Greenberg, 2002). Logically, 

microorganisms might also boost their competitive strength in ecosystems by interfering 

with the quorum-sensing signaling of their competitors (Zhang and Dong, 2004). 
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Candida albicans causes various forms of candidiasis ranging from mucosal infections to 

serious systemic infections. Mutants defective in morphological transitions during 

infection are avirulent (Lo et al., 1997; Braun et al., 2000; Saville et al., 2003; Zheng et 

al., 2003). Therefore, this ability to switch between yeast and hyphal-form is an 

important aspect of its pathogenesis. Intriguingly, the chance of infection by C. albicans 

seems to be influenced by the presence of certain bacterial pathogens. While the fungal 

pathogen can be found in various groups of patients who have undergone treatments with 

broad-spectrum antibiotics, it is rarely found in individuals suffering from cystic fibrosis 

that are chronically infected with Pseudomonas aeruginosa and Burkholderia cepacia 

(Kerr, 1994). This putative antagonism seems to be at least partially explained by the 

recent finding that the long-chain quorum-sensing signal 3 oxo-C12HSL produced by P. 

aeruginosa at physiological relevant level was sufficient to inhibit C. albicans yeast-

tohyphae transition (Hogan et al., 2004). However, C8- HSL, the major quorum-sensing 

signal produced by B. cepacia (Lewenza et al., 1999; Riedel et al., 2001), was not able to 

suppress the fungal filamentation (Hogan et al., 2004). 

 

The Burkholderia cepacia complex (Bcc) has emerged as a major opportunist pathogen 

for immunocompromised individuals in particular the patients with cystic fibrosis and 

chronic granulomatous disease (Isles et al., 1984; Goldmann and Klinger, 1986; 

Mahenthiralingam et al., 2005). The Bcc consist of at least nine species that are 

phenotypically similar but genetically distinct, and all the species are capable of causing 

infections (Coenye et al., 2001; Mahenthiralingam et al., 2005). Among them, 

Burkholderia cenocepacia constitutes the majority of the transmissible and epidemic 
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strains and is highly virulent (Mahenthiralingam et al., 2001, 2002). In this study, we 

report the identification and characterization of a novel signaling molecule designated as 

BDSF from B. cenocepacia. BDSF is a structural homologue of diffusible signal factor 

(DSF), which is the quorum-sensing signal produced by the plant bacterial pathogen 

Xanthomonas campestris pv. campestris (Xcc). In addition, we demonstrate that the ORF 

Bcam0581 is essential for BDSF production and can genetically substitute for the DSF 

synthase gene rpfF in Xcc. Furthermore, we show that the dimorphic transition of C. 

albicans was inhibited by either exogenous addition of BDSF or coculturing with B. 

cenocepacia. 

 

2.2 Methods and Materials 

2.2.1 Bacterial strains and growth conditions 

B. cenocepacia J2315, a cystic fibrosis clinical isolate, was obtained from the American 

Type Culture Collection, Manassas, VA, USA. It is the representative strain of the highly 

transmissible ET12 clone (Govan et al., 1993). X. campestris pv. campestris strain 8004 

and its rpfF deletion mutant 8004dF were described previously (Wang et al., 2004; He et 

al., 2006b). Xcc strains were maintained at 30oC in YEB medium (Zhang et al., 2002), 

while Escherichia coli and B. cenocepacia strains were grown in Luria-Bertani (LB) 

broth at 37oC. The following antibiotics were supplemented when necessary: rifampicin, 

50 μgml-1; tetracycline, 10 μgml-1 (Xcc and E. coli) or 400 μgml-1 (B. cenocepacia); 

gentamycin, 100 μgml-1; and trimethoprim, 300 μgml-1. C. albicans SC5314 were grown 

either in GMM medium consisting of 6.7 g of Bacto yeast nitrogen base (Difco, Sparks, 

MD, USA) and 0.2% glucose or in minimum medium (pH 7.2). The latter consists of 
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K2PO4, 60mM; KH2PO4, 30mM; citrate, 20 mM; (NH4) 2SO4, 15 mM; MgSO4·7H2O, 0.8 

mM; CaCl2, 90 μM; FeSO4, 30 μM; MnCl2, 15 μM; and Casamino acids, 0.5%. DSF was 

added to the medium in a final concentration of 5 μM unless otherwise indicated. 

 

2.2.2 Bioassay of BDSF signal 

The assay was performed as described previously using the biosensor strain FE58 (Wang 

et al., 2004). Briefly, 4-mm diameter wells were introduced on prepared bioassay plates 

and 20 μl concentrated culture was added to each well. Alternatively, single colonies 

were spotted on bioassay plates. The plates were incubated at 30oC overnight. DSF 

activity is indicated by the presence of a blue halo around the well or colony. 

 

2.2.3 Purification of BDSF signal 

B. cenocepacia J2315 was grown in LB overnight with agitation at 37oC. Seventy liters 

of culture supernatant was collected by centrifugation and extracted with equal volume of 

ethyl acetate. The crude extract (organic phase) was dried using a rotary evaporator and 

dissolved with methanol. The mixture was subjected to flash column chromatography 

using a silica gel column (12 × 150mm, Biotage Flash 12M cartridge) and eluted with 

ethyl acetate–hexane (20:80 v/v). The active fractions were detected using the DSF 

bioassay and pooled; and then were concentrated, subjected to flash column 

chromatography again and eluted with ethyl acetate–hexane (10:90 v/v). The purity of the 

collected active components was analyzed by high performance liquid chromatography 

using a C18 reverse-phase column (4.8 × 250mm, Waters, Milford, MA, USA), eluted 

with methanol–water (80:20 v/v) at a flow rate of 1ml min-1. 
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2.2.4 Structural analysis and synthesis of BDSF 

1H, 13C, 1H-1H COSY, distortionless enhancement by polarization transfer, heteronuclear 

multiple bond coherence and heteronuclear multiple quantum coherence (HMQC) 

nuclear magnetic resonance (NMR) spectra in CDCl3 solution were obtained using a 

Bruker DRX400 spectrometer operating at 400MHz for 1H or 100.5MHz for 13C. High-

resolution electrospray ionization mass spectrometry was performed on a Finnigan/MAT 

MAT 95XL-T mass spectrometer. Conditions used were as stated before (Wang et al., 

2004). BDSF was synthesized by Favorsky rearrangement of the corresponding 1, 3- 

dibromo-2-dodecanone as described previously (Wang et al., 2004). 

 

2.2.5 Construction of Bcam0581 in-frame deletion mutants 

B. cenocepacia J2315, a cystic fibrosis clinical isolate, was used as the parental strain to 

generate the Bcam0581 in-frame deletion mutants. The upstream and downstream regions 

flanking Bcam0581 were isolated using two PCR primer pairs, that is 

BCAM0581KO_LF (50-ggatccctcgagatgcttgtcgaa), BCAM0581KO_LR (50-

aagcttggtatgtcctcgtgagatgtg); and BCAM0581KO_RF (50-aagcttcgcacggtgtaatgcgac), 

BCAM0581KO_RR (50-tctagaggatccacgtatcgcgtgttctcgctg), respectively. This resulted 

in removal of 852 bp of the 864 bp Bcam0581 coding sequence. To facilitate construction, 

BamHI and HindIII sites were included in the upstream fragment, whereas HindIII and 

XbaI sites were tagged to the downstream fragment. The PCR products were cleaved with 

respective enzymes and ligated to the suicide vector pEX18Tc (Hoang et al., 1998). The 

construct, verified by DNA sequencing, was introduced into B. cenocepacia J2315 by tri-
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parental mating with pRK2013 (Figurski and Helinski, 1979) as the mobilizing plasmid. 

The B. cenocepacia transconjugants were selected on LB agar plates containing 

tetracycline and gentamycin. Colonies harboring second crossover events were selected 

on LB agar containing 10% sucrose. Bcam0581 deletion mutants (d0581) were identified 

by colony PCR using the primer pair BCAM0581KO_LF and BCAM0581KO_RR 

described above. 

 

2.2.6 Complementation of strains 8004dF and d0581 

The coding region of Bcam0581 was amplified via PCR using primers pair BCAM0581-

F (50-ggatccatgcaactccaatcccatcc) and BCAM0581-R (50 aagcttttacaccgtgcgcagctt). The 

product was digested with BamHI and HindIII and ligated separately to plasmid vectors 

pMSL7 (Lefebre and Valvano, 2002) and pLAFR3 at the same enzyme sites. The 

resultant construct was conjugated into d0581 and 8004dF, respectively, by tri-parental 

mating. The transconjugants of 8004dF and d0581 were selected on YEB agar plates 

containing rifampicin and tetracycline and on LB agar plates supplemented with 

gentamycin and trimethoprim, respectively. 

 

2.2.7 Extracellular polysaccharide and biofilm analysis of Xcc 

For quantification of extracellular polysaccharide (EPS) production, 10 ml of overnight 

YEB cultures at OD600 of 3.0 were centrifuged at 12,000 rpm for 20 min. The 

supernatants were mixed with 2.5 volumes of absolute ethanol and the mixture was 

incubated at 4oC for 30 min. The precipitated EPS was isolated by centrifugation and 

dried overnight at 55oC before determination of dry weights. 
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For analysis of biofilm formation, a single colony of Xcc wild type and the DSF-minus 

mutant 8004dF was separately inoculated and grown overnight in 5 ml of YEB medium 

with or without signal molecule. Methanol was added to the corresponding wild-type 

strain as a solvent control. After overnight incubation, bacterial samples were visualized 

with a phase contrast microscope (Olympus BX50). Imaging was performed using an 

Olympus DP70 digital camera.  

 

2.2.8 Microscopic analysis and quantification of germ tube formation in C. albicans 

For testing the effect on C. albicans germ tube formation, BDSF and other compounds 

were diluted to appropriate concentrations in methanol. The overnight culture of C. 

albicans strain SC5314 grown in GMM medium were diluted 10-fold in fresh GMM 

medium containing the 3 kDa fraction of fetal calf serum at a final concentration of 20%. 

The 3 kDa fraction was prepared by filtration of fetal calf serum through a membrane 

(Millipore, Billerica, MA, USA) with a 3 kDa pore size and collection of the filtrates. 

This preparation was necessary as it drastically reduced the crude serum induced 

aggregation but retained the potent germ tube induction capability, thereby allowing 

accurate quantification. The testing signal molecules were added separately to 

appropriate final concentrations as indicated and the cells were induced for 3 h at 37oC. 

For growth experiments, overnight cultures (OD600≈1.0) were diluted to OD600≈0.05 in 

GMM medium and cultured at 30oC with agitation (200 r.p.m.). Coculture experiments 

were performed in minimum medium using three B. cenocepacia strains, which displayed 

a similar growth rate. Fresh bacilli and yeast-form C. albicans were cultured together in 

the ratio of 20:1 with E. coli DH5α as a negative control. The mix cultures were grown 
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for 15 h at 30oC and then 3 h at 37oC for induction of germ tube formation. 

Quantification of germ tube formation was performed using a phase contrast microscope 

(Olympus BX50) by counting about 400 C. albicans cells per sample. Imaging was 

achieved using a Leica DMR Fluorescence microscope with ×100 objective and a 

Hamamatsu digital camera interphased with METAMORPH software (Universal Imaging, 

Downingtown, PA, USA). 

 

2.3 Results 

2.3.1 Detection of DSF-like activity in B. cenocepacia  

In our preliminary screening, several environmental isolates, belonging to Burkholderia 

spp. based on 16S rDNA and recA sequence analysis, were found capable of producing 

DSF-like signals when assayed using the DSF biosensor Xcc strain FE58 (Wang et al., 

2004). For further characterization, strain B. cenocepacia J2315, which is a clinical 

isolate with genome sequence available (http://www.sanger.ac.uk/cgi-

bin/blast/submitblast/b_cenocepacia), was obtained from ATCC. A single colony of 

strain J2315 was spotted on the bioassay plate containing the biosensor. A blue halo, 

which indicates the presence of DSF activity, was detected after incubation at 30oC 

overnight (Fig. 2-1a), suggesting that B. cenocepacia J2315 may secrete a DSF molecule, 

which was tentatively designated as BDSF. 

 

2.3.2 Bcam0581 is the rpfF homologue of B. cenocepacia J2315 essential for 

production of BDSF 

In Xcc, a putative enoyl-CoA hydratase encoded by rpfF is a key enzyme for DSF  

http://www.sanger.ac.uk/cgi-bin/blast/submitblast/b_cenocepacia�
http://www.sanger.ac.uk/cgi-bin/blast/submitblast/b_cenocepacia�
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Fig. 2-1. B. cenocepacia produced diffusible signal factor (DSF)-like signals. (a) DSF 

bioassay with B. cenocepacia J2315 and derivatives. WT, wild-type B. cenocepacia 

J2315; complement, d0581(pMLS7-Bcam0581). (b) Expression of Bcam0581 in the 

DSF-deficient mutant 8004dF of X. campestris pv. campestris (Xcc) restored DSF 

production. WT, wild-type Xcc 8004; +Bcam0581, 8004dF(pLAF3-Bcam0581); DSF, 5 

μl of DSF (5 μM). The presence of a blue halo around the site of inoculation indicates the 

presence of DSF-like activity. 
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biosynthesis. Mutation of rpfF abolishes DSF production and reduces the DSF-mediated 

virulence gene expression (Barber et al., 1997; Wang et al., 2004; He et al., 2006b). To 

identify the gene responsible for BDSF biosynthesis, the RpfF homologue was searched 

in the genome of B. cenocepacia J2315 by using the BLAST program (Altschul et al., 

1990). The top hit is a peptide encoded by Bcam0581 showing a 37.2% identity with 

RpfF with an e-value of 1.8 x 10-44. The gene is located on chromosome 2 and encodes a 

protein of 32 kDa. Interrogation of the B. cenocepacia J2315 genome sequence with the 

protein sequence of Bcam0581 did not reveal the presence of paralogues. Domain 

analysis using the pfam database version 22.0 (Finn et al., 2006) showed that Bcam0581 

contained an enoyl-CoA hydratase domain similar to the RpfF enzyme of Xcc (Fig. 2-2a).  

 

The rpfF of Xcc is located within the same locus as rpfC and rpfG, which encode a DSF 

sensor and cognate response regulator, respectively. In contrast, no rpfC or rpfG 

homologue was found in the vicinity of Bcam0581 (Fig. 2-2b), suggesting a different 

origin of evolution of the BDSF system in B. cenocepacia. The Bcam0581 gene appears 

to be a single transcriptional unit and is flanked by Bcam0582 and Bcam0580. The 

former encodes a 73 kDa hypothetical protein and the latter a 73.3 kDa protein with PAS, 

diguanylate cyclase (GGDEF) and a phosphodiesterase (EAL) domains. This domain 

structure is identical to that of PdeA from Xcc (Xc2324), which had been shown to 

regulate the synthesis of extracellular enzymes under oxygen limited conditions (Ryan et 

al., 2007). In addition, protein blast analysis found that the peptide encoded by 

Bcam0580 was about 39% identical to PdeA. Taken together, these observations indicate 

that Bcam0580 is a putative homologue of PdeA. 
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Fig. 2-2. Comparison of the peptide sequence and genomic organization of rpfF and its 

homologue from B. cenocepacia. (a) Alignment of protein sequences of Bcam0581 with 

RpfF from Xcc. The black and gray shading indicates the identical and similar residues, 

respectively. (b) Genomic organization of the Bcam0581 region in B. cenocepacia J2315 

(top) and that of rpfF region in Xcc (bottom). The diffusible signal factor synthesis and 

response cluster (rpfA–rpfG) is flanked by peptide chain release factor (prfB); lysyl-

tRNA synthase (lysS); aconitate hydratase (acnB) and two genes encoding hypothetical 

proteins (1861 and 1862). The region around the rpfF homologue Bcam0581 of B. 

cenocepacia consists of the genes encoding two transporters of the major facilitator 

superfamily (Bcam0577 and Bcam0584), a putative 5-oxoprolinase (Bcam0578), a PdeA 

homologue (Bcam0580), two hypothetical proteins (Bcam0582 and Bcam0582a) and an 

AraC-type transcription regulator (Bcam0583). 
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To verify the role of Bcam0581 in BDSF biosynthesis, the gene was deleted via 

homologous recombination. This resulted in a complete loss of BDSF production, and 

expression of the wild-type Bcam0581 gene in the deletion mutant resulted in 

overproduction of the signal (Fig. 2-1a).  

 

2.3.3 Bcam0581 is a functional homologue of rpfF 

It was curious whether Bcam0581, which shows a moderate similarity to rpfF, could 

functionally replace the latter. For this purpose, the coding region of Bcam0581 was 

PCR-amplified and cloned under the control of the lac promoter in the expression vector 

pLAFR3. The resultant construct was conjugated into the rpfF deletion mutant 8004dF 

(He et al., 2006b). As shown in Figure 2-1b, expression of Bcam0581 in the mutant 

restored DSF production. Furthermore, biofilm dispersal and EPS production were 

restored to wild-type levels in the strain 8004dF expressing Bcam0581 (Fig. 2-3). Given 

that Xcc is rather stringent in recognition and response to DSF-type signal molecules 

(Wang et al., 2004), these data suggest that Bcam0581 may produce the same DSF signal 

or a closely related structural analogue. 

 

2.3.4 BDSF pfurification and structural analysis  

The active component was collected from 70 liters of B. cenocepacia J2315 culture 

supernatants by ethyl acetate extraction and purified by flash column chromatography. 

About 7mg of BDSF was obtained from the combined active fractions after evaporation 

of the solvent. This was estimated at approximately 98% purity, based on the analysis by 

high-performance liquid chromatography. The 13C NMR spectrum showed that there  
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Fig. 2-3. Complementation of the Xcc diffusible signal factor (DSF)-deficient mutant 

8004dF by expression of the B. cenocepacia gene Bcam0581. (a) The cells of wild-type 

Xcc strain 8004 grew in planktonic (free-floating) form. (b) The rpfF deletion mutant 

8004dF derived from strain 8004 grew in biofilm (cell aggregates at the right-hand side 

of the photo) form. (c) In trans expression of Bcam0581 in the mutant 8004dF dispersed 

the bacterial biofilm. (d) Extracellular polysaccharide (EPS) production levels. +DSF, 

exogenous addition of 5 μM of DSF; +Bcam0581, mutant 8004dF expressing Bcam0581 

in trans. Cells were observed under ×200 magnification and the error bars show the 

standard deviations. 
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were 12 peaks, which represent 12 carbons as stated below (Fig. 2-5B). The nine 13C 

peaks in the range of 14–32 p.p.m. were most likely from acyclic hydrocarbons. The 1H 

13C correlated HMQC data indicated that the peak at 14.08 p.p.m. was correlated with the 

three aliphatic protons at 0.88 p.p.m. (Fig. 2-5B), probably representing a terminal CH3 

group. The remaining eight 13C peaks in the range of 14–32 p.p.m. represented eight CH2 

groups based on HMQC and distortionless enhancement by polarization transfer spectra, 

suggesting the presence of an aliphatic chain. Among three carbon signals over 100 

p.p.m., two at 118.91 and 153.43 p.p.m. were correlated with the two olefinic protons at 

5.78 and 6.34 p.p.m., respectively, and were assigned to a double bond by HMQC 

spectrum. These two olefinic protons coupled to each other with a coupling constant of 

11.5 Hz, thus establishing the cis configuration of the double bond. A quaternary carbon 

peak at 171.34 p.p.m. should be assigned to a carbonyl, which conjugated to the double 

bond based on the 1H-13C correlated heteronuclear multiple bond coherence spectrum. 

Furthermore, high-resolution electrospray ionization mass spectrometry analysis of the 

purified BDSF revealed a molecular ion (M-H) with an m/z of 197.1532, suggesting a 

molecular formula of C12H21O2 (197.1542) (Fig. 2-4). Taken together, these data indicate 

that BDSF is cis-2-dodecenoic acid (Fig. 2-5C), a closely related structural analogue of 

DSF. In addition, we synthesized cis-2-dodecenoic acid and found that its 1H and 13C 

NMR spectra and biological activity were virtually indistinguishable from those of 

natural BDSF (data not shown). 

