
EFFICIENT INDEXING FOR SKYLINE
QUERIES WITH PARTIALLY ORDERED

DOMAINS

LIU BIN

NATIONAL UNIVERSITY OF SINGAPORE

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48633364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EFFICIENT INDEXING FOR SKYLINE
QUERIES WITH PARTIALLY ORDERED

DOMAINS

LIU BIN

(B.SC. FUDAN UNIVERSITY, CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2010

Abstract

Given a dataset containing multidimensional data points, a skyline query retrieves a set

of data points that are not be dominated by any other points. Skyline queries are use-

ful in multi-preference analysis and decision making applications, and there has been

a lot of research interest in the efficient processing of skyline queries. While many

skyline evaluation methods have been developed on totally ordered domains for numer-

ical attributes, the efficient evaluation of skyline queries on a combination of totally

ordered domains for numerical attributes and partially ordered domains for categorical

attributes, which is a more general and challenging problem, is only beginning to be

studied. The difficulty in handling skyline queries involving partially ordered domains

mainly comes from the more complex dominance relationship among values in partially

ordered domains. In this thesis, we present a new indexing method named ZINC (for

Z-order Indexing with Nested Code) that supports efficient skyline computation for data

with both totally and partially ordered attribute domains. The key innovation in ZINC

is based on combining the strengths of the ZB-tree, which is the state-of-the-art index

method for computing skylines involving totally ordered domains, with a novel, nested

coding scheme that succinctly maps partial orders into total orders. An extensive perfor-

mance evaluation demonstrates that ZINC significantly outperforms the state-of-the-art

indexing schemes for skyline queries.

i

Acknowledgements

First of all, I gratefully acknowledge my supervisor, Professor Chee-Yong Chan. I

truly appreciate his persistent support and continuous encouragement, for sharing with

me his knowledge and experience. During the period of my Master study, he provided

constant academic guidance and insightful suggestions to my research and taught me his

excellent methodology on overcoming difficulties. Meanwhile, he also set an example

for me on persistence, rationality and optimistics. His supervision not only was helpful

to my study in the university, but also would be instructive to my whole remaining life.

I wish to thank Dr. Wei Ni, Dr. Chang Sheng and Dr. Shi-Li Xiang who keep

providing many fruitful discussions and valuable comments in my research work as

well as great help in my daily life. I also need to thank Dr. Zhen-Jie Zhang for offering

me some important datasets for the experiments in my research work. I also thank

Professor Anthony K. H. Tung and Professor Kian-Lee Tan. As my thesis advisory

committee members, they provided constructive advice on my thesis work.

I would like to thank my parents for their endless efforts to provide me with the best

possible education. They also keep directing me to be an upright, virtuous and kind per-

son. I also must thank my wife for her continuous spiritual support and encouragement

during my long period of study. I hope I will make them proud of my achievement.

Last but not least, I would also like to thank my lovely friends in School of Com-

puting for always being helpful over the years as well as the lovely staff who always try

their best to solve all the problems in front of me kindly and smilingly.

ii

List of Tables

4.1 Examples for N(v) . 33

4.2 Bitvectors for nodes in the partial order. 38

5.1 Parameters of Synthetic Datasets . 43

5.2 Features of each PO domain and sizes of indexes 45

iii

List of Figures

1.1 Partial order representing a user’s preference on car brands. 4

3.1 An example of Z-order curve . 16

3.2 Example of RZ-region and ZB-tree 16

4.1 Graph reduction . 21

4.2 Example of searching for vertical regions 29

4.3 The original hierarchy. 36

4.4 The completed lattice. 37

4.5 Genes for nodes in the lattice. 38

4.6 A mutation example . 39

5.1 Experimental results . 53

5.2 Experimental results continued . 54

6.1 An Example for CP-net . 57

6.2 Induced Preference Ordering of the CP-net 58

6.3 Graphic Representation of Preferences in an MSQO Problem 59

iv

Table of Contents

List of Tables iii

List of Figures iv

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Thesis Organization . 5

2 Related Work 6
2.1 Skyline Queries with Totally Ordered Domains 6

2.1.1 NL, BNL . 6
2.1.2 D&C . 7
2.1.3 SFS, LESS, SalSa, OSP . 7
2.1.4 Bitmap, Index . 8
2.1.5 NN, BBS . 9
2.1.6 ZB-tree . 9

2.2 Skyline Queries with Totally and Partially Ordered Domains 9
2.2.1 BBS+, SDC, SDC+ . 10
2.2.2 LatticeSky . 10
2.2.3 IPO-Tree and Adaptive-SFS 11
2.2.4 TSS . 11

2.3 Other Skyline Related Work . 12

3 ZB-tree Method 14
3.1 Description of ZB-tree Method . 14
3.2 Performance Evaluation of ZB-tree against BBS 17

v

vi

4 ZINC 20
4.1 Nested Encoding Scheme . 20
4.2 Horizontal, Vertical, and Irregular Regions 22
4.3 Partial Order Reduction Algorithm . 24
4.4 Encoding Scheme . 30
4.5 ZB-tree Variants . 34

4.5.1 TSS+ZB . 35
4.5.2 CHE+ZB . 35

4.6 Metric for Index Clustering . 40

5 Performance Study 42
5.1 Effect of PO Structure . 44
5.2 Effect of Data Cardinality . 46
5.3 Effect of Data Distribution . 47
5.4 Progressiveness . 47
5.5 Effect of Dimensionality . 48
5.6 Index Construction Time . 48
5.7 Comparison of Index Clustering . 49
5.8 Performance on Real Dataset . 49
5.9 Additional Experiments on Netflix Dataset 49

5.9.1 Effect of Regularity of PO Domain 50
5.9.2 Effect of Number of PO Domains 51

5.10 Experiments on Paintings Dataset . 51

6 Conclusions and Future Work 55
6.1 Conclusions . 55
6.2 Future Work . 56

6.2.1 Skyline Queries with Conditional Preferences 56
6.2.2 Multiple Skyline Queries Processing 58

Chapter 1

Introduction

Given a dataset containing multidimensional data points, a preference query retrieves a

set of data points that could not be dominated by any other points. Nowadays, prefer-

ence query has emerged as an considerably important tool for multi-preference analysis

and decision making in real-life. Skyline query is considered to be the most important

branch of preference query. While preference query depends upon a general dominance

definition, skyline queries explicitly considers total or partial orders at different dimen-

sions to identify dominance. Given a set of data points D, a skyline query returns an

interesting subset of points of D that are not dominated (with respect to the attributes

of D) by any points in D. A data point p1 is said to dominate another point p2 if p1 is

at least as good as p2 on all attributes, and there exists at least one attribute where p1 is

better than p2. Thus, a skyline query essentially computes the subset of “optimal” points

in D, which has many applications in multi-criteria optimization problems. A skyline

query is classified as static if all the partially ordered domains remained unchanged

at query time; otherwise, if a user can specify a different partially ordered domain to

reflect his preference at query-time, it is considered a dynamic skyline query.

1

2

1.1 Motivation

There has been a lot of research on the skyline query computation problem, most of

which are focused on data attribute domains that are totally ordered, where any two

values are comparable. Usually, the best value for a totally ordered domain is either

its maximum or minimum value and a totally ordered domain can be represented as a

chain. In our work, regarding totally ordered domains, we assume the smaller value

is more preferred. Many approaches are proposed to handle skyline queries with only

totally ordered domains and divided into two categories according to whether rely on

any predefined index over the dataset. The category of techniques that do not rely on

any predefined index include BNL [4], D&C [4], SFS [27], LESS [21], SalSa [3] and OSP

[53] methods, while the other category of techniques that require the dataset is already

indexed before skyline evaluation contain Bitmap [45], Index [45], NN [31], BBS [39]

and ZB-tree [33] methods.

However, in many applications, some of the attribute domains are partially ordered

such as interval data (e.g. temporal intervals), type hierarchies, and set-valued domains,

where two domain values can be incomparable. Since a partial order satisfies inreflex-

ivity, asymmetry and transitivity, a partially ordered domain can be represented as a

directed acyclic graph (DAG). A number of recent research work [10, 42] has started to

address the more general skyline computation problem where the data attributes can in-

clude a combination of totally and partially ordered domains. SDC+ [10] is the first index

method proposed for the more general skyline query problem, which is an extension of

the well-known BBS index method [38] designed for totally ordered domains. SDC+ em-

ploys an approximate representation of each partially ordered domain by transforming

it into two totally ordered domains such that each partially ordered value is presented

as an interval value. The state-of-the-art index method for handling partially ordered

domains is TSS [42], which is also based on BBS. Unlike SDC+, TSS uses a precise rep-

3

resentation of a partially ordered value by mapping it into a set of interval values. In

this way, TSS avoids the overhead incurred by SDC+ to filter out false positive skyline

records.

Recently, a new index method called ZB-tree [33] has been proposed for comput-

ing skyline queries for totally ordered domains which has better performance than BBS.

The ZB-tree, which is an extension of the B+-tree, is based on interleaving the bit-

string representations of attribute values using the Z-order to achieve a good clustering

of the data records that facilitates efficient data pruning and minimizes the number of

dominance comparisons.

Given the superior performance of ZB-tree over BBS, one question that arises is

whether we can extend the ZB-tree approach to obtain an index that has better per-

formance than the state-of-the-art TSS approach, which is based on BBS. Since the

ZB-tree indexes data based on bitstring representation, one simple strategy to enhance

ZB-tree for partially ordered domains is to apply the well-known bitvector scheme [9]

to encode partially ordered domains into bitstrings. We refer to this enhanced ZB-tree

as CHE+ZB. We also combine the encoding scheme in TSS with ZB-tree to be an-

other variant of ZB-tree named TSS+ZB. Our experimental evaluation shows that while

CHE+ZB, TSS+ZB and TSS have comparable performance, the performance of CHE+ZB

and TSS+ZB is often suboptimal as the bitvector encoding scheme does not always pro-

duce good data clustering and effective data pruning.

Since partially ordered domains are typically used for categorical attributes to rep-

resent user preferences (e.g., preferences for colors, brands, airlines), we expect that

the partial orders for representing user preferences are not complex, densely connected

structures. As an example, consider the partial order shown in Figure 1.1 represent-

ing a user’s preference for car brands. The partial order shown has a simple structure

consisting of one minimal value (representing the top preference for Ferrari), one max-

4

imal value (representing the least preference for Yugo), and two chains: the left chain

represents the user’s preference for German brands (with Benz being preferred over

BMW) which are incomparable to the right chain representing the user’s preference for

Japanese brands (with Toyota being preferred over Honda).

Figure 1.1: Partial order representing a user’s preference on car brands.

In our work, we introduce a new indexing approach, called ZINC (for Z-order Index-

ing with Nested Codes), that combines ZB-tree with a novel nested encoding scheme

for partially ordered domains. While our nested encoding scheme is a general scheme

that can encode any partial order, the design is targeted to optimize the encoding of

commonly used partial orders for user preferences which we believe to have simple

or moderately complex structures. The key intuition behind our proposed encoding

scheme is to organize a partial order into nested layers of simpler partial orders so that

each value in the original partial order can be encoded using a sequence of concise,

“local” encodings within each of the simpler partial orders. Our experimental results

show that using the nested encoding scheme, ZINC significantly outperforms all the

other competing methods.

1.2 Contributions

In our work, we propose a novel encoding scheme that transforms a partial order into

nested layers and encodes all the nodes in the partial order based on the nested lay-

5

ers. Because each value in the original partial order can be encoded using a sequence

of concise, “local” encodings within each of the simpler partial orders, our proposed

encoding scheme make it possible to just compare parts of codes while performing

dominance comparison between two values in a partially ordered domain. Meanwhile,

this encoding scheme maintains the two good properties, i.e., monotonicity property

and clustering property, which are provided by ZB-tree, to support efficient skyline

computation. We also propose a new conception region which is common in partial

orders and categorize regions into regular regions and irregular regions. Based on re-

gions, we propose an algorithm to transform a partial order into nested layers. Finally,

we conduct an extensive set of experiments and prove that ZINC outperforms other ex-

isting methods significantly. The experiments are conducted on both synthetic and real

datasets. We naturally derive partial orders over real datasets which is novel to the best

of our knowledge.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 surveys related work and Chap-

ter 3 provides more background on ZB-tree which is the basis of our proposed ZINC

approach. In Chapter 4, we introduce our novel nested encoding scheme and describe

how ZINC evaluates static skyline queries and also propose two variants of ZB-tree

method which are taken as competitors to ZINC in experiments. Chapter 5 presents

our experimental evaluation results. Finally, we give a presentation on conclusions and

future work in Chapter 6.

