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ABSTRACT 

 

Aggressive complementary metal-oxide-semiconductor (CMOS) scaling 

requires the development of new materials and device architectures. This dissertation 

focuses on introducing lanthanoid based materials into CMOS technology to address 

some of the new challenges in CMOS scaling. 

The low work function lanthanoid silicides are potential candidates for N-type 

Schottky source/drain field-effect transistor (N-SSDT). Several lanthanoid elements, 

including Dy, Er, Tb and Yb, were investigated to form the self-aligned silicide 

(salicide) S/D for N-SSDT. The YbSi2-x has been found to be a very promising 

candidate for N-SSDT as it provides a high drive current with a very low leakage 

current. By addressing the compatibility issues of lanthanoid materials with 

conventional CMOS process, a low temperature, implantation free MOSFET process 

featuring a “hole spacer”, Schottky barrier source/drain, high-κ dielectric and metal 

gate electrode was successfully developed.  

The elimination of polysilicon gate depletion effect and reduction in gate 

leakage current are major advantages of metal gate/high-κ dielectric gate stack over 

conventional polysilicon/SiO(N) gate stack. However, achieving the desired effective 

metal gate work function Φm to meet threshold voltage requirements in future CMOS 

devices is one of the main hurdles for its implementation. We demonstrate two 

methods for tuning the metal gate work function towards the silicon conduction band 

edge. The first one is to incorporate ytterbium (Yb) into Ni fully-silicided (Ni-FUSI) 

gate.  Yb has a low work function of 2.59 eV. During the silicidation process, Yb 

atoms accumulate at the NiSi/SiO2 interface and achieved a FUSI gate Φm lowering of 
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about 0.3 to 0.5 eV. However, this method is less effective on high-κ dielectrics. The 

second method is to incorporate lanthanoid oxides into hafnium oxide gate dielectric. 

Conduction band-edge TaN gate Φm values of 4.1 to 4.24 eV were obtained by doping 

HfO2 gate dielectric with Er2O3 and several other lanthanoid oxides. Interface dipole 

models were discussed to explain the effective gate Φm tunability. 

After addressing the challenges active device, we explore the scaling down of 

metal-insulator-metal (MIM) capacitors by investigating a series of lanthanoid oxides 

as candidates for the insulator layer. MIM capacitors using Sm2O3 or Er2O3 dielectric 

material were found to have better voltage linearity as compared with other high-κ 

materials at the same capacitance density. Satisfactory leakage current and frequency 

dispersion properties indicate that both oxides are promising. It was found that both 

oxygen vacancy in the dielectric film and the interfacial layer at the high-κ/bottom 

electrode interface played an important role in the voltage linearity of the MIM stack. 

An innovative dielectric structure is developed by intentionally inserting a thin SiO2 

layer between the lanthanoid oxide and bottom electrode. We achieved high 

capacitance density (up to 8.5 fF/µm2) with quadratic VCC lower than 100 ppm/V2 by 

engineering the thickness ratio of high-κ to SiO2 layers. This performance can meet 

the International Technology Roadmap for Semiconductors (ITRS) requirements in 

2013 and indicates that MIM capacitors with high-κ/SiO2 dielectric stack can be a 

long-term solution to RF and analog/mixed-signal capacitor technology.   
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Chapter 1 

Introduction 

 

As the author is typing this thesis, the ITRS (International Technology 

Roadmap for Semiconductors) Summer Public Conference is being held during 

SEMICON West. New materials and devices are being investigated to extend CMOS. 

In CMOS technology development, new materials, such as high-κ and low-κ 

dielectric, metal gate, stressors and new silicide materials have played and will 

continue to play an important role. 

Lanthanoid elements and their compounds, which have widely been used in 

lasers, catalysts, magnets, glass and ceramics, are strategic materials for several major 

industry areas, including the military weapons. They have become more important in 

microelectronics as the demand for performance cannot be fulfilled by existing 

materials. This chapter would discuss the characteristics of lanthanoid elements and 

their potential to address the challenges in the silicon CMOS technology. 

 



Chapter 1: Introduction 

2 

 

1.1 Lanthanoid Elements and Their Compounds 

1.1.1 The Lanthanoid Series 

Lanthanoid elements are the 15 elements of the Periodic Table (La, Ce, Pr, Nd, 

Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) with the atomic numbers from 57 

through 71 (Table 1.1). The lanthanoid series (Ln) is named after lanthanum. 

Lanthanoids are sometimes referred to as the "rare earths", which is used to describe 

all the lanthanoids together with scandium (Sc) and yttrium (Y). The use of this name 

is deprecated by International Union of Pure and Applied Chemistry (IUPAC), as they 

are neither rare in abundance nor "earths" (an obsolete term for water-insoluble oxides 

of electropositive metals incapable of being smelted into metal using late 18th century 

technology). These elements are in fact fairly abundant in nature, although rare as 

compared to the "common" earths such as lime or magnesia. IUPAC currently 

recommends the name lanthanoid rather than lanthanide, as the suffix "-ide" 

generally indicates negative ions whereas the suffix "-oid" indicates similarity to one 

of the members of the containing family of elements. In the older literature, the name 

lanthanon was often used. 

Lanthanoids are chemically similar to each other and closely resemble the first 

element in the series - La. The lanthanoids occur as trivalent cations in nature except 

for cerium (Ce) and europium (Eu). An important feature  is that they all have low 

work function, ranging from 2.59 eV (Yb) to 3.3 eV (La). The photoelectric work 

functions of all lanthanoid elements are listed in Table 1.1.  

 

 

http://en.wikipedia.org/wiki/Ion#Ions
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Table 1.1.  List of lanthanoid elements, photoelectric work functions [2], and ionic radii of 

the trivalent lanthanoid ions [1]. 

Atomic No. 57 58 59 60 61 62 63 64 

Symbol La Ce Pr Nd Pm Sm Eu Gd 

Work function 3.3 2.7 2.7 3.3 - 3.2 2.54 3.07 

Ln
3+

 radii (nm) 0.123 0.115 0.114 0.112 - 0.106 0.106 0.104 

Atomic No. 65 66 67 68 69 70 71  

Name Tb Dy Ho Er Tm Yb Lu  

Work function 3.09 3.09 3.09 3.12 3.12 2.59 3.15  

Ln
3+

 radii (nm) 0.100 0.099 0.098 0.096 0.094 0.093 0.092  

 

In the outer electronic configuration of the lanthanoid series, the 6s
2
 shell is 

always occupied, the 5d
1
 configuration appears in La, Ce, Gd and Lu, and then the 4f 

shell is progressively filled as the atomic number increases. The number of electrons 

in the 4f shell is therefore the distinctive characteristic of the lanthanoid elements. The 

4f sub-shell lies inside the ion, shielded by the 5s
2
 and 5p

6
 closed sub-shells. The ionic 

radii of the lanthanoids decrease through the period - the so-called lanthanide 

contraction – from 0.123 nm in La to 0.092 nm in Lu [1]. 

1.1.2 Lanthanoid Silicides 

Metal silicide thin films are commonly used in ohmic contacts, MOS gate 

electrodes, and silicidation of diffusion regions. Silicides of platinum (Pt), tungsten 
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(W), titanium (Ti), cobalt (Co), nickel (Ni), tantalum (Ta) and other metals have been 

heavily investigated, and some of them are now commonly used in manufacturing. 

The lanthanoid silicides are relatively new to CMOS processing technology, but their 

low work function and low Schottky barrier to the n-type silicon [3] have made them 

attractive in the development of new infrared detectors, work function tuning in FUSI 

metal gate [4] and Schottky source/drain transistors [5, 6].  

The lanthanoid disilicides (LnSi2) are a large group among the lanthanoid 

silicides. However, the perfect stoichiometry of 1:2 is not commonly seen in thin 

silicide films. The silicon atoms behave like interstitials and the silicon sublattice in 

the silicide usually contain vacancies. The actual compositions vary between 1:1.66 

and 1:1.85, especially for heavy lanthanoid silicides from Gd to Lu [7-9]. Lanthanoid 

disilicides with silicon vacancies are usually denoted as LnSi2-x. 

The most common method for forming lanthanoid silicide thin films is by 

depositing a thin layer of the metal onto clean silicon surface by Physical Vapor 

Deposition (PVD), which includes e-beam evaporation and sputtering; the silicide is 

then formed by annealing either in furnace or in RTP. The reactions of lanthanoid 

silicides show remarkably different growth kinetics from those observed in the 

formation of other transition metal silicides. By annealing lanthanoid metal on Si 

substrates, it has been shown that Si atoms are the dominant diffusing species during 

the silicide formation [10, 11]. It is generally accepted that the mechanism of 

lanthanoid silicide thin film formation is dominated by nucleation phenomena. The 

solid state interactions between lanthanoid and silicon exhibit a critical temperature. 

Below the critical temperature, reactions are very sluggish; while above this 

temperature, reaction is fast. For La, it was found that although the reaction starts 

from as low as 200 ºC, the disilicide phase LaSi2 does not form until 600 ºC [12, 13]. 
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This suggests an intermediate stage of formation of LaSi2-x [13]. As lanthanoid metals 

are chemically reactive, the oxidation of the lanthanoid elements must be prevented 

during the formation of silicides. 

1.1.3 Lanthanoid Oxides 

Lanthanoid metals react with oxygen vigorously and form oxides [14]. These 

oxides are thermally stable. In the solid state, the +3 oxidation state (Ln2O3) is 

generally the stable one for the lanthanoid elements in the solid state. This is 

advantageous because, when one element has more than one stable oxidation state, 

more than one stoichiometry is possible which, in turn, could lead to a complicated 

band structure [15]. Some lanthanoid elements are also stable in the oxidation state +2 

(Sm, Eu, Tb, and Yb), and others in the oxidation state +4 (Ce, Pr, Tb) [16, 17]. Two 

issues of major concern in microelectronics are the dielectric constant (κ) and the 

energy gap (Eg). 

The κ value of a dielectric is related to frequencies of its dominant infrared 

optical modes [18], which in turn are related to the crystalline structure. The κ value is 

higher for crystalline films with structures having the most intense absorption band at 

lower frequencies. Lanthanoid oxides with the same chemical composition but 

different crystal structures may have different dielectrics constants. For a insulator in 

microelectronic devices, larger energy gap is desired for larger capacitance density. 

The reported κ values of lanthanoid oxides are listed in Table 1.2. All the lanthanoid 

oxides are considered high-κ since their κ values are larger than that of SiO2 (~3.9). 

The deviation of actual κ values of the same lanthanoid oxide but different sources are 

ascribed to deposition method, thickness, purity, oxygen vacancies and some other 

aspects [19-24]. 
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Table 1.2.  Summary of dielectric constant κ values of lanthanoid oxides. 

Oxide κ (bulk) κ (thin film) 

La2O3 30 [25] 19 [21], 23 [20], 30 [25] 

Ce2O3 16.6 26 [24], 52 [19] 

Pr2O3 14.9 15 [23], 30 [22] 

Nd2O3 14.3-16 11.7 [26] 

Sm2O3 - 10 [27], 30.5 [28] 

Eu2O3 13.7 12 [29] 

Gd2O3 13.6 16 [30] , 23 [31] 

Tb2O3 13.3 - 

Dy2O3 13.1 - 

Ho2O3 13.1 - 

Er2O3 13 7 – 14 [32] 

Tm2O3 12.6 7 – 22 [33] 

Yb2O3 12-13.4 12 , 14[20] 

Lu2O3 12.5 11 [34] 

κ values for the bulk dielectrics are from [35]. 

 The energy gap (Eg) of the lanthanoid oxide series varies in a periodic way 

with the increasing atomic number. The optically measured Eg values shown in Fig. 

1.1 show this trend. The electrically measured Eg values from high-temperature 

conductivity experiments [36] are also presented. The electrically measured energy 

gaps are lower than optically measured ones, but the two trends agree with each other. 

The oxide of La, Gd, and Lu have the largest Eg (~ 5.5 eV). Ce, Pr and Tb have 

significantly lower energy gaps (2.3 eV, 3.9 eV, and 3.8 eV, respectively). The 

periodic Eg values are believed to be due to the gradual increase of f shell electrons 

[36-38]. 
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Fig. 1.1.  Energy gap of Ln2O3 oxides. The optical gap data is from collected from [38]. The 

electrical gap derived from high temperature conductivity measurements are from [36]. 

 

Although lanthanoid oxides are thermally stable, they are known to react with 

water [39-41]. This reactivity decreases as the ionic radius of the lanthanoid element 

decreases [41]. This can be verified from the analysis of the XPS O 1s spectra. 

Special caution should be taken when handling lanthanoid oxides to reduce exposure 

to water or the moisture in air. 

1.2 Integrated Circuit Scaling 

1.2.1 Transistor Scaling 

The exponential increase in transistor density IC [42] has lasted for half a 

century. This has been predominantly achieved through conventional transistor 

scaling based on the criteria proposed by Dennard et al. [43]. Since the 1970’s, the 

minimum feature size of transistors was reduced by a factor ~0.7 times in successive 

complementary metal-oxide-semiconductor (CMOS) technology nodes every 18 
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months. The increase in packing density per unit chip area for state-of-the-art IC’s has 

improved speed and functionality. The transistors per chip have been increasing from 

10
3
 in year 1972 to more than 10

9
 in today’s leading-edge technology, as shown in Fig. 

1.2. However, as the technology advances into sub-32 nm regime, fundamental 

physical limitations of transistor scaling are met. Aggressively-scaled transistors lead 

to high leakage currents that lead to unacceptable power consumption and 

performance degradation. Hence, it is imperative to review these challenges and 

consider other alternative technological solutions for continued development in future 

generation nodes. 

 

 

Fig. 1.2.  The number of transistors on integrated circuits such as microprocessors and 

DRAM increases exponentially over the years [44]. 

 

 



Chapter 1: Introduction 

9 

 

Table 1.3.  Specifications for the scaling of transistors, derived from ITRS 2008 [42] 

Year of Production 2007 2009 2011 2013 2015 

Technology node/ 

DRAM half Pitch (nm) 
68 52 40 32 25 

Physical gate length for 

MPU/ASIC (nm) 
32 27 22 18 15 

EOT for MPU (nm) 1.1 1 0.88 0.65 0.53 

Gate leakage at 100
o
C for 

high performance (A/cm
2
) 

180 650 900 1100 1300 

Metal gate work function for 

MPU/ASIC ,C V mE   (eV) 
- < 0.2 < 0.2 < 0.2 < 0.2 

Channel doping for bulk  

(10
18 

cm
-3

) 
3.70 4.71 3.77 5.40 7.19 

Extension lateral abruptness for 

bulk (nm) 
3.5 2.8 2.3 1.8 1.5 

Contact  Xj for bulk (nm) 35.2 29 24.7 19.8 16.9 

Allowable junction leakage for 

MPU/ASIC (µA/µm) 
0.06 0.25 0.71 0.64 0.72 

Contact silicide sheet  resistance 

for MPU (Ω/) 
- - - 7.4 8.7 

 

The International Technology Roadmap for Semiconductors (ITRS) has been 

developed as a guideline to identify key technical requirements and imminent 

technological challenges faced by the semiconductor industry [42]. Table 1.3 shows 

some of the projected specifications for the scaling of transistors from 2007 to 2015. 

Short channel effect (SCE) can be suppressed by doping the channel heavily, but this 

leads to mobility degradation, high junction leakage and stochastic doping variations 
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which compromise the benefit from a shorter channel. Metal gate, high-κ dielectric and 

multi-gate transistors are proposed for stronger gate control. Ultra-shallow junctions and 

ultra-thin body fully depleted silicon-on-insulator (SOI) can effectively reduce the 

junction leakage and improve the subthreshold behavior. 

A.  Source/Drain Dopant and Contact 

Ultra-shallow shallow junctions are required to suppress short channel effects. 

However a trade off exists between the sheet resistance, Rs and junction depth Xj. By 

reducing the thermal budget (e.g. the temperature and time) of the junction anneal, Xj 

can be lowered due to reduced diffusion. However, this normally deteriorates the 

activation of the implanted dopants, which increases Rs. The dose is already high. 

Increasing dose beyond the maximum solubility limit of depants does not help much. 

Therefore fabrication of ultra-shallow source/drain (S/D) with low series resistance is 

a bottleneck for future scaling of MOSFET. 

Schottky barrier Source/Drain Transistor (SSDT) has been suggested as a 

potential solution to overcome this problem due to its abrupt silicide/Si interface and 

the low resistance of the silicide [6]. On top of that, it has also been reported that 

SSDT is able to suppress drain induced barrier lowering (DIBL) because of the fixed 

potential barrier at the source Schottky contact which offers an insensitive barrier to 

electric field from the drain and source [45, 46]. SSDT is also particularly attractive 

when a metal-gate/high-κ gate stack is employed as it avoids the use of a high–

temperature annealing process required for activation of implanted S/D dopants. This 

eliminates thermal stability issues associated with high-κ gate stack. Lanthanoid 

elements, like other transition metals, form silicide when annealed with silicon. It is 

well known that the low work function metals such as lanthanoids usually have low 
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Schottky electron barrier height [47]. Lanthanoid silicides are potential candidates for 

N-type SSDT. 

B.Gate Electrode 

The polycrystalline silicon (poly-Si) depletion problem (Fig. 1.3) retards the 

scaling of the capacitance equivalent thickness (CET) of the gate stack in the 

inversion regime (CETinv), which determines the drive current capability of 

MOSFET’s [48].  The voltage drop across the gate depletion layer may lead to a 

reduction in the effective gate voltage and hence less inversion charges in the channel. 

Gate capacitance degradation due to the depletion of the doped poly-Si gate typically 

accounts for 0.4~0.5 nm in the CETinv [49].  Therefore the performance improvement 

from the EOT reduction by using high-κ dielectric could be compromised by this 

poly-Si depletion problem.  Although the depletion of poly-Si gate could be alleviated 

by using higher doping concentration in the n
+
 and p

+
 -doped poly-Si, dopant 

penetration (especially boron) could be another concern [50, 51].  Additionally, the 

continuous scaling in gate electrode thickness leads to high gate resistance for the 

poly-Si electrode, which would also degrade the over-all performance of transistors 

[52].  As a result, immense interests have been shown in metal gate technology. 
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Fig. 1.3.  (a) The energy band diagram of an NMOSFET showing the poly-Si gate depletion 

layer during inversion bias. (b) The capacitance-voltage plot depicts how the poly-Si gate 

depletion effect decreases the gate capacitance in the inversion regime. This figure is from 

reference [53]. 

Metal gate is expected to be introduced in the sub-45nm CMOS technology 

nodes to address the concerns associated with the poly-Si electrode. Fully-silicidation 

(FUSI) metal gate electrodes such as NiSi, CoSi2 and TiSi2 have been extensively 

studied due to the compatibility of FUSI process with CMOS process flow [54-56].  

However, the optimization of the flatband and threshold voltage and the process 

integration for dual metal gate still need to be explored. Low work function lanthanoid 

elements are expected to be helpful in metal gate work function tuning. 

C. Gate Dielectric 

A direct method to control the short channel effect would be to reduce the gate 

dielectric thickness and to eliminate gate depletion to increase gate-to-channel 

capacitive coupling. At present, gate dielectric thickness has become so thin that gate 

leakage current densities due to direct tunneling of electrons are reaching 

unacceptable levels for logic technology, especially for high performance logic. High-
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κ dielectrics have been proposed as an alternative to conventional silicon oxy-nitride 

dielectrics to suppress gate leakage, and the most promising candidate is hafnium-

based dielectrics [25, 57]. The replacement of the conventional doped polysilicon gate 

with a metal gate electrode is also expected for integration with high-κ dielectrics. 

There has been a breakthrough in the implementation of metal gate/high-κ gate stack 

for CMOS devices in high volume production [58]. However, research on the flatband 

voltage modulation by high-κ material, physics at the high-k/Si interface, and gate 

stack reliability are still going on. The potential application of lanthanoid oxide as a  

high-κ dielectric will be discussed in Chapter 4. 