 

2.3.5 BDSF inhibited the germ tube formation by C. albicans 

BDSF is structurally related to farnesol and highly similar to DSF. Both were shown to  
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Fig. 2-4. ESI-MS analysis of purified DSF-like fractions from B. cenocepacia. 
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Fig. 2-5. Purification and structural characterization of BDSF. (A) 1H NMR spectral of 

BDSF. (B) 13C NMR spectra of BDSF. (C) The predicted chemical structure of BDSF, 

nuclear magnetic resonance. 
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inhibit germ tube formation by C. albicans (Hogan et al., 2004; Wang et al., 2004). For 

determination of the potential inhibitory activity of BDSF against C. albicans, the signal 

was added to the fresh fungal yeast cells (Fig. 2-6a). Farnesol and methanol were used as 

a positive and solvent control, respectively. After incubation at 37oC for 3 h, more than 

90% of C. albicans cells in solvent control formed germ tubes (Fig. 2-6b), and farnesol at 

a final concentration of 5 μM slightly reduced the length of germ tubes but seemed to 

have no effect on germination (Fig. 2-6c). In contrast, BDSF at a final concentration of 5 

μM caused a marked reduction of germ tube germination and elongation (Fig. 2-6d). The 

above data suggest that BDSF is a highly potent inhibitor. Its activity was thus further 

compared quantitatively with several similar molecules, including DSF, 3OC12HSL and 

farnesol (Fig. 2-6e and f), using the same medium andgrowth condition as described 

previously (Hogan et al., 2004). At a final concentration of 25 μM, none of them were 

able to inhibit yeast growth, but showed varied inhibitory effects on C. albicans germ 

tube formation with BDSF being the most effective, followed by DSF, farnesol and 

3OC12HSL (Fig. 2-6f). Consistent with the previous observation (Hogan et al., 2004), 

farnesol at a final concentration of 100 μM caused about 45% reduction of germ tube 

formation (Fig. 2-6f). It is also interesting to note that farnesol, 3OC12HSL and DSF at 

100μM did no affect the yeast cell growth, but strikingly, BDSF at the same 

concentration showed a detrimental effect on yeast cell growth (Fig. 2-6e). Further 

titration to a final concentration of 5 μM, BDSF and DSF resulted in about 60% and 12% 

reduction in germ tube formation, respectively, whereas farnesol and 3OC12HSL had no 

obvious effect (Fig. 2-6f). Interestingly, even at 0.5 μM, BDSF outperformed its close  
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Fig. 2-6. The effect of BDSF on C. albicans growth and germ tube formation. C. albicans 

cells were grown under non-induction conditions (30oC) (a), or under induction 

conditions (serum extract, 37oC) (b). In (c and d), the cells were grown under the same 

condition as in (b) but treated with 5 μM of farnesol and BDSF, respectively. The photos 

were taken 3 h after induction. (e) The effect of signal molecules on C. albicans yeast cell 

growth. The OD600 was determined 24 h after growth at 30oC with agitation. (f) 

Comparison of the inhibitory activity of BDSF and related signals on germ tube 

formation of C. albicans 3 h after induction. The experiment was performed twice, and 

each time at least 400 cells were counted per treatment. The error bars show the standard 

deviations.                                      
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structural analogue DSF at 5 μM by reducing about 15% germ tube formation (Fig. 2-6f). 

 

2.3.6 d0581 displays reduced ability to inhibit germ tube formation when cocultured 

with C. albicans 

To determine the ecological significance of BDSF, we grew C. albicans together with B. 

cenocepacia or its BDSF-deficient mutants as a mixed culture under hyphae-inducing 

conditions. Observation under the microscope showed that the presence of the wildtype B. 

cenocepacia J2315 significantly decreased the fungal morphological transition as a large 

percentage of C. albicans cells grew in yeast-form (Fig. 2-7a). In contrast, majority of the 

fungal cells appeared as filaments when grown together with the BDSF-deficient mutant 

d0581 (Fig. 2-7b). Interestingly, the deletion mutant d0581 formed heavy cell aggregates 

together with C. albicans hyphal cells (Fig. 2-7b), whereas overexpression of Bcam0581 

in the mutant resumed the planktonic phenotype and abolished the yeast-to-hyphal 

transition of C. albicans (Fig. 2-7c). Quantitative analysis found that approximately 50% 

of the C. albicans cells counted were grown in hyphae-form when cocultured with d0581, 

which was close to the E. coli control mix culture where approximately 65% fungal cells 

were of hyphae-form. However, coculture of C. albicans with the wild-type B. 

cenocepacia J2315 decreased the hyphae cell level to about 20% (Fig. 2-7d). The fungal 

hyphae cell level was further reduced down to only about 5% by the complementary 

strain that overproduced BDSF (Fig. 2-1a and 7d), highlighting a BDSF dosage-

dependent effect. 
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Fig. 2-7. The inhibitory effect of B. cenocepacia on C. albicans germ tube formation was 

dependent on the BDSF synthase gene Bcam0581. C. albicans cells cocultured with (a) 

wild-type B. cenocepacia J2315, (b) BDSF-deficient mutant d0581 and (c) the 

complemented strain d0581(pMLS7-Bcam0581). (d) The percentage of germ tube 

formation of C. albicans in the presence of different bacterial strains. E. coli strain DH5α 

was included in the coculture experiment as a negative control. Experiment was repeated 

three times and each time at least 400 cells were counted per sample. The error bars show 

the standard deviations. 
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2.4 Discussion 

The results of this study show that the human opportunistic bacterial pathogen B. 

cenocepacia produces a potential cell–cell communication signal, which was structurally 

characterized as cis-2- decenoic acid by mass spectrometry and NMR analysis (Fig. 2-1, 

2-4 and 2-5). The structure of BDSF is similar to but not identical with the DSF (cis-11- 

methyl-2-decenoic acid) signal produced by the plant bacterial pathogen Xcc (Wang et al., 

2004). The only difference between the two molecules is at the C-11 position where 

BDSF lacks a methyl group. DSF is a well-characterized quorum-sensing signal that 

regulates a few hundred genes encoding diverse biological functions through its signaling 

network comprising RpfC/RpfG two component system and a few transcriptional 

regulators (Ryan et al., 2006; He et al., 2006a, 2006b, 2007). Xcc belongs to the γ-

subdivision of proteobacteria, whereas B. cenocepacia is a member of the distantly 

related b-subdivision. Identification of BDSF from B. cenocepacia has strengthened the 

notion that DSF may represent a new class of conserved signals for bacterial cell–cell 

communications (Wang et al., 2004). 

 

The BDSF biosynthesis by B. cenocepacia is encoded by the gene Bcam0581. This is 

supported by several lines of evidence. First, the peptide encoded by Bcam0581 shares 

about 37% identity and a conserved enoyl-CoA hydratase domain with RpfF (Fig. 2-2), 

the key enzyme known for DSF biosynthesis in Xcc (Barber et al., 1997; Wang et al., 

2004; He et al., 2006b). Second, expression of Bcam0581 in the rpfF deletion mutant of 

Xcc restored the biofilm dispersal and EPS production to the wild-type level (Fig. 2-3). 

Third, deletion of Bcam0581 in B. cenocepacia abolished the BDSF biosynthesis (Fig. 2-
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1). Blast searches revealed the Bcam0581 homologues in the other five Bcc genomovars 

with greater than 95% identity. They are B. cepacia sp 383 (genomovar I), B. multivorans 

(genomovar II), B. vietnamiensis (genomovar V), B. dolsa (genomovar VI) and B. 

ambifaria (genomovar VII). The presence of the Bcam0581 homologue in the remaining 

three Bcc genomovars is not clear as their genome sequences are not yet available. Thus, 

like CepIR, which is found in all strains of Bcc (Lutter et al., 2001), the BDSF signaling 

system may also be widely conserved in Bcc. 

 

Among the several reported bacterial and fungal signals, including the 3OC12HSL from 

P. aeruginosa, DSF produced by X. campestris and farnesol produced by C. albicans 

itself, BDSF showed the highest potency on inhibition of filament formation by C. 

albicans (Fig. 2-5). The previous assays performed in different laboratories showed that 

DSF is more effective than 3OC12HSL for inhibition of germ tube formation (Hogan et 

al., 2004; Wang et al., 2004). This is consistent with our data that treatment of the fungal 

cells with about 25 μM DSF or four times more 3OC12HSL resulted in about 45% 

reduction in germ tube formation (Fig. 2-6f). Highly significantly, BDSF was able to 

inhibit germ tube formation in approximately 70% of the cells at 5 μM. As DSF and 

BDSF differ only in the methyl group substitution at C-11 position, revealing such a 

structure–activity relationship is useful for further drug design and development. 

Furthermore, our data showed that at a high concentration (100 μM), BDSF caused a 

complete growth inhibition of C. albicans, whereas DSF and other signals had no effect 

(Fig. 2-6e). While the corresponding molecular mechanisms remain to be further 

investigated, these apparent dosage- dependent dual functions of BDSF on the fungal 



 46

morphology and growth may present an exciting prospect for treatment of C. albicans 

infections.  

 

The yield of 7 mg of pure BDSF isolated from 70 l of cultures translates to a minimum of 

0.5 μM present in overnight cultures of B. cenocepacia without taking into account the 

expected losses during the purification process. Significantly, even at this concentration, 

BDSF reduced the hyphal growth of C. albicans by about 15% (Fig. 2-6f), which 

suggests that the signal might play a role in cross-kingdom microbial competition in 

ecosystems. This speculation was demonstrated by the findings that deletion of the 

Bcam0581 gene significantly compromised the inhibitory effect of B. cenocepacia on the 

hyphal growth of C. albicans; and the mutant phenotype was rescued by 

complementation with the same gene (Fig. 2-7). The ability to maintain an infection at a 

susceptible host site that is likely populated by several microbial species could be a 

combination of several factors. These may include the evolved survival mechanisms that 

are unique to ecological niche as well as signal interference and communication systems 

that can result in a competitive edge. There is increasing evidence that inter-genus and 

cross-kingdom communication is a widespread phenomenon (Zhang and Dong, 2004; 

Bassler and Losick, 2006). The ability of BDSF to phenotypically influence two 

organisms of different evolutionary lineage underscores its potential as a cross-kingdom 

and inter-genus signal, which may have a significant impact on the ability of Bcc to 

establish and maintain an infection in the host. 

 

This work has uncovered a new DSF-like signal from bacterial pathogen B. cenocepacia 
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and demonstrated its role in microbe–microbe interaction under in vitro conditions. 

Elucidation of the chemical structure and the gene encoding for synthesis of BDSF, 

which is highly conserved in Bcc complex, provides a new platform to explore potential 

genetic and signaling mechanisms that may modulate the physiology and virulence of 

these important bacterial pathogens. Furthermore, the finding that BDSF is a highly 

potent inhibitor on C. albicans hyphal growth raises intriguing questions on the 

molecular mechanism of signal interference and the potential role of this signal in 

competition between B. cenocepacia and C. albicans under in vivo conditions. Particular 

noteworthy is that the Bcc and C. albicans are frequent inhabitants of human and animals 

(Kerr, 1994; Hermann et al., 1999), identification of BDSF from B. cenocepacia thus 

underpins the potential ecological significance of DSF-like signals in bacteria–fungi 

interactions and competitions. 
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CHAPTER 3 

DIFFERENTIAL MODULATION OF BURKHOLDERIA 

CENOCEPACIA VIRULENCE AND ENERGY 

METABOLISM BY QUORUM SENSING SIGNAL BDSF 

AND ITS SYNTHASE 

3.1 Introduction  

The Burkholderia cepacia complex (Bcc) strains have emerged as problematic 

opportunistic pathogens in patients with cystic fibrosis and immunocompromised 

individuals (Coenye and Vandamne, 2003; Mahenthiralingam et al., 2002; Vandamme et 

al., 2003). Although all 17 Bcc species have been isolated from both environmental and 

clinical sources, B. cenocepacia and B. multivorans are most commonly found in clinical 

samples (Coenye and Vandamne, 2003; Mahenthiralingam et al., 2008). Apart from 

acquisition from the environment, patient-to-patient transmission and indirect nosocomial 

acquisition from contaminated surfaces have caused several outbreaks within and 

between regional CF centers (Saiman and Siegel, 2004).  

  

B. cenocepacia strains are not only important opportunistic pathogens of humans but can 

also cause infections in a diverse range of species including rodents (Bernier et al., 2003; 

Speert et al., 1999), nematodes (Kothe et al., 2003), amoebae (Marolda et al., 1999), and 

plants (Bernier et al., 2003). The ability to survive and adapt to a wide range of habitats 

and to infect various host organisms suggests that B. cenocepacia is metabolically highly 
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adaptable and likely to produce multiple virulence factors. Presumably, the organism has 

evolved complex environmental sensing and regulatory mechanisms to coordinate 

cellular activities to thrive and survive in different environmental niches. 

  

At least three types of chemical signals that are used by bacteria for cell-to-cell 

communication have been identified in B. cenocepacia. The most intensively 

characterized one is the AHL-type quorum sensing signals. The CepI/CepR system, 

which is a member of the conserved LuxI/LuxR-type QS system, is present in all 

members of the Bcc (Eberl, 2006; Sokol et al., 2007). Chemical analysis showed that the 

AHL synthase CepI catalyzes the production of N-octanoyl-L-homoserine (C8-HSL) and 

as a minor component N-hexanoyl-L-homoserine lactones (C6-HSL) (Gotschlich et al., 

2001; Malott et al., 2005). The CepR/C8-HSL complex may activate or repress 

transcription of a wide range of biological functions, including virulence factor 

production, swarming motility and biofilm formation (Eberl, 2006; Sokol et al., 2007). In 

addition, B. cenocepacia as well as other Burkholderia species have been reported to 

produce 2-heptyl-4-quinolone (HHQ), the precursor of the Pseudomonas aeruginosa 

quinolone signal molecule (PQS), and it has been suggested that HHQ may also be used 

for cell-to-cell communication (Diggle et al., 2006). In the case of the human pathogen 

Burkholderia pseudomallei, loss of HHQ production was shown to affect colony 

morphology and increase elastase production (Diggle et al., 2006). More recently it has 

been demonstrated that B. cenocepacia produces, cis-2-dodecenoic acid (BDSF), which 

inhibits germ tube formation of the fungal pathogen Candida albicans (Boon et al., 2008). 

Given that germ tube formation is an essential trait for the fungal pathogen to establish an 
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infection, this finding may provide the molecular basis for the observation that C. 

albicans can normally not be isolated from cystic fibrosis patients who are infected with 

Bcc strains (Kerr, 1994). However, neither the BDSF signaling network nor the regulated 

functions in B. cenocepacia has been elucidated.  

 

BDSF is a structural analogue of DSF, which is a QS signal molecule in the plant 

pathogen Xanthomonas campestris (Barber et al., 1997; Wang et al., 2004). Microarray 

analysis has shown that DSF regulates over 160 genes, many of which encode virulence 

factors (He et al., 2006b). As a consequence, DSF-deficient mutants are partially 

attenuated in virulence (Barber et al., 1997; He et al., 2006a; Wang et al., 2004). In this 

study, we have investigated the role of BDSF-signaling in the physiology and virulence 

of B. cenocepacia. Genetic analyses unveiled that BDSF plays a role in intraspecies cell-

to-cell communication and regulates several virulence factors that are also controlled by 

the AHL-dependent CepIR QS system. Evidence is presented that the enzyme directing 

the biosynthesis of BDSF, Bcam0581, is also involved in the modulation of ATP 

biogenesis.  

 

3.2 Methods and Materials 

3.2.1 Bacteria strains and growth conditions 

Bacterial strains used in this work are listed in Table 3-1. E. coli were grown at 37oC with 

shaking at 250 x rpm in Luria-Bertani (LB) broth. Burkholderia strains were cultured at 

37oC in either LB or Anwar medium (Lonon et al., 1988), which contains 3 mM KCl, 12 

mM (NH4)2SO4, 20 mM glucose, 3.2 mM MgSO4, 1.2 mM K2HPO4, 0.02 mM FeSO4 , 3 
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mM NaCl, and 50 mM Mops 50 with pH = 7.6. For cell aggregation and static biofilm 

formation assay, bacteria were cultured in Basal salt media (pH 7.2) containing 20 mM 

citrate and 0.5% Casamino acids (Boon et al., 2008). The following antibiotics were 

supplemented when necessary: gentamycin, 100 µg ml-1; trimethoprim, 400 µg ml-1 (B. 

cenocepacia) and 1.5 mg ml-1 (E. coli).  

 

3.2.2 Determination of the BDSF accumulation profile  

Cells were harvested at different time points as indicated and BDSF was extracted as 

described previously with minor modification (Boon et al., 2008). Briefly, B. 

cenocepacia J2315 was grown in LB medium with agitation at 37oC. At each time point, 

100 ml of culture supernatants were collected by centrifugation and extracted with an 

equal volume of ethyl acetate. The extracts were dried to dryness and the remainder was 

dissolved in 1 ml of methanol. Quantification of BDSF was achieved by using the Xcc 

biosensor strain FE58 (Wang et al., 2004). To this end, the biosensor was grown at 28oC 

in YEB medium (Zhang et al., 2002) to an OD600 of 0.6 prior to the addition of 100 µl of 

BDSF extracts to 5 ml of culture. Following incubation for 3 h at 28oC with shaking at 

200 x rpm, 1 ml of culture was centrifuged and the bacterial pellets were lysed in 250 µl 

Cell Lytic™ reagent (Sigma) according to the recommendations of the manufacturer. 