Chapter 2

Related Work

In this chapter, we review related work on skyline queries, especially the processing of

skyline queries with ordered domains.

2.1 Skyline Queries with Totally Ordered Domains

After skyline query processing is introduced into database area by [4], researchers de-

vote effort on processing skyline queries with totally ordered domains where the best

value for a domain is either its maximum or minimum value.

2.1.1 NL, BNL

The first algorithm for processing skyline query is the simple Nested-Loops algorithm

(NL algorithm). It compares every data point with all the data points (including itself),

and as a result it can work for any orders. However, obviously NL is costly and inef-

ficient. In [4], a variant of NL is proposed called Block Nested-Loops algorithm (BNL

algorithm), which is significantly faster and is an a-block-one-time algorithm rather

than a-point-one-time as NL. BNL achieves the efficient processing by a good memory

management. The key idea is to maintain in main memory a window, which is used

6

7

to keep incomparable data points. When a data point ti is read from input, ti is com-

pared to all data points of the window. Based on the comparison, ti is either discarded,

put into the window or put into a temporary file which is allocated in disk and will be

considered as input in the next iteration of the algorithm. At the end of each iteration,

we can output a part of data points in the window that have been compared to all the

data points in the temporary file. These points are not dominated by any other point and

do not dominate any points that will be considered in following iterations. Be exactly,

these output points are the points that are inserted into the window when the temporary

file is empty. Thus, BNL achieves the effect of ”a-block-one-time”. In the best case, the

most preferred objects fit into the window and only one or two iterations are needed.

Meanwhile, BNL has considerable limitations to its performance. First, the performance

of BNL is affected very much by the discarding effectiveness which BNL can not affect

at all. Furthermore, there is no guarantee that BNL will complete in the optimal number

of passes.

2.1.2 D&C

Divide-and-Conquer algorithm (D&C algorithm) [4, 32], as its name indicates, takes a

divide-and-conquer strategy. It recursively divides the whole space into a set of parti-

tions, skylines of which are easy to compute. Then, the overall skyline could be ob-

tained as the result of merging these intermediate skylines.

2.1.3 SFS, LESS, SalSa, OSP

Sort-Filter-Skyline algorithm (SFS algorithm) proposed in [27] performs an additional

step of pre-sorting before generating skyline points. In this step the input is sorted in

some topological sort compatible with the given preference criteria so that a dominating

point is placed before its dominated points. The second step is almost the same as the

8

procedure of BNL, except that in SFS when a point is inserted into the window during a

pass, we are sure that it is a most preferred point since no point following it can dom-

inate it. SFS is guaranteed to work within the optimal number of passes since SFS can

control the discarding effectiveness. Optimized algorithms, Linear Elimination Sort for

Skyline (LESS algorithm) and Sort and Limit Skyline algorithm (SalSa algorithm), are

derived from SFS in [21] and [3]. Finally, the Object-based Space Partitioning (OSP al-

gorithm), which is proposed in [53], performs skyline computation in a similar manner,

except for that organizes intermediate skyline points in a left-child/right-sibling tree,

which accelerates the checking of whether the currently read point could be dominated

by some intermediate skyline point.

All of the above methods do not rely on any predefined index structure over the

dataset. They all require at least one scan through the data source, making them unattrac-

tive for producing fast initial response time. Another set of techniques [45, 31, 39, 33]

are proposed which require that the dataset are already indexed before skyline evalua-

tion and generally produce shorter response time.

2.1.4 Bitmap, Index

The Bitmap method is proposed in [45]. This technique encodes in bitmaps all the

information needed to decide whether a data point belongs to the skyline. In specific,

whether a given data point could be dominated can be identified through some bit-

wise operations. This is the first technique utilize the efficiency of bit-wise operations.

Meanwhile, the computation of the entire skyline is expensive since it has to retrieve

the bitmaps of all data points. Also, because the number of distinct values in a domains

might by high and the encoding method is simple, the space consumption might be

prohibitive. Another method, called Index method, is also proposed in [45]. It partitions

the entire data into several lists, indexes each list by a B-tree and uses the trees to find

9

the local skylines, which are then merged to a global one.

2.1.5 NN, BBS

The branch and bound skyline (BBS algorithm) proposed in [39] is an optimized method

of the Nearest Neighbor (NN algorithm) which is proposed in [31] and based upon near-

est neighbor search. BBS operates on an R-tree and recursively traverses the R-tree.

It performs a nearest neighbor search to find regions/points that are not dominated by

the so far found skyline points, and inserts these into a main-memory heap structure.

Because BBS visits entries in ascending order of their distances from the origin, each

computed point is guaranteed to be a skyline point, and hence can be returned to the

user immediately. BBS is presented to be I/O optimal and superior to previous meth-

ods. Prior to the publication of the ZB-tree paper [33], BBS was the state-of-the-art

approach for data with only totally ordered domains.

2.1.6 ZB-tree

ZB-tree proposed in [33] indexes the data points with the help of a Z-order curve

which is compatible with the dominance relation. As a result, large number of unnec-

essary dominance tests are avoided and ZB-tree is found more appropriate in skyline

computation than the R-tree. Since our proposed method ZINC is based upon ZB-tree,

we will give a description on ZB-tree with more details in Chapter 3.

2.2 Skyline Queries with Totally and Partially Ordered

Domains

Recently, researchers pay more attention on processing skyline queries with both totally

and partially ordered domains, which is common in practice. Difficulty in this area is

10

mainly due to the more complicated dominance relationship among values in partially

ordered domains compared with totally ordered domains.

2.2.1 BBS+, SDC, SDC+

Efficient evaluation of skyline queries with both totally and partially ordered domains

was first tackled by [10]. Core procedure of BBS+ consists of three phases (1) transform

each partially ordered domain into two totally ordered domains, (2) maintain the trans-

formed attributes using an existing indexing scheme and compute the skyline using BBS

and (3) prune false positives which are brought in by the lossy transformation in the

first phase. As optimized approaches, SDC and SDC+ apply some stratification strate-

gies to data points so that a partial progressiveness could be guaranteed. Limitation of

these approaches is the necessary post-processing to eliminate false positives caused by

lossy transformation will introduce enormous dominance tests and therefore will harm

overall performance significantly. Although this limitation is alleviated with some op-

timization technique to allow partial progressive skyline computation, the overhead of

dominance comparisons still can be high.

2.2.2 LatticeSky

LatticeSky is proposed in [36] to efficiently process skyline queries with low-cardinality

partially ordered attribute domains using at most two sequential data scans: the first

scan is to construct a lattice structure to identify the active dominating domain values,

and the second scan is to identify the skyline points by making use of the lattice struc-

ture. LatticeSky works well when the partially ordered attribute domains have low

cardinality such that the lattice structure can fit in main-memory.

11

2.2.3 IPO-Tree and Adaptive-SFS

Two independent algorithms are proposed in [51] to process dynamic skyline queries

with partially ordered domains. The key components in IPO-Tree method are the semi-

materialization preparation and the important merging property. First of all, materialize

result set for each basic dominating relationship in offline style. Then, utilizing the

merging property, we can get final result set for any general preference by performing

set operation on these materialized result sets. Limitation of this approach are that

partial orders on categorical attributes are required to be in a very strict form (something

like total orders). Furthermore, cardinalities of involved attributes and dimensionality

are required to be quite small since space materialized is in the level of exponential.

Adaptive-SFS is an evolution on SFS algorithm. It starts with a sorted data set. Before

processing a user query, it first re-sorts the data set according to the user preference.

Unfortunately, the re-sorting could be expensive. Because of the lack of index structure,

it has to scan all the concerned data in the processing.

2.2.4 TSS

Framework TSS, proposed in [42], can be used to tackle both static and dynamic sky-

line queries with partially ordered domains. A topological sorting is performed over

each partially ordered domain and this sorting assigns each value a topological number.

Regarding the static part, sTSS is rather similar with BBS+ except that sTSS introduces

additional information, i.e., an additional set of intervals, to capture accurate dominance

relationship between values to avoid false positives. Topological numbers and values

of totally ordered domains offer the visiting order and guarantee progressiveness of the

processing. Currently, sTSS is the state-of-the-art approach in tackling static skyline

queries with totally and partially ordered domains. Regarding the dynamic part, dTSS

build an R-tree for each group of data points having same values of partially ordered

12

domains. When a specific query arrives, it first topologically sorts the partially ordered

domains and then processes data groups group by group following the topological order

and non-dominated points will be inserted into a main memory R-tree. The weakness is

obvious that the number of R-trees is considerably large if cardinality and dimension-

ality of partial orders are not strictly limited.

2.3 Other Skyline Related Work

In this section, we review some other skyline related work. This section is not meant to

be comprehensive but aim to highlight some of the research directions in this area.

Skyline queries can be seen as a specific case of the Pareto preference queries.

The latter one depends upon a more general dominance definition, which is not nec-

essarily derived by taking into account preference orders on well-defined object di-

mensions compared with skyline queries, which explicitly considers total or partial

orders at different dimensions to identify dominance. Pareto preference queries have

been investigated in parallel by three research groups, i.e., Chomicki group with work

[14, 24, 25, 26, 15], Kießling group with work [30, 50, 28, 29, 23] and Torlone group

with work [47, 48, 49]. Accordingly, three Pareto preference operators, i.e., Winnow

operator, BMO operator and Best operator, are proposed by these three groups, re-

spectively. All these work mainly focus on four research aspects on Pareto preference

quereis: (1) model of preferences, (2) preference algebra, (3) query optimization, and

(4) preference query language. Modelling and reasoning with more complex prefer-

ences has been proposed in the Artificial Intelligence community. A common model is

the CP-net for Conditional Preferences which is studied in [7, 18, 8, 5, 6].

Some related analysis techniques have been proposed as a auxiliary tools for inves-

tigation on skyline query processing. A complete space and time complexity analysis

for skyline computation was conducted in [22]. Meanwhile, several work [20, 12, 54]

13

have been proposed for skyline cardinality estimation.

Many work have been done to investigate the relationship between queries with dif-

ferent preferences. Some work [16, 13] investigate a phenomenon that query results

could be incrementally refined when preferences are incrementally refined. Some other

work [2, 1] focus on the effects of the query refinement on result size or the reuse of

skyline results when a query is refined in a progressive fashion. [52, 41] analyze rela-

tionship between the skylines in the sub-spaces and super-spaces and propose efficient

algorithms for subspace skyline computation. Efficient method on processing skyline

queries on high dimensional space is proposed in [11]. Several work [35, 37, 46] have

been done to study processing of skyline queries with only totally ordered domains on

streaming data. Recently, the work [43] has been proposed to research processing of

skyline queries involving partially ordered domains on streaming data. The focus there

is on efficient skyline maintenance for streaming non-indexed data which is very dif-

ferent from the focus of our work which is on an index-based approach for static data.

Effort is also devoted to probabilistic skyline computation [40] and skyline computation

over uncertain data [34].

Chapter 3

ZB-tree Method

In this chapter, we first review the ZB-tree method [33], which our proposed method is

based upon, and then give a brief picture on performance comparison between ZB-tree

and BBS which is also presented in [33].

3.1 Description of ZB-tree Method

ZB-tree is designed for data where all attributes have totally ordered domains. It first

maps each multi-dimensional data point to a one-dimensional Z-address according to

Z-order curve by interleaving the bitstring representations of the attribute values of that

point. For example, given a 2D data point (0,5), its bitstring representation is (000,101)

and its Z-address is (010001). Figure 3.1(b) depicts an example of Z-order curve on

a given set of 2D data points shown in Figure 3.1(a). By ordering data points in non-

descending order of their Z-addresses, ZB-tree has the following two useful properties.

The monotonic ordering property states that a data point p can not be dominated by

any point that succeeds p in the Z-order. The clustering property states that data points

ordered by Z-addresses are naturally clustered into regions, which enables very efficient

region-based dominance comparisons and data pruning.

