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Abstract

This thesis presents the PhD research carried out on tracking for mobile

3D augmented reality applications. Augmented Reality (AR) is the super-

position of the virtual and the real environments, so that both the virtual

elements and the real world can be interactively perceived by the user at

the same time. The research focus is on robust, wide-area tracking for high

precision 3D AR applications in non-prepared environments. The main

motivation is to move AR out of laboratory, so as to achieve mobile AR

in outdoor environments. Tracking allows the AR system to determine the

segments of the real world that the user is looking at, so that virtual 3D

objects can be inserted to appear visually coherent to the user. This allows

computer systems to augment the users reality while he is on the move.

Wide-area applications require the tracking systems to operate in a wide

range of conditions, and over a wide range of motion. Robustness, preci-

sion, low latency and jitter are important requirements for successful and

satisfactory augmentation of the user’s reality. This research takes a multi-

disciplinary approach towards solving the research question, through inves-

tigating three different but complementary tracking systems, namely Com-



puter Vision (CV), Inertial Measurement and Global Positioning Systems

(GPS), to derive a hybrid wide-area tracker, known as the Augmented Re-

ality TRackIng SysTem, or ARTIST. This approach is chosen based on the

observation that no single property and its associated sensors are able to

meet the requirements of robustness and precision. Sensors with comple-

menting strengths and weaknesses can be combined together to approximate

a perfect sensor.

As Inertial and GPS function well over a large area, the approach taken is

to first improve the precision of both sensors, so that they can work reason-

ably well in regions where CV fails. The research on inertial measurement

focused on the calibration of MEMS-based sensors, so that they can be used

as independent orientation trackers. Calibration methods for tri-axial ac-

celerometers and gyroscopic systems that are completely independently of

external equipment have been developed. This allows end-users to perform

calibration on-site, which has not been achieved for gyroscope calibration.

For GPS, a novel method for GPS positioning based on the Differential

Single Difference of GPS carrier phase measurement has been formulated.

It is suitable for AR positioning with an accuracy of 10 cm, and avoids the

computationally expensive resolution of integer ambiguity. However, the

level of precision achieved is not comparable to CV.

The research on CV focuses on marker-less 6DOF tracking using natural fea-

tures. A CV tracker with accurate 3D augmentation and good robustness



against illumination changes, partial occlusion and extreme object poses,

has been developed and tested. Simultaneous augmentation of three ob-

jects at 15fps was achieved through efficient system design, as well as im-

provements to underlying algorithms. Specifically, the keypoint signature is

improved with a proposed matching method, which maintains the match-

ing accuracy with lower computation load. New models were also proposed

for Efficient Second-order Minimization (ESM) that allows for handling of

radial distortion, shadows, specular glares and partial occlusion. Finally,

two methods are developed to combine the sensor output. The first is a

loosely coupled configuration where standalone GPS and inertial measure-

ments are used to limit the search set for initializing the computer vision

tracker. This system only works in areas where there are sufficient features

for CV tracker. The second is a Kalman Filter based hybrid tracker, where

low level sensor outputs, consisting of differential GPS carrier phases, ac-

celeration and angular velocity and CV measure are combined. The second

system is a true wide area tracker, with degraded precision with GPS and

inertial tracking when CV fails.
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1. INTRODUCTION

This thesis presents the PhD research carried out on tracking for mobile 3D aug-

mented reality applications. The primary research focus is on wide-area, unassisted,

robust and precise tracking in non-prepared environments. Here, wide-area can be best

described as being the opposite of local-area. In particular, wide-area refers to the

lack of a physical boundary for the tracker operation. This is analogous to the cellular

network being wide-area, while WiFi is local-area. A wide-area tracker should work in

whole area, rather than in isolated spots, which would be considered as local-areas sep-

arated by large distances. Unassisted means to track independently, without additional

infrastructure, therefore non-prepared environments. This involves the determination

of the orientation and translation of the tracker relative to a predefined world coordi-

nate system. Specifically, it allows the system to determine the segments of the scene

of the real world that the user is looking at. This allows the insertion of virtual three-

dimensional (3D) objects so that they appear visually coherent to the user. In a sense,

this research aims to align the coordinate systems of the real and virtual worlds.

Augmented Reality (AR) can be broadly defined as the superposition of virtual

elements, mainly 3D graphics, onto the real world so that both the virtual elements

and the real world can be perceived by the user at the same time (Milgram et al., 1994).

It is generally accepted that AR consists of (1) a combination of both the virtual and

real worlds with (2) real-time interactivity and (3) registration in the 3D space. An

important aspect is interactivity, where the appearance of the virtual element reacts

to the changes in the view point of the user in real time. Therefore, for the movie

industry, where computer graphics are inserted realistically into live footages, it would
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not be considered as AR. This is because there is no interactively, but the concept

of superpositioning the virtual onto the real is similar. This interactivity entails real-

time performance from the tracking systems, which in turn necessitates novel hardware

architectures and software algorithms. The level of performance of AR tracking and

registration systems has to reach one that is both natural and comfortable to the

majority of users. This is a necessary condition for AR to be used as a new form of

computer interface, where the computer output is fused with the real world, instead

of being separated as they are now. It will also facilitate the development of new

interaction techniques, which at present often appear unwieldy due to the nature of the

current tracking systems.

The problem of precise tracking has been effectively solved for small, local-area ap-

plications. The solutions range from the trackers and sensors developed in the field of

Virtual Reality (VR) to the popular ARToolkit. For wide-area applications, the user

moves beyond a locally controlled environment, thus requiring the tracking systems to

operate in a wider range of conditions, and over a wider range of motion. Robustness,

precision, low latency and jitter are important requirements for successful and satis-

factory augmentation of the users reality. Robustness refers to continuous operation

in the presence of interference, as well as rapid recovery from complete tracking fail-

ure. Ideally, the user does not notice any failures. Precision refers to the low errors

of the position and orientation measurements, which can be less than one millimetre

and one degree respectively, for augmentation within an arm’s length. Latency is the

time between the actual measurement and tracker output. If the latency is significant,
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1. INTRODUCTION

the virtual objects will appear to detach and lag behind the real object during motion.

Jitter refers to the ’shaking’ of the virtual object, which should not be perceptible to

the user. The actual precision, latency and jitter requirements are dependent on the

actual AR application. These requirements often present significant challenges in un-

controlled environments. Furthermore, the tracking systems would often be required to

operate without modifications to the environment. Therefore, both active and passive

marker-based systems are not applicable. Consequently, these systems have to work

unassisted, relying on the properties of the environment to perform the tracking. Much

effort had been expended in the preceding research in AR, navigation and robotics, on

finding properties common to a majority of environments that can be robustly utilized

for tracking purposes.

1.1 Augment Reality TRackIng SysTem (ARTIST)

This research takes the approach of a detailed study into Computer Vision (CV), Iner-

tial Measurement and Global Positioning System (GPS) to derive a hybrid wide-area

tracker, known as the Augmented Reality TRackIng SysTem, or ARTIST. This ap-

proach is chosen based on the observation that no single property and its associated

sensors are able to meet the requirements of robustness and precision. Sensors with

complementing strengths and weaknesses can be combined together to approximate a

perfect sensor. Inertial systems utilize the Newtonian laws of motion, which are appli-

cable to practically all environments on Earth, making them robust. They also have

high precision and low latency, but suffer from drift errors. GPS is complementary in
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that its errors are bounded, but it has high latency and low precision. CV systems

are relatively less robust, but provide high precision and increased versatility beyond

the tracking, especially as a HCI device. For example, CV can be used for object

identification, hand gesture interactions and facial recognition.

1.2 Contributions

Research work on the three tracking technologies resulted in contributions in each area.

Research on CV-based trackers resulted in the development a wide-area, six degrees of

freedom (6DOF) tracker that can obtain the camera pose relative to multiple planar

textured surfaces in real-time. Recently developed algorithms for feature detection,

matching and pose refinement are improved and combined to form a robust CV tracker

for ARTIST, which has accurate registration and low jitter. The tracker is designed

to search for multiple patches in the time between video frames. This enables the

tracker to operate over large environments, using distinctive planar patches as tracking

beacons. The GPS and inertial system are used to reduce the number of patches

to search for, enabling ARTIST to operate over a wide area. Other improvements

include the compensation for lens radial distortion, illumination changes and tolerance

to partial occlusion. This results in high precision and good robustness to external

interferences. Grid-based initialization automatically selects good regions within the

area designated by the user for tracking. This tracker has been tested indoors and

outdoors.

Initial difficulties with the calibration of the inertial sensors led to the development
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1. INTRODUCTION

of novel methods to calibrate sensor errors, particularly the gyroscope scale factors and

axes misalignments, without the use of external equipment. This removes the need for

high precision calibration machines or standards. All that is required for calibration

is the local gravity and the inertial sensor themselves. Experiments show that it is

possible to perform the calibration by holding the inertial measurement unit in the

hand, and moving it randomly.

Research work on GPS resulted in the development a novel differential GPS carrier

phase method, based on the Differential Single Difference (DSD), suitable for outdoor

AR applications. It differs from existing differential GPS methods commonly used in

geo-surveying as it avoids solving for integer ambiguity, which is the main difficulty in

real-time precision GPS systems. The proposed system achieves an accuracy of 10-20

cm using low cost GPS modules. This is the accuracy level of current real-time systems

but without the need for heavy computation to resolve the integer ambiguity. This

accuracy is significantly improved as compared to standalone GPS, which has several

meters of error. The jitter is significantly reduced as well, but the proposed method

suffers from a drift of around 1 millimeter per second. This drift is highly linear within

a period of several minutes and can be removed using linear regression.

All three tracking components of ARTIST are integrated onto a hybrid tracker

for outdoor environments. Two solutions are presented here. The first is a loosely

coupled configuration that allows for greater hardware flexibility. For all environments,

the inertial system provides accurate orientation with respect to the local level earths

surface. For outdoor environments, this orientation information can be combined with
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GPS positioning to form a coarse 6DOF tracker. The typical usage scenario is, when

the user is outdoors, the standalone GPS provides a position that has an accuracy

of 10-20 meters. The system uses this coarse position and the orientation from the

inertial system to define a set of potential patches for initializing the CV tracker. After

initialization, augmentation is mainly reliant on the ARTIST CV component. GPS and

inertial are used when CV tracking fails, or to acquire new patches to track. This loosely

coupled configuration is possible as the CV tracker is sufficiently robust for independent

operation over extended period of time. It also demonstrates the applicability of the

ARTIST framework to commodity hardware, such as mobile phones, where low-level

data, such as GPS carrier phase measurement, required for tight coupling of components

is not available.

The second hybrid solution is a tightly coupled configuration, where the GPS DSD

position tracking and IMU orientation are combined using Kalman filters with highly

accurate CV tracking data. Two separate filters are used for position and orientation

respectively. The position filter combines the CV and GPS DSD positions using a

constant velocity system model. The orientation filter combines the CV and IMU ori-

entations using the Multiplicative Extended Kalman Filter (MEKF). The acceleration

measurements from the IMU were not used for integration to velocity and position as

they contained significant random errors. However, they are used for detecting static

states, which allows the filters to determine the values of part of the system state.
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1. INTRODUCTION

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 present the overview of the design of the

ARTIST hybrid tracker, including design considerations and the Kalman Filters for

combining the various sensor information. The next three chapters focus on each of

the three sensor types, namely inertial (chapter 3), GPS (chapter 4) and CV (chapter

5). These chapters consider each sensor in isolation from the others, while Chapter 6

presents the combination of the three trackers to form the ARTIST tracker, by imple-

menting the ideas presented in Chapter 2. The thesis is concluded in chapter 7, with

analysis on the ARTIST and possible future works to extend it
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2. DESIGN OF ARTIST HYBRID TRACKER FOR MOBILE
AUGMENTED REALITY

In this chapter, the motivation and overview of the design of the Augmented Reality

TRackIng SysTem (ARTIST) is described. This is meant to provide better appreciation

of the rationale behind the choices made in the design of ARTIST from the perspective

of prior works and requirements imposed by Augmented Reality applications. In par-

ticular, the design requirements of high accuracy and robustness, as well as low latency

and jitter, are presented in relation to fidelity of graphics required for registration, to

convince the human user that the virtual object is indeed part of the real scene. In ad-

dition, this chapter also presents the mathematical formulation of Kalman Filtering for

fusing the sensor data from inertial, GPS and Computer Vision (CV). In summary, the

chapter start with a survey of AR and tracking in Section 2.1, followed by requirements

for registering AR graphics in Section 2.2, leading to the design rationales in Section 2.3

and finally the Kalman Filter in Section 2.4. Hopefully, presenting the overall design

early will bring coherence to the seemingly disjointed chapters on the three individual

components of ARTIST. The actual implementation and test results will be delayed to

Chapter 6.

2.1 Background Information

Augmented Reality (AR) is a relatively new research area that has been developed as

a variation of the much more established field of Virtual Reality (VR). An often-cited

set of overview of the requirements, design, problems and applications of AR systems

were presented by Azuma (1997) and Azuma et al. (2001). It is generally accepted that

AR consists of (1) a combination of both the virtual and real worlds with (2) real-time
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interactivity and (3) registration in the 3D space. This particular definition does not

limit the display and tracking technologies used and emphasizes on the interactivity

aspect of AR. A recent survey by Zhou et al. (2008) gives an indication of the variety

of tracking systems, and interaction and display techniques being reported. From the

trends presented, the main AR tracking methods continue to be CV based, or hybrids

between CV and inertial. AR platforms are also becoming increasingly more mobile,

with working demonstrations on mobile phones (Wagner et al., 2008b).

The majority of the research and application of AR has been focused on either

enabling or utilizing AR as an interface. Bowman et al. (2004) presented AR as a 3D

user interface (UI) that can form the basis of future ubiquitous computing platforms.

Users can tap on computing resources at all locations even while on the move. This is

possible with AR, as the user is able to perceive the dynamic real environment while

operating the UI. The ability to operate computing resources and access digital in-

formation without having to switch between the real world and the UI is one of the

main factors driving the adoption of AR in numerous applications. Some applications

include medical, manufacturing (Ong and Nee, 2004), annotation and visualization

(Vlahakis et al., 2002), robot path planning (Chong et al., 2007), entertainment, mili-

tary heads up display (HUD), outdoor mobile AR, and collaborative AR. Among these,

the HUD is the most established, after having been used by fighter pilots for decades,

and demonstrated its effectiveness in reducing cockpit workload.
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AUGMENTED REALITY

2.1.1 Augmented Reality Tracking

Among the various issues involved in the development of AR applications, accurate

tracking and registration remain the most critical issues to be resolved (Azuma, 1997;

Zhou et al., 2008). This is mainly driven by the human visual perceptual capabilities,

which will be explored in detail in Section 2.2. High accuracy tracking for local-area

applications has been well developed, in part due to the developments in VR research.

Welch and Foxlin (2002) presented an overview of the various physical phenomena

employed for tracking purposes. These include mechanical linkages, inertial, sound,

light and magnetic sensors. The most notable tracker used for AR is the ARToolkit

(2010), which requires only a low cost camera and easily printed square markers. With

its low cost, ease of use and ease of software development, ARToolkit is perhaps the

most commonly used tracker. However, it requires a line of sight to the marker and

suffers from jitter under non-optimal lighting conditions.

For local-area applications, ARToolkit has enabled a great increase in research out-

put for AR. This is because for the first time, there is a simple and effective way to

experiment with new interfaces enabled by AR. However, the reliance of ARToolkit on

markers renders it a less than satisfactory solution. Another example is the ArcheoGu-

ide (Vlahakis et al., 2002), which uses Fourier-based 2D image registration to accurately

augment missing parts of archeological sites. However, the method in ArcheoGuide lim-

its the user to stand at several predetermined locations to view the augmented buildings.

The works presented by Wagner et al. (2008a) and Wagner et al. (2008b) demonstrate

recent advances in computational efficiency of tracking algorithms and processing ca-
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pabilities of mobile phones. It is expected that the mobile phones will be the first AR

platform to become popular among general users. This is due to the wide availability,

low cost, mobility and ease of use of the mobile phone form factor.

There is an impetus to develop trackers that are not only marker-less, but also oper-

ate in environments which users normally move in, such as their work place, home and

various locations that they visit. These environments are uncontrolled and dynamic,

making it difficult to achieve the accuracy, robustness, jitter-free and latency require-

ments. Therefore, the significance of achieving the primary goal of wide-area precision

tracking is to enable users to utilize AR in their normal operating environments. This

would truly reveal the potential of AR as a new form of 3D interface (Bowman et al.,

2004) for ubiquitous and mobile computing.

2.1.2 Mobile Hybrid Tracking Systems

There are several reported hybrid tracking systems used in research prototypes for mo-

bile AR applications, which are designed to be worn by a user. These systems typically

include a portable computer, trackers and a Head Mounted Display (HMD). The Tour-

ing Machine (Feiner et al., 1997) uses a GPS and compass for registering buildings.

It is used for navigation and display of interesting information about buildings. Due

to the limited accuracy of GPS (approximately 100 metres), the Touring machine is

only suitable for coarse augmentation on building at large distances. The wearable AR

kit presented by Ribo et al. (2002) used a laptop with 3D graphics capabilities and

hybrid trackers. It was rather bulky due to the limitations of the technologies then.

Furthermore, the tracker they developed would fail when there are insufficient image
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features. A recent system by Peternier et al. (2006) used a PDA instead of a laptop

and resulted in a total weight of less than half a kilogram.

Azuma (1993) as well as Welch and Foxlin (2002) highlighted that none of the

current tracking technologies can effectively operate in unprepared environment. The

most promising approach seems to be the use of a combination of sensing techniques,

so as to compensate the weaknesses of one sensor with the strengths of another sensor.

The combination of inertial and GPS (Farrel and Barth, 1999; Grewal et al., 2001;

Jekeli, 2000), as well as those of inertial and marker-less CV (Foxlin and Naimark,

2003; Jiang et al., 2004; Kotake et al., 2005; Ribo et al., 2002; Yokokohji et al., 2000;

You and Neumann, 2001; You et al., 1999), are some of the most commonly used

approaches. This can be attributed to the fact that inertial, marker-less CV and GPS

are practically source-less, i.e., they do not require a specialized emitters to work, as.

Specifically, inertial tracking is truly source-less and can work independently in any

environment. The GPS depends on the radio frequency emitting satellites to function.

However, due to the way the system is designed, GPS can work anywhere on earth

that has a clear view of the sky. An ideal marker-less CV system should work with

any unmodified scene, depending only on natural scene structures. Therefore, these

tracking systems do not have any inherent range limits that are usually associated with

ultrasonic, magnetic or marker-based trackers. Furthermore, they have complementary

strengths and weaknesses.

The combination of inertial and GPS is mainly used for navigation purposes, typ-

ically over fairly large distances. The fusion of the low frequency GPS data with the
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high frequency inertial data is commonly achieved using Kalman Filters (Kalman, 1960;

Maybeck, 1979), which optimally combine sets of noisy measurements. Such systems

are robust and fast, but do not work well indoors, as the satellite signal strength is

reduced when indoors. They only have the level of precision for annotating buildings

but not the finer features. On the other hand, marker-less CV is typically based on

natural features, such as points, lines and textures. Such algorithms are often able to

provide precise translation and orientation information. However, they are not robust

in outdoor environment. Unlike GPS, Kalman Filters are not typically used for fus-

ing CV and inertial systems; rather, inertial information is used to constrain the CV

algorithms to improve the robustness and processing speed.

The approach of combining all three tracking systems into a single hybrid tracker

is presented in recent work from Reitmayr and Drummond (2006) and Kim et al.

(2007). Their approaches are similar in the use of GPS and inertial to define an initial

search space for the CV component to track buildings. Reitmayr and Drummond

(2006) used textured 3D models with line tracking, while Kim et al. (2007) used online

user 3D modeling with the aid of aerial photos to improve the robustness of tracking.

Both systems represent a loose coupling of the three systems, which is more flexible

on hardware choices, but depends heavily on the performance of the CV tracker. It is

expected that further improvements in such hybrid trackers will be mainly derived from

improvements in CV tracking, as well as tighter integration through sensor fusion and

self-calibration. In particular, as CV is not expected to work well in areas with little

image features, the improvements in the GPS and inertial trackers will allow continued
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tracking in such areas. This is the approach taken in this research.

2.2 Requirements for registering graphics in Augmented
Reality

The requirements for AR trackers are mainly driven by the visual perception capabilities

of the human users. Although augmentation can be applied to other senses such as

hearing and touch, the research here is primarily concerned with visual aspects of AR.

This is because vision is the main sensory input for humans and arguably the most

demanding on the precision of trackers. The main concern is to convince the user

that the graphics augmented onto their reality are indeed parts of the real world. The

requirements to create such an illusion depends on several factors. The ones considered

are the location and appearance of the augmented object, the relative motion between

the user and object, the AR setup, whether it is video or optical see-through, and the

nature of the AR application. As this research is primarily on tracking, the main focus

is on positional and motion accuracy and stability. However, it should be noted that

other cues, such as occlusion and shading, can destroy the illusion. Although out of

the scope of this research, they are discussed in the following sub-section to provide

further areas of work for AR trackers.

2.2.1 Tracker spatial precision

The requirements imposed by the location and appearance of augmented objects are

generally concerned with spatial precision of the tracker. The precision required is re-

lated to how well the human user can detect errors in registration. This in turn depends
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on how far the augmented object is from the user, and whether there exist features on

the surface that serves as references for detection mis-registration. Therefore, a near

object with sharp, high contrast lines and features, requires the most precision, while a

faraway, uniformly coloured building requires low precision. As CV operates on similar

principles to human vision, such trackers works best in conditions where there are a lot

of image features. This is the most probable reason for CV to become the dominant

tracker in AR, as it is compatible with human vision. The spatial precision is generally

described by the tracker’s position and orientation accuracy. The resultant registration

error induced by position and orientation errors are important at different distances

(Foxlin, 2002). For nearby objects, typically within several metres, positional errors

results in greater mis-registration, while at larger distances, orientation errors create

greater offsets. In the related surveys on tracking by Foxlin (2002) and Welch and

Foxlin (2002), the cited resolutions required are 1mm for position, and 1
10 of a degree

for orientation. Azuma (1993) reported that humans are able to perceive minute mis-

alignments as small as 1
60 of a degree. This higher reported precision is probably only

applicable to the scenario where the graphics is augmented on a flat surface with fine,

high-contrast lines. These lines provide the guides for human subjects to easily deter-

mine mis-registration. These high spatial accuracy requirements will only be required

for high precision augmentation applications using optical see-through displays.

The requirements imposed by relative motions are generally related to the latency

and robustness. If there is significant latency, the augmented graphics will lag behind

the real world and therefore appear detached, when there are large and high speed
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relative motions. This is particularly important for optical see-through AR, where the

real world is instantly visible. It is possible to determine the detection threshold and

build trackers to meet the latency requirement. However, a better method would be

to reach a latency value that is low enough for the prediction algorithms to be highly

accurate. In this way, it may be possible to build AR systems with zero latency. On

another note, trackers tend to fail when there are drastic changes, which can be caused

by large, high-speed or highly irregular motions. The effects of tracker failure can be

catastrophic and totally disrupt the AR experience. Therefore, the ideal tracker should

be completely robust or only fails infrequently. However, this is not practical at this

point of research, the main goal for ARTIST is to recover from failures as quickly as

possible. Therefore, it is important to recover within the time frame where prediction

is still effective. This is the main disadvantage of CV trackers, as it often fails abruptly

and possibly completely.

As pointed earlier, the optical see-through AR places greater demands on spatial

accuracy and latency requirements than video see-through. This is because, the human

is able to perceive the real world at greater resolution and lower latency with optical see-

through. The earlier discussion is mainly applicable to the case of optical see-through.

For video see-through, the requirements for spatial accuracy is determined greatly by

the image resolution. Although users can detect sub-pixel errors, mis-registration of 1

to 2 pixels and degrees has not been found to disrupt the augmentation in practice. As

the video is used for both tracking and display, the latency for CV is zero by default.

Therefore, the main latency requirements for other sensors will have to be defined
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with respect to the CV tracker. The robustness requirements for both types of AR is

generally similar.

The type of applications places different requirements on the tracker. The most

difficult case is the one where a 3D graphic is augments onto a nearby object with

fine features, such as surgical application. The next type of application is annotation

of text onto nearby object with fine features. Although, both types of applications

requires accurate tracking, the registration of 3D objects is typically more demanding

than pointing the annotations to specific points on the objects. This is because there is

often some tolerance to the area the annotation can point to. Following this discussion,

it can be surmised that annotation of faraway buildings places low demand on the

tracker, which allowed the Touring Machine to succeed using highly inaccurate GPS

and compass. As pointed out by Foxlin (2002), there is one more class of applications,

where the virtual graphics are not attached to the real world, such as AR games. As

the virtual objects are not anchored, trackers with low spatial accuracy would suffice.

If the objects are animated, which is common in games, it is plausible that the motion

can mask the effects of a limited amount of latency and jitter.

Finally, the jitter requirement is discussed, as it does not appear to be highly

dependent on the factors described earlier. This is because jitter is temporal in nature,

it is possible for the user to detect it by comparison with the previous position. However,

it may be possible that fine features on the augmented object will provide the reference

for the user to detect jitter that would be undetectable otherwise. In comparison to

VR, jitter is less of a problem for AR, as it manifests mainly as the shaking of virtual
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objects. Although this can affect the AR experience, it does not lead to simulator

sickness as the surrounding world, which is real, is still visible and stable. This also

applies for video see-through, except for the case of handheld AR, where the shaking of

the camera can cause nausea, but it is not due to the tracker or graphics. The jitter in

position is only important for augmentation of nearby objects. However, the shaking

due to orientation jitter will increase with increasing distance to the augment object.

The ARToolkit has high jitter for the normal to the marker plane, while maintaining

good positional stability. In contrast, the ARTIST CV tracker uses a much larger

number of pixel to reduce the jitter.

2.2.2 Occlusion and shading

For humans, both occlusion and shading cues are important for building up the 3D per-

ception of the real world. However, the current focus of AR tracking is typically about

finding the pose of the human head (or camera) with respect to a coordinate system.

The handling of occlusion and shading is in general, predicated on the assumption that

the graphics are already augmented at the correct position and appears correct to the

user. Therefore, much of the focus is on solving the plain tracking problem for now.

In order to handle occlusion in AR, the depth information of the real environment

is needed, so as to determine the portions of the virtual graphics to be shown or hidden.

The depth information is typically obtained using three methods. The first is to use a

prior 3D model of the real world, which can be purposed-built for AR, or available from

other areas of work, such as engineering models, 3D medical scans and urban planning.

This method cannot handle any changes of the real world, which are often inevitable
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in uncontrolled environment. In contrast, the following two methods obtain the depth

on-line to react to changes in real time. The second method determines whether the

real world object being augmented is itself occluded. This is done at coarse level in this

research, and Pilet et al. (2007) demonstrated fine boundary detection of the occlusion.

This is similar to foreground background segmentation in videos. This method would

only work if the virtual graphics augments only the surface of the real object. If the

virtual component has depth, it becomes possible that the virtual part also occludes

the real object in front of the augmented object. The third method is to build the 3D

representations in real time, which is most general and difficult. It may be possible

to use dense optical flow methods to obtain the depth, but to the best of the author’s

knowledge, none exist that are robust and runs in real time. It may be possible that low

cost depth cameras that are beginning to appear at the time of writing may be used for

local area imaging. As the depths obtained are of low resolution, it may be combined

with normal cameras to achieve real time high resolution depth imaging. However, the

correct display of virtual objects in the presence of occlusion is outside the scope of this

work, this area of work was not pursued here. Occlusion is a highly dominant depth

cue, this area of research is likely to attract greater interests when the plain tracking

problem is satisfactorily solved for most AR applications.

In comparison to occlusion, the effects of shading is less detrimental. In normal

circumstances, illumination is expected to be from above. Therefore in this research,

the illumination is simply a light source that is above the user and shining toward the

3D model. In works related to the wide baseline matching by Lepetit and Fua (2006),
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the reference image is used to collect approximate illumination conditions. In the work

on real time augmentation of deformable objects, the illumination information is better

approximated using a uniformly colored sphere, which reveals the intensity and direc-

tion of illumination (Pilet et al., 2008). However, as real-time photorealistic rendering

is not currently feasible, it is unlikely that more accurate illumination information will

improve realism further than above methods. However, when rendering does become

more realistic, then shading become much more critical. This in turn requires solving

the problem of extracting the unknown number of light sources in the environment.

There is recent work by Lalonde et al. (2009) with combines a number of weak indi-

cators in video streams to obtain a more robust illumination field. If the final goal

of the AR application is to be indistinguishable from reality, then the geometry and

reflectance properties of the real world are needed, in addition to illumination sources.

On another note, the work by Klein and Murray (2008a) added blurring and various

artifacts common to video captured by low cost camera to the generated 3D graphics.

This is done so that virtual objects appear less distinguishable from the video that they

are augmenting on. Although not directly related to shading, this work represents an

effort to improve the visual coherence between the AR graphics and real world it is

augmenting.

2.3 Design rationales for ARTIST

The primary reason for selecting inertial sensing, GPS and CV, is to combine the

strengths of each sensor to achieve the goals of ARTIST. One of these goals is to be
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able to track over a large physical area with robustness, this necessitated the use of GPS

and inertial sensing. However, ARTIST will also need to be able to accurately augment

3D virtual objects onto real ones at arm length distances. Therefore, a typical user work

flow for ARTIST would be to first navigate to a location, several tens of metres away.

Upon reaching the target location, the user would become interested in details and thus

ARTIST will perform accurate augmentation. Therefore, ARTIST is required to handle

changes in scale smoothly. The initial approach taken in this research was to start by

improving the spatial accuracy of inertial measurement and GPS. In particular, inertial

sensing is of higher priority as it can work in all environments, while GPS is limited to

outdoor areas. Finally, CV will be used to meet the high accuracy requirements. This

is reflected in the order of chapters in this thesis, starting with inertial sensing, GPS,

CV and the implementation of hybrid tracking.

In this research, it is found that error characteristics of current microchip inertial

sensors limit their application to orientation sensing. The inertial measurement unit

can be relied on to provide accurate absolute orientation, to a fraction of a degree,

with reference to the level ground when it is static. The accuracy will decrease when

drifts accumulates during continuous motions, which generally last no more than sev-

eral seconds for human motion sensing. For position sensing, the large random noise in

accelerations measured during motion can cause large drifts in velocity and positions,

rendering these sensors unsuitable, except for very short periods of time. In contrast,

the differential GPS carrier phase method developed in this research can achieve cen-

timetre level of accuracy with slow drift and little jitter. However, the method can
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only measure the change in position from an initial point. Therefore, the tracker still

requires accurate initial positions for augmentation in the reference coordinate frame.

