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Summary        

       The drug discovery is a long and time-consuming process that also requires huge sums of 

financial investment. Advances in bioinformatics areas such as database development and 

machine learning methods have played a great role in reducing the time and money invested, 

rationalizing the entire approach, and increasing efficiency for drug discovery processes. Focus 

of my work has been to aid the drug discovery processes applying various computational 

methods. A particular focus has been given to improvise the storing, managing and providing 

the customized data by developing web accessible databases of medicinal chemicals and 

biomolecules;  i.e. (i) Updating of Kinetic Database of Biomolecular Interactions(KDBI), and 

(ii) Indian  Herbs and their Chemical Database(IHCD) . Also, focus has been given on the use 

of machine learning classification by predicting the medicinal chemicals for (i) genotoxicity, 

and (ii) p38 inhibitors.  

 

       Database development for biological and chemical data is explored from the beginning of 

data collection to deploying of web application. Biological and chemical data which can be 

helpful in drug discovery process are used for this purpose. The complexities involved such as 

biological data collection, filtering, cross-linking to other database, providing web accessibility, 

facilitating data download, and modeling of databases are explained in detail. The two 

databases, IHCD and KDBI, developed have different kind of data content and cover a broad 

area of biological and chemical databases space. IHCD contain information on a total of 2326 

herbs from 430 therapeutic classes and 3978 chemical ingredients. IHCD also contain 

information about chemical ingredient through cross-linking to chemical, pathway, and 

molecular binding databases PUBCHEM, NCBI bioassay, KEGG pathways, BIND, and 

bindingDB databases respectively. IHCD also provides 3D structure, computed molecular 

descriptors for all ingredients, and computer predicted potential protein targets and binding 
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structures for select ingredients.  The other database, KDBI, contain information on 19263 

experimental kinetic data, which include 2635 protein-protein, 1711 protein-nucleic acid, 11873 

protein-small molecule, and 1995 nucleic acid-small molecule interactions. KDBI also has 63 

literature reported pathway simulation model kinetic parameter data set and provides facility to 

download each pathway kinetic dataset in SBML file format. 

Machine Learning Classification methods are employed in areas that are directly linked to 

early stage of drug discovery such as predicting genotoxic compounds and p38 MAPK inhibitor 

by collecting more than 4000 genotoxic compounds and about 1100 p38 MAPK inhibitors. 

Different types of machine learning methods such as SVM, kNN, PNN and decision trees are 

applied for these studies, although the special focus is on SVM. Also, machine learning based 

virtual screening is done on PUBCHEM and MDDR database.  A total of 522 molecular 

descriptors were calculated for each compound to represent compounds and either entire 522 or 

selected 100 descriptors were used for machine learning classification.  
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Chapter 1 Introduction 

 

 Drug discovery is a long and time-consuming process that requires huge sums of 

monetary/financial investment. Many studies have been done to find the strategies for reducing 

the time, for reducing the cost and for increasing the efficiency to cover a number of drugs in 

the drug discovery process. This work on “Database development and machine learning 

classification of medicinal chemicals and biomolecules” is one of such kind of strategy which is 

introduced in this chapter along with the background of Drug Discovery and Bioinformatics. 

This chapter consists five parts: (1) Drug Discovery (Section 1.1) (2) Bioinformatics in Drug 

Discovery (Section 1.2) (3) Database development of medicinal chemicals and biomolecules 

and their roles in drug discovery (Section 1.3) (4) Machine learning classification of medicinal 

chemicals as a tool in drug discovery (Section 1.4). (5) Objectives of my PhD projects (Section 

1.5) 

1.1 Drug discovery 

A typical drug discovery process involves the identification of candidates, synthesis, 

characterization, screening, and assays for therapeutic efficacy. Once a compound has shown its 

value in these initial assays, it will go for the process of drug development prior to clinical 

trials. The whole process takes about 10-17 years, $800 million (as per conservative estimates), 

and has less than 10% overall probability of success. There is a significant productivity gap in 

drug discovery and is of major concern for biopharmaceutical industry. The global 

pharmaceutical market is worth US$ 712 billion (Malik 2008). Compared to the huge R&D 

investment in implementing new technologies for drug discovery, return is insignificant 

(Ashburn and Thor 2004). Search of novel undiscovered compounds has motivated many 

pharmaceutical companies and scientists for the last few decades, but difficulties in getting new 



2 
 

molecules out with respect to time and money has slowed the momentum of drug discovery in 

recent times and this slowdown trend is expected to continue (Malik 2008). Figure 1 shows the 

investment done in drug discovery and corresponding number of new chemical entities (NCEs) 

approved by Food and Drug Administration (FDA) every year starting from 1992.     

 

 

Figure 1: Number of new chemical entities (NCEs) in relation to research and development (R&D) 
spending (1992–2006). Source: Pharmaceutical Research and Manufacturers of America and the US Food 
and Drug Administration (Sollano, Kirsch et al. 2008). 

 

Drugs, in the past,  have been discovered either by finding the active ingredient from 

traditional medicines or by serendipitous discovery (Kaul 1998). Long before the advent of 

pharmaceutical industry, the usage of these drugs discovered by trial and error were passed 

down by verbal and written records (Ratti and Trist 2001). Lack of data management about 

these discovery and traditional medicines have been a reason of underutilization of these 

findings by pharmaceutical industries.  In mid 20th century, this drug discovery process by trial 

and error started having little rationalization by screening the known drug like compounds by 
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randomly testing for activity. In this progression, lead molecules found by chance or from 

screening the diverse chemical libraries were followed by lead optimization. Slowly, when the 

understanding of diseases and mechanism of action for drugs started becoming clearer, the 

rational approach was sought for drug discovery. 

In this rational approach, in vitro assays on animal tissues became the standard way and well-

liked for the process of getting valuable information on structure–activity relationships and 

pharmacophore construction. By this approach, even if the lead molecule fails there is adequate 

information about the cause of failure in terms of structure or physiochemical descriptors which 

should be modified in the molecules. In similar way, many such strategies got developed in 

time to rationalize the drug discovery process. 

Recently, the strategy of finding a therapeutic role of an existing compound has become 

popular (Figure 2). Moreover, finding new therapeutic role for an existing drug has also 

become desired area of research. The number of drug like candidates is increasing very rapidly 

(around 170,000)  (MDL Information System Inc 2004; 2004) in comparison to limited number 

of potential therapeutic target (around 1500) (Hopkins and Groom 2002). Some researchers 

speculate that existing drugs and candidates may have covered a significant number of potential 

drug targets (Ji, Kong et al. 2007; McArdle and Quinn 2007; Park and Kim 2008) and single 

drug  can bind to multiple receptors(Paolini, Shapland et al. 2006; Yildirim, Goh et al. 2007) 

for producing the effects. The present chemical space of drugs like candidates constitutes 

highly diversified compounds and mining of this space may produce good drugs (Kong, Li et 

al. 2009). 
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Figure 2 : A comparison of traditional (a) de novo drug discovery and development versus (b) drug 
repositioning. (Ashburn and Thor 2004) 

 
In 1990s, areas like molecular biology, cellular biology and genomics grew rapidly which 

helped in understanding disease pathways and processes into their molecular and genetic 

components to recognize the cause of malfunction precisely, and problematic point seeking 

therapeutic intervention.  This progress helped in finding many new molecular targets and 

number of molecular targets increased significantly (from approximately 500 to more than 

10,000 targets) which could be utilized for the discovery of novel methods for the prevention, 

diagnosis, and treatment of human diseases (Newman 2008). This was accompanied by 

development of ultra high throughput screening (ultra-HTS) for screening extensive chemical 

libraries upon a small number of biological targets such as enzyme or a cell-surface receptor. 

The method usually follows combinatorial chemistry which produces chemical compounds of 

interest with extremely high speed, and these compounds may respond positively in assay upon 

the desired target.  While there has been some success with this approach, the number of 

innovative discoveries has been confined (Koehn and Carter 2005). 
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   To further improvise the drug discovery processes, systems biology has a comprehensive 

approach by analyzing biological operation, cellular processes and disease-mediated processes 

at a systems-level to understand the difficult to determine underlying causes, and research 

options for treatment (Davidov, Holland et al. 2003).  This is facilitated by combining feedback 

from genomics (global gene expression analysis and whole genome functional analysis), 

proteomics (protein structure and function), and metabolomics (measurement of metabolite 

concentrations and fluxes and secretions in cells and tissues that have a direct connection to 

genetic, protein, and metabolic activity) to incorporate data such as structurally defined 

chemical libraries with specific biological pathway information (Nicholson and Wilson 2003).  

Systems biology integrates massive quantities of complex data generated by genomic, 

proteomic and metabolic analyses to understand phenotypic variation and build comprehensive 

models of cellular organization and function.  The objective of studying complex relationships 

is to use research findings to  better define targets with the intent of developing more effective 

therapies (Harrill and Rusyn 2008). Furthermore, systems biology is newly forming as an 

access to drug discovery that will assist pharmaceutical companies to produce more effective 

drugs with small side effects in addition to lower the development time and costs.  Systems 

biology uses a combining approach to know the performance of biological systems as they 

answer to perturbations in their surrounding condition such as the administration of drugs.  

System biology has caused encouragement in the drug discovery society; though drug 

companies for the most part are not following this approach.  While the study is commonly 

accepted to be yielding, the time it will take for the research to turn applicable to drug 

companies is not perceived.  There can be increase in number of companies based on systems 

biology which can help in early stage of drug discovery (Cho, Labow et al. 2006; Schrattenholz 

and Soskic 2008).  
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An important archetype in drug discovery is the design of selective agents to act on individual 

drug targets. In contrast, some drugs have effect on multiple targets, such as Gleevec (Petrelli 

and Giordano 2008; Zhang, Crespo et al. 2008). Advances in systems biology are revealing 

phenotypic robustness and network structures that strongly suggest that elegantly selective 

compounds, compared with multi-target drugs, may produce lower than desired clinical 

efficacy. This new appreciation of the role of pharmacology has significant implications for 

handling the two prime sources of attritions in drug development - efficacy and toxicity. A 

promising way to develop more effective and less toxic candidates for druggable targets is the 

integration of system biology and pharmacology based on the explosively growing biomedical 

data (Jenwitheesuk, Horst et al. 2008; Schadt, Friend et al. 2009). Even if a compound shows 

high selectivity and specificity to a disease-causing protein in pre-clinical studies, there is no 

guarantee that the compound can succeed as a drug in clinical phase. This is due to several 

important aspects in pharmacology: pharmacokinetics, pharmacodynamics and toxicity. 

Toxicity is the side effects that can be caused by the multiple targets of the drug candidates 

through interfering cells normal functions.  Phase I clinical trials for a compound involves years 

of painstaking preclinical testing and yet has only an 8% chance of reaching the market. 

Toxicity results in the further reduction by 20% of such molecules during late development 

stages. Therefore, the implementation of toxicity testing as early as possible in the drug 

development process is of primary significance (Custer and Sweder 2008).  

 Huge amounts of compounds necessary for in vivo studies, dearth of reliable high-

throughput assays, and the inability of in vitro and animal models to correctly predict toxicities 

in human are the main reasons that prevent pharmaceutical companies from conducting earlier 

screening for toxicity. These problems can be addressed through the development of 

computational or in silico toxicity prediction tools, either structure-based or ligand-based 

approaches which involve the application of modeling techniques on human data. These serve 
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as main approaches to extract potentially toxic effects in humans even before the physical 

availability of compounds. 

By looking at challenges involved in drug discovery processes, there should be innovative 

ways in drug discovery which cut down the time and financial investment. One of the great 

ways of achieving this is using bioinformatics in drug discovery.  
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1.2 Bioinformatics in Drug discovery 

Computational methods and bioinformatics tools like predictions of biological activity and 

virtual screening can help in reducing the cost and time taken in drug discovery process. This 

can help in pursuing only the most promising experiments and can eliminate many unnecessary 

experiments beforehand. According to the BCC research report, the worldwide value of 

bioinformatics is expected to increase from $1.02 billion in 2002 to $3.0 billion in 2010, at an 

average annual growth rate (AAGR) of 15.8% (Figure 3). The use of bioinformatics in drug 

discovery is likely to reduce the annual cost by 33%, and the time by 30% for developing a new 

drug.  

  

Figure 3: Worldwide value of bioinformatics Source (BCC Research1

The increasing pressure to discover or invent more drugs in less time has resulted in 

noteworthy significance of bioinformatics. By applying bioinformatics tools, it is now possible 

to start with the compound which explicitly targets a desired protein or group of protein (multi-

targeting). Thus the whole process is no longer on a trial and error based like the traditional 

approach of drug discovery in which a compound with probable pharmacological activity is 

)  

                                                           
1 http://www.bccresearch.com/report/BIO051A.html 

http://www.bccresearch.com/report/BIO051A.html�
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isolated and then tested on animals and subsequently in human during clinical trials. 

Bioinformatics has helped in making a rational approach for the drug discovery process. 

Bioinformatics tools are getting developed which are capable to congregate all the required 

information regarding potential targets like nucleotide and protein sequencing, homologue 

mapping (Muller, MacCallum et al. 1999; Friedberg, Kaplan et al. 2000), function 

prediction(Li, Lin et al. 2006; Chen, Chen et al. 2008), pathway information (Cerami, Bader et 

al. 2006), structural information (Cases, Pisano et al. 2007) and disease associations (Nakazato, 

Takinaka et al. 2008). The availability of the information about potential targets into databases 

can help pharmaceutical companies in saving time and money exerting efforts on targets that 

will fail later. 

 Rapid development in bioinformatics have accumulated huge amount of biological data. It 

becomes necessary to organize these data which is also an area of great interest in 

bioinformatics. With the growth of biological databases and data mining approaches, to extract 

or filter valuable targets or compounds by combining biological thoughts with computational 

tools or methods has changed the way drug discovery is conducted. Here, in this thesis, the 

work has been done to aid the drug discovery processes in general by applying various 

computational methods. A particular focus has been given to improvising the storing, managing 

and providing the customized data by developing web accessible databases of medicinal 

chemicals and biomolecules. The second focus has been given on the use machine learning 

classification as helper in drug development processes by classifying medicinal chemicals. 

  



10 
 

1.3 Database development of medicinal chemicals and biomolecules and their role in drug 

discovery 

       Role of database development is vital in drug discovery for managing and analyzing the 

expanding magnitudes of diverse chemical and biological data. Databases of medicinal 

chemicals and biomolecules are very important to accelerate the medicinal research. It helps in 

fast search of medicinal chemicals and biomolecules for their categories, mechanism, sources 

like information.  Many public and commercial databases have been developed for these 

purposes (Southan, Varkonyi et al. 2007). Some of these databases provide comprehensive 

information for broad category of medicinal chemicals, biomolecules or literature. One of the 

most widely used literature based public database is Pubmed database which has more than 18 

million citations from more than 20,400 life science journals. Over 9.8 million of these citations 

have abstracts, and 8.7 million of these abstracts have links to their full text articles (Sayers, 

Barrett et al. 2009). Other very popular databases like, Pubchem and CAS database are most 

general chemical information databases. Pubchem is a public database by NIH which contain 

information about chemical, structural and biological properties of small molecules, in 

particular their roles as diagnostic and therapeutic agents. Pubchem itself has three categorized 

databases: PCSubstance for substance information, PCCompound for compound structures and 

PCBioAssay for bioactivity data. Pubchem databases hold records for nearly 41 million 

substances containing over 19 million unique structures. More than 750 000 of these substances 

have bioactivity data in at least one of the nearly 1200 Pubchem Bioassays (Sayers, Barrett et 

al. 2009). Another leading chemical database is CAS which is short form for Chemical Abstract 

Service by American Chemical Society. CAS is the largest databases of chemistry-related 

information, and provides searchable interface through SciFinder (a commercial search and 
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retrieval software) and STN (Scientific & Technical Information Network) which provides 

links to the original literature and patents.  

Most of these big databases provide extensive cross-linking and cross-referencing. The search 

output is generally full of hyperlinks which can link to other databases for detailed information.  

Pubmed has controlled vocabulary indexing of articles in the form of Medicine Medical Subject 

Headings (MeSH), which link compound names to journal articles. Similarly, the Protein Data 

Bank (PDB) (Berman, Westbrook et al. 2000) which stores protein structure data is linked to 

Uniprot for protein sequences (Bairoch, Apweiler et al. 2005; 2009). 

   Some database just covers specific areas with in-depth information. For example, NCI and 

SuperNatural (Dunkel, Fullbeck et al. 2006) are specific databases about chemical information 

of cancer related and natural compounds resources respectively. Uniprot and KEGG are very 

popular databases which contain information about biomolecules like proteins and enzyme 

respectively. Databases of biomolecules are very important for understanding the biological 

systems and pathways or pharmacological and pharmacokinetic aspect of drugs. Databases 

addressing specific biological and medicinal problems require innovative databases 

perspectives. 

        The vast amount of biological information and their widespread usage by scientists for 

research purpose is creating new challenges for the database development. Several gene, 

protein, and small-molecule dealings databases have been justified for these pursuits.  The data 

are generally collected from different sources like public databanks, proprietary data providers, 

biological, pharmacological, synthetic or simulation experiments. These data can be of various 

types, including very organized data type like relational database tables and XML files, 

disorganized web pages or flat files, and small or large objects like three-dimensional (3D) 

biochemical structures. Most of these data often lack common data formats or the common 
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record identifiers that are required for interoperability. Also, there is a high rate of development 

of system biology, which demands and produces computer readable data format and thus 

further increases the complexity of data management. To combine information regarding 

disjointed biological case, databases are required to fill in information gaps to the growing 

application of systems-level research.   Databases based on machine input/output data assist 

researchers in using data directly into the software without further processing e.g. database on 

Systems Biology Markup Language (SBML) helps in creating machine-executable simulation 

models rather than simple human-readable file format.  

Majority of these high quality biological or chemical database which are very useful to 

scientific community are being published by leading journals like Nucleic Acids Research, 

Bioinformatics and Journal of Chemical Informatics and Modeling for biological, 

bioinformatics and chemical databases respectively.  Nucleic Acids Research, which is one of 

the leading journal for biological community, started its annual database issue in 1993 with 24 

database has now 179 database published in 2009 making the total sum of 1170 databases 

(Galperin and Cochrane 2009). Research community is well aware of the importance of 

database and its availability to user instantly. For this purpose, Nucleic Acid research has made 

database papers as open access and also generally publishes web accessible databases (Galperin 

and Cochrane 2009).   

Recent trend is that the databases should be accessible through web browser. This web 

accessible feature has outstanding advantages over the local databases. Web accessible 

databases become instantly available to user though internal browsers. Current web interfaces 

of biological data sources generally provide many user-specified criteria as part of queries. 

With such capability, the accessibility of customized records from the query results becomes a 

very easy process even for naive users. Researchers who want to use data from web databases 

for their research generally take advantage of advanced features like data retrieval in other than 
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plain format, programs to collect the data because the manual collection of large number of 

records is not convenient. 

Some specific databases may provide data to be readily used in many computational methods 

or studies directly or with little preprocessing which otherwise would require manual data 

collection from literature. In pace with database development, computational methods like 

machine learning classification is flourishing which generally require large amount of 

categorized data to make prediction models. Development in machine learning classification 

method is serving a great need in drug discovery processes. The detailed introduction of 

machine learning classification is provided in next section. 
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1.4 Machine learning classification of medicinal chemicals and biomolecules as tools in 

drug discovery 

Machine learning has been defined in number of ways. Some of these definitions are , ‘The 

ability of a program to learn from experience — that is, to modify its execution on the basis of 

newly acquired information2 ’, ‘The ability of a machine to improve its performance based on 

previous results3 ’ , ‘The process by which computer systems can be directed to improve their 

performance over time4 ’ , and ‘Machine learning is a branch of computer science covering 

software that uses data to improve its accuracy at some given task5

 Machine Learning Classification (MLC) methods are increasingly used in early drug 

discovery stage for target and lead discovery. Some of these successful application includes 

 ’.  

  Machine learning has been applied in many fields e.g. robotics (Miglino, Lund et al. 1995; 

Vidovszky, Smith et al. 2006; Zeng, Teo et al. 2008),  stock market analysis , machine 

perception, detecting credit card fraud, brain-machine interfaces (Zhao, Rattanatamrong et al. 

2008),   natural language processing (Pestian, Matykiewicz et al. 2008; Jiao and Wild 2009; Xu, 

Wang et al. 2009; Yang, Spasic et al. 2009), search engines, medical diagnosis (Kononenko 

2001; Kloppel, Stonnington et al. 2008), syntactic pattern recognition (Badr and Oommen 

2006), bioinformatics (Bhaskar, Hoyle et al. 2006; Larranaga, Calvo et al. 2006; Hamelryck 

2009; Valentini, Tagliaferri et al. 2009),    object recognition in computer vision, game 

playing, software engineering and speech and handwriting recognition. The widespread use of 

machine learning is due to its high accuracy, capability of handling complex data, low cost in 

applying, and fast performance. 

                                                           
2 http://www.nature.com/nrg/journal/v5/n4/glossary/nrg1315_glossary.html 
3 http://dli.grainger.uiuc.edu/glossary.htm 
4 amsglossary.allenpress.com/glossary/browse 
5 http://www.broadinstitute.org/annotation/conrad/glossary.html 

http://www.nature.com/nrg/journal/v5/n4/glossary/nrg1315_glossary.html�
http://dli.grainger.uiuc.edu/glossary.htm�
http://www.google.com.sg/url?&q=http://amsglossary.allenpress.com/glossary/browse%3Fp%3D1%26s%3DM&ei=yWteSrL3Cs2ekQXK99mOBQ&sa=X&oi=define&ct=&cd=1&usg=AFQjCNGzSQCM3tz_B-eOEqCLMOdRP9BMlQ�
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classification of cytochrome P450 1A2 inhibitors and non-inhibitors (Vasanthanathan, 

Taboureau et al. 2009), protein expression profiling (Bradley, Kalampanayil et al. 2009), virtual 

screening of GPCRs (Shacham, Marantz et al. 2004; Evers, Hessler et al. 2005; Jacob, 

Hoffmann et al. 2008), prediction of interactions with ABC-transporters (Ecker, Stockner et al. 

2008), early detection of drug-induced idiosyncratic liver toxicity (Cruz-Monteagudo, Cordeiro 

et al. 2008), prediction of toxicological properties and adverse drug reactions of pharmaceutical 

agents (Ma, Wang et al. 2008), target discovery (Chen, Fang et al. 2007; Ekins, Mestres et al. 

2007; Han, Zheng et al. 2007; Chen and Chen 2008; Yousef, Showe et al. 2009), prediction of 

P-glycoprotein substrates (Xue, Yap et al. 2004; Huang, Ma et al. 2007), prediction of drug-

likeness (Matter, Baringhaus et al. 2001; Walters and Murcko 2002; Zernov, Balakin et al. 

2003). The motivation for the adoption of machine learning classification methods in drug 

discovery is due to its capability to model complex relationships in biological data.  

Machine learning classification methods require known information to train the machine and 

make a prediction model; based on which the model will be able to predict the class of 

unknown data. The robustness of prediction model comes through the quality of data used to 

train the machine. The most common machine learning methods are Support Vector Machines 

(SVM), Artificial Neural Network (ANN), Probabilistic Neural Network (PNN), k nearest 

neighbor (k-NN), C4.5 decision tree (C4.5DT) which have shown good performance in various 

fields. 

 Machine learning classification methods have become increasingly important in the 

drug discovery and development process by predicting the class of chemicals or biomolecules. 

In target discoveries, machine learning classification methods have been applied for analyzing 

microarray data, non-invasive images, and mass spectral data to find biomarkers. In lead 

identification, machine learning classification methods are used to assess potential lead 
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suspects, and for performing ligand based virtual screening to find possible hits. In addition 

machine learning classification methods are used to eliminate toxic compounds at very early 

stage of drug discovery.  Even if a compound shows high selectivity and specificity to a disease-

causing protein, there is significant probability of it failing in clinical phase. With the advent of 

combinatorial chemistry huge number of research compounds is being synthesized.  These 

compounds should ideally be assessed for the activity or toxicity before it goes to expensive 

wet lab assay and clinical trials. Many studies has suggested the use of computational pre-

assessment of compound e.g. the need of genetic toxicity prediction method (Van Gompel, 

Woestenborghs et al. 2005). This way, machine learning methods by its robust prediction 

capability can help as in selecting useful compounds and eliminating unwanted compounds.   
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1.5 Objectives of my PhD projects 

The main objectives of this study are to contribute to efficient drug discovery processes by 

(i) To contribute to efficient drug discovery processes by assessing the role of database 

development and machine learning methods  

a. To develop a database which would create a bridge between traditional medicine 

and modern medicine 

b. To develop a database which would trigger new pathway discovery process 

 

(ii) To contribute to efficient drug discovery processes by providing some useful databases 

and machine learning classification studies. 

a. To develop a machine learning  approach to solve an important toxicity related 

issues in early drug discovery process 

b. To develop a machine learning approach for lead identification for an important 

therapeutic target 

With these objectives, databases were developed e.g. Indian Herbs and their Chemical Database 

(IHCD) and Kinetic Database of Biomolecular Interaction database was updated; and machine 

learning classification methods were applied for genotoxicity and p38 MAPKs inhibitor 

predictions. In addition, some secondary objectives are as follows: 

1. To employ wide spectrum of biological or chemical data space for database 

development. 

