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Abstract 

Stem cell therapy is an emerging field of regenerative medicine that has the potential 

to treat diseases by transplanting therapeutic cells to replace or support the repair of 

damaged host cells. An important step of the therapeutic success is the homing of 

transplanted cells to the desired site. Magnetic resonance imaging (MRI), coupled 

with cellular markers, offers a non-invasive method of following the fate of cell 

transplants during the therapeutic period. However, clinically and commercially-

available markers do not offer sufficient image contrast for the detection of small 

groups of cells. The aim of this thesis is to investigate the development of particulate 

cellular markers that will improve the tracking of stem cells in an animal model 

through MRI. 

Current markers for cellular labelling are composite, magnetic particles that measure 

less than 100 nm or greater than 1 micron in diameter. As the intermediate range has 

not been investigated, microgel iron oxide particles (MGIO) with the diameters of 89 

to 765nm were synthesised and characterised in terms of their physical properties. 

The magnetic resonance relaxation characteristics of MGIO were measured and 

shown to largely agree with the values predicted by theoretical models. 

The efficiency of MGIO was tested on human fetal mesenchymal stem cells (fMSC). 

With simple incubation, MGIO provided equal or better uptake in fMSC compared to 

a clinical particle, ferucarbotran, with MGIO-600nm achieving three-fold higher 

uptake. Labelled fMSC was characterised in terms of proliferation rate, multilineage 

differentiation capacity and global gene expression to show that labelling with MGIO 

does not affect stem cell functions. To further verify the safety of MGIO, human 
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endothelial progenitor cells were labelled and shown to retain phenotype and function 

after labelling. 

A rat stroke injury model was developed to observe cellular migration. Labelled-

fMSC was transplanted intracerebrally or intraveneously and shown via MRI to home 

to the injury site. MGIO labelling provided superior detection of cells compared to 

ferucarbotran labelling. Histological analysis showed that MRI reliably detected the 

location of fMSC for up to 5 days post-transplantation after which fMSC were 

rejected by the host due to the nature of the animal model used. This study shows that 

MGIO is an efficient label that enables improved detection of transplanted cells 

during in vivo imaging.  

In all, this thesis describes the development of a high contrast MRI cellular label with 

superior performance over commericially-available iron particles, with possible 

applications for in vivo tracking of transplanted stem cells. 
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1.1 Stem Cell Therapy 

Stem cell therapy is a rapidly emerging field of regenerative medicine where 

transplanted stem cells either directly replace or ameliorate the repair of damaged host 

tissue. Several clinical trials are already in progress for the treatment of various 

diseases, such as ischemic stroke (Bang, 2005), skeletal dysplasia (Horwitz, 2001), 

spinal cord injury (Callera, 2007) and myocardial infarction (Meyer, 2006). The 

complexities and complete mechanisms by which cell-based therapies work need not 

be fully understood to be used clinically. Instead, the key determinants for the use of 

such therapies are safety and efficacy.  

The first attempt of cellular transplantation in the literature was performed by W.G. 

Thompson in the late nineteenth century. When allogeneic neocortex from a dog was 

transplanted to another dog, the tissue showed “vitality to survive for seven weeks the 

operation of transplantation without wholly losing its identity as brain substance” 

(Thompson, 1890; Chen, 2008). Since that report, a myriad of transplantation 

strategies have been performed in both humans and experimental animals, with little 

understanding of the biology of the graft at times. Today, bone marrow 

transplantation (BMT) has been used successfully for many years to treat leukaemia 

and other haematological malignancies, and clinical trials using autologous and even 

allogeneic stem cell transplantation therapies are being run concurrently with 

laboratory efforts to better understand stem cell biology. 

Stem cells are immature cells that possess the ability of self-renewal and 

differentiation into various cell types. These cells can be broadly classified into three 

categories based on their capacity for differentiation. Totipotent stem cells, such as 
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the zygote or cells from early (1 to 3 days post fertilisation) embryos, have the ability 

for each cell to develop into a complete individual. Pluripotent stem cell can form all 

three germ layers of the body (endoderm, mesoderm and ectoderm), an example of 

which is the embryonic stem cells (ESC) isolated from the inner cell mass of 

blastocyst (5 to 14 days) (please refer to Figure 1). Multipotent stem cells are 

committed cells that can still form a number of other tissues, but not all three germ 

layers. An example of a multipotent stem cell is the haemopoietic stem cell (HSC) 

which can derive both lymphoid and myeloid lineage blood cell types.  

Recent developments in the understanding of multipotent stem cells from non-

embryonic sources have sparked new excitement in the field. Multipotent cells, such 

as the mesenchymal stem cells (MSC), appear to possess greater plasticity than 

dictated by established paradigms of embryonic development (Phinney, 2007). As 

MSC can differentiate from primitive cells into mature cell types, they can be used for 

cell replacement therapy, tissue engineering, regenerative medicine and vehicles for 

gene therapy (Gafni, 2004). Unlike ESC which are reliably generated only with the 

sacrifice of human embryos, multipotent cells from adult or terminated fetuses are 

subjected to fewer ethical questions. These attributes of multipotent cells make them 

promising candidates for future clinical use.  

As stem cells are isolated from more adult tissue sources (often termed “niches”), the 

definition of bona fide stem cells becomes important. The differences between stem 

cells have prompted the need for detailed cell line classification methods such as 

global gene expression profiling and clustering (Muller, 2008). Definitions aside, the 

most important question is how we can use stem cell as therapeutic agents.  



Introduction 

21 

Stem cells can be administered to a patient at the site of injury or less invasively 

through an intravenous injection. When given intravenously, stem cells have the 

ability to home and migrate to sites of tissue injury, where they may participate in 

therapeutic activities. However, transplanted stem cells may also end up in other parts 

of the body. Therefore, a method of tracking these transplanted cells is urgently 

required. By combining nanoparticle technology and magnetic resonance imaging, we 

can now visualise transplanted cells. Prior to their transplantation, stem cells can be 

encouraged to engulf limited amounts of MR-visible particles which turn them MR-

visible, albeit only in large numbers grouped together. Better detection sensitivity is 

required when tracking small groups of cells that migrate to remote locations or when 

studying how cells accumulate at the boundary of an injury site. One method to 

improve sensitivity is to encourage the cells to engulf more MR-visible particles. This 

project aims to improve the stem cell uptake of particles with diameter between 100 

and 900 nm, a size range which has not been studied.  
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Figure 1: General differentiation potential of pluripotent embryonic stem cells and 
multipotent adult stem cells. The pluripotent embryonic stem cells from the inner cell 
mass can differentiate into any cell in the body. In comparison, the multipotent stem 
cells from various adult tissues are committed but can still differentiate into multiple 
cell types.  
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1.2 Mesenchymal Stem Cells 

Mesenchymal stem cells (MSC) are multipotent cells that have received much 

attention in recent years as a promising source of autologous or allogeneic cell type 

for cellular therapy. They can be isolated from a number of adult (da Silva Meirelles, 

2006) and fetal organs and tissues. It is believed that they reside in various niches for 

the purposes of tissue maintenance and regeneration.  Adult and fetal MSC share the 

characteristics of self-renewal and differentiation down multiple mesenchymal 

lineages, although human fetal MSC (fMSC) are more primitive and are capable of 

greater proliferative and differentiation capabilities (Zhang, 2009).   

1.2.1 Origin of MSC  

The term, mesenchyme, is derived from Greek meaning “middle” (meso) “infusion” 

and refers to the ability of mesenchymatous cells to spread and migrate in early 

embryonic development between the ectodermal and endodermal layers. The middle 

embryonic layer, the mesoderm, gives rise to all of the body’s skeletal elements 

(Arnold, 1991).  

During the period of haemopoietic stem cell discovery in the 1950s, Urist et al 

observed that bone marrow could form new bone when transplanted to an ectopic site 

(Urist, 1952). It was later identified that there exists a cell population in bone marrow 

that could regenerate bone (Friedenstein, 1968). The isolation and culture of cells 

from bone marrow that could form this ectopic bone was first demonstrated by 

Friedenstein et al (Friedenstein, 1970). It was not until a decade later that a similar 

adherent cell population from human bone marrow was isolated (Hann, 1983). Only 
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more recently was the self-renewal and multipotency of fetal MSC demonstrated with 

MSC cultured from first trimester fetal blood, liver and bone marrow (Campagnoli, 

2000; Campagnoli, 2001). 

After isolation, such cells can be separated from haemopoietic cells by their 

adherence to plastic culture dishes and proliferation from an initially heterogeneous 

population towards a more homogenous, spindle-shaped cell type with subculturing / 

passaging. MSC exist in the adult bone marrow as rare cells, with a frequency of one 

in 104 to 106 mononuclear marrow cells (Pittenger, 1999; Friedenstein, 1970; Castro-

Malaspina, 1980). They were originally called “colony forming unit – fibroblast” 

(CFU-F), for their ability form colonies of fibroblast-like cells. The nomenclature 

developed from CFU-F to multipotent stromal cells or mesenchymal stem cells, with 

the latter popularized by Caplan in the 1990s (Caplan, 1991).  

Due to the heterogeneous nature of these cells, critics have argued against the use of 

the term “stem” to describe the whole isolated cell population (Horwitz, 2005). 

Although not yet rigorously defined, “stemness” refers to the capacity for self-renewal, 

differentiation and function. Demonstration of MSC surviving in vivo for long periods 

with multi-lineage differentiation, self-renewal and tissue repopulation has been more 

difficult than for haemopoietic stem cells (HSC) (Thomas, 2008; Horwitz, 2005). 

Moreover, in vivo integration and differentiation have been proven by teratoma 

formation with embryonic stem cells (ESC) (Thomson, 1998) and reconstitution in 

irradiated host with multipotent adult progenitor cells (MAPC) (Reyes, 2001; Jiang, 

2002), but not MSC. It was proposed that “mesenchymal stem cells” should be 

reserved for only the subpopulation of cells that exhibit “stemness”. Some researchers 

have preferred to call these cells bone marrow stromal stem cells, stromal precursor 
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cells, recycling stem cells, marrow isolated adult multilineage inducible stem cells 

(MIAMI) (DIppolito, 2004) or MAPC. For the purpose of consistency, I have chosen 

the terminology “mesenchymal stem cells” in this dissertation.  

Of the above cell types the MIAMI and MAPC cells stand out as special types. They 

have higher proliferative and differentiative potential compared to classical MSC 

(DIppolito, 2004). MAPC can differentiate into HSC (Serafini, 2007) and have the 

capacity for arterial (Aranguren, 2007) and endothelial lineages (Reyes, 2002).  It has 

been suggested that they may represent a more primitive subset of stem cells that 

could be the common precursor to MSC. If indeed so, the relationship between these 

precursors and the hemangioblast will have to be determined as the latter is regarded 

as the mesodermal precursor of haemopoietic and endothelial lineages (Park, 2005).  

1.2.2 MSC Sources 

Apart from adult MSC isolated from bone marrow, other MSC niches have more 

recently been identified (da Silva Meirelles, 2006). The sources of fetal MSC are 

generally the same as their adult counterpart. An early clue to the existence of non-

haemopoietic stromal cells in fetal life was reported in the early 1970s (Macek, 1973). 

Fetal MSC could be identified in the embryonic aorta-gonad-mesonephros (AGM) 

region and yolk sac of rodents (Van Den Heuvel, 1987). Developmental studies 

demonstrated that cells from the stage-24 chick bud limb could turn into various 

mesenchymal cells depending on culture conditions (Arnold, 1991). Fetal MSC can 

be found in fetal circulation starting from 7 weeks gestation, declining to insignificant 

numbers by the beginning of the second trimester (Campagnoli, 2001). They have 

been identified in fetal blood, liver and bone marrow (Campagnoli, 2000; 
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Campagnoli, 2001), metanephros (Almeida-Porada, 2002), dermis (Zhao, 2005), 

pancreas (Hu, 2003) and thymus (Rzhaninova, 2005). Recently, second and third 

trimester amniotic fluid has been explored as a source of MSC that could have been 

released from fetal urinary, gastrointestinal, respiratory and amniotic interfaces (Tsai, 

2004; Zhao, 2005; De Coppi, 2007). The placenta was also identified as an MSC 

source, though 80% of cells were of maternal origin (in't Anker, 2004). MSC can also 

be found in term umbilical cord blood (UCB), though at low and inconsistent 

frequencies. Mareschi et al could not isolate MSC from UCB in culture conditions 

that were permissive for bone marrow MSC (Mareschi, 2001). Others reported CFU-F 

per 106 monocuclear cells (MNC) plated that ranged from 0.35 to 0.5 (Erices, 2000; 

Goodwin, 2001), which is much lower than first trimester fetal blood (8.2 CFU-F / 

106 MNC) (Campagnoli, 2001). By using high volumes of UCB and addition of 

cytokines to stimulate cell proliferation in culture, MSC could be isolated, albeit from 

less than a third of collected samples (Bieback, 2004; Lee, 2004).  

1.2.3 MSC Characteristics 

Pittenger et al have defined MSC as cells that exhibit self-renewal in adherent culture, 

differentiate to multiple mesenchymal lineages and present specific surface proteins 

(Pittenger, 1999). In order to standardise the nomenclature and characteristics of MSC, 

the International Society for Cellular Therapy has published a consensus statement 

which largely follows on from Pittenger et al’s earlier work (Dominici, 2006). While 

there is no marker specific for MSC, it is generally accepted that MSC from any 

source do not express haematopoietic markers such as CD14, CD34 and CD45 and 

are negative for the endothelial markers CD31 and von-Willebrand factor (vWF). 

They express a number of adhesion molecules such as CD44 (hyaluron), CD29 (β1 
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integrin), CD49e (α5 integrin), CD62 and a number of intracellular markers such as 

vimentin, laminin, fibronectin and surface epitopes like CD105 (SH2) and CD73 

(SH3/4). MSC express intermediate amounts of HLA Class I and do not express HLA 

Class II. However, variable expression of CD90 (Thy1.1), CD117 (ckit), CD105, 

CD73 and STRO-1 may occur between cultures and species, underlying the 

heterogeneous nature of MSC and the different microenvironments required for 

haemopoietic support (Javazon, 2004). A comparative table on their respective 

phenotypes is shown in Table 1. 
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Table 1: Immunophenotype of human fetal MSC (O'Donoghue, 2006).  + Positive, - Negative, ± Weakly Positive or Low Expression.  
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A defining characteristic of the MSC is its ability to differentiate into osteoblasts, 

adipocytes and chondroblasts under appropriate culture conditions (Dominici, 2006).  

In addition, myogenic differentiation of MSC from various sources has been shown 

(Gang, 2004; Chan, 2006). Some reports have shown that MSC can transdifferentiate 

down the neuroectodermal lineage into neurons (Wislet-Gendebien, 2005; Cho, 2005) 

and the endodermal lineage into hepatocytes (Aurich, 2007; Banas, 2007), but this has 

not been reproducible in many laboratories. The possible lineages of MSC are 

illustrated in Figure 2. 

 

Figure 2: Mesenchymal stem cells (MSCs) differentiation is multistep, involving 
committal development of cells towards a particular lineage. They have the potential to 
differentiate into various tissue including bone, cartilage, muscle, marrow stroma, 
tendon/ligament, fats, and other connective tissues. (Caplan, 2005). 

Clonal analysis of MSC and their differentiation capacity has revealed the 

heterogeneous nature of this cell type. It has been shown that a majority of clones can 

differentiate into osteoblast, but fewer into adipocytes and chondroblasts. Only a third 
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of clones can differentiate into all three lineages with adipogenesis and 

chrondrogenesis lost with greater population doublings (Muraglia, 2000). In addition, 

there are tri-potent (osteogenesis, adipogenesis and chondrogenesis), bi-potent 

(osteogenesis and chondrogenesis) and uni-potent (osteogenesis only) clones 

(DiGirolamo, 1999). 

Compared to MSC derived from adults, fetal tissue-derived MSC (also known as 

human fetal MSC [fMSC]) have several advantages that may be exploited in cellular 

transplantation applications. Firstly, fMSC have been shown to proliferate faster than 

adult MSC (Gotherstrom, 2003) and can undergo many more population doublings 

before senescing (Campagnoli, 2001), thus allowing the generation of clinically 

relevant cell numbers for clinical transplantation. Secondly, fMSC may have greater 

differentiation capacity than adult MSC, with reports demonstrating superior 

osteogenic capacity (Zhang, 2009), and oligodendrocyte (Kennea, 2003; Kennea, 

2009) and haemopoietic differentiation (MacKenzie et al. 2001). Thirdly, expression 

of markers associated with pluripotency, such as Oct-4, have been demonstrated in 

fMSC at the mRNA and protein level (Guillot, 2007; Zhang, 2009), suggesting their 

primitive origin. Lastly, fMSC from fetal blood, liver and BM have been shown to 

express a higher level of telomerase activity and have longer telomeres compared to 

MSC derived from adult tissues (Guillot, 2007).  Telomeres are double-stranded DNA 

(TTAGGG)n repeat sequences of <20kb long, with a single strand of the repeated 

sequence acting as a protective cap for the chromosomal ends. As DNA polymerase 

does not duplicate end sequences completely, telomeres shorten with successive cell 

division until a critical length where division is arrested (Guillot, 2007). Telomerase 

activity coincides with lengthening of telomeres by enzymes, thereby maintaining 

self-renewal of cells such as the ESC. 
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1.2.4 Homing and Migration 

There has been emerging evidence that systemically delivered MSC migrate towards 

damaged or inflamed tissue, such as that found in stroke injuries (Jendelova, 2003). 

Although fMSC trafficking is not yet fully understood, such cells are likely to migrate 

using similar mechanisms to adult MSC. Circulating adult MSC adhere to vascular 

endothelial cells through specific adhesion molecules and chemokines, enter the 

perivascular space through transendothelial migration and move along chemokine 

gradients towards sites of tissue damage. Steingen and colleagues showed that 

transmigration is dependent on the endothelial phenotype, with MSC co-cultured with 

human umbilical vein endothelial cells the most effective and exhibiting cytoplasmic 

podia (Steingen, 2008). 

The mechanisms of leukocyte transendothelial migration have been established since 

the early 1990s (Butcher, 1991; Springer, 1994). The coordinated sequence of 

adhesion steps is initiated by surface tethering, which are mainly mediated by P and E 

selectins and their ligands. Following tethering, the captured cells roll and encounter 

chemokines, which eventually activate integrins to result in firm arrest. The 

subsequent transendothelial migration is mediated by the platelet/endothelial cell 

adhesion molecule 1 (PECAM-1 or CD31) (Muller, 1995).  

Compared to leukocytes, less is known about the transendothelial migration 

mechanisms of MSC. A number of adhesion molecules are expressed on fMSC, 

including integrins α2, α4, and α5 (de la Fuente, 2002) (please see Table 2). Other 

adhesion molecules found on adult MSC include VLA-4, VCAM-1 and CD44 

(Krampera, 2006). The adherence of MSC to endothelial cells has been shown to 

involve VLA-4 and VCAM-1 (Steingen, 2008).  
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The mechanisms of MSC transendothelial migration are similar to those of leukocytes, 

as shown by intravital microscopy (Ruster, 2006). Leukocytes express P-selectin 

glycoprotein ligand 1 (PSGL1) which interacts with the P-selectin on endothelial cells 

during rolling. MSC rolling and adherence is a P-selectin-dependent process but MSC 

do not express PSGL1, therefore MSC express an unknown P-selectin ligand (Ruster, 

2006). Moreover, PECAM-1 is expressed on leukocytes but not on MSC, bringing to 

question the mechanism responsible for MSC passage through endothelial cell gaps 

(Muller, 1995).  

After entering the perivascular space, MSC move along chemokine gradients. 

Chemokines or chemotactic cytokines, are a large superfamily of small (8 – 10 kDa) 

glycoproteins that are involved in a diverse range of biological processes. The 

difference between chmokines and other cytokines are the ability of the former to 

bind to G-protein coupled receptors to mediate directional migration (Baggiolini, 

2001; Chamberlain, 2007). Only a few recent studies probed for most or all receptor 

expression on MSC and correlated with cellular migration in response to chemokine 

stimuli with chemotaxis assays (Honczarenko, 2006; Ringe, 2007; Ponte, 2007; 

Prockop, 2009) (Table 2). MSC express a broad spectrum of chemokine sub-family 

receptors, although with much variability between reports, further alluding to their 

heterogeneity. 

After entering the perivascular space, MSC move along chemokine gradients, and 

encounter the extracellular matrix of the basement membranes. Metalloproteinases 

(MMPs) are expressed by MSC to overcome these barriers. It was shown that MSC 

express MMP-2, MT1-MMP, TIMP-1 and 2 (please see Table 2), and cannot traverse 

the basement membrane when MMPs are inhibited (Ries, 2007).  
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Adhesion molecules on MSC  
(de la Fuente, 2002; Krampera, 2006; Steingen, 2008) 
α2 and α4  integrins 
VLA-4 or α4β1  very late antigen 4 integrin 
VCAM-1 or CD106 vascular cell adhesion molecule-1 
CD49e α5 integrin 
CD29 β1 intrgrin 
CD44 hyaluron 
 
Chemokine Receptors on MSC  
(Honczarenko, 2006; Ringe, 2007; Ponte, 2007) 
CCR1, 2, 3,7, 8, 9 CC chemokine receptors 
CXCR 1, 2, 3, 4, 5, 6 CXC chemokine receptors 
 
Metalloproteinases secreted by MSC (Ries, 2007) 
MMP-2 Matrix metalloproteinase 2 
MT1-MMP Membrane type 1 MMP 
TIMP-1 and 2 Tissue inhibitor of MMP 1 and 2 
 

Table 2: Molecules responsible for MSC migration. Adhesion molecules mediate MSC 
transendothelial migration. Once in the perivascular space, chemokine receptors direct 
MSC migration along chemokine gradients and metalloproteinases breakdown ECM 
while MSC migrates. 

 

1.2.5 Engraftment 

Engraftment refers to the ability of transplanted cells to stably survive and integrate  

with host tissue without rejection by the host immune system. Transplantation of 

MSC, in particular to the central nervous system, is challenged by several factors 

related to engraftment. 

1.2.5.1 Host Immune Response to Cell Therapy 

An important consideration for cell therapy is the host immune response to the 

transplanted cells. Immune-rejection by the host can compromise the efficacy of stem 
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cells from either allogeneic or xenogeneic sources. The immune responses in the brain 

and the periphery are different due to capacity of the brain to reduce or delay immune 

response in a phenomenon known as ‘immune privilege’, which will be discussed 

later. The magnitude of the response is generally dependent on the phylogenetic 

distance between donor and host; a strong host immune response is mounted against 

discordant xenograft from a distantly-related species (Pakzaban, 1994). In addition to 

the type of transplant, the strength of the response is not only host organ dependent, 

but also transplant site dependent. For example, grafts transplanted in the cerebral 

parenchyma show better survival rate than near the ventricular systems (Oertel, 2004). 

Possible reasons for strong immunoreactivity near the ventricular system include 

partial lack of blood-brain barrier (BBB) in the ventricular system and extensive 

antigen drainage to cervical lymph nodes. 

1.2.5.1.1 Immune Response of the CNS 

There are two parts to the mammalian immune response to pathogens such as bacteria 

and viruses. The first is the innate immune response which is the immediate and 

generic response of the host to the presence of any pathogen. An important cell type 

of the innate immune system within the central nervous system (CNS) is the microglia 

(Aloisi, 2001). Microglia are macrophage-like cells that reside throughout the CNS 

parenchyma and respond to the presence of antigen through pattern recognition 

receptors (PRR) such as toll-like receptors (TLR) (Olson, 2004). They play a 

surveillance role until activation by injury or the presence of foreign antigens 

(Nimmerjahn, 2005). Their function as intrinsic phagocytic cells of the CNS is well 

established. They have limited function as antigen presenting cell (APC) but can 
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mature into macrophages and dendritic cells for full APC capacity (Santambrogio, 

2001).  

A growing pool of evidence implicated astrocytes as the other cell type involved in 

the innate immune system (Farina, 2007). Astrocytes are the most populous glial cells 

of the CNS, and they form a major part of the blood brain barrier and provide 

metabolic support of neurons. Upon recognition of foreign antigen with PRR such as 

TLR, mannose and complement receptors, they activate neighbouring cells with 

immune mediators, including the granulocyte macrophage colony stimulating factor 

which regulates microglial activity (Fischer, 1999). Other astrocyte-secreted 

mediators modify BBB permeability and attract extravasation of immune cells in 

support of the adaptive immune system.  

The adaptive immune response is the second line of defence of vertebrates for the 

long-term defence against specific pathogens (Alberts, 2007). It has “memory” for 

previously encountered pathogens and mounts stronger attacks each time the 

pathogens are encountered. There are two broad classes of such responses - antibody 

response and cell-mediated immune response, and they are carried out by different 

lymphocytes, called B cells and T cells, respectively.  

In the antibody response, B cells are activated to secrete antibodies specific to the 

antigen. The antibodies distribute throughout the host and bind specifically to the 

foreign antigen that stimulated their production. Antigen binding inactivates viruses 

and microbial toxins by inhibiting their ability to bind to receptors on host cells. 

Antibody binding also marks the pathogens for destruction, mainly by making it 

easier for phagocytic cells of the innate immune system to ingest them. 
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1.2.5.1.2 Cell-mediated Immune Response Against Foreign Grafts 

There are two classes of MHC proteins: MHC I which present foreign antigens to 

cytotoxic, CD8+ T cells and MHC II which presents antigens to helper, CD4+ T cells. 

Often, the MHC proteins expressed on the transplanted cells (with the exceptions of 

autologous and syngenic grafts) are different from those of the host cells. Cell-

mediated immune response is the main mechanism of immunity against transplanted 

foreign cells in an allogeneic or xenogeneic cell graft. It occurs in three phases: the 

induction, the attack and the quiescent phase (Lawrence, 1990). The activity of the 

induction phase is similar to the innate immune response. Transplanted grafts usually 

suffer partial necrosis and become surrounded by cytokine expressing macrophages 

for up to 6 days. Transplanted cells carry major histocompatibility complex (MHC) 

different from that of host cells. When APC of the innate immune response, such as 

the dendritic cells engulf necrotic cells, the APC can enzymatically break down the 

foreign cells into peptides and migrate to the T cell rich peripheral lymph node. At the 

lymph nodes, the foreign peptides complexed with the host MHC molecules on the 

host APC are presented to T cells. When T cells bind to the MHC-peptide complex 

through T cell receptors, they become activated, proliferate, differentiate into effector 

cell subsets carry the same MHC-peptide on their surface, proliferate and enter the 

circulation. BBB disruption during injury or intracerebral transplantation assists the 

extravasation of T cells at the inflammation site. At this stage, the main source of 

MHC I is from donor cells, but the host tissue may present MHC I when injury occurs 

during the transplantation. It has been shown that the mechanical damage of an 

intracerebral transplantation was a cause of elevated host MHC I at the injection tract 

and vicinity (Modo, 2002). 
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The attack phase can occur from 6 to 40 days of the transplantation. During this time, 

T cells in the vicinity of the inflammatory site stimulate the microgia with interferon-γ. 

The T cells recognise B cells, CD8+ cells carrying the MHC-peptide, and also the 

target cells carrying the foreign MHC. The CD4+ cells help to stimulate the response 

of B cells and CD8+ cells which on identifying the foreign cells, reorganise their 

cytoskeleton at the T cell/ target cell interface to form an immunological synapse. 

Once bound, the cytotoxic T cells induce the target cells to undergo apoptosis through 

perforin protein or Fas – Fas ligand directed caspase. At the same time, debris and 

dead cells are phagocytosed by microgia. At the quiescent phase, which can last up to 

5 months, the graft rejection is at its late or complete state and the graft site has few 

remaining T cells.  

1.2.5.2 Suppression of Immune Response 

Although the brain is immunologically privileged to a certain extent, the use of 

immunosuppression ensures the best survival chances of a cerebral graft. 

Immunosuppressive drugs interfere with the activation and to some degree, the 

proliferation of T cells. Cyclosporin A (CyA), a commonly used immunosuppresive 

drug improves intracerebral xenograft survival, but immunosuppression can be 

improved when CyA is combined with other drugs such as prednisolone or 

mycophenolate mofetil (Wennberg, 2001). It has also been shown that the 

combination of a calcineurin-dependent (FK506) and a non-calcineurin-mediated 

inhibitor (rapamycin) allowed human fetal neural stem cells to survive in mice for 

more than 2 months, compared to as little as one week for FK506 or CyA alone (Yan, 

2006). 
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CyA, a calcineurin inhibitor, is a potent immunosuppressant that reduces the 

production of several growth factors (especially interleukin 2). Ryffel et al reviewed 

the role of CyA as a carcinogenic agent (Ryffel, 1992) and concluded that CyA may 

allow dose-dependent growth of initiated tumor cells in vivo and Epstein-Barr virus-

infected B cells might escape the control of specific cytotoxic T cells. A study of short 

term CyA showed that donor marrow stem cells migration and outgrowth in intact 

striatum were delayed (Irons, 2004), although the long term effects remain unknown. 

Other therapeutic roles of CyA have been documented, including the potential as a 

treatment for Parkinson’s disease (Seaton, 1998).  

The use of immunosuppression drugs, including CyA, poses an increased risk of post-

transplantation lymphoid neoplasia, a group of lymphoproliferative disorders that 

develop in recipients of solid organs and bone marrow allograft (Cobo, 2008). The 

incidence of lymphoma in the transplanted population is <2% and is influenced by the 

intensity of the immunosuppression. It remains to be determined if the type of 

immunosuppressive drug alters the incident rate. 

1.2.5.3 Immune Privilege of the Brain 

‘Immune privilege’ is a phenomenon where immune-mediated inflammation and 

allograft rejection are reduced in certain organs, such as the eye, pregnant uterus and 

the CNS (Niederkorn, 2006). Immune-mediated inflammation can have deleterious 

effects to the eye and brain, which have limited regeneration capacity. The term 

‘immune privilege’ was first used by Medawar (Medawar, 1948) who proposed that 

certain sites, like the brain do not allow entrance of immune cells or exit of antigen 

due to the presence of blood-tissue barrier, absence of antigen-presenting cells (APC) 
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and sparse lymphatic drainage. This view was accepted until it was shown that the 

brain does not possess absolute privilege. Activated T cells can cross the brain-tissue 

barrier and enter the brain (Hickey, 1991), and microglia have APC function and 

lymphatic drainage into deep cervical lymph nodes do exist. After cerebral ischemia, 

the initial inflammatory response is followed by upregulation of cytokines, adhesion 

molecules and chemokines, all of which promote recruitment of leukocytes that 

mediate further cerebral infarction (Huang, 2006). Moreover, recent evidence points 

to the failure of “immune privilege” mechanisms as a contributor to the conditions of 

multiple sclerosis, corneal allograft rejection or immune-mediated miscarriages 

(Niederkorn, 2006).  

Cells in the brain do possess surface molecules that moderate the immune response. 

Several cell types, including astrocytes, neurons and microglia express FasL (CD95L) 

and can trigger the apoptosis of Fas+ (CD95) activated T cells (Bechmann, 1999). 

