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Abstract 

 

ABSTRACT 

 

Scaling of the gate stack has been a key to enhancing the performance of 

complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) of the 

past 40 years. However, as the metal-oxide-semiconductor field-effect transistors 

(MOSFET) continues to scale down to tens of nanometers, Si/SiO2 based device is 

approaching its fundamental limits, the motivation for alternative gate stacks has 

increased considerably. High-k/Ge gate stack is very promising for future nanoscale 

devices because it improves the device performance in terms of both drive current and 

power consumption. The most important technical issue for high-k/Ge MOSFET 

technology is the passivation of the Ge surface.  

 

In this study, two approaches to improve the high-k/Ge interface qualities were 

investigated. The first approach was using pre-gate surface passivation for high-k/Ge gate 

stack. Two pre-gate surface passivation techniques were investigated. The first one was 

the sulfur passivation. We found that the Ge diffusion was suppressed by introducing 

sulfur atoms at high-k/Ge interface, due to less GeOx (x < 2) formation, and consequently, 

the interface trap density (Dit) was significantly reduced. However, device with sulfur 

passivation presented a large amount of hysteresis. The second one was silicon nitride 

passivation by SiH4-NH3 treatment. This was an improved version of Si passivation. We 

found that ultrathin silicon nitride layer was more effective to suppress the Ge diffusion 

 IX
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 X

than ultrathin Si layer. Moreover, the unexpected positive threshold voltage shift was also 

eliminated by using silicon nitride passivation, which was attributed to the suppressing of 

interfacial dipole formation.  

 

The second approach to improve the high-k/Ge interface quality is to adopt proper 

post-gate treatment processes. For the first time, we proposed and demonstrated a post-

gate CF4 plasma treatment process to incorporate fluorine (F) into high-k/Ge gate stacks. 

We found that F tends to segregate at high-k/Ge interface upon thermal annealing and 

both the interface quality and high-k bulk quality were significantly improved by F 

incorporation. This was attributed to the Ge-F and Hf-F bonds formation at interface and 

in the bulk high-k, respectively. The post-gate treatment was found to be compatible with 

pre-gate surface passivation. By applying both techniques on high-k/Ge gate stack, the 

optimum interface quality was able to be achieved.  

 

Variable rise/fall time charge pumping method was also used to characterize the 

interface properties of Ge MOSFETs. We found that F passivation was capable to reduce 

interface traps that located in the both bottom half and upper half of the Ge bandgap. It 

was also observed that Dit distribution in Si passivated Ge MOSFETs was asymmetric 

with much higher density in the upper half of the Ge bandgap. Those traps can act as 

Coulomb scattering centers when the MOSFETs operate under inversion, which can be 

possible cause of severe electron mobility degradation for Ge nMOSFETs.   
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 xj   Junction depth 

 Z   Impedance 
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IC   Integrated circuit 

ICP   Inductively coupled plasma 
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J-V   Leakage current-voltage characteristic 

Jg-Vg  Gate leakage current-gate voltage characteristic 
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PVD  Physical vapor deposition 

QMCV  Quantum mechanical capacitance voltage 
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RTP   Rapid thermal processing 
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SIMS  Secondary ion mass spectroscope 

SS   Substreshold swing 
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UTB  Ultrathin body  

UV   Ultraviolet  

XPS   X-ray photoelectron spectroscopy 

XTEM  Cross-section transmission electron microscopy 
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Chapter 1 

Introduction 

 

1.1. Challenges of MOSFETs scaling and possible solutions  

The success of the semiconductor industry relies on the continuous improvement 

of integrated circuit (IC) performance by reducing the dimensions of the key component 

of these circuits: the metal-oxide-semiconductor field effect transistor (MOSFET). Indeed, 

the reduction of device dimensions, or scaling, allows the integration of a higher density 

of transistors on a chip, enabling higher switching speed and reduced costs. The scaling 

of MOSFET device was originally predicted by Intel co-founder Gordon E. Moore, in 

1965 [1]. Moore’s law describes a long term trend in the history of computing hardware, 

in which the number of transistors that can be placed inexpensively on an integrated 

circuit has doubled approximately every two years*. The key concept of the MOSFET 

scaling proposed by Dennard et al. in 1974 [2] is that various structure and electrical 

parameters of MOSFET (such as gate length, gate width, gate thickness and power 

supply voltage) should be scaled in concert, which guarantees the reduction in device 

dimensions without compromising the current-voltage characteristics. However, as the 

MOSFET continues to scale down to tens of nanometers, this conventional device scaling  

 

 

*Although originally calculated as a doubling every year [1], Moore later refined the period to two years. It 
is often incorrectly quoted as a doubling of transistors every 18 months, as David House, an Intel Executive, 
gave that period to chip performance increase. The actual period was about 20 months. 
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scheme has confronted the difficulty that the three main indexes associated with 

MOSFET performance: short-channel effects, on current (Ion) and power consumption 

have the tradeoff relationships between each other, owing to several physical and 

essential limitations directly related to the device miniaturization (e.g. to maintain the Ion 

scaling, SiOxNy with equivalent oxide thickness (EOT) ~ 1 nm has to be used for 45 nm 

node technology, but this will cause greater power consumption in terms of high gate 

leakage current). The schematic diagram of this tradeoff relationship is shown in Fig. 1.1 

[3].  

 

Fig. 1.1. Tradeoff factors among short-channel effects, on current (Ion) and power 
consumption under simple device scaling and possible solutions to mitigate the 
relationship. Critical device or physical parameters to provide the tradeoff, such as 
power-supply voltage Vdd and threshold voltage Vth, are shown between the two indexes, 
and also, the physical mechanisms causing the tradeoffs are shown inside the boxes [3]. 
 

Consequently, to continue the MOSFET scaling in the future, novel device 

technologies or new materials that simultaneously satisfy the high performance and low 
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power consumption under healthy device characteristics against these physical limitations 

are strongly desired to overcome these challenges or to mitigate these stringent 

constraints in the tradeoff relations. A group of these novel device technologies or new 

materials have been proposed to solve the ultimate scaling issues for future MOSFET, 

including high-k/metal-gate, high carrier mobility or high carrier velocity channels, 

ultrathin-body (UTB) structures, multigate structures, and metal source/drain, which are 

called the technology boosters in the International Technology Roadmap for 

Semiconductors (ITRS) [4]. The basic principle of these technology boosters is to boost 

or improve a specific device parameter like the gate leakage current, mobility, short-

channel effects, and so on. 

 

In this thesis, we focus on the gate stack engineering, because gate stack 

technology is the key driver for MOSFET scaling. The advanced gate stacks must fulfill 

both requirements of low power consumption and high performance. Therefore, the 

introduction of high-k materials for gate dielectrics and high carrier mobility material for 

channels is of paramount importance.  

 

1.2. High-k gate dielectrics 

1.2.1 Limits of SiO2 scaling 

 The excellent material and electrical properties of thermal SiO2 allowed the 

successful scaling of Si-based MOSFETs in the twentieth century. Properly working 

MOSFETs with SiO2 gate layer as thin as 1.5 nm has been reported [5, 6]. However, 

further scaling of SiO2 gate layer thickness is problematic. The first problem is the 
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concern of high leakage current flowing through the metal-oxide-semiconductor (MOS) 

structure. For the ultrathin SiO2 gate layer (< 3 nm), charge carriers can flow through the 

gate dielectric by the direct tunneling mechanism [7] as illustrated in Fig. 1.2 [8].  It has 

been shown that the tunneling probability increases exponentially as the thickness of the 

SiO2 layer decreases [7, 9]. As shown in the Fig. 1.2, the leakage current density exceeds 

100 A/cm2 at Vox = 1V in a 1 nm thick SiO2 layer (Vox is the potential drop across the 

dielectric layer). It also can be seen from this figure that the SiO2 layer thickness scaling 

is limited by the leakage current specifications from ITRS. SiO2 gate dielectric is not 

suitable for 80 nm technology and below because the EOT requirement of 80 nm node 

and below is less than 1.4 nm for high performance logic and 1.7 nm for low operating 

power and the leakage current densities of the SiO2 layers with those thickness will 

exceed the maximum leakage current specifications. 

 

Fig. 1.2. (Left) Schematic energy band diagram of an n-Si/SiO2/metal gate structure, 
illustrating direct tunneling of electrons from the Si substrate to the gate. ϕ is the energy 
barrier height at the Si/SiO2 interface, Vox, the potential drop in the SiO2 layer and VG, 
the applied gate voltage. (Right) Simulated tunneling current through a MOS as a 
function of the potential drop in the gate oxide, Vox, for different SiO2 gate layer 
thickness. Shaded areas represent the maximum leakage current specified by the ITRS for 
high performance and low operating power application, respectively.   
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Another issue arising from SiO2 scaling is boron penetration through the gate 

dielectric. Upon thermal annealing, the boron from heavily doped poly-silicon gate can 

easily diffuse through the thin SiO2 layer into substrate. This will cause unexpected 

threshold voltage shift and reliability issues [10]. Actually, to tackle the gate leakage and 

boron penetration issues, in most aggressive high performance technologies, SiOxNy is 

used as gate dielectric. SiOxNy has a dielectric constant ~7, which is higher than SiO2, 

thus a larger physical thickness is allowed to achieve the same EOT. In addition, 

introduction of nitrogen into SiO2 greatly reduces the boron diffusion benefited from the 

Si-O-N networking bonds formed in SiOxNy [11]. In this case, SiOxNy dielectric layer 

with EOT as thin as 1.1 nm still exhibits acceptable leakage current and amount of boron 

penetration, extending the scaling limit to 45 nm technology node. However, for sub-45 

nm technologies, SiOxNy will not be used as gate dielectric since sub-1 nm EOT is 

necessarily required and SiOxNy can no longer fulfill the gate leakage requirement.  

 

1.2.2 Alternative gate dielectrics 

 The MOS structure actually behaves like parallel plate capacitors. The 

capacitance density at strong inversion Cinv is given by  

2 0SiO
inv

inv

k
C

t


                                                                                                                     (

where 
2SiOk  is relative dielectric constant of SiO2 (

2SiOk = 3.9), 

1.1) 

 the 0 is the permittivity of 

free space (8.85 × 10-12 Fm-1) and invt  is the capacitance equivalent oxide thickness (CET) 

of the gate oxide. Higher Cinv value enables the MOS structure to have more inversion 

carriers in the channel at the given gate voltage, and thus increases the drive current of 
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MOSFETs. According to equation (1.1), to increase Cinv, we should decrease the invt . The 

invt  consists o hree co ponents and can be expressed as  f t m

inv

polyt

oxt

poly ox qmt t t t                                                                                                              (1.2) 

is the thickness contributing by poly-Si depletion effect, is the equivalent oxide 

thickness (EOT) of the gate dielectric*, and is the thickness attributed to quantum 

mechanical effect of carriers in the channel. t  could be reduced by replacing the poly-

Si gate with metal gate, which is not the focus of this study.  is an intrinsic mechanism 

and cannot be eliminated. The most effective way to reduce the  is to decease 

(EOT). For the past several decades, the gate oxide thickness has been scaled down 

from hundred nm to now about ~ 1 nm. As pointed out in section 1.2.1, SiO2 or SiOxNy 

has reached to its scaling limits. To further decrease the EOT while maintaining the gate 

leakage current of MOS structure, an insulator with a higher dielectric constant than SiO2 

(high-k material) with larger physical thickness should be used. The increased physical 

thickness can also solve the boron penetration problem and improve the gate dielectric 

reliability. As an example, using ZrO2 as gate dielectric (

oxt

h k

qmt

poly

qmt

higk

invt

 ~20) would allow us to 

use a 5.1 nm thick layer in order to achieve an EOT of 1 nm*.   

 

 A lot of research efforts have been made on high-k gate dielectrics for the 

potential replacement of SiO2 in advance CMOS technologies. The material that could be  

 

*The EOT ( ox ) of a material is defined as the thickness of the SiO2 layer that would be required to achieve 

the same capacitance density as the high-k material in consideration. EOT is given by 

2ox high k SiO high k  , where high kt

t

  /t t k k   and high kk   are the physical thickness and relative dielectric 

constant of high-k dielectric, respectively.  
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the good candidate needs to satisfy a long list of requirements [12], e.g.: 

 The relative dielectric constant of the material should be somewhere between 10 and 30. 

Dielectrics with higher k value will give rise to fringe fields from the gate to the drain 

or source and these fields can degrade short channel performances. 

 The dielectric material must be an insulator with a band gap greater than 5 eV and the 

band offsets with silicon must be sufficient. Generally, increasing dielectric constant 

leads to lower conduction and valence band offset for materials in contact with silicon, 

and there is an inverse relationship between dielectric constant and the band gap. To 

prevent conduction by Schottky emission of electrons or holes into their respective 

bands, i.e. reduce leakage currents, the barrier at each band must be greater than 1 eV.  

 Low density of intrinsic defects at the Si/dielectric interface and in the bulk of the 

material, providing high mobility of charge carriers in the channel and sufficient gate 

dielectric life time.  

 Good thermal stability in contact with Si, preventing the formation of a thick SiOx 

interfacial layer or silicide layers.  

 

Table 1.1 lists the key characteristics of a wide variety of potential high-k gate 

dielectrics together with SiO2 and Si3N4 for comparison. It can be seen that HfO2 and 

LaAlO3 meet most of the criteria listed above, such as k value, band offsets and good 

thermal stability. Indeed, the materials that received by far the most attention as 

alternative gate dielectrics are Hf-based, either HfO2 or (nitrided) HfSiOx over a broad 

compositional range. The Intel’s 45 nm technology microprocessor has already adopted 

Hf-based high-k dielectrics as gate insulator. Since Hf-based gate dielectrics have already 
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been demonstrated to be a very important high-k material for Si-based MOS devices. In 

this thesis, we will still focus on Hf-based high-k gate dielectrics for advanced gate stack 

application with alternative channel material.  

 

Table 1.1. Key characteristics of a wide variety of gate dielectrics on Si [13-16]. 

Dielectric k value Bandgap 

(eV) 

Conduction

band offset 

(eV) 

Valence 

band offset 

(eV) 

Thermal stability 

on silicon 

SiO2 3.9 9.0 3.2 4.7 > 1050oC 

Si3N4 7 5.3 2.4 1.8 > 1050oC 

Al2O3 9 8.8 2.8 4.9 ~ 1000oC 

HfO2 25 5.8 1.4 3.3 ~ 950oC 

HfSiO4 11 6.5 1.8 3.6 > 900oC 

La2O3 30 6.0 2.3 2.6 - 

a-LaAlO3 30 5.6 1.8 2.7 ~ 1000oC 

Ta2O5 22 4.4 0.35 2.95 Not stable 

TiO2 80 3.5 0 2.4 - 

Y2O3 15 6.0 2.3 2.3 Silicate formation 

ZrO2 25 5.8 1.5 3.2 Forms silicides 

 

 

1.3. Ge MOSFETs 

 Replacing the SiOxNy with high-k material mainly solve the high power 

consumption issue in MOSFET scaling, however, as mentioned earlier, the new 

technology node also needs increased Ion for higher performance. Stress-induced 

improvement of device performance has been widely reported. However, the mobility 

enhancement by strain is subject to limitation [17]. Furthermore, as the transistor size 
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becomes small enough (gate length < 20 nm), ballistic transport will become the 

dominant carrier transport mechanism. The transistor speed is no longer determined by 

the saturation velocity but the injection velocity at the source region, which is 

proportional to the mobility. Therefore, a MOSFET with high-k gate dielectrics and high 

mobility channel materials is a good option for future nanoelectronic devices.  

  

Table 1.2. Material properties of alternative channel materials [18, 19].  

 Ge Si GaAs InSb InP 

Bandgap, Eg (eV) 0.66 1.12 1.42 0.17 1.35 

Breakdown field (MV/cm) 0.1 0.3 0.06 0.001 0.5 

Electron affinity,  (eV) 4.05 4.0 4.07 4.59 4.38 

Hole mobility, μh (cm2/V·s) 1900 450 400 1250 150 

Electron mobility, μe (cm2/V·s) 3900 1500 8500 80000 4600 

Effective density of states in 
valence band, Nv (cm-3) 

6.0×1018 1.04×1019 7.0×1018 7.3×1018 1.1×1019 

Effective density of states in 
conduction band, Nc (cm-3) 

1.04×1019 2.8×1019 4.7×1017 4.2×1016 5.7×1017 

Lattice constant, a (nm) 0.565 0.543 0.565 0.648 0.587 

Dielectric constant, k 16 11.9 13.1 17.7 12.4 

Thermal conductivity (W/cm·k) 0.58 1.3 0.55 0.18 0.68 

Melting point, Tm (oC) 937 1412 1240 527 1060 

 

 

 Table 1.2 lists the key material characteristics of Si, Ge and main III-V 

semiconductors. Among these materials, Ge offers the greatest potential for future CMOS 

application. Because it is the only material that provides higher mobility for both hole 

and electron with appropriate bandgap, breakdown field, thermal conductivity and 

melting point. In particular, the bulk hole mobility of Ge is the highest of all Group IV 

and III-V semiconductor materials. As shown later, it has actually been demonstrated that 
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unstrained Ge pMOSFETs can provide 3 times hole mobility against the Si universal hole 

mobility. Furthermore, Ge based MOS devices have shown to be compatible with strain 

technology for both nMOSFET [20] and pMOSFET [3] . It is found that the hole mobility 

enhancement of as high as ten is obtained by combing both Ge channel (GOI with 93% 

Ge content) and compressive strain [3]. Thus, Ge-channel MOSFETs have been regarded 

as one of the most promising channel materials for high speed application.  