2. To evaluate the different data collection procedures in terms of speed, accuracy and loss 

of information in the process. 

3. To observe the difference of web technologies employed in developing databases in 

terms of handling biological and chemical data complexity. 

4. To observe the effect of diversity of dataset in machine learning classification methods. 
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5. To observe the effect of number of molecular descriptors used in machine learning 

methods. 

6. To compare different machine learning methods performance 

7. To evaluate different machine learning performance in virtual screening of large 

databases.    
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Chapter 2 Methods 

2.1 Database development 

     2.1.1 Data collection 

  Data collection for making databases can be done by various ways e.g. manual data 

collection from literature, experiments or software output, part of the data taken from other 

databases, customized data collected programmatically from other databases either locally or 

over the web, and text mining by programs. Manual data collection from literature or manual 

curation of collected data is considered of the best quality. However, manual annotations is 

time consuming and expensive (Seringhaus and Gerstein 2007). A number of solutions for this 

problem are in practice. Data curation and annotation can be done in collaboration with other 

groups or providing online facility to edit or submission of data (Baumgartner, Cohen et al. 

2007). In this work, most of the data is collected manually to ensure good quality. However, 

biological data is generally very large in number and it is not always possible to collect data 

manually. One such solution is the use of web services which is used extensively used in this 

work for collecting data from National Library of Medicine (NLM). 

Web Services: It is a way to automatically access or facilitate data through the web. The term 

web service was originally created as a specific W3C standard (Stockinger, Attwood et al. 

2008). Lately it has been used as a method of programmatic access over web technologies. In 

recent times, new web technologies such as Web 2.0, Service Oriented Architectures (SOA) and 

other web-related technologies have been introduced. Since many bioinformatics tools and 

biological databases are deployed as web accessible and depend on the internet, these new 

technologies seem to be of considerable importance for users as well as for developers of 

databases. 
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 In other instances, data was also collected from some static web pages by writing html 

parser. Some commercial software are also available for this purpose e.g. Kapow Robo Suite, 

but in this work programs were written in Perl or Java to collect and parse html pages. Writing 

an html parser is a challenge because html file generally have unstructured data format. An 

efficient use of regular expression is necessary to retrieve structured data out of html. 

 

2.1.2 Data Integration 

Data integration is necessary where data from different sources need to be standardized 

before using it in making databases. Biological and chemical data comes from varied sources 

and its integration to a single database sometimes become big challenge. Improper integration 

can lead to loss of some part of data or even can introduce mistakes. The correct way of data 

integration for biological databases can generally be divided into two parts: (i) Syntactic 

integration in which data from different sources and of different file formats are standardized to 

have single file format. (ii) Semantic integration in which data from different databases are 

formalized to have a relational schema which holds relational tables and integrity constraints.  

     For syntactic integration, the standardized file format to which other data should be 

converted is generally XML. XML is short form of Extensible Markup Language. The structure 

of XML is such that it can hold data of various types of data such as simple plain table data, 

tree like data, relational tables and web pages. This easy conversion capability of XML makes it 

extremely useful format for exchange of data over web e.g. web pages file with  aspx or jspx 

extension to html pages, for communication between different database software e.g. MySQL 

and Oracle, and for communicating between software which takes input XML file and produces 

result in XML format.  In this work, the powerful feature of XML has been utilized for various 

purposes e.g. collection of Pubmed extracts for the Indian medicinal plants and their chemical 

ingredient name as keywords using NCBI entrez utilities, presenting pathway models in KDBI 
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database in System Biology Markup Language (SBML) which is an extension of XML and 

customized to keep system biology data.  

Semantic data integration on the other hand gives leverage to keep data in semi structured 

way. Sometime it is not possible to standardize a part of data to the convention of unified single 

file format. In these cases semantic data integration gives the flexibility to mix complex 

biological data. Well known databases like Uniprot and GO are good example of utilizing this 

kind of semantic integration. 

In addition to the abovementioned ways of data integration, data can be integrated manually 

as well. It is very time consuming and tedious to do that but sometimes it becomes 

indispensible. Moreover, it has the advantage of including high quality data which otherwise 

would be missed. Manual data integration is generally achieved through scripting languages 

like Perl or Python. These scripting languages are handy to use yet very powerful. Perl has 

modules like DBI, DBD: MYSQL, DBD: ORACLE by which it can connect to databases such 

as MySQL and Oracle. One can easily write script to manipulate database tables by integrating 

plain unformatted text taken from literature or html we page. The power of programming 

languages like Perl and Java has led major public database provided by NCBI and EMBL to 

provide database access though user written program. For example entrez programming utilities 

by NCBI provide many example scripts to get customized data by constructing pipeline over its 

database. Figure 4 shows the database model of NCBI databases and their interconnectivity, 

this snapshot taken shows linkage of pubmed database to other databases of NCBI. The detail 

about the NCBI databases can be found at http://www.ncbi.nlm.nih.gov/Database/ . A pipeline 

can be created by connecting several databases together for a string or IDs. This way of data 

integration can also be a part of data mining method which is explained in detail in next section.         

 

http://www.ncbi.nlm.nih.gov/Database/�
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Figure 4: Database model of NCBI databases for entrez search. This screenshot is taken at web address 
displayed in the figure by placing mouse on the Pubmed when then displays cross-linking of Pubmed to other 
databases. The linked objects are different NCBI databases. 

 

2.1.3 Data mining 

Simple understanding of data mining can be perceived as the method to extract the data from 

any source which cannot be retrieved using straightforward manner. Data mining also include 

finding the relationship or pattern in data by association, clustering, classification, forecasting 

and so on. Some of the biological and chemical data mining technique includes sequence 
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similarity search using BLAST, chemical structure similarity using fingerprint and text 

similarity search using regular expression.  

Sequence similarity of Proteins 

The BLAST program is used to do sequence-similarity searches against protein and 

nucleotide databases, which align the input sequence with database on the server with great 

speed. It is one of the most widely used programs for data mining in genomics and proteomics. 

The different versions and modifications in the BLAST program have made various variants of 

BLAST.  Different server can store different databases for their BLAST program e.g.  BLAST 

for nucleotide search human genome and transcript sequences, BLAST for protein searches 

GenBank, Swiss-Prot, PDB, PRF and PIR proteins.  The result of BLAST is normally pair wise 

alignment, multiple sequence alignment formats, hit table and a report explaining hits by 

taxonomy. The BLAST hit is based on bit score and expectation value which is the measure of 

probability of alignment by chance. Short input sequence will generally have high expectation 

value because of its high probability of being present in any sequence. The NCBI BLAST 

programs are also available freely to download; it can be installed locally and can be used as 

standalone command line programs. One can download a sequence database on which the 

BLAST program will align an input sequence, or sequence database can be custom created for a 

set of protein and nucleotide of interest. One such application of local standalone BLAST has 

been introduced in this work is PIK-BLAST (a web server to find kinetic parameters from a 

pool of protein interacting pairs) which keeps custom sequence database of protein interacting 

pair.  

Similarity of small molecules 

Chemical similarity search using fingerprint represents chemical compound in a binary 

format of differing length depending on the program e.g. Pubchem structural fingerprint is of 

1536 bits which is combination of 1024 bit fingerprint based on Molecular Design Limited 
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(MDL) and a 512 bit fingerprint representing 317 structural features as Smiles Arbitrary Target 

Specification (SMARTS) pattern6

where Nx and Ny describe the number of bits, set to 1 in the fingerprint, of compound x and y, 

respectively. Nxy is the number of bit positions set to 1 in both fingerprints. When a structural 

feature is present or absent in the molecule, the fingerprint or bit-string of that molecule will 

have 1 (present) or 0 (absent) at the specific position (each structural feature will correspond to 

one position in bit-string). 

. In chemical similarity search, fingerprint or bit-string is 

generated for the input structure and is compared to fingerprints stored of other compounds in 

database using the Tanimoto coefficient which is a similarity index and can be defined as:  

 

  Text matching is necessary at many places for file or table editing. It is generally achieved 

by using regular expression which can be defined as sequence of characters that depict a pattern 

in text. Almost all programming languages has regular expression based search capability but 

some of them like Perl has become very popular because of its easiness, speed and flexibility to 

perform same thing in many ways. In regular expression, metacharacters (like ^, &, (, ), * etc.) 

are utilized  to construct efficient search which is very useful in complex, hard to edit, time 

consuming text searching (Stephens, Chen et al. 2005). 

2.1.4 Data model 

The data model in the database development is the incorporated concepts to describe 

relationship and constraints involved in the data. There are many different types of data model 

possible for making databases such as flat file model, network model, hierarchical model, and 

relational model. In this work, we have applied relational data model.  

                                                           
6 http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html 

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html�
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Flat-file model: It is the simplest type of data model and uses just plain table to describe or to 

keep the data (Figure 5). One single row in the table represents one record. Each record can 

have set of features which are called attributes or fields which are kept in separate column. If 

the record does not have a particular feature then this field will be null. This flat data model is 

very convenient when the data is not very complex. Moreover, depending on the number of 

features involved there can be huge increase in number of records because records may be 

different by just one different feature. This way table usually becomes very big and speed of 

database decreases and subsequently becomes critical issue. Biological data is generally very 

complex and in this work we have not employed flat file model.      

 

Figure 5: Flat file model 

 

Hierarchical model: Hierarchical data model is very much like tree structure (Figure 6). This 

data model incorporates data very well and keeps the data in ‘one to many’ relationship. 

This data model is very much capable in mapping real world data complexities. Because of this 

nesting capability it has now become the standard of XML file. In this hierarchical model, one 

always needs to know the full path for accessing a record which put some limitation this type of 

model. 
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Figure 6: Hierarchical data model 

 

Network model: The network model looks like hierarchical model but it differs significantly 

in that branches of the tree can be linked to multiple nodes in upward link. Figure 7 shows the 

network data model in which ‘Data type 9’ is linked to two upper level ‘Data type 5’ and ‘Data 

type 7’.  The network data model can represent redundant data more efficiently than 

hierarchical data model. The network model operates in navigational style i.e. a program 

upholds a current position on one record and moves to another record according to the 

relationships present.  
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Figure 7: Network data model 

 

Relational model: The relational data model is a powerful approximation of mathematical 

model to make database tables well connected by some rules in order to be unaffected by kind 

of web application employed or built upon it. The databases used by making use of relational 

data model are often called as relational database. There are three important terms in relational 

data models i.e. relations, attributes, and domains. A relation is a table of rows containing 

records and columns whose name are called attributes.  The attributes can take certain range of 

values which are called as domains. A relational data model generally consist many tables with 

some relationship to each other. There is some basic rules to construct relational data model e.g. 

each table should not contain duplicate records, there should be primary keys in each table 

which must be unique, primary key of table may be present in another table and which will be 

the basis of linkage ( Figure 8 ). The keys of each table play a crucial role in relational data 

model by creating connections as well as fast retrieval of data upon request. The primary keys 

are automatically indexed which is a feature of providing fast access to record of table by 

jumping directly to index number rather than crawling at each record and searching. The other 

attributes can additionally be indexed as well but is only necessary if the search is being done 
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on that attribute. Overall, the relational data model is very robust data structure and that is why 

it has been applied in this work to construct databases. 

 

Figure 8: Relational data model 

 

2.1.4 Database interface 

Database interface or web interface (because this work represents web accessible databases) 

is what user sees and interacts with the database.  The database web interface should be very 

convenient to understand and user should have certain level of flexibility of getting customized 

data. User interaction capability can put web pages in two categories: static pages and dynamic 

pages. Static pages are the type of web page which will be same to all users i.e. user cannot get 

custom or advanced feature. Dynamic pages are the type of web pages which presents different 

web page content to different user according to the form submitted by them which may differ in 

keywords or selection of features. Here in this work, web accessible databases are mostly 

presented as dynamic web pages. These dynamic web pages have been built upon using both 
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server side as well as client side technologies. Server side dynamic web page creation can be 

achieved by various technologies like Active Server Pages (ASP), Java Server Pages (JSP), 

PHP and CGI (Common Gateway Interfaces) while client side dynamic web page creation is 

generally achieved through JavaScript. In this work ASP and JSP technologies are used for 

server side dynamic web page creation and JavaScript is used for client side dynamic web page 

creation. Server side dynamic web page creation over database involves submission of user 

supplied query to web server which further interacts with database software such as MySQL 

and Oracle. In contrast, client side dynamic web page creation does not include interaction with 

web server. The client side technology uses user internet browsers e.g. Internet Explorer, 

Mozilla Firefox and Google Chrome to run its code and display the data. The client side 

dynamic web page is thus very simple and generally used to present data in a beautiful manner 

and provides helps about the content such as change in color or short string giving help when 

mouse is place on some part of the content.  In contrast, server side dynamic web page creation 

requires efficient programming like java code for JSP and vbscript for ASP technology. Server 

side dynamic web page creation also require good tuning or configuration of web servers which 

handles user request to provide correct data. 
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2.2 Machine learning classification methods 

Machine learning classification methods employ computational and statistical methods to 

construct mathematical models from training samples which is used to classify independent test 

sample. The training samples are represented by vectors which can be binary, categorical or 

continuous.  Machine learning can be of two types: Supervised and Unsupervised. Supervised 

machine learning, as the name indicates, generally needs feeding which is availability of 

already labeled or classified data for training. Example of supervised machine learning includes 

Support Vector Machine, Artificial Neural Network, Decision tree learning, Inductive logic 

programming, Boosting, Gaussian process regression etc. Unsupervised machine learning, as 

the name indicates, gets unlabeled training data and the learning task involve to find the 

organization of data. Examples of unsupervised machine learning include Clustering, Adaptive 

Resonance Theory, and Self Organized Map (SOM). Some of machine learning methods 

employed in this work are Support Vector Machine (SVM), Probabilistic Neural Network 

(PNN), k nearest neighbor (KNN), Decision trees and Hierarchical clustering. These are 

explained below in subsequent sub sections. 

2.2.1 Support vector machine 

Support Vector Machine is a very specific class of supervised learning algorithms which 

separates labeled input data by a hyperplane. The input data can be of any number of 

dimensions, SVM by its robust algorithm can still find a hyper plane by the use of different 

kernel functions. On either side of this separating hyperplane, a hyperplane is constructed to 

push the corresponding labeled data so that the maximum margin (distance) is achieved 

between either sides of hyperplane (Figure 9 and Figure 10). The labeled vector data points on 

these two hyperplanes are called as support vectors.(Cristianini 2000). 
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Figure 9: SVM hyperplanes separating positive and negative. The green line shows the separating hyperplane. 
On either side of this hyperplane, two hyperplanes are shown with red and blue line.   

 
 

 

 

Figure 10 : Use of kernel functions in SVM in high dimensional space to convert non-linear hyperplane to linear 
hyperplane 
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For some training data, data points D can be presented in the form 

                                      Equation 1 

           where for each point Xi is a multidimensional vector, the value of ai is either 1 or −1, 

indicative of the class to which it belongs. In order to construct the maximum-margin 

hyperplane which separates the points having ai = -1 from those having ai = 1 (Figure 9), an 

equation of separating hyperplane can be written as the set of points  satisfying. 

                                                                                                               Equation 2 

               where  is a normal vector which is perpendicular to the hyperplane. The 

parameter  determines the offset of the hyperplane from the origin in the direction of normal 

vector . The value of   and b should be chosen to maximize the margin, or distance as 

much as possible between the parallel hyperplanes on either side of this separating hyperplane 

and separating the data simultaneously. These two parallel hyperplanes on either side of 

separating hyperplane can be written as  

                                                                                                               Equation 3 

&                                                                                                                 Equation 4 

       If the training data can be separated linearly then the margin of the two hyperplanes can 

be selected in such a way that there are no data points between them and maximum distance is 

achieved between them.  The distance between these two hyperplanes can be calculated as , 

so ||w|| should be minimized. To prevent data points falling into the margin, we can add the 

following constraint:  

                                                                                                             Equation 5 

&                                                                                                             Equation 6 

this can be rewritten as: 
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                                                                              Equation 7 

  While minimizing ||w|| (in w, b),  Equation 7   becomes the optimization problem. This 

optimization problem is hard to solve because it depends on ||w||, the norm of w, which involves 

a square root. However, it is can be solved by little change in the equation by replacing ||w|| 

with   without changing the solution  which then becomes quadratic 

programming optimization problem. If the equation is written in its unconstrained dual form 

then it can be seen that the classification depends just on the support vectors. This 

unconstrained dual form can be seen to have the following optimization problem: 

Maximize (in αi ) 

            Equation 8 

 
The α terms represent a dual form for the weight vector: 

                                                                                                             Equation 9 

 
The positive or negative value of Equation 8  specify that the vector Xi go to  positive or 

negative class (either side of separating hyperplane) respectively. 

 

2.2.2 Decision Trees 

Decision tree  is a type of supervised machine learning method which is very good in solving 

the problems in which instances are characterized by attribute-value pairs and are explained by 

a unchanging set of attributes (e.g., chemical descriptors like solubility) and their values (e.g., 

water soluble). Decision trees can be very easily applied in situations when every attribute has 

small number of disjoint values (e.g., water soluble, oil soluble). Nevertheless, it can handle 

other type of attributes like log p, chi value efficiently as well. Decision tree models are also 

good in tackling missing values, and little error in either independent or dependent variable or 



34 
 

in both. Moreover, the clarity and visualization of decision making process is easily 

comprehendible which makes it more adoptable in comparison to algorithm like artificial neural 

network (ANN) which is very complex to understand. (Frank 2005) 

Construction of decision tree Model 

As a first step, the whole data is split into two or more disjoint sub-samples. The whole data 

set is termed as root node and the sub-samples are known as a node. This division of whole data 

is done on the basis of one of the independent variables which are called the splitting attribute. 

Based on different values of this splitting attribute separate branches are made. Then every data 

point or instance in root node is placed into one of the directly attached node based on the value 

of splitting attribute. The selection of splitting attribute is made to achieve best homogeneous 

sub-samples after partitioning of root node.   

In second step, the partitioning done in first step is repeated for every node by taking into 

consideration only the instances present in that particular node alone. This process continues till 

there is no violation of any stopping-rule imposed by the algorithm. When there is such 

violation, the further partitioning on that particular node is stopped and that node is termed as 

leaf node. This whole process of decision tree is finished when only leaf nodes are present i.e. 

no node is left for further partitioning.(Frank 2005). An example decision tree is shown in 

Figure 11 which depicts the decision making process for a compound’s positive or negative 

class. 
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Figure 11: Decision tree 

 

The mathematical algorithm of the decision tree can be comprehended briefly in terms of 

entropy or any other tree splitting parameter choosing function. During tree building in decision 

tree, data is portioned repeatedly until the dataset present in each partition belong to single class 

or the partition node has very small dataset. The decision for splitting of a node can be based on 

entropy as splitting parameter choosing function or splitting index. 

∑−= )(log)( 2 jj fxfTEntropy                                                                    Equation 10 

where fj is the relative frequency for class j. The best split is one which has maximum 

information gain: 

∑
=

−
n

i
i

i SI
S
S

SI
1

)()(                                                                                                                 Equation 11 

 

where the split partitions S can have n different class Si (i = 1 to n) with I() as splitting index.  
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 After that partitioning, tree pruning is done to remove statistical noise which may only 

be particular to the training set. Tree pruning is helpful in finding a sub tree which has least 

estimated error rate.  

There are various decision tree algorithms available to do the abovementioned steps but they 

differ significantly in criteria of selecting splitting attribute or splitting index, imposing a 

stopping rule and how nodes are depicted of a particular class. Some of the popular algorithm 

includes  C4.5 developed by Quinlan (Quinlan 1993) , Random Forest, Naive Bayes trees, and 

logistic model trees. The decision trees applied in this work are from Waikato Environment for 

Knowledge Analysis(WEKA) (Frank 2005) implementation of these decision tree algorithms in 

the form of classes like J48 (C4.5)(Quinlan 1993), Random Forest(Breiman 2001), 

ID3(Quinlan 1986), NBTree(Kohavi 1996), Random Tree, LMT, RepTree, ADTree(Freund 

1999), BFTree(Tibshirani 2000) and M5P(Quinlan 1992).  

 

2.2.3 k-nearest neighbor (k-NN) 

 KNN is a supervised machine learning method which classifies data by grouping close 

neighbors together. Based on the label of input training data points, the new test data is 

classified by the count of labeled of k nearest neighbored training data (Figure 12). Ideally, the 

value of k should be decided on the number of labeled training data and is optimized during 

training. The algorithm implementing kNN can vary in number of ways e.g. on the basis 

distance calculation methods like Euclidian or Manhattan. Different K-nearest neighbor 

algorithm have been used for the classification of biological and chemical data (Chin, Wang et 

al. 2006; Chou and Shen 2006; Karakoc, Cherkasov et al. 2006). In this work, k-NN is used by 

WEKA class IBk(Kibler 1991). 
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Figure 12: k-Nearest Neighbor 

 

2.2.4 Feed forward Neural Networks  

Neural networks are a type of supervised machine learning method and Feed forward Neural 

Network is one of its subtypes. PNN has been applied in this work by WEKA class Multi Layer 

Perceptron (Frank 2005). A multilayer perceptron maps sets of input data onto a set of 

appropriate output. Multilayer perceptron is a modified standard linear perceptron in that it uses 

three or more layers of neurons (nodes) with nonlinear activation functions, and is more 

powerful than the perceptron in that it can distinguish data that is not linearly separable.   

Multilayer perceptron design has three or more layers which are input, output, and one or 

more hidden layers (Figure 13). Nodes of one layer connects o every node in the following 

layer with certain weight. Learning occurs in the perceptron by changing connection weights 

after each piece of data is processed, based on the amount of error in the output compared to the 

expected result. Generalization of the least mean squares algorithm in the linear perceptron 

results in back propagation. 
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Figure 13: Feed forward neural network  

 

2.2.5 Hierarchical Clustering 

Hierarchical clustering is a kind of clustering method which builds a hierarchy of clusters for 

a given dataset.  This hierarchical structure can also be seen as tree kind of structure called 

dendogram. In this tree kind of structure root node contains all the data points which break 

down via different branches. Hierarchical clustering is generally of two types: agglomerative 

and divisive (Figure 14). In agglomerative type, clustering starts from leaf which keep on 

adding together till it reaches to root. The divisive type is reverse of agglomerative type that is 

starting from root and going towards leaf. In this work, hierarchical clustering is applied via 

WEKA class COBWEB (Fisher 1990) which does clustering in divisive way. 
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Figure 14: Hierarchical Clustering: Agglomerative and Divisive 

 

2.2.6 Data collection for machine learning 

Dataset used for machine learning classification is of utmost importance. Various factors like 

quality, size and relevance of the dataset can affect machine learning process greatly. Dataset 

quality is generally assessed at the time of data collection. Data collected from less reliable 

source will give rise to faulty models which will lose its predictive power when assessed for 

true independent set. Here, in this work care has been taken to include data from very reliable 

sources like good journals and manually annotated databases. For example while collecting data 

for p38 inhibitors from journals like Bioorganic and medicinal chemistry and Journal of 

Medicinal chemistry, chemical compounds were drawn manually. Data collected manually are 

generally considered of very high quality, but in compounds data collections from papers may 

need additional care to ensure high quality. Chemical compounds in these synthesis related 
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journal usually have series of compounds with the same ring and only little variation in side 

chain. Manual drawing of compounds in these scenario are prone to errors. By keeping this fact 

in mind, sketched compound were checked thrice to ensure correct compound structure. Such 

practice is very necessary to propagate good quality to the built model. Quality of dataset can 

also be ensured by correct labeling. In certain cases, data points falls into grey area i.e. neither 

positive nor negative. These hard to label data should be labeled carefully with some cut off 

like IC50 (concentration at which 50 % of the enzyme is inhibited) value or can be excluded 

permanently from dataset.  