Complement activation is a stimulus of the innate immune response, but it can be 

moderated by complement regulatory proteins (CRP) in the eye and the fetus. Two 

main CPR, the membrane cofactor protein and CD59, are found in the brain 

(Harrower, 2004), although their role in immune privilege of the brain remains to be 

determined. On the other hand, major histocompatibility complex (MHC) class I 

molecules are absent or weakly expressed on oligodendrocytes and neurons in the 

brain (Massa, 1993), reducing cell lysis by cytotoxic T-cells.  

Aside from cell membrane molecules, immune privilege is also maintained by soluble 

anti-inflammatory and immunosuppressive molecules. One such molecule in the brain 

is the macrophage migration inhibitory factor (Calandra, 2003), which reduces natural 

killer cell-mediated cytolysis (Apte, 1998). 
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1.2.5.4 Variability of Graft Survival 

Graft survival after transplantation in rodent models has been found to be highly 

variable by several authors (Mason, 1986; Lawrence, 1990; Modo, 2002). In a 

murine-rat xenograft transplantation stroke model, the number of surviving murine 

neural stem cells after 2 weeks varied from none to >80 per 25µm thick brain section 

(Modo, 2002). In an intra-muscular allograft to nude mice, only 30% of transplanted 

muscle precursor cells survived after 1 hr and the survival rate dropped to 1% after 1 

day (Beauchamp, 1999). In an intracerebral allograft to rats, transplanted MSC 

survived for 7 days in the striatum and hippocampus with CyA immunosuppression 

(Coyne, 2006). The allograft rejection by ED1+ microgia/macrophages started on day 

3 and was nearly complete on day 14. In a xenogeneic human-murine transplantation, 

transplanted fMSC survived with chimerisms of up to 5% for up to 19 weeks duration 

(Chan, 2007; Guillot, 2008). Intracerebral fetal injections in a similar model led to 

oligodendrocytic differentiation and survival for at least 35 days (Kennea, 2009). 

Finally, post-natal transplantation of fMSC in adult scid mouse muscle resulted in 

their survival up to 28 days post-transplantation (Chan, 2006). Taken together, the 

survivability of primary cell grafts like fMSC is highly variable and is related to the 

immunocompetence of the host species. 

1.2.5.5 Immunogenicity of MSC 

MSC are considered non-immunogenic and may induce immuno-modulatory 

tolerance when co-grafted with other immunogenic cells. As MSC are MHC I positive, 

they may activate host cytotoxic T cells, but being negative for MHC II, FAS ligand 

and other co-stimulation molecules prevents full T cell stimulation by MSC alone 

(Tse, 2003). MSC retain similar human leukocyte antigen (HLA; the MHC in human) 
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expression even after differentiation into bone, fat or cartilage (Le Blanc, 2003). In 

addition, cytosolic HLA Class II in fMSC required 7 full days of interferon-γ to be 

upregulated (Gotherstrom, 2004), compared to just 2 days for adult MSC (Le Blanc, 

2003). Interestingly, interferon-γ induced adult MSC still do not elicit an alloreactive 

lymphocyte proliferative response in culture (Le Blanc, 2003). It was proposed that 

allogeneic MSC suppress lymphocyte alloreactivity through an HLA-independent 

mechanism, as seen from in vitro mixed lymphocyte cultures (Krampera, 2003).  

The immuno-tolerance of MSC in vivo is varied among different reports and less 

well-understood. In agreement with the ability to suppress alloreactive lymphocytes in 

mixed lymphocyte cultures (Krampera, 2003), co-transplanted MSC exert immuno-

modulation of host response against immunogenic allografts. Evidence of this comes 

from prolonged survival of allogeneic skin graft in immunocompetent baboons when 

MSC are administered (Bartholomew, 2002). Another evidence is the formation of 

tumours from melanoma cells in immunocompetent mice only when they are co-

injected with MSC (Djouad, 2003). The immunomodulatory mechanism has not been 

confirmed and there have been contradicting reports (Nasef, 2008). Initial clinical 

experience with MSC showed promising potential for therapy-resistant severe acute 

graft-versus-host disease, tissue repair, treatment of rejection of organ allografts and 

autoimmune disorders (Le Blanc, 2007). However, contradictory results on the 

immuno-tolerance of MSC were shown when erythropoietin-releasing allogeneic 

MSC transplanted into MHC-mismatched mice caused only a transient rise in 

haematocrit compared to syngeneic hosts. Moreover, subsequent transplantation 

showed refractoriness in haematocrit levels consistent with alloimmunization against 

donor MSC (Eliopoulos, 2005). 



Introduction 

42 

1.2.6 Clinical trials of MSC Therapy 

MSC have been considered for clinical application in a wide range of fields, including 

haematologic malignancy, cardiovascular disease, osteogenesis imperfecta and stroke. 

The cell type is favourable because of its capacity for expansion in culture, 

multilineage differentiation and immunomodulatory properties. Some clinical trials 

have already begun despite some unanswered questions relating to possible decrease 

in immunity against infection or tumorigenesis (Houghton, 2004; Ringden, 2006).  

1.2.6.1 Hematological Malignancy 

MSC have been shown to exert immunosuppression. It was shown that MSC suppress 

lymphocytes in culture (Krampera, 2003) and prolong survival of skin graft in 

immunocompetent hosts (Bartholomew, 2002). Graft versus host diseases (GVHD) is 

a major cause of morbidity and mortality following allogeneic HSC transplantation 

where donor lymphocytes start attacking the host cells (Ferrara, 2006). It was 

proposed that the immunomodulatory effects of MSC can be a prevention or treatment 

for GVHD.  

During a feasibility study on the intraveneous infusion of autologous MSC alone, no 

deleterious effect was observed (Lazarus, 1995). Cotransplantation of autologous 

MSC with HSC in patients who have received myeloablative therapy was also shown 

to be safe (Koc, 2000). In an acute leukaemia patient given allogeneic HSC, where 

rejection or severe GVHD risk is high, she was also given HLA-haploidentical MSC 

and no GVHD was observed for two and a half years after transplantation (Lee, 2002). 

In a more extensive study on haematological maglignancies, 46 patients had MSC co-
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infused with HSC from HLA identical siblings (Lazarus, 2005). Neither MSC-related 

adverse effect nor severe GVHD was observed in 23 of 46 patients and 2-year 

progression-free survival was 53%. Chimerism of MSC was demonstrated in only 2 

of 19 patients at 6 and 18 months after transplantation.  

In a clinical trial involving 8 patients with the same disease, GVHD disappeared in 

75% of the patients given allogeneic MSC and survival was improved over the 16 

patients without MSC transplantation (Ringden, 2006).  In another study involving 13 

patients with the same disease, 15% of patients responded to the allogeneic MSC 

infusion and a further 45% responded after addition concomitant transplantation and 

immunosuppression therapy (von Bonin, 2009). The results of a phase II study of this 

treatment showed that recipients of MSC had higher survival 2 years post-

transplantation and the response rate was not related to donor HLA-matching (Le 

Blanc, 2008). 

Taken together, these results showed that allogeneic MSC transplantation is safe and 

promising for the treatment and prevention of GVHD. Donor HLA-matching may not 

be important and engraftment may not be stable even in immunocompromised 

patients. 

1.2.6.2 Myocardial Infarction 

Myocardial infarction (MI) leads to cardiomyocyte loss and contractile dysfunction of 

the heart. Formation of scar tissue follows as the ischemic tissue persists and negative 

remodelling can result in total failure (Rivera, 2006). Much excitement was generated 

when Orlic and colleagues suggested that marrow cells replaced lost heart muscle and 

improved cardiac function (Orlic, 2003). Although later challenged by views from 
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other laboratories that the transplanted cells did not themselves become cardiac 

muscle cells (Murry, 2004; Balsam, 2004), clinical trials on whole and fractionated 

marrow cells were already underway. 

The largest clinical trial of the disease was the Reinfusion of Enriched Progenitor 

Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial, a 

multicenter trial of infusing patient with marrow mononuclear cells (MNC, consisting 

of haemopoietic, mesenchymal and endothelial cells) after percutaneous coronary 

intervention (Schachinger, 2006). Left ventricular ejection fraction (LEVF), measured 

only at 4 months was greater in treated patients compared to the placebo group. One 

year post-transplantation data showed lower rate of adverse clinical events. Bone 

Marrow Transfer to Enhance ST-Elevation Infarct Regeneration trial (BOOST) 

reported that the relative improvement in LEVF after infusion of MNC at 6 months, 

as compared with no infusion, was no longer significant at 18 months, suggesting that 

the main effect was an acceleration of recovery (Wollert, 2004; Meyer, 2006).  

Results contradicting to these trials were shown by Autologous Stem Cell 

Transplantation in Acute Myocardial Infarction (ASTAMI) (Lunde, 2006). No 

significant improvement in LVEF at 6 months was observed in the MNC group. The 

inconsistent findings were somewhat disappointing, but can be attributed to difference 

in cell culture protocol (Lunde, 2006). The other trials are summarized in Table 3. 
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Table 3: Clinical trials for cardiac diseases adapted from Rosenzweig et al. Overall results of trials show that bone marrow cell infusion may improve 
cardiac function but the effect may not be permanent (Rosenzweig, 2006) 

 

Trial Setting Design Cell Number Results 

BOOST Percutaneous coronary 
intervention (PCI) after acute 
MI 

30 patients received bone marrow 
cells (BMC) 
30 did not receive infusion 

2.5 x 109 unfractionated 
BMC 

6 mo: LVEF 6% greater in BMC 
group 
18 mo: no difference 

Janssen et al PCI after acute MI 33 patients received BMC 
33 received placebo 

3 x 108 ficoll-separated 
BMC 

4 mo: no difference in LVEF, 
decreased infarct size, better 
regional function in BMC group 

TOPCARE-CHD Chronic left ventricular 
dysfunction 

28 patients received BMC 
23 did not receive infusion 

2 X 108 ficoll-separated 
BMC 

3 mo: 2.9% greater increase in 
LVEF in BMC group 

ASTAMI PCI after acute MI 47 patients received BMC 
50 did not receive infusion 

7 x 107 ficoll-separated 
BMC 

6 mo: no difference in LVEF 

REPAIR-AMI PCI after acute MI 101 patients received BMC 
98 received placebo 

2.4 x 108 ficoll-
separated BMC 

4 mo: greater increase in LVEF in 
BMC group 
1 yr: reduced adverse clinical events 
in BMC group 
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1.2.6.3 Osteogenesis Imperfecta 

Osteogenesis imperfecta (OI) is a genetic disorder characterized by production of 

defective type I collagen, the principal protein in bone. The patients have numerous 

painful fractures and retarded bone growth with progressive deformation. At present, 

there is no cure and only empirical bisphosphonate treatment has been proven to be 

partially effective. The first clinical studies of MSC transplantation for OI started in 

the late 90s (Horwitz, 1999; Horwitz, 2001; Horwitz, 2002). Children were infused 

with MSC from HLA-identical or single antigen mismatched siblings after ablative 

therapy. Donor osteoblast engraftment, new dense bone formation and increase in 

total bone mineral content was observed with increase in growth velocity and reduced 

frequencies of bone fracture.  

In a female fetus with bilateral femur fractures diagnosed with OI, in utero therapy 

with male HLA-mismatched fMSC was performed (Le Blanc, 2005). Biopsy 

indicated engraftment of donor cells (up to 12%) and histology showed regularly 

arranged and configurated bone trabeculae. At 2 years of life, fewer fractures than 

typical OI patients were noted, and psychomotor development was normal. This is 

intriguing as the genotype suggests a more severe form of OI than what was observed. 

This shows that fMSC can engraft and differentiate into bone in a human fetus even 

when the recipient is immunocompetent and HLA-incompatible. 

1.2.6.4 MSC therapy in stroke 

MSC have been extensively studied in therapy of stroke in rodent models and only 

limited clinical results are available. When administered post-stroke they home to the 
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infarct region from the circulation or from the contralateral hemisphere, across the 

striatum (Jendelova, 2003). They have been shown to exert therapeutic effect 

including angiogenesis, neurogenesis, restoration of blood brain barrier and motor 

function recovery (Chen, 2001; Chen, 2003; Chen, 2004; Borlongan, 2004; Shen, 

2007). Available animal and clinical results suggest that the route, timing of delivery 

may affect the efficacy of MSC therapy in terms of angiogenesis, neuroplasticity and 

immunomodulation. 

Intravascular delivery appears to be the best route of MSC delivery. Recent clinical 

trials have used intravascular delivery of MSC (Bang, 2005) or bone marrow 

mononuclear cells (Mendonca, 2006). In contrast to the rodent brain, teratocarcinoma-

derived neuronal cells showed limited migration in the human adult brain when 

transplanted intracerebrally (Nelson, 2002). The role of MSC in stroke therapy can be 

direct replacement cells or as source of neurotrophic and angiogenic factors. The role 

may affect the choice of delivery route. The distribution of MSC by the intravascular 

route was widespread (Borlongan, 2004), although only 4% of transplanted hMSC 

reached the rodent brain when given intravenously post-stroke (Li, 2002). Despite the 

small cell number that reached the infarct locality, the resulting functional recovery 

suggests that direct cell replacement or localized protein secretion may not be 

necessary. Moreover, intracarotid delivery can increase the proportion reaching the 

brain to about 20% of the rMSC given (Li, 2001).  

The timing of cell delivery appears to affect the fate of MSC in the brain, particularly 

when cells are injected intracerebrally. The infarcted brain is a hostile environment 

for cell grafts, with radical oxygen species and inflammatory cells present. Reports on 

intravascular transplantation have focused on the delivery of MSC between 1 day and 
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1 week post-stroke with few reports on later transplantation. Although human neural 

cells showed significantly better survival when transplanted 3 weeks post-stroke as 

compared to 5-7 days post-stroke (Kelly, 2004; Grabowski, 1994), the early delivery 

of MSC may exert a different therapeutic effect on the infarct. As early as 30 minutes 

post-stroke, the disruption of the blood brain barrier allows the transmigration of 

immune cells such as leukocytes and macrophages (Dirnagl, 1999). As MSC are 

likely to transmigrate in a similar manner as leukocytes, the early delivery of MSC 

can allow an influx of immunomodulators to provide neuroprotection from early 

inflammatory damages caused by immune cells. MSC delivered early have been 

shown to improve angiogenesis (Liu, 2006) and neurogenesis (Shen, 2006) in the 

infarct periphery. Given the therapeutic effects of early intravascular delivery and 

graft survival of late intracerebral injection, the optimal delivery timing or the effects 

of multiple deliveries remain to be determined. 
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1.3 Monitoring of Cell Therapy  

While the therapeutic capability of cell therapy is under investigation, knowledge of 

the whereabouts of transplanted cells is critical to the evaluation of transplantation 

route, timing, dosage and cell type. The temporal and spatial information of the cells 

will provide feedback on their engraftment efficiency and functional capacity to allow 

monitoring and optimising of the therapeutic process. As opposed to endpoint 

histological analysis of sacrificed animals, in vivo imaging throughout the therapeutic 

period will allow serial monitoring of patients and reduction in experimental animals 

numbers. 

1.3.1 Histological Methods  

A few techniques are available to identify donor cells from host tissue of sacrificed 

animals, for example by fluorescent confocal microscopy. The simplest method is to 

apply donor specific markers on histological tissue sections. Sex-mismatched 

transplantation has been employed where fluorescent in situ hybridisation (FISH) 

technique is used to locate the Y chromosome (van Dekken, 1989; Hocht-Zeisberg, 

2004). FISH can also be used to identify the origin of cells in xenotransplantations. As 

the targets are small, being nucleotides or centromeres at best, their identification can 

be challenging against the autofluoresence of tissue sections. In xenogeneic 

transplantations, donor cells can be identified from host tissue by species-specific, 

antibody markers, such as vimentin (Chan, 2006; Guillot, 2008) or human nuclear 

marker MAB1281 (Lu, 2007).  
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To improve the signal from implanted cells, they can be labelled with exogenous 

labels, such as fluorescent thymidine analogues (Chen, 2001) or lipophilic 

carbocyanine (Arbab, 2008) before implantation. Although this method can be used 

when donor and recipient are of the same species or sex, it can be complicated by the 

transfer of labels to host cells, resulting in the failure to identify donor cells 

(Pawelczyk, 2006; Burns, 2006; Coyne, 2006). This complication often results from 

the engulfment of dead donor cells by host phagocytic cells. Moreover, cells loaded 

with in vitro dyes may suffer from label dilution following cellular proliferation or 

optical quenching due to limited lifespan of the dyes.  

The transduction of cells with reporter genes aims to circumvent these drawbacks by 

encouraging cells to produce markers. While reporter genes that produce green 

fluorescent protein (GFP) have successfully identified hMSC xenotransplants in non-

human primates (Irons, 2004), transplantation of transgenic cells still faces issue of 

variable expression within the host (Swenson, 2007) and safety concerns in 

translational studies. 

Histological techniques have the potential for highly specific detection of donor cells 

although there are a few inherent drawbacks. Firstly, animals need to be sacrificed for 

each time point in a longitudinal study. Moreover, they suffer from inter-animal 

differences between control and experimental group which translate to the 

requirement for more animals to improve statistical significance. Therefore, there is 

need for methods to locate and follow the fate of transplanted cells in living animals 

over the entire study period.  
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1.3.2 In vivo Imaging Modalities 

A number of cellular imaging modalities are under investigation but only a few are 

clinically relevant (Arbab, 2008). Clinical translation requires a modality that 

provides sufficient imaging resolution and depth of penetration through the human 

body while maintaining ionising radiation exposure within safety limits. Ultrasound is 

inexpensive and widely available compared to other modalities, but such requirements 

limit its application in cellular imaging. The inherent tradeoff between resolution and 

depth of ultrasound may restrict it to mammography and the imaging of the 

subcutaneous regions, the limbs and the neck. 

Optical techniques offer superior resolution, but suffer from limited depth of 

penetration. The limitation is acceptable in applications such as intravital microscopy 

(IM). Donor cells can be identified with fluorescent transgenic materials, such as 

reporter genes or xenogeneic antibodies. By inserting luciferase transgene into cells, 

they can be located with bioluminescence imaging (BLI) in rodents. However, 

transgenic and xenogeneic materials are unlikely to receive clinical approval in the 

near future. Therefore, optical methods are likely to remain an imaging modality for 

small animals or superficial visualization in patients.  

With modalities that require ionising radiation such as computer tomography (CT), 

positron emission tomography (PET) and single photon emission computed 

tomography (SPECT), patient exposure to radiation needs to be limited. In cellular 

imaging by CT, radiation exposure is the limiting factor at the resolution required to 

identify small groups of cells. SPECT also uses ionising radiation, but is limited by 

the period of monitoring when using practical isotopes such as 111In. PET is a 
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promising modality that is not restricted by depth but has limited spatial resolution. It 

can be limited by patient radiation exposure, and suffers from generally very short 

tracer isotope half-lives. However, gene transfection methods have been devised to 

overcome the latter limitation. Prior to transplantation, donor cells are transducted 

with herpes simplex virus thymidine kinase genes such that they can be tracked by 

positron emitters (Cao, 2006). PET researchers have focused on improving spatial 

resolution and efficiency with miniature PET detectors (Park, 2007), pinhole inserts 

(Wu, 2008) and better signal processing (Fontaine, 2007).  

By comparison, MRI edges out PET in terms of resolution, but the bane of MRI for 

cellular imaging is the lack of sensitivity at cellular resolutions. Researchers have 

been working to improve specificity by using spectrally distinct agents such as 19F 

and chemical exchange-dependent saturation transfer (CEST) agents, which in theory 

can acquire signal only from the cells and without interference from the background. 

There have been also attempts to use specialised sequences for optimal cellular 

detection or simply increase the amount of contrast agent per cell. The following 

section describes the current state of cellular MRI research.  
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 Figure 3: Various modalites of cellular imaging adapted from Arbab et al (Arbab, 2008). CEST: Chemical exchange-dependent Saturation Transfer, CT: 
computer tomography, PET: positron emission tomography, SPECT: single photon emission computed tomography, mAb: antibodies, IM: intravital 
microscopy, FRI: fluorescence reflectance imaging, BLI: bioluminescence imaging, US: ultrasound.  Sensitivity: the minimum number of cells detectable. 
Reporter gene: whether transgenic cells can carry a reporter gene that generates contrast.   
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1.4 MR Contrast 

MR imaging rests on the ability to manipulate, with a combination of magnetic fields, 

and then detect the precession of the protons spins in different tissue such as water 

and fat. To understand the principles of magnetic resonance relaxation, we begin by 

considering a set of randomly oriented protons spins. When an external magnetic field, 

B0 is applied, a net number of spins are aligned parallel to B0. Although thermal 

energy causes each spin to adopt a parallel or an anti-parallel alignment to B0, the 

population of parallel spins is slightly larger, albeit in the order of parts per million of 

total spins. As each spin is charged, a resulting magnetic moment, known as the 

longitudinal magnetization vector, is aligned parallel to B0.  

The magnetization vector, with a magnitude M0, can be imagined to be a spinning top 

that can remain upright (aligned to B0), or precess around the vertical axis at its 

Larmor frequency, ω0 when tipped. To tip the magnetization vector, an 

electromagnetic field at the radiofrequency range (rf pulse) is supplied from a nearby 

‘transmit’ coil. The rf pulse that tips the magnetization vector from the vertical z-axis 

through an angle of 90 into the transverse plane xy-plane is called a 2-pulse. The 

resulting ‘transverse magnetization’ produces a time-varying magnetic flux that 

induces a voltage in a nearby ‘receive’ coil.  

To performing imaging, spatial encoding of the signal from the transverse 

magnetization is required. As the Larmor frequency is proportional to the applied 

field B0, an additional coil (linear gradient coil) that changes the original B0 linearly 

in a specific direction, say z, also creates spins of linearly varying frequency in that 

direction. On application of a finite bandwidth rf pulse centered at the Larmor 
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frequency, a layer or ‘slice’ of spins orthogonal to that gradient becomes excited. By 

employing more gradient coils, the signal can be encoded in all directions.   

1.4.1 T2* Relaxation 

The T2* relaxation is best measured and demonstrated with a gradient echo pulse 

sequence (GRE). To initiate a GRE sequence, an excitation rf 2-pulse is applied so 

that the spins are tipped onto the transverse plane and allowed to precess freely. The 

measured transverse magnetization will undergo an exponential decay in the form of 
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The decay time T2* represents a combination of static field induced (T2’) and 

thermodynamic (T2) effects and the decay rate or R2* relaxation rate is 
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During a GRE sequence, no π refocusing pulse is applied, and the acquired signal will 

decay at the rate of 1/T2*, also known as the R2* relaxation rate. However, in a pulse 

sequence with π refocusing pulses (eg spin echo), the effects of static field 

inhomogeneity (T2’) are partially removed, such that the measured signal will decay 

at the rate of 1/T2. The decaying signal is shown below. 
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Figure 4: A plot of the transverse magnetization decaying at a rate of 1/T2* rate. If a 
refocusing pulse is applied at an interval of τ, the signal reaches another maxima at 
time 2τ = TE (Haacke, 1999). 

1.4.2 T2 Relaxation 

There are two components to T2 relaxation, namely the intrinsic and the diffusion-

induced component. 

Intrinsic T2: Intrinsic T2 decay is a result of rapid, random fluctuations in the local 

fields experienced by the spins while precessing in the transverse plane. As the 

inhomogeneities in these internal fields do not stay fixed in time after the π-pulse, 

phase accumulation changes with time and the signal decay cannot be recovered with 

refocusing pulses. As such signal decay occurs without yet taking into consideration 

the effects of diffusion, this is called the intrinsic T2 decay or also known as the spin-

spin relaxation.  
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Diffusion-induced T2: As mentioned, spin echo methods can only partially recover 

signal loss from the effects of external field inhomogeneity (T2’). While a refocusing 

pulse can help fixed-position spins to rephase, diffusion causes change in position of 

spins after each π-pulse. The spin echo cannot recover this type of loss of phase 

coherence.  

One method of R2 measurements is based on the Hahn spin echo sequence where a π 

refocusing pulse is applied at time = τ after the rf excitation, such that the signal is 

refocused and acquired at time = 2τ = TE. By changing the TE, a decay plot of Mxy 

against TE can be obtained with the decay rate rate being the 1/T2 or the R2 

relaxation rate.  

However, spins are subjected to various amounts of diffusion effect depending on TE. 

To minimize a build-up of phase accumulation from diffusion, a Carr-Purcell-

Meiboom-Gill (CPMG) sequence can be used to insert a series of spin flips between 

the π/2 pulse and signal acquisitions as shown in Figure 5.   

 

Figure 5: Applying multiple, regularly spaced refocusing pulse at (2n-1)τ and acquiring 
signals at 2n , where n is 1, 2, 3, …. (Haacke, 1999) 
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Similarly, a decay plot of Mxy against 2nτ can be obtained with the decay rate being 

the R2 (CPMG) relaxation rate. When τ is short, the time allowed for spins to diffuse 

between refocusing is low and the amount of recovered signal is large. 

1.4.3 Contrast agents 

Contrast agents are typically injectable substances that have affinity for specific tissue, 

and can increase the signal intensity difference between the specific tissue and 

background tissue. Contrast agents are substances that can increase the signal 

intensity difference between the target tissue and background tissue. Their ability to 

alter contrast can be quantified by the relaxation times or rates. There are 3 types of 

relaxation times: the T1 longitudinal, T2 transverse and T2* transverse relaxation 

times. The inverse of the relaxation times are the relaxation rates, which are denoted 

as R1, R2 and R2* respectively. The relaxation rate per unit concentration is known 

as the relaxivity, denoted as r1, r2 and r2* respectively. Iron oxide based contrast 

agents are known as T2 agents as they induce the most contrast change in T2 or T2*-

weighted MRI sequences. The relaxivities r2 and r2* are therefore important 

parameters of an iron oxide agent. In cellular MRI, contrast agents are attached to or 

contained within the transplanted cells such that the cells become brighter or darker 

and hence become identifiable on images.   

1.4.3.1 T1 Contrast Agents 

Low molecular weight paramagnetic T1 organic molecular agents generate positive 

contrast by increasing the signal intensity (hyperintensity) in their vicinity on T1-

weighted images. In 1988, gadopentetate dimeglumine (Gd-DTPA) became the first 

paramagnetic MRI contrast agent to be marketed in the United States for clinical use 
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(Nelson, 1995). Gd-DTPA and other small molecule chelates of gadolinium 

extravasate rapidly into the extracellular space and are typically used for the contrast 

enhancement of differentially perfused tissue. In culture, they are taken up by cells via 

diffusion and at limited amounts. Attempts to improve cellular loading of Gd include 

mounting Gd chelates on a macromolecular backbone (Modo, 2002) and 

encapsulation of Gd chelates in polymeric particles (450 nm diameter) to tap on more 

efficient internalisation pathways (Tokumitsu, 1999). The inherent difficulty of using 

T1 agents is the requirement for water molecule access to the Gd inner coordination 

sphere electrons for contrast enhancement. When cellular loading is increased, 

intracellular Gd experience less water access and the proximity among Gd ions 

induces a susceptibility T2 effect and compromises T1 enhancement. 

1.4.3.2 T2 Contrast Agents 

T2 or susceptibility effect agents generate negative contrast by decreasing signal 

intensity (hypointensity) in their vicinity on T2-weight images. T2 agents include 

small molecule agents like Eu-DTPA and Yb-DTPA, and particulate agents. The 

latter, generally known as superparamagnetic iron oxide nanoparticles (SPIO) offer 

the best sensitivity in cellular MRI to date. They typically consist of multiple iron 

oxide primary crystalline nanoparticles, held together or by a polymeric matrix. When 

cells are sufficiently loaded with SPIO, they behave like magnetized spheres in the 

order of microns in diameters (Bowen, 2002). In this dimension, they generate the 

maximum possible signal intensity change per mole of agent (Gillis, 2002). (Further 

details about such signal change can be found in Section 1.4.4.2). It is also 

theoretically possible to quantify cell count per imaging voxel and also differentiate 

between intra and extracellular SPIO (Kuhlpeter, 2007).  
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A group of negative contrast agents depends on the chemical exchange saturation 

transfer (CEST) effect. Specific off-resonance pulses reduce the signal intensity of 

water protons associated with the agent (exchangeable protons) by transferring 

saturation magnetization of these protons to the bulk water. Paramagnetic lanthanide 

chelates (PARACEST agents) help to widen the resonance frequency difference 

between the exchangeable protons and bulk water to improve specificity. By labelling 

different cell types with PARACEST agents of different frequencies prior to their 

injection into an animal, the cells can be tracked independently. (Aime, 2005). 

Subtraction of images taken with and without the off-resonance pulse will 

theoretically produce images of only the labelled cells, although this introduces the 

possibility of misregistration due to physiologic and macroscopic motion.  

Another off-resonance imaging approach utilized perfluoropolyether emulsion 

particle labelled cells to enable detection through fluorine-19 (19F) MRI (Ahrens, 

2005). This is useful for increasing the specificity of cellular tracking, as tissues 

produce negligible signal at the resonance frequency of 19F. In vivo application of 

these techniques is challenged by signal to noise issues and chemical shift artefacts 

from the body. 

1.4.4 Theoretical Relaxation Induced by Homogenous 

Magnetised Spheres 

Theoretical models have been proposed to describe the transverse relaxation of a two 

phase system consisting of only homogenous magnetised particles distributed within a 

homogenous medium, eg water. The particles in these models are motionless and 

magnetically independent from one another, while protons diffuse freely among the 

particles. The models propose that, within the limits of low particle concentration and 



Introduction 

61 

high particle magnetization, the relaxation rates R2* and R2 are dependent on the 

particle diameter (d). The relationship is made up of three regimes (Figure 6) 

separated by ranges of d: 

 Motional averaging regime (MAR): d < dSDR 

 Static dephasing regime (SDR): d > dSDR 

 Echo-limited regime (ELR): d > dEL 

 

 

Figure 6: Relaxation rate dependence on particle diameter, d.  

Relaxation takes place in distinct regimes due to two components that contribute to 

proton relaxation: a coherent component that is related to protons experiencing 

slightly different local fields and an incoherent component that results from protons 

interchanging positions due to diffusion (Ziener, 2005). The correlation time τD 

relates to the time a proton stays with a particular local field and is dependent on the 

particle diameter, d. When d or τD is large, the incoherent component (diffusion) 

becomes negligible and the coherent component (spatial) dominates. This is because 
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the source of inhomogenous field is so large that even as protons diffuse over time τ, 

the change in local field is negligible such that the proton appear static, hence the 

theory of static dephasing regime. Therefore with large particles and without π 

refocusing pulses, relaxation is in the SDR, while with refocusing pulses, it is in the 

ELR.  

1.4.4.1 Motional Averaging Regime 

This regime of relaxation occurs under the conditions of  

 d < dSDR  

 long interval between refocusing echo pulse, ie DCP    

 r(1/ )D   

In this regime, the relaxation effect due to diffusive motion of spins is much greater 

than that due to spatial variations of field created by the magnetic particles. The 

diffusive motion of spins thus averages out effects of the individual particle and the 

system is in a motionally averaged situation. The relaxation rate is given by the outer 

sphere relaxation theory (Roch, 2005).  

 
* 2

2 2 r1/  1 / (16/45) ( )DT T vτ      

where v is the fraction volume, d is the particle diameter, and D  the diffusion time is 

given by  

 2 / 4D d D     
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and is defined as the time taken for a water molecule to diffuse a distance of 2/d . 

r is the rms angular frequency shift at the particle equator, 

 r eqB     

where Beq is the equatorial field of the particle and  is the proton gyromagnetic ratio. 