14

15

A ZB-tree is a variant of B+-tree using Z-addresses as keys. The data points are

stored in the leaf nodes sorted in non-descending order of their Z-addresses. Figure

3.2(b) depicts the ZB-tree built on the dataset shown in Figure 3.1(a), where the min-

imum and maximum leaf node capacity is 1 and 3, respectively. Each internal node

entry (corresponding to some child node N) maintains an interval, denoted by a pair of

Z-addresses, representing a segment of the Z-order curve (called the Z-region) cover-

ing all the data points in the leaf nodes in the index subtree rooted at N. Specifically,

an interval is represented by (minpt,maxpt), where minpt and maxpt correspond, re-

spectively, to the minimum and maximum Z-addresses of the smallest square region,

called the RZ-region, that encloses the Z-region. An example of RZ-region is shown by

the 4 × 4 square in Figure 3.2(a) where three data points A, B, and C are bounded; the

minpt and maxpt indicated are the minimum and maximum Z-addresses of the enclosed

square RZ-region. The minpt (resp., maxpt) of an RZ-region can be easily derived by

appending 0s (resp., 1s) to the common prefix of Z-addresses of the two endpoints of

the corresponding curve segment.

Another point worth mentioning is about organization of data points in ZB-tree,

which is not exactly the same as in B+-tree. In B+-tree, all data points are tightly packed

to minimize the storage overhead. Nevertheless, applying the same data organization

principle to ZB-tree would result in large RZ-regions which is not quite helpful in

pruning search space. Following the example shown in Figure 3.1(b), all the 9 data

points should be allocated into 3 seperate leaf nodes with maximum leaf node capacity

being 3. Among these 3 leaf nodes, p7, p8 and p9 are allocated in the third node and

resulting RZ-region turns out to be large. Because this large RZ-region can not be

dominated by any data point, the corresponding leaf node as well as all the enclosed

data points need to be visited. Actually, we can see that points p8 and p9 can be pruned

when point p1 has been identified as a skyline point. As a result, data organization

16

(a) 2D data points (b) Z-order curve

Figure 3.1: An example of Z-order curve

(a) RZ-region (b) ZB-tree

Figure 3.2: Example of RZ-region and ZB-tree

in ZB-tree strategically trade some storage overhead for pruning efficiency through

putting as many data points in the same RZ-region as possible into a node instead of

filling up the entire node capacity. As shown in Figure 3.2(b), point p1, rather that

points p1 to p3 can be put into the first leaf node. Then, points p2 to p4 are inserted into

the second one, while points p5 to p7 into the third one. Finally, points p8 and p9 are

allocated into the last one. Although this data point organization in ZB-tree requires

some extra storage overhead, the search performance is significantly improved since

unnecessary node traversal and comparisons between incomparable nodes are avoided.

The ZB-tree method utilizes an in-disk ZB-tree (named SRC) and an in-memory

17

ZB-tree (named SL) to index data points and computed skyline points, respectively.

Skyline points are computed by invoking ZSearch(SRC) as shown in Algorithm 1 to

recursively traverse SRC in depth-first manner to find regions or data points that are

not dominated by the current skyline points in SL. Given two RZ-regions R and R′, the

ZB-tree exploits the following three properties of RZ-regions to optimize dominance

comparisons: (P1) If minpt of R′ is dominated by maxpt of R, then the whole R′ is

dominated by R. (P2) If minpt of R′ is not dominated by maxpt of R and maxpt of R′ is

dominated by minpt of R, then some points in R′ could be dominated by R. (P3) If the

maxpt of R′ is not dominated by the minpt of R, then no point in R′ can be dominated

by any point in R.

For each visited index entry (either internal or leaf entry) E, ZSearch invokes Domi-

nate(SL,E) algorithm as shown in Algorithm 2 to check whether the corresponding RZ-

region or data point of E can be dominated by skyline points in SL. Dominate(SL,E)

traverses SL in a breadth-first manner and performs dominance comparison between

each visited entry and E based on properties P1 to P3. In particular, if E is an internal

entry and it is dominated by some skyline point due to P1, then the search of the index

subtree rooted at the node corresponding to E is pruned.

Due to the monotonic ordering property of ZB-tree, each visited data point in the

leaf node that is not dominated by any skyline point in SL is guaranteed to be a skyline

point and can be inserted into SL and output to the users immediately. The clustering

property of ZB-tree enables many index subtree traversals to be efficiently pruned

leading to its superior performance over BBS [38].

3.2 Performance Evaluation of ZB-tree against BBS

Performance evaluation of ZB-tree against BBS is conducted on both synthetic and real

datasets.

18

Algorithm 1: ZSearch(SRC)
Input: SRC: ZB-tree indexing source data points;
Local: s: Stack;
Output: SL: ZB-tree indexing skyline points;
s.push(SRC’s root);1
while s is not empty do2

n = s.pop();3
if not Dominate(SL,n) then4

if n is an internal node then5
foreach children node c of n do6

s.push(c);7

else8
foreach data point c in n do9

if not Dominate(SL,c) then10
SL.insert(c);11

output SL;12

Algorithm 2: Dominate(SL,E)
Input: SL: ZB-tree indexing skyline points
E: the index entry under dominance comparison
Local: q: Queue;
Output: TRUE if E is dominated, FALSE otherwise;
q.enqueue(SL’s root);1
while q is not empty do2

n = q.dequeue();3
if n is an internal node then4

foreach children node c of n do5
if c’s maxpt can dominate E’s minpt then6

return TRUE; /* P1 */7

else if c’s minpt can dominate E’s maxpt then8
q.enqueue(c); /* P2 */9

else10
foreach children data point p of n do11

if p can dominate E’s minpt then12
return TRUE;13

return FALSE;14

19

Among them, synthetic datasets are generated based on anti-correlated distribution

and independent distribution. The data dimensionality varies from 4 to 16 and the data

cardinality ranges from 10K to 10000K in order to evaluate scalability of ZB-tree

against BBS. The elapsed time and the I/O cost are employed as the main performance

metrics. Regarding implementation, since Z-addresses can be used to derive orginal

attribute values, only Z-addresses are kept in ZB-tree, while data points are kept in

the R-tree adopted by BBS. While varying data dimensionality from 4 to 16, ZB-tree

keeps outperforming BBS for both distributions regarding elapsed time. The superior

performance of ZB-tree depends on the fact that ZB-tree can determine whether a

skyline point or an RZ-region is dominated at upper-level nodes of SL and result in

shorter elapsed time than BBS which needs to reach the leaf nodes of the main memory

R-tree every time. The gap between performance of the two algorithms increases as

data dimensionality increases until the dimensionality reaches 12 where over 95% of

data points are skyline points. Regarding I/O cost, ZB-tree incurs lower I/O cost than

BBS in low data dimensionality and similar I/O cost as BBS in high data dimensionality

due to the curse of dimensionality. While varying data cardinality from 10K up to

10000K, the elapsed time of both algorithms increases and ZB-tree produces a shorter

elapsed time. The performance comparison regarding I/O cost is not presented due to

space consideration.

Performance evaluation is also conducted on 3 real datasets, i.e., NBA, HOU and

FUEL datasets, which follow anti-correlated, independent and correlated distribution,

respectively. The experimental results of the real datasets show that ZB-tree clearly

outperforms BBS for both the elapsed time and the I/O cost.

In summary, ZB-tree is capable to outperform BBS with both synthetic and real

datasets under various settings. ZB-tree has become state-of-the-art approach in tack-

ling skyline queries with only totally ordered domains.

Chapter 4

ZINC

In this section, we present our proposed indexing method named ZINC (for Z-order In-

dexing with Nested Code) that supports efficient skyline computation for data with both

totally as well as partially ordered domains. ZINC is basically a ZB-tree that uses a

novel encoding scheme to map partially ordered domain values into bitstrings. Once

the partially ordered domain values have been mapped into bitstrings, the mapped bit-

strings of all the attributes (whether totally or partially ordered domains) of the records

will be used to construct a ZB-tree index. Thus, the index construction and search

algorithm for ZINC is equivalent to those of ZB-tree except that ZINC uses a different

method for dominance comparisons between partially ordered domain values.

4.1 Nested Encoding Scheme

In this section, we introduce a novel encoding scheme, called nested encoding (or NE,

for short), for encoding values in partially ordered domains. The encoding scheme

is designed to be amenable to Z-order indexing such that when the encoded values are

indexed with a ZB-tree, the two desirable properties of monotonicity and clusteredness

of ZB-tree are preserved.

20

21

(a) G0 (b) G1 (c) G2

Figure 4.1: Graph reduction

We represent a partial order by a directed graph G = (V, E), where V and E denote,

respectively, the set of vertices and edges in G such that given v, v′ ∈ V , v dominates

v′ iff there is a directed path in G from v to v′. Given a node v ∈ V , we use parent(v)

(resp., child(v)) to denote the set of parent (resp., child) nodes of v in G. A node v in G

is classified as a minimal node if parent(v) = ∅; and it is classified as a maximal node

if child(v) = ∅. We use min(G) and max(G) to denote, respectively, the set of minimal

nodes and maximal nodes of G.

Given a partial order G0, the key idea behind nested encoding is to view G0 as being

organized into nested layers of partial orders, denoted by G0 → G1 · · · → Gn−1 → Gn,

n ≥ 0, where each Gi is nested within a simpler partial order Gi+1, with the last partial or-

der Gn being a total order. As an example, consider the partial order G0 shown in Figure

4.1, where G0 can be viewed as being nested within the partial order G1 which is derived

from G0 by replacing three subsets of nodes S 1 = {v6, v7, v8, v9}, S 2 = {v13, v14, v15, v16}
and S 3 = {v20, v21, v22, v23} in G0 by three new nodes v′1, v′2 and v′3, respectively, in G1

1.

1Note that the presentation here has been simplified for conciseness. The PO-Reduce algorithm in
Section 4.3 actually performs the replacement in two steps, where S 1 and S 2 are first replaced in the one
step followed by S 3 in another step.

22

G1 in turn can be viewed as being nested within the total order G2 which is derived from

G1 by replacing the subset of nodes S 4 = {v3, v′1, v4, v5, v10, v11, v′2, v12, v17, v′3, v18, v19} by

one new node v′4 in G2. We refer to the new nodes v′1, v′2, v′3 and v′4 as virtual nodes; and

each virtual node v′j in Gi+1 is said to contain each of the nodes in S j that v′j replaces.

By viewing G0 in this way, each node in G0 can be encoded as a sequence of encodings

based on the nested node containments within virtual nodes.

In the following, we present a formal definition of our nested encoding scheme.

4.2 Horizontal, Vertical, and Irregular Regions

Definition 1. Given a partial order G, a non-empty subgraph G′ of G is defined to be

a region of G if G′ satisfies all the following conditions: (1) every minimal node in G′

has the same set of parent nodes in G; i.e., parent(v) = parent(v′),∀ v, v′ ∈ min(G′);

(2) every maximal node in G′ has the same set of child nodes in G; i.e., child(v) =

child(v′),∀ v, v′ ∈ max(G′); and (3) only a minimal or maximal node in G′ can have a

parent or child node in G −G′; i.e., parent(v) ∪ child(v) ⊆ G′, ∀ v ∈ G′ − min(G′) −
max(G′).

In the above example shown in Figure 4.1, S 1, S 2, S 3 and S 4 are regions. A region

R in a partial order G1 can be replaced by a virtual node v′ to derive a simpler partial

order G2 while ”preserving” the dominance relationship between the nodes in R and

nodes in G1 − R. Specifically, the dominance relationships in G1 are preserved in G2 in

the sense that (1) if a node v in G2 dominates v′, then v also dominates each node of R

in G1; and (2) if a node v in G2 is dominated by v′, then v is also dominated by each

node of R in G1.

For our nested encoding scheme to be amenable for Z-order indexing, a region ide-

ally should have a simple “regular” structure so that its encoding is concise. In this

23

paper, we classify a region into a regular or an irregular region depending on whether

the region can be encoded concisely. In the following, we introduce two types of regular

regions, namely, vertical regions and horizontal regions.

Definition 2. A region G′ of a partial order G is defined to be a vertical region if

G′ satisfies all the following conditions: (1) the nodes in G′ can be partitioned into

a disjoint collection of k non-empty chains C1, · · · ,Ck, k > 1, where each chain Ci

represents a total order, such that child(v)∩C j = ∅ for each v ∈ Ci,Ci , C j; and (2) G′

is a maximal subgraph of G that satisfies condition (1).

Definition 3. A region G′ of a partial order G is defined to be a horizontal region if

G′ satisfies all the following conditions: (1) the nodes in G′ can be partitioned into k

non-empty, disjoint subsets S 0, · · · , S k−1, k ≥ 1; (2) min(G′) = S 0 such that child(v) =

S 1,∀ v ∈ S 0; (3) max(G′) = S k−1 such that parent(v) = S k−2,∀ v ∈ S k−1; (4) for each

i ∈ (0, k − 1) and for every node v ∈ S i, parent(v) = S i−1 and child(v) = S i+1; and (5)

G′ is a maximal subgraph of G that satisfies conditions (1) to (4).

