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Summary

The research of replication origins is critical to understanding the molecular mech-

anisms involved in DNA replication. Many computational methods based on on

individual sequence feature have been developed for predicting locations of repli-

cation origins in viruses. However, a particular sequence feature known as close

direct repeats has thus far not been used to predict replication origins in her-

pesviruses. In addition, no studies to date have predicted replication origins by

integrating multiple, related sequence features. The aim of this study was to in-

tegrate DNA sequence features for more accurate prediction of replication origins

in some double-stranded DNA viral genomes.

A computational method to predict the likely locations of replication origins

was developed in this thesis. Empirical evidences showed that replication origins

often located around regions with an unusually high concentration of palindromes,

close direct repeats and AT content. Generalized additive models were then built

up and fitted by quantifying these sequence features in herpesvirus genomes with

known replication origins. The explanatory variables set of generalized additive
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models contained window scores of palindromes, close direct repeats, AT content

and their local maxima. The optimal model was chosen by the area under the ROC

curve (AUC) criterion, and a standard leave-one-out cross-validation method was

employed to assess the predictive performance of the model.

We further refined the GAM approach by integrating additional DNA sequence

features, such as the subfamily of a virus family, standardized window numbers of

virus genome sequences, and dinucleotide scores of each window of virus genome

sequences. A stepwise model selection procedure (GAM31 (AUC)) was performed

by the AUC criterion. The similar procedure was performed on caudoviruses,

since they share some common properties with herpesviruses. The predictive

accuracy of our GAM31 (AUC) approach surpassed existing methods of repli-

cation origins prediction in herpesviruses and caudoviruses. For herpesviruses,

the GAM31 (AUC) approach outperforms Chew’s palindrome-based approach by

scoring schemes BWS1 and PLS in terms of both the sensitivity and positive

predictive values (PPV) using the top 1-10 windows. The highest sensitivity and

PPV attained by our GAM31 (AUC) approach were 88% and 55% respectively,

which were better than those of the best approach introduced by Chew et al.

(2005), i.e., 79% and 47% respectively. For caudoviruses, the sensitivity and PPV

achieved by the GAM31 (AUC) approach when we choose top 3 windows were

62% and 25% respectively, which were almost twice as the LSSVM23 approach

introduced by Cruz-Cano et al. in 2010.
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The key contribution of this study is that the generalized additive modeling

approach extends previous work on integrating DNA sequence features for the

more accurate prediction of replication origins in some double-stranded DNA viral

genomes. Moreover, the AUC criterion, which is a good summary measure to

evaluate the overall classification accuracy for identifying a dichotomous response,

was applied to select the best model among several reasonable models to improve

the predictive accuracy of replication origins in viruses. Our generalized additive

modeling approach that integrates DNA sequence features appears effective in

identifying replication origins in herpesviruses and caudoviruses.
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Chapter 1

Introduction

Herpesviridae is a large, ancient family of DNA viruses that infect many verte-

brates and even lower organisms (Davison et al., 2005). Members of this family

are also known as herpesviruses. Herpesviruses share a common structure–all

herpesviruses are enveloped, double-stranded DNA viruses with relatively large

complex genomes that range in size from 120 to over 230 k base-pairs (bp) (Roiz-

man et al., 1991). The base composition G+C content of herpesvirus DNA varies

from 31% to 75% (Roizman et al., 1991).

Herpesviruses inflict much harm to human beings and other animals. They

have been associated with fatal diseases such as AIDS and cancers, while others

pose risks in immunosuppressive post-transplantation therapies (Labrecque et al.,

1995; Vital et al., 1995; Biswas et al., 2001; Bennett et al., 2001). Many animal

herpesviruses are harmful to agriculture. For example, the alcelaphine herpesvirus



Chapter1: Introduction 2

1 is a causative agent of the lethal lymphoproliferative disease malignant catarrhal

fever in cattle and deer (Bridgen, 1991). Because herpesviruses endanger the

health and lives of humans and animals, doing research on them in order to develop

strategies to control their growth and spread is of great value.

As pointed out by Chew et al. in 2005, a detailed understanding of the molec-

ular mechanisms involved in DNA replication is very crucial, because DNA repli-

cation plays a significant role in the reproduction of herpesviruses. An origin of

replication (also known as replication origin) is a site on the genome at which DNA

replication is initiated (Ghosh, 2005). Identification of these locations is crucial

to understand DNA replication. However, identifying the location of replication

origins in the genome is a labor-intensive task. With the increasing availability

of genomic DNA sequence data, naturally, computational methodologies for pre-

dicting replication origins have been devised (Masse et al., 1992). Thus far, a

considerable number of herpesviruses have been completely sequenced, which can

be obtained from the NCBI database (http://www.ncbi.nlm.nih.gov/). Based on

the information of herpesvirus genome sequences, in the thesis, we build and ex-

plore appropriate statistical models that integrate genomic sequence features to

improve the prediction of likely locations of replication origins in herpesviruses.

Sections 1.1 and 1.2 provide an overview of the motivation and background of

our study. In Section 1.1, the basic biological background of DNA is introduced.

In Section 1.2, we describe the genome characteristics and biological properties of
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herpesviridae. In Section 1.3, we introduce the replication origins in herpesviruses

in more detail. The overall organization of this thesis is given in Section 1.4.

1.1 Biological Background

We first introduce some relevant DNA concepts and background. DNA is short for

deoxyribonucleic acid, the genetic material that determines the makeup of all living

cells and many viruses. DNA is capable of self-replication and synthesis of RNA.

The long-term storage of information is the main function of DNA molecules. The

genome is the sequence of the individual bases of the nucleic acid that determines

hereditary features of living organisms and some viruses. This sequence is used to

make all the proteins of the organism in the appropriate time and place by way

of a complex series of interactions (See Lewin, 2004. Chapter 1, section 1.1). The

amounts of bases in DNAs vary among different species.

The DNA molecule consists of two long chains of nucleotides twisted into a

shape called a “double helix”. The DNA double helix is joined by hydrogen bonds

between four kinds of bases: adenine (abbreviated A), cytosine (C), guanine (G)

and thymine (T). The DNA double helix exhibits a unique complementary base

pairing structure, with each type of base on one strand forming a bond with only

one type of base on the other strand; A only bonds to T, and C only bonds to

G (see Figure 1.1). That is, purines form hydrogen bonds to pyrimidines (see
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Watson et al., 1953). The two strands in a double helix of DNA can be pulled

apart like a zipper; either high temperatures or a mechanical force can separate

two strands of DNA (Clausen-Schaumann et al., 2000).

Figure 1.1: DNA base pairing helix.
A bonds to T, and C bonds to G.

(Retrieved 1 January 2010, from http://members.cox.net/amgough/Fanconi-
genetics-genetics-primer.htm)

The two types of base pairs form distinct numbers of hydrogen bonds; G and C

form three hydrogen bonds, while A and T form two hydrogen bonds (see Figure

1.2) (Roy et al., 2008). DNA with low GC-content is less stable than DNA with

high GC-content. Some people believe that this phenomenon is due to the extra

hydrogen bond of a GC base pair (Nguyen et al., 1998). However, contrary to

popular belief, this is actually due to the contribution of stacking interactions,

since hydrogen bonding does not provide stability, but rather specificity of the

pairing (See Yakovchuk et al., 2006). In the laboratory, the strength of the inter-

action of DNA double strands can be measured by determining the temperature
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required to break the hydrogen bonds. The DNA double strands separate into two

independent molecules when all the base pairs in the double strands melt. Both

the length of a DNA double helix and the percentage of AT content determine the

strength of the association between the two strands of DNA. Long DNA helices

with a low AT content have stronger interacting strands, while short helices with

a high percentage of AT base pairs have weaker interacting strands (Chalikian et

al., 1999). In biology, parts of the DNA double helix can be pulled apart easily

due to high AT content (deHaseth et al., 1995).

1.2 Herpesviruses

Herpesviridae is a large family of linear, double-stranded DNA viruses with rel-

atively large complex genomes with lengths ranging from 120 to 230 kbp. Her-

pesviruses contain 60 to 120 genes and the content of bases A and T ranges from

25% to 69% in each herpesviruses sequence (Roizman et al., 1991).

The members of the herpesviridae family have been classified into three sub-

families (alphaherpesvirinae, betaherpesvirinae and gammaherpesvirinae) by the

Herpesvirus Study Group of the International Committee on the Taxonomy of

Viruses (ICTV). The classification is based on virus host range, genome organi-

zation and homology, and other biological properties (Roizman et al., 1981). The
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Figure 1.2: DNA base pairs.

Bottom, an AT base pair with two hydrogen bonds. Top, a GC base pair with
three hydrogen bonds. The dashed lines denote non-covalent hydrogen bonds
between the pairs.
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α-herpesviruses grow rapidly in a wide range of tissues and efficiently destroy their

host cell. The β-herpesviruses grow slowly and only in limited types of cells. Mem-

bers of the γ-herpesviruses subfamily, grow slowly in, or immortalize, lymphoid

cells of their natural host. Classifying viruses into subfamilies serves multiple pur-

poses. The evolutionary relationship is often described by a classification scheme.

Practically, it helps the laboratory worker predict the properties and identity of a

new isolate (Roizman et al., 1991).

Herpesviridae encompasses a large group of animal viruses with the distin-

guishing ability to establish latent, life-long infections. Members of this family

have been observed in more than 80 different animal species (Frenkel et al., 1990).

Herpesvirus infections of human beings are a major public health issue, given

their prevalence in the population. Examples of a variety of herpesviruses are the

herpes simplex viruses (HSV-1 and HSV-2), which cause cold sores and genital

tract infections in humans; Epstein-Barr virus (EBV) associated with infectious

mononucleosis and with two-human cancer, Burkitt’s lymphoma and nasopharyn-

geal carcinoma; human herpesvirus 8 (HHV8), linked to a variety of lymphomas

which establishes latency in B lymphocytes and persists for the lifetime of the

host; cytomegalovirus (CMV) which causes animal and human diseases, particu-

larly in immunodeficient individuals; varicella-zostervirus (VZV), which induces

chickenpox in children and shingles in adults; and Marek’s herpesvirus, which

causes malignant avian lymphoma (see p709 in Kornberg and Baker, 1992).
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1.3 Replication Origins

DNA replication is a fundamental process in living cells that ensures transmission

of genetic information between generations. The origin of replication is a particular

sequence in a genome at which the replication process is initiated.

As Leung et al. (2005) indicated, the replication origin of Epstein-Barr Virus

(EBV), which is a human herpesvirus, has been shown to associate with cellular

proteins that regulate the initiation of DNA synthesis in human cells. EBV main-

tains its genome extra-chromosomally in infected cells (Sugden, 2002). Identifying

the location of these replication origins is important in order to study the possible

infection mechanisms of herpesviruses in human host cells. Knowledge of the pre-

cise locations of replication origins throughout herpesvirus genomes can provide

a valuable resource to improve our understanding of DNA replication and lead to

the development of antiviral agents by interfering with the infection process or by

blocking viral DNA replication (Leung et al., 2005).

1.4 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, we review the existing methods that are used to predict repli-

cation origins in bacterial, archaeal and eukaryotic genomes, especially in viruses.
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We focus more on computational methods that use sequence features to predict

replication origins in herpesviruses.

In Chapter 3, we focus on our approach based on the Generalized Additive

Model (GAM) to predict replication origins. Before the models are built and fit-

ted, we convert the sequence features into numerical data. We use the herpesvirus

genomes with known replication origins to fit the model. We adopt the area under

the Receiver Operating Curve (AUC) as the criterion for model selection. Then,

further refinement of our GAM approach, which integrates multiple sequence fea-

tures for more accurate prediction of replication origins in herpesviruses and other

double-stranded DNA viral genomes, is discussed. Dominant sequence features

are selected to build the Generalized Additive Models (GAMs). The stepwise

model selection procedure is implemented in software R. We then apply the GAM

approach to predict replication origins in Caudoviruses.

In Chapter 4, predictive results are presented and discussed. We select the

best model from several reasonable models and employ a cross-validation method

to assess the predictive performance of the model. We compare the predictive

accuracies of different methods. Our approach exhibits respectable performance.

In addition, we apply this GAM approach to other herpesviruses with unknown

replication origins. The ultimately chosen and refined GAM approach performs

much better than previous methods. It proves to be a valuable computational

method of prediction for replication origins in Caudoviruses. We also applied
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other approaches; however, our GAM approach outperformed them all.

In Chapter 5, we give the conclusions of this thesis and propose future steps

including applying our approach to other organisms such as bacteria and yeasts,

and exploring motifs around replication origins in order to predict the locations

of the replication origins.
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Chapter 2

Literature Review

2.1 Experimental Approaches to Identify Repli-

cation Origins

Because origins of replication in DNA of various organisms are considered impor-

tant sites for regulating genome replication, much laboratory work has been done

to search for replication origins (e.g., Stow, 1982; Brewer and Fangman, 1987; Zhu

et al., 1998; Hamzeh et al., 1990; Wyrick et al., 2001; Newlon and Theis, 2002).

As early as 1982, Stow developed an assay to locate an origin of DNA repli-

cation on the herpes simplex virus type 1 (HSV-1) genome, also known as human

herpes virus 1 (HHV1). Stow transfected baby hamster kidney cells with circular

plasmid molecules containing cloned copies of HSV-1 DNA fragments, and a su-
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perinfection with wild-type HSV-1 provided helper functions. The presence of an

HSV-1 origin of replication within a plasmid enabled amplification of the vector

DNA sequences, which was detected by the incorporation of [32P]orthophosphate.

