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SUMMARY vi

Summary

The accuracy of a diagnostic test can be quantified by howtihvellest results classify
and predict the true condition status. As such, the diagnasturacy of a test is of
utmost importance in determining the suitability of impkming the test and is par-
ticularly essential in real-world situations. The receigperating characteristic (ROC)
curve and the area under the ROC curve (AUC) are two impostamimary measures
that provide anfective assessment of the overall accuracy of diagnosts: ©ser the

years, several parametric, semi-parametric and nonp#éiameethods have been de-

veloped for the estimation of the ROC curve and AUC for twiegary classifications.

However, many real-world biomedical classification proidedemand the ability
to assess more than just two classes. ROC analyses capdiaedding multiple clas-
sifications are needed to more robustly assess the diagmestormance. Scurfield
(1996) presented the mathematical definition of suitabl€Raasures for more than
two classes. The ROC curves are extended to ROC surfacdsdertategory classifi-

cation and ROC manifolds for multiple-category classifmat
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Acquiring the correct order is important for multiple-ogbey ROC analysis when
the categories are ordinal. Inference methods that esithatsummary measures have
recently been proposed. The volume under the ROC surfac&)\dd the hypervol-
ume under the manifold (HUM) can be estimated for orderedipielcategory prob-
lems by applying U-statistic theory. In this thesis, we m®@rigorous and automated
approaches to sort the multiple categories by using simpiengary statistics such as
means. We also provide a general discussion regarding thienonin acceptable HUM
values in multiple-category classification problems. Thalgses presented in this the-
sis provide insights into how best to screen through theslatgnber of tests available in

the health science field. Bootstrap inferences are propgossrtount for the variability.

In medical research, evaluating the various factors thairdfduence the diagnostic
performance is also imperative. Recently, statisticatasgjon analysis has been re-
searched to more thoroughly inference about such factardmmarkers. Statistical
methods that combine multiple tests for multiple-categdagsification canféciently
optimize the accuracy of the combined marker under ther@itef ROC measures.
For binary classification, Pepe and Thompson (2000) deeelapmethod based upon
maximizing the AUC of the combined biomarkers in genetidss. Their method is
effectively adapted from the maximum rank correlation (MRQineation proposed by
Han (1987) which is widely practiced. Recently, the MRCrestior has been applied
in classification studies due to its close connection withCAUh this thesis, we ex-
plore statistical methods that combine multiple tests fatiple-category classification

with the ambition to optimize the accuracy of the combinedk®mizs under the criteria
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of ROC measures. We develop suitable statistical procedwyeextending the MRC
estimator to high-dimensional cases and also provide tbessary supporting asymp-
totic theories. Simulations and examples are provided moathestrate that significantly

higher VUS or HUM can be achieved by combining multiple biokess.
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Chapter 1

Introduction

Statistical classification is needed in various fields suslc@mputer science, eco-
nomics, meteorology, biology, biochemistry and medicad&s. The diagnosis of
the status of a subject is crucial to its accurate classificatind the selection of the
statistical methodology applied to the prediction andsifastion is of utmost impor-

tance. Particularly in the field of medicine and in clinicalldies, the accurate and
timely diagnosis of a patient’s condition is crucial to tHemate treatment of the dis-
eased condition. Detecting these conditions and evay#ti@ prognosis of patients
with disease can be achieved by analyzing the clinical amoréory data. An inaccu-
rate diagnosis in many real-world biomedical settingsycamotionally stressful and

financial consequences.

The classification resulting from a diagnostic test can bst@sghtforward as the

presence or absence of the specific disease-related rhatetiaan yield an entire ar-
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ray of non-binary results. For non-binary continuous oliratl(subjective) scales, the
classification can be set by a threshold value with resuttsebr below such threshold
classified as positive or negative for disease, as apptepiiae ability to directly pre-
dict the multiple stages of a disease rather than to merstinduish between a disease
and non-disease state is often more crucial in real-wotlagons. For example, in
cancer patients in which the progression of the diseasdatwaly fast, determining
the stage of the disease is crucial to applying the appripieatment, and earlier de-
tection of the stage of the disease can vastly increasevalbility of the patient via the

appropriate medical prognosis.

1.1 Diagnostic test

From a technological and procedural perspective, the dstgntest for the classifica-
tion can be relatively simple or complex. For example, frote@nological standpoint,
the test can be a classic bacterial culture test, or it candmrgplex application em-
ploying the latest in genetic sequencing technologiesmFagorocedural standpoint,
the test may only involve one step which results in one of tnwly outcomes, positive
or negative, or it may involve a vast sequence of procedhasmay result in one of an

entire spectrum of possible classifications.

The implementation of a diagnostic test should be precmmit! on the practicality

and benefit of such a test toward the classification or priedgictf the diseased condi-
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tion. The key criteria that should be considered before @manting a diagnostic test
can be adapted from Wilson and Jungner (1968), Cole and 8wri(1980) and Obu-
chowski et al. (2001), who discuss criteria for useful soheg programs which share
similar considerations to the application of diagnostatgen general. The criteria per-
tain to the disease (first, second and third criterion), tbatiment for the disease (fourth
criterion) and to the test itself (fifth and sixth criteriorfirstly, the disease should be
serious or potentially so as to merit its use for diagnosipdtentially improve the
longevity or quality of life of the subjects. Secondly, theahse should be relatively
prevalent in the target population so as to have a poterdiafit from testing subjects.
Thirdly, the purpose of diagnosing the disease is so thantoe treated, so the disease
should be treatable. Fourthly, there must existfé@otive treatment to be beneficial for
those who test positive. The fifth and sixth criteria pertaithe medical test itself. The
fifth criterion is that the test procedure should ideallysmuno harm to the individual.
However, all tests have more or less negative impact, whétiefinancial, physical
or emotional discomfort or damage. In practicality, thesst€ should be reasonably in
context and the information from an accurate diagnosislghoeate potential benefits
to be gained by the population or individual being testede $ixth and final criterion

is the accuracy of the test which is discussed in more det#ile next section.
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1.2 Diagnostic accuracy

An accurate test is one that correctly classifies its testlatipn according to the dis-
ease or non-disease condition. Inaccurate tests cause whibsactual disease to be
misclassified as non-diseased, also known as a "false megjdionversely, they cause
those with no actual disease to be misclassified as diseasadknown as a "false
positive”. False negative errors leave diseased subjetteated. False positive errors
open subjects to being subjected to unnecessary procemhntesmotional stress. Both
false negatives and false positives may also create digitment and distrust within
the general subjects towards the medical and diagnostingesommunity as a whole,
potentially making data collection morefidcult, biased and costly. Obviously, such er-
rors must be kept to a minimum. As such, the diagnostic acgwha test is of utmost
importance and must be thoroughly assessed and understtme lsuch a test can be

used in practice.

In order to dfectively implement and assess a diagnostic test, we musiugbly
evaluate the test population, the test itself and the rieguttbservations for many fac-
tors which may influence the analysis of the accuracy by apglgtatistical method-
ologies. We must make sure that the population taking the #&s not influenced by
knowledge of their true disease classifications or that élse itself is not influenced
by knowledge of the same which could alter the accuracy ofithgnostic test. The
persons administering and assessing the results of thehestd also be blind to the

population’s true disease classifications so as not to infei¢he test results. These
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situations are more common when assessing more subjeatitogs of a study.

Many other factors canfi@ct the performance of a diagnostic test for the purpose of
detecting disease. These include biased test populatiahsite not representative of
diseased subjects in the general population, inadequateatisamples that mayfect
the results of the test, a condition of a repeat testing #milts in a positive diseased
status which may be counted as tested once rather than thctme it takes between
when the test is administered and when the results are ags@sgient related factors
(demographics, health habits, truthfulness), testete@lactors (training, experience),
environmental factors (available resources, treatmetioing, integrity of reporting),

etc.

In some cases, statistical methodologies may be enhandaohproved to generate
significantly more accurate classification predictions.other cases, a procedurally
simpler statistical methodology may prove to be relativelgre dficient than other
methodologies, without sacrificing accuracy, especiatycomputation-heavy studies
or for cases in which time is of the essence. The statistiethaus discussed in this
thesis pertain to assessment of the accuracy of a diagriesticThe analyses assume
that the diagnostic tests are conducted in an appropriatelyrolled environment. As
such, we must keep in mind the many real-world factors, agiored above, that may
influence the accuracy of such tests, for the benefit of thenpial implementation of

such methodologies.
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1.3 Measures of accuracy

In this section, we introduce and discuss various meashetgauge the accuracy of
diagnostic tests. The accuracy is a test’s ability to detexindition correctly when the
condition is truly present and to exclude the condition whe® actually absent. The
accuracy of a test is always measured by comparing the tdts¢o the true condition
status. We assume that the true condition status is eitherctbndition is present” or
"the condition is absent”. For example, in medical studibe,true condition status is
defined as the disease status. The outcome of test resutigtietest or tests under
evaluation that reveals to us the true condition statusepttient is known as a 'gold

standard’. Diferent gold standards are used fdfelient applications in diagnostic tests.

1.3.1 Sensitivity and specificity

Sensitivity and specificity are two basic measures of diagjoaccuracy. We can illus-
trate the two definitions using the following contingenclléa Table 1.1. Firstly, we

denote the true condition status by the indicator varidhrhere

1 with condition
T=

0 without condition

We denote the result of the diagnostic test by the indicadoableX. Test results

indicating the condition’s presence are calpexbitive denoted aX = 1, whereas those
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indicating the condition’s absence are calfejative denoted a¥X = 0, where

1 postive test results
X =

0 negative test results

Table 1.1 illustrates a basic count table specifying thigedent numbers under dif-
ferent categories. The total numbers with and without thedidmn aren; and n,
respectively. The total numbers with the condition whoseéresult is positive and neg-
ative are,p; and pg, respectively. The total numbers without the condition sdtest
result is positive and negative aeg,anday, respectively. The total number in the study

is N, whereN = p; + po + & + ag.

Table 1.1: A basic count table

Test results

True condition status Positive€d) Negative(>0) Total

Present(E1) Py Po ny
Absent(T=0) a A No
Total my Mo N

Thesensitivity (Sejs the test’s ability to detect the condition when the caodits
present. The sensitivity is the probability that the testuleis positivek = 1), given

the presence of the conditiom & 1), written as
Se=P(X =1T = 1). (1.1)

In table 1.1, among; humbers with the conditiom, test positive. So$ e= p;/n;.
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The specificity (Sp)s the test’s ability to exclude the condition without thende
tion. It is the probability that the test result is negatie{ 0), given the absence of the

condition T = 0), written as

Sp=P(X =0T = 0). (1.2)

In table 1.1, among, humbers with the conditiorg, test positive. ThusS p= ag/np.

We can also summarize the data by probabilities, as showalileT.2. The conse-
guences associated with the test results are also corngidére test can have two types
of errors. One is false positive errors and another onesg fag¢gative errors. We define

thetrue positive fraction§ PF) andfalse positive fraction&PF) as follows:

false positive fraction=- FPF = P(X = 1T = 0), (1.3)

true positive fraction= TPF=P(X = 1T = 1). 1.4)

False negative fractiofirNF) is 1-TPF.True negative fractiofT NF) is 1-FPF. The fol-

lowing table illustrates the relationship between them tmppbilities.

Table 1.2: Probability table

Test result

True condition status Positivé(= 1) NegativeK = 0) Total

Present(£1) Se=p/M FNF = po/ny 1.0

Absent(T=0) FPF =a;/ng S p=ag/ng 10
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In this usage, sensitivity is known as the TPF and specifisikpown as TNF. Under
various applications, the terminology for TPF and FPF isrmofliferent. In biomedical
research, the ‘sensitivity’ (TPF) and ‘specificity’ (1-FP&e often descriptors of test
performance. In engineering and audiology, the terminiektit rate’ (TPF) and ‘false
alarm rate’ (FPF) are often used. In statistical hypothesisng, the terms ‘significance

level’ (FPF) and ‘statistical power’ (TPF) are often used.

1.3.2 Predictive values

The accuracy of a diagnostic test can also be quantified bywelthe test results
predict the true condition status. As such, another impbmaeasure of a diagnostic
test ispredictive value The predictive values depend on the prevalence of the tondi

such as in a disease condition. The predictive values are:

positive predictive value PPV = P(T = 1|X = 1), (1.5)

negative predictive value NPV = P(T = 0|X = 0). (1.6)

A perfect test is one that predicts the condition perfectihat is, PP\1 and
NPV=1. Contrarily, a useless test is one with no information albe true condi-
tion status. As such, a test which does not reflect the truditon status very well
will result in a low PPV. The predictive values can tell us hideely the condition is
given the test result. The values afféeated by the prevalence of the condition. Low

prevalence of the condition may be a reason for a low PPV.daakch studies, both
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the classification probability(TPF and FPF) and the pradictalues are important and
there is a direct relationship between the two. Supposerthalence ip = P(T = 1).

A result can be directly ascertained from the Bayes’ theorem

pTPF

PPV =
pTPF+ (1-p)FPF’

(L-p)(1- FPF)

NPV = o =FPR s pl=TPR) -

1.3.3 Likelihood ratios

Another way to describe the diagnostic test is likelihood ratiogLR), which is also

widely used in research. We defipesitiveandnegativelLRs as:

mBWeU%LWH:EgzﬂIza, (1.7)
negative LR=LR(-) = Eg z 8:1 : Cl); ) (1.8)

Note that the positive likelihood ratio is the the ratio ohsiivity to the FPF. The
negative likelihood ratio is the ratio of the FNF to specifici The likelihood ratios
do not depend on the population prevalence, which are telateéhe classification
probabilities and predictive values. The LR can quantifwmouch the diagnostic test
changes knowledge of the condition status. An LR of 1.0 iaigis that the test result
is equally likely among the subjects with and without thedition; an LR greater than
1.0 means that the test result is more likely among the stgyath the condition than

without the condition; an LR less than 1.0 indicates thattést result is more likely
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among the subjects without the condition than with the cioonli The higher the LR is,
the likelier the test result is among the subjects with thedaoon relative to the subjects
without the condition. We can also consider the odds thatogestihas the condition

before performing the test which is

pre—test odds= P(T = 1)/P(T =0).

We can consider the odds of the condition with the knowledghe test result after

performing the test which is

post—test odds= P(T = 1|X)/P(T = 0/X) .

We note that the post-test odds can be expressed in terms pfabictive values as:

PPV
post—test oddéX =1) = PPV’
1- NPV
post—test odd6X = 0) = NPV

In this case, the likelihood ratios are related to these wdspwhere

post—test oddéX = 1) = LR(+) x (pre —test odd},

post—test oddéX = 0) = LR(-) x (pre —test odd}.

1.4 Literature review

The measure of accuracy of a test we introduce is often bggaddecision thresholds,

which may be dficult to detect. Lusted(1971) illustrated a way in which weildo
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overcome the limitation of a single sensitivity and spettifipair, which he first ap-
plied to psychophysics. Lusted argued that the method cotddcome the limitation
by considering all of the decision thresholds. By applying teceiver operating char-
acteristic (ROC) curve, we can describe the accuracy of gndstic test without the
limitations of decision thresholds. Lusted stated that RfDfves dfer an ideal means
of examining the performance of the diagnostic tests. Subesgly, the ROC curve has
been the most valuable and most widely used tool to descndeampare diagnostic

tests in various disciplines of medicine.

An ROC curve is a plot of the sensitivity of a diagnostic temisus the false-positive
fraction. ROC curves were originally developed for elesicssignal-detection theory
(Peterson, Birdsall and Fox, 1954). ROC curves and ROC sisdhave subsequently
formed the basis of statistical decision theory, havinghtegeplied to various medical
and nonmedical studies, including studies of human perrefDrury and Fox, 1975)
and military monitoring (Swets, 1977). Some features of ROWes, which we discuss

below, make them ideal for studying diagnostic tests.

In medical diagnostic testing, we are interested in meagutie observer’s abil-
ities for interpreting test results rather than the crtarsed for such decisions. As
such, Lusted (1971) discussed how in medical diagnostidsstenction must be made
between the observer's cognitive and sensory abilitiest@erpret the test results for
detecting the condition and the observer’s criteria usateriding whether a condition

is present or absent.
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Swets and Pickett (1982) discussed how ROC curves disgdlapsdible cutpoints
and thus can estimate the frequency of various outcomeslae#point. Furthermore,
ROC curves can apply previously generated probabilitiethefcondition, as well as
calculations of the costs and benefits of correct and incbdecisions, to determine the
optimum cutpoint. They were also the first to study the analysmultireader studies in
which several observers interpret the test results of threessample of patients. They
identified several sources of variability, as well as catiehs in multireader studies
and then created a methodology for estimating and compahnedest accuracy for

such studies.