This is solved by using CV to initialize ARTIST using feature rich planar surfaces

as landmarks. When augmenting in featureless areas, tracking is performing primarily

using differential GPS position and inertial orientation. In the course of this research,

CV algorithms has improved in accuracy, robustness and scalability that it is possible

to use it as the central tracker. This is demonstrated in this research using the loosely

coupled version of ARTIST (Section 6.1.1), where only high level position from the GPS

and orientation from the inertial system is used to limit the search set for initializing

the CV tracker. However, current CV algorithms is not completely robust in all envi-

ronments. This can occur in large open flat areas with uniform surface colour where

there is little practical features. Highly regular and repetitive features, such as lines

on glass facaded building, can often confuse CV algorithm by causing feature matching

errors. Therefore, the tightly coupled configuration of ARTIST is also implemented

and tested in Section 6.2.3.

2.4 Mathematical Framework for Hybrid Tracking

The mathematical framework for combining the measurements from the three compo-

nents of ARTIST is based on the Kalman Filter (Kalman, 1960). The filter system

is designed based on the required outputs, available sensor measurements, and sensor

error characteristics. The required outputs for AR are the position, pA, and orienta-

tion, qA, which is parameterized using quaternion. Therefore, pA and qA, are part of
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the ARTIST Kalman Filter system state, and have the subscript, A, to differentiate

them from parameters of the three tracker components. The available sensor measure-

ments and error characteristics are those found in this research to be applicable. The

measurements are used as observables in the Kalman Filter, while the error character-

istics are used for modeling the state transitions They are introduced here and detailed

descriptions can be found in the respective chapters.

For inertial measurement, the senor outputs are the acceleration, aIMU, and angu-

lar velocity, ωIMU. The main sensor error modeled is the gyroscope bias, bg, which

varies with time and cannot be compensated using calibration. For GPS, the main

measurement considered is the Differential Single Difference position, ∆pDSD, which is

the change in position in one time step, computed using the GPS carrier phase mea-

surements from a stationary and a mobile GPS receivers. The derivation of ∆pDSD

is the result of this research on differential GPS positioning described in Section 4.3.

The main systematic error for GPS is the slow drift in position. However, this error

is not modeled in the filter, as the drift has low values and causes significantly lower

errors than the random noise in DSD computations. For CV, the position, pCV, and

orientation, qCV, are directly obtained. Error sources that are not explicitly modeled

are considered as random noise sources. The final type of measurement is available

when the tracker is stationary, which can be accurately detected using the quasi-static

filter (Section 3.3.3)(Saxena et al., 2005) on accelerometer measurements. In this case,

it is certain that the accelerations and velocities of the tracker are zero. The orienta-

tion with respect to the Earth’s local level can also be accurately obtained when the
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accelerometers are static.

The design consists of two simple filters, one for position and one for orientation.

This design is chosen after it is found that the acceleration readings from MEMS based

accelerometers contain significant transient errors during motion. These errors are fur-

ther increased during the conversion to acceleration in navigation frame for integration

to velocity and position, because the errors are coupled with orientation errors. As the

accelerometer readings contribute little for position tracking, it is omitted from the fil-

ter, and is mainly used for quasi-static state detection and measurement of the gravity

vector in static state. Therefore, unlike general kalman filters used for high end IMU,

it is assumed that orientation errors do not couple significantly into position measure-

ments and two smaller filters can be used instead. This simplification is also chosen for

its low computational complexity and is found to be sufficient for this research. The

two filters are presented in the following subsections.

As both filters are based on the Extended Kalman Filter, the generic equations

are presented first. Let xs, and Ps be the system state vector and covariance matrix

respectively. The associated noise vectors are omitted from the following equations for

simplicity in presentation. The state transition function, fs, from time tk to tk+1 is,

xs(k+1|k) = fs(xs(k|k)) (2.1)

The covariance propagation equation is

Ps(k+1|k) = Fs(k)Ps(k)Fs(k)
T +Qs(k) (2.2)

where Fs(k) is the Jacobian of fs with respect to xs, and Qs is the system noise covari-
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ance matrix.

The general form of the measurement equation of a sensor, m, is:

zm = hm(xs(k+1|k)) (2.3)

where hm is the measurement function. The measurement residual equation is,

ym = zm − hm(xs(k+1|k)) (2.4)

where zm represents the measurement from the sensor, while hm(xs(k+1|k)) represents

the estimate by the filter. The Kalman gain is computed using,

Km = Ps(k+1|k)Hm
T(HmPs(k+1|k)Hm

T +Rm)−1 (2.5)

where the measurement matrix, Hm, is the Jacobian of hm, and Rm is the sensor noise

covariance matrix. The state vector and covariance matrix are updated using,

xs(k+1|k+1) = xs(k+1|k) +Kmym (2.6)

Ps(k+1|k+1) = (I−KmHs)Ps(k+1|k) (2.7)

Both noise covariance matrices, Qs(k), and Rm, are diagonal matrices, σI, unless ex-

plicitly stated. This reflects the assumption that the errors in the state parameters and

individual measurements are independent. Although this is not completely true, the

assumption does not affect filter performance in practice, while simplifying the compu-

tation. In this research, the noise covariance matrices are tuned manually to allow the

filter to converge.
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2.4.1 Orientation Filter

The orientation filter is a Multiplicative Extended Kalman Filter (MEKF) (Markley,

2003), which combines the measurements from the IMU and CV. The system state, xΩ,

consists of the orientation error aΩ and the gyroscope bias, bg. The orientation error,

aΩ, is modeled as a Gibbs vector of three small angular errors between the current

estimated and true quaternions, as presented by Markley (2003). Therefore, the state

vector is as follows:

xΩ =

�
aΩ

bg

�
(2.8)

Following the MEKF design, the orientation quaternion is updated outside the filter

using the bias compensated angular velocities, ωA = ωIMU − bg, and the second order

quaternion integration method presented in Eq. 3.6. This updating step takes place

at the same high constant rate as the gyroscope readings. Both the orientation error,

aΩ, and bias, bg, are modeled as random processes. As such, the state propagation is

simply xA(k+1|k) = xA(k|k). For the propagation of the state covariance matrix, PΩ, the

result by Markley (2003) is used.

FΩ(k) =

�
−�ωAx� I3x3
03x3 03x3

�
(2.9)

where ωA = [ωx,ωy,ωz]T, and �ωx� =
�

0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

�
is the skew symmetric matrix.

As presented by Markley (2003), the orientation error, aΩ = 0, at the start of every
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propagation step. The orientation error obtained after each measurement, is integrated

into qA using quaternion multiplication, hence the name MEKF. The error is reset

to zero after each measurement update. The multiplicative step is achieved using the

following equations, where ⊗ represents quaternion multiplication.

ρ =

�
2
aΩ

�
⊗ q

−
A (2.10)

q
+
A =

ρ

|ρ| (2.11)

There are three measurements for this filter. The first is the vector error measure-

ment using the earth magnetic and gravity vectors. The magnetic vector is available at

the constant rate at which the magnetometer is read, while the gravity vector is only

available during quasi-static state. The second measurement is the bias measurement,

which are the gyroscope readings during quasi-static state. The third measurement is

the quaternion obtained using CV, which is only available when at least one feature

rich planar surface is in front of the camera. Therefore, measurements from each sensor

is incorporated one at a time, in a manner similar to the Single Constraint At A Time

(SCAAT) EKF implemented in the HiBall tracker by Welch and Bishop (1997).

For the vector error measurement, let vB, be the vector measured by the magne-

tometer or accelerometer in the sensor frame. As the quaternion, qA, maintains the

orientation with respect to the North-East-Down NED frame 4.2.4.2, the estimated

v̂B, can be obtained by rotating the known vI in the NED frame using qA and Eq.

3.7. As the orientation error, aΩ, is assumed to have small values, the rotation from
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v̂B to vB, can be approximated using skew symmetric matrix as follows.

vB ≈ (I3x3 − �aΩx�)v̂B (2.12)

Therefore, the error measurement vector is derived as follows,

yB = vB − v̂B

= −�aΩx�v̂B

= �v̂Bx�aΩ

The last step is a property of the skew-symmetric matrix. Therefore, the measurement

matrix, HB is

HB =
�
�v̂Bx� 03x3

�
(2.13)

For bias measurement, the biases are directly measured as the gyroscope readings

in static state. The measurement equations are as follows.

zb = ωIMU,static (2.14)

Hb =
�
03x3 I3x3

�
(2.15)

For CV, the measured quaternion, qcv, is in the NED frame. This is obtained by

quaternion multiplication of the quaternion of the planar surface with respect to the

NED frame, and its current quaternion with respect to the camera. The quaternion

of the planar surface with respect to NED frame is in turn determined using the IMU

orientation during the preparation phase. As the orientation errors, aΩ, is represented

by the Gibbs vector, the following is true.

0.5 ∗ aΩ = qcv ⊗ q
−1
A (2.16)
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where q
−1
A is the quaternion conjugate. As the current estimate of aΩ is zero,

zcv = qcv ⊗ q
−1
A (2.17)

Hcv =
�
0.5I3x3 03x3

�
(2.18)

2.4.2 Position Filter

The position filter combines the position measurements from the IMU, GPS, and CV.

The system state, xp, consists of the position, pA, and, vA, which are both in the NED

frame. Therefore, the state vector is as follows:

xp =

�
pA

vA

�
(2.19)

The constant velocity model is used here for state propagation. Therefore,

vA(k+1|k) = vA(k|k) + nv (2.20)

pA(k+1|k) = pA(k|k) + vA(k|k)δt (2.21)

where nv is the system process noise, and δt, is the time since the last state estimate.

The zero mean, Gaussian noise, nv, is explicitly shown here to reflect the assumption

that human motion is constant within a short period of time, and is perturbed by

random changes in velocity. For the propagation of the state covariance matrix, the

following state transition matrix is used.

Fp(k) =

�
I3x3 δtI3x3
03x3 I3x3

�
(2.22)

As with the orientation filter, there are three measurements available. The first is

the position measured by CV, the second is the change in position measured by GPS
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DSD, and the last is the static readings in quasi-static state. Unlike the orientation

filter, the errors here are additive and can be simply incorporated into the filter.

For CV, the position, pcv is obtained using the position of the planar surface in

NED , pNED, its position relative to the camera, pcam, scaled by a factor scv, and

rotated using the camera orientation in NED , which is also qA, maintained by the

orientation filter. Both pNED, and scv, for each planar surface are pre-determined

during the preparation phase, by comparing the CV output with GPS readings.

pcv = scvR(qA)pcam + pNED (2.23)

where R(qA), is the rotation matrix represented by qA, obtained using Eq. 3.7. Al-

though the orientation errors can couple into the position measurement, it is treated as

random noise, as the orientation filter errors do not appear to cause significant errors

here. Therefore, the measurement equations are,

ycv = pcv −Hpcvxp (2.24)

Hpcv =
�
I3x3 03x3

�
(2.25)

For GPS DSD, the measurement is the change in position, ∆pDSD, from the previous

position estimate, pDSD, at which the previous GPS carrier phase measurement is made.

As GPS measurements are not synchronous with other position measurements, pDSD

is maintained separately outside the filter, which is the filter position estimate, pA, at

the time of the last GPS measurement. As such, the measurement equations are,

yDSD = pDSD +∆pDSD −HDSDxp (2.26)

HDSD =
�
I3x3 03x3

�
(2.27)
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Finally, by using the accelerometers to determine the quasi-static state, we can

determine the instances where there is no change in position, and the velocity is zero.

The measurement equations are,

yqs =

�
pA

03x1

�
−Hqsxp (2.28)

Hqs = I6x6 (2.29)

This concludes the design of the hybrid tracking system. The experimental results

using the above filter is presented in Section 6.2.3.
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3.1 Introduction

Inertial measurement is the use of the laws of classical Newtonian mechanics to measure

the motion of a body. Due to the sensing mechanisms available, the linear acceleration

and angular velocity are the quantities measured. The linear acceleration can be accu-

rately measured using accelerometers. By measuring the linear acceleration acting on

a mass, the velocity can be obtained by integration, which can be further integrated

to give the position. The angular velocity is measured using gyroscopes, which can

be integrated to give the orientation. Theoretically, these steps give the displacement

from the initial point, and the orientation with respect to the reference frame. As both

accelerometers and gyroscopes measure the inertial quantities, they are completely self-

contained and do not require external signals. In contrast, positioning systems such

as GPS and most VR trackers require external emitting sources, such as satellites and

beacons transmitting radio, infra-red and ultrasound signals, to operate. Therefore,

highly accurate instruments have been used for space, submarine and aviation naviga-

tion, where there is no available aiding signal. However, they are both too large and

expensive for consideration in this research.

In this research work, silicon-based Micro-Electro-Mechanical System (MEMS) sen-

sors are used. They are highly portable with small size, low weight and low power

consumption. Furthermore, they have low latency and jitter, and high robustness to

external interferences. One of the main problems of using MEMS sensors is the sen-

sitivity to temperature changes. This is due to the underlying material properties of
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the silicon substrate that the sensors are built from. This in turn affects the sensor

bias and drift, which results in orientation errors and position errors. This is presented

in detail in section 3.2.8. Therefore, with current MEMS sensors error characteristics,

they are not suitable for tracking positions.

However, the systematic sensor errors can be well mitigated with sensor calibra-

tion. For the sensors used in this research, they can be calibrated to function well as

independent orientation sensors. Thus, inertial measurement can provide independent

and robust orientation information with respect to the local Earth level surface. When

combined with position trackers, such as GPS and CV, inertial measurements can be

used to reduce jitter and latency. As mechanization equations are well developed in

the navigation fields, this research focuses on sensor calibration methods that do not

require the use of external equipments.

3.2 Background

3.2.1 MEMS Accelerometer

The basic design of an accelerometer is essentially a suspended proof mass. By mea-

suring the forces acting on this known mass, the acceleration can in turn be measured.

A mass suspended with springs functions as a simple accelerometer. This is shown in

Figure 3.1. The displacement gives a measure of the acceleration experienced by the

proof mass.

MEMS-based accelerometers are miniature versions that are machined onto silicon

using the same technique for manufacturing computer chips. Numerous designs ex-
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Figure 3.1: A simple accelerometer.

ist. For example, some designs use capacitance or piezoelectric effect to measure the

displacement. Currently, tri-axial accelerometers packaged as single chips less than

one-centimeter square are commonly available. Conceptually, it consists of a single

proof mass suspended by three sets of orthogonal springs, allowing measurement in the

three axes.

3.2.2 MEMS Gyroscope

A conventional gyroscope consists of a spinning mass suspended using gimbals. The

conservation of angular momentum keeps the gyroscope pointing in the same direction

in inertial space, and this allows for measurement of orientation as the body rotates.

In contrast, MEMS gyroscopes are vibratory sensors that use a different phenomenon

known as the Coriolis Effect (Titterton and Weston, 1997). They measure the angu-

lar rate instead of orientation. A structure is made to vibrate along a specific plane.

Rotation about an axis orthogonal to this plane induces the proportional Coriolis ac-

celeration, which moves the vibratory structure as in the case of accelerometers, and

the angular rate can be measured. The structure used may be shaped like a tuning

fork, a drum or a disc. MEMS gyroscopes made using silicon and quartz are commonly
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available, and the silicon-based gyroscopes are used in this research work.

3.2.3 Strapdown Inertial Measurement Units

An Inertial Measurement Unit (IMU) consists of an array of accelerometers and gyro-

scopes for measuring linear and angular motions. The operating principles and usage

for navigation can be found in references by Farrel and Barth (1999); Grewal et al.

(2001); Jekeli (2000). The development of the highly precise inertial sensors has been

driven by the military, space and aviation industries. This is because inertial navigation

is the only practical self-contained tracking system that can operate in all environments.

In the early systems, the inertial sensors move independently of the body of the vehi-

cle using a gimbaled system, and remain stationary with respect to the inertial frame

through the use of the gyroscopes. Current systems typically utilize the strapdown

configuration, where the sensors are rigidly attached to the body of the vehicle and

are thus non-stationary in the inertial frame. The resulting systems are lighter, me-

chanically less complex and more robust. However, the computation of the orientation

and position is more involved than the gimbaled system, and is presented in detail by

Savage (1998a,b), as well as Titterton and Weston (1997).

3.2.4 Usage in Virtual and Augmented Reality Applications

Due to the large size of early inertial systems, they were limited to large vehicles, such

as submarines and aircrafts. Recently, inertial sensors based on MEMS are readily

available in the millimeter size range. This resulted in the widespread use for VR and

AR applications. As there are no moving components, these IMUs are of the strapdown
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configuration. Foxlin et al. (1998) presented an example of using an IMU to track the

head of a user. However, critical performance parameters, such as the sensor zero

bias drift, are several orders of magnitude worse than those required for independent

position tracking. This results in rapid and unbounded position drifts of MEMS-based

IMUs. Therefore, most reported uses of inertial sensors for AR applications are in

combination with CV trackers in the form of hybrid trackers. They are presented in

section 2.1.2.

3.2.5 Coordinate Frames

An IMU generally consists of orthogonally mounted accelerometers and gyroscopes. In

this work, the IMU is a conventional, strapdown 6DOF tracker (Titterton and Weston,

1997). It consists of a platform with a three-axis, right-handed coordinate system,

known as the sensor frame (S), associated with it. Three accelerometers and three

gyroscopes are rigidly mounted, such that the sensitive axes of one accelerometer and

one gyroscope are aligned along each of the three axes of the platform. This is shown

in Figure 3.2.

Figure 3.2: IMU sensor setup.
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The North-East-Down frame (NED), which is similar to S , is another useful frame

of reference. The NED is the common frame of reference between the inertial system

and the GPS (Section 4.2.4). In this frame, the X-axis and Y -axis are parallel to the

earth’s surface, and aligned to the North and East respectively, while the Z-axis points

downwards.

3.2.6 Strapdown IMU Computations

In a traditional non-strapdown IMU, the platform moves independently of the vehi-

cle such that S coincides with NED (Farrel and Barth, 1999; Grewal et al., 2001;

Jekeli, 2000). In contrast, for an IMU in the strapdown configuration, the platform

is strapped to the structure of the vehicle and the two frames do not coincide. This

necessitates computations (Jekeli, 2000; Savage, 1998a; Titterton and Weston, 1997) to

first determine the transformation from S to NED , so as to transform the accelerations

measured in S to the accelerations in NED , as the IMU navigation requires accelera-

tion measurements in NED and not S . As the origins of the two frames coincide, only

pure rotations are required to align the axes of the two frames.

This section describes the process of obtaining the orientation of the IMU with

respect to NED . Specifically, this means obtaining the rotation matrix RN
S for the

transformation from S to NED . The goal of computing RN
S is to obtain the velocity

vector vN and position vector pN in NED using the following procedures. Let aS and

aN be the acceleration vectors measured in S and NED respectively. Let sfN be the
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specific force acting in NED . Therefore,

aN = RN
S aS (3.1)

sfN = aN − gN (3.2)

(3.3)

where gN is Earth’s gravity in NED . vN and pN are computed by,

vN =

�
sfN − vinitial (3.4)

pN =

�
vN − pinitial (3.5)

In this research, RN
S is parameterized using a quaternion, q. The second order numerical

integration algorithm in section 4.2.3.1.1 Jekeli (2000) is used. At each time step k,

the current quaternion qk is related to the quaternion qk−1 of the previous time step

k − 1, using Eq. 3.6.

qk =

�
cos(0.5|δb|)I4 +

1

|δb| sin(0.5|δb|)B
�
qk−1 (3.6)

where δb = wk∆t =
� δbx
δby
δbz

�
, |δb| =

�
(δbx)2 + (δby)2 + (δbz)2, andB =

� 0 δbx δby δbz
−δbx 0 δbz −δby
−δby −δbz 0 δbx
−δbz δby −δbx 0

�
,

where ∆t is the time interval between the time steps and I4 is a 4x4 Identity matrix.

The vector δb is obtained from the angular velocity wk, which is measured using the

gyroscopes. This is used in Eq. 3.6 to compute the current quaternion qk from the

previous quaternion qk−1.

Using the initial quaternion q0 and the sequence of wk, from k = 0 to k = n, the

quaternion, qn = (a, b, c, d)T at time step k = n can be obtained. The rotation matrix

RN
S is obtained from qn using Eq. 3.7.
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RN
S =




a2 + b2 − c2 − d2 2(bc+ ad) 2(bd− ac)

2(bc− ad) a2 − b2 + c2 − d2 2(cd+ ab)
2(bd+ ac) 2(cd− ab) a2 − b2 − c2 + d2



 (3.7)

3.2.7 Sensor Calibration

High-end inertial sensor calibration and error modeling are well-established fields (Tit-

terton and Weston, 1997). The basic idea is to compare the sensor output with known

values generated using calibration instruments. Researchers have also used optical

trackers (Kim and Golnaraghi, 2004) to calibrate low-end inertial sensors for less de-

manding applications. In previous methods, the main difficulties are in the generation

of accurate external calibration values, as well as precisely mounting and moving the

IMU. These calibration procedures often require costly, specialized and high precision

equipment, which may not be available to researchers who are seeking to use the IMU

for basic orientation measurements. Furthermore, the low cost sensors do not justify

the high cost of the calibration instruments. Therefore, calibration methods that can

be carried out by the users with minimum amount of equipment are desired.

Calibration methods that can be carried out by the users with minimum amount

of equipment typically fall into two classes. The first class uses Kalman filters and

carefully designed error models with special maneuvers to expose the various model

parameters (Foxlin and Naimark, 2003; Grewal et al., 1991). The filters developed are

relatively complex as the model parameters are difficult to separate and the maneuver-

ing needs to be fairly precise. Another class of calibration methods (Lötters et al., 1998;

Saxena et al., 2005; Skog and Händel, 2006), utilizes the property that the magnitude
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of the acceleration measured using a static tri-axial accelerometer is always exactly 1g,

regardless of the orientation.

The work by Lötters et al. (1998) provided a method to calibrate the biases and

scale factors of a tri-axial accelerometer using the gravity vector as a stable and accurate

standard. The accelerometer can be fully calibrated by placing it in various orientations

without the need to be precise. They illustrated that it is possible to eliminate the need

for physical precision by using mathematical constraints. This idea is further extended

by Skog and Händel (2006) to calibrate for axis misalignment and the gyroscope. As

their method for calibrating the gyroscope requires the use of an accurate turn rate

table, it fails to achieve complete independence from external equipment, as with the

accelerometer. A recent work on IMU and GPS integration by Syed et al. (2007) utilized

26 positions to calibrate the tri-axial accelerometer. The rotation of the Earth and a

turntable are used to calibrate the gyroscope. The requirement of the use of external

equipment is removed in this research (Fong et al., 2008a), and the details are described

in detail in Section 3.3.

3.2.8 Sensor Performance and Error Characteristics

The types of applications that an inertial sensor can be used for depend largely on its

error characteristic and accuracy. Due to the use of integration for inertial measure-

ments, the errors accumulate very quickly over time. For orientation tracking using

rate gyroscope, the error grows linearly with time. For example, if there is a constant

minute error of 0.01◦/sec in angular velocity measurement, the error in the integrated

orientation becomes 0.6◦ in one minute and 36◦ in an hour. Due to the double in-
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tegration, the rate of error growth is proportional to the square of the elapsed time

for position tracking using accelerometers. For example, consider the case where the

constant error in acceleration measurement is 0.01m/sec2. After one minute, the er-

rors in velocity from single integration and position from double integration become

0.6m/sec and 0.5x0.01x602 = 18m respectively. The problem is further complicated

when the error is not constant and varies randomly with time. Such dynamic errors

cannot be compensated by calibration. Thus, the dynamic error characteristics become

more critical than the static accuracy.

The main errors for MEMS accelerometers are the zero bias, scale factor errors,

cross-axis sensitivity. Zero bias error is the non-zero error reading that the sensor gives

when it is at the zero position. For accelerometers, this bias varies predictably with

temperature and shows little random drifts. Scale factor error occurs when the scale

used for converting the electrical voltage output from the sensor to physical measure-

ment is different from the specified value. This error can also be different along the full

scale of measurement, resulting in non-linearity. Finally, the sensor can be sensitive to

acceleration orthogonal to its sensitive axis. For MEMS gyroscopes, errors such as zero

bias, scale factor and sensitivity to cross axis rotation are present. In addition, there are

earth’s gravity, or g-dependent bias and random zero bias drift. The g-dependent bias

is the zero bias varying with the acceleration acting on the gyroscope. The random zero

bias is the random walk of the zero bias, which is unpredictable as it changes in random

steps. This random bias error is the primary factor limiting the use of MEMS-based

IMU.
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In this research work, most sensor errors are systematic and it is possible to calibrate

and compensate for these errors. This is the focus for the inertial measurement aspect in

this research work. However, the significant random bias drift of the gyroscope prevents

the use of inertial sensing for position tracking. This is because for position tracking,

accurate orientation of the accelerometers is required so that the acceleration can be

transformed from the body frame to the navigation frame. However, the gyroscope bias

results in errors in the orientation, and thus the acceleration in the navigation frame.

As an illustration, the bias of ring laser gyroscopes used for long term navigation

varies by 0.001◦ in an hour, while MEMS gyroscopes commonly available have a drift

of more than a thousand degrees in an hour (Titterton and Weston, 1997). This

represents a difference of at least seven orders of magnitude. It is possible to use the

accelerometers and magnetometer to directly measure the earths gravity and magnetic

field respectively. This allows the orientation to be obtained in low dynamics conditions.

As the human user rarely maintains constant motions, the gyroscopes can maintain the

orientation satisfactorily in these short durations of high dynamics. Therefore, inertial

sensing can be used as an independent orientation tracker.

3.3 Methods for In-Field User Calibration of Inertial Mea-
surement Unit without External Equipment

Most calibration procedures start with the development of error models for each type of

sensor. This is followed by fitting the models to the sets of data collected for calibration,

in order to obtain the error compensation parameters. Error models are generally

available for traditional high-end inertial sensors (Farrel and Barth, 1999; Grewal et al.,
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2001; Jekeli, 2000; Titterton and Weston, 1997). Compared to high-end sensors, current

MEMS-based sensors have low signal to noise ratios. Bias, scale factor and temperature

effects dominate the errors. Therefore, earlier sophisticated error models cannot be

directly applied. Barshan and Durrant-Whyte (1995) demonstrated an early method

to fit error models of gyroscope bias to early solid-state sensors. In the following, sensor

error models and proposed methods to calibrate the inertial sensors without the use of

external equipment are presented.

This section presents published methods (Fong et al., 2008a) that were developed

during the course of this PhD research. They are designed to calibrate and compensate

for non-zero biases, non-unit scale factors, axis misalignments and cross-axis sensitiv-

ities of MEMS-based IMU. The methods depend on the Earths gravity as a stable

physical calibration standard. Specifically, the calibration of gyroscopes is significantly

improved by comparing the difference in the outputs of the static accelerometer and the

IMU orientation integration algorithm after arbitrary motions. The derived property

and the proposed cost function allow the gyroscopes to be calibrated without external

equipment. A custom-made prototype IMU is used to demonstrate the effectiveness

of the proposed methods. Two types of calibration data are collected. The first type

is carefully obtained using prescribed motions. The second type is less rigorously col-

lected from the IMU when it is mounted on the head of a user or hand held with brief

random movements. With calibration, the observed average static angular error is less

than a quarter of a degree and the dynamic angular error is reduced by a factor of two

to five.
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3.3.1 Motivation

Although calibrated IMUs are commercially available, it can be advantageous to build

custom IMUs, e.g., to achieve smaller sizes and better ergonomics, to take timely

advantage of newer, higher performance sensors, to circumvent the limitations of com-

mercial units or to reduce costs. Outside the inertial navigation field, calibration can

be challenging due to the lack of certified calibration equipment. The purpose of the

proposed methods is to demonstrate simple, yet effective accelerometer and gyroscope

calibration. This is to improve the accuracy of the orientation measured by the IMU.

Traditional calibration equipments cost many times more than MEMS-based sen-

sors. Therefore, it is not economical to procure such equipments to quantify the errors

of these sensors, so that they can meet the requirements of human scale inertial mea-

surement. This forms the motivation to develop calibration methods that do not rely

on high physical precision to fully exploit the available accuracy of current MEMS-

based sensors. As an illustration, the maximum zero bias and sensitivity of a MEMS

accelerometer at the time of writing are 0.1g and 0.001g respectively. One way to

directly measure the zero bias of an accelerometer is to mount it with its axis perpen-

dicular to the Earths gravity vector, such that a zero reading can be expected. In such a

position, the accelerometer can detect deviations as small as sin−1(0.001) = 0.06◦ from

the gravity vector. Therefore, to fully exploit the sensitivity of the accelerometer so

as to accurately determine the zero bias, the combined tolerance of the test equipment

and the mounting should be tighter than 0.01◦, with respect to the gravity vector.
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3.3.2 Development of the Methods

The Earth’s local gravity vector is used as the physical standard for calibrating the

IMU. It is readily available and is a very stable quantity. A tri-axial accelerometer is

calibrated using the following property:

(p1): The magnitude of the static acceleration measured must equal that of the
gravity (Lötters et al., 1998).

This is a tri-axial orthogonal constraint, where values measured on each axis are

not independent. For a tri-axial gyroscopic system, the proposed property is:

(p1): The gravity vector measured using a static tri-axial accelerometer must
equal the gravity vector computed using the IMU orientation integration algorithm,

which in turn uses the angular velocities measured using the gyroscopes.

This property holds whenever the IMU is static after arbitrary motions. Both

properties (p1) and (p2) impose the physical and mathematical constraints on the

sensor outputs, which are used to calibrate the sensor errors. As precise motions and

externally generated calibration standards are not required, it is possible to calibrate

the IMU by hand holding it and moving it for a few minutes, as shown in section 3.3.5.3.

This greatly reduces the time and difficulty involved in calibrating the IMU, especially

for the gyroscope.

Lötters et al. (1998) proposed the use of (p1) to calibrate accelerometer biases

and scale factors. Their method does not require precise inclinations and the model

parameters are fitted using robust estimation techniques. This was extended by Skog

and Händel (2006) to include sensor axis misalignment. In this case, the sensor axes in
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the sensor frame (S) are now non-orthogonal. As the misalignment is of a small angle,

the orthogonalization of the axes can be performed linearly. Let the orthogonalized

axes form the platform frame (P). Eq. 3.8 shows the tri-axial accelerometer error

model proposed by Skog and Händel (2006) to convert the k-th acceleration vector aS,k

measured in S , to aP,k measured in P .

aP,k = MS(aS,k − ba) (3.8)

The bias vector is ba, the misalignment matrix is M =

�
1 −αyz αzy
0 1 −αzx
0 0 1

�
, and the scale

matrix is S =

�
sxx 0 0
0 syy 0
0 0 szz

�
. αij is the small rotation of the i-th axis of the sensor about

the j-th axis in P , in order to align with the i-th axis in P . The misalignments of the

axes are illustrated in Figure 3.3. Skog and Händel (2006) proposed a similar model for

calibrating the gyroscopes, but the derived cost function would require a turntable with

turn rates accurate to within 0.1◦ per second. Therefore, their gyroscope calibration

method is not independent of external equipment. In this research, (p2) is proposed to

eliminate the use of turntables, or any other specialized equipment for calibrating the

gyroscope.