Protein concentrations were determined using the Bradford Assay Kit (Bio-Rad). All 

assays were performed with equal amounts of proteins. GUS activities were determined 

according to Jefferson et al. (1987).  BDSF concentrations were measured using a 

standard curve that was prepared with defined concentrations of chemically synthesized 

BDSF (Wang et al., 2004). 
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Table 3-1. Bacterial strains and plasmids used in this study 

Strain or plasmid Phenotypes and/or characteristics Reference or source 
B. cenocepacia   

J2315 Wild type strain, Genomovars III of B. cepacia 
complex 

ATCC 

d0581  BDSF-minus mutant derived from J2315 with 
Bcam0581 being deleted 

Boon et al., 2008 

J2315(P0581-lacZ) Wild type harboring the reporter construct 
pMLS7P0581-lacZ 

This study 

J2315(PzmpA-lacZ) Wild type harboring the reporter construct 
pMLS7PzmpA-lacZ 

This study 

J2315(Plip-lacZ) Wild type harboring the reporter construct 
pMLS7Plip-lacZ 

This study 

J2315(Porb-lacZ) Wild type harboring the reporter construct 
pMLS7Porb-lacZ 

This study 

d0581(pMLS7-0581) Mutant d0581 harboring the expression construct 
pMLS7-0581 

Boon et al., 2008 

d0581(P0581-lacZ) Mutant d0581 harboring the reporter construct 
pMLS7P0581-lacZ 

This study 

d0581(PzmpA-lacZ) Mutant d0581 harboring the reporter construct 
pMLS7PzmpA-lacZ 

This study 

d0581(Plip-lacZ) Mutant d0581 harboring the reporter construct 
pMLS7Plip-lacZ 

This study 

d0581(Porb-lacZ) Mutant d0581 harboring the reporter construct 
pMLS7Porb-lacZ 

This study 

d0581(cepI) Mutant d0581 harboring the expression construct 
pMLS7-cepI 

This study 

d0581(cepR) Mutant d0581 harboring the expression construct 
pMLS7-cepR 

This study 

cepR::Kmr cepR insertion mutant derived from strain H111 Huber et al., 2001 
cepR-pBAH27 cepR insertion mutant harboring cepR in the 

construct pBAH27 
Huber et al., 2001 

E. coli   
DH5α supE44 ΔlacU169(Φ80lacZΔM15) hsdR17 recA1 

endA1 gyrA96 thi-1 relA1 λpir 
Laboratory collection 

S17-1 pro res− mod+ integrated copy of RP4, mob+ Laboratory collection 
X. campestris    

FE58 Biosensor for DSF/BDSF Wang et  al., 2004 
Plasmid   

pMLS7 pBBR1 ori, PS7 promoter, Tpr mob+ Lefebre and Valvano, 
2002 

pMLS7-0581 pMLS7 containing Bcam0581 Boon et al., 2008 
pMLS7P0581-lacZ pMLS7 containing the Bcam0581 promoter-lacZ 

fusion 
This study 

pMLS7PzmpA-lacZ pMLS7 containing the zmpA promoter-lacZ fusion This study 
pMLS7Plip-lacZ pMLS7 containing the lipA and lipB promoter-

lacZ fusion 
This study 

pMLS7Porb-lacZ pMLS7 containing the orb operon promoter-lacZ 
fusion 

This study 

pMLS7-cepI pMLS7 containing cepI This study 
pMLS7-cepR pMLS7 containing cepR This study 
pMLS7-0207 pMLS7 containing Bcas0207 This study 
pBAH27 pBBR1MCS-5 containing the cepR gene of B. 

cepacia H111  
Huber et al., 2001 
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Table 3-2. PCR primers used in this study 

Primer Sequence 

For reporter construction  

lacZF 5’- cccggaattcatgaccatgattacggattcactg 

   lacZR 5’-ctagctagcttatttttgacaccagaccaactgg 

0581PF 5’-ctagctagctcgtgcggcccagtgtg  

0581PR 5’-cggaattcggtatgtcctcgtgagatgtgg  

PzmpAF 5’-cccaagcttctggagcgctcgcattcac 

PzmpAR 5’-cgcggatccgggcagcagtcgagacagtttctt  

PlipF 5’-cccaagctttcgatgcatgggtgtcggcg  

PlipR 5’-cgcggatccggaacgcatcgatttggccat  

PorbF 5’-cccaagctttgtgatagccgagcgagccg  

PorbR 5’-cgcggatccgaaactcgtcatgtgcgtgaagtcctt 

For in trans expression  

cepI-F 5’-cgcggatccatgcagaccttcgttcacgag 

cepI-R 5’-cccaagctttcaggcggcgatagcttgc 

cepR-F 5’-cgcggatccatggaactgcgctggcag 

cepR-R 5’-cccaagctttcagggtgcttcgatgagcc 

For RT-PCR analysis  

Bcas0207F 5’-cgctcgcgcatctgtggttc  

Bcas0207R 5’-ccggcgagtcgtggcgtgtc  

zmpAF 5’-gcggcggcggctcggtctac 

zmpAR 5’-cgggatcgttcgggttgttcg 

lipAF 5’-aaccgcgcccgccgacgactat  

lipAR 5’-gccctggctgtgaccgacgagatt  

lipBF 5’-gccggcgtcgcgatgtggag 

lipBR 5’-gcgcggtcaggcaatagtcg 

 orbIF 5’- acgcgtgcattgctgggtctgttc  

orbIR 5’- gcgcggccgtcgtatgct  
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3.2.3 Bacterial growth analysis and determination of cellular ATP levels  

B. cenocepacia cultures grown overnight in LB medium were washed with Anwar 

medium and diluted to a final OD600 of 0.05 in Anwar medium. Citrate and other 

carbohydrates were supplemented at a final concentration of 20 mM as indicated. 

Bacterial growth was determined at 37oC in a low intensity shaking model using the 

Bioscreen-C Automated Growth Curves Analysis System (OY Growth Curves AB Ltd, 

Finland). For determination of ATP and colony forming units (c.f.u), samples were taken 

at various time points for spreading onto LB plates after appropriate dilutions. 

Quantification of ATP was achieved using the BacTiter-Glo™ Microbial Cell Viability 

Assay kit (Promega, USA) according to manufacturer’s protocols.  

 

3.2.4 Construction of reporter strains and measurement of β-galactosidase activity  

A promoterless vector was created after removing the promoter sequence upstream of the 

multiple cloning site in pMLS7 (Lefebre and Valvano, 2002) by digestion with NheI and 

EcoRI. The lacZ gene was amplified using the primer pair lacZF and lacZR (Table 3-2). 

The amplified lacZ was ligated to the linealized pMLS7 to generate the promoterless 

fusion construct pMLS7-lacZ. For generating transcriptional fusions the promoter regions 

of Bcam0581 and other virulence genes were amplified using the primers listed in Table 

3-2. The PCR fragments were digested with BamHI and HindIII, and then ligated into the 

same sites of pMLS7-lacZ, respectively. These constructs were verified by DNA 

sequencing before they were introduced into B. cenocepacia J2315 and d0581 by tri-

parental mating. The B. cenocepacia transconjugants were selected on LB agar plates 

containing trimethoprim.  
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For measurement of β-galactosidase activity, strains were grown in LB medium at 37oC 

with shaking at 250 rpm. When necessary, BDSF and C8HSL were added separately or in 

combination to a final concentration of 5 μM. Bacterial cells were harvested at various 

time points along the growth curve and β-galactosidase activities were assayed as 

described previously (Jeffrey, 1992). 

 

3.2.5 RNA extraction and RT-PCR analysis 

Cultures grown in LB medium at 37oC with shaking (250 rpm) overnight were diluted to 

an OD600 of 0.05 in fresh LB medium or Anwar medium,as indicated and grown under 

the same conditions to an OD600 of 1.5 (LB medium) or 48 h (Anwar medium), 

respectively. RNA was isolated from one milliliter of culture using the RNeasy mini kit 

according to the manufacturer’s instructions (Qiagen). The concentration and purity of 

RNA were determined by spectrometry and agarose gel electrophoresis. RT-PCR 

analysis was performed using the One-step RT-PCR kit according to the manufacturer’s 

instructions (Qiagen). 

 

3.2.6 Cell aggregation analysis 

Bacteria stock cultures were inoculated to obtain an OD600 of less than 1.0 after overnight 

incubation at 37oC and diluted to OD600 of 0.05 the next day. Subsequently, 3 ml of the 

diluted cultures were dispensed in sterile 12 well tissue culture plates in triplicates. They 

were incubated at 37oC with agitation set at 150 rpm and observed visually every hour. 

Imaging was achieved using a HP5370C Flat bed scanner.  
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3.2.7 Generation of static biofilms 

The bacteria cultures were grown 24 hours and the density were adjusted to OD600 of 

about 3.0.  Five micro liters culture was inoculated in duplicates into sterile 6 well tissue 

culture plates containing 3 ml of culture media.  They were subsequently incubated 

without agitation at 30oC for 3 days. To observe the coarse surface of the resultant 

biofilm, the plates were then directly observed under a stereo microscope at 25X 

magnification equipped with a polarizer (Olympus) and imaged using an attached 

standard 35 mm film camera. 

 

3.2.8 Virulence assays using a zebrafish infection model 

B. cenocepacia virulence was tested by infecting 6 months old zebrafish (Danio rerio). 

To this end, thirty microliters of bacterial cultures grown to an OD600 of 1.0 were injected 

intraperitoneally into each fish using a 1-ml tuberculin syringe attached to a 30.5 gauge 

Precision Glide® needle (Becton Dickinson). Mortality was scored daily and dead fish 

were removed immediately. The experiment was repeated 3 times, each time using 15 

fish per treatment. To determine bacterial survival in vivo, bacterial strains were 

inoculated as described above except that 30 fish were used for each treatment. Each day 

three fish were sacrificed, surface sterilzed with 70% ethanol for 1 min, washed with 

phosphate-buffered saline (PBS, pH 7.3) and homogenized. Following centrifugation at 

500 rpm for 1 min to remove large debris, serial dilutions of the homogenates were 

prepared in PBS and plated in triplicates on LB agar containing kanamycin (200 μg ml-1) 
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and gentamycin (200 μg ml-1). The bacterial cell numbers (c.f.u) were determined 2 days 

after incubation at 37oC. 

 
3.3 Results 

3.3.1 Accumulation of BDSF is cell density-dependent 

To determine the time course of BDSF production, we extracted B. cenocepacia J2315 

supernatants at various growth stages and measured BDSF concentrations by the aid of 

the biosensor strain FE58 (Wang et al., 2004). Detectable amounts of BDSF were first 

measured 6 h post inoculation (Fig. 3-1A). After this time point, BDSF levels increased 

steadily during the exponential and early stationary growth phase. BDSF accumulation 

peaked in the late stationary phase (36 h) followed by a significant decline in BDSF 

levels (Fig. 3-1A). We noted that the pH of bacterial supernatants reached approximately 

8.6 at 40 h post inoculation. However, incubation of BDSF in solutions of similar 

alkaline pH overnight did not affect BDSF activity (data not shown), suggesting that a 

biological factor(s) may account for the decline of BDSF at the later stage of bacterial 

growth.   

 

3.3.2 BDSF production is controlled at the level of transcription 

The drastic decline of BDSF amounts in the late stationary phase prompted us to 

investigate the transcriptional profile of Bcam0581, which encodes BDSF production. A 

613-bp DNA containing the Bcam0581 promoter region was transcriptionally fused to a 

lacZ coding sequence and the construct was introduced into the wild type strain. As 

shown in Fig. 3-1B, the promoter activity of Bcam0581 gradually increased and reached 

a stable plateau 12 h post inoculation, which was maintained for another 12 hours. 
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Thereafter, BDSF levels declined rapidly. The Bcam0581 promoter activities coinciding 

very well with the BDSF accumulation profile: a rapid increase in BDSF levels following 

the stimulation of Bcam0581 promoter activity and a sharp decline in activity prior to the 

drop in BDSF signal concentrations in the culture supernatants.  

 

To test whether the Bcam0581 promoter is autoregulated by BDSF, we determined the 

activity profile of the promoter in the Bcam0581 deletion mutant d0581 genetic 

background. The enzyme assay data showed that the promoter activity in mutant d0581 

(data not shown) is virtually indistinguishable from the one in the wild type background, 

suggesting that the production of BDSF may not be autoregulated.   

 

3.3.3 Deletion of Bcam0581 impaired growth and cellular ATP levels when grown in 

minimal medium  

While deletion of Bcam0581 did not have obvious effect on bacterial growth in LB 

medium, we noticed that the mutant grew much slower than the wild type in Anwar 

medium, which is a minimal medium containing 20 mM glucose as the sole carbon  

source. Growth experiments revealed that not only the growth rate of d0581 was reduced 

but that the mutant only reached an OD600 of 0.2 at 44 h after inoculation (Fig. 3-2A). In 

contrast, the wild type strain grew significantly faster than the mutant and reached a 

maximum OD600 of 0.45.  In trans expression of Bcam0581 in the deletion mutant d0581 

resulted in a faster initial growth rate but then, surprisingly, a slower rate than the wild 

type strain after 28 h (Fig. 3-2A). Moreover, exogenous addition of BDSF up to a 

concentration of 25 µM was not able to rescue the growth defect of d0581 (Fig. 3-3C).  
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Fig. 3-1. BDSF production and Bcam0581 transcriptional expression. (A) Time course 

analysis of B. cenocepacia growth in LB medium (□) and BDSF accumulation in culture 

supernatants (■). (B) β-galactosidase activity of a Bcam0581-lacZ transcriptional fusion 

(■) and bacterial growth (□). Strain J2315 was inoculated in flask containing LB medium 

and cultured at 37oC with shaking at 220 x rpm. The data presented are the means of two 

independent experiments and the error bars represents the standard deviation.  
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Fig 3-2. Effect of Bcam0581 deletion on B. cenocepacia growth and energy biogenesis in 

minimal medium. (A) Growth pattens of the wild type strain J2315 (■), the mutant d0581 

(□), and the complemented mutant d0581(pMLS7-0581) (▼). Bacterial cells were 

inoculated in Anwar medium with three duplicates for each strain and growth profiles at 

37oC were recorded by BIOSCREEN. (B) Cellular ATP levels expressed in RLU per 108 

c.f.u. Bacteria were grown under the same conditions as in (A) and samples were taken at 

different time points for ATP measurement as indicated. Symbol: Solid bar, wild type 

J2315; open bar, mutant d0581; slashed bar, complemented strain d0581(pMLS7-0581). 

The data shown are means of three repeats and error bars indicate the standard deviations.  
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These unexpected phenomena were confirmed in several independent experiments using 

both flask cultures and the Bioscreen-C Automated Growth Curves Analysis System. 

These data suggest that, in addition to its role in BDSF biosynthesis, Bcam0581 may also 

have a metabolic function. We next investigated the cellular ATP levels of the strains. 

Quantitative measurements of ATP concentrations at three time points showed that 

deletion of Bcam0581 resulted in significantly reduced ATP levels relative to the wild 

type strain (Fig. 3-2B). Consistent with its growth profile, the complement strain 

produced more ATP than the wild type strain, in particular 24 and 30 hours after 

inoculation.  

 

3.3.4 The growth defect of mutant d0581 in minimal medium is rescued when citrate 

is supplemented or by in trans expression of citrate synthase  

As the ATP measurements suggested that Bcam0581 may somehow influence energy 

metabolism of B. cenocepacia J2315, we tested whether supplementation of 

carbohydrates associated with citric acid cycle could rescue the growth defect of the 

deletion mutant d0581. To this end, Anwar medium containing 20 mM glucose as a sole 

carbon source, was amended with 20 mM of different carbohydrates, including citrate, 

malate and pyruvate. As shown in figure 3-3A, Anwar medium supplemented with 20 

mM citrate not only enhanced growth of the wild type strain J2315 but also rescued the 

growth defect of mutant d0581. Interestingly, the complemented strain d0581(0581) also 

proliferated well in the Anwar medium supplemented with 20 mM citrate but at a lower 

rate than the wild type strain (Fig. 3-3A).  
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Fig. 3-3. Addition of citrate to Anwar medium rescues the growth defect of the 

Bcam0581 mutant. (A) Growth curve of the wild type J2315 (■) and the complemented 

mutant d0581(pMLS7-0581) (▼) in Anwar medium supplemented with 20 mM citrate; 

mutant d0581 in Anwar medium (∆), in Anwar medium supplemented with 20 mM 

citrate (□), 20 mM malate (♦), and 20 mM pyruvate (●). The error bars show the standard 

deviations of three repeats. (B) RT-PCR analysis of the citrate synthase gene Bcas0207 

expression in the wild type J2315, the mutant d0581, the complemented mutant 

d0581(pMLS7-0581) and the mutant d0581 supplemented with 5 µM BDSF. The signal 

intensity (using the software Image J; http://rsb.info.nih.gov/ij/) determined for each RT-

PCR band is indicated. For each RNA sample, two dilutions (5, 50 ng) were used as 

templates for RT-PCT reaction with similar results. The error bars show the standard 

deviations of three repeats. (C)  Growth curve of wild type J2315 (■), the mutant d0581 

(□), d0581(pMLS7-Bcas0207) (▲) and the mutant d0581 supplemented with 5 µM 

BDSF (○) and 25 µM BDSF (●) in Anwar medium.  The error bars show the standard 

deviations of three repeats. 
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The involvement of Bcam0581 in citrate biosynthesis was further analyzed by semi-

quantitative RT-PCR. Bcas0207 of B. cenocepacia J2315 encodes a citrate synthase 

homologue, which contains an oxalacetate binding site, a citrylCoA binding site and a 

coenzyme A binding site involved in citrate biosynthesis of the TCA cycle (Holden et al., 

2009). RT-PCR analyses showed that transcription of Bcas0207 in the Bcam0581 

deletion mutant was significantly reduced, which was restored to the level of the wild 

type strain by complementation with the wild type Bcam0581 gene, but exogenous 

addition of 5 μM BDSF to the mutant had not effect (Fig. 3-3B). We then tested whether 

in trans expression of Bcas0207 could rescue the growth defect in the mutant d0581. The 

results showed that the resultant strain d0581(Bcas0207) grew faster initially than the 

wild type strain but its proliferation was slower down after 20 h, and  

reached a similar population density as the wild type at about 48 h after inoculation ( Fig. 

3-3C).  

 

3.3.5 d0581 displays enhance auto aggregation and altered surfaced structures in 

static biofilms 

Previous study showed that BDSF is a structural homologue of DSF from Xcc. Deletion 

of rpfF in Xcc displayed enhance cell aggregation  and biofilm formation (Boon et al., 

2008; He et al., 2006a). This impelled us to examine the extent of cell aggregation and 

the nature of the biofilm formed by d0581. Indeed, it demonstrated increased auto 

aggregation as compared to the wild type which can be complemented by both the 

expression of Bcam0581 in trans (Fig. 3-4A) and exogenous addition of 5 μM BDSF. 

When B. cenocepacia is grown statically, it forms a thin layer of pellicle-like biofilm at  
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                  Wild type                             d0581                              d0581(0581) 

B 

   

         Wild type                     d0581                     d0581(0581)      d0581+5 μM BDSF 

 

Fig. 3-4. The role of BDSF in cell aggregation and biofilm formation. (A) Extent of cell 

aggregation in the various B. cenocepacia strains. (B) Macro surface structures of static 

biofilms observed under a stereo microscope. Complementation was performed by the in 

trans expression of Bcam0581 in (A, B) and addition of 5 µM of BDSF in (B). 
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the liquid to air interface after three days of incubation. Microscopic examination of the 

biofilm formed by the wild type revealed an uneven rough surface due to the presence of 

numerous pimple-like protrusions (Fig. 3-4B). Interestingly, the surface of the biofilm 

formed by the mutant contains moderately lesser amount of protrusions but they appear 

drastically larger in size. Importantly, the complemented strain which over produces 

BDSF or exogenous addition of BDSF displayed considerable reduction in the amount 

and size of these protrusions.  

 

3.3.6 Deletion of Bcam0581 affects expression of virulence genes  

To test the role of BDSF signaling in modulation of virulence gene expression we 

selected a few previously characterized virulence factors for RT-PCR and gene fusion 

analyses, including zmpA (Bcas0409) encoding a metalloprotease (Gingues et al., 

2005; Kooi et al., 2005), lipA (Bcam0949) and lipB (Bcam0950) encoding a lipase and a 

lipase chaperone (Holden et al., 2009), respectively, and the orbI gene (Bcal1696) 

required for the biosynthesis of the siderophore ornibactin (Holden et al., 2009). These 

investigations revealed that the transcript levels of zmpA, lipA, lipB, and to a lesser 

degree of orbI, were reduced in the mutant d0581 relative to levels of these genes in the 

parental strain (Fig. 3-5). In trans expression of the wild type Bcam0581 gene rescued the 

defects, confirming the importance of Bcam0581 for the regulation of these virulence 

factors under normal growth conditions. Unlike the growth defect in minimal medium, 

the decreased transcription of these virulence genes could be fully restored by exogenous 

addition of 5 μM BDSF (Fig. 3-5). These data suggest that the BDSF signaling network 

affects virulence gene expression in B. cenocepacia.  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Kooi%20C%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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We also fused the promoter regions of zmpA, lipAB and orbIJK to lacZ and measured 

reporter gene activities in the wild-type and the d0581 mutant background. Consistent 

with the RT-PCR analysis, null mutation of Bcam0581 caused a 30 - 50% reduction in 

transcriptional expression of these genes, which was almost fully rescued by the addition 

of 5 μM BDSF to the medium (Fig. 3-6A, 6B, 6C). 

 

3.3.7 Co-regulation of virulence gene expression by BDSF and AHL signal molecules 

Interestingly, ZmpA and ornibactin biosynthesis have been previously shown to be under 

control of CepIR QS system (Subsin et al., 2007). This prompted us to investigate 

whether deletion of Bcam0581 affects transcriptional expression of cepI or cepR. 

