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SUMMARY 
 
 

Colloidal semiconductor quantum dots (QDs) have received increasing 

attention as promising two-photon absorbers for optical applications such as 

bio-imaging, optical limiting, stabilization, optical communication, optical 

information. As far as these applications are concerned, two-photon absorption 

(TPA) cross-sections as well as subsequent recombination processes following 

interband excitation are important aspects.  In this thesis, we report the 

systematic experimental study on the TPA excitation and relaxation in 

colloidal CdSe QDs and CdTe QDs. Theoretical work has also been carried 

out to investigate the TPA spectra in strong confinement CdTe QDs. 

 

For the experimental study, various techniques have been applied to 

investigate the characteristics of the above nanomaterials such as high-

resolution transmission electron microscopy (HRTEM), UV-visible absorption 

spectroscopy, photoluminescence (PL) spectroscopy, etc. For the study of TPA 

in QDs, open-aperture Z-scans have been performed at different wavelengths 

with femtosecond laser pulses. The relaxation processes have been determined 

by time-resolved, frequency-degenerate pump-probe technique. 

 

For the theoretical calculation, a TPA theory for QDs based on eight-band 

Pidgen and Brown (PB) model has been developed. Numerical calculations 

based on the theory have been performed to investigate the spectra of TPA in 

strong confinement CdTe QDs.  
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For colloidal CdSe QDs with 2 nm in radius, the TPA spectra have been 

measured with Z-scan from 750 nm to 950 nm and compared with published 

calculation results. The Auger process as well as intraband absorption, after 

TPA excitation, have been analyzed with frequency-degenerate, pump-probe 

technique and open-aperture Z-scan technique, respectively. For TPA spectra, 

the measured cross section is in the range from 10-47 to 10-46 cm4s photon-1, 

depending on the wavelength. These values are in the same range as the 

published computation result based on a simple four-band parabolic model. 

The Auger constant is revealed to be of the order of ~ 163010  scm , while the 

intraband absorption cross-sections are found to be in the range from 10-18 to 

10-17 cm2 from 680 to 780 nm. Our experimental evidence demonstrates that 

the Auger recombination or the intraband absorption takes place under the 

condition that the average electron-hole pair per quantum dot is greater than 

unity.  

 

For the study on colloidal CdTe QDs, TPA spectra of three-different-sized 

QDs in very strong confinement regime have been investigated both 

experimentally and theoretically.  The size-dependent TPA cross-section is 

unambiguously measured from 720 to 950 nm with Z-scan technique. the TPA 

cross-sections are measured to be on the order from 10-47 to 10-46 cm4ÿsÿphoton-

1, depending on the wavelength and the size of CdTe QDs. Based on the eight 

band PB model, calculation on the spectra of TPA in CdTe QDs has also been 

carried out. By taking into account of the conduction-valence band mixing and 

the complex structures of the valence bands, the theory can give more accurate 

prediction for TPA of CdTe QDs in the strong confinement regime. Both the 
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experiment and theory show that at a certain wavelength, the TPA in QDs rises 

un-monotonously with size. The increase of TPA for larger size is due to two 

factors: the increasing number of transitions for larger size and the red shift of 

the transitions of larger size. Another findings from the theory work is that, 

though the maximum peaks increases for larger size, the normalized maximum 

values of TPA by the QDs volume does not show size dependence. 

 

The studies presented in this thesis will provide first-hand information for 

many applications based on two-photon absorption of QDs in strong 

confinement. 
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Chapter I 

INTRODUCTION 

 

1.1 Background 

Nano-scale semiconductor materials have been investigated intensely over 

the past several decades as “molecular electronics” which incorporate the 

molecular-like behavior into semiconductor materials. Bulk lattice structure is 

conserved in these nano-scale materials. However, the spatial confinement 

makes the carrier movement quantized known as “quantum size effect”. The 

quantum size effect makes the electronic and optical properties of nano-scale 

materials tunable through changing in the size, shape, surface, among others. 

This new era of research on semiconducting materials started in 1974 when 

the first two dimensional structures (quantum wells) were created at AT & T 

Bell Laboratories [1.1] and IBM [1.2]. In a quantum well (QW) the electrons 

and holes are confined in a thin layer of a semiconductor material. The width 

of this layer is of the order of the bulk exciton Bohr radii, leading to quantized 

sub-bands. By the end of the1980s, the properties of the QWs were well 

understood, and research interest changed to lower dimensional structures 

such as quantum wire where the electrons and holes are confined in two 

dimensions [1.3]. A further reduction of dimensionality to quasi-zero 

dimensions was first achieved by a research group at Texas Instruments Inc., 

with the creation of quantum dots (QDs) by lithography [1.4]. The lateral 
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dimension of the QDs is 250 nm. In the last decade, QDs with dimensions of 

less than 10 nm have been successfully synthesized.  

QDs represent a class of quasi-zero-dimensional object. The quantum size 

effect in QDs is the most dramatic compared with quantum-wells and quantum 

wires due to the complete confinement of charge carriers. QDs have been 

considered as promising candidates in many applications such as bio-imaging, 

identifying, optical switching, and lasing [1.5-1.18]. In these applications, the 

optical properties of QDs are the main concern and are critical to their 

performances. 

In bio-imaging and bio-identifying, the fluorescent materials are dispersed 

into the internal structure of bio-samples. By exciting these fluorescent 

materials with laser beams, the image of the target internal structure can be 

obtained through photon-induced photoluminescence (PL) from the 

recombination of excited electrons and holes. A decade ago, organic dyes 

were widely accepted as ideal fluorescent materials. However, as the 

fabrication techniques of fluorescent QDs became mature, QDs have been 

found to be superior to traditional organic dyes, mainly due to following 

features: QDs are estimated to be 20 times brighter and 100 times more stable 

than traditional fluorescent organic dyes [1.19]; the emission wavelength of 

QDs is tunable; excitation wavelength is much wider and PL is much narrower, 

etc. These advantages of QDs over organic dyes make QDs very promising 

candidates in a large variety of fields. 
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 In the excitation process, the number of photons needed for one 

transition depends on the band gap of the material as well as on the photon 

energy. Compared with one-photon absorption excitation, multi-photon 

absorption (MPA) excitation is preferred in order to have higher 

signal-to-noise ratio, deeper penetration depth as well as greater spatial 

resolution [1.20, 1.21].  

In the MPA excitation of QDs, the MPA action cross-section is directly 

related to the brightness of the image. The MPA action cross-section is 

defined as the product of the fluorescence quantum efficiency and the MPA 

cross-section. The magnitude of the fluorescence quantum efficiency depends 

on many factors such as the passivation of QDs surfaces. Therefore there are 

some uncertainties in determining the real potential of the QDs. On the other 

hand, the MPA cross-section is an intrinsic parameter. The value of the MPA 

cross-section is related to the size, the structure and the materials involved in 

QDs. Thus, unambiguously determining the accurate value of MPA 

cross-section offers a direct guide in evaluating the real capacity of QDs for 

bio-imaging applications. Among the MPA excitation, two-photon absorption 

(TPA) is mostly applied in imaging due to both greater TPA value (compared 

to higher-order MPA) and availability of appropriate lasers. 

As for the material of QDs, it has been widely accepted that QDs 

belonging to group II-VI are promising candidates in bioimaging due to the 

direct band gap and large Bohr exciton radius [1.13]. In this study, the TPA 
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spectra in CdSe and CdTe QDs as well as the size effect of TPA in CdTe QDs 

are studied, in particular, both experimentally and in theory. Furthermore, the 

relaxation of excited carriers in CdSe QDs following with two-photon 

excitation is scrutinized in detail.  

In the following sections of Chapter 1, a general description will be made 

of the general properties of QDs as well as two-photon excitation and 

relaxation processes. A literature review will also be given on the published 

TPA studies in these two types of QDs followed by the objectives and scope 

of this thesis. In the final section of Chapter 1, the topics of this thesis are 

outlined. 

 

1.2  General properties of quantum dots 

 As mentioned in the last section, semiconductor materials confined in one, 

two and three dimensions in the nano-scale are called quantum wells, quantum 

wires and quantum dots, respectively. In quantum wells and quantum wires, 

translational symmetry in two and one dimension respectively still exists and a 

statistically large number of electrons and holes can be created. However, for 

quantum dots, due to the totally confinement, the translational symmetry is 

broken in all directions, only a finite number of excitons can be created within 

one and the same dot. This difference between the QDs and quantum 

wells/wires can be explained from the differences of density of states (DOS). 

DOS plays an important role in the characterization of a physical system. It is 
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defined as the number of states of the system whose energies are in the range 

of E to E + E. As can be seen from Fig. 1.1, though the DOS of the quantum 

wells and quantum wires have been quantized, a continuum part still exists 

which involves a large number of states in the range of E to E + E . However, 

for QDs, the DOS is delta function just as in atoms. Only finite number of 

states exists for certain energy. Thus, QDs have a low optical density and 

could have gain saturation which makes it possible as mediums of lasers, 

memory devices and etc. 

 Another important characteristic of QDs is that the discrete energy levels are 

tunable with tuning the size. As artificial, QDs exhibit many characteristics 

Fig. 1.1 Schematic image for the structure (left ) and density of states 
(right) for (a) bulk semiconductor; (b) quantum well (c) quantum wire; (d) 
quantum dots. 

(a) (b) 

(c) (d) 
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resemble that of the atom: such as discrete energy levels, a limit number of 

exciton at certain energy level. Moreover, QDs have advantage of tunable 

electrical and optical properties through tuning the size. As shown in Fig. 1.2, 

as the size becomes smaller, the energy band-gap is going larger and the gap 

between the energy levels bigger. Thus the emission wavelength of QDs are 

tunable through tuning the size. As shown in Fig. 1.3, the fluorescence 

wavelength of QDs for the same material can be varied from red to blue by 

changing the sizes. 

 

Fig. 1.2 Schematic diagram of the structure (upper) and the 
corresponding energy levels (below) of quantum dots for (a) weak 
confinement regime, (b) intermediate confinement regime, and (c) strong 
confinement regime. 

(a) (b) (c) 

RB RB RB 

Eg 

Eg Eg 
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It has been shown by theoretical analysis that the optical properties of QDs 

are strongly dependent on the ratio of the nanocrystal radius, R, to the Bohr 

radius of the bulk exciton RB, 22 / eRB  , where κ is the dielectric 

constant of the semiconductor and μ is the exciton reduced mass [1.22]. There 

are three different regimes defined by this ratio [1.23]: (1) the weak 

confinement regime: R>>RB. In this regime, the confinement kinetic energy is 

smaller than the Coulomb interaction, the Coulomb interaction is more 

important than the quantization energies of the electrons; (2) the intermediate 

confinement regime: R~RB. In this regime, the confinement energy is of the 

same order as the Coulomb interaction energy; and (3) strong confinement 

regime: R<<RB. In this regime both carriers (electrons and holes) are 

Fig. 1.3  Fluorescence of QDs with different size. The fluorescence peak is 
red shifted for larger size. 

Lager size
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independently confined, the Coulomb interaction is much smaller compared 

with the confinement energy.  

In many applications, the QDs in the strong confinement regime are 

preferable. For example, in the applications of bio-imaging and bio-identifying, 

QDs in the strong confinement regime could provide a wider range of 

emission wavelengths with little changes in size. In addition, the QDs with 

diameter smaller than 5 nm can be easier in penetrating into cells and thus 

increase the labeling efficiency. In this thesis, the optical excitation and 

subsequent relaxation of carriers in QDs in the strong confinement regime are 

investigated with a total size smaller than 5 nm. This way, we hope to gain a 

comprehensive understanding for future applications in bio-imaging and 

bio-identifying. 
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1.3 Two-photon absorption (TPA) and relaxation 

 

Two-photon absorption (TPA) is the simultaneously absorption of two 

photons with either identical or different frequencies, in order to excite a 

material from lower energy level to higher energy level. TPA is not an 

everyday phenomenon and is many orders of magnitude weaker than linear 

absorption. The strength of TPA depends on the square of the light intensity, 

thus it is a nonlinear optical process. The phenomenon was originally 

predicted by Maria Goeppert-Mayer in her doctoral dissertation in 1931 [1.24]. 

The first experimental verification came thirty years later, after the invention 

of the laser which permits the detection of two-photon-excited fluorescence in 

a europium-doped crystal [1.25]. In 1962, TPA was observed in vapor (cesium) 

by Isaac Abella [1.26]. 

Fig. 1.4  Schematic diagram of two-photon excitation and possible relax- 
ation pathways. 

(b) 

Lowest 
unoccupied 

state 

Highest 
occupied state 

(a) 

ћω1

ћω1

(d) 

ћω2

(e) 

Trap 
 States ћω3

(c) (f) 

Eg 
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TPA is a third-order nonlinear optical process. In particular, the imaginary 

part of the third-order nonlinear susceptibility )3(  is related to the TPA 

coefficient  through the following equation: 






2

0
2
0)3(Im

cn
                                (1.1) 

As shown in Fig. 1.4 (a), upon the absorption of two photons, one 

electron-hole pair is generated. In this case, the total absorption coefficient   

of the material is expressed as: 

I  0                                     (1.2) 

where 0  is the linear absorption coefficient and I is the light intensity. 

In the case of excitation light is very intense, the two-photon excited 

carrier may make further transition instantaneously with TPA to higher energy 

level by absorbing another incoming photon, as demonstrated in Fig. 1.4 (b). 

This process is called TPA-generated excited-state (or free-carrier) absorption. 

In this case, the total absorption coefficient   is written as: 

NI   0                              (1.3) 

where σα is the excited-state cross section and ΔN is the density of TPA 

generated carriers, which is given by: 

 /2// 2 NIdtNd                         (1.4) 

where, τ is the carrier recombination time. The second term at the right-hand 

of equation (1.4) is normally neglected since that the recombination time   

is much larger as compared with femtosecond excitation pulse. 
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After excitation, the excited electrons and holes relax to the respective 

lowest unoccupied and highest occupied states with the assistance of phonons 

and energy transfer between electrons and holes [1.27, 1.28], as shown in Fig. 