The first to use the Gaussian model for estimating the ROCecwrare Green and
Swets (1966). They assumed the numerical value of a sengery @efined aX) af-
fects the observer’s confidence about whether the condgipresent or absent. They
also assumed a cutpoint (definedtasuch that ifX < t and X > t, then the ob-
server will choose the hypothesis that the condition is ased present, respectively.
Additionally, they assumed the Gaussian distribution oin@er each hypothesis. Fur-
thermore, Dorfman and Alf, Jr (1968, 1969) proposed maxinrtikglinood estimates
for the parameters of a binormal ROC curve, and provided atetlogies for obtaining

the variance-covariance matrix and the corresponding @emnde intervals.

The most widely used summary measure for the test accura®pQf analysis is
the area under the ROC curve (AUC). Hanley and McNeil (198@Yiped a relatively

simple methodology to estimate AUC without having to asstimeedistribution of the
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test results. Interestingly, they noted that AUC is eq@imato the Wilcoxon 2-sample
test statistic. They developed a method for calculatingsasize for studies that apply
the ROC curve area. Several other nonparametric methodsldgve subsequently

been developed for estimating and comparing ROC curves.

McClish (1989) stated that AUC was a global measure of astasturacy. He pro-
vided parametric methods for estimating and comparing &neegb area under the ROC
curve. These parametric methods are based upon a binornul rand parallel the
MLEs of the area under the total ROC curve. Many statisticathrmds were developed
shortly after these investigations for the estimation & ROC analysis for two-way

classification.

However, many real-world classification problems involverenthan just two cat-
egories and the extension of the two-way ROC analysis isatee&curfield (1996)
first mapped the mathematical definition of a proper ROC nreafsu more than two
categories. Recently, ROC methodology was then extendeuiliple-class diagnos-
tic problems by introducing a three-dimensional ROC s@faMossman (1999) in-
troduced the concept of three-class ROC analysis into rakbdécision making. Nakas
and Yiannoutsos (2004) were the first to consider the esttmat the volume under the
ROC surface for ordered three-class problems by using tisstaheory. Li and Fine
(2008) further proposed the estimation of the volume urnfieROC surface (VUS) and
the hypervolume under the ROC manifold (HUM). They also pted the estimation

of the multiple-class ROC measures and applied the multigles ROC analysis as a
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model of selection criterion in microarray studies. Li arttbd (2009) considered non-
parametric and semiparametric estimation of the ROC sesfby approximating the

asymptotic ROC surfaces with multivariate Brownian briggecesses.

In medical research, it is also important to evaluate theuarfactors that can in-
fluence the medical performance. Great interest has be@emshaleveloping methods
for combining biomarkers. Statistical regression analysis recently been studied to

make inferences about such factors and biomarkers.

Han (1987) originally developed the maximum rank correlaistimator (MRC),
which was considered as a generalized regression modelnpfanametric analysis.
It has recently been applied to assess classifications ea#uts close relationship
to the ROC curve. Optimization algorithms that maximize #nea under the ROC
curve have also recently been proposed. Pepe (2003) dedetmgiimal prognostic
scores by applying binary regressions. The optimal lineartwnation is attained from
several available diagnostic biomarkers from which we se@kaximize the area under
the ROC curve among all the possible linear combinationkerbinary data analysis.
Enrique et al. (2004) suggested how to obtain the confidenieeval for the generalized
ROC criterion, conditional on given covariate values antivee some inferences under
the normal distribution assumption. Theory of the consisyef the optimal confidence
interval is based upon the argument which comes from She(&®98), relying on a

general method for establishing the limiting distribut@ra maximization estimator.
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1.5 Aim and organization of the thesis

Over the last few decades, the most commonly used metho@vdtrating the accu-
racy of numerical diagnostic tests in two-category classiifbn problems have been the
receiver operating characteristic (ROC) curve and the amdar the ROC curve (AUC)
measure. AUC characterizes the probability that a test oarectly diferentiate be-
tween two subjects. Anfkective diagnostic test has an AUC value greater than 1
However, as the number and breadth of applications for AUCierelated measures
expand in the field of medicine and in clinical studies, weehawgticed that the AUC
values are at times actually lower thaf2.1Some researchers might ignore such AUC
values as trivial data points. But in reality, they may bertnaking important test sub-
jects, such as genes, for the classification. In this thegigointed out a fundamental
weakness int the AUC method of interpreting ROC curves, tiq@dar improper ROC
curve. We studied and examined the cases when the estimbi@€d/alues are lower
than J2. A better way to interpret the ROC curves is to examine thie i the like-
lihood of the test results with the condition and without tmadition. We suggested
to reverse the decision rule and use a screening methoddprg\significant further

insight into the data and the diagnostic test itself.

Identifying the correct classification for multiple-categ problems is compara-
tively more complicated. The volume under the ROC surfadg§yand the hypervol-
ume under the ROC manifold (HUM) are extensions of the AU@emrated for three or

more category classifications. The nonparametric estimati VUS or HUM is asso-
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ciated with calculating the probability that three or moagegjories are simultaneously
ordered correctly by the particular test. However the nratitéecal procedure to cor-
rectly predict the relative order is not as obvious as in e tlass problems. In this
thesis, we consider parametric and nonparametric metlooaddress the elements of

the multiple-category issue.

The U-statistic approach for calculating the variance efrtbn-parametric estima-
tor of the area under the ROC curve has already been propéteudever, as sample
sizes increase, the advantage of the U-statistic methggaceavily diminished, and
the U-statistic variance methodology for the case of migdtmategories is generally not
appropriate. To solve the computational burden as the diroerof the problem in-

creases, we propose bootstrap standard errors for theptaedtitegory ROC analysis.

In practice, many factors can significantly influence theuaacy performance of
a diagnostic test. Various information resources will ddgoavailable to assist in the
medical prediction. However, at the core is the need to combiultiple biomarkers
and factors in order to predict an accurate outcome. As gpeht interest in developing
methods for combining biomarkers is widespread. Here, weldp an optimization
procedure by constructing a linear combination of markeas thaximizes the VUS or
HUM of the resultant combined marker. We also provide asytinptheories for our

estimators based upon the maximum rank correlation estimat

Concerning the organization of the various subjects meati@bove, this thesis has

been divided into five main chapters. Chapter 1 provides @adaoction and review of
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some of the basic accuracy measures of statistical ROCsasaly

In Chapter 2, we improve the procedure for the area under @€ Burve in the
situation that the estimator of AUC is less thg@.1In fact, contrary to some prevail-
ing practices, the test with an AUC lower thaf2 Tan still be shown to be useful for
differentiating the two classes. We present a method which eppeeotate the ROC
plot 180 degrees so that it emerges in the upper side of thecehdiagonal line. An
example is provided which pertains to an ovarian cancersdatased in a population

screening.

In Chapter 3, an extension of the two-class ROC analysisapgsed for three-
category classification problems. The relationship betwtbe area under the ROC
curve and the volume under the ROC surface is examined. \W®pecapproaches that
assess the multiple categories by using simple summaigtatatsuch as the sample
mean. Moreover, a general discussion on the minimum addepklUM values is
applied to multiple-category classification problems. Tégults of simulation studies
we conducted that examine the performance of our proposddonte for sorting the
unknown orders of multiple categories is also presentedu¥eemicroarray and mass

spectrometry datasets to illustrate our methods.

In Chapter 4, we explore statistical methods of combiningfipie tests for multiple-
category classifications to optimize the accuracy of thelioed marker under the cri-
teria of ROC measures. Appropriate statistical procedaresieveloped by extending

the maximum rank correlation estimators to high-dimernsi@eases. Simulation stud-
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ies are then conducted to investigate the performance girtty@sed inferences. We
also apply our proposed methodology to two examples usitey fdam recent health

science studies.

In Chapter 5, we fier concluding remarks and discuss possible paths for future

research.
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Chapter 2

Two-class ROC Analysis

The ROC curve is considered the most well-developed statistpproach for describ-
ing and evaluating the performance of diagnostic tests. B@@es have been used for
a relatively long time. In 1966, Green and Swets developgaasidetection theory in
psychophysics, which appeared to be a potential methodddical diagnostic testing.
In 1971, Lusted pointed out that this method could be adofdednedical decision
making and stated that the method could overcome limitatafra single sensitivity
and specificity pairs. Since then, this method has been tist vatuable and popular

tool for describing and comparing diagnostic tests, paldity in medicine.
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2.1 The ROC curve

An ROC curve is a plot of the sensitivity of a test which is ptoton they axis versus
the test’s FPF which is plotted on tkexis. Different decision thresholds can generate
different points on the graph. Line segments are often used teecbthe points from
different possible decision thresholds, formingeampirical ROC curve The diagonal

line is called achance diagonal

Figure 2.1: An example of an ROC curve
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Figure 2.1 illustrates an example of an ROC curve. In thisréigeach circle on
the empirical ROC curve represents a (FPF, Se) point caynepg to a particular
decision threshold. There are seven decision threshola$hwhovide (FPF, Se) points
in addition to the two points, (0,0) and (1,1). Line segmerusnect all the points
generated from the seven possible decision thresholdshendarm aempirical ROC
curve It is also convenient to connect all the possible pointagisi smooth curve

which is called ditted ROC curvegillustrated in Figure 2.1.

Tests are usually ordinal in nature. For example, the dirsgmptoms in medical
research are often classified as severe, moderate, mildarptesent. But it is often
convenient to use a statistical model to fit the test reshilésv we discuss the continu-
ous ROC curves. We use a threshpolith define a binary test from the continuous test

resultX as

positive if X>r,

negative if X<r.

The corresponding true positive fraction at the threshioldPF{) and false positive

fraction at the threshold FPF§) are defined as

TPE(r) = P(X > 1T = 1), (2.1)

FPF(r) = P(X > T = 0). (2.2)
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The set of all possible TPFs and FPFs forms an ROC curve attéydichotomiz-

ing X with different thresholds. That is, the ROC curve can be written as
ROQ() = {(FPF(r), TPF(r)), r € (—o0, c0)}. (2.3)

Whenr = oo, thenlim,_ ., TPF(r) = 0 andlim,_.FPF(r) = 0. Whenr = —c0o, then
lim._,_TPF(r) = 1 andlim,_,_.FPF(r) = 1. We also notice that when the threshold
r increases, both FPF(and TPF() decrease. Thus, the ROC curve is a monotone

increasing function. The ROC curve can then be written as:

ROQ() = {(t, ROQD), t € (0, 1)}, (2.4)

where the ROC function magsto TPF(r), andr is the threshold corresponding to

FPF()=t.

Let (FPF(), TPF()) be a point on the ROC curve fot. For any strictly increasing
function h of X, we haveP(h(X) > h(r)IT = 0) = P(X > r|T = 0) andP(h(X) >
h(r)IT = 1) = P(X > r|T = 1). Thus, the ROC curve is invariant to strictly increasing

transformations oX.

Let S; andS, denote the survivor functions fof with the condition and without
the condition:S;(X) = P(X > X|T = 1) andSy(x) = P(X > XT = 0). Letr = S;(t)
be the threshold corresponding to the EPBo thatP(X > r|T = 0) = t. Therefore the

ROC curve can also be represented as:

ROQt) = Si(S; (1), te(0,1). (2.5)
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The ROC plot has many advantages compared to other mea$acesicacy (Zweig
and Campbell, 1993). An ROC curve can visually represent#ia’s accuracy. The
scales of the ROC curve plot are two basic measures of agcuiaich can be easily
read from the plot. The ROC curve includes all the possibtesiten thresholds so that
there is no requirement to select a particular decisiorstiolel. Because sensitivity and
specificity are independent of prevalence, the ROC curvedispgendent of prevalence
as well. The ROC curve is also independent of the scale oefftaésults. That is, the
ROC curve does not vary to any monotonic (e.g., linear, itigaic) transformations of
the test results, which is a useful property (Campbell, 1J98#A0other advantage of the
ROC curve is that it can provide a direct and visual compare&fdwo or more tests on
a single set of scales. It is possible to compafiedent tests at all decision thresholds

by constructing the ROC curves.

2.2 Summary indices

Some summary indices associated with the ROC curve are wdeshto summarize the
accuracy of a diagnostic test and provide important infaimneabout the ROC curve.
When the ROC curve is not feasible to plot, such summary nmessan also provide
important information about the ROC curvérea under the ROC curv@@UC) and
partial area under the ROC curv®?AUC) are two important summary indices which

are particularly useful in certain situations.
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2.2.1 Areaunder the ROC curve

ROC curve is a useful measure to summarize the accuracy afgnastic test. An-
other valuable measure associated with the ROC curve arézeunder the ROC curve
(AUC). The area under the ROC curve takes values betweennd..8. A perfect
diagnostic test is one with an area under the ROC curve ofrild@ansists of two line
segments: (0,0)-(0,1) and (0,1)-(1,1). In contrast, avgst an area of 0.0 is perfectly
inaccurate. However, perfect diagnostic tests are rare. aféa under the ROC curve
can be interpreted as the average of sensitivity for all iptesssalues of specificity.
It can also be interpreted as the average value of specifanitgll possible values of

sensitivity.

The area under the ROC curve is a widely used summary measucerhparing

ROC curves which can be defined as (Bamber (1975))
1
AUC = f ROQt)dt. (2.6)
0
Obviously, if two testA; andA, are ordered as
ROGy, (t) > ROGy(t). Vt e (0,1),
then the corresponding AUC statistics are also ordered as
AUC,, > AUC,,.

However, the converse of the above is not necessarily true.
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As discussed in the previous section, the ROC curve can bpneted as

ROQt) = Sy(S;(t), te(0,1).

Here, we denote the test results with the conditioXaand the test results without the

condition asX,. Thus, we have

1 1 00
AUC = fo ROQt)dt = fo Sy(S;4(D)dt = f S1(X)dS(X) = P(X1 > Xo).

—00

Figure 2.2: AUGP(X; > X;)
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FPF(x)=P(Xz>x)

The AUC has another interpretation. It is equivalent to trebpbility that the test
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results from randomly selected subjects with the condaiwshwithout the condition are

correctly ordered, by the form &(X; > X;), asillustrated in Figure 2.2 (Bamber,1975).

An important link between the area under the ROC curve andNtheoxon 2-
sample rank-sum statistic or, the Mann-Whitney U-statisxists. Note that the Mann-
Whitney U-statistic is based upon an estimat®@f; > X,), in which it is exactly the
area under the ROC curve. So the properties of the Mann-\&hithstatistic can be

used to predict the statistical properties of the area utihdeROC curve.

2.2.2 Partial area under the ROC curve

Another summary measure associated with the ROC curve psitttial area under the
ROC curvg(PAUC). There is particular interest in the area under aigoif the ROC
curve. The partial area under the ROC curve is the area betieesensitivities, which

can be defined as

PAUC(to) = fo ’ ROQ(t)dt,

wherety € (0,1). Its values range frortg/2 for a completely uninformative test tg
for a perfect test. Dwyer (1997) interpreted the partiahawader the ROC curve as
the probability that a randomly chosen subject without thiedition will be classified
correctly from a randomly chosen subject with the conditidro tested negative in a
diagnostic test. The partial area of test performance isapp for some special cases

and is also well established in many clinical tests.
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2.3 The binormal ROC curve

The normal distribution is a classic and widely-used moaldEscribe distribution func-
tions. Now we apply the binormal distribution model to the®€urve. The binormal
ROC curve plays a significant role in ROC analysis. Suppoakttte test results are
normally distributed in the populations with the conditiand without the condition.

Assume

Xl ~ N(,ul, 0'%), XZ ~ N(,uz, 0'%)

For any threshold, we have

TPF(r) = P(X, > 1) = o(*2=1)
01
and
FPF(r) = P(X > 1) = o(*2—1)
02

where® denotes the standard normal cumulative distribution fonctWe see that for

a FPF, the corresponding thresholdris= u, — o,®1(t). Hence,

ROQ) = p(HL—!
(oa

) = @(M + Qq)—l(t))_
1 01 01

Then the AUC measure has an analytic form. Recall &1aC = P(X; > X;) =

P(X1 — X; > 0). The AUC can be represented with the binormal assumpsion a

AUC = P(X; — X, > 0) = o(-LL2H2

[ 2 2
0'1+O'2



Chapter 2: Two-class ROC Analysis 29

If we definea; = ,ul(; H2 anda, = ?, then the ROC curve and AUC measures can be
1 1
written as
ROQt) = ®(ay + a,d (1)) (2.7)
and
a
AUC = O( ). (2.8)

1+

Recall that the ROC curve is invariant to monotone increpsiansformations. If
X, and X, are normally distributed and is a monotone increasing function, then the

ROC curve for the transformatioh§X;) andh(X,) is also the binormal ROC curve

ROQ) = ®(ay + adX(t)).

