
RESOURCE MANAGEMENT FOR TARGET

TRACKING IN WIRELESS SENSOR

NETWORKS

HAN MINGDING

NATIONAL UNIVERSITY OF SINGAPORE

2010

RESOURCE MANAGEMENT FOR TARGET

TRACKING IN WIRELESS SENSOR NETWORKS

HAN MINGDING
(B.Eng. (Hons), NUS)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2010

Abstract

Target tracking applications are popular in wireless sensor networks, in which
distributed low-power devices perform sensing, processing and wireless commu-
nication tasks, for applications such as indoor localization with ambient sensors.
Being resource-constrained in nature, wireless sensor networks require efficient
resource management to select the most suitable nodes for sensing, in-network
data fusion, and multi-hop data routing to a base-station, in order to fulfill
multiple, possibly conflicting, performance objectives. For example, in target
tracking applications, reducing sensing and update intervals to conserve energy
could lead to a decline in application performance, in the form of tracking accu-
racy. In this thesis, we study resource management approaches to address such
challenges, through simulations and test-bed implementations.

There are two main components of this thesis. We first address indoor target
tracking using a state estimation algorithm and an information-driven sensor se-
lection scheme. An information-utility metric is used to characterize application
performance for adaptive sensor selection. We address the system design choices
such as the system architecture and models, hardware, software and algorithms.
We also describe the system implementation in a test-bed, which incorporates
mobile devices such as smartphones, for control and monitoring of the wireless
sensor network, querying of sensors, and visualization interfaces.

The second component is a simulation study of a distributed sensor election
and routing scheme for target tracking in a multi-hop wireless sensor network.
An objective function, which trades-off information-quality with remaining en-
ergy of nodes, is used for sensor election. Subsequently, energy-efficient multi-
hop routing is performed back to the sink node. In our non-myopic approach,
we convert the remaining energy of nodes into an additive cost-based metric,
and next-hop nodes are selected based on the expected sum of costs to the
base station. A decision-theoretic framework is formulated to capture the non-
myopic decision-making problem, and a reinforcement learning approach is used
to incrementally learn which nodes to forward packets to, so as to increase the
delivery ratio at the sink node.

i

Acknowledgment

I would like to thank my supervisor Associate Professor Tham Chen Khong for
his supervision and encouragement throughout my course of study.

Special thanks goes to Dr Lee-ling Sharon Ong of the National University
of Singapore and Dr Wendong Xiao of the Institute for Infocomm Research for
their help with the state estimation algorithms for filtering and sensor selection,
as well as the test-bed implementations.

My thanks also go out to my friends who have encouraged and supported
me through the course of my work, and most importantly, my family for their
never-ending support.

September 19, 2010

ii

Contents

1 Introduction 1

1.1 Resource Management in Wireless Sensor Networks 2
1.2 Sensor Data Fusion . 2
1.3 Distributed in-network Processing 3
1.4 Energy-Efficient Sensor Scheduling and

Communication . 4
1.5 Multi-hop Routing . 4
1.6 Decision-theoretic and Learning Approaches 5
1.7 Contributions . 6
1.8 Summary . 7

2 Background 8

2.1 State Estimation and Sensor Selection 9
2.1.1 An Overview of the Discrete Kalman Filter 9
2.1.2 State Estimation using the Extended Kalman Filter . . . 10
2.1.3 Information-driven Sensor Selection 13

2.2 Routing Protocols in WSNs . 16
2.2.1 Data-centric Approaches 16
2.2.2 Maximum Lifetime Routing Approaches 17
2.2.3 Information-driven Approaches 18

2.3 Decision-theoretic Framework and Algorithms 19
2.3.1 Markov Decision Processes 19
2.3.2 Bellman’s Optimality Equations 21
2.3.3 Dynamic Programming 21
2.3.4 Monte Carlo Approximation 23
2.3.5 Reinforcement Learning 25

2.4 Summary . 29

3 Design and Implementation of an Indoor Tracking test-bed 30

3.1 Introduction . 30

iii

3.2 Background . 31
3.2.1 Hardware Platforms . 31
3.2.2 WSN Software . 34

3.3 System Overview . 35
3.3.1 System Flowchart . 35
3.3.2 System Models . 37

3.4 Simulation Study . 39
3.4.1 Sensor Deployment . 39
3.4.2 Simulation Results . 40

3.5 Test-bed Implementation . 44
3.5.1 Clustered System Architecture 45
3.5.2 System Visualization . 46

3.6 Integrating Mobile Devices with WSNs 47
3.6.1 Mobile Device Platforms 47
3.6.2 Android OS . 48
3.6.3 Extended System Architecture 49
3.6.4 Tracking Application on an Android Smartphone 51

3.7 Discussions . 53
3.7.1 Limitations and Challenges 53
3.7.2 Extensions . 55

3.8 Conclusion . 57

4 Information-driven Sensor Election and Routing 58

4.1 Introduction . 58
4.2 Related Work . 59

4.2.1 Competition-based Sensor Selection 59
4.2.2 Multi-step Look-ahead for Data Routing 59
4.2.3 Routing with Reinforcement Learning 60

4.3 Our Proposed Approach . 61
4.4 Distributed Sensor Election based on

Information Gain and Remaining Energy 63
4.4.1 Distributed Sensor Election Mechanism 63
4.4.2 Delayed Sensing based on IQ Metric 67
4.4.3 Simulation Results . 68

4.5 Energy-Aware Multi-Hop Routing 70
4.5.1 Problem Formulation . 71

4.6 Solution by Reinforcement Learning 72
4.6.1 Solution Approach . 72
4.6.2 Solution Algorithm . 73

4.7 Simulation Study . 76

iv

4.7.1 Simulation Setup . 76
4.7.2 Results and Analysis . 78

4.8 Discussions . 83

5 Conclusions 85

v

List of Figures

2.1 The discrete Kalman Filter predict-update cycle 10
2.2 Operation of the Extended Kalman Filter 13
2.3 Sensor selection based on information gain 14

3.1 COTS WSN Mote Platforms . 32
3.2 COTS Stargate WSN Gateway 32
3.3 Stargate WSN Gateway with communication interfaces 33
3.4 Flowchart for State Estimation and Sensor Selection 36
3.5 Test-bed Sensor Deployment and Sensor Coverage 39
3.6 Comparison between adaptive sensor selection and round-robin

(constant velocity process model) 40
3.7 Comparison of sensor selection approaches for circular and rect-

angular trajectories (constant velocity process model) 41
3.8 Comparison between adaptive sensor selection and round-robin

(IOU process model) . 42
3.9 Comparison of sensor selection approaches for circular and rect-

angular trajectories (IOU process model) 43
3.10 Deployed test-bed in an indoor smart space 44
3.11 Clustered System Architecture 45
3.12 Visualization and User Interface 46
3.13 Software Architecture integrating mobile devices and WSNs . . . 49
3.14 Mobile Devices connected by Wi-Fi ad-hoc network 50
3.15 Android Tracking Visualization Application 52

4.1 Flowchart for State Estimation and Distributed Sensor Election . 64
4.2 Distributed Sensor Election Procedure 66
4.3 Simulation results for distributed sensor election with and with-

out delayed sensing . 69
4.4 Forwarding mechanism . 76
4.5 Multi-Hop Routing . 77
4.6 Comparison of average trace of covariance matrix 79

vi

4.7 Comparison of average tracking error in grid units 80
4.8 Comparison of average sensor network lifetime in energy units . . 81
4.9 Comparison of delivery rate to sink node 82

vii

Chapter 1

Introduction

This thesis addresses resource management approaches for target tracking appli-

cations in wireless sensor networks, by considering application-level performance

such as tracking accuracy, and energy-efficient operation in order to increase

network lifetime. A filtering approach is adopted for state estimation, and can-

didate sensors are selected based on information gain and remaining energy

levels. Subsequently, the updated state estimate is forwarded to a sink node

via multi-hop routing. A decision-theoretic approach is used for non-myopic

decision-making by considering the expected sum of costs to the sink node.

Target tracking continues to be a popular application domain in wireless sen-

sor networks. Besides outdoor tracking in unknown and harsh environments for

military scenarios, target tracking has also been applied to indoor localization,

such as in [1], which caters to the growing need for indoor human activity moni-

toring for elderly healthcare applications [2], and increasing interest in develop-

ing pervasive computing applications for smart-space environments [3]. While

target tracking applications are used as a canonical example, the information-

driven and energy-efficient approaches described can also be extended to other

data-centric application domains in wireless sensor networks.

1

1.1 Resource Management in Wireless Sensor

Networks

Wireless Sensor Networks (WSNs) consist of large numbers of low-power nodes,

each with sensing, processing and wireless communication capabilities. While

each node may lack resources for performing high-resolution sensing and fast

computation, WSNs make use of sensor collaboration and in-network process-

ing to overcome their resource limitations, and to provide redundancy to be

robust to node failure [4]. The sensor coverage affects the ability of the applica-

tion to respond quickly to local events while the rest of the WSN lies dormant

in sleep mode, and nodes near the event-of-interest can collaborate to reduce

redundant information. Sensor collaboration improves the confidence of sens-

ing and estimation, filters out sensing noise, and reduces the amount of data

communicated towards the sink node.

Being resource-constrained in nature, wireless sensor networks require effi-

cient resource management to select the most suitable nodes for sensing, in-

network data fusion, and data routing to a base-station node. Multiple perfor-

mance objectives need to be fulfilled, which may conflict with one another. For

example, in target tracking applications, reducing sensing and update intervals

to conserve energy and prolong network lifetime could lead to a decline in appli-

cation performance, such as tracking accuracy. In this thesis, we study resource

management approaches to address such challenges, through simulations and

test-bed implementations.

1.2 Sensor Data Fusion

In target tracking applications, estimation algorithms are used to keep track

of detected targets, and sensors update the state estimates with their obser-

vations. However, the sensor observations may be noisy, so signal processing

approaches are incorporated to filter out process and observation noise, and

2

to incorporate readings from sensors. Data fusion combines signal processing

with data aggregation, and information-driven sensor management approaches

are desirable, where the information gain of a candidate sensor’s observation is

based on the current state estimate, and can be quantified as a utility metric.

Information-theoretic measures such as entropy [5],[6], and divergence measures

from estimation filters [7],[8] are some examples.

1.3 Distributed in-network Processing

In order to distribute the in-network processing across nodes, one approach is to

address how to perform data and decision fusion [9] to trade-off communication

and processing loads across sensors. Clustering mechanisms can be adopted,

where cluster heads are chosen based on remaining energy levels. In hetero-

geneous node deployments, nodes with more processing and communication

resources, such as faster processor speeds, more memory or higher bandwidth,

can be chosen to be cluster head nodes.

Task scheduling approaches have also been adopted in WSNs, in which pro-

cessing tasks can be modelled as a directed acyclic graph, and allocated to

nodes to perform distributed processing, while constrained by a shared commu-

nication channel. Task scheduling can be performed for load balancing across

nodes [10], subject to constraints on the schedule makespan. Due to the large

solution space from large node deployments, as well as the computational com-

plexity of scheduling algorithms, heuristic approaches are most commonly used

used [11],[12]. A reinforcement learning approach was presented in [13], in which

nodes learn which tasks to choose for a target tracking application.

3

1.4 Energy-Efficient Sensor Scheduling and

Communication

Since wireless communication poses the most significant source of energy con-

sumption in WSNs, there has been extensive research on designing energy-

efficient wireless sensor networking protocols. Sleep-wake scheduling approaches

focus on designing schedules for which a subset of nodes intermittently wakes

up to maintain network connectivity and perform coarse-grained sensing to de-

tect any events-of-interest, while the majority of the WSN lies dormant in a

low-power sleep mode. Several schemes also look at transmission power control

to adjust the communication range and network topology based on remaining

energy of nodes, so as to reduce energy consumption and increase network life-

time.

At the wireless medium access control layer, energy-efficient MAC protocols

have been proposed, such as long-preamble listening in B-MAC[14], synchro-

nized duty-cycling in S-MAC [15], as well as carrier sensing approaches such as

[16]. A component-based software architecture was presented in [17] for the de-

sign, implementation and evaluation of various energy-efficient MAC protocols.

1.5 Multi-hop Routing

In wireless sensor networks deployed in large geographic areas, the limited com-

munication range of nodes, and the objective to conserve communication energy,

makes it necessary to efficiently communicate data across multiple hops, from

sensors that detect the events-of-interest to base station nodes. In contrast to

routing protocols in mobile ad-hoc networks, wireless sensor network nodes are

usually static, and energy-efficient and data-centric operation is desired, in ad-

dition to optimising network performance metrics such as delay and throughput.

Routing protocols also need to address frequent topology changes due to

sleep-wake cycles, link and node failures. Routing protocols that focus on min-

4

imizing the sum of communication energy across nodes may result in some

depleted nodes and unfair sensor utilisation along popular multi-hop paths. On

the other hand, maximum lifetime routing provides a network-wide perspective,

in which the network lifetime may be defined as the time till which the network

first becomes partitioned. A comprehensive survey of the various challenges in

wireless sensor networks from the data routing perspective is provided in [18].

Because of the possibly large numbers of deployed sensors, and the need for

the ad-hoc network deployment to be self-organizing, node addressing schemes

may not be feasible as they would incur high overhead. In many applications,

getting the data about the sensed event-of-interest is often more important than

the node identities, so a data-centric approach to sensor management is preferred

over an address-centric approach. Due to high-density node deployments, mul-

tiple sensor nodes may detect the event-of-interest, so sensor collaboration is

required to aggregate the sensed data so as to reduce transmissions and con-

serve energy. Routing of sensor queries and state information may also make

use of information-based gradients, as presented in [19].

In [20], data is represented in attribute-value pairs, and nodes set up interests

and information gradients between event and sink, so as to support ad-hoc

querying, in-network caching of interests, and data aggregation. In [21], a family

of negotiation-based protocols is presented, in which nodes advertise themselves

when they receive updated information and subsequently, other nodes which are

interested in the data request for it.

1.6 Decision-theoretic and Learning Approaches

Due to the various sources of uncertainty in wireless sensor networks, such as

node failure and packet loss, estimation algorithms and communication pro-

tocols need to be able to incorporate probabilistic models of the target and

network states. In addition, greedy solution approaches may not suffice, as a

next-hop node may be chosen for its high remaining energy, but future hops

5

towards the destination node may be depleted. Incorporating a longer decision-

making horizon to maximise the sum of expected future rewards would provide

better resource utilization and application performance in the longer-term.

However, decision-making with multi-step look-ahead often results in ex-

ponentially increasing computational time and space complexity, in order to

seek an optimal decision among the entire state and action space over multi-

ple steps. Optimal computation by dynamic programming is not feasible for

resource-constrained sensor nodes.

Instead, learning-based approaches using a reward signal from the sensor

network would be more suitable, as nodes are able to learn the immediate re-

wards from their actions, while they seek to maximise their long-term expected

sum of rewards through trial-and-error. In addition, modeling and computa-

tional complexities have a much less significant effect and nodes can learn good

sample paths as they explore the solution space. Here, it is assumed that events

occur in repeatable episodes so that the learning algorithm can converge to the

optimal solution with sufficient exploration over a large number of iterations.

Details of reinforcement learning algorithms are presented in later chapters.

1.7 Contributions

The contributions of this thesis are as follows:

• a test-bed implementation of information-driven sensor selection for in-

door target tracking, with a system software architecture design for WSN

monitoring, control and visualization

• a distributed sensor election approach with dynamic sampling interval

• an energy efficient data forwarding scheme for multi-hop routing

• a Markov Decision Process framework for non-myopic decision-making,

and application of reinforcement learning approximation algorithms

6

The rest of this thesis is organized as follows. Chapter 2 provides background

information for the concepts covered in this thesis, organized into three cate-

gories: (i) state estimation for target tracking and information-based approaches

for sensor selection, (ii) data routing in wireless sensor networks, and (iii) a

decision-theoretic framework based on Markov Decision Processes and reinforce-

ment learning approximation algorithms. In Chapter 3, we describe the design

of an indoor target tracking application using ambient sensors, with an adaptive

sensor selection scheme, and its implementation in a test-bed, together with our

system architecture design for monitoring, control and visualization. Chapter

4 presents a simulation study of distributed sensor election and data routing in

multi-hop wireless sensor networks. An MDP formulation is adopted for non-

myopic decision-making to choose next-hop neighbor nodes based on minimising

the expected sum of costs to the destination node, and approximate solutions

based on reinforcement learning are presented. We conclude in Chapter 5 with

a summary of this work and propose avenues for future work.

