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SUMMARY vi

Summary

The accuracy of a diagnostic test can be quantified by how wellthe test results classify

and predict the true condition status. As such, the diagnostic accuracy of a test is of

utmost importance in determining the suitability of implementing the test and is par-

ticularly essential in real-world situations. The receiver operating characteristic (ROC)

curve and the area under the ROC curve (AUC) are two importantsummary measures

that provide an effective assessment of the overall accuracy of diagnostic tests. Over the

years, several parametric, semi-parametric and nonparametric methods have been de-

veloped for the estimation of the ROC curve and AUC for two-category classifications.

However, many real-world biomedical classification problems demand the ability

to assess more than just two classes. ROC analyses capable ofhandling multiple clas-

sifications are needed to more robustly assess the diagnostic performance. Scurfield

(1996) presented the mathematical definition of suitable ROC measures for more than

two classes. The ROC curves are extended to ROC surfaces for three-category classifi-

cation and ROC manifolds for multiple-category classification.
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Acquiring the correct order is important for multiple-category ROC analysis when

the categories are ordinal. Inference methods that estimate the summary measures have

recently been proposed. The volume under the ROC surface (VUS) and the hypervol-

ume under the manifold (HUM) can be estimated for ordered multiple-category prob-

lems by applying U-statistic theory. In this thesis, we propose rigorous and automated

approaches to sort the multiple categories by using simple summary statistics such as

means. We also provide a general discussion regarding the minimum acceptable HUM

values in multiple-category classification problems. The analyses presented in this the-

sis provide insights into how best to screen through the large number of tests available in

the health science field. Bootstrap inferences are proposedto account for the variability.

In medical research, evaluating the various factors that can influence the diagnostic

performance is also imperative. Recently, statistical regression analysis has been re-

searched to more thoroughly inference about such factors and biomarkers. Statistical

methods that combine multiple tests for multiple-categoryclassification can efficiently

optimize the accuracy of the combined marker under the criteria of ROC measures.

For binary classification, Pepe and Thompson (2000) developed a method based upon

maximizing the AUC of the combined biomarkers in genetic studies. Their method is

effectively adapted from the maximum rank correlation (MRC) estimation proposed by

Han (1987) which is widely practiced. Recently, the MRC estimator has been applied

in classification studies due to its close connection with AUC. In this thesis, we ex-

plore statistical methods that combine multiple tests for multiple-category classification

with the ambition to optimize the accuracy of the combined markers under the criteria
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of ROC measures. We develop suitable statistical procedures by extending the MRC

estimator to high-dimensional cases and also provide the necessary supporting asymp-

totic theories. Simulations and examples are provided to demonstrate that significantly

higher VUS or HUM can be achieved by combining multiple biomarkers.
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Chapter 1

Introduction

Statistical classification is needed in various fields such as computer science, eco-

nomics, meteorology, biology, biochemistry and medical studies. The diagnosis of

the status of a subject is crucial to its accurate classification, and the selection of the

statistical methodology applied to the prediction and classification is of utmost impor-

tance. Particularly in the field of medicine and in clinical studies, the accurate and

timely diagnosis of a patient’s condition is crucial to the ultimate treatment of the dis-

eased condition. Detecting these conditions and evaluating the prognosis of patients

with disease can be achieved by analyzing the clinical and laboratory data. An inaccu-

rate diagnosis in many real-world biomedical settings carry emotionally stressful and

financial consequences.

The classification resulting from a diagnostic test can be asstraightforward as the

presence or absence of the specific disease-related material or it can yield an entire ar-
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ray of non-binary results. For non-binary continuous or ordinal (subjective) scales, the

classification can be set by a threshold value with results above or below such threshold

classified as positive or negative for disease, as appropriate. The ability to directly pre-

dict the multiple stages of a disease rather than to merely distinguish between a disease

and non-disease state is often more crucial in real-world situations. For example, in

cancer patients in which the progression of the disease is relatively fast, determining

the stage of the disease is crucial to applying the appropriate treatment, and earlier de-

tection of the stage of the disease can vastly increase survivability of the patient via the

appropriate medical prognosis.

1.1 Diagnostic test

From a technological and procedural perspective, the diagnostic test for the classifica-

tion can be relatively simple or complex. For example, from atechnological standpoint,

the test can be a classic bacterial culture test, or it can be acomplex application em-

ploying the latest in genetic sequencing technologies. From a procedural standpoint,

the test may only involve one step which results in one of onlytwo outcomes, positive

or negative, or it may involve a vast sequence of procedures that may result in one of an

entire spectrum of possible classifications.

The implementation of a diagnostic test should be preconditioned on the practicality

and benefit of such a test toward the classification or prediction of the diseased condi-
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tion. The key criteria that should be considered before implementing a diagnostic test

can be adapted from Wilson and Jungner (1968), Cole and Morrison (1980) and Obu-

chowski et al. (2001), who discuss criteria for useful screening programs which share

similar considerations to the application of diagnostic tests in general. The criteria per-

tain to the disease (first, second and third criterion), the treatment for the disease (fourth

criterion) and to the test itself (fifth and sixth criterion). Firstly, the disease should be

serious or potentially so as to merit its use for diagnosis topotentially improve the

longevity or quality of life of the subjects. Secondly, the disease should be relatively

prevalent in the target population so as to have a potential benefit from testing subjects.

Thirdly, the purpose of diagnosing the disease is so that it can be treated, so the disease

should be treatable. Fourthly, there must exist an effective treatment to be beneficial for

those who test positive. The fifth and sixth criteria pertainto the medical test itself. The

fifth criterion is that the test procedure should ideally cause no harm to the individual.

However, all tests have more or less negative impact, whether it is financial, physical

or emotional discomfort or damage. In practicality, these costs should be reasonably in

context and the information from an accurate diagnosis should create potential benefits

to be gained by the population or individual being tested. The sixth and final criterion

is the accuracy of the test which is discussed in more detail in the next section.
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1.2 Diagnostic accuracy

An accurate test is one that correctly classifies its test population according to the dis-

ease or non-disease condition. Inaccurate tests cause those with actual disease to be

misclassified as non-diseased, also known as a ”false negative”. Conversely, they cause

those with no actual disease to be misclassified as diseased,also known as a ”false

positive”. False negative errors leave diseased subjects untreated. False positive errors

open subjects to being subjected to unnecessary proceduresand emotional stress. Both

false negatives and false positives may also create disillusionment and distrust within

the general subjects towards the medical and diagnostic testing community as a whole,

potentially making data collection more difficult, biased and costly. Obviously, such er-

rors must be kept to a minimum. As such, the diagnostic accuracy of a test is of utmost

importance and must be thoroughly assessed and understood before such a test can be

used in practice.

In order to effectively implement and assess a diagnostic test, we must thoroughly

evaluate the test population, the test itself and the resulting observations for many fac-

tors which may influence the analysis of the accuracy by applying statistical method-

ologies. We must make sure that the population taking the tests are not influenced by

knowledge of their true disease classifications or that the test itself is not influenced

by knowledge of the same which could alter the accuracy of thediagnostic test. The

persons administering and assessing the results of the testshould also be blind to the

population’s true disease classifications so as not to influence the test results. These
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situations are more common when assessing more subjective factors of a study.

Many other factors can affect the performance of a diagnostic test for the purpose of

detecting disease. These include biased test populations that are not representative of

diseased subjects in the general population, inadequate clinical samples that may affect

the results of the test, a condition of a repeat testing that results in a positive diseased

status which may be counted as tested once rather than twice,the time it takes between

when the test is administered and when the results are assessed, patient related factors

(demographics, health habits, truthfulness), tester related factors (training, experience),

environmental factors (available resources, treatment options, integrity of reporting),

etc.

In some cases, statistical methodologies may be enhanced and improved to generate

significantly more accurate classification predictions. Inother cases, a procedurally

simpler statistical methodology may prove to be relativelymore efficient than other

methodologies, without sacrificing accuracy, especially for computation-heavy studies

or for cases in which time is of the essence. The statistical methods discussed in this

thesis pertain to assessment of the accuracy of a diagnostictest. The analyses assume

that the diagnostic tests are conducted in an appropriatelycontrolled environment. As

such, we must keep in mind the many real-world factors, as mentioned above, that may

influence the accuracy of such tests, for the benefit of the potential implementation of

such methodologies.
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1.3 Measures of accuracy

In this section, we introduce and discuss various measures that gauge the accuracy of

diagnostic tests. The accuracy is a test’s ability to detecta condition correctly when the

condition is truly present and to exclude the condition whenit is actually absent. The

accuracy of a test is always measured by comparing the test results to the true condition

status. We assume that the true condition status is either ”the condition is present” or

”the condition is absent”. For example, in medical studies,the true condition status is

defined as the disease status. The outcome of test results from the test or tests under

evaluation that reveals to us the true condition status of the patient is known as a ’gold

standard’. Different gold standards are used for different applications in diagnostic tests.

1.3.1 Sensitivity and specificity

Sensitivity and specificity are two basic measures of diagnostic accuracy. We can illus-

trate the two definitions using the following contingency table, Table 1.1. Firstly, we

denote the true condition status by the indicator variableT, where

T =



1 with condition;

0 without condition.

We denote the result of the diagnostic test by the indicator variableX. Test results

indicating the condition’s presence are calledpositive, denoted asX = 1, whereas those
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indicating the condition’s absence are callednegative, denoted asX = 0, where

X =



1 postive test results;

0 negative test results.

Table 1.1 illustrates a basic count table specifying the different numbers under dif-

ferent categories. The total numbers with and without the condition aren1 and n0,

respectively. The total numbers with the condition whose test result is positive and neg-

ative are,p1 andp0, respectively. The total numbers without the condition whose test

result is positive and negative are,a1 anda0, respectively. The total number in the study

is N, whereN = p1 + p0 + a1 + a0.

Table 1.1: A basic count table

Test results

True condition status Positive(X=1) Negative(X=0) Total

Present(T=1) p1 p0 n1

Absent(T=0) a1 a0 n0

Total m1 m0 N

Thesensitivity (Se)is the test’s ability to detect the condition when the condition is

present. The sensitivity is the probability that the test result is positive(X = 1), given

the presence of the condition (T = 1), written as

S e= P(X = 1|T = 1). (1.1)

In table 1.1, amongn1 numbers with the condition,p1 test positive. So,S e= p1/n1.
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Thespecificity (Sp)is the test’s ability to exclude the condition without the condi-

tion. It is the probability that the test result is negative(X = 0), given the absence of the

condition (T = 0), written as

S p= P(X = 0|T = 0). (1.2)

In table 1.1, amongn0 numbers with the condition,a0 test positive. Thus,S p= a0/n0.

We can also summarize the data by probabilities, as shown in Table 1.2. The conse-

quences associated with the test results are also considered. The test can have two types

of errors. One is false positive errors and another one is false negative errors. We define

thetrue positive fractions(TPF) andfalse positive fractions(FPF) as follows:

f alse positive f raction= FPF = P(X = 1|T = 0), (1.3)

true positive f raction= TPF = P(X = 1|T = 1). (1.4)

False negative fraction(FNF) is 1-TPF.True negative fraction(TNF) is 1-FPF. The fol-

lowing table illustrates the relationship between them by probabilities.

Table 1.2: Probability table

Test result

True condition status Positive(X = 1) Negative(X = 0) Total

Present(T=1) S e= p1/n1 FNF = p0/n1 1.0

Absent(T=0) FPF = a1/n0 S p= a0/n0 1.0
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In this usage, sensitivity is known as the TPF and specificityis known as TNF. Under

various applications, the terminology for TPF and FPF is often different. In biomedical

research, the ‘sensitivity’ (TPF) and ‘specificity’ (1-FPF) are often descriptors of test

performance. In engineering and audiology, the terminologies ‘hit rate’ (TPF) and ‘false

alarm rate’ (FPF) are often used. In statistical hypothesistesting, the terms ‘significance

level’ (FPF) and ‘statistical power’ (TPF) are often used.

1.3.2 Predictive values

The accuracy of a diagnostic test can also be quantified by howwell the test results

predict the true condition status. As such, another important measure of a diagnostic

test ispredictive value. The predictive values depend on the prevalence of the condition,

such as in a disease condition. The predictive values are:

positive predictive value= PPV = P(T = 1|X = 1), (1.5)

negative predictive value= NPV = P(T = 0|X = 0). (1.6)

A perfect test is one that predicts the condition perfectly.That is, PPV=1 and

NPV=1. Contrarily, a useless test is one with no information about the true condi-

tion status. As such, a test which does not reflect the true condition status very well

will result in a low PPV. The predictive values can tell us howlikely the condition is

given the test result. The values are affected by the prevalence of the condition. Low

prevalence of the condition may be a reason for a low PPV. In research studies, both
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the classification probability(TPF and FPF) and the predictive values are important and

there is a direct relationship between the two. Suppose the prevalence isρ = P(T = 1).

A result can be directly ascertained from the Bayes’ theorem:

PPV =
ρTPF

ρTPF+ (1− ρ)FPF
,

NPV =
(1− ρ)(1− FPF)

(1− ρ)(1− FPF) + ρ(1− TPF)
.

1.3.3 Likelihood ratios

Another way to describe the diagnostic test is thelikelihood ratios(LR), which is also

widely used in research. We definepositiveandnegativeLRs as:

postive LR= LR(+) =
P(X = 1|T = 1)
P(X = 1|T = 0)

, (1.7)

negative LR= LR(−) =
P(X = 0|T = 1)
P(X = 0|T = 0)

. (1.8)

Note that the positive likelihood ratio is the the ratio of sensitivity to the FPF. The

negative likelihood ratio is the ratio of the FNF to specificity. The likelihood ratios

do not depend on the population prevalence, which are related to the classification

probabilities and predictive values. The LR can quantify how much the diagnostic test

changes knowledge of the condition status. An LR of 1.0 indicates that the test result

is equally likely among the subjects with and without the condition; an LR greater than

1.0 means that the test result is more likely among the subjects with the condition than

without the condition; an LR less than 1.0 indicates that thetest result is more likely
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among the subjects without the condition than with the condition. The higher the LR is,

the likelier the test result is among the subjects with the condition relative to the subjects

without the condition. We can also consider the odds that a subject has the condition

before performing the test which is

pre− test odds= P(T = 1)/P(T = 0) .

We can consider the odds of the condition with the knowledge of the test result after

performing the test which is

post− test odds= P(T = 1|X)/P(T = 0|X) .

We note that the post-test odds can be expressed in terms of the predictive values as:

post− test odds(X = 1) =
PPV

1− PPV
,

post− test odds(X = 0) =
1− NPV

NPV
.

In this case, the likelihood ratios are related to these two odds, where

post− test odds(X = 1) = LR(+) × (pre− test odds) ,

post− test odds(X = 0) = LR(−) × (pre− test odds) .

1.4 Literature review

The measure of accuracy of a test we introduce is often based upon decision thresholds,

which may be difficult to detect. Lusted(1971) illustrated a way in which we could
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overcome the limitation of a single sensitivity and specificity pair, which he first ap-

plied to psychophysics. Lusted argued that the method couldovercome the limitation

by considering all of the decision thresholds. By applying the receiver operating char-

acteristic (ROC) curve, we can describe the accuracy of a diagnostic test without the

limitations of decision thresholds. Lusted stated that ROCcurves offer an ideal means

of examining the performance of the diagnostic tests. Subsequently, the ROC curve has

been the most valuable and most widely used tool to describe and compare diagnostic

tests in various disciplines of medicine.

An ROC curve is a plot of the sensitivity of a diagnostic test versus the false-positive

fraction. ROC curves were originally developed for electronic signal-detection theory

(Peterson, Birdsall and Fox, 1954). ROC curves and ROC analysis have subsequently

formed the basis of statistical decision theory, having been applied to various medical

and nonmedical studies, including studies of human perception (Drury and Fox, 1975)

and military monitoring (Swets, 1977). Some features of ROCcurves, which we discuss

below, make them ideal for studying diagnostic tests.

In medical diagnostic testing, we are interested in measuring the observer’s abil-

ities for interpreting test results rather than the criteria used for such decisions. As

such, Lusted (1971) discussed how in medical diagnostics, adistinction must be made

between the observer’s cognitive and sensory abilities to interpret the test results for

detecting the condition and the observer’s criteria used indeciding whether a condition

is present or absent.
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Swets and Pickett (1982) discussed how ROC curves display all possible cutpoints

and thus can estimate the frequency of various outcomes at each cutpoint. Furthermore,

ROC curves can apply previously generated probabilities ofthe condition, as well as

calculations of the costs and benefits of correct and incorrect decisions, to determine the

optimum cutpoint. They were also the first to study the analysis of multireader studies in

which several observers interpret the test results of the same sample of patients. They

identified several sources of variability, as well as correlations in multireader studies

and then created a methodology for estimating and comparingthe test accuracy for

such studies.

The first to use the Gaussian model for estimating the ROC curve were Green and

Swets (1966). They assumed the numerical value of a sensory event (defined asX) af-

fects the observer’s confidence about whether the conditionis present or absent. They

also assumed a cutpoint (defined ast) such that ifX < t and X > t, then the ob-

server will choose the hypothesis that the condition is absent and present, respectively.

Additionally, they assumed the Gaussian distribution of T under each hypothesis. Fur-

thermore, Dorfman and Alf, Jr (1968, 1969) proposed maximum-likelihood estimates

for the parameters of a binormal ROC curve, and provided methodologies for obtaining

the variance-covariance matrix and the corresponding confidence intervals.