2.4 Estimating summary measures

We defined the ROC curve and introduced its properties in theiqus section. We
now discuss the statistical methodology for estimatingRB€ curve and the summary
measures. Firstly, we apply nonparametric empirical aggres to obtain the empirical
ROC curve. Then we apply the parametric methods usingtitatisnodels to estimate
the ROC curve and summary measures. Finally, the nonpatiametthods will be

introduced.
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2.4.1 Empirical estimation

Assume that the numbers for the test results with and wittl@mutondition arey; and
n, . Xy, and X, are selected randomly from the populations of test resulis and
without the condition, respectivelyXy,i = 1,...,n;} are identically distributed with
the population survivor functioB®;(x) = P(Xy, > X). Similarly, {Xz, j = 1,...,n} are

identically distributed with the population survivor furmn S;(x) = P(Xy; > X).

The empirical estimator of the ROC curve can easily be dérfvem the defini-
tion of the ROC curve. For each possible threstmlthe empirical TPF and FPF are

calculated by

Ny

TPFE(r) = Z 1{Xqg, > r}/my

i=1

and

FPE(r) = Z 1{Xo, > 1}/,

j=1

wherel is the indicator function. The empirical ROC curve can besidered as a plot
of TPE(r) versusFPF(r) for all r € (o0, ). Therefore, the empirical ROKOCcan

be directly obtained from the definition of ROC curve as
ROQ) = S4(S;'(1)). (2.9)
Where§1 and§2 are the empirical survivor functions fof; andX,, respectively.
Note that the empirical ROC curve is a function of the rankthefdata. It is related

to the ordering of the test results and the status of the idhaials with and without the

condition.
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Now we consider the sampling variability for the empiricdD® curve. One of
the ways to assess the sampling variability is to assumes#tedsults are continuous.
Firstly, we fix the FPR. Then we determine the estimated threshold corresponding t
t. We then determine the proportion of the observations withdondition with test
results above the threshold. Hsieh and Turnbull (1996)ideal/a result of variability
of ROCin the case of independent continuous test results. Whemutimders ofX; and
X,, n; andny, are large, the distribution (0Q(t) is estimated by a normal distribution

with meanuroqy and variance given by

var(ROQ() = = Roqt)(ln:” Roay) (glgz*;)zt(l H (2.10)

wherec* = S;(t), g; andg, denote the probability densities f&f andX,, respectively.
This variance oROQ(t) is broken into the sum of two components. The first com-

ponent derives from the binomial variability of the estiech PF when the threshotd

is fixed. The second part derives from the estimatio8g{t).

Similarly, the form of the confidence interval for the ROQ{#sed upon the asymp-

totic normal approximation to the distribution BOQ(t) is

ROQ() = ©7(1 - )  Var(ROQ).

wherea is the significant level.
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2.4.2 The estimation of the area under the ROC curve using pa-

metric model

As defined in the previous section, a general form for the aneier the ROC curve is

1
AUC = f ROQ(t)dt.
0

When we assume binormality, this integral can be written as

a

wherea; anda, are defined in the previous section. The AUC summary meakare t

AUC = @ ),

is estimated with

—

AUC = o(— 2Ly - g fazfe 2.11)

1/1+a’?22 1/5’%+5’§
McClish (1989) derived the variance of AUC as
Var(AUC) = f2Var(a) + f2Var(a) + 2f; f,Cova, &),

where

2 2 2 2
g-ay/2(1+a3) a.a e &/2(1+a)
ff=———— and f=-22

Jr(l+ &) Jrr a3

The variance can be estimated by substituting estimatothégparametersa; anda,.
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2.4.3 The estimation of the area under the ROC curve using nen

parametric model

AUC can also be estimated directly from the nonparametrithotewithout making

any distributional assumptions. The estimation can bectir@btained by summing

the trapezoidal areas which are formed by connecting alptissible points of the

ROC curve.

Figure 2.3: The trapezoidal rule
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0.0
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Figure 2.3 illustrates the area calculated by the trapetomthod formed by con-

necting all the possible points.
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By increasing the number of the possible threshold poihesbtas of the estimation

can be significantly reduced and make it acceptable for t@ason.

It is noted that AUC is equivalent to the Mann-Whitney U-sttid. Therefore, AUC

can be estimated by

17 ny 1
AUC= ) ) 11X > X))+ Xy =X }]/mne. (2.12)

=1 =1

The corresponding variance is relatively complicated. Mbar of methods used
to estimate the variance of the nonparametric area haverbeemmended. One result

from Hanley and McNeil (1982) is given by

AUC(1 - AUC) + (n; — 1)(My — AUC?) + (n, — 1)(M, — AUC?)
NNy ’

var(AUC) =

where

My = P(Xy, = Xo, Xor = X,),

Mz = P(Xy = Xg;, Xy, 2 X2),

in which (Xy,, Xy/) denotes the randomly selected pair of observations frenpépula-
tion with the condition andX,, XZ]) denotes the randomly selected pair of observations

from the population without the condition.

Another nonparametric approach is using the kernel smogthniethod to provide a
smoothed ROC curve. For the kernel method, there are tworgdeas that need to be

specified; the choice of kernel and the choice of bandwidth.



Chapter 2: Two-class ROC Analysis 35

Zou, Hall and Shapiro (1997) suggested a kernel method ito@&# a smooth ROC
curve from continuous data. The Gaussian kernel was chofkay recommended
estimating the points on the ROC curve through the integrah® density function
with the conditionf;(x) and the density function without the conditids{x), where the

density functions are estimated as

£(x) = hZ (X X” =12

The functionk is called the kernel ant}; is the bandwidth. There can be numerous

choices of kernel and bandwidth. They suggested using ttmeke
k(X_TX” —[ Yl al Y]? for xe (X —hi, Xij + hy),
wherek = 0 otherwise, and the bandwidth
hi = 0.9min(S D, IQR/1.34)/ 1,

where SD is the standard deviation and IQR is the interdaagihge for the observa-

tions of subjects with the condition and without the coruditi

The kernel estimator is reasonable when the choice of baltdwa chosen and the
sample size is large. However, it idfiltult to prove that the resulting smoothed ROC
curve will increase in a monotone manner. Therefore it iswdely applied in the real

data analysis.
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2.5 Cases when AUC is lower than/P

2.5.1 The method

Most ROC curves lie between those of the perfect and usedstss tvhich is above the
diagonal chance line and below the left and upper bordereopdsitive unit quadrant.
A useless test corresponds to a test which produces idedistebutions forX; and
X,. However, a diagnostic test can have an ROC curve with a heoglrtion of the
ROC curve lying below the chance diagonal line. These cuavescalledimproper

ROC curves

AUC can be interpreted as the probability that a test cdyrécfferentiates between
two subjects, one with the condition and one without the @and which is equivalent
to P(X; > X;). A useless test corresponds to a test which produces déwfistri-
butions forX; and X, and has an AUC value equal tg2lwith an ROC curve on the
chance diagonal line. Anfiective diagnostic test has an AUC value greater than 1
The area under the improper ROC curve then will have an AUGevainaller than/2.
This could happen especially often in large scale micrgastadies where thousands
of genes are compared for their diseastedential abilities according to their AUC val-
ues. However, we have sometimes noticed that researchgtg overlook this issue
and report AUC values lower thai2l Without a proper arrangement of the order of
the two groups for individual genes and simply reporti?{g; > X,) uniformly for all

the genes, it is likely that we might miss some important gemeose AUC should be
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defined byP(X, > X;). There can be one fundamental weakness in the AUC method of
interpreting ROC curves when the improper ROC curves existact, the test with an
AUC lower than 12 can still be useful for dierentiating the two classes and should be

regarded as a better test than the one with AUC valugf 1

An idea for correcting this problem is to rotate the plot b) tgégrees, illustrated in
Figure 2.4. Then it will appear in the upper side of the chatiagonal line, from graph
(b) to graph (a) in Figure 2.4. A better way to interpret RO@ves is to examine the
ratio of the likelihood ofX; andX,, in the spirit of Neyman-Pearson. For example, if
the support oiX; andX; are disjoint, then we have a perfect test, but the AUC need not
to be 1 or 0. In particular, it can take the value of 0.5. Thesiteads to a correct AUC

definition as the probabiliti? (X, > X;) instead of the rigid stipulation d?(X; > X5).

To make the 180 degree rotation, the ROC curve can easily &regeld to appear
above the chance diagonal line by reversing the decisian fmihis screening method
can assure that the ROC curves are correct and useful. ©herah practice, if we
obtain an AUC value lower than4, we use one minus this value to produce the correct

AUC value, which is

AUC if AUC>1/2;
AUC =

1-AUC if AUC<1/2.

The nonparametric estimation of the improved AUC will be shene as the estima-

tion of AUC in the previous section.
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2.5.2 Example

One such example was evidenced in a recent statisticalgadiolh. Pepe et al. (2003)
analyzed a publicly available ovarian cancer dataset usedpopulation screening.
This dataset was obtained from a gene-expression expdrimsery glass arrays for
1536 cDNA clones studied by Dr Michel Schummer (Institute $ystems Biology,

Seattle). It is a case-control study with 1536 potentiagd@stic tests. The scientific
objective from the dataset is to identify genes which afiedentially expressed in ovar-
ian cancer tissue, compared with the normal ovarian tisBoe experimental data were
used to rank potential genes according to some statistieakare characterizing dif-
ferential expression. They considered statistical metltodank genes (or proteins) in
regards to dterential expression between tissues and argued that twsunesarelated

to the ROC curve are particularly suitable for their purpose

In their paper, Pepe et al. focused on the detection of opeessed genes, whereas
the adaptation of the methods for the detection of undeesgad genes is relatively
straightforward. Pepe et al. stated that there were manysgeverexpressed in cancer
tissue making the detection of screening markefBcdit. Thus, they suggested to
select a sizeable number of overexpressed genes to arav&uiset which might have
potential for screening. Using subsets wé&@&ive because clinical assays for some
gene products were ftiicult to develop for technical reasons. In their methodsn# o
gene proved useless for biomarker development, they pdingeieanother that could

potentially identify the same cancers. They chose the fiiBtdenes in the dataset and
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displayed the top 10 genes ranked according to AUC valuese @8 was ranked as
the optimal one with the largest AUC value of 0.971, with thege of the top 10 gene

ranking as (0.736, 0.971).

We did a similar calculation on AUC for these 100 genes wittappropriate ad-
justment for the order oX; andX; for each gene. Among the 100 genes, 51 genes have
AUC values lower than/2, some of which are even close to 0. It might be because of
the improper ROC curve existence. One reason is that whesetistivity and FPR are
calculated, the criterion or the decision rule is inappiaterfor some of this dataset or
the author used a single decision rule at the same time wielsize of the variables
are large. Another reason may be because of the imperfemtal@iy techniques for

measuring gene expression with microarrays.

We applied our improved method by rotating the original R@€&/e by 180 degrees
to correct the ROC curve. After calculating the estimatibAJC using the nonpara-
metric approach we mentioned, this resulted in new AUC \safaethe first 100 genes.
Our results were compared with Pepe et al. (2003) in FigireSurprisingly, a totally
different ranking appears and only one of the top 10 genes agitteBepe et al. The
first column in the table is the AUC values of the first top ramgkfrom the paper of
Pepe et al. The second column is the AUC values of the first 2@awoking after the
correction in our improved approach. The last column is tireesponding AUC values
for each gene. Boxed genes represent the top 10 genes witirglest AUC values in

Pepe et al. (2003). Circled genes represent the top 20 geaew¢re not identified
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by Pepe et al. (2003). Our second highest AUC is 0.933 whightitiave been mis-
takenly calculated as 0.067 and thus placed at the bottormeofanked table by the
authors. The second highest AUC in Pepe et al. (2003) is amlyed 11th on our list.
Nine genes with AUC higher than this one were unnecessamigesied out previously.
Consequently the gene ranking from such an analysis magadshe subsequent med-
ical decision making. Our new improved approach enhaneepribcess of identifying

the biomarkers and allows the screening to be more accumédenative and inclusive.
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Figure 2.4: Improved method
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Figure 2.5: AUC and gene ranks reported in Pepe et al. (2003)

AUC and gene ranks reported in Pepe et al. (2003)

Rank  XUCs not consitered AUCs considered | AUC
1 E :E 0.971
2 @ 0.933
3 0.931
4 GO 0917
5 0913
6 s> 0913
7 0.909
8 0.893
9 0.883
10 G 0.877
11 0.871
12 0.865
13 0.855
14 ED) 0.842
15 0.806
16 0.793
17 0.789
18 0.783
19 0.761
20 0.736

Box: top 10 genes with the largest AUCs in Pepe et al. (2003)

Circle: genes in the top 20 that were not identified in Pepe et al. (2003)

Note: the AUC values of all genes were estimated using the new method where
the values for the top 10 genes identified by Pepe et al (shown in bold font)
remain unchanged.
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Chapter 3

Sorting Multiple Classes in

Multiple-category ROC Analysis

As we discussed in the previous chapter, the ROC curve isfalusgatistical tool to
evaluate the accuracy of continuous diagnostic tests. Tfe &urve and AUC are ade-
guate to assess the two-category classifications. Howenagry real-world biomedical
situations have more than two classes. For example, inipeadt is more crucial to
predict the stage of a disease rather than to only distindheésveen a disease and non-
disease state. A major limitation of the two-class ROC asialig that it can not give a
complete picture of how well a test discriminates betweenertiwan two classes. Thus,
ROC analysis methods capable of handling multiple clasgesssential to fully assess
diagnostic performance. Unsurprisingly, there is gresdrest in the medical research

field to develop methods for multiple-category classifmati
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3.1 Assessing three-class problems

3.1.1 ROC surface

Scurfield (1996) proposed the three-class ROC surface whian extension of the
ROC curve. Consider three classes, denbteld, andl;. The observer’s decision for
the classification is based upon three decisions, demhteld, andds. We consider the
three variableX,, X,, andX; as the test result variables from three classes, say Class I,
Class Il and Class lll. These three variables can be repied@s conditional random
variable on variableX. Suppose the observation valuexjswvhich is a particular value

of the random variablX. Assume that the observer’s decision is made with reference
to the values of two thresholds, denotedandr, (r; < r,). The observer uses the two

thresholds to partition X into three intervals.

If ry < ry, the observer’s decision rule is as follows:

if Xx<ryq, then d,

if ry<x<ry, then d,

if ro<x then d.

The values of the thresholdsandr, are determined by the prior probabilities of the
classes and by the costs associated with each decisiomoai®well. For instance, if
it is known that the second claksoccurs more often than the other two classes, then
the width of the interval between andr, should be constructed so as to encompass a

significant portion of theX; distribution. One assumption is that the observer will gues



Chapter 3: Sorting Multiple Classes in Multiple-categoi@® Analysis 45

wheneverx coincides with the value of one of the two thresholds. Thiesging will

occur only whenX is discrete, which can be summarized in Table 3.1.

Table 3.1: Decision probabilities

Decision probability

Conditon P(d)  P(d)  P(dy)

X=ry<rp pPu P12 0
r<rp=xX 0 P22 P23
X=ry1="r P P32 P33

The decision probabilities can be summarized in Table 312.sum of the decision
probabilities is equal to one across each row. We noticewlinx = r; < rp,
P(d;) = 0. That is becausg is associated with both the decision alternatideandd,.

Similarly, whenr; < r, = X, P(d;) = 0 because, is associated witk, andds.