By screening various HSV-1 DNA fragments, Stow identified a 995-bp fragment

containing all the cis-acting signals necessary to function as an origin of viral

DNA replication. Brewer and Fangman (1987) developed an approach for physi-

cally mapping origins of replication by two-dimensional agarose gel electrophoresis,

which was used to examine the replication of the native 2µm plasmid and a recom-

binant autonomous replication sequence (ARS) plasmid. The two-dimensional gel

electrophoresis demonstrated that there was a single, specific origin of replication

in each plasmid. In 2001, Wyrick et al. identified the positions of potential DNA

replication origins across the Saccharomyces cerevisiae genome by determining the

genome-wide locations of Origin Recognition Complex (ORC) and minichromo-

some maintenance (MCM) binding sites, because the binding of ORC and MCM

proteins occurs at or very near the replication origin. Chromatin immunopre-

cipitation (ChIP) was used to identify the sites that ORC and MCM proteins

bound. The ChIP-based method proposed 429 potential replication origins in the

S. cerevisiae genome.
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2.2 Computational Approaches to Predict Repli-

cation Origins

The increasing availability of sequence data of DNA data enables researchers to use

computational approaches to predict likely locations of replication origins before

applying experimentation. Many computational methods for predicting replica-

tion origins in bacterial, archaeal, eukaryotic and viral genomes were developed.

They were reviewed in Chew et al. (2007). These algorithms are based on char-

acteristic sequence features, rather than laboratory procedures, which can save

significant money and time (Friedman et al., 1995; Stow, 1982).

2.2.1 Prediction of Replication Origins in Bacterial, Ar-

chaeal and Eukaryotic Genomes

Mizraji and Ninio first introduced vectorial representations of sequences in 1985.

The four bases, C, G, A and T, in a nucleic acid sequence were represented with

vectors. The sequence was thus transformed into a trajectory in the plane. In

1996, Lobry adapted Mizraji and Ninio’s vectorial representation (Mizraji and

Ninio, 1985) of DNA sequences to locate replication origins in bacteria. Lobry

(1996) replaced the four nucleic acid bases with vectors (see Figure 2.1). Then

sequences could be represented in a planar trajectory. For example, the vectorial

representation of the Bacillus subtilis sequence was given in Figure 2.2, where the
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circle was used to indicate the location of a replication origin. Figure 2.2 showed

that it was easy to detect a replication origin with this vectorial representation,

since they were close to the reverse turn of the trajectory. With this graphical

representation, the origins of replication in four bacterial species, Escherichia coli,

Bacillus subtilis, Haemophilus influenzae and Mycoplasma genitalium, were well

outlined. � � � �
Figure 2.1: Each of the four nucleic acid bases is represented with a vector.(form

Lobry, 1996)

Salzberg et al. (1998) employed the skewed oligomer method, a sequence-

based method, to predict origins of replication in prokaryotic genomes, and in

particular, in some bacterial and archaeal genomes. Short oligomers (seven-base

and eight-base nucleic acid sequences), whose orientation is skewed around the

origin, were found using this method. Here, “skewed orientation” means that

short oligomers occur much more often on the leading strand in the direction

of replication than it does on the lagging strand. They developed an algorithm

for finding these skewed seven-base and eight-base sequences. They described
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Figure 2.2: Vectorial representation of DNA sequences from Bacillus subtilis. The

position of the origin of replication is outlined by a circle. (form Lobry, 1996)

a method for combining evidence from multiple skewed oligomers to locate the

origins of replication accurately.

An approach based on base composition rather than specific sequences was

used to predict replication origins in Schizosaccharomyces pombe by Segurado

et al. in 2003. They used sliding windows of different sizes to determine base

composition, and found that A+T content of windows close to replication origins

were significantly higher.

Mackiewicz et al. (2004) applied three methods to identify the putative repli-
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cation origins in 112 bacterial chromosomes, based on DNA asymmetry, DnaA

box (a common motif) distribution and dnaA gene location. DNA asymmetry

can be described in terms of the relationships between numbers of the four differ-

ent nucleotides in DNA strands. They indicated that the most universal method

of putative oriC identification in bacterial chromosomes is DNA asymmetry, al-

though applying all three methods is necessary in some cases.

Breier et al. (2004) developed an algorithm called “Oriscan” to predict the

exact location of replication origins in yeast genomes based on sequence informa-

tion. Oriscan used 268 bp of sequence derived from a training set of 26 previously

known replication origins. It was shown that accuracy was 94% in the top 100

predictions, but reliability decreased to 70% in the top 350 predictions.

For archaeal genomes, Zhang and Zhang (2005) applied the Z-curve method

to identify several replication origins. The Z-curve is a three-dimensional curve

that constitutes a unique representation of any given DNA sequence. Figure 2.3

shows an example of the three-dimensional Z-curve for the Methanosarcina mazei

genome. The arrow indicates the position of the putative replication origin. Be-

cause the Z-curve contains all the information that the corresponding DNA se-

quence carries, we can study the DNA sequence by geometrical methods with the

Z-curve. This method nicely complements widely used mathematical methods. In

the same year, large-scale analysis of nucleotide compositional strand asymmetries

were also developed (Brodie of Brodie et al., 2005; Touchon et al., 2005) for de-
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tecting DNA replication origins in human chromosomes. More recently, Worning

Figure 2.3: The three-dimensional Z-curve for the Methanosarcina mazei genome.

(from Zhang and Zhang, 2005))

et al. (2006) developed a program that accurately located replication origins in

prokaryotic chromosomes by measuring the differences between leading and lag-

ging strands of all oligonucleotides up to 8 bp in length. This method was more

sensitive than existing methods based on mononucleotide skews or the octamer

skews.

Chew et al. (2005) pointed out that the method of predicting replication origins

in one kind of genome may not necessarily work well on others, because sequence

features around their replication origins in different organisms vary due to the

differences in DNA replication mechanisms. Cells in the three major kingdoms,

Bacteria, Archaea and Eukarya, use roughly similar strategies and mechanisms

for genome replication; however, the mechanisms used are different from those of
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viral genome replication (Stillman, 1996). Thus the computational methods for

predicting the replication origins vary in viruses and other organisms. We will

review the methods of predicting replication origins in viruses in the next section.

2.2.2 Prediction of Replication Origins in Viruses

Sequence Features to Predict Replication Origins

Many kinds of sequence features have been used to predict replication origins in

herpesviruses. In this section, we first discuss the palindrome sequence feature

(Chew et al., 2005).

As defined by Chew et al. in 2005, a DNA palindrome is a segment of double-

stranded DNA in which the nucleotide sequence of one strand reads exactly the

same in reverse order with that of the complementary strand. A palindrome can

also be defined as a word pattern of the form a1...aLa′L...a′1, where we denote a′ to

be the complement of base a, and the half-length of the palindrome is denoted as L.

The letters aL and a′L are the left-center and the right-center of the palindrome,

respectively. Figure 2.4 shows an example of a palindrome. The length of the

palindrome in Figure 2.4 is 10 and its half-length L equals 5.

Early studies have reported that replication origins in herpesvirus genomes

often lie around regions of the DNA sequence with an unusually high concentration

of palindromes (Reisman et al., 1985; Weller et al., 1985; Masse et al., 1992). The
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Figure 2.4: A palindrome of length 10.

The DNA sequence ATTGCGCAAT is a palindrome because its complement is
TAACGCGTTA, which is equal to the original sequence in reverse complement.

general reason for this phenomenon is that initiation of DNA replication typically

requires an assembly of enzymes to bind to the DNA, then locally unwind the

helical structure and finally pull apart the two complementary strands (Chapter

1 in Kornberg and Baker, 1992; Bramhill, and Kornberg, 1998). The symmetry

created by palindromes is advantageous for providing a suitable binding site for

these DNA-binding proteins.

Another sequence feature that has been found in the vicinity of replication

origins is the sequence of close direct repeats. Close direct repeats are short

repeats separated by a spacer of several nucleotides (Rocha and Blanchard, 2002)

(see Figure 2.5 for an illustration). The arrows under the DNA sequence indicate

the sequence that is repeated. For instance, “bye-bye” is a Linguistical example

of a direct repeat. The left part and right part of the close direct repeat are called

the left stem and right stem, respectively. The starting positions of the left stem

and right stem are called the left start and right start, respectively. We define

the number of nucleotide bases in each stem as the stem length. For example, the
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stem length of the close direct repeats in Figure 2.5 is 6.� � � � � � � � � � � � � � � � � � � � � �
Figure 2.5: Close Direct Repeats.

The DNA sequence TTAGCC is repeated. The stem length is 6.

Empirical studies have suggested that close direct repeats are also found near

replication origins in viral genomes (Hirsch et al., 1977; Weller et al., 1985; Reis-

man et al., 1985; Dutch et al., 1992; Masse et al., 1992; Lehman and Boehmer,

1999). It was reported that in some herpesvirus genomes, the nucleotide sequences

around replication origins are richer in A and T bases (Lin et al., 2003). This is

generally attributed to the fact that the two complementary DNA strands bond

less strongly to each other due to the higher AT content around the origins (Se-

gurado et al., 2003; Sponer et al., 1996). This facilitates the two complementary

DNA strands to be pulled apart and initiate the replication process.

All these sequence features are relevant to replication origins in herpesviruses.

Based on these observations, computational methods for replication origin predic-

tion in herpesvirus genomes have been devised by using individual sequence feature

palindromes and AT content (Chew et al., 2005; Chew et al., 2007). However, no

one has yet predicted replication origins by the computational method using close

direct repeats. We suggest that it is reasonable to introduce an approach based

on close direct repeats to predict replication origins. Considering these sequence

features jointly could also be compelling.
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Existing Computational Methods to Predict Replication Origins in Viruses

So far, many computational methods to predict likely locations for replication ori-

gins in herpesviruses prior to experimentation have been developed. For example,

Leung et al. (2005) suggested using scan statistics to locate statistically significant

clusters of palindromes. Chew et al. (2005) further developed palindrome-based

scoring schemes for quantifying palindrome concentrations to predict known repli-

cation origins in complete herpesvirus genomes and improve the sensitivity of the

prediction. They introduced three scoring schemes for palindromes: palindrome

count score (PCS), palindrome length score (PLS) and base-pair weighted score

of order m (BWSm). L was used to denote the benchmark of the minimum half

length of a palindrome, where they only considered palindromes of at least 2L in

length in their analysis. The palindrome count score (PCS) scheme, which was

introduced by Leung et al. in 1994, gave a palindrome score of 1 when its length

was at or above 2L. A palindrome of length 2s ≥ 2L was given a score s/L by

the palindrome length score (PLS) scheme. Chew et al. (2005) highlighted the

base-pair weighted score of order m (BWSm) scheme, where m denotes the order

of the Markov chain model of the DNA sequence. Under this scheme, the palin-

drome that had lower probabilities to occur by chance was given a higher score.

Then, the score for a palindrome was the negative logarithm of the probability of

a palindrome.

Using this scoring scheme, their method of predicting origins of replication
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was to slide a window of fixed size over the sequence. The window scores for each

window were calculated. A high window score reflected a high concentration of

palindromes in the window, and vice versa. The windows with top scores were

then selected as predicted locations of replication origins. However, the drawback

to this method is that it does not make use of any information known about the

replication origin locations in closely related members of the herpesvirus family.

Since many members of the herpesvirus family were known to have a similar overall

genome organization (Albrecht et al., 1992), knowledge about the locations of

replication origins in one herpesvirus should be relevant for predicting replication

origins in other herpesviruses.

Another sequence feature known to be associated with replication origins is

AT content. As reviewed by Chew et al. in 2007, Segurado et al. (2003) lo-

calized the positions of A+T rich “islands” in the Schizosaccharomyces pombe

genome using sliding windows of different sizes. Genome-wide analysis enabled

them to identify A+T rich “islands” regions, which predicted the localization of

most origins of replication in the genome. Chew et al. (2005) also reported using

the AT content feature on herpesviruses in order to identify replication origins.

This method successfully identified several origins in some herpesviruses genomes

(bohv4, ehv4 and hsv2) that were not predicted by any of the palindrome-based

approaches using scoring schemes; namely, the palindrome count score (PCS), the

palindrome length score (PLS), or the base-pair weighted score (BWSm). This

suggested that the sequence feature of AT content should be incorporated with
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other predictive approaches to produce the optimal predictive results. Motivated

by this, Chew et al. (2007) found a window free approach to better quantify the

AT content variation in genome sequences. This score-based excursion approach

was used to identify genome regions with high AT concentrations, called high-

scoring segments. These segments were predicted as potential replication origin

sites in herpesviruses. This AT excursion approach successfully identified sev-

eral replication origins not previously predicted by the palindrome-based method.

Therefore, the AT excursion approach was a valuable approach to predict repli-

cation origins in herpesviruses. However, it was observed that quite a number of

regions predicted as potential replication origin sites by AT excursions were not

close to replication origins. This meant that the positive predictive value of the

AT excursion approach was low although the corresponding sensitivity was high.

Thus, developing methods which can improve the positive predictive value could

be very beneficial.

Besides palindromes and AT content, the sequence feature of close direct re-

peats has also been found to be concentrated around the replication origins in

herpesviruses (Stow, 1982). However, this sequence feature has never been used

to predict the locations of replication origins in herpesviruses. As such, an ap-

proach based on close direct repeats needs to be explored. All of the current

methods have achieved success to some extent in predicting replication origins in

herpesviruses by using an individual sequence feature. Therefore, it is reasonable

to expect that the predictive accuracy can be improved by appropriately integrat-
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ing sequence features, palindromes, close direct repeats and AT content.
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Chapter 3

Methodology

From the above review, we can see that the replication origins in herpesviruses

can be predicted with some degree of success by computational approaches that

separately use sequence features, palindromes and AT content.