 

 However, the current performance of Ge nMOSFETs is too poor to reach the level 

for the 22 nm node in the ITRS. Therefore, it maybe useful to investigate the feasibility 

of III-V MOSFETs because the enhancement factor of the bulk electron mobility against 

Si can amount to 3-50 for III-V semiconductors. However, it is easier to fabricate 

MOSFETs in Ge than in III-V materials since the surface passivation of III-V 

semiconductor is more challenging. Ge also has a larger density of states in the 

conduction band than III-V materials, which is another advantage for achieving a large 

drive current. It is suspected that the low mobility of Ge nMOSFETs is mainly attributed 

to the high density of interface traps of the gate stacks [21]. So Ge is also a potential 

nMOSFETs candidate if significant improvement of the interface quality can be achieved.  

 

 To realize the Ge-based CMOS technologies, there are a few issues to be solved, 

which are listed below [3]: 

(1) High-k gate insulator formation with high quality interface and small EOT. 

(2) High-quality Ge or GOI channel layer formation. 

(3) Formation of low resistivity source/drain junctions. 
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(4) Improvement of poor performance of Ge nMOSFETs 

(5) Reduction in large off state leakage current (Ioff ) due to smaller bandgap 

(6) Appropriate CMOS structures and integration technologies.  

In this thesis, we will focus on the issue (1). This is because in order to realize the desired 

high mobility Ge CMOS for sub-22 nm nodes, a viable high-k gate stack on Ge must at 

least have a low density of interface traps and small EOT.  

 

 

1.4. Current status of Ge channel MOS devices with high-k dielectrics 

 Due to the water soluble nature of amorphous GeO2, the early works mainly used 

germanium oxynitride as gate dielectrics. Rosenberg and Martin reported this kind of Ge 

pMOSFETs in 1988 [22]. Some subsequent result was reported from the same research 

group with improved hole mobility of 1050 cm2/V·s [23]. Further progress was made by 

Ransom et al. with both n-channel and p-channel MOSFETs together in 1991 [24]. A 

gate-self-aligned process flow was used in this paper, which is very close to 

contemporary device fabrication flow already. Both n- and p-channel mobilties obtained 

from long channel device characteristics were greater than 1000 cm2/V·s, which are 

much higher than the mobility obtained from Si devices. In 2002, effective hole mobility 

measured by split C-V method was reported by Shang et al. with GeON dielectrics that 

was less than 10 nm thick [25]. Over 40% hole mobility enhancement is obtained over 

the Si control and a subthreshold slope less than 100 mV/dec was demonstrated. 

Although these results are encouraging, the equivalent oxide thicknesses are all too large 

to meet the ITRS requirement. Chui et al. studied the scalability of Ge oxynitride 
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dielectrics for MOS applications [26]. They found that GeON was not suitable for highly 

scaled MOSFET application (EOT < 2 nm) due to the high leakage current density.  

 

In order to meet the gate leakage requirement, high-k dielectrics must be 

implemented on Ge substrate. In 2002, Chui et al. demonstrated Ge MOS capacitors with 

ZrO2 gate dielectrics for the first time [27]. The gate dielectric was formed by UHV 

sputtering of ~ 20-30 Å Zr films on the Ge surface followed by in-situ UV ozone 

oxidation at room temperature. EOT as low as 5~8 Å and C-V hysteresis as small as 16 

mV were achieved. The group further reported the Ge pMOSFETs with such high-k 

dielectrics with peak hole mobility as high as 313 cm2/V·s [28]. However, the gate 

leakage currents for their samples were quite high and prevented the extraction of other 

device characteristics like interface states density. Kim et al. further investigated the 

ZrO2/Ge gate stack, which was formed by atomic layer deposition (ALD) [29]. Large 

frequency dispersion and hysteresis were presented in the C-V characteristics, which was 

ascribed to poor interface quality.  

 

 Although introduction of high-k gate dielectrics enabled the scaling of EOT, the 

interface quality is poor when high-k dielectrics directly deposited on the Ge substrate. 

For ZrO2/Ge gate stack, the poor interface quality was believed to originated from either 

the large areal density of interfacial dislocations due to the relatively large lattice 

mismatch or because of a very high density of interface states due to intrinsic differences 

in bonding coordination across the chemically-abrupt ZrO2/Ge interface [29]. For the 

HfO2/Ge gate stack, it was reported that a significant amount of germanium was found 
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inside HfO2 film deposited by metalorganic chemical vapor deposition (MOCVD) [30]. 

Similar Ge incorporation was also observed in physical vapor deposition (PVD) HfO2 on 

Ge substrate after high-temperature annealing [31]. There are several possible 

mechanisms causing the Ge diffusion into HfO2. Zhang et al. believed that the fast 

germanium diffusion in dielectrics is probably due to its higher self-diffusivity coefficient 

compared to Si [31]. Kita et al. suggested that the diffusion might be attributed to the 

desorption of Ge-riched volatile Hf-Ge-O [32]. Whereas some other studies speculated 

that the formation of volatile GeO at HfO2/Ge interface caused the diffusion [33]. The Ge 

diffusion into high-k dielectrics can cause significant degradation of interface quality and 

device performance. The high-k/Ge MOS characteristics tend to deteriorate when high-

k/Ge is treated with thermal processes above 500 °C [34]. Such deterioration can be 

attributed to the fact that Ge-O bonds inevitably exist at the interface between Ge and 

high-k dielectrics. 

 

 The poor interface quality of high-k/Ge gate stack becomes the most challenging 

issue for the Ge MOSFETs. Many efforts have been made to improve the interface 

quality between high-k and Ge. In 2003, Bai et al. used an RTP NH3 annealing before 

HfO2 gate dielectric deposition for Ge MOS capacitors [35]. XTEM picture revealed that 

an ultra-thin interfacial layer (~8Å) was formed between the HfO2 and Ge, which was 

believed to be the Ge oxynitride. By using the NH3 passivation, electrical characteristics 

such as EOT, gate leakage current, hysteresis and Dit were significantly improved. The 

Ge pMOSFETs with such NH3 treatment and HfO2 gate dielectrics were further made by 

Ritenour et al. [36]. These devices exhibited sub-90 mV/decade substreshold swing and 

 13



Chapter 1: Introduction 
 

low gate leakage current. An 1.8 X enhancement of hole mobility was achieved 

compared to Si control wafers. Van Elshocht et al. [30] and Lu et al. [33] investigated the 

Ge diffusion for MOS capacitors with NH3 treatment. It was found that there was much 

less Ge diffusion for samples with NH3 treatment compared to samples without NH3 

treatment.  

 

   The physical characteristics of NH3 annealing was investigated by Wu et al. 

[37]. High resolution XPS study showed that GeOxNy is formed during NH3 annealing. 

The concentrations of oxygen and nitrogen were quantified to be about 0.83:0.17. 

Although high purity NH3 gas (99.999%) was used in the experiment, the concentration 

of oxygen in Ge oxynitride was very high. They author suspected that the oxygen was 

introduced by the NH3 gas source since the main impurity was O2, H2O and H2. The 

results also implied that Ge was much easier to be oxidized than nitrified. Gusev et al. 

further studied the microstructure of HfO2 gate dielectric deposited on Ge [38]. It was 

found that the lack of an interlayer enables quisiepitaxial growth of HfO2 on the Ge 

surface after wet chemical treatment whereas a nitrided interface (grown by thermal 

oxynitridation in NH3) resulted in an amorphous HfO2. Nitrided interfaces produced 

much better quality stacks.  

 

 Besides thermal NH3 annealing, other techniques have also been reported to form 

the Ge oxynitride interlayer. Chen et al. reported an alternative surface nitridation 

technique by exposing the Ge substrate to an atomic N beam from a remote RF source at 

350oC to 600oC [39]. Nuclear reaction analysis of nitride Ge substrate showed a nitrogen 
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surface density of 2.3 × 1015 cm-2, translating to a substrate coverage of 3 to 4 monolayers. 

The surface nitridation was found to be effective to reduce EOT and C-V hysteresis for 

HfO2 gated MOS capacitors. On the other hand, the nitridation also introduced a negative 

flatband voltage shift ~ 0.7 V, indicating of positive charge introduction or the 

incorporation of a charge dipole. Although improved electrical characteristics were 

obtained by surface nitridation, the Dit was still found to be high (~ 6×1012 eV-1cm-2) near 

the mid-gap using high-frequency/low-frequency method. The author also reported Al2O3 

gated Ge MOS capacitor with surface nitridation. Interestingly, much lower Dit was 

found compared to HfO2 gated samples, at the expense of increase in EOT and gate 

leakage current. To further minimize the GeOx (x<2) component and increase N 

incorporation in the Ge oxynitride interlayer, a wet-NO oxidation was proposed by Xu et 

al. [40]. The mechanisms involved probably lie in the hydrolysable property of GeOx in 

water-containing atmosphere.  

 

 Some groups of researchers also tried to fabricate Ge MOS structures with pure 

germanium nitride (Ge3N4). Because it is believed that the unstable GeOx component can 

degrade the interface quality and high oxygen concentration may also lead to partially 

crystallization of Ge oxynitride films [37]. However, most of the films obtained through 

thermal nitridation were Ge oxynitride. Oxygen incorporation in these films was 

unavoidable, attributed to native oxide or residual oxygen in the reactor or oxygen 

impurities in the gas sources. Maeda et al. presented a demonstration of pure nitridation 

of clean Ge substrate using a plasma process at low temperatures [41]. The surface 

cleaning of Ge substrate and subsequent nitridation were performed in the same chamber. 
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In situ physical characteristics showed that oxygen was not present in these germanium 

nitride films. They also managed to fabricated the Ge MOS capacitors with EOT as low 

as 1.23 nm. These devices exhibited good high-frequency C-V characteristics but the gate 

leakage current is substantially high due to the fact that Ge3N4 was not a high-k material. 

The same group of researchers further optimized the process conditions and they found 

the smoothest interface and surface can be achieved in the Ge3N4 films grown at 100oC 

[42]. It was also pointed out that the top surface of Ge3N4 films was oxidized easily once 

the Ge3N4 films were exposed to air. The similar phenomenon was also reported by 

Kutsuki et al. [43]. They found that humidity in the air accelerated the degradation of 

Ge3N4 layers and that under 80% humidity condition, most of the Ge-N bonds converted 

to Ge-O bonds. Therefore it is essential to take the best care of moisture in the fabrication 

of Ge MOS devices with Ge3N4 insulator or passivation layer. Maeda et al. further 

demonstrated HfO2 gated Ge MOS capacitors with pure Ge3N4 interfacial layers [44]. 

The gate stack exhibited excellent interface quality with minimum Dit ~ 1.8×1011cm-2eV-1. 

It was noteworthy that Dit increased exponentially as the energy approached to the 

midgap. The thermal stability of the high-k gate stack was also improved with Ge3N4 

interfacial layer. However, there is no report on transistor performance in that paper.  

 

 As mentioned earlier, pure Ge3N4 is hard to form on Ge surface due to two 

reasons. The first is that it is difficult to avoid residual oxygen content inside the process 

chamber or at Ge surface. The second is that Ge is much easier to be oxidized than 

nitrided [37]. Thus, some other groups of researchers tried to use metal nitride or metal 

oxynitride passivation layer to minimize the GeOx (x<2) content at high-k/Ge surface. 
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Gao et al. demonstrated a surface passivation using AlNx film for HfO2 gated Ge MOS 

capacitors [45]. The AlNx layer was deposited by reactive sputtering of Al target in N2/Ar 

ambient. For comparison, they also fabricated Ge MOS capacitors with thermal NH3 

treatment. Interestingly, the author found that the intensity of GeO2 peak increased 

significantly after HfO2 deposition for sample with surface nitridation, indicating that 

most of the GeOx component was formed at interface during the HfO2 deposition process. 

Whereas for devices with AlNx passivation, the GeOx component was reduced because 

AlNx acted as a better oxygen diffusion barrier.  The electrical characteristics and thermal 

stability was also improved for device with AlNx passivation. Kim et al. further made 

both n and p channel Ge MOSFETs with AlNx or Hf3N4 passivation layer deposited by 

ALD [46]. Good C-V characteristics were achieved with EOT as low as 0.8 nm. However, 

the devices exhibited quite high interface states. The mobility for pMOSFETs was only 

slightly higher than Si hole universal and mobility for nMOSFETs was much lower than 

Si electron universal. It can be seen that although metal nitride passivation layer acts as a 

better oxygen barrier, but the high Dit seems to an intrinsic problem that limits its 

implementation for MOSFETs fabrication. Some recent works presented another TaOxNy 

passivation layer, formed either by plasma enhanced ALD [47] or reactive sputtering 

(with PDA) [48]. TaOxNy interlayer was demonstrated to be a good diffusion barrier 

between high-k and Ge. Electrical characteristics like EOT, hysteresis and Dit were 

improved. Dit value was lower than MOS capacitors with AlNx or Hf3N4 interlayer 

reported earlier. A peak hole mobility of 225 cm2/V·s was demonstrated for Ge 

pMOSFETs with TaOxNy interlayer, which was about ~1.7 X enhancement over Si hole 

universal.  
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 By now, we have reviewed a few nitride based Ge surface passivation techniques. 

By forming Ge oxynitride, Ge3N4, metal nitride or metal oxynitride interlayer, high-k 

gated Ge MOS devices showed improved electrical characteristics such as EOT, gate 

leakage current, C-V characteristics and Dit. The improvements are attributed to less Ge 

diffusion into high-k dielectrics by reducing the amounts of GeOx (x<2) formation at 

interface. High-k gated Ge pMOSFETs with enhanced hole mobility (as high as a 1.8X Si 

universal) have been demonstrated whereas electron mobility of Ge nMOSFETs is very 

poor.  

 

  Besides the nitride based surface passivation techniques, another alternative 

passivation process-Si passivation was proposed and demonstrated on HfO2 gated Ge 

MOS capacitors by Wu et al. in 2004 [49]. Two important criteria were pointed out for an 

effective Si passivation: (1) Si must completely cover the Ge surface and Ge surface 

should be free of germanium oxide; (2) The Si passivation layer should be thin enough 

and consumed during the subsequent high-k deposition so that the MOSFET channel is 

still kept in Ge. XPS studies showed that Ge-O bonds were greatly reduced by Si 

passivation and Si cap layers were totally oxidized after HfO2 deposition. Very good C-V 

characteristics were achieved with EOT as low as 13.5Å and gate leakage current as low 

as 1.16 × 10-5 A/cm2@ 1V. Wu et al. further demonstrated TaN/HfO2/Ge pMOSFETs 

with Si passivation [50]. TEM picture showed that a thin amorphous interfacial layer was 

obtained after Si passivation. Ge pMOSFETs with NH3 treatment were also fabricated for 

comparison. The author found that devices with Si passivation exhibited lower gate 

leakage current and better thermal stability. The improvements were believed to be 

 18



Chapter 1: Introduction 
 

resulted from the significant suppression of unstable germanium oxide formed at 

interface, as well as the uniform amorphous interfacial layer after the silicon passivation 

process. The peak hole mobility for NH3 treated and Si passivated MOSFETs were 79.9 

cm2/V·s and 194.1 cm2/V·s, respectively.  The author further optimized the Si passivation 

process by tuning the Si interlayer and HfO2 thickness [51]. It was found that by 

increasing the Si cap thickness and decreasing the HfO2 thickness, better C-V 

characteristics and interface quality were achieved. This is because increasing the amount 

of Si would reduce the amount of GeOx (x<2) at the interface and hence, lead to fewer 

interface traps. At the same time, increasing HfO2 thickness tends to consume more Si, 

and more GeOx might form, resulting in worse interface quality. A much higher hole 

mobility with peak ~ 240 cm2/V·s was achieved by optimizing the ratio between HfO2 

and Si. Ge nMOSFETs were also reported with peak electron mobility ~ 215 cm2/V·s, 

which was still much lower than Si electron universal.  

 

 In 2006, Zimmerman et al. demonstrated HfO2 gated Ge pMOSFETs with Si 

passivation fabricated with a Si-compatible process flow using 200 mm (100) Ge-on-Si 

wafers [52]. Approximately a 3X mobility enhancement was observed compared to Si 

hole universal with EOT ~ 1.2 nm. Short channel devices were also fabricated using the 

same process flow. Correcting for Rs, the peak field effective mobilities extacted for even 

the shortest devices (Lg ~ 0.125 μm) remained above 300 cm2/V·s. Joshi et al. also 

reported high mobility (~ 3X Si) Ge pMOSFETs using direct SiOx passivation [53].  

Highly scaled sub-100 nm Ge pMOSFETs with Si passivation were also demonstrated 

[54, 55]. Similar to Wu’s finding [51], it was also found that the interface quality was 
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improved with increasing Si cap thickness. Mitard et al. further observed that Ge could 

diffuse into Si and this Ge incorporation in Si could give strong impact on electrical 

performance. A low temperature Si layer deposition at 350oC was proposed to solve this 

issue [54].  

 

 The principles of both nitride based passivation and Si passivation actually are 

quite similar. Both passivation techniques improve the gate stack quality by reducing the 

volatile GeOx (x<2) formation at high-k/Ge interface and suppress the Ge diffusion into 

high-k dielectrics.  

