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Summary 

 

A one-channel high power efficiency Class D audio power amplifier utilizing 

full-feedforward Sigma-Delta topology is introduced. Compared to conventional 

structure, the power efficiency of this design is improved by using a novel three-level 

switching scheme which greatly reduces the switching activity of the modulator 

output and the power transistors, especially when the input power is small. 

The main building blocks of this Class D power amplifier are high-linear single 

loop full-feedforward Sigma-Delta modulator, power transistors driving circuit and 

full H-bridge output stage.  The output signal of the full H-bridge is directly feedback 

to the Sigma-Delta modulator which improved the PSRR of the power amplifier. 

This design is realized in 0.35µm CMOS technology. The power transistors and 

the Sigma-Delta modulator are integrated in a single chip which has 3.97 2mm  active 

area. The testing results show that the power efficiency for low input power is truly 

improved by using new switching scheme. The operational power supply for this 

design is ranged from 2.5 V to 4.5 V. With 3.3 V power supply, the THD reaches 

0.0817% at 0.1 W output power and the PSRR is 64.8 dB. With 4 Ohm load, the 

maximum power efficiency is 80%. 
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Chapter 1:  

Introduction 

 

1.1 Background 

Portable audio electronic devices such as mobile phone, MP3 player, have grown 

in popularity. They employ a power amplifier to drive a small loud speaker. Since 

these portable devices are powered by batteries and the power consumption of the 

audio system is significant to the total power consumption of devices, a highly 

efficient power amplifier with low power dissipation and low distortion is required 

[Kyo08]. The class D power audio amplifier provides a good solution in term of 

power efficiency. Compared to traditional class AB audio power amplifier, whose 

maximum power efficiency is around 60%, the class D power amplifier nowadays 

achieves much higher power efficiency. The theoretical maximum efficiency of a 

class D amplifier is 100%, but practically achievable is 90% at high output power 

[Axh07]. High power efficiency of class D power amplifier effectively reduces the 

supply current requirement so that the operation time of batteries is longer. Besides 

that, high power efficiency implies that less power is dissipated on the power 

amplifier itself. This greatly relaxes the thermal problem commonly found in power 
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amplifier. The bulky heat sink for power amplifier can even be eliminated to further 

reduce the size of the portable devices [Dap00]. These two advantages of class D 

audio power amplifier make it widely used for portable audio application. 

The major drawback of class D power amplifier is its higher distortion level 

compared to other type of power amplifier. Apart from distortion, electromagnetic 

interface (EMI) caused by high frequency switching operation is another problem 

[Ber03]. Therefore, to design a class D audio power amplifier which produces good 

quality sound with high efficiency is a big challenge. 

1.2 Objective 

The main objective of this project is to design a 1-channel class D audio power 

amplifier using full-feedfoward Sigma Delta modulator using 0.35  CMOS 

technology with 3.3 V power supply. The design aims to maximize the power 

efficiency with low distortion and high PSRR. The load for this design is a 4Ω or 8Ω 

resistive load.  Table 1.1 shows the design specifications for this project: 
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Table 1.1: Design Specifications 

Power Supply 3.3V 

Quiescent Current <10mA 

Load 4Ω or 8Ω 

Dynamic Range >90dB 

Maximum Output Power 1W 

PSRR >60dB 

THD+N <0.1% 

Maximum Power Efficiency >80% 

  

Active area As small as possible 

The design is done in Cadence EDA environment. This design is fabricated for 

the evaluation of the chip performance. Apart from the design of IC chip, testing PCB 

and the output filter for the class D power amplifier are also designed for the testing 

purpose in this project. 

1.3 Project Flow 

This research project can be separated into four stages. The first stage is paper 

research. The most recently published papers on class D power amplifier are studied 

in order to get a clear view on the research work done in this area. The second stage is 

the system level design. In this stage, the architecture of the power amplifier and the 

specifications of building blocks are determined. A single-stage 4th-order fully 

feedforward Sigma-Delta modulator is adopted to modulate the input signal. The third 

stage is transistor level schematic and layout design with simulation verification. 

Corner simulation and Monte Carlo simulation are carried out in this stage to ensure 
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that the design is able to work properly with process variations in fabrication. The last 

stage is the design of testing PCB and evaluation of the fabricated IC chip. In this 

stage, the performance of the designed class D power amplifier is extracted and 

compared with other designs. 

1.4 Thesis organization and publication 

This thesis is presented in seven chapters. Chapter 1 shows the motivation of this 

project and defines design specifications. Chapter 2 introduces the background 

knowledge of audio power amplifiers and the performance metrics. Chapter 3, 4 and 5 

are the main body of this thesis. They include the details of system level design, block 

level design and transistor level design. Chapter 6 presents the details of sample chips 

measurement and the performances comparison between this design and other designs 

in recent publications. Chapter 7 gives brief conclusion of this project and suggests 

the direction of further improvement of the design. 

This design had been published in International SoC conference 2008, Busan, 

South Korea. The publication list is shown in Appendix.  
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Chapter 2: 

Background of Class D Power 

Amplifier 

 

In this chapter, a short introduction of different types of power amplifier 

architectures and their trade-offs is discussed. Several general performance 

parameters are introduced and followed by the basic background knowledge about the 

class D power amplifier. 

 

2.1 Background of Audio Power Amplifier 

Audio power amplifier is an electronic device that produces high-power 

replication of low-power audio signal to deliver driving power for loudspeakers. 

Generally power amplifier can be classified into two categories: linear amplifier and 

switching amplifier.  
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2.1.1  Linear Amplifier 

Class A, Class B and Class AB power amplifiers are the commonly used linear 

power amplifiers. The output devices of a linear amplifier are operating at linear 

region for bipolar junction transistors or saturation region for CMOS transistors. They 

act as active resistors to regulate the power delivery to loads. 

In Class A amplifier, the output devices are continuously conducting for the 

entire cycle. This avoids turning the output on and off and hence Class A amplifier 

has very high linearity. However, since the output devices are always conducting 

current even if there is no input at all, power is wasted and this results in very low 

power efficiency. The power efficiency of Class A amplifier is typically from 5% to 

25%. Inefficiency of Class A amplifier introduces serious problems that limit its 

usage as audio amplifier although it delivers best sound quality. First of all, its low 

power efficiency results in very high heat dissipation on the amplifier itself when 

large output power if required. Huge and expensive heat sink is needed. Secondly a 

powerful power supply is also required in order to drive a Class A amplifier. 
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Fig 2.1.1a: Class A amplifier 

In Class B amplifier, one output element only conducts half of the input wave 

cycle. Therefore, its power efficiency is greatly improved compared with Class A 

amplifier. Theoretically, Class B amplifier has maximum power efficiency up to 

78.5%. However, there is trade-off between linearity and power efficiency. Since one 

output element only conducts in one half cycle and completely off in another half 

cycle, it creates large amount of distortion. Class B amplifier with single amplifying 

element is hardly found in application.  

 

Fig 2.1.1b: A single Class B element 
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Fig 2.1.1c: Class B push-pull amplifier 

In practical, the push-pull arrangement is commonly used in constructing Class B 

amplifier. Two Class B elements work together to form a complementary pair. Each 

amplifies one half of the input wave cycle and then combines them in the output to 

generate a full cycle output waveform. Although this architecture performs much 

better than the single Class B element, it suffers from crossover distortion. This refers 

to the small mismatch at the crossover point between the two halves of the output 

signal. This distortion reduces the linearity of the Class B push-pull amplifier. Many 

attempts have been made to reduce the crossover distortion. One is to bias the output 

elements to avoid completely turn-off when they're not in use, which is known as 

Class AB operation. 
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Strictly speaking, Class AB amplifier is not a separate class. It is the combination 

of Class A and Class B. Each output element in Class AB conducts current more than 

50% and less than 100% of input wave cycle, which depending on the biasing of the 

output devices. Class AB is a good compromise between power efficiency and 

linearity and it is widely used for audio amplifier. 

In general, linear amplifiers have high linearity and low distortion in term of 

performance. Apart from that, gain of linear amplifiers is constant and it is not a 

function of supply voltage. Hence, their power supply rejection ratio (PSRR) is also 

high. However, the power efficiency of linear amplifiers is usually low, which is 

about 50% typically. Low power efficiency makes it unsuitable to be used in 

batteries-driven portable electronic devices.  

 

2.1.2  Switching Amplifier 

 Most of time, the switching amplifier refers to Class D amplifier. Its operation is 

very different from linear amplifiers: The output devices of Class D amplifier operate 

as switches which are turned completely ―on‖ or completely ―off‖, making their 

resistance either zero or infinity in ideal case. The output devices are almost not 

losing any power by operating in this way: when the devices are complete ―on‖, the 
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voltage difference across them is zero; when the devices are complete ―off‖, the 

current flows through them is zero. Since the power dissipated in the output device is 

the product of the voltage difference and current flow, ideally, the power dissipated in 

devices is zero no matter in ―on‖ state or in ―off‖ state. Therefore, the power 

efficiency of Class D amplifier is 100% theoretically.  

However, in reality the power efficiency of Class D amplifier can never reach 

100%. This is because there is no ideal switch in practice. The small on-resistance at 

―on‖ state and non-infinite resistance at ―off‖ state of the switch dissipates power on 

the switch itself. Besides the imperfection of the output devices, high frequency 

switching of the output devices also causes power loss. In real switching process, the 

output devices cannot be turned ―on‖ or ―off‖ immediately. There is transition time 

between ―on‖ and ―off‖. During the transition period, neither the current flow nor the 

voltage difference of the output devices is zero, and hence power is dissipated on the 

devices. Furthermore, in order to reduce the on-resistance of the output devices, the 

size of the output devices is usually large. This introduces large parasitic capacitance 

to the output devices. In the switching process, high frequency charging and 

discharging of the parasitic capacitance waste power. These power losses related to 

switching process is named switching loss. It cannot be neglected if the switching 
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frequency is high. Last but not least, the power consumed by signal processing unit 

and gate driving unit of Class D amplifier further reduce its power efficiency.  

In practice, the power efficiency of CMOS Class D audio power amplifier is 

typically 75% to 90%. High power efficiency implies less heat dissipation on the 

amplifier and less current requirement. Therefore, the power supply and heat sink 

requirements are relaxed for Class D amplifier. This helps to reduce the cost and 

device size. Furthermore, high power efficiency also helps to extend batteries life. 

Hence, compared to linear power amplifier, Class D amplifier is far more suitable to 

be used in portable electronic devices such as PDA, MP3 player and notebook. 

 

Fig2.1.2: Power efficiency of Class D VS. Class AB [int] 
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2.2  Performance Metrics for Audio Power Amplifier 

The performance of audio power amplifier can be identified by some parameters, 

for example THD, PSRR, power efficiency and etc. The system parameters below are 

some of the most important ones. 

2.2.1  Power Efficiency (η) 

Power efficiency is the ratio of the power delivered to load and the total power 

delivered by the power supply. To maximise the power efficiency is always one of the 

design targets regardless of type of the power amplifier. 
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2.2.2  Dynamic Range (DR) 

The dynamic range is specified as the ratio of the rms value of largest possible 

undistorted sinusoidal signal to the rms value of noise amplitude. The higher the 
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dynamic range, the better the amplifier performances. One can calculate the dynamic 

range of an amplifier by the following equation: 

 
rmsnoise

rmsO

V

V
DR

_

max_

10log20                             (Equation 2.2) 

 

 

2.2.3  Total Harmonic Distortion (THD) 

THD is a measurement of linearity of a system. A non-linear system adds 

harmonic of original frequencies to introduce distortion to the signal. For audio 

amplifier, THD should be kept as low as possible so that it can reproduce good sound 

quality. The following equation shows the calculation of THD commonly for audio 

specification (percentage THD) : 
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2.2.4  Signal to Noise Ratio (SNR) 

SNR is the measurement that compares the signal level to the background noise 

level. It is defined as the ratio of the output signal power to the noise power within the 

bandwidth of interest. SNR can be calculated by the following equation: 

  
rmsnoise

rmssignal

V

V
SNR

_

_

10log20                         (Equation 2.4) 

 

 

2.2.5 Power Supply Rejection Ratio (PSRR) 

PSRR describes the ability of a device to reject noise from power supply. The 

definition of PSRR is the ratio of the change in supply voltage to the corresponding 

change in output voltage of the device. PSRR varies in different frequency and 

generally it tends to worsen with increasing frequency. Ideal amplifier has infinite 

PSRR.  

rmsout

rmsdd
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V
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_

10log20



                    Equation (2.5) 
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2.3  Conclusion  

In this chapter, the basis of Class D power amplifier is presented. It operates very 

differently from a linear amplifier. Using switching mode of the output device, Class 

D amplifier can achieve very high power efficiency, which is the main advantage for 

this type of amplifiers. Besides the Class D amplifier, other types of amplifier such as 

Class A, Class B amplifiers are briefly introduced in order to visualize the basic 

differences between switching amplifiers and linear amplifiers. 
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Chapter 3: 

Architectural Design 

Due to the switching nature of class D power amplifier, its structure is very 

different from conventional linear amplifier. The input signal must be modulated into 

switch control signal before it processes to output stage. In this chapter, the general 

architectural design of class D amplifier is discussed. An appropriate architecture of 

each building block is chosen and presented in the second half of this chapter. 