1.2.2 Scaling of Integrated Passive Devices 

The explosive growth of the wireless communications market has been served 

by radio frequency (RF)/mixed-signal (MS) chips, which includes RF, analog, analog-

to-digital and digital-to-analog conversion, and a large number of mixed-signal chips. 

These chips deal with analog signals with high precision. On such circuits, passive 

devices usually occupy a large portion of the area. Therefore, scaling transistor 

dimensions alone is insufficient. However, passive devices for these applications have 

not shrunk in size as rapidly as active devices. Adding to the problem is the fact that 

increasing numbers of passive devices are required in modern wireless applications 

due to the larger fraction of analog signals involved [59].  

Among the passive devices, capacitors occupy more area than the sum of the 

others, and they can be vastly affected by process engineering while the improvement 

in resistors and inductors are mainly done through design [60]. Fig. 1.4 shows the 

position of MIM capacitors in an mixed signal circuit. High capacitance density can 

be realized by reducing the thickness and/or increasing the permittivity κ of the MIM 

dielectric material.   
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Fig. 1.4.  Cross sectional view of digital-analog mixed-signal circuit, where MIM capacitor is 

integrated in the Cu back-end-of-the-line. 

 

However, leakage current and reliability issues limit thickness scaling of the 

MIM dielectric. High-κ materials, which have been recently introduced to CMOS 

gate stack and DRAM cell [61], are also potential candidates for MIM dielectrics. 

However, other than the capacitance density, MIM capacitors for RF an MS circuits 

require special and stringent device specifications as shown in Table 1.4 [42]. For 

example, the voltage linearity requirement is 100 ppm/V
2
 for precision RF/analog 

circuits, which is still a challenge for intensively studied high-κ materials such as 

HfO2 [62, 63], Ta2O5 [64], and Al2O3 [65]. Much less progress has been done in 
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analog and RF circuit applications, where SiO2 or Si3N4 based capacitors are still 

being used. Lanthanoid oxides, with κ values ranging from 7 to 30 (Table 1.2), are 

potential candidates for MIM applications. It has been reported that the voltage 

coefficient can be reduced by incorporating Tb, which is a lanthanoid element, into 

HfO2 [66]. Tb2O3 itself was not studied because it is not an ideal high-κ material for 

its small energy gap (Fig. 1.1). Nevertheless, this thesis work shows that, at least 

some of the lanthanoid oxides might be suitable for realizing MIM capacitors with 

low VCC. 

 

Table 1.4.  Specifications for the scaling of  MIM capacitors, derived from ITRS 2008 [42]. 

Year of Production 2007 2009 2011 2013 2015 

Density (fF/µm
2
) 2 4 5 7 7 

Voltage linearity (ppm/V
2
) <100 <100 <100 <100 <100 

Leakage (A/cm
2
) <10

-8
 <10

-8
 <10

-8
 <10

-8
 <10

-8
 

σ Matching (%·µm) 0.5 0.5 0.4 0.3 0.3 

Q (5 GHz for 1pF) >50 >50 >50 >50 >50 
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1.3 Objective of Research 

 The objective of this thesis is to explore novel lanthanoid based materials to 

address the challenges in the scaling down of CMOS transistors and MIM capacitors in 

modern silicon processing technology. Several areas, namely Schottky barrier 

source/drain transistor (SSDT), FUSI metal gate, high-κ dielectric for gate stack, and 

MIM capacitors with lanthanoid oxides have been extensively evaluated. This research 

contributes to the assessment of identification, and optimization of lanthanoid based 

materials for applications in advanced CMOS technology. 

1.4 Thesis Organization 

The main issues discussed in this thesis are documented in 4 chapters.  

In Chapter 2, Schottky barrier source/drain transistor (SSDT) with DySi2-x,  

ErSi2-x, TbSi2-x and YbSi2-x as source/drain were investigated. The Schottky diode 

performance was studied by J-V measurements. The transistor characteristics were 

also compared. The process and integration issues are also discussed. 

In Chapter 3, a novel Ni-FUSI gate work function tuning method using Yb-

doped NiSi was demonstrated for the first time. Electrical and material analysis was 

conducted to ascertain the attractiveness of this Φ
m 

tuning technique. Additional 

insights were given for the application of the novel doping technique to attain band-

edge Ni-FUSI gate Φ
m 

tunability in a gate-first process flow. 

In Chapter 4, a comprehensive study of erbium (Er) doped HfO2 for Φ
m 

tunability of TaN metal gate was performed. The dependence of metal gate Φ
m 

on the 

dosage of erbium was studied. 
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In Chapter 5, lanthanoid oxide based metal-insulator-metal capacitors for 

precision analog circuit were demonstrated for the first time.  

Finally, the main contributions of this thesis are summarized in Chapter 6. 
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Schottky Barrier Source/Drain Field-Effect 

Transistor 

 

 

2.1 Background and Theories 

2.1.1 Motivation for Schottky Barrier Source/Drain Transistors 

The series resistance contributed by ultra-shallow source/drain (S/D) junctions 

is a serious performance bottleneck for future CMOS transistor. The Schottky barrier 

Source/Drain field-effect Transistor (SSDT) architecture [1] has been proposed to 

overcome the series resistance problem of ultra-shallow source/drain (S/D) junctions 

in sub-50 nm MOSFETs [2-4], due to the abrupt silicide/Si interface and low 

resistance of silicide. SSDT is particularly attractive when a metal-gate/high-κ gate 

stack is employed, as it avoids the use of a high-temperature annealing process 

required for activation of implanted S/D dopants, hence, eliminating the thermal 

stability issues associated with high-κ gate stack [5]. Table 2.1 summarizes the 

features, advantages, and benefits of the SSDT technology. 
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Table 2.1.  Summary of the features, advantages and benefits of the Schottky source/drain 

transistor technology. 

Feature Advantage Benefit 

2-3 fewer masks (S/D 

implant) 

Simpler process Lower cost, higher yield 

Atomically abrupt junction Scalability Lower cost, higher speed, 

lower power 

Low resistivity S/D 

contacts 

Reduced parasitic series 

resistance 

Higher speed, lower power 

Low temperature S/D 

formation 

Reduced thermal budget Easier integration with 

high-κ dielectric, metal 

gates, strained Si, and 

other new materials 

Lower channel implant 

concentration 

Less channel impurity 

scattering 

Higher effective carrier 

mobility 

No shallow-implants Simpler process Lower cost 

Schottky barrier at drain-

to-body junction 

Built-in barrier for drain-

to-body leakage 

Greater control of Ioff, 

deeper S/D junctions 

allowed 

Theoretical parasitic 

bipolar gain < 0.001 

Elimination of latch-up, 

reduced soft-error rate 

Simpler circuit design, 

improved IC reliability 

 

Achieving low barrier height is a key issue for SSDT. P-channel SSDT (P-

SSDT) with PtSi as Schottky S/D (hole barrier bp Φ  0.24 ~ 0.28 eV ) has been 

fabricated with acceptable electrical performance with a Ion/Ioff ratio of 10
8
 [6, 7] and 

a sub-threshold slope of 66 mV/decade [6]. However, the electrical performance of N-

channel SSDT (N-SSDT) is still inferior mainly due to lack of suitable silicide 

material [4, 6, 8]. 
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2.1.2 Schottky Barrier and Metal Work Function 

The Schottky barrier (
bΦ ) is the rectifying barrier for electrical conduction 

across the metal-semiconductor (MS) junction. It is of vital importance to the 

successful operation of Schottky diodes and SSDT. Ideally, 
bΦ  is equal to the 

difference between the metal work function 
bΦ  and the electron affinity of the 

semiconductor (Schottky-Mott theory) [9]. However, Fermi level pinning due to the 

large density of surface states present on the semiconductor surface makes 
bΦ  

insensitive to the metal work function [10]. Fermi level pinning is closely related to 

the orientation/structure of the MS interface and the preparation of the semiconductor 

surface. Nevertheless, metals with lower work function have been found to have 

systematically lower Schottky barriers. 

As discussed in Chapter 1, lanthanoids have lower photoelectric work function 

than most of the other transition metals. It is well known that the low work function 

metals usually have low Schottky electron barrier height [11]. In this chapter, we 

discuss the fabrication and characterization of SSDT with various lanthanoid silicides 

as S/D, namely DySi2-x, ErSi2-x, TbSi2-x and YbSi2-x. The photoelectric work function 

of Dy, Er, Tb and Yb are 3.09 eV, 3.12 eV, 3.09 eV and 2.59 eV, respectively [12]. Yb 

silicide is expected to have a lower Schottky barrier height for electron. 

2.1.3 Schottky Barrier Extraction 

The Schottky barrier can be derived from current-voltage (I-V), current-

temperature (I-T), capacitance-voltage (C-V), or photo current methods (PC) [13]. 

Any damage at the interface affects the I-V behavior because defects may act as 

recombination centers or intermediate states for trap-assisted tunneling currents. C-V 

measurements are less prone to such defects. However, defects can alter the space-
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charge region width and hence the intercept voltage. Photocurrent measurement is less 

sensitive to such defects, and this method is judged to be most reliable [13].  Both the 

Schottky barrier height and the interfacial defects are important factors that affect the 

on-state current (Ion) and off-state current (Ioff) of SSDT. As far as the SSDT 

performance is concerned, the I-V method is preferable for evaluation of the Schottky 

junction quality. We used both I-V and C-V methods to extract the barrier height. The 

C-V method used was the same as that discussed in [13]. For the I-V method, we 

employed a model to incorporate the series resistance to improve the accuracy, as 

discussed below. 

The equivalent circuit of a real Schottky diode can be approximated as a 

perfect Schottky diode (no resistance), connected in series with a resistor. The series 

resistance comes from the top silicide and the silicon substrate. The thermionic 

current-voltage relationship of a Schottky barrier diode [14], neglecting series and 

shunt resistance, is given by 

* 2 exp exp 1b diodeq qV
I AA T

kT nkT

      
     

     ,

   (2.1) 

where A is the area of the Schottky junction, A
*
 is the Richardson constant, n is the 

ideality factor, T is the temperature (in Kelvin), q is the magnitude of electron charge 

(1.60 × 10
-19

 C), k is the Boltzmann’s constant (8.61760 × 10
-5

 eV/K), and Vdiode is the 

voltage drop on the Schottky barrier diode. For n-Si, 
* 2 2112 A/cm KA    ,and for p-

Si, 
* 2 232 A/cm KA    [15]. 

 The voltage VR across the resistor in series can be expressed as 

R bias diodeV V V 
,
     (2.2) 

where     RV I R  .     (2.3) 
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Fig. 2.1.  (a) Schottky diode structure. (b) Equivalent circuit of Schottky diode. The 

resistances from the top electrode and bottom Si substrate are considered as one resistor. 
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Fig. 2.2.  Simulated J-V curves of metal/p-Si Schottky contact with an electron barrier of 0.6 

eV, 0.8 eV and 1.0 eV. The series resistance is assumed to be 80 Ω. 
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Fig. 2.2 shows the simulated J-V curve of a Schottky junction in series with a 

80-Ω resistor using Equation 2.1~2.3. For the reverse biased region (positive bias), 

the current is almost constant with increasing reverse bias voltage. The reverse current 

increases with decreasing electron barrier. For the forward bias region, the current 

increases linearly in the log scale at lower voltage, and the current reduces with the 

increase of electron barrier height. The slope at low negative bias is determined by the 

ideality factor n, but it changes at higher negative voltage region because of the series 

resistance. As the bias increases, the dynamic resistance of the Schottky barrier 

becomes smaller, and the series resistance becomes the dominant factor in the total 

resistance. 

2.1.4 SSDT Structure and Principles of Operation 

A comparison of schematic representation and operating principles of 

conventional N-MOSFET and N-SSDT devices is shown in Fig. 2.3. The principle 

innovation of SSDT is in the engineering of the source and drain electrodes. The 

conventional impurity-doped source/drain electrodes are entirely replaced by metal, 

which is typically self-aligned metal silicide (salicide). The different nature of the 

junction between the S/D regions and the semiconductor substrate leads to the 

different fundamental principles of operation.  

For SSDT, the emitted current at the source is the sum of the current emission 

over the barrier and through the barrier. The thermal-emission current can be 

determined by classical thermal-emission (T-E) theory (equation 2.1).When a low 

electric field (E-field) is present at the source electrode, there is virtually no field-

emission current. As the E-field increases at the source, the field emission current 

increases rapidly, while the thermal emission current remains approximately constant. 
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Fig. 2.3.  Device architecture and band diagrams in off and on states for (a) conventional 

impurity-doped S/D NMOS device, and (b) SSDT device. 

Similar to conventional CMOS devices, SSDT subthreshold leakage current is 

typically dominated by four components: 1) gate-induced drain-leakage current (IGIDL); 

2) junction leakage (Ij); 3) S/D thermal-emission leakage current (Ith); and 4) gate 

insulator leakage (Ig): 
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off GIDL j th gI I I I I    .      (2.4) 

The gate dielectric leakage is similar to conventional MOSFET, which is 

related to the thickness and other properties of the high-κ material. Junction leakage 

current ( jI ) for an SSDT is caused by the reverse-biased Schottky diode at the drain 

electrode. This reverse leakage current is larger than the T-E model prediction 

because of the recombination and trap-assisted tunnel currents caused by the defects 

at the MS interface. 

Fig. 2.3(b) (middle) illustrates the band diagram in the off state for an SSDT, 

with the drain biased at ds ddV V , and gs 0V  . For n-type SSDT, IGIDL is caused by the 

tunneling of holes through the relatively large but thin barrier at the drain side in the 

off state, which is a result of the close proximity of the drain to the gate. The Schottky 

barrier to holes ( bpΦ ) can be approximated to the difference between the silicon band 

gap ( gE ) and the electron barrier height ( bnΦ ): 

bp g bnΦ ΦE 
.
      (2.5) 

GIDLI  is strongly dependent on the width of the hole barrier. The barrier width 

is a function of E-field and potential profile near the drain area.  

The most significant contribution to subthreshold leakage current is the 

source-to-drain thermal-emission leakage current ( thI ). Due to the presence of 

Schottky barrier, SSDT have an intrinsic advantage in controlling thI  because the 

Schottky barrier plays the role of halo implant, without having to add any dopants to 
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the channel region. This leakage current is a function of both bpΦ  and channel length. 

thI  can be suppressed by a relatively low-concentration simple channel doping profile. 

At on state, a strong electric field is present at the source electrode, virtually 

all of the source-emitted current is due to field emission of carriers that tunnel through 

the Schottky barrier. As the channel charge increases, the E-field at the source reduces 

due to charge screening effect, which in turn reduces the field-emitted current, until 

equilibrium is achieved. The physics and models for the on-state current are 

fundamentally different from those used in conventional MOSFET. There have been 

several approaches for estimating the field-emission tunnel current ( feJ ) through the 

sharp triangular Schottky barrier at the source side which is shown in the on-state 

band diagram in Fig. 2.3(b) [17-22]. In general, the field emission current is sensitive 

to the Schottky barrier height [9]: 

bn
fe

00

exp( )
q

J
E

 
,     (2.6) 

where D
00 *

s2

Nq
E

m
  . The field emission decreases exponentially with increasing 

electron barrier bnΦ . 

In summary, the for N-SSDT, the electron barrier bnΦ  should be kept as low 

as possible to obtain higher drive current, while the hole barrier bpΦ  must be large 

enough to suppress the off-state current. There are various reports discussing the 

optimal Schottky barrier height for SSDT to outperform the conventional MOSFET. J. 

Guo et al. claimed a zero or even negative barrier height is required for acceptable 
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performance [23], while M. Fritze et al. suggest that a sub-0.3-eV barrier would be 

good enough [24].  

 

2.2 Process Development 

2.2.1 Overview 

The manufacturing process for SSDT requires fewer steps than conventional 

CMOS. The process starts with a standard STI or LOCOS for isolation, followed by 

well implants and channel implants. Gate stacks are then formed by either traditional 

dual-doped poly-Si/SiON stack or metal gate/high-κ dielectric stack. After gate etch, a 

thin (<10 nm) sidewall spacer is formed by oxide deposition and anisotropic etch. 

Low-dose implant is not needed to form lightly doped drain (LDD). The spacer 

thickness must be thin enough to avoid discontinuity between the S/D and channel, 

but not too thin to cause short-circuit between gate electrode and S/D. S/D extension 

and deep contact implants are also eliminated. Since different kinds of silicides are 

used for P-SSDT and N-SSDT, the silicide exclusion mask is used to form the two 

different S/D regions separately. 

There are significant process advantages with SSDT technology. Firstly, the 

post-gate thermal budget is reduced. The maximum process temperature is less than 

600 °C after gate formation. S/D implantation and deep ion implantation steps are 

eliminated and so are the high-temperature 900 - 1000 °C dopant activation anneals. 

This releases the thermal budget for metal gate and high-κ gate dielectric. Lower cost 

is also achieved by eliminating the implantation and spike annealing steps.  
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2.2.2 Integration Issues 

Lanthanoids are all chemically reactive. This leads to several issues that need 

to be addressed for integration with conventional process. 

Firstly, both lanthanoids and their silicides are chemically reactive to oxygen. 

Oxygen contamination not only increases the resistivity of lanthanoid silicides, but 

also degrades the Schottky barrier height. For ErSi2-x silicide, the electron barrier bnΦ  

was reported to be 0.28 eV when it was grown in ultra-high-vacuum (UHV) condition 

[25]; however, it becomes higher for growth in normal vacuum as reported in another 

paper [26].  

To study the effect of oxygen, we intentionally varied the process condition 

for YbSi2-x. Fig. 2.4 shows the I-V curves of YbSi2-x/Si where with Yb deposited at 2 

mTorr and 4 mTorr in Ar ambient during sputtering whereas other processes were 

kept the same as will be discussed later in this chapter. O2 contamination is always 

present in the N2 and the chamber; the lower the total pressure, the lower the O2 

partial pressure in the chamber. The one deposited at a higher pressure shows a lower 

Schottky barrier and higher reverse leakage current, implying a degraded Schottky 

contact. Other factors, such as annealing temperature and pressure, silicon substrate 

doping concentration, and the different fitting techniques may also lead to 

discrepancies in barrier height values for different experiments. Strict process control, 

especially the oxygen contamination control is crucial for a high-quality Schottky 

junction. Very low barrier height (0.08 eV) of metal/n-Si contacts has been reported 

recently by surface passivation of a thin Se layer [27]. However, such method is 

infeasible for N-SSDT fabrication due to the requirement of self-aligned S/D 

formation.   
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Fig. 2.4.  I-V curves of YbSi2-x/p-Si diodes, with Yb deposited at 2 mTorr and 4 mTorr.  

 

To reduce the oxygen contamination, the background pressure of the sputter 

chamber was set to of 1 × 10
-7

 Torr before deposition. A relatively long burn-in step 

was performed on the lanthanoid targets prior to the sputtering process in order to 

remove possible surface moisture and oxides on the targets. The working pressure 

was set to 2 mTorr, which is the lowest according to the machine’s specification. 

The second problem is that the devices fabricated with SiO2 spacer suffered 

from short-circuit between the gate and the source/drain. Fig. 2.5 shows the Scanning 

Electron Microscope (SEM) images of a transistor with poly-Si/SiO2 gate, SiO2 

spacer and YbSi2-x S/D. Silicide bridging was observed at multiple locations along the 

gate side wall. This is similar to the reported TiSi bridging problem [28]. During the 

formation of lanthanoid or titanium silicides, the dominant diffusion species is silicon 

[26]. The out-diffusion of silicon grows along the gate side wall and causes short-

circuit between the gate and source/drain. The bridging problem is less prominent for 
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NiSi and CoSi2, since Ni and Co are the dominant diffusion species during the 

formation.  

The third problem comes from the reaction between lanthanoid and SiO2. The 

penetration of lanthanoid metals into SiO2 at elevated temperature brings another 

major integration issue since it degrades isolations such as spacer and STI. 100 nm Yb 

was deposited on 400 nm SiO2 with 100 nm HfN capping layer. The stack was 

annealed at multiple temperatures from 300 °C to 600 °C for silicidation. The capping 

HfN was then removed by DHF dipping and the unreacted Yb was removed by HNO3. 

