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Summary

This thesis addresses two related Stochastic Local Search (SLS) engineering problems:

the Design and Tuning Problem (DTP). The SLS DTP can be informally defined

as a meta-level problem of finding a good SLS algorithm which has been tuned for

a given class of Combinatorial Optimization Problems (COP). The problem, which

this thesis addresses, is a systematic methodology for dealing with SLS DTP which is

effective for obtaining better performing SLS algorithms.

Current approaches to address SLS DTP can be classified into white-box: analysis

of the SLS algorithm and/or the COP being attacked; or black-box: automated tuning

algorithms that aim to get the best SLS configuration given an initial configuration set.

These existing approaches have their strengths and limitations, yet they do not solve

the SLS DTP well enough.

A novel contribution of this thesis is a generic white-box Fitness Landscape

Search Trajectory (FLST) visualization. This visualization is designed to allows the

algorithm designers to investigate the n-dimensional fitness landscape structure of the

COP being analyzed in 2-D. There are obviously visualization errors by using 2-D to

show n-dimensional fitness landscape. However, we are able to quantify the errors and

provide mechanism for users to identify the errors. We show in this thesis that even

with such inherent visualization errors issue with this FLST visualization, the users can

still use it to develop insights on what should be a good search strategy for exploring the

given fitness landscape, as well as to observe how his current SLS algorithm behaves on

that fitness landscape. This enables the algorithm designer to design the SLS algorithm

in a more intuitive manner than existing white-box approaches.

The resulting SLS algorithm still needs to be fine-tuned, and we propose an In-

tegrated White+Black Box Approach (IWBBA) in which we first start with the

white-box FLST visualization above, improve the SLS algorithm, and then pass the

implementation of the SLS algorithm to be fine-tuned using black-box approaches,

stepping up its performance more. The insights gained from the previous white-box

step will likely have pruned the possible configuration set, easing and indirectly im-

proving the performance of the black-box tuning algorithm.

To implement this integrated approach, we have built an SLS visualization and

engineering tool called Viz. We have successfully applied IWBBA using Viz to develop

and improve several SLS algorithms from the literature: Iterated Local Search (ILS) for

the Traveling Salesman Problem (TSP), Robust Tabu Search (Ro-TS) for the Quadratic

Assignment Problem, and most notably: Tabu Search (TS) for the Low Autocorrelation

Binary Sequence (LABS) problem where we obtained state-of-the-art results.

v
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Chapter 1

Introduction

A journey of a thousand miles must begin with a single step.

— Lao Tzu

In this introductory chapter, we present the motivation that inspires the research in this thesis

and the summary of our contributions to this field.

1.1 The SLS Design and Tuning Problem

In this thesis, the difficult computational problems that we are dealing with belong

to the class of NP-complete Combinatorial Optimization Problems (COPs1).

Here, we are interested to find the best out of (extremely) many possible combinatorial

solutions of a given COP. The ‘best’ is defined by the user’s objective function.

COPs are found in many practical applications (see Appendix A) and thus solving

these COPs efficiently is a necessity. The most näıve algorithm to solve COPs is to

enumerate all possible solutions and simply pick the best (optimal) one. However, these

näıve enumeration algorithms are impractical, rendering any attempts for solving these

COPs using them ineffective especially for large instances.

Solving NP-complete COPs (Section 2.2 - 2.3)

Computer scientists have devised various exact algorithms that are better than the

näıve enumeration algorithms. One example of such exact algorithms is the ‘Branch &

Bound’ algorithm. Notwithstanding their capabilities, these exact algorithms still run

into the computational intractability limits of such problem.

Mainly due to this computational intractability, people resort to non-exact algo-

rithms for solving large COP instances. These non-exact algorithms sacrifice the guar-

1This abbreviation can also stand for Constraint Optimization Problem. In this thesis, we associate
the term COP with Combinatorial Optimization Problem, where the solutions are discrete.
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antee of finding an optimal solution in order to find ‘good enough’ solutions in a rea-

sonable computation time.

In the last few decades, a form of such non-exact algorithms called Stochastic Local

Search (SLS) algorithms emerged as potential tools for solving COPs. Basically, SLS

algorithms search the potential combinatorial solutions by iteratively modifying parts

of the solution. SLS algorithms do not guarantee the optimality of the solutions but

they turn out to be effective in practice.

The Meta-Level SLS Design and Tuning Problem (DTP) (Section 3.1 - 3.4)

Creating a simple SLS algorithm for a given COP is often easy. All one needs to do

is to instantiate certain SLS components, set some parameters with (usually) default

values, and run the algorithm on a set of COP instances. This process has been further

simplified by using software frameworks or class libraries2.

However, to engineer the SLS algorithm to perform well is difficult. An SLS algo-

rithm is a success if its implementation can obtain acceptable quality solutions over a

given set of COP instances and do so in a reasonable amount of time. Only in this

sense an SLS algorithm is said to edge out exact algorithms for a given COP in practical

cases.

The challenge: The performance of SLS algorithms for solving a given NP-complete

COP depends on many usually correlated factors. Different COPs or even instances of

the same COP often require customized and holistic configuration of the SLS algorithm

(set of search parameters, components, and search strategies) so that it performs well.

Otherwise, the SLS algorithm performance is just ‘average’ or even ‘poor’. Most of the

time, we cannot just use the off-the-shelf SLS algorithm as its initial performance is so

poor and must be redesigned to better suit the COP at hand. This is what we call the

SLS Design and Tuning Problem (DTP).

It is not easy to address the SLS DTP as there are many things about the SLS

algorithms or the COPs that are not well understood yet. Some algorithm designers,

influenced by their past knowledge and experiences, resort to a trial-and-error approach

through some ‘random’ experiments – which is tedious, or through well designed exper-

iments (better but still laborious). Others created ‘parameterless’ SLS algorithms, in

which the algorithms will self-adjust during the search. While this self-correcting (a.k.a

reactive) strategy is interesting, it is not trivial to come up with a good reactive strat-

egy every time. From an engineering perspective, many of these traditional approaches

are not productive especially against a backdrop of tight development schedules.

The SLS DTP is naturally faced by every algorithm designer whenever he develops

an SLS algorithm for a given COP. Typically, tackling the SLS DTP constitutes the

bulk of SLS algorithm development time. Thus, if we have a better way to address this

important issue, we can save a lot of time in building a sophisticated SLS algorithm

implementation given a COP.

2As a note, we have built one such SLS software framework in the past: MDF [85, 84].
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Addressing the SLS Design and Tuning Problem (Section 3.5.1 - 3.5.3)

To date, there are several researchers working on various parts of this SLS DTP issue.

We classify their works into two parts: black-box or white-box approaches.

Black-box approaches are tuning algorithms for automatically configuring SLS al-

gorithms. These tuning algorithms explore the configuration space and return the best

found configuration within limited tuning time. This is an obvious improvement over

manual trial-and-error as the computer is the one doing the tedious work. These tuning

algorithms typically employ some experimental design techniques such that potentially

promising configurations are tried more thoroughly.

On the other hand, white-box approaches are methodologies, techniques, or tools

that are created to assist algorithm designers in designing better SLS algorithms by

opening up the ‘box’ (examine the details of SLS algorithm behavior). This offers

insights on the inner working of the SLS algorithm which can inspire the algorithm

designers in coming up with good search strategies, in choosing appropriate SLS com-

ponents, or in reducing the potential domain sizes of the parameter values.

Previously, no single approach is clearly superior to address all types and aspects of

SLS DTP. Black-box approaches are simple to apply, but will not help if the best con-

figuration is ‘outside the box’ of the initial configuration space. White-box approaches

can empower the algorithm designer to get insights on the search process, which is

necessary for designing a better search strategy, but are less effective for fine-tuning.

1.2 Our Contributions

To tackle this SLS DTP, we propose a collaboration strategy between the human3

and the computer. This collaboration is possible because the human (e.g. with his

intelligence, visual perception abilities, common sense, etc) and the computer (e.g.

with its speed, consistency, endurance, etc) complement each other. This promising

collaboration is used in two ways. First, we utilize information visualization as the

bridging interface between the human and the computer to form a novel white-box SLS

visualization. Second, the individual strengths of human and computer in white-box

and black-box approaches, respectively, are combined in an integrated approach.

Fitness Landscape Search Trajectory (FLST) Visualization (Chapter 4)

Our novel visualization interface for SLS white-box analysis is a visualization of a COP

fitness landscape and the SLS trajectories on it. It is known in the literature that the

fitness landscape structure of a COP instance affects the behavior of an SLS algorithm

that is searching over it. To design an effective SLS algorithm for a particular COP, a

preliminary fitness landscape analysis of various instances of the COP should be done.

However, even the fitness landscape of a moderate-size COP instance is already too

big (exponential size) to be exhaustively explored. Various analytical metrics currently

3The terms ‘human’, ‘one’, ‘he’, ‘user’, or ‘algorithm designer’ are interchangeable. We use the term
‘he’ rather than ‘he/she’ to refer to third person for simplicity.
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available are inadequate to analyze the search trajectory details of SLS runs. To answer

this challenge, we have invented a visualization technique called Fitness Landscape

Search Trajectory (FSLT) visualization, explained in detail in Chapter 4 and presented

in our papers [83, 56, 59, 60, 57, 61, 58].

The SLS Visualization Tool: Viz (Chapter 5)

We have built an SLS visualization tool called Viz which implements these FLST visu-

alization techniques and a few other existing white-box visualizations. Viz has several

information visualization and user interface techniques which is helpful for analyzing

SLS algorithm behavior. This tool Viz is presented in Chapter 5. Papers about Viz

can be found in [59, 60].

The Integrated White+Black Box Approach (Chapter 6)

However, a white-box approach in the form of visualization alone is not suitable for

fine-tuning the SLS parameters (which is a natural task for a black-box approach).

Thus, we develop the Integrated White+Black Box Approach (IWBBA). We

first start with a working SLS algorithm for a given COP. Then, we seek to understand

the SLS algorithm behavior on the fitness landscape of various COP instances using

the white-box FLST visualization mentioned previously. Then, we use the knowledge

to (re)design the SLS algorithm (add potential search strategies, choose appropriate

SLS components, or set good parameter values ranges). The tweaked SLS algorithm is

then fine-tuned using a black-box tuning algorithm.

IWBBA utilizes the strengths of both white-box and black-box approaches to pro-

duce better results than either alone. To support IWBBA, we have extended Viz into

an SLS engineering tool by adding the black-box component. This integrated approach

using Viz is elaborated in detail in Chapter 6 and has been published in [61].

The Experimental Results (Chapter 7)

We applied our integrated approach using our Viz tool to design and tune various SLS

algorithm implementations for several COPs. We managed to identify various fitness

landscape characteristics, e.g. ‘big valley’, ‘spread-smooth’, ‘spread-rugged’, and ‘golf-

course-like’ and have designed custom strategies for each of these fitness landscapes.

These strategies work better than the original or baseline SLS algorithms, most notably

the state-of-the-art Tabu Search for solving the Low Autocorrelation Binary Sequence

(LABS) problem [58]. Details of our experimental results are shown in Chapter 7.

In one paragraph, this PhD thesis can be summarized as follows:

Integrated White+Black Box Approach, a collaboration between

the human (algorithm designer) to design effective search strategies via

Fitness Landscape Search Trajectory visualization (white-box) and the ma-

chine to do fine-tuning using a tuning algorithm (black-box), is an effective
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methodology to address the SLS Design and Tuning Problem – a meta-

level problem of finding a good performing SLS algorithm given a COP.

1.3 The Structure of this Thesis

Main Body

The main body of this thesis is organized as follows:

1. This introductory chapter.

2. In Chapter 2, we elaborate the background material: SLS algorithms as effective

way to solve COPs and the challenges that it faces.

3. In Chapter 3, we present the main problem: improving the performance of SLS

algorithms on various COPs and situations – the SLS Design and Tuning

Problem (DTP).

4. In Chapter 4, we explain our novel and intuitive visualization for analyzing the

SLS trajectory behavior on a COP fitness landscape: the Fitness Landscape

Search Trajectory (FLST) visualization.

5. In Chapter 5, we describe the other SLS visualizations and the user interface

aspects of our SLS visualization tool: Viz.

6. In Chapter 6, we present our overall approach for addressing the SLS DTP:

1. Allow the algorithm designer to examine, explain SLS algorithm behavior, and

tweak it (the human and white-box part)

2. Do fine-tuning using tuning algorithms (the machine and black-box part).

We call this: the Integrated White+Black Box Approach (IWBBA).

7. In Chapter 7, we apply IWBBA using Viz on several SLS DTP scenarios.

8. In Chapter 8, we conclude our thesis by restating the contributions and discuss

future work.

Appendices

The supporting materials are organized as appendices:

A. Details of COPs used in this thesis.

B. Details of SLS algorithms M and their configurations Φ used in this thesis.

C. Short discussion of Human Computer Interaction (HCI).
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Chapter 2

Background

If I have seen a little further, it is by standing on the shoulders of Giants.

— Isaac Newton

This chapter provides background material for this thesis. We briefly discuss NP-complete

Combinatorial Optimization Problems (COPs), the trade-offs between exact and non-exact al-

gorithms, and then extensively discuss various aspects of non-exact Stochastic Local Search

(SLS) algorithms. Studying the material presented in this chapter is necessary to appreciate

the rest of this PhD thesis, especially the parts about terms and notations which are often not

standard across different resources in the literature.

2.1 NP-complete Combinatorial Optimization Problems

Grace owns a small food delivery service. Every day, orders come and she needs

to plan a schedule to serve these orders using her only car. With approximately

30 customers per day scattered around the neighborhood, Grace faces about

30! possible routes to choose from. Each route requires a different amount

of traveling distance/time and thus operating cost. To maximize profit, Grace

must choose the shortest route which will save traveling distance. This problem

can be modeled as a Traveling Salesman Problem (TSP), where the objective

is to minimize the sum of the distance traveled by the car. By using a good

solver for this problem, Grace can save operating cost and thus increase her

company’s profit.

The simplified example above is a single-objective Combinatorial Optimization

Problem (COP). The solutions for this COP are discrete1 – a set of car routes. COPs

1There are optimization problems where the solutions are continuous. Some continuous optimization
problems that can be formulated as linear programs are easier to solve as one can use established linear
programming techniques like SIMPLEX [154]. There are also multi-objective optimization problems
where we need to optimize with respect to several, usually conflicting, objectives. Continuous and
multi-objective optimization problems are outside the scope of this thesis.
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like this are found in many other real-life applications, e.g. the application of Trav-

eling Salesman Problem to real-life circuit drilling problem [73, 143], the application

of Quadratic Assignment Problem to real-life hospital or keyboard layout problems

[137, 114], the application of Low Autocorrelation Binary Sequence Problem to commu-

nication and electrical engineering [87, 58], and many others in the field of Engineering,

Operations Research, Science, Computational Biology, etc. More complete references

of the COPs used in this thesis are listed in Appendix A.

A minimizing2 COP P consists of [89]:

• A set DP of instances,

• A finite set S(π) of candidate solutions for each instance π ∈ DP , and

• An objective function g that assigns a rational number g(s) called the Ob-

jective Value (OV) for s to each candidate solution s ∈ S(π).

An optimal solution for an instance π ∈ Dp is a candidate solution s∗ ∈ S(π) such

that, for all s ∈ S(π), g(s∗) ≤ g(s).

Considering that COPs have many practical uses and good solutions can bring profit

and efficiency, it is important to have good solvers for these COPs. However, finding

good solvers is a real challenge, despite the advances in algorithms.

The major source of the hardness3 of these COPs is because many4 of the COPs

are NP-complete [47].

The fact that many important COPs areNP-complete, renders the näıve exhaustive

enumeration approach impractical as the problem instance size increases. The hardness

of these COPs is the motivation for research in optimization algorithms and numerous

proposals have been published to address it.

2.2 Algorithms for Solving COPs

There are many algorithms for solving COPs. Basically they can be classified into two

extreme paradigms: exact versus non-exact algorithms.

2Without loss of generality, every maximizing COP can be converted into a minimizing COP by
multiplying the objective function by -1.

3The runtime in practice among the solvers of these NP-complete COPs varies, e.g. finding good
solutions for QAP is typically more difficult than for TSP for the same input size n. See Appendix A
for details.

4There exist COPs that are not NP-complete, for example: the Minimum Spanning Tree (MST)
problem, where one needs to select V -1 out of E edges such that the graph is connected, has no cycle,
and the total length of selected edges is minimum. For this MST problem, we also cannot use the näıve
enumeration algorithms but there exist efficient greedy algorithms, such as: Kruskal or Prim algorithms
[28], which are adequate for solving this problem in polynomial time. These non NP-complete COPs
are outside the scope of this thesis.
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2.2.1 Exact Algorithms

Exact algorithms are clever version of the exhaustive enumeration approach. They are

complete in the sense that the existence of feasible and then optimal solution(s) can be

determined with certainty once an exact algorithm has successfully terminated.

Examples of exact algorithms are Branch and Bound (B&B) [154], Constraint Pro-

gramming (CP) [10], etc5. In B&B, we prune the search sub-tree once we can guarantee

that there is no solution under that sub-tree which will give a better result than the

best currently known. With such pruning techniques, B&B effectively searches in a

smaller search space. In CP, we use domain reduction, constraint propagation, and

systematic search to find best feasible solutions.

While exact algorithms are guaranteed to deliver the optimal solution (if any), the

drawback is their running time. Their runtimes render these algorithms impractical for

reasonably big instance sizes that are commonly found in real-life settings.

There are research to further advance these exact algorithms: better speed, tighter

bounds, exploiting symmetries, better cutting planes, etc. However, notwithstanding

the importance of exact algorithms, it seems that exact algorithms are not the best

approach for solving large COP instances in reasonable time.

2.2.2 Non-Exact Algorithms

For practical usage, especially in a real-time setting, faster techniques are needed.

This is where the other paradigm, the non-exact algorithms, are used, e.g. heuristics,

Stochastic Local Search. The reasonable assumption that a user will already be sat-

isfied if he can consistently obtain good enough6 solutions within reasonable time, led

researchers to develop various non-exact algorithms with this idea: sacrifice the guaran-

tee of feasibility and optimality (completeness) for (much) faster speed. But there are

limitations: we are unable to state whether a feasible solution exists when a non-exact

algorithm terminates before finding one. We are also unable to measure the quality

gap of the solution produced by non-exact algorithms w.r.t the optimal solution.

Heuristics and Stochastic Local Search Algorithms

Heuristics are simple (usually greedy) techniques, which seek good solutions at a rea-

sonable computational cost, e.g. in low-order polynomial time. Heuristic algorithms

are usually derived from the characteristic of good solutions. For example: good TSP

tours have short edges. Thus, we can start the tour from any city; then greedily pick the

nearest neighbor one by one to complete the TSP tour. This typically produces a string

of short edges except for the last few edges. This greedy ‘nearest neighbor’ heuristic

has no performance guarantee but it can perform well on several TSP instances.

5There are other techniques like Branch and Cut (B&C), Integer Programming (IP), etc. Interested
readers can browse books like [154].

6The term ‘good enough’ here refers to solutions which are close (if not equal) to the optimal
solution, or within certain acceptable quality bound that already satisfy the user’s needs.
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The major weakness of greedy heuristics is that they are confined into small search

spaces only, which may be severely sub-optimal, unless this heuristic is tailored to solve

the given COP well7. A heuristic does not actually ‘search’ the COP search space, it

just produces a specific solution based on its strategy. To be able to ‘navigate’ along the

search space in the quest for better solutions, a more generic, meta-level controller is

needed. This is where Stochastic Local Search (SLS) algorithm comes into the picture.

We discuss these SLS algorithms in-depth in Section 2.3.

2.2.3 Comparison between Exact versus Non-Exact Algorithms

The trade-offs exhibited by the two paradigms above can be summarized as follows:

“exact algorithms produce optimal solutions in a much longer time than non-exact

algorithms” and “non-exact algorithms can give solutions with reasonable quality in

much shorter time than exact algorithms”.

The fact that exact algorithms are slow does not imply that they are useless. When

optimality is a must or if the COP is so overly constrained that we want to find whether

a solution exists, we do not have any choice other than using exact algorithms. Also,

exact algorithms should be preferred when the instance size is small enough for exact

algorithms to be run within the given running time.

But when the instance size is large, a well designed non-exact algorithm that is fast

and produces reasonably good solutions is an attractive or even the only option.

Nowadays, the distinctions between the two paradigms are blurred as sometimes

they are merged to form a stronger hybrid. For example, the bounding formula in

B&B may be determined via heuristic-like methods, merging CP and SLS algorithm

(e.g. [112]).

2.3 SLS Algorithms for Solving COPs

2.3.1 Background

The term ‘Stochastic Local Search (SLS)’ is made popular by [68]. The term ‘SLS’ is

more general8 than the similar term ‘Metaheuristic (MH)’9.

SLS algorithms have been evolving in recent years. Since the pioneering works of

meta-controller to escape local optima in mid 1980s (e.g. Simulated Annealing [78],

Steepest Ascent Mildest Descent [62], and Tabu Search [50]), there are now many more

SLS algorithms. The list below highlights some of the popular ones:

7For example, a good heuristic for TSP is the Lin-Kernighan (LK) heuristic [73].
8There is a formal definition for SLS algorithms whereas this is not true for metaheuristics. It-

erative improvement algorithms that are in some way randomized (e.g. by randomizing the order of
searching neighborhood in first-improvement) belong to SLS algorithm, but these algorithms are usu-
ally not considered as metaheuristics. The term general-purpose SLS method is somehow equivalent
to metaheuristic. For more details, see [68].

9This term is derived from Greek words: ‘μετα’ (meta, which means: to guide; a higher level) and
‘ενρισκειν’ (heuriskien - eureka, which means: to find or to discover).

10



1. Tabu Search (TS) [50, 52, 116] 5. Scatter Search (SS) [117]

2. Iterative Local Search (ILS) [133] 6. Ant Colony Optimization (ACO) [37]

3. Simulated Annealing (SA) [78] 7. Variable Neighborhood Search (VNS) [63]

4. Genetic Algorithms (GA) [65] 8. Memetic Algorithm (MA) [89], etc

Today, SLS algorithms are among the most efficient and robust optimization strategies

to find high-quality solutions for many real-life COPs (see Section 2.1 and Appendix A).

A large number of successful applications of SLS algorithms in various fields are reported

in the literature: in books and journals [105, 2, 150, 19, 51, 106, 23, 68, 117, 39], as

well as in scientific meetings, e.g. Metaheuristics International Conference (bi-annually

since 1995) [107, 151, 121, 120, 71, 34, 29], Engineering SLS Workshop (bi-annually

since 2007) [134, 130], CP, LION, META, CP-AI-OR, INFORMS, EU/ME, etc.

2.3.2 What is an SLS Algorithm?

An SLS algorithm can be described from various angles. We list some of them below:

1. SLS algorithm is an iterative non-exact algorithm. An SLS algorithm will not

stop upon encountering the optimal solution during the search as it does not

know that the solution is indeed optimal. It will only stop once it satisfies the

user-adjustable termination criteria and return the current best found solution.

Quality-wise, the solutions found by SLS algorithm are usually better compared

to the solutions found by the more simpler non-exact algorithms (e.g. simple

greedy heuristic) as the SLS algorithm searches the fitness landscape rather than

just constructing one solution only.

2. SLS algorithm combines intelligent exploitation and exploration of the fitness

landscape in order to find good solutions efficiently. Decisions of where to move

are taken using local knowledge only, perhaps with some influence of randomness

to achieve more robustness [52]. This part is elaborated in Section 2.3.3.

3. Anatomically, an SLS algorithm can be divided into two parts: an algorithmic

template M and a configuration Φ. The behavior and performance of the SLS

algorithm M are highly dependent on the chosen Φ: search parameters, compo-

nents, and search strategies. A more detailed explanation is in Section 2.3.4.

Additional Definitions for COP and SLS Algorithms

Formally, an SLS algorithm for a COP can be defined as given below. These definitions

assume a minimizing COP. They are adopted from various sources (e.g. [89, 68]) and

enhanced with our own additional definitions:

Local Move: A small transformation from a current solution s into s′, both s

and s′ ∈ S(π), e.g. swapping two cities in a TSP tour.

Improving Move: A local move where the objective value g(s′) < g(s).
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Non-Improving Move: A local move where the objective value g(s′) ≥ g(s).

Neighborhood N(s): The neighborhood operator (set of potential local moves)

used by the SLS algorithm for traversing the search space S(π).

Distance Function d(s1, s2) : S × S → �: This function calculates the differences

between two solutions s1, s2 in an n-dimensional space S(π). Various distance

functions are discussed in [74, 123, 124, 45, 89, 68, 128].

Fitness Landscape FL: 〈S(π), d(s1, s2), g(s)〉. FL is the space where the SLS

algorithm operates (see Section 2.3.3 for an illustration). FL is a wider

definition than Search Space S(π).

Region R: A region in FL is a set R ⊆ S(π) such that for each pair of solutions

s′, s′′ ∈ R, s′ and s′′ are connected, that is, there exists a connecting path

s′ = s0, s1, . . . , sk = s′′, ∀si ∈ R and si+1 ∈ N(si) ∀i ∈ {0, 1, . . . k − 1}.
Infeasible Region IR: An infeasible region IR is a region where all the solutions

of IR are infeasible, that is, the solutions do not satisfy the constraints of the

COP.

Search Trajectory ST : ST starts with an initial solution s0. At iteration t > 0,

ST moves from solution st−1 to st and so on until the SLS algorithm stops,

i.e. ST = s0 → s1 → . . . → slastItr. |ST | denotes the number of solutions

along ST . In population-based search, this term becomes plural: search

trajectories.

Local Optima/Minima LO: A solution s is a Local Optima LO if g(LO) ≤
g(s′), ∀s′ ∈ N(LO). The notion of local optimality is only w.r.t neighborhood

N . If we change N , the set of LO will be likely different. |LO| denotes the

number of local optima for a particular COP instance.

Global Optima/Minima GO: A solution s is a Global Optima GO (optimal

solution) if g(GO) ≤ g(s′), ∀s′ ∈ S(π). |GO| denotes the number of global

optima for a particular COP instance.

Best Found BF : A solution is the best found solution if g(BF ) ≤ g(s′), ∀s′ ∈
ST . BF may or may not be equal to GO.

Best Known BK: The best known solution for a COP instance, found by exact

algorithm (guaranteed optimal) or the best ever solution found by any SLS

algorithm (BK may or may not be GO).

2.3.3 Walks on a COP Fitness Landscape

The SLS algorithm behavior can be abstractly described using an illustrative example

of a 2-D minimizing COP as shown in Figure 2.1. The search space S(π) of this COP

instance π are all possible instantiations of the COP decision variables (x and y-axis).

The set of all solutions S(π), their pairwise distance from each other d(s1, s2), and

their corresponding objective values g(s) (z-axis) form the fitness landscape FL. In

this illustration, we discretize the x and y-axis values in increments of 0.1. This is

illustrated by drawing the FL using wireframe. The letters A, B, C, D, E, F , G, H,

I, and P denote some solutions in the fitness landscape, each with its own objective
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value (the lower the better). The solid red line illustrates the search trajectory ST –

a series of solutions traversed during the search. The objective of ST is to hit the goal

(e.g. I: the global optimum GO).

Figure 2.1: A Walk on a Fitness Landscape [126]: P-current solution; {A, B, C, D}-
neighbors of P; {E, G}-LO; {F, H}-another solutions; {I}-GO. See text for details.

Suppose that the current solution is P . At this point of time, the SLS algorithm deter-

mines a subset of solutions in the fitness landscape. In this case, the local neighborhood

of N(P ) is currently {A, B, C, D}. Suppose the SLS algorithm’s greedy heuristic se-

lects a solution from N(P ) based on its Objective Value OV (e.g. improving move to

D), then subsequently to E and F – an intensification. While the objective function

provides guidance to steer the search, it may lead the SLS algorithm to be trapped in a

local optimum LO, in this case the red line is approaching a local optimum G instead

of the GO I.

SLS algorithm may use some form of randomization to help diversification. The

SLS algorithm can perform a ‘jump’ to another solution outside the neighborhood at

a random iteration. For example in Figure 2.1, the SLS algorithm can ‘jump’ from

position F to H where distance d(F,H) > ε – a diversification. We can see that H

happens to be closer to GO I and continuing the SLS algorithm from H may be useful.

However, this stochastic component also implies that ST may vary in different runs,

making SLS algorithm behavior analysis difficult10.

10It is hard to predict SLS algorithm behavior. Given a complete SLS code and a COP instance π,
one cannot clearly describe how the SLS algorithm will behave until it runs. If the SLS algorithm is
not implemented properly, it may exhibits behavior well beyond the original intent of its design. For
example, if an SLS algorithm is supposed to do an intensification but in fact it travels far from the
original position in FL, its intensification strategy is not successful, regardless of the result that it
managed to obtain. Even if the result is ‘good’, it is probably not due to the influence of the ‘incorrect’
strategy but may be due to another reason(s). This has been coined as the ‘failure modes’ in [153].
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2.3.4 Algorithmic Template M + Configuration Φ

An SLS algorithm can also be viewed as an algorithm with two major parts [17]:

1. The algorithmic template M :

BASIC-SLS(InitS)

1 CurS ← BF ← InitS

2 while TerminationCriteria are-not-satisfied

3 do CurS ← Choose(NeighborhoodConstraints(CurS, parameters))

4 Update Data Structures

5 if Better(CurS,BF )

6 then BF ← CurS

7 SearchStrategies

8 return BF

2. Configurable parts that makes up the configuration Φ:

• ParameterValues (bold in algorithmic template M)

Parameter values are adjustable numeric values within M which affect the overall

SLS algorithm performance. The SLS algorithm performance is usually sensitive

towards these parameter values. Usually, SLS algorithm experts can roughly

gauge good ranges of these values via pilot experiments. Parameter values are

usually not constant but often depend on instance characteristics (e.g. instance

size). These parameter values must be set a priori and usually subject to a fine-

tuning process. Several parameters are often correlated.

• Components (underlined in algorithmic template M)

SLS algorithm components are essential parts of M that need to be chosen or

implemented to make M work. Usually this is the place where the user places

his sub-ordinate heuristics. Components can have some embedded parameter(s).

Typically, SLS algorithm components are problem-specific, thus less sensitive

across different instances. The choices of components are also often correlated

[24]. With parameters and components properly set, the SLS algorithm is ready

to be executed and produce solutions.

• SearchStrategies (small caps in algorithmic template M)

Search strategies are optional part on top of M + {parameters + components}
that are used to alter the behavior (trajectory) of the search, in bid to further

improve the SLS algorithm performance. Without these search strategies, the SLS

algorithm will still work. However, state-of-the-art SLS algorithms are usually

those which employ good search strategies.

The selected M +Φ will influence11 the behavior and thus the performance of the SLS

algorithm. Finding the correct M+Φ combination is hard as each of these configurable

parts can assume one of its valid domain values. The configuration set (space) that

11SLS methods with smaller configuration space is more preferred because it is easier to tune.
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contains all possible instantiations of these configurable parts can thus be very large.

This is the main issue in this thesis and it is discussed in Chapter 3.

The SLS algorithmic template M and configuration Φ of several well-known SLS

algorithms used in this thesis are presented in Chapter 7 and in Appendix B.

2.3.5 Implementation Issues

Implementing an SLS algorithm is usually a straightforward job but there are different

ways12 to implement the same SLS algorithm, which may cause the resulting perfor-

mance to be different.

Fortunately, the algorithmic template M of typical SLS algorithms is common from

one application to another and some SLS components are also frequently reused. It is

thus beneficial to apply software engineering principles by creating SLS software frame-

works, systems, or libraries. This way, subsequent SLS algorithm implementations can

be faster because one can reuse one’s previous codes. There are several SLS software

frameworks available in the literature, e.g. OpenTS [64], EASYLOCAL++ [32], HOT-

FRAME [44], LOCALIZER++ [91], COMET [149], and including our Metaheuristics

Development Framework (MDF) [85, 84].

2.3.6 Performance Evaluation

SLS is Difficult to be Analyzed Theoretically

It is hard to show theoretically the effectiveness of the SLS algorithm. Usually we do

not have much theoretical understanding for a particular SLS algorithm. And when

we have such an understanding, the analysis is mainly worst-case and not average-

case. Thus the information gained is not practical as it is only applicable under very

restrictive assumptions, e.g. the proof of convergence for Simulated Annealing (SA)

[98, 103] – it is said that SA will converge in the limit.

While discussing theoretical results of optimization algorithm, we need to mention

the ‘No Free Lunch’ (NFL) theorem [155]. This theorem suggest that on average, no

single SLS algorithm (TS, ILS, SA, ACO, GA, etc) is better than random search on

all COPs. Success comes from adapting the SLS algorithm to the COP at hand. To

have a good solver for a given class of COPs, one should produce specialized algorithms

where each algorithm tackles a specific (subset) of instances of the problem, exploiting

problem-specific information as much as possible while avoiding over-fitting (good for

training instances but not on test instances).

