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Summary 

Drug discovery process is typically a lengthy and costly process. Target, 

efficacy and safety are the three major issues. Cheminformatics and bioinformatics 

tools are explored to increase the efficiency and reduce the cost and time of 

pharmaceutical research and development. This work represents computational 

approaches to address these issues. In the first study, a particular focus has been given 

to database developing of two web accessible databases:  therapeutic targets database 

(TTD) and Information of Drug Activity Database (IDAD). The updated TTD is 

intended to be a more useful resource in complement to other related databases by 

providing comprehensive information about the primary targets and other drug data 

for the approved, clinical trial, and experimental drugs. IDAD is a drug activity 

database of drug and clinical trial compounds. The integration of information from 

these two databases leads to analysis of properties of drug and clinical trials 

compounds. It shows that there are some differences between them in terms of 

properties. This could lead to a better understanding the reasons for failures of clinical 

trials in drug discovery and serve as guidelines for selection of drug candidates for 

clinical trials. The second focus was given to the use of machine learning 

classification method for virtual screening of pharmaceutical agents. This method was 

tested on several systems like Abl inhibitors and HDAC inhibitors. It is shown that 

Support Vector Machine (SVM) based virtual screening system combined with a 

novel putative negative generation method is a highly efficient virtual screening tool. 

SVM models showed a prediction accuracy for non-inhibitors around 50% for 

independent testing set, which were comparable against other results, while the 

prediction accuracy for non-inhibitors is >99.9%, which were substantially better than 
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the typical values of 77%~96% of other studies. This high prediction accuracy for 

non-inhibitors is favorable for screening of extremely large compound libraries. The 

last part was devoted to an acute toxicity classification system based on statistical 

machine learning methods.  Evaluation of acute toxicity is one of the big challenges 

faced by pharmaceutical companies and many administrative organizations now 

because acute toxicity study is widely needed but very costly. Legislation calls for the 

use of information from alternative non-animal approaches like in vitro methods and 

in silico computational methods. QSAR based approaches remain the current main in 

silico solutions to prediction of acute toxicities but the performance is not satisfactory. 

SVM was explored as a new computational method to address the current issues and 

make a breakthrough in prediction of diverse classes of chemicals. Studies show that 

SVM models have better prediction accuracies (overall ~85% and independent testing 

~70%) than previous studies in classification of acute and non acute toxic chemicals.  
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Chapter 1 Introduction 

Drug discovery process is typically a lengthy and costly process. Cheminformatics 

and bioinformatics tools are explored to increase the efficiency and reduce the cost 

and time of pharmaceutical research and development. This work on “database 

development and machine learning prediction of pharmaceutical agents” is one of 

such kind of strategy which is introduced in this chapter. This introduction chapter 

consists five parts: (1) Cheminformatics and bioinformatics in Drug Discovery 

(Section 1.1); (2) Database development in drug discovery (Section 1.2); (3) Virtual 

Screening of pharmaceutical agents (Section 1.3); (4) Classification of toxicity of 

pharmaceutical agents (Section 1.4); (5) Objectives and outlines (Section 1.5) 

 

1.1 Cheminformatics and bioinformatics in drug discovery 

A typical drug discovery process from idea to market consists of seven basic steps: 

disease selection, target selection, lead compound identification, lead optimization, 

preclinical trial evaluation, clinical trials, and drug manufacturing. It is a lengthy, 

expensive, difficult, and inefficient process with low rate of new therapeutic 

discovery. The whole process takes about 10-17 years, $800 million (as per 

conservative estimates), and has less than 10% overall probability of success1 (Figure 

1-1).  Compared to the huge R&D investment in implementing new technologies for 

drug discovery, return is insignificant. Figure 1-2 shows the number of new chemical 

entities (NCEs) in relation to research and development (R&D) spending since 1992.     
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Figure 1- 1 Drug discovery and development process 

 

 

Figure 1- 2 Number of new chemical entities (NCEs) in relation to research and 
development (R&D) spending (1992–2006). Source: Pharmaceutical Research 
and Manufacturers of America and the US Food and Drug Administration2. 

 

The major problems faced by current drug discovery efforts are ‘target’, ‘efficacy’ 

and ‘safety’ — drugs are limited to a few known classes of targets and increased 

numbers of disease and drug resistances problems force people to look for more 

targets; compounds selected to enter into the clinical phases may lose efficacy in the 

patients; safety issues make many promising potent drug candidates fail at the clinical 

trials.  
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In 1990s, the areas like molecular biology, cellular biology and genomics grew 

rapidly which helped in understanding disease pathways and processes into their 

molecular and genetic components to recognize the cause of malfunction precisely, 

and problematic point at which therapeutic intervention can be applied. Those 

technologies include DNA sequencing, microarray, HTS, combinatory chemistry, 

high throughput sequencing and etc. They have shown great potential for elimination 

of the bottleneck. For instance, DNA sequencing, high throughput sequencing of 

extensive genome and microarray tests have helped to decode various organisms and  

allow bioinformatics approaches to predict several new potential targets. The progress 

helped in finding many new molecular targets (from approximately 500 to more than 

10,000 targets)3. On the chemistry side, combinatory chemistry and HTS have made it 

possible to quickly identify potential leads from big compound libraries.  All these 

technologies generate a lot of biological and chemistry data which have been coined 

with the suffix -ome and –omics inspired by the terms genome and genomics after the 

completion of Human Genome Project. We have now entered into a post-genomics 

stage for drug discovery. A list of omics approaches like genomics, pharmacogenetics, 

proteomics, transcriptomics and toxicogenomics have been applied to various stages 

in drug discovery. The integration of these information and discovery of new 

knowledge become the major tasks of bioinformatics and cheminformatics.  

According to the definition, Cheminformatics is the use of computer and 

informational techniques, applied to a range of problems in the field of chemistry4, 5. 

Similarly, bioinformatics is the application of information technology and computer 

science to the field of molecular biology. The term bioinformatics was coined by 

Paulien Hogeweg. The main tasks that informatics handle are two things: from data to 

information and from information to knowledge. People have put in a lot of hope in 
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bioinformatics and cheminformatics. According to BCC research report, the 

worldwide value of bioinformatics is expected to increase from $1.02 billion in 2002 

to $3.0 billion in 2010, at an average annual growth rate (AAGR) of 15.8% (Figure 1-

3) 6. The use of bioinformatics in drug discovery is likely to reduce the annual cost by 

33%, and the time by 30% for developing a new drug. Bioinformatics and 

cheminformatics tools are developed which are capable to congregate all the required 

information regarding potential targets like nucleotide and protein sequencing, 

homologue mapping7, 8, function prediction9, 10, pathway information11, structural 

information12 and disease associations13, chemistry information. The availability of 

that information can help pharmaceutical companies in saving time and money on 

target identification and validation.  

  

Figure 1- 3 Worldwide value of bioinformatics Source: BCC Research6 

 

1.2 Database development in drug discovery 

Rapid development in new technology have accumulated huge amount of data. The 

vast amount of chemistry and biological data and their usage by scientists for research 

purpose are creating new challenges for the database development. Data are generally 
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collected from different sources like experiments, public databanks, proprietary data 

providers, biological, pharmacological, or simulation studies. These data can be of 

various types, including very organized data type like relational database tables and 

XML files, disorganized web pages or flat files, and small or large objects like three-

dimensional (3D) biochemical structures or images. Most of these data lack common 

data formats or the common record identifiers that are required for interoperability.  

More importantly, these data need to be validated, analyzed, simplified and finally, 

only useful information shall be provided to the final users. Furthermore, in order to 

support the various individual scientific tasks in a drug discovery workflow, it is 

useful for software packages to be integrated so as to provide a quick overview of the 

research progress and support for further decisions. Recent trend is that the databases 

should be accessible through web browser (Figure 1-4).  This web accessible feature 

has outstanding advantages over the local databases. Web accessible databases 

become instantly available to user though internet browsers. Current web interfaces of 

biological data sources generally provide many user-specified criteria as part of 

queries. With such capability, the accessibility of customized records from the query 

results becomes an easy process even for naive users.  

 

Figure 1-4 An illustrative schematic representation depicting data flow represented 
by arrows, from data capture mechanisms through an information factor 
framework to data access mechanisms (adopted from Waller et al14) . 



Chapter 1 Introduction 

 6 

 

Currently there are many public bioinformatics databases (Table 1-1) and 

cheminformatics databases (Table 1-2) that provide broad categories of medicinal 

chemicals, biomolecules or literature15.  In this work, a particular focus has been 

given to development of web accessible databases for therapeutic targets and drugs. 

Current target discovery efforts have led to the discovery of hundreds of successful 

targets (targeted by at least one approved drug) and >1,000 research targets (targeted 

by experimental drugs only) 16-19. There are several known target and drug databases 

including Therapeutic Target Database (TTD), Potential Drug Target Database 

(PDTD), BindingDB, DrugBank and etc. 

 

Table 1-1 Examples of well known bioinformatics databases 

Information Database 

Primary genomic data (complete 
genomes, plasmids, and protein 
sequences) 

National Center for Biotechnology Information (NCBI) 
GenBank, EBI-EMBL, DNA Databank of Japan (DDBJ) 

Annotated protein sequences  Swiss-Prot and TrEMBL and Protein Information 
Resource (PIR) 

Results of cross-genome 
comparisons 
 

COG/KOG (Clusters of Orthologous groups of proteins) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) orthologies 

Information on protein families and 
protein classification 

Pfam and SUPFAM, and TIGRFAMs 
 

Cross-genome analysis 
TIGR Comprehensive Microbial Resource (CMR) and 
Microbial Genome Database for Comparative Analysis 
(MBGD) 

Protein–protein interactions  DIP, BIND, InterDom, and FusionDB 

Metabolic and regulatory pathways  KEGG and PathDB 

Protein three-dimensional (3D) 
structures Protein Data Bank (PDB) 

Multiple information PEDANT 
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Table 1-2 Examples of chemical databases 

Company name Web address Number of 
compounds Description 

4SC  www.4sc.de 5,000,000 Virtual library; small-molecule 
drug candidates  

ACB BLOCKS  www.acbblocks.com/acb
/bblocks.html  90,000 Building blocks for 

combinatorial chemistry  

Advanced 
ChemTech  

http://triton.peptide.com/
index.php  18,000 

OmniProbeTM: peptide 
libraries; 8000 tripeptide, 
10,000 tetrapeptide  

Advanced 
SynTech  

www.advsyntech.com/o
mnicore.htm  170,000 

Targeted libraries: protease, 
protein kinase, GPCR, steroid 
mimetics, antimicrobials  

Ambinter  
ourworld.compuserve.co
m/homepages/ambinter/
Mole.htm 

1,750,000 Combinatorial and parallel 
chemistry, building blocks, HTS  

Asinex  www.asinex.com/prod/in
dex.html  150,000 Platinum collection: drug-like 

compounds  

Asinex   250,000 Gold collection: drug-like 
compounds  

Asinex   5009 Targeted libraries: GPCR (16 
different targets)  

Asinex   4307 Kinase-targeted library (11 
targets)  

Asinex   1629 Ion-channel targeted (4 targets)  

Asinex   2987 Protease-targeted library (5 
targets)  

Asinex   1,200,000 Combinatorial constructor  

BioFocus  
www.biofocus.com/page
s/drug__discovery.mhtm
l   

100,000 Diverse primary screening 
compounds  

BioFocus   ~16,000  SoftFocus: kinase target-
directed libraries  

BioFocus   ~10,000  SoftFocus: GPCR target-
directed libraries  

CEREP  
www.cerep.fr/cerep/user
s/pages/ProductsServic
es/Odyssey.asp  

>16,000  
Odyssey II library: diverse and 
unique discovery library; more 
than 350 chemical families  

CEREP   5000 GPCR-focused library (21 
targets)  

Chemical 
Diversity  

www.chemdiv.com/disco
very/downloads/  >750,000  Leadlike compounds for 

bioscreening  
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ChemStar  www.chemstar.ru/page4.
htm  60,260 High-quality organic compounds 

for screening  

ChemStar   >500,000  Virtual database of organic 
compounds  

COMBI-
BLOCKS  www.combi-blocks.com  908 Combinatorial building blocks  

ComGenex  
www.comgenex.hu/cgi-
bin/inside.php?in=produ
cts&l_id=compound  

260,000 
“Pharma relevant”, discrete 
structures for multitarget 
screening purposes  

ComGenex   240 GPCR library  

ComGenex   2000 

Cytotoxic discovery library: very 
toxic compounds suitable for 
anticancer and antiviral 
discovery research  

ComGenex   5000 
Low-Tox MeDiverse: druglike, 
diverse, nontoxic discovery 
library  

ComGenex   10,000 MeDiverse Natural: natural 
product like compounds 

EMC 
microcolection  

www.microcollections.de
/catalogue_compunds.ht
m#  

30,000 
Highly diverse combinatorial 
compound collections for lead 
discovery  

InterBioScreen  www.ibscreen.com/prod
ucts.shtml  350,000 Synthetic compounds  

InterBioScreen   40,000 Natural compounds  

Maybridge plc  www.maybridge.com/ht
ml/m_company.htm  60,000 Organic druglike compounds  

Maybridge plc   13,000 Building blocks  

MDDR 
http://www.symyx.com/p
roducts/databases/bioac
tivity/mddr/index.jsp 

180,000 MDL Drug Data Report 
database 

MicroSource 
Discovery  
Systems, Inc.  

www.msdiscovery.com/d
ownload.html  2000 

GenPlus: collection of known 
bioactive compounds NatProd: 
collection of pure natural 
products  

Nanosyn  www.nanosyn.com/than
kyou.shtml  46,715 Pharma library  

Nanosyn   18,613 Explore library  

Pharmacopeia 
Drug Discovery, 
Inc.  

www.pharmacopeia.com
/dcs/order_form.html  N/A  Targeted library: GPCR and 

kinase  

Polyphor  www.polyphor.com 15,000 Diverse general screening 
library  
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PubChem pubchem.ncbi.nlm.nih.g
ov >16,000000 PubChem database 

Sigma-Aldrich  

www.sigmaaldrich.com/
Area_of_Interest/Chemi
stry/Drug_Discovery/Ass
ay_Dev_and_Screening/
Compound_Libraries/Scr
eening_Compounds.htm
l 

90,000 
Diverse library of drug-like 
compounds, selected  based on 
Lipinski Rule of Five  

Specs  www.specs.net 240,000 Diverse library  

Specs   10,000 World Diversity Set: pre-
plateled library  

Specs   6000 Building blocks  

Specs   500 Natural products (diverse and 
unique)  

TimTec  www.timtec.net >160,000  Compound libraries and 
building blocks  

Tranzyme 
Pharma  

www.tranzyme.com/drug
_discovery.html  25,000 HitCREATE library: 

macrocycles library  

Tripos  

www.tripos.com/sciTech
/researchCollab/chemCo
mpLib/lqCompound/inde
x.html  

80,000 LeadQuest compound libraries  

ZINC http://zinc.docking.org 13,000,000 
13 million purchasable 
compounds from many 
compound suppliers  

 

1.3 Virtual screening of pharmaceutical agents 

Virtual screening (VS) is a computational technique used in drug discovery research. 

It involves rapid in silico assessment of large libraries of chemical structures in order 

to identify those structures that are most likely to bind to a drug target, typically a 

protein receptor or enzyme20, 21. VS has been extensively explored for facilitating lead 

discovery22-25, identifying agents of desirable pharmacokinetic and toxicological 

properties26, 27  and other areas. There are two broad categories of screening 

techniques: structure-based and ligand-based 28. Structure-based VS (SBVS) involves 

docking of a candidate ligand into a protein target followed by applying a scoring 

function to estimate the likelihood that the ligand will bind to the protein with high 
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affinity29, 30. SBVS need a protein 3D structure. On the contrast, ligand-based VS 

(LBVS) can be performed when there is little or no information available on the 

molecular target. LBVS methods include pharmacophore methods31 and chemical 

similarity analysis methods32. Figure 1-5 shows the general procedure used in SBVS 

and LBVS.  

 

 

Figure 1- 5 General procedure used in SBVS and LBVS (adopted from Rafael V.C. et 
al33). The left part is for SBVS and the right part is for LBVS. 
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Docking is most straightforward VS method and it is preferred by the chemists. The 

success of a docking program depends on two components: the search algorithm and 

the scoring function. Docking and scoring technology is applied at drug discovery 

process for three main purposes: (1) predicting the binding mode of a known active 

ligand; (2) identifying new ligands using VS; (3) predicting the binding affinities of 

related compounds from a known active series. Of these three challenges, the first one 

is the area where most success has been achieved and for the third one, none of the 

docking programs or scoring functions made a satisfactory prediction34. As compared 

with structure-based methods, LBVS methods including pharmacophore methods and 

chemical similarity analysis methods have shown better performance in terms of 

speed, yield and enrichment factor.  Hit Rate is defined as the relation between the 

number of true hits found in the hit list respect to the total number of compounds in 

the hit list; and the Enrichment factor (EF) is the Hit Rate divided by the total number 

of hits in the full database relative to the total number of compounds in the database.  

To improve the coverage, performance and speed of VS tools, machine learning (ML) 

methods, including SVM, neural network and etc,  have recently been used for 

developing LBVS tools35-42 to complement or to be combined with SBVS 22, 43-54 and 

other LBVS23, 55-58 tools. ML methods have been used as part of the efforts to 

overcome several problems that have impeded progress in more extensive 

applications of SBVS and LBVS tools22, 59 . These problems include the vastness and 

sparse nature of chemical space needs to be searched, limited availability of target 

structures (only 15% of known proteins have known 3D structures), complexity and 

flexibility of target structures, and difficulties in computing binding affinity and 

solvation effects.  ML methods have been  explored for developing such alternative 

VS tools35-37  because of their high speed60 and capability for covering highly diverse 
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spectrum of compounds 61. Han et al62 did a comparative study for reported 

performance of different VS methods in screening large libraries of compounds as 

shown in Table 1-3.  ML methods show good potential for a better performance at VS 

of extremely large libraries with over 1M compounds. The reported yield, hit-rate and 

enrichment factor of ML tools are in the range of 55%~81%, 0.2%~0.7% and 

110~795 respectively 36, 39, 41, compared to those of 62%~95%, 0.65%~35% and 

20~1,200 by SBVS tools 46, 47. Moreover, he also developed a new putative negative 

generation method in which negatives were generated from 3M PubChem compounds. 

With this method he significantly improved yield, hit-rate and enrichment factor to 

52.4%~78.0%, 4.7%~73.8%, and 214~10,543 respectively in screening libraries of 

over 1 million compounds. For SBVS methods, approaches of using additional filters 

are often required in order to further minimize the false positives.  One approach is 

the selection of top-ranked hits, which has been extensively used in LBVS 36, 37, 41, 42, 

63, 64 and SBVS 46, 48-50, 65, 66. The second approach is the elimination of potentially 

unpromising hits in pre-screening stage by using such filters as Lipinski’s rule of five 

67 47, and recognition of  pharmacophore 49 and specific chemical groups or interaction 

patterns46, 48, 52, 68. The last one is the combination of LBVS and SBVS methods. All 

these approaches take quite some time. However, they are not required for SVM 

based approaches which already have a low false positives rate. 
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Table 1-3 Comparison of the reported performance of different VS methods in screening large libraries of compounds (adopted from Han et 
al62). 

Type of VS method 
and  size of 
compound libraries 
screened 

VS method 
(number of 
studies) 
[references] 

Compounds screened Virtual hits selected by 
VS method 

Known hits selected by VS method 

No of 
compou
nds 

No of 
known 
hits  

Percent of 
known 
hits  

No of 
compound
s selected 
as virtual 
hits 

Percent of 
screened 
compounds 
selected as 
virtual hits 

No of 
known 
hits 
selected 

Yield Hit rates Enrichment 
factor 

Structure-based VS, 
extremely large 
libraries ( ≥1M) 

Docking + pre-
screening filter 
(2) 46, 47 

1M~2M 355~63
0 

~0.03% 1K~60K 0.08%~3% 340~390 62%~ 95% 0.65%~ 35% 20~1200 

Structure-based VS, 
large libraries 

Docking + pre-
screening filter 
(11) 48-54 

134K~4
00K 

100~ 
1016 

0.12%~ 
0.76% 

375~4.5K 0.28%~3% 5~231 2%~ 30% 
 

0.11%~ 17% 4~66 

Ligand-based VS 
(machine learning), 
extremely large 
libraries ( ≥1M) 

Machine learning 
- SVM (2)36, 39, 41 

2.5M 22~46 0.0009%~ 
0.0018% 

2.5K~11K 0.1%~0.45% 18~25 55%~ 81% 0.2%~ 0.7% 110~795 

Ligand-based VS 
(machine learning), 
large libraries 

Machine learning 
– SVM (2)37 
 

172K 118~12
8 

~0.07% 1.7K 1% 26~70 22%~ 55% 1.5%~ 4.1% 22~55 

Machine learning 
– SVM (11)40 

98.4K 259~ 
1146 

0.26%~ 
1.16% 

984 1% 131~710 44%~ 69% 14%~ 72% 44~69 

Machine learning 
– BKD (12)37, 39, 

41, 42 

101K~1
03K 

259~ 
1166 

0.25%~ 
1.2% 

5.1K 5% 65~972 14%~ 94% 1.2%~ 18.9% 3~19 

Machine learning 
– LMNB (1)39, 41 

172K 118 0.069% 1.7K 1% 19 16% 1% 15 

Machine learning 
– CKD (18)40 

98.4K 259~ 
1211 

0.26%~ 
1.23% 

984 1% 132~960 34%~ 94% 13%~ 98% 53~94 
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Ligand-based VS 
(clustering), large 
libraries 

Hierarchical k-
means (5)56  

344.5K 91~155
6 

0.026% 
~0.45% 

3750~2128
5 

1.1%~6.2% 27~761 23% ~55% 0.72%~5% 7.97~31.2 

NIPALSTREE 
(5)56  

344.5K 91~155
6 

0.026% 
~0.45% 

3469~2812
5 

1.0%~8.2% 17~625 18% ~50% 0.49%~ 2.8% 3.51~18.7 

Hierarchical k-
means + 
NIPALSTREE 
disjunction (5)56 

344.5K 91~155
6 

0.026% 
~0.45% 

7317~4316
5 

2.1%~12.3% 30~980 33% ~72% 0.41% ~2.9% 4.86~17.6 

Hierarchical k-
means + 
NIPALSTREE 
conjunction (5)56 

344.5K 91~155
6 

0.026% 
~0.45% 

538~6692 0.16%~1.9% 14~406 6% ~32% 1.1% ~10.2% 7.77~98 

Ligand-based VS 
(structural signatures), 
extremely large 
libraries ( ≥1M) 

Pharmacophore 
(3)57, 69, 70 

1.77M~3
.8M 

55~144 0.0014% 
~0.0081% 

20K~1M 1.15%~26% 6~39 11% ~70% 0.0039%~ 
0.084% 

3~10.3 

Ligand-based VS 
(structural signatures), 
large libraries 

Pharmacophore 
(1)58 

380K 30 0.0079% 6917 1.82% 23 76.7% 0.33 41.8 

Ligand-based VS, 
extremely large 
libraries ( ≥1M) for 
HIV protease, 
inhibitors DHFR 
inhibitors, Dopamine 
antagonists, CNS 
active agents 

SVM62 2.986M 2351 0.076% 8157 0.27% 1833 78.0% 22.5% 296 

SVM62 2.986M 225 0.007% 160 0.0054% 118 52.4% 73.8% 10543 

SVM62 2.986M 37 0.0012% 299 0.01% 23 62.2% 7.7% 6417 

SVM62 2.986M 664 0.022% 9502 0.32% 442 66.6% 4.7% 214 
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As it is common for the pharmaceutical industry to screen >1 million compounds per 

high-throughput screening campaign 71.  A small rise in the hit rate will lead to 

hundreds or thousands compounds to test. Improvement in screening performance is 

therefore very significant. We want to further improve SVM based VS as a well 

accepted VS method like docking. Current models were generated by using two-tier 

supervised classification SVM methods 35-37, 39-42, 72. The inactive compounds in these 

models have been collected from up to a few hundred known inactive compounds 

or/and putative inactive compounds from up to a few dozen biological target classes 

in MDDR database 35-37, 39-42, 72, which may not always be sufficient to fully represent 

inactive compounds in the vast chemical space, thereby making it difficult to 

optimally minimize false hit prediction rate of ML models. Han et al62  has 

demonstrated the potential of putative negatives generation method in helping to 

increase the performance of SVM based VS methods. We will carry on the study to 

further improve the method to generate more diverse negatives for training. Besides 

SVM, some other common ML methods include artificial neural network (ANN), 

probabilistic neural network (PNN), k nearest neighbor (k-NN), C4.5 decision tree 

(C4.5DT), linear discriminate analysis (LDA) and logistic regression (LR) were used.  

Some of these methods will be explained in Chapter 2 and attempted for comparison. 

Several types of pharmaceutical agents, including Abl kinase inhibitors, HDAC 

inhibitors (HDACi) will be investigated. Moreover, our SVM based VS system is also 

evaluated in terms of prediction on novel types structures because it is also one goal 

of VS28. 
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1.4 Classification of acute toxicity of pharmaceutical agents 

Toxicology is an important scientific discipline that impacts various practical aspects 

of daily life. Pharmaceuticals, personal health care products, nutritional ingredients 

and products of the chemical industries are all potential hazards and need to be 

assessed. There are various types of toxicities studies including acute toxicity, 

genotoxicity, mutagenicity, carcinogenicity, and etc. The information generated from 

toxicity studies is used in hazard identification and risk management in the context of 

production, handling, and use for various chemicals. Toxicological tests for these 

products are costly, frequently use laboratory animals and are time-consuming.  

Evaluation of toxicities is one of the big challenges faced by pharmaceutical 

companies and many administrative organizations including US Food and Drug 

Administration, European Union member countries, the organization for economic 

cooperation and development and other regulated communities. Taking these 

concerns into consideration, the legislations in various countries have called for the 

use of information from alternative (non-animal) approaches like in vitro methods, 

toxicogenomics methods or any computational approaches, as a means of identifying 

the presence or absence of potential toxicity issues of the substances. Commercial 

software for toxicity predictions are generally divided into two main categories, 

knowledge-based and statistically based.  Table 1-4 lists current commercially 

available software for prediction of various toxicological endpoints. For a predictive 

software, a good performance with specificity (percentage of true negatives predicted 

as negative) >=85% and sensitivity (percentage of true positives predicted as 

positives) >=85%  and false positives (true negatives predicted positive) <15% has 

been sought73.  This has been achieved for predictions of carcinogenicity74, 75, genetic 

toxicity76, reproductive and developmental toxicity77, and MRDD78, 79. However, for 
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acute toxicity, it remains still a challenge. It is because the nature of acute toxicity is 

very complicated. There are many types of toxic mechanisms. Moreover, acute 

toxicity is always connected to Absorption, Distribution, Metabolism, and Excretion 

(ADME). It could be affected by many factors, for instance, local and/or target-organ 

specific effects, bioavailability of the compound (absorption, tissue distribution and 

elimination) and its metabolism (both bioactivation and detoxification). Quantitative 

Structure-Activity Relationship (QSAR) remains the primary approach for prediction 

of acute toxicities80, 331. TOPKAT81 and MCASE82-88 are built on a collection of class-

specific QSARs. New computational methods are sought to address the current issues 

and make a breakthrough in prediction of diverse classes of chemicals.   

 

Table 1-4 Commercially available software for prediction of toxicity (adopted from 
Zmuidinavicius, D. et al80 ). 

Vendor and Web Site Products Main Endpoints Predicted Refs 

Accelrys Inc. 
www.accelrys.com/products/top

kat 

TOPKAT® 
 

Carcinogenicity, mutagenicity, 
various mammalian acute and 

chronic toxicities and other 
effects 

81 

Compudrug 
www.compudrug.com 

HazardExpert,
ToxAlert 

oncogenicity,mutagenicity, 
teratogenicity, membrane 

irritation, sensitivity, 
immunotoxicity, neurotoxicity 

89 

LeadScope Inc. 
www.leadscope.com/products 

ToxScope™ 
 

Data mining tool using a 
comprehensive 

toxicity database of 150K 
substances derived from RTECS, 

NTP, CPDB and open 
literature 

90 

LHASA Limited 
www.chem.leeds.ac.uk/luk 

DEREK for 
Windows 

Carcinogenicity, mutagenicity, 
skin sensitisation, teratogenicity, 

irritation, and respiratory 
sensitisation 

91 

MultiCASE Inc. 
www.multicase.com 

MCASE, 
CASETOX 

Carcinogenicity, mutagenicity, 
teratogenicity, irritation 

92 

MDL Information Systems Inc. 
www.symyx.com/products 

MDL@ 
Carcinogenicity 

Prediction 
Module 

Carcinogenicity prediction; 
Data mining from RTECS 

database of 150K substances for 
various endpoints and routes 

93, 94 
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and RTECS 
database 

of administration 

Pharma Algorithms Inc. 
www.ap-algorithms.com 

Algorithm 
Builder, Auto-
Builder and 

AB/Tox 
modules 

Mammalian acute toxicity, 
genotoxicity, 

organ-specific health effects 

80, 95, 
96 

1.5 Objectives and outline 

Overall, there are three major objectives for this work: 

1. To develop a database with good storing, managing, integration and 

providing the customized chemistry and biological information data of therapeutic 

targets and drugs; 

2. To develop a SVM based LBVS system and test its application for 

identification of inhibitors for several therapeutic targets; 

3. To apply machine learning approaches to screen acute toxicity issues 

in early drug discovery process; 

The complete outline of this thesis is as follows:  

In Chapter 1, an introduction to cheminformatics and bioinformatics to drug 

discovery process is described. Different VS methods are compared. At last, our SVM 

base VS system is described. 

In Chapter 2, methods used in this work are described. In particular, the 

dataset quality analysis, the statistical molecular design, the molecular descriptors, the 

putative negatives generation process, various statistical learning methods used in this 

work, and the model evaluation methods are presented in more detail.  

Chapter 3 is devoted to databases development for therapeutic targets and 

drugs including updating of TTD and building of IDAD. 

Chapter 4 to 5 are devoted to the application of our SVM based VS system for 

pharmaceutical agents like (i) Abl inhibitor, (ii) HDACi, In these chapters, SVM 
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based VS system combined with a novel putative negative generation method is 

evaluated as a highly efficient VS tool. 

In Chapter 6, SVM models built on large number diverse pharmaceutical 

agents were developed for the prediction of acute toxicity.  

Finally, in the last chapter, Chapter 7, major findings and contributions of 

current work for VS of pharmaceutical agent were discussed. Limitations and 

suggestions for future studies were also rationalized.  
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Chapter 2 Methods  

2.1 Database development 

Database is an organized collection of data and relationships among the data 

items. Generally database development is a complicated and time-consuming process, 

including collection of related information, design of database scheme and data 

integration, design of database interface and implementation of database functions.  

 

2.1.1 Data collection 

Normally, a knowledge-based database is supposed to provide enough domain 

knowledge around a specific subject together with information of related subjects. For 

instance, TTD provides users information of drugs, the corresponding targets, and 

targeted diseases. Data collection of these information can be done by various ways 

like manual data collection from literature, experiments or software output, part of the 

data taken from other databases, customized data, text mining by programs, and so on. 

Literatures are typically unstructured data sources. Names of the subject that are 

stored in different synonymous terms, various abbreviations, or totally different 

expressions are difficult to be recognized by automatic language processing. It is hard 

to invent a fully automated literature information extraction system to gather useful 

information from literature efficiently. Manual data collection from literature or 

manual curation of collected data is considered of the best quality. However, it is too 

time consuming and expensive97. A number of solutions for this problem are in 

practice. Data curation and annotation can be done in collaboration with other groups 

or providing online facility to edit or submission of data98.  Moreover, simple 

automated text retrieval programs developed in PERL are quite useful in retrieving 
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information from literatures that contained the key word related to searching the 

subject via Medline99. 

 

2.1.2 Data Integration 

Data integration is necessary where data from different sources need to be 

standardized before using it in making databases. It becomes a big challenge to get 

biological and chemical data from varied sources integrated to a single database. 

Improper integration can lead to loss of some part of data or even can introduce 

mistakes. The correct way of data integration for biological databases can generally 

be divided into two parts: (i) syntactic integration in which data from different sources 

and of different file formats are standardized to have single file format and (ii) 

semantic integration in which data from different databases are formalized to have a 

relational schema which holds relational tables and integrity constraints.  For syntactic 

integration, the standardized file format to which other data should be converted is 

generally XML. In addition to the abovementioned ways of data integration, data can 

be integrated manually as well. It is generally achieved through scripting languages 

like Perl or Python. It is very time consuming and tedious to do that but sometimes it 

becomes indispensable. 

There are a number of different ways to construct database to store and present data. 

Some of the more common database types include hierarchical database, object 

database and relational database. Relational database is the most often used database 

type now which arranges data in a tabular format. A relational database creates formal 

definitions of all the included items in a database, setting them out in tables, and 

defines the relationship among them. Using IDs or keys, the tables can be related 

between each other. Such database is called 'relational' because they explicitly define 
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these connections. The relational database model has been used in our TTD and 

IDAD databases. In the tables of relational database, certain fields may be designated 

as keys, by which the separated tables can be linked together for facilitating to search 

specific values of that field. Primary key uniquely identifies each record in the table. 

Foreign key can be used to cross-reference tables. Most relational databases now 

make use of Structured Query Language (SQL) to handle queries. SQL is widely used 

by relational databases to define queries and help to generate reports. SQL has 

become a dominant standard in the world of database development, since it allows 

developers to use the same basic constructions to query data from a wide variety of 

systems. By using relational database software (e.g. Oracle, Microsoft SQL Server) or 

even personal database systems (e.g. Access), the relational database can be organized 

and managed effectively. This kind of data storage and retrieval system is called 

Database Management System (DBMS). An Oracle 9i DBMS is used to define, create, 

maintain and provide controlled access to our databases and the repository. All entry 

data from the related tables described in previous section are brought together for user 

display and output using SQL queries.  

 

2.1.3 Database interface 

Web interface, or web accessible database, is currently a popular interface that user 

sees and interacts with the database.  The web interface should be very convenient to 

understand and user should have certain level of flexibility of getting customized data. 

Dynamic pages are the type of web pages which presents different web page content 

to different user according to the form submitted by them which may differ in 

keywords or selection of features. In this work ASP and JSP technologies are used for 

server side dynamic web page creation and JavaScript is used for client side dynamic 
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web page creation.  Server side dynamic web page creation over database involves 

submission of user supplied query to web server which further interacts with database 

software such as MySQL and Oracle. In contrast, client side dynamic web page 

creation does not include interaction with web server. The client side technology uses 

users’ internet browsers e.g. Microsoft Internet Explorer, Mozzila Firefox and Google 

Chrome to run its code and display the data. The client side dynamic web page is thus 

very simple and generally used to present data in beautiful manner and provides helps 

about the content such as change in color or short string giving help when mouse is 

place on some part of the content. 