 

2.2.7 Data representation: Molecular descriptors 

  

Molecular descriptors are frequently used to describe various physicochemical or structural 

properties of molecules for many computational studies small molecules. There are many types 

of chemical descriptors such as composition based descriptors, electronic descriptors, and 

geometrical descriptors. Broadly these chemical descriptors can be classified into three 

categories: one dimensional, two dimensional or three dimensional. Chemical composition like 

number of carbon atom, number of oxygen atom etc are one dimensional chemical descriptors; 

geometric descriptors topological descriptors like molecular connectivity chi indices, molecular 

shape Kappa indices, electrotopological state indices, and atom type electrotopological state 

indices are two dimensional chemical descriptors; and molecular volume, dipole moment, polar 

surface are three dimensional descriptors. A number of programs e.g. OpenBabel, MODEL (Li, 

Han et al. 2007), Chemistry Development Kit(CDK) (Steinbeck, Han et al. 2003; Steinbeck, 

Hoppe et al. 2006) etc are available to calculate chemical descriptors. In this work, varying 

number of chemical descriptors are used which was calculated from MODEL.       
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Molecular descriptors  have been extensively used in deriving structure-activity relationships 

(Fang, Tong et al. 2001; Tong, Xie et al. 2004), quantitative structure activity relationships (Hu 

and Aizawa 2003; Jacobs 2004), and machine learning prediction models for pharmaceutical 

agents (Doniger, Hofmann et al. 2002; Byvatov, Fechner et al. 2003; He, Jurs et al. 2003; 

Zernov, Balakin et al. 2003; Snyder, Pearl et al. 2004; Xue, Li et al. 2004; Yap, Cai et al. 2004; 

Yap and Chen 2005). A total of 522 chemical descriptors was derived by using program 

developed by BIDD group (Xue, Yap et al. 2004) , of  which either entire 522 or selected 100 

descriptors were used in this work (See Table 14 and Table A1 in Appendix for the detail of 

descriptors used).  

 

2.2.8 Data processing:  

   2.2.8.1 Redundancy and similarity within datasets 

Compounds are checked for redundancy by comparing exact match of chemical descriptors. 

In this work, scripts are written to find exact match of chemical descriptors to remove 

redundancy from dataset. 

Similarity of the compounds can be checked by Tanimoto-based similarity searching method 

(Willett, Barnard et al. 1998) : 

                  

        where n is the number of molecular descriptors and x is representing molecular 

descriptor. The compound i is evaluated as similar to the compound j if the tanimoto similarity 

calculated is greater than the decided cut-off value. In this work, the tanimoto similarity search 

was conducted for MDDR compounds with genotoxic compounds. The different cut-off values 

0.7, 0.8 and 0.9 were tried for searching similarity of compounds (Bostrom, Hogner et al. 2006; 

Huang, Shoichet et al. 2006).  
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2.2.8.2 Scaling 

Chemical descriptors are normally scaled before they can be employed for machine learning. 

Scaling of chemical descriptors ensures that each of descriptor have unbiased contribution in 

creating the prediction models(Dutta, Guha et al. 2006).  Scaling can be done by number of 

ways e.g auto-scaling, range scaling, Pareto scaling, and feature weighting (van den Berg, 

Hoefsloot et al. 2006; Parsons, Ludwig et al. 2007). In this work, range scaling is used to scale 

the chemical descriptor data. Range scaling is done by dividing the difference between 

descriptor value and the minimum value of that descriptor with the range of that descriptor:  

 

Where ,  , dj,max and dj,min are the scale descriptor value of compound i, absolute 

descriptor value of compound i , maximum and minimum values of descriptor j respectively. 

The scaled descriptor value falls in the range of 0 and 1.  

 

2.2.9 Model validation 

One of the usual ways to assess or to find the optimum parameters for a model built by machine 

learning is to see its performance either by independent validation set or cross validation. In this 

work, models were validated by using both independent validation set (manually segregated a 

part of data based on some criteria like recently published), and by cross validation. There are 

various types of cross validation commonly used in many statistical studies such as repeated 

random sub-sampling cross validation, k-fold cross validation, and leave one out cross 

validation. In this work, we have applied k-fold cross validation with k value is equal to 5, thus 

making it 5-fold cross-validation (Figure 15). For 5-fold cross-validation, these compounds are 

randomly divided into five subsets of equal size. Each of these folds contains equal number of 
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positive and negative data, thereby rendering it a stratified cross-validation.  Four subsets are 

selected as the training set and the fifth as the validation set. This process is repeated five times 

such that every subset is selected as a validation set once. The SVM models were saved in each 

case and prediction were done for validation data. 

 

Figure 15: 5-Fold cross validation 
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2.2.10 Performance evaluation methods 

In this work, performance of machine learning models is evaluated by using following 

formulas:  

SE (positive accuracy) = TP/ (TP + FN)  

SP (negative accuracy) = TN/ (TN + FP)  

Q (overall accuracy) = (TP + TN)/ (TP+TN+FP+FN)  

MCC = (TP ×TN − FP × FN)/ (TP + FN) (TP + FP) (TN + FP) (TN + FN) 

where TP (true positive), TN (true negative), FP (false positive), and FN (false negative), and 

Matthews correlation coefficient (MCC) correspond to correctly predicted positive, correctly 

predicted negative, negative samples incorrectly predicted as positive, and positive samples 

incorrectly predicted as negative, and randomness of prediction respectively. MCC value has 

range of -1 to 1. Positive values of MCC signify the agreement between measurement and 

prediction, negative values signify the disagreement between measurement and prediction, and 

zero value signify the prediction is same as guess.  

 
 

2.2.11 Overfitting problems and strategies for detecting and avoiding them 

Overfitting (Figure 16) is major concern in machine learning classification method. In the 

course of model building using cross validation, many times machine over fits the model with 

very high accuracy in cross validation results but show poor accuracy while tested with 

independent dataset. That is why; sometime it is good practice to choose the model which 

performs better with independent data. The reason for overfitting is usually linked with the 

model having high number of degrees of freedom compared to the number of records. Other 

possible reason for overfitting could be the conformability of the model in accordance to data 

shape, and the extent of model error matched up to the expected level of data error. 
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Figure 16: Overfitting of machine learning classification methods. Red line: Normal separating line, Blue Line: 
Overfitted separating line   

 

2.2.12 Machine learning classification-based virtual Screening platform 

Virtual screening is basically of two types: Structure based and Ligand based. In structure 

based, small molecule database is docked on a protein structure. Based on the scoring functions 

of docked complex compounds are selected as hits. In ligand based virtual screening there is no 

need of protein structure. Based on the existing experimental hits, a model or an equation is 

generated and this is used for screening small molecule database. So, the ligand based virtual 

screening is kind of similarity or pattern searching. The virtual screening by machine learning 

methods falls into the category of ligand-based virtual screening. The models are developed by 

using SVM for the best parameter range found by 5-fold cross-validation which is used for the 

Virtual Screening of MDDR and Pubchem database. The models developed for virtual 

screening are different from models that have been developed using the 5-fold cross-validation. 

The models developed for virtual screening use all the data accumulated for training purposes, 

while 5-fold cross-validation study keeps four folds for training and one for validation.  The 
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common compounds found in MDDR and genotoxicity positive data are both removed and 

used in the development of the SVM model. This has been done to make it true independent 

database used in virtual screening. 

The performance of virtual screening is sometime presented with additional parameters than 

simple number of hits e.g. hit rate, yield and enrichment factor. These can be defined as 

follows: 

Hit rate = Ratio of predicted known hits to all the predicted hits. 

Yield = Percentage of known hits predicted 

Enrichment factor = Magnitude of hit rate improvement over random selection 
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Chapter 3 Database development of medicinal chemicals: Indian medicinal herbs and 

their chemical ingredients 

3.1. Introduction of Indian medicinal herbs 

Traditional medicines have been extensively used in various countries and are gaining 

popularity in industrial countries. The global market for traditional medicine has reached US 

$60 billion with 5-10% annual growth rate (Kartal 2007). One of the popular traditional 

medicines is Ayurvedic medicine which is widely used in India (Mishra, Singh et al. 2001). 

Like other traditional medicines, Ayurvedic medicines mostly explore single medicinal plant or 

mixture of medicinal plant extracts for achieving the claimed therapeutic actions. However, 

rigorous investigations are needed for investigating the therapeutic effectiveness of Ayurvedic 

medicines and the mechanism of actions, which requires the knowledge about the bioactive 

ingredients and their mechanism of actions and have thus attracted strong interests in the 

relevant research (Smit, Woerdenbag et al. 1995; Arora, Kaur et al. 2003) particularly in 

studying the collective effects of multiple herbs and ingredients based on the currently limited 

knowledge about the ingredients and their targeted biomolecules and biological networks 

(Ichikawa, Nakamura et al. 2007). Therefore, easily accessible resources that provide 

comprehensive and integrated information about the herbs and ingredients of Ayurvedic 

medicines and their targeted biomolecules and biological networks are highly useful for 

facilitating the relevant research that have been hindered by the insufficiency of the relevant 

information (Koehn and Carter 2005). 

 

Most of the available Ayurvedic medicine databases tend to emphasize more on formulations 

and less on ingredients and their mechanism of actions (Jayaraman 2006). The latter is 

important for investigating the claims of Ayurvedic remedies and discovering new drug leads 

(McGuffin 2008).  Moreover, there is a lack of resources for facilitating the search of the 
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biomolecules and biological pathways targeted by the herbs and ingredients of Ayurvedic 

remedies. As part of the efforts to fill-in these gaps to complement the available databases,  we 

developed a new database IHCD (Indian Herbs and Chemical Database) freely accessible at 

(http://bidd.cz3.nus.edu.sg/ihcd) for facilitating the access of comprehensive and integrated 

information about herbs, ingredients, therapeutic actions, chemical descriptors and the possible 

biomolecules and biological targets of the relevant herbs and ingredients. 

 

3.2 Data collection and database construction methods 

The relevant herbs and ingredients were collected from reputed books such as Indian Herbal 

Pharmacopoeia (1999) , Indian Medicinal Plants: An illustrated dictionary (Khare 2007)  and 

journals such as Journal of Ethnopharmacology, Journal of Alternative and Complementary 

Medicine and through comprehensive search of Medline. The information of a total of 2326 

herbs from 430 therapeutic classes and 3978 ingredients were collected. Further information 

about each ingredient was provided via cross-link to chemical, pathway, and molecular binding 

databases PUBCHEM, NCBI bioassay, KEGG pathways, BIND, and bindingDB databases. 

IHCD also provides 3D structure, computed molecular descriptors for all ingredients, and 

computer predicted potential protein targets and binding structures for selected ingredients. The 

crosslink was established by the following procedure: The chemical name and synonyms of 

each ingredient is mapped to those in the Pubchem substance database.  The matched ones were 

subsequently mapped to other databases like MESH and Pubchem bioassay databases. MESH 

mapping from Pubchem substance ids were done by NCBI e-utilities.  IHCD also contain 

information of pubmed abstracts related to herb. The pubmed abstracts were collected for herbs 

botanical name. The abstracts were downloaded in xml format by NCBI e-utilities, parsed and 

imported to database (Oliver, Bhalotia et al. 2004).  

http://bidd.cz3.nus.edu.sg/ihcd�
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The predicted potential targets for each ingredient were derived from virtual screening of 

PDB database by using INVDOCK software (Y.Z. Chen 2001). INVDOCK has high accuracy 

of about 83% in predicting the protein targets of a small molecule when the scope of search is 

confined to all available 3D structures of protein (Chen and Ung 2001). 

3.3 Database Access and Construction 

IHCD website is at http://bidd.cz3.nus.edu.sg/ihcd. The web interface was developed by 

using Java server pages at front-end and MySQL database on backend (Figure 17). 

 

Figure 17: Overview of IHCD database model 

 Search fields were provided for searching the information in four different categories: herb 

name, therapeutic class, active ingredient, and ingredient with information about computer 

predicted targets (Figure 18). When entered by choosing herb botanical name, the herb general 

information like botanical name, family name, Indian name, therapeutic activity is provided and 

further prompted to choose chemical ingredients for displaying chemical structure, descriptors, 

Pubchem substance mapping and other cross-linking information. 

Web-Interface

Webserver : Tomcat Web pages: JSP, HTML Visualization of structures: Jmol

Mysql Tables

Herb General 
Info

Chemical 
Ingredients

Chemical 
Structures

Chemical 
descriptors Mesh INVDOCK Pubmed

Datasources

Scientific Literature NCBI (Pubchem, Medline, Mesh) Programs (INVDOCK, Descriptor calculator) 
output

http://bidd.nus.edu.sg/tcm-id/tcmid.asp�
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Figure 18: The screenshot of IHCD main page 

 Similarly, when entered by selecting chemical ingredient, it will display the herbs in which 

the selected chemical is present, chemical information like structure, descriptors, and cross-

linked Pubchem data and subsequently to other databases (Figure 19). 
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Figure 19: Screenshot of search result for a chemical ingredient 

  

The main purpose of cross-linking our database with Pubchem Substance database is to 

further  crosslink with database like Pubchem Bioassay, Mesh and Pubmed (Southan, Varkonyi 

et al. 2007; Zhou, Zhou et al. 2007). Although the user can use Pubchem substance id to get 

related other important interlinked information through Pubchem web site, some of the 

important feature of Pubchem are facilitated in our database to make it convenient. For 

example, IHCD is mapped to Mesh (Medical Subject Heading) database through Pubchem 
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substance id. These 11590 substance ids are mapped to 2400 different Mesh Ids. Out of 11590 

substance ids 3479 are linked to 804 Mesh terms having Pharmacological actions (Figure 20).  

We have just provided Mesh heading, subheading and scope wherever applicable and have 

created the hyperlink of Mesh id to NCBI mesh database for detailed information. For 

bioactivity analysis, these 11590 substances when searched on Pubchem bioassay server, it 

returned 990 tested molecules, of which 576 have, detailed information. The chemical 

ingredients page of our database http://bidd.cz3.nus.edu.sg/ihcd/mechdup.jsp  has two 

hyperlinks showing this batch analysis: 

1. http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Analysis.htm 

2. http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Structure-Activity.htm . 

11590

Pubchem Sustance Database

3978

2400

MeSH

3479

PubChem Bioassay

990

576

http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Analysis.htm

http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Structure-Activity.htm
 

Figure 20: Chemical ingredients mapped to Pubchem Substance Database and which is linked to Medical 
Subject Heading (MeSH) database and Pubchem Bioassay. 

 

We also provided the field ‘Pubchem_ext_datasource’ as well as 

‘Pubchem_ext_datasource_regid’. So, wherever ‘Pubchem_ext_datasource’ is DTP/NCI, user 

http://bidd.cz3.nus.edu.sg/ramm/mechdup.jsp�
http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Analysis.htm�
http://bidd.cz3.nus.edu.sg/ihcd/bioactivity/Structure-Activity.htm�
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can take ‘Pubchem_ext_datasource_regid’ and can search for individual bioassay or can click 

the hyperlink already made. Other than this wherever external data source is bindingDB and 

KEGG, the ‘Pubchem_ext_datasource_regid’ is hyperlinked to their respective database. The 

detailed distribution of source can be seen on http://bidd.cz3.nus.edu.sg/ihcd/help.jsp .  

When selected the chemical ingredients for which virtual screening has been done by 

INVDOCK software, additional feature will appear for selecting pdb id. All the chemical 

structure and docked ligand-protein complex in IHCD are visualized through jmol(2007). Once 

selected, user can view either the compound structure alone or compound docked into the 

protein cavity. User can view the compound-protein complex in various ways by right clicking 

on jmol applet window and interacting with jmol defined options. For example, in order to view 

compound and protein separately in docked complex, right clicking and selecting hetero ligand 

from the complex and then inverting the selection will turn into rest of cavity to be selected 

whose surface can be rendered as van der walls surface (Figure 21). 

http://bidd.cz3.nus.edu.sg/ihcd/help.jsp�
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Figure 21: Screenshot of visualization of a potential target of the bergenin found by INVDOCK software 

 

The virtual screening hits by INVDOCK are primarily based on shape and energy cut off  

(Y.Z. Chen 2001; Chen, Ung et al. 2003). 

 Inverse Docking Procedure: INVDOCK is well established method in identifying multiple 

protein targets of a compound. A cavity database is being utilized by INVDOCK which has 

been created by Protein Data Bank (PDB). In this inverse docking procedure compounds shape 

is matched against the cavity and energy is minimized in situ for both compound and amino 
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acid residues at that particular cavity of the protein(Chen and Zhi 2001). The energy function of 

INVDOCK is determined by following equation: 

]+  [ 0(1− − ( − 0))2− 0]+  [ 12− 6+ ]  

Where  R = bond length ,  θ = angle, and φ = torsion angle, Req = equilibrium bond length, θeq 

= equilibrium angle, φeq =  equilibrium torsion angle , Kr  = covalent bond angle , Kθ = bond 

angle bending force constant, r is hydrogen bond donor–acceptor distance,  Vn and n are torsion 

parameters,  and V0, a and r0 are hydrogen bond potential parameters. The values of R, θ, and φ 

are from the original PDB structure while the values of Req, θeq , and φeq  are from structure of 

the drug. 

 In INVDOCK, there is an option to select single conformer or multiple conformer of a 

compound. We applied multiple conformer option for each of the studied compound. Currently, 

a virtual hit of compounds and literature relevance are not cross-linked in our database and is 

one of future work in further development of our database. As of preliminary work to illustrate 

example use of mapping the virtual hits of INVDOCK to literature for understanding the 

mechanism of chemical ingredients, the methodology is provided below with chemical 

ingredient Bergenin taken as example. General procedure of doing mechanistic analysis is as 

follows: 

 Filtering the INVDOCK result:   

The protein targets found by INVDOCK for each compound were imported in Oracle database 

tables. Also, the Therapeutic Target Database (TTD) was imported in Oracle table. For each 

compound the protein targets were filtered which were present in TTD through SQL query. 

Further, the protein targets were filtered where the organism sources were human.  
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Importing the INVDOCK results into Pathway Studio: To analyze INVDOCK results we 

imported protein list to Pathway Studio software. The ‘Pathway Studio’ by Ariadne Genomics 

utilizes Medscan technology, a natural language processing method, to find biological 

interactions like protein-protein and protein-small molecule from literature. Medscan has 

accuracy of 90% (Medscan 1.8) and gives only 10% false positive interactions. Moreover, if it 

retrieves interaction from repeated sentence then it has 100% accuracy to predict the molecular 

interaction (Yuryev, Mulyukov et al. 2006). The INVDOCK shows the result in PDB id format 

but Pathway Studio does not have the functionality to import PDB ids. The Pathway Studio 

recognizes Locuslink (Entrez gene) id, Hugo id, Genbank id, Microarray ID, Name or alias, and 

Swissprot accession. Thus, it is necessary to convert the PDB ids into any of the format which 

Pathway Studio recognizes. There are some online id mapping services which have the option 

to convert PDB id to other formats. The PDB ids were mapped to SWISSPROT accession 

number by the online id mapping service 

http://pir.georgetown.edu/pirwww/search/idmapping.shtml. Then these SWISSPROT accession 

numbers were used to import proteins in Pathway Studio. However, only 70% of these 

SWISSPROT accession number were recognized by Pathway Studio. Therefore, we tried to 

convert PDB ids to Entrez gene id which is comprehensively recognizable by Pathway Studio. 

The id mapping to convert ‘SWISSPROT accession number’ to ‘Entrez gene id was done by, 

http://www.pir.uniprot.org/search/idmapping.shtml  and 

http://www.ariadnegenomics.com/services/idmap.html. In our case, Pathway Studio imports 

about 95% protein targets when it is in Entrez Gene id format. Each compound protein targets 

were imported in Pathway Studio separately.  

Studying mechanism of Bergenin with INVDOK and Pathway Studio: Bergenin (Figure 22) is 

an important constituent of Bergenia Ligulata. The INVDOCK protein targets of Bergenin were 

imported in pathway studio and grouped together which is shown in Table 1. There were 53 

http://pir.georgetown.edu/pirwww/search/idmapping.shtml�
http://www.pir.uniprot.org/search/idmapping.shtml�
http://www.ariadnegenomics.com/services/idmap.html�
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abstracts in Pubmed when searched for the word ‘Bergenin’. Based on Pubmed abstracts 

information Bergenin- protein interaction graph had been created by Pathway studio (Figure 

23). The detailed references for every interaction of Figure 2 are shown in Table 2.   
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Figure 22: Chemical structure of Bergenin 

Table 1: Bergenin INVDOCK targets (mammalian) 

# Name Description LocusLink ID 
1 ACAT2 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A 

thiolase) 
106825, 21456, 
110510, 39, 110460, 
11414, 224530, 
11415 

2 SAT spermidine/spermine N1-acetyltransferase 25188, 6303, 106503, 
302642, 20229 

3 TP53 tumor protein p53 (Li-Fraumeni syndrome) 24842, 7157, 22059, 
289761, 224883, 
301300 

4 ESR1 estrogen receptor 1 13982, 24890, 2099, 
103092 

5 MPG N-methylpurine-DNA glycosylase 17477, 103693, 
268395, 24561, 4350 

6 CASP3 caspase 3, apoptosis-related cysteine protease 836, 12367, 25402 
7 CASP7 caspase 7, apoptosis-related cysteine protease 64026, 840, 12369, 

107145 
8 CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa 12385, 1495, 307505, 

106962, 106853 
9 CTNNB1 catenin beta 252926, 360543, 

112387, 84353, 
209012, 1499, 12387 

10 TGFA transforming growth factor, alpha 7039, 21802, 24827 
11 AXL AXL receptor tyrosine kinase 101531, 308444, 

22231, 83625, 26362, 
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558 
12 FGFR1 fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, 

Pfeiffer syndrome) 
2260, 14182, 360286, 
51033, 84151, 
497708, 102305, 
79114 

13 BAIAP2 BAI1-associated protein 2 108100, 94087, 
97767, 117542, 
10458 

14 MAN1B1 mannosidase, alpha, class 1B, member 1 227619, 26016, 
51697, 11253 

15 ADAM17 a disintegrin and metalloproteinase domain 17 (tumor necrosis 
factor, alpha, converting enzyme) 

6868, 111491, 57027, 
11491 

16 MMP2 matrix metalloproteinase 2 (gelatinase A, 72kDa gelatinase, 72kDa 
type IV collagenase) 

4313, 381686, 81686, 
17390 

17 CHIT1 chitinase 1 (chitotriosidase) 7831, 1118, 289032, 
71884 

18 Bche butyrylcholinesterase 590, 65036, 12038 
19 CMA1 chymase 1, mast cell 29267, 1215, 25627 
20 APOA1 apolipoprotein A-I 335, 11806, 25081 
21 SERPINA1 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 

antitrypsin), member 1 
5265, 116807, 64311, 
24648 

22 CTSG cathepsin G 13035, 1511, 290257 
23 SERPINC1 serpin peptidase inhibitor, clade C (antithrombin), member 1 304917, 462, 98260, 

11905 
24 CP ceruloplasmin (ferroxidase) 51906, 294942, 

12870, 24268, 1356 
25 PKND cathepsin K (pycnodysostosis) 13038, 1513, 99590, 

29175, 94319 
26 CTSC cathepsin C 13032, 5065, 1075, 

101486, 25423, 
50958 

27 CTSS cathepsin S 50654, 13040, 1520, 
50653 

28 GZMB granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine 
esterase 1) 

171528, 14939, 3002, 
105531 

29 CTSF cathepsin F 8722, 107211, 56464 
30 ABO ABO blood group (transferase A, alpha 1-3-N-

acetylgalactosaminyltransferase; transferase B, alpha 1-3-
galactosyltransferase) 

296504, 311792, 28, 
65270, 80908 

31 B3GAT3 beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I) 26229, 293722, 
72727 

32 B3GAT1 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P) 102604, 27087, 
117108, 76898, 964 

33 NPR3 natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic 
peptide receptor C) 

289058, 4883, 
155012, 192290, 
498240, 16861, 
18162, 20902, 
360263, 25339, 

34 FSHR follicle stimulating hormone receptor 25449, 14309, 4959, 
2492 
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35 Braf v-raf murine sarcoma viral oncogene homolog B1; belongs to the 
Serine/Threonine family of protein kinases. 