The most widely used summary measure for the test accuracy ofROC analysis is

the area under the ROC curve (AUC). Hanley and McNeil (1982) provided a relatively

simple methodology to estimate AUC without having to assumethe distribution of the
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test results. Interestingly, they noted that AUC is equivalent to the Wilcoxon 2-sample

test statistic. They developed a method for calculating sample size for studies that apply

the ROC curve area. Several other nonparametric methodologies have subsequently

been developed for estimating and comparing ROC curves.

McClish (1989) stated that AUC was a global measure of a test’s accuracy. He pro-

vided parametric methods for estimating and comparing the partial area under the ROC

curve. These parametric methods are based upon a binormal model and parallel the

MLEs of the area under the total ROC curve. Many statistical methods were developed

shortly after these investigations for the estimation of the ROC analysis for two-way

classification.

However, many real-world classification problems involve more than just two cat-

egories and the extension of the two-way ROC analysis is needed. Scurfield (1996)

first mapped the mathematical definition of a proper ROC measure for more than two

categories. Recently, ROC methodology was then extended tomultiple-class diagnos-

tic problems by introducing a three-dimensional ROC surface. Mossman (1999) in-

troduced the concept of three-class ROC analysis into medical decision making. Nakas

and Yiannoutsos (2004) were the first to consider the estimation of the volume under the

ROC surface for ordered three-class problems by using U-statistic theory. Li and Fine

(2008) further proposed the estimation of the volume under the ROC surface (VUS) and

the hypervolume under the ROC manifold (HUM). They also provided the estimation

of the multiple-class ROC measures and applied the multiple-class ROC analysis as a
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model of selection criterion in microarray studies. Li and Zhou (2009) considered non-

parametric and semiparametric estimation of the ROC surfaces by approximating the

asymptotic ROC surfaces with multivariate Brownian bridgeprocesses.

In medical research, it is also important to evaluate the various factors that can in-

fluence the medical performance. Great interest has been shown in developing methods

for combining biomarkers. Statistical regression analysis has recently been studied to

make inferences about such factors and biomarkers.

Han (1987) originally developed the maximum rank correlation estimator (MRC),

which was considered as a generalized regression model of nonparametric analysis.

It has recently been applied to assess classifications because of its close relationship

to the ROC curve. Optimization algorithms that maximize thearea under the ROC

curve have also recently been proposed. Pepe (2003) developed optimal prognostic

scores by applying binary regressions. The optimal linear combination is attained from

several available diagnostic biomarkers from which we seekto maximize the area under

the ROC curve among all the possible linear combinations in the binary data analysis.

Enrique et al. (2004) suggested how to obtain the confidence interval for the generalized

ROC criterion, conditional on given covariate values and derived some inferences under

the normal distribution assumption. Theory of the consistency of the optimal confidence

interval is based upon the argument which comes from Sherman(1993), relying on a

general method for establishing the limiting distributionof a maximization estimator.
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1.5 Aim and organization of the thesis

Over the last few decades, the most commonly used methods forevaluating the accu-

racy of numerical diagnostic tests in two-category classification problems have been the

receiver operating characteristic (ROC) curve and the areaunder the ROC curve (AUC)

measure. AUC characterizes the probability that a test can correctly differentiate be-

tween two subjects. An effective diagnostic test has an AUC value greater than 1/2.

However, as the number and breadth of applications for AUC and its related measures

expand in the field of medicine and in clinical studies, we have noticed that the AUC

values are at times actually lower than 1/2. Some researchers might ignore such AUC

values as trivial data points. But in reality, they may be overlooking important test sub-

jects, such as genes, for the classification. In this thesis,we pointed out a fundamental

weakness int the AUC method of interpreting ROC curves, in particular improper ROC

curve. We studied and examined the cases when the estimated AUC values are lower

than 1/2. A better way to interpret the ROC curves is to examine the ratio of the like-

lihood of the test results with the condition and without thecondition. We suggested

to reverse the decision rule and use a screening method, providing significant further

insight into the data and the diagnostic test itself.

Identifying the correct classification for multiple-category problems is compara-

tively more complicated. The volume under the ROC surface (VUS) and the hypervol-

ume under the ROC manifold (HUM) are extensions of the AUC, extended for three or

more category classifications. The nonparametric estimation of VUS or HUM is asso-
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ciated with calculating the probability that three or more categories are simultaneously

ordered correctly by the particular test. However the mathematical procedure to cor-

rectly predict the relative order is not as obvious as in the two-class problems. In this

thesis, we consider parametric and nonparametric methods to address the elements of

the multiple-category issue.

The U-statistic approach for calculating the variance of the non-parametric estima-

tor of the area under the ROC curve has already been proposed.However, as sample

sizes increase, the advantage of the U-statistic methodology is heavily diminished, and

the U-statistic variance methodology for the case of multiple categories is generally not

appropriate. To solve the computational burden as the dimension of the problem in-

creases, we propose bootstrap standard errors for the multiple-category ROC analysis.

In practice, many factors can significantly influence the accuracy performance of

a diagnostic test. Various information resources will alsobe available to assist in the

medical prediction. However, at the core is the need to combine multiple biomarkers

and factors in order to predict an accurate outcome. As such,great interest in developing

methods for combining biomarkers is widespread. Here, we develop an optimization

procedure by constructing a linear combination of markers that maximizes the VUS or

HUM of the resultant combined marker. We also provide asymptotic theories for our

estimators based upon the maximum rank correlation estimation.

Concerning the organization of the various subjects mentioned above, this thesis has

been divided into five main chapters. Chapter 1 provides an introduction and review of
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some of the basic accuracy measures of statistical ROC analysis.

In Chapter 2, we improve the procedure for the area under the ROC curve in the

situation that the estimator of AUC is less than 1/2. In fact, contrary to some prevail-

ing practices, the test with an AUC lower than 1/2 can still be shown to be useful for

differentiating the two classes. We present a method which appears to rotate the ROC

plot 180 degrees so that it emerges in the upper side of the chance diagonal line. An

example is provided which pertains to an ovarian cancer dataset used in a population

screening.

In Chapter 3, an extension of the two-class ROC analysis is proposed for three-

category classification problems. The relationship between the area under the ROC

curve and the volume under the ROC surface is examined. We propose approaches that

assess the multiple categories by using simple summary statistics such as the sample

mean. Moreover, a general discussion on the minimum acceptable HUM values is

applied to multiple-category classification problems. Theresults of simulation studies

we conducted that examine the performance of our proposed methods for sorting the

unknown orders of multiple categories is also presented. Weuse microarray and mass

spectrometry datasets to illustrate our methods.

In Chapter 4, we explore statistical methods of combining multiple tests for multiple-

category classifications to optimize the accuracy of the combined marker under the cri-

teria of ROC measures. Appropriate statistical proceduresare developed by extending

the maximum rank correlation estimators to high-dimensional cases. Simulation stud-
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ies are then conducted to investigate the performance of theproposed inferences. We

also apply our proposed methodology to two examples using data from recent health

science studies.

In Chapter 5, we offer concluding remarks and discuss possible paths for future

research.
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Chapter 2

Two-class ROC Analysis

The ROC curve is considered the most well-developed statistical approach for describ-

ing and evaluating the performance of diagnostic tests. ROCcurves have been used for

a relatively long time. In 1966, Green and Swets developed signal detection theory in

psychophysics, which appeared to be a potential method for medical diagnostic testing.

In 1971, Lusted pointed out that this method could be adoptedfor medical decision

making and stated that the method could overcome limitations of a single sensitivity

and specificity pairs. Since then, this method has been the most valuable and popular

tool for describing and comparing diagnostic tests, particularly in medicine.
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2.1 The ROC curve

An ROC curve is a plot of the sensitivity of a test which is plotted on they axis versus

the test’s FPF which is plotted on thex axis. Different decision thresholds can generate

different points on the graph. Line segments are often used to connect the points from

different possible decision thresholds, forming anempirical ROC curve. The diagonal

line is called achance diagonal.

Figure 2.1: An example of an ROC curve
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Figure 2.1 illustrates an example of an ROC curve. In this figure, each circle on

the empirical ROC curve represents a (FPF, Se) point corresponding to a particular

decision threshold. There are seven decision thresholds which provide (FPF, Se) points

in addition to the two points, (0,0) and (1,1). Line segmentsconnect all the points

generated from the seven possible decision thresholds and then form aempirical ROC

curve. It is also convenient to connect all the possible points using a smooth curve

which is called afitted ROC curve, illustrated in Figure 2.1.

Tests are usually ordinal in nature. For example, the clinical symptoms in medical

research are often classified as severe, moderate, mild and not present. But it is often

convenient to use a statistical model to fit the test results.Now we discuss the continu-

ous ROC curves. We use a thresholdr to define a binary test from the continuous test

resultX as

positive i f X≥ r,

negative i f X< r.

The corresponding true positive fraction at the thresholdr TPF(r) and false positive

fraction at the thresholdr FPF(r) are defined as

TPF(r) = P(X ≥ r |T = 1) , (2.1)

FPF(r) = P(X ≥ r |T = 0) . (2.2)
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The set of all possible TPFs and FPFs forms an ROC curve attained by dichotomiz-

ing X with different thresholds. That is, the ROC curve can be written as

ROC(·) = {(FPF(r),TPF(r)), r ∈ (−∞,∞)}. (2.3)

Whenr = ∞, thenlimr→∞TPF(r) = 0 andlimr→∞FPF(r) = 0. Whenr = −∞, then

limr→−∞TPF(r) = 1 andlimr→−∞FPF(r) = 1. We also notice that when the threshold

r increases, both FPF(r) and TPF(r) decrease. Thus, the ROC curve is a monotone

increasing function. The ROC curve can then be written as:

ROC(·) = {(t,ROC(t)), t ∈ (0, 1)}, (2.4)

where the ROC function mapst to TPF(r), andr is the threshold corresponding to

FPF(r)=t.

Let (FPF(r), TPF(r)) be a point on the ROC curve forX. For any strictly increasing

function h of X, we haveP(h(X) ≥ h(r)|T = 0) = P(X ≥ r |T = 0) andP(h(X) ≥

h(r)|T = 1) = P(X ≥ r |T = 1). Thus, the ROC curve is invariant to strictly increasing

transformations ofX.

Let S1 andS2 denote the survivor functions forX with the condition and without

the condition:S1(x) = P(X ≥ x|T = 1) andS2(x) = P(X ≥ x|T = 0). Let r = S−1
2 (t)

be the threshold corresponding to the FPF=t so thatP(X ≥ r |T = 0) = t. Therefore the

ROC curve can also be represented as:

ROC(t) = S1(S
−1
2 (t)), t ∈ (0, 1). (2.5)
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The ROC plot has many advantages compared to other measures of accuracy (Zweig

and Campbell, 1993). An ROC curve can visually represent thedata’s accuracy. The

scales of the ROC curve plot are two basic measures of accuracy which can be easily

read from the plot. The ROC curve includes all the possible decision thresholds so that

there is no requirement to select a particular decision threshold. Because sensitivity and

specificity are independent of prevalence, the ROC curve is independent of prevalence

as well. The ROC curve is also independent of the scale of the test results. That is, the

ROC curve does not vary to any monotonic (e.g., linear, logarithmic) transformations of

the test results, which is a useful property (Campbell, 1994). Another advantage of the

ROC curve is that it can provide a direct and visual comparison of two or more tests on

a single set of scales. It is possible to compare different tests at all decision thresholds

by constructing the ROC curves.

2.2 Summary indices

Some summary indices associated with the ROC curve are oftenused to summarize the

accuracy of a diagnostic test and provide important information about the ROC curve.

When the ROC curve is not feasible to plot, such summary measures can also provide

important information about the ROC curve.Area under the ROC curve(AUC) and

partial area under the ROC curve(PAUC) are two important summary indices which

are particularly useful in certain situations.
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2.2.1 Area under the ROC curve

ROC curve is a useful measure to summarize the accuracy of a diagnostic test. An-

other valuable measure associated with the ROC curve is thearea under the ROC curve

(AUC). The area under the ROC curve takes values between 0.0 and 1.0. A perfect

diagnostic test is one with an area under the ROC curve of 1.0 and consists of two line

segments: (0,0)-(0,1) and (0,1)-(1,1). In contrast, a testwith an area of 0.0 is perfectly

inaccurate. However, perfect diagnostic tests are rare. The area under the ROC curve

can be interpreted as the average of sensitivity for all possible values of specificity.

It can also be interpreted as the average value of specificityfor all possible values of

sensitivity.

The area under the ROC curve is a widely used summary measure for comparing

ROC curves which can be defined as (Bamber (1975))

AUC =
∫ 1

0
ROC(t)dt. (2.6)

Obviously, if two testsA1 andA2 are ordered as

ROCA1(t) ≥ ROCA2(t), ∀t ∈ (0, 1),

then the corresponding AUC statistics are also ordered as

AUCA1 ≥ AUCA2.

However, the converse of the above is not necessarily true.
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As discussed in the previous section, the ROC curve can be interpreted as

ROC(t) = S1(S
−1
2 (t)), t ∈ (0, 1).

Here, we denote the test results with the condition asX1 and the test results without the

condition asX2. Thus, we have

AUC =
∫ 1

0
ROC(t)dt =

∫ 1

0
S1(S

−1
2 (t))dt =

∫ ∞

−∞
S1(x)dS2(x) = P(X1 > X2).

Figure 2.2: AUC=P(X1 > X2)

The AUC has another interpretation. It is equivalent to the probability that the test
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results from randomly selected subjects with the conditionand without the condition are

correctly ordered, by the form ofP(X1 > X2), as illustrated in Figure 2.2 (Bamber,1975).

An important link between the area under the ROC curve and theWilcoxon 2-

sample rank-sum statistic or, the Mann-Whitney U-statistic exists. Note that the Mann-

Whitney U-statistic is based upon an estimate ofP(X1 > X2), in which it is exactly the

area under the ROC curve. So the properties of the Mann-Whitney U-statistic can be

used to predict the statistical properties of the area underthe ROC curve.

2.2.2 Partial area under the ROC curve

Another summary measure associated with the ROC curve is thepartial area under the

ROC curve(PAUC). There is particular interest in the area under a portion of the ROC

curve. The partial area under the ROC curve is the area between two sensitivities, which

can be defined as

PAUC(t0) =
∫ t0

0
ROC(t)dt,

wheret0 ∈ (0, 1). Its values range fromt2
0/2 for a completely uninformative test tot0

for a perfect test. Dwyer (1997) interpreted the partial area under the ROC curve as

the probability that a randomly chosen subject without the condition will be classified

correctly from a randomly chosen subject with the conditionwho tested negative in a

diagnostic test. The partial area of test performance is appealing for some special cases

and is also well established in many clinical tests.
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2.3 The binormal ROC curve

The normal distribution is a classic and widely-used model to describe distribution func-

tions. Now we apply the binormal distribution model to the ROC curve. The binormal

ROC curve plays a significant role in ROC analysis. Suppose that the test results are

normally distributed in the populations with the conditionand without the condition.

Assume

X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2).

For any thresholdr, we have

TPF(r) = P(X1 > r) = Φ(
µ1 − r
σ1

)

and

FPF(r) = P(X2 > r) = Φ(
µ2 − r
σ2

),

whereΦ denotes the standard normal cumulative distribution function. We see that for

a FPFt, the corresponding threshold isr = µ2 − σ2Φ
−1(t). Hence,

ROC(t) = Φ(
µ1 − r
σ1

) = Φ(
µ1 − µ2

σ1
+
σ2

σ1
Φ−1(t)).

Then the AUC measure has an analytic form. Recall thatAUC = P(X1 > X2) =

P(X1 − X2 > 0). The AUC can be represented with the binormal assumption as

AUC = P(X1 − X2 > 0) = Φ(
µ1 − µ2√
σ2

1 + σ
2
2

).
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If we definea1 =
µ1 − µ2

σ1
anda2 =

σ2

σ1
, then the ROC curve and AUC measures can be

written as

ROC(t) = Φ(a1 + a2Φ
−1(t)) (2.7)

and

AUC = Φ(
a1√

1+ a2
2

). (2.8)

Recall that the ROC curve is invariant to monotone increasing transformations. If

X1 andX2 are normally distributed andh is a monotone increasing function, then the

ROC curve for the transformationsh(X1) andh(X2) is also the binormal ROC curve

ROC(t) = Φ(a1 + a2Φ
−1(t)).

2.4 Estimating summary measures

We defined the ROC curve and introduced its properties in the previous section. We

now discuss the statistical methodology for estimating theROC curve and the summary

measures. Firstly, we apply nonparametric empirical approaches to obtain the empirical

ROC curve. Then we apply the parametric methods using statistical models to estimate

the ROC curve and summary measures. Finally, the nonparametric methods will be

introduced.
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2.4.1 Empirical estimation

Assume that the numbers for the test results with and withoutthe condition aren1 and

n2 . X1i and X2i are selected randomly from the populations of test results with and

without the condition, respectively.{X1i , i = 1, ..., n1} are identically distributed with

the population survivor functionS1(x) = P(X1i ≥ x). Similarly, {X2j , j = 1, ..., n2} are

identically distributed with the population survivor function S2(x) = P(X2j ≥ x).

The empirical estimator of the ROC curve can easily be derived from the defini-

tion of the ROC curve. For each possible thresholdc, the empirical TPF and FPF are

calculated by

T̂PF(r) =
n1∑

i=1

I {X1i ≥ r}/n1

and

F̂PF(r) =
n2∑

j=1

I {X2j ≥ r}/n2,

whereI is the indicator function. The empirical ROC curve can be considered as a plot

of T̂PF(r) versusF̂PF(r) for all r ∈ (−∞,∞). Therefore, the empirical ROC,̂ROCcan

be directly obtained from the definition of ROC curve as

R̂OC(t) = Ŝ1(Ŝ
−1
2 (t)), (2.9)

whereŜ1 andŜ2 are the empirical survivor functions forX1 andX2, respectively.