1.4 (c). The time scale of this relaxation is determined by the energy structure 

of the material and is normally very fast in QDs on the femtosecond scale. The 

relaxed electron-hole pair then recombines through different pathways, as 

shown in Fig 1.4 (d) to Fig. 1.4 (f). In Fig 1.4 (d), when only electron-hole pair 

is generated, the energy released by the recombination emits a photon of a 

time scale of nanoseconds for many semiconductors.  

On condition where there is a considerable amount of defects or interface 

states lying between the lowest unoccupied state (LUS) in the conduction band 

and highest occupied state (HOS) in the valence band, the excited 

electron-hole pair may have great chance being trapped by these states before 

they recombine, as shown in Fig.1.4 (e). (In order to shorten the writing, these 

states are termed as trap states in the rest of this thesis.)  

The relaxation pathway becomes complex when more than one 

electron-hole pair are generated. As shown in Fig. 1.4 (f), when more than one 

electron-hole pairs are generated, the recombination energy of one pair are not 

released through emitting a photon but through exciting another excited carrier 

to a higher excited state. This process is called Auger processes.  The Auger 

effect is a phenomenon initially found in atomic physics discovered in 1925 by 

Pierre Victor Auger upon analysis of a Wilson cloud chamber experiment 
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[1.29]. As shown in Fig. 1.5, when an electron is removed from a core level of 

an atom, leaving a vacancy, an electron from a higher energy level may fall 

into this vacancy, resulting in a release of energy. Although sometimes this 

energy is released in the form of an emitted photon, the energy can also be 

transferred to another electron, which is ejected from the atom. Auger 

processeses also occur in bulk semiconductors. However, the efficiency of 

Auger processes differs greatly between the atomic and bulk semiconductor 

due to the different Coulomb electron-electron interactions. In atomic systems, 

where the electron-electron coupling is much stronger than the 

electron-photon coupling, the rates of Auger transitions are significantly 

greater than the rates of the radiative transitions. As a result, the decay of the 

multi-electron states in atomic systems is dominated by Auger processes. On 

the other hand, in bulk materials, due to the reduced Coulomb 

electron-electron coupling and kinematic restrictions imposed by energy and 

momentum conservation, the efficiency of Auger effects is greatly reduced. 
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In QDs, the situation for Auger processes becomes much complex 

compared with bulk and atom. On one hand, the three dimensional 

confinement increases the Coulomb interactions and should lead to increased 

Auger processes compared with the bulk. On the other hand, the confinement 

induced atomic like discrete energy levels decrease the possibility of the 

Auger processes due to the reduced availability of final states satisfying 

energy conservation. So, quite different properties of the Auger effects should 

be expected in QDs compared with those in the atom and in the bulk. Klimov 

et al. investigated the Auger processes in colloidal CdSe systematically [1.30]. 

The Auger rate was revealed to be quantized and have size dependence: the 

larger the size, the smaller the Auger transition rate. However, in their study, 

one photon excitation was used which is different from the conditions for 

bio-imaging. The study of two-photon excitation induced Auger effects in 

QDs thus needed for this purpose, is presented in this thesis. 

Fig. 1.5  Auger process in an atom. The energy released by an 
electron falling from a higher energy level into a vacancy in core 
level, is transferred to another electron which is then ejected from 
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In this thesis, the two-photon excitation, two-photon induced free-carrier 

(or excited-state) absorption, and Auger processes are investigated. 

 

1.4  Literature review of TPA in colloidal CdSe and CdTe quantum 

dots   

The first study of the nonlinear optical properties of QDs was carried out 

in 1989 by Cheng et al. on CdS QDs dissolved in organic solvents using two 

different sizes [1.31]. The experiments were done with the third harmonic 

generation method of time scale of nanosecond excitation at infrared at 1.91 

µm. In this study, )3( was found to increase with larger size. Only the 

magnitude and phase of )3(  was obtained while the TPA remained 

unknown. A more systematical study on the nonlinear optical properties of 

QDs was performed in 1992 by Cotter et al. on 25 different glasses containing 

Cd(S, Se) and Cd(S, Se, Te) QDs with radius ranging from 3.5 to 6 nm [1.32]. 

The imaginary and real parts of )3(  of the samples were investigated using 

the Z-scan method in pico-second time regime at 1.06 µm. It was revealed that 

the absolute value of both imaginary and real parts of )3(  increases with 

size, and the nonlinearity is predominantly refractive. In 1994, Banfi et al. 

reported a TPA study of CdS1-xSex QDs and CdTe QDs doped in glass [1.33]. 

The TPA coefficients have been determined through the nonlinear optical 

transmittance technique at 1.06 mm with pulse duration of 30 ps. In this work, 

Banfi, et al. normalized the TPA coefficient with volume fraction of QDs and 

drew the normalized TPA coefficient as a function of QDs’ band gap. They 
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claimed that the TPA in these QDs was quite close to those in the bulk 

counterpart. However, no direct information could be obtained through these 

normalized TPA coefficients and so no other group in the world confirmed 

this observation till now.  

There are three main drawbacks for the above three studies: Firstly, only 

one wavelength has been investigated while the TPA spectra remained 

unknown. Secondly, the pulse duration is in nanosecond or in picosecond 

regime. With such long laser pulses, other effects such as excited-state 

absorption and nonlinear scattering may occur and may affect the 

measurement. Finally, the qualities of the samples were poor because the 

density of trap state was large and so was the size dispersions. As a result, the 

measured values were wide scattered with a large degree of uncertainty.  

With the fast revolutions in the laser systems as well as in the synthesis of 

QDs, the above drawbacks were quickly overcame. The laser pulse excitation 

moves from nanosecond to femtosecond with wavelengths tunable from 

ultraviolet to infrared. The qualities of QDs are also improved greatly: the size 

dispersion of QDs became narrower and densities of trap states in QDs were 

diminished. There has been a large amount of studies concerning TPA in 

various QDs. The review in this thesis will be focused on the experimental and 

theoretical TPA studies on CdSe QDs and CdTe QDs, which are belonging to 

II-VI group. CdSe QDs and CdTe QDs have once been considered as the 

proto-types for QDs due to their relative mature synthesis technique 
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comparing with those of other QDs. The PL of CdSe QDs and CdTe QDs 

could cover all the wavelength range from 500 to 750 nm. CdSe QDs and 

CdTe QDs thus have been intensely studied as promising candidates for 

bio-imaging.  

As mentioned above, there existed discrepancies in the early TPA studies 

in QDs. Theoretical work was needed to deepen the understanding in this field. 

In 1996, Schmidt et al. reported their experimental work on the spectrum of 

TPA in CdSe QDs with different sizes and applied the model of spherically 

confined effective mass in TPA simulation [1.34]. At the same time, excitation 

spectra of two-photon fluorescence measurements at 5 K were performed with 

picosecond laser pulses. As a result, the first four dominant TPA transitions 

were assigned; fine exciton structures have been revealed to be blue shifted as 

compared to the bulk. However, the theoretical prediction of these exciton 

peaks strength was deviated with experimental results. In the same year, 

Fedorov et al. published their theoretical work on TPA transitions in II-VI 

systems based also on the spherically confined effective mass model where 

parabolic model was used to simplify the energy bands [1.35]. Different from 

Schmidt et al. who only presented a list of TPA transitions, Fedorov et al. 

gave analytical expressions for the TPA coefficients, taking the size 

distribution into account. This theoretical work proposed by Fedorov et al. has 

been adapted by Padilha et al. in 2005 [1.36]. Spectra dependence of scaling 

was obtained through the theory. The theory was compared with the 
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experimental measurement of the TPA spectra in CdTe QDs doped in glass. 

Their experimental work carried out with the femtosecond Z-scan method 

proved the theory of Fedorov, though, with some discrepancies [1.36]. In this 

paper, the authors concluded that TPA coefficients would increase with size at 

given wavelength, even after being normalized by the volume of QDs. In 2007, 

Padilha et al. reported experimental TPA study of CdSe QDs and CdTe QDs 

doped in glass and simulations based on k·p theory. They considered the band 

mixing between the heavy hole and the light hole [1.37]. The simulation 

shows an improvement in the fitting of the measured data. However, 

discrepancies still exist between the theoretical prediction and the experiment, 

especially in the higher energy region and for smaller size [1.37].  

As summarized in the above paragraph, theoretical TPA QDs studies were 

conducted with the experimental support. Meanwhile, in the same period, 

many other experimental evidences have been published for the TPA in CdSe 

QDs and CdTe QDs using laser pulses at femtosecond regime. In 2003, Larson 

et al. published their experimental study on the TPA in water soluble 

CdSe/ZnS core/shell with different sizes [1.22]. In this study, the action 

cross-sections of CdSe/ZnS core/shell QDs were derived from two-photon 

microscopy and were compared with those of fluorescein in the wavelength 

range from 700 to 1000 nm. It was revealed that the action cross-sections of 

the CdSe/ZnS QDs are much larger than the ones of conventional labels and 

actually are the largest for any label ever used. Nevertheless, since the action 
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cross-section is the product of the TPA cross-section and fluorescence 

quantum efficiency, the contribution of the TPA cross-section can only be 

assumed and has not be accurately determined. Thus, TPA coefficients for 

CdSe QDs are still remained unknown.  

In 2006, Pu et al. have studied colloidal CdTe QDs with six different sizes 

ranging from 4.4 to 5.4 nm in diameter. The TPA cross-sections have been 

found to be proportional to R5.6 , where R is the radius of QD [1.38]. In their 

study, however, TPA has been examined at only one wavelength. In the next 

year, He et al. have unambiguously measured the TPA spectra of colloidal 

CdTe QDs, but their average diameters are in the range from 6 to 8 nm with 

the size dependence remained unexamined [1.39]. 

In summary, TPA in CdSe and CdTe QDs has been investigated by many 

groups in theory and in experiments. However, the theoretical work still needs 

further improvement to predict TPA in very strong confinement where the 

band mixing between the conduction and valence bands cannot be neglected. 

For experimental studies, the action cross-sections of CdSe QDs were shown 

to be quite big but there were no experimental evidence to directly determine 

the spectrum of TPA coefficient of CdSe QDs. Furthermore, the intraband 

absorption in TPA generated carriers has not been studied systematically. This 

may contribute to the saturation of the photoluminescence. For CdTe QDs, a 

systematic study on both size- and wavelength-dependent TPA in colloidal 

CdTe QDs in very strong confinement regime is still in need. 
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1.5 Objectives and scope 

The objectives of my PhD research project are four fold: i) to investigate 

the two-photon absorption (TPA) in colloidal CdSe QDs and CdTe QDs which 

belong to group II-VI by femtosecond Z-scan technique and by theoretical 

modeling.  From this study, the TPA spectra of colloidal CdSe QDs and 

CdTe QDs in very strong confinement regime are to be obtained. The 

size-dependent TPA spectra of colloidal CdTe QDs in the very strong 

confinement regime are to be investigated by experiment as well as by 

theoretical simulation. The theory will consider both mixing between the 

conduction band and valence bands as well as the complex structure of the 

valence bands. Factors that contribute to the size effects are to be discussed; ii), 

relaxation dynamic of the QDs following TPA excitation is to be investigated 

using pump-probe spectroscopy; iii) the Auger effect following the TPA 

excitation is to be investigated; iv) the study in the excited-state absorption in 

CdSe QDs will also be presented in this thesis. 

 

1.6 Layout of this thesis 

Chapter 2 introduces the two-photon absorption theory in strong 

confinement QDs. To start with, several theories on the energy structure in 

QDs are reviewed briefly. Then the eight-band Pidgeon and Brown (PB) 

model, which has been applied in this thesis, is introduced in more detail. 

Energy levels as well as wave functions of CdTe QDs derived from this theory 
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are shown. For the last part in this chapter, the equations for the two-photon 

transition rate and the TPA coefficient are described. The calculations are 

based on the wave functions and energy levels obtained from the eight-band 

PB model.  

Chapter 3 presents briefly the experimental techniques that are used in this 

thesis. It includes the description of experimental setups as well as the 

theoretical formula involved for the analysis of the experimental results. The 

laser systems used in this study are also described. 

In Chapter 4, the TPA excitation and relaxation in colloidal CdSe QDs is 

studied with femtosecond Z-scans and transient absorption measurements is 

studied. The TPA spectra are investigated in a wavelength range from 720 to 

950 nm. The spectra are then compared with previously published theoretical 

papers. Furthermore, the intraband absorption of two-photon-excited carriers 

has also been studied. For the ultrafast relaxation, the Auger recombination 

and quantized Auger rate are discussed in detail.  

Chapter 5 reports on the experimental and theoretical study on the TPA in 

colloidal CdTe QDs with three different sizes in the very strong confinement 

regime. Experimental measurements of TPA cross-section in a wavelength 

range from 720 to 950 nm are conducted. A TPA theoretical simulation based 

on the spherical eight-band Pidgeon and Brown model which takes the band 

mixing into account is presented in this chapter. In this simulation, the 

potential barrier is taken as an infinite one. Then, comparison is made between 
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the experimental results and theoretical calculations. The factors that 

contribute to the increase in the TPA with dot size and the effects of size 

dispersion on the TPA are discussed. 

In Chapter 6, all the important experimental and theoretical findings in 

this thesis are summarized. Further steps for future studies in this field are 

proposed.  
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Chapter II 

TPA THEORY FOR STRONG CONFINEMENT 

QUANTUM DOTS 

 

 

2.1 Introduction 

To calculate the two-photon absorption (TPA) in materials, we have to 

know the electronic structures including the band energies and the 

corresponding wave functions. The TPA absorption then can be calculated by 

applying Fermi’s golden rule, with the known initial, intermediate, final states 

and the corresponding wave functions of these states. In order to calculate the 

band energies and the corresponding wave functions, various numerical 

methods thus have been developed, such as the tight binding method, the 

pseudo-potential method, and the orthogonalized plane wave method. These 

methods are suitable to calculate band diagrams in which the band energies E 

are functions of wave vector k. However, the above mentioned numerical 

methods suffer from their complexity and thus are time consuming, as have 

been discussed in detail in many textbooks on solid-state physics [2.1, 2.2]. On 

the other hand, for TPA, only the extremas (normally at k = 0) in the band 

diagram dominate the process due to the much higher transition rates than in 

other regions. Many assumptions thus can be made to simplify the calculation 
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such as the effective mass approximation (EMA) and the envelop function 

approximation (EFA).  