Table 3.2: Probability table

Decision

Class d]_ d2 d3

Iy P(dylly) P(dall)) P(dslly)
o P(dillz) P(dall2)  P(dsll2)

I3 P(dills) P(dalls)  P(dslls)

In Table 3.2, each entry in the table specifies the probglfidt a particular decision
is made given the presence of a particular class. The taklsikaegrees of freedom

and the sum of all the probabilities across each row is equahé. The decision rule



Chapter 3: Sorting Multiple Classes in Multiple-categoi@® Analysis 46

is based upon; andr,. Therefore, the probabilities that a particular decismmiade

given the presence of a particular class can also be repegsas

P(dlli,) = P(Xi, <r1), (3.1)
P(dzlli,) = P(ry < X, <r2), (3.2)
P(d3lli;) = P(r2 < X,), (3.3)

where{iy, i, i3} is a permutation ofl, 2, 3}.

The surface generated by these equations, conveyed astkétigvia vary over the
domain ofX, is called thd;i»i3-ROC surfaceln total, there are six ROC surfaces. All
the six ROC surfaces are associated with the three decidipds andds; paired with

the three classds, |, andls, respectively.

If X is discrete, the probabilities of decisions conditionaloparticular class will

be associated with those in Table 3.1, described as follows:

P(Xil < rl) + p11P(Xi1 = rl); rh<rs;
, (3.4)

P(Xi, <r1) + pasiP(Xi, =r1); ri=rn;

P(dlllil) =

P(rl < Xi2 < rg) + p12P(Xi2 = rl) + pgzP(Xiz = rg); M <rp
P(dyll;,) = ,  (3.5)

Ps2P(Xi, = r1); rA=r;

P(ro < Xi;) + p2sP(Xi; =12); ri<rp
P(dslli,) = ) (3.6)

P(ro < Xi;) + passP(Xi; =r1); ri=r;
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3.1.2 Volume under the ROC surface

Thevolume under each ROC surfaf@US) is related to the distinctions of the three
classes. Xy, X;, andX; are identically distributed, then equation& 3 3.3 and equa-

tions 34 — 3.6 indicate that
P(chlli,) + P(di]li,) + P(dyli;) = 1.

A fundamental result is that the volume under thigis ROC surface will be a sum of

probabilities as follows:

1 1 1
VUS = P(Xil > Xiz > Xi3) + EP(XH > Xiz = Xi3) + EP(XH = Xiz > Xi3) + EP(Xil = Xiz = Xig)'

If Xis continuous, then the last three components on the righttkide are all zero.

That is, VUS can be expressed as

VUS = P(X;, > X, > X,). (3.7)

The VUS accounts for six orderings Bf, X,, andX3; when considering all the per-
mutations. The six orderings are mutually exclusive anchagtive. Hence, it follows

that the sum of the six VUSs will be equal to one. That is,

D VUS, = 1.

iizi3

The ROC surfaces show how well the observer can discrimineteeen all the
three classes and also show how well the observer can disaterbetween each pair

of the three classes.
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The ROC surface and VUS are two measures which are exterditins two-class
ROC curve and AUC. Now we focus on the relationship betwee®s¥bd AUC. Tradi-
tionally, the ROC curve is a plot of the FPF versus the TPFaR#tat one fundamental
result of the theory of signal detectability provided by Bamnstated that the area under

the 12-, 13-, 23-ROC curve could be written as
1
AUC = P(Xii > Xiz) + EP(Xil = Xiz),
where{iy, io} is (1, 2) or (1, 3) or (2 3).

As discussed, AUC is related to a particular orderingkpfand X,. If X is con-
tinuous, then the second component on the right-hand sideress AUC is equal to
the probabiityP(X, > Xi,). There are three ways th&i, X,, andX; can be ordered
such thatX;, > X, in the ordering. EitheiX;, > X, > X, or X, > X, > X, or

Xi, > Xi, > Xi,. Therefore,
AUC = P(X; > X,) = P(X, > X, > X;,) + P(Xi, > Xi, > X,,) + P(X, > Xi, > X,,).
It is equal to say that

AUGC;, = VUS,.i, + VUSi,i, + VUS;,,i,-

In this case, AUC can be determined from the volumes undisrdnt ROC surfaces
because of their relationship. Each area underth&®OC curve can be represented by

a sum of VUSs with a special ordering. Thus, there existseatinelationship between
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them which can be written as

A 1100 1 0| VUSs
A 11100 0 vuss,
Aoy 00110 1| VUSyus
A23_101100 VUS,3
Aa1 00011 1| VUSso
A 0100 1 1)/ VUSsx

However, generally, VUS cannot be determined from AUC. diothat the & 6 matrix
on the right side has a determinant of 0. That is, this masrigimgular and has no
inverse matrix. Therefore, this linear equation cannonberited to express the VUS in

terms of AUC.

VUS is equivalent to the probability of correctly classifgithe three classes. We
know that the probability can be calculated by the integraif of the density function
in the continuous case. Here we use integration to expresgws. The probabilities
that a particular decision is made given the presence oftecplar class are based upon
the two criteriar; andr,. When the two criteria; andr, vary over the domain, the

volume under thé;i,iz ROC surface should be

+00 ]
VUS = f f o(cll, ) Jidrsdry,

where

ap(dalli,)  ap(dalli,)
13| = orq or, ,
ap(dslli;)  dp(dslli,)
orq or,
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and {y, i»,i3) is a permutation of (1,2,3).

The probabilities that a particular decision is made giverresence of a particular
class can also be expressed by the integral form of the @ameléng density function

as follows:

p(dyl,) = f " f(xh,)dx
Bl = f "l )dx

p(dsll) = f  f(xl)dx

where f is the probability density function for the continuous ca3énen|J| can be

written as

—f(ralli,)  f(raly)
|J] = = f(ral2) f(rall3).

0 —f(ralli,)

Therefore, VUS can be expressed by integral form as

—+00 Io 1
VUS:f fff(xllil)f(r1|li2)f(rzllis)dxdrldrz,

where—oco < X <rqy <y < o0,

In the previous chapter we applied the binormal distributioodel to the ROC
curves which plays a significant role in ROC analysis. In tiree-class ROC analysis,
we also apply the normal distribution model to explore itsgarties. Recall that AUC

under the binormal distribution assumption has a form of

AUC = (—2 ),
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wherea; anda, are defined as before.

Similarly, we assume the normal distribution for the thotsess case. Here for sim-
plicity, we only consider the case under the 123-ROC surifagéhich the VUS is the
probability P(X; > X, > X3). The other five VUSs will have similar forms. Suppose
X1 ~ N(u1,02), Xa ~ N(uz,03), andXs ~ N(us,03). Xq, Xz, and X3 are mutually

independent. Then,

VUS = P(X]_ > X2 > X3)

f f f (%) F2(%) fa(xe)d 0o
X1>Xo>X3

f dx, f d% f 1 00) F2(%) (%)
—00 X3 X2

[ dx [ 1200 ()L - Fa(x)ld%

[ " dx f (%) Fa(xa)[L — Fa(x2)]de

[ Fa)lL - F106)] f2(x)d2

I ) F3(y)Sa(y) f2(y)dy.

(o8]

Now we write the density function aX;, f,(x;), as the deviation of the probability

functionF,. Thus,

VUS = P(Xe > Yo > Xo) f T Fa0)Si) B)dy

(o8]

[ RS IF20)] dy

(%)

f" @(Y—us)q)(—(Y—ul))w(Y—uz) . idy.

-~ 03 01 02 02

Letz=y— uy/o>, theny = 0,2+ u,. Then,

VUS = P(X1>XZ>X3) V4

0+ o =z, —(02Z+ o — 1), 02Z+ po — o
) ) d
| o ey T e i Tat e

f o(L27+ 27 Eyqp (- T2, LT H2y g2
o O3 03 01 o1
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o - o ~ i
Leta, = —2,a2 _ b2 ’u3,a3 = ——2,a4 s ’uz,then the VUS can be written as
03 g3 01 o1

VUS = f D(a;2+ ap)P(azz + as)p(2)dz.

We will further discuss and examine the multivariate nordisiribution assumption in

the next section.

In two-class ROC analysis, a useless test is one that preducalentical distribu-
tion for X; andX; and has an AUC value equal tf?1 Most tests will have a AUC value
greater than/R. The lower bound for AUC is/2 which is the probability that a contin-
uous random variable is greater than an identically distet random variable. For the
three-class ROC analysis, the probability of the threeinanus identically distributed
random variables, ordered in a special ordering, can alsaloalated. We now assume
that X;,X, and X3 are three identically-distributed random variables. Tokeme under

the ROC surface corresponds to the probability that

VUS = P(Xl > X2 > X3)

f f () f (%) f (xe)d %
X1>X2>X3

[ I N j £ (x0T 0) F )b

f i f ) F I — FO)]d%
o0 Jxa

[ foo3 - Foodx

= _% [:[1 — F(x3)]%d[1 — F(x)]
11 w _ 1
= —3 31~ FOQ)P2, = 3

In two-category classification, rejecting the null hypaisethat AUC is equal to

1/2 would imply that the test is able toftérentiate between the two classes with a
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probability higher than that of a random guess. For a thegegory classification, we
require the test to have at least some ability tdedentiate three categories instead of
only two categories. If we reject the null hypothesis thatS/id equal to 16, we can
only argue that the test is not the one that completely gsettmethree classes. In
fact, the test with a VUS greater thap6lmight be able to dierentially pick out one
class but completely guess the other two classes. In that taes test is still useless
for a three-category classification and cannot be recometefa use. For any three-
category classifier, it has several pairwise AUCs. We shsalden out those tests with
any of these pairwise AUC values being too close/th The lower bound of VUS in
three-category ROC analysis should be jointly consider#utive lower bound of AUC

in pairwise two-category ROC analysis.

3.1.3 Estimation of the volume under the ROC surface

AUC can be predicted by the extensively-studied propedtfigise Mann-Whitney statis-

tic (or U-statistic). The relationship between AUC and tsiigtistic enables us to es-
timate the AUC value and its properties without distribaotemd decision variable as-
sumptions. In this section, we discuss the estimation naefitiothree-class ROC anal-

ysis.

Consider that each individual underwent the examinatiah the test values are
recorded. The testresul¥s; (i = 1,---,ny) are i.i.d. with distributionG,; the test

resultsXy; (j = 1,---,np) are i.i.d. with distributionss,; and the test resultXsy
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(k=1,---,ng)arei.i.d. with distribution§s. G, G, andGs are continuous probability
distributions orR. As definedX,, X, and Xz are independent to each other as they are

obtained from dierent subjects.

VUS is used to summarize the overall accuracy of the test ¢ihtas (1999)). A
summary index about the distinguishing and discriminapmsformance of the test for
the three classes is generated using this approach. Heras#d&hematically equiv-
alent to the probabilitfP(X; > X, > X3). Similar to the unbiased nonparametric esti-
mator of AUC, one nonparametric estimator of VUS is suggkstigh a three-sample
U-statistic:

Ny n2 n3
VUS =ni'tngt >0 3 " X, > Xai, > Xa). (3.8)

i1=11i2=11i3=1

wherel is the indicator function.

Inference for AUC is based upon U-statistic which we haveady discussed. Ex-
tending to the three-class problem, the developed U-8tatiethodology is still feasi-
ble. The variance for the estimated VUS will be discussed\dsategory classification

case in the next section.
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3.2 Sorting multiple classes in multiple-category classi-

fication

3.2.1 Hypervolume under the manifold

One theoretical extension of AUC is VUS for three-categdagsification. However,
the dilemma of identifying relative order of tests amongug® for M-category classi-
fications is more complicated due to the lack of inferentialcedures.Hypervolume
under the manifol§HUM) has been proposed as an extension of VUS for multiglec|
diagnosis (Scurfield, 1998). In the case of multiple clagsese than three classes), an
ROC hypersurface or an ROC manifold could be constructedsbygM — 1 ordered
decision thresholds(i = 1, 2,...M — 1) to define a decision rule, similar to those in the

three-class case given in the previous chapter.

Suppose the observer makes a decision uBlrgl criteria, denotedy, r, ..., I'y_1,
wherer; < r, < ... < ry_1. Let the observer discriminate amoMyclasses (denoted

{li :1=1,...,M}) by M decisions (denotefdl, : i = 1,...M}) as follows:

if x< r, then q,

if riri<x<ry, 2<i<M-1 then d,

if ry-r <X then d,.

HUM for multiple-category classification can be determias@n extension of VUS
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and can be considered as a summary measure of the accuratlye [Eontinuous case,

the hypervolume under thd,...iyy ROC-hypersuface can be expressed as

+00 'v-1 'M-2 2
Vili2---iM :f f f f p(d1|lil)|J|drldrz...drM_l,

where
ap(dalli,)  ap(dalli,) ap(dalli,)
orq or, o orv-1
dp(dslli;)  9p(dlli,) ap(dslli;)
oy AP Pkl Pl | "o, T anes
o(ra, ra, ..Nm-1) ’
ap(dulliy)  op(dulli,) ap(dulli,)
orq or, o orm-1

where (4, i, ..., i) IS @ permutation of (12, ...M) and

ry
p(dylli,) = f f(xli,)dx
I
p(d;lli;) :f f(xli)dx, 2<j<M-1,
rj-1

p(dull,) = f T ()X

'M-1

and wheref is the probability density function for the continuous cagsually, we
can use equatiorts= gi_1(ty, ..., ti_1), wherei = 2, ...M, to denote the probability that a
subject from classis correctly classified. Then HUM can be expressed in andtner

as

1 roa(t) Im-2(t1,.-,tm-2)
HUM = f f SR f gM_l(tl, cees tM—l)dtM—l <. dtzdtl.
0 0 0

As an extension of VUS, HUM is equivalent to the probabilitgtttheM categories

are correctly classified which B(X;, > X, --- > X,,). In the M-category classification,



Chapter 3: Sorting Multiple Classes in Multiple-categoi@® Analysis 57

there will beM! possible HUMs under th#! manifolds and the sum of all the HUMs

which are probabilities of correct classification will beuadjto one.

3.2.2 Bootstrap approach for the variability

A non-parametric estimate based upon the U-statistic is

e 1 L Ll

HOM = = ;;".%Hxﬂl > Xai, > -+ Xutin, ) (3.9)
where{iy, i,, ...Iy} is @ permutation ofl, 2,...M} and| is the indicator function. The
estimator of HUM can be computed as Bhisample U-statistic, similar to the non-
parametric estimator of VUS, after the order of thleclasses are determined. The
nonparametric estimation of HUM is related to the calcolatf the probability that
more than three categories are correctly ordered by theAesing all the possibl!
HUMs, the largest one is a sensible measure of the accuratye ¢ést. For a general

M-category problem, we need to evaludfid HUM measures to identify the largest

HUM. In this thesis, we will focus on the largest HUM amongthk possible ones.

The U-statistic approach for the calculation of the varean€the non-parametric
estimator of AUC has been proposed. However, as the sanzplensreases, the advan-
tage of the U-statistic methodology is heavily reduced dnredmethodology becomes
inappropriate. Given the computational burden of the Uistta approach, particularly
as the dimension of the problem increases, bootstrap dgimaf the standard error is

suggested. The bootstrap methodology is used for inferenites thesis. Nakas and
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Yiannoutsos (2004) pointed out that the bootstrap appréarcthe calculation of the
nonparametric estimator of VUS and HUM has been shown to senéislly equivalent
to the U-statistic. For each of the bootstrap samples, @ethat estimators obtained
from the estimation formula b&—mn :n=12,..N}whereN is the number of sam-
ples. Li and Fine (2008) proposed a method to calculate thesbap standard error for

HUM which is

Sey(HUM) = J > (HUM, - HUM)2 (3.10)

A 100(1- @)% confidence interval for HUM is

e~

HUM =+ z,,56(HUM), (3.11)
wherez, , is the upperr/2 quantile for the standard normal distribution.

The bootstrap methodology is used for inference in thisishehich could over-
come the computational burden when the number of the caésgarlarge. When the
number of the classes increases, the calculation of thenaibased upon the U-theory
will become complicated and féiicult to evaluate. However, the bootstrap methodol-
ogy for calculating the standard error of the nonparamestonator becomes a viable

choice.
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3.3 Multivariate normal distribution assumption

For a general M-category classification problem, we need/étuateM! such HUM
measures to identify the largest HUM. To avoid extensiveudations, we suggest sim-
ple methods in which we only need to report summary stasistc each category at
an orderO(M) instead ofO(M!) to determine the right order. We propose to sort the
multiple categories by using simple summary statisticsearide normal distribution

assumption.

For the two-category problemUC = P(X; > X;) under the binormal distribution

assumption could be expressedlzisu), whered(-) is the normal distribution
o2+ 03

function. If we assume that the test results are normalliibiged for the multiple-

category classification, we will have the following resuissed upon the comparison

of means.