Note that the empirical ROC curve is a function of the ranks ofthe data. It is related

to the ordering of the test results and the status of the individuals with and without the

condition.
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Now we consider the sampling variability for the empirical ROC curve. One of

the ways to assess the sampling variability is to assume the test results are continuous.

Firstly, we fix the FPFt. Then we determine the estimated threshold corresponding to

t. We then determine the proportion of the observations with the condition with test

results above the threshold. Hsieh and Turnbull (1996) provided a result of variability

of R̂OCin the case of independent continuous test results. When thenumbers ofX1 and

X2, n1 andn2, are large, the distribution of̂ROC(t) is estimated by a normal distribution

with meanµROC(t) and variance given by

var(R̂OC(t)) =
µROC(t)(1− µROC(t))

n1
+ (

g1(c∗)
g2(c∗)

)2 t(1− t)
n2
, (2.10)

wherec∗ = S−1
2 (t), g1 andg2 denote the probability densities forX1 andX2, respectively.

This variance of̂ROC(t) is broken into the sum of two components. The first com-

ponent derives from the binomial variability of the estimated TPF when the thresholdr

is fixed. The second part derives from the estimation ofS−1
2 (t).

Similarly, the form of the confidence interval for the ROC(t)based upon the asymp-

totic normal approximation to the distribution of̂ROC(t) is

R̂OC(t) ± Φ−1(1−
α

2
)
√

v̂ar(R̂OC(t)),

whereα is the significant level.
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2.4.2 The estimation of the area under the ROC curve using para-

metric model

As defined in the previous section, a general form for the areaunder the ROC curve is

AUC =
∫ 1

0
ROC(t)dt.

When we assume binormality, this integral can be written as

AUC = Φ(
a1√

1+ a2
2

),

wherea1 anda2 are defined in the previous section. The AUC summary measure then

is estimated with

ÂUC = Φ(
â1√

1+ â2
2
) = Φ(

µ̂1 − µ̂2√
σ̂2

1 + σ̂
2
2

). (2.11)

McClish (1989) derived the variance of AUC as

Var(ÂUC) = f 2
1 Var(â1) + f 2

2 Var(â2) + 2 f1 f2Cov(â1, â2),

where

f1 =
e−a2

1/2(1+a2
2)

√
2π(1+ a2

2)
and f2 = −

a1a2e−a2
1/2(1+a2

2)

√
2π(1+ a2

2)
3
.

The variance can be estimated by substituting estimators for the parametersa1 anda2.
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2.4.3 The estimation of the area under the ROC curve using non-

parametric model

AUC can also be estimated directly from the nonparametric method without making

any distributional assumptions. The estimation can be directly obtained by summing

the trapezoidal areas which are formed by connecting all thepossible points of the

ROC curve.

Figure 2.3: The trapezoidal rule
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Figure 2.3 illustrates the area calculated by the trapezoidal method formed by con-

necting all the possible points.
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By increasing the number of the possible threshold points, the bias of the estimation

can be significantly reduced and make it acceptable for the estimation.

It is noted that AUC is equivalent to the Mann-Whitney U-statistic. Therefore, AUC

can be estimated by

ÂUC =
n2∑

j=1

n1∑

i=1

[I {X1i > X2j } +
1
2

I {X1i = X2j }]/n1n2. (2.12)

The corresponding variance is relatively complicated. A number of methods used

to estimate the variance of the nonparametric area have beenrecommended. One result

from Hanley and McNeil (1982) is given by

var(ÂUC) =
AUC(1− AUC) + (n1 − 1)(M1 − AUC2) + (n2 − 1)(M2 − AUC2)

n1n2
,

where

M1 = P(X1i ≥ X2j ,X1′i
≥ X2j ),

M2 = P(X1i ≥ X2j ,X1i ≥ X2′j
),

in which (X1i ,X1′i
) denotes the randomly selected pair of observations from the popula-

tion with the condition and (X2j ,X2′j
) denotes the randomly selected pair of observations

from the population without the condition.

Another nonparametric approach is using the kernel smoothing method to provide a

smoothed ROC curve. For the kernel method, there are two parameters that need to be

specified; the choice of kernel and the choice of bandwidth.
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Zou, Hall and Shapiro (1997) suggested a kernel method to estimate a smooth ROC

curve from continuous data. The Gaussian kernel was chosen.They recommended

estimating the points on the ROC curve through the integral of the density function

with the conditionf1(x) and the density function without the conditionf2(x), where the

density functions are estimated as

f̂i(x) =
1

nihi

ni∑

j=1

k(
x− Xi j

hi
), i = 1, 2.

The functionk is called the kernel andhi is the bandwidth. There can be numerous

choices of kernel and bandwidth. They suggested using the kernel

k(
x− Xi j

hi
) =

15
16

[1 − (
x− Xi j

hi
)2]2 f or x ∈ (Xi j − hi ,Xi j + hi) ,

wherek = 0 otherwise, and the bandwidth

hi = 0.9min(S D, IQR/1.34)/ 5
√

ni ,

where SD is the standard deviation and IQR is the interquartile range for the observa-

tions of subjects with the condition and without the condition.

The kernel estimator is reasonable when the choice of bandwidth is chosen and the

sample size is large. However, it is difficult to prove that the resulting smoothed ROC

curve will increase in a monotone manner. Therefore it is notwidely applied in the real

data analysis.
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2.5 Cases when AUC is lower than 1/2

2.5.1 The method

Most ROC curves lie between those of the perfect and useless tests, which is above the

diagonal chance line and below the left and upper border of the positive unit quadrant.

A useless test corresponds to a test which produces identical distributions forX1 and

X2. However, a diagnostic test can have an ROC curve with a hook,a portion of the

ROC curve lying below the chance diagonal line. These curvesare calledimproper

ROC curves.

AUC can be interpreted as the probability that a test correctly differentiates between

two subjects, one with the condition and one without the condition, which is equivalent

to P(X1 > X2). A useless test corresponds to a test which produces identical distri-

butions forX1 andX2 and has an AUC value equal to 1/2 with an ROC curve on the

chance diagonal line. An effective diagnostic test has an AUC value greater than 1/2.

The area under the improper ROC curve then will have an AUC value smaller than 1/2.

This could happen especially often in large scale microarray studies where thousands

of genes are compared for their disease differential abilities according to their AUC val-

ues. However, we have sometimes noticed that researchers might overlook this issue

and report AUC values lower than 1/2. Without a proper arrangement of the order of

the two groups for individual genes and simply reportingP(X1 > X2) uniformly for all

the genes, it is likely that we might miss some important genes whose AUC should be
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defined byP(X2 > X1). There can be one fundamental weakness in the AUC method of

interpreting ROC curves when the improper ROC curves exists. In fact, the test with an

AUC lower than 1/2 can still be useful for differentiating the two classes and should be

regarded as a better test than the one with AUC value of 1/2.

An idea for correcting this problem is to rotate the plot by 180 degrees, illustrated in

Figure 2.4. Then it will appear in the upper side of the chancediagonal line, from graph

(b) to graph (a) in Figure 2.4. A better way to interpret ROC curves is to examine the

ratio of the likelihood ofX1 andX2, in the spirit of Neyman-Pearson. For example, if

the support ofX1 andX2 are disjoint, then we have a perfect test, but the AUC need not

to be 1 or 0. In particular, it can take the value of 0.5. This idea leads to a correct AUC

definition as the probabilityP(X2 > X1) instead of the rigid stipulation ofP(X1 > X2).

To make the 180 degree rotation, the ROC curve can easily be changed to appear

above the chance diagonal line by reversing the decision rule. This screening method

can assure that the ROC curves are correct and useful. Therefore, in practice, if we

obtain an AUC value lower than 1/2, we use one minus this value to produce the correct

AUC value, which is

AUC =



AUC i f AUC≥ 1/2;

1− AUC i f AUC< 1/2.

The nonparametric estimation of the improved AUC will be thesame as the estima-

tion of AUC in the previous section.
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2.5.2 Example

One such example was evidenced in a recent statistical publication. Pepe et al. (2003)

analyzed a publicly available ovarian cancer dataset used in a population screening.

This dataset was obtained from a gene-expression experiment using glass arrays for

1536 cDNA clones studied by Dr Michel Schummer (Institute for Systems Biology,

Seattle). It is a case-control study with 1536 potential diagnostic tests. The scientific

objective from the dataset is to identify genes which are differentially expressed in ovar-

ian cancer tissue, compared with the normal ovarian tissue.The experimental data were

used to rank potential genes according to some statistical measure characterizing dif-

ferential expression. They considered statistical methods to rank genes (or proteins) in

regards to differential expression between tissues and argued that two measures related

to the ROC curve are particularly suitable for their purpose.

In their paper, Pepe et al. focused on the detection of overexpressed genes, whereas

the adaptation of the methods for the detection of underexpressed genes is relatively

straightforward. Pepe et al. stated that there were many genes overexpressed in cancer

tissue making the detection of screening markers difficult. Thus, they suggested to

select a sizeable number of overexpressed genes to arrive ata subset which might have

potential for screening. Using subsets was effective because clinical assays for some

gene products were difficult to develop for technical reasons. In their methods, if one

gene proved useless for biomarker development, they pursued yet another that could

potentially identify the same cancers. They chose the first 100 genes in the dataset and
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displayed the top 10 genes ranked according to AUC values. Gene 93 was ranked as

the optimal one with the largest AUC value of 0.971, with the range of the top 10 gene

ranking as (0.736, 0.971).

We did a similar calculation on AUC for these 100 genes with anappropriate ad-

justment for the order ofX1 andX2 for each gene. Among the 100 genes, 51 genes have

AUC values lower than 1/2, some of which are even close to 0. It might be because of

the improper ROC curve existence. One reason is that when thesensitivity and FPR are

calculated, the criterion or the decision rule is inappropriate for some of this dataset or

the author used a single decision rule at the same time while the size of the variables

are large. Another reason may be because of the imperfect laboratory techniques for

measuring gene expression with microarrays.

We applied our improved method by rotating the original ROC curve by 180 degrees

to correct the ROC curve. After calculating the estimation of AUC using the nonpara-

metric approach we mentioned, this resulted in new AUC values for the first 100 genes.

Our results were compared with Pepe et al. (2003) in Figure 2.5. Surprisingly, a totally

different ranking appears and only one of the top 10 genes agrees with Pepe et al. The

first column in the table is the AUC values of the first top ranking from the paper of

Pepe et al. The second column is the AUC values of the first 20 top ranking after the

correction in our improved approach. The last column is the corresponding AUC values

for each gene. Boxed genes represent the top 10 genes with thelargest AUC values in

Pepe et al. (2003). Circled genes represent the top 20 genes that were not identified
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by Pepe et al. (2003). Our second highest AUC is 0.933 which might have been mis-

takenly calculated as 0.067 and thus placed at the bottom of the ranked table by the

authors. The second highest AUC in Pepe et al. (2003) is only ranked 11th on our list.

Nine genes with AUC higher than this one were unnecessarily screened out previously.

Consequently the gene ranking from such an analysis may mislead the subsequent med-

ical decision making. Our new improved approach enhances the process of identifying

the biomarkers and allows the screening to be more accurate,informative and inclusive.
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Figure 2.4: Improved method
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Figure 2.5: AUC and gene ranks reported in Pepe et al. (2003)
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Chapter 3

Sorting Multiple Classes in

Multiple-category ROC Analysis

As we discussed in the previous chapter, the ROC curve is a useful statistical tool to

evaluate the accuracy of continuous diagnostic tests. The ROC curve and AUC are ade-

quate to assess the two-category classifications. However,many real-world biomedical

situations have more than two classes. For example, in practice, it is more crucial to

predict the stage of a disease rather than to only distinguish between a disease and non-

disease state. A major limitation of the two-class ROC analysis is that it can not give a

complete picture of how well a test discriminates between more than two classes. Thus,

ROC analysis methods capable of handling multiple classes are essential to fully assess

diagnostic performance. Unsurprisingly, there is great interest in the medical research

field to develop methods for multiple-category classification.
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3.1 Assessing three-class problems

3.1.1 ROC surface

Scurfield (1996) proposed the three-class ROC surface whichis an extension of the

ROC curve. Consider three classes, denotedl1, l2, andl3. The observer’s decision for

the classification is based upon three decisions, denotedd1, d2, andd3. We consider the

three variablesX1, X2, andX3 as the test result variables from three classes, say Class I,

Class II and Class III. These three variables can be represented as conditional random

variable on variableX. Suppose the observation value isx, which is a particular value

of the random variableX. Assume that the observer’s decision is made with reference

to the values of two thresholds, denotedr1 andr2 (r1 ≤ r2). The observer uses the two

thresholds to partition X into three intervals.

If r1 < r2, the observer’s decision rule is as follows:


i f x < r1, then d1,

i f r 1 < x < r2 then d2,

i f r 2 < x then d3.

The values of the thresholdsr1 andr2 are determined by the prior probabilities of the

classes and by the costs associated with each decision outcome as well. For instance, if

it is known that the second classl2 occurs more often than the other two classes, then

the width of the interval betweenr1 andr2 should be constructed so as to encompass a

significant portion of theX2 distribution. One assumption is that the observer will guess
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wheneverx coincides with the value of one of the two thresholds. This guessing will

occur only whenX is discrete, which can be summarized in Table 3.1.

Table 3.1: Decision probabilities

Decision probability

Condition P(d1) P(d2) P(d3)

x = r1 < r2 p11 p12 0

r1 < r2 = x 0 p22 p23

x = r1 = r2 p31 p32 p33

The decision probabilities can be summarized in Table 3.2. The sum of the decision

probabilities is equal to one across each row. We notice thatwhen x = r1 < r2 ,

P(d3) = 0. That is becauser1 is associated with both the decision alternativesd1 andd2.

Similarly, whenr1 < r2 = x, P(d1) = 0 becauser2 is associated withd2 andd3.

Table 3.2: Probability table

Decision

Class d1 d2 d3

l1 P(d1|l1) P(d2|l1) P(d3|l1)

l2 P(d1|l2) P(d2|l2) P(d3|l2)

l3 P(d1|l3) P(d2|l3) P(d3|l3)

In Table 3.2, each entry in the table specifies the probability that a particular decision

is made given the presence of a particular class. The table has six degrees of freedom

and the sum of all the probabilities across each row is equal to one. The decision rule
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is based uponr1 andr2. Therefore, the probabilities that a particular decision is made

given the presence of a particular class can also be represented as

P(d1|l i1) = P(Xi1 < r1), (3.1)

P(d2|l i2) = P(r1 < Xi2 < r2), (3.2)

P(d3|l i3) = P(r2 < Xi3), (3.3)

where{i1, i2, i3} is a permutation of{1, 2, 3}.

The surface generated by these equations, conveyed as the two criteria vary over the

domain ofX, is called thei1i2i3-ROC surface. In total, there are six ROC surfaces. All

the six ROC surfaces are associated with the three decisionsd1, d2 andd3 paired with

the three classesl1, l2 andl3, respectively.

If X is discrete, the probabilities of decisions conditional ona particular class will

be associated with those in Table 3.1, described as follows:

P(d1|l i1) =



P(Xi1 < r1) + p11P(Xi1 = r1); r1 < r2

P(Xi1 < r1) + p31P(Xi1 = r1); r1 = r2

, (3.4)

P(d2|l i2) =



P(r1 < Xi2 < r2) + p12P(Xi2 = r1) + p22P(Xi2 = r2); r1 < r2

p32P(Xi2 = r1); r1 = r2

, (3.5)

P(d3|l i3) =



P(r2 < Xi3) + p23P(Xi3 = r2); r1 < r2

P(r2 < Xi3) + p33P(Xi3 = r1); r1 = r2

. (3.6)
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3.1.2 Volume under the ROC surface

The volume under each ROC surface(VUS) is related to the distinctions of the three

classes. IfX1, X2, andX3 are identically distributed, then equations 3.1− 3.3 and equa-

tions 3.4− 3.6 indicate that

P(d1|l i1) + P(d1|l i2) + P(d1|l i3) = 1.

A fundamental result is that the volume under thei1i2i3 ROC surface will be a sum of

probabilities as follows:

VUS = P(Xi1 > Xi2 > Xi3) +
1
2

P(Xi1 > Xi2 = Xi3) +
1
2

P(Xi1 = Xi2 > Xi3) +
1
6

P(Xi1 = Xi2 = Xi3).

If X is continuous, then the last three components on the right-hand side are all zero.

That is, VUS can be expressed as

VUS = P(Xi1 > Xi2 > Xi3). (3.7)

The VUS accounts for six orderings ofX1, X2, andX3 when considering all the per-

mutations. The six orderings are mutually exclusive and exhaustive. Hence, it follows

that the sum of the six VUSs will be equal to one. That is,

∑

i1i2i3

VUSi1i2i3 = 1.

The ROC surfaces show how well the observer can discriminatebetween all the

three classes and also show how well the observer can discriminate between each pair

of the three classes.
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The ROC surface and VUS are two measures which are extensionsof the two-class

ROC curve and AUC. Now we focus on the relationship between VUS and AUC. Tradi-

tionally, the ROC curve is a plot of the FPF versus the TPF. Recall that one fundamental

result of the theory of signal detectability provided by Bamber stated that the area under

the 12-, 13-, 23-ROC curve could be written as

AUC = P(Xii > Xi2) +
1
2

P(Xi1 = Xi2),

where{i1, i2} is (1, 2) or (1, 3) or (2, 3).