The aim of this research was to develop a statistical model that integrates

multiple DNA sequence features for more accurate prediction of replication origins

in herpesviruses, and also to extend this model to other similar viral families. We

adopted the area under the Receiver Operating Curve (ROC) as the criterion for

model selection (Pepe, 2003). The area under the ROC curve (AUC) is a numerical

measure of a model’s discrimination performance. We compared AUC scores of

several models with different combinations of explanatory variables (i.e., sequence

features) in order to select the best model.
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We hope our model can improve the accuracy of predicting locations of replica-

tion origins. Our approach may be a promising computational tool for identifying

replication origins in herpesvirus genomes. Also, the methodology we use may

be applicable to other viral families. Furthermore, the identification of origins of

replication was a labor-intensive task (Friedman et al., 1995; Stow, 1982; Brewer

and Fangman, 1987; Wyrick et al., 2001). Therefore, our computational meth-

ods using relevant DNA sequence features to predict likely positions of replication

origins before applying experimental methods should be highly valuable. The

computational predictive approaches could help design finely-tuned experiments

that efficiently locate positions of replication origins with fewer resources and less

labor and in shorter time.

In this chapter, we propose a computational method to predict the locations of

replication origins in herpesviruses. Here we give an overview of our method. After

locating palindromes and close direct repeats in herpesvirus genome sequences, we

convert the sequence features to numerical data. The AT content is also quanti-

fied. Then we model the data using Generalized Additive Models (GAMs), which

are fitted by regressing the quantified sequence features and known replication

origins in herpesvirus genomes. By using the AUC criterion, we select the best

model which is used to predict replication origins in herpesviruses with unknown

replication origin locations. Furthermore, we refine the GAM approach with more

sequence features which may relate to replication origins. We select variables

by a forward stepwise GAM approach. After finding the most effective way to
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predict the likely locations of replication origins in herpesviruses, we apply the

GAM approach to caudoviruses, which share several similar characteristics with

herpesviruses.

3.1 Converting Sequence Features into Numeri-

cal Data

We consider the sequence features of palindromes, close direct repeats and AT

content in herpesvirus genomes and local maxima of the scores of these sequence

features. The following subsections discuss how to quantify these sequence fea-

tures.

3.1.1 Data Set to Be Analyzed

The data set comprises all complete genome sequences of the herpesvirus family

downloaded in June 2007 from GenBank at the NCBI web-site (http://www.ncbi.

nlm.nih.gov/). The analysis encompasses 47 herpesviruses in all, which are pre-

sented in Table 3.1. Their sequence length and the percentage of nucleotide bases

A and T are listed in Table 3.1 as well as their abbreviation and accession number.

Chew et al. (2007) reported fourty-three replication origins in herpesviruses with

known locations after extensive compilation from literature review and Genbank.

This forms the basis of our data set.
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3.1.2 Converting Palindromes to Numerical Data

As argued by Chew et al. (2005), very short palindromes occur frequently by

chance, so we need to fix a minimum half length of a palindrome L. Palindromes of

length less than 2L will not be considered in the analysis. Based on the benchmark

of the well-studied HCMV virus, Leung et al. (2005) proposed a procedure to

choose the parameter L. Leung et al. (2005) chose L = 5 for most of the viruses,

so we fix L = 5 here. We used the software EMBOSS [European Molecular Biology

Open Software Suite] (Rice et al., 2000) to locate palindromes in the genome. In

order to extract the useful information of each palindrome, such as its length and

position, the software was employed based on the minimal palindrome length 2L.

We will assign a score to each of these palindromes. Chew et al. (2005) found that

the scoring scheme base-pair weighted score of order m (BWSm) worked better than

the palindrome length score (PLS) scheme in terms of predictive accuracy. But

the BWSm scoring scheme assigns scores to palindromes based on the dependence

of the adjacent nucleotide bases, while our proposed method assumes two non-

overlapping segments of genome sequences are independent. Thus we will adopt

the PLS scoring scheme to assign scores for palindromes, then a palindrome of

length 2h ≥ 2L will be scored as h/L. For instance, if L is chosen to be 5, a

palindrome of length 28 will be given a score of 28
2
/5 = 2.8.
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3.1.3 Converting Close Direct Repeats to Numerical Data

We use the software “REPuter” (Kurtz et al., 1999; Kurtz et al., 2001) to locate

close direct repeats. REPuter can find all repeats above a given level of significance

in a complete genome. REPuter assesses the significance of each repeat by its E-

value (i.e., “the number of repeats of the same length or longer and with the same

number of errors or fewer that one would expect to find in a random DNA of the

same length” (defined by Kurtz et al., 2000)). The maximum computed repeats,

the minimal repeat size and the error distance should be chosen before running

the program. The range of maximum computed repeats is from 1 to 5000, and

the minimal repeat size can be chosen from 8 to 200 using the software REPuter.

Because we want to extract as many close direct repeats as possible from the

genome sequences, we chose 5000 as the maximum computed repeats and 8 as

the minimum repeat size. The maximum allowed error distance was chosen as 0,

since only exact repeats were considered in this study. The REPuter results page

gives an overview of the number, length and location of repeats in the uploaded

sequence. The output is sorted by E-values.

In this study, the maximum allowable distance between the starting positions

of the close direct repeats depends on the length of the genome sequence. The

details will be described in a later section. Each pair of close direct repeats will

be converted to a numerical score according to a scoring scheme. We introduce a

scoring scheme, repeats length score (RLS), in which a pair of close direct repeats
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of stem length S is given a score S. For example, a close direct repeats of stem

length 18 will receive a score of 18.

3.1.4 Converting AT Content to Numerical Data

A replication origin often lies around an AT-rich region. We use the percentage

of nucleotide bases A and T in the sequence segment as the score for AT content.

For example, the score of the sequence segment AATGCTTATA is 80.

3.1.5 Computing the Window Scores

The entire genomic sequence is partitioned into non-overlapping windows of equal

size. For each window, the palindrome score of the window is the total of each

score of palindromes within this window. If the left-center of a palindrome is in

this window, the palindrome will be considered in the window. Likewise, a close

direct repeats score of a window is defined as follows. For a pair of close direct

repeats, if the starting positions are in the same window, we will score this pair.

Otherwise, we ignore it. The window score for AT content is the percentage of

nucleotide bases A and T in this window.

Following the choice of window length by Chew et al. (2005), the window

length w was chosen as 0.5% of the genome length, rounded down to the nearest
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hundred bases for convenience. The length of the last window is usually shorter

than w due to the way the windows are constructed.

3.1.6 Local Maxima

After determining the window scores of the three sequence features, we need to

consider another variable, the local maxima of window scores. If a window score

is higher than or equal to scores of its m neighboring windows both to the left and

to the right, then we consider this window as a local maximum. Here, m is chosen

to be 4. The reason we need this variable is that the windows with high window

scores also identified as local maxima would be considered as potential locations of

replication origins. If a window score is relatively high but is not a local maximum,

the window is less likely to be around a replication origin compared to a window

that is a local maximum with slightly less window score.

For example, in Figure 3.1, the AT scores of the windows in suhv1 sequence

are plotted against the center position of the windows. Three circles in the graph

indicate the locations of three known replication origins. Although the window

marked by the cross has higher score than the window marked by the red circle,

the latter one actually contains a replication origin. This is due to the fact that

the window denoted by the red circle is a window with relatively higher score

than most of the other windows, and is a local maximum. This location is more

likely to be a replication origin. Therefore, we can identify the local maxima
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among the window scores for such sequence features as palindromes, close direct

repeats and AT content in herpesvirus genome sequences. LM is used to denote

the variable local maximum. If a window is a local maximum, LM = 1; otherwise,

LM = 0. LMP , LMR and LMAT denote the local maxima of palindromes, close

direct repeats and AT content–based window scores, respectively.
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Figure 3.1: Local maximum of AT window scores in suhv1 genome sequence.
The values on the x-axis of three circles (both red and blue ones) in the figure
indicate the centers of windows that contain known replication origins. The green
cross indicates a window that does not contain a replication origin.
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3.2 Comparison of Approaches Based on Single

Sequence Feature

To compare methods of replication origin prediction based on close direct repeats,

palindromes and AT content individually, we examine the numbers of replication

origins captured by top 10 ranked windows using these approaches, which are listed

in Table 3.2. It can be seen that the close direct repeats–based method performs

better to some extent. The method using close direct repeats identifies some

replication origins which are not predicted by using palindromes or AT content.

We used a Venn diagram to display the numbers of replication origins in her-

pesviruses correctly predicted by any one or more methods out of close direct

repeats, AT content and palindromes–based methods (see Figure 3.2).

Table 3.2: No. of replication origins captured by close direct repeats, palindromes,

and AT content methods with top 10 windows.

Top Repeats Palindrome AT content

1 7 5 6
2 14 15 15
3 19 23 17
4 23 23 22
5 24 23 22
6 25 23 24
7 27 23 25
8 31 24 27
9 32 24 29
10 34 26 29
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Figure 3.2: Numbers of replication origins correctly predicted based on palin-
dromes, repeats and AT content approaches by top 10 ranked windows. Fourteen
replication origins are predicted by all the three methods and all of the 43 known
origins in the herpesviruses are predicted by at least one of these methods.
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From this figure, we can see that 14 replication origins are predicted by all three

methods and all of the 43 known origins in the herpesviruses are predicted by at

least one of these methods. Some of the replication origins are captured by only

one or two of these approaches. This suggests that individual close direct repeats,

palindromes and AT content based methods complement each other in predicting

replication origins very well. A natural question would be how to combine window

scores of various sequence features to give more accurate predictions. An approach

combining multiple sequence features will be developed later in this thesis.

3.3 Pre-processing of Data Set

Before setting up a model to integrate several sequence features, we combine all

the window scores of the 20 herpesvirus genome sequences, whose locations of

replication origins are known. Then we plot the histograms of window scores of

repeats, AT content and palindromes. The plots are given in Figure 3.3.

The histogram for window scores of close direct repeats is extremely skewed,

since the window scores are zero for most of the windows. In order to look at the

distribution of positive window scores, in Figure 3.4, we plot the histogram for

window scores of close direct repeats whose window scores are positive. Zooming

in the histogram of window scores which are higher than 1000 (see the right plot

in Figure 3.4), we find that few windows have extremely high window scores.
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Likewise, we plot the histograms for window scores of palindromes, which are

positive (see the left plot in Figure 3.5) and larger than 30 (see the right plot in

Figure 3.5).

We therefore consider using the logarithmic transformation to transform the

original window scores of repeats, because the logarithm function tends to squeeze

together the larger values in the data set and stretches out the smaller values. This

squeezing and stretching can correct our skewed data. Log transformation is valid

only for positive numbers, so we transform each window score of repeats (R) to

log(R + 1), and then analyze the resulting data. Figure 3.6 (right) shows the

distribution of the transformed window scores. We can see that it spreads more

than before.
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Figure 3.3: Histograms of window scores of repeats, AT content and palindromes.
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Figure 3.4: Histograms of window scores of close direct repeats whose window
scores are positive and above 1000.
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After the transformation, we pool the window scores in one data set and use

them to build up and fit generalized additive models. Because the ranges and the

distribution of window scores in various herpesviruses are different, simply pooling

all window scores together is not reasonable. The summary statistics of window

scores of repeats (log transformed), AT content in percentages and palindromes

in herpesviruses with known replication origins are listed in Tables 3.3, 3.4 and

3.5. These tables show the minimum, the first quartile, the median, the mean, the

third quartile and the maximum of window scores for each herpesvirus. Window

scores vary among different members of the herpesvirus family. Take the window

scores of palindromes for example. The window scores of palindromes range from

0 to 116 in cehv1, while in gahv1, the highest window score is only 17. Similarly,
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the range of AT content window scores varies from virus to virus. We notice that

the maximum window score of cehv2 is 34, which is even less than the minimum

AT window score of gahv1. If we combine the two sets of window scores to fit a

statistical model without standardization, the model may mistakenly ignore the

effects of AT content variation in cehv2 and put more weight on gahv1, since the

largest window score of cehv2 is much lower than that of gahv1. So we should not

simply combine them to fit the model. In order to show that the standardization

is needed, we compare predictive results of the models using standardized and

non-standardized data, shown in Chapter 4.

Hence we standardize the window scores for each herpesvirus before pooling

them. The method of standardization is dividing the difference between an original

window score and the mean of window scores in the same herpesvirus sequence

by the standard deviation. For example, if the window score of repeats in the

ith window of a particular herpesvirus sequence V is Ri, then the standardized

window score will be

Ri − the mean of window scores in the sequence V

the standard deviation of window scores in the sequence V
. (3.1)

Finally, our data set is composed of all these standardized window scores.
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Table 3.3: Summary of window scores of repeats in herpesviruses (log(R + 1)).

Name Min. 1st Qu. Median Mean 3rd Qu. Max.

bohv1 0 0 0 1.2 2.6 7.6
bohv4 0 0 0 0.5 0 8.0
bohv5 0 0 0 1.1 2.7 7.9
cehv1 0 0 0 1.4 2.8 9.6
cehv2 0 0 0 1.5 2.9 8.2
cehv9 0 0 0 0.7 0 6.8
cehv16 0 0 0 1.5 2.8 8.6
ebv 0 0 0 1.1 2.6 9.5
ehv1 0 0 0 1.0 2.4 9.0
ehv4 0 0 0 0.8 0 8.8
gahv1 0 0 0 0.6 0 5.5
hcmv 0 0 0 0.9 2.6 5.5
hhv1 0 0 0 1.2 2.6 8.0
hhv2 0 0 0 1.2 2.6 8.6
hhv3 0 0 0 0.5 0 7.3
hhv6a 0 0 0 0.6 0 10
hhv6b 0 0 0 0.7 0 9.8
hhv7 0 0 0 0.7 0 9.2
rcmv 0 0 0 1.2 2.6 7.0
suhv1 0 0 0 1.9 3.2 9.3

Table 3.4: Summary of window scores of AT content in percentages in her-

pesviruses.