Evaluating SLS Algorithm Performance via Empirical Analysis

Unlike exact methods for a given COP, which mainly compete with other exact methods

in term of speed, the decision of whether a particular heuristic based strategy performs

12Examples: different data structure, algorithm details, code optimization, programming language,
compiler, or computing platforms.
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well or not is more difficult. We may need to devise a number of performance evaluation

metrics, e.g. solution quality, consistency, etc (details in Section 3.5.2).

As mentioned before, an SLS algorithm is very hard to be analyzed theoretically.

Currently, SLS algorithms are analyzed empirically, either via statistical techniques or

via visualization. Such empirical analysis must be done properly, as highlighted in the

literature [13, 66, 115, 40, 42, 49]. See the following example for illustration.

Suppose we run two SLS algorithms A and B on 4 different instances of a mini-

mizing COP and we obtained these set of best found objective values:

A: {30, 20, 20, 20}, mean(A) = 22.5, median(A) = 20, std-deviation(A) = 5

B: {23, 23, 23, 23}, mean(B) = 23, median(B) = 23, std-deviation(B) = 0

Issue 1 - choice of descriptive statistics:

If we only report the mean values only, then we may favor SLS algorithm A over

B but if we value robustness, then B is actually better since it is much more

consistent and not too much different from the mean of A. We can also measure

the gap between the mean and the median to check robustness.

Issue 2 - influence of ‘outliers’:

Now if we omit the first instance, then the ‘apparent’ performance will be as follows:

A: {20, 20, 20}, mean(A) = median(A) = 20, std-deviation(A) = 0

B: {23, 23, 23}, mean(B) = median(B) = 23, std-deviation(B) = 0

Selection of test instances plays a role in examining or comparing SLS algorithms!

Issue 3 - are the experiments significant? - inferential statistics:

After we run SLS algorithms A and B on a sample of 4 COP instances, we are

interested to know whether our results can be generalized to a population of COP

instances. This is the job of inferential statistics and this part is often omitted in

SLS literature. For details about statistical techniques, refer to [55].

2.4 Summary

1. Combinatorial Optimization Problems (COPs) are important as there are many

important real-life problems that can be modeled as COPs. However, solving

COPs is difficult because they are usually NP-complete.

2. There are two approaches for solving NP-complete COPs: exact and non-exact

algorithms, each with their own pros and cons. In this thesis, we focus on a

family of non-exact algorithms falling under the Stochastic Local Search (SLS)

definition.

3. We have presented various aspects of SLS algorithms: their historical background;

SLS and COP terminologies, SLS algorithm as walks on COP fitness landscapes,

SLS algorithm as consisting of two components: M + Φ; SLS algorithm imple-

mentation and performance evaluation.
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2.5 Looking Ahead

The performance of SLS algorithms strongly depends on the chosen M +Φ. To obtain

good performance, users need to find the correct configuration Φ for their chosen SLS

algorithm M . There is ‘no free lunch’ !

This issue gives rise to the main problem addressed in this thesis: the SLS Design

and Tuning Problem. We discuss it in the next chapter.
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Chapter 3

The Stochastic Local Search

Design and Tuning Problem

We keep moving forward, opening new doors, and doing new things,

because we are curious and curiosity keeps leading us down new paths.

— Walt Disney

In this chapter, we discuss the SLS Design and Tuning Problem. Parts of this chapter

have been published in [83, 56].

3.1 The Quest for Better Performance

It is obvious that one wants to engineer a better SLS algorithm if its current performance

is low or when it varies greatly across different test instances beyond an acceptable level.

However, we have seen that even if the current performance is already good, people are

still looking for an even better performing SLS algorithm.

This natural quest for a better SLS algorithm performance is the main problem

discussed in this thesis. We coin it as the SLS Design and Tuning Problem (DTP)1.

The benefits of having a better SLS algorithm performance on a given COP is

obvious, e.g. more efficiency, more time savings, more cost savings, more profits, etc.

Although the crucial importance of good algorithm design and proper tuning are

acknowledged in the literature for a long time, specific works that are related to the

tools and techniques for addressing the SLS DTP have emerged only recently, as shown

in their time line below. This shows that more researchers are realizing the importance

of dealing with the SLS DTP.

1Tuning is not only relevant for SLS algorithms, but also for either exact (e.g. [94]) or non-exact
algorithms which have some ‘tune-able’ parts. Usually, modifying these ‘tune-able’ parts can yield
different performance. We only discuss the SLS Design and Tuning Problem in this thesis.
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• CALIBRA - Adenso-Diaz and Laguna (2001-2006) [3]

• F-Race - Birattari (2002-2007) [18, 17, 12], Yuan and Gallagher (2005) [157]

• Agent configuration algorithm - Monett-Diaz (2004) [99, 100]

• ParamILS - Hutter et al. (2006-2008) [69, 70]

• GGA - Ansótegui et al. (2009) [9]

• Tuning Wizard in ILOG OPL (2008) [72]

• Our works (2004-2009) [83, 56, 59, 60, 57, 61, 58]

3.2 Formal Definition of the SLS DTP

Let:

M : The basic algorithmic template of an SLS algorithm

Φ: The configuration of an SLS algorithm: (parameter values, components,

and search strategies). See Section 2.3.4 for more details about M+Φ.

Itrain:
2 The set of COP training instances faced by the SLS algorithm.

Itest: The set of COP test instances faced by the SLS algorithm.

Tdev: The development time to engineer the SLS algorithm: designing, im-

plementing, analyzing, and tuning the SLS algorithm. Tdev for a real

COP is usually limited3.

Trun: The running or computation time4 for the SLS algorithm to solve the

given set of training instances Itrain and/or test instances Itest.

Then, the SLS Design and Tuning Problem, abbreviated as SLS DTP, is defined

as a multi-objective, multi-constraint problem:

Find an SLS algorithm M +Φ within the development time Tdev that:

1. can obtain high quality (acceptable) solutions,

2. is robust, and

3. has fast run time (within Trun),

when trained using instances from the set Itrain and tested using other

instances from the set Itest of the COP being solved.

By a common assumption, we expect the unknown future instances that are going to

be solved by the SLS algorithm (M+Φ) to have characteristics similar to the instances

Itrain and Itest. Thus, the performance of the selected SLS algorithm (M +Φ) on these

future instances is expected to be similar.

From the definition above, we can view the SLS DTP as another ‘search problem’,

but in the configuration space. Since it is not well understood how to pick the best

2Note that the selection of the training and test instances will affect our understanding of the
apparent performance of the SLS algorithm being executed (see Section 2.3.6).

3We remark that the experiments in Chapter 7 of this thesis are done under no time-constraints.
4Trun is usually small in real-time applications, e.g. if a solution must be available every 1 hour, we

cannot afford to have SLS algorithm that can give us the best solution but in more than 1 hour.
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M+Φ, addressing the SLS DTP is a process to learn the relationship5 ofM+Φ1, M+Φ2,

. . ., M+Φn w.r.t the performance of the SLS algorithm on various COP instances. Such

relationships are then used as the basis for picking the most appropriate M +Φ pair in

the current context. It is not easy to address the SLS DTP as the size of configuration

space is big. We believe that picking the most appropriate M + Φ cannot be done by

chance and that such process will require a form of intelligence.

The definition above extends the definition in [17] where the aspects of configuration

Φ are now widened to include ‘search strategies’. This may entail redesigning the SLS

algorithm. In Table 3.1, we propose a classification for the SLS DTP that puts into

perspective this view of ‘adding search strategies’.

3.3 Classification of the SLS DTP

In the literature, the term ‘tuning’ is often too broad as it can mean “any action that

makes an SLS algorithm perform better”. To be more precise, we classify the SLS DTP

into three types (see Table 3.1), according to the part that is being modified (compare

with Section 2.3.4).

SLS Design and Tuning Problem

Type-1: Type-2: Type-3:
Calibrating Parameter Values Choosing Best Components Adding Search Strategies

Table 3.1: The Classification of the SLS DTP

Type-1: Calibrating Parameter Values

Examples: calibrating tabu tenure (TS); perturbation strength (ILS); tem-

perature T (SA); α, β, q0, number of ants M (ACO); population size,

recombination/mutation probability (GA); etc. The meaning of the term

‘tabu tenure’ is discussed below. For the other terms, please consult [51].

This is perhaps the ‘easiest’ type of SLS DTP: the SLS algorithm (SLS template M

and SLS components) has been defined and all the algorithm designer needs to do is

to set appropriate parameter values. For example, tabu tenure is a parameter of Tabu

Search (TS) algorithm that controls how long (usually in terms of number of iterations)

a certain local move is forbidden to be re-applied again. Tabu tenure parameter is

usually one of the most influential parameter in TS algorithm.

Pellegrini et al. [109] show that different parameter values may influence the overall

SLS algorithm performance. The challenge is that varying the value of one parameter

may affect the optimal setting of the other parameter values since they are often corre-

lated. Furthermore, in many practical situations, the range of parameter values is too

large for the algorithm designer to determine the best values through trial-and-error.

5We remark that the definition of SLS DTP allows us to learn the relationship between M1 + Φ1,
M2 +Φ2, etc (between different SLS algorithms), but this is a more difficult problem. In Chapter 7 of
this thesis, we focus on designing and tuning SLS algorithms where the algorithmic template M does
not change (i.e. given one SLS algorithm template M , find the best configuration Φ for it).
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Type-2: Choosing Best Components

Examples: choosing the best: local neighborhood (TS/SA/LS); tabu mech-

anism (TS); perturbation and acceptance criteria (ILS); cooling function

(SA); pheromone table (ACO); recombination and mutation operator (GA);

etc. The meaning of the term ‘tabu mechanism’ is discussed below. For the

other terms, please consult [51].

In this type of SLS DTP, the algorithm designer needs to choose several components

that will be used in a particular SLS algorithm. For example, tabu mechanism is a

component of the TS algorithm that specifies how a certain local move is tabu. The

algorithm designer can choose to record the list of solutions found within the last

tabu tenure iterations or to record only certain attributes of those solutions in a data

structure. The first approach completely prevents TS to revisit solutions found in the

last tabu tenure iterations but slower. The second approach is faster but does not

has such guarantee. The algorithm designer also has to choose the data structure to

support this tabu mechanism, i.e. a linked list, array, or hash table.

Typically, each choice of SLS component has its own strengths and weaknesses.

Charon and Hudry [24] show that different components have different effects to the

performance of SLS algorithm.

Finding the optimal mix of components of the SLS algorithm is often a challenging

task as one needs to try a substantial number of combinations. This type of SLS DTP is

more complex than type-1, because choosing appropriate SLS components (this type-2)

entails setting appropriate parameter values of the chosen components too (type-1).

Type-3: Adding (Dynamic) Search Strategies

Examples: adding Reactive or Robust Tabu Search strategy (TS); adap-

tive perturbation (ILS); reheating mechanism (SA); min-max pheromone

updates (ACO); diversity preservation (GA); Hybrids; etc. The meaning of

the term ‘Reactive Tabu Search’ is discussed below. For the other terms,

please consult [51].

In this type of SLS DTP, the algorithm designer needs to design additional search

strategies to improve the SLS algorithm run-time dynamics. Although the SLS algo-

rithm already has some basic search strategy for exploring the fitness landscape, good

additional search strategies may improve the overall performance in the short term:

steer the search trajectory to more promising fitness landscape regions faster; and in

the long term: do some diversification mechanism when the search stagnates, etc.

For example, Reactive Tabu Search [15] is a TS algorithm strategy where tabu tenure

is adjusted based on the events encountered during the search. In overview, the strategy

is as follows. When TS encounters many non improving moves, it reduces tabu tenure

to encourage intensification. When TS encounters solution cycling, it increases tabu

tenure to encourage diversification.
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Unfortunately, search strategies are often problem-specific and deriving the correct

ones is tricky as the number of possible search strategies can only be limited by one’s

own imagination. The effectiveness of search strategies may also depend on the chosen

parameters of the strategy (type-1), e.g. how many non-improving iterations before

‘restart strategy’ are used, etc. If not set properly, the search may exhibit behavior

well beyond the original intent of its design (‘failure modes’ in [153]), e.g. an overuse

of ‘random restart strategy’ that moves SLS trajectory to an arbitrary point in search

space can turn a complex SLS algorithm into a simple random walk heuristic.

This is perhaps the most difficult type of SLS DTP.

3.4 The Need for a Good Solution

Quotes from Various Researchers

A compilation of quotes from the experts in the field (full quotes in the footnotes)

highlight both the practical importance and the difficulties of addressing the SLS DTP:

• Addressing the SLS DTP is itself a scientific endeavor.6

– Barr et al. [13], Section 7.

• In the past (mid 1990s), addressing the SLS DTP was a pure art rather than

science.7

– Osman and Kelly (editors) [107], preface.

• We usually want the best performing SLS algorithm.8

– Birattari [17], Chapter 1.

• It is easy to implement the quick-and-dirty SLS algorithms, but not the state-of-

the-art ones.9

– Birattari [17], Chapter 7.

• More development time is spent on fine-tuning than designing the SLS algo-

rithm.10

– Adenso-Diaz and Laguna [3], Section 1.

6“The selection of parameter values that drive heuristics is itself a scientific endeavor, and deserves
more attention than it has received in the Operations Research literature.”

7“Design of a good meta-heuristic remains an art. It depends on the skill and experience of the
designer and the empirical computational experiments.”

8“Aiming at the best is one of the most fundamental traits of intelligence. In all activities, human
beings tend to maximize benefit or, equivalently, to minimize inconvenience in some context-dependent
sense. The pursuit of the best appears so connatural with the human mind that when we do not
recognize it in somebody’s behavior, we readily qualify him/her as irrational.”

9“Indeed, the most notable strength of [SLS algorithms] lies precisely in the fact that they are
relatively easy to implement and that, therefore a quick-and-dirty version of an [SLS algorithm] for a
given class of COPs to be solved can be produced by a practitioner in few days. Such quick-and-dirty
implementations are typically capable of fair performance; nevertheless, when state-of-the-art results
are desired, careful design choices [type-2] and an accurate tuning [type-1] are needed.”

10“There is anecdotal evidence that about 10% of the time dedicated to designing and testing new
(SLS algorithm) is spent on development, and the remaining 90% is consumed (by) fine-tuning (its)
parameters.”
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• Optimizing SLS algorithm may require interaction of multiple components.11

– Stützle [51], Chapter 11.

• Usually, adaptive/reactive/self tuning methods are preferred.12

– Stützle [51], Chapter 11.

• The effective tools for addressing SLS DTP are needed.13

– Hutter et al. [70], conclusion.

Handling the SLS Design and Tuning Problem in a Holistic Manner

Due to the difficulty of the SLS DTP, many algorithm designers chose to deal with

the type-1 and type-2 problems only. This often results in average performance. One

may have a good set of components of the SLS algorithm and have all its parameters

properly tuned. But, if the SLS algorithm does not conduct an intelligent exploration of

the fitness landscape, it will often be outperformed by a dynamic, adaptive, self-tuning,

and more intelligent counterpart. We must look at the whole picture!

A simple example is Reactive-Tabu Search (Re-TS) [15]. Re-TS has a search strat-

egy that adaptively adjusts the tabu tenure according to Re-TS performance. Re-TS

will often outperform the original, Static-TS, on the set of test instances – even if the

tabu tenure setting of Static-TS is the ‘best’ over the set of training instances.

Our classification in Table 3.1 puts this type-3 of SLS DTP into consideration. We

believe that to obtain the best solution for the SLS DTP, all types of SLS DTP must be

addressed properly, ideally in this order: start from type-2 (select the most appropriate

SLS components), then solve type-1 (set the parameters of the chosen components).

If problems arise concerning the performance, then tackle type-3 (add clever search

strategies to navigate the search) and re-do type-1 again (set the parameters of the

chosen components and strategies).

3.5 Literature Review

The most näıve way to address the SLS DTP is what we call as ad-hoc tuning. Ad-hoc

here is that the algorithm designer does not use any tool to aid him in gaining insights

but choose a configuration in an ad-hoc fashion, e.g. a trial-and-error process to find a

better performing SLS algorithm.

A more systematic way is to utilize computing power rather than manual labor to

deal with SLS DTP. When the algorithm designer is confronted with several potential

M + Φ configurations to choose from, he can simply run them all and take the best

result. But this is impractical when the configuration space is large.

11“Thus, one should keep in mind that the optimization of an Iterated Local Search may require
more than optimization of the individual components”

12“... the behavior of ILS for the QAP and also for other combinatorial optimization problems shows
that there is no a priori single best size for perturbation. This motivates the possibility of modifying
the perturbation strength and adapting it during the run.”

13“... the increasingly effective tools produced by this line of research will allow researchers to focus
on the essential and scientifically valuable tasks in designing algorithms for solving hard problems ...”
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In this section, we review more advanced approaches to address the SLS DTP that

utilizes human and machine strengths in better ways. We group the approaches into two

major types: black-box versus white-box approaches. The details of the classification

are shown in Table 3.2.

Black-Box Approaches White-Box Approaches

Definition and Human Role: Definition and Human Role:
1. Automated tools to fine-tune the SLS
algorithm in order to obtain a good con-
figuration given initial configuration set.
Treats SLS runs as ‘black-box’.

1. Open up the ‘box’ so the algorithm
designers can check the inner workings
of the SLS runs and to assist them in
designing a better SLS algorithm.

2. Human role is to provide initial con-
figuration set, wait, and possibly restart
the tool using a different configuration
set if the results are still unsatisfactory.

2. Require direct collaboration with hu-
man. Analytical reports about SLS runs
produced by white-box approaches must
be analyzed using human intelligence.

Strengths: Strengths:
1. Can relieve the burden of address-
ing mainly type-1 (SLS parameters) and
also type-2 (SLS components) of the SLS
DTP from the human.

1. More suitable to address type-3 (SLS
strategies) and also type-2 (SLS compo-
nents) of the SLS DTP.

2. Allows creativity and innovation.
3. Can obtain insights about the SLS
algorithm or the COP.

Weaknesses: Weaknesses:
1. Limits creativity and innovation. 1. Human still needs to do the analysis.
2. Unsuitable for the SLS DTP type-3. 2. Less suitable for the SLS DTP type-1.
3. If the configuration space is too large,
these black-box approaches can be slow.

3. Time required to deal with the SLS
DTP depends on the user’s expertise.

4. Cannot be used to debug or improve
the underlying design of the SLS algo-
rithm.

4. Results may be inconsistent. Two hu-
man users design and tune the SLS algo-
rithm differently.

5. We also do not learn anything about
the SLS algorithm or the COP.

5. SLS algorithm behavior may be hard
to understand.

Table 3.2: Details of Black-Box and White-Box Approaches

3.5.1 Black-Box Approaches

In this subsection, we discuss 5 black-box approaches: Meta SLS, CALIBRA, F-Race,

ParamILS, and GGA.

Meta SLS

A better approach than trying all configurations is to use a Meta SLS to configure

another SLS algorithm. For example: in Evolving ACO [20, 110], a Genetic Algorithm

(GA) is used to tune the parameters of the underlying Ants Colony Optimization

(ACO). These ACO parameters are embedded in the GA’s chromosome. So, the GA
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runs ACO several times to solve the underlying COP. The ACO results are used by

the GA to determine the next population of ACO parameters. Similar examples called

‘Meta-evolution’ are mentioned in [11, 108].

Meta SLS techniques liberate the algorithm designer from setting parameter values

manually, but the algorithm designer still has to come up with the Meta SLS by himself.

The other black-box approaches below are the generic versions of Meta SLS that work

with virtually any SLS algorithms that adhere with its interfaces14.

CALIBRA – http://coruxa.epsig.uniovi.es/∼adenso/file d.html (2006)

Adenso-Diaz and Laguna [3] proposed a tool to automatically calibrate parameter val-

ues given pre-defined ranges or bounds for each parameter. It works by iteratively

running the target SLS algorithm with various parameter values and then uses the

solution quality feedback to determine which range of parameter values should be used

in the next iteration. CALIBRA uses Taguchi’s fractional factorial design and local

search to iteratively narrow down the range of parameter values until they converge to

a ‘local minimum’ of the configuration space. Otherwise, after maximum number of

iterations has elapsed, CALIBRA will return the best set of parameters found so far.

CALIBRA has the following limitations. The current version (released in 2006) can

only tune up to 5 parameters. The other parameters must be fixed to ‘appropriate

values’. Also, if the given parameter value ranges are too small, CALIBRA will be

quickly trapped in a ‘local minimum’ of the configuration space.

F-Race – http://code.ulb.ac.be/iridia.activities.software.php (2005)

Birattari [18, 17] proposed a racing algorithm, a method that was previously known

in the machine learning community, to address the SLS DTP. The racing algorithm

(F-Race), paraphrased from his work, can be summarized as follows: First, feed the

F-Race with a (possibly large) set of candidate configurations. F-Race will estimate the

expected performance of the candidate configurations by empirically running the SLS

algorithm with those configurations on the training instances one by one. The worst

ones are discarded as soon as sufficient statistical evidence15 is gathered against them.

This allows a better allocation of computing power because rather than wasting time

evaluating low-performance configurations, F-Race focuses on the assessment of the

better ones. As a result, more data is gathered concerning the configurations that are

deemed to yield better results, and eventually a more informed and sharper selection is

performed among them. Finally, the last configuration is declared as the winner (best)

configuration. This process is very much analogous with real life racing.

The number of possible configurations can be very large, thus by not trying every

possible configuration blindly, F-Race is much better than a systematic brute force try-

all approach. However, this ‘combinatorial explosion’ of the number of configurations

14Each black-box tool described in this section requires the configured SLS algorithm to interact
with the tool (e.g. to read the SLS configuration and to report the result) via some ‘inter-process
communication’. This is not standard across various black-box tools.

15Birattari used Friedman non-parametric tests for this purpose, see [55].
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is also the limitation of F-Race. As F-Race actually ‘races’ all candidate configurations

before dropping them step by step, F-Race will require enormous computation time if

the configuration size is (very) large which may possibly exceed the maximum allowed

development time. To overcome this limitation, we can either: keep the size of initial

configuration set to be relatively small, which is not an easy task, or use other tuning

algorithms that try the candidate configurations one by one rather than race them.

This racing algorithm has been adopted in other research works, e.g. [156, 157, 16].

Some suggestions on the improvement strategies for F-Race are in [12].

ParamILS – http://www.cs.ubc.ca/labs/beta/Projects/ParamILS (2008)

Hutter et al. [70] proposed ParamILS, a black-box tuning algorithm that utilizes Iter-

ated Local Search (ILS) to explore the parameter configuration space in order to find

a parameter configuration that is good for the given training instances.

The main idea of ParamILS can be described as follows. Starting from a default con-

figuration (either random or supplied by the user) as the incumbent solution, ParamILS

will use the one-exchange neighborhood (modify one configurable part of the incum-

bent solution) in each search step using some heuristic. If the resulting configuration

performs better, it will be accepted as a new incumbent solution, otherwise, it will

be rejected and ParamILS will generate a new neighbor using the old incumbent solu-

tion. With some probability, ParamILS will set the incumbent solution to a random

configuration. This process is repeated until the termination criteria are reached.

Unlike CALIBRA that limits the number of configurable parts to be 5, ParamILS

does not have such a restriction.

The current available implementation of this ParamILS, which is still in beta stage,

has been used by other researchers to optimize their SLS algorithms, e.g. [25].

GGA (2009)

Ansótegui et al [9] proposed GGA (Gender-based Genetic Algorithm), a robust, inher-

ently parallel Genetic Algorithm to configure SLS algorithms automatically. In [9], the

authors show several experimental case studies where GGA outperforms ParamILS in

configuring SAT solvers.

3.5.2 White-Box Approaches

Algorithm designers have devised various techniques to assist them in understanding

their SLS algorithms’ behavior and performance. This information is essential in order

to adjust their SLS algorithms correctly. These techniques are either in the form of

statistical analysis or information visualization techniques. They are discussed below.

Descriptive Statistics

Descriptive statistics (e.g. central tendency, variability, etc) are used in several ways in

SLS algorithm analysis.
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The most widely used statistic is ‘Solution Quality’ where the SLS algorithm

performance is measured on benchmark instances (e.g. TSPLIB [143], QAPLIB [114],

etc). We are interested to measure the quality gap between Best Found BF solution

returned by the SLS algorithm w.r.t the Best Known BK solution (or an optimal

solution found by an exact algorithm). This gap is usually measured via the following

‘percentage-off’ formula: abs(OV−BK)
BK ∗ 100.0%.

‘Robustness’ is another desirable statistic. Robustness analysis is used to measure

the degree of variation of BF solutions found by different runs of the SLS algorithm.

This is because the SLS algorithm may behaves non-deterministically resulting in dif-

ferent search trajectories on different runs.

Solution quality and robustness can be visualized as a graph of the Solution Quality

Distribution, a.k.a Objective Value (OV) over time, like Figure 3.1.A: A ‘robust and

better’ (red solid lines closer to BK OV and tighter) versus ‘not robust and poorer’

(blue dashed lines that are not too close to BK OV and more spread) SLS algorithm

performance can be easily seen.

Figure 3.1: Example Visualizations of: A: Solution Quality Distribution (Robustness);
B: Run Time Distribution; C: Fitness Distance Correlation

‘Speed or Running Time’ is the main advantage of SLS algorithms over exact algo-

rithms. As such, an SLS algorithm should be fast w.r.t the exact algorithm counterpart.

Speed can be measured as the time to reach the BF solution. But, rather than using

simple runtime statistics averaged over runs, a more realistic picture can be obtained by

characterizing the Run Time/Length Distribution (RTD/RLD) where we mea-

sure the probability that the SLS algorithm manages to reach a certain target solution

quality given a certain running time (the solution probability) [67, 129, 133]. In RTD

visualization in Figure 3.1 (B), we observe that the blue dashed line exhibits stagna-

tion behavior (the SLS algorithm is poor) as the solution probability does not increase

even if we increase the running time exponentially (notice that the x-axis is in logarith-

mic scale) and the green solid line shows the expected exponential time behavior, i.e.

the solution probability approaches 1.0 given much more time.

‘Properties of the Fitness Landscape’ of the COPs, such as the distribution

and number of local optima, the existence of the ‘big valleys’, landscape ruggedness, the

existence of plateau regions, etc, are known to affect the difficulty of a COP instance,

which in turn influences the performance of the SLS algorithms. Although exploring the
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entire fitness landscape is impractical, one may still gather crucial statistical properties

of the fitness landscape by sampling the points in the fitness landscape.

Fitness Distance Correlation (FDC) analysis [74, 75, 45, 89, 68, 153] is used to

measure the estimated difficulty of the fitness landscape. In FDC analysis, we sample

a number of local optima. Let F = {fi, f2, . . . , fn} be the fitness (objective) values of

these n local optima with mean f̄ . Let D = {d1, d2, . . . , dn} be the distance between

each local optimum w.r.t. a reference point (usually the nearest16 BF solution) with

mean d̄. The FDC coefficient, rFDC , is defined as [74]:

rFDC =
covFD

varF ∗ varD =
1

n−1 ∗
∑n

i=1(fi − f̄) ∗ (di − d̄)
1

n−1 ∗
∑n

i=1 (fi − f̄)2 ∗ 1
n−1 ∗

∑n
i=1 (di − d̄)2

(3.1)

The result of such an analysis may yield interesting insights that can be exploited to

improve the design of the SLS algorithms. High rFDC coefficient (near 1.0) is a sign

that there exists a correlation between fitness and distance. For example, the Traveling

Salesman Problem (TSP) instances typically have high rFDC (see an illustration of

the FDC scatter plot in Figure 3.1 (C)). This implies that TSP solutions nearer to

BF solution typically have good quality too, we can17 design an SLS algorithm that

concentrates on the region near the current BF solution.

Note that statistical methods like FDC analysis are not always accurate, e.g. a

counter example for FDC analysis is in [6].

Inferential Statistics

While descriptive statistics about SLS runs give information about the sample runs, we

also want to know if the observation is statistically valid. This information is valuable

for making a judgement on how to improve the SLS performance. In this thesis, we

use an inferential statistics technique called Wilcoxon signed-ranks test [55].

Wilcoxon signed-ranks test is a non-parametric statistical hypothesis test for re-

peated measurements on a single sample. This statistical test is used because the

distribution of measurements of SLS runs is not normally distributed. With this test,

we want to know whether the result of using one algorithm (e.g. the baseline algorithm)

on the sample (e.g. the test instances) is significantly different (e.g. poorer) than the

result of using another algorithm (e.g. the improved algorithm) on the same sample

(e.g. the same test instances). The null hypothesis states that there is no difference. If

the null hypothesis is true, then upon observing n different result pairs (the results of

the baseline and improved algorithms), the Wilcoxon test statistic T (details on how to

compute T is in [55]) is expected to be greater than the critical value V with confidence

level α. But if T ≤ V , we have to reject the null hypothesis and adopt the alternative

hypothesis which says that there is a significant difference between the two results.

16As there exists a possibility that there are multiple BF , it is more appropriate to measure this
FDC coefficient w.r.t the nearest one to avoid misleading the user by saying that the search is ‘far’
from the target, thus reporting low FDC coefficient, even though the search has actually managed to
arrive at another solution which has the same OV as the BF .

17Fitness landscape analysis is heavily used in our thesis. More examples are shown in Chapter 7.
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Statistical methods (both the descriptive and inferential statistics) can be used to

help the algorithm designer to address all types of SLS DTP. However, this process is

not straightforward as knowing the statistical information about the SLS algorithm or

the COP is not sufficient to design a good SLS algorithm for that COP. A significant

amount of human effort is still required to make use of the observations found using

statistical analysis before a good solution for the SLS DTP can be produced. In the

context of the SLS DTP, this lengthy process is undesirable due to tight development

time. Fortunately, many computer-aided tools are available to gather and process the

statistical data, e.g. EasyAnalyzer [33].

Human-Guided Search

Human-Guided Search (HuGS) utilizes human visual perception and intelligence by

providing the user with a visualization and interaction tool (see Figure 3.2 for an

example). HuGS presents a problem-specific visualization of the current solution (e.g.

Vehicle Routing tours, etc) and allows the user to control the SLS algorithm (e.g. the

user can focus the SLS algorithm to explore a subset of edges only, etc). This may

work because the human knows the ingredients of good solutions of the COP and may

be able to assist the SLS algorithm to obtain good results quicker.

Figure 3.2: Human Guided Search (Figures are taken from [7])

Research on interactive man-machine optimization can be found as early as in the late

1960s [92, 81]. This line of work re-surfaced in Mitsubishi Electric Research Laboratory

(MERL)’s projects in 2000s: [8, 7, 1, 79, 127, 26, 80].

This approach has a drawback. Guiding the SLS algorithm for a prolonged period

is tedious and sometimes we do not know what to do to steer the search (see the

explanation of Figure 5.8). Thus, the effectiveness of HuGS is limited by the stamina,

patience, and intuition of the human user.

In its original intention, HuGS is not meant to be used as an approach for addressing

the SLS DTP. However, the search strategies derived when guiding the search can be

made permanent (implemented as part of the search strategy of the SLS algorithm),

and thus, HuGS can be classified as a white-box approach.
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Visualization of Search Landscape and/or Behavior

Figure 3.3: Left: Straightforward visualization of COP with only 2 decision variables
by [136]; Right: Mapping 10-dimensional data set to 2-D in order to visualize “the path
through the search space” by [111]. See text for details.

Syrjakow and Szczerbicka [136] proposed a visualization for analyzing Genetic Algo-

rithms (GA) on a simple COP with 2 decision variables only (see Figure 3.3, left). Color

is associated with the fitness of a region, with red being the good regions. Black dots

describe the position of individuals in the GA population. The instance size is quite

small so that the entire fitness landscape can be fully enumerated. The search posi-

tions are then animated in this visualization. This is intuitive, but this approach is

limited to ‘toy problems’ only. In practice, NP-Complete COP solutions are typically

n-dimensional, which require some transformations to be displayed in a 2-D screen.

Moreover, it is hard to enumerate the complete fitness landscape of an n-dimensional

COP instance.

Pohlheim [111] proposed another visualization for analyzing evolutionary algorithms,

e.g. GA. He picked the best individual of every generation in an evolutionary algorithm

and then used a multidimensional scaling approach called Sammon-Mapping to trans-

form the higher dimensional data set into 2-D data set. He then showed the ‘path

through the search space’ induced by these best individual over generations. An exam-

ple of visualizing the progress made by his algorithm on ROSENBROCK’s test function

[125] (10-dimensional) is shown in Figure 3.3, right. As it is hard to map high dimen-

sional data set to 2-D, the author had chosen to keep the dimension and the number of

points to be mapped to be very low (up to 10 dimension and about 30 best individuals

from 30 generations in Figure 3.3, right).

Kadluczka et al. [76] proposed a visualization to analyze higher dimensions. The

authors proposed a problem-specific mapping scheme for n-dimensional solutions to

2-D space which can be displayed on a 2-D screen. Then, by plotting the positions of

the n-dimensional solutions in 2-D space, one can approximately identify which search

space has/has not been explored by the SLS algorithm. This information can be used

as a guide to improve the SLS algorithm.
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Figure 3.4: N-to-2-Space Mapping by [76]. See text for details.