52385, 232705, 
12187, 319686, 
109880, 58892, 
330290, 673, 114486, 
97330 

36 SRC Rous sarcoma oncogene 83805, 99351, 20779, 
320779, 6714 

37 CDC42 cell division cycle 42 (GTP binding protein, 25kDa) 100285, 100196, 
12540, 998, 332881, 
212710, 64465 

38 Rac1 ras-related C3 botulinum toxin substrate 1 (rho family, small GTP 
binding protein Rac1) 

363875, 5879, 19353, 
171377, 100781, 
52352, 319353 

39 ARL2 ADP-ribosylation factor-like 2 107390, 402, 65142, 
69901, 80563, 
107120, 56327 

40 POR1 ADP-ribosylation factor interacting protein 2 (arfaptin 2) 76932, 23647, 
293344 

41 PSCD2 pleckstrin homology, Sec7 and coiled-coil domains 2 (cytohesin-2) 9266, 116692, 19158 
42 PLCE1 phospholipase C, epsilon 1 51196, 56231, 74055, 

114633 
43 EGFR epidermal growth factor receptor (erythroblastic leukemia viral (v-

erb-b) oncogene homolog, avian) 
360274, 13649, 
103781, 1956, 
170565, 24329 

44 CDK6 cyclin-dependent kinase 6 330039, 1021, 
100686, 12571, 
114483 

45 PTK2 PTK2 protein tyrosine kinase 2 114083, 414083, 
14083, 25614, 5747 

46 MAP2K1 mitogen-activated protein kinase kinase 1 5604, 326395, 19101, 
26395, 170851 

47 PDPK1 3-phosphoinositide dependent protein kinase-1 5170, 81745, 18607, 
28993 

48 Abl1 v-abl Abelson murine leukemia oncogene 1 98922, 11350, 
311860, 111350, 
368055, 24155, 25 

49 KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 64030, 330256, 
16590, 72135, 3815 

50 PRKR protein kinase, interferon-inducible double stranded RNA dependent 106646, 76759, 
21850, 5610, 54287, 
106605, 19106 

51 HCK hemopoietic cell kinase 99093, 3055, 25734, 
15162 

52 GBA glucosidase, beta; acid (includes glucosylceramidase) 2629, 14466 
53 STK6 serine/threonine kinase 6 99385, 261730, 

99193, 6790 
54 CSK C-Src tyrosine Kinase.  A ubiquitously expressed intracellular 

protein involved in tyrosine phosphorylation; contains a Src 
homology 2 (SH2) and SH3 domain at its C-terminus. 

1445, 315707, 12988, 
102764 

55 EPHA2 EPH receptor A2 13836, 100429, 1969 
56 ACK1 tyrosine kinase, non-receptor, 2 51789, 53909, 
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303882, 106433, 
10188, 224114 

57 CSNK2B casein kinase 2, beta polypeptide 81650, 1460, 257555, 
257616, 13001 

58 EPOR The Erythropoietin receptor, a member of the cytokine receptor 
family, plays an important role in erythroid cell survival. Upon 
erythropoietin binding, the erythropoietin receptor activates Jak2 
tyrosine kinase which activates different intracellular p... 

13857, 113857, 
24336, 2057 

59 BCR breakpoint cluster region 110279, 12058, 
103260, 103308, 613, 
309696, 71258 

60 CLK1 CDC-like kinase 1 98487, 301434, 1195, 
12747 

61 HSPCA heat shock 90kDa protein 1, alpha 104921, 299331, 
15524, 104922, 
104409, 3320, 15519 

62 YWHAQ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
protein, theta polypeptide 

25577, 76805, 10971, 
22630, 104726, 
104947, 97839 

63 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 
protein, eta polypeptide 

25576, 7533, 22629, 
194104 

64 CSNK1G2 casein kinase 1, gamma 2 1455, 65278, 72764, 
103236 

65 F3 coagulation factor III (thromboplastin, tissue factor) 14066, 25584, 2152, 
99486 

66 F7 coagulation factor VII (serum prothrombin conversion accelerator) 14068, 2155, 260320, 
101998 

67 NPPC natriuretic peptide precursor C 4880, 114593, 18159 
68 TNFSF13B tumor necrosis factor (ligand) superfamily, member 13b 24099, 52115, 10673, 

89794 
69 GPI glucose phosphate isomerase 2821, 292804, 24403, 

110643, 110644, 
14754, 14753, 14751, 
110600, 14752 

70 CGA glycoprotein hormones, alpha polypeptide 1081, 116700, 12640 
71 FSHB follicle stimulating hormone, beta polypeptide 25447, 14308, 2488 
72 NMNAT3 nicotinamide nucleotide adenylyltransferase 3 74080, 349565 
73 RNASE2 ribonuclease, RNase A family, 2 (liver, eosinophil-derived 

neurotoxin) 
53877, 13587, 6036 

74 PDE5A phosphodiesterase 5A, cGMP-specific 171115, 8654, 
242202 

75 PLA2G10 phospholipase A2, group X 8399, 26969, 29359, 
26565 

76 DCK deoxycytidine kinase 1633, 79127, 13178 
77 CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 29277, 1560, 1559, 

13096, 29298, 29296, 
171521, 29297 

78 ALAD aminolevulinate, delta-, dehydratase 17025, 25374, 210 
79 FHIT fragile histidine triad gene 14198, 2272, 60398, 

105644, 2385 
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80 ACADM acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain 51779, 34, 99793, 
11364, 24158 

81 CYP2C8 cytochrome P450, family 2, subfamily C, polypeptide 8 1558 
82 SULT2A1 sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone 

(DHEA)-preferring, member 1 
107959, 20864, 
20859, 6822 

83 HK1 hexokinase 1 15275, 3098, 25058 
84 CYP3A4 cytochrome P450, family 3, subfamily A, polypeptide 4 171352, 1576, 13113, 

25642, 1575, 229675 
85 ALDOA aldolase A, fructose-bisphosphate 24189, 226, 11674 
86 SFN stratifin 313017, 2810, 55948 
87 PAH phenylalanine hydroxylase 18478, 5053, 103418, 

24616 
88 BCAT2 branched chain aminotransferase 2, mitochondrial 12036, 587, 64203 
89 FKBP4 FK506 binding protein 4, 59kDa 260321, 101346, 

2288, 14228, 107270 
90 NUDT3 nudix (nucleoside diphosphate linked moiety X)-type motif 3 11165, 294292, 

56409, 10909, 
106513, 68495 

91 HSD17B1 hydroxysteroid (17-beta) dehydrogenase 1 15485, 3292, 25322 
92 PGDS prostaglandin D2 synthase, hematopoietic 27306, 54486, 58962 
93 GSS glutathione synthetase 2937, 14854, 25458, 

98903 
94 HADHSC L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain 99932, 113965, 

99798, 99484, 
360353, 3033, 15107 

95 NT5M 5',3'-nucleotidase, mitochondrial 56953, 287368, 
69877, 103850 

96 DECR1 2,4-dienoyl CoA reductase 1, mitochondrial 1666, 117543, 67460 
97 GMPR2 guanosine monophosphate reductase 2 108706, 69081, 

105446, 192357, 
70653, 10784, 
319199, 51292 

98 PDE6D phosphodiesterase 6D, cGMP-specific, rod, delta 18582, 5147, 98438 
99 ACY1 aminoacylase 1 109652, 95, 24164, 

300981, 11483, 
66130 

100 COMTD1 catechol-O-methyltransferase domain containing 1 305685, 69156, 
118881 

101 AMPH amphiphysin (Stiff-Man syndrome with breast cancer 128kDa 
autoantigen) 

218038, 109629, 
11718, 60668, 273 

102 CAPN1 calpain 1, (mu/I) large subunit 12333, 29153, 823 
103 BACE beta-site APP-cleaving enzyme 1 29392, 23621, 97509, 

23821 
104 PAPSS1 3'-phosphoadenosine 5'-phosphosulfate synthase 1 99599, 295443, 

23971, 9061 
105 BHMT betaine-homocysteine methyltransferase 12116, 81508, 

328308, 268685, 635, 
218451 

106 Dut dUTP pyrophosphatase 93804, 71267, 52842, 
80993, 67757, 1854, 
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23864, 94200, 
110074 

107 CFTR cystic fibrosis transmembrane conductance regulator, ATP-binding 
cassette (sub-family C, member 7) 

1080, 368064, 24255, 
101370, 547216, 
12638 

108 AKR1B1 aldo-keto reductase family 1, member B1 (aldose reductase) 11677, 231 
109 NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid 

receptor) 
2908, 14815, 389335, 
24413 

110 ARHGEF1 Rho guanine nucleotide exchange factor (GEF) 1 16801, 60323, 9138 
111 EPHX2 epoxide hydrolase 2, cytoplasmic 13850, 65030, 

105655, 2053 
112 MASA E-1 enzyme 58478, 305177, 

101037, 97253, 
67870 

113 ACE angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 11421, 192774, 
217246, 116576, 
1636, 24310, 104604 

114 TPSAB1 tryptase alpha/beta 1 17230, 54271, 7177, 
7176 

115 FOLH1 folate hydrolase (prostate-specific membrane antigen) 1 85309, 53320, 2346 
116 GZMA granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine 

esterase 3) 
266708, 3001, 
105363, 14938 

117 CASP2 caspase 2, apoptosis-related cysteine protease (neural precursor cell 
expressed, developmentally down-regulated 2) 

835, 12366, 64314 

118 ACE2 angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 302668, 59272, 
26125, 70008 

119 TPSB2 tryptase beta 2 64499 
120 DF D component of complement (adipsin) 1675 
121 CREG1 cellular repressor of E1A-stimulated genes 1 433375, 8804, 

289185 
122 F9 coagulation factor IX (plasma thromboplastic component, Christmas 

disease, hemophilia B) 
2158, 24946, 14071, 
103022 

123 CD4 CD4 antigen 12504, 24932, 920 
124 GP1BA glycoprotein Ib (platelet), alpha polypeptide 287460, 14723, 2811 
125 BST1 bone marrow stromal cell antigen 1 12182, 683, 269647, 

81506 
126 CD209L C-type lectin domain family 4, member M 10332 
127 HIF1AN hypoxia-inducible factor 1, alpha subunit inhibitor 309434, 368022, 

77039, 84175, 55662, 
319594 

128 Chd1 chromodomain helicase DNA binding protein 1 106815, 12648, 
75119, 1105, 106666, 
308215 

129 ETFB electron-transfer-flavoprotein, beta polypeptide 13988, 2109, 68360, 
110826, 72756, 
292845 

130 CLIC1 chloride intracellular channel 1 1192, 114584, 
406864 

131 GGA3 golgi associated, gamma adaptin ear containing, ARF binding 
protein 3 

260302, 23163 
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132 NCBP1 nuclear cap binding protein subunit 1, 80kDa 298075, 110519, 
60346, 4686 

133 Etfa electron-transfer-flavoprotein, alpha polypeptide (glutaric aciduria 
II) 

300726, 2108, 
235393, 259204, 
13987, 110842, 
52321 

134 BIRC7 baculoviral IAP repeat-containing 7 (livin) 79444, 64126, 
329581 

135 APC adenomatosis polyposis coli 107030, 106874, 324, 
106987, 24205, 
11789 

136 S100A8 S100 calcium binding protein A8 (calgranulin A) 20201, 99591, 
116547, 6279, 
104427 

137 GPX1 glutathione peroxidase 1 2876, 24404, 14775, 
102648, 102449 

138 HSPA1A heat shock 70kDa protein 1A 193740, 15514, 
24472, 24964, 3303 

139 ANXA5 annexin A5 25673, 308, 11747, 
97115 

140 BAG1 BCL2-associated athanogene 12017, 297994, 573 
141 PROCR protein C receptor, endothelial (EPCR) 19124, 98921, 10544 
142 CENPE centromere protein E, 312kDa 109951, 1062, 12619, 

16550, 229841 
143 H3FA  8350 
144 GAS6 growth arrest-specific 6 2621, 58935, 14456 
145 RAP1GA1 RAP1, GTPase activating protein 1 78775, 9676, 100110, 

76280, 5909, 110351, 
298570, 19393 

146 NCBP2 nuclear cap binding protein subunit 2, 20kDa 68092, 98015, 
288040, 106266, 
106124, 22916 

147 TH tyrosine hydroxylase 7054, 25085, 21823 
148 AP2B1  163 
149 H3FD histone 1, H3e 8353, 319151 
150 HSPA1B heat shock 70kDa protein 1B 3304, 294254, 15511 
151 HRSP12 heat-responsive protein 12 15473, 65151, 10247 
152 P5326  83638 
153 H3FL  8358 
154 LOC285362 285362 
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Figure 23: Graph generated by Pathway Studio for the Pubmed search word ‘bergenin’.  Green color circle- 
small molecule. Red color circle- protein. Grey dotted line – Regulation. Solid grey line- MolTransport. Negative 
regulation is shown as "---|".  Negative MolTransport is shown as "-|". SORD: Sorbitol dehydrogenase, TH: 
Tyrosine hydroxylase, GPT: Glutamic pyruvic transaminase. 

 

Table 2: Corresponding reference of Figure 22 

Entities Type 
MedLine 
Reference Sentence 

bergenin --
-| TH Regulation 13680837:2 

Bergenin and norbergenin inhibited the TH activity by 29.0% 
and 53.4% at a concentration of 20 microg/mL, respectively, 
and exhibited noncompetitive inhibition of TH activity with the 
substrate l-tyrosine. 

SORD |--- 
bergenin 

MolTranspo
rt 10720791:1 

Bergenin (100 microM) decreased the release of glutamic 
pyruvic transaminase and sorbitol dehydrogenase by 62 and 
50%, respectively, into hepatocyte medium incubated for 14 
h with 1.5 mM galactosamine. 

bergenin --
-| GPT 

MolTranspo
rt 10720791:1 

Bergenin (100 microM) decreased the release of glutamic 
pyruvic transaminase and sorbitol dehydrogenase by 62 and 
50%, respectively, into hepatocyte medium incubated for 14 
h with 1.5 mM galactosamine. 

SORD |--- 
bergenin Regulation 10720791:1 

Bergenin (100 microM) decreased the release of glutamic 
pyruvic transaminase and sorbitol dehydrogenase by 62 and 
50%, respectively, into hepatocyte medium incubated for 14 
h with 1.5 mM galactosamine. 

SORD |--- 
bergenin Regulation 10661887:1 

Bergenin significantly reduced the activities of glutamic 
pyruvic transaminase and sorbitol dehydrogenase released 
from the CCl4-intoxicated hepatocytes. 



65 
 

 

Figure 24: Mapping of Bergenin INVDOCK targets to literature. INVDOCK targets of bergenin are highlighted in 
blue (TH, CAPN1, SERPINC1, ESR1, NR3C1, MAP2K1). Green color circle- small molecule. Red color circle- 
protein. Grey dotted line – Regulation..  Solid grey line- MolTransport. . Blue arrow – Expression relation. 
Brown arrow – MolSynthesis.Arrow with "+" indicate positive relation and negative relation is shown as "-|" 

 

By examining Figure 23 and Table 1, we get limited information about molecular mechanism 

of Bergenin. Bergenin non-competitively inhibits Tyrosine Hydroxylase (Zhang, Fang et al. 

2003). Other two proteins Glutathione disulfide reductase (GSH) and sorbitol dehydrogenase 

(SORD) are indicators of hepatotoxicity. In case of hepatotoxicity (liver cell damage), glutamic 

pyruvic transaminase (GPT) and sorbitol dehydrogenase (SDH) are released from hepatocytes 

to extracellular spaces. Therefore, these proteins are important for determining the 

hepatotoxicity levels of the toxicant and liver protective effects of test compound. Next, GSH is 

important to prevent lipid peroxidation. In case of hepatotoxicity, GSH decreases and bergenin 

has been found to preserve the activity of GSH.  However, these experimental finding are not 

sufficient to clarify about the protein targets of Bergenin for its effectiveness in liver disorders. 

By INVDOCK we found the protein targets of bergenin and is been imported to Pathway 

Studio (Table 1) 

 One of the ways to understand the molecular mechanism of bergenin would be to map 

experimental findings in Figure 23 with INVDOCK results in Table 1. To do this, a pathway 
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was built by finding all entities connected to bergenin. The filter was set to find only proteins 

connected to bergenin and maximum number of steps was 2. Another pathway was built by 

finding shortest pathway between bergenin and its imported INVDOCK protein targets. These 

two pathways were intersected which is shown in Figure 24. Bergenin’s INVDOCK protein 

targets are highlighted in blue. Tyrosine Hydroxylase (TH) has been found as the target of 

Bergenin by literature and also by INVDOCK. According to literature Bergenin non-

competitively inhibits Tyrosine Hydroxylase, corresponding INVDOCK results is shown in 

Table 3. 

Table 3: Bergenin inhibits tyrosine hydroxylase, corresponding PDB entries are shown 

PDB Classification Name Species Energy 
6pah MONOOXYGENASE PHENYLALANINE 4-

MONOOXYGENASE 
HUMAN -51.4 

1dmw OXIDOREDUCTASE PHENYLALANINE 
HYDROXYLASE 

HUMAN -51 

1ltz OXIDOREDUCTASE PHENYLALANINE-4-
HYDROXYLASE 

BACTERIA -46.2 

2toh HYDROXYLASE TYROSINE 3-
MONOOXYGENASE 

RAT -50 

 

By this method the INVDOCK targets are mapped which have literature implications in context 

of bergenin. So, the possible reason of decrease in levels of GPT in intoxicated liver cells may 

be due to modulations through CAPN1 (calpain 1, (mu/I) large subunit), SERPINC1 (serpin 

peptidase inhibitor, clade C (antithrombin), member 1) and ESR1 (estrogen receptor 1). 

 

    Mapping IHCD to Pubmed: 

As of preliminary literature correlation, the text mining of pubmed abstract for herb name and 

herb with disease term are done. The Pubmed abstracts were retrieved programmatically with 

NCBI Entrez facility for the entire herbs name and their combination with disease and chemical 
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ingredient terms. User can search the pubmed abstracts by selecting the herb name. The herb 

name and disease term in corresponding pubmed abstract are highlighted (Figure 25). 

 

Figure 25: Screenshot of pubmed abstracts display page on IHCD. Herb name is highlighted in red and disease 
terms are highlighted in green 

       

 In context of speed of IHCD, most of the queries performed are very fast which has been 

achieved by proper indexing of every field involved in query process(Rao 2004). The only 

exception to speed will be the first time loading of Jmol applet which can take 5-15 second but 

subsequent search will be very fast as the applet resides inside local java virtual machine. 

 

3.4 Discussion and Conclusion 

The usefulness of the IHCD in facilitating general information about herbs and their chemical 

ingredients is evident through IHCD website. In addition, IHCD attempt to provide automation 
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and rationalization in understanding the mechanisms of herbs and herbal ingredient. In case of 

herbs we are generally aware of their therapeutic activity as well as negligible toxicity profile in 

respect of being traditional medicine. These herbs are generally understood as having multiple 

targets in human body system. The overall therapeutic activity of the herb may come from these 

multiple targets. In our example analysis for bergenin, it was attempted to combine all the 

targets by individual principal ingredients (e.g. bergenin) of the herb (e.g. Bergenia Liguta) to 

represent mechanism for whole herb. Therapeutic indications of bergenin available in literature 

were successfully covered by INVDOCK protein targets. If there is information about the 

targets or the pathway through which herbal ingredients exhibit their therapeutic activity, the 

appropriate targets can be selected to perform experimental studies like binding assays.  The 

information at IHCD can be utilized by researchers working in the area of plant based drug 

discovery. User (any researcher) will get the information about herbs, herbal ingredients, their 

therapeutic targets as well as interactions based on Pubmed abstracts and from INVDOCK 

software through website. Furthermore, the practical significance of the results lies in its ability 

of predicting the novel targets and unexplored therapeutic indication of the particular herb and 

herbal ingredients.  

            Generally, the logic behind the usage of traditional medicine is being confirmed by 

functional assays. These functional assays consolidate the confidence about their usage and 

their ingredients. However, functional assays are unable to solve mystery of their mechanisms 

which is very important in drug discovery. Our result is presumably predicting the direct 

binding to the protein based on threshold binding energy by INVDOCK. In our present study 

we have binding energy information for drug-protein complex but we are not using as selection 

criteria for a protein being a better target. Due to present INVDOCK algorithm, all the binding 

energy above threshold is treated equal. In future it can be tuned to make a section of a target 

over other based on the binding energy. In addition, another way of making a selection of one 
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target over other in the mechanistic pathway can be based on number of references supporting 

the particular protein-protein interaction.  Also, the process of id mapping is indirect i.e. PDB id 

is first converted to Swissprot id and then to Entrez gene id which is time consuming and 

introduces little discrepancy. This could be solved by mapping of Protein Data Bank by 

Pathway Studio and by adding the way to import protein list based on PDB id.  

Compounds from medicinal plants are important and resources about their information are 

needed. The IHCD database provides information about Indian herbs and their chemical 

ingredients. It connects chemical ingredients of the commonly used herbs in Ayurveda to 

therapeutic classes, biological pathway and activity related databases like Pubchem bioassay, 

KEGG, BIND, bindingDB. The database is addressing both the general information as well as 

mechanistic approach of herbs used in Ayurveda. It is expected that the building of such an 

integrated database, which can be constantly updated, could provide an understanding of herbs 

and their ingredient’s therapeutic action. An important aspect of IHCD database design is the 

ability to expand seamlessly either by manual addition of data or by cross-linking to other 

databases. 
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Chapter 4 Database development of medicinal biomolecules: Kinetic database of 

biomolecular interactions 

4.1. Introduction to biomolecular interactions and their kinetics 

Biomolecular interactions, via individual and network actions, play fundamental roles in 

biological, disease, and therapeutic processes (Lengeler 2000; Downward 2001; Legrain, 

Wojcik et al. 2001; Kitano 2007). Extensive experimental and computational studies have 

significantly advanced our understanding of the characteristics, organization, evolution and 

complexity of biomolecular interaction networks in biological systems (Drees, Sundin et al. 

2001; Gavin, Bosche et al. 2002; Qian, Lin et al. 2003; Beyer, Bandyopadhyay et al. 2007), and 

enabled the generation of  genome-scale protein-protein interactions and the development 

prediction tools  (Dandekar, Snel et al. 1998; Pellegrini, Marcotte et al. 1999; Drees, Sundin et 

al. 2001; Gavin, Bosche et al. 2002; Phizicky, Bastiaens et al. 2003; Lo, Cai et al. 2005) .  

 

Many databases have been developed for providing information about biomolecular 

interactions (e.g. MIPS(Mewes, Frishman et al. 2002), DIP (Salwinski, Miller et al. 2004),  

BIND  (Alfarano, Andrade et al. 2005) , Biocyc (Karp, Ouzounis et al. 2005), MINT (Zanzoni, 

Montecchi-Palazzi et al. 2002), Biomodels (Le Novere, Bornstein et al. 2006), STRING (von 

Mering, Jensen et al. 2007), and IntAct (Kerrien, Alam-Faruque et al. 2007)), and biological 

networks and pathways (KEGG (Okuda, Yamada et al. 2008), BioGRID (Breitkreutz, Stark et 

al. 2008), NetworKIN (Linding, Jensen et al. 2008), STITCH (Kuhn, von Mering et al. 2008), 

DOMINE (Raghavachari, Tasneem et al. 2008), CellCircuits (Mak, Daly et al. 2007), Reactome 

(Joshi-Tope, Gillespie et al. 2005) and enzyme reactions (Goto, Okuno et al. 2002)).  
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In view that quantitative as well as mechanistic understanding of biomolecular interactions is 

important for exploration and engineering of biological networks and for the development of 

novel therapeutics to combat diseases (Fabrizi, Bunnapradist et al. 2003; Zhou, Chan et al. 

2004), kinetic data of biomolecular interactions have been provided in some databases. For 

instance, BRENDA (Schomburg, Chang et al. 2002) and SABIO-RK (Rojas, Golebiewski et al. 

2007) provide kinetic constants of enzymatic activities, DOQCS contains kinetic parameters of 

simulation models of cellular signaling derived from experimental and other sources 

(Sivakumaran, Hariharaputran et al. 2003). To complement these databases for providing the 

kinetic data not yet covered by other databases, Kinetic Data of Bio-molecular Interactions 

database (KDBI) (Ji, Chen et al. 2003) have been developed to provide experimentally 

measured kinetic data for protein-protein, protein-nucleic acid, and protein-small molecule 

interactions aimed at facilitating mechanistic investigation, quantitative study and simulation of 

cellular processes and events (Fussenegger, Bailey et al. 2000; Haugh, Wells et al. 2000; Sahm, 

Eggeling et al. 2000; Schoeberl, Eichler-Jonsson et al. 2002; Schomburg, Chang et al. 2002; 

Sivakumaran, Hariharaputran et al. 2003; van den Broek, Noom et al. 2005; Rojas, Golebiewski 

et al. 2007). Kinetic data in KDBI have been manually collected from literatures, a substantial 

percentage of which are not yet available in other databases (e.g. some protein-protein 

interactions in thrombin, translation initiation, DNA repair, and ion transport pathways, and 

individual protein-nucleic acid interactions).   

 

In the updated KDBI(Kumar, Han et al. 2009), apart from 2.3 fold increase of experimental 

kinetic data, four new features are added. The first is the access of KDBI entries via the list of 

nucleic acid and pathway names. The second is the inclusion of literature-reported kinetic 

parameter sets of 63 pathway simulation models (Fussenegger, Bailey et al. 2000; Haugh, 
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Wells et al. 2000; Sahm, Eggeling et al. 2000; Schoeberl, Eichler-Jonsson et al. 2002; Altan-

Bonnet and Germain 2005; Sasagawa, Ozaki et al. 2005; van den Broek, Noom et al. 2005; 

Birtwistle, Hatakeyama et al. 2007; Suresh, Babar et al. 2008; Ung, Li et al. 2008) for 

facilitating the applications, assessments, and further development of these pathway models. 