For a horizontal region R where the nodes are partitioned into k subsets, S 0, · · · , S k−1,

as defined, we refer to R as a k-level horizontal region, and refer to a node in S i,

i ∈ [0, k − 1] as a level-i node.

Definition 4. Consider a region G′ of a partial order G. G′ is defined to be a regular

region if G′ is either a vertical or horizontal region. G′ is defined to be an irregular

region if it satisfies all the following conditions: (1) G′ is not a regular region; and (2)

G′ is a minimal subgraph of G that satisfies condition (1).

Note that a vertical region corresponds to a collection of total orders while a hori-

zontal region corresponds to a weak order2. We have defined a regular region to be a

2A partial order G is defined to be a weak order if incomparability is transitive; i.e., ∀v1, v2, v3 ∈ G, if
v1 is incomparable with v2 and v2 is incomparable with v3, then v1 is incomparable with v3.

24

maximal subgraph in order to have as large a regular structure as possible to be encoded

concisely. In contrast, an irregular region is defined to be a minimal subgraph so as

to minimize the number of nodes encoded using a lengthy encoding. For example, the

regions S 1, S 2 and S 3 shown in G0 in Figure 4.1, respectively, are vertical, horizontal

and irregular regions.

4.3 Partial Order Reduction Algorithm

In this section, we present an algorithm, termed PO-Reduce, that takes a partial order

G0 as input and computes a reduction sequence, denoted by G0 → G1 · · · → Gn−1 → Gn,

n ≥ 0, that transforms G0 into a total order Gn, where each Gi+1 is derived from Gi by

replacing some regions in Gi by virtual nodes. The reduction sequence will be used by

our nested encoding scheme to encode each node in G0.

Given an input partial order Gi, algorithm PO-Reduce operates as follows:(1) Let

S = {S 1, · · · S k} be the collection of regular regions in Gi; (2) If S is empty, then let

S = {S 1}, where S 1 is an irregular region in Gi that has the smallest size (in terms of the

number of nodes) among all the irregular regions in Gi. (3) Create a new partial order

Gi+1 from Gi as follows. First, initialize Gi+1 to be Gi. For each region S j in S , replace

S j in Gi+1 with a virtual node v′j such that parent(v′j) = parent(v) with v ∈ min(S j) and

child(v′j) = child(v) with v ∈ max(S j). (4) If Gi+1 is a total order, then the algorithm

terminates; otherwise, invoke the PO-Reduce algorithm with Gi+1 as input.

The time complexity of PO-Reduce to reduce a partial order G0 is O(|V0|2 × |E0|),
where |V0| and |E0| are total number of nodes and edges in G0, respectively.

When a node v in a region R is being replaced by a virtual node v′, we say that v

is contained in v′ (or v′ contains v), denoted by v
R→ v′. Clearly, the node containment

can be nested; for example, if v is contained in v′, and v′ is in turn contained in v′′,

then v is also contained in v′′. Given an input partial order G0, we define the depth of a

25

node v in G0 to be the number of virtual nodes that contain v in the reduction sequence

computed by algorithm PO-Reduce. As an example, consider the value v6 in Figure 4.1

and let R0 = {v6, v7, v8, v9} and R1 = {v3, v′1, v4, v5, v10, v11, v′2, v12, v17, v′3, v18, v19}. The

containment sequence of v6 is v6
R0→ v′1

R1→ v′4 and therefore, depth of node v6 is 2. The

containment sequence of v3 is v3
R1→ v′4 and therefore, depth of node v3 is 1.

Thus, given an input partial order G0, algorithm PO-Reduce outputs the following:

(1) the partial order reduction sequence, G0 → G1 · · · → Gn−1 → Gn, n ≥ 0, where Gn

is a total order; and (2) the node containment sequence for each node in G0. If a node

v0 in G0 has a depth of k, we can represent the node containment sequence for v0 by

v0
R0→ v1 · · · Rk−1→ vk, where each vi is contained in the region Ri, i ∈ [0, k).

Given a partial order Gi, we use Vi and Ei to denote the set of nodes and edges of

Gi, respectively, and |Vi| and |Ei| denote the total number of nodes and edges of Gi,

respectively. In PO-Reduce(Gi), as shown in Algorithm 3, we first partition the node

set of Gi, i.e., Vi, into a number of partitions by invoking function Partition(Gi) (resp.,

Partition’(Gi)) so that each partition has the same parent set (resp., child set), i.e., for

any two different values vi and v j belonging to the same partition, we have parent(vi) =

parent(v j) (resp., child(vi) = child(v j)). We store those partitions having 2 or more

nodes in a global variable L (resp., L′), which would be used by following functions.

The task of Partition(Gi) (resp., Partition’(Gi)) can be accomplished straightforwardly

in a cost of O(|Ei|) because no edge needs to be visited more than once. Function

Search-VR(Gi) and Search-HR(Gi) are used to identify vertical regions and horizontal

regions, respectively. With a guarantee that all found regular regions (either vertical or

horizontal regions) are non-overlapped, we replace each of these with a virtual node.

If no regular region can be found, we will invoke the function Search-Min-IRR(Gi)

to search for the minimal irregular region and replace it by a virtual node. After the

replacement of either regular regions or the minimal irregular region, we need to output

26

the corresponding node containment as well as the structure of the obtained partial order

Gi+1 as a step of the partial order reduction sequence. If Gi+1 is a total order, the program

terminates. Otherwise, we invoke PO-Reduce(Gi+1) for further partial order reduction.

In Search-VR(Gi), as shown in Algorithm 4, for each node set in L, we view the

node set as the set of minimal nodes of the potential vertical region and store it in a

local variable min-set. We proceed to obtain the corresponding chain below each node

of min-set and store maximal node of each such chain in max-set. Then, we partition the

max-set into a number of partitions so that each partition own the same child set, i.e., for

any two values vi and v j belonging to the same partition, we have child(vi) = child(v j).

So far, the corresponding chains of each partition of max-set form a vertical region. We

insert all the found vertical regions into VR-set and proceed to the next un-examined

node set in L. We also remove the node set, based on which a vertical region is found

successfully, from L because the node set can not be a part of another region. Taking

Gi which is shown in Figure 4.2(a) as an instance, we store the {v2, v3, v4, v5}, which is

a node set in L, in min-set. Then, four corresponding chains are obtained for this node

set and max-set becomes {v8, v9, v10, v11}. The max-set is partitioned into two partitions,

i.e., {v8, v9} and {v10, v11}, each of which own the same child set. According to the

partitioning, we obtain two vertical regions, one of which contains the chains {v2, v6, v8}
and {v3, v9}, while the other contains the chains {v4, v10} and {v5, v7, v11}. We replace the

two vertical regions by virtual nodes v′1 and v′2, respectively and the obtained Gi+1 is

shown in Figure 4.2(b).

Before getting into Search-HR(Gi), which is presented in Algorithm 5, we give a

definition HR-satisfy between two node sets, which is describing the relationship be-

tween neighbor layers of a weak order.

Definition 5. Given two non-overlapped node sets S 1 and S 2 in a partial order G, S 1

HR-satisfies S 2 if S 1 and S 2 satisfy the following conditions: (1) |S 1| > 1, |S 2| > 1; (2)

27

Algorithm 3: PO-Reduce(Gi)
Input: Gi: a partial order;
Global: L: the node sets having same parent set; L′: the node sets having same child set;
Output: Node containment sequence and partial order reduction sequence;
L = Partition(Gi);1
L′ = Partition’(Gi);2
VR-set = Search-VR(Gi);3
HR-set = Search-HR(Gi);4
S = VR-set ∪ HR-set;5
if S is not empty then6

replace every region in S by a virtual node to obtain Gi+1;7
output node containment for every replaced region;8

else9
IRR = Search-Min-IRR(Gi);10
replace IRR by a virtual node to obtain Gi+1;11
output node containment for the replaced IRR;12

output structure of Gi+1;13
if Gi+1 is a total order then14

terminate;15

else16
PO-Reduce(Gi+1);17

Algorithm 4: Search-VR(Gi)
Input: Gi: a partial order;
Output: VR-set: all vertical regions in Gi;
min-set = the first node set in L;1
VR-set = ∅;2
while min-set is non-empty do3

foreach node n in min-set do4
n’ = child node of n;5
while outdegree and indegree of n’ is 1 do6

n’ = child of n’;7

put parent of n’ in this chain into max-set;8

partition max-set so that each partition has same child set;9
foreach partition of max-set do10

put corresponding chains as a VR into VR-set;11

remove this node set from L;12
min-set = the next node set in L;13
max-set = ∅;14

return VR-set;15

28

Algorithm 5: Search-HR(Gi)
Input: Gi: a partial order;
Output: HR-set: all horizontal regions in Gi;
min-layer = the first node set in L;1
HR-set = ∅;2
while min-layer is non-empty do3

cur-layer = min-set;4
while exist a non-empty set T so that cur-layer HR-satisfies T do5

cur-layer = T ;6

if a sequence of layers are found then7
put the found layers as a HR into HR-set;8

remove this node set from L;9
min-layer = the next node set in L which is not included in any found HR-region;10

return HR-set;11

Algorithm 6: Search-Min-IRR(Gi)
Input: Gi: a partial order;
Local: s, s′: minimal and maximal node set of the potential region, respectively; r: the current
potential region;
Output: Min-IRR: the minimal irregular region in Gi;
r = ∅;1
Bool sig = True;2
foreach node set s in L do3

foreach node set s′ in L′ do4
r = s ∪ s′;5
foreach node n between s and s′ do6

if introduction of n violates definition of region w.r.t. r then7
sig = False; break;8

else9
put n into r;10

if sig then11
r is guaranteed to be an irregular region;12
Min-IRR = minimal found irregular region;13

else14
sig = True;15

return Min-IRR;16

29

(a) Gi (b) Gi+1

Figure 4.2: Example of searching for vertical regions

each node in S 1 has the same child set which is S 2, i.e., for any v ∈ S 1, child(v) = S 2;

and (3) each node in S 2 has the same parent set which is S 1, i.e., for any v ∈ S 2,

parent(v) = S 1.

In Search-HR(Gi), for each node set in L, we view it as the first layer of the potential

horizontal region and store it in a local variable min-layer. We proceed to check whether

there exists a node set S so that the maximal layer among all the found layers can HR-

satisfies S. If so, we add S as the new maximal layer into the potential horizontal region.

We keep searching for layers downward until no more qualified layer can be found. At

the last, if a sequence of layers are found where any higher layer HR-satisfies its next

lower layer, these layers form a horizontal region and we insert this horizontal region

into HR-set. It could be realized easily to store the node sets in L in an order so that a

higher layer must be located before all the lower layers of it. As a result, no re-visit to

the same horizontal region is guaranteed.

Once no regular region could be found, any found region must be an irregular region.

Function Search-Min-IRR(Gi), which is shown in Algorithm 6, is used to identify the

minimal irregular region. For each pair of node sets s and s′ (s ∈ L, s′ ∈ L′), we try to

identify if there is a region r with s and s′ as min(r) and max(r), respectively. In specific,

we gradually introduce nodes between s and s′ and stop immediately when some node

30

make it impossible to find a region between s and s′. As a consequence, we can find out

all irregular regions in Gi. Finally, we pick up the minimal one among these irregular

regions as the final result. Because order of node sets in L and L′ is fixed, we can see

that PO-Reduce is a deterministic algorithm.

Theorem 1. PO-Reduce can complete a reduction of a given partial order Gi in the

cost of O(|Vi|2 × |Ei|).

As mentioned, Partition(Gi) is in the cost of O(|Ei|). In Search-VR(Gi), each edge is

visited at most once. Therefore, Search-VR(Gi) is in the cost of O(|Ei|). In Search-HR,

each edge is visited at most twice during the identification of the next layer. Therefore,

Search-VR(Gi) is also in the cost of O(|Ei|). In Search-Min-IRR(Gi), for each pair

(s, s′), we need to check whether some node n between them make it impossible to find

a region with s and s′ being the minimal and maximal node set, respectively. Because

this kind of checking is in the cost of O(|Ei|) and the number of such checking is in the

level of O(|Vi|2), Search-Min-IRR(Gi) is in the cost of O(|Vi|2 × |Ei|).
Because all of Partition(Gi), Search-VR(Gi) and Search-HR(Gi) are just in the cost

of O(|Ei|), while Search-Min-IRR(Gi) is in the cost of O(|Vi|2 × |Ei|), PO-Reduce is in

the cost of O(|Vi|2 × |Ei|).

