
Application-level Quality of Service and
Information Quality provisioning in Sensor

Networks

Andrei Tolstikov
MSc (Moscow Institute of Physics and Technology), 1994

A Thesis submitted for the degree of Doctor of Philosophy
Department of Electrical and Computer Engineering

National University of Singapore
April 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48633359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 4
1.1 Overview of Quality of Service 5
1.2 Application-level Quality of Service 6
1.3 Overview of Sensor Networks 7
1.4 Overview of loosely coupled distributed systems 8
1.5 Motivation and Contribution 9
1.6 Conclusion . 11

2 Quality of Information 12
2.1 Overview of the Quality of Information 12
2.2 Quality of Information metrics in the sensor networks 13

2.2.1 Acquisition and Completeness 14
2.2.2 Acquisition and Uncertainty 15
2.2.3 Delivery and Completeness 16
2.2.4 Delivery and Uncertainty 16

2.3 Information quality dependency 17
2.4 Conclusion . 18

3 Data-level query admission-control 19
3.1 Introduction . 19

3.1.1 Motivation for the choice of method 20
3.1.2 System assumptions 22

3.2 Wireless delay model . 24
3.3 Loss and delay in a node . 27

3.3.1 Loss in the network buffer 28
3.3.2 Loss due to timeout . 28
3.3.3 Loss in the pairing buffer 30

3.4 Admission of continuous queries 31
3.4.1 Node parameters estimation 32
3.4.2 Loss probability assignment 32
3.4.3 Loss probabilities estimation 34

1

CONTENTS 2

3.5 Simulation evaluation . 35
3.5.1 Simulation setup . 35
3.5.2 Node delay distribution 37
3.5.3 Query delay distribution 38
3.5.4 Pairing buffer occupancy 38
3.5.5 Network buffer occupancy 38
3.5.6 Query Admission control 38

3.6 Conclusion . 44

4 Phenomena-aware IQ management 45
4.1 Introduction . 45
4.2 Objectives and scope . 46
4.3 Related work . 47
4.4 Notations and definitions . 49

4.4.1 Notations . 49
4.4.2 Bayesian Network model 50
4.4.3 Dynamic Bayesian network model 51
4.4.4 Information uncertainty metric 53

4.5 Single application case without resource constraints 54
4.5.1 Optimization problem formulation 54
4.5.2 Sensor resource model 54

4.6 Sensor selection . 55
4.6.1 Applicability of the Bayesian network model 55
4.6.2 Sensor selection using Dynamic Bayesian network . . . 55
4.6.3 Addressing Confidence: Choice of threshold 56
4.6.4 Addressing Coherence: Sensor Selection in the case of

high certainty . 57
4.6.5 Sensor selection with losses 58
4.6.6 Sensor selection with slow sensor modality 59

4.7 Multiple applications with resource constraints 60
4.8 Simulation evaluation . 61

4.8.1 Simulation setup . 61
4.8.2 Simulation results . 63

4.9 Testbed experimental implementation 66
4.9.1 Phenomena monitored 66
4.9.2 Hardware configuration 66
4.9.3 Software configuration 67
4.9.4 Observations . 70

4.10 Conclusion and future work 73

CONTENTS 3

5 Cyclic computation deadline 75
5.1 Quality of service in loosely coupled distributed systems . . . 76

5.1.1 Specifics of loosely coupled distributed systems 76
5.1.2 Existing approaches to providing QoS in loosely cou-

pled distributed systems 77
5.1.3 Proposed technique . 79

5.2 Computation Model and Assumptions 80
5.2.1 DAG model . 81
5.2.2 Petri Net model . 82
5.2.3 Time Petri Net . 83
5.2.4 Construction of a Petri net from a DAG 83

5.3 Timing Guarantees from Petri Net Model 85
5.3.1 EDF admission control 85
5.3.2 Minimum cycle Time of a Petri Net 86
5.3.3 Computation execution modes 87
5.3.4 Application cycle control using non-greedy synchro-

nization . 88
5.3.5 Choice of eligibility times and feasible rates 88
5.3.6 Comparison with other regulators 90

5.4 Simulation study . 90
5.4.1 Simulation setup . 90
5.4.2 Simulation results . 92

5.5 Applicability and limitations 93

6 Conclusion and future work 96

A List of publications arising from the thesis 98

Summary

Nowadays distributed computing environments are becoming increasingly
complex and it is becoming increasingly difficult to provide Quality of Service
(QoS) guarantees to applications in such environments. The straightforward
implementation of techniques such as connection admission control, differen-
tiated services and integrated services, that are used to provide QoS guaran-
tees in networks and simple distributed applications such as unicast or mul-
ticast streaming applications, may not be able to address the requirements
of the complex systems. This thesis considers application-level quality of ser-
vice in loosely coupled distributed systems, of which the sensor networks are
an example. For sensor networks, the particular aspect of application quality
of service called Information Quality is explored in detail. Three techniques
are proposed, each of them represents one of the basic mechanisms of QoS
management, but deeply modified to suit the particular application domain.

The first is the measurement-based admission control procedure for a sen-
sor network query. The significant difference from the network connection
admission control is in two facts. First, the structure of a sensor network
query is taken into account and the probabilistic performance of the whole
query is used as an admission control parameter. Second, the probability
distribution for a query performance is obtained using statistical parame-
ters measured locally on sensor network nodes thus eliminating the need for
complex sensor network control.

The second technique is a resource optimization algorithm formulated to
guarantee the Information Quality obtained by a sensor network data-fusion
application. The algorithm not only takes into account the states of the ap-
plication and of the resources, but also the state of the phenomena observed
by the application. The Dynamic Bayesian Network (DBN) model is used to
derive the dependency between the resources used and information quality
obtained. The novelty of this approach lies in three aspects. First, it brings in
the general notion of phenomena into picture, going beyond particular types
phenomena such as target localization and tracking. This notion allows us
to account for effects of the different phenomena state onto the information
obtained. Second, it allows dynamic phenomena tracking in a resource effi-
cient manner due to the use of the DBN model. Third, it integrates into the
sensor network framework, taking into account information loss and resource
constraints.

The third technique explored in this thesis is conceptually a form of a leaky
bucket regulator, but implemented in the distributed fashion for a complex

CONTENTS 2

cyclic application in a loosely coupled environment, so that no additional
communication is required for coordination of execution in different admin-
istrative domains, and yet the regulation is achieved without unnecessary
slowing down of the application.

The general approach used in this work is based on modelling of an ap-
plication and consists of three stages. The first is to analyze an application.
The second is to identify the specifics of the environment which may prevent
the application from obtaining the required level of service. The third is to
choose the model of application and the method of using this model which
can overcome the environment specifics.

KEYWORDS: sensor networks, information quality, application QoS,
sensor selection, dynamic Bayesian network, Pareto distribution, Petri net.

List of Figures

2.1 Diagram describing the dependency between factors affecting
the quality of information delivered to a consumer. 17

3.1 The flow of data inside a sensor node and structure of the wait-
ing buffers. Data units arriving from children nodes are either
sent to pairing buffer to wait for arrival of other children or
sent directly to the network interface module for transmission.
Data units after aggregation are either sent to the network
buffer or back to the pairing buffer in the case of more data
units expected . 23

3.2 The structure of the sensor network used in the simulation.
The sensor network consists of 27 nodes. There are 3 queries
running on the nodes, the direction of dataflow for each of
them is shown by the corresponding arcs 36

3.3 Simulation results. The actual and approximated distribu-
tion of the total delay in a single node. Three approximation
methods, described in the section 3.2, are presented 37

3.4 Simulation results. The actual and approximated distribution
of the query delay. Because of the limitations on the failure
probability, the method ”Above average and B” is not pre-
sented. However, it still can be used on some of the nodes
where failure probability is less than 1/2. The long horizontal
extension of the actual delay distribution is due to the losses
on the MAC level which delay some data until local deadline. 39

3.5 Simulation results. The actual and approximated distribution
of the pairing buffer occupancy for node 7 in the system with 3
queries. Approximation takes into account delay distribution
of 2 queries using buffer space on a node 40

3.6 Simulation results. The actual and approximated distribution
of the network buffer occupancy for the node 6. 41

1

LIST OF FIGURES 2

3.7 Simulation results. The actual and approximated distribu-
tion of the query delay for the case of admission of the 3rd
query. The 3rd query rate is 4 kbps. The ”Approximation
2” is the approximation of the distribution based on the mea-
sured parameters of the system with only two queries. The
”Approximation 3” is the approximation for the query delay
based on the parameters measured for all three queries. 42

3.8 Simulation results. The actual and approximated distribu-
tion of the query delay for the case of admission of the 3rd
query. The 3rd query rate is 8 kbps. The ”Approximation
2” is the approximation of the distribution based on the mea-
sured parameters of the system with only two queries. The
”Approximation 3” is the approximation for the query delay
based on the parameters measured for all three queries. 43

4.1 The Bayesian Network for estimation of the quality of action
recognition of eating in the kitchen. The top node repre-
sent the activity we want to detect. Blue nodes represent
the features provided by different sensor modalities. Actions
node has three possible values: Nobody present, Person in the
kitchen and Person eating . 51

4.2 The Dynamic version of the Bayesian Network from the pre-
vious figure. Yellow nodes are temporal nodes. In this case,
the timed nodes are Activity, Something on the table, Position
and Sitting. 52

4.3 Simulation results. The comparison of the actual state of the
system with the estimated state derived from corresponding
models. The problem of the BN model in this case - high
volatility of the state estimation 63

4.4 Simulation results. Certainty comparison for different models
and different set of sensors. As it can be seen, use of reduced
set of sensors for the Dynamic Bayesian network does not sig-
nificantly affect the certainty of the result. 64

4.5 Simulation results. The comparison of the cost of sensors
to achieve a required level of the information quality using
phenomena-aware resource management. It can be seen, that
the memory property of the Dynamic Bayesian network model
allows to obtain a good quality at the fraction of a cost. 65

4.6 Illustrations of the activity detection testbed. Wrist-worn ac-
celerometer was used for hand movement detection 68

LIST OF FIGURES 3

4.7 Illustrations of the activity detection testbed. Short-range
RFID reader was used for detection of the object (cup) be-
ing used . 68

4.8 Illustrations of the activity detection testbed. Pressure sensors
installed in the pad on the chair were used to detect if a person
is sitting . 69

4.9 The DBN of an activity detection system, which was imple-
mented on a testbed. The possible states of variables are
shown next to corresponding nodes 70

4.10 Activity detection testbed results. Correctness of the online
activity recognition. The top graph shows the actual activity
of a person. The lower graph shows the activity detected by
a system. The long vertical lines correspond to the moments
shown on the Figure 4.11 . 71

4.11 Activity detection testbed results. The fragments of video
recording corresponding to the long vertical lines in the Figure
4.10 . 71

4.12 Activity detection testbed results. Confidence level of the on-
line activity recognition. 72

5.1 An example of the DAG model of a computation. The dashed
line shows that a task T6 from one cycle is a parent of the task
T1 from the next cycle . 81

5.2 An example of a Petri net model of computation obtained
from the DAG in Figure 5.1. The dot in the leftmost place is
a token. This token enables the task T1, thus making T1 the
starting task of a cycle . 82

5.3 Simulation results: The ratio of minimum and maximum cycle
time to an application deadline 92

5.4 Simulation results: Average host utilization 93

Chapter 1

Introduction

The technological advancement of electronic components is making cost of
the computing devices lower and capabilities higher. The variety of the types
of the computer systems is becoming broader as well, and this is especially
true for distributed systems. During recent years, a new class of distributed
system has emerged, which can be called loosely coupled distributed system.
Not only the parts of such system do not have central control, which is com-
mon to all distributed systems, but but they may not even have a sufficient
level of process coordination due to different administrative boundaries, low
speeds of communication diminishing ability of components to interact or
high delay in such interaction compared to the typical time duration of pro-
cesses happening in them. One example of such systems are sensor networks.

With further development of such loosely coupled systems it is expected
that increasingly different applications will be using these systems simulta-
neously. In this situation, the question of the quality of service for these
applications will become important. This thesis addresses some of the issues
of provisioning of application-level quality of service either for general loosely
coupled systems or for sensor networks in particular.

At first we will give a general introduction of the concept of quality of
service and describe in more details the class of systems we are addressing,
namely, general loosely coupled systems and sensor networks. This intro-
duction is general in the sense that we are not going to address the specific
limitation of particular QoS mechanisms applied to this class of systems, but
rather generally describe the concept and the idea behind them. A more
detailed discussion will be presented in each of the chapters presenting the
proposed methods.

The introduction covers the concept of the Quality of Service with the
emphasis on the network QoS in Section 1.1, provisioning of QoS for applica-
tions in Section 1.2, overview of sensor networks in Section 1.3 and overview

4

CHAPTER 1. INTRODUCTION 5

of loosely coupled distributed systems in Section 1.4. In Section

1.1 Overview of Quality of Service

The term Quality of Service in the context of a computer system refers to the
ability of the underlying infrastructure to provide assurance that certain per-
formance parameters of the application using resources of the infrastructure
are satisfied. In particular, the case of shared use of an infrastructure is con-
sidered since provisioning of performance guarantees in the case of exclusive
use of resource is trivial.

Historically, the most common type of such shared infrastructure have
been computer networks. Because of this reason the most of the original re-
search in the area of Quality of Service was done in the area of networks. The
performance parameters considered are packet delay, packet delay variation
and packet loss probability.

The infrastructure performing computational tasks can be seen as a col-
lection of interconnected servers and streams of tasks using these servers.
The servers can be connected directly or through other servers. For exam-
ple, consider s computer and a network link vs two computers connected by a
network link. The tasks may also be dependent on each other (such as mul-
tihop communication) or independent. Each server has some performance
characteristics and the stream of tasks arriving at this server is characterized
by resource requirements to process or hold the task.

Conceptually, when we talk about Quality of Service, we talk about a set
of models and methods which allow us to predict the performance character-
istics of tasks being processed by a set of servers and to modify the behavior
of the system so that the above performance characteristics would be at least
on some minimally required level. In most cases, not all, but only a subset
of the tasks processed by a system are supposed to get a guaranteed service.

The performance guarantees can be given only when both the server per-
formance as well as the flow of incoming tasks are controlled. Therefore the
research in the QoS mainly deals with these two aspects. The server perfor-
mance characteristics obtained by a subset of the packets are achieved using
different service disciplines and, respectively, different queueing algorithms
[Zha95], [NJZ99]. The control over the flow of incoming tasks can be done
in different ways as follows:

1. By changing the packets arrival process before the queue, by a tech-
nique such as shaping [GGPR96], or in combination with a queueing
algorithm as in the case of [ZF94].

CHAPTER 1. INTRODUCTION 6

2. By using the knowledge about applications (network flows in the con-
text of network) and performing admission control which essentially
makes a decision whether another flow can be allowed based on the
computed worst-case performance characteristics such as [LWF96].

3. By using the application specifics to provide feedback from the system
to the application. For example, in [FJ93] the property of the TCP
protocol is used to regulate the packet load.

The important fact to note is that in all cases there is a model of the
service performance as well as a model of the service demand. These models
are used to obtain the performance characteristics of the service obtained by
tasks. In the case of more complex applications, the situation is similar, but
the performance metrics are different.

As we mentioned, the common performance metrics for the network QoS
are packet delay and delay variation and packet loss. Although these metrics
are adequate for the network applications such as file transfer of streaming
media, more general applications often require satisfaction of performance
metrics which are more closely related to the application’s characteristics
and runtime behavior.

1.2 Application-level Quality of Service

Strictly speaking, it is possible to create a system which would guarantee the
performance parameters of an application expressed in application-specific
terms and implemented directly into the system. Examples of this kind of
systems are hard real-time systems such as airplane flight control. However,
in the case of most computer systems it is not reasonable to expect such a
high level of integration between an application and its infrastructure.

For this reason, the approach that QoS parameters of the system are
defined separately from the application-level parameters was adopted. It is
assumed that the mapping between the two sets of parameters is separately
established. This mapping requires the application to be modelled in terms of
the tasks components using resources and obtaining specific QoS. The general
framework for application modelling is presented in [CSS97]. In another
work, [GN02], the application is represented as a set of components which
transform the notion of the QoS, and the end-to-end application QoS is
modelled as a result of a chain of transformations. The model of application
is used even in the case of a single server, such as a web-server [ASB02]. One
very important implication of such a mapping is the ability to consider the
QoS metrics which cannot exist in the system comprising of only application

CHAPTER 1. INTRODUCTION 7

and resources. For example, the work [GT98] considers the impact of the
network QoS on the user perception of the video. In this case, the user, a
human, is outside of the system. But the model of the perception allows us
to make some guarantees on the quality of the video as seen by a human.

In a similar way, we argue in the Chapter 2, that in sensor networks there
exist an important part which is outside of the system, namely, the object
or phenomenon being monitored.

Therefore, when we need to provide application-level quality of service,
we have to use the model of the application. However, a very general model
may not be of much use, since it may not give us enough details of the
QoS metrics and requirements. We need to consider particular classes of
applications in particular environments, while attempting to keep them as
general as possible within the bounds of the environments.

Below, we are describing the two environments which are considered in
this work, namely sensor networks and general loosely coupled system. We
will give general description and identify the specifics of these environments
which will be useful in later chapters, where specifics of the proposed tech-
niques are discussed.

1.3 Overview of Sensor Networks

The decreasing cost of electronic components made it possible to install sim-
ple processors or micro-controllers into many devices used by people in every-
day life, such as kitchen appliances or car controls. The fact is that in most
cases people are not even aware of the fact that they are using an intelligent
device. The next stage of such a development is installation of intelligent
devices in the environment so that they stay there, collect information and
use this information to help people to perform some tasks.

The hardware behind such intelligent infrastructures are sensor nodes,
which are battery-powered wireless computer platforms having specific sen-
sors connected to them to collect the required information. The typical size
of such a node is just slightly bigger than the size of its the power source,
consisting, for example of two AA size batteries. The systems comprising of
large number of such nodes may be able to perform complex tasks by lever-
aging the total computing power of all the nodes. The example tasks include
bird habitat monitoring [MPS+02], health monitoring of complex structures
[XRC+04] or helping in taking care of the elderly people in home or hospital
environment [BDQ+05].

Although the existence of such sensor networks offer new opportunities,
they also represent a significant challenge for their designers and application

CHAPTER 1. INTRODUCTION 8

developers. The main limiting factor in the design of a sensor node is the
power source. To overcome it, different energy saving can be implemented.
For example, most sensor nodes use the low-power slow-speed radio and use
different modes of node operation with different power consumption. In the
latter case, the node may spend most of the time in the power-saving “sleep”
mode and only wake up to perform sensing or communication. Such sleep
- wake-up duty cycle makes communication between nodes more difficult
compared to the common wireless nodes and even specialized MAC protocols
are proposed which are custom-tailored to the sensor network environment
[PHC04],[YHE02a]. Therefore the communication in sensor network may
be not only be costly and have long average delay, but in some cases may
not be possible in arbitrary time moment, thus limiting the possibility of
application-level control.

Since the purpose of sensor networks is specific, they are commonly orga-
nized by a specific software, for example the data collection systems such as
TinyDB [MFHH05] or collaborative target tracking systems [ZLL+03]. These
types of software create the applications running on the sensor networks. The
positive side of these systems is the fact that they make a limited scope of
types of applications. Therefore in many cases we may limit the analysis to
the few application examples. For example, the TinyDB creates tree-shaped
information collection queries.

Important feature of the sensor networks in the fact that they collect
the information about some phenomena or environment. Therefore the state
of the environment affects the type of information collected. For example,
in [DGM+04] and [CHZ02], the fact that there is a model of the objects
monitored is used in making resource allocation decisions.

1.4 Overview of loosely coupled distributed
systems

Sensor networks can be considered to be an example of a more general class
of distributed systems, which we may call loosely coupled distributed systems.
For certain classes of applications, the specifics of sensor networks such as
mostly wireless communications, information-centric data and tight energy
constraints are not so important, and therefore it does make sense to for-
mulate a problem of application-level QoS for these applications in the more
general context of loosely coupled distributed systems.

As the term suggests, loosely coupled distributed systems are charac-
terized by a low degree of coupling between different components of the

CHAPTER 1. INTRODUCTION 9

system. Usually it happens because of difficulty in communication between
components, which, in turn, may be due to different communication media
or protocols, different administrative domains or specific schedule of device
communication. This difficulty in communication may lead to the situation
that the typical time of operation on a single device is shorter that the typi-
cal time required for coordination of task execution on different devices. In
this case, the tight coordination of operations on different servers or devices
would impair the performance of the whole system, and therefore decisions
on how to process the tasks are done on the local level.