The third is the facility for collectively accessing the available kinetic data of multi-step 

processes (e.g. metabolism, pathway segments) collected in KDBI. The fourth is the availability 

of SBML (Bornstein, Keating et al. 2008) files for all records of the kinetic parameter sets of 

pathway simulation models for facilitating the use of the relevant data in such software tools as 

Celldesigner (Funahashi, Matsuoka et al. 2008), Copasi (Hoops, Sahle et al. 2006), cPath 

(Cerami, Bader et al. 2006), PaVESy (Ludemann, Weicht et al. 2004), and SBMLeditor 

(Nicolas, Donizelli et al. 2007) 

1.2 Database content and access 

          4.2.1 Experimental kinetic data and access 

Additional sets of the experimentally determined kinetic data of biomolecular interactions were 

collected from published literatures. Compared to the last version of KDBI, the number of 

entries in the updated KDBI is increased by 2.3 fold to 19263, which include 2635 protein-

protein, 1711 protein-nucleic acid, 11873 protein-small molecule, and 1995 nucleic acid-small 

molecule interactions. Each entry provides detailed description about binding or reaction event, 

participating molecules, binding or reaction equation, kinetic data, and related references. As 

shown in Figure 26-28, kinetic data for protein-protein, small molecule-nucleic acid and 

protein-small molecule interactions is provided in terms of one or a combination of kinetic 

quantities as given in the literature of a particular event. These quantities include 

association/dissociation rate constant, on/off rate constant, first/second/third/… order rate 

constant, catalytic rate constant, equilibrium association/dissociation constant, inhibition 
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constant, and binding affinity constant, IC50, etc. and experimental conditions (ph value and 

temperature).  

 

Figure 26: Experimental kinetic data page showing protein–protein interaction. This page provides kinetic data 
and reaction equation (while available) as well as the name of participating molecules and description of 
event. 

 

 

Figure 27: Experimental kinetic data page showing small molecule–nucleic acid interaction. This page provides 
kinetic data and reaction equation (while available) as well as the name of participating molecules and 
description of event. 
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Figure 28: Experimental kinetic data page showing protein–small molecule interaction. This page provides 
kinetic data and reaction equation (while available) as well as the name of participating molecules and 
description of event. 

These data can be accessed via input of names of molecules and bio-events (association, 

dissociation, complex formation, electron transfer, inhibition etc), and via selection of pathway 

and protein name from the pathway list and protein list fields in KDBI webpage. The kinetic 

data of an event is searchable by several methods. One method is via the name of participating 

molecules (protein, nucleic acid, small peptide, ligand or ion) or pathway involved in an event. 

In some events described in the literature, a participating entity is an unidentified molecule 

located in the membrane of a cell or on the surface of a virus. In these entries, only the name of 

the cell or virus is given. An entry can also be searched through a Swiss-Prot AC number for a 

protein or the CAS number for a small molecule ligand. Moreover, keyword-based text search 

is also supported. To facilitate convenient access of relevant data, partial lists of proteins and 

nucleic acid are provided. Searches involving combination of these methods or selection fields 

are also supported. 

4.2.2 Parameter sets of pathway simulation models 

As part of the efforts for facilitating the understanding and quantitative analysis of complex 

biological processes and network responses, mathematical simulation models of various 
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pathways have been developed and extensively used for studying and quantitative 

understanding of signaling dynamics (Fussenegger, Bailey et al. 2000; Haugh, Wells et al. 

2000; Sahm, Eggeling et al. 2000; Schoeberl, Eichler-Jonsson et al. 2002; van den Broek, 

Noom et al. 2005), signal specific sensing (Sasagawa, Ozaki et al. 2005) and discrimination 

(Altan-Bonnet and Germain 2005), feedback regulations and crosstalks  (Suresh, Babar et al. 

2008; Ung, Li et al. 2008), and receptor cross-activation  (Birtwistle, Hatakeyama et al. 2007)  

and internalization (Ung, Li et al. 2008). These mathematical models typically use ordinary 

differential equations (ODEs) to describe the temporal dynamic behavior of molecular species 

in the pathway. The kinetic rate constants of protein–protein, protein-small molecule, protein-

nucleic acid, and other interactions (e.g. binding association rate Ka, binding dissociation rate 

Kd, reaction rate K,  reaction turnover rate Kcat, Michaelis–Menten constant Km) are needed to 

establish these ODEs, which have been primarily generated by combinations of experimental 

data, computed theoretical values, and empirically fitted values computational (Schoeberl, 

Eichler-Jonsson et al. 2002; Altan-Bonnet and Germain 2005; Sasagawa, Ozaki et al. 2005; 

Birtwistle, Hatakeyama et al. 2007; Suresh, Babar et al. 2008; Ung, Li et al. 2008) . To 

facilitate further applications, developments, and assessments of the published pathway models, 

we collected and included in KDBI the parameter sets of 63 published ODE-based models, 

which can be accessed from the pathway list in the “Pathway Simulation Parameters” field in 

KDBI webpage. Moreover, we added kinetic data type to every entry to clearly distinguish its 

original source (experimental or simulation model). In particular, for the kinetic data of a 

simulation model that have been obtained from other publications, cross reference to the 

original source is provided.  A typical search result is shown in Figure 29 
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Figure 29: Pathway parameter set page. This page provides kinetic data and reaction equation (while available) 
as well as the name of participating molecules and description of event. 

4.2.3 Kinetic data for multi-step processes 

Some published studies provide information about the experimental kinetic data for multiple 

components of multi-step processes (Hoshino, Kawata et al. 1996; Franch, Petersen et al. 1999; 

Korneeva, Lamphear et al. 2001). Examples of these processes include RNA binding activity to 

translation initiation factors eIF4G, 70-kDa Heat Shock Protein polymerization, and control of 

platelet function by cyclic AMP, GroEL interaction with conformational states of horse 

cytochrome c, intermolecular catalysis by hairpin ribozymes, antisense RNA interaction with its 

complimentary RNA, nucleotide binding to actin. To facilitate the development of pathway 

simulation models based on these building blocks, we provided direct access to the collection of 

the kinetic data for each of these processes, which can be accessed via a separate search field 

“Multi-step processes” in KDBI webpage.  A typical search result is shown in Figure 30.  
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Figure 30: Multi-process kinetic data page. This page provides kinetic data and reaction equation (while 
available) as well as the name of participating molecules and description of event. 

4.3 Kinetic data files in SBML format 

Systems Biology Markup Language (SBML) has been developed as a free, open, XML-based 

format for representing biochemical reaction networks, and it is a software-independent 

language for describing models common to computational biology research, including cell 

signaling pathways, metabolic pathways, gene regulation, and others (Hucka, Finney et al. 

2003). Many pathway simulation and analysis software tools have built-in SBML compatibility 

features to allow the input, manipulation, simulation and analysis of different pathway models 

and parameters (Hucka, Finney et al. 2003; Alves, Antunes et al. 2006; Deckard, Bergmann et 

al. 2006; Zi and Klipp 2006; Schmidt, Drews et al. 2007; Bornstein, Keating et al. 2008). To 

facilitate the input of the pathway parameter sets into these software tools, we created the 

SBML file for the parameter sets of all 63 pathway simulation models included in KDBI, which 

can be downloaded via the link provided on the top of the page that displays the relevant kinetic 

data.  

The SBML files follow the norm of SBML API version 2.3.3. The code was written in JAVA 

programming language with the help of Java library of SBML API to generate SBML file from 
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flat files. Although, it is created for advanced user, a viewer (SBMLBIDDviewer) is also 

written to visualize SBML file. This viewer is freely available to download from KDBI 

website. 

4.4 Remarks 

The updated version of KDBI is intended to be a more useful resource for convenient access of 

available biomolecular kinetic data to complement other biomolecular interaction and pathway 

databases in facilitating quantitative studies of biomolecular interactions and networks. New 

technologies have been developed in employing surface plasmon resonance technology for 

deriving real-time dynamics and kinetic data  (Huber and Mueller 2006) , and in using protein 

microarrays (Yu, Xu et al. 2006) and solution NMR spectroscopy (Pellecchia 2005) for 

monitoring and characterizing biomolecular interactions. Moreover, new experimental designs 

of the well established technologies such as isothermal titration calorimetry allow the 

measurement and estimate of previously inaccessible kinetic parameters (Buurma and Haq 

2007).   Resources for collecting and accessing the increasing amount of kinetic data can better 

serve the need for mechanistic investigation, quantitative study and simulation of biological 

processes and events. 
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Chapter 5 Machine Learning Classification: Prediction of genotoxicity 

5.1 Introduction of genotoxicity and drug discovery 

Drug discovery and approval processes involve the evaluation of adverse drug reactions 

(ADRs), one of which is genotoxicity. The molecular mechanisms that are a part of 

genotoxicity include DNA intercalation that takes place due to an aromatic ring of a drug, DNA 

methylation, DNA adduct formation and strand breakage as well as an unscheduled DNA 

synthesis (Bolzan and Bianchi 2002).  

The significance of genotoxicity testing lies in the identification of potentially hazardous drug 

candidates. The results generated from genetic toxicology tests, in combination with other 

toxicity data are used as the basis for approval of clinical trials of drug candidates (Custer and 

Sweder 2008). The importance of the optimization of molecules during early drug development 

for efficacy and with regard to their pharmacokinetic and toxicological properties has gained 

wide recognition. A balance of target potency, selectivity, favorable ADME (absorption 

distribution metabolism excretion) and (pre)clinical safety properties that will ultimately result 

in the selection and clinical development of a potential new drug has been suggested. Phase I 

clinical trials for a compound involves years of rigorous preclinical testing and yet has only an 

8% chance of reaching the market.  Toxicity results in the dropping of 20% of such molecules 

during late development stages. Therefore, the implementation of toxicity testing as early as 

possible in the drug development process is of prime significance (Custer and Sweder 2008). 

Huge amounts of compounds necessary for in vivo studies, dearth of reliable high-throughput in 

vitro assays, and the inability of in vitro and animal models to correctly predict some human 

toxicity are the main reasons that prevent pharmaceutical companies from conducting earlier 

screening for toxicity. 

        Among different toxicity tests, genotoxicity test has been of prime importance. 

According to ICH guideline Genotoxicity tests can be defined as in vitro and in vivo tests intended to 
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detect compounds which make genetic damage directly or indirectly by different mechanisms. These 

tests should be able to detect damage to DNA and its fixation. The processes like fixation of DNA 

damage by gene mutations, recombination, extensive chromosomal damage, and numerical chromosome 

changes are generally measured to be important in the multi-step process of malignancy and for 

heritable effects. There are different genotoxicity test types described in Table 4: 

Table 4: Genotoxicity testing types 

In vitro The Salmonella/E. coli Mutagenicity Test or Ames Test 

Mouse Lymphoma 

Chinese Hamster Ovary Cell cytogentics 

     (1)Chromosomal Aberration (CA) test 

    (2) sister chromatid exchanges (SCE) test 

in vitro micronucleus (MN) 

In vivo Drosophila melanogaster 

(1)sex-linked recessive lethal (SLRL) mutations  

(2) chromosomal reciprocal translocations (RT)  

Micronuclues 

 

        Also ICH defines Standard battery of genotoxicity tests: (i) a test for gene mutation in 

bacteria (ii) an in vitro test with cytogenetic evaluation of chromosomal damage with 

mammalian cells or an in vitro mouse lymphoma tk assay (iii) an in vivo test for chromosomal 

damage using rodent hematopoietic cells. The compounds which give negative results in all of 

this 3-test battery will typically be safe and will not have genotoxic activity. Compounds which 

give positive results in the standard test battery may, depending on their therapeutic use, require 

extensive tests. 
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        The genotoxicity tests can be utilized to decide about compounds potential to be human 

carcinogens and/or mutagens. There is evidence that human being exposed to compounds which is 

found positive in genotoxicity test, also had cancer and the vast majority of these are detected by 

both the Salmonella assay and rodent micronucleus tests. These evidences suggested strong 

correlation between genotoxicity and carcinogenesis, but an analogous connection has not been 

established for heritable diseases. Thus, genotoxicity tests have been used primarily for the prediction of 

carcinogenicity(Kirkland, Aardema et al. 2005). 

       In recent times, genotoxicity testing methods has been argued upon very low specificity 

of all mammalian cell tests. In contrast, the specificity of the Ames test has been found 

reasonable. The extremely low specificity reveals deficiencies in the current prediction from 

and understanding of such in vitro results for the in vivo situation. (Kirkland, Aardema et al. 

2005) 

    In vivo genotoxicity tests play a pivotal role in genotoxicity testing batteries. They are used 

both to determine if potential genotoxicity observed in vitro is realized in vivo and to detect any 

genotoxic carcinogens that are poorly detected in vitro. It is recognized that individual in vivo 

genotoxicity tests have limited sensitivity but good specificity. Thus, a positive result from the 

established in vivo assays is taken as strong evidence for genotoxic carcinogenicity of the 

compound tested.(Tweats, Blakey et al. 2007) 

    One of the main objectives of short term in vitro studies is to replace long term (2 year) 

animal assays thus reducing the animal sacrifice and also the time. The failure of in vitro tests 

in achieving this objective must be addressed while developing the prediction model. However, 

it would be useful to observe the developed model performance with and without addressing 

this major issue of extremely low specificity. The prediction model based on just in vitro 

positive in training dataset will produce many false positive upon scanning chemical databases 
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which would block many potential compounds to be developed as drugs. This model will 

produce lots of genotoxicity hits upon virtual screening.  

         These problems can be addressed through the development of computational or in silico 

toxicity prediction tools, either structure-based or which involve the application of modeling 

techniques on human data. These serve as main approaches to extract potentially toxic effects in 

humans even before the physical availability of compounds. In silico techniques like 

knowledge-based expert systems (quantitative) structure activity relationship tools and 

modeling approaches help to significantly reduce drug development costs in predicting adverse 

drug reactions in preclinical studies. (Muster, Breidenbach et al. 2008). Over the years, 

computational toxicology prediction systems have tremendously increased their predictive 

power but have not yet achieved a major breakthrough due to lack of sufficiently large datasets. 

The development of such systems take coordinated efforts since they are dependent on the gold 

standard, low throughput data but once set up, could reduce investment as well as the use of 

animals. 

Primarily, the significance of computational tools arises from their applicability during the early 

stages of development. At the stage when chemical series are initially screened concerning 

undesired activities, information on possible adverse properties should be obtained through the 

use of globally valid computational tools. An excellent correlation with ‘wet-lab’ data that is, 

high sensitivity, as well as high specificity, an easy to use and easy to interpret in silico model 

are key requirements for its usefulness. As a non-expert tool, the need for it to be available to 

the medicinal chemist via computer networks has been acknowledged. 

A variety of computational tools for a quick and efficient prediction of drug genotoxic potential 

have been developed (Cash 2001; He, Jurs et al. 2003; Mattioni, Kauffman et al. 2003; Li, Ung 

et al. 2005). 
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In search for a new approach for the prediction of genotoxicity, machine learning methods have 

been developed, without compromising on the structures or types of molecules. Methods such 

as these classify molecules into GT+ and non-genotoxic (GT−) agents, based on their general 

structural and physicochemical properties, without considering their structural and chemical 

types. As such, these methods are expected to be applicable to a diverse set of molecules. 

Nevertheless, the quality of the molecular descriptors influences the performance of such 

methods, in addition to training and testing data, and the efficiency of machine learning 

algorithms.  

Thus far, machine learning methods, the likes of linear discriminate analysis (LDA), k-nearest 

neighbor classification (k-NN), support vector machines (SVM), and probabilistic neural 

networks (PNNs), have been in use and have achieved a prediction accuracy of up to 73.8% for 

GT+ and 92.8% for GT− agents, respectively (Li, Ung et al. 2005). However, these methods 

have been developed and tested by using no more than 860 known GT+ and GT− agents.  

A more diverse set of molecules would significantly enhance the levels of accuracy. A training 

set comprising of an even more diverse set of GT+ agents would further heighten accuracy 

levels and its prediction capability for true independent dataset. Support Vector Machines 

(SVM) and k-NN are among those machine learning methods that have shown great potential in 

these types of studies. The importance of SVM is evident in studies that have been carried out 

for the prediction of antibiotic resistance proteins (Zhang, Lin et al. 2008), mitochondrial 

toxicity (Zhang, Chen et al. 2008), blood-brain barrier permeability (Kortagere, Chekmarev et 

al. 2008), torsade-causing potential of drugs (Yap, Cai et al. 2004), P-glycoprotein substrates 

(Xue, Yap et al. 2004). 

Our work has involved the evaluation and use of several Machine Learning Methods (MLMs). 

These include SVM, PNN, k-NN, and Decision Tree (DT). Support Vector Machines (SVM) 
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has been used to a great extent due to its applicability to a variety of classification problems. A 

huge improvement on earlier studies conducted has been in the number of compounds used, 

consideration of issue of extremely low specificity of genotoxicity tests, comparison of 

different machine learning methods by using the exactly same data set and descriptors. In 

addition to the development of genotoxicity prediction models by MLMs, these models have 

been further utilized for the Virtual Screening (VS) of chemical libraries. 

Virtual Screening techniques might be categorized into two broad types: ligand-based and 

structure-based. In the ligand-based technique, a model of a receptor can be built, based on a set 

of structurally diverse ligands that bind to the receptor. The structure-based technique, on the 

other hand, involves the docking of candidate ligands into a protein target. Support Vector 

Machines (SVM) has been utilized as ligand-based VS (LBVS) tools to complement or to be 

used in combination with structure-based VS (SBVS) and other LBVS tools. In genotoxicity, 

however, one might rule out the use of SBVS since the targets are not well-defined. In the 

current study, SVM has been implemented as the ligand-based VS (LBVS).  

By classifying active compounds based on the differentiating physicochemical profiles between 

active and inactive compounds rather than structural similarity to active compounds per se, 

SVM acquires specific importance. The knowledge of target structure and activity-related 

molecular descriptors and the computation of binding affinity and solvation effects are not 

required. SVM’s fast speed results in an efficient search of vast chemical space. Some of these 

advantages have been realized through good VS performance in screening large compound 

libraries. The performance of SVM is significantly influenced by the levels of the training 

active and inactive compounds in representing the physicochemical profiles of the remaining 

compounds in the chemical space. 
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5.2 Genotoxicity data set 

Collection of genotoxicity compounds 

Genotoxicity data were collected from different sources such as National Toxicology Program, 

Bursi Mutagenicity dataset (Kazius, McGuire et al. 2005), NLM leased data, EAFUS, Helma 

CPDB Mutagenicity Subset(Helma, Cramer et al. 2004), GRAS and from a  number of 

publications. Table 5 and Table 6 show different sources for genotoxicity positive and 

genotoxicity negative data collection respectively.  

Table 5: Genotoxicity Positive Data Set 

Source Type Number of 
compounds 

Compounds 
considered (3d 
structures and 
unique) 

Mutation Research 584 (2005) 
1–256 ) 

rodent carcinogenic and 
positive in at least one ICH 
standard battery of tests 

433 426 

Rodent carcinogenic and 
positive in all in vitro tests  

20  20 

NLM leased data genotoxicity positive 1989 1989 
in vivo positive 442 442 
positive (in any test) by more 
than one references  

786 786 

positive (in any test) by more 
than one references and 
negative (in any test) by 1 or 0 
references 

611 611 

Mutagenesis vol. 22 no. 6 pp. 
409–416, 2007 

Green screen assay and Ames 
positive 

42 42 

CPDBAS ( Carcinogenic 
potency database) 

Ames positive 394 394 

Kazius, J.; McGuire, R.; Bursi, 
R. Derivation and Validation 
of Toxicophores for 
Mutagenicity Prediction. J. 
Med. Chem. 2005, 48(1), 312-
320 - 

Ames positive 2401 2401 

Mutation Research 653 (2008) 
99–108  (Recommended lists 

Independent data set 19 19 
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of genotoxic and non-
genotoxic chemicals for 
assessment of the performance 
of new or improved 
genotoxicity tests: A follow-up 
to an ECVAM workshop) 
 
Other recent journals of 2008 
and 2009 (newly synthesized 
and found genotoxic by tests) 

Independent data set 19 19 

 

Table 6: Genotoxicity negative data set 

Source Type Number of 
compounds 

Compounds 
(3d structures 
and unique) 

Everything added to food (EAFUS)  2328 2328 

Drugbank fda approved drugs  1293 1293 

GRAS clean  369 177 

Kazius, J.; McGuire, R.; Bursi, R. Derivation 
and Validation of Toxicophores for 
Mutagenicity Prediction. J. Med. Chem. 2005, 
48(1), 312-320 - 

Ames 
negative 

1926 1926 

Mutation Research 584 (2005) 1–256  rodent non-
carcinogenic  

177 177 

An update on the genotoxicity and 
carcinogenicity of marketed pharmaceuticals 
with reference to in silico 
predictivity.Environmental and molecular 
mutagenesis (2009) 

Approved 
PDR drugs 

545 540 

Mutation Research 653 (2008) 99–108  
(Recommended lists of genotoxic and non-
genotoxic chemicals for assessment of the 
performance of new or improved genotoxicity 
tests: A follow-up to an ECVAM workshop) 
 

Independent 
data set 

23 23 

Clinical Trials (Phase 1 , 2, 3) Independent 
data set 

2387 2039 
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5.3 Methods 

 The methods to do genotoxicity studies were designed to handle issues like diversity and 

extremely low specificities. The genotoxicity study was performed in three instances.  

1.  Study with 100 descriptor and smaller dataset : 

 Positive (Total 2776): Positive in any genotoxicity test  

 Negative (Total 4116): Approved drugs + gras  

 Independent:  Part of positive and negative (no true independent dataset)  

 Compounds representation: 100 descriptors  

 Objective: To assess various machine learning method performances.  

2. High diversity high noise (HDHN)(positive in any assay) model : 

       Positive (Total 4763): Positive in any genotoxicity test 

       Negative (Total 8232): Approved drugs + EAFUS + non-mutagenic + gras 

       Independent positive (Total 38): from recent journals 

       Independent negative (Total 2008): Clinical trial drugs 

Compounds representation: 522 descriptors  

      Objective: To obtain broadly applicable SVM model with little compromise on specificity 

3. Low diversity low noise (LDLN) (positive in Ames or in vivo) model:  

  Positive (Total 3321): Ames + in vivo 

        Negative (Total 8232): Approved drugs + EAFUS + non-mutagenic + gras 

        Independent positive (Total 38): from recent journals 

        Independent negative (Total 2008): Clinical trial drugs 

Compounds representation: 522 descriptors  

      Objective: To address the low specificity issues of different in vitro genotoxicity tests 
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The detail method of machine learning algorithms employed and cross-validation is provided 

in Chapter 2. 

5.4 Results and discussion 

This result and discussion is divided into three subsection based on dataset and descriptors 

used in different run. The first part is smaller dataset of all the collected dataset (about 50%) in 

which 100 descriptors were used.   The second part is for HDHN in which entire 522 molecular 

descriptors (see appendix) were used. The third part is for LDLN in which 522 molecular 

descriptors were used.  