In Figure 3.4, we observe that starting from the points denoted with S, we can trace

the SLS algorithm attempts to reach various local optima solutions G. With such

a visualization, we can gain insights of the SLS algorithm performance. We can see

the search space covered by the SLS algorithm and conclude that Tabu Search (blue)

explores the search space more thoroughly than simple Local Search (orange). The

existence of several whitespace regions in the visualization implies that the regions are

not yet explored, which implies that a diversification mechanism may be required.

The limitation of this visualization is that one must devise his own mapping scheme

for each COP, with possibilities of cluttered visualization due to many n-dimensional

solutions mapped to the same coordinate. Furthermore, the static visualization adopted

in this work does not convey the SLS run-time dynamic behavior in a user friendly

manner, e.g. it cannot show if the SLS algorithm is stuck in a local optimum (compare

with Figure 4.13).

Figure 3.5: Visualization of Search Behavior by [35]. See text for details.

Dooms et al [35] proposed a visualization of Constraint-Based Local Search (CBLS)

written on top of their tool: COMET [149]. Figure 3.5 shows one example of their

visualization on constraint conflicts in solving Sudoku puzzle. This visualization is

animated, showing the changes of constraint conflicts over time as CBLS explores the

solution space. However, with many lines changing over time as seen in Figure 3.5, it

is quite hard to understand the runtime behavior of the underlying CBLS.
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Mascia and Brunato [86] proposed a 3-D visualization to analyze the search land-

scape of a COP instance. This work is inspired by our earlier papers [57] and uses a

similar spring-based method. We remark that 3-D visualization has more scalability

issues as it needs much more data points than the corresponding 2-D visualization.

Figure 3.6: Visualization of Search Landscape by [86]. See text for details.

3.5.3 Comparison between Black-Box versus White-Box Approaches

In general, black-box approaches are suitable for fine-tuning parameter values. If the

COP instances being solved are quite homogeneous, black-box approaches alone may

be adequate to fine-tune the SLS algorithm to make it better. However, while black-box

approaches can improve the SLS algorithm performance, they do so without explaining

why it works. This is not ideal for advancing SLS algorithm research.

White-box approaches are more suitable for choosing appropriate SLS components

and search strategies as determining these requires insights about both the COP and the

SLS algorithm. When the COP being solved has heterogeneous instances, the algorithm

designer may use white-box approaches to adapt the SLS algorithm to different COP

instance types. Note that white-box approaches are just tools. To actually improve

the SLS algorithm performance, the algorithm designer must gain and then utilize the

obtained insights.

3.6 Summary

1. Although it is easy to come up with a working SLS algorithm to solve a particular

COP, designing and tuning an SLS algorithm to achieve consistently good results

within a short amount of development and running time is not so straightforward.

We call this problem the SLS Design and Tuning Problem (DTP).

2. We classify the SLS DTP into three sub-types:

Type-1: Calibrating parameter values

Type-2: Choosing best components, and

Type-3: Adding search strategies
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3. SLS DTP is unavoidable as we cannot change the COP being solved so that it

suits our SLS algorithm. We must address this SLS DTP in order to create a

good SLS algorithm for the given COP. Experts in the field (as quoted in Section

3.4) agree on the importance of having this issue addressed.

4. We classified the approaches to address the SLS DTP into black-box approaches

(treat the SLS runs as black-box) or white-box approaches (analyze the details

of SLS runs to obtain insights).

(a) Black-box approaches: Meta SLS, CALIBRA, F-Race, ParamILS, and GGA.

(b) White-box approaches: Descriptive Statistics, Inferential Statistics, Human-

Guided Search, and Visualization of Search Landscape and/or Behavior.

Each approach has its own strengths and weaknesses.

3.7 Looking Ahead

We have reviewed various approaches to address this SLS DTP, but no approach is

clearly superior to the others in addressing all types of SLS DTP.

In Chapter 4, we propose a better and generic white-box visualization technique

called Fitness Landscape Search Trajectory (FLST) visualization. With this FLST

visualization, one can better understand his SLS algorithm and use his intelligence to

get insights to address the SLS DTP. In Chapter 5, we show an SLS visualization tool

Viz that implements this FLST visualization.
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Chapter 4

Fitness Landscape Search Trajectory

Visualization

“It is not who I am underneath but what I do that defines me”1

— Bruce Wayne in Batman Begins (2005)

In this chapter, we discuss Fitness Landscape Search Trajectory (FLST) visualization, the main

visualization idea in this thesis. FLST visualization is used for explaining SLS algorithm behav-

ior on its COP fitness landscape. This chapter combines and updates the materials published

in [83, 56, 59, 60, 57, 61, 58].

4.1 Motivation and Outline

The analysis of SLS algorithm behavior is complex. When an SLS algorithm does not

perform well, it may not be easy to identify what to fix. And when it does perform well

but a better performance is expected, it may not be easy to identify what to improve.

The emergence of white-box approaches (see Section 3.5.2) has helped the algorithm

designers to analyze some issues in their SLS algorithm behavior. These white-box

approaches may also reveal exploitable generic properties of the COP at hand. With

the obtained insights, users are in a much better position to take intelligent decisions

on how to modify their SLS algorithm and its configuration (M +Φ) in order to obtain

a better performance.

In Section 2.3.3, we have shown that an SLS trajectory can be seen as a walk in

the COP fitness landscape. It will be intuitive if one can visualize the fitness landscape

and understand what the SLS algorithm is doing there, i.e. by answering some of the

questions listed in Section 4.2 and 4.3. However, existing white-box approaches have

difficulties in answering many of these questions (see Section 4.4).

1It is not the SLS algorithm per se, but how its search trajectory behaves on a COP fitness landscape
that defines the SLS algorithm.
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What is missing in the literature is a powerful generic visualization2 that can an-

swer these questions yet not tied to a particular COP or SLS algorithm. In Section

4.5 and 4.6, we explain our generic Fitness Landscape Search Trajectory (FLST) visu-

alization. This FLST visualization can help users in answering fitness landscape and

search trajectory questions and to deal with the main problem in this thesis: the SLS

Design and Tuning Problem (DTP).

4.2 Explaining the Fitness Landscape of a COP Instance

We begin with an analogy. Let’s imagine real-life landscapes: mountain ranges, city

skylines, or sandy deserts. COP fitness landscapes are analogous: points (solutions)

scattered in a kind of landscape and each point has different height (solution quality).

It is just that these COP fitness landscapes are not in 3 dimensions but in n dimensions,

where n is the COP instance size.

To understand the COP fitness landscape traversed by the SLS algorithm, re-

searchers typically resort to analyze its features only. This is more manageable. For

example: local optima distribution, local optima variability, basin of attractions, posi-

tion types, etc (see Chapter 5 of [68]). Typically, SLS algorithm designers pick COP

instances and ask some questions about their fitness landscapes such as the ones below:

1. What does the local optima distribution look like?

(a) If local optima are clustered in one big cluster (the ‘Big Valley’ property),

then the typical strategy is to concentrate the search effort. [45, 89, 129, 59,

61]

(b) If local optima are spread out (no major cluster), then the typical strategy

is to perform more diversification. [129, 89, 95, 57, 61]

2. What is the solution quality distribution (variability) of local optima?

Four possible scenarios:

(a) The variability of local optima is very low (plateau fitness landscape) and

has many regions have solutions with similar Objective Value (OV).

Further questions to be asked are:

• Can the objective function be enhanced to differentiate solutions better?

• Is it better to use an exact algorithm instead? [82]

(b) The variability of local optima is low (smooth fitness landscape) and the

quality differences between global and any local optima are small.

A further question to be asked is:

• Does more intensification help? [57, 61]

2In this thesis, we mainly use visualizations because it is generally easier to understand large vol-
umes of information if they are presented graphically in an effective fashion. These visualizations
exploit human visual strengths in understanding spatial information, in associating colors, shapes with
information, in observing trends, and in detecting patterns, anomalies, outliers, discontinuities.
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(c) The variability of local optima is high (rugged fitness landscape) and the

quality differences between global and any local optima are large.

A further question to be asked is:

• Does more diversification help? [129, 95, 126, 57, 61]

(d) The global optima are isolated (fitness landscape with ‘Golf-Holes’) and most

local optima have poor quality, except the global optima.

Further questions to be asked are:

• Can some fitness landscape properties or problem-specific knowledge be

used to help guiding the search in this difficult fitness landscape? [93, 58]

• Is it better to use an exact algorithm instead? [87]

The answers for these questions can be good starting points for designing appropriate

SLS algorithms. This is because walking through different fitness landscape types may

require different search strategies.

4.3 Explaining SLS Trajectories on a COP instance

After exploring how the fitness landscape looks like, the algorithm designer now needs

to understand how his SLS algorithm behaves on this fitness landscape. Typically, he

will want to ask some combination or all of the following questions:

1. Does the SLS algorithm behave as what was intended?

(a) Is it attracted to good regions?

(b) When it is designed to search around the ‘Big Valley’ region, does it wander

too far from any local optima that it finds along the search trajectory?

(c) When the fitness landscape is very rugged, is the stronger diversification

used effective to help it escape from deep local optima?

(d) When its search strategy is to focus on exchanging short edges in TSP tour

(a problem-specific heuristic), does it exchange too many long edges?

Note: Sometimes, the SLS algorithm may exhibit behavior well beyond the orig-

inal intent of its design, coined as ‘failure modes’ by [153].

2. How good is the SLS algorithm in intensification?

(a) Does it have sufficient exploration within a local neighborhood?

(b) Does it stay around a good region ‘long enough’ before it attempts to make

escape moves from that region?

Note: If the intensification is not sufficient, the SLS algorithm may find a better

solution sometime later in the future after revisiting the same region R that has

been visited in the past just because it did not intensify enough around that

region R previously. Thus, it will take longer to find the solution.
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3. How good is the SLS algorithm in diversification?

(a) Does it make successful non-local moves to previously unexplored parts of

the fitness landscape?

(b) Does the diversification manage to lead the search towards a new (hopefully

better) Best Found BF solution or even the Global Optima GO?

Note: Most of the time diversification will fail to bring the SLS algorithm to good

region as it usually destroys good elements of the current solution. However, the

goodness of diversification should be measured by its potential in helping the SLS

algorithm to break out from stagnation, e.g. if it manages to help the search 1-2

times (and fails 100 times) throughout the search, it can still be considered useful.

4. Is there any sign of cycling behavior?

Note: One main problem faced by SLS algorithm is in escaping local optima.

5. Where in the fitness landscape does the SLS algorithm spend most of

its running time?

(a) The SLS algorithm mostly searches in good regions.

(b) The SLS algorithm mostly searches in bad regions.

(c) The SLS algorithm mostly searches in regions far from the region that con-

tains the BF solution?

A further question to be asked is:

• Is the BF solution found due to a random move or because the SLS

algorithm is progressively narrowing its search to it?

(d) The SLS algorithm mostly searches in the region near the initial solution.

A poor SLS algorithm may be unable to escape from the first local optimum.

(e) The SLS algorithm is trapped in a deep local optimum region.

The search is progressing well until it arrives at a particular local optimum

region at a certain iteration. After that, it stays there for a large number of

iterations.

Note: Searching in the ‘wrong place’ is another common issue of SLS algorithms.

6. How does the SLS algorithm manage to find the Best Found BF solu-

tion?

(a) The search quickly focuses on a promising region and it is just a matter of

time before it eventually arrives at BF solution.

(b) The search arrives at BF solution only after searching for a long time and

most of the time it is far from the location of BF solution.

A further question to be asked is:

• Is this a lucky diversification?
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(c) The search arrives at BF solution early in the search and then stagnates.

A further question to be asked is:

• Is the quality of this BF solution close to the Best Known BK solution?

If not, this search is very poor.

7. How the important solutions (e.g. initial solution s0, BF ) fare w.r.t

global optimum/best known solution in terms of quality and distance?

For the initial solution s0, this information determines the quality of the con-

struction heuristic. For the BF solution, this information determines the quality

of the overall SLS algorithm.

8. How wide is the SLS algorithm’s coverage?

(a) Even after long runs, the diversity of solutions in ST is low.

A further question to be asked is:

• Do we need a stronger diversification?

(b) The diversity of of solutions in ST is ok, but global optima/best known

solutions are missed.

A further question to be asked is:

• Do we need to search on different areas than currently explored?

9. What is the effect of modifying a certain configurable part

(parameter, component, or strategy) w.r.t the SLS algorithm behavior?

(a) The performance improves, e.g. now the new SLS run manages to find a

better BF solution.

(b) The performance deteriorates, e.g. now the new SLS run does not manage

to find previously found BF solution.

(c) There is no significant performance difference as the effects are not obvious!

Further questions to be asked are:

• Is the SLS algorithm quite robust to handle such changes?

• Is it because the modified part is not significant to the search?

4.4 Limitations of Current White-Box Approaches

Answers to the questions posed in Section 4.2 and 4.3 are hard to obtain because:

• It is known that the fitness landscape size is very large. Exploring the entire

search space is not feasible.

• We are often unable to obtain the answers a priori without running the SLS

algorithm and then analyzing its empirical results using white-box approaches.

• Different instances of the same COP may have different fitness landscapes [68],

perhaps due to the COP characteristics or instance sizes.
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• The SLS behavior depends on the fitness landscape [68, 89, 126]. SLS algorithm

with a certain configuration may behave differently on different fitness landscapes.

• The selected configuration (parameter values [17, 3], components [24], and search

strategies [56]), implementation details, and any bugs, determine the actual SLS

algorithm behavior. This behavior may be undesirable, e.g. doing diversification

when intensification is expected (the ‘failure modes’ [153]).

• Stochastic elements in the SLS algorithm imply that SLS runs can be different

when replicated.

In Section 3.5.2, we have discussed existing white-box approaches for analyzing the

COP and/or the SLS algorithm. Unfortunately, although each white-box approach can

be used to reveal some information, they still have difficulties. For example:

• FDC analysis can detect some COP fitness landscape characteristics, e.g. “whether

a ‘Big Valley’ exists?”, but it is not designed to describe its details, as shown later

in Figure 4.8. FDC analysis is also not designed to answer SLS algorithm behavior

questions, e.g. “how does the SLS algorithm manage to find the BF solution?”.

• On the other hand, the RTD analysis can detect some SLS algorithm behavior

like search stagnation but it is inadequate to answer questions like “where in the

fitness landscape does the SLS algorithm spend most of its time?”, as shown later

in Figure 4.13.

• In Figure 3.1.A, we can observe the solution quality distribution but cannot an-

swer other questions, e.g. “How wide is the SLS algorithm coverage?”.

• In Figure 3.3, left, we have a visualization of a 2-dimensional COP that only

works on ‘toy’ COPs with 2 variables. The visualization cannot be used for

typical COPs which have n� 2.

• In Figure 3.3, right, we have a multidimensional scaling approach that maps

a small number of solutions of 10-dimensional data set into 2-dimensional. This

approach is not scalable for typical COPs with n� 2 and thousands of iterations.

• In Figure 3.4, we have another mapping of the n-dimensional space into 2-D that

can partially answer questions like “How wide is the SLS algorithm coverage?”

but not really successful due to the cluttered visualization when n is large.

• In Figure 3.5, we have constraint-specific visualization. But it is hard to analyze

the SLS algorithm behavior just by looking at the constraints’ values.

• In Figure 3.6, we have another attempt of visualizing fitness landscape. However,

this visualization does not show SLS trajectory information.

Even the combination of all existing white-box techniques is not effective to really

answer some questions posed in Section 4.2 and 4.3 above, e.g. “Does it behave as what

we intended?’, “How good is the SLS algorithm in intensification or diversification?”,

or “Where in the fitness landscape does the SLS algorithm spend most of its time?”.
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In this chapter, we propose to overcome this inadequacy by using our Fitness Land-

scape Search Trajectory (FLST) visualization, which is capable to display approximate

COP fitness landscape structure and animating the SLS trajectory on it. As in other

white-box approaches, we leverage on the human’s strengths to gain insights from the

visualization (also see Appendix C).

4.5 Fitness Landscape Search Trajectory Visualization

Given sufficient time and memory, we can explore the entire solutions in the COP fitness

landscape FL, which corresponds to the situation where we have perfect information.

Then, we can explain any COP FL structure and any SLS algorithm behavior on the

FL precisely as we have all the information. However, exploring all solutions in the

FL is not feasible. Thus, we introduce a more feasible way to analyze SLS algorithm

behavior without enumerating the entire FL. We give an overview of our approach

via an illustration below. The technical details of this FLST visualization is given in

Section 4.5.2 onwards.

4.5.1 Illustrating FLST

Figure 4.1: Analogy of Finding Highest Mountain

In Section 2.3.3, we show that SLS algorithm can be understood as a walk on a

COP’s fitness landscape. Figure 4.1 part 1 is a direct visualization of this analogy.

The mountain range in the background is an analogy of fitness landscape FL =

〈S(π), d(s1, s2), g(s)〉. The search space of COP instance π, the S(π), is visualized

as a collection of points in the figure. An appropriate3 distance function d(s1, s2) (e.g.

Hamming/bond distance) separates those points4. The objective function g(s) deter-

3In Chapter 7, we explain which distance function is selected for each of the COP in our experiments.
4For FLST visualization purposes, the definition of FL in Section 2.3.2 uses d(s1, s2) instead of

N(s).
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mines the height of each point on the mountain range. Global Optima GO are the

highest mountain(s) and Local Optima LO are the other mountains.

Now look at the pink search trajectory ST in the same Figure 4.1 part 1. We

observe a ‘movement’ on this mountain range, but may not be able to describe it. Now

consider Figure 4.1 part 2. If we regard the yellow rectangle as a reference point,

we can now say more about the pink search trajectory, for example: “The search

trajectory first hits the yellow rectangle solution, then it moves somewhere else, then

after a certain number of iterations, it hits the yellow rectangle solution again. Is this

a solution cycling phenomenon? Is the SLS algorithm trapped?”.

Suppose now we run one or more heuristic(s)/SLS algorithm(s) possibly with dif-

ferent configurations, and perhaps by including some form of random walk. These

different runs, due to their heuristic and stochastic nature, may visit different regions

in the fitness landscape. We collect a number of samples of reference points (mountain

peaks) that are scattered in the fitness landscape, as illustrated in Figure 4.1 part 3.

We name this reference point the ‘Anchor Point’ (AP ).

Of course, we should expect to miss some good points due to the incompleteness of

the SLS algorithms used to collect them (observe the two white arrows in Figure 4.1 part

3 that point at two mountain peaks in the background that are ‘Not Found’). But if we

collect appropriate AP s (elaborated in Section 4.5.2), we can have an approximation of

the fitness landscape. In Figure 4.1 part 4, we see a dimmed background with four AP s

only. Each AP is color+shape labeled to indicate their quality: Good/O, Medium/�,

Bad/�, VeryBad/� (see Figure 4.5 for details). In this example, we can approximate

the actual fitness landscape with just four AP s.

Now we can playback the SLS algorithm and give a more meaningful description

about its search trajectory. At time t, we measure the distance of solution st ∈ ST

w.r.t known APs using an appropriate distance function. We repeat this process from

t = 0 (initial solution) until t = lastItr.

For example in Figure 4.1 part 5, we can say that the pink trajectory visits a

Bad/� AP (see label 1), goes to a VeryBad/� AP (label 2), and then cycles around

these AP s (label 3). It fails to reach the Medium/� or Good/O AP s. We can say

that such a search behavior is bad.

In Figure 4.1 part 6, we can say that the blue trajectory performs some diversifi-

cation after hitting an AP (which is a local optima). It manages to reach the Bad/�
AP (label 1) plus the Medium/� (label 2) and Good/O AP s (label 3). We can say

that it performs better than the pink trajectory shown in Figure 4.1 part 5.

By having a good APs and proper presentation techniques, we can approximately

explain the SLS algorithm behavior as the movement of the search positions from one

AP to another AP over time. These AP s are used to give a ‘semantic description’ to

SLS trajectories, e.g. ‘moving closer’ to a good AP1, or ‘getting away’ from poor AP2,

or ‘never explore’ the good cluster containing AP3, or ‘always within distance < δ units

from AP4 (trapped around a local optimum), etc. This is the essence of the Fitness

Landscape Search Trajectory (FLST) visualization.
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4.5.2 Anchor Points Selection

Terminologies

Anchor Point AP : An AP is a distinguished solution in S(π). It can be seen as

a reference or signpost in the fitness landscape. FLST visualization explains

the SLS trajectory movement using these AP s.

Anchor Point Set APset: APset ⊂ S(π). |APset| denotes the size of the APset.

AP s in APset are sorted based on solution quality, i.e. AP0 is the Best Found

BF solution.

Motivation

The first important step in building a Fitness Landscape Search Trajectory (FLST)

visualization is to select a relatively small number of AP s out of a very large number of

points in the original n-dimensional fitness landscape. This is because it is not feasible

to visualize all the points in the fitness landscape. The selected AP s form a set called

APset. There are several natural questions that arise because of this requirement.

• Which kind of points should we select?

• How to obtain these points?

• What is the limit of number of points that can be selected?

These design questions must be addressed as APset influences the resulting FLST

visualization. In this section, we discuss the trade offs of each our design choices.

Local/Global Optima for APset

The objective function is the major driving force used by SLS algorithms to navigate

the COP fitness landscape. As (a good) SLS algorithm is attracted to and spends more

time around points with better Objective Value (OV), the most appropriate points to

be kept as AP s (the reference points) for the FLST visualization are the ones with

good solution quality.

We choose local optima (global optima are also local optima) to be included in the

APset for two reasons. First, each local optimum has OV superior to its neighbors.

Second, when the current search trajectory is close to a local optimum X, it is likely

that the search trajectory is now inside the region containingX (the ‘basin of attraction’

of X). If X is in the APset, we can describe the SLS trajectory near (around) local

optimum X.

This design choice means that the fitness landscape in FLST visualization only

shows (selected) local optima information only. Points in SLS runs that are not local

optima will be shown using another approximate visualization as discussed in Section

4.5.4.
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Collecting Local Optima from SLS RunLogs

We decide to utilize the SLS algorithm itself to collect local optima. When the SLS

runs, we set it to record the solutions that it finds. We may run the same SLS algorithm

with different configurations or use other SLS algorithms – including random walk. Due

to different heuristics and stochastic behavior, these SLS runs are likely to traverse

different parts of the fitness landscape.

These SLS runs produce streams of n-dimensional solutions. Although we do not

determine for sure whether a solution is a local optimum according to its definition

(w.r.t its neighborhood), we can know which ones are not by utilizing the local move

property. If solutions st−1, st, and st+1 are adjacent solutions in the search trajectory

of an SLS algorithm for minimizing COP and g(st−1) ≥ g(st) ≤ g(st+1), then we know

that st is a potential local optimum (called PotAP ) while st−1 and st+1 are not.

We choose to select the points using SLS algorithms to minimize the additional

efforts that must be taken by the user of this FLST visualization. We do not require

the user to create additional algorithms to obtain local optima more systematically –

this defeats the original purpose of creating FLST visualization for addressing the SLS

Design and Tuning Problem. The user of our FLST visualization only needs to

tweak the SLS algorithm to be analyzed to record the stream of solutions. However,

this design choice limits the FLST visualization to show explored landscape only.

Limiting the Size of the APset

After filtering the obvious non local optima from SLS runs, we still face a large num-

ber of potential local optima (PotAP ), especially for COP with larger instance size n.

One may argue that we can use ‘zoom and pan’ features to visualize larger instances.

However, this is not scalable as the screen resolution for displaying the FLST visual-

ization is relatively small, e.g. 1280x1024. Moreover, observing too many tiny AP s

when the FLST visualization is zoomed out may not be intuitive. Therefore, we decide

to have a small and constant |APset|. The appropriate |APset| depends on the COP

being solved and the corresponding SLS algorithm used. This will be discussed later

in Chapter 7.

This design choice means that the FLST visualization is unable to show many local

optima that are not selected in APset. Thus, we cannot show the Search Trajectory

information during the times ST is near the unselected potential local optima.

Increasing the Diversity of the APset

Given that we can only select a limited number of AP s to explain the fitness landscape

and search trajectory on it, we need to select AP s that can tell us more about the

fitness landscape and the search trajectory. We also need to have a diverse APset on

top of high quality APset by selecting local optima, as elaborated below.

Later in Section 4.5.4, we use a distance function to measure how close the current

solution st at time t in the search trajectory w.r.t the AP s in APset. When two

44



solutions: st and anchor point X are close to each other, i.e. d(st,X) ≤ δ for a small

δ, then we can say that st may be inside the basin of attraction of AP X. But if

d(st,X) > δ, then the AP X is not useful for explaining what is happening with st.

To make d(st,X) ≤ δ, APX ∈ APset for many events in ST (especially for impor-

tant events like “stuck in a good local optimum” or “approaching the BF solution”),

we need to pick AP s that are diverse enough so that the AP s cover a wide part of the

fitness landscape. We want to maximize the number of points st in the SLS run where

there exists an AP X which is close to st by a certain (small) δ.

Formal Definition of the AP Selection Problem

In summary, we need to select diverse and high quality AP s from potential local op-

tima. To capture these requirements, we define the AP Selection Problem as a multi-

objective optimization problem: obtain an APset such that the AverageQualityGap

is minimized and the DiversityIndex is maximized. Note that APi, APj ∈ APset.

AverageQualityGap =

∑|APset|−1
i=0 |(g(APi)− g(BK)|
|APset| ∗ g(BK)

(4.1)

DiversityIndex =

∑|APset|−2
i=0

∑|APset|−1
j=i+1 d(APi, APj)

|APset| ∗ (|APset| − 1)/2 ∗ n (4.2)

AverageQualityGap (AQG) measures the average gap (in percentage-off) between the

quality of AP s in APset w.r.t the Best Known (BK) OV. DiversityIndex (DI) mea-

sures the average distance between any two AP s in APset and ranges from 0 (no

diversity – only 1 AP ) to 1 (maximum diversity – all AP s are very different). These

two criteria are conflicting.

Heuristics for the AP Selection Problem

There are O(C
|ST |
|APset|) ways to choose |APset| AP from |ST | points in an SLS run ST .

An exact algorithm may take too long. In practice, we do not need an optimal APset

for FLST visualization as long as the visualization is meaningful to the human user. A

fast method that can process thousands of potential local optima (PotAP ) efficiently

is preferable. Therefore, we adopt heuristic approaches to get a fast and reasonable

result for the AP Selection Problem.

One simple heuristic is to greedily select the top-|APset| PotAP . This heuristic

runs in O(|ST | ∗ log(|APset|)) per SLS run by maintaining the top-|APset| PotAP

with a heap data structure. This heuristic produces low AverageQualityGap but also

produces a low DiversityIndex as the selected AP s will be mostly the local optima

around the region containing the BF solution – this is not good5.

Another simple heuristic is to randomly select |APset| PotAP . This heuristic can be

implemented in O(|ST |) per SLS run by randomly decides whether a certain PotAP

5This works for COP with the ‘Big Valley’ property (see Section 7.2) since most parts of the SLS
runs are within this region. But for COPs with diverse multi modal local optima, we will lose the
representative for a lot of other local optima regions which are far from this BF region. If this happens,
we cannot analyze the search trajectory when it is not in the BF region yet.
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should be kept (thus replacing another existing AP in APset) or ignored through-

out the SLS run. This heuristic is expected to produce an APset with reasonable

DiversityIndex but usually bad AverageQualityGap.

These two heuristics are inadequate for addressing the AP Selection Problem. Thus

we develop our AP-Selection heuristic described below.

AP-Selection(Seed, SLSRun, TargetAPsize)

1 InitRandom(Seed) // For breaking ties randomly (WorstAP/WorstNearestAP)

2 APset←load previous APset (if any)

3 for each PotAP ∈ SLSRun // iterate through all PotAP in SLS run

4 do if Size(APset) < TargetAPsize // the first few PotAP are taken

5 then Add PotAP to APset if PotAP is not already ∈ APset

6 else if BetterSolutionQuality(PotAP,WorstNearestAP )

7 then PotAP replaces WorstNearestAP

8 else if EqualSolutionQuality(PotAP,WorstNearestAP )

9 then PotAP replaces WorstAP

10 Sort APset based on solution quality, with AP0 as the Best Found AP

11 Save APset

12 return APset

Line 3-7 of our AP-Selection heuristic is essentially similar to the heuristic that greed-

ily selects top-|APset| PotAP . But in line 6-7, instead of comparing the solution qual-

ity of current PotAP with WorstAP that potentially decrease DiversityIndex, our

heuristic compares the solution quality of current PotAP with the WorstNearestAP

(from that PotAP ). WorstNearestAP is found by first identifying the AP currently

in APset that has nearest distance with current PotAP (random tie breaking is used

when necessary). The rationale is that an SLS run is a stream of solutions. Thus,

the distance between immediate solutions (st and st+c for a small c) in an SLS run is

usually small. Rather than keeping both in APset if both are good local optima, this

heuristic tends to keep only one the better PotAP for each region in fitness landscape

as it dominates other AP s with worse solution quality near the chosen one.

Special case: Line 8-9 are used if the current PotAP has similar solution quality to

the WorstNearestAP . This may happen if the fitness landscape is plateau or when

there are multiple local (or global) optima that have similar solution quality. In either

case, we prefer to visualize this important information even if it causes a decrease in

the DiversityIndex. If this happens, then PotAP will replace the WorstAP currently

in the APset (random tie breaking is used when necessary).

Line 2 (load) and Line 11 (save) are used to improve the solution quality of APset

across various SLS runs. Rather than starting from scratch – which will make FLST

visualization looks different every time – APset of a COP instance is updated when a

new SLS run is performed on that instance. Line 6-9 dictates that only new PotAP s

from a new SLS run with better (or equal) solution quality can replace older AP s

currently in the APset. This allows us to have more stable FLST visualization and
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let us explain the behavior of an SLS run with some AP s found from another (either

better or worse) SLS run(s).

The time complexity of our AP-Selection heuristic is O(|ST |∗|APset|∗n), heavier
than the greedy or random selection heuristics. The big part is the O(|APset|∗n) effort
to find the important WorstNearestAP . We decide to use the AP-Selection heuristic

because it is biased towards getting better local optima (decrease AverageQualityGap)

but has a better DiversityIndex than the greedy selection heuristic.

To illustrate the differences of the three heuristics mentioned in this section, we use

the following simple example (see Figure 4.2). There are 10 consecutive bit strings ∈ ST

with length n = 6 and different OVs. We want to select 3 bit strings only. Random se-

lection heuristic randomly selects – for example – the points at iteration 3, 6, 7. Greedy

selection heuristic selects the top-3 points with good solution quality: the points at it-

eration 6, 8, 9. Our AP-Selection heuristic initially selects points at iteration 2, 4, 6 as

they are the first 3 PotAP . Later, it replaces the AP from iteration 6 with the AP from

iteration 8 because AP from iteration 6 (011010) is theWorstNearestAP from PotAP

from iteration 8 (011001). The AverageQualityGap(AQG) and DiversityIndex(DI)

of the three heuristics for this example is shown in Table 4.1.

Iter Point OV Gap Iter Point OV Gap

1 100100 9 7 6 011010 3* 1
2 100110 6* 4 7 011011 5 3
3 000110 7 5 8 011001 2* 0
4 000010 4* 2 9 111001 3 1
5 010010 5 3 10 111011 4 2

Figure 4.2: Collecting Potential AP s (Red Circles O) from an SLS run that flips
one bit per iteration. For column ‘OV’, lower value is better (minimizing) and star (*)
indicates ‘Potential AP’. Column ‘Gap’ is column ‘OV’ minus g(BK).

Random Selection Greedy Selection AP-Selection Heuristic

APset 3, 6, 7 (Random) 6, 8, 9 (Top-3) 2, 4, 8 (8 replaces 6)

AQG 5+1+3
3∗2 = 1.50 1+0+1

3∗2 = 0.33 4+2+0
3∗2 = 1.00

DI 3+4+1
3∗6 = 0.44 2+3+1

3∗6 = 0.33 2+6+4
3∗6 = 0.67

Table 4.1: Comparing AP Selection Heuristics.
AQG = AverageQualityGap and DI = DiversityIndex.

Table 4.1 illustrates that:

Random selection produces APset with average DI but bad AQG;

Greedy selection produces the lowest AQG but with low DI too – this will make many

points in search trajectory too far from AP s ∈ APset;

Our AP-Selection heuristic is biased towards low AQG but has better DI than greedy.
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4.5.3 Fitness Landscape Visualization

Motivation

After we have collected reasonable high quality and diverse AP s, the next important

step is to present these AP s in a user-friendly visualization.

The appropriate dimension to visualize movement on a landscape is 2-D since hu-

mans are good in discerning 2-D spatial information6. When there are only 2 decision

variables, it is easy to plot a 2-D graph (see Figure 3.3, left). However, since the size

of a combinatorial solution is usually O(n), e.g. a permutation of n items, a bit string

of n items, etc, visualizing this point in high-dimensional space in 2-D is a challenge.

Formal Definition of AP Layout Problem

We introduce a novel 2-D visualization space VSPACE to represent a fitness landscape.