However, no difference in cepI or cepR transcript levels between the wild type and the 

Bcam 0581 mutant could be observed using RT-PCR (data not shown). Quantification of 

AHL production of strain J2315 and its mutant d0581 showed that the mutant produced 

lower amounts of AHL signal molecules than the wild type when grown in Anwar 

minimal medium for a same time (data not shown). However, the difference became 

insignificant after normalization against bacterial cell density.  

 

To test the possibility that the BDSF signaling system may act downstream of CepIR, we 

analyzed the effect of cepI and cepR on virulence gene expression in the d0581 mutant 

background. RT-PCR analysis showed that similar to in trans expression of Bcam0581, 

overexpression of cepI or cepR in the mutant d0581 increased the transcript levels of 

zmpA (Bcas0409), lipA (Bcam0949), lipB (Bcam0950) and orbI (Bcal1696) (Fig. 3-5A).  
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Fig.3-5. Analysis of the role of Bcam0581/BDSF and AHL system in the regulation of 

virulence gene expression. Bacterial strains were grown in LB medium to an OD600 of 1.5. 

BDSF was added at a final concentration of 5 µM as indicated. For each RNA sample, 

two dilutions (5, 50 ng) were used as templates for RT-PCT reaction with similar results. 
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Fig. 3-6. Influence of Bcam0581 on expression of virulence genes zmpA (A), lipAB (B), 

and orbIJK (C), as determined by using corresponding promoter-lacZ fusion reporter 

strains. Bacterial strains were grown in LB medium, and BDSF and C8HSL were added 

separately or in combination at a final concentration of 5 µM. The data shown are the 

means of three repeats and error bars indicate the standard deviations. 
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We then tested whether BDSF can further increase virulence gene expression in the AHL 

mutant background. The results showed that addition of 5 µM BDSF to the cepR mutant 

cepR::Kmr fully restored the transcriptional expression of above four virulence genes (Fig. 

3-5B). In addition, we found that exogenous addition of C8-HSL at a final concentration 

of 5 µM to the growth medium significantly increased the promoter activities of zmpA, 

lipAB, and orbIJK in mutant d0581 (Fig. 3-6A, 6B, 6C). Furthermore, addition of BDSF 

together with C8HSL to the mutant d0581 further increased the promoter activity of these 

three genes to a level similar to addition of C8HSL to the wild type strain J2513 (Fig. 3-

6A, 6B, 6C). These data suggest that the AHL- and BDSF-dependent QS systems 

regulate a similar set of virulence factors in parallel.   

 

3.3.8 The pathogenicity of d0581 is reduced in a zebrafish infection model 

We employed a zebrafish infection model to determine the role of Bcam0581 in B. 

cenocepacia pathogenesis. Cells of the wild type, the mutant d0581 and the 

complemented mutant were injected into zebrafish. Phosphate saline buffer was used as a 

mock control. While more than 90% of the fish infected with the wild type strain J2315 

died within 6 days post inoculation, the Bcam0581 mutant strain was much less virulent 

and only 40 % of the infected fish survived (Fig. 3-7A). In trans expression of the 

Bcam0581 gene in d0581 fully restored virulence and none of the fish infected with the 

complemented mutant was alive at day 7 post infection (Fig. 3-7A).  

 

Given that mutation of Bcam0581 affects both virulence gene expression and bacterial 

growth in minimal medium, it was of interest to investigate whether inactivation of 
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Bcam0581 affects proliferation and survival of the mutant in the animal host. We 

therefore determined the number of bacterial cells within the fish body by plating serial 

dilutions of homogenates on LB plates. The data shown in Fig. 3-7B show that the c.f.u 

counts of the mutant during the first three days after infection were significantly lower 

than those of the wild type and the complemented mutant strain. While both the wild type 

and the mutant strain proliferated in a linear manner, proliferation of the complemented 

strain was stalled at day 2 past - infection (Fig. 3-7B). It is noteworthy that the in vivo 

growth trends of the three strains are similar to their in vitro growth patterns (Fig. 3-2A). 

On the 4th day of infection, the bacterial cell number of the complemented strain was 

indistinguishable from that of the mutant d0581 (Fig. 3-7B), likely due to loss of the 

plasmid construct containing Bcam0581.   

 
3.4 Discussion 

Previous work has shown that B. cenocepacia utilizes a highly conserved AHL-

dependent QS system for cell-to-cell communication (Gotschlich et al., 2001; Lewenza et 

al., 1999; Lutter et al., 2001). In this study, we present evidence that this bacterium also 

employs a BDSF-dependent communication system to coordinate virulence gene 

expression and biofilm formation. Genetic analysis demonstrated that a BDSF-null 

mutant was compromised in the expression of known virulence factors and attenuated in 

pathogenicity in a zebrafish infection model. Both RT-PCR and transcriptional analysis 

using promoter-lacZ gene fusion approach showed that the reduced expression levels of 

several virulence genes in the BDSF-null mutant could be fully restored by the 

exogenous addition of a physiological relevant amount of BDSF, indicating a positive 

regulatory role of this signal in modulation of bacterial virulence. Additionally, BDSF is  
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Fig. 3-7. BDSF is essential for full virulence of B. cenocepacia J2315 in a zebrafish 

infection model. (A) Survival rate of the fish after infection with the wild type strain 

J2315 (■); the BDSF-deficient mutant d0581 (□) and the complemented mutant 

d0581(pMLS7-0581) (∆). Phosphate saline buffer was injected in the same way as a 

mock control (O). The experiment was repeated three times and a representative set of 

data is shown. (B) In vivo bacterial cell numbers of the strains in the host after infection. 

Symbol: open bar, J2315; solid bar, d0581; slashed bar, d0581(pMLS7-0581). The data 

presented are the mean of two independent experiments and the error bars represents the 

standard deviation. 
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negatively involved in the regulation of cell aggregation formation. BDSF-deficient 

mutant forms bigger cell aggregations not only in dynamic but also in static-biofilm 

formation. 

 

Among the virulence genes positively regulated by BDSF, zmpA and the genes encoding 

ornibactin biosynthesis have been previously shown to be under the control of CepIR QS 

system (Subsin et al., 2007). The finding that deletion of Bcam0581 did neither affect 

transcription of cepI nor cepR but addition of C8-HSL could restore virulence gene 

expression of the BDSF-null mutant suggests that the two signaling systems co-regulate 

expression of some virulence genes. Evidence is accumulating that a bacterial pathogen 

may have evolved several signaling pathways to regulate the same set of virulence genes. 

For example, Pseudomonas aeruginosa utilizes both an AHL- and a PQS-dependent QS 

system to modulate the production of a wide range of extracellular virulence factors 

(McKnight et al., 2000). Likewise, expression of the virulence regulon in Xanthomonas 

campestris is co-regulated by QS signal DSF and hypoxia cue (He et al., 2009). 

Identification of BDSF as another QS signal in B. cenocepacia presents a new addition to 

the expanding list of bacterial pathogens which recruit multiple signaling mechanisms for 

co-regulating virulence gene expression.    

 

The population density-dependent accumulation of BDSF in the culture supernatant of B. 

cenocepacia J2315 is reminiscent of the one observed with AHL signal production 

(Kaplan and Greenberg, 1985; Kuo et al., 1994; von Bodman et al., 1998; Zhang et al., 

1993). A rapid increase of the signal in culture supernatants was observed during the mid 
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exponential to late stationary growth phase (12 – 36 h post inoculation). This boost in 

BDSF level was preceded by a strong increase of promoter activity driving expression of 

Bcam0581, which encodes an enzyme required for BDSF biosynthesis (Boon et al., 

2008), suggesting that BDSF production is controlled at the level of transcription. Given 

that maximum BDSF concentrations were observed one day after the peak of Bcam0581 

promoter activity, it is possible that biosynthesis of BDSF may also be controlled at the 

level of substrate availability as it is the case for AI-2 signal production in Salmonella 

enterica serovar. typhimurium (Beeston and Surette, 2002). The chemical structure of 

BDSF closely resembles the one of DSF produced by X. campestris (Boon et al., 2008; 

Wang et al., 2004), in which DSF biosynthesis is autoregulated by a signal sensor-

synthase interaction mechanism (He et al., 2006a). So far, only one component of the B. 

cenocepacia BDSF-dependent signaling system, namely the BDSF synthase Bcam0581, 

has been identified (Boon et al., 2008). Additional work will be required to identify the 

BDSF sensor and the other components that constitute the signaling circuitry and to 

elucidate their interactions.  

 

Biofilm formation is coupled to cell density and therefore it is regulated by quorum 

sensing signals. Disruption of the AHL QS system in B. cenocepacia, had been shown to 

result in defects in biofilm maturation (Huber et al., 2001). Similarly, we found that 

abolishing the BDSF signal results in significant changes to the biofilm surface 

architecture. Microscopy showed that the pellicle-like biofilm that forms at the liquid to 

air interface is considerably much more serrated in the mutant when compared to the wild 

type. Addition of BDSF or in trans expression of Bcam0581 completely abolish this 
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phenomenon. These data thus implies a role for BDSF in the fine tuning of the biofilm 

structure. Since both AHL and BDSF signals can influence biofilm formation, this result 

enhances the interaction between AHL and BDSF systems in B. cenocepacia also 

involves in the regulation of biofilm formation 

 

This study has also unveiled a novel function of Bcam0581 in addition to its role in the 

biosynthesis of BDSF. Our data suggest that Bcam0581 is essential for energy biogenesis 

during growth under unfavorable nutritional condition. The notion is supported by several 

lines of evidence. First, the growth of the deletion mutant d0581 was not affected in rich 

media, but was significantly retarded in minimal media where glucose is the sole carbon 

source. Second, although the growth defect was restored by in trans expression of 

Bcam0581 in the mutant, exogenous addition of BDSF up to 25 times the physiologically 

relevant concentration did not rescue the growth defect. Third, inactivation of Bcam0581 

resulted in decreased cellular ATP levels that could be restored by genetic 

complementation but not by BDSF. We further showed that minimal medium 

supplemented with citrate, but not malate or pyruvate, fully rescued the growth defect of 

the mutant. Consistently, in trans expression of the citrate synthase encoded by Bcas0207 

in the deletion mutant d0581, which was down-regulated by deletion of Bcam0581, 

resulted in a higher growth rate than the wild type strain. These data suggest that 

Bcam0581 may influence energy metabolism through affecting citric acid cycle. Such an 

‘additional’ function of a signal molecule synthase has also been found in the case of the 

signal synthase LuxS, which in addition to the synthesis of AI-2, plays a key metabolic 

role in the activated methyl cycle through recycling the toxic intermediate S-
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adenosylhomocysteine (Winzer et al., 2002). The detailed mechanism of Bcam0581 in 

energy metabolism in B. cenocepacia remains to be elucidated. 

 

It was noticed that over-expression of Bcam0581in the mutant d0581 resulted in a higher 

initial growth rate than the wild type but then a growth-deceleration phenotype after 28 h. 

Coincidently, over-expression of the citrate synthase gene Bcas0207 in d0581 also 

showed a similar growth-deceleration phenotype. Given that the expression of Bcas0207 

is positively modulated by Bcam0581, we speculate that this phenotype may be due to 

accumulation of a toxic metabolite(s) generated by the enzyme encoded by Bcas0207, 

which will be further investigated.  

 

The virulence of mutant d0581 was significantly attenuated in zebrafish. While animals 

infected with the mutant strain had a survival rate of 40% only 10% of the fish infected 

with the wild type and none of those infected with the complemented mutant survived. 

Decreased virulence factor production in the mutant could partially account for the 

attenuated virulence, but the growth defect of the mutant under unfavorable nutritional 

conditions might also contribute to the compromised virulence, as it is likely that nutrient 

availability in the host is limited. Indeed, determination of bacterial cell numbers showed 

that the mutant’s ability to survive in the zebrafish was significantly reduced. The dual 

role of Bcam0581 in QS-regulation of virulence and modulation of energy biogenesis 

may make this protein a very attractive drug target. Work is now in progress to map the 

entire BDSF regulon of B. cenocepacia, which would facilitate the characterization of 
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signaling pathway and shed light on the mechanism by which it cross talks with the 

AHL-dependent QS system.  
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CHAPTER 4 

STRUCTURAL AND FUNCTIONAL 

CHARACTERIZATION OF THE DSF-FAMILY QUORUM 

SENSING SIGNALS PRODUCED BY THE 

BURKHOLDERIA CEPACIA COMPLEX 

4.1 Introduction 

The Burkholderia cepacia complex (Bcc) is a family of important opportunist pathogens 

in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD) 

(Goldmann and  Klinger, 1986; Isles et al., 1984; Mahenthiralingam et al., 2005). There 

are at least 9 species within the complex which are phenotypically similar but genetically 

distinct, and all the species are capable of causing infections (Coenye et al., 2001; 

Mahenthiralingam et al., 2005). B. cepacia infection usually causes cepacia syndrome, a 

necrotizing pneumonia with fever and occasional bacteremia, which may result in a rapid 

and fatal pulmonary decline and death (Isles et al., 1984; Mahenthiralingam et al., 2001, 

2002). The genomovars of the B. cepacia complex could vary significantly in their 

pathogenic potentials and transmissibility (Mahenthiralingam et al., 2000; Vandamme et 

al., 1997).  In addition, there are geographical differences in the prevalence of the B. 

cepacia complex, with B. cenocepacia and B. multivorans predominating North America 

and Europe, respectively (Govan et al., 2007). 

  

Many bacterial pathogens have evolved a cell-cell communication mechanism known as 
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quorum sensing (QS) to coordinate the expression of their virulence genes. Disregarding 

their genetic differences, all the 9 genomovars of the B. cepacia complex are known to 

produce an acylhomoserine lactone-family QS signal, which is known for its role in 

modulation of virulence gene expression (Wopperer et al., 2006). Recently, another type 

of QS signal, i.e., cis-2-dodecenoic acid (BDSF), has been identified in B. cenocepacia 

(Boon et al., 2008). Subsequent studies showed that BDSF plays a role in regulation of 

bacterial virulence (Deng et al., 2009; Ryan et al., 2009). Interestingly, the two QS 

systems appear to act in conjunction in regulation of B. cenocepacia virulence as a set of 

the AHL-dependent virulence genes are also regulated positively by BDSF (Deng et al., 

2009). Furthermore, mutation of the Bcam0581 gene encoding BDSF biosynthesis results 

in retarded energy production and bacterial growth in minimal medium (Deng et al., 

2009), highlighting the dual roles of the BDSF QS system in the bacterial physiology and 

infection. 

     

BDSF is similar to the QS signal DSF (cis-11-methyl-2-dodecenoic acid) of 

Xanthomonas campestris pv. campestris (Xcc) (Barber et al., 1997; Wang et al., 2004). 

Evidence is accumulating that the DSF-family signals are widely conserved. For example, 

DSF and seven structural derivatives were found in Stenotrophomonas maltophilia 

(Huang and Wong, 2007), 12-methyl-tetradecanoic acid was produced by Xylella 

fastidiosa (Newman et al., 2004), and cis-10-2-decenocic acid was identified in 

Pseudomonas aeruginosa (Davies and Marques, 2009). In addition, DSF-like activity has 

also been reported in a range of Xanthomonas species, including Xanthomonas oryzae pv. 

oryzae and Xanthomonas axonopodis pv citri (Andrade et al., 2006; Barber et al., 1997; 
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Chatterjee and Sonti, 2002; Wang et al., 2004), but the chemical structures of DSF 

analogues in these bacterial pathogens remain to be determined.  

 

The importance of the DSF-family signals is recognized due to their roles in regulation of 

virulence and biofilm formation in a range of bacterial pathogens (He and Zhang, 2008). 

In this study, we have investigated the ability of 9 genomovars of the B. cepacia complex 

in the production of the DSF-family signals. The results showed that BDSF is conserved 

in all the members of the B. cepacia complex. Interestingly, we showed that DSF and a 

novel member of the DSF-family signals were also produced by a few but not all the 

members of the B. cepacia complex. This new signal was purified and structurally 

characterized by nuclear magnetic resonance (NMR) and mass spectrometry analysis. 

Furthermore, we have determined the biological significance of the newly identified 

CDSF in intraspecies and interspecies signal communications.  

 

4.2 Materials and Methods 

4.2.1 Bacteria strains and growth conditions 

The B. cepacia complex strains used in this work are listed in Table 4-1. These strains 

were grown at 28oC or 37oC as indicated with shaking at 250 rmp in Luria-Bertani (LB) 

broth. Xanthomonas campestris pv. campestris strain 8004 and its rpfF deletion mutant 

8004dF were described previously (He et al., 2006; Wang et al., 2004). Xcc strains were 

maintained at 30oC in YEB medium (Zhang et al., 2002). B. cenocepacia J2315 and its 

Bcam0581 deletion mutant d0581 were described previously (Boon et al., 2008). For 

static biofilm formation assay of B. cenocepacia, bacteria were cultured in Basal salt 
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medium (pH 7.2) containing 20 mM citrate and 0.5% Casamino acids (Boon et al., 2008). 

The following antibiotics were supplemented when necessary: rafimpicin, 50 µg ml-1; 

gentamycin, 100 µg ml-1; tetracycline, 10 µg ml-1; trimethoprim, 400 µg ml-1 (B. 

cenocepacia) or 1.5 mg ml-1 (E. coli). Candida albicans SC5314 were grown in GMM 

medium consisting of 6.7 g of Bacto yeast nitrogen base (Difco) and 0.2% glucose (pH 

7.2). The DSF-family signals were added to medium in a final concentration of 5 μM 

unless otherwise indicated. 

 

4.2.2 Thin Layer Chromatography (TLC) and DSF bioassay analysis 

The overnight bacterial culture supernatants (250 ml) were extracted with ethyl acetate in 

a 1:1 ratio. The organic phase was dried using a rotary evaporator and the residues were 

dissolved with 200 μl of methanol. An aliquot of 5 µl extracts was spotted onto a 20 × 20 

cm silica gel TLC plate (MERCK) and separated with ethyl acetate-hexane (20:80 v/v) as 

running solvents. Subsequently, the plates were dried under air flow and overlaid with 

100 ml of NYG medium (20 g Glycerol, 5 g peptone, 3 g yeast extract per liter), which 

was supplemented with 0.8 g agarose, 250 µg  of 5-Bromo-4-chloro-3-indolyl-β-D-

glucoside and 4 ml of the biosensor strain FE58 at an OD600 of 1.8 (Wang et al., 2004). 

TLC plate was incubated overnight at 28oC and the DSF activity was indicated by the 

presence of a blue spot.  