Discoloration was observed on the remaining surface of SiO2, which is an evidence of 

chemical reaction between Yb and SiO2 (Fig. 2.6). This is similar to the reaction 

between Tb and SiO2 which is reported in [29].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5.  (a)  Scanning Electron Microscope (SEM) of a transistor with poly-Si/SiO2 gate, 

SiO2 spacer and YbSi2-x S/D. (b) SEM image zoomed in to one of the bridges between S/D 

and gate on the side wall. 
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Fig 2.6.  Optical microscopic image of SiO2 surface after selective etch. Yb was first 

deposited on the SiO2, annealed at 350°C for 1 minute, and then removed by selective wet 

etch by 5% HNO3. 

 

2.2.3 SSDT device Fabrication 

To prevent the issues discussed in Section 2.2.2, a one-mask transistor process 

featuring “hole spacer” was designed to fabricate N-SSDT. The top view of the layout 

is shown in Fig 2.7(a). The gate is all around the source in the top view, and the drain 

is all around the gate. The cross sectional schematic is illustrated in Fig. 2.7(b). The 

gate electrode contains two layers, HfN and TaN, whereby the hole spacer was 

formed on the side wall of HfN. Cross-section TEM of an SSDT device is shown in 

Fig. 2.7(c). The hole spacer is clearly visible on the image. Note that source/p-Si is a 

square shaped Schottky diode. The electrical characterization of Schottky diode in this 

chapter was conducted from the source/p-Si diodes. 

10 µm 
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Fig. 2.7.  (a) Top view schematic of a one-mask transistor. (b) Cross-section schematic of a 

one-mask transistor. (c) Cross-section TEM of a SSDT device of 2-μm gate length. 

 

Figure 2.8 illustrates the process flow for the one-mask SSDT. N-type Si (100) 

wafers with resistivity of 4-8 Ω cm were used as the starting substrates. After a 

standard RCA clean and diluted HF (DHF) solution dipping, a ~6 nm HfO2 film was 

deposited at 400 °C using Hf[OC(CH3)3]4 and O2 in a MOCVD system, followed by 

an in-situ post deposition annealing in N2 ambient at 700 °C to improve the film 

quality. Then, a HfN (~50nm)/TaN(~100 nm) stack was deposited as a metal gate in a 

sputtering system with a base pressure of ~1.4×10
-7

 torr at room temperature, where 

TaN was used as a capping layer to reduce the sheet resistance ( ~10 Ω/sq). The 

wafers were patterned using standard photolithography and reactive ion etching (RIE) 
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procedures to etch the TaN/HfN/HfO2 stack. The patterned wafers were then dipped 

in DHF to form a hole at the side wall on the HfN while the TaN on top remained 

intact; the native oxide in S/D region was removed at the same time. This hole served 

as isolation from the source/drain to the gate electrode.  Immediately after the dipping, 

the wafers were loaded into the sputtering system again to deposit lanthanoid metal (~ 

100 nm)/HfN(~100 nm) stack at 2 mTorr. The lanthanoid metals are Dy, Tb, Er and 

Yb. Silicidation was performed by rapid thermal anneal (RTA) at 600 °C for 1 minute 

in Ar ambient. Since the lanthanoid metals could be easily oxidized during ex-situ 

anneal, a capping layer of HfN was used to prevent lanthanoid metal oxidation during 

the annealing. HfN is a thermally stable material which could serve as an oxygen 

barrier in the gate stack to prevent the EOT increase during annealing [30]. Unreacted 

lanthanoid metal beneath the capping layer prevents HfN from participating in the 

silicidation process. Forming gas anneal (FGA) was done at 420 °C for 1 hour to 

improve the electrical and reliability characteristic of the HfO2 dielectric. Finally, the 

HfN capping layer and the unreacted lanthanoid metal were removed by DHF (1%) 

and diluted HNO3 (5%) solutions sequentially.  
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Fig. 2.8.  Process flow of Schottky source/drain transistors. (a) Deposition of gate stack. (b) 

Patterning of gate stack. (c) DHF dip to remove the native oxide on source/drain region. A 

hole is formed on the side wall of HfN. (d) Deposition of lanthanoid metals (Dy, Er, Tb, or 

Yb), capped by HfN to prevent oxidation during silicidation. (e) Silicidation in RTP. (f) 

Selective etch of top HfN (by DHF) and un-reacted lanthanoid metal (by diluted HNO3); 

lanthanoid silicide source/drain are intact. 
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2.3 Device Characterization and Analysis 

2.3.1 Schottky Diode Characterization 

Fig. 2.9 shows I-V curves of various lanthanoid silicide/p-Si(100) Schottky 

diodes. The Schottky hole barrier height ( bpΦ ) and the ideality factor (n) were 

deduced by fitting with the thermal emission model taking consideration of the series 

resistance from the top contact, p-Si substrate, and bottom contact (Fig. 2.10). Among 

the four lanthanoid silicides, the YbSi2-x/p-Si contact has the highest hole barrier 

height ( bpΦ ) of 0.74eV, lowest reverse bias leakage current, and the best rectifying 

property with near unity ideality factor. Other diodes have significantly higher 

leakage current at reverse bias. 
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Fig. 2.9.  Room temperature I-V curves of various LnSi2-x/p-Si(100) diodes. 
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Fig. 2.10.  Thermal emission model fitting of the I-V curves of Schottky diodes. (a) DySi2-x/p-

Si; (b) Er Si2-x/p-Si; (c) Tb Si2-x/p-Si;  (d) YbSi2-x/p-Si. 

It is noticed that in Fig. 2.10, the measured reverse current is much higher than 

the simulated current, except for YbSi2-x. There are several causes of the departure 

from the ideal behavior: 1) field dependence of the barrier height; 2) the effect of 

tunneling; 3) generation in the depletion region [16]. The defects and inhomogeneity 

at the silicide/Si interfaces lead to excessive tunneling and generation-recombination 

currents. 
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Fig. 2.11.   Reverse bias C-V curves for LnSi2-x/p-Si diodes. 

The Schottky barrier heights were also derived from Capacitance-Voltage (C-

V) measurement. A 2C versus V plot of the LnSi2-x/p-Si diodes is shown in Fig. 2.11. 

The barrier heights obtained are 0.83, 0.78, 0.87, and 0.88 eV, for DySi2-x, ErSi2-x, 

TbSi2-x, and YbSi2-x, respectively. 

Deviation of ideality factor from unity and the large difference between the 

barrier heights derived from I-V and C-V measurements indicate un-negligible barrier 

height inhomogeneity [31]. The surfaces of DySi2-x, ErSi2-x and TbSi2-x contain many 

square pits of micrometer size [Fig. 2.12(a)]; while there are no such pits on the 

surface of YbSi2-x [Fig. 2.12(b)]. Contamination at the metal/Si interface was 

suggested as the primary cause of surface pitting [32, 33].  
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Fig. 2.12.  Top view of (a) DySi2-x and (b) YbSi2-x as observed using an optical microscope. 

It was reported that the surface pits may be reduced in density or eliminated 

entirely either through the use of a Si substrate surface prepared under UHV 

conditions prior to metal deposition, or by means of ion irradiation techniques [33]. 

Since all samples were prepared under the same condition, the better morphology of 

YbSi2-x suggests that ytterbium is less affected by the surface contamination. 

Fig. 2.13 (top) shows the cross-sectional TEM image of the N-SSDT 

fabricated by the simplified one-mask process, a hole between the S/D and the gate 

acts as the sidewall spacer. Fig 2.13 (bottom) shows the high resolution image of the 

polycrystalline YbSi2-x/Si(100) contact. The grain size of the polycrystalline YbSi2-x is 

about 5 ~ 10 nm and the grain growths approximately along Si [110] axis. The 

interface is abrupt, flat, and sharp, and leads to excellent electrical performance. 

Columnar growth, as in the cases of DySi2-x, ErSi2-x and TbSi2-x was not found.  

 

(a) (b) 10 µm 10 µm 
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Fig. 2.13.  (Top) Cross sectional TEM image of the N-SSDT with YbSi2-x source/drain 

fabricated by our simplified one-mask process. (Bottom) High resolution XTEM image of 

polycrystalline YbSi2-x/Si(100) contact. 

 

The formation of YbSi2-x was studied by XRD by analyzing samples annealed 

at different temperatures. From Fig. 2.14, it can be observed that silicide peaks do not 

show up until the annealing temperature reaches 300 ºC. YbSi1.7 was formed at 300 ºC 

and 350 ºC. The phase changes to YbSi1.8 after 600 ºC anneal. Higher concentration of 

Si means less Si vacancy, and that might have increased the uniformity of the 

Schottky contact. For Dy, Er, and Tb, The formed silicides were found to be DySi1.7 

and ErSi1.7 due to the Si vacancy in the silicide thin film, which is consistent with the 

report in [4]. The formation of YbSi1.8 with less Si vacancy is possibly due to the fact 

that ytterbium is less affected by the surface contamination, such as SiO2. The small 

work function of Yb makes it chemically more active than the other three lanthanoid 

elements, and easier for it to overcome the SiO2 layer and continue the reaction. 

Hole spacer 
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Fig. 2.14.  X-ray diffraction (XRD) spectra of Yb silicide formed at different annealing 

conditions. 
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Fig. 2.15.  Sheet resistance of lanthanoid silicides formed at different annealing conditions. 
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The sheet resistances of various lanthanoid silicides are studied in Fig. 2.15. 

The resistance reaches the minimum at around 600 ºC for all of the four silicides, 

indicating the formation of a low resistance phase. YbSi2-x shows the smallest sheet 

resistance comparing to the other three for the temperature range from 300 ºC to 900 

ºC. The sheet resistance of YbSi2-x formed at 600 ºC is 3.8 /sq. From the sheet 

resistance and the thickness of  90 nm (measured by XTEM), the resistivity of 

YbSi2-x was calculated to be  34 cm. 

2.3.2 Transistor Characterization 

 Fig. 2.16 shows the cross sectional TEM image of the HfN/HfO2/p-Si  gate 

stack. The HfO2 has been partially crystallized. The interfaces between HfN/HfO2 and 

HfO2/p-Si are both well-defined. The C-V curve measured from the gate stack is 

shown in Fig. 2.17.  

 

Fig. 2.16.  High resolution TEM image of the HfN/HfO2/p-Si gate stack, with 700 ºC post-

deposition anneal (PDA) and 420 ºC forming gas anneal (FGA). 

 

5 nm 

HfN 

HfO2 ~ 6 nm 

Si 



Chapter 2: Schottky Barrier Source/Drain Field-Effect Transistor 

50 

 

The effect oxide thickness (EOT) can be deduced by fitting the C-V curve 

from the quantum mechanical (QM) model with the measured curve. Fig. 2.18 shows 

the gate leakage current densities. A 1000 ºC spike post metal anneal (PMA) was 

done to simulate the S/D activation. It is observed that after the PMA, the capacitance 

density drops significantly, causing the EOT to increase from 1.53 nm to 2.21 nm. 

This was due to the formation of a thick interfacial layer at the HfO2/Si interface. 

However, the leakage current at positive bias increases despite of the increase in EOT 

due to the poor quality of the bottom interface after PMA. The benefit of the low 

temperature fabrication process to the high-κ dielectric has been reported by other 

authors [5]. 

Fig. 2.18(a) shows the Ids-Vgs curves of N-SSDT with YbSi2-x source and drain. 

The gate length (Lg) is 4 µm and the gate width is 400 µm. The on/off ratio reaches 

10
7
 with a subthreshold swing of 75 mV/dec. For comparison, Fig. 2.18(b) shows the 

transfer characteristics of N-SSDT with the same device structure and technology, but 

different S/D silicides. It is clear that all other N-SSDTs exhibit higher off-state 

current, lower on-state current, smaller on/off ratio and larger subthreshold swing 

comparing to N-SSDT with YbSi2-x. As the gate stacks are exactly the same, the large 

subthreshold swing for DySi2-x, ErSi2-x, and TbSi2-x are expected to be the result of 

large junction leakage caused by poor silicide/Si interface. This is consistent with the 

previous diode characterizations. 
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Fig. 2.17.   (a) C-V  and (b) I-V curves of the TaN/HfN/HfO2/p-Si gate structure. 
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Fig. 2.18.  (a) Ids-Vgs characteristics of TaN/HfN/HfO2 gated n-SSDT with YbSi2-x. (b) Ids-Vgs 

characteristics of TaN/HfN/HfO2 gated n-SSDT with DySi2-x, ErSi2-x, TbSi2-x, YbSi2-x.  
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Fig. 2.19 shows the Ids-Vds curves of N-SSDT with YbSi2-x source/drain. A 

reasonable drive current of 7.5 µA/µm is achieved for a gate voltage of 1.5 V.  

Table 2.2 summarizes the electrical characteristics of various lanthanoid 

silicide/p-Si (100) contacts formed by solid-state reaction and their corresponding N-

SSDT properties. Due to the difficulty to measure a low electron Schottky barrier 

height 
bnΦ  directly, the high hole barrier height bpΦ  is measured and the electron 

barrier height is calculated according to the approximation of bn bp gE   (silicon 

bandgap). Among all the four lanthanoid silicides, YbSi2-x exhibits the largest hole 

barrier, smallest electron barrier and reverse leakage current in contact with p-Si(100); 

it also shows the largest drive current and on/off ratio in N-SSDT. 
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Fig. 2.19.  Ids-Vds characteristics of TaN/HfN/HfO2 gated n-SSDT with YbSi2-x source/drain. 
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Table 2.2.  Electrical characteristics of various lanthanoid silicide/p-Si (100) contacts formed 

by solid-state reaction and their corresponding N-SSDT properties.  

Silicide/p-Si (100) diode ErSi2-x DySi2-x TbSi2-x YbSi2-x 

Hole barrier obtained by I-V   

measurement, 
IV

bpΦ  (eV) 
0.68 0.63 0.57 0.74 

Ideality factor in I-V, n 1.5 1.23 1.63 1.04 

Hole Barrier obtained by C-V 

measurement, 
CV

bp  (eV) 
 0.78  0.83  0.87  0.88 

Averaged hole barrier 

IV CV

bp bp bpΦ (Φ Φ ) / 2   (eV) 
0.73 0.73 0.72 0.81 

Electron Barrier 

bn bpΦ 1.12 Φ   (eV) 
0.39 0.39 0.40 0.31 

Leakage @ 1V  (A/cm
2
) 1.510

-4
 2.310

-3
 1.210

-2
 1.110

-6
 

N-SSDT  (Lg = 4 m) ErSi2-x DySi2-x TbSi2-x YbSi2-x 

on off/I I  ratio 10
3
10

4
 10

4
10

5
 10

3
10

4
  10

7
 

dsI   (µA/µm) 

 @ ds gs th 1(V)V V V    
 1.4  2.5  0.26  3.4 

 

 

2.4 Conclusion 

In summary, new process technologies for SSDT were investigated. We 

addressed the compatibility issues of lanthanoid materials with conventional CMOS 

processing technology and developed a low temperature MOSFET process featuring a 

“hole spacer”, Schottky barrier source/drain, high-κ dielectric and metal gate 

electrode. Several lanthanoid elements, namely Dy, Er, Tb and Yb, were investigated 

to form silicide S/D for N-SSDT. The YbSi2-x has been found to be a very promising 

mailto:Ileakage@1V
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candidate for N-SSDT as it provides a high drive current with a very low leakage 

current. It is probably due to the low electron barrier height of the YbSi2-x/Si Schottky 

contact and smooth YbSi2-x/Si interface. It can be concluded that YbSi2-x is a much 

better silicide material than the commonly used ErSi2-x and other lanthanoid silicides 

for N-SSDT. However, there are still major challenges integrating the lanthanoid 

silicide S/D with conventional CMOS processing technology because of their 

chemically reactive nature. 
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Chapter 3 

Yb-Incorporated Ni FUSI for the N-

MOSFETs Gate Electrode Application 

 

3.1 Introduction 

Metal gate is introduced in the sub-45nm CMOS technology nodes to 

eliminate the poly-Si gate depletion effect. Fully-silicidation (FUSI) metal gate 

electrodes such as NiSi, CoSi2 and TiSi2 have been extensively studied as an option 

for integrating metal gates in a CMOS process flow [1-3].   

Ni FUSI technology has attracted considerable attention due to its 

compatibility with the conventional poly-Si technology [1, 2, 4-8], and due to 

demonstrated capability of work function modulation. The modulation of midgap 

NiSi gate work function Φm (4.65 ± 0.5 V) is highly desired to achieve low transistor 

threshold voltage, and various Φm tuning methods have been investigated [7, 9, 10]. 

Addition of dopants such as As and Sb may lower the work function, but at the 

expense of introducing adhesion issues that impact manufacturability [11]. Phase-

controlled Ni-silicidation is another Φm tuning method and dual gate integration 

option. It employs different nickel silicide phases such as Ni-disilicide (NiSi2), Ni-

monosilicide (NiSi) or Ni-rich silicides (e.g. Ni2Si, N3iSi, or Ni31Si12) for Φm 
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tenability [9]. NiSi and Ni-rich silicides have been extensively researched upon for dual 

gate integration [12], as they are easier to be formed relative to NiSi2. However, their 

small Φm tuning range of ~0.3 eV, is not sufficient for high performance CMOS 

applications.   

As mentioned in Chapter 1, most lanthanoid elements exhibit low work 

function values (< 4.0 eV). It has been reported that the work function of TaN can be 

tuned to 4.2-4.3 eV by incorporating terbium and other lanthanoid elements [13, 14]. 

Incorporating lanthanoid elements in NiSi gate can potentially tune the work function 

toward the silicon band edge. 

Yb is known for its low photoelectric work function of ~2.59 eV, which is 

even lower than most of other lanthanoid elements. A low electron barrier height 

(~0.31 eV) to silicon conduction band has been reported for Yb silicide in Chapter 2, 

outperforming Dy silicide, Er silicide and Tb silicide. In this chapter, Yb is used to 

modulate the work function of Ni FUSI.  The effect of different Yb/Ni composition 

ratios was studied. By introducing Yb in Ni FUSI, we show that work function of Ni 

FUSI (on SiON dielectrics) could be tuned from ~4.72 eV to ~4.22 eV, which is 

suitable as a gate electrode for n-MOSFETs with Vth down to 0.2 V. A CMOS 

integration scheme is proposed to evaluate the process compatibility. The mechanism 

behind the work function tunability is discussed at the end of this chapter. 
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Fig. 3.1.  Metal gate effective work function (Φm) requirements for both planar bulk 

transistors and ultra-thin body transistors. 

3.2 Process Development 

3.2.1 Process Flow for MOS Capacitors 

Capacitors were fabricated on p-type Si substrate (with resistivity of 4-8 Ω-

cm).  SiO2 was thermally grown and nitrogen was then incorporated to form SiON by 

decoupled plasma nitridation (DPN). This was followed by undoped poly-Si (~100 

nm) deposition. After a dilute HF dip to remove native oxide on top of poly-Si, Ni-Yb 

was deposited by either co-sputtering or sequentially sputtering from Yb and Ni 

targets in Ar ambient. A working pressure of 2 mTorr and an Ar flow rate of 25 sccm 

were used for all Ni-Yb deposited by sputtering in this chapter. The back ground 

pressure in the sputter chamber was about 1 × 10
-7

 torr or less. A relatively long burn-

in step was performed on the lanthanoid targets prior to the sputtering process in order 

to remove possible surface moisture and oxides on the targets. The ratio of Yb/Ni was 

controlled by adjusting the respective Yb and Ni deposition power and time. The four 

different thickness ratios of Yb/Ni are 1/40, 1/5, 1/3 and 1/2. The total metal thickness 

is kept at ~ 90 nm so that poly-Si could be completely silicided during the FUSI 
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process. The silicidation was done by one-step annealing in vacuum (5 × 10
-6

 Torr) at 

400 ºC. Selective etch was then carried out to remove the remaining un-reacted Ni & 

Yb using dilute HNO3 (5%).  EOT and flat band voltage (VFB) were obtained by 

fitting a simulated C-V that considered quantum mechanical effects. Ni FUSI control 

samples were made for comparison. 