Another difference of loosely coupled systems from traditional distributed
systems is that the types and set of both resources and applications using
the resources are not fixed. The implication of this is that sometimes there
is no direct connection between the type of task and the type of resource
the task is supposed to be executed. The mapping of tasks to resources is
done at the runtime and sometimes may be only be satisfied up to a certain
degree. Moreover, the bigger the pool of resources, the larger may be the set
of applications using these resources.

In addition to sensor networks, another example of such a loosely coupled
system is computational Grid [FK99].

The list of the most several important features of loosely coupled dis-
tributed systems is

• It is dynamic. Resources and applications are added and removed from
the system unpredictably.

• It is highly heterogeneous. It consists of many types of systems so
that it may not be even possible to enlist and characterize all of them
precisely.

• It is complex in structure. It may consist of many components and
interaction between them may be too complex to trace.

• Has limited coordination between resource subsystems executing dif-
ferent tasks.

1.5 Motivation and Contribution

The traditional QoS methods for applications described in the Sections 1.2
are not adequate anymore for complex systems such as sensor networks.
The main problem for this is that there is a multitude of resources and
applications available in such systems, as well as the fact that QoS parameters

CHAPTER 1. INTRODUCTION 10

of applications are very different from resource QoS parameters. This calls
for deeper understanding of the applications at hands and specifications of
how the multitude of different resources used by an application can translate
into a guarantee or at least assurance of specific application-level QoS metric.

The aim of this thesis is to:

• Understand the essential characteristics of certain classes of applica-
tions typical for sensor network or, more general, for loosely coupled
distributed systems

• For each application class, propose a model of application which allows
expressing of the allocation-level QoS metric in terms related to the
resource level

• Propose methods of using above models to provide the guarantees or
assurance for these QoS metrics in the specific environment.

Namely, there are three types of applications are considered:

1. Tree-shaped sensor data collection query, collecting similar type of in-
formation from a set of wireless sensor nodes. The query should pro-
vide Information Quality oriented metrics or support provision of such
metrics by the upper-level application. The solution was obtained by
deriving approximation for the distribution of a delay for the query
data to be collected, aggregated and delivered to the consumer and
providing examples of how assignment of loss bounds on each node in
the query affects information quality metrics such as completeness or
coverage.

2. General phenomena-tracking application which uses shared pool of re-
sources and provide guarantees on the quality of collective information.
The solution involves the use of Dynamic Bayesian Network model and
suggests how information quality metrics such as confidence or coher-
ence can be addressed for such model, as well as suggests a way of
handling the losses of information in the network.

3. General cyclic computational application, using a variety of distributed
resources aiming to guarantee that each computation cycle is completed
before its deadline. The suggested technique represent a distributed
regulator, which uses Timed Petri Net model to find the places and

CHAPTER 1. INTRODUCTION 11

1.6 Conclusion

We introduced the basic concept of the Quality of Service. The important
note is the fact that to provide application-level QoS we need to have the
model of the application, and the application specifics has to be bound to the
specifics of the environment the application run in. In the following chapter,
we consider in depth the application-level notion of QoS important to the
sensor network environment, namely, Information Quality. In chapters 3 and
4 we analyze specific application types to propose methods to ensure the
provision of the Information Quality.

Chapter 2

Quality of Information

The main goal of operation of sensor networks is collection of information
about events and phenomena happening in the area where the sensors are
deployed. Therefore, in deciding how the application-level quality of service
can be provided for sensor networks, it is reasonable to begin with considering
how the information collection is affected by the sensor network operation.

At first, we need to define the criteria of how well the information col-
lected suits the application requirements. That is, we need to define the
Quality of Information (IQ) parameters and then relate them to the opera-
tion of the sensor network and to the algorithms managing the access and
use of resources. In this chapter we are presenting an overview of the Infor-
mation Quality. Then follows the important contribution of this chapter, the
framework for defining IQ metrics at the intersection of quality losses due to
acquisition and delivery on one side and completeness and uncertainty on the
other. We also describe our approach in managing IQ in the sensor network
environment.

2.1 Overview of the Quality of Information

The term Information Quality is widely used in the community working with
information systems. However, there is no strict definition of the term avail-
able and its meaning can be rather different depending on the nature of
information. In [WS96] the taxonomy of the possible IQ definitions is given,
which includes almost 200 different terms. This list includes common infor-
mation descriptions such as age or accuracy as well as rarely used descriptions
such as purpose or conciseness. For our purpose, we need to limit the number
of IQ descriptions to those relevant for sensor networks.

Examples of a narrower set of IQ parameters arise in database informa-

12

CHAPTER 2. QUALITY OF INFORMATION 13

tion systems [NR00] or in military battlefield information collection [PSB04].
[NR00] is particularly useful for our case because it introduces different lev-
els of the information quality - subject, process and object. The subject level
IQ includes quality parameters of information available to the end user, the
process level includes parameters due to particular process of obtaining the
information and object level includes parameters of information in the form
as it is stored in the database. However, the model of the database is not
directly applicable to the case of sensor networks. In databases, the informa-
tion is stored somewhere and the problem of handing information translates
to a problem of searching and fetching the necessary information. In the
case when the information delivered is of unsatisfactory quality, the opera-
tion may be repeated. In sensor networks, however, the information is not
stored, and the repeat operation may fetch different information just because
the monitored environment has changed. That is, the object and process lev-
els of IQ are tightly bound in the sensor networks. Therefore we are going
to distinguish only two layers of information for the case of sensor networks

1. High-level collective information, which is combined information ob-
tained from fusion of, in general, heterogeneous sensor data. This is
equivalent to the subject level of the [NR00] classification. Further, we
will be using the term high level information when we talk about this
level of information.

2. Low-level information is usually delivered by a sensor network from
homogeneous data sources. The IQ parameters for this type of in-
formation have to be assessed as they are being passed through the
network. This is equivalent to the combined object and process lev-
els of the [NR00] classification. We will be using the term data level
information when we talk about this level of information.

Below we analyze the sensor network information acquisition in order to
arrive at IQ metrics which are important. We are going to choose from those
IQ parameters presented in the above papers.

2.2 Quality of Information metrics in the sen-
sor networks

We base our approach in identifying the IQ metrics on the following premise:
the Information Quality is the description of imperfection in the information,
and quantitative information metrics therefore should reflect specific details

CHAPTER 2. QUALITY OF INFORMATION 14

of the information imperfection. In [BHA+01], the possible defects of infor-
mation named are ambiguity, uncertainty, imprecision, incompleteness and
inconsistency.

For the metrics in the sensor network environment, when the values are
usually represented by some statistical distribution, the uncertainty and im-
precision are described by the same distribution. On the other hand, the de-
fects of the ambiguity and inconsistency are handled either by the consumer
of the sensor network information or by the information fusion algorithm, the
latter case affecting the value distribution. Therefore we propose considering
two basic defects: incompleteness and uncertainty.

Below we are going to formally define the information metrics. For this,
we are going to use the following notations

Physical state: (actual state) - tuple X = (x1, x2, x3, ..., xn)
Estimated state: tuple Z = (z1, z2, z3, ..., zn)
Measurement: - tuple V = (v1, v2, v3, ..., vk)1

Then we can define the metrics formally as follows:
Information completeness is defined as a relationship between the set of

physical values in the environment X and set of estimated state Z, indicat-
ing whether we are able to estimate a particular value xi. This is general
relationship because different values may be of different importance. Infor-
mation uncertainty is defined only for variables we are able to estimate. It
is given by the probability Ui = P (xi|Z)

In addition to this basic classification we define the metrics according
to the process due to which the information is affected, that is acquisition
or delivery and according to the level of the information as defined in the
previous section - high level or data level.

2.2.1 Acquisition and Completeness

This metric describes how many values we may be missing to capture for some
reason. For example, we can miss recording events in the statio-temporal
domain either in space or in time. Missing event in time can happen when
the sampling rate is so low that some events can happen between consecutive
samplings. In this case we need to define utility of sampling rate.

1Strictly speaking, the number of measured values k is different from the number of
estimated variables n. In most cases, n ≤ k, because measurements are usually combined,
for example, by averaging. However, sometimes one measurement can be used to estimate
more than one variable, for example battery voltage may also give an estimation of the
ambient temperature [DGM+04]

CHAPTER 2. QUALITY OF INFORMATION 15

SRa−c = utility(InterEventT ime
SamplingPeriod

),
where utility(x) is some function equal to 1 for x ≤ 1 and monotonically

decreasing to 0 for x > 1. EventT ime is equal to such a sampling period
when we are guaranteed that we do not miss any important events.

Coverage Ca−c is the absolute coverage of the territory of interest by the
sensor modalities

Ca−c = CoveredArea
TotalArea

Another possible metric is information coherence, which characterizes dis-
crepancy between the actual phenomena state and its representation in the
information collection system. In particular we may interested in the de-
lay between the moment the phenomena state changes to the moment this
change is reflected at the information consumer end, which we call informa-
tion coherence delay. One of the important reasons of this delay is incomplete
sensor information due to sensors not being activated at the time of change.

The information coherence delay can be described as time interval τ ,
τ = min(tB − tA) : X(tA) = Z(tA) = A,X(tB) = Z(tB) = B in the

vicinity of the moment when system state changes from A to B. Here X(t)
is the actual value of a variable X at time t and Z is the measured value of
X which is available to the consumer.

2.2.2 Acquisition and Uncertainty

There are three major reasons for information uncertainty in acquisition.
First, during the time between two samplings the environment may change.

We need to characterize this change, and this can be done through introduc-
ing the probability of change in the environment by certain value. The shorter
the sampling rate, the smaller is the possible change, however, the depen-
dency may be non-linear. We express the metric of losses due to sampling
rate as a probability of the value difference exceeds certain value ε given an
estimation Z and sampling rate.

SRa−u = P (δx < ε|Z, SamplingRate)
Second, the measurement itself is not perfect, therefore the measured val-

ues are not equal to their real values. Note, that since most probably the
measurement of final values of interest is indirect, the physical values are
different from X. The measurement uncertainty can be expressed as a con-
ditional probability distribution of physical values w given the measurement
V.

MUa−u = P (w|V)
From measured values final values are derived through information fusion,

and we denote the uncertainty of the fused result as a conditional probability
of value of interest x given the estimation Z.

CHAPTER 2. QUALITY OF INFORMATION 16

FUa−u = P (x|Z)
If the final answer of a system is only one most likely state xmax, then the

above probability P (xmax|Z) becomes a value of confidence that the current
state is xmax.

The information fusion uncertainty depends on the algorithm used for
fusion or estimation.

2.2.3 Delivery and Completeness

Completeness losses in delivery occur when data is lost along the way and
because of this we become unable to estimate certain variables of interest.
There is a rather fine line between losses in space and time here. Loss in space
may occur if several readings are lost from a particular area in the network.
Loss in time may occur when not enough data is delivered to a consumer for
some time and events are missed. A possible metric in this case may be the
ratio of time when enough data was delivered for event detection to the total
observation time. In particular, this ratio can be represented as

DC = 1− TimeLost
T

where TimeLost is the total accumulated time when data lost consecu-
tively for the period EventT ime, making possible that we missed an event.

This type of metric on the data level can be called data completeness and
is quite similar to the notion of completeness used in the database systems
for the raw data.

2.2.4 Delivery and Uncertainty

There are two main reasons for uncertainty due to delivery. First, we need to
characterize the impact on the uncertainty of the result because of the losses
of certain measurements. Since in this case we need to highlight the difference
between distributions, we may use the entropy difference as a metric of this
uncertainty.

Hdiff = H(V)−H(Z)
The second reason for uncertainty is lack of data coherence, and the metric

has to account for the difference between the measured value at particular
time and value as seen at the same time by consumer.

Here, we assume that consumer has some kind of predictive function pz(t)
which estimates the value at the consumer since the available reading. In the
simple case the function can be equal to the last measurement. Uncertainty
due to data coherence is therefore characterized by the conditional probability
that the difference exceeds certain value ε, given that the last observed state
is Z.

CHAPTER 2. QUALITY OF INFORMATION 17

Phenomena
state

Information
quality

Quality
requirements

Sensor
selection

Selection
constraints

Resource
availability

Resource use
by applications

Set of
applications

System
events

Service
discipline

Factors

Goals

Figure 2.1: Diagram describing the dependency between factors affecting the
quality of information delivered to a consumer.

DCd−u = P (|z(t)− pz(t)| < ε | Z)

2.3 Information quality dependency

To tackle the problem of information quality assurance, we first need to
understand the factors on which the IQ of delivered information depends.
Figure 2.1 depicts the dependencies between different mechanisms existing
in sensor networks. In drawing these dependencies we assume a general
sensor network model with only one important assumption - that there is a
redundancy in the number of sensors and we have a choice of sensor to select
among all available to do the phenomena monitoring.

There are four major factors affecting the quality of information delivered
to a sensor network consumer

1. State of physical phenomena under consideration. This may in-
clude both the changes in the environment that affect the measured
values at sensors as well as the changes of sensor condition themselves
such as specifics of measuring modalities.

2. Sensor selection, that is, the choice of sensors participating in data
acquisition.

CHAPTER 2. QUALITY OF INFORMATION 18

3. Resources available on the sensor nodes for data acquisition, pro-
cessing or transmission.

4. Resource use by applications. In this category are included the
structure of an application, operator deployment on sensor nodes and
throughput characteristics of an application.

Omitted from the list are the factors which depend almost entirely on a
particular network configuration and which we cannot change such as topol-
ogy of sensor deployment.

There is a dependency between three of these factors. When the state
of phenomena changes, we would probably need to update the set of sensors
participating in the measurement because the current set may no longer give
satisfactory quality of information. The change in the set of participating
sensors leads to a change in resources available on individual sensors. This
change in resource availability, in turn, may affect the quality of information
delivered such that it is no longer satisfactory. Since we consider dynamic en-
vironment, we have to assume that all of these three factors are dynamic and
therefore we need to consider their overall effect on the IQ. Most important,
we have to include phenomena state awareness into the framework.

2.4 Conclusion

The definition of the IQ metrics allows us to build systems which use the
above definition to translate the underlying resources used into guarantees
on defined IQ metrics. It may not be possible to address all the possible IQ
metrics within one framework, since different levels of information have to
be considered.

In the next two chapters, we will introduce two frameworks which address
certain IQ metrics, the first one focused on the data level information, and
the second one on the high-level information.

Chapter 3

Data-level query
admission-control

A significant number of sensor networks simply collect data without process-
ing its content to extract meaning from the underlying semantic. Aggrega-
tion functions in this case are simple and easily computed, and sensors are
selected for the duration of the entire process of the data acquisition. Be-
low, we consider such a scenario to provide the IQ guarantees for distributed
sensor network queries. The contribution of this chapter is analytical solu-
tion for approximated distribution of delay and loss of aggregated data for
a tree-shaped sensor query, assuming that wireless MAC protocol uses ex-
ponential back-off in case of transmission errors. This approximation allows
control over data level IQ metrics of data completeness, data coherence and
coverage.

3.1 Introduction

Recent developments in sensor networks have made it possible to gather up-
to-date information about the environment, through SQL type queries [BW01]
that capture streams of aggregated information over long periods of time.
However, for this information to be useful it has to be timely and complete;
in other words, there has to be a preservation of bounds on the delay and
loss of data. These considerations constitute attributes of information quality
delivered by a sensor network [BNQP05, BDQ+05, LN00].

In the case of aggregated data being delivered to a consumer, (and this is
most often the case in sensor networks), instead of the ratio of delivered data
to sensor produced data, completeness may actually mean the ratio of data
that is used in producing the aggregated result delivered to the consumer, to

19

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 20

the data that is generated by a sensor. As seen above, data loss may arise
from resource unavailability or large delay which makes intermediate nodes
assume that the data was lost.

If we want to have a method of comparing data completeness from differ-
ent nodes in the network, we need to find a way of quantifying the amount
of data lost. For some environments it would be preferably to have an ad-
mission control procedure which would ensure certain bounds on probability
that the data is lost and not taken into account when producing query result.
However, this procedure should take into account sensor network specifics as
compared to other network environments. In particular, it is necessary to
minimize overhead introduced into operation of a sensor network, especially
communication overhead.

Because of the limits on the communication overhead we cannot assume
that we have complete up-to-date knowledge about network configuration
and operation. Also we have to assume that we cannot employ protocols
with high traffic that would coordinate the resource allocation. However, we
assume that we can piggyback some mechanisms already existing in sensor
networks. The examples of such mechanisms are routing or query dissemina-
tion. In particular, the TinyDB semantic routing tree [MFHH05] construc-
tion procedure can be used to collect information about query tree.

An important assumption, which is also a motivation for this work, is that
in addition to sensors over which we have limited control there could also be
other sensors deployed in the same environment sharing the same wireless
media. These other sensors can participate in some other applications and
in many cases cannot be controlled. However, even if we can control other
sensors, still, due to complexity of interference between many applications
consisting of many queries it may be impossible to analytically predict effects
of their operation on a query under consideration. For this reason we propose
to use measurement to obtain the important parameters of network opera-
tion, and use admission control to limit the number of queries executed on a
node so that the requirements of bounds on loss of data from existing queries
are satisfied. The additional benefit of measurement-based approach is that
many parameters used in admission control decision are obtained locally on
a sensor, minimizing additional communication.

3.1.1 Motivation for the choice of method

The main difficulty in tackling the problem of QoS in sensor network is the
lack of the appropriate modelling of the sensor network behavior.

The most universal approach for analysis of network behavior from the
point of view of QoS provided is network calculus [BT01]. In fact, there are

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 21

attempts to use the network calculus model for building the model of sen-
sor network QoS [SR05] and as a basis for the QoS control scheme [ZPB02].
However, in its basic form, network calculus requires the network elements
to have deterministic bounds on the service time. In the sensor network en-
vironment, however, the service time of the wireless shared access networks
is unpredictable and in general not bound. In this case the apparent way
is to use the stochastic networks calculus. However, existing stochastic net-
work calculus approaches have certain limitations. The method described in
[SS99] has limitations on the envelope functions for the arrival and service
process, namely the requirement that for N node path we need to have an
envelope function which has N times integral. Besides, the fact that it is ser-
vice time, not arrival process, is unpredictable, creates additional difficulty.
Approach described by [Lee95] considers the case of variable service time of
similar packets. However, this work only considers envelope functions which
have exponentially bounded burstiness, which may not be the case for the
sensor networks, because the service delay distribution in the case of wireless
network may be very different from the exponential.

In fact, many wireless protocols employ CSMA-based media access pro-
tocol with exponential back-off increase in the case of failures. According
to [JNR05] the service delay in this case have a Pareto distribution, which,
compared to the exponentially bounded burstiness model, has a heavy tail
which may significantly affect the statistical QoS parameters.

After taking into account the problems of developing a general model, we
decided to build a restricted model of the sensor network query based on the
following assumptions:

• We consider the delay on the node down the stream to be independent
from the service on the previous node. By this we assume that the
arrival process on the downstream node is only determined by the rate
of arrival, and that the burstiness on this node is similar to the one
on the previous. In fact, since we assume that the sensor data is time-
generated, then the arrival process on each node is a periodic sequence.

• The delay due to CPU processing is not considered.

• The network part of the sensor network is based on the CSMA protocol
with exponential increase of back-off interval.

These assumption, although quite restrictive from point of view of query
capabilities, enable us to derive a simple model which uses very little global
knowledge to derive query-level statistical performance parameters.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 22

3.1.2 System assumptions

We assume that there is a set of sensors on which continuous queries are
deployed. Queries are in the form which is used in TinyDB, that is

SELECT aggregate value FROM sensors
WHERE condition 1
GROUP BY attribute
HAVING condition 2
SAMPLE PERIOD period

These type of queries are deployed over a subset of sensors from sensor
network and query communication form a tree from this subset. Each sensor
from a leaf node of a tree produces data. Non-leaf sensors may or may not
produce data. Every non-leaf sensor node which has more that one child or
generate data itself also perform aggregation of the data units.

We assume that the data is aggregated on the non-leaf nodes in the
following manner. Aggregation operation requires the data from all children
to be aggregated before sending the result to a node up the query tree. Every
non-leaf node knows the number of its children in the query tree. Data units
are aggregated only if they were generated at the same epoch of a continuous
query. The computation of aggregated value of k > 2 data units does not
require all the data units to be available. Instead, computation of aggregated
value is done pairwise, when only two values are aggregated at a time and the
partial result is aggregated with other data units or partial results. Therefore
aggregation of k > 2 value takes k − 1 operations and in no time more than
one data unit or partial result need to be stored.