 

4.2.3 Purification and structural analysis of the DSF-family signals  

To isolate and identify BDSF and its analogues from the supernatants of the B. cepacia 

complex, one liter culture of each strain was grown to an OD600 of about 3.0 and 
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Table 4-1. The bacteria strains used in this study   

Strains Characteristics 

 

Growth 
Temperature 

References/Source 

B. cepacia 383 Genomovars I 37oC Mahenthiralingam E. 
Laboratory 

B. multivorans ATCC 
17616 

Genomovars II 37oC Mahenthiralingam E. 
Laboratory 

B. cenocepacia J2315  Genomovars III 37oC ATCC 

B. stabilis LMG 14086  Genomovars IV 28oC BCCMTM 

B. vietnamiensis G4  Genomovars V 
 

37oC Mahenthiralingam E. 
Laboratory 

B. dolosa LMG 18941  Genomovars VI 28oC BCCMTM 

B. ambifaria AMMD  Genomovars VII 37oC Mahenthiralingam E. 
Laboratory 

B. anthina LMG 16670  Genomovars VIII 28oC BCCMTM 

B. pyrrocinia LMG 
14191  

Genomovars IX 
 

37oC BCCMTM 
 

d0581 BDSF-minus mutant derived from 
J2315 with Bcam0581 being 
deleted 

37oC Boon et al., 2008 

d0581(0581) 
 

Mutant d0581 harboring the 
expression construct pMLS7-
Bcam0581 

37oC Boon et al., 2008 

d0581(5121) 
 

Mutant d0581 harboring the  
construct pMLS7-Bmul5121 

37oC This study 

J2315 (egfp) Wildtype harboring the expression 
construct pMLS7-egfp 

30oC 
 

This study 

d0581(egfp) 
 

Mutant d0581 harboring the 
expression construct pMLS7-egfp 

30oC This study 

J2315(PzmpA-lacZ) 
 

Wild type harboring the reporter 
construct pMLS7PzmpA-lacZ 

37oC Deng et al., 2009 

d0581(PzmpA-lacZ) Mutant d0581 harboring the 
construct pMLS7PzmpA-lacZ 

37oC Deng et al., 2009 
 

8004 Wildtype strain of Xanthomonas 
campestris pv. campestris 

30oC He et  al., 2006 
 

8004dF DSF-minus mutant derived from 
8004 with rpfF being deleted 

30oC He et  al., 2006 

DH5α E.coli 37oC Laboratory collection 
DH5α(0581) DH5α harboring the expression 

construct pMSL7-Bcam0581 
37oC This study  

DH5α(5121) DH5α harboring the expression 
construct pMSL7-Bmul5121 

37oC This study  

C. albicans SC5314 Clinical isolate 30oC Gietz et al., 2007 
FE58 Biosensor for DSF/BDSF 30oC Wang et  al., 2004 
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centrifuged. The supernatant was acidified to pH 4.0 by diluted HCl and extracted by 

ethyl acetate (1.0 v/v) twice. After removal of ethyl acetate by rotary evaporator, the 

residue was dissolved in methanol and subjected to flash chromatography on normal-

phase silica gel, eluted consecutively with 2 bed volumes of hexane, 2 bed volumes of 

10% ethyl acetate in hexane, and 4 bed volumes of 25% ethyl acetate in hexane. The 

active fractions, which were detected using the DSF sensor FE58 described previously 

(Wang et al., 2004), were combined for the HPLC profiling analysis on a reverse phase 

column (Phenomenex Luna 5 μ C18 250 × 4.60 mm), eluted with 80% methanol in H2O at 

a flow rate of 1 ml min-1.  Separation was monitored by UV detector with λ = 210 and 

254 nm at a flow rate of 1 ml min-1. Fractions at one minute interval were collected and 

assayed using the DSF biosensor FE58.  

 

The 1H, 13C and heteronuclear multiple quantum coherence (HMQC) nuclear magnetic 

resonance (NMR) spectra in CDCl3 solution were obtained using a Bruker DRX500 

spectrometer operating at 500MHz for 1H or 125MHz for 13C. High-resolution 

electrospray ionization mass spectrometry was performed on a Finnigan/MAT MAT 

95XL-T mass spectrometer using the conditions described previously (Wang et al., 2004). 

 

4.2.4 Complementation of strains d0581 and heterologous expression of Bcam0581 

and Bmul5121 in E.coli 

The coding region of Bmul5121 was amplified from B. multivorans via PCR using the 

primer pair BMUL5121-F (5’-tgctctagagcaatgcagctccaatcacatccc) and BMUL5121-R (5’-

cccaagcttgggtcacaccgtgcgcaacttc). The product was digested with XbaI and HindIII and 
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ligated at the same enzyme sites under the control of the S7 ribosomal protein promoter 

in the plasmid vector pMSL7 (Lefebre and Valvano, 2002). After sequence verification, 

the resultant construct was introduced into the mutant d0581, by tri-parental mating. 

Transconjugants of d0581 were selected on the LB agar plates supplemented with 

gentamycin and trimethoprim. Complementation of the mutant d0581 with the gene 

Bcam0581 of B. cenocepacia were followed the method described in Chapter 2. The 

donors used for the tri-parental mating, which harbor the expression construct pMSL7-

Bcam0581 and pMSL7-Bmul5121, respectively, were used to analysis the heterologous 

expression of Bcam0581 and Bmul5121 in E.coli.  

 

4.2.5 Extracellular polysaccharide and biofilm analysis 

For quantification of the extracellular polysaccharide (EPS) production, 10 ml of 

overnight YEB cultures at OD600 of 3.0 were centrifuged at 12,000 rpm for 20 min. The 

supernatants were mixed with 2.5 volumes of absolute ethanol and the mixture was 

incubated at 4oC for 30 min. The precipitated EPS was isolated by centrifugation and 

dried overnight at 55oC before determination of dry weights. 

  

For analysis of biofilm formation, a single colony of Xcc wild type and the DSF-minus 

mutant 8004dF was separately inoculated and grown overnight in 5 ml of YEB medium 

with or without signal molecule. Methanol was added to the corresponding wild-type 

strain as a solvent control. After overnight incubation, bacterial samples were visualized 

with a phase contrast microscope (Olympus BX50). Imaging was performed using an 

Olympus DP70 digital camera.  
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4.2.6 Static biofilm analysis and measurement of β-galactosidase activity 

To fluorescently tag the cells, the plasmid pMLS7-egfp (Lefebre and Valvano, 2002) was 

conjugated into B. cenocepacia J2315 and its BDSF-minus mutant d0581. The bacterial 

cultures were grown overnight to an OD600 of about 3.0 and 5 µl cells were inoculated in 

duplicates into sterile 6-well tissue culture plates containing 3 ml of LB medium. The 

plates were incubated without agitation at 30oC for 3 days. The biofilms formed in the 

air-liquid interface was sampled and visualized. Analysis and imaging of the static 

biofilm was performed using confocal scanning laser microscopy using a Carl Zeiss 

LSM510-Axiovert 100 M confocal microscope. 

  

To test the effect of signal molecules on the expression of virulence genes, the previously 

generated B. cenocepacia containing the PzmpA-lacZ gene fusion was used as a reporter 

strain (Deng et al., 2009). For measurement of β-galactosidase activity, the bacterial cells 

were grown in LB medium at 37oC with shaking at 250 rpm. When necessary, signal 

molecules were added separately to a final concentration of 5 μM as indicated. Bacterial 

cells were harvested and the β-galactosidase activities were assayed as described (Jeffrey, 

1992). 

 

4.2.7 Microscopic analysis and quantification of germ tube formation in C. albicans  

To test the effect on C. albicans germ tube formation, the overnight culture of C. albicans 

strain SC5314 grown in GMM medium were diluted 20-fold in fresh GMM medium. 

Signal molecules were then added separately as indicated and the cells were induced for 3 
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h at 37oC. Visualization and quantification of germ tube formation were performed using 

a phase contrast microscope (Olympus BX50) by counting about 400 fungal cells per 

sample. Imaging was done with an Olympus DP70 digital camera. 

 

4.3 Results 

4.3.1 BDSF-like signal molecules are found in all the genomovars of the B. cepacia 

complex  

Our previous study showed that BCAM0581 of B. cenocepatia is the enzyme responsible 

for synthesis of BDSF (Boon et al., 2008). A BLAST search found that BCAM0581 is 

conserved in B. cepacia (Genomovars I), B. multivorans (Genomovars II), B. 

cenocepacia (Genomovars III), B. vietnamiensis (Genomovars V), B. dolosa 

(Genomovars VI), and B. ambifaria (Genomovars VII). The presence of BCAM0581 

homologues in other Genomovars remains to be determined due to lack of genome 

sequence in public domain. Sequence alignment analysis of the BCAM0581 homologues 

showed that they are highly conserved with more than 94% amino acid identity, but none 

of them shares an identical sequence with its counterparts (Fig. 4-1A). The genome 

organization analysis showed that the neighboring region of Bcam0581 was partly 

conserved, with a variable upstream section (left hand side) and a highly conserved down 

stream section (right hand side) (Fig. 4-1B). Sequence alignment and Blast search 

showed that Bcam0580 encodes a PAS-GGDEF-EAL multidomain fusion protein, 

Bcam0578 encodes a putative 5-oxoprolinase; and Bcam0582 encodes a transglutaminase, 

which share about 80-91% identities in amino acids with their counterparts in other 

genomovars, respectively (Fig. 4-1B). 
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To test the ability of BDSF production, we analyzed the crude solvent extracts of nine 

strains from different genomovars of the B. cepacia complex using thin layer 

chromatography (TLC). After separation, the BDSF-like signals were detected by 

overlaying the TLC plate with DSF-sensor strain FE58, which contains a GUS gene 

under the control of a DSF-inducible promoter (Wang et al., 2004). A blue spot with the 

similar Rf value to BDSF was detected in all nine strains, suggesting that all of them 

produce a BDSF-like signal(s) (Fig. 4-1C). 

 

4.3.2 Purification and structural analysis of the BDSF-like signals 

For purification, the solvent extracts of supernatants were first subjected to flash 

chromatography. The active fractions identified by using bioassay were combined for 

reverse phase HPLC analysis. Bioassay of HPLC fractions and subsequent spectrometry 

analysis showed that similar to B. cenocepacia (Boon et al., 2008), BDSF was produced 

by other 8 genomovars of the B. cepacia complex (Fig. 4-2A). However, except for B. 

cepacia, B. vietnamiensis, B. dolosa, and B. ambifaria, which produced only BDSF (Fig. 

4-2A), we found that the remaining Burkholderia species produced additional one or two 

molecules sharing DSF-like activity (Fig. 4-2A).  

 
Identification of these unknown DSF-like molecules was illustrated using B. multivorans, 

which produced three UV absorbance peaks showing DSF-like activity (Fig. 4-2B). The 

three active fractions were collected separately and analysized using high-resolution 

electrospray ionization mass spectrometry (ESI-MS), which showed the m/z of fractions a, 

b and c are 211.27, 197.27, and 209.27, respectively (Fig. 4-3). These m/z values are 
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agreeable with the corresponding molecular formulas of C13H23O2, C12H21O2, and 

C13H21O2, respectively. Combined with the NMR data and the biological activity analysis 

(Fig. 4-4), fraction a and b were characterized as cis-11-methyl-2-decenoic acid (DSF) 

and cis-2-dodecenoic acid (BDSF) (Fig. 4-4C), which were originally identified in X. 

campestris and B. cenocepacia (Wang et al., 2004; Boon et al., 2008), respectively.  

 

For the fraction c, 1H spectrum indicates that there are two pairs of ethylenic protons (Fig. 

4-4A). The coupling constants between the protons in each pair are less than 11 Hz. This 

indicates that the two double bonds are both in cis configuration. The two methylene 

protons at δH 3.45 suggest that this methylene carbon connects with the two double bonds. 

The overlapped signals of two doublet methyl group at δH 0.87 indicate a branched 

structure the same as DSF (Wang et al., 2004). 13C spectra reveal that one of the double 

bonds is conjugated with a carbolic acid (Fig. 4-4B). Therefore, the second double bond 

in the molecule should be at C-5 (Fig. 4-4B).  Collectively, the 1H, 13C and HMQC data 

establish the structure of this active molecule as a novel DSF-family member, cis-11-

methyldodeca-2, 5-dienoic acid, which is structurally identical to DSF except an extra 

double bond between C5 and C6 (Fig. 4-4). For consistency and convenience, this newly 

identified molecule was designated as CDSF hereafter. By combination of HPLC analysis 

and DSF bioassay, we showed that DSF was only produced by B. multivorans, whereas 

CDSF was also produced by three genomovars of the B. cepacia complex, i.e., B. stabilis, 

B. anthina and B. pyrrocinia (Fig. 4-2A).  
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Fig. 4-1. The DSF synthase and the DSF-like activity are conserved in the B. cepacia 

complex. (A) Sequence alignment of the Bcam0581 homologues of the B. cepacia 

complex. The strains and and the corresponding GeneBank accession numbers of the 

DSF synthases are: B. cepacia 383 (Gv. I), ABB12683; B. multivorans ATCC 17616 (Gv. 

II), ABX18791; B. cenocepacia J2315 (Gv. III), ABK10294; B. vietnamiensis G4 (Gv. V) 

ABO57014; B. dolosa AUO158 (Gv. VI), EAY71442; B. ambifaria AMMD (Gv. 

VII), ABI90833. The different amino acid residues are indicated by black shading, and 

the residues with similar physico-chemical properties are shown by gray shading. (B) 

Genomic organization of the Bcam0581 homologues in the B. cepacia complex. B.cep, B. 

cepacia 383; B.mul, B. multivorans ATCC17616; B.cen, B. cenocepacia J2315; B.vie, B. 

vietnamiensis G4; B.dol, B. dolosa AUO158; B.amb, B. ambifaria AMMD. The gray 

shading arrows indicate the Bcam0581 homologues. The other filled arrows indicate the 

genes flanking the Bcam0581 homologues in each genomovars genome.  (C) TLC 

analysis of the DSF-like activity from the crude extracts of the B. cepacia complex by 

using the DSF sensor strain FE58. The genomovars were denoted in roman numerals. 

Synthetic BDSF was included as the positive control. 
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Fig. 4-2. Characterization of the DSF-family signals produced by the different 

genomovars of the B. cepacia complex. (A) The DSF signal spectrum in the B. cepacia 

complex. The percentage was based the peak area of each signal molecule. For the 

convenience of comparison, the peak b (BDSF) of genomovars II was arbitrarily defined 

as 100%, which was used to normalize the signal ratios in different genomovars. (B) The 

HPLC spectrum of the B. multivorans supernatant extracts after flash chromatography. (C) 

Production of BDSF in the BDSF-minus mutant d0581 by in trans expression of the 

Bcam0581 cloned from B. cenocepacia and its homologue Bmul5121 from B. 

multivorans. (D) Production of DSF and BDSF in E.coli 5α by heterologous expression 

of Bcam0581 cloned from B. cenocepacia and its homologue Bmul5121 from B. 

multivorans. 
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Fig. 4-3. ESI-MS analysis of purified fractions from B. multivorans. (A) ESI-MS 

spectrum of DSF. (B) ESI-MS spectrum of BDSF. (C) ESI-MS spectrum of CDSF 
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Fig. 4-4. NMR analysis of purified CDSF. (A) 1H NMR spectral of CDSF. (B) 13C NMR 

spectra of CDSF. (C) The predicted chemical structure of CDSF compared to DSF and 

BDSF. NMR, nuclear magnetic resonance. 
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4.3.3 The difference in DSF signal spectrum in the B. cepacia complex is not related 

to the variation of Bcam0581 homologues 

Quantitative analysis showed that the members of the B. cepacia complex were differed 

not only in the quantity of but also in the variety of DSF-like molecules they produced 

(Fig. 4-2A). Given that none of the genomovars shares an identical DSF synthase with 

the others (Fig 5-4A), it became intriguing to test whether the ability to produce different 

DSF-like signals is related to the variation in the DSF synthases. To this end, the DSF 

synthase gene Bcam0581 of B. cenocepacia and its homologue Bmul5121 of B. 

multivorans were cloned and expressed in the Bcam0581 deletion mutant d0581. As 

expected, overexpression of Bcam0581 in d0581 rescued the BDSF biosynthesis (Fig. 4-

2C). Interestingly, in trans expression of Bmul5121 in d0581 also led to the production of 

BDSF only but not DSF and CDSF (Fig. 4-2C). However, heterologous expression of 

Bcam0581 and Bmul5121 in E.coli DH5α both caused the production of DSF and BDSF 

(Fig. 4-2D). The data indicate that it is the genetic background of Burkholderia strains 

but not the variation in the DSF synthases that governs their DSF signal spectrum. 

 

4.3.4 CDSF is a functional analogue of DSF and BDSF  

To evaluate the biological relevance of CDSF, we tested its ability in bacterial 

interspecies communication. In plant bacterial pathogen X. campestris, DSF is required 

for the maintenance of bacterial planktonic growth (Dow et al., 2003; He et al., 2006). 

Wild type strain 8004, which produces DSF, proliferated as planktonic cells (Fig. 4-5A), 

whereas the DSF-minus mutant 8004dF was grown in biofilm form (He et al., 2006) (Fig. 

4-5B). Similar to the effect of DSF and BDSF (Fig. 4-5C, 5D), addition of 5 μM of 
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CDSF completely dispersed the cell aggregates formed by the mutant 8004dF (Fig. 4-5E).

  

We then quantitatively compared the biological activity of CDSF with its analogues on 

the induction of the extracellular polysaccharide (EPS) production in mutant 8004dF. The 

results showed that addition of 5 μM of DSF, BDSF and CDSF to the DSF-minus mutant 

8004dF, increased the EPS productions to 78%, 69% and 78.9% of the wild type level, 

respectively (Fig. 4-5F). These results establish CDSF as an effective signal in the 

bacterial interspecies communication.    

 

4.3.5 CDSF is a potent signal in bacterium-fungus interkingdom communication 

Previous studies from our laboratory showed that BDSF and DSF are able to modulate 

the morphological transition of C. albicans (Boon et al., 2008; Wang et al., 2004). To test 

whether the extra double bond in CDSF might influence its potency in bacterium-fungus 

interkingdom communication, this newly identified DSF-like molecule and its analogues 

were added to the fresh fungal yeast cells, respectively, using methanol as a solvent 

control. After incubation at 37oC for 3 h, majority of C. albicans cells in the solvent 

control formed germ tubes (Fig. 4-6A), the fungus grew mainly in the form of yeast cells 

with the treatment of 5 μM of CDSF, DSF, or BDSF (Fig. 4-6B-D). Quantitative analysis 

using a series of diluted signals showed that BDSF was the most potent signal followed 

by CDSF and DSF on the inhibition of the C. albicans germ tube formation (Fig. 4-6E).  

 

4.3.6 CDSF is a functional analogue of BDSF in the regulation of B. cenocepacia 

biofilm formation and virulence factor production  
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Fig. 4-5. The bacterial morphology of the Xcc wild type strain 8004 and the DSF-minus 

mutant 8004dF is shown in (A) and (B), respectively. Addition of DSF (C), BDSF (D), 

and CDSF (E) to 8004dF restored the planktonic grow form.  (F) Exogenous addition of 

DSF, BDSF and CDSF in the mutant 8004dF restored the EPS production. The error bars 

show the standard deviations. 
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Previous studies showed that DSF plays a key role in negative regulation of the Xcc cell 

aggregate formation (Dow et al., 2003; He et al., 2006). This encouraged us to examine 

the role of the DSF-family signals in the biofilm formation of B. cenocepacia. When 

grown statically, B. cenocepacia formed a thin layer of pellicle-like biofilm on the liquid-

air interface. Microscopic examination of the biofilms formed by the wild type B. 

cenocepacia revealed a smooth surface with a few small cell aggregates (Fig. 4-7A), 

whereas the surface of the biofilms formed by the BDSF-minus mutant was uneven, 

which showed the presence of large protrusions (Fig. 4-7B). The biofilm structure was 

restored to that of wild type strain when the mutant was grown in the presence of DSF, 

BDSF and CDSF (Fig. 4-7C-E), respectively.  

  

Our previous study showed that the deletion of the BDSF synthase gene Bcam0581 in B. 

cenocepacia resulted in the decreased expression of virulence genes, and this reduction 

was rescued by addition of BDSF (Deng et al., 2009). To test whether CDSF and DSF 

are the functional analogues of BDSF, the B. cenocepacia BDSF-minus mutant d0581 

harboring the PzmpA-lacZ reporter gene fusion was used to test the effect of exogenous 

addition of signals on the regulation of the zmpA expression. Compared with the wild-

type, the zmpA promoter activity in the mutant d0581 was decreased by 53% (Fig. 4-7F). 

This reduction was not only rescued by addition of BDSF, but also by supplementation of 

CDSF and DSF at the same concentration, respectively (Fig. 4-7F).  

 

4.4 Discussion 

The results of this study showed that BDSF is a conserved signal in the B. cepacia 
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Fig. 4-6. The effect of the DSF-family signals on C. albicans germ tube formation. C. 

albicans cells were grown under induction conditions (37oC), with the equal volume of 

methanol as control (A). In (B), (C) and (D), the cells were grown under the same 

condition as in (A) but supplemented with 5 μM of DSF, BDSF and CDSF, respectively. 