 

3.1 General Architecture of Class D Amplifier  

 

Fig3.1: Block diagram of a Class D amplifier 

The above figure shows the general block diagram of a Class D amplifier. There 

are four main building blocks: signal modulator, output buffer, output devices 

(switches) and low pass filter (LPF).  
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The signal modulator is in charge of converting analog input signal into sequence 

of pulse. This pulse at modulator output is the digital representation of the analog 

input signal: its average value is directly proportional to the amplitude of the input 

signal at that time. In order to get an accurate estimation of the input signal, the 

frequency of pulse must be much higher than the bandwidth of the input signal. The 

pulse train from signal modulator is fed into the output buffer to generate the output 

switch control signal to regulate the power deliver to the loads. 

The output buffer between the signal modulator and output devices is used for 

driving the output devices and introducing dead time. The output devices of solid-

state Class D amplifier are usually power transistors which are very large in size. The 

purpose is to reduce the on-resistance to improve the power efficiency. Hence, the 

input capacitance of the output device is quite large due to its large size. In order to 

charge and discharge the input capacitance of the output device very fast to reduce the 

transition time, the output buffer between signal modulator and output power 

transistors is required. Besides to provide driving power to the gates, output buffer 

play a role in controlling the dead time to prevent shoot through current at output 

stage.  
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As mention above, the output device of a Class D power amplifier is usually half-

bridge or full H-bridge. They consist of CMOS power transistors and work as 

switches to supply large current to drive Low Pass Filter (LPF) and speaker. The 

output signal from the H-bridge is high power pulse train. Unwanted spectral 

components of this pulse train, for example, the pulse frequency and its harmonics, 

must be removed by a passive low pass filter to reconstruct the input analog signal. 

This filter is usually made with (theoretically) lossless components like inductors and 

capacitors in order to maintain efficiency. 
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3.2 Signal modulation scheme 

 As shown in the previous section, the input audio signal needs to be converted 

into switch control signal to regulate the output power transistors to deliver current. 

This job is done with signal modulator. Although there are many ways to implement 

signal modulator for class D amplifier, the fundamental principle is the same: to 

encode information of audio input signal into a pulse stream. The spectrum of 

modulator output contains both high frequency pulse information and input audio 

signal content. Generally speaking, those modulation techniques produce bit stream 

that its pulse width or the pulse frequency is directly proportional to the instantaneous 

input amplitude. The most common modulation schemes used in class D amplifier are 

Pulse Width Modulation (PWM) and Sigma Delta Modulation (SDM). SDM 

technique is adopted in this project. 
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3.2.1 Pulse Width Modulation 

 As its name states, the pulse width of PWM modulator output is varying with 

the amplitude of the input signal. This can be achieved by comparing the input signal 

to a sawtooth waveform which is running at much higher frequency than the signal 

band [Kyo08]. Usually the sawtooth waveform has fixed carrier frequency. The pulse 

train produced by PWM modulator also runs in this carrier frequency. The figure 

below illustrates the idea of PWM clearly. 

 

Fig3.2: Typical PWM input and output signal 

 If the audio input signal (green wave) level is higher than the sawtooth signal 

(blue wave) level, the output of PWM modulator is at high state, and visa versa. We 
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can see that the frequency of PWM signal is constant, but its duty cycle is changing 

with the input signal amplitude. 

 Some attractive features of PWM make it popular in class D amplifier design. 

Firstly, it can achieve above 100 dB signal-to-noise ratio (SNR) at audio band with as 

low as hundreds of kHz carrier frequency [Gaa05]. The low carrier frequency implies 

less power loss due to switching activity. Secondly, PWM modulator is stable at very 

high percentage of modulation [Gaa05]. This allows PWM to have high output power. 

 Unfortunately, there are some undesirable features of PWM modulator. First 

of all, as we can see from figure 3.2, the PWM signal has constant carrier frequency. 

This introduces concentrated high power peak at carrier frequency in spectrum. Its 

harmonics produce EMI with the AM radio band. Secondly, PWM process inherently 

adds distortion in many modulation schemes [Nie97]. One more problem is that when 

the input signal level is very low, the duty cycle of the PWM signal is very small for 

high percentage of modulation [Nie97]. It is clearly shown in figure 3.2.  This very 

short pulse width creates problems in gate driving circuit design: if they do not have 

enough driving capability, they cannot switch fully on output power transistor to 

reproduce the short pulse. Therefore, full modulation is usually not achievable for 

PWM base class D amplifier which limits maximum output power of amplifier. 
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3.2.2 Sigma Delta Modulation 

Compare to PWM, SDM encode input audio signal into steam of pulse in 

different way: instead of changing the duty cycle of pulse train in carrier frequency, 

SDM varies pulse density according to the input. The number of pulses in a time 

window is directly proportional to the average value of the input audio signal level at 

that instant. Therefore, SDM is a kind of Pulse Density Modulation. The typical 

output waveform of conventional two-level quantization SD modulator is below: 

 

Fig3.3: Typical output waveform of two-level quantization SD modulator 
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Figure 3.3 clearly shows that the pulse density of the modulator output is directly 

proportional to the amplitude of the input signal. SM modulator makes a rough 

evaluation of input signal. The mean output value is equal to the mean input value. 

From the above output waveform of SD modulator we can notice some of its 

interesting characteristics. First of all, its individual pulse width is fixed. This avoids 

short pulse width problem that imposed by PWM and relaxes the design requirement 

of gate driving circuit. Secondly, we can see that in time domain the SD modulator 

output is no longer running at a fixed frequency. It is varying with the input signal. 

Translate this into frequency domain imply that the high frequency energy in SDM is 

distributed over a wide range of frequency. This is an advantageous feature over 

PWM as there is no more concentrated tones at carrier frequency and its harmonics, 

which is able to reduce the EMI problem.  

Apart from the characteristics stated above, there are two important features that 

make SDM attractive. They are Oversampling and Noise Shaping: Oversampling 

helps to reduce the quantization noise level while Noise Shaping helps to push in band 

noise out of band of interest so that the in band noise reduce further. These two 

features allow SDM to achieve high SNR within band of interest.  



 

24 

 

Since SD modulator is used in this class D amplifier design, more detail on SDM 

and the structure of SD modulator will be covered in next chapter. 

 

 

3.3 Architectural of output stage 

There are two commonly used output architecture for class D power amplifier: 

Half bridge circuit and full bridge circuit. Half bridge is the single ended output 

version while full H bridge is a differential implementation of the output power 

transistors. Each implementation has its pros and cons. In brief, half bridge is 

potentially simpler to implement while full H bridge has better audio performance. 

Apart from the output stage topology, the impact of dead time introduced by gate 

control circuit is also discussed in this section. 
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3.3.1 Half bridge output 

The figure below shows a general half bridge circuit: 

 

Fig3.4 Half bridge output circuit 

MH and ML are the power transistors to deliver power. When MH turns on, 

charge is injected into LPF and speaker; when ML turns on, LPF is discharged and the 

voltage level at the LPF output is reduced. MH and ML are never turn on 

simultaneously to prevent creating low impedance path between Vdd and Vss.  

Half bridge architecture is simpler than full bridge architecture. And it has the 

same functionality as the full bridge output. However, two disadvantages of half 

bridge structure limit its usage in class D amplifier: 
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 Half bridge structure can be powered by bipolar power supplies or single 

power supplies. However, with single power supplies, a harmful dc bias 

voltage which is half of Vdd is imposed across the speaker. It creates power 

loss so that degrades the efficiency of the amplifier. Therefore, this 

undesirable dc biasing voltage should be removed by inserting a large dc 

blocking capacitor in between the half bridge circuit and speaker. By doing 

this, the output filter becomes more bulky and costly.  

 

 Half bridge also suffers from supply voltage pumping effect. Due to the  single 

ended structure, the energy flowing in the output stage is bidirectional. The 

energy stored in the inductor of output LPF is kicked back into power supply 

bus. This introduces power supply noise which degrades the performance of 

class D amplifier. The voltage level of these spikes can be reduced by adding 

large decoupling capacitor in between Vdd and Vss. This also increases the 

cost of amplifier. The figure below shows how this pumping effect occurs: 
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Fig3.5: Supply voltage pumping effect 

As the single ended output version, half bridge circuit is simpler to build. 

However, due to its inferior performance compare to full H bridge, it is not widely 

used in class D amplifier design. 

3.3.2 Full H bridge output 

 Full H bridge structure is the differential ended version of the output stage. 

The following figure show a full H bridge circuit. 

 

Fig3.6: Differential output stage and its LC LPF 
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 In one time period, MHa and MLb turn on at the same time while the other 

two are in off state, current flows from Vdd to Vss and delivers power to the speaker. 

In another time period, MHb and MLa turn on to deliver power. 

The full H bridge consists of two half bridge. Hence more components are needed 

to construct this circuit and its LPF. Although the cost to build full H bridge is higher, 

it is still much more popular than half bridge due to its superior audio performance: 

 First of all, unlike single ended version, full bridge does not suffer from 

supply voltage pumping effect. This is because the inductor current flowing 

into one of the half bridge flows out from the other one due to the 

complementary switching operation of these two half bridge. Therefore, no 

energy is pumped back into the power supply. Since the gain of class D 

amplifier is directly proportional to the supply bus voltage, reducing 

fluctuation in supply voltage implies less distortion introduced in the output 

signal. The following diagram shows how full H bridge is immune to supply 

voltage pumping effect: 
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Fig3.7: Local current loop to prevent pumping effect 

 Due to the differential operation, full H bridge topology inherently eliminates 

even orders harmonic distortion as well as harmful dc biasing offset [Axh07]. 

Hence, full H bridge usually runs with single power supply without the dc 

blocking capacitor. 

  

 With the same power supply voltage, the output signal swing of full H bridge 

topology is two times compares to the single ended implementation. Since 

power=V^2, the full bridge structure is able to deliver four times output power 

of half bridge, which is especially valuable in low voltage design [Axh07].  

 

 Another important feature of full H bridge is that 3 level switching operation 

can be implemented. This switching scheme effectively reduces the 

differential EMI and the switching activity of the output power transistors. 
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Since three levels switching operation is one of the most important of this class D 

amplifier design, full H bridge output stage topology is adopted in this design project. 

 

3.3.3 Dead time and distortion 

The purpose of introducing dead time for output stage control signal is to prevent 

both PMOS and NMOS of the output power transistors turn on during the transition 

period. Due to power efficiency requirement, the power transistors have low 

resistance in order to reduce conduction loss. Simultaneously turning on high side and 

low side power transistors create a low impedance path that shorts Vdd and Vss 

directly. This introduces a very large short circuit current which adds on to power loss, 

and more importantly, the reliability issue on output stage. 

 

Fig3.8: Dead time of output control signal 
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The above figure shows how dead time, or non-overlapping time, works on the 

output stage. During the dead time period, both MH and ML are turned off. This 

operation ensures that one switch starts to turn on only after the other one has been 

completely turned off. Therefore, there is no low impedance path between Vdd and 

Vss at any time so that no shoot through current is formed. The voltage across the 

load depends on the direction and magnitude of the load current during the dead time 

period [Mos99].  

Although the dead time of switching control helps to improve the power 

efficiency of the amplifier and addresses reliability issue, it also introduces switching 

timing error in gate control signal at the same time. Since this timing error is the main 

cause of the nonlinearity, dead time has significant contribution to the distortion of 

class D amplifier [Mos99]. Next figure shows the mechanism of timing error induced 

by the dead time. The diodes in this figure are body diodes of the output power 

transistors. The blue line shows the load current path during conduction period while 

the red line shows the load current path during the dead time period.  
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Fig3.9: Current flow in full H bridge 

The operation of full H bridge can be categorized into two regions: the single 

directional output current operation region and bidirectional output current operation 

region. When the output current is larger than the LPF inductor ripple current, the 

output current flows in single direction within one whole period and it is in single 

directional output current operation region. When the output current is smaller than 

the inductor ripple current, the output current flows in positive direction in on-time 

period and it flows in negative direction in off-time period. The full bridge is in 

bidirectional output current operation region. 

During the conduction period of positive single directional output current 

operation region, SW1 and SW4 turn on. The left side full bridge output Va is at high 

voltage level. Load current flows from Vdd to ground through SW1 and SW4. Since 
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the output current is larger than the inductor ripple current, it is still flowing in the 

same direction during the dead time period due to the inductor of LPF. The output 

current flows from ground to Vdd through the body diodes of SW2 and SW3 as all 

switches are turned off in this particular period. D2 and D3 conduct and so that node 

Va is connected to ground. Hence, Va is low during dead time. In another word, the 

voltage level of left half bridge output node goes low at the instant when SW1 is 

turned off. In summary, for positive single directional output current operation region, 

the output voltage only follows the SW1 switching signal from the gate driving stage. 

Since on-time from modulator is equal to on-time + dead time from gate driver, the 

on-time of H bridge is shortened by one dead time compare to the correct on-time 

from modulator. This timing error lowers the gain of class D amplifier. The situation 

is the same for negative direction output current operation region. 