Theorem 3.3.1.Assume that the test result variable for the M categories@,, ... Xy
and they are mutually independent. Let the test result fkth category X~ N(uk, 02)
fork=212---,M. If uy > up > --- > up, then the greatest HUM corresponds to the

probability P(X; > X5 > - -+ > Xy).

Proof of Theorem 3.3.1lt is easy to show that the theorem holds fdr = 2. For
simplicity of presentation, we prove féd = 3 by induction in this section. We need to
show thatP(X; > X; > X3) > P(X;, > X, > X,) for any other permutation,(i,, i) of

(1,2,3).
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LetS; = X; — X; andS; = X3 — X,. The distribution assumptions given in the

theorem implies that( S, 6,S,) is bivariate normal with mead{(u, — 1), 52(us—u2))

_ 0'% + 0'% —51620'3 _
and covarianc , Wheres; = +1. For diferents; values, the
—61620'5 0'% + 0'§
0_2
absolute value of the correlation remains the sgine 2

(03 + o3)(05 + o))
We nOtiCGP(Xl > Xo > Xg) = P(X2 - X1 <0, X3— X5 < O) = P(Sl <05, < O)

For the other five VUSSs, we have

P(X]_ > X3 > Xg) < P(XZ - X]_ < O, —(X3 - Xg) < O) = P(Sl < O, —82 < 0),

P(X2 > X]_ > X3) < P(—(XZ - Xl) < O, X3 - XZ < O) = P(—Sl < O, Sz < 0),

A

P(X2 > X3 > Xl)

IA

P(—(X2 - Xl) <0, Xz — X5 < O) = P(—Sl <0, Sz < O),

P(X3 > Xl > Xz)

IA

P(X2 - Xl < O, —(X3 - X2) < O) = P(Sl < O, —Sz < O),

P(X3 > X2 > Xl) P(—(X2 - Xl) < O, —(X3 - X2) < O) = P(—Sl < O, —Sz < O)

All of these five versions are bounded BY9:S; < 0,6,S, < 0) where at least one

o =-1.

Write P(6,S1 < 0,6,S; < 0) asP(T; < 0, T, < 0) = F(t1,t5), whereF is the distri-
bution function. By the well-known properties of the dibtriion function of bivariate

normal (Tong (1990)), we have

G-
Fltnt) = P[yV1-pZ < —pZo+ G_ﬂ,|:1,2]
_ Pz < YWPRTA g

1-p
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wherelp| < 1,a = (t —w)/oi(i = 1, 2), Z1, Z, andZ, are independerd (0, 1) variables,
andZ; andZ, are independerntl(0, 1) variables under the conditicdy = z for all z.

Therefore, by conditioning oF, = z, then unconditioning, we have

PIz <—\/—Zo+a1 - VlZo + 2
1 = =

V1-lol \/ = |ol
\/_Z+a1 oz +

)D(— )¢( 2)dz.
\/ = Ipl v1-lol

F (tl’ t2)

Therefore, it becomes

\/_Z+61a1 |p|Z+623.2
dz, 3.12
\/—|p )(— o )p(2dz,  (3.12)

P(5181 < O, 6282 < 0) =

where at least ong& = -1 and

Hi— {2 3, = M2 — U3
var(S,)’ 2 var(S,)

1:

By induction, we can see easily that the integrand in (3.42haximized wher, =

6, = 1 for anyz. This completes the proof. m|

The theorem is thus very helpful for us to find out the order woiftiple classes
quickly. In practice, we usually compute the sample meé#or ®ach class as a simple
descriptive statistic at the first step. Since sample meatramgly consistent to the
population mean, the order from sample mean can be useddorime the order of the

M classes in the calculation of HUM.

We further notice that the results are not just limited todjimmetrical normal dis-
tribution. In fact, if we replace the normal distributionttvcertain skewed distributions

such as log-normal, exponential or extreme-value disinbs, the same conclusion can
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be drawn. The proof for exponential distributions can bentbin Chandra and Owen
(1975). Since these location-scale families are not as comes the normal distribu-
tion in diagnostic medicine, we do not elaborate more on tmgerested researchers
may conduct a thorough examination on other familiar gtasikdistributions. More-
over for most continuous random variables we can consideise transformations to
make the transformed data appear close to being normaliybdited. Therefore we

expect the application of this theorem to be broad in practic

3.4 Simulation studies

We conducted a simulation study to examine the performahocaerg@roposed methods
for sorting the unknown orders of multiple categories. Wesidered two data gener-
ation scenarios. In Case |, we generaXedX, and X3 from normal distributions with
descending means of 4, 2, and 0; and variances of 1, 1 andp2ctegly; in Case II,

we generate; and X; from the same normal distributions as in Case | but construct
X, from a positive aging Weibull distribution with shape pastara = 1/2 and scale
parameteb = 1. The mean oK, isb x I'(1 + 1/a) = 2. All assumptions of Theorem
3.3.1 hold for Case I. In Case I, the distribution assumpisoviolated while the means

of the three classes are preserved in the same order. WeateddL00O0 simulations

and sample sizes were fixed at 30 for each category.

In each simulation, we estimated the sample meainem the generated samples.
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We also estimated the six VUS values extensively by usingdmparametric approach
based upon U-statistic theory with siXi@drent permutations of three classes, then com-
pared the true order to the order estimated from the sampd@spe The computation
results showed that in Case I, using sample meange could determine the order of
the three classes in all 1000 simulations. In Case Il, thepgameans correctly inter-
preted the relationship among three classes and yieldedotdfUS values for 91.7%

of the simulations.

3.5 Applications

3.5.1 Leukemia classification

We analyzed the data from leukemia patients used in Goluh €t1899). The data
came from a study of gene expression of two types of acuteehaids, acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AMIjvo main subclasses
are known, those arising from T-cells and those arising fBxgells. The training set
contains 8 ALL T-cell samples, 19 ALL B-cell samples and 11 IABamples. Each
sample contains 3916 gene expression values obtained ffymatrix high-density

oligonucleotide microarrays. The dataset is publicly ia#Ae at

httpy//www.broad.mit.edfcgi-birycancefdatasets.cgi

We considered evaluating the accuracy of the biomarkergh&r ability to difer-
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entiate between the three classes. We computed VUS for Bl §8nes and evaluated
the six possible orders of VUSs for each gene and the comesapgbootstrap standard
error. Here, we only listed the top 20 genes with the highés$¥among all the VUSs.
We used the 500-resampling bootstrap methodology to etetihe standard error. At
the same time we calculated the sample means to determireotiext order of the

three classes for each gene.

As the number of categories is only three, we were able taat@khe six possible
orders and directly chose the highest VUS. There were 168y&ith VUS greater than
1/2. From the results of the largest VUS values from the exhaisivestigation, 96.4%
were correctly identified for the ordering of classes by ggsimeans. This resulting
subsample of genes was the most vital genes since it couleatiyrclassify the three

types of leukemia without much uncertainty.

The results for the 20 genes with the highest VUS values agiddksociated prob-
ability interpretations are summarized in Table 3.3. Theamsefor three classes were
also conveyed. In this example, the relative orders of theetlilasses were quite vari-
able for diferent genes. The top 1 gene with the highest VUS has a valug82.0
This indicates that this gene can completelifaetentiate three subjects each randomly
sampled from one of the three classes more than 80% of theiiméong run of re-
peated experiments. This gene systematically assignsvhaigks for AML, moderate
values for ALL-t and low values for All-b. The gene with thecead highest VUS is

also able to dterentiate over 80% of the time, achieved by a gene that sysieatly
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gives high values for All-t, moderate values for All-b anavlealues for AML. The
relative magnitudes as in the definition of VUS are all prelgixharacterized by the

orders of means.

For purposes of comparison with other accuracy criteriagige included correct
classification rate (CCR) values (Li and Fine (2008)) fortihye 10 genes in Table 3.4.

The CCR can be calculated by

—  Number of correct classification
CCR= : }
Total number of subjects

There appeares to be a relatively moderate-sized cooelétween the CCR and
HUM, compared to the low correlation between VUS and CCR ang¢kample in Li
and Fine (2008). The gene with the highest VUS value has teedwerall CCR of
0.842. This gene classifies those in classes 1 and 3 corraeotly than ninety percent
of the time, and mislabled only half of those in class 2. Nbi# the second highest
CCR value is 0.815, which is achieved by four genes corredipgrto VUS rankings

13, 29, 31 and 37 (not shown).

For model construction, we applied a forward selection @doce with these twenty
genes, starting with gene 1 and sequentially adding geneshwmaximize the VUS
based on the joint model. That is, the combination of the fiwst genes which max-
imizes the VUS can be considered as a ‘new’ gene and seqgiheiatil new genes
which maximize the VUS. Interestingly, we only need to irtgithe gene with the 5th
highest VUS value to obtain 100% CCR and VUS. Note that bexgase 1 also has

the highest CCR, using CCR as the loss function in the forwaidction procedure
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would result in the same model. Excluding gene 1 and gene agplgting the forward
selection procedure based upon VUS to the remaining eiglgferes, we were able to
attain the best combination of two genes with those gendadéve 2nd and 6th high-
est VUS values. The VUS and CCR for this model are 0.98 and @e8pectively, with
both diagnostic accuracy measures slightly lower than tbhdahbased upon genes 1
and 5. These results suggest that the optimum VUS derivédomly two gene expres-
sion levels achieves excellent performance in terms of WatB and CCR. Because of
correlation between VUS and CCR across genes, using CC&llsagection methods

would yield similar results when applied to this dataset.

There has been considerable prior work pertaining to dleason on this dataset.
Golub et al. (1999) used an arbitrary number of 50 genes weitfhosganizing maps
in combination with a weighted voting scheme to obtain coraplg performance to
that of our model. Furey et al. (2000) and Guyon et al. (20@pJiad support vector
machine techniques with roughly 10 genes to achieve the sacwwacy. Albrechet
et al. (2003) employed the method of threshold circuits Withenes. Li and Yang
(2005) and Albrecht (2007) reduced the number of expredsiats to 3 by using rigid
regression and stochastic local search, respectivelyfi@dings appear to represent a
nontrivial improvement, as it is not entirely obvious thabtpredictors could be used

to perfectly discriminate three categories.
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3.5.2 Proteomic study for liver cancer

Another example is based upon a recent mass spectromeasetldr the detection
of Glycan biomarkers for liver cancer (Ressome et al. (2D08Bhe investigators in-
cluded 203 patrticipants from Cairo, Egypt; 73 hepatocailgharcinoma (denoted by
HC) cases; 52 patients with chronic liver disease (denoye@d®); and 78 healthy indi-
viduals (denoted by NC). The spectra were generated by xvessisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) mass analyzer (Agpt Biosystems Inc.,
Frammingham, MA). Each spectrum consisted of approximdt2ll,000 nz values
with the corresponding intensities in the mass range of(t5600 Da. A Supplemen-

tary dataset can be found at the author’s public website

http;//microarray.georgetown.e@assomlaindex downloads.html

which contains a total of 484 peaks after extensive pregsiog of the raw data (Res-

som et al. (2007)).

As in the previous example, we computed VUSs exhaustivelgifo versions of
probability definitions and identified the largest value &tbhe correct VUS. We used
sample means to decide the order of the three classes fopeaktand compared with

the true order.

Among all the calculated volumes under the 321-ROC surfdmegene 183 has
the largest value with 0.647 which indicates that this geareacompletely dterentiate

three subjects each randomly sampled from one of the thassed, nearly 65% of the
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time among a long run of repeated experiments. This genersgsically assigns high
values for QT, moderate values for NC and low values for H& Jécond highest VUS
can dtferentiate nearly 63% of the time, achieved by gene 209. Téns glso exhibits
a systematical classification which gives high values for @dderate values for NC
and low values for HC. It is also observed that all the 20 peaitsthe highest volume
values precisely classify these three groups as in the satee of the corresponding

means of the three groups.

The results for 20 peaks with the highest volume values uth@eROC surfaces are
shown in Table 3.5. Among all the six volumes for each geneneteed the volumes
under the 321-ROC surface had more values that were moré®tbahVe also applied
the bootstrap methodology as described before to calcthlateorresponding standard

error with 500 resamples.

Different peaks seemed to maintain the same ordering relaioresttept for the
17th peak. For most peaks, healthy subjects (NC) tended/tdraintermediate value.
Large values tended to lead to chronic liver disease (QT)enbiv values tended to
lead to hepatocellular carcinoma (HC). The 17th peak behdifterently from other
peaks where HC patients tended to have the largest peaksvadlagive to the other
two groups. ldentification of such order information maynlgrmore insights for mass
spectrometry studies. In all these 20 cases, the orders Bidéfinitions were correctly

detected from the orders of means.

In Table 3.6, the corresponding correct rates for the samphlns are also reported.
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The VUSs of 298 peaks are greater than 0.25 by the sample miar.8% correctly
identified. The VUSs of 240 are greater than 0.30 by the samplens with 82.2%
correctly identified. The VUSs of 110 peaks are greater thanwiith 98.2% of them
are correctly identified by the sample means. We also notltaitkthe sample size for

each class was not large.

Figure 3.1: ROC surface for the peak with the largest VUS. fhinee coordinates are
the correct classification probabilities for the three st&s

ROC Surface

CCR2

The ROC surface for the peak with the largest VUS is plotteBigure 3.1. One
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can choose the appropriate cfiitealuesr; andr, for a particular decision to satisfy

required correct classification probabilities by locating corresponding values on this

operating surface. The distributions of this peak amongetulasses are shown in

Figure 3.2. The overall shapes of the three empirical dgwsitves are quite close to

the normal distribution and justified the assumption in Teen3.3.1.

Figure 3.2: The distribution of the peak with the largest Vaiong the three groups
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3.5.3 Immunohistological data

Another recently studied immunohistological arthritigat®et came from a biomedi-
cal company in Germany. All the values in this dataset wergtpe staining cells
which were vessels in the case of fWV. They were measured(Qikrdhicroscopic field
(0.159mmz). Our interest lies in seven components whichTarells (denoted CD3),
B cells (denoted CD20), Plasma cells (denoted CD 38), Mphisrgimal (denoted
CD68), Ki67, Total Mononuclear influence cells (denoted TNihd VWF. The seven
components were scored based upon the grading of the imnstiololyical severity of
arthritis. The primary classification outcome involvesesediferent categories which
are ‘Normal’, ‘Orth.A, ‘OA, ‘Early arthritis’, ‘RA, ‘SeA (disease)’, and ‘SeA-TKA,
respectively. We us&y, X,, X3, X4, Xs, X5, and X; to denote these seven categories.
We estimated all the 7! possible HUMs for each component. @grall the possible
HUMSs, the largest HUM for each component and the correspanalider are reported

in Table 3.7.

The largest HUM among all the components comes from the totalonuclear
influence cell which has a value of 0.0444. The correspongliagability of the correct
ordering isP(X; < X < X3 < X7 < X4 < Xg < Xs). The smallest HUM among all the
components is from B cells with the value 0.0034, which hasdiderP(X, < X; <
X7 < X3 < Xg < X4 < Xs5). To view the correct classification by their means, all the

means for the seven categories are also listed in Table 3.8.