5.4.1 Results of the study with 100 descriptors and smaller dataset  

  5.4.1.1 Comparative study of SVM with other machine learning methods 

SVM has been used by the application of LibSVM, in addition to other machine learning 

methods like kNN, decision trees, feedforward backpropagation neural network by using Weka 

software.  A 5-fold cross-validation was performed for each of the MLMs used in this study 

while, the dataset remained the same for the purpose of efficient comparison.  The prediction 

accuracy of the 5-fold cross-validation by SVM is shown in Table 2. The SVM parameter 

sigma was scanned from 0.1 to 5 with an increase of 0.1 at each step. In Table 2, results are 

presented in two ways: 1. the best prediction accuracies while scanning SVM parameter sigma 

for each of the folds. 2. The average of prediction accuracy for all the models with different 

sigma values in each case. These results have been presented to show the average, maximum, 

minimum and standard deviation for all the folds. High prediction accuracies were observed for 

sigma values 1.3 to 1.8. The best prediction accuracy (positive accuracy corresponding to 

85.77, negative accuracy equal to 91.62 and overall prediction accuracy corresponding   to 

89.26) was achieved with a sigma value 1.8. 
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 In Table 7 and Table 8, the results of the application of various other MLMs (using 5-fold 

cross-validation) for determining genotoxicity prediction have been shown. As is indicative 

from the figures generated, apart from the high efficiency levels as displayed by the use of 

KNN and Multilayer perceptron methods, Random Forest, one among many Decision Tree 

(DT) methods has shown great potential 
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Table 7:  SVM Five-fold cross validation on genotoxicity by using 100 descriptors 

SVM 5-fold cross validation 

 

Accuracy of models (Best models of each 
fold) Average accuracy 

 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Fold1 84.14 89.43 87.3 81.72 87.88 85.39 
Fold2 84.14 90.28 87.81 81.72 87.89 85.40 
Fold3 83.06 91.13 87.88 81.69 87.89 85.39 
Fold4 85.05 89.91 87.95 81.63 87.89 85.37 
Fold5 85.77 91.62 89.26 81.58 87.86 85.33 
Average 84.43 90.47 88.04 81.67 87.88 85.38 
Max 85.77 91.62 89.26 81.72 87.89 85.40 
Min 83.06 89.43 87.3 81.58 87.86 85.33 
STDEV 1.03 0.89 0.73 0.06 0.01 0.03 

 

Table 8: Other MLM 5-fold cross validation by using 100 descriptors 

5-Fold cross validation accuracy (Average accuracy) 

 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

IBk (KNN) 79.82 85.57 83.25 
MultilayerPerceptron  79.82 85.57 83.25 
RandomForest 74.20 92.05 84.86 
ADTree 56.76 91.23 77.34 
BFTree 70.45 88.17 81.03 
DecisionStump 72.21 88.52 81.95 
FT 70.69 89.11 81.69 
J48 68.86 89.81 81.37 
J48graft 67.79 89.37 80.68 
LMT 70.00 88.99 81.34 
NBTree 69.91 89.16 81.41 
REPTree 69.45 89.29 81.30 

 

5.4.1.2 Virtual Screening of MDDR and PUBCHEM database  

The models that have been developed using SVM for the sigma values of 1.3 to 1.8 (the best 

parameter range found by 5-fold cross-validation) were used for the Virtual Screening of 

MDDR and Pubchem database. Table 9 depicts the results of Virtual Screening of MDDR 

database. Virtual Screening evaluation/performance is shown through ‘Yield’, “Hit Rate’ and 
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‘Enrichment Factor’. There are 79 common compounds that have been found in the MDDR 

database and our genotoxicity positive data collected. The results in Table 9 indicate those that 

were arrived at after removal of the 79 common compounds as against those that were arrived 

at after retaining the compounds. There is clear difference for the prediction of 79 actual 

genotoxic positive compounds by the SVM models when these actual genotoxic positive 79 

compounds are included and excluded in training data set. When these actual genotoxic 

compounds are included in SVM models training dataset, it can predict about 80% of these 

compounds as geneotoxic positive. In contrast, when these actual genotoxic compounds are 

excluded in SVM models training dataset, it can predict only about 59% of these compounds as 

geneotoxic positive.   

Table 10 shows the Virtual Screening of the MDDR database by the use of different Tanimoto 

similarity coefficients as the threshold for Tanimoto similarity searching, using fingerprints of 

chemical compounds. 
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Table 9: Virtual Screening of MDDR database 

 
Sigma 

MDDR 
Total 

MDD
R Hits 

MDDR 
Intersect
ion GT+ 

Actual GT+ 
in MDDR 
which got 
Predicted 
as GT+ by 
model  Yield 

Hit 
Rate 

Enric
hmen
t 
Facto
r 

VS  by SVM 
models while 79 
common 
compounds of 
MDDR and GT+ 
are present in 
Training dataset 

1.1 168016 37450 79 63 79.75 0.00168 3.577 
1.2 168016 34387 79 62 78.48 0.00180 3.834 
1.3 168016 34076 79 59 74.68 0.00173 3.682 
1.4 168016 35019 79 57 72.15 0.00163 3.461 
1.5 168016 30978 79 57 72.15 0.00184 3.913 
1.6 168016 30309 79 59 74.68 0.00195 4.140 
1.7 168016 28722 79 58 73.42 0.00202 4.294 
1.8 168016 31206 79 54 68.35 0.00173 3.680 
1.9 168016 30681 79 56 70.89 0.00183 3.881 

VS  by SVM 
models while 79 
common 
compounds of 
MDDR and GT+ 
are removed from 
Training dataset 

1 168016 31635 79 40 50.63 0.00126 2.689 
1.1 168016 32902 79 41 51.90 0.00125 2.650 
1.2 168016 30356 79 41 51.90 0.00135 2.872 
1.3 168016 29077 79 42 53.16 0.00144 3.072 
1.4 168016 31539 79 44 55.70 0.00140 2.967 

1.5 168016 27632 79 44 55.70 0.00159 
3.386

6 

1.6 168016 26632 79 41 51.90 0.00154 
3.274

188 

1.7 168016 26013 79 47 59.49 0.00181 
3.842

651 

1.8 168016 28108 79 43 54.43 0.00153 
3.253

584 

1.9 168016 27346 79 41 51.90 0.00150 
3.188

7 
 

 

Table 10: Tanimoto similarity with MDDR database based on fingerprint 

Tanimot 
Similarity 
Coefficient 
as cut-off 

MDDR 
Total 

MDDR 
Hits 

MDDR Hits 
unique 

MDDR Intersection 
GT+ Yield 

Hit 
Rate 

Enrichment 
factor 

0.7 168016 161934 38463 79 58 73.42 0.0015 3.207 
0.8 168016 47251 13769 79 45 56.96 0.0033 6.951 
0.9 168016 13984 4195 79 38 48.10 0.0091 19.265 
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  5.4.1.3 Performance evaluation 

An examination of the accuracy  levels of machine learning methods  for genotoxicity 

prediction of a diverse set of molecules is required to gauge whether the accuracy achieved by 

these methods is at a similar level as those derived by the use of a significantly smaller set of 

molecules. It is noted that a direct comparison with results from previous studies is 

inappropriate because of the differences in the data set and molecular descriptors used. 

However, the current study has been undertaken by using the same molecular descriptors for all 

the MLMs, including SVM along with the same number and same distribution of data sets in 

each fold of stratified 5-fold cross-validation. The positive accuracy levels for all the MLMs, 

especially SVM, have increased to levels (range ~83-85) unsurpassed by any previous study 

(range ~72-75). The negative accuracy remains unchanged at 90-92% (in comparison with 

previous studies). 

Genotoxicity assessment of a broad ranges of molecules through the implementation of 

machine learning methods, particularly SVM, k-NN, PNN, and DT such as Random Forest and 

Decision Stump has thus been established through our study. The prediction accuracy of these 

methods is at a similar, if not superior level, as those of earlier studies that were tested by using 

a much smaller number of molecules. An added advantage of these methods is that they do not 

require knowledge about the molecular mechanism or SAR of a particular drug property. The 

classification speed of SVM is fast compared to other MLMs that use Weka. It has been noticed 

that the speed for MLMs such as k-NN has been exceptionally slower than the rest, whereas 

that of J48 and Random Forest has been fast although all of these use Weka. Virtual Screening 

has been done for some types of DT, the data for which can be viewed as additional 

supplementary data online.  
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5.4.2 High diversity high noise (HDHN) (positive in any assay) model  prediction 
performance 

The result in this section is presented for 5-fold cross validation accuracy, testing on 

independent dataset, and virtual screening on Pubchem and MDDR.   

5.4.2.1 Five fold 

 The 5-fold cross validation accuracy is shown in Table 11.  The negative, positive, overall , 

and average accuracy over different sigma values are shown in Figure 31, Figure 32, Figure 

33, and Figure 34 respectively.  

Table 11: 5-fold cross validation for genotoxicity prediction models on more diverse dataset (positive in any 
assay) 

SVM 5-fold cross validation 

  
Accuracy of models (Best models of each 
fold) Average accuracy 

  
Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Fold1 77.63 87.96 84.15 73.86 86.06 81.56 

Fold2 78.57 86.79 83.76 75.33 85.18 81.54 

Fold3 77.63 88.08 84.22 74.62 86.13 81.88 

Fold4 78.15 86.73 83.57 74.44 84.85 81.01 

Fold5 77.63 86.06 82.95 74.98 85.12 81.38 

Average 77.92 87.12 83.73 74.65 85.47 81.47 

Max 78.57 88.08 84.22 75.33 86.13 81.88 

Min 77.63 86.06 82.95 73.86 84.85 81.01 

STDEV 0.43 0.87 0.51 0.56 0.59 0.32 
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Negative Accuracy 

 
Figure 31: Fivefold negative accuracy (Genotoxicity, SVM, More diverse (positive in any assay) way). Negative 
accuracy (red color), positive accuracy (blue color) and overall accuracy.  

         Positive Accuracy 

 

Figure 32: Fivefold positive accuracy (Genotoxicity, SVM, High diversity high noise (HDHN) (positive in any 
assay) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 
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Overall Accuracy

 
Figure 33: Fivefold overall accuracy (Genotoxicity, SVM, High diversity high noise (HDHN) (positive in any 
assay) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 

Average Accuracy

 
Figure 34: Fivefold average accuracy (Genotoxicity, SVM, High diversity high noise (HDHN) (positive in any 
assay) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 
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In Figure 31, Figure 32, Figure 33, and Figure 34 negative, positive, overall and average 

accuracy over different sigma values are relatively stable for the five fold cross validation.  

 

  5.4.2.2 Testing on Independent data 

After checking the performance of 5-fold, SVM model was built using all the training data 

(4763 GT positive and 8232 GT negative compounds) for testing on independent dataset ( 38 

GT positive and 2008 clinical trial negative compounds) for different sigma values (Figure 35). 

 

Figure 35: Testing on Independent data set (Genotoxicity, SVM, High diversity high noise (HDHN) (positive in 
any assay) model) 
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5.4.2.3 Virtual Screening on Pubchem and MDDR 

The Pubchem and MDDR database were scanned by models created for different sigma 

values (Figure 36 and Figure 37).  For scanning this database, models were created by 

including independent dataset in first instance and later by just including positive independent 

dataset (leaving the negative clinical trial dataset).  

The scanning with the model created by including clinical trial data in negative dataset will 

introduce a bias towards finding a compound able to reach till clinical trial. This percentage is 

also useful for pharmaceutical industry or regulatory bodies because of the fact of very less rate 

of compounds reaching to clinical trial.  The scanning with the model without clinical trial data 

is supposedly more accurate way of scanning, because the fate clinical trial compound is not 

sure i.e. whether it will be genotoxic or non-genotoxic.  

 
Figure 36: Scanning Pubchem and MDDR (Genotoxicity, SVM, High diversity high noise (HDHN)(positive in any 
assay) model ).  The graph shows the percentage of total number of compounds in database found as 
genotoxic positive over different sigma values. Blue dots and line represent percentage of Pubchem 
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compounds predicted as genotoxic positive. Red dots and percentage represent percentage of MDDR 
compounds predicted as genotoxic positive. 

 

Scanning without clinical trial 

 

Figure 37: Scanning Pubchem and MDDR (Clinical trial data set excluded while constructing models) 
(Genotoxicity, SVM, High diversity high noise (HDHN)(positive in any assay) model ) 
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5.4.3 Low diversity low noise (LDLN) (positive in Ames or in vivo) model 
prediction performance 

The result in this section is presented for 5-fold cross validation accuracy, testing on 

independent dataset, and virtual screening on Pubchem and MDDR.     

    5.4.3.1 Five fold 

Table 12: 5-fold cross validation for genotoxicity prediction models on less diverse dataset (positive in Ames or 
in vivo) 

   SVM 5-fold cross validation 

  
Accuracy of models (Best models of each 
fold) Average accuracy 

  
Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy 

Fold1 80.57 91.13 88.10 77.16 89.68 86.08 

Fold2 80.12 91.86 88.48 75.35 90.70 86.29 

Fold3 81.93 90.89 88.31 78.30 90.18 86.77 

Fold4 79.07 91.07 87.62 75.85 89.96 85.90 

Fold5 79.22 92.59 88.74 75.90 91.36 86.92 

Average 80.18 91.51 88.25 76.51 90.38 86.39 

Max 81.93 92.59 88.74 78.30 91.36 86.92 

Min 79.07 90.89 87.62 75.35 89.68 85.90 

STDEV 1.16 0.71 0.42 1.20 0.67 0.44 
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Negative Accuracy 

 
Figure 38: Fivefold negative accuracy (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames or 
in vivo) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 

 

Positive Accuracy 

 
Figure 39: Fivefold positive accuracy (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames or in 
vivo) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 
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Overall Accuracy 

 
Figure 40: Fivefold overall accuracy (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames or in 
vivo) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 
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Average Accuracy

 

Figure 41: Fivefold average accuracy (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames or in 
vivo) model). Negative accuracy (red color), positive accuracy (blue color) and overall accuracy. 

 

  5.4.3.2 Testing on Independent data 

After checking the performance of 5-fold, SVM model was built using all the training data 

(3221 GT positive and 8232 GT negative compounds) for testing on independent dataset ( 38 

GT positive and 2008 clinical trial negative compounds) for different sigma values 
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Figure 42: Testing on independent data set (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in 
Ames or in vivo) model) 

 

  5.4.3.3 Virtual Screening on Pubchem and MDDR 

The Pubchem and MDDR database were scanned by models created for different sigma 

values (Figure 43 and Figure 44).  For scanning this database, models were created by 

including independent dataset in first instance and later by just including positive independent 

dataset (leaving the negative clinical trial dataset).  The reason for scanning done by these two 

ways is same as in virtual screening of more diverse dataset (Section 5.4.2.3). 
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Figure 43: Scanning Pubchem and MDDR (Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames 
or in vivo) model) 

Scanning without clinical trial in the training model 

 
Figure 44: Scanning Pubchem and MDDR (Clinical trial data set excluded while constructing models) 
(Genotoxicity, SVM, Low diversity low noise (LDLN) (positive in Ames or in vivo) model) 
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     In addition to scanning, analysis of MDDR hits were also done to map compound to the 

therapeutic class (Table 13). The MDDR compound database has the information of 

therapeutic class for the compounds. The virtual screening hits by models were found to cover 

550 therapeutic classes with antineoplastic class having maximum number of hits. This is an 

agreement with the fact that majority of antineoplastic compounds have the potential for 

genotoxicity. 

Table 13: MDDR classes that contain higher percentage (≥3%) of HDHN SVM model identified virtual GT+ hits in 
screening 168K MDDR compounds. The total number of SVM identified virtual GT+ hits is 40,257(23.96%) 

MDDR Classes that Contain Higher 

Percentage (>3%) of Virtual 

Genotoxic Hits  

No and Percentage of Virtual 

Genotoxic Hits in Class  

Percentage of Class Members 

Selected as Virtual Genotoxic Hits 

Antineoplastic 4848(12.04%) 22.47% 

Antiallergic/Antiasthmatic 2326(5.78%) 21.68% 

Antihypertensive 2095(5.2%) 19.59% 

Antiarthritic 1948(4.84%) 25.32% 

Cognition Disorders, Agent for 1752(4.35%) 23.02% 

Anxiolytic 1363(3.39%) 20.16% 

Antidepressant 1232(3.06%) 19.87% 

Antiinflammatory 1227(3.05%) 22.04% 
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5.5 Discussion and Conclusion 

The purpose is mentioned accordingly in the thesis as suggested by the examiner. The line has 

been added which says the average accuracies of fivefold cross validation were relatively over 

different sigma values. The graphs are also meaningful in the sense of its comparison with other 

graphs e.g. accuracies of independent data set where positive accuracies over different sigma 

value are not stable. This gives a better picture of discrepancy of fivefold cross validation and 

independent data set result. That was the main reason the that sigma value selected for pubchem 

and MDDR scanning could not be just based on the best parameter selection based on fivefold 

cross validation result which is the normal protocol in machine learning methods. 

The purpose of showing the independent validation results and the scanning of PubChem and 

MDDR from a series of sigma value is to provide various prediction models. The choice to 

have different prediction models gives flexibility to end user to choose among the best models.  

           The existences of different in vivo and in vitro genotoxicity tests are corroborated 

inference from these test motivate the idea of providing different prediction models. For 

example, the compounds found positive in standard test battery of ICH guideline (which 

includes three genotoxicity tests mentioned in the introduction of this chapter) should be further 

tested extensively for genotoxicity but the compounds found negative in standard test battery 

are considered safe.  Similarly, the compounds found negative by prediction models which 

were generated at three best sigma values can be considered safer than compounds giving non-

consistent result by three prediction models. 

The discussion is added to the chapter. The yield about 80% is high enough in my opinion. One 

cannot expect that all the support vectors will be limited to 79 true genotoxic compounds when 

the total number of positive genotoxic compounds used in training of SVM models is 2776. The 
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C value used for training was very high (C= 1000, 000), so the models are not under fitted. The 

appropriate tanimoto cut-off should be above 0.8, otherwise it generally produce high false 

positive and is not reliable. The yield at tanimoto cut-off 0.8 and 0.9 are 57% and 48% 

respectively. So, by tanimoto similarity it is not possible to beat SVM in terms of yield. 

The usefulness of machine learning methods, particularly SVM, k-NN, and PNN, in facilitating 

the prediction of GT+ potential of a diverse set of molecules without requiring the intrinsic 

mechanism knowledge of chemical compounds, has been made possible through this study. The 

use of a large number of compounds has shown to significantly improve accuracy levels of 

genotoxicity prediction. HDHN models have better performance than LDLN models which 

further consolidate the fact that SVM is capable handling some noise when the dataset is large. 

Virtual Screening can be used for the identification of potential genotoxic compounds in large 

databases such as the likes of Pubchem and MDDR. The results gained via Virtual Screening 

can be fruitfully examined by confirmatory wet lab experiments. 
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Chapter 6 Machine Learning Classification: Prediction of p38 kinase inhibitors 

6.1 Introduction of p38 MAPKs 

The p38 mitogen-activated protein kinases (MAPK) is a type of mammalian stress activated 

MAPK. MAPKs belong to the family of serine/threonine kinase which get activated by a 

conserved mechanism that is phosphorylation of both serine and tyrosine residues.  The p38 

MAPK gets activated by stress response and has important role in cytokine production. There 

are four different isoforms of p38MAPK: p38α, p38β, p38γ and p38δ. These isoforms are 60-

70% similar in sequence but differ in the size of a lipophilic pocket. Also, the lipophilic pocket 

of these isoforms which is buried inside the ATP may have different gatekeeper residue. The 

gatekeeper residue of p38α and p38β is threonine while p38γ and p38δ have methionine as the 

gatekeeper residue. Out of these four isoforms, p38α isoform has been studied most because of 

its role in the biosynthesis of inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis 

factor alpha (TNFα). The excessive production of IL-1β  and TNFα is found to be the cause of 

many inflammatory diseases(Pettus and Wurz 2008). The therapeutic importance of TNFα and 

IL-1β in chronic inflammatory diseases has been reported in many studies.  Suppression of IL-

1β helps in treating cartilage damage and diminishes the cell inflammation, while blocking 

TNFα alone have shown therapeutic value in treating joint swelling of animals in which 

Rheumatoid Arthritis have been introduced(Kuiper, Joosten et al. 1998).  Furthermore, some of 

this individual therapeutic approaches are evident in examples such as infliximab, a monoclonal 

antibody, against TNFα for the treatment of rheumatoid arthritis and Crohn's disease(Maini 

2004);   adalimumab, a fully humanized antibody, against TNFα; anakinra,  against  IL-1β 

receptor for the treatment of rheumatoid arthritis; Remicade, Humira and Enbrel(Goldsmith and 

Wagstaff 2005; Pettus and Wurz 2008). Although TNFα and IL-1β can be targeted alone for 

anti-inflammatory actions but the synergistic interaction is illustrated in many studies which 

becomes the ground for applying combination therapy against these two cytokines (Bendele, 
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Chlipala et al. 2000; Bolos 2005). Moreover the idea of combined therapeutic approach can be 

consolidated by the fact of drawbacks and individual targeting of TNFα and IL-1β. Some of 

these drawbacks and limitation of individually targeting TNFα and IL-1β includes short half-

life, low oral bioavailability, congestive heart failure, increased risks for infections, possible 

immune reactions and other malignancies (Palladino, Bahjat et al. 2003).  These drawbacks and 

limitation can be reduced by combined therapeutic approaches in addition to better efficacy. 

The p38 MAPK signalling pathway shows the path for this combined therapeutic approach. 

Inhibiting the p38 MAPK will  not only suppress TNFα and IL-1β but also the other enzymes 

like matrix metallonoproteinases  and Cyclooxygenase-2  which are also responsible for 

inflammation( Figure 45) (Bolos 2005). The p38 MAP kinase activation of can mediate gene 

expression as well because of its interaction with many transcription factors .The transcription 

factors like ATF1, ATF2, ATF-6, SAP1A (Signaling lymphocytic Activation molecule 

associated Protein-1A), the MEF2A/C (Myocyte Enhance Factor-2A/C), and Elk1 (ETS-

domain transcription factor-1) upon interaction with p38 MAP kinase becomes phosphorylated 

and subsequently becomes activated. The p38 MAPKs also regulate p53 which is a tumor 

suppressing protein, and NFAT which is an important transcription factor for cell 

differentiation and embryonic development. In summary, p38 MAPKs has major role in 

apoptosis pathway, transcriptional regulation, and cytokine production (Ferrer, Blanco et al. 

2002; Rasmussen, Iversen et al. 2008). 
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Figure 45: p38 MAPK Signaling 

6.2 Methods 

The general flowchart for performing machine learning classification method is shown in 

Figure 46. The detailed method for 5-fold cross validation, scaling, virtual screening, and 

hierarchical clustering is explained in Chapter 2.  
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Figure 46: Flowchart for machine learning classification of p38 MAPK inhibitors 

 

6.2.2 Selection of p38 inhibitors and non-inhibitors 

   A total of 1094 p38 inhibitors were manually collected from literature and drawn using 

Chemdraw software and subsequently converted to 3d structure using Corina software. 

 Table 21 in appendix shows the list of journal articles from which p38 inhibitors were 

collected. Since this study was done in the beginning of year 2008, journal articles are limited 

till year 2007.   
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descriptors
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independent (recently 
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data for range of 
parameters 

select best parameter by 
looking the average 
accuracy of 5 fold

prepare model for best 
parameter by combining 
all  5 fold data as single 

training dataset

Test the model on 
independent dataset and 

report

Perform another model 
by including all data 

including independent

Perform virtual screening 
with this model on 
pubchem and mddr 

database

Do the hierarchical 
clustering on hits found 
and mixed with true p38 

MAPK inhibitors 
collected
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The p38 non-inhibitor was generated by finding complement of p38 inhibitors in chemical 

space of whole Pubchem database. The Pubchem compounds were divided in 8000 family by k-

mean clustering method. The p38 inhibitors were then mapped to these families. The families 

which were not covered by p38 inhibitors represent the complement family set. From each of 

these complement family, representative compounds were chosen by starting from centroid of 

the family to the varying distance in all the side to incorporate diversity.  This way a total of 

58774 compounds are selected as negative dataset.  

 

6.2.3 Molecular descriptors 

A total of 100 important descriptors were chosen from a total of 522 chemical descriptors 

calculated by our program which were used for generating p38 inhibitor prediction model. The 

detail about the selected 100 molecular descriptors is shown in Table 14. A more detailed 

description about the descriptors is given in Appendix.  
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Table 14: Molecular descriptors, selected 100 descriptors out of total 522 descriptors calculated for each 
compound 

Molecular Descriptors Selected Total Calculated 
Constitutational Descriptors 13 58 
Charge Descriptors 6 14 

  
Electronic-topological 
descriptors          

  
4 7 

  Topological descriptors 2 2 
  Topological charge index 0 5 
  Mean topological charge index 3 10 
  Molecular path count 7 7 
   Sum of E-State of atom type 28 88 
  Sum of H E-State of atom type 16 42 
   Moreau-Broto topological autocorrelation 0 0 
     Atomic mass weighted Moreau-Broto 0 11 
     Electronegativity weighted moreau-Broto 0 11 
     VDW radius weighted Moreau-Broto 0 11 
     Estate Values  weighted Moreau-Broto 0 11 
     polarizability  weighted Moreau-Broto 0 11 

  
  Van der Waals volume weighted Moreau-

Broto 0 11 
  Moran topological autocorrelation 0 0 
    Atomic mass weighted Moran  0 10 
    Electronegativity weighted Moran 0 10 
    VDW radius weighted Moran 0 10 
    Estate  weighted Moran 0 10 
    Polarizability  weighted Moran 0 10 
    VDW volume weighted Moran 0 10 
  Geary topological autocorrelation 0 0 
    Atomic mass weighted Geary  0 10 
    Electronegativity weighted Geary 0 10 
    VDW radius  weighted Geary 0 10 
    E-state  weighted Geary 0 10 
    Polarizability  weighted Geary 0 10 
    VDW volume weighted Geary 7 25 
  Solvation connectivity index 10 10 
  Topological distance related 4 18 
    BCUT highest of mass 0 5 
    BCUT lowest of mass 0 5 
    BCUT highest of electronegativity 0 5 
    BCUT lowest of electronegativity 0 5 
    BCUT highest of VDW radius 0 5 
    BCUT lowest of VDW radius 0 5 
    BCUT highest of Estate 0 5 
    BCUT lowest of Estate 0 5 
         [2.4.52.10] BCUT highest of polarizability 0 5 
    BCUT lowest of polarizability 0 5 
    BCUT highest of VDW volume 0 5 
    BCUT lowest of VDW volume 0 5 

Total 100 522 
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6.3 Results and discussion 

6.3.1 Five-fold cross validation and testing on independent dataset 

The 5-fold cross validation study was done to see the performance of SVM and to select the 

best parameters for further testing on independent dataset. Table 15 shows the 5-fold cross 

validation result having 95.72% average positive accuracy and 99.82% negative accuracy.     