 

2.1.4 Applications 

Besides these, there are often some web application provided for users to analyze 

data, extract information from other sources, customized query and download, result 

summary, and etc. These biological and chemical applications include some well 

known programs like  sequence similarity search using BLAST, chemical structure 

similarity search  using fingerprint, text similarity search using regular expression and 

etc. The BLAST programs is used to do sequence-similarity searches against protein 

and nucleotide databases, which align the input sequence with database on the server 

with great speed. It is one of the most widely used programs for data mining in 

genomics and proteomics. The result of BLAST is normally pairwise alignment, 

multiple sequence alignment formats, hit table and a report explaining hits by 

taxonomy. The NCBI BLAST programs are also available freely to download and 

implement in user’s web application. Chemical similarity search uses fingerprint 

representing chemical compound in a binary format of differing length to compare to 

fingerprints stored of other compounds in database based on Tanimoto coefficient. 
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Text matching is generally achieved by using regular expression which can be defined 

as sequence of characters that depict a pattern in text. Perl is a very popular 

programming language with regular expression based search capability because of its 

easiness, speed and flexibility to perform same thing in many ways. In regular 

expression, metacharacters (like ^, &, (, ), * etc.) are utilized  to construct efficient 

search which is very useful in complex, hard to edit, time consuming text searching 

100. 

 

 
2.1.5 Database Development of TTD and IDAD 

The development of TTD and IDAD has seen a good application of the knowledge 

listed in the above sections. First, various information about drugs and targets was 

collected from literatures, books and web. This was followed by a time-consuming 

and tedious information curation process to ensure correct information is stored in the 

databases. Design of database scheme and data integration is the second challenge. 

Using relational database construction software (e.g. Oracle, Microsoft SQL Server) 

or even the personal database systems (e.g. Access, Fox), the Oracle 9i based 

relational database management systems have been built to organize and manage the 

various information needed for TTD and IDAD. All entry data from the related tables 

described can therefore be brought together for user display and output using SQL 

queries. Figure 2-1 is a general logical view of databases (TTD, IDAD) we developed. 

It shows the organization of relevant data into relational tables. Separate tables are 

linked together using primary and foreign keys. In tables of our databases, there are 

two foreign keys: Data type ID and Reference ID. As shown in Figure 2-1, a 

connection between a pair of tables is established by using a foreign key. The two 



Chapter 2 Methods 

 25 

foreign keys make three tables relevant. These tables have a one-to-many relationship 

between each others.  Design of database interface and implementation of database 

functions is the last hard part of work. By integrating databases and web sites using 

ASP web programming language, users and clients can open up possibilities for data 

access and dynamic web content. A basic integrated information system of our 

pharmainformatics database for TTD or IDAD is thus constructed. Furthermore, some 

well known web applications like BLAST or customized applications developed by 

our group like similarity search tool are integraded to the database system to provide 

for users conveniences to analyze data, extract information from other sources, 

customized query and download, result summary, and etc. This is the whole process 

of development process for the two databases TTD and IDAD. 

 

Figure 2- 1 Logical view of the database 
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2.2 Datasets  

2.2.1 Quality analysis  

The development of reliable pharmacological properties classification models 

depends on the availability of high quality pharmacological property descriptor data 

with low experimental errors101. Dataset used for machine learning classification is of 

utmost importance. Factors like quality, size and relevance of the dataset can affect 

machine learning process greatly. Dataset quality is generally assessed at the time of 

data collection. In SVM based VS of compound inhibitors, in vitro enzymatic test 

data are used. In toxicity prediction, in vivo LD50 data are used. There are usually 

small variances in different in vitro data for same compound but big variances in 

different in vivo LD50 data. This is due to the complicated nature of in vivo 

experiments. This will lead to some problems for building SVM models when in vivo 

LD50 datasets from different sources are combined for training. To improve the data 

quality for training, some additional processing is needed, for instance, removal of 

inconsistent data, excluding some potential data points with cut-offs.  
 

2.2.2 Determination of structural diversity 

Structural diversity of a collection of compounds can be evaluated by using the 

Diversity Index (DI), which is the average value of the similarity between pairs of 

compounds in a dataset102,  
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where ),( jisim  is a measure of similarity between compounds i  and j , D is the 

dataset and |D| is set cardinality which is a measure of the number of elements of the 

set. The dataset is more diverse when DI approaches 0. 

Tanimoto coefficient103 is used to compute ),( jisim  in this study, 
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where k  is the number of descriptors calculated for the compounds in the dataset. A 

compound i is considered to be similar to a known active j in the active dataset if the 

corresponding sim(i,j) value is greater than a cut-off value.  
 

 

2.3 Molecular descriptors  

2.3.1 Types of molecular descriptors  

Molecular descriptors have been extensively used in deriving structure-activity 

relationships 104, 105, quantitative structure activity relationships 106, 107, and machine 

learning prediction models for pharmaceutical agents 108-115. A descriptor is the final 

result of a logical and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a compound into a useful number or the 

result of some standardized experiment. A number of programs e.g. DRAGON116, 

Molconn-Z117, MODEL118, Chemistry Development Kit(CDK) 119, 120, JOELib 121, and 

Xue descriptor set 112 are available to calculate chemical descriptors. These methods 

can be used for deriving >3,000 molecular descriptors including constitutional 

descriptors, topological descriptors, RDF descriptors 122, molecular walk counts 123, 

3D-MoRSE descriptors 124, BCUT descriptors 125, WHIM descriptors 126, Galvez 
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topological charge indices and charge descriptors 127, GETAWAY descriptors 128, 2D 

autocorrelations, functional groups, atom-centred descriptors, aromaticity indices 129, 

Randic molecular profiles 130, electrotopological state descriptors 131, linear solvation 

energy relationship descriptors 132, and other empirical and molecular properties. Not 

all of the available descriptors are needed for representing features of a particular 

class of compounds. Moreover, without properly selecting the appropriate set of 

descriptors, the performance of a developed machine learning VS tool may be 

affected to some degrees because of the noise arising from the high redundancy and 

overlapping of the available descriptors. In this work, the 2D structure of each of the 

compounds was generated by using ChemDraw133 or downloaded from other database 

like PubChem134 and was subsequently converted into 3D structure by using 

CORINA135. A total of 525 chemical descriptors were derived using program 

developed by our group136, of  which either entire or part of the descriptors were used 

in this work. In the putative negative generation method, a set of 100 molecular 

descriptors were further selected from these descriptors by discarding those that were 

redundant and unrelated to the problem studied here. These 100 descriptors are listed in 

Table 2-1.  

 

Table 2- 1 Descriptors used in this study 

Descriptor Class No. of 
descriptors 

Descriptors 

Simple molecular properties 
137 138 

13 Molecular weight, Sanderson electronegativity 
sum, no. of atoms, bonds, rings, H-bond 
donor/acceptor, rotatable bonds, N or O 
heterocyclic rings, no. of C, N, O atoms. 

Charge descriptors138 10 Relative positive/negative charge, 0-2nd 

electronic-topological descriptors, electron 
charge density connectivity index, total absolute 
atomic charge, charge polarization, topological 

electronic index, local dipole index. 

Molecular connectivity and 
shape descriptors137, 139 

37 1-3rd order Kier shape index, Schultz/Gutman 
molecular topological index, total path count, 1-6 
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molecular path count, Kier molecular flexibility, 
Balaban/Pogliani/Wiener/Harary index, 0th edge 
connectivity, edge connectivity, extended edge 
connectivity, 0-2nd valence connectivity, 0-2nd 

order delta-chi index, 0-2nd solvation 
connectivity, 1-3rd order kappa alpha shape, 

topological radius, centralization, graph-
theoretical shape coefficient, eccentricity, 

gravitational topological index. 

Electrotopological state 
indices137, 140 

40 Sum of E-state of atom type sCH3, dCH2, ssCH2, 
dsCH, aaCH, sssCH, dssC, aasC, aaaC, sssC, 

sNH3, sNH2, ssNH2, dNH, ssNH,, aaNH, dsN, 
aaN, sssN, ddsN, aOH, sOH, ssO, sSH, H-bond 
acceptors, all heavy/C/hetero atoms, Sum of H 

E-state of atom type HsOH, HdNH, HsSH, 
HsNH2, HssNH, HaaNH, HtCH, HdCH2, HdsCH, 

HaaCH, HCsats, H-bond donors. 

 

 

2.3.2 Scaling 

Chemical descriptors are normally scaled before they can be employed for machine 

learning. Scaling of chemical descriptors ensures that each of descriptor have 

unbiased contribution in creating the prediction models141.  Scaling can be done by 

number of ways e.g. auto-scaling, range scaling, Pareto scaling, and feature weighting 

142, 143. In this work, range scaling is used to scale the chemical descriptor data. Range 

scaling is done by dividing the difference between descriptor value and the minimum 

value of that descriptor with the range of that descriptor:  

𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑖𝑖 −𝑑𝑑𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 −𝑑𝑑𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚
                                 (3) 

where 𝑑𝑑𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑑𝑑𝑖𝑖𝑖𝑖 ij , 𝑑𝑑𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝑗𝑗,𝑚𝑚𝑚𝑚𝑚𝑚 are the scale descriptor value of compound i, 

absolute descriptor value of compound i, maximum and minimum  values of 

descriptor  j respectively. The scaled descriptor value falls in the range of 0 and 1.  

 
 

2.4 Statistical learning methods  

Machine learning classification methods employ computational and statistical methods to 

construct mathematical models from training samples which is used to classify 
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independent test sample. The training samples are represented by vectors which can 

binary, categorical or continuous.  Machine learning can be divided into two types: 

Supervised and Unsupervised. Supervised machine learning, as the name indicates, 

generally needs feeding which generally involve already labeled or classified training 

data. Example of supervised machine learning includes SVM, ANN, Decision tree 

learning, Inductive logic programming, Boosting, Gaussian process regression etc. 

Unsupervised machine learning, as the name indicates, gets unlabeled training data and 

the learning task involve to find the organization of data. Examples of unsupervised 

machine learning include Clustering, Adaptive Resonance Theory, and Self Organized 

Map (SOM). Some of machine learning methods employed in this work are SVM, PNN, 

kNN. They are explained below in subsequent sub sections. For a comparative study, 

Tanimoto similarity searching method is also introduced.  Websites for codes of some 

machine learning methods are given in Table 2-2.  

 

Table 2- 2 Websites that contain codes of machine learning methods 

BKD 
Binding Database http://www.bindingdb.org/bind/vsOverview.jsp 

Decision Tree 
PrecisionTree http://www.palisade.com.au/precisiontree/ 
DecisionPro http://www.vanguardsw.com/decisionpro/jdtree.htm 
C4.5 http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html 
C5.0 http://www.rulequest.com/download.html 

KNN 
k Nearest Neighbor  http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html 
PERL Module for 
KNN http://aspn.activestate.com/ASPN/CodeDoc/AI-Categorize/AI/Categorize/kNN.html 

Java class for KNN http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/old/KNN.html 
LDA 

DTREG http://www.dtreg.com/lda.htm 
LR 

Paul Komarek's 
Logistic Regression 
Software 

http://komarix.org/ac/lr/lrtrirls 

Web-based logistic 
regression calculator http://statpages.org/logistic.html 

Neural Network 
BrainMaker http://www.calsci.com/ 
Libneural http://pcrochat.online.fr/webus/tutorial/BPN_tutorial7.html 
fann http://leenissen.dk/fann/ 

http://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/c4.5/tutorial.html�
http://statpages.org/logistic.html�
http://statpages.org/logistic.html�
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NeuralWorks Predict http://www.neuralware.com/products.jsp 
NeuroShell Predictor http://www.mbaware.com/neurpred.html 

SVM 
SVM light http://svmlight.joachims.org/ 
LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html 
BSVM  http://www.csie.ntu.edu.tw/~cjlin/bsvm/ 
SVMTorch http://www.idiap.ch/learning/SVMTorch.html 
 

2.4.1 Support vector machines method 

The process of training and using a SVM VS model for screening compounds based 

on their molecular descriptors is schematically illustrated in Figure 2-2. SVM is 

based on the structural risk minimization principle of statistical learning theory144, 145, 

which consistently shows outstanding classification performance, is less penalized by 

sample redundancy, and has lower risk for over-fitting146, 147. In linearly separable 

cases, SVM constructs a hyper-plane to separate active and inactive classes of 

compounds with a maximum margin. A compound is represented by a vector xi 

composed of its molecular descriptors. The hyper-plane is constructed by finding 

another vector w and a parameter b that minimizes 2w  and satisfies the following 

conditions: 

 
, o  iiby w

 Class 1 (active)   (4) 

 
, o  iiby w

 Class 2 (inactive)   (5) 

where yi is the class index, w is a vector normal to the hyperplane, /b w  is the 

perpendicular distance from the hyperplane to the origin and 2w  is the Euclidean 

norm of w. Base on w and b, a given vector x can be classified by f(x) =
[()]signb w

.  A positive or negative f(x) value indicates that the vector x belongs 

to the active or inactive class respectively.  

http://www.neuralware.com/products.jsp�
http://svmlight.joachims.org/�
http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html�
http://www.csie.ntu.edu.tw/~cjlin/bsvm/�
http://www.idiap.ch/learning/SVMTorch.html�
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In nonlinearly separable cases, which frequently occur in classifying compounds of 

diverse structures72, 148-154, SVM maps the input vectors into a higher dimensional 

feature space by using a kernel function K(xi, xj). We used RBF kernel  

2 2/ 2( , ) j i

i jK e σ− −= x xx x which has been extensively used and consistently shown better 

performance than other kernel functions155-157. Linear SVM can then applied to this 

feature space based on the following decision function  

0

1
( ) ( ( , ) )

l

i i i
i

f sign y K bα
=

= +∑x x x , where the coefficients αi
0 and b are determined by 

maximizing the following Langrangian expression: 
1 1 1

1 ( , )
2

l l l

i i j i j i j
i i j

y y Kα α α
= = =

−∑ ∑∑ x x  

under the conditions  0≥iα      and     ∑
=

=
l

i
ii y

1
0α . A positive or negative f(x) value 

indicates that the vector x is an inhibitor or non-inhibitor respectively. For the SVM 

model in this study, hard margin SVM was used and gamma was scanned for the best 

performing model. Software LibSVM158, an integrated software for support vector 

classification, regression and distribution estimation, was chosen to do the machine 

learning in this work. 
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Figure 2- 2 Schematic diagram illustrating the process of the training a prediction 
model and using it for predicting active compounds of a compound class from their 
structurally-derived properties (molecular descriptors) by using SVM. A, B, E, F and 
(hj, pj, vj,…) represents such structural and physicochemical properties as 
hydrophobicity, volume, polarizability, etc. 
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2.4.2 K-nearest neighbor method 

k-NN measures the Euclidean distance 2
iD = −x x  between a compound x and 

each individual inhibitor or non-inhibitor xi in the training set159. A total of k number 

of vectors nearest to the vector x are used to determine the decision function f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i
i

f v fδ∈
=

← ∑x x                                                        (6) 

where ( , ) 1 if  and ( , ) 0 if a b a b a b a bδ δ= = = ≠  , argmax is the maximum of the 

function, V is a finite set of vectors {v1,...,vs}  and ˆ ( )f x  is an estimate of f(x). Here 

estimate refers to the class of the majority compound group (i.e. inhibitors or non-

inhibitors) of the k nearest neighbors.  

 

2.4.3 PNN method 

PNN is a form of neural network that classifies objects based on Bayes’ optimal 

decision rule160 ( ) ( )i i i j j jh c f h c f>x x , where hi and hj are the prior probabilities, ci and 

cj are the costs of misclassification and fi(x) and fj(x) are the probability density 

function for class i and j respectively. A compound x is classified into class i if the 

product of all the three terms is greater for class i than for any other class j (not equal 

to i). In most applications, the prior probabilities and costs of misclassifications are 

treated as being equal. The probability density function for each class for a univariate 

case can be estimated by using the Parzen’s nonparametric estimator161. 

1

1( ) ( )
n

i

i
g W

nσ σ=

−
= ∑ x xx         (7) 

where n is the sample size, σ is a scaling parameter which defines the width of the 

bell curve that surrounds each sample point, W(d) is a weight function which has its 

largest value at d = 0 and (x – xi) is the distance between the unknown vector and a 
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vector in the training set. The Parzen’s nonparametric estimator was later expanded 

by Cacoullos162 for the multivariate case. 

,1 1,
1

11 1

1( , , ) ( , , )
n

p p ii
p

ip p

x xx x
g x x W

nσ σ σ σ=

−−
= ∑K K

K
    (8) 

The Gaussian function is frequently used as the weight function because it is well 

behaved, easily calculated and satisfies the conditions required by Parzen’s estimator. 

Thus the probability density function for the multivariate case becomes 

2

1 1

1( ) exp( )
pn

j ij

i j j

x x
g

n σ= =

 −
= −   

 
∑ ∑x       (9) 

The network architectures of PNN are determined by the number of compounds and 

descriptors in the training set. There are 4 layers in a PNN. The input layer provides 

input values to all neurons in the pattern layer and has as many neurons as the number 

of descriptors in the training set. The number of pattern neurons is determined by the 

total number of compounds in the training set. Each pattern neuron computes a 

distance measure between the input and the training case represented by that neuron 

and then subjects the distance measure to the Parzen’s nonparametric estimator. The 

summation layer has a neuron for each class and the neurons sum all the pattern 

neurons’ output corresponding to members of that summation neuron’s class to obtain 

the estimated probability density function for that class. The single neuron in the 

output layer then estimates the class of the unknown compound x by comparing all 

the probability density function from the summation neurons and choosing the class 

with the highest probability density function.  
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2.4.4 Tanimoto similarity searching method 

Compounds similar to at least one compound in a training dataset can be identified 

by using the Tanimoto coefficient sim(i,j) 163.  The equation for calculating tanimoto 

coefficient has been explained in Section 2.2.2. In this work, the similarity search was 

conducted for MDDR compounds. Therefore, in computing sim(i,j), the molecular 

descriptor vectors xis were scaled with respect to all of the MDDR compounds. The 

cut-off values for similarity compounds are typically in the range of 0.8 to 0.9 164, 165. 

A stricter cut-off value of 0.9 was used in this work. 

 

2.5 Statistical learning methods model optimization, validation and 

performance evaluation 

2.5.1 Model validation and parameters optimization 

Different Statistical learning methods (SLMs) have types of parameters that must be 

optimized. In this work SVM is trained by using a Gaussian radian basis kernel 

function which has an adjustable parameter gamma. For PNN, the only parameter to 

be optimized is a scaling parameter σ. In kNN, the optimum number of nearest 

neighbors, k, needs to be derived for each training set. Optimization of the parameter 

for each of these SLMs is conducted by scanning the parameter through a range of 

values. The set of parameters that produces the best pharmacological property 

prediction model, which is determined by using cross-validation methods, such as 5-

fold cross-validation, 10-fold cross-validation or a modeling testing set, is used to 

construct a final prediction model which is then further validated to ensure that it is 

valid and useful for further prediction. One of the usual ways to assess or to find the 

optimum parameters for a model built by machine learning is to see its performance 
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either by independent validation set or cross validation. In this work, models were 

validated by using both manually segregated a part of data as independent validation 

set, and also by cross validation. There are various types of cross validation 

commonly used in many statistical studies such as repeated random sub-sampling 

cross validation, k-fold cross validation, and leave one out cross validation. In this 

work, we have applied 5-fold cross validation. For 5-fold cross-validation, these 

compounds are randomly divided into five subsets of equal size. Each of these folds 

contains roughly equal number of samples (including positives and negatives), 

thereby rendering it a stratified cross-validation.  Four subsets are selected as the 

training set and the fifth as the validation set. This process is repeated five times such 

that every subset is selected as a validation set once. The SVM models were saved in 

each case and prediction were done for validation data (Figure 2-3). 
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Figure 2- 3 5 fold cross validation 

 

2.5.2 Performance evaluation methods  

The performance of SVM, k-NN, PNN and other machine learning methods can be 

derived from the numbers of true positives (TP), true negatives (TN), false positives 

(FP) and false negatives (FN) in a testing dataset166. The performance of 5-fold cross 

validation studies have been typically measured167 by the quantities of sensitivity 

=SE FNTP
TP
+  (prediction accuracy for positives), specificity =SP FPTN

TN
+  (prediction 

accuracy for negatives), overall prediction accuracy(Q) and Matthew’s correlation 

coefficient (C) 168. 
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                                                                        (10)                     

    (11) 

VS performance in screening large libraries has been typically measured169 by the 

quantities of yield = SE (percentage of known positives predicted as virtual hits), hit-

rate = TP/(TP+FP) (percentage of virtual hits that are known positives), false-hit rate 

= FP/(TP+FP) (percentage of virtual hits that are known negatives) and enrichment 

factor EF = hit rate / (TP+FN)/(TP+FN+TN+FP) (magnitude of hit-rate improvement 

over random selection).  

 

2.5.3 Overfitting  

Overfitting is major concern in machine learning classification method. There are two 

main types of overfitting: (1) using a model that is more flexible than it needs to be 

and (2) using a model that includes irrelevant descriptors. The reason for overfitting is 

usually linked with the model having high number of degrees of freedom compared to 

the number of records. Other possible reason for overfitting could be the 

conformability of the model in accordance to data shape, and the extent of model 

error matched up to the expected level of data error. Overfitting can be often observed 

when learning was performed too long or where training examples are rare or big 

differences were found in performance of cross validation and independent testing or 

at big database screening, analysis of selected hits show some based structure features. 

To avoid overfitting, it is necessary to use additional techniques (e.g. cross-validation, 

negularization, early stopping, Bayesian priors on parameters or model 

FNFPTNTP
TNTPQ

+++
+

=

( ) ( ) ( ) ( ) FP TN FN TN FP TP FN TP 
FP FN TN TP  C 

+ + + + 
× − × = 
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comparison)170 that can indicate when further training is not resulting in better 

generalization. In this study,  cross-validation, independent testing171 and database scan 

are used.   
 

2.6 Machine learning classification based virtual screening platform 

2.6.1 Generation of putative negatives and building of SVM based 

virtual screening system 

As for prediction of compound inhibitors, positives can be formed from known active 

compounds but negatives are usually lacking. Previous studies have used known 

inactive compounds and active compounds of other biological target classes as 

putative inactive compounds 35, 72, 148-151, 172, 173.  In our group a new approach 

extensively used for generating inactive proteins in SVM classification of various 

functional classes of proteins 174-176 has been attempted for generating putative 

inactive compounds62.  

 

In a similar manner, known compounds can be grouped into compound families by 

clustering them in the chemical space defined by their molecular descriptors 177, 178. 

As SVM predict compound activities based on their molecular descriptors, in 

developing SVM VS tools, it makes sense to cluster as well as to represent 

compounds in terms of molecular descriptors. By using a K-means method 177, 178 and 

molecular descriptors computed from our own software 179, we generated 8,423 

compound families from the 13.56M compounds in the PUBCHEM and MDDR 

databases that we were able to compute the molecular descriptors, which is consistent 

with the 12,800 compound-occupying neurons (regions of topologically close 



Chapter 2 Methods 

 41 

structures) for 26.4 million compounds of up to 11 atoms 180, and the 2,851 clusters 

for 171,045 natural products 181. 

 

The whole process of our SVM based VS system can be divided into five main steps. 

First compound inhibitors of a certain target were collected from papers. After 

processing by removal of salts and converted to 3D structures using Corina (Section 

2.3.1). They were calculated with descriptors (Section 2.3.1). Descriptors were further 

scaled according to the range of all PubChem compounds. Second, they were divided 

into a training set and an independent testing set. Because there are few negatives 

being reported in the literature, virtual negatives were generated using our putative 

negative generation method (Section 2.6.1). The putative negatives were generated by 

taking eight representative samples from each of the non-active families. In total 

around 60,000 putative negatives were generated and added to training dataset. Third, 

the software LibSVM158 was chosen to perform the machine learning(Section 2.4.1). 

SVM separates the positives from the negatives with a hyperplane by mapping the 

input vectors to a higher dimensional feature space using a kernel function. Radial 

Basis Function (RBF) kernel, a non-linear SVM method, is used due to its 

consistently better performance. Optimally, hard margin SVM was used with a 

gamma scan for best performance, as determined from the five-fold cross-validation 

results.  Fourth, a model was built with all training compounds at this gamma. The 

model was then tested using the independent testing set. Fifth and finally, MDDR and 

PubChem database were screened and screening results are analyzed or subjected to 

further processing. This is the general process for SVM based VS system.  



Chapter 2 Methods 

 42 

2.6.2 Discussions SVM based virtual screening system 

An advantage of this approach is its independence on the knowledge of known 

inactive compounds and active compounds of other biological target classes, which 

enables more expanded coverage of the “inactive” chemical space in cases of limited 

knowledge of inactive compounds and compounds of other biological classes. A 

drawback of this approach is the possible inclusion of some yet-to-be-discovered 

active compounds in the “inactive” class, which may affect the capability of SVM for 

identifying novel active compounds. As has been demonstrated in an earlier study62, 

such an adverse effect is expected to be relatively small for many biological target 

classes. In applying this approach to proteins, all known proteins are clustered into 

~8,933 protein domain families in based on the clustering of their amino acid 

sequences 121, and a set of putative inactive proteins can be tentatively extracted from 

a few representative proteins in those families without a single known active protein. 

Undiscovered active proteins of a specific functional class typically cover no more 

than a few hundred families, which gives a maximum possible “wrong” family 

representation rate of <10.2% even when all of the undiscovered active proteins are 

misplaced into the inactive class 182. Importantly, inclusion of the representative of a 

“wrong” family into the inactive class does not preclude other active family members 

from being classified as active. Statistically, a substantial percentage of active 

members can be classified by ML methods as active even if its family representative 

is in the inactive class 182, 183. Therefore, in principle, a reasonably good SVM 

classification model can be derived from these putative inactive samples, which has 

been confirmed by a number of studies of proteins 174-176, 182. 
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The number of compound inhibitors of a specific target is usually around 1000 and 

distributed in several hundred families respectively.  Because of the extensive effort 

in searching the known compound libraries for identifying active compounds in these 

target classes, the number of undiscovered “active” families in PUBCHEM database 

is expected to be relatively small, most likely no more than several hundred families. 

The ratio of the discovered and undiscovered “active” families (hundreds) and the 

families that contain no known active compound (~8423 based on the current versions 

of PUBCHEM and MDDR) for these and possibly many other target classes is 

expected to be <15%. Therefore, putative inactive training datasets can be generated 

by extracting a few representative compounds of those families that contain no known 

active compound in the active training set, with a maximum possible “wrong” family 

representation rate of <15% even when all of the undiscovered active compounds are 

misplaced into the inactive class, and with the expectation that a substantial 

percentage of active members in the putative “inactive” families can be classified as 

active despite of their family representatives are placed into the inactive training sets. 

As has been shown in a recent study of SVM VS tools, a substantial percentage of 

identified virtual hits are from these “inactive” families183. 
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Chapter 3 Update of TTD and Development of IDAD 

3.1 Introduction to TTD and IDAD 

3.1.1 Introduction to TTD and current problems 

Pharmaceutical agents generally exert their therapeutic effects by binding to and 

subsequently modulating the activity of a particular protein, nucleic acid or other 

molecular (such as membrane) target184, 185. Target discovery efforts have led to the 

discovery of hundreds of successful targets (targeted by at least one approved drug) 

and >1,000 research targets (targeted by experimental drugs only)16-19. Rapid 

advances in genomic, proteomic, structural, functional and systems studies of the 

known targets and other disease proteins186-192 enable the discovery of drugs, multi-

target agents, combination therapies and new targets16, 19, 186, 193, 194, analysis of on-

target toxicity195 and pharmacogenetic responses196, and development of discovery 

tools197-200. To facilitate the access of information about therapeutic targets, publicly 

accessible databases such as Drugbank201, PDTD 202 and our own TTD203 have been 

developed (Figure 3-1). These databases complement each other to provide target and 

drug profiles but have different emphasis. DrugBank is an excellent source for 

comprehensive drug data with information about drug actions and multiple targets201. 

PDTD contains active-sites as well as functional information for potential targets with 

available 3D structures202. TTD provides information about the primary targets of 

approved and experimental drugs203.  
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Figure 3- 1 Customized search page of TTD 

 

TTD was first developed to provide information about therapeutic targets and 

corresponding drugs in 2002 by our group. To accommodate increasing demand for 

comprehensive knowledge about the primary targets of the approved, clinical trial and 

experimental drugs, numerous improvements and updates are needed. However, since 

the first built-up of the TTD database about 6 years ago, there had been no major 

update and the following problems are found to be addressed: 

1. There have been significant increase of data of targets and drugs and they have 

not been updated to the database. Originally the targets of drugs are only 

separated in approved targets and experimental targets.  They shall be more 

clearly defined as successful, clinical trial and research targets based on research 

stages of drugs; 



Chapter 3 Update of TTD and Development of IDAD 

 46 

2. The main targets of some drugs are not clearly defined. This is also the problem 

of Drugbank which shows several drug targets but there is no information about 

the primary target; 

3. There are no structures and activity data for the collected drugs. The original 

collected information is only drug name.  Related information about drug 

structures, activities and cross-linking to other database like PubChem, DrugBank 

are not added; 

4. There is no standardized target ID which makes it inconvenient to cite TTD; 

5. The target is designed based on targets and for each target page there are drugs 

related to that target. However, there is no drug information page which shows 

the drug mode of action which lists the targets of this drug; 

6. There are no similarity searching for targets and drugs; 

7. There is no convenient customized downloading. 

 

3.1.2 The objective of update TTD and building IDAD 

We hope to make the updated TTD to be a useful information portal by providing 

comprehensive information about the primary targets and other drug data for the 

approved, clinical trial, and experimental drugs. To achieve this, we need to greatly 

increase the information of targets and drugs. Moreover, to increase the convenience 

for using this database, more features shall be added. These include cross-linkings to 

other data sources, similarity search, customized download and etc.  

The initial idea of building a drug activity database is to provide activity information 

for the main targets of the drugs and clinical trials compounds in TTD. With the 

development of this database, we feel that the scope shall not be limited to drugs and 

clinical trials compounds. Compounds like natural product compounds, important 
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compounds developed by the pharmaceutical companies as lead compound or 

preclinical candidates shall be included too. On the market there are similar database 

that provides activity information for compounds like BindingDB204, 205, DrugBank201, 

206 and MDDR207 (Table 3-1). BindingDB is a public, web-accessible database of 

measured binding affinities, focusing chiefly on the interactions of protein considered 

to be drug-targets with small, drug-like molecules. DrugBank is a unique 

bioinformatics and cheminformatics resource that combines detailed drug (i.e. 

chemical, pharmacological and pharmaceutical) data with comprehensive drug target 

(i.e. sequence, structure, and pathway) information. MDDR is a database covering the 

patent literature, journals, meetings and congresses produced by Symyx and Prous 

Science. As compared to those databases, IDAD is mainly focusing in in vitro activity 

of drugs, clinical trial compounds and preclinical candidates while BindingDB 

collects data of all kinds of compounds binding to the targets, which are not limited to 

therapeutic targets. In IDAD, the compounds and activity are well organized 

according to targets while in DrugBank and MDDR, the activity data are not well 

organized according to targets.  

 

Table 3- 1 Main drug-binding databases available on-line 

No Database URL 

1 BRENDA http://www.brenda-enzymes.info/ 

2 DrugBank  http://www.drugbank.ca/ 

3 eMolecules  http://www.emolecules.com/ 

4 MDDR http://www.symyx.com/products/databases/bioactivity/m
ddr/index.jsp 

5 PNPDB  http://azevedolab.net/14.html 

6 PubChem  http://nihroadmap.nih.gov 

7 SCOWLP  http://www.scowlp.org/ 
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8 ShikiPDB  http://azevedolab.net/14.html 

9 SuperNatural  http://bioinformatics.charite.de/supernatural/ 

10 SuperHapten  http://bioinformatics.charite.de/superhapten/ 

11 WOMBAT http://www.sunsetmolecular.com 

12 ZINC  http://zinc.docking.org/ 

 

3.2 Update of TTD 

3.2.1 Update on target and validation of primary target 

After the update, 1,894 targets, 560 diseases and 5,028 drugs are located in the 

database. This is a significant increase of data as compared to the 433 targets, 125 

diseases, and 809 drugs in the original release described in previous paper. These 

targets have been further divided into 348 successful, 292 clinical trial and 1,254 

research targets.  

While drugs typically modulate the activities of multiple proteins208 and up to 14,000 

drug-targeted-proteins have been reported206, the reported number of primary targets 

directly related to the therapeutic actions of approved drugs is limited to only 32418. 

Information about the primary targets of more comprehensive sets of approved, 

clinical trial and experimental drugs is highly useful for facilitating focused 

investigations and discovery efforts against the most relevant and proven targets19, 186, 

193, 195, 196, 200. Therefore, we updated TTD by significantly expanding the target data to 

include 348 successful, 292 clinical trial, and 1,254 research targets, and added drug 

data for 1,514 approved, 1,212 clinical trial and 2,302 experimental drugs linked to 

their primary targets (3,382 small molecule and 649 antisense drugs with available 

structure and sequence, more structures will be added). 

Literature search was conducted by searching PubMed database using keyword 

combinations of “therapeutic” and “target”, “drug” and “target”, “clinical trial” and 



Chapter 3 Update of TTD and Development of IDAD 

 49 

“drug”, and “clinical trial” and “target”, and by comprehensive search of such review 

journals as Nature Reviews Drug Discovery, Trends of Pharmaceutical Science, Drug 

Discovery Today and etc. In particular, these searches identified 198 recent papers 

reporting approved and clinical trial drugs and their targets. As many of the 

experimental antisense drugs are described in US patents, we specifically searched US 

patent databases to identify 745 antisense drugs targeting 104 targets. Primary targets 

of 211 drugs and drug binding modes of 79 drugs are not specified in our collected 

documents. Further literature search was conducted to find the relevant information 

for these drugs. The criteria for identifying the primary target of a drug or targets of a 

multi-target drug is based on the developer or literature reported cell-based or in-vivo 

evidence that links the target to the therapeutic effect of the drug. These searched 

documents are listed in the respective target or drug entry page of TTD and crosslink 

is provided to the respective PubMed abstract, US patent, or developer web-page. 

We collected a slightly higher number of successful targets than the reported number 

of 320 targets18 because of the identification of protein subtypes as the targets of some 

approved drugs and the inclusion of multiple targets of approved multi-target drugs 

and non-protein/nucleic acid targets of anti-infectious drugs (e.g. bacterial cell wall 

and membrane components). Clinical trial drugs are based on reports since 2005 with 

the majority since 2008. Clinical trial phase is specified for every clinical trial drug.  

 

3.2.2 Chemistry information for the TTD database 

In addition to the targets, 5,028 drugs are further divided into 1,514 approved, 1,212 

clinical trial and 2,302 experimental drugs. Additional data about the approved, 

clinical trial and experimental drugs and their primary targets were collected from a 

comprehensive search of literatures, Drugs@FDA209 webpage, latest reports from 17 
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pharmaceutical companies that describe clinical trial and other pipeline drugs 

(Astrazeneca, Bayer, Boehringer Ingelheim, Genentech, GSK, Idenix, Incyte, ISIS, 

Merck, Novartis, Pfizer, Roche, Sanofi Aventis, Schering-Plough, Spectrum, Takeda, 

Teva).  Compounds with known structures in literatures are drawn using 

CambridgeSoft ChemDraw software210. Further structures were obtained from drug 

names queries in PubChem database. Structures in 2D format were further converted 

into 3D structures using Corina software211.  Jmol is used to display the 2D and 3D 

structures of the drugs212. Descriptors were calculated with MODEL software136 118. 