1.8 Summary

In this chapter, the application domain of target tracking with wireless sensor

networks was discussed. A general overview of sensor management approaches

was presented, addressing energy-efficient and data-centric approaches in sens-

ing, processing and data communication. Different protocols for multi-hop rout-

ing were briefly described, along with an introduction to the decision-theoretic

and reinforcement learning approaches for non-myopic decision-making. Lastly,

the objectives of this work and the organization of this thesis have been pre-

sented.

7

Chapter 2

Background

This chapter provides background information for this thesis. We first describe

an overview of state estimation using the discrete Kalman Filter, which consists

of recursive predict-update stages, followed by the Extended Kalman Filter

(EKF), which is commonly used for state estimation and data fusion implemen-

tations. Information utility metrics, that can be used to characterize predicted

sensor contributions in terms of information gain, are also described.

Next we review some related routing protocols in wireless sensor networks.

The resource-constrained and application-specific nature of wireless sensor net-

works necessitates energy-efficient and data-centric approaches. We present

some illustrative examples of routing protocols from the existing literature.

Lastly, we provide an introduction to decision-theoretic frameworks for sen-

sor management, using Markov Decision Processes for decision-making under

uncertainty over a long-term discounted horizon. Various formulations are dis-

cussed, along with exact, approximate and learning solution aproaches.

8

2.1 State Estimation and Sensor Selection

2.1.1 An Overview of the Discrete Kalman Filter

This section describes the discrete Kalman Filter, for which the state is es-

timated, and measurements taken, at discrete points in time, using notation

adapted from [22]. The Kalman Filter addresses the general problem of trying

to estimate the state of a discrete-time controlled process that is assumed to be

governed by the linear stochastic difference equation

xk = Axk−1 +Buk + wk−1, (2.1)

where xk represents the state variable at time step k, uk represents the control

input and wk represents the process noise. The observation process is assumed

to be of the form

zk = Hxk + vk, (2.2)

where zk is the observation of state xk, and vk represents the observation noise.

The process and measurement noise distributions, denoted by p(w) and p(v)

respectively, are assumed to be zero-mean white Gaussian probability distribu-

tions that are independent of one another:

p(w) ∼ N(0, Q), p(v) ∼ N(0, R), (2.3)

where Q and R represent the variance of the respective distributions.

The Kalman Filter estimates a process by using a form of feedback control:

the filter estimates the process state at some time and then obtains feedback

in the form of (noisy) measurements. Thus, the Kalman Filter equations can

be categorized into time-update (predict) equations and measurement-update

(update) equations.

In the predict phase, the time update equations propagate the current state

and error covariance estimates in time, to obtain the a priori estimates for the

9

Figure 2.1: The discrete Kalman Filter predict-update cycle

next time step. In the update phase, the measurement update equations provide

system feedback by incorporating a new measurement into the a priori estimate

to obtain an improved a posteriori estimate. In this manner, the Kalman Filter

recursively predicts the state and updates it with measurement values, as shown

in Figure 2.1.

2.1.2 State Estimation using the Extended Kalman Filter

If the process model and/or the measurement model’s relationship with the

process model is non-linear, a Kalman Filter that linearizes about the current

mean and covariance can be used [22]. This is referred to as an Extended Kalman

Filter or EKF. The EKF is an approximation that transforms the non-linear

relationship to a linearized form using partial derivatives, hence it is a sub-

optimal estimate. However, it is suitable and widely used for many real-world

applications such as in [23].

In the formulation of the EKF algorithm for tracking applications, the target

motion is modeled by the state equation

X̂k+1 = F (∆tk)X̂k + wk, (2.4)

where Xk is the state of the target at the k-th time step, which consists of

the target’s location coordinates and/or velocity components, and X̂k is the

estimate. The duration of the k-th sampling interval is denoted by ∆tk, and

10

the process model is represented by the state propagation matrix F (∆tk) and

process noise wk, which is assumed to be a zero-mean Gaussian probability

distribution with variance Q.

Depending on the target application, different propagation models, such as

a linear or projectile trajectory within the duration of a sampling interval, or

a Gauss-Markov random-walk model [24], can be used to find the posterior

estimate X̂k+1 of the target state, given the previous estimate X̂k. Some appli-

cations discretize the infinite state space into regions, such as a grid represen-

tation, and develop propagation models in the form of transition probabilities

to neighboring regions, or grid squares.

The measurement model is given by

zk = h(Xk) + vk, (2.5)

where h is a (generally non-linear) measurement function dependent on the state

Xk, the measurement characteristic (e.g. range, bearing or proximity), and the

parameters (e.g. location) of the sensor. vk denotes the observation noise, which

is assumed to have a zero-mean Gaussian distribution with variance R.

The EKF operates in the following way: given the estimate X̂k|k of the

target state X̂k at time tk, with covariance Pk|k, the predicted state is obtained

using the propagation equation

X̂k+1|k = F (∆tk)X̂k|k (2.6)

with predicted state covariance

Pk+1|k = F (∆tk)Pk|kFT (∆tk) +Q(∆tk) (2.7)

The predicted measurement of sensor i is

ẑk+1|k = h(X̂k+1|k) (2.8)

11

The innovation, i.e. the difference between the actual measurement zk+1 of

sensor i, and the predicted measurement ẑk+1|k at tk+1, is given by

Γk+1 = zk+1 − ẑk+1|k (2.9)

with innovation covariance

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1, (2.10)

where Hk+1 is the Jacobian matrix of the measurement function h at tk+1 with

respect to the predicted state X̂k+1|k. The Kalman gain is given by

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (2.11)

The state estimate is then updated as

X̂k+1|k+1 = X̂k+1|k +Kk+1Γk+1 (2.12)

and the state covariance is updated as

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (2.13)

Figure 2.2 shows an updated illustration of the predict-update cycle from

Figure 2.1, with the EKF equations. In addition, there exists a large body of

research literature on generalising to non-linear non-Gaussian state estimation

for target tracking, and a popular framework is that of particle filtering [25],

which uses Monte-Carlo sampling. A recent comprehensive survey on estimation

and infomation fusion techniques can be found in [26].

12

Figure 2.2: Operation of the Extended Kalman Filter

2.1.3 Information-driven Sensor Selection

Since the system keeps an estimate of the target state X̂k|k and associated

uncertainty Pk|k, an information-utility measure can be used to quantify the

uncertainty of the state estimate as an information-quality (IQ) utility metric

for sensor selection.

Figure 2.3, adapted from [5], shows the difference between selecting sensors

S1 and S2, where the target state is represented as a Gaussian uncertainty el-

lipsoid. The objective here is to select the next sensor to result in the largest

reduction of the estimation uncertainty, and hence provide the largest informa-

tion gain. In Figure 2.3, sensor S1 lies along the major axis of the uncertainty

ellipsoid, so its observation is able to provide larger uncertainty reduction, and

hence more information gain, than sensor S2, as evident in its smaller resul-

tant uncertainty ellipsoid. [5] also provides a collection of information-utility

13

Figure 2.3: Sensor selection based on information gain

measures for target tracking applications, which we briefly review here.

The Mahalanobis distance is defined as

(xi − x̂)T Σ̂−1(xi − x̂) (2.14)

where xi is the position of sensor i, x̂ is the mean of the target position estimate,

and Σ̂ is the error covariance matrix. The Euclidean distance between xi and x̂ is

taken and normalized with Σ̂, thus incorporating the state estimate information

into the distance measure. The utility function for sensor i, thus, is

ϕ(xi, x̂, Σ̂) = −(xi − x̂)T Σ̂−1(xi − x̂) (2.15)

An information-theoretic approach can be used to define the IQ-measure.

The statistical entropy measures the randomness of a random variable, and for

a discrete random variable x with probability distribution p, it is given by

Hp(x) =
∑
x∈S

p(x)logp(x), (2.16)

where S defines the support of the random variable. The smaller the en-

tropy value, the less uncertain the value of the random variable. Hence the

14

information-theoretic utility measure is given by

ϕ(xi, p(x)) = −Hi,p(x) (2.17)

In fact, the error covariance matrix itself can serve as an IQ-measure, since

it depicts the size of the uncertainty ellipsoid. Two measures of the norm of

the covariance matrix are suitable here: the trace of the matrix is proportional

to the circumference of the uncertainty ellipsoid, while the determinant of the

matrix is proportional to the volume.

In addition, the EKF can predict each sensor’s potential information-gain

before selecting the best sensor and using its observation to make an update.

For each sensor i with measurement model

zi,k = hi(Xk) + vi,k, (2.18)

its predicted measurement is given by

ẑi,k+1|k = hi(X̂k+1|k) (2.19)

Sensor i’s innovation is not known as its observation is not yet taken. How-

ever, its innovation covariance can be predicted by

Si,k+1 = Hi,k+1Pk+1|kH
T
i,k+1 +Ri,k+1, (2.20)

where Hi,k+1 is the Jacobian matrix of the measurement function hi at tk+1

with respect to the predicted a priori state X̂k+1|k.

The Kalman gain is given by

Ki,k+1 = Pk+1|kH
T
i,k+1S

−1
i,k+1, (2.21)

15

and the predicted a posteriori state covariance is given as

P̂i,k+1|k+1 = Pk+1|k −Ki,k+1Si,k+1K
T
i,k+1 (2.22)

Thus, the sensor selection objective is to minimize the trace of the predicted

a posteriori state estimate, trace(P̂k+1|k+1), with the utility function

ϕ(xi, X̂k+1|k, Pk+1|k) = −trace(P̂i,k+1|k+1) (2.23)

In addition to the above-mentioned IQ-metrics, other approaches include

using divergence-measures, such as the Kullback-Liebler divergence, to charac-

terize the quality of the state estimate [8], and the Fisher information matrix

to represent the quality of information available [19]. A review of multi-sensor

management in relation to multi-sensor information fusion was presented in [27].

2.2 Routing Protocols in WSNs

Routing protocols for WSNs have been extensively researched, and we choose a

few illustrative examples which are more related to this work. Comprehensive

surveys of WSN routing protocols can be found in [28], [18].

2.2.1 Data-centric Approaches

In [20], a naming scheme for the data was proposed using attribute-value pairs,

which was used by sensor nodes to query for the data on-demand. To create a

query, an interest was generated with meta-data, and flooded throughout the

network. Nodes were also able to cache the interests and perform in-network

data aggregation, which was modeled as a minimum Steiner tree problem. Inter-

est gradients were set up in the reverse direction, based on data rate, duration

and expiration time. Using interests and gradients, paths were established be-

tween data sources and arbitrary sinks. However, the naming convention was

highly application-specific and the periodic propagation of interests and local

16

caching resulted in significant overhead.

In [21], a family of routing protocols was introduced, based on the concept

of negotiation for information exchange. Each node upon receiving new data,

advertises it to its neighbors and interested neighbors, for which message meta-

data is used to reduce redundancies. Neighbor nodes which want the data would

reply to the advertisement, to which the current node responds with a DATA

reply message. One of the benefits of this aproach is that topological changes are

localized since each node needs to know only its single-hop neighbors. However,

intermediate nodes, between the data source and an interested querying node,

may not be interested in the data, so the querying node may never receive the

data it wants. Although data delivery is not guaranteed in the basic scheme,

subsequent modifications have addressed this problem [29].

2.2.2 Maximum Lifetime Routing Approaches

In order to address the energy constraints in WSNs, some approaches serve to

balance the routing load on the entire network, so as to maximize the network

lifetime, which could be defined as the time when the network first becomes

partitioned. In [30], the maximum network lifetime problem was formulated as

a linear programming problem. This was treated as a network flow problem,

and a cost-based shortest-path routing algorithm was proposed, which used link

costs that reflected both the communication energy and remaining energy levels

at the two end nodes. Simulation results showed better performance than the

Minimum Transmitted Energy (MTE) algorithm, due to the residual energy

metric.

The approach in [31] consisted of two phases, in which an initial phase of com-

puting and propagating link costs was executed to find the optimal cost paths

of all nodes to the sink node, using a back-off mechanism to reduce message

exchange. The back-off algorithm sets the total deferral time to be proportional

to the optimal cost at a node. Subsequently, the actual data message carried

dynamic cost information and flowed along the minimum cost path.

17

In [32], the authors identified three different routing approaches: (i)minimum-

energy routing, which depleted nodes along a good path, (ii)max-min battery

level routing, which increased total transmission energy due to detours, and

(iii)minimum link cost routing from [30]. These three approaches were formu-

lated as actions within a reinforcement learning framework, in which the states

were the sum of energy costs of the minimum-energy path, and the max-min

battery life along the path obtained from (ii). The decision-making agent used

an on-policy Monte Carlo approach to learn the trade-off parameters between

these three candidate schemes, in order to balance the total transmission energy

and remaining battery life among nodes.

2.2.3 Information-driven Approaches

An overview for an information-driven approach to sensor collaboration was pro-

vided in [5], by considering the information utility of data, for given communica-

tion and computation costs. A definition of information utility was introduced,

and several approximate measures were developed for computational tractabil-

ity, along with different representations of the belief state, and illustrated with

examples from some tracking applications.

In [33], the authors described the resource constraints in wireless sensor

networks, as well as a collaborative signal and information processing (CSIP)

approach to dynamically allocate resources, maintain multiple sensing targets,

and attend to new events of interest, all based on application requirements

and resource constraints. The CSIP tracking problem was formulated within a

distributed constrained optimization framework, and information-directed sen-

sor querying (IDSQ) was described as a solution approach. Other examples of

combinatorial tracking problems were also introduced.

In [19], the estimation problem for target tracking in wireless sensor net-

works was addressed using standard estimation theory, by considering the sensor

models, associated uncertainties, and different approaches for sensor selection.

Information utility measures such as Fisher Information Matrix, covariance el-

18

lipsoid and Mahalanobis distance were also described, along with approaches for

belief state representation and incremental update. A composite objective func-

tion was formulated to trade-off the information utility function with the cost

of the bandwidth and latency of communicating information between sensors.

Two algorithms were described in detail: Information-directed Sensor Querying

(IDSQ) and Constrained Anisotropic Diffusion Routing (CADR), to respectively

select which sensors to query, and which to dynamically guide data routing. The

implications of different belief state representations were also discussed.

2.3 Decision-theoretic Framework and Algorithms

2.3.1 Markov Decision Processes

Markov Decision Processes (MDPs)[34],[35] are commonly used for decision-

making under uncertainty. An MDP consists of a tuple 〈S,A, P ass′ , Rass′〉, with

the following components:

• a set of states, S, which represents all the system variables that may

change, as well as the information needed to make decisions

• a set of actions, A, which represents all the possible actions that can be

taken in state s ∈ S

• a state transition probability matrix, in which element P ass′ represents the

transition probability of transiting to state s′, from being in state s and

taking action a

• a reward matrix, in which element Rass′ represents the reward of transiting

to state s′ after being in state s and taking action a

Solution approaches to MDP problems generally try to compute or estimate

the value function, which can be represented as functions of state V (s), or state-

action pairs Q(s, a). Respectively, they represent the utility of being in state s,

or being in state s and taking action a [36], where the utility function is defined

19

based on the optimization objective and the application. The notion of value

is defined in terms of the expected return, which incorporates the immediate

reward, and the expected discounted sum of future rewards under a given policy

π. For example, the state value function V and state-action value function Q,

under a policy π, can respectively be represented as

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
, (2.24)

and

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
, (2.25)

where the discount factor γ reflects diminishing utility of future rewards at

the current instance, in order to evaluate the value functions by predicting up

to k-steps into the future. Evaluating the expected return as the discounted

infinite sum of immediate rewards allows for convergence and mathematical

tractability. For situations evaluating either the average-reward or total-reward

criterion, Equations (2.24) and (2.25) can be modified by adding an absorbing

state with zero reward after the look-ahead horizon of k steps into the future.

Details and mathematical proofs are provided in [34].

Some system models for resource management make use of constrained

MDPs. For example, in [37], the total network bandwidth is constrained by

a theoretical upper bound, and the remaining node energy level has a fixed

limit. In [6], the authors try to maximize application performance subject to

resource cost, and conversely to minimize resource cost subject to a threshold

on application performance metrics.

Target tracking problems have been formulated as partially-observable MDPs,

due to the need to estimate the system state from which only partial informa-

tion from sensors’ observations is known. A single target tracking formulation

was described in [38], and extended to multi-target tracking in [39]. In [40],

multiple available actions were available in each POMDP state as multi radar

scans to choose from, for multiple target tracking.

20

2.3.2 Bellman’s Optimality Equations

A fundamental property of the value functions is that they satisfy a recursive

relationship. For example, the state value function V π in Equation (2.24) can

be written as

V π(s) =
∑
a

π(s, a)
∑
s′

P ass′ [Rass′ + γ V π(s′)] (2.26)

These form the set of Bellman equations for V π, which express a relationship

between the value of a state and the values of its successor states. They average

over all the possibilities, weighting each by its probability of occurrence [36].