The outer sphere relaxation describes the variation of relaxation rate with particles 

size, for a constant v and r . The proton diffusion rate with respect to the particles 

(1/τD) is large compared to r , hence it determines the relaxation rates. Therefore, 

as τD increases, the effect of spatial variation of field created by particle increases.  In 

other words, the outer sphere relaxation shows that the same amount of magnetized 

material is much more effective in causing proton relaxation when distributed as 

fewer large particles than as a greater number of smaller ones (Gillis, 1987).  

1.4.4.2 Static Dephasing Regime 

This regime of relaxation is valid under the conditions of (Gillis, 2002) 

 d > dSDR 

 long interval of refocusing echo pulse, ie 35.1r  CP  

 r(1/ )D   

In the MAR, the relaxation rates increase as particles become larger. As particle 

diameter increases further, the signal decay due to the local differences in precessing 

frequencies occurs faster than the proton diffusion phenomena manage to average out 

the phases of different nuclei. This is the so-called static dephasing regime (the word 

“static” refers not to proton spin rotation but to proton translational motion) 
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(Yablonskiy, 1994). In this regime, the T2
* relaxation rate is (Brooks, 2001; Brown, 

1961) 

  *
2 r1 / 2 3 / 9T v     

The relaxation rate is at the maximum and is independent of diameter when d > dSDR  

 15 / (4 )SDR rd      

Moreover, when the relaxation is not interrupted by refocusing pulses in the diameter 

range of dSDR < d < dEL, then 2
*

2 /1/1 TT   

1.4.4.3 Continuous Theories 

The MAR and SDR are discontinuous theories which operate at the limits of 

r(1/ )D  and r(1/ )D  , respectively. A few approaches have been used to 

describe the theoretical relaxation rate with respect to variation in d or τD, 

continuously across the two regimes. One is the Gaussian approximation that assumes 

spins within a voxel have normally distributed precessional frequencies (Kennan, 

1994).  The other approach approximates the spin diffusion with stochastic transitions 

dynamics (Ziener, 2005).  

The third approach is with the use of empirical models where the relaxation rate was 

found to be (Yung, 2003) 
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Unfortunately, there is no empirical model for the continuous relaxation regime using 

a CPMG sequence.  

1.4.4.4 Echo-Limited Regime 

The ELR describes the relaxation rates when dephasing spins are refocused by 

multiple refocusing pulses placed at a fixed interval τCP apart, such as with CPMG 

sequences. There are two types of ELR, one with strongly magnetised spheres where 

35.1r  CP  (Gillis, 2002). The other is with weakly magnetised spheres where 

1r  CP . With weakly magnetized particles, it is possible that ELR SDRd d , such 

that SDR cannot be reached (Brooks, 2001). The relaxation rates with strongly 

magnetised spheres will be discussed first. 

With strongly magnetised spheres, SDR is reached as diameter increases and R2 and 

R2* relaxation rates become independent of diameter. Gillis et al proposed that 

protons sufficiently close to the particles experience gradient so strong that their 

magnetization decay too rapidly to be observed on MRI (Gillis, 2002). They showed 

that as the diameter increases further, T2 relaxation rate becomes (Gillis, 2002) 

 
52

2 )/25.2( 1/ yxτvT D   

where cprx    and   3/1/)( xvxy    

Gillis obtained 35.1  and 1   which were close to numerical simulation results 

of 1.34   and 0.99  . The simulation was carried out with the parameters: 
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 small v (<10 ppm) 

 D ≥ 0.01 ms 

 Beq = 1 T 

 cp = 0.1 to 20 ms 

The particle diameter where ELR intersects SDR is (Gillis, 2002) 

 52.58 /ELR rd x Dy    

With weakly magnetised spheres where 1r  CP , SDR will not be reached as dEL < 

dSDR. Instead, the ELR intersects with the MAR and the T2 relaxation is described by 

52
2 )/25.2( 1/ yxτvT D  with 1y  (Brooks, 2001).  

Interestingly, when cells are loaded with iron oxide particles, they seem to have 

relaxation properties similar to those large magnetic spheres. Ferumoxtran or 

ferucarbotran were compartmentalised in cells, they produce less signal on T2-weight 

images but similar signal T2*-weighted images (Simon, 2006; Henning, 2009). These 

results suggest that the labelled cells, like large magnetic spheres, produce relaxation 

in the ELR regime. 
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1.5 Iron Oxide Particles 

The majority of particles used for cellular MRI are from commercial sources. The two 

most commonly used particles, approved for clinical liver imaging are ferumoxide 

(trade name in Europe: Endorem, trade name in US and Japan: Feridex, AMAG 

Pharmaceuticals, Lexington, MA, USA) (Reimer, 1998) and ferucarbotran (trade 

name in Europe and Japan: Resovist®, Bayer Schering Pharma, Berlin, Germany) 

(Reimer, 2003). The usage of ferucarbotran in future is in doubt, as Bayer-Schering 

recently withdrew it from global marketing, citing insufficient clinical utilisation as 

the primary reason. At the moment, only ferumoxide can be purchased from 

commercial sources. In this section, we will look at the synthesis methods and 

properties of SPIO and other iron oxide particles. 

1.5.1 Iron Oxide Particle Synthesis 

The synthesis methods for iron oxide particles are fairly simple without the need for 

complex purification procedures like ultracentrifugation or size exclusion 

chromatography. There are two main synthesis methods: alkaline coprecipitation of 

iron salts and thermal decomposition of iron organic precursors.  

The co-precipitation method was first described by Massart more than 2 decades ago 

(Massart, 1981). Iron oxide in the form of magnetite is formed by aging 

stoichiometric mixture of ferrous and ferric salts in an inert atmosphere at pH between 

9 and 14 by the following reaction 

 3

2 3 -
4 22 8 4Fe Fe OH Fe O H O      
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Magnetite particles appear as a lustrous black powder. While magnetite has the 

highest magnetization among iron oxides, it is sensitive to oxidation by atmospheric 

oxygen to become maghemite by the following reaction (Laurent, 2008). 

 2
3 4 2 3 22Fe O H Fe O Fe H O       

Ferucarbotran is an example where maghemite instead of magnetite was used. This 

co-precipitation method allows some form of control over particle diameter by 

adjustment of the pH, ionic strength, temperature or ratio of Fe2+ to Fe3+ salts to 

achieve a size range from 4 to 15 nm. Co-precipitating reverse micelles that contain 

iron salts can provide better size control but this method requires prior preparation of 

stable micelles (Lee, 2005).  

The thermal decomposition route offers even greater control on particle diameter and 

produces more uniformly sized particles. Diameters of 5 to 22nm were produced by 

heating a complex of iron chloride and oleic acid (Park, 2004). By changing the iron 

precursor, for example to Fe(CO)5, diameter control in steps of 1 or 2 nm was 

achieved (Park, 2005).  

1.5.2 Encapsulation of Iron Oxide Particles 

The naïve iron oxide particle surface is uncharged and neither hydrophilic nor 

hydrophobic. An additional coating is necessary to provide repulsive forces to keep 

particles from aggregating in a dispersing medium. In the classical ferrofluid, this is 

achieved by a coat of oleic acid such that the particles are suspendable in organic 

solvents like hexane. A requirement of particles for biomedical application is the 

ability to suspend in aqueous media, hence the need for a hydrophilic particle surface. 

An early method of achieving hydrophilic coating is through the in situ incorporation 
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of polysaccharide during the co-precipitation process followed by size selection 

membrane filtration (Groman, 1989). The size and structure of the resulting 

composite particle is dependent on the type and molecular weight of the 

polysaccharide, due to the polar interactions of the polymer with iron oxide surfaces 

during co-precipitation (Pardoe, 2001). While ferumoxide is coated with dextran, 

carboxydextran is absorbed on the surface of ferucarbotran.  Based on the narrow size 

distribution of ferucarbotran in comparison to ferumoxide, it is likely to have 

undergone filteration to select for particles of about 60nm in diameter. Ferucarbotran 

is synthesized by Meito Sanygo Co. Ltd. (Japan) (Reimer, 2003), and the details of 

the method are pending patent approval and inaccessible (Briel, 2007). 

Other stabilizing molecules have been used to produce particles <30nm, including 4.5 

generation dendrimers (Bulte, 2001), dimercaptosuccinic acid (Wilhelm, 2003) or 

citric acid (Stroh, 2005). Larger particles of 120nm were produced by coating with 

poly(ethylene glycol) or its derivatives (Kim, 2003). Particles up to micrometers in 

diameter (from Bangs Laboratories, Fishers, IN, USA) were prepared by an 

alternative route in which pre-formed divinyl benzene microspheres are expanded in 

an organic solvent, infused with iron oxide particles and the solvent replaced by an 

aqueous medium (Hinds, 2003). The strategy of using pre-formed polymer particles 

has allowed high iron oxide weight content (IOwt%) of over 60%, as seen with the 

0.9µm Bangs particles (Hinds, 2003). Such weight content is considerably high given 

that large particles usually has lower IOwt% than small particles and ferucarbotran 

has a IOwt% of 58.4% (Reimer, 2003). The IOwt% of ferumoxide cannot be found in 

the literature.  
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1.5.3 Particle Size Measurement by Light Scattering 

The main application of quasi-elastic light scattering is measurement of water-

suspended particles sizes. A proper explanation of the phenomenon of light scattering 

was first given by Lord Rayleigh in late 19th century. In the early days, chaotic light 

sources, such as the mercury arc lamp were used, restricting measurement to time-

averaged or static properties, hence the name ‘static light scattering’ (SLS). An 

example of an SLS application is the determination of particle size by forward light 

scattering. With the advent of coherent light sources, it became possible to measure 

the temporal characteristics of scattered light, hence the term dynamic light scattering 

(DLS). Modern instruments record the scattered light with digital autocorrelators, 

instead of spectrum analyzers, thus giving DLS the alternative acronym of photon 

correlation spectroscopy (PCS).  

DLS starts with the interaction of light with matter. Light, being an oscillating 

electromagnetic field, can bring the charged surface atoms on the particle surface into 

oscillatory motion. The acceleration of charges results in the release of 

electromagnetic field in all directions (Rayleigh scattering), which is the scattered 

light in this case. In a perfectly homogeneous material, the light scattered by 

individual atoms or molecules interferes destructively so that no scattered light is 

observed. With a suspension of particles, the observed scattered light is due to the 

difference in refractive index between the particles and the dispersing medium.  

The light source is typically a collimated, monochromatic laser beam known as the 

incident beam, with a wave vector 


ik where magnitude cmmk i //2 0101  


 , 

where 
1m is the refractive index of the liquid, and 

0 and 
0  are the wavelength and 
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circular frequency of light in vacuum, respectively. When the incident beam hits an 

immobile particle, a scattered beam, with wave vector


sk is produced as shown in 

Figure 7, with 


 si kk  

Figure 7: Illustration of scattering of the incident beam and detection of the scattered 
beam 

With scatter wave vector defined as


 si kkq , the magnitude, 

 2/sin
4

0

1 

m

qq 


 

In reality, all the particles are in Brownian motion, each with a different velocity. The 

scattered beam frequency of an immobile particle is unchanged but that of a mobile 

particle is 
0   , where  is the frequency shift due to one particle. As each 

particle has a different velocity and the average frequency shift is related to the half 

height half width 
2/1 of a Lorentzian distribution, given by 

 2
1/ 2 D q   

where D is the translational diffusion coefficient of the particle. 
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With digital autocorrelators, this measurement can be made in the time domain with 

the intensity autocorrelation function 2 ( ) ( ). ( )g I t I t   , which is the averaged 

product of two intensity, I acquired time delay  apart. With short delays, correlation 

is high and 2 ( )g  is large. As the delay increases, particles diffuse and 

2 ( )g  diminishes. Data are typically collected over a delay range of 100ns to several 

seconds. The resulting intensity autocorrelation function when plotted against   is 

described by  

 2
2 1( ) ( )g A Bg    [1] 

and the field autocorrelation function, 1 ( )g   is a monoexponential decay for non-

interacting spherical particles,  

 )exp()(1  g  

with decay rate 2Dq .  

The measured autocorrelation functions can be solved by numerically fitting them to 

functions of known decay rates. And the particle diameter is related to D by the 

Stokes-Einstein expression 

 
3H

kT
d

D
  

where k is Boltzmann’s constant, T is absolute temperature,  is viscosity of the 

medium and Hd  is hydrated particle diameter. 
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Practically, the particles under measurement do not have a common discrete size, but 

rather a distribution of diameters id  that are related to different decay rates i , such 

that the sum of exponential for )(1 g  is 

 



n

i
iicg

0
1 )exp()(   

where ic is the normalized intensity weight for particles with decay rate i . And in 

the continuous form, )(1 g  is  

 1 0
( ) ( ) exp( )ig C d 


     

where )(C is the normalized intensity-weighted distribution of decay rates. )(C  is 

obtained from the inverse Laplace Transformation of )(1 g  and often plotted against 

hydrated diameter, dH to show the size distribution.  
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1.6 Cellular MRI 

There has been much interest in cellular tracking by MRI, as its balance of spatial 

resolution and sensitivity, as well as its lack of ionising radiation, makes it an 

attractive and practical modality for cellular detection. MRI has been used to track the 

movement and incorporation of administered cells in tissue engineering, myocardial 

cellular transplantation, and cellular homing and migration studies.  

1.6.1 MRI in Tissue Engineering 

Tissue engineering has progressed from just the use of artificial scaffold to the 

incorporation of cells or tissue onto biocompatible materials prior to their 

implantation to improve tissue regeneration. With the integration of imaging 

techniques, the participation of cells in tissue repair can be monitored. The approach 

by various research groups is similar: to first label cells with a clinical iron oxide 

contrast agent, seed the labelled cells on an engineered implant (the sequence of the 

first two steps can be reversed) and introduce the cell-loaded implant into a disease 

animal. MRI of ferumoxide-labelled human adult MSC on collagen scaffold has been 

demonstrated in vitro (Terrovitis, 2006), as have labelled MSC within gelatine sponge 

in vivo (Ko, 2007).  By labelling aortic smooth muscle cells with ultrasmall 

superparamagnetic iron oxide particles (USPIO) prior to seeding them on a polymeric 

vascular graft, researchers were able to evaluate the graft performance in vivo 

(Nelson, 2008). The cells were visualised to have successfully remained in the 

scaffold vicinity for up to several weeks. The success of MR monitoring may be 

limited by the MR properties of implants used. Ferrous metallic implants and 
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voluminous, water-impenetrable implants may cause susceptibility artefacts and may 

not provide sufficient contrast to identify the hypointense cells (Nelson, 2008).  

1.6.2 MRI in Cellular Transplantation 

In therapeutic attempts without engineered scaffolds but where static cells are 

monitored, labelled stem cells were directly injected into myocardial infarcts. 

Ferumoxide-labelled (Kraitchman, 2003) and micron-size iron oxide particles 

(MPIO)-labelled (Stuckey, 2006; Hill, 2003) allogeneic MSC have been injected 

intramyocardially into infracted hearts and their location studied up to 16 weeks in 

various animal models. In a different study, intravenously injected iron oxide-labelled, 

allogeneic MSC homed to the myocardial infarct in a canine model and persisted for 

at least one week (Kraitchman, 2005). However, the successful identification of 

hypointense cells may be complicated by haemorrhage from microvascular 

obstruction during infarct reperfusion (van den Bos, 2006). Haemorrhage causes 

susceptibility-induced signal voids that are similar to iron oxide induced ones. 

1.6.3 MRI in Homing and Migration Studies 

The homing of intravenously injected MSC has been demonstrated in other disease 

models as well. The arrival of ferumoxide-labelled MSC at injured arteries (Gao, 

2007) and atherosclerotic plaques (Qiu, 2007) was monitored by MRI. When 

intravenously injected into animals with cerebral infarcts, ferumoxide-labelled MSC 

homed to the lesion periphery as soon as six days post injection (Jendelova, 2003). 

The use of MRI tracking to optimise cellular delivery was also demonstrated. 

Ferumoxide-labelling provided evidence of better MSC engraftment when cells were 
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given through the inner carotid artery rather than intravenously in a rodent stroke 

model (Walczak, 2008).   

A number of cell types have been shown to be able to migrate towards the infarct 

periphery when transplanted intracerebrally. Ferumoxide-labelled MSC (Jendelova, 

2003), ferumoxide-labelled neural stem cells (NSC) (Zhu, 2006) or USPIO-labelled 

ESC (Hoehn, 2002) were transplanted and shown to migrate from the contralateral 

hemisphere and across the corpus callosum to the infarct periphery. The same 

phenomenon was demonstrated using NSC labelled with a gadolium-dextran T2 agent 

(Modo, 2002). When transplanted to the ipsilateral side of the stroke, ferumoxide-

labelled NSC were reported to migrate along the infarct periphery (Guzman, 2007). In 

a Huntington’s disease model where lesions were induced by quinolinic acid, 

ferumoxide-labelled MSC showed a distinct migration route toward the lesions 

(Sadan, 2008).  

1.6.4 Clinical Trial of Cellular MRI 

To date, there have only been two reports of MRI cellular tracking in clinical trial. 

Autologous dendritic cells (DC) were labelled with ferumoxide or 111In-oxine prior to 

their injection into the lymph nodes of 11 stage-III melanoma patients (de Vries, 

2005). Post-injection verification by MRI was found to be superior to just ultrasound-

guided injection alone. Among 3 out of 8 patients, MRI showed unsuccessful 

intranodal delivery and the observation corresponded to the lack of DC migration to 

the draining lymph nodes. Detection of migrated DC to draining lymph nodes was 

more reliable by MRI compared to scintigraphy, as verified by histology of resected 

nodes. An inherent advantage of MRI is the anatomical localisation of DC at injection 
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sites or after migration. Scintigraphy is the superior quantification modality and 111In-

oxine labelling may remain a useful co-label with MRI contrast agent until MRI 

quantification matures. The other clinical trial involved patients with traumatic, open 

head injuries where loose neural tissue is cultured in a media known to proliferate 

NSC (Zhu, 2006). Following NSC labelling with ferumoxide, the cells were injected 

intracerebrally at four sites around the lesion. Weekly MRI assessment showed that 

the lesion periphery began to darken progressively while injection site hypointensity 

faded from 1 to 3 weeks post-transplantation. This was not observed in the control 

patient that received unlabelled NSC. As the patient survived the trauma and 

transplantation, histology has not been possible.  

The two clinical trials showed that MRI labels are safe and that clinical detection of 

the labelled cells is possible. To achieve the goal of clinical cellular MRI, more off-

label use of approved contrast agents, such as ferumoxide or ferucarbotran in cellular 

therapy clinical trials is needed. Currently, the FDA requires preclinical studies to be 

performed in experimental diseases models using labelled and unlabelled cells along 

with sham controls to assess the toxicity and any alteration in morbidity and mortality 

(Arbab, 2008). Serum chemistry analysis, histology correlation and experimentation 

in a clinical grade manufacturing practice (CGMP) facility are probable requirements 

in the future.  

1.6.5 Cellular Imaging with Iron Oxide Particles 

The development of iron oxide particles as MRI contrast agents took place more than 

two decades ago. During that time, Gd-DTPA was a commonly used contrast agent 

(Saini, 1987), but it did not improve the detection of liver carcinoma in clinical 
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studies (Carr, 1984). In fact, liver metastases were often obscured due to the 

extracellular distribution of Gd-DTPA into both neoplastic tissue and normal liver 

(Saini, 1986). This limitation was largely due to the poor temporal resolution of 

clinically available spin echo imaging sequences at that time, but this limitation has 

been overcome by recent development and implementation of fast breath-held spoiled 

gradient echo sequences. Till today, gadolinium-based dynamic contrast enhancement 

remains the key method for the detection and characterisation of liver masses in most 

centres. Because of the limitations of Gd-enhanced T1-weighted MRI in the late 

1980’s and early 1990’s, superparamagnetic iron oxide particle (SPIO) attracted 

attention as an alternative for this application because of their large magnetic moment 

in a magnetic field, absence of remnant magnetization when the field is removed 

(superparamagnetism) and their unique biodistribution (Mendonca, 1986; Saini, 1987).  

When injected intravenously, these particles home to the reticuloendothelial system 

(Saini, 1987) and are taken up by macrophages in the liver, known as Kupffer cells. 

Presence of SPIO causes darkening of normal hepatic tissue on T2-weighted MR 

images, while liver carcinomas and metastases remain bright. This application of 

SPIO led to the 1996 FDA approval of ferumoxide (US trade name: Feridex®, Europe 

trade name: Endorem®,  research name: AMI-25, generic name: ferumoxide), which 

is administered by dilution in 5% dextrose and slow infusion. Ferumoxide is a 

composite particle that consists of multiple 5nm iron oxide nanoparticle cores coated 

with dextran and its hydrated diameter is 120-180 nm (Raynal, 2004). In 2001, 

European market approval was granted to a smaller SPIO, ferucarbotran (trade name: 

Resovist®, research name: SHU 555A, generic name: ferucarbotran), which can be 

given intraveneously, undiluted by bolus injection. Ferucarbotran has nanoparticle 
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cores of 4nm coated with carboxydextran and its hydrated diameter is 62nm (Reimer, 

1995; Reimer, 2003).  

Smaller than SPIO is a class of partcles known as ultrasmall SPIO (USPIO), with 

diameters less than 30nm (Weissleder, 1990). USPIO provides a mixture of 

paramagnetic blood pool positive enhancement and intracellular superparamagnetic 

reticuloendothelial cell negative enhancement, and has been injected intravenously to 

differentiate between darkened normal lymph nodes and metastatic ones that remain 

bright (Weissleder, 1990). An USPIO undering clinical trials is ferumoxtran (trade 

name: Sinerem/Combidex®, research name: AMI-227, generic name: ferumoxtran) 

which has a 5nm iron oxide core and 17-20 or 21-30nm hydrated diameter as a result 

of its dextran coat (Sharma, 1999; Jung, 1995). A preclinical particle of similar size as 

USPIO is the monocrystalline iron oxide nanocompound (MION) developed by 

Massachusetts General Hospital (Shen, 1993). Each particle has a single 4-5nm core 

coated with dextran, resulting in a hydrated diameter of 20nm. Two other ultrasmall 

preclinical particles that are coated with monomers are the citrate-coated very small 

superparamagnetic iron oxide particles (VSOP, 5nm core, 8nm hydrated diameter) 

(Taupitz, 2000) and the dimercaptosuccinic acid-coated anionic magnetic nanoparticle 

(AMNP, 8nm core, 30nm hydrated diameter) (Wilhelm, 2008).  

The imaging of inflammation processes has made use of the ability of macrophages to 

take up iron oxide particles in vivo. The imaging of macrophages involved in 

atherosclerotic plaques was demonstrated by an intravenous injection of SPIO 

(Ruehm, 2001; von Zur Muhlen, 2007). Moreover, it was found that USPIO uptake 

was in predominantly ruptured and rupture-prone atrheosclerotic lesions, 

differentiating such lesions from intact ones (Kooi, 2003).  



Introduction 

80 

Iron oxide particles can also be used for the imaging of neuroinflammation following 

ischemic stroke. The first use of SPIO in a stroke study was in 1989, where rats were 

injected with ferumoxide 1 to 24 hours after a stroke by middle cerebral artery 

occlusion (Bradley, 1989). Ischemic volume was estimated as normal brain tissue was 

darkened while ischemic tissue remained bright from lack of perfusion. Macrophages 

infiltrating an ischemic stroke can be differentiated from resident macrophages. By 

intravenously (IV) injecting rodents with SPIO 24 hours prior to imaging, MR images 

showed darkened stroke periphery at day 6 or darkened stroke core at day 8 post-

stroke. The specific darkening was due to iron-laden macrophages infiltrating the 

stroke site (Kleinschnitz, 2003). Interestingly, when SPIO/USPIO were IV delivered 

two to five hours post-stroke, the stroke periphery was darkened as well but was due 

to the focal accumulation of SPIO/USPIO in the occluded vessels (Kleinschnitz, 

2005; Wiart, 2007). Therefore, the IV administration of SPIO/USPIO can provide the 

monitoring of: i) ischemic development and ii) macrophage infiltration into the stroke 

site (Bendszus, 2007), and clinical phase II trials have been explored for imaging 

neuroinflammation (Saleh, 2004).  

Another application of iron oxide particles was the ex vivo labelling of target cells to 

enable MR tracking of the labelled cells post-transplantation, which was first reported 

by Ghosh et al (Ghosh, 1990). The particles were introduced into the culture medium 

of cells and incubated for hours to encourage particle uptake by endocytosis into 

intracellular compartments. The labelled cells appeared as hypointense regions on MR 

images, similar to Kupffer cells that have taken up intravenously injected SPIO. In the 

early 1990s, neural tissues (Norman, 1992) and T cells (Yeh, 1993) were labelled with 

iron oxide particles and transplanted into healthy animals to demonstrate that the 

labelled cells can be visualized in vivo.  
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Since the early successes, the method has been applied to label more cell types, 

including monocytes, glioma cells, macrophages and oligodendrocytes progenitors 

(Bulte, 2004). Despite the apparent ability to label virtually any cell type, the 

detection of target cells has been restricted by the amount of particles taken up. The 

quantity of iron oxide attached to a cell is an absolute determinant of cell detectability. 

With a greater amount of iron oxide loading per cell, there is less emphasis on 

hardware requirements and imaging duration to achieve the required SNR and 

resolution for cellular detection (Heyn, 2005).  

The quantity of particles taken up by cells appears to increase with concentrations of 

particle in the culture medium, although high concentrations have been associated 

with free radical generation, decrease in cell proliferation and apoptosis (van den Bos, 

2003). Cell labelling can be achieved by binding iron oxide particles onto the cellular 

surface or incorporating them into the intracellular space. The latter is favoured as 

particles at the cell surface can hinder cell-cell interaction by the blockage of cell 

surface receptors. Even when the particles are internalised, it is important that the 

particles do not alter the properties or functions of the cell, particularly with high 

amounts of iron loading. Hence, labelled cells are often compared with intact cells in 

terms of viability and proliferation, and in addition, the differentiation capacity for 

stem cells. A potential problem with using exogenous label is the reliability of the 

iron oxide particle in reporting the true location or fate of the transplanted cell. For 

example, internalised particles may be exocytosed in vivo or transplanted cells may 

die due to label toxicity, and cell debris and particle may be engulfed by host 

macrophages giving rise to false positives (Coyne, 2006). Hence, it is important to 

develop methods of increasing cellular uptake while retaining cellular functions. 
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1.6.6 Mechanisms of Cellular Uptake  

The amount of iron oxide particles internalised by cells is often expressed as 

picograms of iron per cell. The amount of iron per cell determines the MR 

detectability of the cells. High iron loading can relax the hardware requirements to 

detect few cell numbers. When labelling phagocytic cells like macrophages, high 

amounts of iron loading (61 pg/cell) can be achieved with clinically available SPIO 

(Heyn, 2006). However, the labelling of non-phagocytic cells such as MSC with SPIO 

has been less efficient, with approximately only 9 pg/cell (Mailander, 2008), and may 

require improvement of the labelling method to achieve higher iron loading. An 

understanding of the uptake mechanism is therefore important. 

The various mechanisms of cellular uptake of particle have been reviewed in detail by 

Unfried et al (Unfried, 2007). With reference to Figure 8, the possible pathways of 

cellular uptake of nanoparticles are phagocytosis (1), macropinocytosis (2), clathrin-

mediated endocytosis (3), non-clathrin-, non-caveolae-mediated endocytosis (4), 

caveolae-mediated endocytosis (5) or diffusion (6). During phagocytosis, particles 

become engulfed via specific membrane receptors (e.g., scavenger receptors), leading 

to the formation of an early phagosome (1A) Subsequent particle processing includes 

phagosome maturation which is described to be dependent on the involved receptor 

and may include the formation of a late phagosome (1B) and a lysosome (1C). 

Processes 2-5 are collectively known as receptor mediated endocytosis (RME). 

During particle ingestion via macropinocytosis, a macropinosome (2A) is formed 

which also passes various maturation steps resulting into the formation of a lysosome 

(1C). Clathrin-mdiated endocytosis occurs at specific membrane regions, referred to 

as clathrin coated pits (3A). Following formation of a clathrin-coated vesicle (3B) and 
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its uncoating (3C) with clathrin monomer recycling, particles are subsequently 

processed by early endosomes (3D), multivesicular bodies (3E) and late endosomes 

(3F). Endocytotic processes without involvement of clathrin or caveolin are referred 

to as non-clathrin, non-caveolae-mediated endocytosis (4). Better known is the 

particle uptake via so called lipid rafts (5A), which leads to the formation of 

caveosomes (5B) with possible particle transfer into the cytosol or the endoplasmic 

reticulum (5C). Finally, particles may translocate into cells via diffusion (6), which in 

contrast to all aforementioned pathways, is a non-active process.  

 

Figure 8: Possible pathways of cellular uptake of nanoparticles. Uptake of particles can 
occur through phagocytosis (1), macropinocytosis (2), clathrin-mediated endocytosis (3), 
non-clathrin-, non-caveolae-mediated endocytosis (4), caveolae-mediated endocytosis (5) 
or diffusion (6). (Unfried, 2007) 

With respect to particle size, the mechanism of cellular internalisation can be 

classified into 3 broad categories: phagocytosis, endocytosis and diffusion, in the 

order of decreasing particle sizes. The exact size range of each mechanism is 

presently unknown, as each cell type has unique characteristics and there has been no 
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study on the uptake mechanism with a single type of particle across a wide range of 

sizes (please see Section 1.6.7).  

1.6.6.1 Phagocytosis 

Phagocytosis is a mechanism unique to a submet of bone marrow-derived cells, 

including neutrophils, monoctes, macrophages and dendrite cells. It is involved in the 

uptake of large particles in an actin-dependent process. In a study of phagocytosis of 

large particles, polystyrene particles of 30 nm to 1.1 µm in diameter were taken up by 

macrophages (Pratten, 1986). The inhibition with cytochalasin B or colchicine 

affected small particles more severely than the 1.1 m particles. The result suggested 

that the 1.1 m particles were taken up mainly by phagocytosis and that there was no 

radical switch from pinocytosis to phagocytosis, but rather, the contribution of 

phagocytosis increases with particle diameter.  

There have been conflicting reports on the uptake of micron-sized particles by non-

phagocytic cell types. Murine melanoma cells internalised 50 – 500 nm polystyrene 

particles by RME and did not take up 1um ones (Rejman, 2004) and human T cells 

internalised 33 – 107 nm dextran particles and 207 - 289 nm polystyrene particles but 

showed limited uptake for 1.4m silica particles (Thorek, 2008). On the contrary, 

breast cancer cells were shown to uptake 0.9μm polystyrene particles readily (Heyn, 

2006), suggesting that beside particle size, the quantity of uptake depends on cell type 

and other particle properties.  
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1.6.6.2 Endocytosis 

Current literature suggests that individual particles or aggregates of diameter 22nm or 

larger can be internalised by endocytosis (Stearns, 2001; Geiser, 2005). When 22nm 

titanium oxide particles were incubated with epithelial cells (Stearns, 2001) or 

macrophages (Geiser, 2005), they appear as clusters within intracellular vesicles. One 

of the ultrasmall iron oxide particles, AMNP with a diameter of about 30nm was 

localised to vesicles in macrophages as well (Wilhelm, 2003). It was suggested that 

particles tend to aggregate in culture medium (Geiser, 2005) or on the cellular surface 

(Wilhelm, 2003) before they were internalised by endocytic pathways.  