Different machine learning classification methods, other than SVM, were applied to test the 

performance of prediction capability. The result is shown in Table 16 and Table 17. The test 

data set in table is randomly selected 300 compounds from journal articles published before 

year 2006. Similarly, the 15385 negative test data was randomly selected from the total of 

58774 negative generated by representative complement of all p38 MAPK inhibitor in chemical 

space. The independent data consist of 287 compounds collected for journal articles published 

in year 2006 and 2007.  

 

Table 15: 5-fold cross validation by SVM for p38 MAPK inhibitors. Each fold is comprised of 196 positive labeled 
(p38 MAPK inhibitor) and 10725 negative labeled compounds (non-inhibitors generated from Pubchem 
chemical space).  

  Accuracy of models (Best models of each fold) 
  Positive Accuracy Negative Accuracy Overall Accuracy MCC 

Fold1 
95.40 99.80 99.70 0.85 

Fold2 
94.40 99.80 99.70 0.88 

Fold3 
97.40 99.90 99.80 0.92 

Fold4 
94.50 99.80 99.70 0.84 

Fold5 
96.90 99.80 99.80 0.88 

Average 
95.72 99.82 99.74 0.87 

Max 
97.40 99.90 99.80 0.92 

STDEV 
1.37 0.04 0.05 0.03 
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Table 16 : Prediction performance of various machine learning methods for test data p38 MAPK inhibitor 
prediction 

Method 
Total 
count 

True 
Positive 

True 
Negative 

False 
Positive 

False 
Negative 

Positive 
Accuracy 

Negative 
Accuracy 

Overall 
Accuracy MCC 

SVM 15685 282 15357 28 18 94 99.81 99.7 0.85 

J48 (C4.5) 15685 300 15385 0 0 100 100 100 1 

LMT 15685 294 15385 0 6 98 100 99.96 0.98 

ADTree 15685 300 15385 0 0 100 100 100 1 

BFTree 15685 0 15385 0 300 0 100 98.08 
 NBTree 15685 300 15385 0 0 100 100 100 1 

Decision 
Stump 15685 300 15377 8 0 100 99.94 99.94 0.97 
Random 
Forest 15685 300 15385 0 0 100 100 100 1 
Random 
Tree 15685 269 15374 11 31 89.66 99.92 99.73 0.86 

REPTree 15685 300 15385 0 0 100 100 100 1 

FT 15685 300 15385 0 0 100 100 100 1 

J48graft 15685 285 15385 0 15 95 100 99.9 0.95 

SimpleCart 15685 0 15385 0 300 0 100 98.08 
 NaiveBayes 15685 299 8979 6404 1 99.66 58.36 59.15 0.03 

ZeroR 15685 0 15385 0 300 0 100 98.08 
 Ibk (KNN) 15685 269 15320 65 31 89.67 99.58 99.39 0.72 

 

Table 17 : Prediction performance of various machine learning methods for independent data in p38 MAPK 
inhibitor prediction 

Method Total count 
True 
Positive False Negative Positive Accuracy 

SVM 287 217 70 75.61 

J48 (C4.5) 287 190 97 66.20 

LMT 287 182 105 63.41 

ADTree 287 165 122 57.49 

BFTree 287 0 287 0 

NBTree 287 154 133 53.66 

DecisionStump 287 188 99 65.5 

RandomForest 287 177 100 61.67 

RandomTree 287 174 113 60.63 

REPTree 287 181 106 63.07 

FT 287 176 111 63.32 

J48graft 287 217 70 75.6 

SimpleCart 287 0 287 0 

NaiveBayes 287 201 86 70.03 

ZeroR 287 0 287 0 

Ibk (KNN) 287 175 112 60.97 
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        Performance of different machine learning method varied greatly for p38 MAPK 

inhibitor classification. Although, the main focus was on SVM from our previous experiences, 

equal opportunity was given to other decision trees and kNN method. SVM performed very 

well in prediction accuracy with 75.61 % positive accuracy when tested on independent dataset. 

J48graft (modified C4.5 algorithm) also showed good performance (75.6 %) in testing on 

independent dataset. Other methods like Naïve bayes, j48 and Decision stump also showed 

good performance of 70.03, 66.2 and 65.5 percent respectively in testing on independent 

dataset.  

 

6.3.2 Virtual screening of Pubchem and MDDR 

 

The performance in scanning MDDR (Table 18) did not show good correlation with the 

percentage obtained except for SVM and kNN. Therefore, SVM and kNN was chosen for 

further analyses. SVM had clear edge over kNN in terms of positive accuracy for independent 

dataset. So, SVM was to scan Pubchem database. Also, other methods are very slow for 

scanning huge database like Pubchem. 

 

Table 18: Machine learning based virtual screening of MDDR database by p38 MAPK inhibitor prediction model 

Method 

MDDR 
Total 
Count 

Scanned 
positive Percentage 

SVM 168016 1221 0.73 
J48 168016 33 0.02 
LMT 168016 132 0.08 
ADTree 168016 54 0.03 
BFTree 168016 0 0.00 
NBTree 168016 0 0.00 
DecisionStump 168016 0 0.00 
RandomForest 168016 0 0.00 
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RandomTree 168016 202 0.12 
REPTree 168016 0 0.00 
FT 168016 0 0.00 
J48graft 168016 54 0.03 
SimpleCart 168016 0 0.00 
NaiveBayes 168016 123216 73.34 
ZeroR 168016 0 0.00 
Ibk (KNN) 168016 4372 2.60 
 

Table 19: Pubchem scanning by SVM based p38 MAPK inhibitor prediction model 

Method Pubchem Total Count 
Scanned 
positive Percentage 

SVM 13560720 40464 0.298 
 

Out of total 40464 Pubchem hits found by SVM, 11947 were also found by KNN which was 

further analysed with hierarchal clustering (Table 19). 

 

6.3.3 Hierarchical clustering of Pubchem hits 

The hits found after scanning of Pubchem by SVM was further scanned by kNN. Thus, total 

11947 Pubchem hits along with 1094 true p38 MAPKs inhibitors in literature were subjected to 

hierarchical clustering. Hierarchal clustering was performed using WEKA (Frank 2005) class 

COBWEB(Fisher 1990). Figure 47 shows the visualization of hierarchal clustering. A total of 

106 clusters were formed and the distribution of p38 inhibitors and Pubchem hits are shown in 

Figure 48. The Pubchem hits are well clustered with p38 inhibitors and the distribution is 

shared, not just segregated set. This shows the potential of p38 MAPKs inhibitor model in 

finding compound similar to existing p38 inhibitors. However, many clusters does exist which 

has only Pubchem hits and not the reported p38 inhibitors. This indicates that SVM is capable 

in finding a pattern out of compound descriptors which was not found by hierarchal clustering. 

So, the performance of hierarchical clustering by COBWEB in this case is very meaningful in 

terms of distribution ratio. 
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Figure 47: Hierarchal clustering by COBWEB on 13041 compounds (11947 Pubchem hits and 1094 true p38 
inhibitors)  
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Figure 48: Hierarchal clustering, Distribution ratio of p38 inhibitor and Pubchem hits  

6.4 Discussion and Conclusion 

Prediction model of p38 MAPKs be very useful for drug discovery of inflammatory diseases. 

These models can be a handy tool to prediction a potential compound before or after synthesis. 

This will help in saving time and money. Also, many existing chemical library can be screened 

and hits can be assessed further in wet lab experiments. In various machine learning 

classification methods employed, SVM was found to have very good performance in testing on 

independent data as well as in virtual screening to give nearby the expected percentage of 

compounds in MDDR and Pubchem database. The good performance of SVM has also been 

found by other studies as well. This study adds the confidence in SVM for the cheminformatics 

related work. The other machine learning methods are also useful for comparison. Although, 

this study shows very good performance of SVM in comparison to other machine learning 
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methods, this cannot guaranteed because of one very important factor which is optimization of 

parameters. In SVM, through rigorous use and experience the intuition of good parameter range 

is acquired. Normally, for small molecules with these set of 100 descriptors, sigma value gets 

optimized in the range of 0.5 to 2. Thus, we build the model at each sigma value starting from 

0.1 to 10 with the interval of 0.1. This way we are generally confidant to find best optimized 

parameter. For other machine learning methods applied through WEKA the parameter 

optimization were not performed and the default parameter was chosen. However, the same 

descriptors set and descriptor value were used in every machine learning method. The 

optimization of parameter for each algorithm can be a subject of future study.    

By inspecting incorrectly predicted compounds, it has been observed that some of the 

compounds are not being fully represented by molecular descriptors used. Such compounds 

generally contain complex chemical or structural configuration which may include compounds 

with multi-rings with several heteroatoms such as oxygen, nitrogen, sulphur, chlorine and 

fluorine. Also, the compounds having large rigid structure along with a flexible hydrophilic tail 

are sometime incorrectly predicted due to limited coverage of descriptors capable of 

representing such complexity. A common solution can be the use of all 522 calculated 

descriptors which was employed in genotoxicity study. Use of entire 522 descriptors will 

require huge amount of computation especially in the case p38 MAPKs inhibitor prediction 

model generation since it involve large number (58774) of p38 non-inhibitor generated from 

Pubchem chemical space by complement method. With such a huge number generating a SVM 

model may take more than a day for single sigma value. Moreover, comparing to genotoxic 

compounds p38 MAPKs inhibitors are less diverse. Furthermore, some redundant topological 

descriptors in 522 descriptor set can introduce noise as well.  Therefore, this study was done 

with selected 100 descriptors only despite of having little error introduced because of that.  
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    In conclusion, the prediction accuracy achieved for p38 MAPKs inhibitor by machine 

learning method is useful for further research and medicinal chemist and biologist interested in 

finding novel inhibitor can use this prediction model. Furthermore, machine learning 

classification method for p38 MAPKs inhibitor can also encourage development for other kind 

of inhibitors prediction model.       
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Chapter 7 Concluding remarks 

7.1 Findings and Merits 

In the process of developing databases, it was found that usefulness of biological databases 

can be enhanced significantly by including pathway related information. Similarly, many other 

things which improve the quality of database include manual annotation, addition of critical 

information needed by other researcher which could significantly increase the speed of their 

research, presentation and speed of database opening, cross-referencing to other databases, 

inclusion of newly published data, mechanism to easily update the database. It was also found 

that biological data format is shifting towards structured file format like XML for easy 

exchange. It was found that technology employed for database development play a major role 

in efficiency and speed especially when the database is very huge. For example, handling of 

protein structures kind of data is very efficient in Oracle or MySQL than Microsoft Access.  

In the IHCD development it was found that a bridge is possible to conventional and modern 

medicine. If the traditional use of herb if could have rationalization in modern mechanistic and 

system biology based approach, it will be a great help in drug discovery. It was found the 

mapping of chemical ingredients of Indian herbs to Pubchem can add important information 

already available in Pubchem database. The merit of IHCD lies in providing diverse 

information in same window e.g. therapeutic category of chemicals, calculated chemical 

descriptor and docked complex by INVDOCK wherever possible.      

   In machine learning classification for medicinal chemicals one common argument is that 

how efficient it is in finding novel hits. Methods like QSAR generally have their applicability 

domain. But in SVM, the hyperplane was drawn by the influence of sufficiently large number 

of positive and negative compounds, and this hyperplane goes till infinity. So, there is no need 

to impose applicability domain in the SVM method employed in this study and the method is 

quite capable of finding novel hits as well. This is well support by good performance of SVM 
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on true independent dataset. Various computational related issues and their handling was 

discovered when virtual screening was performed on very large database like Pubchem.  SVM 

performed very well in terms of computational speed, other methods were quite slow especially 

lazy learning algorithm like k-NN. This could be because of algorithm and coding language. 

The SVM code is in C++ which is very near to machine language and can run very fast 

compared to WEKA which has Java code which runs in Java Virtual Machine (JVM) over the 

operating system of machine. The speed of calculation for machine learning methods becomes 

more prominent when the number of dimension is increased. For example, when the number of 

descriptors used was increased from 100 to 522, the time by SVM to scan 17 billion compounds 

of Pubchem was 3 days on Linux workstation for a single sigma value, while if the number of 

descriptors were kept 100 the same scanning could be done for 50 sigma value in same time. 

Thus, the selection of method can also depend on number of dimension. Computation time can 

usually be decreased is by parallel processing. The Pubchem database was split into 10 parts to 

achieve 10 times reduction in time but at the expense of CPU consumption. 

 

7.2 Limitations 

 This study has few limitations which are basically associated with data availability and 

methods employed. In IHCD study, involving docking using INVDOCK, only proteins whose 

structures are deposited in the PDB is used. It is common knowledge that only a small fraction 

of all proteins have their 3D structures elucidated. This would hamper the widespread use of 

IHCD/INVDOCK method. One could alleviate this limitation using modeled 3D structure of 

proteins. In KDBI, some of the important signaling and metabolic pathways were missed due to 

lack of availability of kinetic parameters. Also, the KDBI server is running on IIS 5.0 web 

server which has limitation that it can process maximum 10 requests at a time.  In KDBI, the 

SBML file for pathway simulation model is created by Java API of SBML version 2.4. The 
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system biology related software which process SBML file, if upgrade themselves and stop 

supporting lower version of SBML then the SBML file downloaded from KDBI will not open 

in that particular software. In these situations, users are advised to edit these SBML file using 

some SBML editor. Also, pathway simulation parameter set available in KDBI is limited to 

pathway presented in the referenced article and it may need extra parameter collection if one 

wants to try the modified or extended pathway simulation.   

 In genotoxicity study, it was desirable to study the machine learning classification 

performance based on including in vivo genotoxic data alone in positive dataset. But due to lack 

of sufficient number of such data in literature or databases, the study missed that desired 

comparison.  The machine learning methods employed has their inherent limitations due to 

their algorithm. Generally, machine learning methods require some minimum number of data 

points to develop a good prediction model. In addition, machine learning method is greatly 

influenced by the diversity of data (compounds in this case) for building models. Although, 

compounds collected in this work are from almost all available sources and can be considered very 

diverse, still it may be the case that dataset is not representative of certain set of compounds which 

are yet to be discovered and is very different from any existing compound. Also, the chemical space 

used in the case of p38 MAPK inhibitor prediction is based on Pubchem database which therefore 

decides the diversity of chemical compounds. The diversity of Pubchem is undoubtedly very high, 

thus the limitation associated with this is of little concern.  

 

7.3 Suggestions for future studies 

This work has attempted to provide insight to the importance of database development and 

machine learning classification methods of medicinal chemicals and biomolecules in drug 

discovery processes. Web accessible databases presented in this work e.g. updating of KDBI 

and IHCD can be building block for future work. Considering this, KDBI work has already 
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been extended by introducing PIK-BLAST: Web-server of Protein Interaction Kinetic 

Parameters Estimated from Sequence Similarity. The hypothesis and the introduction are 

presented in next paragraph.    

                      Knowledge of the kinetics of biomolecular interactions is important for 

facilitating quantitative study and simulation of biological systems and processes. The limited 

availability of experimental kinetic parameters is an obstacle of current studies. Literature 

studies have suggested that the kinetic parameters of interacting protein pairs are roughly 

correlated with those of protein pairs of similar sequences (Gabdoulline, Stein et al. 2007). 

With the introduction of a web-server, PIK-BLAST, kinetic parameter can be estimated of a 

protein pair from the experimental kinetic parameters of the protein pairs with similar 

sequences. Given the sequences of a protein pair, PIK-BLAST searches a pool of 2628 unique 

protein pairs (involved in 12896 kinetic reactions and 45 biological pathways) for finding 

similarity protein pairs and the parameters of the best matched pairs are provided as estimated 

parameters of the input protein pair. Sequence similarities were conducted by the NCBI 

BLAST program (Altschul, Madden et al. 1997; Altschul, Wootton et al. 2005) and kinetic data 

were from KDBI database.  PIK-BLAST is publically available at 

http://bidd.nus.edu.sg/group/kinblast/pikblast.html . 

              PIK-BLAST work can be studied in detail by incorporating more number of unique 

protein pairs. By increasing the number of unique protein pairs which have kinetic parameters 

of interaction, one can improve the BLAST performance for the user specified input sequence. 

Moreover, the study is needed to establish that, apart from functional correlations, the kinetic 

parameters of interacting protein pairs are correlated with those of protein pairs of similar 

sequences.  An extensive statistical analysis suggesting this would be more appropriate.   

    Another database IHCD also can be extended to include herbal formulation. Some tradition 

Indian herbal formulations have shown promising therapeutic effect in disease like cancer e.g. 

http://bidd.nus.edu.sg/group/kinblast/pikblast.html�
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triphala a herbal formulation of three different Indian plants namely Terminalia chebula, 

Terminalia belerica and Emblica officinalis (Deep, Dhiman et al. 2005; Sandhya, Lathika et al. 

2006). Future work can be done to link protein targets of chemical ingredients of the herbal 

ingredients of the herbal formulation and also to provide web interface by incorporating them to 

IHCD. 

Similar to the possible enhancement of database work, machine learning classification for 

genotoxicity and p38 inhibitors can also be extended. Genotoxicity prediction in this work has 

been done with the intension of pre-assessment of compounds likeliness to pass in clinical 

trials. Work can done to create prediction model for post-approval drugs.  For p38 MAPKs 

inhibitor prediction, a web server can be created for online testing of input mol or sdf file based 

submission.  
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Appendix   

Table A1: Total 522 Molecular descriptors, selected 100 descriptors are highlighted. Machine learning 
classification studies were performed using either total 522 descriptors or the selected 100 descriptors.  

Constitutational Descriptors 
 1  Number of Atoms 

2  Number of Heavy atoms 
3  Number of H atoms 
4  Number of B atoms 
5  Number of C atoms 
6  Number of N atoms 
7  Number of O atoms 
8  Number of F atoms 
9  Number of P atoms 

10  Number of S atoms 
11  Number of Cl atoms 
12  Number of Br atoms 
13  Number of I atoms 
14  NUmber of Bonds 
15  Number of non-H Bonds 
16  Number of rings 
17  Molecular weight(MW)  
18   Average molecular weight(AMW) 
19  Number of H-bond donnor  
20  Number of H-bond acceptor 
21  Sanderson electronegativity Sum 
22  Number of rotable bonds 
23  Number of 3-member rings 
24  Number of 4-member ings 
25  Number of 7-member rings 
26  Number of 5-member non-aromatic rings 
27  Number of 6-member non-aromatic rings 
28  Number of 5-member aromatic rings 
29  Number of 6-member aromatic rings 
30  Number of heterocyclic rings 
31  Number of N heterocyclic rings 
32  Number of O heterocyclic rings 
33  Number of S heterocyclic rings 
34  Number of Aziridine rings 
35  Number of Oxirane rings 
36  Number of Thiirane rings 
37  Number of Azetidine rings 
38  Number of Oxetane rings 
39  Number of Thietane rings 
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40  Number of Pyrrolidine rings 
41  Number of Oxolane rings 
42  Number of Thiophane rings 
43  Number of Pyrrole rings 
44  Number of Furane rings 
45  Number of Thiophene rings 
46  Number of Pyrazole rings 
47  Number of Imidazole rings 
48  Number of Oxazole rings 
49  Number of Isoxazole rings 
50  Number of Thiazole rings 
51  Number of Isothiazole rings 
52  Number of Benzene rings 
53  Number of Pyridazine rings 
54  Number of Pyrimidine rings 
55  Number of Pyrazine rings 
56  Number of 1,3,5-trizine rings 
57  Number of 1,2,4-trizine rings 
58  Number of 1,2,3-trizine rings 

Charge Descriptors 
 59  Total absolute atomic charge 

60  Total squared atomic charge 
61  Charge Polarization 
62  Topological electronic index TE 
63  Topological electronic index CTE 
64  Maximum negative charges 
65  Maximum positive charges 
66  Local dipol index 
67  Total negative charges 
68  Total positive charges 
69  Submolecular Polarity Parameter 
70  Second-order submolecular polarity parameter 
71  Relative positive charge 
72   Relative negative charge 

Electronic-topological descriptors 
 73  0th Electronic-topological 

74  1th Electronic-topological 
75  2th Electronic-topological 
76  Electron charge density index 
77  Electron charge density connectivity index 
78  Hydrophobic alogp 
79  Molecular polarizability 

Topological descriptors 
 80  Schultz molecular topological index 
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81  Gutman molecular topological index  
Topological charge index 

 82  Topological charge index G1 
83  Topological charge index G2 
84  Topological charge index G3 
85  Topological charge index G4 
86  Topological charge index G5 

Mean topological charge index 
 87  Mean topological charge index J1 

88  Mean topological charge index J2 
89  Mean topological charge index J3 
90  Mean topological charge index J4 
91  Mean topological charge index J5 
92  Global topological charge index J 
93  Wiener index 
94  Mean Wiener index 
95  Harary index 
96  Gravitational topological index 

Molecular path count 
 97  Molecular path count of length 1 

98  Molecular path count of length 2 
99  Molecular path count of length 3 

100  Molecular path count of length 4 
101  Molecular path count of length 5 
102  Molecular path count of length 6 
103  Total path count 

Sum of E-State of atom type 
 104  Sum of Estate of atom type sLi          

105  Sum of Estate of atom type ssBe         
106  Sum of Estate of atom type ssssBe       
107  Sum of Estate of atom type ssBH         
108  Sum of Estate of atom type sssB         
109  Sum of Estate of atom type ssssB        
110  Sum of Estate of atom type sCH3         
111  Sum of Estate of atom type dCH2         
112  Sum of Estate of atom type ssCH2        
113  Sum of Estate of atom type tCH          
114  Sum of Estate of atom type dsCH         
115  Sum of Estate of atom type aaCH         
116  Sum of Estate of atom type sssCH        
117  Sum of Estate of atom type ddC          
118  Sum of Estate of atom type tsC          
119  Sum of Estate of atom type dssC         
120  Sum of Estate of atom type aasC         
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121  Sum of Estate of atom type aaaC         
122  Sum of Estate of atom type sssC         
123  Sum of Estate of atom type sNH3         
124  Sum of Estate of atom type sNH2         
125  Sum of Estate of atom type ssNH2        
126  Sum of Estate of atom type dNH          
127  Sum of Estate of atom type ssNH         
128  Sum of Estate of atom type aaNH         
129  Sum of Estate of atom type tN           
130  Sum of Estate of atom type sssNH        
131  Sum of Estate of atom type dsN          
132  Sum of Estate of atom type aaN          
133  Sum of Estate of atom type sssN         
134  Sum of Estate of atom type ddsN         
135  Sum of Estate of atom type aasN         
136  Sum of Estate of atom type aOH          
137  Sum of Estate of atom type sOH          
138  Sum of Estate of atom type dO           
139  Sum of Estate of atom type ssO          
140  Sum of Estate of atom type aaO          
141  Sum of Estate of atom type F            
142  Sum of Estate of atom type ssSiH2       
143  Sum of Estate of atom type ssSiH2       
144  Sum of Estate of atom type sssSiH       
145  Sum of Estate of atom type ssssSi       
146  Sum of Estate of atom type sPH2         
147  Sum of Estate of atom type ssPH         
148  Sum of Estate of atom type sssP         
149  Sum of Estate of atom type dsssP        
150  Sum of Estate of atom type ssssP        
151  Sum of Estate of atom type sSH          
152  Sum of Estate of atom type dS           
153  Sum of Estate of atom type ssS          
154  Sum of Estate of atom type aaS          
155  Sum of Estate of atom type dssS         
156  Sum of Estate of atom type ddssS        
157  Sum of Estate of atom type sCl          
158  Sum of Estate of atom type sGeH3        
159  Sum of Estate of atom type ssGeH2       
160  Sum of Estate of atom type sssGeH       
161  Sum of Estate of atom type ssssGe       
162  Sum of Estate of atom type sAsH2        
163  Sum of Estate of atom type ssAsH        
164  Sum of Estate of atom type sssAs        
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165  Sum of Estate of atom type sssdAs       
166  Sum of Estate of atom type ssssAs       
167  Sum of Estate of atom type sSeH         
168  Sum of Estate of atom type dSe          
169  Sum of Estate of atom type ssSe         
170  Sum of Estate of atom type aaSe         
171  Sum of Estate of atom type dssSe        
172  Sum of Estate of atom type ddssSe       
173  Sum of Estate of atom type sBr          
174  Sum of Estate of atom type sSnH3        
175  Sum of Estate of atom type ssSnH2       
176  Sum of Estate of atom type sssSnH       
177  Sum of Estate of atom type ssssSn       
178  Sum of Estate of atom type sI           
179  Sum of Estate of atom type sPbH3        
180  Sum of Estate of atom type ssPbH2       
181  Sum of Estate of atom type sssPbH       
182  Sum of Estate of atom type ssssPb       
183  Sum of Estate of atom type unknown      
184  Sum of Estate of all heavy atoms 
185  Sum of Estate of all C   atoms 
186  Sum of Estate of all halogen atoms 
187  Sum of Estate of all hetero  atoms 
188  Sum of Estate of H-bond acceptors 
189  Average of Estate values      
190  Maximum of Estate values      
191  Minimum of Estate values      