3.3.2.1 Tri-axial accelerometer error model

In this research, the model in Eq. 3.8 is improved by considering the cross-axis sensitiv-

ities, which can be up to five percent of the full measurement scale in practical MEMS

accelerometers (Titterton and Weston, 1997). S is modified as S∗ =

�
sxx sxy sxz
syx syy syz
szx szy szz

�
,

where sij is the sensitivity of the i-th axis of the accelerometer to the accelerations in
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Figure 3.3: The misalignment of sensor axes from the ideal orthogonal configuration.

the j-th axis. Ideally, S∗ is an Identity matrix, meaning that there is no scaling error

along the axis, and the sensor is not sensitive to cross-axis acceleration.

As the effects of the minor cross-axis sensitivity and the sensor misalignment are

similar, and there is no requirement to obtain them as separate quantities, M is mul-

tiplied with S∗ to give matrix E in Eq. 3.9.

E =




sxx − syxαyz + szxαzy sxy − syyαyz + szyαzy sxz − syzαyz + szzαzy

syx − szxαzx syy − szyαzx syx − szzαzx

szx szy szz



 (3.9)

Ignoring the products between the off-diagonal terms of both M and S∗, which have

small values, an approximation of E, E∗, can be obtained as follows in Eq. 3.10:

E =




sxx sxy − syyαyz sxz + szzαzy

syx syy syx − szzαzx

szx szy szz



 =




e00 e01 e02
e10 e11 e12
e20 e21 e22



 (3.10)

E∗ is a diagonally dominant correction matrix. The proposed error model for a

tri-axial accelerometer setup is given in Eq. 3.11.
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aP,k = E∗(aS,k − ba) (3.11)

The model parameters in matrix E∗, and the bias vector ba, are collected to form

θa = {e00, e01, e02, e10, e11, e12, e20, e21, e22, bx, by, bz} to define the function in Eq. 3.12.

h
�
aS,k,θa

�
= E∗(aS,k − ba) = aP,k (3.12)

Assuming that the magnitude of gravity is unity, the cost function proposed by

Skog and Händel (2006) to measure the amount of deviation from the ideal 1g (p1) for

K sets of measurements is shown in Eq. 3.13.

L
�
θa

�
=

K−1�

k=0

�
1− �h

�
aS,k,θa

�
�2
�2

(3.13)

3.3.2.2 Gyroscope bias removal during calibration

The most significant source of error for gyroscopic systems is the random bias drift.

Random gyroscope bias drifts can be characterized using the Allan Variance, σ2
a (El-

Diasty et al., 2007; Niu and El-Sheimy, 2005; Sabatini, 2006), which measures the

variance of the differences between consecutive interval averages. It is originally used

to study clock drifts, and is defined in Eq. 3.14.

σ2
a =

1

2

K�

k=1

�
y(t, k)− y(t, k − 1)

�2
(3.14)

where y(t, k) is the k-th interval average which spans t seconds.
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In this research work, static gyroscope signals were collected for one hour, and

analyzed by varying t from 1 second (K = 3600) to 400 seconds (K = 9). As t

increases, the effects of noise are reduced, and the value of σ2
a decreases and converges

to the average of the random drifts. The least value of K is chosen as 9 so that the

number of samples or interval averages is not too small for statistical reasoning to be

applied.

Figure 3.4 shows the Allan Variance plot of the three gyroscopes in the prototype

IMU described in section 3.3.5. The drift characteristic of the x-axis of the gyroscope

is the worst, as its σ2
a takes 20 seconds to converge. This can be due to defects in

the manufacturing of this gyroscope or the assembly of the IMU. This implies that

the gyroscope bias should be averaged over a period of at least 20 seconds so that

the average bias will not change significantly in the next few 20 seconds interval. For

the purpose of calibration, averaging the static gyroscope signals over a period of time

determined using the Allan Variance analysis above would keep the bias drift minimal

during the following time period when the calibration data is collected.

Figure 3.4: The Allan Variance plot of the three gyroscopes in the prototype IMU.
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3.3.2.3 Tri-axial gyroscopic system error model

The misalignments, scale factors and cross-axis sensitivities are modeled next. For

brevity, the general notation of the accelerometer model is used, except for the turn

rate vector w = (wx, wy, wz)T, in radians per second. The error model is as shown in

Eq. 3.15.

wP,k = MgS
∗
g

�
wS,k

�
(3.15)

where S∗
g =

�
sxx sxy sxz
syx syy syz
szx szy szz

�
and Mg =

�
1 −αyz αzy

αxz 1 −αzx
−αxy αyx 1

�
.

In this model, wS,k is assumed to have zero biases, i.e., the existing biases have

been removed using a separate gyroscope bias model. This is because gyroscope biases

can change over time, while the other model parameters remain relatively constant.

Therefore, the gyroscope biases have to be modeled separately. For the short duration

of the calibration in this research, the random gyroscope biases are effectively removed

by averaging the static signals over 20 seconds. An example of a more sophisticated

bias compensation technique has been reported by Sabatini (2006).

Mg is the full misalignment correction matrix, where there is no predefined align-

ment unlike for M (Skog and Händel, 2006). As with the accelerometers, minor mis-

alignments and cross-axis sensitivities are not distinguished, and Eq. 3.16 is obtained.

wP,k = Eg(wS,k) (3.16)
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A new cost function is proposed here using (p2). First, define Ψ as the operator

that converts a sequence of wP,k, from k = 0 to k = n, and the initial gravity vector

u0, to the gyroscope computed gravity vector ug. Therefore,

ug = Ψ(wP,k,u0) (3.17)

Ψ can be any algorithm that computes the rotation matrix R through integrating

the angular velocities wP,k. The method used in this research is outlined in section

3.2.6. The computed gravity vector ug is obtained from the starting gravity vector u0,

using Eq. 3.18.

ug = Ru0 (3.18)

Let ua be the gravity vector measured using the static accelerometer. Figure 3.5

shows the divergence of ua and ug in an uncalibrated IMU that is rotated 180◦ about

a single axis. The jagged lines are the values of each of the three axes of ua, while

the smooth lines are the corresponding values for ug. From Figure 3.5, it is clear

the gyroscope sensor errors have accumulated and caused the divergence between the

jagged and smooth lines to increase as the rotation continues.

The nine elements of Eg are collected to form θg for the definition of the proposed

cost function in Eq. 3.19.
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Figure 3.5: Plots of the three axes of ua (jagged lines) and ug (smooth lines) in an
uncalibrated IMU.

L
�
θg

�
=

K−1�

k=0

�ua − ug�2 (3.19)

As state in (p2), the relation ug − ua = 0 is true for all the arbitrary motions

between the static states, thus enabling the gyroscopes to be calibrated without the

aid of accurate reference turn rates or precise maneuvers. This is an improvement over

the previous calibration methods presented in Section 3.2.7, because the calibration

process of the gyroscopes is now totally independent of external calibration values.

The calibrated accelerometers, which already exist in the IMU, provide the required

gravity vector measurements. This means that the IMU can be fully calibrated as it

is, without the need for any precision mounting on another instrument. However, due

to sensor errors and algorithm errors in Ψ, ua measured using the accelerometers and

ug computed using Ψ on the gyroscope measurements, are not equal in practice. The
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goal is to find the values for the error parameters presented in this section, so that the

difference between ua and ug is minimum.

3.3.3 Quasi-static detection for measurement of static sensor outputs

During calibration, the quasi-static detector (Saxena et al., 2005) is used to ensure

that the IMU is not subject to minute low frequency motions and vibrations that

are imperceptible to the user. The detector proposed by Saxena et al. (2005) uses

both the accelerometer and gyroscope. In this research, only the accelerometers are

required to determine the quasi-static state of the IMU. The output of each axis of the

accelerometer is first high-pass filtered, followed by a rectification and then low-pass

filtered. Let a be the vector of the output of a tri-axial accelerometer, HPF() be the

high pass filter, RECT() be the rectification operator and LPF() be the low pass filter,

the quasi-static state vector s is given by Eq. 3.20.

s = LPF
�
RECT

�
HPF(a)

��
(3.20)

The square of the magnitude of the vector s can be used to detect the motions and

vibrations that are imperceptible to the user. The gyroscopes are found to be redundant

as the tri-axial accelerometer can detect the angular motion as well. When the IMU

is rotated, the direction of the gravity vector with respect to the IMU changes. This

causes the output of each axis of the accelerometer to change, which leads to the square

of the magnitude of s to increase above a preset detection threshold. This detector

improves the accuracy of the static gravity vector measurements, which are required
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for both the accelerometer and gyroscope calibrations. The quasi-static detector is also

essential when the data collection is performed in the field, where it is almost impossible

to control the disturbances on the IMU.In this research, HPF() is implemented as a

digital 2 Hz order 1 Butterworth high pass filter. LPF() is implemented using a 2 Hz

order 1 Butterworth low pass filter. The detection process for one axis is shown in

Figure 3.6. The HPF() removes the gravity component from each axis, which is a low

frequency signal when the IMU is quasi-static. RECT() prevents false detections of

the quasi-static state when the high-passed signal crosses the zero axis. The LPF()

smoothes the signal and removes the spikes.

Figure 3.6: The process of quasi-static detection, showing the original signal going
through high pass filtering, followed by rectification and low pass filtering.

3.3.4 Proposed Calibration Procedures

This section is divided into three sub-sections. Sections 3.3.4.1 and 3.3.4.2 present the

proposed controlled data collection procedures for the accelerometers and the gyro-

scopes respectively. These procedures have been designed to increase the probability

that the non-linear optimization process will arrive at the correct parameter values. It

is important to provide more data points than the number of parameter values to be
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fitted, and with maximum data variability so as to avoid pathological conditions in the

function space of the cost functions. This occurs because the function is highly non-

linear and typically has several local minima. If the data does not have high variability,

the minimization procedure may be trapped in one of the local minima and miss the

global minimum, which results in calibration errors. The numbers of data points pro-

posed in the latter sections are those that have been found to work well in simulations

conducted in this study and with real data. Section 3.3.4.3 presents a proposed data

collection procedure that is less rigorous, in which the users alternate between moving

and keeping the IMU stationary. In this case, only one data set is required to calibrate

both the accelerometers and the gyroscopes. The variability of the data is measured

statistically to ensure that the change in the orientation of the IMU is large enough

to overcome the effects of the sensor noise. In the experiments, an angular difference

of 10◦ between the static states has been found to be a good minimal value for the

non-linear optimization to produce results with the standard deviations reported in

Section 3.3.5.3.

3.3.4.1 Controlled collection of accelerometer calibration data
(Procedure 1)

For the tri-axial accelerometer, the IMU is placed in 18 positions, i.e., K = 18, to obtain

18 readings to compute the cost function L
�
θa

�
. These 18 positions consist of resting

the IMU on its six flat faces and 12 edges. This proposed arrangement allows the gravity

vector measurements to be spread evenly over the unit sphere about the center of the

platform frame (P) (Lötters et al., 1998). As there are 12 model parameters to fit, it
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is prudent to have more than 12 measurements. Next, the static signals are averaged

over a period of one second to reduce noise. L
�
θa

�
is minimized using the Downhill

Simplex optimization method (Press et al., 1992). The initial parameter values are set

using the nominal values. This procedure is hereafter referred to as Procedure 1.

3.3.4.2 Controlled collection of gyroscope calibration data (Procedure 2)

After the accelerometer has been calibrated, it can be used to serve as a static gravity

vector sensor for calibrating the gyroscopes. 18 sets of continuous accelerometer and

gyroscope samples are taken. Each set consists of 20 seconds of quasi-static samples

for measuring the gyroscope biases and gravity vector. This is followed by a rotation

to a new orientation, and a further one-second of quasi-static samples to measure the

gravity vector in the new orientation. The period of 20 seconds has been determined

using the Allan Variance analysis in section 3.3.2.2. The IMU is mounted on a hinged

surface to ease rotations. The precision of the mounting is not critical so long as the

mounting is secured. Any rotation speed is acceptable as long as it spans and stays

within the measurement range of the gyroscope, e.g., 300◦/sec for the prototype IMU

used in this research. The main requirement is that the IMU must be rotated through

large angles, so that the minute systematic errors are accumulated by the integration

of the angular velocities to cause significant divergence between ug and ua. From Eq.

3.15, the effects of the various model parameters can only be observed when the angular

velocities are non-zero. Therefore, the motion prescribed in the following paragraph

is meant to ensure that the errors due to each model parameter are accumulated such

that its effect in the divergence is significant. If the amount of rotation is small, the
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accumulated errors will be of smaller values, and can be overwhelmed by the effect of

random noise. This in turn can adversely affect the non-linear optimization process.

The IMU is mounted in nine different positions, where three of the positions have

one of the axes parallel to the hinge, as illustrated in Figure 3.7. If the IMU were

precisely mounted, it would measure zero readings about the other two axes. However,

precise mounting is not required in this calibration method as the angular velocities

about all three axes are measured simultaneously. The use of property (p2) provides the

constraint to compute the model parameters. As illustrated in Figure 3.8, each of the

remaining six positions has one axis perpendicular to the hinge and the other two axes

at an angle of approximately 45◦ to the hinge. This gives non-zero measurements about

the two axes and better exposes the misalignment and cross-axis sensitivity parameters.

The clockwise and counter-clockwise rotations of approximately 180◦ about the hinge

give a total of 18 sets of data. For ease of reference, this procedure is denoted as

Procedure 2. The process of computing the gyroscope error model parameter values

uses the same non-linear optimization method as in the case of the accelerometers.

Figure 3.7: Three cases of the IMU with one axis parallel to the rotation hinge
(dark edge of the grey surface) for gyroscope calibration.
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Figure 3.8: Six cases of the IMU with one axis perpendicular to the rotation hinge
(dark edge of the grey surface) for gyroscope calibration.
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3.3.4.3 In-field collection of calibration data (Procedure 3)

The proposed gyroscope calibration method imposes no restrictions on the type of

rotations between the static states. This method, together with the use of the quasi-

static detector, and the fact that accelerometer calibration does not require precise

inclinations, enables the IMU to be calibrated using data that is collected less rigorously.

The following proposed data collection and processing method, hereafter referred to as

Procedure 3, consists of first keeping the IMU stationary for a period of 20 seconds to

remove the random gyroscope bias. Next, the IMU is moved and paused for at least

24 times, which is twice the number of accelerometer error model parameters, so as to

obtain the static acceleration measurements and gyroscope readings for calibrating both

types of sensors. The quasi-static detector is used to indicate to the user that the IMU

has been kept below a pre-defined quasi-static threshold for a preset period of time,

after which the IMU can be moved again. In practice, a threshold of 1.16x10−4g2 and

a period of 0.25 seconds are found to be suitable values for obtaining good calibration

data. To provide additional buffer against bad data points, the IMU is moved and

paused for a total of 30 times, instead of 24 times. Finally, two variations are considered,

viz., the first variation involves the IMU being held in the hand (Procedure 3(hand))

and the second with the IMU mounted on a users head (Procedure 3(head)). For

Procedure 3(hand), the IMU is left stationary for 20 seconds for the initial gyroscope

bias measurement. For Procedure 3(head), this stationary period is reduced to two

seconds, as it is found that it is difficult for a user to keep his head still for 20 seconds.

The resultant value of the accelerometer cost function L
�
θa

�
in Eq. 3.13 provides
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an indication of the residue error, as well as the quality of the data. The quasi-static

threshold is varied from 5.8x10−5g2 to 3.5x10−4g2 in steps of 5.8x10−5g2, and the static

time is varied from 0.05 to 0.5 seconds, in steps of 0.05 seconds, in order to find the

best values to use for a set of data. The search across a range of quasi-static threshold

values and static times is performed because the motion profile is uncontrolled and the

residue error is used to find the least noisy set of static gravity vector measurements.

The number of quasi-static sets will vary depending on the threshold and the length

of the static time. Generally, shorter time lengths will give a greater number of quasi-

static pauses, which tend to be noisier as well. Higher thresholds can result in a lower

number of quasi-static stages. This is because there are cases where the IMU is moved

very slightly, which would cause the data to be separated into two sections when the

threshold is low, and considered to be continuously static when the threshold is high.

The ranges mentioned above are determined empirically to give good calibration

results. When the quasi-static threshold is set below 5.8x10−5g2, the number of sets

of calibration data obtained is frequently less than 30, as the IMU is continuously

subject to minute vibrations of the users hand or head. Furthermore, sets of measure-

ment with the lowest residue error are rarely obtained with quasi-static threshold above

3.5x10−4g2. Therefore, setting this upper threshold reduces the amount of computation

required. Setting the step size lower than 5.8x10−5g2 generally produces slight improve-

ment at a large increase in the computation time. The variances of the accelerometer

readings for each of the three axes are used to ensure that the IMU is moved sufficiently.

In this case, a minimum variance of 0.2g for each axis is found to be sufficient to ensure
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that most motions in the data set are at least 10◦ apart. If the range of motion is too

small, the non-linear optimization process may not produce meaningful results.

The above process simultaneously determines the values of the accelerometer error

model parameters, the quasi-static threshold and the length of the static time, which

gives the lowest value of the cost function L
�
θa

�
. After performing these steps, the

accelerometer is considered to be calibrated. Next, the gyroscope data is separated

into sets using the quasi-static states determined using the optimal threshold and time.

The gyroscope biases measured using the initial long pause of the IMU allows the bias

to be effectively removed from all the gyroscope readings. The non-random errors in the

accelerometer readings are compensated using the accelerometer error model parameter

values to obtain the gravity vectors. The bias-free gyroscope readings and the gravity

vectors are used to compute the parameter values of the gyroscope error model. In

summary, the data collected using the proposed procedure is first analyzed to obtain

the static accelerometer readings for the calibration method presented in section 3.3.4.1.

The result from the first step is then used to analyze the gyroscope readings to provide

the data required by the method presented in section 3.3.4.2. Figure 3.9 illustrates the

process graphically.

3.3.5 Calibration Results and Analysis

The results in this section are obtained from the data collected using a custom-built

IMU, measuring 51mm x35mm x12mm. The tri-axial accelerometer and gyroscopic

system give rise to a total of six sensor outputs. Each sensor output is sampled at a

rate of 1000Hz, implying that 6000 sensor readings are collected per second. Figure
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Figure 3.9: The procedural flow for in-field calibration data collection.
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3.10 shows a picture of the custom-built IMU.

Figure 3.10: The custom-built IMU used in the experiments.

3.3.5.1 Accelerometer calibration with controlled data

To study the effects of noise in the measurements, 30 sets of 18 measurements were

collected to obtain the mean and the standard deviation of the model parameter val-

ues. This is shown in Table 3.1. The large number of repetitions of Procedure 1 and

the resultant low standard deviation values provide evidence that proper data for the

non-linear optimization process can be collected using the proposed controlled data

collection process. Each of the 30 sets of data provides a noise-contaminated measure-

ment of the model parameters. To make the best use of all the data collected; the

mean values in Table 3.1 are used in Eq. 3.21 to define the resultant error model for

the tri-axial accelerometers in the prototype IMU.

aP,k =




1.001 0.01 0.005
−0.01 1.009 0.013
0.014 0.015 1.000



�
aS,k −




0.025
−0.022
0.019



�
(3.21)

To show that the errors are effectively compensated, 100 measurements were taken
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Table 3.1: Mean and standard deviation of all the parameter values (dimensionless)
obtained from calibration using 30 sets of data. The scale factor and bias parameters

are emphasized.

Mean Standard Deviation
e00 1.001 0.002
e01 0.010 0.008
e02 0.005 0.012
e10 -0.010 0.008
e11 1.009 0.002
e12 0.013 0.011
e20 0.014 0.012
e21 0.015 0.010
e22 1.000 0.002
bx 0.025 0.002
by -0.022 0.002
bz 0.019 0.002

with the IMU mounted in various positions. The average and maximum magnitudes of

the errors from the ideal 1g are shown in Table 3.2. The average error and consequently

the errors of the inclination angle are reduced by approximately five times.

Table 3.2: The average and maximum observed magnitudes of errors from the ideal
1g for the measured static accelerations. The angular errors are shown in brackets.

Average Error Max Observed Error
No calibration 20.1mg 44.9mg

(1.15◦) (2.57◦)
With calibration 4.0mg 28.1mg

(0.23◦) (1.61◦)

The results in Table 3.2 show that for either the pitch or roll angles, the proto-

type IMU has an average angular error of 0.23◦(sin−1(0.0040)) and a maximum error

of 1.61◦(sin−1(0.0281)) after calibration. As the magnitude of the gravity vector is

assumed to be the only quantity known, the angular error here is calculated for the

worst case, where the full error appears on a single accelerometer axis that is perfectly
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horizontal, i.e., perpendicular to the gravity vector. An error of sin(θ)g will result in

the pitch or roll angle being measured as θ◦ instead of zero.

3.3.5.2 Gyroscope calibration with controlled data

For the gyroscope calibration, Procedure 2 was repeated to ascertain its stability in

the presence of measurement noise. After four repetitions, the computed values of the

gyroscope error model parameter remained constant and thus no further repetitions

were made. Table 3.3 shows the mean and standard deviations of each parameter.

Table 3.3: The mean and standard deviations of gyroscope model parameter values
(dimensionless).

Mean Standard Deviation
e00 0.944 0.006
e01 0.000 0.001
e02 -0.008 0.002
e10 -0.015 0.001
e11 0.947 0.008
e12 -0.008 0.003
e20 -0.015 0.001
e21 0.004 0.004
e22 0.998 0.003

As in the case of the accelerometer, to make use of all the data statistically, the

mean values are used to define the gyroscope error model for the prototype IMU in Eq.

3.22.

gP,k =




0.944 0.000 −0.008
−0.015 0.947 −0.008
−0.015 0.004 0.998



�
gS,k

�
(3.22)

To illustrate that the model represented by Eq 3.22 effectively compensates the

gyroscope errors, the average magnitude of the error vector between ug and ua is used.
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The original raw data collected for the calibration, denoted as the calibration set, is

used. In addition, two test sets of raw data are used. The first test set, test set

1, consists of 26 samples, of which 18 samples were obtained using the same motion

profile described in Procedure 2, except that the angle of rotation is 90◦ instead of

180◦. For the remaining eight samples, the IMU is mounted so that none of the axes is

parallel to the rotation axis. A rotation of 90◦ in one direction about the rotation axis

causes the gyroscopes to measure non-zero angular velocities on all three axes. The

second test set, test set 2, consists of 30 samples, which are divided into six groups.

Each group consists of five samples where the motion is a simple rotation of 180◦ in a

single direction about one axis of the IMU. As there are three axes and two directions of

rotation, there are a total of six combinations. All the three data sets have 20 seconds

of static data to determine the gyroscope bias.

By validating the gyroscope error model against test set 1 and test set 2, which are

not collected using Procedure 2, it can be shown that the effectiveness of the gyroscope

error model is not limited to the prescribed motions used during calibration, but applies

to general cases as well. Table 3.4 shows the results. The angular deviation is deter-

mined by forming an isosceles triangle with vectors ug and ua as the two equal sides,

and vector (ug - ua) as the base. When the IMU is in motion, the dynamic orientation

is maintained using only the gyroscope as the accelerometer measures the accelerations

in addition to the gravity. Without applying the sensor error model, the divergence of

ug and ua can cause an angular error greater than 10◦ for all three sets of data, which

is visually perceptible. The error is reduced five times after applying the model in Eq.
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3.16 for the calibration set and the test set 1, making the error less perceptible. A lower

divergence allows the dynamic orientation to be accurately maintained over a longer

period of time. For test set 2, the parameter values have changed due to temperature

changes, as pointed out by El-Diasty et al. (2007). However, the error is still reduced

more than two times.

Table 3.4: Average magnitude of divergence and angular deviation between ug and
ua, with and without applying the gyroscope error model in Eq. 3.22.

Calibration set Test set 1 Test set 2
Without gyroscope 213.7mg 342.0mg 236.7mg

error model (12.30◦) (19.70◦) (13.60◦)
With gyroscope 37.5mg 65.4mg 98.1mg
error model (2.15◦) (3.75◦) (5.62◦)

3.3.5.3 Calibration with data collected using handheld and head-mounted
IMU

The experimental results presented in Sections 3.3.5.1 and 3.3.5.2 demonstrate that

both the accelerometer and gyroscope model-fitting procedures perform consistently

with the data collected in pre-determined manners. In this section, the relatively

imprecise motion profiles for Procedures 1 and 2 are further disregarded. As the cost

functions for both sensors do not require known motion profiles, the main goal now is to

demonstrate that the non-linear model fitting process can work with data of arguably

lower quality. As discussed in section 3.3.5.2 , Procedure 3 is repeated to ascertain its

stability, and since the data is expectedly noisier, 10 repetitions are made. Table 3.5

and Table 3.7 show the mean and standard deviations of the error model parameter

values for the accelerometer and the gyroscope respectively.
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Table 3.5: The mean and standard deviations of the accelerometer error model
parameter values (dimensionless).

Procedure 1 Procedure 3(Hand) Procedure 3(Head)
Parameters Mean Std Dev Mean Std Dev Mean Std Dev

e00 1.001 0.002 1.000 0.002 0.997 0.005
e01 0.010 0.008 0.003 0.012 -0.017 0.025
e02 0.005 0.012 0.004 0.011 0.017 0.024
e10 -0.010 0.008 -0.006 0.010 0.014 0.024
e11 1.009 0.002 1.008 0.002 1.004 0.014
e12 0.013 0.011 0.007 0.016 0.015 0.011
e20 0.014 0.012 0.013 0.010 0.002 0.024
e21 0.015 0.010 0.022 0.014 0.010 0.010
e22 1.000 0.002 0.999 0.001 0.996 0.006
bx 0.025 0.002 0.024 0.001 0.026 0.008
by -0.022 0.002 -0.022 0.001 -0.017 0.015
bz 0.019 0.002 0.019 0.001 0.021 0.006

From Table 3.5, the results for Procedure 3(hand) and Procedure 1 agree well. A

standard statistical hypothesis test, which is the two-sample t-test, is used to determine

the presence of any significant difference through examining the two-tail P -values. From

the test, it is found that only e01 and e21 have P -values less than 0.1, which indicates

the presence of significant statistical difference. Ten out of twelve parameters are

not statistically different; this can be attributed to the fact that both procedures are

performed with the IMU held in the hand. Procedure 1 specifies positions for placing

the IMU and a longer static time. The Procedure 3(Hand) compensates for the random

placements of the IMU through using more static samples, checking that the IMU is

moved sufficiently, as well as searching for the best quasi-static threshold and static

time to use. For Procedure 3(Head), the P -values for the two-sample t-test for eight

out of the twelve parameters are less than 0.1, indicating that this procedure does not

perform well. We can also observe in Table 3.5 that the standard deviations of the
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parameter values for Procedure 3(Head) are generally larger than those for Procedure

1 and Procedure 3(Hand). The lower calibration accuracy of Procedure 3(Head) is

mainly due to the restricted range of motion and is frequently the case for non-linear

optimization where the effect of noise is more significant when the spread of the input

data is low.

To further elucidate the difference in the performance of the three procedures, the

raw data used to obtain the results in Table 3.2 is reused. Table 3.6 shows the average

magnitude of the error and the maximum observed error from 1g, with error compen-

sation using parameter values obtained from each of the three procedures. The results

show that the average errors are reduced by at least a factor of three, and the difference

in the performance among the three procedures is small relative to the overall error

reduction. Although there is degradation in the performance when the random mo-

tions are used, the results show that the additional data processing described in Section

3.3.4.3 mitigates the detrimental effects well.

Table 3.6: Comparison of the average and maximum magnitudes of errors for the
same accelerometer test data, compensated with model parameters obtained using the

three procedures.

Average Error Max Observed Error
No calibration 20.1mg 44.9mg

(1.15◦) (2.57◦)
Procedure 1 4.0mg 28.1mg

(0.23◦) (1.61◦)
Procedure 3(Hand) 4.4mg 29.4mg

(0.25◦) (1.68◦)
Procedure 3(Head) 5.3mg 30.0mg

(0.30◦) (1.72◦)

For the gyroscopes, the results in Table 3.7 show that the parameter values for
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Procedure 3(Hand) and Procedure 3(Head) have larger standard deviations. This is ex-

pected due to the randomness of the motion profile. For the case of Procedure 3(Head),

the large standard deviations can also be attributed to the restricted range of motion,

and the shorter initial static time for measuring the gyroscope biases. The results from

the two-sample t-test are inconclusive for Procedure 3, and only one parameter shows

significant statistical difference from Procedure 2. As with the accelerometers, the raw

data used to obtain the results in Table 3.4 are reused to study the performance of the

three procedures. The results are shown in Table 3.8. The parameter values obtained

using all the three procedures reduce the systematic gyroscope errors to similar levels

for each data set. The only exception is when Procedure 2 is tested with the calibration

set; the parameter values have been specifically fitted to the data, and the angular error

is reduced by a factor of 5.7. The reduction factor for Procedure 3(Hand) and Proce-

dure 3(Head) are 3.1 and 2.6 respectively for the calibration set. For test sets 1 and 2,

all three procedures have similar reduction factors of five and two respectively. There-

fore, it is evident that both Procedure 3(Hand) and Procedure 3(Head) have similar

performance as Procedure 2 despite having larger standard deviations. One possible

reason is that the scale factor error is the dominant gyroscope error in this case and the

values obtained using all the three procedures are similar. For the custom-built IMU,

all three procedures can be used for effective gyroscope calibration.

3.3.5.4 Analysis

In the final analysis, the cost function derived in this research has eliminated the re-

quirement for comparison with precise external inclinations and turn rates. However,
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Table 3.7: The mean and standard deviations of the gyroscope error model
parameter values (dimensionless).