In the bidirectional output current operation region, since the load current is lower 

than the inductor ripple current, the output current of H bridge returns to zero during 

the dead time. All the switches and body diodes are in off mode and so that the output 

node of H bridge is floating and Va is undetermined in this particular period. For 

simplicity, we can consider that the Va in dead time has the same voltage level before 

the dead time. In this case, at the instant when SW1 is turned off, node Va is floating 
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and it is in high voltage level since Va is high before SW1 turned off. Therefore, the 

on-time of the H bridge is on-time of SW1 from gate signal plus the dead time, which 

is the same as the correct on-time from the modulator. In summary, dead time does 

not add timing error in bidirectional output current operation region and hence, no 

variation in the gain of class D amplifier. 

Since the output current magnitude is dependent on the audio input signal, 

operation region of the full bridge output is changing from time to time. As the gain is 

different for each operation region, the output waveform will be distorted. The gain 

error is directly proportional to the timing error introduced by the gate driving stage, 

reducing the dead time decreases the timing error so that the distortion decreases at 

the same time. Therefore, the dead time should be minimized in order to get good 

sound quality. 
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3.4 Three level switching scheme for SDM 

1 bit quantizer is widely used in SD modulator design due to the simplicity and 

linearity. It uses 1 bit digital to analog converter (DAC) to implement the feedback. 

Since the nonlinearity of DAC directly add to the input, and this nonlinearity is not 

able to be suppressed by the loop filter, the nonlinearity of DAC introduces distortion 

to the output signal without attenuation. Therefore, the linearity of feedback DAC is 

very important in SD modulator design. Single bit quantization SD modulator is 

inherently linear as it only has two output levels and two points define a straight line, 

and hence it is widely used in design.  

 However, from figure 3.3, we can notice an interesting phenomenon for 1-bit 

sigma-delta modulator is that the output switching activity is very high when the input 

amplitude is small. This is due to the high quantization noise of single bit SD 

modulator, which makes the output switching frequently between state 1 and state -1 

so that its average value is small. This degrades the power efficiency of the class D 

amplifier for low output power due to high switching loss. Furthermore, because of 

fully differential switching operation of each half bridge, there is always a conduction 

current flowing in the output stage. Figure 3.10 in the next page shows the voltage at 

the output nodes, Va and Vb, of each half bridge and the conduction current flowing 
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into the load. Va and Vb are always in complementary and only two differential 

operating states exist, which means current is always flowing between this two nodes. 

Output current is positive at state 1, while it is negative at state -1. This continuous 

conduction current induced conduction loss of full bridge output and therefore further 

degrades the power efficiency.  

 

Fig3.10: H-bridge output voltage and load current of 1-bit SD modulator 

In this design, 1.5 bit quantization SD modulator is adopted and three-level 

switching scheme is used. Compare to conventional binary switching operation which 

only processes state 1 and state -1, three-level switching scheme brings in one more 

state: the state 0. At state 1 and -1, two half bridge outputs Va and Vb are opposite, 
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while at state 0, two half bridge outputs have the same polarity, either both are at Vdd 

or both are at ground. This common mode state is used in conjunction with two 

differential states to produce three-state modulation. The differential input to the LPF 

of the output stage is positive, zero and negative in three different states. The output 

voltage of each half bridge and the output current are shown in figure 3.11. At state 0, 

the output stage current is zero since both Va and Vb are at voltage low. Instead of 

keep providing current to the load in binary switching scheme, the full H bridge only 

provides current to the load when it is needed. This greatly reduces the conduction 

loss due to the imperfect switches.  

 

Fig3.11: H-bridge output voltage and load current of 1.5-bit SD modulator 
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One more advantage of 1.5 bit quantization is that instead of switching frequently 

between state 1 and state -1 to deliver low output power, the 1.5 bit quantization 

modulator outputs higher density of state 0 to represent low output power. This 

prevents high switching activity for low input amplitude and further improves the 

power efficiency of the amplifier. Figure 3.12 shows the normalized switching 

activity of the 1 bit SD modulator and 1.5 bit SD modulator with different output 

power simulated in MatLab: 

 

Fig3.12 Normalized switching activity of 1 bit and 1.5 bit SD modulator at 

different output power 

It is obvious that the switching activity of the full H bridge driven by 1.5 bit SD 

modulator is lower than the one driven by 1 bit SD modulator, especially when the 

output power is small. Decrease in differential switching also helps to reduce 

differential EMI. 



 

39 

 

3.5 PSRR and Feedback Topology 

One of the major drawbacks of class D power amplifier is the poor Power Supply 

Rejection Ratio (PSRR) [Put03]. Since the output stage is a full H bridge or a half 

bridge for class D amplifier, the output transistors connecting the power supplies to 

the LPF which is a very low impedance path. The fluctuation in power supplies bus is 

directly coupled to the load with very little attenuation. Hence, there is almost no 

rejection for the power supply noise for the open loop class D amplifier and the PSRR 

is very low [Put03]. This means a very stable and clean power supply is required to 

drive the open loop class D amplifier. Furthermore, since the gain of class D amplifier 

is directly proportional to the bus voltage, variation in bus voltage change the gain of 

the amplifier which results in distortion at the output. This further degrades the 

performance of class D amplifier. Figure 3.13 depicts the simplest linear model for an 

open loop class D amplifier: 

 

Fig3.13: Linear model for open loop class D amplifier 
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Where X is the input, Y is the output and N is only considering the power supply 

noise. The power supply noise transfer function is unity which implies 0 dB PSRR. 

Although the LPF is able to reject the supply noise outside the signal band, all the 

noise within audio frequency is passed through and affects the sound quality. 

One way to address this issue is to use feedback with high loop gain. This helps 

to improve PSRR of the amplifier greatly. Besides that, it also attenuates the 

distortion caused by the bus voltage variation. With this negative feedback, the 

voltage fluctuation in power supplies is suppressed by the loop filter. Figure 3.14 

shows the linear model with feedback. 

 

Fig3.14: Linear model for class D amplifier with feedback 

Consider N as the power supplies noise, the noise transfer function is: 

1

1

mod 


fbulator

N
HG

H                              (Equation 3.1) 
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We can see that the supplies noise is suppressed by the loop gain of the filter. If 

the loop gain is very large within the audio band, which is the case in SD modulator 

class D amplifier, the noise will be attenuated greatly. Hence, the PSRR of the 

amplifier is improved. 

SD modulator is used in this design. It is a feedback system which suppresses the 

quantization noise. If we adjust the feedback loop so that to include the power 

supplies noise, the PSRR of the whole system will be improved a lot. This concept is 

illustrated in figure 3.15(a) and 3.15(b). 

 

 

Fig3.15(a): Model of SDM class D amplifier with feedback from quantizer 
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Fig3.15(b): Model of SDM class D amplifier with feedback from H bridge 

E is the quantization noise and N is the power supplies noise. By shifting the 

feedback point from quantizer of SD modulator to the H bridge output of class D 

amplifier can include both the quantization noise and power supplies noise. This 

feedback topology guarantees the design to be able to achieve high PSRR. 
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3.6 Overall architectural design 

 

Fig3.16: Block diagram of proposed class D amplifier 

Figure 3.16 depicts the proposed overall architectural design for this class D 

amplifier. Those blocks in gray areas are the on-chip components. A 1.5 bit SD 

modulator is used in this design to reduce the switching loss and conduction loss. A 

full H-bridge output stage helps to deliver more power and to eliminate the 2nd order 

harmonic distortion. The output of full H-bridge is fed back directly to the input of the 

modulator to improve PSRR of the class D amplifier. A zero-dead-time gate driving 

circuit is used in this design to minimize the distortion introduced by timing error. 

The gate driving circuit is designed in a way that the transition time for the gate 

control signal is very short to minimize the short circuit conduction loss. Due to low 

cut-off frequency, the lossless LC LPF is not able to be integrated onto the chip and it 

is built on the testing PCB. 
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Chapter 4: 

Sigma-Delta Modulator Design 

Signal modulator is the most important building block for a class D power 

amplifier. Pulse width modulation scheme and sigma-delta modulation scheme are 

commonly used for the signal modulator design. In this design, a three-level-

quantization SD modulation scheme is chosen. The oversampling and noise shaping 

features of SD modulator helps to improve performance of class D amplifier. 

The design details of the SD modulator for this project are discussed in this 

chapter. It consists of three major parts. In the first part, the basic principle of SD 

modulation is introduced and its main features are discussed. In the second part, the 

system level design of the SD modulator is cover. The system parameters and the 

architecture of the SD modulator are determined in this part. The system level design 

is mainly done by doing behavioural simulation in MatLab. The circuit 

implementation of the SD modulator and the transistor-level design of its building 

blocks are covered in the last part.  
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4.1 Basis of Sigma-Delta Modulator 

Before going into the detail discussion of SD modulator design, a brief 

introduction on conventional SD modulation is given for better understanding.  

 

 

Fig 4.1: Structure of simplest single loop 1st order SD modulatorf 

Figure 4.1 shows the simplest conventional sigma-delta modulator. It is 

configured as a closed loop using negative feedback, and has the noise-shaping 

property that removes the nonlinear components within the signal band [Kyo08]. The 

analog input, X, is fed to an integrator, and the output of the integrator is fed to a 

quantizer (A/D converter). The output of the modulator, Y, is converted back to 

analog signal by DAC and subtracted from the analog input. This feedback forces the 
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output of modulator, Y, tracks closely to the analog input signal, X, and so that the 

average value of the quantized signal is equal to the average value of input signal.  

In order to study how the SD modulator process signal and noise, the linear 

model for conventional 1st order SD modulator needs to be built. The tricky part on 

building up this linear model is the existence of quantizer, which is a non-linear 

element. Since the output bitstream of the modulator contains the average input value, 

this bitstream can be seen as the combination of input and large magnitude noise. 

Therefore, the quantizer can be modelled as a signal source which adds noise to the 

input. Here is the linear model for the conventional 1st order SD modulator. 

 

Fig 4.2: Noise Injection model for 1st order conventional SD modulator 

The signal transfer function and noise transfer function for this conventional 

sigma-delta modulator are shown below:  
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Signal transfer function:  
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                     (Equation 4.1) 

Noise transfer function:  
 f

f
H

N



1

1
               (Equation 4.2) 

If H(f) is chosen to have high magnitude within the signal band, it is clear that S(f) 

becomes close to unity while N(f) become very small within band of interest. The SD 

modulator can be seen as a band pass filter for signal X and band stop filter for noise 

E. However, the noise outside the signal band is not reduced by the feedback system 

as the loop gain outside the signal band is small. For class D amplifier application, the 

out-of-band noise can be filter out by the LPF at the output stage. 

 This is the noise shaping feature of sigma-delta modulation. It can reduce the in 

band noise and hence, improve the SNR in the signal band. The following figure 

illustrates this concept.  

 

Fig 4.3: Frequency response of SD modulator due to Noise shaping  



 

48 

 

 

Fig 4.4: Conventional 2nd order single loop SD modulator 

The 2nd order SD modulator contains two integrators inside the loop. The noise 

shaping is more aggressive if the orders of the loop filter increase. As we can see from 

figure 4.3, the 2nd order loop has steeper slop at the low frequency. This implies that 

the 2nd order loop have better noise rejection ability and so that its output has higher 

SNR than the one produced by 1st order loop filter.  

Another important feature of sigma-delta modulator is oversampling. In order to 

prevent anti-aliasing, signal is usually sampled in its Nyquist rate. If the sampling rate 

is higher than the signal’s Nyquist rate, it is called oversampling. If the maximum 

signal bandwidth is of
 and the sampling rate is sf

, the oversampling ratio can be 

calculated by: 

o

s

f
f

OSR
2

                                (Equation 4.3) 
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The advantage of oversampling is that it uniformly distributes the quantization 

noise across fs rather than fo. This reduces the quantization noise level according to 

the OSR. The plot below explains this concept: 

 

Fig 4.5: Quantization noise in Nyquist rate sampling and oversampling 

The total quantization noise is the same for both in a Nyquist converter (in yellow) 

and in an oversampling converter (in blue), but it is distributed over a larger spectrum. 

The quantization noise level for the oversampling converter is 1/OSR of the 

quantization noise level for the Nyquist converter. Therefore, the higher the 

oversampling ratio, the better the SNR performance. The curves in figure 4.5 shows 

the noise shaping ability of 1st , 2nd and 3rd order SD modulator respectively. 
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4.2 Sigma-Delta Modulator System Level Design 

System level design is important science optimization in block level help to relax 

the constrains in circuit level design. In this section, system level issues are covered, 

includes SD modulator topology selection, stability issue and system level parameters 

optimization. Besides that, a novel SD modulator topology is introduced and its 

advantages over conventional topology are discussed in this section. 

 

4.2.1 System level Design parameters 

In this section, the major design parameters in system level are briefly introduced 

and the design strategy is also discussed. 

4.2.1.1  Modulator architecture 

Generally speaking there are two types of SD modulator architectures: single loop 

SD modulators and cascaded SD modulators.  