As discussed, AUC is related to a particular ordering ofX1 and X2. If X is con-

tinuous, then the second component on the right-hand side iszero. AUC is equal to

the probabiityP(Xi1 > Xi2). There are three ways thatX1, X2, andX3 can be ordered

such thatXi1 > Xi2 in the ordering. EitherXi1 > Xi2 > Xi3, or Xi1 > Xi3 > Xi2, or

Xi3 > Xi1 > Xi2. Therefore,

AUC = P(Xii > Xi2) = P(Xi1 > Xi2 > Xi3) + P(Xi1 > Xi3 > Xi2) + P(Xi3 > Xi1 > Xi2).

It is equal to say that

AUCi1i2 = VUSi1i2i3 + VUSi1i3i2 + VUSi3i1i2.

In this case, AUC can be determined from the volumes under different ROC surfaces

because of their relationship. Each area under thei1i2 ROC curve can be represented by

a sum of VUSs with a special ordering. Thus, there exists a linear relationship between
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them which can be written as


A12

A13

A21

A23

A31

A32



=



1 1 0 0 1 0

1 1 1 0 0 0

0 0 1 1 0 1

1 0 1 1 0 0

0 0 0 1 1 1

0 1 0 0 1 1





VUS123

VUS132

VUS213

VUS231

VUS312

VUS321



.

However, generally, VUS cannot be determined from AUC. Notice that the 6×6 matrix

on the right side has a determinant of 0. That is, this matrix is singular and has no

inverse matrix. Therefore, this linear equation cannot be inverted to express the VUS in

terms of AUC.

VUS is equivalent to the probability of correctly classifying the three classes. We

know that the probability can be calculated by the integral form of the density function

in the continuous case. Here we use integration to express the VUS. The probabilities

that a particular decision is made given the presence of a particular class are based upon

the two criteriar1 and r2. When the two criteriar1 andr2 vary over the domain, the

volume under thei1i2i3 ROC surface should be

VUS =
∫ +∞

−∞

∫ r2

−∞
p(d1|l i1)|J|dr1dr2,

where

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣

∂p(d2|l i2)
∂r1

∂p(d2|l i2)
∂r2

∂p(d3|l i3)
∂r1

∂p(d3|l i3)
∂r2

∣∣∣∣∣∣∣∣∣∣∣∣
,
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and (i1, i2, i3) is a permutation of (1,2,3).

The probabilities that a particular decision is made given the presence of a particular

class can also be expressed by the integral form of the corresponding density function

as follows:

p(d1|l i1) =
∫ r1

−∞
f (x|l i1)dx,

p(d2|l i2) =
∫ r2

r1

f (x|l i2)dx,

p(d3|l i3) =
∫ ∞

r2

f (x|l i3)dx,

where f is the probability density function for the continuous case. Then |J| can be

written as

|J| =

∣∣∣∣∣∣∣∣∣∣∣

− f (r1|l i2) f (r2|l i2)

0 − f (r2|l i3)

∣∣∣∣∣∣∣∣∣∣∣
= f (r1|l2) f (r2|l3).

Therefore, VUS can be expressed by integral form as

VUS =
∫ +∞

−∞

∫ r2

−∞

∫ r1

−∞
f (x|l i1) f (r1|l i2) f (r2|l i3)dxdr1dr2 ,

where−∞ < x ≤ r1 ≤ r2 < ∞.

In the previous chapter we applied the binormal distribution model to the ROC

curves which plays a significant role in ROC analysis. In the three-class ROC analysis,

we also apply the normal distribution model to explore its properties. Recall that AUC

under the binormal distribution assumption has a form of

AUC = Φ(
a1√

1+ a2
2

),
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wherea1 anda2 are defined as before.

Similarly, we assume the normal distribution for the three-class case. Here for sim-

plicity, we only consider the case under the 123-ROC surfacein which the VUS is the

probabilityP(X1 > X2 > X3). The other five VUSs will have similar forms. Suppose

X1 ∼ N(µ1, σ
2
1), X2 ∼ N(µ2, σ

2
2), andX3 ∼ N(µ3, σ

2
3). X1,X2, and X3 are mutually

independent. Then,

VUS = P(X1 > X2 > X3) =
∫ ∫ ∫

x1>x2>x3

f1(x1) f2(x2) f3(x3)dx1dx2dx3

=

∫ ∞

−∞
dx3

∫ ∞

x3

dx2

∫ ∞

x2

f1(x1) f2(x2) f3(x3)dx1

=

∫ ∞

−∞
dx3

∫ ∞

x3

f2(x2) f3(x3)[1 − F1(x2)]dx2

=

∫ ∞

−∞
dx2

∫ x2

−∞
f2(x2) f3(x3)[1 − F1(x2)]dx3

=

∫ ∞

−∞
F3(x2)[1 − F1(x2)] f2(x2)dx2

=

∫ ∞

−∞
F3(y)S1(y) f2(y)dy.

Now we write the density function ofX2, f2(x2), as the deviation of the probability

functionF2. Thus,

VUS = P(X1 > X2 > X3) =
∫ ∞

−∞
F3(y)S1(y) f2(y)dy

=

∫ ∞

−∞
F3(y)S1(y)[F2(y)]′dy

=

∫ ∞

−∞
Φ(

y− µ3

σ3
)Φ(
−(y− µ1)
σ1

)ϕ(
y− µ2

σ2
) · 1
σ2

dy.

Let z= y− µ2/σ2, theny = σ2z+ µ2. Then,

VUS = P(X1 > X2 > X3) =
∫ ∞

−∞
Φ(
σ2z+ µ2 − µ3

σ3
)Φ(
−(σ2z+ µ2 − µ1)

σ1
)ϕ(
σ2z+ µ2 − µ2

σ2
)dz

=

∫ ∞

−∞
Φ(
σ2

σ3
z+
µ2 − µ3

σ3
)Φ(−

σ2

σ1
z+
µ1 − µ2

σ1
)ϕ(z)dz.
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Let a1 =
σ2

σ3
, a2 =

µ2 − µ3

σ3
, a3 = −

σ2

σ1
, a4 =

µ1 − µ2

σ1
, then the VUS can be written as

VUS =
∫ ∞

−∞
Φ(a1z+ a2)Φ(a3z+ a4)ϕ(z)dz .

We will further discuss and examine the multivariate normaldistribution assumption in

the next section.

In two-class ROC analysis, a useless test is one that produces an identical distribu-

tion for X1 andX2 and has an AUC value equal to 1/2. Most tests will have a AUC value

greater than 1/2. The lower bound for AUC is 1/2 which is the probability that a contin-

uous random variable is greater than an identically distributed random variable. For the

three-class ROC analysis, the probability of the three continuous identically distributed

random variables, ordered in a special ordering, can also becalculated. We now assume

thatX1,X2 andX3 are three identically-distributed random variables. The volume under

the ROC surface corresponds to the probability that

VUS = P(X1 > X2 > X3) =
∫ ∫

x1>x2>x3

f (x1) f (x2) f (x3)dx1dx2dx3

=

∫ ∞

−∞

∫ ∞

x3

∫ ∞

x2

f (x1) f (x2) f (x3)dx1dx2dx3

=

∫ ∞

−∞

∫ ∞

x3

f (x3) f (x2)[1 − F(x2)]dx2

=

∫ ∞

−∞
f (x3)

1
2

[1 − F(x3)]
2dx3

= −
1
2

∫ ∞

−∞
[1 − F(x3)]

2d[1 − F(x3)]

= −1
2
· 1

3
[1 − F(x2)]

3|∞−∞ =
1
6
.

In two-category classification, rejecting the null hypothesis that AUC is equal to

1/2 would imply that the test is able to differentiate between the two classes with a
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probability higher than that of a random guess. For a three-category classification, we

require the test to have at least some ability to differentiate three categories instead of

only two categories. If we reject the null hypothesis that VUS is equal to 1/6, we can

only argue that the test is not the one that completely guesses the three classes. In

fact, the test with a VUS greater than 1/6 might be able to differentially pick out one

class but completely guess the other two classes. In that case, the test is still useless

for a three-category classification and cannot be recommended for use. For any three-

category classifier, it has several pairwise AUCs. We shouldscreen out those tests with

any of these pairwise AUC values being too close to 1/2. The lower bound of VUS in

three-category ROC analysis should be jointly considered with the lower bound of AUC

in pairwise two-category ROC analysis.

3.1.3 Estimation of the volume under the ROC surface

AUC can be predicted by the extensively-studied propertiesof the Mann-Whitney statis-

tic (or U-statistic). The relationship between AUC and thisstatistic enables us to es-

timate the AUC value and its properties without distribution and decision variable as-

sumptions. In this section, we discuss the estimation method for three-class ROC anal-

ysis.

Consider that each individual underwent the examination and the test values are

recorded. The test resultsX1,i (i = 1, · · · , n1) are i.i.d. with distributionG1; the test

resultsX2, j ( j = 1, · · · , n2) are i.i.d. with distributionsG2; and the test resultsX3,k
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(k = 1, · · · , n3) are i.i.d. with distributionsG3. G1,G2 andG3 are continuous probability

distributions onR. As defined,X1,X2 andX3 are independent to each other as they are

obtained from different subjects.

VUS is used to summarize the overall accuracy of the test (Mossman (1999)). A

summary index about the distinguishing and discriminatoryperformance of the test for

the three classes is generated using this approach. Here VUSis mathematically equiv-

alent to the probabilityP(X1 > X2 > X3). Similar to the unbiased nonparametric esti-

mator of AUC, one nonparametric estimator of VUS is suggested with a three-sample

U-statistic:

V̂US = n−1
1 n−1

2 n−1
3

n1∑

i1=1

n2∑

i2=1

n3∑

i3=1

I {X1i1 > X2i2 > X3i3}. (3.8)

whereI is the indicator function.

Inference for AUC is based upon U-statistic which we have already discussed. Ex-

tending to the three-class problem, the developed U-statistic methodology is still feasi-

ble. The variance for the estimated VUS will be discussed as aM-category classification

case in the next section.
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3.2 Sorting multiple classes in multiple-category classi-

fication

3.2.1 Hypervolume under the manifold

One theoretical extension of AUC is VUS for three-category classification. However,

the dilemma of identifying relative order of tests among groups for M-category classi-

fications is more complicated due to the lack of inferential procedures.Hypervolume

under the manifold(HUM) has been proposed as an extension of VUS for multiple class

diagnosis (Scurfield, 1998). In the case of multiple classes(more than three classes), an

ROC hypersurface or an ROC manifold could be constructed by using M − 1 ordered

decision thresholdsr i(i = 1, 2, ...M − 1) to define a decision rule, similar to those in the

three-class case given in the previous chapter.

Suppose the observer makes a decision usingM − 1 criteria, denotedr1, r2, ..., rM−1,

wherer1 ≤ r2 ≤ ... ≤ rM−1. Let the observer discriminate amongM classes (denoted

{l i : i = 1, ...,M}) by M decisions (denoted{di : i = 1, ...M}) as follows:



i f x < r1, then d1,

i f r i−1 < x < r i , 2 ≤ i ≤ M − 1, then di ,

i f r M−1 < x then dM.

HUM for multiple-category classification can be determinedas an extension of VUS
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and can be considered as a summary measure of the accuracy. For the continuous case,

the hypervolume under thei1i2...iM ROC-hypersuface can be expressed as

Vi1i2...iM =

∫ +∞

−∞

∫ rM−1

−∞

∫ rM−2

−∞
...

∫ r2

−∞
p(d1|l i1)|J|dr1dr2...drM−1,

where

|J| =
∂[p(d2|l i2), p(d3|l i3), ..., p(dM |l iM )]

∂(r1, r2, ...rM−1)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂p(d2|l i2)
∂r1

∂p(d2|l i2)
∂r2

. . .
∂p(d2|l i2)
∂rM−1

∂p(d3|l i3)
∂r1

∂p(d3|l i3)
∂r2

. . .
∂p(d3|l i3)
∂rM−1

...
...

...
...

∂p(dM |l iM )
∂r1

∂p(dM |l iM )
∂r2

. . .
∂p(dM |l iM )
∂rM−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where (i1, i2, ..., iM) is a permutation of (1, 2, ...M) and

p(d1|l i1) =
∫ r1

−∞
f (x|l i1)dx,

p(d j |l i j ) =
∫ r j

r j−1

f (x|l i j )dx , 2 ≤ j ≤ M − 1,

p(dM |l iM ) =
∫ ∞

rM−1

f (x|l iM )dx,

and wheref is the probability density function for the continuous case. Equally, we

can use equationsti = gi−1(t1, ..., ti−1), wherei = 2, ...M, to denote the probability that a

subject from classi is correctly classified. Then HUM can be expressed in anotherform

as

HUM =
∫ 1

0

∫ g1(t1)

0
· · ·
∫ gM−2(t1,...,tM−2)

0
gM−1(t1, ..., tM−1)dtM−1 · · ·dt2dt1.

As an extension of VUS, HUM is equivalent to the probability that theM categories

are correctly classified which isP(Xi1 > Xi2 · · · > XiM ). In the M-category classification,
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there will beM! possible HUMs under theM! manifolds and the sum of all the HUMs

which are probabilities of correct classification will be equal to one.

3.2.2 Bootstrap approach for the variability

A non-parametric estimate based upon the U-statistic is

ĤUM =
1

n1n2...nM

n1∑

i1=1

n2∑

i2=1

...

nM∑

iM=1

I {X1i1 > X2i2 > · · ·XMiM }, (3.9)

where{i1, i2, ...iM} is a permutation of{1, 2, ...M} and I is the indicator function. The

estimator of HUM can be computed as anM-sample U-statistic, similar to the non-

parametric estimator of VUS, after the order of theM classes are determined. The

nonparametric estimation of HUM is related to the calculation of the probability that

more than three categories are correctly ordered by the test. Among all the possibleM!

HUMs, the largest one is a sensible measure of the accuracy ofthe test. For a general

M-category problem, we need to evaluateM! HUM measures to identify the largest

HUM. In this thesis, we will focus on the largest HUM among allthe possible ones.

The U-statistic approach for the calculation of the variance of the non-parametric

estimator of AUC has been proposed. However, as the sample size increases, the advan-

tage of the U-statistic methodology is heavily reduced and the methodology becomes

inappropriate. Given the computational burden of the U-statistic approach, particularly

as the dimension of the problem increases, bootstrap estimation of the standard error is

suggested. The bootstrap methodology is used for inferencein this thesis. Nakas and
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Yiannoutsos (2004) pointed out that the bootstrap approachfor the calculation of the

nonparametric estimator of VUS and HUM has been shown to be essentially equivalent

to the U-statistic. For each of the bootstrap samples, denote the estimators obtained

from the estimation formula by{ĤUMn : n = 1, 2, ...N} whereN is the number of sam-

ples. Li and Fine (2008) proposed a method to calculate the bootstrap standard error for

ĤUM which is

ŝeN(HUM) =

√√
1

N − 1

N∑

n=1

(ĤUMn − ĤUM)2. (3.10)

A 100(1− α)% confidence interval for HUM is

ĤUM ± zα/2ŝeN(HUM), (3.11)

wherezα/2 is the upperα/2 quantile for the standard normal distribution.

The bootstrap methodology is used for inference in this thesis which could over-

come the computational burden when the number of the categories is large. When the

number of the classes increases, the calculation of the variance based upon the U-theory

will become complicated and difficult to evaluate. However, the bootstrap methodol-

ogy for calculating the standard error of the nonparametricestimator becomes a viable

choice.
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3.3 Multivariate normal distribution assumption

For a general M-category classification problem, we need to evaluateM! such HUM

measures to identify the largest HUM. To avoid extensive calculations, we suggest sim-

ple methods in which we only need to report summary statistics for each category at

an orderO(M) instead ofO(M!) to determine the right order. We propose to sort the

multiple categories by using simple summary statistics under the normal distribution

assumption.

For the two-category problem,AUC = P(X1 > X2) under the binormal distribution

assumption could be expressed asΦ(
µ1 − µ2√
σ2

1 + σ
2
2

), whereΦ(·) is the normal distribution

function. If we assume that the test results are normally distributed for the multiple-

category classification, we will have the following resultsbased upon the comparison

of means.

Theorem 3.3.1.Assume that the test result variable for the M categories areX1,X2, ...XM

and they are mutually independent. Let the test result for the kth category Xk ∼ N(µk, σ
2
k)

for k = 1, 2, · · · ,M. If µ1 > µ2 > · · · > µM, then the greatest HUM corresponds to the

probability P(X1 > X2 > · · · > XM).

Proof of Theorem 3.3.1.It is easy to show that the theorem holds forM = 2. For

simplicity of presentation, we prove forM = 3 by induction in this section. We need to

show thatP(X1 > X2 > X3) ≥ P(Xi1 > Xi2 > Xi3) for any other permutations (i1, i2, i3) of

(1, 2, 3).
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Let S1 = X2 − X1 andS2 = X3 − X2. The distribution assumptions given in the

theorem implies that (δ1S1, δ2S2) is bivariate normal with mean (δ1(µ2−µ1), δ2(µ3−µ2))

and covariance



σ2
1 + σ

2
2 −δ1δ2σ2

2

−δ1δ2σ2
2 σ

2
2 + σ

2
3


, whereδi = ±1. For differentδi values, the

absolute value of the correlation remains the same|ρ| =
σ2

2√
(σ2

1 + σ
2
2)(σ

2
2 + σ

2
3)

.

We noticeP(X1 > X2 > X3) = P(X2 − X1 < 0,X3 − X2 < 0) = P(S1 < 0,S2 < 0).