In the EMA, the bands near the extremas are assumed to have simply 

parabolic forms. With such an approximation, the carriers (electrons and holes) 

in quantum dots (QDs) can be regarded as particles in a sphere with an 

‘effective mass’ *
,vcm  where c and v represent the conduction band and the 

valence band, respectively. The energy of the particle is then given by: 

)2/()( *
,

22,,
vc

vcvc mkEkE  , where Ec,v is the conduction/valence band 

energy at k = 0. Despite its simplicity, EMA is found to be a powerful tool 

even for strong confinement QDs and is only invalid for QDs in an extreme 

small regime [2.3-2.12].  

Whereas the EMA is concerned on the band energy, the other 

approximation EFA, refers to the wave function. As we know from bulk 

semiconductors, the electronic structure in a periodic potential can be derived 

from the Hamiltonian. The general theory is the Bloch theorem where we 

know that the eigen wave function )(rnk  of an electron in a periodic 

potential (called the Bloch function) is given by:  

)()( ruer nk
rik

nk
                            (2.1) 

where n refers to the ordinal number of the level with a given symmetry and k 

the wave vector of the electron. To satisfying the boundary condition in QDs, 

the wave function of electron/hole is then written as a linear combination of 

Bloch functions: 
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 
k

nknk
QDs
n rikruC )exp()(                      (2.2) 

where nkC  is the expansion coefficient. Here comes the envelop function 

approximation (EFA). In the EFA, the function )(runk is assumed to be 

weakly dependent on k (normally is true around k=0), Equation (2.2) can be 

rewritten as: 

)()()exp()( 00 rfrurikCru QD
nn

k
nkn

QD
n            (2.3) 

where )(rf QD
n is the eigen single particle “envelop function”. The wave 

functions of electron and hole in QDs are then represented as the product of 

the envelop function and the Bloch function of the conduction (electron) and 

valence (hole) bands. The Bloch functions are known from the bulk material 

and the QDs problem is reduced to determine the envelop eigen function 

of )(rf QD
n . The wavefuncion of electron or hole then is represented as: 

)()(0 rfru QD
nn

n

QD
n

n

QD                      (2.4) 

Within EMA and EFA, many models have been proposed for the 

calculation of energy structure in QDs with different extent of assumption and 

simplicity. In the next parts of Section 2.1, the band structure of group II-VI 

will be introduced briefly followed by the description of three models: the 

parabolic model, the Luttinger and Kohn (LK) model, and the Pigeon and 

Brown (PB) model. In Section 2.2, the electron/hole structure of QDs based on 

the PB model will be described in more detail. The calculation on the 

two-photon transition in QDs will be explained in Section 2.3. 
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2.1.1 The band structure in group II-VI semiconductors 

For the zinc blend or wurtzite structures, the lowest conduction minimum 

is formed from S-type orbitals and the valence band is formed from P-type 

orbitals [2.12]. By considering the electron spin, the lowest conduction band is 

two-fold degenerate whereas the valence band is six-fold degenerate. 

Furthermore, the spin-orbit interaction makes the valence band split further: a 

four-fold degenerate band with a total unit cell angular momentum J=3/2 and 

a two-fold degenerate band with J=1/2. The energy separation between these 

bands is determined by the strength of the spin-orbit interaction. The J=3/2 

band is further split into light- and heavy-hole subbands with J projections 

MJ=1/2 and MJ=3/2, respectively. At the Г-point of the Brillouin zone, the 

splitting is zero for diamond and zinc blend lattices and nonzero for the 

wurtzite structure. Fig. 2.1 shows the band structure of a typical 

semiconductor with Zinc Blend or wurtzite lattice symmetry.  
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2.1.2 The parabolic & particle-in-a-sphere model 

The first and simplest theoretical description of QDs was based on the 

parabolic band model combined with the “particle in a sphere” model [2.3-2.5]. 

There are two assumptions in this model. One is that the spherical nanocrystal 

is surrounded by an infinite potential barrier; and the other approximation in 

this parabolic model is that the coulomb interaction between the electron and 

hole is ignored. The latter approximation is also called the “strong 

confinement assumption” where the electron and hole can be treated as 

independent to each other and each can be described as “particle in a sphere”. 

With these two assumptions, the energy bands of electron and hole are 

Fig. 2.1 Bulk band structure of a typical semiconductor with Zinc 
Blend or cubic lattice symmetry. Heavy, light, and spin orbit split-off 
valence subbands are denoted as “hh”, “lh”, and “so”, respectively.  

(J=3/2, Jz=±3/2) 

(J=3/2, Jz=±1/2) 

(J=1/2, Jz=±1/2) 
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parabolic in k space, and analytical solutions of the energy levels are obtained 

[2.3-2.5].  

In parabolic model, the envelop functions can be expressed in terms of the 

spherical Bessel function (jl) and the spherical harmonic functions (Yl,m) [2.3]: 

)(
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)( ,
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,
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ml
nll
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mln Y

aj
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a
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


                   (2.5) 

where Ω is the solid angle of the vector r; *
,nl  is the nth root of the 

spherical Bessel function of order l; l is the orbital angular momentum (l = 

0,1,2,…, corresponding to states with S, P, D,… symmetries), and m is the 

projection of the orbital angular momentum (m = 0,±1,…±l), , n is the 

quantum number (n = 1,2,3,…). 

 

The quantized energy of the electron and hole can be written in parabolic 

approximation as : 

2*
,

2
,

2
,

, 2 Rm
E

he

nlhe
nl


                                   (2.6) 

where *
,hem  is the effective mass of electron and hole respectively, R is the 

crystal radius. It can be seen from Equation (2.6) that the carrier energy in 

QDs increases with 1/R2, in contrast to the Coulomb energy of the 

electron-hole interaction which increase with 1/R. From this simple 

relationship, we can see that for strong confinement QDs, the effect of 

Coulomb interaction between electron and hole becomes weaker and the 

confinement energy becomes stronger. 
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Fedorov et al. has applied this simple model in the calculation of the 

two-photon absorption (TPA) [2.13]. Analytical expressions have been 

derived. This work has been proved by Padilha et al. in CdTe QDs [2.14, 2.15]. 

However, for strong confinement QDs with size smaller than the Bohr radius, 

the TPA prediction based on this parabolic & particle-in-a-sphere model 

shows a large discrepancy to the experimental results, both in transition energy 

and in the profile of TPA spectrum [2.15, 2.16, 2.17].  

 

2.1.3 pk   methods 

Though the parabolic model gives a reasonable description on the QDs 

band, it can only provide a qualitative description and fails in describing the 

real band structure in QDs. The real band structure in QDs is much more 

complex: both the conduction and the valence bands are warped and are 

non-parabolic; there are couplings between the conduction and valence bands 

and there are couplings among the valences bands.    

The real band structure requires a more complex theory. Among the 

different theories, the pk  method is often a sufficient and relatively simple 

approach giving an analytical description for QDs in strong confinement 

regime.  

The pk   method was introduced by Bardeen [2.18] and Seitz [2.19]. It is 

a perturbation method where the eigen values and eigen functions are 

expanded as a function of k. In pk   theory, the non-parabolicity of the 
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conduction and valence bands as well as the mixing between the bands, can be 

considered. Depending on the complexity of the band structure, the pk   

theory can be applied in many different ways [2.20]. When the interest is in 

the six valence bands ignoring their band mixing with the conduction bands, 

the mehod is called six-band model. When the mixing between the conduction 

band and valence bands, as well as the complex structure of valence band are 

considered, it is called eight-band model. Following the name of the 

theoreticians who developed these models, six-band and eight-band model are 

also recognized as “Luttinger and Kohn” model and the “Pigeon and Brown” 

model, respectively [2.8, 2.9]. All the above models within the pk   theory 

have also been called “multiband effective mass approximation model”. 

To introduce the pk   method, we should start with Bloch functions 

)(rnk  which are solutions of the Schrodinger equation for the single particle 

Hamiltonian. The single particle Hamiltonian is: 

)(
2 0

2

0 rV
m

p
H                                   (2.7) 

where V(r) is the periodic potential of the crystal lattice. Take the Bloch 

functions (2.1) into Equation (2.7) gives: 
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The term exp(ikÿr) can be taken off from both side of (2.8), and the 

equation becomes:             
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Equation (2.9) is the general Schrödinger equation in the pk   method. 

The band structure is expanded analytically around a particular point in 

k-space, typically k=0. The band energies and wave functions are then 

expressed in terms of the periodic functions nku  and their energies nkE  

around this particular point. 

Assuming that un0 and En0 are known around k = 0, Eqn. (2.9) becomes: 

 )()
2

)(()(][
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22
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k
kErupk
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H nknnk
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          (2.10)  

where   

)(
2 0

2

0 rV
m

p
H                                 (2.11 a) 

)()0()( 000 ruEruH nnn                                                             (2.11 b) 


'

0'' )()(
n

nnnk ruaru                                                                   (2.11 c) 

The band-edge functions un0(r) can be represented as following: for the 

conduction band: S , S ; and for valence band: X , Y , Z , 

X , Y , Z . Here, S, X, Y, Z are similar to S-like and P-like atomic 

states (lowest order spherical harmonics Y00, Y10, Y11 etc.) The basic Bloch 

functions are usually chosen to be as the eigen functions of orbital angular 

momentum operators 2L and zL . It is convenient to choose the basis 

functions: 

  iSuu c |2/110  
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 )(
2

1
2/3,2/330 iYXuu v  

]2)[(
6

2/1,2/350  ZiYX
i

uu v

])([
3

2/1,2/170   ZiYX
i

uu v            (2.12 a) 

and  

 Suu c
2/120 ,  

  )(
2

2/3,2/340 iYX
i

uu v ,   

]2)[(
6

1
2/1,2/360   ZiYXuu v  

])[(
3

1
2/1,2/180  ZiYXuu v                (2.12 b) 

The first four basis functions (2.12a) are degenerate with the last four 

degenerate four basis functions (2.12b). 

 

2.1.3.1 Luttinger and Kohn model 

The Luttinger and Kohn (LK) model is a 6-band model: the heavy hole, 

light hole, and spin-orbit split-off bands, all doubly degenerate. The couplings 

between the valence bands to the two degenerate conduction bands are ignored. 

It is a good approach for wide-band-gap semiconductors where the band gap is 

bigger than the quantized energy levels. In the Luttinger and Kohn model, the 

valence bands can be described using three parameters: γ1γ2γ3 . For a cubic 

crystal lattice (such as Zinc blend structure), the parameter number is reduced 
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to 2 sinceγ=γ2=γ3. The effective masses of heavy ( *
hhm  ) light ( *

lhm ) and 

split-off ( *
som ) hole bands can be written in terms of the free electron masses 

as follows: 

 )2/( 10
*   mmhh   )2/( 10

*   mmlh 10
* /mmso              (2.13) 

The Luttinger and Kohn model is a starting point to obtain the hole 

eigen-states and the energies in quantum dots. It takes into account the 

spin-orbit interaction as well as the six valence bands. In general, in the LK 

model, the eigen-value equation below has to be solved: 
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where   
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The Luttinger and Kohn model treats the complex structure of the valence 

band but does not neglect the band mixing between the valence bands and the 

conduction bands. It works well for large-band-gap materials. However, for 

small and moderate semiconductors in strong confinement regime where the 

quantized energy is comparable or even larger than the band gap, the mixing 

between the conduction and valence band cannot be ignored.  
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2.1.3.2 Pidgeon and Brown (PB) model 

Based on the Luttinger and Kohn model, Pidgeon and Brown (PB) 

proposed an 8-band model which takes into account both the complex 

structure of the valence band as well as the conduction-valence band mixing at 

the same time, in the vicinity of the Г  point of the Brillouin zone [2.9]. The 

importance of this model for the lowest symmetry QDs in spherical 

nanocrystals have been shown by many groups [2.21-2.22].  

In general, in the PB model, the eigen-value equation below has to be 

solved: 
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where   
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In this model, the effects of non-parabolic behavior in the conduction and 

light hole bands, the warping of all the bands and the band coupling between 

the conduction and valence bands have been considered. 

Efros et al. have given the analytical expressions for the band energy and 

wave-functions in QD by using this PB model as a basis [2.23].  Our 

calculation of the energy levels and the wave-functions are based on their 

work. 
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2.2 Electron structure of group II-VI quantum dots based on PB model 

2.2.1 Band structure of group II-VI semiconductors 

As mentioned above, the PB model is an eight-band LK model. The 

Hamiltonian of the PB model is as follows [2.23]: 
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  (2.18) 

The operators in the Hamiltonian are expressed in terms of the 

momentum operators: 
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Kane matrix element 0/|| mZpSiV z 


. 

In spherical nanocrystals, each electron or hole state is characterized by its 
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parity (±), total angular momentum LJj  , where L is the envelope 

angular momentum, and the projection of the total angular momentum zjm  . 

The wave-function of these states can be written as a linear expansion in the 

eight Bloch functions: 
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An explicit analytical representation of the angular Ω function is given in Ref. 

[2.24].  

 

2.2.2 Wave-functions of group II-VI semiconductors 

The wave-functions of even states are given by [2.23]: 
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                                              (2.21) 

where  
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The wave-functions of odd states are given by [2.23]: 
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(2.22) 

The energy levels of QDs are then determined by the boundary conditions 

that outside the radius of the QDs, the wave-functions vanish [2.23]. 

 

2.3 TPA in strong confinement quantum dots 

With the above PB method, the wave functions and energy levels of 

electron/hole have been obtained by considering both the mixing between the 

conduction and valence bands as well as the complexity of the valence bands. 

In this section, the calculation of the two-photon absorption (TPA) in QDs will 
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be introduced. The wave functions and energies will be based on the PB 

model. 

 

2.3.1 General information of TPA transition in quantum dots  

The two-photon generation rate (TPGR) of electron-hole pairs by 

plane-polarized light with frequency ω can be represented in second-order 

perturbation theory with respect to the electron-photon interaction as (Fermi 

Golden Rule):  
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           (2.23) 

where  
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                  (2.24) 

where the subscripts, 210 ,, vvv  denote sets of quantum numbers for initial, 

final, and intermediate states of an electron subsystem, respectively, and the 

parameter of v is the inverse lifetime of the state v  [2.20]. 