The largest HUM value of 0.0444 is from the total mononuclefiuence cell with
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the probabilityP(X; < X, < X3 < X7 < X4 < Xg < Xs5). The corresponding means of the
seven diferent categories are 10.58, 30.52, 42.34, 231.54, 309/2%72, and 158.46,
respectively. That isnearl < mear2 < mear8 < meary < mea < mearé < mearb.
This indicates that the classification in the total monoeaclinfluence cell has the
correct order based upon the comparison of means. The ségedt HUM which
comes from the Ki67 component with the value 0.028 has thegtitity definition of
P(X; < X3 < X3 < X5 < X4 < X7 < Xg). But the corresponding means reveal a
different order of the means. The reason for this may be becaubke ekistence of
some outliers or extreme observations which may influeneestimation of the means
and the distribution of the observations are not normalbjriiuted. Weighted means
may be suggested for this case for the order correctionadsi€only considering the

sample means.
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Table 3.3: Top 20 gene expression levels ranked by VUS valuedukemia datag;

is the mean for the ith class{1,2,3). Classes 1,2 and 3 are ALL-b, ALL-t, and AML

respectively.
Rank VUS Definition U1 o us s.e

1 0.832 P(X; <Xy < X3) -30.684 560.375 7423.545 0.0654
2 0.822 P(X3< Xy <Xp) 857.790 2208.50 485.727 0.0732
3 0.788 P(X3 < X1 <Xp) 666.737 2283.875 129.909 0.0632
4 0.782 P(X; < X3 < X;) 2403.789 145.875 524.0 0.0723
5 0.770 P(X3 < X3 < Xp) 205.684 3373.125 67.091 0.0831
6 0.763 P(X3 < Xy < X;) 1573.632 757.125 310.273 0.0735
7 0.735 P(X3 < Xy < X;) 4322526 2772.625 702.364 0.0687
8 0.724 P(Xy < Xp < X3) 479.211 712.0 1439.636 0.0784
9 0.718 P(X; < X3<Xp) -88.105 1030.875 63.545 0.0823
10 0.708 P(X; < X3 < Xp) 8.579 718.125 78.0 0.0764

11  0.705 P(X3 < Xz < X;) 4988.579 2371.0 1365.273 0.0784
12 0.704 P(X; < X3<X;) 380.684 1040.375 503.0 0.0803
13  0.698 P(X; < Xy < X3) 747.895 138.75 1273.091 0.0769
14 0.697 P(X; < Xz<X;) 108.579 806.5 361.636 0.0835
15 0.687 P(X; < X;<Xz) 108.895 22950 2520.364 0.0753
16 0.681 P(X; < X3 < X;) 2477.789 662.875 1367.909 0.0768
17 0.680 P(X; < X3< X;) 790.684 183.125 487.455 0.0689
18 0.680 P(X3< Xy < X;) 7974.789 2598.0 801.182 0.0843
19 0.676 P(X; < X3< Xp) 567.947 269550 801.181 0.0785
20 0.670 P(X3< Xy <X;) 3437.053 4726.875 1818.273 0.0798
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Table 3.4: Top 20 gene expression levels ranked by VUS valuegukemia data. CCR
is the corresponding overall correct classification rat€R(j] is the correct classifica-
tion rate for the ith classfl,2,3). Classes 1,2 and 3 are ALL-b, ALL-t, and AML

respectively.

Rank VUS CCR CCR[l] CCR[2] CCR[3]

1 0.832 0.842 0.947 0.500 0.909

2 0.822 0.657 0.894 0.000 0.727

3 0.788 0.789 0.842 0.750 0.727

4 0.782 0.736 0.684 0.875 0.727

5 0.770 0.736 0.789 1.000 0.454

6 0.763 0.710 0.736 0.875 0.545

7 0.735 0.736 0.842 0.750 0.545

8 0.724 0.789 0.894 0.250 1.000

9 0.718 0.763 0.947 0.250 0.818

10 0.708 0.789 0.842 0.500 0.909
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Table 3.5: Top 20 peaks ranked by VUS value for liver cancéa.ga is the mean for

the ith class&1,2,3). Classes 1, 2, and 3 are HC, NC, and QT, respectively.

Rank VUS Definition 1 77 U3 s.e
1 0.647 P(Xy < Xz < X3) 896.611 1326.071 2732.444 0.0856
2 0.632 P(X;<Xy;<X3) 651.121 985.067 1372.388 0.0886
3  0.623 P(X; < Xy < Xz) 1452.321 2010.886 4829.766 0.0902
4 0.584 P(Xy < Xy < X3) 124784 286.132 412.497 0.0846
5 0563 P(X;<Xy;<X3) 481.267 697.342 988.530 0.0856
6 0.558 P(Xy < Xz < X3) 544353 748.769 1122.159 0.0935
7 0533 P(X;<Xy<Xz) 314.048 401.839 607.952 0.0852
8 0.529 P(X;<Xz;<Xs) 150.320 366.533 553.001 0.0875
9 0.524 P(X; < Xz < X3) 10552.81 21490.65 26878.11 0.0904
10 0.513 P(Xp < Xy < X3) 413.769 526.830 772.249 0.0875
11  0.509 P(X; < X;< X3) 1014.861 1245.426 1928.783 0.0895
12 0.504 P(X; < X;< Xg) 785.593 854.669 1577.023 0.0934
13  0.503 P(X; <X, < X3) 229.566 285.739 428.804 0.0857
14  0.502 P(X; < X;<Xg) 171.408 226.698 322.948 0.0894
15 0501 P(Xp < X< X3) 170.734 281.202 364.334 0.0846
16  0.499 P(Xp <Xy < X3) 85.506 126.392 189.421 0.0923
17  0.498 P(X; < X3 < X;) 567.211 198.593 227.376 0.0863
18 0.496 P(X;<X;<X3) 114326 170.651 363.178 0.0895
19 0.495 P(X; < X;< X3) 660.858 949.397 1331.265 0.0935
20 0491 P(X; < Xy;< X3) 333.676 425.174 741.058 0.0964
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Table 3.6: Correct identification by the sample means

VUS | Correct Number Non-correct Number Total Number| Correct Rate
> 0.25 298 95 393 75.8%
> 0.26 288 87 375 76.8%
> 0.27 269 76 345 77.9%
> 0.28 261 70 331 78.9%
> 0.29 251 63 314 79.9%
> 0.30 240 52 292 82.2%
> 0.40 110 2 112 982%

Table 3.7: HUMs for immunohistological data

Marker HUM Definition
CD3(T Cells) 0.0209| P(Xy < Xy < X3 < X7 < X4 < X5 < Xeg)
CD20(B Cells) 0.0034| P(X, < X; < X7 < X3 < Xg < Xq < X5)
CD38(Plasma Cells) 0.0191| P(X;y < X5 < X3 < X7 < Xg < X4 < Xg)
CD68(Mph’s Subintimal) 0.0267| P(X; < Xp < X3 < X5 < X < X7 < Xy)
Ki67 0.028 | P(X; < Xy < X3 < X5 < X4 < X7 < Xg)
TMI (Total Mononuclear influence cell) 0.0444| P(X; < Xp < X3 < X7 < X3 < Xg < Xsg)
VWF 0.0072] P(Xy < Xp < X3 < X7 < X5 < X4 < Xg)
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Table 3.8: Means of the seven categories in immunohistcébdata

Marker Meanl| Mean2| Mean3| Mean4| Mean5| Mean6| Mean7

CD3(T Cells) 3.04 8.13 | 11.10 | 47.46 | 91.20 | 106.47| 27.17

CD20(B Cells) 0.30 5.14 3.55 | 20.67 | 39.02 | 28.83 | 7.59
CD38(Plasma Cells) 0.04 2.45 4.02 | 51.43 | 93.06 | 41.14 | 11.32
CD68(Mph’s Subintimal) | 7.2 14.80 | 23.67 | 111.98| 86.22 | 96.13 | 112.39
Ki67 1.23 1.99 489 | 21.04 | 31.82 | 64.21 | 25.50
Total Mononuclear infl cell 10.58 | 30.52 | 42.34 | 231.54| 309.50| 272.57| 158.46
VWF 9.36 | 13.65| 13.43 | 17.60 | 18.92 | 28.82 | 18.29
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Chapter 4

Combining Multiple Markers for

Multiple-category Classification

4.1 Introduction

ROC analysis has been the most recommended fiectige way to evaluate the accu-
racy performance of diagnostic tests. Moreover, statisapproaches have been de-
veloped for assessing the accuracy of classifications. daotige, multiple factors will
influence the accuracy performance and various sourcesoosimation are available to
assist in predicting medical classification problems. Ba@neple, a single biomarker
will not be suficient to assess an optimal result for prognosis or earlyctietefor many
diseases. However, multiple biomarkers and various sigdsiestinctive symptoms of

the disease can help detect the disease. A combination s& theltiple biomarkers
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can potentially detect the disease to a significant exteius;Tcombining multiple
biomarkers and factors is needed in order to predict an adequtcome. So it follows
that great interest exists in developing methods for comgihiomarkers, especially in

medical research.

Recently, methods have been developed for combining nhellipmarkers. Su
and Liu (1993) and Pepe and Thompson (2000) considered kosabinations to op-
timize measures of diagnostic accuracy. Optimal progoastibres can be determined
through binary regressions (Pepe and Mcintosh (2003))e BepMcIntosh (2003) pro-
posed screening rules based upon logical combinationsoohdrker measurements.
For binary classification, Pepe and Thompson (2000) deedl@pmethod based upon
maximizing the AUC to combine biomarkers in genetic studi@heir method was
essentially adapted from theaximum rank correlatioMRC) estimation which was
widely practiced in econometrics. Li and Fine (2008) coased multinomial logis-
tic regression to address multiple-category outcomes. édewy it is not clear if their
method yields the best combination to maximize VUS or HUMUMiis thesis we target
maximizing the VUS directly. We will explore statistical theds that combine multi-
ple tests for multiple-category classification to optimilae accuracy of the combined

biomarkers under the criteria of ROC measures.

Early discussion about the MRC estimation can be found in (1887) and Sher-
man (1993) where the authors studied the limiting distrdsubf the MRC estimator.

The implementation of the MRC estimation has been appliedntty. In the recent
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decade the maximum rank correlation (MRC) estimator has bpelied in the classi-
fication literature for two-class problems due to its closerection with AUC. Wang,
H. (2006) further suggested an iterative marginal algoritthich remarkably improved
the computation speed. However, none of the previous aatimorsidered the situation
in which the number of decision categories exceeds two. \Wedim at developing ap-
propriate statistical procedures by extending the MRGresttirs for high-dimensional

cases. Necessary asymptotic theories are provided tdadéeithe ensuing inference.

4.2 Methods

4.2.1 Methods: extending MRC estimation

Generally, it is natural to expect a monotonic relationgiepveen a response variable
and a linear index. To explore the relation between them meioe linear approxima-
tion, the continuous single index model can also be consijevhich is a well-known
approach in multidimensional cases. This idea of threshgldn a single continuous
index for multiple-category classification includes mamysgéng models, such as the
smooth transition threshold autoregressive (STAR) mofi€han and Tong and the
functional-codicient autore- gressive (FAR) model of Chen and Tsay. To avadli-
mensionality in multivariate estimations and the spedificeof the exact nature of the
monotonicity, Han (1987) firstly proposed the semiparaimetionotonic linear index

model.
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Let (Y, X) be an observation from a distribution P on a Set R) R, whereY
is a response variable aidis ad-vector of regressor variables. The monotonic linear

index model can be proposed as
Y = Do F(X'B,, &), (4.1)

where X' B, is a linear index withg, € B ¢ R?, an unknownd-dimensional vector,

¢ is a random disturbancé, is a strictly increasing function in each of its arguments,
andD is a nonconstant and increasing function. The model is saauipetric in that no
parametric assumptions are made about the distributienoofthe functional form of

D o F. Previously the sample space f6iis only {1, 0}. In this thesis, we consider that

Y can take values frorfl, O, —1}.

Suppose we obtain a samgley;, X );i; = 1,---,n;, j = 1,2,3}, wherej indexes
the three classes amdndexes the observations in tlih class. The MRC estimator of

the coeficient parameteg, is obtained from
argmayes ». 1Y, > Y, > Yi,, XI8 > X[8 > X} (4.2)
i1,i2.i3
wherel{-} stands for the indicator function. It has been shown thatoug tonstant

unrelated tg3, the objective function in (4.2) is proportional to VUS defehin Li and

Fine (2008),
Ny 17
VUS = n;'n;'ng ZZ B> XIB>XIp.

i1=1i=1i3=1

We note that VUS of a diagnostic test can be interpreted aprbigability that the

marker can simultaneously classify three categories ctyrél herefore using the esti-
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matorg, obtained by maximizing the VUS to combine the mark¥érsnplies that the

resulting accuracy would be optimal for the three-categtagsification.

Following Han (1987), we consider the MRC estimator in a ngeaeral model
framework. LetM be a function orR? and monotone for either argument when the
other argument is fixed. For the real numbays.., a,, let R,(a;, ax) denote the number

of a;'s betweerg; anday, i.e.

Ru(a, &) = ). Ha > a; > ad.

I

We propose to estimate the true paramgfgn (4.1) with

Bn = argmaxes > > M(Yi, YOR.(XT B, X¢ B), (4.3)
k

for an appropriate subsBtof RY.

We now show that the estimator from (4.2) is a special cas¢hfogeneral MRC

estimator from (4.3). Fdr= -1,0, 1, define

RO(XTB. XiB) = ) 1Y, = DIXTB > X[ B > XiB).

J

The maximand in (4.2) equals

DT> Y > Y XTB > X[B > XB)

i ] Kk

= > T Y= (Y = 0{Ye = —1HXT B> X[ B > XiB)
i ] K

= 31 TY = WY = ~UROXTB. X ).
i k

which is the maximand in (4.3) with a special choice\bf
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In the following we proceed to give the asymptotic resultstfie more general

estimators in (4.3).

We establish the consistencygf first. Denote

! . T T T
DT D MO IXIE> X XA @)

i#j#k

Gn(B) =

One may notice thdGy(B) : B € B} is a U-process of order 3.

DefineG(B) = E[M(Y1, Ya)l[{X{B > X;B8 > XIB}]. We note thatG(B) is the ex-

pected value o6,(B).

We also defing4(XB) = E[M(Y1, Y3)| X 8] fori = 1,2,3.

The following sets of technical conditions are needed:
Al. H(t) is a nonconstant monotone real function.
A2. The support ofX; is not contained in a proper linear subspac®yfi = 1, 2, 3.
A3. The d-th component of; has an everywhere positive Lebesgue density, conditional
on the other componentsz 1, 2, 3.
A4. B is a compact subset ¢8 € RY : 84 = 1).

A5, E[M(Y4, Y3)]2 < co.

Theorem 4.2.1(Consistency) Assume conditions Al to A5 hold. Then we have

|Bn _BO| = Op(l).

Proof of Theorem 4.2.1Essentially, to establish the consistencygfit is suficient to

show the following:
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(i) G(B) is uniquely maximized g&,.

(if) sups|Gn(B) — G(B)I = 0p(1).

(iif) G(B) is continuous.
By symmetry, we may write

G(B) = GEHOIANXIB > X3 > XB) + HOB) XA > X8 > X3)
HOANIXEB > X8 > X3B) + HOGA (XIB > XIB > XIp)

+HHOGB)HXB > X1 B > X3B) + HOGBHXB > X8 > X1 B)]. (4.5)

If B = B, then conditions A1 and A3 ensure that the indicators in)(giék out the

largest ofH (X1 Bo), H(X}8,), andH(X3B,) with probability one. Consequently,

G(Bo) = %EmaXH(XIﬂO), H(X2B0). H(X3B0))- (4.6)

Deduce thaG(B) is maximized ap,.
We now show thag, is the uniqgue maximizer.

Suppose that for sonmin B,
G(B) = 3EmaxH(X]A0), HOXIBo), HOTAD) (@.7)
Deduce from (4.6) and (4.7) that
H(X1B0) = H(X380) and H(X1Bo) > H(X3B,) when X8> X;8 > X38. (4.8)

Let S, denote the support af = (X, ...X4-1) and writeCH, for the convex surface of

S,. Thatis,CH, is the smallest convex set containiBg Assumption A2 implies that
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CH, is a d - 1)-dimensional subset ¢! and so has a nonempty interior. Select a
pointu from this interior and defing, = {(u,t) : t € R}.

Assumption Al guarantees the existence of two pdingdt, in the support oiX™g8

for which H(tg) < H(t) < H(ty) fortg <t < t;.

Chooser, 71 in |1, for which -rg,Bo = to, -rI,Bo = t;. Those points can always be found
since A3 and A4 together imply thétr}Bo. 71 Bo) : (o, 71) € 1.} = R2.

Define the open wedges

Wi(B) = (X : X" By < T4 B0, X' B > T B,
Wo(B) = {X : 0By < X' By < T1 B0, ToB > X' B > T1 B},

W;(B) = (X : X' By > T1Bo, X' B < T{B} .

We can replacg andg, with their respective unit vector without changig(8) ,W,(85)
andWs(B). Thus, for eachx in R® and eachg in B, we may viewx' 8 as the orthogonal
projection ofx onto the space spanned By

If X1 € Wi(B), X, € Wy(B) and X3 € Ws(B), then
H(X{Bo) < H(X;8,) < H(X3B,) while X]B> XJB> XiB.
Then in order for (4.8) to hold, we must have
P{X1 € Wi(B)}P{X2 € Wa(B)}P{X3 € W5(B)} = 0. (4.9)

Now we show that (4.9) only holds f@ = g, .