 

As in the case of SiO2 with Si, GeO2 is still believed to be the ideal passivating 

layer for Ge. Unlike the Ge sub-oxide (GeOx), GeO2 is not a volatile material and thus 

has the potential to act as a dielectric material. In 2007, Takahashi et al. investigated the 

possibility of using GeO2 as a gate dielectric for Ge MOS devices [56]. They firstly 

studied the GeO2/Ge interface kinetics by annealing the stack at different temperatures. It 

was observed that GeO2 reacted with Ge forming volatile GeO which desorbs above 500-

600oC. It can be easily expected that GeO desorption should degrade the dielectric film 

and interface characteristics. Therefore, a Ni-FUSI cap layer, which acted as part of gate 

electrode, was implemented on GeO2/Ge stack to suppress the GeO desorption. 

Surprisingly, very good C-V characteristics were achieved. Both Ge p- and n- channel 

MOSFETs were fabricated using Ni-FUSI/GeO2/Ge gate stack. Recorded hole mobility ~ 

370 cm2/V·s with S/D resistance correction was obtained for pMOSFETs whereas ~ 270 

cm2/V·s without S/D resistance correction was obtained for nMOSFETs. Matsubara et al. 
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further investigated the interface quality of GeO2/Ge using low temperature conductance 

method [57]. It was found that very promising interface quality could be obtained for 

GeO2/Ge interface with Dit as low as 9.3 × 1010 cm-2eV-1, which was approaching to 

SiO2/Si standard. The same group further presented very high hole mobility (> 400 

cm2/V·s) Ge pMOSFETs with this GeO2 dielectric layer capped with SiO or Al2O3 [58]. 

However, the physical thickness of their gate stack was quite large ( > 40 nm).  

 

 To fabricate high quality GeO2 on Ge surface, the process temperature and 

pressure is also very important. To minimize the GeO desorption and achieving good 

stoichiometry, Kuzum et al. proposed an ozone oxidization method to grow high quality 

GeO2 at lower temperatures because ozone is more reactive than oxygen [59]. Lee et al. 

demonstrated another approach by using thermal oxidation in high pressure oxygen 

without any capping layer [60]. Because of higher oxygen pressure, a net process of Ge 

oxidization took place, rather than decomposition of GeO2 into GeO. Moreover, by 

increasing the O2 pressure at GeO2/Ge interface, the GeO pressure was decreased. As a 

result, much better GeO2 quality was obtained compared to GeO2 grown by normal 

thermal oxidation process. By using this two methods, recently, recorded high electron 

mobility for Ge nMOSFETs have been demonstrated, which are higher than Si universal 

electron mobility [61, 62]. However, the gate oxide thickness is large for those devices, 

which has not met the requirement of small EOT for future nanoscale transistors.  

 

 Due to the fact that GeO2 is a low-k material, although GeO2/Ge exhibits 

excellent interface quality with low Dit, stoichiometric GeO2 still cannot serve on its own 
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as a gate dielectric for aggressive scaled Ge MOSFETs where sub 1-nm EOT is required 

with a minimum gate leakage current. Therefore, capping the GeO2 with a high-k 

dielectric offers the potential to improve the gate stack insulating properties and 

scalability. HfO2 gated Ge MOS capacitors with thermal GeO2 passivation layer was 

demonstrated by Delabie et al. [63]. EOT was successfully scaled down to 1.5 nm. The 

devices exhibited very good C-V characteristics with Dit ~ 3×1011 cm-2eV-1, which was 

slightly higher than pure GeO2/Ge gate stack [57]. Tsipas et al. investigated the 

ZrO2/GeO2/Ge gate stack and it was found that Ge presence within ZrO2 was beneficial 

in stabilizing the zirconia tetragonal phase, which was accompanied by a high-k value of 

around 44 [64]. Such a high value is desirable for further EOT scaling down. It can be 

seen that GeO2 passivation is benefical for high-k gated Ge MOS capacitors. However, 

there is still no reports for high-k gated Ge MOSFETs with GeO2 passivation. 

 

 By now, we have reviewed three major surface passivation techniques to obtain 

high quality high-k/Ge gate stacks. They are surface nitridation, Si passivation and GeO2 

passivation. We have also shown that minimizing the GeOx (x<2) components at high-

k/Ge interface is very important to achieve good interface quality since GeOx is unstable 

and volatile which will cause severe Ge diffusion into high-k dielectrics. With the surface 

passivation layer, Dit is significantly reduced for high-k gated Ge MOS devices, although 

it is still higher than that of high-k/Si interface. High-k gated Ge pMOSFETs with 3X 

enhancement in hole mobility has been demonstrated. However, there is still no 

successful report on high-k gated Ge nMOSFETs achieving greater electron mobility 

than Si. 
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1.5 Thesis outline and original contributions 

 In chapter 2, an alternative surface passivation technique other than using nitride, 

Si or GeO2 is studied. The technique is called sulfur passivation as a pre-gate (NH4)2S 

solution treatment is done before the high-k deposition. In this chapter, the effects of the 

sulfur passivation are investigated in detail through both physical and electrical 

characterizations. The impact on gate stack thermal stability is also studied.  

 

 In chapter 3, an improved version of Si passivation is proposed and demonstrated. 

As discussed in section 1.4, the effectiveness of Si passivation highly depends on the Si 

interlayer thickness and ultrathin Si layer can not effectively suppress the Ge diffusion. In 

this work, we incorporate nitrogen into the ultrathin Si layer and find that the ultrathin 

SixNy layer is more capable to suppress Ge diffusion and better electrical performance is 

achieved. The use of SixNy interlayer also addresses the unexpected positive Vth shift 

issue for Si passivation. 

 

 In the literature, extensive studies have been made to explore the pre-gate 

treatments for high-k/Ge gate stack. In chapter 4, for the first time, the concept of the 

post-gate treatment is proposed for high-k/Ge gate stack. F incorporation is demonstrated 

on high-k/Ge gate stack through post gate CF4 plasma treatment.  The interface quality of 

high-k/Ge gate stack is greatly improved by F passivation.  

 

 In chapter 5, we further demonstrate this post gate treatment concept on thermal 

GeO2 passivated Ge pMOSFETs with HfO2 gate dielectric. Record high hole mobility > 

 23



Chapter 1: Introduction 
 

3X Si hole universal is achieved with EOT as low as 1 nm. Variable rise/fall time charge 

pumping method is also used to study the interface quality of Ge MOSFETs. 

 

 In chapter 6, we implement the variable rise/fall time charge pumping method to 

study the energy distribution characteristics of HfO2 gated Ge MOSFETs. The cause of 

the poor electron mobility for Ge nMOSFETs with Si passivation is pointed out.  

 

 Finally, the thesis is completed with conclusions and suggested future works in 

Chapter 7. 
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Chapter 2 

Effects of Sulfur Passivation on High-k/Ge Gate Stack 

 

As mentioned in the previous chapter, to have a high quality high-k gate stack on 

Ge substrate, minimizing the GeOx (x < 2) at the surface between the high-k and substrate 

is a critical issue, because volatile germanium monoxide formation at interface can lead 

serious Ge out diffusion, resulting poor interface quality. To minimize the GeOx, Ge 

surface passivation is needed before gate stack formation. In literature, a few surface 

passivation techniques have been systematically studied, including nitride based 

passivation, Si passivation and GeO2 passivation. Recently, Martin M. Frank et al [1] 

reported another surface passivation technique - sulfur passivation, which has also been 

demonstrated to be useful for MOS capacitors made on III-V substrate [2]. It was found 

that interface state density is lower than NH3 nitridation passivated samples. However, 

the gate stack in that paper did not go through any high temperature annealing (e.g. 

>400°C). Also, there is no report on electrical properties like equivalent oxide thickness 

(EOT) and gate leakage current. In this chapter, we investigate the effects of sulfur 

passivation on Ge MOS capacitors in a more detailed manner to fill in the gap in 

literature about sulfur passivation. Both physical and electrical characteristics will be 

studied and gate stack thermal stability will also be examined.  
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2.1. Experiments 

The starting wafers for the experiment were n-type Ge wafers (Sb doped, 

resistivity = 0.04-0.08Ωcm). The native oxide was removed by a cyclic rinsing between 

deionized (DI) water and diluted HF [3]. After that, the substrates were immersed into 

20% aqueous (NH4)2S solution for 30 min at room temperature, followed by a water rinse 

and a N2 blow dry. Control samples with only HF cyclic rinsing were also prepared. After 

that, HfON was then formed on both types of samples by HfON deposition with reactive 

sputtering and post deposition annealing in an N2 ambient at 500°C for 1 min (the 

residual oxygen concentration < 5ppm). A 150nm TaN gate electrode was then sputtered, 

and followed by lithography and dry etching processes. Post metal annealing (PMA) at 

different temperatures was then performed for thermal stability investigation. The final 

step was forming gas anneal in H2 + N2 ambient at 420ºC for 2 hours. High-resolution ex 

situ x-ray photoelectron spectroscopy (XPS) analysis was performed with standard Al x-

ray source. Secondary ion mass spectroscope (SIMS) analysis was used to study the Ge 

profile in the gate stack. Capacitance-voltage (C-V) and leakage current-voltage (J-V) 

characteristics were measured by an Agilent 4284A LCR meter and a HP4156A 

semiconductor parameter analyzer, respectively.   

 

2.2. Results and Discussions 

To confirm the S incorporation after the (NH4)2S treatment, XPS data of S 2p 

signal is measured and shown in Fig.2.1. The peak (~162eV) of the S 2p signal indicates 

that S was introduced on the Ge surface after (NH4)2S treatment. The N 1s spectra shown 

 32



Chapter 2: Effects of sulfur passivation on high-k/Ge gate stack 
 

in Fig. 2.2 shows that N would not be introduced on the Ge surface by the (NH4)2S 

treatment.  
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Fig. 2.1. XPS data in S 2p region from Ge(100) substrates after only HF clean or after HF 
+ (NH4)2S treatment.  
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Fig. 2.2. XPS data in N 1s region from Ge(100) substrates after only HF clean or after HF 
+ (NH4)2S treatment. 
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Fig. 2.3. XPS data in Ge 3d region from Ge(100) substrates after only HF clean or after 
HF + (NH4)2S treatment. 
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Fig. 2.4. XPS data in Ge 2p region from Ge(100) substrates after only HF clean or after 
HF + (NH4)2S treatment. The dot lines are deconvoluted peaks for sample with (NH4)2S 
treatment.  
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The XPS data in the Ge 3d signal is shown in Fig.2.3, which demonstrates that 

both HF-cleaned surface and (NH4)2S-treated surface are predominantly composed of 

metallic Ge (~29.7eV) [4] from the substrate. For the samples only cleaned by HF, there 

is a small peak (signal from 32 to 33eV) which represents GeOx (x≤2) [4]. For the 

samples treated by (NH4)2S, it is found that this peak shifts to the right slightly (signal 

from 31.5 to 32.5eV) towards the Ge metallic peak, possibly it is because the Ge-S peak 

(29.5 to 30.5eV) [4] overlaps with GeO2 peak (~32.5eV) [4].  

 

To further investigate the surface chemical states after the pre-gate 

cleaning/treatment, the Ge 2p core level spectrum is shown in Fig.2.4. The main peak 

located at 1217.6eV is attributed to metallic Ge spectrum from the substrate. The 

shoulder, for the samples only cleaned by HF, ranging from 1219 to 1221eV, is attributed 

to GeOx (x≤2) bonds [4], which are believed to be introduced during the sample 

transportation [5]. For the sample treated by (NH4)2S, the shoulder is smaller. 

Considering the possible bonds that the Ge atoms may have, it is reasonable to infer that 

the shoulder after the (NH4)2S treatment consists of two types of Ge bonds: Ge-O and 

Ge-S. Because the shoulder of the (NH4)2S treated substrate consists of both Ge-O and 

Ge-S and the size of the shoulder is smaller than the control sample, the (NH4)2S 

treatment can reduce Ge-O bonds on the surface. From XPS curve fitting results, the total 

Ge-O bonds are reduced from 34.6% to 14.7%.  

 

     The interface state density was measured using frequency-dependent conductance 

method. The value of Dit was extracted according to max2.5( / ) | /it pD G qA , where 
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max( / ) |pG   is the peak loss value, q is the electronic charge and A is the area. For the 

samples with (NH4)2S treatment and 450oC PMA, Dit of 4.8 ×1011 cm-2 eV-1 at midgap is 

obtained, which is lower than those reported using surface nitridation [1, 5]; while for the 

samples without (NH4)2S treatment, Dit is 1.4× 1012 cm-2 eV-1. The improved interface 

properties in S-treated samples can be possibly explained as the GeOS interfacial layer 

which may suppress the Ge out-diffusion due to less Ge-O bonds, providing more stable 

interface properties. On the other hand, for the samples without S passivation, the surface 

consists of GeOx and it may enhance Ge out-diffusion [6] and results in poor interface 

property. To prove this hypothesis, SIMS was performed on HfON/Ge samples. Fig.2.5 

shows the Ge depth profiles for samples with or without (NH4)2S treatment, it can be seen 

that more Ge out-diffusion was detected for samples without (NH4)2S treatment, while 

samples with (NH4)2S treatment show sharper Ge profiles.   
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Fig. 2.5. SIMS profiles for HfON/Ge gate stack after 500oC PDA in N2 ambient for 30s. 
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Fig. 2.6. Capacitance-Voltage characteristics of TaN/HfON/Ge capacitors (a) with 
(NH4)2S treatment, (b) without (NH4)2S treatment, after a 550°C PMA, in N2 ambient for 
30s.  
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To understand the thermal stability of S passivation, PMA at different temperature 

was carried out for samples with and without S passivation. Fig.2.6(a) shows the C-V 

characteristics of the TaN/HfON/Ge MOS capacitors with (NH4)2S treatment after 550°C 

PMA at N2 ambient for 30s. For comparison, C-V characteristics of the Ge MOS 

capacitor without (NH4)2S treatment are plotted in Fig.2.6(b). The frequency dispersion 

phenomenon in accumulation region at positive gate bias is observed for both samples. 

The frequency dispersion is possibly attributed to HfOxNy bulk traps, because there 

always would be some bulk traps in high-k gate dielectric. It is also observed that the 

frequency dispersion is less evident for samples with S passivation. This can be attributed 

to series resistance [7]. In parallel model, the series resistance Rs is assumed to be 

negligible compared to the impedance of C/Gp, and is omitted. If this assumption holds 

valid, parallel model can, in principle, measure C-V curves accurately for pretty leaky 

samples, because the effect of leakage current (Gp) is taken care of. However, when the 

series resistance is significant, the error involved with neglecting Rs, which is determined 

by comparing Rs against the magnitude of impedance 2 2Z R X  , where 

2 2 2 2 2
,p

s
p p

G C
R R X

G C G C


 

   
  2

, will increase at higher gate voltage 

(accumulation region) and at higher measuring frequency, because Rs would be coming 

close to |Z| in value when the gate leakage (Gp) or frequency ( ) increases. This is why 

we usually observe the frequency dispersion for the accumulation capacitance as shown 

in the Fig. 2.7 and 2.8, which are taken from other papers [7, 8]. On the other hand, the 

frequency dispersion of samples without S passivation is much larger, which could not be 
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contributed to series resistance induced frequency dispersion alone and may be 

contributed to additional traps from interface or bulk.  

 

Fig. 2.7. Capacitance–voltage curves measured at 100 kHz, 500 kHz, and 1 MHz for (a) 
zirconia grown by ozone oxidation [8].  
 

 
 

Fig. 2.8. High-frequency C-V measurement of MOS capacitor at 50 kHz (square), 100 
kHz (cross), and 1 MHz (circle). C-V characteristics depend on frequency in the parallel 
circuit model [7].  
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To evaluate the quality of the bulk HfOxNy, TaN/HfOxNy/Si gate stack was also 

fabricated and the frequency dispersion curves are plotted in Fig. 2.9, it can be seen that 

the frequency dispersion at accumulation region is small and similar to that of samples 

with S passivation, which indicates the bulk traps in the HfOxNy itself are not severe. The 

large frequency dispersion of samples without S passivation should be contributed to the 

Ge out-diffusion. This out-diffusion may degrade both the interface quality and high-k 

dielectric quality near the interface, which is the source of the large frequency dispersion. 

The frequency dispersion in inversion may be attributed to the diffusion of impurities 

from dielectric into substrate which could increase minority carrier generation [9, 10], or 

perhaps, to the interaction of interface slow states [9].  
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Fig. 2.9. Frequency dispersion characteristics of TaN/HfON/Si capacitors. The dispersion 
at accumulation region is attributed to the parasitic resistance.  
 