As the name stated, the single loop architecture consists of only one single SD 

loop in the modulator. It is the simpler and easier-to-build architecture since the 

building blocks requirement is relaxed comparing to cascaded architecture, especially 
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the gain of the OTAs. The major drawbacks of single loop architecture are its weaker 

noise shaping ability and its instability. A high order single loop SD modulator tends 

to suffer from oscillation when the input signal level is large.  

The cascaded architecture consists of cascading several single loop SD 

modulators. Fig 4.6 shows an example of a 4
th

 order cascaded SD topology. 

Theoretically, orders of single loop SD modulator used for cascading is not restricted. 

However, low order of SD modulator is used in each cascade stage in practice for 

stability purpose. The main advantages of cascaded architecture are the high linearity 

and good stability. With proper design, a cascaded SD modulator can have high order 

loop filter yet remains stable. Therefore, it can achieve higher SNR than single loop 

architecture. However, due to noise leakage problem of cascaded architecture, 

requirement of the building blocks is very high. Since finite OTA dc gain, settling 

error of integrator and mismatch of loop coefficient are the main causes of noise 

leakage, very high OTA dc gain is require.  

Since the cascaded architecture is highly sensitive to the nonlinearity of building 

blocks, its implementation is very difficult. And hence, the single loop architecture is 

adopted in this design project. 
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Fig 4.6: A 4
th

 order cascaded 2-1-1 SD modulator [Yao05] 

 

4.2.1.2  Oversampling ratio 

Section4.1 shows that higher oversampling ratio (OSR) results in lower 

quantization noise level. SNR of a SD modulator can be increased by using higher 

OSR. For a Nth order SD modulator, doubling of OSR results in (0.5+N) bit increase 

in SNR. Unfortunately, speed limitation of circuit implementation does not allow 

OSR going too high. In practice, lower OSR is preferred to achieve the same 
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modulator performance. This is because reducing OSR helps to relax the speed 

requirement of the circuit and helps to decrease the switching activity of class D 

amplifier output stage. 

 

4.2.1.3  Loop coefficient 

The stability issue of single loop SD modulator which is greater then 2nd order is 

addressed by the loop coefficient of the loop filter. Increase in loop coefficient results 

in more aggressive noise shaping and hence, better SNR in signal band. However, 

large loop coefficient make the loop filter become more prone to instability. Therefore, 

there is a trade-off between the linearity performance and stability when choosing the 

loop coefficient. A balance between SNR and stability is needed for the optimization 

of loop coefficient. 

 

4.2.1.4  Order of loop filter  

Order of loop filter can be increased by inserting integrator into the forward path 

of the loop. As shown in Fig 4.5, noise shaping ability increases when the order of 
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loop filter is getting higher. Hence, higher order loop filter helps SD modulator to get 

better SNR performance. However, the stability becomes the major concern for high 

order single loop SD modulator. The loop coefficient should be reduced to maintain 

the stability of the modulator when the order of loop filter increases. Since SNR 

performance decreases when the loop coefficient reduced, further increase in the order 

will not gain much increase in SNR if the order of the loop filter is already high. In 

summary, the SNR performance of a single loop SD modulator is limited by the 

stability requirement. In practice, the loop filter of SD modulator is usually 3
rd

 order 

to 5
th

 order.  

 

4.2.1.5  Number of bit for quantizer 

Single bit quantizer is very popular in the SD modulator design because of the 

intrinsic linearity of single bit DAC in the feedback path. Nevertheless, the amplitude 

of quantization noise is large due to single bit quantization. This results in some 

problems like low SNR, high internal signal swing and more prone to instability 

comparing to the one using multi-bit quantizer.  
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By employing multi-bit quantizer, the SD modulator can have better loop stability 

due to its lower amplitude of quantization noise. Therefore, the order of loop filter can 

be increased and larger loop coefficient can be used. As a result, the SNR 

performance of multi-bit quantization SD modulator is superior than single-bit 

quantization SD modulator provided the linearity of multi-bit DAC in the feedback 

path is very high. However, designing a highly linear multi-bit DAC is not an easy 

task. Although there are many linearization techniques for DAC design, they have 

some drawbacks and greatly increase the complexity of design. More importantly, 

since the multi-bit DAC is at the feedback path, its nonlinearity can not be suppressed 

by the loop filter but just added to the output directly.  

In this project, a 1.5-bit quantizer is adopted for the SD modulator design as the 

three-level-switching scheme is used for the full H-bridge output stage.  
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4.2.2 Stability analysis of single loop SD modulator 

Since SD modulator is a feedback system, stability issue is one of the potential 

problems that need to be addressed in system level design. In previous analysis, we 

know that increasing the order of the loop filter can enhance the noise shaping ability 

and so that the modulator can achieve higher in band SNR. However, the single loop 

SD modulator structure is prone to instability if the order of the loop filter is greater 

than two [Can85]. And the modulator tends to be more unstable if the order of the 

loop filter increase. 

In order to analyse the stability of the SD modulator, an appropriate linear model 

needs to be built. It is not an easy task as SD modulator is a highly nonlinear system 

due to the existence of quantizer. The noise injection linear model used in section 4.1 

models the quantizer by a linearized gain stage with an additive noise source to 

represent the distortion component introduce by the quantizer. Although this linear 

model can predict the noise shaping of the modulator, it provides insufficient 

information to analyze the stability of SD modulator. Therefore, a more versatile 

model needs to be used for the stability analysis.  
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In this chapter, the variable gain linear model is employed for stability analysis. 

In this model, the nonlinear quantizer is modelled as a linear gain stage with arbitrary 

gain value which is depending on the input and output value of the quantizer [Bai94].  

 

Fig 4.7: Variable gain linear model for SD modulator 

Fig 4.7 shows the variable gain linear model. Vq and Y are the input and output 

of quantizer respectively. Aq is the variable quantizer gain which solely depends on 

the instantaneous value of Y and Vq. Since the quantizer output Y only has two 

voltage levels: voltage high or voltage low, Aq is small if the amplitude of Vq is large, 

and vice versa. Modelling the quantizer in this way allows root locus techniques to be 

applies in investigating system stability. The root moves along the locus as the 

linearized quantizer gain change. If the gain falls into the locus segment that is outside 

the unit cycle, the system becomes unstable. As a result, signal input level tends to be 

large due to feedback. The transfer function of variable gain model is: 
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                                (Equation 4.4) 

 

Fig 4.8: Root locus of the poles for 3
rd

 order conventional SD modulator 

 

Fig 4.8 shows the root locus for 3
rd

 order modulator with loop coefficient [0.25 

0.5 1] [Bai94]. The poles of the system move due to the quantizer gain Aq. There are 

two locus need to be analysis separately. For the one along Real axis, the pole of 

system goes outside the unit cycle when Aq goes to infinity. That means the system 

becomes unstable and the signal level in the modulator will increase. As the quantizer 

input level increases, Aq will decrease. This will drift this pole back within the unit 

cycle and the system stability is restored. Therefore, the system is stable if the 

quantizer gain is very large. 
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For the 2
nd

 locus, this pair of complex poles are within the unit cycle when the 

quantizer gain is very large. However, as Aq decrease to a critical point, Aq_crit, the 

poles move outside the unit cycle. The system becomes unstable and the quantizer 

input level is getting larger and larger. The increase in quantizer input further reduces 

the quantizer gain, and the roots move along the locus outside the unit cycle instead of 

moving back inside. Hence, if the quantizer gain is smaller than Aq_crit, the system 

becomes unstable. In another word, the modulator becomes unstable when the 

quantizer input level is very large. 

This stability analysis gives insight that how to make SD modulator stable. 

Generally speaking, the system becomes unstable if the internal signal level becomes 

too large. Another thing to mention here is that if the loop coefficient decrease or the 

integrator delay reduces, the value of Aq_crit also reduces. This implies the loop filter 

can accommodate larger internal signal and thus the modulator becomes more stable. 
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4.2.3 Fully feed-forward topology 

Feed forward is another type of control system comparing to feedback. Feed 

forward control is an open loop system which applies the compensation control signal 

directly to the controller before error appears. Hence, it controls the system before the 

output making error. However, the compensation control signal of a feedback loop is 

based on error signal, which means feedback loop controls the system after making 

error. Therefore, feed forward control is much faster than the feedback control. 

Nevertheless, due to the ―open loop‖ nature of feed forward control, it is not able to 

tell if the output produces error. This is the major drawback of feed forward control. 

To overcome this problem, feedforward-feedback combination control system is 

developed. The feed forward path helps system to react fast while the feedback loop 

can correct the residual error which is not compensated by the feed forward control.  

 

Fig 4.9: 1
st
 order single loop fully feed forward SD modulator 
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Figure 4.6 shows a 1st order single loop fully feed forward SD modulator. It is a 

feedforward-feedback combination control system. The feed forward topology has the 

main advantages of conventional SD modulator: oversampling and noise shaping. It 

has some unique characteristics. Equation 4.5 and 4.6 are the signal transfer function 

and noise transfer function for this single loop feed forward SD modulator: 

Signal transfer function: 1)( fS                     (Equation 4.5) 

Noise transfer function: 
)(

)(
1

1

f

f
H

N


              (Equation 4.6) 

 

The noise transfer function of fully feed forward topology is identical to that of 

conventional SD modulator, which implies that it has the same noise shaping ability 

as the conventional structure. More interestingly, the signal transfer function for the 

feed forward SD modulator is unity. It does not contain any terms related with H(f). 

This unity signal transfer function means that the non-linearity of the building blocks 

will not contaminate the input signal [Kyo08]. Therefore, the harmonic distortion 

introduced by the non-linearity of the loop filter is significantly reduced comparing to 

conventional SD modulator. 
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This unity signal transfer function feature is attractive in design. Since the effect 

of nonlinearity of the building blocks in feed forward is not as significant as in 

conventional topology, the design requirements for each building block is relaxed 

[Sil01][Gha06]. This means lower OTA gain can be used in design which makes 

design much easer. 

Another major different between fully feed forward topology and conventional 

topology SD modulator is the input signal of the loop filter, U. Although the input 

signal of the loop filter is different between the modulator input and modulator output 

feedback signal for both feed forward topology and conventional topology, the signal 

contain of U is different for these two topologies due to the delay of the integrators in 

the loop filter. For the conventional SD modulator, the modulator input signal, X, 

needs to go through the integrators in the loop filter to reach the quantizer. Due to the 

integrators delay, the modulator output, Y, is the delayed version of the modulator 

input, X. For example, the Fig. 4.4 shows a conventional 2nd order SD modulator. 

The signal U2 at the quantizer input has two integrators delay comparing to X. 

According to the signal and noise transfer function of conventional SD modulator in 

Equation 4.1 and Equation 4.2, the quantizer input can be written as: 

 



 

63 

 

)()()( fff YXU      and    )()()()()( fffff NEXSY                        

)()()()()( )1( fffff ENXSU                                         

)()()(

)(

)(
1

1
fff

f

f ENX
H

U 


         (Equation 4.7) 

 

Equation 4.7 clearly shows that the input signal of loop filter contains both the 

quantization error and the high pass version of the modulation input signal, X. This 

high pass version of X is restored to its full amplitude by the integrators in the loop 

[Sil01], which makes the internal signal swings in the loop filter to be high. This high 

internal signal swing reduces the overload level of the modulator and makes the 

modulator more susceptible to instability.   

For the fully feed forward topology, due to the existence of feed forward path, the 

modulator input signal, X, is brought to quantizer input directly instead of passing 

through the integrators. Therefore, the output signal, Y, has no delay [Sil01]. Hence, 

the input and output of the modulator can cancel out at the input of loop filter. There 

is no high pass version of X in the error signal U.  
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The following paragraph derives the input signal of the loop filter, U, for fully 

feed forward SD modulator. 

)()()()()( fffff NEXSY   and  1)( fS                              

)()()()( ffff NEXY                                                  

)()()()()( fffff NEYXU                   (Equation 4.8) 

 

(Equation 4.8) demonstrates that due to the unity signal transfer function, the 

input signal of the loop filter, U, only contains quantization error. Therefore, the loop 

filter only processes the quantization noise, which is much smaller in amplitude 

comparing to the modulation input signal. This features helps to reduce the internal 

signal swing of the loop filter, which implies that the harmonic distortion generated 

inside the loop filter can be reduce. Smaller internal signal swing relaxed the output 

swing requirements of the integrators, which makes the design of building blocks 

much easier. Besides that, since the loop filter input signal, U, does not contain the 

modulator input, X, the signal X does not pass through the loop filter and so that the 

signal X will not be distorted by the nonlinearity of the building blocks in the loop 

filter. 
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Fig 4.10a: Integrators output of 4
th

 order conventional SD modulator 

 

Fig 4.10b: Integrators output of 4
th

 order fully feed forward SD modulator 
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The behavioural simulations of integrators output swing in MatLab are shown in 

Fig 4.10a and Fig 4.10b. V1, V2, V3, V4 represent the output signals of 1
st
 to 4

th
 

integrator respectively. These two plots verify that the internal swing of fully feed 

forward topology is smaller than that of conventional topology with same number of 

bit of quantization. Furthermore, since there is no delay between the input X and 

output Y of the fully feed forward topology SD modulator, according to the analysis 

in section 4.2.2, it is more stable than the SD modulator using conventional topology. 