 

3.2.3 Target and drug data collection and access 

TTD data can be accessed by keyword or customized search. Customized search 

(Figure 3-2) fields include target name, drug name, disease indication, target 

biochemical class, target species, drug therapeutic class, and drug mode of action. 

Search results of target information page and drug information page are listed in 

Figure 3-2 and Figure 3-3. Further information about each target can be accessed via 

crosslink to UniProtKB Swiss-Prot213, PDB214, KEGG215, OMID, and Brenda216 

database. Further drug information can be accessed via crosslink to PubChem217, 

DrugBank218, SuperDrug219, and ChEBI220. Related target or drug entries can be 

recursively searched by clicking a disease or drug name. Similarity targets of an input 

protein sequence in FASTA format can be searched by using the BLAST sequence 

alignment tool221. Similarity drugs of an input drug structure can be searched by using 

molecular descriptor based Tanimoto similarity searching method163, 222. Target and 

drug entries are assigned standardized TTD IDs for easy identification, analysis and 

linkage to other related databases. The whole TTD data, target sequences along with 

Swiss-Prot and Entrez gene IDs, and drug structures can be downloaded via the 
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download link. A separate downloadable file contains the list of TTD drug ID, drug 

name and the corresponding IDs in other cross-matching databases PubChem217, 

DrugBank218, SuperDrug219, and ChEBI220. The corresponding HGNC name and 

Swiss-Prot and Entrez gene ID of each target is provided in the target page. The 

SMILES and InCHI of each drug is provided in the drug page. 
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Figure 3- 2 Target information page of TTD 

 



Chapter 3 Update of TTD and Development of IDAD 

 53 

 

Figure 3- 3 Drug information page of TTD 

 

3.2.4 Database function enhancements 

3.2.4.1. Target similarity searching 

Target similarity searching (Figure 3-4) is based on the BLAST221 algorithm to 

determine the similarity level between the sequence of an input protein and the 

sequence of each of the TTD target entries. The BLAST program was downloaded 
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from NCBI website223. The similarity targets are ranked by E-value and BLAST 

score221. E-value has been reported to give reliable predictions of the homologous 

relationships224 and E-value cutoff of 0.001 can be used to find 16% more structural 

relationships in the SCOP database than when using a standard sequence similarity 

with a 40% sequence-identity threshold225. The majority of protein pairs that share 

40–50% (or higher) sequence-identity differ by <1 Å RMS deviation226, 227, and a 

larger structural deviation probably alters drug-binding properties. An example of 

search result is listed in Figure 3-5. 

 

 

Figure 3- 4 Target similarity search page of TTD 
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Figure 3- 5 Target similarity search results of TTD 

 

3.2.4.2. Drug similarity searching 

Drug similarity searching (Figure 3-6) is based on the Tanimoto similarity searching 

method163. An input compound structure in MOL or SDF format is converted into a 

vector composed of molecular descriptors by using our MODEL software228. 

Molecular descriptors are quantitative representations of structural and 

physicochemical features of molecules, which have been extensively used in deriving 

structure-activity relationships, QSARs and VS tools for drug discovery118, 169. Based 

on the results of our earlier studies222, a total of 100 1D and 2D descriptors were used 

as the components of the compound vector. The vector of an input compound i is then 

compared to drug j in TTD by using the Tanimoto coefficient sim(i,j) 163 (Section 

2.4.4 in Chapter 2). Tanimoto coefficient of similarity compounds are typically in the 
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range of 0.8 to 0.9164, 165. Hence compound i is considered to be very similar, similar, 

moderately similar, or un-similar to drug j if  sim(i,j) > 0.9, 0.85< sim(i,j) <0.9, 0.75< 

sim(i,j) <0.85, or sim(i,j) < 0.75 respectively. An example of search result is listed in 

Figure 3-7. 

 

 

Figure 3- 6 Drug similarity search page of TTD 
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Figure 3- 7 Target similarity search results of TTD 

 

3.3 The development of  IDAD database 

3.3.1 The data collection of related information 

Literature search was conducted by searching PubMed database using keyword 

combinations of “therapeutic” and “target”, “drug” and “target”, “clinical trial” and 

“drug”, and “clinical trial” and “target”, and by comprehensive search of such review 

journals as Journal of Medicinal Chemistry, European Journal of Medicinal 

Chemistry, Current Topics in Medicinal Chemistry, Nature Reviews Drug Discovery, 

Trends of Pharmaceutical Science, Drug Discovery Today, Oncogene and etc. In 
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particular, these searches identified 198 recent papers reporting approved and clinical 

trial drugs and their targets. 

 

3.3.2 The construction of IDAD database 

IDAD is a relational database, which represents the drug-target interaction database in 

the form of two-dimension tables. The two-dimensional tables include IDAD ID-Drug 

Name pair ID table, IDAD ID-Activity ID pair main information table, Activity ID, 

Protein ID, Activity,  Normalized  Activity, Reference ID table,  Protein ID – TTDID 

and Swiss-Prot ID information table and Reference information table. In these tables, 

IDAD serves as primary key; Activity ID, Protein ID, reference ID are considered as 

foreign keys. TTDID and Swiss-Prot ID are used to cross-link to external database 

like TTD and Swiss-Prot. 

 

3.3.3 The interface of the IDAD database 

The IDAD database can be found at the BIDD 

website http://bidd.nus.edu.sg/group/IDAD/IDAD_Home.asp. Entries of this database 

are searchable by several methods. These methods include the search by compound 

name or ID, search by target. Case-insensitive keyword-based text search and 

wildcards are also supported. In a query, one can specify full name or part of the name 

in a text field. For instance, wild characters of '*' and '?' are allowed in the text field. 

In this case, '?' represents any single character, and '*' represents a string of characters 

of any length. As an example, input of ‘hdac’ in the field of target name enables the 

search of all entries containing the target name of ‘hdac’ such as hdac1, hdac8, hdac4, 

etc. The outcome of a typical target search and compound search results are illustrated 

http://bidd.nus.edu.sg/group/IDAD/IDAD_Home.asp�
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in Figure 3-8 and Figure 3-9. In this interface, all entries that satisfy search criteria 

are listed along with IDAD ID, target name, activity, and reference.  More detailed 

information of a compound can be obtained by clicking the corresponding TTD 

targetID, TTD drugID. For a systematic comparison of compound activities, all 

activity values are normalized. For completeness, the relevant references are provided 

in the interface.  

 

Figure 3- 8 Information page of Drug Activity Database – target search result 
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Figure 3- 9 Information page of Drug Activity Database - compound search result 

 

3.4 Statistic analysis of therapeutic targets 

Based on the known information about the targets and drug activities, therapeutic 

targets were analyzed in terms of different properties. The biochemical class 

distribution for successful and clinical trial targets are very similar (Figure 3-10) but 

there are some differences in terms of distribution of  properties like molecular weight, 

numbers of hydrogen bond donors and acceptors, LogP,  potency (Figure 3-11). 
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Drugs show a slightly lower MW, LogP, number of H bond acceptor and potency than 

clinical trial compounds.  

 

 

Figure 3- 10 Biochemical class distributions for successful and clinical trial targets 
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Figure 3- 11 Distributions of approved and clinical trial drugs by MW, LogP, H-bond 
donor, H-bond acceptor and potency of approved and clinical trial drugs 

 

3.5 Conclusion 

The updated TTD is intended to be a more useful resource in complement to other 

related databases by providing comprehensive information about the primary targets 

and other drug data for the approved, clinical trial, and experimental drugs. In 

addition to the continuous update of new target and drug information, efforts will be 

devoted to the incorporation of more features into TTD. Increasing amounts of data 

about the genomic, proteomic, structural, functional and systems profiles of 
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therapeutic targets have been and are being generated186-192. Apart from establishing 

crosslink to the emerging data sources, some of the profiles extracted or derived from 

the relevant data16 may be further incorporated into TTD. Target data has been used 

for developing target discovery methods198-200, some of these methods may be 

included in TTD in addition to the BLAST tool for similarity target searching. As in 

the case of PDTD202, some of the VS methods and datasets118, 205 may also be 

included in TTD for facilitating target oriented drug discovery. IDAD is a drug 

activity database of drug and clinical trial compounds. The integration of those 

information lead to analysis of properties of drug and clinical trials compounds. It 

reveals some differences between them in terms of several properties. All these 

information and further analysis could lead to a better understanding of the reasons 

for failures of clinical trials in drug discovery. 
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Chapter 4 Virtual Screening of Abl Inhibitors from Large 

Compound Libraries  

4.1 Introduction 

Abl plays key roles in cancers by regulating morphogenesis and motility, and by 

promoting cell growth and survival via BCR-ABL (an oncogene fusion protein 

consisting of BCR and ABL genes) mediated activation of Src-family kinases and 

PI3K (Phosphatidylinositol 3-kinase) , Ras (a protein superfamily of small GTPases), 

Myc (a protein belongs to Myc family of transcription factors that binds to the DNA), 

c-jun (a protein that forms the AP-1 early response transcription factor), and STAT 

(Signal Transducer and Activator of Transcription protein) pathways229. Abl inhibitors 

are effective in the treatment of leukemia and in clinical trials of other cancers230-232. 

In some cases, these inhibitors show negligible activity against common mutations 

and modest effects in advanced cancer phases, and some patients develop resistance 

associated with Abl kinase domain mutations232. The successes and problems of these 

inhibitors have raised significant interest in and led to intensifying efforts for 

discovering new Abl inhibitors232, 233. Several in-silico methods have been used for 

facilitating the search and design of Abl inhibitors, which include pharmacophore234, 

QSAR235, scaffold assembly236, molecular docking237, 238, and their combinations239, 

240.  

 

These in silico methods have shown impressive capability in the identification of 

potential Abl inhibitors, but their applications may be affected by such problems as 

the vastness and sparse nature of chemical space that needs to be searched, 
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complexity and flexibility of target structures, difficulties in accurately estimating 

binding affinity and solvation effects, and limited diversity of training active 

compounds22, 241, 242. Therefore, it is desirable to explore other in silico methods that 

complement these methods by expanded coverage of chemical space, increased 

screening speed, and reduced false-hit rates without necessarily relying on the 

modeling of target structural flexibility, binding affinity and solvation effects.  

 

A LBVSmethod, SVM, has been explored as such a method that produces high 

yields and low false-hit rates in searching active agents of single and multiple 

mechanisms from large compound libraries (i.e. with an expanded applicability 

domain) 62 and in identifying active agents of diverse structures62, 148-151. Good VS 

performance can also be achieved by SVM trained from sparsely distributed active 

compounds62. SVM classifies active compounds based on differentiating 

physicochemical profiles between active and inactive compounds rather than 

structural similarity to active compounds per se, which has the advantage of not 

relying on the accurate computation of structural flexibility, binding affinity and 

solvation effects. Moreover, the fast speed and expanded applicability domain of 

SVM enables efficient search of vast chemical space. Therefore, SVM may be a 

potentially useful VS tool to complement other in silico methods for searching Abl  

inhibitors from large libraries. 

 

In this work, we developed a SVM VS model for identifying Abl inhibitors, and 

evaluated its performance by both 5-fold cross validation test and large compound 

database screening test. In the 5-fold cross validation test, a dataset of Abl inhibitors 

and non-inhibitors was randomly divided into 5 groups of approximately equal size, 
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with 4 groups used for training a SVM VS tool and 1 group used for testing it, and the 

test process is repeated for all 5 possible compositions to derive an average VS 

performance. In the large database screening test, a SVM VS tool was developed by 

using Abl inhibitors published before 2008, its yield (percent of known inhibitors 

identified as virtual-hits) was estimated by using Abl inhibitors reported since 2008 

and not included in the training datasets, virtual-hit rate and false-hit rate in searching 

large libraries were evaluated by using 13.56M PubChem, 168K MDDR, and 6,638 

MDDR compounds similar in structural and physicochemical properties to the known 

Abl inhibitors.  

 

PubChem and MDDR contain high percentages of inactive compounds significantly 

different from the Abl inhibitors, and the easily distinguishable features may make VS 

enrichments artificially good243. Nonetheless, certain percentages of PubChem and 

MDDR compounds are kinase inhibitors or are similar to known Abl inhibitors. For 

instance, about 1500 MDDR and 10,000 PubChem compounds are kinase inhibitors, 

and 6,638 MDDR compounds are similar to at least one known Abl inhibitor. 

Therefore, VS performance may be more strictly tested by using these and other 

compounds that resemble the physicochemical properties of the known Abl inhibitors 

so that enrichment is not simply a separation of trivial physicochemical features165. To 

further evaluate whether our SVM VS tool predict Abl inhibitors and non-inhibitors 

rather than membership of certain compound families, distribution of the predicted 

active and inactive compounds in the compound families were analyzed.  

 

Moreover, VS performance of SVM was compared to those of two similarity-based 

VS methods, Tanimoto similarity searching and kNN, and an alternative but equally 
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popularly used machine learning method, PNN method, based on the same training 

and testing datasets (same sets of PubChem and MDDR compounds) and molecular 

descriptors. In a study that compares the performance of SVM to 16 classification 

methods and 9 regression methods, it has been reported that SVMs shows mostly 

good performances both on classification and regression tasks, but other methods 

proved to be very competitive244. Therefore, it is useful to evaluate the VS 

performance of SVM in searching large compound libraries by comparison with those 

of both similarity-based approaches and other typical machine learning method. 

 

4.2 Materials 

A total of 708 Abl inhibitors, with IC50<50µM, were collected from the 

literatures239, 245-247 and the BindingDB database205. The inhibitor selection criterion of 

IC50<50µM was used because it covers most of the reported HTS and VS hits248, 249. 

The structures of representative Abl inhibitors are shown in Figure 4-1. A total of 100 

important descriptors were chosen from a total of 525 chemical descriptors calculated 

by our program MODEL which were used for generating Abl inhibitor prediction 

model. As few non-inhibitors have been reported, putative non-inhibitors were 

generated using our method for generating putative inactive compounds133, 222.  
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Figure 4- 1 Structures of representative Abl inhibitors 
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4.3 Results and discussion 

4.3.1 Performance of SVM identification of Abl inhibitors based on 5-

fold cross validation test 

The 5-fold cross validation test results of SVM in identifying Abl inhibitors and 

putative non-inhibitors are given in Table 4-1. The accuracies for predicting 

inhibitors and non-inhibitors are 84.4%~92.3% and 99.96%~99.99% respectively. 

The Q and C are 99.79%~99.90% and 0.808~0.915 respectively. The inhibitor 

accuracies of our SVM are comparable to or slightly better than the reported 

accuracies of 58.3%~67.3% for protein kinase C inhibitors by SVM-RBF and CKD 

methods250, 83% for leukocyte-specific protein tyrosine kinase (Lck) inhibitors by 

SVM method251, and 74%~87% for inhibitors of any of the 8 kinases (3 Ser/Thr and 5 

Tyr kinases) by SVM, ANN, GA/kNN, and RP methods252. The non-inhibitor 

accuracies are comparable to the value of 99.9% for Lck inhibitors251 and 

substantially better than the typical values of 77%~96% of other studies250, 252. 

Caution needs to be raised about straightforward comparison of these results, which 

might be misleading because the outcome of VS strongly depends on the datasets and 

molecular descriptors used.  Based on these rough comparisons, SVM appears to 

show good capability in identifying Abl inhibitors at low false-hit rates. Similar 

prediction accuracies were also found from two additional 5-fold cross validation 

studies conducted by using training-testing sets separately generated from different 

random number seed parameters. 
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Table 4- 1 Performance of SVMs for identifying Abl inhibitors and non-inhibitors evaluated by 5-fold cross validation study 

 

Cross 
Validation 

Abl inhibitors Abl non-inhibitors 

Q (%) C Number of 
training/testing 

inhibitors 
TP FN SE (%) 

Number of 
training/testing 
non-inhibitors 

TN FP SP (%) 

1 566/142 131 11 92.25 52395/13099 13098 1 99.99 99.91 0.915 

2 566/142 125 17 88.03 52395/13099 13094 5 99.96 99.83 0.845 

3 566/142 128 14 90.14 52395/13099 13097 2 99.98 99.88 0.886 

4 567/141 119 22 84.40 52395/13099 13094 5 99.96 99.80 0.808 

5 567/141 128 13 90.78 52396/13098 13093 5 99.96 99.86 0.872 

Average    89.12    99.97 99.86 0.865 

SD    0.0304    0.000149 0.000434 0.0407 

SE    0.0136    0.00007 0.00019 0.0182 
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4.3.2 Virtual screening performance of SVM in searching Abl 

inhibitors from large compound libraries  

SVM VS tool for searching Abl inhibitors from large libraries were developed by 

using Abl kinases reported before 2008 as described in the methods section. The VS 

performance of SVM in identifying Abl inhibitors reported since 2008 and in 

searching MDDR and PubChem databases is summarized in Table 4-2. The yield in 

searching Abl inhibitors reported since 2008 is 50.5%, which is comparable to the 

reported 50%~94% yields of various VS tools253. Strictly speaking, direct comparison 

of the reported performances of these VS tools is inappropriate because of the 

differences in the type, composition and diversity of compounds screened, and in the 

molecular descriptors, VS tools and their parameters used. A more appropriate 

comparison based on the same training and testing datasets and molecular descriptors 

were conducted, which are described in a following section. 
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Table 4- 2 Virtual screening performance of SVMs for identifying Abl inhibitors from large compound libraries 

Method Inhibitors in Training 
Set 

Inhibitors in Testing Set Virtual Screening Performance 

Number 
of 

Inhibitors 

Number of 
Chemical 
Families 
Covered 

by 
Inhibitors 

Number of 
Inhibitors 

Number of 
Chemical 
Families 
Covered 

by 
Inhibitors 

Percent of 
Inhibitors 

in Chemical 
Families 

Covered by 
Inhibitors 

in Training 
Set 

Yield Number and 
Percent of 
Identified  

True 
Inhibitors 
Outside 
Training 
Chemical 
Families 

Number and 
Percent of 

13.56M 
PubChem 

Compounds 
Identified as 

Inhibitors 

Number 
and 

Percent of 
the 168K 

MDDR 
Compoun

ds 
Identified 

as 
Inhibitors 

Number and 
Percent of 
the 6,638 

MDDR 
Compounds 

Similar to 
the Known 
Inhibitors 

Identified as 
Inhibitors 

SVM 708 221 91 38 50% 50.5% 9 (19.6%) 29,072 (0.21%) 659 
(0.39%) 

330 (5.0%) 

Tanimoto 
Similarity 

70.3% 26(56.5%) NA 6,638 (3.95%) 6,638 (100%) 

KNN 58.2% 10(21.7%) 79,043 (0.58%) 1,662 (0.99%) 550(8.3%) 

PNN 58.2% 10(21.7%) 83,293 (0.61%) 1,686 (1.00%) 546(8.2%) 
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Virtual-hit rates and false-hit rates of SVM in screening compounds that resemble the 

structural and physicochemical properties of the known Abl inhibitors were evaluated 

by using 6,638 MDDR compounds similar to an Abl inhibitor in the training dataset. 

Similarity was defined by Tanimoto similarity coefficient ≥0.9 between a MDDR 

compound and its closest inhibitor62. SVM identified 330 virtual-hits from these 6,638 

MDDR similarity compounds (virtual-hit rate 4.97%), which suggests that SVM has 

some level of capability in distinguishing Abl inhibitors from non-inhibitor similarity 

compounds. Significantly lower virtual-hit rates and thus false-hit rates were found in 

screening large libraries of 168K MDDR and 13.56M PubChem compounds. The 

numbers of virtual-hits and virtual-hit rates in screening 168K MDDR compounds are 

659 and 0.39% respectively. The numbers of virtual-hits and virtual-hit rates in 

screening 13.56M PubChem compounds are 29,072 and 0.21% respectively.  

 

The collected Abl inhibitors are distributed in 221 families. Because of the 

extensive efforts in searching kinase inhibitors from known compound libraries, the 

number of undiscovered Abl inhibitor families in PubChem and MDDR databases is 

expected to be relatively small, most likely no more than several hundred families. 

The ratio of the discovered and undiscovered inhibitor families (hundreds) and the 

families that contain no known inhibitor of each kinase (8,423 based on the current 

versions of PubChem and MDDR) is expected to be <15%. Therefore, putative non-

inhibitor training dataset can be generated by extracting a few representative 

compounds from each of those families that contain no known inhibitor, with a 

maximum possible “wrong” classification rate of <15% even when all of the 

undiscovered inhibitors are misplaced into the non-inhibitor class. The noise level 

generated by up to 15% “wrong” negative family representation is expected to be 
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substantially smaller than the maximum 50% false-negative noise level tolerated by 

SVM149. Based on earlier studies133, 222 and this work, it is expected that a substantial 

percentage of the un-discovered inhibitors in the putative “non-inhibitor” families can 

be classified as inhibitor despite their family representatives are placed into the non-

inhibitor training sets.  

 

It is noted that, in the database screening test, 50.0% of families that contain Abl 

inhibitors reported since 2008 are not covered by the Abl inhibitor training dataset 

(inhibitors reported before 2008), and the representative compounds of these families 

were deliberately placed into the inactive training sets as these inhibitors are not 

supposed to be known in our study. As shown in earlier studies133, 222 and in this work, 

a substantial percentage of the inhibitors in these misplaced inhibitor-containing “non-

inhibitor” families were predicted as inhibitors by our SVM VS tool. Moreover, a 

small percentage of the compounds in these putative non-inhibitor datasets are 

expected to be un-reported and un-discovered inhibitors, their presence in these 

datasets is not expected to significantly affect the estimated false hit rate of SVM.  

 

Substantial percentages of the MDDR virtual-hits belong to the classes of 

antineoplastic, signal transduction inhibitors, tyrosine-specific protein kinase 

inhibitors, antiarthritic and antiangiogenic (Table 4-3, details in next section). As 

some of these virtual-hits may be true Abl inhibitors, the false-hit rate of our SVM is 

at most equal to and likely less than the virtual-hit rate. Hence the false-hit rate is 

<3.95% in screening 6,638 MDDR similarity compounds, <0.39% in screening 168K 

MDDR compounds, and <0.21% in screening 13.56M PubChem compounds, which 

are comparable and in some cases better than the reported false-hit rates of 
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0.0054%~8.3% of SVM133, 222, 0.08%~3% of structure-based methods, 0.1%~5% by 

other machine learning methods, 0.16%~8.2% by clustering methods, and 1.15%~26% 

by pharmacophore models253.  

 

To facilitate the selection of true Abl inhibitors from the SVM identified virtual-hits, 

one may explore a consensus approach that selects potentially promising virtual-hits 

based on the consensus scores of multiple VS methods that include molecular docking, 

similarity methods, and pharmacophore models as well as SVM253. Our preliminary 

study showed that 20% of the 659 SVM virtual-hits from MDDR database were 

selected by molecular docking, which include 128 compounds that belong to the 

tyrosine-specific protein kinase inhibitor class. This suggests that a consensus 

approach is potentially useful for enriching true-hit selection rates. 

 

4.3.3 Evaluation of SVM identified MDDR virtual-hits 

SVM identified MDDR virtual-hits were evaluated based on the known biological 

or therapeutic target classes specified in MDDR. Table 4-3 gives the MDDR classes 

that contain higher percentage (>=6%) of SVM virtual-hits and the percentage values. 

We found that 310 or 47% of the 659 virtual-hits belong to the antineoplastic class, 

which represent 1.4% of the 21,557 MDDR compounds in the class. In particular, 105 

or 16% of the virtual-hits belong to the tyrosine-specific protein kinase inhibitor class, 

which represent 8.9% of the 1,181 MDDR compounds in the class. Moreover, 18% 

and 6% of the virtual-hits belong to the signal transduction inhibitor and 

antiangiogenic classes, representing 5.7% and 2.5% of the 2,037 and 1,629 members 

in the two classes respectively. Therefore, many of the SVM virtual-hits are 

antineoplastic compounds that inhibit tyrosine kinases and possibly other kinases 
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involved in signal transduction, angiogenesis and other cancer-related pathways. 

While some of these kinase inhibitors might be true Abl inhibitors, the majority of 

them are expected to arise from false selection of inhibitors of other kinases.  

 

Table 4- 3 MDDR classes that contain higher percentage (≥6%) of virtual-hits 
identified by SVMs in screening 168K MDDR compounds for Abl inhibitors 

Kinase Number of 
SVM Identified 
Virtual Hits 

MDDR Classes that 
Contain Higher 
Percentage (>6%) of 
Virtual Hits 

Number of 
Virtual 
Hits in 
Class 

Percentage of Class 
Members Selected 
as Virtual Hits 

Abl 659 Antineoplastic 310 1.4% 

Signal Transduction 
Inhibitor 

116 5.7% 

Tyrosine-Specific Protein 
Kinase Inhibitor 

105 8.9% 

Antiarthritic 98 0.9% 

Antiangiogenic 40 2.5% 

 

A total of 98 SVM virtual-hits belong to the antiarthritic class. An Abl inhibitor 

Gleevec has been reported to be effective in treatment of arthritis, which is probably 

due to its inhibition of other related kinases such as c-kit and PDGFR254. Moreover, 

several other kinases have been implicated in arthritis. EGFR-like receptor stimulates 

synovial cells and its elevated activities may be involved in the pathogenesis of 

rheumatoid arthritis255. VEGF has been related to such autoimmune diseases as 

systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis256. FGFR 

may partly mediates osteoarthritis257. PDGF-like factors stimulates the proliferative 

and invasive phenotype of rheumatoid arthritis synovial connective tissue cells258. Lck 

inhibition leads to immunosuppression and has been explored for the treatment of 

rheumatoid arthritis and asthma259. Therefore, some of the SVM virtual-hits in the 
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antiarthritic class may be inhibitors of these kinases or their kinase-likes capable of 

producing antiarthritic activities.  

 

4.3.4 Comparison of virtual screening performance of SVM with 

those of other virtual screening methods 

To evaluate the level of performance of SVM and whether the performance is due 

to the SVM classification models or to the molecular descriptors used, SVM results 

were compared with those of three other VS methods based on the same molecular 

descriptors, training dataset of Abl inhibitors reported before 2008, and the testing 

dataset of Abl inhibitors reported since 2008, 168K MDDR and 13.56M PubChem 

compounds. The three other VS methods include two similarity-based methods, 

Tanimoto-based similarity searching and kNN methods, and an alternative machine 

learning method PNN.  As shown in Table 4-2, the yield and maximum possible 

false-hit rate of the Tanimoto-based similarity searching, kNN and PNN methods are 

70.33% and 3.95%, 58.24% and 0.99%, and 58.24 and 1% respectively. Compared to 

these results, the yield of SVM is smaller than but still comparable to these similarity-

based VS method, and the false-hit rate of SVM is significantly reduced by 10.1, 2.5, 

and 2.6 fold respectively. These suggests that SVM performance is due primarily to 

the SVM classification models rather than the molecular descriptors used, and SVM is 

capable of achieving comparable yield at substantially reduced false-hit rate as 

compared to both similarity-based approach and alternative machine learning method. 

Our results are consistent with the report that SVM shows mostly good performances 

both on classification and regression tasks, but other classification and regression 

methods proved to be very competitive244. 
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4.3.5 Does SVM select Abl inhibitors or membership of compound 

families? 

To further evaluate whether our SVM VS tools identify Abl inhibitors rather than 

membership of certain compound families, Compound family distribution of the 

identified Abl inhibitors and non-inhibitors were analyzed. A total of 19.6% of the 

identified inhibitors belong to the families that contain no known Abl inhibitors. For 

those families that contain at least one known Abl inhibitor, >70% of the compounds 

(>90% in majority cases) in each of these families were predicted as non-inhibitor by 

SVM. These results suggest that our SVM VS tool identify Abl inhibitors rather than 

membership to certain compound families. Some of the identified inhibitors not in the 

family of known inhibitors may serve as potential “novel” Abl inhibitors. Therefore, 

as in the case shown by earlier studies 62, SVM has certain capacity for identifying 

novel active compounds from sparse as well as regular-sized active datasets. 

 

4.4 Conclusion 

SVM shows substantial capability in identifying Abl inhibitors at comparable yield 

and in many cases substantially lower false-hit rate than those of typical VS tools 

reported in the literatures and evaluated in this work. It is capable of searching large 

compound libraries at sizes comparable to the 13.56M PubChem and 168K MDDR 

compounds at low false-hit rates without the need to define an applicability domain, 

i.e. it has a broad applicability domain that covers the whole chemical space defined 

by the current versions of PubChem and MDDR databases. The performance of SVM 

is substantially improved against several other VS methods based on the same 

datasets and molecular descriptors, suggesting that the VS performance of SVM is 
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primarily due to SVM classification models rather than the molecular descriptors used. 

Because of their high computing speed and generalization capability for covering 

highly diverse spectrum compounds, SVM can be potentially explored to develop 

useful VS tools to complement other VS methods or to be used as part of integrated 

VS tools in facilitating the discovery of Abl inhibitors and other active compounds260-

262.  
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Chapter 5 Identifying Novel Type ZBGs and Non-

hydroxamate HDAC Inhibitors through a SVM Based 

Virtual Screening Approach 

5.1 Introduction 

Histone deacetylase inhibitors (HDACi) produce anti-cancer effects by regulating 

excessive histone acetylation and inducing apoptosis, and their successes have been 

demonstrated by several drugs approved (e.g. SAHA) and in clinical trials (e.g. 

Avugane, Romidepsin)263. Appearance of high numbers of incidences of reduced 

efficacies and resistance to HDACi treatments have led to intensive efforts for 

developing new HDACi264. Known HDACi typically consist of a zinc-binding group 

(ZBG) and a cap connected by a linker 265, 266 (Figure 5-1), with ZBGs primarily 

derived from hydroxamic acid derivatives (e.g. SAHA)267 and non-hydroxamates (e.g. 

small fatty acids, o-aminoanilides, electrophilic ketones, N-formyl hydroxylamines, 

thiols and mercaptoamides)265. Table 5-1 shows examples of HDACi and their ZBGs 

together with reported potency ranges and problems. Some hydroxamate HDACi tend 

to show poor pharmacokinetics268, severe toxicity269, and low specificity towards 

HDAC isozymes270. Some non-hydroxamate HDACi are metabolically labile (e.g. 

1,3-diketone), strongly reactive (e.g. epoxide), low in potency (e.g. o-aminoanilide, 

carboxylic acid), and prone to side effects (e.g. thiol)265. Hence, there is a strong need 

for searching new HDACi free of these problems from more diverse chemical 

libraries263,264.  
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Figure 5- 1 Structural characteristics of HDAC inhibitor SAHA265, 266. 
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Table 5- 1 Examples of known HDACi and related compounds, associated ZBGs, observed potencies in inhibiting HDAC, and reported 
problems 

Known HDACi or related compounds Structure of ZBGs ZBGs Observed 
Potency 

Reported problems 
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N
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hydroxamic acid, reverse 
hydroxamic acid 

very potent Unstable, easily 
metabolized 
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H

O
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NH2  

o-aminoanilide moderately potent  
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thiol very potent Easily metabolized 
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*

O
SH

*
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mercaptoketone 
mercaptoacetamide 
mercaptoethylamide 

 

very potent Easily metabolized 
prodrug solves the 

problem 

 

H
N

CF3

O

O  

 * CF3

O

 

trifluoromethyl ketone moderately potent Easily hydrolyzed, not 
a serious problem in 

some cases 
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a-ketoamide, heterocyclic ketone moderately potent Easily hydrolyzed, not 
a serious problem in 

some cases 

 Trapoxin B 
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epoxide very potent Reactive via 
irreversible binding. 

 ONa
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acid, ester not potent Improvement of 
potency needed 
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hydrazide inactive  
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Efforts have been directed at expanded search of the chemical space, rational 

modification of linker and cap groups, and the introduction of pro-drugs263,264. 

Some of these efforts have been facilitated by the use of such virtual VS tools as 

ligand-based  QSAR271-275, 3D-QSAR276-281, and pharmacophore282, and 

structure-based molecular docking 283-288. The applicability domains of these 

ligand-based methods in some cases are restricted289, 290 by limited diversity 

(<200 compounds in most cases) 291-293 or structural types (e.g. hydroxamic acid 

derivatives only) in training dataset. Application of these structure-based 

methods may be affected by the complexity and flexibility of target structures 

and difficulties in accurately estimating binding affinity and solvation effects22, 

241. Therefore, it is desirable to explore other VS methods to complement these 

VS tools for expanded coverage of chemical space. 

 

In this work, we explored a machine learning method SVM, and used a 

significantly expanded training dataset to develop an HDACi VS tool capable of 

screening large libraries at good yield and low false-hit rate. SVM was used 

because of its good VS performance in searching active agents of single and 

multiple mechanisms from large libraries62 based on training datasets of sparsely 

distributed active compounds62, and in identifying agents of diverse activities 

and structures62, 148-151. SVM classifies active compounds based on 

differentiating physicochemical profiles between active and inactive compounds 

rather than structural similarity to active compounds per se, which has the 

advantage of not requiring the knowledge of target structure and the need to 

compute activity-related features, binding affinity and solvation effects. A 

significantly more diverse training dataset was generated by extensive literature 
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search of reported HDACi and generation of structurally diverse putative non-

HDACi by using our published method that requires no knowledge of inactive 

compounds or active compounds of other target classes133, 222. 

 

Two types of SVM VS tools were developed. One is the all HDACi SVM 

(AH-SVM) developed by using all known hydroxamate and non-hydroxamate 

HDACi. The second is the hydroxamate HDACi SVM (HH-SVM) developed by 

using hydroxamate HDACi only. This SVM is designed to test the method for 

predictability of novel type ZBGs and HDAC inhibitors. VS performance of both 

types of SVM VS tools was evaluated by two testing methods. The first method 

is 5-fold cross validation in which a dataset was randomly divided into 5 groups 

of approximately equal size, with 4 groups used for training and 1 group used for 

testing the VS model, and the testing process was conducted for all 5 possible 

training-testing dataset compositions. The second method is independent 

evaluation such that a VS tool was developed by using HDACi published before 

2008, with its performance estimated by using HDACi reported since 2008 and 

by using 13.56M PubChem, 168K MDDR (including 202 HDACi). PubChem 

and MDDR contain high percentages of inactive compounds significantly 

different from the HDACi, and the easily distinguishable features may make VS 

enrichments artificially good243. Therefore, VS performance is more strictly 

tested by using subset of MDDR compounds similar to the dual-inhibitors so that 

enrichment is not simply a separation of trivial physicochemical features165.  