 

As shown in Fig. 2.2, each TPA transition involves two processes: one is 

interband and the other is intraband. From Fig. 2.2 we can see that the 

interband is from the valence bands to conduction band. However there are 

two paths ways for the intraband transiton: from conduction band to 

conduction band or from valence band to valence bands. 
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The two-photon absorption coefficient   is defined such that for 

radiation intensity I, the rate at which energy is absorbed in an unit volume of 

the material is 2I . The interband transition rate per unit volume associated 

with the simultaneous absorption of the two photons of frequency ω is given 

by [2.25]: 

2)2( /2 IW                                   (2.25) 

                                                                                  

2.3.2  TPA transition in quantum dots considering band mixing 

The parity of the wave functions for electron and hole can be classified as 

either even or odd. For wave function )(x  in even state, there exists: 

)()( xx   , whereas in odd state: )()( xx   . In this thesis, only the 

even state is used to illustrate the process of calculating the TPA transition. 

The procedure for the TPA transition of odd state is the same as for even state 

transition. 

As mentioned in Section 2.2, the wave-functions of the conduction band of 

even states are given by:  

C 
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V 
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v1

v2

Inter. 
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V v0 

v1 

v2 

Fig. 2.2 Schematic diagram of the interband (inter.) and intraband 
(intra.) transitions involved in two-photon absorption.  



Chapter 2             TPA Theory for Strong Confinement Quantum Dots 

 42 

)),(),(()(

)),(
12

1
),(

12

1
()(

)),(
2

),(
2

()()(

2/1,22/1,1

2/1,2/1,

2/12/1,2/12/12/1,2/1,

c
ml

c
mlC

c
ml

c
mlC

c
Mj

c
MjC

c
Mj

uYCuYCrf

uY
l

ml
uY

l

ml
rf

uY
j

Mj
uY

j

Mj
rfr
































     

                                                             (2.26) 

The wave-functions of the heavy-hole band of even states are as follows:  
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where:  
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The wave-functions of the light-hole band of even states are given below:  
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where: 
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The wave-functions of the spin-split hole band of even states are as follows: 
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2.3.2.1 Interband transition matrix  

For interband transitions under the dipole approximation, the transition is: 
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where m0 is the free electron mass, A is the amplitude of the light vector. The 
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matrix elements of interband transition are then determined by the following 

expression: 
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where 0
2

0 /|/|/ mZzSmpP ch   , and chp is the interband matrix 

element of the electron momentum.  

 

2.3.2.2 Intraband transition matrix  

It is known from Equations (2.20) to (2.25) that the envelop wave function 

of conduction band is:  
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where CC is a constant. So the intraband transition matrix for conduction band 

is given below:                 
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For the same procedure, the intraband transition for heavy-hole, light-hole and 

spin-split-hole are given by Equation (2.33), (2.34), and (2.35) respectively: 
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Combining the interband transition and intraband transition matrix, the 

two-photon transition rate of heavy-hole to conduction band is given by 

Equation (2.43) 
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The procedure will be the same for the two-photon transition of light-hole 

to conduction band )2(
lhW , and spin-orbit split hole bands to the conduction 

band )2(
soW . Then the two-photon absorption coefficient is given below: 
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Based on the above discussions, TPA coefficient, β, can be theorized 

quantitatively. The results will be presented in Chapter 5. 
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Chapter III 

 

EXPERIMENTAL TECHNIQUES AND 

THEORETICAL ANALYSES 

 

3.1 Introduction 

A large number of experimental techniques have been applied to the 

research reported in this thesis. Among these techniques, two experimental 

techniques are essential and thus are described in detail in this chapter: the 

open-aperture Z-scan technique and the femtosecond time-resolved, 

frequency-degenerate, pump-probe technique (the latter is also referred as the 

transient absorption measurement technique). These two techniques have been 

applied to our study on the optical nonlinearity and ultrafast dynamics of 

quantum dots (QDs), respectively. In addition, many other techniques have 

also been applied to facilitate the investigation of the QDs. These techniques 

include steady-state UV-vis absorption spectroscopy, photoluminescence (PL) 

spectroscopy, high-resolution transmission electron microscopy (HRTEM), 

and energy dispersion X-ray (EDX) analysis. These techniques have been 

utilized to obtain the optical properties, PL position and width, QDs’ lattice 

structure as well as dot size and size distribution, and the element ratio. The 

operational principles and working details of these techniques are 

well-developed and documented as in Ref. [3.1]. Therefore, they are not 
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described here, although they have been frequently employed in the research 

project presented in this thesis.  

In the following sections, the Z-scan technique and the femosecond 

time-resolved, frequency-degenerate, pump-probe technique will be covered 

from their experimental set-up to their theoretical analyses. The laser systems 

used in the experiments are also described. 

 

3.2 The Z-scan technique 

3.2.1 Introduction to the Z-scan technique 

The nonlinear optical properties of materials are important to many 

applications such as optical communications, optical information processing, 

bio-imaging and targeting.  Thus, the characterization of these properties in 

materials has been a very active field for past decades. Many experimental 

techniques has been proposed and utilized. Among them are nonlinear 

interferometry [3.2, 3.3], degenerate four-wave mixing [3.4], nearly 

degenerate three-wave mixing [3.5], ellipse rotation [3.6], and beam distortion 

measurement [3.7]. These techniques, with different advantages, have the 

shortcoming of requiring either relatively complex apparatus or detailed wave 

propagation analysis. 

The Z-scan technique was proposed by Van Stryland’s group in 1990 

[3.8]. It is a simple yet highly sensitive technique to measure the nonlinear 

optical coefficients based on the transmittance as a function of z position. In 



Chapter 3             Experimental Techniques and Theoretical Analyses 

 52 

this technique, the sample moves along the axis of a focused laser beam 

through its focal plane and the transmission of the sample is measured for each 

z position, this technique is called Z-scan technique. The diagram of the 

Z-scan set-up is shown in Fig. 3.1 (a). The incoming laser light is first split by 

a beam splitter. The reflected light is recorded by detector one (D1) as a 

reference. The transmitted light is focused by a lens and the power of the 

transmitted light passing through the sample is measured by detector two (D2). 

Then the information of the nonlinearity then can be derived from the ratio of 

D2 to D1 as a function of the position z. With or without an aperture in front of 

D2, the nonlinear refraction or nonlinear absorption can be extracted by fitting 

the Z-scan theory to the measured data. This method is thus called 

open-aperture Z-scan and closed-aperture Z-scan for these two conditions, 

respectively. Despite the simplicity in its set-up and operation, this technique 

allows the determination of the sign and magnitude of nonlinear absorption 

and/or nonlinear refraction at the same time and thus has been widely accepted 

since its invention.  
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Fig. 3.1 (b) shows the photograph of the open-aperture Z-scan set-up in 

our laboratory. The detectors in this set-up are silicon-based detectors (Model 

RKP465) which were purchased from Laser Probe Inc. The spectral sensitive 

range is from 200 nm to 1100 nm with a detection area of 10 mm x 10 mm. 

 

From laser 

Attenuators D1
D2

Sample

Beam splitter 

Translation stage 

Lens

(b) 

(a) 

D1 

D2 

Z=0 
-Z Z

Beam Splitter Lens Sample Aperture 

Fig. 3.1 (a) Schematic diagram of the Z-scan set-up. It is the 
open-aperture Z-scan set-up if there is no aperture in front of D2. It is the 
closed-aperture Z-scan set-up if there is an aperture in front of D2, as 
showed with the doted line. (b) Photograph of the Z-scan experimental 
set-up in our lab. The energy ratio of D2/D1 is recorded as a function of 
the sample position z. D1 and D2 are the detectors. The sample is 
mounted on a translation stage which is controlled by a computer. Note 
that the aperture is absent in our experiment and thus it is the open 
aperture Z-scan set-up. 
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In a third-order instantaneous nonlinear optical material, the nonlinear 

refraction and nonlinear absorption are related to the real part and imaginary 

part of the third- order nonlinear optical susceptibility χ(3) respectively. The 

total refractive index and total absorption coefficient can be expressed by 

[3.8]: 

Innn 20                                      (3.1) 

I  0                                   (3.2) 

with the nonlinear absorption and refraction can be expressed by βI and n2I, 

respectively; I refers to the light irradiance; β is the third order nonlinear 

absorption (TPA coefficient); and n2 is the third order nonlinear refractive 

index. Fig. 3.2 illustrates the normalized Z-scan curves for different conditions: 

Fig. 3.2 (a) and (b) show the open-aperture Z-scan and closed-aperture Z-scan 

with pure nonlinear absorption and pure nonlinear refraction, respectively. 

From Fig. 3.2 (a) it can be seen that the signal is a symmetric ‘peak’ or 

‘valley’ with respect to the Z position for the open-aperture Z-scan. These two 

conditions correspond to the nonlinear bleaching (β<0) and nonlinear 

absorption (β>0) respectively. From Fig. 3.2 (b), the signal with pure 

nonlinear refraction has a peak followed a valley (n2<0) or a valley followed 

by a peak (n2>0). Figs. 3.2 (c) and (d) display the closed-aperture Z-scan 

curves with the coexistence of both nonlinear absorption and refraction. It can 

be seen that the sign of the nonlinear absorption and/or refraction can be 
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conveniently determined from the shape of the curve. Fig. 3.2 (c) demonstrates 

by the closed-aperture Z-scan curves coexistence of nonlinear absorption β

>0 with nonlinear refractive index n2>0 (solid line) and n2<0 (dash-dot line), 

respectively; and Fig. 3.2 (d) exhibits the coexistence of nonlinear absorption 

β<0 and nonlinear refractive index, n2>0 (solid line) and n2<0 (dash-dot line), 

respectively. 

 

Fig. 3.2 Illustration of the normalized Z-scan transmittance curves for (a) 
pure nonlinear absorption: β>0 (solid line), β<0 (dash-dot line);(b) 
pure nonlinear refraction: n2>0 (solid line), n2<0 (dash-dot line); (c) β>0, 
n2>0 (solid line); β>0, n2<0 (dash-dot line); and (d) β<0, n2>0 (solid 
line); β<0, n2<0 (dash-dot line). 

(a) (b)

(c) (d)
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In this thesis, only the open-aperture Z-scan has been applied to investigate 

the imaginary part of third order nonlinearity especially related to two-photon 

absorption in the QDs. 

It should be pointed out that the Z-scan set-up has to be calibrated before 

conducting the measurements on any samples. There are two purposes in this 

calibration: one is to check the alignment of the optical path; and the other is 

to assure the accuracy of the detectors. The pulse duration can be acquired 

through the autocorrelation method. In our study, the Z-scan set-up was 

calibrated by using bulk crystals such as CdS and CdTe as standard samples.  

 

To illustrate the above calibration, Fig. 3.3 shows an example of using 

0.5-mm-thick hexagonal CdS bulk crystal (Semiconductor Wafer, Inc.) to 

calibrate the open-aperture Z-scan set-up at 780 nm. Firstly, from Fig. 3.3 (a) 

we obtain that the signals are symmetric about the origin of the Z axis, which 

indicates a good alignment of the optical path. Secondly, from fitting the 

Z-scan curves with parameters of beam waist w0, the pulsed duration τp, laser 

power, P, etc, the TPA coefficient can be derived. From the comparison 

between the TPA coefficients obtaining from fitting Z-scan curves and from 

theoretical prediction [3.9], the parameters of the Z-scan set-up can be 

confirmed.  
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As mentioned in Chapter I, there are two absorption processes at higher 

irradiance, that is, TPA and TPA-generated excited-state absorption. To 

distinguish the contributions from TPA and the TPA-generated excited-state 

absorption, the Z-scans have to be performed with several laser irradiances. At 

low laser irradiances where only TPA dominates, the measured TPA 

coefficients derived from the Z-scan curves should be independent of the 

irradiances. As can be seen from 3.3 (b) that at intensities below 1.4 GWcm-2, 

the TPA coefficient remains the same and thus the TPA process should be the 

dominant process in the Z-scan curves in this intensity range. The TPA 

coefficient is then can be determined. The TPA-generated excited-state 

absorption should be considered only whenever the measured TPA 

coefficients show irradiance-dependence. Meanwhile, during the measurement, 

the sample may experience damage due to the strong laser pulse. The 

experiments have to be performed from lower irradiance to higher irradiance 

and to lower irradiance again. The signals should be repeatable to make sure 

that the sample is undamaged by the laser beam. Furthermore, for QDs 

dissolved in solvent, Z-scans should be conducted in a period of time in order 

to make sure that there is no measurable difference and to ensure the 

long-term stability.  
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Fig. 3.3 (a) Open-aperture Z-scan curves for bulk CdS at 
780 nm at different laser intensities. (b) The TPA 
coefficients vs laser intensity for bulk CdS at 780 nm. The 
solid square represents the experimental data whereas the 
line represents the theoretical calculation based on Ref. 
[3.9]. 

(a) 

(b) 
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3.2.2 Theoretical analysis for TPA coefficient measured with 

open-aperture Z-scan technique  

For the TPA process, the TPA coefficient can be derived by the following 

equation:  

),,()],,([
),,(

0 ztrIztrI
dz

ztrdI   ,                (3.3) 

which describes losses in the laser beam due to the single- and two-photon 

absorption when it propagates within the two-photon absorber, 0 is the 

single-photon absorption coefficient and  is the TPA coefficient. I is the laser 

irradiance, which is a function of the radial position, r, Z-position, z, and time, 

t. Considering the laser beam as Gaussian in both the temporal and spatial 

domain: )/exp())(/2exp()(),,( 2222
ptzwrzIztrI  , and by solving Eqn. 

(3.3), the open-aperture Z-scan curve T(z) is then given by: 

 






 dxxq
q

C
zT ))exp(1ln()( 2

0

0
                 (3.4) 

 

where )/1/( 2
0

2
00 zzLIq eff   , 0I is the laser beam intensity at the focus 

without the sample, 0z is the diffraction length of the laser beam, defined by 

 /2
00 z , where 0  denotes the beam waist at the focus and   is the 

wavelength of the laser beam. Leff is the effective thickness calculated 

according to: 00 /)]exp(1[  LLeff  .  
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At low laser intensities, the TPA coefficient   obtained through Eqn. 

(3.4) can be regarded as being independent of the intensity of the laser beam. 