The order of fully feed forward SD modulator can be increased by adding 

integrator and feed forward path into the loop filter. Fig 4.11 shows the block diagram 

of a 3rd order fully feed forward SD modulator. Each integrator output in the loop 

filter is fed forward directly to the quantizer by the feed forward coefficient [c].   

 

Fig 4.11: A 3
rd

 order fully feed forward SD modulator 
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4.2.4 System parameters optimization 

System parameters including OTA gain, value of loop coefficient, OSR and etc 

will be determined in this section. The optimization process is done by behavioural 

simulations in MatLab base on the appropriate linear model of the SD modulator. 

 

4.2.4.1  Architecture of SD modulator 

The analysis of fully feed forward topology in previous section reveals that it has 

several attractive features over conventional topology: 

 Linearity of modulator is less sensitive to the nonlinearity of building 

blocks of loop filter due to unity signal transfer function. Design 

requirement is relaxed greatly 

 Better stability comparing to conventional topology since there is no delay 

between input and output of the modulator 
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 Smaller internal signal swing as the loop filter processes quantization 

noise only. This further improves the stability of the modulator and 

reduces the output swing requirement of OTA.  

 Improved the dynamic range of the modulator as the overload level 

increased due to the smaller internal signal swing. 

 The only DAC feedback path reduces the design complexity of the 

modulator. 

Due to these advantageous features, a single loop fully feed forward topology 

with a 1.5-bit quantizer is used in this design project. The order of loop filter and the 

OSR will be determined in next section. 

 

4.2.4.2  Order of loop filter and OSR 

Although 1st order modulator is intrinsically stable, it is hardly used in design 

because of its poor SNR performance and the existence of idle tone in spectrum. 

Practically, 2
nd

 to 4
th

 order SD modulator is more popular. Further increase in order 

above fourth order will not gain much in SNR performance due to the application of 
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smaller loop coefficient for stability. Therefore, the performance of 2
nd

, 3
rd

 and 4
th

 

order conventional and feed forward SD modulator is investigated in this section. 

First of all, the calculated SNR performance of 1-bit quantization ideal SD 

modulator is presented in Table 4.1 [Pel97]. 

Table 4.1: Calculated SRN of 1-bit quantization ideal SD modulator [Pel97] 

Order 2nd 3rd 4th 

OSR SNR OL SNR OL SNR OL 

16 37 1 53 1 68 1 

32 52 1 74 1 95 1 

64 67 1 95 1 122 1 

128 82 1 116 1 149 1 

 

OL column shows the overload level of SD modulator. In this ideal case, all 

integrators coefficient in the loop filter are 1. According to this table, in order to 

achieve dynamic range over 90 dB, a 3
rd

 order loop filter with 64 and above OSR or a 

4
th

 order loop filter with 32 and above OSR can be used. However, the SNR 

performance is lower than the ideal situation in reality, especially when the order 

increases. For the sake of stability, integrators coefficient must be less than 1 and 

hence SNR performance reduces. Table 4.2 shows the SNR performance with 

optimized loop coefficient for stable 2
nd

 to 4
th

 order conventional single loop SD 
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modulator from [Pel97]. The values in brackets are the difference between real stable 

modulator performance and the ideal performance. 

Table 4.2: SNR performance of stable 2nd to 4th order conventional SD 

modulator with optimized loop coefficient [Pel97] 

Order 2nd 3rd 4th 

Coefficient a=[0.5, 0.5] a=[0.2, 0.5, 0.5] a=[0.2, 0.2, 0.5, 0.5] 

OSR SNR OL SNR OL SNR OL 

16 35(-2) 0.7 38(-15) 0.6 34(-34) 0.6 

32 50(-2) 0.7 60(-16) 0.55 67(-28) 0.6 

64 66(-1) 0.7 80(-15) 0.55 91(-31) 0.55 

128 80(-2) 0.65 105(-11) 0.55 123(-26) 0.55 

 

As shown in table 4.2, the noise shaping drops a lot after introducing loop 

coefficient for stability purpose. Only the 3
rd

 order modulator with 128 OSR and 4
th

 

order modulator with 64 or 128 OSR are able to achieve required SNR performance 

with the stated loop coefficient.  

Although the data in Table 4.1 and Table 4.2 show the SNR performance of 

conventional topology SD modulator, they truly reflects the SNR performance of fully 

feed forward topology SD modulator with same order and same OSR setting since the 

noise transfer functions for these two topology are identical. The data shown in 

[Yao05] verifies the above statement.  
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Table 4.3: SNR performance of 2nd to 4th order fully feed forward SD 

modulator with optimized loop coefficient [Yao05] 

Order 2nd 3rd 4th 

Coefficient 
a=[0.3, 0.7] 

c=[2, 1] 
a=[0.1, 0.3, 0.2] 

c=[1, 1, 1] 
a=[0.2, 0.4, 0.1, 0.1] 

c=[1, 1, 1, 2] 

OSR SNR OL SNR OL SNR OL 

16 45 0.95 41 0.85 22 0.9 

32 62 0.9 63 0.8 63 0.85 

64 78 0.9 86 0.8 95 0.75 

128 102 0.9 109 0.8 125 0.75 

 

As we can see, the data for SNR in Table 4.2 and Table 4.3 are pretty much the 

same for 3
rd

 and 4
th

 order loop filter. These two tables also show the overload level of 

SD modulator with different topologies. It is very obvious that the fully feed forward 

offers much higher overload level. This is helpful in obtaining better dynamic range 

performance for the modulator. 

The SNR performance shown in these three tables is simulated under no-noise 

condition. Unfortunately, noise exists everywhere in real world and it does affect the 

modulator performance in great extent. The existence of unavoidable noise such as 

input signal noise, thermal noise and flicker noise further reduces the SNR 

performance of SD modulator. There is a reduction of a few dB to tens of dB in SNR 

according to noise condition. Therefore, in order to meet the design requirement, 4
th
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order loop filter with 128 OSR, who offers more than 100dB SNR, is used in this 

project for a safe design. 

Fig 4.12 shows the SNR vs OSR plot for the proposed 4
th

 order fully feed forward 

SD modulator with 1.5-bit quantization and optimized loop coefficients. 

 

Fig 4.12: SNR vs OSR for the proposed 4
th

 order modulator 

 

4.2.4.3  Loop Coefficient optimization 

Optimization of loop coefficients for a 4th order fully feed forward SD modulator 

is a very tedious work because there are 4 integrator coefficients and 4 feed forward 

gain coefficients in this system. Furthermore, as SD modulator is a strong non-linear 

system, analytical tools are not suitable for its loop coefficients optimization. The 
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simplest way to do the optimization is running extensive behavioural simulation to 

extract the SD modulator performance under different coefficient setting. After that, 

the combination that produces best performance is chosen to be the optimized loop 

coefficients. 

The tedious part of this method is that it is not possible to sweep all eight 

variables at the same time. In each simulation cycle, only two variables are swept 

while the other six variables are fixed. After that the contour plot of the output data is 

constructed which reveals the region of coefficients that produces peak SNR 

performance. By repeating this simulation cycle with different sweeping variables, the 

optimized loop coefficients can be obtained.  

 

Fig 4.13: Contour plot of SNR with a1 and a2 as sweeping variable 
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Fig 4.12 shows the result of one of these simulation cycles. Those areas with 0 

SNR is the unstable region which should be avoid in design. For this SNR contour 

plot, two integrator coefficients (a1, a2) are swept and feed forward coefficient (c1, c2, 

c3, c4) is fixed to (2, 2, 1, 1) while the other two integrator coefficients (a3, a4) is 

fixed to (0.5, 0.1). It is clearly seen that peak SNR occurs at the region where (a1, a2) 

= (0.5, 0.6) and hence a1 = 0.5 and a2 = 0.6 is chosen to be the optimum coefficient. 

The optimized loop coefficients: 

(a1, a2, a3, a4) = (0.5, 0.6, 0.5, 0.1) 

(c1, c2, c3, c4) = (2, 2, 1, 1) 
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4.2.4.4  OTA gain 

Operational Transconductance Amplifier (OTA) is the most important building 

block of SD modulator. The magnitude and linearity of the OTA gain determines the 

overall performance of the SD modulator. Hence it is necessary to determine the OTA 

gain requirement base on the noise shaping capability and linearity specification of 

the SD modulator before proceed to circuit level design. 

The gain of a real OTA is not constant over entire input range. The gain variation 

introduces harmonic distortion to the input signal. To investigate the effect of non-

linearity OTA gain, a non-linear model is built and behavioural simulation is carried 

out base on this. According to the definition of harmonic distortion, the input 

dependant OTA gain can be written as [San99]: 
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                    (Equation 4.9) 

Where oA  is the small signal DC gain of OTA; ov  and iv  are the input and 

output respectively. By applying this output dependant OTA gain instead of constant 

OTA gain in the SD linear model, the non-linear effect of SD modulator can be 
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obtained in behavioural simulation. Fig 4.13a and Fig 4.13b shows output spectrum of 

conventional SD modulator and fully feed forward SD modulator with non-linear 

OTA respectively [Yao05]. 

 

Fig 4.14a: PSD of 4
th

 order conventional SD modulator with non-linear OTA, 

Ao=40dB 

 

Fig 4.14b: PSD of 4
th

 order fully feed forward SD modulator with non-linear 

OTA, Ao=40dB 
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With the same degree of non-linearity and small signal DC gain of the OTA, the 

conventional SD modulator shows a much higher harmonic distortion at the output 

comparing to the feed forward SD modulator. This is because the input signal passes 

through the loop filter and is distorted by the non-linear OTA. Therefore, the gain 

requirement of OTA for conventional SD modulator is mainly determined by the 

harmonic distortion criteria rather than the noise shaping capability. According to 

Equation 4.9, the harmonic distortion can be suppressed by improving the small signal 

DC gain of the OTA. Hence, in order to get a high linear conventional SD modulator, 

very high gain OTA is required, usually more than 60 dB [Mar99]. 

Thanks for the unity signal transfer function, the SD modulator with fully feed 

forward topology does not suffer from non-linear gain OTA. Harmonic distortion is 

hardly seen in Fig 4.14b. Therefore, the OTA gain for feed forward SD modulator is 

only determined by the noise shaping capability. The following figure shows the 

dependence of noise shaping of SD modulator on OTA gain. 
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Fig 4.15: SNR performance base on OTA gain for proposed SD modulator 

From Fig 4.15, we can conclude that the OTA gain of 30dB is sufficient for noise 

shaping alone. Thus, the minimum OTA gain requirement for this design is 30dB. 

 

4.2.4.5  Effect of OTA offset 

Offset in OTA is unavoidable in design. It acts as a dc biasing voltage at the OTA 

input which affects the output of SD modulator. In this section, the effect of OTA 

offset is briefly discussed. The offset of OTA can be categorized into systematic 

offset and random offset. The systematic offset is caused by design carelessness, 

which can be eliminated. The random offset is due to the process variation and 
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mismatch in fabrication process, which can only be minimized but cannot be 

eliminated.  

The offset of OTA at the 1
st
 stage integrator can be seen as adding a constant dc 

biasing voltage directly to the input signal. It introduces a dc tone to the output 

spectrum without any attenuation. The offset of OTA at the 2
nd

 stage integrator is 

attenuated by the OTA gain of 1
st
 stage integrator if seeing it at the input of loop filter. 

Therefore, the effect of offset of OTA at 2
nd

 stage on modulator output is much 

smaller than that of the 1
st
 stage. And the effect of offset of 3

rd
 stage OTA, 4

th
 stage 

OTA and quantizer can be ignored as they are greatly attenuated by the open loop 

gain of 1
st
 and 2

nd
 stage OTA.  

Since offset acts just like a constant dc biasing voltage at the OTA input, it does 

not add any harmonic and noise. The linearity and noise shaping capability of SD 

modulator is not affected by the existence of OTA offset. 
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Fig 4.16a: Effect of 1
st
 stage OTA offset alone 

 

Fig 4.16b: Effect of 2
nd

 stage OTA offset alone 
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Fig 4.16a and Fig 4.16b shows the effect of OTA offset in 1st and 2nd stage 

integrator on SD modulator output spectrum respectively. Although the offset value is 

the same for these two simulations, the dc power in Fig 4.16b due to 2
nd

 stage OTA 

offset alone is 40 dB less than that in Fig 4.16a. This is because it is attenuated by 40 

dB OTA gain in the 1
st
 stage. 