Name Min. 1st Qu. Median Mean 3rd Qu. Max.

bohv1 11 25 28 28 31 44
bohv4 27 56 59 59 62 71
bohv5 12 22 25 25 28 43
cehv1 14 22 26 26 29 39
cehv2 12 21 24 24 27 34
cehv9 30 59 61 60 64 69
cehv16 13 21 24 24 27 37
ebv 15 37 42 40 46 60
ehv1 23 41 44 43 47 56
ehv4 27 48 51 50 54 66
gahv1 35 49 53 52 56 60
hcmv 24 39 42 43 46 64
hhv1 15 29 33 32 35 43
hhv2 14 26 30 30 34 40
hhv3 21 52 55 54 58 64
hhv6a 31 57 59 58 61 72
hhv6b 30 56 59 57 61 73
hhv7 39 63 66 64 68 80
rcmv 20 30 34 39 48 68
suhv1 17 23 26 26 29 40
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Table 3.5: Summary of window scores of palindromes in herpesviruses.

Name Min. 1st Qu. Median Mean 3rd Qu. Max.

bohv1 0 5 12 15 21 57
bohv4 0 0 0 3 5 23
bohv5 0 6 16 17 23 72
cehv1 0 5 11 14 20 116
cehv2 0 6 15 16 22 97
cehv9 0 0 5 5 10 22
cehv16 0 5 12 14 21 51
ebv 0 0 5 7 10 87
ehv1 0 0 5 5 7 33
ehv4 0 0 3 4 6 23
gahv1 0 0 5 4 6 17
hcmv 0 0 5 8 10 57
hhv1 0 5 6 9 13 85
hhv2 0 5 7 9 12 48
hhv3 0 0 5 5 6 30
hhv6a 0 0 5 5 7 26
hhv6b 0 0 5 5 10 31
hhv7 0 0 5 6 10 32
rcmv 0 5 10 11 16 41
suhv1 0 6 15 16 22 62
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3.4 Generalized Additive Models

The underlying principle of our method is that the regions near replication origins

contain some characteristic features, such as palindromes, close direct repeats, and

AT content, which make them distinct from regions far from replication origins.

We want to find the dependence of the locations of replication origins on these

types of sequence features. The predictive models, utilizing these features to

discriminate regions that contain replication origins from others, are built and

then used to predict the likely locations of replication origins in herpesvirus DNA

sequences with unknown replication regions.

Generalized Additive Model (GAM), a non-parametric regression technique

not restricted by linear relationships, is flexible regarding the statistical distribu-

tion of the data (Swartzman et al., 1995). Because appropriate functional forms of

covariates are unknown, GAMs are applied to our data set to investigate relation-

ship between locations of replication origins in herpesviruses and several related

sequence features. The GAMs (Hastie and Tibshirani, 1990) enable us to com-

bine the information of spatial abundance of palindromes, close direct repeats,

AT abundance, local maxima of these sequence features and their interactions in

a meaningful way for better prediction. Moreover, data obtained in all windows

of 20 herpesviruses are used to fit the models, enabling the information of the

locations of replication origins in one virus to be available for predicting the likely

locations of replication origins in the other viruses. The window which contains a
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replication origin and the neighboring 4 windows both to the left and to the right

of it will be considered as windows close to a replication origin. Let Yi be the ith

binary response variable defined as follows:

Yi =





1, if the ith window is close to a replication origin,

0, if the ith window is not close to a replication origin.

(3.2)

Associated with this response are the possible explanatory variables Ri, ATi, Pi,

LMRi, LMATi, LMPi, where Ri, ATi, Pi denote the ith window scores of close

direct repeats, AT content and palindromes, and LMRi, LMATi, LMPi denote the

local maxima of them respectively. pi is defined by pi = P (Yi = 1|Xi), where Xi

is the collection of explanatory variables in the ith window. Our model will be in

this form

log(
pi

1− pi

) = m(Xi) (3.3)

where m : X ⊂ Rd → R is an unknown smooth function and X is bounded.

The right hand side of the model equation is usually called a risk score. For a

linear logistic regression model, m(X) = XT β where β is a finite dimensional

unknown parameter. For a nonparametric additive logistic regression model,

m(X) = m(X1, ...Xd) =
∑d

j=1 mj(Xj), where each mj is a univariate unknown

smooth function. To achieve a sensible interpretation, we usually require mono-

tonicity of each mj in the model. After fitting this model, we can find how the

locations of replication origins are dependent on the windows scores of repeats,

AT content, palindromes and their local maxima.
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3.5 Software for Implementing Generalized Ad-

ditive Models

We used the statistical software R (Ihaka and Gentleman, 1996) to implement

the models. Functions are available in the R language, and so we used the gam

package in R to fit the generalized additive models which we describe here.

The syntax of the gam is

gam(formula, family, ...)

The formula expression has the form response ∼ predictors. Irrespective

of the error model, response describes what variable is to be used for the response,

and predictors describe symbolically the composition of the additive model. For

smoothing splines, s is used to indicate nonparametric smoothing terms. We

describe it with an example.

y ∼ s(repeats)+s(palindrome)+AT

The function s above indicates that smoothing splines are used to fit both repeats

and palindromes, while AT is fit linearly.

The family argument is a description of the error distribution and link function

to be used in the model. For example, the call
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fit=gam(y ∼ s(repeats)+AT, family=binomial)

assumes binomial data, uses the logit link and, by default, the binomial variance

function. It will fit a smooth term in repeats and a linear term in AT. The result

of the fit will be stored in the object fit.

Other arguments (...) to gam include weight for giving prior weights, subset

for specifying a subset of the data for fitting the model, and na.action, a function

for dealing with missing data.

The object returned by gam is an R list object, with elements such as coefficients,

deviance, fitted.values and others that describe the fitted model. Other func-

tions exist for summarizing and displaying the fit. Suppose we save the output

of the gam procedure into an object called fit, then summary(fit) will give a

detailed summary, and plot(fit) produces plots of the terms comprising the fit.

3.6 ROC and AUC

3.6.1 The Receiver Operating Characteristic (ROC) Curve

A useful statistical tool, the Receiver Operating Characteristic (ROC) curve, is

often used to evaluate the accuracy of continuous diagnostic tests by (Pepe, 2003).

We employ this tool to examine the predictive accuracy of our models, where the

risk score m(X) of each model can be viewed as a diagnostic test.
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In order to comply with the notation introduced by Pepe, windows close to a

replication origin are viewed as being in diseased status, while windows far from

a replication origin are viewed as being in non-diseased status. We use the binary

variable, D, to denote true diseased status:

D =





1, for disease;

0, for non-disease.

The risk score m(X) is considered as the result of the test. By convention,

larger values of m(X) are more indicative of disease. Using a threshold c, we

define a binary test from the continuous test result m(X) as

positive for disease if m(X) ≥ c,

negative for disease if m(X) < c.

Subscripts D and D̄ are used to index quantities pertinent to diseased and non-

diseased respectively. Thus, for example, mD denotes the test result for a diseased

subject.

The result of the test can be classified as a true positive, a true negative, a

false positive or a false negative, as shown in Table 3.6. As the names suggest,

a true positive occurs when a diseased subject is correctly tested positive, and a

false negative when a diseased subject is incorrectly tested negative. Similarly, a

true negative or a false positive occurs when a non-diseased subject has a negative

or a positive result, respectively.
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Table 3.6: Classification of test results by disease status.

D = 0 D = 1

m(X) < c True negative False negative

m(X) ≥ c False positive True positive

A test has two types of errors: false positive and false negative. An ideal test

should have no false positives and no false negatives. We define the true and false

positive fractions at threshold c, TPF(c) and FPF(c), as follows:

TPF(c) = P [m(X) ≥ c|D = 1], (3.4)

FPF(c) = P [m(X) ≥ c|D = 0]. (3.5)

The ROC curve is the entire set of possible true and false positive fractions

attainable by dichotomizing m(X) with different thresholds. That is, the ROC

curve is

ROC(·) = {(FPF(c), TPF(c)), c ∈ (−∞,∞)}. (3.6)

Observe that, as the threshold c increases, both FPF(c) and TPF(c) decrease. On

one extreme, assuming c = ∞, we have limc→∞TPF(c) = 0 and limc→∞FPF(c) =

0. On the other extreme, assuming c = −∞, we have limc→−∞TPF(c) = 1 and

limc→−∞FPF(c) = 1. Thus, the ROC curve is a monotonically increasing function

in the positive quadrant. This is illustrated in Figure 3.7. We also write the ROC

curve as

ROC(·) = {(t, ROC(t)), t ∈ (0, 1)}. (3.7)

where the ROC function maps t to TPF(c), and c is the threshold corresponding
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to FPF(c) = t.
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Figure 3.7: ROC curves.

Curves A and B are ROC curves for tests A and B, where the test A is uniformly
better than the test B. Each point on an ROC curve is generated by a different
decision threshold. ROC curves for the useless and perfect tests for comparison
are also shown.

Generally speaking, the ROC is evaluated by means of a plot of a test’s true

positive fraction (plotted on the y-axis) versus its false positive fraction (plotted

on the x-axis) using a continuously varying decision threshold. In practice, the

plot is produced by classifying each window as positive or negative according to

the outcome (i.e., whether the window is close to a replication origin or not).

An uninformative test is one such m(X) that is unrelated to disease sta-
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tus. That is, the probability distributions for m(X) are the same in the dis-

eased and non-diseased populations, and therefore for any threshold c, we have

TPF(c) =FPF(c). The ROC curve for an uninformative test is therefore ROC(c) =

t, which is a line with unit slope.

A perfect test on the other hand completely separates diseased and non-

diseased subjects. That is, for some threshold c, we have TPF(c) = 1 and

FPF(c) = 0. Its ROC curve is along the left and upper borders of the positive

unit quadrant. Most tests have ROC curves that lie between those of the perfect

and useless tests. Better tests have ROC curves closer to the upper left corner.

See Figure 3.7, where test A, the better of the two tests, is such that at any false

positive fraction its corresponding true positive fraction is higher than that of test

B. Similarly, if we choose thresholds cA and cB for which TPFA(cA) = TPFB(cB),

the corresponding false positive fractions are ordered in favor of test A, that is

FPFA(cA) < FPFB(cB).

3.6.2 The Area Under the ROC Curve (AUC)

We adopt the area under the Receiver Operating Characteristic (ROC) Curve as

the criterion for the model selection. The area under the ROC curve (AUC) is a

numerical measure of a model’s discrimination performance. AUC is defined as

AUC =

∫ 1

0

ROC(t)dt. (3.8)
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A high AUC value indicates favorable classification and prediction ability of the

test (Pepe, 2003). An almost perfect test has the value AUC ≈ 1.0. Conversely,

an uninformative test, with ROC(t) = t, has AUC = 0.5. Most tests result in

values that fall in between (Pepe, 2003). Clearly, if two tests are ordered with test

A uniformly better than test B in the sense that

ROCA(t) ≥ ROCB(t) ∀t ∈ (0, 1) (3.9)

(see Figure 4.2), then their AUC statistics are also ordered:

AUCA ≥ AUCB. (3.10)

The AUC is equal to the probability that test results from a randomly selected pair

of diseased and non-diseased subjects are correctly ordered, namely P [m(XD) >

m(XD̄)] (Bamber, 1975; Hanley and McNeil, 1982).

The AUC for the joint accuracy of the d dimensional vector X can be expressed

as the following probability

U0 = P{m(XD) > m(XD̄)}. (3.11)

This is interpreted as the probability that a randomly selected diseased subject

has a risk score higher than a randomly selected non-diseased subject.

The AUC can be estimated nonparametrically by the following U-statistic,

U(m) = n−1
D n−1

D̄

nD∑
i=1

nD̄∑
j=1

1{m(XD,i) > m(XD̄,j)}, (3.12)
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where XD,i denotes the argument of the ith diseased subject, and XD̄,j denotes

the argument of the j th non-diseased subject. The estimator does not require any

distributional assumption of the test results (Pepe, 2003). When m is known, it

is easy to verify that U(m) is unbiased to U0. We further establish the asymptotic

normality in the following theorem. Denote the distribution functions for m(XD)

and m(XD̄) to be FD and FD̄.

Theorem 1. Assume the d -dimensional density functions πD and πD̄ for XD and

XD̄, respectively to be continuous. Each of the functions mi (i = 1, · · · , d) is

strictly monotone and has a bounded first order derivative m′
i. As sample size nD

and nD̄ tend to infinity, nD/n → λ ∈ (0, 1), we have

√
n{U(m)− U0} →d N(0, σ2

u),

where σ2
u = λ−1‖FD · F−1

D̄
‖∗ + (1 − λ)−1‖FD̄ · F−1

D ‖∗ and ‖h‖∗ =
∫ 1

0
h2(t)dt −

(
∫ 1

0
h(t)dt)2.

Proof. Given the continuous density function πD for XD, we can derive the den-

sity function of m(XD). Let y1 = x1, y2 = x2, ..., yd−1 = xd−1, yd = m(XD) =

∑d
i=1 mi(xi). Therefore, x1 = y1, x2 = y2, ..., xd−1 = yd−1, xd = m−1

d

{
yd −

∑d−1
i=1 mi(yi)

}
.
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Define

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yd−1

∂x1
∂yd

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yd−1

∂x2
∂yd

...
...

...
...

∂xd
∂y1

∂xd
∂y2

. . . ∂xd
∂yd−1

∂xd
∂yd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0

0 1 . . . 0 0

...
...

