
EFFICIENT SUB-OPTIMAL INVERSE KINEMATIC

SOLUTION FOR REDUNDANT MANIPULATORS

BAHAREH GHOTBI

(B. Eng, Sharif University of Technology)

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2009



i

Acknowledgment

I would like to express my warm and sincere thanks to Professor Poo Aun Neow who

introduced me to the field of robotics and gave me the opportunity to pursue my

studies in National University of Singapore. His support and trust helped in many

aspects during my studies in Singapore. I specially want to thank Prof. Sam Ge

for his guidance during my research in Social Robotics Laboratory. His perpetual

energy and enthusiasm in research was the biggest motivation for me in my work.

The generous support from Agency for Science, Technology and Research (A*STAR)

is greatly appreciated for granting me the Graduate Scholarship for master studies. I

owe my sincere gratitude to Dr. Ong Fook Rhu and Dr. John-John Cabibihan who

gave me the opportunity to conduct my experiments under their guidance. I was

delighted to interact with Prof. Oussama Khatib and Prof. Francis Quek during their

visits to NUS. Their innovative ideas greatly influenced my work.

During this two years I have collaborated with many colleagues for whom I have

great regard. I would regret my master studies years in NUS if I did not join the

team for TechX challenge. The associated experience broadened my perspective on

the practical aspects of robotics and I am grateful to come across several life-long



ii

friends during that time. Thanks dear Brice, Aswin and Pey Yuen. All my lab mates

at Social Robotics Lab made it a happy environment to work. My warm thanks go to

Dr. Kenneth Pinpin for sharing his useful experiences and dear He Wei for his kind

supports.

I owe my loving thanks to my mom, dad and my dear brother, Borna. They have

always been a constant source of encouragement in my life. It would have not been

bearable if I did not have the three of you in my life. My dear friends in Singapore

and Iran made my first experience of independent life happy and memorable.



iii

Summary

An efficient solution to Inverse Kinematic problem is presented in this work. The

motivation for this research is the advancements in Social Robotics during the last

decade which require robots to interact with human. The conventional methods for

manipulator trajectory planning provide tools for smooth and accurate motion of the

arm but they fail to simulate the natural motion of human arm. The emphasis of this

work would be mostly on providing natural motion of manipulators for social applica-

tions such as handshaking. Furthermore, the presented algorithm would be applicable

to all manipulators with various geometries and degrees of freedom. Therefore, it is

tried to follow the same logic as human to plan the arm motion. The main concept

behind this algorithm would be as follows. The torque sent to each joint actuator is

proportional to the instantaneous contribution of that joint in driving the end-effector

towards the target. Using this concept, the driving command for each joint is com-

puted at each cycle and would be sent to the actuators after applying some control

strategies to ensure the smoothness of the motion. This algorithm is applied to highly

redundant manipulators in simulation studies to verify its effectiveness. As an ex-

ample, simulation studies on a ten degrees of freedom arm is presented in this thesis
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as a model of the human arm. Furthermore, series of experiments are conducted to

compare the motion of the arm in human and the simulated model. The results of this

study are shown in graphs as well as numbers, using analysis tools such as Dynamic

Time Warping.



v

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4

2.1 Classic Inverse Kinematic Methods . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Multiple Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Method of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3.1 Closed form solution . . . . . . . . . . . . . . . . . . . 8

2.1.3.2 Numerical solution . . . . . . . . . . . . . . . . . . . . 9

2.1.3.3 Examples of Common Methods . . . . . . . . . . . . . 11

2.2 Motion Planning In Humanoid Robots . . . . . . . . . . . . . . . . . . 18

2.2.1 Global vs. Local Approaches in Constraint Optimization Problems 21

2.2.2 Pseudo-Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Optimization Criteria . . . . . . . . . . . . . . . . . . . . . . . . 27



vi

2.2.4 Potential Field Method . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Inverse Kinematics: Flow Algorithm 40

3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Experimental Results 53

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Experiment Description . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Conclusion and Future Work 74

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



vii

List of Figures

2.1 Gradient Descent for the function f(x) = g. . . . . . . . . . . . . . . . 14

2.2 Super-Quadratic Surfaces with Ellipsoid as Basic Shapes. . . . . . . . . 24

2.3 External Penalty Functions. . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Internal Penalty Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Limited Internal Penalty Functions. . . . . . . . . . . . . . . . . . . . . 39

3.1 Flow Algorithm Key Vectors Illustration for Joint 1 (Shoulder). . . . . 45

3.2 Flow Algorithm Key Vectors Illustration for Joint 3 (Elbow). . . . . . . 46

3.3 Joint Angle History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Simulated Humanoid Arm Approaching the Target. . . . . . . . . . . . 48

3.5 Deviation d of the 10 degrees of freedom manipulator for various step

sizes in the Flow algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Experimental Setup: Six Vicon Cameras Covering the Whole Scene. . . 54

4.2 The Vicon Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The Reference Triangle to Specify the Global Frame. . . . . . . . . . . 55

4.4 Markers Configuration on the Arm. . . . . . . . . . . . . . . . . . . . . 56



viii

4.5 Initial Position of the Arm. . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Selected Targets in Experiment (a) to (g). . . . . . . . . . . . . . . . . 57

4.7 Markers Grid in Vicon Work Station Interface. Captured for the First

Experiment: (a) Arm at Rest, (b) Arm Stretched. . . . . . . . . . . . . 58

4.8 Vicon Workstation: Upper arm and Forearm Relative Angles Along 3

Elbow Joint Frame axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Elbow 3D Position History from Experimental Results. . . . . . . . . . 62

4.10 Elbow 3D Position History of the Simulated Arm. . . . . . . . . . . . . 62

4.11 Elbow Joint Variable History from Experimental Results. . . . . . . . . 63

4.12 Elbow Joint Variable History of the Simulated Arm. . . . . . . . . . . . 63

4.13 Finger Tip 3D Position History from Experimental Results. . . . . . . . 64

4.14 Finger Tip 3D Position History of the Simulated Arm. . . . . . . . . . 64

4.15 Comparison of Human Elbow x-Trajectory in Test 1 and 2, Using DTW

Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 Comparison of Human Elbow x-Trajectory in Test 1 and 3, Using DTW

Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.17 Comparison of Human Elbow x-Trajectory in Test 1 and 4, Using DTW

Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Comparison of Human Elbow x-Trajectory in Test 1 and 5, Using DTW

Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.19 Comparison of Simulated and Human Elbow x-Trajectory Test 1, Using

DTW Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



ix

4.20 Comparison of Simulated and Human Elbow x-Trajectory Test 2, Using

DTW Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.21 Comparison of Simulated and Human Elbow x-Trajectory Test 3, Using

DTW Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.22 Comparison of Simulated and Human Elbow x-Trajectory Test 4, Using

DTW Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.23 Comparison of Simulated and Human Elbow x-Trajectory Test 5, Using

DTW Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x

List of Tables

3.1 Joints Variable Definition and Initial Values . . . . . . . . . . . . . . . 47

4.1 Accumulated Euclidean Distance of Elbow Position Series . . . . . . . . 72

4.2 Accumulated Euclidean Distance of Elbow Joint Angle Series . . . . . . 72

4.3 Accumulated Euclidean Distance of End effector Position Series . . . . 72



1

Chapter 1

Introduction

1.1 Motivation

Human body and mind have always been an inspiration for researchers to find the

most efficient designs and control strategies for robots to eventually enable them to

help human in harsh environments and difficult tasks in efficient ways. However, the

extreme complexity of biological systems has led engineers to come up with more

simple and practical solutions. Inverse kinematic problem is a good example of these

simplifications in which, for many industrial robots during the recent decades the

closed form solutions have been derived manually using the geometrical relations of

the manipulator multibody system. In the past, it has been reasonable to follow the

classical inverse kinematic methods, since once the solution was found for a single

manipulator structure many other robots with the same structure could utilize the

solution. Nowadays robots are built as complex as human body and the wide variety
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of designs reduces the chance of finding available inverse kinematic solution in the

literature which can be applied to a new robot. Inverse kinematic computation is an

inevitable part of robotic control and in most cases the only part which has to be

solved manually. Although many solutions has been given for different configurations

of robot manipulators, the need for a general solution is extremely felt.

This work, presents a new approach in solving inverse kinematic problem based on

the concept of flow. The presented algorithm is developed by simplifying the human

decision making process in moving the arm to reach a target in the space. The existing

solutions for inverse kinematics either use mathematical tools for each specific manip-

ulator to derive the closed form solution for each joint variable to reach the desired

position or use numerical methods. Generally analytical methods are preferable to

their numerical counterparts since they offer all the solutions and are computationally

faster and more reliable. These methods are very accurate and the end-effector can

reach the final position within any desired error threshold of the target location. How-

ever, they have two major shortcomings: (i) as mentioned before, the solution has to

be computed separately for every different manipulator using complex mathematical

derivations, which is prone to mistakes and requires supervision to obtain meaningful

results and (ii) the analytical methods give no guarantee that the manipulator would

not fail to reach to the final configuration due to self collisions since they only consider

the initial configuration to compute the final joints value and no information on the

trajectory to be traveled is provided. Therefore, in order to avoid collision with ob-

stacles, setting many midpoints is required. In this work we offer a numerical method

which is inspired by human arm motion. As human, when we aim to stretch our arm
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towards a specific point in the space, we gradually move our hand on the tangent path

of the connecting line between the hand and the target. As the hand is moving in this

path, each of arm’s joint coordinates needs to be updated to support this motion. The

presented algorithm describes the rules governing this consecutive joints coordinate

updating.

The main contributions of this research are: 1) The algorithm converges to solution

for any number of degrees of freedom as long as the target is reachable within the

manipulator workingspace. 2) There is no need for any manual pre-calculations and

the algorithm can be applied to any manipulator configuration as long as the forward

kinematic formulation is provided. 3) Potential field method can be easily applied

to the presented algorithm and compared to conventional inverse kinematics methods

no additional trajectory planning and midpoint setting is required. 4) The resulting

motion has more similarity to natural human arm motion.