4.4 Encoding Scheme

In this section, we describe how the nodes in a partial order are encoded using our nested

encoding scheme. Consider a node v0 in an input partial order G0, where the reduction

sequence of G0 is G0 → G1 · · · → Gn−1 → Gn, n ≥ 0; and v0 is contained in k0 virtual

nodes, k0 ∈ [0, n]. Let v0
R0→ v1 · · · vk0−1

Rk0−1→ vk0 denote the containment sequence of v0

computed by algorithm PO-Reduce. Note that each vi in the containment sequence is

associated with a region: for i ∈ [0, k0), vi is associated with Ri; and the last node vk0 is

31

associated with the total order Gn. For notational convenience, we use Rk0 to denote Gn.

In our nested encoding scheme, the encoding of each node v0 (w.r.t. G0), denoted by

N(v0), is defined by a sequence of k0+1 segments: < R(vk0 ,Rk0),R(vk0−1,Rk0−1), · · · ,R(v0,R0) >,

where each segment R(vi,Ri) represents the region encoding of vi w.r.t. the region Ri.

In the following, we present the details of the region encoding for the three types of

regions (i.e., vertical, horizontal, and irregular).

Vertical Region Encoding. Suppose Ri is a vertical region consisting of c chains, where

the longest chain has p nodes. Without loss of generality, we number the chains in Ri

from left to right by 0, · · · , c − 1; and number the positions of the nodes within a chain

from top to bottom by 0, 1, etc. R(vi,Ri) is defined to be a pair of natural numbers

<X-num,Y-num>, where X-num represents the chain number that contains vi and Y-num

represents the position of vi on that chain. R(vi,Ri) can be represented by a bitstring of

size dlog2(c)e + dlog2(p)e bits.

Horizontal Region Encoding. Suppose Ri is an `-level horizontal region. If vi is a

level- j node in Ri, j ∈ [0, ` − 1], then for the purpose of dominance comparison it is

sufficient to represent the node vi in Ri by the value j. To facilitate efficient decoding,

we design the format for horizontal region encoding to be the same as that for vertical

region encoding with a pair of natural numbers <X-num,Y-num>, where X-num and Y-

num are set to be 0 and j, respectively. R(vi,Ri) can be represented by a bitstring of

size 1 + dlog2(`)e bits.

Irregular Region Encoding. Suppose Ri is an irregular region. In contrast to regular

regions which can be encoded compactly, there is no universal “optimal” encoding for

irregular regions. In this thesis, we use the bitvector scheme called Compact Hierarchi-

cal Encoding [9] to encode Ri; this scheme supports compact encoding of partial orders

and efficient dominance comparison between values in partial orders. Each node vx in

Ri is encoded by a fixed-length bitstring of length m, denoted by bx[1, · · · ,m], with the

32

interpretation that a 0 bit dominates a 1 bit. Thus, for every pair of distinct nodes vx and

vy in Ri, vx dominates vy iff (1) there exists at least one bit position j such that bx[j] = 0

and by[j] = 1, and (2) whenever bx[j] = 1, by[j] = 1. Note that the size of the bitstring,

m, is dependent on the complexity of the irregular region and the bitvector encoding

algorithm.

As an example of regular region encoding, consider the value v9 in Figure 4.1 and let

R0 = {v6, v7, v8, v9}, R1 = {v3, v′1, v4, v5, v10, v11, v′2, v12, v17, v′3, v18, v19} and R2 = G2. The

containment sequence of v9 is v9
R0→ v′1

R1→ v′4, andN(v9) is< R(v′4,R2),R(v′1,R1),R(v9,R0) >;

i.e., << 0, 01 >, < 0, 01 >, < 1, 1 >>. Similarly, the containment sequence of v5 is

v5
R1→ v′4, and N(v5) is < R(v′4,R2),R(v5,R1) >; i.e., << 0, 01 >, < 0, 11 >>. As an ex-

ample of irregular region encoding, consider the value v21 and let R4 = {v20, v21, v22, v23}
which is an irregular region. The containment sequence of v21 is v21

R4→ v′3
R1→ v′4, and

N(v21) is < R(v′4,R2),R(v′3,R1),R(v21,R4); i.e., << 0, 01 >, < 10, 01 >, < 0, 011 >>.

Having defined the three different region encodings, we now need to explain how

N(.) can be mapped into a fixed-length bitstring for efficient decoding when used in

Z-order indexing. This requires three refinements to N(.). First, we need to encode

each node in G0 with a fixed number of segments. Thus, N(.) is extended to consist of

a fixed number of kmax + 1 segments, where kmax is the maximum depth of all nodes in

G0. In the event that a node v has a depth of k < kmax, we append kmax − k additional

dummy segments to N(v) that are filled with 0 bits. Second, for each segment, the size

of its bitstring representation should be fixed for all nodes being encoded; i.e., if the

longest xth segment encoding is represented by w bits, then all xth segments should be

encoded with w bits by padding additional 0 bits. Third, in order to distinguish between

the different region encodings, we need to prepend each segment with a single header

bit; specifically, a header bit value of 0 (resp., 1) indicates that the following segment

is a regular (resp., irregular) region encoding. Note that a single header bit suffices for

33

Table 4.1: Examples for N(v)

v S egment1 S egment2 S egment3

v5 0, < 0, 01 > 0, < 00, 11 > 0, < 0, 000 >
v9 0, < 0, 01 > 0, < 00, 01 > 0, < 1, 001 >
v15 0, < 0, 01 > 0, < 01, 10 > 0, < 0, 000 >
v21 0, < 0, 01 > 0, < 10, 01 > 1, < 0, 011 >

the three region encodings since the two regular region encodings are designed with the

same pairwise dominance comparisons.

For convenience, we denote the fixed-length nested encoding of a partially ordered

domain value v by N(v). Once each partially ordered domain value of all data points

has been mapped using NE, each data point is represented by a fixed-length bitstring

which can be indexed using ZB-tree.

Table 4.1 illustrates some examples of N(v) for the partially ordered domain in

Figure 4.1(a). Consider v5. Although its depth is only 1, because kmax is 2, we have to

extendN(v5) to 3 segments by appending one dummy segment filled with 0 bits. For v9,

v15 and v21, the depth of each of these values is 2. Y-num of the third segment of v9, v15

is represented by only 1 bit, while Y-num of the third segment of v21 is represented by

3-bits. As a result, we must pad two 0 bits to the Y-num of the third segment of v9 and

v15. As shown in Table 4.1, within each segment of an N(v), the first bit is the header

bit indicating whether the segment is regular or irregular. We can see that only the third

segment of N(v21) corresponds to an irregular region.

Dominance Comparisons. The dominance comparison between two nested encodings

N(vi) and N(v j) is performed a segment at a time starting with the first segment. A

segment comparison is said to be inconclusive if (1) the segment values are equal and

(2) the segment is not the last segment; otherwise, we say that the segment comparison

is conclusive (i.e., the encoded values are comparable or incomparable). If a segment

34

comparison is conclusive, the dominance comparison terminates; otherwise, if a seg-

ment comparison is inconclusive, the comparison proceeds to the next segment and so

on until a conclusive comparison is reached.

Clearly, if one segment is regular and the other segment is irregular, then the en-

coded values are considered incomparable. Given two regular segments, if their X-num

values differ, than they are considered incomparable; otherwise, if they have the same

X-num values, then we need to also compare their Y-num values to decide whether the

segment comparison is comparable (i.e. conclusive) or inconclusive.

As an example, consider the dominance comparison between the encoded values of

v5 and v9 shown in Figure 4.1. We begin by comparing their first segments which are

both regular. Since their X-num values are equal (i.e., 0), we proceed to compare their

Y-num values which are also the same. We conclude that these two values are contained

in the same virtual node regarding the first segment. Thus, the first segment comparison

is inconclusive and we proceed to compare their second segments which are again both

regular segments. Since their X-num values are the same, we compare their Y-num

values. Here, the smaller Y-num of v9 (relative to that of v5) indicates that v9 dominates

v5 and the segment comparison is conclusive and the dominance comparison terminates.

4.5 ZB-tree Variants

In this chapter, we provide details of the two basic variants of ZB-tree, namely, CHE+ZB

and TSS+ZB, that we have developed to handle partially ordered domains. These two

variants will be taken as competitors to ZINC method in experiments.

35

4.5.1 TSS+ZB

The TSS+ZB combines the TSS encoding scheme with the ZB-tree as follows. For

each data point, we interleave binary expression of its values in totally ordered domains

and topological numbers for its values in partially ordered domains into its Z-address

which is a fixed-length bitstring. The reason for taking topological numbers for par-

tially ordered domain values into account while encoding is to ensure the monotonicity

property among data points indexed by ZB-tree. We take Z-addresses of data points

as keys while constructing ZB-tree for a dataset. In a leaf entry, we store Z-address

of the corresponding data point as well as the interval set for each partially ordered do-

main value because interval sets of partially ordered domain values are exactly where

the dominance relationship among partially ordered domain values are encoded. In a

dominance comparison between two data points, containment test between interval sets

for values of the points in each dimension is the really crucial part. In an internal entry,

we store minpt and maxpt of corresponding RZ-region as done in ZB-tree method and

also store a merged union of the interval sets of all covered data points. During skyline

query processing, we maintain an intermediate set of skyline points. For fairness, we

also apply region-based dominance tests to TSS+ZB, which is enabled by the interval

sets stored in internal entries. In specific, if Z-address of an intermediate skyline point

pi can dominate minpt of an internal entry e j and interval set of pi subsumes the interval

set of e j w.r.t. every partially ordered dimension, then the region represented by e j is

dominated by pi and could be pruned immediately and safely.

4.5.2 CHE+ZB

The CHE+ZB is based on using the Compact Hierarchical Encoding [9] to encode par-

tially ordered domain values. The main idea of this encoding method is to assign each

node of a partial order with a reasonable label uniquely (called gene) following some

36

rules. As a result, each node can obtain a gene set which is the union of genes assigned

to its ancestor nodes. With an implicit order on all the genes, the encoding of each

node is a bitstring, each bit of which is set to 1 (resp., 0) based on the existence (resp.,

non-existence) of the corresponding gene in its gene set. For two nodes v1 and v2, if for

any bit where encoding of v2 is 1, the encoding of v1 is 1 and there exists at least one

bit where encoding of v1 is 1 and encoding of v2 is 0, then v1 is dominated by v2. The

Compact Hierarchical Encoding, which can precisely encode any partial order, owns a

reasonable time complexity.

The encoding method consists of two main parts: lattice completion and encoding

algorithm.

A lattice is a hierarchy where each pair of nodes has a unique smallest common

ancestor and a unique greatest common descendant. The key idea in lattice completion

is to complete the hierarchy into a full lattice by adding missing intersection nodes.

For instance, an hierarchy is given in Figure 4.3, which is not a lattice since for a

pair of nodes TA and FVS, their smallest ancestor is not unique. This hierarchy could

be completed into a full lattice by adding a new node student&employee as shown in

Figure 4.4.

Figure 4.3: The original hierarchy.

The encoding algorithm associates genes to certain nodes of the lattice obtained in

lattice completion and computes the code as the union of all genes of a node’s ancestors.

37

Figure 4.4: The completed lattice.

In particular, we assume the set of genes is G = {g1, g2, ..., gn} with an implicit order

gi is in advance of gi+1 (i = 1, 2, ..., n − 1). Each code is a member of P(G) which is the

powerset of G. Three functions are computed for each node: (1) The gene function g,

which associates a gene to each primary node. A primary node is a node with a unique

parent. (2) The encoding function γ, is defined as γ(x) =
⋃{g(y)|y ∈ ancestor(x)}. (3)

The anti-coding function ν, such that ν(x) is the union of all genes that should not be

chosen for any new child of x. ν(x) is also a code.