 

EOT values for the samples were extracted by fitting the C-V data, using low 

frequency curves (1 kHz) in accumulation which are the least affected by shunt resistance 
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[7], while taking into account the quantum confinement effects. The results are 

summarized in Fig.2.10. It can be seen that samples with S passivation have a thinner 

EOT, which indicates a larger k value of dielectric or the thinner interfacial layer than 

those without S passivation. The decrease of EOT values after higher temperature PMA 

(550°C) is due to the high-k densification. Further, Dit values for the samples with 

different surface treatments and different PMA temperatures were extracted. The Dit 

degrades significantly (Dit ~ 3× 1012 cm-2 eV-1) for the samples without S passivation 

after PMA increased to 550°C, while it shows little difference for the sample with S 

passivation after 550°C PMA (Dit ~ 5.0× 1011 cm-2 eV-1). The Dit values of samples 

without S passivation increase after higher temperature PMA is due to more Ge out-

diffusion at Ge/high-k interface [11]. Thus, S passivation improves the thermal stability 

of Ge gate stack. 
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Fig. 2.10. EOT values with different surface treatment and post metal annealing 
temperatures. Sulfur passivated samples show about 0.7nm thinner EOT. 
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Fig.2.11 shows the gate leakage current density as a function of EOT together 

with published data [3, 5, 9, 10, 12]. Fig.2.12 shows the typical Jg-Vg curves of Ge MOS 

capacitors with different surface treatments or PMA temperatures. Both samples with S 

passivation or without have low gate leakage current densities about 1×10-6A/cm2@Vg-

Vfb=1V. Though samples without S passivation have larger EOT values, this does not 

improve the gate leakage current. This may due to the poor quality of germanium oxide 

interfacial layer. It was also found that the gate leakage current decreases and the 

distribution become more uniform, after the higher temperature (550°C) annealing, 

especially for the sulfur passivated samples as shown in Fig.2.13. This is because higher 

temperature annealing can densify the gate dielectric and reduce the bulk traps in the gate 

oxide as well as weak points. The improvement in gate leakage after higher temperature 

annealing is less effective for samples without S passivation because of more Ge out-

diffusion at elevated temperature.  
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Fig. 2.11. Gate leakage current density as a function of EOT with different surface 
treatment and PMA temperatures together with published data. 
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Fig. 2.12. Typical Ig-Vg curves of Ge MOS Capacitors with different surface treatment 
and PMA temperatures.  
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Fig. 2.13. Cumulative probability of leakage current densities of Ge MOS capacitors with 
different surface treatments and PMA temperatures. 
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Compared to devices with surface nitridation or Si passivation reported in literature, 

Ge MOS capacitors with S passivation exhibit comparable or less interface states density 

(NH3 nitridation: 1.6×1012cm-2eV-1[13], wet No nitridation: 5×1011cm-2eV-1 [14], Si 

passivatio: ~4×1011cm-2eV-1[13]) and good thermal stability. However, a large hysteresis 

of flat band voltage (> 800 mV) is present when gate voltage is swept from inversion to 

accumulation and back to inversion. The presence of larger hysteresis for S passivated 

samples is also reported in Ref [1] and this is possibly because of the lack of a wide band 

gap interfacial layer, or due to trapping in the GeOS. 

 

2.3. Conclusions 

The effects of the sulfur passivation of Ge using (NH4)2S have been investigated. 

It is found that (NH4)2S treatment can reduce the interface state density and improve the 

electrical properties in terms of EOT and gate leakage current. Moreover, it is found that 

samples with (NH4)2S treatment shows better thermal stability at high-k/Ge interface. 

This is due to less Ge out diffusion into high-k dielectric by suppressing the germanium 

monoxide formation at high-k/Ge interface. On the other hand, the large C-V hysteresis is 

observed for Ge MOS capacitors with S passivation and this drawback may limit its 

application in real high performance Ge MOSFETs fabrication.  
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Chapter 3 

Effects of Silicon Nitride Passivation on High-k/Ge Gate Stack 

 

It is now clear that Ge p-type MOSFETs (pMOSFETs) with excellent 

performance can be achieved through various careful surface passivation process [1-11]. 

Among those surface passivation techniques, silicon (Si) passivation attracts many 

interest [1, 2, 6-8, 12, 13] because of easier process integration with current Si platform. 

However, a number of issues remain unsolved for Si passivation, such as unexpected 

positive shift in threshold voltage (Vth) for Ge pMOSFETs [1, 2]. Also, the Si cap layer 

thickness gives strong impacts on device performance [6-8]. The Ge out-diffusion is still 

found to be serious and an ultrathin Si layer (<5 monolayer) can not adequately passivate 

the Ge [8], possibly because the fully oxidization of the Si passivation layer and 

subsequent formation of volatile GeO at SiOx/Ge interface, which takes place when Si 

passivation layer is thin and the thickness ratio between HfO2 and Si is large [6, 8]. This 

limits the process window and equivalent oxide thickness (EOT) scaling capability. In 

this chapter, a novel silicon nitride (SN) passivation by SiH4-NH3 treatment is proposed 

and demonstrated for Ge MOS devices. Compared to Si passivation layer, SN layer is 

more effective to suppress the Ge out diffusion, resulting improved interface quality and 

electrical characteristics. In addition, SN passivation also eliminates the unexpected 

positive shift in Vth. This is explained by the suppression of the interfacial dipoles 

formation.  

 47



Chapter 3: Effects of silicon nitride passivation on high-k/Ge gate stack 
 

3.1. Experiments 

The starting wafers are N-type Ge with (100) orientation. After HF dilution (1:50) 

and DI water cyclic rinsing [14], an ultrathin SN passivation layer ~6Å was deposited on 

Ge by SiH4-NH3 treatment  carried out at 400oC under a process pressure of 5 torr (the 

flow rates of SiH4, NH3, and N2 were 60, 60, and 250 sccm, respectively), as described in 

[15], followed by in-situ deposition of an HfO2 layer of 11.5 nm by metal organic 

chemical vapor deposition (MOCVD) at 400oC. Control sample was made with 6Å Si cap 

by SiH4 treatment as described in [13] at a reduced temperature of 400oC and an HfO2 

layer of the same thickness. Post deposition annealing (PDA) at 500oC in N2 ambient for 

60 sec was performed for both samples, After that, a 130 nm TaN gate electrode was 

sputtered and followed by lithography and dry etching. The source/drain was formed by 

boron implantation (15 keV, 1E15 cm-2) and Al metal contact.  

 

3.2. Physical effects of silicon nitride passivation 

 After SiH4 or SiH4-NH3 treatment, some Ge samples were sent to ex-situ high 

resolution XPS measurements immediately (within 5 min, but the samples were still 

exposed to air). Fig. 3.1 (a) compares the Ge2p spectra between the two samples. A 

shoulder located around 1220 eV is observed for the sample with Si passivation, which is 

due to the Ge-O bond formation [16]. Why the Ge surface became oxidized even capped 

with a Si layer? This is because the Si cap layer can be easily oxidized when it is exposed 

to the oxidized ambient (e.g. air, or CVD HfO2 process). Thus we can see that ultrathin Si 

layer can not effectively passivate Ge, since oxidized ambient is inevitable during the 

gate dielectric deposition process and volatile GeO can be formed once the Si cap layer is 
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fully oxidized. For the sample with SN passivation, nitrogen peak is clearly observed as 

shown in Fig. 3.1(b). The shoulder in Fig. 3.1(a) is less evident, suggesting that SN cap 

layer acts as a better barrier against oxygen. 
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Fig. 3.1.(a) High resolution XPS data in (a) Ge 2p and (b) N 1s for Ge wafers after SiH4 
or SiH4-NH3 treatment. Ultrathin (~6Å) Si passivation layer by SiH4 treatment can not 
adequately prevent GeOx formation at Ge surface when sample is exposed to oxidized 
ambient (e.g. air).    
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Fig. 3.2. SIMS profiles for HfO2 gated Ge MOS capacitors with Si passivation (dash) and 
silicon nitride (SN) passivation (solid). Red: N. Blue: Si. Green: Ge. Ta: Black. 
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Fig. 3.3. Schematic illustration of better passivation effects by silicon nitride layer. After 
thermal treatments, ultrathin Si layer can be oxidized, especially when HfO2 thickness is 
large and subsequently, volatile GeO could be formed and results serious Ge out-
diffusion. Introduction of N can suppress volatile GeO formation at high-k/Ge interface. 
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Suppressing the GeO formation at interface is critically important to minimize the 

Ge out diffusion into the high-k gate dielectrics. Fig. 3.2 shows the SIMS profiles for 

TaN/HfO2 gated Ge MOS capacitors with Si or SN passivation. The Si peaks are similar 

for both samples. For the sample with SN passivation, an additional N peak is observed at 

the interface. It is found that sample with SN passivation exhibits much less Ge out 

diffusion into the high-k dielectrics. As illustrated in Fig. 3.3, the ultrathin Si layer could 

be easily oxidized during the HfO2 deposition and annealing [6] and the volatile GeO can 

be formed subsequently, which leads a significant Ge diffusion for sample with Si 

passivation [17]. On the other hand, SN is less easily to be oxidized because Si-N bond 

(~4.88 eV) is stronger than Si-Si bond (~3.37 eV) [18]. Also, the N incorporation at the 

interface can turn any volatile GeOx to more stable GeOxNy. Therefore, much less Ge out 

diffusion is observed for sample with SN passivation. 

 

Recently, it has been reported that area density difference of oxygen atoms forces 

the oxygen atom to move from higher density materials to lower density one [19]. At the 

high-k/SiO2 interface, the common atom for both materials is oxygen. Thus, the oxygen 

atom should self-adjust the bonding characteristics at the interface. The oxygen atom 

density difference forces the oxygen atom to move from one to another oxide at the 

interface, resulting in an oxygen vacancy and excess oxygen formation in the respective 

side. It is considered that the increase of structural energy at the hetero-interface would 

be relaxed by such “dipole” formation, although the dipole formation increases the 

electronic energy. This is understandable by considering that the total energy composed 

of electronic and structural components should be minimized to stabilize the interface. 
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This model also explains why the dipole is not formed on SiNx, where the oxygen self-

adjustment is not expected to occur [19]. In case of HfO2 and SiO2, the oxygen is 

transferred from HfO2 to SiO2. The self-adjustment of oxygen atoms causes the dipole 

formation and positive Vth shift [1, 2].  This is also consistent with the observation of 

positive flat band voltage (Vfb) shift for sample with Si passivation as shown in Fig. 3.6 

(a).  On the other hand, in the case of SN, the oxygen self-adjustment is not expected to 

occur [19]. Therefore the dipole is not formed on SN and unexpected positive Vth shift 

can be eliminated for sample with SN passivation.   

 

Fig. 3.4 shows the summary of dipole formation for various high-k oxides [19]. 

The oxygen can be transferred from left to right among those oxides due to the area 

density difference of oxygen atoms. As illustrated in Fig. 3.5(a), once the Si cap layer is 

fully oxidized, the oxygen will tend to transfer from HfO2 to SiO2 and to GeOx. The 

transfer of oxygen from high-k to Ge may further enhance the Ge out-diffusion. The 

oxygen self-adjustment behavior between HfO2 and SN is less evident. This may also 

help to minimize the Ge out-diffusion.  According to the Fig. 3.4, if the interfacial layer 

between the HfO2 and Ge is Y2O3, Lu2O3, La2O3 or SrO, the direction of oxygen transfer 

will be opposite to the SiO2 case and doesn’t favor the Ge out-diffusion as shown in Fig. 

3.5(b). This is possibly why recently it has been reported that interfacial layer containing 

La [20], Y [21] or Sr [10] greatly improves the interface quality.  
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Fig. 3.4. Summary of the dipole moment formed at high-k/SiO2 interface predicted by our 
model, for various high-k candidates including GeO2. The dipole direction to increase 
VFB is represented as a positive direction [19]. 

 

 

Fig. 3.5. Oxygen transfer direction for (a)HfO2/SiO2/GeOx/Ge gate stack and 
(b)HfO2/MOx/Ge gate stack (M = Y, La or Sr). 
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3.3. Electrical effects of silicon nitride passivation 

Fig. 3.6 compares the C-V characteristics between the MOS capacitors with Si 

passivation and SN passivation. MOS capacitors with Si passivation exhibit very serious 

frequency dispersion phenomenon. The weak inversion response [22] is clearly 

observable at measuring frequency as high as 100 kHz. The C-V curves are also severely 

stretched out from ideal C-V curves. MOS capacitors with silicon nitride passivation 

exhibit  much better C-V characteristics than that with Si passivation. The weak inversion  
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Fig. 3.6. C-V characteristics of HfO2 gated Ge MIS capacitors with (a) Si passivation and 
(b) SN passivation measured at 1MHz, 800kHz, 500kHz, 300kHz, 200kHz, 100kHz, 
80kHz, 50kHz, 30kHz, 20kHz and 10kHz.  
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Fig. 3.7. Gate leakage current densiy for samples with Si passivation and SN passivation. 
Smaller Jg is observed for devices with SN passivation. 
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response becomes clear only when the measuring frequency is lower than 20 kHz and 

there are also much less stretch-outs in C-V slopes, indicating a much lower interface trap 

density. EOT values were extracted by fitting the C-V data using lower frequency curves 

(10 kHz) in accumulation which are the least affected by series resistance [23] and it was 

found that MOS capacitors with silicon nitride passivation have slightly smaller EOT 

values (2.95 nm) than that with silicon passivation (3.03 nm). The leakage current 

densities are plotted in Fig. 3.7 and it can be seen that MOS capacitors with SN 

passivation layer exhibit smaller gate leakage current than that with Si passivation, 

probably due to less trap assisted tunneling. 

 

Fig. 3.8 shows the Id-Vg characteristics. Samples with SN passivation exhibit 

higher drain current and smaller sub-threshold swing (SS). The positive shift of Vth for 

sample with Si passivation is due to the dipole formation at interface. Interface qualities 

were further characterized by variable rise/fall time charge pumping method, which will 

be further discussed in detail in Chapter 5. Samples with Si passivation exhibit higher 

charge pumping currents than that of samples with SN passivation at any rise/fall time 

condition, indicating higher interface trap density as shown in Fig. 3.9. The mean 

interface trap density (Dit) was extracted by plotting cp /I f as function of  [24] 

as shown in Fig. 3.10, where Icp is the charge pumping current, f is the frequency, and 

1/2In( )r ft t

rt

ft  is the rise time and fall time, respectively. The mean Dit is 4.85×1012 cm-2eV-1 for 

sample with Si passivation and 8.73×1011 cm-2eV-1 for sample with SN passivation. It can 

be seen that minimizing the unstable GeOx formation at high-k/Ge interface is very  

important to achieve low Dit.  
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Fig. 3.11. Hole mobility as a function of vertical effective vertical field for Ge 
pMOSFETs (L = 5μm) with Si or SN passivation. 
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Fig. 3.12. Id-Vd for Ge pMOSFETs (L = 5 μm). About 52% enhanced drive current is 
obtained for SN passivated device at Vg-Vt = -1.2V and Vd= -2V. 
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The hole mobility as a function of vertical effective field is plotted in Fig. 3.11 by 

split C-V method. The effective channel electrical fields were estimated by 

0

b i
eff

Ge

Q nQ
E

k 


  

where  is the Ge dielectric constant, Gek 0  is the permittivity of vacuum. The value of 

“n” that offers the universal relationship should be determined experimentally by 

comparing the mobilities on the different impurity concentrations. For Si, systematic 

studies have been done and n =
1

3
 has been clarified [25]. However, for Ge, there is no 

such detail study to explore the correct “n” value yet except [7]: they have investigated 

the Ge pMOSFETs with different impurity concentration and they found that by choosing 

=n
1

3
, the mobility in moderately high field region fall on a single curve, i.e. the 

universality is obtained. So we believe n = 1/3 is still a reasonable value for Ge 

pMOSFETs. About 2.6 × Si universal hole mobility is achieved for sample with SN 

passivation, which is 40% higher than that with Si passivation. Fig. 3.12 shows the output 

characteristics, sample with SN passivation shows ~50% higher drain current at Vd = 2 V 

and Vg-Vt = -1.2 V.  

 

3.4. Conclusions 

An alternative surface passivation technique using SN by SiH4-NH3 treatment has 

been demonstrated on HfO2 gated Ge MOS devices. By suppressing the interface dipole 

formation, SN passivation layer eliminates the positive Vth shift problem of Si passivation. 

Compared to Si passivation, SN passivation is also demonstrated to be more effective to 

 59



Chapter 3: Effects of silicon nitride passivation on high-k/Ge gate stack 
 

suppress the Ge out-diffusion into HfO2. It improves the electrical characteristics like C-

V frequency dispersion, gate leakage and mobility. SN passivation offers bigger process 

window than Si passivation and can be a promising technique for high-k/Ge gate stack. 
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Chapter 4 

High-k Gate Stack on Germanium Substrate  

with Fluorine Incorporation 

 

 It is already known that the most critical challenge for building high quality high-

k gate stack on Ge substrate is to improve the interface quality.  Over the past few years, 

various pre-gate surface passivation techniques, such as surface nitridation [1-4], Si 

passivation [5, 6], sulfur passivation [7], metal nitride passivation [8], TaOxNy 

passivation [9, 10] and GeO2 passivation [11] have been demonstrated on high-k/Ge 

MOS devices. These surface passivation techniques can either reduce the interface state 

densities or suppress the Ge out-diffusion into the high-k dielectrics.  However, even with 

the careful surface passivation, the Dit of high-k/Ge gate stack is still much higher than 

that of high-k/Si gate stack. Do we have any technique to further optimize the interface 

quality, besides the surface passivation? 

 

4.1. Principle and criteria of post gate treatment 

 Generally speaking, two possible ways exist to improve the HfO2/Ge gate stack 

quality as shown in Fig. 4.1. The first way is to implement the careful surface passivation 

process on Ge substrate before the high-k gate stack formation, which is referred as “pre-

gate surface passivation”. This has already been discussed in details in previous chapters. 
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The other way is to explore further passivation process after the high-k gate stack 

formation, which is referred as “post-gate treatments”.  