The endocytotic pathway is characterised by its energy dependence on ATP and is 

inhibited at low temperature (4C). To differentiate the activation of this pathway or 

the diffusion pathway, cellular uptake can be compared at 37C and 4C. For example, 

AMNP uptake by Hela cells was inhibited at 4C and TEM showed particle clustering 

on cell surfaces without internalisation (Wilhelm, 2008).  

 

Figure 9: Pinocytosis. This process, as known as ‘cell-drinking’ or fluid-phase 
endocytosis, internalizes particles in uncoated intracellular vesicles called pinosomes. 
The pinocytosis of larger particles may be called macropinocytosis and the resulting 
vesicles are known as macropinosomes. 
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Endocytosis can be further classified into the pathways of pinocytosis, clathrin-

mediated and caveolae-mediated endocytosis. Pinocytosis, also known as fluid phase 

endocytosis or ‘cellular drinking’, is a constitutive internalisation pathway and is not 

specific to the substance transported. This pathway was reported for the uptake of 

MION, a 20nm monocrystalline, dextran-coated iron oxide particle, that internalised 

into glioma cells and resided in large pinosomes (Moore, 1997), and also for 3.5 nm 

gold particles that caused micropits on cell membrane and localised in perinuclear 

vesicles (Shukla, 2005). It has been described that macrophages take up ferumoxide 

via the pinocytosis pathway (Raynal, 2004). Scavenger receptors have been shown to 

be involved during the endocytosis, through inhibition studies with polyinosinic acid 

and fucoidan (Raynal, 2004).  

In comparison to pinocytosis, clathrin and caveolae-mediated endocytosis show 

specificity to the material being internalised, and requires specific membrane proteins 

for activation. They also require dynamin for the scission of new vesicles from the 

cellular membrane. A key difference between the two pathways is that the clathrin-

mediated process transports extracellular particles into endosomes, and the caveolae-

mediated one envelopes particles with caveosomes and brings them to the Golgi 

complex or endoplasmic reticulum, as illustrated in Figure 10. 

 

a b c d
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Figure 10. TEM of Formation of Clathrin Pits. The microgaphes shows the sequence of 
extracellular debris internalization via clathrin-mediated endocytosis. The event is 
initiated by (a) induction of membrance curvature, followed by (b) formation of coated 
pits and membrane invagination, (c) constriction and fission and finally the 
containment of debris in clathrin-coated vesicle. Following these events, the vesicle 
fuses with early endosome that can mature into late endosome and lysozome (Perry, 
1979).  

 

Figure 11. TEM of Caveolae invaginations. Caveolae are flasked-shaped plasma 
invaginations. After internalization, caveolae-drived vesicles travel to caveosomes, 
which are distinct from endosomes in content and pH. Thereafter, caveosome content is 
sorted to the Golgi complex or the endoplasmic reticulum (Rothberg, 1992).  

Macrophages have unique receptors called scavenger receptors that are involved in 

the process of clathrin-coated pit formation. Through inhibition studies on murine 

melanoma cells, it was shown that polystyrene particles of 50 to 200 nm in diameter 

were internalised by clathrin-mediated endocytosis, compared to 500 nm particles that 

underwent a caveolae-mediated uptake (Rejman, 2004). The uptake of particles 

between 50-200 nm, but not the 500 nm particles, were inhibited by potassium 

depletion or presence of chlorpromazine or EPS15 construct that perturbs transferrin 

endocytosis. In contrast, only 500 nm particles were inhibited by filipin and genistein 

and the particles colocalise to LacCer, a caveolae marker.  

Further evidence that 500 nm particles do not enter via macropinocytosis came from 

inhibition studies demonstrating that the pathway was uninhibited by 5-(N,N-
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dimethyl)amiloride hydrochloride, unaffected by cytochalasin D and did not ruffle 

cellular membranes. 

1.6.6.3 Diffusion 

The smallest particles enter cells by diffusion , which is an energy-independent 

processes. To test for internalisation via diffusion, cellular uptake at 37C and 4C 

can be compared (Wilhelm, 2003; Pratten, 1986; Rejman, 2004). The diffusion 

pathway is not inhibited by low temperature, unlike other pathways. Further evidence 

for the existence of a diffusion pathway lies with the non-specific and non-vesicle 

location of particles in cells. In comparison, larger particles reside in intracellular 

vesicles after their internalisation, suggesting a different mechanism for their uptake 

(please refer to Section 1.6.6.1 and 1.6.6.2). 

It was reported that well-dispersed titanium oxide particles of 22nm diameter were 

found in fibroblast, epithelial and endothelial cells in rats after inhalation of the 

particles in aerosol form (Geiser, 2005). Particles were located mainly in the cytosol, 

unbound by intracellular vesicles and to a lesser extent, within the cell nucleus. On the 

contrary, gold particles 5-8 nm in diameter were found in intracellular vesicles in 

epithelial cells as individual particles or with slight aggregation when inhaled by rats 

(Takenaka, 2006). It was suggested that cellular response to different particle surfaces 

resulted in the different internalisation pathway and particle location. The diffusion 

mechanism could not be easily demonstrated with in vitro cell cultures due to the 

aggregation of small, uncoated particles in culture medium (Geiser, 2005).  
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1.6.7 Controlling Cellular Uptake of Particles  

In the attempt to improve the efficiency of iron oxide particle uptake by the cells, 

factors relating to the interaction between particles and cellular surface need to be 

considered. The uptake efficiency depends on the physicochemical properties of the 

particles (chemical composition, size/geometry, surface charge, coating/ligands, 

aggregation status), the cell type (professional phagocytes versus other cell types), as 

well as the labelling medium. Most cell labelling studies have not addressed the 

kinetics and pathways of uptake. We shall now look at those that have.  

1.6.7.1 Particle Surface Composition and Charge 

The iron oxide particles in biomedical applications are often coated with dextran or 

other formulation. The coating material, at times carrying electrostatic charges, can 

mediate both interparticle and particle-cellular interactions. Bare iron oxide particles 

cannot be well-suspended in water. While in a dispersing medium, particles are in 

Brownian motion due to random collision from water molecules, and they experience 

interparticle attractive and repulsive forces. When attractive forces (Van der Waal’s 

forces or magnetic dipole-dipole interactions resulting from residual magnetic 

moment) dominate, particles aggregate, become too large to remain suspended by 

Brownian motion and sink. Polymer coating around the iron oxide particles provides 

repulsive forces between particles in the form of electrostatic repulsion or steric 

hindrance to enable stable suspension in water. Clinically available SPIO such as 

ferumoxide or ferucarbotran are well suspended in water due to the steric hinderance 

offered by their dextran or dextran-derivative coating (Hunter, 1995).  
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Various particle coatings have been engineered to enhance or avoid specific particle-

cell interactions (Nath, 2004). Both macromolecules and monomers have been used as 

coating material. An example of macromolecular coating is the ‘PEGylation’ of iron 

oxide to allow for a long circulation time by avoiding opsonisation and uptake by the 

macrophages of the reticuloendothelial system (Lee, 2006). PEG represents 

poly(ethylene glycol). The PEGylated surface is hydrophilic, electrostatically neutral 

and without hydrogen donor or acceptors. Hence the lack of attractive forces between 

PEG and opsonising protein is exploited in this application. 

Particles that are stabilized by monomer coating remain suspended due to the 

electrostatic repulsion between particles. Examples of charged particles that have 

anionic surfaces are the citrate-coated VSOP (8nm) and dimercaptosuccinic acid-

coated AMNP (30nm). The surface charge on particles plays an important role in the 

efficiency of particle uptake by cells. VSOP showed improved uptake by 

macrophages compared to uncharged particles of similar size (Fleige, 2002). In a 

separate study, AMNP (21 – 30 nm) showed greater uptake by macrophages and Hela 

cells than dextran-coated ferumoxtran (of similar size) which carries no charge 

(Wilhelm, 2003; Jung, 1995).  

In addition to surface charges, charge polarity can also affect particle uptake by cells. 

Positively and a negatively-charged particles with diameters similar to SPIO (100nm) 

were compared in terms of uptake by Hela cells (Harush-Frenkel, 2007). The anionic 

polylactide-based particles provide poorer uptake than their aminated, cationic 

cousins. Furthermore, Hela cells were transfected with clathrin hub or K44A, 

dominant negative mutant of dynamin I, to elicit the pathways of particle uptake. It 

was shown that the cationic particles used the clathrin- and caveolae-mediated 
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endocytic pathways, but not the anionic ones. Interestingly, when the 

clathrin/caveolae pathway was inhibited, the Hela cells took up the cationic particle 

through a possible compensatory, macropinocytic pathway. 

1.6.7.2 Surface Ligand 

A method to improve cellular uptake takes advantage of the use of biological ligands 

that encourage receptor-mediated endocytosis. Attachment of HIV tat peptide to 

aminated, dextran-cross-linked iron oxide particles (CLIO-tat, ~45nm) improved 

particle uptake by human CD34+, human CD4+ and mouse splenocytes (4 – 8 pg/cell) 

compared to CLIO alone (<2 pg/cell) when labelled at 0.1 mg Fe/ml (Lewin, 2000). 

However, the particles were located in the cell nucleus instead of the usual endosomal 

location of other particles. This raises the question whether CLIO-tat is more likely 

than other particles to alter cellular function through interfering with nuclear activity. 

Instead of using peptides, it is possible to direct receptor-mediated endocytosis with 

antibodies (Ab) as well. The transferrin receptor is abundant on numerous cell types. 

SPIO tagged with anti-transferrin Ab can improve the iron loading of human 

haemopoietic progenitor cells (9.8 pg/cell) over the use of SPIO alone (2.4 pg/cell) 

(Daldrup-Link, 2003). These particles were internalised in contrast to another report 

where transferrin-coupled SPIO only bound to the surface of human dermal fibroblast 

(Berry, 2004). Other Ab under exploration include the CD11c, which increased SPIO 

uptake in dendritic cells. (Ahrens, 2003).  

An inherent problem with Ab-directed RME is the species-specific attachment to the 

target receptor. This requires each Ab-SPIO to be tailored to the target species and 
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cell type. Moreover, as Ab are raised in animals as such mouse, this method will have 

to contend with regulations on xenogeneic contamination of transplants. 

1.6.7.3 Particle size 

The rate and quantity of particle of cellular uptake are dependent on the particle 

diameter. In an early study of the effect of particle size on uptake in macrophages, it 

was shown that the volume of particles taken up increased with increasing particles 

diameters, with a maximum reached at about 2 m (Tabata, 1988). As particles 

diameters increased from 2 to 4.6 m, the amount of particles taken up actually 

decreased as shown in Figure 12 

 

Figure 12: Uptake of polystyrene (open symbols) and phenylated polyacrolein (closed 
symbols) particles in absence of serum (greater uptake) and 10% serum (lesser uptake), 
showing maximal uptake within a range of sizes (Tabata, 1988) 

This result was supported by observations that the uptake rate and quantity increased 

for increasing polystyrene particle diameter between 30 nm and 1.1 m (Pratten, 
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1986). It was also shown that leukocytes obtained by density centrifugation of human 

blood took up the greatest amount of styrene-based particles of diameter 500 nm to 1 

m, compared to particles of other sizes (Kawaguchi, 1986). A similar result was 

shown with dextran-coated iron oxide particles where macrophages took up more 

60nm SPIO than 20nm USPIO (Zhang, 2001).  

There have been few studies on how particle size affects uptake by non-phagocytic 

cells. From the limited studies available, non-phagocytic cells showed a different 

uptake pattern compared to macrophages. Rejman et al demonstrated that the uptake 

into murine melanoma cells decreased as polystyrene particles diameter is increased 

from 50 to 500 nm, and was absent when 1 m particles were used (Rejman, 2004). In 

a study of labelling human T cells with aminated particle of size between 33nm and 

1.4µm by Thorek et al, 107nm particle provide the best cellular loading (Thorek, 

2008). Cellular uptake decreased with increasing particle diameters from 207nm to 

1.4µm, in agreement with Rejman’s results. Contrary to Rejman’s results, the cellular 

uptake increased for increasing particles diameters from 33 to 107nm. However, it is 

difficult to infer the pattern of T cell uptake with particle diameters, as Thorek’s study 

used a variety of particle coatings at different sizes: dextran (33 - 107 nm), styrene 

(207 - 289 nm) and silica (1.4µm) coated particles.   

It is possible to use transfection agents during labelling to generate particle aggregates 

of different sizes. However, results relating aggregate size and uptake have been 

contradictory, as aggregate surface composition and charge had not been kept 

constant in these experiments (Matuszewski, 2005; Song, 2007).  

The study of the relationship between particle size and cellular uptake 

requires a set of particles of similar surface composition but with diameters that cover 
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the range of 100nm to 1µm. There has been no such study to date, in part due to the 

difficulty of achieving such a wide diameter range with uniform composition.   

1.6.7.4 Labelling Duration and Concentration 

The amount of internalised particles correlates positively to the duration and 

concentration of incubation with the cells. Current evidence shows that the uptake 

amount increases and saturates with increasing labelling duration and concentration, 

independent of particle type, size or cell type. The uptake of sub-100 nm dextran, 

200-300 nm styrene and 1.4 m silica particles increased with incubation duration but 

was saturated by 4 hours with non-phagocytic T cells (Thorek, 2008). The same study 

also demonstrated that the saturating concentration varied for different particle sizes. 

Labelling concentration is commonly expressed as mass of iron per unit volume of 

labelling medium, for example mg Fe / ml or simply mg/ml. The uptake for sub-100 

nm dextran particle saturates at 0.025 mg/ml and 200-300 nm styrene particles and 

1.4 m silica particles are saturated at 0.1 mg/ml. When 30nm AMNP was used to 

label Hela cells and macrophages, the saturating durations were 5 and 10 hrs, 

respectively while the saturating concentration was 0.5 mg/ml for both cell types, 

further demonstrating the variability of labelling efficiency between cell types 

(Wilhelm, 2003).   

The longest reported labelling duration was 72 hrs where ferumoxide was 

incorporated into bone marrow cells (Jendelova, 2003). Most studies kept to a 

maximum labelling duration of 24 hours and a maximum concentration 0.2 mg/ml as 

it has been shown that long duration and high concentration, in particular the 

combination of both, can result in cytotoxicity (van den Bos, 2003; Neri, 2008).     
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1.6.7.5 Electroporation and Transfection Agents 

Using DNA transfection technologies, electroporation and transfection agents (TA) 

have been used in the attempt to improve uptake of particles into cells. When 

ferumoxide labelling was assisted by electroporation, iron loading of 11.5 pg/rMSC 

was achieved compared to just 3 pg/rMSC with simple incubation alone (Walczak, 

2005). However, this technique may require careful tuning of the electrical parameters 

to avoid affecting cell viability (Daldrup-Link, 2005).  

Poly-L-lysine (PLL), a common cationic TA, binds with DNA to form complexes of 

<100nm. By complexing PLL with ferumoxide prior to their incubation with hMSC, 

iron loading between 13 pg/cell (Arbab, 2003) and 16 pg/cell (Frank, 2003) has been 

reported. As an alternative to PLL, protamine sulphate, an FDA-approved TA has 

been complexed with ferumoxide to achieve loading of 11 pg/hMSC (Arbab, 2004). 

However, no comparison against the uptake by simple incubation was done in these 

studies with TA.  

Although the iron loadings achieved with TA are promising, a few potential 

disadvantages are associated with this method. It was reported that hMSC labelled 

with ferumoxide-PLL could not undergo chondrogenesis (Kostura, 2004), although 

the use of ferumoxide-protamine sulphate did not encounter the same problem 

(Arbab, 2004). It was suggested that the inhibition was due to the use of PLL as the 

TA rather than the presence of ferumoxide (Bulte, 2004), although no detailed study 

had been done to examine the effect of PLL and protamine sulphate alone on the 

chondrogeneicity of MSC. 
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Despite an apparent increase in iron loading, it was reported that TA-mediated 

labelling may result in only cell surface attachment rather then internalisation of SPIO 

(Montet-Abou, 2007). In this study, the TA lipofactamine resulted in SPIO attaching 

to the surface in contrast to protamine sulphate, which allowed the complete 

internalisation of feridex in mouse neural progenitor cells but not in other cell types. 

These results suggest that the internalisation of SPIO may be dependent on TA, 

labelling condition and cell type. 

Another distinctive feature of TA-mediate labelling is the iron loading with respect to 

iron concentration of the labelling medium. Labelling with naïve ferumoxide or other 

SPIO resulted in cellular uptake that increases with iron concentration of the labelling 

medium, and reaching a saturated iron load at high labelling concentrations. PLL-

mediated particle uptake on the other hand, varies non-linearly with the labelling 

concentration (Kim, 2008), and may present difficulty in optimising cell labelling 

conditions for different cell types.  

This observation may be due to the dynamic nature of the complex formation between 

TA and SPIO, which is less understood compared to the complex formation between 

TA and DNA. The formation of PLL and DNA complexes, depending on the relative 

amounts of the constituents, results in structures that range from spheres to rods and 

toroids (Liu, 2001) and have sizes that are dynamic over several hours (Lai, 2001). 

The complex formed by TA and SPIO has a hydrated diameter that depends on the 

relative amount of the constituents and may form precipitations at certain ratios 

(Montet-Abou, 2007). Therefore, the use of TA-mediated labelling requires careful 

optimisation of labelling condition for each cell type to be labelled. 
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1.6.7.6 Labelling medium 

During the labelling of cells, the physicochemical properties of particles are 

influenced by the microenvironment. Studies on the effects of the labelling medium 

have shown that the use of 10% serum increases the uptake of ferumoxide compared 

to serum-free medium (Rogers, 2005). Similar results were reported with 

monocrystalline iron oxide particle (MION). MION was opsonised by fresh plasma, 

purified and incubated with macrophages or cancer cell, resulting in six and two fold 

increase in uptake, respectively, compared to naïve MION (Moore, 1997). It was 

suggested that opsonised MION was taken up by scavenger and complement 

receptors of macrophages and naïve MION entered cells through fluid-phase 

endocytosis. This suggestion was supported by reports that the macrophage uptake of 

albumin-coated particles is C3b-complement (a component of opsonisation) 

dependent (Roser, 1998). On the contrary, opsonised AMNP show reduced uptake by 

Hela cells (1 pg/cell) compared to naïve AMNP (16 pg/cell) (Wilhelm, 2003). It was 

also reported that macrophage uptake of polystyrene and phenylated polyacrolein 

between 0.5 to 4.5 µm was higher in serum-free media (Tabata, 1988). Therefore, the 

presence of serum in media can influence the uptake of particle and the change in 

uptake is dependent on the cell type. 

1.6.8 Transgenic Methods 

Living organisms possess specialized iron storage mechanisms involving ferritin, 

transferrin and transferrin receptor. The expression of these proteins on certain cells 

may be accompanied by an increase in intracellular iron storage, which will allow the 

cells to be detected through MRI. An application is the use of these proteins as 

markers to monitor of the gene expression during gene therapy. These proteins can 
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also be applied to the imaging of endogenous gene expression during development 

and pathogenesis in transgenic animals.  

1.6.8.1 Transferrin 

Free iron in the circulation is captured by the plasma protein transferrin (Tf) and iron-

loaded Tf is transferred into cells after binding to the transferring receptor (TfR). TfR 

is naturally abundant on some cell types and has been utilised to improve the uptake 

of Tf-conjugated SPIO (Daldrup-Link, 2003). When human Tf-conjugated MION 

were administered by IV, the particles bound specifically to the rat gliosarcoma cells 

that have been transfected to express human TfR (Weissleder, 2000; Moore, 2001).  

Therefore, TfR becomes a model marker for the MR visualisation of in vivo gene 

expression.  

1.6.8.2 Ferritin 

Ferritin is a ubiquitous and highly conserved iron-binding protein (Harrison, 1996). In 

vertebrates, the cytosolic ferritin is a heteropolymer composed of variable proportions 

of H and L subunits. The H subunit has ferroxidase activity that promotes iron 

oxidation and incorporation, and the L subunit facilitates the activity of the H-chain 

by offering sites for iron nucleation and mineralization. Twenty-four ferritin subunits 

assemble to form the apoferritin shell. Each apoferritin molecule of 450 kDa can 

sequester up to 4500 iron atoms, depending on the tissue type and physiologic status 

of the cell. MRI has been shown to detect abnormality of iron metabolism where 

ferritin and iron storage was elevated (Grabill, 2003). The T2 relaxation properties of 

iron-loaded ferritin have also been studied in vitro (Gossuin, 2000). 
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An early study on transfecting cells to overexpress H-chain ferritin showed 

upregulation of TfR and increased intracellular iron (Cozzi, 2000). In a separate study, 

the change in cellular iron was detected as a 7% change in MR relaxation rate when 

the ferritin gene were switched on (Cohen, 2005). Inducible ferritin expression was 

also detected in the liver and heart of transgenic, fetal mice with 25% change in 

relaxation rates (Cohen, 2007).  

Poor sensitivity is a limitation of these attempts to image gene expression as turning 

on the ferritin gene increased cellular iron content by only 0.2 pg/cell (Cohen, 2005). 

Sensitivity was not improved by the co-transfection of both ferritin and TrR genes, 

which yielded an iron content increase of only 14 fg/cell (Deans, 2006). However, 

studies are ongoing to improve the sensitivity of imaging ferritin expression by 

controlled aggregation of ferritin to increase relaxation rate for the same iron quantity 

per cell (Bennett, 2008). 

1.6.8.3 MagA 

Magnetotactic bacteria are motile prokaryotes that synthesize intracellular magnetic 

structures and move in relation to the earth’s magnetic field (Bazylinski, 2004). The 

synthesized structures, called magnetosomes, consist of multiple iron oxide crystals 

surrounded by a lipid membrane. One of the genes identified to be involved in 

magnetosome production is magA. When 293FT cells, a common human packaging 

cell line, were transfected with magA, the cells produce sub-micron sized 

magnetosomes that contained multiple iron oxide crystals each measuring 3-5nm in 

diameter (Zurkiya, 2008). Induction of the gene magA increased intracellular iron by 

0.55 pg / cell and produced up to four-fold change in measured relaxation rate. The 
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use of magA is in its infancy, but current results make the gene a promising candidate 

as an MR reporter. 

1.6.9 Challenges of Cellular MRI 

Cellular MRI faces numerous challenges in the pursuit of a cell marking method that 

can be translated to the clinic. Being non-phagocytic, stem cells do not internalise 

sufficient amount of clinically-available SPIO by simple incubation. The use of 

transfection agents may be complicated by alteration of cellular function such as 

differentiation capacity and difficulty in optimizing labelling parameters. The option 

of electroporation to encourage uptake may require extensive optimization of 

labelling protocols to avoid cellular toxicity.  

1.6.9.1 Label Transfer 

Even with sufficient iron loading of cell, the route and timing of cellular delivery may 

have significant effects on cellular survival and engraftment. When cellular grafts 

encounter hostile host immune response and are destroyed, the transfer of label to the 

host immune cells may occur. When cells are labelled with exogenous fluorescent 

labels such as 5-bromo-2-deoxyuridine (BrdU) and bis benzamide (BBZ) prior to 

transplantation, the transfer of label to host macrophages can potentially cause 

erroneous diagnosis of cellular engraftment or differentiation. (Pawelczyk, 2006; 

Burns, 2006; Coyne, 2006). Iron oxide MRI labels face the same potential problem. 

Hence secondary methods of identifying donor cells by means of FISH or sex 

mismatch may be an essential procedure to verify MRI observations in preliminary 

experiments.  
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1.6.9.2 Cellular Quantification 

The quantification of cells through the use of radioactive methods like scintigraphy is 

well-established. Quantification of cells by iron oxide MRI on the other hand is in its 

infancy, but there have been some promising reports. The principle of cellular 

quantification is based on the bulk magnetic susceptibility relaxation mechanism of 

cells labelled with iron oxide particles. Iron oxide particles that are compartmentalised 

into cells have relaxation rates that are higher then homogenously distributed particles 

(Bowen, 2002). When a cell is labelled with SPIO or USPIO, its relaxation is like that 

of a large magnetic spheres operating in the SDR (Ziener, 2005). The geometry of 

signal voids created by the iron oxide labelled cells extends beyond the cell 

membrane, making it easier to identify the cells on an image (Pintaske, 2006). More 

importantly, the relaxation rate of each cell is in the SDR which means that the 

relaxation rate remains constant even when cells group together in clusters. Therefore, 

when iron mass per cell is known, the R2* relaxation rate is directly proportional to 

the number of cells per voxel.  

The accurate measurement of R2* relaxation rate is beset with artefacts from 

macroscopic magnetic susceptibility of tissue-air interfaces leading to overestimates 

of R2*. A number of methods have been proposed to compensate for the 

susceptibility artefacts, including increasing spatial resolution, alternating slice 

selection, tailoring rf pulses or utilizing 3D z-shimming. A method that combined 3D 

high-resolution B0 maps and image postprocessing was reported to provide 

improved R2* measurements that would have been a two-fold overestimate if left 

uncorrected (Dahnke, 2005). Using this method, the detection limit during brain 
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imaging was 2.4 µg Fe/ml, which is equivalent to 600 cells/voxel (voxel size: 1 x 1 x 

5 mm) at 20 pg Fe/cell.  

Besides improving cellular iron loading, improvement in hardware and image 

processing can increase detection sensitivity. Nevertheless, it remains a considerable 

challenge to detect small numbers of cells against native low signals from, for 

example, haemosiderin or haemorrhagic artifacts or the presence of metals such as 

calcium. Furthermore, the detection of labelled cells is limited by partial volume 

effects, in which void detection is dependent on the resolution of the image (Heyn, 

2005). A post-processing algorithm based on phase map cross correlation was 

proposed for robust identification of labelled cells even in images with low SNR 

(Mills, 2008). Deoxyhemoglobin in small, slow flowing vessels is another source of 

native hypointensity that can have similar appearances to labelled cells, especially in 

2D images. The problem can be circumvented by the administration of paramagnetic 

contrast agent prior to cellular imaging (Anderson, 2005) or the use of carbogen 

inhalation (95% O2 and 5% CO2) to allow vasodilation by CO2 (Himmelreich, 2005). 

1.6.9.3 Positive Contrast 

Gadolium-based T1 contrast agents have been in clinical used for over two decades 

and radiologists are used to identifying positive contrast or hyperintense image 

features. As a result, new methods for display of magnetically induced dark signal 

pixels have been developed. There are two main methods of creating positive contrast 

from iron oxide labelled cells.  

The first is based on the design of pulse sequences to detect the susceptibility-induced, 

off-resonance barbell geometry around labelled cells (Pintaske, 2006). Selective 
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imaging of the off-resonance signals around cells was proposed (Cunningham, 2005). 

As an extension to this method, an inversion recovery on-resonance water suppression 

(IRON) sequence places an addition saturation pulse to negate on-resonance water 

signal far away from cells (Stuber, 2007). Positive contrast can also arise from 

diffusion-mediated off-resonance saturation (ORS) sequence (Zurkiya, 2006). In this 

method, bulk water protons are imaged with and without the presence of an ORS 

pulse. Unlike chemical exchange dependent saturation transfer (CEST) contrast 

agents which function by reducing the water proton signal through a chemical 

exchange site, this method relies on diffusion of water molecules around the labelled 

cells. The “white marker” or Gradient Echo Acquisition for Superparamagnetic 

Particle (GRASP) technique takes a slightly different approach (Seppenwoolde, 2003; 

Mani, 2006). GRASP rely on the introduction of a dephasing gradient on the slice-

select axis to spoil the signal across the sample, so that a positive contrast is gained 

only in one direction. 

The second method takes a different approach by deriving positive contrast through 

post-processing of images (Posse, 1992). The local magnetic gradients induced by 

magnetic susceptibilities lead to echo-shifts in k-space with gradient echo imaging. 

The effect is exploited by applying a shifted reconstruction window in k-space 

(Bakker, 2006). Recently, a susceptibility gradient mapping (SGM) technique has 

been proposed that generates susceptibility vectors from a regular complex gradient 

echo dataset to develop positive contrast in 3D (Dahnke, 2006). 

Some of the above positive contrast methods have been compared by imaging labelled 

glioma cells transplanted to the flanks of nude rats (Liu, 2007). Positive contrast was 

generated from the presence of labelled cells, but it remains to be determined whether 
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positive contrast yielded better cellular detection. However, positive contrast images 

lack anatomical detail, and are best supplemented with traditional T2 or T2*-weighted 

hypointensity imaging. Overlain or “fused” images combining the positive contrast 

and anatomic images are possible, in a manner analogous to that used in clinical PET-

CT, although this type of display is susceptible to misregistration artifacts. 
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1.7 Summary 

Stem cell therapy has the potential to improve the treatment of numerous diseases. 

Mesenchymal stem cells (MSC) can be isolated from a number of sources such as 

adult bone marrow, umbilical cord blood and fetal bone marrow. These cells are 

defined by their ability to self-renew, and differentiate into osteoblasts, adipocytes 

and chondroblasts under suitable culture conditions. In animal models, MSC have 

been shown to home to injured tissue, such as a cerebral infarct, but stroke treatment 

is challenged by our incomplete knowledge of the central nervous system 

immunology, especially towards a new allogen like MSC. Although classically 

considered an immune privileged organ, there is evidence of brain graft rejection, and 

graft survival in target tissue is often variable. 

Longitudinal studies of experimental animals or monitoring of cellular therapy in 

subjects require non-invasive methods that reports cellular function, or at least their 

location. Magnetic resonance imaging has an appropriate balance of sensitivity and 

resolution required for tracking transplanted cells. By employing sensitive contrast 

agents like superparamagnetic iron oxide particles (SPIO) to label cell prior to their 

transplantation, cellular migration can be tracked. However, cellular imaging has been 

hampered so far by poor uptake of particles by non-phagocytic cells such as MSC. 

Sub-150nm SPIO have failed to label MSC sufficiently to relax hardware 

requirements and enable detection of small cell numbers in vivo. There have been 

conflicting results in labelling non-phagocytic cells with particles >0.9μm in 

diameters. The dependence of uptake mechanism on particle size is a known 

phenomenom, yet MRI particles of similar formulation and composition in the size 
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range between 100 to 900 nm have not been investigated. An important property of a 

contrast agent is its MR relaxation. The relaxation of particles in this sub-micron size 

range has been theoretically derived and numerically simulated, but has not been 

investigated with actual particles.  

A set of these particles may serve the dual purpose of cell tracking and verification of 

MR relaxation models. Labelling with such particles may reveal unreported particle 

internalising efficiency by non-phagocytic cells. Studying the relaxation of these 

particles may provide the first experimental verification of theoretical models with 

actual particles.  