1.2 Thesis Organization

This thesis presents a novel method in solving the Inverse Kinematic problem and

the method is verified by experimental results and simulation studies. A complete

literature review of the relevant research areas is presented in chapter two. Description

of the proposed algorithm and simulation procedure are covered in chapter three. The

experimental setup and result analysis are presented in chapter four. Finally Chapter

five summarizes the research contributions and describes the future works.
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Chapter 2

Literature Review

The basic expectation from a robot manipulator is to have the ability of following

a trajectory consisting of specified points. In the real environment the robot should

be able to avoid obstacles in its predefined path and perform an efficient motion.

An efficient motion can be defined as selection of the motion parameters in a way to

travel the specified path in the shortest time and not violating the joint boundaries and

force/torque limits of manipulator actuators. At the same time the planning should

avoid singularities in which high force/torque is imposed on actuators.

It can be shown that shortest traverse time for a path requires at least one of the

actuators to operate at its maximum or minimum boundaries. Dynamic parameters of

manipulator can be converted to path parameters and its first and second derivatives.

Furthermore the actuator bounds can be transformed to acceleration boundaries on

the path as a function of position and velocity. In this section difficulties in the area

of motion planning are presented and the most significant contributions of researchers
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in the past two decades are described.

2.1 Classic Inverse Kinematic Methods

One of the fundamental challenges in control of manipulators motion is solving the

inverse kinematics problem. The objective of this task is to find all the possible joint

variables, linear or angular, to enable the end-effector to reach a desired position and

orientation in the space. With this basic ability it is possible to integrate a sequence

of desired points to form a desired trajectory in order to have the end-effector perform

a desired motion. Hence, the inverse kinematics solution involves determining the ma-

nipulator configuration corresponding to each desired point. A more exact formulation

of inverse kinematic problem would be that given position and orientation of the end

effector relative to the base frame, compute all possible sets of joint angles and link

geometries which would result in the given position and orientation of the end effector.

Different methods are proposed to solve the inverse kinematics problem: matrix, vec-

tor, and numerical methods. The matrix method [1, 2] makes use of the homogeneous

transformation matrix in Denavit-Hartenberg notation. In this method in a recursive

manner, the unit vector of orientation of ith link is obtained, i= n · · ·1. Another ma-

trix based method takes advantage of the rotation matrix property. Although these

algorithms offer exact solution to the problem and cover all the possible solutions,

they are not convenient for a general manipulator control. The reason is that, these

methods can only be derived offline and they lead to nonlinear complex relations for

higher degrees of freedom which makes them not practical to solve. The vector method
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[3] is also a recursive algorithm. This method utilizes the vector properties such as

cross and inner products to find the orientation of joint axes and manipulator’s links

relative to each other. This method is following D-H parameters as well and basically

shares the same logic as the previously mentioned method. The difference is only

in the mathematical techniques to deal with this geometrical problem. For the class

of manipulators which the inverse kinematics solution cannot be obtained in explicit

form, numerical methods are used. Most of these methods are based on an inverse Ja-

cobian and utilizing the Newton-Raphson method [4]. Inverse kinematic is expressed

as a nonlinear problem for which it is necessary to discuss issues such as existence of

solutions, multiple solutions, and the method of solutions. Discussion on these issues

are brought in the following subsections.

2.1.1 Existence of Solutions

For a solution to exist it must lie within the manipulator workspace. Workspace is

divided into Dexterous workspace D and Reachable workspace R.

• Dexterous workspace: The subset of space is which the robot end effector can

reach with all orientations, i.e. at each point in D, the end effector can be

arbitrarily oriented.

• Reachable workspace: The subset of space in which the robot can reach in at

least one orientation, therefore, D ⊆R.

For example, a planar arm with three revolute joints has a large dexterous workspace

in the plane, while if the arm has two revolute joints with equal links in length the
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dexterous workspace would be reduced to the origin point only. Also, a robot with

less than six joints cannot attain a general goal in position and orientation in three

dimensional space. Joint limits is another constraint which has to be satisfied in solving

an inverse kinematic problem. Generally, a manipulator will be considered solvable if

the joint variable associated with a given position and orientation can be determined

by an algorithm.

2.1.2 Multiple Solutions

A common problem that can occur when solving inverse kinematic is multiple solutions,

because the system has to be able to choose one. The number of solutions depends

on the number of joints in the manipulator as well as the link parameters ai, αi, θi,

and di. For a general manipulator with 6 DOF, there are up to 16 solutions. As an

example, the PUMA 560 can reach certain goals with 8 different arm configurations.

The solution to the problem of multiple solutions is to introduce decision criteria such

as minimizing the weighted amount that each joint is required to move or avoiding

collision with obstacles. In the case of PUMA 560, after all eight solutions have

been computed, some or all of them may have to be discarded due to joint limit

violations, and from the remaining valid solutions, usually the one closest to the present

manipulator configuration is chosen.

2.1.3 Method of Solutions

Unlike linear equations there are no general algorithms which lead to the solution of

the nonlinear coupled problem of inverse kinematics. Depending on the geometry of
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the system, closed form or numerical solutions can used to solve the inverse kinematic

problem.

2.1.3.1 Closed form solution

Closed form solutions exists for special manipulator geometries; for example decoupled

manipulators and more generally when the degrees of freedom of the characteristic

polynomial is less or equal to 4 and problem only involves one unknown. Therefore

the inverse kinematic problem would be in the form of a root finding problem of a

4th order polynomial [5]. Generally for decoupled robots analytical solution to inverse

kinematic is available. The reason being that in the process of decoupling a subset of

joints are found to be responsible for a subset of manipulator tasks and therefore, this

results in reducing the system to a lower order subsystem, i.e. 3rd order, for which

closed form solutions are guaranteed. This requires the identification of decoupled

task and decoupled robot subsystems that the decoupled task can be assigned to. In

some manipulators due to their geometry, decoupling is guaranteed. Five groups of

decoupled robot geometries are those having

1. Any three translational joints,

2. Any three co-intersecting rotational axes,

3. Any 2 translational joints normal to a rotational joint,

4. Translational joint normal to 2 parallel joints,

5. Any three rotational joints parallel.
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The first two geometries are identified by Pieper [6], and the last three geometries are

identified by Ang [7]. As an example, robots with spherical wrists are commonly used

in industry and belong to the second group of geometries, i.e. three rotational axes

intersection at a common point. Virtually all industrial manipulators are designed

sufficiently simple so that a closed form solution exists. PUMA 560 is a robot with six

revolute joints which has its last three joints axes intersecting at a common point, pro-

viding the sufficient condition to have inverse kinematic closed form solution. Closed

form solutions, themselves are divided into Algebraic solutions and Geometric solu-

tions. Algebraic solutions are obtained by solving trigonometric nonlinear equations,

while geometric solutions are obtained by reducing the larger problem to a series of

plane geometry problems.

2.1.3.2 Numerical solution

For robots that do not have decouple geometries an analytical solution does not exist

and only numerical solutions relying on iterative procedures can be useful. There are

some important requirements for numerical algorithms such as convergence, insensitiv-

ity to initial estimates, and provision for multiple solutions. In numerical algorithms

there are m equations and n unknowns and the algorithm starts with an initial esti-

mate for n unknowns. The error due to the non accurate value chosen by initial guess

is computed and based on the method chosen in each algorithm, it tries to modify

the estimates to reduce error. The most common methods are based on the Newton-

Raphson approach. In this method the forward kinematic may be interpreted as
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f(θ)−x= 0, (2.1)

with x ∈ Rn. The solution at each iteration by the Newton- Raphson method would

be

θ(k+1) = θ(k)−J−1θ(k)(f(θ(k))−x), (2.2)

with k = 0,1, ... being the iteration index and [J ]ij = [∂fi/∂θj ] ∈ Rn×n being the Ja-

cobian matrix. The iteration is stopped for kmax or for
∥∥∥θ(k+1)− θ(k)

∥∥∥ < ε. In this

method one must pay attention to the possibility of singularity, i.e. det(J) = 0, in

the robot workspace. Other proposed numerical methods are exploiting polynomial

continuation [8], dyalitic elimination [9]or neural networks [10, 11]. However, numer-

ical methods are generally cost intensive and slow algorithms. Apart from classical

methods mentioned above, special methods in kinematic analysis are introduced in

recent years. In a work by A. Khawaja et al. [12] a unified approach based on Genetic

Algorithm is presented. This straightforward algorithm lacks the proof of parameter

convergence which reduces the method’s efficiency and accuracy. Furthermore, the

proposed algorithm is not applicable for real-time computation. Other approaches

to inverse kinematic problem are Interval Methods for solving systems of non-linear

equations which have been explored by a variety of authors [13, 14]. They have already

been used to solve some kinematic problems proving to be robust, but sometimes slow

compared to continuation methods [15].
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2.1.3.3 Examples of Common Methods

The following methods are some of the most successful approaches to inverse kinematic

problem which are subgroups of analytical or numerical solutions or a combination of

them.

Resolved Motion Rate Control of Manipulators In the case of redundant ma-

nipulators several methods have been suggested to resolve the redundancy. Whitney

[16] shows that the operator can obtain control of motion easily along "world coordi-

nates" if the control actions are modified by the inverse of the arm’s Jacobian matrix.

Since we are dealing in most cases with velocity commands to actuators, rather than

position commands, it is necessary to understand the properties of Jacobian matrix

and its benefits in finding inverse kinematics solution. In order to have the basic

understanding on how Jacobian is used in this problem, a very simple example is pre-

sented. Imagine we have to control a manipulator manually by using joysticks. At

the beginning we would actuate each joint separately to examine the direction and

speed of end-effector due to that actuator. This is analog to one column of matrix J

in ẋ(t) = J(θ(t))θ̇(t), where x(t) = f(θ(t)).