The value function is the unique solution to its Bellman equations. In general,

solution to MDP problems focus on ways to compute, approximate or learn the

value functions of states, V π, or state-action pairs, Qπ.

The Bellman Optimality Equation is of a similar form:

V ∗(s) = maxa∈A(s)

∑
s′

P ass′ [Rass′ + γ V ∗(s′)] (2.27)

The solution to the Bellman Optimality Equation is unique and consists of the

solution to the system of equations given by Equation(2.27). Once the optimal

value function V ∗ is obtained, any policy that is greedy to V ∗ is an optimal

policy:

π∗(s) = argmaxa∈A(s)

∑
s′

P ass′ [Rass′ + γ V ∗(s′)] (2.28)

2.3.3 Dynamic Programming

Dynamic Programming [34],[41] provides a collection of algorithms for solving

exactly for the optimal policies, assuming knowledge of a complete model of

the environment. They are well developed mathematically and are proven to

converge [34]. We briefly review two approaches: value iteration and policy

iteration.

21

Value Iteration

Value iteration consists of recursively updating the value function until no fur-

ther changes occur, ie. the value functions converge:

Vk+1(s) = maxa∈A(s)

∑
s′

P ass′ [Rass′ + γVk(s′)] (2.29)

In practice, convergence to within a small neighborhood between successive

iterations of the value function |Vk(s)− Vk+1(s)| for some small positive value,

θ, is a sufficient stopping criterion. The pseudo-code for value iteration, adapted

from [36], is shown here:

Algorithm 1: Value Iteration
Initialize V arbitrarily, e.g. V(s) = 0 ∀s ∈ S
while ∆ ≥ θ(a small positive number) do

∆← 0
for s ∈ S do

v ← V (s)
V (s)← maxa

∑
s′ P

a
ss′ [Rass′ + γV (s′)]

∆← max(∆, |v − V (s)|)
end

end

Policy Iteration

Policy iteration consists of two simultaneous, interacting processes. Policy eval-

uation attempts to make the value function consistent with the current policy, by

iteratively updating the value functions until the stopping criterion is reached,

similar to value iteration. Policy improvement chooses each action to be greedy

with respect to the current value function. As the value functions are iteratively

updated, and greedy actions are being simultaneously chosen, the two processes

converge to the optimal value function and optimal policy [36]. The pseudo-code

for policy iteration is shown next:

22

Algorithm 2: Policy Iteration
1. Initialization Set arbitrary values for all V (s) and π(s) ∀s ∈ S
2. Policy Evaluation
while ∆ >= Θ(a small positive number) do

∆← 0
for s ∈ S do

v ← V (s)
V (s)← maxa

∑
s′ P

a
ss′ [Rass′ + γV (s′)]

∆← max(∆, |v − V (s)|)
end

end

3. Policy Improvement
policy − stable← true
for s ∈ S do

b← π(s)
π(s)← argmaxa

∑
s′ P

a
ss′ [Rass′ + γV (s′)]

if b 6= π(s) then
policy − stable← false

end
end
if policy − stable then

stop
else

go to step 2 - Policy Evaluation
end

2.3.4 Monte Carlo Approximation

In the absence of a complete and accurate environment model, dynamic pro-

gramming methods are of limited applicability. However, MDPs can still be

solved approximately by taking sample actions in each state, and averaging

over the returns of all episodes that visited that state. This approach is called

Monte-Carlo approximation – it solves MDPs by approximating the value func-

tion with sampling and averaging. Here, it is useful to know the value of taking

an action a in state s, so the state-action value function, Qπ, is used instead of

the state value function, V π. The recursive form of the Q-function, Qπ, is

Qπ(s, a) =
∑
s′

P ass′ [Rass′ + γ π(s′, a′)Qπ(s′, a′)] (2.30)

23

The Bellman Optimality Equation for Q∗ is

Q∗(s, a) =
∑
s′

P ass′ [Rass′ + γ maxa′Q∗(s′, a′)] (2.31)

Equation (2.31) forms a set of equations, one for each state-action pair, so if

there are S states and A actions, then there are SxA equations in SxA un-

knowns. Similar to Equation(2.28), once the optimal value function Q∗ is ob-

tained, any policy that is greedy to Q∗ is an optimal policy:

π∗(s) = argmaxaQ∗(s, a) (2.32)

In some MDPs, only a small subset of states are ever visited, so Monte-Carlo

approximation can discover and utilize sample trajectories through the solution

space. However, being a sampling method, Monte-Carlo approximation would

only be assured to converge to the Bellman Optimality Equations if sufficient

exploring of the solution space is maintained, in constrast with the greedy policy

of exploiting the best experienced action for a given state. This is known as the

exploitation-exploration dilemma. One way to ensure sufficient exploration is

to use an ε-greedy policy [36], in which a random action is chosen with a small

positive probability, ε, that decreases with the number of iterations.

Many works in related literature have used Q-value approximation for target

tracking applications. In [38], the authors formulated the tracking problem as

a partially-observable MDP (POMDP), and converted it into a fully observable

MDP by defining the problem state in terms of its belief state, the conditional

probability distribution given the available information about the sensors ap-

plied and the measurement data acquired. Particle filtering was used to provide

the samples needed for Q-value approximation of candidate actions, and the au-

thors used a cost function that consists of sensor cost and tracking error. This

method was extended to track multiple targets in [39]. In [40], the action space

was expanded to allow for selecting a combination of multiple sensors. The au-

24

thors proposed a highsight optimization approach, to address the uncertainties

in state transitions as a result of choosing different sensor combinations as ac-

tions. The solution was Monte-Carlo approximation with a base policy rollout

over a receding finite horizon.

2.3.5 Reinforcement Learning

In general, MDPs face two challenges for their application to real-world prob-

lems, (i) the curse of modeling, which is the difficulty of accurately modeling the

system and knowing complete information, and (ii) the curse of dimensionality,

in that the state and action space grows exponentially with the application’s size

and complexity. To address this, Reinforcement Learning methods [36],[42],[43]

are commonly used in practice for their relative simplicity and their ability

to learn from interaction with the environment. Reinforcement Learning ap-

proaches differ from Supervised Learning, in that there is no teacher to provide

the correct output for computation of an error signal to provide feedback.

In reinforcement learning, the decision-making agent learns to make decisions

by interacting with its environment and learning from experience, to select the

best action a given any state s, by obtaining feedback from the environment in

the form of a reward signal, Rass′ . The agent learns the Q-function of state-action

pairs, which is the sum of expected rewards over some horizon. Specifically,

temporal-difference (TD) methods are able to perform incremental updates at

the next time-step in the current episode, instead of waiting til the end of that

episode, as Monte-Carlo approximation does. This works well for updating the

value functions while making online decisions, and also for long episodes, which

pose the problem of credit assignment, for which it is difficult to identify which

actions taken in which states have more weight in contributing to the reward at

the end of each learning episode.

25

Temporal Difference Learning

In Temporal-Difference (TD) methods, the next time-step in the current episode

is used to provide an update, so that incremental online learning, based on up-

dating Q-values, can be performed. At tk, for a state-action pair Qk(s, a), TD-

learning makes use of the current model to estimate the next value Qk(s′, a′).

At tk+1, they immediately form a target and make a useful update using the

observed reward rk+1 and the estimate Qk(s′, a′). The temporal difference be-

tween estimated and observed rewards, is fed back into the model to update the

Q-value of that state-action pair:

Qk+1(s, a)← Qk(s, a) + α [rk+1 + γ Qk(s′, a′)−Qk(s, a)] , (2.33)

where α is the learning rate, and γ is the discount factor, which indicates how

much a future reward is valued at the current iteration k.

Q-learning makes use of past experience with state-action pairs, and a reward

or cost signal from the environment in order to learn the Q-function. Hence,

potentially-promising state-action pairs that have not been previously explored

may be neglected. Hence, in order to guarantee convergence towards optimality,

random exploration is introduced in the form of an ε-greedy policy[36], where ε

is a small probability of taking a random action, that is gradually decreased with

time, similar to Monte Carlo approximation. Two approaches to Q-learning are

briefly described: on-policy and off-policy Q-learning.

On-policy Q-learning

In on-policy Q-learning, actions are chosen based on an ε-greedy policy, that is,

the best action in the current state is chosen with a probability (1-ε), and a ran-

dom action with probability ε. This applies to both the current and predicted

state-action pairs, Q(s, a) and Q(s′, a′) respectively. The update step involves

the elements from Equation (2.33) in the form of the tuple 〈sk, ak, rk, sk+1, ak+1〉.

The following pseudo-code for on-policy Q-learning is taken from [36]:

26

Algorithm 3: On-policy Q-learning
Initialize Q(s, a) arbitrarily
for episode i← 1 : maxepisodes do

Initialize s
Choose a from s using ε-greedy policy
for each step k ← 1 : maxsteps do

Take action a, observe r and s′

Choose a′ from s′ using ε-greedy policy
Update Qk+1(s, a) with Equation (2.33)
s← s′, a← a′

end
until s is terminal

end

Off-policy Q-learning

In off-policy Q-learning, the learned action-value function Q directly approxi-

mates Q∗, the optimal action-value function, independent of the policy being

followed. The current action is chosen according to an ε-greedy policy, but the

update step makes use of the best subsequent action from the Q-function at the

current episode. According to [36], this helped to simplify the theoretical analy-

sis of the algorithm and enable early convergence proofs. Q-learning is especially

useful in being able to learn an optimal policy, with reference to following an

ε-greedy policy. The update equation is given by

Qk+1(s, a)← Qk(s, a) + α [rk+1 + γ maxa′Qk(s′, a′)−Qk(s, a)] (2.34)

with the following pseudo-code [36]:

Algorithm 4: Off-policy Q-Learning
Initialize Q(s, a) arbitrarily
for episode i← 1 : maxepisodes do

Initialize s
for each step k ← 1 : maxsteps do

Choose a from s using ε-greedy policy
Take action a, observe r and s′

Update Qk+1(s, a) with Equation (2.34)
s← s′

end
until s is terminal

end

27

Related Work

In related work, the authors in [7] applied Q-learning to trade-off the costs in-

cured due to sensor deployment or activation, with the rewards from information

gain due to collected measurements. The immediate reward was computed using

information gain measured by Renyi -divergence between predicted and updated

probability densities of the state estimate. In [13], the authors used reinforce-

ment learning for distributed task allocation for an object tracking scenario,

in which nodes learn to perform sub-tasks such as sampling, communication,

aggregation, and powering down to sleep-mode, based on utilities defined by

application-specific parameters, such as throughput and energy usage. In [44],

reinforcement learning was used to perform sensor scan selection for multiple

object tracking, identification and classification of their threat levels, while ad-

dressing sensor costs.

In [45], the author proposed many approaches to speed up on-line reinforce-

ment learning, by implementing a CMAC controller with a Hierarchical Mixture

of Experts architecture. The author also addressed how to find an exploration

strategy and preserve specialised knowledge, and how to do context-dependent

learning. CMAC was extended in [24] for energy-efficient target tracking in sen-

sor networks, where the tracking area was divided into clusters. The resource

management problem was divided into two portions – to predict the target

trajectory and set sampling rates.

At the upper tier, the higher level agent (HLA) had to keep track of the

listening cluster and its dwell time, and set the sampling rate by activating the

node’s status: whether to sense at a long sampling interval, perform tracking

with a short sensor sampling interval, or remain idle. It incurred a cost that

was a weighted sum of proportional power consumption and proportion of wrong

predictions. At the lower tier, the lower level agent (LLA) had to keep track

of the cluster and predict the target trajectory, incurring a cost of 0 for correct

prediction, and 1 otherwise. The hierarchical MDP was solved by Q(λ)-learning,

using CMAC as a neural-network like implementation to approximate the Q-

28

function, which was stored in a look-up table on a WSN mote’s Flash memory.

In [6], the authors performed sensor management by choosing sensor subsets

and the data fusion centre, which may communicate with the sink along multiple

hops. They formulated the resource management problem as a constrained

MDP, relaxed the constraints using Lagrangian variables, and solved it by sub-

gradient update and rollout methods. This was based on an earlier approach

proposed by Castañon [46], in which a dynamic hypothesis testing and target

classification problem was formulated as a Markov Decision Process and solved

using approximate dynamic programming with Lagrangian relaxation and policy

rollout. This work was extended to multi-hop WSNs in [47].

2.4 Summary

In this chapter, the theoretical background used in this thesis was described. A

general description of the Extended Kalman Filter was presented, with information-

driven sensor selection using information-utility measures. This provides the

background for Chapter 3, which describes the design of an indoor target track-

ing application and its implementation in a real-world test-bed.

A brief overview of multi-hop routing protocols for wireless sensor networks

was also described, followed by an overview of Markov Decision Processes, with

an introduction to methods that compute, approximate or learn the value func-

tions to determine an optimal policy. In Chapter 4, we describe the use of

reinforcement learning to find a sensor election policy for multi-hop routing.

29

Chapter 3

Design and Implementation

of an Indoor Tracking

test-bed

3.1 Introduction

This chapter describes the design and implementation of a wireless sensor net-

work for ambient sensing in an indoor smart space. There are two main com-

ponents:

1. Implementation of indoor human tracking

2. Integration of smartphone mobile devices for monitoring, control and vi-

sualization of WSNs

In the first application, we apply the Extended Kalman Filter, described in

the previous chapter, for state estimation and data fusion with ambient sensor

observations, with an information-driven sensor selection approach, based on

minimizing the trace of the predicted state covariance matrix. The aim of this

work is to develop a proof-of-concept test-bed for implementing our resource

30

management algorithms for real-world experimentation and data collection. We

describe the design and implementation of the estimation and sensor selection

algorithms, and a two-tier architecture for resource management in WSNs, and

we provide some comparisons between different sensor selection approaches.

In the second application, we extend the existing test-bed implementation by

integrating smartphone mobile devices with our WSN implementation, to cre-

ate a mobile device layer in our system architecture. Smartphones have grown

quickly in popularity and capabilities, allowing access to these ubiquituous de-

vices to perform real-time sensing, processing, communication and data visual-

ization. Using open-source Google Android OS, we develop an application for

real-time sensor network monitoring, control and visualization, and we deploy

it in our WSN test-bed implementation. Integrating smartphones with WSNs

holds significant potential for future new applications, such as indoor target

tracking, activity monitoring, pervasive computing and real-time participatory

sensing [48],[49].

3.2 Background

3.2.1 Hardware Platforms

Wireless Sensor Networks consist of low-power devices with limited sensing,

processing and radio communication capabilities. Many research prototypes

currently exist, and commercial-off-the-shelf (COTS) systems are available from

companies such as Crossbow Technologies [50], and EasySen [51].

Popular development platforms from Crossbow, such as the TelosB and MI-

CAz platforms, run on low-power microcontrollers at processing speeds of up

to 8MHz. Intel’s iMote2 platform features a much faster processor running up

to 400MHz, with dynamic voltage scaling capabilities for power conservation.

For radio communications, current WSN platforms include a radio transceiver

(Texas Instruments CC2420), that implements a simplified version of the IEEE

802.15.4 standard for low-power Personal Area Networks (PANs). The wire-

31

less motes communicate in the 2.4GHz frequency band over 26 possible radio

channels at a maximum data rate of 250 kbps, and they make use of the Car-

rier Sense Multiple Access (CSMA) protocol for wireless medium access control.

Figure 3.1 shows images of the radio boards for the TelosB, MICAz and iMote2

platforms.

(a) TelosB (b) MICAz (c) iMote2

Figure 3.1: COTS WSN Mote Platforms

These WSN development platforms come with basic sensor boards with tem-

perature, humidity, light and accelerometer sensors, and provide communication

interfaces to connect more sensors or communicate with other devices. For ex-

ample, the MICAz prototyping board exposes communication interfaces such

as the Serial Peripheral Interface Bus (SPI) for synchronous communications,

and an Inter-Integrated Circuit interface (I2C) for communication with exter-

nal sensors, such as ultrasonic sensors. The iMote2 platform supports advanced

connection interfaces, such as a CIF interface for an image camera.