Capacitance-voltage (C-V) and current-voltage (I-V) characteristics were 

measured using a HP4284A LCR meter and HP4156A semiconductor parameter 

analyzer, respectively, on MOS capacitors with area of 100 × 100 μm
2
. EOT and flat-

band voltage (VFB) were obtained by fitting the C-V curves with the theoretical ones, 

which take the quantum mechanical effect into account. Auger electron spectroscopy 

(AES), Rutherford backscattering spectrometry (RBS), secondary ion mass 

spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction 

(XRD) and high-resolution transmission electron microscopy (HRTEM) were also 

performed for material characterizations. 

3.2.2 Thickness Ratio Control and Sputter Sequence for Yb/Ni 

The thickness of Yb and Ni can be calculated from the desired thickness ratio 

of Yb/Ni since the total thickness is fixed at 90 nm. The deposition time for each 

material can be calculated as the deposition rate of each material at certain DC power 

is known. The detailed experimental splits and deposition time are shown in Table 2.1. 

The sputter time of Yb is shorter than that of Ni. We have the following 

options for the deposition sequence of the two metals: 1) sputter Yb first, followed by 

Ni; 2) co-sputter Yb and Ni first, then close Yb and continue Ni sputtering; 3) sputter 

Ni first, then sputter Yb. 
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As discussed in Chapter 1, Si is the dominant diffusion species during YbSi2-x 

formation; while for NiSi formation, Ni is the dominant diffusion species [15]. If Ni is 

sputtered first (option 3), Ni would consume the Si first until Ni is depleted, if there is 

excess Si, Si would then diffuse up and react with Yb. In this case, Yb atoms would 

not be able to reach the electrode/SiON interface and there would be no work function 

tuning effect. In the case of option 2, during annealing, Si atoms diffuse up to form 

YbSi2-x and Ni atoms diffuse down to form Ni silicide; after Yb is fully consumed, Ni 

would continue to diffuse through the Yb silicide layer and form Ni silicide. During 

the Ni diffusion process, a small portion of Yb atoms are expected to be pushed down 

to the silicide/SiON interface, which is similar to dopant segregation phenomenon in 

Ni FUSI process. This was confirmed with SIMS analysis in the later part of the 

chapter. The case of option 1 should be similar to option 2; the only difference is just 

that the only Yb silicide is formed at the beginning of silicidation. One experimental 

split was prepared to compare the effect of sputter sequence. 

Table 3.1.  Experimental splits and deposition time for Yb-incorporated Ni FUSI capacitors. 

There are two options for the deposition sequence of Ni and Yb: (1) Yb first, Ni second; (2) 

cosputter Yb and Ni followed by Ni only. 

No. Thickness 

ratio 

Yb/Ni 

DC power on 

Ni 

(Watt) 

Ni sputter 

time 

(s) 

DC power on 

Yb 

(Watt) 

Yb sputter 

time 

(s) 

Sequence 

Option 

1 0 550 348 0 0 2 

2 1/40 550 340 100 8 2 

3 1/5 550 290 100 51 2 

4 1/5 550 290 100 51 1 

5 1/3 550 261 100 77 2 

6 1/2 550 232 100 102 2 
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3.2.3 Silicidation Process Optimization 

 The nickel silicidation process had been extensively studied. However, for Yb- 

incorporated NiSi (NiYbSi), optimized process condition needed to be established 

through preliminary material and electrical characterization. Two major parameters 

during the rapid thermal annealing (RTP), pressure and temperature, were found to be 

critical. 

 NiSi and NiYbSi (Yb:Ni ~ 1:3) were formed by rapid thermal anneal (RTP) at 

400 °C under 10 Torr or 5 × 10
-6

 Torr pressure in N2 ambient. The C-V curves are 

plotted in Fig. 3.2. The curves for NiSi overlap with each other, implying that the 

pressure does not have much effect on the formation of pure NiSi. For NiYbSi, the 

sample annealed in high vacuum (5 × 10
-6

 Torr) has a similar capacitance density as 

the NiSi control, but the flatband voltage (VFB) is shifted to the left. For NiYbSi 

annealed at a higher pressure (10 Torr), we observe a distorted C-V curve, where there 

are two regions in the accumulation region. This hump is unlikely due to interfacial 

states because of its large magnitude. It is due to the incomplete silicidation of the 

poly-silicon gate, which is confirmed by TEM image in Fig. 3.3. 

Fig. 3.3 shows the cross sectional TEM image for the Ni FUSI and Yb-

incorporated Ni FUSI capacitors annealed at a pressure of 10 Torr. For the case of 

pure NiSi, the poly-silicon gate is fully silicided. A relatively smooth and uniform 

interface is also observed at the NiSi/SiON interface. However for the Yb-

incorporated Ni FUSI capacitors, a non-uniformly silicided poly-Si gate is observed. 

A region of ordered poly-Si structure is observed at the interface which suggests that 

undoped poly-Si is not fully silicided. 
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Fig. 3.2.  The effect of different pressure during the silicidation process. The C-V curve of 

Yb-incorporated NiSi is distorted for the 10 Torr RTP pressue. 

 

 

 

 

 

 

 

 

Fig. 3.3.  High-resolution TEM results of (a) Ni FUSI and (b) Yb-incorporated Ni FUSI capacitors, 

annealed at a pressure of 10 Torr. 
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Temperature is another important parameter for the silicidation process. The 

criterion is to find the lowest temperature at which the poly-silicon gate can be fully 

silicided and maintain a low resistivity. Fig 3.4 shows the C-V curves of NiSi FUSI 

capacitors with silicidation temperature of 300 ºC, 400 ºC, and 500 ºC.  The 

overlapping 400 ºC and 500 °C curves exhibit similar EOT as the pure NiSi FUSI 

control. The distorted 300 ºC curve shows lower capacitance density and high 

interfacial trap density, which implies that 300 ºC is not high enough to fully convert 

the 90-nm thick poly-silicon into metal silicide. The optimal annealing temperature 

was determined to be 400 ºC.  

Fig. 3.5 shows the phase transformation curve of NiSi and NiYbSi (Yb/Ni ~ 

1/5 and 1/3 respectively). The total metal thickness is ~90 nm and poly gate thickness 

is ~100 nm before the annealing process, for all the three splits with different Yb 

concentrations. The annealing time for each point was ~30 s. The sheet resistance (Rs) 

of NiYbSi is lower than that of NiSi below 300 ºC.  From 350 to 750 ºC, the 

resistivity decreases with the increase of Yb/Ni ratio, although the difference is small. 

NiYbSi has a small Rs of ~ 2 / (Yb/Ni ~1:3), slightly lower than that of NiSi (~ 3 

/).  When the temperature rises to 800 ºC, the resistance of NiSi increases 

dramatically due to the formation of high-resistance phase, while the Rs of Yb-

incorporated NiSi remains the same.  

In summary, the optimized silicidation condition for NiYbSi is: 400 ºC, 5 × 

10
-6

 Torr, 60 s, N2 ambient.  
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Fig. 3.5.  Phase transformation curve for NiSi and NiYbSi (with Yb/Ni deposition ratio ~ 1/5 and 1/3 

respectively).   
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3.3 Device Characterization and Analysis 

3.3.1 Material Characterization 

In Fig. 3.6(a), the cross sectional TEM micrograph shows that the bulk layer 

of Yb incorporated NiSi (with Yb/Ni ~1/3) is fully silicided (with a thickness of ~120 

nm). It is also observed that there are two different layers in the NiYbSi: top and 

bottom. The Yb concentrations in the two different layers will be studied by AES, 

RBS and SIMS. Moreover, a smooth NiYbSi/SiON interface is observed from the 

XTEM [Fig. 3.6(b)]. An abrupt and smooth interface is found between NiYbSi and 

SiON. We did not observe any interface adhesion issues found in other reports when 

work function is modulated by dopants such as As or Sb [16].   

Yb concentration in the NiYbSi top layer (Yb/Ni ~ 1/3) is ~12%, as 

determined by AES (Fig. 3.7).  

 

 

 

 

 

 

Fig. 3.6.  XTEM shows that the bulk layer of NiYbSi (Yb/Ni ~ 1/3) is fully silicided, and the 

resulting silicide thickness is ~120 nm. Two different layers in the NiYbSi (corresponding to 

Figs. 3.2 & 3.3) are observed. A smooth NiYbSi/SiON interface is also revealed by XTEM.  
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Fig. 3.7.  Based on AES, composition of the top layer of NiYbSi (Yb/Ni ~ 1/3) is: 

Ni0.55Yb0.12Si0.33. 

 

Both SIMS (Fig. 3.8) and RBS (Fig. 3.9) analysis of the annealed samples 

imply that most of Yb in the Yb incorporated NiSi film (with Yb/Ni ~1/3, as defined 

by Yb/Ni deposition parameters) is distributed in a thin layer at the top surface.  SIMS 

reveals that Yb is piling-up at the NiYbSi/SiON interface after silicidation process. 

This phenomenon leads to significant change in electrical characteristics. Yb signal 

cannot be detected by RBS in the bottom layer as the Yb concentration is below the 

RBS detection limit (< 1% in atomic concentration).  

The resulting Yb distribution is correlated to the fact that the dominant 

diffusion species during the respective NiSi and Yb silicide formation are Ni and Si as 

discussed in section 3.2.2.  Ta was reported to have a similar distribution in NiTaSi 

during the silicide formation [17].  
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Fig. 3.8.  SIMS spectra for NiSi and NiYbSi (Yb/Ni ~ 1/3) shows that Yb is mainly 

distributed at top layer of silicide. Pile-up of Yb at the NiYbSi/SiON interface is also 

observed. 
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Fig. 3.9.  RBS spectrum comparison between NiYbSi (Yb/Ni ~1/3) and NiSi.  For Yb-incorporated 

NiSi, Yb is mainly distributed at top layer of silicide. Yb signal is not detected at the bottom layer 

probably due to its concentration is below the RBS detection limit (<1 at.%). 

The phase control is important in Ni FUSI process. Fig. 3.10 shows XRD 

spectrums of NiYbSi with different Yb concentrations. The annealing condition is the 

optimized one discussed earlier in this chapter. It is found that from Ni silicide to Yb-

incorprated Ni silicide (Yb/Ni ~1/5 and ~1/3 respectively), their corresponding phases 

transit from Ni rich Ni2Si to Ni3Si2 and NiSi with increasing Yb content. It has been 

reported that the Ni silicide phase can be effectively controlled by the Ni/Si thickness 

ratio [16]. In this work, the deposited Ni is less in the Yb incorporated Ni silicide 

samples than in the pure NiSi sample and tend to form silicon rich Ni silicide. It was 

also reported that the resistivity of the silicide thin film increases with the Ni/Si ratio. 

This is consistent with the sheet resistance measurement (Fig. 3.5).   
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Fig. 3.10.  XRD study reveal that from the NiSi to NiYbSi (Yb/Ni ~1/5 and ~1/3 

respectively), the phase transits from Ni rich Ni2Si to Ni3Si2 and NiSi.  
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3.3.2 Work Function Tunability 

Fig. 3.11(a) shows the high-frequency C-V measurement for MOS capacitors 

with both NiYbSi (Yb/Ni ~ 1/3) and NiSi electrodes. NiYbSi (Yb/Ni~1/3) 

demonstrates a negative VFB shift of about -500 mV compared to Ni FUSI, while the 

EOT values are the same. This significant VFB shift is much larger than the 100 mV 

reported in [16], thus it cannot be attributed to the change of the phase of Ni silicide. 

Yb piling-up at the NiYbSi/SiON interface (Fig. 3.8) is believed to be responsible for 

the VFB shift.  The nice fitting between the measured and simulated C-V data for the 

capacitors suggests the negligible interface trap density Dit of the MOS capacitor 

devices.  

The work function of all the experimental splits in this work were extracted 

from the VFB vs. EOT plot which eliminates the contribution of oxide fixed charge to 

the VFB of MOS capacitor to obtain the accurate work function. Fig. 3.11(b) shows an 

example of work function extraction for the case of Yb/Ni ~ 1/3, whose C-V is shown 

in Fig. 3.11(a). The extracted work function Φm is 4.22 eV, which is desirable for n-

MOSFETs application.  
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Fig. 3.11.  (a) Measured and simulated C-V data for capacitors with NiYbSi (Yb/Ni ~1/3) and 

NiSi gate electrodes. Deposited SiON thickness is ~ 4nm. No change in EOT is observed with 

addition of Yb. (b) The plot of EOT vs. VFB for the devices with NiYbSi (with Yb/Ni ~ 1/3) 

gate electrode. The work function extracted is 4.22 eV on SiON, fixed charge Qox / q = 4.59 × 

10
11  

cm
-2

. 
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Fig. 3.12.  (a) Work function of Yb-incorporated Ni FUSI is tunable by modifying Yb incorporation 

during deposition. (b) C-V plots of Yb incorporated Ni FUSI with different YB/Ni ratios. It is noted 

that excessive Yb might degrade the device dielectric (e.g. Yb/Ni ~1/2).  

Using the same method, the Φm of other experimental splits were obtained as 

shown in Fig. 3.12. It was found that Φm of Yb incorporated NiSi could be tuned by 
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modifying the amount of Yb introduced during metal deposition, from 4.22 eV to 4.72 

eV. Fig. 3.12(b) shows the gradual shift of flat band voltage by C-V plots. It is noted 

that for the case where Yb/Ni ~1/2, the curve is distorted due to large leakage current. 

Considering the reaction between Yb and SiO2, which has been discussed in Chapter 

2, this should be due to the degradation the SiON dielectric by excessive Yb. 

The work function tunability is due to the low work function of Yb. With the 

increased Yb/Ni ratio, more Yb is piled up at the metal gate/SiON interface and 

lowers the Φm of NiYbSi alloy. The lowering of Φm leads to lowering of electron 

barrier between the gate electrode and dielectric as ΦB = Φm - Ec, SiON. Excessive Yb at 

interface should be prevented to avoid degradation of the dielectric. 

It is also interesting to know whether the sequence during the sputtering of the 

two metals would affect the outcome. Fig. 3.13 shows that the C-V characteristics 

from Yb incorporated Ni FUSI devices fabricated by two different methods are 

comparable, i.e., by co-sputter Ni and Yb or by sequential sputter Yb and Ni.   

Another way to determine the flatband voltage makes use of the Fowler-

Nordheim plot, which is a plot of ln (JFN/Eox
2
) versus 1/Eox. The barrier height ΦB 

between the electrode and dielectric can be obtained from the slope and intercept in 

the plot [19]. With ΦB and the conduction band of the SiON dielectric, the work 

function of gate electrode can be easily obtained. To confirm the work function shift, 

we compare the F-N plot for the devices with NiSi and NiYbSi gate electrodes in Fig. 

3.11. The work function difference obtained from this plot is about 0.54 eV, which is 

consistent with their C-V data.  
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Fig. 3.13.  C-V characteristics are comparable for Yb incorporated Ni FUSI devices fabricated 

by two different methods, co-sputter YbNi and sequential sputter Yb and Ni (Yb first). 
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Fig. 3.14.  FN plots for the devices with Ni FUSI and NiYb FUSI gate.  
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3.3.3 Reliability Assessments 

Time zero break down (TZBD), charge trapping, and time dependant 

dielectrics breakdown (TDDB) characteristics (under gate injection, and constant 

voltage FN stress @ -6.5 V) of the devices with Yb incorporated Ni FUSI are shown 

in Figs. 3.15, 3.16 and 3.17 respectively, and are compared to those Ni FUSI devices.   

The TZBD plot in Fig. 3.15(a) shows that with NiYbSi (Yb/Ni ~ 1/3), the 

break down voltage is statistically slightly increased with g FBV V . This is probably 

due to the suppressed Ni diffusion into SiON gate dielectric as a result of the Yb 

piling up at the interface. Fig 3.15(b) shows a typical J-V sweep for the device with 

NiYbSi gate. 

Fig. 3.16 shows the typical „current density‟-time characteristics for devices 

with NiYbSi and NiSi under constant voltage FN stress (gate injection). The higher 

FN current in NiYbSi devices is attributed to its lower electron barrier height as 

compared to that of NiSi gated devices.  

Fig. 3.17 shows the TDDB measurement to access the time dependent 

reliability. It is seen that the Yb incorporated Ni FUSI devices show comparable 

reliability characteristics to Ni FUSI Breakdown time is slightly longer for NiSi gated 

MOS capacitors, but the difference is very small. It is seen that the  Ni-Yb FUSI 

devices show comparable reliability characteristics to the Ni FUSI. 
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Fig. 3.15.  (a) TZBD comparison between the devices with Ni FUSI and NiYb FUSI 

electrodes (on SiON dielectric). (b) A typical J-V sweep for the device with NiYbSi gate. 
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Fig. 3.16.  „Current density‟-time characteristics for Ni FUSI and Yb-incorporated Ni FUSI 

devices under constant voltage FN stress (gate injection). 
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Fig. 3.17.  TDDB (under gate injection and FN-CVS) comparison between the devices with NiYbSi 

and NiSi gate electrode (on SiON dielectric).  
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3.4 CMOS Integration Scheme 

Integration of dual metal gate electrodes into the CMOS process is a major 

challenge for the development of metal gate technology. The criteria for ideal dual 

metal gate integration process include: 1) obtain dual work function for n-FET and p-

FET respectively; 2) without any process-induced damages or reliability concerns to 

the gate oxide; and 3) compatibility to conventional process.  

The FUSI gate process, where the conventional poly-Si gate is used as the 

bottom protective layer, is compatible with the conventional CMOS process flow. As 

illustrated in Fig. 3.18, a poly-Si gated CMOSFET is first fabricated using a 

conventional gate-first CMOS process. After source/drain silicidation, the devices are 

wrapped by the post-metal-dielectric (PMD). A planarization step is then performed 

using oxide CMP before the hard mask (HM) on top of poly-Si is exposed. Then the 

NMOS region (p-well) is covered by photo resist for protection. The hard mask is 

then etched away and the poly-Si gate in PMOS region is exposed. Then the metal 

(e.g. Pt) is deposited and annealed to FUSI the poly of p-FET. After removing the un-

reacted metal, PMD is deposited again and polished by CMP. Photo resist is then 

applied and patterned to protect the p-FET region. The hard mask on n-FET is etched 

away to expose the poly-Si. Metal (e.g. Yb-incorporated Ni) is then deposited and 

annealed to form FUSI for n-FET. Residual metal is removed by selective etch.  
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Fig. 3.18.  Proposed CMOS integration scheme using Yb-incorporated Ni FUSI for n-FETs, 

and Pt FUSI for p-FETs. (a) CMOS fabrication conventionally using undoped poly-Si gate, 

after source/drain silicidation; (b) oxide reflow and chemical mechanical planarization (CMP); 

(c) lithography to mask n-FET region and etch the hard mask to expose the poly of p-FET and 

hard mask stripping; (d) photo resist strip and FUSI the poly-Si of p-FET (e.g. PtSix); (e) 

oxide reflow and CMP; (f) lithography to mask n-FET region and etch the hard mask to 

expose the poly of n-FET; (g) photo resist strip and FUSI the poly-Si of n-FET (e.g. Yb-

incorporated Ni FUSI). 
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3.5   Investigation of Work Function Tuning Mechanism 

When metal and dielectric are in contact, the interface states would be created 

and charge transfer could occur across these interface states, leading to the formation 

of a dipole layer which consequently results in Fermi level pinning (FLP) of metal 

gate work function [20, 21]. Metal induced gap states (MIGS) model, considering the 

interface dipole due to intrinsic interface states only, was developed by Robertson to 

predict the effective metal work function [22]: 

, ( )
Si Sim eff mS     ,     (3.1) 

where S is the Schottky pinning parameter, which determines the strength of FLP 

effect. W. Monch found that the parameter of S empirically obeys the following 

equation [23]: 

 
2

1

1 0.1( 1)
S




 
,      (3.2) 

where  stands for the electronic part of the dielectric constant. The smaller the S 

parameter for a material, the more effective this material is to pin the metal Fermi 

level. On a SiO2 dielectric, the FLP effect would be negligible due to the large S value 

of 0.95. On the other hand, significant FLP would be expected on HfO2 because the S 

values are as small as 0.52. Such a model has been successful in fitting experimental 

results in many metal-dielectric systems. 