When first data unit from a particular epoch of a query arrives to a node,
it is placed into the pairing buffer. As soon as another data unit arrives,
the two of them are handed to the CPU for aggregation. If data units from
other children are expected, the result of an aggregation operation is placed
back into the pairing buffer, otherwise it is placed into the network buffer.
However, if data from some children does not arrive by some deadline, the
node decides that the data was lost and sends partial aggregate to the network
buffer for transmission up the query tree.

The flows of data inside the sensor node is shown on the Figure 3.1
Therefore the data has to wait in three buffers inside a node

• Pairing buffer - in this buffer arrived data from different children nodes
is waiting for the date from remaining children to arrive

• CPU buffer - waiting for CPU resources to perform aggregation

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 23

Network interface -

CPU&%
'$

... Data from
children

�����*�����:

XXXXXz

HHHHHj

Pairing
buffer

-

Sensors

6 6

CPU queue

-

Network queue

-

Figure 3.1: The flow of data inside a sensor node and structure of the waiting
buffers. Data units arriving from children nodes are either sent to pairing
buffer to wait for arrival of other children or sent directly to the network
interface module for transmission. Data units after aggregation are either
sent to the network buffer or back to the pairing buffer in the case of more
data units expected

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 24

• Network buffer - aggregated data unit waiting for transmission to a
parent node up the tree

In this paper we assume that aggregation operation is relatively simple
and therefore the CPU is lightly loaded. In this case CPU queue is short and
does not significantly impact delay characteristics. One of the reasons for this
is that effective CPU speed can be easily raised either by using nodes with
more powerful CPU or making wake-up periods longer. However, occupation
of the pairing and network buffers depend mostly on the outside conditions
such as total transmission rate in the particular wireless channel. Since we
can not change much the network parameters but can change CPU, the
network will likely become a bottleneck and therefore make the most impact
on the data unit loss. Another reason why it is the communication phase
which contributes mainly to the loss of data units is that the performance of
wireless network interface is highly non-deterministic compared to CPU.

Therefore we focus our admission control scheme on the loss due to the
network delays and overflow of network and pairing buffers. Another reason
for concentrating on the network part specifically is that the communication
phase consumes significant share of sensor battery. However, even if data
generation rate of a sensor is low, it is possible that the delay in obtaining
wireless channel for transmission is high, meaning that the node has to spend
much time listening to the channel and therefore suffer from high battery
drain. The admission control would decrease the total amount of traffic in
the channel, thus leading to battery saving.

The rest of the chapter is organized as follows. In the next section we
describe the model of wireless network access and propose distribution for
delay characterization. Section 3.3 describes how query loss characteristics
can be obtained from the parameters of wireless access model. Section 3.4
describes the admission control procedure. In section 3.5 we present our
simulation results to support the proposed procedure.

3.2 Wireless delay model

Currently available sensor nodes use variations of CSMA/CA media ac-
cess protocol. Newly proposed MAC protocols [YHE02b, WC01] addressing
specifics of sensor networks are also CSMA/CA based. Also there is a stan-
dard [ANS03] aimed for the use in personal and sensor networks, which in
particular uses CSMA/CA with exponential back-off. Therefore our analysis
we based on the model where CSMA/CA with exponential back-off is used
for wireless access.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 25

[JNR05] showed that for the case of slotted CSMA/CA MAC protocol
and exponential packet arrival the probability of waiting time (comprising of
queuing and service delay) W exceeding a value T , for the large T is given
by

Pr(W > T) =
λ(WminC

′
(1))B

1− λβ ′(1)
α∗(logT)T 1−B + O(T−B) (3.1)

where C(z) is the probability generating function for the number of busy
slots between two consecutive idle slots, β(z) is the probability generating
function for service delay, B = −log2p where p is the collision probability,
wmin is the minimum backoff interval, λ is the arrival rate and α∗(x) is some
periodic function with small fluctuation. C

′
(1) and β

′
(1) are therefore equal

to the average busy interval and average service time, correspondingly. Note,
that by the service time we mean time to acquire the channel and transmit
a packet.

Important is the fact that asymptotically the distribution behaves as a
heavy-tail Pareto distribution. Since we want to limit the data loss in a sen-
sor network to a small probability, we therefore cannot ignore the heavy-tail
property and need to use Pareto distribution to approximate actual packet
delay distribution. The equation (3.1) also gives us the important charac-
teristic of this distribution, namely that the power parameter is equal to
1−B.

The assumption of exponential arrival may not hold in actual sensor net-
works where continuous queries are producing results in fixed interval times.
Especially since the wireless channel in the case of a single CSMA/CA MAC
controller provides common media for receiving and transmission of data for
different neighbor nodes, which significantly reduces possibility of arrival of
several packets in a short time interval. Because of these factors the arrival
process on a node may not be very different from the fixed rate arrival from
point of view of influence on the total packet waiting time. In fact, in our
simulation scenario the probability of delay distribution for nodes on the
edge of the network with strict deterministic arrival was not much different
from the one closer to a query root and in both cases was proportional to the
T−B. That is the power parameter of the distribution is the same as in the
case of service delay distribution. (Asymptotic characterization of service
delay is placed into appendix). For this reason, we assume for the rest of
the paper that the arrival process to the network interface of sensor nodes is
deterministic with packets arriving in fixed intervals.

Also note that the fact that the tail of the delay distribution behaves as
a Pareto distribution is valid for all protocols which use exponential back-off
in the case of transmission failure. In the work of [JNR05] collision was con-

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 26

sidered as such a failure. In the IEEE 802.11 protocol [ANS99] collision is
not detected on the sender, and back-off timer exponential increment hap-
pens when transmission attempt does not lead to a positive confirmation.
However, as long as we have a method to quantify the probability of failures,
we can quantify the parameter of the service and full delay distributions.

We would like to approximate actual distribution with another, parame-
ters of which we could easily obtain. This approximated distribution should
be close to the actual delay distribution for the large values of T . We suggest
to use a Pareto distribution as an approximation. The general form of Pareto
distribution is

P (X > x) = (
x

xmin

)−k

with the mean value

E(X) =
k

k − 1
xmin

We do not know both parameters k and xmin. However, they can be evaluated
using following measured values.

B - the logarithm of probability of contention window increment
W - the average waiting time of a packet on a network interface of a

sensor
R - the ratio of packets whose delay is higher than the W
U the average delay for packets whose delay is higher than the W
To obtain k and xmin from these measured parameters, we can use one

of the four methods:

1. We assume that k = B and the mean value of the approximated Pareto
distribution is equal to the actual mean value. In this case, the delay
distribution takes the form

Pr(delay > T) = (
TB

W (B − 1)
)−B (3.2)

2. We assume that k = B and that the point (W ,R) belongs to the dis-
tribution, i.e. Pr(delay > W) = R. Then the distribution is given
by

Pr(delay > T) = R(
T

W
)−B (3.3)

3. We assume that k = B, but instead of using mean value for the whole
distribution, we only use mean value for the delays above mean delay.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 27

Since we take only part of the values, actual distribution has to be
adjusted by the ratio factor R. Then the distribution is given by

Pr(delay > T) = R(
TB

U(B − 1)
)−B (3.4)

4. We assume that the point (W ,R) belongs to the distribution and that
the delay values after this point have an average of U . In this case the
distribution can be presented as

P (X > x) = (
x

xmin

)−k = (
W

xmin

)−k(
x

W
)−k

The first term is the probability P (X > W) = R, the second is the
distribution with minimum value W , which, according to the measure-
ment, has the average U . Therefore k = U

U−W
and the distribution is

given by

Pr(delay > T) = R(
T

W
)
− U

U−W (3.5)

The reason why we suggested so many ways of computing approximated
distribution parameters is because each of these methods has some weak-
nesses. The first method, originally suggested in [TBT05], has two weak-
nesses. First weakness is that the method requires B to be greater than 1.
Second weakness is that the approximated distribution of the tail is strongly
affected by the actual distribution in the range of small delays. The aver-
age delay in the actual case can be smaller than the average delay of the
Pareto distribution that is close to the actual distribution tail. The second
method eliminates first weakness but not the second. The second weakness
is addressed in the third and forth methods by shifting the approximated dis-
tribution to the region of values greater than W . However, the third method
also requires B to be greater than 1. The forth method is the most universal,
and can be used for other protocols or arrival patterns where it is not easy
to find the distribution power parameter k analytically. However, it may
also suffer from the strong influence of the actual distribution in the range
of small delays.

3.3 Loss and delay in a node

As a next step after proposing delay model we need to derive a characteri-
zation of respective losses in terms of proposed node delay distributions.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 28

As we already mentioned, we assume the following processing of data in
a sensor node. First, a data unit is placed into pairing buffer to wait for the
data from other children. Partial aggregation is performed on units stored in
the pairing buffer. Then the data is handed to the network interface module
for transmission up the query tree. Therefore the data loss could be due to
three reasons: the network network overflow, the pairing buffer overflow and
the exceeding of the timeout set on a parent node for arrival of data from a
current node. For simplicity we assume that network buffer and pairing buffer
are separate. Also, we assume that CPU is not a bottleneck and therefore
ignore the time and loss probabilities associated with CPU processing.

3.3.1 Loss in the network buffer

Since we assume that data is arriving at a node in fixed intervals, then the
occupancy distribution for the network buffer is linked to the total packet
delay distribution. If arriving packet sees that a queue already contains k
packets it means that the total delay for the packet being serviced is more
than (k + 1)Pi, where Pi is the period of packet arrivals. The total queue
length L has a distribution

Pr(L > l) = Pr(delay >
Pil

Mi

)

where Mi is the data packet size.

3.3.2 Loss due to timeout

We assume that each node waits for arrival of data from all the children
for some time Ttimeout and assumes that the data is lost and the incomplete
aggregate have to be transmitted if timeout expires. Therefore there could
be a case when data is not included into final result without being lost, but
just due to the fact that timeout is reached. To evaluate the loss of this
kind, we need to find a probability that data propagation time in the subtree
rooted in a current node exceeds the value Ttimeout.

Theorem 3.3.1. This probability is given by

Pr(Tsubtree > t) ≈ ∑

i

P (Ti > t)Ni (3.6)

where nodes i are all nodes below the current node and Ni is the number
of children of a node i. P (Ti > t) are distributions for separate nodes and
are given by the corresponding distribution from one of the equations (3.2,
3.4, 3.3, 3.5)

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 29

We assume that each node in a tree has a Pareto delay distribution in
the form Pr[ti > t] = Ait

−αi .
The tree with one level of depth has a delay T = max(t1, t2, ..., ti)+tparent,

that is maximum delay for children plus delay at the parent node.
For the maximum we have

Pr[max(A,B) > x] = 1− Pr[A < x] ∗ Pr[B < x]

Therefore for the Pareto distribution, ignoring the terms of smaller order, we
have

Pr[max(ti) > t] ≈ ∑

i

Ait
−αi =

∑

i

Pr[ti > t]

Since we consider neighboring nodes, then the values of B = −log2p,
where p is the collision probability are quite close. That is, the values of αi

from the distribution are also close. Then, according to [HdV05], for the case
of |αi − αj| < 1 we have

Pr[ti + tj > t] ≈ Ait
−αi + Ajt

−αj

For the general case

Pr[x + tj > t] =
∫ +∞

−∞
Pr[x > t− s]fj(s)ds

where fj is a probability density function of the random variable tj. If x is
the maximum delay for the children and tj is a delay at the parent, then
Pr[x = max(ti) > t] ≈ ∑

i Pr[ti > t] and therefore

Pr[max(ti) + tj > t] ≈
∫ +∞

−∞

∑

i

Pr[ti > t− s]fj(s)ds =

=
∑

i

∫ +∞

−∞
Pr[ti > t− s]fj(s)ds =

∑

i

Pr[ti + tj > t] ≈

≈ ∑

i

Pr[ti > t] + Nj ∗ Pr[tj > t]

where Nj is the number of children of a node j.
Since for this kind of distribution, similar to the original case of Pareto

distribution , the distribution of maximum of several values is still a sum of
distribution, we can repeat this for the tree having a depth more than one
level. The resulting distribution is

Pr(Tsubtree > t) ≈ ∑

i

Ait
−αiNi

where nodes i are all nodes below the current node and Ni is the number of
children of a node i.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 30

3.3.3 Loss in the pairing buffer

We can obtain a bound on the pairing buffer loss if we assume that at least
one data unit arrives immediately after it was generated by a sensor modality.
This assumption is reasonable because, except for the nodes which only relay
data, most sensor nodes from a query tree will produce data readings from
local sensor modalities. These modalities generate one unit of data per epoch
of the query. The locally generated data unit is placed into pairing buffer at
the start of the epoch. This data unit is stored in the pairing buffer until
the arrival of another unit from the same epoch. Then they are aggregated
and the result of an aggregation is put back into pairing buffer. Therefore
from the moment the data is generated to the moment when data from the
last child arrives the pairing buffer contains one data units from this epoch
of the query.

Let us assume that data units belonging to the same query are processed
in the first-come-first-served order. Then the total number of data units
belonging to a query i stored in the pairing buffer is bT elapsed

i /Pic and the
buffer space from one query is Li = MibT elapsed

i /Pic where T elapsed
i is the time

elapsed since generation of the last unsent data from the query i, Pi is the
period and Mi is the data unit size for the query i. The total amount of
buffer is therefore L =

∑
i MibT elapsed

i /Pic ≤ ∑
i MiT

elapsed
i /Pi, .

The probability that the buffer space on a node occupied by the query i
exceeds the value l is

Pr(Li > l) ≤ Pr(T elapsed
i > l ∗ Pi/Mi) (3.7)

Therefore the problem of finding distribution of pairing buffer space first
requires to find distribution of time delays from a subtree and then find a
distribution of their sum. However, since a distribution of a sum of many
variables having distributions such as the one from Equation 3.6 would be
too complex, we have to use only to leading terms of the distributions. For
example, we can sum coefficients of all terms from Eq.3.6 where orders are not
less than highest minus 1. From [HdV05], we then can use the approximation
for that case which gives for close B Pr[L > l] =

∑
i Pr[Li > i].

This result assumes the first-come-first-served order for the data form the
same query. However, it is not always valid. In our system assumptions data
waits for arrival of data from all the children. If some data is lost on the
MAC level of the child then the next epoch data may arrive earlier than the
current epoch reaches timeout for transmission of incomplete result. This
violation of FCFS order may increase the pairing buffer use compared to the
model of Equation 3.7.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 31

3.4 Admission of continuous queries

Admission of a new query is performed on a candidate query tree given by
some external routing algorithm such as semantic routing tree [MFHH05].
Admission control scheme consists of three components performed in differ-
ent parts of the network. First component is per-node estimation of the
new transmission delay probability parameters. It is done on each node in-
cluded in the candidate query tree. The second component is run either
on the root node or (if any) entity controlling the query distribution and
operation. It assigns loss probabilities to the nodes of the query tree. The
third component computes approximation functions of query-level probabil-
ity distributions, computes estimated loss probabilities for already accepted
and incoming queries and compares to the assigned probabilities. It is also
done on every node of the tree, although pairing buffer check is only done on
aggregation nodes.

When query arrives, the following steps of admission control are per-
formed:

• By piggy-backing the query tree routing protocol, collect the current
node parameters.

• Estimate the node parameters which would be observed after a new
query is admitted.

• Re-compute the query-level delay and loss probabilities for already ac-
cepted queries which would be observed after. If distributions are not
satisfactory, reject the query.

• If already accepted queries are not compromised, compute the proba-
bility distributions for delay and loss for every aggregation node of a
new query.

• Based on the query-level IQ requirements, decide on the acceptable
delay and loss probabilities for every aggregation node as described in
the later section 3.4.2. If there is no assignment which satisfies the
per-aggregation-node computed expected losses, reject the query. If
no specific IQ requirements are given, the query can be accepted or
rejected based on the query-level delay or loss probabilities.

• If all the above is done satisfactorily, accept a query.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 32

3.4.1 Node parameters estimation

The parameters of delay distribution on a node for already accepted queries
can be measured during their operation. However, when a new query arrives,
we need to predict its expected on the node delay distribution. The general
form of distribution is

Pr(W > T) = (
T

Tmin

)−B

If we assume that the value of B remains the same as before admission of a
query, then, assuming that values of (WminC

′
(1))B ∗α∗(logT) from Equation

3.1 give a constant, we adjust Tmin according to

T ′
min = (

λ′(1− λβ)

λ(1− λ′β)
)

1
B Tmin (3.8)

Where T ′
min and λ′ are new values of Tmin and λ. As a base for distri-

bution any of the equations 3.2, 3.4, 3.3 and 3.5 can be used. However, we
recommend to use Equation 3.5 because it computes the Pareto distribution
power parameter and therefore is valid not only in the case of arrival similar
to deterministic.

All these parameters of the proposed approximated distribution could be
measured locally on a sensor and do not require much processing power or
additional network activity. Although Equation 3.8 was obtained by making
some assumptions for the Equation 3.1, it still gave good results for the case
of non-exponential arrival in our experiments.

3.4.2 Loss probability assignment

When a new query arrives, we would like to verify that the loss characteristics
of a new query can be satisfied without violation of the loss characteristics of
the existing queries. Since we want to make admission scheme to be based on
local parameters as much as possible, it is not a good idea to compute loss
probability on a particular node and then recompute total probability for
every query tree which includes current node. It is more reasonable to assign
to each node of a newly arrived query tree some bound on loss probability
and then make admission decision on the basis of these bounds.

The query is deployed in the form of a tree. We assume that we can ob-
tain the basic characteristics of the tree and subtrees for each node - namely,
the number of nodes and the depth of a tree. This can be done for example
by piggybacking the routing protocol. From this tree information and the re-
quired limits on the end-to-end loss probability we compute rough estimation
on the required loss for each node.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 33

This assignment depends primarily on the goal we would like to achieve.
In the context of the data-level IQ metrics we can achieve data completeness,
coverage and temporal coherence. Below we will describe example assign-
ments for different IQ metrics using the following scenario. We assume that
the set of sensors Q is selected for data acquisition and set R is a set of
sensor nodes relaying the data to the consumer, the sink node in the center
of the deployment and

• Data completeness and coverage specify the bounds on the loss
of data. Completeness specifies the total loss and coverage specifies
geographical loss variation. Therefore we need to bound the loss prob-
ability on different nodes throughout the network. This bound is ob-
tained from the total bound on the loss and topological properties of
the network.

If we expect the total loss of data from any source sensor node to reach
the consumer node at most to be equal to p, then for a node having a
subtree of depth N where the total loss probability should not exceed
p (possible coverage requirement), we assign local probability bound
equal to plocal = 1 − (1 − p)1/N . In the case the consumer node is
positioned in the geographical center of the network, the value of N is

expected to be
√
|R|
2

• Temporal coherence specifies the bounds on the deadline for the
data delivery and on the probability of its violation. Since we want to
define this bound for any case of sensors acquiring the data, we may
want to limit the probability of loss for the case of any node allocation.
For example, let us consider the case we want to satisfy the deadline
time TD with probability p in the network of with the data consumer
positioned in the center. Every aggregation adds one term to the sum in
Eq.3.6. Therefore the total probability of delay for the query exceeding
TD can be given by

Pr(t > TD) ≈ L(TD) ∗ (max|Q| ∗ 2 + max|R|)

If the number of acquisition nodes is bound by n, then we can set a
requirement for loss probability L(TD) on a single node to be bounded
above by p

2|Q|+
√
|R|/2

For every node of the tree we need to recalculate parameters of distribu-
tion function to take into account the load from a new query. In particular,
we calculate the expected change in the mean waiting time according to

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 34

Equation 3.8. Note, that as a current value of W we are using measured
value. The value W new gives us estimate on the W after acceptance of the
new query, and it should be replaced with the measured W later, when a
new change happens in the query allocation. Then we estimate new loss
probabilities for the pairing and network buffers, probability of timeout and
check that it is still satisfactory. If it is, then the query can be accepted.

3.4.3 Loss probabilities estimation

This component combines the probability of losses due to various factors
according to the models presented in the section 3.3. The functions rep-
resenting probabilities of loss are computed from node delay distributions,
which, in turn, use the parameters predicted according to Equation 3.8.

Every node of a tree except the root computes probability of loss due to
network buffer overflow according to

Pr(L > Sn) = Pr(delay >
Sn

λiMi

) = (
Sn

λiMiTmin

)−B (3.9)

where Sn is the size of network buffer, λi is a data rate on a node.
Every aggregation node computes probabilities of loss due to timeout

according to the

Ptimeout = Pr(subtreedelay > Ttimeout) =
∑

i

(
Ttimeout

T i
min

)−Bi

N i (3.10)

where i are all the nodes in the subtree under given aggregation node, N i

- number of children of node i.
Loss due to pairing buffer overflow is computed according to

Ppairing = Pr(L > S) =
∑

j

∑

i

(
SP j

T i
minM

j
)−Bi

N i (3.11)

Where, j are queries using a particular aggregation node, i - nodes used
by subtrees of queries, Sp is the size of pairing buffer, Mj is data unit size,
P j - period of a query j.