To describe the concept of inverse Jacobian in control, assume that we have a non-

redundant arm in which n=m, where n is dimension of task space, x(t), and m is the

dimension of joint space, θ(t). For each component of ẋ, the corresponding actuator

commands are calculated through J−1(θ) in the following equation:

θ̇ = J−1(θ)ẋ. (2.3)
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However, we are sometimes dealing with redundant manipulators and even one

manipulator can operate as redundant or non-redundant system at different tasks.

For example, by defining different task space dimension we can make a non-redundant

manipulator redundant only by choosing not to control come components of x. On the

other hand, by freezing some of the actuators in accomplishing a task, a redundant

manipulator is turned to a non-redundant one. With the above explanation we have

to be able to develop control strategies based on non-square Jacobian matrices. If

m > n, meaning that the Jacobian is not invertible, we need to define an optimality

criterion for the manipulator motion to reduce the solution to a unique one. The types

of these criteria are well explained in 2.2.3. Traditionally the criterion is defined to be

total kinetic energy

H = 1
2

ˆ
θ̇TAθ̇dt, (2.4)

and in some cases to reduce the cost of computation, it was approximated to instan-

taneous kinetic energy

H = 1
2 θ̇

TAθ̇dt. (2.5)

Using Lagrange multipliers and with assumption of known ẋ, the optimal θ̇ can be

found to be

θ̇ = ẋT [J(θ)A−1J(θ)T ]−1J(θ)A−1. (2.6)

This method is the same as solving equation 2.3 using pseudo-inverse in a way that

[ẋ− Jθ̇]TA−1[ẋ− Jθ̇] is minimized [17]. In this formulation the role of A is to give
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higher weight to those components of task space which have higher priority. However,

considering redundancies in the system the generalized solution which includes null

space motion and projection of the Jacobian to the null space using the generalized

inverse is:

∆θ = J†∆~x+ (I−J†J)ϕ, (2.7)

where for any vector ϕ we still obtain a value for ∆θ which minimizes the value

J∆θ−~x. Therefore, ϕ is desired joint motion that is projected into null space of the

Jacobian.

The logic behind using the Jacobian to find the IK solution is an iterative solution.

Assume that pcurrent and pgoal are known. Defining ∆p= pgoal−pcurrent, we have:

∆θ ' J−1∆p, (2.8)

and

θcurrent = θprevious+ ∆θ, (2.9)

where, if ∆p is chosen to be a small step, eventually pcurrent converges to pgoal. Figure

(2.1) illustrates the concept of Gradient Descent for the function f(x) = g.

Although f and consequently J are theoretically not guaranteed to be always

invertible, in practice, a physical chain will never be exactly in a configuration that

results in a singularity. The performance of IK solutions when a chain is near a

singularity configuration varies widely.
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Figure 2.1: Gradient Descent for the function f(x) = g.

Basically there are two established techniques for Jacobian Based Inverse Kine-

matics: pseudo inverse with explicit optimization and the extended Jacobian method.

First we describe the pseudo-inverse method. Pseudo-Inverse methods is using Moore-

Penrose inverse for non-square Jacobian. Liegeois [18] suggested a more general form

of optimization with pseudo-inverses by minimizing an explicit objective function g in

the null space of J :
˙θ =J#ẋ−α(I−J#J)∂g

∂θ
. (2.10)

As a general problem, pseudo-inverse methods are not conservative, i.e., a closed

path in end effector space does not guarantee a closed path in joint space [20]. Addi-

tionally, it is not always easy to determine the constant α in (2.10) which controls the

influence of the optimization function g. These problems motivate researchers to use

Extended Jacobian method.

In Extended Jacobian method Lagrangian approach is used to solve the constraint

optimization problem. Let matrix L span the null space of the Jacobian matrix, and
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therefore the optimality condition would be

LT
∂φ

∂q
= 0. (2.11)

Projection of the objective function gradient onto the null space in an extended

Cartesian space vector is introduced by Baillieul [19] to be

X =

 f(q)

LT ∂φ∂q

 , (2.12)

and the solution would be optimum since an extended desired Cartesian position is

defined to be

Xd =

 xd

0

 . (2.13)

An extended forward kinematic model relates the new task vector X to the joint

angle vector q by

X = F (q) =

 f(q)

LT ∂φ∂q

 , (2.14)

and therefore the corresponding extended Jacobian matrix, Je = ∂F
∂q , would be square.

Furthermore, with this representation the kinematic system is not redundant anymore

because the dimensions of the augmented task space and joint space are the same. The

limitation with this solution is that the analytical expression of the inverse geometric
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model results from a very complicated or even impossible inversion of a non-linear

function of constraints with variables changing rapidly during the arm movement.

IK solution using Jacobian transpose is also proposed by some researchers [21, 22],

but it does not have the Inverse Jacobian method’s popularity. The basic idea is very

simple: use the transpose of J instead of the inverse of J . That is, we set ∆θ equal to

∆θ = αJT∆p, (2.15)

for some appropriate scalar α. Now, of course, the transpose of the Jacobian is not the

same as the inverse; however, it is possible to justify the use of the transpose in terms

of virtual forces. Computing transpose it is much faster than computing the inverse or

pseudo-inverse and it has the effect of localizing the computations. To compute ∆pi

for joint i, we compute the column i in the Jacobian matrix, Ji , and then just we use:

∆p= JT∆θ. (2.16)

With the Jacobian transpose (JT) method, we can just loop through each DOF

and compute the change to that DOF directly. With the inverse (JI) or pseudo-

inverse (JP) methods, we must first loop through the DOFs, compute and store the

Jacobian, invert (or pseudo-invert) it, then compute the changes in DOFs, and then

apply the changes. Therefore, the JT method is far friendlier on memory access, and

computationally efficient. However, if one prefers quality over performance, the JP

method is recommended.
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Modular Architecture for Inverse Kinematics Tourassis and Ang [23] formu-

lated a fast method that is applicable to general 6 DOF geometries. The method is

based on creating a system of three nonlinear equations in three unknowns using the

known forward kinematics and inverse kinematics of the first three joints and the last

three joints separately. According to this article, there are basically two classes of

robot for which decoupling is possible. The first class are robots which the arm joint

motions do not produce orientational side-effects. The second group are robots which

involves the wrist geometry. In fact, the geometries identified by Pieper [6] which are

capable of decoupling are subset of these two classes of manipulator geometries, for

which decoupling is a special case of modularity.

Human-Like Motion with Minimizing Potential Energies In this approach it

is examined how human muscles deal with problem of positioning. To find the phys-

iological characteristics and constraints that shape human arm motion the potential

energies associated with its motion were studied [24, 25]. These characteristics are then

mapped for robotic control with potential energies as a factor to prioritize task-level

control framework. To this end, the defined muscle effort criterion characterizes effort

expenditure in terms of musculoskeletal parameters. Furthermore, muscle fatigue or

strength can be simulated within the muscular effort criteria by altering the muscle

parameters in the model.



18

2.2 Motion Planning In Humanoid Robots

Despite the smooth and easy movements of arm in human and animals which makes

it the main portion of the body to interact with physical world, manipulator motion

planning and control have progressed very slowly in the field of robotics and still has

not met the expectations. As an interacting tool with the environment, the most im-

portant task of human arm is to pick and carry goods and travel specific trajectories

with its end effector and for that purpose it is important to have control on the state

of the end effector. Based on some studies on human arm it was observed that hu-

man motor planning is done in part by minimizing the “cost” associated with certain

“uncomfortable” joint angles during a trajectory [26]. In that work, although it is not

explicitly mentioned that the human controls the arm on a joint by joint basis, it im-

plies that joint variables are meaningful parameters in monitoring and controlling the

arm motion. The big differences between the human arm and the robot manipulator

are in their driving motors. In human arm the movement does not come from motors

but from muscles that are attached to the limb themselves. Therefore one muscle may

influence the movement of two or more joints at the same time. The other obvious

difference lies in the feedback signals sent to both systems’ controllers. In human there

is no sensory organ which can send the instant values of joints variable and velocities,

but according to biological research this form of feedback is used in a more complex

control system instead of its direct use, such as visual feedback. A research by Hogan

[27] on the mechanics of arm motion suggested biologically sensible "spring-like" model

for limb movement. Under this assumption, joint variables are not specified directly,

but instead, are the result of the parameters of the spring (equilibrium position, stiff-
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ness, and damping) and properties of environment and the arm (gravity, inertia, end

load). This assumption has its own limitations. Although it can simulate the biolog-

ical movements, but the sensory information from the system is much less complex

than the information provided by human muscles.

Recently the energy consumption model for muscle models of manipulators has

been of special interest. Since the motor energy consumption in robots is not a critical

problem, this question raises that why it has been of close attention in motion opti-

mization and robot learning. Adam’s research [28] has given credit to this model by

stating that existence of this model will help the robot in understanding the human

motions and has a great influence on its learning for two reasons. Firstly, it helps the

robot to have a sense of tiredness. Although the robot is not expected to run out of

energy during its tasks, but this helps the robot to differentiate between the failures

of human in some actions due to fatigue or other reasons. Secondly, having an under-

standing of limited energy, prevents the robot to demonstrate superhuman abilities.

For example, the robot would find out that there are different reactions inside, during

an intensive work from a slower but lengthy motion. All these factors together, make

the robot movement more natural. Furthermore sharing the same optimization in-

dexes with human, makes most of the human actions meaningful for robot and makes

the learning process easier.

