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Summary

Empirical likelihood, first introduced by Thomas and Grunkemeier (1975) and later

extended in Owen (1988, 1990), is an effective and flexible nonparametric method

based on a data-driven likelihood ratio function. It enjoys many advantages over

other nonparametric methods, such as automatic determination of the confidence

region by the sample and transformation respecting, easy incorporation of side in-

formation, direct extension to biased sampling and censored data, good asymptotic

power properties and Bartlete correctability. The empirical likelihood method can

be used to find estimators, conduct hypothesis testing and construct small confi-

dence intervals/regions. However, when treating with nonlinear statistics via the

empirical likelihood method, the computation burden is quite heavy. The Jackknife

Empirical Likelihood method, brought out by Jing et al. (2009), is surprisingly easy

to cope with nonlinear statistics and largely relieves computation burden. In this

thesis, we first apply the jackknife empirical likelihood method to make inference

for the Volume Under the ROC Surface (VUS) and the Hypervolume Under the

ROC Manifold (HUM) measures, which are straight extensions of the Area Under
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the The Receiver Operating Characteristic (ROC) curve (AUC) for three-category

and multi-category samples respectively. The popularity and importance of VUS

and HUM are due to their capability of providing general measures of the differ-

ences amongst populations. Another problem in this thesis concerns the compound

Poisson sum. Monte Carlo simulations are conducted to assess the performance

of the proposed methods in finite samples. Some meaningful real datasets are

analyzed.
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Chapter 1

Introduction

1.1 Empirical likelihood

Empirical likelihood (EL) is an effective and flexible nonparametric method based

on a data-driven likelihood ratio function, which does not require us to assume

the data coming from a known family of distributions. It was first introduced by

Owen (1988, 1990) to construct confidence intervals/regions for population means,

which extends the work in Thomas and Grunkemeier (1975) where a nonparametric

likelihood ratio idea was used to construct confidence intervals for some survival

function. The empirical likelihood method can be used to find estimators, conduct

hypothesis testing and construct small confidence intervals/regions even when the

data are incomplete. It enjoys many advantages over other nonparametric meth-

ods, such as automatic determination of the confidence region by the sample and
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transformation respecting, easy incorporation of side information, straight exten-

sion to biased sampling and censored data, better asymptotic power properties and

Bartlete correctability (see Hall and LaScala (1992) for details).

Since Owen’s pioneering work, much attention has been attracted by the beauti-

ful properties of the EL method. See for example, Diciccio et al. (1991) for smooth

functions of means, Qin (1993) and Chen and Sitter (1999) for biased sampling,

Chen and Hall (1993), Qin and Lawless (1994) for estimation equations, Wang and

Jing (1999, 2003) for partial linear models, and Zhang (1997a & 1997b) and Zhou

and Jing (2003) for M-functionals and quantile, Chen and Qin (1993) and Zhong

and Rao (2000) for random sampling. Some recent developments and applications

of the empirical likelihood method include those for: additive risk models (Lu and

Qi (2004)); longitudinal data and single-index models (You et al. (2006), Xue

and Zhu (2006, 2007), Zhao and Jian (2007)); two-sample problems (Zhou and

Liang (2005), Cao and Van Keilegom (2006), Ren (2008), Keziou and Leoni-Aubin

(2008)); regression models (Zhao and Chen (2008), Zhao and Yang (2008)); time

series models (Chan and Ling (2006), Nordman and Lahiri (2006), Otsu (2006),

Chen and Gao (2007), Nordman et al. (2007), Guggenberger and Smith (2008)),

copula (Chen et al. (2009)) and high dimensional data (Chen et al. (2009)). We

refer to the bibliography of Owen (2001) for more extensive references.



Chapter 1: Introduction 5

1.1.1 Empirical likelihood for mean functionals

In this section, we provide a brief description of the elementary procedure of em-

pirical likelihood for mean functionals. For simplicity, we consider the popula-

tion mean. Suppose that X1, . . . ,Xn ∈ Rq are independent and identically dis-

tributed (i.i.d.) random vectors with common distribution function (d.f.) F (x). Let

p = (p1, . . . , pn) be a probability vector, i.e.
∑n

i=1 pi = 1, pi ≥ 0 for i = 1, . . . , n,

and θ be the population mean. F (x) assigns probability pi to the ith atom Xi.

The empirical likelihood, evaluated at θ, is then given by

L(θ) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Fp) = θ

}
,

where ϑ(Fp) =
∑n

i=1 piXi is a mean functional, and Fp is the empirical d.f. of X1.

Since
∏n

i=1 pi, subject to the restriction
∑n

i=1 pi = 1, attains its maximum at

pi = 1/n, we can define the empirical likelihood ratio at θ by

R(θ) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Fp) = θ

}
. (1.1)

To optimize (1.1), use Lagrange multiplier method and write

LH(p) =
n∑

i=1

log(pi)− λ

(
n∑

i=1

pi − 1

)
− nγT

(
n∑

i=1

piXi − θ

)

where AT means the transpose of A. Now differentiating LH(p) with respect to

each pi and setting all partial derivatives to zero, we have

pi =
1

n
· Xi − θ

1 + γT (Xi − θ)
(i = 1, . . . , n)
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where the Lagrangian multiplier γ = (γ1, . . . , γn)
T satisfies

n∑
i=1

Xi − θ

1 + γT (Xi − θ)
= 0. (1.2)

Let

S =
1

n

n∑
i=1

(Xi − θ)(Xi − θ)T

be a covariance matrix of X1, . . . ,Xn of full rank q and expand the left hand side

of (1.2), we get

γ = S−1(X̄− θ) + op(n
−1/2)

where X̄ is the mean of X1, . . . ,Xn and An = op(Bn) means An/Bn converges to 0

in probability.

Plugging the pi’s back into (1.1) and taking logarithm, we get the empirical

log-likelihood ratio

−2ℓ(θ) = 2
n∑

i=1

log
(
1 + γT (Xi − θ)

)
.

Expanding −2ℓ(θ), we have

−2ℓ(θ) = n(X̄− θ)TS−1(X̄− θ) + op(1),

which converges in distribution to χ2
q by central limit theorem. From this, an

(1− α)-level confidence region for θ can be constructed as

Θc = {θ : −2ℓ(θ) ≤ c}

where c is chosen to satisfy P{χ2
q ≤ c} = 1− α.



Chapter 1: Introduction 7

1.2 U-statistics

U -statistics were first introduced by Halmos (1946) as unbiased estimators of their

expectations, and then were termed U -statistics by Hoeffding (1948). A U -statistic

of degree k with kernel h is defined as

Un =

(
n

k

)−1 ∑
1≤i1<i2<···<ik≤n

h(Xi1 , Xi2 . . . , Xik).

The consistency and asymptotic normality of U -statistics were proved in Hoffd-

ing (1948). U -statistics are found to play a role in almost any statistical setting.

From general Hoeffding-decomposition, we know that U -statistics are in fact suc-

cessive generalization of sums of i.i.d random variables (r.v.’s), which has been the

focus of probability theory for centuries. As many statistics occurring in estimation

and testing problems behave asymptotically like independent r.v.’s, the study of

U -statistics is of theoretical and practical importance, and limit theorems and cer-

tain asymptotic properties of U -statistics have been the subject of many academic

articles. For comprehensive details of U -statistics, one may refer to Lee (1990),

and Koroljuk and Borovskich (1994).

1.2.1 Empirical likelihood for U-statistics

Due to their wonderful properties, U -statistics have been widely used to do in-

ference for their expectations. For example, one may attempt to apply Owen’s
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empirical likelihood method to U -statistics, and derive asymptotic distribution for

the empirical log-likelihood ratio, from which hypothesis testing could be done and

confidence intervals might be constructed for the parameter one is interested in.

However, the computation burden will be very heavy as we need to solve several

simultaneous nonlinear equations.

To get a clear image of how heavy the computation burden is when dealing with

nonlinear statistics, for simplicity, we take one-sample U -statistics for example.

Suppose X1, . . . , Xn are independent and identically distributed (i.i.d.) random

variables with common distribution function F (x). A one-sample U -statistic of

degree 2 with symmetric kernel ψ can be defined to be

Wn =

(
n

2

)−1 ∑
1≤i<j≤n

ψ(Xi, Xj), (1.3)

and θ = Eψ(X1, X2) is the parameter of interest.

To apply the usual empirical likelihood method to Wn, let p = (p1, . . . , pn) be

a probability vector and write

θ̃(Fp) =

(
n

2

)−1 ∑
1≤i<j≤n

n2pipjψ(Xi, Xj), (1.4)

where Fp(x) =
∑n

i=1 piI{Xi≤x}. (1.3) and (1.4) coincide when pi = 1/n for i =

1, . . . , n. Then the empirical likelihood can be defined by

ℓ̃ = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, θ̃(Fp) = θ

}
. (1.5)

By solving (1.5), we obtain the empirical likelihood for Wn. However,the com-

putational difficulty arises when one tries to do so: there is not simple methodology
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available for an optimization problem involving n variables p1, . . . , pn with n + 1

nonlinear constraints. The situation becomes worse when n gets larger. One may

also refer to Jing et al. (2009) for excellent interpretations.

1.2.2 Jackknife empirical likelihood for U-statistics

As we can see from Section 1.2.1, Owen’s empirical likelihood encounters awkward

computational difficulties when treating with nonlinear statistics. Fortunately, in

2009, Jing et al. brings out the so-called Jackknife Empirical Likelihood method,

which can cope with nonlinear statistics promisingly.

Now as an illustration of the JEL procedure, we briefly describe it for Wn as

follows.

Applying the standard jackknife method (Shao and Tu (1995)) to Wn (see

Arvesen (1969) for jackknife to U -statistics), we obtain the jackknife pseudo-values

(s = 1, . . . , n)

Ṽs = nWn − (n− 1)W
(−s)
n−1 ,

and the jackknife estimator of θ: n−1
∑n

s=1 Ṽs, where W
(−s)
n−1 is the U -statistic after

removing Xs. If we write θ̃p =
∑n

s=1 piEṼs, it is obvious that EṼs = θ and θ̃p = θ

due to the unbiasedness of U -statistics. Applying Owen’s EL method to Ṽs, we get

the empirical likelihood at θ:

L̃(θ) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piṼi = θ̃p

}
,
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and we can define the JEL ratio by

R̃(θ) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi = 1,
n∑

i=1

piṼi = θ̃p

}
.

The jackknife empirical log-likelihood ratio at θ then follows as

log R̃(θ) = −
n∑

i=1

log{1 + γ(Ṽi − θ̃p)},

where γ satisfies the equation

n∑
i=1

Ṽi − θ̃p

1 + γ(Ṽi − θ̃p)
= 0.

The asymptotic distribution of −2 log R̃(θ) was proven to be χ2
1 in Jing et

al. (2009), from which (1 − α)-level confidence interval for θ can be constructed.

The superiority of JEL over the usual empirical likelihood is apparent, since the

optimization problem now involves only one nonlinear equation.

1.3 Compound Poisson sum

Let {Xj}∞j=1 be a sequence of i.i.d. r.v.’s with common d.f. F . Define a renewal

counting process {N(t), t > 0} by N(t) = max{k : Tk ≤ t}, where Tk is the

occurrence time of Xk. Then N(t) can be interpreted as the number of occurrences

Xk in (0, t]. Further, suppose that {N(t), t > 0} is independent of the sequence

{Xj}∞j=1 and write

SN(t) =

N(t)∑
j=1

Xj,



Chapter 1: Introduction 11

then the stochastic process {SN(t), t > 0} is called a renewal reward process (for

definiteness, we assume that SN(t) = 0 if N(t) = 0). When {N(t), t > 0} is a

Poisson process, the renewal reward process SN(t) is termed as a compound Pois-

son process (CPP), which has various applications in the applied fields such as

physics, industry, finance and risk management. See Helmers et al (2003) for some

developments on compound Poisson sums and their relevance in finance. Excellent

interpretations and more examples of CPPs may be found in Parzen (1967, p129-

130), and Karlin and Taylor (1981, p426); see also Gnedenko and Korolev (1996)

for the general theories of random sums.

1.4 Motivation and layout of the thesis

The Receiver Operating Characteristic (ROC) curve and the Area Under the ROC

Curve (AUC) are standard statistical tools for evaluating the accuracy of diagnostic

tests of two-category classification data. The ROC curve is a plot of sensitivity

versus 1−specificity as one changes the value of positivity. For a given threshold

value c, the sensitivity and specificity of a test are respectively defined as

Sensitivity = P (Y > c) = 1− F2(c), Specificity = P (X ≤ c) = F1(c)

where F1 and F2 are the d.f.’s of X and Y respectively. The AUC is given by∫ 1

0
[1−F2(F

−1
1 (t))]dt, where F−1 is the inverse function of F . Bamber (1975) show

that AUC is exactly P (X < Y ), the probability that a randomly selected obser-
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vation from one population scores less than that from another population. AUC

is the most commonly used measure of diagnostic accuracy for a continuous-scale

diagnostic test. Because of its great importance, AUC has attracted much atten-

tion in the past decades. For example, one can refer to Swets and Pickett (1982),

Johnson (1989), Hanley (1989), Newcombe (2006), Zhou (2008) and the monograph

by Kotz et al. (2003) for some references and excellent reviews. Comprehensive

descriptions of methods for diagnostic tests can be found in Zhou et al. (2002) and

Pepe (2003).

In practice, however, many real applications involve more than two classes and

demand a methodology expansion. The Volume Under the ROC Surface (VUS)

and the Hypervolume Under the ROC Manifold (HUM) measures are direct ex-

tensions of AUC for three-category and multi-category samples, respectively. VUS

and HUM have extensive applications in various areas since they provide global

measures of the differences amongst populations.

The existing inference methods for such measures include the asymptotic normal

approximation and the bootstrap resampling method. The normal approximation

method may produce confidence intervals with unsatisfactory coverage when sample

size is small while the bootstrap is computationally intensive.

In this thesis, on one hand, we develop JEL procedures to make statistical

inference for VUS P (X < Y < Z) and HUM P (X1 < X2 < · · · < Xk) respectively,

and provide the corresponding asymptotic distribution theories. On the other
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hand, we employ Owen’s empirical likelihood method to compound Poisson sum.

Monte Carlo simulations are conducted to assess the performance of the proposed

methods in finite samples. Some real datasets are also analyzed as applications of

the proposed methods.

In Chapter 2, we make inference for P (X < Y < Z) by applying two methods,

normal approximation and JEL, to three-sample U -statistics. We propose the JEL

method, because Owen’s EL method for U -statistics is too complicated to apply in

practice. The simulation results show that the two proposed methods work quite

well and JEL always outperforms the normal approximation method. Practically,

for simplicity purpose, we recommend the normal approximation method; for better

statistical results, we suggest the reader to use the JEL method although it involves

a bit more computation burden than the normal approximation one.

In Chapter 3, as the existing inference methods for P (X1 < X2 < · · · < Xk)

are either imprecise or computationally intensive, we develop a JEL procedure and

provide the corresponding distribution theories. As the results of simulation studies

indicate, JEl performs reasonably well for small samples and can be implemented

more efficiently than the bootstrap.

In Chapter 4, we apply Owen’s EL method to do inference for the unit mean of

compound Poisson sums. Compound Poisson sums have plenty of applications in

physics, industry, finance, risk management and so on. They are frequently used to

describe phenomena in applied probability when a single Poisson process fails to do
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so. It is well-known that for a renewal reward process {SN(t) =
∑N(t)

j=1 Xj, t > 0}, if

N(t)/t converges in probability to a constant or, more generally, to a positive r.v.,

then SN(t) is asymptotically normally distributed. Especially, when {N(t), t > 0}

is a Poisson process with rate λ > 0, independent of the i.i.d. r.v.’s X1, X2, ...

with mean µ = EX1 and variance σ2 = Var(X1) > 0, we can use this asymptotic

normality to construct confidence intervals for λµ. But as pointed out by Helmers

(2003), the usual normal approximation for compound Poisson sums usually per-

forms very badly because, in real applications, the distribution of the Xi is often

highly skewed to the right. This urges for better methods, e.g. the bootstrap or

Edgeworth/saddlepoint approximations, to construct more accurate confidence in-

tervals for λµ. One can also consider a studentized version of CPP to correct the

skewness. Kegler (2007) uses

(
e
log(SN(t)/t)−zα/2

√
∆N(t)/S

2
N(t) , e

log(SN(t)/t)+zα/2

√
∆N(t)/S

2
N(t)

)
(1.6)

as confidence interval for λµ, where

SN(t) =

N(t)∑
j=1

Xj, ∆N(t) =

N(t)∑
j=1

X2
j , Φ(zα/2) = 1− α/2.

However, this method is applicable only when SN(t) > 0.

Therefore, we propose Owen’s empirical likelihood to meet the demand for

better inference methods. The idea of applying Owen’s EL for compound Poisson

sum is as follows.
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From the viewpoint of conditional expectation, since

λµt = E

N(t)∑
j=1

Xj

 ,

we argue that

E

N(t)∑
j=1

Xj

∣∣∣∣N(t) = n

 ≈ λµt.

This leads us to consider the following EL

L(θ|N(t) = n) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θt/n

}
,

where ϑ(Gp) =
∑n

i=1 piXi and θ = λµ. Owen’s EL method is then applied to the

mean functional
∑n

i=1 piXi and an asymptotic theory for the adjusted empirical

log-likelihood ratio is developed.
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Chapter 2

Interval Based Inference for

P (X < Y < Z)

2.1 Introduction

Let X, Y and Z be three r.v.’s. The “stress-strength” models of the types P (X <

Y ), P (X < Y < Z) have extensive applications in various subareas of engineering

(often in reliability theory), psychology, genetics, clinical trials and so on, since

these models provide general measures of the differences amongst populations. For

more detailed descriptions on stress-strength models, one is referred to the mono-

graph by Kotz et al. (2003) and references therein.

One such important case is P (X < Y ). In context of medicine and genetics, a
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popular topic is the analysis of the discriminatory accuracy of a diagnostic test or

marker in distinguishing between diseased and non-diseased individuals, through

the receiver-operating characteristic (ROC) curves. The ROC curve is a plot of

sensitivity versus 1-specificity as one changes the value of positivity. The area

under the ROC curve (AUC), is exactly P (X < Y ) (see, Bamber 1975), which is

a general index of diagnostic accuracy. An individual is diagnosed as diseased or

non-diseased according to whether the marker value is greater than or less than or

equal to a specified threshold value.