 

Fig. 4.1. Concept of interface engineering processes: Pre-gate passivation and Post-gate 
dielectric treatment. 
 
 
  One of the most important post-gate treatments is hydrogen passivation by 

forming gas annealing (FGA).  It is an effective technique to passivate SiO2/Si interface 

by forming the Si-H bonds. The Dit can be reduced as low as to the order of 1010 cm-2eV-1. 

However, for the MOS devices on Ge substrates, some studies have reported that FGA 

can improve electrical characteristics of Ge MOS capacitors [3],  whereas other studies 

suggested that FGA might not be an effective passivation technique for Ge acceptor 

states or dangling bonds [12-14]. Atomic H+ was reported to be more effective to 

passivate Ge but it is still sensitive to the process conditions (like temperature or metal 

electrode) [15].  
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Another important post-gate treatment is post deposition annealing (PDA), which 

is usually applied for high-k/Si gate stack. A PDA at ~ 700oC can be used to repair high-k 

bulk defects. However, for the Ge devices, PDA higher than 550oC will usually degrade 

the Ge gate stack quality because high temperature annealing can lead more GeOx 

formation and Ge out diffusion.  

  

 Thus, we can see that currently there is no existing good post gate treatment for 

Ge based devices, left behind a large amount of unpassivated interface traps and bulk 

defects, which will degrade the device performance and reliability. An alternative post 

gate treatment is needed for Ge devices and it must satisfy the two important criteria. 

First, it must be a low temperature process (≤ 500oC) to avoid Ge out diffusion. Second, 

it must be capable to passivate both interface traps and bulk defects at the same time.   

 

   To meet the criteria, we proposed an alternative post gate treatment: fluorine (F) 

passivation. Firstly, F passivation could be a low temperature process since F can be 

introduced into the gate stack by either ion implantation or plasma treatment.  Secondly, 

F is expected to be capable to passivate both interface traps and bulk defects. For 

passivating interface traps, F should be much more effective than H, because F has much 

higher binding energy with Ge (5.04eV) compared to Ge-H (< 3.34eV) bond [16]. In 

the case of bulk traps, F is also an excellent passivant, which has been demonstrated in 

high-k/Si gate stack [17-20]. In this study, F was introduced into the high-k/Ge gate 

stack by CF4 plasma treatment as illustrated by Fig. 4.2. The gate stack is treated in an 

inductively coupled plasma (ICP) chamber with CF4 gas mixed with a little amount of 
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O2, so that unwanted carbon byproduct can react with oxygen and form volatile CO2 as 

shown in Fig. 4.2 (a). By subsequent annealing steps, F will diffuse through the gate 

stack and various passivating processes will take place. It will repair the bulk defects in 

the HfO2, especially those oxygen vacancies [21].  It will also passivate the interface 

traps like Ge dangling bonds. By forming Ge-F bonds, there are also less Ge-O bonds 

formation as shown in Fig. 4.2 (b).  

 

Fig. 4.2. (a) F incorporation to high-k dielectric during CF4-plasma treatment. (b) Various 
mechanisms that can take place during the subsequent PDA or S/D activation annealing 
process for devices with CF4-plasma treatment. 
 
 
4.2 Effects of F incorporation without pre-gate surface passivation 
 
4.2.1 Experiment 
 

 The starting wafers for the experiments were n-type Ge (100) wafers (Sb doped, 

resistivity ~0.13-0.14 Ωcm). The native oxide (GeOx) was removed by a cyclic rinsing 

between deionized (DI) water and diluted HF. After that, an HfO2 layer about 9.6 nm 
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thick was deposited by sputtering of hafnium oxide target. To study the effects of F alone, 

no pre-gate surface passivation other than cyclic rinsing was used before HfO2 deposition. 

After the gate dielectric deposition, some samples were treated by CF4 plasma (rf power 

of 20 W) in an ICP chamber with a pressure of 100 mTorr at 25oC. The flow rate of CF4 

is 50 sccm. To avoid possible carbon byproduct deposition onto the gate stack, O2 with a 

flow rate of 5 sccm was also introduced into the plasma. Post deposition annealing (PDA) 

was then performed for both CF4-plasma treated samples and control samples (without 

CF4 plasma treatment) at 500°C in a N2 ambient for 30s. After that, a 150 nm TaN gate 

electrode was sputtered, and followed by lithography and dry etching. Post metal 

annealing (PMA) at 450°C, in a N2 ambient for 1 min was then performed, and finally, a 

150 nm Al was deposited on the bottom of Ge substrates for the ohmic contact.  

 

4.2.2 Results and Discussions 

To obtain the depth-dependent chemical information, SIMS analysis for both 

samples with and without CF4-plasma treatment have been recorded and shown in Fig. 

4.3. To avoid using high energy sputtering in SIMS which will cause artifact, samples 

with thin TaN gate electrode was used for the SIMS analysis. It can be seen that fluorine 

is introduced into the gate stack after the CF4-plasma treatment and subsequent annealing 

(PDA and PMA) steps. The fluorine concentration is peaked at the bottom half of the 

HfO2 near the HfO2/Ge interface. This is because the density of defective bonds at the 

bottom half of the HfO2 near HfO2/Ge interface are much higher due to a sudden structural 

transition at the interface, and theoretical studies [21, 22] showed that F could passivate 

the gap state of the oxygen vacancy in HfO2. Also, F should be a good passivant for 
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defects at Ge surface because it is the only element that is more electronegative than O and 

its bond length is similar. Therefore F is expected to segregate near high-k/Ge interface. 

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 
 

 

 

 

 

 

 

 

 
 
Fig. 4.3. SIMS depth profile for samples with and without CF4-plasma treatment. F was 
incorporated in the bulk high-k dielectric and high-k/Ge interface. 
 
 

 

 

 

 

 

 

 

 

 
Fig. 4.4. F 1s XPS spectrum for samples with and without CF4-plasma treatment on 
HfO2/Ge gate stack. 
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The elevated F count at TaN/HfO2 interface for untreated sample is possibly due to higher 

F sputter yield in the HfO2. Further, the carbon (C) distributions for both CF4 treated and 

untreated samples are almost the same, indicating that C would not be introduced into 

gate stack by the CF4-plasma treatment. F 1s XPS spectra in Fig. 4.4 show that F is 

incorporated into HfO2 for samples with CF4 treatment. The peak located at ~ 685 eV 

corresponds to the F bonds in bulk HfO2 [23]. 
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Fig. 4.5. C-V frequency dispersion characteristics for samples (a): without CF4-plasma 
treatment and (b): with CF4-plasma treatment. 
 

 Fig. 4.5 (a) and (b) show the C-V characteristics of MOS capacitors without and 

with CF4-plasma treatment, respectively. CF4 treated samples have smaller frequency 

dependent flat-band voltage shift (ΔV) (< 0.2 V) between 1 MHz and 50 kHz than samples 

without CF4 treatment (~ 0.5 V). The frequency dependent flat-band voltage shift is a 

direct result of interface states [24]. Particularly for the PMOS capacitors, the Vfb shift at 
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different frequency can be explained by the high Dit located in the upper half of band gap, 

which will be further discussed in Chapter 6. The frequency dispersion in accumulation 

capacitance is possibly attributed to the series and shunt resistance [25]. Meanwhile, 

compared to the CF4 treated samples, the kink in the C-V curves for samples without CF4 

plasma treatment is clearly visible at 50 kHz, which has been assigned to the larger 

density of interface defects [26]. The improved interface quality by CF4 treatment is 

attributed to the dangling bonds passivation by forming Ge-F bonds at high-k/Ge 

interface.  

 

Fig. 4.6 shows the gate leakage characteristics of both samples with and without 

CF4-plasma treatment. It is noticed that samples with CF4-plasma treatment exhibit lower 

leakage currents at low electrical fields (small positive gate voltage Vg) in the 

accumulation region. This is due to the reduced trap assisted tunneling, because 

incorporation of F at high-k/Ge interface can effectively reduce the interface traps (Dit), 

also, F incorporation into HfO2 can reduce bulk traps of high-k dielectric by forming Hf-

F bonds, which has been reported in other studies as well. When the electrical field 

becomes higher (Vg > 3V), the leakage currents of both samples become almost the same. 

This is because when gate voltage increases, Fowler-Nordheim tunneling would become 

dominant; the gate leakage is then mainly depending on the dielectric thickness and the 

conduction band offset. In addition, a two-stage breakdown characteristic is observed for 

samples without CF4-plasma treatment, this may be due to the poor quality of interfacial 

layer at high-k/Ge interface. On the other hand, for the samples with CF4-plasma 
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treatment, single stage breakdown is observed and the breakdown voltage is slightly 

higher.  
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Fig. 4.6. Ig-Vg characteristics for samples with and without CF4-plasma treatment. 
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Fig. 4.7. Cumulative probability of breakdown voltages for samples with and without 
CF4-plasma treatment. 
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To further study the CF4-plasma treatment on the breakdown characteristics, 

cumulative probability of hard breakdown voltages is potted in Fig. 4.7. It is found that 

samples with CF4-plasma treatment have more uniform breakdown distributions and 

higher breakdown voltages. Breakdown at low voltage (<4V) is observed for samples 

without CF4-plasma treatment, which is due to high densities of interface and bulk traps 

that could lead a leakage path through the gate dielectric at lower gate voltage.  

 

4.2.3 Summary 

 F passivation of high-k/Ge gate stack has been proposed and demonstrated for the 

first time. Ge MOS capacitors using HfO2 gate dielectric and TaN gate electrode were 

fabricated without any pre-gate surface passivation process. SIMS and XPS results show 

that F is successfully incorporated into HfO2 gate dielectric and high-k/Ge interface 

through a post gate CF4 plasma treatment process without any carbon byproduct 

deposition. Compared to the control samples, samples with F incorporation exhibit much 

better C-V characteristics, which is due to lower interface state density. This is attributed 

to F passivation at high-k/Ge interface by forming Ge-F bonds. In addition, samples with 

F incorporation also show smaller gate leakage currents at low electrical fields in the 

accumulation region and have improved breakdown characteristics. This is because F 

incorporation can also effectively reduce bulk traps in the high-k dielectric by forming 

Hf-F bonds. 
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4.3 Effects of F incorporation with Si pre-gate surface passivation 

 F incorporation has been demonstrated to be useful for HfO2 gated Ge MOS 

device without any pre-gate surface passivation. However, the interface quality is still far 

from satisfactory because the GeO can easily formed at HfO2/Ge interface if no 

passivation layer is applied. To further improve the interface quality, pre-gate surface 

passivation is necessary. Therefore, it is very important to know whether this post gate F 

treatment process is compatible with pre-gate surface passivation.  Among various pre-

gate surface passivation techniques, Si passivation is the most promising one. High 

mobility pMOSFETs and transistors with small gate length have been achieved with Si 

passivation [6, 27]. Thus, we choose to investigate the effects of F passivation for HfO2 

gate Ge MOS devices with Si surface passivation.  

 

4.3.1 Experiment 

 The starting wafers were n-type Ge (100) wafers. After cyclic rinsing between 

deionized (DI) water and diluted HF, Si surface passivation (SP) was carried out for some 

Ge substrates by annealing the samples in SiH4 ambient with N2 as the carrier gas at 5 

torr, 450oC. After that, an HfO2 layer of about 6.5 nm was deposited to keep the EOT the 

same with the previous samples. An optimized CF4 plasma (rf power of 10 W, flow rate 

of CF4 100 sccm, flow rate of O2 10 sccm) treatment for different duration in an ICP 

chamber with pressure of 100 mTorr at 25oC was carried out for some samples. The 

remaining processes were the same as described in section 4.2.1 for Ge MOS capacitors. 

Ge pMOSFETs were also fabricated by an additional boron implantation (1E15 cm-2, 15 

keV). 
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4.3.2 Results and discussions 

 After SP and CF4 treatment, almost ideal C-V shape is achieved as shown in Fig. 

4.8. Fig. 4.9(a) and (b) compare the C-V characteristics for SP samples without CF4 

treatment and with CF4 treatment for 3 min, respectively. Samples with SP show smaller 

ΔV as compared to samples without SP (Fig. 4.5), and ΔV further decreases with increasing 

CF4 treatment time as shown in Fig. 4.10 and finally, almost frequency dispersion free C-V 

characteristics is achieved after 3 min CF4 treatment. The elimination of such behavior 

suggests that a good interface quality is achieved by both CF4 treatment and thin Si 

passivation layer.  
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Fig. 4.8. Samples with both Si passivation and CF4-plasma treatment show excellent high 
frequency C-V characteristics. 
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Fig. 4.9. C-V frequency dispersion characteristics for SP samples (a) without CF4-plasma 
treatment and (b) with CF4-plasma treatment for 3 min. Both frequency-dependent ΔVfb 
and stretch-out disappear for CF4 treated samples. 
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Fig. 4.10. Comparison of frequency dependent flat band voltage shift for samples with 
different pre-gate or post-gate treatment conditions. 
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Interface state density Dit was measured using the frequency-dependent 

conductance method. A series of ac conductance measurements was performed as a 

function of frequency. Fig. 4.11 shows the typical measured frequency dependencies of 

Gp/ωfor various gate voltages for samples with SP.  It can be seen that the peaks of the 

Gp/ω plot for each gate voltages are clearly distinguished and the amplitude of the peak 

is a strong function of gate voltages. The value of Dit was extracted according to Dit = 2.5 

(Gp/ω)|max/qA, where (Gp/ω)|max is the peak loss value, q is the electronic charge and A 

is the area. The extracted Dit was plotted as a function of energy relative to the valence 

band edge in Fig. 4.12. For SP samples without F passivation, the minimum Dit is 

2.76×1012 cm-2eV-1, whereas for SP samples with 3 min treatment, the minimum Dit is 

reduced to 4.85×1011 cm-2eV-1. This suggests that the F post gate treatment is very 

effective to passivate the defect states at high-k/Ge interface. In addition, a significant 

reduction in Dit of upper half of the energy band is noticed after CF4-plasma treatment for 

1 min. This trend is consistent with observation that frequency dependent flat-band 

voltage dispersion (ΔV) is much less for CF4-plasma treated samples.  

 

Table 4.1 summarize the Dit, EOT, hysteresis and gate leakage current for the all 

kinds of MOS capacitors mentioned in this chapter. The EOT values for all the samples 

are almost the same. F incorporation will not change the EOT value significantly. 

Samples with SP shows much smaller Dit and hysteresis than samples without SP, 

indicating that surface passivation is still very important. For both samples without SP 

and with SP, Dit, hysteresis and leakage current density are greatly reduced with F 

passivation, suggesting that post-gate CF4 treatment is an effective technique to improve 
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both interface and bulk quality and it is also compatible with pre-gate surface passivation 

process.  
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Fig. 4.12. Plot of Dit vs energy relative to the valence band edge for samples w/o CF4 
treatment, with CF4 treatment for 1- and 3- min, respectively. Interface quality is greatly 
improved after CF4-plasma treatment. 
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Table 4.1. Comparison of Dit, EOT, hysteresis and gate leakage current for Ge capacitors 
with different pre-gate or post-gate treatment conditions. 
 

Samples
CF4-plasma 

treatment 
duration (s)

Dit          

(eV-1cm-2)

EOT 
(Å)

Hysteresis  
(mV)

Jg at 

Vg=1V 

(Acm-2)
w/o Si passivation   

HfO2 9.6 nm
0 6.09 x 1012 20.2 450 3.01 x 10-7

w/o Si passivation   

HfO2 9.6 nm
60 2.61 x 1012 20.2 220 1.21 x 10-7

with Si passivation  

HfO2 6.5 nm
0 2.76 x 1012 19.5 50 1.72 x 10-7

with Si passivation  

HfO2 6.5 nm
60 9.57 x 1011 19.7 negligible 1.38 x 10-7

with Si passivation  

HfO2 6.5 nm
180 4.85 x 1011 19.7 negligible 1.36 x 10-7
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Fig. 4.13. Output characteristics for Ge pMOSFETs with Si passivation and CF4-plasma 
treatment for different duration. Enhanced drive currents were achieved after CF4 plasma-
treatment. 
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Id-Vd characteristics show that SP devices with CF4 plasma treatment have higher 

drive current as shown in Fig. 4.13. Effective hole mobility was extracted using split C-V 

method and shown in Fig. 4.14. Compared to SP devices without CF4 treatment, peak hole 

mobility is enhanced by 15.6% and 30%, high field mobility is enhanced by 13.4% and 

21.9% for 1- and 3- min CF4 treatment, respectively. A high peak hole mobility of 293 

cm2/V˙s at effective vertical field of 0.19 MV/cm is obtained for 3 min treatment, without 

correction of parasitic resistance, and is about 376 cm2/V˙s with the correction. This is one 

of the highest reported record mobility values [6, 28, 29] for unstrained Ge  pMOSFETs. 
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Fig. 4.14. Left: effective hole mobility in Ge pMOSFETs versus effective field for silicon 
passivated devices with different CF4 treatment conditions without correction. Right: 
peak μeff  after correction together with other reported data [6, 28, 29]. 
 