One of the necessary requirements for the robot is to be able to integrate its sensors

data of the joint’s variables and the data from its vision system which sees the location

of the limb with respect to its global frame in the body. This relation is referred to

Forward Kinematics in robotics. In the other hand, robot should be able to choose
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a set of joint variables to lead its end effector towards the target detected by its

vision system. This problem is known as Inverse Kinematic problem and has been

one of the early challenges in the field of robotics. Humanoid robots have interesting

associated inverse kinematic problems because their redundancy causes the solution

of this problem not to be unique and therefore it is possible for the robot to touch

or grasp an object in different ways, i.e. with the elbow up or down or shoulder and

wrist bent in different directions. Redundancy is an advantage for the humanoid since

it allows the system to avoid obstacles and joint limits, as well as actuator limits and

singularities. But, on the other hand, redundancy makes the control and learning

procedure very complicated. To solve this problem several techniques are proposed

which we are going to describe the most important ones here, very briefly.

One approach to solve the inverse kinematics of redundant manipulators suggested

by Heuristic methods is to freeze DOFs to eliminate redundancy. However a smarter

approach is to utilize the redundancy in a way to fulfill our expectation from the

manipulator motion as much as possible. Therefore redundant manipulators can be

used to optimize additional constraints and solve inverse problem by imposing an

optimization criterion with a global optimum:

f = f(θ). (2.17)

This optimization problem can be solved either globally or locally. In the following

subsection advantages and limitations of these two approaches are discussed.
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2.2.1 Global vs. Local Approaches in Constraint Optimiza-

tion Problems

As discussed before, the problem of inverse kinematics and collision avoidance for

redundant manipulators can be formulated as a constraint optimization problem since

a minimum distance should be kept between the manipulator body and obstacles.

Global and local optimization methods are introduced to solve this problem, each of

them having some advantages as well as limitations. Global methods [29], as it is

indicated by their name, are optimizers over the entire path. They are calculated only

once for a given map of obstacles which itself imposes a high computation cost on the

planner due to the high dimensionality of configuration space (usually 6 dimension),

and complexity of configuration space obstacles. They are therefore, not applicable to

dynamic environments and online applications which require fast and highly interactive

operations. In contrast, in local methods [30], which are feasible in real time, joint

variables are set successively as the robot moves along its trajectory, only based on

local information. They only compute optimal changes in θ, ∆θ, for small changes in

x, ∆x. Furthermore, it is possible to integrate online path planning into trajectory

control. This makes the local methods the only solution for dynamic environments.

2.2.2 Pseudo-Distance

Pseudo-distance is an alternative concept to reduce the cost of Euclidean distance

computation for complex objects avoidance. Once we choose our method of optimiza-

tion, we have to develop the optimization factors leading to introduce the optimization
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function, called f(θ) here. Recalling that the collision avoidance is one of the key con-

straints on the manipulator, Euclidean distance has been usually used in the literature

to formulate this constraint [31]. It is very difficult to obtain the shortest distance to

complex objects, since based on the sensor information derivation of the exact equation

of their surface in the space is not possible. Therefore the minimum distance has to be

evaluated for each particular case and also finding the minimum distance to a complex

object is itself the result of an optimization method. An alternative solution is the

polyhedral approach [32, 33], which gives a rough estimation of the surface of difficult

objects. Another useful concept is to use pseudo-distance instead of exact distance.

Concept of distance in collision avoidance is just a tool to avoid the robot parts to

pass a boundary around the object. Therefore, if the robot is outside that boundary,

its distance to the obstacle in not important and this approach would reduce the com-

putation cost significantly. The idea is to introduce a function describing the object

surface, or estimating the surface with a hyper-surface of known analytical expression,

and check the position of the point with respect to the surface. There are two factors

in selection of surfaces to pay attention. These surfaces should be differentiable and

simple, and at the same time should describe the object closely to avoid reduction of

workspace. The method proposed by Perdereau et al. [34] describes the surface or

envelope of an object as a hyper-surface whose analytical expression is known. There-

fore, the problem of surface function is resolved and a large number of obstacles may

be approximated in a very simple way. The expressions of hyper-surfaces are defined

by ellipsoids as given in equation 2.18:
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S(x,y,z) =
(

x

f1(x,y,z)

)2u
+
(

y

f2(x,y,z)

)2v
+
(

z

f3(x,y,z)

)2w
, (2.18)

where (x,y,z) represents the coordinates of the point from which it is desired to

calculate the pseudo-distance to the ellipsoid, f1,f2,f3 are functions giving the desired

shape (cylinder, cone . . .) obtained from the approximated ellipsoid, u, v and w

represent parameters to fine tune the desired shape to the envelope of the ellipsoid.

A closer envelope implies a better description of the obstacle at the cost of a longer

computation time. Examples of some Super-Quadratic Surfaces are shown in Figure

2.2.

In approximating the surface, we should balance between closer surface to the

object which increases the complexity, and reduction of workspace due to inexact

approximations. To describe the idea of pseudo-distance, consider an object closely

approximated by a surface equation:

S(X) = 0. (2.19)

To check the collision of the object with any point of the robot, it is sufficient to

evaluate S(X0), where X0 is the coordinate of any point in the Cartesian space and

compare the result with the following conditions:

S(X0)< 0 if X0 is inside the object,

S(X0) = 0 if X0 is on the object surface,

S(X0)> 0 if X0 is outside the object.
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Figure 2.2: Super-Quadratic Surfaces with Ellipsoid as Basic Shapes.
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Applying these conditions eliminates the necessity of exact calculation of Euclidean

distance and the resulting pseudo-distance is used as a basis of the constraint function

which will be discussed later.

At this stage, the pseudo-distance should be utilized for manipulator’s part col-

lision avoidance. The question rises here is that how many and which points of the

manipulator should be examined by function S(X0). Assuming a manipulator with

several links, each link can be approximated with a vector of points. Although by

making this assumption the volume of the link is ignored, it can be taken into account

as a safety margin in constraints definitions. It is necessary to find the closest point of

a single link to the surface to reduce the cost of computation in the following stages.

The closest point of a link is the result of one parameter optimization, which has a

unique solution due to the convexity of object surface approximated by elliptic basis.

To form this one parameter optimization problem, coordinates of any point of the link

L1L2 is given in the reference frame as follows:

~OX = ~OL1 +λ ~L1L2, (2.20)

where λ is the optimization variable between 0 and 1. In order to find the optimum

solution, λm, which gives the closest point of the link to the object, ~OX is inserted into

the function S, and therefore S would be function of λ only and the rest of parameters

are constants. Then, in order to find the optimum λ, d(S( ~OX))
dλ = 0 is derived and

solved for λ. Small or zero λm indicates that the minimum distance is close to or on

the L1 point and vice versa.

In a work by C. J. Ong and E. G. Gilbert [35] concept of Growth distance for
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separation and penetration is presented which has desirable properties and is compu-

tationally efficient. However, the physical meaning of penetration is not as clear as

separation. Generally, penetration depth refers to the depth of intersection for ob-

ject models. In past research penetration distance is defined in a different way which

roughly speaking was the shortest relative translation of the two objects, measured by

Euclidean norm, that causes them to move apart from each other to have no interior

point in common. In the work by C. J. Ong and E. G. Gilbert, however, Growth

distances are a measure of how much each of the objects must be grown, outward

from fixed seed points in their interior, so that they just touch. Then, the difference

between penetration distance and separation distance is that in the former the grown

objects are smaller than the actual object and in the later the grown object is larger

than the actual object. As mentioned, using the concept of growth distance have some

desirable properties such as invariance with respect to the choice of coordinate system

in which two objects are represented, and simple characterization of the derivatives of

the distance with respect to the configuration variables.

An approach for indoor robot navigation in relatively small environments is using

Distance Transform Methodology (DT), proposed by Jarvis [36]. In this method the

destination cell in the tessellated map is given a distance propagation cost of zero for

all time instance transform. The cells corresponding to obstacles are given infinity

distance propagation cost and the rest of the cells are initially assigned with a large

distance propagation cost, but their value would be updated at each iteration of a loop

for evaluating the propagation distance cost for every cells. In this loop distance prop-

agation cost of each cell is derived based on its previous cost and also the propagation
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cost of the surrounding cells.

2.2.3 Optimization Criteria

The necessary condition for imposing optimization criterion on manipulators is their

redundancy. Basically, redundancy means that robot is able to do internal movements

without influencing the end effector pose. This extra freedom allows the robot to

perform auxiliary tasks such as, obstacle avoidance and optimization of the robot’s

energy. Generally the main task for manipulators is path tracking. There is a vast

literature treating the issue of selecting the optimization criterion. Saramago and

Ceccarelli [37] solved the problem of manipulator motion, taking into account the

robot actuating energy and grasping forces in the manipulator gripper. The energy was

calculated by considering mechanical power spent in actuators for manipulator motion,

and energy for gripper actions. The optimization problem was formulated through

physical constraints, input torque/force constraints and payload limits. Gasparetto

and Zanotto [38] proposed new method which worked through an objective function

containing a term proportional to the integral of the squared jerk (to ensure that

the trajectory is smooth) and the second term, proportional to the total execution

time. Therefore, there is no need to define the total execution time before running

the algorithm. With respect to trajectory optimization techniques, they tried to reach

to the minimum execution time, minimum energy and minimum jerk. Saramago and

Steffen [39] introduced a multi-objective function using optimal traveling time and

the minimum mechanical energy of the actuators. The problem of minimum cost

trajectory planning was also studied by Chettibi et al. [40]. They minimized the cost
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function for the motion between two points in the operational space taking into account

dynamic equations of motion as well as bounds on joint positions, velocities, jerks and

torques. Zha [41] presented a unified approach to optimal pose trajectory planning

for robot manipulators in Cartesian space using a genetic algorithm (GA)-enhanced

optimization. Aspragathos [42] reported two techniques for manipulator Cartesian

trajectory generation. Both techniques generate an approximation of a given robot

hand trajectory under bounded position deviation. The first technique is based on

bisection pattern determining enough knot points to generate a trajectory of the hand

tip of a manipulator under bounded position deviation. The other technique is based

on the raster scanning to find a minimal set of knot points on a given Cartesian curve

in order to generate a trajectory with bounded position approximation error. Between

two knot points, spline functions were used.