Since the offset of OTA introduces dc power, which reduces the power efficiency, 

it should be minimized in design. From the above analysis, we conclude that the gain 

and offset of 1
st
 OTA dominates this effect. Therefore, the 1

st
 stage OTA is the more 

important one which requires large dc gain and small offset.  
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4.2.4.6  Overall system level SD design 

 

Fig 4.17: Overall architectural of proposed 4
th

 order fully feed forward SD 

modulator with a 1.5-bit quantizer 

Fig 4.17 shows the overall architectural design of proposed SD modulator in this 

project. It consists of a single loop fully feed forward 4
th

 order loop filter and a 1.5-bit 

quantizer. The optimized loop coefficients are (a1, a2, a3, a4) = (0.5, 0.6, 0.5, 0.1) and 

(c1, c2, c3, c4) = (2, 2, 1, 1). The OTA gain of each stage is fixed to be 40 dB.  
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4.3 Circuit Implementation 

Base on analysis tools and behavioural simulations, most of the system 

parameters and some of the building blocks specifications are determined in the 

system level design. It is the time to proceed to realize the proposed SD modulator in 

real electronic circuit. Transistor level circuit implementation of the proposed SD 

modulator is presented in this section.  

Fig 4.18 in the next page shows the entire SD modulator circuit implementation. 

The signal path in this circuit is differential. This helps to reduce even order of 

harmonic distortion and to improve common noise rejection. The integrators in the 

loop filter are realized in switch-capacitor topology. The discrete time (DT) integrator 

has better noise immunity. More importantly, it is less affected by the process 

variation and hence, it has better accuracy than that of continuous time integrator. 

The circuit implementation of those building blocks in Fig 4.18 such as OTA, 

quantizer and feed forward summing mechanism is discussed in detail. Some 

transistor level simulation results are also shown to verify the performance of the 

building blocks. 
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Fig 4.18: Circuit implementation of proposed 4
th

 order fully feed forward SD 

modulator 
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4.3.1 OTA design 

Being the major building block of the modulator, the performance of OTA 

dominates the overall performance of the SD modulator, especially the 1
st
 stage OTA. 

They are also the major power consuming block in the loop filter.  

The 1
st
 stage OTA design is critical. Base on the analysis in last section, the non-

idealities of 1
st
 stage OTA directly reflects on the modulator output and hence, high 

gain and low random offset are required. The design requirement of OTA for the 

following stages can be relaxed. In order to save the power consumption and chip area, 

the biasing current and transistor size are scaled down accordingly. The design detail 

in this part is mainly for the 1
st
 stage OTA. 

According to section 4.2.4.4, the minimum gain of OTA is 30dB for the fully 

feed forward SD modulator. However, the dc gain of 1
st
 stage OTA should be higher 

than the minimum value in order to have better suppression for the non-idealities of 

the following stage OTAs. Besides that, the process variation in fabrication may 

introduce a few dB drops in the worst corner. Thus, the 1
st
 stage OTA should have 

voltage gain in between 50 dB to 60 dB.  
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Since the internal signal swing is small, the output swing requirement of the 

OTA is reduced. One of the best topologies to implement high gain and low output 

swing application with small drain current is the telescopic OTA. A single stage 

telescopic OTA is able to deliver voltage gain higher than 50 dB. Besides that, a 

single stage OTA is more stable and no dedicated compensation circuit required. This 

greatly reduces the design complexity and area consumption. 

The bandwidth of OTA is determined by the settling speed. The OTA output 

must be settled well within one clock cycle in order to have good accuracy. Since a 

single stage OTA can be approximated to be a first order system, its settling time only 

depends on the GBW. In order to reduce the settling error for the 1
st
 stage OTA, its 

GBW is set to be about ten times of the sampling clock. As the maximum OSR for 

this design is 128, the maximum sampling frequency is 5.6 Mhz. GBW around 60 

MHz is sufficient for the settling of OTA. 

The list below is the design target of 1
st
 stage OTA: 

 DC gain: above 50 dB 

 GBW: above 60 Mhz 

 PM: above 60 degree 
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Fig 4.19: Schematic design of the single stage telescopic OTA 

Fig 4.19 shows the schematic design of the telescopic OTA. The left hand side 

is the biasing circuit that provides biasing voltage to transistor M0, M2, M3 and M4 

while the right hand side is the core of the telescopic OTA. The biasing voltages Vb0, 

Vb2, Vb3 and Vb4 are set to ensure that all the transistor in the telescopic core are in 

saturation during normal working condition. Besides that, they are optimized to 

maximize the output swing of the OTA: 

 444 dsatthddb VVVV                                                  

 4333 dsatdsatthddb VVVVV                                             

2211_2 dsatthdsatgscminb VVVVVV                                        
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With the above biasing voltage, the output common mode range can be 

determined： 

34333(max)_ dsatdsatdddsatgsbcmout VVVVVVV                                 

21_222(min)_ dsatthcmindsatgsbcmout VVVVVVV   (Equation 4.10) 

From Equation 4.10, we notice that the output common mode voltage can be set 

to slightly lower than the input common mode voltage if 1thV  is greater than 2dsatV . 

This allows the output common mode voltage to be the same as input common mode 

voltage in the design, which eliminates the voltage shifter in between two integrators 

and reduces error and design complexity. For simplicity, output common mode and 

input common mode voltage is set to be half of power supply voltage. 

The gain of the OTA is determined by the transconductance of the input pair 

( 1mg ) and or  of loading transistors. Since or  is proportional to the channel length, 

large channel length is used for those loading transistors. 

2

1 omdc rgA                                  (Equation 4.11) 
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The speed of a telescopic OTA is dominated by 1mg  and the output load 

capacitance ( loadC ). 

load

m

C

g
GBW 1                                (Equation 4.12) 

 Besides that, the tail current of differential pair should be high enough to meet 

the slewing requirement of the output. This is because the loading capacitance is in 

the range of 10pF, large charging and discharging current is needed to make the load 

capacitor voltage to be settled in a short time. 

The dominant pole of the OTA is at the output node and the non-dominant pole 

is at the source terminal of M2. Since the loading capacitance is much larger than M2 

gate-source parasitic capacitance, these two poles are separated far enough to keep the 

OTA in stable. Fig 4.20 is the AC response of the 1
st
 stage OTA. It shows that its dc 

gain is 53.2 dB, GBW is 72.6 MHz and phase margin is 66.7 degree under typical 

corner (temperature=50 C, process corner=typical mid, vdd=3.3 V). 
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Fig 4.20: AC response of 1
st
 stage OTA with 16pF loading capacitance 

The offset of OTA is dominated by the mismatch and process variation of the 

input pair. Therefore, a very large size input transistor is used and special layout 

technique is applied in order to reduce the random offset voltage. According to Monte 

Carlo simulation of 100 samples, 3-sigma value of input offset is only 2.47 mV for 

the 1
st
 stage.  
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Fig 4.21: Switch-capacitor CMFB 

Switch-capacitor common mode feedback (CMFB) is chosen for the OTA dui to 

its simplicity and its power efficiency [Kyo08]. Fig 4.21 shows the switch-capacitor 

CMFB circuit implementation. When C2 is on, the voltage difference between Vcmo 

and Vbias is store in Cap1. When C1 is on, charge sharing between Cap1 and Cap2 

occurs and Vcmfb voltage is adjusted. Vcmfb voltage becomes stable only the 

following two conditions are met: 

(Voutp + Voutn) / 2 = Vcmo                                             

Vcmfb = Vbias                                                        
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4.3.2 Comparator and 1.5-bit quantizer design 

The comparator is the building block of 1.5-bit quantizer. In this project, a high 

speed cross-couple regenerative dynamic latch is used. Fig 4.22 shows the schematic 

design of the comparator. 

 

Fig 4.22: Schematic of regenerative latch comparator. 

The left hand side of the schematic is the regenerative latch. It is a fully dynamic 

latch without dc biasing current. Two back-to-back connected inverters form a 

regenerative cell. Any charge imbalance at node P and Q initializes regenerative process 

and the output will reach to the stable point very fast. The right hand side of the schematic 

is the SR latch. It is also a fully dynamic circuit. It holds the regenerative latch output 

within one clock cycle and so that the comparator output does not return to zero at the 
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reset phase of regenerative latch. Thus, the SR latch helps to reduce the switching activity. 

Since this comparator is consists of two fully dynamic circuit, it consume very small 

power. 

This comparator only needs one clock. When the clock is low, M2 is off. The 

regeneration node P and Q is charged to ddV . When the clock goes up, M2 turns on and 

the regenerative process starts. The charge stored in node P and Q flow through M2 and 

M1 to the ground. If the gate voltages of M1 input pair are different, the branch with 

higher input voltage allows higher current flows so that the voltage at the corresponding 

regenerative node drops faster. The voltage imbalance at the regenerative node initiates 

the regeneration process of the cross-couple latch.  

The reset speed and regenerate speed of this comparator is proportional to 
t

e . The 

maximum speed is approximately given by: 

p

m

C

g
f




2
1

max                           (Equation 4.13)  

Where pC  is the parasitic capacitance at node P and node Q. In order to have 

high regenerative speed, the transistors size in the latch cannot be large. 
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One important advantage of this comparator topology is low kick back noise. As the 

input pair is not directly connected to the regenerative node, the kickback noise is much 

smaller. Besides that, the voltage change at the drain terminals of two input pair has same 

polarity and similar amplitude. Therefore the kickback noise is a common mode 

disturbance which can be suppressed by the preceding fully differential circuit. Reduction 

in kick back noise helps to improve the accuracy of comparator. 

Generally speaking, the offset of fully dynamic regenerative latch is usually pretty 

large. It can reach more than 100mV. Fortunately, the offset requirement is very relaxed 

due to the feedback as well as the attenuation of the preceding stage OTAs. Behavioural 

simulation verifies this conclusion. Therefore, no much attention is paid on the offset of 

the comparator. 

 

Fig 4.23: 1.5-bit quantizer 
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Fig 4.23 shows the block diagram of the three-level quantizer. It consists of two 

comparators. The reference is generated by a resister ladder. In fact, this 1.5-bit 

quantizer is a very simple and low resolution flash ADC. There are only three output 

states for this quantizer: 

Table 4.4: Output states of the 1.5-bit quantizer 

State LP LN 

1 High Low 

0 High High 

-1 Low High 

 

4.3.3 Sampler design 

The simplest switch-capacitor sampler is used in this design. Fig 4.24a and Fig 

4.24b show the sampler circuit and the equivalent circuit during the sampling phase. 

 

Fig 4.23a: Schematic of sampler; Fig 4.23b: equivalent circuit at sampling phase 
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During the sampling phase, switch SW1 turns on first and follow by SW1d. Vin 

is stored in the sampling capacitor Cs. Due to the non-ideal switches of SW1 and 

SW1d are used, RC time constant is formed by the Ron of the switches and the 

sampling capacitor.  

Time required for 99% settling of a RC circuit is: 

6.4onT                                                       

if the clock has 50% duty cycle: 

son

s

CR
f




6.4
2

1
                                                      

s

son
f

CR



2.9

1
        (Equation 4.14) 

The capacitance of Cs depends on the thermal noise level of the modulator. The 

behavioural simulation shows that a 6 pF sampling capacitor gives SNR larger than 

100 dB for 128 OSR. Since the process variation of poly-cap is around +-5%, a 30% 

safety factor is given and hence, the sampling capacitance in this design is 8 pF. 

Base on Equation 4.14 and Cs = 8 pF and fs = 5.6 MHz. Ron value can be 

obtain and the switches size can be estimated. It is worth to mention two major causes 

that introduce sampling error apart from sampler speed. The first one is the input 
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depend Ron of the switch. Since Ron is a function of Vgs of pass transistor, Ron is 

not constant for different input voltage. For the constant Vg, the Ron increases if the 

input level increases. This input dependent Ron results in non-linear sampler. 

The second non-ideal effect is the charge injection of the switch at on and off. 

During the turn-on time of the switch, charge is drawn from the surrounding circuit to 

form the conduction channel under the gate; while during the turn-off time, 

conduction channel under gate is eliminated and the charge is distributed to the 

surrounding circuit. Charge injection adds constant amount of charge to the sampling 

capacitor regarding to the size of the switch if the input level is unchanged. There are 

some charge-injection-cancellation techniques that can effectively reduce the 

sampling error due to charge injection. 

4.3.4 Non-overlap Clock generator design 

Two non-overlap clock signals are required for sampling and integration phase 

for the integrator. Fig 4.24 shows the schematic of the clock generator. 
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Fig 4.24: Clock generator 

An external clock is fed into the clock generator and four clock signals are 

generated. C1 turns on after C1d and it turns off before C1d. C2 turns on after C2d 

and it turns off before C2d. Since C1 is the sampling phase while C2 is the integration 

phase, C1 and C1d do not overlap with C2 and C2d at any time instant. Fig 4.25 

shows the output of the clock generator. 

 

Fig 4.25: Output of clock generator 
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4.3.5 Feed forward summing design 

There is a summing point where all the feedforward branches signals are 

summed together in a fully feed forward SD modulator. The summation is 

implemented by a switch-capacitor network shown in Fig 4.26 in the next page. 

 

Fig 4.26: Summing point of the feed forward path 

At phase C2, all summer capacitors are discharged. The charge stored in the 

capacitors is zero. At phase C1, summer output a valid result at Y. The transfer 

function of this summer is derived below: 
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                              (Equation 4.15) 

Where fi  is the loop coefficient for each feed forward path. 

 

4.3.6 Feedback and Vref generation 

Due to the fully differential architecture of the SD modulator, two reference 

voltages are required in this design, namely Vrefp and Vrefn (refer to Fig 4.18). These 

two references are generated by the feedback network from the H-bridge output. Fig 

4.27 shows the configuration of the reference voltage generation circuit. 