 



 Chapter 5 Prediction of Novel Type ZBGs and Non-hydroxamate HDAC Inhibitors 

 87 

5.2 Materials 

We collected from literatures published in 1991-2009 a total of 1730 HDAC 

compounds. Based on HDAC activity, they are further classified as inhibitors (1,488 

HDACi with IC50≤20µM), weak inhibitors (84 weak HDACi with 

20µM<IC50≤200µM) and Unknown compounds (158 compounds with activity value 

like IC50>10µM which are unclassified and will not be used for this study.). The 

HDACi selection criterion of IC50≤20µM for inhibitors was used because it covers 

most of the reported HTS and VS hits248, 249. The weak HDACi selection criterion of 

20µM<IC50≤200µM was based on the consideration that the largest reported IC50 

values of inhibitors are typically in the range of 50~100µM248, 249). All HDACi are 

distributed in 702 compound families (method for deriving compound families 

described in our earlier publication133, 222 and their structural diversity index is 0.506, 

which is comparable to that of the structurally diverse estrogen receptor agonist 

dataset167. Therefore, our collected HDACi are fairly diverse in structures and 

physicochemical properties, and they are significantly higher in numbers than the 

40~200 compounds used in developing ligand-based HDACi prediction tools reported 

in the literatures (QSAR271-275, 3D-QSAR276-281, and pharmacophore282).  

 

Among the 1488 HDACi and 84 weak HDACi, there are 1,268 HDACi, 70 weak 

HDACi published before 2008, and 220 HDACi, 14 weak HDACi published since 

2008. In order to validate our studies, two validation tests were used. The first one is 

5-fold cross validation studies in which the whole set of 1,488 HDACi were 

separately used for training and testing VS tools. The second one is independent 

evaluation studies in which the 1,268 pre-2008 HDACi were separately used for 
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training VS tools and model is then tested by 220 HDACi and 70 weak HDACi 

reported since 2008 and further validated by using the 202 HDACi from MDDR 

database which could be found in supplement information 2. Overall, 36.4% of the 

220 HDACi published since 2008 and 53.5% of the 202 MDDR HDACi are 

distributed in the compound families covered by the HDACi in the training dataset. 

Hence, our testing datasets have substantial degree of novelty for testing the VS 

performance of SVM. Most of the currently known HDACi are hydroxamate 

HDACi. One of current research focuses is to design non-hydroxamate HDACi. 

Therefore, we conducted another study to build the HH-SVM model on hydroxamate 

HDACi using similar approaches.   

 

A total of 100 important descriptors were chosen from a total of 525 chemical 

descriptors calculated by our program MODEL which were used for generating 

HDAC inhibitor prediction model. Because few non-HDACi have been reported in 

the literature, putative non-HDACi were generated by using our method that requires 

no knowledge of inactive compounds or active compounds of other target classes and 

enables more expanded coverage of the “non-inhibitor” chemical space133, 222. A total 

of 62,198 compounds extracted from the 7853 families that contain no known HDACi 

were used as the putative non-HDACi.  

 

5.3 Results and discussions 

5.3.1 5-fold cross validation test  

The 5-fold cross validation results of AH-SVM and HH-SVM are given in 

Table 5-2. The best gamma was found at 204 for both models. The average 
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accuracies for AH-SVM prediction of HDACi and non-HDACi are 86.83% and 

99.75%, and the Q and C are 99.45% and 0.772 respectively. The average 

accuracies for HH-SVM prediction of hydroxamate HDACi and non-HDACi are 

86.61% and 99.92%, and the Q and C for hydroxamate HDACi prediction are 

99.77% and 0.796 respectively. Both AH-SVM and HH-SVM showed reasonably 

good performance in predicting HDACi and hydroxamate HDACi, and very high 

accuracy rate in predicting non-HDACi. The HDACi prediction accuracies of 

AH-SVM are comparable to the reported 88% accuracy for predicting 100 

HDACi by a pharmacophore model282. The non-inhibitor accuracies are 

substantially better than the reported 91.8% accuracy of the pharmacophore 

model282 and the typical values of 77%~96% of other studies250, 252.  

 

Table 5- 2 Performance of SVMs for identifying all types or hydroxamate type 
HDAC inhibitors and non-inhibitors evaluated by 5-fold cross validation study.  

Inhibitor 
Type 

Parameter SE (%) SP (%) Q (%) C 

All types sigma=204 86.83 99.75 99.45 0.772 

Hydroxamate 
type 

sigma=204 86.61 99.92 99.77 0.796 

 

While it is highly desirable to assess the performance of SVM by comparison 

with those of other VS models based on the same training and testing datasets, 

this is not yet fully possible because of the reported HDACi VS models are 

primarily QSAR and pharmacophore models trained by dozens or less HDACi 

that are significantly less than the >100 compounds typically needed for 

developing a good SVM VS model62. For instance, a pharmacophore model 

developed by multiple classes of ZBG, which is the most appropriate for 

comparison with multi-class-based SVM model, has been developed based on the 
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features of 20 strong, medium and weak HDACi282. A SVM model developed by 

using the same training dataset of 20 HDACi, which is not expected to be a 

sufficiently good VS model, nonetheless identified 47.9% of the HDACi in the 

same testing dataset as compared to the reported 91.8% HDACi identification 

rate282.  

 

Caution needs to be raised about straightforward comparison of these results, 

which might be misleading because the outcome of VS strongly depends on the 

datasets and molecular descriptors used.  Based on these rough comparisons, 

SVM appears to show good capability in identifying HDACi at low false-hit 

rates. Similar prediction accuracies were also found from two additional 5-fold 

cross validation studies conducted by using training-testing sets separately 

generated from different random number seed parameters. 

 

5.3.2 Virtual screening performance in searching HDAC inhibitors 

from large compound libraries  

The AH-SVM and HH-SVM developed by pre-2008 HDACi were used for 

identifying HDACi reported since 2008 and for searching MDDR and PubChem 

databases, and the results are summarized in Table 5-3. The yields of the AH-

SVM in searching 220 HDACi reported since 2008 and 202 MDDR HDACi are 

44.1% and 46.0%, which are slightly lower than the reported 50%~94% yields of 

various VS tools294. The yield of the HH-SVM in searching 101 hydroxamate 

HDACi and 99 MDDR hydroxamate HDACi are 51.5% and 57.6%. If HH-SVM 

is used to scan 220 HDACi reported since 2008 and 202 MDDR HDACi, the 

yields are 24.5% and 32.2%. The 220 HDACi in our testing dataset can be 
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divided into 80 and 140 HDACi covered and un-covered by the compound 

families in SVM training dataset respectively, 71.3% and 28.6% of which were 

correctly identified by AH-SVM (Table 5-3). For HH-SVM, the results are 

91.7% and 46.1%. SVM shows certain level of capacity in identifying novel 

HDACi.  

 

Strictly speaking, direct comparison of the reported performances of these VS 

tools is inappropriate because of the differences in the type, composition and 

diversity of compounds screened, and in the molecular descriptors, VS tools and 

their parameters used. The comparison cannot go beyond the statistics of 

accuracies and is only intended as a rough estimate of the VS performance of our 

SVM VS tools. AH-SVM also identified 71.4% of the 14 weak HDACi.  HH-

SVM identified 76.9% of the 13 weak hydroxamate HDACi respectively. These 

suggest that our developed SVM has some capacity in recognizing weak HDACi 

that share similar structural and physicochemical features with HDACi. The 

recognition of substantial percentages of possible HDACi as HDACi likely arises 

from the possibility that some of these possible HDACi are at least weak HDACi. 

 

Table 5- 3 Virtual screening performance of SVMs developed by using all HDAC 
inhibitors (all HDACi SVM) and by using hydroxamate HDAC inhibitors 
(hydroxamate HDACi SVM) for identifying HDAC inhibitors from large 
compound libraries. Inhibitors, weak inhibitors are HDAC inhibitors with 
reported IC50≤20µM, 20µM<IC50≤200µM in the literatures respectively. 
MDDR inhibitors are HDAC inhibitors in the MDDR database. 

Virtual Screening Tool All HDACi SVM Hydroxamate 
HDACi SVM 

Inhibitors in 
Training Set 

Number of Inhibitors 1,268 702 

Number of Chemical 
Families Covered by 

570 325 
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Inhibitors 

Inhibitors in 
Testing Set  

Number of Inhibitors  / 
MDDR inhibitors / Weak 
Inhibitors  

220/202/14  101/99/13 

Number of Chemical 
Families Covered by 
Inhibitors / MDDR inhibitors  
/ Weak Inhibitors 

89/141/9 47/76/8 

Number of Inhibitors  / 
MDDR inhibitors / Weak 
Inhibitors in train chemical 
families 

80/108/3 12/59/3 

Percent of Inhibitors / MDDR 
inhibitors  / Weak Inhibitors 
in train chemical families 

36.4%/53.5%/21.4% 11.9%/59.6%/23.1% 

Virtual 
Screening 
Performance 

Hit number of Inhibitors   / 
MDDR inhibitors  /  Weak 
Inhibitors  

97/93/10 52/57/10 

Yield for Inhibitors   / MDDR 
inhibitors  /  Weak Inhibitors  

44.1%/46.0%/71.4% 51.5%/57.6%/76.9% 

Number of Identified  True 
Inhibitors  / MDDR inhibitors  
/  Weak Inhibitors  Inside 
Training Chemical Families 

57/85/2 11/53/3 

Percent of Identified  True 
Inhibitors  / MDDR inhibitors  
/ Weak Inhibitors  Inside 
Training Chemical Families 

71.3%/78.7%/66.7% 91.7%/89.8%/100.0% 
 

Number of Identified  True 
Inhibitors  / MDDR inhibitors  
/  Weak Inhibitors  Outside 
Training Chemical Families 

40/8/8 41/4/7 

Percent of Identified  True 
Inhibitors  / MDDR inhibitors  
/ Weak Inhibitors  Outside 
Training Chemical Families 

28.6%/8.5%/72.7% 46.1%/10.0%/70.0% 

Number and Percent of 
13.56M PubChem 
Compounds Identified as 
Inhibitors 

74,664(0.55%) 15,065(0.11%) 

Number and Percent of the 
168K MDDR Compounds 
Identified as Inhibitors 

1,723(1.03%) 492(0.293%) 

Number of MDDR 
Compounds Similar to 
Known HDAC Inhibitors 
(Tanimoto Similarity > 0.9)  

14,712 9,366 

Number and Percent of 
Similar Compounds 
Predicted as Inhibitors. 

607(4.1%) 205(2.2%) 
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Virtual-hit rates of AH-SVM and HH-SVM in screening compounds that 

resemble the structural and physicochemical properties of the known HDACi and 

hydroxamate HDACi were evaluated by using  14,712 and 9,366 MDDR 

compounds similar to the known HDACi and hydroxamate HDACi in the 

training dataset. Similarity was defined by Tanimoto similarity coefficient ≥0.9 

between a MDDR compound and its closest inhibitor62. AH-SVM and HH-SVM 

identified 607 and 205 virtual-hits from the 14,712 and 9,366 MDDR similarity 

compounds (virtual-hit rate 4.1% and 2.2%) respectively, which suggests that 

SVM has some level of capability in distinguishing HDACi from non-inhibitor 

similarity compounds. Significantly lower virtual-hit rates and thus false-hit 

rates were found in screening large libraries of 168K MDDR and 13.56M 

PubChem compounds. The numbers of virtual-hits in AH-SVM and HH-SVM 

screening of 168K MDDR compounds are 1,723 and 492, and the corresponding 

and virtual-hit rates are 1.03% and 0.29%, respectively. The numbers of virtual-

hits in AH-SVM and HH-SVM screening of 13.56M PubChem compounds are 

74,664 and 15,065, and the corresponding virtual-hit rates are 0.55% and 0.11% 

respectively.  

 

The identified MDDR virtual-hits primarily belong to the MDDR classes of 

antineoplastic (which contains 93 HDACi), antiarthritic, 

antiallergic/antiasthmatic, antihypertensive, collagenase inhibitor, thrombin 

inhibitor, neutral endopeptidase inhibitor, gpIIb/IIIa receptor antagonist, matrix 

metalloproteinase inhibitor, neuronal injury inhibitor, adrenoceptor (beta3) 

agonist, endothelin antagonist, farnesyl protein transferase inhibitor, ACE 

inhibitor, lipoxygenase inhibitor, and factor Xa inhibitor (Table 5-4, details in 
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next section). As some of these virtual-hits may be true HDACi, the false-hit rate 

of our SVM is at most equal to and likely less than the virtual-hit rate. Hence the 

false-hit rates of AH-SVM and HH-SVM are <4.1% and <2.2% in screening 

6,638 MDDR similarity compounds, <1.03% and <0.29% in screening 168K 

MDDR compounds, and <0.55% and <0.11% in screening 13.56M PubChem 

compounds, which are comparable and in some cases substantially better than 

the reported false-hit rates of 0.0054%~8.3% of SVM133, 222, 0.08%~3% of 

structure-based methods, 0.1%~5% by other machine learning methods, 

0.16%~8.2% by clustering methods, and 1.15%~26% by pharmacophore 

models294. 

Table 5- 4 MDDR classes that contain >1% of virtual-hits identified by SVMs in 
screening 168K MDDR compounds for HDAC inhibitors 

MDDR Classes that Contain >1% of Virtual 
Hits  

No (Percentage) of 
Virtual Hits in Class 

Percentage of Class 
Members Selected 
as Virtual Hits 

Antineoplastic (including 93 HDACi) 331 (19.2%) 2.06% 

Antiarthritic 305 (17.7%) 3.52% 

Antiallergic/Antiasthmatic 133 (7.7%) 1.39% 

Antihypertensive 131 (7.6%) 1.25% 

Collagenase Inhibitor 107 (6.2%) 19.56% 

Thrombin Inhibitor 57 (3.3%) 4.64% 

Neutral Endopeptidase Inhibitor 52 (3.0%) 8.09% 

gpIIb/IIIa Receptor Antagonist 44 (2.6%) 3.27% 

Matrix Metalloproteinase Inhibitor 44 (2.6%) 5.99% 

Neuronal Injury Inhibitor 43 (2.5%) 0.92% 

Adrenoceptor (beta3) Agonist 39 (2.3%) 6.98% 

Endothelin Antagonist 39 (2.3%) 4.79% 

Farnesyl Protein Transferase Inhibitor 30 (1.7%) 2.33% 

ACE Inhibitor 29 (1.7%) 5.17% 

Lipoxygenase Inhibitor 29 (1.7%) 1.08% 
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Factor Xa Inhibitor 26 (1.5%)  1.93% 

Tryptase Inhibitor 20 (1.2%) 10.47% 

 

 

5.3.3 Evaluation of SVM identified MDDR virtual-hits 

The SVM virtual hits are yet to be validated by experiments to determine the 

capability of SVM in identification of new HDACi and novel HDAC zinc 

binding motifs. Nonetheless, some indications of this capability may be partially 

probed by examining the features of SVM virtual hits in comparison with known 

HDACi and other relevant therapeutic agents. The MDDR virtual-hits identified 

by AH-SVM were evaluated based on the known biological or therapeutic target 

classes specified in MDDR. Table 5-4 gives the MDDR classes that contain >1% 

of the AH-SVM virtual-hits and the percentage of the class members identified 

as virtual hits. We found that 331 or 19.2% of the 1,723 virtual-hits belong to the 

antineoplastic class, which represent 2.1% of the 21,557 MDDR compounds in 

the class. In particular, 93 or 28% of these virtual-hits are known HDACi found 

in MDDR. A total of 305 (17.7%) and 133 (7.7%), of the AH-SVM virtual-hits 

belong to the antiarthritic and antiallergic/antiasthmatic classes respectively. 

FK228, a HDACi, reportedly suppresses autoantibody-mediated arthritis in mice 

via regulation of p16INK4a and p21 (WAF1/Cip1) expression295. Other HDACi 

such as Trichostatin A exhibit inhibitory effects on rheumatoid arthritis synovial 

fibroblast proliferation296. HDACs regulate asthma and allergic diseases by 

altering the expression of distinct subsets of inflammatory/immune genes297 and 

some HDACi such as Trichostatin A has been found to attenuate airway 

inflammation in mouse asthma model298. Therefore, some of the AH-SVM 
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virtual-hits in the antiarthritic and antiallergic/antiasthmatic classes may possibly 

be true HDACi capable of producing the related therapeutic effects. Moreover, 

107 (6.2%) and 44 (2.6%) of the AH-SVM virtual-hits belong to the collagenase 

and matrix metalloproteinase inhibitor classes respectively.  Collagenase and 

Matrix Metalloproteinase are same class of zinc-dependent peptidases proteins 

like HDAC. ZBGs like hydroxamic acid, thiol group, epoxide and etc. have 

strong binding to Zinc group which makes them good inhibitors for zinc-

dependent peptidases. 

 

5.3.4 Evaluation of the predicted zinc binding groups of SVM virtual 

hits 

To investigate the structural class of the SVM virtual hits, substructure analysis 

was conducted. The structures of known HDACi belong to 9 classes as shown in 

Table 5-5. Analysis of HH-SVM virtual hits showed a good coverage of most 

types of known non-hydroxamate ZBGs except thoil, mercaptoketone and 

heterocyclic ketone (Table 5-5). This shows our method has a great potential of 

identifying new types of ZBGs.  

Table 5- 5 Zinc binding group classes of SVM virtual hits 

No Type Substructure AH-SVM HH-SVM 

1 Hydroxamate, N-hydroxyurea  
C O

NO
H

H  
3557 3320 

2 o-aminoanilide 

C O
N

H
NH2

 

1193 63 

3a Thiol S
H 996 0 

3b S-Ac S
Ac 568 16 
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3c di-Sulfide S S 174 5 

4a mercaptoketone 
 O

S
H

 
173 0 

4b acetylated mercaptoketone 
O

S
Ac

 
264 2 

5 Trifluoromethyl ketone 
O

F

FF  

132 4 

6a di-ketone 

O
O,N

O

 

945 242 

6b heterocyclic ketone 
O

N

O

 

42 0 

7 epoxide, ketoepoxide 
O

 72 13 

8a carbonylic acid O O
H

 6607 2972 

8b Phosphonate 
P
OH

O  

129 6 

9 Hydrazide 
N
H

O
NH2

 

721 57 

 Summary  15573 6700 

 Total  74,664 15,065 

 

Furthermore, substructure analysis shows several types of ZBGs, as listed in 

Figure 5-2, were identified from AH-SVM screening results. Some ZBGs are 

confirmed in recent publications of HDACi or found in inhibitors of other types 

of Zinc containing proteins such as Matrix Metalloproteinases. There are 7 major 

types of ZBGs. Type A (sulfonamides) are well known groups for carbonic 

anhydrase inhibitors. Potent sulfonamiade type HDACi have recently been 
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reported by MethylGene Inc 116, 299. Type B includes a series of cyano containing 

groups. Type C contains isothiocyanate and analogs. One analog, phenylhexyl 

isothiocyanate, has recently been reported to be a dual HDACi and 

hypomethylating agent and inhibit myeloma cell growth by targeting critical 

pathways300. Type D consists of a series of hydroxypyrones, hydroxypyridinones 

and hydroxypyrothione, many of which have been found in matrix 

metalloproteinases and anthrax lethal factor inhibitors301-303.  Two such 

compounds, phenol osajin and bi-phenol pomiferin, have recently been reported 

as weak HDACi with IC50 value of 6.53 µM and 1.05 µM respectively304. Type 

E is heterocyclic ketones. Type F includes a nitro group which has been found to 

serve as ZBGs in carboxypeptidase A inhibitors305. Type G is composed of a 

series of five member ring hetero cyclic compounds, some of which (e.g. 

barbiturates (G4), rhodanines (G5), thiadiazoles (G7) and hydantoin (G8)) act as 

ZBGs of MMP and TACE inhibitors301, 306-308.   

 



 Chapter 5 Prediction of Novel Type ZBGs and Non-hydroxamate HDAC Inhibitors 

 99 

S
NO

O

H
H

G6

NH
N

S
S

HN

S

O

S,O
G5

G4

HN
O

HN
O

O

C
N

N

O

HO
N

O

HO
O

O

HO
HO

HS

S

N
C

O

NO

N

N

O

O

O
N
H

S

O

N
N
H

S

O

NH

H

S
O

O

NS

OO

N

G1 G3G2

G7 G8

E

O

N
S
O

N
C
O

HO

HO

O
N+

O-

A B1 B2 C1 C2 C3

D1 D2

HO

D3 D4 D5 D6

F

3506 2811 45 69 103 11

5 6 247 7 3 136

35 3095

2 0 0 9

127 5 0 3

S
NO

O

H
H

N

12

 

Figure 5- 2 Examples of potential zinc binding groups and hit numbers from AH-
SVM PubChem screening hits. 

 

5.3.5 Evaluation of the predicted tetra-peptide cap of SVM virtual 

hits 

Another approach in designing HDACi is to derive potent inhibitors based on 

weak ZBGs. By optimization of linker and cap group, it is possible to convert 

compounds with a weak ZBG into nM range potent HDACi. This will take more 

time for the medicinal chemists. However, this approach is worth exploring 

because most strong ZBG are usually reactive electrophiles easily leading to 

toxicity while weak ZBGs usually do not have such problems. This approach has 

been explored by Merck to develop sulfonamides based HDACi299,309. If the cap 
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and linker group is good enough, it is still possible to derive a nM range potent 

HDACi with a weak ZBG like ketone, carbonyl acid and amide. Carboxylic acid 

is generally considered to be a very weak ZBG and not used for design of 

HDACi310-312. Out of the 44 collected carbonyl acid compounds, only 11 are 

HDACi and most of which bears a large tail group and have a MW over 500. Our 

SVM virtual hits include a number of carboxylic acid compounds, suggesting the 

possible existence of potentially interesting HDACi with weak ZBG like 

carboxylic acid.  

Tetra-peptide is the most well-known cap group. Well-known HDACi such as 

FK-225497, FR235222, trapoxin A and B, apicidin, chamydcon all have tetra-

peptide caps 313. There are also reports of pseudo-peptide caps like spirucostatin, 

YM753, FK-228313. Some types of caps are described as follows based on the 

ring size. R12 type tetrapeptides consist of four α amino acids. Most of the 

reported tetra-peptide structures like FK-225497, FR235222, trapoxin A and B, 

apicidin, chamydcon and HC toxin belong to this class. However, HC-toxin has a 

slight different type structure as to the connection position from tetra-peptide to 

ZBG (Figure 5-3). As to pseudo-peptide analogs, R12c (structure 4314) is a 

apicidin analog with 1,5-triazole ring to replace  the amid bond and  R12d  

(structure 2314) is an apicidin analog with 1,4-triazole ring to replace  the amid 

bond. Those reported structures are also active. Moreover, there are non-peptide 

analogs like (R12e CID:4394) and R12f (CID:16220721) in the screening hits. 

R13 type tetrapeptide cap is formed by replacing one of the α-amino acid in R12 

type tetra-peptide. There are four possible positions for replacement. The 

replacement gives structure α3β1 type tetra-peptide structures. Four kinds of 

replacement of α amino acids all give active structures310. Among them, 
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replacement at amino acid 1 gives azumamide A.  In SVM virtual hits, there are 

one series of peptide analogs like R13a (CID:10226946) in Figure 5-3 similar to 

azumamide A by replacing one amide bond to ester. Thus these compounds may 

be potential HDACi. However, none of this type of SVM virtual hits has an 

obvious ZBG. Other types of interested hits with a 13 member ring are R13b 

(CID:478379) and R13c (CID:10112548). R14 type tetra-peptide structure can be 

formed by replacement of two α amino acids into β amino acids. The 

replacement gives structure a2b2 type tetra-peptide structures. There are two 

types structures reported with replacements at amino acids 3 4 and  2 3310.  They 

have weak activity. Other types are unclear. In the screening hits, there are 

several types of multi peptide analogs like R14a (CID:10165223), R14b 

(CID:10255473) shown in Figure 5-3. R15 type penta-peptide structure can be 

formed by five α-amino acids, there is no reported known penta-peptide 

structures as HDACi. In screening hits there is one class like R15a (CID: 

3623355). However, the linker seems to be a bit too short. Moreover, there are 

some types of pseudo-peptide analogs like R15b, R15c, R15d, R15e and R15f as 

shown in Figure 5-3.  R15b (CID:10167312) is an acetylated reduced disulfide 

compound which bears with a 15 member ring. It will be further explained in 

R16 type structures.  R15c (CID: 9825993) is a type of simple non-peptide ring.  

R15d (CID:11848348), R15e (CID:11849153), R15f (CID:11849152) and R15g 

(CID:16660023) belong to a series of fused ring systems. Most of current known 

di-sulfide type peptide like structure belongs to R16 class and with a unique type 

of substructure. Romidepsin (FK228/depsipeptide) is the most famous di-sulfide 

natural product HDACi which has one α-amino acid in the tetra-peptide replaced 

with a beta-hydroxy acid.  Spiruchostatin A and B also belong to this class with 
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one amino acid replaced by statine. Largazole315 can be regarded as an analog of 

reduced FK228 which replace the two amide bonds with two five member rings. 

YM753316 has a 15 member ring which can be treated as an analog of reduced 

spiruchostatin A with the statine replaced by a beta-hydroxy acid. In SVM 

virtual hits, a type of structures like R15b (CID: 10167312) can be considered as 

acetyled form of the reduced YM753 and shall be active. Structural search of 

disulphide found that another type of R16 disulphide compound like R15h 

(CID:14759316) are also of potential interest. Moreover, there are pseudo-

peptide analogs like R16a (CID:16105256) and R16b (CID:10121104). 

Explorations of smaller sized ring like R9, R10 and R11 do not produce 

interesting hits. As to acyclic caps, derivatives containing the key LAoda 

aliphatic side chain in apicidin have been proved as good cap groups for design 

of none tetra-peptide HDACi317. Similar structures like CID:10073606, 

CID:10476346, CID: 11567826, CID:11569749, CID:11582665 in Figure 5-4 

were found from the SVM virtual hits which may serve as possible good caps 

alternative to LAoda. 
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Figure 5- 3 Examples of potential multi-peptide caps from AH-SVM PubChem 
screening hits. 
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Figure 5- 4 Examples of non cyclic caps alternative to LAoda in PubChem screening 
hits. 

 

5.3.6 Does SVM select HDAC inhibitors based on compound families 

or substructure? 

To further evaluate whether SVM identify HDACi rather than membership of 

certain compound families, Compound family distribution of the identified 

HDACi were analyzed. As shown in Section 3.2, study shows that SVM models 

can identify chemicals from outside the train chemical families but certainly 

have a better recover rate for testing compounds inside the train chemical 

families than those outside the train chemical families (Table 5-3). For AH-SVM, 

the results are 71.3% and 28.6%. For HH-SVM, the results are 91.7% and 46.1%. 

For those families that contain at least one known HDACi, >70% of the 

compounds (>90% in majority cases) in each of these families were predicted as 

non-HDACi by AH-SVM and HH-SVM. These results suggest that SVM identify 

HDACi rather than membership to certain compound families and substructure 

classes. 
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5.4 Conclusions 

SVM combined with our putative non-inhibitor generation method shows good 

performance in identification of HDAC inhibitors in both 5-fold cross validation and 

VS tests against independent datasets and large databases. Compared with other VS 

methods, SVM is capable of achieving comparable yields at very low false-hit rates 

similar to HTS in searching HDAC inhibitors from large compound libraries. SVM 

selects HDACi based on molecular descriptors rather than compound families or 

substructures and thus has a great potential of identifying novel type non-

hydroxamate structures. Those SVM virtual hits are yet to be experimentally validated 

to determine the capability of SVM in identification of new HDACi and novel HDAC 

zinc binding motifs. Nonetheless, analysis of the features of SVM virtual hits in 

comparison with known HDACi and other relevant therapeutic agents indicated the 

likelihood of such capability. In particular, SVM appears to be capable of recognizing 

special structural features of ZBGs and identify potential novel ZBGs found in known 

inhibitors of other zinc containing enzymes. This method can help medicinal chemists 

to quickly explore the diverse types of directions for development novel classes of 

inhibitors. Through this study, a series of novel ZBGs and cap groups are proposed 

which can guide medicinal chemists for design of novel type non-hydroxamate 

HDAC inhibitors with less PK and toxicity issues. 

 



Chapter 6 Development of a SVM Based Acute Toxicity Classification System 

 

Chapter 6 Development of a SVM Based Acute Toxicity 

Classification System Based On in vivo LD50 data 

6.1 Introduction 

Toxicology is the study of adverse effects of chemicals on living organisms, 

particularly humans. It has traditionally been evaluated by the dosing of animals to 

define well-established cytologic, physiologic, metabolic, and morphologic end-points. 

Acute toxicity is one of the widely conducted toxicology studies. It describes the 

adverse effects of a substance which result either from a single exposure318 or from 

multiple exposures in a short period of time (usually less than 24 hours)319. Acute 

toxicity is typically measured by LD50 which denotes dose that kills 50% of animals 

within 24 hours after administration. The information generated from acute toxicity 

studies is used in hazard identification and risk management in the context of 

production, handling, and use for various chemicals including environmental 

chemicals (IUR chemicals, pesticide actives and inerts, HPV chemicals, 

antimicrobials, water contaminants), pharmaceutical agents, agrochemicals, and 

consumer products and etc. Evaluation of acute toxicity is one of the big challenges 

faced by pharmaceutical companies and many administrative organizations including 

US Food and Drug Administration, European Union member countries, the 

organization for economic cooperation and development and the regulated 

communities because acute toxicity study is widely needed but is very costly, in terms 

of time, labor, compound synthesis and the sacrifice of large number of animals. 

Taking these concerns into consideration, the legislations in various countries have 

called for the use of information from alternative (non-animal) approaches like in 
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vitro methods, toxicogenomics methods or any in silico approaches, as a means of 

identifying the presence or absence of potential toxicity issues of the substances.  

 

The nature of acute toxicity is very complicated. There are multi types of toxic 

mechanisms including different model of actions of narcosis (I, II or III), oxidative 

phosphorylation uncoupling, respiratory inhibition, electrophilic/proelectrophilic 

reactivity, acetylcholinesterase (AChE) inhibition, or central nervous system (CNS) 

seizure mechanisms and etc.  Acute toxicity is always connected to ADME. It could 

be affected by many factors, for instance, local and/or target-organ specific effects, 

bioavailability of the compound (absorption, tissue distribution and elimination) and 

its metabolism (both bioactivation and detoxification). Chemically reactive 

metabolites generated from the bioactivation can modify tissue macromolecules, alter 

protein function which in turn may affect cell signalling, regulation, defence, function 

and viability.  They are the leading sources for hepatic toxicity, blood dyscrasias and 

hypersensitivity and other organ-directed toxicity. 

 

Prediction of acute toxicity initially started from the analysis of toxic substructures or 

toxicophores.  Some of the harshest reactivity effects are identified and removed 

using pre-defined alert substructures, e.g., acid halides, to remove undesirable 

compounds from consideration prior to their synthesis or acquisition. Analysis of 

toxicity database revealed many alert substructures. These predefined alert 

substructure filters which sometimes are called ‘garbage filters’ are used to remove 

compounds at compound acquisition or pre-screening in drug discovery320, 321. 

However, the problem is that many of such alert substructures are ‘chameleonic’ in 

nature, i.e., they may not necessarily cause toxic effects depending on other functional 
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groups and overall molecular structure (e.g., alkyl halides). Moreover, some 

‘chameleonic’ substructures are close related to the biological activity of the 

compound. To fix this, all ‘chameleonic’ substructures must be supplemented with 

class-specific QSARs, yielding toxicological expert systems80, 322. 

 

QSAR remains the primary approach for prediction of acute toxicities. Historically, 

toxicological predictions started with deriving simple log P correlations80, 322, 323. 

Further development of this idea is the hypothesis of Lipnick that this non-linear 

relationship (parabolic or bi-linear) describes the baseline toxicity (narcosis 

mechanism)324. Baseline QSAR (B-QSAR), Statistical QSAR (Stat-QSAR) and 

Fragmental QSARs (F-QSAR) represent three major types of QSAR approaches. 

Baseline QSAR (B-QSAR) implies the analysis of outliers from the baseline narcotic 

toxicity; Statistical QSAR (Stat-QSAR) approaches81, 325-327 use automated selection 

of the “best” descriptors that fit all data points into a single correlation; F-QSAR uses 

a sum of fragmental and interaction increments approach96, 328. All of these 

approaches are logically interrelated, but lead to quite different results. The use of 

QSAR in ecotoxicology is well established. There is a predominance of non-specific 

effects and log P is a sufficient predictor of the toxicity. Predictions can be made with 

sufficient accuracy for a number of endpoints and a large variety of chemicals. 

However, the situation in mammalian toxicology is different. In the field of 

mammalian toxicity the QSAR models are strictly limited to a well class of chemicals. 

Considering that the diverse types of structure in chemical database and multiple 

toxicity mechanisms involved, it is needed to combine specific chemical knowledge 

(rule-bases) with various types of predictive QSARs82-87, 89, 91, 92, 329 to develop various 

expert systems. Table 1-4 in chapter 1 lists the available commercial software for 
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predicting various toxicological endpoints. HazardExpert89 and DEREK91 are expert 

systems based on sub-structural fragments. TOPKAT81 is a collection of class-specific 

QSARs based on abstract descriptors. MCASE82-88 is a complex system that seems to 

be a collection of class-specific QSARs determined by automated fragmental analysis 

of deviations from baseline log P correlations. ToxScope90 and MDL Carcinogenicity 

Prediction93 are "data mining" systems that allow simple searching for information on 

chemically similar molecules. ADME/Tox is expert systems based on c-SAR from 

Pharma Algorithms Inc software80.  

  

On the use of QSARs in regulatory and other decision-making frameworks330, the 

predictive model should be associated with the following principles:  

(1) be associated with a defined endpoint that it serves to predict; 

(2) take the form of an unambiguous and easily applicable algorithm for predicting a 

pharmacotoxic endpoint; 

(3) have a clear mechanistic basis; 

(4) be accompanied by a definition of the domain of its applicability; 

(5) be associated with a measure of its goodness of fit and internal goodness of 

prediction estimated with cross validation or a method similar to a training set of data; 

(6) be assessed in terms of its predictive power by using data sets that were not used 

in the development of the model. 

 

Since any single QSAR equation must be related to the particular health effect322, in 

the expert systems, the entire data set must be split into sub-sets according to various 

health-effects, and separate QSAR equations must be derived for each effect. 

However, the knowledge of these effects is usually lacking and simple classification 
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based on compound types like amines, alcohols certainly can not meet the need. An 

iterative classification-QSAR(C-SAR) analysis becomes of the utmost importance 

which cannot be replaced with iterative descriptor selection which ignores the 

unknown health effects. The correct interpretation of statistical results is the most 

difficult part in deriving any predictive algorithm. Those interpretations certainly need 

the help from human expertise.  It is one of the major differences in different software 

on how to form the classes and determine the class-specificity of each equation. In 

TOPKAT, the classification is based on Compound Class. In Lipnick’s study, it is 

based on Outlier-based324 approaches and in AB/Tox, it is based on C-SAR approach. 

Figure 6-1 summarizes the existing methods of analysis for LC50 and LD50 values in 

a single logical scheme80. The top part of this scheme (paths a-b) refers to statistical 

QSARs that lead to “statistical induction” algorithms. These imply little or no 

differentiation of biological mechanisms, so they can only be used for compounds that 

are “homologous” to the training set. The bottom part of this scheme (paths c-h) refers 

to the combination of C-SAR, F-QSAR and “expert knowledge” methods. These are 

the major approaches in analyzing large data sets of mammalian LD50 values.  
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Figure 6-1 From SAR analysis to prediction (adopted from Zmuidinavicius, D. and 
etc80 ). 