Sum of H E-State of atom type 
 192  Sum of H Estate of atom type HsOH         

193  Sum of H Estate of atom type HdNH         
194  Sum of H Estate of atom type HsSH         
195  Sum of H Estate of atom type HsNH2        
196  Sum of H Estate of atom type HssNH        
197  Sum of H Estate of atom type HaaNH        
198  Sum of H Estate of atom type HsNH3p       
199  Sum of H Estate of atom type HssNH2p      
200  Sum of H Estate of atom type HsssNHp      
201  Sum of H Estate of atom type HtCH         
202  Sum of H Estate of atom type HdCH2        
203  Sum of H Estate of atom type HdsCH        
204  Sum of H Estate of atom type HaaCH        
205  Sum of H Estate of atom type HCHnX        
206  Sum of H Estate of atom type HCsats       
207  Sum of H Estate of atom type HCsatu       
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208  Sum of H Estate of atom type Havin        
209  Sum of H Estate of atom type Hother       
210  Sum of H Estate of atom type Hmisc        
211  Sum of H Estate of H-bond donors 
212  Xu index 
213  Modified Xu Index 
214  Balaban Index J 
215  Platt Number 
216  LOG of superpendentic index 
217  First  Zagreb Index(M1) 
218  Second Zagreb Index(M2) 
219  First  Modified Zagreb Index 
220  Second Modified Zagreb Index 
221  Quadratic index(Q) 
222  0th edge connectivity index 
223  Edge connectivity index 
224  Extened edge connectivity inndex 
225  2th  spectral moment 
226  3th  spectral moment 
227  4th  spectral moment 
228  5th  spectral moment 
229  6th  spectral moment 
230  7th  spectral moment 
231  8th  spectral moment 
232  9th  spectral moment 
233  10th spectral moment 

Moreau-Broto topological autocorrelation 
 Atomic mass weighted Moreau-Broto 
 234  Atomic mass weighted Moreau-Broto lagged  0 

235  Atomic mass weighted Moreau-Broto lagged  1 
236  Atomic mass weighted Moreau-Broto lagged  2 
237  Atomic mass weighted Moreau-Broto lagged  3 
238  Atomic mass weighted Moreau-Broto lagged  4 
239  Atomic mass weighted Moreau-Broto lagged  5 
240  Atomic mass weighted Moreau-Broto lagged  6 
241  Atomic mass weighted Moreau-Broto lagged  7 
242  Atomic mass weighted Moreau-Broto lagged  8 
243  Atomic mass weighted Moreau-Broto lagged  9 
244  Atomic mass weighted Moreau-Broto lagged 10 

Electronegativity weighted moreau-Broto 
 245  Electronegativity weighted Moreau-Broto lagged  0 

246  Electronegativity weighted Moreau-Broto lagged  1 
247  Electronegativity weighted Moreau-Broto lagged  2 
248  Electronegativity weighted Moreau-Broto lagged  3 
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249  Electronegativity weighted Moreau-Broto lagged  4 
250  Electronegativity weighted Moreau-Broto lagged  5 
251  Electronegativity weighted Moreau-Broto lagged  6 
252  Electronegativity weighted Moreau-Broto lagged  7 
253  Electronegativity weighted Moreau-Broto lagged  8 
254  Electronegativity weighted Moreau-Broto lagged  9 
255  Electronegativity weighted Moreau-Broto lagged 10 

VDW radius weighted Moreau-Broto 
 256  VDW radius weighted Moreau-Broto lagged  0 

257  VDW radius weighted Moreau-Broto lagged  1 
258  VDW radius weighted Moreau-Broto lagged  2 
259  VDW radius weighted Moreau-Broto lagged  3 
260  VDW radius weighted Moreau-Broto lagged  4 
261  VDW radius weighted Moreau-Broto lagged  5 
262  VDW radius weighted Moreau-Broto lagged  6 
263  VDW radius weighted Moreau-Broto lagged  7 
264  VDW radius weighted Moreau-Broto lagged  8 
265  VDW radius weighted Moreau-Broto lagged  9 
266  VDW radius weighted Moreau-Broto lagged 10 

Estate Values  weighted Moreau-Broto 
 267  E-State weighted Moreau-Broto lagged  0 

268  E-State weighted Moreau-Broto lagged  1 
269  E-State weighted Moreau-Broto lagged  2 
270  E-State weighted Moreau-Broto lagged  3 
271  E-State weighted Moreau-Broto lagged  4 
272  E-State weighted Moreau-Broto lagged  5 
273  E-State weighted Moreau-Broto lagged  6 
274  E-State weighted Moreau-Broto lagged  7 
275  E-State weighted Moreau-Broto lagged  8 
276  E-State weighted Moreau-Broto lagged  9 
277  E-State weighted Moreau-Broto lagged 10 

polarizability  weighted Moreau-Broto 
 278  Polarizability mass weighted Moreau-Broto lagged  0 

279  Polarizability mass weighted Moreau-Broto lagged  1 
280  Polarizability mass weighted Moreau-Broto lagged  2 
281  Polarizability mass weighted Moreau-Broto lagged  3 
282  Polarizability mass weighted Moreau-Broto lagged  4 
283  Polarizability mass weighted Moreau-Broto lagged  5 
284  Polarizability mass weighted Moreau-Broto lagged  6 
285  Polarizability mass weighted Moreau-Broto lagged  7 
286  Polarizability mass weighted Moreau-Broto lagged  8 
287  Polarizability mass weighted Moreau-Broto lagged  9 
288  Polarizability weighted Moreau-Broto lagged 10 

Van der Waals volume weighted Moreau-Broto 
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289  VDW volume weighted Moreau-Broto lagged  0 
290  VDW volume weighted Moreau-Broto lagged  1 
291  VDW volume weighted Moreau-Broto lagged  2 
292  VDW volume weighted Moreau-Broto lagged  3 
293  VDW volume weighted Moreau-Broto lagged  4 
294  VDW volume weighted Moreau-Broto lagged  5 
295  VDW volume weighted Moreau-Broto lagged  6 
296  VDW volume weighted Moreau-Broto lagged  7 
297  VDW volume weighted Moreau-Broto lagged  8 
298  VDW volume weighted Moreau-Broto lagged  9 
299  VDW volume weighted Moreau-Broto lagged 10 

Moran topological autocorrelation 
 Atomic mass weighted Moran  
 300  Atomic mass weighted moran lagged  1 

301  Atomic mass weighted moran lagged  2 
302  Atomic mass weighted moran lagged  3 
303  Atomic mass weighted moran lagged  4 
304  Atomic mass weighted moran lagged  5 
305  Atomic mass weighted moran lagged  6 
306  Atomic mass weighted moran lagged  7 
307  Atomic mass weighted moran lagged  8 
308  Atomic mass weighted moran lagged  9 
309  Atomic mass weighted moran lagged 10 

Electronegativity weighted Moran 
 310  Electronegativity weighted moran lagged  1 

311  Electronegativity weighted moran lagged  2 
312  Electronegativity weighted moran lagged  3 
313  Electronegativity weighted moran lagged  4 
314  Electronegativity weighted moran lagged  5 
315  Electronegativity weighted moran lagged  6 
316  Electronegativity weighted moran lagged  7 
317  Electronegativity weighted moran lagged  8 
318  Electronegativity weighted moran lagged  9 
319  Electronegativity weighted moran lagged 10 

VDW radius weighted Moran 
 320  VDW radius weighted moran lagged  1 

321  VDW radius weighted moran lagged  2 
322  VDW radius weighted moran lagged  3 
323  VDW radius weighted moran lagged  4 
324  VDW radius weighted moran lagged  5 
325  VDW radius weighted moran lagged  6 
326  VDW radius weighted moran lagged  7 
327  VDW radius weighted moran lagged  8 
328  VDW radius weighted moran lagged  9 
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329  VDW radius weighted moran lagged 10 
Estate  weighted Moran 

 330  E-State weighted moran lagged  1 
331  E-State weighted moran lagged  2 
332  E-State weighted moran lagged  3 
333  E-State weighted moran lagged  4 
334  E-State weighted moran lagged  5 
335  E-State weighted moran lagged  6 
336  E-State weighted moran lagged  7 
337  E-State weighted moran lagged  8 
338  E-State weighted moran lagged  9 
339  E-State weighted moran lagged 10 

Polarizability  weighted Moran 
 340  Polarizability mass weighted moran lagged  1 

341  Polarizability mass weighted moran lagged  2 
342  Polarizability mass weighted moran lagged  3 
343  Polarizability mass weighted moran lagged  4 
344  Polarizability mass weighted moran lagged  5 
345  Polarizability mass weighted moran lagged  6 
346  Polarizability mass weighted moran lagged  7 
347  Polarizability mass weighted moran lagged  8 
348  Polarizability mass weighted moran lagged  9 
349  Polarizability mass weighted moran lagged 10 

VDW volume weighted Moran 
 350  VDW volume weighted moran lagged  1 

351  VDW volume weighted moran lagged  2 
352  VDW volume weighted moran lagged  3 
353  VDW volume weighted moran lagged  4 
354  VDW volume weighted moran lagged  5 
355  VDW volume weighted moran lagged  6 
356  VDW volume weighted moran lagged  7 
357  VDW volume weighted moran lagged  8 
358  VDW volume weighted moran lagged  9 
359  VDW volume weighted moran lagged 10 

Geary topological autocorrelation 
 Atomic mass weighted Geary  
 360  Atomic mass weighted Geary 1 

361  Atomic mass weighted Geary 2 
362  Atomic mass weighted Geary 3 
363  Atomic mass weighted Geary 4 
364  Atomic mass weighted Geary 5 
365  Atomic mass weighted Geary 6 
366  Atomic mass weighted Geary 7 
367  Atomic mass weighted Geary 8 
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368  Atomic mass weighted Geary 9 
369  Atomic mass weighted Geary10 

Electronegativity weighted Geary 
 370  Electronegativity weighted Geary 1 

371  Electronegativity weighted Geary 2 
372  Electronegativity weighted Geary 3 
373  Electronegativity weighted Geary 4 
374  Electronegativity weighted Geary 5 
375  Electronegativity weighted Geary 6 
376  Electronegativity weighted Geary 7 
377  Electronegativity weighted Geary 8 
378  Electronegativity weighted Geary 9 
379  Electronegativity weighted Geary10 

VDW radius  weighted Geary 
 380  VDW radius weighted Geary 1 

381  VDW radius weighted Geary 2 
382  VDW radius weighted Geary 3 
383  VDW radius weighted Geary 4 
384  VDW radius weighted Geary 5 
385  VDW radius weighted Geary 6 
386  VDW radius weighted Geary 7 
387  VDW radius weighted Geary 8 
388  VDW radius weighted Geary 9 
389  VDW radius weighted Geary10 

E-state  weighted Geary 
 390  Estate weighted Geary 1 

391  Estate weighted Geary 2 
392  Estate weighted Geary 3 
393  Estate weighted Geary 4 
394  Estate weighted Geary 5 
395  Estate weighted Geary 6 
396  Estate weighted Geary 7 
397  Estate weighted Geary 8 
398  Estate weighted Geary 9 
399  Estate weighted Geary10 

Polarizability  weighted Geary 
 400  Polarizability weighted Geary 1 

401  Polarizability weighted Geary 2 
402  Polarizability weighted Geary 3 
403  Polarizability weighted Geary 4 
404  Polarizability weighted Geary 5 
405  Polarizability weighted Geary 6 
406  Polarizability weighted Geary 7 
407  Polarizability weighted Geary 8 



148 
 

408  Polarizability weighted Geary 9 
409  polarizability weighted Geary10 

VDW volume weighted Geary 
 410  VDW volume weighted Geary 1 

411  VDW volume weighted Geary 2 
412  VDW volume weighted Geary 3 
413  VDW volume weighted Geary 4 
414  VDW volume weighted Geary 5 
415  VDW volume weighted Geary 6 
416  VDW volume weighted Geary 7 
417  VDW volume weighted Geary 8 
418  VDW volume weighted Geary 9 
419  polarizability weighted Geary10 
420  0th Kier-Hall connectivity index 
421  1th Kier-Hall connectivity index 
422  Mean Randic Connectivity index  
423  2th Kier-Hall connectivity index 
424  Simple topological index by Narumi 
425  Harmonic topological index by Narumi 
426  Geometric topological index by Narumi 
427  Arithmetic topological index by Narumi 
428  0th valence connectivity index 
429  1th valence connectivity index 
430  2th valence connectivity index 
431  0th order delta chi index 
432  1th order delta chi index 
433  2th order delta chi index 
434  Pogliani index 

Solvation connectivity index 
 435  0th Solvation connectivity index 

436  1th Solvation connectivity index 
437  2th Solvation connectivity index 
438  1th order Kier shape index 
439  2th order Kier shape index 
440  3th order Kier shape index 
441  1th order Kappa alpha shape index 
442  2th order Kappa alpha shape index 
443  3th order Kappa alpha shape index 
444  Kier Molecular Flexibility Index 

Topological distance related 
 445  Topological radius 

446  Topological diameter 
447  Eccentricity         
448  Average atom eccentricity 
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449  Mean eccentricity deviation 
450  Average distance degree 
451  Mean distance degree deviation 
452  Unipolarity 
453  Rouvary index Irouv 
454  Centralization 
455  Variation  
456  Dispersion 
457  Log of PRS INDEX 
458  Graph-theoretical shape coefficient 
459  RDSQ ondex 
460  RDCHI index 
461  Optimized 1th connectivity index 
462  Logp from connectivity 

BCUT highest of mass 
 463  BCUT 1th highest of mass 

464  BCUT 2th highest of mass 
465  BCUT 3th highest of mass 
466  BCUT 4th highest of mass 
467  BCUT 5th highest of mass 

BCUT lowest of mass 
 468  BCUT 1th lowest  of mass 

469  BCUT 2th lowest  of mass 
470  BCUT 3th lowest  of mass 
471  BCUT 4th lowest  of mass 
472  BCUT 5th lowest  of mass 

BCUT highest of electronegativity 
 473  BCUT 1th highest of electronegativity 

474  BCUT 2th highest of electronegativity 
475  BCUT 3th highest of electronegativity 
476  BCUT 4th highest of electronegativity 
477  BCUT 5th highest of electronegativity 

BCUT lowest of electronegativity 
 478  BCUT 1th lowest of electronegativity 

479  BCUT 2th lowest of electronegativity 
480  BCUT 3th lowest of electronegativity 
481  BCUT 4th lowest of electronegativity 
482  BCUT 5th lowest of electronegativity 

BCUT highest of VDW radius 
 483  BCUT 1th highest of VDW radius 

484  BCUT 2th highest of VDW radius 
485  BCUT 3th highest of VDW radius 
486  BCUT 4th highest of VDW radius 
487  BCUT 5th highest of VDW radius 
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BCUT lowest of VDW radius 
 488  BCUT 1th lowest of VDW radius 

489  BCUT 2th lowest of VDW radius 
490  BCUT 3th lowest of VDW radius 
491  BCUT 4th lowest of VDW radius 
492  BCUT 5th lowest of VDW radius 

BCUT highest of Estate 
 493  BCUT 1th highest of Estate 

494  BCUT 2th highest of Estate 
495  BCUT 3th highest of Estate 
496  BCUT 4th highest of Estate 
497  BCUT 5th highest of Estate 

BCUT lowest of Estate 
 498  BCUT 1th lowest of Estate 

499  BCUT 2th lowest of Estate 
500  BCUT 3th lowest of Estate 
501  BCUT 4th lowest of Estate 
502  BCUT 5th lowest of Estate 

BCUT highest of polarizability 
 503  BCUT 1th highest of Polarizability 

504  BCUT 2th highest of Polarizability 
505  BCUT 3th highest of Polarizability 
506  BCUT 4th highest of Polarizability 
507  BCUT 5th highest of Polarizability 

BCUT lowest of polarizability 
 508  BCUT 1th lowest of Polarizability 

509  BCUT 2th lowest of Polarizability 
510  BCUT 3th lowest of Polarizability 
511  BCUT 4th lowest of Polarizability 
512  BCUT 5th lowest of Polarizability 

BCUT highest of VDW volume 
 513  BCUT 1th highest of VDW volume 

514  BCUT 2th highest of VDW volume 
515  BCUT 3th highest of VDW volume 
516  BCUT 4th highest of VDW volume 
517  BCUT 5th highest of VDW volume 

BCUT lowest of VDW volume 
 518  BCUT 1th lowest of VDW volume 

519  BCUT 2th lowest of VDW volume 
520  BCUT 3th lowest of VDW volume 
521  BCUT 4th lowest of VDW volume 
522  BCUT 5th lowest of VDW volume 
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Table A2: Literature sources of p38 inhibitors collection 

Title: Biphenyl amide p38 kinase inhibitors 2: Optimization and SAR 

 Journal: Bioorganic & Medicinal Chemistry Letters (2007) 

Title: Molecular modeling studies of phenoxypyrimidinyl imidazoles as p38 kinase inhibitors using 
QSAR and docking 

 Journal: European Journal of Medicinal Chemistry xx (2007) 1-9 

Title: Benzimidazoles and Imidazo[4,5-b]pyridines as Potent p38a MAP Kinase Inhibitors with 
Excellent in vivo Antiinflammatory propertie  

Journal: Bioorganic & Medicinal Chemistry Letters (2007) 

Title: Biphenyl amide p38 kinase inhibitors 1: Discovery and binding mode  

Journal:  Bioorganic & Medicinal Chemistry Letters (2007) 

Title: CoMFA and docking studies on triazolopyridine oxazole derivatives as p38 MAP kinase 
inhibitors  

Journal: European Journal of Medicinal Chemistry xx (2007) 1-9 

Title: Trimethylsilylpyrazoles as novel inhibitors of p38 MAP kinase: A new use of silicon 
bioisosteres in medicinal chemistry  

Journal: Bioorganic & Medicinal Chemistry Letters, Volume 17, Issue 2, 15 January 2007, Pages 
354-357 

Title: Synthesis, Crystal Structure, and Activity of Pyrazole-Based Inhibitors of p38 Kinase 

  Journal: J. Med. Chem. 2007; 50(23); 5712-5719 

Title: Synthesis, Biological Testing, and Binding Mode Prediction of 6,9-Diarylpurin-8-ones as 
p38 MAP Kinase Inhibitors  

 Journal: J. Med. Chem.; (Article); 2007; 50(9); 2060-2066 

Title: Design, Synthesis, and Anti-inflammatory Properties of Orally Active 4-(Phenylamino)-
pyrrolo[2,1-f][1,2,4]triazine p38a Mitogen-Activated Protein Kinase Inhibitors   

Journal: J. Med. Chem.; 2007; ASAP Article; 

Title: Synthesis and Biological Activity of Quinolinone and Dihydroquinolinone p38 MAP Kinase 
Inhibitors  
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Journal: Bioorganic & Medicinal Chemistry Letters (2006) 

Title: Discovery and design of benzimidazolone based inhibitors of p38 MAP kinase 

 Journal: Bioorganic & Medicinal Chemistry Letters 16 (2006) 6316-6320 

Title: p38 MAP kinase inhibitors. Part 6: 2-Arylpyridazin-3-ones as templates for inhibitor design  

Journal: Bioorganic & Medicinal Chemistry Letters 16 (2006) 5809-5813 

Title: p38 MAP kinase inhibitors. Part 3: SAR on 3,4-dihydropyrimido-[4,5-d]pyrimidin-2-ones 
and 3,4-dihydropyrido[4,3-d]-pyrimidin-2-ones  

Journal: Bioorganic & Medicinal Chemistry Letters 16 (2006) 4400-4404 

Title: Successful Screening of Large Encoded Combinatorial Libraries Leading to the Discovery of 
Novel p38 MAP Kinase Inhibitors 

 Journal: Combinatorial Chemistry & High Throughput Screening, 2006, 9, 351-358 

Title: New Approaches to the Treatment of Inflammatory Disorders Small Molecule Inhibitors of 
p38 MAP Kinase  

Journal: Current Topics in Medicinal Chemistry, 2006, 6, 113-149 

Title: Discovery and Characterization of Triaminotriazine Aniline Amides as Highly Selective p38 
Kinase Inhibitors 

 Journal: THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS 
Vol. 318, No. 2 

Title: Inhibitors of unactivated p38 MAP kinase  

Journal: Bioorganic & Medicinal Chemistry Letters 16 (2006) 6102-6106 

Title: p38 MAP kinase inhibitors. Part 5: Discovery of an orally bio-available and highly 
efficacious compound based on the 7-amino-naphthyridone scaffol  

Journal: Bioorganic & Medicinal Chemistry Letters, Volume 16, Issue 20, 15 October 2006, Pages 
5468-5471 

Title: Pyrazoloheteroaryls: Novel p38a MAP kinase inhibiting scaffolds with oral activity 

 Journal: Bioorganic & Medicinal Chemistry Letters, Volume 16, Issue 2, 15 January 2006, Pages 
262-266 

Title: p38 MAP kinase inhibitors: Metabolically stabilized piperidine-substituted quinolinones and 
naphthyridinones  

Journal: Bioorganic & Medicinal Chemistry Letters, Volume 16, Issue 1, 1 January 2006, Pages 
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64-68 

Title: Design, Synthesis, and Biological Evaluation of Phenylamino-Substituted 6,11-Dihydro-
dibenzo[b,e]oxepin-11-ones and Dibenzo[a,d]cycloheptan-5-ones: Novel p38 MAP Kinase 
Inhibitors  

 Journal: J. Med. Chem.; (Brief Article); 2006; 49(26); 7912-7915 

Title: Discovery of S-[5-Amino-1-(4-fluorophenyl)-1H-pyrazol-4-yl]-[3-(2,3-
dihydroxypropoxy)phenyl]methanone (RO3201195), an Orally Bioavailable and Highly Selective 
Inhibitor of p38 Map Kinase   

Journal: J. Med. Chem.; (Article); 2006; 49(5); 1562-1575. 

Title: Novel 2-Aminopyrimidine Carbamates as Potent and Orally Active Inhibitors of 
Lck:Synthesis, SAR, and in Vivo Antiinflammatory Activity  

Journal: J. Med. Chem. 2006, 49, 4981-4991 

Title: Structure–activity relationships of triazolopyridine oxazole p38 inhibitors: Identification of 
candidates for clinical development  

Journal: Bioorganic & Medicinal Chemistry Letters 16 (2006) 4339–4344 

Title: Design of Potent and Selective 2-Aminobenzimidazole-Based p38r MAP Kinase Inhibitors 
with Excellent in Vivo Efficacy  

Journal: J. Med. Chem. 2005, 48, 2270-2273 

Title: Design of Potent and Selective 2-Aminobenzimidazole-based p38a MAP Kinase Inhibitors 
with Excellent in vivo Efficacy  

Journal: J. Med. Chem., 2005, 48 (7), pp 2270–2273 

Title: Discovery of Highly Selective Inhibitors of p38alpha  

Journal: Current Topics in Medicinal Chemistry, 2005, 5, 941-951 

Title: The Discovery of Novel Chemotypes of p38 Kinase Inhibitors 

 Journal: Current Topics in Medicinal Chemistry, 2005, 5, 953-965 

Title: Small Molecule p38 Inhibitors: Novel Structural Features and Advances from 2002-2005  

Journal: Current Topics in Medicinal Chemistry, 2005, 5, 967-985 

Title: P38 MAP Kinase Inhibitors: Evolution of Imidazole-Based and Pyrido-Pyrimidin-2-One 
Lead Classes  
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Journal: Current Topics in Medicinal Chemistry, 2005, 5, 987-1003 

Title: Structural Comparison of p38 Inhibitor-Protein Complexes: A Review of Recent p38 
Inhibitors Having Unique Binding Interactions  

Journal: Current Topics in Medicinal Chemistry, 2005, 5, 1005-1016 

Title: Pathway to the Clinic: Inhibition of P38 MAP Kinase. A Review of Ten Chemotypes 
Selected for Development  

Journal: Current Topics in Medicinal Chemistry, 2005, 5, 1017-1029 

Title: 5-Cyanopyrimidine Derivatives as a Novel Class of Potent, Selective, and Orally Active 
Inhibitors of p38r MAP Kinase 
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