Figure 3.2: COTS Stargate WSN Gateway

In addition, more advanced single-board computer platforms are widely used

to provide more processing power in WSNs and they can function as gateways

to 802.11 Wi-Fi or wired backbone networks. Figure 3.2 shows a Crossbow

32

Stargate Gateway which runs embedded LINUX OS on a 400MHz processor,

and provides a variety of communication interfaces such as an Ethernet port, a

Wi-Fi Compact Flash slot, USB ports, and a MICAz connector for interfacing

with MICAz motes, as shown in Figure 3.3. Hence, Stargate-class nodes can

serve as a communication gateway between WSNs over 802.15.4 radio, Wi-Fi

ad-hoc networks over 802.11 radio, and wired networks over Ethernet LAN.

Figure 3.3: Stargate WSN Gateway with communication interfaces

Using LINUX OS, Stargate gateways are able to support multiple processes

in concurrent threads, thus allowing them to simultaneously execute multiple

tasks such as data-intensive processing, WSN control and resource management,

and communication gateway functions across multiple interfaces. Using socket

communications, Stargate gateways allow client applications to remotely access

streams of observation data, or to execute queries in WSN nodes. Due to higher

power requirements, Stargate gateways are powered by mains power supply, and

commonly used to manage battery-operated WSN motes. With their superior

33

processing capabilities and communication interfaces, Stargate nodes usually

serve as cluster heads to coordinate and manage clusters of low-power WSN

sensor mote devices.

3.2.2 WSN Software

TinyOS [52] is an open-source operating system for low-power WSNs and it is

widely used as the de facto OS for developing WSN applications, with a large

and growing repository of research projects. TinyOS features a component-

based software architecture made up of software modules which are linked to-

gether using configuration files via interface definitions, all specified in the nesC

language with C -like syntax. TinyOS supports the IEEE 802.15.4 standard,

and its component library includes network protocols, low-level hardware access

(such as timers and schedulers), sensor drivers, and data acquisition routines.

At compile-time, only the required components are linked from the component

library, so as to reduce the memory footprint and code size.

TinyOS features an event-driven execution model to improve on power man-

agement, and yet allow flexibility in scheduling tasks interacting with unpre-

dictable physical and wireless communication events. Its split-phase operation

makes use of a command–event interface which components use to trigger one

another, so that minimal processor time is spent waiting. When an event triggers

a low-power interrupt, the node wakes up, schedules an appropriate task, and

returns to low-power sleep mode, thus conserving energy. This approach min-

imizes time spent waiting for lost events or wireless packets, which is assumed

to be a common occurance in WSNs. Higher-level applications are designed for

data redundancy and fault tolerance in order to ensure desired application-level

performance, such as delay and detection accuracy.

34

3.3 System Overview

3.3.1 System Flowchart

Figure 3.4 shows a flowchart illustrating how the EKF and sensor selection algo-

rithms, described in Chapter 2, are implemented in our indoor target tracking

test-bed. Once the system is started, it stays in an idle state, in which nodes

periodically sense, for example every 100ms, whether there is any target in the

room. When a target is detected by a sensor node, the node initializes the state

estimate X0 to its location coordinates, and the covariance matrix P0 to some

large values which reflect the large initial uncertainty of the state estimate.

Based on the state estimate, the current node computes the prior state

X̂k+1|k, P̂k+1|k using the prediction equations (2.6) and (2.7) with the process

model F (∆tk), where ∆tk is the update interval at step k. The prior state

estimate is then used by the current node to select the next sensor node based

on the IQ metric, IQi = trace(P̂i,k+1|k+1), for each node i, using the equations

(2.19) to (2.23). For the case when the target is first detected, there is no

velocity information to predict the prior state estimate, so the current sensor

node randomly selects the next sensor node from a set of candidate sensors, for

which the target lies within the detection range of each of them.

Subsequently, the current node passes the prior state estimate information

X̂k+1|k, P̂k+1|k to the selected node which takes a measurement zk+1. If the

selected node detects the target, it updates with its measurement to obtain the

posterior state estimate X̂k+1|k+1, P̂k+1|k+1, using the equations (2.9) to (2.13),

and makes a prediction to compute the next prior estimate. If the selected node

is unable to detect the target, it checks whether the number of target misses has

exceeded a threshold value. If so, the target is assumed to be lost and the system

returns to the idle state. Otherwise, the selected node proceeds to predict the

next prior state estimate for step k+1. The EKF and sensor selection algorithm

continue to track the target in recursive predict and update stages.

35

Figure 3.4: Flowchart for State Estimation and Sensor Selection

36

3.3.2 System Models

This section describes the system models that we use in our simulations and test-

bed implementation. The process model is represented by a transition matrix

F (∆tk), where ∆tk is the update interval at step k. We consider a target moving

in a 2-d plane, so the target state is defined as Xk = (xk, vx,k, yk, vy,k) at time

step k, where xk and yk are the x- and y-coordinates of the target, and vx,k

and vy,k are the velocities of the target along the x- and y-directions. Recall

from equations (2.4) and (2.5), that the process and observations models are,

respectively

X̂k+1 = F (∆tk)X̂k + wk (3.1)

zk = h(Xk) + vk (3.2)

The Constant Velocity and Integrated Ornstein-Uhlenbeck process models

are described next.

Constant Velocity Process Model

A constant-velocity process model assumes that the target’s trajectory within

an update interval is linear, i.e. it travels at a constant velocity. The matrix

representation is:

F (∆tk) =



1 ∆tk 0 0

0 1 0 0

0 0 1 ∆tk

0 0 0 1


(3.3)

and the process noise covariance matrix is

Q(∆tk) = q



(∆tk)3/3 (∆tk)2/2 0 0

(∆tk)2/2 ∆tk 0 0

0 0 (∆tk)3/3 (∆tk)2/2

0 0 (∆tk)2/2 ∆tk


(3.4)

37

Integrated Ornstein-Uhlenbeck Process Model

The Integrated Ornstein-Uhlenbeck (IOU) process model [53] is a nearly constant-

velocity model that bounds the Brownian velocities, preventing them from grow-

ing excessively large, when there are missed detections [8]. In practical deploy-

ments, detection misses may occur due to missed observations, such as when

ultrasonic pulses are reflected off an uneven target surface and are missed at the

receiver transducer, or due to wireless packet loss. As the velocity component

of the target’s state estimate is now more uncertain, and has less contribution

to the state propagation, the process noise is increased. The IOU process model

matrices are:

F (∆tk) =



1 ∆tk 0 0

0 Fv 0 0

0 0 1 ∆tk

0 0 0 Fv


, (3.5)

where

Fv = e−η∆tk , (3.6)

and

Q(∆tk) = q



0 0 0 0

0 ∆tk(1− Fv)2 0 0

0 0 0 0

0 0 0 ∆tk(1− Fv)2


(3.7)

Observation Model

The observation model is that of a range sensor, corrupted by noise, that is

assumed to follow a zero-mean Gaussian probability distribution.

zi(X̂k) = ‖(xi, yi)− (xk, yk)‖+ vi,k, (3.8)

38

where xi and yi respectively are the x- and y- coordinates of sensor i. In

our application, we make use of ultrasonic sensors which can interfere with one

another, with an interference region that is significantly larger than the detection

region. Hence only one sensor is allowed to fire at any one time. As depicted in

Figure 3.4, the predicted state is used to find the sensor with the least predicted

value of trace(P̂i,k+1|k+1)), which provides the highest utility and is selected as

the next sensor to activate. We term this approach as adaptive sensor selection.

3.4 Simulation Study

3.4.1 Sensor Deployment

Figure 3.5: Test-bed Sensor Deployment and Sensor Coverage

Figure 3.5 shows the sensor deployment in the test-bed. The left diagram

shows the sensor deployment with respect to the room dimensions and other

furniture, while the right diagram shows the sensor coverage. Sensor orientations

39

were carefully chosen with calibrated sensor measurements to maximise the

sensor coverage in the room, based on the ultrasonic sensors’ conical detection

region. An example simulation is shown in the right diagram for a circular

target trajectory, along with the ground truth target location and the estimated

location from the EKF.

3.4.2 Simulation Results

Based on our test-bed deployment, sensor measurements were obtained, along

with ground truth location traces of a moving human target, and used to perform

simulations to study IQ-driven sensor selection. We simulated greedy-EKF,

an adaptive sensor selection scheme which selected the sensor that minimized

the trace of the predicted EKF error covariance matrix. The greedy-EKF and

round-robin sensor selection schemes were compared based on tracking error

and detection ratio, which we define as the number of detections over the total

number of sampling intervals for each experiment. Circular and rectangular

target trajectories were simulated for 500 runs each, using a constant-velocity

process model in the EKF algorithm, with a target velocity of 50cms−1.

(a) Tracking Error (b) Detection Ratio

Figure 3.6: Comparison between adaptive sensor selection and round-robin (con-
stant velocity process model)

Figure 3.6 shows that for the circular trajectory, the greedy-EKF approach

had lower tracking error and higher detection rate than round-robin sensor se-

lection, as greedy-EKF used the EKF state estimate to more accurately predict

40

the target’s location and the sensors’ predicted information gain.

On the other hand, for the rectangular trajectory, the constant-velocity pro-

cess model was shown to be unable to accurately predict the rectangular trajec-

tory, as seen in the increase in tracking errors for both schemes. In addition, the

greedy-EKF approach had a significantly larger increase in tracking error than

the small decrease in its detection rate, as compared to round-robin. Figure 3.7

(a) Circular Trajectory - Adaptive (b) Circular Trajectory - Round-robin

(c) Rectangular Trajectory - Adaptive (d) Rectangular Trajectory - Round-robin

Figure 3.7: Comparison of sensor selection approaches for circular and rectan-
gular trajectories (constant velocity process model)

41

shows target location estimate plots for both circular and rectangular trajecto-

ries. For the circular trajectory, greedy-EKF out-performed round-robin, but

for the rectangular trajectory, greedy-EKF was unable to recover the state esti-

mate when the target was lost, while the fixed round-robin selection policy was

able to recover the target after some time. The greedy-EKF approach, while

attempting to better predict which sensor to use, was very prone to wrong pre-

dictions as a result of less detections, as shown by the sparse location updates,

and the significantly increased tracking error.

Figure 3.7 also illustrates the impact that the sensor detection rate had on

the tracking algorithm, as frequent updates were needed for reasonable track-

ing accuracy. Under the constant-velocity process model, the target’s location

estimate was assumed to follow a straight line, so missed detections had a large

impact on the tracking accuracy, as well as large discontinuities in the estimated

trajectory. In Figure 3.7(d), pairs of consecutive state estimates were observed,

followed by large jumps to the next location estimate. The consecutive estimates

were due to the round robin sensor selection scheme, where instead of choosing

the next sensor to maximise information gain, a fixed sequence of sensors was

used, resulting in small information gain and small displacements in the location

estimate followed by large discontinuities as the EKF algorithm tried to recover

the target state estimate.

(a) Tracking Error (b) Detection Ratio

Figure 3.8: Comparison between adaptive sensor selection and round-robin (IOU
process model)

42

Figure 3.8 shows our results from 500 simulations runs, using the IOU process

model with decay factor η = 0.9 for bounding the Brownian velocity. For both

trajectories, adaptive sensor selection out-performed the round-robin scheme in

terms of less tracking error and higher detection ratio. Furthermore, the IOU

process model had less tracking error compared to the constant-velocity process

model. From Figure 3.9, using the IOU process model produced smoother tra-

(a) Circular Trajectory - Adaptive (b) Circular Trajectory - Round-robin

(c) Rectangular Trajectory - Adaptive (d) Rectangular Trajectory - Round-robin

Figure 3.9: Comparison of sensor selection approaches for circular and rectan-
gular trajectories (IOU process model)

43

jectory plots with significantly less ’jumps’ and discontinuities. This is because

the IOU model restricted predicting ahead using the estimated velocity when

the target was lost, until the target was detected again. Using this process

model allowed the EKF to track the target better in the presence of missed

detections, which may be caused by sensor interference or wireless packet loss.

3.5 Test-bed Implementation

Figure 3.10: Deployed test-bed in an indoor smart space

Figure 3.10 shows a snapshot of our test-bed deployment in an indoor smart

space. Static ambient sensors, interfaced to WSN motes, are deployed around

the room and highlighted in red ovals. WSN nodes in the smart space are able

to overhear one another over IEEE 802.15.4 radio, and the sensor nodes are

organized into a single-hop star network topology.

44

3.5.1 Clustered System Architecture

Figure 3.11 shows the design of our tracking cluster architecture. Our test-bed

is regarded as a logical cluster of WSN motes, managed by a WSN Stargate

Gateway, which has more processing resources and communication interfaces.

Intra-cluster wireless communication takes place over 802.15.4 radio, based on

a CSMA MAC protocol in a single-hop topology. Inter-cluster communication

takes place over TCP socket connections, over wired Ethernet LAN or wireless

Wi-Fi. Application information from multiple smart-spaces (clusters) is sent to a

centralized server, for further processing, storage and visualization. Users of the

tracking application can set up client socket connections to obtain visualization

output streams from the centralized server, or streams of tracking coordinates

directly from the Stargate Gateways. The implementation of this clustered

architecture would be part of our future work.

Figure 3.11: Clustered System Architecture

45

3.5.2 System Visualization

Figure 3.12: Visualization and User Interface

Figure 3.12 shows the visualization and user interface of our indoor tracking

application. The left part of the figure illustrates the test-bed with the static

sensors represented by blue circles, which turn red when the corresponding sen-

sor is selected. The human target’s real-time location estimate is represented

as a purple circle moving around in the test-bed, along with a live video feed at

the upper right corner of the visualization display, for ground-truth comparison.

The lower right display shows the covariance trace, which represents the esti-

mation uncertainty. From an initial high level of uncertainty when the tracking

system was initialized, the covariance trace decreases greatly and stays low as

the human target is being tracked by the ultrasonic sensors in the test-bed.

46

3.6 Integrating Mobile Devices with WSNs

In this section, we incorporate smartphone mobile devices into our WSN test-

bed implementation and add a mobile device layer, consisting of mobile com-

puting devices inter-connected over an ad-hoc wireless network, into our sys-

tem architecture. Mobile devices can also communicate with Stargate WSN

Gateways as peers over Wi-Fi radio. We develop smartphone applications for

real-time monitoring, control and visualization of WSNs over interactive user in-

terfaces, incorporate our indoor human tracking WSN application into a smart-

phone application, and demonstrate it over a software emulator and on an actual

Android-based smartphone.

Smartphones have been used in healthcare and activity recognition applica-

tions [54],[55] and personal environmental impact sensing and monitoring [48].

Providing smartphones with access to real-time data from ambient sensors holds

significant promise in improving the development and deployment of WSN ap-

plications. In addition to being a useful tool to obtain network statistics and

sensor measurements in real-time to test resource management algorithms and

networking protocols, users can interact with smartphone applications, for ex-

ample, to perform indoor self-localization with the help of ceiling-mounted range

sensors. This provides input data streams for users to obtain sensor data to self-

monitor their daily activities, which is useful for elderly healthcare and health

monitoring applications, so as to complement some of the related works men-

tioned above, or to provide functionalities for new mobile applications.

3.6.1 Mobile Device Platforms

Smartphone mobile devices have been growing in popularity due to increased

functionality from mobile applications and location-based services, integration of

multiple on-board sensors and decreasing costs. Most smartphones are equipped

with sensors such as an on-board accelerometer to detect acceleration, a digital

compass, a built-in microphone and speaker, a camera and a GPS receiver. The

47

HTC Dream smartphone that we use for our implementation uses a Qualcomm

processor with a processing speed of 528 MHz, with 256 MB of ROM and 192

MB of RAM, so it is able to run significant processing tasks. Besides the basic

communication capabilities of text messaging, voice and video calls over cellular

networks, smartphones also come equipped with Wi-Fi for wireless data access

and mobile Internet browsing, and Bluetooth chipsets to communicate with

other sensors and devices.

There has been rapidly growing interest in using smartphones to sense and

keep track of location and environment information, personalized to the user’s

activities throughout the day. Location information can be provided by a few

sources, such as GPS, Wi-Fi and cellular proximities in telco networks. Users

can make use of location information to find nearby landmarks and events-of-

interest, to be kept notified of friends in the vicinity, and to track their location

and activity patterns. Similarly telco operators aim to provide more useful

location-based services to provide advertisements and recommendations, and

support streaming media and social networking applications.

3.6.2 Android OS

Android is an open-source software stack, developed by Google for mobile de-

vices, that includes an operating system, middleware and key applications [56].

Android uses a version 2.6 Linux kernel and runs on a Dalvik virtual machine,

that is optimized for mobile devices. Its application framework enables reuse

and replacement of software components on the mobile phone for resource effi-

ciency, and it provides tools for graphics handling, media support and SQLite

for structured data storage.