 

Fig 4.27: Reference voltage generation circuit 
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The other voltage reference is also generated by the same circuit by tapping the 

feedback point from H-bridge output Vb.  

According to discussion in section 3.5, the gain of class D amplifier decreases if 

the H-bridge supply voltage decreases. From Fig 4.27 we observed that Vrefp also 

decreases when H-bridge supply voltage decreases. Decreasing in reference voltage 

results in increasing in degree of modulation and hence the gain of class D amplifier 

increases. Therefore, this feedback network helps to compensate the gain error due to 

the variation of H-bridge supply voltage so that the low frequency PSRR is improved.  
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Chapter 5: 

Output Stage Design 

The output stage of class D amplifier is in charge of delivering power to the load. 

It consists of gate driving circuit, full H-bridge output and the off-chip LPF. The 

design details of these building blocks are covered in this chapter. 

 

Fig 5.1: Output stage of class D amplifier: Gate Driver, H-Bridge and LPF 

 

5.1  Full H-bridge output 

Base on the discussion in chapter 3, the full H-bridge output is superior in term of 

performance comparing to the half bridge output. It is used in this design. Since high 

power rating and low on-resistance are required for the output transistors, their size is 
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generally very large, usually consumes more than half of the whole class D amplifier 

chip. 

Power transistor in output stage acts as a switch which is controlled by the SD 

modulator. If it is ideal, there will be no power loss in the output stage. Unfortunately, 

the existence of on-resistance during conduction period and parasitic capacitance of 

the power transistor limits the power efficiency of the class D amplifier. Hence, the 

output stage must be properly designed in order to optimize the overall power 

efficiency. 

There are three types of power loss in class D amplifier: switching loss, 

conduction loss and short-circuit current loss. Two of these power losses are only 

introduced by the H-bridge output stage: short-circuit current loss and conduction loss 

which are related to the on-resistance of the power transistors. Besides that, since the 

output transistor size is very large, its parasitic capacitance is also large. According to 

Equation 5.1, the switching loss of the output stage is large. In fact, the major 

switching loss of the overall system is contributed by the H-bridge output stage. Since 

all three types of power loss in class D amplifier are dominated by the output stage, 

the overall power efficiency of the class D amplifier is determined by this output stage. 
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Power loss in class D amplifier: 

(1)  Switching Loss: 2

ddpssw VCfP                                      (Equation 5.1) 

(2)  Conduction Loss:   

T

out

L

on

onLcond P
R

R
dtRti

T
P

0

21
   (Equation 5.2) 

(3)  Short circuit Loss: ddmeansc VIP            (Equation 5.3) 

 Sizing of output power transistor 

The output transistor size is chosen to optimize power dissipation base on input 

signal condition. In order to increase the maximum output power and reduce the 

conduction loss, according to Equation 5.2, the on resistance of the output transistor 

must be small. This ensures that the voltage drop across source-drain of the output 

transistor is small. Base on Equation 5.4 the on-resistance can only be reduced by 

increasing W/L ratio of the output transistor because oxC  is process parameter and 

 thGS VV   is a constant.  

 thGSox

on

VV
L

W
C

R







1
       (Equation 5.4) 

Lowering of onR  results in large size of output transistor which contributes 

significant gate capacitance. This leads to large switching loss. Therefore, sizing of 



 

105 

 

output power transistor is a trade-off between conduction loss and switching loss. 

Since conduction loss dominates power dissipation and efficiency at high output level 

while switching loss dominates at low output level, output transistor size is also 

determined by the application. In this design, the target of maximum power efficiency 

is around 80%. Since the maximum power efficiency is dominated by conduction loss, 

transistor size is optimized base on on-resistance requirement. 

Assume 80% of power loss at very high output level is contributed by the 

conduction loss of the switches, for a class D amplifier with 85% maximum power 

efficiency and 1W maximum output power, the power loss due to conduction is 

140mW. Base on Equation 5.2,  56.0)( onnonp RR  for a 4   load. In order to 

have similar rising and falling time of the output waveform, the on-resistance for 

NMOS and PMOS switch should be the same. 

The on-resistance is extracted by doing transistor level simulation. Fig 5.2 is the 

setup for extraction of onR . The ratio of voltage difference between LR  and source-

drain gives exact value of onR .  
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Fig 5.2: Test bench for extraction of on-resistance 

Base on the simulation: 

NMOS switch: (W/L) = 10500 with  257.0onnR  

PMOS switch: (W/L) = 32000 with  286.0onpR  

Minimum channel length is used for those four output transistors. 

5.2  Gate driving circuit 

Since the output transistor size is very large for this design, a buffer is necessary 

in between the SD modulator and full H-bridge output. The buffer provides sufficient 

current to drive the large parasitic capacitance of output transistors. Generally, this 

buffer is realized by inverter chain. 
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Fig 5.3: structure of gate driver 

Fig 5.3 shows the structure of the gate driving circuit. It is an inverter chain with 

weak cross-coupled inverters. The number in the figure indicates the size of each 

inverter in the chain. Due to the existence of cross-coupled inverter, the design 

process of this gate driving buffer is different from the conventional inverter chain. 

Extensive transistor level simulation has been done to determine the size of those 

weak cross-coupled inverter.  

The transition time of the gate terminal of output transistor is optimized in this 

design. According to Equation 5.3, short-circuit current loss of the output stage can be 

minimized by reducing the average short-circuit current. Decreasing the transition 

time of the gate control signal effectively reduce the average short-circuit current. 

This is the main reason for adding these weak cross-coupled inverters into the inverter 

chain. The feed-forward provided by the cross-coupled inverters helps to minimize 

the signal skew of the gate control signal [Jor03]. Besides that, the falling time and 
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rising time of the gate control signal is optimized to be the same by fine tuning the 

transistor ratio of inverters to ensure low distortion of the gate driving circuit. 

The rising time and falling time of the gate driver output with output transistor 

as load is extracted by transistor level simulation in typical corner: 

Average 90% rising time of NMOS switch: 236ps 

Average 90% falling time of NMOS switch: 241ps 

Average 90% rising time of PMOS switch: 247ps 

Average 90% falling time of PMOS switch: 253ps 

Since the transition time of the gate control signal is very short, the average 

short-circuit current is sufficiently low. According to the transient simulation on H-

bridge, although the instantaneous peak short circuit current is huge, which is around 

1.5A and has sinusoidal shape, the short circuit current conduction time is very short, 

which is less than 100 ps. The average short circuit current can be calculated by 

Equation 5.5: 

                    (Equation 5.5) 
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Where  is the average short circuit current; is the instantaneous 

peak short circuit current;  is the short circuit conduction time;  is the 

system clock frequency;  is the switching activity of the output stage. According to 

simulation and system setting, the exact value for each variable can be obtained: 

 = 1.5 A 

 = 100 ps 

 = 5.6 Mhz 

 = 1 (for worst case analysis, in real situation  is much smaller than 1) 

The average short circuit current is calculated to be 0.594 mA for worst case 

scenario. In real situation, due to the adoption of 3-level switching SD modulator, the 

switching activity is greatly reduced and is much smaller than 1. Hence the real case 

average short circuit current is much less than the calculated value. Since the average 

short circuit current is small, no deadtime control circuit is required. This improves 

the THD performance; simplifies the gate driver design and reduces the power 

consumption of the gate driver.  
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5.3  Output LPF 

The output waveform of the full H-bridge of a class D amplifier is high 

frequency square wave which containing audio signal information. A low pass filter 

(LPF) is required at the class D output stage to remove the unwanted high frequency 

component to restore the audio signal. Although all type of LPF can be used for this 

purpose, a LPF constructed by lossless component is preferred due to better power 

efficiency. Generally speaking, a LC LPF is a good choice for the class D amplifier 

output. 

The output LPF for this design is the most commonly used second order LC low 

pass filter. A differential version of the LC LPF used because of the full H-bridge 

output stage. Since inductor and capacitor are lossless components, this LC LPF does 

not consume any power. Fig 5.4 shows the LPF with speaker. The speaker works as 

load to damp the circuit’s inherent resonance.  

 

Fig 5.4: Differential version of LC LPF for Class D amplifier 
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Due to the oversampling nature of SD modulator, the pulse frequency is much 

higher than the audio frequency. In this design, a 64 or 128 OSR is used, which 

implies that the pulse frequency is at MHz range. More importantly, the high 

frequency power of SD modulator output is spread over a large frequency range in its 

output spectrum instead of a concentrated single tone. It is easier to be removed by the 

LPF. Therefore, although the second order LC LPF has finite attenuation in its stop 

band, the high frequency power remains in the filtered signal is unnoticeable as high 

frequency power is spread and it is very far from the audio signal band. 

The LC filter in Fig 5.4 has flat frequency response in the audio band with 0 dB 

gain. Its attenuation after cut-off frequency is 40 dB/decade. Those two capacitors 

connected to ground provide low impedance path to ground for high frequency signal. 

The cut-off frequency of the LPF is normally set slightly higher than the audio 

bandwidth, usually between 30 kHz to 50 kHz. 

c

L

f
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2
        (Equation 5.6) 
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           (Equation 5.7) 
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cf  is the desired cut-off frequency and LR  is the impedance of the speaker. 

Base on Equation 5.5 and 5.6, the inductance and capacitance value of the LC LPF 

can be obtained if speaker impedance and cut-off frequency are known. Q  is the 

quality factor of a filter which is the ratio of the centre frequency to the filter 

bandwidth. A low Q produces an over damped curve and a high Q produces an under 

damped curve. The Q value for the output filter should be in the range of 0.6 to 0.8 to 

avoid underdamped or overdamped behaviour. 

For a 4  speaker and 40 kHz cut-off frequency, desired L and C value is 

calculated and shown in table 5.1. 

Table 5.1: Components value for the LPF 

L )( H  C )( F  Q  
LR  )(  cf  )(kHz  

15 1 0.73 4 42.44 

 

As shown in table 5.1, the inductance and capacitance value of the LPF is too 

large to be integrated in the chip. Off-chip LPF is used in this design.  
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Chapter 6: 

Measurement Results 

The class D audio power amplifier designed in this project is fabricated in 

0.35 m  CMOS technology. Fig 6.1 is the die photo of the fabricated chip. DIP44 

packaging is used for the chip. Due to large output current requirement, several output 

pads are assigned to the PVSS, PVDD and H-bridge output to increase the current 

rating and reduce the parasitic resistance. A dedicated testing PCB is designed in 

Protel to estimate the performance of the class D amplifier design. Fig 6.2 shows the 

testing board including the DIP44 chip and the LC LPF. 

 

Fig 6.1: Die Photo 
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Fig 6.2: Photo of Testing PCB 

The design of testing PCB is very important as it largely affects the testing results. 

Several LDOs (Low Dropout Voltage Regulator) are used in this test board to provide 

current with constant voltage. A lot of decoupling capacitors are connected to the 

power supply bus and constant voltage input in order to get clean and stable dc 

voltage. These decoupling capacitors are placed very close to the chip to reduce the 

path length and its parasitic inductance. This gives better filtering effect. A 50   

resistor is connected in between the input gate and the ground to maximize the power 

transfer from signal source to the input port. Very large track size and equal track 

length is used for the connection between the H-bridge output port and the LC LPF in 
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order to introduce balanced parasitic inductance, capacitance and resistance. Each pair 

of differential input tracks has identical geometrical structure. They also have equal 

track size and track length. Since the output of H-bridge is a high power high 

frequency pulse train, it will couple with other signals through the parasitic of the 

board and contaminate these signals. This greatly degrades the measurement results. 

Therefore, all sensitive signal tracks are shielded by guard ring connected to ground to 

reject the on-board high frequency noise. Ground plane is used in this testing board. 

This ensures all the signals has shortest path to assess ground. Apart from that, ground 

plane also provides shielding effect to improve the EMI performance of the class D 

amplifier. The test setup is placed in a metal box during testing in order to minimize 

noise injected from environment, especially the 50Hz noise which is in the audio band.  

The schematic design of the testing PCB is shown in Fig 6.3 in next page. The 

output signal from LPF is measured by the oscilloscope and dynamic signal analyzer 

to evaluate the performance of this design. The average output current is recorded in 

different input signal level to estimate the output power and the overall power 

efficiency of this class D amplifier. 
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Fig 6.3: Schematic of testing PCB 

 



 

117 

 

6.1  H-Bridge output waveform comparison (simulation) 

The following figures show the simulation results of output pulse train from H-

bridge output stage with 1-bit and 1.5-bit quantization SD modulators in high output 

power and low output power respectively.  

 

Fig 6.4: Output pulse train with 1-bit SD modulator at high output power 

 

Fig 6.5: Output pulse train with 1.5-bit SD modulator at high output power 
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Fig 6.6: Output pulse train with 1-bit SD modulator at low output power 

 

Fig 6.7: Output pulse train with 1.5-bit SD modulator at low output power 
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From these simulation results, one can confidently conclude that the switching 

activity of 1.5-bit quantizer SD modulator output is much lower than that of 1-bit 

quantizer SD modulator output, especially when the output power is low. 