This algorithm works in an incremental and top-down manner. Encoding a node

is different for primary nodes and others: (1) If the new node x is a primary node

with parent y, we compute ν(y) by taking all genes of all (a) descendants of y and of

(b) children of ancestors of y that are not ancestors of y. We then pick the first gene in

G−{γ(y)∪ν(y)}, using the implicit order we mentioned before. (2) If the new node x has

the set of parent {y1, y2, ..., yp}, the algorithm proceeds with 2 steps. We first look for a

conflict caused by the introduction of x, which is a pair (yi, y j) such that γ(yi)∩ν(y j) , ∅.
For each such conflict, we identify each ancestor of yi with gene gk responsible for the

conflict, i.e., gk ∈ ν(y j) and we mutate the ancestor (change his gene to a safer gene).

When all mutation are done, we simply compute the code γ(x) by taking union of genes

of ancestor of x. A non-primary node has no personal gene. Figure 4.5 and Table 4.2

display genes and codes for nodes in the partial order shown in Figure 4.4, respectively.

38

Figure 4.5: Genes for nodes in the lattice.

Table 4.2: Bitvectors for nodes in the partial order.

x γ(x)
person 00000
student 10000
SNE 11000
UG 11100
GS 11010

employee 00001
student & employee 10001

TA 10101
FVS 10011
ENS 01001
AP 01101
TP 01011

39

After the example without involving any conflict, we give an example illustrating

how mutation work to tackle conflicts. In Figure 4.6(a), assume we add a node h into the

partial order which provokes a conflict between the pair of nodes (c, g). (γ(c) ∩ ν(g) =

{g2} , ∅) To tackle this conflict, the gene g2 of c is mutated into g5 and finally produces

the coding shown in Figure 4.6(b).

(a) Before mutation (b) After mutation

Figure 4.6: A mutation example

The encoding algorithm is polynomial in time, and has been proven to be efficient

enough to be used at run-time in building dynamic hierarchies. Although the encoding

is still a complex operation in worst time, most of the encoding is actually straightfor-

ward. Since the lattice completion algorithm is also polynomial, the compact hierarchi-

cal encoding gives us a practical tool for encoding any partial order with bitvectors.

Space complexity is more complicated than time complexity. While no non-primary

exist in the partial order, the length of a bitvector for one node is guaranteed to be no

longer than the length of the maximal anti-chain in the partial order. In the general case,

adding non-primary nodes may or may not require new genes (mutations). For instance,

the example in Figure 4.5 uses only 5 genes, whereas its the length of its maximal anti-

chain is 6. Nevertheless, it is easy to build a lattice with many intersection nodes that

would cause a large number of mutations and thus consumes more genes than the length

40

of maximal anti-chain. The experience is that for practical hierarchies, the upper bound

obtained for the hierarchies without non-primary node is still valid.

Readers can refer to [9] for more details.

4.6 Metric for Index Clustering

In this section, we present the metric for index clustering. Given an index I, let DI =<

p1, p2, · · · , pn > denote the sequence of data points stored in the leaf level of I. We

define the clustering of I, denoted by clustering(DI), to be the average “distance” of

each pair of consecutive data points p j and p j+1, denoted by Dist(p j, p j+1), in DI . Here,

the intuition is that two consecutive data points p j and p j+1 in DI that are closer in the

attribute value space should have a smaller distance value Dist(p j, p j+1); and an index

method I with a smaller value of clustering(DI) is considered to be more effective

in clustering the data points and hence more effective in pruning index nodes to be

traversed.

Following [44, 19, 17], given two m-dimensional data points p and p′ (with at-

tributes A1,· · · ,Am), the distance between p and p′ is defined based on L2 norm dis-

tance function to be the square root of the sum of the squares of the normalized dis-

tance between p and p’ (denoted by NDist()) in each dimension, i.e., Dist(p, p′) =

(
∑m

i=1 (NDist(p.Ai, p′.Ai))2)1/2. For two totally ordered domain values v and v′, NDist(v, v′) =

|v − v′|
vmax − vmin

, where vmax and vmin denote the maximum and minimum values for that do-

main.

For two partially ordered domain values v and v′ in a partial order G, our normalized

distance metric is defined in terms of two cases. Let maxDist(G) denote the edge length

of the longest chain in G. Consider the first case where v and v′ are along the same chain

in G. Let L(v, v′) denote the distance of v and v′ along that chain (in terms of number of

41

edges). Thus, NDist(v, v′) =
L(v, v′)

maxDist(G)
. Consider the second case where v and v′ are

not along the same chain in G. Let va be common ancestor value of v and v′ in G. We

define GDist(v, v′, va) = max(L(v, va), L(v′, va))+ min(L(v, va), L(v′, va)) × maxDist(G).

The intuition here is that the distance of two partially ordered domain values along

the same chain are considered to be closer than two partially ordered domain val-

ues that are on different chains. Therefore, NDist(v, v′) is defined to be minimum of
GDist(v, v′, va)
2 × maxDist(G)

over all common ancestor values va of v and v′.

Chapter 5

Performance Study

To evaluate the performance of our proposed ZINC, we conducted an extensive set of

experiments to compare ZINC against TSS, TSS+ZB and CHE+ZB. Our experimental re-

sults show that ZINC outperforms the other three competing methods. Given that: (1)

both TSS+ZB and CHE+ZB are also based on ZB-tree; (2) ZINC does not use more

memory in processing compared with other methods, the superior performance of ZINC

demonstrates the effectiveness of our proposed NE encoding for PO domains.

Synthetic datasets: In our experiments, we generated three types of synthetic

datasets according to the methodology in [42]. For TO domains, we used the same

data generator as [42] to generate synthetic datasets with different distributions. For

PO domains, we generated DAGs by varying three parameters to control their size

and complexity: height (h), node density (nd), and edge density (ed)1, where h ∈ Z+,

nd, ed ∈ [0, 1]. Each value of a PO domain corresponds to a node in DAG and the domi-

nating relationship between two values is determined by the existence of a directed path

between them. Given h, nd, and ed, a DAG is generated as follows. First, a DAG is

constructed to represent a poset for the powerset of a set of h elements ordered by subset

1In contrast to [42], which uses only the h and nd parameters, the additional ed parameter that we
introduced enables a more fine-grained control over the complexity of the DAGS.

42

43

Table 5.1: Parameters of Synthetic Datasets

Parameters Values
|PO|: no of PO domains 3, 1, 2
|TO|: no of TO domains 1, 2, 3, 4

h: DAG height 6, 2, 4, 8, 10
nd: DAG node density 0.4, 0.2, 0.6, 0.8, 1.0
ed: DAG edge density 0.6, 0.2, 0.4, 0.8, 1.0
|D|: size of dataset 500K, 100K, 1M, 3M, 5M

Correlation independent, anti-correlated, correlated

containment; thus, the DAG has 2h nodes. Next, (1 − nd) × 100% of the nodes (along

with incident edges) are randomly removed from the DAG, followed by randomly re-

moving (1 − ed) × 100% of the remaining edges such that the resultant DAG is a single

connected component with a height of h. Following the approach in [42], all the PO

domains for a dataset are based on the same DAG. Table 5.1 shows the parameters and

their values used for generating the synthetic datasets, where the first value shown for

each parameter is its default value. In this section, default parameter values are used

unless stated otherwise.

Real dataset:Our real dataset on movie ratings is derived from two data sources,

Netflix2 and MovieLens 3. Netflix contains more than 100 million movie ratings submit-

ted by more than 480 thousand users on 17770 movies between December 31st, 1999

and December 31st, 2005. MovieLens contains more than 1 million ratings submitted

by more than 6040 users on 3900 movies. Both these data sources use the same rating

scale from 0 to 5 with a higher rating indicating a more preferred movie. Our dataset

consists of the ratings for 3098 of the movies that are common to both data sources.

We derived a PO attribute, named movie preference, for the 3098 movies as follows:

a movie mi dominates another movie m j iff the average rating of mi in one data source

2http://www.netflix.com
3http://www.grouplens.org

44

is higher than that of m j, and the average rating of mi in the other data source is at

least as high as that of m j. We also derived two TO attributes for each movie, named

average rating and number of reviewers, which represent, respectively, the movie’s

average rating (each value is between 0.00 and 5.00) and total number of ratings that

it has received over the two data sources. The number of distinct values for these two

TO domains are 501 and 219800, respectively. For each of the TO domains, a higher

attribute value is preferred.

Platform and settings: All the algorithms were implemented in C++ and compiled

with GCC. The index/data page size was set to be 4K byte for all the algorithms. Our

experiments were carried out on a Pentium IV PC with 2.66GHz processor and 4GB

main memory running on Linux operating system. Each reported timing measurement

is an average of five runs with cold cache.

In the rest of this section, we first present the results for synthetic datasets (Figs.

5.1(a) to 5.2(c)) followed by the results for real datasets (Fig. 5.2(e) to Fig. 5.2(h)).

5.1 Effect of PO Structure

Figs. 5.1(a), 5.1(b), and 5.1(c) compare the effect of the PO structure on the total pro-

cessing time (including both CPU and I/O) to compute skylines as each of the three

parameters (DAG height, node density, edge density) is varied. Note that the complex-

ity of the DAGs increases as each parameter value becomes larger. In the following,

we shall focus our discussion on Fig. 5.1(a) (the y-axis shown is in logarithm scale),

where the height parameter is being varied. The properties of the generated PO do-

mains are shown in the first three columns of Table 5.2, where Card represents the

domain cardinality and Depth represents the maximum node depth in the DAG; the

sizes of constructed indexes for the four approaches (for 500K dataset) are shown in the

last four columns.

45

Table 5.2: Features of each PO domain and sizes of indexes

Size of Index (MB)
h Card Depth ZINC CHE+ZB TSS TSS+ZB

2 3 0 7.38 5.96 14.32 8.05
4 6 1 15.07 5.90 29.02 21.08
6 29 3 29.54 12.04 50.71 40.69
8 112 6 60.59 40.28 113.10 97.20

10 456 7 67.57 103.32 151.25 124.17

For simple partial orders (i.e, height = 2, 4, 6 in Fig. 5.1(a)), the number of returned

skyline points are 102, 8, and 267, respectively. The performance of all four methods

for these three cases are I/O bound with at least 63% of the processing time spent on

I/O. While CHE+ZB, TSS, and TSS+ZB have comparable performance, ZINC outperforms

all these three methods. ZINC was able to more effectively prune away many unneces-

sary subtree traversals and visited only a small portion of the index nodes; specifically,

only 29% (532 out of 1846), 18% (678 out of 3768), and 24% (1778 out of 7386) of

the distinct index nodes of ZINC were visited corresponding to height of 2, 4, and 6,

respectively. In contrast, CHE+ZB visited 78% (1158 out of 1491), 73% (1085 out of

1476), and 82% (2456 out of 3010) distinct index nodes; TSS visited 15% (537 out of

3580), 21% (1524 out of 7255), and 69% (8748 out of 12678) of distinct index nodes;

and TSS+ZB visited 30% (604 out of 2012), 19% (1001 out of 5270), and 31% (3153

out of 10172) nodes, respectively, for these three cases.

For complex partial orders (i.e., height = 8, 10 in Fig. 5.1(a)), the performance of all

four methods become CPU bound with at least 83% of the total time spent on CPU pro-

cessing. This is because the complex partial orders result in much more skyline points

and dominance comparisons. For example, when the height is 8, there are 112 values

in the PO domain and a total of 20493 skyline points. Observe that ZINC continues

to outperform the other methods significantly. For CHE+ZB, it requires a bitstring size

46

of 58 bits to encode each PO domain value, and CHE+ZB actually visited all the index

nodes for the skyline computation. Thus, we see that the data points in CHE+ZB are not

well clustered resulting in ineffective region-based pruning for its index traversals.

In contrast, due to the effectiveness of NE, ZINC visited only 27% of its index nodes.

Consequently, the number of pairwise dominance comparisons in CHE+ZB is about 10

times more than that in ZINC (9.1×108 vs 9.2×107), and about 3 times more than that in

TSS (9.1×108 vs 2.8×108). Like CHE+ZB, TSS also visited all its index nodes. Observe

that the performance of TSS and TSS+ZB degrades significantly as the complexity of the

partial orders increases. The reason is because each pairwise dominance comparison in

TSS and TSS+ZB involves not only dominance comparison between two bitstrings but

also containment checking between the corresponding two interval sets. The average

number of intervals in each interval set are 4 and 5, respectively, for height values of 8

and 10. Consequently, the cost of pairwise dominance comparisons in TSS and TSS+ZB

is significantly higher than that of the other algorithms. Finally, with respect to the total

processing time, ZINC outperforms CHE+ZB, TSS and TSS+ZB by up to a factor of about

9, 14.5 and 13 times, respectively.