However, at high intensities, the contribution of intraband absorption cannot 

be neglected. As described in Chapter I, when the laser beam intensity is 

sufficiently large, the carriers excited by two-photon excitation may make 

transitions to higher excited states by absorbing more incoming photons 

simultaneously with the two-photon absorption. In this case, the reduction in 

the laser intensity I, is given by  

 

),,(]),,([
),,(

0 ztrINztrI
dz

ztrdI
             (3.5) 

and  

effNIdtdN  /)2/(/ 2                          (3.6) 

where,   is the intraband absorption cross-section of TPA-excited 

carriers; eff is the effective lifetime for TPA-excited carriers which is normally 

much longer compared with the laser pulse duration and can be neglected. The 

Eqn. (3.5) and Eqn. (3.6) are solved with a numerical method [3.10]. 

 

3.3 The pump-probe technique    

3.3.1 Introduction to the pump-probe technique 

Another important technique used in this thesis is the femtosecond 

time-resolved, frequency-degenerate, pump-probe technique. For short, it is 

also called the pump-probe technique or transient absorption measurement. 



Chapter 3             Experimental Techniques and Theoretical Analyses 

 61 

Fig. 3.4 shows a photograph and the corresponding schematic diagram of the 

set-up. As can be seen, the laser pulses are firstly divided by a beam splitter 

into two parts. The first part is the stronger part, which is called pump beam, 

and it is delayed and chopped before being focused into the sample. Behind 

the sample, this particular beam is blocked. The second part is the weaker 

beam (probe beam), which is focused to the sample and its transmitted light is 

detected by a sensitive photodiode. In the pump-probe technique, the 

pump-induced absorption change is determined as a function of the time delay 

τ between the pump and probe pulses. The change in the pump intensity can 

be obtained through changing a number of attenuators, which are inserted in 

the way of the pump beam before being focused into the sample. Using this 

method, the ultrafast decay dynamics after excitation can be investigated. In 

Fig. 3.4, there is a zero-order /2 wave plate as well as a linear polarizer in the 

path of the probe. Both optical element are used to control and change the 

polarization of the probe light and make the probe light to be perpendicular 

with respect to the polarization of the pump light. In the crossed polarization 

of pump and probe, artificial signals from any coherent effects can be 

eliminated. 

The wavelengths of the pump and the probe are the same for the 

experiments carried out in this thesis. The technique is thus called the 

frequency-degenerate pump-probe technique.  
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Fig. 3.4 (a) Photograph of the frequency-degenerate pump-probe set-up; 
(b) Diagram of the frequency-degenerate pump-probe set-up 
corresponds to the photo. The detector or photodiode after the sample 
measures the transmission of the probe pulse in the presence (T) and 
absence (T0) of the pump pulse. The polarization of the probe pulse is 
rotated with respect to that of the pump pulse using a zero-order λ/2 
plate and a linear polarizer. 
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As mentioned above, in the pump-probe set-up, the requirement on the two 

pulses are as follows: (1) the intensity of pump beam is so stronger than that of 

the probe beam that the influence of the latter onto the material can be 

neglected; (2) the polarizations of the two pulses are perpendicular to each 

other to get rid of the “coherent artifact” on the transient signal. It should be 

noted that the second requirement is not a “must” requirement; it is just for the 

convenience of the experimental analysis. 

It should be noted that in all the experimental conditions here, we used the 

intra-band transitions to study the dynamics of the excited carriers. That is, the 

photon energy of the probe beam is not enough to excite the electrons from the 

ground states but can only excite the ‘free carriers’ excited by the pump beam 

through two-photon transition.  

Fig. 3.5 demonstrates the schematic diagram of the process by the pump 

and probe beams. Fig. 3.5(a) shows the pump process with TPA to excite the 

material. After being excited by the pump pulses, the excited carriers are 

further excited by the probe beam through intra-band transitions. The process 

in (b) presents at τ = 0 the free carriers excited through absorbing another 

photon. The process in (c) shows a very fast relaxation to the bottom of the 

conduction band through carrier-carrier collision or thermalization. The 

process in (d) illustrates the excited carriers are being excited by intra-band 

absorption of the probe pulse, whereby the probe is detected at  t> τp with τp 

being the pulse width of the pump beam.  
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As the in Z-scan experiment, calibration has to be made with standard bulk 

materials before performing pump-probe measurements. Furthermore, 

cautions have also to be made to avoid laser-induced damage on the samples 

during the measurement.  

Fig.3.5  Schematic diagram of processes in frequency-degenerate 
pump-probe detection; (a) is the excitation with TPA to excite the 
material; (b) represents the condition at τ = 0; (c) in a short time, the 
excited carriers relax down to the ground excitation states; and (d) the 
probe detection atτ> τp with τp being the pulse width of the pump beam. 
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3.3.2 Theoretical analysis for the pump-probe technique 

As mentioned above, the mechanism in the pump-probe detection in this 

thesis is the intraband absorption. After being excited by the pump pulses, the 

excited carriers can be further excited by the probe beam. The intensity of the 

probe beam Ipr can be expressed as: 

 prpr
pr ItNI

dz

dI
)(0                           (3.7) 

where  is the absorption cross-section of the excited carriers, N(t) is the 

number density of the excited carriers, α0 is the linear absorption coefficient of 

the ground state of the material. In our frequency-degenerate pump-probe 

technique, the energy of one photon is not enough for the electron to be 

excited from the valence band to the conduction band. In this case, α0 can be 

ignored. Eqn. (3.7) can be simplified as: 

 

pr
pr ItN

dz

dI
)(                                (3.8) 

Considering the reflection on both sides of sample, the probe intensity after 

transmitting through the sample is: 

])(exp[)1( 2
0 LtNRII prpr                     (3.9) 

The transmittance of the probe beam without (T0) and with (T) the 

presence of the pump beam is as follows:  

2
00 )1(/ RIIT prpr                            (3.10) 

and 
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])(exp[)1(/ 2
0 LtNRIIT prpr                (3.11) 

From the above two equations, it is easy to get the number density of the 

excited carriers N(t): 

LTTtN /)/ln()( 0                              (3.12)  

From Eqn. (3.7) to (3.12), it is obvious that the dynamics of the carriers 

excited by the pump can be monitored by the probe beam through the term of 

)/ln( 0TT . 

 

 Frequently used method to analyze the pump-probe data is using the 

negative differential transmittance of peak (NDTP): 

1])(exp[
0

0 


 LtN
T

TT
NDTP                    (3.13) 

When LtN )(  is small enough, the NDTP can be further expressed by 

Taylor expansion: 

LtNTTNDTP )(/ 0                         (3.14) 

From Eqn. (3.14), the excited carrier density N(t) is proportional to 

0/TT . In this thesis, Eqn. (3.14) has been applied for analyzing the 

pump-probe signal in dynamics study.
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3.4 The laser systems 

In this thesis, all the experiments were performed with two femtosecond 

laser systems. The first one was the Quantronix laser system which includes 

three parts: (1) a pump laser (Quantronix, Darwin) at 527 nm; (2) an amplifier 

laser: a Ti: Sapphire regenerative amplifier (Quantronix, Titan), with the 

oscillator inside and being pumped by the Darwin laser. The output is at 780 

nm with a repetition rate of 1-kHz, the full width at half maximum pulse width 

is around 230 fs; and (3) an optical parametric amplifier (Quantronix, TOPAS) 

pumped by the Ti: Sapphire regenerative amplifier (Quantronix, Titan) at 

1-kHz repetition rate. The TOPAS generates the tunable wavelength laser 

pulses from 500 nm to 1550 nm. The intensity or power of the laser output is 

controlled by transmitting through a set of neutral density filters. Fig. 3.6 

shows a photograph of this Quantronix laser system. 

 

Fig. 3.6 Photograph of Quantronix laser system. 
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The second laser system is a mode-locked Ti: Sapphire laser (Coherent, 

Chameleon) operated at 86-MHz repetition rate. The wavelength is tunable 

from 720 nm to 950 nm. The pulse duration of laser pulses in full width at half 

maximum varied from 150 to 98 fs, depending on the laser wavelength. 
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Chapter IV 

TWO-PHOTON EXCITATION AND RELAXATION 

IN CdSe QUANTUM DOTS 

 

 

4.1 Introduction 

Recently, fluorescent semiconductor nanocrystal quantum dots (QDs) have 

received tremendous attention due to their applications to two-photon 

microscopy [4.1-4.4]. In such applications, radiative recombination of 

electron-hole (e-h) pairs, that are created by two-photon absorption (TPA), is 

leading in three-dimensional imaging, which has been reported to 

revolutionize bio-imaging technology. A better understanding of two-photon 

excitation and relaxation processes therefore has important technological 

implications. In particular, studies should be carried out to gain insights into 

dynamical mechanisms which lead to a saturation in the overall efficiency of 

TPA-excited fluorescence (i.e. the ratio of the number of fluorescent photons 

to the total number of incoming photons). Such saturation has been observed 

[4.4]. Here a systematical study is presented of both Auger recombination and 

intraband absorption of TPA-excited carriers in colloidal CdSe QDs, which 

contribute to saturation of TPA-excited fluorescence at high laser intensities.  
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Auger recombination, quantized Auger rate, and intraband absorption of 

two-photon-excited carriers in colloidal CdSe QDs have been investigated 

systematically with femtosecond Z-scans and transient absorption 

measurements. The Auger constant is revealed to be of the order of 

~ 163010  scm , while the intraband absorption cross-sections are found to be in 

the range from 10-18 to 10-17 cm2. Our experimental evidence demonstrates that 

the Auger recombination or the intraband absorption takes place under the 

condition that the average electron-hole pair per quantum dot is larger than 

unity.  

Furthermore, we have also analyzed the intraband absorption of 

TPA-excited carriers in colloidal QDs. Following two-photon excitation, an 

excited carrier (electron or hole) may undergo as transition to a higher energy 

state by absorbing another incoming photon, a similar process to the so-called 

free-carrier absorption in bulk semiconductors. This process makes no 

contribution to the generation of e-h pairs in QDs yet consumes a large 

fraction of incoming photons, providing another channel for deteriorating the 

overall efficiency of TPA-excited fluorescence at high laser intensities. 

Though the intraband absorption of TPA-excited carriers has been investigated 

in bulk semiconductors, similar effects in colloidal QDs have been largely 

overlooked.  
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As illustrated in Fig. 4.1, the Auger process, in which an e-h pair is 

annihilated and another carrier (electron or hole) is excited to a higher energy 

level, may take place after two-photon excitation. The Auger process is more 

efficient due to enhanced carrier-carrier interaction in the confined space of 

QDs in comparison with bulk materials [4.5-4.7]. Auger recombination occurs 

as excited e-h pairs in a QD exceed unity; and the energy released is not 

emitted as a photon, but is used to excite another carrier to a higher energy 

level. As a result, a reduction in the overall efficiency of TPA-excited 

fluorescence becomes considerably large at high excitation. Although Auger 

recombination of one-photon-excited carriers in colloidal QDs has been 

studied intensively, no report is available in the literature for the case of 

two-photon excitation, where the laser intensity is much larger than that used 

for one-photon excitation.  

 



Chapter 4    Two-Photon Excitation and Relaxation in CdSe Quantum Dots 

 73 

 

In the following experiments, the colloidal CdSe QDs in water enclosed in 

a 1-mm-thick quartz cuvette were investigated with 120-fs laser pulses. The 

wavelength tunable laser pulses were generated by an optical parametric 

amplifier (Quantronix, TOPS), which was pumped by a Ti: Sapphire 

regenerative amplifier (Quantronix, Titan) at 1-kHz repetition rate. The laser 

pulse energy was controlled via transmission through a set of neutral density 

filters. 
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Fig. 4.1 Relaxation pathways of electron-hole pairs in QDs. The excited 
electrons and holes may experience several pathways: (1) the absorption of 
another photon, called intraband absorption; (2) firstly relax to the lowest 
excited exciting states in a very quick time scale, and the excited 
electron-hole pair may then recombine together, the energy released may 
either (3) emit as a photon, or, (4) excite another electron or hole to even 
higher states (Auger process). (5) the excited electron may also be trapped 
to trap states before recombining with the hole. 
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4.2 Synthesis and characterization of CdSe quantum dots 

The QDs studied here are semiconductor nanocrystal CdSe QDs coated 

with a layer of glutathione (GSH). The synthesis of GSH-capped CdSe QDs 

was based on the reaction of cadmium chloride with sodium hydroselenide 

(NaHSe). NaHSe was prepared by the reduction of selenium powder with 

sodium borohydride. Freshly generated NaHSe was injected into a solution 

containing CdCl2 and glutathione at pH 11.5 with vigorous stirring. The 

amounts of Cd, Se and GSH were 5, 2 and 6 mmol, respectively, in a total 

volume of 500 ml. The resulting light yellow mixture was heated to 95ºC for 

6 hours, and the growth of GSH-capped CdSe QDs was stopped when the 

fluorescence of the QDs changed to green. The prepared QDs were 

precipitated with an equivalent amount of 2-propanol, then redissolved in 

water and precipitated with 2-propanol for three more times. The pellet of 

QDs was dried at room temperature in vacuum overnight, and the final 

product in the powder form could be re-dissolved in water.  

Fig. 4.2 (a) shows the schematic representation of the synthesis process of 

CdSe/GSH QDs and Fig. 4.2 (b) is an anatomic indication of the structure of 

this sample. 
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(a) 

(b)

Fig. 4.2 (a) Schematic indication of the synthesis process of 
CdSe/GSH QDs; and (b) anatomic indication of the structure 
of CdSe/GSH QDs.  
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The high-resolution TEM (HRTEM) image in Fig. 4.3 (a) shows both the 

dimension and crystalline structure of the QDs, which are 2.2 nm in diameter 

on average.  Fig 4.3 (b) shows the size distribution. The size deviation is 

revealed to be 18 % with a Gaussian fitting to the size distribution. 

To investigate the structure of these CdSe/GSH QDs, the XRD spectrum 

was recorded as shown in Fig. 4.4 (solid line). In order to figure out the 

position of peaks, the XRD spectrum was fitted with Gaussian curves as 

shown with the dashed lines. From the fitting of the XRD data in Fig. 4.4, the 

CdSe core is revealed to have the zinc blend cubic structure. 