In addition to basic GSM telephony functions, Android OS has hardware

support for Bluetooth, 3G, and Wi-Fi communications, as well as a variety of

sensors, such as camera, GPS, compass, and accelerometer. Android provides a

common software OS abstraction from the device-specific hardware components,

so that mobile device applications are able to work on all phone devices that

48

support the Android OS platform. The Android SDK provides the tools and

interfaces for developing applications on the Android platform for mobile devices

using the Java programming language, and it also provides a device emulator

and tools for debugging, memory and performance profiling.

3.6.3 Extended System Architecture

In this section, we propose an extension of the two-tier cluster architecture

proposed in section (3.5.1) to include the mobile device layer. Figure 3.13 shows

the proposed architecture integrating mobile devices and WSNs.

Figure 3.13: Software Architecture integrating mobile devices and WSNs

The bottom layer in this architecture is the sensor network layer, in which

large numbers of low-cost battery-powered motes are deployed in the environ-

ment to perform sensing, processing and communication tasks. Open-source

software such as TinyOS allows cross-platform compatibility of motes with dif-

ferent processing capabilities and sensor interfaces, and provides a common com-

49

munications interface over low-power 802.15.4 PAN radio. Mote-level devices

are essentially designed for low duty-cycle operation and required to periodi-

cally sense the environment at intervals, or to respond to queries initiated by a

higher-level device such as a cluster-head node. As mentioned in our two-tier

cluster architecture in section (3.5.1), each logical cluster of WSN motes can be

managed by a WSN gateway such as a Stargate.

Figure 3.14: Mobile Devices connected by Wi-Fi ad-hoc network

The middle layer consists of mobile devices supported by popular ad-hoc

wireless network technologies, such as 802.11 Wi-Fi. Devices that fall in this

category include computer-class devices (laptops, netbooks), mobile platforms

(PDAs, tablets) and smart-phones (e.g. iPhone, Android-based phones). These

devices can communicate with one another as peers in an ad-hoc Wi-Fi network,

as well as with WSN Stargate gateways, each attached with a CompactFlash

Wi-Fi card. This allows mobile devices to access real-time information from the

WSN, such as sensor readings, battery level, link quality and network topology.

50

Figure 3.14 shows a few of the mobile devices which were used to implement

the proposed architecture in our test-bed.

The top layer in the proposed architecture consists of the software mod-

ules running on the mobile devices, for which multiple modules can exist on

the same device. For example, an Android application can contain modules for

WSN monitoring (logging sensor data), sensor querying (getting location co-

ordinates) and visualization (displaying real-time location on-screen). Modules

communicate with one another over socket interfaces – a client application run-

ning on a mobile phone may connect to a remote WSN application, to obtain

streams of sensor data of temperature and lighting measurements of a room in

another building. More abstract communication structures can be built over

these socket interfaces, such as SQL-like queries which are suitable for aggre-

gation of sensor data across multiple physically co-located but logically distinct

WSN clusters.

For example, a data aggregation and visualization module may request infor-

mation from a querying application using an SQL-like query: SELECT readings

FROM house WHERE value > THRESHOLD. The querying module parses

such information into sub-queries to decide the querying procedure, e.g. which

sensors to query, and in what order, before sending the sub-queries to the WSN

gateway, which converts them into the proper packet format to obtain the re-

spective sensor measurements. On the return path, data can be aggregated

and/or grouped into node clusters to conserve communication resources, and

the querying module converts the raw data into a form suitable for the visual-

ization module’s interface. Queries may also make use of context information,

for example to increase the sampling rates of ambient sensors when an elderly

person is detected in a smart room.

3.6.4 Tracking Application on an Android Smartphone

We made use of the software components and interfaces in the Android SDK

to extend our indoor target tracking test-bed implementation on a HTC smart-

51

(a) GUI to Connect to Tracking Server (b) Tracking Visualization

Figure 3.15: Android Tracking Visualization Application

phone. Specifically, we developed an Android location visualization module and

used it to communicate with the indoor tracking application server in the test-

bed. The monitoring module connected to the tracking server over a TCP socket

interface (Figure 3.15(a)), and parsed the returned data to obtain the following

information:

• Person Presence/Absence

• Location coordinates (x, y)

• Measure of uncertainty (Covariance Trace)

• Sensor Selected

The Android visualization module (Figure 3.15(b)) displayed the real-time in-

formation and animated the received target coordinates, providing the mobile

phone user with real-time target location updates. Such a system can allow

for remote monitoring of elderly in smart homes, or for indoor self-localization

applications in museums and galleries.

52

3.7 Discussions

Our test-bed prototype was developed in order to study and implement algo-

rithms for indoor target tracking and resource management for ambient sensing

applications. We made use of relatively low-cost commercially-available off-the-

shelf (COTS) devices, such as ultrasonic sensors and wireless sensor network

mote platforms. As a result, our challenge was to develop a tracking appli-

cation under significant resource constraints. In this section, we discuss the

limitations of our test-bed implementation and we identify some possible exten-

sions for more general application settings [57].

Despite these limitations, our approach to focus on ambient sensors instead

of RFID-tag based solutions addresses the requirements of certain monitoring

applications which require minimum interaction with the target being tracked,

such as healthcare-related activity monitoring applications for the elderly at

home, or intrusion detection and tracking systems. In addition, we did not

make use of image or video cameras as these raise privacy concerns.

3.7.1 Limitations and Challenges

Sensors

We were significantly constrained by the ultrasonic sensors we used, in terms of

fidelity and coverage. As ultrasonic sensors obtain range measurements via time-

of-arrival of reflected ultrasonic pulses, they are vulnerable to obstacles in the

detection region. Using ultrasonic sensors in the context of an indoor monitoring

application poses significant problems in obtaining accurate measurements, due

to reflections off furniture and other object clutter. In addition, due to the

range measurement mechanism, multiple ultrasonic sensors with overlapping

sensing regions cannot operate at the same time, as some of them would pick

up reflected pulses from one another, resulting in inaccurate measurements. Due

to a minimum sensing time required to aggregate across all received pulses in

order to decide on the range measurement, the sensors have to be scheduled

53

and carefully calibrated to provide sufficient sensing coverage, as well as to

avoid inter-sensor interference. In addition, it is very challenging to make use

of ultrasonic sensors as the only sensing modality for multiple target tracking

applications.

Data Processing

To address the resource constraints posed by low-power mote devices, we tried

to distribute the processing load across sensor nodes so that the target tracking

could be carried out in a distributed and self-organised manner. The target state

estimate would be maintained and updated at the currently-active sensor node,

and passed to the next-best sensor node according to the information-quality

(IQ) metric described earlier in this chapter. However, in our implementation,

we found that even small packet loss rates at around 5% could result in severe

degradation in the state estimate, as the entire state was lost and it would take

a long time for the system to reinitialise to track the target state, often resulting

in a re-initialization of the EKF algorithm.

In addition, packet loss increased with the transmission of larger packets

containing the entire EKF state estimate, and even a few intervals of missed

observations, at a sampling interval of 100ms, would also cause large discontinu-

ities in the trajectory estimate, greatly affecting tracking accuracy. As such, we

kept to a centralized implementation of the tracking algorithm, in which sensor

nodes simply performed sensing and forwarded small packets containing only

measurement information to the data sink, which was implemented on a more-

powerful Stargate processing platform, within a one-hop star network topology.

As the application was constrained by sensing and processing speeds and a small

network topology, medium access contention issues were not significant enough

to cause degradation of application performance.

54

Computational Algorithms

As our application was developed on low-power wireless sensor network motes,

the processing limitations significantly affected the type of algorithms we could

implement. We chose the Extended Kalman Filter (EKF) as it was relatively

simple to implement. However, EKF is known for its vulnerability to non-linear

motion dymanics [58], suffering from large convergence problems even when

the dynamics are only slightly non-linear. Linearization using Jacobian partial

derivatives served as an approximation approach, which may not work well

depending on how erratic or random the target trajectory is. In addition, it is

challenging to tune the EKF to accurately capture the process and observation

noise model parameters and the covariance matrices.

In target tracking applications in which the sensors used are able to sample

at sufficiently-high speeds, the target motion within a sensing interval may be

assumed to be almost linear. However, given the sensing and processing con-

straints of our low-cost hardware platforms, our EKF algorithm would only be

able to track relatively simple motion models, such as the circular and rectan-

gular target trajectories shown in our earlier simulations. More random motion

models may result in mis-predictions of the EKF algorithm, resulting in target

misses and large discontinuities in the trajectory estimate as the EKF tries to

recover the target.

3.7.2 Extensions

Multi-Modality Sensing

One approach to extend our test-bed implementation to more general appli-

cation settings would be to add a variety of other sensor modalities, such as

passive infra-red motion detectors, microphone arrays and pressure sensors, so

that the different coverage regions of different sensing modalities could help to

reduce the uncertainty in the target’s state location estimate. However, the

EKF algorithm would only apply to sensor observation models with Gaussian

55

noise distributions. Non-Gaussian noise models could make use of a mixture of

Gaussian models [58], or a particle filter.

The particle filter [25] is a Monte-Carlo simulation approach to represent the

distribution of the state estimate by a collection of particles, each representing a

possible state estimate. Particles are associated with individual weights, which

represent the relative importance of each particle to the entire distribution of

particles. A simple approach to aggregate the contribution of all the particles to

the overall state estimate could be to take the weighted sum of particles. This

approach can take into consideration the contributions of sensors of different

modalities and non-Gaussian noise, as well as non-linear process models.

However, the computational complexity is significantly increased, as it is

difficult to decide how to prune the distribution of particles to remove those

which are deemed to have little contribution, how to represent the likelihood

function which determines which observations to associate with which particles,

as well as what measure of the particle distribution to use as the updated state

estimate. In addition, it is much less straight-forward to design and update

an information-quality metric for a particle filter and the corresponding utility

metric. Last but not least, the computational resources required to store and

process a large number of particles in order to have a reasonably accurate esti-

mate would be quite substantial and the processing platforms would have to be

more powerful that the wireless mote platforms currently available.

Multi-Target Tracking and Mobile Sensing

In an extension of our test-bed implementation, our indoor tracking application

was complemented with a mobile robot with an on-board laser scanner for high-

resolution sensing. The laser provided more accurate measurements at higher

resolutions and sensing rates, thus serving as a more powerful sensor that could

greatly increase the information gain in the tracking algorithm. However, this

also introduced many new challenges, such as data association of laser scan

readings to differentiate between furniture, walls and the two legs of the human

56

target.

In addition, the robot with the laser scanner consumed energy at a much

higher rate that the ambient ultrasonic sensors and wireless motes, thus lim-

iting its effective operation periods. We made use of the robot to improve on

the tracking accuracy when the EKF algorithm using the ultrasonic sensors lost

the human target and needed to quickly re-capture the location estimate. The

resource management problem thus focused on deciding whether to trigger the

robot or the sensors, and where to move the robot to obtain a good measure-

ment. We note that despite its computation and data association challenges,

the laser scanner modality would be one of the most suitable sensors to extend

to multiple target tracking.

3.8 Conclusion

This chapter has presented the implementation work in our test-bed. We have

designed and implemented a WSN test-bed for target tracking, and a two-tier

cluster architecture for resource management. We have also proposed and im-

plemented a software architecture for integrating smartphones with WSNs and

other mobile devices, such as netbooks and PDAs, over Wi-Fi. Using the An-

droid SDK, we have developed software components for the monitoring, control

and visualization of WSN applications, which we have applied to our indoor tar-

get tracking test-bed implementation, to achieve real-time remote monitoring

and visualization on mobile devices. We have also identified the limitations and

challenges of our implementation, and discussed suitable extensions towards a

more general application setting.

57

Chapter 4

Information-driven Sensor

Election and Routing

4.1 Introduction

This chapter describes an information-driven and energy-aware approach for

distributed sensor election and multi-hop routing in wireless sensor networks.

The adaptive sensor selection scheme for target tracking in a single-hop sensor

network from Chapter 3 is extended to a distributed sensor election scheme in

a multi-hop sensor network. In Chapter 3, the current sensor selected the next

node by computing the expected information gain of each candidate sensor.

In this chapter, our distributed sensor election mechanism lets candidate nodes

elect themselves for sensing tasks to update the estimation algorithm at different

intervals, in order to conserve energy while keeping within constraints of the

information quality (IQ) metric.

After the current sensor node updates the state estimate, the state infor-

mation is propagated along multiple hops back to the sink node, based on the

remaining energy of neighboring nodes. Next-hop nodes are chosen to minimise

the sum of expected costs towards the sink, in order to achieve the objective of

58

increasing network lifetime. Reinforcement learning is used for nodes to learn

which of their neighboring nodes to forward to, so as to conserve energy and

ensure delivery to the sink node.

4.2 Related Work

4.2.1 Competition-based Sensor Selection

In [1], a distributed sensor selection scheme was implemented in an indoor hu-

man target tracking test-bed, in which the active node broadcasted its updated

state estimate to its neighbors, which distributively computed their expected

information gain based on their locations. Sparse matrix computation was used

to reduce the computational time, and candidate nodes elected themselves as

the next active node using a back-off scheme, such that their back-off times

were inversely proportional to their respective amounts of expected information

gain. As a result, the node with the most information gain replied first, so that

distributed computation using sparse matrices reduced the computation time,

and hence the update intervals for the estimation filter, and message exchange

was reduced by the election mechanism. However, [1] did not consider data

routing back to the sink node.

4.2.2 Multi-step Look-ahead for Data Routing

Based on information-utility metrics formulated in [5], and sensor querying and

data routing approaches in [19], the authors of [59] formulated the routing prob-

lem as joint optimization of data transport and information aggregation. A

Bayesian inference framework was used to represent and update the belief state,

and mutual information was used as a metric to characterize information gain.

The IDSQ and CADR approaches used in [19] were used for information routing

under two different scenarios: (i) routing a query to a region of rich information

about the state estimate using information-directed multiple-step look-ahead

to avoid sensor holes, with a min-hop algorithm that improved upon [19] in

59

tracking performance, and (ii) routing to a designated exit node, in which a

real-time extension of A* heuristic search was used as a forward search algo-

rithm to route from query source to designated exit node, such that the routing

path was attracted to the information region, thus increasing the tracking per-

formance significantly.

4.2.3 Routing with Reinforcement Learning

In [60], a straight-forward application of Q-learning was presented for packet

routing, to discover routing policies that minimise path lengths without knowing

the network topology or traffic patterns in advance, and without a centralized

routing control system. A large table of Q-values was used to represent expected

costs, in this case, source-destination routing delays. Q-routing was shown

to out-perform statically computed shortest-paths obtained by the Bellman-

Ford algorithm, and adapt to changing network topologies, traffic patterns and

load levels. The authors highlighted the problem of Q-routing being unable

to recover from erroneous estimates, and a ‘full-echo’ Q-routing approach was

attempted to address this issue, in which neighbors were queried on their Q-

values before the routing decisions were made. However, results were worse than

the basic Q-routing scheme under high-load, as the ‘full-echo’ Q-routing seemed

to be constantly changing and oscillating between policies, resulting in unstable

behavior and worse performance.

Routing with reinforcement learning was also presented in [61] in which three

meta-heuristic algorithms were used to perform routing within a reinforcement

learning framework. Each node maintained a Q-value, which was defined to

be the minimum cost from that node to the destination. Since the destination

node was mobile, nodes had to discover and improve existing routes in an online

fashion. Three meta-strategies were used: (i) real-time search which tried to

find the best neighbor, (ii)constrained flooding which was used to decide if and

when to re-broadcast packets, and (iii) adaptive spanning tree[62] which decided

which parent node to forward packets to.

60

In [63], the approaches in [59] were extended, based on the limitations that

the M-hop look-ahead decision horizon was computationally expensive with sig-

nificant message exchange needed, and the real-time A* heuristic search as-

sumed that the exit node was known, which were not applicable for applica-

tions in which the destination was not known apriori, or for a mobile destina-

tion node. From [61], the reinforcement learning approach to multi-hop routing

was adopted to formulate a weighted shortest-path problem with an additive

objective metric. Initial Q-values were sent by flooding from the destination

node, and each node maintained estimates of its neighbors’ Q-values. Routing

paths were generated by considering both communication-based metrics, such

as small hop-count, and information-based metrics, such as tracking accuracy,

even with gaps in network connectivity and unpredictable moving destination

nodes.

4.3 Our Proposed Approach

Our proposed approach consists of two phases, a distributed sensor election

phase and a multi-hop routing phase. Similar to the tracking scenario in Chapter

3, sensor nodes stay in an idle state until a target is detected by one of the

nodes, which initializes the state estimate and invokes the tracking algorithm

to perform tracking and distributed sensor election. However, while Chapter 3

addresses centralized sensor selection within a single-hop sensor network, this

chapter addresses distributed mechanisms within a multi-hop sensor network.