Similarly, for the results corresponding to varying node density and edge density as

shown in Figs. 5.1(b) and 5.1(c), respectively, ZINC outperforms all of CHE+ZB, TSS,

and TSS+ZB.

5.2 Effect of Data Cardinality

Fig. 5.1(d) compares the performance of the algorithms as a function of data cardinality.

The number of skyline points for data cardinality values of 100K, 500K, 1M, 3M, and

5M, are 601, 267, 142, 1, and 1, respectively. The processing time decreases for all

the methods when the cardinality increases from 1M to 3M; this is due to the fact that

there is only one skyline point when the cardinality is 3M, resulting in very effective

47

index traversal pruning. However, when cardinality increases further from 3M to 5M,

although the number of skyline points remains unchanged (with only one point), there

is an increase in the number of dominance comparisons and visited index nodes due to

the larger data size which results in an increase in the processing time.

5.3 Effect of Data Distribution

Fig. 5.1(e) compares the performance for anti-correlated datasets. Again here, ZINC

has the best performance. Observe the the performance of CHE+ZB, TSS, and TSS+ZB is

satisfactory for simple partial orders, but not for complex partial orders. In particular,

when height = 10 (which is not shown in Fig. 5.1(e)), each of CHE+ZB, TSS, and TSS+ZB

took more than 3 hours to complete the skyline computation compared to ZINC which

took 1.7 hours. The reason for this significant increase in running time is due to the large

number of skyline points when the data is anti-correlated. Specifically, the number of

skyline points in Fig. 5.1(e) corresponding to the five increasing height values are 200,

1780, 4917, 54926, and 286223.

Fig. 5.1(f) compares the performance for correlated datasets. From the experimental

results shown in Fig. 5.1(e) and 5.1(f), we can see that the processing time becomes

higher (resp., lower) while datasets are anti-correlated (resp., correlated). The reason

is the number of skyline points becomes larger (resp., smaller) and more (resp., less)

computations are incurred.

5.4 Progressiveness

This set of experiments investigate the progressiveness of the algorithms. For each al-

gorithm, we record the time it requires to output specific percentages of the results (0%

for the first returned result, 20%, 40%, 60%, 80% and 100%). In Fig. 5.2(a) we can see

48

that ZINC also outperforms the other methods in terms of progressiveness. While ZINC

needs only 50% of total processing time to compute the first 80% of skyline points,

TSS+ZB, CHE+ZB, and TSS require 55%, 64%, and 90% of the total time, respectively.

5.5 Effect of Dimensionality

Fig. 5.2(b) investigates the effect of the dataset dimensionality. Each pair of numbers

(t, p) along the x-axis represents the number of TO (t) and number of PO (p) domains

in the datasets. As the number of skyline points increases with an increase in the data

dimensionality, the processing time for all algorithms also increases. For a fixed number

of dimensions, the processing time is larger when there are more PO domains, e.g., (2,2)

vs (3,1), and (3,2) vs (4,1). The reason is that PO domains always have much more non-

dominated values than TO domains. Again here, ZINC has the best performance.

5.6 Index Construction Time

Fig. 5.2(c) compares the index construction time as a function of the height parame-

ter. Observe that the construction time for ZINC is slightly higher than that of TSS and

TSS+ZB. Although ZINC incurs less I/O time than TSS and TSS+ZB for index construc-

tion, the nested encoding used by ZINC is more complex which increases the CPU time

spent on encoding and computing node splits. CHE+ZB has the highest index construc-

tion time because the encodings produced by CHE+ZB are also the longest resulting in

more costly comparisons and hence higher construction time; in particular, when height

= 10, the maximum lengths of the encodings produced by TSS+ZB, ZINC, and CHE+ZB

are 132, 352, and 848 bits, respectively.

49

5.7 Comparison of Index Clustering

In this section, we compare the clustering effectiveness of the four index methods. Fig-

ure 5.2(d) compares the clustering effectiveness of the four methods in terms of the

clustering(DI) metric as a function of the height parameter. The y-axis shown is in

logarithm scale. Thus, an index with a smaller y-axis value is considered to be more

effective in clustering the data points. The results show that ZINC produces the best

clustering. In particular, when height = 6, the clustering value of ZINC is just about

50%, 62%, and 66% of CHE+ZB, TSS, and TSS+ZB, respectively. When the partial orders

become more complex (i.e., height is 8 or 10), the performance gain of ZINC reduces

because a larger proportion of the partial orders are irregular regions which increase the

the proportion of irregular region encoding.

5.8 Performance on Real Dataset

Fig. 5.2(e) compares the performance on the real dataset which contains 291 skyline

points. The depth of the derived partial order domain is 9, and the ratio of the size

of the regular region (in terms of the number of regular nodes) over the entire partial

order domain size is 53%.4 The results show that ZINC outperforms CHE+ZB, TSS, and

TSS+ZB by a factor of 5.5, 15, and 13, respectively.

5.9 Additional Experiments on Netflix Dataset

In this section, we present additional experimental results on the Netflix real dataset to

examine the effect of the regularity of the partial order domain as well as the effect of

the number of partial order domains. We focus on the movies that are produced no later

4A node v in a partial order P is classified as an irregular node if the innermost region that contains v
in the PO reduction of P is an irregular region; otherwise, v is classified as a regular node.

50

than 2000 and have ratings for six years (for every year in the period between December

31st, 1999 and December 31st, 2005). The number of such movies is 10709, which is

the cardinality of the derived PO domain.

5.9.1 Effect of Regularity of PO Domain

To vary the structure of the PO domain, we introduce a parameter L ∈ {4, 5, 6} which

represents the number of dimensions used to construct the PO domain. We expect the

number of skyline points to increase with a larger value of L. For a given L = l, for each

movie m, we calculate the yearly average rating of m for the l− 1 years for which m has

the largest number of yearly reviews. Then, we calculate for each movie the average

rating over all the remaining years. As a result, each movie has l ratings. Using these

l ratings for each movie, a partial order domain is constructed based on the following

dominance relationship: a movie mi dominates another movie m j iff (1) mi is no lower

than m j in each of the l ratings, and (2) mi is higher than m j in at least one rating.

We also derive two TO domains for each movie: the movie’s average rating and

the total number of ratings over all the six years. In both of these TO attributes, higher

values are preferred.

Fig. 5.2(f) compares the performance as a function of parameter L. The number of

skyline points are 1103, 2412, and 2783, respectively, for L = 4, L = 5, and L = 6. The

respective depths of the PO domains are 13, 15, and 19; and their respective ratios of

size of regular regions (in terms of the number of regular nodes) over the whole domain

size are 51%, 46%, and 40%. Thus, the PO domains become less regular as L increases.

The results show that ZINC outperforms the three competing methods in all cases.

Observe that the performance decreases as a function of L due to the increased number

of skyline points. Moreover, as the PO domain becomes less regular with increasing L,

the performance gain of ZINC over the competing methods also decreases. For example,

51

the performance gain of ZINC over TSS decreases from 20 to 5.5.

5.9.2 Effect of Number of PO Domains

In this experiment, we derive three PO domains from the six yearly movie ratings in

the Netflix dataset. Each PO domain is constructed from two yearly ratings (i.e., 2000

and 2001, 2002 and 2003, and 2004 and 2005). For each partial order, a movie mi

dominates another movie m j iff the yearly average rating of mi is higher than that of m j

in one year and not lower than that of m j in the other year. As before, we also derive

two TO domains; thus the derived dataset has three PO domains and two TO domains.

The average ratio of the regular regions over these three PO domains is up to 65%,

and there are a total of 2572 skyline points. The performance results in Fig. 5.2(g)

show that ZINC outperforms CHE+ZB, TSS, and TSS+ZB by a factor of 3.0, 7.2, and 6.3,

respectively.

5.10 Experiments on Paintings Dataset

The last experiment on real dataset is based upon a smaller real dataset and a simple

partial order derivation method. We use a real dataset, denoted by paintings, which

contains information about more than 22, 000 paintings collected from two art gallery

websites5. Each painting record consists of one totally ordered attribute, year, and

eight partially ordered attributes (e.g., size, subject, main color, price). The partially

ordered domains are derived from a survey conducted by the Dia Art Foundation6 on

the preferences of artwork buyers from different countries. In our experiments, we

used the preferences of buyers from the US. Here, we elaborate on how the partially

ordered domains of our paintings real dataset are derived from the survey regarding

5http://artgallery.com.ua, http://www.gallery-worldwide.com
6http://awp.diaart.org/km/surveyresults.html

52

user preferences on painting purchases. Each question in the survey asks for the user

preference on a painting-related topic. For instance, in one question, users are asked

for their favorite season to be depicted in paintings, and the percentage breakdown for

this question is as follows: fall (33%), spring (26%), summer (16%), and winter (15%).

For each question, we map the answer values into a partial order based on a threshold

value α as follows: if the percentages for two answer values differ by less than α, then

the two answer values will be treated as incomparable; otherwise, the answer value

with a higher percentage dominates the other value. We set α to be 3%. Thus, for the

attribute related to season preference, we have fall dominates spring, spring dominates

both summer and winter, and both summer and winter are treated as incomparable.

Based on this approach, we mapped eight questions in the survey into eight partially

ordered domains. We believe that the described approach is a reasonable way to map

user preferences in a survey to partially ordered domains. The partially ordered domains

obtained are only of low or moderate complexity: their cardinalities range from 4 to 14

and the maximum node depth varies from 0 to 2. Correspondingly, the length of NE

codes varies from 70 bits to 210 bits. In fact, we found that regular regions are very

common in the partially ordered domains of this real dataset: the proportion of regular

regions in each partially ordered domain is at least 80%.

Fig. 5.2(h) compares the performance for the paintings real dataset. As the partial

orders for this dataset is not complex, the performance of all the methods are I/O-bound

with at least 70% of the total processing time spent on I/O. There are a total of 2006

skyline points. Similar to the comparison trends for the synthetic datasets, we see that

ZINC outperforms the three competing methods by at least a factor of 2. In particular,

ZINC was able to effectively prune away 30% of the index node traversals; in contrast,

each of the other methods visited more than 90% of the index nodes.

53

 1

 10

 100

 1000

 10000

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 50

 100

 150

 200

 250

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Node density

TSS+ZB
TSS

CHE+ZB
ZINC

(a) Time v.s. height (b) Time v.s. node density

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8 1.0

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Edge density

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 20

 40

 60

 80

 100

100K 500K 1M 3M 5M

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Dataset cardinality

TSS+ZB
TSS

CHE+ZB
ZINC

(c) Time v.s. edge density (d) Time v.s. data cardinality

 1

 10

 100

 1000

 10000

2 4 6 8

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

 0.01

 0.1

 1

 10

 100

 1000

2 4 6 8 10

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

(e) Anti-correlated dataset (f) Correlated dataset

Figure 5.1: Experimental results

54

 0

 10

 20

 30

 40

 50

 60

20 40 60 80 100

Pr
oc

es
si

ng
 ti

m
e(

se
co

nd
)

% of answers ouput

TSS+ZB
TSS

CHE+ZB
ZINC

 0

 10

 20

 30

 40

 50

(2,1) (3,1) (4,1) (2,2) (3,2) (4,2)

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
d)

(|TO|,|PO|)

TSS+ZB
TSS

CHE+ZB
ZINC

(a) Progressiveness (b) Time v.s. dimensionality

 0

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10

In
de

x
co

ns
tru

ct
io

n
tim

e
(s

ec
on

d)

Height

TSS+ZB
TSS

CHE+ZB
ZINC

 1

 10

 100

 1000

 10000

H=2 H=4 H=6 H=8 H=10

C
lu

st
er

in
g

Height

TSS+ZB
TSS

CHE+ZB
ZINC

(c) Index construction v.s. height (d) Comparison of Clustering

 1

 10

 100

Methods

P
ro

ce
ss

in
g

Ti
m

e(
S

ec
on

d)

TSS+ZB
TSS

CHE+ZB
ZINC

 1

 10

 100

 1000

L=4 L=5 L=6

P
ro

ce
ss

in
g

Ti
m

e(
S

ec
on

d)

Parameter L

TSS+ZB
TSS

CHE+ZB
ZINC

(e) Processing time on real dataset (f) Netflix dataset with 1 PODs and 2 TODs

 1

 10

 100

 1000

Methods

P
ro

ce
ss

in
g

Ti
m

e(
S

ec
on

d)

Parameter L

TSS+ZB
TSS

CHE+ZB
ZINC

 10

 20

 30

 40

 50

 60

 70

 80

Methods

P
ro

ce
ss

in
g

tim
e(

se
co

nd
)

TSS+ZB
TSS

CHE+ZB
ZINC

(g) Netflix dataset with 3 PODs and 2 TODs (h) Paintings dataset

Figure 5.2: Experimental results continued

Chapter 6

Conclusions and Future Work

In this chapter, we state the conclusions of our existing work and then introduce some

future work that might be interesting.