For eachp in B, define

Hp = {x 1 708 =X B =18},
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Lg = Hg N Hg,.
Consider the projections:
Po(B) ={xeCH, : (x,t)eLs for some teR)},
andforj=1,23
Pi(B) = {xeCH, : (x,t) e W;(B) for some tcR}.

That is,Po(B) projectsLg into CH, andP;(B) projectsw;(B) intoCH,. And {P;(B), | =
0,1, 2, 3} partitionsCH, .

Since bothHg andHg, containty andty, Lg must containrg andr;. Sincer, andr;
are elements off,, Po(B) must contairu, andu,. Sinceu, andu, are interior points
of CH,, Po(B) cannot contain a face @H,. But eachP;(8) must contain at least one

point of S, implying

f G,(dx) > 0,
Pj(ﬁ)ﬁSX

whereG,(-) denotes the distribution af.

For eachx in S, write I for the line throughx parallel to the d-th coordinate axis. If
B # By, then there must be a nonzero angle betwdgandHg . So at least one dfig
andHg, must intersect df,. Write tg(x) for the d-th component dfiz N1, andtg (x) for
the d-th component dfig, N Ix. If Hg N1y is null, definetg(x) = oo (or —co). If Hg N1,

is null, definetg (X) = oo (0or —co). Then

maxtg, (x), tg(x))

Px W @)= [ I f(0dIG, (A9,

iBINS, Jmin(tg, (x), t5(x))
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where f (-|x) denotes the conditional density X§ giveny = X. tg(X) # tg,(x) for each
X in S, becausg@ # B,. SOP(X € W;(B)) can not be 0. That iR(X € W;(B)) > 0,
contradicting (4.9). This establishes (i).

For eachBin Band @, 2,2)in SX) S X S, define
f(21, 22, 25, B) = M(y1, Y2) (X B > X38 > X3 B} — G(B) .
Then

Gn(B) - G(B) = Unf(.,.... B),

whereU,, denotes the random measure putting ma$s(fh — 1)(n — 2)] on each pair
(4, 2;,Z),1 # | # k. Thatis{U,f(.,.,.,B)} is a zero-mean U-process of order 3. From

the result of Sherman (1994),

sumlUSf(.,....B) < i supslUL (.. B)l
i=1
and
supsn®2U3f(.,.,..B) = Op(1).
Thus,
sups|Gn(B) — G(B)I = 0p(1).

This is enough to establish (ii).

Finally, fix 8 € B and let{#(m)} denote a sequence of elementBofonverging to

B asmtends to infinity. LetQ denote the product measwreX) P (X) P.
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Then we have
Ql{x;B=x;8=x3p}=0.
This implies that
M(yz, y2)l (X B(M) > Xz B(m) > X3 B(M)} = My, Y2)l (X1 B > X38 > X8} — 0as m— oo,

for Q almost allgs, 2, z3). Applying the dominated convergence theorem and A5, we

can get thaG(B) is continuous which establishes (iii). This proves theotieen.

We have denoted tha = (Y, X) denotes an observation from the distribution P on

the setS ¢ R(X) RY, and that the parameter spaBés a compact subset ¢8 € R” :

Ba =1} ForBin B, (z1,2,2) in SR SS, (V1,¥3) in RQ R, and &y, Xz, X3) in

R RI X R, we define

h(z1, 2, 23, B) = M(y1, Ya) [ {X{ B > X3 B > X3} .

For eachz in S, we define the kernel function of the empirical process thiatd the

asymptotic behavior g8, as
(zp)=hzPPB +hPzZPB) +h(PPzp),

whereh(z P, P, B), for example, is short for the conditional expectationh¢f-, -, B)

given its first argument undét ) P.
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Write V,, for the m-th partial derivative operator applied to the firstL components
of B, and
am
\Y = A
IVt (z Bl E Haﬁil..ﬁﬁimT(z’ﬁ)“ :

i102...0im

where the symbd] - || denotes the modulus of a matria;;)|| = (Ei,jafj)l/2 .

We need a few more assumptions for establishing the asymmptmimality.
A6. The elementBy, B,, ...B4-1} is an interior of a compact subset@f 2.
A7. X andu are independent.
A8. On a neighborhood @8,, the second partial bounded derivativesr(d, 8) exist.

And there exists an integrable functiti(z) such that
IV27(z B)) = V21(z Bo)ll < M(2)B - Byl »
whereE|V,7(-8)?> < o and the expectation matrix &,7(z B) is negative definite.
Theorem 4.2.2(Asymptotic normality) If A1-A8 hold, then
V(B, - Bo) = (W',0)",

where= denotes convergence in distribution and W has -a f dimensional mul-

tivariate normal distribution NO, VAV ™) distribution with3V = EV.7(-,8,), A =

EVlT("ﬂO)[VlT("BO)]T .

Proof of Theorem 4.2.2Define

f(Z].’ 22’ ZSaﬂ) = h(Z]_, 223 Z?nﬁ) - h(Z]_, 223 ZS,ﬁO)-
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Supposef(z, 2, z;,B) is a real-valued function on the product sp&6&)S X S.

Gn(B), G(B) are defined in the precious section. Lg{B) be

La(B) = Gn(B) — Gn(By)-

and the expectation(B) be
I'(B) = G(B) — G(Bo)-
We note thaiG,(8) — G(B) is a U-statistic of order three. WrittddXf(.,-, -, 8) as U-
statistic of of order k. Then,
Gn(B) — G(B) = U3 T (., B)-
From the properties of the U-statistic, for the U-statisfiorder k, there exist functions
f1(¢,-, - B),...t%(, -, -, B) such that for each f'(-, -, -, B) is P-degenerate o®/, and

k
Urlf(’ *s ’ﬂ) = Pnfl(" *s ’B) + Z Ull’lfl(’ ‘s "ﬂ)’
i=2
whereP, can be viewed as a random probability measure putting ?fl]]aSSach ordered
k-tuple &_, ..., Z,) (Serfling (1980).
So,
Ta(B) = T(B) + Paf*(, -, B) + UZF2(, -, B) + UST3(, -, -, B).
Now we apply Taylor expansion ef:, 8) aboutg,:
1 k
(. B) = 7(. Bo) + (B = Bo) " Vat (-, Bo) + 5B —Bo)' Va1 (-, B5)(B - Bo);

for B* betweernB andg,.

Forzin S,

1B = Bo)' [V21(z B) = Vor(z Bp)I(B — Boll < M(DIB - Bol*.
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From Theorem 4.2.1 of the consistency and the results froennsdmn (1994), we have

Etr(z B) = 3['(B), and
1
r(p) = E,BTVB +0(B8))* as B — B,

and

i T 2
\/ﬁﬂ W, + 0p(1B819),

uniformly overo,(1) neighborhoods g8,, whereW, = vnP,Vi7(-, B).

Pnfl(., - B) =

As a property of the U-statistic of ordkr(Sherman 1994), it will be true that

UKE(, -, - B) = 0p(1/n%).

So,
Ur%fz(" ) ’ﬂ) + U§f3(’ ) ’ﬂ) = Op(l/n)'
Thus,
1 1
Tn(B) = 5B"VB + %ﬁTwn + 0p(IBI%) + 0p(1/n).

From the Corollary in Sherman’s paper (1994), we can get that

(B, - Bo) = (W,0),
where= denotes convergence in distribution antihas aN(0, VAV ™) distribution

with 3V = EV,7(-, Bp) andA = EV1(-, Bo)[Var(-. Bo)l - O

In this thesis, we proposed the estimator extended fromeheparametric mono-

tonic linear index model which has many advantages over ¢ypes of methods such
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as the maximum linear separation (MLS) measure. The exaatenaf the monotonic-
ity is usually dificult to specify even as we often assume a monotonic reldtipns
between a response and a linear index. Therefore, the éstimahe semiparamet-
ric monotonic linear index model can directly exploit momatity between a response
and a linear index without any knowledge about the form oftle@otonic relationship,
and no parametric assumptions are needed about the etridnudisn. Another appeal-
ing property is that the estimator does not require any stilsge bandwidth choice.
Moreover, the proposed estimator allows more flexibilitypadancing robustness and

efficiency objectives for a wider range of models.

In this thesis, the best linear combination is the one whiakimizes the VUSP(XiTl,B >
XLB > XiTs,B) among all the possible linear combinations. We denote @sdmum VUS
from the combination amaxVUS Thus the bootstrap standard errors for the estima-
tion of maxVUSand the cofficient vector can be similarly applied as in the previous

chapter.

For each of the bootstrap samples, denote the estimatotedanaximum VUS
byimaxVUS, : n = 1,2,..N} whereN is the number of samples. The bootstrap stan-

dard error fomaxVU Sis

N

sey(maxvug = J ﬁ > (MaxVus - maxvVus2, (4.10)

n=1
A 100(1- @)% confidence interval fomaxV U Sis

maxVUSx+ z,,5&i(maxvVug, (4.11)
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wherez, , is the upperr/2 quantile for the standard normal distribution.

Similarly, for each of the bootstrap samples, denote thimasbrs for the coficient
vector by{[?n :n=12,..N} whereN is the number of samples. The corresponding

bootstrap standard error fgris

N
S J e > BB (4.12)
n=1

A 100(1- @)% confidence interval fg8 is

B = Z,:5&(B). (4.13)

wherez, , is the upperr/2 quantile for the standard normal distribution.

4.2.2 Normal distribution assumption

Diagnostic test data have been modeled under a normalodistm in many studies.
Rich literature also exists for combining markers by usingtivariate normal proper-
ties. Su and Liu (1993) provided classic results developeltuthe delicate multivari-
ate theories. We also provide a simple parametric resuthoptimal combination of

which the distribution of the data from the multiple clasaesassumed to be normal.

In this section we consider a special parametric case whreeratidom vectors for
the three classes follow normal distributions. Under sutirr@ormal scenario we can

obtain an exact formulation for the combination fimgents.
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SupposeXy, X,, X3 are from d-dimensional multivariate normal distributiofy, ~
N(up, 21), Xo ~ N(uy, Xp), X3 ~ N(us, X3) wherepy,, u,, u; are mean vectors and
Y., X,, X3 are variance-covariance matrices for the three classsgectvely. For a

codficient vectoiB = (81, 82, ...84)",

B'Xi ~ N(B' ., BTEZB),

fori=1,2,3.

Then we intend to find A, that maximizes the following

VUS =P(B" X1 > BT X, > BT X3),

which can be expressed by

VUS

S L BT (8 X E xdE ) ds x

[0 [ ) [ 6T b o

[0 [ bl BT - FulET 8T

Iw Fro(B'X2)[1 = Fy (BT X2)] fx, (B" X2)d(B" X2)
00 T
[ ol=8 ug)_cD(—(t—BTul))_cD(t—BTuz)_ L 4

VEEB  JBEB BB JBTIB

t—pB" -
Lets= ﬂ thent = /B"Z.8s+ B u,. Thus, the VUS can be written as

\/.BTZzB
.B 1y — p3) V'B EZ'B .3 (11 — 1y)
VUS = q>( ) - O(-
f \/,B 23,3 \/,B X3 \/,B ELB \/,3 DY)

Je(s)ds
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whereF denotes the distribution function arfddenotes the density functiofs, de-
notes the survival distributiond denotes the normal distribution functiop,denotes

the normal density function.

BEB  Fs-p) NP
JBEp Jrs JFEs

Then, the VUS is a form as

7

Leta=

VUS = foo d(as+ b)d(-cs+ d)gp(s)ds

Differentiating with respect {8, we can solve the equation fgiwhich maximizing

the VUS.
% = Iw ®d(-cs+ d)p(as+ b)g(s)sds: _,B +f ®d(—cs+ d)p(as+ b)p(s)ds- TZ
+f ®(as+ b)p(—cs+ d)p(s)(—9)ds: — +f d(as+ b)gp(—cs+ d)p(s)ds- —2:0
oa ~od
= Al . 8_,8 + A2 ﬂ + 3 * ﬂ ﬂ
We now calculate the four parts.
A = foo ®d(—cs+ d)gp(as+ b)g(s) - sds
! 1, b? 0 a+1 ab .,
= Ze - 2(a2+ 1) f ®d(-cs+ d)exg- > (s+ p~n 1) }sds
1 1, b °° a2 1 ab |, b
= Ze - 2(a2+ l) f ®(—cs+ d)exp- (s+ —n l) s+ a2—+1)ds
1 1, b2 0 a2 1 ab , ab
- Zexq S 1) f ®d(—cs+ d)exp- > (s+ —n 1) }a2+ 1ds

= As— A
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1, p?

1

4 A 2'a2+1
1 —C

2

@+l Va+l+c?

ab
az+1

a2+1 ab

)} I: ®(-cs+ d)exp— (s+ 21
(ab—cd)z]}

a+1+c?

)*}d(s+ )’

: exﬂ—z[b2 +d? -

A = [m ®(—cs+ d)gp(as+ b)p(s)ds

[ ®d(-cs+d) - E ex;:{——[\/a2 1s+ \/%

. Then,

%)ds

Lett = Va2 + 1s+

a?+1
1 b? ) ¢
A= — L e T t
T V@ " @D
S — e b? abc+ (&2 + 1)d
Vor(@+1) - 2@+1)  J@rD@rlre)

abcl + d)p(tydt

ab
=g e
then,
ob ob ab oda aZ+1 0, 6 b
Poigp e 8_,8 Mag~@viap =™ T Be1
Thus,
da b 1 - 1 1., o, (ab-cd? da
Alc’)ﬁ+A2c’)ﬁ 2r @2+1 VaZ + 1+ 2 exH 2[b +d a2+1+02]} op
2 2 2 2
N a +1-exn—}- 2b @ abc+ (a“ + 1)d KA 2b )
2bV2n 2 a+1 J@+D)@@+1+cl) dpa+1
Similarly,
c’) 1 -a 1 , (ab-cd?.  dc
,B+A4,B on 2+l \/7612_,_1_,_(:2 x50 + o - ) OB
2 2 2
e +l-exq—}- 2d o adc+ (c>+1)b 9 2d )
2d V2r 2 ct+1 J@+ D@ +1+c) dpc+1



Chapter 4: Combining Multiple Markers for Multiple-cataegydClassification

Denote

_ (@ + 1)d + abc o — (c®>+1)b+adc
V@@ @+ Dh@+1+D)

Ci = ‘2—\/? @+ 1)@+ 1+ ) - e5D(xy),
C, = _2_\/? V(@ 1)@+ 1+ D) - e%D(x).

Thus the equation can be written as:

c oda a_ dc o b? 0 d?

-~ Cr (———) + Co— (——
it @ria8 " C@ ) T ClE

)=0

97

The analytic solution is not generally attainable. As sugh,consider a special

case for whichX; = X, = X3 = |, andy; — u, = p, — pg = 6. That is, we assume

a constant covariandefor the three categories and equal distances between the two

adjacent categories.

For the results of Liu and Su (1993), we can derive that théictents for the best

linear combination are proportional B526.

4.3 Simulation studies

We conducted simulation studies to assess the performdrbe proposed method.

Sample sizes of 60, 120 and 150 were considered. In ourarii@ considered four

simulation settings. In each simulation, we fi¥@d= (81, 8>...84), (d = 2, 3,4) which
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maximizedPr(8"X; > B'X, > B'X3). We setdy = 1 for identifiability and only
estimatedg;, ...34_1). For the estimation of the standard errors, we appliedtéredard

bootstrap procedure with 500 resamples.

In Case 1, we generateth, X,, X3 from two-dimensional multivariate normal dis-
tributions with mean vectors (2 2.0)", (1.1, 1.0)", (0, 0), respectively, and covariance
matrices being identical as a two-dimensional identityriraBy using the results in
Section 2.2, we derived the best linear combination andmddahe maximal probabil-

ity Pr(8" X, > B X, > B" X3) to be 0.87.

In Case 2, we generateti, X,, X3 from three-dimensional multivariate normal dis-
tributions with mean vectors (2 2.2,2.0)", (1.2,1.1,1.0)", (0,0, 0)", respectively, and
covariance matrices being identical as a three-dimenkideatity matrix. By using the
results in Section 2.2, we derived the best linear comtwnatnd obtained the maximal

probability Pr(8" X; > 8" X, > B X3) to be 0.90.

In Case 3, we generateti, X,, X3 from four-dimensional multivariate normal dis-
tributions with mean vectors @ 2.4,2.2,2.0)", (1.3,1.2,1.1,1.0)", (0,0,0,0)", re-
spectively, and covariance matrices being identical asiedomensional identity ma-
trix. By using the results in Section 2.2, we derived the tiesar combination and

obtained the maximal probabili§r(8" X, > ' X, > B X3) to be 0.89.