...
...

∂xd
∂y1

∂xd
∂y2

. . . ∂xd
∂yd−1

∂xd
∂yd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∂xd

∂yd

=
1

∂yd

∂xd

=
1

m′
d(xd)

=
1

m′
d

[
m−1

d

{
yd −

∑d−1
i=1 mi(yi)

}] .

The joint pdf of (y1, y2, ..., yd) is given by

πD

[
y1, · · · , yd−1,m

−1
d

{
yd −

d−1∑
i=1

mi(yi)

}]
|J |

= πD

[
y1, · · · , yd−1,m

−1
d

{
yd −

d−1∑
i=1

mi(yi)

}] ∣∣∣∣∣m
′
d

[
m−1

d

{
yd −

d−1∑
i=1

mi(yi)

}]∣∣∣∣∣

−1

The density function of m(XD) should be

fD(yd) =

∫
πD

[
y1, · · · , yd−1,m

−1
d

{
yd −

d−1∑
i=1

mi(yi)

}]

∣∣∣∣∣m
′
d

[
m−1

d

{
yd −

d−1∑
i=1

mi(yi)

}]∣∣∣∣∣

−1

dy1 · · · dyd−1.

To simplify the notation, we use fD(y) to denote fD(yd). It is easy to show

that the density is uniformly continuous and bounded away from zero and infinity.

Similarly we verify the same properties for fD̄(y).
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The estimator (3.12) is the sum of trapezoid areas under the empirical ROC

curve which is constructed from the process F̂D · F̂−1
D̄

(y) by using the empirical

versions of FD and FD̄. Komlos et al. (1975) showed the strong approximation of

the uniform empirical process by a sequence of Brownian bridge obtained from a

single Kiefer process. Csorgo and Revesz (1978) established the strong approxi-

mation of the quantile process by a Kiefer process. Combining these two known

results and assumed properties of the distribution functions, we obtain that the

process
√

n{F̂D · F̂−1
D̄

(y)−FD ·F−1
D̄

(y)} can be approximated by a suitably defined

Brownian bridge (Hsieh and Turnbull, 1996) with probability of one uniformly on

[a, b].

In practice, we may estimate σ2
u by σ̂2

u = λ−1‖F̂D ·F̂−1
D̄
‖∗+(1−λ)−1‖F̂D̄ ·F̂−1

D ‖∗,

where F̂D̄ and F̂D̄ are the empirical versions of the distribution functions for the

two classes. We can easily verify that σ̂2
u is strongly consistent to σ2

u (Komolos et

al., 1975).

When the function m is unknown, we need to first obtain an estimator m̂.

For a linear logistic regression, maximum likelihood estimation for β is a well-

known approach. For a nonparametric additive logistic regression, smoothing

methods such as the local polynomial regression or the smoothing spline are usually

coupled with a back-fitting algorithm to yield the functional estimates. These

estimation approaches have been implemented in many statistical packages, such

as the function gam in R. The consistency and asymptotical normality have been
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established for a variety of estimators m̂. Therefore, in this thesis, we assume that

we have chosen a consistent estimator m̂ such that

√
n{m̂(x)−m(x)} →d N(0, σ2

x),

for any x ∈ X ⊂ Rd. For simplicity, we ignore the estimation bias when m̂ is

obtained via nonparametric regression methods.

The nonparametric estimation for the AUC is obtained by a plug-in method

U(m̂) = n−1
D n−1

D̄

nD∑
i=1

nD̄∑
j=1

1{m̂(XD,i) > m̂(XD̄,j)}. (3.13)

We cannot establish the exact convergence rate of U(m̂) for U0 and subse-

quently cannot evaluate the asymptotic variance analytically. However, we can

show the following result which is relatively stronger than convergence in proba-

bility.

Theorem 2. Assume the same conditions in Theorem 1 hold. As sample sizes

nD and nD̄ tend to infinity, we have

E{U(m̂)− U(m)}2 → 0.

Proof. We can write E{U(m̂)−U(m)}2 = E[U(m̂)]2−2E[U(m̂)U(m)]+E[U(m)]2 =

I1 − 2I2 + I3, where Ik = n−2
D n−2

D̄

∑nD

i=1

∑nD̄
j=1

∑nD

i′=1

∑nD̄

j′=1 Ikiji′j′ and I1iji′j′ =

E1{m̂(XD,i) > m̂(XD̄,j), m̂(XD,i′) > m̂(XD̄,j′)}, I2iji′j′ = E1{m̂(XD,i) > m̂(XD̄,j),

m(XD,i′) > m(XD̄,j′)}, I3iji′j′ = E1{m(XD,i) > m(XD̄,j),m(XD,i′) > m(XD̄,j′)}.

At any continuous point (say 0) of m(XD) −m(XD̄) for any ε > 0 one may find
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a δ such that the difference between P{m(XD) −m(XD̄) ≤ 0} and P{m(XD) −

m(XD̄) ≤ −δ} is less than ε. We notice that |I2iji′j′ − I3iji′j′| is less than

P{m̂(XD,i) ≤ m̂(XD̄,j),m(XD,i) > m(XD̄,j)}

+P{m̂(XD,i) > m̂(XD̄,j),m(XD,i) ≤ m(XD̄,j)}

≤ P{m̂(XD,i) ≤ m̂(XD̄,j),m(XD,i) > m(XD̄,j) + δ}

+P{m̂(XD,i) > m̂(XD̄,j),m(XD,i)

≤ m(XD̄,j)− δ}+ ε

≤ 2P [|m̂(XD,i)− m̂(XD̄,j)− {m(XD,i)−m(XD̄,j)}| ≥ δ] + ε

Under the pre-assumed weak convergence of m̂, this implies that each I2iji′j′ con-

verges to I3iji′j′ . Similarly we can show that I1iji′j′ converges to I3iji′j′ . We further

notice that the limit of I3 is finite. That completes the proof.

Since U(m̂) is convergent to U0, we will use U(m̂) to estimate U0. We compare

AUC scores of several generalized additive models with different combinations of

explanatory variables and their interaction in order to select the best model to do

prediction for other herpesviruses.

3.7 Further Refinement of the GAM Approach

Natural DNA is replete with special sequence features and global or local hetero-

geneity in composition. We will explore more sequence features, which possibly
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relate to the locations of replication origins in herpesviruses, for further refinement

of the GAM approach.

3.7.1 Features to Be Selected

In addition to the sequence features used in previous chapters (i.e., palindromes,

close direct repeats, AT content and local maxima), more features will be used for

the construction of the GAM which are described below.

1. Subfamily: Members of the herpesvirus family are classified into the α, β,

and γ subfamilies according to the virus host range and other biological properties.

The relative locations of replication origins of herpesviruses in the same subfamily

are more similar. Two variables, Xα and Xβ, are used to indicate a window comes

from:

Xα =





1, if this herpesvirus belongs to the subfamily α;

0, otherwise.

Xβ =





1, if this herpesvirus belongs to the subfamily β;

0, otherwise.

If Xα = 0 and Xβ = 0, then the herpesvirus of the window under consideration

belongs to the γ family.

2. Standardized window number: As described in Cruz-Cano et al. (2010),

the standardized window number is defined as the window number divided by the
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total number of windows in the genome sequence. Therefore, the window number

will be a real number in the range from 0 to 1 after normalization. For example,

if a genome sequence of a virus has 400 windows in all, then the corresponding

standardized window number for the first window is 1/400=0.0025. The inclusion

of this variable to build up our GAM was due to the empirical observation that the

replication origins were located in relatively similar parts of the genome, especially

for members in the same subfamily. Cruz-Cano et al. (2010) gave a schematic

representation of the genomes as vertical bars in Figure 3.8, where the black

colored regions are those windows close to known replication origins.

Figure 3.8: Replication origins of herpesviruses (from Cruz-Cano et al. (2010))

3. Dinucleotide scores: A dinucleotide is a single piece of DNA made up of

any two contiguous nucleotide bases. There are 16 possible dinucleotides in DNA,

which are AA, AT, AG, AC, TA, TT,..., TC. Genomic compositional inhomo-
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geneities are widely recognized (Kozhukhin and Pevzner, 1991; Karlin et al. 1993).

As early as the 1960s and 1970s, researchers extensively applied biochemical meth-

ods of DNA dinucleotide frequency analysis to estimate dinucleotide frequencies in

samples of genomic DNA in many organisms (Josse et al., 1961; Swartz et al., 1962;

Russell et al., 1976; Russell et al., 1977). The biochemical experiments established

that the set of dinucleotide odds ratio values, or ‘general design’, is a remarkably

stable property of the DNA of an organism. Early studies have demonstrated

that the set of dinucleotide odds ratio values constitute a genomic signature which

can discriminate between sequences from different organisms (Karlin and Burge,

1995). Dinucleotide odds ratio values reflect the species-specific property of DNA

modification and replication. In our research, our extended dinucleotide score is

a member of the set of standby variables, which will explore the relationship with

the locations of replication origins in virus genomes.

Let fX and fY denote the frequency of the nucleotides X and Y (A, T, G or C)

in the sequence and fXY the frequency of dinucleotide XY. A standard assessment

of dinucleotide bias is through the odds-ratio calculation, ρXY = fXY /fXfY . If

ρXY values much larger (smaller) than 1, then the dinucleotide XY will be con-

sidered of high (low) relative abundance compared with a random association of

its component mononucleotides (Burge et al., 1992).

The score for a dinucleotide XY in window w is

score(XY ) = log

(
fXY,w

fX,wfY,w

)
,
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where fXY,w, fX,w and fY,w denote the frequencies of dinucleotide XY, X and Y in

window w respectively. We use L(w) to denote the length of window w, and use

N(Aw) to denote times of the dinucleotide or nucleotide A that appears in window

w. Then, the frequencies are as follows:

fXY,w =
N(XYw)

L(w)− 1
, fX,w =

N(Xw)

L(w)
, fY,w =

N(Yw)

L(w)
.

Because the counts of some dinucleotides are 0 in some windows, a common

device is to incorporate a pseudo count. We increase every dinucleotide count by 1

in each window. Then the pseudo frequencies of dinucleotide XY, single nucleotide

base X and Y are converted to

f ′XY,w =
N(XYw) + 1

L(w)− 1 + 16
=

N(XYw) + 1

L(w) + 15
,

f ′X,w =
N(Xw) + 1

L(w) + 4
,

f ′Y,w =
N(Yw) + 1

L(w) + 4
.

Now the score of dinucleotide XY is converted to the pseudo score,

score′(XY ) = log

(
f ′XY,w

f ′X,wf ′Y,w

)
(3.14)

We combine the window pseudo dinucleotide scores of each herpesvirus genome

sequence, and then build up and fit generalized additive models. Since the ranges

and the distribution of these pseudo scores differ in various herpesviruses, we

have to standardize these window pseudo dinucleotide scores for each herpesvirus
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sequence before combining them:

score′(XY )−mean[score′(XY )]

s.d.[score′(XY )]
.

The candidate features set of herpesviruses contains a total of 31 variables:

2 for subfamily classification (α, β subfamilies), 1 for palindromes(P), 1 for close

direct repeats(R), 1 for AT content(ATcon), 3 for local maxima of P, R and ATcon,

3 for the interaction of two feature scores among P, R and ATcon, 3 for interaction

of P, R and ATcon and their corresponding local maxima, 1 for standardized

window number, and 16 for dinucleotide scores.

3.7.2 Model Selection

Among the 31 target variables, we ascertained the dominant features by a variable

selection approach. We compared AUC values of Generalized Additive Models

(GAMs) with single variable in order to rank the importance of these variables in

predicting replication origins in herpesviruses. The nonparametric GAM model

with a univariate smooth function is in the form

log(
p

1− p
) = α + s(X) (3.15)

where X is any one variable in the 31-variable set, p is the probability that the

window is close to a replication origin based on the variable X and s(·) is a uni-

variate unknown smooth function. It is noted that if X is one of the local maxima,
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subfamily classification or standardized window number (discrete variables), the

model will be simplified to a generalized linear model

log(
p

1− p
) = α + βX. (3.16)

Because the AUC value is a reasonable single measure to assess the predictive

accuracy with a trade-off of sensitivity and specificity, the AUC was used as the

criterion to select the best model. We applied a forward stepwise approach to

select variables by the AUC criterion, where variables were added one by one to

the model. We used fAUC(X) to denote the AUC value of a logistic generalized

additive model with a vector of predictor variables X. We selected variables from

31 possible predictor variables {X1, X2, ..., X31}, which denote window scores of

31 candidate sequence features. The variable selection procedure is as follows:

1. The first selected variable was Xk1 = argmax
1≤k≤31

fAUC(Xk), where argmax

stands for the argument of the maximum, that is, the argument of AUC function

fAUC(Xk) that achieved the maximum value when 1 ≤ k ≤ 31. Then the model

chosen at this step would be

log(
p

1− p
) = α + s(Xk1). (3.17)

2. The second step selected among the remaining 30 variables, exclusive of

Xk1 . We chose the second important variable Xk2 in the sense that the value of

fAUC(Xk1 , Xk2) is the largest among models with two variables: one is Xk1 , the
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other one is any Xkj
(1 ≤ j ≤ N, j 6= k1), that is, Xk2 = argmax

1≤j≤N,j 6=k1

fAUC(Xk1 , Xj).

Then we got the best logistic generalized additive bivariate model containing Xk1 :

log(
p

1− p
) = α + s(Xk1) + s(Xk2). (3.18)

3. Similarly, the next step selected among the remaining 29 variables, exclusive

of Xk1 and Xk2 , and so on. The 31 variables were selected one by one in this

forward stepwise way until all predictor variables were selected.