Above methods are efficient only in environments without obstacles. In other

environments the most important auxiliary task would be obstacle avoidance. The

literature available for collision avoidance is both applicable to mobile robots and

robot manipulators. Traditional methods such as Artificial Potential Field introduced

by Khatib [43] propose a concept efficient for both cases. Agirrebeitia et al. [44] used

the concept of artificial potential fields for the planning of mobile robot motion for

highly redundant multibody systems for 2D and 3D environments, as well as static or

dynamic obstacles. Valero et al.[45] used an algorithm capable of obtaining a sequence

of feasible robot configurations between the given initial robot configuration and the

robot goal configuration to plan the trajectory for industrial robots in work spaces

with obstacles. Saramago and Steffen [46] approached this problem in the operational
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space of manipulator. They considered actuator constraints, joint limits, non-linear

manipulator dynamics and obstacle avoidance in building a multi-criterion function to

optimize traveling time and mechanical energy of the actuators.

Yao and Gupta [47] presented an example of constraint manipulator, where the

end effector was constrained to move in a vertical plane in order to move a glass of

liquid to a desired place. They address the problem of path planning with general

end effector constraints (PPGEC) with two approaches. One of the approaches called

Adapted-RGD, will be presented here. This method is adapted from a randomized

gradient descent (RGD) method originally proposed for closed-chain robots [48]. They

modified the model to use for open chain manipulators by breaking the closed chain and

imposing closure constraint at the break point which adds to the existing constraints of

the end effector. First the definition of Pose is given as a pair (P,O) ∈ SE(N), where

P ∈RNand O ∈SO(N) are the position and orientation of end effector in global frame.

The end effector constraint is denoted by

Gi(K(τ)) = 0 ∀τ ∈ [0,1], i= 1,2, . . . ,m, (2.21)

where K(τ) is is the end effector pose and all the Gi functions are continuous in task

space. As an example the constraint function for the manipulator to move in vertical

plane would have the form of
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G(K(τ)) =



ax(τ) + by(τ) + cz(τ) = 0

O(τ).



0

0

1


=



0

0

1


.

(2.22)

The proposed solution for this constraint problem is composed of two stages: Gen-

erate Feasible Configuration and Connect Feasible Configurations. The former is re-

sponsible for generating feasible configurations by means of randomized gradient de-

scent method which randomly selects a set of joint variables, qt, and searches in qt

neighborhood for the next selection qt+1, which reduces the cost function. The cost

function can be defined as integration of distance to goal position and orientation

frame. Cost of position error is represented by h1(q) which is the distance between

the current end effector frame to the goal end effector frame,

h1(q) =D(Pe,Pg) =
√

(xe−xg)2 + (ye−yg)2 + (ze− zg)2. (2.23)

Cost in orientation error is represented by h2(q) which is the coordinate frame

distance between the current end effector frame to the goal end effector frame,

h2(q) =D(Ne,Ng) =
√
d(x̂e, x̂g)2 +d(ŷe, ŷg)2 +d(ẑe, ẑg)2, (2.24)

where Ne and Ng are the current frame and goal frame of end effector respectively and
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d(x̂e, x̂g), d(ŷe, ŷg) and, d(ẑe, ẑg) are the distances between the vertices of frame axes

unit vectors.

Luo et. al. [49] presented a comprehensive analysis of general constrains and

performance indexes. In this work trajectory of the robot is regarded as a sequence of

points which form a cubic polynomial. The position, velocity, acceleration and, jerk

at each point of this polynomial is expressed in terms of Pi(t), Ṗi(t), P̈i(t) and
...
P i(t)

(t ∈ [ti, ti+1]). Assuming that P̈i(t) is known the other derivations as well as position

can be expressed in terms of P̈i(t) and hi which is the ith time interval. Using Lagrange

formulation, the generalized force of robot manipulator at each joint, ui, is obtained.

At this stage the performance index can be defined. It is chosen to be a function which

optimizes the operation time and mechanical energy consumption:

minTF = ζ1(
∑

hi) + ζ2(α �
∑

(uTi Ṗi)2hi), (2.25)

where ζ1 and ζ2 are weighting coefficients, and ζ1 + ζ2 = 1.

The constraints associated with the movement of the manipulator are given as:

1. Kinematic constraint of robot manipulator: This constraint takes care of the

velocity, acceleration, and jerk limitations in the system, expressed as:

{∣∣∣Ṗij(t)∣∣∣≤ V Cj ; ∣∣∣ P̈ij(t)∣∣∣≤ AC; |
...
P ij(t)| ≤ JC; ∀t ∈ [ti, ti+1]

}
. (2.26)

2. Dynamic constraint of robot manipulator: The generalized force of joint j is
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limited to the force/torque constraint FCj :

{|Uij(t)| ≤ FCj ; ∀t ∈ [ti, ti+1]} . (2.27)

3. Collision avoidance: A minimum allowable distance between robot and object

is set and in order to simplify the calculation of the object and robot distance,

the object surface is approximated by a polyhedron. Furthermore, edges of the

polyhedron are dissociated into points and the minimum value among distance

between one feature point and the robot would be the minimum distance of

object and robot. This constraint is formulated as

{
min
λ

{∥∥∥f̃(Pij(t))− qBλ
∥∥∥ ; qBλ ∈ FP (B), λ= 1,2, . . . , |FP (B)|> ε

}}
, (2.28)

and the proposed algorithm to solve this problem is Evolutionary Programming (EP).

With this review on various optimization criterion we are going to explain the

potential field method more in detail, as it is the main inspiration of the algorithm

proposed in this work.

2.2.4 Potential Field Method

In the artificial potential field approach, the obstacles to be avoided are represented by

a repulsive artificial potential, and the goal is represented by an attractive potential

so that a robot reaches the goal without colliding with obstacles. Unlike many search

methods, this approach is computationally suitable for real-time implementation of
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higher degrees of freedom manipulators. The artificial potential approach, however,

has been limited due to the existence of local minima and its inability to deal with

arbitrarily shaped obstacles. Numerous investigators have attempted to use potential

functions in various robotic applications. These works mainly modified the potential

field method in three categories: 1) addressing the problem of undesired local minima,

for which the main class of treatments include: i) the redefinition of the potential

functions with no or a few local minima. Other examples are generalized potentials

[50] or Laplacian approach [51]. Furthermore, some special potential functions can

be used to solve the local minima problem, for example repulsive potential functions

with circular thresholds [52], or Gaussian shapes [53] and the navigation function

[54, 55]. These methods improve the field in a way that it would only have one global

minimum and no local minima. The problem with these methods is that they can only

be utilized in environments with simple geometries or those which have been bounded

by hyperplanes conservatively; otherwise configuration space construction would be

needed. Also some numerical methods based on grid map is proposed by [56]. ii)

The utilization of efficient search techniques. In this approach a variety of searching

algorithms have also been applied for escaping from local minima, for example valley-

guided and random which also use grid map and have high computation costs and

therefore not suitable for real-time implementations. 2) Viewing potential functions

as an path-planning aid [57, 58]. 3) Improving the use of potential functions to time-

varying situations to avoid moving obstacles.

In the famous paper by Khatib [43], it is stated that the control would take place

in operational apace rather than joint space as there would be no need for geometric
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and kinematic transformation. The manipulator equation of motion in the task space

is given in the form of

F = Λ(x)F ∗+µ(x, ẋ) +p(x), (2.29)

where Λ is the symmetric matrix of the quadratic form in expression of kinetic energy,

T (x, ẋ) = 1
2 ẋΛ(x)ẋ, and F ∗ is the single unit mass which is the command vector to the

control system. As described above, an artificial potential field exerts repulsive and

attractive forces from obstacles and the goal respectively. The field can be represented

by

U(x) = Ud(x) +Uo(x) +Ug(x), (2.30)

where Ud, Uo, and Ug are the potential energies due to the desired goal, obstacles, and

gravity, respectively. The decoupled end effector command vector corresponding to

each potential energy is the gradient of that potential in Cartesian space. Therefore,

the attractive force which pulls the end effector towards the goal and the force repulsing

the end effector from the obstacle can be written as

F ∗d =−∇Ud(x), (2.31)

and

F ∗o =∇Uo(x). (2.32)
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The potential field concept is defined on the basis of Euclidean distance and in this

work a conventional PD servo is used as a proportional term. The attractive potential

can be defined as

Ud(x) = 1
2kp(x−xd)

2. (2.33)

There are some factors to consider in defining the potential formulation. The field

should be positive continuous and differentiable, because the forces are derived from

the first derivation of the potential field. It should also be zero at the goal position

in other to make it the global minimum. In order to make the system asymptotically

stabilize, dissipative forces proportional to ẋ are added. The force exerted on the end

effector from the goal can be written as

F ∗m =−kp(x−xd)−kpẋ. (2.34)

The specifications of the potential function corresponding to obstacles are that

the designed Uo function should be continuous, non-negative, and attaining to infinity

at the obstacle’s surface. Furthermore, to avoid turbulence, the field must be set to

zero at a certain distance ρ0, from an object. The proposed potential function which

satisfies all the mentioned conditions would be

Uo =


1
2η(1

ρ −
1
ρ0

)2 if ρ6 ρ0

0 if ρ > ρ0.

(2.35)

The corresponding force derived from the potential field is
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F ∗(o,psp) =


η(1
ρ −

1
ρ0

) 1
ρ2
∂ρ
∂x if ρ6 ρ0

0 if ρ > ρ0,

(2.36)

where PSP stands for Point Subjected to Potential, and ∂ρ
∂x is partial derivative of the

distance between PSP and obstacle. The above potential function is proven to be one

of the best designed functions. Perdereau et. al [34], investigated the different forms

of the potential function and listed their limitations as bellow. First the constraint is

defined as an inequality

h(q) = d2
s−d2

m ≤ 0, (2.37)

where ds is the Euclidean distance from one point of robot link to the obstacle, and

dm is the minimum distance allowed between them. This minimum distance can also

be responsible for the volume of the link as stated in subsection 2.2.2.