Procedure 2 Procedure 3(Hand) Procedure 3(Head)
Parameters Mean Std Dev Mean Std Dev Mean Std Dev

e00 0.944 0.006 0.949 0.005 0.944 0.006
e01 0.000 0.001 -0.003 0.013 0.014 0.029
e02 -0.008 0.002 -0.004 0.011 0.009 0.028
e10 -0.015 0.001 -0.007 0.013 -0.022 0.025
e11 0.947 0.006 0.948 0.019 0.945 0.021
e12 -0.008 0.003 -0.034 0.027 -0.032 0.014
e20 -0.015 0.001 -0.014 0.011 -0.028 0.024
e21 0.004 0.004 0.026 0.032 0.033 0.017
e22 0.998 0.003 1.003 0.017 1.001 0.009

Table 3.8: Comparison of the average magnitudes of divergence, angular deviation
between ug and ua for the same gyroscope test data sets, compensated with model

parameters obtained using the three procedures.

Calibration set Test set 1 Test set 2
No calibration 213.7mg 342.0mg 236.7mg

(12.30◦) (19.70◦) (13.60◦)
Procedure 2 37.5mg 65.4mg 98.1mg

(2.15◦) (3.75◦) (5.62◦)
Procedure 3 70.2mg 69.0mg 107.9mg

(hand) (4.02◦) (3.95◦) (6.19◦)
Procedure 3 83.2mg 73.2mg 108.2mg

(head) (4.76◦) (4.19◦) (6.20◦)
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there is need to provide low noise data that is well distributed over the range of in-

puts. This is well illustrated by the increased variability of the computed parameter

values as the quality of the data is degraded. In the case of accelerometer calibration,

Procedure 1 does not require significantly more effort than Procedure 3. Therefore,

the recommended accelerometer calibration technique is to provide a list of positions

to place the IMU, as in Procedure 1, and apply the data processing steps in Procedure

3, to capitalize on the best features of both techniques. In contrast, Procedure 2 for

the gyroscope is more laborious, as it requires remounting the IMU and longer data

collection times, often taking more than an hour to perform all the 18 rotations. For

Procedure 3, there is no additional effort for gyroscope calibration as all the data is

collected while calibrating the accelerometer, and each set of data only requires a few

minutes to collect.

The above results and analysis show that if sufficient repetitions of Procedure

3(Hand) are made, 10 in this case, the performance in error compensation can ap-

proach that of the controlled Procedures 1 and 2. This result is significant for casual

users as it means that IMU can be calibrated by simply moving the IMU held in the

hands.

3.4 Concluding Remarks

The proposed error models and calibration methods compensate for sensor errors and

thereby improve the accuracy of the readout of low cost sensors. This is achieved

without the need for comparison with generated truth-values. By applying Procedure
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1 to the accelerometers in the custom-built prototype IMU, the average observed pitch

or roll angle error is 0.23◦, which represents a reduction ratio of five as compared to

the errors without calibration. From Table 3.2, the observed maximum pitch or roll

error is also reduced by a factor of 1.6, from 2.57◦ to 1.61◦. Using Procedure 2, there

is a minimum reduction factor of two for the dynamic angular divergence due to the

gyroscope sensor errors.

These methods are accessible to and can be easily performed by IMU developers

who do not have specialized calibration equipment. As the IMU is mainly used as an

orientation sensor in a hybrid AR tracker, an accuracy of 0.23◦ is adequate for main-

taining the illusion of proper augmentation. Procedure 3, which can handle random

motions, enables IMUs to be easily calibrated by causal users, so as to reduce the av-

erage static error to 0.30◦ and reduce the dynamic angular divergence by more than a

factor of two. This level of ease of inertial sensors calibration has not been achieved in

previous methods.

3.4.1 Future Developments

It is possible to automate the data collection process and calibrate the IMU automat-

ically without user intervention. This has been applied for accelerometers (Lötters et

al., 1998) and is now possible for gyroscopes with methods proposed in this research.

This can reduce the production time and cost during mass production, as the IMU can

self-calibrate during use. Procedure 3 is a step in the direction towards self-calibrating

IMUs. The sensor data can be collected while the IMU is in normal use, and these

data can be analyzed in a fashion similar to Procedure 3 to extract sets of data for
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calibration purposes. As the optimization process is relatively slow, the data can be

stored for later analysis, which can be done offline. Although it is not possible to make

these low cost sensors into navigation grade instruments, they can be easily made into

accurate orientation sensors and short-term positional trackers as part of the hybrid

tracking systems.

The availability of miniature accelerometers and gyroscopes enables inertial sensing

to be applicable to human scale tracking for VR and AR applications. The perfor-

mance of these sensors, in terms of sensor errors, is not sufficient for independent

position tracking in the foreseeable future. However, through the use of calibration,

the systematic sensor errors can be compensated for. This enables a MEMS-based IMU

to function as an independent orientation sensor, with low jitter, low latency and high

robustness. Therefore, inertial sensing forms an important component in a hybrid AR

tracker, as it is a reliable source of orientation information. When used with GPS,

which is a pure position tracker, both systems form a complete 6DOF tracker. Inertial

sensing can aid CV tracking by adding stability and maintaining the orientation in the

presence of interference to vision tracking, such as motion blur due to rapid camera

motion. With reduction in cost and size, it is expected that inertial sensing will become

increasingly more common in AR trackers. At the time of writing, they are becoming

quite common in consumer electronics, such as mobile phones and game controllers, for

providing orientation information.
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4.1 Introduction

The Global Positioning System (GPS) is a satellite navigation system that enables

users to determine their absolute positions with respect to the Earth. It is built and

maintained by the United States to serve the countrys military needs. In addition,

there is a civilian service, known as the Standard Positioning Service (SPS), which

is freely available globally. This SPS service has been widely used for non-military

applications, such as aviation and maritime navigation, providing driving directions

and land surveys. The SPS is specified to provide an accuracy of 13 metres or better

in the horizontal plane for 95% of the time. The height accuracy is specified at 22m

for 95% of the time (Cosentino et al., 2006).

With respect to Augmented Reality (AR) tracking, the addition of GPS to the

tracking assembly provides a global absolute coordinate frame with respect to the

Earth. Thus, the operating volume of the tracker can be expanded to include the

whole of the Earths surface that provides a clear view of the sky. GPS is robust to

environmental interferences, as it is developed to meet the requirements for all weather

and all condition military operations. The receiver equipment is also widely available

at low cost. However, the accuracy and jitter levels do not meet the requirements for

AR, except for augmentation at distances of hundreds of metres from the users. The

jitter is particularly detrimental as the position measurement can change by more than

a metre per second. Therefore, to achieve better accuracy and lower jitter, the low noise

carrier phase measurement of the GPS signal is used, instead of the code measurement
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used in GPS SPS. Furthermore, two receivers are employed to remove common mode

errors to further increase accuracy.

This chapter introduces a novel differential precise GPS positioning method devel-

oped in the course of this research (Fong et al., 2008b). This method processes the

simultaneous carrier phase measurements from two low cost GPS receiver modules to

achieve an accuracy of 10cm, with low jitter, and without the need to expend large

computation resources to resolve the integer ambiguity of carrier phase measurements.

4.2 Background

This section provides a brief introduction to the components and operating principles

of the GPS and the coordinate frames used. Specialized topics include the use of precise

ephemeris to determine the GPS satellite positions and the mathematical models for

differential GPS positioning. The current methods for solving carrier phase integer

ambiguity are presented to clarify the difficulty it presents to current real time GPS

precision positioning systems.

4.2.1 The Global Positioning System

The GPS consists of satellites that transmit structured radio signals to the earths sur-

face. The number of satellites, orbital radius and their arrangements in space were

chosen to ensure global coverage with at least six satellites visible at all location, and

at all time (Kaplan and Hegarty, 2005). One of the most important features of GPS

satellites is the onboard rubidium and cesium atomic clock standards. These clocks

allow the GPS signals transmitted by every satellite to be highly synchronized and
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with very high frequency stability, both of which are important in achieving the stated

accuracy with low cost passive receivers. These clocks are used to generate transmitted

radio signals at two frequencies, namely the L1 at 1.5754 GHz, and L2 at 1.2276 GHz.

The L1 frequency is used in this research as it is the only one currently available from

low cost receivers. All satellites transmit at the same frequencies. In order for the GPS

receiver to distinguish between transmissions from different satellites, the information

is modulated with Pseudo Random Number (PRN) codes before transmission. These

codes serve to allow for simultaneous satellite transmissions and measurement of the

range between the satellite and the receiver. However, the errors in GPS position-

ing using PRN code measurements can be more than 10 metres and have high jitter.

Therefore, the L1 carrier phase is used. As modern radios have phase lock loops that

can measure the phase of the carrier to within 5% of the wavelength (L1 wavelength

is 190.3millimetre), the accuracy of the carrier phase measurements is often within one

centimetre. This is the mechanism used for improving the accuracy of GPS positioning

in ARTIST.

4.2.2 Applications in Augmented Reality

One of the earliest applications of GPS in an AR system is the Touring Machine Feiner

et al. (1997). This prototype is used for augmentation when navigating in a city. In

this application, the accuracy of the GPS receiver is sufficient. A recent example of

a lightweight wearable system reported byPeternier et al. (2006) illustrates the rapid

reduction of weight and power consumption of GPS receivers. Their work allows the

GPS to be used as a robust and lightweight absolute position tracker. However, the
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accuracy and jitter levels are not suitable for stable augmentation at distances within

several meters, which is required by many AR applications.

4.2.3 Differential Global Positioning System

The use of Differential GPS is typically required to achieve centimeter level of accuracy.

Many works have reported the use of differential GPS carrier phase for determining the

relative positions between two or more GPS receivers (Cosentino et al., 2006; Hofmann-

Wellenhof et al., 2004; Leick, 2003). The most common application of differential GPS

is for land surveys. Therefore, most presented methods deal with relative distances of

several kilometers or more, and are not directly applicable to AR applications. Outdoor

AR applications are expected to work using shorter baselines, as raw measurements are

most likely to be transmitted in real-time using wireless links with limited ranges.

Therefore, techniques for short baselines are more applicable (Chang et al., 2005a;

Cosentino et al., 2006; Hayward et al., 1998). When the baseline is less than a kilo-

meter, the differential GPS measurements can be approximated using interferometry

(Cosentino et al., 2006; Hayward et al., 1998). Such an approximation is widely used

in GPS attitude determination and it is used in this research.

The main research issue in differential GPS is the real-time resolution of the integer

ambiguity in the presence of measurement noise (Chang et al., 2005b; Cosentino et al.,

2006; Hofmann-Wellenhof et al., 2004). The method proposed in this research does

not require the resolution of the integer ambiguities. A similar work by How et al.

(2002) tracks the relative position from an initial point rather than from the stationary

GPS receiver. This method uses the difference between two simultaneous GPS Doppler
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measurements to obtain accurate velocities, which are in turn integrated to give the

position. The method proposed in this research uses carrier phase measurements in-

stead.

4.2.4 Coordinate Frames

Two coordinate frames are used in this GPS research; they are the Earth-Centered

Earth-Fixed (ECEF ) frame and the North-East-Down (NED) frame. Both frames

are right-handed Cartesian coordinate frames. To visualize a right-handed frame, one

can imagine a flat right hand curling to form a thumbs up hand sign. The four fingers

of a flat right hand are pointing towards the x-axis. As the fingers curl, they rotate and

point towards the y-axis. Finally, the thumb points towards the z-axis. An illustration

of a right-handed frame is shown in Figure 4.1.

Figure 4.1: Illustration of a right-handed frame.
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4.2.4.1 Earth-Centered Earth-Fixed (ECEF) Frame

The ECEF frame is a right-handed, three-dimensional Cartesian coordinate frame.

The origin is at the center of the Earth. The x-axis and y-axis lie on the equatorial

plane, with the x-axis and y-axis passing through the equator at 0◦ longitude and 90◦

East longitude respectively. The z-axis coincides with the rotational axis of the Earth

and points towards the North. This is illustrated graphically in Figure 4.2. The satellite

position and the various positioning algorithms, including the method developed in this

work, are represented in the ECEF frame. In general, various points in the ECEF

frame are given in the familiar (x, y, z) Cartesian notation.

Figure 4.2: The Earth-Centered Earth-Fixed (ECEF ) coordinate frame.

4.2.4.2 North-East-Down (NED) Frame

The NED frame is a right-handed local level coordinate frame, with its center at a

specified latitude and longitude on the Earths surface. The orientation measured using

inertial sensing is with respect to the NED frame as well (Section 3.2.5). The x-axis
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and y-axis are on the local level or tangential plane, with the x-axis pointing North,

the y-axis pointing East. The z-axis points Down, parallel to the normal of the local

tangential plane. This is a more natural coordinate frame for AR applications, as the

user moves around in the local environment.

In order to convert a position measured in the ECEF frame to the NED frame,

one would need to obtain the latitude and longitude of this position and use that to

rotate the ECEF axes to align with the NED axes. The conversion procedure, in

turn, requires a reference ellipsoid that defines the average Earths surface, which would

coincide with a perfectly smooth Earth. The local level plane in the NED frame is

tangential to the reference ellipsoid at the specified longitude and latitude. In this

research, the reference used is known as the World Geodetic System 1984 (Kaplan and

Hegarty, 2005). The relevant parameters are given in Table 4.1.

Table 4.1: The World Geodetic System 1984 (WGS 84) reference ellipsoid

Equatorial cross section Circular
Mean radius in equatorial plane, or semi-major axis, a 6,378.137km
Polar radius, or semi-minor axis, b 6,356.752km
(Eccentricity)2, e2 = 1− b2/a2 0.00669437999014
(Second Eccentricity)2, e2 = (a2/b2)e2 0.00673949674228

Using the reference ellipsoid, the ECEF position is interchangeable with the geode-

tic Latitude, Longitude and Height (LLH ) coordinates, commonly used for geographic

disciplines. The position pECEF in ECEF is pECEF = (xp, yp, zp). For LLH , pLLH =

(ϕ,Λ, h), where ϕ is the latitude, Λ is the longitude, and h is the normal height above

the ellipsoid surface. The convention used is as follows. The latitude, ϕ is positive

in the northern hemisphere and negative in the south. The longitude, Λ is positive
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to the east of the Greenwich meridian and negative to the west. In this research, the

conversion from ECEF to LLH coordinates is shown in Table 4.2. It is based on the

closed form solution reported by Zhu (1994), and shows the computations necessary

for obtaining ϕ and Λ. Height is omitted as only the longitude and latitude are re-

quired to rotate the ECEF to the NED coordinate frame. Furthermore, current AR

applications are only expected to operate on or near the Earth’s surface.

The position vector can be rotated from ECEF to the NED frame, at longitude

Λ, and latitude ϕ, using the following rotation matrix, RN
E (Jekeli, 2000) in Eq. 4.1.

RN
E =




− sin(ϕ) cos(Λ) − sin(ϕ) sin(Λ) cos(ϕ)

− sin(Λ) cos(Λ) 0
− cos(ϕ) cos(Λ) − cos(ϕ) sin(Λ) − sin(ϕ)



 (4.1)

4.2.5 Precise Ephemeris

The ephemeris is a set of satellite orbit parameters that allows the ECEF position

of a satellite, at a point in time, to be accurately determined. As satellite orbits can

be perturbed to a small degree by unpredictable forces, such as thermal effects, the

ephemeris is updated every few hours to enable accurate positioning. Two types of

ephemeris are considered. First is the broadcast ephemeris that is downloaded directly

from the GPS satellites. Each satellite broadcasts the ephemeris of every other GPS

satellite. The data format is specified in the report by Arinc Research Corporation

(Arinc, 2000) and the computation of the orbit position is presented by Xu (2007). The

second is the precise ephemeris. Although the broadcast ephemeris is always available,

the high precision ephemeris downloaded from the International Global Navigation
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Table 4.2: Closed-form solution used to convert of ECEF coordinates to geodetic
latitude.

First obtain Λ,

Λ =






tan−1
� yp
xp

�
if xp ≥ 0,

180◦ + tan−1
� yp
xp

�
if xp < 0 ∩ yp ≥ 0

−180◦ + tan−1
� yp
xp

�
if xp < 0 ∩ yp < 0

To obtain ϕ,

r =
�
x2p + y2p

E2 = a2 + b2

F = 54b2z2p

G = r2 + (1− e2)z2p − e2E2

C =
e4Fr2

G3

S =
3
�
1 + C +

�
C2 + 2C

P =
F

3(1 + 1/S + S)2G2

Q =
�
1 + 2e4P

r0 =
−Pe2r

1 +Q
+

�
1

2
a2
�
1 +

1

Q

�
−

P (1− e2)z2p
Q(1 +Q)

− 1

2
Pr2

V =
�
(r − e2r0)2 + (1− e2)z2p

Z0 =
b2zp
aV

Finally, ϕ = tan−1
�zp + e

�2Z0

r

�
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Satellite System (GNSS) Service (IGS) is used in this work (Moore and Neilan, 2005).

The main purpose of using precise ephemeris is to eliminate the ephemeris error as

possible residue error in the models developed in this research.

The IGS is a voluntary international network of stations with high performance GPS

receivers. There are several IGS processing nodes, which process the raw measurements

from all over the world to derive accurate satellite orbits, clock errors and ionospheric

corrections. For satellite orbits, three types of data or products are available, namely

Final, Rapid and Ultra-Rapid products (IGS, 2010). The Final and Rapid products

are used for post-processing as they are released weekly and daily respectively, after

the data is recorded. The orbit accuracy is within 5cm and the satellite clock error is

within 0.1ns.

For real time purposes, the Ultra-Rapid product, specifically the predicted half, is

used to compute the satellite position. The stated accuracy is approximately 10cm

and 5ns for satellite orbit and clock errors respectively. In comparison, the broadcast

ephemeris has an accuracy of approximately 160cm and 7ns. Each Ultra-Rapid product

has 48 hours of orbit data, which consisted of processed data from the past 24 hours as

well as predicted satellite orbit for the next 24 hours. It is released every six hours, with

a three-hour delay. Due to the delay, each downloaded data file has at most 21 hours

of usable predicted satellite orbits. The Ultra-Rapid product is released in the SP3

format (Hilla, 2007). The data consist of predicted ECEF positions and clock errors

of all the GPS satellites at 15-minute intervals. In order to obtain accurate position

within each interval, the Lagrange interpolation is used in this work (Xu, 2007). The
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general form for N -th order interpolation is as shown in Eq. 4.2, where p(t) is the

interpolated value at t , and f(tk) is the value of the k-th sample point of t.

p(t) =
N�

k=0

lk(t)f(tk) (4.2)

where the Lagrange basis function is lk(t) =
(t−t0)...(t−tk−1)(t−tk+1)...(t−tN )

(tk−t0)...(tk−tk−1)(tk−tk+1)...(tk−tN )

In this work, time is scaled, such that 15 minutes is equal to a value of 1.0. Time

t is further translated, such that it has a value in the range of 3.0 to 4.0. In this way,

the orbit is interpolated using four points before and five points after t. Furthermore,

tk has integer values from 0 to 8. As the order of the interpolation is fixed in this case,

the basis functions can be partially pre-computed. The specific interpolation used in

this work is shown in Eq. .

p(t) =
γ

40320t
− γ

5040(t− 1)
+

γ

1440(t− 2)
− γ

720(t− 3)
+

γ

576(t− 4)

− γ

720(t− 5)
+

γ

1440(t− 6)
− γ

5040(t− 7)
+

γ

40320t
(4.3)

where γ =
�N

k=0(t− k).

4.2.6 GPS Carrier Phase Measurement

The GPS L1 carrier signal has a frequency of 1.5754 GHz, which implies a wavelength

of 0.1903m. As GPS receivers are radios, a Phase Lock Loop (PLL) can be used to

measure the fractional phase of the carrier signal. Therefore, it is possible to measure

the position within a single wavelength or cycle. In modern equipment, the noise level is

0.2-5mm (Hofmann-Wellenhof et al., 2004). With the high stability of GPS frequencies,
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this represents a highly accurate mechanism to measure distances. The main difficulty

is that every carrier cycle is identical to the other, which results in ambiguity in the

number of full carrier cycles between the satellite and the receiver. With accurate

Doppler measurements, or frequency shift due to the high relative velocity between the

satellite and the receiver, it is possible to determine the change in cycles since the start

of the measurement by integrating the Doppler. As such, only the number of carrier

cycles between the satellite and receiver at the start of the measurement is unknown,

and this is known as the integer ambiguity. If the integer ambiguity is known, all

the carrier cycles at latter times can be found by adding the integrated Doppler to

the integer ambiguity. Therefore, integer ambiguity remains constant with time, even

though the number carrier cycle changes with time. Carrier phase measurement is

rarely used in standalone configurations; this is further limited by the fact that most

GPS noise sources can result in errors of several cycles.

The models for the carrier phase measurement and the associated errors can be

found in numerous references (Chang et al., 2005a; Cosentino et al., 2006; Hofmann-

Wellenhof et al., 2004; Leick, 2003). Eq. 4.4 is the model for the phase measurements

from satellite i, to receiver s at time tk, which accounts for most of the significant

errors. The measurement unit is the number of carrier cycles.

Φi
s(tk) = λ−1ρis(tk) +N i

s + fτs(tk) + fτ i(tk)− βiono(tk) + δtropo(tk) + µi
s(tk) (4.4)

Φi
s(tk) is the carrier phase measurement. ρis(tk) is the change in the range since the

start of measurement, which can be measured by integrating the Doppler shift. N i
s is the
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starting integer ambiguity, and it is constant with respect to time except for cycle slips.

τs(tk), τ i(tk) are the receiver and satellite clock errors respectively. βiono(tk), δtropo(tk)

are the errors due to transmission through the Earth’s ionosphere and troposphere

respectively. µi
s(tk) includes both random noise and un-modeled errors. λ and f are

the wavelength and frequency respectively.

4.2.7 Differential Positioning

In this research, differential GPS positioning refers to the use of carrier phase mea-

surements from two or more GPS receivers to cancel out the common mode errors.

The use of carrier phase measurement is common for GPS surveying systems, and it

can typically achieve an accuracy of 20cm in real-time, and 1mm with post-processing.

There are several established methods to combine the carrier phase measurements to re-

move certain errors (Hofmann-Wellenhof et al., 2004; Xu, 2007). The following sections

present the commonly used Single, Double and Triple Differences.

4.2.7.1 Single Difference

The Single Difference (SD) is the difference between two simultaneous measurements

of the carrier phase by the receivers s and r, for satellite i. If the baseline is less than

20km, and the receivers are at the same height above the sea level, the ionospheric

error, βiono(tk), and the tropospheric error, δtropo(tk), are common to both, and can

be removed by differencing (Cosentino et al., 2006; Hofmann-Wellenhof et al., 2004).

For most AR applications, the distance and height separation between receivers are

expected to be sufficiently small for the above errors to be effectively removed by Single
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Differencing. The satellite clock error, τ i(tk) is also common between the two receivers,

and is removed. For SD, the noise level of µi
sr(tk) is double that of the measurement

noise µi
s(tk), but remains uncorrelated between the satellites (Hofmann-Wellenhof et

al., 2004). The model for SD is shown in Eq. 4.5.

SDi
sr(tk) = Φi

r(tk)− Φi
s(tk)

= λ−1[ρir(tk)− ρis(tk)] + [N i
r −N i

s] + f [τr(tk)− τs(tk)] + f [τ i(tk)− τ i(tk)]

−[βiono(tk)− βiono(tk)] + [δtropo(tk)− δtropo(tk)] + [µi
r(tk)− µi

s(tk)]

= λ−1ρisr(tk) +N i
sr + fτsr(tk) + µi

sr(tk) (4.5)

4.2.7.2 Double Difference

Double difference is commonly used in GPS surveying. The SD for satellites i and j are

differenced, which removes the common inter-receiver clock error τsr(tk). The model

for DD is shown in Eq. 4.6.

DDij
sr(tk) = SDj

sr(tk)− SDi
sr(tk)

= λ−1[ρjsr(tk)− ρisr(tk)] + [N j
sr −N i

sr] + f [τsr(tk)− τsr(tk)] + [µj
sr(tk)− µi

sr(tk)]

= λ−1ρijsr(tk) +N ij
sr + µij

sr(tk) (4.6)

The removal of the inter-receiver clock error results in a processed signal with low

noise levels, and this can be observed in Figure 4.3. The data used to generate Figure

4.3 was collected by two stationary receivers placed 2 metres apart. Therefore, the
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changes in the DD is purely due to satellite motion. The removal of the receiver clock

errors in DD enables the computation of the ”float solution”, where the DD integer

ambiguities can be computed as real values and not integers. The accuracy is often

quoted as within the decimeter level.

Figure 4.3: A plot of five processed Double Difference signals obtained using raw
measurements from six satellites. (A different color is used for each satellite and the
yellow line along the horizontal is a plot of the noise level of the reference satellite.)

The signal plots in Figure 4.3 have been processed by the software developed in this

research to perform the carrier cycle integer increment using only the raw measure-

ments. The plots show that the low cost receivers have a low combined noise level for

µij
sr(tk), despite the fact that the noise level in µij

sr(tk) is increased by four times over

the measurement noise µi
s(tk). Furthermore, the low cost receivers can only provide

accurate fractional phase measurement within a cycle. The integer cycle count from

the receivers used is unreliable, resulting in constant cycle slip. The clean DD signals
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allow for the determination of the increment or decrement of the integral cycles in low

dynamics conditions.

Although real-time tracking with four or more visible satellites is possible using

DD, it is not utilized in the proposed method. This is because the noise, µij
sr(tk),

becomes correlated across satellites. Furthermore, as the DDs in each time epoch are

computed against one common reference satellite, this causes the measurement to be

overly dependent on the noise level of the reference satellite measurement (Chang et al.,

2005a). This is observed in the experiments carried out in this research, and requires

repeated computation of the residue errors with every satellite as the reference, so as

to determine the satellite with the lowest noise to be used as the reference satellite.

Furthermore, these techniques can be complicated by the signal outage or setting of

the reference satellite. This is especially true for techniques where some forms of data

from the previous epochs are kept.

4.2.7.3 Triple Difference

The DD at well separated time epochs, tk and tk, can be differenced to form the Triple

Difference (TD), which removes the time invariant integer ambiguities. This in turn

requires that there is no cycle slips in the integrated Doppler (Section 4.2.6), which

would cause the change in the number of carrier cycles since the start of measurement

to be wrong. The model is shown in Eq. 4.7.
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TDij
sr(tk, tk�) = DDij

sr(tk�)−DDij
sr(tk)

= λ−1[ρijsr(tk�)− ρijsr(tk)] + [N ij
sr −N ij

sr] + [µij
sr(tk�)− µij

sr(tk)]

= λ−1ρijsr(tk, tk�) + µij
sr(tk, tk�) (4.7)

TD is a robust method to determine the static baseline vector to an accuracy of 1m.

However, the noise levels increase by eight times due to differencing and become highly

time correlated. Therefore, a minimum of one hour of static data is often recommended

in practice (Hofmann-Wellenhof et al., 2004). This renders TD as an ineffective method

for dynamic real-time AR tracking.

4.2.8 Integer Ambiguity

A general scheme for differential positioning is to use DD to solve for both the position

and integer ambiguity as a linear system. The integer property of the ambiguity is

ignored at this stage and the solution is a float solution, where integer ambiguities are

returned as real numbers or decimal values. The float solution values are resolved to

true integer values using Integer Least Squares techniques, such as the Least-squares

AM-Biguity Decorrelation Adjustment (LAMBDA) and Fast Ambiguity Search Filter

(FASF) (Chang et al., 2005a; Hofmann-Wellenhof et al., 2004). These methods give

the fixed solution with centimeter accuracy level.

The resolution of the integer ambiguities in the presence of noise is non-trivial. The

short wavelength of the GPS carrier implies a large search space, and therefore a high

computational load. For example, with a short baseline of 1m, the DD integer ambiguity
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can range from -5 to +5 for each satellite. This means that there are 11 possible values

per satellite; and with six satellites, the search space has a size of (11)6 = 1, 771, 561. A

brute force search is computationally infeasible due to the exponential increase in the

search space. Furthermore, due to noise, the point in the search space with the least

residue error may not be the actual solution. This increases the difficulty of obtaining

the actual integer ambiguities. An improved method is to only search the region around

the float solution. The size of the region is defined by the covariance in the ambiguity

solution. The LAMBDA method is most commonly used because it de-correlates noise,

resulting in smaller search regions. Data collected over several minutes to an hour is

typically required to average out the noise and increase the confidence in the accuracy

(Hofmann-Wellenhof et al., 2004).
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4.3 Precise Positioning using Differential Single Differ-
ence

This section presents a novel differential GPS carrier phase technique for 3D outdoor

position tracking in mobile AR applications (Fong et al., 2008b). It has good position-

ing accuracy, low drift and jitter, and low computational requirement. The proposed

method differs from previous differential methods (Section 4.2.7) with the use of a dif-

ferent differential quantity, namely, the Differential Single Difference (DSD). The DSD

is used to compute the relative position of the mobile GPS receiver from its initial po-

sition, without having to determine the baseline vector relative to the stationary GPS

receiver. This method achieves the accuracy of current real-time carrier-based precision

GPS trackers without the need for heavy computing resources required for resolving

the integer ambiguities. There is a resultant linear drift due to the accumulation of

the minute errors in the actual GPS modules. However, the drift rate is less than

0.001ms−1, and it varies slowly and is highly linear within a period of several minutes.

Therefore, the drift can be compensated using linear regression. Experimental results

using low cost GPS receivers show that the position error is 10cm, and the drift is

0.001ms−1.

4.3.1 Motivation for Precise Positioning using Differential Single Dif-
ference (DSD)

Differential carrier phase GPS positioning was developed using low cost modules to

provide position tracking at centimeter levels. However, initial work with SD and DD

proved unsuccessful. In static tests with known baseline vector and precise satellite
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orbits, the length of the baselines obtained did not agree with the known values. As

it is possible to generate simulated DD plots in these cases, a comparison was made

with the measured DD values. Figure 4.4 shows the comparison between the simulated

and measured DD for two satellites, against the same reference satellite. The measured

DD plots are generated in the same manner as those in Figure 4.3. Both the simulated

and measured DD plots have similar forms, except for the gradients and measurement

noise. This indicated the existence of a drift in the DD signal due to the lower quality

of the phase measurements.

For static receivers, the position is constant over time, but the drift in DD results

in apparent changes or drift in position. By measuring the apparent position drift

and compensating this drift directly, the effects of minute errors in individual carrier

phase measurements can be compensated as a whole. To avoid the resolution of integer

ambiguity, the use of DSD is proposed. Similar to TD, the integer ambiguity is removed

by differencing across adjacent time epochs. As it is an accumulative method, it is prone

to drift as with inertial navigation. However, the drift is low and thus the method is

further developed into a position tracker, presented in the following sections.