1.7.1 Hypothesis 

 Magnetic microgel iron oxide particles (MGIO) can be synthesized such that 

they have: 

- diameters that cover the range of 100nm to 1µm 

- similar composition between different sizes 

 

 MGIO can provide a physical means of verifying theoretical models of 

particle magnetic resonance relaxation 

 MGIO can be used as a label for non-phagocytic cell type, such as fMSC and 

provide better labelling efficiency than clinically-available labels, such as 

ferucarbotran, without deleterious effects to the cells 

 MGIO-labelled fMSC can be transplanted to an animal model of cerebral 

stroke such that the cellular migration to the injury site can be tracked by MRI  
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Chapter 2 Methods 
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2.1 Synthesis of Particles 

Magnetic microgel iron oxide particles (MGIO) are synthesized in a two-step process 

where precursor microgel particles are formed by emulsion polymerisation followed 

by the alkaline co-precipitation of iron oxide in the precursors to form MGIO. 

2.1.1 Synthesis of Precursor Migrogel 

Non-magnetic precursor microgel (PMG) was synthesized using conventional semi-

continuous emulsion polymerisation modified from the protocol described by Tan et 

al (Tan, 2004). A monomer mixture was prepared by dispersing in a bottle, ethyl 

acrylate (EA), methacrylic acid (MAA) (both from Sigma Aldrich), di-allyl phthalate 

(DAP) and 75% Aerosol OT surfactant (American Cyanamid, Stamford, Connecticut). 

The mixture was charged to a 50ml graduated monomer-feed cylinder. An initiator 

feed mixture comprising of sodium persulfate, sodium bicarbonate (both from Sigma 

Aldrich) and distilled de-ionized water was prepared in another container and was 

charged to a 20ml syringe pump. In a third container, sodium persulfate was dissolved 

in water to form the initial catalyst solution. An initial reactor charge consisting of 

distilled de-ionized water, 2-sulfoethyl methacrylate (Hampshire Chemical Corp., 

Nashua, NH, USA) and 75% Aerosol OT surfactant were charged into the reactor, a 

500ml resin flask. Under nitrogen purge, 10% of monomer mixture was added and the 

reactor was heated. The temperature of the reactor was controlled by an immersion 

mineral oil bath which was heated with a hot plate controlled by a thermoset. When 

the reactor temperature reached 80°C, the initial catalyst solution was added to initiate 

polymerization. After a reaction time of 30 min to form an in-situ seed product, the 
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remaining monomer and initiator feed mixtures were conveyed to the reaction vessel 

at a rate of 0.4 and 0.05 g/min, respectively, while the reaction mixture was 

maintained under continuous stirring, nitrogen atmosphere and a reaction temperature 

of 80°C. After the complete discharge of the monomer and initiator feed, the reaction 

was allowed to persist for another hour under the same conditions, for the complete 

reaction of the residual monomer. The completed colloidal product was cooled, 

filtered through a 200-mesh nylon cloth, transferred to regenerated cellulose tubular 

membrane and dialyzed against distilled de-ionized water. Distilled de-ionised water 

was replaced twice a week and the dialysis process was carried out over a month to 

purify PMG by removing unreacted reagents. Six models of PMG were prepared with 

the masses of reagents summarised in the following table. 
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Masses of Reagents (grams) in the Synthesize PMG
PMG Model 1 2 3 4 5 6 

   
Reactor Charge   
a. Water 330 230 230 230 230 230 
b. 10% monomer mix 2.2 3.27 2.91 2.81 3.21 2.71
c. Aerosol OT 1.52 1.17 0.21 0.21 0.01 0.0078
d. 2-Sulfoethyl Methacrylate 0.85 1.31 0.24 0.24 0.02 0.0088
e. Micellar ratio 1.4 2.8 12.9 13.4 321.0 347.4 

       
Initial Catalyst       
a. Water 2.79 2.79 2.79 2.79 2.79 2.79 
b. Sodium Persulfate 0.63 0.63 0.63 0.63 0.63 0.63 

       
Monomer mix       
a. MAA 9.58 11.01 4.40 11.01 11.01 11.01 
b. EA 7.28 12.69 20.31 12.69 12.69 12.69 
c. Diallyl Pthalate 0.68 0.95 0.95 0.95 0.95 0.95 
d. Aerosol OT 0.74 5.72 1.03 1.03 0.066 0.038 
e. Water 3.4 2.37 2.37 2.37 2.37 2.37 
Sub-total 21.68 32.7 29.07 28.1 32.1 27.1 
MAA-EA ratio, x:y 60:40 50:50 20:80 50:50 50:50 50:50 

       
Feed oxidizer / initiator 
feed 

      

a. Water 5 3.49 3.49 3.49 3.49 3.49 
b. Sodium Persulphate 0.226 0.32 0.32 0.32 0.32 0.32 
c. Sodium Bicarbonate 0.56 0.08 0.08 0.08 0.08 0.08 

       
PMG Size       
Hydrated diameter, dH (nm) - - 70.2 129.9 - - 

Table 4: Masses of reagents required to form six models of precursor microgel particles 
(PMG) of different sizes by altering the micellar and MAA to EA ratios. 

 

Figure 13 Schematic of PMG. The molar ratio of methacrylic acid (MAA) and ethyl 
acrylate (EA), and the wt% of crosslinker di-allyl phthalate (DAP) are represented by x, 
y and z respectively.  
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Precusor microgel (PMG) is made up of polymerized metharylic acid (MAA) and 

ethyl acrylate (EA) cross-linked with di-allyl phthalate (DAP) (Figure 13). Six models 

of PMG were synthesized, each differing in micellar ratio and the molar ratio of MAA 

to EA, which is represented by x:y. The micellar ratio is defined as the weight ratio of 

10% of monomer mix to Aerosol OT. The wt% of crosslinker di-allyl phthalate (DAP) 

against the total weight of MAA and EA, z, was maintained at 4%. The total amount 

of monomer for each model is 22 to 33g. 

The PMG diameters depend on the micellar ratio and x:y. At the initial stage of PMG 

synthesis, the Aerosol OT and 10% of monomer mixture form micelles or seeds that 

grow when more monomers polymerize onto their surfaces to form PMG. When the 

micellar ratio is large, there are few available seeds for the monomers to polymerize 

onto, thus forming larger PMG.  

PMG diameters are dependent on the x:y and the wt% of DAP. As PMG consists of 

methacrylic acid that possesses the carboxyl group, they are considered soft particles 

that expand in response to increase in pH. When the pH is raised, there is less 

protonation of the carboxyl group, resulting in greater electrostatic repulsion between 

negatively-charged groups. The amount of expansion is limited by the amount of 

carboxyl groups available and the amount of DAP crosslinker present (Tan, 2004). 

2.1.2 Synthesis of MGIO 

MGIO was synthesized by the alkaline coprecipitation of iron oxide primary particles 

within the PMG. Some intermediate products of MGIO synthesis are prone to 

oxidation by atmospheric gases, as such the reagents were deoxygenated by bubbling 

with nitrogen for at least 15 min prior to use. Briefly, 120ml of 0.5 wt% PMG was 
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adjusted to a pH of 6.5 with 1M NaOH and deoxygenated in a 500ml, three-neck 

reaction flask. FeSO4.7H20 was dissolved in 30ml of deoxygenated, 4C deionised 

water and added at a rate of 10ml/min into the reactor while under gentle mechanical 

stirring and nitrogen blanket. After an interval of 2 hours for sufficient infusion of Fe 

salts into PMG, the temperature of the reactor was raised to 35 C and under vigorous 

stirring, NaNO2 and 28% NH4OH were added. The reaction was allowed to continue 

for one hour, after which the suspension was centrifuged at 22k x g. The supernatant 

was discarded and the pelleted residues were redispersed for 30 min via an ultrasonic 

bath filled with iced water to prevent excessive heating of the particles. The 

centrifugation and redispersion were repeated twice. After the last redispersion, the 

suspension of a low speed centrifugation at 4k x g was retained. The discarded residue 

contained aggregated composite particles, including aggregates of iron oxide primary 

particles that formed outside the PMG. The suspension was passed through a high 

magnetic field separation column to separate out non-magnetic particles. The 

remaining magnetic fraction was MGIO. Eight models of MGIO were achieved by 

using the masses of reagents in the following table. 

 

 

 

 

Table 5: Masses of reagents and the PMG models required to synthesize MGIO of 
approximately 100 to 750nm as denoted by models M100 to M750.   

Masses of Reagents in the Synthesis of MGIO 

MGIO 
Model 

PMG 
Model  

FeSO4(g) NaNO2(g) NH4OH (g) 

M100 1 0.3 0.1 6 
M150 1 1.0 0.1 6 
M250 2 1.0 0.1 6 
M300 3 1.0 0.125 15 
M400 3 1.5 0.25 15 
M500 4 2.5 0.25 15 
M600 5 1.5 0.15 12 
M750 6 2.5 0.25 15 
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When the pH of PMG was raised to 6.5, the protonation of carboxyl groups on MAA 

decreased resulting in a larger proportion of charged carboxylate groups that 

increased the driving force for the incorporation of Fe cations into PMG. When Fe2+ 

was introduced, 2 hours was given for the infusion of Fe salts into PMG. Infused Fe2+ 

coordinated with the carboxyl groups of MAA and some remained outside PMG to 

form a cloudy, greenish suspension. It is possible to perform dialysis on the 

suspension to remove Fe2+ that remains outside the particles, but due to lack of 

equipment for dialysis in an deoxygenated atmosphere, this step was omitted. When 

ammonia and oxidiser NaNO2 were introduced, Fe2+ and newly formed Fe3+ reacted 

with ammonia to form a green suspension, which turned into a black precipitate after 

one hour, by the classical equation. 

 3

2+ 3+ -
4 2Fe +2Fe 8OH Fe O +4H O   

It is also believed that the formation of magnetite is a two-step process, with the green 

intermediate being FeOOH, as shown below (Tao, 2008). 

 
3+ -

2

2+ -
3 4 2

Fe + 3OH FeOOH + H O

2FeOOH + Fe  + 2OH   Fe O  + 2H O




 

Soluble impurities from unreacted reagents, eg ammonia were removed by high-speed 

centrifugation while unsuspendable impurities of iron oxide particles that formed 

outside PMG were removed by low speed centrifugation. Non-magnetic products, 

including PMG or FeOOH, were removed by magnetic separation. 
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2.2 MGIO Characterisation 

2.2.1 Transmission Electron Microscopy 

Air-dried MGIO structure was analysed by transmission electron microscopy (TEM). 

A 10 µL sample was placed on a film-coated 200-mesh copper grid laid on a filter 

paper. Water was immediately drawn from the sample by the filter paper and the 

retained MGIO was allowed to dry for a 10 min prior to loading in the TEM (JEOL 

JEM-100CX microscope, Tokyo, Japan). Microscopy images of various 

magnifications were obtained in transmission mode and selected area diffraction 

(SAD) of a single MGIO was obtained. 

2.2.2 Thermogravimetric Analysis 

The iron oxide weight content (IO%) of MGIO was measured by thermogravimetric 

analysis (TGA 2950, TA Instruments, New Castle, DE, USA). MGIO suspension was 

frozen at -20C overnight and lyophilized for 24 hours prior to the characterisation by 

TGA. 10-20 mg of lyophilized MGIO was heated from 25 to 900°C at a rate of 

10°C/min in a 99.99% nitrogen flow of 50ml/min while the weight of the sample was 

measured. The plot of weight versus temperature and its first derivative was produced 

on Universal Analysis 2000 Ver 3.4c, an analysis software from TA Instruments. The 

IO% of MGIO was taken as the quotient of dividing residue weight at 850C by the 

dry weight of MGIO at about 110-130. The weight of residue from polymers was 

considered negligible (Lin, 2005). 
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2.2.3 Vibrating Sample Magnetometry 

MGIO suspension was frozen at -20C overnight and lyophilized for 24 hours prior to 

the characterisation by vibrating sample magnetometry (VSM). Magnetometry 

(Oxford Instruments, Oxfordshire, UK) was performed on each of M400-750, using 

sample masses of 2.2 to 14.9 mg. Magnetization was measured at 300K while the 

field was swept from 0 to 104 A/m, and from 104 to -104 A/m, then back to 0 A/m. 

The M10kAm is the average of magnetization at 104 A/m. Magnetization against the 

applied field was plotted with a graphing and analysis software (Origin 8, OriginLab, 

Northampton, MA, USA).  

2.2.4 SQUID Magnetization 

A lyophilized sample of M600 and an aqueous one with a concentration of 320 mM 

Fe were prepared. The aqueous sample was obtained in increasing the concentration 

of stock M600 with centrifugation and resuspension. Each sample was characterized 

by a superconducting quantum interference device (SQUID; MPMS XL, Quantum 

Design, San Diego, CA, USA) while the temperature of the sample was varied to 

determine the zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves. In 

a ZFC measurement, the sample was cooled from 300 to 10 K without applying an 

external field. After reaching 10 K, a 100 A/m field was applied and the 

magnetization was recorded as the temperature increased. For FC experiments, the 

same was done except that the samples were cooled while under an external field of 

100 A/m. As temperature is increased, the ZFC magnetization is expected to increase, 

reach a maximum and meet the FC curve. The temperature at the ZFC maximum is 

related to the average blocking temperature, TB of the particles, while the temperature 
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at which the FC and ZFC curves meet corresponds to the blocking temperature of the 

largest particles (Maity, 2008). The blocking temperature is defined as the 

temperature above which a particle possess sufficient thermal energy to switch 

between energy states rapidly (become unblocked) such that the particle moment 

fluctuates and is zero when time-averaged. If the blocking temperature is below 300K, 

the particle is considered to be superparamagnetic and exhibits absence of remnant 

magnetization at 300K. 

2.2.5 Dynamic Light Scattering 

The hydrated diameter of MGIO suspension was determined by dynamic light 

scattering (DLS, Brookhaven Instruments Corp BI-200SM, Holtsville, NY, USA) 

using a vertically-polarised 488nm argon laser source. The sample concentration was 

kept at about 0.02 wt% during measurement to minimize interference from particle 

interaction, as MGIO exert inter-partcle electrostatic repulsion. Prior to each 

measurement, the sample was subjected to ultrasonic agitation in a water bath to 

disperse aggregated particles. The laser was turned on for at least 30 min prior to the 

measurements to ensure stability of the light source. With the laser power set to 100 – 

150mW and the pinhole size adjusted, count rates of 105 to 106 per second were 

achieved, which signified good signal to noise ratio of measurement. The photo 

detector was adjusted to receive scattering at the angles of 45, 60, 75, 90, or 120 

degrees. The inverse Laplace transformation of acquired data was complicated by the 

presence of polydispersed or multi-modal decay rates. This was handled by Gendist, a 

software that used an algorithm known as the Regularized Positive Exponential Sum 

(REPES) (Jake, 1995). Gendist performed the transformation on 2 ( )g   (please refer 

to the principle of DLS in Section 1.5.3 of the Introduction) rather than )(1 g and 
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used a variable degree of regularization with a second degree regularizer. It presented 

the distribution in terms of decay time, 1/  , from which the diameter distribution 

was determined.  

2.2.6 MR Relaxation Rate 

Volumes of 20ml of MGIO suspensions at concentrations of 0.01 to 0.4 mM Fe were 

prepared. Since relaxation rates are dependent on concentration and MGIO diameter, 

which in turn is dependent on pH, steps were taken to ensure that desired 

concentration and constant pH were achieved in the samples. The procedure started 

with the preparation of a 50mL sample of 0.4 mM Fe with pH corrected to the desired 

value by 1M NaOH or HCL using a 20 µL micropipette. A 400mL volume of DI 

water with the same pH was prepared. Serial dilution of the initial 0.4 mM sample 

with the pH-adjusted water was performed to prepare 20mL samples with 

concentrations of 0.2, 0.1, 0.05, 0.025 or 0.0125 mM Fe. The pH consistency was 

ensured by measuring the pH of all samples. The same sample preparation procedure 

was used for ferucarbotran. 

The relaxation rates of suspended particles were determined on a Siemens Symphony 

1.5T imager (Siemens Medical Solutions, Erlangen, Germany). Prior to each imaging 

sequence, the scanner was shimmed with 20mL water in bottle(s) identical to those 

containing particles and placed upright at selected position(s) in the quadrature head 

coil. After shimming, the bottle(s) of water was carefully replaced with bottle(s) of 

the prepared particle at concentrations of 0.01 to 0.4 mM Fe. GRE images were 

acquired at 4 to 5 echo times for individual bottles as single 2D coronal slices (FOV: 

6.4cm; Matrix: 64x64; Voxel dimensions: 1mm x 1mm x 5mm; TR/TE/FA: 1.6s / 5 to 
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60ms / 90; Pixel BW: 260Hz). Spin echo Carr-Purcell-Meiboom-Gill (CPMG) 

images were acquired for five or six bottles of different concentration simultaneously 

(FOV: 18cm; Matrix: 256x256; Voxel dimensions: 0.7mm x 0.7mm x 5mm; 

TR/TE/ETL/FA: 2s/15ms/32/90; Pixel BW: 130Hz).  

The DICOM datasets were exported for image processing using an in-house software 

package (MATLAB V7.1: MathWorks, Natick, MA, USA). A region-of-interest (ROI) 

was drawn on within the GRE image of each bottle, with care to maximize ROI area 

and avoid interface artifact. The mean ROI intensity of each bottle was plotted against 

the echo time at which the image was acquired. Non-linear least square means fitting 

was performed to the following equation  

 
*
2/( ) (0) t T

xyS t S e B    

where S was the mean ROI signal intensity and B was the image noise. The transverse 

relaxation time (T2*) of each concentration was computed from the time constant 

obtained from the fit of a first order mono-exponential decay curve to the GRE signal 

intensity of each bottle against TE . The relaxivity, r2*, was taken as the gradient of a 

linear fit of R2* (= 1/T2*) against iron concentration. The same process was repeated 

for the CPMG images to obtain the relaxivity, r2. 

To ensure the reliability of MGIO sample suspension stability, DLS measurements 

were carried out for duplicate samples of 0.0125 mM that have and have not been 

used for MR measurements. As MGIO are magnetic and inter-particle attraction at 

high field may cause irreversible particle aggregation. Although MGIO were once 

exposed to high field during magnetic separation, exposure to high field for the 

duration of the MR measurements may also have decreased inter-particle distance 



Methods 

119 

enough to hinder redispersion outside the magnet. Therefore, particle diameters were 

randomly remeasured after MR measurements.  

2.3 Ethics and samples 

All human tissue collection was approved by the Domain Specific Review Board of 

the National University Hospital, and was in compliance with international guidelines 

regarding the use of fetal tissue for research (Polkinghorne, 1989). In all cases, 

patients undergoing clinically-indicated termination of pregnancies or normal delivery 

gave separate written consent for the use of the collected tissue. Female Wistar rats 

(200-250gm) were acquired from the Centre for Animal Resources (Singapore) and 

all procedures were approved by the Institutional Animal Care and Use Committee at 

the National University of Singapore.  

2.4 fMSC isolation and differentiation 

I isolated fMSC from human fetal bone marrow from terminated pregnancies as 

previously described (Chan, 2005). Two donors at 8 and 12 week gestation were used. 

Briefly, bone marrow cells were flushed from the femurs using a 22-gauge needle into 

a culture medium (CM10), consisting of 10% fetal bovine serum (FBS, Sigma-

Aldrich, St. Louis, MO, USA) in Dulbecco’s modified Eagle’s medium (DMEM) 

(Sigma-Aldrich, Singapore) supplemented with 2 mM L-glutamine, 50 IU/ml 

penicillin, and 50 mg/ml streptomycin (Invitrogen, Carlsbad, CA, USA). Single cell 

suspension was plated in 100mm dishes at 105 nucleated cells per ml and cultured in 

CM10, at 37°C in 5% CO2. After 3 days, non-adherent cells were removed and the 

medium was replaced. Adherent cell colonies were detached with 0.25% trypsin 
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EDTA (Stemcell Technologies, Vancouver, BC, Canada), expanded to sub-

confluence, trypsinized, resuspended in freezing medium comprising of 10% DMSO, 

30% FBS and 60% DMEM, cooled from room temperature to -80°C at 1°C/min, and 

stored in liquid nitrogen as frozen stocks.  

fMSC were characterised by immunocytochemistry for CD14, CD34, CD45 , CD31, 

von Willebrand factor, CD105 (SH2) , CD73 (SH3, SH4) (Abcam, USA), Vimentin, 

Laminin, CD29 (Chemicon, USA), CD44 (BD, USA), CD 106, CD 90 (Chemicon, 

USA), HLA I, HLA II (Dako, USA),Oct-4 and Nanog (Abcam, USA) while flow-

cytometry was used to screen for Stro-1 (Chemicon, USA) as previously described 

(Campagnoli, 2001). Cells at passages 5 to 6 were used in all the experiments. 

Osteogenic, adipogenic and chondrogenic differentiation and their respective assays 

were performed as previously described (Campagnoli, 2001; Zhang, 2009). 

2.5 EPC Isolation 

Umbilical cord blood endothelial progenitor cells (EPCs) were derived as described 

by Ingram et al (Ingram, 2005). Briefly, mononuclear cells were retrieved from 

umbilical cord blood by density centrifugation and cultured in EPC medium 

comprising EGM-2 (Cambrex East Rutherford, NJ, USA) supplemented with 10% 

fetal bovine serum (Gibco®, Invitrogen, Carlsbad, CA, USA) at 37°C in 5% CO2. 

Typical cobblestone colonies appeared after 2 weeks, and were subcultured at 

subconfluence. Cells from passage four were used in these experiments. Cells were 

characterised by immunocytochemistry to confirm their phenotype and plated on 

Matrigel (BD Bioscience, San Jose, CA, USA) to evaluate their capacity to form a 

network of tubular structores or aligned cells in an in vitro angiogenesis assay. 



Methods 

121 

2.6 EPC Immunostaining 

Cells grown on collagen-coated cover slips were rinsed with PBS, fixed with ice-cold 

1:1 acetone–methanol for 10 min, washed and transferred to a blocking solution 

consisting of PBS with 3% bovine serum albumin (Sigma-Aldrich) and 0.1% 

TritonX-100 (Sigma-Aldrich). After 1 h, the blocking solution was replaced with 200 

µl of primary antibody (diluted to 10 µg/ml in 10% blocking solution) for 1 h at room 

temperature. Primary antibodies were removed by repeated PBS washes before 

incubation in 200 µl of Alexa Fluor 594 conjugated secondary Ab (10 µg/ml) for 1 h. 

Samples were then removed and mounted with Vectashield containing DAPI (Vector 

Laboratories, Peterborough, UK) for the visualisation of cell nuclei. Antibodies used 

were obtained from Dako Inc., and are listed as follows: rabbit (Rb) anti-human (Hu) 

vascular-endothelial cadherin, mouse (Ms) anti-Hu PECAM and Ms anti-Hu von 

Willebrand Factor (vWF). Ac-LDL uptake was carried out based on manufacturer’s 

instructions as follows: samples were washed with PBS and incubated with 10 mg/ml 

Dii-Ac-LDL (Invitrogen) in EGM-2 for 4 h. The coverslips were retrieved, washed 

and mounted for analysis. 
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2.7 Cellular labelling protocol and iron quantification 

Prior to labelling, 5 x 105 fMSC were cultured for 24 hr at 2x103 cells / cm2
 in CM10. 

The cells were labelled with MGIO or ferucarbotran by incubation at 0.025 to 0.2 mg 

iron/ml within a labelling culture medium (CM2: 2% FBS in DMEM supplemented 

with 2 mM L-glutamine, 50 IU/ml penicillin, and 50 mg/ml streptomycin) at 37°C in 

5% CO2. After 24 hours, adherent cells were repeatedly washed with fresh changes of 

phosphate buffered saline (PBS) until the PBS appears free of particle under light 

microscopy to remove unattached particles. The cells were then trypsinized, 

resuspended in CM10 and layered on Ficoll-paque PLUS (Amersham Biosciences, 

Piscataway, NJ, USA) for density centrifugation at 100 x g for 30 min to remove 

loosely attached, extracellular particles. Labelled fMSC were recovered at the 

interface between CM10 and Ficoll-paque PLUS and washed with PBS by 

centrifugation to remove remaining Ficoll-paque. Mock-labelled cells were used as 

controls where fMSC were subjected to the above procedures but without exposure to 

any particles. The same procedure was used to label EPC, with the exception that 

CM10 and CM2 were replaced with EGM-2. 
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2.8 Iron Quantification  

Labelled cells were counted and the total iron content analysed to determine the iron 

mass per cell. Each 100mm dish provided 3.30.3 x 106 cells for analysis. After 

counting, the cells were pelleted by centrifugation at 400 x g for 5min, and the 

supernatant replaced by 0.2ml of aqua regia. The cell pellet was subjected to 15min of 

homogenization in an ultrasonic bath and kept at 60C overnight to allow cellular 

lysing and reduction of iron oxide to complete. The lysate was reconstituted to 5ml 

with distilled water and analysed by inductively coupled plasma using optical 

emission spectroscopy (ICP-OES. Optima 5300V, PerkinElmer, Waltham, MA, USA). 

The iron mass of the mock-labelled control was below reliable ICP-OES detectability 

of 0.01ppm (<0.1 pg/cell).  
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2.9 Cellular TEM  

The internal structure of labelled and mock-labelled fMSC was analysed by TEM. 

Cells trypsinized, pelleted and fixed using a fixative mixture containing 2.5% 

glutaraldehyde in PBS. Post fixation was performed with 1% OsO4 in PBS pH 7.4 for 

2 hours at room temperature and washed in distilled water for 5-10 minutes twice. 

Dehydration procedure ensued by subjecting the pellet to a series of increasing 

ethanol then acetone concentration. The sample was washed twice in 100% acetone 

for 10 minutes. Araldit resin was added to the sample maintained at room temperature 

for 30 min before the temperature was stepped up to 40°C, 45°C and 50°C for 1 hour 

at each temperature. The resin was discarded in exchange for fresh resin and 

maintained at 60°C for 24 hours where polymerisation occurred. Using a Reichert 

Ultracut E (Leica Microsystems, Wetzlar, Germany) resin-embedded samples were 

cut into 0.1 µm slices, copper grid mounted, post-stained with lead citrate on copper 

grid and viewed at 5 x 103 to 100 x 103 times magnifications (Leica) (Myriam, 2008). 
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2.10 Genome wide Microarray Expression Analysis 

2.10.1 RNA Extraction 

Total RNA was extracted from 3 x 106 M600, ferucarbotran and mock-labelled fMSC 

in biological triplicates, using the Qiagen kit (RNAeasy Mini Kit; Qiagen, Valencia, 

CA) in accordance with the manufacturer’s protocol. Briefly, the cell samples were 

first lysed with surfactant provided by the kit and then homogenised. Ethanol was 

added to the lysate to provide ideal binding conditions. The lysate was then loaded 

onto the RNeasy silica-gel membrane to which the RNA binds and all the 

contaminants that did not were washed away. Pure, concentrated total RNA was 

eluted with 30 or 40 µl of water.  

2.10.2 Characterisation of RNA Purity 

The method of total RNA extraction may result in contamination from DNA. 

Immediately after eluding total RNA with water, the total volume was measured, 2 ul 

of RNA was aliquoted for characterisation and the rest stored at -80C. The purity of 

RNA, with respect to contamination from DNA, was determined by placing 1ul of 

RNA on a UV/Vis analyser, NanoDropTM 1000 Spectrophotometer (ND-1000, 

Thermo Scientific, Wilmington, DE, USA). The total RNA concentration is ideally 

more than 500 ng/ul and the purity, as indicated by A260/A280, between 1.9 and 2.1. 

The following information of each sample of total RNA sample was obtained 
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Sample 
No. 

Volume 
of tRNA 

(ul) 260/280 260/230 
Conc 
(ng/ul) 

A260-
10mm 

A280-
10mm 

C1 30 2.09 1.86 1256.3 31.41 15.02 
C2 40 2.09 1.81 173.5 - - 
C3 40 2.10 2.15 2315.9 57.90 27.35 
F1 30 2.08 2.17 1742.2 43.56 20.97 
F2 40 2.06 2.06 2122.5 - - 
F3 40 2.12 2.14 1591.8 39.79 18.73
M1 30 2.08 2.23 1347.5 33.69 16.19 
M2 40 2.07 2.15 2018.9 - - 
M3 40 2.13 1.8 1580.1 39.50 18.56 

Table 6: Characteristics of total RNA obtained from labelled cells in triplicates. 

Sample number C, F and M represents the mock-labelled control, ferucarbotran-

labelled and M600-labelled cells, respectively, while the numbers 1, 2 or 3 indicates 

the triplicates of each group. Less eluant than the recommended volume was used to 

ensure that the concentration of each RNA sample was high to facilite analyses that 

required highly concentrated samples. Even the concentration of sample C2 proved to 

be sufficient for the subsequent microarray analysis. The measured 260/280 ratios 

were within the ideal range of 1.9 to 2.1, with the exception of F3 and M3. The 

measured ratios were acceptable as the ideal value of 2.0 is a rule of thumb. For 

example, a ratio of greater than 2 is expected if there is a high Uracil to Thymine ratio 

but a ratio below 1.9 may indicate the presence of protein, phenol or other 

contaminants that absorb at or near 280 nm (Wilfinger, 1997).  

The total RNA integrity was checked with QIAxcel System (Qiagen), formerly known 

as eGene HDA-GT12 (eGENE, Irvine, CA, USA) short for high-performance DNA 

analyzer for genotyping on 12 channels. This capillary electrophoresis system 

replaces time-consuming slab gel electrophoresis methods used to separate segments 
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of DNA or RNA. 1ul of total RNA was used in accordance to the manufacturer’s 

protocol and the resulting electropherogram should ideally consist of two well-defined 

peaks corresponding to the 28S and 18S ribosomal RNA in the approximate ratio of 

2:1. The resulting electrograms for sample C1, F1 and M1 are shown below.  

Figure 14: Electrogram showing crisp 28S and 18S bands 

The electrogram shows the relative ratio of the 28S and 18S ribosomal RNA (rRNA) 

sub-units. 28s is the larger sub-unit and rRNA sub-unit naming are based on their 

molecular weights. The electrogram shows that 28S and 18S are two well-defined 

bands in the approximate ratio of 2:1. This method relies on the assumption that 

rRNA quality and quantity reflect that of the underlying mRNA population. Because 

mammalian 28S and 18S rRNAs are approximately 5 kb and 2 kb in size, the 

theoretical 28S:18S ratio is approximately 2.7:1; but a 2:1 ratio has long been 

considered the benchmark for intact RNA. While crisp 28S and 18S rRNA bands are 

28S 

18S
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indicative of intact RNA, it remains to be determined how well the integrity of 

relatively stable and abundant rRNA reflect the quality of the underlying mRNA 

population, which turns over much more rapidly (Imbeaud, 2005). 

2.10.2.1 Development of cDNA and cRNA 

To develop cDNA from the total RNA, 10 µg of total RNA was used for a one-cycle 

cDNA synthesis, followed by synthesis of Biotin-labelled cRNA and fragmentation of 

the cRNA in accordance to the protocol given in GeneChip One-cycle Target 

labelling and control reagents (Affymetrix, P/N: 900493).  

2.10.2.2 Hybridisation of cRNA to Microarray 

10 µg of fragmented and labelled cRNA from each sample was hybridized with 

control oligonucleotides B2 and hybridization controls (bioB, bioC, bioD and cre) on 

each Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA) at 

45 °C overnight at 60 rpm. The washing and scanning were carried out as stated in the 

manufacturer’s wash and stain protocol for GeneChip Hybridization (Affymetrix). 