Note that the acceptance of the query means that the loss due to lack
of resources is limited. However, if we choose not to send some data to the
parent for aggregation, such as proposed in [MSFC02] for the case of MAX
aggregation, this does not negatively affect the outcome of the query because
this decision was taken after considering the impact of data on hands on the

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 35

query result. Therefore this admission control mechanism is transparent
from point of view of algorithms attempting to minimize communication in
a sensor network.

3.5 Simulation evaluation

We evaluated the validity of the node and query delay and loss models
through simulation using NS2.

3.5.1 Simulation setup

We simulated the following scenario. There are 27 nodes and there are several
queries running on these nodes. The scenario is depicted on the 3.2

As a source of the data for the queries we used the Constant Bit Rate
(CBR) traffic generators. Each of the CBR generators for one query produced
packets at the same rate r. To avoid the effect of the peak load on the network
in the moments epoch data is generated the CBR source was modified to
produce the packets at times ti = t0 + 1

r
i+ e where e is uniformly distributed

random variable from the interval (− 1
2r

, 1
2r

]. Although this randomization
of data generation does affect the total time for a query data to reach the
consumer node, this effect is small compared to the total time.

We implemented the sensor nodes performing the data aggregation ac-
cording to the model described on Figure 3.1. Each node has one local
sensor modality represented by the CBR generator and some number of chil-
dren nodes. If there are several queries running on a node, each query has
its own aggregation agent but they all share the same aggregation buffer.
The data aggregation works as follows. The node knows the total number
of its children. Every data unit has has a epoch number field and data is
aggregated only belonging to the same epoch, so that for every epoch there
is a combined query result delivered to a query root. The data is aggregated
pair-wise, therefore only at most one data reading is stored in the aggrega-
tion buffer for a given epoch. In this simulation we did not include queueing
at the CPU, because of the assumption stated in section 3.1.2.

We implemented logging of contention window increments in the
IEEE802.11 MAC implementation. The probability of failure with subse-
quent backoff increment is therefore was computed as a ratio Cinc

CACK+Cinc
,

where Cinc is the count of increments and CACK is a count of successful
(acknowledged with ACK) transmissions.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 36

0

1 3

2

5

25

24

23

22

6

8

7

26

18

19

4

11

9

12

13

10

16

15

14

17

100m

21

20

Query 3
Query 2
Query 1

Figure 3.2: The structure of the sensor network used in the simulation. The
sensor network consists of 27 nodes. There are 3 queries running on the nodes,
the direction of dataflow for each of them is shown by the corresponding arcs

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 37

Figure 3.3: Simulation results. The actual and approximated distribution of
the total delay in a single node. Three approximation methods, described in
the section 3.2, are presented

3.5.2 Node delay distribution

First we need to confirm that we can use approximations provided by Equa-
tions 3.2, 3.4, 3.3 and 3.5. In the above experiment we computed the actual
delay distribution of packets in a node. The example distribution for a node
3 is presented on the Figure 3.3. The figure shows four delay probability
distributions - one of them, denoted ”Actual delay” is a distribution of delay
for a sub-query obtained using simulation. Three others are approximated
distributions using approximations expressed by Equations 3.4, 3.3 and 3.5.
Since Pareto distribution is a straight line when logarithmic scale is used, we
use logarithmic scale for our case as well.

It can bee seen that, although with some difference, the three methods
approximate the actual distribution rather closely.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 38

3.5.3 Query delay distribution

The next step is to evaluate how well the query delay is given by the Equation
3.6. In our case the query delay is defined for the data readings belonging
to the same epoch and is equal to the time since the last data unit from
the epoch was generated to the moment the aggregated result is produced at
the sink node. We chose the last data unit as a starting moment because in
this way the delay is mainly the characteristic of the data aggregation and
propagation process, not the data generation as ti would be in the case we
chose the first data unit as a starting point. In terms of aggregation, when
two data units are aggregated, the timestamp is put into the result equal to
the maximum of two timestamps of aggregated data units.

Figure 3.4 shows the example of actual and approximated query delay
distribution. Two approximations are used, given by Equation 3.3 (Average
and B) and by Equation 3.5 (Average and Above Average). In this case,
however, we see that the more complex approximation of Equation 3.5 follows
actual distribution much better.

3.5.4 Pairing buffer occupancy

Important parameter for the admission of a query onto a sensor node is buffer
space for storage of data units to be aggregated. We separated the types of
storage into network buffer and buffer for storage of data units waiting arrival
of other data units from the same epoch for aggregation. Figure 3.5 shows
the actual and approximated distributions of pairing buffer occupancy. The
approximated distribution is obtained by summing the distributions obtained
from sub-query delay distributions given by Equation 3.11.

3.5.5 Network buffer occupancy

This experiment checks validity of the use of Equation 3.9 in approximating
the buffer requirements and loss probability due to network buffer overflow.
The result is shown on the Figure 3.6 and demonstrate the similar asymptotic
behavior of the actual and approximated buffer distributions. The approx-
imated distribution is obtained using ”Average and Above average” node
delay distribution.

3.5.6 Query Admission control

When a new query is being admitted to a network, we need to make sure
that the existing and additional queries will still obtain satisfactory statistical

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 39

Figure 3.4: Simulation results. The actual and approximated distribution
of the query delay. Because of the limitations on the failure probability, the
method ”Above average and B” is not presented. However, it still can be
used on some of the nodes where failure probability is less than 1/2. The
long horizontal extension of the actual delay distribution is due to the losses
on the MAC level which delay some data until local deadline.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 40

Figure 3.5: Simulation results. The actual and approximated distribution
of the pairing buffer occupancy for node 7 in the system with 3 queries.
Approximation takes into account delay distribution of 2 queries using buffer
space on a node

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 41

Figure 3.6: Simulation results. The actual and approximated distribution of
the network buffer occupancy for the node 6.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 42

Figure 3.7: Simulation results. The actual and approximated distribution of
the query delay for the case of admission of the 3rd query. The 3rd query rate
is 4 kbps. The ”Approximation 2” is the approximation of the distribution
based on the measured parameters of the system with only two queries. The
”Approximation 3” is the approximation for the query delay based on the
parameters measured for all three queries.

QoS. For this we need to estimate the parameters of the queries beforehand.
We propose to use the estimation according to Equation 3.8 to adjust local
parameters of each node and then use those adjusted parameters to find the
performance of the queries after admission of the new one.

The figures 3.7, 3.8 show the example of such an approximation for two
different admitted query rates. The second rate, 8kbps, it quite high for
this network configuration, where the main query creating the load runs and
the rate 10kbps. It can be seen that for relatively small rate the change in
the query performance is reflected quite well. For higher rates, however, it
would be useful to have a network model which can give the change in the
probability of transmission failure.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 43

Figure 3.8: Simulation results. The actual and approximated distribution of
the query delay for the case of admission of the 3rd query. The 3rd query rate
is 8 kbps. The ”Approximation 2” is the approximation of the distribution
based on the measured parameters of the system with only two queries. The
”Approximation 3” is the approximation for the query delay based on the
parameters measured for all three queries.

CHAPTER 3. DATA-LEVEL QUERY ADMISSION-CONTROL 44

3.6 Conclusion

In this chapter, we proposed an approximation scheme which gives an esti-
mation for delay and loss of aggregated sensor data in a tree-shaped sensor
network continuous SQL-type query. Different node approximation meth-
ods were proposed and result for the query or sub-queries was derived. We
provided examples of how this approximation can be used in computing data-
level IQ metrics of data coherence, data completeness and coverage. We also
indicated how this scheme can be used in making admission control of such
queries in a sensor network.

The scheme uses the stochastic model of wireless data channel based on
Pareto distribution. The parameters of this Pareto distribution are obtained
by the local measurement of statistical service parameter. The strong side
of this scheme is that it involves only minimal information exchange during
query dissemination and admission time, and this information can be trans-
ferred by piggy-backing the query routing algorithm. The drawback of the
scheme that for the sake of simplicity and uniform representation of query
delay distributions as linear combination of node delay distributions, we had
to exclude CPU delay from the consideration.

The novelty of the scheme is in the fact that it models the probabilistic
behavior of the whole query and that the basic information for this model
obtained by building probability distributions of local parameters.

The scheme was developed for the sensor networks based on CSMA/CA
media access protocol with exponential back-off and therefore may be appli-
cable to networks based on a broad range of MAC protocols, including IEEE
802.15.4 [ANS03].

Chapter 4

Phenomena-aware IQ
management

As described in the section 2.3, if we wish to provide a good information
quality in the sensor network observing a dynamic system, we have to include
the observed phenomena state as one of the factors in making a decision about
resource use. In this chapter, we describe how such a system can be built in
the case of a system collecting and fusing discrete observation values. In this
chapter, since the values are obtained in a process of fusion, the addressed
level of information is the high-level collective information.

4.1 Introduction

Multi-modal sensor networks are expected to become an important part of
the future ubiquitous intelligent computing. They are capable of obtaining
information and deriving complex characteristics of the phenomena taking
place in the environment being monitored. However, since the processing of
information from sensors of different modalities is complex, and applications,
built in such environments, are highly dependent on the particular content of
the information, the deployed sensor network applications are mainly custom-
made. However, for sensor networks to become widely used there has to be a
way to separate the complexity of information processing from the application
development.

One of the approaches to such separation is to use an architecture where
a layer which processes information supplies the applications with the pro-
cessed high-level information. The additional advantage of such a separation
is that the high level information can be reused by different applications,
enabling more complex environment intelligence and saving resources for

45

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 46

data acquisition. However, in this case we need to introduce some metrics
which characterize the quality of the supplied information and ensure that
the data supplied is suitable for the application needs. The efficient way to
satisfy these application requirements is to choose the most appropriate sen-
sor nodes and sensor modalities which would provide a required IQ for the
current state of the system. And since the state of the environment being
monitored changes, the IQ management system becomes a sensor resource
management system depending on the state of the monitored environment.

The motivating scenario we use here is the application for patient activity
tracking and behavior analysis in the home or hospital ward environment.
This kind of scenario is very interesting because of the two reasons. First,
the sensors for this system are essentially multi-modal, since the environment
may change drastically enough to make useless any particular sensor modal-
ity, be it video, audio or position sensors. The examples of such changes are
changes in the lighting for video, change in the noise level for sound, obstruc-
tion for position sensors such as ultrasonic or absence of tags for the tag-based
positioning. Second, the set of applications may also change drastically, as
the changing number of people or other changes in the environment invoke
either new copies of existing applications or applications which are idle most
of the time and only are supposed to respond to certain conditions. These
changes in the application set may bring a heavy load on the underlying
sensor infrastructure and therefore resource contention need to be addressed.

In the class of information uncertainty we see three main causes of IQ
loss. First is uncertainty due to measurement error. Second is the change in
uncertainty introduced by the multi-modal fusion. Third is the uncertainty
increase due to losses of useful data in the process of delivery. First two are
acquisition related, the third is delivery related. We need to find a model
which potentially may enable to address all three of these causes. In addition,
the it would be beneficial to address some information completeness metrics
as well.

In the example of the patient tracking application the main IQ metrics are
tracking accuracy, activity or behavior recognition false alarm rate, timeliness
for notification of critical situations and completeness of the activity tracking
in time. This is not exhaustive, but fairly representative set of metrics.

4.2 Objectives and scope

The objective of this work is to propose methods which enable to manage In-
formation Quality in sensor networks for a more general class of phenomena-
monitoring sensor network applications. We need to identify a possible class

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 47

of applications which can be general enough to be used in many installed
systems yet specific enough so that the model can be created and used.
In addition, since we want to make it phenomena-aware, and information
about phenomena is collected by a variety of heterogeneous sensors, we need
a model which can effectively translate the resource management decisions
into phenomena-related metrics.

Therefore, to list down the main goals, we need to:

• Find general application class which would benefit from phenomena-
aware resource management

• Propose a model of application which reflect the information collection
and resource decisions

• Find IQ metrics which can be enforced using the model

• Find a way of translating model metrics into IQ metrics described in
Chapter 2.

• Demonstrate that the model can be used for realistic systems.

The assumptions we use should be related to correspondence of actual
applications and the model used. We state these assumptions later when we
introduce the applications in Sections 4.5 and 4.7.

4.3 Related work

There are a few architectures which use a notion of quality of obtained in-
formation and do the sensor management with the aim to satisfy certain
IQ bounds. MiLAN [HMCP04] addresses the question of how to guaran-
tee IQ in the presence of resource constraints. However, MilAN uses very
rough and non-transparent notion of quality. In QUASAR [LHY+04], the IQ
notion of application error tolerance is introduced and addressed by using
approximation for the cases when data is lost or unavailable due to resource
limitations. However, the described approach is only applicable to rather
simple in-network processing.

The work [DGM+04], which considers environment monitoring scenario,
provides assurance on the deviation of the value acquired, thus ensuring
uncertainty, by exploiting pair-wise correlation between different variables
describing environment. For example, the voltage measurement on one node
can be used instead of temperature o the other due to high correlation be-
tween these two values. However, such correlation cannot be used in the

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 48

dynamic environment since it describes the average case, and it also does not
consider the case of resources being unavailable.

Midfusion architecture[AKS04], similar to our approach, separates infor-
mation fusion into two levels - sensor and application, each of them repre-
sented by Bayesian network (BN). For the complete processing in the partic-
ular environment the BNs are combined in such a way that the results given
by the combined BN satisfy certain requirement. The sensors are chosen on
the basis of expected definitiveness of the result. However, this architecture
requires particular representation of application and sensor levels and does
not allow general requirements on information quality. Besides, the resource
allocation is made only when either sensor availability or application require-
ments are changed and does not depend on the state of the observed system.
Another problem is that, as we will demonstrate later, the inference on the
basis of a static BN is prone to frequent estimation change due to the lack
of the memory of the past.

In [ZLL+03] Feng Zhao et. al. described the conceptually framework
of the information-directed approach to signal and information processing.
In the paper the problem considered as an example was a tracking prob-
lem, which was formulated as a constrained optimization problem Tr =
〈N, T, M, Q,O, C〉, which includes the following models:

• Sensor network model N

• Set of targets T

• Signal propagation model M

• Set of queries Q

• Objective function O

• Set of constraints C

For a more general case of information acquisition, we can formulate phe-
nomena monitoring problem as a similar constrained optimization problem
Ph = 〈N,X,M, E, I, R,O,C〉, with the following models:

• Sensor network model N

• Set of observed environment characteristics X

• Sensing measurement model M and Estimation model E

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 49

• Model of information gain I with respect to resource use R. Objective
function O is derived to obtain required tradeoff.

• Set of constraints C

A significant difference from the tracking scenario is the inclusion of the
information gain model, which in many cases can be quite complex. The
particular model depends mainly on the chosen method of information fusion.

In [ZJ06] was proposed a framework which made dynamic resource al-
locations according to the current observed phenomena state. The goal of
the framework was to choose optimal set of sensors to monitor a system
while maintaining a certain level of the quality of information obtained. As
a model for fusion authors proposed to use the Dynamic Bayesian Network
(DBN) [Gha97] model. However, their model was somehow unrealistic for
the distributed sensor network scenario because it assumed that there is no
data loss and that resources are always available.

In this chapter, we present a general set of IQ metrics and apply the
generalized information-based approach of [ZLL+03] to the fusion system
based on DBN as in [ZJ06] with more realistic assumptions that:

• There is an IQ degradation due to the losses of data in the network

• Resources are not always available due to contention between queries
providing different variables

so that the mapping between the IQ metrics and the resource use can be
obtained.

4.4 Notations and definitions

4.4.1 Notations

Θ = {θ1, ..., θK} - set of system state descriptions obtained by the fusion
system. In the terms of Bayesian networks, they represent a set of hypotheses.

Total set of sensors S = {S1, ..., Sn} and set of sensors producing data at
time t St ⊆ S

The measurement of a sensor i at the time t is z
(t)
i , the value of the

measurements belonging to a finite set of possible values Fi = {f i
1, ..., f

i
L}.

The meaning of each f i
j is either a particular feature extracted by a complex

sensor modality such as video or audio, or an area of possible values for a
continuous sensor modality such as position. By Z(t) we denote a vector of
measurements z

(t)
i .

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 50

Note, that such feature-based sensor characterization is in fact very gen-
eral and very common. It is very general because it does not make any as-
sumptions at all about the physical type of sensors, be it simple reed switches
or complex systems of video and audio recognition. And yet in fact many
system, even complex, use features because they try to hide the complexity
of the underlying data and reduce the amount of information passed up to
the top-level applications. Therefore they use more simple units actually
describing some type of event or information detected.

The possible examples of sensors and features are:

• Video camera as a sensor and fact of presence or absence of a person
or object from the camera view

• Microphone array and presence of noise from a certain direction or
specific sound such as water flow

• Accelerometer on a person’s wrist and hand specific motion detected
or acceleration threshold exceeded

• Opening or closing of a door detected with a reed switch

• Proximity of a RFID-tagged object detected in a certain location by
RFID reader

4.4.2 Bayesian Network model

Bayesian network [Jen01] is a graphical representation of the dependency
between random variables. Because of the hierarchical dependency between
variables the joint probability distribution can be expressed in terms of condi-
tional probabilities of variables depending only on the variables immediately
above the variable in the hierarchy, called parents and denoted by a set π(Xi).
The joint probability is given by

P (X) =
n∏

i=1

P (Xi|π(Xi)) (4.1)

The example of the Bayesian network is presented on the Figure 4.1.
Usually, the top node of the Bayesian network model describes the system

state Θ, called hypothesis, which we want to estimate. The leaf nodes of the
network represent measured values zi (in the case of sensor network - sensor
readings or features). Given the joint probability, we can use it to estimate
the state of the system based on the sensor data measured. It is done by
computing the marginal distribution Pr(Θ = θk|Z).

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 51

Actions

Eating sound
detected

Video
position

Position
tag

Eating video
detected

Pressure
sensor

Accelerometer
eating

Table content
detected

Eating with
sound

Something on
the table

Eating camera
obstructed

Table camera
obstructed

Position

Sitting on
the chair

Hand Eating
movements

Figure 4.1: The Bayesian Network for estimation of the quality of action
recognition of eating in the kitchen. The top node represent the activity
we want to detect. Blue nodes represent the features provided by different
sensor modalities. Actions node has three possible values: Nobody present,
Person in the kitchen and Person eating

4.4.3 Dynamic Bayesian network model

Dynamic Bayesian network [Mur02] is a Bayesian network constructed from
above Bayesian network by adding the temporal behavior to some of the
system variables. There is a copy of the static BN for every time moment,
describing the dependency between random variables at the particular mo-
ment. In addition, the nodes of BN describing the random variables which
evolve in time become temporal nodes. These variables are assumed to have
first-order Markov dependency on their values at the previous time moment
and therefore each temporal node has an additional parent - a copy of the
same node from the previous time slice.

The joint probability distribution therefore has time component and is
given by

P (X1:T) =
T∏

t=1

n∏

i=1

P (X t
i |π(X t

i)) (4.2)

Since the first order Markov process is assumed for the state of the tempo-
ral nodes, it is sufficient to keep only two time slices of the DBN to describe
the system. First time slice describes the past, the second describes the fu-
ture. If there was any data taken at the last time moment, it is added as
evidence nodes to the first copy of the BN. Note, that although the first

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 52

Actions

Eating sound
detected

Video
position

Position
tag

Eating video
detected

Pressure
sensor

Accelerometer
eating

Table content
detected

Eating with
sound

Something on
the table

Eating camera
obstructed

Table camera
obstructed

Position

Sitting on
the chair

Hand Eating
movements

Actions

Eating sound
detected

Video
position

Position
tag

Eating video
detected

Pressure
sensor

Accelerometer
eating

Table content
detected

Eating with
sound

Something on
the table

Eating camera
obstructed

Table camera
obstructed

Position

Sitting on
the chair

Hand Eating
movements

Time t-1

Time t

Figure 4.2: The Dynamic version of the Bayesian Network from the previous
figure. Yellow nodes are temporal nodes. In this case, the timed nodes are
Activity, Something on the table, Position and Sitting.

copy of the BN is built on the basis of the original static BN, the conditional
probability distributions (CPD) for the temporal nodes are different, because
they depend on all the past observations. On the other hand, the CPDs for
the temporal nodes in the second copy of the BN are equal to the original
CPDs. This change in CPDs of the temporal nodes represents all the dynam-
ics of the system. On the other hand, the fact that the CPD for the temporal
nodes is changing every time step actually represent the memory of all the
past sensor readings embedded in the model. Even if one of the sensors give
a new information at the next time step, it will not affect the distribution
of the hypothesis state much, unless it comes from a very reliable sensor or
correlates with other data.