4.3.2 Development of the Method

The proposed method avoids the resolution of the integer ambiguity through differenc-

ing the SD between two consecutive time epochs tk and tk+1, for the same satellite

i. This is shown in Eq. 4.8. As such, SDi
sr(tk, tk+1) forms the derived GPS quantity

described as the DSD. Independent of this research, DSD has been applied in the study

of receiver hardware delay (Liu et al., 2004).
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Figure 4.4: A comparison between measured (jagged) and simulated (smooth)
Double Differences (DD) for two satellites, generated using the same reference

satellite. The simulated DD are generated using the known baseline and satellite
positions, and show the first indication of the presence of drift.

SDi
sr(tk, tk+1) = λ−1[ρisr(tk+1)− ρisr(tk)] + [N i

sr −N i
sr] + f [τsr(tk+1)− τsr(tk)]

+[µi
sr(tk+1)− µi

sr(tk)]

= λ−1ρisr(tk, tk+1) + fτsr(tk, tk+1) + µi
sr(tk, tk+1) (4.8)

In order to obtain position measurements from DSD, the following approximations

are used. First, ρisr(tk) is approximated using interferometry principles (Cosentino

et al., 2006; Hayward et al., 1998). Consider receivers s and r, which are less than

a kilometer apart. As the GPS satellites are approximately 23x106m away, the unit

vectors, eis and e
i
r of the lines of sight from the two receivers to the same satellite i

can be assumed to be parallel, i.e., eis ≈ e
i
r. Let b be the baseline vector between the

receivers, in metres, and receiver s be stationary. The approximation is given by the
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vector dot product, as shown in Eq. 4.9.

ρisr(tk) ≈ e
i
s(tk) • b(tk) (4.9)

Although the satellite moves several kilometers per second, the approximation,

e
i
s(tk) ≈ e

i
s(tk+1), is appropriate due to the large distance between the receiver and

the satellite. For example, the closest a satellite can get to a receiver on the ground is

20,200 kilometres. As the satellite travels a distance of approximately four kilometres

in a second, the angular change of the vector e is only 0.01 degrees in the same amount

time. The various variables used are illustrated in Figure 4.5.

Figure 4.5: Illustration of the variables used in DSD computation.

Substituting Eq. 4.9 into Eq. 4.8, and omitting the noise term, µi
sr(tk, tk+1), for

greater clarity gives Eq. 4.10.
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SDi
sr(tk, tk+1) ≈ λ−1[eis(tk+1) • b(tk+1)− e

i
s(tk) • b(tk)] + f [τsr(tk+1)− τsr(tk)]

≈ λ−1
e
i
s(tk+1) • [b(tk+1)− b(tk)] + f [τsr(tk+1)− τsr(tk)]

= λ−1
e
i
s(tk+1) •∆b(tk+1) + f∆τsr(tk+1) (4.10)

There are four unknowns in Eq. 4.10, namely, the three components in the position

change vector, ∆b(tk+1) and inter-receiver time drift, ∆τsr(tk+1). SDi
sr(tk, tk+1) is

derived from raw GPS phase measurements, while e
i
s(tk+1) is obtained using precise

satellite ephemeris, the receiver position using the standalone GPS measurement and

the GPS time measured by the receiver. Although the standalone GPS position has an

error of 10m, applying the same reasoning for the approximation, eis(tk) ≈ e
i
s(tk+1), the

large range between the satellite to the receiver causes the resultant error in e
i
s(tk+1)

to be insignificant. With at least four satellites, the unknowns can be solved using the

linear system in Eq. 4.11. Here, eis(tk+1)T is the transpose of eis(tk+1).





SD1
sr(tk, tk+1)

SD2
sr(tk, tk+1)

SD3
sr(tk, tk+1)

SD4
sr(tk, tk+1)

...




=





e
1
s(tk+1)T 1

e
2
s(tk+1)T 1

e
3
s(tk+1)T 1

e
4
s(tk+1)T 1

...





�
λ−1∆b(tk+1)
f∆τsr(tk+1)

�
(4.11)

The position change from one epoch to the next can be accumulated to give the

position vector of the receiver r from its starting position. This is in contrast to

measuring the baseline vector from receiver s to receiver r, and it avoids the resolution

of integer ambiguities. The main issue with accumulative approaches is that minute

errors and biases are also accumulated, resulting in positional drift. Furthermore, the
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noise also becomes time correlated. However, the experimental results in the Section

4.3.4 show that with phase measurements from low cost GPS receivers, the drift is less

than 0.001ms−1 and highly linear with time. The position derived is in the ECEF

frame. The position vector can be rotated from ECEF to the local level NED frame

using Eq. 4.1.

4.3.2.1 Drift Correction using Linear Regression

This sub-section presents the linear regression method used to correct the drift in the

proposed method. From the plots of the apparent position drift of the static receivers,

such as the plot presented in section 4.3.4, the variations of the positions in the x, y and

z axes are linear within a period of several minutes. As there is no clear relationship

among the variations about each axis, simple linear regression is used for each axis to

compensate for the drift.

The goal of simple linear regression is to fit a straight line along the data points,

such that the variation of the data about this line is the minimum. In this case, it

is to derive the gradients and intercepts of the three best fit lines along the position

drifts of the x, y and z axes, with respect to time. As the procedure is the same for

all three axes, only the linear regression for the x-axis is shown. Let xk and tk be the

x-axis position and time respectively for the k-th data sample. The gradient mx, and

intercept cx of the line of best fit among N data samples is shown in Eq. 4.12.

xk = mxtk + cx (4.12)
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The gradient mx, is obtained using Eq. 4.13, where the mean of x and t, are x̄ and

t̄ respectively.

mx =

�N
k=1(xk − x̄)(tk − t̄)
�N

k=1(tk − t̄)2
(4.13)

By using Nx̄ =
�N

k=1 xk and Nt̄ =
�N

k=1 tk, Eq. 4.13 can be converted to the form

as shown in Eq. 4.14.
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�
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2
k
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−
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�2 (4.14)

The form in Eq. 4.14 shows that the gradientmk , can be computed by accumulating

four values, namely, xk, tk, (xktk) and t2k, as they are obtained in each time epoch. This

means that the linear regression can be computed efficiently. By substituting a known

point on the line, (x̄, t̄) into Eq. 4.12, the intercept cx, is obtained as:

cx = mxt̄− x̄ (4.15)

4.3.3 Experimental Setup

To determine the effectiveness of the proposed method, two LEA-4T GPS modules from

U-Blox are used to collect raw carrier phase measurements. The data is recorded using

serial links and the vendor supplied software. The maximum GPS measurement rate

is 10Hz. Two experiments, E1 and E2 were conducted in an open area, where there

are minimal obstructions from buildings and trees, which can cause signal outages and

multipath errors.
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For E1, the receivers were placed three metres apart on a level ground. The di-

rection from the static receiver s to the mobile receiver r with respect to the North

was measured using a wireless InertialCube from InterSense. Three sets of data, D1,

D2 and D3, were collected in E1. D1 consists of 1Hz GPS raw measurements collected

over a period of one hour with both receivers static. This is to determine the drift

characteristics. D2 consists of 10Hz GPS raw measurements, where the receiver r was

first left static for approximately 180 seconds after which it was moved 20cm along the

baseline vector towards the static receiver s, before it was returned to the starting po-

sition. The same motion profile was repeated but with a distance of one metre instead.

D3 consists of 10Hz GPS raw measurements, where receiver r was first left static for

300 seconds, after which it was moved one metre along the baseline vector towards

the static receiver s, before it was returned to the starting position. The same motion

profile was repeated for ten times to obtain a measure of the accuracy and repeatability

of the proposed method.

In E2, the receiver r was mounted rigidly with an InterSense InertialCube and a

Firewire video camera. The InertialCube measures the orientation in the NED frame

using inertial sensing. The resultant position and orientation tracking data is used to

augment virtual objects onto the video recorded. In this case, the assembly of the

receiver r, the InertialCube and the camera are handheld and moved over a distance

of 0.5m.

105



4. GLOBAL POSITIONING SYSTEM: DIFFERENTIAL CARRIER
PHASE FOR OPEN-AREA POSITIONING

4.3.4 Experimental Results

4.3.4.1 Experiment E1

The position vector from the initial position of receiver r, r1, in the ECEF frame is

computed using the proposed method based on the data set D1. The values of x, y

and z axes of the vector are shown in Figure 4.6. As both receivers were stationary,

Figure 4.6 shows the drift characteristics. The maximum position vector drift is 2.5m

over a period of 3,000 seconds. This translates to a drift of less than 0.001ms−1,

which is sufficient for maintaining the stability of virtual objects augmented onto a

real environment. Figure 4.6 also shows that the drift has low jitter and varies slowly

with time and is highly linear within a period of several hundred seconds. Although

the cause of the linear drift cannot be ascertained using the existing equipment, it is

probable that the drift is due to the carrier phase measurements not being perfectly

synchronous for the two receivers. It was not possible to set the receivers to output

the measurements at specific times. This might have been useful as the receivers used

has errors of less than 15 nanosecond for GPS time. So there can be a difference of

several milliseconds between the measurements from the two receivers. Attempts to

compensate for the difference in time using the doppler shift (Kaplan and Hegarty,

2005) was not successful as doppler noise was more higher than those in the phase

measurements. As the algorithms in the receivers are not known, and there was no

access to more configurable receivers, the actual cause of the drift was not determined.

The variation in the drift in Figure 4.6 is most probably due to minute change in time

interval between the measurements. For the various experiments presented here, there
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was no discernible pattern in the linear drift due to changes in the spatial configuration

of the receivers and satellites. However, more tests and equipment will be required to

ascertain that.

Figure 4.6: Plot of the drift of position vector from the initial position of a
stationary receiver, r1 against time t.

The position vector from the initial position of the receiver r, r2 in the NED frame

derived using D2 is shown in Figure 4.7. For data set D2, the receiver r was moved

20cm to and fro, and then one metre to and fro. The initial static period of 180 seconds

allows for the determination of the linear drift, which can be effectively removed using

linear regression analysis. This is shown in Figure 4.8.

Figure 4.8 shows the plot for r2
�
derived using D2 with the error corrected. The

result shows that the linear drift is effectively removed and the prescribed motions are

measured with a good level of accuracy. From Figure 4.8, the magnitude of the distance

moved is accurate for the first prescribed motion profile of 20cm, and is within 10cm for
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Figure 4.7: Plots of position vector from the initial position of mobile receiver r, r2
derived using D2 against time t.

Figure 4.8: Drift corrected position vector from the initial position of mobile
receiver r, r2

�
derived using D2 against time t.
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the second motion of 1m. The error after receiver r has been returned to the starting

position is 15cm. These errors are mainly due to the noise introduced by the effects of

the motion on the reception of the radio signal by the antenna.

To further illustrate the repeatability of this new method, receiver r was moved one

metre to and fro, for ten repetitions to collect data set D3. The position vector from

the initial position of receiver r along the baseline vector, r3 is first derived using D3.

This position is rotated from the ECEF frame to the NED frame, and further rotated

by the orientation measured by the InertialCube, so as to show the motion along the

baseline. There are linear drifts observed along the three axes in the first 300 seconds.

Linear regression analysis is used to determine and compensate for these drifts. Figure

4.9 shows the plot of the positions along the baseline against time t. The result shows

that the linear drift is effectively removed and the prescribed motions are measured

with a good level of accuracy. From Figure 4.9, the distance moved along the baseline

is accurate within 10cm for all ten repetitions. This indicates both good precision and

repeatability. The error after receiver r was returned to the starting position is 10cm.

There is also motion along the two axes orthogonal to the baseline vector where there

is supposed to be none. These errors are mainly due to a change in drift over time and

the noise introduced by the effects of motion on the reception of the radio signal by the

antenna. Further work will be required to determine the antenna designs to minimize

the effects of motion on the reception. The low jitter and high precision indicate that

the proposed method is suitable for outdoor AR applications.
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Figure 4.9: Drift corrected position vector from the initial position of mobile
receiver r, r3 derived using D3 against time t.

4.3.4.2 Experiment E2

Figure 4.10 shows the plot of the linear drift corrected position vector, r4 in the NED

frame, derived using the data collected in experiment E2. For this data set, the linear

drift is low and has been effectively removed using linear regression analysis on the

initial 60 seconds of the static data. Here, the main motion was the picking up of the

camera and panning to record the scene. There was also a certain amount of lateral

motion and tilting of the camera. The plot shows that the motion of the camera is

tracked with a high level of accuracy and with low jitter. As the motion profile is not

exactly known, the effectiveness of the method is demonstrated by augmenting virtual

objects onto a video, so as to directly check the effectiveness of the proposed method

for outdoor AR. Qualitatively, the video shows that the motion of the camera is well

tracked, allowing for fairly realistic augmentation. Figure 4.11 shows the results of
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augmenting onto objects at close range, which is not possible using standalone GPS.

The resultant drift is visible in Figure 4.11(d), where the teapot appears to float a few

centimetres above the box.

Figure 4.10: Plot of position vector from the initial position of mobile receiver r, r4
against time t.

4.4 Concluding Remarks

This chapter presents the results of a novel use of GPS carrier phase measurements from

two GPS receivers for high precision position tracking in outdoor environments with

a focus towards AR applications. A quantity, Differential Single Difference (DSD), is

derived from raw phase measurements. This research proposed to use DSD to compute

the relative position of the mobile receiver from its initial starting position. This method

works by accumulating the positional change in each time epoch computed using DSD.

The current work shows that the quality of the phase measurements from low cost GPS

modules is sufficient to achieve an accuracy of 10cm in precision tracking. The result
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(a) Initial Position (b) Panning of the camera to the left

(c) The camera at a position further away (d) End position with accumulated drift

Figure 4.11: Augmentation using the proposed Differential GPS tracker and IMU
(The checker board is used to indicate the drift).

obtained using this proposed method shows that the error drifts slowly with time, is

highly linear within a period of several minutes and has low jitter. The experimental

results also show that the proposed method has an accuracy of 10cm.

This result has been obtained without sophisticated signal processing or filtering.

As the carrier phase can be measured with an accuracy of 1mm by high-end GPS

receiver, a tracker accuracy of 1cm is likely to be possible with further improvements

in the design of the antenna and the receiver, as well as signal processing techniques.

For example, choke ring antenna and narrow time correlators can reduce the multi-

path error in phase measurements, while post processing of differential GPS signals for

measuring continental shift have shown that sub-millimetre accuracy can be achieved.
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Such a level of precision is comparable to indoor tracking systems, allowing for accurate

tracking for new large scale, outdoor AR applications.

The results show that DSD is useful as a derived quantity with good noise charac-

teristics. In GPS surveying, the main goal is to derive accurate measurements of the

relative vector between two points that are several kilometers apart, thus limiting the

usefulness of DSD. In contrast, the relative position from the initial position is a useful

quantity for AR applications.

In a fully developed setup, the static receivers can be parts of an existing infras-

tructure. The raw measurements are transmitted wirelessly to the mobile unit. On

initialization, the starting point may be determined automatically or set by the user,

after which tracking continues using the proposed method.

The proposed method has low computational load and is robust as compared to

traditional GPS surveying techniques, allowing it to be used in real-time. If the low drift

is assumed to be insignificant for the application, the tracking system is immediately

usable after the GPS signals are locked on by the receivers. Furthermore, traditional

GPS relative positioning techniques can be used to periodically correct the drift through

measuring the actual baseline between the two receivers. This allows for highly accurate

real-time tracking while avoiding the high computational load associated with integer

ambiguity resolution.

4.4.1 Issues

The main issues with the proposed method are common to all GPS-based trackers,

namely the need for a clear line of sight to the satellites and frequent signal outages.
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These are particularly acute for carrier-based techniques, as a good signal-to-noise

ratio is required for the phase lock. In GPS, a channel noise measure, C/N0 is used

and a value greater than 35 is generally needed in experiments. Otherwise, this can

cause the GPS receiver to lose the signal phase lock due to antenna motions. When

the number of phase measurements drops below six, the proposed method is found

to be no longer effective. This issue is particularly acute in built-up areas, which

signals from near horizon satellites are severely attenuated by buildings and multi-path

reflections. Subsequent phase lock will render DSD to be inaccurate as cycle slips would

have occurred, and the number of carrier cycle measured is erroneous. Therefore, the

preliminary results presented here can be used for developing hybrid trackers through

combining GPS with inertial and computer vision based trackers. Under good operating

conditions with a clear view of the sky and no nearby obstructions, the proposed method

can also be used as a valuable tool for the development and validation of other outdoor

trackers.

Finally, with the modernization of GPS with increased signal power levels, the ad-

dition of the European Galileo system and the increasing performance of GPS receivers

in recent years, GPS is expected to serve as a valuable and easily accessible tool for high

precision, real-time and wide area outdoor tracking. However, precision GPS tracking

in challenging areas, such as urban canyons and indoor environment, is not feasible at

this moment, and we have to rely on computer vision to achieve the highest precision.
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5.1 Introduction

Computer vision (CV) is one of the most commonly used tracking methods for Aug-

mented Reality (AR) (Zhou et al., 2008). There are several reasons. The first is that

the cameras used for obtaining the images for CV analysis are capable of providing rich

and high-resolution information about the environment for tracking purposes. This

allows for highly accurate augmentation. The second is compatibility with vision as

the primary component of human sensory perception. Therefore, the camera serves as

the tracking sensor, as well as the means to present the effects of the augmentation to

the users. Although there are AR systems which use optical see-through head mounted

displays and projectors, and avoid the presentation of the video captured by the cam-

era, augmentation onto live video still remains as the most compelling form of AR.

Third is the low cost and availability of the hardware, namely, the cameras and fast

computers, for CV processing. Arguably, the success of ARToolkit (2010) in advancing

research in AR is due to these factors. ARToolkit (2010) has been the predominant

CV marker-based AR tracking technology due to its ease of use on low cost webcams

and printable markers. Though the accuracy and jitter levels are lacking and markers

are not desirable in many situations, ARToolkit still remains as the entry point for the

development of many AR systems. Many marker-based systems have been developed

and offer better performance (Naimark and Foxlin, 2002; Wagner et al., 2008a).

Numerous marker-less CV-based AR trackers have been proposed. They belong to

two main classes of methods, tracking with known 3D scene structures and tracking with

116



5.1 Introduction

natural features. The first class of methods often rely on the use of the 3D structures

of the scene, which are either available beforehand (David et al., 2004) or obtained

while tracking (Davison et al., 2007; Klein and Murray, 2007, 2008b), to improve the

robustness of low level CV operations, such as feature tracking. Although the 3D

structures are frequently available as CAD models, the lines and corners often do not

match those detected by the CV algorithms. Therefore, the latter case is more suitable

as the mapped 3D structures contain features that can be directly used for tracking.

For natural feature tracking, the main difficulty is in solving the correspondence

problem, or matching of feature points projected in two or more views. After features

have been matched, the camera pose can be easily computed. Two of the most promis-

ing techniques are Random Trees (RT) (Lepetit and Fua, 2006) and the Scale Invariant

Feature Transform (SIFT) (Lowe, 2004). SIFT is a complex feature descriptor, which

uses the distribution of gradients to orientate and match features. The main short-

coming of using the original design of SIFT is the slow computation of the descriptors.

SIFT is therefore not suitable for real-time AR. However, modifications presented by

Wagner et al. (2008b) demonstrate that it is possible to simplify SIFT for real-time

tracking on low-powered devices. The RT approaches use tree structures to encode the

probability distribution of binary features of key points. Such methods trade memory

and prior training time for speed of matching. Recent advances and modifications to

the RT methods for low memory devices have been presented by Wagner et al. (2008b).

Another recent advance is the proposal of the keypoint signature (Calonder et al., 2008),

which overcomes the problem of long training time by using RT on features which these
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trees have not been trained for. The efficiency of CV based augmentation has also con-

tinued to improve, allowing for the augmentation of multiple independently moving

objects. Park et al. (2008) demonstrated a multiple object tracking system based on

prior 3D object models, as well as RT for feature matching and pose estimation.

The goals for tracking in this research are to achieve wide-area, robust real-time,

high accuracy tracking, with low jitter and latency. For the case of ARTIST, the wide-

area and robustness aspects are mainly provided by the GPS and inertial components,

while the CV component was specifically tailored to achieve high accuracy, low jitter

and latency. The high resolution of the sensor information from the camera is the

main contributor to the high accuracy. However, the dense information requires a large

amount of computation to process them, resulting in difficulty in achieving real-time

operations with low latency. This is further compounded by the ambiguity caused by

the loss of information during the imaging process where 3D data is converted to 2D

images. The high density of the visual information also includes a large amount of noise

and ambiguities, which prevents early CV systems from being robust. One method to

circumvent these issues is to use artificial fiducials, or markers, to limit the amount of

information processed and remove the ambiguity. However, there is general consensus

that both the researchers and users of AR prefer marker-less CV tracking systems. This

is mainly because markers tend to make AR interactions less natural, and cumbersome

or even impossible to set up in large environments.

Real-time, robust marker-less CV tracking has advanced rapidly in the recent years

with several notable systems. Examples include the machine learning based systems
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(Lepetit and Fua, 2006; Özuysal et al., 2007) and Simultaneous Location and Map-

ping (SLAM) related systems, such as MonoSLAM (Davison et al., 2007) and Parallel

Tracking and Mapping (PTAM) (Klein and Murray, 2007). The work by Wagner et al.

(2008b) shows that it is possible to make modifications to existing methods to make

them run in real-time on mobile phones, which have low processor speeds and limited

memory. The efficiency, robustness and accuracy of such systems are mainly achieved

through algorithmic means, accompanied by an increase in computational resources.

Many early CV tracking algorithms, such as the Kanade-Lucas-Tomasi (KLT) tracker

(Shi and Tomasi, 1994), do not automatically achieve the requirements with increase

in computational resources. This implies that current and future improvements would

rely mainly on the increase in algorithmic and systems sophistication. The study and

experimentation with CV systems in this research shows that current successful CV

trackers are complex systems, where each component runs sophisticated algorithms of

its own, and interacts with other components. In order to build practical CV trackers

for AR applications, there is the need to draw on algorithms developed in basic CV

research and develop ways to combine them to form efficient and robust systems.

The development of a CV tracker in this PhD research focuses on the experimenta-

tion and modification of individual CV algorithms, as well as the ways to combine these

algorithms. This chapter is organized as follows. Section 5.2 consists of a discussion

on the organization of the CV tracker as a system. Section 5.3 describes each of the

algorithms used in constructing the tracker and presents the proposed modifications

and improvements made in this research. Specifically, the focus is on feature detection,
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feature matching and pose refinement. Section 5.4 describes the experimental setup

and results for testing the tracking system in real world conditions. Section 5.5 con-

cludes with discussion on the tracker developed, its limitations and further works on

improving it. Work on combining this CV tracker with inertial and GPS systems is

presented in Chapter 6.
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5.2 Tracking System Organization

The organization of the tracker can be understood from two perspectives. The first

being the systems view and the other the algorithms view. The systems perspective

consists of the stages of carrying out the tracking, namely (1) preparation, (2) ini-

tialization, (3) tracking and (4) relocalization. The algorithms view consists of the

individual algorithmic steps, namely (1) feature detection, (2) feature matching, (3)

robust pose estimation and (4) pose refinement. The relationship between the two

views is that each system component consists of one or more algorithms. As exempli-

fied by the PTAM (Klein and Murray, 2007) and Scale Invariant Feature Transform

(SIFT) (Lowe, 2004), the main reason for such complex systems is to achieve real-time

operation while achieving high robustness and accuracy. This section primarily de-

scribes the system organization of ARTIST, and how it compares with existing systems

using the two perspectives. As such, it also serves as a detailed review of these systems.

5.2.1 Systems Perspective

The systems perspective is useful for understanding the stages of the operation of the

tracker. It is useful to consider this perspective using the examples of ARToolkit, SIFT

and PTAM as well as the tracking system, ARTIST that has been developed in the

research. As the trackers developed by Wagner et al. (2008b) are similar to SIFT, they

are not explicitly compared here, and only interesting characteristics distinct from SIFT

are presented.

Preparation – This stage refers to the steps taken outside the tracking process
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that are required to create conditions that increase the tracker performance. Many AR

trackers use a setup consisting of a monocular camera with a fixed focal lens. Therefore,

one of the most common preparation steps is the calibration of the camera to determine

the intrinsic parameters, such as the focal length, principal point position on the image

plane, as well as the radial and tangential distortion parameters. This reduces the

number of unknown parameters in the imaging process, which simplifies the algorithms

used and improves the efficiency and robustness. For ARToolkit, the preparation stage

also includes creating and positioning of markers. By design, SLAM-based systems,

such as PTAM, do not typically require further preparation steps. However, for sys-

tems based on complex feature descriptors, such as SIFT and ARTIST that are based

on machine learning techniques, the preparation stage also consists of obtaining the

feature descriptors. Although ARTIST is based on machine learning, the use of key-

point signatures (Calonder et al., 2008) reduces the time required to obtain the feature

descriptors as compared to the earlier Random Tree (RT) and Ferns-based systems.

Typically, preparation is a one-time process for each hardware and application setup.

Initialization – The initialization, tracking and relocalization steps refer to the

operational stages during actual tracking. Initialization steps are employed to create

conditions that increase the performance of the tracker. In contrast to the preparation

stage, the initialization stage consists of steps for initializing the current tracking session

where conditions differ from the previous sessions. This may not be necessary for

every tracker. For example, SIFT, ARToolkit and RT based systems do not require

initialization and the continuous tracking cycles start immediately. For PTAM, the
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initialization consists of moving the camera sideways to obtain an initial 3D map of the

features. This map is required for the various operations of PTAM, such as the active

search of features, improving both the efficiency and robustness during tracking, as

well as relocalization after tracking failure. In this research, ARTIST does not require

system wide initialization, such as the one in PTAM. However, there is initialization for

each object to be tracked, which consists of the algorithmic steps of feature detection

and matching, as well as robust pose estimation. When the active search mode for

trackers by Wagner et al. (2008b) is used, similar feature detection and matching are

used to initialize the object to be tracked.

Tracking – This refers to the continuous tracking processes to obtain the camera

pose for augmenting the virtual objects. Tracking needs to be as efficient as possible.

For ARToolkit, this includes thresholding for the detection of the square markers, and

identification of the central pattern and the pose of the marker from the four corners of

the marker. For PTAM, this includes active feature search and patch matching using

the current pose, followed by outlier rejection and pose estimation using robust esti-

mators. The 3D map is refined and extended with new features and keyframes using

sparse bundle adjustment. Efficiency is achieved by separating the map building from

the tracking process, and running both in parallel on multiprocessors. In contrast,

the tracking component of SIFT, which is targeted towards object recognition and not

AR tracking, is computationally more intensive and does not permit real-time opera-

tions. However, it is able to provide a suitable framework for a more efficient tracker.

For SIFT, tracking starts with a scale space analysis for feature detection and the as-
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signment of an orientation to each feature. A feature descriptor with a recommended

vector length of 128 is computed based on the scale and orientation of the feature.

This achieves a degree of scale and orientation invariance for the purpose of finding

similar features. The similarity between two features is measured through computing

the distance between their descriptors. Hough Transform of the scale, orientation and

position is used to estimate the object pose robustly.

For ARTIST, the tracking of an initialized object is done using the Efficient Second-

order Minimization (ESM) (Benhimane and Malis, 2007). This iterative method has a

convergence region that is sufficiently large for the tracker to converge to the current

pose using the pose in the previous frame as the estimate. There is no requirement for

feature detection and pose estimation. As ESM can process several thousand pixels

per frame, the tracking process of ARTIST is both efficient and accurate. In order

to search for new objects that may appear within the field of view of the camera,

the initialization process of ARTIST is required for every frame along with tracking.

However, to emphasize the difference between the stages of the augmentation of a

single object, the algorithmic steps are grouped into two separate stages from the

systems perspective. Furthermore, when only one object is tracked, initialization is not

required in every frame and only ESM is performed from frame to frame.

Relocalization– This stage refers to the operations to recover from tracking failure,

and is only applicable to trackers that use frame-to-frame tracking, such as PTAM and

ARTIST. For trackers that discard all the information from the previous frame and

track the object within the current frame, relocalization is performed within every frame
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and is not explicitly required. This is a more robust setup and applies to ARToolkit and

SIFT. However, PTAM and ARTIST use frame-to-frame tracking in order to reduce

the amount of computation per frame. For PTAM, two versions of relocalization are

used. The first version is based on Random Tree matching, with an emphasis on

the reduction of the training time. A later version (Klein and Murray, 2008b) uses

blurred, scaled down versions of the map keyframes for relocalization. For ARTIST,

relocalization is essentially initialization after the failure of ESM. The subtle difference

is in the priority in which the objects are searched. Due to limited processing time, the

number of features that can be matched is limited, which in turn limits the number of

objects that can be searched. Therefore, the priority for relocalization of the recently

lost objects is higher than that for initialization as the probability of success is higher.

Table 5.1 shows a summary of the preceding discussions.

5.2.2 Algorithms Perspective

As each of the four trackers, namely, ARToolkit, PTAM, SIFT and ARTIST uses

different algorithms for each stage, the algorithms view is presented in terms of the

ARTIST with comparison made with the other trackers where appropriate. An analysis

of the trackers based on the algorithms used allows for better appreciation of the design

decisions of the ARTIST CV tracker. The main algorithmic steps are: (1) feature

detection, (2) feature matching, (3) robust pose estimation and (4) pose refinement.

Feature detection – Features refer to the interesting portions of an image, and the

commonly used features are corners, lines and blobs. Feature detection is often required

to deal with the large amount of information contained within the images by focusing
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Table 5.1: Summary of the stages of tracker operations and comparisons between
ARToolkit, PTAM, SIFT and ARTIST

Preparation Initialization Tracking Relocalization
ARToolkit -calibration

-markers
-none -thresholding

-central pattern
identification
-4 point pose

-none

PTAM -calibration -approximate 3D
map

-active search
-patch matching
-outlier rejection
-pose estimation
and refinement
-3D map building

-Random Tree
relocalization
or
-Keyframe
matching

SIFT -calibration
-SIFT
descriptors

-none -feature
extraction
-feature matching
-Hough transform

-none

ARTIST -calibration
-keypoint
signature

(per object)
-feature detection
-feature matching
-robust pose
estimation

(per object)
-ESM

(for recently
lost object)
-similar to
initialization,
but with
higher priority
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further processing on features. Another reason is that features have specific character-

istics that are tailored to facilitate further processing. For example, the texture around

point features is used in PTAM, SIFT and ARTIST for feature matching, followed

by algorithms for deriving the camera pose from these points. Other types of features

will require different downstream algorithms. Therefore, features are used for achieving

high efficiency by obtaining useful information quickly from the images, thus improving

the robustness through filtering out unnecessary or confusing information. There are

two requirements for feature detection. The first requirement is high speed as feature

detection is required to be carried out on the entire image. The second requirement is

high repeatability where a particular feature is detected well after changes in position,

rotation and scale. For ARTIST, feature detection is based on the FAST-9 (Rosten and

Drummond, 2006) detector, with the addition of adaptive thresholding and orientation

assignment. This detector satisfies the requirements of speed and repeatability.