6.1 Conclusions

In this thesis, we have reviewed the existing work in the area of skyline queries process-

ing. While most of effort is devoted to processing skyline queries with totally ordered

domains only, increasing attention has been attracted by processing of skyline queries

with both totally and partially ordered domains which is more general in practice. We

also give a picture on lots of other related research areas. After going through these re-

lated work, we present the ZB-tree method in details which is the basis of our proposed

ZINC method.

The key contribution of our proposed ZINC method is the efficient encoding scheme

NE which encodes values in partial ordered domains into bitstrings compactly relying

upon reduction of the corresponding partial orders. We also develop two variants of

ZB-tree method which combine ZB-tree with TSS encoding scheme and another bit-

string encoding scheme, respectively. We conduct an extensive set of experiments on

55

56

both synthetic and real datasets with various settings to compare ZINC with the exist-

ing state-of-the-art method TSS and the two variants of ZB-tree. By combining the

strengths of NE and ZB-tree, ZINC achieves an outstanding performance to outper-

forms the existing state-of-the-art method TSS in processing skyline queries with both

totally and partially ordered domains. From the superior performance of ZINC over

CHE+ZB and TSS+ZB, we can see that the good effect of ZINC mainly depends on the

efficiency of NE scheme.

6.2 Future Work

There are two interesting future work. The first one aims to efficiently process skyline

queries with a more general case of preferences called conditional preferences. The

other is about how to efficiently process a batch of skyline queries in parallel with

common computation cost amortized.

6.2.1 Skyline Queries with Conditional Preferences

Extending handleable domains of skyline queries processing from totally ordered do-

mains to the combination of totally and partially ordered domains is rather good but

still not great enough. Within partial orders, conflicting dominance relationship is not

allowed and preferences on different attributes are considered independent. These are

not completely comply with the preferences met in daily life. A more general model of

preferences is Conditional Preferences (CPs, for short) which have been studied in AI

community. CPs take into account the dependency among difference attributes which

is based on some assumptions. For instance, the statement ”I prefer red wine to white

wine if meat is served.” asserts that, once meat served, a red wine is preferred to a white

wine. Obviously, partial orders could be thought of as a special case of CPs because a

57

Figure 6.1: An Example for CP-net

value v1 dominates another one v2 in a partial order can be viewed as v1 could dominate

v2 under combination any values of other attributes.

Some intuitive representation and rules for CPs are crucial for investigating sky-

line query with CPs. An elegant formalism to represent CPs is the CP-nets which are

proposed and improved in [7, 5, 18]. For example, a cyclic CP-net and corresponding

statement tables are shown in Figure 6.1 with three Boolean attributes A, B and C. The

first row in the table associated with A means with presence of value c for attribute C

value a is preferred to value a and similarly, the second row means with presence of

value c for attribute C value a is preferred to value a. Figure 6.2 shows the induced

preference ordering of the given CP-net. From this graph of preference ordering we can

see the value combination abc is non-dominated.

For skyline queries with CPs, or additionally with some hard constraints, it is hard

to efficiently capture all skyline points by using any existing method, e.g., Search-CP

method [6], because it needs to recursively scan all possible candidates. Also, existing

work may become disabled once corresponding CPs are dynamic.

In our future work, we plan to extend efficient skyline queries processing to a context

involving CPs.

58

Figure 6.2: Induced Preference Ordering of the CP-net

6.2.2 Multiple Skyline Queries Processing

In some real application, such as a second-hand cars sale system and an air ticket book-

ing system, more than one skyline query is simultaneously presented to the system in

order to be processed. Taking the air ticket booking system for Air China 1 as an ex-

ample, according to statistical data, the system receives about 460 thousands queries

every day and in average, about 5 queries every second and probably more during peak

time. Meanwhile, for a batch of skyline queries received at the same time, they may

have difference preferences on some attributes, e.g., airlines and flight models. Thus,

a new problem arises is that if we can process such batch of skyline queries efficiently

by sharing common computation cost. We call this problem Multiple Skyline Queries

Optimization (MSQO, for short).

Keep using the air ticket booking as an example. An air ticket booking website

receives three simultaneous skyline queries from three users. Each user has her own

particular skyline. All the users want to fly to Hong Kong. When the destination is

Hong Kong, the recognized best airline choice is Cathay Pacific. Moreover, the first user

prefers Singapore Airline to China Airline due to SA’s outstanding service. The third

1http://www.airchina.com.cn

59

Figure 6.3: Graphic Representation of Preferences in an MSQO Problem

user prefers China Airline to Singapore Airline due to CA’s attractive price. The second

user is the least fastidious one, to whom both Singapore Airline and China Airline are

acceptable. Furthermore, all the users can not endure a transit because a two-hour transit

is so tiresome. As a result, the corresponding skyline dominance graphs are shown in

Figure 6.3, where every node contains two value features. Meanings of the nodes are

listed below:

a: Cathay Pacific without transit d: Cathay Pacific with transit

b: Singapore Airline without transit e: Singapore Airline with transit

c: China Airline without transit f: China Airline with transit

Based on existing frameworks for processing skyline queries, system has to process

the received queries sequentially so that a great amount of common computation will

be performed repeatedly. As a result, much unnecessary computation is conducted

and users’ requirement on response time is hard to be satisfied. We aim to efficiently

process a batch of skyline queries that are obtained within a tiny time interval in a real-

time fashion. We are going to find out inner similarity among different preferences in

real-time and share common computation during processing.

Bibliography

[1] W. Balke, U. Guntzer, and C. Lofi. Eliciting matters controlling skyline sizes by
incremental integration of user preferences. In DASFFA, pages 551–562, 2007.

[2] W. Balke, U. Guntzer, and W. Siberski. Exploiting indifference for customization
of partial order skylines. In IDEAS, pages 80–88, 2006.

[3] I. Bartolini, P. Ciacia, and M. Patella. Efficient sort-based skyline evaluation. In
TODS, volume 33(4), pages 1–49, 2008.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages
421–430, 2001.

[5] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Cp-nets:
A tool for representing and reasoning with conditional ceteris paribus preference
statements. In JAIR, pages 135–191, 2004.

[6] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Preference-
based constrained optimization with cp-nets. In Computational Intelligence, vol-
ume 20, pages 137–157, 2004.

[7] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with conditional
ceteris paribus preference statements. In UAI, pages 71–80, 1999.

[8] R. I. Brafman and C. Domshlak. Introducing variable importance tradeoffs into
cp-nets. In In Proceedings of UAI-02, pages 69–76. Morgan Kaufmann, 2003.

[9] Y. Caseau. Efficient handling of multiple inheritance hierarchies. In OOPSLA,
pages 271–287, 1993.

[10] C. Y. Chan, P. K. Eng, and K. L. Tan. Stratified computation of skylines with
partially-ordered domains. In SIGMOD, pages 203–214, 2005.

[11] C. Y. Chan, H. V. Jagadish, K. L. Tan, A. K. H. Tung, and Z. Zhang. On high
dimensional skylines. In EDBT, pages 478–495, 2006.

[12] S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust cardinality and cost estimation
for skyline operator. In ICDE, page 64, 2006.

60

61

[13] Jan Chomick. Iterative modification and incremental evaluation of preference
queries. In FoLKS, pages 63–82, 2006.

[14] J. Chomicki. Preference queries. CoRR, cs.DB/0207093, 2002.

[15] J. Chomicki. Semantic optimization techniques for preference queries. CoRR,
abs/cs/0510036, 2005.

[16] J. Chomicki. Database querying under changing preferences. CoRR,
abs/cs/0607013, 2006.

[17] L. Cowen and C. Priebe. Randomized non-linear projections uncover high-
dimensional structure. In AAM, pages 319–331, 1997.

[18] C. Domshlak and R. I. Brafman. Cp-nets: Reasoning and consistency testing. In
KR-02, pages 121–132, 2002.

[19] H. L. Fei and J. Huan. L2 norm regularized feature kernel regression for graph
data. In CIKM, pages 593–600, 2009.

[20] P. Godfrey. Skyline cardinality for relational processing. In FoIKS, pages 78–97,
2004.

[21] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data
sets. In VLDB, pages 229–240, 2005.

[22] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector
computation. In VLDB J., volume 16(1), pages 5–28, 2007.

[23] B. Hafenrichter and W. Kießling. Optimization of relational preference queries.
In ADC, pages 175–184, 2005.

[24] J.Chomicki. Querying with intrinsic preferences. In ICEDT, pages 34–51, 2002.

[25] J.Chomicki. Preference formulas in relational queries. In TDS, pages 427–466,
2003.

[26] J.Chomicki. Semantic optimization of preference queries. In CBD, pages 133–
148, 2004.

[27] J.Chomicki, P.Godfrey, and J.Kryz. Skyline with presorting. In ICDE, pages
717–719, 2003.

[28] W. Kießling and B. Hafenrichter. Optimizing preference queries for personalized
web service. In IASTED, pages 461–466, 2002.

[29] W. Kießling and B. Hafenrichter. Algebraic optimization of relational preference
queries. In Tecknique Report 2003-1. Institut für Informatik, Universität Ausberg,
2003.

62

[30] W. Kießling and G. Köstler. Preference sql - design, implementation, experiences.
In VLDB, pages 990–1001, 2002.

[31] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online
algorithm for skyline queries. In VLDB, pages 275–286, 2002.

[32] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectors. In Jounrnal of the ACM, pages 469–476, 1975.

[33] K. Lee, B. Zheng, H. Li, and W. C. Lee. Approaching the skyline in z order. In
VLDB, pages 279–290, 2007.

[34] X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline search over
uncertain databases. In SIGMOD, pages 213–226, 2008.

[35] X. Lin, Y. Yuan, W. Wang, and H.Lu. Stabbing the sky: Efficient skyline compu-
tation over sliding windows. In ICDE, pages 502–513, 2005.

[36] M. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline computation over
low-cardinality domains. In VLDB, pages 267–278, 2007.

[37] M. D. Morse, J. M. Patel, and W. I. Grosky. Efficient continuous skyline compu-
tation. In ICDE, page 108, 2006.

[38] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In SIGMOD Conference, pages 467–478, 2003.

[39] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in
database systems. In SIGMOD, volume 30, pages 41–82, 2005.

[40] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In
VLDB, pages 15–26, 2007.

[41] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: a semantic
approach based on decisive subspaces. In VLDB, pages 253–264, 2005.

[42] D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically-sorted skyline for
partially-ordered domains. In ICDE, pages 1072–1083, 2009.

[43] N. Sarkas, G. Das, N. Koudas, and A. K. H. Tung. Categorical skylines for stream-
ing data. In SIGMOD, pages 239–250, 2008.

[44] K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity joins. In ICDE,
pages 301–311, 1997.

[45] K. Tan, P. Eng, and B. Ooi. Efficient progressive skyline computation. In VLDB,
pages 301–310, 2001.

63

[46] Y. Tao and D. Papadias. Maintaining sliding window skylines on data streams. In
IEEE TKDE, volume 18(2), pages 377–391, 2006.

[47] R. Torlone and P. Ciaccia. Finding the best when it’s a matter of preference. In
SEBD, pages 347–360, 2002.

[48] R. Torlone and P. Ciaccia. Which are my preferred items? In Workshop on
Recommendation and Personlization in E-Commerce, 2002.

[49] R. Torlone and P. Ciaccia. Management of user preferences in data intensive
applications. In SEBD, pages 257–268, 2003.

[50] W.Kießling. Foundations of preferences in database systems. In VLDB, pages
311–322, 2002.

[51] R. C. Wong, A. W. Fu, J. Pei, Y. S.Ho, T. Wong, and Y. B. Liu. Efficient sky-
line querying with variable user preferences on nominal attributes. In PVLDB,
volume 1, pages 1032–1043, 2008.

[52] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation
of the skyline cube. In VLDB, pages 241–252, 2005.

[53] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline computation using
object-based space partitioning. In SIGMOD, pages 483–494, 2009.

[54] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. Tung. Kernel-based skyline cardi-
nality estimation. In SIGMOD, pages 509–522, 2009.