For the other five VUSs, we have

P(X1 > X3 > X2) ≤ P(X2 − X1 < 0,−(X3 − X2) < 0) = P(S1 < 0,−S2 < 0),

P(X2 > X1 > X3) ≤ P(−(X2 − X1) < 0,X3 − X2 < 0) = P(−S1 < 0,S2 < 0),

P(X2 > X3 > X1) ≤ P(−(X2 − X1) < 0,X3 − X2 < 0) = P(−S1 < 0,S2 < 0),

P(X3 > X1 > X2) ≤ P(X2 − X1 < 0,−(X3 − X2) < 0) = P(S1 < 0,−S2 < 0),

P(X3 > X2 > X1) = P(−(X2 − X1) < 0,−(X3 − X2) < 0) = P(−S1 < 0,−S2 < 0).

All of these five versions are bounded byP(δ1S1 < 0, δ2S2 < 0) where at least one

δi = −1.

Write P(δ1S1 < 0, δ2S2 < 0) asP(T1 < 0,T2 < 0) = F(t1, t2), whereF is the distri-

bution function. By the well-known properties of the distribution function of bivariate

normal (Tong (1990)), we have

F(t1, t2) = P[
√

1− ρZi ≤ −
√
ρZ0 +

ti − µi

σi
, i = 1, 2]

= P[Zi ≤
−√ρZ0 + ai√

1− ρ
, i = 1, 2],
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where|ρ| < 1, ai = (ti −µi)/σi(i = 1, 2), Z1, Z2 andZ0 are independentN(0, 1) variables,

andZ1 andZ2 are independentN(0, 1) variables under the conditionZ0 = z for all z.

Therefore, by conditioning onZ0 = z, then unconditioning, we have

F(t1, t2) = P[Z1 ≤
−
√
|ρ|Z0 + a1√
1− |ρ|

,Z2 ≤
√
|ρ|Z0 + a2√

1− |ρ|
]

=

∫ ∞

−∞
Φ(

√
|ρ|z+ a1√
1− |ρ|

)Φ(
−
√
|ρ|z+ a2√
1− |ρ|

)φ(z)dz .

Therefore, it becomes

P(δ1S1 < 0, δ2S2 < 0) =
∫ ∞

−∞
Φ(

√
|ρ|z+ δ1a1√

1− |ρ|
)Φ(
−
√
|ρ|z+ δ2a2√
1− |ρ|

)φ(z)dz , (3.12)

where at least oneδi = −1 and

a1 =
µ1 − µ2

var(S1)
, a2 =

µ2 − µ3

var(S2)
.

By induction, we can see easily that the integrand in (3.12) is maximized whenδ1 =

δ2 = 1 for anyz. This completes the proof. �

The theorem is thus very helpful for us to find out the order of multiple classes

quickly. In practice, we usually compute the sample mean ˆµ for each class as a simple

descriptive statistic at the first step. Since sample mean isstrongly consistent to the

population mean, the order from sample mean can be used to prescribe the order of the

M classes in the calculation of HUM.

We further notice that the results are not just limited to thesymmetrical normal dis-

tribution. In fact, if we replace the normal distribution with certain skewed distributions

such as log-normal, exponential or extreme-value distributions, the same conclusion can
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be drawn. The proof for exponential distributions can be found in Chandra and Owen

(1975). Since these location-scale families are not as common as the normal distribu-

tion in diagnostic medicine, we do not elaborate more on this. Interested researchers

may conduct a thorough examination on other familiar statistical distributions. More-

over for most continuous random variables we can consider suitable transformations to

make the transformed data appear close to being normally distributed. Therefore we

expect the application of this theorem to be broad in practice.

3.4 Simulation studies

We conducted a simulation study to examine the performance of our proposed methods

for sorting the unknown orders of multiple categories. We considered two data gener-

ation scenarios. In Case I, we generatedX1, X2 andX3 from normal distributions with

descending means of 4, 2, and 0; and variances of 1, 1 and 2, respectively; in Case II,

we generatedX1 andX3 from the same normal distributions as in Case I but construct

X2 from a positive aging Weibull distribution with shape parametera = 1/2 and scale

parameterb = 1. The mean ofX2 is b× Γ(1 + 1/a) = 2. All assumptions of Theorem

3.3.1 hold for Case I. In Case II, the distribution assumption is violated while the means

of the three classes are preserved in the same order. We conducted 1000 simulations

and sample sizes were fixed at 30 for each category.

In each simulation, we estimated the sample means ˆµ from the generated samples.
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We also estimated the six VUS values extensively by using thenonparametric approach

based upon U-statistic theory with six different permutations of three classes, then com-

pared the true order to the order estimated from the sample meansµ̂. The computation

results showed that in Case I, using sample means ˆµ, we could determine the order of

the three classes in all 1000 simulations. In Case II, the sample means correctly inter-

preted the relationship among three classes and yielded correct VUS values for 91.7%

of the simulations.

3.5 Applications

3.5.1 Leukemia classification

We analyzed the data from leukemia patients used in Golub et al. (1999). The data

came from a study of gene expression of two types of acute leukemias, acute lym-

phoblastic leukemia (ALL) and acute myeloid leukemia (AML). Two main subclasses

are known, those arising from T-cells and those arising fromB-cells. The training set

contains 8 ALL T-cell samples, 19 ALL B-cell samples and 11 AML samples. Each

sample contains 3916 gene expression values obtained from Affymetrix high-density

oligonucleotide microarrays. The dataset is publicly available at

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

We considered evaluating the accuracy of the biomarkers fortheir ability to differ-
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entiate between the three classes. We computed VUS for all 3916 genes and evaluated

the six possible orders of VUSs for each gene and the corresponding bootstrap standard

error. Here, we only listed the top 20 genes with the highest VUSs among all the VUSs.

We used the 500-resampling bootstrap methodology to calculate the standard error. At

the same time we calculated the sample means to determine thecorrect order of the

three classes for each gene.

As the number of categories is only three, we were able to evaluate the six possible

orders and directly chose the highest VUS. There were 168 genes with VUS greater than

1/2. From the results of the largest VUS values from the exhaustive investigation, 96.4%

were correctly identified for the ordering of classes by using means. This resulting

subsample of genes was the most vital genes since it could correctly classify the three

types of leukemia without much uncertainty.

The results for the 20 genes with the highest VUS values and their associated prob-

ability interpretations are summarized in Table 3.3. The means for three classes were

also conveyed. In this example, the relative orders of the three classes were quite vari-

able for different genes. The top 1 gene with the highest VUS has a value of 0.832.

This indicates that this gene can completely differentiate three subjects each randomly

sampled from one of the three classes more than 80% of the timein a long run of re-

peated experiments. This gene systematically assigns highvalues for AML, moderate

values for ALL-t and low values for All-b. The gene with the second highest VUS is

also able to differentiate over 80% of the time, achieved by a gene that systematically
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gives high values for All-t, moderate values for All-b and low values for AML. The

relative magnitudes as in the definition of VUS are all precisely characterized by the

orders of means.

For purposes of comparison with other accuracy criteria, wealso included correct

classification rate (CCR) values (Li and Fine (2008)) for thetop 10 genes in Table 3.4.

The CCR can be calculated by

ĈCR=
Number o f correct classi f ication

Total number o f sub jects
.

There appeares to be a relatively moderate-sized correlation between the CCR and

HUM, compared to the low correlation between VUS and CCR in the example in Li

and Fine (2008). The gene with the highest VUS value has the best overall CCR of

0.842. This gene classifies those in classes 1 and 3 correctlymore than ninety percent

of the time, and mislabled only half of those in class 2. Note that the second highest

CCR value is 0.815, which is achieved by four genes corresponding to VUS rankings

13, 29, 31 and 37 (not shown).

For model construction, we applied a forward selection procedure with these twenty

genes, starting with gene 1 and sequentially adding genes which maximize the VUS

based on the joint model. That is, the combination of the firsttwo genes which max-

imizes the VUS can be considered as a ‘new’ gene and sequentially add new genes

which maximize the VUS. Interestingly, we only need to include the gene with the 5th

highest VUS value to obtain 100% CCR and VUS. Note that because gene 1 also has

the highest CCR, using CCR as the loss function in the forwardselection procedure
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would result in the same model. Excluding gene 1 and gene 5 andapplying the forward

selection procedure based upon VUS to the remaining eighteen genes, we were able to

attain the best combination of two genes with those genes having the 2nd and 6th high-

est VUS values. The VUS and CCR for this model are 0.98 and 0.89, respectively, with

both diagnostic accuracy measures slightly lower than the model based upon genes 1

and 5. These results suggest that the optimum VUS derived with only two gene expres-

sion levels achieves excellent performance in terms of bothVUS and CCR. Because of

correlation between VUS and CCR across genes, using CCR-based selection methods

would yield similar results when applied to this dataset.

There has been considerable prior work pertaining to classification on this dataset.

Golub et al. (1999) used an arbitrary number of 50 genes with self-organizing maps

in combination with a weighted voting scheme to obtain comparable performance to

that of our model. Furey et al. (2000) and Guyon et al. (2002) applied support vector

machine techniques with roughly 10 genes to achieve the sameaccuracy. Albrechet

et al. (2003) employed the method of threshold circuits with9 genes. Li and Yang

(2005) and Albrecht (2007) reduced the number of expressionlevels to 3 by using rigid

regression and stochastic local search, respectively. Ourfindings appear to represent a

nontrivial improvement, as it is not entirely obvious that two predictors could be used

to perfectly discriminate three categories.
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3.5.2 Proteomic study for liver cancer

Another example is based upon a recent mass spectrometry dataset for the detection

of Glycan biomarkers for liver cancer (Ressome et al. (2008)). The investigators in-

cluded 203 participants from Cairo, Egypt; 73 hepatocellular carcinoma (denoted by

HC) cases; 52 patients with chronic liver disease (denoted by QC); and 78 healthy indi-

viduals (denoted by NC). The spectra were generated by matrix-assisted laser desorp-

tion/ionization time-of-flight (MALDI-TOF) mass analyzer (Applied Biosystems Inc.,

Frammingham, MA). Each spectrum consisted of approximately 121,000 m/z values

with the corresponding intensities in the mass range of 1,500-5,500 Da. A Supplemen-

tary dataset can be found at the author’s public website

http://microarray.georgetown.edu/ressomlab/index downloads.html

which contains a total of 484 peaks after extensive preprocessing of the raw data (Res-

som et al. (2007)).

As in the previous example, we computed VUSs exhaustively for six versions of

probability definitions and identified the largest value to be the correct VUS. We used

sample means to decide the order of the three classes for eachpeak and compared with

the true order.

Among all the calculated volumes under the 321-ROC surface,the gene 183 has

the largest value with 0.647 which indicates that this gene can completely differentiate

three subjects each randomly sampled from one of the three classes, nearly 65% of the
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time among a long run of repeated experiments. This gene systematically assigns high

values for QT, moderate values for NC and low values for HC. The second highest VUS

can differentiate nearly 63% of the time, achieved by gene 209. This gene also exhibits

a systematical classification which gives high values for QT, moderate values for NC

and low values for HC. It is also observed that all the 20 peakswith the highest volume

values precisely classify these three groups as in the same order of the corresponding

means of the three groups.

The results for 20 peaks with the highest volume values underthe ROC surfaces are

shown in Table 3.5. Among all the six volumes for each gene, wenoticed the volumes

under the 321-ROC surface had more values that were more than0.5. We also applied

the bootstrap methodology as described before to calculatethe corresponding standard

error with 500 resamples.

Different peaks seemed to maintain the same ordering relationship, except for the

17th peak. For most peaks, healthy subjects (NC) tended to have an intermediate value.

Large values tended to lead to chronic liver disease (QT) while low values tended to

lead to hepatocellular carcinoma (HC). The 17th peak behaved differently from other

peaks where HC patients tended to have the largest peak values relative to the other

two groups. Identification of such order information may bring more insights for mass

spectrometry studies. In all these 20 cases, the orders in VUS definitions were correctly

detected from the orders of means.

In Table 3.6, the corresponding correct rates for the samplemeans are also reported.
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The VUSs of 298 peaks are greater than 0.25 by the sample meanswith 75.8% correctly

identified. The VUSs of 240 are greater than 0.30 by the samplemeans with 82.2%

correctly identified. The VUSs of 110 peaks are greater than 0.4, with 98.2% of them

are correctly identified by the sample means. We also noticedthat the sample size for

each class was not large.

Figure 3.1: ROC surface for the peak with the largest VUS. Thethree coordinates are
the correct classification probabilities for the three classes

The ROC surface for the peak with the largest VUS is plotted inFigure 3.1. One
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can choose the appropriate cutoff valuesr1 and r2 for a particular decision to satisfy

required correct classification probabilities by locatingthe corresponding values on this

operating surface. The distributions of this peak among three classes are shown in

Figure 3.2. The overall shapes of the three empirical density curves are quite close to

the normal distribution and justified the assumption in Theorem 3.3.1.

Figure 3.2: The distribution of the peak with the largest VUSamong the three groups
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3.5.3 Immunohistological data

Another recently studied immunohistological arthritis dataset came from a biomedi-

cal company in Germany. All the values in this dataset were positive staining cells

which were vessels in the case of fWV. They were measured per 400x microscopic field

(0.159mmz). Our interest lies in seven components which areT cells (denoted CD3),

B cells (denoted CD20), Plasma cells (denoted CD 38), Mph’s subintimal (denoted

CD68), Ki67, Total Mononuclear influence cells (denoted TMI), and vWF. The seven

components were scored based upon the grading of the immunohistological severity of

arthritis. The primary classification outcome involves seven different categories which

are ‘Normal’, ‘Orth.A’, ‘OA’, ‘Early arthritis’, ‘RA’, ‘SeA (disease)’, and ‘SeA-TKA’,

respectively. We useX1,X2,X3,X4,X5,X6, and X7 to denote these seven categories.

We estimated all the 7! possible HUMs for each component. Among all the possible

HUMs, the largest HUM for each component and the corresponding order are reported

in Table 3.7.

The largest HUM among all the components comes from the totalmononuclear

influence cell which has a value of 0.0444. The correspondingprobability of the correct

ordering isP(X1 < X2 < X3 < X7 < X4 < X6 < X5). The smallest HUM among all the

components is from B cells with the value 0.0034, which has the orderP(X2 < X1 <

X7 < X3 < X6 < X4 < X5). To view the correct classification by their means, all the

means for the seven categories are also listed in Table 3.8.

The largest HUM value of 0.0444 is from the total mononuclearinfluence cell with
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the probabilityP(X1 < X2 < X3 < X7 < X4 < X6 < X5). The corresponding means of the

seven different categories are 10.58, 30.52, 42.34, 231.54, 309.50, 272.57, and 158.46,

respectively. That is,mean1 < mean2 < mean3 < mean7 < mean4 < mean6 < mean5.

This indicates that the classification in the total mononuclear influence cell has the

correct order based upon the comparison of means. The secondlargest HUM which

comes from the Ki67 component with the value 0.028 has the probability definition of

P(X2 < X1 < X3 < X5 < X4 < X7 < X6). But the corresponding means reveal a

different order of the means. The reason for this may be because ofthe existence of

some outliers or extreme observations which may influence the estimation of the means

and the distribution of the observations are not normally distributed. Weighted means

may be suggested for this case for the order correction instead of only considering the

sample means.
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Table 3.3: Top 20 gene expression levels ranked by VUS value for Leukemia data.µi

is the mean for the ith class(i=1,2,3). Classes 1,2 and 3 are ALL-b, ALL-t, and AML

respectively.

Rank VUS Definition µ1 µ2 µ3 s.e

1 0.832 P(X1 < X2 < X3) -30.684 560.375 7423.545 0.0654

2 0.822 P(X3 < X1 < X2) 857.790 2208.50 485.727 0.0732

3 0.788 P(X3 < X1 < X2) 666.737 2283.875 129.909 0.0632

4 0.782 P(X2 < X3 < X1) 2403.789 145.875 524.0 0.0723

5 0.770 P(X3 < X1 < X2) 205.684 3373.125 67.091 0.0831

6 0.763 P(X3 < X2 < X1) 1573.632 757.125 310.273 0.0735

7 0.735 P(X3 < X2 < X1) 4322.526 2772.625 702.364 0.0687

8 0.724 P(X1 < X2 < X3) 479.211 712.0 1439.636 0.0784

9 0.718 P(X1 < X3 < X2) -88.105 1030.875 63.545 0.0823

10 0.708 P(X1 < X3 < X2) 8.579 718.125 78.0 0.0764

11 0.705 P(X3 < X2 < X1) 4988.579 2371.0 1365.273 0.0784

12 0.704 P(X1 < X3 < X2) 380.684 1040.375 503.0 0.0803

13 0.698 P(X2 < X1 < X3) 747.895 138.75 1273.091 0.0769

14 0.697 P(X1 < X3 < X2) 108.579 806.5 361.636 0.0835

15 0.687 P(X1 < X2 < X3) 108.895 229.50 2520.364 0.0753

16 0.681 P(X2 < X3 < X1) 2477.789 662.875 1367.909 0.0768

17 0.680 P(X2 < X3 < X1) 790.684 183.125 487.455 0.0689

18 0.680 P(X3 < X2 < X1) 7974.789 2598.0 801.182 0.0843

19 0.676 P(X1 < X3 < X2) 567.947 2695.50 801.181 0.0785

20 0.670 P(X3 < X1 < X2) 3437.053 4726.875 1818.273 0.0798
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Table 3.4: Top 20 gene expression levels ranked by VUS value for Leukemia data. CCR

is the corresponding overall correct classification rate. CCR[i] is the correct classifica-

tion rate for the ith class(i=1,2,3). Classes 1,2 and 3 are ALL-b, ALL-t, and AML

respectively.