The washed arrays were scanned using GeneChip Scanner 3000 GeneChip Operating 

Software 1.0 (GCOS, Affymetrix) and data collected to generate the data files which 

contained the intensities and the flag values of present, absent or marginal of 54675 

probes. 
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2.10.3 Analysis of Microarray Data 

The GCOS data files were imported into GeneSpring GX 7.3.1 (Agilent Technologies, 

Inc., Palo Alto, CA) to filter out probes that were unaltered by labelling. The software 

was used to filter out unwanted probes in the following steps. 

 The control strength of all samples groups (M600, ferucarbotran, mock) was 

identified. Control strength is the cut-off intensity value such as any probe 

with intensity below which may be considered less reliable and can be omitted 

from further analysis. Only probes with raw signals above control strength in 

at least 1 of 3 samples groups were considered 

 The probes which have triplicates from all sample groups flagged absent were 

removed, to avoid unnecessary comparison of low signals.  

 A t-test was performed to identify M600-labelling probes that have mean 

intensities that were significantly different from the mean mock-labelling 

probes. The same was done for ferucarbotran-labelling probes. The 2-fold up 

and down regulated list for M600 and ferucarbotran-labelling can now be 

identified. 

 

As genes do not function individually but in concert to elicit a particular function 

(Hallikas, 2006), the functions associated with our set of differentially regulated genes 

can be identified in a process known as functional profiling. Bioinformatician have 

established a fixed set of vocabulary, called gene ontology (GO) terms to describe the 

various functions. Since each gene is associated with one or more gene ontology (GO) 
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terms, which are classified into biological processes, cellular components and 

molecular functions, the 2-fold differentially expressed gene list can be enriched 

based on their associated GO terms. A web-based software, FatiGO (Al-Shahrour, 

2006), was used to obtain GO terms that were significantly associated with the genes 

list. FatiGO takes the gene list, generates a second list consisting of the genome less 

the gene list, and generates the GO terms associated with each of these lists. Then a 

Fisher's exact test for 2×2 contingency tables is used to check for significant over-

representation of GO terms in the gene list with respect to the rest of genome. 

Multiple test correction to account for the multiple hypothesis tested (one for each GO 

term) is applied to correct for multiple testing using the false discovery rate (FDR) 

procedure of Benjamini & Hochberg (Benjamini, 1995). The FDR is necessary to 

control the number of false positives given the large number of simultaneous tests. 

Each associated GO term is assigned a p-value and an adjusted p-value. The p-value 

was derived from the Fisher's exact test while the adjusted p-value uses the FDR 

procedure.  
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2.11 In vivo imaging 

2.11.1 Cellular Migration Stroke Model  

To verify the sensitivity and efficacy of MGIO as a cellular label for MRI tracking, an 

injury model to demonstrate stem cell homing is required. The brain was chosen as 

the target organ as it provides a reasonably homogenous and hyperintense background 

for the observation of hypointense, migrating cells. The mouse brain is often imaged 

with dedicated MRI equipment, but the rat brain at approximately the size of an 

adult’s thumb, is more easily imaged on the available clinical MR scanner. Cerebral 

infarction by focal ischemia is a clinically relevant injury model which can result 

from thrombosis or embolism.  

2.11.1.1 Internal and Middle Cerebral Artery Occlusion 

Middle cerebral artery occlusion (MCAo) is a commonly used method to induce 

ischemia with the option of reperfusion. In this model, only large (25-84mm2) infarcts 

are reproducible but they result in motor deficit and contralateral circling (Menzies, 

1992). Small infarcts are desired as the migrated cells can be more easily located. The 

MCAo can be produced by craniectomy or by advancing an end-rounded suture 

through the internal carotid artery (ICA) to occlude the origin of the MCA (Longa, 

1989). The advancing suture method is less invasive to the animal but is more 

technically demanding as it requires dextrous fingers to feel the resistance on the 

suture when its end reaches the MCA origin. 
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2.11.1.2 Photochemical Cerebral Thrombosis 

The photochemical cerebral thrombosis is an alternative and well-established 

thrombotic stroke injury model in rats (Watson, 1985; Kim, 2000; Jendelova, 2004). 

The principle behind this method of infarct creation lies in the absorption of green 

light by intravascular Rose Bengal. The resulting triplet state of the sensitizer 

molecule generates singlet oxygen, starting a chain process of peroxidation that 

produces microrupture of endothelial cell membranes, and causes platelet aggregation 

that eventually leads cerebral infarction and necrosis. In this highly reproducible 

model, the size of the infarct depends on the Rose Bengal dose and delivery rate, light 

intensity and area exposed. 

Focal cortical stroke was induced in Wistar female rats via a photochemical method 

(Watson, 1985; Jendelova, 2004). The rats were anaesthetized with 7.5mg/100g BW 

ketamine (Parnell Laboratories, Alexandria, NSW, Australia) and 1mg/100g BW 

xylazine (Troy Laboratories, Smithfield, NSW, Australia) intraperitoneally and 

mounted in a stereotactic frame. A 7.5 mg/ml solution of Rose Bengal in saline was 

filtered (0.22m) and injected via a tail vein cannula at 1 mg/ 100 g BW at a rate of 

0.2 ml/min. Simultaneously, the skull at AP = -2 mm, ML = -3 mm from the bregma, 

was exposed to 60W of blue-green passband-filtered (BG39; Schott, Duryea, PA, 

USA) white light from a halogen lamp via a fibre optic waveguide for 10 min to 

generate a photochemical cortical stroke. The spot size was adjusted to a diameter of 

approximately 3mm with an optical aperture. The selected coordinates corresponded 

to the sensory cortex and were easily assessable for light exposure. The motor cortex 

was avoided to minimize distress to the animal, although contralateral motor deficit 

could have been a convenient manner to verify the success of infarct induction.  
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Figure 15: Procedures of stroke induction by photochemical thrombosis. (a) Animal is 
mounted on a stereotatic frame and skull was exposed. (b) Through a 3mm aperture, 
green-filtered white light was applied to the skull while Rose Bengal was injected via a 
tail vein cannula.  

b 

a 
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2.11.2 Transplantation of fMSC 

Two days after induction of photo-thrombotic injury to the cerebral cortex (Day 0),  

xeno-transplantation of (a) 2x104 M600-labelled fMSC (M600-fMSC, n=22) or (b) 

2x104 ferucarbotran-labelled fMSC (ferucarbotran-fMSC, n=7) into the contralateral 

cerebral cortex was performed. A third group had (c) 2x106 M600-labelled fMSC 

infused intravenously through the tail vein (n=4), and (d) a control group of animals 

without cortical injury were transplanted with 2x104 M600-fMSC (n=3). A further 

two control groups consisted of animals with contralateral stroke injury either without 

cellular transplantation (n=10), or transplanted with mock-labelled fMSC (n=1). 

For cortical injection contralateral to the stroke site, a burr hole (1 mm) was made on 

the right side of the skull to expose the dura overlying the cortex (Figure 15a). fMSC 

were kept on ice, resuspended immediately before injection by repeated pipetting 

before loading into a Hamilton syringe. 2x104 cells in 5 l of PBS were injected 

slowly over a 10 min period using a 33G needle into the contralateral hemisphere at 

AP = –2 mm, ML = 3 mm, and DV = 3.5 mm from the bregma (Figure 15b). For IV 

delivery, 2x106 cells in 0.5 ml PBS were injected into the lateral tail vein. 

Immunosuppression with intraperitoneal cyclosporin (20 mg/kg BW on alternate days, 

Sandimmune Injection, Norvatis Pharma, Switzerland) was initiated at the time of 

cellular transplantation and maintained throughout the experimental duration.  
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Figure 16: Animals is mounted on a stereotaxic frame and (a) a 1mm burr hole was 
made to expose the dura and (b) the Hamilton syringe was lowered and cells were 
injected slowly over a 10 min period. 

a 

b 



Methods 

136 

2.11.3 MRI 

In vivo MRI was performed on a 1.5 T whole-body clinical MR scanner with a 

clinical wrist rf coil (General Electric, GE, Fairfield, CT, USA). Anaesthesia was 

induced with 4% isoflurane and maintained with 1.5-2.5% isoflurane in 100% oxygen 

delivered through a cone mask. In vivo transverse images were obtained using turbo 

spin echo (TSE - FOV: 5cm; Matrix: 192x192 and zero-filled to 512x512; Voxel 

dimensions: 260µm x 260µm x 1.5mm TR/TE/ETL/FA/NEX: 2s/81ms/16/90°/12; 

Acquisition Time: approximately 9min) and gradient echo (GRE - FOV: 5cm; Matrix: 

160x160 and zero-filled to 512x512; Voxel dimensions: 313µm x 313µm x 1.5mm; 

TR/TE/FA/NEX: 280ms/20ms/20°/15; Acquisition Time: approximately 9min) pulse 

sequences as ten 2D slices. SSFP sequence produced sixteen 3D slices (FOV: 6cm, 

Matrix: 160x160 and zero-filled to 512x512; Voxel dimensions: 375m x 375m x 

1mm TR/TE/FA/NEX: 11.2ms/5.6ms/70°/20). 

A method was developed to quantify the number of hypointense voxels on an MR 

image to facilitate a direct comparison of MR images other than a qualitative visual 

analysis. A voxel was considered hypointense if its signal intensity was below the 

signal intensity threshold (SH). Using Rose’s criterion, the SH of a day 5 or day 12 

image was determined with respect to a reference signal (SR) and the image standard 

deviation (SDR), as: 

 RRH SDkSS .  

The SR was determined from the corresponding day -1 GRE image as the mean signal 

intensity of an 8 mm2 ROI positioned at the cortical region contralateral to the stroke. 

The SDR was calculated from the standard deviation of MR signal from the air, 



Methods 

137 

reduced by a factor of 0.655 to account for the non-Gaussian noise of magnitude 

images. The contrast to noise ratio, k, was assumed to be 5.  

2.11.4 Histology 

In order to confirm the generation of a thrombotic stroke, selected rats (n=3) were 

anaesthesized and perfused intracardially with 250ml of 2% 2,3,5-

triphenyltetrazolium (TTC, Sigma-Aldrich) 24 hrs after stroke induction. Following 

recovery of the brain, 1 mm sections were further incubated in TTC at 37 C for 10 

min, laid onto slides, and visualised under light microscopy. For histological analysis 

of transplanted cells at various time points, the rats were anesthetized and 

transcardiacally perfused with PBS followed by 4% paraformaldehyde. The brain was 

harvested, processed and paraffin embedded, Ten micron coronal sections on 

polylysine-coated slides were prepared for staining.   

Prussian blue (PB) iron staining was performed by incubating the dewaxed sections 

with freshly prepared 5% potassium ferrocyanide in 5% HCl 1:1 for 30 min and 

washing with deionised water. For 3,3’-diaminobenzidine (DAB)-enhancement of PB 

staining (Schroeter, 2004), sections were incubated in 3% H2O2 for 3min pre-PB 

staining, PB stained, incubated in 0.05% DAB in PBS for 5min followed by another 

incubated in 0.05% DAB in PBS and 0.03% H2O2 for 3 min.   

Immunohistochemical staining was done after de-paraffinisation, rehydration and an 

antigen retrieval step performed at 95ºC for 30 mins using H-3300 buffer (Vector 

Laboratories, Peterborough, UK). Sections were blocked with 5% goat and fetal calf 

serum, and the nuclear envelope permeabilized with 0.2% Triton X-100 for 1 hr, 

before being incubated overnight at 4 ºC with primary antibodies of mouse anti-rat 
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ED1 1:100 (MCA341R, AbD Serotec, Oxford, UK) and rabbit anti-human vimentin 

1:100 (ab16700, Abcam, Cambridge, UK). After washing of the slides with PBS, 

incubation with secondary antibodies, either goat anti-rabbit Alexa Fluor 488 or goat 

anti-mouse Alexa Fluor 594 at 1:100 for 30 min was performed. Sections were then 

mounted with 4,6-diamidino-2-phenylindole (DAPI) or propidium iodide for nuclear 

visualisation (both from Vector Laboratories). 

Fluorescent in situ hybridisation (FISH) was done after de-paraffinisation, rehydration 

and antigen retrieval at 95C for 30 mins with H-3300, citrate buffer pH6, or Tris-

EDTA. The FISH staining was done on sections with or without prior staining with 

the above immunohistochemical procedure. Each section was dehydrated in ethanol, 

exposed to the 8ul (25% dilution in hybridisation buffer) of Starfish pan-centromeric 

probe (1695-Cy3-02; Cambio, Cambridge, UK), covered cover-slip sealed with nail 

varnish. In a hybridisation chamber, denaturation took place at 71C for 7 minutes 

followed by hybridisation at 37C for 4 hours, in a humid atmosphere. Cover slip was 

removed during post-hybridisation washes in 2x sodium citrate buffer (SSC; 3 M 

NaCl, 0.3 M sodium citrate, pH 7) followed by washing in 0.4x SSC at 72o C for 2 

mins and in 2x SSC at 37o C for 2 mins. Sections were then mounted with DAPI or 

propidium iodide for nuclear counterstaining.  

2.12 Statistics 

Parametric data are shown as mean  standard error of the mean. Iron loading at 

various labelling concentrations was analysed using two-way ANOVA with post-hoc 

Bonferroni correction, or with a t-test. A p-value<0.05 was considered indicative of a 

statistically significant result.  
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Chapter 3 Results I: MGIO Synthesis and 

Characterisation 
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MGIO was synthesized in a two-step process consisting of emulsion polymerisation 

to form PMG, followed by co-precipitation of iron oxide within PMG to form MGIO. 

Manipulation of reagent masses and proportions during both steps of synthesis 

resulted in MGIO with diameters that cover the sub-micron range. The 

physicochemical properties of MGIO were measured, including the MR relaxation 

properties, which were compared against exising theoretical models. 

 

Hypothesis:  

Magnetic microgel iron oxide particles (MGIO) can be synthesized such that they 

have similar composition across the diameter range of 100nm to 1µm. Moreover, the 

measurements of the magnetic resonance relaxation of MGIO can provide a physical 

means of verifying theoretical model predictions. 
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3.1 Synthesis of PMG 

The synthesized PMG Models 1 to 6 were in the order of increasing particle diameter. 

They had similar composition where the DAP was kept at 4% for all models and x-y 

ratios were 60:40, 50:50 or 20:80. Dialysis was performed to remove unreacted 

chemicals, including unpolymerised EA. The presence of EA in the dialysate is 

characterised by a strong odour of solvent that gradually disappears 2 weeks into the 

dialysis process. The resulting PMG has pH of 1.8 to 2.2 and solid weight (wt) % of 

about 10%. 

The quantity of reagents for the various models of PMG differed mainly in the 

micellar ratio, which is inversely proportional to the PMG diameter. For example, the 

quantities of reagents in Model 4 and 5 were similar but Model 5 was larger as the 

monomers were polymerized onto fewer micelles. The effect of a larger amount of 

MAA is exemplified by PMG Model 3 and 4. Both had similar micellar ratio but as 

Model 4 had a higher MAA to EA weight ratio, its hydrated diameter was 130.9 nm 

compared to 71.1 nm of Model 3 (Tan, 2004). The diameters of the other models were 

not determined, although the effects of varying micellar ratio and MAA to EA ratio 

were expected to apply to them as well. 
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3.2 Synthesis of MGIO 

Alkaline co-precipitation of iron salts to form iron oxide particles is a synthesis route 

that was established more than 2 decades ago (Massart, 1981). The method has been 

adapted for the in situ co-precipitation of iron oxide primary particle within PMG to 

form MGIO particles. Synthesized MGIO consist of multiple iron oxide (IO) primary 

nanoparticles cores (~5nm each) held within soft polymeric matrices. The synthesized 

MGIO had a 9-fold range of hydrated diameters (87–765 nm) as determined by DLS.  

The PIO size of 5 nm or less is expected at the precipitation temperature of 35 C 

given that the particle sizes created by the alkaline co-precipitation process is 

dependent on temperature (Davies, 1993). Elevated temperature would result in larger 

PIO that have higher saturation magnetization and magnetic remnance (Murbe, 2008). 

Attempts with co-precipitation at 35 to 80C were made, but they failed to produce 

stable MGIO above 40C as the PMG became unstable during the Fe2+ salt infusion 

process. The unstable PMG lost their ability to suspend in the Fe2+ salt solution and 

formed visible aggregates, some of which settled to the bottom of the reactor as soon 

as mechanical stirring stopped. The co-precipitation temperature was selected to be 35 

C to give sufficient margin from the onset of instability at higher temperatures.  
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3.3 Characterisation of MGIO 

3.3.1 Transmission Electron Microscopy 

The transmission electron microscopy (TEM) was used to show that MGIO consisted 

of numerous electron dense sub-5nm structures held together by a mesh of lower 

electron density (Figure 17a-e). The sub-5nm structures were the primary iron oxide 

nanoparticle cores (PIO) which were more electron dense than the polymeric matrix 

holding them together. The composition of MGIO was confirmed by selected area 

electron diffraction (SAD) (Figure 17f), which shows a pattern with interplanar 

spacing typical of composite particles that contain both amorphous material (polymer) 

and crystalline magnetite. From the micrographs, the geometry of MGIO was 

approximately spherical but the particle size was far lesser than the hydrated diameter 

reported by DLS. This is due the collapse of the polymeric matrix when absorbed 

water is removed when the sample is air-dried prior to TEM. Indeed, microgels are 

capable of changing their sizes by several times in response to change in their 

environment, for example change in temperature (Nayak, 2005).  

In comparison to MGIO, air-drying ferucarbotran seems to induce greater aggregation, 

as suggested by the TEM micrographs in Figure 18. Moreover, the diameter of air-

dried ferucarbotran is approximately 50 - 70nm, which is similar to its hydrodynamic 

diameter (62nm). This again suggests that the polymer matrix of MGIO differs greatly 

from that of ferucarbotran. The disparity in the extent of collapse is probably due to 

the difference in the capacity of hydrogel and carboxy-dextran to absorb water.  
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Figure 17: (a-e) Transmission micrographs of M600 air-dried on copper grid. (a-c) 
MGIO are spherical particles that are 50-70nm when dried. The primary iron oxide 
(PIO) nanoparticles, being more electron dense than the polymer matrix of PMG, 
appear as dark spots in each MGIO. (d-e) High magnification images show that the 
PIO are 2-5nm each. (f) Selected area electron diffraction of a single MGIO particle 
showing interplanar pattern typical of composite particle containing magnetite 
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Figure 18: Transmission micrographs of ferucarbotran air-dried on copper grid. (a) 
Dried ferucarbotran are about 50nm in diameters, they appear spherical but 
aggregated when dried. (b) 3 individual particles of ferucarbotran that have diameters 
40-60nm and they contain PIO, just like MGIO. 

3.3.2 Thermogravimetric Analysis  

Thermogravimetric analysis (TGA) of MGIO was performed by heating lyophilised 

MGIO up to 900C to determine the iron oxide weight %. The TGA thermograms 

were plotted to show the weight and the first derivative with respect to temperature. 

The weight loss occurred in four stages. The first loss occurring below 200C was due 

to water absorbed in the MGIO. The weight loss from absorbed, tightly bound water 

was about 3-4 %. Removal of bound water that coordinated to the carboxyl groups 

occurs before 200C, which is similar to the TGA of poly(acrylic acid) (Maurer, 

1987). The minimum of the derivative, Tdry, occurring at about 140 – 160 C, was 

taken as the temperature at which MGIO became completely dry with intact carboxyl 

groups. The next stage of weight loss occurred between the 160 to 285 C where a 

water or ethanol side chain was eliminated in the anhydrite formation process shown 

below (Bajaj, 1994). 

a b
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Figure 19 Schematics of anhydrite formation during PMG degradation. (a) Between 
two MAA neighbours, an ethanol molecule is removed. (a) Between a neighbouring 
MAA and EA, a water molecule is removed. 

The third (300 – 500 C) and fourth (500C – 800 C) stage of weight loss involved 

the decomposition of the polymer backbone with the release of different 

decomposition products. In this temperature range, the anhydrite chains were 

fragmentated into gaseous products. When polyacrylic acid was analysed by TGA, it 

was shown by mass spectrometry that at the third stage, methacrylic acid, and carbon 

dioxide were given off, and at the fourth stage, the by-products were propene, 

isobutylene and dodecanoic acid (Schild, 1993; Bajaj, 1994). Although I have not 

performed mass spectrometry of the output gaseous during TGA, the by-products can 

be expected to be similar due to the similar composition of acrylic acid and MAA. 

At the temperature range of 750 – 900 C, a weight gain was observed for some of the 

samples. This was due to the oxidation of MGIO magnetite to γ-hematite below 500 

C and to α-hematite beyond 500 C by the traces of oxygen in the 99.99% nitrogen 

gas used during TGA (Forsmo, 2005). The weight gain from oxidising magnetite is 

dependent on the amount of oxygen during TGA. The amount varies depending on the 

purity of nitrogen used during the analysis. In air, the weight gain from oxidising 

b

a
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maghemite is about 3.5%. In a completely oxygen free-atmosphere, the weight gain is 

less than 0.1% and is still less than 1% in 99.99% nitrogen (Ishikawa, 1998). 

Therefore, this is a negligible error in our calculations. Nonetheless, the weight of the 

final product was taken at a temperature Tfinal of 850 C instead of 900 C to minimize 

this error. The residue consisted of iron oxide and minute amounts of solid polymeric 

decomposition products. Based on previous TGA studies, the residue weight % of 

PMG, R, was about 4% at 600C and less at higher temperature (Bajaj, 1994). 

Therefore, the iron oxide weight % can be defined as, 

 
,

% IO

IO P dry

W
wt X

W W
 


  

Where WIO is the weight of iron oxide in MGIO and WP,dry is the weight of PMG at 

Tdry. Given that the initial weight of MGIO at room temperature, Wsample, is known, 

the following equations can be established. 
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Where Pdry and Pfinal are the weight % of the sample at Tdry and Tfinal, respectively. The 

wt% can be expressed as 

 %
1
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R

Pwt X
R
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Under this TGA condition, R can be accurately determined by performing TGA on 

PMG alone, but this experiment was not done. The error due to R was considered 

negligible small for other workers to have omitted it from their calculations (Lin, 

2005). MGIO particles contained between 33 to 82 % by weight of IO as determined 

by this method. The thermograms of each MGIO can be found in the following pages. 
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Figure 20: Thermogram of M100. Weight % curve (green) shows that the sample weight 
was decreased from 100% at room temperature to 97% after evaporation of absorbed 
water and further decreased to 74% at 850C. The first minimum of the derivative weight 
(blue) was taken as the temperature where absorbed water had been removed removed. 

Figure 21: Thermogram of M150. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 97% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 80% at 850C. 
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Figure 22: Thermogram of M250. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 97% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 45% at 850C. 

Figure 23: Thermogram of M300. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 97% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 65% at 850C. 
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Figure 24: Thermogram of M400. Weight % curve (green) shows that the sample weight 
was decreased from 100% at room temperature to 97% after evaporation of absorbed 
water at the first minimum of the derivative weight (blue) and further decreased to 64% 
at 850C. 
 

Figure 25: Thermogram of M500. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 97% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 62% at 850C. 
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Figure 26: Thermogram of M600. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 94% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 36% at 850C. 
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Figure 27: Thermogram of M750. Weight % curve (green) shows that the sample 
weight was decreased from 100% at room temperature to 96% after evaporation of 
absorbed water at the first minimum of the derivative weight (blue) and further 
decreased to 33% at 850C. 



Results I: MGIO Synthesis and Characterisation 

152 

In summary, the IO wt% is shown in the following table 

MGIO Model IO wt%

Ferucarbotran 58.4% (Reimer, 2003) 

M100 76.% 

M150 83% 

M250 46% 

M300 67% 

M400 64% 

M500 64% 

M600 43% 

M750 34% 

Table 7: Iron oxide content of various MGIO models expressed in terms of weight % 
(IOwt%).  

Having a high IOwt% is an advantage when MGIO is used as a cell label, as only the 

iron oxide portion of the particle make the cells MR-visible. There is no obvious 

relationship between particle diameter and IOwt%. M100, M150, M300, M400, M500 

have IO wt% higher than ferucarbotran, but the MGIO models have lower IO wt%.  

Between M100 and M150, M150 was expected to have a higher IOwt% because both 

were synthesized from the same PMG model (Model 1), but M150 was infused with 

1.0g of iron salt while M100 received only 0.3g. M150 and M250 were co-

precipitated under the same conditions but M250 was synthesized from a larger PMG 

model (Model 2) that have a MAA:EA ratio of 50:50, while that of PMG Model 1 

was 60:40. The greater availability of MAA in M150 may explain its higher IOwt%, 

since MAA provide carboxyl groups that coordinate with iron salts. Comparing M300 

and M400, they were based on the same PMG model (Model 3), although M400 

received a larger amount of iron salt. M400 was expected to have a higher IOwt% but 
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did not, suggesting that the iron oxide loading of PMG Model 3 was saturated by 1.0 

or 1.5g of iron salt. 

M500, M600 and M750 had similar co-precipitation conditions and they were based 

on PMG Model 4, 5, and 6, respectively, which had the same MAA:EA ratio but 

differed in diameter. With these three MGIO models, the IOwt% were inversely 

proportional to the diameters of the PMG used, suggesting that the iron oxide loading 

of large PMG is less efficient. This may be due to insufficient time for infusion of 

iron salts to the centre of large PMG, thus restricting iron oxide formation to the 

particle surface region. We may require longer period of iron salt infusion, a process 

that is currently given two hours. On the other hand, the PMG may have been 

homogeneously infused but when ammonia was added, the formation of iron oxide 

near the particle surface may have impeded ammonia from reaching the iron salt at 

the PMG centre quickly. Moreover, the addition of ammonia may have increased the 

ionic strength of dispersion medium, which resulted in collapse of the matrix (Tan, 

2005) and leakage of inner iron salts before they can be co-precipitated. 

3.3.3 Vibrating Sample Magnetometry 

The vibrating sample magnetometry at 300K was used to obtain the magnetization 

plot against an externally applied field that varied from -10 to 104 A/m. The applied 

field is also called the magnetic flux density or magnetic field strength and is 

measured in the unit of A/m, equivalent to 10-4 Tesla (T). This analysis was used to 

determine the dc magnetization and the hysteresis characteristics as the field was 

stepped past the origin. The average magnetization at 104 A/m (M10kAm) was 83.7  

3.3 Am2 / kg of iron oxide for M400 to M700. While it is acceptable to take the 
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magnetization at 104 A/m as the saturation magnetization of each sample a more 

precise magnetization at infinite field can be obtained through non-linear regression 

or a Lineweaver-Burk plot by treating the magnetization values at positive fields to be 

a Langevin function (Lineweaver, 1934). Essentially, it is a plot of magnetization 

against the reciprocal of field. The saturated magnetization (Ms) obtained through this 

method is 85.9  3.1 Am2/kg of iron oxide. This value is comparable to the Ms of 

magnetite particle of sizes similar to the primary iron oxide nanoparticles in MGIO, 

which have values of 85.7 to 87.0 Am2/kg (Ramirez, 2003).  

All MGIO samples have saturation magnetization lower than bulk magnetite 

magnetization of 92 Am2 / kg (Cullity, 1972) except for M400. The random canting of 

surface spins of the primary iron oxide particles within MGIO causes a reduction in 

saturation magnetization compared to bulk magnetite. A reduction in saturation 

magnetization of ferrimagnetic particles such as PIO is expected as opposed to an 

increase for ferromagnetic particles (Batlle, 2002). The larger than expected Ms for 

M400 could be due to the experimental error during weight measurement of the VSM 

sample. A 2.2mg sample of M400 was measured using a digital weighing scale with 

error of 0.1mg, implying that a weight measurement error of up to 5% can be 

expected. Therefore, a 5% error may have been introduced into the magnetization per 

unit mass measurements, and the Ms of M400 is within the margin of this error. The 

remanence magnetization, Mr and coercivity, Hc are the magnetization at H=0 and 

field at M=0, respectively. They were obtained by b-spline interpolation of the 

magnetization curves around the origin to determine the y and x-intercept, 

respectively. The low Mr/Ms remanence ratio and low coercivity Hc indicate that there 

is negligible amount of remanent magnetization when the external field is removed, 
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implying that the primary iron oxide nanoparticles within MGIO are moderately well 

separated (Morup, 1995).  

Figure 28: Magnetization curves for M400 to M750 measured by VSM. (a-e) 
Magnetization was measured while the samples were subjected to a static field that was 
varied stepwise from 103 to -103G. (f) Magnification of the orgin when curves of M400 
to M750 are superimposed show a small amount of hysteresis.   

a b

c d

e f
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Figure 29: Average magnetization of M400 to M750. (a) By superimposing the 
magnetization curves, the average magnetization (b) at each field strength can be 
obtained and plotted.  

 

 

Table 8: Magnetization measurements determined by VSM. M10kOe is the 
magnetization when field strength is 103G; Ms is the saturation magnetization when 
field → ∞; Mr is the remnant magnetization and Hc is the coercivity. 

MGIO 
Model 

Sample 
Mass 

(g) 

M10kG 

(Am2/kg) 
Ms 

(Am2/kg) 
Mr  

(Am2/kg) 
Mr/Ms Hc (Oe) 

M400 2.2 92.38 93.56 4.157 0.044 0.4374 

M500 3.3 85.07 87.42 6.429 0.074 0.958 

M550 14.9 80.83 83.29 5.750 0.069 0.7084 

M600 3.5 81.18 83.78 5.127 0.061 0.455 

M750 9.0 87.05 89.29 2.836 0.032 0.7202 

average - 85.302.12 87.471.89 4.8600.629 0.0560.008 0.6560.097 

ba 
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3.3.4 SQUID 

The remanence of M600 was further analysed by measuring its ZFC and FC 

magnetization curves. Analysis of lyophilised M600 produced the curves below.  

 

Figure 30: ZFC/FC of lyophilised M600 from 0 to 320K. The two curves did not 
intersect at temperatutes below 300K, hence the blocking temperature is above 300K. 
The blocking temperature is probably slightly above 320K as the curves were almost 
intersecting at 320K.  

Since the ZFC neither showed a maximum nor met the FC curve at temperatures 

below 300K, the blocking temperature was above 300K and the sample was not 

superparamagnetic. The two curves were nearly intersecting at 320K, indicating that 

the blocking temperature is slightly above 320K.  

The lyophilising of MGIO may have decreased the inter-particle distance between the 

primary iron oxide nanoparticles, and enhanced particle dipole and exchange 
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interaction (Morup, 1995). Since MGIO are used in its aqueous state during cell 

labelling applications, further measurement were carried out on aqueous MGIO, to 

obtain the following cooling curves.  

 

Figure 31: ZFC/FC of aqueous M600. The results were similar to those with lyophilized 
sample. The curves were nearly intersecting at 320K, indicating that the blocking 
temperature was not much further.  

The results with aqueous M600 were similar to those of the lyophilised sample. Given 

that the primary iron oxide nanoparticles (PIO) are approximately 5nm as assessed by 

TEM, they are within the size limit of superparamagnetism, as particles of less than 

approximately 15nm are expected to exhibit superparamagnetism (Bean, 1959). 