This is not a projection from n-dimensional space into 2-D (compare with Figure 3.4,

right) which may cause many collisions of points in the 2-D space. In VSPACE, the x

and y-axis are not related to the variables, rather they are meant to make it easier to

see the search trajectories in a 2-D layout. We make use of a generic distance function

to measure the pairwise distance between these AP s and a layout algorithm to layout

these AP s in VSPACE.

We remark that FLST visualization requires that we use distance function that

satisfies the triangle inequality property as it corresponds to spatial intuition. Examples

of such distance functions are the Hamming and bond distance [123, 124]. Using a

distance function that does not satisfy the triangle inequality property may distort the

FLST visualization.

This AP Layout Problem can be seen as a kind of graph drawing problem the where

2-D positions of the AP s should approximately reflect the distance between these AP s

in n-dimensional space. However, this layout is usually imprecise, as elaborated below.

A perfect 2-D layout for AP layout problem cannot be achieved in general. The

reason is that the distance function used to measure the difference between two

combinatorial solutions is usually not the 2-D Euclidian distance. As an illustra-

tion, consider the following AP s that are represented as bit strings:

APa = 0000 APb = 0111 APc = 1011

Their Hamming distances are:

d(APa, APb) = 3 d(APa, APc) = 3 d(APb, APc) = 2

One 2-D layout of APa, APb and APc is a triangle of length 3, 3, 2 as shown in

Figure 4.3.A. This is a perfect 2-D layout since it preserves the AP distances.

Now suppose that there is one more anchor point, APd = 1111. The Hamming

distances from APd to the rest are:

d(APd, APa) = 4 d(APd, APb) = 1 d(APd, APc) = 1

6We live in a 3-D world but computer screen is essentially 2-D. Drawing 3-D data in a 2-D screen
(e.g. [86]) causes foreground objects to obscure background objects. 2-D data are naturally easier to
comprehend. Dimensions higher than 3-D are not natural, more complex, and difficult for visualization.
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Figure 4.3: Perfect Layout is Hard to Attain

Now, it is not possible to draw all the four AP s in 2-D such that the 2-D Euclidean

layout distance preserves the Hamming distance. In Figure 4.3.B, we draw circles

on each APa, APb, APc to indicate their distance w.r.t APd. It is apparent that

there is no common intersection point between all the three circles. If an imperfect

layout is acceptable, the point highlighted by the blue arrow indicates a potential

location of APd with small layout error.

If the DiversityIndex is higher, we will have a harder layout problem. For exam-

ple, replace APd with APe = 1100 with d(APe, APa) = 2, d(APe, APb) = 3 and

d(APe, APc) = 3. The layout error is larger than the one shown in Figure 4.3.B.

As it is not possible to attain a perfect layout in general, we view this layout problem

as another optimization problem. We want an AP layout on VSPACE that minimizes

the layout error errAP, defined below. ELD(APi, APj) denotes the 2-D Euclidian layout

distance between APi and APj in VSPACE. d(APi, APj) denotes the n-dimensional

distance between APi and APj in n-dimensional space. APi, APj ∈ APset.

errAP =

∑|APset|−2
i=0

∑|APset|−1
j=i+1 |(ELD(APi, APj)− d(APi, APj)|
|APset| ∗ (|APSet| − 1)/2 ∗ n (4.3)

Given an AP layout with low layout error errAP, we can expect that if we pick any two

AP s and observe that these two AP s are laid out near (/far) to each other in VSPACE,

then they should be approximately near (/far) to each other in the actual n-dimensional

space, and vice versa. Here, we utilize gestalt principle of proximity [152] where AP s

that are close to each other are readily perceived as being clustered.

But when AP layout has substantial errAP, the user must be careful with the

feature mentioned above as there are cases where two AP s are laid out near to each

other in VSPACE but they are actually quite different in n-dimensional space.

Heuristic for AP Layout Problem

We need a layout algorithm that can reduce the layout error errAP efficiently (any good-

enough layout is sufficient) and consistent manner (produce the same layout given the

same APset). There are several proposals for addressing the graph drawing (layout)
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problem [31]. In this thesis7, we use the ‘spring model’ heuristic layout [77] that falls

into the category of force-directed layout8. Rather than re-implementing the algorithm,

we use the ‘spring model’ layout algorithm implementation found in the graph drawing

tool ‘NEATO’ [54]. This tool accepts an input graph and produces an output layout

according to the ‘spring model’ layout algorithm. Our wrapper code is shown below.

AP-Layout(APset)

1 Prepare a graph G with |AP | vertices
2 for each pair APi and APj ∈ APset

3 do Set the length of edge (APi, APj) in G to be d(APi, APj) // virtual spring

4 Put a constraint that vertex AP0 in G (BF AP ) is to be placed at (0, 0)

5 // run external tool ‘NEATO’

6 layout←NEATO(Seed,maxIter,G)

7 Coordinate = parse(layout) // read the layout produced by ‘NEATO’

8 return {Coordinate(AP0), Coordinate(AP1), . . . , Coordinate(AP|APSet|−1)}

Line 1-4 are pre-processing steps. These steps place a spring-like force for every pair

of nodes (APi, APj) where the ideal length of each spring is proportional to the n-

dimensional distance between APi and APj , i.e. d(APi, APj). In line 4, we put a

constraint for ‘NEATO’ to draw AP0 (the BF solution which can be either the global

optima or the BK solution) in the middle of VSPACE – the center of attention. In

line 5-6, we run ‘NEATO’ [54]. ‘NEATO’ first randomly scatters the AP s in VSPACE

(it is deterministic given a fixed Seed) and then employs a ‘spring layout’ algorithm

that forces each spring to return to its natural length when stretched (drawn as red

dashed line in Figure 4.4) or shrunk (drawn as blue solid line in the same figure).

‘NEATO’ reduces the overall spring tension9 modeled in Equation 4.3 (drawn as green

lines in the same figure). In line 7-8, we parse the output produced by ‘NEATO’ and

return the coordinates of AP s in VSPACE.

The springs between all pairs of AP s and the fixed position of AP0 restrict the AP s

to be laid out by the ‘spring layout’ algorithm within an imaginary circle around AP0

with radius ≈ n of the COP instance10. See Figure 4.9.A for details.

In Figure 4.4, we illustrate an example of running ‘NEATO’ on 5 points {A, B, C,
D, E} where point A is fixed in the center of the screen. In the initial (random) layout,

we see that point B is too close to C but too far to {A, D, E}. ‘Spring layout’ will

adjust these points {B, C, D, E} to obtain the final layout by minimizing the tension

in all the 5C2 = 10 edges. As ‘spring layout’ is a heuristic, we remark that the layout

produced is a local optimum and usually errAP != 0! Although FLST visualization

cannot be perfectly accurate, we show in Chapter 7 that FLST visualization indeed

7There are other techniques for analyzing high dimensional data such as Principal Component
Analysis (PCA). PCA may also be used but it is not directly suitable for our visualization needs.

8Relevant work by Pohlheim [111] used multidimensional scaling called SAMMON mapping.
9Minimizing the difference between Euclidean and ideal distances between nodes in NEATO is

known as multi-dimensional scaling to statisticians [54].
10The maximum distance between a pair of points is usually O(n) and n is the problem size [89].

The typical size of n of COP instances used in this thesis is not too big (e.g. n < 100) such that it is
feasible to layout these AP s on a computer screen.
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Edge Before (distance normalized) After (distance normalized)
(APi, APj) ELD d |diff | ELD d |diff |
01. A-B 0.6 0.5 0.1 0.5 0.5 0.0
02. A-C 0.6 0.6 0.0 0.6 0.6 0.0
03. A-D 0.4 0.4 0.0 0.4 0.4 0.0
04. A-E 0.6 0.3 0.3 0.2 0.3 0.1
05. B-C 0.3 0.7 0.4 0.7 0.7 0.0
06. B-D 0.9 0.5 0.4 0.5 0.5 0.0
07. B-E 0.9 0.8 0.1 0.7 0.8 0.1
08. C-D 0.9 0.8 0.1 0.7 0.8 0.1
09. C-E 1.0 0.8 0.2 0.8 0.8 0.0
10. D-E 0.8 0.6 0.2 0.6 0.6 0.0

errAP: 1.8 / 10 = 0.18 errAP: 0.3 / 10 = 0.03

Figure 4.4: An Illustration of Spring Model and AP Layout Error errAP

works and can reveal important insights even with its inherent impreciseness.

The time complexity of the AP-Layout is O(|APset|+maxIter), as we can control

the maximum number of iterations of NEATO.

AP Labeling

The AP layout above only gives distance information between AP s. To show solution

quality information, we label each AP according to its solution quality (the gap of OV

w.r.t Best Known BK OV) using redundant11 features (color+shape). The shapes are

small to avoid cluttering the visualization. The labels are shown in Figure 4.5.

Figure 4.5: The AP Labels

We limit the number of categories to 4 data classes (Good/Medium/Bad/VeryBad) as

this is near the limit of human perceptual ability to quickly differentiate objects [43].

This AP labeling forms a ‘contour map’, where the height (solution quality) is easily

distinguishable in the map via its color+shape label. The OV ranges for AP classifica-

tion in Figure 4.5 (the values of a, b, and c) can be interactively adjusted to get more

information about the fitness landscape.

11To avoid the case where this document is printed in black and white or if the user is color blind.
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Figure 4.6: AP Labeling Enriches the Presentation

In Figure 4.6.A, we observe an AP layout on VSPACE without AP labeling. Thus,

we do not know the solution quality information of each AP .

In Figure 4.6.B, we set AP s that are within 1%-off from BK to be labeled with

BlueCircle O. This way, we can immediately identify that the positions of the good

AP s are spread out. Here, we are utilizing human perception strength in classifying

objects that have similar visual attributes (color, shape, orientation) as belonging to

the same group (gestalt principle of similarity) [152].

Of course, we can have a finer grained labeling like in Figure 4.6.C, where we use

the 4 data classes described in Figure 4.5 above.

Figure 4.6.D shows that having too many data classes at the same time causes

cluttered visualization, which reduces human’s ability to understand the visualization.

This justifies our limit of 4 data classes.

Fitness Landscape Overview (FLO) Mode

We call this FLST visualization mode the ‘Fitness Landscape Overview’ (FLO) mode.

FLO mode can be used to explain the COP fitness landscape characteristics mentioned

in Section 4.2. Local optima distributions are shown by the location of the AP s. The

solution quality of the AP s are represented by the AP labels. Circular grid lines12 are

used as a scale to measure the distances between AP s especially when errAP is low.

Figure 4.7: Fitness Landscape Overview and Side View Modes

FLO mode is normally viewed from above, i.e. we view the x and y-axis and use the AP

label to represent solution quality. However, the view can also be rotated 90 degrees

12In all our experiments, we set 1 grid line = 10 distance units. Green border shows max distance.
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along the x-axis to highlight the solution qualities of the APset (now as y-axis). This

is called the ‘side view’ mode. An illustrative example is shown in Figure 4.7.

Comparison with Fitness Distance Correlation (FDC) Analysis

This FLO mode can also be seen as an extension of the FDC scatter plot (see Section

3.5.2), i.e. from comparison of fitness and distance of each local optima w.r.t nearest

BF solution only, to comparison of multiple AP s. In Figure 4.8, we show an example

of what FLO mode can show over FDC scatter plot. In Figure 4.8.A, we see an FDC

scatter plot that does not exhibit the ‘Big Valley’ property since there are three good

points far from BF solution. With the FDC scatter plot, we cannot tell whether the

actual distribution actually looks like Figure 4.8.B or Figure 4.8.C. However, this local

optima distribution can be naturally shown in the FLO mode, i.e. FDC scatter plot

only shows the red dashed lines (distances between local optima and BF solution)

whereas the FLO mode also visualizes the green solid lines (distances between each

local optima).

Figure 4.8: Comparison between FDC versus FLO Visualizations

4.5.4 Search Trajectory Visualization

Motivation

FLST visualization does not stop here. To answer the questions about SLS algorithm

behavior in Section 4.3, we need to visualize (and animate) the search trajectory on

top of the fitness landscape. We can explain the rough search trajectory behavior with

just some minor additions to the FLO mode shown in Section 4.5.3 above.

Search Coverage Overview (SCO) Mode

The distances between a point st, t ∈ {0, 1, . . . , lastItr} in the search trajectory ST and

the AP s that have been laid out on VSPACE are used to determine the position of st in

the VSPACE. If d(st,X) ≤ δ for a certain AP X, then a circle of diameter d(st,X)+ ε

is drawn on AP X to show that the current position st is within δ units away (or less)

from AP X (see Figure 4.9.B). A small ε is needed so that when d(st,X) = 0 (exact

match), we see a circle that fits the AP label instead of a dot, which is too small to be

53



seen clearly. δ is called ‘near distance criterion’ and adjustable by user, e.g. set δ = 0

to see which AP s are actually visited or set δ = 20% ∗ n to see which AP s are either

visited or narrowly passed by the search trajectory.

Note that there can be more than one AP X ∈ APset that are near to st if δ is large

enough and there are some AP s that are close to each other, i.e. d(APi, APj) ≤ 2δ.

For example in Figure 4.9.C, we see that the current point st is an exact match with

AP3 (the circle fits) and also quite similar to AP2 (the circle is larger).

Figure 4.9: The Drawing Space for AP s ∈ APset and st ∈ ST

As the SLS algorithm moves locally (unless a strong diversification is performed), ad-

jacent solutions found by the SLS algorithm typically have many similarities: they

are from the same region in the fitness landscape. We can set a trail of length l of

st−l, st−l+1, . . . , st ∈ ST and draw circles around AP s that are within δ distance units

with this search trajectory trail. By sequentially advancing the trail step by step over

time, we obtain an animation of the search trajectory movement on the fitness land-

scape. We can also see the quality of the region currently being searched via the AP

labels of AP s with circles drawn on them. If errAP is low, the geometric distance of

the trail movement can also be used to gauge how ‘radical’ or ‘conservative’ the SLS

algorithm is at modifying the solutions.

The search trajectory information is not meaningful when st is far from all AP ∈
APset. This typically happens if the AP s are spread and the SLS algorithm is in

‘diversification’ phase, or when the SLS algorithm is so poor that it only visits poor

solutions outside the current APset. If that happens, we do not draw any circles to

highlight the position of st, but we just display the current distance of st to the nearest

AP (observe Figure 4.10.D where distance indicator – horizontal bar on the top left

side – shows that st is far from known AP s). Thus, when there is no circle appearing

on any AP , it means that the search is currently exploring the region far from the

recorded APset. This is to avoid misleading the human visual perception system. This

feature is controlled by the near distance criterion δ mentioned above and we typically

set δ to be ≤ 20% ∗ n where n is the instance size/typical maximum distance.

We call this mode the Search Coverage Overview (SCO). See Figure 4.10 for 4

illustrative examples. Suppose the FLO mode has selected, laid out, and labeled the 5

AP s {A,B,C,D,E}. Now, these 4 SLS runs can be described as follows:
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Figure 4.10: Search Coverage Overview Mode, see text for interpretations.

Run 1: CxxxxEFEFE⇒ SLS algorithm starts from a VeryBad AP C (label 1), passes

through solutions that are far from known AP s (the ‘x’s), walks to a Medium quality

AP E (label 2), then cycles around AP E and its neighbor F (label 3). Neighbor F is

not ∈ APset, but as it is close to AP E, it is drawn as a larger circle around AP E.

The animation shows a smaller & larger circle appearing alternatingly around AP E.

Run 2: GxxxxxCxx⇒ SLS algorithm starts from a point G which happens to be near

Bad AP B. This is indicated as a large circle around AP B as G is not ∈ APset (label

1). But then it walks to a VeryBad AP C (label 2). This is a poor intensification.

Run 3: CxxBxDxA⇒ SLS algorithm starts from a VeryBad AP C (1), then to a Bad

AP B (2), Medium AP D (3), and Good AP A (4). This is a good intensification.

Run 4: xxxxxxxxHxxxx ⇒ Throughout the search, the SLS algorithm is mostly

not near any known AP s. It only briefly pass through a point H near a VeryBad AP C

and disappear again. It fails to navigate to promising region (e.g. D, E, or A).

Note that these are just some possible interpretations of the visualizations shown in

Figure 4.10. The actual interpretation will depend on the search strategies being used,

problem specific knowledge, fitness landscape structures, etc.

Search Trajectory Detail (STD) Mode

The Search Coverage Overview mode shown above is ‘correct’ in the sense that if at

any time t a circle of radius δ+ε is drawn on an AP X, then the solution st is definitely

within δ unit distance away from that AP X. However, SCO mode is not detailed as

st can actually be ‘anywhere’ around the radius of that enclosing circle of AP X.

To be more precise, we need to set an approximate position of st in the VSPACE.

Connecting series of approximate positions of st ∈ ST with lines in an animated fashion

is more natural than animating a series of circles in SCO mode. We call this mode as

Search Trajectory Detail (STD) mode13.

As an example, see the SCO mode in Figure 4.11.A. Here, we observe a walk of an

Iterated Local Search (ILS) algorithm on a fitness landscape. We can only say that the

ILS starts from local optima 1 (LO1), LO2, LO3, and then the ILS reaches the global

optima (GO). Compare this with the STD mode in Figure 4.11.B. Here, we observe

that from each local optima, the ILS tries to search around it and return to previous

13Both SCO (circles) and STD (lines) mode can be active at the same time in FLST visualization.
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Figure 4.11: Comparison between SCO versus STD Modes

local optima if the new local optima is not accepted by the acceptance criteria of ILS14.

These details can only be seen if each st is assigned to a specific position in VSPACE.

For this, we need another layout algorithm.

Formal Definition of Search Positions Layout Problem

This phase aims to place st ∈ ST, t ∈ {0, 1, . . . , lastItr} on VSPACE while minimizing

the layout error errST between st and its k-nearest AP s, k � |APset|. Currently, we
set k = 3 since at least 3 points are required to resolve layout ambiguity. We denote

APnearest(i) ⊂ APset as the i-th (1st, 2nd, 3rd) nearest AP from st. We use weight(i)

to control the layout. We want to place st as close as possible to the 1st nearest AP ,

then to 2nd nearest AP , and finally to the 3rd nearest AP . The search position layout

error errST is computed as follows:

errST =

k=3∑

i=1

weight(i) ∗ abs(ELD(st, APnearest(i))− d(st, APnearest(i))) (4.4)

See Figure 4.12 for illustration. Suppose the three nearest AP s to st at time t are:

APx, APy, APz . The distance of st w.r.t these three AP s are indicated by the radius

of the enclosing circle. If we install st in the position 1 shown in Figure 4.12.A, then

the errST is still quite large (visualized as green thick lines). A better alternative is

to install st in the position 2 shown in Figure 4.12.B with much smaller errST.

14See Section 7.2 for this ILS behavior on Traveling Salesman Problem (TSP).

Figure 4.12: Determining the Position of st at Time t in VSPACE
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Recall that the information from an AP X is not meaningful when d(st, AP X) > δ.

We do not draw st on VSPACE if d(st, APnearest(1)) > δ in both SCO and STD mode.

Figure 4.12.C shows that when st is too far from any known AP s (visualized as large

enclosing circles), it is hard to decide where to install st without causing a large errST.

Heuristic for Search Positions Layout Problem

To obtain the layout of each point in ST , we use a slightly modified spring model layout

algorithm as follows:

errST(st,Direction, StepSize,AP1, AP2, AP3)

1 Move st by StepSize units according to Direction

2 errSTvalue← 0

3 for i← 1 to 3

4 do errSTvalue← errSTvalue+ weight(i) * ABS(ELD(st, APi)− d(st, APi))

5 Reverse st to original position before this move

6 return errSTvalue

Search-Positions-Layout(ST,MaxIteration)

1 for st ← s0 to slastItr ∈ ST

2 do Let APx, APy, APz be three nearest AP s w.r.t st (ascending)

3 if st is far from APx, APy, APz

4 then Coordinate(st)←NOT-DRAWN and continue to next st

5 Coordinate(st)← Coordinate(APx)

6 for Step← 64 to 1 // StepSize /= 2 at every loop

7 do for i← 1 to MaxIteration

8 do BestDirection = Stand-Still

9 BestLocalSpringTension =∞
10 for Dir ← North,East, South to West

11 do Tension←errST(st,Dir, Step,APx, APy, APz)

12 if Tension < BestLocalSpringTension

13 then BestLocalSpringTension← Tension

14 BestDirection← Dir

15 Move st to BestDirection for StepSize units.

16 return {Coordinate(s0), Coordinate(s1), . . . , Coordinate(slastItr)}

Line 2-15 are repeated for each solution in ST . In line 2, we find 3 nearest AP w.r.t

st in O(|APset| ∗ n) time. Line 3-4 determines whether st is too far from known AP s

or not. Line 5-15 is our ‘modified spring model’ layout algorithm that initially places

st at the same coordinate as APnearest(1), then the heuristic will try to move st by 64

units to 4 directions. If such a move reduces the local spring tension between st and

its 3 nearest AP s, st is moved there. This heuristic then tries to move st by 32, 16, 8,

4, 2, 1 unit(s) until no more moves can reduce the spring tension. This heuristic runs

in O(|ST | ∗ (|APset| ∗ n+ C ∗MaxIteration)).
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This heuristic produces a deterministic layout of points in ST when given the same

APset. That is, two same points sa, sb ∈ ST, d(sa, sb) = 0 are drawn in the same

coordinate. This is particularly useful to detect solution cycling phenomenon in SLS

run as two identical solutions found in separate time during SLS run are shown in the

same position in VSPACE.

Comparison with Run Time Distribution (RTD) Analysis

Our SCO and STD modes are richer than the Run Time Distribution (RTD) analysis.

In Figure 4.13.A, we observe that the SLS algorithm experiences stagnation as solution

probability does not increase after some time. However, RTD analysis cannot explain

the details of the SLS run. In Figure 4.13.B and 4.13.C, we can observe where this SLS

algorithm is stuck and are in a better position to design strategies to address this issue.

Figure 4.13: Comparison between RTD versus SCO and STD Modes

With these capabilities, SCO and STD modes of FLST visualization can help in an-

swering the questions posed in Section 4.3.

4.6 Multi Instances Analysis

After explaining SLS algorithm behavior on one COP instance, it is natural to extend

our questions in Section 4.2 and 4.3 to multi instances to avoid over-fitting and to

obtain more sound conclusions. However, as FLST visualization involves working with

human user, we cannot use too large training instances. In general, we want to further

ask these important questions:

1. Are these fitness landscape characteristics (Section 4.2) found

to be general across all COP instances?

e.g. if instance A has a Big Valley structure, does instance B have it too?

2. Are the observations of an SLS algorithm behavior on one

individual COP instance (Section 4.3) generalize-able to other

instances?

e.g. if the SLS runs well on instance A, does it runs well on instance B too?
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The possible answers for each question are:

1. Yes.

All these COP instances exhibits the same fitness landscape characteristics.

The observations seem consistent throughout many (class of) instances.

Perhaps there is a generic property which should be further tested.

2. No.

Can similar instances be grouped into classes of instances?

Perhaps a different customized SLS algorithm is needed?

To answer these two questions, we simply apply the analysis using FLST visualization

to the entire training instances as shown later in Chapter 7.

4.7 Summary

1. When one wants to understand the behavior of an SLS algorithm on a COP

fitness landscapes (in order to address the SLS DTP), there are many questions

that need to be answered (see Section 4.2 and 4.3). There are several white-box

approaches for explaining SLS algorithm behavior, but these approaches still have

difficulties in answering questions about SLS algorithm behavior (see Section 4.4).

2. We propose an idea to visualize the approximate fitness landscape and search

trajectory on it (called the FLST visualization). This visualization is not meant

to replace the existing white-box approaches but rather to augment them. The

key concepts of this FLST visualization are:

(a) We select some diverse and high quality local optima solutions in the fitness

landscape (using the SLS algorithm itself) – called anchor points (AP s).

(b) We layout these AP s on VSPACE with a spring model layout algorithm

that utilizes pairwise distance between each AP . This is to bring down

the n-dimensional combinatorial solution space to a more user friendly 2-

dimensional VSPACE.

(c) We label these AP s according to their solution quality to make up the fitness

landscape visualization.

(d) Then, points along the search trajectory are drawn (laid out) w.r.t these

AP s in an animated fashion in order to explain the SLS algorithm behavior.

3. FLST visualization is our attempt at visualizing a complex n-dimensional fitness

landscape in a simpler 2-D visualization. In order to do that, we essentially

introduce visualization errors. Here, we reflect on the current limitations that

can be improved in the future.

(a) In Section 4.5.2, we show that in order to build the FLST visualization,

we collect a fixed and small amount of Anchor Points AP s using the SLS
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algorithms themselves. This limits the FLST visualization to show only a

fraction of the explored fitness landscape.

(b) In Section 4.5.3, we show that we cannot layout the n-dimensional AP s in a

perfect way. We quantify the layout error with errAP and show that COP

with lower/higher DiversityIndex has lower/higher errAP , respectively.

With higher errAP , the user must be more cautious on what he observes,

as shown in the examples in Chapter 7 later.

Later in Section 7.2, we show that when the COP has low DiversityIndex

and the AP layout has low errAP , like in TSP, the users can expect to see

the search trajectory ST as a rather smooth movement between AP s.

Later in Section 7.3 and 7.4, we show that when the COP has medium to

high DiversityIndex and the AP layout error is substantial, like in QAP

and LABSP, the users can only see the search trajectory ST as ‘fragments’:

the ST appears close to one AP , disappears for some iterations (the ‘blank

period’), and then reappears in another AP that is usually far from the

previous AP .

(c) In Section 4.5.4, we show two ways to display the position of the search

trajectory w.r.t the AP s that have been laid out. The Search Coverage

Overview (SCO) mode is safer but less accurate. The Search Trajectory

Detail (STD) mode is more accurate but has to introduce another layout

error errST . But the two modes cannot show the search trajectory when it

is currently far from any of the collected AP s (the ‘blank period’).

4. FLST visualization is generic as it only uses generic properties, e.g. objective

values, distance information, and time. It does not depend on the COP or SLS

algorithm used, making it suitable to be used for addressing the SLS DTP.

5. The interpretation of FLST visualization depends on the search strategies being

used, problem specific knowledge, fitness landscape structures, etc. The interpre-

tation from one single training instance is then tested on other training instances

(different fitness landscapes) to check for robustness.

4.8 Looking Ahead

In the next chapter, we present our SLS visualization tool Viz, which implements the

FLST visualization and much more.

In Section 8.2, we present future works to improve this FLST visualization.
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Chapter 5

SLS Visualization Tool: Viz

If one picture is worth ten thousand words . . .

Then a good animation & interactive user interface can be worth many more still . . .

— Modified Chinese Proverbs

In this chapter, we elaborate the other white-box SLS visualizations and UI aspects in our visu-

alization tool: Viz. Parts of this chapter have been published in [60].

5.1 Overview

The novel Fitness Landscape Search Trajectory (FLST) visualization described in

Chapter 4 is a rather complex visualization. For it to be useful and user-friendly, it

needs a UI and dedicated tool to generate and then playback the visualization/animation

from data collected via SLS run(s). We have provided such a tool, an SLS engineering

suite named as Viz. In this chapter, we focus on the SLS visualization aspects of the

tool, Viz SIMRA (Single Instance Multiple Runs Analyzer) shown in Figure 5.1.

As seen in Figure 5.1, there are more visualizations than just the generic FLST

visualization (label A) in SIMRA. They are Objective Value (OV) visualization (label

B) to show OV information over time, Fitness Distance Correlation (FDC) visualization

(label C) to analyze the fitness landscape, and Event Bar visualization (label D) to

highlight generic events occurring during the search. Generic visualization is a powerful

concept because it is independent1 from the underlying SLS algorithm and COP. These

generic visualizations are the strengths of Viz SIMRA.

Other than these four generic visualizations, Viz SIMRA also has Algorithm-Specific

(AS) (label E) and Problem-Specific (PS) (label F) visualizations. These AS and PS

visualizations are linked with the SLS algorithm being used and the COP being solved,

respectively.

1This is possible in the context of SLS algorithm for COP because every COP has a fitness landscape
model [74, 89, 118, 68] and every SLS algorithm works by (locally) mutating the current solution along
this fitness landscape with respect to generic properties such as OV, distance, time (iterations).
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Figure 5.1: Viz v3.2008.11.13: Single Instance Multiple Runs Analyzer (SIMRA)

These other generic, algorithm-specific, and problem-specific visualizations are gen-

erated from the same SLS run(s) data as with FLST visualization (i.e. all are off-line

visualizations). Section 5.2 shows the design choices of each visualization and how each

of them can complement FLST visualization in analyzing SLS behavior2.

Then, in section 5.3, we further elaborate the user interface aspects of Viz tool that

we have designed to maximize the strengths of these visualizations.

5.2 Visualizing SLS Behavior in a Holistic Manner

In this section, we elaborate the design choices of the SLS visualizations that we use

on top of FLST visualization. They help the analysis in the Chapter 7 experiments.

5.2.1 Objective Value (OV) Visualization

Objective Value (OV) a.k.a fitness, is often the key attribute that drives the SLS algo-

rithm. Typical OV visualization plots a time series of OV (y-axis) over iteration/time

(x-axis) as partially shown as the green line in Figure 5.2 label A.

Figure 5.2: Objective Value over Time

2These visualizations follow the information visualization guidelines [144, 145, 146, 152, 147].
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In Viz, we enhance this OV visualization with additional information to help the user

to understand the overall context of how the OV is changing over time:

1. Scale of y-axis (see Figure 5.2 label B): In a minimizing COP, we set Min =

Best Known BK OV (or if it is unknown, Best Found BF OV) and Max =

(100 +MaxDeltaF itness)% ∗Min. MaxDeltaF itness is customize-able. This

forms the scale of y-axis. The y-axis labels can be shown as percentage-off (e.g.

16680 is 10%-off if the BK OV is 14379) or as absolute value. Min & Max roles

are reversed in a maximizing COP.

2. Frequency histogram drawn vertically along y-axis in logarithmic scale (see Figure

5.2 label C). This histogram highlights the OV distribution of the solutions found

by the SLS run. The average OV throughout the SLS run is also highlighted.

3. A line to indicate best-found-so-far and percentage-off indicator w.r.t BK OV.

We purposely draw the OV of the current solution in the ‘middle’ (see Figure 5.2 label

D) of the OV fluctuation line3 so that the visualization is split into ‘immediate past’

and ‘immediate future’. The y-position of an OV is computed with respect to the BK

OV with4 the formula abs(OV−BK)
BK ∗100.0%. BK OV is supplied by the user (e.g. from

benchmark instances). The OV of the current solution is animated as the SLS run is

being played back. This design choice tells the user the quality of the current solution

within the context of its immediate past and future5.

We use the same contour map colors used in the FLST visualization (see Section

4.5.3) on the background (see Figure 5.2 label E). Thus, the user can quickly draw

connections between the current search trajectory and its solution quality.

Figure 5.3: Potential Structures seen in the OV Visualization

3This is also known as ‘sparkline’ according to Tufte [147].
4This formula suffers from a singularity when BK OV is 0, i.e. abs(y−0)

0
is undefined ∀y. This formula

can also produce relatively larger percentage-off when BK OV is a small value near 0 compared if BK
OV is larger for the same deviation value, e.g. abs(11−10)

10
is 10%-off from BK OV whereas abs(101−100)

100

is just 1%-off from BK OV, although both cases have the same deviation value = 1.
5Recall that an on-line OV visualization can only have past and current data! This also complements

FLST visualization as FLST visualization is not designed to show SLS behavior from this angle.
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There are common patterns frequently observed in the OV visualization. We listed

some examples (not exhaustive) in Figure 5.3 – assuming a minimizing COP:

1. Standard case: the SLS run quality gradually improves over time.

2. Typical stagnation: after certain time, the quality does not improve anymore.

3. A typical solution cycling pattern: obvious repetitions.

4. There will be ‘spikes’ if strong diversifications are called every certain interval.

5-6. If the fitness landscape if quite smooth, the OV fluctuation between adjacent

solutions is not big. It is the other way around if rugged.

5.2.2 Fitness Distance Correlation (FDC) Visualization

FDC analysis (see Section 3.5.2) is used to give a rough measure of the COP’s difficulty.

We visualize the FDC information as a scatter plot (see Figure 5.4 label A). In Viz,

we plot the fitness difference of each AP with the Best Found BF (AP0) along the

y-axis and distance between each AP with the nearest BF ∈ APset where g(nearest

BF ) == g(AP0) along the x-axis. This scatter plot quickly shows whether there exists

a correlation, be it a positive or negative one, and whether such correlation is strong.

A simple linear regression line is added to highlight the trend.

Figure 5.4: Fitness Distance Correlation

Unlike Objective Value (OV) visualization that uses Best Known BK OV as baseline,

the FDC scatter plot in Viz uses the Best Found BF solution6 as baseline since the

SLS algorithm may not actually reach the BK solution. In the OV visualization,

using the BK OV is fine as we just need to compare OV. However, the FDC scatter

plot requires not just the OV difference, but also distance information computed by

comparing solutions. As we need to get the actual baseline solution - not just its OV,

we can only use BF solution(s) that are really found by the SLS algorithm.