Our distributed sensor election mechanism is motivated by [1], in which

the current node performs sensing and data fusion to update the current state

estimate, and broadcasts it to neighboring nodes for them to elect themselves as

the next sensor node with a back-off delay. The contribution of the competition-

based sensor election mechanism in [1] was to use distributed processing to

reduce the computation time for the current node to find the best sensor node.

Hence, the sensing interval, which is taken to be the time between the broadcast

61

of the prior state until the first reply from a candidate node, is reduced. As

a result, the tracking error is also reduced. After handover to the next sensor

node, it is assumed to perform sensing immediately.

We adopt this approach to allow nodes to update the tracking algorithm with

a dynamic sensing interval based on their Information Quality (IQ) metric, in

contrast to Chapter 3, in which nodes were selected based on a static sensing

interval for computing the prior state estimate in the predict phase. In addition,

each candidate node is allowed to trade-off its expected information gain and its

remaining energy in deciding its back-off time. Furthermore, the node that wins

the sensor election process can introduce additional sensing delay, depending

on its IQ metric, so as to further conserve its remaining energy, or that of

neighboring sensor nodes. The detailed mechanism is described in Section 4.4.

After the distributed sensor election phase, the current node forwards its up-

dated state estimate back to the sink node via multi-hop routing. Unlike AODV

in which explicit routes are initialized and subsequently maintained in the event

of route failure, our approach allows nodes to discover routes to the sink node

and iteratively improve on them using a feedback signal that represents the

utility of their forwarding decisions, similar to that in [61].

In similar work in Information-Directed Sensor Querying (IDSQ) [59], the

order of querying nodes is defined using an information-utility metric, and Con-

strained Anisotropic Diffusion Routing (CADR) subsequently makes use of an

objective function to trade-off information gain and remaining energy of nodes,

for queried nodes to make routing decisions to propagate their measurements

and state estimates to a sink node. Our approach separates the sensor selec-

tion and routing processes, in which the sensor election phase focuses on the

next-hop neighborhood to select nodes based on the changing event (the moving

target). Subsequently, the energy-aware multi-hop routing phase makes use of

the remaining energy and cost metrics of one-hop neighboring nodes. The order

of nodes to be queried may not be computed in advance as the target motion

is unknown. Only the next-hop neighboring sensor node for the next timestep

62

is known, after it wins the sensor election process based on its information gain

and remaining energy.

At each timestep, the sensing node serves as the source node, and it for-

wards the updated state estimate by choosing the next-hop neighbouring node

with the minimum expected sum of costs to the sink node. We use a straight-

forward application of Q-learning to discover energy-efficient routes to the sink

node that avoid energy-depleted nodes, and strive to improve on sensor network

lifetime and delivery ratio while minimising tracking error. The routing objec-

tive differs from the mechanism in Message Constraint-based Routing in [61],

which attempts to route towards a mobile destination and avoid sensor holes,

but our reinforcement learning approach is similar. The detailed mechanism for

energy-aware multi-hop routing will be described in Section 4.5.

4.4 Distributed Sensor Election based on

Information Gain and Remaining Energy

4.4.1 Distributed Sensor Election Mechanism

Figure 4.1 shows a flowchart with the EKF and sensor selection algorithms

described in Chapter 2. Similar to Figure 3.4 from Chapter 3, the recursive

predict-update mechanism of the EKF is used to keep track of the state estimate

of the target location. The process model for the predict phase is represented by

the matrix F (∆tk), to provide the prior state estimate, where ∆tk is the sensing

interval at step k. After a measurement is taken, the update phase computes

the posterior state estimate, and the candidate sensors for the next timestep

are selected based on their information quality, IQi = trace(P̂i,k+1|k+1), a cost

metric which represents the estimation uncertainty in the EKF algorithm for

candidate node i.

The main contrast with Figure 3.4 from Chapter 3 lies in the sensor selec-

tion phase. Instead of the current node computing the expected IQ metrics of

63

Figure 4.1: Flowchart for State Estimation and Distributed Sensor Election

64

each candidate node using a static sensing interval ∆tk, the current node now

broadcasts its updated next-step prior state estimate after the predict phase,

and candidate nodes compute their respective IQ metrics in a distributed man-

ner. For a candidate node i, it computes IQi using the prior state estimate

and its predicted measurement, and it evaluates a cost function that includes

its remaining energy ei, as shown in Equation 4.1.

costi = β
trace(P̂i,k+1|k+1)

trace(P̂k+1|k)
− (1− β)

ei
emax

(4.1)

Here, trace(P̂k+1|k) represents the trace of the prior state covariance matrix,

based on the predict phase in the EKF algorithm, as shown in Equation 2.7,

with sensing interval ∆tk set to be a constant value, ∆T , which represents the

maximum timeout for sensor election. The quantity trace(P̂i,k+1|k+1) represents

the trace of the predicted posterior state covariance matrix, given the predicted

measurement zi,k of candidate node i. The variable ei represents the remaining

energy level of node i, and emax is its initial energy level.

From Equation 4.1, the covariance trace and remaining energy of node i are

normalized to reflect a suitable scale for comparison and trade-off. Since Equa-

tion 4.1 represents a cost function and trace(P̂i,k+1|k+1) represents a measure

of uncertainty, the remaining energy ei is assigned a negative coefficient as it

represents a utility value. The parameter β reflects the relative weight of the

IQ ratio to the energy ratio in the composite cost function. An increasing value

of β indicates increasing priority given to the IQ cost component.

Due to the normalization components in Equation 4.1, the range of values

of the cost function costi is [−1, 1]. Each candidate node i makes use of costi

to select its back-off interval ∆tk,i, subject to a timeout threshold value, ∆T ,

as shown in Equation 4.2.

∆tk,i =
(1− costi) ∗∆T

max(costi)−min(costi)
(4.2)

Here, max(costi) and min(costi) represent the maximum and minimum values

65

of costi, which are 1 and −1 respectively. Equation 4.2 translates costi to the

range [0, 2], normalizes it within the range of values for costi, and multiplies

it by the timeout threshold, so that each candidate node i can determine its

back-off delay based on its IQ and remaining energy, subject to the timeout

threshold value. The higher the cost of a node, the more its back-off delay in

the distributed sensor election procedure.

(a) Current node at timestep k broadcasts

prior estimate X̂k+1|k, P̂k+1|k

(b) Each candidate node i computes costi
and back-off delay ∆tk,i

(c) Current node assigns current state esti-

mate X̂k|k, P̂k|k to winning node i

(d) Node i updates X̂k+1|k+1, P̂k+1|k+1

and broadcasts X̂k+2|k+1, P̂k+2|k+1

Figure 4.2: Distributed Sensor Election Procedure

Figure 4.2 shows the message exchange protocol for our distributed sen-

sor election procedure. At timestep k, the current node uses a fixed timeout

threshold value ∆T of 100ms as the sensing interval, in order to compute the

prior state estimate X̂k+1|k, P̂k+1|k and broadcast it to its one-hop neighboring

nodes, as shown in Figure 4.2(a). Each candidate node i that is able to detect

the target computes costi and replies after a backoff delay of ∆tk,i, as shown in

Figure 4.2(b). Nodes which have lower costs are more valuable, so they use a

66

short back-off delay to elect themselves earlier. Upon hearing a node’s response,

other candidate nodes refrain from sending their responses.

Figure 4.2(b) also illustrates the hidden node problem, in which nodes on

the opposite side of the current node, such as node j, may be unable to overhear

node i’s response. As shown in Figure 4.2(c), the current node broadcasts the

winning node’s identity, together with the current state estimate X̂k|k, P̂k|k, so

that candidate nodes are aware of the successfully elected node. This mechanism

is also used to enforce sensor selection when no response is received by the

election phase timeout, for which one node is randomly chosen from the set of

neighboring nodes.

Upon receiving its assignment, node i computes the actual prior estimate

X̂k+1|k, P̂k+1|k using its sensing delay ∆tk,i ≤ ∆T , takes its measurement zk+1,

and updates the posterior state estimate X̂k+1|k+1, P̂k+1|k+1. Subsequently,

it uses ∆T as the sensing interval to predict the next prior state estimate

X̂k+2|k+1, P̂k+2|k+1, and broadcasts it to its one-hop neighboring nodes, repeat-

ing the sensor election process, as shown in Figure 4.2(d).

4.4.2 Delayed Sensing based on IQ Metric

From the previous section, node i with the least back-off delay wins the dis-

tributed sensor election procedure, based on its composite cost function that

trades-off IQ and remaining energy, as it is the most cost-effective node to per-

form sensing in the next timestep. This section describes the idea of further

extending the sampling interval by allowing node i to delay taking a measure-

ment based on its IQ metric. The rationale is that if node i is able to provide a

large value of information gain, it can delay taking a measurement to allow the

uncertainty to increase to a threshold value. The increased sampling interval

helps to conserve the remaining energy of node i and next-hop nodes, subject

67

to a constraint on the IQ metric.

delayi =
trace(P̂k+1|k)− trace(P̂i,k+1|k+1)

trace(P̂k+1|k)
∗ timeout (4.3)

Equation 4.3 shows the amount of additional sensing delay that node i can

afford. The difference between node i’s expected IQ, given by trace(P̂i,k+1|k+1)

with sensing interval ∆tk,i, and the estimation uncertainty in the updated

prior state estimate, trace(P̂k+1|k) with sensing interval ∆T , is normalized by

trace(P̂k+1|k) and multiplied with the timeout threshold value. Lower values of

the expected estimation uncertainty of node i, given by a lower trace(P̂i,k+1|k+1)

value, will result larger values of additional sensing delay, subject to the timeout

threshold value.

4.4.3 Simulation Results

Simulations were conducted for the distributed sensor election procedure de-

scribed in Section 4.4.1 to compare the effects of adding the delayed sensing

mechanism described in Section 4.4.2. The sensor network configuration was a

grid of 10x10 units, in which node locations were slightly perturbed from the

grid points with uniformly distributed noise. The target was assumed to move

in a circular trajectory of radius of four grid units, and one round around the

circular trajectory was regarded as one tracking cycle.

Fixed values of sensing and communication energy were used, and simula-

tions were conducted for 10 cycles for two scenarios each: (i)distributed sensor

election only, and (ii) distributed sensor election with delayed sensing. The

back-off delay in the distributed sensor election procedure is given by Equa-

tion 4.2 and simulation were conducted for values of the trade-off parameter β

from 0 to 1.0 in increasing steps of 0.1. Figure 4.3 shows our simulation results

for the distributed sensor election procedure, comparing its performance with

and without our delayed sensing mechanism, in terms of target detection ratio,

tracking error and lifetime.

68

(a) Plot of ratio of target detections (b) Plot of tracking error in grid units

(c) Plot of sensor network lifetime

Figure 4.3: Simulation results for distributed sensor election with and without
delayed sensing

As β increases from 0 to 1.0, increasing emphasis is placed on the cost of

the IQ metric, so the sensor election mechanism puts an increasing weightage

on reducing estimation uncertainty. As expected, Figure 4.3(a) shows that the

detection ratio increases with β for both curves, and Figure 4.3(b) shows that the

tracking error is reduced as β is increased. The improved tracking performance

comes at a cost of sensor network lifetime, as shown in Figure 4.3(c). Due to

increased emphasis on IQ in the composite cost function in Equation 4.1, sensor

election favors nodes with higher IQ, at the expense of their remaining energy.

In addition, Figure 4.3 show that with delayed sensing, the target detection

ratio is slightly decreased and tracking error is slightly increased, but the sensor

network lifetime is greatly increased, especially at larger values of β. Although

increasing the value of β places increasing emphasis on IQ in the composite cost

function (Equation 4.1), the lowest-cost candidate node has sufficiently low IQ

69

cost to afford to delay its sensing interval significantly. Using the distributed

sensor election procedure together with delayed sensing allows for energy con-

servation, without sacrificing too much of the tracking performance.

4.5 Energy-Aware Multi-Hop Routing

In this section, we describe our approach to forward the state estimate from

the sensing (source) node via multi-hop routing to the sink node, after the dis-

tributed sensor election procedure determines the source node at each timestep.

The source node changes according to the unpredictable target motion, and

subsequently, energy-aware multi-hop routing is performed to forward the up-

dated state estimate back to the sink node, independent of the sensor election

procedure.

At each hop in the multi-hop routing process, the current node could make a

forwarding decision based on the remaining energy levels of its neighbour nodes.

However, this may result in packet forwarding to a promising neighbour node

with high remaining energy, only to subsequently encounter a region of energy-

depleted next-hop nodes, which would reduce the network lifetime further.

We use reinforcement learning for nodes to discover and maintain routes to

the sink node. The remaining energy of each node i can be converted into a

cost metric ci using an energy-aware cost function ci = c(ei), where ei indicates

the current node’s remaining energy level. Based on this cost function, energy-

aware routing from source to sink node is converted into a minimum-cost routing

problem. Based on its remaining energy level, each node i maintains its cost

metric ci, as well as an estimate of its distance metric, di, which is an expected

sum of costs to the sink node. The distance metric summarises the expected

future costs of forwarding packets to the sink node, in terms of hop count, as

well as the remaining energy level. As a result, using the distance metric to

select the next-hop node can help to avoid regions of energy-depleted nodes.

Our proposed approach for multi-hop routing is similar to distance-vector

70

routing [64], in which link costs can be used to represent propagation delays

due to transmission distance, or other cost-based metrics. We express the cost

metric as an inverse function of remaining energy to balance the nodes’ energy

consumption. Nodes which are often chosen to forward packets will find their

cost and distance metrics increasing quickly, thus prompting their parent nodes

to select an alternative node to forward to. In our approach, cost and distance

metric values change rapidly within a few packets exchanged, so in order to

reduce message exchange and excessive computation in resource-constrained

sensor nodes, only local information, in the form of cost feedback from one-hop

neighbors, is used to update each node’s cost and distance metrics.

4.5.1 Problem Formulation

This section describes the system models for energy-aware multi-hop routing,

which is modelled by a Markov Decision Process.

State

The state of a node i is its remaining energy level ei, which lies between 0 and

emax and is partitioned into E energy levels.

Action

The actions available to a node i correspond to the links to neighboring nodes

that it can transmit to. We assume that such information is provided to each

node by a neighbor discovery protocol, in which nodes which lie within a fixed

communication range are assigned to be neighbours of one another. We do not

assume topology changes due to changes in transmission power.

Cost Function

For each node i, its cost metric ci is given by a function c(ei), with the require-

ment that c(e1) ≤ c(e2) if e1 ≥ e2, i.e. the less the node’s remaining energy

level, the more costly it is to forward to that node. We make use of a cost

71

function c(ei) = emax/(ei + 1), where the cost of a node ci is inversely-related

to its remaining energy level ei, and emax is the maximum energy level.

Value Function

For each node, we denote the Q-value of each state-action pair, Q(s, a), to

represent the cost-to-go from itself to the sink node, given its current state

si = ei (remaining energy level), in which it selects an action ai ∈ A(si) (the

neighboring node to forward to). For a node i, its distance metric, di, represents

its minimum expected sum of costs to the sink node, which is taken to be the

minimum Q-value for all possible actions in the current state:

di(s) = minai
Qi(si, ai) (4.4)

4.6 Solution by Reinforcement Learning

4.6.1 Solution Approach

The Q-value of each state-action pair of each node depends on its energy level,

the energy level of its neighbors and its location relative to the sink node. In

order to compute the optimum Q-values for all possible state-action values at

each node, the number of messages exchanged between nodes to communicate

such values would consume significant overhead.

Hence, we make use of reinforcement learning to let the nodes learn their

Q-values, based on cost feedback information from their next-hop neighboring

nodes. In order to perform exploration to find potentially better solutions, nodes

need to adopt an ε-greedy policy [36] to forward to a random neighboring node

(random action) with probability ε and to the node with the minimum Q-value

(greedy action) with probability 1− ε, i.e.

π(s) = arg minaiQ(si, ai) (4.5)

72

Nodes learn the utility of their actions using cost feedback from their next-

hop neighbors, which is subsequently used to update their Q-values:

Q(si, ai)← (1− α)Q(si, ai) + α ∗ [ci +minaiγQ(s′i, a
′
i)], (4.6)

where α represents the learning rate and γ represents the discount rate, which

indicates how much a future cost is valued at the current step. We adopt the

offline Q-learning approach [36] to update with the minimum Q-value among

the next state-action pairs Q(s′i, a
′
i). Note that Equation 4.6 shows that the

update to Q(si, ai) incorporates the previous value and the temporal-difference

between the received cost ci and the predicted next Q(s′i, a
′
i) value, which is

damped by the learning rate α.