Similar to the Bayesian network, usually the top nodes of the both copies
of the BN represent a hypothesis Θ and leaf nodes represent sensor readings
or features zi. The only difference is that both Θ and zi have different time
indices in the two copies of the BN, e.g. z

(t−1)
i and z

(t)
i . The estimation of

the state in the past is done using evidence readings Z(t−1) and prediction
of the system state at the next time moment Θ(t) is done by obtaining the
distribution Pr(Θ(t) = θk). Since distribution at the time t − 1 together
with obtained evidence defines the distribution at the time moment t, we
can use joint distribution Pr(Θ = θk, z1 = f 1

j1, ..., zn = fn
jn) to find which set

of sensors would likely to give satisfactory information quality.
Figure 4.2 shows an example of the Dynamic Bayesian network corre-

sponding to the Bayesian network from the Figure 4.1.

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 53

4.4.4 Information uncertainty metric

The uncertainty of a variable is represented by a probability distribution.
However, in the case of the hypothesis of the multi-variable system, the
probability distribution is the goal of the estimation algorithm. Selection
of the sensors, however, has to be done in advance before the hypothesis
distribution can be computed.

For this we are going to use the entropy based metrics. Entropy of a
discrete random variable is defined as

H(Θ) = −∑

i

Pr(Θ = θi)log2(Pr(Θ = θi))

In the case when there is possible multitude of distributions depending on
some set of variables such as sensor readings, the metric of the uncertainty
of the distribution is the conditional entropy H(Θ|S) of the variable, which
is the expected value of the entropy of the hypothesis distribution obtained
with sensor readings as evidence, averaged over all possible sensor reading
combinations.

H(Θ|S) = Pr(S = S)[H(Θ)|S]

There are two commonly used metrics. First, we can use the conditional
entropy itself, which is computed as

H(t)(Θ|S) = −∑

Θ

∑

Z(t)∈F1...Fn

Pt(θ, z
(t)
1 , ...z(t)

n) log P (θ|z(t)
1 , ...z(t)

n) (4.3)

The good sensor selection has to have a low value of the conditional
entropy.

Another metric, similar to [ZJ06] is the information gain or entropy re-
duction and defined

I(Θ; S) = H(Θ)−H(Θ|S)

and can be computed as

I(t)(Θ; S) =
∑

Θ

∑

Z(t)∈F1...Fn

Pt(θ, z
(t)
1 , ...z(t)

n) log
P (θ|z(t)

1 , ...z(t)
n)

P (θ)
(4.4)

Instead of the entropy H, the normalized entropy H can be used, where
H(Θ) = H(Θ)/log(|θ|), |θ| is the number of hypothesis states.

Below, as the uncertainly metric in the sensor selection we are using the
conditional (not normalized) entropy H(t)(Θ|S)

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 54

4.5 Single application case without resource
constraints

First, we consider the simple case of a single (standalone) application using
the sensor network with the aim of getting certain high-level information.
Since the application is standalone, no other applications are competing for
the shared resources and therefore the problem of resource management is
the problem of utility maximization without resource constraints (assuming
that any resource is able to accommodate at least this application, otherwise
it is useless).

4.5.1 Optimization problem formulation

The optimization problem in general form is
Maximize: U(R, St)
Subject to: No constraints
The variables are R - the set of resources used, and R - the set of sensors

selected. Strictly speaking, R is a function of set R, network N, and protocols
in the network such as routing or media access control. However, we are not
exploring these dependencies here.

The most common case of the utility function is a sum of utility due to
the information obtained minus the cost of resources used.

The optimization problem is therefore
Maximize: U ∗H(t)(Θ|S)−∑

i CiRi

Subject to: No constraints
Where U is the utility gain from the information acquisition (negative

here since entropy has to be minimized) and Ci’s are the costs of resources.

4.5.2 Sensor resource model

The choice of the sensor resource model is dictated by the fact that for the
fusion we use features as the low-level data. Since features already represent
high-level data, we assume that every sensor modality has a software which
runs on a sensor node and consume node resources. Therefore for operation
of this software we need the physical sensor to be available as well as certain
amount of node resources such as memory.

If we assume the constant network structure and routing, then, when the
sensor is selected, the tuple of resources

Rk = (CPU,Memory, Sensor, Energy, Network)

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 55

is selected. The fact that the resources are selected by a set does not
change optimization problem formulation in the case of a single application
since there is no resource constraints and we can just sum the cost of resources
for this sensor and present is as a sensor cost.

Note, that in the case of a sensor attached to a remote node, a tuple of
resources used can be quite long, as it will have to include not only resources
of a node with a sensor, but also CPU, network and energy resources of all
the nodes which forward the information. If on one of such nodes the amount
of resources is insufficient, the entire tuple cannot be allocated and the sensor
should not be available.

4.6 Sensor selection

4.6.1 Applicability of the Bayesian network model

We can evaluate the conditional entropy for the sensor set using both BN as
well as DBN model. However, for several reasons, Bayesian network model is
not very suitable for the dynamic phenomena-aware resource management.
First, since there is no notion of time in the Bayesian network, the estimation
of the state Θ is only valid for the moment when the sensor readings were
taken. Second, many sensor readings has to be taken at the same time
to provide satisfactory IQ because sensor readings from the previous time
moments cannot be reused. Third, Bayesian network does not provide a way
to estimate system state in the future time moment and therefore does not
allow predictive sensor selection.

Therefore the dynamic adaptation of the selected sensors which can be
done using Bayesian network include reaction to the changes in application
IQ requirements and the change in the set of avaiable sensor modalities. Such
an adaptation was realized in the Midfusion [AKS04], with no adaptation to
the phenomena state.

Below, we describe the process of data fusion combined with sensor selec-
tion based on the Dynamic Bayesian network model and explain how it can
address the limitations stated above.

4.6.2 Sensor selection using Dynamic Bayesian net-
work

The metric of IQ we are considering here is the certainty of the hypothesis,
that is the Pr(Θ = θk|Z(1), ...Z(t)). We can only estimate the actual certainty
when we have a measured data. To evaluate certainty of the result in the

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 56

future we have to use another metric which would give us the estimation
of certainty of the result for the whole range of the possible measured data
values. In this case such a metric is the expected entropy of the result given
the set of sensors used.

Now assume that there is a fusion system with the goal of tracking the
state of a certain phenomena. The phenomena state can be derived from
the sensors and we want, depending on the state of the phenomena being
tracked, use only subset of the sensors.

The phenomena tracking is done in the following way. Below we present
one cycle of the acquisition, estimation and selection process. In this process
we assume that the data is acquired from all the sensors in parallel.

1 Acquire sensor readings according to the set St−1

2 Update hypothesis distribution using acquired data
Pr(Θ|Z(t−1))

3 Update joint distribution for the next step Pr(Θ(t), s1, ..., sn)
4 Select subset of sensors St for the next step so that

entropy H(t)(Θ) < Hthreshold

5 Update joint distribution for temporal nodes for the
next step Pr(θ(t), Xτ1, ..., Xτm)

Primary objective of the sensor selection algorithm is therefore to choose
sensors which would give the expected entropy of the state hypothesis below
certain threshold. Please note, that, unlike the case of the static Bayesian
network, in the dynamic case the data obtained previously is still useful, be-
cause it affects the joint probability distribution Pr(Θ = θk, z1 = f 1

j1, ..., zn =
fn

jn). Because of this, the number of sensors required to satisfy the applica-
tion requirements can be low or even no sensor readings may be required.

4.6.3 Addressing Confidence: Choice of threshold

We can address the confidence of estimation of most likely state by setting
specific entropy threshold. The more details on confidence is included in
Section 2.2.2.

If we want to enforce specific confidence q = P (xmax|Z) < 0.5, we can
select the threshold level to be

Hthreshold = min{H|P (xmax) = q} = −(q log2(q) + (1− q) log2(1− q))

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 57

4.6.4 Addressing Coherence: Sensor Selection in the
case of high certainty

However, the memory effect of the DBN model has a drawback, too. If
the entropy obtained during previous time step is already quite low, then,
depending on the transition probabilities between hypothesis states, it may
stay low for several time steps even if no new data is obtained. Although
it does allow to save on the resource use, this effect carries a risk that we
may miss the change in the system state. Since, in this case, the certainty is
already high, we do not need to improve it by selecting sensors which would
give low expected entropy for all the system states. Instead, we would like
to focus on the possibility of the change in the state.

Essentially, we would like to enforce the information coherence, which is
described in Section 2.2.1. The interesting observation related to this is the
fact that, according to our experience, if we want to obtain reliable result
when monitoring some phenomena, we need to address at least two metrics,
one of them of acquisition completeness type (Section 2.2.1) and another of
acquisition uncertainty type (Section 2.2.2).

In this case, we can use the metric which expresses expected entropy of
the result for the actual phenomena states different from the current most
likely state. We propose to use expected entropy conditional on the actual
system state.

It is computed similar to the expected entropy for the sensor set in the
Equation 4.3, except that the probability of a particular sensor reading set
is conditional on the actual system state.

H(t)(Θ|S, ωi) =
∑

Z(t)

Pr(z(t)
1 , ...z(t)

n |ωi)×

× ∑

Θ∈F1...Fn

Prt(θ|z(t)
1 , ...z(t)

n) log Pr(θ|z(t)
1 , ...z(t)

n) (4.5)

The distribution Pr(z(t)
1 , ...z(t)

n |ωi) is computed using the static Bayesian
network. This is because in particular static network correctly describes
distribution of the readings for a particular actual state, whereas Dynamic
Bayesian network describes our belief about the readings distribution based
on the current estimated system state.

To combine entropies for the different actual states, we propose to com-
pute their weighted sum according to the estimated state likelihood at the
next time step.

Ĥ(t)(Θ|S, Ω = θmax) =

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 58

=
∑

ω 6=θmax

Pr(θ = ωi)
1− Pr(θ = θmax)

H(t)(Θ|S, ωi) (4.6)

Therefore the step 4 of the phenomena tracking can be modified:
4 If H(t)(Θ) > Hthreshold, then Select subset of sensors St for

the next step so that H(t)(Θ) < Hthreshold

else Select subset of sensors St for the next step so that
Ĥ(t)(θmax) > Ĥthreshold

Please notice that the threshold Ĥthreshold is different from Hthreshold.
Moreover, the fact that the the value of Ĥ(t)(θmax) should be large is counter-
intuitive. Usually we may want to minimize the entropy. However, this is
not the case when we are looking for a change - in this case the most useful
sensors are those which would eliminate our belief that the actual state is
θmax. And in this case we need to pass through a state of low certanty.

In more simple case we can select not a set, but only one sensor, which
would give us the highest Ĥ(t)(θmax). This is in fact an algorithm used in a
testbed implementation described in Section 4.9.

4.6.5 Sensor selection with losses

If we have losses in the system, due to network or computational overload,
then not all of the measured data will be used in the final result. We can
estimate the impact of the losses on the expected entropy If we denote as
σ the subset of S, including the measurements which are not lost and are
actually used in the final result, then the expected information gain in a
system with losses is

J (t)(Θ|S) =
∑

σ⊆S
H(t)(Θ|σ)Pr(σ) (4.7)

where Pr(σ) is the probability that the set of readings not lost is equal
to the subset σ.

If we assume that the data from different sensors is lost independently
and loss probability of data from a sensor i is qi, then, denoting

Qi(σ) =

{
1− qi if i ∈ σ

qi if i 3 σ

we get
J (t)(Θ|S) =

∑

σ⊆S
H(t)(Θ|σ)

∏

i

Qi(σ) (4.8)

For approximation, we assume that the information gain from any subset
of the set S is less than the one of the S itself. This assumption is reasonable

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 59

since we optimize the resource cost, and the optimization algorithm would
have chosen the subset instead of the set S if it would give better quality.

Equation 4.8 contains a sum of n! elements, n - number of sensors in S.
However, it can be approximated by including to the sum only those elements
which have sum of probabilities sufficiently close to 1. Depending on the loss
probabilities, this sum can contain only one element, n+1 elements including
losses of no more than one reading, or n2 + n + 1 element including losses of
no more than two readings.

In the first case, it is

J (t)(Θ|S) = H(t)(Θ|S)
∏

i

(1− qi)

with the error being bounded by H(t)(Θ|S)(1−∏
i(1− qi))

For larger loss probabilities we can have an approximation including single
losses

J (t)(Θ|S) = H(t)(Θ|S)
∏

i

(1− qi) +
∑

i

I(t)(Θ|S− i)qi

∏

j 6=i

(1− qj)

with the error bound H(t)(Θ|S)(1−∏
i(1− qi)−∑

i qi
∏

j 6=i(1− qj))
or similar sum for double losses.

4.6.6 Sensor selection with slow sensor modality

However, in the case of the resource limitations there may be a case when
a rate of a certain sensor modality is limited due to the complexity of the
feature extraction algorithm. In this case we may have to use the modality
not every cycle of the estimation of the system state, but only for the subset
of cycles. These cycles can be either asynchronous or synchronized with the
rest of the sensors.

The first case can be modelled by changing the probability that the sensor
reading is used in the final result to reflect the absence of the reading due to
low rate. That is, the total probability of delivery will be decreased by the
ratio of modality rate to the total rate.

The second case is more complex as the sets of sensor data are no more
arbitrary. In this case, knowing that the readings from the particular sensor
will be missed, we can recover the IQ loss by adding other sensors.

Effectively, it means that we create separate sets of sensors and schedule
them to be fused in different time moments. Therefore, in assessing the
expected information gain from the two-set configuration, we need to consider
the delivered result from both of them as

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 60

J (t)(Θ|S) = J (t)(Θ|S2)ρ1 + J
(t)
1+2(Θ|S2)ρ2 (4.9)

where ρ1 and ρ2 are the relative frequencies of the sets of sensors

4.7 Multiple applications with resource con-
straints

When we have multiple applications sharing the same resources, we have to
account for the fact that the different application bring different benefits to
the system as well as for the fact that some bottleneck resources may not be
always available.

The problem of providing the IQ in the resource-constraint environment
can be formulated as following using a sum of utilities:

Maximize U =
∑

j Uj(yij(t))

Subject to

{
yij(t) ∈ 0, 1∑

ij Rijyij ≤ rmax

Application j has a utility Uj(yij(t)) depending on the selection of indi-
vidual resources yij(t). Instead of sensor selection S such as in section 4.5.2,
we used individual sensor selections yij, Rij is a tuple of resources, where
each Rijk is the amount of resource k used by application j when i’th sen-
sor is selected. Here, we used the linear model of resource use, although it
may not always be the case. However, we need this linear model for the
decomposition of the optimization problem.

We propose to use the dual decomposition [CLCD07] to address the com-
plexity of the multi-variable optimization problem.

The relaxed problem is

Maximize U =
∑

j Uj(yij(t))− λT (
∑

ij Rijyij − rmax)
Subject to yij(t) ∈ 0, 1

And optimization problem is decomposed into two layers of optimization.
On the lower layer the application-level optimization is solved similar to the
optimization in section 4.5.1. The upper layer optimization problem solves
the problem of assigning the resource costs so that the global utility can be
maximized.

The respective problems are:
For the lower layer

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 61

Maximize Uj(yij(t))− λT (
∑

j Rijyij)
Subject to yij(t) ∈ 0, 1

and for the upper layer

Maximize U =
∑

j Gj(λ)− λT rmax

Subject to lambda ≥ 0

Where Gj(λ) is the solution of the lower layer problem of the application
j.

The fact that we used the resource costs here does not mean that the
actual resource cost cannot be added to the utility functions. In this case,
we would have two types of costs - one which is used in resource management
and one that affects the total utility of the system.

This decomposition has a benefit that it uses the result of the application
level optimization and is simple. Unfortunately, such a dual decomposition is
iterative and does not guarantee the satisfaction of the resource constraints
during iterations.

4.8 Simulation evaluation

We created a simulation to evaluate the performance of the fusion system
with phenomena-aware resource management. The simulation based on the
ayes Net toolbox [Bay], and compares the performance of the BN and DBN
based systems. We should note that the BN based system cannot actually
be implemented in a real system since it cannot actually select resources in
advance.

4.8.1 Simulation setup

We used Bayes Net toolbox [Bay] to evaluate the use of the Bayesian Net-
works as well as Dynamic BN for the phenomena-aware resource manage-
ment. The scenario we used was the observation of eating habits of a de-
mentia patient in the home environment. The task of the observation was
to track the time when a person was eating in the kitchen. For both fusion
and uncertainty estimation the we used the networks shown correspondingly
in Figures 4.1 and 4.2.

In our model, we want to detect when person is eating while sitting at the
table. The sensor modalities used are video (position, table content, eating

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 62

movements), RFID tag (position), audio (eating sound), pressure (sitting),
accelerometer (eating movements). There are three states of the Action to
be detected: ”No person”, ”Person in the kitchen” and ”Person Eating”.
Note, that in our model it is impossible to have a direct transition from
the state ”No person” to ”Person Eating”. In the case of DBN, the states
which introduce the system dynamics and therefore has to be considered as
temporal are Action, Position, Sitting on the chair and Something on the
table. The reason for this choice is that these states affect the detection of
eating yet represent system dynamics which cannot be affected by the sensor
choice. For example, even if the person is sitting at the table but there is
nothing on it, most probably he is not eating and accelerometer readings are
not useful.

We set the optimization parameters for both cases so that the system is
required to have a certainty of current activity recognition certainty to be at
least 80%. If the certainty is above these 80%, the resource cost is minimized.
If the certainty is below 80%, the system has to select a set of sensors which
would give the best certainty possible.

Both simulated examples used the same scenario. Person appears in the
kitchen, wanders around for a while, coming in, out, to the table etc. Then at
some point he sits at the table, starts eating after a while, then, after eating,
removes everything from the table and leaves the kitchen. In both cases we
used exactly the same sequence of events. Also, in both cases we used the
same set of sensor readings, which were generated using our knowledge of
scenario and static Bayesian network model to represent the imperfection in
the sensing.

These sensor readings were used in the recognition of the activity using
full set of sensors or using reduced set chosen by the phenomena-aware re-
source management. Here we present four results - activity recognition using
all the sensors with BN model, all sensors with DBN model, reduced sensor
set with BN model and reduced set with DBN model.

In our simulation, each sensor modality had its own cost reflecting relative
resource use. For example, the cost of video positioning was 10 times more
than the cost of pressure sensor on a chair. We used these costs to select
more cost-efficient sets of sensors.

Although we used both static and dynamic Bayesian networks, in fact the
static BN was not properly used for the sensor selection. This is because of
the absence of the phenomena state dynamics in the BN model as explained
in section 4.6.1. Therefore we used post-factum sensor selection, when we
used the data from all the sensors to select a subset which would give a good
uncertainty bound for the phenomena state. Such a selection is equal to the
case when we have ideal algorithm for sensor selection which is able to select

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 63

0 20 40 60 80 100 120 140 160 180 200

No person

Person present

Person eating

No person

Person present

Person eating

No person

Person present

Person eating

No person

Person present

Person eating

No person

Person present

Person eating

Time

Actual

Full BN

Full DBN

Optimal BN

Optimal DBN

Figure 4.3: Simulation results. The comparison of the actual state of the
system with the estimated state derived from corresponding models. The
problem of the BN model in this case - high volatility of the state estimation

a set of sensors giving optimal cost. Although it is not realistic case, we still
used it to compare this ideal sensor selection using BN model with realistic
sensor selection using DBN model.

4.8.2 Simulation results

The compared results are presented on the Figures 4.3, 4.4 and 4.5. As it can
be seen on Figure.4.4, the moments when the certainty of activity recognition
fall below the required 80% level for the case of the DBN correspond to
lower than required level of the certainty in the case of the BN model. On
the contrary, low certainty for the BN model does no mean that the DBN
model also would give a low certainty result. However, the phenomena-aware
model based on the DBN used, on the average, much less resources. This
is mainly due to the fact that the DBN model relies significantly on the
readings obtained in the past. The stronger drop in the certainty for the
case of the DBN is due to the fact that, unlike BN model which used post-
factum selection, DBN model has to detect the state change first and in the
case of the few sensors being on the initial recognition certainty can be low.
After the system chose the set of sensors giving best information quality at
the next step, the certainty significantly increased.

Another comment concerns the lack of memory in the BN model. In

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 64

Figure 4.4: Simulation results. Certainty comparison for different models
and different set of sensors. As it can be seen, use of reduced set of sensors
for the Dynamic Bayesian network does not significantly affect the certainty
of the result.