It is assumed in the MIGS model that metal-dielectric interface is perfect 

without any physical/chemical defects. However, extrinsic states created at the 

metal/dielectric interface are also found to be responsible for the instability of Φm 

instability under high temperature anneal [21].  
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To explore the work function tuning effect on high-κ dielectrics, we fabricated 

MOS capacitors with HfSiON high-κ dielectric and NiYbSi FUSI gate electrode. The 

process was exactly the same as MOS capacitors with SiON dielectric, except for the 

gate dielectric deposition step. Fig. 3.19 shows the high-frequency C-V measurement 

for MOS capacitors with HfSiON dielectric. The 3.5-nm EOT is comparable to that of 

the SiON capacitors shown in Fig. 3.11. The Yb/Ni is 1/3, which is the same as in Fig. 

3.11(a). However, the Yb incoporated Ni FUSI demonstrates a negative VFB shift of 

only ~ -100 mV on HfSiON dielectric. This VFB shift is much smaller than the 500 

mV for SiON. The MIGS model is able to attribute the small VFB shift to the small S 

factor of high-κ dielectrics.  

As shown in Fig. 3.19(b), from SiON to HfSiON dielectric, VFB shift is 

negative for NiSi gate electrode, this can be explained by the MIGS model that high-κ 

materials usually suffer from FLP to the midgap of silicon due to large S value. 

However, the VFB shift is positive for NiYbSi gate electrode; the opposite shift 

direction cannot be explained by MIGS model. Other mechanisms have to be taken 

into account. 

The initial motivation to incorporate Yb into NiSi FUSI was to form NiYbSi 

of low work function. However, as discussed in the physical characterizations, most 

of Yb in the Yb incorporated NiSi film is distributed in a thin layer at the top surface. 

Only a small amount of Yb piles up at the NiYbSi/SiON interface after the silicidation 

process. It is unlikely that the small amount of Yb has changed the intrinsic metal 

work function of the NiSi electrode. As mentioned in section 3.3.2, this significant 

VFB shift cannot be explained by the change of phase of Ni silicide either. It seems to 

be more related to the built-in potential at the NiYbSi/SiON interface. 
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Fig. 3.19.  (a) Measured and simulated C-V data for capacitors with Ni-Yb FUSI (Yb/Ni ~1/3) and Ni 

FUSI gate electrodes. The EOT of HfSiON is ~ 3.5nm. The VFB shift is 0.1 V. (b) From SiON to 

HfSiON dielectric, VFB shift is negative for NiSi gate electrode, and positive for NiYbSi gate electrode. 
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Fig. 3.20.  (a) A schematic showing highly polarized Yb-O dipoles at the NiYbSi/SiON interface. 

(b)The Φm of  NiYbSi is reduced due to the presence of dipole at the NiYbSi and SiON interface. 

 

Lim et. al. proposed an interface dipole model to explain the work function 

tunability by inserting an ultra-thin rare earth dielectric interlayer between metal gate 

and SiO2 [24]. According to the model, it was proposed that a highly polarized Ln-O 

dipole layer exists between the gate electrode and dielectric and this dipole layer 

creates a localized electric field that modulates the gate work function. The highly 

polarized Ln-O dipole originates from the high degree of polarization between 

lanthanoid and oxygen ions due to the large electronegativity difference between 

lanthanoid and oxygen ions. The amount of ionicity between Ln and O ions in an Ln-

O-Si (or lanthanoid silicate) bonding is reported to be larger than that in a pure Ln-O 

(or Lanthanoid oxide) bonding [25]. The increase in Ln-O ionicity is accompanied by 

a corresponding increase in covalence between the Si and O ions in the lanthanoid 

silicate bond.  
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The segregated Yb atoms at the NiYbSi/SiO2 interface can be the analogue of 

the rare earth dielectric interlayer in Lim‟s model. The segregated Yb reacts with 

SiON and form Yb-O-Si bond, which leads to highly polarized Yb-O bond pointing 

toward the gate electrode. Fig. 3.20 (a) and 3.20 (b) depict the interface dipole layer 

schematically, and highlight how the effective Φm is reduced by ΔΦm in an energy 

diagram because of the dipole layer, respectively. 

This model explains the positive VFB shift direction from SiON to HfSiON for 

NiYbSi gated MOS capacitors shown in Fig. 3.19(b). For HfSiON dielectric, it is 

much more difficult to form Yb-O-Si bond at the interface than for SiON because of 

the existence of Hf-O-Si bond. Therefore, the density of highly polarized Yb-O bonds 

would be much lower and thus the VFB shift is much smaller comparing to the case of 

SiON. 

 

3.6 Conclusion 

In summary, we successfully demonstrated a novel method to tune the work 

function of NiSi FUSI gate by incorporating ytterbium, which is a lanthanoid element. 

The silicide formation process was optimized and the material and electrical 

characteristics have been systematically studied. The results show that the work 

function of the Yb-incorporated Ni FUSI gate can be continuously tuned by varying 

the ytterbium concentration, and a work function value of 4.22 eV can be obtained, 

which meets the requirement for N-MOSFET. TZBD and TDDB studies showed 

comparable reliability performance to the conventional NiSi FUSI. A CMOS 

integration scheme is also proposed. Further investigation showed that this method is 

less effective on HfSiON high-κ dielectric. An interface dipole model was discussed 

to explain the work function tuning mechanism. 
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4.1 Introduction 

HfO2 has been extensively investigated for replacing conventional SiO2 and 

SiON gate dielectrics in MOSFETs [1]. One major problem for HfO2 is the Fermi 

level pinning between the HfO2 and a metal gate material [2, 3]. Due to Fermi level 

pinning, difficulties are faced in obtaining an effective work function of 4.1 eV in the 

metal/HfO2 gate stack as required by NMOSFETs [4]. It was previously reported that 

incorporating La into HfO2 could tune the work function of TaN metal gate from 

midgap to Si conduction band edge [5]. In this chapter, we incorporate other 

lanthanoid metals, namely Dy, Er, Tb and Yb, into HfO2 to tune the work function of 

TaN gate. Among these dielectrics, HfErO was studied systematically. It is found that 

when the atomic ratio of Hf:Er is 7:3 (30% Er) in HfErO film, the effective work 

function of the TaN metal gate can be tuned to around 4.10 eV, without degrading 

oxide integrity even after high temperature anneal.  
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4.2 Experiment 

MOS capacitors were fabricated on p-type (100) Si substrates with doping 

concentration of 6×10
15 

cm
-3

. Field oxide of approximately 400 nm was thermally 

grown and subsequently patterned for active area definition. A standard pre-gate clean 

was performed prior to high-κ dielectric deposition. HfErO films with different Er 

concentration and thicknesses were deposited using DC magnetron sputtering from Hf 

and Er metal targets in Ar/O2 ambient with low oxygen concentrations at room 

temperature. The composition of Er in HfErO films was controlled by the DC power 

ratio between Hf and Er targets during co-sputtering. The Er concentration is defined 

as Er/(Hf+Er) at.%. The dielectric thickness varies from 5 to 20 nm. Ex-situ post 

deposition anneal (PDA) in N2 were then performed at 600
o
C for 30 s with a small 

amount of O2 to improve the high-κ film quality. The samples are then put into sputter 

system immediately (within 5 minutes) for gate electrode deposition, to minimize 

possible moisture absorption by lanthanoid oxides [6]. In addition, even though there 

was still some water absorbed during the device fabrication, it has been demonstrated 

that the absorbed moisture can be desorbed during annealed even at relatively low 

temperatures [7]. TaN gate electrodes (~150 nm) were deposited using reactive 

sputtering, and then patterned using a Cl2-based etchant. After that, Post Metal Anneal 

(PMA) was done in N2 ambient at various temperatures for thermal stability 

evaluation. Finally, all samples received back side Al metallization and 420°C 

forming gas sintering. 

The physical thickness of the films was determined by ellipsometer. The ratio 

of Er to (Hf + Er) in the HfErO films was determined to be 10%, 30% and 70% by X-

ray photoelectron spectroscopy (XPS) using Er 3d and Hf 4f region on thick (80 nm) 

HfErO on Si. The interfacial layer were studied on thin (4 nm) HfErO on Si by XPS. 
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Capacitance-voltage (C-V) measurements were performed on MOS capacitors at a 

frequency of 100 kHz with a HP 4284A precision LCR meter. The equivalent oxide 

thickness (EOT) and flatband voltage (VFB) were obtained by fitting the measured C-V 

curves with simulated C-V curves that account for quantum mechanical effects. 

Current-voltage (I-V) measurements were performed using a HP 4156A 

semiconductor parameter analyzer.  

4.3 Results and Discussion 

4.3.1 Physical Characterization 

XPS spectra for Hf 4f and Er 4d are shown in Fig. 1. This analysis is done on 

30 nm thick blank samples to minimize the interference from the substrate. It is 

observed that all the core level peak positions of Hf 4f and Er 4d experience a shift to 

lower binding energy with the increase of Er concentration in HfErO. These changes 

are similar to the XPS chemical shifts in ZrSiO4 [8] and HfAlO [9]. The shift is due to 

the fact that Er is a more ionic cation than Hf in HfErO [10], and thus the charge 

transfer contribution changes with the increase of Er concentration [8-10].  

Fig. 4.2(a) shows the O 1s energy-loss spectra, which are caused by the 

outgoing photoelectrons suffering inelastic losses to collective oscillations (plasmon) 

and single particle excitations (band to band transitions) [11]. The energy gap values 

for the dielectric materials can be determined by the onset of energy loss from the 

energy-loss spectra [11, 12]. . In each of the spectra in Fig. 4.2(a), the onset of the 

energy loss spectrum was defined by linearly extrapolating the segment of maximum 

negative slope to the background level. By this means, the energy gap value is 

measured to be 5.2 ± 0.1 eV for HfO2, and 5.33 ± 0.1 eV for Er2O3. A linear change 

of energy gap value with the increase of Er concentration is observed in Fig. 4.2 (b). 
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Fig. 4.1.  XPS spectra for (a) Hf 4f core levels; (b) Er 4d core levels. The core level peak positions of 

Hf 4f and Er 4d shift continuously towards lower binding energy with increasing Er concentration. 
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Fig. 4.2.  (a) O 1s energy loss spectra for HfO2, HfErO with 30% Er and 70% Er, and Er2O3 samples. 

The cross points (obtained by linearly extrapolating the segment of maximum negative slope to the 

base line) denote the energy gap Eg values. (b) Dependence of Eg on Er concentration. The solid line is 

obtained by linear-least-square fit of the data points. 

 

Fig. 4.3 illustrates thermal stability by comparing the variation of EOT for 

TaN gated MOS capacitors with HfO2 and HfErO after PMA at different temperatures. 
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The EOT values are averaged from 10 data points in each split. It was observed that 

the annealing temperature has more impact on EOT variation of HfO2 film than that 

of HfErO films. This shows that HfErO has better thermal stability than HfO2 in terms 

of EOT under high temperature anneal. 

To study the interface between oxide and silicon substrate, we prepared 4-nm 

thick HfO2 and HfErO films on silicon. Fig. 4.4 shows the XPS Si 2s spectra of HfO2 

and HfErO with various Er concentrations after 1000 ºC PDA for 5 s. The two main 

peaks observed in the spectra can be attributed to the Si substrate (151.3 eV) and the 

interfacial layer (154.3 eV). The Si-O bonds in the interfacial layer indicate the 

existence of low-κ interfacial layer.  

The reaction between Er2O3 thin film and silicon substrate has been reported 

[13]. The formation of Er silicide or Er–Si bonds can be understood by considering 

the fact of Er atoms diffusion toward the interface at high-temperature annealing, 

leading to the reaction of Er with Si. XPS studies confirm the existence of Er-O-Si 

bond (from erbium silicate) for HfErO on silicon substrate (Fig 4.5).  
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Fig. 4.3.  EOT variation for TaN gated MOS capacitors with HfO2 and HfErO dielectrics as a function 

of PMA temperatures, which indicates HfErO films have better thermal stability than HfO2. 
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Fig. 4.4.  XPS spectra for Si 2s core level taken from HfO2, HfErO and Er2O3 after 600 ºC PDA. The 

Si-O bond is found on all samples, indicating the existence of a low-κ interfacial layer between the 

deposited dielectric and silicon substrate. 
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Fig. 4.5.  Er core level and O 1s spectra for 4 nm HfErO (30% Er) deposited on silicon substrate. The 

PDA temperature was 600 ºC. 

 

4.3.2 Electrical Characterization 

Fig. 4.6 shows the normalized C-V curves for TaN gated capacitors with HfO2 

and HfErO gate dielectrics of different Er concentrations after forming gas anneal 

(FGA) at 420°C only without PMA [Fig. 4.1(a)], and after PMA at 1000°C for 5 

seconds followed by FGA [Fig. 4.1(b)]. The thicknesses of the oxides are close to 

each other and range from 10 to 12 nm as measured by ellipsometer after deposition. 

For 420 ºC PMA, the VFB shift is 0.5 V and 0.66 V for 30% Er and 70% Er, 

respectively. For 1000 ºC PMA, the VFB shift is 0.38 V and 0.5 V for 30% Er and 70% 

Er, respectively. VFB shift is observed for all HfErO samples at both temperatures 

compared to the control HfO2 samples; while samples with 70% Er have larger VFB 

shift than those with 30% Er at both temperatures. Therefore, it can be concluded that 

a higher Er concentration leads to a larger VFB shift. 
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Fig. 4.6.  (a) Typical C-V curves of capacitors with HfO2 and HfErO (with 30% and 70% Er) gate 

dielectrics and TaN metal gate after 420 ºC forming gas annealing. (b) Typical C-V curves of 

capacitors with HfO2 and HfErO (with 30% and 70% Er) gate dielectrics and TaN metal gate after 

1000˚C, 5 second annealing. 
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Fig. 4.7 shows the flatband voltage variation with PMA temperature. It is 

observed that after 1000˚C anneal, the difference in VFB between HfErO and control is 

reduced for both Er concentrations, which is ascribed to the shift of VFB towards the 

midgap. This can be explained by localized extrinsic states theory [4], which states 

that Fermi level pinning due to extrinsic states increases with annealing temperature. 

It is also observed that the ΔVFB due to 1000˚C anneal, for HfO2, HfErO (30% Er) and 

HfErO (70% Er) are -0.1 V, 0.02 V, and 0.06 V, respectively. The amount of ΔVFB of 

both HfErO devices is smaller than that of HfO2; yet HfErO (70% Er) has larger shift 

than HfErO (30% Er). This suggests the ratio of Hf and Er should be optimized to 

minimize the extrinsic states.  
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Fig. 4.7.  Flatband voltage variation for TaN gated MOS capacitors with HfO2 and HfErO dielectrics as 

a function of PMA temperature. 
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Fig. 4.8.  (a) C-V curves of the HfErO with 30% Er measured at 10 kHz, 100 kHz and 1 MHz. (b) 

Hysteresis of  MOS capacitors with HfErO (30% Er) dielectric after annealing at 1000ºC for 5 s. 

 

 

Fig 4.8(a) shows the C-V curves of HfErO with 30% Er measured at 10 kHz, 

100 kHz and 1 MHz. The small dispersion indicates the low interface trap density in 

the HfErO gate dielectric [14]. Fig 4.8(b) shows a hysteresis (~95 mV) for HfErO 

film (with 30% Er) after activation annealing at 1000ºC for 5 s. The hysteresis was 

quantified by the difference in VFB during the voltage sweeps without delay time 

between 3 V. 
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Fig. 4.9.  The relationship between gate leakage current density and EOT for MOS capacitors with 

HfO2, HfLaO and HfErO gate dielectrics and TaN or HfN metal gate. Compared with poly-Si/SiO2 

benchmark at the same EOT, HfErO provides ~4 orders reduction in gate leakage current. HfLaO data 

is from Ref. [5]. 

 

Fig. 4.9 shows that the gate leakage current densities of HfO2, HfLaO and 

HfErO at different EOTs. HfLaO data is from a previously published paper [5], but 

the PMA was done at a lower temperature of 900˚C. The leakage current densities of 

HfErO locate on almost the same trend line as HfO2 and HfLaO, and have around 4 

orders reduction compared with poly-Si/SiO2 benchmark, but they are slightly higher 

than that of HfO2. It is shown in Fig. 4.4 and Fig. 4.5 that there is a substantial 

formation of silicate at the HfErO/Si interface, and the silicate interfacial layer 

increases leakage current density. This may have caused the increase of leakage 

current density compared to HfO2 control.  
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Fig. 4.10.  VFB vs. EOT plot was used to extract the modulated TaN Φm in TaN/HfO2 or TaN/HfErO 

gate stack by eliminating the effect of fixed oxide charge. The PMA temperature was 1000˚C. The p-Si 

substrate doping was 6×10
15

 cm
-3

. 

 

Effective metal gate work function Φm was extracted from VFB vs. EOT plot as 

shown in Fig. 4.3. The plot rules out the VFB shift due to fixed charge in oxide. For 

HfErO with 30% Er after 1000°C PMA, the extracted Φm is 4.1 eV, which meets the 

NMOS requirement. The slope for HfErO is smaller than that for HfO2 control, which 

means that the fixed charge density in HfO2 is reduced with the incorporation of Er. 

This is similar to the previous published work on HfLaO [5].  

Fig. 4.11 shows the cumulative breakdown voltage of 10 nm HfErO with 30% 

Er. The breakdown voltage ranges from -5 V to -5.8 V. The increase of breakdown 

voltage with the increasing PMA temperature should be attributed to the growth of the 

interfacial layer, which increases the dielectric thickness and reduces the E-field. 

Tight VBD distributions indicate good HfErO thickness uniformity. 
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Fig. 4.11.  Dependence of cumulative probability on breakdown voltage of TaN gated MOS capacitors 

with HfErO (30% Er). 

 

 

4.3.3 Dipole Models for Metal Gate Work Function Tunability 

As discussed in Chapter 3, interface dipoles induced by intrinsic or extrinsic 

states at the metal/dielectric interface, lead to shift of flatband voltage and effective 

gate work function. To provide guidance in choosing the right metal gate/high-κ 

stacks, Wang et al. further developed the interface dipole model by adding two factors, 

electronegativity and oxygen vacancy [15, 16]. Electronegativity is the tendency of an 

atom in a molecule to attract electrons to it. The atom with a higher electronegativity 

will always pull the electrons away from the atom that has a lower electronegativity. 

The difference in electronegativity defines the degree of electron shift. This effect is 

believed to be the main factor for n-type metal gates, such as TaN. Oxygen vacancy 

Vo in dielectric is also believed to induce electron transfer from Vo to the gate 
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electrode, which also leads to Fermi level pinning. This effect is obvious on p-type 

noble metals. 

Er has an electronegativity of 1.24 on Pauling scale, which is lower than those 

of Hf (1.3) and Ta (1.5) [17]. Therefore, for the case of TaN gate, additional electrons 

transfer from HfO2 to TaN through the dipole layer would be expected when Er atoms 

replace Hf atoms close to the interface due to the lower electronegativity of Er atoms. 

This effect compensates the original electron transfer from TaN to HfO2 due to Fermi 

level pinning, resulting in partial release of Fermi level pinning and reduction of TaN 

effective work function. The corresponding energy band diagram for this case is 

shown in Fig. 4.12. 

Recently, Toriumi and co-workers [18-20] showed by doing a series of 

alternate depositions that the determining interface in metal gate/high-κ/SiO2 gate 

stack is not the upper oxide-gate interface but rather the lower high-κ/SiO2 interface at 

the bottom of the stack. This applies to both La2O3 and Al2O3 capping layers. The 

effect might be due to the strong reaction of La2O3 and SiO2 to form a silicate. 

Similarly, aluminates are formed by Al2O3. Although the La2O3 starts as a top layer, 

the free energy gain of forming the silicate drives diffusion to the bottom layer. 

However, the mechanism of the interface dipole was not clarified.  
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Fig. 4.12.  The effect of an interface dipole layer on TaN Φm is illustrated in the energy band diagram. 