Rank VUS CCR CCR[1] CCR[2] CCR[3]

1 0.832 0.842 0.947 0.500 0.909

2 0.822 0.657 0.894 0.000 0.727

3 0.788 0.789 0.842 0.750 0.727

4 0.782 0.736 0.684 0.875 0.727

5 0.770 0.736 0.789 1.000 0.454

6 0.763 0.710 0.736 0.875 0.545

7 0.735 0.736 0.842 0.750 0.545

8 0.724 0.789 0.894 0.250 1.000

9 0.718 0.763 0.947 0.250 0.818

10 0.708 0.789 0.842 0.500 0.909
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Table 3.5: Top 20 peaks ranked by VUS value for liver cancer data. µi is the mean for

the ith class(i=1,2,3). Classes 1, 2, and 3 are HC, NC, and QT, respectively.

Rank VUS Definition µ1 µ2 µ3 s.e

1 0.647 P(X1 < X2 < X3) 896.611 1326.071 2732.444 0.0856

2 0.632 P(X1 < X2 < X3) 651.121 985.067 1372.388 0.0886

3 0.623 P(X1 < X2 < X3) 1452.321 2010.886 4829.766 0.0902

4 0.584 P(X1 < X2 < X3) 124.784 286.132 412.497 0.0846

5 0.563 P(X1 < X2 < X3) 481.267 697.342 988.530 0.0856

6 0.558 P(X1 < X2 < X3) 544.353 748.769 1122.159 0.0935

7 0.533 P(X1 < X2 < X3) 314.048 401.839 607.952 0.0852

8 0.529 P(X1 < X2 < X3) 150.320 366.533 553.001 0.0875

9 0.524 P(X1 < X2 < X3) 10552.81 21490.65 26878.11 0.0904

10 0.513 P(X1 < X2 < X3) 413.769 526.830 772.249 0.0875

11 0.509 P(X1 < X2 < X3) 1014.861 1245.426 1928.783 0.0895

12 0.504 P(X1 < X2 < X3) 785.593 854.669 1577.023 0.0934

13 0.503 P(X1 < X2 < X3) 229.566 285.739 428.804 0.0857

14 0.502 P(X1 < X2 < X3) 171.408 226.698 322.948 0.0894

15 0.501 P(X1 < X2 < X3) 170.734 281.202 364.334 0.0846

16 0.499 P(X1 < X2 < X3) 85.506 126.392 189.421 0.0923

17 0.498 P(X2 < X3 < X1) 567.211 198.593 227.376 0.0863

18 0.496 P(X1 < X2 < X3) 114.326 170.651 363.178 0.0895

19 0.495 P(X1 < X2 < X3) 660.858 949.397 1331.265 0.0935

20 0.491 P(X1 < X2 < X3) 333.676 425.174 741.058 0.0964
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Table 3.6: Correct identification by the sample means

VUS Correct Number Non-correct Number Total Number Correct Rate

≥ 0.25 298 95 393 75.8%

≥ 0.26 288 87 375 76.8%

≥ 0.27 269 76 345 77.9%

≥ 0.28 261 70 331 78.9%

≥ 0.29 251 63 314 79.9%

≥ 0.30 240 52 292 82.2%

≥ 0.40 110 2 112 98.2%

Table 3.7: HUMs for immunohistological data

Marker HUM Definition

CD3(T Cells) 0.0209 P(X2 < X1 < X3 < X7 < X4 < X5 < X6)

CD20(B Cells) 0.0034 P(X2 < X1 < X7 < X3 < X6 < X4 < X5)

CD38(Plasma Cells) 0.0191 P(X1 < X2 < X3 < X7 < X6 < X4 < X5)

CD68(Mph’s Subintimal) 0.0267 P(X1 < X2 < X3 < X5 < X6 < X7 < X4)

Ki67 0.028 P(X2 < X1 < X3 < X5 < X4 < X7 < X6)

TMI (Total Mononuclear influence cell) 0.0444 P(X1 < X2 < X3 < X7 < X4 < X6 < X5)

vWF 0.0072 P(X1 < X2 < X3 < X7 < X5 < X4 < X6)
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Table 3.8: Means of the seven categories in immunohistological data

Marker Mean1 Mean2 Mean3 Mean4 Mean5 Mean6 Mean7

CD3(T Cells) 3.04 8.13 11.10 47.46 91.20 106.47 27.17

CD20(B Cells) 0.30 5.14 3.55 20.67 39.02 28.83 7.59

CD38(Plasma Cells) 0.04 2.45 4.02 51.43 93.06 41.14 11.32

CD68(Mph’s Subintimal) 7.2 14.80 23.67 111.98 86.22 96.13 112.39

Ki67 1.23 1.99 4.89 21.04 31.82 64.21 25.50

Total Mononuclear infl cell 10.58 30.52 42.34 231.54 309.50 272.57 158.46

vWF 9.36 13.65 13.43 17.60 18.92 28.82 18.29
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Chapter 4

Combining Multiple Markers for

Multiple-category Classification

4.1 Introduction

ROC analysis has been the most recommended and effective way to evaluate the accu-

racy performance of diagnostic tests. Moreover, statistical approaches have been de-

veloped for assessing the accuracy of classifications. In practice, multiple factors will

influence the accuracy performance and various sources of information are available to

assist in predicting medical classification problems. For example, a single biomarker

will not be sufficient to assess an optimal result for prognosis or early detection for many

diseases. However, multiple biomarkers and various signs and distinctive symptoms of

the disease can help detect the disease. A combination of these multiple biomarkers
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can potentially detect the disease to a significant extent. Thus, combining multiple

biomarkers and factors is needed in order to predict an adequate outcome. So it follows

that great interest exists in developing methods for combining biomarkers, especially in

medical research.

Recently, methods have been developed for combining multiple biomarkers. Su

and Liu (1993) and Pepe and Thompson (2000) considered linear combinations to op-

timize measures of diagnostic accuracy. Optimal prognostic scores can be determined

through binary regressions (Pepe and McIntosh (2003)). Pepe an McIntosh (2003) pro-

posed screening rules based upon logical combinations of biomarker measurements.

For binary classification, Pepe and Thompson (2000) developed a method based upon

maximizing the AUC to combine biomarkers in genetic studies. Their method was

essentially adapted from themaximum rank correlation(MRC) estimation which was

widely practiced in econometrics. Li and Fine (2008) considered multinomial logis-

tic regression to address multiple-category outcomes. However, it is not clear if their

method yields the best combination to maximize VUS or HUM. Inthis thesis we target

maximizing the VUS directly. We will explore statistical methods that combine multi-

ple tests for multiple-category classification to optimizethe accuracy of the combined

biomarkers under the criteria of ROC measures.

Early discussion about the MRC estimation can be found in Han(1987) and Sher-

man (1993) where the authors studied the limiting distribution of the MRC estimator.

The implementation of the MRC estimation has been applied recently. In the recent
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decade the maximum rank correlation (MRC) estimator has been applied in the classi-

fication literature for two-class problems due to its close connection with AUC. Wang,

H. (2006) further suggested an iterative marginal algorithm which remarkably improved

the computation speed. However, none of the previous authors considered the situation

in which the number of decision categories exceeds two. We thus aim at developing ap-

propriate statistical procedures by extending the MRC estimators for high-dimensional

cases. Necessary asymptotic theories are provided to facilitate the ensuing inference.

4.2 Methods

4.2.1 Methods: extending MRC estimation

Generally, it is natural to expect a monotonic relationshipbetween a response variable

and a linear index. To explore the relation between them beyond the linear approxima-

tion, the continuous single index model can also be considered, which is a well-known

approach in multidimensional cases. This idea of thresholding on a single continuous

index for multiple-category classification includes many existing models, such as the

smooth transition threshold autoregressive (STAR) model of Chan and Tong and the

functional-coefficient autore- gressive (FAR) model of Chen and Tsay. To avoidthe di-

mensionality in multivariate estimations and the specification of the exact nature of the

monotonicity, Han (1987) firstly proposed the semiparametric monotonic linear index

model.
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Let (Y, X) be an observation from a distribution P on a setS ⊆ R
⊗

Rd, whereY

is a response variable andX is ad-vector of regressor variables. The monotonic linear

index model can be proposed as

Y = D ◦ F(XTβ0, ε), (4.1)

whereXTβ0 is a linear index withβ0 ∈ B ⊂ Rd, an unknownd-dimensional vector,

ε is a random disturbance,F is a strictly increasing function in each of its arguments,

andD is a nonconstant and increasing function. The model is semiparametric in that no

parametric assumptions are made about the distribution ofε or the functional form of

D ◦ F. Previously the sample space forY is only {1, 0}. In this thesis, we consider that

Y can take values from{1, 0,−1}.

Suppose we obtain a sample{(Yi j , Xi j ); i j = 1, · · · , n j, j = 1, 2, 3}, where j indexes

the three classes andi j indexes the observations in thejth class. The MRC estimator of

the coefficient parameterβ0 is obtained from

argmaxβ∈B
∑

i1,i2,i3

I {Yi1 > Yi2 > Yi3, X
T
i1β > XT

i2β > XT
i3β}, (4.2)

where I {·} stands for the indicator function. It has been shown that up to a constant

unrelated toβ, the objective function in (4.2) is proportional to VUS defined in Li and

Fine (2008),

V̂US = n−1
1 n−1

2 n−1
3

n1∑

i1=1

n2∑

i2=1

n3∑

i3=1

I {XT
i1β > XT

i2β > XT
i3β}.

We note that VUS of a diagnostic test can be interpreted as theprobability that the

marker can simultaneously classify three categories correctly. Therefore using the esti-
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matorβ0 obtained by maximizing the VUS to combine the markersX implies that the

resulting accuracy would be optimal for the three-categoryclassification.

Following Han (1987), we consider the MRC estimator in a moregeneral model

framework. LetM be a function onR2 and monotone for either argument when the

other argument is fixed. For the real numbersa1, ..., an, let Rn(ai , ak) denote the number

of a j ’s betweenai andak, i.e.

Rn(ai , ak) =
∑

j

I {ai > a j > ak}.

We propose to estimate the true parameterβ0 in (4.1) with

βn = argmaxβ∈B

∑

i

∑

k

M(Yi ,Yk)Rn(XT
i β, X

T
kβ), (4.3)

for an appropriate subsetB of Rd.

We now show that the estimator from (4.2) is a special case forthe general MRC

estimator from (4.3). Forl = −1, 0, 1, define

R(l)
n (XT

i β, X
T
kβ) =

∑

j

I {Yj = l)}I {XT
i β > XT

j β > XT
kβ}.

The maximand in (4.2) equals

∑

i

∑

j

∑

k

I {Yi > Yj > Yk, XT
i β > XT

j β > XT
kβ}

=
∑

i

∑

j

∑

k

I {Yi = 1}I {Yj = 0}I {Yk = −1}I {XT
i β > XT

j β > XT
kβ}

=
∑

i

∑

k

I {Yi = 1}I {Yk = −1}R(0)
n (XT

i β, X
T
j β),

which is the maximand in (4.3) with a special choice ofM.
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In the following we proceed to give the asymptotic results for the more general

estimators in (4.3).

We establish the consistency ofβn first. Denote

Gn(β) =
1

n(n− 1)(n− 2)

∑

i, j,k

M(Yi ,Yk)I {XT
i β > XT

j β > XT
k β}. (4.4)

One may notice that{Gn(β) : β ∈ B} is a U-process of order 3.

DefineG(β) = E[M(Y1,Y3)I {XT
1β > XT

2β > XT
3β}]. We note thatG(β) is the ex-

pected value ofGn(β).

We also defineH(XT
i β) = E[M(Y1,Y3)|XT

i β] for i = 1, 2, 3.

The following sets of technical conditions are needed:

A1. H(t) is a nonconstant monotone real function.

A2. The support ofXi is not contained in a proper linear subspace ofRd, i = 1, 2, 3.

A3. The d-th component ofXi has an everywhere positive Lebesgue density, conditional

on the other components,i = 1, 2, 3.

A4. B is a compact subset of{β ∈ Rd : βd = 1}.

A5. E[M(Y1,Y3)]2 < ∞.

Theorem 4.2.1(Consistency). Assume conditions A1 to A5 hold. Then we have

|βn − β0| = op(1).

Proof of Theorem 4.2.1.Essentially, to establish the consistency ofβn, it is sufficient to

show the following:
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(i) G(β) is uniquely maximized atβ0.

(ii) supB|Gn(β) −G(β)| = op(1).

(iii) G(β) is continuous.

By symmetry, we may write

G(β) =
1
6

E[H(XT
1β)I {XT

1β > XT
2β > XT

3β} + H(XT
1β)I {XT

1β > XT
3β > XT

2β}

+H(XT
2β)I {XT

2β > XT
1β > XT

3β} + H(XT
2β)I {XT

2β > XT
3β > XT

1β}

+H(XT
3β)I {XT

3β > XT
1β > XT

3β} + H(XT
3β)I {XT

3β > XT
2β > XT

1β}]. (4.5)

If β = β0, then conditions A1 and A3 ensure that the indicators in (4.5) pick out the

largest ofH(XT
1β0), H(XT

2β0), andH(XT
3β0) with probability one. Consequently,

G(β0) =
1
3

Emax(H(XT
1β0),H(XT

2β0),H(XT
3β0)). (4.6)

Deduce thatG(β) is maximized atβ0.

We now show thatβ0 is the unique maximizer.

Suppose that for someβ in B,

G(β) =
1
3

Emax(H(XT
1β0),H(XT

2β0),H(XT
3β0)). (4.7)

Deduce from (4.6) and (4.7) that

H(XT
1β0) ≥ H(XT

2β0) and H(XT
1β0) ≥ H(XT

3β0) when XT
1β ≥ XT

2β ≥ XT
3β. (4.8)

Let Sχ denote the support ofχ = (X1, ...Xd−1) and writeCHχ for the convex surface of

Sχ. That is,CHχ is the smallest convex set containingSχ. Assumption A2 implies that
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CHχ is a (d − 1)-dimensional subset ofRd−1 and so has a nonempty interior. Select a

pointµ from this interior and defineIµ = {(µ, t) : t ∈ R}.

Assumption A1 guarantees the existence of two pointst0 andt1 in the support ofXTβ

for which H(t0) < H(t) < H(t1) for t0 < t < t1.

Chooseτ0, τ1 in Iµ for which τT
0β0 = t0, τT

1β0 = t1. Those points can always be found

since A3 and A4 together imply that{(τT
0β0, τ

T
1β0) : (τ0, τ1) ∈ Iµ} ≡ R2.

Define the open wedges

W1(β) = {x : xTβ0 < τ
T
0β0, x

Tβ > τT
0β},

W2(β) = {x : τT
0β0 < xTβ0 < τ

T
1β0, τ

T
0β > xTβ > τT

1β},

W3(β) = {x : xTβ0 > τ
T
1β0, x

Tβ < τT
1β} .

We can replaceβ andβ0 with their respective unit vector without changingW1(β) ,W2(β)

andW3(β). Thus, for eachx in Rd and eachβ in B, we may viewxTβ as the orthogonal

projection ofx onto the space spanned byβ.

If X1 ∈W1(β), X2 ∈W2(β) andX3 ∈W3(β), then

H(XT
1β0) < H(XT

2β0) < H(XT
3β0) while XT

1β > XT
2β > XT

3β .

Then in order for (4.8) to hold, we must have

P{X1 ∈W1(β)}P{X2 ∈W2(β)}P{X3 ∈W3(β)} = 0. (4.9)

Now we show that (4.9) only holds forβ = β0 .

For eachβ in B, define

Hβ = {x : τT
0β = xTβ = τT

1β},
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Lβ = Hβ ∩ Hβ0
.

Consider the projections:

P0(β) = {x ∈ CHχ : (x, t) ∈ Lβ f or some t∈ R},

and for j = 1, 2, 3

P j(β) = {x ∈ CHχ : (x, t) ∈Wj(β) f or some t∈ R}.

That is,P0(β) projectsLβ into CHχ andP j(β) projectsWj(β) into CHχ. And {P j(β), j =

0, 1, 2, 3} partitionsCHχ.

Since bothHβ andHβ0
containτ0 andτ1, Lβ must containτ0 andτ1. Sinceτ0 andτ1

are elements ofIµ, P0(β) must containµ1 andµ2. Sinceµ1 andµ2 are interior points

of CHχ, P0(β) cannot contain a face ofCHχ. But eachP j(β) must contain at least one

point ofSχ, implying

∫

P j (β)∩Sχ

Gχ(dx) > 0,

whereGχ(·) denotes the distribution ofχ.

For eachx in Sχ, write lx for the line throughx parallel to the d-th coordinate axis. If

β , β0, then there must be a nonzero angle betweenHβ andHβ0
. So at least one ofHβ

andHβ0
must intersect atlx. Write tβ(x) for the d-th component ofHβ ∩ lx andtβ0

(x) for

the d-th component ofHβ0
∩ lx. If Hβ ∩ lx is null, definetβ(x) = ∞ (or −∞). If Hβ0

∩ lx

is null, definetβ0
(x) = ∞ (or −∞). Then

P(X ∈Wj(β)) =
∫

P j (β)∩Sχ

[
∫ max(tβ0(x), tβ(x))

min(tβ0(x), tβ(x))
f (t|x)dt]Gχ(dx),
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where f (·|x) denotes the conditional density ofXd givenχ = x. tβ(x) , tβ0
(x) for each

x in Sχ becauseβ , β0. SoP(X ∈ Wj(β)) can not be 0. That is,P(X ∈ Wj(β)) > 0,

contradicting (4.9). This establishes (i).