 

4.4 Conclusions 

 Pre-gate surface passivation techniques have been extensively studied in the past 

few years. By inserting an interfacial layer between high-k and Ge, interface quality is 
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greatly improved. However, compared to SiO2/Si interface, this is still far from 

satifactory.  To further optimize the interface quality, an additional post gate treatment 

process must be introduced.  FGA and PDA are not effective for Ge based devices. Thus 

we proposed and demonstrated a low temperature CF4 plasma treatment that introduced F 

into the high-k/Ge gate stack. By forming the Ge-F and Hf-F bonds, the Dit and high-k 

bulk defects are significantly reduced. Post gate F treatment is also compatible with pre-

gate surface passivation. We demonstrated that an additional CF4 plasma treatment 

process for samples with Si pre-gate passivation could further reduce the Dit and increase 

the mobility.  
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Chapter 5 

Interface Engineered High Mobility High-k/Ge pMOSFETs  

with 1 nm Equivalent Oxide Thickness 

 

Development of high-k/Ge gate stack with high quality interface and small 

equivalent oxide thickness (EOT) is essential for Ge to be used as an alternative high 

mobility channel material for future technology nodes. Over the past few years, various 

pre-gate surface passivation techniques have been developed to improve high-k/Ge 

interface quality and recently, GeO2 as a native oxide layer, formed by either thermal 

growth [1-3], rf-sputtering [4, 5], or ozone oxidation [6, 7] is of particularly interest as it 

may be the most natural material to passivate Ge surface. Unlike Ge monoxide (GeO), 

GeO2 is not volatile, so a high quality GeO2 may act as a perfect interfacial layer. 

Interface trap density as low as ~ 3×1011 cm-2eV-1 and 7.5 ×1010 cm-2eV-1 have been 

reported for MOS capacitors with HfO2/GeO2/Ge [2, 6] and GeO2/Ge [3] gate stack, 

respectively. A high peak hole mobility of 367 cm2/ V●s has been demonstrated for Ge 

pMOSFETs with FUSI/GeO2/Ge gate stack [5]. However, there is still no reports on 

high-k gated Ge MOSFETs with GeO2 passivation layer.  

 
Besides pre-gate surface passivation, another alternative approach to further 

improve the high-k/Ge gate stack quality is to adopt appropriate post gate dielectric (post-

gate) treatment processes. In the last chapter, we have already demonstrated that post gate 

F treatment can effectively reduce both interface states and high-k bulk traps. In this 
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study, firstly, we apply this technique to GeO2 passivated samples with HfO2 gate 

dielectrics. In addition to F incorporation, the effects of forming gas annealing (FGA) are 

also investigated. Secondly, high mobility Ge pMOSFETs with 1 nm EOT are 

successfully demonstrated with GeO2 passivation layer and optimized post gate treatment 

processes. Finally, variable rise and fall time charge pumping procedure, as described in 

[8], is applied to investigate the interface properties for Ge MOSFETs.  

 
5.1 Effects of F incorporation and FGA on TaN/HfO2/GeO2/Ge MOS Capacitors  

5.1.1 Experiments 

 Firstly, we employ the surface GeO2 passivation to HfO2 gated Ge MOS 

capacitors and investigate the impacts of post-gate treatment including F incorporation 

and FGA.  The starting wafers were n-type Ge wafers (Sb doped ~ 1.5 to 2×1016 cm-3, R= 

0.13-0.14 Ωcm). The native oxide was removed by a cyclic rinsing between deionized 

water and HF dilution (1: 50). A thin germanium oxide layer about 2 nm was then 

thermally grown on germanium substrates at 400oC. Higher temperature oxidation was 

not used to avoid possible decomposition of GeO2 and desorption of GeO (GeO desorbs 

at 420oC) [9], and the oxidation temperature of 400oC was chosen because it has been 

reported that Ge oxidation at 400oC results in lowest Dit [6]. To minimize the air 

exposure to the GeO2, the samples were then immediately transferred to the ALD load-

lock chamber. A HfO2 layer of 4.5 nm was deposited at 300oC in the ALD reactor using 

Hfi4 (TEMAHf) precursor and H2O. After the gate dielectric deposition, three different 

post-gate treatments schemes have been made as described in Fig, 5.1 (b) (c) and (d). The 

CF4 plasma treatment condition has been described in last chapter. FGA condition was 

350oC for 1 hour in H2 + N2 ambient. All samples had been processed with post 
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deposition annealing (PDA) at 500oC in N2 ambient for 30 sec. A TaN layer of 150 nm 

thick was sputtered as the gate electrode and an Al layer of 100 nm was then deposited on 

the bottom of Ge substrates for ohmic contact.  

 

Fig. 5.1. Splits for post gate treatments scheme for TaN/HfO2/GeO2/Ge MOS capacitors.  
  

5.1.2 Results and Discussions 

After growing a thin germanium oxide, some samples were immediately sent for 

XPS analysis (within 5 min) to avoid the moisture effect on germanium oxide. Fig. 5.2 

shows the angle-resolved XPS Ge 3d spectra. The difference between the binding energy 

of germanium oxide and substrate peaks is 3.3 eV for both 30o and 90o takeoff angles, 

indicating Ge4+
 is present at both GeO2 surface and near the GeO2/Ge interface [10]. No 

significant components of germanium suboxides were detected, suggesting that our GeO2 

prepared by thermal growth at 400oC is with good quality. Fig. 5.3 confirms the F 

incorporation into TaN/HfO2/GeO2/Ge gate stack by CF4 plasma treatment. The oxygen 

peaks for both samples with and without CF4 plasma treatment are almost the same, 

indicating that the effects of CF4 plasma treatment are mainly due to the F incorporation. 
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Fig. 5.2. Angle resolved XPS Ge 3d spectra for germanium samples after the thermal   
oxidation at 400oC. The thickness of GeO2 is about 2 nm. 
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Fig. 5.3. SIMS profiles for TaN/HfO2/GeOx/Ge gate stack after PDA and FGA. The 
oxygen profiles are taken for both samples with and without CF4 plasma treatment 
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Fig. 5.4. Capacitance-voltage characteristics of TaN/HfO2/GeOx/Ge gate stacks (~ 2 nm 
GeO2 and 4.5 nm HfO2 ) measured at 1Mhz, 900kHz, 800kHz,…, 200kHz, 100kHz, 
90kHz, 80kHz,…, 20kHz and 10kHz (a) with neither CF4 plasma treatment nor FGA; (b) 
with CF4 plasma treatment for 3 min but without FGA; (c) without CF4 plasma treatment 
but with FGA; (d) with both CF4 plasma treatment and FGA. 

 

Fig. 5.4 shows the C-V frequency dispersion characteristics of 

TaN/HfO2/GeO2/Ge MOS capacitors with different post-gate treatments (CF4 plasma  

treatment or FGA). For the samples with neither CF4 plasma treatment nor FGA (split a), 

besides the observation of large kinks and significant C-V stretch-out, which is attributed 

to high density of interface traps near midgap (~3 ×1012 eV-1cm-2 estimated from 

 89



Chapter 5: Interface engineered high mobility high-k/Ge pMOSFETs with 1 nm equivalent oxide 
thickness 

 
conductance method), a significant frequency dependent flat band voltage shift (∆V) ~ 

100 mV is also present between 1MHz and 10 kHz C-V curves, which is the direct result 

of interface states [11]. Particularly for the PMOS capacitors, ΔV is the indication of 

weak Fermi-level pinning in the upper half of Ge bandgap [12, 13]. In other words, this 

indicates a high density of interface traps locates in the upper half of the Ge bandgap. For 

the samples with only CF4 treatment for 3 min (split b) [Fig. 5.1(b)], the size of the kinks 

becomes much smaller and no evidence of ΔV is observed. Also, C-V curves with various 

frequencies exhibit much less stretch-out behaviors. This is attributed to reduced interface 

states through the F passivation for both interface states at midgap and upper half of the 

bandgap.  
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Fig. 5.5. Frequency dependent flat band voltage shifts (ΔV) and Equivalent oxide 
thickness (EOT) for samples both with and without FGA of different CF4 treatment 
conditions. 

 

Fig. 5.4 (c) and (d) shows the C-V frequency dispersion characteristics for 

samples with FGA. It can be seen that C-V stretch-outs and size of the kinks become 
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smaller and almost diminish for samples with 3 min CF4 treatment. However, the 

reduction of frequency dependent flat band voltage shift after FGA is not so pronounced 

compared to 1 min CF4 plasma treatment, as shown in Fig 5.5. This indicates that FGA is 

useful to passivate the interface states but not so effective to reduce Dit in the upper half 

of the bandgap. In addition, positive flat band voltage shifts are observed after either CF4 

treatment or FGA. This is possibly attributed to the reduction of positive fixed charges by 

F or H passivation, respectively.    

 

Berkeley quantum mechanical capacitance voltage (QMCV) simulation code 

modified for Ge was used to estimate gate stack equivalent oxide thickness (EOT) by 

fitting the C-V data using lower frequency curves (10 kHz) in accumulation which are the 

least affected by series or shunt resistance [14] and are summarized in Fig. 5.5. It can be 

seen that F incorporation will not cause any significant EOT change (~ 1 Å EOT 

increment). The decrease of EOT values (~ 1Å) after FGA is due to the high-k 

densification. The total EOT value is about 1.5 to 1.6 nm for HfO2/GeO2 dual layer. 

Therefore the EOT contribution is about 0.7 nm from GeO2, assuming EOT contribution 

is about 0.9 nm for 4.5 nm HfO2. The relative dielectric constant of GeO2 is thus about 11, 

which is consistent with value (~ 7 to 12) reported in Ref [15].  

 

Gate leakage currents of Ge MOS capacitors are shown in Fig. 5.6. Low leakage 

currents of order of 10-7 to 10-6 A/cm2 are observed for all the samples at 1 V gate voltage, 

indicating good gate dielectrics (HfO2/GeO2 dual layer) quality. Samples with F 

incorporation show smaller leakage current in the accumulation region. This is possibly 
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due to lower trap assisted tunneling. It should also be noted that samples with F 

incorporation have about 1 Å thicker EOT. 
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Fig. 5.6. Ig-Vg characteristics for forming gas annealed samples with different CF4 plasma 
treatment conditions. 
 

 

 

 

 

 

 

 

 

Fig. 5.7. Typical frequency dependent conductance Gp/ω for a series of gate voltage for 
forming gas annealed samples without CF4 plasma treatment and samples with CF4 
plasma treatment for 3 min. 
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Finally, Dit was measured using frequency dependent conductance method. A 

series of ac conductance measurements was performed as a function of frequency. Fig. 

5.7 shows the typical measured frequency dependencies of Gp/ω for various gate voltages 

for samples with FGA. The peaks of Gp/ω for each gate voltages are clearly distinguished 

and the amplitude of the peak is a strong function of gate voltages. Fig. 5.8 is the plot of 

the extracted Dit values at midgap. A low Dit value of 6.33× 1011 cm-2eV-1 is observed for 

samples without CF4 treatment and Dit further decreases as CF4 treatment duration 

increases. The Dit value as low as 2.02 × 1011 cm-2eV-1 is achieved for samples with 3 

min CF4 treatment and FGA, approaching the state-of-the-art metal-gate/HfO2/SiOx/Si 

gate stacks (typically mid to high 1010 cm-2eV-1).  
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Fig. 5.8. Extracted midgap Dit for FGA annealed samples with different F treatment 
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5.1.3 Summary 

 GeO2 is an effective passivation layer for high-k/Ge gate stack. By controlling the 

growing condition, GeO2 with good stoichiometry can be achieved with little volatile 

GeOx (x < 2) component.  TaN/HfO2/GeO2/Ge gate stack with small leakage current and 

low Dit have been demonstrated. Furthermore, the effects of two post-gate passivation 

techniques including CF4-plasma treatment and FGA on high-k/Ge gate stack have been 

investigated. Both treatments can improve the interface quality, where the F 

incorporation is more effective to reduce the frequency dependent flat band voltage shift. 

By combining F incorporation and FGA, excellent electrical characteristics with 

negligible C-V stretch-out and frequency dispersion are achieved. The interface trap 

density of TaN/HfO2/GeO2/Ge MOS structure is as low as 2.02 × 1011 cm-2eV-1 at the 

minimum. 

 

5.2 Ge pMOSFETs with 1 nm EOT 

5.2.1 Devices performance of Ge pMOSFETs 

Based on the MOS capacitor results in the previous section, optimized interface 

engineering techniques including GeO2 pre-gate surface passivation, post-gate F 

incorporation and FGA were implemented to fabricate Ge pMOSFETs (N-type Ge wafers 

with (100) orientation were used here). Also, to achieve more aggressive scaling on EOT, 

thinner GeO2 (~1 nm) and HfO2 (~3.5 nm) layers were used as the gate dielectrics. The 

devices were implanted with Boron (1×1015 cm-2, 15 keV, 7○ tilted) to form the 

source/drain (S/D). After FGA at 350oC for 2 hours, contact metal (Al) was deposited and 

patterned.  
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Fig. 5.9 shows the split C-V curves obtained for a 200 μm × 10 μm pMOSFET 

device. EOT was extracted using a Ge-based C-V simulator considering the quantum 

mechanical effect and is about 10 Å. Fig. 5.10 shows the gate leakage current density as a 

function of EOT together with published data [16-20]. The gate leakage current density 

of the HfO2/GeO2 dual dielectric layer is of many orders of magnitude lower than the 

leakage currents of Ge MOS capacitors with GeOxNy as gate dielectrics. In addition, 

although the k-value of GeO2 is relatively low, the HfO2/GeO2 dual layer exhibits similar 

gate leakage current density as the MOS capacitors with HfO2 or HfON gate dielectrics, 

indicating good gate stack quality. The gate leakage current of ZrO2 is slightly lower than 

that of HfO2, which is possibly attributed to less interfacial layer formation [17, 21].  
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Fig. 5.9. Split C-V obtained for a 200μm × 10μm pMOSFET. 
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Fig. 5.10. Gate-leakage-current density as a function of EOT together with published data. 

 

 The linear Id-Vg curves for the same 200 μm × 10 μm pMOSFETs are shown in 

Fig. 5.11. The device with F incorporation exhibits enhanced drain-current and 

transconductance Gm. Mobility as a function of vertical effective field is extracted using 

split C-V method and plotted in Fig. 5.12(a). Compared with the devices with only FGA, 

devices with F incorporation exhibit about 12% and 17% higher peak and high field hole 

mobility, respectively. This is ascribed to the better interface quality after the F 

passivation. Peak hole mobility of 396 cm2/V●s at a vertical effective field of 0.178 

MV/cm is achieved for devices with both F incorporation and FGA, which is better than 

previous recorded values for unstrained Ge transistors as shown in Fig. 5.12(b) [5, 22, 23]; 

whereas devices with only GeO2 surface passivation and FGA show comparable mobility 

as the previous recorded values achieved by using either Si passivation [23] or GeO2 as 

gate dielectric [5]. A three times the universal hole mobility for SiO2/Si is maintained for 
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the vertical fields up to 0.9 MV/cm, which is the region of interest for highly scaled 

transistors. 

 

 

  

 

 

 

 

 

 
Fig. 5.11. Linear Id-Vg and Gm-Vg obtained for 200μm × 10μm pMOSFETs. Device with 
F incorporation shows higher Id and Gm. 
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Fig. 5.12. Hole mobility as a function of vertical effective field for 200μm × 10μm 
pMOSFETs, with and without F incorporation. The mobility enhancement is maintained 
for large field. Right figure shows the comparison of peak hole mobility with previous 
reported record values [5, 22, 23].   
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The Ion/Ioff ratio for F incorporated samples is about 1.2 × 103 as shown in Fig. 

5.13 (This ratio is much smaller than the state-of-the-art MOSFETs made on Si substrate 

due to smaller bandgap of Ge), which is similar to the reported Ge pMOSFETs made on 

pure Ge substrate [7, 24, 25]. The Ion/Ioff can be improved if careful implantations are 

used [26]. A smaller sub-threshold swing (85 mV/dec) is observed with F incorporation, 

suggesting the better interface quality, which is consistent with the previous MOS 

capacitor and mobility results. Fig. 5.14 shows the well-behaved output characteristics of 

the 200 μm × 10 μm pMOSFET devices, with flat drain-current in the saturation region. 

The Ge pMOSFETs with F incorporation show an ~18% improved drain-current over the 

ones without F passivation under the same overdrive of gate bias in the saturation region. 

A drive-current of 37.8 μA/μm at 1.2g tV V V   is obtained for devices with F 

incorporation. 
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Fig. 5.13. Well behaved Id-Vg characteristics for the 200μm × 10μm pMOSFETs with and 
without F incorporation. Devices with GeO2 passivation and Forming gas annealing 
(FGA) show SS about 98mV/dec, while devices with GeO2 passivation and both post-
gate treatments including CF4 plasma treatment and FGA exhibit smaller SS about 
85mV/dec, indicating better interface quality. 
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Fig. 5.14. Id-Vd for 200μm × 10μm pMOSFETs. About 18% Enhanced drive current is 
obtained after F incorporation. Drive current is 37.8 μA/μm at 1.2g t dV V V V    . This 

is the highest record drive current published for unstrained Ge devices to date. 
 

Fig. 5.15 plots the total resistance as a function of gate length for three different 

gate bias voltages. The S/D series resistance was estimated to be about 10 Ω for the 200 

μm gate width (i. e. ~ 2000 Ωμm). The measured S/D resistance and Ion/Ioff ratio are also 

consistent with the junction leakage characteristics as shown in the right figure in Fig. 