 

6.2  Output waveform 

The output waveform of H-bridge output and LPF output are captured by 

oscilloscope. These output waveforms measured with and without a 4   pure 

resistive load are shown in Fig 6.8 to Fig 6.11 in below. 

 

Fig 6.8: Output waveform of H-bridge without load 
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Fig 6.8 is the H-bridge output waveform without load when the input is a 

sinusoidal wave with high amplitude. It shows that the density of the output state 

varies with the input level. The output pattern is matched with the simulation result in 

Fig 6.5. The spikes in the output are due to the existence of parasitic inductance of the 

power supply bus. Very fast transition time of gate control signal for the output 

transistor induces a very fast changing output current. Since the inductor voltage is 

proportional to the gradient of output current, steep current slope makes the parasitic 

inductor voltage very high at the transition time, which eventually appears as spikes in 

the power supply bus.  

 

Fig 6.9: Output waveform of LC LPF without load 
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The blue and pink curves in Fig 6.9 are the signal waveforms from two output 

ports of differential LPF while the green curve is the signal waveform of differential 

output of LPF. It can be seen that the differential output from LPF is a sinusoidal 

wave with little distortion.  

  

Fig 6.10: Output waveform of H-bridge with 4 Ohm load 

 

Fig 6.11: Output waveform of LC LPF with 4 Ohm load 
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Fig 6.10 and 6.11 show the signal waveform of H-bridge output and LPF output 

with a 4   resistive load. They are slightly different from those without load. There 

is a very slight ―amplitude modulation‖ type pattern at the H-bridge output waveform 

and a bend-down at the LPF output wave form. This phenomenon happens due to the 

existence of on-resistance of the power transistor during turn-on time. When the 

output current increase, current flows through the power transistor also increase and 

thus the voltage drop between source-drain of the transistor increase at the same time. 

Therefore, unlike the case without load, the H-bridge output can never reach Vdd or 

ground if there is an output current. Since the frequency of this ―amplitude 

modulation‖ pattern is identical with the input audio signal and its magnitude is 

directly proportional to the input signal level, the distortion caused by the on-

resistance induced ―amplitude modulation‖ pattern is very low. According to [men00], 

the distortion introduced by this effect is less than 0.01%. The dynamic performance 

testing results verify this statement. 

From these captured output waveforms, we can conclude that the class D audio 

amplifier designed in this project is functioning well. Its detail performances such as 

linearity, dynamic range, power supply rejection ration and overall power efficiency 

are evaluated in the later part of this chapter. 
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6.3  THD+N performance 

Linearity is one of the most important indicators that evaluate the performance of 

an audio amplifier. The amplifier with high linearity gives high quality of sound. 

THD+N (Total harmonic distortion plus noise) measures linearity as well as the noise 

performance of an amplifier. It is the ratio between total power of harmonic distortion 

plus noise power within the audio band and the signal power.  

 Dynamic signal analyzer is utilized for the THD+N analysis. The differential 

output signal of LPF is captured and Fast Fourier Transform (FFT) is applied to the 

collected data. Signal in time domain is converted into frequency domain inside the 

dynamic signal analyzer and output power spectrum is produced by this process. The 

power of signal and its distortion at different frequency can be viewed in the output 

power spectrum. Fig 6.12 in next page shows the output spectrum at 0.16 of full scale 

output power with 2 kHz input signal. 

After that, the data calculated by the dynamic signal analyzer is imported into 

MatLab. Total signal power and total noise and distortion power can be obtained from 

the output spectrum data. Hence, THD+N value can be calculated. The THD+N 
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performance over different output power with 2 kHz input frequency of the designed 

class D amplifier is shown in Fig 6.13. 

 

Fig 6.12: Output spectrum of LPF with 4 Ohm load at 0.16FS output power 

 

Fig 6.13: THD VS Output power of designed class D amplifier with 2 kHz input 
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As shown in Fig 6.13, the lowest THD+N is less than 0.08% located at very low 

output power around 0.1 W to 0.2 W. THD+N of this design is pretty constant around 

0.1% across wide range of output power, from 0.1 W to 0.75 W. After 0.75 W the 

output distortion starts to increase as the output signal is approaching to saturation. 

The maximum output power is 0.97 W with 1.732% THD+N. The SFDR performance 

is determined by the signal power and 2
nd

 harmonic power. It is in between -65dB to -

70 dB and pretty constant for the output range where THD+N is 0.1%.  

 

Fig 6.14: THD VS input frequency of designed class D amplifier 

Fig 6.14 shows the linearity of the class D amplifier at different audio input 

frequency. The THD+N is around 0.1% and it is quite constant at low input frequency 

from 1 kHz to 3 kHz. The linearity is getting poor when the input frequency increases. 
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6.4  Output Dynamic Range 

 

Fig 6.15: Noise floor of LPF output within audio band 

Output dynamic range is the range between smallest and largest output level: 

 
rmsO

rmsO

V

V
DR

min_

max_

10log20   (Equation 6.1) 

The lower limit of useful signal is the output noise level while the upper limit of 

useful signal is the undistorted maximum output level. It can be seen that from Fig 

6.15, the noise floor of the LPF output is at -110dB. The measured maximum 

achievable undistorted output power is at -16dB. Therefore, the output dynamic range 

of this class D amplifier is 94dB. 
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6.5  PSRR 

Power supply rejection ratio (PSRR) is another important performance meter of 

audio amplifier. It measures the output signal dependency on the power supply 

voltage. Large PSRR is desired for audio amplifier. Audiophile-grade sound quality 

criteria for PSRR requirement is PSRR > 60 dB. 

All the linear audio power amplifiers have high PSRR. However, the PSRR for a 

class D amplifier is small due to the low impedance path from power supply to the H-

bridge output. The PSRR issue in this design is addressed by applying negative 

feedback from H-bridge output to the loop filter input. The effect of power supply 

variation is suppressed by the loop filter and hence, PSRR increase. 

In the PSRR measurement, a 101 Hz sinusoidal with 3.3 V DC voltage waveform 

power supply is used for H-bridge output stage. A 1 kHz, 0.1 of full scale sinusoidal 

is applied to the amplifier input. The voltage supply ripple measured at H-bridge 

power input pin is 400 mV peak-to-peak. The output signal is analyzed by dynamic 

signal analyzer. The signal power shown at 101 Hz frequency in output power 

spectrum is obtained and compared with the 101 Hz signal amplitude at the power 

supply bus. The ratio between these two signals power is the PSRR of the class D 
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amplifier, as shown in Equation 6.2. Choosing 101 Hz frequency is because the power 

supply noise in real life is usually from 100 Hz to 120 Hz [Cha08]. 

Hzout

Hzvdd

P

P
PSRR

101@

101@
            (Equation 6.2) 

 

Fig 6.16: Output power spectrum with 101Hz supply noise 

As shown in Fig 6.16, the output power at 101 Hz is -81.8 dBVrms. A 400 mV 

peak-to-peak sinusoidal wave has -16.99 dBVrms. Therefore, the PSRR can be 

calculated as: 

PSRR= -16.99 – (-81.8) = 64.81 dB 

The PSRR value for this class D amplifier is 64.81 dB. 
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6.6 Overall power efficiency 

Power efficiency is the ratio between output power and total input power. Total 

power input power includes output power, power consumed by SD modulator and 

other circuit, power loss due to switching, conduction and short-circuit. In this testing, 

the sinusoidal output voltage waveform is captured and the average value of total 

input current is read from digital multi meter. The output power and input power can 

be calculated by: 

L

rmsout

out
R

V
P

2

_
                                  (Equation 6.3) 

ddavgtotin VIP  _                               (Equation 6.4) 

 

Fig 6.16: Power efficiency with 4 Ohm load @ 3.3V supply 
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Fig 6.16 shows the power efficiency of this class D amplifier at different output 

power. Its maximum power efficiency is 80% when the output power is high. This 

value is smaller than the design value. The main reason is the on-resistance of power 

transistor measured in real chip is about 10% to 20% higher than that in the transistor 

level simulation. This is probably due to process variation in fabrication such as 

shifting of transistor threshold voltage. It is not surprised that the power efficiency at 

low output power is low. This is because the SD modulator and gate driver dissipate 

constant power regardless of the output power. Their percentage increases if the 

output power drops. 
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6.7  Conclusion 

The class D amplifier design is fabricated and a testing PCB is built. Three 

sample chips are tested. They have very close performance in different aspects. This 

shows the robustness of the design. Real testing data show that most of the 

performances of the chip meet the design specifications. The power efficiency meets 

the design specification marginally and the maximum output power is slightly lower 

than the specification. Table 6.1 summarizes the performance of the tested chip and 

the initial design specifications. 

Table 6.1: Summary of measurement results 

 Design Spec Measurement 

Power Supply Range 3.3 V 2.4 V to 4.5 V 

Load 4   to 8   4   

Quiescent Current <10 mA 5.56 mA 

Dynamic Range >90 dB 94 dB 

PSRR @ 101Hz >60 dB 64.8 dB 

THD+N @ 0.1W <0.1% 0.0817% 

THD+N @ 0.97 W (Max Output Power) - 1.732% 

Output power @ 1% THD - 0.924 W 

Maximum Output Power 1W 0.97W 

Maximum Power Efficiency >80% 80% 

Active area - 3.97 2mm  
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The main advantage of this Class D amplifier design is that it achieves high 

power efficiency even at low output power. In Fig 6.16 we can see that this design has 

65% power efficiency at 20% of full output power. And the power efficiency reaches 

the maximum at around 50% of full output power. This result is better than recent 

Class D amplifier research works in 0.35 um technology and in 3.3 V power supply 

domain. Fig 6.17 and Fig 6.18 show the power efficiency of the Class D amplifier 

designs in [Axh07] and [Cho06], which are fabricated in 0.35 um CMOS technology 

and powered by 3.3 V supply. Although both papers claim that the maximum power 

efficiency for the designs are around 80%, their power efficiency at low output power 

are lower than this design. 

 

Fig 6.17: Power efficiency VS output power in Reference [Axh07]  
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Fig 6.18: Power efficiency VS output power in Reference [Cho06] 

High power efficiency in low output power is very important for portable audio 

application. The probability of portable audio devices running in low and mid output 

power is higher than the probability of portable audio devices running in high output 

power. High power efficiency in low output power allows portable audio devices have 

better batteries life time. This advantage of this design is mainly due to the adoption 

of 3-level switching scheme in SD modulator design. It greatly reduces the switching 

activity of the H-bridge output stage, especially at low output power (refer to Fig 

3.12). Since the switching loss is the main power loss at low output power, reducing 

switching activity effectively reduce the switching loss and hence the power 

efficiency at low output power is improved. 



 

134 

 

Table 6.2 summarizes and compares the performances of this design and the 

state-of-the-art class D amplifier designs in order to have a clearer view on how this 

research work is done.  

Table 6.2: Performance Comparison 

Reference/ 

Year 

Process/ 

supply 

Active 

area 

(mm sqrt) 

Output 

load (Ω) 

Max output 

power (W) 

Efficiency 

(%) 

Min 

THD+N 

(%) 

[Var03]/2003 0.18um/1.8V 0.3 4.3 - 76 0.07 

[Kao06]/2006 0.35um/1.5V - 600 - 90 0.27 

[Kyo08]/2008 0.18um/3V 1.6 32 - 77 0.022 

[Gro08]/2008 65nm/2.65V 0.278 8 0.53 76 0.025 

[Axh07]/2007 0.35um/3.3V 2.88 16 0.25 76 0.5 

[Kin08]/2008 0.35um/3.3V 2.55 7.5 1 80 0.15 

This Work 0.35um/3.3V 3.97 4 0.97 80 0.082 

The performance of Class D amplifiers vary from applications, technology, 

power supply voltage, power consumption, and etc. It is very difficult to make a fair 

comparison across them. Each design has its pros and cons. Compare to other designs 

listed in table 6.2, the design in this research work has high output power and high 

efficiency with moderate THD+N performance. However, its active area is largest 

mainly due to the lowest output load. The class D amplifier design in this research 

work demonstrates overall good performance compared to other designs. 
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Chapter 7:  

Conclusion 

The research work on class D audio power amplifier design in 0.35 um CMOS 

technology is presented in this thesis. The background knowledge of class D amplifier 

is introduced in the first two chapters. System level design and circuit level design 

process of the SD modulator and output stage are discussed in chapter 3 and chapter 4. 

Three sample chips are tested and the testing results have been presented in the last 

chapter. The testing results show that this class D power amplifier design is robust 

and it meets most of the design specifications.  

 Suggestion of future work 

Continuous time (CT) integrator can be used for 1
st
 stage. This allows analog 

feedback directly from the H-bridge. By doing this, the feedback loop not only 

improves the PSRR, but also suppresses the distortion due to on-resistance of 

power transistor, timing error and errors due to process mismatch in the loop. 

Due to analog feedback from H-bridge, distortion introduced by deadtime can be 

suppressed. It is adviced to add a deadtime controller in the gate driving circuit. 

This can further increase the power efficiency of the class D amplifier. 
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