In Viz, we show more information in the FDC scatter plot. We add an animation of

the position of the current solution w.r.t the nearest BF by plotting the fitness-distance

(F -D) information over time using a cross-hair highlight. This is to quickly gauge how

good/bad and how near/far the current solution is w.r.t the nearest BF as shown by

the cross-hair position (see Figure 5.4 label B). This FDC visualization also has the

same contour map (see Figure 5.4 label E) as in the FLST and OV visualization.

While the y-axis (delta fitness) is adjustable based on the percentage-off w.r.t the

BF OV (as in the OV visualization), the maximum x-axis value is strictly equal to the

maximum distance, that is, the size of the COP instance n. This arrangement is useful

to gauge the distribution of solution quality (see Figure 5.4 label C) and distances (see

Figure 5.4 label D) of local optima w.r.t the nearest BF .

6Note that this may lead to erroneous conclusions if these BF solutions are far from true GO.
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FDC analysis has limitations, but it is good to quickly portray some fitness land-

scape properties. It is conjectured that for a minimizing COP, the COP will likely

have one of the following rFDC values and scatter plots (see Figure 5.5):

Figure 5.5: Potential Structures seen in FDC Visualization

1. ‘Straightforward’ (a.k.a the ‘Big Valley’), when rFDC is approaching +1.0.

∗. Fitness increases as the SLS trajectory is approaching global optima.

∗. Visualized as a linear regression line.

∗. This is a relatively easy COP.

2. ‘Difficult’, when rFDC is near 0.0.

∗. Low or no correlation between fitness and distance w.r.t global optima.

∗. Visualized as a regression line that is almost parallel to x-axis.

∗. There exist good local optima far from the global optima.

3. ‘Misleading’, when rFDC is approaching −1.0.
∗. Fitness decrease as the SLS trajectory is approaching global optima.

∗. Visualized as a linear regression line with negative slope.

∗. This can be a frustrating COP for an SLS algorithm.

5.2.3 Event Bar Visualization

Figure 5.6: Event Bar and the Iteration Slider

Viz SIMRA allows the user to decide which part of the (off-line) search playback should

be visualized by clicking and dragging the time/iteration slider (see Figure 5.6 label

B). Since the SLS algorithm usually runs for a large number of iterations, it might be

too painful for the user to scan the entire search playback in FLST visualization. To

highlight the interesting portions, which may be missed or not obvious as they are rare,

the Event Bar visualization highlights these ‘index points’:

• ‘New Best Found’ – blue bars and ‘Series of Non Improving Moves’ – shades of

orange. ‘New Best Found’ occurs at iteration t if at iteration t, the search found
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a solution which has OV better than iteration [0 . . . t-1]. In between the ‘New

Best Found’ events, we draw some ‘Series of Non Improving Moves’ highlights to

show when the search is experiencing stagnation.

• ‘Near set of Anchor Points’ – green bars. Occurs on iterations where the current

solution is near to at least an AP ∈ APset (distance < δ units set by user).

• Information about current (recent) iterations: iterations elapsed/left, actual search

time, and highlight parts of the search trajectory currently shown on the screens.

This Event Bar visualization is drawn below the time/iteration slider (see Figure 5.6

label A). The information gained from Event Bar visualization can assist the user to

quickly move around in time during the search playback.

5.2.4 Algorithm-Specific (AS) Visualization

Algorithm-Specific (AS) visualization displays the change of the SLS dynamic param-

eters over time. This may help explain the SLS behavior over various time points that

is not shown in the FLST visualization. Typically, the information from this AS visu-

alization should be related with the information from other visualization(s) to be more

meaningful.

For this thesis, we only support AS visualization of the (possibly) dynamic part(s)

of: Tabu Tenure (TT) over time for Tabu Search (TS) and perturbation strength plus

the acceptance/rejection status for Iterated Local Search (ILS).

Figure 5.7: Algorithm-Specific Visualization for TS

An example of AS visualization for TS is shown in Figure 5.7. TT information recorded

in the log files is presented as a time series visualization. For Reactive [15] or Robust TS

[137], TT dynamically changes throughout the search. We can use this AS visualization

to explain – for example – why TS trajectory is more diverse (during high TT phase)

or more focused (during low TT phase).

5.2.5 Problem-Specific (PS) Visualization

Problem-Specific (PS) visualization7 is an intuitive visualization as it is directly related

to the COP being solved. There is information that can be gained by observing the PS

visualization. We can get a glimpse of the problem structure which can be exploited

for better performance, e.g. clustered versus distributed cities in Traveling Salesman

7Some SLS tools have PS visualizations, e.g. COMET [149] has a built-in interface that allows user
to implement PS visualizations. Human-Guided Search [79] also relies a lot on PS visualizations.
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Problem (TSP). We can also verify the correctness of our problem specific search strat-

egy, e.g. if we want to keep short edges in the TSP tour; does our SLS algorithm really

keep short edges? This is not shown in the FLST visualization.

For this thesis, we only support three PS visualizations: TSP, Quadratic Assignment

Problem (QAP), and Low Autocorrelation Binary Sequence (LABS).

Figure 5.8: Problem-Specific Visualization for TSP (berlin52)

An example of PS visualization for TSP8 solutions/tours is shown in Figure 5.8. Here,

we see TSP tours for TSP instance ‘berlin52’ from TSPLIB [143, 119]. On the left is an

optimal tour and the right is an example of a non-optimal tour as there is an obvious

crossing in the tour (see the small blue circle). Visualizing TSP tours like this enables

a human to compare the differences between the current tour with a baseline (usually

good) TSP tour and to quickly spot crossings – a ‘bad feature’ in a TSP tour.

PS visualizations have their limitations. While some COPs have natural visualiza-

tions, particularly those which can be cast in a spatial setting (e.g. TSP), it is not clear

how to do it in (most) other cases. There is also information overload since looking at

the full solution has too much detail. It is also harder to visualize the search trajectory

since PS visualization focuses too much on the current solution in gory detail but does

not show what is going on in the SLS algorithm across a time interval. For example,

it might be difficult to see if an SLS algorithm for TSP is trapped in a local minimum

by looking at an animation of consecutive TSP tours found by the SLS algorithm. It

is hard to verify whether the current tour indeed has been shown X iterations ago.

5.3 User Interface Aspects

The presentation of the visualizations in Viz SIMRA are further enhanced by using

the following user interface features.

5.3.1 Coordinated Multi-Source Visualizations

Each visualization described in Section 4.5 and 5.2 is capable of explicating some aspect

of COP fitness landscape characteristics and/or SLS trajectory behavior on the fitness

landscape. However, relying on a single visualization alone can be myopic and the

full picture of what is happening during the search may be unclear. We believe that

8The early works for visualizing TSP tours, especially to assist man-machine interactive optimiza-
tion, begun in 1960s [92, 81]. A recent work is Human-Guided Search in Section 3.5.2.
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multiple coordinated points of views9 (i.e. show the same data at time t from various

angles) are required given the difficulty of analyzing SLS behavior. Some scenarios:

1. We can use the Event Bar highlights to navigate to iterations where interesting

events occurred, e.g. ‘New Best Found’ event, observe the FLST visualization to

see the details, and then verify such an improving step in the OV visualization.

2. We observe a ‘solution cycling’ phenomenon in the FLST visualization and realize

that the cause is low tabu tenure as observed in the Tabu Search (TS) Algorithm

Specific (AS) visualization.

3. We observe a ‘Big Valley’ pattern in the FLST visualization and verify it in the

FDC visualization. Then, we check when the SLS trajectory is far from the

middle of the FLST visualization, it also has poor OV in the OV visualization.

Situation Awareness theory in Psychology [41] reminds us that the human is unable

to observe multiple visualizations (displays) at the same time if they all require high

attention. When the human is bombarded with a number of displays, his overall scan-

ning ability drops, making him concentrate on only a small fraction of the displays,

thus losing Situation Awareness.

To reduce this issue in Viz, we designate the FLST visualization as the main visu-

alization – the focus of user’s attention; the other visualizations are peripheral. Never-

theless, as the search playback in Viz is not on-line, this issue is not severe as the user

can always pause, rewind, or replay the search if some information was missed.

Viz presents these coordinated visualization windows in a Multiple Documents In-

terface (MDI) style. This conforms with the Situation Awareness theory in reducing

information overload as user has the freedom to show, hide, scale, or layout the visu-

alization child window(s). The user can concentrate on FLST visualization and recall

peripheral window(s) only when needed.

5.3.2 Visual Comparison

The human is better at relative than absolute discrimination10. Viz SIMRA exploits

this fact and has a capability to visually compare the SLS behavior (see some compar-

ison modes in question 10 of Section 4.3). SIMRA allows the user to load two different

SLS runs on the same COP instance (or even the same SLS run twice) to run 1 and

run 2 slots in SIMRA GUI. These two SLS runs can be played back concurrently.

Visualizations of both runs can be drawn in either juxtaposition (side-by-side), e.g.

the quality of two TSP tours are easily compared in Figure 5.8; or superimposition

(overlap), e.g. the difference of the red (stuck) and blue (reach BF ) SLS runs on the

same fitness landscape are clearly shown in Figure 5.1 label A. This feature gives this

visualization tool its name: Single Instance Multiple Runs Analyzer.

9We may be able to cramp all individual visualizations into a ‘big’ visualization but it will be very
convoluted and thus ineffective.

10A simple illustration: The question “Is a soccer ball bigger than a golf ball?” is easier to be
answered relatively rather than precisely measure the volume of both soccer ball and golf ball and then
answer the question in absolute manner.
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5.3.3 Animated Search Playback

As the SLS algorithm typically runs for a large number of iterations, the most natural

way to visualize its search trajectory is to playback the search dynamically over time

with animation. Information accumulated over time is hard to be seen in a static

fashion as drawing everything in one screen tends to clutter the visualization and hide

details. The static version is more suitable to show the search coverage. Figure 5.9

shows a comparison of static (overview) versus animated (detailed) visualization. In the

animated version, we can see that the SLS algorithm spends substantial time (0.296-

0.765s) on the same region (stuck). This is not clearly shown in the static version.

Figure 5.9: Static versus Animated Presentation

In Viz, the user is allowed to specify the search trajectory animation length l to show

a trail of consecutive points st−l, st−l+1, . . . , st on various SLS visualizations at time t.

By changing l, the user can adjust the tradeoff between overview and detailed displays.

Essentially, l = t (all points up to time t) in overview mode.

The animation effect is achieved by drawing series of consecutive visualizations

with small playback time increment. For smooth transitions, Viz uses weighted alpha

blending : gradually fading out the color of a trail’s tail. This way, the user knows that

the darker colored lines/circles on the trail are the current ones.

Viz also allows the user to adjust the search playback speed11, which determines

how fast the animation will be drawn. This is essential, as different individuals have

different visual capacities in discerning the information from the animation.

11This is do-able as Viz is an offline visualization tool. Playback speed != true SLS algorithm speed.
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Viz supports two search playback modes: based on ‘iteration count’ or based on

(slowed down) ‘running time’. This is because different SLS runs with the same iteration

count may take different running time and playback based on ‘running time’ can be

more fair in this case. On the other hand, playback based on ‘iteration count’ can be

used to observe the changes done per iteration.

5.3.4 Color and Highlighting

Given the complexity of the visualizations in Viz, it is important to assist the user

to quickly find what he wants. Highlighting – making certain things clearly stand out

from the rest – is a helpful visual aid to address this issue.

Highlighting is possible because human has a pre-attentive visual processing sys-

tem [152] where some visual features are distinguishable before conscious attention, e.g.

colors, grey-scale levels, sizes, shapes, textures, orientations, labels, etc. Making an ob-

ject significantly different from its surroundings on at least one pre-attentive dimension

ensures that it can be detected by a viewer effortlessly and at high speed.

Different forms of highlights have different effectiveness in different context, e.g. it

is hard to differentiate object’s color when there are many colors, or to differentiate ob-

ject’s size when there are many similar-sized objects. In Viz, we decide to avoid having

too many colors (e.g. see Figure 4.6), thus we can mainly use color for highlighting.

Other than for highlighting, color is also good for coding, labeling, or categorizing.

If the same color is used for different but related objects, the human user will process

them as being associated even when they are drawn in separate screens.

Some scenarios of the usage of color and highlighting features are:

1. In the FLST, OV, and FDC visualizations, color+shape labels are used to form a

contour map that shows the solution quality attribute. Changing the map value

ranges can be used to quickly differentiate solution qualities (see Figure 4.6).

2. In the Event Bar visualization, we draw stripes with different colors to highlight

different generic events throughout the search playback (see Figure 5.6).

3. In the FLST visualization ‘highlight mode’, the user can point to a specific AP .

Then, line highlights with different colors will appear to indicate other AP s that

are too close, average, or too far from the selected AP (see Figure 5.10, right).

5.3.5 Multiple Levels of Details

Considering the limitation of the human visual system when overwhelmed with data,

information visualization puts the emphasis on presenting the overview first, gives the

human capability to zoom-in into the relevant data, filter the irrelevant ones, and see

the details on demand. In order to do this, the visualization system should be able

to present the same data at multiple Levels of Details (LoD). Essentially, the system

will draw more details (highlighting the important ones) when zoomed-in and draw less

(draw a summary, hiding the non-important ones) while zoomed-out. Some scenarios:

70



Figure 5.10: Levels of Details Feature in FLST Visualization

1. The time series chart: the OV and AS visualizations have an x-axis scaling feature

so that the entire run can be visualized in one screen if needed (see Figure 5.2).

2. Zooming-in and out in the FLST visualization can reveal information about the

COP fitness landscape. In Figure 5.10, we have the FLST visualization in zoomed

out mode (left), normal view (middle), and zoomed in mode (right). Here we

observe the Big Valley property of TSP (elaborated more in Section 7.2).

3. We draw more data when the visualization window is enlarged and vice versa. In

the OV, FDC, and AS visualizations, the labels along the x-axis and y-axis scale

are shown if the window size is big enough, and hidden otherwise.

5.3.6 Text-Based Information Center (TBIC)

Some information is still best displayed as text12, e.g. as a list of data. But we

cannot add too much text in the visualization as it will clutter the screen, especially

for visualization with small screen space. Some detailed information must be displayed

as text outside the visualization window. This is the main purpose of the Text-Based

Information Center (TBIC) window (see Figure 5.11).

TBIC window can also include statistics to support the visualization counterparts,

e.g. the average OV is drawn as a stripe along the y-axis of the OV visualization, but

the actual numeric value is also in the TBIC window. To further save screen space,

we do not display all textual information but let the content in the TBIC window be

context-sensitive according to which visualization window is being activated by the

user. The textual information available in TBIC window are:

Summary: When the FLST visualization is activated, a summary information about

the COP fitness landscape (AverageQualityGap, DiversityIndex, and errAP are

shown, see Section 4.5.2-4.5.3) and information about the SLS run are given.

12There is an SLS algorithm analysis tool like Viz that is designed without visualization, e.g. Easy-
Analyzer by Di Gaspero et al. [33]. EasyAnalyzer implements existing white and black box tools, e.g.
basin of attraction analysis (for analyzing COP search space), RTD analysis (for analyzing SLS run
time behavior), and F-Race (black-box tuning algorithm) and show the results as text.
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Figure 5.11: TBIC: Summary, OV, FDC, Running Time, Details, Tags

Objective Value (Fitness): A statistical summary of OV: BK, BF, average, etc, are

displayed. In visual comparison mode, the qualities of run 1 and 2 are compared.

Fitness Distance Correlation: A statistical summary of FDC: rFDC , maximum dis-

tance, average delta fitness, and distance w.r.t BF , etc, are displayed. In visual

comparison mode, the average delta fitness and distance of run 1 and 2 are com-

pared.

Running Time: An estimation of run time for longer runs is displayed. This in-

formation is projected from the actual search time information recorded in the

RunLogs. This is to help the algorithm designer to plan the execution time for his

algorithm. In visual comparison mode, the run time of run 1 and 2 are compared.

Examine In Details: The user can view the detailed information about the currently

highlighted anchor point and the information about the current solution at that

time. The user can point to a specific AP in the FLST visualization to reveal its

details (OV, the solution structure, etc).

Examine Tag Information: The user can view the list of tag information.
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5.4 Summary

1. Viz SIMRA is an SLS visualization tool that displays the FLST visualization (see

Chapter 4) and other supporting white-box SLS visualizations (OV, FDC, Event

Bar, AS, PS) as user-friendly as possible.

2. To further enhance the presentation, we develop the following user interface

aspects: coordinated multi-source visualizations, visual comparison, animated

search playback, color and highlighting, multiple levels of details, and text-based

information center.

5.5 Looking Ahead

With this SLS visualization tool Viz which implements the novel FLST visualization,

is the SLS Design and Tuning Problem solved?

The answer depends on how these visualizations are used. FLST and the other SLS

visualizations are white-box analysis tools which requires a human expert to analyze,

interpret, and take actions based on the analysis results. If not used properly, these

visualizations cannot address the SLS DTP.

In the next chapter, we present the Integrated White+Black Box Approach,

which combines the correct usage of SLS visualizations with black-box tuning algo-

rithms. This combination is our proposed solution to address the SLS DTP.

For more details about Viz, please consult the Viz website:

http://www.comp.nus.edu.sg/~stevenha/viz.

Alternative URL:

http://sls.visualization.googlepages.com.
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Chapter 6

Integrated White+Black Box Approach

Two are better than one, because they have a good return for their work.

If one falls down, his friend can help him up.

But pity the man who falls and has no one to help him up.

— Ecclesiastes 4:9-10 [159]

In this chapter, we discuss human+computer collaboration for addressing the SLS DTP in a

better way. We combine both white-box (which use human strengths) and black-box approaches

(which use computer strengths). A more complete view of the SLS engineering tool Viz beyond

SLS visualization is also presented. The essence of this chapter has been published in [61].

6.1 Motivation

6.1.1 White-Box SLS Visualization: Pro and Cons

In Chapter 4, we presented the Fitness Landscape Search Trajectory (FLST) visual-

ization to analyze the COP fitness landscape and the SLS trajectories on it. Then

in Chapter 5, we have presented the SLS visualization tool Viz that implements this

FLST and some other white-box visualizations (OV, FDC, Event Bar, AS, PS).

FLST visualization, perhaps augmented by other SLS visualizations in Viz, can be

used to understand the COP fitness landscape characteristics. This helps the algorithm

designer to predict which search strategies will likely work well on the COP fitness

landscape. This prediction can then be verified via FLST visualization to see whether

the SLS algorithm encounters any ‘problem(s)’. These observations can inspire insights

(which may be ‘outside the box’) that are essential for making informed changes towards

the SLS algorithm design and to narrow down (focus) the configuration set. It is hard

to arrive at these decisions without effective white-box approaches.

White-box approaches leverage on human strengths to analyze and learn from vi-

sualizations. Although this is subjective, we show later in Chapter 7 that this process

is intuitive and can gain fruitful insights.
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However, a well designed SLS algorithm still has configurable parts that may affect

the apparent performance. Usually, the configuration set size is still too large to be

exhaustively tried manually, necessitating the usage of black-box tuning algorithms.

6.1.2 Black-Box Tuning Algorithm: Pro and Cons

In Section 3.5.1, we have reviewed various black-box tuning algorithms.

Ideally, given a working SLS implementation and an initial SLS configuration set,

black-box tuning algorithms can be used to systematically find the most suitable con-

figuration in the given configuration set for solving the COP at hand. This automated

fine-tuning process is computer’s forte.

In practice, the size of the configuration set may be huge. Thus, if the algorithm

designer wants to have an effective fine-tuning, he must give a ‘sufficiently narrow

(focused)’ configuration set for the black-box tuning algorithm to work with. Further-

more, if the best configuration happens to be outside the initial configuration set, then

it cannot be found by fine-tuning alone.

Another issue is that black-box tuning algorithms assume that the given SLS algo-

rithm is designed correctly. If the resulting performance after fine-tuning is still poor,

the algorithm designer still has to find what is wrong in the SLS algorithm by himself

as these black-box tuning algorithms will not help in discovering the problem.

6.2 The Integrated White+Black Box Approach

A collaboration between two participants will be beneficial if:

1). the respective participant has some advantages that the other has not,

2). the respective advantages are complementary for achieving the common goals, and

3). appropriate interfaces are used.

Figure 6.1: Human and Computer Tasks in IWBBA

Figure 6.1 shows the strengths of human1 and computer. Collaboration between them

to achieve a common goal (addressing the SLSDesign and Tuning Problem (DTP))

is possible as their unique strengths are complementary with visualization as their in-

terface. In this section, we show how white-box approaches, which heavily use human

strengths, and black-box approaches, which use computer strengths, are naturally com-

bined to form an Integrated White+Black Box Approach (IWBBA).

1For a more detailed elaboration of human strengths, see Appendix C.
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Human Tasks (White-box) Computer Tasks (Mostly Black-box)

Let computer run the SLS algorithm. ⇒ A. Run ‘the box’ (the SLS algorithm).
C. Understand ‘the box’ (COP fitness
landscape and SLS Trajectory behavior).

B. Visualize information: Setup FLST
visualization, compute statistics.

D. Think outside ‘the box’: Get in-
sights about the COP + SLS behavior.

⇐ Wait for human input.

E. Improve SLS design: add strategies
& narrow down configuration set

F. Fine Tune: Automatically tune the
focused configuration space.

Table 6.1: Separation of Human-Computer Tasks in IWBBA

The separation and sequence of tasks in IWBBA that highlights human and computer

tasks are shown in Table 6.1 and are further elaborated in Figure 6.2. IWBBA naturally

combines the strengths of white-box (human) and black-box (computer) that have been

discussed earlier in Section 6.1.

Figure 6.2: The Integrated White+Black Box Approach (see details below)

Steps 1-2: The algorithm designer separates training versus test instances from

the available COP instances data. He also implements an SLS algorithm that

works for the given COP (a pilot implementation on the training instances).

Steps 3-5: The algorithm designer executes some pilot runs to understand the

COP fitness landscape(s) by answering questions posed in Section 4.2. He

splits the instances into classes if significant differences are found. He then

formulates hypotheses of effective walks for each class of instances.

Step 6: The algorithm designer creates experiments to answer questions posed in

Section 4.3. He uses FLST visualization to observe how various SLS algo-

rithms actually behave on some COP training instances. FLST visualization
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fits our needs as this kind of information is hard to obtain without proper vi-

sualization. The obtained insights augment the algorithm designer’s abilities

to design better SLS algorithm or to invent new strategies/ideas.

Step 7: The white-box step in step 6 may also narrow down the configuration

set. The algorithm designer can then pass the focused configuration set to a

black-box tuning algorithm for even more performance.

Step 8: After step 6 and 7, analyze the tweaked and tuned SLS behavior on train-

ing instances. Does it match our hypothesis of effective walks and whether

the performance is good? There are several possibilities:

If hypothesis matches and performance is good: The SLS algorithm

is ok for the training instances. Do verification on test instances!

If does not match hypothesis but performance is good: Perhaps this

is a new discovery? Verify if it is reproducible?

If hypothesis matches but performance is bad: Perhaps the hypothe-

sis is wrong or the SLS algorithm is implemented wrongly.

If does not match hypothesis and performance is bad: Redesign the

SLS algorithm again.

Step 9: Verify the results on test instances. If the SLS algorithm implementation

produces satisfactory performance on test instances, stop. Otherwise, go back

to step 3 as perhaps this is a case of over-fitting to training instances.

From a high level perspective, this integrated approach is not new (compare with Se-

quential Parameter Optimization [14] and also Software Engineering ‘waterfall model’)2.

What is novel is how FLST visualization and statistics are used in the white-box steps

(3-6, 8-9) and tuning algorithm in the black-box step (7).

6.3 Viz as a Black-Box Tuning Tool

In Chapter 5, we have presented Viz as a white-box visualization tool. To be more

suitable for supporting IWBBA, especially in step 7, Viz needs to have an integrated

black-box tuning algorithm. In Section 3.5.1, we have listed several more established

tuning algorithms, e.g. GGA [9], ParamILS [70], F-Race [17], or CALIBRA [3]. How-

ever, integrating them into Viz system is not a straightforward task due to interfacing

issues. Since the focus of this thesis is not on the design of automated black box tuning

per se, we only provide simple support for a black-box tool.

To ease the fine tuning process, we build the following user interfaces (UIs). The

first UI is the Viz Experiment Wizard (EW). The basic feature of Viz EW is a user-

friendly interface (see Figure 6.3) for the user to prepare problem design (label A:

add/remove COP instances, set/edit run time limit/BK OV/instance group for each

instance), prepare an algorithm design (label B: add/remove SLS + configuration, edit

configuration set, filter some configurations), customize experiment settings (label C:

set number of replications, target OV), and observe the fine-tuning results (label D).

2Note that IWBBA is an iterative process. The results after performing steps 3-9 may produce a
better SLS implementation, which in turns provide a more accurate FLST analysis in the next iteration.
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Figure 6.3: Viz v3.2008.11.13: The Experiment Wizard (EW)

The second UI is the configuration set editor. Here, the user can specify the config-

uration set by declaring the domain values of each SLS configurable part, see Figure

6.4. Then, Viz EW will generate the full factorial design of all possible configurations

[102]. Notice that the size of the configuration set (denoted as |CS|) grows fast when
domain values for the SLS configurable parts are added.

Figure 6.4: Configuration Set Editor

Since SLS development time is limited, Viz EW can only try a subset X (user ad-

justable) out of |CS| possible configurations. For this, we use a simple random sampling

algorithm that randomly picks X out of |CS| possible configurations to be tried and

returns the one that performs best on training instances3. When |CS| is small enough,

one can set X = |CS| to set the random sampling algorithm to try all configurations

in the full factorial design. This is the case in our experiments in Chapter 7.

3Tuning objectives like max/minimize average/total OV-qualities/runtimes, are user adjustable.
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6.4 IWBBA Using Viz to Address User’s SLS DTP

Figure 6.5 gives a general outline of how the IWBBA using Viz is typically performed

on the SLS DTP.

Figure 6.5: Overview of Viz Work Flow and Usage

Initially (two red arrows with label 1), the algorithm designer selects COP training

instances (problem design) and reserves the rest as test instances. He must supply the

best known OV for each instance so thatViz can compute the SLS performance. He also

selects the implementation of his SLS algorithm and select its configurations (algorithm

design) using the configuration set editor shown in Figure 6.4.

Then, he invokes Viz EW (purple arrow with label 2) to execute the selected

experiment design. If there are more than one configuration to try or there are several

runs of the same SLS, Viz EW will try them based on the black-box random sampling

strategy mentioned in Section 6.3.

When the SLS is running on the selected COP training instances, it logs the search

information into ‘RunLog’ files (green arrow with label 3). The algorithm designer

must embed a simple logging mechanism into his SLS code that will record information

like current solution structure, objective value, etc per SLS iteration. The log file

format is described in the Viz’s website (http://sls.visualization.googlepages.com).

Viz EW uses these RunLog files to generate the data for the FLST and other

visualizations. For this, the algorithm designer must select a suitable distance function,
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e.g. if his COP solution has bit-string structure or assignment, he may want to select

Hamming distance; if his COP solution is a tour, bond distance may be appropriate;

if his COP solution is a sequence, deviation distance may be considered, etc (see [123,

124]). Viz EW uses the selected distance function to obtain distance information. The

other generic information required to build FLST visualization such as objective value

and time are already recorded inside the log files. The next step is to save the processed

data as Visual Data Files (VDFs) in order to avoid repeating this expensive task. These

VDFs can be displayed in Viz SIMRA according to the playback speed selected by user

(three blue arrows with label 4).

The fine tuning results are presented directly in Viz EW window and the detailed

VDFs can be played back in Viz SIMRA (as shown in Chapter 4 and 5). This is where

the algorithm designer exercises his human strengths in understanding the visualization

data. The information gained may inspire insights or further investigations which are

essential for dealing with the SLS DTP (two orange arrows with label 5).

The algorithm designer then uses the knowledge gained to improve the SLS algo-

rithm design or to narrow down the configuration space (two black arrows with

label 6). Afterwards, he repeats the whole engineering cycle again, perhaps on differ-

ent COP training instances, until satisfactory results are obtained.

6.5 Comparison with Existing Approaches

In Chapter 3, we have reviewed various white and black-box approaches for address-

ing the SLS Design and Tuning Problem. In Table 6.2, we present a subjective

comparison of the differences of these existing approaches w.r.t IWBBA.

Approach A B C D E F G H I J K

Type of Method B B B B B B B W W W W+B
Addressing type-1 H M M E E E E H H H E
Addressing type-2 H M M M E E E H H H E
Addressing type-3 ¬ ¬ ¬ ¬ ¬ ¬ ¬ H M E E
Ease of Usage H M H E M M M H M M E

Table 6.2: Comparison of the Reviewed Approaches w.r.t IWBBA

Näıve Approaches: A: Ad-hoc Tuning, B: Brute Force Tuning,

Black-box Approaches: C: Meta SLS, D: CALIBRA [3], E: F-Race [18, 17, 12],

F: ParamILS [69, 70], G: GGA [9],

White-box Approaches: H: Statistical Analysis, I: Human-Guided Search [7],

J: Visualization of Search Landscape/Behavior [111, 136, 76, 86],

Integrated Approach: K: Integrated White+Black Box Approach.

Legends:

B: Black-box, W: White-box, W+B: Integrated Approach,

E: Easy, M: Medium, H: Hard, ¬: Not applicable.
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6.6 Summary

1. Understanding SLS algorithm behavior on different COP fitness landscape helps

the algorithm designer to design appropriate search strategies for those instances

(better algorithm design). This recognizes the role of the human designer.

2. While the human is good in designing SLS algorithms, picking the best configu-

ration for the SLS (i.e. fine-tuning) is better left to automated tuning.

3. Integrated White+Black Box Approach (IWBBA) is a natural combi-

nation of the strengths of both white+black box approaches – a man-machine

approach. The detailed steps of IWBBA are presented in this chapter.

4. To facilitate IWBBA, we have designed Viz EW as a simple black-box tuning

tool to complement the Viz SIMRA tool discussed in Chapter 5.

5. Adopting Viz to solve user’s SLS DTP is relatively easy. What one’s need to

do is to follow the work flow for using the two Viz programs, i.e. add logging

mechanism into the SLS code, select appropriate distance function, etc.

6.7 Looking Ahead

Now, we have the white-box (FLST and other SLS visualizations in Chapter 4 and

5) and black-box tools in Viz to apply IWBBA. What is left are the experimental

evaluations. In Chapter 7, we present several successful experiments demonstrating

IWBBA using Viz in addressing various SLS DTP scenarios.
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Chapter 7

Experimental Results

It does not matter how beautiful your theory is.

If it does not agree with experiment, it is wrong!

— Richard Feynman

In this chapter, we present the results of applying IWBBA using Viz to address three SLS DTP

scenarios. These results have been reported in [59, 60, 61] (TSP), [57, 61] (QAP), and [58]

(LABS Problem). However, all experiments have been re-done using the latest version of Viz

(v3.2008.11.13) for consistent screen shots and results.

7.1 Preliminaries

In Chapter 6, we have presented the Integrated White+Black Box Approach

(IWWBA) for addressing the SLS Design and Tuning Problem (DTP) posed in

Chapter 3. IWBBA consists of the white-box Fitness Landscape Search Trajectory

(FLST) visualization (described in Chapter 4) and the black-box tuning algorithm. To

facilitate IWBBA, we have build an SLS engineering suite called Viz. The white-box

visualizations of Viz are described in Section 4.5 and Chapter 5. The black-box tuning

tools of Viz are described in Section 6.3.

In this chapter, we present the results of applying IWBBA using Viz to three

SLS DTP scenarios on three different Combinatorial Optimization Problems (COPs).

Ideally, we should try IWBBA on non classical COPs that pose challenges to the existing

SLS algorithms. The objective is to show that with IWBBA we can get more insights

and develop better SLS algorithms for these non classical COPs. Indeed, we have

one such case with our third scenario on the Low Autocorrelation Binary Sequence

Problem (LABSP) [58]. However, since a non classical COP is harder to benchmark,

we first show our results on two well known classical COPs: the Traveling Salesman

Problem (TSP) and the Quadratic Assignment Problem (QAP). More details such as

the literature review of other algorithms to solve these COPS are listed in Appendix
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A.

To make this chapter concise, we have taken the liberty to present these experi-

mental results mostly from the final step viewpoint. The FLST visualization screen

shots shown in this chapter make use of the APset from both good and bad runs in

the entire development process. Except for several cases that are explicitly mentioned,

we generally do not show the details of the actual development process, in which we

learn the fitness landscape structure and the search trajectory behavior incrementally

via some pilot runs. For a discussion of incremental learning of fitness landscape and

search trajectory with the FLST visualization, see Section 3.7 of [57].

The time complexity to build the FLST visualization is dominated by theO(|APset|∗
n) distance computations in AP-Selection and Search-Position-Layout Heuristics

discussed in Chapter 4. To keep the visualization analysis time reasonable, we only run

training instances up to n = 50 and set |APset| to be max(25, min(50, 0.5 ∗ n)) which
keeps |APset| within a reasonable range of [25..50] for any instance size n.