5.15. Note that S/D resistance for our devices is much higher than those of state-of-the-art 

devices with silicide S/D. Even better drive current performance can be obtained through 

careful S/D engineering to minimize the S/D resistance [27, 28]. In the literature, high 

mobility Ge pMOFESTs with high-k gate dielectric can be achieved through a few 

alternative pre-gate and post-gate treatment processes or combinations: (1) Si passivation 

(SiH4 treatment, epitaxial Si on Ge or SiOx directly on Ge) [23, 24]; (2) GeO2 passivation 

(thermal oxidation or direct sputter GeO2 on Ge [5]); (3) H2 or H+ annealing [23] and (4) 

F incorporation as discussed in Chapter 4. Our results indicate that native Ge oxide 
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passivation layer seems more beneficial for high-performance Ge MOSFETs than Si 

passivation and a combination of GeO2 passivation, hydrogen passivation and F 

incorporation, will achieve even more superior device performance.  
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Fig. 5.15. Left: Series resistance Rs for the Al contacted Source/Drain extracted from the 
total resistance vs. gate length at Vg = -2V, -1.5V and -1V for 200μm width devices. 
Right: Junction leakage characteristics. 
 

5.2.2 Interface Characterization 

 Direct characterization of interface property for Ge MOSFETs is critically 

important for better understanding the effects of interface engineering processes. Charge 

pumping has been demonstrated to be a powerful tool to characterize the interface trap 

density with high accuracy and sensitivity for MOSFETs. The basic setup for the charge 

pumping measurement, as introduced by Brugler and Jespers [29] is illustrated in Fig. 

5.16. When the transistor is pulsed into inversion, surface become deeply depleted and 

electrons flow from S/D to channel region and some of them will be captured by surface 

states as shown in Fig. 5.17(a). When the gate pulse is driving the surface back into 

accumulation, the mobile charges drift back to S/D, but the charges trapped in the surface 
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states will recombine with the majority carriers from the substrate and give rise to a net 

flow of negative charge into substrate as shown in Fig. 5.17(b), which is so called the CP 

effect. By measuring this substrate current, an estimate of the mean value of the interface-

state density over the energy range swept by the gate pulse can be obtained.  

 

Fig. 5.16. Basic experimental set-up for charge pumping measurement [8].  

 

Fig. 5.17. Illustration of charge pumping effects by varying the Vg on a MOSFET. 
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In this section, the charge pumping measurements were performed with S/D 

grounded while sweeping the base level of a constant-amplitude (Va) gate pulse at the 

frequency of 200 kHz. The definition of rise time (tr) and fall time (tf) for the trapezoidal 

pulse is shown in Fig. 5.18. Variable rise/fall time CP method as described in [8] is 

implemented to characterize the mean Dit of Ge pMOSFETs and the energy distributions 

of interface traps.  

 

TP

tf tr

VFB

VT

GV

GHV

GLV (a)
 

Fig. 5.18.  Waveform applied at the gate when performing charge pumping. 

 
Fig. 5.19 illustrated how the Dit and energy distributions of Dit are related to the 

rise and fall time of gate pulse. During the fall time tf, electrons trapped in the surface 

states will also have chance to emit to the conduction band. Those electrons will not 

recombine with majority carrier later. Therefore, the longer the tf is, the smaller the Icp. 

The Icp will have a large dependency with tf if Dit in the upper half of the bandgap is high. 

Similarly, the longer the tr is, the smaller the Icp. The Icp will have a large dependency 

with tr if Dit in the bottom half of the bandgap is high. 
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Fig. 5.19. Different processes occurring during one cycle of the gate pulse (Tp = 100 us), 
using the energy-band diagrams (the Fermi level is used as the zero reference level) [8]: 
1) steady-state emission of holes to valence band (towards the substrate) 
2) nonsteady-state emission of holes to valence band (towards the substrate) 
3) trapping of electrons (from source and drain); 
4) steady-state emission of electrons to conduction band (towards source and drain) 
5) nonsteady-state emission of electrons to conduction band (towards source and drain) 
6) trapping of holes (from substrate). 

 

 Table 5.1 shows the equations used for analyzing CP data with trapezoidal pulse 

waveform in this experiment. Fig. 5.20 shows a typical rise/fall time dependence of 

charge pumping currents (Icp) for samples with and without F incorporation. Samples 

without F incorporation exhibit higher charge pumping currents than that for samples 

with F incorporation at any rise/fall time condition, indicating higher interface trap 

density. Fig. 5.21 shows the plot of Icp as a function of . The mean value of Dit 
1/ 2ln( )r ft t
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was extracted to be 3.07×1012 cm-2eV-1 for samples without F and 9.55×1011 cm-2eV-1 for 

samples with F incorporation. With the F incorporation, about three times reduction for 

Dit is achieved.  

 

Table 5.1. Equations used for analyzing CP data with trapezoidal pulse waveform [8].        
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Fig. 5.20. Rise/fall time dependence of CP current (tr = tf = 50, 100, 200, 500, 900 ns) for 
Ge pMOSFETs with or without F incorporation. 
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Fig. 5.21. Qcp (= Icp/f) as a function of  provides the mean Dit for samples 

without F incorporation is about 3.07 × 1012 cm-2eV-1 and for samples with F 
incorporation is about 9.55×1011 cm-2eV-1, respectively. 

1/ 2ln( )r ft t

 

The energy distribution of Dit is further investigated by using variable tr and tf. By 

changing tf while keeping tr constant, the energy is gradually swept through electron 

emission energy level (Eem.e) above midgap. Likewise, by changing tr while keeping tf 

constant, the energy is gradually swept through hole emission energy level (Eem.h) below 

midgap [8]. Fig. 5.22 demonstrates strong dependence of Icp on both rise and fall time, 

indicating high Dit is present in both upper and lower half of Ge bandgap for samples 

without F incorporation. Whereas for samples with F incorporation, the dependence of Icp 

on rise and fall time is much weaker as shown in Fig. 5.23, implying the Dit in both upper 
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and lower half of the Ge bandgap becomes lower. Fig. 5.24 shows the density of interface 

traps as function of energy in the Ge bandgap as extracted from the data in Fig. 5.22 and 

5.23 using equation 2-5 in Table 5.1, assuming that the change of the time in the 

trapezoidal waveform for upper and lower levels does not impact the Icp. Room-

temperature charge pumping data do not allow us to obtain Dit closer to the band edges 

due to the thermal emission, but the trend is obvious that Dit is significantly reduced in 

both upper and lower half of the Ge bandgap after the F incorporation.  
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Fig. 5.22. (a) Fall time dependence of CP current curves for fixed rise time of 100 ns to 
measure the Dit distribution in the upper half of the Ge bandgap. (b) Rise time 
dependence of CP current curves for fixed fall time of 100 ns to measure the Dit 
distribution in the lower half of the Ge bandgap for samples without F incorporation. 
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Fig. 5.23. (a) Fall time dependence of CP current curves for fixed rise time of 100 ns to 
measure the Dit distribution in the upper half of the Ge bandgap. (b) Rise time 
dependence of CP current curves for fixed fall time of 100 ns to measure the Dit 
distribution in the lower half of the Ge bandgap for samples with F incorporation. 
 

 

 

 

 

 

 

Fig. 5.24. Energy distribution of Dit as determined by rise/fall time dependence of Icp. 
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5.2.3 Discussions 

Recently, it was reported that GeO2/Ge MOS capacitor fabricated using direct 

thermal oxidation and post H+ annealing could achieve very low Dit even in both upper 

and lower half of Ge bandgap (< 1012 cm-2eV-1) [3]. However, in the HfO2 gated Ge MOS 

capacitors, first principle simulation [30, 31] show that the formation of the Ge-Hf bonds 

due to the fivefold coordination of Hf in the GeOx matrix will generate defect levels in 

the upper half of Ge bandgap. This is consistent with the high Dit (~ 5×1012 cm-2eV-1) 

observed in the upper half of Ge bandgap for our devices without F incorporation. When 

the F is introduced into the gate stack, formation of the Hf-F or Ge-F bonds as illustrated 

in Fig. 5.25 will hinder the Ge-Hf bonds formation, thus a significant reduction of Dit is 

observed in the upper half of Ge bandgap (~ 1.2 ×1012 cm-2eV-1). This result is 

consistent with the observation that negligible ∆V is present in C-V characteristics of 

MOS capacitors with CF4 plasma treatment as shown in Fig. 5.4.     

 

Fig. 5.25. F incorporation into high-k/Ge gate stack and various possible passivation 
mechanism during subsequent annealing steps: (a) passivation of interface traps at 
GeO2/Ge interface by forming Ge-F; (b) passivation of interface traps at HfO2/GeO2 
interface; (c) passivation of HfO2 bulk traps by forming Hf-F. 
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5.3 Conclusions 

In conclusions, the effects of post-gate F treatment on GeO2 passivated MOS 

devices have been extensively studied. The F incorporation improves the electrical 

characteristics such as frequency dispersion and C-V stretch-out and reduces the interface 

trap density. Excellent electrical characteristics with negligible C-V stretch-out and 

frequency dispersion are achieved for TaN/HfO2/GeOx/Ge MOS structure with Dit as low 

as 2.02 ×1011 cm-2eV-1. Ge pMOSFETs have been fabricated using TaN/HfO2/GeOx/Ge 

gate stack with EOT ~ 1 nm without any degradation in gate leakage currents. About 

three time the SiO2/Si universal hole mobility at vertical effective field up to 0.9 MV/cm 

have been achieved. A high drain current for unstrained Ge of 37.8 μA/μm at 

 is presented for a channel length of 10 µm. The interface quality of 

Ge MOSFETs has been further investigated using variable rise and fall time charge 

pumping method. Dit in both upper and lower half of the Ge bandgap has been 

significantly reduced with F incorporation, thanks to the effective passivation of interface 

defects by F incorporation.      

1.2g t dV V V V   
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Chapter 6 

Energy Distribution of Interface Traps in Germanium Metal-

Oxide-Semiconductor Field Effect Transistors with HfO2 Gate 

Dielectrics and Its Impact on Mobility 

 

Over the past few years, Ge high-k gated p-channel MOSFETs with various 

surface passivation techniques have been demonstrated with improved hole mobility over 

SiO2/Si system [1-6]. About three times peak hole mobility over SiO2/Si universal 

mobility have been achieved by several groups using either Si passivation [2, 4, 6] or 

using GeO2 as gate dielectrics [3]. On the other hand, n-channel Ge MOSFETs with high-

k gate dielectrics still show much lower electron mobility than SiO2/Si universal [3, 7-10]. 

The causes of this severe mobility degradation for n-channel Ge MOSFETs are still not 

fully understood, but in order to realize the desired high mobility n-channel Ge 

MOSFETs, it is clear that a viable high-k gate stack on Ge must at least have a low 

density of interface traps. So far, a clear correlation between the interface trap density and 

inversion layer mobility for n-channel Ge MOSFETs has not been necessarily observed. 

For example, in Ref [7] and [10], no information on interface trap density was given; in 

Ref [3], a good interface quality was reported with highest recorded hole mobility, 

however the Ge nMOSFETs still exhibit low electron mobility and in Ref [9], a relatively 

low interface trap density (Dit) value of was reported for Ge 

nMOSFETs, but electron mobility with less than half of SiO2/Si universal was observed. 

11 -2 -14.5 10 cm eV

 113



Chapter 6: Energy distribution of interface traps in germanium metal-oxide-semiconductor field 
effect transistors with HfO2 gate dielectrics and its impact on mobility 
 
One possible explanation is that although Dit is relatively low at midgap of germanium, a 

high density of interface traps might be present in the upper half of the Ge bandgap near 

the conduction band, behave like Coulomb scattering centers when the device is under 

strong inversion as shown in Fig. 6.1. This kind of asymmetric Dit distribution for high-

k/Ge interface has been reported based on Ge MOS capacitors by using conductance 

method under low temperatures [11]. However, there is still no direct evidence on the 

interface trap distributions for Ge MOSFETs under room temperature. Charge pumping 

(CP) has been demonstrated to be a powerful tool to characterize the Dit with high 

accuracy and sensitivity for MOSFETS [12]. In this study, we apply the variable rise and 

fall time CP procedure, as described in Section 5.2.3, to study the energy distribution of 

interface trap density in HfO2 gated Ge MOSFET with Si passivation. The results are 

complementarily verified with C-V characteristics of Ge MOS capacitors, mobility 

extraction and mobility simulation of Ge MOSFETs. 

 

Fig. 6.1. Schematic illustration of n-channel electron mobility degradation by Coulomb 
Scattering. 
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6.1 Experiments 

 The starting Ge wafers are either Sb-doped n-type (100) wafers (0.04-0.08 Ω·cm) 

or Ga-doped p-type (100) wafers (0.09-0.18 Ω·cm). The wafers were firstly cleaned using 

diluted HF (1:50) and rinsed in de-ionized water, and then were subject to different 

surface passivations. The silicon passivation (SP) was carried out by annealing in SiH4 

[9]. The surface nitridation (SN) was carried out in NH3 ambient under 20 Torr at 600 ºC 

for 30 sec [13]. HfO2 was then deposited in a metal organic chemical vapor deposition 

(MOCVD) chamber in N2+O2 ambient and with Hf tert-butoxide as the precursor at 

temperature of 400°C for both SP and SN samples. After post deposition annealing (PDA) 

in N2 at 500 ºC, TaN was reactively sputtered at room temperature, and then patterned by 

conventional lithography and Cl2-based plasma etching. The transistor devices were 

implanted either with boron (1x1015
 cm-2 @ 20 keV) or with phosphorus (1x1015 cm-2 @ 

20 keV). The pMOSFETs source/drain (S/D) activation was carried out under 500oC for 

1 min and nMOSFETs S/D was activated using laser annealing described in [10]. Finally, 

forming gas annealing at 350oC for one hour was carried out as the last step in device 

fabrication. Current-voltage (I-V) and Capacitance-voltage (C-V) characteristics were 

measured by a HP4196 semiconductor parameter analyzer and an Agilent 4284 LCR 

meter, respectively. The interface characteristics were analyzed by charge pumping 

measurements with source/drain grounded while sweeping the base level of a constant-

amplitude gate pulse at frequency of 100 kHz. 
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6.2 Results and Discussions 

CP measurement was carried out on HfO2 gated Ge MOSFETs with SP. The 

energy distribution of Dit is obtained by using variable tf and tr as described in Section 

5.2.3. By changing tf while keeping tr constant, the energy is gradually swept through 

electron emission energy level (Eem,e) above midgap. Likewise, by changing tr while 

keeping tf constant, the energy is gradually swept through hole emission energy level 

(Eem,h) below midgap. It should be noted that the interfacial layer between high-k gate 

stack and Ge is quite complicated and the interface traps measured here include all 

electrically active defects or charge centers that can respond to charge pumping signals.  
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Fig. 6.2. (a) Strong fall-time dependence of charge pumping currents from 50 ns to 450 
ns for fixed rise time of 50 ns; (b) Relatively week rise-time dependence of charge 
pumping currents from 50 ns to 450 ns for fixed fall-time of 50 ns. 

 

Fig. 6.2(a) demonstrates a strong dependence of Icp on the fall time by varying the 

fall time and keeping the rise time constant. This indicates that the density of interface 

traps in the upper half of the bandgap is high. On the other hand, Fig. 6.2(b) shows a 

relatively weak dependence of Icp on rise time while keeping the fall time constant, 

indicating that density of interface traps in the lower half of the bandgap is lower. Fig. 6.3 
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shows the density of interface traps as a function of energy in the Ge bandgap as 

extracted from data in Fig. 6.2(a) and (b).  

 

 

 

  

 
 

 

 

 

Fig. 6.3. Energy distribution of interface traps in HfO2 gated Ge MOSFETs as determined 
by rise/fall time dependence of charge pumping currents under room temperature. 
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Fig. 6.4. Energy band diagrams of MOS system with asymmetrical distribution of 
interface trap density along the bandgap. (a) p-MOS under flat-band; (b) p-MOS near 
weak inversion; (c) n-MOS under flat-band; (d) n-MOS near strong inversion. 
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This asymmetric Dit distribution is consistent with the C-V characteristics for both 

Ge nMOS and pMOS capacitors with different surface passivation techniques and can be 

explained by a simple model illustrated in Fig. 6.4. Fig. 6.5 shows the high frequency C-

V characteristics for Ge capacitors with SN or SP. For pMOS capacitors in Fig. 6.5 (a), 

both capacitors with SN and SP exhibit frequency dependent flat band voltage shift (~0.4 

V for SN devices and 50 mV for SP device), which is usually observed in Ge or GaAs 

MOS capacitors [11, 14]. This is the direct result of interface states [14]. Especially for 

pMOS capacitors, this phenomenon is the indication of the weak Fermi-level pinning 

near the conduction band [11, 15]. Fig. 6.4 (a) and (b) show the p-MOS capacitor under 

flat-band and weak inversion, respectively. At high frequency (100 kHz), the high density 

interface traps in the upper half of band gap lead to a positive C-V shift because of filling 

of acceptor-like interface states when Vg is increasing; when the frequency decreases (10 

kHz), some of the traps can respond to the gate voltage and contribute an additional 

capacitance, giving an illusion that Vfb shifts towards the negative direction.  