Feature matching – This refers to the correspondence problem of finding the

feature from the object or scene database that matches a particular feature detected in

the image. This step is required for obtaining the pose of the object or scene with respect

to the camera position. Generally, the approach is that of pattern recognition, where

feature descriptors are computed, and the corresponding features are those with the

least difference or distance between their descriptors. For actual CV applications, there

are several difficult problems to be resolved. The first problem is finding descriptors

that are invariant to changes in the appearance of the features, which include changes

in position, orientation, scale and illumination. The second problem involves making
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the descriptor sufficiently discriminative in order for the matching to be correct. The

third is enabling the descriptor to be unaffected by clutter and occlusion. For these

reasons, local feature descriptors based on the image patch surrounding point features

are commonly used and have been shown to perform well.

The use of local descriptors is crucial for handling clutter but places a limit on

the discriminating power of the descriptors. This is because there will definitely be

features similar in appearance to the features of interest. This is a limitation that

cannot be overcome by having better descriptors. Current feature matching techniques

are capable of returning a large proportion of correct matches, along with a large

number of outliers (Mikolajczyk and Schmid, 2005). The outliers are mainly the result

of clutter, and are features detected in the current image that have been erroneously

matched to one of the features in the database. The probability of such occurrences

increases with the size of the database.

The main weakness of current feature matching techniques is thus the limited ability

to reject false positives. Therefore, it is unlikely that feature correspondence can be

solved using local information alone. The problem of feature correspondence requires

further processing steps that make use of global information, such as the geometry of the

features. Therefore, the focus of feature matching should be on efficiency, scalability and

obtaining as high a percentage of true positives, with as little false positives or outliers

as possible. For SIFT, the feature descriptors are derived using gradient histograms and

are matched using best-bin-first, which is an approximate k-nearest neighbor algorithm.

For PTAM, the image patch surrounding is used with warping to account for appearance
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changes due to motion and lens distortion. Outliers are limited through the use of active

search. For ARTIST, the feature descriptors are keypoint signatures (Calonder et al.,

2008), which are local patch descriptors obtained using machine learning techniques

that requires little training time. A feature matching procedure using the probabilities

of peaks appearing within a signature is proposed in this research. The effects of

various parameters on the process of generating signatures are also studied to improve

the matching accuracy while reducing the computation time and memory requirement.

These are presented in Section 5.3.2.2.

Robust Pose Estimation – Due to the limitation on the discriminatory power of

local descriptors, the results from feature matching cannot be used directly to compute

the pose. An additional step of robust pose estimation is required. It typically uses

global information, such as the geometry of the features, to reject outliers and retain

correct matches or inliers. RANdom SAmple Consensus (RANSAC) is commonly used.

It achieves robustness by randomly selecting a sample of the feature matches for com-

puting the pose, and checking the pose using the remaining matches. The pose with the

highest number of matches in agreement, or consensus, is chosen as the estimated pose.

For ARTIST, homography is used for checking the geometry of the features. A random

sample of four points is used to compute the homography using the algorithm pre-

sented by Hartley and Zisserman (2003), in order to re-project features in the database

to the current image. The distance between the re-projected and detected features is

used to determine the degree of agreement. As homography is limited to planar sur-

faces, ARTIST is limited to the tracking of such surfaces. If the 3D point positions are
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known, such as the 3D map in PTAM, RANSAC can be performed using samples of

three points. A smaller sample size reduces the probability of the inclusion of outliers

and thus reduces the number of RANSAC trials required to obtain the correct pose.

As pointed out by Lowe (2004), the performance of RANSAC greatly deteriorates

with increasing proportion of outliers. For example, when half of the matches are

correct, one in sixteen samples of four contains no outliers. If only one in ten is correct,

the chances of having no outliers are greatly reduced to one in ten thousand. To

overcome this, Lowe (2004) used scale, orientation and position for Hough transform

to obtain clusters of feature matches with good geometric agreement, and only three

matches are required compared to twenty, which is typically required for homography

with RANSAC. Wagner et al. (2008b) used three tests for outlier removal. Unlike SIFT,

scale information is not available, and only the orientations of potential matches are

used to find the dominant orientations to filter out the first set of outliers. The second

test used up to 30 lines formed using pairs of features with the best matching scores

to check whether the remaining features are on the same side of each line for both the

reference and current images. Pairs of features where more than half of the features

are mapped to the wrong side of the line are rejected. The third test is RANSAC

using homography. For ARTIST, the outlier removal tests described by Wagner et al.

(2008b) are implemented to achieve additional robustness during initialization.

Pose Refinement – In order to achieve highly realistic and natural augmentation,

the tracker must provide highly accurate camera pose. Trackers based on local fea-

tures typically exhibit high jitters, which are due to noise and sensitivity of the pose
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algorithms to minute inaccuracies of the feature positions. One method to overcome

the effects of noise is to use a large number of features, which is not always possible.

Each pixel on the camera image sensor measures the intensity of light from the points

in the scene. One effective method to measure the accuracy of the computed pose is to

measure the intensity error between the actual sensor values and those predicted using

a model. The intensity error is in turn measured using the mean square error, and the

goal is then to find the pose that minimizes it. Due to the non-linear nature of the

projection equations and orientation equations in the camera pose, the minimization

problem is non-linear. However, many CV trackers employ linear systems or first-order

iterative methods, such as Gauss-Newton, due to limitations in the processing time.

Second-order methods give better results, but typically require the computation of

Hessian, which is prohibitively expensive to compute.

Recent advances in the development of efficient algorithms for second-order min-

imization have led to increasing use of such methods in CV trackers, and have been

shown to be essential for achieving accurate pose. One example is the bundle ad-

justment (Engels et al., 2006) used in PTAM. For ARTIST, the ESM (Benhimane

and Malis, 2007) is used. Although ESM is different from bundle adjustment, both

serves the same purpose to refine the pose given a larger number of measurements, and

such methods are the main contributors to the accurate and jitter-free augmentations

achieved. However, the main limitation of such methods is that they are iterative, and

tend to find the local minimum point instead of the global one. Therefore, they require

good initial points to avoid converging to the wrong local minima. For ARTIST, the
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ESM has a convergence region that is sufficiently large for frame-to-frame tracking,

allowing for preceding algorithms to be omitted after the pose is initialized.

In the final analysis, the combination of several algorithms is required to solve the

problem of obtaining the camera pose. Each algorithm is required to achieve the goals in

AR tracking and compensate for the weak points of the other algorithms. In summary,

feature detection is used for filtering out important information from the large amount

of image data for efficient downstream processing. Feature matching is required to find

the corresponding features in the database, with efficiency as the main consideration.

Due to limited information from the localized features as well as problems introduced

in the imaging process and the real world scenes, both feature detection and feature

matching are not reliable or accurate. Therefore, robust pose estimation is introduced

to overcome such problems. However, as the pose is estimated using local features,

it is often not accurate and suffers from jitters. Thus, a final pose refinement step is

required. Recent CV trackers and ARTIST show that this is an effective framework

for solving the tracking problem. Figure 5.1 shows a summary of the systems view of

ARTIST and an overview of the algorithms running within each stage of the tracker.
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Figure 5.1: Summary of the computer vision module of ARTIST and an overview of
the algorithms running within each stage of the computer vision tracking operation
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5.3 Computer Vision Tracker Components

This section details the development and test of the algorithms, namely feature de-

tection based on FAST-9, a proposed keypoint signatures matching method termed as

the peak probabilities method, and ESM. The focus is on the modifications and addi-

tions to the original algorithms to enable each algorithm to function well as part of the

system, and achieve the goals of ARTIST.

5.3.1 Feature Detection

For ARTIST, the features are detected using FAST-9, which have been shown to have

high efficiency and repeatability (Rosten and Drummond, 2006). For the experimental

platform used in this research, which consists of an Intel Core 2 Duo 2.4GHz processor,

an image with a resolution of 512x384 pixels can be processed in two milliseconds. The

detector works by examining a ring of 16 pixels around the pixel being tested. An

illustration similar to Figure 1 of the paper by Rosten and Drummond (2006) is shown

in 5.2. A pixel is deemed to be a FAST-9 feature if at least nine of the sixteen ring

pixels have pixel intensities that differ from that of the central pixel by a predefined

threshold. In Figure 5.2, pixels one to six and twelve to sixteen have a large difference

in brightness, while pixels seven to eleven have similar brightness. The original design

of FAST requires at least twelve ring pixels to be different for the central pixel to

be a feature. However, using machine-learning techniques, both the efficiency and

repeatability of FAST can be improved. The authors reported that FAST-9 performs

well in both aspects. FAST was also used in PTAM and in the work by Wagner et al.
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(2008b).

Figure 5.2: The arrangement of a ring of 16 pixels for detection of features in FAST.
(Similar to Figure 1 in paper by Rosten and Drummond (2006) )

There are two additions made to feature detection in this research to enable better

feature detection in ARTIST. They are adaptive thresholding and orientation assign-

ment.

5.3.1.1 Adaptive thresholding

The FAST-9 detector uses a threshold for determining whether a ring pixel is different

from the central pixel. The use of a fixed threshold presents a significant problem for

using ARTIST in real world applications where there are large variations in illumination

and contrast. If the threshold is set too low, the number of features returned is high,

which results in longer processing time and lower robustness due to the increase in

the probability of similar features. In contrast, when the threshold is too high, good

features may be omitted due to poor contrast, non-optimal illumination conditions,

and/or camera image processing. The number of features returned may also be too
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low for RANSAC to succeed, as a minimum number of inliers are required. Therefore,

adaptive thresholding is required to adapt to changing conditions.

Adaptive thresholding is implemented by adjusting the threshold to achieve a target

number of features returned. If the number of features detected in the current frame

is above the target, the threshold for the next frame is increased in proportion to the

number of features in excess of the target. The converse is true when the number of

features is below the target. However, a minimum threshold is used, which is set at 25

in this research, in order to prevent superfluous responses due to noise. For real world

tracking, a global adaptive threshold of the entire image is ineffective because the image

can have several regions with different contrast and feature density levels. An example

is the case where two identical objects are present in the image except for the contrast.

The use of a global threshold results in the object with the lower contrast to have a lower

number of detected features, which can lead to failure of robust pose estimation, as a

minimum number of features is required. It is possible to mitigate this issue effectively

by dividing the image into sub-grids, and applying adaptive thresholding independently

to each sub-grid. Ideally, the number of features detected is similar for both objects in

the above example and the latter stages of the CV module are not affected by contrast.

In this research, dividing the 512x384 image frame into 8x6 sub-grids with a target of

twenty FAST-9 features each is found to work well. Figure 5.3 shows a comparison of

the thresholding methods. Adaptive thresholding gives a relatively uniform distribution

of features and takes up little computational resources.
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(a) No adaptive thresholding

(b) Global adaptive thresholding (Less features for low contrast surface on the left)

(c) 8x6 sub-grid adaptive thresholding (Improved distribution of features)

Figure 5.3: Comparison of the FAST-9 feature (red boxes) detection for the same
image frame for cases with (a) no adaptive thresholding, (b) global adaptive

thresholding and (c) sub-grid adaptive thresholding.
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5.3.1.2 Feature orientation assignment

For SIFT, the features are assigned orientations so that the feature descriptors can be

computed relative to these orientations to achieve rotational invariance. In ARTIST,

the feature descriptors are keypoint signatures computed using the Semi-Nave Bayesian

machine learning structures known as Ferns (Özuysal et al., 2007). There is no require-

ment for orientation assignment as the Ferns can be trained to recognize features in

various orientations. There are two reasons for assigning feature orientation. The first

reason is to increase the distinctiveness of the keypoint signatures by orienting the

binary point tests (Section 5.3.2.1) in the Ferns about the orientation of the feature.

This has been used by Wagner et al. (2008b) to reduce the memory requirement. This

has also been used in ARTIST to reduce the number of Ferns required and speed up

feature matching. The second reason is that the orientation information can be used

for outlier removal, thus allowing the elimination of matches where the change of orien-

tation is inconsistent with the majority of the matches. This is used in SIFT for object

recognition and by Wagner et al. (2008b).

In Figure 5.3, each FAST feature is marked by a small red box. The orientation of

each feature is shown by rotating the small red box and drawing a short line from the

center of the feature along the dominant direction. Some features may have more than

one of such lines due to the possibility of assignment of multiple dominant directions.

In ARTIST, the orientation is assigned using the dominant gradient direction in a

manner similar to that in SIFT. There are several differences in the implementation

from the original method. First, the gradients, gx and gy, are computed using the 3x3
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Prewitt operators
� 1 0 −1
1 0 −1
1 0 −1

�
for x-axis, and

� 1 1 1
0 0 0
−1 −1 −1

�
for y-axis respectively, instead

of the central difference operators,
�
1 0 −1

�
and

� 1
0
−1

�
. The Prewitt operators are

essentially multiple central difference operators and reduce the effects of noise. The

second modification is the patch used for orientation assignment is fixed at 15x15 and

centered at the FAST-9 feature, similar to the method used by Wagner et al. (2008b),

as FAST-9 does not provide scale information. However, the weighting function is not

found to improve the consistency of the orientation assignation significantly and thus

omitted. The remaining operations are similar to SIFT. For pixel p, the magnitude

m(p) and orientation θ(p) are computed using the following formulae,

m(p) =
�

g2x + g2y (5.1)

θ(p) = arctan
�gy
gx

�
(5.2)

For each pixel, m(p) is added to one of the 36 bins determined using the orien-

tation θ(p). The bin with the highest sum of magnitudes is chosen as the dominant

orientation. If there are other bins that have values more than 0.8 of the highest bin,

the feature is assigned additional orientations. This can be observed in Figure 5.3,

where some features have multiple boxes with different orientations. However, features

with more than three dominant orientations are omitted from further consideration.

As orientation assignation is not perfect, allowing multiple orientations for features im-

proves the robustness and increases the chances of correct matches. This is due to the
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occurrence of non-detected or erroneous orientations assigned in certain camera poses.

Figure 5.4 shows three images of the side of an apartment with the camera undergoing

z-axis rotation. As incorrectly assigned features are detected as outliers by robust pose

estimation, and no degradation in final tracker performance has been observed in this

research, the quantification of the accuracy of orientation assigned is not attempt here.

Figure 5.4: A sequence of three images for visual illustration of the stability of
orientation assignment used in ARTIST.

5.3.2 Feature Matching

Keypoint signature, which is first proposed by Calonder et al. (2008), is used in ARTIST

for feature matching. It avoids the requirement of long training time, which is one of

the main limitations of earlier feature matching methods based on RT (Lepetit and

Fua, 2006) and Ferns classifiers (Özuysal et al., 2007). Calonder et al. (2008) observed

that the response of the RT classifier for a feature not in the training set consists of

several stable peaks. These peaks are stable to rotation, illumination and limited scale

changes, thereby forming a sparse signature for feature matching. In this research, the

Ferns classifier replaces the RT classifier, as the memory requirement is lower without
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significant decrease in classification performance. The proposed method is named the

Generic Ferns, analogous to Generic Trees (Calonder et al., 2008).

5.3.2.1 Ferns

A Fern (Özuysal et al., 2007) is a classifier that consists of a set of tests on the pixel

values of the region surrounding a feature, to determine whether this feature belongs

to a class consisting of various warps of the feature in the database. The tests are

binary, i.e., the result is either true (1) or false (0). In ARTIST, each test consists of

a comparison between the intensity of two randomly chosen pixels within a circular

region with a diameter of 41 pixels centered at the feature. As comparisons of single

pixel values are susceptible to noise, the feature region is Gaussian filtered to reduce the

effects of noise. A small 3x3 filter
� 1 2 1
2 4 2
1 2 1

�
is used in ARTIST to keep the computational

load low. As there are 36 orientation bins, the points in the binary tests of the Ferns are

pre-rotated at 10◦ intervals. This allows the Fern tests to be carried out in a manner

that is relatively invariant to orientation changes, and reduces the number of Ferns

required to encode the variations in the patch appearance due to orientation changes.

The result of each binary test determines the value of a binary digit of an index. For

example, when there are ten tests in a Fern, the first test sets the first bit to zero or

one depending on the outcome of the test, the second test for the second bit and so on.

The resulting number is used to represent the combination of pixel values, which gives

a particular set of results for the tests in a Fern. Figure 5.5 illustrates how the index

is obtained.

The training of the classifier is similar to that described by Lepetit and Fua (2006).
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Figure 5.5: An illustration of the Fern testing process on a feature

For ARTIST, the feature region is artificially warped using homographies instead of

affine transforms. The warped feature region is tested to obtain the index and the oc-

currence of each particular index is counted. After a certain number of training samples,

generally around 10000, the number of occurrence can be converted into probabilities.

As trained features have different appearance, the probability of each index is different

for each feature. During classification, the feature region is tested to obtain an index,

and the trained feature with the highest probability is selected as the matching feature.

The number of tests in each Fern determines the amount of memory required to

run the classifier. If there are ten binary tests, there are 1024 indices. The amount

of memory required for storing the probabilities doubles with every additional test.

The number of tests is typically limited to eighteen, which is not sufficient for feature
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matching as only a small number of pairs of pixels are tested. Therefore, several Ferns

are used and the probability from each Fern is multiplied together to obtain the final

probability (Özuysal et al., 2007). For ARTIST, the amount of memory required is

greatly reduced by storing only indices with non-zero probabilities. This would typically

reduce the memory required to a quarter of the amount dictated by the number of tests.

This large reduction is due to the fact that not all indices are possible for a particular

feature even with a large number of warps. As memory accesses are relatively slow

for modern computers, reducing the memory used also results in an increase in the

computational speed. The Ferns are trained with randomly selected features, and are

used as the generic ferns for generating the keypoint signatures described in the next

sub-section.

Keypoint signatures

The keypoint signature s for a keypoint is a vector where each element si is the response

for the i-th base class in the training set of the generic ferns. Intuitively, the keypoint

signature method reuses a classifier, which takes a long time to build, for classes that

it is not trained for. Each class in this case is the set projective warps of image patches

around a point feature. Therefore, the keypoint signature method relies on the insight

that the output of a classifier for all its classes is a measure of the similarity of any

point features to each of the classes that it has been trained for. It turns out that

approximately 300 randomly selected features allow the classifier to discriminate other

point features (Calonder et al., 2008). For each incoming image, the signature of the

image keypoints sI are computed once and matched against the signatures of the objects
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keypoints sO. This forms the basis for feature matching.

In the ideal case, all responses, si, in the signature of any point feature remain

constant, regardless of the projective transformation. This assumes that the classifier

outputs a constant similarity measure for the point feature regardless of the projective

warping, which is not true for practical Ferns classifiers. Furthermore, to meet real

time requirements, a lower number of Ferns are used, which results in further increases

in variability of values of si. This increase in variation of the signature of a point

feature in turn increase the chances of mis-classification or false positives. To gain some

intuition into these variations, a random keypoint is selected and warp 100 times using

random homographies. The signatures obtained are then superimposed to illustrate the

variations, as shown in Figure 5.6. The signature of each projective warp is plotted as

a line of a single color. To enable easier visualization of this variation, the logarithms

of si are used and normalized so that the signature vector mean is one. Furthermore,

the plot is translated such that the minimum value is zero, and only s1 to s50 are

shown. The superposition shows that the signature peaks are stable. However, the

superposition does not produce an ideal thin line, and lines of different colors spreads

out, particularly at the peaks. As the si values are not constant relative to one another,

the position of color under each peak is not constant and this variations cannot be

removed by simple normalization. The different colors at the top of each peak show

that the ordering of each peak values is not sufficient for discrimination. This seemingly

random variations limits the effectiveness of keypoint correspondence by direct use of

the nearest neighbours algorithms.
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A similar issue has been described by Wagner et al. (2008b) for their modified

version of SIFT matching. They observed variations in descriptor values for each feature

that affect matching results, due to modifications to SIFT for real time operations.

Their solution was to use Spill Trees, which are essentially k-d trees where the value

used to determine the branch to traverse is a range of values instead of a single value.

This allows both branches to be searched in the case where the tested descriptor value

is near to the decision boundary. For ARTIST, peak probabilities method proposed

in the next section similarly provides a way to handle variations. However, encoding

variations using peak probabilities avoids the requirements of several megabytes of

memory required by the Spill Trees.

Proposed signature matching method

The peak probability method is proposed in this research to handle the variation in

the signatures without requiring increase in classifier complexity and run time. The

primary idea is to treat the variation of each si value in the signature as a random

occurrence with a fixed but unknown distribution. The peaks probability method relies

on the intuition that certain si values will have larger value most of the time, which

correspond to the peaks in Figure 5.6. In other words, the feature in concern is similar

to some of the features classes that the classifier is trained on. Statistically, it means

that the distribution of si values for similar classes are skewed towards larger values.

If the feature classes that the classifier is trained on are well separated, a random

feature is generally similar to only a subset of k feature classes. Let the probability

of occurrence of the i-th base class in the set of k-largest values in each signature, sk,
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Figure 5.6: Superposition of 100 signatures from random projective warps (only s1
to s50 shown) of a keypoint i. Each signature is plotted as a line of a single color and
the spread of colors indicates the variation of the keypoint signature to projective

warping.
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be pi. For each keypoint, as certain base classes occur within sk with a high pi due

to high similarity, this is effective for discriminating between keypoints. Therefore, the

peaks probabilities method measures jointed distribution of occurrence of large values

among all si, rather than the individual distribution of si values. As classes in the high

similarity subset of the keypoint in concern will occur frequently in sk, it requires only

a relatively small number of training samples to obtain the joint distribution, compared

to the original Ferns classifier. Therefore, the proposed method does not require long

training time, nor large memory to hold the distributions of individual si. Probabilities

p1 to p256 of the two keypoints are shown in Figure 5.7. They are obtained with random

homographies similar to those used for training. Figure 5.8 shows the plot of the change

of the values of pi of a keypoint as training progresses. It shows that conservatively, 500

training warps are sufficient. Therefore, in the peak probabilities method, the features

Figure 5.7: The probability pi that a base class occurs in the sk for two features.

detected in the current image are matched to the features on the planar object using

147



5. COMPUTER VISION: HIGH PRECISION POSITIONING ON
TEXTURED PLANAR SURFACES

Figure 5.8: The changes of p1 to p50 of a feature as training progresses.

the latters’ jointed distributions. This can be efficiently achieved by using the sk set

of the current image features or, sIk. This is because, if the features are similar, then

the pi values of the object features corresponding to the classes in sIk, will probably be

high as well. Therefore, the sum of pi of these classes, denoted as response, r, will be

of large value for the matching object feature. Here, the object feature in the database

with the maximum value for r is considered as the feature match.

Formally, the training process to obtain the jointed probabilities in the peak prob-

abilities method can be expressed as follows. Let sH be s of the feature patch warped

using homography, H. Let sk,H be the corresponding sk for this warped patch. Con-

sider H∗, as the set of randomly chosen homographies during the training process for

warping the features. The probability, pi, can be expressed as

pi = Prob(i ∈ sk,H) ∀H ∈ H∗ (5.3)

Define peak probabilities as, p = {pi}. Let pj be the peak probabilities of the j-th

feature on the planar object in the database. After obtaining sIk of the current image

feature, the response rj for the j-th object feature is defined as a summation based
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similarity measure,

rj =
�

i∈sk

pi pi ∈ pj (5.4)

The object feature with the maximum value for rj is chosen as the most probable match

to the image feature.

5.3.2.2 Experimental determination of Fern parameter values

Due to the requirement for real-time operation, the Fern parameters have to be set

such that the feature matching is optimal for both accuracy and efficiency. Important

parameters are (1) the number of Ferns and the number of tests in each Fern, (2) the

number of training samples, (3) the value of k or the number of peaks in sk, (4) the

number of base classes for training the generic ferns, and (5) the number of orientation

bins. The parameter values are set empirically based on tests using both simulated and

real images. The main criterion used is the matching rate, which is defined as the ratio

of the correct matches over the number of features to be matched.

The test using the simulated data is also used to generate the generic ferns for the

tests using the real images and the actual tracking operations. It is devised such that it

is similar to typical operating conditions. Approximately 6500 FAST-9 features from six

images with different types of features are used. Figure 5.9 shows the six images used. In

order to test the effect of each parameter on the matching performance, random samples

of 100 features are selected to simulate the number and types of features detected in

typical video images. To simulate the object features, the peak probabilities of the
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above-mentioned features are obtained as described in Section 5.3.2.1. For matching

tests, the feature regions are transformed using 100 different random homographies to

simulate the changes in the appearances of the features during camera motion. The

average number of correct matches per warp is noted; as it represents the number of

correctly matched features for one object for a particular camera position.

The test with real images uses three sets of publicly available test images, namely the

Wall, Graffiti and Boat (Available at http://www.robots.ox.ac.uk/ vgg/research/affine/).

Each test set consists of six images, where the homography between the first and each

of the other five images have been accurately determined. Similar to the test performed

by Calonder et al. (2008), FAST-9 features are detected with adaptive thresholding and

orientation assignment for the first image of each test set. Each feature is projected

to the other images in the set using homography, and this prevents the repeatability

of the feature detection process from affecting the matching tests. The features in the

first image are regarded as object features, and the peak probabilities are obtained as

described. The features detected in the other images are matched to those in the first

image using the proposed peak probabilities method. Features with multiple orienta-

tions are considered as single features, and multiple matches of a single feature due to

the several orientations assigned are considered as a single correct match.

For each test set, only images two and three are used for matching with the first

image. This is due to the remaining images having viewpoint changes and zoom, which

are beyond the range of values used for training the generic ferns. The test images

used are shown in Figure 5.10. As the accuracy is dependent on the distribution of
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Figure 5.9: The six images used for extracting the features for training of the
generic ferns and feature matching tests.
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the feature appearances and the base classes, for both stimulated and real image tests,

10 repetitions are made for each parameter setting and the average matching rate is

reported.

(1) (2) (3)
Wall test set – viewpoint changes with similar self repeating texture features

(1) (2) (3)
Graffiti test set – viewpoint changes with distinct features and well defined edges

(1) (2) (3)
Boat test set – rotation and zoom changes with relatively distinct features

Figure 5.10: The three test sets for the matching test using real images.
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Default settings

The default settings for the Ferns are as follows. The number of Ferns is 20 with 12 tests

each. The range of the z-axis rotation is 0◦ to 360◦, and the range of the camera tilts,

or x/y-axis rotation is −45◦ to +45◦ about the vertical. The range of scaling is from

0.75 to 1.5. Warped images can be translated up to two pixels in the x- and y-directions

to simulate the inaccuracies of feature detection. The number of training samples is

10000 for Ferns with 10 and 12 tests each. The number of samples is increased to 15000

and 20000 for Ferns with 14 and 16 tests respectively. The number of base classes is

300. Feature region has a size of 41x41 and value of k is 15. The number of orientation

bins used for assignment is 36. For the proposed matching method, 500 random warps

are used for obtaining the peak probabilities. These settings are used for the actual

tracking.

The number of Ferns and number of tests in each Fern

These two parameters affect the accuracy, run time and memory required for computing

keypoint signatures. The number of Ferns is varied from 10 to 30 in steps of 5, and

the number of tests is varied from 10 to 16 in steps of 2. The matching rate(%), the

average time to compute and match each keypoint signature (run time per feature,

msec), and the memory required (MB) for the simulated and real image tests with

respect to the number of Ferns and tests per Fern are shown in Table 5.2. The average

matching rate for real image tests is shown in brackets below the matching rate for

simulated tests. From the results, it can be observed that the matching rate generally
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increases as more Ferns and more tests are used. This is due to better representation

of the underlying distribution of the appearance of a feature undergoing projective

distortions. However, the result also indicates that the matching rate stops increasing

when more than 14 tests per Ferns are used. The value of 16 represents the upper

limit of using the increasing number of tests per Fern to increase the matching rate.

Furthermore, the memory requirement will also become increasingly prohibitive for low

memory devices. The matching rate for real images are lower than the simulated tests

as the real images include a significant amount of noise. The difference in the matching

rates is approximately 10%. This will be further explored in Section 5.3.2.3, where

the performance of the proposed method is compared with that of the sparse signature

(Calonder et al., 2008).

Table 5.2: Variations of matching rate, run time per feature and memory required
with respect to the number of Ferns and tests per Fern.

No. of Ferns 10 15 20 25 30
No. of Tests

10

65.02% 68.71% 71.71% 72.31% 73.95%
(55.97%) (60.85%) (62.28%) (64.64%) (66.61%)

0.0259msec 0.0341msec 0.0427msec 0.0509msec 0.0596msec
5.65MB 9.59MB 11.97MB 15.02MB 18.78MB

12

67.87% 70.29% 72.77% 73.97% 75.20%
(57.81%) (61.28%) (65.44%) (66.73%) (68.94%)

0.0234msec 0.0314msec 0.0384msec 0.0468msec 0.0526msec
11.80MB 17.38MB 23.60MB 29.96MB 34.32MB

14

66.26% 71.35% 73.31% 74.75% 74.33%
(56.49%) (61.60%) (65.14%) (68.40%) (68.12%)

0.0229msec 0.0292msec 0.0370msec 0.0426msec 0.0488msec
21.96MB 33.74MB 45.04MB 55.82MB 66.30MB

16

64.68% 69.84% 71.73% 73.85% 75.86%
(54.88%) (60.34%) (64.45%) (65.91%) (68.01%)

0.0222msec 0.0288msec 0.0352msec 0.0417msec 0.0496msec
37.76MB 58.63MB 79.88MB 98.60MB 115.76MB
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By storing only the non-zero probabilities, the memory required is reduced. For

example, 10x210x4x300 = 11.72MB and 10x212x4x300 = 44.88MB are the expected

memories required for 10 Ferns with 10 and 12 tests respectively. However, the actual

memory usages are 5.65MB and 11.80 respectively. It can also be observed that the

memory required for the Ferns generally doubles for every two tests added, instead of

quadruples if all the probabilities are stored. Therefore, the method used for ARTIST

is effective in reducing the memory required. The run time increases linearly with

an increase in the number of Ferns used. It also shows a slight decrease when the

number of tests per Fern is increased. This is because each additional test allows the

classifier to better distinguish between warped patches. For example, two different

patches may have the same index with the ten point-pair tests of a Fern. However,

with an additional test that compare a different pair of points, the two patches can

have different indices. Therefore adding tests increase the ability of the classifier to

discriminate between patches. Furthermore, as patches that previously had the same

index can have different indices due to additional tests, there will be less warp patches

assigned to each index and therefore less non-zero probabilities per index. As only

non-zero probabilities are processed for computing the signature, there is a decrease in

the computational time. This behavior implies that it is feasible to trade memory for

speed, for systems with large memory. However, from the results, it can be observed

that there is no significant gain in performance when more than 14 tests are used.
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Number of training samples

A sufficient number of random warps are required for training the generic ferns so that

the probabilities obtained are an accurate representation of the actual distribution of

the patch appearances. The effects of the number of training samples on the matching

rate, run time and memory usage are examined for the default case of 20 Ferns with 12

tests. Table 5.3 shows the results, where the average matching rate for the real image

tests are shown in brackets.