• External penalty functions: which is zero if the constraint is satisfied and has

positive value if the constraint is violated, for example p(h(q)) = h(q)2Γ(h), Γ(h)

being the Heaviside function, which has the following properties as shown in

Figure (2.3):

p(h) > 0 if h(q)> 0 (2.38)

p(h) = 0 if h(q)≤ 0. (2.39)
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Figure 2.3: External Penalty Functions.

This form of penalty function has undesired behaviors in dynamic environments

and exerts sudden torques to the actuators.

• Internal penalty functions: This type of penalty functions, acts even when the

constraint is not violated to avoid further collisions. However, existence of this

potential field in the whole space and at all the times would reduce the work

space. This function has the following properties as illustrated in Figure (2.4):

p(h) > 0 if h(q)< 0 (2.40)

p(h)→∞ if h(q)→ 0. (2.41)

One example of such penalty functions can be

p(h) =− 1
h(q) . (2.42)
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Figure 2.4: Internal Penalty Functions.

• Limited internal penalty functions: They reduce the area of influence of the field

by limiting it to a range h0, so that the robot would not feel the field of obstacles

far away. Figure 2.5 illustrates this function. The following penalty function is

one of the most important examples of this type which is also proposed by Khatib

as mentioned earlier:

p(h) =


1
2( 1
h(q) −

1
h0

)2 if h0 < h(q)< 0

0 if h(q)≤ h0.

(2.43)

2.3 Summary

In this chapter a comprehensive study on various solutions for Inverse Kinematic prob-

lem is presented. Different aspects of this study can be summarized in comparison of

global and local approaches, optimization criteria and their indices, as well as analyt-
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Figure 2.5: Limited Internal Penalty Functions.

ical and numerical methods. It has been shown that each of these approaches is more

efficient in some conditions compared to other methods.



40

Chapter 3

Inverse Kinematics: Flow

Algorithm

Social robotics is advancing in many aspects to change the perception of robots from

industrial machines with predefined actions to intelligent accompanies in daily life, ca-

pable of dealing with human environments. In such environments which are designed

for human comfort, robots must be equipped with same tools as human, such as dex-

terous hands, to be efficient and at the same time, behave naturally. One of the basic

skills for a daily human life is object manipulation which is now one of the burdens

in the way of development of social robotics. Although the area of manipulator mo-

tion planning has been the focus of researchers for more than four decades, all those

efforts were mainly dedicated to achieve precise movements of end effector on a given

trajectory in machining tasks. The good advancements in that stage have increased

the expectations from robot manipulators to merge the planning with artificial intel-
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ligence in real-time. It is obvious that all the desired motions of the manipulator in

performing its daily tasks in the real environment are not predictable. Especially in

human environments there is a high possibility of interaction with human which itself

increases the unpredictability. Therefore, the manipulator motion planning must be

a real-time module in the robot and it is necessary to compute the inverse kinematic

solution in real time as well.

3.1 Algorithm Description

In common inverse kinematic methods, either the geometric relations are used to find

the relation of the end effector position in task space with the manipulator configu-

ration in joint space, or the Jacobian matrix is used to relate the small movements

of the end effector to small changes in manipulator joints. Result of these methods,

together with numerical solutions, which are all fully described in 2.1 and 2.1.3.3, is

not similar to human arm motion.

Although many optimization criteria are defined to improve the efficiency of men-

tioned methods and all of them are necessary for industrial environments, but they are

not sufficient for social robots. Since no criteria is introduced to constraint the robot

to perform human like movements so far, in this work we proposed a methodology

for solving the manipulator inverse kinematic problem and compared the result with

human movements under the same condition. Based on experimental data obtained

from both human and simulation, and study of the correlation between these two sets

of data, we look for closeness of the resulted motion of manipulator to that of human
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arm. This method has another significant advantage in providing the solution for any

degrees of freedom manipulator with no change in the algorithm and no need for any

manual pre-calculations.

To visualize the results, we have used the Robotics Toolbox for MATLAB (Release

7.1), by Corke [61]. In this package we are able to simulate the manipulator and run

the algorithm in MATLAB to see the motion of the simulated arm. To simulate the

manipulator, each link is defined by its Denavit-Hartenberg parameters in the function

LINK. The initial joint values are set in vector q and the desired target position is

given in the global frame in the task space, Pdes = [x,y,z]′. The forward kinematic

matrix n
0A is formed using the D-H parameters and the position of the end effector in

base frame would be the last column of the transformation matrix, Pend = n
0A(1 : 3,4).

The index of closeness to the target is defined to be the Euclidean distance between

the end effector and the target position in 3D space, rend,des = Pdes−Pend. The main

loop in the program checks the value of rend,des and repeats the algorithm until this

distance becomes less than the given threshold errallowed. Description of the algorithm

is as follows: For joint i, starting from the end effector to the first joint, the position

of end effector and the target are obtained in the coordinate fame attached to joint

i, named rjoint(i),end and rjoint(i),target respectively. By subtracting these two vectors,

the resulting vector would indicate the path that the end effector must travel, in case

of no obstacle, to reach the target expressed in the coordinate frame attached to joint

i.

Sr(joint(i),path) = rjoint(i),target− rjoint(i),end. (3.1)
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Image of the resulting vector in the plane S perpendicular to the joint axis i, Zi,

can easily be found by eliminating the z component of vector rjoint,path.

Sr(joint(i),path) = [rjoint(i),path(1), rjoint(i),path(2),0]′. (3.2)

On the other hand, the only contribution of a revolute joint i in moving the end

effector towards the target is along a vector, perpendicular to both Zi and rjoint(i),end:

Vjoint(i),possible = Zi× rjoint(i),end. (3.3)

If the joint is prismatic its displacement would be directly mapped to the end

effector and therefore the possible path that the end effector can travel due to the

displacement in the prismatic joint i would be

Vjoint(i),possible = Zi. (3.4)

At this stage, we have two vectors, one representing the required motion of the end

effector in the coordinate frame of joint i, and one the possible path of the end effector

generated by change in joint i only. Therefore, the last step would be projecting

Sr(joint(i),path) on the unit vector parallel to Vjoint(i),possible to find out the magnitude

and direction of the unscaled driving command to be sent to joint i, using inner

product. The scaling factor K, then, would be arbitrary and depending on the system.

Drive(i) =K.Sr(joint(i),path).Vjoint(i),possible. (3.5)
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Note that the step in which we project rjoint(i),path in the plane perpendicular to Zi

can be skipped, since equation (3.5) does account for that projection as well, however,

it is incuded to clarify the method. Next, the resulting input is sent to the control

system and further control strategies are made to send the appropriate command to

the joint i actuator. Once the command is sent, the value of joint i would be updated

from the encoder signals. Again, the transformation matrices should be updated and

from the new n
0A, coordinates of Pend would be obtained. The closeness index is

recomputed and if it is not yet below the threshold, the loop is repeated. In Figure

(3.1), a seven degrees of freedom hand is shown as an example. In this figure, the

above mentioned vectors are shown for one of the shoulder joints and in Figure (3.2)

the vectors are shown for the elbow joint. The simulation is run for a 10 DOFF arm

which the three extra DOFs account for a spherical joint modeling the capsular. In

the literature however, 7 DOF arm are common to model human arm but our model is

made more complex to show the efficiency of the proposed algorithm. In Figure (3.3)

history of joint angles from the initial to the final configuration is shown. Table (3.1)

lists the definition of each joint in the simulation together with their initial values.

Figure (3.4) shows the graphical simulation of the humanoid arm and respective

position of the target in the space. In the following chapter the efficiency of the

proposed method in providing a computationally low cost algorithm which results in a

more natural motion is verified by comparing the algorithm results with experimental

results.



45

Figure 3.1: Flow Algorithm Key Vectors Illustration for Joint 1 (Shoulder).
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Figure 3.2: Flow Algorithm Key Vectors Illustration for Joint 3 (Elbow).
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Joint Variable Resulting Motion Initial Value
q1 Capsular joint: Shoulder horizontal flexion/extension π+π/12
q2 Capsular joint: Shoulder vertical flexion/extension π/2
q3 Capsular joint: Full-range shoulder free motion π/2
q4 Shoulder adduction/abduction π/2−π/12
q5 Shoulder flexion/extension 1
q6 Shoulder interior/exterior rotation π/2
q7 Elbow flexion/extension 0
q8 Elbow rotation (supination/pronation) 0
q9 Wrist flexion/extension 0
q10 Wrist ulnar/radial deviation 0

Table 3.1: Joints Variable Definition and Initial Values

Figure 3.3: Joint Angle History.
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Figure 3.4: Simulated Humanoid Arm Approaching the Target.
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3.2 Convergence

An iterative algorithm to solve the inverse kinematic problem is presented. However,

the numerical results are not supposed to be perfect after changing joint angles a finite

amount. The error inherent in the method is not obvious but it is well known that, if

the interval size is reduced to zero, result will reach the ideal value. The order of error

associated to this method can be obtained by using Taylor series expansion. Assume

the kinematic function f in vector form is expanded as follows:

f(q+ ∆q) = f(q) + ∂f(q)
∂q

∆q+ 1
2!
∂2f(q)
∂q2 ∆2q+ .... (3.6)

In the presented algorithm, f(q+∆q)−f(q) indicates the end effector distance to

the target, which is called rjoint(i),path. If the vector indicating the position of the end

effector with respect to the origin of frame i is shown by rjoint(i),end, then according

to principles governing vectors in rotating frames, the derivative of kinematic function

with respect to ith revolute joint variable would be ∂f(q)
∂qi

= Zi× rjoint(i),end or Zi for

prismatic joints.