Recently, lots of efforts have been devoted to the extension of ROC methodology

to three-class diagnostic problems. Mossman (1999) showed that the volume under

the ROC surface (VUS) equals θ = P (X < Y < Z), the probability that three

measurements will be classified in the correct order X < Y < Z, where the ROC

surface is a direct generalization of the two-sample ROC curve to the three-category

classification problems. A motivation to study θ is from cancer diagnosis and

treatment, where an important practical issue is to determine a set of genes which

can optimally classify tumors, and diagnostic procedures need to assign individuals

to one of the outcome tumor types. Generally speaking, ROC curves are not

applicable to the situations where there are more than two tumor types. In such

cases, one may convert the tumor types into pairs and evaluate all pairs of classes

using two-class ROC analysis (Obuchowshi et al., 2001), but the problem is that

this method does not provide an assessment of overall accuracy (Nakas et al.,

2007). There are many other methods that, for assessing the overall accuracy of
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classification when there are more than two diseased classes, have been proposed

and one can refer to the paper of Li et al. (2008) and Sampat et al. (2009) for

excellent reviews of such related work and references. One can also find many

interesting practical examples in Kotz et al. (2003)

Here are some other examples.

1. Many devices can not function at high temperatures, neither can do at very

low temperatures. Extreme outer environmental conditions could result in failure

of the devices.

2. One’s normal blood pressure must lie within the systolic and diastolic pres-

sures limits, as one will be identified as hypertensive if the blood pressure is ab-

normally high and hypotensive when it is abnormally low.

3. For a healthy individual, his/her level of blood sugar should lie within some

range since hypoglycemia is a major cause of chronic fatigue while glycemia is most

directly associated to chronic increase of diabetes mellitus.

4. To cure some disease, one must take a moderate dose of drug , because too

much drug will result in side-effect and be harmful, but a relatively small dose of

drug might fail to cure the disease.

It is clear from these examples that this stress-strength relation P (X < Y < Z)

reflects a number of real-world phenomena and one may also find many other

applications of it.
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In the literature, there are also some papers concerning the point estimation of

θ. Hlawka (1975) suggests to estimate θ by three-sample U -statistics, Chandra and

Owen (1975) construct MLEs and UMVUEs for P (X1 < Y, ..., Xl < Y ) and P (X <

Y1, ..., X < Yl) in some special cases, which is related to θ by a formula provided in

Singh (1980) where normal populations are considered, Dutta and Sriwastav (1986)

deal with the estimation of θ when X, Y and Z are exponentially distributed, and

Ivshin (1988) investigates the Maximum Likelihood Estimate (MLE) and Uniformly

Minimum Variance Unbiased Estimate (UMVUE) of θ when X, Y and Z are either

uniform or exponential r.v.’s. with unknown location parameters.

Although Dreiseitl et al. (2000) derive variance estimators for VUS using U -

statistic theory, the variance becomes complicated as the number of categories

increases and is difficult to apply. Nakas et al. (2004) used bootstrap method, but

this is also computationally intensive. Further, a glance at the literature reveals

that there is not simple method available for constructing confidence intervals (CIs)

for θ via three-sample U -statistics; however, our proposed methods provide easier

and better alternative tools to deal with such problems.

In this chapter, we employ normal approximation and the JEL method to make

statistical inference for θ, assuming that the three samples are independent, without

ties among them. In Section 2.2, we present our two methods. Simulation results

are presented in Section 2.3 to illustrate and compare the performance of these

methods. Real data sets are analyzed in Section 2.4. Proofs are deferred to Section
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2.6.

2.2 Methodology and main results

2.2.1 Asymptotic Normal approximations

Let (X1, ..., Xn1), (Y1, ..., Yn2) and (Z1, ..., Zn3) be samples from three different pop-

ulations with d.f.’s F1, F2 and F3, respectively. Assume that the three samples are

independent. A U -statistic of degree (1, 1, 1) with a kernel h(x; y; z) is defined as

U =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

h(Xi;Yj;Zk), (2.1)

which is a consistent and unbiased estimator of our parameter of interest θ =

Eh(X1;Y1;Z1). Particularly, if h(x; y; z) is equal to the indicator function I{x<y<z},

then θ = P (X1 < Y1 < Z1), the probability that three measurements, one from

each population, will be in correct order. Hence we can make inference on θ by

means of the statistic

Un =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I{Xi<Yj<Zk}.

Write σ2 = E(Un − θ)2. Citing a result in Koroljuk and Borovshich (1994),

we have a central limit theorem (CLT) for Un, i.e., (Un − θ)/σ →d N(0, 1) as

min(n1, n2, n3) → ∞, where “→d” means convergence in distribution. But we can

not directly use this asymptotic normality to make statistical inference on θ because
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σ2 is usually unknown. So we must replace σ2 by its estimator. One consistent

estimator σ̂2 of σ2 can be constructed as follows.

For i = 1, ..., n1, j = 1, ..., n2 and k = 1, ..., n3, denote:

(1) U0
n1,n2,n3

=Un, the original statistics based on all observations;

(2) U−i,0,0
n1−1,n2,n3

, the statistics after deleting Xi, given by

((n1 − 1)n2n3)
−1

n1∑
i1=1,i1 ̸=i

n2∑
j1=1

n3∑
k1=1

I{Xi1
<Yj1

<Zk1
};

(3) U0,−j,0
n1,n2−1,n3

, the statistics after deleting Yj, given by

(n1(n2 − 1)n3)
−1

n1∑
i1=1

n2∑
j1=1,j1 ̸=j

n3∑
k1=1

I{Xi1
<Yj1

<Zk1
};

(4) U0,0,−k
n1,n2,n3−1, the statistics after deleting Zk, given by

(n1n2(n3 − 1))−1

n1∑
i1=1

n2∑
j1=1

n3∑
k1=1,k1 ̸=k

I{Xi1
<Yj1

<Zk1
},

and

Vi,0,0 = n1U
0
n1,n2,n3

− (n1 − 1)U−i,0,0
n1−1,n2,n3

; (2.2)

V0,j,0 = n2U
0
n1,n2,n3

− (n2 − 1)U0,−j,0
n1,n2−1,n3

;

V0,0,k = n3U
0
n1,n2,n3

− (n3 − 1)U0,0,−k
n1,n2,n3−1.
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Some simple calculations show that

Vi,0,0 =
1

n2n3

n2∑
j=1

n3∑
k=1

I{Xi<Yj<Zk}; (2.3)

V0,j,0 =
1

n1n3

n1∑
i=1

n3∑
k=1

I{Xi<Yj<Zk};

V0,0,k =
1

n1n2

n1∑
i=1

n2∑
j=1

I{Xi<Yj<Zk},

and

V ·,0,0 = V 0,·,0 = V 0,0,· = Un,

where V ·,0,0, V 0,·,0 and V 0,0,· are the averages of Vi,0,0, V0,j,0 and V0,0,k, respectively.

Similar to Arversen (1969) and Sen (1960), we propose a consistent estimator

of Var(Un) given by

σ̂2 =
1

n1(n1 − 1)

n1∑
i=1

(Vi,0,0 − V ·,0,0)
2 (2.4)

+
1

n2(n2 − 1)

n2∑
j=1

(V0,j,0 − V 0,·,0)
2

+
1

n3(n3 − 1)

n3∑
k=1

(V0,0,k − V 0,0,·)
2.

Further, to state the results, define

g1,0,0(x) = P (x < Y1 < Z1)− θ, σ2
1,0,0 = Var(g1,0,0(X1));

g0,1,0(y) = P (X1 < y < Z1)− θ, σ2
0,1,0 = Var(g0,1,0(Y1));

g0,0,1(z) = P (X1 < Y1 < z)− θ, σ2
0,0,1 = Var(g0,0,1(Z1)).

Theorem 2.2.1 (a) Un
a.s.−→ θ as min(n1, n2, n3) → ∞;
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(b) Assume that σ2
1,0,0 > 0, σ2

0,1,0 > 0, σ2
0,0,1 > 0, and let S2

n1,n2,n3
=

σ2
1,0,0/n1 + σ2

0,1,0/n2 + σ2
0,0,1/n3. Then,

Un − θ

Sn1,n2,n3

d−→ N(0, 1), as min(n1, n2, n3) → ∞ (2.5)

and

σ̂2 − S2
n1,n2,n3

= op((min(n1, n2, n3))
−1). (2.6)

Proof. For the proof of part (a) and (2.5), refer to p151-153 of Koroljuk and

Borovskich (1994). The proof of (2.6) is trivial and hence omitted.

Now by Theorem 2.2.1, we have CLT for the Studentized Un, i.e.,

(Un − θ)/σ̂ →d N(0, 1)

as min(n1, n2, n3) → ∞, which provides an approach to construct CIs for θ. A

two-sided (1− α) level CI based on the asymptotic normality is

(Un − zα/2σ̂, Un + zα/2σ̂). (2.7)

From Dreiseitl (2003), one can derive the variance estimator of Un as

V̂ar(Un) =
1

n1n2n3

[θ(1− θ) + (n3 − 1)(q̂12 − θ2) + (n2 − 1)(q̂13 − θ2) (2.8)

+(n1 − 1)(q̂23 − θ2) + (n2 − 1)(n3 − 1)(q̂1 − θ2)

+(n1 − 1)(n3 − 1)(q̂2 − θ2) + (n1 − 1)(n2 − 1)(q̂3 − θ2)],
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where

q̂12 =
1

n1n2n3(n3 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n3∑
K=1
K ̸=k

I{Xi<Yj<Zk}I{Xi<Yj<ZK}

q̂13 =
1

n1n2n3(n2 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n2∑
J=1
J ̸=j

I{Xi<Yj<Zk}I{Xi<YJ<Zk}

q̂23 =
1

n1n2n3(n1 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n1∑
I=1
I ̸=i

I{Xi<Yj<Zk}I{XI<Yj<Zk}

q̂1 =
1

n1n2n3(n2 − 1)(n3 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n2∑
J=1
J ̸=j

n3∑
K=1
K ̸=k

I{Xi<Yj<Zk}I{Xi<YJ<ZK}

q̂2 =
1

n1n2n3(n1 − 1)(n3 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n1∑
I=1
I ̸=i

n2∑
J=1
J ̸=j

I{Xi<Yj<Zk}I{XI<YJ<Zk}

q̂3 =
1

n1n2n3(n1 − 1)(n2 − 1)

n1∑
i=1

n2∑
j=1

n3∑
k=1

n1∑
I=1
I ̸=i

n3∑
K=1
K ̸=k

I{Xi<Yj<Zk}I{XI<Yj<ZK}.

Comparing (2.4) with (2.8), we can conclude that these two estimators of the

variance of Un do not necessarily equal and (2.8) is unbiased for Var(Un) but

computationally intensive. More interestingly, in our simulation studies, we find

that the value (2.8) is always smaller than that of (2.4). Further, as sample sizes

increase, the computation burden of (2.8) become strikingly heavy.

2.2.2 JEL for the three-sample U-statistic Un

JEL introduced by Jing et al. (2008) is a marriage of two popular nonparametric

approaches, jackknife and Owen’s empirical likelihood method. For the reader’s

convenience, we briefly describe JEL for general one-sample U -statistics as follows.
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Let Z1, ...,Zn be independent (not necessarily identically distributed) r.v’s and

Tn = T (Z1, ...,Zn) =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Zi1 , ...,Zim)

be a one-sample U -statistic of degree m as an unbiased estimator of the parameter

θ, that is θ = Eh(Z1, . . . ,Zm). Define the jackknife pseudo-values by

V̂i = nTn − (n− 1)T
(−i)
n−1 ,

where T
(−i)
n−1 = T (Z1, ...,Zi−1,Zi+1, ...,Zn) is the statistic Tn−1 computed on the

sample of n− 1 r.v.’s from the original data set by deleting the ith data value. Its

expression is as follows,

T
(−i)
n−1 =

(
n− 1

m

)−1 (−i)∑
(n−1,m)

h(Zj1 , ...,Zjm),

here and after,
∑(−i)

(n−1,m) denotes the summation over all possible indices (j1, ..., jm)

chosen from (1, ..., i−1, i+1, ..., n), subject to the restriction 1 ≤ j1 < ... < jm ≤ n.

The jackknife estimator of θ is simply the average of the pseudo-values:

T̂n(jack) ∼=
1

n

n∑
i=1

V̂i.

One advantage of T̂n(jack) over Tn is its smaller bias (see Quenouille (1956) and

Tukey (1958)). Another one is that V̂i’s are asymptotically independent (Shi

(1984)).

Let p = (p1, ..., pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for

1 ≤ i ≤ n. Let Gp be the d.f. which assigns probability pi to the ith pseudo-value
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V̂i and consider the mean functional ϑ(Gp) =
∑n

i=1 piV̂i. The JEL, evaluated at θ,

is

L(θ) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θp

}

with θp =
∑n

i=1 piEV̂i.

Since
∏n

i=1 pi, subject to the constraint
∑n

i=1 pi = 1, attains its maximum n−n

at pi = n−1, we can define the JEL ratio at θ by

R(θ) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi(V̂i − EV̂i) = 0

}
. (2.9)

Using Lagrange multiplier methods, when

min
1≤i≤n

(V̂i − EV̂i) < 0 < max
1≤i≤n

(V̂i − EV̂i),

the above maximum is attained at

pi =
1

n
· 1

1 + γ(V̂i − EV̂i)
, (2.10)

where γ satisfies

f(γ) ≡ 1

n

n∑
i=1

V̂i − EV̂i

1 + γ(V̂i − EV̂i)
= 0. (2.11)

After substituting the pi’s into (2.9) by those obtained in (2.10) and taking

the logarithm of R(θ), we get the nonparametric jackknife empirical log-likelihood

ratio

logR(θ) = −
n∑

i=1

log{1 + γ(V̂i − EV̂i)}.
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One might attempt to apply the usual EL (Owen, 1988&1990) method to this

type of problems. However, there is computational difficulty caused by the presence

of nonlinear constraints, since we need to solve several nonlinear equations simulta-

neously, which will be more difficult as the sample size n gets larger. Fortunately,

the JEL method can efficiently overcome this difficulty.

To apply the JEL to the three-sample U -statistic Un, let

n = n1 + n2 + n3,

(Z1, · · · ,Zn) = (X1, · · · , Xn1 , Y1, · · · , Yn2 , Z1, · · · , Zn3), (2.12)

and

Tn = Un =

(
n

3

)−1 ∑
1≤i<j<k≤n

h̃(Zi,Zj,Zk),

where

h̃(Zi,Zj,Zk) =
n(n− 1)(n− 2)

6n1n2n3

I{Xi<Yj−n1
<Zk−n1−n2

}

for 1 ≤ i ≤ n1 < j ≤ n1 + n2 < k ≤ n, and 0 otherwise.

Similar to the one-sample U -statistics case, for 1 ≤ i ≤ n, we have

U
(−i)
n−1 = U(Z1, ...,Zi−1,Zi+1, ...,Zn)

=

(
n− 1

3

)−1 (−i)∑
(n−1,3)

h̃(Zi1 ,Zj1 ,Zk1)

=

(
n− 1

3

)−1
[(

n

3

)
Un −

∑
i<j<k

h̃(Zi,Zj,Zk)

−
∑
j<i<k

h̃(Zj,Zi,Zk)−
∑
j<k<i

h̃(Zj,Zk,Zi)

]
.
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It follows that the jackknife pseudo-values are (1 ≤ i ≤ n)

V̂i = nUn − (n− 1)U
(−i)
n−1 (2.13)

=
6

(n− 2)(n− 3)

[ ∑
i<j<k

h̃(Zi,Zj,Zk)

+
∑
j<i<k

h̃(Zj,Zi,Zk) +
∑
j<k<i

h̃(Zj,Zk,Zi)

]
− 2n

n− 3
Un

=
n(n− 1)

n− 3

1

n1

1

n2n3

n2∑
j=1

n3∑
k=1

I{Xi<Yj<Zk}I{1≤i≤n1}

+
n(n− 1)

n− 3

1

n2

1

n1n3

n1∑
j=1

n3∑
k=1

I{Xj<Yi−n1
<Zk}I{n1+1≤i≤n1+n2}

+
n(n− 1)

n− 3

1

n3

1

n1n2

n1∑
j=1

n2∑
k=1

I{Xj<Yk<Zi−n1−n2
}I{n1+n2+1≤i≤n} −

2n

n− 3
Un

= − 2n

n− 3
Un +

n(n− 1)

n− 3

[
Vi,0,0
n1

I{1≤i≤n1} +
V0,i−n1,0

n2

I{n1<i≤n1+n2}

+
V0,0,i−n1−n2

n3

I{n1+n2<i≤n}

]
,

and the jackknife estimate of θ is Ûn(jack) = n−1
∑n

i=1 V̂i.

Further, one can easily show that Un = Ûn(jack) and for 1 ≤ i ≤ n,

EV̂i =
nθ

n− 3

[
n− 2n1 − 1

n1

I{1≤i≤n1} (2.14)

+
n− 2n2 − 1

n2

I{n1<i≤n1+n2}

+
n− 2n3 − 1

n3

I{n1+n2<i≤n}

]
.

The following theorem states that Wilks’ theorem holds for Un. Its proof is

postponed to Section 2.6.
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Theorem 2.2.2 Assume that

(a) σ2
1,0,0 > 0, σ2

0,1,0 > 0, and σ2
0,0,1 > 0;

(b) 0 < lim
n→∞

(n1/n2) ≤ lim
n→∞

(n1/n2) <∞,

0 < lim
n→∞

(n2/n3) ≤ lim
n→∞

(n2/n3) <∞.

Then, as min(n1, n2, n3) → ∞, at the true value θ = θ0 we have

−2logR(θ0)
d−→ χ2

1.

From this result, one can construct an approximate (1− α) level CI for θ0 as

Θc = {θ : −2logR(θ) ≤ c}, (2.15)

where c is chosen to satisfy P{χ2
1 ≤ c} = 1− α.