 

Because there are usually large variations in measured LD50 data331, chemicals are 

usually classified by a simpler classification system. At present there are several 

chemical labeling and classification of acute systemic toxicity based on oral LD50 

values recommended by the Organization for Economic Co-operation and 

Development (OECD), WHO, US Environmental Protection Agency (EPA), 

European Union (EU) system and Globally Harmonized System (GHS)332.  Table 6-1 

lists current chemical classification systems based on oral rat LD50. Although there 

are differences between these systems, they generally agree that a chemical will be 
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classified as highly toxic if LD50 is less than 50 and not acutely toxic if LD50 is 

larger than 2000. Therefore in this study, the criterion is defined at 2000mg/kg b.w.  

 

Table 6-1 Current chemical classification systems based on rat oral LD50 (mg/kg 
b.w.) 

Class WHO OECD GHS U.S. EPA EU 

1 Extremely 
hazardous ‹ 5 Very 

toxic <5 Fatal if 
swallowed <=5 Highly 

Toxic ‹ 50 
T+; R28 
( very 
toxic) 

25 

2 Highly 
hazardous 5-50 Toxic 5-50 Fatal if 

swallowed 5-50 Highly 
Toxic ‹ 50 

T;R25 
(toxic) 

25- 
200 

3 Moderately 
hazardous 

50- 
500 

Harmful 50-500 Toxic if 
swallowed 50-300 Moderately 

Toxic 50-500 
Xn;R22 

(harmful) 
 

200 
-2000 

 
4 Slightly 

hazardous ›500 No 
label 

500-
2000 

Harmful if 
swallowed 

300-
2000 

Slightly 
Toxic 

500-
5,000 

5 
Unlikely 

acute 
hazard 

›2,000   
Maybe 

harmful if 
swallowed 

2000-
5000 
and 

>=5000 

Not Acutely 
Toxic › 5,000 

No 
Classifica

tion for 
acute 

toxicity 

>2000 

 

For a predictive software, a good performance with specificity (percentage of true 

negatives predicted as negative) >=85% and sensitivity (percentage of true positives 

predicted as positives) >=85%  and false positives (true negatives predicted positive) 

<15% has been sought73.  For predictions of carcinogenicity74, 75, genetic toxicity76, 

reproductive and developmental toxicity77, and MRDD78, 79this has been achieved. 

However, for acute toxicity, it remains still a challenge. There are only a few reports 

regarding the performance of acute toxicity prediction modules from commercial 

software. Table 6-2 lists several studies on the performance of different approaches 

for prediction acute toxicity.  TOPKAT has been most often used for prediction of 

acute toxicity. As to QSAR regression, the Danish EPA evaluation of this model 
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using 1840 chemicals not contained in TOPKAT database gave very poor results 

(R2=0.31)333. As to classification, Boik JC334 developed a rat oral LD50 QSAR model 

constructed using Kernel Multitask Latent Analysis (KMLA) to screen promising 

anticancer compounds exhibit low systemic toxicity. The specificity and sensitivity 

are around 70%. Tunkel et al. did a comparison of several commercial QSAR models 

on regulatory purposes for 73 chemicals330 in which TOPKAT and MCASE show 67% 

to 70% accuracy. In a summary, current in silico approaches for acute toxicity, in 

terms of methods, model validation, prediction accuracy, are not satisfactory.  

Table 6-2 Studies on the performance of different approaches for prediction acute 
toxicity 

No Methods Year Approach Criteria 
Rat oral 

LD50 
(mg/kg 
b.w.) 

Dataset Results Ref. 

1 in silico 
QSAR+ 
KMLA 

2008 in silico 
 

1920 Total: 
3,869 
train: 
3095 

test:774 

SE 70.2% and 
SP 67.4% (Linear)     

SE 71.7% and 
SP 70.7% 
(Gaussian) 

334 

2 in silico 
QSAR 

2005 in silico 2000 Test 73 TOPKAT: 67% 
MCASE: 70% 

QSAR Model(this 
study): 71% 

 

330 

3 in silico 
QSAR 

2001 in silico 2000 Train 
~4000 
Test 
1840 

Predict 1840 
chemicals R2=0.31. 

TOPKAT predict 
57% <=2000 

86% within 10 
times. 

67% within 4 times 

333 

4 SVM 2010 in silico 2000 Train 10k-
35k 

Test 777 
Test 67 

5-fold cross 
validation: 

77.7-85.9% 
Independent testing 

777compounds: 
77% 

this 
study 

5 in silico 
QSAR 

2009 in silico 
Prediction 
of acute 

mammalian 
toxicity 

  R=0.7~0.9 
 

80,335 
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based on 
interspecies 

6 in vivo 
data 

 

2009 in vivo 
NOAEL 

data 200 
mg/kg b.w. 

2000 All dataset 
1552 

chemicals 

SP 63% (913/1436)        
SE 87%  (101/116) 

336 

7 in vitro 
assay 

 

2006 Sirc-cvs 
cytoxicity 
assays 

using IC50 
4225ug/mL 

2000 Test 79 
chemicals 

Overall 
84.8%(67/79) 

(SE 100%(51/51), 
SP 57.1%(16/28)) 

337 

8 in vitro 
assay 

2003 BALB/3T3 
NRU 

cytotoxicity 
assay 

2000 Test 44 
chemicals 

Overall around 30% 
(in the ranges 300 < 

LD50 < 2000, 
accuracy is 81%) 

338 
 

 

Why acute toxicity is so difficult to predict? Based on previous studies, several 

reasons may be derived.  

1. Mammalian toxicity measurements usually reflect whole body phenomena. They 

include process of absorption, distribution, bioaccumulation, metabolism and 

excretion. The compounds that lead to toxicities could be the active metabolites as 

well as the original compound. The toxicity could be caused by diverse types of 

toxicity mechanism or modes of toxic actions. The complexity and multiplicity of 

the mechanisms involved lead to inherent difficulties in the modeling process and 

trouble in developing single QSAR models for structural diverse substances.   

2. LD50 is the basis for the toxicological classification of chemicals. However, it is 

not always the best indication of acute toxicity. Converting the complex effect 

into a simple number LD50 certainly leads to a loss of information.  It does not 

take into account the dosage needed for achieving a therapeutic effect. It also does 

not take into account the toxic effects that do not result in death but are 

nonetheless serious (e.g. brain damage). Although convenient for regulatory 

classification proposes, LD50 has some shortcomings when used for modeling. It 
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is a challenge for QSAR based prediction of LD50 because we do not know which 

QSAR equation shall be applied. 

3. The quality of the biological data is another obstacle in the modeling process. The 

mammalian studies are often designed very loosely in relation to species, strains, 

sexes, exposure duration, means of administration, dose levels, etc. In a 1979 

report, LD50 values were observed to vary by as much as 3- to 11-fold between 

different laboratories331. 

4. The relative small number of substances for modeling. Although there is a big 

collection of LD50 data reported, for instance, RTECS339 database 

characterizes >100,000 unique compounds with ~1 million LD50 values, the 

actual LD50 value for specific specie and administration route is limited, for 

instance, there are only around 13k rat oral LD50 data. As compared with the total 

chemistry space, this is too small.   

5. The current classification systems were built on rat or mouse oral LD50 data. 

There are still big differences between rat and human.  

6. Most software adopted a QSAR based approach and any single QSAR equation 

must be related to the particular health effect and have a domain of applicability80. 

In QSAR based predictive toxicology, the entire data set must be split into sub-

sets according to various health effects, and separate QSAR equations must be 

derived for each effect.  Moreover, the training compounds for each QSAR define 

a specific domain of applicability for that equation. Only when the new 

compounds fall in the range of applicability domain of this equation and cause 

same biological effects reflected by this equations, the expert system can have a 

good prediction of the LD50 of this compound. 
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7. QSAR approaches (except C-SAR) usually used only very limited descriptors for 

modeling. It is hard to say how much these limited descriptors can model the 

complicated process and mechanism involved in the acute toxicity.   

To address the problems faced by QSAR based approaches, in this study SVM is 

explored as a new approach for prediction of acute toxicity to complement the 

existing approaches and to possibly extend the prediction range not yet covered by 

existing approaches. The following lists the reasons for choosing SVM: 

1. SVM is a powerful classification tool. It can classify active compounds based on 

the differentiating physicochemical profiles between active and inactive 

compounds other than structural similarity to active compounds.  

2. SVM can handle large and diverse dataset while QSAR can only handle small and 

co-generic dataset.  This is good for acute toxicity study which includes multi-

mechanisms of toxicity. It will be easier to build a single SVM model rather than 

relying on multi-QSAR equations.  

3. SVM is based on the structural risk minimization principle of statistical learning 

theory144, 145, which consistently shows outstanding classification performance, is 

less penalized by sample redundancy and can tolerate certain degree of error data. 

This is important for LD50 data which generally has large variations. 

4. SVM can use multi-descriptors to build the model but avoid over-fitting 

problem146, 147. For QSAR based approaches, only a few descriptors shall be 

finally selected to build the QSAR equation. It is needed to do descriptor selection 

using methods like genetic algorithm or PCA methods. SVM can use unlimited 

number of descriptors. The partial overlap in the descriptors is not expected to be 

a serious problem for SVM classification because SVM is less penalized by 

descriptor redundancy146, 147. 



 Chapter 6 Development of a SVM Based Acute Toxicity Classification System 

 117 

5. The definition of applicable domain is complicated for QSAR based expert system 

while for SVM there is not a big problem as long as the hyperplane which 

separates the positives and negatives could be correctly defined by the training 

dataset.  

6. LD50 data without a specific value can also be used for SVM based classification 

but not in QSAR based approaches. 

 

6.2 Materials 

6.2.1 Collection of acute toxicity compounds 

ChemIDplus340 is a free, web-based search system that provides access to structure 

and nomenclature authority files used for the identification of chemical substances 

cited in National Library of Medicine (NLM) databases including the TOXNET341 

system. TOXNET is a cluster of databases covering toxicology, hazardous chemicals, 

environmental health and related areas. TOXNET contains the most complete data 

records of acute toxicity and it provides free access to and easy searching of a list of 

dataset lists collected from databases or web links (Table 6-3),which includes well 

known database like RTECS339，HSDB342 and Drugs@FDA343. 

 

Table 6-3 Database lists in ChemIDplus system 

Class List Acronym  List Description 

File Locator CCRIS NCI Chem Carcino Res Info Sys 

File Locator ClinicalTrials.gov NIH ClinicalTrials.gov 

File Locator DailyMed NLM/FDA Drug Labelling 
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File Locator DART Developmental and Reprod.Tox. 

File Locator DrugPortal NLM Drug Information Portal 

File Locator EINECS EU Inv of Exist. Comm. Chem Sub 

File Locator EMIC Env. Mutagen Info. Center 

File Locator Haz-Map Occ. Exposure to Haz. Agents 

File Locator Household Products Household Products Database 

File Locator HSDB Hazardous Substances Data Bank 

File Locator MedlinePlusAll Search Consumer Health Info 

File Locator MeSH Medical Subject Headings File 

File Locator MeSH Heading Medical Subject Headings 

File Locator PubChem PubChem 

File Locator PubMed Biomedical Citations From PubMed 

File Locator PubMed AIDS AIDS Citations from PubMed 

File Locator PubMed Cancer Cancer Citations from PubMed 

File Locator PubMed Toxicology Toxicology Citations From PubMed 

File Locator RTECS Reg. of Toxic Eff. of Chem. Sub. 

File Locator TOXLINE NLM TOXLINE on TOXNET 

File Locator TOXMAP NLM Enviro. Health e-Maps 

Internet Locator CAMEO NOAA CAMEO Chemicals 

Internet Locator ChEBI Chem Entities of Biological Interest 

Internet Locator CTD Comparative Toxicogenomics 
Database 

Internet Locator Drugs@FDA FDA Drug Database 
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Internet Locator EPA Envirofacts EPA Master Chemical Integrator 

Internet Locator EPA HPVIS EPA High Prod Vol Info System 

Internet Locator EPA PPIS EPA Pest. Prod. Info. System 

Internet Locator EPA SRS EPA Substance Registry System 

Internet Locator IUCLID EU IUCLID Chemical Data Sheet 

Internet Locator NIOSH ICSC NIOSH Intl. Chem. Safety Cards 

Internet Locator NIOSH Pocket Guide NIOSH Pocket Guide to Chem Haz 

Internet Locator NIST WebBook NIST Chemistry WebBook 

Internet Locator NJ-HSFS New Jersey Haz. Sub. Fact Sheets 

Internet Locator NTP DBS NTP Database Search 

Internet Locator OSHA Chem OSHA Chemical Sampling Info 

Internet Locator SRC CHEMFATE Syracuse Res. Corp. CHEMFATE 

Internet Locator SRC DATALOG Syracuse Res. Corp. DATALOG 

Internet Locator USA.gov USA.gov Search Engine 

Superlist Locator CA65  
California List of Chemicals Known to 
Cause Cancer or Reproductive 
Effects 

Superlist Locator CAA1  Hazardous Air Pollutants 

Superlist Locator CAA2  Ozone Depletion Chemicals List 

Superlist Locator CGB  DOT Coast Guard Bulk Hazardous 
Materials 

Superlist Locator CGN  DOT Coast Guard Noxious Liquid 
Substances 

Superlist Locator DEA  Drug Enforcement Administration 
Controlled Substances 

Superlist Locator DOT  DOT Hazardous Materials Table 

Superlist Locator DSL  Domestic Substances List of Canada 
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Superlist Locator EINECS European Inventory of Existing 
Commercial Chemical Substances 

Superlist Locator FIFR EPA Pesticide List 

Superlist Locator GRAS Direct Food Substances Generally 
Recognized as Safe 

Superlist Locator HPV EPA High Production Volume 
Chemical List 

Superlist Locator IARC  International Agency of Research on 
Cancer List 

Superlist Locator INER List of Pesticide Product Inert 
Ingredients 

Superlist Locator MA  Massachusetts Substances List 

Superlist Locator MI  Critical Materials Register of the 
State of Michigan 

Superlist Locator MPOL  Marine Pollutants List 

Superlist Locator MTL  EPA Master Testing List 

Superlist Locator NJ  New Jersey Hazardous Substances 
List 

Superlist Locator NJEH New Jersey Extraordinarily 
Hazardous Substances List 

Superlist Locator NTPA NTP Carcinogens List 

Superlist Locator NTPT  NTP Technical Reports List 

Superlist Locator PA  Pennsylvania Right to Know List 

Superlist Locator PAFA List of Substances Added to Food in 
the U.S. 

Superlist Locator PEL OSHA Toxic and Hazardous 
Substances 

Superlist Locator PELS  The 1989 OSHA Toxic and 
Hazardous Substances List 

Superlist Locator REL  NIOSH Recommended Exposure 
Limits 

Superlist Locator RQ  CERCLA Hazardous Substances 
Table 302.4 

Superlist Locator S110 Superfund Amendments and 
Reauthorization Act of 1986 
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Superlist Locator S302 

Section 302 of the Superfund 
Amendments and Reauthorization 
Act of 1986 (SARA), Extremely 
Hazardous Substances 

Superlist Locator TLV  ACGIH Threshold Limit Value 

Superlist Locator TRI  Toxic Chemical Release Inventory 

Superlist Locator TSCAINV Toxic Substances Control Act 
Chemical Substances Inventory 

Superlist Locator WHMI Ingredient Disclosure List of Canada 

 

In TOXNET database there are together 110k toxicity records with 13548 rat oral 

LD50 data, 6205 rat intraperitoneal (ip) LD50 data, 3425 rat intravenous (iv) LD50, 

2506 rat subcutaneous (sub) LD50 data, 28000 mouse oral LD50  data, 42232 mouse 

ip LD50 data, 21319 mouse iv LD50 data, 8506 mouse  sub LD50 data. Actually, 

most of the collected data come from RTECS339, for instance, among the all rat oral 

LD50 13548 records, 13299 belong to RTECS339. 

 

6.2.2 Pre-processing of dataset 

Current datasets of acute toxicity are very complicated.  To support a ligand based 

computational studies, clean-up work need to be done for the compound.  In the 

Danish EPA study, it was limited to cover only ‘discrete organics’ meaning that 

UVCBs (Unknown, Variable Composition and Biologicals) and other ill-defined 

structures were excluded for practical reasons333. Inorganics substances were likewise 

not been evaluated because these are usually better approached by simpler methods of 

evaluating the availability of the respective an- and cations with well known hazard 

profiles. Organicmetallics compounds have also been excluded as being poor 

candidates for modeling. In this study we will also follow these rules too. Moreover, 

compound with error structures, polymers and compounds are removed. After that, 
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compounds were converted into 3D structures using CORINA135 and descriptors were 

calculated with our MODLE136, 118 software. Only compounds passed all these 

preprocessing steps will be included in final dataset. Besides of these, when 

inconsistent positive or negative classes were found at the merge from different 

sources, human inspection were done at the full records of that compound to decide 

whether it belongs to the positives or negatives (details in section 7.2.3). 

 

6.2.3 Positive and negative datasets  

We have done queries to get some lists from ChemIDplus344.  The record numbers of 

those lists are shown in Table 6-4. The screenshot of a query and toxicity report of a 

chemical are listed in Figure 6-2 and Figure 6-3. Our training and testing datasets 

were created by merge, duplication check, clean up from some lists from Table 6-4. 

For instance, in Study 1, the positive dataset were created from list 4 which contains 

8282 records. After duplication check, clean up and etc,   6581 compounds were used 

as positive training dataset. 

 

Table 6-4 Lists of query results and record numbers 

No List Number 

1 rat-oral-casno 13544 

2 rat-oral-over2000-casno 4936 

3 rat-oral-eq2000-casno 341 

4 rat-oral-less2000-casno 8282 

5 mouse-oral-casno 28014 

6 mouse-oral-over2000-casno 5676 

7 mouse-oral-less800-casno 12365 

8 mouse-oral-less2000-casno 24932 
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9 mouse-ip-casno 42149  

10 mouse-ip-less175-casno 13827 

11 mouse-ip-over1500-casno 3074 

12 clinical-trials-casno 3173 

13 rat-ip-casno 6201 

14 rat-iv-casno 3425 

15 clinicaltrials-rat oral  777 

16 clinicaltrials-rat oral <2000 442 

17 clinicaltrials-rat oral >2000 310 

18 clinicaltrials-rat oral =2000 25 

 

  

 

Figure 6- 2 Screenshot of a ChemIDplus query344. 
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Figure 6- 3 Screenshot of a toxicity report sheet of Phenobarbital shown in 
ChemIDplus344 

 

As mentioned in previous paragraph, rat oral LD50 2000 mg/kg b.w. is selected as the 

value to separate the dataset in positives (acute toxic compounds) and negatives (non-

acute toxic compounds). In Study 1, only rat oral LD50 data are used. In Study 2 and 

3, some mouse LD50 data are added to increase the size of dataset for a better training. 

Previous studies have found good correlations can be found for LD50 from different 

administration routes and closely related species80, 335. For instance, between the rat 

oral LD50 and mouse oral LD50, there are several reported equations as listed in 

Table 6-5. 

 
Table 6-5 QSAR equations between mouse and rat oral LD50 

Equation Descriptions LD50 Ref. 

log LD50 Rat oral = 0.731+ 0.841 log LD50 Mouse oral n=3919;R2=0.75 1137.4 333 

log LD50 Mouse oral = -0.10+0.93log LD50 Rat oral n is between 506 
and 3,544; R2=0.76 

933.2 80  
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log (1/LD50 Rat oral)=1.01* log(1/LD50 Mouse oral) n=633, R2=0.89, 
s=0.29, F=5,288 

1855 335 

log(1/LD50 Mouse oral)=0.88 log(1/LD50 Rat oral)-
0.07 

n=633, R2=0.89, 
s=0.27, F=5,288 

943.9 335 

 

From these equations, rat oral LD50 2000 is found to correspond to mouse oral LD50 

1137.4, 933.2, 1855 and 943.9, respectively. It is too hard to decide because there are 

large variations. This is because many earlier analyses included quite a different 

numbers of data points, producing a substantial variation of parameters in QSAR 

equation. Anyhow, the first one seems to be more reasonable because it used the 

largest number of compounds for building the QSAR equations. To assure the quality 

of the new added data, certain gaps shall be kept from the criteria calculated from 

interspecies correlation equations. Certain level of accuracy, for instance, >=85%, 

shall be ensured to maintain the quality of training dataset (Figure 6-4). >=85% is 

chosen as a criteria because the desire SE and SP for the model are >85%. This idea 

could be further elaborated in the following example for adding some mouse oral 

LD50 data to training dataset. Rat oral LD50 2000mg/kg is the criteria to determine 

whether the compounds are acute toxic or not. So those compounds with a rat oral 

LD50 <2000mg/kg are classified as positives and those with LD50 >=2000mg/kg as 

negatives. Correspondingly the criterion for mouse oral LD50 data is 1137.4 

according to the first equation in Table 6-5. Use of the compounds with mouse LD50 

over 1137.4 as negatives will include around 72% true negatives and around 28% 

false negatives. This value 72% was calculated from the equation in Figure 6-4.  In 

the equation, the accuracy of using compounds with a mouse oral LD50 < 800 is 

evaluated by the acute toxic compounds rate as determined within those compounds 

with rat oral LD50 data.  The value 72% was thus calculated for mouse LD50>1137.4. 

Low level noise data are tolerable for SVM model because they will not change much 
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to the position of hyperplane that separate positives and negatives in training.  To 

ensure the quality of our added data, we need to leave a gap for it. Calculations show 

that all those compounds with a mouse oral LD50>=2000 have 85.8% accuracy to be 

really negatives. Therefore, compounds with a mouse oral >=2000 were added to 

negative training dataset in Study 2. Compounds with a mouse oral <800 were added 

to negative training dataset in Study 2. Compounds with mouse ip LD50<175 

and >=1500 were further added to positive and negative dataset with accuracy of 87% 

and 83% in Study 3, respectively. Finally, we will have 3 datasets for modeling as 

shown in Table 6-6. 

500 2000

218.8 1137.4

175 500

800 2000

1500100

500 1000

LD50
Oral(rat)

LD50
IP(mouse)

85.8%95% 72%

87% 83%

800

73%91%

Accuracy of 
mouse oral < 800 (%) =  

cpds ( mouse oral < 800)  AND 
cpds (rat oral < 2000)

cpds ( mouse oral < 800)  AND 
cpds (rat oral)

= 2633/2770=95%

LD50
Oral(mouse)

 

Figure 6- 4 Accuracy of adding mouse data for training. 

 

Table 6- 6 SVM training datasets for acute toxicity studies 

Dataset Criteria 
(mg/kg) 

Data Source Number of 
positives 

Number of negatives 

1 2000 rat oral 6581 3817 

2 2000 rat oral + mouse oral 15564 7177 

3 2000 rat oral+ mouse oral + mouse 
ip 

26009 9336 
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6.2.4 Independent testing datasets  

Two independent test sets from different sources were built for this project. At the 

first test set, 777 compounds were collected from a ChemIDplus344 list. At the second 

test set, a list of 67 unique traditional Chinese medicine (TCM) ingredients were 

collected from two Chinese books345, 346 were used. In that ChemIDplus344 list, there 

are 957 compounds with rat oral LD50 data out of the total 2615 compounds. The 

LD50 distributions of these 957 compounds are diverse. They have 7.2%, 10.8%, 

13.3%, 27.8%, 45.5% for LD50 categories: <50, 50-200, 200-500, 500-2000, >=2000 

respectively. These 957 compounds were further processed according to our clean-up 

procedures as shown in section 5.2.2 and 777 were left. They contain 442 compounds 

with LD50 <2000 and 335 compounds with a LD50 >=2000. This is the origin of the 

first independent test set.  As to the second test set, totally 217 ingredients were 

collected from the two books345, 346 and subjected to duplication check, structure 

check, descriptor calculation and assignment. Finally only 67 compounds were 

selected as the second independent test set. This is the origin of the second 

independent test set. 

 

6.3 Results and discussion 

 6.3.1 Overall prediction accuracies 

Software LibSVM158 is chosen to do the machine learning. Non-linear SVM separates 

the positives from the negatives with a hyperplane by mapping the input vectors to a 

higher dimensional feature space using a kernel function. The Radial Basis Function 

(RBF) kernel, widely adopted to consistently give better performance, was used in 

this study. In order to validate our studies, two types of validation tests were used. 
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The first one is 5-fold cross validation. The second one is independent evaluation 

studies. Optimally, the hard margin SVM was used with a gamma scan for best 

performance, as determined from the five-fold cross-validation results. Best gamma 

values were found at 6.25 for all three studies, whereby the SVM models gave 

prediction accuracy values averaging from 86.1% to 92.0% in SE and averaging 63.2% 

to 70.7% in SP (Table 6-7). The accuracies show a slight increase with the increase of 

size of the training dataset.  The detail results of 5-fold cross validation for study 1 

found at gamma = 6.25 is given in Table 6-8. At the first independent testing, 777 

compounds (442 positives and 335 negatives) were used. At the second independent 

testing, a list of 67 unique traditional Chinese medicine (TCM) ingredients was used. 

Independent testing using the 777 compounds shows 80.3% to 82.8% in SE, 71.0% to 

72.8% in SP, and 76.8% to 77.7% in overall prediction for the SVM models of these 3 

studies.  Independent testing using 67 unique TCM compounds shows 54.8% to 73.8% 

in SE, 40% to 44% in SP, 49.3% to 61.1% in overall accuracy for the SVM models of 

these 3 studies.  Finally, a model is then built with all the compounds at the best 

gamma. MDDR and PubChem database were screened with the model for 3 studies. 

Screening of the 139K MDDR compounds revealed 32.4% to 40.6% of the whole 

MDDR database as non acute toxic compounds and screening of the 13.6M PubChem 

compounds revealed 38.4% to 43.1% of the whole PubChem database as non acute 

toxic compounds (Table 6-7).  Table 6-9 lists non acute toxic rate of different type of 

chemicals based on those with rat data and our prediction results. Some chemicals in 

each class have been used for training already. They are consistent in results. 
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Table 6-7 SVM training datasets and model performance for acute toxicity studies.  

No Dataset   P and N 5 fold cross 
validation 

average results 
at best gamma 

= 6.25 

777 cpds 
P:442 
N:335 

TCM 67 
cpds   P:42       

N:25 

MDDR 
139825 
cpds 

>=2000 

PubChem 
17.86M 
cpds 

>=2000 

1 Rat oral 
P:6581 N:3817 

SE=86.1% 
SP=63.2% 
Q=0.777% 
C=0.259 

SE=80.3%          
SP= 72.2% 
Q=76.8% 

SE=66.7%  
SP= 44%          
Q=58.2% 

40.6% 42.1% 

2 Rat oral+mouse oral         
P: 15564  N: 7177 

SE=91.5%          
SP=70.7% 
Q=85.4%  
C=0.411 

SE=80.5% 
SP=72.8% 
Q=77.2% 

SE=54.8% 
SP=40% 
Q=49.3% 

39.3% 42.2% 

3 
 

Rat oral +mouse oral 
+mouse ip 

P: 26009 N:9336 

SE=92.0% 
SP=67.7% 
Q=85.9%  
C=0.391 

SE=82.8% 
SP=71.0% 
Q=77.7% 

SE=73.8%  
SP=40%       
Q=61.1% 

32.4% 42.0% 

 

Table 6-8 Performance of SVMs for classification of acute toxic and non-toxic 
compounds evaluated by 5-fold cross validation for study 1.  

 Acute toxic compounds Non-acute toxic compounds Q (%)  C 

No of 
training 
/testing 
compounds 

TP FN SE (%) No of 
training 
/testing 
compounds 

TN FP SP 
(%) 

  

1 5265/1316 1124 192 85.41 3054/763 470 293 61.60 76.67 0.237 

2 5264/1317 1131 186 85.88 3053/764 495 269 64.79 78.14 0.271 

3 5265/1316 1152 164 87.54 3053/764  482 282 63.09 78.56 0.278 

4 5265/1316 1137 179 86.40 3054/763  467 296 61.21 77.15 0.246 

5 5265/1316 1120 196 85.11 3054/763 498 265 65.27 77.83 0.265 

avera
ge 

   
86.07 

   
63.19 77.70 0.259 

SD    0.957    1.827 0.760 0.0173 

SE    0.428    0.817 0.340 0.0077 

 

Table 6- 9 Non acute toxic rate of different types of chemicals 
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List  Description  Total  

Cpds with rat oral 
LD50  Screening Results  

Number of 
compounds  Rate  Number of 

compounds Rate  

All  All Chemicals  384145  13548  39.0%  17.86M 
(PubChem)  

42.0%-
42.2%  

FDA Drug  Drug @ FDA  2725  932  41.8%  2115  39.7-
44.1%  

GRAS  

Direct Food 
Substances 
Generally 
Recognized as Safe  

235  80  76.3%  105  73.3-
78.1%  

PAFA  
List of Substances 
Added to Food in the 
U.S.  

3570  938  68.0%  2885  61.1%-
63.8%  

PestName  Pesticides Common 
Names  1836  1075  32.7%  

579 37.7%-
38.0%  

FIFR  EPA Pesticide List  1283  710  35.6%  

Clinical-
Trials  Clinicaltrials.gov  4818  957  45.5%  2615  38.7%-

44.9%  

 
In a summary, all the SVM models from three studies showed reasonably good 

performance (63.2% to 70.7%) in predicting non-acute toxic compounds, and high 

accuracy rate (86.1% to 92.0%) in predicting acute toxic compounds. The overall 

accuracies (77.7% to 85.9%) are better than the reported ~70% accuracy QSAR 

methods (Table 6-2). However, caution needs to be raised about straightforward 

comparison of these results, which might be misleading because of the differences in 

the type, composition and diversity of compounds screened, and in the molecular 

descriptors, VS tools and their parameters used. The comparison cannot go beyond 

the statistics of accuracies and is only intended as a rough estimate of the VS 

performance of our SVM method.  
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6.3.2 Descriptors important for SVM  

In this study, a list of 522 descriptors were calculated using our own software 

MODLE136,118. These include composition based descriptors, electronic descriptors, 

and geometrical descriptors. They have shown good performance at previous studies 

in our group and this work. A number of other programs, e.g. DRAGON347, 

Chemistry Development Kit (CDK)119, 120 are available to calculate chemical 

descriptors. Table 6-10 lists descriptors used in various C-SAR programs80. They 

have shown some overlaps in classes of descriptors. Theoretically, physicochemical 

descriptors are responsible for identifying ADME-related factors, such as intestinal 

absorption, metabolism, tissue distribution, clearance, etc. Structural descriptors are 

responsible for the identification of ADME/Tox “biophores” or “toxicophores”. These 

can be represented as linear atom chains of variable length that are characteristic for 

active or inactive compounds. 3-D atom triplets and theoretical descriptors are a bit 

more complicated. They have a theoretical advantage in that they reflect the 

conformational flexibility of structures. They are supposed to be powerful at 

toxicophores that cannot be easily related to 2-D skeletons. Among those descriptors, 

logP, Abraham’s solvation parameters, Lipinski’s numbers of H-donors and H-

acceptors, Ertl’s topological polar surface area (TPSA), MW, pKa, and a few others 

are found to be important in many QSAR studies.  In a AB/C-SAR analysis based on 

physicochemical descriptors for 19,000 LD50 values (Iv-mouse), it is shown that 

charge and LogP turned out to be two most important descriptors. Compounds with 

permanent charges (>N+<, =N+<, >P+< and -S+<) are proved to be most toxic, 

whereas compounds with negative charges (bearing strong acid groups) proved to be 

least toxic80. When compared to 522 descriptors calculated from MODEL, many of 

those important descriptors are used but certain important descriptors like pKa, 
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logSW, TPSA are not included. Some simple structural descriptors are in MODEL but 

more complicated ones are missing. We expect better performance of SVM method 

with those descriptors added in the future. 

Table 6- 10 Descriptors used in various C-SAR programs (adopted from 
Zmuidinavicius, D. and etc80 ). 

 Descriptors Program 

Physchem LogP, LogSW (solubility) M-CASE, TSAR, AB 

 pKa, Ion form fractions, Solvation param.  AB 

Structural Linear and branched atom chains M-CASE, AB 

 Fragments and interactions AB 

 2D atom pairs SCAM, REX 

 3D atom triplets  SCAMPI  

Theoretical Topological, quantum chemical, shape, etc.  TSAR 

 

6.3.3 In vitro assays 

Acute systemic toxicity studies have been widely conducted on rodents to determine 

the relative health hazard of various chemicals and products. With increasing public 

awareness of animal welfare and the pressure of reducing the number of experimental 

animals, replacement of in vivo tests with in vitro alternatives has become a high 

priority and a number of methods have been proposed. A list of in vitro cytotoxicity 

assays in various cell lines have been explored, including human lung and dermal 

cells348, Chinese hamster ovary (CHO) cells349, rat hepatocytes350, 351, Hep-G2352, rat 

hepatoma-derived Fa32 cells338, rabbit cornea-derived cell line (SIRC-CVS)337, 

Neutral Red Uptake  (NRU) assay with both mouse fibroblast cell line (BALB/c 3T3) 

and primary normal human keratinoctyes (NHK)353, and others354-356. Some of these 

methods have claimed some good correlations (R>0.8) with LD50. However, further 
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studies have shown that there is only a relatively good correlation of around 50–60% 

between in vitro cytotoxic concentrations (IC50) and the rat oral LD50353. As 

compared to in vivo approaches, in vitra assays are much cheaper, easy made for HTS, 

and show clear mechanisms which is very important for late stage discovery. These 

are the big advantages of in vitra assays. 

 

Although single in vitro cytotoxicity assays itself cannot have a good prediction of 

LD50 alone because there are too many factors can impair the prediction of in vivo 

toxicity from basal cytotoxicity357, 358, an integrated systems could have much more 

potential.  Acute systemic toxicity can be broken down into a number of biokinetic, 

cellular, and molecular elements, each of which can be identified and quantified in 

appropriate models. These various elements may then be used in different 

combinations to model large numbers of toxic events to predict hazard and classify 

compounds359. Currently now both EU and US are putting considerable effort into 

developing and validating integrated systems: AcuteTox360-362 and ToxCast363, 364. In 

such systems, multiple in vitro assays are tested first, followed by a cytotoxicity assay 

to discriminate between toxic/hazardous (LD50<2,000 mg/kg) substances and 

substances not classified for acute toxicity (LD50>2,000 mg/kg), and at last 28-days 

repeated dose toxicity studies are carried out to identify compounds with LD50>2,000 

mg/kg. This represents the current most promising, yet to be further validated, non-

animal approach.  

 

6.3.4 LD50 classification and drug discovery 

The current study used rat oral LD50>=2000mg/kg b.w. as the criteria for 

classification of non acute and acute toxic chemicals. However, for different type of 
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chemicals and different projects, criteria could be different. For instance, food 

additive and anti cancer drugs certainly have different level of health safety 

requirements. In order to treat cancer, moderate toxic chemicals still stand a chance to 

be developed into anti cancer drugs if they have desired anti cancer effects. In this 

section, the distributions of rat oral LD50 data of different classes of chemicals 

(Table 6-11, Figure 6-5) are analyzed to give an estimation of LD50 criteria for 

different types of chemicals based on query results in ChemIDplus. 

Table 6- 11 Rat oral LD50 distributions of different type of chemicals. 