For eachβ in B and (z1, z2, z3) in S
⊗

S
⊗

S, define

f (z1, z2, z3, β) = M(y1, y2)I {xT
1β > xT

2β > xT
3β} −G(β) .

Then

Gn(β) −G(β) = Un f (., ., ., β),

whereUn denotes the random measure putting mass 1/[n(n − 1)(n − 2)] on each pair

(Zi ,Zj,Zk), i , j , k. That is,{Un f (., ., ., β)} is a zero-mean U-process of order 3. From

the result of Sherman (1994),

supB|U3
n f (., ., ., β)| ≤

3∑

i=1

supB|U i
n f (., ., ., β)| ,

and

supB|n3/2U3
n f (., ., ., β)| = Op(1) .

Thus,

supB|Gn(β) −G(β)| = op(1) .

This is enough to establish (ii).

Finally, fix β ∈ B and let{β(m)} denote a sequence of elements ofB converging to

β asm tends to infinity. LetQ denote the product measureP
⊗

P
⊗

P.
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Then we have

QI{xT
1β = xT

2β = xT
3β} = 0 .

This implies that

M(y1, y2)I {xT
1β(m) > xT

2β(m) > xT
3β(m)} − M(y1, y2)I {xT

1β > xT
2β > xT

3β} → 0 as m→ ∞ ,

for Q almost all(z1, z2, z3). Applying the dominated convergence theorem and A5, we

can get thatG(β) is continuous which establishes (iii). This proves the theorem.

�

We have denoted thatZ = (Y, X) denotes an observation from the distribution P on

the setS ⊆ R
⊗

Rd, and that the parameter spaceB is a compact subset of{β ∈ Rd :

βd = 1}. Forβ in B, (z1, z2, z3) in S
⊗

S
⊗

S, (y1, y3) in R
⊗

R, and (x1, x2, x3) in

Rd
⊗

Rd
⊗

Rd, we define

h(z1, z2, z3, β) = M(y1, y3)I {xT
1β > xT

2β > xT
3β} .

For eachz in S, we define the kernel function of the empirical process that drives the

asymptotic behavior ofβn as

τ(z, β) = h(z,P,P, β) + h(P, z,P, β) + h(P,P, z, β) ,

whereh(z,P,P, β), for example, is short for the conditional expectation ofh(·, ·, ·, β)

given its first argument underP
⊗

P.
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Write∇m for the m-th partial derivative operator applied to the firstd−1 components

of β, and

‖∇mτ(z, β)‖ =
∑

i1i2...im

‖ ∂m

∂βi1...∂βim

τ(z, β)‖ ,

where the symbol‖ · ‖ denotes the modulus of a matrix:‖(ai j )‖ = (Σi, ja2
i j )

1/2 .

We need a few more assumptions for establishing the asymptotic normality.

A6. The element{β1, β2, ...βd−1} is an interior of a compact subset ofRd−1.

A7. X andµ are independent.

A8. On a neighborhood ofβ0, the second partial bounded derivatives ofτ(z, β) exist.

And there exists an integrable functionM(z) such that

‖∇2τ(z, β)) − ∇2τ(z, β0)‖ ≤ M(z)|β − β0| ,

whereE|∇1τ(·β)|2 < ∞ and the expectation matrix of∇2τ(z, β) is negative definite.

Theorem 4.2.2(Asymptotic normality). If A1-A8 hold, then

√
n(βn − β0) =⇒ (WT , 0)T ,

where=⇒ denotes convergence in distribution and W has a d− 1 dimensional mul-

tivariate normal distribution N(0,VAV−1) distribution with 3V = E∇2τ(·, β0), A =

E∇1τ(·, β0)[∇1τ(·, β0)]
T .

Proof of Theorem 4.2.2.Define

f (z1, z2, z3, β) = h(z1, z2, z3, β) − h(z1, z2, z3, β0).
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Supposef (z1, z2, z3, β) is a real-valued function on the product spaceS
⊗

S
⊗

S.

Gn(β),G(β) are defined in the precious section. LetΓn(β) be

Γn(β) = Gn(β) −Gn(β0),

and the expectationΓ(β) be

Γ(β) = G(β) −G(β0).

We note thatGn(β) − G(β) is a U-statistic of order three. WrittenUk
n f (·, ·, ·, β) as U-

statistic of of order k. Then,

Gn(β) −G(β) = U3
n f (·, ·, ·, β).

From the properties of the U-statistic, for the U-statisticof order k, there exist functions

f 1(·, ·, ·, β), ... f k(·, ·, ·, β) such that for eachi, f i(·, ·, ·, β) is P-degenerate onSi, and

Uk
n(·, ·, ·, β) = Pn f 1(·, ·, ·, β) +

k∑

i=2

U i
n f i(·, ·, ·, β),

wherePn can be viewed as a random probability measure putting mass
1
n

at each ordered

k-tuple (Zi1, ...,Zik) (Serfling (1980).

So,

Γn(β) = Γ(β) + Pn f 1(·, ·, ·, β) + U2
n f 2(·, ·, ·, β) + U3

n f 3(·, ·, ·, β).

Now we apply Taylor expansion ofτ(·, β) aboutβ0:

τ(·, β) = τ(·, β0) + (β − β0)
T∇1τ(·, β0) +

1
2

(β − β0)
T∇2τ(·, β⋆)(β − β0),

for β⋆ betweenβ andβ0.

Forz in S,

‖(β − β0)
T [∇2τ(z, β) − ∇2τ(z, β0)](β − β0)‖ ≤ M(z)|β − β0|3.
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From Theorem 4.2.1 of the consistency and the results from Sherman (1994), we have

Eτ(z, β) = 3Γ(β), and

Γ(β) =
1
2
βTVβ + o(|β|))2 as β→ β0,

and

Pn f 1(·, ·, ·, β) = 1
√

n
βTWn + op(|β|2),

uniformly overop(1) neighborhoods ofβ0, whereWn =
√

nPn∇1τ(·, β0).

As a property of the U-statistic of orderk (Sherman 1994), it will be true that

Uk
n f (·, ·, ·, β) = op(1/n

k
2 ).

So,

U2
n f 2(·, ·, ·, β) + U3

n f 3(·, ·, ·, β) = op(1/n).

Thus,

Γn(β) =
1
2
βTVβ +

1
√

n
βTWn + op(|β|2) + op(1/n).

From the Corollary in Sherman’s paper (1994), we can get that

√
n(βn − β0) =⇒ (W, 0),

where=⇒ denotes convergence in distribution andW has aN(0,VAV−1) distribution

with 3V = E∇2τ(·, β0) andA = E∇1τ(·, β0)[∇1τ(·, β0)]
T . �

In this thesis, we proposed the estimator extended from the semiparametric mono-

tonic linear index model which has many advantages over other types of methods such
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as the maximum linear separation (MLS) measure. The exact nature of the monotonic-

ity is usually difficult to specify even as we often assume a monotonic relationship

between a response and a linear index. Therefore, the estimator in the semiparamet-

ric monotonic linear index model can directly exploit monotonicity between a response

and a linear index without any knowledge about the form of themonotonic relationship,

and no parametric assumptions are needed about the error distribution. Another appeal-

ing property is that the estimator does not require any subjective bandwidth choice.

Moreover, the proposed estimator allows more flexibility inbalancing robustness and

efficiency objectives for a wider range of models.

In this thesis, the best linear combination is the one which maximizes the VUS=P(XT
i1β >

XT
i2β > XT

i3
β) among all the possible linear combinations. We denote the maximum VUS

from the combination asmaxVUS. Thus the bootstrap standard errors for the estima-

tion of maxVUSand the coefficient vector can be similarly applied as in the previous

chapter.

For each of the bootstrap samples, denote the estimators forthe maximum VUS

by{ ̂maxVUSn : n = 1, 2, ...N} whereN is the number of samples. The bootstrap stan-

dard error for ̂maxVUSis

ŝeN(maxVUS) =

√√
1

N − 1

N∑

n=1

( ̂maxVUSn − ̂maxVUS)2. (4.10)

A 100(1− α)% confidence interval formaxVUSis

̂maxVUS± zα/2ŝeN(maxVUS), (4.11)
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wherezα/2 is the upperα/2 quantile for the standard normal distribution.

Similarly, for each of the bootstrap samples, denote the estimators for the coefficient

vector by{β̂n : n = 1, 2, ...N} whereN is the number of samples. The corresponding

bootstrap standard error for̂β is

ŝeN(β) =

√√
1

N − 1

N∑

n=1

(β̂n − β̂)2. (4.12)

A 100(1− α)% confidence interval forβ is

β̂ ± zα/2ŝeN(β), (4.13)

wherezα/2 is the upperα/2 quantile for the standard normal distribution.

4.2.2 Normal distribution assumption

Diagnostic test data have been modeled under a normal distribution in many studies.

Rich literature also exists for combining markers by using multivariate normal proper-

ties. Su and Liu (1993) provided classic results developed under the delicate multivari-

ate theories. We also provide a simple parametric result forthe optimal combination of

which the distribution of the data from the multiple classesare assumed to be normal.

In this section we consider a special parametric case when the random vectors for

the three classes follow normal distributions. Under such atri-normal scenario we can

obtain an exact formulation for the combination coefficients.
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SupposeX1, X2, X3 are from d-dimensional multivariate normal distribution.X1 ∼

N(µ1,Σ1), X2 ∼ N(µ2,Σ2), X3 ∼ N(µ3,Σ3) whereµ1, µ2, µ3 are mean vectors and

Σ1,Σ2,Σ3 are variance-covariance matrices for the three classes, respectively. For a

coefficient vectorβ = (β1, β2, ...βd)T ,

βT Xi ∼ N(βTµi, β
TΣiβ),

for i = 1, 2, 3.

Then we intend to find aβ0 that maximizes the following

VUS = P(βT X1 > β
T X2 > β

T X3),

which can be expressed by

VUS =

∫ ∫ ∫

βT x1>β
T x2>β

T x3

fx1(β
T x1) fx2(β

T x2) fx3(β
T x3)d(βT x3)d(βT x2)d(βT x1)

=

∫ ∞

−∞
d(βT x3)

∫ ∞

βT x3

d(βT x2)
∫ ∞

βT x2

fx1(β
T x1) fx2(β

T x2) fx3(β
T x3)d(βT x1)

=

∫ ∞

−∞
d(βT x3)

∫ ∞

βT x3

fx2(β
T y) fx3(β

T x3)[1 − Fx1(β
T x2)]d(βT x2)

=

∫ ∞

−∞
Fx3(β

T x2)[1 − Fx1(β
T x2)] fx2(β

T x2)d(βT x2)

=

∫ ∞

−∞
Φ(

t − βTµ3√
βTΣ3β

) · Φ(
−(t − βTµ1)√
βTΣ1β

) · Φ(
t − βTµ2√
βTΣ2β

) · 1√
βTΣ2β

dt.

Let s=
t − βTµ2√
βTΣ2β

, thent =
√
βTΣ2βs+ βTµ2. Thus, the VUS can be written as

VUS =
∫ ∞

−∞
Φ(

√
βTΣ2β
√
βTΣ3β

s+
βT(µ2 − µ3)√
βTΣ3β

) · Φ(−

√
βTΣ2β
√
βTΣ1β

s+
βT(µ1 − µ2)√
βTΣ1β

)ϕ(s)ds,
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whereF denotes the distribution function andf denotes the density function,S de-

notes the survival distribution,Φ denotes the normal distribution function,ϕ denotes

the normal density function.

Let a =

√
βTΣ2β
√
βTΣ3β

, b =
βT(µ3 − µ3)√
βTΣ3β

, c =

√
βTΣ2β
√
βTΣ1β

, d =
βT(µ1 − µ2)√
βTΣ1β

.

Then, the VUS is a form as

VUS =
∫ ∞

−∞
Φ(as+ b)Φ(−cs+ d)φ(s)ds.

Differentiating with respect toβ, we can solve the equation forβ which maximizing

the VUS.

∂VUS
∂β

=

∫ ∞

−∞
Φ(−cs+ d)φ(as+ b)φ(s)sds· ∂a

∂β
+

∫ ∞

−∞
Φ(−cs+ d)φ(as+ b)φ(s)ds· ∂b

∂β

+

∫ ∞

−∞
Φ(as+ b)φ(−cs+ d)φ(s)(−s)ds·

∂c
∂β
+

∫ ∞

−∞
Φ(as+ b)φ(−cs+ d)φ(s)ds·

∂d
∂β
= 0

= A1 ·
∂a
∂β
+ A2 ·

∂b
∂β
+ A3 ·

∂c
∂β
+ A4 ·

∂d
∂β
.

We now calculate the four parts.

A1 =

∫ ∞

−∞
Φ(−cs+ d)φ(as+ b)φ(s) · sds

=
1
2π

exp{−
1
2

(
b2

a2 + 1
)}
∫ ∞

−∞
Φ(−cs+ d)exp{−

a2 + 1
2

(s+
ab

a2 + 1
)2}sds

=
1
2π

exp{−1
2

(
b2

a2 + 1
)}
∫ ∞

−∞
Φ(−cs+ d)exp{−a2 + 1

2
(s+

ab
a2 + 1

)2}(s+ ab
a2 + 1

)ds

−
1
2π

exp{−
1
2

(
b2

a2 + 1
)}
∫ ∞

−∞
Φ(−cs+ d)exp{−

a2 + 1
2

(s+
ab

a2 + 1
)2}

ab
a2 + 1

ds

= A5 − A6.
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A5 =
1
4π

exp{−1
2

(
b2

a2 + 1
)}
∫ ∞

−∞
Φ(−cs+ d)exp{−a2 + 1

2
(s+

ab
a2 + 1

)2}d(s+
ab

a2 + 1
)2

=
1
2π
· −c

a2 + 1
· 1
√

a2 + 1+ c2
· exp{−1

2
[b2 + d2 − (ab− cd)2

a2 + 1+ c2
]}.

A2 =

∫ ∞

−∞
Φ(−cs+ d)φ(as+ b)φ(s)ds

=

∫ ∞

−∞
Φ(−cs+ d) · 1

√
(2π
· exp{−1

2
[
√

a2 + 1s+
ab
√

a2 + 1
]2}ds.

Let t =
√

a2 + 1s+
ab
√

a2 + 1
. Then,

A2 =
1

√
2π(a2 + 1)

exp{− b2

2(a2 + 1)
}
∫ ∞

−∞
Φ(− c
√

a2 + 1
t +

abc
a2 + 1

+ d)φ(t)dt

=
1

√
2π(a2 + 1)

exp{− b2

2(a2 + 1)
}Φ(

abc+ (a2 + 1)d√
(a2 + 1)(a2 + 1+ c2)

).

∵ A6 =
ab

a2 + 1
· A2,

then,

A2 ·
∂b
∂β
− A6 ·

∂a
∂β
= A2(

∂b
∂β
−

ab
a2 + 1

∂a
∂β

) = A2 ·
a2 + 1

2b
·
∂

∂β
(

b2

a2 + 1
).

Thus,

A1
∂a
∂β
+ A2
∂b
∂β
=

1
2π
·
−c

a2 + 1
·

1
√

a2 + 1+ c2
· exp{−

1
2

[b2 + d2 −
(ab− cd)2

a2 + 1+ c2
]} ·
∂a
∂β

+

√
a2 + 1

2b
√

2π
· exp{−1

2
· b2

a2 + 1
} · Φ(

abc+ (a2 + 1)d√
(a2 + 1)(a2 + 1+ c1)

) · ∂
∂β

(
b2

a2 + 1
).

Similarly,

A3
∂c
∂β
+ A4
∂d
∂β
=

1
2π
·
−a

c2 + 1
·

1
√

a2 + 1+ c2
· exp{−

1
2

[b2 + d2 −
(ab− cd)2

a2 + 1+ c2
]} ·
∂c
∂β

+

√
c2 + 1

2d
√

2π
· exp{−1

2
· d2

c2 + 1
} · Φ(

adc+ (c2 + 1)b√
(c2 + 1)(a2 + 1+ c1)

) · ∂
∂β

(
d2

c2 + 1
).
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Denote

x1 =
(a2 + 1)d+ abc√

(a2 + 1)(a2 + 1+ c2)
, x2 =

(c2 + 1)b+ adc√
(c2 + 1)(a2 + 1+ c2)

,

C1 = −
√

2π
2b
·
√

(a2 + 1)(a2 + 1+ c2) · e1
2 x2

1Φ(x1),

C2 = −
√

2π
2d
·
√

(c2 + 1)(a2 + 1+ c2) · e1
2 x2

2Φ(x2).

Thus the equation can be written as:

[
c

a2 + 1
∂a
∂β
+

a
c2 + 1

∂c
∂β

] +C1
∂

∂β
(

b2

a2 + 1
) +C2

∂

∂β
(

d2

c2 + 1
) = 0.

The analytic solution is not generally attainable. As such,we consider a special

case for whichΣ1 = Σ2 = Σ3 = I, andµ1 − µ2 = µ2 − µ3 = δ. That is, we assume

a constant covarianceI for the three categories and equal distances between the two

adjacent categories.

For the results of Liu and Su (1993), we can derive that the coefficients for the best

linear combination are proportional toΣ−1δ.

4.3 Simulation studies

We conducted simulation studies to assess the performance of the proposed method.

Sample sizes of 60, 120 and 150 were considered. In our article, we considered four

simulation settings. In each simulation, we fixedβ = (β1, β2...βd), (d = 2, 3, 4) which
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maximizedPr(βT X1 > β
T X2 > β

T X3). We setβd = 1 for identifiability and only

estimated (β1, ...βd−1). For the estimation of the standard errors, we applied the standard

bootstrap procedure with 500 resamples.