Fig. 4.5 displays the spectra of one-photon absorption and 

one-photon-excited photoluminescence (PL) for the CdSe QDs in aqueous 

solution. In the absorption spectrum, there is a clear presence of several 

excitonic transitions. The electronic structures of CdSe QDs have been 

investigated extensively, and there are several theories available in the 

literature [4.8, 4.9]. Based on the theoretical calculation reported in Ref. 4.9, 

we find that our measured absorption spectrum can be fitted well by 

accounting of several excitonic transitions with Gaussian broadening which 

correspond to the size dispersion mentioned above. The details of the excitonic 

transitions involved in the calculation are specified in Fig. 4.5. The lowest 

excitonic transition is at 2.45 eV for CdSe QDs of 2.2-nm diameter, consistent 

with the experimental finding of Ref. 4.10. A blue shift of 750-meV is found 

in when compared to the band-gap energy of CdSe bulk crystal. The PL 
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spectrum shows that the band-edge emission is centered at 2.36 eV with a full 

width at half maximum of ~200 meV. 

 

(a)

(b) 

Fig. 4.3 (a) High-resolution TEM image of GSH-capped 
CdSe/GSH Quantum Dots; and (b) Size distribution of 
CdSe/GSH. The solid line is a Gaussian fitting to the size 
distribution. 
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Fig. 4.4 XRD spectrum (solid line) of the quantum dots. The 
dashed line is the fitting with Gaussian curves. 

Fig. 4.5 Spectra of the one-photon absorption (circle) and 
one-photon- excited photoluminescence excited at 350 nm 
(solid line) for the quantum dots in aqueous solution. The 
dashed curves are the theoretical fits. 
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4.3 TPA coefficients in CdSe quantum dots. 

For our open-aperture Z-scans, the laser pulses were focused with a 

minimum beam waist of 12 ~ 16 μm, depending on the laser wavelength. 

With 120-fs pulse duration and low pulse repetition rate (1 KHz), nonlinear 

absorption resulting from laser heating was found to be insignificant. All the 

measurements discussed below were conducted at room temperature. 

As mentioned in the beginning of this chapter, there maybe many dynamic 

processes following high laser excitation. To exclude the effect of intraband 

absorption, the transient absorption measurement was performed to reveal the 

laser intensity range where only the TPA is pre-dominant.  

In our transient absorption measurement, a cross-polarized, pump-probe 

configuration was utilized. With the cross-polarized configuration, any 

“coherent artifact” on the transient absorption was eliminated. The 

pump-probe measurements in Fig. 4.6 demonstrate transient absorption signals 

with different intensities, the solid curves are the decay fitting curves whereas 

the dashed curve is the autocorrelation between the pump and probe pulses 

with the magnitude dominated by the TPA and intraband absorption. The TPA 

is present only with the presence of the pump pulses. At time scales much 

larger than the duration of pump pulse, the intraband absorption manifests 

itself on the long ‘tail’. From Fig. 4.6, we can see that the intraband absorption 

effect of TPA-excited carriers is negligible at low pump intensities (≤ 30 
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GWcm-2). Hence, the magnitude of TPA can be determined unambiguously 

from Z-scans measured under 30 GW/cm2.  

Fig. 4.6 Transient absorption in aqueous solution of GSH-capped 
CdSe Quantum Dots measured with 120-fs laser pulses at 780-nm 
wavelength at different intensities. The dashed curve is the 
autocorrelation between the pump and probe pulse. It can be seen that 
the intraband absorption can be ignored when the intensity is below 30 
GWcm-2. 
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Fig. 4.7 (a) shows the Z-scan curves measured at various wavelengths with 

laser intensities of 25 GWcm-2 or less. With the standard Z-scan theory for 

pure TPA [4.11], we extract the TPA coefficient of the CdSe QD solution 

from the best fit between the theoretical simulation and the Z-scan curves. 

From the TPA coefficient, which is denoted as  , we infer the TPA 

cross-section by NPA /2   , where N is the number of QDs per cubic 

centimeter, and   is the photon energy. We plot PA2  as a function of 

gE/  in Fig. 4.7 (b), showing that PA2 values are in the range 

from 47103   to  photonscm /102 446  with an overall increase as the 

photon energy increases. The TPA cross-sections of CdSe QDs measured here 

are comparable to those of ZnS QDs [4.12], and are an order of magnitude 

larger than those of CdS QDs [4.13]. With two-photon-excitation PL 

spectroscopy, Larson et al. [4.4]. determined the action cross-sections TPAf  

to be of the order of 10-47 photonscm /4  for colloidal CdSe QDs. If the 

fluorescence quantum efficiency, f , is taken to be 40%, their TPA 

cross-sections are in agreement with our findings. Theoretical work has 

performed to calculate the TPA cross-sections of CdSe QDs [4.14, 4.15]. The 

measured TPA spectrum in Fig. 4.7 (b) approaches the theoretical values of 

Fedorov et al. [4.15],  but its amplitude is five times smaller than the ones 

predicted by Schmidt et al. [4.14]. It should be emphasized that there is no 

ambiguity in our measurements, different from previously reported data [4.4, 

4.13] which rely on ambiguous values of the fluorescence quantum efficiency. 
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Fig. 4.7  (a) The Z-scans measured at various wavelengths 
with laser intensities of 25 GWcm-2 or less. The solid curves 
are the fitting curves. (b) Dispersion of the TPA cross-section 
for GSH-capped CdSe QDs. The solid and dashed curves are 
the theoretical results. 

(b) 

(a) 
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4.4 Auger process following TPA excitation in CdSe Quantum Dots 

With the accurate determination of the TPA coefficient discussed above, 

we can now precisely calculate the e-h pairs per QD. TPA-excited carrier 

density, Ne~h, is given by 

effhehe NIdtdN  /)2/(/ ~
2

~                     (4.1) 

where eff is the effective lifetime for TPA-excited carriers and can be 

ignored since it is much longer than the pulse duration discussed later. The 

density of TPA-excited carriers is given below with assumption that the 

temporal and spatial profiles of laser pulse are Gaussian functions,  

22

2
0

~



 G

he

I
N


                          (4.2) 

where G is the half width at 1/e maximum for the pulse duration, and I0 is 

on-axis intensity at focus point of the Gaussian beam. With Eqn. (4.2), we can 

accurately evaluate the average e-h pairs per QD, NNN he /0  , for a 

given pump intensity.  

The effects of TPA-excited carriers in the CdSe QDs manifest themselves 

at pump intensities in excess of 50 GWcm-2 (  0N  = 0.5). As illustrated in 

Fig. 4.6, it is evident that, at 100 GWcm-2, a long tail appears in the transient 

signal, which is attributed to the presence of a significant density of 

TPA-excited carriers. To study more details, Fig. 4.8 displays the relaxation 

part of transient absorption signal at different pump intensities. The relaxation 

process may be described quantitatively by using a three-exponential fitting: 
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Attt eAeAeA  /
2

/
1

/
0

10   , where the fastest component, 0  , about 0.13 ps, 

is found to be independent of the pump intensity; and is interpreted as the 

autocorrelation between the pump and probe pulse [4.16]. The slowest 

component, 1 , on the nanosecond scale is attributed to radiative, 

band-to-band recombination [4.17]. Note that the third time component A  is 

extremely sensitive to the pump intensity or the average e-h pairs in the QD. 

As shown in Fig. 4.9, A  is 13.5 ps, 25 ps, and 76 ps as  0N = 5.4, 2.6 

and 1.1, respectively. If  0N  is less than 1, it disappears. This is 

consistent with the quantization of Auger recombination in QDs, which was 

first observed by Klimov et al. [4.5] with one-photon excitation. To quantify it, 

Klimov et al. also developed a model of multiple e-h state decay through 

quantized step: NNN ndtdn //  , NNNNN nndtdn  /// 111   ,…, with 

the initial conditions for Nn , 1Nn ,… 1n  following Poisson distribution. With 

this model and the relationship [4.18] of 2
2 )/2(/ ii   (i>2), we extract 

ps2.16  , ps7.15  , ps7.24  , ps8.43  , and ps8.102   from the 

decay curves for  0N = 5.4, 2.6 and 1.1; and then conclude the Auger 

constant to be ~ 1630101  scm  which is in the same order of magnitude as 

the result obtained by Klimov et al. with one-photon excitation [4.5]. 
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Fig. 4.8  Transient absorption in aqueous solution of GSH-capped 
CdSe QDs measured with 120-fs laser pulses at 780-nm wavelength. 
The relaxation processes measured at various pump intensities of 180 
GWcm-2, 130 GWcm-2, 80 GWcm-2, and 65 GWcm-2 (from the top 
down). At these pump intensities, two-photon-excited e-h pairs per QD 

are 0N  = 5.4, 2.6, 1.1, and 0.7, correspondingly. The solid lines for 

10 N  are two-exponential fitting curves with 　τ0 = 0.13 ps and 

　τ1 > 300 ps. The solid lines for 10 N  are fitted using the 

model of quantized decay step and Poisson distribution for initial 
states. 
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4.5 Intraband absorption following TPA in CdSe Quantum Dots 

 In addition to the TPA, the intraband absorption of TPA-excited carriers 

is also observable by using Z-scans in the regime of high laser intensities. 

After two-photon excitation, an excited carrier may make transition to higher 

energy states by absorbing another incoming photon. In this case, the 

reduction in the laser intensity, I, is given by: 

Fig. 4.9 Effective Auger relaxation time vs. pump intensity or 0N . 

The triangles are the symbols for τA.  

(a)  
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INIdzdI he )(/ ~0                        (4.3) 

where 0 is the linear absorption coefficient, and   is the intraband 

absorption cross-section of TPA-excited carriers. Since heN ~ is proportional to 

the square of the laser intensity, we derive an effective TPA coefficient, which 

comprises two parts:  eff  and  is linearly dependent on the 

laser intensity. Indeed, our Z-scans at high intensities in the Fig. 4.10 (a) 

permit us to extract the eff values, and then the plot of eff  vs. 0I  

confirms the linear dependence, as illustrated in Fig. 4.10 (b). When  0N  

< 1, the intraband absorption is insignificant and thus eff  is the intrinsic 

value for the TPA coefficient. By utilizing the Z-scan theory [4.11] with both 

Eqn. (4.1) and Eqn. (4.3), we simulate the Z-scan data measured at high 

intensities with   being treated as one free parameter. The best fits allow us 

to unambiguously determine    to be ~ 21710 cm  at 780 nm. Similar 

analytical procedures have been applied to the Z-scans measured at 

wavelengths ranging from 680 to 760 nm. The wavelength dependence of   

is displayed in Fig. 4.11. In general, the intraband absorption increases at 

longer wavelength. Such a trend is similar to that predicted by Drude’s model, 

but we also observed some discrepancy. Auger processes or surface state 

trappings occur in the time scale of a few picoseconds or longer. In our Z-scan 

experiments, we have measured the intraband absorption within 120 fs. Hence, 

Auger processes, or surface state trappings have little effect on our 

measurements. 
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Fig. 4.10  (a) Several Z-scans examples at 780 nm with 
laser intensities: 24 ; 68 ; 139 ; and 168 GWcm-2 (from up 
down). The solid curves are the fitting curves. (b) Effective 

TPA coefficient eff  vs. laser intensity or 0N . The filled 

circles are the extracted eff  values from the Z-scans.  

(b)

(a)
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Fig. 4.11   vs. laser wavelength. The dotted line is the guideline 

for square dependence on wavelength. 
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4.6 Conclusions 

In summary, Auger recombination, quantized Auger rate, and intraband 

absorption of TPA-induced carriers in colloidal CdSe QDs have been 

investigated systematically. Our experimental evidence demonstrates that the 

Auger recombination or the intraband absorption becomes significant on the 

condition that the average e-h pair per QD is larger than unity (  0N =1). 

This finding has profound implication to multiphoton microscopic 

bio-imaging with high pump intensities. 
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Chapter V 

TPA OF QUANTUM DOTS IN THE REGIME OF 

VERY STRONG CONFINEMENT: SIZE AND 

WAVELENGTH DEPENDENCE 

 

5.1 Introduction 

Colloidal semiconductor quantum dots (QDs) have received much attention 

due to their potential applications in two-photon microscopy for bio-imaging, 

bio-labeling, and etc. [5.1, 5.2].  Compared with conventionally used organic 

dyes, colloidal QDs show many advantages such as greater photo-stability, 

brighter fluorescence, and less photo bleaching. In these applications, 

semiconductor QDs are normally required to be capped with a layer of organic 

ligand in order to be dissolved in water and smaller QDs are preferred for easy 

accessing to cells and increasing the labeling efficiency. The overall size of 

QDs can be smaller by reducing the layer thickness of the capping ligand as 

well as by carefully selecting the types of semiconductors.  

Towards the above targets, CdTe QDs have been investigated extensively 

in a wide laser wavelength range from 750 nm to 1500 nm [5.1]. Frequency-

degenerate two-photon absorption (TPA) of CdTe QDs has been measured and 

analyzed [5.4-5.7]. Padilha et al. have measured the TPA spectra of CdTe QDs 

doped in glass at two different sizes with diameters larger than 4 nm using the 

Z-scan technique [5.4, 5.5]. To interpret their TPA measurements, they have 

carried out TPA simulation based on a k·p model which includes the band 

mixing between the heavy hole and light hole. The simulation shows an 
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improvement in fitting the measured data as compared to the simple parabolic 

model [5.5]. However, discrepancies still exist between the theory prediction 

and the experiment, especially in the higher energy region [5.5]. Furthermore, 

QDs doped in glass are expected to be different from colloidal QDs due to 

different surrounding conditions. Pu et al. have studied colloidal CdTe QDs 

with six different sizes ranging from 4.4 to 5.4 nm in diameter. The TPA 

cross-sections have been found to be proportional to R5.6 , where R is the 

radius of QD [5.5, 5.6]. In their study, however, TPA has been examined at 

only one wavelength. Recently, He et al. have unambiguously measured the 

TPA spectra of colloidal CdTe QDs, but their average diameters are in the 

range from 6 to 8 nm with the size dependence remained unexamined [5.7]. 

Therefore, there is no systematic study on both size- and wavelength-

dependent TPA in colloidal CdTe QDs with diameters less than 4 nm. 