The computer used for the TSP and QAP experiments in this chapter is a 2.83

GHz Core2 Quad PC with 3.25 GB RAM. However, for the LABSP experiments, we

usemultiple PCs with different specifications (details in Section 7.4). This is to facilitate

runtimes comparisons with the results of other algorithms in the literature.

We have to remark that the experiment results shown in this chapter are obtained

under no specific development time constraints.

Videos and more pictures of the experiments from this chapter are available in Viz

website: http://www.comp.nus.edu.sg/~stevenha/viz/results.html. It may be

clearer to view the animation than the static pictures printed in this thesis.

The general outline of the next three sections is shown below. The outline follows

the IWBBA steps in Chapter 6 (Figure 6.2), except that the process is not iterative as

the experiment results are shown from the final step viewpoint.

1. Stating the Experiment Objectives

2. Describing Formal Problem Description of the COP

3. Elaborating the Experimental Setup

• Selecting benchmark instances

• Setting FLST quality measures, and

• Describing the baseline algorithm taken from literature

4. Performing Fitness Landscape Search Trajectory Analysis

• Analyze fitness landscape of the COP, split instances into classes if necessary

• Analyze search trajectory of the baseline algorithm for each class

• Stating hypothesis of better walks

5. Redesign and Fine Tune the SLS Algorithm

• White-box: use the insights to improve the SLS algorithm design

• Black-box: perform fine tuning on the focused configuration set

6. Verify Results on Test Instances
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7.2 Traveling Salesman Problem

Our earlier versions of these experiments have been published in [59, 60, 61].

7.2.1 Experiment Objectives

This section also serves as a tutorial on applying IWBBA using Viz. The results by

themselves are not new – they have been found and analyzed by other researchers [133]

using the existing white-box techniques (FDC analysis to detect the ‘Big Valley’ and

RTD analysis to detect search stagnation). However, they have never been visualized

in this way before. We show that Viz can also give researchers the same insights in a

more intuitive fashion.

7.2.2 Formal Problem Description

The input for the Traveling Salesman Problem (TSP) is a complete, weighted graph

G(V,E) with V being the set of vertices, representing the cities, and E being the set

of edges fully connecting the vertices. Each edge is assigned a value dij, the length of

edge(i, j), that is, the distance between cities i and j, with i, j ∈ V . The objective of

TSP is to find a minimal length Hamiltonian circuit of the graph where a Hamiltonian

circuit is a closed tour s = {s0, s1, . . . , sn−1} visiting each of the vertices of G exactly

once and s minimizes the objective function:

g(s) =
n−2∑

i=0

dsisi+1 + dsn−1s0 (7.1)

TSP is an NP-Complete problem [47].

7.2.3 Experimental Setup

Benchmark Instances

For the TSP experiments in this thesis, we use the training and test instances shown

in Table 7.1. All instances are taken from TSPLIB [119, 143]. They are symmetric

Euclidean 2D instances where the distances between the cities are Euclidian distances

and independent of the edges direction, i.e. dij = dji for every pair of vertices. The

selected instances have sizes between 51 and 280.

Training Instances Test Instances
(4 Instances) (21 Instances)

eil51 pr76 berlin52 eil76 st70 rat99 kroB100 kroC100 rd100
kroA100 lin105 eil101 pr107 pr124 bier127 ch130 ch150 kroA150

kroB150 u159 rat195 d198 tsp225 gil262 a280

Table 7.1: Training and Test Instances for the TSP experiments

FLST Quality Measures

As the quality of good TSP solutions is known to be near the Best Known Objective

Value (BK OV), we define these quality measures: “Label/(icon in the FLST visual-
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ization): [a − b)”, where a & b are percentage-off from BK OV ⇒ Good/O: [0 − 1),

Medium/�: [1− 2), Bad/�: [2− 3), and VeryBad/�: [≥ 3).

To measure the distance between TSP tours/solutions, we use the bond distance

a.k.a permutation/edge distance defined below. It measures the distance of two per-

mutation based solutions where the order of items does not matter but the edges/links

between adjacent items do. In TSP, we want to know the number of different edges

between the two solutions, e.g. d({A-B-C-D}, {B-C-D-A}) = 0 and d({A-B-C-D},
{B-D-C-A}) = 2. This bond distance satisfies the triangle inequality property that is

useful for the FLST visualization [123]. Bond distance is computed as follows:

bond-distance d(s1, s2) = n−∑n−1
k=0 common-edgek

common-edge_k = 1, if e(s1k , s1(k+1)%n
) or e(s1(k+n−1)%n

, s1k) exists in s2

= 0, otherwise

As this distance function is frequently used in the FLST visualization, its computation

must be efficient! Bond distance can be computed in O(n) with pre-processing. In one

pass (O(n) time), record n edges of the 1st tour in a Hash Table HT . Then, in another

pass, count the number of edges of the 2nd tour that are in HT (also in O(n) time).

Baseline Algorithm

The initial baseline SLS algorithm for this experiment is the Iterated Local Search

(ILS) by [133]. The pseudo-code and the configurable parts of ILS are shown in Figure

7.1. A search strategy given in line 14-15 are discussed in Section 7.2.5.

ILS(n)
1 CurS ← BF ← LS(InitS(n))
2 i← c← 0 // i = iteration counter, c = non improving moves counter
3 while i < MAXITR
4 do NewS ← LS(Ptb(CurS)) // Ptb is one 4-Opt double bridge move
5 if AccC = Better

6 then if g(NewS) < g(CurS)
7 then CurS ← NewS // Only move if NewS is better (BTR)
8 else CurS ← NewS // Always move to NewS (RW)
9 if g(CurS) < g(BF )

10 then c← 0
11 BF ← CurS
12 else c← c+ 1
13 i← i+ 1
14 if c > TOL% ∗ n // line 14-15 are discussed in Section 7.2.5
15 then CurS ← LS(FDD-Diversification(CurS))
16 return BF

Configurable Part
Initial

Remark
Choice

MAXITR (MaxIteration) n2 Considered as a short run
AccC (AcceptanceCriteria) Better Only move to a new local optimum if it is better
InitS (InitialSolution) N-N O(n) Nearest Neighbor Heuristic
LS (LocalSearch) 2-Opt O(cn) Swap 2-Edges with help of candidate list
g (ObjectiveFunction) delta O(1) Old OV - 2 deleted edges + 2 added edges
Ptb (Perturbation) 4-Opt Double Bridge Move [133]

Figure 7.1: Code and initial configuration of ILS for TSP
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ILS for TSP makes use of a 4-Opt double bridge perturbation move1 (Ptb in line 4),

then a local search that uses 2-Opt swap edge heuristic2 transforms the perturbed

solution to its 2-Opt local optimum (LS in line 4). If the acceptance criteria (AccC in

line 5) is set to ‘Better’, then ILS will only move to the new local optimum if it has a

smaller OV than the current local optimum CurS (line 6-7), otherwise the ILS stays at

CurS. This procedure is iterated until the number of iterations has reached MAXITR.

7.2.4 Fitness Landscape Search Trajectory Analysis

Fitness Landscape Analysis: TSP has the ‘Big Valley’ Property

There are up to n!/2n distinct TSP tours/solutions for a TSP instance of size n. Al-

though the search space is very big, previous research (e.g. [45, 133, 89, 68]) has shown

that TSP instances have the ‘Big Valley’ property: good solutions (i.e. TSP local

optima including the global optima) lie in only a small region of the search space.

Figure 7.2 illustrates why TSP has the ‘Big Valley’ property: high quality TSP

tours tend to be similar! Bond distances between these high quality TSP tours are

small, bunching them in a small region in the fitness landscape.

This ‘Big Valley’ property can be intuitively shown using the FLST visualizations in

Viz (FLO mode3). FLST visualizations of the fitness landscape of three TSP instances

(pr76, kroA100, and lin105) are shown in Figure 7.3. The visualization error (errAP)

in Figure 7.3 is small: 0.07, 0.04, 0.03 for pr76, kroA100, and lin105, respectively.

In Figure 7.3, we see that the better4 local optima are clustered around the middle of

the screen. Since the Best Found BF solution is drawn in the middle of the screen in the

FLST visualization and one grey ring is 10 distance units, we observe that the majority

of the better local optima are not too far from the BF solution (average/maximum

distance = 20/76 for pr76, 25/100 for kroA100, and 25/105 for lin105 which is ≈
30% ∗n). The pairwise distances between local optima are also small. This results in a

low DiversityIndex: 0.27, 0.19, 0.18, for pr76, kroA100, and lin105, respectively, which

helps the spring layout algorithm NEATO to layout these AP s with only small errAP.

When zoomed in, we observe that the position of Good/O orMedium/� AP s are closer

to the BF AP . Further out, the solution qualities drop (Bad/� and VeryBad/�).
This ‘Big Valley’ property can also be checked using the Fitness Distance Corre-

lation (FDC) analysis which shows whether TSP solutions that have small TSP tour

lengths (better OV/fitness) are also closer to the BF solution. In Figure 7.4, we observe

that all the FDC scatter plots have positive correlation: positive linear regression lines

and high rFDC (≥ 0.65 in our training instances). This means that the OV can give

good guidance: when the SLS algorithm moves to a better solution, it is usually closer

to the BF solution. Notice that most good local optima are close to the BF solution.

1The 4-Opt double bridge perturbation move cuts the current tour at four random positions:
A−B − C −D. These four sub-tours are then reconnected in the order of A−D −C −B.

2The 2-Opt swap edge move cuts the current tour at two positions: A − B. These two sub-tours
are then reconnected in the order of A−B′ where B′ is B in the reverse direction.

3Recall Fitness Landscape Overview (FLO) mode in Section 4.5.3.
4Recall that the worse ones have been filtered away by the AP selection heuristic in Section 4.5.2.
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Figure 7.2: A): Optimal Tour of ‘pr76’; B-D): 3 Other ‘Similar’ Local Optima.
These screen shots are taken directly from Viz Problem-Specific visualization for TSP.

Figure 7.3: The ‘Big Valley’ in TSP instances are observable using FLST Visualization.
These screen shots are taken directly from Viz FLST visualization.

Figure 7.4: The ‘Big Valley’ in TSP instances are observable using FDC Analysis.
These screen shots are taken directly from Viz FDC visualization.
rFDC(pr76) = 0.82, rFDC(kroA100) = 0.65, rFDC(lin105) = 0.71.
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Search Trajectory Analysis and Hypothesis of Better Walks

As TSP instances have the ‘Big Valley’ property, a good walk is an intensification

around the ‘Big Valley’ region. Although an SLS algorithm does not know if it is cur-

rently searching in the ‘Big Valley’ region, there is a heuristic that if the SLS algorithm

finds a better local optimum, it is moving closer to the ‘Big Valley’ region (and the

global optima).

We analyze the ILS search trajectories in Section 7.2.5 below.

7.2.5 ILS for TSP

White-Box Step: Avoiding Stagnation in ILS for TSP

The ILS algorithm shown in Figure 7.1 is an example of an SLS algorithm that has

been designed to exploit the ‘Big Valley’ property of TSP. The key is in lines 5-7. Here,

the ILS is prevented from moving to a new TSP local optimum NewS produced by

a perturbation and local search in line 4 if NewS is found to be not better than the

current local optimum CurS. This prevents the ILS from moving to a worse local

optimum – which is considered as moving away from the global optima according to

the ‘Big Valley’ property. Only if NewS is better than CurS, will ILS accept NewS

– which is expected to be closer to the global optima according to the ‘Big Valley’

property. We call this ILS as ILSBTR.

However, if the parameter AccC is set to RandomWalk, then the ILS will execute

line 8, i.e. ILS always accepts NewS at every iteration. We call this ILS as ILSRW .

Figure 7.5: Search Trajectory Coverage + Detail of ILSRW (left) versus ILSBTR (right)
on the same Fitness Landscape of a TSP Instance: ‘lin105’ after ≈ 1800 iterations. Note
that the APset used in this FLST visualization is shown from the final step viewpoint.
The AP s are mostly from the better ILST (discussed below) and ILSBTR runs.

FLST visualization (SCO + STD mode5) shown in Figure 7.5 intuitively explains why

ILSBTR is a better strategy than ILSRW . We can identify that most of the time ILSRW

(red lines and circles on the left) is straying away from the middle of the screen where

the ‘Big Valley’ region is located. ILSRW trajectory is only occasionally shown to be

near the center of the screen. We can say that ILSRW does too much diversification and

thus does not search in the correct place. In contrast, ILSBTR (blue lines and circles

on the right) stays focused in the ‘Big Valley’ region at the middle of the screen. The

5Recall Search Coverage Overview (SCO) & Search Trajectory Detail (STD) mode in Section 4.5.4.
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behavior of ILSBTR that frequently rejects NewS if it is worse than CurS is clearly

seen in the visualization in form of ‘star patterns’: the center of the star is CurS and

the spiky ends6 of the star are the rejected NewS solutions. These star patterns are

shown to be appearing in the correct place: near the middle of the screen.

Figure 7.6: Visualization of TSP Fitness Landscape and ILS Behavior on lin105.
We also provide the typical Run Time Distribution plot found in [133].

However, although we have observed in Figure 7.5 that ILSBTR is already making

sufficient use of the ‘Big Valley’ property, this is not enough. A longer7 playback on

FLST visualization shown in Figure 7.6 (first row) reveals that ILSBTR (now colored

with red lines and circles) is actually stuck in similar fitness landscape region on

a large number of iterations (2706 to 13072). This exceeds the max 1052 = 11025

iterations in this experiment which implies that ILSBTR often reports sub-optimal

results in short runs. This observation of ‘ILSBTR being stuck’ is more clearly seen using

6Notice that most spiky ends do not point to another AP in the visualization but to the blank
spaces around few AP s. This is because the NewS solution is mostly not inside the APset. Thus its
position must be approximated using the STD mode discussed in Section 4.5.4.

7Recall that Figure 7.5 only shows up to 1800 iterations.
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an animation where the ‘star patterns’ are staying in the same place for a substantial

number of iterations. This phenomenon is observable on the other training instances

too.

As mentioned earlier, Stützle and Hoos [133] have arrived at this conclusion using

the Run Time Distribution (RTD) analysis (see Section 3.5.2). The RTD plot in the

middle of Figure 7.6 is taken from [133] and shows the typical solution probability of

ILSBTR with 2-Opt moves on a TSPLIB instance. The RTD plot shows that reaching

good TSP solutions is easy as solution probability is near 1.0 if we only aim for a

sub-optimal solution. But, reaching optimal ones is hard as there is an observable

stagnation behavior in its RTD plot: solution probability to reach optimal solution is

not close to 1.0 even if we use much more CPU time. However, the RTD plot cannot

tell much beyond this information (see Figure 4.13 and its corresponding text).

In [133], the authors suggested ‘a fix’ by using a stronger diversification than

the double bridge move, FDD-diversification, that does a controlled diversifica-

tion around the ‘Big Valley’ region if a number of iterations TOL% ∗ n has elapsed

without any improvement. Basically, FDD-diversification is a strategy to generate

sufficiently far local optimum from CurS but yet still good enough to be in the ‘Big

Valley’ region (although not necessarily better than current local optimum CurS). It

works by generating some local optima (perturbing CurS + local search), pick the

fittest ones, and among the fittest, the furthest one from CurS. In this section, we

will intuitively show using FLST visualization how ILSBTR is improved by using this

search strategy.

Black-Box Step: Fine-Tuning

Now we have a tuneable parameter TOL. White-box approaches are not suitable to

tune TOL as the differences are too hard to be noticed. It is better to use a black-box

tuning algorithm to tune TOL. We try these values TOL = {100, 150, 200, 250, 300}
with all other parameters set as in Figure 7.1. We obtain TOL = 200 as the fittest

setting on the training instances. We call the resulting SLS strategy as ILST (weaked).

The improved behavior is observable in Figure 7.6, label ILST (second row). ILST

(blue lines and circles) is now able to escape from several local optima attractors

easier than ILSBTR: the ‘star patterns’ in ILST do not stay in a fitness landscape region

for too long as FDD-Diversification throws ILST sufficiently far from its previous

position (yet still around the ‘Big Valley’ region) at every TOL% ∗ n non-improving

moves. We observe that with this search strategy, ILST progresses closer towards the

center of the screen in typically less8 number of iterations than ILSBTR. This strategy

works because there may be simpler (2-Opt) paths towards the better solutions (located

in the middle of screen) from other local optima rather than from CurS. Thus, the

ILS should rather give up and try other local optima if such an improving path cannot

be easily found from CurS. Since both ILS variants are limited to n2 iterations only,

8In the example in Figure 7.6, ILST reaches optimal solution at iteration 4094, compared with
ILSBTR that requires > 11025 iterations.
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ILST has a better chance of finding better solutions than ILSBTR.

7.2.6 Results on Test Instances

Table 7.2 shows the performance of ILS variants (ILSRW , ILSBTR and ILST ) on test

instances. Each algorithm is run on a particular instance for n2 iterations. As there is a

random element, this process is repeated 20 times to obtain the average percentage-off

x̄ and standard deviation σ from BK OV. We observe that the bold entries (the best

result on a particular row/TSP test instance) are mostly appearing in ILST column,

which also has the best average values among the three columns.

Wilcoxon signed-ranks test detects that the results of the baseline algorithm ILSBTR

is clearly better than ILSRW (21 pairs, p < 0.05, T = 0.0, V = 67) and the results of

the tweaked algorithm ILST is significantly better than the baseline algorithm ILSBTR

(21 pairs, p < 0.05, T = 28.0, V = 67).

Test Instances

Instance Iters BK OV
ILSRW ILSBTR ILST

x̄ σ x̄ σ x̄ σ
berlin52 2704 7542 2.44 0.95 0.49 0.98 0.00 0.00
eil76 5776 538 3.90 0.87 0.60 0.62 0.50 0.38
st70 4900 675 2.37 0.56 0.91 0.71 0.22 0.30
rat99 9801 1211 3.69 0.82 0.66 0.83 0.21 0.23
kroB100 10000 22141 2.01 0.59 0.42 0.48 0.11 0.16
kroC100 10000 20749 2.17 0.52 0.29 0.37 0.10 0.16
rd100 10000 7910 3.32 0.56 0.96 0.80 0.15 0.21
eil101 10201 629 5.48 0.60 1.39 0.74 1.21 0.74
pr107 11449 44303 8.74 4.62 3.56 2.43 4.45 2.08
pr124 15376 59030 0.88 0.45 0.71 0.79 0.07 0.08
bier127 16129 118282 2.46 0.40 0.29 0.19 0.24 0.12
ch130 16900 6110 3.02 0.59 0.87 0.41 0.41 0.36
ch150 22500 6528 3.71 0.57 0.60 0.32 0.37 0.16
kroA150 22500 26524 3.87 0.67 0.60 0.65 0.46 0.36
kroB150 22500 26130 3.62 0.45 0.64 0.56 0.45 0.33
u159 25281 42080 3.92 0.85 0.84 0.68 0.22 0.27
rat195 38025 2323 4.39 1.16 0.88 0.47 0.81 0.39
d198 39204 15780 11.49 2.90 1.36 0.68 1.37 0.52
tsp225 50625 3916 5.55 0.66 0.70 0.60 0.66 0.42
gil262 68644 2378 5.70 0.57 0.87 0.42 1.00 0.38
a280 78400 2579 8.87 1.07 1.39 0.85 1.18 0.44

Average⇒ 4.36 0.91 0.68

Table 7.2: ILS Variants Results

In summary, we shown in this section the ‘Big Valley’ fitness landscape structure of TSP

instances and why the standard Iterated Local Search ILSBTR (by [133]) experiences

stagnation in its behavior can be explained in a more intuitive manner using FLST

visualization than by using existing approaches (e.g. the FDC and RTD analysis). We

also illustrate and intuitively compare the improved ILST (also by [133]) has better

search trajectory than ILSBTR. This shows an additional use of FLST visualization –

to explain/teach SLS algorithms.
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7.3 Quadratic Assignment Problem

The white-box part of QAP experiments has been published in [57] and in [61] (with

the black-box part). Note that the results in this section are improved over [57, 61] as

we use a more diverse benchmark instances beyond the Taillard instances.

7.3.1 Experiment Objectives

In this scenario, our objective is to get a good performing SLS algorithm for the QAP

with a limited number of iterations. This is because there exist good SLS algorithms for

QAP that can find BK OV of many QAP instances in QAPLIB [22, 114] with longer

runs. To prevent the ceiling effect, where all runs reach the BK OV, we have fixed the

number of iterations of each SLS run to be quite ‘small’: 5 ∗ n2 iterations, where n is

the instance size. Thus, not all runs are expected to reach the BK OV (especially for

larger ones) and the better algorithms on such short runs can be distinguished.

We also show that the FLST visualization can help the algorithm designer to spot

different classes of COP instances and design proper search strategies for each class.

The improved SLS designs are then fine-tuned for more performance.

7.3.2 Formal Problem Description

The input for the Quadratic Assignment Problem (QAP) is two n×nmatrices A = (aij)

and B = (bij). Typically, matrix A contains flow information between facilities and

matrix B contains distance information between facilities. The objective of QAP is to

find a permutation s of {0, 1, 2, . . . , n− 1} over all possible permutations in the search

space which minimizes the objective function:

g(s) =

n−1∑

i=0

n−1∑

j=0

asisjbij (7.2)

This formulation is called Koopmans-Beckmann QAP [140] and is NP-Complete [47].

7.3.3 Experimental Setup

Benchmark Instances

Training Instances Test Instances
(14 instances) (20 instances)

nug20 bur26a nug15 tai40a bur26b tai25b
rou15 kra30a nug25 tai60a bur26c tai40b
sko42 scr12 nug30 wil100 kra30b tai60b
tai30a ste36a rou20 kra32
tai35a tai30b sko49 scr20
tai50a tai35b sko56 ste36b
wil50 tai50b tai25a ste36c

Table 7.3: Training and Test Instances for QAP experiments
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These benchmark instances are taken from QAPLIB [114]. There are 135 QAP in-

stances from 15 authors in QAPLIB. We take 34 instances from 9 authors and split

them into training and test instances as in Table 7.3.

FLST Quality Measures

We define QAP solution quality measures in a similar way to TSP⇒ Good/O: [0− 1),

Medium/�: [1− 2), Bad/�: [2− 3), and VeryBad/�: [≥ 3).

A QAP solution is an assignment. s[i] = j means facility i is located at position

j. There is no direct connection between s[i] and its neighbors (s[i − 1] and s[i + 1])

∀i ∈ {1, n − 2}. The O(n) Hamming distance defined below is appropriate9 for QAP

as it measures the distance of two permutation/bit string based solutions where the

position/order of the items matter. In QAP, we want to know the number of facilities

that are located in different location between the two solutions, e.g. d({0, 1, 2, 3},
{0, 1, 2, 3}) = 0 and d({0, 1, 2, 3}, {2, 1, 0, 3}) = 2. Hamming distance is computed as

follows:

hamming-distance d(s1, s2) =
∑n−1

k=0 mismatchk

mismatchk = 1, if s1k �= s2k
0, otherwise

The Hamming distance also satisfies the triangle inequality property that is useful for

the FLST visualization [123].

Baseline Algorithm

The initial baseline SLS algorithm for this experiment is the Robust Tabu Search (Ro-

TS) by [137] which has been shown to give good performance on QAP. Ro-TS is a

TS that frequently changes its Tabu Tenure within a predetermined range (details in

Appendix B). We implemented a variant of Ro-TS called Ro-TS-I based on [137].

The pseudo-code and configurable parts of Ro-TS-I are shown in Figure 7.7.

Ro-TS-I starts from an InitialSolution (a random assignment). Then, it generates

feasible neighbors which is CurS with facilities i and j swapped (the O(n2) 2-Opt

Neighborhood in line 5) if this pair i − j has not been exchanged in the last TT% ∗ n
iterations (TabuTable in line 5) or aspired (AspirationCriteria in line 5). Ro-TS-I picks

the best solution among these neighbors – which may not always be better than the

current CurS (line 6), moves there, and sets the recently applied move to be tabu for the

next TT%∗n iterations (line 7). Ro-TS-I utilizes the O(1) incremental OV computation

mentioned in [137] to speed up the computation. Additional search strategies given in

line 13-19 are discussed in Section 7.3.5 and 7.3.6.
9The choice of a particular distance function depends on the nature of the COP being attacked and

the elements that constitute a meaningful notion of distance within the fitness landscape. Otherwise
the results will be inaccurate, e.g. bond distance is appropriate for TSP but not for QAP as edges in
QAP solutions do not mean anything. Hamming distance is more appropriate for QAP. However, if
we use Hamming distance to measure distance between TSP solutions, the resulting distances will be
too far, and can be misleading (tour {1-2-3-4} and {2-3-4-1} are the same tours but Hamming distance
returns d = 4 (maximum distance) in this case).
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Ro-TS-I(n)
1 CurS ← BF ← InitialSolution(n)
2 i← c← 0 // i = iteration counter, c = non improving moves counter
3 TT ← random([TTL..(TTL+ TTD)])
4 while i < MAXITR
5 do Neighbor(CurS)← Neighborhood(CurS, n,TabuTable,AspirationCriteria)
6 CurS ← best(Neighbor(CurS))
7 Update TabuTable by TT% ∗ n
8 if g(CurS) < g(BF )
9 then c← 0
10 BF ← CurS
11 else c← c+ 1
12 i← i+ 1
13 if c > TOL% ∗ n
14 then c← 0
15 if strategy = Ro-TS-I or Ro-TS-A // line 15-16 are explained in ...
16 then TT ← random([TTL..(TTL+ TTD)]) // ... Section 7.3.5
17 if strategy = Ro-TS-B // line 17-19 are explained in Section 7.3.6
18 then X ← random([XL..(XL+ XD)])
19 CurS ← RuinAndRecreate(CurS,X)
20 return BF

Configurable Part
Initial

Remark
Choice

MAXITR (MaxIteration) 5 ∗ n2 Considered as a short run
TTL (TTLow) 90 The Tabu Tenure range in [137]
TTD (TTDelta) 20 Similar as above
TOL (Tolerance) 200 Waiting time before executing strategy as in [137]
XL (XLow), XD (XDelta) N/A Explained in Section 7.3.6
InitialSolution Random Produce a random assignment
Neighborhood 2-Opt O(n2) (Swap) move operation for QAP
g (ObjectiveFunction) delta Compute delta of OV in O(1) as shown in [137]
TabuTable pair i− j Item i cannot be swapped with item j for TT steps
AspirationCriteria Better Override tabu if move leads to a better solution

SearchStrategy Ro-TS-I Change TT within [0.9 . . . 1.1]n after 2n steps [137]

Figure 7.7: Code and initial configuration of Ro-TS-I for QAP

7.3.4 Fitness Landscape Search Trajectory Analysis

Fitness Landscape Analysis: ≥ 2 QAP Fitness Landscape Types

We apply the FLO mode of FLST visualization on the training instances. In Figure 7.8,

we see that the AP s in {sko42, tai30a, ste36a, tai30b} are mostly spread10 throughout

the fitness landscape. Many AP s are almost touching the green border (the maximum

distance). The DiversityIndices of these training instances are near 1.0 as good QAP

local optima can be very different. For example, DiversityIndex is 0.94 in tai30a (0.91

in tai30b). This implies that most of the 25 AP s in tai30a FLST visualization have

distance 28 out of 30 w.r.t each other. It is difficult to obtain small layout error errAP

with such distance constraints (see Section 4.5.3).

Although the location of the AP s are spread out, the quality of the AP s in {sko42,
tai30a} are more ‘uniform’ (most are Good/O or Medium/� AP s and no VeryBad/�
AP s) than {ste36b, tai30b} (all AP quality types exist with many VeryBad/� AP s).

10We remark that this information is not easy to be seen in FDC scatter plot, see Figure 4.8.
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Figure 7.8: Fitness Landscape Overview of {sko42, tai30a} and {ste36a, tai30b}. Note
the OV gap between the two types. Visualization error is high (elaborated in the text).
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The ‘sideview’ mode shows this OV variability in a clearer manner: observe the red

range that highlights the quality of AP s w.r.t the BK OV. The instances on the right

side of Figure 7.8 typically have a larger range than the ones on the left side.

A working hypothesis from this observation is that there are at least two classes

of QAP instances. Others researchers (e.g. [89, 68]) are also aware of this and have

used the dominance of a matrix dm(matrix) (defined below) to classify QAP types.

avg(matrix) =

∑n−1
i=0

∑n−1
j=0 matrixij

n2
(7.3)

dm(matrix) = 100.0 ∗ var(matrix)

avg(matrix)
=

∑n−1
i=0

∑n−1
j=0 (matrixij−avg(matrix))2

n2−1

avg(matrix)
(7.4)

Further observations link the smoothness/low variability (labeled as type A) and rugged-

ness/high variability (type B) of AP quality seen in the FLST visualization with the

uniformity/low dominance (type A) and non-uniformity/high dominance (type B) prop-

erty of their data matrices. Thus, classification of training instances can be done by

observing the FLST visualization or the dominance of any of the two input matrices.

For classifying test instances, we assume if one training instance from an author is

classified as a certain type11, then classify other test instances from the same author to

the same type. For example: taixxa instances are described in QAPLIB as uniformly

generated ; taixxa training instances are classified as type A; thus all other taixxa test

instances that we do not use as training instances should belong to type A too.

The instances used in our experiments are now further classified as in Table 7.4.

Type A Instances Type B Instances

Training dm(A) dm(B) Test Training dm(A) dm(B) Test

nug20 54.2 103.8 nug15/25/30 bur26a 15.1 274.9 bur26b/26c
rou15 68.9 69.2 rou20 kra30a 49.2 150.0 kra30b/32
sko42 52.0 108.5 sko49/56 scr12 257.4 57.1 scr20
tai30a 58.0 63.2 tai25a ste36a 55.6 400.3 ste36b/36c
tai35a 61.6 61.6 tai40a tai30b 85.2 323.9 tai25b
tai50a 60.7 62.2 tai60a tai35b 78.7 309.6 tai40b
wil50 54.2 66.7 wil100 tai50b 73.4 313.9 tai60b

Table 7.4: Training and Test Instances for QAP experiments (Classified).
Observe the bold entries in Type B training instances that show the high dominance.

Search Trajectory Analysis and Hypothesis of Better Walks

We now use the FLST visualization to come up with some hypothesis for better SLS

algorithm walks. The sketch of Ro-TS-I behaviors on QAP type A and B instances are

shown with red solid lines and our hypotheses on better search trajectories are shown

with blue dashed lines in the same Figure 7.8 on tai30a and tai30b. Note that since

the visualization error (errAP) is quite high, two AP s that are drawn near (/far) each

other may not be near (/far) in the actual n-dimensional space. We also expect many

‘blank periods’ in the visualization when the search trajectory is far from known AP s.

11Note that taixxa and taixxb instances have the same author but they belong to two different types.
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In Table 7.5 column Ro-TS-I, we observe that Ro-TS-I already has reasonably good

performance on type A instances. This may be because the quality gap between local

optima and BK solution is small due to the smooth fitness landscape. In Figure 7.9

label (I1-I3), we observe that Ro-TS-I trajectory does not show any obvious sign of

being stuck in a local optimum. The red circle that denotes Ro-TS-I position appears

in different AP s in different iterations: visit Medium/� AP in bottom left screen

(label I1), disappear from the FLST visualization as it is far from known AP s (label

I2), and visit Bad/� AP in top right screen (label I3).

Type A instance is an easier problem than type B as fitness landscape is smoother,

i.e. most SLS runs will find solution with quality close to the BK OV. But a smooth

landscape makes it hard for the SLS algorithm to decide where to navigate as ‘every-

thing’ looks good. Diversifying too much may be ineffective since the SLS trajectory

will likely end up in another region with similar quality. Our hypothesis: increase in-

tensification in a region where the SLS trajectory is currently in to avoid missing the

best solution in that region. Figure 7.8 (left, tai30a, middle) shows our aim to have

a trajectory (blue dashed lines) that finds good local optima rather than Ro-TS-I

trajectory (red solid lines) that misses them.

On the other hand, the performance of the same Ro-TS-I on type B instances is

poor as seen in Table 7.7 column Ro-TS-I, especially for tai30b, tai35b, and tai50b. In

Figure 7.11 label (I1-I3), we observe that Ro-TS-I is stuck around a VeryBad/� AP
which is � 3%-off BK OV. The Ro-TS-I trajectory (red circle) enters a region near

one of this VeryBad/� AP s at the start of search (label I1), is still there in the middle

(label I2) and end of the search (label I3). Animation shows that this VeryBad/� AP
is occasionally revisited throughout Ro-TS-I runs. Since the quality of the solutions in

that region is poor, the reported best found solution is also poor.

The QAP type B fitness landscape is more rugged, i.e. the Good/O local optima are

deeper and spread out. We hypothesize that within the limited iteration bound of 5∗n2,

rather than attempting to escape deep local optima with its own strength (e.g. via the

tabu mechanism), it is better for Ro-TS-I to perform frequent strong diversifications.