The photos were taken 3 h after induction. (E) Measurement of the inhibitory activity of 

the DSF-family signals on the germ tube formation of C. albicans. The experiment was 

performed twice and each time at least 400 cells were counted per treatment. The error 

bars show the standard deviations. 
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Fig. 4-7. Influence of exogenous addition of the DSF-family signals on static biofilm and 

virulence gene expression. The surface image of the static biofilm of wild type B. 

cenocepacia J2315 (A), its BDSF-minus mutant d0581 (B), d0581 supplemented with 

DSF (C), d0581 supplemented with BDSF (D), d0581 supplemented with CDSF (E). 

Scanning confocal images of the surface of static biofilms was using a 40X objective. (F) 

Virulence gene expression determined by using strain d0581 (PzmpA-lacZ). Bacterial 

strains were grown in LB medium, and the DSF-family signals were added separately at a 

final concentration of 5 µM. The data shown are the means of three repeats and error bars 

indicate the standard deviations. 

 

 

 

C 

F E 

B 

D 

A 

W
ild

-ty
pe

d0
58

1

M D
SF

μ
+5

 M B
DSF

μ
+5

 M C
DSF

μ
+5

 

0

200

400

600

β -
ga

l a
ct

iv
iti

es
 (M

ill
er

 U
ni

ts
)



 102

complex with all the 9 genomovars producing BDSF as the major DSF-family signal 

molecule (Fig. 4-2A). In addition to its role in the interspecies signal communication 

(Boon et al., 2008), BDSF has recently been shown to play a role in the regulation of B. 

cenocepacia virulence genes expression (Deng et al., 2009; Ryan et al., 2009). In 

addition, evidence is emerging that B. cenocepacia appears to recruits both the AHL-type 

QS system and BDSF in coordination of the virulence gene expression (Deng et al., 

2009). Interestingly, similar to BDSF, the AHL-type QS signal C8HSL is also produced 

by all the members of the B. cepacia complex (Wopperer et al., 2006). These findings, 

together with the results presented in this study, suggest that the BDSF QS system and 

the AHL-type QS system are likley co-evolved in the B. cepacia complex for the 

modulation of the bacterial physiology and virulence.    

 

Surprisingly, while 5 genomovars, i.e., B. cepacia, B. cenocepacia, B. vietnamiensis, B. 

dolosa, and B. ambifaria, only produced BDSF, the remaining 4 members of the B. 

cepacia complex including B. multivorans, B. stabilis, B. anthina and B. pyrrocinia were 

shown to synthesize CDSF (Fig. 4-2A), which is a new member of the DSF-family 

signals. Among them, B. multivorans also produced another signal molecule, i.e., DSF 

(Fig. 4-2A; 2B), which is the first identified member of the DSF-family signals from the 

plant bacterial pathogen X. campestris pv. campestris (He and Zhang, 2008; Wang et al., 

2004). What may account for this variation in the diversity of the DSF-family signals in 

these bacterial species?  The findings from this study preclude the possibility that the 

variations in DSF synthases may be responsible for the difference in their product 

spectrum. Firstly, null mutation of the DSF synthase in B. cenocepacia abrogated its 
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ability to synthesize BDSF (Fig. 4-2C). Secondly, only the BDSF molecule was detected 

when the corresponding DSF synthase genes from both B. cenocepacia and B. 

multivorans were separately overexpressed in the BDSF-minus mutant of B. cenocepacia 

(Fig. 4-2C). Thirdly, heterologous expression of Bcam0581 and Bmul5121 in E.coli 

DH5α both caused the production of DSF and BDSF (Fig. 4-2D). In addition, 

interrogation of the B. multivorans genome sequence with the protein sequence of the 

DSF synthase Bmul5121 did not reveal the presence of paralogues. Taken together, these 

data suggest that the variations in the production of different DSF analogues by the 

members of the B. cepacia complex is likely related to the availability of different 

precursors in each genomovars.    

 

Structural analysis characterized CDSF as cis-11-methyldodeca-2, 5-dienoic acid (Fig. 4-

4), which differs from DSF by an extra double bond in cis-configuration at the C5-C6 

position (Fig. 4-4C). Functional characterization of this newly identified signal molecule 

showed that CDSF is not only active in the interspecies communication (Fig. 4-5, Fig. 4-

6), but is also potent in the regulation of the virulence gene expression and biofilm 

development by B. cenocepacia (Fig. 4-7). Agreeable with the previous finding that the 

methyl group substitution at C11 contributes to the biological activity in the regulation of 

virulence gene expression (Wang et al., 2004), we found that CDSF was superior than 

BDSF in the induction of the EPS production in X. campestris pv. campestris (Fig. 4-5F). 

The conserved distribution of the DSF-family siganls in the B. cepacia complex has 

further strengthened the notion that DSF represents a new class of widely conserved 

signals for bacterial cell-cell communications (He and Zhang, 2008). 
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CHAPTER 5 

ATTENUATION OF PSEUDOMONAS AERUGINOSA 

VIRULENCE BY BDSF THROUGH INHIBITION ON THE 

QUORUM SENSING AND TYPE III SECRETION 

SYSTEMS 

5.1 Introduction  

The human pathogen Pseudomonas aeruginosa usually shares the same niche as B. 

cenocepacia in the cystic fibrosis patients. P. aeruginosa is a ubiquitous environmental 

organism capable of infecting a wide variety of animals, plants, and insects. As a human 

pathogen, this bacterium is a major agent of opportunistic infections in 

immunocompromised individuals and cystic fibrosis patients (Bodey et al., 1983; 

Richards et al., 2000). P. aeruginosa has evolved three types of quorum sensing systems, 

i.e., las, pqs and rhl, which are implicated in regulation of several aspects of pathogenesis, 

including virulence factor production, biofilm development, and antimicrobial resistance. 

In P. aeruginosa, the las quorum-sensing system consists of the transcriptional activator 

LasR and the autoinducer N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL), 

the synthesis of which is directed by the LasI autoinducer synthase (Gambello and 

Iglewski, 1991; Passador et al., 1993; Pearson et al., 1994). Similarly, the rhl system 

consists of the transcriptional activator RhlR and the autoinducer N-butyryl-L-

homoserine lactone (C4-HSL), the synthesis of which is directed by the RhlI autoinducer 

synthase (Ochsner et al., 1994; Ochsner and Reiser, 1995; Pearson et al., 1994). 
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Moreover, there is the third intercellular signal, which was recently identified as 2-heptyl-

3-hydroxy-4-quinolone (PQS) (Pesci et al., 1999). It was shown that LasR is required for 

PQS production and that RhlR is important for PQS bioactivity, indicating that PQS is 

intertwined in the quorum sensing hierarchy (Pesci et al., 1999). 

 

Type III secretion system (T3SS) is a key virulence determinant in a wide range of 

animal and plant pathogens. Defects in T3SS may cause the bacterium to be non-

pathogenic. T3SS plays diverse roles in host-pathogen interactions, such as promoting 

bacteria internalization in mammalian cells (Hayward and Koronakis, 1999), induction of 

macrophage apoptosis (Mills et al., 1997), inhibition of phagocytosis by changing 

macrophage actin structures (Frithz-Lindsten et al., 1997), and generation of pores in host 

cells (Lee et al., 2001). Diseases caused by the T3SS-bacteria kill hundreds of thousands 

of people every year. It was shown that most clinical isolates of P. aeruginosa use the 

type III secretion system to evade phagocytosis and facilitate infection (Feltman et al., 

2001; Moss et al., 2001; Sato and Frank, 2004; Yahr et al., 1996; 1998). This system 

delivers cytotoxins, which have been identified as ExoS, ExoT, ExoY and ExoU, directly 

into eukaryotic cells (Caron and Hall, 1998).  

 

Some synthetic compounds such as synthetic derivate of natural furanone can act as the 

antagonists of quorum sensing of P. aeruginosa and attenuate its virulence (Hentzer et al., 

2003a; 2003b; Wu et al., 2004). Moreover, a group of salicylidene acylhydrazides were 

identified as inhibitors of T3SS in some human pathogens (Veenendaal et al., 2009). 

These results indicate that interference and inhibition on the quorum sensing and T3SS 
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can be specifically utilized as favorable therapeutic methods on P. aeruginosa infection 

(Wu et al., 2004; Hentzer and Givskov, 2003).  

 

The DSF-family signals not only control a range of biological functions through 

intraspecies signaling; they can also interfere with other microorganisms through inter-

species communication. DSF and BDSF were shown to inhibit the morphological 

transition of Candida albicans (Wang et al., 2004; Boon et al., 2008). Ryan et al. (2008) 

reported that DSF produced by S. maltophilia influenced the biofilm formation and 

tolerance to polymyxins B and E of P. aeruginosa. B. cenocepacia and P. aeruginosa are 

usually found to co-infect in the same niche of cystic fibrosis patients. In this chapter, we 

will study the role of BDSF plays on the inter-species communication between B. 

cenocepacia and P. aeruginosa, by focusing on its effect on the quorum sensing systems 

and T3SS of P. aeruginosa.  

 

5.2 Methods and Materials 

5.2.1 Bacterial strains and growth conditions 

 P. aeruginosa strains were maintained in Luria-Bertani (LB) broth at 37oC. For analysis 

of the type III secretion system, bacteria were grown in LB medium supplemented with 

10 mM NTA. For pyocyanin analysis, bacteria were grown in PA medium (per liter 

contains Bacto-peptone 20g, Glycerol 10g, K2SO4 10g, MgCl2 1.4g, PH 7.0). The 

following antibiotics were supplemented when necessary: tetracycline 100 μg ml-1; 

kanamycin 50 μg ml-1. Growth curves were performed at 37oC in LB medium 

supplemented with or without BDSF using Bioscreen-C Automated Growth Curves 
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Analysis System. BDSF were synthesized as described previously (Wang et al., 2004). It 

was added to the medium as indicated.   

  

Table 5-1. PCR primers used in this study 

Primer Sequence 

For reporter construction  

pC-F 5’- gctctagacggtgatccagtccttc 

pC-R 5’- ggggcgcctcctaaagctc 

 F-pLasR-HindIII 5’- cgatgggccgacagtgaacc 

 R-pLasR-EcoRI 5’- ctgcaggatggcgctccactc 

 F-pRhlR2-HindIII 5’- ggtgccgcaggtgctgctg 

 R-pRhlR-EcoRI 5’- gtggatcggctgcatctcgc 

 F-pRhlI-HindIII 5’- cgacgcgccgaacaagacg 

 R-pRhlI-EcoRI 5’- cagctcggcgatcatggcg 

 F-MvfR-pro-HindIII 5’- gtgcgtcatagtcgctacacctgaag 

 R-MvfR-pro-EcoRI 5’- ccgacggaccagctccacg 

For RT-PCR analysis  

   exsA-F 5’- ggcggcgatagctctgggtgaaat 

exsA-R 5’- cgccgcggaagctatgtcgtaagt 

exsC-F 5’- tggatttaacgagcaaggtcaa 

exsC-R 5’- cgagaatctgcgcatacaactg  

exoS-F 5’- ctcggccgtcgtgttcaagcagat 

exoS-R 5’- ccggggttcagggaggtggaga 

exoU-F 5’- gcggcgcaacgacaacctgat 

exoU-R 5’- gaaaagccaccgccccgtctgt  

exoT-F 5’-caggcgccgctctcccgtcag 

exoT-R 5’-ctccgcctccagcccgaagtgc 

exoY-F 5’-gcagggccccagcggtaaac 

exoY-R 5’-gtcgggatgggcggtgaagtgata 
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5.2.2 Construction of reporter strains and measurement of β-galactosidase activity 

The promoters of lusI, lusR, rhlI, rhlR and pqsR were amplified using the primer pairs 

listed in Table 5-1 with HindIII and EcoRI restriction sites attached. The resulting 

products were digested with HindIII and EcoRI, and ligated to the similarly digested 

vector pME2-lacZ. These constructs, verified by DNA sequencing, were introduced into 

P. aeruginosa by electroporation. Transconjugants were then selected on LB agar plates 

containing tetracycline. Bacteria were grown in LB medium supplemented with or 

without BDSF at 37oC to an OD600 of about 1.5. The bacterial cells were harvested to 

measure β-galactosidase activities following the methods as described previously (Jeffrey, 

1992).  

 

For the construction of reporter strain of T3SS, the promoter of exsCEBA was amplified 

by PCR using the primer pairs listed in Table 5-1, and cloned into the integration vector 

mini-CTX-lacZ (Zhou et al., 2007). The construct was introduced into E. coli S17-1(λpir) 

and then integrated into the chromosome of P. aeruginosa as described previously 

(Hoang et al., 2000). The engineered strain was then selected on the LB agar plates 

containing 100 μg/ml tetracycline and used as the T3SS reporter strain. For determination 

of the inhibitory activity against T3SS, BDSF was added to the LB medium 

supplemented with 10 mM NTA before inoculation of the T3SS reporter strain. After 

incubation at 37oC to an OD600 of 1.5, the bacterial cells were harvested by centrifugation 

to measure the β-galactosidase activities.  

 

5.2.3 PQS assay 
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PQS production was assayed following the method described previously (Fletcher et al., 

2007).  In brief, overnight starter culture was inoculated in LB medium with or without 

BDSF to an OD600 of 0.05 and then grown at 37oC for 16 hours. The culture was 

centrifuged and 5 ml of supernatants were taken out and added with equal volume of 

acidified ethyl acetate. After mixing vigorously for 5 min, the top organic layer was 

collected. The organic solvent was removed by rotary evaporation, and the residue was 

dissolved in 100 μl methanol as the PQS extract for further analysis.  

 

The normal phase silica gel TLC plates (MERCK) were activated by soaking in a 5% 

(w/v) solution of KH2PO4 for 30 min, and then dried at 100oC for 2 hours. For each 

sample, 10 μl of extract was spotted onto a TLC plate with synthetic PQS used as a 

positive control. The TLC plate was placed in a developing tank containing a mixture of 

dichloromethane: methanol (95:5) as the mobile phase until the solvent front reached 

about 1-2 cm from the top of the plate. The TLC plate was visualized using a UV 

transilluminator at 312 nm. The signal density of PQS was determined using ImageJ 

(http://rsb.info.nih.gov/ij/).  

 

5.2.4 C4HSL and 3-oxo-C12-HSL assay 

Bacteria were grown overnight at 37oC in LB liquid medium with or without BDSF. 

Culture supernatants (25 ml) were collected by centrifugation when it grew to an OD600 

of about 2.2, and extracted with equal volume of the acidified ethyl acetate. The extracts 

were dried using a rotary evaporator and dissolved in 50 μl methanol. N-butyryl-L-

homoserine lactone (C4-HSL) production was assayed using its biosensor strain CV026 
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(McClean et al., 1997). Bioassay plates were prepared by growing CV026 overnight at 

28oC in LB liquid medium and diluted in the ratio of 1:100 in melted LB agar (42oC).  

The wells about 4-mm diameter were punched in the middle of the plates and 2.5 μl 

extracts was added to each well. The plates were incubated at 28oC overnight. C4-HSL 

was indicated by the presence of purple halo around the well. The amount of production 

was quantified by measuring of the diffuse diameter of the purple halo.  

 

3-oxo-C12-HSL was determined quantitatively with a reporter strain A. tumefaciens NT1 

(Zhang et al., 2002). In brief, the reporter strain were grown at 28 oC in minimal medium 

supplemented with the extracts used for C4HSL analysis (Dong et al., 2000). When it 

grew to an OD600 of about 1.5, the bacterial cells were harvested by centrifugation to 

measure the β-galactosidase activities.  

 

5.2.5 Proteolytic activity assay 

Protease activity was quantified following the method described by Denkin et al. (2004) 

with minor modifications. Briefly, bacteria were cultured at 37oC for about 12 hours with 

or without BDSF as indicated. After measuring the optical density at 600 nm, cultures 

were centrifuged at 13,000 rpm for 5 min and the supernatants were taken out and filtered 

through a 0.2 μm pore size cellulose-acetate filter. One hundred microliter of 

supernatants were incubated at 30oC with equal volume of azocasein dissolved in 

proteolytic buffer B for 30 min. The reaction was stopped by addition of 406 μl of 10% 

(w/v) TCA buffer. After incubation for 2 min at room temperature, the mixture was 

centrifuged at 13,000 rpm for 1 min to remove the remaining azocasein. Supernatants 
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were taken out and mixed with 700 μl of 525 mM NaOH. Absorbance of the azopeptide 

supernatant was measured at the wavelength of 442 nm. Protease activity was obtained 

after normalization the absorbance against the corresponding cell density.  

 

5.2.6 Pyocyanin assay 

Bacteria were grown overnight at 37oC in the PA medium with or without BDSF. After 

measuring the absorbance at 600 nm, the supernatants of bacterial culture were collected 

for extraction of pyocyanin with the method described previously (Essar et al., 1990). 

Briefly, cultures were centrifuged at 13,000 rpm for 1 min and 1.5 ml supernatants were 

collected and extracted with double volume chloroform with vigorous shaking at room 

temperature for 30 min. The solvent phase was transferred to a new tube containing 1 ml 

of 1N HCl. The mixture was shaken gently to transfer pyocyanin to aqueous phase. The 

quantity of pyocyanin was determined by measurement of absorbance at 520 nm and 

normalization against the cell density.  

 

5.2.7 RNA extraction, RT-PCR and microarray analysis 

P. aeruginosa was grown in LB medium supplemented with NTA till OD600 of 1.5. Total 

RNA was isolated using the RNeasy mini kit (Qiagen) according to the manufacturer’s 

instructions. The concentration and purity of RNA were determined by agarose gel 

electrophoresis and spectrometry. RT-PCR analysis was performed using the One-step 

RT-PCR kit according to the manufacturer’s instructions (Qiagen). For microarray assay, 

cDNA was synthesized from total RNA samples by using random primers (Invitrogen). 

SuperScript II (Invitrogen) and biotin-ddUTP was used to label the product according to 
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the protocol from Affymetrix (Affymetrix). Target hybridization, washing and staining 

were performed according to the manufacture’s instructions. Genechip arrays were 

scanned with an Affymetrix probe array scanner. The microarray analysis for each 

bacterial strain was repeated for two times and the data were analyzed using a statistics 

software MAS-5.0 from Affymetrix. 

 

5.2.8 Protein isolation and western blotting analysis 

Overnight bacterial cultures were inoculated in LB medium supplemented with NTA. 

After having been cultured at 37oC to an OD600 of 1.5, 10 ml of each bacterial culture 

were collected and centrifuged. The supernatants were then filtered with 0.2 μm syringe 

filter and precipitated with trichloroacetic acid (TCA) at a final concentration of 10%. 

The precipitates were pelleted by centrifugation, washed twice with acetone, dried, and 

re-suspended in SDS sampling buffer. The protein samples were denatured by boiling for 

5 min and separated by 10% SDS-PAGE. Western blot analysis was performed following 

the standard protocols (Sambrook et al., 1987). 

 

5.2.9 Cytotoxicity assays in HeLa cell model 

BDSF effect on the cytotoxicity of P. aeruginosa was assayed using HeLa cells. HeLa 

cells were seeded in 24-well tissue culture plates containing Dulbecco’s Modified Eagle 

Medium (DMEM) and allowed to grow at 37oC in CO2 for about 18 hours to obtain 80-

90% monolayer confluency (5.0x105 cells/well). Culture supernatants were removed and 

the monolayer was washed once with PBS buffer. Fresh bacterial cells were diluted in 

DMEM to a concentration about 5x107 CFU per ml. Thereafter, 0.5 ml of bacteria 
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dilutions in the absence or presence of BDSF were applied to the HeLa cell monolayers 

at a multiplicity of infection (MOI) about 50. Cytotoxicity was determined by measuring 

the release of the cytosolic enzyme lactate dehydrogenase (LDH) into supernatants using 

the cytotoxicity detection kit (Roche).  