Here we report a systematical investigation into the TPA in aqueous 

solutions of glutathione-capped colloidal CdTe QDs with a core diameter 

equal to or less than 4 nm and a 0.5-nm-thick layer of capping ligand. This 

range of QD sizes implies that strong quantum confinement should play an 

important role since the sizes are much less than the Bohr radius (aB = 7.5 nm). 

By the employment of femtosecond Z-scan technique at laser wavelengths 

ranging from 720 to 950 nm, the size-dependent TPA cross-sections are 

unambiguously measured.  In order to gain a better understanding of the 

relationships between TPA and light wavelength as well as dot size for QDs in 

this strong confinement regime, the measurements are compared to theoretical 

modeling based on the eight-band, effective-mass model developed by 

Pidgeon and Brown [5.8, 5.9]. This model considers both the mixing between 
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the conduction and valence bands as well as the complex structure of the 

valence bands [5.8, 5.9]. 

 

5.2 Synthesis and characterization of CdTe quantum dots 

The CdTe QDs studied here were prepared in accordance with a synthesis 

method reported elsewhere [5.3]. Briefly, it was based on the reaction of 

cadmium chloride with hydrogen telluride. With this synthesis method, 

glutathione (GSH) was utilized as capping ligand. The quantum yield of 

fluorescence could be as high as 45%, comparable to that of prevalent 

TOPO/TOP capping. However, the GSH capping agent made the QDs much 

smaller in the overall size, highly desirable in two-photon microscopic 

imaging. Three samples of different core sizes were synthesized; and their 

aqueous solutions in 1-mm-thick quartz cuvette were studied as described 

below. Table 1 summarizes the core diameter, bandgap energy, peak position 

of photoluminescence (PL), bandwidth of PL, volume fraction and QD density. 

Here, the bandgap energy, gE , is taken as the lowest lying excitonic peak of 

QDs. The X-ray diffraction measurements confirmed that the QDs possess the 

zinc-blend, crystalline structure.  

 

Table 5.1  Structural and optical parameters of CdTe QDs 

 CdTe510 CdTe555 CdTe615 

Radius, R (nm) 1.5±0.05 1.75±0.07 2.0±0.08 
Band gap, gE  (eV) 2.53 2.31 2.10 

PL peak position (nm) 510 555 615 

FWHM  (nm) of PL 36 45 50 

Volume fraction ( vf ) 0.66% 0.82% 2.47% 

QD density, N  (cm-3) 17104.4   17106.3   17101.7   
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To determine both sizes and structures of the QDs investigated here, we 

carried out high-resolution transmission electron microscopic (HRTEM) 

studies. The core diameters of the three samples were found to be 3.0, 3.5, and 

4.0 nm; denoted as CdTe 510, CdTe 555, and CdTe 615 , respectively, 

corresponding to their PL peak wavelengths. Fig. 5.1 (a) shows a HRTEM 

picture of sample CdTe 510. Clear lattice structures indicate that the QDs 

should be well crystallized. Size dispersions can be obtained from the HRTEM 

as shown in Fig. 5.1(b) for CdTe 510. Size dispersions of the three samples are 

determined to be ~7 %, which qualify them as nearly mono-dispersive. Fig. 

5.2 shows both UV-VIS absorption and PL spectra of the three samples. The 

dependence of the emission wavelength on the dot radius is consistent with the 

published data [5.1].  Revealed from the UV absorption spectra, the band-gap 

energies of the three samples, or the lowest transitions [ )(1)(1 2/12/3 eShS  ], 

are 2.53, 2.31, and 2.10 eV, respectively. Such a considerable variation in the 

band-gap energy with dot size suggests that strong size dependence should be 

expected for TPA. This strong dependence is attributed to the following two 

factors: namely (1) smaller electron effective mass for CdTe; and (2) 

significantly smaller QD radius than the Bohr radius (7.5 nm). As a result, the 

QDs investigated here are in the regime of very strong confinement. 
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Fig. 5.1   (a) High-resolution transmission electron microscopic 
(HRTEM) photograph for the smallest size sample. (b) Size 
distribution for the smallest size sample obtained through the 
HRTEM. 

(b) 

(a) 
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Fig. 5.2  Optical density (solid line) as well as photoluminescence (PL) 
(dashed line) of the three samples. The samples are denoted as CdTe 615, 
CdTe 555 and CdTe 510, respectively, corresponding to the PL peaks of 
the three samples. 
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5.3 Experimental study on the TPA in CdTe quantum dots                                   

Open-aperture Z-scans were employed for the TPA measurements. The 

laser pulses were provided by a mode-locked Ti:Sapphire laser (Coherent, 

Chameleon) operated at 86-MHz repetition rate. The full width at half 

maximum (FWHM) of the laser pulses was from 98 to 150 fs, depending on 

the laser wavelength. The Z-scan setup was calibrated by using bulk CdS and 

CdTe polycrystals as standard samples. These calibrations showed that the 

measured TPA coefficients were in agreement with the theoretical values 

[5.10] within an experimental error of ~20%. The maximum laser intensity 

was limited to 25 GWcm-2. Within this laser intensity range, the two-photon-

excited electron-hole pairs per QD were estimated to be much less than the 

unity. As such, two-photo-excited carrier absorption should be insignificant 

[5.11]. This was further confirmed by the Z-scans carried out with several 

laser irradiances, from which the measured TPA coefficients were found to be 

independent of the laser irradiances. (Note that the laser irradiance was 

defined as the maximum on-axis laser irradiance within the sample. The loss 

in the laser irradiance due to the Fresnel reflection at the sample surface was 

taken into account). It should also be pointed out that the absorption spectra, 

PL spectra and Z-scans were conducted in a period of several weeks and no 

measurable difference was found, which provided the evidence that the 

samples were stable and suffered no laser-induced damage.) To assess the 

effects of high repetition rate on the TPA measurements, we also conducted 

open-aperture Z-scans with another Ti:Sapphire laser (Quantronix, Titan) at 

780 nm operated at 1 KHz. The difference between the TPA measurements by 

the two different repetition rates was found to be less than 10%, indicating that 
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the effects induced by the high-repetition rate should be negligible. In addition, 

the capping agent (glutathione) in water was also Z-scanned under the same 

experiment, which confirmed that there was no significant nonlinear 

absorption from both glutathione and water. 

Fig. 5.3 displays typical open-aperture Z-scans for sample CdTe 615. 

Following the standard analytical procedure [5.12], one can extract the TPA 

coefficient, , from the best fit as shown by the solid lines Fig. 5.3. For two-

photon microscopic applications, however, the TPA cross-section, TPA , is 

more interested. It is obtained by )/( NTPA   , where N  is the number 

density of QDs,  is the local field correction factor [5.13], and  is the 

photon energy. The local field factor here is calculated to be 0.2. However, 

since the local field is reduced considerably in realistic situation [5.5], it is 

treated as unity in our calculation of TPA . Fig. 5.4 shows that TPA  are 

measured to be on the orders of 103 GM (or scm44710 ) or higher. TPA in a 

piece of bulk polycrystal CdTe (10 x 10 x 0.5 mm in size, Semiconductor 

Wafer Inc.) was measured to be in the range between 20 and 25 cm/GW under 

the same experimental conditions, in agreement with the theoretical prediction 

in Ref. [5.10]. The TPA  values in the bulk CdTe are then calculated by 

CdTeTPA N/   with NCdTe being the CdTe molecular density. They are 

found to be in the order ~10-49 cm4·s·photon-1 in the whole spectral range of 

interest. Thus, the TPA  values in QDs are at least two orders greater compared 

with bulk CdTe. Such an enhancement is similar to the findings for TPA of 

CdS QDs that are two orders greater than its bulk counterpart [5.14]. 
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Fig. 5.3  Typical open-aperture Z-scans for CdTe 615. The solid curves 
are the fitting results. The laser intensities are 5.2 GWcm-2, 4.8 GWcm-

2, 7.0 GWcm-2 and 20 GWcm-2 at 720 nm, 780 nm, 850 nm and 950 
nm, respectively. 
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Fig. 5.4  Measured TPA cross-section spectra of the CdTe QDs. For 
all the sizes, the TPA cross-section is increased with the size of QD 
except for a few wavelengths. 
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It should be emphasized that the TPA values reported here are determined 

unambiguously, without prior knowledge of the quantum efficiency of two-

photon-excited PL. If the quantum efficiency of two-photon-excited PL is 

presumed to be between 20% and 45% [5.3], one may compute the action 

cross-section to be greater than 102 GM. Such magnitudes are comparable to 

CdSe QDs with similar sizes [5.2], at least one order greater than CdS QDs 

[5.14], and about two orders bigger than fluoresce in [5.2]. Furthermore, as 

shown in Fig. 5.4, the TPA cross-section is increased with the size of QDs 

except for a few wavelengths at which TPA  arises un-monotonously. Such a 

size dependence is in agreement with the previous reports for CdTe QDs [5.4-

5.6] and CdSSe QDs [5.15, 5.16]. 

 

5.4 Theoretical study on the TPA in CdTe quantum dots 

In order to gain deeper insight into the size-dependent TPA spectra of QDs 

in the very strong confinement, we have carried out theoretical studies. 

Several theoretical models have been employed to predict the frequency-

degenerate TPA of QDs [5.4, 5.5, 5.17, 5.18].  Fedorov et al. have derived 

analytical expressions for TPA in QDs under the parabolic band 

approximation in which one conduction band and three valence bands are 

simply considered as parabolic and all couplings are ignored [5.17]. Their 

results are in agreement with the experiments for QD sizes close to or larger 

than the Bohr radius [5.4, 5.5]. However, for QDs in the strong confinement 

regime where the radius is much smaller than the Bohr radius, the discrepancy 

can be found [5.5, 5.18, 5.19]. Padilha et al. have modeled the TPA of CdTe 

QDs based on a so-called pk  theory which includes the mixing among the 
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heavy-hole band and light-hole band, while the mixing between the 

conduction and valence bands is ignored [5.5]. Their simulation fitted the 

experiments better than the parabolic approximation model. However, in the 

higher-energy region, discrepancies still exist [5.5].  The band mixing between 

the conduction and valence bands is important when the confinement energy is 

comparable or greater than the bulk band-gap energy. This mixing has to be 

considered in order to get the quantitative description of the energy levels in 

narrow band-gap semiconductors as well as in moderate-gap semiconductors 

such as CdTe. Efros et al. [5.9] have published an analytical theory of energy 

levels with a reformulation pk   theory based on a spherical eight-band 

Pidgeon and Brown (PB) model where the mixing between the conduction and 

valence bands as well as the complex structure of the valence bands were 

taken into account. The size dependence of the electronic spectra of InAs and 

InP nanocrystals gives more explicit evidence of the importance of using this 

so-called PB model in calculation of energy levels [5.20, 5.21]. 

 

5.4.1 Wave functions and energy levels in CdTe quantum dots 

As mentioned in Chapter II, to calculate the two-photon absorption (TPA) 

in materials due to the electronic transitions, we have to know the electronic 

structures including the band energy and the corresponding wave functions. 

The TPA absorption then can be calculated by applying the Fermi’s golden 

rule, with known initial, intermediate, final states and the corresponding wave 

functions of these states. 

The wave functions of electron and hole in PB model are represented by: 



Chapter 5  TPA of Quantum Dots in the Regime of Very Strong Confinement: 
Size and Wavelength Dependence 

 105 








 
a

a

vc
a

i
ili urkjkCr


 ,

,

4

1

)()()(                                   

(5.1) 

where 2/1a  for the electron and spin split-off hole bands; and 2/3a for 

the heavy- and light-hole bands. the + and – signs represent even states and 

odd states, respectively,   is the angular function, and vc
au ,

,  is the Bloch 

function [5.9]. Here, the barrier around each QD is assumed to be infinite, that 

is, the wave functions should vanish outside the QD. The wave functions and 

the energy levels are calculated by applying the analytical expressions based 

on the eight-band effective-mass PB model [5.9].  Fig. 5.5 shows the energy 

levels of electron (Fig. 5.5 (a)) and holes (Fig. 5.5 (b)). From Fig. 5.5 we can 

see that the energy levels are much complex than in the parabolic model. Fig. 

5.6 to Fig. 5.8 shows the examples of band structures of electron and heavy 

hole states.  
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Fig. 5.5   Size dependent lowest energy levels of (a) electron and (b) hole in 
CdTe nanocrystals. 

(a)

(b)
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Fig. 5.6  Wave functions of even state electron with (a) n=1,l=1 
to 6; (b) l=1, n=1 to 4. 

(a) 

(b) 
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Fig. 5.7  Wave functions of odd state electron with (a) 
n=1,,l=1 to 4; (b) n=1 to 4, l=2. 

(b) 

(a) 
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Fig. 5.8  Wave functions of even state heavy hole with (a) n=1; l=0 
to 4; (b) l=1, n=1 to 4. 

(b) 

(a) 
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To ascertain the necessity of including the conduction-valence band 

coupling in the calculation of TPA for CdTe QDs in the strong confinement 

regime, we first calculate the band-gap energy of CdTe QDs based on the two 

models: namely (1) the parabolic model and (2) the eight-band effective-mass 

PB model. Here, we define the band-gap energy as the energy difference 

between the states of )(1 2/1 eS  and )(1 2/3 hS  adding the coulomb correction in 

the first-order perturbation. Fig. 5.9 shows the two curves for the size 

dependence of the band-gap energy, which are compared to the measurements 

obtained from the UV-visible absorption spectra. It demonstrates that the 

band-gap energy calculated by the eight-band effective-mass PB model 

predicts lower value under stronger confinement, whereas the two models 

produce similar results for dot radii larger than 4 nm. Furthermore, we find 

that the band-gap energy calculated by the eight-band effective-mass PB 

model fits perfectly to our experimental data and the data reported in Ref. [5.6, 

5.22], as shown in Fig. 5.9.  
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Fig. 5.9 Band gap energy of CdTe QDs calculated by the parabolic 
model (red doted) and the eight-band effective-mass PB model (blue 
solid). The solid triangles are the data from the UV-visible 
absorption spectra (see Fig.5.1).  
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5.4.2 Theoretical calculation of TPA in CdTe quantum dots 

In this section, we model the TPA spectra of CdTe QDs in the very strong 

confinement regime, ie, the dot radii are in the range from 1.0 to 2.0 nm. The 

wave-functions as well as the energy levels are calculated based on the PB 

model. Our calculation are conducted with the bulk parameters of CdTe taken 

from [5.9] except that the bulk band-gap energy used here is 1.47 eV at room 

temperature [5.23] rather than 1.61 eV at 0 K. 