2.3 Numerical study

In this section, we conduct simulation studies to investigate and compare the per-

formance of our proposed JEL and normal approximations approaches with some

other existing methods, normal approximation with Dreiseitl’s estimator of vari-

ance and bootstrap calibration (See Nakas and Yiannousos, 2004), in the context

of constructing of CIs for θ only. We use the following three different criteria to

measure the performance of each method.
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Table 2.1: θ0 = 0.3407, F1 = N(0, 1), F2 = N(1, 1) and F3 = N(1, 2)

Nominal 0.9 0.95 0.99

level (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 Normal (0.8817, 0.3036, 0.3083) (0.9296, 0.3618, 0.3662) (0.9766, 0.4754, 0.4784)

n2=15 JEL (0.9124, 0.3102, 0.3142) (0.9588, 0.3709, 0.3739) (0.9896, 0.4911, 0.4928)

n3=15 Boot. (0.8854, 0.2977, 0.3029) (0.9310, 0.3547, 0.3596) (0.9808, 0.4661, 0.4689)

Drei. (0.8747, 0.2849, 0.2936) (0.9165, 0.3477, 0.3493) (0.9677, 0.4513, 0.4534)

n1=20 Normal (0.8833, 0.2214, 0.2228) (0.9356, 0.2638, 0.2651) (0.9824, 0.3467, 0.3476)

n2=25 JEL (0.9160, 0.2263, 0.2276) (0.9628, 0.2711, 0.2721) (0.9936, 0.3610, 0.3614)

n3=30 Boot. (0.8902, 0.2198, 0.2216) (0.9404, 0.2621, 0.2634) (0.9844, 0.3445, 0.3454)

Drei. (0.8754, 0.2063, 0.2112) (0.9215, 0.2514, 0.2537) (0.9701, 0.3323, 0.3356)

n1=30 Normal (0.8912, 0.2097, 0.2112) (0.9403, 0.2498, 0.2510) (0.9836, 0.3283, 0.3291)

n2=30 JEL (0.9056, 0.2120, 0.2133) (0.9568, 0.2530, 0.2539) (0.9928, 0.3339, 0.3343)

n3=30 Boot. (0.9057, 0.2098, 0.2110) (0.9462, 0.2450, 0.2511) (0.9877, 0.3285, 0.3291)

Drei. (0.8826, 0.1917, 0.1929) (0.9269, 0.2275, 0.2287) (0.9724, 0.3049, 0.3068)

n1=35 Normal (0.8930, 0.1754, 0.1762) (0.9408, 0.2089, 0.2096) (0.9858, 0.2746, 0.2749)

n2=40 JEL (0.9024, 0.1775, 0.1782) (0.9542, 0.2120, 0.2125) (0.9914, 0.2804, 0.2807)

n3=45 Boot. (0.8968, 0.1748, 0.1756) (0.9448, 0.2083, 0.2091) (0.9870, 0.2737, 0.2742)

Drei. (0.8883, 0.1597, 0.1621) (0.9275, 0.1886, 0.1895) (0.9808, 0.2635, 0.2672)

n1=50 Normal (0.9018, 0.1615, 0.1621) (0.9433, 0.1924, 0.1929) (0.9884, 0.2529, 0.2531)

n2=50 JEL (0.9122, 0.1626, 0.1632) (0.9586, 0.1940, 0.1944) (0.9926, 0.2556, 0.2559)

n3=50 Boot. (0.9020, 0.1604, 0.1615) (0.9522, 0.1911, 0.1922) (0.9892, 0.2512, 0.2519)

Drei. (0.8894, 0.1558, 0.1564) (0.9388, 0.1856, 0.1861) (0.9818, 0.2441, 0.2443)
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a) Coverage probability: the probability that the true parameter value

is contained in the CI. Smaller the difference between the true coverage

probability and the nominal one, better the method.

(b) Average length of CIs: CIs with shorter average length are preferred

since overly long CIs convey relatively imprecise information about the

position of the unknown parameter.

(c) Average length conditional on coverage: average length of all CIs

which cover the true parameter value.

We generate L sets of three samples (j = 1, ..., L)

{X(j)
1 , ..., X(j)

n1
}, {Y (j)

1 , ..., Y (j)
n2

}, {Z(j)
1 , ..., Z(j)

n3
},

from three different distributions F1, F2, F3. For each set, one can calculate (1 −

α) level CIs CIj, j = 1, ..., L, using normal approximations (2.7)(Normal), JEL

(2.15), Dreiseitl’s method (Drei.) and bootstrap (Boot.). Denote the length of CIj

by |CIj|. The Monte Carlo approximation to the coverage probability (cover.),

average length (alen.) and average length conditional on coverage (clen.) are given

respectively by

(i) L−1

L∑
j=1

I{θ∈CIj}, (ii) L−1

L∑
j=1

|CIj|,

(iii) L−1
0

L∑
j=1

|CIj|I{θ∈CIj},

where L0 =
∑L

j=1 I{θ∈CIj}, the total number of CIs covering θ.



Chapter 2: Interval Based Inference for P (X < Y < Z) 32

Table 2.2: θ0 = 0.6919, F1 = Exp(8), F2 = Exp(1) and F3 = Exp(1/4)

Nominal 0.9 0.95 0.99

level (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 Normal (0.8840, 0.2961, 0.3027) (0.9238, 0.3528, 0.3594) (0.9688, 0.4636, 0.4687)

n2=15 JEL (0.9092, 0.3033, 0.3081) (0.9524, 0.3638, 0.3677) (0.9864, 0.4847, 0.4872)

n3=15 Boot. (0.8870, 0.2918, 0.2977) (0.9269, 0.3477, 0.3531) (0.9711, 0.4569, 0.4619)

Drei. (0.8729, 0.2752, 0.2817) (0.9126, 0.3274, 0.3296) (0.9508, 0.4332, 0.4368)

n1=20 Normal (0.8988, 0.2175, 0.2194) (0.9304, 0.2593, 0.2608) (0.9834, 0.3406, 0.3417)

n2=25 JEL (0.9134, 0.2221, 0.2232) (0.9572, 0.2668, 0.2673) (0.9918, 0.3568, 0.3571)

n3=30 Boot. (0.8987, 0.2152, 0.2185) (0.9435, 0.2409, 0.2430) (0.9838, 0.3370, 0.3390)

Drei. (0.8813, 0.1967, 0.1992) (0.9259, 0.2347, 0.2363) (0.9659, 0.3197, 0.3214)

n1=30 Normal (0.8966, 0.2050, 0.2067) (0.9390, 0.2443, 0.2460) (0.9830, 0.3210, 0.3221)

n2=30 JEL (0.9088, 0.2069, 0.2081) (0.9580, 0.2476, 0.2484) (0.9926, 0.3284, 0.3287)

n3=30 Boot. (0.8968, 0.2022, 0.2046) (0.9421, 0.2409, 0.2430) (0.9848, 0.3166, 0.3180)

Drei. (0.8825, 0.1877, 0.1906) (0.9293, 0.2102, 0.2136) (0.9685, 0.2889, 0.2897)

n1=35 Normal (0.8974, 0.1715, 0.1725) (0.9474, 0.2044, 0.2053) (0.9846, 0.2686, 0.2691)

n2=40 JEL (0.9004, 0.1729, 0.1735) (0.9594, 0.2069, 0.2074) (0.9926, 0.2747, 0.2749)

n3=45 Boot. (0.9003, 0.1707, 0.1716) (0.9510, 0.2035, 0.2043) (0.9862, 0.2674, 0.2679)

Drei. (0.8847, 0.1633, 0.1644) (0.9337, 0.1769, 0.1791) (0.9713, 0.2557, 0.2564)

n1=50 Normal (0.8960, 0.1571, 0.1581) (0.9446, 0.1872, 0.1882) (0.9848, 0.2461, 0.2466)

n2=50 JEL (0.9034, 0.1575, 0.1581) (0.9534, 0.1882, 0.1888) (0.9906, 0.2490, 0.2492)

n3=50 Boot. (0.8970, 0.1558, 0.1568) (0.9463, 0.1856, 0.1867) (0.9868, 0.2440, 0.2447)

Drei. (0.8876, 0.1436, 0.1468) (0.9392, 0.1602, 0.1633) (0.9759, 0.2297, 0.2311)
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Table 2.3: θ0 = 0.4019, F1 = U(−1, 1), F2 = Exp(2) and F3 = Cauchy(1, 2)

Nominal 0.9 0.95 0.99

level (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 Normal (0.8802, 0.3375, 0.3417) (0.9406, 0.4022, 0.4056) (0.9802, 0.5285, 0.5308)

n2=15 JEL (0.9184, 0.3425, 0.3464) (0.9598, 0.4084, 0.4113) (0.9912, 0.5374, 0.5387)

n3=15 Boot. (0.8849, 0.3293, 0.3336) (0.9426, 0.3924, 0.3965) (0.9818, 0.5158, 0.5185)

Drei. (0.8753, 0.3149, 0.3166) (0.9286, 0.3777, 0.3793) (0.9696, 0.5005, 0.5019)

n1=20 Normal (0.8854, 0.2521, 0.2539) (0.9412, 0.3003, 0.3020) (0.9814, 0.3947, 0.3958)

n2=25 JEL (0.9100, 0.2553, 0.2572) (0.9520, 0.3049, 0.3066) (0.9888, 0.4031, 0.4039)

n3=30 Boot. (0.8857, 0.2496, 0.2518) (0.9469, 0.2974, 0.2994) (0.9822, 0.3909, 0.3921)

Drei. (0.8774, 0.2344, 0.2367) (0.9316, 0.2814, 0.2835) (0.9707, 0.3813, 0.3834)

n1=30 Normal (0.8856, 0.2352, 0.2368) (0.9458, 0.2802, 0.2816) (0.9860, 0.3683, 0.3690)

n2=30 JEL (0.8992, 0.2368, 0.2385) (0.9480, 0.2822, 0.2836) (0.9908, 0.3710, 0.3716)

n3=30 Boot. (0.8872, 0.2327, 0.2342) (0.9472, 0.2772, 0.2786) (0.9868, 0.3643, 0.3652)

Drei. (0.8777, 0.2178, 0.2189) (0.9365, 0.2673, 0.2693) (0.9746, 0.3531, 0.3554)

n1=35 Normal (0.8908, 0.1992, 0.2001) (0.9458, 0.2373, 0.2380) (0.9858, 0.3119, 0.3123)

n2=40 JEL (0.9078, 0.2006, 0.2015) (0.9548, 0.2392, 0.2400) (0.9898, 0.3150, 0.3154)

n3=45 Boot. (0.8927, 0.1973, 0.1984) (0.9483, 0.2350, 0.2362) (0.9872, 0.3089, 0.3095)

Drei. (0.8815, 0.1842, 0.1874) (0.9367, 0.2183, 0.2197) (0.9753, 0.2982, 0.3003)

n1=50 Normal (0.8924, 0.1810, 0.1817) (0.9464, 0.2157, 0.2162) (0.9868, 0.2835, 0.2838)

n2=50 JEL (0.9070, 0.1818, 0.1825) (0.9544, 0.2166, 0.2172) (0.9900, 0.2847, 0.2850)

n3=50 Boot. (0.8837, 0.1792, 0.1800) (0.9482, 0.2136, 0.2143) (0.9888, 0.2807, 0.2810)

Drei. (0.8839, 0.1695, 0.1706 (0.9372, 0.1996, 0.2020) (0.9777, 0.2655, 0.2672)
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In our simulations, various values of the nominal level and sample size were cho-

sen and each experiment was based on L = 2000 trials with bootstrap resampling

size B = 400, generated by routines in R.

Firstly, we consider F1 = N(0, 1), F2 = N(1, 1) and F3 = N(1, 2), which

are commonly used in the literature on stress-strength models. In this situation

θ = 0.3407. The simulation results for this case are shown in Table 2.1.

Secondly, we select three Exponential populations, to see what will happen if

the populations are not normal ones, and the results are given in Table 2.2.

Thirdly, we want to check what will happen if the three populations are of

different kinds. We choose F1 = U(−1, 1), F2 = Exp(2) and F3 = Cauchy(1, 2).

Here, θ = 0.4019 and Table 2.3 contains the simulation results for this case.

Fourthly, we choose F1 = Cauchy(1, 2), F2 = Exp(2) and F3 = U(−1, 0.5). In

this case, θ = 0.0454, which is very close to 0 and forces us to choose moderate

large sample sizes. This extreme value of θ indicates that the sample contains

useful information for discrimination. Table 2.4 is for this special case.

Finally, we consider F1 = N(−3, 1), F2 = Exp(1) and F3 = Cauchy(6, 1), which

gives large value of θ = 0.9317, and the results are presented in Tables 2.5.

The following observation can be made from those three tables.

(1) As the sample size n increases, all methods improve in terms of all three

criteria (i.e., coverage probability, average length and conditional average length),
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Table 2.4: θ0 = 0.0454, F1 = Cauchy(1, 2), F2 = Exp(2) and F3 = U(−1, 0.5)

Nominal 0.9 0.95 0.99

level (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=20 Normal (0.8564, 0.0803, 0.0851) (0.8970, 0.0937, 0.0986) (0.9432, 0.1200, 0.1239)

n2=25 JEL (0.8780, 0.0811, 0.0848) (0.9274, 0.0948, 0.0982) (0.9690, 0.1220, 0.1242)

n3=30 Boot. (0.8577, 0.0795, 0.0829) (0.8998, 0.0927, 0.0969) (0.9459, 0.1181, 0.1227)

Drei. (0.8449, 0.0688, 0.0692) (0.8865, 0.0847, 0.0863) (0.9338, 0.1074, 0.1088)

n1=25 Normal (0.8570, 0.0701, 0.0748) (0.8984, 0.0835, 0.0883) (0.9448, 0.1097, 0.1138)

n2=25 JEL (0.8840, 0.0709, 0.0745) (0.9266, 0.0846, 0.0881) (0.9692, 0.1116, 0.1138)

n3=25 Boot. (0.8583, 0.0668, 0.0693) (0.9005, 0.0826, 0.0856) (0.9497, 0.1025, 0.1056)

Drei. (0.8454, 0.0589, 0.0596) (0.8872, 0.0752, 0.0774) (0.9367, 0.0963, 0.0982)

n1=30 Normal (0.8634, 0.0638, 0.0672) (0.9064, 0.0760, 0.0795) (0.9498, 0.0998, 0.1027)

n2=30 JEL (0.8850, 0.0644, 0.0670) (0.9298, 0.0769, 0.0793) (0.9756, 0.1013, 0.1028)

n3=30 Boot. (0.8672, 0.0615, 0.0664) (0.9166, 0.0738, 0.0765) (0.9563, 0.0979, 0.0997)

Drei. (0.8516, 0.0478, 0.0477) (0.8955, 0.0685, 0.0699) (0.9389, 0.0859, 0.0867)

n1=35 Normal (0.8746, 0.0550, 0.0571) (0.9158, 0.0655, 0.0678) (0.9606, 0.0861, 0.0879)

n2=40 JEL (0.8892, 0.0554, 0.0571) (0.9356, 0.0660, 0.0678) (0.9764, 0.0869, 0.0881)

n3=45 Boot. (0.8825, 0.0543, 0.0561) (0.9213, 0.0639, 0.0668) (0.9708, 0.0853, 0.0872)

Drei. (0.8689, 0.0388, 0.0401) (0.9076, 0.0487, 0.0505) (0.9451, 0.0714, 0.0734)

n1=50 Normal (0.8752, 0.0491, 0.0509) (0.9190, 0.0585, 0.0603) (0.9618, 0.0769, 0.0783)

n2=50 JEL (0.8904, 0.0495, 0.0509) (0.9336, 0.0590, 0.0603) (0.9786, 0.0776, 0.0784)

n3=50 Boot. (0.8847, 0.0476, 0.0494) (0.9287, 0.0571, 0.0597) (0.9685, 0.0736, 0.0771)

Drei. (0.8695, 0.0287, 0.0299) (0.9092, 0.0392, 0.0402) (0.9547, 0.0687, 0.0698)
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Table 2.5: θ0 = 0.9317, F1 = N(−3, 1), F2 = Exp(1) and F3 = Cauchy(6, 1)

Nominal 0.9 0.95 0.99

level (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 Normal (0.6518, 0.1680, 0.2409) (0.6805, 0.2001, 0.2844) (0.6895, 0.2630, 0.3702)

n2=15 JEL (0.7987, 0.2013, 0.2317) (0.8382, 0.2461, 0.2810) (0.8843, 0.3409, 0.3795)

n3=15 Boot. (0.6627, 0.1628, 0.2276) (0.6911, 0.1941, 0.2707) (0.7028, 0.2551, 0.3497)

Drei. (0.6434, 0.1562, 0.2164) (0.6765, 0.1833, 0.2598) (0.6812, 0.2497, 0.3362)

n1=20 Normal (0.8154, 0.1325, 0.1504) (0.8493, 0.1579, 0.1790) (0.8655, 0.2075, 0.2337)

n2=25 JEL (0.8358, 0.1431, 0.1569) (0.8844, 0.1750, 0.1909) (0.9134, 0.2435, 0.2630)

n3=30 Boot. (0.8215, 0.1261, 0.1451) (0.8528, 0.1502, 0.1735) (0.8708, 0.1975, 0.2270)

Drei. (0.8078, 0.1192, 0.1221) (0.8336, 0.1474, 0.1489) (0.8576, 0.1943, 0.1968)

n1=30 Normal (0.8256, 0.1323, 0.1499) (0.8516, 0.1577, 0.1785) (0.8677, 0.2073, 0.2338)

n2=30 JEL (0.8492, 0.1394, 0.1537) (0.8727, 0.1691, 0.1858) (0.9169, 0.2318, 0.2510)

n3=30 Boot. (0.8376, 0.1265, 0.1452) (0.8596, 0.1507, 0.1734) (0.8712, 0.1981, 0.2262)

Drei. (0.8169, 0.1200, 0.1236) (0.8395, 0.1426, 0.1443) (0.8585, 0.1919, 0.1953)

n1=35 Normal (0.8366, 0.1106, 0.1194) (0.9033, 0.1318, 0.1400) (0.9394, 0.1732, 0.1819)

n2=40 JEL (0.8963, 0.1150, 0.1186) (0.9262, 0.1396, 0.1449) (0.9535, 0.1908, 0.1975)

n3=45 Boot. (0.8470, 0.1104, 0.1196) (0.9096, 0.1315, 0.1406) (0.9408, 0.1729, 0.1812)

Drei. (0.8271, 0.1002, 0.1043) (0.8861, 0.1231, 0.1257) (0.9317, 0.1659, 0.1675)

n1=50 Normal (0.8587, 0.1056, 0.1130) (0.9095, 0.1258, 0.1325) (0.9537, 0.1654, 0.1716)

n2=50 JEL (0.8989, 0.1083, 0.1106) (0.9447, 0.1309, 0.1348) (0.9619, 0.1775, 0.1830)

n3=50 Boot. (0.8647, 0.1035, 0.1102) (0.9136, 0.1234, 0.1309) (0.9599, 0.1621, 0.1678)

Drei. (0.8495, 0.0869, 0.0895) (0.8902, 0.1179, 0.1193) (0.9477, 0.1489, 0.1497)
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and the differences between these four gradually diminish.

(2) In terms of coverage probabilities, except Dreiseitl’s method, the other three

approaches are very competitive when the populations are of the same kind, but

JEL is the best when θ is close to 0 or 1.

(3) In Tables 2.1-2.3, except the JEL method, the others are often more anti-

conservative than JEL since their lengths are shorter. In Table 2.4 with small

value 0.0454 of θ and Table 2.5 with θ = 0.9317, all methods are clearly anti-

conservative but JEL has best coverage probabilities. As the sample size becomes

large, all methods improve but still remain anti-conservative in Tables 2.4-2.5.

(4) In Tables 2.1-2.5, Dreiseitl’s method always produces shortest length of CIs,

follow by bootstrap method, then normal approximation with jackknife estimator

of variance and JEL.

In summary, in terms of coverage probability, JEL is always the best among

these methods but normal approximation with jackknife estimator of variance is

easy to implement.

2.4 Applications to real data

In this section, we apply our proposed statistical methods to some real examples

in human health research. The first data set we will refer to below is contained in
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Andrew and Herzberg (1985). The second data set was collected from a research

on Alzheimer’s disease (AD), and one can refer to Zhou and Castellucio (2004) and

Koepsell et al. (2008) for more details about this data set.