 

5.3 Results 

5.3.1 BDSF inhibits the transcriptional expression of the QS systems of P. 

aeruginosa 

There are two AHL-dependent quorum sensing systems in P. aeruginosa, the las and rhl 

systems, which control the expression of numerous genes (Schuster et al., 2003; Hentzer 

et al., 2003; Wagner et al., 2003). These two QS systems constitute a hierarchy 

regulatory network where the las quorum-sensing system is at the upstream of the rhl 

system (Latifi et al., 1996; Pesci et al., 1997). Moreover, it was identified that LasR was 

required for the Pseudomonas quinolone signal (PQS) production and PQS has a positive 

effect on the rhl system by intertwining in the quorum sensing hierarchy (Pesci et al., 

1999; Susan et al., 2000). 

 

To test the effect of BDSF on the quorum sensing systems of P. aeruginosa, the 

promoter-lacZ fusion reporters of lasI, lasR, pqsR, rhlI and rhlR were used to test the 

expression of QS systems at the transcriptional level. Results showed that addition of 

BDSF did not show obvious effect on bacterial growth (Fig. 5-1A), but the expressions of 

lasR, pqsR, rhlI and rhlR were repressed by treatment with BDSF in a dosage-dependent 

manner. Addition of 0.25 mM BDSF resulted in 38%, 35%, 23% and 48% reduction of 
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the expression of lasR, pqsR, rhlI and rhlR, respectively (Fig. 5-1C, Fig. 5-2A, Fig. 5-3), 

while the expression of lasI was increased about 37% (Fig. 5-1B).  

 

5.3.2 The effect of BDSF on the production of QS signals 

PQS was separated using the activated TLC plate, and visualized by UV transilluminator 

at the wavelength of 312 nm. The signal density of PQS spot was measured to quantify 

the production. Result showed that treatment with BDSF reduced the production of PQS. 

As shown in Fig. 5-2B, addition of 0.05, 0.1, 0.25 and 0.5 mM BDSF caused 12.5%, 

16.7%, 18.8% and 25% reduction of the signal density, respectively. 

 

C4HSL (BHL) production was measured using BHL bioassay plate, which contains BHL 

biosensor AV026 (McClean et al., 1997). After inoculation at 28oC overnight, BHL 

activity was determined by the presence of purple halo, which is proportional to the 

amount of BHL. It was shown that in the BHL bioassay plate, the purple halo became 

smaller and shallower when P. aeruginosa was treated with BDSF (Fig. 5-3), which 

indicated the reduction of BHL production. However, addition of BDSF caused no 

detectable reduction of the production of 3-oxo-C12HSL (Fig. 5-1D), may be possibly 

due to the opposite effects of BDSF on the transcriptional expression of lasI and lasR 

(Fig. 5-1B, Fig. 5-1C).  

 

5.3.3 BDSF decreases the production of protease and pyocyanin 

P. aeruginosa usually utilizes exoenzyme to induce its pathogenesis (Holder and Neely, 

1991; Mahajan-Miklos et al., 1999). Previous studies found that proteases are potent 
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Fig. 5-1. Influence of BDSF on the las system of P. aeruginosa. Effect of BDSF on the 

growth curve of P. aeruginosa (A); the transcriptional expression of lasI (B) and lasR (C), 

as determined by using corresponding promoter-lacZ fusion reporter strains; and the 

production of 3-oxo-C12-HSL (D). The data are the means of three repeats and error bars 

indicate the standard deviations. 
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Fig. 5-2. Inhibition of BDSF on the pqs system of P. aeruginosa. BDSF inhibited the 

transcriptional expression of pqsR (A), as determined by using corresponding promoter-

lacZ fusion reporter strain; and the production of PQS (B). The data are the means of 

three repeats and error bars indicate the standard deviations. 
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Fig. 5-3. Inhibitory effect of BDSF on the rhl system of P. aeruginosa. Treatment with 

BDSF reduced the transcriptional expression of rhlI (A) and rhlR (B), as determined by 

using corresponding promoter-lacZ fusion reporter strains; and the production of BHL, as 

shown by the presence of reduction of density (C) and diffusible diameters (D) of purple 

halo on the BHL bioassay plates. The data are the means of three repeats and error bars 

indicate the standard deviations. 
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virulence factors of P. aeruginosa. To study the effect of BDSF on exoproteases 

production, BDSF was added to the growth medium of P. aeruginosa as indicated to test 

its effect on the secreted proteases in the supernatants. It was found that addition of 0.25 

mM BDSF casued 30% reduction of the protease activity (Fig. 5-4A). Moreover, when 

the BDSF concentration was increased to 0.5 mM, it caused almost 50% reduction of the 

protease activity (Fig. 5-4A).  

 

During the growth process, it was observed that BDSF reduced the pigment accumulation 

of P. aeruginosa in the medium. P. aeruginosa produces a number of colored secondary 

metabolities; one of them is pyocyanin, which is a potent virulence factor (Rahme et al., 

1997; Ran et al., 2003). To determine whether BDSF affects this virulence factor 

production, we measured pyocyanin accumulation in PA medium with or without BDSF. 

As shown in Fig. 5-4B, addition of BDSF to the bacterial medium reduced substantially 

the production of pyocyanin. Compared with the control, treatment with 0.1 and 0.5 mM 

BDSF reduced the pyocyanin production by about 55% and 70%, respectively (Fig. 5-

4B).  

 

5.3.4 BDSF inhibits the expression of master regulators of T3SS 

Type III secretion system (T3SS) is a major virulence determinant conserved in many 

Gram-negative bacterial pathogens. To test the ability of BDSF on regulation of T3SS 

gene expression in Pseudomonas aeruginosa, the T3SS reporter construct PexsCEBA-

lacZ (Zhou et al., 2007) was used. The promoter PexsCEBA directs the expression of the 

T3SS master regulator ExsA and ExsC, which positively controls the expression of all 
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T3SS genes in P. aeruginosa (Yahr and Wolfgang, 2006; Frank, 1997). The bioassay 

results showed that the expression of exsCEBA was inhibited by treatment with BDSF. 

Addition of 5 μM, 10 μM and 25 μM of BDSF to the bacterial culture resulted in 64.1%, 

68.5% and 73.4% reduction of β-galactosidase activity, respectively (Fig. 5-5A).  

 

The effect of BDSF on inhibition of the T3SS master regulator was further analyzed by 

semi-quantitative RT-PCR. At the panel of 5 ng RNA, results showed that treatment of 

100 μM BDSF to P. aeruginosa led to about 30% and 50% reduction in the signal density 

of exsC and exsA (Fig. 5-5B), which are consistent with the results measured using the 

T3SS reporter (Fig. 5-5A).  

 

5.3.5 BDSF represses the expression of T3SS effectors   

Considering that the activator ExsA is required for the secretion of T3SS effectors 

(Hovey and Frank, 1995), we further determined the effect of BDSF on the four effectors 

of T3SS. Semi-quantitative RT-PCR analysis showed that treatment of P. aeruginosa 

with 100 μM BDSF led to about 39%, 17%, 24% and 22% reduction in transcripts levels 

of exoS, exoT, exoU and exoY, respectively (Fig. 5-6A). The results demonstrated that 

BDSF inhibits the transcriptional expression of all the effectors, which was regulated by 

the master regulators of T3SS. Furthermore, western blotting assay was used to analysis 

the effect of BDSF on ExoS at the translational level. As shown in Fig. 5-6B, addition of 

100 μM BDSF reduced substantially the amount of ExoS secreted in the supernatants. 

When the final concentration of BDSF was increased to 500 μM; there was no detectable 

protein band of ExoS. 



 122

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
 

Fig. 5-4. Inhibitory effect of BDSF on the production of extracellular protease (A) and 

pyocyanin (B) of P. aeruginosa. The data are the means of three repeats and error bars 

indicate the standard deviations. 
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Fig. 5-5. Influence of BDSF on the T3SS master regulators gene expression of P. 

aeruginosa. Addition of BDSF caused the reduction of the transcriptional expression of 

T3SS master regulators, as determined by using PexsCEBA-lacZ fusion reporter strain (A) 

and RT-PCR analysis (B). Bacteria were grown in LB medium supplemented with 10 

mM NTA to an OD600 of 1.5. BDSF was added at a series of final concentrations as 

indicated. For each RNA sample, two dilutions (5, 50 ng) were used as templates for RT-

PCT reaction. The data are the means of three repeats and error bars indicate the standard 

deviations. 
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Fig. 5-6. Analysis of the effect of BDSF on the T3SS effectors gene expression in P. 

aeruginosa. (A) RT-PCR analysis of the inhibitory effect of BDSF on the T3SS effectors 

gene expression. For each RNA sample, two dilutions (5, 50 ng) were used as templates 

for RT-PCT reaction. (B) Inhibitory effect of BDSF on the secretion of ExoS. Bacteria 

were grown in LB medium supplemented with 10 mM NTA to an OD600 of 1.5. BDSF 

was added at a series of final concentrations as indicated. The extra-cellular proteins in 

supernatants were collected by trichloroacetic acid precipitation and separated by 10% 

SDS-PAGE. The proteins were transferred onto nitrocellulose membrane and blotted 

with anti-ExoS antibody. 
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Fig. 5-7. Attenuation of the T3SS-mediated cytotoxicity on HeLa cell model by BDSF.  

Cytotoxicity was assayed by monitoring LDH release by the HeLa cells infected with a 

MOI of about 50. Experiments were performed with DMEM medium supplemented with 

BDSF. The data were the means of three replicates. The data are the means of three 

repeats and error bars indicate the standard deviations. 
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5.3.6 BDSF attenuates the T3SS-mediated cytotoxicity of PA14 on HeLa cell model 

To test the effect of BDSF on T3SS-mediated cytotoxicity, we used human epithelial cell 

line HeLa, and the cytotoxicity of P. aeruginosa was measured by quantitative 

determination of lactate dehydrogenase (LDH) released at 2 hours and 5 hours post 

infection. Results showed that compared with the control, addition of BDSF decreased 

noticibly the cytotoxicity of P. aeruginosa to HeLa cell. For 2 hours inoculation, the 

cytotoxicity was reduced 41% and 75% with the treatment of 5 μM BDSF and 25 μM 

BDSF, respectively (Fig. 5-7). While for 5 hours inoculation, the reduction was 16% and 

73%, respectively (Fig. 5-7). 

 

5.3.7 The global effect of BDSF on PA14 

To study the global effect of BDSF on P. aeruginosa, we used Affymetrix Genechip 

microarray technology to analysis the genes affected by BDSF on the genome level. 

Results showed that treatment with 250 μM of BDSF up-regulated 66 genes more than 2-

fold, which is 1.38% to the total number of genes in genome. Meanwhile, a total of 120 

genes were down-regulated by more than 2-fold (Table 5-2). Except for those genes 

encoding hypothetical proteins, the remaining 129 genes belong to the functional groups 

of metabolism, secretion, motility and cell wall, transcription regulation, protection, 

enzymes and carbon compound catabolism (Table 5-2).   

 

Identification of a range of genes encoding secreted toxin in microarray analyses, which 

were mostly down-regulated by BDSF, is highly consistent with the previous findings 

that the bacterial virulence to HeLa cell was repressed with treatment of BDSF. More 



 127

interestingly, some genes related with motility and cell-wall are inhibited by BDSF, 

implicating that BDSF may affect the biofilm formation or motility activity of P. 

aeruginosa, which is consistent with the previous results reported by Ryan et al. (2008). 

 

5.4 Discussion 

The results in this chapter showed that besides working as an intraspecies signal, BDSF 

can also mediate inter-species communication between B. cenocepacia and P. aeruginosa, 

which leads to inhibition of the P. aeruginosa QS systems and T3SS. Previous studies 

found that there is some cross-talk between B. cepacia and P. aeruginosa, which is 

mediated by AHL (Riedel et al., 2001; Mckenney et al., 1995). It was reported that 

addition of cell-free exoproducts of PAO1 to B. cepacia enhanced the production of 

siderophore, lipase and protease. While addition of the supernatants of PAO1 with 

attenuated production of AHL only had slight effect on the production of these virulence 

factors (Mckenney et al., 1995). Taken together, the findings suggest that there may be a 

mutual communications between these two pathogens, which usually share the same 

niche in cystic fibrosis patients.  

 

In P. aeruginosa, there are three QS systems, which consist of a hierarchy regulatory 

network. These QS systems regulate a broad range of genes important for the metabolism 

and virulence of P. aeruginosa. Antibiotics have been used for a long time to treat the 

bacterial infection of P. aeruginosa, but resistance to antibiotics can be evolved during 

clinic treatment. Interestingly, recently studies found that synthetic derivate of natural 

furanone successfully interfered with N-acyl homoserine lactone of P. aeruginosa and 
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suppressed bacterial quorum-sensing in lungs, finally caused accelerated lung bacterial 

clearance and reduced the severity of lung pathology (Wu et al., 2004). Based on the 

results of this study, we found that BDSF can be used as a new potential inhibitor on the 

QS systems of P. aeruginosa. It was shown that addition of BDSF reduced both the 

production of BHL and PQS (Fig. 5-2, 5-3), which was consistent with the decreased 

production of some virulence factors such as protease and pyocyanin (Fig. 5-4). However, 

the detailed mechanism of BDSF on interference of the QS systems of P. aeruginosa still 

needs further investigation.  

 

Recently study reported that long-chain fatty acid sensor modulates the expression of 

rpoS and the type III exsCEBA operon in P. aeruginosa (Kang et al., 2009). T3SS is a 

key virulence determinant in a wide range of animal and plant pathogens and plays 

diverse roles in host-pathogen interactions. In P. aeruginosa, the transcriptional 

expression of effector genes of T3SS is coordinated by ExsA encoded by the exsCEBA 

operon. Our results showed that BDSF inhibits the expression of exsCEBA, which is 

consistent with the result of semi-quantitative RT-PCR analysis of BDSF inhibitory 

effect on the master regulators and effectors gene expression. Moreover, the results were 

further supported by western blotting analysis of the BDSF inhibitory effect on the 

production of ExoS. These results indicate that BDSF is an effective inhibitor on the 

T3SS of P. aeruginosa, and may be utilized as a potential antimicrobial agent against P. 

aeruginosa infection. Intriguingly, compared to QS systems, T3SS is significantly easier 

to be inhibited by BDSF, demonstrating that BDSF affects them possibly through two 

different pathways, for the detailed information, we need further investigation.  
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Table 5-2. The gene expression of P. aeruginosa when grown in LB versus LB+BDSF 

identified using microarrays (Fold change ≥ 2). 

Accession 
number 

Gene 
name  

Fold 
change

Description 

(i)   Metabolism 

PA4888 desB -7.0 Fatty acid and phospholipid metabolism ;  
PA0782 putA -6.5 Amino acid biosynthesis and metabolism ;  
PA0132   -5.3 Amino acid biosynthesis and metabolism ;  

PA0430 metF -3.0 
Amino acid biosynthesis and metabolism ; Central intermediary 
metabolism ;  

PA0546 metK -3.0 
Amino acid biosynthesis and metabolism ; Central intermediary 
metabolism ;  

PA2482   -2.8 Energy metabolism ;  
PA3924   -2.3 Fatty acid and phospholipid metabolism ;  
PA0432 sahH -2.1 Amino acid biosynthesis and metabolism ;  
PA3537 argF -2.1 Amino acid biosynthesis and metabolism ;  
PA3452 mqoA -2.1 Central intermediary metabolism ; Energy metabolism ;  
PA1523 xdhB -2.0 Nucleotide biosynthesis and metabolism ;  
PA1217   -2.0 Amino acid biosynthesis and metabolism ;  
PA0895 aruC 2.0 Amino acid biosynthesis and metabolism ;  
PA0897 aruG 2.0 Amino acid biosynthesis and metabolism ;  
PA0899 aruB 2.0 Amino acid biosynthesis and metabolism ;  
PA3182 pgl 2.0 Central intermediary metabolism ;  
PA4429   2.0 Energy metabolism ;  

PA0516 nirF 2.1 
Energy metabolism ; Biosynthesis of cofactors, prosthetic groups 
and carriers ;  

PA3183 zwf 2.1 Energy metabolism ; Carbon compound catabolism ;  
PA3193 glk 2.1 Energy metabolism ; Carbon compound catabolism ;  
PA3194 edd 2.1 Energy metabolism ; Carbon compound catabolism ;  

PA0518 nirM 2.3 
Biosynthesis of cofactors, prosthetic groups and carriers ; Energy 
metabolism ;  

PA4430   2.3 Energy metabolism ;  

PA0517 nirC 2.5 
Biosynthesis of cofactors, prosthetic groups and carriers ; Energy 
metabolism ;  

PA0519 nirS 2.5 Energy metabolism ;  
PA0896 aruF 2.6 Amino acid biosynthesis and metabolism ;  

PA4442 cysN 3.0 
Central intermediary metabolism ; Amino acid biosynthesis and 
metabolism ;  

PA0523 norC 3.0 Energy metabolism ;  
PA3195 gapA 3.5 Energy metabolism ; Carbon compound catabolism ;  
PA0437 codA 3.7 Nucleotide biosynthesis and metabolism ;  

PA3395 nosY 4.0 Membrane proteins ; Energy metabolism ;  
PA3392 nosZ 4.6 Energy metabolism ;  
(ii)   Secretion, transport and export apparatus 

PA4230 pchB -14.9 
Secreted Factors (toxins, enzymes, alginate) ; Transport of small 
molecules ;  

PA1708 popB -6.5 Protein secretion/export apparatus ;  
PA4206 mexH -5.7 Transport of small molecules ;  
PA1707 pcrH -4.9 Secreted Factors (toxins, enzymes, alginate) ; Protein 
    secretion/export apparatus ;  
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PA1709 popD -4.6 Protein secretion/export apparatus ;  
PA0263 hcpC -4.3 Secreted Factors (toxins, enzymes, alginate) ;  
PA4207 mexI -4.3 Membrane proteins ; Transport of small molecules ;  
PA1706 pcrV -3.7 Protein secretion/export apparatus ;  
PA3877 narK1 -3.5 Membrane proteins ; Transport of small molecules ;  
PA0044 exoT -3.2 Secreted Factors (toxins, enzymes, alginate) ; 
PA2068   -3.2 Membrane proteins ; Transport of small molecules ;  
PA1183 dctA -3.2 Transport of small molecules ;  
PA1715 pscB -3.0 Protein secretion/export apparatus ;  
PA0783 putP -3.0 Membrane proteins ; Transport of small molecules ;  
PA5217   -3.0 Transport of small molecules ;  
PA1696 pscO -2.8 Protein secretion/export apparatus ;  
PA1904 phzF2 -2.8 Secreted Factors (toxins, enzymes, alginate) ;  
PA4208 opmD -2.8 Membrane proteins ; Transport of small molecules ;  
PA1905 phzG2 -2.8 Secreted Factors (toxins, enzymes, alginate) ;  

PA1710 exsC -2.8 
Translation, post-translational modification, degradation ; Protein 
secretion/export apparatus ;  

PA4064   -2.8 Transport of small molecules ;  
PA4210 phzA1 -2.8 Secreted Factors (toxins, enzymes, alginate) ;  
PA1719 pscF -2.6 Protein secretion/export apparatus ;  

PA1712 exsB -2.6 
Translation, post-translational modification, degradation ; Protein 
secretion/export apparatus ;  

PA1718 pscE -2.5 Protein secretion/export apparatus ;  
PA1903 phzE2 -2.5 Secreted Factors (toxins, enzymes, alginate) ;  
PA5500 znuC -2.5 Transport of small molecules ;  
PA4211 phzB1 -2.3 Secreted Factors (toxins, enzymes, alginate) ;  
PA0866 aroP2 -2.1 Transport of small molecules ;  
PA4628 lysP -2.1 Membrane proteins ; Transport of small molecules ;  
PA5231   -2.1 Membrane proteins ; Transport of small molecules ;  
PA1717 pscD -2.1 Protein secretion/export apparatus ;  
PA1901 phzC2 -2.1 Secreted Factors (toxins, enzymes, alginate) ;  
PA1902 phzD2 -2.1 Secreted Factors (toxins, enzymes, alginate) ;  
PA1964   -2.1 Transport of small molecules ;  
PA4142   -2.1 Protein secretion/export apparatus ;  