4.6.2 Solution Algorithm

In this section, we describe our reinforcement learning-based algorithm for

energy-aware multi-hop routing, which consists of two phases: an initialisation

phase and a tracking and forwarding phase. Packets are broadcasted with the

format < destination node, current cost metric, current distance metric >.

Node i’s message would be of the form < ni, ci, di >, in which ni depicts the

destination node that node i is sending to, and ci and di represent node i’s cost

and distance metrics respectively. The algorithm pseudo-code is shown in the

next page.

Initialisation Phase

In the initialisation phase, nodes initialise their cost metrics based on their

initial energy levels ci = c(ei), and set their Q-values and distance metrics di to

∞. The sink node starts broadcasting its cost and distance metrics set to zero:

< BROADCAST, 0, 0 >.

One-hop neighbour nodes who overhear this message update their Q-values.

If the corresponding Q(s, a) is set to∞, which indicates that this is the first time

73

Algorithm 5: Energy-Aware Multi-Hop Q-Routing
Initialisation phase:

for all nodes i ∈ N do
Qi(s, a)←∞,∀s ∈ S, a ∈ A
ci ← emax/(ei + 1), di(s)←∞

end

Qd(s, a)← 0,∀s ∈ S, a ∈ A for destination node d,
cd ← 0, dd(s)← 0
broadcast 〈n0, cd, dd(s)〉
while initialisation incomplete do

received 〈n0, cj , dj〉 at i from node j at link ai
δ ← minaQi(s, a)
if Qi(s, ai) =∞ then

Qi(s, ai)← cj + dj
else

Qi(s, ai)← (1− α)Qi(s, ai) + α(cj +minaQi(s′, a′))
end
di(s)← minaQi(s, a)
∆← max(∆, |δ − di(s)|)
if ∆ > Θ then

broadcast 〈n0, ci, di(s)〉
end

end

Tracking and Forwarding phase:

received 〈nj , cj , dj〉 at i from node j at link ai
if i == nj then

ni ← arg minaQi(s, a)

broadcast 〈ni, ci, di(s)〉
else

if node i is parent of node j then
δ ← minaQi(s, a)
Qi(s, ai)← (1− α)Qi(s, ai) + α(cj +minaQi(s′, a′))
di(s)← minaQi(s, a)
ni ← argminaQi(s, a)
∆← max(∆, |δ − di(s)|)
if ∆ > Θ then

broadcast 〈ni, ci, di(s)〉
end

end
end

74

a packet is received from this link, Q(s, a) is updated with the sum of the cost

and distance metrics. Otherwise Q(s, a) is updated according to Equation 4.6.

After updating, each node i evaluates its distance metric di using Equa-

tion 4.4. If the change in value of di is of a magnitude ∆ larger than a fixed

threshold θ, node i broadcasts a message to update its neighbors with its new

ci and di values. The condition (∆ ≤ Θ) serves as the stopping criterion for

update of Q-values. Updating of Q-values continues in the initialization phase

until all nodes do not notice any further changes in their Q-values.

Data Forwarding Phase

In the tracking and forwarding phase, the source node is given by the distributed

sensor election procedure described in section 4.4, which follows the state esti-

mate of the detected target. After the source node has updated its posterior

state estimate and elected its next sensor node, it transmits the updated state

estimate towards the sink node via its best next-hop neighboring node. An

ε-greedy policy is used, which is described in section 4.6.1.

The message exchange between nodes for multi-hop routing is illustrated in

Figure 4.4, for which node i is taken to be the current node. The procedure is

as follows:

1. Node i forwards to node j which has the least Q-value (least expected sum

of costs to the sink node), based on an ε-greedy policy

2. Subsequently, node j forwards to node k, its best next-hop node in the

same manner

3. Node i overhears node j’s packet to node k so it updates its previous

action with the cost metric cj of node j for the corresponding Q-value

entry Q(si, ai)

4. Subsequently, node i evaluates its distance metric di. If there is a signifi-

cant change ∆ that exceeds a threshold Θ, node i broadcasts its cost and

distance metrics for neighboring nodes to update their respective Q-values.

75

In the ε-greedy policy, the probability of transmitting to a random neighbor-

ing node, ε, is decreased with each tracking episode so that nodes increasingly

exploit their learned policies to perform energy-efficient multihop routing.

(a) Node i forwards to node j (b) Node j forwards to node k

(c) Node i updates with cost cj (d) Node i broadcasts updated c′i, d
′
i

Figure 4.4: Forwarding mechanism

4.7 Simulation Study

4.7.1 Simulation Setup

We simulated 100 nodes in a 10x10 sensor grid configuration, with node locations

perturbed from grid points with a uniform distribution. The initial energy levels

of nodes were uniformly distributed between 1450 and 1500 energy units. The

target moved in a circular trajectory with a radius of four grid units, and target

location estimates were computed using an Extended Kalman Filter (EKF)

algorithm. The distributed sensor election procedure described in Section 4.4.1

was used to find the most suitable source node at each timestep, as well as its

76

back-off delay and dynamic sensing interval. After the source node updated the

state estimate with its measurement, it sent the state estimate to the sink node

via multi-hop routing.

Each completed round of the target trajectory was considered as an episode

for reinforcement learning, and simulations were run for 500 episodes. The

episodic nature was required in order for the reinforcement learning algorithm

to learn to make better forwarding decisions to neighbouring nodes, and the

energy levels of nodes were assumed to be reset before the start of each episode.

In real life, the resetting of nodes’ energy levels could be justified from energy-

harvesting mechanisms which allowed nodes’ batteries to be re-charged before

every episode. In our reinforcement learning mechanism, the probability of ran-

dom action selection was given an initial value of ε = 0.9, which was decreased

with each episode.

Figure 4.5: Multi-Hop Routing

Figure 4.5 shows the scatter plot of node locations with the sink node in the

77

middle. The node with a large circular outline indicates the current source node

which performs sensing and location state estimation. The + sign represents

the actual target location while the small circle represents the location estimate.

A sequence of line segments represents the multi-hop routing path from source

to sink node.

Simulations were run to compare the average values of sensor network life-

time, tracking error, and delivery ratio from the source to sink node. If a state

estimate was not delivered to the sink node within five hops, it was considered

to be lost, and all the nodes on that routing path were penalised. The life-

time was defined to be the least remaining energy level of the nodes. A small

learning rate α = 0.1 was used, and simulations were conducted for distributed

sensor election with and without the delayed sensing mechanism presented in

section 4.4.2.

In addition, simulations were conducted for different values of the parameter

β which represents the trade-off between information gain and remaining energy

for distributed sensor election. We used β values of 0, 0.5, 1.0 and we re-state

Equations 4.1 and 4.2 here for convenience.

costi = β
trace(P̂i,k+1|k+1)

trace(P̂k+1|k)
− (1− β)

ei
emax

(4.7)

∆tk,i =
(1− costi) ∗∆T

max(costi)−min(costi)
(4.8)

4.7.2 Results and Analysis

Comparing Covariance Traces

Figure 4.6 depicts the average amount of uncertainty in the updated posterior

state estimates, based on the sensor selected in each timestep using Equation 4.7.

Each data point in Figure 4.6 corresponds to the average covariance trace over all

timesteps within one cycle of the target trajectory. As the covariance trace is a

measure of uncertainty, lower values are more desirable. The covariance trace is

78

independent of the multi-hop routing process, and it only affects Equation 4.7 in

computing the composite cost values of each candidate node, so as to determine

its back-off interval for distributed sensor election in 4.8.

(a) Results without delayed sensing (b) Results with delayed sensing

Figure 4.6: Comparison of average trace of covariance matrix

From Figure 4.6(a), no clear conclusions can be drawn from the average

covariance traces for all three values of the parameter β. However, the graphs

in Figure 4.6(b) show significantly higher covariance traces compared to those in

Figure 4.6(a), due to the delayed sensing mechanism from section 4.4.2, which

causes the winner node in the distributed sensor election procedure to incur

additional sensing delay, so as to further conserve resources at the expense of

increasing the estimation uncertainty.

The graph for β = 1.0 lies below that for β = 0 for most parts of Figure 4.6(b)

as the high emphasis on IQ selects sensors which are better at reducing esti-

mation uncertainty. In addition, the graph for β = 0.5 is substantially higher

than the other two. As β = 0.5 places equal emphasis on IQ and energy cost

in Equation 4.7, this could result in selecting nodes with high remaining energy

but high IQ cost in terms of estimation uncertainty.

Comparing Average Tracking Error

The impact that the trade-off parameter β, in the composite cost function

(Equation 4.7), has on the selection of nodes is evident in the plots of tracking

error in Figure 4.7. As β = 1.0 places emphasis entirely on tracking error, com-

79

(a) Results without delayed sensing (b) Results with delayed sensing

Figure 4.7: Comparison of average tracking error in grid units

pared to β = 0 which emphasizes the remaining energy of candidate nodes, it

is expected that the graph for β = 1.0 in Figure 4.7(a) consistently lies below

the graph for β = 0. In addition, the graph for β = 0.5, which places equal

emphasis on IQ and energy costs, lies substantially lower than the other two

graphs in Figure 4.7(a). One possible explanation could be that nodes with low

IQ costs also happen to have high levels of remaining energy.

The effect of the parameter β in Figure 4.7(b) is even more interesting, as

the delayed sensing mechanism in section 4.4.2 allows elected sensor nodes to

delay sensing in order to conserve energy, thus increasing the remaining energy

levels in nodes. Since, β = 0.5 places equal emphasis on IQ and energy costs,

the higher levels of remaining energy skews Equation 4.7 in favor of nodes with

high remaining energy. This could result in selecting nodes with low IQ costs,

as previously observed in Figure 4.6(b), in which the average covariance traces

of selected nodes were significantly higher.

As a result of choosing nodes with high remaining energy but little infor-

mation gain, the tracking error for β = 0.5 in Figure 4.7(b) is significantly

increased, so much so that at some points it is no different from using β = 0.

Similar to Figure 4.7(a), the graph for β = 1.0 lies consistently below the graph

for β = 0 in Figure 4.7(b). Comparing Figures 4.7(a) and 4.7(b) validates that

the delayed sensing mechanism conserves the remaining energy levels of sensor

nodes at the expense of increased tracking error.

80

Comparing Average Lifetime

(a) Results without delayed sensing (b) Results with delayed sensing

Figure 4.8: Comparison of average sensor network lifetime in energy units

Figure 4.8 shows our simulation results for average sensor network lifetime,

which we define as the time until the first node dies. We use the minimum

remaining energy level of nodes to estimate the remaining network lifetime. The

higher network lifetimes for all three graphs in Figure 4.8(b) over the respective

graphs in Figure 4.8(a) can be attributed to the sensing delay mechanism, which

conserves the remaining energy levels of the elected node and its neighboring

nodes at each timestep.

As β increases from 0 to 1.0 increasing emphasis is placed on IQ cost in Equa-

tion 4.7. However, the graphs in Figures 4.8(a) and (b) show that increasing the

value of β actually increases the remaining lifetime. This is attributed to Equa-

tion 4.8, which computes the back-off interval for distributed sensor election.

As increasing emphasis is placed on reducing IQ cost as β is increased, nodes

with high IQ cost elect themselves with a higher back-off delay, thus effectively

increasing the sensing interval and reducing the energy consumption.

As a result, this explains why for both Figures 4.8(a) and (b), the graphs for

β = 1.0 consistently show higher remaining lifetime as compared to the graphs

for β = 0. Our mechanism of sensor election back-off in Equation 4.8 accounts

for this interesting observation, which may seem counter-intuitive at first glance.

In addition, the graph for β = 0.5 is closer to that for β = 1.0 in Fig-

81

ure 4.8(a), but closer the graph for β = 0 in Figure 4.8(b). This indicates that

when the delayed sensing mechanism is invoked to help to conserve energy, the

effect of β = 0.5 is quite similar to that of β = 0, in that remaining energy

levels of nodes play a higher weightage in Equation 4.7, so much so that nodes’

IQ costs play a little role in sensor election. In contrast, when the remaining

energy levels are lower in Figure 4.8(a), equal weightage of IQ and energy costs

brought about by β = 0.5 actually skews Equation 4.7 closer to nodes’ IQ cost.

Comparing Delivery Ratio

Figure 4.9 shows the graphs for delivery ratio, which is given by the number of

state estimate update packets generated at the source node, that are delivered

to the sink node for each round of the target trajectory. Packets which are not

delivered to the sink node by five hops are discarded, as the these state estimates

have become outdated. Nodes that lie along these routing paths are penalised

with significant cost, so that they can adjust their Q-values and gradually learn

to make better and better decisions in forwarding to their neighboring nodes.

(a) Results without delayed sensing (b) Results with delayed sensing

Figure 4.9: Comparison of delivery rate to sink node

The effect of the reinforcement learning process is evident in both sets of

graphs in Figure 4.9, in which the delivery ratios start from very low values,

during which nodes randomly forward packets in an exploration phase to learn

their Q-values, and quickly increase in the first fifty episodes, as nodes start to

exploit their learnt Q-values to make better forwarding decisions. For both sets

82

of graphs, the learning process begins to saturate at around the 100th episode.

From Figures 4.8 and 4.9, there is a relation between remaining lifetime

and delivery ratio, in that the graphs for β = 1.0 place total emphasis on IQ

cost, resulting in higher remaining lifetime and delivery ratio, as compared to

the graphs for β = 0, which emphasize the remaining energy of nodes. As

explained in the previous section, a higher β value increases the back-off delay

in Equation 4.8, resulting in a greater number of nodes with high remaining

energy being available for forwarding packets to the sink node.

If nodes around the sink node have low energy, sensors tend to make locally-

optimal decisions to forward to nodes with higher energy, which may result in

routing away from the sink node. Thus the remaining lifetime plays a signifi-

cant part in multi-hop routing to the sink node. This is further illustrated by

comparing the graphs for β = 1.0 between Figures 4.9(a) and (b), in which

Figure 4.9(b) has a higher delivery ratio due to the delayed sensing mechanism,

which helps to conserve the remaining energy of nodes.

The graphs for β = 0.5 in both Figures 4.9(a) and (b) are comparable, indi-

cating a small effect in the delayed sensing mechanism on the delivery ratio. On

the other hand, the graph for β = 0 in Figure 4.9(b) is significantly lower than

that for Figure 4.9(a), as the distributed sensor election procedure emphasizing

the remaining energy of nodes actually results in a significantly smaller number

of nodes with sufficient remaining energy to route towards the sink node, thus

reducing the remaining lifetime.

4.8 Discussions

In this chapter, we have addressed distributed sensor election and multi-hop

routing for target tracking in wireless sensor networks. First, we adopted a

distributed sensor election procedure that considers the trade-off between IQ

(information-quality) and energy costs of candidate nodes, in order to set dif-

ferent back-off values for the sensing intervals. Nodes that win the distributed

83

sensor election procedure with larger back-off delays tend to conserve energy

better.

Subsequently, we have also addressed energy-aware multi-hop routing to

the sink node for which a cost metric based on nodes’ remaining energy levels

was used to convert energy-aware routing to a minimum-cost problem. In our

approach, the benefit of applying reinforcement learning to perform energy-

aware multi-hop routing to the sink node is that nodes gradually learn which

of their neighboring nodes to forward in a distributed manner, based on their

remaining energy levels and local one-hop information. Nodes are not aware of

where the sink node is, and each node only maintains a distance metric that is

updated with cost feedback from neighboring nodes.

As each node learns to make better and better forwarding decisions, using

a combination of exploration of new neighbors to find new solutions, and ex-

ploitation of the best solution known so far, global information in the form of

the distance vector is distributed among nodes, which nodes update one another

with local information. After some iterations, nodes making locally-optimal de-

cisions to forward to their next-hop neighbours gradually converge to a global

optimal solution of energy-aware multi-hop routing to the sink node.

84

Chapter 5

Conclusions

In this thesis, we have addressed different aspects of resource management for

target tracking in wireless sensor networks.

First, we provided an overview of the Extended Kalman Filter as a tracking

algorithm, and we presented its implementation in a real-world wireless sensor

network test-bed with system design considerations. We compared the perfor-

mance of different process models and sensor selection schemes for a single-hop

sensor deployment, and we used the trace of the EKF covariance matrix as an

information quality (IQ) metric for sensor selection. We extended our clus-

tered system architecture design to include mobile devices such as smartphones,

for real-time remote monitoring and visualization, which could be extended to

various applications for indoor tracking.