In Case 1, we generatedX1, X2, X3 from two-dimensional multivariate normal dis-

tributions with mean vectors (2.2, 2.0)T, (1.1, 1.0)T, (0, 0)T, respectively, and covariance

matrices being identical as a two-dimensional identity matrix. By using the results in

Section 2.2, we derived the best linear combination and obtained the maximal probabil-

ity Pr(βT X1 > β
T X2 > β

T X3) to be 0.87.

In Case 2, we generatedX1, X2, X3 from three-dimensional multivariate normal dis-

tributions with mean vectors (2.4, 2.2, 2.0)T, (1.2, 1.1, 1.0)T, (0, 0, 0)T, respectively, and

covariance matrices being identical as a three-dimensional identity matrix. By using the

results in Section 2.2, we derived the best linear combination and obtained the maximal

probabilityPr(βT X1 > β
T X2 > β

T X3) to be 0.90.

In Case 3, we generatedX1, X2, X3 from four-dimensional multivariate normal dis-

tributions with mean vectors (2.6, 2.4, 2.2, 2.0)T, (1.3, 1.2, 1.1, 1.0)T, (0, 0, 0, 0)T, re-

spectively, and covariance matrices being identical as a four-dimensional identity ma-

trix. By using the results in Section 2.2, we derived the bestlinear combination and

obtained the maximal probabilityPr(βT X1 > β
T X2 > β

T X3) to be 0.89.

We used the nonparametric MRC estimation to estimate the coefficients for the sim-

ulated data in Case 1 to Case 3. The estimation results for thethree cases are summa-

rized in Tables 4.1, 4.2, and 4.3. For each case, the coefficients are listed in the column
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β. The average of the estimated coefficients in 1000 simulations are given in the col-

umn β̂. The sample standard deviation of the estimated coefficients are given in the

columnsd(β). We applied bootstrap method to account for the variability in this paper.

The average of the estimated standard errors are given in thecolumn ŝ.e. To see how

well the nonparametric estimation methods performs, we also calculated the coverage

rates at the nominal 95% level, given in the column ‘coveragerates’. In all cases, the

estimated coefficients are consistent to the true coefficients. The results shows a well

performance and the performance improves as sample size grows large. Our proposed

methods appear to work satisfactorily well for these finite sample studies.

In the three cases, we specified multivariate normality assumptions. In additional

to multivariate normal distributions, we considered the wishart distribution as well. In

Case 4, we generatedX1, X2, X3 from wishart distribution withΣ of



3 2

2 3


,



2 1.5

1.5 2



and



1 0.5

0.5 1


, respectively, and degree of 10. We derived the best linear combination

and obtained the maximal probabilityPr(βT X1 > β
T X2 > β

T X3) to be 0.72. Results

are listed in Table 4.4
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4.4 Applications

4.4.1 Proteomic study for liver cancer

We first considered a recent mass spectrometry dataset for the detection of Glycan

biomarkers for liver cancer (Ressom et al. (2007, 2008)). The researchers investi-

gated 203 participants from Cairo, Egypt; 73 hepatocellular carcinoma (denoted by

HC) cases; 52 patients with chronic liver disease (denoted by QC); and 78 healthy indi-

viduals (denoted by NC). The spectra were generated by a matrix-assisted laser desorp-

tion/ionization time-of-flight (MALDI-TOF) mass analyzer (Applied Biosystems Inc.,

Frammingham, MA). We downloaded the dataset from the authors’ public website and

focused on a set of 484 peaks after extensive preprocessing of the raw data.

Each peak may be regarded as a diagnostic test for differentiating the subjects from

the three distinctive classes: HC, QC and NC. In this case, the diagnostic task involves

more than two categories. Placing an individual into any wrong category may result in

adverse consequences. The accuracy of the diagnostic test thus should be reflected by

how often the test correctly classifies all three categories. We were interested in study-

ing the diagnostic accuracy of these peaks and identified those peaks with the highest

discriminatory ability. Previously, Ressom et al. (2007, 2008) conducted analysis by

reducing the number of categories in order to frame a few pairwise two-category clas-

sification problems. Pairwise ROC curves and the areas underthe ROC curves (AUC)

were reported to investigate the differentiability between two classes (eg. HC and QC).
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However, such AUC measures cannot summarize the overall accuracy for three cate-

gories.

A more appropriate summary measure is VUS as discussed in this thesis. We first

estimated VUS values for all the peaks by using the methods inLi and Fine (2008)

and then focused on the top twenty peaks among the 484 peaks. They are gene 183,

gene 209, gene 147, gene 443, gene 182, gene 262, gene 239, gene 472, gene 368,

gene 134, gene 306, gene 188, gene 299, gene 311, gene 361, gene 483, gene 104,

gene 425, gene 210, and gene 294, denoted asD1,D2, ...,D20, respectively. It is noted

from our calculation that the largest VUS is only approximately 0.65, indicating that in

about 65% of all classification jobs such a peak can correctlysort the three classes of

subjects. Evidently, using only a single peak may result in inadequate accuracy. Thus,

we then applied the methods introduced in this thesis to build a more accurate classifier

by combining multiple peaks.

We considered a selection procedure with these twenty genes, starting with the peak

with the highest VUS and sequentially adding peaks which maximized the VUS based

upon the joint model. At each step, we estimated the coefficient for optimal combination

and then calculated the HUM values. The model selection results are summarized in

Table 4.5. We noticed that after including five peaks in our model, the VUS value

reached about 86% and no longer significantly increased by adding to the number of

peaks. The VUS values no longer increased after the sixth iteration and so we closed

at this point. The final model showed a large improvement in VUS values. We also
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applied the bootstrap methodology to calculate the corresponding standard error for

each combination.

We also estimated the coefficients for the markers in Table 4.5. The size and sign

of the coefficients can indicate the relative importance of the marker and the direction

of their association with the disease outcome. For the sake of comparison, we also

considered a forward selection based upon multinomial logistic regression as in Li and

Fine (2008). This approach gave a different combinationD1 + 3.7D4 − 3.1750D17 +

0.3562D3−1.4D10+1.0625D18, with VUS value of 0.843. Compared to the VUS value

of 0.860 from our proposed methodology, it seems that our method can provide a higher

VUS after combining biomarkers.

4.4.2 Evaluating tissue biomarkers of synovitis

Although the methodology we introduced is contextual to three-category classification

problems, there is little difficulty to extend our results to higher dimensional classifi-

cations. In this section, we considered an example in which we analyzed five distinct

categories.

Krenn et al. (2006) described a three-component score for the grading of the histo-

logical severity of synovitis. Each of the three components(lining thickness, inflamma-

tory infiltrates, and stromal density) was graded on a scale from zero to three. In this

case, the primary classification outcome involves five different categories. The sample

sizes for each category are given in Table 4.6.
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We first quantified the diagnostic accuracy for each component and then determined

the best linear combination to achieve the highest accuracy.

The estimated HUM are reported as we denote lining thicknessas M1, stromal

density asM2 and inflammatory infiltrates asM3. We considered a combined score

β1M1+ β2M2+M3 and estimated the unknown coefficientsβ1 andβ2 which maximized

the HUM. Stromal density appears to be the most accurate among the three tissue mark-

ers with a HUM of 0.0124, followed by lining thickness and inflammatory infiltrates.

The estimated coefficients arêβ1 = 1.03 andβ̂2 = 1.07. Clearly individual markers with

higher accuracy receive relatively larger weights to buildthe optimal score. We noticed

that the estimated HUM for the optimal linear combination was more than ten times

larger than the HUM for any of the three markers. Using information from three mark-

ers can thus substantially improve the clinical diagnosis for the multiple categories and

stages of inflammatory arthropathies. For the sake of comparison, we also computed

the HUM for a naive combination of the three biomarkers by summing them together.

The resulting HUM is only 0.0624 which is much lower than the maximum attainable

HUM. The results are reported in Table 4.7. We also calculated the corresponding p-

value for any two rows in Table 4.8. All the p-values (Table 4.8) are less than 0.05,

implying significant differences.
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Table 4.1: Estimatedβ which maximizesP(β⊤X1 > β
⊤X2 > β

⊤X3) in Case 1.

Sample size β β̂ sd(β) ŝ.e coverage rates

60 1.1 1.209 0.0164 0.0243 0.937

120 1.1 1.135 0.0163 0.0258 0.943

150 1.1 1.110 0.0162 0.0199 0.944

Table 4.2: Estimatedβ which maximizesP(β⊤X1 > β
⊤X2 > β

⊤X3) in Case 2.

Sample size β β̂ sd(β) ŝ.e coverage rates

60 1.2 1.252 0.0191 0.0255 0.935

1.1 1.167 0.0156 0.0259 0.938

120 1.2 1.245 0.0193 0.0286 0.938

1.1 1.134 0.0176 0.0247 0.942

150 1.2 1.222 0.0197 0.0239 0.937

1.1 1.119 0.0163 0.0219 0.940
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Table 4.3: Estimatedβ which maximizesP(β⊤X1 > β
⊤X2 > β

⊤X3) in Case 3.

Sample size β β̂ sd(β) ŝ.e coverage rates

60 1.3 1.255 0.0197 0.0313 0.932

1.2 1.244 0.0196 0.0280 0.933

1.1 1.149 0.0175 0.0284 0.937

120 1.3 1.265 0.0198 0.0274 0.939

1.2 1.243 0.0192 0.0211 0.935

1.1 1.115 0.0169 0.0209 0.940

150 1.3 1.281 0.0192 0.0224 0.934

1.2 1.181 0.0176 0.0239 0.937

1.1 1.087 0.0169 0.0210 0.941

Table 4.4: Estimatedβ which maximizesP(β⊤X1 > β
⊤X2 > β

⊤X3) in Case 4.

Sample size β̂ sd(β) ŝ.e coverage rates

60 1.081 0.3721 0.0299 0.939

120 1.113 0.3290 0.0332 0.940

150 1.130 0.2837 0.0262 0.942
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Table 4.5: Estimated optimal volume under the ROC surfaces (VUS) for each step of

the forward selection. Standard error and P-values are computed by using the bootstrap

method.

Step VUS Model s.e P-value

1 0.647 D1 0.04

2 0.750 0.1250D3 + D4 0.039 < 0.001

3 0.808 1.3606D12− 3.9046D17 + D18 0.037 < 0.001

4 0.850 7.8778D3 + 25.3139D4 − 43.4810D17+ D20 0.036 < 0.001

5 0.859 1.78D3 + 6.85D4 + 6.26D14− 11.75D17+ D18 0.034 < 0.001

6 0.860 5.76D3 + 15.33D4 + 5.23D19 − 42.94D17 + 10.12D18 + D20 0.028 0.31

Table 4.6: The sample sizes for each category in the synovitis data.

Category Sample size

Normal healthy control 33

Post-traumatic arthropathy (PtA) 29

Osteoarthritis (OA) 221

Psoriatic arthritis (PsA) 42

Rheumatoid arthritis (RA) 341
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Table 4.7: Estimated hypervolume under the ROC manifold (HUM) values for synovitis

biomarkers.

Marker HUM

M1 0.0085

M2 0.0124

M3 0.0011

M1 + M2 + M3 0.0624

1.03M1 + 1.07M2 + M3 0.1020

Table 4.8: P-values.

P-values M1 M2 M3 M1 + M2 + M3

M1 4.969× 10−5 9.976× 10−14 2.513× 10−67

M2 4.969× 10−5 1.505× 10−5 4.044× 10−42

M3 9.976× 10−14 1.505× 10−5 1.64× 10−65

M1 + M2 + M3 2.513× 10−67 4.044× 10−42 1.64× 10−65

1.03M1 + 1.07M2 + M3 2.41× 10−128 2.59× 10−119 4.63× 10−156 1.164× 10−29
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Chapter 5

Conclusion and Further Research

5.1 Conclusion

Although the multiple-category ROC framework and corresponding HUM were origi-

nally introduced by Scurfield (1996), their practical use inempirical analysis was not

thoroughly examined. Mossman (1999) simulated statistical work attempting to trans-

late the identified theoretical HUM construct given by Scurfield into practical infer-

ences. Subsequently, a wholly acceptable solution for resolving issues pertaining to

multiple tests has not been made fully available. Furthermore, obtaining direct proba-

bility assessments from such tests is unfeasible. Simple decision rules are not flexible

enough for many applications, like microarray data, where there are many tests and

unordered categories.
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Our proposed methods overcome this problem by using estimated class probabili-

ties. The main advantage of our proposed method is the simplification of computation

required for screening the useless tests and identifying the most useful tests. Due to

the uncertainty of the ordering relationship among multiple categories, we need to first

determine the correct expression for HUM. Our computation is much lower than the

exclusive computation of all possible HUM values. When the number of categories are

large, we can provide huge savings in computation time and energy. The correct iden-

tification of the ordering relationship among classes prevents us from screening good

tests.

Even if the continuous test is not ordered because of the nature of multiple cat-

egories, the numeric values can always be ordered. For unordered multiple-category

ROC analysis, Li and Fine (2008) used a method based upon Mossman’s decision rule

and achieved a reasonable estimation of HUM without knowledge of the correct class

order. Such a method does not clearly reveal the relative magnitudes of the multiple

classes and may not be appealing for interpreting the implications of HUM. Our pro-

posed strategy yields the same estimation of HUM and provides additional information

regarding the ordering of numerical test values from different classes.

Distinct diagnostic markers can be sensitive influences to various aspects of the dis-

ease being studied. In such cases, applying a linear combination can reveal a ‘new’

marker comprised of multiple biomarkers which can enhance diagnostic capability. We

proposed a new rank estimator and also provided the consistency theorem of the coeffi-
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cient estimators. The theorem can be extended to the k-choice-task model under which

multiple-dimensional open wedges can be constructed.

Our methodology, which applies the bootstrap method to calculate the variance of

the maximum VUS and HUM, was relatively efficient and effective when applied to

the computation-heavy simulation results in this paper. The data analysis demonstrates

that the best linear combination maximizes the VUS and HUM under a three-class and

multiple-class case, respectively. The resulting models based upon the related linear

combinations generate further insight into the mass spectrometry dataset.

5.2 Topics for further research

With the increasing number of applications for AUC and related measures in medical

field and clinical studies, we have noticed that the AUC values are at times lower than

1/2. Such AUC values are sometimes overlooked or intentionally omitted, especially in

large-scale microarray studies. However, they may hold important information about

the accuracy of diagnostic tests. In this thesis, we proposed a simple method of rotat-

ing 180 degrees to cause the ROC plot to emerge above the chance diagonal line. In

future work, we may further consider the concave ROC curve properties and propose

nonparametric methods.

Identifying the correct classification for multiple-category classifications is com-

paratively complicated. Instead of applying the U-statistic approach to calculate the
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VUS and HUM, we proposed bootstrap standard errors for the multiple-category ROC

analysis, which could significantly remedy the computational burden. In this thesis, we

followed the bootstrap approach in Li and Fine (2008) and chose a bootstrap sample size

of 500. However, some future work remains to determine the bootstrap sample size. In

fact, great interest exists to come up with effective approaches to design and evaluate

the bootstrap sample size. The calculation of the corresponding confidence interval of

the bootstrap p-values is also complicated, and there is limited literature concerning its

calculation. This should open a path for further research.

Sometimes the data distribution could be highly skewed evenafter the normaliza-

tion transformation. Outlier or extreme observations might also exist and influence the

estimation of distribution means. When distribution conditions are not satisfactorily

met, parametric methods may not always indicate the correctordinal relationship of

test results among groups. One might seek distribution-free nonparametric methods to

identify the order. Weighted average of the distribution may be another topic for further

research.

The MRC estimator has recently attracted much attention from classification liter-

ature due to its close relationship with the ROC curve. Combining predictors for clas-

sification is discussed in this thesis. We explored statistical methods of a linear com-

bination of multiple tests for multiple-category classifications to optimize the accuracy

from the combined markers. Further research may also attempt to solve for non-linear

combinations which maximize the VUS or HUM of multiple-category classifications.
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A closed-form expression for the best-fitting parameters may sometimes not exist, as

there is in a linear combination framework. With the introduction of methods that can

solve some of the computational burden of multiple-category problems, the data can be

fitted by a method of successive approximations within a viable computational capacity

to derive the target nonlinear model.

In this thesis, we applied the nonparametric estimators of HUM and suggested the

resampling bootstrap method to calculate the standard errors for the estimators of HUM

and the coefficient vectors. This can be viewed as an in-sample estimate. However,

when we take an independent sample of the validation data from the same population

as the training data, overfitting can sometimes occur; that is, the model does not fit the

validation data as well as it fits the training data. This is most likely to occur when the

number of parameters is large and the size of the training dataset is very small. Cross-

validation is then an applicable way to assess how the results of a statistical analysis will

generalize to independent datasets. It involves partitioning a sample of data into com-

plementary subsets, assessing the analysis on the trainingset and validating the analysis

on the testing set. Thus, in particular situations, the application of cross-validation is

also of interest for further research.

For binary classification, Pepe and Thompson (2000) developed a method based

upon maximizing the AUC to combine biomarkers in genetic studies. Their method

was essentially adapted from the maximum rank correlation estimation. In this thesis,

we provide statistical approach which yields the best linear combination to maximize
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VUS or HUM. Li and Fine (2008) considered multinomial logistic regression to address

multi-category outcomes. Further research may also focus on the inferences which yield

the most effective multinomial logistic regression to maximize VUS or HUM.
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