2.4.1 Chemical and overt diabetes data

Diabetes is a disease which causes the body not to produce or properly use insulin

which is an essential hormone converting sugar, starches and other food into energy.

Diabetes is destructive. By destroying circulation to the heart, brain and kidneys,

it increases the risk of heart attack, stroke and kidney failure. Therefore, it is

important to correctly diagnose diabetes.

Basically, diabetes mellitus could be diagnosed using fasting plasma glucose

level, or plasma glucose after a 75g oral glucose load as in a glucose tolerance test,

or insulin resistance ability.

The set of data considered here was once used by Reaven and Miller (1979)

to examine the relationship between chemical subclinical and overt non-ketotic

diabetes in 145 non-obese adults. The subjects were clinically classified into three

populations, with 76 being normal, 36 diagnosed as chemical diabetic and 33 overt

diabetes. Five measurements for each individual were included in the data. They

are relative weight, glucose intolerance, insulin response to oral glucose, insulin

resistance (IR) and fasting plasma glucose (PLG), of which the IR was measured
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Table 2.6: PLG, θ̂ = 0.7299

Level 0.9 0.95 0.99

JEL (0.6376, 0.8127) (0.6180, 0.8282) (0.5775, 0.8585)

Norm. (0.6441, 0.8157) (0.6276, 0.8322) (0.5955, 0.8643)

Dre. (0.6475, 0.8123) (0.6317, 0.8281) (0.6009, 0.8589)

Boot. (0.6447, 0.8217) (0.6277, 0.8387) (0.5946, 0.8718)

Table 2.7: IR, θ̂ = 0.7161

Level 0.9 0.95 0.99

JEL (0.6198, 0.7942) (0.5991, 0.8074) (0.5665, 0.8320)

Norm. (0.6296, 0.8027) (0.6130, 0.8192) (0.5806, 0.8516)

Dre. (0.6335, 0.7987) (0.6177, 0.8145) (0.5868, 0.8455)

Boot. (0.6231, 0.8008) (0.6061, 0.8178) (0.5728, 0.8511)

by the steady state plasma glucose (SSPG) determined after chemical suppression

of endogenous insulin secretion.

We will apply our proposed methods, together with bootstrap calibration and

normality based on Dreiseitl’s variance estimator to construct CIs for the parameter

we are interested in and check if the subjects were correctly classified. Here, as an

illustration, we only consider the data sets of two symptoms: the PLG and the IR.

First, let X, Y and Z be the PLG measured in the normal, chemical diabetic

and overt diabetic groups, respectively. Usually, X < Y < Z. so it is interesting to

estmate P (X < Y < Z), the probability that the level of glucose in the chemical

diabetic group is higher than that in the normal group but lower than that in the
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Table 2.8: MMSE, θ̂ = 0.3644

Level 0.9 0.95 0.99

JEL (0.3448, 0.3838) (0.3410, 0.3875) (0.3336, 0.3947)

Norm. (0.3449,0.3840) (0.3412, 0.3877) (0.3338, 0.3950)

Boot. (0.3450, 0.3824) (0.3414, 0.3860) (0.3343, 0.3930)

overt diabetic group. An estimator of θ = P (X < Y < Z) is given by θ̂ = 0.7299.

Employing the four methods to the data, the 90%, 95% and 99% CIs for θ are

presented in Table 2.6.

Next, if X, Y and Z are respectively the IR measured in the normal, chemical

diabetic and overt diabetic groups, then the corresponding estimator of P (X <

Y < Z) is θ̂ = 0.7161. The 90%, 95% and 99% CIs for θ obtained via the four

methods are respectively given in Table 2.7.

2.4.2 Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of dementia, and generally it

is diagnosed in people over 65 years of age. In this example, all subjects were 65

years or above and had taken the Mini-Mental State Examination (MMSE) within

2 years before death. The examination was based on the extent of neuritic plaques

and neurofibrillary tangles, the hallmarks of AD, at brain autopsy. Based on the

frequency of both plaques and tangles in the neocortex, the patients were classified

into one of the three different disease classes. Class I include subjects with a high
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likelihood of dementia being due to AD, Class II include subjects with intermediate

likelihood of dementia, and Class III include subjects with low likelihood. Each

patient underwent the test and a continuous test result was recorded thereafter.

Totally, 3728 results were included in this analysis where the sample size for the

three individual classes are 2283, 850 and 595, respectively.

We are interested in how accurately the test results are able to classify patients

into the three categories. Let let X, Y and Z be the MESS results reported in

Class I, II and III, respectively. The estimated value of θ = P (X < Y < Z), the

probability that the frequency of both plaques and tangles in the neocortex in class

II is higher than that in class I but lower than that in class III, is θ̂ = 0.3644. This

value indicates that the probability that the test correctly classifies three random

subjects from the population, each from one of the three stages of AD, is about 36

percent. Such an overall accuracy measure can then be compared to other tests

with similar diagnostic aims. The 90%, 95% and 99% CIs for θ obtained via the four

methods except Dreiseitl’s are provided in Table 2.8, since the sample sizes here

are quite large and Dreiseitl’s is too computationally expensive and less efficient in

doing inference.

2.4.3 Summary

In summary, from above analysis, we can conclude that, compared to the naive

test with θ0 = 1/6, the test based on all four methods here are efficient in terms
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of the value of θ as well as confidence interval, that is, the tests are statistically

significant.

2.5 Conclusion

In this chapter, we proposed two statistical methods, normal approximations and

the JEL method, to make statistical inference for the volume under the three-class

ROC surface. We used three-sample U -statistics as unbiased estimators of these

volumes and calculated their corresponding jackknifed variances. The normal ap-

proximation was based on the studentized three-sample U -statistics with jackknife

estimator of variance. The computation involved here is not much complex, there-

fore the U -statistics methodology is applicable. Performance of these two proposed

methods is compared with some existing techniques such as bootstrap calibration

and normality based on Dreiseitl’s variance estimator. The simulation studies sug-

gest that our methods produce very nice statistical results. Both the bootstrap and

Dreiseitl’s methods are quite computationally intensive, and they are even worse

as the sample sizes become large. However, our proposed methods largely relieve

computation burden and run significantly faster than the other two as observed in

simulation studies as well as real data analysis. Although we can not theoretically

show the inequality of the two variance estimators based on jackknife and Dreiseitl’s

methods, interestingly, our auxiliary numerical simulations reveal that Dreiseitl’s

variance estimate always tends to be smaller than the jackknife one. Further, we
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are only interested in statistical properties of the global index θ = P (X < Y < Z),

and for this reason we do not touch much of the detailed three-class classification

problems.

2.6 Proof of Theorem 2.2.2

In this section, we provide the technique details to prove Theorem 2.2.2. Before

proceeding to the proof of Theorem 2.2.2, we list some results that will be used.

Referring to the proofs below, without loss of generality, we may assume that

n1 ≤ n2 ≤ n3 thereafter.

As a direct consequence of Theorem 2.2.1, we have

Un − θ0 = Op(n
−1/2
1 ). (2.16)

The following Lemma guarantees the existence and uniqueness of the solution

to equation (2.11).

Lemma 2.6.1 Suppose that σ2
1,0,0 >0, σ

2
0,1,0 >0, σ

2
0,0,1 >0, lim infn→∞(n1/n2) > 0,

and lim infn→∞(n2/n3) > 0. Then as n1 → ∞, we have

P

{
min
1≤i≤n

(V̂i − EV̂i) < 0 < max
1≤i≤n

(V̂i − EV̂i)

}
−→ 1.

Proof. It suffices to prove that

P

{
min
1≤i≤n

(V̂i − EV̂i) ≥ 0

}
→ 0 and P

{
max
1≤i≤n

(V̂i − EV̂i) ≤ 0

}
→ 0.
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We only prove the second one since the first one can be done similarly.

Let ξni = ψ(V̂i − EV̂i), where ψ(x) is nondecreasing, twice differentiable with

bounded first and second derivatives such that

ψ(x) =



0, if x ≤ 0,

a(x), if 0 < x < δ,

1, if x ≥ δ.

with 0 < a(x) < 1 for 0 < x < δ. Then similar to the proof in Jing et al. (2009),

we can show that

P

{
max
1≤i≤n

(V̂i − EV̂i) ≤ 0

}
≤
∑n

i=1 Var(ξni) +
∑

i ̸=j Cov(ξni, ξnj)

(
∑n

i=1Eξni)
2

,

and it suffices to show that, for any i, j ∈ {1, ..., n} and i < j,

(i) Var(ξni) ≤ 1; (ii) lim
n→∞

Eξni ≥ c > 0; (iii) Cov(ξni, ξnj)
n→∞−→ 0.

Proof of (i). This is obvious since Var(ξni) ≤ Eξ2ni ≤ 1;

Proof of (ii). From (2.3), simple calculations show that

Vi,0,0 − θ = h1(Xi)− θ +
1

n2n3

n2∑
j=1

n3∑
k=1

[I{Xi<Yj<Zk} − h1(Xi)];

V0,j,0 − θ = h2(Yj)− θ +
1

n1n3

n1∑
i=1

n3∑
k=1

[I{Xi<Yj<Zk} − h2(Yj)];

V0,0,k − θ = h3(Zk)− θ +
1

n1n2

n1∑
i=1

n2∑
j=1

[I{Xi<Yj<Zk} − h3(Zk)],

where

h1(x) = P (x < Y < Z),

h2(y) = P (X < y < Z), h3(z) = P (X < Y < z).
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From (2.13) and (2.14), for i : 1 ≤ i ≤ n1,

V̂i − EV̂i =
n

n− 3

[
n− 1

n1

(Vi,0,0 − θ)− 2(Un − θ)

]
=

n(n− 1)

n1(n− 3)
[h1(Xi)− θ]− 2n

n− 3
(Un − θ)

+
n(n− 1)

(n− 3)n1n2n3

n2∑
j=1

n3∑
k=1

[I{Xi<Yj<Zk} − h1(Xi)]

d
= g1(Xi) +R

(1)
ni ,

where

g1(x) =
n(n− 1)

n1(n− 3)
[h1(x)− θ].

By Taylor expansion, we have

ξni = ψ(V̂i − EV̂i) = ψ[g1(Xi) +R
(1)
ni ]

= ψ[g1(Xi)] + ψ′[g1(Xi)]R
(1)
ni + ηi(R

(1)
ni )

2,

where |ηi| < C for some constant C. In the sequel, C is always used to denote

positive constant, which may vary on different occasions. Then we have, as n1 →

∞,

Eξni = E{ψ[g1(Xi)]}+ E{ψ′[g1(Xi)]R
(1)
ni }+ E[ηi(R

(1)
ni )

2] (2.17)

= E{ψ[g1(Xi)]}+ E[ηi(R
(1)
ni )

2]

→ E{ψ[g1(Xi)]}
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since

E(R
(1)
ni )

2 ≤ 2

(
n(n− 1)

n1(n− 3)

)2

· 1

n2n3

E[I{Xi<Yj<Zk} − h1(Xi)]
2 (2.18)

+8

(
n

n− 3

)2

(Un − θ)2

≤ C(n2n3)
−1(θ + σ2

1,0,0) + o(n−2
1 )

→ 0

But Eg1(Xi) = 0 and σ2
1,0,0 > 0, we get that P{g1(Xi) > 0} > 0, which in turn

implies that Eψ[g1(Xi)] > 0.

Similarly, we can show that Eψ[g2(Yj)] > 0 and Eψ[g3(Zk)] > 0 for j = n1 +

1, . . . , n1 + n2 and k = n1 + n2 + 1, . . . , n, respectively. This proves (ii).

Proof of (iii). By Taylor expansion,

ψ(V̂i − EV̂i) =



ψ[g1(Xi)] + λ1iR
(1)
ni , if 1 ≤ i ≤ n1,

ψ[g2(Yi−n1)] + λ2iR
(2)
ni , if n1 + 1 ≤ i ≤ n1 + n2,

ψ[g3(Zi−n1−n2)] + λ3iR
(3)
ni , if n1 + n2 + 1 ≤ i ≤ n.

where |λli| ≤ C for l = 1, 2, 3. Therefore, if 1 ≤ i, j ≤ n1, as n1 → 0, we have

E[ξniξnj] = E{(ψ[g1(Xi)] + λ1iR
(1)
ni )(ψ[g1(Xj)] + λ1jR

(1)
nj )} (2.19)

= E{ψ[g1(Xi)]ψ[g1(Xj)]}+ E{λ1iR(1)
ni ψ[g1(Xj)]}

+E{λ1jR(1)
nj ψ[g1(Xi)]}+ E{λ1iλ1jR(1)

ni R
(1)
nj }

→ E{ψ[g1(Xi)]ψ[g1(Xj)]}

= E{ψ[g1(Xi)]} · E{ψ[g1(Xj)]},
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since in virtue of (2.18), the definition of ψ(x) and Cauchy inequality, we have

|E{λ1iR(1)
ni ψ[g1(Xj)]}| ≤ CE|R(1)

ni | ≤ C

√
E(R

(1)
ni )

2 → 0,

similarly, |E{λ1jR(1)
nj ψ[g1(Xi)]}| → 0, and |E[R(1)

ni R
(1)
nj ]| ≤

√
E(R

(1)
ni )

2E(R
(1)
nj )

2 → 0.

Now the fact Cov(ξni, ξnj) = E(ξniξnj) − E(ξni)E(ξnj), together with (2.17) and

(2.19) lead to Cov(ξni, ξnj) → 0.

The other cases can be proven similarly without difficulty. This concludes the

proof of (iii). �

Lemma 2.6.2 Let Sn = n−1
∑n

i=1(V̂i − EV̂i)
2. Under the conditions of Lemma

2.6.1, as n1 → ∞, Sn = nS2
n1,n2,n3

+ o(1) a.s..

Proof. From (2.13) and (2.14), for 1 ≤ i ≤ n1, we have

V̂i − EV̂i = V̂i −
n(n− 1)

n1(n− 3)
Un +

n(n− 2n1 − 1)

n1(n− 3)
(Un − θ)

=
n(n− 1)

n1(n− 3)
(Vi,0,0 − Un) +

n(n− 2n1 − 1)

n1(n− 3)
(Un − θ),

then, together with (2.3), we have

n1∑
i=1

(V̂i − EV̂i)
2 =

[
n(n− 1)

n1(n− 3)

]2 n1∑
i=1

(Vi,0,0 − Un)
2

+

[
n(n− 2n1 − 1)

n1(n− 3)

]2
n1(Un − θ)2.

Similarly, we have

n1+n2∑
i=n1+1

(V̂i − EV̂i)
2 =

[
n(n− 1)

n2(n− 3)

]2 n2∑
j=1

(V0,j,0 − Un)
2

+

[
n(n− 2n2 − 1)

n2(n− 3)

]2
n2(Un − θ)2,
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and

n∑
i=n1+n2+1

(V̂i − EV̂i)
2 =

[
n(n− 1)

n3(n− 3)

]2 n3∑
k=1

(V0,0,k − Un)
2

+

[
n(n− 2n3 − 1)

n3(n− 3)

]2
n3(Un − θ)2.

Combining the previous three equalities and using (2.16), we get

Sn =
1

n

n∑
i=1

(V̂i − EV̂i)
2

= n

(
n− 1

n− 3

)2
[
1

n2
1

n1∑
i=1

(Vi,0,0 − V ·,0,0)
2

+
1

n2
2

n2∑
j=1

(V0,j,0 − V 0,·,0)
2 +

1

n2
3

n3∑
k=1

(V0,0,k − V 0,0,·)
2

]

+
n

(n− 3)2

[
n− 2n1 − 1

n1

+
n− 2n2 − 1

n2

+
n− 2n3 − 1

n3

]
(Un − θ)2

= nV̂ar(jack) + o(1) a.s.

= nS2
n1,n2,n3

+ o(1) a.s. (2.20)

from which the lemma follows. �

Lemma 2.6.3 Let

H̃n = max
1≤i≤n1<j≤n1+n2<k≤n

|h(Xi;Yj;Zk)|

and assume that Eh2(X1;Y1;Z1) <∞. Then under the conditions of Lemma 2.6.1,

H̃n = o(n1/2) a.s..

Proof. By (3.5), we can rewrite

H̃n = max
1≤i≤n1<j≤n1+n2<k≤n

|h(Xi;Yj;Zk)| = max
1≤i<j<k≤n

|K̃(Zi,Zj,Zk)|,
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where

K̃(Zi,Zj,Zk) = h(Xi;Yj−n1 ;Zk−n1−n2)I{1≤i≤n1<j≤n1+n2<k≤n}.

Then it is equivalent to prove that

n−1/2 max
1≤i<j<k≤n

|K̃(Zi,Zj,Zk)| = o(n1/2) a.s.

Note that

n−1/2 max
1≤i<j<k≤n

|K̃(Zi,Zj,Zk)|

= n−1/2 max
1<k≤n

{max
j<k

{max
i<j

|K̃(Zi,Zj,Zk)|}}

= n−1/2 max
1<k≤n

√
k{k−1/2max

j<k
{max

i<j
|K̃(Zi,Zj,Zk)|}},

so it suffices to prove that

n−1/2 max
1<j<n

{max
i<j

|K̃(Zi,Zj,Zn)|} → 0 a.s.,

but

n−1/2 max
1<j<n

{max
i<j

|K̃(Zi,Zj,Zn)|}

= n−1/2 max
1<j<n

√
j{j−1/2max

i<j
|K̃(Zi,Zj,Zn)|}

≤ j−1/2max
i<j

|K̃(Zi,Zj,Zn)|,

hence, we only need to show that

(n− 1)−1/2 max
1≤i≤n−1

|K̃(Zi,Zn−1,Zn)| → 0 a.s.

Now by a chaining argument, it suffices to show that

2−n/2 max
1≤i≤2n

|K̃(Zi,Z2n ,Z2n+1)| = o(n1/2) a.s.
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However, using Chebyshev inequality, for each ε > 0, we have

∞∑
n=1

P

{
max
1≤i≤2n

|K̃(Zi,Z2n ,Z2n+1)| ≥ ε22
n

}
≤

∞∑
n=1

2nP
{
|K̃(Z1,Zn1+1,Zn1+n2+1)| ≥ ε2n/2

}
=

∞∑
n=1

∞∑
m=n

2nP{2(m+1)/2 > ε−1|K̃(Z1,Zn1+1,Zn1+n2+1)| ≥ 2m/2}

=
∞∑

m=1

m∑
n=1

2nP{2(m+1)/2 > ε−1|K̃(Z1,Zn1+1,Zn1+n2+1)| ≥ 2m/2}

≤
∞∑

m=1

2m+1P{2(m+1)/2 > ε−1|K̃(Z1,Zn1+1,Zn1+n2+1)| ≥ 2m/2}

≤ 2ε−2EK̃2(Z1,Zn1+1,Zn1+n2+1) <∞.

which, by the Borel-Cantelli Lemma, in turn implies that

2−n/2 max
1≤i≤2n

|K̃(Zi,Z2n ,Z2n+1)| = o(n1/2) a.s.,

therefore the proof is completed. �

The following corollary follows directly from Lemma 2.6.3.