ChemIDplus 
List Description 

Number of 
Chemicals 

with rat 
LD50 

Rate of chemicals in various LD50 ranges 

<50 50-200 200-
500 

500-
2000 >=2000 

All All Chemicals 13548 0.127  0.104  0.138  0.299  0.390  

FDA Drug Drug @ FDA 932 0.068  0.112  0.157  0.285  0.418  

GRAS 

Direct Food 
Substances 
Generally 

Recognized as 
Safe 

80 0.050  0.000  0.075  0.175  0.763  

PAFA 
List of Substances 
Added to Food in 

the U.S. 
938 0.048  0.029  0.062  0.220  0.680  

PestName Pesticides 
Common Names 1075 0.156  0.142  0.130  0.291  0.327  

FIFR EPA Pesticide List 710 0.155  0.110  0.118  0.308  0.356  

Clinical-Trials Clinicaltrials.gov 957 0.072  0.108  0.133  0.278  0.455  

S302 EPA Extremely 
Haz. Sub. 280 0.650  0.186  0.075  0.075  0.046  

ChEBI Chem Entities of 
Biological Interest 439 0.096  0.098  0.125  0.285  0.440  

CAMEO NOAA CAMEO 
Chemicals 2109 0.162  0.126  0.138  0.279  0.336  

IUCLID 
EU IUCLID 

Chemical Data 
Sheet 

930 0.082  0.081  0.131  0.285  0.454  

Genetox EPA GENetic 
TOXicology 1165 0.114  0.154  0.182  0.301  0.296  
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Figure 6- 5  Rat oral LD50 distributions of different type of chemicals. 

 

As shown in Figure 6-5, green line represents the rate of non acute toxic chemicals 

for different list of chemicals. The non-toxic rate of all chemicals is ~39%. GRASS 

and PAFA are the collections of food ingredients and additives. They are the most 

safe chemicals with 68-76% of chemicals are non acute toxic and around 90% of 

chemicals have a LD50 >=500. S302 is the list of extremely hazardous substance. As 

expected, 95% of chemicals are acute toxic. Pestcides are traditionally very toxic 

compounds. However, we can find that only 66% of chemicals are acute toxic. This 

shows that the development of safe but highly specific pesticides is the current trend. 

As to chemicals, IUclid (High Production Volume Chemicals reported by European 

Industry in the frame of the European existing chemicals risk assessment programme) 

contains 45% of non acute toxic chemicals. In the hazard assessment of these 

chemicals, the criteria of LD50>=2000 shall be chosen for non-acute toxic or unlikely 

acute hazardous chemicals. As to selection of drug candidates for clinic trials, the 

criteria shall be a bit different because what pharmaceutical companies care about the 
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efficacy as well as safety. Certain level of sacrifice in safety has to be taken at the cost 

of efficacy. In Figure 6-5, drug and clinical trial compounds have only about 45% of 

chemicals with a LD50>=2000. This is supported by the Chinese proverb ‘As a 

medicine, it is more or less toxic’. If we apply the same evaluation criteria 

(LD50>=2000 as no acute toxic) for drugs as food additives, it will lead to too much 

loss of potential candidates. This is certainly unacceptable.  Using LD50>=500 as 

criteria will reveal 71-74% of drug and clinical trials compounds. It could serve as 

better criteria for selection of candidates for clinical trials. As shown in Figure 6-5, 

red line represents the rate of highly toxic or highly hazardous chemicals for different 

list of chemicals. The highly-toxic rate of all chemicals is 12.7%. S302 (EPA 

Extremely Haz. Sub), pesticides, drug and clinical trial compounds, food additives 

have about 65%, 15.5%, 7%, 5% of chemicals that are highly toxic, respectively. 

These show that LD50<=50 can be used as a criteria for chemical screening to 

eliminate the extremely toxic compounds for drug discovery. Besides of these, other 

criteria (therapeutic index, the chronicity of the exposure and etc.) shall also be 

considered for the selected compounds. 

 

6.4 Conclusion 

Pharmaceutical companies and many administrative organizations, including US Food 

and Drug Administration, European Union member countries, are faced with big 

challenges of toxicity test for huge number of chemicals at reduced cost. While in 

vivo acute toxicity study is very costly, in terms of time, labour, compound synthesis 

and the sacrifice of large number of animals, legislation calls for the use of 

information from alternative non-animal approaches like in vitro methods and in 
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silico computational methods. As to in vitro methods, single cytoxicity assay cannot 

meet the need so US and EU are now spending a lot effort to build integrated systems 

(AcuteTox360-362 and ToxCast363, 364) including multiple in vitro assays, cytotoxicity 

assay and a 28-days repeated dose toxicity study. As to in silico approaches, QSAR 

based approaches remains the main solutions to prediction of acute toxicities.  New 

computational methods are sought to address the current issues and make a 

breakthrough in prediction of diverse classes of chemicals.  SVM has been explored 

in this study.  Not like C-SAR approach which split the diverse dataset into small 

subsets based on different health effects, SVM considers the whole dataset as a whole 

and tries to find the hyper-plane that separates the acute toxic and non toxic 

compounds. In order to find out the best hyper-plane, a big collection of training 

compounds with diverse toxicity mechanisms and a list of descriptors that can depict 

the complicated factors involved in acute toxicity are important. In this study we 

significantly increase the size of the training dataset by applying a method to absorb 

results from studies on other species and administrative routes. A list of 522 diverse 

types of descriptors calculated from MODEL software was used. Studies show that 

SVM models have better prediction accuracy (sensitivity ~90%, specificity ~70%, 

overall accuracy ~85% and independent testing ~70%) than previous studies in 

classification of acute and non acute toxic chemicals. This demonstrates the strength 

of SVM method in toxicity prediction.  However, the drawback of SVM approach is 

also obvious. It remains as a black box for end users, which does not give help on 

further investigations of toxicity mechanisms. Nevertheless, SVM and other ligand 

based approaches are anticipated to emerge as powerful predictive tools before a clear 

understanding of all toxic mechanisms related to acute toxicity.  

 



 Chapter 6 Development of a SVM Based Acute Toxicity Classification System 

 138 

In order for risk assessment of chemicals requiring higher safety administration like 

food additives, cosmetic, LD50>=2000 could be used. In order for selection of lead 

compound as drug candidate, LD50>=500 could be used. In order for chemical 

screening to eliminate the extremely toxic compounds, LD50<=50 could be used. 

Based on the administrative requirements of different chemicals, different SVM 

models based on different criteria could be built.  For a predictive method, a good 

performance with specificity >=85% and sensitivity >=85% and false positives<15% 

has been sought73.  For predictions of carcinogenicity, genetic toxicity, reproductive 

and developmental toxicity, and MRDD, this has been achieved. The emphasis of 

specificity over sensitivity can seem to conflict with the traditional cautious 

philosophy of regulators, but this position has to be taken at the screening of a large 

chemical library because otherwise it will result in a high false positive rate and 

maximizing regulatory controversy. Current SVM models can achieve good 

performance in terms of sensitivity (~90%) but specificity (~70%) does not meet the 

requirement for VS. We expect that an increase of negative dataset and optimization 

of descriptors can help to solve this.  

 

Finally, the limitation of acute toxicity and LD50 needs to be kept in mind that study 

of acute toxicity can only give a rough evaluation of toxic level of chemicals. Acute 

toxicity tests only short term toxicity and cannot address long term problems like 

bioaccumulation, carcinogenicity, teratogenicity, or mutagenic effects, or the impact 

on reproduction.  There is still a long way to do to bring a ‘safe compound’ from 

prediction into reality.  
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Chapter 7 Concluding Remarks  

7.1 Findings and merits 

With great increase of target and drug information, chemistry structures and functions 

added, TTD now contains 1,894 targets, 560 diseases and 5,028 drugs. In addition, 

IDAD was built to enhance the quick explore the compound activities of drugs. TTD 

has now really become an information portal like DrugBank and BindingDB. These 

three databases have different emphasis but can complement each other by providing 

comprehensive information about the primary targets and other drug data for the 

approved, clinical trial, and experimental drugs. From this update, we understand that 

the quality of database could be improved by integration of related information, cross 

linking to available databases, adding of database functions like customized download, 

similarity search. TTD was created in 2003 but the usage is low. Although this update 

does not provide the database novel information, it has made the database information 

more accessible to users. Moreover, by adding of activity information significant we 

improved the quality of TTD and further analysis of approved drugs and clinical trial 

compounds becomes possible.  

 

At the update, it was found that the mapping of chemicals to PubChem can help add 

important information, for example, the synonymous name of drugs. However, 

caution has to be taken at extracting information from other database which could 

contain errors. 

 

 When we started the project of SVM based VS in year 2005, SVM was still fairly 

used for VS. There were only a few reports. Now, SVM based VS system has been 
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gradually accepted by the end users. The putative negatives generation method plays 

an important role in it. This method greatly increased the performance of VS without 

losing much positive accuracy. It showed that at the study of chemistry and biological 

problems, certain assumption could be made to solve the problems although 

sometimes it may lead to certain degree of noises.  

 

As to acute toxicity study, the use of SVM method for classification is a new 

approach. Methods like QSARs are widely used but they generally have their 

applicability domain. But in SVM, the hyperplane was drawn by the influence of 

sufficiently large number of positive and negative compounds, and this hyperplane 

goes till infinity. Theoretically, there is no need to impose applicability domain in the 

SVM method employed in this study and the method is quite capable of finding novel 

hits as well. This is well support by good performance of SVM on true independent 

dataset. The use of SVM has greatly simplified the processes in building models.  

 

7.2 Limitations 

As to SVM based VS, a drawback of this approach is the possible inclusion of some 

undiscovered active compounds in the ‘inactive’ class, which may affect the 

capability of machine learning methods for identifying novel active compounds. 

However, such an adverse effect is expected to be relatively small and affordable for 

drug discovery.  

 

In acute toxicity study, it was desirable develop the models based on rat oral LD50, 

however, machine learning method is greatly influenced by the diversity of data 
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(compounds in this case) for building models. In order to increase the number of 

compounds for training, compounds with mouse LD50 data were converted. This 

would certainly lead to some errors. Moreover, as shown in the study of acute toxicity, 

Toxicities may be caused not by the compound originally administered, but rather by 

the results of biotransformations that the original compound undergoes. The discovery 

of toxicity based on the original compounds structures could have some limitations. 

Last SVM models can have a quick evaluation of compound toxicity but not able to 

give the exact mechanisms of acute toxicity. 

 

The compound descriptors of current SVM approach were calculated using our 

MODEL software. It provides more than 500 diverse types descriptors. However, 

these still do not cover all the important descriptors. As shown in the study of acute 

toxicity, some important descriptors used in QSARs like logS and PSA shall be 

included. 

 

SVM method is mainly used in this work. Although studies have shown that SVM 

show good performance at classification, other machine learning and structure based 

VS methods are expected to complement SVM approach to build consensus models 

for prediction.   

 

7.3 Suggestions for future studies 

For the future studies, there are a lot of work could be improved. 
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As to database development, as in the case of PDTD202, some of the VS methods and 

datasets118, 205 may also be included in TTD for facilitating target oriented drug lead 

discovery.  

As to SVM based VS system, studies on several targets have show good performance 

not only in screening hits, yield and enrichment factors but also a good potential in 

terms of prediction of novel type structures. However, experimental studies are 

needed to validate the approach. Based on this, we have formed extensive 

collaborations with several research groups on drug development. 

 

As to toxicity prediction, there are at least three works could be done. First, more 

compounds could be included to increase the diversity of datasets to further increase 

the prediction accuracy. Current accuracies for prediction of toxic and nontoxic 

compounds are 90% and 70%. For the toxic compounds prediction, it is enough but 

for non-toxic compounds it is still not enough. This is possibly due to the smaller 

number of non-toxic compounds. Further increase of non-toxic compounds could lead 

to increase expected rate. Second, toxicogenomics method has a great potential in 

predictive toxicology in terms of identification of biomarkers and probes of toxic 

mechanisms. They could be used to complement SVM based acute toxicity prediction 

system. At last, the improvement on metabolite prediction or integration with other 

metabolite prediction system seems highly desirable to significantly improve our 

prediction of assess toxic potential. 

 

These years have seen plenty of debates aimed to define which VS approach is 

the best one. However, this question remains with no conclusive answer. Each 

approach has its own advantages and drawbacks, and the choice of one or others 
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depends on the particular question faced by the medicinal chemist. In terms of 

performance, ligand based methods tend to present better enrichment factors and 

higher speed serving as a more efficient methodologies to remove non active 

compounds but target based method provides a more straightforward picture of 

interactions between the drug and molecular target and a better prediction in terms of 

novel structures.   

 

Now many people choose a synergistic, rational, synthetic combination of 

different approaches. Combined VS approach tends to include less costly approaches, 

usually ligand based VS, at the first stage, while the most demanding methods, 

usually docking, for the last stage when the original large compound library has been 

reduced to manageable size.  

 



 

 144 

BIBLIOGRAPHY 

1. Ashburn, T. T.; Thor, K. B., Drug repositioning: Identifying and developing new uses for existing 
drugs. Nature Reviews Drug Discovery 2004, 3, (8), 673-683. 
2. Sollano, J. A.; Kirsch, J. M.; Bala, M. V.; Chambers, M. G.; Harpole, L. H., The economics of 
drug discovery and the ultimate valuation of pharmacotherapies in the marketplace. Clin Pharmacol 
Ther 2008, 84, (2), 263-6. 
3. Newman, D. J., Natural products as leads to potential drugs: an old process or the new hope 
for drug discovery? J Med Chem 2008, 51, (9), 2589-99. 
4. Brown, F. K., Chapter 35. Chemoinformatics: What is it and How does it Impact Drug Discovery. 
Annual Reports in Med. Chem 1998, 33, 375. 
5. Brown, F., Editorial Opinion: Chemoinformatics – a ten year update. Current Opinion in Drug 
Discovery & Development 2005, 8, (3), 296–302. 
6. http://www.bccresearch.com/report/BIO051A.html  
7. Friedberg, I.; Kaplan, T.; Margalit, H., Evaluation of PSI-BLAST alignment accuracy in 
comparison to structural alignments. Protein Sci 2000, 9, (11), 2278-84. 
8. Muller, A.; MacCallum, R. M.; Sternberg, M. J., Benchmarking PSI-BLAST in genome 
annotation. J Mol Biol 1999, 293, (5), 1257-71. 
9. Chen, C.; Chen, L. X.; Zou, X. Y.; Cai, P. X., Predicting protein structural class based on multi-
features fusion. J Theor Biol 2008, 253, (2), 388-92. 
10. Li, Z. R.; Lin, H. H.; Han, L. Y.; Jiang, L.; Chen, X.; Chen, Y. Z., PROFEAT: a web server for 
computing structural and physicochemical features of proteins and peptides from amino acid sequence. 
Nucleic Acids Res 2006, 34, (Web Server issue), W32-7. 
11. Cerami, E. G.; Bader, G. D.; Gross, B. E.; Sander, C., cPath: open source software for 
collecting, storing, and querying biological pathways. Bmc Bioinformatics 2006, 7. 
12. Cases, I.; Pisano, D. G.; Andres, E.; Carro, A.; Fernandez, J. M.; Gomez-Lopez, G.; Rodriguez, 
J. M.; Vera, J. F.; Valencia, A.; Rojas, A. M., CARGO: a web portal to integrate customized biological 
information. Nucleic Acids Res 2007, 35, (Web Server issue), W16-20. 
13. Nakazato, T.; Takinaka, T.; Mizuguchi, H.; Matsuda, H.; Bono, H.; Asogawa, M., BioCompass: 
a novel functional inference tool that utilizes MeSH hierarchy to analyze groups of genes. In Silico Biol 
2008, 8, (1), 53-61. 
14. Waller, C. L.; Shah, A.; Nolte, M., Strategies to support drug discovery through integration of 
systems and data. Drug Discov Today 2007, 12, (15-16), 634-9. 
15. Southan, C.; Varkonyi, P.; Muresan, S., Complementarity between public and commercial 
databases: new opportunities in medicinal chemistry informatics. Curr Top Med Chem 2007, 7, (15), 
1502-8. 
16. Zheng, C. J.; Han, L. Y.; Yap, C. W.; Ji, Z. L.; Cao, Z. W.; Chen, Y. Z., Therapeutic targets: 
progress of their exploration and investigation of their characteristics. Pharmacol Rev 2006, 58, (2), 259-
79. 
17. Golden, J. B., Prioritizing the human genome: knowledge management for drug discovery. Curr 
Opin Drug Discov Devel 2003, 6, (3), 310-6. 
18. Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L., How many drug targets are there? Nat Rev 
Drug Discov 2006, 5, (12), 993-6. 
19. Imming, P.; Sinning, C.; Meyer, A., Drugs, their targets and the nature and number of drug 
targets. Nat Rev Drug Discov 2006, 5, (10), 821-34. 
20. Rester, U., From virtuality to reality - Virtual screening in lead discovery and lead optimization: 
a medicinal chemistry perspective. Curr Opin Drug Discov Devel 2008, 11, (4), 559-68. 
21. Rollinger, J. M.; Stuppner, H.; Langer, T., Virtual screening for the discovery of bioactive 
natural products. Prog Drug Res 2008, 65, 211, 213-49. 
22. Shoichet, B. K., Virtual screening of chemical libraries. Nature 2004, 432, (7019), 862-5. 
23. Lengauer, T.; Lemmen, C.; Rarey, M.; Zimmermann, M., Novel technologies for virtual 
screening. Drug Discov Today 2004, 9, (1), 27-34. 
24. Davies, J. W.; Glick, M.; Jenkins, J. L., Streamlining lead discovery by aligning in silico and 
high-throughput screening. Curr Opin Chem Biol 2006, 10, (4), 343-51. 

http://www.bccresearch.com/report/BIO051A.html�


 

 145 

25. Willett, P., Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 2006, 11, 
(23-24), 1046-53. 
26. van de Waterbeemd, H.; Gifford, E., ADMET in silico modelling: towards prediction paradise? 
Nat Rev Drug Discov 2003, 2, (3), 192-204. 
27. Matthew W. B. Trotter , S. B. H., Support Vector Machines for ADME Property Classification. 
QSAR & Combinatorial Science 2003, 22, (5), 533-548. 
28. Cavasotto, C. N.; Orry, A. J., Ligand docking and structure-based virtual screening in drug 
discovery. Curr Top Med Chem 2007, 7, (10), 1006-14. 
29. Lyne, P. D., Structure-based virtual screening: an overview. Drug Discov Today 2002, 7, (20), 
1047-55. 
30. Kroemer, R. T., Structure-based drug design: docking and scoring. Curr Protein Pept Sci 2007, 
8, (4), 312-28. 
31. Sun, H., Pharmacophore-based virtual screening. Curr Med Chem 2008, 15, (10), 1018-24. 
32. Xue, L.; Godden, J. W.; Stahura, F. L.; Bajorath, J., Similarity search profiles as a diagnostic 
tool for the analysis of virtual screening calculations. J Chem Inf Comput Sci 2004, 44, (4), 1275-81. 
33. Guido, R. V.; Oliva, G.; Andricopulo, A. D., Virtual screening and its integration with modern 
drug design technologies. Curr Med Chem 2008, 15, (1), 37-46. 
34. Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, 
M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, 
M. S., A critical assessment of docking programs and scoring functions. J Med Chem 2006, 49, (20), 
5912-31. 
35. Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V.; Leach, A. R., Prediction of biological 
activity for high-throughput screening using binary kernel discrimination. J Chem Inf Comput Sci 2001, 
41, (5), 1295-300. 
36. Jorissen, R. N.; Gilson, M. K., Virtual screening of molecular databases using a support vector 
machine. J Chem Inf Model 2005, 45, (3), 549-61. 
37. Glick, M.; Jenkins, J. L.; Nettles, J. H.; Hitchings, H.; Davies, J. W., Enrichment of high-
throughput screening data with increasing levels of noise using support vector machines, recursive 
partitioning, and laplacian-modified naive bayesian classifiers. J Chem Inf Model 2006, 46, (1), 193-200. 
38. Li, H.; Ung, C. Y.; Yap, C. W.; Xue, Y.; Li, Z. R.; Chen, Y. Z., Prediction of estrogen receptor 
agonists and characterization of associated molecular descriptors by statistical learning methods. J Mol 
Graph Model 2006, 25, (3), 313-23. 
39. Lepp, Z.; Kinoshita, T.; Chuman, H., Screening for new antidepressant leads of multiple 
activities by support vector machines. J Chem Inf Model 2006, 46, (1), 158-67. 
40. Chen, B.; Harrison, R. F.; Papadatos, G.; Willett, P.; Wood, D. J.; Lewell, X. Q.; Greenidge, P.; 
Stiefl, N., Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided 
Mol Des 2007. 
41. Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A., New 
methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the 
effectiveness of similarity searching. J Chem Inf Model 2006, 46, (2), 462-70. 
42. Franke, L.; Byvatov, E.; Werz, O.; Steinhilber, D.; Schneider, P.; Schneider, G., Extraction and 
visualization of potential pharmacophore points using support vector machines: application to ligand-
based virtual screening for COX-2 inhibitors. J Med Chem 2005, 48, (22), 6997-7004. 
43. Ghosh, S.; Nie, A.; An, J.; Huang, Z., Structure-based virtual screening of chemical libraries for 
drug discovery. Curr Opin Chem Biol 2006, 10, (3), 194-202. 
44. Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J., Lead discovery using molecular docking. 
Curr Opin Chem Biol 2002, 6, (4), 439-46. 
45. Jansen, J. M.; Martin, E. J., Target-biased scoring approaches and expert systems in structure-
based virtual screening. Curr Opin Chem Biol 2004, 8, (4), 359-64. 
46. Mozziconacci, J. C.; Arnoult, E.; Bernard, P.; Do, Q. T.; Marot, C.; Morin-Allory, L., Optimization 
and validation of a docking-scoring protocol; application to virtual screening for COX-2 inhibitors. J Med 
Chem 2005, 48, (4), 1055-68. 
47. Vidal, D.; Thormann, M.; Pons, M., A novel search engine for virtual screening of very large 
databases. J Chem Inf Model 2006, 46, (2), 836-43. 
48. Cummings, M. D.; DesJarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P., Comparison of 
automated docking programs as virtual screening tools. J Med Chem 2005, 48, (4), 962-76. 



 

 146 

49. Evers, A.; Klabunde, T., Structure-based drug discovery using GPCR homology modeling: 
successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 2005, 48, 
(4), 1088-97. 
50. Lorber, D. M.; Shoichet, B. K., Hierarchical docking of databases of multiple ligand 
conformations. Curr Top Med Chem 2005, 5, (8), 739-49. 
51. Stiefl, N.; Zaliani, A., A knowledge-based weighting approach to ligand-based virtual screening. 
J Chem Inf Model 2006, 46, (2), 587-96. 
52. Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P., 
Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J Med 
Chem 2003, 46, (13), 2656-62. 
53. Doman, T. N.; McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.; Kurumbail, R.; Stallings, W. C.; 
Connolly, D. T.; Shoichet, B. K., Molecular docking and high-throughput screening for novel inhibitors of 
protein tyrosine phosphatase-1B. J Med Chem 2002, 45, (11), 2213-21. 
54. Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; Cao, Y.; Guo, R.; Li, B.; Zhu, X.; Huang, 
Y.; Long, Y. Q.; Roller, P. P.; Yang, D.; Wang, S., Discovery of small-molecule inhibitors of Bcl-2 
through structure-based computer screening. J Med Chem 2001, 44, (25), 4313-24. 
55. Oprea, T. I.; Matter, H., Integrating virtual screening in lead discovery. Curr Opin Chem Biol 
2004, 8, (4), 349-58. 
56. Bocker, A.; Schneider, G.; Teckentrup, A., NIPALSTREE: a new hierarchical clustering 
approach for large compound libraries and its application to virtual screening. J Chem Inf Model 2006, 
46, (6), 2220-9. 
57. Schuster, D.; Maurer, E. M.; Laggner, C.; Nashev, L. G.; Wilckens, T.; Langer, T.; Odermatt, A., 
The discovery of new 11beta-hydroxysteroid dehydrogenase type 1 inhibitors by common feature 
pharmacophore modeling and virtual screening. J Med Chem 2006, 49, (12), 3454-66. 
58. Steindl, T.; Laggner, C.; Langer, T., Human rhinovirus 3C protease: generation of 
pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening. 
J Chem Inf Model 2005, 45, (3), 716-24. 
59. H. Li, C. W. Y., C.Y. Ung, Y. Xue, Z.R. Li, L.Y. Han, H.H. Lin and Y.Z. Chen, Machine Learning 
Approaches for Predicting Compounds That Interact with Therapeutic and ADMET Related Proteins. J. 
Pharm. Sci. 2007, (accepted). 
60. Lepp, Z.; Kinoshita, T.; Chuman, H., Screening for new antidepressant leads of multiple 
activities by support vector machines. Journal of Chemical Information and Modeling. 2006, 46, (1), 158-
167. 
61. Li, H.; Yap, C. W.; Xue, Y.; Li, Z. R.; Ung, C. Y.; Han, L. Y.; Chen, Y. Z., Statistical learning 
approach for predicting specific pharmacodynamic, pharmacokinetic or toxicological properties of 
pharmaceutical agents. . Drug Development Research 2006, 66, (4), 245-259. 
62. Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.; Chen, Y. 
Z., A support vector machines approach for virtual screening of active compounds of single and multiple 
mechanisms from large libraries at an improved hit-rate and enrichment factor. J Mol Graph Model 2008, 
26, (8), 1276-86. 
63. Wilton, D. J.; Harrison, R. F.; Willett, P.; Delaney, J.; Lawson, K.; Mullier, G., Virtual screening 
using binary kernel discrimination: analysis of pesticide data. J Chem Inf Model 2006, 46, (2), 471-7. 
64. Chen, B.; Harrison, R. F.; Pasupa, K.; Willett, P.; Wilton, D. J.; Wood, D. J.; Lewell, X. Q., 
Virtual screening using binary kernel discrimination: effect of noisy training data and the optimization of 
performance. J Chem Inf Model 2006, 46, (2), 478-86. 
65. Alvarez, J. C., High-throughput docking as a source of novel drug leads. Curr Opin Chem Biol 
2004, 8, (4), 365-70. 
66. Schapira, M.; Raaka, B. M.; Das, S.; Fan, L.; Totrov, M.; Zhou, Z.; Wilson, S. R.; Abagyan, R.; 
Samuels, H. H., Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. 
Proc Natl Acad Sci U S A 2003, 100, (12), 7354-9. 
67. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Experimental and computational 
approaches to estimate solubility and permeability in drug discovery and development settings. Adv 
Drug Deliv Rev 2001, 46, (1-3), 3-26. 
68. Perola, E., Minimizing false positives in kinase virtual screens. Proteins 2006, 64, (2), 422-35. 
69. Pirard, B.; Brendel, J.; Peukert, S., The discovery of Kv1.5 blockers as a case study for the 
application of virtual screening approaches. J Chem Inf Model 2005, 45, (2), 477-85. 



 

 147 

70. Rella, M.; Rushworth, C. A.; Guy, J. L.; Turner, A. J.; Langer, T.; Jackson, R. M., Structure-
based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. 
J Chem Inf Model 2006, 46, (2), 708-16. 
71. Lipinski, C.; Hopkins, A., Navigating chemical space for biology and medicine. Nature 2004, 
432, (7019), 855-61. 
72. J. Cui, L. Y. H., H.H. Lin, H.L. Zhang, Z.Q. Tang, C.J. Zheng, Z.W. Cao, and Y.Z. Chen, 
Prediction of MHC-Binding Peptides of Flexible Lengths from Sequence-Derived Structural and 
Physicochemical Properties. Mol. Immunol 2007, 44, 866-877. 
73. Benz, R. D., Toxicological and clinical computational analysis and the US FDA/CDER. Expert 
Opin Drug Metab Toxicol 2007, 3, (1), 109-24. 
74. Matthews, E. J.; Contrera, J. F., A new highly specific method for predicting the carcinogenic 
potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Regul Toxicol 
Pharmacol 1998, 28, (3), 242-64. 
75. Contrera, J. F.; Matthews, E. J.; Daniel Benz, R., Predicting the carcinogenic potential of 
pharmaceuticals in rodents using molecular structural similarity and E-state indices. Regul Toxicol 
Pharmacol 2003, 38, (3), 243-59. 
76. Matthews, E. J.; Kruhlak, N. L.; Cimino, M. C.; Benz, R. D.; Contrera, J. F., An analysis of 
genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of 
genotoxicants, reprotoxicants, and carcinogens using in silico methods. Regul Toxicol Pharmacol 2006, 
44, (2), 97-110. 
77. Matthews, E. J.; Kruhlak, N. L.; Daniel Benz, R.; Ivanov, J.; Klopman, G.; Contrera, J. F., A 
comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction 
of QSAR models to predict activities of untested chemicals. Regul Toxicol Pharmacol 2007, 47, (2), 136-
55. 
78. Matthews, E. J.; Kruhlak, N. L.; Benz, R. D.; Contrera, J. F., Assessment of the health effects 
of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) 
and no effect level (NOEL) of organic chemicals based on clinical trial data. Curr Drug Discov Technol 
2004, 1, (1), 61-76. 
79. Contrera, J. F.; Matthews, E. J.; Kruhlak, N. L.; Benz, R. D., Estimating the safe starting dose 
in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum 
recommended daily dose. Regul Toxicol Pharmacol 2004, 40, (3), 185-206. 
80. Zmuidinavicius, D.; Japertas, P.; Petrauskas, A.; Didziapetris, R., Progress in toxinformatics: 
the challenge of predicting acute toxicity. Curr Top Med Chem 2003, 3, (11), 1301-14. 
81. Ebina, T.; Toh, H.; Kuroda, Y., Loop-length-dependent SVM prediction of domain linkers for 
high-throughput structural proteomics. Biopolymers 2009, 92, (1), 1-8. 
82. Klopman, G., The MultiCASE program II. Baseline activity identification algorithm (BAIA). J 
Chem Inf Comput Sci 1998, 38, (1), 78-81. 
83. Rosenkranz, H. S.; Cunningham, A. R.; Zhang, Y. P.; Claycamp, H. G.; Macina, O. T.; 
Sussman, N. B.; Grant, S. G.; Klopman, G., Development, characterization and application of predictive-
toxicology models. SAR QSAR Environ Res 1999, 10, (2-3), 277-98. 
84. Cunningham, A. R.; Klopman, G.; Rosenkranz, H. S., Identification of structural features and 
associated mechanisms of action for carcinogens in rats. Mutat Res 1998, 405, (1), 9-27. 
85. Cunningham, A. R.; Rosenkranz, H. S.; Zhang, Y. P.; Klopman, G., Identification of 'genotoxic' 
and 'non-genotoxic' alerts for cancer in mice: the carcinogenic potency database. Mutat Res 1998, 398, 
(1-2), 1-17. 
86. Greene, N., Computer systems for the prediction of toxicity: an update. Adv Drug Deliv Rev 
2002, 54, (3), 417-31. 
87. Greene, N.; Judson, P. N.; Langowski, J. J.; Marchant, C. A., Knowledge-based expert 
systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Environ Res 
1999, 10, (2-3), 299-314. 
88. Klopman, G.; Chakravarti, S. K.; Zhu, H.; Ivanov, J. M.; Saiakhov, R. D., ESP: a method to 
predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J Chem 
Inf Comput Sci 2004, 44, (2), 704-15. 
89. Leong, M. K.; Chen, T. H., Prediction of cytochrome P450 2B6-substrate interactions using 
pharmacophore ensemble/support vector machine (PhE/SVM) approach. Med Chem 2008, 4, (4), 396-
406. 



 

 148 

90. Shahlaei, M.; Fassihi, A.; Saghaie, L., Application of PC-ANN and PC-LS-SVM in QSAR of 
CCR1 antagonist compounds: a comparative study. Eur J Med Chem 45, (4), 1572-82. 
91. Mak, M. W.; Guo, J.; Kung, S. Y., PairProSVM: protein subcellular localization based on local 
pairwise profile alignment and SVM. IEEE/ACM Trans Comput Biol Bioinform 2008, 5, (3), 416-22. 
92. Roux, B.; Winters-Hilt, S., Hybrid MM/SVM structural sensors for stochastic sequential data. 
BMC Bioinformatics 2008, 9 Suppl 9, S12. 
93. Rapaport, F.; Barillot, E.; Vert, J. P., Classification of arrayCGH data using fused SVM. 
Bioinformatics 2008, 24, (13), i375-82. 
94. Zheng, G.; Qian, Z.; Yang, Q.; Wei, C.; Xie, L.; Zhu, Y.; Li, Y., The combination approach of 
SVM and ECOC for powerful identification and classification of transcription factor. BMC Bioinformatics 
2008, 9, 282. 
95. Kalita, M. K.; Nandal, U. K.; Pattnaik, A.; Sivalingam, A.; Ramasamy, G.; Kumar, M.; Raghava, 
G. P.; Gupta, D., CyclinPred: a SVM-based method for predicting cyclin protein sequences. PLoS One 
2008, 3, (7), e2605. 
96. Japertas, P.; Didziapetris, R.; Petrauskas, A., Fragmental methods in the analysis of biological 
activities of diverse compound sets. Mini Rev Med Chem 2003, 3, (8), 797-808. 
97. Seringhaus, M. R.; Gerstein, M. B., Publishing perishing? Towards tomorrow's information 
architecture. Bmc Bioinformatics 2007, 8, 17. 
98. Baumgartner, W. A., Jr.; Cohen, K. B.; Fox, L. M.; Acquaah-Mensah, G.; Hunter, L., Manual 
curation is not sufficient for annotation of genomic databases. Bioinformatics 2007, 23, (13), i41-8. 
99. Wheeler, D. L.; Barrett, T.; Benson, D. A.; Bryant, S. H.; Canese, K.; Chetvernin, V.; Church, D. 
M.; DiCuccio, M.; Edgar, R.; Federhen, S.; Geer, L. Y.; Helmberg, W.; Kapustin, Y.; Kenton, D. L.; 
Khovayko, O.; Lipman, D. J.; Madden, T. L.; Maglott, D. R.; Ostell, J.; Pruitt, K. D.; Schuler, G. D.; 
Schriml, L. M.; Sequeira, E.; Sherry, S. T.; Sirotkin, K.; Souvorov, A.; Starchenko, G.; Suzek, T. O.; 
Tatusov, R.; Tatusova, T. A.; Wagner, L.; Yaschenko, E., Database resources of the National Center for 
Biotechnology Information. Nucleic Acids Res 2006, 34, (Database issue), D173-80. 
100. Stephens, S. M.; Chen, J. Y.; Davidson, M. G.; Thomas, S.; Trute, B. M., Oracle Database 10g, 
a platform for BLAST search and Regular Expression pattern matching in life sciences. Nucleic Acids 
Res 2005, 33, (Database issue), D675-9. 
101. Scior, T.; Medina-Franco, J. L.; Do, Q. T.; Martinez-Mayorga, K.; Yunes Rojas, J. A.; Bernard, 
P., How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem 2009, 
16, (32), 4297-313. 
102. Perez, J. J., Managing molecular diversity. In Chemical Society Reviews, Royal Society of 
Chemistry: 2005; Vol. 34, pp 143-152. 
103. Willett, P.; Barnard, J. M.; Downs, G. M., Chemical Similarity Searching. J. Chem. Inf. Comput. 
Sci. 1998, 38, (6), 983-996. 
104. Fang, H.; Tong, W.; Shi, L. M.; Blair, R.; Perkins, R.; Branham, W.; Hass, B. S.; Xie, Q.; Dial, S. 
L.; Moland, C. L.; Sheehan, D. M., Structure-activity relationships for a large diverse set of natural, 
synthetic, and environmental estrogens. Chem Res Toxicol 2001, 14, (3), 280-94. 
105. Tong, W.; Xie, Q.; Hong, H.; Shi, L.; Fang, H.; Perkins, R., Assessment of prediction 
confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen 
receptor binding activity. Environ Health Perspect 2004, 112, (12), 1249-54. 
106. Hu, J. Y.; Aizawa, T., Quantitative structure-activity relationships for estrogen receptor binding 
affinity of phenolic chemicals. Water Res 2003, 37, (6), 1213-22. 
107. Jacobs, M. N., In silico tools to aid risk assessment of endocrine disrupting chemicals. 
Toxicology 2004, 205, (1-2), 43-53. 
108. Byvatov, E.; Fechner, U.; Sadowski, J.; Schneider, G., Comparison of support vector machine 
and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 2003, 43, 
(6), 1882-9. 
109. Doniger, S.; Hofmann, T.; Yeh, J., Predicting CNS permeability of drug molecules: comparison 
of neural network and support vector machine algorithms. J Comput Biol 2002, 9, (6), 849-64. 
110. He, L.; Jurs, P. C.; Custer, L. L.; Durham, S. K.; Pearl, G. M., Predicting the genotoxicity of 
polycyclic aromatic compounds from molecular structure with different classifiers. Chem Res Toxicol 
2003, 16, (12), 1567-80. 
111. Snyder, R. D.; Pearl, G. S.; Mandakas, G.; Choy, W. N.; Goodsaid, F.; Rosenblum, I. Y., 
Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the 
prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen 2004, 43, (3), 143-58. 