In each step, we include one more variable to our generalized additive model.

The model with the highest AUC value was chosen to be the model to predict

replication origins in herpesviruses. The stepwise model selection approach was

denoted as GAM31 (AUC).

3.8 The Application of Generalized Additive Mod-

els to Prediction of Replication Origins in

Caudoviruses

The caudovirales are an order of viruses that have double–stranded DNA genomes.

The genome length ranges from 18 kbp to 500 kbp (Orlova, 2009). G+C contents

in DNA are 27–72% and are usually similar to their host DNA (Fauquet, et al.,

2005).
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As described in Fauquet et al. (2005), the order of caudovirales consists of the

three families of bacterial viruses infecting Bacteria and Archaea: Myoviridae (long

contractile tails), Siphoviridae (long non-contractile tails), and Podoviridae (short

non-contractile tails). Tailed bacterial viruses are an extremely large group with

highly diverse virion, genome, and replication properties. Over 4,500 descriptions

have been published (as of November 2001). However, data pertaining to virion

structure, genome organization and replication properties are available for only a

small number of well-studied species (Fauquet et al., 2005).

Early studies have suggested that Herpesviridae and caudoviruses share some

common properties (Baker et al., 2005). For example, the most fundamental com-

mon point is that they are all large linear double–stranded DNA viruses (Baker

et al., 2005). In addition, Herpesviridae and Caudovirales may share a com-

mon ancestry (Baker et al., 2005). Ackermann (1998) found caudovirales and

herpesviruses share elements of morphogenesis and life-style that are attributed

to convergent evolution. In 2005, Baker et al. indicated that the Herpesviridae

and Caudovirales are structurally and evolutionarily related based on analysis of

their capsid structures. In the replication mechanism, Herpesviridae and Caudovi-

rales have several direct evolutionary links (Baker et al., 2005). With respect to

DNA packaging, both the Herpesviridae and most of the Caudovirales possess a

terminase-portal protein system of DNA packaging (Catalano, 2000; Newcomb et

al., 2001; Iyer, et al., 2006). Since Herpesviridae and Caudovirales have a lot in

common, we propose to apply the Generalized Additive Model, which has been
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proved to be useful to predict replication origins in Herpesviridae, to the order of

Caudovirales.

Twenty caudoviruses have known replication origins. Their genome sequences

and the locations of known replication origins were obtained from Genbank at the

NCBI web-site (http://www.ncbi.nlm.nih.gov/) in 2009. Table 3.7 displays the

caudoviruses that were used in this study, their genome length, and family they

belong to based on the documented annotations of the GenBank files.

Table 3.7: The list of Caudovirales to be analyzed.

Virus Accession Genome Length Family

Enterobacteria phage T4 NC 000866 168903 Myoviridae

Streptococcus phage Sfi21 NC 000872 40739 Siphoviridae

Lactobacillus prophage phiadh NC 000896 43785 Siphoviridae

Yersinia phage phiYeO3-12 NC 001271 39600 Podoviridae

Enterobacteria phage P4 NC 001609 11624 Myoviridae

Lactococcus phage c2 NC 001706 22172 Siphoviridae

Lactococcus phage sk1 NC 001835 28451 Siphoviridae

Enterobacteria phage P2 NC 001895 33593 Myoviridae

Streptococcus phage Sfi11 NC 002214 39807 Siphoviridae

Enterobacteria phage P22 NC 002371 41724 Podoviridae

Lactococcus phage Tuc2009 NC 002703 38347 Siphoviridae

Enterobacteria phage HK620 NC 002730 38297 Podoviridae

Enterobacteria phage T3 NC 003298 38208 Podoviridae

Lactobacillus phage A2 NC 004112 43411 Siphoviridae

Streptococcus prophage EJ-1 NC 005294 42935 Myoviridae

Enterobacteria phage Sf6 NC 005344 39043 Podoviridae

Enterobacteria phage P1 NC 005856 94800 Myoviridae

Enterobacteria phage ES18 NC 006949 46900 Siphoviridae

Staphylococcus phage 80alpha NC 009526 43864 Siphoviridae

Salmonella phage epsilon34 NC 011976 43016 Podoviridae
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The predictive procedure for caudoviruses is similar with that of herpesviruses.

The genomic sequence is partitioned into non-overlapping windows. The window

size w for each window is about 1% of the genome length, rounded down to the

nearest hundred bases for convenience. We used 1% instead of 0.5% as we did

for herpesviruses, because the average genome sequence length of caudoviruses is

much shorter than that of herpesviruses.

Raw data were transformed and standardized as the procedure of analyzing

herpesviruses. Then we pooled the standardized window scores of different cau-

doviruses together to build up and fit models. Similarly, the candidate features

set of caudoviruses contained a total of 31 variables. The same forward stepwise

variable selection approach as that for herpesviruses was used to choose the best

model.
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Chapter 4

Results and Discussion

We collect the results of our statistical analysis in this thesis in this chapter. Sec-

tion 4.1 contained the predictive accuracies of generalized additive models (GAMs)

and generalized linear models (GLMs) using repeats (R), AT content (AT), palin-

dromes (P) and their local maxima (LMR, LMAT and LMP ) as covariates. The

optimal model was selected by the AUC criterion. In Section 4.2, the predictive

accuracy of the selected model for known replication origins in herpesviruses is

given. In the next section, we predict potential locations of unknown replication

origins in herpesviruses. In Section 4.4, we introduce the refined GAM approach

and results, where a stepwise variable selection approach by the AUC criterion

is applied. In Section 4.5, we compare our selected model with existing methods

and find that our approach works better in predicting replication origins in her-

pesviruses than others in terms of sensitivity and positive predictive value. Our
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optimal GAM method is applied to caudoviruses in Section 4.6. Finally, some

discussion is given in Section 4.7.

4.1 Predictive Accuracies using Palindromes, AT

content, Repeats and Their Local Maxima

Before the generalized additive model (GAM) was applied to predict replication

origins in herpesviruses, the generalized linear model (GLM) was used firstly.

In our problem, the response variable Y is dichotomous, whether the window is

near a replication origin or not, and the data analysis is aimed at relating this

outcome to the explanatory variables. We code the response variable Y as zero or

one according to the outcome. The GLM approach is commonly used to predict

a binary outcome from continuous and/or discrete explanatory variables, which

models the logit of the response probability with a linear form

logit{P (X)} ≡ log

{
P (X)

1− P (X)

}
= βX (4.1)

where P (X) = pr(Y = 1|X) and X is the vector of explanatory variables. The

unknown parameter β is to be estimated. Our generalized linear models contain

several combinations of variables among palindromes (P), repeats (R), AT content

(AT) and their local maxima (LM). Because AUC is a widely accepted single

measure to assess the predictive accuracy, we calculate AUC values of GLMs and

GAMs to compare their predictive performance. Table 4.1 displays the comparison
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of AUC values and their standard errors of GLMs and GAMs with the same

explanatory variables.

Table 4.1: AUC values and their standard errors (s.e.) of

GLMs and GAMs with the same explanatory variables.

Model

No.

Covariate AUC

(GLM)

s.e. of AUC

(GLM)

AUC

(GAM)

s.e. of AUC

(GAM)

1 R 0.628 0.018 0.627 0.017

2 AT 0.512 0.016 0.654 0.016

3 P 0.504 0.017 0.557 0.014

4 R, P, AT 0.637 0.018 0.713 0.015

5 R, P, AT, LMAT 0.649 0.017 0.717 0.015

6 R, P, AT, LMP 0.648 0.017 0.711 0.015

7 R, P, AT, LMR 0.647 0.018 0.719 0.015

8 R, P, AT, LMR, LMAT 0.658 0.017 0.723 0.015

9 R, P, AT, LMR, LMP 0.658 0.017 0.717 0.015

10 R, P, AT, LMAT , LMP 0.661 0.017 0.716 0.015

11 R, P, AT,LMR, LMP , LMAT 0.671 0.016 0.721 0.015

From Table 4.1, we notice that the GAM approach surpasses the GLM ap-

proach in terms of AUC values. The AUC value of each GAM is higher than that

of the corresponding GLM except Model 1. Because GAMs achieve higher predic-

tive accuracy, we employed the GAM approach rather than the GLM approach in

this thesis.

We want to select the best model from GAMs with various covariates and

forms of predictors, which are given in Table 4.2. AUC values for all kinds of
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models are given in the fourth column in Table 4.2. We observe the following:

I. The AUC value of the model using close direct repeats (R) alone is approx-

imately 0.63 with standard error of estimate 0.017, higher than AUC values of

AT content and palindrome–based methods. This suggests that our close direct

repeats-based method outperforms the AT content-based and palindrome-based

methods.

II. Model 4 log [p/(1− p)] = f1(R) + f2(P ) + f3(AT ) is then considered in our

analysis. It can been seen from Table 4.2 that the AUC value of Model 4, which

takes more sequence features into account simultaneously, surpasses univariate

Models 1–3. This indicates that the model integrating more sequence features can

achieve better prediction accuracy.

III. We include interactions of variables R, AT, P and their local maxima into

the predictor of Model 4 sequentially. Each of Models 5–10 contains local maxima

of any one or two variables among R, AT, P, and the interactions of the variables

and their local maxima, respectively, which are in linear forms. The interactions

of variables R, AT, P and their local maxima are included in Model 11 in a linear

form. Lastly, we consider the most complicated model, Model 12. It differs from

Model 11 in the functional form of interaction. Interactions of R, AT, P and their

local maxima are in the form of a smooth function as in Model 12 instead of a

linear form as in Model 11.
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Figure 4.1 shows how the predictors affect the response of Model 12. From the

three graphs in the second row in Figure 4.1, we see that most of the data concen-

trate in the regions where the predictors affect response almost monotonically. In

order to simplify the model, we consider the semi-parametric additive models 5-11

(refer to Table 4.2). In these models, the items with interaction R ·LMR, P ·LMP ,

AT · LMAT are parametric, and different models contain different covariates.

After we fit the generalized additive model, predictor effects can be examined

separately. We find that among Models 5-11, only predictors in Model 5 and

Model 8 have approximately monotone increasing effects. This means that the

higher the covariates score, the larger the predictor effect. This relationship is

consistent with the empirical study results (Chew et al., 2005; Chew et al., 2007).

Figure 4.2 and Figure 4.3 show the effects of key predictors in Model 5 and Model

8.

Thus we will choose one of the two models. The standard deviation of AUC

for Model 5 and Model 8 are each around 0.015. So the difference of the AUC

values between Model 5 and Model 8 is not significant. Therefore, Model 5, being

a simpler model, is chosen as our final model. On the other hand, Model 8 differs

from Model 5 in that Model 8 considers the local maxima of repeats and interaction

of repeats and local maxima of repeats, while Model 5 does not. After investigating

the plots of window centers versus window scores, we find that the local maxima

of repeats are much fewer than those of AT content and palindromes. This can be
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Figure 4.2: A graph showing the effects of the key predictors P , R, and AT ·LMAT

in Model 5.
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seen in Figure 4.4 and Figure 4.5. We give the examples of herpesviruses bohv4

and cehv2 in Figure 4.4 and Figure 4.5, where the comparisons of local maxima of

repeats, AT content and palindromes are shown. The circles indicate the locations

of replication origins.

These results suggest that the sequence feature local maxima of repeats may

affect the model weakly; hence, it is reasonable to ignore the local maxima of

repeats. For the reasons of the comparative AUC values and plots of local maxima,

Model 5 is chosen rather than Model 8.

4.2 Predictive Accuracy for Known Replication

Origins in Herpesviruses

In order to check the predictive accuracy, we examine the correspondence between

the location predicted by our approach and those of the known replication origins.

A cross-validation procedure is employed to evaluate the sensitivity and positive

predictive value of the GAM approach. Our data set contains 20 viral genomes

with known replication origins. We apply the commonly used leave-one-out cross-

validation method to assess the predictive performance of the model (Ripley, 1996):

using 19 viral genomes to fit the generalized additive model, and then predict the

locations of replication origins of the remaining one. This procedure is repeated for

each viral genome, in turn. Then, we compare the locations of replication origins
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Figure 4.4: Window scores of AT content and Repeats in virus bohv4.

The x-axis indicates window centers along the genome sequence and the y-axis

indicates corresponding window scores of AT content and repeats. The x-axis

values represented by the circles indicate the true locations of replication origins.
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Figure 4.5: Window scores of AT content and Repeats in virus cehv2.

The x-axis indicates window centers along the genome sequence and the y-axis

indicates corresponding window scores of AT content and repeats. The x-axis

values of the circles indicate the true locations of replication origins.
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with the predicted locations of all 20 viral genomes. The positions of 43 replication

origins of herpesviruses in our data set have been known so far. Locations of known

replication origins were presented in Table 4.3. By the cross-validation approach,

we can predict the risk score for each window of 20 herpesviruses genome sequences

based on the chosen generalized additive model, Model 5. The fitted risk scores

are plotted against the positions of window centers along the genome sequences

for each of the herpesviruses with known replication origins in Figure 4.6. The

x-axis values of red points indicate the known locations of replication origins. The

replication origins are predicted at the peaks of the risk score curves. We can

roughly see the predictive performance by comparing the peaks of the curves to

the red point positions. For most of the herpesviruses, the positions of red points

are consistent with the curve peaks, such as bohv1, cehv1, and hcmv, whose

locations of replication origins are perfectly predicted by our generalized additive

modeling approach. This means the highest risk scores correspond to the true

locations of replication origins in herpesviruses. However, this approach fails to

predict replication origins in hhv7. The general idea about how well the predictive

approach performs can be obtained from Figure 4.6. Most of the replication origins

in herpesviruses were predicted. The exact number of replication origins captured

by this approach can be further examined.