The Φm of TaN is reduced by ΔΦm due to the presence of the interface dipole. 

 

 

 

 

Fig. 4.13.  (a) A schematic showing highly polarized Er-O dipoles at the HfErO/SiOx interface. (b)The 

Φm of TaN is reduced due to the presence of dipole at the HfErO and SiOx interface, which is different 

from Fig. 4.12. 
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The dipole layer at high-κ/SiO2 interface is modeled by Lim et al. [21], as 

discussed in Chapter 3. This model can also be used to explain the shift of Φm of 

TaN/HfErO stack. Although there is no intentionally-grown SiO2 below the HfErO, 

the oxygen rich PDA process could lead to formation of SiOx inter-layer (IL) between 

HfErO and Si substrate. Er reacts with SiOx and form highly polarized Er-O bond 

pointing toward the gate electrode. The existence of Si-O and Er-O-Si bonds has been 

confirmed by XPS studies (Fig. 4.4 and Fig. 4.5). Thus, a highly polarized Er-O 

dipole exists between the HfErO gate and SiOx interfacial layer. This creates an 

electric field that modulates the gate work function, as illustrated in Fig. 4.13.  

 

4.4 HfO2 Incorporated with Other Lanthanoid Elements 

Despite the different opinions on the location of the dipoles, the role of 

electronegativity is a key factor in all kinds of dipoles. Other lanthanoid elements, 

including Tb, Dy, and Yb, were incorporated into HfO2 as gate dielectrics. All are 

lanthanoid elements sharing similar physical and chemical properties with Er. 

Normalized C-V curves for MOS capacitors with these dielectrics and TaN gate 

electrode are summarized in Fig. 4.14(a). The modulated Φm values are extracted 

from VFB-EOT plots in Fig. 4.14(b). The results are summarized in Table 4.1. With 

the incorporation of these low electronegativity lanthanoid elements, VFB for 

TaN/HfO2 stack obviously shifts negatively and the Φm shifts to the silicon 

conduction band edge.  
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Fig. 4.14.  (a) C-V curves of HfO2 doped by Er2O3, Tb2O3, Yb2O3 and Dy2O3 after 1000 ºC anneal. All 

curves show significant flatband voltage shift towards silicon conduction band.  (b) VFB versus EOT 

plot was used to extract the TaN Φm modulated by doping HfO2 with by Er2O3, Tb2O3, Yb2O3 and 

Dy2O3. 
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Table 4.1.  Summary of all lanthanoid elements incorporated into HfO2 for metal gate work function 

tuning. All elements exhibit low electronegativities. The concentration of each element is derived from 

XPS measurements. The Φm, eff values are extracted from Fig. 4.14(b).  

Incorporated Element Er Tb Yb Dy 

Electronegativity 1.24 1.1 1.1 1.22 

Concentration 

Ln/(Hf+Ln) 
30% 27% 17% 21% 

Φm, eff (eV) 4.10 4.18 4.22 4.24 

 

 

4.5 Conclusion 

In this chapter, a novel method of doping HfO2 with Er2O3 to engineer the Φm 

of TaN metal gate was investigated. The doped Er2O3 enabled Si conduction band-

edge modulation (4.1 eV) of midgap TaN Φm. Band edge Φm was retained even after 

high temperature anneal. A small EOT of 1.15 nm was achieved by HfErO (30% Er). 

Er-O-Si Bonding confirmed the formation of erbium silicate at the high-κ/Si 

interface. Interfacial dipole models are investigated to interpret the significant work 

function shift. The modulation of TaN gate Φm was attributed to the dipole layers at 

both the TaN/HfErO and HfErO/Si interface. Similar results are obtained by doping 

HfO2 doped by other lanthanoid metal oxides, namely Tb2O3, Dy2O3, and Yb2O3.  
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Lanthanoid Oxides for Precision RF/Analog 

MIM Capacitors 

 

5.1 Introduction 

Metal-Insulator-Metal (MIM) capacitors occupy substantial areas in integrated 

circuits for Radio-Frequency (RF) and analog/mixed-signal applications. With the 

rapid feature size reduction and increased levels of integration to reduce IC 

fabrication cost, MIM capacitors with higher capacitance densities are required.  High 

capacitance density can be realized by reducing the thickness and/or increasing the 

permittivity κ of the MIM dielectric material.  However, leakage current and 

reliability issues limit thickness scaling of the MIM dielectric.  In addition, there are 

stringent requirements on the voltage coefficients of capacitance (VCC), including the 

quadratic VCC (α) and the linear VCC (β), for precision analog circuit applications.  

According to the International Technology Roadmap for Semiconductors (ITRS) [1], 

the capacitance density requirement would be 7 fF/µm
2
 by 2013, and 10 fF/µm

2
 by 

2016, while the quadratic VCC should be kept below 100 ppm/V
2
 and the leakage 

current should be below 10
-8 

A/cm
2
 at room temperature and at maximum supply 

voltage VDD. Thus the target is to achieve higher capacitance density while keeping 
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the VCC and leakage low. High-κ dielectrics have been investigated to replace the 

conventional SiO2 and SiON in MIM capacitors. Many high-κ dielectrics, such as 

Ta2O5 [2], HfO2 [3]-[4] , TiO2 [5], Al2O3 [6], Y2O3 [7], as well as different 

combination of these dielectrics as sandwich or laminate structures, such as 

Ta2O5/HfO2/Ta2O5 [8], Al2O3/HfO2/Al2O3 [9], TaZrO [10], PrTiO [11] and HfTbO 

[12] have been explored to meet the capacitance density and leakage current density 

requirements.  However, most of these high-κ dielectrics are found to have large 

positive quadratic VCCs.  As the quadratic VCC usually increases with decreasing 

MIM dielectric thickness, it is difficult to increase the capacitance density while 

keeping the quadratic VCC less than 100 ppm/V
2
.  Recently, it was reported that 

adding Tb into HfO2 could effectively reduce the quadratic VCC [12]. However, there 

has been little study on binary lanthanoid oxides for MIM capacitors. 

In this chapter, we first did a material screening by fabricating MIM capacitors 

with various lanthanoid oxides, among which Sm2O3 and Er2O3 stand out as the best 

candidates. After that the physical and electrical properties of MIM capacitors with 

Sm2O3 and Er2O3 dielectrics were carried out systematically. Finally, we demonstrate 

the use of stacked Sm2O3/SiO2 and Er2O3/SiO2 as the MIM dielectric to further reduce 

the quadratic VCC to near zero while keeping the capacitance density high and the 

leakage current density low. 

5.2 Device Fabrication and Material Screening 

5.2.1 Device Fabrication 

MIM capacitors were fabricated on Si wafers covered with a 500 nm thick 

thermally-grown SiO2.  A 200 nm thick TaN bottom electrode layer was then 
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deposited on the SiO2 layer by reactive sputtering in an Argon/Nitrogen (Ar/N2) 

ambient.   

For MIM capacitors with a single-layer dielectric, a Sm2O3 film was directly 

deposited on the TaN bottom electrode with RF power applied on a Sm2O3 target at 

room temperature in Ar ambient. The thickness of the Sm2O3 layer deposited ranged 

from 10 to 30 nm.  After dielectric deposition, N2 plasma treatment was carried out.  

Post-dielectric deposition annealing (PDA) at 400 °C for 60 s within N2 ambient (with 

some trace oxygen) was then performed for all samples.  The trace oxygen came from 

the oxygen gas flow during the purging process in the RTP; the oxygen flow was 

stopped once the temperature started to ramp up. 

While Sm2O3 was sputtered from the Sm2O3 target, Er2O3, Dy2O3, La2O3, 

Tb2O3, and Yb2O3 were sputtered from metal target by reactive sputtering in Ar/O2 

environment. This made it possible to manipulate the oxygen vacancy in the dielectric 

by controlling the Ar/O2 gas flow. Two Ar/O2 flow rate ratios (27:3 and 28:2) were 

used, while the total gas flow was fixed at 30 sccm. The PDA processes were all 

conducted at 400 °C for 60 s. For the ambient in the RTP chamber, other than trace 

oxygen, two other conditions were used besides the N2 ambient with trace oxygen. 

One was pure N2 without any O2, the other was 95% N2 with 5% O2. 

Following the oxide deposition and PDA, a 100 nm thick TaN top electrode 

layer was sputtered, and then patterned using lithography and dry-etch.   

The MIM capacitors were characterized using transmission electron 

microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy 

(XPS).  Capacitance and leakage current were measured on 200×200 μm
2
 capacitors 

using a HP4284A precision LCR meter and a HP4155B semiconductor parameter 
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analyzer, respectively.  The leakage current was measured using long integration time 

(1 second) with a delay time of 1 second to obtain current in the steady state. 

5.2.2 Material Screening 

As discussed in the introduction, the target is to find materials with higher 

capacitance density but lower quadratic VCC. Fig. 5.1 summarizes the best quadratic 

VCC obtained for each oxide and plotted them versus capacitance density. The black 

line represents the highest capacitance density for a given α and is contributed by data 

points from Sm2O3 and Er2O3.  MIM capacitors with Sm2O3 or Er2O3 dielectric have 

lowest α (positive) for a given capacitance density. Dy2O3 and Tb2O3 show small 

quadratic VCC close to that of Er2O3. Other oxides show much larger quadratic VCC 

which make them less preferable for RF/analog applications. 
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Fig. 5.1.  Summary of quadratic VCC of MIM capacitors with various lanthanoid oxides, 

plotted versus capacitance density for all lanthanoid oxide MIM capacitors. 
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Fig. 5.2 compares the α of MIM capacitors with a Sm2O3 or Er2O3 dielectric 

layer obtained in this work with other high- MIM capacitor reports.  At a given 

capacitance density, MIM capacitors with a Sm2O3 or Er2O3 dielectric are found to 

have smaller positive α than most of the other high- oxides, and have the lowest α 

among binary oxides.  When compared with the extensively studied HfO2, Sm2O3 has 

smaller α at the same capacitance density, especially in the region where the 

capacitance density is larger than 7 fF/μm
2
. This makes Sm2O3 and Er2O3 potential 

candidates for MIM dielectric in precision analog circuit applications. The 

preliminary material screening show that Sm2O3 and Er2O3 are better than other 

lanthanoid oxides and other high-κ dielectrics in terms of voltage linearity and 

capacitance density. 
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Fig. 5.2.  The values of α extracted from MIM capacitors with a single Sm2O3 or Er2O3 

dielectric layer in this work are compared with data published in the literature. 
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5.3 MIM Capacitors with a single layer Sm2O3 dielectric 

5.3.1 Physical Characterization 

Fig. 5.3 (a) shows a schematic of a MIM capacitor.  TEM image in Fig. 5.3 (b) 

reveals the polycrystalline nature of the Sm2O3 layer in MIM capacitor with single 

layer dielectric.  Considering the capacitance density of 13.5 fF/µm
2
 and physical 

thickness of 12.5 nm from TEM, the dielectric constant κ of Sm2O3 is calculated to be 

19.0.  This is within the range of 10 to 30.5 as reported in the literature [13-15].  The 

κ value of Sm2O3 is also comparable to that of the widely researched HfO2 (22~25) 

[16]. 

 

Fig. 5.3.  (a) Schematic of Metal-Insulator-Metal (MIM) capacitor having top and bottom 

tantalum nitride (TaN) electrodes.  (b) In one split, the MIM dielectric is a single Sm2O3 layer, 

as shown in the cross-sectional TEM image.   
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Fig. 5.4.  (a) X-ray diffraction (XRD) spectra of as-deposited Sm2O3 on TaN, as well as 

Sm2O3/TaN stack after being annealed at 300 ºC and 400 ºC.  XRD spectrum of an exposed 

TaN surface is also obtained.  As-deposited Sm2O3 on TaN is poly-crystalline.  (b) XRD 

spectra of as-deposited Sm2O3 on SiO2, as well as Sm2O3/SiO2 stack after being annealed at 

400 ºC.  As-deposited Sm2O3 on SiO2 is amorphous. 

 

80 nm Sm2O3 films were prepared for analysis of the crystalline structure 

using XRD, and were either deposited directly on a 200 nm thick TaN [Fig. 5.4(a)] or 

on a 500 nm thick amorphous SiO2 [Fig. 5.4(b)].  Annealing was done at various 

temperatures before XRD.  In Fig. 5.4(a), an XRD plot obtained from a bare TaN 

surface prior to Sm2O3 deposition shows that the TaN film is poly-crystalline.  The as-

deposited Sm2O3 film formed on TaN is also poly-crystalline.  After being annealed at 

300 or at 400 ºC [Fig. 5.4(a)], the Sm2O3 peaks did not differ much, indicating the 

phase and composition were not affected.  On the other hand, Sm2O3 film was 

amorphous when it was first deposited on a SiO2 surface [Fig. 5.4(b)].  The Sm2O3 

film crystallized after being annealed at 400 ºC.  The crystallization behavior of 

Sm2O3 appears to be dependent on the substrate material. While the Sm2O3 dielectric 
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thickness used in XRD analysis is thicker than those used in MIM capacitors, the 

observation of poly-crystalline nature of annealed Sm2O3 from XRD analysis is 

qualitatively consistent with TEM results obtained for thinner films (Fig. 5.3). 

Next, we derive the energy band gap Eg of Sm2O3 from the O 1s energy-loss 

spectra of bulk Sm2O3 film [Fig. 5.5(a)] using the same approach as discussed in 

Chapter 4. The energy gap for Sm2O3 was obtained to be 5.20 ± 0.10 eV, which is 

consistent with previously reported value of 5.0 eV [17].  The Eg of Sm2O3 is seen to 

be comparable with other commonly used high-κ materials such as HfO2 (5.25 eV) 

[18] and Gd2O3 (5.5 eV) [17]. 

The Schottky barrier for electrons bn  evaluated at the interface between the 

MIM dielectric and an electrode, i.e. difference between the Fermi level of an 

electrode and the conduction band of a MIM dielectric, should preferably be large 

enough for suppression of leakage current.  The value of bp  can be derived from the 

measured dielectric band gap Eg and valence band offset bp  using the relation 

bn g bpE   .  The valence band offset of a thin heterostructure can be 

experimentally determined by a method in which the measured XPS valence band 

spectrum is deconvoluted into curves of the constituent materials that are separately 

observed[19, 20].  Fig. 5.5(b) and Fig. 5.5(c) show the deconvolution of the valence-

band spectra for 5.0 nm-thick Sm2O3 on TaN and Pt, respectively.  The results 

indicate that the barrier heights for holes are 2.64 eV for TaN, and 2.17 eV for Pt.  

Using these values and the measured Sm2O3 band gap of 5.20 eV, the electron barrier 

heights for TaN electrode and Pt electrode are determined to be 2.56 eV and 3.03 eV, 

respectively.  Fig. 5.5(d) summarizes the results obtained.  Considering TaN or Pt as 

possible electrode materials, the larger conduction band offset for a Pt electrode 
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suggests that the leakage current should be lower.  In this work, we use TaN instead 

of Pt as the electrode due to the ease of etching TaN for electrode definition.   
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Fig. 5.5.  (a) Oxygen (O) 1s energy-loss spectra obtained from bulk Sm2O3 which went 

through a 400 °C post-deposition anneal (PDA).  The energy band gap of Sm2O3 is 5.20 eV.  

(b) Valence-band spectrum for Sm2O3/TaN and the deconvoluted spectra for thick Sm2O3 and 

TaN. (c) Valence-band spectrum for Sm2O3/Pt and the deconvoluted spectra for thick Sm2O3 

and Pt.  (d) Energy-band diagram showing the band alignment for Pt, Sm2O3, and TaN. 
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5.3.2 Electrical Characterization 

VCCs are crucial parameters for MIM capacitor for analog applications, and 

can be obtained by fitting the measured data with a second order polynomial equation,   

 2

0( ) ( 1)C V C V V    , (5.1) 

where C0 is the zero-bias capacitance,  is the quadratic voltage coefficient of 

capacitance, and  is the linear voltage coefficient of capacitance. Fig. 5.6(a) shows 

the bias-dependent normalized capacitance (ΔC/C0) fitted by eq. (5.1).  The fitting 

procedure extracted the values of  and β.  It is observed that both α and β decrease 

with increasing dielectric thickness.  The dependence of ΔC/C0 on the electric field E 

is shown in Fig. 5.6(b).  The curves roughly coincide for Sm2O3 dielectrics with 

various thicknesses. 
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Fig. 5.6.  (a) Voltage-dependant normalized capacitance (ΔC/C0) measured at 100 kHz for 

MIM capacitors with a single Sm2O3 dielectric layer having a thickness of 17 nm, 23 nm, or 

30 nm.  By fitting a second-order polynomial equation (solid lines) to the experimental data 

(plotted in symbols), the quadratic voltage coefficient of capacitance  and the linear voltage 

coefficient of capacitance  are obtained.  (b) Plot of ΔC/C0 versus electric field E for the 

same MIM capacitors in (a).  
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Fig. 5.7.  (a) Frequency dependence of α for MIM capacitors with a single Sm2O3 dielectric 

layer having a thickness of 17 nm, 23 nm, and 30 nm.  The straight lines are a linear fit to the 

data points on a log-log scale.  (b) Thickness dependence of α at 1 kHz, 10 kHz, and 100 kHz 

with a linear fit (solid line) in log-log scale to experimental data (symbols). 

 

The effect of the applied frequency f on α is shown in Fig. 5.7(a).  The 

logarithm of α [i.e. log(α)] decreases linearly with a logarithmic increase in frequency.  

The slope of the log(α) versus log(f) is approximately constant for various MIM 

dielectric thicknesses.  The frequency dependence of α can be explained as the change 

of relaxation time with different carrier mobility in insulator [21]. 

Furthermore, α is plotted against dielectric thickness in Fig. 5.7(b).  α 

decreases linearly with increasing dielectric thickness tox on a log-log scale, exhibiting 

a similar slope at various applied frequencies. This reveals that the thickness 

dependence of α can be expressed as 2.15α oxt , which is consistent with Ref. [22]. 

Nonlinearities of MIM capacitors are typically quadratic in E-field, but the coefficient 

α is defined with respect to applied voltage. As a result, α should have a 

21/ oxt dependence on the dielectric thickness [21]. Interfacial layer between the 



Chapter 5: Lanthanoid Oxides for Precision RF/Analog MIM Capacitors 

125 

 

electrode and dielectric, and the thickness dependence of refractive index both lead to 

imperfections in the 21/ oxt  scaling factor [21].   

Fig. 5.8 shows the leakage current density J for MIM capacitors having Sm2O3 

dielectric with various thicknesses at room temperature.  The leakage currents at +3.3 

V and –3.3 V are above 10
-7

 A/cm
2
.  The J-V curve becomes asymmetric at higher 

bias, indicating that the capacitor may be physically asymmetric, i.e. electrode-

dielectric interface quality is different for the bottom and top interfaces.  It is 

conceivable that the bottom interface is of a poorer quality than the top interface, 

considering that plasma nitridation before PDA helped enhance the quality of top 

TaN-Sm2O3 interface and that the bottom Sm2O3-TaN interface experienced a higher 

thermal budget (e.g. an additional PDA at 400 °C) which may lead to interfacial 

reaction.  This possibly explains the higher leakage at large positive bias where 

electron injection occurs from the bottom electrode.   
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Fig. 5.8.  Room temperature J-V characteristics of MIM capacitors with a single Sm2O3 

dielectric layer having a thickness of 17 nm, 23 nm, and 30 nm.   
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5.4  MIM Capacitors with a single layer Er2O3 dielectric 

5.4.1 Physical Characterization  

Fig. 5.9(a) shows a cross-section of a typical MIM capacitor.  A TEM image 

of a MIM capacitor with a single Er2O3 dielectric is shown in Fig. 5.9(b).  It should be 

noted that the Er2O3 layer is poly-crystalline in Fig. 5.9(b).  This capacitor has a 

capacitance density of 8.7 fF/µm
2
.  Together with the physical thickness from TEM, 

the dielectric constant of Er2O3 is calculated to be 19.7. The κ value of Er2O3 is 

slightly higher than that of Sm2O3 (19). 
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Fig. 5.9.  (a) Schematic of Metal-Insulator-Metal (MIM) capacitor having top and bottom 

tantalum nitride (TaN) electrodes.  (b) In one split, the MIM dielectric is a single Er2O3 layer, 

as shown in the cross-sectional transmission electron microscopy (TEM) image.   
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Fig. 5.10.  XRD spectra of Er2O3 on SiO2 and TaN, after being annealed at 400 ºC.  XRD 

spectrum of an exposed TaN surface is also obtained.  The Er2O3 films are polycrystalline.  
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Fig. 5.11.  (a) Oxygen (O) 1s energy-loss spectra obtained from bulk Er2O3 which went 

through a 400 °C post-deposition anneal (PDA).  The energy band gap of Er2O3 is 5.33 eV.  