In the second part of this thesis, we performed a simulation study of dis-

tributed IQ-based sensor election and multi-hop routing to a sink node. The

sensor election approach was extended from [1] and we used a composite cost

function to trade-off IQ with remaining energy of candidate nodes, with a weight

parameter β. In addition, the winner node in the distributed sensor election pro-

cedure could introduce additional sensing delay based on its IQ metric, so as to

conserve more energy, subject to IQ constraints.

Subsequently, we addressed the issue of energy-aware multi-hop routing from

85

source to sink node by using a cost function to convert the remaining energy of

nodes into a cost metric, for which an additive expected sum of costs was used

to make forwarding decisions to perform minimum-cost routing. Reinforcement

learning was applied to learn to forward packets to the sink node and increase

the delivery ratio. Our simulations compared tracking error, network lifetime

and delivery ratio for different values of the trade-off parameter β, as well as for

distributed sensor election with and without the delayed sensing mechanism.

Although the IQ-based sensor election procedure was initially designed as

a resource management approach separate from the energy-aware multi-hop

routing mechanism, the composite cost function that was used to trade-off IQ

and energy cost, and subsequently decide the back-off delay, had a significant

effect on the performance of the multi-hop routing algorithm. It was observed

that, based on different values of β, the combination of IQ and error costs that

had the least composite cost, would result in a larger back-off delay, that could

help to conserve remaining energy levels of nodes. In that manner, even though

emphasis was placed on maximizing IQ, a significantly large back-off delay also

resulted in increasing network lifetime. As a result of larger remaining lifetime,

the delivery ratio to the sink node was increased, as there were more nodes with

higher remaining energy to route to the sink node.

Such coupling of seemingly unrelated performance metrics as a result of our

composite cost function and back-off mechanism provides many interesting new

avenues for multi-objective decision-making in our future work. In addition,

we could look at using a distributed value function approach [36] to speed up

reinforcement learning, such that neighbors can update their Q-values from

overhearing cost feedback messages, even if they have not taken any actions. In

addition, other forms of the cost function in our reinforcement learning system

model can be studied in future work.

86

Bibliography

[1] Y. K. Toh, W. Xiao, and L. Xie, “A Wireless Sensor Network Target Track-

ing System with Distributed Competition based Sensor Scheduling,” in

Proceedings of the 2007 International Conference on Intelligent Sensors,

Sensor Networks and Information Processing, ISSNIP, pp. 257–262, 2007.

[2] V. T. Pham, Q. Qiu, A. A. P. Wai, and J. Biswas, “Application of Ultra-

sonic Sensors in a Smart Environment,” Journal of Pervasive and Mobile

Computing, vol. 3, no. 2, pp. 180–207, 2007.

[3] A. Roy, S. K. Das, and K. Basu, “A Predictive Framework for Location-

Aware Resource Management in Smart Homes,” IEEE Transactions on

Mobile Computing, vol. 6, pp. 1270–1283, 2007.

[4] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century

Challenges: Scalable Coordination in Sensor Networks,” in Proceedings of

the ACM/IEEE International Conference on Mobile Computing and Net-

working, pp. 263–270, 1999.

[5] F. Zhao, J. Shin, and J. Reich, “Information-Driven Dynamic Sensor Col-

laboration for Tracking Applications,” IEEE Signal Processing Magazine,

vol. 19, no. 2, pp. 61–72, 2002.

[6] J. L. Williams, J. W. Fisher, and A. S. Willsky, “Approximate Dynamic

Programming for Communication-Constrained Sensor Network Manage-

87

ment,” IEEE Transactions on Signal Processing, vol. 55, no. 8, pp. 4300–

4311, 2007.

[7] C. M. Kreucher, D. Blatt, A. O. Hero, and K. Kastella, “Adaptive Multi-

modality Sensor Scheduling for Detection and Tracking of Smart Targets,”

Digital Signal Processing, vol. 16, no. 5, pp. 546–567, 2006.

[8] L.-L. S. Ong, Non-Gaussian Representations for Decentralised Bayesian

Estimation. PhD thesis, School of Aerospace, Mechanical and Mechatronic

Engineering, The University of Sydney, 2007.

[9] R. Brooks, P. Ramanathan, and A. Sayeed, “Distributed Target Classifica-

tion and Tracking in Sensor Networks,” Proceedings of the IEEE, vol. 91,

pp. 1163–1171, Aug 2003.

[10] Y. Yu and V. K. Prasanna, “Energy-Balanced Task Allocation for Col-

laborative Processing in Wireless Sensor Networks,” ACM Springer Mobile

Networks and Applications (MONET) Journal, vol. 10, no. 1-2, pp. 115–

131, 2005.

[11] H. Park and M. B. Srivastava, “Energy-Efficient Task Assignment Frame-

work for Wireless Sensor Networks,” CENS Technical Report, September

2003.

[12] Y. Tian, E. Ekici, and F. Özgüner, “Cluster-based information process-

ing in wireless sensor networks: an energy-aware approach,” Journal of

Wireless Communications & Mobile Computing, vol. 7, no. 7, pp. 893–907,

2007.

[13] K. Shah and M. Kumar, “Distributed Independent Reinforcement Learning

(DIRL) Approach to Resource Management in Wireless Sensor Networks,”

in IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems,

2007. MASS 2007, pp. 1–9, Oct 2007.

88

[14] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for

Wireless Sensor Networks,” in Proceedings of the 2nd international confer-

ence on Embedded networked sensor systems (2004), SenSys’04, pp. 95–107,

Nov 2004.

[15] W. Ye, J. Heidemann, and D. Estrin, “An Energy-efficient MAC Protocol

for Wireless Sensor Networks,” in 21st Conference of the IEEE Computer

and Communications Societies (INFOCOM), vol. 3, pp. 1567–1576, Jun

2002.

[16] Y. Tay, K. Jamieson, and H. Balakrishnan, “Collision-Minimizing CSMA

and its Applications to Wireless Sensor Networks,” IEEE Journal on Se-

lected Areas in Communications, vol. 22, pp. 1048–1057, Aug 2004.

[17] K. Klues, G. Hackmann, O. Chipara, and C. Lu, “A Component-Based

Architecture for Power-Efficient Media Access Control in Wireless Sensor

Networks,” in SenSys ’07: Proceedings of the 5th international conference

on Embedded networked sensor systems, pp. 59–72, 2007.

[18] J. N. Al-Karaki and A. E. Kamal, “Routing Techniques in Wireless Sensor

Networks: A Survey,” IEEE Transactions on Wireless Communications,

vol. 11, no. 6, pp. 6–28, 2004.

[19] M. Chu, H. Haussecker, and F. Zhao, “Scalable Information-Driven Sensor

Querying and Routing for Ad Hoc Heterogeneous Sensor Networks,” In-

ternational Journal of High Performance Computing Applications, vol. 16,

2002.

[20] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A

Scalable and Robust Communication Paradigm for Sensor Networks,” in

MobiCom ’00: Proceedings of the 6th annual international conference on

Mobile computing and networking, pp. 56–67, 2000.

[21] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols

for Information Dissemination in Wireless Sensor Networks,” in MobiCom

89

’99: Proceedings of the 5th annual ACM/IEEE international conference on

Mobile computing and networking, pp. 174–185, 1999.

[22] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Technical

Report: TR95-041, University of North Carolina at Chapel Hill, 2001.

[23] W. Xiao, J. Wu, L. Xie, and L. Dong, “Sensor Scheduling for Target Track-

ing in Networks of Active Sensors,” in ACTA AUTOMATICA SINICA,

vol. 32, pp. 173–180, 2006.

[24] W.-L. Yeow, C.-K. Tham, and W.-C. Wong, “Energy Efficient Multiple

Target Tracking in Wireless Sensor Networks,” IEEE Transactions on Ve-

hicular Technology, vol. 56, no. 2, pp. 918–928, 2007.

[25] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on

Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking,”

IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, 2001.

[26] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, “Information Fusion

for Wireless Sensor Networks: Methods, Models, and Classifications,” ACM

Computing Surveys, vol. 39, no. 3, 2007.

[27] N. Xiong and P. Svensson, “Multi Sensor Management for Information

Fusion: Issues and Approaches,” Information Fusion, vol. 3, no. 2, pp. 163–

186, 2002.

[28] K. Akkaya and M. Younis, “A Survey on Routing Protocols for Wireless

Sensor Networks,” Ad Hoc Networks, vol. 3, pp. 325–349, 2005.

[29] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-Based Proto-

cols for Disseminating Information in Wireless Sensor Networks,” Journal

of Wireless Networks, vol. 8, no. 2/3, pp. 169–185, 2002.

[30] J.-H. Chang and L. Tassiulas, “Maximum Lifetime Routing In Wireless Sen-

sor Networks,” IEEE/ACM Transactions on Networking, vol. 12, pp. 609–

619, Aug 2004.

90

[31] F. Ye, A. Chen, S. Lu, and L. Zhang, “A Scalable Solution to Minimum

Cost Forwarding in Large Sensor Networks,” in Proceedings of the Tenth In-

ternational Conference on Computer Communications and Networks, 2001,

pp. 304–309, 2001.

[32] W. Naruephiphat and W. Usaha, “Balancing Tradeoffs for Energy-Efficient

Routing in MANETs Based on Reinforcement Learning,” in Proceedings of

IEEE Vehicular Technology Conference, 2008. VTC Spring 2008, pp. 2361–

2365, May 2008.

[33] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative Signal and

Information Processing: An Information Directed Approach,” Proceedings

of the IEEE, vol. 91, pp. 1199–1209, Aug 2003.

[34] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley-Interscience, 1994.

[35] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Sci-

entific, 3rd ed., 2007.

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

MIT Press, 1998.

[37] E. Altman, Constrained Markov Decision Processes. Chapman and Hall,

1999.

[38] Y. He and E. Chong, “Sensor Scheduling for Target Tracking in Sensor

Networks,” in Proceedings of the 43rd IEEE Conference on Decision and

Control (CDC’04), pp. 743–748, 2004.

[39] Y. Li, L. W. Krakow, E. K. P. Chong, and K. N. Groom, “Approximate

stochastic dynamic programming for sensor scheduling to track multiple

targets,” in Proceedings of the 2006 Workshop on Defense Applications of

Signal Processing (DASP’06), 2006.

91

[40] E. K. P. Chong, C. Kreucher, and A. O. H. III, “Monte-Carlo-based Par-

tially Observable Markov Decision Process Approximations for Adaptive

Sensing,” in Proceedings of the 9th International Workshop on Discrete

Event Systems (WODES’08), pp. 173–180, 2008.

[41] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic

Models. Simon and Schuster, first ed., 1978.

[42] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learn-

ing: A Survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–

285, 1996.

[43] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming (Opti-

mization and Neural Computation Series, 3). Athena Scientific, 1996.

[44] N. Lilith, K. Dogancay, and G. Ibal, “Dynamic Sensor Scan Optimisation

using Reinforcement Learning,” in Proceedings of the 2007 International

Conference on Intelligent Sensors, Sensor Networks and Information Pro-

cessing, ISSNIP, pp. 407–412, 2007.

[45] C.-K. Tham, Modular On-line Function Approximation for Scaling Up Re-

inforcement Learning. PhD thesis, University of Cambridge, 1994.

[46] D. A. Castañon, “Approximate Dynamic Programming for Sensor Man-

agement,” in Proceedings of the 36th IEEE Conference on Decision and

Control, 1997, pp. 1202–1207, 1997.

[47] S. Aeron, V. Saligrama, and D. A. Castañon, “Efficient Sensor Management

Policies for Distributed Target Tracking in Multihop Sensor Networks,”

IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2562–2574,

2008.

[48] S. Reddy, J. Burke, D. Estrin, M. H. Hansen, and M. B. Srivastava, “A

Framework for Data Quality and Feedback in Participatory Sensing,” in

Proceedings of the 5th International Conference on Embedded Networked

92

Sensor Systems, SenSys 2007, Sydney, NSW, Australia, November 6-9,

2007, pp. 417–418, 2007.

[49] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and A. Schmidt, “Micro-Blog:

Sharing and Querying Content Through Mobile Phones and Social Partici-

pation,” in MobiSys ’08: Proceeding of the 6th international conference on

Mobile systems, applications, and services, pp. 174–186, 2008.

[50] http://www.xbow.com/Products/wproductsoverview.aspx.

[51] http://www.easysen.com/.

[52] http://www.tinyos.net/.

[53] L. D. Stone, T. L. Corwin, and C. A. Barlow, Bayesian Multiple Target

Tracking. Artech House, Inc., 1999.

[54] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hem-

ingway, J. Hightower, P. P. Klasnja, K. Koscher, A. LaMarca, J. A. Lan-

day, L. LeGrand, J. Lester, A. Rahimi, A. Rea, and D. Wyatt, “The Mo-

bile Sensing Platform: An Embedded Activity Recognition System,” IEEE

Pervasive Computing, vol. 7, pp. 32–41, 2008.

[55] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich, B. L.

Harrison, P. V. Klasnja, A. LaMarca, L. LeGrand, R. Libby, I. E. Smith,

and J. A. Landay, “Activity Sensing in the Wild: A Field Trial of Ubifit

Garden,” in Proceeding of the twenty-sixth annual SIGCHI conference on

Human factors in computing systems, pp. 1797–1806, 2008.

[56] http://developer.android.com/guide/basics/what-is-android.html.

[57] http://cnds.ece.nus.edu.sg/uwb-sc/.

[58] S. Haykin, Neural Networks and Learning Machines. Pearson, third ed.,

2009.

93

[59] J. Liu, F. Zhao, and D. Petrovic, “Information-Directed Routing in Ad Hoc

Sensor Networks,” IEEE Journal on Selected Areas in Communications,

vol. 23, pp. 851–861, Apr 2005.

[60] J. A. Boyan and M. L. Littman, “Packet Routing in Dynamically Changing

Networks: A Reinforcement Learning Approach,” in Advances in Neural

Information Processing Systems 6, pp. 671–678, 1993.

[61] Y. Zhang, M. P. J. Fromherz, and L. D. Kuhn, “Smart Routing with

Learning-based QoS-aware Routing Strategies,” in First Workshop on QoS

Routing, pp. 298–307, Oct 2004.

[62] Y. Zhang and Q. Huang, “A Learning-based Adaptive Routing Tree for

Wireless Sensor Networks,” Journal of Communications, vol. 1, no. 2,

pp. 12–21, 2006.

[63] Y. Zhang, J. Liu, and F. Zhao, “Information-Directed Routing in Sensor

Networks Using Real-Time Reinforcement Learning,” Combinatorial Opti-

mization in Communication Networks, Springer, 2006.

[64] J. F. Kurose and K. W. Ross, Computer Networking: A Top-down Ap-

proach featuring the Internet. Pearson Addison-Wesley, 2004.

94

	Introduction
	Resource Management in Wireless Sensor Networks
	Sensor Data Fusion
	Distributed in-network Processing
	Energy-Efficient Sensor Scheduling and Communication
	Multi-hop Routing
	Decision-theoretic and Learning Approaches
	Contributions
	Summary

	Background
	State Estimation and Sensor Selection
	An Overview of the Discrete Kalman Filter
	State Estimation using the Extended Kalman Filter
	Information-driven Sensor Selection

	Routing Protocols in WSNs
	Data-centric Approaches
	Maximum Lifetime Routing Approaches
	Information-driven Approaches

	Decision-theoretic Framework and Algorithms
	Markov Decision Processes
	Bellman's Optimality Equations
	Dynamic Programming
	Monte Carlo Approximation
	Reinforcement Learning

	Summary

	Design and Implementation of an Indoor Tracking test-bed
	Introduction
	Background
	Hardware Platforms
	WSN Software

	System Overview
	System Flowchart
	System Models

	Simulation Study
	Sensor Deployment
	Simulation Results

	Test-bed Implementation
	Clustered System Architecture
	System Visualization

	Integrating Mobile Devices with WSNs
	Mobile Device Platforms
	Android OS
	Extended System Architecture
	Tracking Application on an Android Smartphone

	Discussions
	Limitations and Challenges
	Extensions

	Conclusion

	Information-driven Sensor Election and Routing
	Introduction
	Related Work
	Competition-based Sensor Selection
	Multi-step Look-ahead for Data Routing
	Routing with Reinforcement Learning

	Our Proposed Approach
	Distributed Sensor Election based on Information Gain and Remaining Energy
	Distributed Sensor Election Mechanism
	Delayed Sensing based on IQ Metric
	Simulation Results

	Energy-Aware Multi-Hop Routing
	Problem Formulation

	Solution by Reinforcement Learning
	Solution Approach
	Solution Algorithm

	Simulation Study
	Simulation Setup
	Results and Analysis

	Discussions

	Conclusions