Let us define the deviation d as the error between the desired value f(q)+∆f and

the actual value produced by numerical calculations. Since in Flow algorithm is based

on the first-order term of (3.6), the deviation in this case would be quadratic in ∆q.

d= [f(q) + ∆q]−f(q+ ∆q) =− 1
2!
∂2f(q)
∂q2 ∆2q+ ...=O(∆2q). (3.7)

Based on the above principles it is useful to plot the deviation against various

step sizes of ∆f , i.e. to plot d corresponding to ∆f/n for increasing values of n.
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Figure 3.5: Deviation d of the 10 degrees of freedom manipulator for various step sizes
in the Flow algorithm.

Therefore, we need to run the program with different values of n and measure the

average deviation. The result is illustrated in figure (3.2) which shows the convergence

rate of 0.107. In the next section other properties of the Flow algorithm are discussed.

3.3 Discussion

Although convergence is one of the most important properties of a numerical method,

there are other important issues associated with numerical methods of solving inverse

kinematic such as singularities, existence of solution, and multiple solutions. In an-

alytical methods, however, the mentioned issues can be predicted and appropriate

decision can be made to overcome problematic situations. Singularity is a well studied

topic in robotics. Many authors have developed useful algorithms to handle singular-
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ities. In a work by K. Anderson and J. Angeles [62, 63], many aspects of this issue is

studies. However, detailed investigation on handling singularities is not in the scope

of this thesis. It is probable that the desired end effector position which is given as the

input, not necessarily be in the robot workspace and therefore the algorithm would

not converge. To deal with this problem we can either check if the assigned task is in

the workspace or stop the algorithm if the error in the position of the end effector was

not decreasing for m consequent iterations, where m must be chosen appropriately. In

complex manipulators with mobile base the cost of computing the workspace is rather

high and watching convergence rate of the algorithm would be less costly. Otherwise,

it is a better idea not to start the algorithm unless the existence of the assigned task

in the workspace of manipulator is verified. Issue of existence of multiple solutions

mainly occurs in analytical methods, where based on some criteria one solution must

be chosen. In most of applications the solution which requires less effort to reach, i.e.,

the closest solution is chosen. In Flow algorithm like many other numerical methods

the number of solutions is not obtained and the algorithm by its nature, most of the

times finds the closest solution, although this claim is not proven in this work.

3.4 Summary

In this chapter the proposed algorithm for solving inverse kinematic problem is pre-

sented. This algorithm which works based on the concept of motion flow through

manipulator linkages provides the required torques to be sent to each joint actuator

and receives the resulting end effector position as the system feedback. Simulation
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studies on ten degrees of freedom manipulator verify the effectiveness of the proposed

algorithm. This algorithm can be called sub-Optimal in a sense that it would not sat-

isfy all optimization criteria that could be defined for a manipulator task. The main

objective is to generate human like motion in arms but many other criteria could be

introduced that this algorithm fails fulfilling them. However the algorithm is efficient

due to its small computation cost even for highly redundant manipulators.
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Chapter 4

Experimental Results

In order to prove the efficiency of this algorithm, series of experiments are conducted

and under the same condition the motion of the simulated arm and the human arm,

as an efficient model, are compared. The simulated arm has totally ten degrees of

freedom distributed as follows: The complex motion of Capsular, the spherical joint of

shoulder and wrist are modeled by three successive rotational joints axes intersecting

in one point for each of them. Elbow is considered as a single degree of freedom hinge

joint modeled by one rotational joint. As mentioned before, the simulation toolbox

used is the Robotics Toolbox for MATLAB which can graphically illustrate the arm

motion.

4.1 Experimental Setup

The experimental set up consists of six Vicon cameras which can detect the three

dimensional motion of markers attached to the body. Therefore, thirteen markers
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Figure 4.1: Experimental Setup: Six Vicon Cameras Covering the Whole Scene.

were attached to the left arm of the experimenter and she has been asked to stretch

her hand towards a marked target in the space. For each target the experiment has

been conducted five times to reduce the errors and different locations for the target

is assigned in order to observe human motion planing in different situations. The

experimental setup is shown in Figure (4.1) where cameras (Figure (4.2)) are placed

in different locations to cover the whole arm in its different configurations.

A marked triangle shown in Figure (4.3) is used for calibration to specify the

location and orientation of the global frame.

The most important part of the experiment is specifying marker’s position on the

arm. In this experiment, since the relative angular movement of each part of the arm

is important, markers are put so that each part has at least three markers to form

its coordinate system. Furthermore, for each joint at least two markers are needed to

define a line passing the joint center. The exact position of the joint center can be
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Figure 4.2: The Vicon Camera.

Figure 4.3: The Reference Triangle to Specify the Global Frame.
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Figure 4.4: Markers Configuration on the Arm.

Figure 4.5: Initial Position of the Arm.

found by defining a Virtual Point between two markers at each side of the joint. The

markers configuration and parts of the arm are shown in Figure (4.4).

Seven different locations for the target are specified which roughly covers most of

the human arm workspace. The initial position and six target locations are shown in

Figures (4.5) and (4.6) respectively.

The choice of cameras placement is in a way to make each marker visible by at

least two cameras in order to get the three dimensional trajectory of the marker. Each
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Figure 4.6: Selected Targets in Experiment (a) to (g).

camera send its two dimensional information with the rate of 60 HZ to the Vicon

software and once recording is finished, system compiles all information from the six

cameras and gives the three dimensional model of the markers grid per frame. In Figure

(4.7) the model obtained from the first experiment in states of rest and extended arm

is shown.

The purpose of this experiment is to compare some variables in motion of human

arm with their correspondents in the simulated arm motion. These variables can be

joint angles and position of some parts of the arm in the space. Therefore, in order

to find the relative angle and the Cartesian position of each part of the arm, it is

necessary to define a frame on each rigid part. As it can be seen in Figure (4.7), the

four defined frames are: The global frame attached to the trunk with its origin on



58

Figure 4.7: Markers Grid in Vicon Work Station Interface. Captured for the First
Experiment: (a) Arm at Rest, (b) Arm Stretched.

the chest, the upper arm frame having its origin on a virtually defined point on the

intersection of three lines passing through the markers of the Capsular on the shoulder,

the forearm frame with its origin on a virtual point between two markers at each side

of the elbow and its X frame parallel to the joint axis, and finally, the hand frame

defining its origin on a virtual point in the middle of the wrist and its X axis parallel

to the wrist tilting joint axis. The position of every point of the arm in the Vicon

Work Station is presented in the global frame and all the angles are the relative angles

between two consecutive frames.

4.2 Experiment Description

We choose to compare the elbow angle, elbow position and the finger tip position

through the trajectory of the hand motion from the state of resting to the state of

reaching the target. The reason of this selection is to have a nearly exact comparison
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which is only possible if the variables we have chosen are easy to obtain in experimental

data. In the case of the shoulder joint, it is known that the motion of the shoulder is

very complex and it would involve too much simplification if we define three revolute

joints with intersecting axes and derive three angles to explain the shoulder motion in

the experimental results. Although the simulated model has the three revolute joint

structures, it still can produce a roughly similar motion in the upper arm. We do not

observe the motion of the wrist either, since it is interpreted from the results that this

joint does not have significant variations though the trajectory. Therefore, instead of

comparing the shoulder and wrist axes, the position of the elbow and the finger tip

would give us the same result in task space. To keep the result analysis short and

consistent, we present the comparisons only form the the first experiment where the

target is place in front of the experimenter with some deviations towards the left.

4.3 Analysis of Results

The extracted data from experiments would be compiled in Vicon Workstation. As

an example the resulted time series of the elbow joint angles is illustrated in Figure

(4.8). In this figure angles along the three elbow joint frame axis are shown at each

sample and it can be observed that the only dominant motion of the elbow is along

one axis and the non-zero values for other two angles are due to non-rigidity of upper

arm and forearm and probable errors in capturing the motion.

First, we compare experimental and simulation results of the elbow position in

3D space from experiment and simulation. Figure (4.9) illustrates the position of the
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Figure 4.8: Vicon Workstation: Upper arm and Forearm Relative Angles Along 3
Elbow Joint Frame axis.

forearm frame origin which is attached to the elbow, from the rest position until the

finger tips touches the target and the following graph in Figure (4.10) presents the

trajectory of the elbow in the simulated arm for the same task. Similarly, elbow joint

variable and finger tip position obtained from experiment and proposed algorithm are

shown in Figure (4.11) to (4.14).

These figures show the similarity of the selected variables in the simulated model

and the natural motion. However, it is necessary to express this similarity in a quan-

titative way. There are several algorithms for comparing time series, such as cross

correlation and Euclidean distance. Cross correlation is mainly meant to measure the

strength of the relationship between variables; if two variables are correlated, they

have dependency and the changes in one can be predicted by changes in the other

variable. This measurement expressed by correlation coefficient r, is independent of
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the variables magnitudes and can have any value between -1 and +1. Correlation co-

efficient of +1 indicates a perfect positive relationship, zero indicates no relationship

and -1 indicates perfect negative relationship. The correlation coefficient is defined as

r = 1
n−1

n∑
i=1

xi−µx
σx

yi−µy
σy

. (4.1)

In this equation, µ and σ denote the sample mean and the sample standard devi-

ation. In signal processing assuming that we have sampled signals, for example the

elbow joint values for each sample time of experiment data and simulated arm in our

case, the cross correlation between these two signals is defined as

Rxy(m) = 1
N

N−m+1∑
n=1

y(n)x(n+m−1), (4.2)

wherem= 1,2,3, ...N+1 andN is the length of the signals. In this definition Rxy(m) =

0 indicates no dependence of signals and the high Rxy(m) means that two signals have

high similarity at lag m.

For two reasons, cross correlation is not a suitable tool for comparing our results.

One reason is that in cross correlation the length of two series must be the same,

whereas due to the differences in sampling rate of cameras in capturing the motion

and number of loops in algorithm, and even not consistent motion of human in each

movement, the number of samples vary a lot between different series. The other rea-

son is the concept of cross correlation which as mentioned above, is to determine the

similarity of two series in their general shape. Therefore in this method two series of

sine function with different amplitudes have a good correlation if they share the same
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Figure 4.9: Elbow 3D Position History from Experimental Results.