 

   As for the case of n-MOS in Fig. 6.5(b), no frequency dependent flat band voltage 

shift is observed for both SN and SP devices, this is because when the Fermi level is 

swept from the edge of valence band towards the mid-gap, the majority interface states 

(above the mid-gap) are above the Fermi level and do not contribute to the capacitance so 

that the capacitance is independent of measurement frequency as shown in Fig. 6.4(c) and 

(d). However, both abnormal inversion capacitance for SN device and kinks for SP 

device are observed. This is caused by the interface traps located at upper half of the 

germanium bandgap. When the Fermi level crosses the mid-gap and approaches the 
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upper half of the interface states (inversion), these interface states can lead to a large kink 

in the C-V curves (the SN capacitor case). A higher positive gate bias (>2V) would be 

needed to fill up states below the Fermi level before Cmin is observed. For SP devices 

with better interface quality, Dit in the upper half of the bandgap will still lead to kinks 

where the sizes are frequency dependent.  
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Fig. 6.5. (a) High Frequency Capacitance-Voltage (HFCV) characteristics of 
TaN/HfO2/Ge p-MOS capacitors with surface nitridation (SN) or silicon passivation (SP); 
(b) HFCV characteristics of TaN/HfO2/Ge n-MOS capacitors with SN or SP. 
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Fig. 6.6. Effective carrier mobility of HfO2 Ge MOSFETs with SP together with 
simulation results. 
 

  The extracted hole and electron mobility in HfO2 Ge MOSFETs with SP using 

split C-V technique is plotted in Fig. 6.6 together with simulated mobility data by 

assuming the interface scattering density is equivalent to the interface trap density. Here 

the NCSU Mob2d Program [16] is used to simulate the mobility with corresponding 

parameters modified to Ge. The hole mobility is about twice of Si hole universal (with 

peak mobility ~ 270 ) whereas the electron mobility (with peak mobility ~ 230 

) is less than half of Si electron universal. The low electron mobility and high 

hole mobility can be explained consistently by the higher interface trap density in the 

upper half of the bandgap than that in the lower half of bandgap. These interface traps 

with high Dit value located near the conduction band are acceptor-like traps. For 

nMOSFET in the inversion, these interface traps are occupied by electrons and become 

negative charge centers. Thus, we can expect that the Coulomb scatterings due to these 

2cm /V s

2cm /V s
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charge centers at or near the high-k/Ge interface, play a significant role for the severe 

electron mobility degradation for germanium nMOSFETs, especially at low and mid 

effective field. To minimize the electron mobility degradation in germanium nMOSFET, 

carefully interface engineering should be performed to reduce the high Dit near the 

conduction band edge. 

 

6.3 Conclusions 

In conclusion, asymmetric energy distribution of Dit in Ge MOSFETs is revealed 

by using variable rise and fall time CP method at room temperature. This result is 

consistent with C-V characteristics in Ge MOS capacitors as well as mobility extraction 

and simulation results for Ge MOSFETs. Both SP and SN could not adequately enhance 

the Ge nMOSFETs performance. Alternative passivation technique which can 

significantly reduce the interface traps at upper half of the Ge bandgap should be 

explored to achieve improved performance for Ge nMOSFETs. 
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Chapter 7 

Conclusions and Recommendations 

 

7.1. Conclusions 

High-k gate stack on high mobility channel materials enables the possibility of 

further MOSFETs scaling into sub-22 nm regime. Ge-channel MOSFETs have the 

greatest potential for integration into Si CMOS technology of all the alternative 

semiconductor materials. This study focused on the gate stack engineering for a Ge 

MOSFETs with high-k gate dielectrics, specially, the Hf-based high-k gate dielectrics.  

 

In the literature, extensive researches have been made to improve the high-k/Ge 

interface quality. It is commonly agreed that surface passivation process is the key step to 

achieve the good interface quality. Nitride based passivation, Si passivation and GeO2 

passivation have been widely reported. By using these surface passivation techniques, 

electrical parameters of Ge MOSFETs, such as Dit, gate leakage current, EOT and 

mobility can be improved. However, tradeoff relationships usually exist between these 

parameters and none of those surface passivation techniques can offer the ideal gate stack 

quality to date (e.g. increase the Si passivation layer thickness can increase mobility, but 

EOT is also increased; pure GeO2 can offer very low Dit with high EOT, high-k gate 

dielectric with thin GeO2 passivation layer can decrease the EOT, but Dit also increases).  
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In the first half of this thesis (chapter 2 and 3), we still focused on the surface 

passivation techniques for high-k/Ge gate stack. An alternative sulfur (S) passivation was 

firstly investigated. It was found that (NH4)2S treatment can reduce the Dit and improve 

the electrical properties in terms of EOT and gate leakage current. Moreover, it was 

found that samples with (NH4)2S treatment shows better thermal stability at high-k/Ge 

interface. This is due to less Ge diffusion into high-k dielectric by suppressing the 

germanium monoxide formation at high-k/Ge interface, which was confirmed by XPS 

and SIMS studies. However, large C-V hysteresis was observed for Ge MOS capacitors 

with S passivation, which maybe the intrinsic problem for S passivation that limits its 

application in real high performance Ge MOSFETs fabrications. Another surface 

passivation technique we have proposed is silicon nitride (SN) passivation. This is a 

modified version from Si passivation and achieved by using a SiH4-NH3 treatment. It is 

known that the Si interlayer thickness gives strong impact on device performance. The 

ultrathin Si layer cannot effectively suppress the Ge diffusion, which results degraded 

performance. Compared to ultrathin Si passivation (~6 Å), ultrathin SN passivation was 

demonstrated to be more effective to suppress the Ge out-diffusion into HfO2. It 

improved the electrical characteristics like C-V frequency dispersion, gate leakage and 

mobility. Therefore SN passivation offers bigger process window than Si passivation and 

can be a promising technique for high-k/Ge gate stack. Moreover, by suppressing the 

interface dipole formation, SN passivation layer eliminates the positive Vth shift problem 

of Si passivation. The only drawback of SN passivation is the possible mobility 

degradation due to the nitrogen involvement near the channel. The pMOSFETs mobility 

we obtained in this study was ~2.6X Si hole universal mobility for SN passivated devices, 
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which is less than reported ~3X Si hole universal mobility achieved by using a relatively 

thicker Si layer [1].  

 

In the second half of this thesis (chapter 4 and 5), we tried to look beyond the 

“pre-gate” surface passivation. In the Si based MOS device technologies, one of the most 

important defects at the (100)Si/SiO2 interface, the Pb0 centre (trivalent Si dangling 

bond), can be passivated very effectively after post-metallization anneals performed in a 

hydrogen containing ambient. However, for Ge devices, it has been pointed out that 

hydrogen passivation of acceptor states or dangling bonds is ineffective. Moreover, due 

to the lower processing temperature for Ge devices, there are significant bulk defects in 

high-k dielectrics, especially near high-k/Ge interface and these defects may be the 

cause for mobility degradation and bias temperature instability. Thus a “post-gate” 

treatment with lower thermal budget is proposed. In this study, we employed the post-

gate CF4 plasma treatment process to incorporated F into the high-k/Ge gate stack. By 

optimizing the power, gas flow rates between CF4 and O2, and subsequent post 

deposition annealing conditions, F was effectively introduced into the gate stack 

without any carbon byproduct deposition. The effects of F incorporation were firstly 

investigated on Ge MOS capacitors without any pre-gate surface passivation. Electrical 

characteristics such as frequency dispersion, interface state density, gate leakage current, 

and breakdown voltage were greatly improved. This is attributed to the Ge-F and Hf-F 

bonds formation at high-k/Ge interface and in the bulk HfO2 gate dielectric, respectively. 

However, the Dit was still as high as the order of 1012 cm-2eV-1, suggesting that ideal 

interface quality can not be achieved by simple post-gate treatment alone. Therefore, 
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both pre-gate surface passivation and post-gate treatment were implemented for HfO2 

gate Ge MOS devices. F incorporation combined with Si passivation was studied. It was 

observed that interface quality was improved after Si passivation, compared to samples 

without any surface passivation, and even better gate stack quality was achieved of Dit as 

low as 4.85×1011 cm-2eV-1 without any C-V dispersion or hysteresis after the F 

incorporation. This suggested that post-gate F passivation is also compatible with pre-

gate surface passivation and it can be a candidate for Ge-based MOS devices, playing a 

similar role as forming gas annealing in Si-based MOSFETs. 

 

 The effects of F incorporation and hydrogen annealing were further compared 

based on the HfO2 gated MOS capacitors with thermal GeO2 passivation. Here the GeO2 

passivation was used because currently it is widely believed that this native oxide layer 

could offer the best interface quality. Our results revealed that both F incorporation and 

hydrogen passivation can improve the C-V characteristics of Ge MOS capacitors. However, 

compared to H passivation, F was more effective to reduce the frequency dependent flat 

band voltage shift ∆V, which is a sign of high density of interface states locating in the 

upper half of the Ge bandgap. By combining the GeO2 passivation and both post gate 

treatments, excellent electrical characteristics with negligible C-V stretch-out and 

frequency dispersion were achieved. The Dit of TaN/HfO2/GeO2/Ge MOS structure was 

as low as 2.02 × 1011 cm-2eV-1 at the minimum with EOT ~ 1.5 nm and Jg less than 10-6 

A/cm2 at 1V.  Knowing that this combined interface engineering scheme can provide 

excellent interface quality, we further made Ge pMOSFETs with scaled EOT~ 1nm (by 

using thinner GeO2 passivation layer and HfO2). Excellent performance was achieved 
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with drive current as high as 37.8 μA/μm at Vg-Vt=Vd=-1.2V for a 10 μm Lg devices and 

record high hole mobility with peak up to 396 cm2/V·s. This was the first report for high-

k gated Ge MOSFETs with GeO2 passivation. Variable rise/fall time charge pumping 

method was further applied to study the interface trap characteristics and a significant Dit 

reduction in both upper and lower half of bandgap was observed with F incorporation. 

This result is consistent with the observation that negligible ∆V is present in C-V 

characteristics of MOS capacitors with CF4 plasma treatment.  

 

In the last, we further applied this variable rise/fall time charge pumping method 

to study the energy distribution of interface traps for Ge MOSFETs with Si passivation. 

A strong dependence of charge pumping current on the fall time was observed when rise 

time was fixed to a constant value, suggesting a high density of interface states was 

present in the upper half of the Ge bandgap. As a result, the inversion-layer electron 

mobility of Ge n-channel MOSFETs was significantly degraded by the Coulomb 

scatterings. This asymmetric energy distribution of Dit in Ge MOSFETs was further 

verified by the C-V characteristics in Ge MOS capacitors as well as mobility extraction 

and simulation results. This may clarified the cause of widely reported low electron 

mobility of Ge nMOSFETs made using either Si passivation or nitride based passivation.  

 

7.2 Recommendations for future work 

1) Different high-k dielectrics. So far, all our studies that have been done are based on 

Hf-based high-k gate dielectrics. This may not be the most compatible dielectric material 

for Ge substrate. Recently some research groups have suggested that LaYO3 or LaAlO3 
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is more compatible with Ge than HfO2 [2, 3]. High-k/Ge gate stack with even better 

interface quality might be obtained by choosing proper high-k dielectric together with 

proper pre-gate and post-gate treatments.   

 

2) Ge nMOSFETs. Although high mobility Ge nMOSFETs fail to be achieved with 

nitride based surface passivation and Si passivation, the recent popular GeO2 native 

oxide layer may fulfill the job. Especially, some groups reported that high pressure 

oxygen thermal oxidation [4] or ozone oxidization [5] can further improve the GeO2/Ge 

interface quality. Our results also revealed that F incorporation can reduce the Dit in both 

upper and lower half of the bandgap. Thus, it is possible to realize Ge nMOSFETs with 

higher electron mobility than Si if Dit can be significantly reduced by using these 

alternative passivation methods.  

 

3) Gate stack threshold voltage control and reliability. As high-k/metal gate is used for 

Ge MOSFETs, workfunction engineering of gate electrode and study of oxide fixed 

charge or interfacial dipoles are also very important. Since Ge bandgap is smaller than Si, 

also, the gate stack maybe more complicate than high-k/Si system, the resultant Vth for 

MOS devices also can be complex. Experiments should be done to clarify the Vth 

dependence for different high-k/metal gate combination with different passivation 

schemes.  

Besides the electrical performance of Ge MOSFETs, the reliability characteristics such 

as gate oxide breakdown, bias temperature instability are also very important issues to 

investigate. From our preliminary study [6], we find that BTI characteristic of Ge based 
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devices is worse than Si. The Vth shift is highly depending on the passivation methods. 

More studies should be done to clarify the root cause of the degradation, and give 

guidelines on how to improve the device reliability.  
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Appendix 

 

The C program for charge pumping configuration: 

Charge pumping measurement requires fine tuning of the following measurement 

parameters: pulse frequency, pulse height, sweeping range, leading and falling edges of 

the pulses, integration time, number of data for averaging, etc. The transistor should also 

be isolated properly (by the guard ring). The following setupCP() is the C program to 

program Agilent 4155C + 41501B for charge pumping measurement. 

 

/* Measurement Unit Definition: 
SMU1 – Gate 
SMU2 – Source 
SMU3 – Drain 
SMU4 – Bulk (Substrate) 
VSU1– Guard ring 
*/ 
 
#define V_GAURD -0.2   //Apply voltage to the guard ring for isolation (accumulation) 
 
#define CP_POINTS 39       //Number of data points in a Icp curve 
#define CP_STEP 0.05        //Step range per data 
#define CP_BASE -1.5        //Pulse base 
#define CP_AMPLITUDE  1.0  
#define CP_PULSE (CP_BASE+CP_AMPLITUDE) 
 
#define CP_AV 12              //Averaging data 
#define CP_TW 5e-6          //Charge Pumping pulse width 
#define CP_TL 1e-7           //Charge Pumping leading edge 
#define CP_TT 1e-7           //Charge Pumping trailing edge 
#define CP_TP 1e-5           //Charge Pumping pulse period 
 
ViStatus setupCP()     //ChargePumping Program  
{ 
 ViStatus ViErr; 
 char cmd[1000]; 
 double base=CP_BASE; 
 double pulse=CP_PULSE; 
 int i; 
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ViErrChk(Write(resource415x, "ST 3\n", 10));      //store program in memory block 3 
ViErrChk(Write(resource415x, "FMT 2,0\n", 10)); //output data format: ASCII without header 
  
sprintf(cmd, "AV, %d\n", CP_AV);     //compile a command 
ViErrChk(Write(resource415x, cmd, 10));    //number of averaging data 
 
ViErrChk(Write(resource415x, "WM 1\n", 10));   //sweep abort condition & post sweep condition 
ViErrChk(Write(resource415x, "SIT 3, 1", 10));   //set integration time: long=1sec 
ViErrChk(Write(resource415x, "SLI 2", 10));    //select integration time: med 
ViErrChk(Write(resource415x, "MM 1,4,2,3\n", 10));  //set SPOT measurement unit: SMU4(Ib), 
SMU2(Is), SMU3(Id) 
 
ViErrChk(Write(resource415x, "SSP 0, 2\n", 10));  //select PGU input to output channel 
ViErrChk(Write(resource415x, "CN 2,3,4,21,27\n", 10)); //channel enable (SMU1,2,3,4, VSU1, 
PGU1) 
ViErrChk(Write(resource415x, "DV 2, 0, 0,    0.01\n", 10)); //set SMU2(Vs) const voltage=0 
ViErrChk(Write(resource415x, "DV 3, 0, 0,    0.01\n", 10)); //set SMU3(Vd) const voltage=0 
ViErrChk(Write(resource415x, "DV 4, 0, 0,    0.01\n", 10)); //set SMU4(Vb) const voltage=0 
  
sprintf(cmd, "DV 21, 0, %f\n", V_GAURD); //compile a command 
ViErrChk(Write(resource415x, cmd, 10));          //force VSU1, auto range, voltage=0, 
compliance=0.01A 
ViErrChk(Write(resource415x, "RI 3, 11\n", 10));  //set SMU3 measurement range 
mode=1nA~Autorange 
ViErrChk(Write(resource415x, "PT 0, 03", 10)); //hold time=0, pulse width=0.3 
ViErrChk(Write(resource415x, "POR 27, 0\n", 10)); //set PGU output impedance=low 
  
 for (i=0; i<CP_POINTS; i++){ 
  Fmt(cmd,"%s<SPG  27, 2, %f, %f, 0, %f[e],%f[e],%f[e],%f[e],65535\n", base, 
pulse, CP_TW,CP_TL,CP_TT,CP_TP); 
 
 ViErrChk(Write(resource415x, cmd, 10)); 
 ViErrChk(Write(resource415x, "SRP\n", 10));              //force pulse output 
 ViErrChk(Write(resource415x, "XE\n", 10));  //trigger measurement 
 ViErrChk(Write(resource415x, "SPP\n", 10));  //stop pulse output 
  base+=CP_STEP; 
  pulse+=CP_STEP; 
 } 
 ViErrChk(Write(resource415x, "SLI 1", 10));       //select integration time=short 
 ViErrChk(Write(resource415x, "CL\n", 10));       //switch OFF and disable channels 
 ViErrChk(Write(resource415x, "SSP 0, 1\n", 10));   //select SMU to output channel 
 ViErrChk(Write(resource415x, "END\n", 10)); 
Error:     
    return ViErr; 
} 
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