Therefore the TB is expected to be below 300K but is greater than 320K instead. This 

phenomenon may be due to the interaction or dipole-coupling between PIO. ZFC 

curves approached a broad-based maximum that had shifted to temperatures beyond 
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300K, indicating that PIO are interacting in groups with sizes larger than the 

superparamagnetic limit. Moreover, the FC curves did not follow the Curie-Weiss law, 

suggesting the presence of strong interparticle interactions (Testa, 2001). This 

interpretation is supported by observations of Bizdoaca et al. PIO of diameter 4 and 

13 nm had TB of 23 and 185K, respectively (Hyeon, 2001). However, Bizdoaca 

synthesized composite particles of 750nm diameter by fusing PIO (~12nm) on the 

surface of polystyrene cores, resulting in similar TB as M600 (Bizdoaca, 2003). 

Bizdoaca concluded that the elevated TB was a result of dipole-coupling between PIO 

on the composite particles.  

Dry samples are preferred to aqueous ones as a greater dry sample mass can be 

accommodated in the instrument, which improved measurement accuracy. 

Excessively high concentration on the aqueous sample may be the cause for the dipole 

interactions. Therefore, further experimentation with concentrations lower than 320 

mM Fe may be required, albeit at the loss of accuracy with small sample quantity.  
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3.3.5 Dynamic Light Scattering 

The inverse Laplace transformation of acquired data was performed by Gendist 

software and the results were presented in the form of intensity autocorrelation as a 

function of time delay between intensity measurements, τ. Each dynamic light 

scattering (DLS) measurement was taken at a particular angle,  . With the following 

relationships, the particle diameter, Hd can be expressed in terms of   

 2/sin
4

0

1 

m

qq 


 

 21/ Dq     

 
3H

kT
d

D
  

The intensity autocorrelation curve was normalised and expressed in arbitrary units 

(A.U.). With every DLS measurement, one such plot can be generated. A plot of each 

particle was selected and showed in the chart below. 
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Figure 32: DLS plots of ferucarbotran and M100 to M750. All particles had unimodal 
size distributions. The peak of each distribution curve was taken as the mean hydrated 
diameter.  

For each particle, three to six repeated measurements were taken with the photo-

detector set at different angles. Gendist software provided the diameter at which each 

intensity autocorrelation curve peaks, and the mean of these peaks was taken as the 

particle hydrodynamic diameter, Hd  and are shown below. 
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Table 9: Hydrated diameter of particles expressed as mean SEM.  

The diameter distribution of suspended particles including SPIO, is dependent on the 

weighting used (Jung, 1995). Intensity weighting is commonly used to report DLS 

sizes and it may be biased towards large particles in polydispersed samples. However, 

MGIO were monodispersed as the diameter distributions had single dominant peaks. 

Therefore, the intensity weighting is a reliable method to present the diameter 

distribution of MGIO. The details of the normalised curves against Hd  of each 

particle are presented in the following pages: 

Particle 
Hydrodynamic diameter,

dH (nm) 

Ferucarbotran 64 ± 2 

M100 87 ± 5 

M150 152 ± 9 

M250 263 ± 3 

M300 329 ± 30 

M400 414 ± 10 

M500 479 ± 24 

M600 602 ± 20 

M750 766 ± 20 
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Figure 33: DLS distribution curves of Ferucarbutran from repeated measurements of 
one sample 
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Figure 34: DLS distribution curves of M100 from repeated measurements of one 
sample 
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Figure 35: DLS distribution curves of M150 from repeated measurements of one 
sample 

 

0

0.5

1

1 10 100 1000d (nm)

A
.U

.

 

Figure 36: DLS distribution curves of M250 from repeated measurements of one 
sample 
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Figure 37: DLS distribution curves of M300 from repeated measurements of one 
sample 
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Figure 38: DLS distribution curves of M400 from repeated measurements of one 
sample 
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Figure 39: DLS distribution curves of M600 from repeated measurements of one 
sample 
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Figure 40: DLS distribution curves of M750 from repeated measurements of one 
sample 
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3.3.6 Relaxation 

The R2* and R2 relaxations rates were obtained from the GRE and CPMG images, 

respectively. When the R2* or R2 relaxation rates of each bottle were plotted against 

its concentration, the slopes representing the r2* and r2 relaxivities were obtained by 

linear regression, from which the relaxation rates at 0.1 mM Fe were derived. The 

following plot for M250 is shown as an example. 

Figure 41: Example of a plot of relaxation rates against concentration to determine 
relaxivity. The gradient of CPMG relaxation rates and GRE relaxation rates 
corresponded to relaxivity r2 and r2*, respectively.  

The T2 and T2* relaxivity (r2 and r2*, respectively) of the samples were measured. A 

GRE sequence was used to obtain r2*, while a CPMG sequence with a TE = 15 ms 

was used to obtain the r2. The relaxation rates at 0.1 mM Fe (R2 and R2*), obtained 

by interpolation of the relaxivity data, were plotted against particle DLS diameters, dH 

on log-log scales. It was found that R2 and R2* increased with dH, reaching a plateau 

for particles of diameter greater than 150 nm. For particles of diameter greater than 

300 nm, R2 decreased while R2* remained constant. 
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Figure 42: Relaxation rates of particles at 0.1mM Fe. R2* increased with diameter and 
reaches a plateau at M250. R2 is the same as R2* but as diameters increased beyond 
M250, R2 decreased. 

The variation of MGIO relaxation rate with particle size is consistent with various 

theoretical MR relaxation models for magnetised particles. Relaxation rates of 

magnetised spheres like MGIO have been predicted to vary with particle diameters. 

The relationship can be classified into the distinct regimes of MAR, SDR and ELR 

proposed by Gillis et al (Gillis, 2002) and Brooks et al (Brooks, 2001) depending on 

the particle diameter. Several parameters were required by the models to compare 

them against the measure relaxation rates. An important parameter is the equatorial 

offset frequency, δω. It has been assigned the value of 3.4 x 10-7 rad s-1, the same 

value was used when theoretical values of magnetite particles were compared against 

Monte Carlo simulations (Muller, 1991; Ziener, 2005; Yablonskiy, 1994; Brown, 

1993). The equatorial field , Beq of magnetite was reported to be about 0.13 T (Gillis, 

2002; Yung, 2003; Gillis, 1987), which corresponded to the above value through the 

1

10

100

10 100 1000

Hydrated diameter, dH (nm)

R
el

ax
at

io
n

 R
at

e 
(s

-1
)

MGIO R2*

MGIO R2

Ferucarbotran R2*

Ferucarbotran R2



Results I: MGIO Synthesis and Characterisation 

169 

relationship eqB   (Yablonskiy, 1994), where the nuclear gyromagnetic ratio of 

1H, γ is 2.675 x 10-8 rad s-1 T-1. Another required parameter is the concentration of 

iron oxide used, which at 0.1 mM Fe is equivalent to a volume fraction of 1.52ppm or 

1.52 x 10-6.  

 Figure 43: Comparision of relaxation rates to distinct regimes theory of motional 
averaging (MAR), static dephasing (SDR) and echo limited regime (ELR). 
Measurement fit the theoretical models in general. 

The criterion for SDR is that the particle correlation time, r15 / (4 )D     or dH > 

25.46 nm, according to the relationship 2 / (4 )D Hd D  , where D is the diffusion 

coefficient of water (2.025 m2/s at 20C).  This suggests that all measured particles 

are in the SDR. However, the plateauing of R2* from M150 or larger diameters 

suggests that only these particles are operating in SDR. The average R2* of M150 to 

M750 was 63.0  1.6 s-1, exceeding the theoretical value of 62.3 s-1 by 1.12%. The 

elevation of measured R2* was reported by other authors. Bowen and colleagues 

observed an elevation of 21% for SPIO/USPIO labelled cells (Bowen, 2002), Brooks 
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and colleagues a 33% with Monte Carlo simulations (Brooks, 2001). A lower 

increment of 10% between the Monte Carlo simulations and calculations was reported 

by Muller and colleagues (Muller, 1991; Yablonskiy, 1994). Brooks suggested that 

they used an overly large volume fraction of 0.5% in their simulation, violating the 

dilute perturber approximation implicit in the SDR theory. At high concentrations, the 

field profiles of different particles overlap, such that spins far from one particle is 

perturbed by another particle destroying signal and increasing relaxation rate. Indeed, 

lesser elevations were observed by Bowen and Muller who used 0.2% and 2ppm 

respectively. Our results obtained at 1.52ppm have the smallest elevation.  

Comparing R2 measurements with predictions, the R2 of M400 and larger particles 

showed a moderate fit to ELR and decreased with 1/d2 in accordance with the model. 

M400 and larger particles had R2 that was 38% below the calculated value.  The R2 

of M250 and M300 did not agree with the model. The poor agreement is expected, as 

the ELR predicts R2 of large particles and does not model the behaviour of 

intermediately-sized particles with diameters near the intersect between SDR and 

ELR (d = 251 nm). The R2 behaviour of such particles has never been modelled.  

The poor fit of ferucarbotran and M100 relaxation to the MAR predictions require 

further analysis. The particles may be operating at the intermediate region between 

MAR and SDR and the MAR criterion of (1/ )D  or d << 15.43 nm is not met 

by the DLS diameters of ferucarbotran and M100.  The intermediate region has been 

modelled by a continuous empirical model by Yung (Yung, 2003). The R2* and R2 

are predicted to be the same in MAR and SDR, but this model shows a difference 

between R2* and R2 of up to 20% (at d = 25nm), raising questions about its reliability. 

Nonetheless, Monte Carlo simulation results with spherical particles that fit the MAR 
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were shown to be in agreement with the R2* empirical model in the intermediate 

region as well (Figure 44) (Yung, 2003; Muller, 1991). Therefore the existing models 

and simulation data are in agreement with one another, but the relaxation data of 

ferucarbotran and M100 do not fit any of them. 

Figure 44: Comparison of Muller’s simulation, distinct regime and continuous theory. 
Muller’s simulated relaxation rates fit both theories better than the measurements of 
MGIO. 

The disparity between MAR and the relaxation rates of ferucarbutran and M100 may 

be due to the overestimation of effective magnetic perturber size of small particles. 

Ferucarbotran and MGIO consist of multiple primary iron oxide nanoparticle cores 

(PIO) held together by a polymeric matrix of carboxy-dextran and PMG, respectively. 

The magnetic perturbers in theoretical models and Monte Carlo simulations were 

homogenous spheres of diameter dmag. Although structurally different, it is proposed 

that the relaxation behaviour of large MGIO is similar. This proposal is supported by 

the observation that cells labelled with SPIO are inhomogenous intracellularly but 
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undergo R2* relaxation in the SDR like large homogenous particles (Bowen, 2002). 

This means that a composite particle with iron oxide cores (PIO) held together by a 

polymer matrix (eg MGIO) (A) of diameter dDLS, is an equivalent magnetic perturber 

as a particle with a single homogenous core (B) of diameter, dmag (Figure 45). The 

homogenous core is made up of a magnetic material of lower iron concentration such 

that the iron concentration per particles remains the same.  

Figure 45: Representative sketch of composite particles such as MGIO that consist of 
multiple primary iron oxide nanoparticle cores (PIO) held together by a polymer 
matrix like microgel. Each composite particle is equivalent to one with a single 
homogenous core with diameter dmag. (a) For large MGIO, the diameter determined by 
dynamic light scattering (dDLS) approximates dmag. (b) For fercarbotran or small MGIO, 
dDLS and dmag deviates. 

Dynamic light scattering was used to measure the particle hydrodynamic diameters, 

which is based on the refraction at the interface between the polymer matrix and 

surrounding water where the refractive indices are different. For large MGIO, dDLS 

approximates dmag because PIO were distributed relatively close to the particle surface 

(Figure 45a). However, this approximation fails with small particles like ferucarbotran 

or M100 as PIO are few and are distributed relatively further from the surface leading 

to a large error between dDLS and dmag (Figure 45b). This is probably the case for 
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ferucarbutran and M100. The overestimation of dmag by dDLS is the likely cause of 

disagreement between MAR and the measurements of ferucarbotran and M100. 

It is hypothesized that the diameters of PIO clusters measured by TEM, dTEM is a 

better approximation of dmag for particles in the MAR. To verify this hypothesis, the 

relaxation rates of three more particles, each smaller than ferucarbotran were added to  

Figure 43. Through TEM analysis (not shown) each particle contains one to several 

electron-dense PIO, clustered in the centre of each particle such that the respective 

dTEM can be determined. The particles contain PIO coated by i) hyperbranched 

polyglycerol (dTEM = 7.5nm) (Wang Advanced Functional Materials 09 in press), ii) 

poly(ethyleneglycol) monomethacrylate (11nm) (Fan, 2007) and iii) silica (20nm) 

(Ding et al unpublished data). Using the dTEM, the relaxation measurements of these 

particles were indeed in better agreement with MAR.  

The relative proximity of PIO to the particle surface is also dependent on the synthesis 

route. The synthesis process of MGIO results in the co-precipitation of iron oxide near 

the surface of preformed microgel precursors. Conversely, ferucarbotran and other 

mentioned particles were formed by encapsulation of single or clustered PIO with a 

coating of polymer or silica of up tens of nm in thickness. This gives rise to the large 

difference between their dTEM and dDLS. When the dTEM of ferucarbotran is unavailable, 

its relaxation measurements are expected to be closer to the MAR predictions. 
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3.4 Discussion 

MGIO has been synthesized by alkaline co-precipitation of iron salts in preformed 

PMG. A wide size range of PMG was synthesized by selecting reagent mass ratios 

that vary the micellar seeds available for polymerisation (micellar ratio). Large PMG 

were intended for synthesizing large MGIO, but with only two measurements of PMG 

diameters made, the micellar ratio was used as the indicator of PMG sizes. Resulting 

MGIO were indeed larger when large PMG were used.  

As expected, TEM showed that the structure of air-dried MGIO consists of numerous 

primary iron oxide nanoparticles (PIO) held by a polymer matrix that measures 50-

80nm in diameter. However, DLS measurement showed that MGIO were 89 to 

765nm, which means a nine-fold change of particle diameter between water-

suspended and air-dried states and a huge 1000-fold change in volume. Although 

TEM showed separated MGIO and DLS samples are sonicated in water bath prior to 

each measurement to disperse aggregates, the possibility that the various MGIO 

models were actually stable aggregates of different sizes cannot be ruled out.  

Magnetization measurements by VSM and SQUID showed that MGIO possess 

remenance at room temperature and are not superparamagnetic. This implies that 

MGIO exert interparticle attractive forces, but the implication on cell labelling is 

unknown. Being non-superparamagnetic is not necessarily a shortcoming for MGIO 

in the application of in vitro cell labelling as the overall remenance of the labelled cell 

is probably a more important parameter that may affect cellular function. It is also 

unknown if cells loaded with superparamagnetic particles become non-

superparamagnetic themselves. If MGIO is conjugated to a targeting moiety as a long 
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circulating, in vivo targeting agent, non-superparamagnetism may be a disadvantage 

as poorer particle dispersion usually leads to higher undesired uptake by the 

reticuloendothelial system and lower accumulation at the intended target cells.  

The relaxation rate measurements of large MGIO were closer than small MGIO to 

theoretical models of magnetic relaxation by homogenous magnetic spheres. This 

shows that DLS measurements of large MGIO approximate the effective “relaxation-

inducing” diameters. Since this approximation failed for small MGIO, an alternative 

method of obtaining the effective diameters will be needed. One suggestion is to 

freeze a suspension of MGIO, followed by lyophilisation and scanning or 

transmission electron microscopy. Such a procedure may retain the water-suspended 

structure of small MGIO when they are lyophilised so that the water-suspended 

separation of PIO can be observed. 

An application of the relaxation regimes is the differentiation between intact cells 

with compartmentalised iron oxide particles and lysed cells with free particles. 

Interestingly, when cells are loaded with iron oxide particles, they seem to have 

relaxation properties similar to those large magnetic spheres. When ferumoxtran or 

ferucarbotran were compartmentalised in cells, they produced less signal on T2-

weighted images but similar signal T2*-weighted images (Simon, 2006; Henning, 

2009). These results suggest that the labelled cells, like large magnetic spheres, 

produce relaxation in the ELR regime. 
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Chapter 4 Results II: Labelling of Stem Cells 
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The application of MGIO as a cell label was demonstrated on human fetal 

mesenchymal stem cells (fMSC) and endothelial progenitor cells (EPC). In order to 

test the utility of MGIO as a cell label for primary cells, labelling efficiency was 

compared against a clinically-available particle. To determine if labelling with MGIO 

caused deleterious effects, the cells were evaluated on functional characteristics such 

as proliferation rate, multi-lineage differentiation potential and gene expression 

differences. 

 

Hypothesis: MGIO can be used as a label for non-phagocytic cell type, such as fMSC 

and provide better labelling efficiency than clinically-available labels, such as 

ferucarbotran, without deleterious effects to the cells 
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4.1 Isolation and Characerisation of fMSC 

fMSC appeared as plastic-adherent spindle-shaped cells in culture. They have an 

immunophenotype which was negative for haemopoietic and endothelial markers 

CD14, CD34, CD45, CD31, vWF and HLA II and positive for mesenchymal markers 

CD105, CD73; intracellular marker vimentin and laminin; cell adhesion molecules 

CD29, CD44, CD 106, CD 90; and HLA I as previously reported (Zhang, 2009; Chan, 

2007). Under permissive induction media, they underwent osteogenic, adipogenic and 

chondrogenic differentiation, confirming their bona fide identity as MSC (Dominici, 

2006). 
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4.2 Uptake of MGIO by fMSC 

In order to test the utility of these novel particles, we labelled primary fMSC with 

MGIO of varying sizes and ferucarbotran, a clinically-available particle. By simple 

incubation of fMSC with MGIO or ferucarbotran (0.05 mg iron/ml) over 24 hours, we 

observed the incorporation of nanoparticles into the cytoplasm of fMSC (Figure 46a) 

by staining for iron with Prussian Blue. I found 97.3  0.9 % M600-labelled cells 

staining positive for Prussian blue (range 21-38/low powered field (LPF), total cells 

counted = 212), and 98.2  1.1 % (range 20-35 / LPF, total cells counted = 216) for 

ferucarbotran-labelled cells.  

Figure 46: (a) Light micrograph of M600-labelled fMSC with iron stained with 
Prussian Blue. (b) TEM of labelled fMSC with insert showing MGIO in double-walled 
membrane organelle 

In these experiments, the labelled cells tend to be “sticky” and have the tendency to 

form large and inseparable cellular aggregates when extracellular particles are present 

and allowed time to absorb on cellular surface. Obtaining labelled and freely 

suspendable cells is important for their application. For this reason, density 

centrifugation was added to further remove extracellular particles. The labelled cells 
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were also examined under on a haemocytometer to verify that they were separated 

cells (Figure 47). 

Figure 47: Micrographs of (a) M600, (b) mock and (c) ferucarbotran-labelled fMSC on 
a haemocytometer show that labeled cells are separated and their sizes in suspension 
remain 15-25 µm in diameter, as indicated by the lines of the (d) Neubauer 
haemocytometer, regardless of labelling.  

To understand the intracellular location of MGIO, labelled-fMSC was visualized by 

TEM to reveal their localisation to endosomal structures (double-walled membrane, 

cytoplasmic organelles) (Figure 46b). This was consistent with the endocytotic 

mechanism for cellular uptake observed for ferucarbotran as well (Matuszewski, 

2005). 
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Figure 48: Intracellular iron mass when labelled with different particles showed a 
particle size-dependent quantity of uptake. All MGIO sizes showed the same or higher 
uptake than ferucarbotran with M600 providing the highest uptake. 

Interestingly, a distinct size-dependent uptake of MGIO particles was observed. Using 

an initial iron concentration of 0.05 mg/ml, I consistently observed a three-fold 

greater cellular iron loading with M600 (33.3  4.0 pg/cell) than with ferucarbotran 

(9.6  1.3 pg/cell) (p=0.0003, n=9), and significantly higher iron loading for M600 

than with MGIO of other sizes (p<0.001, Figure 48) was consistently observed.  

This difference in iron uptake between M600 and ferucarbotran was even more 

marked on incubation with increasing iron concentrations. Up to a six-fold greater 

cellular iron loading was achieved at an incubation concentration of 0.2 mg iron/ml 

(Figure 49, 263  27 pg/cell vs 41 ± 6 pg/cell, n=3, p<0.001).  
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Figure 49: Intracellular iron as a function of labelling concentration. As iron 
concentration in the labeling medium was increased, the iron loading of the cells were 
increased and the difference in loading between ferucarbotran and M600 became more 
significant.. 

As shown in Figure 49, increasing labelling concentration to 0.1mg/ml or 0.2mg/ml 

resulted in more iron per cell.  
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4.3 Proliferation of Labelled fMSC 

Cells labelled at passage 5 were cultured and sampled to have their intracellular iron 

content analysed for 3 more passages at 5, 8 and 11 days after labelling. We found 

that the half-life of the cellular iron content was approximately one population 

doubling, as can be expected when the iron labels from each cell are fully passed onto 

the two daughter cells (Figure 50). 
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Figure 50: Retention of intracellular iron over 3 passages. Individual points indicate the 
quantity of iron at each particular population doubling. Lines are one-phase decay fits 
to each particle to show that intracellular iron was approximately halved each time a 
cell divided with R2 showing goodness of fit. 
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The effects on stem cell properties were investigated when fMSC were labelled using 

MGIO from 400 to 750 nm and ferucarbotran. Labelling with either MGIO particles 

or ferucarbotran did not affect cell population doubling and viability (>95%) 

compared to the mock-labelled control. (Figure 51 and Figure 52)  

Figure 51: Population doublings at each passage. The number of population doubling 
at each of the three passages post-labelling were not affected by the particles used. 

Figure 52: Cell viability at each passage. The effect of labelling on the cell viability, as 
assessed by Trypan blue exclusion assay, was insignificant for three passages post-
labelling.  
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4.4 Multi-Lineage Differentiation of Labelled fMSC 

Labelling of fMSC with M600 and ferucarbotran did not affect their tri-lineage 

differentiation capacity into osteoblasts, adipocytes and chondrocytes (Figure 53). A 

limitation of the present study is the lack of quantitation assays after staining for 

differentiation. From the optical micrographs of differentiation assays, M600 and 

ferucarbotran-labelled fMSC appeared to have undergone the same amount of 

differentiation as the mock-labelled control, but quantitation assays that measure the 

amount of stained products would have been an elegant proof.  
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Figure 53: Trilineage differentiation of fMSC post-labelling. Labelling with either ferucarbotran or M600 did not affect the multipotent capacity of fMSC 
as shown by their differentiation into osteoblasts (black extracellular crystals by von Kossa staining), adipocytes (oil red O staining) or chondrocytes 
(micromass pellet cultures were stained red by Safranin O and blue by Alcian blue) 

Osteogenic Adipogenic
 

Chondrogenic 



Results II: Labelling of Stem Cells 

187 

4.5 Microarray Analysis of Labelled fMSC 

In order to broaden our understanding of the effects of iron-loading on fMSC, global 

gene expression analysis was performed using a genome-wide microarray. The RNA 

of labelled cells were extracted and their expression levels were compared to those of 

mock-labelled cells. 

4.5.1 Development and Analysis of Microarray Data 

Immediately after labelling, the total RNA of M600, ferucarbotran and mock-labelled 

fMSC was extracted and characterised for quantity, integrity and DNA contamination. 

cDNA was developed from total RNA, synthesised into Biotin-labelled, fragmented 

cRNA and hybridised on the microarrays. The gene expression data was imported into 

Genespring GX, which identified genes that have been altered by labelling. First, the 

control strength was determined from the maximum of base/proportional of the 3 

samples groups (M600, ferucarbotran and mock-labelled) to be 64.47. By considering 

only probes with raw signals >64.47 in at least 1 out of 3 samples groups, the number 

of probes under consideration was reduced from 54675 to 30885. Next, the transcripts 

where triplicates from all sample groups were flagged absent were removed, to avoid 

unnecessary comparison of low signals, reducing the transcripts to 27344. A t-test was 

then performed to identify that 1504 M600-labelled probes (Figure 54) and 895 

Ferucarbotran-labelled probes (Figure 55) had significant differences in expression 

with respect to mock-labelled probes (p < 0.05). Out of these, 114 and 102 probes 

were 2-fold up and down regulated, respectively, in M600-labelled samples compared 

with mock-labelled controls. And 32 and 29 probes were 2-fold up and down 
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regulated, respectively, in ferucarbotran-labelled samples compared with mock-

labelled controls. The scatter plots with the 2-fold differential expression lines, 

heatmaps and the description of these probes are shown on the following pages.  
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Figure 54: Scatter plot showing the 1504 M600-labelled probes that had significant 
difference in expression compared to the mock-labelled counterparts. Out of these 
probes, 114 were more than 2-fold upregulated and 102 were more than 2-fold 
downregulated.  

Figure 55: Scatter plot showing the 895 ferucarbotran-labelled probes that had 
significant difference in expression compared to the mock-labelled counterparts. Out of 
these probes, 32 were more than 2-fold upregulated and 29 were more than 2-fold 
downregulated. 



Results II: Labelling of Stem Cells 

190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Heatmaps of 114 upregulated (left) and 102 downregulated (right) probes 
due to M600-labelling. Ferucarbotran-labelling resulted in the upregulation and 
downregulation of the same genes, except for the group circled blue and yellow.
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Figure 57: Heatmaps of 32 upregulated (left) and 29 downregulated (right) probes due 
to ferucarbotran-labelling. M600-labelling resulted in the upregulation of the same 
genes, except for the group circled blue. M600-labelling resulted in the downregulation 
of the same genes (circled in yellow) except the the uncircled group. 
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The nine lanes of the heatmaps belong to the triplicate samples from each group, ie 

from left to right are the triplicates of mock-labelled sample C1-3, M600-labelled 

sample M1-3 and ferucarbotran-labelled sample F1-3. On the right of each heatmap is 

the probe Affy-ID whose description and synonym can be found in the Appendix or 

via NetAffy™ the web tool from Affymetrix (http://www.affymetrix.com). The 

heatmaps of upregulated genes showed that largely the same genes were up-regulated 

by M600 and ferucarbotran labelling. This is with the exception of the small clusters 

of genes at the bottom (circled in blue in Figure 56 and Figure 57). On the other hand, 

different genes were down regulated by M600 and ferucarbotran labelling, except for 

the clusters circled in yellow. Therefore, the heatmaps suggested that the upregulated 

cellular functions were independent of the label used, but downregulated functions 

were specific to the label.  

To establish the GO terms associated with the lists of differentially expressed genes 

(gene lists) and to enrich them in a process known as functional enrichment, the gene 

lists were imported into the web tool FatiGO (Al-Shahrour, 2006). During the process, 

the 114 genes up-regulated by M600-labelling were matched to the associated GO 

terms at the various GO levels while same was done for the rest of genes in the 

genome outside the list of 114 to produce the following table.  
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Table 10: Matching genes (column List 1) upregulated by M600 labelling to associated 
GO terms at various hierachical levels and comparing the match with other genes in 
the genome (column Genome) 

List 1 of Table 10 shows the number and percentage out of the 114 genes that were 

associated with each level of GO terms. For example, 29 out of 114 genes (25.44%) 

were associated with GO biological processes at level 3 and 1804 out of the 31524 

unique probes in the microarray. Since genes have a many-to-many association with 

GO terms, each GO term was assigned a p-value and an adjusted p-value by Fatigo 

analysis. By considering only the three significant GO terms with adjusted p<0.05, 

M600-labelling caused up-regulation of metal and cation-binding and increased 

penetration of phospholipid bilayer membrane (integral to membrane). Details of the 

significant GO terms are shown in the table below. 
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Table 11: Significant GO terms that are associated with the upregulation of 114 genes 
due to M600-labelling 

The same was done with the list of 102 genes down-regulated by M600-labelling to 

produce the tables in the following pages 

GO Term  List vs Genome P-value 
Adjusted 
P-value 

GO cellular component at level 7    

integral to membrane  GO:0016021 89.9% 10.1% 6.79E-04 4.14E-02

     

GO molecular function at level 3    

ion binding  GO:0043167 95.97% 4.03% 5.22E-06 5.69E-04

     

GO molecular function at level 4    

metal ion binding  GO:0046872 96.71% 3.29% 2.12E-06 6.12E-04

cation binding  GO:0043169 95.57% 4.43% 6.77E-05 9.78E-03
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Table 12: Matching genes (column List 1) downregulated by M600 labelling to 
associated GO terms at various hierachical levels and comparing the match with other 
genes in the genome (column Genome) 
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GO Term  List vs Genome P-value 
Adjusted 
P-value 

GO biological process at 
level 3     

cell cycle  GO:0007049 93.26% 6.74% 6.84E-15 5.20E-13

chromosome segregation  GO:0007059 95.86% 4.14% 7.45E-05 2.83E-03

cell division  GO:0051301 93.92% 6.08% 1.68E-03 4.26E-02

     

GO biological process at 
level 4     

mitotic cell cycle  GO:0000278 97.42% 2.58% 1.84E-19 3.95E-17

cell cycle process  GO:0022402 93.09% 6.91% 6.80E-14 7.31E-12

organelle organization and 
biogenesis  GO:0006996 77.33% 22.67% 2.89E-04 2.07E-02

     

GO biological process at 
level 5     

regulation of cell cycle  GO:0051726 96.25% 3.75% 3.83E-13 1.62E-10

cell cycle phase  GO:0022403 94.44% 5.56% 2.19E-12 4.63E-10

     

GO biological process at 
level 6     

regulation of progression 
through cell cycle  GO:0000074 96.5% 3.5% 1.53E-13 9.63E-11

M phase  GO:0000279 94.89% 5.11% 5.06E-10 1.59E-07

DNA replication  GO:0006260 94.61% 5.39% 1.65E-04 3.35E-02

microtubule-based process  GO:0007017 90.95% 9.05% 2.13E-04 3.35E-02

     

GO biological process at 
level 7     

M phase of mitotic cell cycle  GO:0000087 98.55% 1.45% 4.88E-14 3.49E-11
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cell cycle checkpoint  GO:0000075 96.75% 3.25% 3.03E-06 1.08E-03

microtubule cytoskeleton 
organization and biogenesis  GO:0000226 94.45% 5.55% 2.50E-05 5.57E-03

positive regulation of 
progression through cell cycle GO:0045787 99.3% 0.7% 3.11E-05 5.57E-03

sister chromatid segregation  GO:0000819 97.94% 2.06% 1.51E-04 2.17E-02

     

GO biological process at 
level 8     

mitosis  GO:0007067 98.34% 1.66% 1.80E-13 1.49E-10

spindle organization and 
biogenesis  GO:0007051 98.41% 1.59% 1.15E-04 4.76E-02

     

GO biological process at 
level 9     

regulation of mitosis  GO:0007088 99.43% 0.57% 5.93E-13 4.04E-10

mitotic sister chromatid 
segregation  GO:0000070 98.5% 1.5% 9.27E-05 3.16E-02

Table 13: Significant GO biological process terms that are associated with 
downregulation of 102 genes due to M600-labelling 
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GO Term  List vs Genome P-value 
Adjusted 
P-value 

GO cellular component at 
level 3     

non-membrane-bound 
organelle  GO:0043228 75.74% 24.26% 1.05E-04 1.68E-03

     

GO cellular component at 
level 7     

intracellular non-membrane-
bound organelle  GO:0043232 75.42% 24.58% 6.52E-05 3.98E-03

     

GO cellular component at 
level 8     

cytoskeleton  GO:0005856 82.73% 17.27% 5.19E-05 4.57E-03

     

GO cellular component at 
level 9     

microtubule cytoskeleton  GO:0015630 92.29% 7.71% 3.39E-07 2.85E-05

cytoskeletal part  GO:0044430 84.54% 15.46% 4.86E-05 2.04E-03

     

GO molecular function at 
level 3     

nucleic acid binding  GO:0003676 87.54% 12.46% 2.29E-04 2.49E-02

Table 14: Significant GO biological process and molecular function terms that are 
associated with downregulation of 102 genes by M600-labelling 

There were 27 GO terms significantly associated with downregulation, compared to 

just three associated witrh upregulation, although on closer inspection the 27 GO 

terms were hierarchically associated and can be reduced to the three distinctive 

functions of lowered mitotic cell cycle, formation of microtubule cytoskeleton and 

nucleic acid binding. These GO terms suggest that M600-labelling of fMSC may 
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result in a lower proliferation rate, and possibly slower cellular migration than for 

unlabelled cells.  