 

 149 

112. Xue, Y.; Li, Z. R.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z., Effect of molecular descriptor 
feature selection in support vector machine classification of pharmacokinetic and toxicological properties 
of chemical agents. J Chem Inf Comput Sci 2004, 44, (5), 1630-8. 
113. Yap, C. W.; Cai, C. Z.; Xue, Y.; Chen, Y. Z., Prediction of torsade-causing potential of drugs by 
support vector machine approach. Toxicol Sci 2004, 79, (1), 170-7. 
114. Yap, C. W.; Chen, Y. Z., Quantitative Structure-Pharmacokinetic Relationships for drug 
distribution properties by using general regression neural network. J Pharm Sci 2005, 94, (1), 153-68. 
115. Zernov, V. V.; Balakin, K. V.; Ivaschenko, A. A.; Savchuk, N. P.; Pletnev, I. V., Drug discovery 
using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme 
inhibition predictions. J Chem Inf Comput Sci 2003, 43, (6), 2048-56. 
116. Manku, S.; Allan, M.; Nguyen, N.; Ajamian, A.; Rodrigue, J.; Therrien, E.; Wang, J.; Guo, T.; 
Rahil, J.; Petschner, A. J.; Nicolescu, A.; Lefebvre, S.; Li, Z.; Fournel, M.; Besterman, J. M.; Deziel, R.; 
Wahhab, A., Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors. 
Bioorg Med Chem Lett 2009, 19, (7), 1866-70. 
117. Hall LH, K. G., Haney DN, Molconn-Z. eduSoft LC: Ashland VA: 2002. 
118. Yap, C. W.; Li, H.; Ji, Z. L.; Chen, Y. Z., Regression methods for developing QSAR and QSPR 
models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological 
properties. Mini Rev Med Chem 2007, 7, (11), 1097-107. 
119. Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E., The Chemistry 
Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics. J Chem Inf 
Comput Sci 2003, 43, (2), 493-500. 
120. Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L., Recent 
developments of the chemistry development kit (CDK) - an open-source java library for chemo- and 
bioinformatics. Curr Pharm Des 2006, 12, (17), 2111-20. 
121. Wegner, J. K. JOELib/JOELib2, Department of Computer Science,University of Tübingen: 
Germany, 2005. 
122. Hemmer, M. C.; Steinhauer, V.; Gasteiger, J., Deriving the 3D structure of organic molecules 
from their infrared spectra. Vibrational Spectroscopy 1999, 19, (1), 151-164. 
123. Rücker, G.; Rücker, C., Counts of all walks as atomic and molecular descriptors. Journal of 
Chemical Information and Computer Sciences 1993, 33, (5), 683-695. 
124. Schuur, J. H.; Setzer, P.; Gasteiger, J., The coding of the three-dimensional structure of 
molecules by molecular transforms and its application to structure-spectra correlations and studies of 
biological activity. Journal of Chemical Information and Computer Sciences 1996, 36, (2), 334-344. 
125. Pearlman, R. S.; Smith, K. M., Metric validation and the receptor-relevant subspace concept. 
Journal of Chemical Information and Computer Sciences 1999, 39, (1), 28-35. 
126. Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A., MS-WHIM, new 3D 
theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a 
series of steroids. Journal of Computer-Aided Molecular Design 1997, 11, (1), 79-92. 
127. Galvez, J.; Garcia, R.; Salabert, M. T.; Soler, R., Charge indexes. New topological descriptors. 
Journal of Chemical Information and Computer Sciences 1994, 34, (3), 520-525. 
128. Consonni, V.; Todeschini, R.; Pavan, M., Structure/Response correlations and 
similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. 
Journal of Chemical Information and Computer Sciences 2002, 42, (3), 682-692. 
129. Randic, M., Graph theoretical approach to local and overall aromaticity of benzenoid 
hydrocarbons. Tetrahedron 1975, 31, (11-12), 1477-1481. 
130. Randic, M., Molecular profiles. Novel geometry-dependent molecular descriptors. New Journal 
of Chemistry 1995, 19, 781-791. 
131. Kier, L. B.; Hall, L. H., Molecular structure description: The electrotopological state. Academic 
Press: San Diego, 1999. 
132. Platts, J. A.; Butina, D.; Abraham, M. H.; Hersey, A., Estimation of molecular free energy 
relation descriptors using a group contribution approach. Journal of Chemical Information and Computer 
Sciences 1999, 39, (5), 835-845. 
133. Ma, C. Y.; Yang, S. Y.; Zhang, H.; Xiang, M. L.; Huang, Q.; Wei, Y. Q., Prediction models of 
human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method. J 
Pharm Biomed Anal 2008, 47, (4-5), 677-82. 
134. Bai, P.; Xie, W. J.; Liu, J. H., [Method of infrared spectrum analysis of hydrocarbon mixed gas 
based on multilevel and SVM-subset]. Guang Pu Xue Yu Guang Pu Fen Xi 2008, 28, (2), 299-302. 



 

 150 

135. Mohebbi, M.; Ghassemian, H., Detection of atrial fibrillation episodes using SVM. Conf Proc 
IEEE Eng Med Biol Soc 2008, 2008, 177-80. 
136. Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J. F.; Chen, Y. Z., Prediction of P-
glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 2004, 44, (4), 
1497-505. 
137. Todeschini, R.; Consonni, V., Handbook of Molecular Descriptors. Wiley-VCH: Weinheim, 2000. 
138. Miller, K. J., Additive Methods in Molecular Polarizability. J. Am. Chem. Soc. 1990, 112, 8533-
8542. 
139. Schultz, H. P., Topological Organic Chemistry. 1. Graph Theory and  Topological Indices of 
Alkanes. J. Chem. Inf. Comput. Sci. 1989, 29, 227-228. 
140. Hall, L. H.; Kier, L. B., Electrotopological State Indices for Atom Types: A Novel Combination of 
Electronic, Topological and Valence State Information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039-1045. 
141. Dutta, D.; Guha, R.; Jurs, P. C.; Chen, T., Scalable partitioning and exploration of chemical 
spaces using geometric hashing. J Chem Inf Model 2006, 46, (1), 321-33. 
142. Parsons, H. M.; Ludwig, C.; Gunther, U. L.; Viant, M. R., Improved classification accuracy in 1- 
and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm 
transformation. BMC Bioinformatics 2007, 8, 234. 
143. van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J., 
Centering, scaling, and transformations: improving the biological information content of metabolomics 
data. BMC Genomics 2006, 7, 142. 
144. Vapnik, V. N., The nature of statistical learning theory. Springer: New York, 1995. 
145. Burges, C. J. C., A tutorial on support vector machines for pattern recognition. Data Mining and 
Knowledge Discovery 1998, 2, (2), 127-167. 
146. Pochet, N.; De Smet, F.; Suykens, J. A.; De Moor, B. L., Systematic benchmarking of 
microarray data classification: assessing the role of non-linearity and dimensionality reduction. 
Bioinformatics 2004, 20, 3185-3195. 
147. Li, F.; Yang, Y., Analysis of recursive gene selection approaches from microarray data. 
Bioinformatics 2005, 21, 3741-3747. 
148. Jorissen, R. N.; Gilson, M. K., Virtual screening of molecular databases using a support vector 
machine. J. Chem. Inf. Model 2005, 45, (3), 549-61. 
149. Glick, M.; Jenkins, J. L.; Nettles, J. H.; Hitchings, H.; Davies, J. W., Enrichment of high-
throughput screening data with increasing levels of noise using support vector machines, recursive 
partitioning, and laplacian-modified naive bayesian classifiers. J. Chem. Inf. Model 2006, 46, (1), 193-
200. 
150. Lepp, Z.; Kinoshita, T.; Chuman, H., Screening for new antidepressant leads of multiple 
activities by support vector machines. J. Chem. Inf. Model 2006, 46, (1), 158-67. 
151. Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A., New 
methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the 
effectiveness of similarity searching. J. Chem. Inf. Model 2006, 46, (2), 462-70. 
152. Yap, C. W.; Chen, Y. Z., Quantitative Structure-Pharmacokinetic Relationships for drug 
distribution properties by using general regression neural network. J. Pharm. Sci 2005, 94, (1), 153-68. 
153. Yap, C. W.; Chen, Y. Z., Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and 
substrates by using support vector machines. J. Chem. Inf. Model 2005, 45, (4), 982-92. 
154. Grover, I. I.; Singh, I. I.; Bakshi, I. I., Quantitative structure-property relationships in 
pharmaceutical research - Part 2. Pharm. Sci. Technol. Today 2000, 3, (2), 50-57. 
155. Trotter, M. W. B.; Buxton, B. F.; Holden, S. B., Support vector machines in combinatorial 
chemistry. Meas. Control 2001, 34, (8), 235-239. 
156. Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S., Drug design by machine learning: support 
vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26, (1), 5-14. 
157. Czerminski, R.; Yasri, A.; Hartsough, D., Use of support vector machine in pattern 
classification: Application to QSAR studies. Quantitative Structure-Activity Relationships 2001, 20, (3), 
227-240. 
158. Chang, C. C.; Lin, C. J. LIBSVM : a library for support vector 
machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm  
159. Johnson, R. A.; Wichern, D. W., Applied multivariate statistical analysis. Prentice Hall: 
Englewood Cliffs, NJ, 1982. 
160. Specht, D. F., Probabilistic neural networks. Neural Networks 1990, 3, (1), 109-118. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm�


 

 151 

161. Parzen, E., On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 
1065-1076. 
162. Cacoullos, T., Estimation of a multivariate density. Ann. I. Stat. Math. 1966, 18, 179-189. 
163. Willett, P., Chemical Similarity Searching. J. Chem. Inf. Comput. Sci 1998, 38, 983-996. 
164. Bostrom, J.; Hogner, A.; Schmitt, S., Do structurally similar ligands bind in a similar fashion? J. 
Med. Chem 2006, 49, (23), 6716-25. 
165. Huang, N.; Shoichet, B. K.; Irwin, J. J., Benchmarking sets for molecular docking. J. Med. 
Chem 2006, 49, (23), 6789-801. 
166. Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C. A. F.; Nielsen, H., Assessing the accuracy of 
prediction algorithms for classification: an overview. Bioinformatics 2000, 16, (5), 412-424. 
167. Ung, C. Y.; Li, H.; Yap, C. W.; Chen, Y. Z., In silico prediction of pregnane X receptor activators 
by machine learning approaches. Mol Pharmacol 2007, 71, (1), 158-68. 
168. Matthews, B., Comparison of the predicted and observed secondary structure of T4 phage 
lysozyme. Biochim Biophys Acta 1975, 405, (2), 442-51. 
169. Li, H.; Yap, C. W.; Ung, C. Y.; Xue, Y.; Li, Z. R.; Han, L. Y.; Lin, H. H.; Chen, Y. Z., Machine 
learning approaches for predicting compounds that interact with therapeutic and ADMET related 
proteins. J Pharm Sci 2007, 96, (11), 2838-60. 
170. Igor V. Tetko, D. J. L., Alexander I. Luik, Neural network studies. 1. Comparison of overfitting 
and overtraining. J. Chem. Inf. Comput. Sci. 1995, 35 (5), 826–833. 
171. Hawkins, D. M., The problem of overfitting. J Chem Inf Comput Sci 2004, 44, (1), 1-12. 
172. Chen, B.; Harrison, R. F.; Papadatos, G.; Willett, P.; Wood, D. J.; Lewell, X. Q.; Greenidge, P.; 
Stiefl, N., Evaluation of machine-learning methods for ligand-based virtual screening. J. Comput. Aided 
Mol. Des. 2007, 21, (1-3), 53-62. 
173. Franke, L.; Byvatov, E.; Werz, O.; Steinhilber, D.; Schneider, P.; Schneider, G., Extraction and 
visualization of potential pharmacophore points using support vector machines: application to ligand-
based virtual screening for COX-2 inhibitors. J. Med. Chem 2005, 48, (22), 6997-7004. 
174. Cai, C. Z.; Han, L. Y.; Ji, Z. L.; Chen, X.; Chen, Y. Z., SVM-Prot: Web-based support vector 
machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 
2003, 31, (13), 3692-7. 
175. Han, L. Y.; Cai, C. Z.; Ji, Z. L.; Cao, Z. W.; Cui, J.; Chen, Y. Z., Predicting functional family of 
novel enzymes irrespective of sequence similarity: a statistical learning approach. Nucleic Acids Res. 
2004, 32, (21), 6437-44. 
176. Lin, H. H.; Han, L. Y.; Cai, C. Z.; Ji, Z. L.; Chen, Y. Z., Prediction of transporter family from 
protein sequence by support vector machine approach. Proteins 2006, 62, (1), 218-31. 
177. Bocker, A.; Schneider, G.; Teckentrup, A., NIPALSTREE: a new hierarchical clustering 
approach for large compound libraries and its application to virtual screening. J. Chem. Inf. Model 2006, 
46, (6), 2220-9. 
178. Oprea, T. I.; Gottfries, J., Chemography: the art of navigating in chemical space. J. Comb. 
Chem 2001, 3, (2), 157-66. 
179. Xue, Y.; Yap, C. W.; Sun, L. Z.; Cao, Z. W.; Wang, J. F.; Chen, Y. Z., Prediction of P-
glycoprotein substrates by a support vector machine approach. J. Chem. Inf. Comput. Sci 2004, 44, (4), 
1497-505. 
180. Reymond, T. F. a. J.-L., Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, 
F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring 
Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery. J. 
Chem. Inf. Model. 2007, (published on Web 01/30/2007). 
181. Koch, M. A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; 
Waldmann, H., Charting biologically relevant chemical space: a structural classification of natural 
products (SCONP). Proc. Natl. Acad. Sci. U.S.A. 2005, 102, (48), 17272-7. 
182. Han, L. Y.; Zheng, C. J.; Xie, B.; Jia, J.; Ma, X. H.; Zhu, F.; Lin, H. H.; Chen, X.; Chen, Y. Z., 
Support vector machines approach for predicting druggable proteins: recent progress in its exploration 
and investigation of its usefulness. Drug Discov. Today 2007, 12, (7-8), 304-13. 
183. Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.; Chen, Y. 
Z., A support vector machines approach for virtual screening of active compounds of single and multiple 
mechanisms from large libraries at an improved hit-rate and enrichment factor. J. Mol. Graph. Model. 
2007, (accepted). 



 

 152 

184. Zambrowicz, B. P.; Sands, A. T., Knockouts model the 100 best-selling drugs--will they model 
the next 100? Nat Rev Drug Discov 2003, 2, (1), 38-51. 
185. Ohlstein, E. H.; Ruffolo, R. R., Jr.; Elliott, J. D., Drug discovery in the next millennium. Annu 
Rev Pharmacol Toxicol 2000, 40, 177-91. 
186. Lindsay, M. A., Target discovery. Nat Rev Drug Discov 2003, 2, (10), 831-8. 
187. Edwards, A., Large-scale structural biology of the human proteome. Annu Rev Biochem 2009, 
78, 541-68. 
188. Lundstrom, K., Structural genomics: the ultimate approach for rational drug design. Mol 
Biotechnol 2006, 34, (2), 205-12. 
189. Kramer, R.; Cohen, D., Functional genomics to new drug targets. Nat Rev Drug Discov 2004, 3, 
(11), 965-72. 
190. Hopkins, A. L., Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 
2008, 4, (11), 682-90. 
191. Dey, R.; Khan, S.; Saha, B., A novel functional approach toward identifying definitive drug 
targets. Curr Med Chem 2007, 14, (22), 2380-92. 
192. Giallourakis, C.; Henson, C.; Reich, M.; Xie, X.; Mootha, V. K., Disease gene discovery through 
integrative genomics. Annu Rev Genomics Hum Genet 2005, 6, 381-406. 
193. Zimmermann, G. R.; Lehar, J.; Keith, C. T., Multi-target therapeutics: when the whole is greater 
than the sum of the parts. Drug Discov Today 2007, 12, (1-2), 34-42. 
194. Jia, J.; Zhu, F.; Ma, X.; Cao, Z.; Li, Y.; Chen, Y. Z., Mechanisms of drug combinations: 
interaction and network perspectives. Nat Rev Drug Discov 2009, 8, (2), 111-28. 
195. Liebler, D. C.; Guengerich, F. P., Elucidating mechanisms of drug-induced toxicity. Nat Rev 
Drug Discov 2005, 4, (5), 410-20. 
196. Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W. E., Pharmacogenomics and individualized 
drug therapy. Annu Rev Med 2006, 57, 119-37. 
197. Han, L. Y.; Zheng, C. J.; Xie, B.; Jia, J.; Ma, X. H.; Zhu, F.; Lin, H. H.; Chen, X.; Chen, Y. Z., 
Support vector machines approach for predicting druggable proteins: recent progress in its exploration 
and investigation of its usefulness. Drug Discov Today 2007, 12, (7-8), 304-13. 
198. Barcellos, G. B.; Pauli, I.; Caceres, R. A.; Timmers, L. F.; Dias, R.; de Azevedo, W. F., Jr., 
Molecular modeling as a tool for drug discovery. Curr Drug Targets 2008, 9, (12), 1084-91. 
199. Lee, G. M.; Craik, C. S., Trapping moving targets with small molecules. Science 2009, 324, 
(5924), 213-5. 
200. Zhu, F.; Han, L.; Zheng, C.; Xie, B.; Tammi, M. T.; Yang, S.; Wei, Y.; Chen, Y., What are next 
generation innovative therapeutic targets? Clues from genetic, structural, physicochemical, and systems 
profiles of successful targets. J Pharmacol Exp Ther 2009, 330, (1), 304-15. 
201. Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; 
Hassanali, M., DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 
2008, 36, (Database issue), D901-6. 
202. Gao, Z.; Li, H.; Zhang, H.; Liu, X.; Kang, L.; Luo, X.; Zhu, W.; Chen, K.; Wang, X.; Jiang, H., 
PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 2008, 9, 
104. 
203. Chen, X.; Ji, Z. L.; Chen, Y. Z., TTD: Therapeutic Target Database. Nucleic Acids Res 2002, 
30, (1), 412-5. 
204. Chen, X.; Lin, Y.; Liu, M.; Gilson, M. K., The Binding Database: data management and 
interface design. Bioinformatics 2002, 18, (1), 130-9. 
205. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K., BindingDB: a web-accessible database 
of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007, 35, (Database 
issue), D198-201. 
206. Wishart, D. S.; Knox, C.; Guo, A. C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; 
Woolsey, J., DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic 
Acids Res 2006, 34, (Database issue), D668-72. 
207. Calipel, A.; Lefevre, G.; Pouponnot, C.; Mouriaux, F.; Eychene, A.; Mascarelli, F., Mutation of 
B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the 
MEK/ERK pathway. J Biol Chem 2003, 278, (43), 42409-18. 
208. Yildirim, M. A.; Goh, K. I.; Cusick, M. E.; Barabasi, A. L.; Vidal, M., Drug-target network. Nat 
Biotechnol 2007, 25, (10), 1119-26. 



 

 153 

209. Tolkovsky, A. M.; Levitzki, A., Theories and predictions of models describing sequential 
interactions between the receptor, the GTP regulatory unit, and the catalytic unit of hormone dependent 
adenylate cyclases. J Cyclic Nucleotide Res 1981, 7, (3), 139-50. 
210. Bhalla, U. S., Biochemical signaling networks decode temporal patterns of synaptic input. J 
Comput Neurosci 2002, 13, (1), 49-62. 
211. Perona, R., Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 
2006, 8, (2), 77-82. 
212. Lerdrup, M.; Hommelgaard, A. M.; Grandal, M.; van Deurs, B., Geldanamycin stimulates 
internalization of ErbB2 in a proteasome-dependent way. J Cell Sci 2006, 119, (Pt 1), 85-95. 
213. Orton, R. J.; Sturm, O. E.; Vyshemirsky, V.; Calder, M.; Gilbert, D. R.; Kolch, W., 
Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 2005, 
392, (Pt 2), 249-61. 
214. Brightman, F. A.; Fell, D. A., Differential feedback regulation of the MAPK cascade underlies 
the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 2000, 482, (3), 169-74. 
215. Kholodenko, B. N.; Demin, O. V.; Moehren, G.; Hoek, J. B., Quantification of short term 
signaling by the epidermal growth factor receptor. J Biol Chem 1999, 274, (42), 30169-81. 
216. Hiratzka, L. F.; Bakris, G. L.; Beckman, J. A.; Bersin, R. M.; Carr, V. F.; Casey, D. E., Jr.; Eagle, 
K. A.; Hermann, L. K.; Isselbacher, E. M.; Kazerooni, E. A.; Kouchoukos, N. T.; Lytle, B. W.; Milewicz, D. 
M.; Reich, D. L.; Sen, S.; Shinn, J. A.; Svensson, L. G.; Williams, D. M., 2010 
ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of 
patients with thoracic aortic disease. A Report of the American College of Cardiology 
Foundation/American Heart Association Task Force on Practice Guidelines, American Association for 
Thoracic Surgery, American College of Radiology,American Stroke Association, Society of 
Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of 
Interventional Radiology, Society of Thoracic Surgeons,and Society for Vascular Medicine. J Am Coll 
Cardiol 55, (14), e27-e129. 
217. Schoeberl, B.; Eichler-Jonsson, C.; Gilles, E. D.; Muller, G., Computational modeling of the 
dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat 
Biotechnol 2002, 20, (4), 370-5. 
218. Sasagawa, S.; Ozaki, Y.; Fujita, K.; Kuroda, S., Prediction and validation of the distinct 
dynamics of transient and sustained ERK activation. Nat Cell Biol 2005, 7, (4), 365-73. 
219. Dhillon, A. S.; Hagan, S.; Rath, O.; Kolch, W., MAP kinase signalling pathways in cancer. 
Oncogene 2007, 26, (22), 3279-90. 
220. Kraunz, K. S.; Nelson, H. H.; Liu, M.; Wiencke, J. K.; Kelsey, K. T., Interaction between the 
bone morphogenetic proteins and Ras/MAP-kinase signalling pathways in lung cancer. Br J Cancer 
2005, 93, (8), 949-52. 
221. Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., 
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids 
Res 1997, 25, (17), 3389-402. 
222. Ma, X. H.; Wang, R.; Yang, S. Y.; Li, Z. R.; Xue, Y.; Wei, Y. C.; Low, B. C.; Chen, Y. Z., 
Evaluation of virtual screening performance of support vector machines trained by sparsely distributed 
active compounds. J Chem Inf Model 2008, 48, (6), 1227-37. 
223. Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A., Genetic algorithm optimization in drug 
design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized 
support vectors machines (GA-SVM). Mol Divers. 
224. George, R. A.; Heringa, J., Protein domain identification and improved sequence similarity 
searching using PSI-BLAST. Proteins 2002, 48, (4), 672-81. 
225. Gerstein, M., Measurement of the effectiveness of transitive sequence comparison, through a 
third 'intermediate' sequence. Bioinformatics 1998, 14, (8), 707-14. 
226. Wood, T. C.; Pearson, W. R., Evolution of protein sequences and structures. J Mol Biol 1999, 
291, (4), 977-95. 
227. Koehl, P.; Levitt, M., Sequence variations within protein families are linearly related to structural 
variations. J Mol Biol 2002, 323, (3), 551-62. 
228. Li, Z. R.; Han, L. Y.; Xue, Y.; Yap, C. W.; Li, H.; Jiang, L.; Chen, Y. Z., MODEL-molecular 
descriptor lab: a web-based server for computing structural and physicochemical features of compounds. 
Biotechnol Bioeng 2007, 97, (2), 389-96. 



 

 154 

229. Hazlehurst, L. A.; Bewry, N. N.; Nair, R. R.; Pinilla-Ibarz, J., Signaling networks associated with 
BCR-ABL-dependent transformation. Cancer Control 2009, 16, (2), 100-7. 
230. Weisberg, E.; Manley, P. W.; Cowan-Jacob, S. W.; Hochhaus, A.; Griffin, J. D., Second 
generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat 
Rev Cancer 2007, 7, (5), 345-56. 
231. Gill, A. L.; Verdonk, M.; Boyle, R. G.; Taylor, R., A comparison of physicochemical property 
profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical 
development. Curr Top Med Chem 2007, 7, (14), 1408-22. 
232. Quintas-Cardama, A.; Kantarjian, H.; Cortes, J., Flying under the radar: the new wave of BCR-
ABL inhibitors. Nat Rev Drug Discov 2007, 6, (10), 834-48. 
233. Cao, J.; Fine, R.; Gritzen, C.; Hood, J.; Kang, X.; Klebansky, B.; Lohse, D.; Mak, C. C.; 
McPherson, A.; Noronha, G.; Palanki, M. S.; Pathak, V. P.; Renick, J.; Soll, R.; Zeng, B.; Zhu, H., The 
design and preliminary structure-activity relationship studies of benzotriazines as potent inhibitors of Abl 
and Abl-T315I enzymes. Bioorg Med Chem Lett 2007, 17, (21), 5812-8. 
234. Manetti, F.; Falchi, F.; Crespan, E.; Schenone, S.; Maga, G.; Botta, M., N-(thiazol-2-yl)-2-
thiophene carboxamide derivatives as Abl inhibitors identified by a pharmacophore-based database 
screening of commercially available compounds. Bioorg Med Chem Lett 2008, 18, (15), 4328-31. 
235. Falchi, F.; Manetti, F.; Carraro, F.; Naldini, A.; Maga, G.; Crespan, E.; Schenone, S.; Bruno, O.; 
Brullo, C.; Botta, M., 3D QSAR Models Built on Structure-Based Alignments of Abl Tyrosine Kinase 
Inhibitors. ChemMedChem 2009. 
236. Aronov, A. M.; Bemis, G. W., A minimalist approach to fragment-based ligand design using 
common rings and linkers: application to kinase inhibitors. Proteins 2004, 57, (1), 36-50. 
237. Peng, H.; Huang, N.; Qi, J.; Xie, P.; Xu, C.; Wang, J.; Yang, C., Identification of novel inhibitors 
of BCR-ABL tyrosine kinase via virtual screening. Bioorg Med Chem Lett 2003, 13, (21), 3693-9. 
238. Schenone, S.; Brullo, C.; Bruno, O.; Bondavalli, F.; Mosti, L.; Maga, G.; Crespan, E.; Carraro, 
F.; Manetti, F.; Tintori, C.; Botta, M., Synthesis, biological evaluation and docking studies of 4-amino 
substituted 1H-pyrazolo[3,4-d]pyrimidines. Eur J Med Chem 2008, 43, (12), 2665-76. 
239. Thaimattam, R.; Daga, P. R.; Banerjee, R.; Iqbal, J., 3D-QSAR studies on c-Src kinase 
inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Bioorg Med 
Chem 2005, 13, (15), 4704-12. 
240. Manetti, F.; Locatelli, G. A.; Maga, G.; Schenone, S.; Modugno, M.; Forli, S.; Corelli, F.; Botta, 
M., A combination of docking/dynamics simulations and pharmacophoric modeling to discover new dual 
c-Src/Abl kinase inhibitors. J Med Chem 2006, 49, (11), 3278-86. 
241. Ghosh, S.; Nie, A.; An, J.; Huang, Z., Structure-based virtual screening of chemical libraries for 
drug discovery. Curr. Opin. Chem. Biol 2006, 10, (3), 194-202. 
242. Li, H.; Yap, C. W.; Ung, C. Y.; Xue, Y.; Li, Z. R.; Han, L. Y.; Lin, H. H.; Chen, Y. Z., Machine 
learning approaches for predicting compounds that interact with therapeutic and ADMET related 
proteins. J. Pharm. Sci 2007, 96, (11), 2838-60. 
243. Verdonk, M. L.; Berdini, V.; Hartshorn, M. J.; Mooij, W. T.; Murray, C. W.; Taylor, R. D.; Watson, 
P., Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 
2004, 44, (3), 793-806. 
244. Mayer, D.; Leisch, F.; Hornik, K., The support vector machine under test. Neurocomputing 
2003, 55, (1-2), 169-186. 
245. McBride, C. M.; Renhowe, P. A.; Gesner, T. G.; Jansen, J. M.; Lin, J.; Ma, S.; Zhou, Y.; Shafer, 
C. M., 3-Benzimidazol-2-yl-1H-indazoles as potent c-ABL inhibitors. Bioorg Med Chem Lett 2006, 16, 
(14), 3789-92. 
246. Traxler, P.; Bold, G.; Frei, J.; Lang, M.; Lydon, N.; Mett, H.; Buchdunger, E.; Meyer, T.; Mueller, 
M.; Furet, P., Use of a pharmacophore model for the design of EGF-R tyrosine kinase inhibitors: 4-
(phenylamino)pyrazolo[3,4-d]pyrimidines. J Med Chem 1997, 40, (22), 3601-16. 
247. Wang, Y.; Shakespeare, W. C.; Huang, W. S.; Sundaramoorthi, R.; Lentini, S.; Das, S.; Liu, S.; 
Banda, G.; Wen, D.; Zhu, X.; Xu, Q.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y.; Snodgrass, J. T.; 
Broudy, M. I.; Russian, K.; Dalgarno, D.; Clackson, T.; Sawyer, T. K., Novel N9-arenethenyl purines as 
potent dual Src/Abl tyrosine kinase inhibitors. Bioorg Med Chem Lett 2008, 18, (17), 4907-12. 
248. Keseru, G. M.; Makara, G. M., The influence of lead discovery strategies on the properties of 
drug candidates. Nat Rev Drug Discov 2009, 8, (3), 203-12. 
249. Keseru, G. M.; Makara, G. M., Hit discovery and hit-to-lead approaches. Drug Discov Today 
2006, 11, (15-16), 741-8. 