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 65

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Time

R
es

ou
rc

e
co

st

All sensors
Optimal BN
Optimal DBN

Figure 4.5: Simulation results. The comparison of the cost of sensors to
achieve a required level of the information quality using phenomena-aware
resource management. It can be seen, that the memory property of the
Dynamic Bayesian network model allows to obtain a good quality at the
fraction of a cost.

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 66

our model, there are some states of the Action and Position which prohibit
immediate transitions from one to another. For example, Action state Person
Eating can not be immediately after Action state No person, but only after
passing through intermediate state Person in the kitchen. However, in the
case of the BN model, due to absence of the connection to the past readings,
the estimated state can change between these two states very often. This
problem is much less pronounced in the case of the DBN model.

As it can be seen on the Figure 4.3, the estimated state in the case of the
BN is much more volatile. It even has several changes between two states
which cannot do not have a valid transition - the states ”No person” and
”Person Eating”. This is due to presence of the memory of the past in the
DBN model. This memory effect also allows to save on the resource use.

4.9 Testbed experimental implementation

In this section we present live implementation of an online activity recognition
system which uses the DBN model for inferencing of the persons activity
with the aim to identify if he is eating. Although in our evaluation we
only used four types of sensors, the application of this framework is not
limited to only these sensors. In fact virtually any sensor which processes
information and produces simplified description of what was detected, can
also be used. Besides, the system allows testing of different heuristics of the
real-time sensor selection based on the DBN entropy-based metrics.

4.9.1 Phenomena monitored

The monitoring scenario is based on a real-world need to monitor the activity
of the elderly people at home to assess their ability of independent living.
The systems similar to this should provide information about persons habits
and abilities as well as serve as a first level of help in case of emergencies.
The performance of a typical system should not only allow post-factum un-
derstanding of actions a person took during the day, but also current moment
understanding of what the person is doing so that help in a form of either
information / reminders or in a form of human care-giver involvement can be
despatched. Therefore the system should be able to operate in a time frame
of a typical human action duration.

4.9.2 Hardware configuration

Currently, the prototype uses four sensor modalities.

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 67

1. Wrist-worn accelerometer to detect the hand movements. A sensor
platform iMote2 from Crossbow [Cro] was used together with data ac-
quisition board holding 3-axis accelerometer. The output of a sensor is
acceleration ±2g presented by discrete values of ±2048 for each axis.
This is the only sensor in the current setup which uses non-trivial fea-
tures obtained from a very large space of possible values. Essentially, in
this setup the features provide information about approximate angle of
a hand with respect to gravity. However, even this information can be
useful, because in fact many important hand motions have very narrow
range of such angles.

2. We installed the short-range RFID reader under the table surface to
detect whether the cup (tagged with RFID tag) is being used

3. Since the scenario assumed that we want to detect eating when the
person is sitting, we installed the pressure sensors to detect if the person
is sitting

4. Three PIR sensors in the environment were used to detect the posi-
tion of the person. One sensor was positioned near the entrance, one
near the table and one - under the table facing persons legs to provide
alternative way to detect if the person is sitting.

All sensors except RFID reader were connected to the wireless sensor
nodes.

4.9.3 Software configuration

The configured system is able to do estimation of a person eating activity
approximately 10 times per second, the rate sufficient to detect movements
of a person around the house as well as local movements such as standing up
/ sitting or raising an arm. The prototype uses simple scenario with only a
few actions detected. However, the strong point is that this system is able to
do both activity recognition as well as resource management in the real time
and thus gave us a good system which can be used in more complex real-life
experiments as well as provide insights into what are the performance issues
can be faced when implementing such system for different application

The activity states detected in this system are Person Absent, Person
Present, Person Sitting, Person Eating, Person Drinking. Since the states
of the hypothesis mode has to be disjoint but states of the actual system
are not, the state Person Sitting actually mean that the person is present,
sitting, but not eating or drinking. Likewise, the states Person Eating and

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 68

Figure 4.6: Illustrations of the activity detection testbed. Wrist-worn ac-
celerometer was used for hand movement detection

Figure 4.7: Illustrations of the activity detection testbed. Short-range RFID
reader was used for detection of the object (cup) being used

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 69

Figure 4.8: Illustrations of the activity detection testbed. Pressure sensors
installed in the pad on the chair were used to detect if a person is sitting

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 70

Actions

Accelerometer

Hand movements

Person is eating

Person is drinking

Person is sitting

Person is present

Person is absent

RFID tag

Cup on the

table

Yes / No

Handling
a cup

Yes / No

Resting

Holding

Picking

Holding a cup

Hand near mouth

Sitting

Yes / No

Location

Outside

Room

Close

Table

PIR

PIR1 Yes / No

PIR2 Yes / No

TablePIR Yes / No

Actions

Accelerometer

Hand movements

RFID tag

Cup on the

table

Handling
a cup

Sitting

Location

PIR

Figure 4.9: The DBN of an activity detection system, which was implemented
on a testbed. The possible states of variables are shown next to corresponding
nodes

Person Drinking mean that the person is present, sitting and either eating or
drinking. Figure 4.9 shows the structure of the DBN as well as the possible
states of variables.

We used the Microsoft Belief Networks toolkit [MSB] to do the BN infer-
encing.

We used the recorded video of the activity for manual annotation of the
training data. All the intermediate states of the DBN were also taken from
this video. After that the data was used to compute all the conditional
probability tables for the DBN.

Figure 4.10 shows the comparison of the actual state and the state de-
tected by the recognizer. The long vertical lines on the graph correspond to
the moments showed by a snapshots from the video showed on the Figure
4.11. Figure 4.12 shows the confidence of the detection of activity. The low
confidence of a recognition happens mainly during the change of activity.

4.9.4 Observations

There are three observations which we made while using the testbed imple-
mentation

1. From our experience, it is now enough to enforce only one metric of

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 71

Figure 4.10: Activity detection testbed results. Correctness of the online
activity recognition. The top graph shows the actual activity of a person.
The lower graph shows the activity detected by a system. The long vertical
lines correspond to the moments shown on the Figure 4.11

Figure 4.11: Activity detection testbed results. The fragments of video
recording corresponding to the long vertical lines in the Figure 4.10

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 72

Figure 4.12: Activity detection testbed results. Confidence level of the online
activity recognition.

IQ. To make the system follow the phenomena reliably, we need not
only enforce uncertainty metric such as confidence of state estimation,
but some completeness metric as well. In our case, the easiest metric
to enforce was information coherence.

2. The benefit of a model in comparison with rule-based system is that
model may implicitly contain certain rules, which may not be discov-
ered by a simple observation. For example, when one sensor high cer-
tainty selection algorithm was used described in Section 4.6.4, we no-
ticed that when a person was sitting on a chair with both hands resting
on the table, the pressure sensor was activated very rarely. That is, the
system did not expect the state to change from ”Person Sitting” to
simple ”Person Present” i.e. not sitting. It turned out that normally
a person does not stand up from the chair holding hands in front.
Most probably the person will change the hand position, which will
be detected by accelerometer. And since eating and drinking is also
detected by accelerometer, it is the most useful sensor for detection of
state change at the moment. That is, the model implicitly contained
a rule ”Person has to move hands to stand up” which may not be
included if the rules were created through an observation.

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 73

3. The drawback if a model is in the fact that the model should be based
on as large dataset as possible, so that rare combinations of node states
would not be considered impossible, thus making the state estimation
incorrect or impossible.

4.10 Conclusion and future work

In this chapter, we proposed a framework which describes how applications
using sensor network data can be provided with certain information quality
assurance. The framework uses Dynamic Bayesian Network model.

The original contribution described in the chapter are:

• Two IQ metrics were addressed: confidence of state estimation and
information coherence. Confidence of state estimation bring together
IQ loss from both acquisition-based uncertainty as well as delivery-
based uncertainty. Information coherence metric here addresses only
acquisition completeness class of losses.

• Delivery-based uncertainty losses were addressed by suggesting a way
to account for decreased quality of final fusion result after expected
losses

• Somewhat counter-intuitive way to address information coherence was
proposed, based on expected entropy under assumption of a change in
phenomena state

• Another important contribution, described in this chapter, is that this
framework was implemented on a real testbed and similar systems now
can be easily developed.

In comparison with other model-based systems, this framework has fol-
lowing advantages:

• We defined thoroughly the metrics of Information Quality and sug-
gested a generic approach for defining IQ metrics for different scenarios

• We use general notion of phenomena being monitored by a sensor net-
work, which goes beyond the particular types of phenomena such as
target localization and tracking in [ZLL+03]

• For this general notion of phenomena, we change resource allocation
based on the dynamic phenomena state to provide the required IQ, in
contrast with average phenomena state in [AKS04]

CHAPTER 4. PHENOMENA-AWARE IQ MANAGEMENT 74

• We address the issues of the data losses and resource constraints which
are essential features of sensor network infrastructure in comparison
with [ZJ06].

In comparison of our model-based approach with arbitrary rule-based
system we would like to to emphasize the following aspect. If a rule set is
reach enough, the discrete-state phenomena tracking can be done with high
level of estimation correctness. Similarly, for such a system, the reach set
of rules can be defined to do the sensor management. However, the DBN-
model based approach has two strong points here. First, the probability
representation of the hypothesis state can give us the uncertainty measure of
the final result, that is it can provide the system with IQ metric. Second, the
fusion rules as well as sensor selection rules in the DBN case are discovered
automatically as long as the DBN model is built.

The important advantage of the described system is that the sensor data
as well as system states are generic. Even the assumption of the discrete
values is reasonable because in many cases the higher-level applications are
not interested in raw continuous values. For example, from point of view
of analysis of a person behavior at home, the actual position is not very
important, more important is the proximity to certain household objects,
which is already discrete information.

However, there are serious weaknesses in the current framework. The
main weakness is the fact that the optimization problem described above
performs exhaustive search of optimal subset of a set of sensors, and since
all the possible subsets may be tested, it is NP hard in the number of sensor.
Currently no heuristics are proposed. Another problem is that obtaining
the exact values of conditional entropy or information gain becomes very
computationally difficult when the width of the Bayesian network increases.
Therefore there is a need for an algorithm which would use approximate
values of information gain yet would give a good IQ. These concerns has to
be addressed in the future and implemented on the online activity detection
testbed.

Another direction of a future work is further development of the applica-
tion decomposition to allow the resilient use of shared resources by several
applications. The important problem to solve is how to avoid the resource
constraint violation without excessive information exchange.

Chapter 5

Cyclic computation deadline

In section 1.4 we briefly introduced loosely coupled distributed systems, and
listed the main challenges in providing with QoS for applications in such
environments are that:

• It is dynamic. Resources and applications are added and removed from
the system unpredictably.

• It is highly heterogeneous. It consists of many types of systems so
that it may not be even possible to enlist and characterize all of them
precisely.

• It is complex in structure. It may consist of many components and
interaction between them may be too complex to trace.

• Has limited coordination between resource subsystems executing dif-
ferent tasks.

However, for the provision of the QoS the resource use has to be controlled
to prevent certain applications from starving others. Here, we present dis-
tributed scheme of the resource load control in loosely coupled distributed
system which does not require complex coordination between different re-
source domains yet achieves guaranteed resource allocation to different ap-
plications. Essentially this is a distributed application-level regulator, which
uses Timed Petri Net model to select tasks to be delayed from execution and
a duration of the delays.

75

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 76

5.1 Quality of service in loosely coupled dis-
tributed systems

In this section we will highlight specific features of the loosely coupled en-
vironment which affect the way quality of service could be provided. In
particular, we will explain why traditional methods to achieve QoS guaran-
tees may not be suitable for such environments and what is being done and
could be done to overcome these difficulties.

5.1.1 Specifics of loosely coupled distributed systems

As explained in section 1.4, the primary characteristics of a loosely coupled
distributed system is that it

• is dynamic

• is highly heterogeneous

• is complex in structure

• has limited coordination between resource subsystems.

The best level of QoS guarantees is provided in the area of real-time sys-
tems. In real-time systems, there are two types of tasks: guaranteed and
non-guaranteed. The guaranteed tasks are carefully admitted to a system
using complex admission procedure. Resources on which tasks are executed
are chosen in advance. The performance of these tasks is carefully measured
using these resources. The complete set of tasks is checked to ensure that
each task will complete within predefined time limits regardless of conditions
caused by other tasks. No tasks are accepted after the system is validated.
The non-guaranteed tasks are given lower priority than guaranteed and there-
fore will not affect the timing of the guaranteed tasks.

However, in loosely coupled systems, the set of tasks assigned to one
resource is changing. Moreover, since resources are chosen dynamically, it
may not be possible to predict correctly the performance of a task on the
assigned resource.

Another type of systems in which QoS guarantees are provided are net-
works. Networks always perform only one type of a task. This task is the
data transmission over a series of network elements. If we look at this task
from the perspective of the application structure, we can see that it may be
represented as a chain consisting of many elementary operations. Each of
these elementary operations is forwarding of a data packet on a router. The

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 77

input of one operation is the output of the previous; the operations are the
same and each operation is performed by a different router. However, in the
case of an application running loosely coupled system, the structure of the
application could be very complex. Besides, application components may be
different in nature, they can run on completely different types of resources
with different timings and each resource may execute many components of
the application.

In traditional distributed systems a distributed application is run on dif-
ferent types of resources. However, it is still assumed that there is a limited
set of resources with well known characteristics and that an application-level
agent may obtain certain level of control over resources. Besides, the control
channel can be available and be fast compared to the speed of the typical
process. Therefore the agent has centralized control over the application exe-
cution. This centralized control makes application level QoS easily achievable
because the agent knows the application QoS requirements and can modify
the application execution on the fly to satisfy these requirements.

5.1.2 Existing approaches to providing QoS in loosely
coupled distributed systems

The closest example of computation QoS control is the QoS provided in com-
putational Grid environment [FK99]. Mainly systems there try to address
the decoupling between the application and resource control. For example,
to address the multitude of resources and application, [FKL+99] uses ad-
vanced resource reservation to ensure application can get it when the time
comes. The implicit assumption was that either a resource would remain
in the same state throughout application execution or that resource domain
would substitute resources in the case when some of them become unavail-
able. Later this architecture was improved [FRS00] to include adaptation in
resource reservation to ensure the required execution parameters in the case
when performance estimation was made incorrectly. This improvement ac-
tually addressed the problem of lack of knowledge about resources in Grids.
Another improvement was described in [RFG+00]. It addresses the problem
of resource heterogeneity by providing extension to the MPI [MPI] interface.
This extension can make a network reservation for a newly created MPI com-
municator. Therefore an application developer can implement reservation of
different communication resources without knowing their exact characteris-
tics and reservation protocol specifics.

However, the approach of this team has some weaknesses from the per-
spective of dynamic nature of loosely coupled environment and its complexity.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 78

First of all, since they are using advanced reservation they assume that the
resources will be available in any case. However, it may happen that the ad-
vanced reservation is not quite adequate for the required level of performance.
They try to overcome the problem of inadequate reservation by introducing
the possibility to adjust a reservation on the fly. However, unless application
has exclusive control over resources it may happen that it is not possible to
allocate more resources. Besides, in the case of transient disruption of a ser-
vice there is no way to adapt to it in a flexible manner because resources are
assumed to be allocated for the whole duration of the application execution.

The second weakness lies in the following: the fact that resources are
reserved does not mean that the application would obtain the required level of
service. The reason behind this is that a resource is able to provide a specific
level of service only if the demand does not exceed certain level. Therefore
the resource demand have to be regulated. This demand regulation includes
both regulation of resource demand from other applications and demand from
the application itself. The latter is as important as the former because the
execution of one application component influences the service obtained by
the other and this influence should be considered.

Another team, lead by Nahrstedt from University of Illinois at Urbana-
Champaign, developed a scheme that considers resources as service compo-
nents and application as a complex interconnection of these service compo-
nents [XNVW00, GN02]. These service components are actually black boxes
that can provide specific output quality of service parameters given that in-
put parameters are of a certain level or better and a necessary amount of
resources is allocated. This approach makes possible to account for complex
structure of the loosely coupled system and to build applications with prede-
fined End-to-end Quality of Service characteristics. In addition, depending
on the way the application is built out of separate components, it is possible
to consider some effects of dynamic system nature. In particular [XNVW00]
considered the dynamic user arrival-departures and resource contention that
may be caused by this arrival. Another work [GN02] considered the possi-
bility of dynamic application composition depending on the availability of
resources.

However, the approach of Nahrstedt team has one drawback. It uses
measurement-based data to evaluate the amount of resources that should be
allocated within service component to provide required output QoS given
specific input QoS. However, measurement based allocations are vulnerable
to fluctuations in resource performance. Therefore there could be a transient
violation in the quality of service provided to a specific application component
and this violation may affect the application end-to-end quality of service.

Therefore there is a need to provide an application in a loosely coupled

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 79

distributed system with a scheme that would ensure that the application end-
to-end quality of service is satisfied in the presence of other applications and
when application components are assigned in arbitrary manner to different
resources. This scheme should address the dynamic and unpredictable nature
of such environment.

Below we present the proposed research direction and explain why a par-
ticular technique was chosen to create the above mentioned QoS provision
scheme.

5.1.3 Proposed technique

To provide an application with specific end-to-end quality of service in loosely
coupled distributed systems, we need to answer following questions:

1. How to choose resources which are to be used by the application?

2. How to map application components onto resources so that the level
of service provided to the application components can possibly satisfy
the application end-to-end QoS requirements?

3. How to enforce the QoS obtained by application components on as-
signed resources so that end-to-end application QoS is satisfied?

The research described in this thesis focused on the third point of the list,
namely on guaranteeing that QoS obtained by an application components will
satisfy the application end-to-end QoS requirements. The first two questions
were left outside of the scope of the research.

The scheme that enforces end-to-end QoS should satisfy following require-
ments:

• It should enforce QoS in an ”open system”, that is in an environment
where other users and application are using the resources

• It should be robust in the presence of transient violations of QoS on
the level of application components.

• It should target applications having a complex structure

• It should assume that it is not possible to have direct control over
resources either from application or from other resource domain. Ap-
plication may request certain service parameters but it is up to the
resource manager of a particular domain to decide whether parameters
could be satisfied and how exactly it could be done.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 80

• It should minimize the amount of state exchange information between
application and resource domains.

We propose using Time Petri net model because:

• The area of Petri nets has well-developed analysis techniques. If appli-
cation execution is presented as a Petri net process, it can be analyzed
using these techniques.

• The state information contained in a Time Petri net can serve as a
source of application state information, which, in turn, could be used
for adaptation in case of transient QoS violations

In addition, the Time Petri net model is well suited for modelling of
distributed applications because of the following advantages:

• Similar to the commonly used Directed Acyclic Graph model, it can
describe rather complex application structure

• In addition, it contains state information, so that timing characteristics
between particular states of application can be analyzed

• Unlike DAG, it models communication and computational tasks in a
uniform way

In addition to proposing a scheme for the QoS guarantees in loosely cou-
pled environment, the significance of this research may include a new way
of use of Time Petri nets in distributed systems. In particular, use of Time
Petri net as a source of approximated application state information could
be useful in building distributed systems in which communication between
different components is limited.

5.2 Computation Model and Assumptions

To describe the behavior of a cyclic computation, we need a model that
enables the cyclic representation of a computation which can be easily ana-
lyzed. We find that the Time Petri Net model [Wan98] is suitable for this
purpose. This model, in turn, can be obtained from the commonly used
Directed Acyclic Graph (DAG) model. In this section, we state the assump-
tions underlying the DAG model of a computation, introduce the terms and
concepts used in the Time Petri Net model and describe how a Petri net
model of a computation can be obtained.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 81

T5

6T1T

2T

T4

T3

Figure 5.1: An example of the DAG model of a computation. The dashed
line shows that a task T6 from one cycle is a parent of the task T1 from the
next cycle

5.2.1 DAG model

A computation is represented by a graph G(V,E) where V is a set of n
vertices and E is a set of directed edges as shown in Figure 5.1. Each vertex
Vi represents an indivisible task that should be executed on a single pro-
cessor. Incoming edges represent inputs to a task; outgoing edges represent
outputs. A task may execute only after all inputs are available. After a
task is executed, it produces outputs. A vertex with no incoming edges is
called the entry task and a vertex with no outgoing edges is called the exit
task. If a task Vi has an edge connecting it to a task Vj, we call task Vi the
parent of the task Vj. Vj, therefore, is a child of Vi. Both vertices and edges
have weights assigned to them which represent the costs of computation or
communication between the tasks.

In the case of a cyclic computation, its DAG model contains several in-
stances of the same computation tasks corresponding to the number of cycles
the computation is run. For our purposes, we restrict the computation DAG
to just one cycle. In addition, we maintain information about parent-child
relationships between tasks from different cycles.