Alternatively, we can rank the windows in each herpesvirus according to their

risk scores. We identify the windows with the highest ranks, which are really close

to known replication origins. The highest ranks are listed in the last column titled
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Figure 4.6: The plot of risk scores on the y-axis versus window centers along the

x-axis for each herpesvirus genome sequence with known replication origins.

The risk scores for each of herpesvirus genome sequences are displayed in each

graph. The red points correspond to the known locations of replication origins.

The higher peaks of the risk score curves are more indicative of predicted locations

of replication origins.
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“Predictive Top Window” in Table 4.3. For example, “Predictive Top Window”

for the virus bohv4 is 7. This means that the window, which was ranked sev-

enth among windows in bohv4 genome sequence in terms of the fitted risk scores,

successfully captured the replication origin; while the top 1-6 windows failed to

predict its location. Table 4.3 shows that the 38 replication origins out of the

total 43 were correctly predicted by the windows with the top 1-10 risk scores.

The exact predictive accuracy of our generalized additive modeling approach will

be discussed in the next section.

4.3 Prediction of Unknown Replication Origins

in Herpesviruses

In this section, we will apply the generalized additive modeling approach to predict

the locations of replication origins in 27 herpesviruses with unknown replication

origins.

Because Model 5 log [p/(1− p)] = f1(R) + f2(P ) + f3(AT ) + β1AT · LMAT +

β2LMAT + β0 is chosen as our ultimate model, it is used to predict potential loca-

tions of replication origins in each herpesvirus with unknown replication origins.

We compute the risk score for each window, then choose the windows with the top

10 risk scores as the potential locations of replication origins. Table 4.4 provides

a list of the top 10 risk scores for each of the 27 herpesviruses by our general-
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Table 4.3: Centers of known replication origins and the predictive top windows

that captured replication origins. For example, for the virus hcmv, the top 1 risk

scoring window correctly captured its replication origin.

Virus Known Ori Center Window Center Family Predictive Top Window

bohv1 111190 111301 alpha 1
bohv1 127028 126901 alpha 2
bohv4 97996.5 97751 gamma 7
bohv5 113312 113101 alpha 1
bohv5 129701 129901 alpha 2
cehv1 61690.5 61251 alpha 3
cehv1 61893.5 61951 alpha 3
cehv1 132795.5 132651 alpha 1
cehv1 132998.5 132651 alpha 1
cehv1 149425.5 149451 alpha 2
cehv1 149628.5 149451 alpha 2
cehv16 62981 62651 alpha 7
cehv16 133479 133351 alpha 6
cehv16 149824 150151 alpha 1
cehv2 61493.5 61251 alpha 9
cehv2 129537.5 129851 alpha 2
cehv2 144471.5 144551 alpha 1
cehv9 109636.5 109501 alpha 1
cehv9 118622.5 118501 alpha 3
ebv 8313.5 8401 gamma 1
ebv 40797 40401 gamma 11
ebv 143825.5 143601 gamma 2
ehv1 126262.5 126351 alpha 13
ehv4 73909.5 73851 alpha 5
ehv4 119471.5 119351 alpha 4
ehv4 138577.5 138251 alpha 134
gahv1 24871.5 24851 alpha 10
hcmv 93923.5 94051 beta 1
hhv6a 67805 67551 beta 6
hhv6b 69160.5 69201 beta 5
hhv7 66991.5 66851 beta 37
hhv1 62475 62651 alpha 1
hhv1 131999 131951 alpha 4
hhv1 146235 145951 alpha 3
hhv2 62930 62651 alpha 20
hhv2 132760 132651 alpha 4
hhv2 148981 148751 alpha 6
rcmv 77318 77551 beta 6
suhv1 63878 64051 alpha 7
suhv1 114701 114451 alpha 8
suhv1 129901 129851 alpha 3
hhv3 110218.5 110101 alpha 1
hhv3 119678.5 119701 alpha 2



Chapter 4: Results and Discussion 86

ized additive model. The numbers in the table report the middle positions of the

windows.

We also present the prediction in a graphical form, displayed in Figure 4.7,

where the risk scores of the windows are plotted against the locations of the

windows. The higher risk scoring windows are more likely to be close to replication

origins, according to our generalized additive modeling approach.

Our predictive results may be useful to biology researchers. Based on informa-

tion we provided, they may identify and confirm the exact locations of replication

origins in these 27 herpesviruses genomes though experimentation.
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Figure 4.7: Window plots of risk scores for herpesviruses with unknown replication
origins. The locations of the windows along the genome sequences are on the x-axis
and the risk scores are on the y-axis.
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4.4 Refined GAM Approach and Results

In order to improve our model, more explanatory variables were included in the

model. We expected the models containing information of more sequence features

to perform better in predicting replication origins. We explored 31 candidate

variables to build the GAM. We first fitted 31 models with single variables, then

proceeded to calculate AUC values for each model. The 31 variables were ranked

by their AUC values and were listed in Table 4.5.

Table 4.5: AUC values of models with single variable.

Rank Variable AUC Rank Variable AUC

1 win.no 0.812 17 AA 0.58

2 R·ATcontent 0.681 18 GA 0.571

3 ATcontent 0.654 19 AC 0.569

4 GC 0.632 20 Xalpha 0.567

5 GG 0.629 21 Xbeta 0.565

6 R 0.627 22 TT 0.565

7 CA 0.627 23 CT 0.564

8 CC 0.623 24 AG 0.559

9 ATcontent·P 0.615 25 P 0.557

10 AT 0.608 26 ATcontent·LMAT 0.542

11 TG 0.608 27 P·LMP 0.538

12 TA 0.604 28 R·LMR 0.538

13 R·P 0.604 29 LMR 0.523

14 TC 0.589 30 LMAT 0.511

15 CG 0.584 31 LMP 0.504

16 GT 0.581

The forward stepwise variable selection approach by AUC criterion was applied
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to seek the best model in terms of AUC values. The variables chosen in each step

and the highest AUC values achieved at the corresponding step are given in Table

4.6. The largest AUC value achieved was 0.8771 at the 26th step of the stepwise

variable selection procedure. As such the best generalized additive model in terms

of AUC values include 26 variables selected in the top 26 steps. The AUC value

of this model 0.8771 is much higher than 0.717, the AUC value of the previous

Model 5 log [p/(1− p)] = f1(R)+ f2(P )+ f3(AT )+β1AT ·LMAT +β2LMAT +β0.

This indicates that the refined stepwise GAM approach GAM31 (AUC) improves

the predictive accuracy of the general GAM approach (Model 5).

4.5 Comparing the Predictive Accuracy with Ex-

isting Methods

Chew et al. (2005) reported the predictive accuracy of their approaches in terms

of sensitivity and positive predictive values. Here, sensitivity is the percentage of

known origins that are close to the regions suggested by the prediction approach.

Positive predictive value is the percentage of predicted regions that are close to

the true known replication origins. For example, we compute the sensitivity and

PPV of the generalized additive modeling approach by top 1 window. Because

11 replication origins of herpesviruses are captured by top 1 window and there
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Table 4.6: The variables selected by the forward stepwise variable selection ap-

proach and the corresponding AUC values of the generalized additive model at

each step in herpesviruses.

Step Variable Selected AUC Step Variable Selected AUC

1 win.no 0.8120 17 R 0.8723

2 R·ATcontent 0.8308 18 R·LMR 0.8738

3 GG 0.8375 19 P·LMP 0.8743

4 TA 0.8425 20 AT 0.8746

5 CT 0.8471 21 TT 0.8756

6 ATcontent 0.8509 22 GC 0.8760

7 CA 0.8543 23 AG 0.8765

8 ATcontent·LMAT 0.8574 24 LMAT 0.8768

9 CC 0.8603 25 GA 0.8770

10 ATcontent·P 0.8626 26 LMR 0.8771

11 GT 0.8648 27 LMP 0.8769

12 AA 0.8667 28 Xalpha 0.8766

13 R·P 0.8682 29 Xbeta 0.8758

14 AC 0.8694 30 TG 0.8744

15 P 0.8707 31 CG 0.8739

16 TC 0.8715
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were 43 known replication origins in 20 herpesviruses in all, the sensitivity is

11/43× 100 = 26 and PPV is 11/(20× 1)× 100 = 55.

We compare the sensitivity and positive predictive values of the GAM31 (AUC)

approach to the palindrome-based approach with scoring scheme palindrome length

score (PLS) and base-pair weighted score of order 1 (BWS1) introduced by Chew

et al. (2005), our single sequence feature approaches based on repeats, AT con-

tent, palindromes (with PLS scoring scheme) and the GAM approach (Model 5

log [p/(1− p)] = f1(R) + f2(P ) + f3(AT ) + β1AT ·LMAT + β2LMAT + β0). Figure

4.8 displays the comparison. Generally, as the number of top scoring windows

used increases, sensitivity increases; however, positive predictive value decreases.

Although the GAM31 (AUC) approach achieved a higher AUC value than the

GAM approach (Model 5), their sensitivity and positive predictive values are com-

parable. The sensitivity and positive predictive value of GAM31 (AUC) approach

and GAM approach (Model 5) are higher than those of other approaches by using

the top 1-10 windows. It shows that the GAM31 (AUC) approach outperforms

Chew’s palindrome-based approach by scoring schemes BWS1 and PLS in terms

of both the sensitivity and positive predictive values using the top 1-10 windows.

The highest sensitivities attained by GAM31 (AUC), GAM (Model 5), repeats, AT

content, and palindrome (PLS) approaches were 88%, 88%, 79%, 65%, and 60%,

respectively. The positive predictive value achieved by GAM approach (Model

5) using the top 1 window was 60%, which is 13% higher than Chew et al.’s ap-
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Figure 4.8: Sensitivity and positive predictive values of the GAM31 (AUC) ap-
proach, Chew et al.’s approaches (2005) and other approaches in this thesis.
Repeats, AT, Palindrome (PLS) stand for close direct repeats, AT content and
palindromes–based predictive approaches, respectively, where the palindromes–
based approach is using PLS scoring scheme and non-overlapping windows.
Pal.PLS (Chew) and Pal.BWS1 (Chew) denote the palindromes–based methods
with PLS and BWS1 scoring schemes introduced by Chew et al. (2005). GAM
(Model 5) and GAM31 (AUC) are two GAM approaches based on Model 5 and a
stepwise model selection procedure by AUC criterion.
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proaches (2005) using the top 1 window, a significant finding. In essence, because

the GAM approach takes more information about the sequence into account in

its prediction, predictive accuracy is expected to be better in terms of sensitivity

and positive predictive value. Actually, from our results, it can be seen that pre-

dictive accuracy did indeed improve. Another observation from Figure 4.8 is that

the predictive accuracies of the repeats-based approach are higher than those of

AT content and palindromes (PLS)–based approaches. So the sequence feature of

close direct repeats is a valuable feature to be incorporated in our GAM approach.

4.6 Applying the GAM Approach to Caudoviruses

Since the GAM approach works quite well in predicting replication origins in her-

pesviruses, we apply this approach to caudoviruses whose biological properties are

similar to herpesviruses. The candidate variables of the model and model selection

procedure are similar to those of herpesviruses. To assess the relative importance

of different candidate variables for caudoviruses, we fit 31 models with a single vari-

able. After fitting the models, AUC values for each model were calculated. AUC

values are ranked in Table 4.7. This table shows that the standardized window

number, the AT content, the interaction of repeats and AT content are considered

the most important variables in terms of AUC values of univariate logistic models

for herpesviruses.
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Table 4.7: AUC values of models with single variable in caudoviruses.

Rank Variable AUC Rank Variable AUC

1 win.no 0.711 17 TC 0.569

2 ATcontent 0.617 18 AA 0.566

3 R·ATcontent 0.617 19 GA 0.563

4 R 0.613 20 GT 0.558

5 ATcontent·P 0.603 21 CT 0.558

6 TG 0.600 22 CG 0.555

7 AT 0.585 23 R·LMR 0.554

8 GC 0.583 24 LMR 0.549

9 CA 0.582 25 AC 0.544

10 AG 0.581 26 Sipho 0.541

11 TT 0.579 27 P·LMP 0.534

12 CC 0.577 28 ATcontent·LMAT 0.533

13 TA 0.574 29 Podo 0.533

14 R*P 0.574 30 LMP 0.526

15 P 0.571 31 LMAT 0.515

16 GG 0.507
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The variables selected at each step by the forward stepwise variable selection

are listed in Table 4.8. The highest AUC values achieved at each step can be

found in this table as well. By including more variables, the AUC value increased

at each step and reached 0.8885 when all the 31 candidate variable were selected.

Table 4.8: The variables selected by the forward stepwise variable selection ap-

proach and the corresponding AUC values of the generalized additive model at

each step for caudoviruses.

Step Variable Selected AUC Step Variable Selected AUC

1 win.no 0.7105 17 ATcontent 0.8646

2 P 0.7436 18 TC 0.8674

3 ATcontent·P 0.7645 19 R·ATcontent 0.8706

4 TG 0.7841 20 Podo 0.8729

5 R·P 0.7973 21 Sipho 0.8753

6 P·LMP 0.8078 22 R 0.8785

7 CC 0.8159 23 ATcontent·LMAT 0.8808

8 AG 0.8230 24 R·LMR 0.8826

9 GG 0.8277 25 GT 0.8842

10 CA 0.8329 26 LMAT 0.8853

11 CT 0.8400 27 GC 0.8864

12 AA 0.8443 28 LMP 0.8867

13 TA 0.8474 29 AT 0.8868

14 CG 0.8507 30 TT 0.8884

15 GA 0.8543 31 LMR 0.8885

16 AC 0.8583

The sensitivity and positive predict value of this model were also calculated.