Figure 4.10: Elbow 3D Position History of the Simulated Arm.
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Figure 4.11: Elbow Joint Variable History from Experimental Results.

Figure 4.12: Elbow Joint Variable History of the Simulated Arm.
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Figure 4.13: Finger Tip 3D Position History from Experimental Results.

Figure 4.14: Finger Tip 3D Position History of the Simulated Arm.
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frequency. Studying the series from this point of view, although can result in good

understanding of the motion characteristics, requires large number of experimental

results to cover all the possible configurations and is not the purpose of this work.

To reduce the number of required experiments we keep the initial and final positions

consistent for the simulation and experiment in the task space and try to make the

geometric parameters of the model match the human arm. To solve the problem of

different number of samples we use a well known method mainly meant for matching

purposes in the field of speech and motion recognition called Dynamic Time Warping.

This technique can compensate for different length of two sample series while preserv-

ing sample’s order. The purpose of this method is to find optimal match between the

two sample series with certain restrictions. The advantage of DTW compared to other

simple matching techniques lies in computing the distance between samples which are

not from the same times. DTW searches the neighboring samples to select matches

and therefore minimizes the total distance. Assuming we have two sequences with

different length as

X = x1,x2, . . . ,xp, . . . ,xm,

and

Y = y1,y2, . . . ,yq, . . . ,yn,

where xp and yq are the pth and qth samples of series X and Y , and m and n are the

length of series X and Y respectively. To compare X and Y a recursive function is
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used as follow

Dist(X,Y ) = cost(m,n),

cost(1,1) = ‖x1−y1‖ ,

cost(p,q) =D(p,q) + min{cost(p,q−1),cost(p−1, q−1),cost(p−1, q)}

where D(p,q) = ‖xpk−yqk‖, is the Euclidean distance in desired space (joint or task

space) and ‖pk− qk‖ ≤ w, where w is the maximum number of warping. Therefore,

the similarity would have reverse relationship with Dist(X,Y ):

similarity(X,Y ) = 1
Dist(X,Y ) .

To obtain the value of the allowed limit of accumulated distance, Dist(X,Y ), in

order to the keep motion natural, first we compare the results of five repeated motion

of human arm in reaching the same target and observe their deviation from the first

attempt. Figure (4.15) to (4.18) show the comparison of the x component of the

elbow trajectory between the first attempt to reach the target and the following four

attempts to reach the same target. In the other hand, Figure (4.19) to (4.23) compare

the result of the algorithm with each of the tests in the experiment. In all the Figures,

the left subplot presents the original series and the right subplot shows the matched
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Figure 4.15: Comparison of Human Elbow x-Trajectory in Test 1 and 2, Using DTW
Technique.

samples of two series after applying the DTW technique.

The values of the accumulated Euclidean distance for the series are shown in the

following tables. By comparing the values of distances between two experimental tests,

and between an experimental test and simulation, it can be seen that they are in the

same order. We can conclude that this order of difference is inevitable even between

two successive human arm motion, and therefore, the model could predict the human

arm motion with a good approximation.

4.4 Summary

The comparison of the simulated model motion which follows the Flow algorithm, with

real human motion is presented in this chapter. The graphs illustrate the similarity of
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Figure 4.16: Comparison of Human Elbow x-Trajectory in Test 1 and 3, Using DTW
Technique.

Figure 4.17: Comparison of Human Elbow x-Trajectory in Test 1 and 4, Using DTW
Technique.
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Figure 4.18: Comparison of Human Elbow x-Trajectory in Test 1 and 5, Using DTW
Technique.

Figure 4.19: Comparison of Simulated and Human Elbow x-Trajectory Test 1, Using
DTW Technique.
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Figure 4.20: Comparison of Simulated and Human Elbow x-Trajectory Test 2, Using
DTW Technique.

Figure 4.21: Comparison of Simulated and Human Elbow x-Trajectory Test 3, Using
DTW Technique.
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Figure 4.22: Comparison of Simulated and Human Elbow x-Trajectory Test 4, Using
DTW Technique.

Figure 4.23: Comparison of Simulated and Human Elbow x-Trajectory Test 5, Using
DTW Technique.
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Accumulated Euclidean Distance (mm) Test 1 Test 2 Test 3 Test 4 Test 5
X Test 1 0 1661.3 2432.8 3309.1 3224.2

Flow Algorithm 4985.1 1207.5 3789.5 3830.4 2814.2
Y Test 1 0 1805.2 1480.4 1423.2 2701

Flow Algorithm 3417.7 36328 1363 1266.2 1349.5
Z Test 1 0 1026 1393.8 1702.6 1802.9

Flow Algorithm 1268.1 3285.9 4309.2 1285.2 2381.8

Table 4.1: Accumulated Euclidean Distance of Elbow Position Series

Accumulated Euclidean Distance (deg) Test 1 Test 2 Test 3 Test 4 Test 5
Elbow Joint Angle Test 1 0 127.27 381.32 44.24 355.89

(θ7) Flow Algorithm 255.01 132.08 124.92 182.43 130.87

Table 4.2: Accumulated Euclidean Distance of Elbow Joint Angle Series

Accumulated Euclidean Distance (mm) Test 1 Test 2 Test 3 Test 4 Test 5
X Test 1 0 2990.6 2857 3728.3 3691.4

Flow Algorithm 1320.2 2724.6 2396.4 2937.5 2814.2
Y Test 1 0 1320.3 2207 2022.4 1917.7

Flow Algorithm 1586.6 1498.1 951.1 968.4 1058.3
Z Test 1 0 1909.6 1054.1 4365.7 37641

Flow Algorithm 1706.2 14097.4 1939.9 4662.4 2457.3

Table 4.3: Accumulated Euclidean Distance of End effector Position Series
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two cases in their general shapes, and the quantitative comparison can be obtained by

the accumulated Euclidean distance presented in tables. It can be concluded from the

results that motion of the simulated arm is semi-natural and comparable with human

motion.
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Chapter 5

Conclusion and Future Work

5.1 Contributions

Inverse Kinematics problem is an essential part of manipulator motion planning and

control which involves solving non-linear complex equations. In most cases, especially

for high degrees of freedom manipulators no closed-form solution is available. Further-

more, once the solution is obtained using conventional numerical methods or by means

of Jacobian matrix, the resulting motion of the arm would not be natural. In this work

we have introduced a novel method in solving the inverse kinematic problem called

the “Flow” Algorithm, which has the following advantages compared to the existing

techniques in the literature.

1. Flow Algorithm provides the inverse kinematic solution for any degrees of free-

dom manipulator with any geometry as long as the forward kinematics is given.

Despite the Inverse Geometric methods which are available for smaller degrees of
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freedom chains, in the proposed method, there would be no need for any manual

calculations or parameters adjustment for different geometrical manipulators.

2. This algorithm provides the value of each joint at every time step until the target

is reached, whereas in Inverse Geometric method only the final joint angles are

provided and the internal motion of the redundant manipulator through the

trajectory should be obtained by running the planner module concurrently.

3. This algorithm overcomes the important problem of non-reachable solutions,

meaning that the final configuration of the manipulator is reachable from the

initial configuration while preventing self-collision and not violating joint limits.

This is achieved, since for the redundant manipulators, the selection of the final

configuration in Flow Algorithm is highly dependent of initial joint values.

4. Singularity problem which is a big issue in Inverse Jacobian methods can be

easily overcome by adding simple conditions in the main loop of the algorithm,

such as preventing the robot manipulator to approach some predefined singular

postures and find alternative paths. However, in traditional inverse kinematics

avoiding singular postures may cause failure in reaching the computed desired

joint coordinates.

5. Using the proposed algorithm, more natural movement of the arm is achieved

which is an essential factor in social robotics.

In this work, apart from introducing the Flow Algorithm, a comprehensive study of

available methods for solving inverse kinematic problem as well as most important
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planning techniques and optimization criteria are provided in the Literature Review

chapter. The efficiency of the proposed method is shown by experimental results which

show close similarities between the result of this algorithm and real human arm motion.

Kinematic model of a seven degrees of freedom manipulator using D-H parameters is

provided as an example of forward kinematics which is the required input to the Flow

Algorithm.

5.2 Future Work

This thesis opens up some interesting directions for further investigations, which are

described below.

The proposed algorithm has the potential to be merged with many planning tech-

niques if needed. Some of the required features to be added are self-collision and ob-

stacle avoidance which are fully studied in chapter two and the potential field method

is suggested by the author to be used in the Flow Algorithm. Furthermore, in grasping

applications, apart from the position of the end effector, its orientation is playing an

important role. In this work, we have reduced the problem to simple reaching which

only takes care of position errors. Although, any desired orientation of the end effector

can be achieved by adding a spherical joint at the wrist, in order to have a natural mo-

tion, the desired end effector orientation should be considered in the inverse kinematic

algorithm to avoid any unnatural configurations of the manipulator in grasping.

There are some considerations to be made to conduct more accurate experimental

studies in future. In this work we have studied the human arm motion in reaching
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different points in the space from one fixed initial position. It is essential to repeat the

experiments for different starting poses such as fully stretched or bent arm in sitting

or standing positions and study their effects in the motion planning. Regarding the

experimenter, it is better to choose a person totally unfamiliar with the field being

asked to do the experiments with a cover story to avoid any conscious decision making

in the arm motion. It is also suggested to repeat the experiment for large number of

people to find the main characteristics of human motion.

In order to have more convincing results it is necessary to use some other tools to

analyze the experimental data as well. One of the proposed data analysis techniques

is using the cross correlation method to find the main characteristics of the motion.

Furthermore, it is advised to get the results of other inverse kinematic solutions in

the literature and compare them with the proposed algorithm in terms of providing

natural motion in real robot manipulators.
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