We used the nonparametric MRC estimation to estimate thi@cieats for the sim-
ulated data in Case 1 to Case 3. The estimation results fahtbe cases are summa-

rized in Tables 4.1, 4.2, and 4.3. For each case, théiciemts are listed in the column
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B. The average of the estimated @o®ents in 1000 simulations are given in the col-
umnB. The sample standard deviation of the estimatedhmients are given in the
columnsd(B). We applied bootstrap method to account for the varighititthis paper.
The average of the estimated standard errors are given icotbemns.é. To see how
well the nonparametric estimation methods performs, we eddculated the coverage
rates at the nominal 95% level, given in the column ‘covenages’. In all cases, the
estimated coicients are consistent to the true ffio@ents. The results shows a well
performance and the performance improves as sample siae ¢pege. Our proposed

methods appear to work satisfactorily well for these fingmple studies.

In the three cases, we specified multivariate normality mgsions. In additional

to multivariate normal distributions, we considered thehairt distribution as well. In

3 2 2 15
Case 4, we generated, X,, X3 from wishart distribution witlt of ,
2 3 15 2
1 05
and , respectively, and degree of 10. We derived the best lirmabmation
05 1

and obtained the maximal probabiliBr(8" X, > 8" X, > B X3) to be 0.72. Results

are listed in Table 4.4
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4.4 Applications

4.4.1 Proteomic study for liver cancer

We first considered a recent mass spectrometry datasetdadetection of Glycan
biomarkers for liver cancer (Ressom et al. (2007, 2008))e f@searchers investi-
gated 203 participants from Cairo, Egypt; 73 hepatoceallodacinoma (denoted by
HC) cases; 52 patients with chronic liver disease (denoye@d®); and 78 healthy indi-
viduals (denoted by NC). The spectra were generated by axnasisisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) mass analyzer (Apptl Biosystems Inc.,
Frammingham, MA). We downloaded the dataset from the astipoiblic website and

focused on a set of 484 peaks after extensive preprocessing aw data.

Each peak may be regarded as a diagnostic testfi@rentiating the subjects from
the three distinctive classes: HC, QC and NC. In this cagedidgnostic task involves
more than two categories. Placing an individual into anyngroategory may result in
adverse consequences. The accuracy of the diagnostibtissstiould be reflected by
how often the test correctly classifies all three categokiés were interested in study-
ing the diagnostic accuracy of these peaks and identifiesethbeaks with the highest
discriminatory ability. Previously, Ressom et al. (200@0&) conducted analysis by
reducing the number of categories in order to frame a fewnpseér two-category clas-
sification problems. Pairwise ROC curves and the areas uhddrOC curves (AUC)

were reported to investigate thef@rentiability between two classes (eg. HC and QC).
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However, such AUC measures cannot summarize the overaltamcfor three cate-

gories.

A more appropriate summary measure is VUS as discussedsithisis. We first
estimated VUS values for all the peaks by using the methods and Fine (2008)
and then focused on the top twenty peaks among the 484 pedley. afe gene 183,
gene 209, gene 147, gene 443, gene 182, gene 262, gene 28% &ngene 368,
gene 134, gene 306, gene 188, gene 299, gene 311, gene 3614&fngene 104,
gene 425, gene 210, and gene 294, denotdd, aB,, ..., D,q, respectively. It is noted
from our calculation that the largest VUS is only approxieia0.65, indicating that in
about 65% of all classification jobs such a peak can correctiy the three classes of
subjects. Evidently, using only a single peak may resulbadequate accuracy. Thus,
we then applied the methods introduced in this thesis talaumhore accurate classifier

by combining multiple peaks.

We considered a selection procedure with these twenty gstagtng with the peak
with the highest VUS and sequentially adding peaks whichimized the VUS based
upon the joint model. At each step, we estimated théfment for optimal combination
and then calculated the HUM values. The model selectioriteeate summarized in
Table 4.5. We noticed that after including five peaks in oudeipthe VUS value
reached about 86% and no longer significantly increased dingdo the number of
peaks. The VUS values no longer increased after the sixttibe and so we closed

at this point. The final model showed a large improvement irS\@lues. We also
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applied the bootstrap methodology to calculate the coomdipg standard error for

each combination.

We also estimated the ciheients for the markers in Table 4.5. The size and sign
of the codficients can indicate the relative importance of the markdrtha direction
of their association with the disease outcome. For the sk®mparison, we also
considered a forward selection based upon multinomiastagiegression as in Li and
Fine (2008). This approach gave dfdrent combinatioD; + 3.7D4, — 3.175(D,7 +
0.3562D3—1.4D1p+ 1.0629D,g, with VUS value of 0.843. Compared to the VUS value
of 0.860 from our proposed methodology, it seems that ounagktan provide a higher

VUS after combining biomarkers.

4.4.2 Evaluating tissue biomarkers of synovitis

Although the methodology we introduced is contextual te¢hcategory classification
problems, there is little diculty to extend our results to higher dimensional classifi-
cations. In this section, we considered an example in whietamalyzed five distinct

categories.

Krenn et al. (2006) described a three-component score éogridding of the histo-
logical severity of synovitis. Each of the three componélinieng thickness, inflamma-
tory infiltrates, and stromal density) was graded on a scala &zero to three. In this
case, the primary classification outcome involves fiBedent categories. The sample

sizes for each category are given in Table 4.6.



Chapter 4: Combining Multiple Markers for Multiple-cataegydClassification 103

We first quantified the diagnostic accuracy for each comptareththen determined

the best linear combination to achieve the highest accuracy

The estimated HUM are reported as we denote lining thickasdd,, stromal
density asM, and inflammatory infiltrates asl;. We considered a combined score
B1M; + B>M, + M3 and estimated the unknown dheientsg; andg, which maximized
the HUM. Stromal density appears to be the most accurate gtherthree tissue mark-
ers with a HUM of 0.0124, followed by lining thickness and amfimatory infiltrates.
The estimated cdBcients arg8; = 1.03 and3, = 1.07. Clearly individual markers with
higher accuracy receive relatively larger weights to bthigl optimal score. We noticed
that the estimated HUM for the optimal linear combinatiorswaore than ten times
larger than the HUM for any of the three markers. Using infation from three mark-
ers can thus substantially improve the clinical diagnasishe multiple categories and
stages of inflammatory arthropathies. For the sake of cosgparwe also computed
the HUM for a naive combination of the three biomarkers by sung them together.
The resulting HUM is only @624 which is much lower than the maximum attainable
HUM. The results are reported in Table 4.7. We also calcdl#te corresponding p-
value for any two rows in Table 4.8. All the p-values (Tabl8)4are less than 0.05,

implying significant diferences.
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Table 4.1: Estimate@ which maximizedP(8" X; > 8" X, > 87 X3) in Case 1.

Sample size B ﬁ sd(B) Sé | coverage rate
60 1.1 1.209| 0.0164| 0.0243 0.937
120 1.1 1.135| 0.0163| 0.0258 0.943
150 1.1/ 1.110| 0.0162| 0.0199 0.944

Table 4.2: Estimate@ which maximizedP(8" X; > 8" X, > 87 X3) in Case 2.

5

Sample size B ﬁ sd(B) Sé | coverage rate
60 1.2 1.252| 0.0191| 0.0255 0.935
1.1|1.167| 0.0156| 0.0259 0.938
120 1.2 | 1.245| 0.0193| 0.0286 0.938
1.1|1.134| 0.0176| 0.0247 0.942
150 1.2 1.222| 0.0197| 0.0239 0.937
1.1|1.119| 0.0163| 0.0219 0.940
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Table 4.3: Estimate@ which maximizedP(8" X; > 8" X, > 7 X3) in Case 3.

Sample size B ﬁ sd(B) Sé | coverage rate
60 1.3 ] 1.255| 0.0197| 0.0313 0.932
1.2 | 1.244| 0.0196| 0.0280 0.933
1.1 1.149| 0.0175| 0.0284 0.937
120 1.3 ] 1.265| 0.0198| 0.0274 0.939
1.2|1.243| 0.0192| 0.0211 0.935
1.1|1.115| 0.0169| 0.0209 0.940
150 1.3|1.281| 0.0192| 0.0224 0.934
1.2|1.181| 0.0176| 0.0239 0.937
1.1 1.087| 0.0169| 0.0210 0.941

Table 4.4: Estimate@ which maximizeP(8" X, > B X, > B' X3) in Case 4.

Sample size ﬁ sd(B) Sé | coverage rates
60 1.081| 0.3721| 0.0299 0.939
120 1.113| 0.3290| 0.0332 0.940
150 1.130| 0.2837| 0.0262 0.942
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Table 4.5: Estimated optimal volume under the ROC surfa¢ekS| for each step of

the forward selection. Standard error and P-values are gtadfby using the bootstrap

method.

Step| VUS Model s.e | P-value
1 |0.647 D1 0.04
2 10.750 0.125(D3 + D4 0.039| < 0.001
3 |0.808 1.3606D;2 — 3.904@D;7 + Dyg 0.037| < 0.001
4 |0.850 7.8778D3 + 25.313D, — 434817 + Dy 0.036| < 0.001
5 10.859 1.78D3 + 6.85D, + 6.26D14 — 11.75D17 + D1g 0.034| < 0.001
6 | 0.860| 576Dz + 15.33D4 + 5.23D;9 — 42.94D;; + 10.12D;5 + Dy | 0.028| 0.31

Table 4.6: The sample sizes for each category in the sysalatia.

Category Sample size
Normal healthy control 33
Post-traumatic arthropathy (PtA) 29
Osteoarthritis (OA) 221
Psoriatic arthritis (PsA) 42
Rheumatoid arthritis (RA) 341
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Table 4.7: Estimated hypervolume under the ROC manifoldhildalues for synovitis

biomarkers.
Marker HUM

M, 0.0085

M, 0.0124

M3 0.0011

M1+ Mz + M3 0.0624

1.03M; + 1.07M, + M3 | 0.1020

Table 4.8: P-values.
P-values M, M, Ms M; + My + M3
M; 4.969x 107° | 9.976x 1014 | 2513x 10°%
M, 4.969x 10°° 1.505% 10°° | 4.044x 10742
M3 9.976x 10 | 1.505x 10°° 1.64x 10°%
My + Mz + M3 2513x 10°%7 | 4044x 102 | 1.64x 10755

1.03M; + 1.07M, + M3 | 241x 107128 | 259x 10711° | 4.63x 1076 | 1.164x 10°2°
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Chapter 5

Conclusion and Further Research

5.1 Conclusion

Although the multiple-category ROC framework and corregbog HUM were origi-
nally introduced by Scurfield (1996), their practical useempirical analysis was not
thoroughly examined. Mossman (1999) simulated statistvogk attempting to trans-
late the identified theoretical HUM construct given by Saidiinto practical infer-
ences. Subsequently, a wholly acceptable solution forlviegpissues pertaining to
multiple tests has not been made fully available. Furtheemabtaining direct proba-
bility assessments from such tests is unfeasible. Simpiside rules are not flexible
enough for many applications, like microarray data, whéerd are many tests and

unordered categories.
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Our proposed methods overcome this problem by using estthtdass probabili-
ties. The main advantage of our proposed method is the siogpion of computation
required for screening the useless tests and identifyiagrbst useful tests. Due to
the uncertainty of the ordering relationship among mudtigategories, we need to first
determine the correct expression for HUM. Our computatgomuch lower than the
exclusive computation of all possible HUM values. When thmber of categories are
large, we can provide huge savings in computation time aedygn The correct iden-
tification of the ordering relationship among classes prees from screening good

tests.

Even if the continuous test is not ordered because of theaatumultiple cat-
egories, the numeric values can always be ordered. For ereafdnultiple-category
ROC analysis, Li and Fine (2008) used a method based uponwes decision rule
and achieved a reasonable estimation of HUM without knogéeaf the correct class
order. Such a method does not clearly reveal the relativeninates of the multiple
classes and may not be appealing for interpreting the imptios of HUM. Our pro-
posed strategy yields the same estimation of HUM and pre\adéitional information

regarding the ordering of numerical test values froffiedent classes.

Distinct diagnostic markers can be sensitive influencesitmus aspects of the dis-
ease being studied. In such cases, applying a linear cotidyinzan reveal a ‘new’
marker comprised of multiple biomarkers which can enhamagrabstic capability. We

proposed a new rank estimator and also provided the consysteeorem of the cdi-
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cient estimators. The theorem can be extended to the ketask model under which

multiple-dimensional open wedges can be constructed.

Our methodology, which applies the bootstrap method toutatle the variance of
the maximum VUS and HUM, was relativelyfieient and &ective when applied to
the computation-heavy simulation results in this papee d&ta analysis demonstrates
that the best linear combination maximizes the VUS and HUMleura three-class and
multiple-class case, respectively. The resulting modatet upon the related linear

combinations generate further insight into the mass speeitry dataset.

5.2 Topics for further research

With the increasing number of applications for AUC and mtameasures in medical
field and clinical studies, we have noticed that the AUC valaie at times lower than
1/2. Such AUC values are sometimes overlooked or intentigoatitted, especially in

large-scale microarray studies. However, they may holdontamt information about
the accuracy of diagnostic tests. In this thesis, we prapasgample method of rotat-
ing 180 degrees to cause the ROC plot to emerge above theecagonal line. In

future work, we may further consider the concave ROC curepgrties and propose

nonparametric methods.

Identifying the correct classification for multiple-catey classifications is com-

paratively complicated. Instead of applying the U-statisjppproach to calculate the
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VUS and HUM, we proposed bootstrap standard errors for tHépteicategory ROC
analysis, which could significantly remedy the computadldiurden. In this thesis, we
followed the bootstrap approach in Li and Fine (2008) andelzobootstrap sample size
of 500. However, some future work remains to determine tledtap sample size. In
fact, great interest exists to come up witlieetive approaches to design and evaluate
the bootstrap sample size. The calculation of the correfipgrconfidence interval of
the bootstrap p-values is also complicated, and there itelihtiterature concerning its

calculation. This should open a path for further research.

Sometimes the data distribution could be highly skewed eftar the normaliza-
tion transformation. Outlier or extreme observations rmajho exist and influence the
estimation of distribution means. When distribution cdiatis are not satisfactorily
met, parametric methods may not always indicate the cometihal relationship of
test results among groups. One might seek distributiomfimparametric methods to
identify the order. Weighted average of the distributioryrba another topic for further

research.

The MRC estimator has recently attracted much attentiom tlassification liter-
ature due to its close relationship with the ROC curve. Coinlgi predictors for clas-
sification is discussed in this thesis. We explored statibtnethods of a linear com-
bination of multiple tests for multiple-category classtions to optimize the accuracy
from the combined markers. Further research may also attiensplve for non-linear

combinations which maximize the VUS or HUM of multiple-ogey classifications.
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A closed-form expression for the best-fitting parametery s@netimes not exist, as
there is in a linear combination framework. With the introtlon of methods that can
solve some of the computational burden of multiple-catggooblems, the data can be
fitted by a method of successive approximations within algiabmputational capacity

to derive the target nonlinear model.

In this thesis, we applied the nonparametric estimatorsldfHand suggested the
resampling bootstrap method to calculate the standardsdioothe estimators of HUM
and the cofficient vectors. This can be viewed as an in-sample estimatsvetrtr,
when we take an independent sample of the validation data fine same population
as the training data, overfitting can sometimes occur; thdhe model does not fit the
validation data as well as it fits the training data. This istiiely to occur when the
number of parameters is large and the size of the trainirgsdats very small. Cross-
validation is then an applicable way to assess how the sesist statistical analysis will
generalize to independent datasets. It involves pariitgpa sample of data into com-
plementary subsets, assessing the analysis on the traigiiagd validating the analysis
on the testing set. Thus, in particular situations, the iappbn of cross-validation is

also of interest for further research.

For binary classification, Pepe and Thompson (2000) deedl@gmethod based
upon maximizing the AUC to combine biomarkers in genetidss. Their method
was essentially adapted from the maximum rank correlatstimation. In this thesis,

we provide statistical approach which yields the best lim@anbination to maximize
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VUS or HUM. Li and Fine (2008) considered multinomial logigtegression to address
multi-category outcomes. Further research may also fogtiseinferences which yield

the most &ective multinomial logistic regression to maximize VUS ddM.
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