Chapter 4: Results and Discussion 99

�� �� �� �� � � � � �� �	
� �� � �� � � � � � � � � � � � � � � � � � � � � � � � �  �
! " # $ % & % ' % & ( ) * + � , - * . / 01 2 2 3 + � �

��, �, �� �� �� � � � � �445 � � � � � � � � � � � � � � � � � � � � � � � �  �
6 7 $ % & % ' " 6 8 " 9 % : & % ' " ; < = > " ) * + � , - * . / 01 2 2 3 + � �

Figure 4.9: Sensitivity and positive predictive values of the GAM31 (AUC) ap-
proach and the LSSVM23 approach introduced by Cruz-Cano et al. (2010).
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Figure 4.9 shows a comparison of the sensitivity and positive predictive values of

the stepwise GAM31 (AUC) approach and the LSSVM23 approach introduced by

Cruz-Cano et al. (2010). Cruz-Cano et al. (2010) compared several approaches

(the palindrome-based approach using the BWS1 score scheme (BWS1), the arti-

ficial neural network approach (ANN), the least-squares support vector machines

approach with 23 input variables (SVM23), the least-squares support vector ma-

chines approach with 16 input variables (SVM16), the least-squares support vector

machines approach with 23 input variables in a set of artificial genomes (Art23)).

The LSSVM23 approach was the best one among these methods. We compare our

GAM31 (AUC) approach with the best existing approach LSSVM23. Both sen-

sitivity and PPV of the GAM31 (AUC) approach are much higher than those of

LSSVM23 approaches. The sensitivity and the positive predictive value achieved

by the GAM31 (AUC) approach when we choose top 3 windows are 62% and 25%

respectively, which are almost twice as the LSSVM23 approach. Since Cruz-Cano

et al. (2010) only listed the sensitivity and PPV when the number of predictions

goes from 3 to 6, we just show our results of the top 3 to 6 top windows. Com-

pared with the LSSVM23 approach, our GAM31 (AUC) method with the top 3

windows correctly predicted 15 replication origins out of 24, while the LSSVM23

approach can only predict 7 replication origins successfully. So the GAM31 (AUC)

approach identified 8 replication origins for caudoviruses which Cruz-Cano et al.

(2010) failed to do so. Actually, if we choose the top 10 windows, sensitivity can be

83%. If we choose the top 1 window, PPV reaches as high as 35%. The results are
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quite encouraging. Our GAM approach is a valuable approach to predict origins

of replication in caudoviruses.

In both herpesviruses and caudoviruses, the standardized window number is

considered the most important variable among 31 candidate variables, which is

consistent with the findings of Cruz-Cano et al. (2010). So we conclude that the

standardized window number provides much useful information of the location of

the real replication origins in herpesviruses and caudoviruses.

4.7 Discussion

We recorded here some preliminary statistical analysis attempted before using the

GAM approach. In a later subsection, we demonstrate that standardization is an

essential pre-processing step in our analysis.

4.7.1 GLM Approach

The first natural approach in modeling binary response is logistic generalized linear

models (GLM). Table 4.1 indicates that the GAM approach should be applied

rather than the GLM approach in this thesis.
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4.7.2 Boosting Approach

We tested a machine learning approach called boosting to predict replication ori-

gins in herpesviruses. In 2000, Friedman et al. described boosting as an important

classification methodology, which is a way of combining the performance of many

“weak” classifiers to produce a powerful “committee”. However, the procedure

failed to solve our prediction problem. It only successfully predicted 3 out of 43

replication origins in herpesviruses. Thus, we did not choose this method.

4.7.3 Predictive Accuracy for α-Herpesvriuses

We expected to improve the predictive accuracy by focusing on α subfamily, be-

cause members within the same subfamily share more similar biological properties.

Model 5 log [p/(1− p)] = f1(R) + f2(P ) + f3(AT ) + β1AT ·LMAT + β2LMAT + β0

was applied to do prediction for α herpesviruses subfamily. The sensitivity and

positive predictive value were compared to those of predicting replication origins

in all herpesviruses using the same Model 5. However, as shown in 4.10, the re-

sult was not as expected. The procedure that worked on the α subfamily did not

improve the predictive accuracy.
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Figure 4.10: Sensitivity and positive predictive values of the GAM approach work-
ing on α subfamily and all genome sequences of herpesviruses.
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4.7.4 Stepwise GAM Approach by the AIC Criterion

As for the model selection procedure, we tested another criterion, Akaike’s in-

formation criterion (AIC; Akaike, 1974) instead of AUC. This model selection

procedure was implemented in the function step.gam in software R. The function

step.gam allows the user to step through arbitrary models along a pre-specified

path. It builds a GAM model in a stepwise fashion. Using this approach, we chose

the model:

log(
p

1− p
) = β0 + β1 ·R + β2 ·Xα + β3 · TG + β4 · ATcon · P

+ s(ATcon) + s(R · P ) + s(swinno) + s(AT ) + s(TA) + s(CA). (4.2)

The AUC value of this model surpasses 0.851, which is higher than GAM

approach (Model 5) whose AUC value was only 0.717, but lower than the AUC

value of GAM31 (AUC) approach, which was 0.877.

4.7.5 Standardization in the Preprocessing Step

We mentioned in the previous chapter that the pooled window scores that were

used to fit our generalized additive models were standardized due to the various

ranges of window scores in different virus genome sequences. If we did not stan-

dardize our data, the AUC value of Model 5, which was chosen as our final model

when the target variable set consisted of only four sequence features (palindromes,
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repeats, AT content and local maxima) would be 0.664. This AUC value is lower

than that of Model 5 fitted by standardized data, which was 0.717. Therefore,

our original window scores should be standardized before they were used to fit the

models.

In summary, the GAM is a valuable approach to predict replication origins

in some double-stranded DNA viral genomes by integrating multiple sequence

features. By comparing the existing approaches of predicting replication origins,

we noted that the refined stepwise GAM approach GAM31 (AUC) gave the best

result.
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Chapter 5

Conclusion and Further Research

5.1 Conclusion

We developed a new computational method to integrate DNA sequence features

for more accurate prediction of origins of replication in some double-stranded DNA

viral genomes. Sequence features such as palindromes, AT content and close di-

rect repeats are known to be associated with replication origins in viruses (Vlazny

and Frenkel, 1981; Boehmer and Lehman, 1997; Hammarsten and Elias, 1997).

Palindromes and AT content have been used to individually predict replication

origins (Chew et al., 2005; Chew et al., 2007). This study introduced the method

based on close direct repeats. Firstly, we introduced a scoring scheme (repeats

length scheme) to quantify the spatial abundance of close direct repeats in a ge-

nomic sequence. The close direct repeats–based method using this scoring scheme
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achieved better predictive accuracy than the palindrome-based and AT content–

based methods, to some extent. This result suggests that this sequence feature

is important around replication origins. This method is the first computational

approach that quantifies close direct repeats in genome sequences to predict repli-

cation origins in herpesviruses.

There are three predictive approaches, each of them using only one of these

three sequence features. By using the top 1–10 ranked windows based on these

sequence features, we examined the numbers of replication origins that were cor-

rectly predicted, out of 43 known origins of replication in the herpesviruses. It

was found that all three predictive approaches complement each other very well

in predicting replication origins in herpesviruses. This result showed that suitably

combining these sequence features should improve the performance of prediction.

It was also found that our generalized additive model (GAM), a statistical model,

which enabled us to take these features and their interactions into account, effec-

tive in identifying several replication origins that were not predicted previously.

This approach also possessed good predictive accuracy, with both sensitivity and

positive predictive values higher than those of existing methods (Chew et al., 2005;

Chew et al., 2007).

In order to find out how the locations of replication origins are dependent

on sequence features in herpesvirus genomes, we chose the best model among

several generalized additive models with various covariates, which were scores
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of quantified sequence features. The area under the Receiver Operating Curve

(AUC) was adopted as a criterion for generalized additive model selection. The

AUC criterion provides a novel guide for generalized additive model selection,

which is a good summary measure to evaluate the overall classification accuracy

for identifying the dichotomous response.

More sequence features (subfamily, standardized window number, and dinu-

cleotide scores), which were associated with replication origins, were further in-

tegrated in the model. A stepwise model selection approach by AUC criterion

GAM31 (AUC) was applied. The AUC value of the best generalized additive

model selected by this approach was as high as 0.8771 for herpesviruses, which

is better than all other approaches described in this thesis. The existing replica-

tion origin prediction methods did not perform well for caudoviruses, while the

GAM31 (AUC) approach produced much better results. The good performance

of this model can be attributed to the combination of information from several

sequence features.

In addition, this approach also proved useful to predict replication origins in

caudoviruses, which is another kind of double-stranded DNA virus. With the

introduced models, the number of identified replication origins in herpesviruses

and caudoviruses can be increased significantly. The key contribution of this study

is that our GAM approach extends previous work on integrating DNA sequence

features, rather than only considering one feature at a time, for more accurate
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prediction of replication origins in double-stranded DNA viral genomes. The GAM

approach is a valuable addition to existing predictive tools.

5.2 Topics for Further Research

Based on the predictive results obtained, discussion presented and conclusions

drawn from this research work, some potential areas for further investigation re-

lated to the development of predictive approaches of replication origins in genomes

are highlighted below.

5.2.1 Application of Generalized Additive Model to Repli-

cation Origins Prediction in Other Viral Genomes.

After building up models and assessing suitable approaches to predict origins of

replication in herpesviruses and caudoviruses, we will apply the best model to pre-

dict origins of replication in other similar viral families; for instance, poxviruses,

baculoviruses, and iridoviruses, which are all double-stranded DNA viruses. Poxviruses

are slightly larger double-stranded DNA viruses (Hughes et al., 2010). The genomes

range from 130 to 380 kbp (Moss, 2001). Poxviruses can infect various ani-

mals (Hughes et al., 2010). For example, the variola virus is a a member of

the poxvirus family that causes the disease smallpox. More and more studies fo-

cus on poxviruses (Henderson, 1999; Miller, 2003). The baculoviruses, ranging
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from 80 to 180 kbp, are a family of large, rod-shaped viruses that contain circular

double-stranded genomes (Hyink et al., 2002). Iridoviridae is a family of virus

with double-stranded DNA genomes ranging from 150 to 280 kbp (Eaton et al.,

2007). Vertebrate iridoviruses are found in fish, amphibians, and reptiles (Eaton

et al., 2007). Some iridoviruses infect fish and frogs, which is a serious problem

in fish farming, modern aquaculture, and wildlife conservation (Tsai et al., 2005).

Since these viral families share similar physical characteristics, we hope that the

approaches of predicting replication origins in herpesvirus can be extended to these

viruses.

5.2.2 Further Potential Refinements

This study did not take into account the heterogeneity of the genomic sequence,

although it was generally known that a genomic sequence is far from being ho-

mogenous. Therefore, the model developed in this study should be refined. Future

research should attempt different approaches, such as, HMM (Churchill, 1989;

Churchill, 1992), the change-point method (Braun and Muller, 1998), or the en-

tropy method (Li, 2001), to segment the genomic sequence into homogenous seg-

ments. Then the issue of how to correct the window scores according to their

background should be explored.
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5.2.3 Exploration of Motifs around Replication Origins

Based on empirical studies, it is recommended that more related sequence patterns

should also be considered besides the sequence features used to build up gener-

alized additive models discussed in this thesis. One possible avenue for future

work is the exploration of over- (or under-) represented motifs around replication

origins.

Some over-(or under-) represented motifs in large sequences have been associ-

ated with various biological functions and mechanisms (Frith et al., 2004). Under-

represented motifs showed a harmful dysregulatory effect, while over-represented

motifs often play an important role in biological function (Frith et al., 2004).

Leung et al. (1996) found that clusters of some of the most over- and under-

represented 4- and 5-words in some herpesvirus genomes were identified around

functional sites such as replication origins and regulatory signals of individual

viruses. Based on this finding, further research is therefore needed to identify over-

(or under-) represented motifs around known replication origins. It is reasonable

to guess that similar over- (or under-) represented motifs may be around unknown

replication origins in other herpesvirus genomes. Therefore, similar motifs in other

herpesvirus genomes should be explored.

One measurement of over- (or under-) representation is as follows. The fre-

quency of the nucleotide X (A, C, G, or T) in the sequence is denoted by fX .
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Similarly, fXY denotes the frequency of dinucleotide XY, fXY Z denotes the fre-

quency of trinucleotide XYZ, and so on. An odds ratio calculation that is used to

assess the dinucleotide bias is through , namely ρXY = fXY /fXfY . If ρXY is suffi-

ciently larger (or smaller) than 1, then the XY pair is considered over- (or under-)

represented compared to a random association of mononucleotides. There are

classical statistical tests of the contingency table genre in terms of ρXY (Hollander

and Wolfe, 1973).

There are many approaches and tools to find over- (or under-) represented

motifs (Apostolico et al., 2000; Apostolico et al., 2004; Schbath, 1997). VER-

BUMCULUS is a suite of software tools for the efficient and fast detection of over-

or underrepresented words in nucleotide sequences (Apostolico et al., 2004). This

tool can find over- and under-represented words within both a single genetic se-

quence and a family of sequences. Thus, we can use this tool to search for over-

(or under-) represented motifs to known replication origins in herpesvirus genome

sequences.

5.2.4 Prediction of Replication Origins in Other Organ-

isms

Our method can only predict replication origins in viral genomes, which may

not be applicable to other organisms. Because DNA replication mechanisms are

different in various organisms, the approach designed for predicting replication
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origins in herpesvirus genomes may not work well on other organisms. Therefore,

a necessary extension of our work is to develop methods to predict replication

origins in other organisms, such as bacteria, eukaryote, etc.
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