Corollary 2.6.1 If Hn = max
1≤i≤n1<j≤n1+n2<k≤n

I{Xi<Yj<Zk}, then Under the condi-

tions of Lemma 2.6.1, Hn = o(n1/2) a.s.

Remark 2.6.1 In fact, since

max
1≤i≤n1<j≤n1+n2<k≤n

I{Xi<Yj<Zk} ≤ 1,

the conclusion Hn = o(n1/2) is a direct consequence of n−1/2Hn ≤ n−1/2 → 0 as

n→ ∞.
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Lemma 2.6.4 Let Qn = max
1≤i≤n

|V̂i − θ|. Under the conditions of Lemma 2.6.1,

Qn = o(n1/2) a.s. and n−1
∑n

i=1 |V̂i − EV̂i|3 = o(n1/2) a.s..

Proof. Noting that lim
n→∞

(n1/n2) > 0 and lim
n→∞

(n2/n3) > 0 imply n2 ≤ Cn1 and

n3 ≤ C ′n2, respectively, for some positive constants C and C ′. For any i : 1 ≤ i ≤

n1, by (2.3), (2.13) and (2.14), we have

|V̂i − EV̂i| =

∣∣∣∣ n(n− 1)

n1(n− 3)
Vi,0,0 −

n(n− 2n1 − 1)

n1(n− 3)
θ

∣∣∣∣
=

∣∣∣∣∣ n

n− 3

n− 1

n1

n2

n3

n2∑
j=1

n3∑
k=1

I{Xi<Yj<Zk}

− 2n

n− 3

1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I{Xi<Yj<Zk} −
n(n− 2n1 − 1)

n1(n− 3)
θ

∣∣∣∣∣
≤ n

n− 3

n− 1

n1

Hn +
2n

n− 3
Hn +

n

n− 3

n− 2n1 − 1

n1

|θ|

≤ 4(CC ′ + 1)Hn + 4Hn + 4C|θ|.

Similarly, for any n1 + 1 ≤ i ≤ n1 + n2 and n1 + n2 + 1 ≤ i ≤ n, we also have

|V̂i−EV̂i| ≤ 4(CC ′+1)Hn+4Hn+4C|θ|. Combining the three parts together, we

get that

|V̂i − EV̂i| ≤ 4(CC ′ + 2)Hn + 4C|θ|

holds for any 1 ≤ i ≤ n, and hence

Qn = o(n1/2) a.s. (2.21)

follows from Hn = o(n1/2).
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For the second assertion, From Theorem 2.2.1 and Lemma 2.6.2, we have

Sn = nS2
n1,n2,n3

+ o(1) =
n

n1

σ2
1,0,0 +

n

n2

σ2
0,1,0 +

n

n3

σ2
0,0,1

≤ (1 + C + CC ′)σ2
1,0,0 + (2 + C ′)σ2

0,1,0 + 3σ2
0,0,1 + o(1) a.s.

Now, together with the first assertion, with probability 1

1

n

n∑
i=1

|V̂i − EV̂i|3 ≤ 1

n

n∑
i=1

|V̂i − EV̂i|2 ×Qn

≤ [(1 + C + CC ′)σ2
1,0,0 + (2 + C ′)σ2

0,1,0 + 3σ2
0,0,1 + o(1)]

×o(n1/2)

= o(n1/2).

which completes the proof. �

Proof of Theorem 2.2.2. By Lemma 2.6.1, the solution to equation (2.11)

exists and is unique. We next show that this solution γ satisfies |γ| = Op(n
−1/2).

Noting that, (2.11) together with the fundamental inequality |x ± y| ≥ |x| − |y|

leads to

0 = |f(γ)| =
1

n

∣∣∣∣∣
n∑

i=1

(V̂i − EV̂i)− γ

n∑
i=1

(V̂i − EV̂i)
2

1 + γ(V̂i − EV̂i)

∣∣∣∣∣
≥ |γ|Sn

1 + |γ|Qn

− 1

n

∣∣∣∣∣
n∑

i=1

V̂i − θ0

∣∣∣∣∣ .
By (2.16), the second term is Op(n

−1/2
1 ). By (2.20), Sn = nS2

n1,n2,n3
+ o(1) a.s., it

follows that

|γ|(1 + |γ|Qn)
−1 = Op(n

−1/2),
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hence by (2.20) again, |γ| = Op(n
−1/2). Further, if let βi = γ(V̂i − EV̂i), then

max
1≤i≤n

|βi| = |γ|max
1≤i≤n

|V̂i − EV̂i|

= Op(n
−1/2)o(n1/2) = op(1). (2.22)

On the one hand, expanding (2.11), we get

0 = f(γ)

=
1

n

n∑
i=1

V̂i − θ0 − γSn +
1

n

n∑
i=1

(V̂i − EV̂i)β
2
i

1 + βi
,

where the last term is bounded by

1

n

n∑
i=1

|V̂i − EV̂i|3

|1 + βi|
γ2 = o(n1/2)Op(n

−1)Op(1) = op(n
−1/2).

Therefore, we may write

γ =

(
1

n

n∑
i=1

V̂i − θ0

)
S−1
n + τ = (U − θ0)S

−1
n + τ (2.23)

where |τ | = op(n
−1/2).

On the other hand, in virtue of (2.22) and by a Taylor expansion, we have

log(1 + βi) = βi − β2
i /2 + αi, where for some finite A > 0,

P{|αi| ≤ A|βi|3, 1 ≤ i ≤ n} → 1

as n→ ∞. Then plugging (2.23) and (2.10) into (2.9), we get

−2logR(θ0) = −2
n∑

i=1

log(npi) = 2
n∑

i=1

log(1 + βi)

= 2nγ(U − θ0)− nSnγ
2 + 2

n∑
i=1

αi

=
n(U − θ0)

2

Sn

− nSnτ
2 + 2

n∑
i=1

αi,
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where

| − nSnτ
2| = n(nS2

n1,n2,n3
+ o(1))op(n

−1) = op(1),

|
n∑

i=1

αi| ≤ A|γ|3
n∑

i=1

|V̂i − θ0|3 = Op(n
−3/2)o(n3/2) = op(1),

and by Theorem 2.2.1 and Lemma 2.6.2, as n→ ∞,

n(U − θ0)
2

Sn

d−→ χ2
1.

Hence, from Slutsky’s theorem, we have −2logR(θ0) →d χ
2
1, which concludes

the proof of Theorem 2.2.2.
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Chapter 3

Interval Estimation of the

Hypervolume under ROC

Manifold

3.1 Introduction

The Receiver Operating Characteristic (ROC) curves and the Area Under the ROC

Curve (AUC) (Zhou et al. (2002)) are the standard methods to evaluate the ac-

curacy of numerical diagnostic tests for two-category classification (e.g. diseased

and non-diseased). Many real applications involve more than two categories. As

will be shown in the tissue biomarker examples in Section 3.4, it is sometimes more

relevant to differentiate multiple stages or subtypes of a disease rather than to
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merely distinguish between a disease or non-disease state. Thus, an extended ROC

analysis capable of multi-category classification is in demand.

Scurfield (1996) brought out the mathematical definition of proper ROC mea-

sures for more than two categories. The ROC curves are extended to ROC surfaces

for three-category classification and ROC manifolds for multi-category classifica-

tion. The corresponding extensions of AUC are Volume under the ROC Surface

(VUS) and Hypervolume under the ROC Manifold (HUM), respectively. Moss-

man (1999) introduced the concept of three-way ROC analysis into medical stud-

ies. Nakas and Yiannoutsos (2004) considered the estimation of VUS for ordered

three-category classification by using the U -statistic theory. Li and Fine (2008)

further proposed the estimation of HUM for unordered classification by following

the probabilistic interpretation and applied the HUM as a model selection criterion

in microarray study.

The empirical likelihood method was first introduced to construct confidence

intervals for population means (Owen (1988), Owen (1990)), which enjoys many

advantages over other nonparametric methods, such as automatic determination of

the confidence region by the sample and transformation respecting, easy incorpo-

ration of side information and Bartlete correctability.

In this chapter, we focus on inferences of HUM for a k-category classification.

As is shown in Li and Fine (2008), HUM may be interpreted as the probability

P (X1 < X2 < ... < Xk),
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where Xi is a random variable standing for the test value for a subject randomly

selected from the ith category. We assume that Xj tends to take a higher value

than Xi when j > i in the above expression and the probability is the largest

among all P (Xt1 < Xt2 < ... < Xtk) where (t1, t2, · · · , tk) is any permutation of

(1, 2, · · · , k). HUM reduces to AUC when k = 2 and to VUS when k = 3. A test

with a larger HUM value would be preferred since it could correctly sort out the

order of k test values each from one of the k categories with greater probability.

The estimation of HUM can be carried out straight forwardly by constructing ap-

propriate k-sample U -statistics. Asymptotic results for U -statistic could be applied

in this case to provide confidence interval based inferences for HUM. However, it

is noticed from our extensive numerical simulations that such an asymptotic con-

fidence interval may not achieve the nominal coverage probability for a sample of

small or moderate size. One alternative is to use a bootstrap resampling technique

which usually requires intensive computation. One may also try to apply the usual

empirical likelihood method to the k-sample U -statistics under consideration, but

the computation burden will be very heavy as we need to solve several simultaneous

nonlinear equations. One can also refer to Section 1.2.1 for explanations.

Therefore, we propose a Jackknife empirical likelihood (JEL) approach to over-

come the above-mentioned difficulty. JEL introduced by Jing et al. (2009) is a

fantastic marriage of two popular nonparametric approaches, jackknife and empir-

ical likelihood method. The key idea of JEL is to turn the statistic of interest into

a sample based on jackknife pseudo-values and apply Owen’s EL method for the
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mean of those jackknife pseudo-values. As we will show, JEL maintains satisfac-

tory small-sample accuracy, and also largely relieves the computation burden since

we simply need to solve only one single nonlinear equation instead of many. To

illustrate the procedure of JEL, we describe it for general one-sample U -statistics

as follows.

Let Z1, ...,Zn be independent (not necessarily identically distributed) r.v’s and

Tn = T (Z1, ...,Zn) =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , ..., Xim)

be a one-sample U -statistic of degree m as an unbiased estimator of the parameter

θ. Define the jackknife pseudo-values by

V̂i = nTn − (n− 1)T
(−i)
n−1 ,

where

T
(−i)
n−1 =

(
n− 1

m

)−1 (−i)∑
(n−1,m)

h(Zj1 , ...,Zjm),

here and after,
∑(−i)

(n−1,m) denotes the summation over all possible indices (j1, ..., jm)

chosen from (1, ..., i−1, i+1, ..., n), subject to the restriction 1 ≤ j1 < ... < jm ≤ n.

The jackknife estimator of θ is defined to be the average of the pseudo-values:

T̂n(jack) ∼= n−1

n∑
i=1

V̂i.

Let p = (p1, ..., pn) be a probability vector, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for

1 ≤ i ≤ n. Let Gp(x) =
∑n

i=1 piI{V̂i≤x} be the d.f. which assigns probability pi to



Chapter 3: Interval Estimation of the Hypervolume under ROC Manifold 59

the ith pseudo-value V̂i and consider the mean functional ϑ(Gp) =
∑n

i=1 piV̂i. The

JEL, evaluated at θ, is

L(θ) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θp

}

with θp =
∑n

i=1 piEV̂i.

Since
∏n

i=1 pi, restricted to the constraint
∑n

i=1 pi = 1, attains its maximum

n−n at pi = n−1, we define the JEL ratio at θ by

R(θ) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi(V̂i − EV̂i) = 0

}
. (3.1)

Using Lagrange multiplier methods, when

min
1≤i≤n

(V̂i − EV̂i) < 0 < max
1≤i≤n

(V̂i − EV̂i),

the above maximum is attained at

pi =
1

n
· 1

1 + γ(V̂i − EV̂i)
, (3.2)

where γ satisfies

f(γ) ≡ 1

n

n∑
i=1

V̂i − EV̂i

1 + γ(V̂i − EV̂i)
= 0. (3.3)

After substituting the pi’s into (3.1) by those obtained in (3.2) and taking the

logarithm of R(θ), we get the nonparametric jackknife empirical log-likelihood ratio

logR(θ) = −
n∑

i=1

log{1 + γ(V̂i − EV̂i)}.
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If one can find the asymptotic distribution of the jackknife empirical log-likelihood

ratio, a (1−α)-level confidence interval for θ can be then constructed. The superi-

ority of JEL over the usual empirical likelihood is apparent, since the optimization

problem becomes under linear constraints only.

In Section 3.2, we provide our methodology for making statistical inferences for

HUM. Necessary implementation procedures and key technical results are included.

In Section 3.3, we conduct extensive numerical studies to assess the performance

of our proposed methods. In Section 3.4, a real example is analyzed to illustrate

our methods. We offer some concluding remarks in Section 3.6.

3.2 Methodology and results

3.2.1 Asymptotic Normal approximations

Let (X1,1, ..., X1,n1), (X2,1, ..., X2,n2),...,(Xk,1, ..., Xk,nk
) be samples from k different

populations for X1, X2, · · ·Xk, each with d.f.’s F1, ..., Fk, respectively. In practice,

these observations could be the diagnostic test results for subjects from the k

categories. Denote n =
∑k

i=1 ni to be the total sample size. We usually assume

that these k samples are independent.

To estimate the parameter of interest, we may consider a U -statistic of degree
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(1, ..., 1) with a kernel h(x1; ...; xk),

Un =
1∏k

j=1 nj

n1∑
i1=1

...

nk∑
ik=1

h(X1,i1 ; ...;Xk,ik),

which is consistent and unbiased for θ = Eh(X1; ...;Xk). In our problem of esti-

mating HUM, we choose h(x1; ...; xk) to be the indicator function I{x1<...<xk} for

estimating the parameter θ = P (X1,1 < ... < Xk,1).

Denote σ2 = E(Un − θ)2. We have a central limit theorem (CLT) for Un, i.e.,

(Un − θ)/σ →d N(0, 1) as min(n1, ..., nk) → ∞, where “→d” means convergence in

distribution.

Since σ2 is usually unknown, we need to replace σ2 by its estimator. A consistent

estimator σ̂2 of σ2 can be constructed as follows. Denote U
(t,−i)
nt−1 as the U-statistic

after deleting Xt,i (the i-th datum point in the t-th sample) for t = 1, 2, ..., k and

i = 1, . . . , nt, given by(
(nt − 1)

k∏
j=1,j ̸=t

nj

)−1 n1∑
i1=1

· · ·
nt∑

it=1,it ̸=i

· · ·
n3∑

ik=1

I{X1,i1
<...<Xt,it<...<Xk,ik

},

and for the t-th sample

V
(−i)
t = ntUn − (nt − 1)U

(t,−i)
nt−1 .

Some simple calculations show that, for t = 1, ..., k, V
(−i)

t = Un, where V
(−i)

t is

the average of V
(−i)
t in the t-th sample. We may then propose a consistent estimator

of Var(Un) as

σ̂2 =
k∑

t=1

1

nt(nt − 1)

nt∑
i=1

(V
(−i)
t − V

(−i)

t )2.
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To state the main results for asymptotic approximation, we define

σ2
t = Var(gt(Xt1))

gt(x) = P (X1,1 < · · · < Xt−1,1 < x < Xt+1,1 < · · · < Xk,1)− θ.

Theorem 3.2.1 Assume that for t = 1, . . . , k, σ2
t > 0, and let S2

nk
=
∑k

t=1 n
−1
t σ2

t .

Then, we have

(Un − θ)/Snk

d−→ N(0, 1) as min(n1, . . . , nk) → ∞,

and

σ̂2 − S2
nk

= op((min(n1, . . . , nk))
−1).

One may refer to p151-153 of Koroljuk and Borovshich (1994) for a proof of

this theorem. By Theorem 3.2.1, we have a CLT for the Studentized Un, i.e.,

(Un − θ)/σ̂ →d N(0, 1)

as min(n1, . . . , nk) → ∞. This enables us to construct a 100(1− α)% level asymp-

totic confidence interval for θ as

(Un − zα/2σ̂, Un + zα/2σ̂). (3.4)

3.2.2 JEL for the k-sample U-statistic Un

To apply the JEL method to the k-sample U -statistic Un in our problem, let

(Z1, · · · ,Zn) = (X1,1, · · · , X1,n1 , X2,1, · · · , X2,n2 , ..., Xk,1, · · · , Xk,nk
),
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and re-formulate Un as

Un =

(
n

k

)−1 ∑
1≤i1<i2<...<ik≤n

h̃(Zi1 ,Zi2 , ...,Zik),

where

h̃(Zi1 ,Zi2 , ...,Zik) =

(
n
k

)∏k
j=1 nj

I{X1,i1
<X2,i2−n1

<...<X
k,ik−

∑k−1
j=1

nj
}

for 1 ≤ i1 ≤ n1 < i2 ≤ n1 + n2 < ... ≤
∑k−1

j=1 nj < ik ≤ n, and 0 otherwise.

Similar to the three-sample U -statistics case in Section 2.2.2, for 1 ≤ i ≤ n, we

define

U
(−i)
n−1 = U(Z1, ...,Zi−1,Zi+1, ...,Zn)

=

(
n− 1

k

)−1 (−i)∑
(n−1,k)

h̃(Zi1 ,Zi2 , ...,Zik),

where
∑(−i)

(n−1,k) denotes the summation over all possible indices (i1, ..., ik) chosen

from (1, ..., i− 1, i+ 1, ..., n), subject to the restriction 1 ≤ i1 < ... < ik ≤ n.

It follows that the jackknife pseudo-values are (1 ≤ i ≤ n)

V̂i = nUn − (n− 1)U
(−i)
n−1

= −(k − 1)n

n− k
Un +

n(n− 1)

(n− k)

k∑
t=1

V
(−i)
t

nt

I{
∑t−1

s=0 ns<i≤
∑t

s=1 ns},

whereafter n0 = 0. The jackknife estimate of θ is then Ûn(jack) = n−1
∑n

i=1 V̂i.

Further, one can easily show that Un = Ûn(jack) and

EV̂i =
nθ

n− k

k∑
t=1

n− (k − 1)nt − 1

nt

I{
∑t−1

s=0 ns<i≤
∑t

s=1 ns}.
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Let p = (p1, ..., pn) be a probability vector, Gp be the distribution function which

assigns probability pi to the ith pseudo-value V̂i and consider the mean functional

ϑ(Gp) =
∑n

i=1 piV̂i. The JEL, evaluated at θ, is

L(θ) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θp

}

with θp =
∑n

i=1 piEV̂i, and the JEL ratio at θ is defined by

R(θ) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi(V̂i − EV̂i) = 0

}
. (3.5)

Using the Lagrange multiplier, when

min
1≤i≤n

(V̂i − EV̂i) < 0 < max
1≤i≤n

(V̂i − EV̂i),

the maximum in (3.5) is attained at

p̂i =
1

n
· 1

1 + γ(V̂i − EV̂i)
(3.6)

where γ satisfies

f(γ) ≡ 1

n

n∑
i=1

V̂i − EV̂i

1 + γ(V̂i − EV̂i)
= 0. (3.7)

After substituting the p̂i’s into (3.5) and taking the logarithm of R(θ), we arrive

at the following nonparametric jackknife empirical log-likelihood ratio

logR(θ) = −
n∑

i=1

log{1 + γ(V̂i − EV̂i)}.