Figure 7.8 (right, tai30b, middle) shows that the desired trajectory (blue dashed

lines) only makes short runs in a region before jumping elsewhere rather than Ro-TS-I

trajectory (red solid lines) which struggles to escape a deep local optimum.

7.3.5 Ro-TS-A for QAP

White-Box Step: Intensification for Smooth Fitness Landscape

We believe that Ro-TS-I performance on type A instances can be improved. In Figure

7.10, we observe that a single Ro-TS-I run in 5∗n2 iterations does not visit many good

AP s that are collected from several runs. How to make Ro-TS-I visit them more?

We come up with this idea to improve Ro-TS-I performance. During short runs,

there may be some Ro-TS-I moves which lead to Good/O AP s that are under tabu

status and are not overridden by the aspiration criteria.
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The idea for robustness by [137] used in Ro-TS-I is to randomly change Tabu Tenure

during the search within a defined Tabu Tenure Range (TTR) at every TOL%∗n steps.

The TTR is defined as the interval [TTL . . . (TTL + TTD)] which has two parameters:

Tabu Tenure Low (TTL) and Tabu Tenure Delta (TTD).

Figure 7.9: Search Trajectory of Ro-TS-I (top) vs Ro-TS-A (bottom) on tai30a

To encourage Ro-TS-I to do more intensification, we decrease its TTR from the settings

in [137]: [90 . . . 110] into a lower range and changing the robust Tabu Tenure value more

often – after n steps (TOL = 100), not 2n steps (TOL = 200 in Figure 7.7).

Black-Box Step: Fine-Tuning

We do not know the value of TOL and TTR parameters for Ro-TS-I, except that both

should be lower. We use black-box tuning (full factorial design) on TOL = {100, 200},
TTL = {40, 60, 80}, and TTD = {20, 30, 40} and obtain TOL = 100 and TTR =

[40 . . . 60]% ∗ n (TTL = 40, TTD = 20) as the TTR that works best on the training

instances. We call Ro-TS-I with this tuned configuration as Ro-TS-A.

Training Instances

Instance Iters BK OV
Ro-TS-I Ro-TS-A
x̄ σ x̄ σ

nug20 2000 2507 0.15 0.27 0.07 0.16
rou15 1125 354210 0.21 0.45 0.03 0.15
sko42 8820 15812 0.17 0.11 0.08 0.10
tai30a 4500 1818146 0.92 0.22 0.85 0.33
tai35a 6125 2422002 1.13 0.39 0.96 0.31
tai50a 12500 4938796 1.72 0.13 1.51 0.15
wil50 12500 48816 0.13 0.04 0.13 0.21

Table 7.5: Ro-TS-I/A Results on Type A Training Instances (20 replications)
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Table 7.5 shows that Ro-TS-A slightly outperforms Ro-TS-I. Bold entries that shows

the best result for a certain row are mostly in the Ro-TS-A column. Wilcoxon signed-

ranks test detects a significant difference between the average OV found by Ro-TS-I

and Ro-TS-A on QAP type A instances (6 different pairs, p < 0.05, T = 0.0, V = 0).

Figure 7.10: Search Coverage of Ro-TS-I vs Ro-TS-A on tai30a

In Figure 7.9 label (A1-A3), we see that the smaller TTR is still enough to make

Ro-TS-A avoid solution cycling: blue circle that denotes Ro-TS-A position appears

in different AP s that are located far away. This may be because it is quite easy to

escape from local optima of the smooth fitness landscape of type A instances. More

importantly, we observe in Figure 7.10 that the search coverage of the fine-tuned Ro-

TS-A is wider than Ro-TS-I with more Good/O and Medium/� AP s are visited.

7.3.6 Ro-TS-B for QAP

White-Box Step: Diversification for Rugged Fitness Landscape

In Figure 7.11 label (I1-I3), Ro-TS-I is shown to be stuck around a VeryBad/� AP and

does not visit the better quality AP s. This leads to a relatively poor performance (see

Table 7.7 column Ro-TS-I and the OV visualization of Ro-TS-I in Figure 7.11 (top)

which looks like a flat line when zoomed-out). With the understanding that the fitness

landscape of type B instances is rugged, we suspect that the inability of Ro-TS-I to

escape those AP s is because the AP s are part of deep local optima regions.

To alleviate this situation, we add a strong diversification strategy into Ro-TS-I. We

consider Ro-TS-I to be stuck in a local optimum after TOL%∗n non-improving moves.

To escape, we employ a strong diversification mechanism called RuinAndRecreate

based on the idea from [95]. This diversification strategy preserves max(0, n − X)

items and randomly shuffles the assignment of the other min(n,X) items in the current

solution. The value of X should be sufficiently large to bring Ro-TS-I out from deep

local optima, but not equal to n, otherwise it will be tantamount to random restart. The

rationale for this strong diversification heuristic is that we see in the fitness landscape

that Good/O AP s in type B instances are located quite far apart but usually not as far

as the maximum distance n (see Figure 7.11 label B3, where the highlighted distances

between Good/O AP s are 15, 19, and 22, which are not close to n = 30).
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Figure 7.11: Search Trajectory of Ro-TS-I (top) vs Ro-TS-B (bottom) on tai30b

Black-Box Step: Fine-Tuning

Black-box tuning algorithm is used to determine the diversification strength12 X. As

the average instance size of our type B training instances is 31, we try X values in the

middle of [0 . . . 30], i.e. X = {8, 10, . . . , 22}. Other parameters are set to be similar as

Ro-TS-A, i.e. TOL = 100, TTL = 40, TTD = 40.

The result of fine tuning using all type B training instances is shown in Figure

7.12.A, with the best X = 16. Table 7.7 column X = 16 shows the results on type B

training instances when X is fixed. The results are already much better than Ro-TS-I

results in the same Table 7.7. We call this variant as Fixed-Diversification strategy.

However, if we split the result w.r.t individual type B training instances as in Figure

7.12.B, we observe that the best value of X differs across different instances. For smaller

instances, the best X tends to be smaller, and vice versa. The best X for each instance

is around half of instance size n but not always the case.

12Note that we purposely show the development process using IWBBA in this section. Rather than
directly give the final SLS algorithm: Ro-TS-B where we set X to be a robust value, we first show the
poorer algorithm: Fixed-Diversification where we set X to be a fixed value.
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If we split the training instances into 3 sets: small {scr12, bur26a}, medium {kra30a,
tai30a, tai35b, ste36a}, and large {tai50b}, then the best X values reported are 10, 12,

and 28, respectively (Figure 7.12.C). Table 7.6 shows that Fixed-Diversification

strategy suffers from over-fitting: selected X varies depending on the given instances.

Figure 7.12: Finding the best X on type B training instances.

Training Instances

Instance Iters BK OV
X = 10 X = 12 X = 16 X = 28
x̄ σ x̄ σ x̄ σ x̄ σ

scr12 720 31410 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bur26a 3380 5426670 0.02 0.04 0.02 0.04 0.04 0.04 0.02 0.03
kra30a 4500 88900 1.26 0.62 1.05 0.63 1.24 0.49 1.95 0.81
tai30b 4500 637117113 1.41 1.07 0.23 0.32 0.27 0.36 0.30 0.09
tai35b 6125 283315445 1.57 1.73 0.40 0.34 0.24 0.12 0.42 0.20
ste36a 6480 9526 0.69 0.76 0.34 0.30 0.64 0.35 1.79 1.02
tai50b 12500 458821517 1.25 1.05 0.91 0.65 0.36 0.26 0.17 0.15

Table 7.6: Setting X = 10/X = 12/X = 16/X = 28 on Type B Training Instances
(20 replications per run). Instances are sorted by size.

White-Box Step: One More Insight

To obtain better results across different instances and avoid the over-fitting issue, we

conclude that X should not be fixed for all instances but rather be robust within a

range correlated with the instance size n, i.e. X = [XL . . . (XL + XD)]%*n. X is

randomly changed within this range after each diversification step – a ‘double’ Robust

Tabu Search by allowing Tabu Tenure TT and diversification strength X to vary within

some predetermined range. This helps maintaining the consistency of the performance

quality across various QAP type B instances, especially if instance size varies.

Black-Box Step: Fine-Tuning Again

As Fixed-Diversification strategy above yields reasonably good results when X

is set around half of the instance size n, we run the black-box fine tuning proce-

dure (full factorial design) on a reasonable range XL = {40, 45, 50, 55, 60} and XD =

{0, 5, 10, 15, 20}. Again, all other parameters are the same as with Ro-TS-A, i.e.

TOL = 100, TTL = 40, TTD = 40. We arrived at a good range for X = [50 . . . 55]%∗n
(XL = 50, XD = 5) that works best on the type B training instances.
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We call the revised strategy as Ro-TS-B. Although the overall performance of Ro-

TS-B on type B instances is slightly better than Fixed-Diversification withX = 16,

it is not statistically significant: compare Table 7.7 column X = 16 with column Ro-

TS-B. However, we already found that Fixed-Diversification tends to overfit to

training instances, thus we prefer the Ro-TS-B.

Search trajectory animation of Ro-TS-B in Figure 7.11 label (B1-B3) shows that Ro-

TS-B employs frequent strong diversifications: after visiting an AP briefly, Ro-TS-B

trajectory (blue circle) disappears from the FLST visualization as it explores region

far from known AP s, then it briefly appears in another AP far from the earlier ones,

and then it disappears again. This is the intended behavior of the RuinAndRecreate

strategy. Although not all AP s visited by Ro-TS-B have Good/O quality, some do.

This explains why Ro-TS-B has better performance than Ro-TS-I. The OV visualization

of Ro-TS-B in the same Figure 7.11 also confirms this observation.

Figure 7.13 shows that the search coverage of Ro-TS-B (covers many AP s) is much

superior than Ro-TS-I (stuck in a VeryBad/� AP ).

Training Instances

Instance Iters BK OV
Ro-TS-I X = 16 Ro-TS-B
x̄ σ x̄ σ x̄ σ

bur26a 3380 5426670 0.20 0.08 0.04 0.04 0.03 0.04
kra30a 4500 88900 1.88 1.43 1.24 0.49 0.86 0.81
scr12 720 31410 0.19 0.87 0.00 0.00 0.00 0.00
ste36a 6480 9526 1.13 1.06 0.64 0.35 0.77 0.53
tai30b 4500 637117113 12.12 6.65 0.27 0.36 0.27 0.44
tai35b 6125 283315445 8.10 3.89 0.24 0.12 0.26 0.17
tai50b 12500 458821517 6.02 3.33 0.36 0.26 0.21 0.14

Average 4.23 0.40 0.34

Table 7.7: Ro-TS-I/X = 16/B Results on Type B Training Instances (20 replications
per run). Note that column X = 16 is duplicated from Table 7.6.

Figure 7.13: Search Coverage of Ro-TS-I vs Ro-TS-B on tai30b

7.3.7 Results on Test Instances

We compare our Ro-TS variants on the test instances using the same iteration bound:

5∗n2. The results are given in Table 7.8 where a bold entry in a particular row/instance

indicates the best result for that instance. We observe that Ro-TS-A performs slightly
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Test Instances

Instance Iters BK OV
Ro-TS-I Ro-TS-A Ro-TS-B
x̄ σ x̄ σ x̄ σ

Type A Test Instances
nug15 1125 1150 0.04 0.08 0.05 0.08 0.03 0.07
nug25 3125 3744 0.02 0.04 0.01 0.04 0.01 0.02
nug30 4500 6124 0.23 0.18 0.15 0.21 0.19 0.17
rou20 2000 725522 0.24 0.16 0.14 0.13 0.26 0.16
sko49 12005 23386 0.22 0.08 0.11 0.08 0.25 0.10
sko56 15680 34458 0.28 0.15 0.31 0.28 0.29 0.12
tai25a 3125 1167256 1.05 0.40 0.90 0.38 1.28 0.29
tai40a 8000 3139370 1.23 0.29 1.05 0.29 1.74 0.29
tai60a 18000 7205962 1.62 0.17 1.50 0.19 2.13 0.24
wil100 50000 273038 0.20 0.08 0.20 0.12 0.16 0.04

Average⇒ 0.51 0.44 0.63

Type B Test Instances
bur26b 3380 3817852 0.39 0.24 0.44 0.25 0.04 0.06
bur26c 3380 5426795 0.19 0.23 0.36 0.37 0.00 0.00
kra30b 4500 91420 0.30 0.39 0.85 0.91 0.24 0.22
kra32 5120 88700 0.60 0.84 1.53 1.32 0.79 0.67
scr20 2000 110030 0.35 0.64 0.96 1.20 0.10 0.22
ste36b 6480 15852 2.87 3.30 4.50 2.91 0.53 0.74
ste36c 6480 8239110 0.76 0.63 1.46 1.35 0.32 0.26
tai25b 3125 344355646 17.03 10.19 18.22 9.53 0.13 0.16
tai40b 8000 637250948 10.00 4.43 10.38 4.32 0.10 0.24
tai60b 18000 608215054 7.34 3.49 8.04 3.27 0.15 0.10

Average⇒ 3.98 4.67 0.24

Table 7.8: Ro-TS-I/A/B Results on Test Instances (20 replications per run)

better than Ro-TS-I on type A instances. Since the fitness landscapes of type A in-

stances are smoother, any improvement will be small. Wilcoxon signed-ranks test de-

tects that there is a significant difference between Ro-TS-A and Ro-TS-I performance

(9 different pairs, p < 0.05, T = 4.5, V = 8). We also observe that Ro-TS-B is much

better than Ro-TS-I on type B instances (10 pairs, p < 0.05, T = 2.5, V = 10).

To check the specialization of our Ro-TS variants to the problem type, we apply both

Ro-TS-A or Ro-TS-B to its opposite instance class. We see that on type B instances,

this gives worse results (underlined). Without strong diversification, the lower tabu

tenure range TTR in Ro-TS-A causes it to be more stuck in deep local optima regions

than Ro-TS-I. On the other hand, Ro-TS-B that jumps around the fitness landscape

of type A instances mostly performs poorer than Ro-TS-A (also underlined, except for

‘nug15’, ‘sko56’, and ‘wil100’ instances). This shows that we have successfully tailored

the SLS algorithm to match different fitness landscapes of these instances.

In summary, we have shown in this section that the FLST visualization can in-

tuitively show 2 different fitness landscape structures in QAP: spread-smooth (type

A) and spread-rugged (type B). The insights on how Robust Tabu Search (Ro-TS)

[137, 138] works on these two fitness landscape types led us to design two special-

ized Ro-TS variants given a restricted iteration bound. Enhanced with black-box fine

tuning, these two Ro-TS variants works well on test instances.
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7.4 Low Autocorrelation Binary Sequence Problem

These results have been published in [58]. Note that we use several machines in this

section for comparisons of runtimes.

7.4.1 Experiment Objectives

This time, we apply IWBBA using Viz on a non classical COP. We choose the LABS

Problem (LABSP) for its difficulty: it has O(2n) search space; the current best exact

algorithm [87, 88] for LABSP needs exponential time O(1.85n) to get optimal results

up to n ≤ 60; and it is also mentioned in [87] that LABSP poses a significant challenge

to local search methods.

We show that with IWBBA, we can engineer a new state-of-the-art SLS for the

LABSP given a baseline algorithm (TSv0 Tabu Search algorithm by [38]).

7.4.2 Formal Problem Description

The Low Autocorrelation Binary Sequence Problem (LABSP) is a computationally

difficult problem even for small instance size n. LABSP has a simple formulation: find

a binary sequence s = {s0, s1, . . . , sn−1}, si ∈ {−1, 1} of length n that minimizes the

objective function13 g(s) = E(s) (which is the quadratic sum of the autocorrelation

function Ck), or equivalently, maximizes the merit factor F (s):

Ck(s) =
∑n−k−1

i=0 sisi+k E(s) =
∑n−1

k=1 (Ck(s))
2 F (s) = n2

2E(s)
(7.5)

Example

Let n = 3. We have 23 solutions but we only have 2 canonical ones due to symmetries:

1). {1, 1,−1} or {−1,−1, 1} or ‘21’ in Run length notation14.

g(s) = E(s) = (C1)
2 + (C2)

2 = (1 ∗ 1 + 1 ∗ −1)2 + (1 ∗ −1)2 = 02 + (−1)2 = 0 + 1 = 1

F (s) = 32/(2 ∗ 1) = 9/2 = 4.5

The solution {1, 1,−1} is symmetrical to {−1,−1, 1}, {−1, 1, 1}, and {1,−1,−1}.
2). {1, 1, 1} or {−1,−1,−1} or ‘3’ in Run length notation.

g(s) = E(s) = (C1)
2 + (C2)

2 = (1 ∗ 1 + 1 ∗ 1)2 + (1 ∗ 1)2 = 22 + 12 = 4 + 1 = 5

F (s) = 32/(2 ∗ 5) = 0.9

The solution {1, 1, 1} is symmetrical to {−1,−1,−1}, {1,−1, 1}, and {−1, 1,−1}.

7.4.3 Experimental Setup

Benchmark Instances

LABSP instances are only characterized by their length n. LABSP instances with n

between [21 . . . 39] and [40 . . . 60] are used as training and test instances, respectively.

13In this thesis, we adopt g(s) to denote the objective function. However, in the literature of LABSP,
the objective function is usually denoted by E(s).

14Each digit in Run length notation indicates the number of consecutive elements with the same sign.
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FLST Quality Measures

The quality gaps between LABSP solutions are larger than TSP/QAP solutions in

terms of percentage-off from BK OV. If we use the same setting, we will only see two

data classes: good (the global optima) and bad (all local optima). Thus, we define ⇒
Good/O: [0− 20), Medium/�: [20− 40), Bad/�: [40− 60), and VeryBad/�: [≥ 60).

The most appropriate distance function to measure the distance between LABSP

solutions is the Hamming distance as with QAP. For example, d({1, 1,−1}, {1, 1,−1}) =
0 and d({1, 1,−1}, {−1,−1,−1}) = 2.

Baseline Algorithm

Although LABSP is said to be hard for local search methods [87], [38] shows a surpris-

ingly simple yet successful Tabu Search (TS) algorithm for LABSP. We implement this

algorithm according to our understanding of [38] and call it TSv1. The pseudo-code

and the configurable parts of TSv1 are shown in Figure 7.14.

TSv1(n)
1 startT ime← clock() // remember start time
2 CurS ← BF ← InitialSolution(n)
3 c← 0 // non improving moves counter
4 while g(BF ) > g(BK) // BK = Global Optima (GO) for n ≤ 60
5 do NeighborOfCurS ← Neighborhood(CurS, n,TabuTable,AspirationCriteria(ASP))
6 CurS ← best(NeighborOfCurS,TIE)
7 Update TabuTable by TT% ∗ n
8 if g(CurS) < g(BF )
9 then c← 0 // reset

10 BF ← CurS
11 else if c > MS // saturated?
12 then c← 0
13 CurS ← InitialSolution(n) // restart
14 else c← c+ 1
15 return clock()− startT ime // this algorithm reports runtime to reach BK

Configurable Part
Initial

Remark
Choice

TT (TabuTenure) 0.2n n in TSv0 (elaborated below)
ASP (AspirationUsed) 1 When ASP = 1 (on), the AspirationCriteria is used
TIE (TieBreaking) 1 When TIE = 1 (on), the tie breaker strategy is used
MS (MaxStable) 1000 Restart criteria
InitialSolution Random Randomly generate bit string of length n
Neighborhood 1-bit flip O(n) move
g (ObjectiveFunction) delta O(n) [46] instead of O(n2) computation in TSv0
TabuTable bit i This bit i cannot be flipped for TT steps
AspirationCriteria Better Override tabu if move leads to a better solution

SearchStrategy Restart After MS number of non improving moves

Figure 7.14: Code and initial configuration of TSv1 for LABSP

TSv1 starts from a random bit string of {1,−1} with length n. Then in line 5, it

iteratively flips one bit from the current solution if that bit is not forbidden by the

TabuTable (or forbidden but aspired). Note that to use AspirationCriteria, ASP must

be on. If TIE is on, TSv1 will choose one random best neighbor, otherwise the first

best neighbor is always selected (line 6). Then, TT dictates how long a recently flipped
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bit is forbidden to be flipped again (line 7). Finally, TSv1 will restart from a random

bit string again once MS iterations have elapsed without any improvement (line 11-14).

TSv1 stops when g(BF ) = g(BK) for LABSP with known optimal solution (3 ≤ n ≤
60). Only for the runs on larger instances shown in Table 7.12, this terminating criteria

(line 4) is changed to ‘runtime limit’ (described later in Section 7.4.6).

After implementing TSv1, we actually obtained the TS source code from the

authors of [38]. We call the original implementation as TSv0.

When we benchmarked TSv0 on our machine, a 2 GHz Core2 Duo (see the scat-

tered black O aroundmagenta line in Figure 7.20), we observed that our machine

produced similar performance to the 3 GHz P4 PC used in [38].

However, our TSv1 implementation is already much faster than TSv0 (see the

red line with � in Figure 7.20).

The speed difference is clear asTSv1 terminates (reach GO for n ≤ 60) much faster

than TSv0. Source codes analysis reveals the following two major differences.

First, while both codes use a form of “incremental computation” to speed up the

näıve O(n2) E(s) computation, the actual sub-algorithms turn out to be different.

Since this part is not described in [38], we implemented TSv1 with the incremental

O(n) ValueFlip technique used by MATS [46]. It turns out that although there is

some incremental calculation in TSv0, the computation of E(s) is still O(n2).

Second, although both codes use an O(1) TabuTable mechanism, they have differ-

ent TT settings. We know that TT cannot be ≈ n as it will quickly forbid (almost)

all 1-bit flip moves. Black-box tuning on several constant values [0.1, 0.2, 0.3]n on

some training instances helps us to set small TT = 0.2n for TSv1. But, TSv0

uses TT = n. Thus, TSv0 does more frequent random restarts (every n+1 iter-

ations) than the pre-determined MS parameter as no more valid 1-bit flip moves

are available when all n bits are tabu. In [38], the authors had intended that MS

= 1000 non improving iterations. However, Figure 7.15 shows that on instance

n = 27, TSv0 restarts every n+1 = 28 iterations. This is a ‘failure mode’ [153]15.

Figure 7.15: TSv0 ‘failure mode’. This Algorithm-Specific visualization in Viz shows
a spike when random restart is called inside TSv0. Instance shown is n = 27.

We can see in Figure 7.20 that our TSv1 runtimes on 2 GHz Core2 Duo are already

comparable to the recent state-of-the-art MATS [46]. When run on a 3 GHz P4 PC,

TSv1 runtimes is already [1.7–5.6] times faster than MATS for LABSP 40 ≤ n ≤ 55.

This 3 GHz P4 PC is probably just 1.25 times faster than the 2.4 GHz P4 PC used in

[46]. We remark that this shows that the random restart strategy in TSv1/TSv0 is

actually effective and it performs better than the benchmarking in [46] would indicate.

15This shows that an SLS can be ‘buggy’ and yet it still manage to obtain reasonably good results.
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7.4.4 Fitness Landscape Search Trajectory Analysis

Fitness Landscape Analysis: LABSP Fitness Landscape is Hard for SLS

Previous researchers, e.g. [30, 87, 46] have shown several features of LABSP fitness

landscape. In Table 7.9, we show some basic LABSP fitness landscape statistics to re-

confirm previous findings. We perform an exact enumeration of all 2n LABSP solutions

(all solutions are feasible as LABSP is unconstrained) for small instances up to n = 24.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

|GO| 4 8 4 28 4 16 24 40 4 16 4 72 8 32 44 16 8 8 4 24 24 8
level 2 3 4 4 9 13 19 17 33 50 60 46 96 117 139 100 203 254 295 201 405 470

Table 7.9: Statistics of Small LABSP Instances n ≤ 24

Each LABSP instance n has several Global Optima (GO) (≥ 4, because of symmetry).

However, the number of GO (|GO|) does not scale with n. The |GO| for 3 ≤ n ≤ 24

is shown16 in Table 7.9 row |GO|. The second row level shows the number of different

Objective Values (OVs) of the 2n solutions. These values are also much less than 2n

which implies that an OV level is likely shared by many different LABSP solutions.

For the other LABSP training instances 25 ≤ n ≤ 39, exact enumeration already

takes much more than 1 minute, but SLS algorithms can consistently hit the GO in ≤ 1

second in our machine. In order to get more insights about LABSP fitness landscape,

we use the FLST visualization. We run TSv1 to sample diverse and high quality Local

Optima (LO) from the fitness landscape of these LABSP instances. Our sampling

strategy exploits the symmetries in LABSP: when TSv1 reaches a solution with OV

equals with the known optimal OV (a GO) for that particular LABSP instance, we can

immediately generate all the symmetries17 of this GO solution. This sampling strategy

is used to get a clearer picture of the LABSP fitness landscape.

In Figure 7.16.A1 & A2, we see that without utilizing symmetry in GO/LO sam-

pling, we are not immediately aware of the existence of other GO and the Hamming

distance from current LO to the nearest GO found seems to be large, i.e. > n/2, which

is > 27/2 = 13 in this case. Observe the distance (red lines) from the highlighted

LO (yellow rectangle with orange circle) to the two GO found (BlueCircle O) are

{15, 17} in A1 and {15, 19} in A2. All distances of the red lines are > 13.

By exploiting symmetry when sampling the GO/LO, all 4 GO18 of instance n = 27

are also ‘found’ when TSv1 hits any GO. In Figure 7.16.B1 & B2, we see that the

positions of GO are spread out. This suggests that wherever the current solution is, it

should be nearer to one GO (the nearest GO) than to other GOs. Further observations

reveal that the distance between LO to the nearest GO is usually not too close but

bounded by n/2. In the same figure, we observe that the distance (blue lines) between

the highlighted LO to the nearest GO are both 8. This is � 0 and ≤ n/2.

16[21] has provided the list of |GO| for 3 ≤ n ≤ 64. However, some of which are approximate numbers.
17Symmetry is problem-specific. For LABSP, reversing, complementing all/even-only/odd-only bits,

and combination of these operators can be used to generate the symmetries of a LABSP solution.
18There can be more than 4 symmetries in a LABSP instance. For n = 27, there are only 4 GO.
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Figure 7.16: FLST visualization for LABSP n = 27 (FLO mode) with 4 GO (blue
circles). Row A does not exploit symmetry while row B exploits symmetry.

The DiversityIndex of LABSP instance n = 27 in Figure 7.16.B1 & B2 is medium:

0.51. This causes medium visualization error errAP in Figure 7.16.B1 & B2. The

LABSP FLST visualization is not as precise as in TSP FLST visualizations, but not as

bad as in QAP FLST visualizations. To avoid misunderstandings, we use the distance

highlights (focus on one AP and show the distances to other AP s) as in Figure 7.16.

By using exact enumeration for small LABSP instances 3 ≤ n ≤ 24 (see Table 7.10),

we have checked that on average 95.93% of the 2nd best solution (which is an LO) have

Hamming distance around [n/5 . . . 2n/5] bits away from the nearest GO. For example,

for n = 17, there are 24 2nd best LO with distance 2 from nearest GO – denoted as 2

(24), and also: 3 (8), 4 (56), and 5 (16). Out of these 24 + 8 + 56 + 16 = 104 2nd best

LO, around 8 + 56 + 16 = 80 of them (76.92%) are within [17/5 = 3 . . . 2 ∗ 17/5 = 6]

distance units away from their nearest GO (indicated with bold entries).

In summary: The several GO of a LABSP instance are spread like ‘golf holes’

(isolated) in irregular LABSP fitness landscape. This causes difficulties for standard

SLS algorithms to work well especially with large n [87]. However, we have identified

that most LO are within [n/5 . . . 2n/5] bits away from their nearest GO.
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n [n5 . . .
2n
5 ] d(2nd, nearest-GO) (frequency) |2nd| %

3 [0 . . . 1] 1 (4) 4 100
4 [0 . . . 1] 1 (4) 4 100
5 [1 . . . 1] 2 (12) 12 100
6 [1 . . . 2] 1 (24) 24 100
7 [1 . . . 2] 1 (8), 2 (16) 24 100
8 [1 . . . 3] 1 (40), 3 (8) 48 100
9 [1 . . . 3] 2 (80) 80 100
10 [2 . . . 4] 1 (48), 2 (104), 3 (16) 168 71.43
11 [2 . . . 4] 2 (4), 3 (8), 4 (12) 24 100
12 [2 . . . 4] 3 (16) 16 100
13 [2 . . . 5] 4 (16), 5 (8) 24 100
14 [2 . . . 5] 1 (32), 2 (56), 3 (144), 4 (64) 296 89.19
15 [3 . . . 6] 3 (24), 4 (24), 5 (56), 7 (8) 112 92.86
16 [3 . . . 6] 3 (16), 5 (24) 40 100

17 [3 . . . 6] 2 (24), 3 (8), 4 (56), 5 (16) 104 76.92

18 [3 . . . 7] 1 (8), 4 (24), 5 (56), 6 (32) 120 93.33
19 [3 . . . 7] 6 (4), 7 (12) 16 100
20 [4 . . . 8] 6 (8), 8 (24) 32 100
21 [4 . . . 8] 6 (8), 8 (8) 16 100
22 [4 . . . 8] 1 (8), 4 (24), 5 (48), 6 (64), 7 (56), 8 (16), 9 (24) 240 86.67
23 [4 . . . 9] 5 (16), 6 (16), 7 (68), 8 (56), 9 (20) 176 100
24 [4 . . . 9] 8 (8) 8 100

Average ⇒ 95.93

Table 7.10: Properties of 2nd Best Solutions w.r.t Nearest GO on LABSP 3 ≤ n ≤ 24

Search Trajectory Analysis and Hypothesis of Better Walks

We want to improve over TSv1 (and TSv0). We analyze TSv1 search trajectory with

the same FLST visualization. In SCO+STD mode, a circle+lines are drawn on/around

the nearest sampled GO/LO if the current solution is “near” it. In this experiment, we

define two solutions a and b are near when Hamming distance(a, b) ≤ 20% ∗ n.

Figure 7.17: FLST visualization for LABS n = 27 (SCO+STD mode)

Using this feature, we observe the following behavior on almost all training instances

tried: TSv1 happens to be near a GO in the earlier phase of the search (see Figure 7.17,

iteration 1454), but TSv1 does not immediately navigate there. TSv1 then wanders

to another region near another GO, maybe due to random restart strategy, etc. Then,
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it gets near the same GO again, but this time, it fails too (see Figure 7.17, iteration

4834). Only thousands iterations later, TSv1 gets near to this GO again (see Figure

7.17, iteration 60801) and this time TSV1 manages to find the GO.

FLST visualization points out an obvious strategy: A better walk for TSv1 is to

concentrate on the nearest GO from the start! There are a number of (≥ 4) GO for

each LABSP instance, so do not scatter the search efforts.

7.4.5 TSv7 for LABSP

White-Box Step: Utilizing the Insights

The observations and insights about the LABSP fitness landscape and current TSv1

behavior in Section 7.4.4, plus some information from the box below, lead us to engineer

a better SLS algorithm. The resulting TS variant is called TSv7. The pseudo-code

and configurable parts of TSv7 are shown in Figure 7.19.

Figure 7.18: Experiments with various TS settings (TSv1 - TSv6)

We have experimented with other variants of TSv1 to gain insights on the effect

of some SLS components.

In TSv2, we turn off the aspiration criteria, i.e. by setting parameter ASP = 0.

It Figure 7.18.A, we observe that there is no significant difference whether we use

aspiration criteria or not.

In TSv3, we set MS = 1000000, which is tantamount to not using random restart

(TSv4 and TSv5 variants are not shown). We observe in Figure 7.18.B, that

TSv3 performance drops (more runtime is needed to reach optimal results). This

shows that random restart is an important component for TSv1.

In TSv6, we turn off tie breaking feature by setting parameter TIE = 0. This

causes inconsistent performance across training instances as seen in Figure 7.18.C.

These experiments suggest that TS for LABSP needs frequent restarts and tie

breaking, but it does not need aspiration criteria.

TSv7 given in Figure 7.19 is TSv1 with ASP fixed to ‘off’ (line 5), TIE fixed to ‘on’

(line 6), and uses a different diversification strategy (line 15-20), elaborated below.
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TSv7(n)
1 startT ime← clock() // remember start time
2 CurS ← BF ← InitialSolution(n)
3 c← k ← 0 // s = non improving moves counter, k = local restart counter
4 while g(BF ) > g(BK) // BK = GO for n ≤ 60
5 do NeighborOfCurS ← Neighborhood(CurS, n,TabuTable) // ASP = 0
6 CurS ← best(NeighborOfCurS,1) // TIE = 1
7 Update TabuTable by TT = [TTL . . . (TTL + TTD)]% ∗ n
8 if g(CurS) ≤ g(BF )
9 then r ← BF ← CurS // r is reference solution

10 if g(CurS) < g(BF ) // reset
11 then c← k ← 0
12 else c← c+ 1
13 else if c > MSp ∗ n // saturated?
14 then c← 0
15 k← k + 1
16 if k > THR ∗ n // local restart near reference solution r
17 then k ← 0
18 r ← localRestart(r,PUTT% ∗ n/2)
19 CurS ← r ← optimize(r) // to ensure r is an LO
20 else CurS ← localRestart(r,PUTT% ∗ n)
21 else c← c+ 1
22 return clock()− startT ime

Configurable Part Choices Selected Parameter Value & Remark
PUTT [25, 33, 40] Selected = 25
MSp (MaxStable-p) > 0 [2, 4, 6] Selected = 2, let TSv7 rely more on local restart
THR (Threshold) > 0 [2, 4, 6] Selected = 2
TTL (TTLow) Low [5, 10, 20] Selected = 20
TTD (TTDelta) Low [5, 10, 20] Selected = 20

Figure 7.19: Code and initial configuration of TSv7 for LABSP. The code differs with
TSv1 mainly on line 15-20. Other configurable parts are similar with TSv1.