 

 155 

250. Chen, B.; Harrison, R. F.; Papadatos, G.; Willett, P.; Wood, D. J.; Lewell, X. Q.; Greenidge, P.; 
Stiefl, N., Evaluation of machine-learning methods for ligand-based virtual screening. J Comput Aided 
Mol Des 2007, 21, (1-3), 53-62. 
251. Liew, C. Y.; Ma, X. H.; Liu, X.; Yap, C. W., SVM Model for Virtual Screening of Lck Inhibitors. J 
Chem Inf Model 2009. 
252. Briem, H.; Gunther, J., Classifying "kinase inhibitor-likeness" by using machine-learning 
methods. Chembiochem 2005, 6, (3), 558-66. 
253. Kollmar, N.; Lakomek, M.; Kuhnle, I., Zygomycosis in a 13 year old girl with T-NHL. Klin Padiatr 
2009, 221, (6), 382-3. 
254. Paniagua, R. T.; Sharpe, O.; Ho, P. P.; Chan, S. M.; Chang, A.; Higgins, J. P.; Tomooka, B. H.; 
Thomas, F. M.; Song, J. J.; Goodman, S. B.; Lee, D. M.; Genovese, M. C.; Utz, P. J.; Steinman, L.; 
Robinson, W. H., Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of 
autoimmune arthritis. J Clin Invest 2006, 116, (10), 2633-42. 
255. Yamane, S.; Ishida, S.; Hanamoto, Y.; Kumagai, K.; Masuda, R.; Tanaka, K.; Shiobara, N.; 
Yamane, N.; Mori, T.; Juji, T.; Fukui, N.; Itoh, T.; Ochi, T.; Suzuki, R., Proinflammatory role of 
amphiregulin, an epidermal growth factor family member whose expression is augmented in rheumatoid 
arthritis patients. J Inflamm (Lond) 2008, 5, 5. 
256. Carvalho, J. F.; Blank, M.; Shoenfeld, Y., Vascular endothelial growth factor (VEGF) in 
autoimmune diseases. J Clin Immunol 2007, 27, (3), 246-56. 
257. Daouti, S.; Latario, B.; Nagulapalli, S.; Buxton, F.; Uziel-Fusi, S.; Chirn, G. W.; Bodian, D.; 
Song, C.; Labow, M.; Lotz, M.; Quintavalla, J.; Kumar, C., Development of comprehensive functional 
genomic screens to identify novel mediators of osteoarthritis. Osteoarthritis Cartilage 2005, 13, (6), 508-
18. 
258. Remmers, E. F.; Sano, H.; Wilder, R. L., Platelet-derived growth factors and heparin-binding 
(fibroblast) growth factors in the synovial tissue pathology of rheumatoid arthritis. Semin Arthritis Rheum 
1991, 21, (3), 191-9. 
259. Meyn, M. A., 3rd; Smithgall, T. E., Small molecule inhibitors of Lck: the search for specificity 
within a kinase family. Mini Rev Med Chem 2008, 8, (6), 628-37. 
260. Vidal, D.; Thormann, M.; Pons, M., A novel search engine for virtual screening of very large 
databases. J. Chem. Inf. Model 2006, 46, (2), 836-43. 
261. Stiefl, N.; Zaliani, A., A knowledge-based weighting approach to ligand-based virtual screening. 
J. Chem. Inf. Model 2006, 46, (2), 587-96. 
262. Rella, M.; Rushworth, C. A.; Guy, J. L.; Turner, A. J.; Langer, T.; Jackson, R. M., Structure-
based pharmacophore design and virtual screening for novel angiotensin converting enzyme 2 inhibitors. 
J. Chem. Inf. Model 2006, 46, (2), 708-16. 
263. Bolden, J. E.; Peart, M. J.; Johnstone, R. W., Anticancer activities of histone deacetylase 
inhibitors. Nat Rev Drug Discov 2006, 5, (9), 769-84. 
264. Lee, M. J.; Kim, Y. S.; Kummar, S.; Giaccone, G.; Trepel, J. B., Histone deacetylase inhibitors 
in cancer therapy. Curr Opin Oncol 2008, 20, (6), 639-49. 
265. Suzuki, T.; Miyata, N., Rational design of non-hydroxamate histone deacetylase inhibitors. Mini 
Rev Med Chem 2006, 6, (5), 515-26. 
266. Suzuki, T.; Miyata, N., Non-hydroxamate histone deacetylase inhibitors. Curr Med Chem 2005, 
12, (24), 2867-80. 
267. Bouchain, G.; Delorme, D., Novel hydroxamate and anilide derivatives as potent histone 
deacetylase inhibitors: synthesis and antiproliferative evaluation. Curr Med Chem 2003, 10, (22), 2359-
72. 
268. Curtin, M.; Glaser, K., Histone deacetylase inhibitors: the Abbott experience. Curr Med Chem 
2003, 10, (22), 2373-92. 
269. Hahnen, E.; Eyupoglu, I. Y.; Brichta, L.; Haastert, K.; Trankle, C.; Siebzehnrubl, F. A.; 
Riessland, M.; Holker, I.; Claus, P.; Romstock, J.; Buslei, R.; Wirth, B.; Blumcke, I., In vitro and ex vivo 
evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular 
atrophy. J Neurochem 2006, 98, (1), 193-202. 
270. Karagiannis, T. C.; El-Osta, A., Will broad-spectrum histone deacetylase inhibitors be 
superseded by more specific compounds? Leukemia 2007, 21, (1), 61-5. 
271. Kozikowski, A. P.; Chen, Y.; Gaysin, A. M.; Savoy, D. N.; Billadeau, D. D.; Kim, K. H., 
Chemistry, biology, and QSAR studies of substituted biaryl hydroxamates and mercaptoacetamides as 



 

 156 

HDAC inhibitors-nanomolar-potency inhibitors of pancreatic cancer cell growth. ChemMedChem 2008, 3, 
(3), 487-501. 
272. Wittich, S.; Scherf, H.; Xie, C.; Brosch, G.; Loidl, P.; Gerhauser, C.; Jung, M., Structure-activity 
relationships on phenylalanine-containing inhibitors of histone deacetylase: in vitro enzyme inhibition, 
induction of differentiation, and inhibition of proliferation in Friend leukemic cells. J Med Chem 2002, 45, 
(15), 3296-309. 
273. Xie, A.; Liao, C.; Li, Z.; Ning, Z.; Hu, W.; Lu, X.; Shi, L.; Zhou, J., Quantitative structure-activity 
relationship study of histone deacetylase inhibitors. Curr Med Chem Anticancer Agents 2004, 4, (3), 
273-99. 
274. Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Ragno, R.; Bottoni, P.; Scatena, R.; Loidl, P.; 
Brosch, G., 3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamides as a new class of synthetic 
histone deacetylase inhibitors. 2. Effect of pyrrole-C2 and/or -C4 substitutions on biological activity. J 
Med Chem 2004, 47, (5), 1098-109. 
275. Tang, H.; Wang, X. S.; Huang, X. P.; Roth, B. L.; Butler, K. V.; Kozikowski, A. P.; Jung, M.; 
Tropsha, A., Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of 
known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 2009, 49, (2), 461-76. 
276. Ragno, R.; Simeoni, S.; Rotili, D.; Caroli, A.; Botta, G.; Brosch, G.; Massa, S.; Mai, A., Class II-
selective histone deacetylase inhibitors. Part 2: alignment-independent GRIND 3-D QSAR, homology 
and docking studies. Eur J Med Chem 2008, 43, (3), 621-32. 
277. Wagh, N. K.; Deokar, H. S.; Juvale, D. C.; Kadam, S. S.; Kulkarni, V. M., 3D-QSAR of histone 
deacetylase inhibitors as anticancer agents by genetic function approximation. Indian J Biochem 
Biophys 2006, 43, (6), 360-71. 
278. Juvale, D. C.; Kulkarni, V. V.; Deokar, H. S.; Wagh, N. K.; Padhye, S. B.; Kulkarni, V. M., 3D-
QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem 2006, 4, (15), 2858-
68. 
279. Ragno, R.; Simeoni, S.; Valente, S.; Massa, S.; Mai, A., 3-D QSAR studies on histone 
deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds. J Chem Inf Model 
2006, 46, (3), 1420-30. 
280. Guo, Y.; Xiao, J.; Guo, Z.; Chu, F.; Cheng, Y.; Wu, S., Exploration of a binding mode of indole 
amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem 
2005, 13, (18), 5424-34. 
281. Chen, Y.; Li, H.; Tang, W.; Zhu, C.; Jiang, Y.; Zou, J.; Yu, Q.; You, Q., 3D-QSAR studies of 
HDACs inhibitors using pharmacophore-based alignment. Eur J Med Chem 2009, 44, (7), 2868-76. 
282. Vadivelan, S.; Sinha, B. N.; Rambabu, G.; Boppana, K.; Jagarlapudi, S. A., Pharmacophore 
modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new 
leads. J Mol Graph Model 2008, 26, (6), 935-46. 
283. Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; 
Loidl, P.; Brosch, G., 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of 
synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-based 
drug design and docking studies. J Med Chem 2004, 47, (6), 1351-9. 
284. Mai, A.; Massa, S.; Ragno, R.; Cerbara, I.; Jesacher, F.; Loidl, P.; Brosch, G., 3-(4-Aroyl-1-
methyl-1H-2-pyrrolyl)-N-hydroxy-2-alkylamides as a new class of synthetic histone deacetylase 
inhibitors. 1. Design, synthesis, biological evaluation, and binding mode studies performed through three 
different docking procedures. J Med Chem 2003, 46, (4), 512-24. 
285. Wang, D. F.; Helquist, P.; Wiech, N. L.; Wiest, O., Toward selective histone deacetylase 
inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human 
class I histone deacetylases. J Med Chem 2005, 48, (22), 6936-47. 
286. Mai, A.; Valente, S.; Nebbioso, A.; Simeoni, S.; Ragno, R.; Massa, S.; Brosch, G.; De Bellis, F.; 
Manzo, F.; Altucci, L., New pyrrole-based histone deacetylase inhibitors: binding mode, enzyme- and 
cell-based investigations. Int J Biochem Cell Biol 2009, 41, (1), 235-47. 
287. Park, H.; Lee, S., Homology modeling, force field design, and free energy simulation studies to 
optimize the activities of histone deacetylase inhibitors. J Comput Aided Mol Des 2004, 18, (6), 375-88. 
288. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, 
R.; Pavletich, N. P., Structures of a histone deacetylase homologue bound to the TSA and SAHA 
inhibitors. Nature 1999, 401, (6749), 188-93. 
289. Gramatica, P., Principles of QSAR models validation: internal and external. QSAR & 
Combinatorial Science 2007, 26, (5), 694--701. 



 

 157 

290. Parker, Christian N.; Bajorath, J., Towards Unified Compound Screening Strategies: A Critical 
Evaluation of Error Sources in Experimental and Virtual High-Throughput Screening. QSAR \& 
Combinatorial Science 2006, 25, (12), 1153--1161. 
291. Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.; Chen, Y. 
Z., A support vector machines approach for virtual screening of active compounds of single and multiple 
mechanisms from large libraries at an improved hit-rate and enrichment factor. Journal of Molecular 
Graphics and Modelling 2008, 26, (8), 1276--1286. 
292. Ma, X. H.; Wang, R.; Yang, S. Y.; Li, Z. R.; Xue, Y.; Wei, Y. C.; Low, B. C.; Chen, Y. Z., 
Evaluation of Virtual Screening Performance of Support Vector Machines Trained by Sparsely 
Distributed Active Compounds. J. Chem. Inf. Model. 2008, 48, (6), 1227-1237. 
293. H. Li, C. W. Y., C.Y. Ung, Y. Xue, Z.R. Li, L.Y. Han, H.H. Lin, Y.Z. Chen,, Machine learning 
approaches for predicting compounds that interact with therapeutic and ADMET related proteins. 
Journal of Pharmaceutical Sciences 2007, 96, (11), 2838-2860. 
294. Ramalingam, S.; Forster, J.; Naret, C.; Evans, T.; Sulecki, M.; Lu, H.; Teegarden, P.; Weber, M. 
R.; Belani, C. P., Dual inhibition of the epidermal growth factor receptor with cetuximab, an IgG1 
monoclonal antibody, and gefitinib, a tyrosine kinase inhibitor, in patients with refractory non-small cell 
lung cancer (NSCLC): a phase I study. J Thorac Oncol 2008, 3, (3), 258-64. 
295. Nishida, K.; Komiyama, T.; Miyazawa, S.; Shen, Z. N.; Furumatsu, T.; Doi, H.; Yoshida, A.; 
Yamana, J.; Yamamura, M.; Ninomiya, Y.; Inoue, H.; Asahara, H., Histone deacetylase inhibitor 
suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) 
expression. Arthritis Rheum 2004, 50, (10), 3365-76. 
296. Morinobu, A.; Wang, B.; Liu, J.; Yoshiya, S.; Kurosaka, M.; Kumagai, S., Trichostatin A 
cooperates with Fas-mediated signal to induce apoptosis in rheumatoid arthritis synovial fibroblasts. J 
Rheumatol 2006, 33, (6), 1052-60. 
297. Grabiec, A. M.; Tak, P. P.; Reedquist, K. A., Targeting histone deacetylase activity in 
rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? 
Arthritis Res Ther 2008, 10, (5), 226. 
298. Choi, J. H.; Oh, S. W.; Kang, M. S.; Kwon, H. J.; Oh, G. T.; Kim, D. Y., Trichostatin A 
attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 2005, 35, (1), 89-96. 
299. Wahhab, A.; Smil, D.; Ajamian, A.; Allan, M.; Chantigny, Y.; Therrien, E.; Nguyen, N.; Manku, 
S.; Leit, S.; Rahil, J.; Petschner, A. J.; Lu, A. H.; Nicolescu, A.; Lefebvre, S.; Montcalm, S.; Fournel, M.; 
Yan, T. P.; Li, Z.; Besterman, J. M.; Deziel, R., Sulfamides as novel histone deacetylase inhibitors. 
Bioorg Med Chem Lett 2009, 19, (2), 336-40. 
300. Lu, Q.; Lin, X.; Feng, J.; Zhao, X.; Gallagher, R.; Lee, M. Y.; Chiao, J. W.; Liu, D., Phenylhexyl 
isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can 
inhibit myeloma cell growth by targeting critical pathways. J Hematol Oncol 2008, 1, 6. 
301. Puerta, D. T.; Griffin, M. O.; Lewis, J. A.; Romero-Perez, D.; Garcia, R.; Villarreal, F. J.; Cohen, 
S. M., Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: 
potency, toxicity, and reactivity. J Biol Inorg Chem 2006, 11, (2), 131-8. 
302. Yan, Y. L.; Miller, M. T.; Cao, Y.; Cohen, S. M., Synthesis of hydroxypyrone- and 
hydroxythiopyrone-based matrix metalloproteinase inhibitors: Developing a structure-activity relationship. 
Bioorg Med Chem Lett 2009. 
303. Agrawal, A.; de Oliveira, C. A.; Cheng, Y.; Jacobsen, J. A.; McCammon, J. A.; Cohen, S. M., 
Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal 
factor. J Med Chem 2009, 52, (4), 1063-74. 
304. Son, I. H.; Chung, I. M.; Lee, S. I.; Yang, H. D.; Moon, H. I., Pomiferin, histone deacetylase 
inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 2007, 17, (17), 4753-5. 
305. Wang, S. H.; Wang, S. F.; Xuan, W.; Zeng, Z. H.; Jin, J. Y.; Ma, J.; Tian, G. R., Nitro as a novel 
zinc-binding group in the inhibition of carboxypeptidase A. Bioorg Med Chem 2008, 16, (7), 3596-601. 
306. Sheppeck, J. E., 2nd; Gilmore, J. L.; Tebben, A.; Xue, C. B.; Liu, R. Q.; Decicco, C. P.; Duan, J. 
J., Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis 
factor-alpha converting enzyme (TACE). Bioorg Med Chem Lett 2007, 17, (10), 2769-74. 
307. Sheppeck, J. E., 2nd; Tebben, A.; Gilmore, J. L.; Yang, A.; Wasserman, Z. R.; Decicco, C. P.; 
Duan, J. J., A molecular modeling analysis of novel non-hydroxamate inhibitors of TACE. Bioorg Med 
Chem Lett 2007, 17, (5), 1408-12. 
308. Jacobsen, F. E.; Lewis, J. A.; Cohen, S. M., A new role for old ligands: discerning chelators for 
zinc metalloproteinases. J Am Chem Soc 2006, 128, (10), 3156-7. 



 

 158 

309. Manku, S.; Allan, M.; Nguyen, N.; Ajamian, A.; Rodrigue, J.; Therrien, E.; Wang, J.; Guo, T.; 
Rahil, J.; Petschner, A. J.; Nicolescu, A.; Lefebvre, S.; Li, Z.; Fournel, M.; Besterman, J. M.; Deziel, R.; 
Wahhab, A., Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors. 
Bioorg Med Chem Lett 2009. 
310. Montero, A.; Beierle, J. M.; Olsen, C. A.; Ghadiri, M. R., Design, Synthesis, Biological 
Evaluation, and Structural Characterization of Potent Histone Deacetylase Inhibitors Based on Cyclic 
alpha/beta-Tetrapeptide Architectures. J Am Chem Soc 2009, 131, (8), 3033-41. 
311. Colletti, S. L.; Myers, R. W.; Darkin-Rattray, S. J.; Gurnett, A. M.; Dulski, P. M.; Galuska, S.; 
Allocco, J. J.; Ayer, M. B.; Li, C.; Lim, J.; Crumley, T. M.; Cannova, C.; Schmatz, D. M.; Wyvratt, M. J.; 
Fisher, M. H.; Meinke, P. T., Broad spectrum antiprotozoal agents that inhibit histone deacetylase: 
structure-activity relationships of apicidin. Part 1. Bioorg Med Chem Lett 2001, 11, (2), 107-11. 
312. Eikel, D.; Lampen, A.; Nau, H., Teratogenic effects mediated by inhibition of histone 
deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. 
Chem Res Toxicol 2006, 19, (2), 272-8. 
313. Jones, P.; Steinkuhler, C., From natural products to small molecule ketone histone deacetylase 
inhibitors: development of new class specific agents. Curr Pharm Des 2008, 14, (6), 545-61. 
314. Horne, W. S.; Olsen, C. A.; Beierle, J. M.; Montero, A.; Ghadiri, M. R., Probing the bioactive 
conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous 
triazole-modified cyclic tetrapeptides. Angew Chem Int Ed Engl 2009, 48, (26), 4718-24. 
315. Ying, Y.; Taori, K.; Kim, H.; Hong, J.; Luesch, H., Total synthesis and molecular target of 
largazole, a histone deacetylase inhibitor. J Am Chem Soc 2008, 130, (26), 8455-9. 
316. Shindoh, N.; Mori, M.; Terada, Y.; Oda, K.; Amino, N.; Kita, A.; Taniguchi, M.; Sohda, K. Y.; 
Nagai, K.; Sowa, Y.; Masuoka, Y.; Orita, M.; Sasamata, M.; Matsushime, H.; Furuichi, K.; Sakai, T., 
YM753, a novel histone deacetylase inhibitor, exhibits antitumor activity with selective, sustained 
accumulation of acetylated histones in tumors in the WiDr xenograft model. Int J Oncol 2008, 32, (3), 
545-55. 
317. Jones, P.; Altamura, S.; Chakravarty, P. K.; Cecchetti, O.; De Francesco, R.; Gallinari, P.; 
Ingenito, R.; Meinke, P. T.; Petrocchi, A.; Rowley, M.; Scarpelli, R.; Serafini, S.; Steinkuhler, C., A series 
of novel, potent, and selective histone deacetylase inhibitors. Bioorg Med Chem Lett 2006, 16, (23), 
5948-52. 
318. Zhang, H.; Chen, Q. Y.; Xiang, M. L.; Ma, C. Y.; Huang, Q.; Yang, S. Y., In silico prediction of 
mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 2009, 23, (1), 134-40. 
319. Jain, P.; Wadhwa, P.; Aygun, R.; Podila, G., Vector-G: multi-modular SVM-based 
heterotrimeric G protein prediction. In Silico Biol 2008, 8, (2), 141-55. 
320. Oprea, T. I.; Bologa, C. G.; Edwards, B. S.; Prossnitz, E. R.; Sklar, L. A., Post-high-throughput 
screening analysis: an empirical compound prioritization scheme. J Biomol Screen 2005, 10, (5), 419-26. 
321. Rishton, G. M., Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov 
Today 2003, 8, (2), 86-96. 
322. Schultz, T. W.; Seward, J. R., Health-effects related structure-toxicity relationships: a paradigm 
for the first decade of the new millennium. Sci Total Environ 2000, 249, (1-3), 73-84. 
323. Hansch, C.; Kurup, A.; Garg, R.; Gao, H., Chem-bioinformatics and QSAR: a review of QSAR 
lacking positive hydrophobic terms. Chem Rev 2001, 101, (3), 619-72. 
324. Lipnick, R. L., Outliers: their origin and use in the classification of molecular mechanisms of 
toxicity. Sci Total Environ 1991, 109-110, 131-53. 
325. Eldred, D. V.; Weikel, C. L.; Jurs, P. C.; Kaiser, K. L., Prediction of fathead minnow acute 
toxicity of organic compounds from molecular structure. Chem Res Toxicol 1999, 12, (7), 670-8. 
326. Kaiser, K. L.; Niculescu, S. P., Using probabilistic neural networks to model the toxicity of 
chemicals to the fathead minnow (Pimephales promelas): a study based on 865 compounds. 
Chemosphere 1999, 38, (14), 3237-45. 
327. Enslein, K.; Lander, T. R.; Tomb, M. E.; Craig, P. N., A predictive model for estimating rat oral 
LD50 values. Toxicol Ind Health 1989, 5, (2), 261-387. 
328. Zmuidinavicius, D.; Didziapetris, R.; Japertas, P.; Avdeef, A.; Petrauskas, A., Classification 
structure-activity relations (C-SAR) in prediction of human intestinal absorption. J Pharm Sci 2003, 92, 
(3), 621-33. 
329. Dong, X.; Liu, Y.; Yan, J.; Jiang, C.; Chen, J.; Liu, T.; Hu, Y., Identification of SVM-based 
classification model, synthesis and evaluation of prenylated flavonoids as vasorelaxant agents. Bioorg 
Med Chem 2008, 16, (17), 8151-60. 



 

 159 

330. Tunkel, J.; Mayo, K.; Austin, C.; Hickerson, A.; Howard, P., Practical considerations on the use 
of predictive models for regulatory purposes. Environ Sci Technol 2005, 39, (7), 2188-99. 
331. Hunter, W. J.; Lingk, W.; Recht, P., Intercomparison study on the determination of single 
administration toxicity in rats. J Assoc Off Anal Chem 1979, 62, (4), 864-73. 
332. Cai, C.; Xiao, H.; Yuan, Q.; Liu, X.; Wen, Y., Function prediction for DNA-/RNA-binding proteins, 
GPCRs, and drug ADME-associated proteins by SVM. Protein Pept Lett 2008, 15, (5), 463-8. 
333. Dehghan, F.; Abrishami-Moghaddam, H.; Giti, M., Automatic detection of clustered 
microcalcifications in digital mammograms: Study on applying adaboost with SVM-based component 
classifiers. Conf Proc IEEE Eng Med Biol Soc 2008, 2008, 4789-92. 
334. Boik, J. C.; Newman, R. A., Structure-activity models of oral clearance, cytotoxicity, and LD50: 
a screen for promising anticancer compounds. BMC Pharmacol 2008, 8, 12. 
335. Devillers, J.; Devillers, H., Prediction of acute mammalian toxicity from QSARs and 
interspecies correlations. SAR QSAR Environ Res 2009, 20, (5-6), 467-500. 
336. Bulgheroni, A.; Kinsner-Ovaskainen, A.; Hoffmann, S.; Hartung, T.; Prieto, P., Estimation of 
acute oral toxicity using the No Observed Adverse Effect Level (NOAEL) from the 28 day repeated dose 
toxicity studies in rats. Regul Toxicol Pharmacol 2009, 53, (1), 16-9. 
337. Kitagaki, M.; Wakuri, S.; Hirota, M.; Tanaka, N.; Itagaki, H., Sirc-cvs cytotoxicity test: an 
alternative for predicting rodent acute systemic toxicity. J Toxicol Sci 2006, 31, (4), 371-9. 
338. Dierickx, P. J., Evidence for delayed cytotoxicity effects following exposure of rat hepatoma-
derived Fa32 cells: implications for predicting human acute toxicity. Toxicol In Vitro 2003, 17, (5-6), 797-
801. 
339. Oliveira, P. P., Jr.; Nitrini, R.; Busatto, G.; Buchpiguel, C.; Sato, J. R.; Amaro, E., Jr., Use of 
SVM methods with surface-based cortical and volumetric subcortical measurements to detect 
Alzheimer's disease. J Alzheimers Dis 19, (4), 1263-72. 
340. Wang, Z., A hybrid SVM-GLM approach for fMRI data analysis. Neuroimage 2009, 46, (3), 608-
15. 
341. Moradi, M.; Abolmaesumi, P.; Siemens, D. R.; Sauerbrei, E. E.; Boag, A. H.; Mousavi, P., 
Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time 
series. IEEE Trans Biomed Eng 2009, 56, (9), 2214-24. 
342. Zhang, H.; Xiang, M. L.; Ma, C. Y.; Huang, Q.; Li, W.; Xie, Y.; Wei, Y. Q.; Yang, S. Y., Three-
class classification models of logS and logP derived by using GA-CG-SVM approach. Mol Divers 2009, 
13, (2), 261-8. 
343. Mao, Y.; Saito, M.; Kanno, T.; Wei, D.; Muroi, H., Walking pattern analysis and SVM 
classification based on simulated gaits. Conf Proc IEEE Eng Med Biol Soc 2008, 2008, 5069-72. 
344. Kalsum, H. U.; Shah, Z. A.; Othman, R. M.; Hassan, R.; Rahim, S. M.; Asmuni, H.; Taliba, J.; 
Zakaria, Z., SPlitSSI-SVM: an algorithm to reduce the misleading and increase the strength of domain 
signal. Comput Biol Med 2009, 39, (11), 1013-9. 
345. Ji, Y. B., Pharmacological Action and Application of Available Antitumor Composition of 
Traditional Chinese Medicine. 1998. 
346. Ji, Y. B., Pharmacological Action and Application of Blood-activating and Stasis-elimination 
Available Composition of Traditional Chinese Medicine. 1999. 
347. Kumar, M.; Raghava, G. P., Prediction of nuclear proteins using SVM and HMM models. BMC 
Bioinformatics 2009, 10, 22. 
348. Barile, F. A.; Cardona, M., Acute cytotoxicity testing with cultured human lung and dermal cells. 
In Vitro Cell Dev Biol Anim 1998, 34, (8), 631-5. 
349. Evans, S. M.; Casartelli, A.; Herreros, E.; Minnick, D. T.; Day, C.; George, E.; Westmoreland, 
C., Development of a high throughput in vitro toxicity screen predictive of high acute in vivo toxic 
potential. Toxicol In Vitro 2001, 15, (4-5), 579-84. 
350. Wang, K.; Shindoh, H.; Inoue, T.; Horii, I., Advantages of in vitro cytotoxicity testing by using 
primary rat hepatocytes in comparison with established cell lines. J Toxicol Sci 2002, 27, (3), 229-37. 
351. Halle, W., The Registry of Cytotoxicity: toxicity testing in cell cultures to predict acute toxicity 
(LD50) and to reduce testing in animals. Altern Lab Anim 2003, 31, (2), 89-198. 
352. Ekwall, B., Screening of toxic compounds in mammalian cell cultures. Ann N Y Acad Sci 1983, 
407, 64-77. 
353. Kinsner-Ovaskainen, A.; Bulgheroni, A.; Hartung, T.; Prieto, P., ECVAM's ongoing activities in 
the area of acute oral toxicity. Toxicol In Vitro 2009, 23, (8), 1535-40. 



 

 160 

354. Kneuer, C.; Lakoma, C.; Honscha, W., Prediction of acute toxicity in HPCT-1E3 hepatocytoma 
cells with liver-like transport activities. Altern Lab Anim 2007, 35, (4), 411-20. 
355. Luber-Narod, J.; Smith, B.; Grant, W.; Jimeno, J. M.; Lopez-Lazaro, L.; Faircloth, G. T., 
Evaluation of the use of in vitro methodologies as tools for screening new compounds for potential in 
vivo toxicity. Toxicol In Vitro 2001, 15, (4-5), 571-7. 
356. Barile, F. A.; Dierickx, P. J.; Kristen, U., In vitro cytotoxicity testing for prediction of acute 
human toxicity. Cell Biol Toxicol 1994, 10, (3), 155-62. 
357. Combes, R.; Grindon, C.; Cronin, M. T.; Roberts, D. W.; Garrod, J. F., Integrated decision-tree 
testing strategies for acute systemic toxicity and toxicokinetics with respect to the requirements of the 
EU REACH legislation. Altern Lab Anim 2008, 36, (1), 45-63. 
358. Gennari, A.; van den Berghe, C.; Casati, S.; Castell, J.; Clemedson, C.; Coecke, S.; Colombo, 
A.; Curren, R.; Dal Negro, G.; Goldberg, A.; Gosmore, C.; Hartung, T.; Langezaal, I.; Lessigiarska, I.; 
Maas, W.; Mangelsdorf, I.; Parchment, R.; Prieto, P.; Sintes, J. R.; Ryan, M.; Schmuck, G.; Stitzel, K.; 
Stokes, W.; Vericat, J. A.; Gribaldo, L., Strategies to replace in vivo acute systemic toxicity testing. The 
report and recommendations of ECVAM Workshop 50. Altern Lab Anim 2004, 32, (4), 437-59. 
359. Walum, E., Acute oral toxicity. Environ Health Perspect 1998, 106 Suppl 2, 497-503. 
360. Clemedson, C., The European ACuteTox project: a modern integrative in vitro approach to 
better prediction of acute toxicity. Clin Pharmacol Ther 2008, 84, (2), 200-2. 
361. Clemedson, C.; Blaauboer, B.; Castell, J.; Prieto, P.; Risteli, L.; Vericat, J. A.; Wendel, A., 
ACuteTox - Optimation and Pre-validation of an In Vitro Test Strategy for Predicting Human Acute 
Toxicity. ALTEX 2006, 23 Suppl, 254-8. 
362. Clemedson, C.; Kolman, A.; Forsby, A., The integrated acute systemic toxicity project 
(ACuteTox) for the optimisation and validation of alternative in vitro tests. Altern Lab Anim 2007, 35, (1), 
33-8. 
363. Knight, A. W.; Little, S.; Houck, K.; Dix, D.; Judson, R.; Richard, A.; McCarroll, N.; Akerman, G.; 
Yang, C.; Birrell, L.; Walmsley, R. M., Evaluation of high-throughput genotoxicity assays used in profiling 
the US EPA ToxCast chemicals. Regul Toxicol Pharmacol 2009, 55, (2), 188-99. 
364. Dix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, R. W.; Kavlock, R. J., The 
ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 2007, 95, (1), 5-
12. 
 



 

 161 

LIST OF PUBLICATIONS 

A. Publication relating to research work from the current thesis 

1. Prediction of Acute toxicity of Chemical Compounds by Machine Learning 

Methods. X. H. Liu

2. Update of TTD: Therapeutic Target Database. F. Zhu, B.C. Han, P. 

Kumar, 

, X.H.Ma, Y.Z. Chen (Submitted)  

X.H. Liu

3. Information of Drug Activity Database. 

, X.H. Ma, X.N. Wei, L. Huang, Y.F. Guo, L.Y. Han, C.J. 

Zheng, Y.Z. Chen. Nucleic Acids Res. 2010 Jan;38(Database issue):D787-91. 

Epub 2009 Nov 20. PMID: 19933260 

X.H. Liu

4. Prediction of Potential Organocatalysts for Direct Aldol Reactions through a 

Virtual Screening Approach. 

, F. Zhu, B.C. Han, Y.Z. 

Chen. (Under  preparation for publication) 

X. H. Liu

5. Identification of Novel Type Zinc Binding Groups and non-hydroxamate 

HDAC inhibitors through a SVM Based Virtual Screening Approach. 

, X.H. Ma, Y.Z. Chen. Journal of 

Molecular Catalysis A: Chemical 319, Issues 1-2, 17 March 2010, Pages 114-

118  

X. H. 

Liu

6. Virtual Screening of Abl Inhibitors from Large Compound Libraries by 

Support Vector Machines. 

, X.H.Ma, Y.Z. Chen Molecular Informatics 2010, 29, 2-15 

X.H. Liu

B. Publication from other projects not include in the current thesis 

, X.H. Ma, C.Y. Tan, Y.Y. Jiang, M.L. Go, 

B.C. Low and Y.Z. Chen. J Chem Info Model 49(9):2101-10(2009). PMID: 

19689138 

7. SVM model for virtual screening of Lck inhibitors.  C.Y. Liew, X.H. Ma, X.H. 

Liu

8. Prediction of Factor Xa Inhibitors by Machine Learning Methods. H.H Lin, 

L.Y. Han, C.W. Yap, Y. Xue, 

, C.W. Yap.  J Chem Inf Model. 49(4):877-85(2009). PMID: 19267483 

X.H. Liu

9. Genome-Scale Search of Tumor-Specific Antigens by Collective Analysis of 

Mutations, Expressions and T-Cell Recognition. J. Jia, Cui. J., 

, F. Zhu, and Y.Z Chen. J. Mol. Graph. 

Mod. 26(2):505-518 (2007) PMID: 17418603 

X. H. Liu, J. H. 



 

 162 

Han, S. Y. Yang, Y. Q. Wei, and Y. Z. Chen. Mol Immunol. 46:1824-

1829(2009). PMID: 19243822 

10. Identification of Small Molecule Aggregators from Large Compound Libraries 

by Support Vector Machines. H.B. Rao, Z.R. Li, X.Y. Li, X.H. Ma, C.Y. Ung, 

H. Li, X.H. Liu J Comput Chem and Y.Z. Chen.  2010 Mar;31(4):752-63. 
PMID: 19569201 

11. Pathway sensitivity analysis for detecting pro-proliferation activities of 

oncogenes and tumor suppressors of EGFR-ERK pathway at altered protein 

levels H. Li, C. Y. Ung, X. H. Ma, X. H. Liu

12. Prediction of Genotoxicity of Chemical Compounds by Machine Learning 

Methods. Pankaj, Kumar, 

, B. W. Li, B. C. Low and Y. Z. 

Chen. Cancer. 15(18):4246-4263(2009). PMID: 19551902 

X. H. Liu

 

, X.H.Ma, Y.Z. Chen (Submitted)  

http://www3.interscience.wiley.com/journal/33822/home�

	Acknowledgements
	Table of Contents
	Summary
	List of Tables
	Chapter 1 Introduction
	1.1 Cheminformatics and bioinformatics in drug discovery
	1.2 Database development in drug discovery
	1.3 Virtual screening of pharmaceutical agents
	1.4 Classification of acute toxicity of pharmaceutical agents
	1.5 Objectives and outline

	Chapter 2 Methods
	2.1 Database development
	2.1.1 Data collection
	2.1.2 Data Integration
	2.1.3 Database interface
	2.1.4 Applications
	2.1.5 Database Development of TTD and IDAD

	2.2 Datasets
	2.2.1 Quality analysis
	2.2.2 Determination of structural diversity

	2.3 Molecular descriptors
	2.3.1 Types of molecular descriptors
	2.3.2 Scaling

	2.4 Statistical learning methods
	2.4.1 Support vector machines method
	2.4.2 K-nearest neighbor method
	2.4.3 PNN method
	2.4.4 Tanimoto similarity searching method

	2.5 Statistical learning methods model optimization, validation and performance evaluation
	2.5.1 Model validation and parameters optimization
	2.5.2 Performance evaluation methods
	2.5.3 Overfitting

	2.6 Machine learning classification based virtual screening platform
	2.6.1 Generation of putative negatives and building of SVM based virtual screening system
	2.6.2 Discussions SVM based virtual screening system


	Chapter 3 Update of TTD and Development of IDAD
	3.1 Introduction to TTD and IDAD
	3.1.1 Introduction to TTD and current problems
	3.1.2 The objective of update TTD and building IDAD

	3.2 Update of TTD
	3.2.1 Update on target and validation of primary target
	3.2.2 Chemistry information for the TTD database
	3.2.3 Target and drug data collection and access
	3.2.4 Database function enhancements
	3.2.4.1. Target similarity searching
	3.2.4.2. Drug similarity searching


	3.3 The development of  IDAD database
	3.3.1 The data collection of related information
	3.3.2 The construction of IDAD database
	3.3.3 The interface of the IDAD database

	3.4 Statistic analysis of therapeutic targets
	3.5 Conclusion

	Chapter 4 Virtual Screening of Abl Inhibitors from Large Compound Libraries
	4.1 Introduction
	4.2 Materials
	4.3 Results and discussion
	4.3.1 Performance of SVM identification of Abl inhibitors based on 5-fold cross validation test
	4.3.2 Virtual screening performance of SVM in searching Abl inhibitors from large compound libraries
	4.3.3 Evaluation of SVM identified MDDR virtual-hits
	4.3.4 Comparison of virtual screening performance of SVM with those of other virtual screening methods
	4.3.5 Does SVM select Abl inhibitors or membership of compound families?

	4.4 Conclusion

	Chapter 5 Identifying Novel Type ZBGs and Non-hydroxamate HDAC Inhibitors through a SVM Based Virtual Screening Approach
	5.1 Introduction
	5.2 Materials
	5.3 Results and discussions
	5.3.1 5-fold cross validation test
	5.3.2 Virtual screening performance in searching HDAC inhibitors from large compound libraries
	5.3.3 Evaluation of SVM identified MDDR virtual-hits
	5.3.4 Evaluation of the predicted zinc binding groups of SVM virtual hits
	5.3.5 Evaluation of the predicted tetra-peptide cap of SVM virtual hits
	5.3.6 Does SVM select HDAC inhibitors based on compound families or substructure?

	5.4 Conclusions

	Chapter 6 Development of a SVM Based Acute Toxicity Classification System Based On in vivo LD50 data
	6.1 Introduction
	6.2 Materials
	6.2.1 Collection of acute toxicity compounds
	6.2.2 Pre-processing of dataset
	6.2.3 Positive and negative datasets
	6.2.4 Independent testing datasets

	6.3 Results and discussion
	6.3.1 Overall prediction accuracies
	6.3.2 Descriptors important for SVM
	6.3.3 In vitro assays
	6.3.4 LD50 classification and drug discovery

	6.4 Conclusion

	Chapter 7 Concluding Remarks
	7.1 Findings and merits
	7.2 Limitations
	7.3 Suggestions for future studies

	BIBLIOGRAPHY
	LIST OF PUBLICATIONS