By adopting this computation model, we implicitly assume that a com-
putation does not contain conditional branches at the level of tasks. This is
because, in this model, all the incoming inputs of the task should be available
and all the outgoing outputs are produced. There may still be conditional
branches within tasks, and these are represented by the fact that the task
execution time may vary within some bounds.

Another assumption about a computation is that it does not have control
over its own execution. The code for all tasks are placed on the respective

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 82

Comm25

Comm56

Comm36

6T

T4Comm14

T3

T5Comm45

1T

Comm14

Comm12 Comm232T

Figure 5.2: An example of a Petri net model of computation obtained from
the DAG in Figure 5.1. The dot in the leftmost place is a token. This token
enables the task T1, thus making T1 the starting task of a cycle

resources and then some set of initial tasks is started. Each task, after its
completion, initializes its child tasks. The decision on when a task is run
and when child tasks are initialized is made by local schedulers and not by
a computation-level scheduler. In this case, the timing characteristics of a
computation depend on how tasks are scheduled on resources and the current
load of the servers.

5.2.2 Petri Net model

A place-transition Petri net is a tuple (P, T, I, O, M0) and can be represented
as a directed graph with two types of nodes. P is the set of nodes called places
which are represented by circles in a diagram. T is the set of nodes called
transitions which are represented by shaded or black rectangles in a diagram.
I is a set of directed edges from places to transitions and O is a set of directed
edges from transitions to places. Marking M of a Petri net is a placement
of tokens in the places. M0 is the initial marking of a Petri net. If a place
has an edge of type I to a transition T then it is called an input place of the
transition T . If a place has an edge of type O from a transition T then it
is called an output place of the transition T . A transition is called enabled
if all of its input places contain at least one token. This transition may fire,
consuming one token from each of its input places and putting one token into
each of its output places.

Figure 5.2 shows the example of a Petri net. The dot in the leftmost place
is a token. Therefore, the only transition enabled is T1. After T1 is fired, the

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 83

token is removed from the input place of T1 and one token is placed into each
of the two output places, thus enabling transitions Comm12 and Comm14.

Finally, a Petri net is called decision-free if every place has an outgoing
arc to one and only one transition.

5.2.3 Time Petri Net

As can be seen from the definition above, a Petri net model does not have the
notion of time. However, we can introduce time by assigning a timing func-
tion to either places or transitions, and defining a firing rule which states how
and when tokens are consumed in input places of transitions and produced
in output places.

A Time Petri Net [Wan98] is an example of a Petri net in which time
is assigned to transitions. In the Time Petri Net model, each transition is
assigned a time interval. After being enabled, a transition cannot fire until
the beginning of this time interval and must fire before its end.

More formally, a Time Petri Net is a tuple (P, T, I, O, M0, SI) made
up of a place-transition net PN = (P, T, I, O, M0) and a function
SI : T → Q∗ × (Q∗ ∪∞), where Q∗ is the set of positive rational numbers.
The function SI therefore assigns a pair of positive rational numbers (x, y)
to each transition, where x is finite and y may be infinite. SI(t) = (x, y),
x ≤ y, is called the static interval of transition t. In Time Petri Nets, the
firing rule is given by the following:

• Transition t, once enabled, cannot fire until the time x since it is enabled
and must fire not later than time y after it is enabled.

• Tokens are consumed and produced at the moment when the transition
fires.

5.2.4 Construction of a Petri net from a DAG

A Petri net model is constructed from a DAG model of a computation in the
following way:

1. A DAG of a single computation cycle is taken.

2. Edges going from the nodes of a cycle to the nodes of the next cycle
are replaced with edges going from the same nodes to corresponding
nodes of the same cycle.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 84

3. Every vertex is replaced with a set of one transition and several places
corresponding to the number of edges of a vertex. Places that corre-
spond to edges directed towards a vertex are assigned an edge to a
transition. Places that correspond to edges directed from a vertex are
assigned an edge from a transition.

4. Every edge of the DAG is replaced with a transition1.

5. Tokens are placed in the input places of the transitions corresponding
to the entry task(s) of the first computation cycle.

Note that, by construction, this Petri net is decision free because any
place has only one edge going to a transition.

In the Time Petri net model of a computation, each transition has the
meaning of a task execution on one processor or server (can be either CPU
or network link). The static interval of the transition has the meaning of the
minimum and maximum time necessary to execute the task on this processor.
The places have the meaning of conditions that must be satisfied before the
task may be executed. The presence of a token in a place means that a
corresponding condition is satisfied. The task may be executed only when
all necessary conditions are satisfied, and this state is represented in the Petri
net model as an enabled transition.

The Time Petri Net model is well-suited for representing a parallel com-
putation because it captures the possibility of parallel execution and, given a
function for the static interval, permits an analysis of the timing behavior of
computations. Unlike the DAG model which usually models computational
tasks as graph vertices and communications as graph edges, the PN model
models all tasks uniformly as transitions. Because of this, the DAG model
is better suited for task mapping because only computational tasks could be
mapped onto resources independently, while the mapping of a communica-
tion task depends on the mapping of the corresponding computational tasks.
However, the PN-based model is better suited for timing analysis of a com-
putation execution because all the timing characteristics are bound to only
one object type, i.e. transitions. Besides, a PN model contains state informa-
tion and therefore permits analysis of timing between different computation
states.

1This enables the Petri net model to take into account the communication process
between tasks.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 85

5.3 Timing Guarantees from Petri Net Model

In this section, we explain how the Petri net model can be used to provide
timing guarantees. Here we use an EDF-based system as an example. How-
ever, this scheme is valid not only for EDF, but for any scheduler where
actual task completion time could be significantly smaller than its deadline.
In fact, every resource may use its own scheduler. The role of the proposed
scheme is to provide a resource admission control with the information about
the minimum task period and to ensure that the actual period is never lower
than this minimum period value.

5.3.1 EDF admission control

In the case of EDF with preemption, the sufficient condition [LL73] for a set
of periodic tasks with periods of at least Pi, execution times Ei and relative
deadlines Di to be schedulable on a single processor is that the following
inequality is satisfied:

∑

i

Ei

min(Di, Pi)
≤ 1 (5.1)

The ratio Ei

min(Di,Pi)
is called the task density for task i. In order to guar-

antee the deadline satisfaction for a set of tasks, we need to make a decision
on whether a particular computation should be accepted. To perform this
admission control2, we need to

• sum the densities of computation tasks assigned to the same resource

• for each resource, check whether the sum of densities of already admit-
ted tasks and tasks from a newly-arriving computation satisfies expres-
sion (5.1) above.

For task i, the values of Ei and Di are known in advance, but the task
period Pi, which is equal to the cycle time of the computation this task
belongs to, is not known in advance because it is affected by the way the
computation is run. However, we can make some assumptions about the task
period. Note that a computation may consist of many tasks, and according
to the adopted computation model described above, all the tasks from a
computation cycle should be completed during a given cycle. Therefore, the
computation cycle deadline is at least equal to the longest task deadline.

If we assume that every task in a computation cycle is run only once
during the cycle (if this not so, we can simply consider every instance as a

2This EDF admission control test serves to prevent the resource or server from being
overloaded, which would lead to deadline violations for some of the admitted tasks.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 86

separate task), then the task period is equal to a computation cycle time P
and is the same for all the tasks, that is Pi = P for all i’s. This period can
be either greater or less than a task deadline depending on the computation
structure and the difference between the maximum and minimum response
times of computation tasks on the assigned resources. For complex compu-
tations consisting of many tasks with a low degree of parallelism, the cycle
deadline and the actual computation cycle time is likely to be significantly
larger than the deadline of any task.

Consider the case where a resource is given only values of execution time
Ei and deadline Di and does not have any information at all about the
computation and is, therefore, unable to determine the task period. In this
case, a resource can assume that the computation is complex enough such
that the task period is always longer than its deadline and use the ratio Ei

Di

for computing task density. However, there is a risk that this assumption is
wrong and that the task deadline can be violated.

On the other hand, if we have information about the structure of the com-
putations, we can try to provide resources with the minimum computation
cycle times Pmin. This can arise in two situations: (1) the characteristics of
the tasks in the computation enables the minimum of the overall computa-
tion cycle time to be determined, or (2) the computation execution behavior
is modified, e.g. through shaping, such that the lower bound of the compu-
tation cycle time is fixed as Pmin. With knowledge of Pmin, the smallest Pi

values and the worst case task densities in the EDF admission control test
can be determined such that deadline satisfaction can be guaranteed for all
tasks.

5.3.2 Minimum cycle Time of a Petri Net

To find the values of Pmin , we use a property of a deterministic decision free
Petri net. According to [Mur89], the minimum cycle time of a deterministic
Time Petri net can be found from the following equation

Pmin = max{ Tk

Nk

: k = 1, 2, ...q} (5.2)

where Tk =
∑

ti∈Lk
τi is the sum of times of transitions in circuit k, Nk =∑

pi∈Lk
M(pi) is the total number of tokens in the places in circuit k, Lk is

circuit k and q is the number of circuits in the Petri net.
Given a Petri net containing P places, N tokens and a set of times, the

minimum cycle time can be obtained using the algorithm provided by [IP94].
The algorithm complexity is O(NP +NEN) where N is the number of tokens,
P is the number of places and EN = O(N2) is the number of edges in a graph

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 87

based on the positions of tokens in the net. This algorithm finds both the
minimum cycle time and the cycle which produces the minimum cycle time.
If there are several cycles giving the same minimum cycle time, then only
one cycle is given depending on the algorithm implementation.

As described in section 5.2.1, the execution of an application which does
not contain conditional branching on the level of tasks can be modelled as
a decision free Petri net. Therefore the equation (5.2) can be used to find
the minimum cycle time of an application execution. To obtain this cycle
time, we need to use the values of minimum execution time of tasks tmin

k as
Tk values in the equation.

5.3.3 Computation execution modes

Next, we need to determine the values of the minimum task execution times
to be used in expression (5.2). For this purpose, we need to consider the
way a computation is executed on resources and how control is transferred
between tasks.

We consider two ways in which tasks can be synchronized, greedy and
non-greedy. Synchronization between computation tasks is greedy when a
child task is released as soon as all its parent tasks are complete. When a
task is released, it is added to a scheduler queue for execution and is processed
when its turn arrives.

Non-greedy synchronization between computation tasks assumes that a
task release may be delayed from the moment when all the parent tasks have
finished. This delay is defined by the specific synchronization protocol that is
in use in the system. We consider the following synchronization rule: a child
task is released after all parent tasks are complete, but not earlier than the
maximum of ri + ei, where ri are the release times of the parent tasks and ei

are some values associated with each parent task such that 0 ≤ ei ≤ Di. This
rule means that a signal about task completion is sent to initialize a child
task only after some eligibility time ei since the parent task was released. The
behavior of the system in this case is modified as if no task can complete in
time less than ei.

If greedy synchronization is used between all of the tasks, then to find a
bound on the minimum cycle time Pmin, we take the minimum response time
of the particular scheduler in use as values of τi in expression (5.2). In our
case where all schedulers are EDF, these times are equal to the respective Ei

values, the execution times of tasks on the assigned resources. However, in
this case, admission control would actually admit all computations accord-
ing to the peak performance of unloaded resources. This type of admission
control may not be reasonable in a dynamic environment where resources are

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 88

shared among a number of users and computation tasks.
If non-greedy synchronization is used, then we need to use the maximum

of execution time Ei and eligibility time ei as the value for τi in expres-
sion (5.2).

5.3.4 Application cycle control using non-greedy syn-
chronization

As explained in the previous section, non-greedy synchronization changes
application behavior. In particular, it delays execution of application tasks
and therefore the total cycle time of the application may increase and the
maximum rate of tasks requesting a service may decrease. We can exploit
this property to limit this maximum rate to a value suitable for a task sched-
uler. To achieve this, we need to introduce sufficient delay into application
execution so that schedulability condition is always satisfied. However, the
delay introduced should not lead to deadline violations. Therefore we need
to introduce delays and prove that the created delay will ensure schedulabil-
ity condition without deadline violation. This is similar to introducing some
sort of ”leaky bucket” regulator affecting the whole application.

5.3.5 Choice of eligibility times and feasible rates

Minimum application cycle time is therefore regulated by a choice of the
eligibility times for tasks.

We can choose a value of eligibility time for a task k from the interval
[0,Dk], where Dk is the deadline of the task k. Since deadline values were
chosen so that application deadline is satisfied as long as all task deadlines
are satisfied, the assignment of the eligibility time within this interval will
not lead to an application deadline violation.

This interval of choice of eligibility times gives us the limits on the min-
imum application cycle time we can guarantee. The lower bound on the
application cycle time is obtained from the equation (5.2) when values of
tmin
k are used as TK . The upper bound on the minimum cycle time can

be obtained when values of task deadlines Dk are used. For convenience,
let us denote these two values of minimum cycle time as Plower and Pupper,
accordingly. These values give a range of feasible application execution rates.

Proposition 5.3.1. We may select a set of eligibility times so that:

• The minimum cycle time is equal to a value Pmin of our choice where
Plower ≤ Pmin ≤ Pupper

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 89

• The application cycle deadline is not violated

Proof. In this proof, we use an assumption (stated above) that the task
deadlines are assigned in such a way that if neither task deadline is violated,
the whole application cycle deadline is not violated.

Suppose we chose a value Pmin, Plower ≤ Pmin ≤ Pupper

We consider the cycle in Petri Net which gives the minimum cycle time
of the application when each of the tasks has the eligibility time equal to its
deadline. We denote this cycle Lupper.

We assign zero eligibility times to all tasks except tasks on the cycle
Lupper.

Since deadline values were used in equation (5.2), the sum of deadlines of
tasks included in the Lupper is

∑
ti∈Lupper

Di = PupperNupper, where Nupper is a
number of tokens in the cycle Lupper.

For the tasks from the cycle Lupper we assign eligibility times so that their
sum

∑
ti∈Lupper

ei = PminNupper. It can be any assignment, as long as ei ≤ Di,
and since Pmin ≤ Pupper, we can always find such assignment.

Since actual minimum cycle time Pactual is defined by values max(tmin
k , ek)

and for the cycle Lupper we have that
∑

ti∈Lupper
ei/Nupper = Pmin ≤

≤ ∑
ti∈Lupper

max(tmin
i , ei)/Nupper ≤ max(Ti/Ni) = Pactual, we can guar-

antee that the actual minimum cycle time Pactual is equal to or longer than
the Pmin.

This choice of eligibility times may not give the exact value of Pmin,
but it has an advantage that it is independent of values tmin

k and therefore
independent of the task-to-resource assignment.

The whole scheme works in the following way. The admission control in-
put is an application with task mapping provided by some outside algorithm.
The assumption that the mapping is given is reasonable because this prob-
lem itself is NP-hard and may require a complex solution [TGEO06]. When
an application task is being admitted for execution on a particular resource,
the value of the minimum cycle time of the task has to be submitted to the
resource in order to obtain a guaranteed level of service. The minimum cycle
time of an application is the minimum period time of a task from the appli-
cation. We can choose a minimum application cycle time from the interval
[Plower, Pupper], give it to a resource for admission control, choose a set of
eligibility times for application tasks and therefore enforce that task period
will never be less than the specified value. Since we assume that a resource
provides a guaranteed service for applications satisfying admission control
parameters and the parameters are enforced by the regulation scheme, task
deadlines are guaranteed.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 90

5.3.6 Comparison with other regulators

The proposed scheme, although described above in relation with EDF sched-
uler, in fact is a regulator which can be coupled with many existing single
server scheduling algorithms. However, when implemented with other algo-
rithms, the rate of delay may need to be adjusted to reflect admission criteria
of a particular scheduling algorithm.

Since this is a regulator, in discussion of benefits of using this technique,
the benefits and drawbacks of general regulators are valid for this technique
as well. For example, the average delay may increase, and overall throughput
of the system may decrease. However, the guarantee can be given that cer-
tain characteristics, such as end-to-end transmission delay, wound not exceed
specified level [ZF94].

The advantage of the proposed technique, however, is that it allows a
distributed regulator. In this case, first, only subset of servers need to have
a regulator enforced before the scheduler. Second, there is a way to estimate
the reasonable level of delay brought in by the regulator, by estimating the
actual minimum cycle time and comparing it with the required. Third, the
model makes sure that even for complex application structure the delay in-
troduced would not lead to the deadline being exceeded. In comparison, the
leaky bucket regulator in end-to-end transmission in the network has to be
used before every server, and it is not clear how what would be the effect of
using it for complex application structures, in comparison with linear task
graph of network transmission.

5.4 Simulation study

The scheme was verified using a simulation. We simulated an environment
based on the earliest deadline first (EDF) scheduler. We chose EDF because
it has a very simple admission control, it can be easily implemented and it is
commonly used in distributed real-time systems. The simulation was done
using Simgrid [Sim] toolkit.

5.4.1 Simulation setup

There are six computational servers. Servers are fully connected, i.e. there
is a link from each server to every other server. This type of network con-
nectivity corresponds to the case where every server has certain amount of
reserved bandwidth to every other server. We do not restrict the scenario
to the homogeneous environment and generated the rates of the servers and

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 91

links to be different. The particular rates for each scenario were randomly
generated and fixed for the duration of the simulation.

Every server uses the EDF algorithm to schedule incoming tasks. Link
bandwidth is divided between the different computations such that tasks of
the same computation are scheduled according to EDF with processing rate
corresponding to the bandwidth allocated for this computation. This link
model corresponds to a situation where an amount of network bandwidth is
allocated to a computation, and communication tasks are scheduled by the
computation according to EDF.

A continuous stream of computations was generated. The tasks of a
computation that are executed on computational servers are partitioned in
advance to run on two or three different servers. For example, tasks T1, T2, T3

and T6 from the DAG shown in Figure 5.1 were assigned to one server while
tasks T4 and T5 were assigned to another. Each computation required 50 cy-
cles to run. When a computation arrived, tasks were assigned to the specified
resources and the EDF admission control decision was made. This admission
control was done for both computational and network resources. After that,
the admitted tasks were added to the respective servers for scheduling and
execution.

We carried out simulations to: (1) explore how deadlines are satisfied
and how application or computation cycle times are affected by different
load conditions, and (2) evaluate how system-wide performance is affected
under different load conditions and different task synchronization methods.

The load was regulated using different computation arrival rates. Com-
putation arrival times were exponentially distributed. For every arrival rate,
we generated 10 random scenarios of server and link speeds. The server
and link speeds were generated independently from a uniform distribution
in some pre-determined range. The arrival rates were chosen such that for a
particular set of server and link speeds, the load on resources from arriving
computations varied from light to heavy. The acceptance rate varied from
approximately 50% to almost 100%.

We considered the cases of greedy and non-greedy synchronization be-
tween tasks. As described earlier, in the first case, a task is released as
long as all of its parent tasks are complete. In the second case, a task is
released only after all of its parent tasks are complete, but not earlier than
max(rj + ej), where rj is the release time and ej is the eligibility time of
jth parent. Admission control for greedy synchronization assumed that the
computation period is longer than any task deadline and used only the Di

and Ei values. In the case of non-greedy synchronization, the circuit LD

defining the upper bound on minimum cycle time was identified in each case,
and the eligibility times were distributed across several tasks in this circuit.

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 92

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Interarrival time

R
at

io
 w

ith
 r

es
pe

ct
 to

 d
ea

dl
in

e

Max greedy
Max non−greedy
Min greedy
Min non−greedy

Figure 5.3: Simulation results: The ratio of minimum and maximum cycle
time to an application deadline

We set the minimum cycle time Pmin = max(Di). Hence, the sum of ratios
Ei

Di
of tasks was used in the admission control test in both cases.

5.4.2 Simulation results

Figure 5.3 shows the deviation in application cycle time for the cases when
greedy and non-greedy synchronization was used. It can be seen that when
the demand control scheme was used, application deadline was always sat-
isfied. In addition, the deviation in application cycle time in the case of
non-greedy synchronization was smaller than that in the case of greedy syn-
chronization. The minimum cycle time, in contrast, was much smaller in the
case of greedy synchronization. This is because non-greedy synchronization
slows down those applications which use more resources than their allocated
share and therefore allows more even distribution of resources among appli-
cations.

However, such more even resource distribution is achieved at the expense
of slowing down not only individual applications, but also of the whole sys-
tem. Figure 5.4 shows the average resource utilization in the simulated sys-
tem. The utilization in the case of non-greedy synchronization was con-

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 93

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Interarrival time

H
os

t u
til

iz
at

io
n

Greedy
Non−greedy

Figure 5.4: Simulation results: Average host utilization

sistently lower that that in the case of greedy synchronization. A possible
explanation is that in the case of greedy synchronization when some appli-
cations do not fully utilize their share of resources, other applications may
reclaim unused resources by achieving a shorter average cycle time. However,
in the case of non-greedy synchronization this application speed-up is limited
by the assigned minimum cycle time.