(b) Valence-band spectrum for Er2O3/TaN and the deconvoluted spectra for Er2O3 and TaN. 
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50 nm Er2O3 films were prepared for analysis of the crystalline structure using 

XRD as shown in Fig. 5.10.  The 50 nm Er2O3 films were either deposited directly on 

a 200 nm thick TaN or on a 500 nm thick amorphous SiO2, and annealed at 400°C 

before XRD analysis. The Er2O3 peaks did not differ much for TaN and SiO2 

substrates, indicating the phase and composition were not affected by substrate 

materials.  

Next, we derive the energy band gap Eg of Er2O3 from the O 1s energy-loss 

spectra of bulk Er2O3 film, as shown in Fig. 5.11(a).  Taking the similar approach as 

in section 5.3.1, the energy gap for Er2O3 was obtained to be 5.33 ± 0.10 eV, which is 

consistent with a previously reported value of 4.9 to 5.5 eV [17].  The Eg of Er2O3 is 

seen to be comparable with other commonly used high-κ materials such as HfO2 (5.25 

eV) [18], Gd2O3 (5.5 eV) [17], and the previously discussed Sm2O3 (5.2 eV). 

bn and bp are derived from XPS spectra. Fig. 5.11(b) shows the 

deconvolution of the valence-band spectra for 4.0 nm-thick Er2O3 on TaN.  The 

results indicate that the barrier height for holes is 2.50 eV for TaN. Using this value 

and the measured Er2O3 band gap of 5.33 eV, the electron barrier height for TaN 

electrode is determined to be 2.83 eV.   
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5.4.2 Electrical Characterization 

The ambient oxygen concentrations during the deposition and the PDA 

process were varied to find the optimal condition for Er2O3 formation. Fig. 5.12 

shows the capacitance obtained at the different PDA conditions. For the capacitor 

with 10 nm Er2O3, the capacitance density drops significantly with increased O2 flow 

in PDA process. However, the capacitance only drops slightly for 20 nm sample, and 

remains constant for the 30 nm one. The deceased capacitance with increased oxygen 

in the PDA ambient is possibly due to the oxidation of the bottom TaN electrode, 

which forms another layer of oxide and decreases the capacitance density. Thicker 

Er2O3 serves as an oxygen barrier for the bottom electrode. 
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Fig. 5.12.  The change of capacitance densities as a function of oxygen concentration in PDA 

ambient. The increased oxygen concentration has a larger impact on 10 nm Er2O3 than that on 

20 nm and 30 nm Er2O3. 
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Fig. 5.13(a) demonstrates typical C-V curves of MIM capacitors with 10 nm 

Er2O3 deposited in 27-sccm Ar/3-sccm O2.  The quadratic VCC α and linear VCC β 

are extracted by equation (5.1). It is obvious that the split with Er2O3 annealed in trace 

O2 has the smallest α. Furthermore, we plot α versus dielectric thickness in Fig. 

5.13(b). It is found that α linearly decreases with increasing dielectric thickness tox on 

a log-log scale. The fitted slopes are all around 2. The slope (s) indicates that the 

thickness dependence of α can be expressed as s

oxt  . The small difference between 

the slopes of the three PDA conditions are probably due to the interfacial layer 

between the electrode and dielectric, and different oxygen vacancy concentrations, 

which lead to imperfections in the 21/ oxt  scaling factor [21].   
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Fig. 5.13.  (a) Voltage-dependant normalized capacitance (ΔC/C0) measured at 100 kHz for 

MIM capacitors with a single 10 nm Er2O3 dielectric layer annealed in different oxygen 

concentrations. By fitting a second-order polynomial equation (solid lines) to the 

experimental data (plotted in symbols), the quadratic voltage coefficient of capacitance  and 

the linear voltage coefficient of capacitance  are obtained.  (b) Thickness dependence of α 

with a linear fit (solid line) in log-log scale to experimental data (symbols). 
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Fig. 5.14.  (a) Quadratic VCC α as a function of oxygen concentration in PDA ambient. The 

solid symbols represent MIM capacitors with Er2O3 deposited in 27-sccm Ar/3-sccm O2 

during the PVD; the open symbols represent MIM capacitors with Er2O3 deposited in 28-

sccm Ar/2-sccm O2 during the PVD. (b) Linear VCC as a function of oxygen concentration 

in PDA ambient.  

 

Fig. 5.14(a) summarizes the change of α values obtained. The capacitor with 

Er2O3 sputtered in 28-sccm Ar/2-sccm O2 exhibits significantly higher α comparing to 

that with Er2O3 sputtered in 3 sccm O2, although their Er2O3 thicknesses and 

capacitance densities are almost the same. Lower concentration of O2 during the 

deposition may have caused high density oxygen vacancies in the oxide, which was 

not effectively rehabilitated by the low temperature PDA process. For each thickness, 

capacitors annealed in trace O2 ambient demonstrate smaller α than the other two 

PDA conditions. This effect is more pronounced on thinner Er2O3. This implies that a 

proper amount of O2 must be present during the PDA process to maintain a small α, 

i.e., a small amount of O2 in PDA process is helpful for higher quality Er2O3 with less 

trapping charges and defects; but excess O2 increases the α. It is known that Ta2O5 has 

a large quadratic VCC [8]. The excess oxygen penetrates to the bottom electrode and 
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forms a thin Ta2O5 layer; the degraded interface leads to charge trapping and double 

layer-capacitance, and consequently increases α. Due to the large α value, we do not 

further characterize the samples deposited in 28-sccm Ar/2-sccm O2 in the rest of the 

paper. 

Linear VCC β values are summarized in Fig. 5.14(b). β is related to 

asymmetric device structure or process. β reduces with increased oxygen 

concentration during PDA. This is also related to the bottom interface. During the 

annealing, the oxygen penetrates from top surface of Er2O3 to the bottom interface. If 

there is not enough oxygen, the bottom interface would have more oxygen vacancies 

than the top surface. This effect is less pronounced for thicker oxides because oxygen 

has less influence on the bottom interface due to the thick oxide barrier. 
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Fig. 5.15.  (a) Effect of oxygen concentration during PDA on J-V characteristics of MIM 

capacitors with 20-nm single Er2O3 dielectric layer; (b) Comparison of J-V characteristics of 

MIM capacitors with a single Er2O3 dielectric layer having a thickness of 10, 20 and 30 nm 

with a PDA in trace oxygen. 
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Fig. 5.15(a) shows the dependence of leakage current density J on voltage at 

room temperature for MIM capacitors having 20-nm Er2O3 dielectric with various 

annealing conditions.  J is at the order of 10
-8

 A/cm
2
 at ±3.3 V bias for all the 3 

different annealing conditions. The capacitor with Er2O3 annealed in trace O2 during 

PDA has a smaller J than the other two. J-V curve becomes asymmetric at higher bias, 

indicating that the MIM capacitor is physically asymmetric, i.e. bottom and top 

interfaces are different. Fig. 5.15(b) shows the leakage current density for MIM 

capacitors with 10 nm, 20 nm and 30 nm Er2O3 deposited in 27-sccm Ar/3-sccm O2 

and annealed in trace O2.   

For application in precision analog circuits, quadratic VCC and leakage 

current are the two key factors and must be kept as small as possible. Considering the 

results discussed above, we decided the optimized process condition for Er2O3 

deposition to be: 27-sccm Ar/3-sccm O2 flow during reactive sputtering and trace O2 

in PDA process. The following characterizations were all performed on devices 

formed with this process condition. 

Fig. 5.16 shows the capacitance densities and loss tangent (1/Q factor) of 

Er2O3 MIM capacitors, as a function of frequency measured at zero DC bias. The 

capacitance density almost remains the same for all the three thicknesses. This 

indicates that the cut-off frequency fc is lower than 1 kHz at zero bias. The cut-off 

frequency fc is related to the relaxation time of the dielectric [23, 24]. The loss tangent 

increases from ~10
-4

 at 1 kHz to ~10
-2

 at 100 kHz for all samples. A lower loss 

tangent is preferred for less energy loss. 
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Fig. 5.16.  Frequency dependence of capacitance density and frequency dispersion of loss 

tangent (1/Q factor) for MIM capacitors with a single Er2O3 dielectric layer having a 

thickness of 10 nm, 20 nm, and 30 nm. The open symbols represents capacitance density; 

while the solid symbols represent the loss tangent. 
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Fig. 5.17.  (a) Frequency dependence of α for MIM capacitors with a single Er2O3 dielectric 

layer having a thickness of 10 nm, 20 nm, and 30 nm, annealed in trace O2. The straight lines 

are a linear fit to the data points on a log-log scale.  (b) Frequency dependence of β for MIM 

capacitors with a single Er2O3 dielectric layer having a thickness of 10 nm, 20 nm, and 30 nm, 

annealed in trace O2. 
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The frequency dispersion of α and β are shown in Fig. 5.16. The logarithm of 

α [i.e. log(α)] decreases linearly with a logarithmic increase in frequency. The 

frequency dependence of α can be explained as the change of relaxation time with 

different carrier mobility in insulator [21]. The slope for 20 nm and 30 nm Er2O3 

MIM capacitors are close to each other, but both are much smaller than that of the 10 

nm one.  The linear VCC (β) decreases with increasing frequency for 20 nm and 30 

nm Er2O3 capacitors, but increases for the 10 nm split. The inconsistent behavior of 

the 10 nm sample should be due to the interfacial layer at the bottom interface. 

 

5.5 Further Reduction of quadratic VCC by stacking with SiO2 

5.5.1 Device Structure and Cancelling Effect 

Although Sm2O3 and Er2O3 show lower quadratic VCCs than most of other 

high-κ dielectrics, further improvement is needed to meet the requirement specified 

by ITRS (< 100). It has been demonstrated that VCC values can be actively 

engineered and virtually zero VCC can be achieved without a significant decrease of 

capacitance density, by using a stacked insulator structure of high-κ and SiO2 

dielectrics [25].  Such “canceling effect” was successfully demonstrated in HfO2/SiO2 

MIM capacitors with a capacitance density of around 6 fF/μm
2
 and a quadratic VCC α 

of 14 ppm/V
2
 [25].  Fig. 5.18 shows the cross sectional schematics of an MIM 

capacitor with two layers of stacked dielectrics. 

According to the theory of “cancelling effect”, the ratio of EOT of each 

dielectric layer to the whole EOT of stacked dielectrics plays a significant role in 

determining the effective value of α [25]. For a dual layer dielectric stack, i.e. s 
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structure, the relationship between α and the thicknesses of the constituent dielectrics 

is given by [25]: 

3 3

1 1 2 2            (5.2) 

2 2

1 1 2 2            (5.3) 

, 1,2i
i

total

EOT
i

EOT
         (5.4) 

where EOTi is the EOT of the i
th

  layer, and EOTtotal is the EOT of the entire dielectric 

stack.  The α values of both dielectrics at each thickness are derived from data from 

MIM capacitors with a single Sm2O3 layer or a single SiO2 layer.  Simulation results 

showing the relation between α of a Sm2O3/SiO2 stack with the thicknesses of each 

layer is given in Fig. 5.19.  The region between the two dashed lines is where α is 

within ±100 ppm/V
2
, a target for our MIM dielectric design.  As the Sm2O3 layer 

thickness is reduced, the curve runs through the target region in Fig. 5.19 over a 

narrower range of SiO2 thicknesses.  If we use a thinner Sm2O3 layer, a more precise 

SiO2 thickness control is needed to attain an α within ±100 ppm/V
2
. The simulation, 

however, ignores process and structural differences between capacitors with single 

layer or laminate dielectrics. It only provides a rough guideline for thickness 

combinations (gray region) to be explored in the experiment.   

During the fabrication of MIM capacitors with two layers of dielectrics, SiO2 

was deposited by Plasma-enhanced chemical vapor deposition (PECVD) on the 

bottom TaN at 350 ºC. The tool used for SiO2 deposition was an Applied Materials 

Centura-5200. Other processes were the same as that of MIM capacitors with single 

layer dielectric discussed in section 5.2.1. 
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Fig. 5.18.  Cross sectional schematics of an MIM capacitor with stacked dielectrics. When 

two different capacitors are connected in series, voltages divided in the stack decide the 

voltage linearity of the capacitance of the stack. 
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Fig. 5.19.  Simulated α versus SiO2 thickness plot for different Sm2O3 thicknesses from 3 to 

12 nm.  The value of α should preferably be within ±100 ppm/V
2
, as indicated by the 

horizontal dashed lines.  The choice of SiO2 and Sm2O3 thicknesses should preferably be in 

the target region where α is small and relatively insensitive to a variation in the thickness of 

SiO2.  The gray region shows the range of thicknesses of SiO2 and Sm2O3 to be selected in our 

experiment. 
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5.5.2 MIM Capacitors with Sm2O3/SiO2 dielectric stack 

 MIM capacitors with Sm2O3/SiO2 laminated dielectric having SiO2 thickness 

varying from 2.8 to 7 nm and Sm2O3 thickness varying from 6.5 to 10 nm were 

fabricated to investigate the “cancelling effect” of SiO2 (or Sm2O3) in Sm2O3/SiO2. 

The split table is shown in Table 5.1, corresponding to the gray region in Fig. 5.19.  

Table 5.1 also shows the measured capacitance density of each split.  

Fig. 5.20 shows the cross sectional TEM image of an MIM capacitor with 

Sm2O3 on top of SiO2. Poly-crystalline Sm2O3 was formed on amorphous SiO2. There 

is a 1.8 nm interfacial layer between SiO2 and TaN electrode. 

Fig. 5.21 shows the normalized C-V curves of the MIM capacitors with 8.5 nm 

thick Sm2O3 on various thicknesses of SiO2 underlying layer.  The quadratic VCC is 

improved with the introduction of SiO2 under-layer.  In fact, for larger SiO2 

thicknesses used, e.g. 7 nm, the quadratic VCC actually turns negative.  The 

asymmetric C-V curves in Fig. 5.22 indicate a non-zero linear VCC β, and that is a 

direct consequence of the asymmetric device structure, which leads to different 

interface band alignments and trap densities at the top and the bottom electrode-

dielectric interfaces of the MIM capacitor. 

Table 5.1.  Split table for MIM capacitors with Sm2O3-on-SiO2 laminate dielectric, showing 

the thicknesses of Sm2O3 and SiO2 used in each split and the capacitance density measured.  

SiO2 

Thickness  

Sm2O3 Thickness 

6.5 nm 7.5 nm 8.5 nm 10 nm 

2.8 nm 9.8 fF/μm
2 
 9.0 fF/μm

2
 8.0 fF/μm

2
 7.4 fF/μm

2
 

3.5 nm 8.3 fF/μm
2
 7.8 fF/μm

2
 7.2 fF/μm

2
 6.7 fF/μm

2
 

3.8 nm 7.9 fF/μm
2
 7.3 fF/μm

2
 6.9 fF/μm

2
 6.4 fF/μm

2
 

4.8 nm 6.8 fF/μm
2
 6.4 fF/μm

2
 6.2 fF/μm

2
 5.6 fF/μm

2
 

7.0 nm 4.9 fF/μm
2
 4.8 fF/μm

2
 4.5 fF/μm

2
 4.4 fF/μm

2
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Fig. 5.20.  The left figure shows a Sm2O3 layer formed on a SiO2 layer as the dielectric in a 

MIM capacitor with TaN electrodes. A high resolution TEM image is given on the right, 

clearly showing the presence of an interfacial layer (IL) between SiO2 and the TaN bottom 

electrode. 
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Fig. 5.21.  Normalized C-V curves of Sm2O3/SiO2 MIM capacitors with Sm2O3 fixed at 8.5 

nm while varying SiO2 thickness from 2.8 nm to 7 nm.  Curvature of C-V curves changes 

from positive to negative as the SiO2 thickness is increased. 
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Fig. 5.22.  (a) Quadratic VCC (α value) versus the thickness of SiO2 with varying the 

thickness of SiO2 and Sm2O3.  (b) Linear VCC (β value) versus the thickness of SiO2 with 

varying the thickness of SiO2 and Sm2O3.  Both α value and β value can be modulated by 

increasing the thickness of SiO2 layer.  Near zero α value can be obtained by optimizing the 

EOT ratio of SiO2 to Sm2O3/SiO2 stack.  

 

Fig. 5.22(a) summarizes the measured α of Sm2O3/SiO2 dielectric stacks 

versus varying SiO2 thickness (from 2.8 nm to 7 nm) at different Sm2O3 thicknesses 

(6.5 nm, 7.5 nm, 8.5 nm and 10 nm).  For each Sm2O3 thickness, the capacitance 

density of Sm2O3/SiO2 MIM capacitors decreases with increasing SiO2 thickness. 

Consequently, α is effectively modulated from positive to negative values because of 

the increasing of ratio of the SiO2 thickness to the total thickness of the Sm2O3/SiO2 

stack.  High capacitance densities of 7.3 fF/μm
2
 and 7.9 fF/μm

2
 with α of -46 ppm/V

2
 

and -56 ppm/V
2
 were successfully demonstrated using Sm2O3/SiO2 thickness of 6.5 

nm/3.8 nm and 7.5 nm/3.8 nm, respectively.  Furthermore, from the change of α with 

capacitance density, it is possible to achieve capacitance density of over 8 fF/μm
2
 and 

α of near zero ppm/V
2
 by optimizing the ratio of SiO2 thickness to EOT of the 

dielectric stack.  The above experimental results satisfy the requirements of MIM 
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capacitors for precision analog circuit applications until year 2013.  The modulation 

of linear VCC β due to a varying SiO2 thickness in a Sm2O3/SiO2 dielectric is 

summarized in Fig. 5.22(b). β is reduced with an increase in the SiO2 thickness.  

The effect of the measurement frequency on α is depicted in Fig. 5.23.  It can 

be observed that the logarithm of α [log(α)] decreases linearly with a logarithmic 

increase in frequency. This is similar to the behavior of MIM capacitors with a single 

Sm2O3 dielectric in Fig. 5.7(a). 
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Fig. 5.23.  Frequency dependence of α for the Sm2O3/SiO2 MIM capacitors with Sm2O3 fixed 

at 7.5 nm while varying SiO2 thickness from 2.8 nm to 4.8 nm. 
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Fig. 5.24.  (a) J-V characteristics of Sm2O3/SiO2 MIM capacitors with 3 different thickness 

combinations at room temperature; (b) J-V characteristics of Sm2O3/SiO2 MIM capacitors 

with 8.5 nm Sm2O3 and 3.5 nm SiO2 measured at different temperatures (27-120 °C). 
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Fig. 5.25.  (a) Plot of ln(J/E) versus E
1/2

 as a function of temperature together with the linear 

fitting for the leakage current at high positive bias;  (b) Plot of ln(J) versus E
1/2

 as a function 

of temperature at low bias. 