The next theorem states that Wilks’ theorem holds for Un. Its proof is deferred

to Section 3.6.
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Theorem 3.2.2 Assume that for t = 1, ..., k, σ2
t > 0 and for t = 2, ..., k,

0 < lim
n→∞

(nt−1/nt) ≤ lim
n→∞

(nt−1/nt) <∞.

Then, as min(n1, ..., nk) → ∞, at the true value θ0, we have

−2logR(θ0)
d−→ χ2

1.

From Theorem 3.2.2, one can construct an approximate 100(1−α)% level confidence

interval for θ0 as

Θc = {θ : −2logR(θ) ≤ c}, (3.8)

where c is chosen to satisfy P (χ2
1 ≤ c) = 1− α.

3.3 Simulation study

In this section, we conduct simulation studies to investigate and compare the per-

formance of JEL, normal approximation (Norm.) and bootstrap calibration of

normal approximation (Boot.) in the construction of confidence intervals for θ.

We use the three criteria (coverage probability, average length of confidence inter-

vals and average length conditional on coverage) proposed in Section 2.3 to assess

the performance of each method.

In each experiment, we generate L sets of four samples (j = 1, . . . , L)

{X(j)
1 , . . . , X(j)

n1
}, {X(j)

1 , . . . , X(j)
n2
}, {X(j)

1 , . . . , X(j)
n3
} and {X(j)

1 , . . . , X(j)
n4
},
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Table 3.1: F1 = N(0, 1), F2 = N(6, 1), F3 = N(9, 1), F4 = N(12, 1) and

θ0 = 0.9662

Nominal Level 0.9 0.95 0.99

Size Methods (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 JEL (0.809, 0.0902, 0.1015) (0.884, 0.1098, 0.1191) (0.917, 0.1507, 0.1613)

n2=15 Norm. (0.759, 0.0821, 0.0998) (0.794, 0.0978, 0.1169) (0.853, 0.1286, 0.1473)

n3=15 Boot. (0.766, 0.0741, 0.0954) (0.804, 0.0882, 0.0882) (0.868, 0.1158, 0.1476)

n4=15

n1=35 JEL (0.860, 0.0534, 0.0568) (0.914, 0.0648, 0.0682) (0.958, 0.0886, 0.0913)

n2=35 Norm. (0.837, 0.0518, 0.0564) (0.878, 0.0617, 0.0666) (0.909, 0.0812, 0.0861)

n3=35 Boot. (0.859, 0.0514, 0.0568) (0.892, 0.0612, 0.0612) (0.924, 0.0804, 0.0866)

n4=35

n1=45 JEL (0.866, 0.0456, 0.0473) (0.914, 0.0554, 0.0569) (0.976, 0.0757, 0.0769)

n2=45 Norm. (0.846, 0.0447, 0.0474) (0.886, 0.0533, 0.0559) (0.932, 0.0701, 0.0722)

n3=50 Boot. (0.852, 0.0444, 0.0476) (0.903, 0.0529, 0.0529) (0.939, 0.0696, 0.0726)

n4=50

n1=55 JEL (0.885, 0.0432, 0.0447) (0.934, 0.0524, 0.0538) (0.976, 0.0713, 0.0724)

n2=55 Norm. (0.860, 0.0426, 0.0452) (0.907, 0.0507, 0.0535) (0.945, 0.0666, 0.0692)

n3=55 Boot. (0.860, 0.0421, 0.0450) (0.912, 0.0501, 0.0501) (0.957, 0.0658, 0.0691)

n4=55
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from the populations F1, F2, F3 and F4 respectively. For each set, we calculate

(1 − α) level confidence intervals CIj (j = 1, . . . , L), using JEL (3.8), normal

approximation (3.4) and bootstrap calibration (Li and Fine (2008)). Denote the

length of CIj by |CIj|. The Monte Carlo approximation to the coverage probability

(cov.), average length (alen.) and average length conditional on coverage (clen.)

are respectively given by

(i) L−1

L∑
j=1

I{θ∈CIj}, (ii) L
−1

L∑
j=1

|CIj|, (iii) L−1
0

L∑
j=1

|CIj|I{θ∈CIj},

where L0 =
∑L

j=1 I{θ∈CIj}, the total number of confidence intervals covering θ.

In our simulations, various values of the nominal level and sample size were

chosen and each experiment was based on L = 2000 trials with bootstrap resam-

pling size B = 400, generated by routines in R. We only present two cases in this

paper. In the first case, we consider F1 = N(0, 1), F2 = N(6, 1), F3 = N(9, 1), and

F4 = N(12, 1). The true HUM is θ0 = 0.9662 in this case and the simulation results

are shown in Table 3.1. In the second case, we choose exponential distributions

F1 = Exp(8), F2 = Exp(1), F3 = Exp(1/4), and F4 = Exp(1/16). The true HUM

is θ0 = 0.5239 and Table 3.2 contains the simulation results for this case.

The following observation can be made from the two tables.

(1) As the sample size n increases, all methods improve in terms of all three

criteria (i.e., coverage probability, average length and conditional average length),

and the differences among those three methods gradually disappear.
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Table 3.2: F1=Exp(8), F2=Exp(1), F3=Exp(1/4), F4=Exp(1/16), θ0=0.5239

Nominal Level 0.9 0.95 0.99

Size Methods (cover., alen., clen.) (cover., alen., clen.) (cover., alen., clen.)

n1=15 JEL (0.913, 0.3092, 0.3118) (0.961, 0.3701, 0.3719) (0.991, 0.4911, 0.4921)

n2=15 Norm. (0.882, 0.3017, 0.3047) (0.937, 0.3595, 0.3620) (0.988, 0.4725, 0.4736)

n3=15 Boot. (0.912, 0.3091, 0.3117) (0.959, 0.3683, 0.3731) (0.992, 0.4840, 0.4853)

n4=15

n1=35 JEL (0.906, 0.1917, 0.1924) (0.957, 0.2290, 0.2294) (0.992, 0.3024, 0.3026)

n2=35 Norm. (0.891, 0.1905, 0.1912) (0.942, 0.2270, 0.2275) (0.993, 0.2984, 0.2986)

n3=35 Boot. (0.904, 0.1928, 0.1936) (0.960, 0.2297, 0.2303) (0.989, 0.3019, 0.3020)

n4=35

n1=45 JEL (0.903, 0.1603, 0.1608) (0.954, 0.1915, 0.1919) (0.991, 0.2530, 0.2530)

n2=45 Norm. (0.894, 0.1598, 0.1603) (0.944, 0.1904, 0.1908) (0.992, 0.2502, 0.2503)

n3=50 Boot. (0.904, 0.1616, 0.1618) (0.956, 0.1925, 0.1927) (0.991, 0.2530, 0.2531)

n4=50

n1=55 JEL (0.900, 0.1497, 0.1502) (0.951, 0.1788, 0.1791) (0.991, 0.2359, 0.2360)

n2=55 Norm. (0.905, 0.1497, 0.1501) (0.954, 0.1784, 0.1787) (0.988, 0.2344, 0.2346)

n3=55 Boot. (0.902, 0.1514, 0.1519) (0.955, 0.1804, 0.1825) (0.991, 0.2371, 0.2373)

n4=55
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(2) In terms of coverage probability, all three methods are very competitive but

JEL is the best.

(3) In terms of average length, bootstrap calibration seems to be the best,

followed by the normal approximation and then the JEL.

(4) In Table 3.1, the JEL, normal approximations and bootstrap calibration

methods are always anti-conservative. The normal approximation method is always

more anti-conservative than the JEL and bootstrap calibration methods since it has

shorter length of confidence intervals. As n increases, all three methods improve,

but are still anti-conservative. In Table 3.2, the normal approximation method is

always anti-conservative while the other methods are often conservative.

From above observation, we conclude that in terms of finite sample coverage

probabilities, the JEL method is always the best among these three approaches.

3.4 Application to tissue biomarkers of synovitis

We now apply our proposed method to a real example about tissue biomarkers for

synovitis which is known as the medical condition for inflammation of the synovial

membrane. Pessler et al. (2008a and b) examined the differential ability in the

expression of synovial tissue markers. The authors identified eight immunohisto-

chemical synovial biomarkers which may be used to differentiate among several
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Table 3.3: Sample sizes for synovitis data.

Category Sample size

Non-inflamed healthy control (X1) 23

Non-inflamed orthopedic arthropathies (X2) 26

Osteoarthritis (X3) 18

Early undifferentiated arthritis (X4) 10

Rheumatoid arthritis with active disease (X5) 11

Chronic septic arthritis (proven by positive bacterial culture, X6) 24

inflammatory and non-inflammatory arthropathies and normal synovium. We re-

visit their data to illustrate our methods. In this paper the eight biomarkers are

denoted by TM (Total mononuclear cells), Ki67 (proliferating cells), CD15 (neu-

trophilic granulocytes), VWF (vascular endothelium, polyclonal rabbit IgG), CD38

(plasma cells), CD68 (macrophages), CD3 (T cells, antibody clone PS1) and CD20

(B cells, L-26), respectively. Each marker has a continuous score and may be

regarded as a diagnostic test.

The outcome for each patient was verified by review of operative and arthroscopy

reports, pathology reports and the patients’ hospital records. In this data set, the

patient outcome involves six different categories. The sample sizes for these cate-

gories are summarized in Table 3.3. The scientific question is to quantify how often

the tissue marker can differentiate the six categories and find out those desirable

tissue markers with the best diagnostic accuracy.
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To compare across the multiple categories, Pessler et al. (2008a and b) chose to

conduct pairwise ROC analysis for all two-category pairs and reported the pairwise

AUC values accordingly. This approach is rather limited since it produced multiple

AUC values for each of the eight markers. It is difficult to compare the overall

diagnostic accuracy of the markers from such AUC values.

We thus applied the methods introduced in this paper to compute the HUM

values θ. According to its probabilistic interpretation, HUM indicates how often

the marker sorts the six categories correctly and therefore is an appropriate measure

in this case. We note that exact definitions of θ may vary for different markers.

In practice, we should always select the θ which is the largest among all 6! = 720

permutations of the category index (1, 2, 3, 4, 5, 6). The estimated HUM’s and

associated 95% confidence intervals are presented in Table 3.4.

HUM values sort the eight markers for their differentiability among the six

categories. In this case, TM, Ki67, and CD15 are the top three markers with the

highest HUM values. We notice that a naive marker which randomly sorts six

categories only has a HUM value ≈ 0.001. The three markers are 100 times more

accurate than a naive marker. These markers have also been recognized in Pessler

et al. (2008a and b) for having good individual pairwise AUC values. However,

previously one could not conclude the overall superiority of these markers. Our

calculation results confirm their overall quality.

The interval estimation also provides further insight on the diagnostic accuracy
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Table 3.4: 95% confidence intervals by JEL and Norm.

Rank Marker Definition of HUM θ CI (JEL) CI (Norm.)

1 TM P{X4<X1<X3<X2<X6<X5} 0.144 (0.046, 0.243) (0.052, 0.236)

2 Ki67 P{X4<X6<X2<X1<X3<X5} 0.106 (0.007, 0.206) (0.015, 0.197)

3 CD15 P{X4<X5<X2<X1<X3<X6} 0.101 (0., 0.199) (0.019, 0.182)

4 VWF P{X5<X1<X2<X3<X4<X6} 0.069 (0.004, 0.141) (0.004, 0.133)

5 CD38 P{X5<X1<X3<X2<X6<X4} 0.051 (0.008, 0.094) (0.012, 0.090)

6 CD68 P{X5<X1<X3<X2<X6<X4} 0.047 (0., 0.115) (0., 0.104)

7 CD3 P{X4<X3<X2<X1<X6<X5} 0.033 (0.002, 0.067) (0.003, 0.063)

8 CD20 P{X5<X3<X1<X2<X6<X4} 0.011 (0., 0.027) (0., 0.024)

of the tissue markers. The normal confidence intervals are quite different from

the JEL confidence intervals and may not be appropriate due to the small sample

sizes. In fact all the intervals obtained from normal approximation tend to be

unnecessarily narrower than those obtained from JEL. The confidence intervals for

CD68, CD3 and CD20 all include the value 0.001 and therefore are not statistically

significantly different from a useless test. These markers may not be helpful for

clinical practice and should not deserve the same amount of research attention as

those markers with higher HUM values.
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3.5 Discussion

We considered a new inference technique for diagnostic medicine when the number

of categories of disease status are more than two. The methodology introduced here

may have broader applications for various classification tasks involved in finance,

economics and engineering etc.

There is one potential technical difficulty with the estimation of HUM. When

there are k categories, usually we have to determine the most sensible HUM values

by choosing the one with the largest numeric value among all k! possible orders of

categories. This selection process could be potentially time-consuming. However,

in most medical problems that we come across with, the number of categories

are usually less than ten. Sometimes it may be also advisable to combine certain

similar categories when the samples are not large enough to provide valid statistical

inferences.

3.6 Proof of Theorem 3.2.2

In this part, we provide the technique details to prove Theorem 3.2.2. Referring

to the proofs below, without loss of generality, we may assume that n1 ≤ · · · ≤ nk

thereafter.
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As a direct consequence of Theorem 3.2.1, we have

Un − θ0 = Op(n
−1/2
1 ). (3.9)

The following Lemma guarantees the existence and uniqueness of the solution

to equation (3.7).

Lemma 3.6.1 Assume that for t = 1, . . . , k, σ2
t > 0, and lim infn→∞(nt−1/nt) > 0

for t = 2, . . . , k. Then as n1 → ∞, we have

P

{
min
1≤i≤n

(V̂i − EV̂i) < 0 < max
1≤i≤n

(V̂i − EV̂i)

}
−→ 1.

Proof. The proof is quite similar to the three-sample U -statistics case and can

be directly extended to the k-sample problem. The reader is referred to Lemma

2.6.1 for details.

Let Sn = n−1
∑n

i=1(V̂i −EV̂i)
2 and Qn = max

1≤i≤n
|V̂i −EV̂i|. Under the conditions

of Lemma 3.6.1, some calculations show that, similar to Lemma 2.6.2 and Lemma

2.6.4, as n1 → ∞, with probability 1

Sn = nS2
nk

+ o(1), Qn = o(n1/2) (3.10)

and

n−1

n∑
i=1

|V̂i − EV̂i|3 ≤ Sn ×Qn ≤ o(n1/2). (3.11)

Proof of Theorem 3.2.2. By Lemma 3.6.1, the solution to equation (3.7)

exists and is unique. We next show that this solution γ satisfies |γ| = Op(n
−1/2).
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Noting that, (3.7) together with the fundamental inequality |x±y| ≥ |x|−|y| leads

to

0 = |f(γ)| =
1

n

∣∣∣∣∣
n∑

i=1

(V̂i − EV̂i)− γ

n∑
i=1

(V̂i − EV̂i)
2

1 + γ(V̂i − EV̂i)

∣∣∣∣∣
≥ |γ|Sn

1 + |γ|Qn

− 1

n

∣∣∣∣∣
n∑

i=1

V̂i − θ0

∣∣∣∣∣ .
By (3.9), the second term is Op(n

−1/2
1 ). By (3.10), Sn = nS2

nk
+ o(1) a.s., it follows

that

|γ|(1 + |γ|Qn)
−1 = Op(n

−1/2),

hence by (3.10) again, |γ| = Op(n
−1/2). Further, if let βi = γ(V̂i − EV̂i), then

max
1≤i≤n

|βi| = |γ|max
1≤i≤n

|V̂i − EV̂i|

= Op(n
−1/2)o(n1/2) = op(1). (3.12)

On the one hand, expanding (3.7), we get

0 = f(γ)

=
1

n

n∑
i=1

V̂i − θ0 − γSn +
1

n

n∑
i=1

(V̂i − EV̂i)β
2
i

1 + βi
,

where the last term is bounded by

1

n

n∑
i=1

|V̂i − EV̂i|3

|1 + βi|
γ2 = o(n1/2)Op(n

−1)Op(1) = op(n
−1/2).

Therefore, we may write

γ =

(
1

n

n∑
i=1

V̂i − θ0

)
S−1
n + τ = (Un − θ0)S

−1
n + τ (3.13)
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where |τ | = op(n
−1/2).

On the other hand, using (3.12) and by a Taylor expansion, we have

log(1 + βi) = βi − β2
i /2 + αi,

where for some finite constant A > 0, P{|αi| ≤ A|βi|3, 1 ≤ i ≤ n} → 1 as n → ∞.

Then plugging (3.13) and (3.6) into (3.5), we get

−2logR(θ0) = −2
n∑

i=1

log(npi) = 2
n∑

i=1

log(1 + βi)

= 2nγ(Un − θ0)− nSnγ
2 + 2

n∑
i=1

αi

=
n(Un − θ0)

2

Sn

− nSnτ
2 + 2

n∑
i=1

αi,

where

| − nSnτ
2| = n(nS2

nk
+ o(1))op(n

−1) = op(1),

|
n∑

i=1

αi| ≤ A|γ|3
n∑

i=1

|V̂i − θ0|3 = Op(n
−3/2)o(n3/2) = op(1)

and by Theorem 3.6.1 and (3.10), as n→ ∞,

n(Un − θ0)
2

Sn

d−→ χ2
1.

Now from Slutsky’s theorem, we have −2logR(θ0) →d χ
2
1, which completes the

proof.
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Chapter 4

Empirical Likelihood for

Compound Poisson Sum

4.1 Introduction

Let {Xj}∞j=1 be a sequence of i.i.d. r.v.’s with common d.f. F . Define a renewal

counting process {N(t), t > 0} by N(t) = max{k : Tk ≤ t}, where Tk is the

occurrence time of Xk. Then N(t) can be interpreted as the number of occurrences

Xk in (0, t]. Further, suppose that {N(t), t > 0} is independent of the sequence

{Xj}∞j=1 and write

SN(t) =

N(t)∑
j=1

Xj,
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then the stochastic process {SN(t), t > 0} is called a renewal reward process (for

definiteness, we assume that SN(t) = 0 if N(t) = 0). When {N(t), t > 0} is a

Poisson process, the renewal reward process SN(t) is termed as a compound Poisson

process (CPP), which is frequently used to describe phenomena in the field of

applied probability when a single Poisson process fails to do so.

One example of CPPs is in spatial study in physics. Consider the energy re-

ceived by some region of the surface of the Earth from cosmic particles up to time

t. Let N(t) be the total number of particles arrived up to time t and Xj the energy

of the jth particle, then SN(t) is the total energy received by the region up to time

t.