Table 5.3: The variation of matching rate, run time per feature and memory
required, with respect to the number of random warps.

No. of random warps 1000 5000 10000 15000 20000

Matching rate
70.04% 72.62% 72.77% 72.69% 72.12%
(61.94%) (65.37%) (65.44%) (65.63%) (64.89%)

Time per feature (msec) 0.0320 0.0372 0.0384 0.0402 0.0405
Memory(MB) 9.45MB 18.36MB 23.60MB 26.32MB 28.48MB

From the results in Table 5.3, it can be observed that the matching rates for both

the tests using the simulated and the real images do not increase with more than 5000

random warps. This implies the default value of 10000 is conservative and more than

sufficient to ensure good matching rates. As Ferns are trained with more samples,

more indices will have non-zero probabilities, which results in greater memory usage

and computational time. The memory usage flattens with an increasing number of

random warps. This shows that additional random warps are no longer activating new

indices. This implies that most of the possible indices that are possible outputs of the

Ferns tests for all possible warp patches belonging to a feature have been obtained,

and the training is more complete. However, the matching rate results show that the
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training does not need to be complete for the Ferns to perform well. This implies with

randomness, the indices probabilities of the Ferns would reach their expected values

with just 5000 samples. This also implies that additional indices reached using a greater

number of random samples would generally have low probabilities and do not improve

the matching rate. Therefore, it is possible to reduce the memory usage significantly

by using just 5000 warps instead of 10000.

The value of k or number of peaks in sk

Strictly, k is not a Fern parameter. Its effects on the matching rate and run time are

studied here. As we are concerned with the effects of varying the value of k, only one

set of generic ferns is used for all the tests to remove the effects of random sets of base

classes on the matching rate. Each value of k is tested with 10 repetitions to obtain

the average. The results are presented in Table 5.4. The average matching rate for real

image tests are shown in brackets.

Table 5.4: The variation of matching rate and time per feature with respect to the
value of k.

k 1 5 10 15 20 25

Matching rate
44.17% 67.10% 71.46% 73.47% 72.53% 72.73%
(25.86%) (56.15%) (62.62%) (63.94%) (64.14%) 64.40%

Standard
deviation for 2.85 2.20 2.32 1.52 2.71 2.57
simulated test

Time per 0.0293 0.0329 0.0364 0.0385 0.0400 0.0426
feature (msec)

From Table 5.4, it can be seen that the matching rate does not show significant

increase when k is 10 or more. However, the value of 15 is chosen as the default because
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the matching rates have a lower standard deviation, which implies that the matching

performance is more stable. Examination of results from real image tests shows that

using k=15 provides a good balance between speed and robustness to variation of

feature types, as a greater number of peaks is considered. Therefore, despite the slightly

higher run time, k=15 is used as the default for the current design and setting used for

generic ferns.

The number of base classes

The effect of the number of base classes on the matching accuracy is investigated. The

tests conducted by Calonder et al. (2008) showed that using more than 300 randomly

chosen features did not significantly increase the matching accuracy. Therefore, the

range of test is from 200 to 500, in steps of 50. Ten repetitions are made for each test

case and the average results are shown in Table 5.5, where the average matching rate

for real image tests are shown in brackets. There is a general increase in the accuracy

as the number of base classes is increased. However, the rate of increase reduces as the

number of base classes is increased, while the run time and memory usage continue to

increase in a relatively linear manner. Therefore, using more than 300 base classes does

not significantly improve the matching rate, and the increase in run time is prohibitive

for real-time tracking.

Number of orientation bins

The number of orientation bins that each feature can be assigned to is varied to study

its effects on the matching rate, run time and memory usage. The results in Table
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Table 5.5: The variation of matching rate, time per feature and memory usage, with
respect to the number of base classes.

No. of
base 200 250 300 350 400 450 500
classes

Matching 68.03% 70.01% 72.77% 73.73% 74.53% 75.62% 76.43
rate (59.96%) (62.13%) (65.44%) (66.79%) (68.04%) 68.52% 69.03%

Time per
feature 0.0299 0.0351 0.0384 0.0421 0.0456 0.0506 0.0536
(msec)
Memory 15.68 19.68 23.60 27.36 31.18 35.42 38.90
(MB)

5.6 show that the matching rate increases while the run time and memory decrease

as more orientation bins are used. However, no further significant improvements are

observed when more than 36 bins are used. This is because the orientation assignment

scheme has limited resolution and repeatability. The matching rate for real image tests

shows a decrease when a large number of orientation bins is used, which implies that

the orientation assignment has become unstable when 48 or 60 bins are used. Among

the various parameters tested, increasing the number of orientation bins is the only one

that increases the matching rate without an increase in run time and memory; the run

time and memory are reduced instead.

5.3.2.3 Comparison with the sparse keypoint signature

This section compares the performance of the proposed peak probabilities matching

method with the sparse signature method (Calonder et al., 2008). The sparse signature

is computed using the same generic ferns as in the peak probabilities method, utilizing

the non-wrapped features in the simulated tests and the features in the first image of
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Table 5.6: The variation of matching rate, time per feature and memory usage, with
respect to the number of base classes.

Region
size 1 4 9 18 36 48 60

Matching 44.38% 58.02% 64.93% 69.72% 72.77% 73.01% 72.04
rate (34.83%) (47.80%) (59.06%) (64.41%) (65.44%) 61.11% 57.25%

Time per
feature 0.0457 0.0411 0.0393 0.0389 0.0384 0.0372 0.0379
(msec)
Memory 53.04 35.22 30.62 26.60 23.60 22.16 20.56
(MB)

each real image test set. The sparse signatures have an average length of more than 150,

which is sufficiently long to achieved good matching rates. Although FAST features

are used here instead of Difference of Gaussians (Lowe, 2004), the comparison is still

considered fair as the same features are used in both methods and the focus is on the

improvements from using peak probabilities to represent the variations of the keypoint

signatures. The results from the Wall test sets also show that the performance reported

here is consistent with those reported by (Calonder et al., 2008). Figure 5.11 shows the

average matching rates for both the simulated and real test images, where Ferns with

12 tests each are used for both methods. A range of 10 to 25 Ferns is tested. Figure

5.12 shows the breakdowns of the matching rates for each set of test images, and they

are averaged to give the matching rates for the real test images in Figure 5.11.

The plots in Figure 5.11 show that on average, the matching rates achieved using

the proposed peak probabilities method is higher than those using the sparse signa-

tures. The main motivation for using the peak probabilities method is to overcome the

variations of the sparse signatures due to projective warps. The larger difference in
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Figure 5.11: The comparison of matching rates for the proposed peak probabilities
method and the sparse signatures method for simulated and real test images.

Figure 5.12: The comparison of matching rates for the proposed peak probabilities
method and sparse signatures for real image test sets.
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the matching rates for the simulated test is due to the larger variability in the image

warps used, compared to variation of feature appearance changes in the real image.

The range of possible image warps is the same as those used for training the generic

ferns. Hence, it can be concluded that the peak probabilities are more stable than

the sparse signatures over a range of projective warps. Furthermore, even with lower

variation in the feature appearance and the presence of noise in real image, the peak

probabilities still outperform the sparse signatures.

The results presented in Figure 5.12 provide a better understanding of the differ-

ences in performance characteristics of these two methods. For the Graffiti and Boat

data sets, the features are more distinct than those in the Wall data set, and the peak

probabilities perform significantly better than the sparse signatures, especially when a

lower number of Ferns is used. The differences in the matching rates are greater for

Graffiti images 1 to 3 and Boat images 1 to 3, as compared to Graffiti images 1 to 2

and Boat images 1 to 2, as the third image of each test set is taken with larger changes

in the camera pose. This adds further support to the claim that the peak probabilities

improve the performance of the keypoint signatures over a wider range of camera poses.

For the Wall data set, the matching rate of the sparse signatures is slightly better that

those of the peak probabilities. This is likely due to the less distinctive nature of the

features in the Wall data set. The use of peak probabilities appears to reduce the dis-

tinctiveness of keypoint signatures slightly, resulting in no improvement over the sparse

signatures for the Wall data set. However, as the improvement in the matching rate

for the other two data sets is more significant, the proposed peak signature method is
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deemed to have improved the overall performance of keypoint signatures.

The Wall data set used in the experiment is the same as that used by Calonder et

al. (2008) for performance evaluation. The recognition rates that are equivalent to the

matching rate reported by Calonder et al. (2008), for Wall images 1 to 2 andWall images

1 to 3 are approximately 70% and 60% respectively. From the matching rates achieved

for Wall images 1 to 2 and Wall images 1 to 3 shown in Figure 5.12, it is assumed that

the performance of the sparse signatures implemented in this research is consistent

with that by Calonder et al. (2008). As the settings for the Random Trees used by

Calonder et al. (2008) are not reported, and the type of features used are different, it

is not viable to replicate their work in good faith. As the sparse signature has similar

performance to SIFT, it implies that the performance of the proposed matching method

is also equivalent to SIFT, which is one of the best performing local feature descriptors.

The results reported in this research are also consistent with the matching performance

reported by Wagner et al. (2008b), which is an average of approximately 60% for the

simulated and real image tests.

5.3.3 Pose Refinement

The pose obtained using robust pose estimation typically gives rise to jitters, which

greatly affect the AR user experience. Therefore, pose refinement using second-order

optimization is required for higher accuracy and lower jitter, so that the virtual objects

appear realistically attached to the real world. The ESM developed by Benhimane and

Malis (2007) is used in ARTIST. The two main advantages of ESM are high efficiency

and large convergence region. The code developed for ARTIST is capable of performing
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ESM for three objects in real-time. Furthermore, the pose can be refined using the pose

from the previous frames, and only ESM is executed for every frame. The ESM is also

found to be able to converge using the estimated poses obtained from robust pose

estimation thus, allowing for all the algorithms to function together as a single system.

This section presents the tracking of planar surfaces using ESM. The contributions

made in this research to ESM are (1) improving the robustness to radial distortion

common in wide angle lens, and (2) sub-dividing the reference image into sub-grids for

organizing the pixels. This organization strategy is used instead of processing them as

a single large patch, or as individual pixels. The proposed sub-grid organization allows

for (3) selecting of sub-grids within the ESM reference image that improves the behav-

ior of the ESM iterations. This is achieved by using only sub-grids where the average

magnitude of image intensity gradient is higher than a predefined threshold. This is

based on the observation that the image gradients are the main information for con-

trolling the ESM iterations. Although it is possible to select individual pixels with high

image gradient for this purpose, it is not suitable due to sensitivity of image gradients

to image noise and increased complexity to manage a large number of pixel individually.

The sub-grid organization also allows for (4) a simple and efficient illumination model

for maintaining low ESM error in the presence of illumination changes due to shadows,

glares and ambient lighting. The proposed model is shown in this research to be more

accurate than the discrete illumination model (Silveira and Malis, 2007), while being

more computationally efficient. Furthermore, the combination of the sub-grid orga-

nization and good accuracy of the illumination model greatly simplifies the detection
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of occlusion, by using a simple threshold. These contributions are presented in detail

in the following subsections. The notations and formulation of the ESM are generally

faithful to the original work by Benhimane and Malis (2007). The main departures are

the addition of the radial distortion (Eq. 5.6 to 5.8) in to the image warping model in

Section 5.3.3.1, and subsequently the derivation of the Jacobian matrix (Eq. 5.18 to

5.21) in Section 5.4.3.2.

5.3.3.1 Image warping using homography

The main objective of ESM is to minimize the error between the reference image and

the current image, which has been warped using the current camera pose. For images of

a planar surface, the 3x3 homography matrix describes the perspective transformation

from one view to another. This warping process is illustrated in Figure 5.13 and 5.14,

using a single video sequence. The first figure shows the reference image, where the

tracked region is enclosed in a blue square. The latter figure shows two of the subsequent

frames, where the tracked region is still enclosed with blue borders, which are no longer

square due to camera motion. Figure 5.14 also shows the result of the current image

warped using the current homography and the error between the reference and warped

images.

In the following, notations, parameters with a superscript asterisk ∗ refer to parame-

ters in the reference image. Let p =
�
u
v

�
be the pixel position in the image coordinates,

where the pixel is at the u-th row and v-th column of the image. Now, p refers to the

current pixel while p
∗ =

�
u∗
v∗
�
refers to the pixel in the reference image. To obtain
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Figure 5.13: For this figure and Figure 5.14, the reference image is the tracked
region is enclosed within the blue square.

the transformation between the reference and the current images in the presence of

radial distortion and perspective warping, the following steps are required. First, p∗

is transformed to the normalized reference image coordinates m
∗
d =

� y∗d
x∗
d

�
using the

camera intrinsic parameters, as shown in Eq. 5.5.

�
u∗

v∗

�
= f

�
y∗d
x∗d

�
+

�
u0
v0

�
(5.5)

where f is the focal length of the lens in pixels and
� u0
v0

�
is the principal point in

pixels. The undistorted pixel position m
∗
u =

� y∗u
x∗
u

�
of m∗

d is obtained using the radial

distortion model. First the radial distance rd from the image principal is computed

using Eq. 5.6.

rd =
�
(y∗u)

2 + (x∗u)
2 (5.6)

Next, the distortion factor ρ is computed using Eq. 5.7.
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(Example 1) (Example 2)
Two frames from the video sequence of Figure 5.13, the tracked region is bound by a blue border

(Warped image 1) (Warped image 2)
The warped images generated using the tracked region (blue border) and current homography

(Error image 1) (Error image 2)
The error between the warped image and the reference image - brighter areas indicate greater error

Figure 5.14: Examples of the image warping process. The warped image of example
2 has greater blur and errors, due to greater change in scale than example 1.
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ρ = 1 +K1rd
2 +K2rd

4 (5.7)

Where K1 and K2 are the two radial distortion coefficients obtained using the

camera calibration routine in OpenCV (2010). Finally, the undistorted position is

computed using Eq. 5.8.

�
y∗d
x∗d

�
= ρ

�
y∗u
x∗u

�
(5.8)

Next, m∗
u is related to the 3D position of the point X∗ =

�
Y ∗
X∗
Z∗

�
using Eq. 5.9.

�
y∗u
x∗u

�
=





Y ∗

Z∗

X∗

Z∗



 (5.9)

Note that the positions of x∗ and y∗ are reversed in the pixel vector because the

X-axis and Y -axis in the 3D camera frame are defined to point horizontally towards

the right and vertically upwards respectively. Therefore, the camera X-axis and Y -

axis correspond to v (column), and u (row) in the image frame respectively. As the

coordinate frame used is right-handed, the Z-axis points away from the lens to the

image sensor. X∗ is transformed from the reference camera frame to the current frame

using Eq. 5.10, where R is the rotation matrix and t is the translation vector.

X = RX
∗ + t (5.10)

For the set of points on a plane, the following relationship in Eq. 5.11 holds for

rigid camera motion,
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X ∼= HX
∗ (5.11)

where H is the 3x3 homography matrix with determinant equal to one, and it is

related to R and t according to Eq. 5.12 (Benhimane and Malis, 2007), where d∗ and

n
∗ are the perpendicular distance and normal vector, respectively, to the plane in the

reference frame. The transpose operator is denoted using T.

H = R+ t(n∗)T (5.12)

As there are 3x3 = 9 elements in H and Eq. 5.11 is defined to scale, there are eight

degrees of freedom, namely, three for rotation, three for translation and two for the

normal vector that has been normalized. H is a member of the Special Linear group

SL(3). As the ESM requires small changes in the parameter values in each iteration,

H can be represented using the exponential map that is derived using Lie algebra

associated with this group sl(3) (Benhimane and Malis, 2007). Let a = (a1, a2, . . . , a8)T

be the 8x1 vector representing small changes. The exponential map is shown in Eq.

5.13,

H(a) = e
�8

k=1 akAk (5.13)

where Ak are basis matrices in sl(3) and defined as follows (Benhimane and Malis,

2007).

A1 =
�

0 0 1
0 0 0
0 0 0

�
A2 =

�
0 0 0
0 0 1
0 0 0

�
A3 =

�
0 1 0
0 0 0
0 0 0

�
A4 =

�
0 0 0
1 0 0
0 0 0

�

169



5. COMPUTER VISION: HIGH PRECISION POSITIONING ON
TEXTURED PLANAR SURFACES

A5 =
�

1 0 0
0 −1 0
0 0 0

�
A6 =

�
0 0 0
0 −1 0
0 0 1

�
A7 =

�
0 0 0
0 0 0
1 0 0

�
A8 =

�
0 0 0
0 0 0
0 1 0

�

This representation simplifies the derivation of the Jacobian matrices and increases

the computational efficiency.

5.3.3.2 ESM and computation of Jacobian matrices

The pixel p in the current frame that corresponds to p
∗ is obtained from X using Eq.

5.5, 5.8, 5.9. The transformation between p and p
∗ can be represented as a warping

function w�H�. If the image brightness constancy assumption holds and I∗(p∗) is the

image intensity of the reference image at p
∗, the following relationship in Eq. 5.14

holds,

I∗
�
p
∗� = I

�
p
�
= I

�
w�H�

�
p
∗�
�

(5.14)

The homography transforms the current image to match the reference image exactly,

i.e., for pixel i, each corresponding value in the error vector ∆I is zero, as shown in

Eq. 5.15.

∆I
�
p
∗
i

�
= I∗

�
p
∗
i

�
− I

�
pi

�
= I∗

�
p
∗
i

�
− I

�
w�H�

�
p
∗
i

��
= 0 (5.15)

However, there are residual errors as it is not possible to model and describe the

entire projection process completely. Errors also exist due to random image noise. The

objective is to find the set of values of a that gives H, which will result in the least

square error. As the transformation function is non-linear, non-linear optimization is
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required. The general scheme is to linearize the function around an initial set of values

for a, and iterate until the least square error is sufficiently small. Thus, the problem

is transformed into the modeling of the behavior of the function in the presence of

small changes in the parameters. To address this problem, the ESM is developed as

a non-linear optimization procedure with a convergence rate similar to the second-

order methods, but with an efficiency of the first-order methods through avoiding the

repeated computation of the Hessians. The detailed derivation of ESM is presented by

Benhimane and Malis (2007) and the form used in this work is as shown in Eq. 5.16,

∆I = −1

2

�
J(0) + J(a)

�
a (5.16)

where J(0) and J(a) are the current and reference Jacobians respectively. In each

iteration in ESM, the Jacobians are computed using the images and Eq. 5.16 is solved

using a linear system to obtain a. The current estimate of the homography matrix, Ĥ,

is updated from the previous estimate, H̄, using Eq. 5.13 as follows in Eq. 5.17:

Ĥ = H̄H(a) = H̄e
�8

k=1 akAk (5.17)

Next, Ĥ is set as the H̄ for the next iteration. The current image is transformed

using these new values and the Jacobians are recomputed to solve Eq. 5.16. This is

repeated until the change in error is below a predefined threshold.

The Jacobians are computed for each iteration and differ from those used by Ben-

himane and Malis (2007) as the radial distortion is modeled. The Jacobians model the

effects of small changes in parameter values on the error, and they can be obtained
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using the chain rule. The forms for both J(0) and J(a) are shown in Eq. 5.18.

J = JIJmdJmuJXJwJH (5.18)

J is a 1x8 vector for the warping function using homography with respect to a.

Other than JI, which is the image gradient, the remaining components are computed

using the chain rule. Following the development by Benhimane and Malis (2007), Eq.

5.19 can be obtained.

J(0) + J(a) = (JI∗ + JI)JmdJmuJXJwJH (5.19)

Each pixel in the patch results in a row in the Jacobian. For the i-th pixel, the

structure of the Jacobian in each part of Eq. 5.19 is as follows in Eq. 5.20. The index

i is omitted to simplify the notation. All the variable, except f and JH are specific to

the i-th pixel

(JI∗ + JI)JmdJmuJXJwJH =
�
∇p∗I

∗ +∇w�H�(p∗)I
��f 0

0 f
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(5.20)

where ∇p∗I∗ and ∇w�H�(p∗)I are the image gradient vectors of the reference image

and the warped current image respectively. The differential of the distortion factor

with respect to the square of the radial distance r2 is dρ
dr2 = K1+2K2r2. The Jacobian

matrix for the exponential map JH is a 9x8 matrix (Benhimane and Malis, 2007). The
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k-th column JH is represented as (a1, a2, a3, a4, a5, a6, a7, a8, a9)T, which consists of

the reshaped Ak =
� a1 a2 a3

a4 a5 a6
a7 a8 a9

�
, where the elements are extracted row by row. After

simplification and substitution using Eq. 5.5, Eq. 5.21 can be obtained and used for

the implementation.
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5.3.3.3 ESM reference image

As part of the preparation process of ARTIST, the reference image is obtained in the

following manner. The user places the planar surface to be tracked within a 192x192

pixels square at the center of the video frame, which has a size of 512x384. The plane

should be placed as parallel to the camera image plane as possible. This large square is

divided into 24x24 pixels sub-grids. The average image gradient within each sub-grid is

computed, and only those sub-grids where the gradient is above 10 grey levels per pixel

are used for ESM tracking. This step is carried out, as the image gradient component

JI is part of the Jacobian matrix. Experimental observation shows that image regions

with low gradients do not contribute additional information for ESM convergence, and

may cause convergence towards the wrong minima in certain cases. To aid the user

in selecting surfaces with high image gradients, only sub-grids with sufficient gradient
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are rendered during the selection process. This provides a visual indication of the

suitability of a surface for ESM tracking. Figure 5.15 shows the sub-grids with high

image gradients in the selection process.

Figure 5.15: The ESM reference image selection process where the sub-grids with
high image gradient are rendered.

After the selection of the sub-grids, the user is required to move the camera so

that the normal of the planar surface can be obtained using the decomposition of the

homography computed using ESM. The decomposition method presented by Malis and

Vargas (2007) is used, and this results in two possible solutions for the normal. In

the formulation of the homography in Eq. 5.12, the normal vector is defined in the

reference camera frame and does not change as the camera moves. In the current

implementation, the normal vector that does not change when the sideway motion is

greater than 0.5% of the perpendicular distance between the camera and the plane is

chosen as the normal of the planar surface. For indoor tracking, this typically means
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a lateral motion of a few centimeters. However, for outdoor tracking, the distances

encountered can be more than a hundred meters for building facades, and this means

a sideway motion of more than half a meter. As a further check, tracking is continued

with a virtual 3D object augmented onto the planar surface after the normal vector

is determined. This allows the user to visually check the accuracy and the process is

illustrated in Figure 5.16. After the normal vector in the reference frame has been

obtained, subsequent homography decomposition can be performed using a second

algorithm (Faugeras, 1993), which gives only one set of rotation matrix and translation

vector required for the augmentation of virtual 3D objects.

Figure 5.16: Augmentation of a cube for checking the accuracy of the normal vector
obtained.

5.3.3.4 Tolerance to illumination changes and partial occlusion

ESM tracking requires that the image intensity constancy assumption in Eq. 5.15

is valid such that the intensity errors are purely due to object pose errors. In reality,
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illumination is rarely constant. An illumination model is required for adjusting the pixel

intensities in the warped image so that the intensity constancy assumption is valid. For

ARTIST, the illumination model is related to the discrete illumination model (Silveira

and Malis, 2007), where illumination changes are applied equally within each sub-grid of

the reference image presented in Section 5.3.3.3. For the discrete illumination model,

the parameters are estimated together with the motion parameters within the ESM

iterations. As such, the number of parameters is greatly increased. For example, if

8x8 sub-grids are used, the total number of parameters is 73; eight for motion, 64 for

sub-grid illumination coefficients and one for global illumination. This results in very

large sparse Jacobian matrices that severely slow down the computation.

For ARTIST, the illumination parameters are estimated directly from the warped

and reference images. This is possible as the predicted pose is close to the current one

during ESM tracking. The illumination change is modeled as follows. Let Ii,j be the

intensity of pixel i in the sub-grid j for the warped image. Let mj and dj be the mean

and standard deviation of the pixel intensities in the sub-grid j in the warped image,

and m∗
j and d∗j be the corresponding values for the reference image. The modified pixel

intensity I�i,j is obtained using the illumination model in Eq. 5.22.

I�i,j =
d∗j
dj

(Ii,j −mj) +m∗
j (5.22)

The proposed illumination model equalizes mj and m∗
j as well as dj and d∗j . There

are several advantages as compared to the model by Silveira and Malis (2007). First,

the model accuracy is higher as both the mean illumination and the spread of the values
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within a sub-grid are adjusted instead of a single scaling coefficient. Second, the com-

putational load is reduced significantly as parameters are directly estimated without

the use of large sparse Jacobian matrices. Comparisons with the discrete illumina-

tion model using captured video sequences are reported in Section 5.4.2.4. The final

advantage is the improved occlusion detection. For the discrete illumination model,

parameters can be over adjusted within ESM to compensate for the intensity errors

caused by occlusion till such intensity errors reach normal error levels, and this com-

plicates the occlusion detection. For the proposed model, over adjustment is avoided

as the parameters are obtained directly from the images. As both the transformation

and illumination models are accurate, the occlusion of a sub-grid can be detected eas-

ily when its average pixel error is above a pre-defined threshold, which is set as 20

in the current implementation. This result shown in Section 5.4.2.1 demonstrates the

effectiveness of the proposed model.
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5.4 Experimental Setup and Results

This section describes the test results of the ARTIST CV tracking system.

5.4.1 Experimental Setup and Implementation Details

The proposed tracker is implemented using a Macbook Pro with a 2.4GHz Intel Core

2 Duo processor with 4GB of memory and a DragonFly 2 Firewire camera. The focal

length of the lens is 4mm. The software is written using the C language and compiled

using the MinGW GCC suite on Windows XP, as well as GCC on OSX. Specifically, the

codes for keypoint signature matching and ESM are implemented from scratch. The

greyscale image has an unusual resolution of 512x384 due to the use of 2x2 pixel binning

mode on the 1024x768 camera sensor to reduce the noise. The lens is calibrated using

the projection model and the calibration routines in OpenCV (2010). The intrinsic

parameters of the camera are shown in Table 5.7. Different video sequences are used

to test the performance of the proposed tracker. This is done by recording every

frame in the video stream as a JPEG file with the quality set at 80. For Ferns, the

default parameter values given in Section 5.3.2.2 are used. The peak probabilities pi

for object keypoints are obtained from the 192x192 ESM reference image using 500

random warps. In order to improve tracker initialization when the camera is further

away from the surface to be tracked, the reference image is scaled down by one octave

for feature extraction and peak probabilities computation at the lower scale.

For ESM, the image gradients ∇p∗I∗ and ∇w�H�(p∗)I are computed using 3x3 Prewitt

masks, as described in Section 5.3.1.2. As the gradient is computed using three rows or
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Table 5.7: Values of the camera intrinsic parameters and radial distortion
coefficients.

Parameter Value
Focal Length (f) 439.5 pixels
Principal Point (u0, v0) (251, 185) pixels
First radial distortion coefficient (K1) -0.425
Second radial distortion coefficient (K2) 0.173

columns about the pixel at the centre, the gradient computed is larger than expected

and this affects the rate of convergence. A multiplication of the gradients computed

with a value of 0.16666 results in a significant decrease in the number of iterations,

which is critical for achieving good performance.

5.4.2 Experimental Result

Three sets of results are presented here to demonstrate that the CV tracker can achieve

the goals of high accuracy and high robustness. The first set shows effective working

of the various algorithms together as a system. The second set of results illustrates

the computational speed of the system; the results show that the tracker can track

three objects simultaneously at 16fps. The final set of results shows the various types

of planar objects that can be tracked by this tracker. The results for outdoor tracking

will be presented in Chapter 6.

5.4.2.1 Tracking of a single object

A flat board with a semi-glossy picture is tracked with smooth motions. For ESM

tracking, four images shown in Figure 5.17 are used to demonstrate its robustness

against shadows, specular glares, partial occlusion and extreme poses. Only sub-grids

with an average image gradient above 10 grey-levels per pixel are rendered. Occluded
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sub-grids are not rendered to indicate that such conditions are detected and handled

robustly. Figure 5.18 shows the plots of the x, y and z motions for frames 1200 to 1500

of this video sequence, where there are occlusions similar to Figure 5.17(b) and the

camera is moving. For robustness against partial occlusion, Figure 5.18 shows that for

cases where more than 20 sub-grids are non-occluded, the tracked motion is smooth.

From frames 1360 to 1390, there is jitter as fewer than 20 sub-grids are visible, and

tracking is lost for frames 1391 to 1434 as most of the picture is covered.

(a) Shadow (b) Partial occlusion

(c) Specular glare (d) Extreme object pose

Figure 5.17: Augmentation of a teapot using ESM onto a planar surface with
illumination interferences and extreme object pose.
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Figure 5.18: Plots of x, y and z motions for video frames with occlusions similar to
those shown in Figure 5.17(b)

5.4.2.2 Tracking of multiple objects

In the video sequence shown in Figure 5.19, three planar objects are tracked. All

four algorithms, namely, feature detection, matching, robust pose estimation and pose

refinement are performed for every frame. Figure shows two of the frames where the

teapots are augmented onto objects with different poses. The first 800 frames of this

sequence, where all three objects are constantly tracked, are used to obtain the average

processing times shown in Table 5.8. Each frame requires an average of 63msec to

process, thus giving an average frame rate of 16 fps. This shows that the system is

sufficiently fast for multiple objects tracking at 16fps. For the actual tracker operation

where only ESM tracking is used after pose initialization, the frame rate reaches 28fps,

as approximately 36msec is required per frame. The times required to obtain the

keypoint signatures, sIk, for all the image keypoints and match the keypoints of an

object are 14msec and 1msec per frame respectively. If a set of Ferns is used to directly
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track one object, the time for each object will be approximately 14ms as the same

algorithm is used. Therefore, the use of the proposed peak probabilities matching

method enables more objects to be initialized, as each object requires only an addition

of 1msec for matching. The memory required for peak probabilities is approximately

100 kilobyte for each object instead several megabytes when Ferns are used. The

training time is also significantly reduced, as only 500 training samples are required

instead of 10000, which is typically required for training Ferns.

Figure 5.19: Augmentation of teapots onto three objects.