 

-4 -2 0 2 4

10
-9

10
-8

10
-7

10
-6

-4 -2 0 2 4

10
-9

10
-8

10
-7

10
-6

10
-5

 

 

L
ea

k
a
g
e 

C
u

rr
en

t 
D

en
si

ty
  
J
 (

A
/c

m
2
)

Bias (V)

   Sm
2
O

3
/SiO

2

 6.5 nm/3.8 nm C=7.9 fF/m


 8.5 nm/3.5 nm C=7.2 fF/m


 8.5 nm/3.8 nm C=6.9 fF/m


3.3 V
(a) (b)

 
L

ea
k

a
g
e 

C
u

rr
en

t 
D

en
si

ty
  
J
 (

A
/c

m
2
)

 

 

Bias (V)

 27 C

 60 C

 90 C

 120 C

Sm
2
O

3
/SiO

2
 ~ 8.5 nm/ 3.5 nm



Chapter 5: Lanthanoid Oxides for Precision RF/Analog MIM Capacitors 

143 

 

Fig. 5.24(a) shows the dependence of leakage on various Sm2O3/SiO2 

thickness combinations at room temperature.  The leakage current density at 3.3 V are  

1.86×10
-7

 A/cm
2
, 1.03×10

-7
 A/cm

2
, and 6.48×10

-8
 A/cm

2
, for Sm2O3/SiO2 thicknesses 

of 8.5 nm/3.5 nm, 6.5 nm/3.8 nm, and 8.5 nm/3.8 nm, respectively. Further evaluation 

of the leakage characteristics of the laminate MIM capacitors involves J-V 

characterization at the maximum operating temperature of 120 ºC.  Fig. 5.25(b) shows 

the J-V curves for the laminate capacitors with 8.5 nm Sm2O3 on 3.5 nm SiO2 

measured from room temperature to 120 °C.  

The J-V characteristics exhibit two distinct regions under positive bias.  One is 

the low bias region (typically from 0 to 2.5 V) where the leakage current increases 

gradually with the applied voltage; the other is the high bias region (> 2.5V) where 

the leakage current increases more sensitively with increase in the applied voltage. 

The phenomena reflect different current transport mechanisms. For the negative bias, 

the rapid increase in current with increasing voltage does not appear until -3.5 V.  It is 

believed that the Poole-Frenkel (P-F) emission is due to field-enhanced thermal 

excitation of trapped electrons.  The conduction process at high bias in Fig. 5.24 (a) is 

likely dominated by P-F emission.  To further verify the possible effect, ln(J/E) versus 

E
1/2

 is plotted in Fig. 5.25(a) at different temperatures for high positive bias.  On the 

other hand, ln(J) versus E
1/2

 is also plotted in Fig. 5.25(b) for both positive and 

negative biases.  The leakage currents at low bias voltage show obvious temperature 

dependence, indicating that the leakage current at low electric field is likely due to 

Schottky emission. 

The J-V curves in Fig. 5.24(b) are asymmetric at the measurement 

temperatures shown.  This asymmetry in leakage current density may be contributed 

by interfacial charge which could be different for positive and negative biases.  A 
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classic model to explain the current transport mechanism in a bilayer capacitor 

involves the Maxwell-Wagner polarization [26, 27]. This phenomenon occurs when a 

bias is applied across a capacitor with two dielectric layers having different 

conductivities, leading to a discontinuity in current densities at the interface of the two 

layers and interfacial charge accumulation until, in steady state, the same current 

density is established through both layers.  Other than the interfacial charge, the space 

charge in the bulk of dielectric also affects the electric field in the capacitor dielectric 

layers [26].  The different barrier heights at top and bottom interfaces, may also 

contribute to different conductivities. 

 

Fig. 5.26 plots the breakdown voltage distribution for various capacitors with 

different Sm2O3 thicknesses stacked on a 3.8 nm SiO2.  The median breakdown 

voltages of MIM capacitors with 6.5 nm, 7.5 nm, and 8.5 nm Sm2O3 are equal to 6.2 

V, 7.0 V, and 7.5 V, respectively, i.e. the corresponding breakdown field is about 6 

MV/cm. 

The compensation effect is also found in Temperature Coefficient of 

Capacitance (TCC), which is another important parameter for precision MIM 

capacitors. The cancelling-out between positive value of TCC in Sm2O3 and negative 

TCC in SiO2 is clearly seen in Fig. 5.27. The TCC values are 65 ppm/°C, 50 ppm/°C 

and 28 ppm/°C for for 8.5 nm, 7.5 nm and 6.5 nm Sm2O3 stacked with 3.5 nm SiO2, 

respectively. These values are smaller than those reported for HfO2/SiO2 stack [25]. 
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Fig. 5.26.  Cumulative percentage for breakdown voltage of the MIM capacitors with various 

different Sm2O3 thicknesses formed on a 3.8 nm SiO2 layer. 
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Fig. 5.27.  Adding SiO2 layer improves the TCC of Sm2O3 MIM capacitors by the canceling 

effect due to the negative TCC of SiO2 MIM capacitors. 
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Fig. 5.28.  A comparison of MIM capacitors with a single layer Sm2O3 dielectric and a 

Sm2O3/SiO2 dielectric stack. The lowest values for α can be achieved at various capacitance 

densities by exploiting the canceling effect in the Sm2O3/SiO2 dielectric stack. 

 

Fig. 5.28 summarizes best values of  achieved at various capacitance 

densities in this experiment. By adding an underlying SiO2 layer to Sm2O3, we shift  

to smaller value, along with increased capacitance density.  

 

5.5.3 MIM Capacitors with Er2O3/SiO2 dielectric stack 

 MIM capacitors with Er2O3/SiO2 laminated dielectric having fixed SiO2 

thickness of 3 nm and Sm2O3 thickness varying from 6 to 8 nm were fabricated to 

investigate the “cancelling effect” of SiO2 (or Sm2O3) in Er2O3/SiO2.  

Fig. 5.29 shows the normalized C-V curves of the MIM capacitors with 

Er2O3/SiO2 dielectric stacks, in comparison with MIM capacitors single layer Er2O3 or 

SiO2.  The quadratic VCC is significantly improved by the cancelling effect. With the 
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Er2O3 thickness increases from 6 nm to 8 nm, the quadratic VCC α increases from 

negative to positive. The smallest α is obtained with 7 nm Er2O3. The asymmetric C-V 

curves in Fig. 5.29 indicate a non-zero linear VCC β, and that is a direct consequence 

of the asymmetric device structure, which leads to different interface band alignments 

and trap densities at the top and the bottom electrode-dielectric interfaces of the MIM 

capacitor. The capacitance densities achieved are 7.95 fF/µm
2
, 8,14 fF/µm

2
 and 9.44 

fF/µm
2
 for 3 nm SiO2 stacked with 8 nm, 7 nm and 6 nm Er2O3, respectively.  

The effect of the measurement frequency on α is depicted in Fig. 5.30.  The α 

decreases with a logarithmic increase in frequency. This is consistent with the 

behavior of MIM capacitors with stacked Sm2O3 /SiO2 dielectric in Fig. 5.23. 

Fig. 5.31 shows the leakage characteristics of the laminate MIM capacitors 

with three different thickness combinations at room temperature.  The leakage current 

density at +3.3 V are  7.06×10
-7

 A/cm
2
, 3.36×10

-7
 A/cm

2
, and 1.62×10

-7
 A/cm

2
, 

respectively, for the splits with Er2O3/SiO2 thicknesses of 6 nm/3 nm, 7 nm/3 nm, and 

8 nm/3 nm. The J-V curves are asymmetric for all the three splits. Due to the 

asymmetric structure, the charge trapping situations are different for positive and 

negative biases. This would affect the electric field distributions and consequently 

lead to different leakage current densities for positive and negative biases.  

The cancelling-out between positive value of TCC in Er2O3 and negative TCC 

in SiO2 is clearly seen in Fig. 5.32. The TCC values are 64 ppm/°C, 48 ppm/°C and 

35 ppm/°C for for 8 nm, 7 nm and 6 nm Er2O3 stacked with 3 nm SiO2, respectively. 

These values are smaller than those reported for HfO2/SiO2 stack [25], and the 

capacitance densities are higher. 
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Fig. 5.29.  Normalized C-V curves of Er2O3/SiO2 stack MIM capacitors. Curvature of C-V 

curves changes from negative to positive as the Er2O3 thickness is increased.  
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Fig. 5.30.  Frequency dependence of α for MIM capacitors with different Er2O3/SiO2 stacks. 
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Fig. 5.31.  J-V characteristic of Er2O3/SiO2 MIM capacitors with 6, 7 and 8 nm Er2O3, stacked 

with 3 nm SiO2. 
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Fig. 5.32.  Adding SiO2 layer improves the TCC of Er2O3 MIM capacitors by the canceling 

effect due to the negative TCC of SiO2 MIM capacitors. 
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The cumulative probability plots of breakdown voltage and breakdown field 

are indicated in Fig. 5.33 for single layer 10 nm Er2O3 and Er2O3/SiO2 stacks. In case 

of 50% probability of failure, the breakdown field of MIM capacitors with single 

layer Er2O3 is 4.1 MV/cm, but increased to around 7 MV/cm after stacking with SiO2.  

Fig. 5.34 summarizes best values of  achieved at various capacitances for 

MIM capacitors with Er2O3/SiO2 dielectric. By stacking Er2O3 with SiO2, we shift  

to smaller value, along with increased capacitance density, indicating higher 

capacitance density and lower .  With further optimization of the thicknesses of each 

oxide, even higher capacitance density is achievable at low quadratic VCC. 
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Fig. 5.33.  Cumulative probability dependent on breakdown voltage and breakdown field of 

the MIM capacitors with single Er2O3 layer and Er2O3/SiO2 stacks. 
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Fig. 5.34.  A comparison of MIM capacitors with a single layer Er2O3 dielectric and a 

Er2O3/SiO2 dielectric stack. The lowest values for α can be achieved at various capacitance 

densities by exploiting the canceling effect in the Er2O3/SiO2 dielectric stack. 
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5.6 Summary 

MIM capacitors using Sm2O3, Er2O3 were fabricated and characterized to 

utilize the cancelling effect for near-zero  and high capacitance density. MIM 

capacitors using Sm2O3 or Er2O3 dielectric material were found to have lower 

quadratic VCC as compared with other high-κ materials with the same capacitance 

density. Literature data and our experimental data on high-κ MIM capacitors are 

summarized in Table 5.2.  In comparison with data in the literature, MIM capacitors 

with PVD Sm2O3 and Er2O3 dielectric show high capacitance density, low leakage 

current, low α, acceptable β and small TCC, suggesting its potential use in future RF 

and analog/mixed signal IC applications. Comparing Sm2O3 and Er2O3, Er2O3 has the 

advantage of lower leakage current, but the quadratic VCC and TCC values are 

slightly higher. 

MIM capacitors with stacked dielectrics, namely Sm2O3/SiO2 and Er2O3/SiO2 

were fabricated to further reduce the quadratic VCC by utilizing the cancelling effect. 

Table 5.2.  Comparison of DC performance of reported binary high-κ MIM capacitors 

 Dielectrics 

Cap. 

Density 

(fF/μm2) 

Jleak @ 1 V 

(A/cm2) 

Jleak @ 3.3 V 

(A/cm2) 

α  @ 100kHz 

(ppm/V2) 

β @ 100kHz 

(ppm/V) 
TCC 

Reported 

High-κ 

MIM 

Ta2O5 [8] 4 N/A 6 × 10-7 -9.9 N/A 106 

Al2O3 [29] 5.2 4.3 × 10-8 N/A 2051 1888 109~208 

ALD HfO2  [4] 8 ~4 × 10-8 ~6 × 10-7 ~1800 ~4000 N/A 

PVD HfO2 [12] 14 ~3 × 10-9 ~8 × 10-6 4631 -4843 135 

La2O3 [28] 9.2 < 10-5 N/A ~3000 ~3000 347 

Our 

results 

Er2O3 

Er2O3 

Er2O3 

5.8 

8.9 

18.4 

3.5 × 10-9 

5.5 × 10-9 

1.3 × 10-8 

6.4 × 10-9 

1.4 × 10-8 

4.9 × 10-7 

240 

580 

2000 

-430 

-620 

-360 

178 

170 

126 

  Sm2O3 5.6 8.1 × 10-8 2.3 × 10-7 179 411 99 

Our 

results 
Sm2O3 7.6 1.1 × 10-7 6.0 × 10-7 315 589 91 

 Sm2O3 9.2 1.7 × 10-7 3.2 × 10-6  614 1170 82 
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Fig. 5.35.  A comparison of Sm2O3/SiO2 and Er2O3/SiO2 stacks with HfO2/SiO2 stack. 

Sm2O3/SiO2 and Er2O3/SiO2 stacks are better to meet the capacitance density requirements. 

 

Fig. 5.35 summarizes best values of  achieved at various capacitance 

densities utilizing the cancelling effect when stacking with SiO2. By replacing HfO2 

with Sm2O3 or Er2O3, we are able to achieve increased capacitance density while 

maintaining a near zero  value. With further optimization of the thicknesses of each 

oxide, even higher capacitance density is achievable at low quadratic VCC. 

Capacitors with stacked dielectrics offers high capacitance density (up to 8.5 

fF/µm
2
) with quadratic VCC lower than 100 ppm/V

2
, which meets the ITRS 

requirement in year 2013 [1]. The leakage current can be further reduced by using 

electrodes with higher work functions. These results support that high-κ/SiO2 MIM 

capacitor can be a long-term solution to RF, analog/mixed-signal capacitor 

technology. 
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Chapter 6 

Conclusion and Future Work 

 

6.1 Conclusion 

Lanthanoid elements are low work function metals and they form low work 

function silicides when anneal with silicon. Moreover, their oxides are thermally 

stable, featuring high dielectric constant (from 10 to 30), large band gap (from 2.4 eV 

to 5.5 eV). This thesis work has explored some of the possible applications of 

lanthanoid based materials in several areas of CMOS processing technology. The 

main contributions of this thesis are summarized below. 

6.1.1 Schottky Barrier Source/Drain Field-Effect Transistor 

In this chapter, we exploit SSDT using lanthanoid metal silicide to replace the 

traditional highly-doped source/drain. We developed a low temperature MOSFET 

process featuring a “hole spacer”, Schottky barrier source/drain, high-κ dielectric and 

metal gate electrode. Several lanthanoid elements, namely Dy, Er, Tb and Yb, were 

investigated to form silicide S/D for N-SSDT. The YbSi2-x has been found to be a 

very promising candidate for N-SSDT as it provides a high drive current with a very 

low leakage current. However, there are still major challenges integrating the 
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lanthanoid silicide S/D with conventional CMOS processing technology because of 

their chemically reactive nature.  

6.1.2 Yb Doped Ni FUSI for the N-MOSFETs Gate Electrode Application 

A novel Ni-FUSI gate tuning method using Yb-incorporated Ni FUSI was 

demonstrated for the first time. Electrical and material analysis was conducted to 

ascertain the attractiveness of this Φm tuning technique. By incorporating Yb, a FUSI 

gate Φm lowering of about 0.3 to 0.5 eV was achieved without compromising the gate 

integrity and capacitance density. The modulation of Ni-FUSI gate Φm was attributed 

to the presence of interfacial Yb-O dipoles. Additional insights were given for the 

application of the novel technique to attain band-edge Ni-FUSI gate Φ
m 

tunability in a 

gate-first process flow. It should be noted that the FUSI gate Φm lowering is not as 

effective on HfSiON as it is on SiON.  

6.1.3 NMOS Compatible Work Function of TaN Metal Gate with Erbium 

Oxide Doped Hafnium Oxide Gate Dielectric 

We exploit a novel method to engineer the Φm of TaN metal gate on HfO2 

dielectric to silicon conduction band edge. In this method, HfO2 dielectric was doped 

with Er2O3, which enabled Si conduction band-edge modulation (4.1 eV) of midgap 

TaN Φm. Band edge Φm was retained even after high temperature anneal. A small EOT 

of 1.15 nm was achieved by HfErO (30% Er). The modulation of TaN gate Φm was 

attributed to the presence of interfacial Er-O dipoles at the high-κ/SiOx-IL interface. 

Similar results are obtained by doping HfO2 doped by other lanthanoid metal oxides, 

namely Tb2O3, Dy2O3, and Yb2O3. This result is noteworthy for attaining band-edge 

TaN gate Φm on high-κ dielectrics stacks. 
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6.1.4 Lanthanoid Oxides for Precision RF/analog MIM Capacitors 

Lanthanoid oxide based metal-insulator-metal capacitors for precision analog 

circuit were demonstrated. From extensive material screening, Sm2O3 and Er2O3 are 

proved to be the most promising candidates among the 6 lanthanoid oxides 

investigated. In comparison with other high-κ materials reported in the literature, 

MIM capacitors with PVD Sm2O3 and Er2O3 dielectric show high capacitance density, 

low leakage current, low α, acceptable β and small TCC, suggesting its potential use 

in future RF and analog/mixed signal IC applications. MIM capacitors with laminated 

Sm2O3/SiO2 and Er2O3/SiO2 dielectric were fabricated and characterized to utilize the 

cancelling effect for near-zero  and high capacitance density. Capacitors with 

stacked dielectrics offers high capacitance density (up to 8.5 fF/µm
2
) with quadratic 

VCC lower than 100 ppm/V
2
. These results meet the ITRS requirement in year 2013 

and support that high-κ/SiO2 MIM capacitor can be a long-term solution to RF, 

analog/mixed-signal capacitor technology. 

6.2 Suggestions for Future Work 

The work presented in this thesis has been very exploratory and more detailed 

investigation and rigorous characterization will be necessary to evaluate the potential 

in applying these methods or concepts in coming technology nodes. Suggestions for 

future work will be directly or indirectly related to the work described earlier in this 

thesis. 

With the emergence of ultra-thin body devices (e.g. FINFET, nanowire 

transistor), SSDT will be of greater importance. For ultra-thin body device, the gate 

has better control over the channel and leakage current paths are minimized, but 
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dopant concentration becomes harder to control. Self-aligned metal silicide 

source/drain would be a potential solution. 

In source/drain engineering, T-FET is another attractive topic. The research is 

still at the earlystage. Due to its low drive current, it is more likely to be used in low 

power technology in the future.  

In Chapter 3, NMOS Φm tunability of Ni-FUSI gate was limited due to the 

small amount of Yb atoms segregated at the interface. This problem could be 

improved by reducing the polysilicon gate height to facilitate the diffusion of Yb, or 

by implanting Yb atoms directly into the polysilicon. Moreover, the proposed dual 

gate integration scheme could be verified by using two different kinds of dopants in 

Ni FUSI for NMOS and PMOS metal gate Φm control. In Chapter 4, although all the 

four kinds of lanthanoid oxides have been experimentally proved to be able to 

modulate the TaN Φm towards the silicon conduction band edge, the effectiveness of 

each oxide dopant has not been quantitatively evaluated. It will be helpful to precisely 

control the dopant concentration for a fair comparison.  A direct measurement of the 

momentum of the interface dipoles may be difficult but very helpful for understanding 

the mechanism. 

For high precision capacitors, the specifications on capacitance density and 

voltage linearity have been met. However, they would be useful for the industry only 

when there are significant improvements in the leakage current issue. The large 

leakage can be reduced in several ways. One is to replace the electrode with inert 

materials with higher work function, e.g., Pt, Pd and Mo. However, inert metals 

usually have compatibility problems, especially during the etching process. There is 

still a need to improve the dielectric integrity of lanthanoid oxides without increasing 
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the thermal budget. As mentioned in Chapter 5, the Sm2O3 and Er2O3 formed are both 

polycrystalline. The leakage through grain boundaries may have contributed a 

substantial amount of leakage current. Adding foreign materials such as Al or Ta to 

lanthanoid oxides would be one of the process options to obtain amorphous film and 

reduce the; however, this may also worsen the voltage linearity of lanthanoid oxides. 

Recently, resistive random-access memory (RRAM) has drawn much attention 

[3-5]. RRAM is a new non-volatile memory type, which bears some similarities to the 

phase change memory (PCRAM). The basic idea is that a dielectric, which is 

normally insulating, can be made to conduct through either a filamentary conduction 

path or an interface-type conducting path formed after application of a sufficiently 

high voltage. Recent studies have indicated that the electrochemical migration of 

oxygen vacancies in the vicinity of the interface could be one of the mechanisms that 

drive resistive switching [5]. Oxidative treatment of memory cells has been shown to 

change the resistive switching properties [5]. In Chapter 5, we have successfully 

engineered the voltage linearity of Er2O3 by manipulating the oxygen vacancies in the 

thin film. The same idea and device structure could be easily applied on RRAM 

studies by redesigning the oxide thickness and electrode materials. 
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