By the Fermi’s golden rule, the two-photon generation rate can be 

expressed as [5.24]: 
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where,   is the wave function; c represents the conduction band; h1, h2 and h3 

refer to the light-hole, heavy-hole and spin split-off hole bands, respectively; 

Pe
mc

A    is the optical interaction Hamiltonian with eA


 being the vector 

potential of light with the amplitude A and the polarization of e


;  


iP is 

the electron momentum operator; 0v , 1v , and 2v  represent the initial, final, 

and intermediate states of electron subsystems, respectively; and γv2 is the 

inverse life time of state 2v . Each TPA transition here is also involved one 

interband and one intraband transition as discussed in [5.4, 5.5, 5.17].  

Considering that there is size dispersion, )(Rf , for a given QD system, 

the TPA coefficient,  , can be calculated by: 

)2(
2

)(4 WRdRf
I

N
                                      (5.3) 



Chapter 5  TPA of Quantum Dots in the Regime of Very Strong Confinement: 
Size and Wavelength Dependence 

 113 

where, )(Rf  is taken as a Gaussian function here, I is the light intensity. 

Considering the light intensity: 1222/1 )2(  cAI  , the TPA coefficient can 

be further written as: 
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From Eqn. (5.4) and NTPA /  , the TPA cross-section can be given by: 








3

1
,2

23)2(4

j
hjcTPA F

c






                                              (5.6) 

Then, the integral in Eqn. (5.6) is carried out in a numerical way. For a 

given average size and size dispersion, it should be pointed out that no free 

parameter is involved in the numerical calculation. The numerical solutions 

for the TPA coefficient are shown in Fig. 5.10, whereby good agreement is 

reached between the modeling and the experiment with a few exceptions, 

which may be largely due to the experimental errors. In Fig. 5.10, the TPA 

spectra have also been calculated by the parabolic model with the same 

material parameters. As shown by the dashed line in Fig. 5.10, the TPA 

spectra calculated with the parabolic model have very big discrepancy with the 

experimental results, especially for CdTe 510 and CdTe 555. In Fig. 5.10, the 

first three maximum values for each calculated spectrum of TPA are marked 

with 1st Max., 2nd Max., and 3rd Max., respectively, starting from the lower 



Chapter 5  TPA of Quantum Dots in the Regime of Very Strong Confinement: 
Size and Wavelength Dependence 

 114 

energy end.  

 

 

 

Fig. 5.10 TPA coefficients from the Z-scans (solid squares) 
compared with the calculated curves by the eight-band PB model 
(solid curves) and the parabolic model (dashed curves). The size 
dispersions are taken as 7% for all the calculations. 
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As mentioned above, the difference between our calculation and theoretical 

modeling reported in [5.5] is that the mixing between the conduction band and 

valence bands has been considered in our calculation whereas in [5.5] only the 

mixing between the heavy- and light-hole bands has been considered. To 

illustrate the importance of mixing between the conduction band and valence 

bands in the TPA calculation for smaller QDs, our calculation is also extended 

to CdTe QDs with a band-gap energy located at 600 nm, as compared to CdTe 

600 reported in [5.5].  As shown in Fig. 5.11, compared with the calculation 

based on the parabolic model which excludes the band mixing, the theoretical 

calculation in [5.5] predicts larger values which are closer to the experimental 

measurements in higher energy spectral region. However, there are still many 

discrepancies. Our calculation, as shown in Fig. 5.11 with the solid curve, 

predicts higher values in this higher-energy spectral region than those in [5.5] 

and fits the experimental data better. This improvement in theory implies that 

the mixing between the conduction and valence bands and the complex 

structures of the valence bands should play an important role in the strong 

confinement regime.  
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Fig. 5.11 Comparison of the calculated TPA spectra based on eight-band 
PB modeling (red solid curve), the modeling reported in Ref. 5.5 (blue 
dashed curve) and the parabolic approximation modeling (magenta dash 
doted curve), for CdTe QDs with band-gap energy at 600 nm (2.07 eV). 
The green solid squares are the experimental data reported in Ref. 5.5. The 
HH and LH stand for heavy hole, and light hole, respectively. 
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Fig. 5.12 displays the calculated TPA cross-section as a function of both 

light wavelength and dot diameter, with the size dispersion taken as 7% for all 

the QD systems. From this figure, two findings can be established, namely, (1) 

at a given wavelength, the TPA cross-section has an increasing trend with dot 

size; and (2), this increasing trend is un-monotonous, and is composed of 

several ‘peaks’ and ‘valleys’ for some sizes. In order to illustrate the first point 

further, the TPA cross-sections at 700 nm, 780 nm and 860 nm are plotted as a 

function of the dot diameter, as shown in Fig. 5.13. The data can be fitted with 

B
TPA RA )2( , where A = 38, 10  and 0.21, B = 4.7, 5.28 and 7.7 for 700 

nm, 780 nm and 860 nm, respectively. Fittings at some other wavelengths 

show that the B values in the whole spectral range of interest are larger than 3. 

Since the QD volume is proportional to the cubic of radius, the TPA  

normalized by the volume of QD still increases with QD size for a given 

wavelength. This is consistent with the conclusion by Ref. [5.5, 5.6].  

Fig. 5.14 shows the three maxima in the lower-end spectrum of TPA 

cross-section as a function of the QD size. As be demonstrated clearly, these 

cross-sections can not be fit with the empirical expression: B
TPA RA )2( . 

This can be attributed to the complication induced by the fact that the band-

gap energy or the maximum in the TPA spectra is a nonlinear function of the 

dot size. From Fig. 5.14, one can conclude that in the strong confinement 

regime, most of the maximum values fall into the area which can be outlined 

by the two curves with B values equal to 3 and 2, respectively. Thus the 

volume-normalized maximum values are less sensitive to the dot size. 
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5.12 Calculated TPA cross-section of CdTe QDs by the eight-band PB model 
as a function of both size and wavelength. 
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5.13 Calculated TPA cross-section of CdTe QDs by the eight-band 
PB model as a function of the dot diameter (solid circles) at 700 nm (-
Δ-), 780 nm (-■-) and 860 nm (-○-). The dashed curves are fitting 
curves with equation: B

TPA RA )2( , where A is 38, 10  and 0.21 
and B is 4.7, 5.28 and 7.7, for 700 nm, 780 nm and 860 nm, 
respectively.  
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5.14   Calculated TPA cross-sections of CdTe QDs at three maxima 
in the TPA spectra as a function of the dot size. The solid curves 
represent the calculated TPA cross-sections, whereas the dashed and 
dashed-dot lines are the curves proportional to (2R)2, (2R)3, 
respectively.  



Chapter 5  TPA of Quantum Dots in the Regime of Very Strong Confinement: 
Size and Wavelength Dependence 

 121 

As mentioned above, both experimental and theoretical studies show a 

general increasing trend in the TPA with dot size. It is interesting to find out 

the factors that contribute to this trend. Since the TPA spectra are composed of 

many transitions, we may examine the number of transitions as well as the 

amplitude of each transition as functions of the dot size. In Fig. 5.15, the 

transitions are drawn within the transition energy range from 700 nm to 1200 

nm. From Fig. 5.15 we can see that the number of transitions in this range 

increase with dot size as mentioned by previous works [5.5, 5.20]. The first 

ten transitions involved are as follows: 1) )(1)(1 2/12/3 eShP  ; 2) 

)(1)(1 2/12/1 eShP  ; 3) )(1)(1 2/12/3 ePhS  ; 4) )(1)(1 2/32/3 ePhS  ; 5)  

)(1)(2 2/12/3 eShP  ; 6) )(1)(2 2/32/3 ePhS  ; 7) )(1)(1 2/12/3 eShP s  ; 8) 

)(1)(1 2/52/3 eDhP  ; 9) )(1)(1 2/32/7 ePhD  ; and 10) )(1)(1 2/12/1 ePhS  . 

Here, the notations for electron and hole levels use standard atomic notations 

of JnQ with J the total angular momentum, DPSQ ,, ,…. is the lowest 

value of the angular momentum of wave functions, and n  is the ordinal 

number of the level with a given symmetry [5.9].  

In order to investigate the change in the amplitude of TPA transition with 

dot size, the first ten transitions are plotted in Fig. 5.16. As can be seen from 

Eqns. (5.4) and (5.6), for a given transition, the TPA cross-section TPA  is 

composed of a factor of )/()2(4 223    cC  and  hjcF , . The former is 

related to the photon frequency; and the latter is dominated by the interband 

and intraband transition matrix elements. As shown in Fig. 5.16 (a), the 

 hjcF ,  values are flat in the spectral range except for transitions 3 and 8. 

The changes in the peaks of transitions 3 and 8 may be due to the coherent 
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intermediate transition involved. The  hjcF ,  value thus makes no significant 

contributions to the increase of TPA with size. However, from Fig. 5.16 (b), 

except transition 3, TPA  values are monotonously increased with dot size. 

Therefore, the main contributor to the increase in the TPA with dot size is the 

factor of C  which is inversely proportional to the square of the photon 

frequency. As the dot size becomes bigger, the same transition becomes red 

shifted and hence, has smaller transition frequency. As such, the C  value 

becomes bigger for larger QDs. From the above discussion, we can see that 

there are two factors which contribute to the TPA increase with dot size: one is 

the more number of transitions involved for bigger QDs in a certain energy 

range; and the other is the red shift of the transitions for larger QDs.  
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Fig. 5.15  Transition energies vs dot diameter in the transition energy 
range of 2.0 eV to 3.6 eV (corresponds to a wavelength range from 700 
nm to 1200 nm). The first ten transitions are as follows: 1) 

)(1)(1 2/12/3 eShP  ; 2) )(1)(1 2/12/1 eShP  ; 3) )(1)(1 2/12/3 ePhS  ; 4) 

)(1)(1 2/32/3 ePhS  ; 5)  )(1)(2 2/12/3 eShP  ; 6) )(1)(2 2/12/3 ePhS  ; 

7) )(1)(2 2/32/3 ePhS  ; 8) )(1)(1 2/12/3 eShP s  ; 9) 

)(1)(1 2/52/3 eDhP  ; and 10) )(1)(1 2/32/7 ePhD  .
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 (b) 

 (a) 

 Fig. 5.16 (a)  hjcF ,   and (b) TPA  contributed from the first 

ten transitions as a function of the dot diameter. 
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The above calculations have been done with the fixed size dispersion of 

7%. To investigate the size dispersion effects, the TPA spectra with different 

size dispersion have been calculated with our model for an average radius of 2 

nm, as shown in Fig. 5.17. From Fig. 5.17 we can see that the TPA coefficient 

spectra changes in two manners as the size dispersion gets broadening. Firstly, 

the transition peaks in the TPA spectrum gets less sensitive to the wavelength. 

This is obvious since each transition has a certain transition energy for one 

size; while, for many sizes, their transition energies form a broad band. The 

larger the dispersion is, the broader the band is. In some applications, this less 

dependence on laser wavelengths is desirable. Secondly, the transition peaks 

shift to the red side as the size dispersion becomes widening. This is due to the 

fact, as revealed previously, the larger the size, the greater the TPA. As the 

size dispersion becomes broader, more QDs of bigger sizes involve and make 

the spectrum shift to the red side.  
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5.5 Conclusions 

In conclusion, the size dependence of TPA spectra in the strongly 

confined colloidal CdTe QDs has been unambiguously determined with 

femtosecond Z-scans. The TPA cross-sections are measured to be increased 

with dot size and are on the order from 10-47 to 10-46 cm4·s ·photon-1. The 

measured TPA cross-sections are compared to the theoretical modeling under 

an eight-band Pidgeon and Brown effective mass approximation. By taking 

into account of the conduction-valence band mixing and the complex 

structures of the valence bands, the theory can give more accurate prediction 

for TPA of CdTe QDs in the strong confinement regime. The factors that 

contribute to the increase in the TPA with dot size and the effects of size 

dispersion on the TPA are discussed. 

Fig. 5.17 Calculated TPA spectra by the PB model with different size 
dispersions for an average radius of 2 nm.
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Chapter VI  

 CONCLUSIONS AND OUTLOOK 

 

 

The objectives of the studies presented in this thesis were the investigation 

of TPA and relaxation in colloidal CdSe and CdTe QDs, with femtosecond 

Z-scan and pump probe techniques。 

The TPA cross-sections for CdSe QDs with 2 nm in diameter are revealed 

to be around 4710 to 4610  14  photonscm , depending on the excitation 

wavelength in the range from 950 nm to 750 nm. These values are similar to 

the published computation result based on a simple four-band parabolic model. 

The Auger constant is revealed to be on the order of ~ 163010  scm . Intraband 

absorption cross-sections are found to be in the range from 10-18 to 10-17 2cm  

from 680 to 780 nm. Experimental evidence demonstrates that the Auger 

recombination or the intraband absorption takes place under the condition that 

the average electron-hole pair per quantum dot is larger than unity.  

The size-dependent TPA cross-sections of colloidal CdTe QDs are 

measured to range from 10-47 to 10-46 14  photonscm , depending on the 

wavelength of excitation and the size of CdTe QDs. The TPA measurements 

are in agreement with theoretical modeling based on a spherical eight-band 

Pidgen and Brown model. The quantitative modeling reveals clearly that there 

are two main contributors to the size effect on TPA: one is the increasing 

density of transitions for increasing size and the other is the red-shift of each 
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transition for larger size.         

The studies presented in this thesis provide useful information for many 

applications based on two-photon absorption. 

To obtain a whole picture of the nonlinear optical properties of QDs, future 

works on sizes ranging from even more stronger confinement to very weak 

confinement are needed. On one hand, it is interesting to study the nonlinear 

optical properties on even smaller QDs where the effective mass 

approximation does not work. On the other hand the nonlinear optical 

properties for QDs in very weak confinement regime where the energy level 

spacing is approaching the thermal energy kT should also be investigated as a 

bridge between the weak-confined QDs and the bulk semiconductor. 
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