Table 5.8: Average computational times for key tracking components.

Time per frame (msec) Comments
Total time 62.76 15.93fps
Feature Detection 5.96 With adaptive thresholding

and orientation assignment
Compute sIk 14.24 0.0432msec/keypoint
Signature matching 2.77 0.922msec/object
Outlier removal 3.67 1.222msec/object
and RANSAC
ESM 17.45 5.847msec/object
Others 18.87 Image loading, OpenGL
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5.4.2.3 Types of surfaces which can be tracked

Due to the algorithms used, there are limitations on the types of surfaces that can be

tracked. With the use of FAST-9 features and RANSAC, the surfaces are required to

have at least 30 point-features per scale. Therefore, for surfaces with predominantly

blob and line features, other features detection methods would be required. Further-

more, as ESM requires the presence of varied image gradients for correct convergence,

the surface cannot be uniformly colored. However, a variety of surfaces, such as book

covers, posters and all kinds of flat images, can be augmented. Image frames from the

test video sequences are shown in Figure 5.20, 5.21 and 5.22. Figure 5.17 also shows an

example of an augmentation on a low contrast image. Further examples of augmented

objects in outdoor environments are presented in Chapter 6.

Figure 5.20: Augmentation on a surface with rich and varied patterns.

Figure 5.21: Tracking of a high contrast surface with large changes in scales.
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Figure 5.22: Augmentation on high gloss surfaces.

5.4.2.4 Comparison of the proposed illumination model with the discrete
illumination model

Five video sequences, labeled 1 to 5, and shown sequentially in Figure 5.17, 5.20, 5.21,

5.22 and 6.4(c) (the side of an apartment block) are used to compare the performance

of the proposed illumination model with the discrete illumination model (Silveira and

Malis, 2007). The two criteria measured are the model accuracy and the ESM run time.

The model accuracy is measured using the root mean square (rms) pixel intensity error

obtained after ESM has converged. The pixel intensity errors reported are relative to

the 256 grey levels of the images process and not normalized. The visual quality of

the augmentation and the number of sub-grids selected for both models are similar for

each video sequence to achieve a fair comparison. The sub-grids used are 24x24 pixels

in size. The rms pixel error, average processing time and sub-grids used per frame are

shown in Table 5.9.

The run times and rms pixel errors obtained for the discrete illumination model are

consistent with or better than those reported by Silveira and Malis (2007). Silveira and

Malis (2007) showed that the time required for similar experimental setups, which have

approximately 30 parameters and a region area of 20,000 pixels, is around 20 msec per
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Table 5.9: The rms pixel error and average processing time per video frame.

Video 1 2 3 4 5

Discrete RMS pixel error 6.638 7.761 8.881 12.160 12.266

illumination Time per frame (msec) 17.17 31.21 26.72 18.55 17.102

Model No. of sub-grids 27.52 39.27 33.14 25.61 21.86

Proposed RMS pixel error 6.019 5.049 7.392 6.475 5.830

illumination Time per frame (msec) 10.57 12.08 11.87 11.64 12.21

Model No. of sub-grids 30.25 40.15 36.87 27.44 21.95

iteration. Assuming that the average number of iterations is five, as reported in their

paper, the run time per frame is expected to be approximately 100msec. The hardware

configuration is not specifically stated in their paper, but as it is a recent publication,

the hardware configuration used is expected to be similar. Therefore, the code and

system used in this research is significantly faster. Silveira and Malis (2007) showed

that the rms pixel errors range from 5 to 20, which is consistent with the above results.

From Table 5.9, it can be observed that rms pixel error of the proposed illumination

model is lower and shows less variation. As the video sequences contain different types

of surfaces and illumination changes, it can be concluded that the proposed model

is more accurate in adapting to these different variations. This low variation in rms

pixel error allows for simple thresholding to be used for detecting occlusions of sub-

grids described in Section 5.3.3.4. The run times are significantly shorter and have

less variation for different videos. This is because for the discrete illumination model,

the Jacobian has an additional column for each sub-grid, while the Jacobian in the

proposed model has only eight columns regardless of the number of sub-grids (see Eq.

5.21). These results show that while the proposed illumination model is simple, it is
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more effective and efficient than the discrete model.

The tracking speeds reported in Table 5.9 are faster than those presented in Table

5.8 due to a lower number of sub-grids used for the cases in this section. Furthermore,

performing feature detection and matching algorithm in every frame prevents the ESM

data from staying in the processor cache memory. This slows down the processing, as

the ESM data has to be fetched from the slower main memory.

5.5 Concluding Remarks and Future Works

The proposed marker-less CV tracker is able to track multiple textured planar surfaces

with high accuracy and low jitter. Robustness against radial distortion, illumination

changes, specular glares and partial occlusion were also achieved through the modifi-

cations of the keypoint signatures and ESM. The surfaces can be tracked in real world

cluttered environments over the full range of rotation with large amount of tilt and

scale changes. The advances in CV tracking in ARTIST are brought about by the

recent availability of efficient CV algorithms, such as FAST, keypoint signatures and

ESM, as well as the focus on the overall system design. Therefore, it is important that

the individual algorithms are as efficient and effective as possible; and they must also

operate well together as a system. As exemplified by PTAM, SIFT and ARTIST, it is

most probable that practical CV trackers of the future will be developed using such a

two-tier approach.

The use of machine learning for feature matching adds a degree of flexibility to

feature matching. Instead of engineering a feature descriptor, such as SIFT which is
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limited to the situations that it performs well, the machine learning approach allows

for the efficient handling of specific conditions simply by providing the relevant training

samples. For example, radial distortion, fisheye projection and different types of simu-

lated image noises can be added to the training samples to enable feature matching to

handle them. The main problem with this approach is the large memory requirement

and long training time. The experimental approach presented in Section 5.3.2.2 can be

used to obtain optimal matching times and memory usage without a loss of accuracy.

Furthermore, the use of peak probabilities greatly reduces the training time. Eventu-

ally, as memory density continues to increase, mobile devices will have no issue running

such software in the near future.

The design of the ARTIST tracker allows the algorithms to be changed to meet

new or additional requirements, while maintaining a focus on how they would affect

the overall system performance. It is clear that multiple algorithms will be required

for each system stage. This is particularly true for feature detection where blob and

line detectors will be required to expand the types of surfaces that can be tracked.

This may require a separate feature-matching algorithm or share the existing machine

learning approach. It is expected that multiple algorithms, each optimal for a certain

set of conditions, will be performed simultaneously. This is due to the user demand

for AR tracking in all kinds of environments where no single algorithm is expected to

function well. This is particularly true for feature detection. These algorithms can

be executed in parallel or selected based on the conditions. Along with the increasing

processing power, the system design will be particularly important in achieving good
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tracker performance.

There are several issues with the current ARTIST CV tracker. The current tracker

is limited to the tracking of planar surfaces. In order to track non-planar objects,

changes are required for robust pose estimation and ESM. Pose recovery using five

points to solve for the essential matrix (Stewénius et al., 2006) or three points and 3D

map (Klein and Murray, 2007) can be used. For ESM, a model is required for warping

the current image to match the reference image. One possible method is the parametric

model proposed by Malis (2007), which allows for tracking of both rigid and deformable

non-planar objects. However, this algorithm is slow due to the requirement to solve a

large number of parameters. Another possible approach is the use of tri-focal transfer

(Hartley and Zisserman, 2003), which allows for the generation of a novel view of the

object to match the reference image using multiple images and the trifocal tensor. At

the time of writing, the algorithms and codes are not fully optimized, and the tracker

is not as efficient as the trackers developed by Wagner et al. (2008b). Furthermore, it

is also susceptible to tracking failure due to camera motion blur. Finally, the addition

of GPS and inertial components to CV tracking, enables the ARTIST hybrid tracker to

continue tracking during motion blur and planar surfaces moving out of view, as shown

in Chapter 6.2.3.
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6.1 Introduction

Outdoor AR requires the tracking systems to operate under a wide range of environ-

mental conditions and motions. As stated in Chapter 1, robustness, precision, low jitter

and ease of use are the important requirements for satisfactory augmentation of a user’s

reality. The tracking systems would also be required to operate without any modifi-

cations to the environment. Consequently, these systems have to rely on the natural

properties of the environment to perform the tracking. As no single tracking technology

is applicable and robust in every condition, hybrid tracking systems are required. Two

different hybrid trackers are presented here. The first is a loosely coupled system and

the other is the tightly coupled Kalman filter based design described in Section 2.4.

6.1.1 Loosely Coupled Configuration

This chapter presents the research on the ARTIST hybrid tracking system for AR in

outdoor urban environments Fong et al. (2009). It consists of CV, inertial and GPS

tracking modules. The general scheme is to use the coarse Earth-Centered Earth-Fixed

position, which is obtained from the standalone GPS receiver, and the orientation mea-

sured using the inertial and magnetic sensors to obtain an initial search set for the CV

tracker. This setup can be described as a loosely coupled configuration, as the data

exchange between the modules is confined only to ECEF positions and NED orien-

tations. The internal processing of each module is completely independent. Although

a tightly coupled system is likely to provide better performance, the loosely coupled

configuration is more flexible on hardware requirements. It allows ARTIST to run using
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commodity hardware that does not expose low-level data, such as the GPS carrier phase

measurements. This is particularly important for ARTIST to be hardware-platform in-

dependent for mobile outdoor AR, for example ported to a mobile phone that has

camera, accelerometer, magnetometer and the GPS modules neatly packaged into a

portable unit. This loose coupling is possible as the ARTIST CV tracking component

is sufficiently robust and efficient, allowing the GPS and inertial to be utilized mainly

for initialization and relocalization.

6.1.2 Distinctive Planar Surface for Outdoor AR

As presented in Chapter 5, the CV tracker is currently limited to the tracking of planar

surfaces. However, as distinctive planar surfaces, such as building facades, road mark-

ings, signs and posters, are common in outdoor urban environments, ARTIST is usable

in such areas. The use of distinctive planar surfaces avoids the need to perform 3D mod-

eling of the outdoor environment for applications that do not need such models, while

still providing planar surfaces for augmentation of 3D virtual objects. Therefore, these

planar surfaces can be considered as natural markers in ARTIST, which can be used

in a manner similar to the ARToolkit (2010) markers. This simplifies the development

of outdoor AR applications for users who are familiar with the ARToolkit. Distinctive

planar surfaces are also typically surfaces where users would require the augmentation

of 3D virtual objects or annotations at precise locations. For large featureless locations,

such as open fields, CV tracking is likely to fail. In this case, CV and the GPS are

complementary. CV tracking functions well in dense urban areas with buildings that

interfere with GPS tracking. While in large featureless areas, users are less able to dis-
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cern the errors due to a lack of comparative features, and AR applications generally do

not demand high accuracy. Therefore, the GPS tracking can substitute for CV tracking

by operating as a sufficiently accurate position tracker in large featureless areas.

6.1.3 Phases of System Operations

As ARTIST is highly CV centric, the ARTIST tracking system operates in a manner

similar to CV tracking (Section 5.2.1) in four phases, namely, preparation, initializa-

tion, tracking and relocalization. In the preparation phase, the ESM reference image

(Section 5.3.3.3) and the keypoint signatures (Section 5.3.2.1) of each planar surface

to be tracked, as well as the GPS position and NED orientation of the camera, are

obtained. As the RANSAC estimation of homography (Hartley and Zisserman, 2003) is

used to detect the presence of a planar surface and the initial camera pose, the number

of features detected is crucial. For RANSAC, the minimum number of inliers should be

above 15 to ensure that the initial pose is geometrically consistent. As feature match-

ing is imperfect, around 30 to 100 features are required for RANSAC to be effective.

However, having more features can reduce the performance as there is an increased

probability of similar features and mismatches, as well as an increased computational

time for matching signatures. After the surfaces are selected, they act as large natu-

ral markers defining a plane for the augmentation of 3D objects, in a manner similar

to ARToolkit. Authoring and interaction techniques developed for ARToolkit can be

transferred to the current tracking system.

The initialization phase takes place when the hybrid tracking system is first started.

The GPS position and the expected GPS error are used to define a circular region
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encompassing the possible positions of the user. All planar patches with reference

camera GPS positions within this region are tentatively included in the search set.

The NED orientation measured using the IMU is used to reduce the search set by

eliminating surfaces where the NED orientation of the surface normal is greater than

45◦ from the currentNED orientation. Figure 6.1 illustrates the process of determining

the search set. The signatures of all the features in the current frame are computed and

matched against the features of the patches within the search set. As feature matching

can be computationally intensive, only features from three surfaces randomly selected

from the search set are matched in each frame. This is done in order to maintain a video

rate of 16 frames per second (fps). The initial poses of the potential surfaces obtained

using RANSAC are refined using ESM, and surfaces with an average pixel error below a

pre-defined threshold of twenty are considered to have their pose accurately determined.

Figure 6.1: The selection of surfaces for feature matching based on the GPS
position and the NED orientation of the camera. (Selected surfaces are darkened)

After initialization, the detected surfaces are continuously tracked using ESM in

the tracking phase. Feature matching is performed in the background to detect new
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surfaces. However, as the precise camera pose is known, the surfaces that are near to

the currently tracked surfaces are given higher priority during the selection for feature

matching. Tracking failures are detected when the average pixel error exceeds the

threshold of twenty, and the tracker goes into the relocalization phase. Recently lost

surfaces are given the highest priority for feature matching. This priority reduces or

decays with the elapsed time, as the probability of relocalizing the surface decreases

with increasing time. GPS and inertial tracking are also continuously performed to

speed up recovery from complete CV tracking failure. Figure 6.2 shows a summary of

the tracking process.

Figure 6.2: Summary of the hybrid tracking system.

6.1.4 Tightly Coupled Configuration using Kalman Filter

In contrast, the tightly coupled configuration uses the GPS DSD position presented in

Section 4.3 and the two Kalman filters described in Section 2.4. As such, the readings

from all three sensors are incorporated whenever measurements are available. The
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effectiveness of the design is tested by using the hybrid tracker in conditions where

accurate Computer Vision (CV) measurements are available as the ground truth. By

removal of CV tracking data for a period of time, the accuracy of the filtered GPS and

IMU position and orientation can be compared against the ground truth.

6.2 Experimental Setup and Results

6.2.1 Experimental Setup

Both ARTIST configurations are implemented using a Macbook Pro with 2.4GHz Core

2 Duo processor. The GPS position and carrier phase measurements are obtained using

the U-Blox LEA-4T modulse with a ceramic patch antenna and the NED orientation

is obtained using InterSense Wireless InertiaCube. The video is captured using the

Point Grey DragonFly camera with a 4mm lens. The camera causes significant radio

interference in the GPS band. Installing a conductive aluminum shield around the

camera and mounting the GPS antenna 30cm away mitigated the interference. The

setup used is shown in Figure 6.3.

6.2.2 Experimental Results

6.2.2.1 CV Tracking in outdoor environment

This section shows the augmentation results for the various types of surfaces in the

outdoor urban environment. The familiar Utah teapot is used to illustrate that the

camera poses are determined accurately and tracking is successful under rotation and

scale changes. Figure 6.4 shows examples of surfaces that are suitable for augmentation.

As ARTIST CV tracker is required to handle camera rotations and large-scale
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Figure 6.3: The experimental setup consisting of the Dragonfly camera, InertiaCube
and LEA-4T GPS module with antenna.

(a) Side of a building (b) Signs

(c) Side of apartment block (d) Road marking

Figure 6.4: Examples of surfaces that can be augmented using ARTIST.
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changes, it is tested under such motions for the case of the apartment block and road

marking. The results of the augmentation are presented in Figure 6.5, and the results

show that the surfaces are accurately registered.

Figure 6.5: Augmentation in the presence of camera rotation and large scale
changes.

6.2.2.2 Campus walkthrough using Loosely Coupled Configuration

To demonstrate the effectiveness of loosely coupled ARTIST configuration, seven sites

with suitable planar surfaces around the building where the author’s laboratory is

located, are chosen as the augmentation sites. For each of the seven sites, the reference

image, keypoint signatures, GPS position and NED orientation of the camera are

obtained. This is followed by a full walkthrough, where the author visited the seven

sites and attempted to augment a virtual object at each site. Figure 6.6 shows the

walkthrough route plotted onto the satellite photograph of the building using Google
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Earth. Although the application does not specify the geographical accuracy of its

satellite and aerial photographs, Figure 6.6 shows that the recorded GPS positions

coincide well with the actual locations where the reference images were taken. The

images of the augmentation at each of the seven sites are shown in Figure 6.7.

Figure 6.6: The GPS positions of the seven augmentation sites, where the
orientation is the direction from the smiling mouth towards the eyes of the icon.

6.2.3 Kalman filter results

6.2.3.1 Position Filter

The position filter is tested by using the CV tracking result as the reference, and

simulating CV tracking failure by removal of data. Figure 6.8 shows the reference CV

tracking data for a small planar surface in the outdoor environment. The planar surface

consists of a piece of paper with printed graphics, mounted on a stand. This allows for
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(a) Site 1 (b) Site 2

(c) Site 3 (d) Site 4

(e) Site 5 (f) Site 6

(g) Site 7

Figure 6.7: Augmentation at the seven selected sites.
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a controlled setup, where parameters such as the position and orientation of the planar

surface in NED frame can be accurately determined. In this case, the planar surface

is placed so its planar normal is aligned along the North-South axis, with a slight tilt

upwards. This alignment of the planar surface is not strictly required as the angular

difference between its orientation and the orientation reported by the IMU is constant.

However, knowing the orientation of the planar surface in the NED frame is helpful for

debugging coordinate frame inconsistencies, especially when manufacturer documenta-

tion is inadequate. The difference quaternion representing the angular difference will

be constant and, if available, equal to the known value when the coordinate frames are

correctly configured. For this experiment, the position reported by CV is relative to the

planar surface in the camera frame of reference, while the GPS DSD method outputs

position relative to the starting position in the NED frame. Therefore, CV position is

converted to match the GPS DSD position in NED frame, by subtracting the initial

CV position and multiplying the difference quaternion. The use of a smaller planar

surface gives higher accuracy for CV tracking. Correspondingly, the range of motion is

smaller (-0.15m to 0.15m) and thus provides a more difficult test for GPS positioning.

Figure 6.9 shows the corresponding motion measured by the GPS method developed

in this research. It can be observed that the GPS DSD method performs well during

motion, but is noisy when stationary.

CV tracking failure is simulated by removing the tracking data between t = 4.5sec

and t = 6.2sec, as well as between t = 16.0sec and t = 17.7sec. The position tracked

using the position filter described in Section 2.4, using only the IMU and GPS data.
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Figure 6.10 shows the altered CV tracking data and the error between the position

given by the position filter and the unaltered reference CV position. The errors plot in

the bottom row of Figure 6.10 show that in both instances of failure, the position filter

has a error of up to 1cm for x and y-axes, and up to 5mm for the z -axis, which had

larger motions of up to 4cm. This result is observed in repeated experiments, where the

GPS DSD method performs better when there is a relatively large change in position

in each GPS time step. The addition of quasi-static detection reduces the errors for

axis with little motions to a limited extend. As these results are obtained with low

cost GPS modules, it is expected that the results will be much improved for modules

with lower noise in carrier phase measurements. In terms of augmentation, there is

increased position jitter during the simulated CV failures, but the virtual object does

not drift drastically.

6.2.3.2 Orientation Filter

For the test on the orientation filter, the camera is moved with rotations of up to 60

degrees, so that the planar surface is out of view. Figure 6.11 shows the variation of

the four elements of the orientation quaternion output by the orientation filter. As

accurate CV tracking data is not available when the planar surface is out of view, the

augmentation result is examined visually. Figure 6.12 shows the video frames depicting

the different phases of tracker operation. In both rotations, there are initial transient

position and orientation errors when CV tracking fails. However, the frames showing

the augmentation just before CV tracking is recovered, demonstrates that the errors

did not increase significantly during the period with large orientation changes. The
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Figure 6.8: Reference computer vision tracking data for tightly coupled tracker in
the camera frame, relative to the starting position. The data has been scaled so that

the distance is in metres.

Figure 6.9: The GPS Differential Single Difference tracking data corresponding to
the motion shown in Figure 6.8. The Down-axis motion has significant noise.
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Figure 6.10: The comparison of performance of position filter tracking against the
reference computer vision data. The top row shows the altered computer vision

position, where data is removed between t = 4.5sec and t = 6.2sec, as well as between
t = 16.0sec and t = 17.7sec (highlighted with ellipses for z-axis motion). The bottom

row shows the error between the output of the position filter and the reference.

cause of this transient error is unclear, even after efforts to tune the filter and ensuring

that each tracker component is accurate. It is likely due to a tracker behavior that is

unknown and unaccounted for, or simply due to data collection errors.

Although the output from both the position and orientation filters, without CV

updates, are not sufficiently accurate for augmentation at close distances, the errors

will be sufficiently low for augmentation at longer distance. Furthermore, the video

results show that during CV tracking failures lasting for a small number of frames,

accurate flicker free augmentation can be maintained. Therefore, the tightly coupled

configuration is robust in conditions with fast camera motions that can cause camera

blur. Higher quality GPS carrier phase measurements will be required for longer periods

of computer tracking failure.
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Figure 6.11: Plot of the variation of the four elements of the orientation quaternion
during the orientation filter test. The blue line is the scalar element, while the other

three lines are the vector elements. There are two large rotations in this test.

6.3 Concluding Remarks

The design and experimental results of two ARTIST configurations are presented.

ARTIST integrates the GPS, inertial and CV tracking systems, where their comple-

mentary properties are combined to achieve the robust, accurate and jitter-free aug-

mentation. As the robustness of the CV tracking algorithms improves, it is expected

that similar hybrid trackers will be more CV-centric. This is because the camera is a

sensor that can provide a large amount of information about the environment at high

resolution. However, it is improbable that the CV algorithms can be scaled to cover

the large areas of an outdoor environment. Therefore, GPS and inertial systems will

be required to support and enhance CV-based tracking. The experimental results pre-

sented in Section 6.2.2 show that CV-based tracking is becoming increasingly viable

for tracking in an uncontrolled environment. It is also well-suited for integration with

the GPS and inertial sensing.
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(a) t=7.8sec (with CV tracking) (b) t=8.1sec (initial CV failure on first ro-
tation)

(c) t=8.35sec(error after 15 frames) (d) t=14.2sec (error after large rotation,
before CV recovery)

(e) t=23.0sec (error before second large
rotation)

(f) t=26.5sec (error after rotation, before
CV recovery)

Figure 6.12: The errors in augmentation during computer vision tracking failure.
The initial errors did not increase significantly during large rotations.
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The main limitation of both ARTIST configuration at present is that only planar

surfaces with rich features can be augmented. Several improvements are required to

allow for more types of surfaces to be augmented. First is a new transformation model

for ESM, such as the trifocal tensor transfer, for handling non-planar surfaces. Second

is a new robust pose estimation technique for non-planar surfaces. Third is a new robust

geometrical consistency check other than RANSAC, such as the hashing method used

by Lowe (2004), which requires as few as three features. This allows surfaces with fewer

features to be used for augmentation. More efficient feature signature matching will

enable more surfaces to be tested for each frame, allowing for faster initialization and

tolerance to larger GPS positioning errors. Compared to previous hybrid trackers, the

CV component in this research has improved robustness and provided a more general

framework for various improvements to be added.
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This thesis has presented the research into the problem of wide area, unassisted

tracking for high precision 3D AR applications. The main motivation is to move AR

out of the laboratory environment, so that AR can be used in mobile environments,

such as the outdoor areas, homes and work places. Furthermore, marker-based trackers,

such as ARToolkit are avoided, as markers are not applicable to mobile AR and typi-

cally decrease the usability of AR applications. Therefore, this research takes a multi-

disciplinary approach towards solving the research question, through investigating three

different but complementary tracking systems, namely CV, inertial measurement and

the GPS. Research and development into each of the three systems has resulted in the

following advances and contributions in mobile AR tracking. They are:

1. CV tracking with highly accurate 3D augmentation and good robustness against

illumination changes, partial occlusion and extreme object poses.

2. An efficient system design for the CV tracker, and improvements to keypoint

signatures and ESM, which enable the tracker to be sufficiently fast for accurate

augmentation of three objects at 16fps.

3. Calibration methods for tri-axial accelerometers and gyroscopic systems that are

completely independent of external equipment. This allows end-users to perform

calibration on-site. This is particularly important for gyroscope calibration.

4. Differential Single Difference (DSD) of GPS carrier phase measurements, which

allows for a new method of GPS positioning. It is suitable for AR positioning

with an accuracy of 10 cm, while avoiding the resolution of integer ambiguity.
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5. Outdoor hybrid tracking system with a flexible, loosely coupled configuration. It

demonstrates that CV tracking is viable as the main tracking mechanism, while

the GPS and inertial measurements are used to enable CV tracking to operate

over a larger area.

6. Tightly coupled outdoor hybrid tracking system using Kalman filters. It demon-

strates that simple filters are effective for combining available sensor readings. In

particular, it shows that GPS DSD can substitute for accurate CV tracking for a

short period of time, but with increased jitter.

7.1 Analysis

It is evident from prior work and in this research that multiple tracking methods will

be required for wide area AR tracking. The combination of CV, inertial measurement

and the GPS is emerging as a promising approach towards accurate high-fidelity 3D

augmentation in all kinds of mobile environments. Accurate 3D augmented in all kinds

of mobile environment is significantly harder than navigation as the precision required

for 3D augmentation is much higher. This is because the human user is able to discern

minute errors in registration. It is expected that this level of accuracy will be derived

from advances in CV tracking. However, it is improbable that CV tracking will be

scalable and robust in every environment where AR is expected to be used. This is

particularly true for outdoor environments. Therefore, systems will require GPS and

inertial measurement that are not as accurate, but more robust than CV tracking.

The recent improvements to the speed, accuracy and robustness of CV tracking, as
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demonstrated here with ARTIST, and systems, such as PTAM and RT based tracking,

will push hybrid trackers towards being more CV-centric. Early systems, such as the

Touring Machine, were more GPS and inertial based. At the beginning of this research,

it was expected that CV tracking will not be robust or sufficiently fast, and the primary

means to achieve the research goals was to improve the accuracy of inertial measurement

and the GPS. However, the inherent error characteristics of both the inertial sensors

and the GPS, limits the accuracy. Further improvements will require major advances

in the design, manufacture and material properties of MEMS inertial sensors, as well

as upgrades in signal transmission and processing of the GPS. However, the greatest

limitation is that both inertial measurement and the GPS do not provide real time

information about the environment that the user is in. Therefore, even if inertial

measurement and the GPS become extremely accurate, they can only augment using

known models of the environment and will not be able to react automatically to real

time changes.

The high resolution image sensor will remain as the main sensor for AR, as it

is able to provide real-time information about the environment. From a biological

perspective, vision is the most common and successful sensory mechanism that most

advanced organisms use for survival in a dynamic environment. For example, it enables

them to look for food, avoid becoming a prey and react to changes. Furthermore, the

development of AR was in part due to the inability to simulate all aspects of our

experience in the real world, particularly the haptic properties. By allowing the real

world to be part of the simulation, AR is used as a way to overcome the shortcomings
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of VR. This is turn requires the system to detect where the user is and what object

he is holding and manipulating, in order to insert the virtual elements in a consistent

manner. Therefore, the usability and naturalness of AR will largely depend on how

well CV can be used to extract information about the real world.

7.2 Recommendation for Future Research

Research into various tracking methods reveals that much work will be required to

achieve accurate augmentation for all kinds of environment and under all kinds of

conditions. Although, the ARTIST CV tracker is efficient and robust, it is limited to

planar surfaces with a good number of point features. Therefore, one area will be the

tracking of non-planar and/or deformable surfaces. The other area is the use of more

types of features, such as blobs and lines. This will increase the types of objects and

locations where ARTIST can augment. As there is existing research on resolving these

issues, the main goal here is to be able to perform them in real time. This will entail

modification of existing algorithms or invention of new ones. The systems perspective

presented in Section 5.2.1 becomes particularly crucial as multiple algorithms are either

combined or executed in parallel. Both the algorithms and the system as a whole have

to be improved in tandem for CV tracking to be effective.

Another area is making these algorithms sufficiently efficient to enable them to be

executed on mobile phones. Although mobile phones do not provide an immersive ex-

perience, its mobility and wide availability serve as an excellent platform to popularize

the use of AR. Therefore, there will be greater need for even more efficient CV algo-
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rithms. The work by Wagner et al. (2008b) can already be used for suitable planar

surfaces found in everyday life. While recent demonstration of PTAM (Klein and Mur-

ray, 2007) on the Apple iPhone, extends the applicability to non-planar surroundings.

With development of user interfaces for authoring content, the mobile phone can be one

of the first consumer friendly platform for using AR. Finally, the tight integration of

CV, inertial and the GPS can be further investigated. For the current tightly coupled

configuration, the differential GPS doppler measurement can be used for measuring

the velocity. This was not done in this research due to the low accuracy of doppler

measurements from the low cost units. The accuracy of DSD position tracking over

large distance can be investigate, it was not done due to lack of survey equipment for

accurate positioning over large distances. Another future work is to use the precise po-

sitions and orientations from CV tracking to improve the accuracy of the inertial and

GPS tracking. Similarly, the low level information from the inertial and GPS tracking

can improve the robustness and efficiency of the CV algorithms. Although the loosely-

coupled configuration is more flexible and has been proven to work, the interchange

of low level data and the integration of the three tracking processes in novel ways will

bring about more efficient and robust tracking systems. Ultimately, it is hoped that all

these systems will be integrated into a single low-powered chip, so that AR can be used

by everyone in a natural and effective fashion for improving their quality of living.
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Results videos
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A. RESULTS VIDEOS

Figure5.17.mov
Augmentation of a teapot using ESM onto a planar surface
with illumination interferences and extreme object pose.

Figure5.19.mov
Augmentation of teapots onto three objects.

Figure5.19a.mov
A variation of the Figure5.19.mov video, where three differ-
ent objects are augmented with a teapot, torus and cone.
The objects are also moving more randomly and rapidly.

Figure5.20.mov
Augmentation on a surface with rich and varied patterns.

Figure5.21.mov
Tracking of a high contrast surface with large changes in
scale.

Figure5.22.mov
Augmentation on a high gloss surface.
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Figure4.11.mov
Augmentation using the proposed Differential GPS tracker
and IMU (The checker board is used to indicate the drift).

Figure6.4.mov
Augmentation on the side of an apartment block.

Figure6.7.mov
Augmentation at the seven selected sites. The video is a
continuous walkthrough where uninteresting portions have
been sped up.

Figure6.8.mov
Hybrid tracking with simulated computer vision tracking
failures.

Figure6.12.mov
Hybrid tracking with large rotations.
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