Another typical example is in mining industry. Denote by N(t) the number of

disasters up to time t, and Xj the number of death in the jth disaster. Usually,

{N(t), t > 0} can be assumed to be a Poisson process. Then, SN(t) is the total

number of death in all the disasters up to time t.

The other popular example appears in actuarial applications. Let N(t) be the

number of claims up to time t and Xj the amount of the jth claim, then SN(t) is

accumulation of money claims up to time t.

One may also expect more applications of CPPs in applied fields such as finance,

risk theory; e.g., see Helmers et al (2003) for some developments on compound

Poisson sums and their relevance in finance. Excellent interpretations and more

examples of CPPs may be found in Karlin and Taylor (1981, p426), and Parzen
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(1967, p129-130); see also Gnedenko and Korolev (1996) for the general theory of

random sums.

It is well known that for a renewal reward process {SN(t), t > 0}, if N(t)/t

converges in probability to a constant or, more generally, to a positive r.v. (Rényi

(1957), Blum et al (1963)), then SN(t) is asymptotically normally distributed, i.e.,

SN(t) − EN(t)EX1√
EN(t)EX2

1

→d N(0, 1), as t→ ∞

where “→d” means convergence in distribution and N(0, 1) denotes a standard

normal r.v. Especially, when {N(t), t > 0} is a Poisson process with rate λ > 0,

independent of the i.i.d. r.v.’s X1, X2, ... with mean µ = EX1 and variance

σ2 = Var(X1) > 0, we can use this asymptotic normality to construct confidence

intervals (CIs) for λµ. But the main problem is that, as pointed out by Helmers

(2003), the usual normal approximation for compound Poisson sums usually per-

forms very badly because, typically in insurance applications, the distribution of

the Xi is highly skewed to the right. This urges for better methods, e.g. the boot-

strap or Edgeworth/saddlepoint approximations (see, Babu et al. (2003) for results

on Edgeworth expansion and Jing et al. (2009) on saddlepoint approximation), to

construct more accurate confidence intervals for λµ. One can also consider a Stu-

dentized CPP, which is motivated by the fact that a natural consistent estimator

of the variance of (SN(t) − λµt) is given by ∆N(t) =
∑N(t)

j=1 X
2
j . Therefore, one can

construct approximate (1− α) level CIs for λµ as

(
t−1SN(t) − zα/2t

−1∆
1/2
N(t), t

−1SN(t) + zα/2t
−1∆

1/2
N(t)

)
, (4.1)
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from the fact that

SN(t) − λµt√
∆N(t)

→d N(0, 1), as t→ ∞, (4.2)

where Φ(zα/2) = 1− α/2.

Babu et al. (2003) establishes Edgeworth expansions for the Studentized com-

pound Poisson processes, when the distribution of X1 is absolutely continuous and

EX6
1 <∞. From this we can also construct CIs for λµ as(

SN(t)

t
−

(zα/2 − p̂α/2)

t

√
∆N(t),

SN(t)

t
+

(zα/2 + p̂α/2)

t

√
∆N(t)

)
, (4.3)

where

p̂α/2 = [(2µ̂3 − X̄3
N(t) + 3X̄N(t)(v̂

2 + σ̂2)z2α/2)

+µ̂3 + (X̄N(t))
3 + 3X̄N(t)σ̂

2]/(6v̂3
√
N(t)),

with

X̄N(t) =
SN(t)

N(t)
, σ̂2 =

1

N(t)

N(t)∑
j=1

(Xj − X̄N(t))
2,

v̂2 =
∆N(t)

N(t)
, µ̂3 =

1

N(t)

N(t)∑
j=1

(Xj − X̄N(t))
3.

Kegler (2007) uses(
exp

{
log

(
SN(t)

t

)
− zα/2

√
∆N(t)

S2
N(t)

}
, exp

{
log

(
SN(t)

t

)
+ zα/2

√
∆N(t)

S2
N(t)

})
(4.4)

as CI for λµ. However, this method is applicable only when SN(t) > 0.

In this chapter, we propose to use Owen’s EL method to construct CIs. In

Section 4.2, we present our main result. Simulation studies are presented in Section
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4.3 to illustrate and compare the performance of our method with other methods.

A small real data set is analyzed in Section 4.4 and the proofs are provided in

Section 4.5.

4.2 Methodology and results

For the reader’s convenience, we briefly describe the EL procedure for CPPs as

follows.

Let p = (p1, ..., pn) be a probability vector and Gp be the d.f. which assigns

probability pi to the ith atom Xi. Since λµt = E
(∑N(t)

j=1 Xj

)
, we can argue that

E

N(t)∑
j=1

Xj

∣∣∣∣N(t) = n

 ≈ λµt.

This leads us to consider the following EL

L(θ|N(t) = n) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θt/n

}
,

where ϑ(Gp) =
∑n

i=1 piXi and θ = λµ.

The corresponding EL ratio is

ℜ(θ|N(t) = n) = max

{
n∏

i=1

(npi) :
n∑

i=1

pi = 1, pi ≥ 0, ϑ(Gp) = θt/n

}
. (4.5)

Applying Lagrange multiplier method, when min
i
Xi < θt/n < max

i
Xi, we have

pi =
1

n
· 1

1 + γ(Xi − θt/n)
,
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where γ satisfies

f(γ) ≡ 1

n

n∑
i=1

Xi − θt/n

1 + γ(Xi − θt/n)
= 0. (4.6)

After plugging the pi’s back into (4.5) and taking the logarithm of ℜ(θ), we get

the nonparametric empirical log-likelihood ratio conditional on N(t) = n,

logℜ(θ|N(t) = n) = −
n∑

i=1

log[1 + γ(Xi − θt/n)].

Let

ωN(t) =

∑N(t)
i=1

(
Xi − X̄N(t)

)2∑N(t)
i=1 X

2
i

and θ0 = µ0λ0 be the true value of θ. After removing the condition N(t) = n, we

can get Wilks’ theorem for the adjusted empirical log-likelihood ratio.

Theorem 4.2.1 Assume that EX2
1 <∞ and σ2 > 0, then at the true value θ = θ0,

as t→ ∞,

−2ωN(t) logℜ(θ0) →d χ
2
1.

From Theorem 4.2.1, one can construct an approximate (1−α) level CI for λµ

as

Θc = {θ : −2ωN(t) logℜ(θ0) ≤ c}, (4.7)

where c is chosen to satisfy P{χ2
1 ≤ c} = 1− α.
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Table 4.1: F = Exp(1/2) and λ0 = 0.5

Level 0.9 0.95

Size (cov., avecov., concov., alen., clen.) (cov., avecov., concov., alen., clen.)

t=35 EL (0.861, 0.803, 0.770, 1.072, 1.075) (0.913, 0.715, 0.714, 1.277, 1.281)

Norm. (0.856, 0.796, 0.759, 1.078, 1.130) (0.904, 0.704, 0.675, 1.284, 1.341)

E.E. (0.858, 0.796, 0.790, 1.078, 1.083) (0.910, 0.709, 0.707, 1.284, 1.287)

Keg. (0.876, 0.773, 0.767, 1.134, 1.143) (0.934, 0.677, 0.673, 1.380, 1.387)

t=45 EL (0.869, 0.934, 0.932, 0.931, 0.932) (0.921, 0.824, 0.789, 1.118, 1.120)

Norm. (0.857, 0.910, 0.873, 0.942, 0.982) (0.908, 0.809, 0.782, 1.122, 1.160)

E.E. (0.866, 0.922, 0.916, 0.942, 0.948) (0.917, 0.817, 0.815, 1.122, 1.125)

Keg. (0.887, 0.905, 0.896, 0.979, 0.989) (0.932, 0.785, 0.781, 1.186, 1.193)

t=55 EL (0.880, 1.027, 1.012, 0.857, 0.871) (0.923, 0.896, 0.853, 1.030, 1.031)

Norm. (0.880, 1.014, 0.982, 0.867, 0.896) (0.913, 0.883, 0.856, 1.034, 1.065)

E.E. (0.865, 0.997, 0.991, 0.867, 0.972) (0.918, 0.888, 0.884, 1.034, 1.038)

Keg. (0.877, 0.979, 0.970, 0.896, 0.904) (0.935, 0.864, 0.857, 1.082, 1.090)

t=60 EL (0.879, 1.073, 1.071, 0.819, 0.820) (0.929, 0.951, 0.907, 0.977, 0.978)

Norm. (0.873, 1.058, 1.031, 0.825, 0.846) (0.923, 0.939, 0.915, 0.983, 1.008)

E.E. (0.877, 1.064, 1.061, 0.825, 0.827) (0.929, 0.945, 0.945, 0.983, 0.983)

Keg. (0.893, 1.051, 1.044, 0.849, 0.855) (0.942, 0.919, 0.917, 1.025, 1.026)

t=65 EL (0.897, 1.137, 1.132, 0.789, 0.792) (0.937, 0.992, 0.952, 0.945, 0.946)

Norm. (0.882, 1.110, 1.084, 0.794, 0.814) (0.925, 0.977, 0.957, 0.946, 0.967)

E.E. (0.895, 1.116, 1.112, 0.794, 0.797) (0.931, 0.983, 0.981, 0.946, 0.949)

Keg. (0.722, 1.098, 1.090, 0.816, 0.822) (0.942, 0.958, 0.955, 0.984, 0.986)
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4.3 Simulation study

In this section, we conduct simulation studies to investigate and compare the per-

formance of EL, normal approximation (Norm.), Edgeworth expansion (E.E.) ap-

proximation and Kegler’s method (Keg.) in the construction of CIs for λµ. The CIs

based on EL, normal approximation, Edgeworth expansion and Kegler’s methods

are given by (4.7), (4.1), (4.3) and (4.4) respectively.

We use the five criteria (coverage probability, average length of CIs and average

length conditional on coverage) proposed in Section 2.3 and coverage probability

per each average/conditional length (larger the value, better the interval and the

method), to assess the performance of each method.

We generate L sets of Poisson number N (j)(t) (j = 1, . . . , L ) from a Poisson

process with parameter λ, accompanied by a sample {X(j)
1 , . . . , X

(j)
N(t)} from distri-

bution F . For each set, one calculate (1 − α) level CIs CIj, j = 1, . . . , L, using

normal approximation, EL method, Kegler’s formula and Edgeworth expansion

approximation.

Denote the length of CIj by |CIj|. The Monte Carlo approximation to the

coverage probability (cov.), average length (alen.), average length conditional on

coverage (clen.), coverage probability per each average length (avecov.) and cover-
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Table 4.2: F = N(1, 1) and λ0 = 10

Level 0.9 0.95

Size (cov., avecov., concov., alen., clen.) (cov., avecov., concov., alen., clen.)

t=15 EL (0.903, 0.342, 0.341, 2.634, 2.648) (0.950, 0.304, 0.301, 3.125, 3.156)

Norm. (0.907, 0.337, 0.336, 2.679, 2.690) (0.952, 0.298, 0.297, 3.192, 3.202)

E.E. (0.904, 0.337, 0.338, 2.679, 2.672) (0.949, 0.297, 0.297, 3.192, 3.194)

Keg. (0.902, 0.237, 0.236, 3.812, 3.816) (0.957, 0.240, 0.210, 4.554, 4.558)

t=25 EL (0.895, 0.435, 0.427, 2.056, 2.062) (0.951, 0.389, 0.388, 2.445, 2.451)

Norm. (0.891, 0.430, 0.428, 2.077, 2.085) (0.947, 0.383, 0.382, 2.476, 2.483)

E.E. (0.892, 0.429, 0.429, 2.077, 2.078) (0.949, 0.383, 0.383, 2.476, 2.477)

Keg. (0.902, 0.305, 0.305, 2.949, 2.951) (0.946, 0.269, 0.269, 3.520, 3.519

t=35 EL (0.890, 0.505, 0.504, 1.762, 1.766) (0.942, 0.452, 0.451, 2.084, 2.089)

Norm. (0.889, 0.506, 0.505, 1.758, 1.762) (0.939, 0.448, 0.447, 2.095, 2.101)

E.E. (0.890, 0.506, 0.506, 1.758, 1.759) (0.942, 0.449, 0.449, 2.095, 2.096)

Keg. (0.896, 0.360, 0.360, 2.487, 2.489) (0.946, 0.319, 0.319, 2.966, 2.966)

t=45 EL (0.904, 0.585, 0.584, 1.545, 1.548) (0.951, 0.517, 0.516, 1.839, 1.843)

Norm. (0.905, 0.585, 0.583, 1.546, 1.549) (0.953, 0.516, 0.515, 1.842, 1.847)

E.E. (0.904, 0.585, 0.585, 1.546, 1.546) (0.951, 0.516, 0.516, 1.842, 1.844)

Keg. (0.902, 0.411, 0.411, 2.193, 2.194) (0.955, 0.365, 0.365, 2.616, 2.616)

t=55 EL (0.900, 0.646, 0.645, 1.396, 1.397) (0.951, 0.575, 0.574, 1.656, 1.659)

Norm. (0.905, 0.643, 0.642, 1.400, 1.401) (0.953, 0.571, 0.571, 1.668, 1.669)

E.E. (0.902, 0.646, 0.646, 1.400, 1.400) (0.952, 0.571, 0.570, 1.668, 1.667)

Keg. (0.895, 0.450, 0.450, 1.987, 1.987) (0.949, 0.401, 0.401, 2.369, 2.369)
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Table 4.3: F = U(0, 1) and λ0 = 15

Level 0.9 0.95

Size (cov., avecov., concov., alen., clen.) (cov., avecov., concov., alen., clen.)

t=35 EL (0.899, 0.477, 0.475, 1.885, 1.888) (0.950, 0.423, 0.422, 2.246, 2.250)

Norm. (0.902, 0.475, 0.473, 1.900, 1.903) (0.952, 0.420, 0.420, 2.264, 2.267)

E.E. (0.901, 0.474, 0.474, 1.900, 1.900) (0.951, 0.420, 0.420, 2.264, 2.264)

Keg. (0.904, 0.474, 0.474, 1.905, 1.905) (0.954, 0.420, 0.420, 2.272, 2.272)

t=45 EL (0.899, 0.617, 0.616, 1.457, 1.460) (0.950, 0.546, 0.545, 1.737, 1.740)

Norm. (0.903, 0.613, 0.612, 1.469, 1.472) (0.949, 0.542, 0.541, 1.751, 1.754)

E.E. (0.902, 0.615, 0.614, 1.469, 1.471) (0.950, 0.542, 0.542, 1.751, 1.753)

Keg. (0.904, 0.614, 0.613, 1.472, 1.474) (0.951, 0.542, 0.541, 1.755, 1.756)

t=55 EL (0.900, 0.731, 0.731, 1.232, 1.232) (0.952, 0.649, 0.649, 1.469, 1.470)

Norm. (0.895, 0.723, 0.722, 1.243, 1.244) (0.956, 0.645, 0.645, 1.481, 1.482)

E.E. (0.898, 0.722, 0.723, 1.243, 1.243) (0.953, 0.644, 0.642, 1.481, 1.481)

Keg. (0.901, 0.723, 0.723, 1.245, 1.244) (0.952, 0.642, 0.642, 1.484, 1.483)

t=60 EL (0.899, 0.826, 0.826, 1.085, 1.086) (0.955, 0.738, 0.737, 1.294, 1.295)

Norm. (0.903, 0.822, 0.822, 1.096, 1.097) (0.958, 0.734, 0.733, 1.306, 1.306)

E.E. (0.901, 0.823, 0.823, 1.096, 1.096) (0.955, 0.731, 0.730, 1.306, 1.306)

Keg. (0.902, 0.822, 0.822, 1.097, 1.097) (0.954, 0.730, 0.730, 1.308, 1.308)

t=65 EL (0.901, 0.911, 0.911, 0.981, 0.982) (0.949, 0.808, 0.808, 1.170, 1.171)

Norm. (0.894, 0.905, 0.904, 0.991, 0.992) (0.947, 0.802, 0.801, 1.181, 1.182)

E.E. (0.897, 0.907, 0.907, 0.991, 0.992) (0.947, 0.801, 0.801, 1.181, 1.182)

Keg. (0.901, 0.907, 0.906, 0.992, 0.993) (0.948, 0.801, 0.801, 1.183, 1.183)
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age probability per each conditional length (concov.) are respectively given by

(i) L−1

L∑
j=1

I{θ0∈CIj}, (ii) L−1

L∑
j=1

|CIj|, (iii) L−1
0

L∑
j=1

|CIj|I{θ0∈CIj},

(IV)

∑L
j=1 I{θ0∈CIj}∑L

j=1 |CIj|
=

(i)

(ii)
, (V)

L−1
∑L

j=1 I{θ0∈CIj}

L−1
0

∑L
j=1 |CIj|I{θ0∈CIj}

=
(i)

(iii)
.

where L0 =
∑L

j=1 I{θ0∈CIj}, the total number of CIs covering θ0.

In our simulations, various values of λ, the nominal level α and time variable

t were chosen and each experiment was based on L = 5000 trials, generated by

routines in R. We only present four different cases here.

Firstly, we consider an exponential distribution F = Exp(1/2), and the simu-

lation results are shown in Table 4.1.

Secondly, we choose F = N(1, 1), to see what will happen if the population is

a normal one, and the results are given in Table 4.2.

Thirdly, we want to check the performance of the methods if the population is

uniform F = U(0, 1), and Table 4.3 contains the simulation results for this case.

Finally, since there are no continuity conditions imposed on the random vari-

ables, we choose a discrete population F = Binomial(20, 0.05) and the results are

presented in Table 4.4.

The following observation can be made from those tables.

(1) As the time t increases, all the methods, improve in terms of all five

criteria (i.e., coverage probability, average length, conditional average
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Table 4.4: F = Binomial(20, 0.05) and λ0 = 20

Level 0.9 0.95

Size (cov., avecov., concov., alen., clen.) (cov., avecov., concov., alen., clen.)

t=35 EL (0.898, 0.172, 0.172, 5.215, 5.223) (0.950, 0.152, 0.152, 6.243, 6.252)

Norm. (0.903, 0.170, 0.170, 5.290, 5.307) (0.945, 0.150, 0.149, 6.303, 6.322)

Keg. (0.904, 0.170, 0.170, 5.305, 5.308) (0.951, 0.150, 0.150, 6.329, 6.335)

t=45 EL (0.899, 0.222, 0.222, 4.011, 4.016) (0.949, 0.196, 0.196, 4.806, 4.813)

Norm. (0.898, 0.219, 0.219, 4.101, 4.104) (0.945, 0.193, 0.193, 4.887, 4.897)

Keg. (0.899, 0.219, 0.219, 4.108, 4.111) (0.949, 0.194, 0.193, 4.899, 4.903)

t=55 EL (0.899, 0.267, 0.266, 3.374, 3.377) (0.949, 0.232, 0.232, 4.044, 4.047)

Norm. (0.894, 0.258, 0.257, 3.467, 3.468) (0.943, 0.228, 0.228, 4.131, 4.136)

Keg. (0.899, 0.529, 0.259, 3.472, 3.472) (0.943, 0.228, 0.228, 4.139, 4.141)

t=60 EL (0.900, 0.300, 0.300, 2.963, 2.963) (0.947, 0.266, 0.266, 3.555, 3.556)

Norm. (0.901, 0.295, 0.294, 3.059, 3.058) (0.945, 0.259, 0.259, 3.645, 3.647)

Keg. (0.902, 0.294, 0.294, 3.062, 3.061) (0.946, 0.259, 0.259, 3.650, 3.650)

t=65 EL (0.902, 0.338, 0.337, 2.674, 2.676) (0.952, 0.297, 0.297, 3.207, 3.208)

Norm. (0.914, 0.330, 0.330, 2.770, 2.773) (0.959, 0.290, 0.290, 3.301, 3.304)

Keg. (0.914, 0.330, 0.330, 2.773, 2.773) (0.960, 0.290, 0.290, 3.305, 3.306)
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length and coverage probability per each average/conditional length),

and the difference among them gradually disappear.