5.5 Applicability and limitations

The main advantage of the resource control scheme described in this chapter
lies in the fact that all decisions on scheduling and delaying are made on the
basis of information available to a scheduler and therefore there is no need
for a scheduler to have communication with other resources. Communication
with resources happens only during application deployment and resource
reservation phase. This property makes the scheme suitable for use in loosely
coupled environment.

Another advantage of the scheme is that it is able to give a tight esti-
mation on the minimum cycle time. This is achieved by using Time Petri
net model. An alternative approach is to use directed acyclic graph (DAG)

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 94

model, as suggested by Bettati [BL92]. However, DAG model can only give
an upper bound on the minimum cycle time based on the critical path in
the DAG. This upper bound may be loose for an application that has several
input and several output nodes in its DAG model, because in this case the
minimum cycle time value is a function of critical paths between different
pairs of input and output nodes.

In our scheme we used a synchronization protocol similar to the modified
phase-modification protocol. The use of this specific protocol allows us to
control explicitly the time that a task spends on a resource and ensures that
a task is never delayed beyond its deadline. Actually, some other synchro-
nization protocol, for example Release Guard [Sun97] protocol, can be used.
However, in this case we need to prove that either individual task deadlines
or application end-to-end deadline is indeed satisfied. Whichever protocol
is used, we still have to compute the possible range of values of guaranteed
minimum cycle time. And we can obtain this range using Petri net model.

However, this scheme also has two limitations.
First, it is applicable only to applications that do not have conditional

branching on the level of tasks. Although it is can be extended to include con-
ditional branches, the complexity of the algorithm that finds the minimum
cycle time in this case is exponential in the number of conditional branches.
This limitation means that tasks represent high-level units of work and all
units of work have to be done, which in many cases is a reasonable assump-
tion. Tasks still may have branching inside and this branching could be
represented by a variable time to execute a particular task. In fact, our Petri
net application model is derived from a Directed Acyclic Graph application
model, which is commonly used and, similarly to our Petri net model, does
not contain branching on the level of tasks.

Another limitation of the scheme is that the resource demand is limited by
a simple function similar to the token bucket regulator [Cru91]. In this case
the depth of the bucket is the ”weight” of all application tasks assigned to
a resource and bucket rate is this weight per minimum cycle time. However,
in many QoS architectures the token bucket regulator is considered sufficient
for providing required functionality.

The disadvantage of the scheme is that it lowers the overall system ef-
ficiency by lowering resource utilization. This effect is commonly observed
in quality of service architectures [GGPR96]. In general, since the effect is
caused by applications not fully utilizing the reserved resources, this effect
can be minimized in two ways. First, we may try to propose tighter admis-
sion control, which is able to consider the fact that not all application tasks
can run simultaneously. Second, we may use ”not claimed” resources to exe-
cute other applications. These applications generally include low priority or

CHAPTER 5. CYCLIC COMPUTATION DEADLINE 95

best effort applications. However, if there is an economical reason to provide
high priority applications with not only performance guarantees, but also
with overall better service, resource providers would prefer to give these ”not
claimed” resources to other guaranteed application.

Chapter 6

Conclusion and future work

This thesis presents a research effort in the area of the application-level qual-
ity of service in the distributed loosely coupled environment. Two distributed
computing environment were considered - sensor networks and more general
loosely coupled distributed systems. These two environments have one im-
portant feature in common: communication and coordination between ap-
plication entities deployed on separate resources is very limited.

Two techniques for the application-level QoS were proposed which address
this lack of coordination. The third technique addresses the specific property
of the sensor network application, namely, the need to take account the
observed phenomena state in deciding which resources to use.

The first is a method to compute approximated delay and loss distribution
for aggregated data of a sensor network query. By using this distribution,
data-level Information Quality metrics can be enforced for sensor query. The
significant difference of this method is in two facts. First, the structure of a
sensor network query is taken into account and the probabilistic performance
of a whole query is used as an admission control parameter. Second, the
probability distribution for a query performance is obtained using statistical
parameters measured locally on sensor network nodes thus eliminating the
need for complex sensor network control.

The second application-level QoS technique is conceptually a form of a
leaky bucket regulator, but implemented in the distributed fashion for a com-
plex cyclic computation in loosely coupled distributed system environment,
so that no additional communication is required for coordination of execu-
tion in different administrative domains and yet the regulation is achieved
without unnecessary slowing down of application.

The last technique is the algorithm for a resource optimization problem
formulated to guarantee the Information Quality obtained by a sensor net-
work data-fusion application. It has a combination of properties not found

96

CHAPTER 6. CONCLUSION AND FUTURE WORK 97

in other systems. First, it considers the general notion of phenomena tracked
and takes into account the dynamic state of the phenomena to provide IQ
guarantees. Second, it provides the way of taking into account the informa-
tion loss and resource constraints existing in sensor network. The Dynamic
Bayesian Network model is used to derive the dependency between the re-
sources used and information quality obtained.

The general approach used in this work is based on application modelling
and consists of three stages. In the first stage we analyze an application. In
the second we identify the specifics of the environment which may prevent
a application from obtaining the required level of service. In the third we
choose a model of application and a method of using this model which can
overcome the environment specifics.

In addition, we proposed a comprehensive list of the Information Quality
metrics relevant to the sensor network environment. Some of the IQ metrics
discussed were addressed in the sensor network query admission control and
phenomena-aware resource management described here.

The further development of the work described here will mostly be in the
area of phenomena-aware resource management, with more emphasis on the
three aspects:

1. Other models of the information fusion have to be considered, other
than Bayesian estimation, for example, grammar-based techniques.

2. Efficient computational techniques for the Dynamic Bayesian Network
based resource management have to be developed.

3. Comprehensive optimization decomposition framework which addresses
the resource constraints has to be developed.

Appendix A

List of publications arising
from the thesis

1. Andrei Tolstikov, Jit Biswas, Wendong Xiao, Chen Khong Tham, In-
formation Quality driven Resource Management for Human Activity
Tracking, to be submitted to IEEE Transactions on Automation Sci-
ence and Engineering

2. Tolstikov A., Biswas J., Tham C. K., Yap P., Eating Activity Primitives
Detection - a Step Towards ADL Recognition, In proceedings of the
10th International Conference on e-Health Networking, Applications
and Services (Healthcom 2008), 7-9 July 2008

3. Tolstikov, A.; Wendong Xiao; Biswas, J.; Sen Zhang; Chen-Khong
Tham Information Quality Management in Sensor Networks based on
the Dynamic Bayesian Network model In proceedings of the 3rd Inter-
national Conference on Intelligent Sensors, Sensor Networks and Infor-
mation Processing (ISSNIP 2007), 3-6 Dec. 2007, Page(s): 751-756

4. Tolstikov, A.; Chen-Khong Tham; Wendong Xiao; Biswas, J. Informa-
tion quality mapping in resource-constrained multi-modal data fusion
system over wireless sensor network with losses, In proceedings of the
6th International conference on Information, Communication and Sig-
nal Processing (ICICS 2007), 10-13 Dec. 2007

5. Tolstikov A.; Tham C. K., Biswas J., Quality of Information assurance
using phenomena-aware resource management in sensor networks, In
proceedings of the 14th IEEE International Conference on Networks
(ICON 2006), Sept. 2006

98

APPENDIX A. LIST OF PUBLICATIONS ARISING FROM THE THESIS99

6. Tolstikov, A.; Biswas, J.; Chen-Khong Tham ”Data loss regulation to
ensure information quality in sensor networks”. In proceedings of the
2005 International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, 5-8 Dec. 2005, Page(s): 133- 138

7. Tolstikov, A.; Biswas, J.; Tham, C.-K. ”Providing end-to-end QoS in
distributed computation using nongreedy task synchronization”. In
Proceedings. 12th IEEE International Conference on Networks, 2004.
(ICON 2004). Volume 1, 16-19 Nov. 2004 Page(s):397 - 402 vol.1

8. Tolstikov A., Tham C. K., Biswas J., ”Resource Load Control for Tim-
ing Guarantees in Cyclic Grid Ccomputations”, In Proceedings of Inter-
national Conference on Scientific & Engineering computation (IC-SEC
2004), Singapore, June 30 - July 02 2004.

Bibliography

[AKS04] Hitha Alex, Mohan Kumar, and Behrooz Shirazi. Midfusion:
middleware for information fusion in sensor network applica-
tions. In Proceedings of the Intelligent Sensors, Sensor Networks
and Information Processing Conference, pages 617–622, 2004.

[ANS99] ANSI/IEEE. IEEE Std. 802.11, Wireless LAN Medium Access
Control (MAC) and Physical (PHY) specifications, 1999.

[ANS03] ANSI/IEEE. IEEE Std. 802.15.4: Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (LR-WPANs), 2003.

[ASB02] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Per-
formance guarantees for Web server end-systems: A control-
theoretical approach. IEEE Transactions on Parallel and Dis-
tributed Systems, 13(1):80–96, 2002.

[Bay] Bayes net toolbox for matlab. http://bnt.sourceforge.net/.

[BDQ+05] J. Biswas, S.K. Das, Q. Qiu, V. S. Chava, and P.V. Thang. Qual-
ity aware elderly people monitoring using ultrasonic sensors. In
to appear in the Proceedings of the 3rd International Conference
On Smart homes and health Telematics, ICOST2005, 2005.

[BHA+01] Isabelle Bloch, Anthony Hunter, Alain Appriou, André Ayoun,
Salem Benferhat, Philippe Besnard, Laurence Cholvy, Roger
Cooke, Frédéric Cuppens, Didier Dubois, Hélène Fargier, Michel
Grabisch, Rudolf Kruse, Jérôme Lang, Seraf́ın Moral, Henri
Prade, Alessandro Saffiotti, Philippe Smets, and Claudio Sos-
sai. Fusion: General concepts and characteristics. Int. J. of
Intelligent Systems, 16(10):1107–1134, 2001.

100

BIBLIOGRAPHY 101

[BL92] Riccardo Bettati and Jane W.-S. Liu. End-to-end scheduling to
meet deadlines in distributed systems. In International Confer-
ence on Distributed Computing Systems, pages 452–459, 1992.

[BNQP05] Jit Biswas, Felix Naumann, Qiang Qiu, and Hwee Hwa Pang.
Assessing the completeness of sensor data. Manuscript submitted
for publication, June 2005.

[BT01] Jean-Yves Le Boudec and Patrick Thiran. Network calcu-
lus: a theory of deterministic queuing systems for the internet.
Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over
data streams. In SIGMOD Record, volume 30, 2001.

[CHZ02] Maurice Chu, Horst Haussecker, and Feng Zhao. Scalable
Information-Driven Sensor Querying and Routing for Ad Hoc
Heterogeneous Sensor Networks. International Journal of High
Performance Computing Applications, 16(3):293–313, 2002.

[CLCD07] Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Lay-
ering as optimization decomposition: A mathematical theory of
network architectures. Proceedings of the IEEE, 95(1):255–312,
Jan. 2007.

[Cro] Crossbow technology. http://www.xbow.com/.

[Cru91] Rene L. Cruz. A calculus for network delay, part i: Network ele-
ments in isolation. In IEEE Transactions on Information Theory,
pages 114–131, 1991.

[CSS97] S. Chatterjee, J. Sydir, and B. Sabata. Modeling application
for adaptive qos-based resource management. In Procceding of
the 2nd IEEE High Assurance Systems Engineering Workshop,
August 1997.

[DGM+04] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M.
Hellerstein, and Wei Hong. Model-driven data acquisition in
sensor networks. In VLDB, pages 588–599, 2004.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Network-
ing, 1(4):397–413, 1993.

BIBLIOGRAPHY 102

[FK99] Ian Foster and Carl Kesselman. Computational grids. In
Grid: Blueprint for a New Computing Infrastructure, chapter 2.
Morgan-Kaufman, 1999.

[FKL+99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy. A distributed resource management architecture that
supports advance reservations and co-allocation. In Proceedings
of the International Workshop on Quality of Service, 1999.

[FRS00] Ian Foster, Alain J. Roy, and Volker Sander. A quality of service
architecture that combines resource reservation and application
adaptation, 2000.

[GGPR96] L. Georgiadis, R. Guérin, V. Peris, and R. Rajan. Efficient sup-
port of delay and rate guarantees in an internet. In SIGCOMM
’96: Conference proceedings on Applications, technologies, ar-
chitectures, and protocols for computer communications, pages
106–116, New York, NY, USA, 1996. ACM.

[Gha97] Zoubin Ghahramani. Learning dynamic Bayesian networks. Lec-
ture Notes in Computer Science, 1387:168–197, 1997.

[GN02] Xiaohui Gu and Klara Nahrstedt. A scalable qos-aware service
aggregation model for peer-to-peer computing grids. In HPDC,
pages 73–82, 2002.

[GT98] G. Ghinea and J. P. Thomas. Qos impact on user perception
and understanding of multimedia video clips. In MULTIMEDIA
’98: Proceedings of the sixth ACM international conference on
Multimedia, pages 49–54, New York, NY, USA, 1998. ACM.

[HdV05] Namwon Hyung and Casper G. de Vries. Portfo-
lio selection with heavy tails. Technical Report 05-
009/2, Tinbergen Institute, January 2005. available at
http://ideas.repec.org/p/dgr/uvatin/20050009.html.

[HMCP04] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo. Mid-
dleware to support sensor network applications. IEEE Network
Mag., 18(1):6–14, 2004.

[IP94] K. Ito and K.K. Parhi. Determining the iteration bounds of
single-rate and multi-rate data-flow graphs. Circuits and Sys-
tems, 1994. APCCAS ’94., 1994 IEEE Asia-Pacific Conference
on, pages 163–168, 5-8 Dec 1994.

BIBLIOGRAPHY 103

[Jen01] Finn V. Jensen. Bayesian Networks and Decision Graphs.
Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[JNR05] Philippe Jacquet, Amina Meraihi Naimi, and Georgios
Rodolakis. Performance of binary exponential backoff csma in
wifi and optimal routing in mobile ad hoc networks. In Conrado
Mart́ınez, editor, 2005 International Conference on Analysis of
Algorithms, volume AD of DMTCS Proceedings, pages 365–370.
Discrete Mathematics and Theoretical Computer Science, 2005.

[Lee95] Kam Lee. Performance bounds in communication networks with
variable-rate links. In SIGCOMM ’95: Proceedings of the confer-
ence on Applications, technologies, architectures, and protocols
for computer communication, pages 126–136, New York, NY,
USA, 1995. ACM Press.

[LHY+04] I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, Nalini Venkatasubra-
manian, Dmitri V. Kalashnikov, and W. Yang. QUASAR: Qual-
ity aware sensing architecture. ACM SIGMOD Record, 33(1):26–
31, March 2004.

[LL73] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-
programming in a hard-real-time environment. Journal of the
Association for Computing Machinery, 20(1):46–61, 1973.

[LN00] Ulf Leser and Felix Naumann. Query planning with information
quality bounds. In In Proc. of the Int. Conf. on Flexible Query
Answering Systems (FQAS), 2000.

[LWF96] Jörg Liebeherr, Dallas E. Wrege, and Domenico Ferrari. Exact
admission control for networks with a bounded delay service.
IEEE/ACM Transactions on Networking, 4(6):885–901, 1996.

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. Tinydb: an acquisitional query processing system
for sensor networks. ACM Trans. Database Syst., 30(1):122–173,
2005.

[MPI] Message passing interface forum. http://www.mpi-forum.org/.

[MPS+02] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David
Culler, and John Anderson. Wireless sensor networks for habitat
monitoring. In ACM International Workshop on Wireless Sensor

BIBLIOGRAPHY 104

Networks and Applications (WSNA’02), Atlanta, GA, Septem-
ber 2002.

[MSB] Microsoft bayesian network editor and tool kit.
http://research.microsoft.com/adapt/MSBNx/.

[MSFC02] Samuel Madden, Robert Szewczyk, Michael J. Franklin, and
David Culler. Supporting aggregate queries over ad-hoc wire-
less sensor networks. In WMCSA ’02: Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applica-
tions, page 49, Washington, DC, USA, 2002. IEEE Computer
Society.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications.
In Proceedings of the IEEE, pages 541–580, April 1989.

[Mur02] Kevin P. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, University of California,
Berkeley, 2002.

[NJZ99] K. Nichols, V. Jacobson, and L. Zhang. Rfc2638: A two-bit
differentiated services architecture for the internet, 1999.

[NR00] Felix Naumann and Claudia Rolker. Assessment methods for
information quality criteria. In Fifth Conference on Information
Quality (IQ 2000), pages 148–162. MIT, 2000.

[PHC04] Joseph Polastre, Jason Hill, and David Culler. Versatile low
power media access for wireless sensor networks. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107, New York, NY, USA,
2004. ACM.

[PSB04] Walter Perry, David Signori, and John Boon. Exploring Infor-
mation Superiority: A Methodology for Measuring the Quality of
Information and Its Impact on Shared Awareness. RAND, 2004.

[RFG+00] Alain J. Roy, Ian Foster, William Gropp, Brian Toonen, Nicholas
Karonis, and Volker Sander. Mpich-gq: quality-of-service for
message passing programs, 2000.

[Sim] Simgrid. http://simgrid.gforge.inria.fr/.

BIBLIOGRAPHY 105

[SR05] Jens B. Schmitt and Utz Roedig. Sensor network calculus - a
framework for worst case analysis. In Lecture Notes in Computer
Science, volume 3560, pages 141 – 154, 7 2005.

[SS99] David Starobinski and Moshe Sidi. Stochastically bounded
burstiness for communication networks. In INFOCOM (1), pages
36–42, 1999.

[Sun97] Jun Sun. Fixed-priority end-to-end scheduling in distributed
real-time systems. Technical report, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 1997.

[TBT05] Andrei Tolstikov, Jit Biswas, and Chen-Khong Tham. Data
loss regulation to ensure information quality in sensor networks.
In International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing ISSNIP, pages 133–138, 2005.

[TGEO06] Yuan Tian, Yaoyao Gu, Eylem Ekici, and Fusun Ozguner. Dy-
namic critical-path task mapping and scheduling for collabora-
tive in-network processing in multi-hop wireless sensor networks.
In ICPPW ’06: Proceedings of the 2006 International Conference
Workshops on Parallel Processing, pages 215–222, Washington,
DC, USA, 2006. IEEE Computer Society.

[Wan98] Jiacun Wang. Timed Petri Nets: Theory and Application.
Kluwer Academic Publishers, Boston, 1998.

[WC01] Alec Woo and David E. Culler. A transmission control scheme for
media access in sensor networks. In MobiCom ’01: Proceedings of
the 7th annual international conference on Mobile computing and
networking, pages 221–235, New York, NY, USA, 2001. ACM
Press.

[WS96] Richard Y. Wang and Diane M. Strong. Beyond accuracy: what
data quality means to data consumers. J. Manage. Inf. Syst.,
12(4):5–33, 1996.

[XNVW00] Dongyan Xu, Klara Nahrstedt, Arun Viswanathan, and Duang-
dao Wichadakul. Qos and contention-aware multi-resource reser-
vation. In HPDC ’00: Proceedings of the 9th IEEE Interna-
tional Symposium on High Performance Distributed Computing,
page 3, Washington, DC, USA, 2000. IEEE Computer Society.

BIBLIOGRAPHY 106

[XRC+04] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak
Ganesan, Alan Broad, Ramesh Govindan, and Deborah Estrin.
A wireless sensor network for structural monitoring. In SenSys
’04: Proceedings of the 2nd international conference on Embed-
ded networked sensor systems, pages 13–24, New York, NY, USA,
2004. ACM.

[YHE02a] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. 2002.

[YHE02b] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies INFOCOM 2002, New York, USA, 2002.

[ZF94] Hui Zhang and Domenico Ferrari. Rate-controlled service disci-
plines. 1994.

[Zha95] Hui Zhang. Service disciplines for guaranteed performance ser-
vice in packet-switching networks, October 1995.

[ZJ06] Yongmian Zhang and Qiang Ji. Active and dynamic information
fusion for multisensor systems with dynamic bayesian networks.
IEEE transactions on Systems, Man and Cybernetics, Part B,
36(2):467–472, April 2006.

[ZLL+03] Feng Zhao, Jie Liu, Juan Liu, Leonidas Guibas, and James
Reich. Collaborative signal and information processing: an
information-directed approach. Proceedings of the IEEE,
91(8):1199– 1209, August 2003.

[ZPB02] J. Zhang, K. Premaratne, and Peter H. Bauer. Resource allo-
cation and congestion control in distributed sensor networks - a
network calculus approach. In Proceedings of 15th International
Symposium on Mathematical Theory of Networks and Systems,
University of Notre Dame, August 2002.