Basically, TSv7 does not do random restart if MSp*n iterations (now parameterized

w.r.t n: line 13) have elapsed without any improvement, but rather, TSv7 does a local

restart19 by perturbing PUTT%*n random bits from a reference solution r (line 20).

This r is a Local Optima (LO), which may be the 2nd best solution elaborated in Section

7.4.4. A weaker diversification like this put the TSv7 trajectory around [n/5 . . . 2n/5]

distance units away from r, where the GO is possibly located. A robust TS strategy as

in QAP with [TTL . . . (TTL+TTD])%*n, helps TSv7 to explore this region. We keep

intensifying around r until THR*n attempts failed (line 15-16). Then, a new reference

point r is selected by doing a light local restart by perturbing PUTT%*n/2 random

bits from reference solution r so that TSv7 does not navigate too far from its current

position. We optimize the resulting solution with short TS run to ensure r is an LO

(line 17-19). All strategies are designed to make TSv7 search for the nearest GO.

Black-Box Step: Fine-Tuning

The next step is to configure TSv7 using the black-box tuning algorithm. The choice

of values and the selected configuration are indicated in Figure 7.19.

19The name of parameter PUTT comes from golf term that means: ‘strike a golf ball lightly’.
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7.4.6 Results on Test Instances

Figure 7.20 shows the performance of TS (timings from [38]), MATS (timings from

[46]), and TSv0/TSv1/TSv7 (run on 2 GHz Core2 Duo). Note that the y-axis uses

a logarithmic scale. We see that TSv7 strategy is better than the original random

restart strategy used in TSv0/TSv1. The performance gap is easily noticeable on

larger n = {50, 55, 57, 60}.

Figure 7.20: Comparison of average runtimes (20 runs) between {TS [38], TSv0 O},
{MATS [46] ♦}, and {TSv1 �, TSv7 ∇} for LABSP with known optimal OVs
(40 ≤ n ≤ 60). The machine used for TSv0/TSv1/TSv7 is a 2 GHz Core2 Duo.

To analyze the results, we use the Wilcoxon signed-ranks test. It detects a significant

difference between the average runtimes of TSv1 and TSv7 on LABSP 40 ≤ n ≤ 60

(21 pairs, p < 0.05, T = 27.5, V = 67). Since both TS variants use the same incremental

OV computation and run on the same hardware, this difference in average runtimes

can be attributed to the new stochastic strategy (local restarts in order to search for

nearest GO in TSv7 versus full random restarts in TSv1)20.

Solver Machine used Instances Growth Rate TSv7’s Rate Speed-up
B&B [87] Sun UltraSparc I 170 [15-44] 1.85n 9.64e-7*1.43n 1.294n

CLS [112] 300 Mhz DEC server [3-48] 1.68n 4.78e-5*1.27n 1.323n

LSR [113] 733 Mhz P3 (PC) [7-38] 1.51n 4.40e-5*1.24n 1.218n

ES [93, 21] 266 Mhz (P3 PC) [20-47] 7.11e-4*1.40n 3.90e-7*1.45n 1.8e3*0.966n

TSv0 [38] 3 Ghz (P4) PC [21-48] 1.69e-5*1.49n 4.01e-7*1.45n 4.2e1*1.028n

KL [21] 266 Mhz (P3 PC) [20-47] 1.29e-5*1.46n 3.90e-7*1.45n 3.3e1*1.007n

MATS [46] 2.4 Ghz P4 PC [40-55] 8.87e-5*1.32n 2.88e-5*1.31n 3.080*1.008n

TSv1 2 Ghz Core2 Duo [40-60] 5.03e-6*1.37n 1.03e-5*1.34n 0.488*1.022n

TSv7 2 Ghz Core2 Duo [40-60] 1.03e-5*1.34n 1.03e-5*1.34n 1

Table 7.11: Overall Comparison of the Growth Rate of Various LABSP Solver

Table 7.11 gives the growth rate of TSv7 w.r.t other existing LABSP solver (see column

‘Solver’ and ‘Machine used’). Column ‘Instances’ shows the instance sizes reported in

the respective paper. Some papers [87, 112, 113] already mentioned their algorithm’s

growth rates as in column ‘Growth Rate’. For other papers, we measure the linear least

square fit on the logarithm of the average reported runtimes. In column ‘TSv7’, we

perform the same linear fit on TSv7 runtimes using the same instances mentioned in

column ‘Instances’21. Finally, column ‘Speed-up’ is the result of dividing the growth

rate of the solver being compared with TSv7. This shows that TSv7 is at least as good

and probably better, a state-of-the-art, SLS algorithm for LABSP (as of July 2009).

20Turning off aspiration criteria shown in TSv2 does not significantly affect TSv1 performance.
21The result of linear fit depends on the number of given data points.
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Table 7.12 explores the frontier of LABSP instances, 61 ≤ n ≤ 77, where optimal

values have yet to be proven. These longer runs are performed on a 2.33 GHz Core2 Duo

PC. For 61 ≤ n ≤ 70, we use a runtime limit based on the estimated runtime projection

from Figure 7.20. For n > 70, we use a runtime limit of 10 hours for scalability reasons.

We see that TSv7 manages to obtain relatively good LABSP solutions (by the merit

factor22 F ) in reasonable running time.

n E(s) F(s) Runtime Limit Best Found LABSP in Run Length Notation [87]

61 226 8.23 3 m 1.1 h 33211112111235183121221111311311
62 235 8.18 8 m 1.5 h 112212212711111511121143111422321
63 207 9.59 4 m 2.0 h 2212221151211451117111112323231
64 208 9.85 47 m 2.7 h 223224111341121115111117212212212
65 240 8.80 2.2 h 3.7 h 132323211111711154112151122212211
66 265 8.22 3.1 h 4.9 h 24321123123112112124123181111111311
67 241 9.31 4.1 h 6.6 h 12112111211222B2221111111112224542
68 250 9.25 6.6 h 8.8 h 11111111141147232123251412112221212
69 274 8.69 8.2 h 11.8 h 111111111141147232123251412112221212
70 295 8.31 12.4 h 15.8 h 232441211722214161125212311111111

71 275 9.17 7.8 h 10.0 h 241244124172222111113112311211231121
72 300 8.64 2.4 h 10.0 h 1111114111444171151122142122224222
73 308 8.65 1.2 h 10.0 h 1111112311231122113111212114171322374
74 349 7.85 0.2 h 10.0 h 11321321612333125111412121122511131111
75 341 8.25 8.0 h 10.0 h 12122132121211211111131111618433213232
76 338 8.54 4.6 h 10.0 h 111211112234322111134114212211221311B11
77 366 8.10 3.9 h 10.0 h 111111191342222431123312213411212112112

Table 7.12: Best found LABSP solutions using TSv7: 61 ≤ n ≤ 77.

In summary, we have shown in this section that with FLST visualization, we can visu-

alize the irregular LABSP fitness landscape where Global Optima (GO) are isolated.

With the obtained insights, we managed to improve the design of a Tabu Search al-

gorithm (TSv1 [38]) to search for the nearest GO. The resulting Tabu Search after

fine-tuning (TSv7) is the state-of-the-art SLS solver for LABSP as of July 2009.

22Optimal LABSP solution has merit factor F = [7 . . . 8] for 3 ≤ n ≤ 60 and is conjectured to be
around this range for higher n [21].
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Chapter 8

Conclusions

It is good to have an end to journey towards;

but it is the journey that matters, in the end.

— Ursula K. LeGuin

In this last chapter, we highlight the main contributions of this PhD thesis, followed by few

pointers for future works.

8.1 Contributions

In this thesis, we have identified two important and related Stochastic Local Search

(SLS) engineering problems: the Design and Tuning Problem (DTP) in Chapter

3. There are various white-box and black-box approaches proposed in the literature

but so far no approach is clearly superior in addressing all types of the SLS DTP. To

address this issue, we have made the following contributions:

Fitness Landscape Search Trajectory Visualization (Chapter 4)

• We have created a generic white-box Fitness Landscape Search Trajectory (FLST)

visualization for analyzing the Combinatorial Optimization Problem (COP) Fit-

ness Landscape and the SLS Trajectory behavior on it [83, 56, 59, 60, 57, 61, 58].

• As the FLST visualization attempts to visualize n-dimensional fitness landscape

in 2-D, we inherently introduce visualization errors. In this thesis, we have ana-

lyzed the current limitations of the FLST visualization in Chapter 4 and provide

pointers for future works in Section 8.2.

SLS Visualization Tool Viz (Chapter 5)

• We have built an SLS visualization tool. Viz [60] shows the above-mentioned

FLST visualization and other white-box visualizations and statistical tools.
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• We have designed the Viz’s User Interface (UI) with various information visual-

ization techniques to empower the human user in understanding his SLS behavior.

Integrated White+Black Box Approach (Chapter 6)

• We have proposed the Integrated White+Black Box Approach (IWBBA)

[61]. This methodology combines the strength of both approaches: after improv-

ing the SLS design and reducing potential configuration space using white-box

approaches, one can use the black-box approaches to further fine tune the SLS

algorithm. This is a potential methodology to address the SLS DTP.

• We have empowered Viz with simple black-box tuning tools to support IWBBA.

Results that Confirm Contributions (Chapter 7)

• We have successfully applied IWBBA using Viz on three different scenarios on

three different COPs. We show that with the FLST visualization, one can examine

what are the characteristics of the fitness landscape of his COP and design an

SLS algorithm that suits that fitness landscape:

1. Exploiting the ‘Big Valley’ property in the Traveling Salesman Problem

(TSP) by using Iterated Local Search (ILS) with controlled diversifications

[59, 60, 61].

2. Realizing that there are at least two different classes of instances in the

Quadratic Assignment Problem (QAP): spread-smooth and spread-rugged.

If SLS runs are limited to be short, it is better to do intensification on the

spread-smooth instances and strong diversifications on the spread-rugged

instances [57, 61].

3. Understanding that the irregular fitness landscape of the Low Autocorrela-

tion Binary Sequence (LABS) Problem has multiple Global Optima (GO)

and good Local Optima (LO) are not too close to the nearest GO. A local

restart strategy developed based on these insights is shown to be the reason

that our Tabu Search algorithm (TSv7) performs at the state-of-the-art level

(as of July 2009 [58]).
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8.2 Future Works

Improving FLST Visualization

Although the FLST visualization can already be used to help in answering all the

questions posed in Section 4.2 and 4.3 and it was shown to work well in Chapter 7, there

are, however, some limitations to be addressed in future work (ranked by importance):

1. Scalability issue 1. The error of the FLST visualization (errAP) increases with

APSet size. The rate of errAP increase depends on the COP characteristics.

Generally, COP instances with high DiversityIndex tend to have higher errAP.

If errAP is beyond an acceptable threshold, the FLST visualization becomes mis-

leading and must be used with caution. Currently, we limit APSet size to be

[25 . . . 50] which is suitable to analyze only small training instances.

2. Scalability issue 2. FLST visualization shows the positions of the search trajectory

over time. Due to the limited attention span, it is tedious for the human user

to observe a long search run which has thousands of iterations. Currently, we

limit FLST analysis to short runs. An alternative method may be to select a

subset of solutions ∈ ST (e.g. the good ones, etc) to be animated in the FLST

visualization.

3. The search trajectory information is not meaningful during the period when the

search is exploring the fitness landscape far from any AP s that we have, forc-

ing the FLST visualization to show nothing (i.e. at time t, d(st, AP ) > δ;∀
AP ∈ APset). This ‘blank period’ is not fruitful for SLS algorithm analysis and

caused by the limited APSet size. As we cannot have a large APSet, what other

alternative information can we show to the user during this period?

4. At its current state, the FLST visualization will be too complex when more than

two search trajectories are displayed at the same time. When used on population-

based SLS algorithm like Genetic Algorithm (GA), we will see x points rather

than one moving on the FLST visualization over time (where x is the population

size). This may be too complex and further research should be conducted for

better ways of visualizing population-based SLS algorithm (e.g. we may choose

to only show the best individual at every generation).

5. Scalability issue 3. This approach is not suitable for solving COPs with large

training sets as the algorithm designer has to run the FLST visualization over a

large number of instances. Our current solution is to limit the number of training

instances used in the white-box part of IWWBA.

6. As of July 2009, the FLST visualization has not been applied to any COP with

infeasible regions – regions with solutions that do not satisfy the hard constraints

of the COP – like Multidimensional Knapsack Problem [27], Oversubscribed

Scheduling Problem [122], etc. It may be interesting to observe the performance

of the SLS algorithm with the presence of infeasible regions.
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7. FLST visualization is not designed to visualize SLS algorithms that dynamically

alter the fitness landscape, like Guided Local Search (GLS) which keeps changing

the objective function throughout the search.

8. FLST visualization is also not designed to visualize constructive SLS algorithm

during the construction phase because distance information between ‘partial so-

lutions’ is ill-defined. FLST visualization is still applicable for constructive SLS

algorithm (e.g. ACO) as long as it is used to visualize the series of complete

solutions created by the constructive SLS algorithm per iteration.

Concluding Remarks

Soli Deo Gloria
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[11] Thomas Bäck. Parallel Optimization of Evolutionary Algorithms. In Parallel

Problem Solving From Nature, pages 418–427, 1994.

119



[12] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement
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Appendix A

COP Details

In this appendix, we elaborate the details and compare (see Table A.1) the COPs

discussed in this thesis. The problem definitions for these COPs are already shown in

Chapter 7.

Traveling Salesman Problem (TSP)

Applications

Most of the works on TSP are not motivated by direct applications, but rather be-

cause of its simple problem definition, its popularity, and its hardness serve as an ideal

platform for studying and benchmarking algorithms.

Applications in transportation are the most natural setting for TSP, e.g. finding a

shortest possible trip for a salesman starting from his home city, going through a given

set of customer cities once, and then return to his home city.

TSP has other interesting applications, e.g. scheduling a route for a machine to

drill holes in a circuit board. The holes are the ‘cities’ and the objective is to reduce

manufacturing costs by minimizing the travel time to move the drill head from one hole

to the next. If the surface of the circuit board is sloped/tilted, then the travel costs for

going up or down are different and thus it is an instance of Asymmetric TSP.

The Progress of Exact Algorithms

Techniques like Branch & Cut or Cutting Plane are the leaders for solving TSP.

As of 13 July 2009, the largest TSP instance that has been optimally solved is

pla85900 in 2006 [48] with 85900 cities.

The Progress of Non-Exact Algorithms

Although many TSP instances can be optimally solved by exact algorithms within

‘hours’ or ‘days’, non-exact algorithms for TSP are still required. The objectives for

these non-exact algorithms are (1). to reach near optimal solutions in a much shorter

time than exact methods for small to medium TSP instances, (2). to obtain reasonable

quality solutions for large TSP instances (e.g. 1904711 cities world-tour [48]) where
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exact algorithms are still infeasible, and (3). as benchmark for studying the non-exact

algorithms performance.

Some well-known heuristics for TSP are greedy nearest neighbor heuristic, k-Opt

edge swap heuristic, Lin-Kernighan heuristic, etc. These heuristics have been embedded

inside many other TSP SLS solvers to further improve the search quality, e.g. 2/3-Opt

edge swap heuristic inside ILS [133].

In early 1990s, TSP was used as the initial test study for ACO algorithm due to

the natural mapping between ants foraging behavior with traveling salesman behavior.

Both involves routing and are looking for shortest path [36, 132].

Natural Representations and Typical Local Moves

The most natural representation is perhaps the permutation of cities that maintains

the all-different constraint, e.g. 1-5-3-4-2 represents a tour of 5 cities starting from city

1, going to 5, 3, 4, 2, and then cycling back to city 1.

There are two common local moves for modifying TSP solutions that maintain the

all-different constraint. First is the O(nk) Swap k-Vertices, usually k = 2. This move is

not good as it causes many tour crossings and will most likely degrade solution quality

rather than improving it. Alternative: O(cn) Swap k-Edges, usually k = 2 or k = 3.

This is a more natural local move. Its neighborhood size is smaller as we can restrict

an edge e connected to a vertex v to be swapped only with other c-shortest edges

connected to v – swapping e with a long edge will likely degrade tour quality [129].

Remarks

The origin of TSP is obscure, but it has been around for quite some time.

TSP has been extensively studied and researched. Thus, it is hard or even unlikely to

find better TSP tours than the best published ones for well-known benchmark instances,

e.g. TSPLIB [119, 143].

Other than classical TSP, researchers study TSP variants, e.g. TSP with Time

Windows, Non Euclidean TSP, TSP with constraints (certain edges are forbidden),

etc. See [73] for a more complete discussion about TSP.

Quadratic Assignment Problem (QAP)

Applications

The term QAP was first introduced in 1957 by Koopmans and Beckmann [140], when

they derived it as a mathematical model of assigning a set of economic activities to a

set of locations.

Other applications includes: Facility (Hospital) Layout, Berth Location, Typewriter

Design, etc, where one wants to put facilities/berths/keys in such a way that mini-

mizes the movement of people/goods/fingers. Usually, good QAP solution has facili-

ties/berths/keys that have high flow/interaction placed close to each other.
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The Progress of Exact Algorithms

As of 13 July 2009, exact algorithms can only solve QAP instances up to n ≤ 40, e.g.

tho40 in 2009 [158], ste36 in 1999 [104], or nug30 in 2000 [90]. To find the optimal

solution for nug30, the Branch & Bound computation required 11892208412 nodes,

using on average 650 parallel workstations in 7 full days to verify that 6124 is the

optimal value for the instance, and found the optimal permutation which is exactly

the permutation that has been found by an SLS algorithm: Ro-TS many years back in

1990 [137].

Among 135 QAP instances in QAPLIB [22, 114], most instances with n ≤ 40 have

been proven to be optimal using exact algorithms, whereas the BK OVs for the rest

(40 < n ≤ 150) are obtained using various SLS algorithms. This fact and the knowledge

that the largest instance solved is of size 40 (compared with 85900 for TSP) make QAP

one of the most difficult COPs.

The Progress of Non-Exact Algorithms

The inherent complexity of QAP has attracted several algorithm designers to test their

SLS implementation on QAP. Since early 1990s, there are variants of SLS algorithms

developed to solve QAP, especially variants of Tabu Search (TS).

The original Strict TS (S-TS) idea introduced by Glover in 1980s [52] was used by

Skorin-Kapov to attack QAP [137]. Taillard then extended it into the Robust TS (Ro-

TS) [137]. Battiti & Tecchiolli continued this trend by introducing a concept of Reactive

TS (Re-TS) [15]. Ahuja et al. [5] proposed a Very Large Scale Neighborhood (VLSN)

approach, in which they experimentally show that TS with k-Opt (large) neighborhood

is better than with 2-Opt (considered small) neighborhood. This approach is good

but the computation time needed is tremendously big. Recently, Misevicius proposed

another search strategy called Ruin & Recreate (R&R) [95]. His TS algorithm using this

search strategy was able to improve several best known solutions for QAP instances;

especially taixxc grey instances and taixxb (real life like instances).

Other approaches for solving QAP using ACO or other SLS algorithms were pro-

posed in [138, 139, 140, 131], etc. However, BK solutions for n > 40 currently reported

in QAPLIB are usually found by the early versions of TS for QAP variants, e.g. Ro-TS,

Re-TS, or TS with R&R strategy.

Natural Representations and Typical Local Moves

QAP solution is best represented as an array of assignment. An array index represents

a facility and its value represents the location assigned to this facility.

To automatically maintain the permutation (all-different) constraint, the most ap-

propriate local move is the O(nk) Swap k-locations. Typically, k = 2 or k = 3.

Remarks

As with TSP, this COP: QAP is also well researched too.
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Low Autocorrelation Binary Sequence (LABS)

Applications

The LABS problem was first posed in the Physics community in 1960s. It has appli-

cations in many communication and electrical engineering problems, including high-

precision interplanetary radar measurement [87].

The Progress of Exact Algorithms

The LABS problem is a challenging problem for exact algorithms. It troubles constraint

programming techniques due to its symmetrical nature and limited propagations.

As of 13 July 2009, LABS problem can only be solved optimally up to n = 60 [30]

using the Branch & Bound (B&B) algorithm by Mertens [87] in 2005.

The Progress of Non-Exact Algorithms

The LABS problem is said to pose significant challenge to local search methods. It is

said that stochastic search procedures are not well suited to find these ‘golf holes’-like

global optima [87]. This statement is now no longer true with recent publications.

In 2001, Prestwich [112], proposed a hybrid B&B and local search, called Con-

strained Local Search (CLS). CLS is faster than Mertens’s B&B approach [87] in finding

optimal LABS solutions for 3 ≤ n ≤ 48.

In 2006, Dotú and van Hentenryck [38] proposed a simple SLS algorithm: Tabu

Search (TS) with frequent restarts. This TS could find optimal LABS solutions for

3 ≤ n ≤ 48 much quicker than Merten’s B&B [87] or Prestwich’s CLS [112]. It was

roughly on par with another good SLS solver for LABS problem: Kernighan-Lin [21]

(2003).

In 2007, Gallardo et al. [46] proposed an SLS: MATS , combining a Memetic Algo-

rithm with similar TS as in [38]. MATS was shown to be “one order of magnitude”

faster than the pure TS [38] and was the fastest LABS solver in 2007.

In 2008, we have shown how IWBBA (see Chapter 6) using an SLS engineering tool

Viz (see Chapter 5 and 6) can be used to successfully engineer a new state-of-the-art

SLS algorithm for LABS problem starting from the TS algorithm proposed in [38].

This result is reported in Chapter 7 and in [58].

Natural Representations and Typical Local Moves

Solutions for LABS problem can be represented as a bit string, with simple adjustment

in the objective function to regard 0/1 in bit string as -1/+1 in LABS solution.

The natural local move for locally modifying the bit string is the O(kn) k-bit flip

neighborhood. Usually k = 1.

Remarks

We managed to obtain the state-of-the-art SLS algorithm for LABS: TSv7 [58].
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Appendix B

SLS Details

In this appendix, we list down popular Parameters, Components, and SearchStrate-

gies of the SLS algorithms used in this thesis (TS and ILS).

Some abbreviations mentioned here are already explained in List of Abbreviations

in front of this thesis. The rest are elaborated here.

Tabu Search (TS)

Short Background

Tabu Search (TS) is a trajectory-based SLS proposed by Glover in early 1980s [50, 52,

51, 53]. Since then, TS has been widely used to attack many COPs. The strength of

TS lies in its capability to escape local optimality – TS alters the neighborhood using

tabu mechanism so that TS is discouraged from re-visiting explored solutions.

Basic Algorithm

Tabu-Search()
1 CurS ← BF ← InitS
2 while TermCrit are-not-satisfied
3 do BestMove← Best(N,TabuM(TT),AspC, CurS)
4 CurS ← BestMove(CurS)
5 TabuM.SetTabu(CurS,BestMove,TT)
6 if Better(CurS,BF )
7 then BF ← CurS
8 SearchStrategies

9 return BF

Explanation of basic TS: Starting from an initial solution, pick the best local move

to the best neighbor which is either (1) not tabu or (2) tabu but aspired. The tabu

mechanism will then discourage re-visitation of this solution for the duration of tabu

tenure. This is to prevent cycling and forces the search to explore other regions. This

process is repeated until termination criteria are met.
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Configuration

Parameter Values

Tabu Tenure (TT).TT is one of the most influential parameter in TS. Setting TT as a

static value throughout the set of instances is usually a bad idea since different instance

size n typically requires different TT value. Setting TT as a function of instance

size n is much better, e.g. Ro-TS for QAP sets TT to be within [90 . . . 110]% ∗ n
throughout the search [137].

Components

Neighborhood N. The size and type of N is problem specific, e.g. 2/3/k-opt swap

moves, k-bit flip moves, etc. The larger and more complex N is usually better as

shown in VLSN (Very Large Scale Neighborhood) [5]. However larger N is slower

– a tradeoff between running time and quality.

Tabu Mechanism TabuM. TabuM is also called as Reverse Elimination Method

(REM). To completely prevent solution cycling during the duration of TT, tabu so-

lution is the best TabuM implementation. But it is usually slow and inefficient. It is

much more practical to tabu recently applied moves or tabu the attributes of

recent solutions. TabuM can be implemented using a ‘linked list’ or a ‘circular array’

but it perhaps best implemented using a ‘hash table’.

Aspiration Criteria AspC. In TS, the role of AspC is not as significant as TabuM

(AspC is optional). However, AspC may help improving the overall search quality.

Thus, if we seek a very good result, this component should be adjusted properly. Usually

AspC is in form of best ever criterion, where tabu moves leading to best ever solution

are allowed. Some other form of AspC: diversification based on frequency/history

to allow tabu moves to be considered when those tabu moves lead to solutions that are

rarely visited for diversification purpose.

Termination Criteria TermCrit. TermCrit is a component that can affect the

performance too. When and how we terminate a TS run affect its apparent perfor-

mance. Usual termination criteria are: maximum time, maximum iteration, or

target objective value.

Initial Solution InitS. A good initial solution InitS created by problem-specific

construction heuristic may help TS to reach good region quickly, but it may create a

tendency of premature convergence. Sometimes, a random construction heuristic

is used instead. However, the effect of InitS is not too significant in long run as by that

time TS will have explored regions far from InitS anyway.

Search Strategies

Robust Tabu Search Ro-TS [137, 138]: TS randomly change TT within a range

[low . . . high] for every predetermined periods. This is to enhance TS capability in

escaping local optima.
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Reactive Tabu Search Re-TS [15]: TS adaptively adjust TT length: lengthen

TT if it is experiencing solution cycling and shorten TT if it is not improving. Perhaps

better than Ro-TS when TT adaptation is done properly.

Path Relinking [52]: TS uses good local optima as the guiding force to create

new paths, hopefully while TS is traversing along this path, it hits better results.

Oscillation Strategies [52]: TS alternates between feasible and infeasible region

because the optimal usually lies within the boundary of these two extremes.

Ruin and Recreate RR [95]: TS performs strong diversifications where x% of

the structure in the current best solution are retained while the remaining structures

are randomly perturbed. Then, TS resumes its search. This strategy is shown to be

working well for real-life and real-life-like QAP instances.

Some Applications

1. Traveling Salesman Problem [73, 79, 96, 97, 60].

2. Quadratic Assignment Problem [137, 138, 15, 5, 95, 57, 61].

3. Low Autocorrelation Binary Sequence [38, 58].

Iterated Local Search (ILS)

Short Background

Iterated Local Search (ILS) is an SLS algorithm that combines the power of sim-

ple local search plus controlled diversification/intensification in form of Perturbation

(Ptb)/AcceptanceCriteria (AccC) mechanism. For more details, refer to [51, 133].

Basic Algorithm

Iterated-Local-Search()
1 CurS ← BF ← LS(InitS)
2 while TermCrit are-not-satisfied
3 do TempS ← Ptb(Ptb-Str)(CurS)
4 TempS ← LS(TempS)
5 CurS ← AccC(TempS,CurS)
6 if Better(CurS,BF )
7 then BF ← CurS
8 SearchStrategies

9 return BF

Explanation of basic ILS: Given an initial solution, locally optimize it to reach the

first local optimum. Now, start the ILS loop: perturb the local optimum according

to the perturbation strength, locally re-optimize the perturbed solution again, hoping

that the re-optimized solution arrives at a better (or more promising) solution. Then,

use acceptance criteria to decide whether the newly found local optimum is accepted

or stick with the old one. This ILS loop is repeated until termination criteria are met.
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Configuration

Parameter Values

Perturbation Strength Ptb-Str. Ptb-Str determines how radical a solution is per-

turbed. This parameter is either a constant or a function of instance size.

Components

Local Search LS. This is the heart of the ILS algorithm. The choice of LS is problem

specific. It can be a simple gradient descent heuristic or even another SLS algorithm.

Perturbation Mechanism Ptb. Ptb(Ptb-Str)] must yield solutions that are not

easily reversed by the LS, otherwise a severe solution cycling issue may arise, e.g.

double bridge move for TSP, ruin and recreate, random restart, etc.

Acceptance Criteria AccC. AccC determines whether the effort of Ptb(Ptb-

Str) and LS pair should be accepted or discarded. Using better only AccC, ILS

only accepts new local optimum if it is better than the previous local optimum (before

perturbation and local search phase), otherwise the next perturbation will perturb the

old local optimum, making the search more focused on the good regions only. Using

random walk AccC, ILS always move to newly found local optimum, this can be good

or bad depending on the fitness landscape characteristics. Using small probability

AccC, ILS is allowed to move to worse local optimum with small probability.

The options for Initial Solution InitS and Terminating Condition TermCrit

in ILS are similar like in TS.

Search Strategies

FDD-Diversification [133]: ILS performs stronger diversification when it seems

stuck in a deep local optimum and the current Ptb(Ptb-Str) and AccC pair is not

strong enough. This strategy is shown to work for the Big Valley region in TSP.

Some Applications

1. Traveling Salesman Problem [133, 59, 61]

2. Quadratic Assignment Problem [129]

Remarks

For the other SLS algorithms that are not discussed in this thesis, e.g. Ants Colony

Optimization (ACO), Simulated Annealing (SA), Genetic Algorithm (GA), see the

references like ‘Handbook of Metaheuristics’ [51].
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Appendix C

Human Strengths

Despite the increasing demand to transfer our (human) works to computers in order

to simplify our life, there are still a lot of human tasks that cannot be (or still poorly)

done by current1 computer, such as visual perception and intelligence.

To illustrate the strength of human over computer, we highlight the recent research

in CAPTCHA [4] (Completely Automated Public Turing Test to Tell Computers and

Humans Apart)2. CAPTCHA utilizes an idea that: “It is easier for computer to

generate visualization than to derive information from the generated images”.

Figure C.1: Gimpy [4]: What are the words written here?

While it is considered easy for human to read the distorted and corrupted words in

Figure C.13, it is difficult (but not impossible, see [101]) for the current state-of-the-art

Optical Character Recognition (OCR) algorithms to correctly decipher the words.

This CAPTCHA is called ‘gimpy’. Gimpy randomly grabs few letters or numbers

and then distorts those using different colors, stretching the letters, adding extra noises,

etc. Despite such nasty alterations, most human pass this test quite easily4.

Another case of the superiority of human visual perception and intelligence in de-

riving information is shown in another CAPTCHA called ‘pix’ (See Figure C.2). Pix

grabs four pictures with the same label (these pictures are already labeled by another

1No one knows whether future technologies will be able to take over the areas where human is
currently better. When that happens, Human Computer Interaction must be redefined.

2Nowadays, many web services use CAPTCHA to verify that the user is really human instead of a
malicious computer program. For example, when a user sign up for a free e-mail account, he will be
asked to do what human is known to be good at but difficult for machine. This is to prevent the free
e-mail account to be auto registered/spammed by malicious web-bots spammers.

3Answer: Cushion, Floor, Full, Hair, Serious, Sweet.
4It is true that some GIMPY are quite hard that even normal human has difficulties. The researches

to create better CAPTCHA as well as better OCR algorithms are still ongoing.
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Figure C.2: Pix [4]: What is the common object in these 4 sub-figures?

human beforehand) and ask the user to find a single word that best describes the main

object of the four pictures.

Human can easily answer: ‘worm’ (circled), but at the moment, to the best of

our knowledge, there is yet a computer algorithm that can successfully connect the

correlation between those distinct pictures.

Figure C.3: Bongo [4]: What is the major difference between these two figures?

In Figure C.3, another CAPTCHA called ‘Bongo’ is shown. In this ‘IQ test’, the users

are asked to tell the major difference of the 4 pictures on the left side versus the 4

pictures on the right. The answer is easy for human: Pictures on the left are drawn

with thick lines whereas the pictures on the right are drawn with thin lines. It seems

hard to create a dedicated algorithm to accomplish the same thing.

Figure C.4: Examples of visual features that are easily identified by human.

Yet another case5 is shown in Figure C.4. Human can easily distinguish several visual

features of whether a specific object in the given picture has a rectangle or triangle

shape, curvy or straight, big or small, and so on. Computer needs a sophisticated

algorithm to achieve the same feat and currently still not perfect.

So, although computers are much faster than human in numerical computations,

human are still far better at carrying out low-level tasks such as speech and image

recognition (shown above). This is due in part to the massive parallelism employed by

human brain, which makes it easier to solve such problems.

5There are others, e.g. peekaboom, espgame, etc.
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