(2) In terms of coverage probability, all the methods are very competi-

tive, but the EL method always gives the best coverage probabilities.

(3) In terms of conditional average length on coverage, the EL method

seems to be the best, followed by the normal approximation and Edge-

worth expansion, and then by Kegler’s method.

(4) In terms of coverage probabilities per each average length, the EL

method always produces the best results,, followed by Edgeworth ex-

pansion and normal approximation. Kegler’s method seems to be the

worst especially when considering a normal population.

(5) In Table 4.2, all the methods are often anti-conservative, and Kegler’s

method is conservative in Table 4.3. The EL method is always more

anti-conservative than the other methods since it has shorter length of

CIs.

In summary, in terms of coverage probabilities, length of CIs and cov-

erage probability per each average/conditional length, the EL method

is always the best among these four approaches.
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4.4 Application to coal-mining disasters data

In this section, we apply our proposed method to a real example about coal-mining

disasters. The data set we will refer to is contained in Andrew and Herzberg (1985).

Coal-mining disaster is an accident that occurs in the process of mining coal.

Thousands of miners die from mining accidents each year, most occur in developing

countries and rural parts of developed countries.

Mining accidents might be due to various causes, including leaks of poisonous

or explosive natural gases, dust explosions, collapsing of mine stopes, flooding and

so on.

The data set we use here is about coal-mining disasters in Britain involving 10

or more men killed, caused by explosions of fire-damp or coal-dust, from 15 March

1851 to 22 March 1962 inclusive. We are interested in the average number of death

in each year. Based on a year unit, if there are any disasters in some year, then as

a whole, we assume that the number of disasters in that year is 1, and otherwise

0. We count the number of death as the summation of all death in each disaster

during that year. Let t be the number of years starting from 15 March 1851, Xj(t)

(j=1,...,) be the number of death in the jth (j = 1, . . . , N(t)) disaster with mean µ

and N(t) be the number of disasters up to the tth year. Apparently, {N(t), t > 0}

can naturally be assumed to be a Poisson process with parameter λ. Under the

above assumptions, there are in all 79 disasters in record in the 112 years.
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Table 4.5: CIs by EL, Normality, Edgeworth

expansion and Kegler’s method

Confidence level 0.9 0.95 0.99

EL (68, 115) (65, 121) (59, 134)

Norm. (65, 111) (61, 115) (52, 123)

E.E (68, 114) (65, 120) (60, 131)

Keg. (67, 114) (64, 120) (58, 132)

Therefore, on a yearly basis, the 90%, 95% and 99% CIs for λµ, average death

in each year, via the EL method, normal approximations, Edgeworth expansion

and Kegler’s method, can be respectively obtained, and they are listed in Table

4.5.

That is, for instance, using the EL method, we are 90% confidential that the

yearly number of death is between 68 and 115, from 15 March 1851 to 22 March

1962 inclusive.

4.5 Proof of Theorem 4.2.1

In this section, we will prove Theorem 4.2.1. Before proceeding to the proof, we

provide some technical lemmas.

Our first lemma guarantees the existence and uniqueness of γ in equation (4.6).
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Lemma 4.5.1 Suppose that EX2
1 <∞ and σ2 > 0. Then as t→ ∞ , we have

P

(
min

1≤i≤N(t)
Xi < θt/N(t) < max

1≤i≤N(t)
Xi

)
→ 1.

Proof. It suffices to show that P (min1≤i≤N(t)(Xi − θt/N(t)) ≥ 0) → 0 and

P (max1≤i≤N(t)(Xi − θt/N(t)) ≤ 0) → 0. We only prove the second one since the

first one can be done similarly. When µ = 0, the proof is trivial. Therefore, we

only need to consider the case µ ̸= 0.

Noting that for small δ > 0, we have

P

(
max

1≤i≤N(t)
(Xi − θt/N(t)) ≤ 0

)
= P

(
max

1≤i≤N(t)
(Xi − µ) ≤ θt/N(t)− µ ≤ 0

)
≤ P

(
max

1≤i≤N(t)
(Xi − µ) ≤ δ/2

)
+ P (θt/N(t)− µ > δ/2).

As limt→∞(t/N(t)) = 1/λ a.s. leads to

P (|t/N(t)− 1/λ| > ϵ) → 0 as t→ ∞

for any ϵ > 0, it follows that

0 ≤ P (θt/N(t)− µ > δ/2) ≤ P (|θt/N(t)− µ| > δ/2)

= P (|t/N(t)− 1/λ| > δ/(2λ|µ|)) → 0

by taking ϵ = δ/(2λ|µ|). Therefore, we only need to prove that

P

(
max

1≤i≤N(t)
(Xi − µ) ≤ δ/2

)
→ 0.



Chapter 4: Empirical Likelihood for Compound Poisson Sum 93

To this end, letting ξi = ψ(Xi − µ), where ψ(x) is a nondecreasing such that

ψ(x) =



0, if x ≤ δ/2,

a(x), if δ/2 < x < δ,

1, if x ≥ δ.

with 0 < a(x) < 1 for δ/2 < x < δ. Then we have

P

(
max

1≤i≤N(t)
(Xi − µ) ≤ δ/2

)
= P (X1 − µ ≤ δ/2, ..., XN(t)− µ ≤ δ/2)

= P (ξ1 = 0, ..., ξN(t) = 0)

= P

N(t)∑
i=1

(ξi − Eξi) = −N(t)Eξ1


≤ Var(ξ1)

(Eξ1)2
·

∞∑
n=1

(λt)ne−λt

n · n!
.

Noting that, on one hand for any positive r.v. X, the inequality

E

(
1

X

)
≥ 1

EX

follows from Schwarz inequality. On the other hand, for any x ≥ 1, the inequality

1

x
≤ 1

x+ 1
+

3

(x+ 1)(x+ 2)

holds, and it follows that

E

(
1

X

)
≤ E

(
1

X + 1

)
+ E

(
3

(X + 1)(X + 2)

)
.

Therefore, we have

∞∑
n=1

(λt)ne−λt

n · n!
= O(t−1), as t→ ∞
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since

O(t−1) =
1

λt
≤

∞∑
n=1

(λt)ne−λt

n · n!

≤ 1

λ
+

3

(λt)2
(1− e−λt − λte−λt) = O(t−1).

Now, it suffices to prove that

(1) Var(ξ1) ≤ 1 and (2) lim
n→∞

Eξ1 ≥ c > 0.

The first assertion is trivial since Var(ξi) ≤ Eξ21 ≤ 1.

For (2), since EX1 = µ and σ2 > 0, we easily get

lim
δ′↓0

P (X1 − µ > δ′) = P (X1 − µ > 0) > 0

for some δ′ ↓ 0. Therefore, there exists some δ′′ such that for any ε : 0 < ε < δ′′,

P (X1 − µ > ε) > 0.

Let ε = δ/2, it follows that

Eξ1 = Ea(X1 − µ)I{X1−µ>δ/2} + (1− Ea(X1 − µ))P (X1 − µ ≥ δ)

≥ Ea(X1 − µ)I{X1−µ>ε} > 0. �

Remark 4.5.1 From Roy and Tiku (1962), we have the first-order negative mo-

ment of a Poisson r.v. as

∞∑
n=1

(λt)ne−λt

n · n!
≈ 1

(λt− 1)(1− e−λt)
= O(t−1) as t→ ∞
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Now, noting that EX2
1 <∞ is equivalent to

∞∑
n=1

P (X2
n > ϵn) <∞,

for any ϵ > 0. It then follows from the Borel-Cantelli lemma that

P (|Xn| ≤ ϵn1/2) = 1,

which in turn implies that

max
1≤i≤n

|Xi − µ| = o(n1/2) a.s. (4.8)

Also note that

lim
t→∞

t/N(t) = 1/λ, (4.9)

and

WN(t) = max
1≤i≤N(t)

|Xi − θt/N(t)| ≤ max
1≤i≤N(t)

|Xi − µ|+ |µ− θt/N(t)|. (4.10)

Combining (4.8), (4.9) and (4.10), we have

WN(t) = o(t1/2) a.s.

Lemma 4.5.2 Let S2 =
∑N(t)

i=1 (Xi − θt/N(t))2/N(t). If EX2
1 < ∞, then S2 =

σ2 + o(1) almost surely.

Proof. Note that

S2 =
1

N(t)

N(t)∑
i=1

(Xi − θt/N(t))2

=
1

N(t)

N(t)∑
i=1

(Xi − X̄N(t))
2 + (X̄N(t) − θt/N(t))2,
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now the result follows easily from the strong law of large numbers and the fact that

(X̄N(t) − θt/N(t))2

= (X̄N(t) − µ)2 + 2(µ− θt/N(t))(X̄N(t) − µ) + (µ− θt/N(t))2

= o(1),

since limt→∞ t/N(t) = 1/λ. �

From the above estimates, with probability 1

1

N(t)

N(t)∑
i=1

|Xi − θt/N(t)|3 ≤ WN(t) × S2

= o(t1/2)× [σ2 + o(1)]

= o(t1/2).

Proof of Theorem 4.2.1. From Lemma 4.5.1, it follows that with probability

tending to 1, the true value θ0t/N(t) satisfies

min
1≤i≤N(t)

Xi ≤ θ0t/N(t) ≤ max
1≤i≤N(t)

Xi.

When this is true, the solution to equation (4.6) exists and is unique. We now
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show that the root of (4.6) is γ = Op(t
−1/2). To this end, noting that

0 = |f(γ)| =
1

N(t)

∣∣∣∣∣∣
N(t)∑
i=1

Xi − θ0t/N(t)

1 + γ(Xi − θ0t/N(t))

∣∣∣∣∣∣
=

1

N(t)

∣∣∣∣∣∣
N(t)∑
i=1

[
(Xi − θ0t/N(t))− γ(Xi − θ0t/N(t))2

1 + γ(Xi − θ0t/N(t))

]∣∣∣∣∣∣
=

1

N(t)

∣∣∣∣∣∣
N(t)∑
i=1

(Xi − θ0t/N(t))− γ

N(t)∑
i=1

(Xi − θ0t/N(t))2

1 + γ(Xi − θ0t/N(t))

∣∣∣∣∣∣
≥ |γ|

N(t)

N(t)∑
i=1

(Xi − θ0t/N(t))2

1 + γ(Xi − θ0t/N(t))
− 1

N(t)

∣∣∣∣∣∣
N(t)∑
i=1

(Xi − θ0t/N(t))

∣∣∣∣∣∣
≥ |γ|S2

1 + |γ|WN(t)

− 1

N(t)

∣∣∣∣∣∣
N(t)∑
i=1

(Xi − θ0t/N(t))

∣∣∣∣∣∣ .
Following from Corollary 2.8 in von Chossy and Rappl (1983), the second term

is Op(t
−1/2). Recalling Lemma 4.5.2, S2 = σ2 + o(1) a.s., it follows that

|γ|
1 + |γ|WN(t)

= Op(t
−1/2),

hence we have

|γ| = Op(t
−1/2).

For simplicity, write βi = γ(Xi−θ0t/N(t)) where γ is the root of equation (4.6).

Then,

max
1≤i≤N(t)

|βi| = Op(t
−1/2)o(t1/2) = op(1).



Chapter 4: Empirical Likelihood for Compound Poisson Sum 98

Expanding (4.6), we have

0 = f(γ) =
1

N(t)

N(t)∑
i=1

(Xi − θ0t/N(t))(1− βi + β2
i /(1 + βi))

=
1

N(t)

N(t)∑
i=1

Xi − θ0t− S2γ +
1

N(t)

N(t)∑
i=1

β2
i (Xi − θ0t/N(t))

1 + βi
,

where the final term is bounded by

1

N(t)

N(t)∑
i=1

|Xi − θ0t/N(t)|3γ2

|1 + βi|
= o(t1/2)Op(t

−1)Op(1) = op(n
−1/2).

Therefore, we may write

γ =
X̄N(t) − θ0t/N(t)

S2
+ τ, where |τ | = op(t

−1/2).

Further, we have the expansion

log(1 + βi) = βi − β2
i /2 + ζi

where for some finite C > 0,

P (|ζi| ≤ C|βi|3, 1 ≤ i ≤ N(t)) → 1

as t→ ∞.
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Now substituting γ, we have

−2ωN(t) logℜ(θ0)

= −2ωN(t)

N(t)∑
i=1

log(N(t)pi) = 2ωN(t)

N(t)∑
i=1

log(1 + βi)

= ωN(t)

2

N(t)∑
i=1

βi −
N(t)∑
i=1

β2
i + 2

N(t)∑
i=1

ζi


= ωN(t)

N(t)(X̄N(t) − θ0t/N(t))2

S2
−N(t)S2τ 2 + 2

N(t)∑
i=1

ζi


=

∑N(t)
i=1 (Xi − X̄N(t))

2∑N(t)
i=1 (Xi − θ0t/N(t))2

·

∑N(t)
i=1 Xi − θ0t√∑N(t)

i=1 X
2
i

2

−N(t)ωN(t)S
2τ 2 + 2ωN(t)

N(t)∑
i=1

ζi.

For the first term, on one hand

∑N(t)
i=1 (Xi − X̄N(t))

2∑N(t)
i=1 (Xi − θ0t/N(t))2

→ 1,

since both
∑N(t)

i=1 (Xi− X̄N(t))
2 and

∑N(t)
i=1 (Xi−θ0t/N(t))2 tend to σ2. On the other

hand, we have ∑N(t)
i=1 Xi − θ0t√∑N(t)

i=1 X
2
i

2

→d χ
2
1

by the central limit theorem for Studentized CPP.

The second term is bounded by

| −N(t)ωN(t)S
2τ 2| = Op(t)

(
σ2/EX2

1 + o(1)
)
(σ2 + o(1))op(t

−1) = op(1).
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For the final term∣∣∣∣∣∣ωN(t)

N(t)∑
i=1

ζi

∣∣∣∣∣∣ ≤ Op(t)
(
σ2/EX2

1 + o(1)
) N(t)∑

i=1

|ζi| (4.11)

≤ C|γ|3
N(t)∑
i=1

|Xi − θ0t/N(t)|3 = Op(t
−3/2)o(t3/2) = op(1).

Combining the above estimations, from Slutsky’s theorem, we have

−2ωN(t) logℜ(θ0) →d χ
2
1,

which completes the proof. �
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Chapter 5

Conclusions and Further Research

5.1 Conclusions

The purpose of this thesis is to make statistical inference for VUS P (X < Y < Z),

HUM P (X1 < X2 · · · < Xk) and unit mean λµ of compound Poisson sum by con-

structing confidence intervals. We used three-sample and multi-sample U -statistics

as unbiased estimators of VUS and HUM, respectively, and calculate their corre-

sponding jackknifed variances. The normal approximation was based on the stu-

dentized three-sample and multi-sample U -statistics with the jackknife estimator

of variance. There might be one potential technical difficulty with the estimation

of HUM. When there are k categories, usually we have to determine the most sen-

sible HUM values by choosing the one with the largest numeric value among all

k! possible orders of categories. This selection process could be potentially time-
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consuming. However, in most medical problems that we come across with, the

number of categories are usually less than ten. Sometimes it may be also advisable

to combine certain similar categories when the samples are not large enough to

provide valid statistical inferences.

By employing the JEL method to three-sample and multi-sample U -statistics,

we first explain, and thereafter theoretically prove that the jackknife empirical

log-likelihood ratio converges to χ2
1. JEL is again proved to be very efficient in

dealing with nonlinear statistics, eg. U -statistics in this thesis, as it largely re-

lieves computation burden that one will surely encounter in the usual empirical

likelihood procedure. For compound Poisson sum, it seems hard to connect with

Owen’s empirical likelihood at first sight. However, by making use of properties of

conditional expectations, we can do an approximation. That is, we assume that

E(
∑N(t)

j=1 Xj|N(t) = n) ≈ λµt and consider the EL

L(θ|N(t) = n) = max

{
n∏

i=1

pi :
n∑

i=1

pi = 1, pi ≥ 0,
n∑

i=1

piXi = λµt/n

}
.

By utilizing Owen’s EL to the mean functional
∑n

i=1 piXi, we derive asymptotic

distribution for the adjusted empirical log-likelihood ratio, which is also χ2
1, and

construct construct confidence intervals for λµ. Although the validity of this as-

sumption is arguable, at least it enables us to apply Owen’s empirical likelihood,

which is easy to implement and provides more precise statistical results than some

other methods, to compound Poisson sum and obtain some beautiful results. The

simulation outcomes confirm that the performance of our proposed method is much
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better than some existing methods in terms of some statistical criteria we are in-

terested in, and thus it can be relied on to make statistical inference.

5.2 Further Research

With respect to the rapid development and fruitful results of empirical likelihood

recently, there is still much work to do based on our current work.

1. In this thesis, although we provide easy and effective tools to make

statistical inference for VUS and HUM, we do not touch much of the

detailed three and multi-class classification problems, which might be

more useful in applications.

2. To obtain those pseudo-values, we remove the i-th data Xi from a

large sample Z containing all sample points. It will be interesting to

consider deleting k data values, each Xj,i from the j-th sample Xj at a

time, where j = 1, . . . , k and i = 1, . . . , nj for a k-sample U -statistic as

defined in Chapter 3.

3. In this study, all the research work is done for one dimensional

population. In view of the paper of Chen et al. (2009), the empirical

likelihood can work for large dimensional data when p = o(n1/2) where

n is the sample size and p is dimension of the data. We conjecture
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that the empirical likelihood method for high dimensional data is still

applicable when p is just proportional to n.

4. For parameters defined by estimating equations, Qin and Lawless

(1994) derived asymptotic results under smooth conditions. When the

estimating functions are replaced by U -type statistics with smooth ker-

nels, the JEL method can be used to extend the work of Qin and Lawless

(1994) with only slight modifications. However, if the kernels of the U -

statistics are not necessarily smooth with respect to the parameters of

interest or auxiliary parameters, will JEL still work?
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