PA4143   -2.0 
Protein secretion/export apparatus ; Membrane 
 proteins ; Transport of small molecules ;  

PA1694 pscQ -2.0 Protein secretion/export apparatus ;  
PA1703 pcrD -2.0 Protein secretion/export apparatus ;  
PA5230   -2.0 Membrane proteins ; Transport of small molecules ;  
PA4292   -2.0 Membrane proteins ; Transport of small molecules ;  
PA5501 znuB -2.0 Membrane proteins ; Transport of small molecules ;  

PA2259 ptxS 2.0 
Secreted Factors (toxins, enzymes, alginate) ; Transcriptional 
regulators ;  

PA4502   2.0 Transport of small molecules ;  
PA0280 cysA 2.1 Transport of small molecules ;  
PA0602   2.5 Transport of small molecules ;  
PA5369 pstS 2.5 Transport of small molecules ;  
PA0281 cysW 2.6 Membrane proteins ; Transport of small molecules ;  
PA5368 pstC 2.6 Membrane proteins ; Transport of small molecules ;  
PA2114   2.8 Membrane proteins ; Transport of small molecules ;  
PA2204   6.1 Transport of small molecules ;  
(iii)   Motility and cell wall 

PA2570 lecA -2.5 Adaptation, Protection ; Motility & Attachment ; Cell wall 
    / LPS / capsule ;  
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PA3361 lecB -2.3 Motility & Attachment ;  
PA0869 pbpG -2.3 Cell wall / LPS / capsule ;  
PA3337 rfaD -2.0 Cell wall / LPS / capsule ;  
PA4306 flp -2.0 Motility & Attachment ;  
PA4480 mreC -2.0 Cell wall / LPS / capsule ; Cell division ;  
PA3706 wspC 2.8 Chemotaxis ; Adaptation, Protection ; Motility & Attachment ;  
(iv)   Transcription regulation 

PA2885 atuR -3.7 Transcriptional regulators ;  
PA0797   -3.2 Transcriptional regulators ;  
PA0547   -3.0 Transcriptional regulators ;  
PA3006 psrA -2.8 Transcriptional regulators ;  
PA5239 rho -2.5 Transcription, RNA processing and degradation ;  
PA5499 np20 -2.5 Transcriptional regulators ;  
PA5374 betI -2.3 Transcriptional regulators ;  
PA3266 capB -2.1 Transcriptional regulators ; Adaptation, Protection ;  
PA3587 metR -2.1 Transcriptional regulators ;  
PA3721   -2.1 Transcriptional regulators ;  
PA0367   2.1 Transcriptional regulators ;  
PA0479   2.5 Transcriptional regulators ;  
PA2849   2.6 Transcriptional regulators ;  
(v)   Adaptation, Protection ; Chemotaxis ;  

PA1608   -4.3 Adaptation, Protection ; Chemotaxis ;  
PA1561 aer -2.3 Adaptation, Protection ; Chemotaxis ;  
PA2788   -2.0 Adaptation, Protection ; Chemotaxis ;  
PA2920   -2.0 Adaptation, Protection ; Chemotaxis ;  
PA3327   3.0 Adaptation, Protection ;  
 (vi)   Putative enzymes  

PA4889   -4.6 Putative enzymes ;  
PA0730   -4.3 Putative enzymes ;  
PA2069   -4.3 Putative enzymes ;  
PA5181   -3.0 Putative enzymes ;  
PA2067   -2.8 Putative enzymes ;  
PA4217 phzS -2.8 Putative enzymes ;  
PA0506   -2.6 Putative enzymes ;  
PA2889 atuD -2.6 Putative enzymes ;  
PA4209 phzM -2.6 Putative enzymes ;  
PA2237 pslG -2.5 Putative enzymes ;  
PA3768   -2.3 Putative enzymes ;  
PA0130   -2.0 Putative enzymes ;  
PA3437   -2.0 Putative enzymes ;  
PA3035   2.0 Putative enzymes ;  
PA0366   2.8 Putative enzymes ;  
PA2197   2.8 Putative enzymes ;  
PA0364   3.0 Putative enzymes ;  
PA2099   5.7 Putative enzymes ;  
(vii)   Carbon compound catabolism ;  

PA2300 chiC -3.5 Carbon compound catabolism ;  

PA3192 gltR 2.0 
Carbon compound catabolism ; Transcriptional regulators ; Two-
component regulatory systems ;  

PA3366 amiE 2.3 Carbon compound catabolism ;  
PA2098   3.7 Carbon compound catabolism ;  
PA2097   4.6 Carbon compound catabolism ;  
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Microarray results showed that BDSF affects P. aeruginosa at a global level. Expression 

of a total of 186 genes was changed more than 2-fold by treatment with 250 μM BDSF. A 

number of genes belong to the group of protein secretion and export apparatus were 

repressed obviously with treatment of BDSF. In addition, some secreted factors classified 

to toxins and enzymes were also inhibited by the addition of BDSF, which is possible the 

major reason for the reduction of virulence of P. aeruginosa. Moreover, BDSF has a 

negative effect on the amino acid metabolism, such as the biosynthesis of glutamate, 

arginine, proline, methane, and methionine. Although the function of many hypothetical 

genes is unknown, this study shows the possibility of inter-species communication 

between B. cenocepacia and P. aeruginosa mediated by BDSF. It may also shed some 

new light in the host-pathogen interaction between P. aeruginosa and its host. Because in 

the body of human, there are many different fatty acids, it is possible that some of them 

may cross-talk with P. aeruginosa.   

 

 

 

 
 

 
 
 
 
 
 
 



 133

CHAPTER 6 

GENERAL CONCLUSIONS AND FURTHER STUDY 

6.1 General conclusions 

 6.1.1 BDSF is a novel cell-cell communication signal  

In this study, BDSF was characterized as a novel signal, which is a structural homologue 

of DSF (cis-11-methyl- 2-decenoic acid) produced by X. campestris. The only difference 

between them is at the C-11 position where BDSF lacks a methyl group. DSF is a well-

characterized quorum-sensing signal that regulates a few hundred genes encoding diverse 

biological functions such as biofilm disperse and virulence through a signaling network 

(Ryan et al., 2006; He et al., 2006a; 2006b; 2007; He and Zhang, 2008; Tao et al., 2009). 

Interestingly, in trans expression of Bcam0581, which is the gene encoding BDSF 

synthase, or addition of BDSF can restore biofilm disperse and virulence factor 

production by the Xcc rpfF deletion mutant, demonstrating that Bcam0581/BDSF are the 

functional homologue/analogue of rpfF/DSF. Functional characterization of BDSF 

revealed that it is involved in regulation of biofilm formation and virulence in B. 

cenocepacia. Furthermore, it was shown that production of BDSF is under stringent 

transcriptional control and the molecule accumulates in a cell density-dependent manner, 

typically found with quorum sensing (QS) signals. Taken together, the results from this 

study demonstrate that BDSF is a novel cell-cell communication signal in B. cenocepacia 

that plays a vital role in the regulation of the bacterial physiological functions.  
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A blast analysis using Bcam0581 protein sequence to the NCBI non-redundant database 

detected the presence of Bcam0581 homologues in at least 32 species with protein 

identity levels ranging from 31% to 99% and a minimum e value of 3e-31 (Table 6-1). 

This suggests that Bcam0581 homologues are conserved in many bacteria. Especially, 

amino acids sequence alignment of the Bcam0581 homologues from the six sequenced 

genomovars of the B. cepacia complex revealed more than 94% high similarity. 

Subsequently, TLC and DSF bioassay results discovered that all nine species of the B. 

cepacia complex produce DSF-family signals, which were characterized as DSF, BDSF 

and CDSF by using MS and NMR analysis. Although only some members of the B. 

cepacia complex produce DSF and CDSF, all nine species produce BDSF, which 

indicates that BDSF is the key QS signal in the B. cepacia complex. Identification of 

BDSF provides further evidence to support the notion that DSF represents a family of 

widely conserved bacterial QS signals. 

  

6.1.2 Virulence gene expression and biofilm formation are co-regulated by BDSF 

and AHL QS systems  

Studies showed that B. cenocepacia utilizes N-acyl homoserine lactones (AHL)-

dependent quorum-sensing system to regulate particular genes in a cell density-dependent 

mechanism. In B. cenocepacia, CepIR is the major AHL QS system, which is widely 

distributed in the B. cepacia complex and controls virulence factors production, 

swarming motility and biofilm formation (Lewenza et al., 1999; Gotschlich et al., 2001; 

Lutter et al., 2001; Huber et al., 2001; Hacker and Kaper, 2000; Mahenthiralingam, et al., 

2005). 
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Table 6-1. BCAM0581 homologues in various bacteria. 

Bacteria Strain Accession No. Identity (%) E Value 
Burkholderia          

B. cenocepacia J2315     ABK10294  100 0 

B. dolosa AU0158 EAY71442  96 1e-162  

B. ambifaria MC40-6 EAV51426  95 8e-162 

B. vietnamiensis G4 ABO57014  94 4e-161  

B. cepacia 383 ABB12683  94 8e-162 

B. multivorans ATCC17616 ABX18791  94 1e-159  

B. phymatum STM815 EAU98797  71 1e-125  

B. phytofirmans PsJN EAV07876  71 3e-121  

B. xenovorans LB400 ABE34805  71 6e-121  

Enterobacteriaceae          

Serratia proteamaculans  568 ABV43836 69 8e-120 

Yersinia bercovieri  ATCC43970 ZP_00822470 69 8e-117 

Yersinia mollaretti  ATCC43969 ZP_00825829 67 7e-116  

Y. enterocolitica  pv enterocolitica  8081 CAL10196 66 9e-114 

Yersinia frederiksenii  ATCC33641 ZP_00827993 66 1e-113  

Yersinia intermedia  ATCC29909 ZP_00832221 66 2e-113 

Enterobacter  sp.  638 ABP60857A 62 2e-104  

Enterobacter sakazakii  ATCC BAA-894 BU76841 61 8e-104 

Xanthomonadaceae          

 X. oryzae pv oryzae KACC10331 AAW76123 37 7e-44 

X. campestris pv vesicatoria 85-10 CAJ23597 36 9e-43  

X. campestris pv campestris  8004 AAY49385A 36 2e-43 

X. axonopodis pv. Citri 306 AM36741 37 1e-40  

Stenotrophomonas maltophilia R551-3 EAX22217A 36 2e-41 

Xylella fastidiosa  Temecula1 AO28287 35 8e-41 

Erythrobacter         

Erythrobacter litoralis HTCC2594 ABC63454 34 3e-39 

Erythrobacter sp. NAP1 EAQ30316 32 3e-36 

Other         

 Methylobacillus flagellatus KT ABE50920 37 4e-49 

Leptospirillum sp.   Group II UBA EAY57477 37 4e-47 

Sulfurovum sp.   NBC37-1 BAF71518 36 9e-45 

Thiobacillus denitrificans ATCC25259 AAZ98625 38 2e-44 

Mariprofundus ferrooxydans PV-1 EAU55268 36 2e-44 

 Sphingomonas sp.   SKA58 EAT06971 31 8e-35 

Methylibium petroleiphilum  PM1 ABM97021 36 3e-31 
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Previous studies reported that ZmpA, lipase and the ornibactin biosynthesis were under 

the control of CepIR system (Subsin et al., 2007; Lewenza et al., 1999). In this study, 

RT-PCR analysis showed that the related virulence genes expression, such as zmpA, lipA 

and orbI, were positively controlled by BDSF in B. cenocepacia. These results 

demonstrate that BDSF system conjuncts with CepIR system to co-regulate the virulence 

of B. cenocepacia. Further study showed that there was no difference in cepI or cepR 

transcript levels and AHL production between the wild type strain and the d0581 mutant. 

However, overexpression of cepI or cepR in the mutant d0581, and addition of BDSF to 

the cepR mutant, fully restored the transcriptional expression of these virulence genes 

(Fig. 3-4B). In addition, exogenous addition of C8-HSL to the d0581 mutant, and 

addition of BDSF together with C8HSL to the mutant d0581 further increased the 

promoter activity of these three genes to a level similar to addition of C8HSL to the wild 

type strain (Fig. 3-5A, 5B, 5C). Cumulatively, the findings suggest that AHL- and BDSF-

dependent QS systems regulate the virulence genes expression in parallel.   

 

Disruption of the AHL QS system in B. cenocepacia had been shown to result in defects 

in biofilm maturation (Huber et al., 2001). Similarly, we found that abolishment of BDSF 

signal caused enhanced formation of cell aggregations. However, most aggregations were 

dispersed by in trans expression of Bcam0581 or exogenous addition of BDSF. Although 

their effect on the biofilm formation is not exactly the same, it still can be concluded that 

the biofilm formation is co-regulated by AHL system and BDSF system in B. 

cenocepacia. However, much more work remains to be done to understand the 

mechanism of regulation. 
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6.1.3 BDSF controls bacterial biological functions likely through a novel mechanism 

DSF-dependent QS in Xcc modulates its targets via a two-component system. After 

perceiving DSF signal, RpfC sensor protein is activated by autophosphorylation and 

phosphotransfer occurs to induce the downstream regulator RpfG, which acts as a 

phosphordiesterase to degrade cyclic-diGMP into GMP. Another key factor of the circuit 

is the DNA-binding protein Clp, which is a c-di-GMP effector. C-di-GMP specifically 

binds to Clp with high affinity and induces allosteric conformational changes that abolish 

the interaction between Clp and its target gene promoter. (He et al., 2007; Tao et al., 

2009) (Fig. 6-1).  

 

In B. cenocepacia, amino acid sequence alignment showed that Bcam0581 shares a 

37.2% identity with RpfF. Domain analysis showed that Bcam0581 contained an enoyl-

CoA hydratase domain similar to that of RpfF enzyme of Xcc (Fig. 2-2). In trans 

expression of Bcam0581 in Xcc rpfF deletion mutant restores DSF activity, biofilm 

disperse and EPS production to wild type level, indicating that Bcam0581 is a functional 

homologue of RpfF. However, rpfF of Xcc is located within the same locus as rpfC and 

rpfG, while there are no rpfC or rpfG homologue in the vicinity of Bcam0581 (Fig. 2-2). 

The Bcam0581 gene appears to be a single transcriptional unit and is flanked by 

Bcam0582 and Bcam0580. The former encodes a 73 kDa hypothetical protein and the 

latter a 73.3 kDa protein with PAS, diguanylate cyclase (GGDEF) and a 

phosphodiesterase (EAL) domains.  
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Fig. 6-1. DSF signaling pathway in Xcc in regulation of virulence at (A) low and (B) high 

population density. The Clp-dependent virulence regulon is represented by vir, which 

includes engXCA and other virulence genes as depicted in our previous study (copied 

from Tao et al., 2009).  
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To further investigate the signaling pathway of BDSF, rpfC and rpfG homologues were 

searched in the genome level of B. cenocepacia. Different from Xcc, no rpfC homologue 

could be found. Meanwhile, although Bcas0263 has about 31% identity to rpfG, and with 

a similar domain structure containing REC and HD domains, deletion of Bcas0263 

caused no change in biofilm formation and in zmpA expression (data not shown). 

Moreover, the genes flanking Bcas0263 are absolutely different from those flanking rpfG, 

demonstrating that Bcas0263 is not the real functional homologue of rpfG.  The findings 

suggest that the BDSF system in B. cenocepacia and the DSF system in Xcc do not share 

the same origin of evolution, and BDSF may use a new mechanism in regulation of the 

bacterial biological functions.  

 

6.1.4 Dual functions of Bcam0581 in the biosynthesis of BDSF and energy 

metabolism  

Besides abolishment of BDSF production, deletion of Bcam0581 also caused a growth 

defect of B. cenocepacia in a nutrient-limited medium. Surprisingly, exogenous addition 

of BDSF up to a concentration of 25 µM was not able to rescue the growth defect of 

d0581 (Fig. 3-3C). These data suggest that, in addition to its role in BDSF biosynthesis, 

Bcam0581 may also have a metabolic function. Quantitative measurements of ATP 

concentrations showed that deletion of Bcam0581 resulted in significantly reduced ATP 

levels relative to the wild type strain (Fig. 3-2B). Consistent with its growth profile, the 

complement strain produced more ATP than the wild type strain. Interestingly, addition 

of citrate or in trans expression of citrate synthase Bcas0207, which shows a reduced 

expression in d0581 mutant, can rescue the growth defect of mutant d0581. However, the 
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reduction of Bcas0207 expression in d0581 can only be restored to wild type level by in 

trans expression of Bcam0581 but not by exogenous addition of 5 μM BDSF (Fig. 3-3B). 

Taken together, these results have unveiled dual functions of Bcam0581 in addition to its 

role in the biosynthesis of BDSF, Bcam0581 also plays an essential role for energy 

biogenesis during growth under unfavorable nutritional condition, possibly through 

influencing energy metabolism by affecting citric acid cycle. The detailed mechanism of 

Bcam0581 in energy metabolism in B. cenocepacia remains to be elucidated. 

 

6.1.5 BDSF signal shows the ecological significance via inter-species and inter-

kingdom signal interference  

Recently studies showed that DSF not only controls many biological functions; it also 

plays an important role in the microbial cross-talk through inter-species and inter-

kingdom communication (Wang et al., 2004; Ryan et al., 2008). Our current work 

discovered that BDSF produced by B. cenocepacia interfered with P. aeruginosa through 

inhibition on its QS systems and T3SS, and resulted in attenuation of the T3SS-meidated 

cytotoxicity of P. aeruginosa on HeLa cell. Furthermore, BDSF was shown to be more 

effective than DSF in inhibition of germ tube formation by C. albicans (Boon et al., 

2008). The significance of BDSF in microbial ecology became obvious as its repression 

on C. albicans germ tube formation occurs at the physiologically relevant concentrations.    

 

6.2 Prospects of further study   

6.2.1 BDSF signaling pathway 
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Based on our current results, BDSF was identified to regulate the biofilm formation and 

virulence gene expression in B. cenocepacia. This regulation profile is something similar 

to the DSF signaling pathway in Xcc. However, there may be significant difference 

between them. In Xcc, DSF cell-cell communication system regulates its targets through 

the RpfC/RpfG two-component system; while there are no any RpfC/RpfG homologues 

in B. cenocepacia. To further investigate the BDSF signaling pathway, one target gene of 

the BDSF signaling system, zmpA, can be used to construct the reporter system for 

screening the BDSF sensors and regulators. 

 

6.2.2 Mechanism of co-regulation by BDSF and AHL 

The BDSF system and AHL QS system in B. cenocepacia were identified to co-regulate 

the expression of a set of virulence genes. In addition, both of them are involved in 

biofilm formation of B. cenocepacia. Current knowledge supports that these two systems 

act in parallel to regulate these virulence genes expression. To identify the co-operation 

mechanisms of BDSF and AHL systems, Bcam0581 deletion mutant, cepI deletion 

mutant and Bcam0581cepI double deletion mutant will be used to do microarray analysis 

to study the detailed relationship between the BDSF system and the AHL QS system in B. 

cenocepacia.   

 

6.2.3 Regulatory mechanism of BDSF production  

The promoter of Bcam0581 will be fused with lacZ ORF to screen for the regulators 

controlling the expression of Bcam0581. Given that Bcam0581 is essential for the signal 

production in B. cenocepacia, the study of BDSF production will be focused on the 
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screening of the transcriptional regulators which control the expression of Bcam0581. 

Moreover, the two-hybrid methods will be used to find out whether there are proteins that 

regulate Bcam0581 by protein-protein or protein-DNA interactions.  

 

6.2.4 The detailed mechanism of BDSF in interference of P. aeruginosa 

BDSF was identified to interfere with P. aeruginosa through repression on its QS 

systems and T3SS, which finally caused the decreased production of virulence factors. In 

our future plan, we will study the detailed mechanisms of BDSF signaling in P. 

aeruginosa, to find out the sensor and regulator of BDSF, and the downstream 

transcriptional factors.     
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