With ferucarbotran-labelling, 32 genes and 29 genes up-regulated and down-regulated 

by ferucarbotran labelling, respectively. The same FatgiGO analysis was applied to 

these genes to produces the following results.  

 

Table 15: Matching genes (column List 1) upregulated by ferucarbotran labelling to 
associated GO terms at various hierachical levels and comparing the match with other 
genes in the genome (column Genome) 
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GO Term  
List vs 
Genome P-value 

Adjusted 
P-value 

GO molecular function at 
level 3     

ion binding  GO:0043167 98.05% 1.95% 3.05E-05 3.32E-03

     

GO molecular function at 
level 4     

metal ion binding  GO:0046872 98.5% 1.5% 1.31E-05 3.79E-03

Table 16: Significant GO terms that are associated with upregulation of 32 genes due to 
ferucarbotran-labelling 

 

 Table 17: Matching genes (column List 1) downregulated by ferucarbotran labelling to 
associated GO terms at various hierachical levels and comparing the match with other 
genes in the genome (column Genome) 
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 Table 18: Significant GO terms are associated with downregulation of 29 genes due to 
ferucarbotran-labelling 

Therefore, only three significant GO terms were related to ferucarbotran-labelling 

compared to 30 for M600-labelling. Ion and metal ion binding genes were 

upregulated by ferucarbotran labelling which is similar to the effects of M600-

labelling. Only genes related to the prostanoid metabolic process were down-

regulated by fercarbotran labelling.  

The differences in gene expression profiles obtained may be due to the greater iron-

loading of M600 labelled cells, or to differences in the polymeric content of M600 

and ferucarbotran. M600 is made up of mainly MAA and EA and has an IO wt% of  

43% while ferucarbotan is made of carboxy-dextran with an IO wt% of 58%.  

Despite finding a greater number of differentially regulated genes when labelling with 

M600, no phenotypic difference was observed in the labelled cells in terms of 

proliferation rate over 3 passages, viability and differentiation capacity. The observed 

differential gene expression itself may be transient as total RNA was extracted 

immediately after labelling. The longer term effects are currently unknown, unless 

further test microarray analyses are done on cells several passages after labelling. 

There have been limited studies on the impact of iron oxide labelling on cellular gene 

expression reported in literature. Schafer et al demonstrated that the transferrin 

receptor was upregulated through flow cytometry after labelling of rat MSC with 

GO Term  
List vs 
Genome P-value 

Adjusted 
P-value 

GO biological process at 
level 9     

prostanoid metabolic 
process  GO:0006692 100% 0% 2.26E-05 0.015365
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SPIO (Schafer, 2007), while Berry et al. demonstrated that cytoskeleton and 

signalling genes were upregulated in human dermal fibroblasts after iron oxide 

labelling (Berry, 2004). To date, there has been no genome-wide array study 

performed in human MSC types after labelling with iron oxide particles.  
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4.6 Uptake of MGIO by EPC 

In addition to labelling fMSC, we compared the utility of M600 particles with 

ferucarbotran for labelling umbilical cord blood-derived endothelial progenitor cells 

(EPC). By simple incubation of EPC with the particles (0.05 mg iron/ml) over 24 

hours, we observed the incorporation of nanoparticles into the cytoplasm of EPC. This 

was consistent with the endocytotic mechanism for M600-labelling of fMSC and for 

cellular uptake previously described for ferucarbotran (Matuszewski, 2005). M600 

particles were taken up with good efficiency (28.3  1.6 pg/cell, n=3), a result is 

similar to that of ferucarbotran-labelling (25.8  1.5 pg/cell, n=3) and both particles 

resulted in significantly more intracellular iron than mock-labelled EPC (1.43  0.3 

pg/cell, n=3).  
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4.7 Function of Labelled EPC 

To determine if labelling with MGIO is deleterious to cellular function, M600-

labelled EPC were phenotypically and functionally characterised, and the results were 

compared with those of ferucarbotran and mock-labelled EPC. Intracellar cellular iron 

was stained with Prussian blue and the labels appeared to reside in the cytoplasm, in 

agreement with their location in labelled fMSC. The cells were functionally tested to 

be able to form tubes on matrigel and able to takeup acetylated low density 

lipoprotein and be stained for von Willebrand Factor (vWF) (Figure 58). They were 

also stained for phenotypic endothelial cell surface markers vascular-endothelial 

cadherin (CD144), and platelet/endothelial cell adhesion molecule-1 (PECAM-

1/CD31) (Figure 59). The results of these stains were the same in all three groups, 

suggesting that labelling with M600 or ferucarbotran did not alter EPC phenotypically 

or functionally. 
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Figure 58: Staining of (a) intracellular iron by Prussian blue and (b-d) cellular function 
of mock, M600 and ferucarbotran –labelled EPC. Labelled EPC retained the capacity 
to (b) form tubes, (c) take up Dii-acLDL and (d) be stained for vWF. 
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Figure 59: Staining of mock, M600 and ferucarbotran-labelled cells for endothelial 
phenotypic surface markers. Labelled EPC retained the expression of (a) CD144 and (b) 
CD31. 
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4.8 Discussion  

Incubation of fMSC with MGIO resulted in its internalisation into endosomes, 

suggesting an endocytotic mechanism for cellular uptake as previously described for 

ferucarbotran (Matuszewski, 2005). The greater loading at high concentrations may 

be a result of greater availability of particles in the medium for interaction with the 

cells. There have been similar reports on incubation at high particle concentration in 

an attempt to increase intracellular iron load. It was shown that while human 

monocytes tolerated 0.1mg/ml of ferumoxide, 0.5mg/ml caused apoptosis but 

ferucarbotran at either concentration did not (Metz, 2004). Hsiao et al showed hMSC 

intracellular iron increased by 17 pg iron/cell and were >90% viability when labelled 

with ferucarbotran at 0.1mg/ml (Hsiao, 2007). Schafer labelled with ferucarbotran at 

concentrations up to 0.2mg/ml, obtained iron load increase of 24 pg iron / cell and 

showed that viability remained >90% at up to 20 days post-labelling in culture with 

no significant difference from unlabelled controls (Schafer, 2007).  

The uptake of ferucarbotran and M600 did not show iron loadings that saturate with 

increasing iron concentration in medium. This is in contrast to reports that showed 

saturation at high concentrations for Hela cells and macrophages labelled with 30nm 

AMNP (Wilhelm, 2003) and for T cells labelled with sub-100 to 1.4µm particles 

(Thorek, 2008).  

There are three possible explanations for the absence of saturated loading of fMSC. 

The first may be because fMSC loading is saturated only at concentrations beyond 0.2 

mg/ml. Another possible reason is that the intracellular uptake pathway or space was 

already saturated at 0.1mg/ml. When more particles were introduced during labelling 
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concentration of 0.2mg/ml, the additional particles were merely attached to the 

cellular surface, with adhesion strong enough to resist removal by density 

centrifugation. Further TEM analysis will be required to verify presence of surface 

bound particles at 0.1 or 0.2 mg/ml labelling concentrations. The third possible reason 

is the activation of an alternate uptake mechanism at high concentrations. As particles 

have been shown be adsorbed in aggregates on cellular surface prior to their 

internalisation (Wilhelm, 2003), the greater availability of particles at high 

concentration may have increased aggregate sizes. When presented with aggregates of 

larger sizes, alternative pathways may be activated, akin to the activation of caveolae 

mechanism on melanoma cells by large particles (Rejman, 2004). By determining the 

organelle that the particles reside, the pathway of internalisation may be uncovered 

(please see Section 1.6.6.2). 

Although labelling at concentration beyond 0.2mg/ml was not studied, high 

concentrations such as 0.2mg/ml has been shown to associate with cytotoxicity (van 

den Bos, 2003; Neri, 2008). Most workers reported only cellular viability from 

Trypan blue exclusion or TUNEL assays without considering the functional effects of 

high labelling concentration. Our subsequent experiments used only cells labelled at 

0.05mg/ml as this is a more commonly used concentration and to safeguard against 

possible functional deficit. This concentration already represents 5.6 times the plasma 

concentration when subjects are given the recommended dose of ferucarbotran i.v. 

[the recommended plasma concentration is 9µg/ml (Metz, 2004)]. 

The labelling of fMSC with ferucarbotran resulted in similar cellular loading as 

previously reported by Mailander et al using adult bone marrow derived MSC (9 

pg/MSC) (Mailander, 2008), which is higher than that achieved with ultrasmall-SPIO 
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particle (3.8 pg/MSC) (Schafer, 2007) and the larger polystyrene particles (7.5 

pg/MSC) (Stuckey, 2006). The unexpected finding of a three- to six-fold increase in 

uptake with M600 particles seem to reflect a size dependent effect which has been 

previously reported in the uptake of other nanoparticles by Hela (Chithrani, 2006) and 

T-cells (Thorek, 2008). The mechanisms for this preferential uptake at 600 nm are 

presently unknown, but may in part be explained by the differences in pathways 

involved in endocytotic uptake with different particle sizes. For example, 500nm 

polystyrene particles undergo uptake via a caveolae-mediated pathway, while those 

measuring 50 to 200 nm are taken up by cells through a clathrin-mediated pathway 

(Rejman, 2004). The lower uptake of the larger M750 particles may be explained in 

part by a size limitation of the endocytotic machinery of non-phagocytotic cell types 

(Rejman, 2004). Without considering M600, the differences in uptake between the 

other MGIO models are insignificant, but further trends in uptake with particle 

diameters may be elucidated with a wider range of MGIO diameters. 

Labelling of fMSC with either MGIO or ferucarbotran did not affect either cellular 

proliferation in culture or tri-lineage differentiation. This finding is in contrast to the 

report by Kostura et al. that showed reduced chondrogenic differentiation potential of 

ferumoxide labelled adult MSC labelled with ferumoxide (Kostura, 2004), although it 

remains uncertain whether the cause lies with the particle type used, or the choice of 

transfection agent (poly-L-lysine) used to increase particle uptake (Arbab, 2005). 

However, my microarray analysis picked up possible cell cycle downregulation after 

M600-labelling. This may be due to the difference in chemical composition of M600 

and ferucarbotran, or the greater amount or total particle mass or iron oxide mass per 

cell resulting from M600 labelling. The latter can be controlled by labelling fMSC at 

M600 concentrations lower than 0.05mg/ml to achieve similar particle or iron mass 
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loading per cell at 0.05mg/ml. A separate gene expression analysis of fMSC labelled 

with different particles but with the same particle or iron loading per cells will shed 

light on the cause of the apparent cell cycle downregulation by M600-labelling.  

M600 and ferucarbotran were taken up in similar quantity into EPC cytoplasm, as 

compared to the three-fold greater uptake of M600 compared to ferucarbotran by 

fMSC. This suggests that the effect of particle size on uptake is dependent on cell type. 

Each cell type may have an optimum uptake paticle size, which for fMSC is 600nm, 

but this size has yet been determined for EPC. Labelling EPC with M600 and 

ferucarbotran did not affect the cellular function and phenotypic surface marker 

expression. This shows that MGIO is a suitable label that does affect cellular 

characteristics after labelling across multiple cell types.  
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Through the cell culture experiments described in Section Chapter 4, M600 was 

shown to provide higher iron loading in fMSC than ferucarbotran, without affecting 

stem cell properties. To verify whether fMSC is a cell label superior to ferucarbotran, 

in vivo MR tracking of the labelled cells was demonstrated in this section. A cerebral 

injury model was created to obtain damaged tissue that induced fMSC homing. 

Animals were imaged by MRI at regular time points before and up to weeks after 

stem cell injections to identify the location of the stem cells. The cellular locations 

given by MR images were verified by histology to determine the accuracy of cellular 

tracking achieved.  

 

Hypothesis: MGIO-labelled fMSC can be transplanted to an animal model of cerebral 

stroke such that the cellular migration to the injury site can be tracked by MRI  
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5.1 Cellular Migration Stroke Model 

Stroke was created via two methods: the ligation of internal or middle cerebral artery 

(ICA/MCA), and the focal photochemical induction of cerebral thrombosis. 

5.1.1 Internal and Middle Cerebral Artery Occlusion 

Stroke induction through MCA occlusion by advancing suture method was attempted 

on one animal (Rat1). The ICA was exposed but the suture could not be guided into 

the lumen of the artery. As no personnel with such microsurgery experience was 

available, the technique was deemed to be accomplishable only through the practice 

on tens of animals, which was not feasible ethically. Occlusion by arterial ligation 

was next attempted. A unilateral ICA ligation was performed on one animal (Rat2) for 

30min but no stroke was observed when the brain was stained with 2,3,5-

triphenyltetrazolium (TTC). Stroke confirmation by perfusing the animal with TTC 

was preferred over methods that yield greater histological details (ie paraffin or cryo-

sectioning), as TTC staining provided almost immediate feedback on the stroke 

parameters, without the need for fixation and sectioning. Bilateral ICA ligation was 

attempted on another animal (Rat3) in a procedure that took over an hour to complete, 

but the animal died shortly after the procedure. The invasiveness of the ligation 

procedure and the duration required due to lack of surgery experience may have been 

the cause of death. Yet again, practice with numerous animals, with simultaneous 

ligation of the vertebral arteries may be required to obtain reproducible infarcts 

(Yamaguchi, 2005) 
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5.1.2 Photochemical Cerebral Thrombosis 

After induction of the photo-thrombotic stroke, perfusion with TTC stains 

mitochondrial activity distinctly red to verify that cortical infarcts measuring 4 to 5 

mm across (Figure 60) could be consistently produced.  

Figure 60: Consecutive 2mm brain sections of rats with photo-thrombotic stroke were 
stained by TTC. Mitochrondia activity is stained red while the infarct region remains 
colourless.   

Infarct region demarcated by TTC staining was compared against T2-weighted fast 

spin echo MR images. This MR sequence shows infarcts as hyperintense regions due 

to its sensitivity to accumulated water (Figure 61). The strong corroboration between 

TTC stains and T2 images with suggests that TTC is a convenient method to verify 

stroke creation in our in vivo model.  

Figure 61: Comparison of (a) TTC stain and (b) T2-weighted MR image of the 
approximate section shows that TTC can reliably verify infarct extent  

Seven animals (Rat 4 to 9, Rat 14) were used to establish the parameters and gain the 

technical experience required to create reproducible infarcts. Although reproducible, 

critics of this model may argue that reperfusion is not possible and the mechanism of 

infarction is different from the one experienced by stroke victims. The MCAo 

ba 
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generates cerebral ischemia in the region normally perfused by the MCA, but the 

photochemical method causes thrombosis to all vessels in the light-exposed region. 

However, there are clinical scenarios where focal, primarily cortical or peripheral 

strokes can occur, especially in the setting of embolic disease or vasculitis. 

Nevertheless, the aim is the reliable creation of an injury model that allows the 

observation of cellular migration, which is already achieved with the 

photochemically-induced thrombotic model. However, during the assessment of the 

therapeutic potential of fMSC towards cerebral remodelling in typical stroke victims, 

the MCAo may be a more suitable model. 

5.2 Tracking fMSC in Stroke Animals 

One day after creation of a Rose Bengal-induced photo-thrombotic injury to the 

cerebral cortex (Day -1), the ischemic region was visualised on MR imaging through 

a TSE (yellow arrowheads Figure 62) sequence as a wedge shaped focal hyperintense 

region, involving the cortex predominantly.  
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Figure 62: In vivo imaging with turbo spin echo (TSE, Day -1) and gradient echo sequence (GRE, Day -1 through Day 12). A focal cortical stroke (yellow 
arrows) was induced at Day -2 and cellular transplantation took place on Day 0 by contralateral intracerebral (green arrows) or systemic injection (IV) (a) An 
area of hypointensity appeared in the area of the stroke (red arrows) noticeable at Day 5, and increased over time to Day 12 in M600-fMSC injected animals. 
(b) A similar observation was made in Ferucarbotran-fMSC injected animals, albeit with a smaller area of hypointensity seen. (c) Animals injected with 
M600-fMSC intravenously showed appearance of hypointensity in the stroke region by Day 5, which increased over time to Day 12. (d) In comparison, there 
was no hypointensity at the contralateral cerebral cortex where no stroke injury had been induced.  
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In the M600-fMSC group, intracerebrally-transplanted cells (Figure 62a green 

arrowhead) appeared as hypointense regions in gradient echo (GRE) images on the 

transplanted side of the brain. By day 5, a small area of hypointensity could be seen 

around the peripheral region of the stroke (Figure 62a red arrowhead), suggesting the 

migration of M600-fMSC cells to the stroke site. On day 12, the area of hypointensity 

around the injury could be clearly seen encompassing the periphery of the stroke 

(Figure 62a red arrowheads).  

In keeping with the higher iron loading of fMSC with the use of M600 particles over 

ferucarbotran, the hypointensities developing in the stroke region appeared more 

striking in animals transplanted with M600 than ferucarbotran-labelled fMSC. By 

using the Rose criterion (Rose, 1948) to obtain an image-based quantitative 

assessment for cellular detection, animals transplanted with M600-fMSC had greater 

numbers of hypointense voxels at Day 5 (average hypointense voxels per image 106.2 

 15.2 (n=5) vs 14.0  5.5 (n=3); p=0.002) and at Day 12 (235.3  64.7 (n=4) vs 44.0 

 22.1 (n=3); p=0.03) at the stroke region compared with animals transplanted with 

ferucarbotran-fMSC. Thus, M600-labelling provided a six- to seven-fold higher 

sensitivity for cellular detection at both time-points, which should provide more 

reliable detection of transplanted cells.  

Intravenous delivery of M600-fMSC was well-tolerated, and resulted in the 

appearance of hypointensity by Day 5 at the site of the stroke, which increased from 

Day 5 to 12 on GRE images (Figure 62c). MR imaging of control animals 

transplanted with M600-fMSC but without a contralateral stroke demonstrated no 

development of hypointensity in the contralateral cerebral cortex (Figure 62d).   
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In order to quantify the improvement in cell detection with M600-labelling over 

ferucarbotran-labelling, we measured the signal-to-noise ratio (SNR) in our GRE 

images to be 15.2  0.2 (Firbank, 1999). By applying the detection threshold reported 

by Heyn et al (Heyn, 2005), the detection limit was calculated to be 777  126 pg Fe 

per voxel. In terms of cell numbers, the lower limit at which M600-fMSC (33.3pg/cell) 

can therefore be detected is ~23 cells, compared to ~81 cells for ferucarbotran-fMSC 

(9pg/cell). Under micro-imaging conditions, possibly with research scanners or 

custom-built hardware (100 µm isotropic voxel dimensions and SNR=60) (Heyn, 

2005), the detection limit would be lowered from 777 to 1.340.22 pg Fe per voxel, 

which should allow a single M600-fMSC to be detected even after four cellular 

divisions, assuming that the intracellular iron halves with each cellular division. 

Brain images captured with SSFP sequence provided similar indications of cellular 

migration (Figure 63). However, the infarct areas were less hyperintense compared to 

TSE images, and the suggested cellular locations were also less hypointense. This 3D 

sequence is highly sensitive to water and should give better SNR than a GRE 

sequence in theory. In our SSFP sequence setup, I have chosen higher spatial 

resolution over the GRE sequence while maintaining similar SNR. However, the 

sequence was affected by respiration-induced motion artefact, which was evident in 

the artefacts that extended radially from the brain stem. Susceptibility artefact is 

characteristic of this sequence and in this case, GRE images were deemed more 

suitable for the image analysis and hence preferred over the SSFP images.  
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Figure 63: In vivo imaging with SSFP sequence. The images are of the same animals and were taken immediately after those in Figure 62. A focal cortical 
stroke (yellow arrows) was induced at Day -2 and cellular transplantation took place on Day 0 by contralateral intracerebral (green arrows) or systemic 
injection (IV) (a) An area of hypointensity appeared in the area of the stroke (red arrows) noticeable at Day 5, and increased over time to Day 12 in 
M600-fMSC injected animals. (b) A similar observation was made in Ferucarbotran-fMSC injected animals, albeit with a smaller area of hypointensity 
seen. (c) Animals injected with M600-fMSC intravenously showed appearance of hypointensity in the stroke region by Day 5, which increased over time 
to Day 12. (d) In comparison, there was no hypointensity at the contralateral cerebral cortex where no stroke injury had been induced.  
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5.3 Histology 

We sacrificed the animals in the M600-fMSC group and harvested the brains to 

correlate the MRI findings with histologic and immunostaining evidence of cellular 

and label fate. On Day 1, Prussian blue-positive cells (staining for iron) could be seen 

only at the injection site (blue stain, Figure 64a), but not at the stroke site (Figure 

64b,c). Double immuno-staining of the injection site revealed fMSC as human 

vimentin-positive cells among an infiltration of host ED1 positive macrophages 

(Figure 64d-f) with a discernible shift of cells from the injected site towards the stroke 

area at Day 1. There were only ED1-positive host macrophages, with no vimentin-

positive cells at the stroke site at Day 1 (Figure 64g-h).  

By Day 5, in keeping with MRI findings, iron-labelled DAB-enhanced Prussian blue-

positive cells appeared at the periphery of the stroke injury (Figure 65a-c) and the 

appearance of vimentin-positive human cells together with a heavy infiltration of host 

ED1-positive cells (Figure 65d-f). Histologic sections at Day 12 showed an 

abundance of globular heavily Prussian blue positive cells (Figure 66a-c), correlating 

well with the increase in hypointensity on MR imaging. However, immunostaining 

revealed only ED1-positive cells at the stroke area and no human vimentin positive 

cells (Figure 66d-e). Inspection of the injection site revealed only few vimentin-

positive cells (Figure 66f) amid a large infiltrate of ED1-positive cells.  
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Figure 64: Immunohistological analysis of animals transplanted with 2x104 M600-
fMSC on Day 1. (a-c) Prussian blue/haematoxylin-eosin staining demonstrated iron-
laden cells at the injection site, but not the stroke site. (d-f) Immunohistochemical 
staining of adjacent sections showed these to be mainly human vimentin-positive fMSC 
(green), infiltrated by ED1-positive rat macrophages (red). (g-h) Examination of the 
stroke area demonstrates presence of ED1-positive cells and no vimentin-positive fMSC.  
Nuclei were stained with DAPI (blue).  
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Figure 65: Immunohistological analysis of animals transplanted with 2x104 M600-
fMSC on Day 5. By Day 5, (a-c) the presence of iron-laden cells can be seen at the 
stroke site through DAB enhancement of Prussian blue staining (brown, b-c). (d-f) 
Immunohistological staining of adjacent sections showed the presence of fMSC (green 
vimentin positive cells, f, z-stacked confocal) surrounded with ED1-positive 
macrophages at the stroke site.  
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Figure 66: Immunohistological analysis of animals transplanted with 2x104 M600-
fMSC on Day 12. By Day 12, Prussian blue staining demonstrated increased iron-laden 
cells at the stroke site (a-c), which were exclusively ED1-positive when stained for both 
ED1 and human vimentin on adjacent sections (d-e). Both vimentin-positive and ED1-
positive cells were found in the injection site (f). 
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In animals transplanted with ferucarbotran-fMSC, immunohistologic staining at Day 

12 similarly showed Prussian blue positive and ED1-positive cells at the stroke site 

(Figure 67a-e), and a few vimentin-positive human cells among a majority of ED1-

positive macrophages at the injection site (Figure 67f). In animals that had been 

transplanted with M600-fMSC through tail vein injection, analysis at day 19 

demonstrated similar findings of iron-ladened macrophages at the stroke site, again 

with no visible human cells (Figure 68a-e).  

Transplantation of mock-labelled fMSC into the contralateral cerebral cortex resulted 

in no MRI-hypointense regions at either the injection or the stroke sites, with 

infiltration of Prussian blue-negative ED1 positive cells into both injection and stroke 

sites, and only a few vimentin-positive human cells at the injection site by Day 12 

(Figure 69a-e). Histology of animals without stroke but with transplantation of M600-

labelled fMSC at Day 19 revealed small number of surving fMSC at the injection site 

with no non-specific migration to other regions of the brain. (Figure 70). Examination 

of animals with a stroke injury but without cellular transplantation also demonstrated 

no MRI hypointensity at either sites, with infiltration of only ED1-positive cells, and 

no vimentin-positive cells at the stroke site by Day 12 (Figure 71).  

Immunostaining for host CD8+ cells revealed an increasing infiltrate at the stroke 

region between Day 5 and 12, but were not found at the injection sites (Figure 72).  
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Figure 67: Immunohistological analysis of animals transplanted with 2x104 
ferucarbotran-fMSC on Day 12. (a-c) Prussian blue/haematoxylin-eosin staining 
demonstrated a large number of iron-laden cells at the stroke site. (d-e) 
Immunohistochemical staining of adjacent sections at the stroke site revealed a large 
infilatrate of ED1 positive cells with no human-vimentin positive fMSC seen at the 
stroke site. Nuclei were stained with DAPI (blue). 
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Figure 68: Immunohistological analysis of animals transplanted with 2x106 M600-
fMSC by tail vein injection on Day 19. (a-c) Prussian blue/haematoxylin-eosin staining 
demonstrated iron-laden cells at the stroke site. (d-f) Immunohistochemical staining of 
adjacent sections revealed that these cells to be ED1 positive macrophages. There were 
no human vimentin positive fMSC cells seen at the stroke area. Nuclei were stained 
with DAPI (blue).  
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Figure 69: Immunohistological analysis of animals transplanted with 2x104 mock-
labelled-fMSC at Day 12. (a-c) Prussian blue/haematoxylin-eosin staining demonstrated 
absence of iron-laden cells at the injection and stroke site. (d-e) Immunohistochemical 
staining of adjacent sections revealed infiltration of ED1 positive cells with a few 
human vimentin-positive fMSC (green) at the (d) injection site but not the (e) stroke 
site. Nuclei were stained with DAPI (blue). 
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Figure 70: Immunohistological analysis of animals without stroke but transplanted 
with 2x104 M600-fMSC on Day 19. (a-b) Prussian blue/haematoxylin-eosin staining 
demonstrated iron-laden cells at the injection site, but not the contralateral site. (c-e) 
Immunohistochemical staining of adjacent sections showed infiltration of ED1-positive 
rat macrophages (red) and presence of human vimentin-positive fMSC (green) at the 
injection area. (g-h) Magnified images shows many ED1-positive cells and only few 
vimentin-positive fMSC.  Nuclei were stained with DAPI (blue).  
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Figure 71: Histological sections on Day 12 of animal with  stroke induced but no 
injection. (a-c) No iron-laden cells were found at the Prussian blue/haematoxylin-eosin 
staining. (d-e) Immunohistochemical staining of adjacent sections shows infiltration of 
ED1-positive rat macrophages (red) but no human vimentin-positive fMSC (green) at 
the stroke area. (e) Magnification of the stroke area shows many ED1-positive cells and 
and no vimentin-positive fMSC. Nuclei were stained with DAPI (blue).  
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Figure 72: Immunohistochemical analysis of various animals with stroke induced and 
transplanted with 2 x 104 M600-fMSC and sacrificed at Day 1, 5 or 12. Sections, 
adjacent those shown in Figure 64 to Figure 66, demonstrate progressive increase of 
CD8 (green) cytotoxic T cell in stroke site from Day 1 to 12 but only negligible change 
of CD8+ cells in the injection site, suggesting that an adapted immune response was 
mounted against the stroke site only but not the injection site. 
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5.4 Discussion 

Taken together, histological analysis of the harvested brain suggests that M600-fMSC 

migrated towards the injury from Day 1 and arrived at the stroke area by Day 5 as 

confirmed by both MRI and immuno-histological findings. However, by Day 12 none 

of the fMSC at the stroke site had survived, and their label had been ingested by host 

ED1 positive macrophages, which appeared as heavily label-ladened Prussian blue 

positive cells. This in turn was matched by the disappearance of human cells at 

injection site and corresponding macrophage infiltration. The increase in hypointense 

voxels in the stroke region between Day 5 and 12 is therefore most likely a result of 

migration of host ED1 positive macrophages, following ingestion of iron-label from 

necrosed fMSC at the injection site. 

This unexpected finding may have been caused by acute graft cellular apoptosis 

associated with cellular transplantation paradigms (Beauchamp, 1999; Skuk, 2003), 

resulting in the infiltration of host macrophages to areas of cell death as early as day 1 

after cellular transplantation. Coyne et al and Amsalem et al had previously 

documented inflammatory rejection of allogeneic rat MSC post transplantation into 

neural and cardiac injury models (Coyne, 2006; Amsalem, 2007), and thus this 

phenomenon is not limited to xenotransplantation models. 

There was no heavy mono-nuclear cellular infiltrate into the stroke or injection areas 

to suggest an adaptive immune response, which would normally take between 10-14 

days to develop. Moreover, the observation that cytotoxic CD8+ T-cells were found 

only at the stroke sites on Day 5 and 12, and not at the injection sites, suggested that 

the T-cell infiltrate occurred in response to the stroke and not to the cellular 
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transplantation (Figure 72). The use of combined immunosuppressive agent 

reportedly allows longer graft survival than just Cyclosporin A alone (Yan, 2006; 

Wennberg, 2001). However, we used a Cyclosporin A immunosuppressive dose 

which has been previously shown to enable human-rat xeno-tolerance for up to six 

weeks (Wennersten, 2004; Zhao, 2002; Guo, 2007). Identification of grafted cells was 

attempted using human pan-centromeric FISH probes, but cells with human DNA 

could not be identified. The failure is likely attributed to the paraffin embedding, 

which available probes are not designed to stain. 

Previously, fMSC survival in a fetal-to-fetal human-mouse xenotransplantation 

paradigm with chimerisms of up to 5% for up to 19 weeks duration was demonstrated 

by members in the research group (Chan, 2007; Guillot, 2008). Intracerebral fetal 

injections in a similar model led to oligodendrocytic differentiation and survival for at 

least 35 days (Kennea, 2009). Indeed post-natal transplantation of fMSC in adult scid 

mouse muscle was associated with their survival up to 28 days post transplantation 

(Chan, 2006). The observed cell death cannot be attributed to label toxicity, as a 

similar finding occurred in both ferucarbotran and M600-labelled, and mock-labelled 

fMSC (Figure 69), and therefore is probably due to a difference in the host 

environment specific to this model.  
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Future cellular therapy can be aided by imaging tools that allow clinicians to follow 

the whereabouts of transplanted cells. Magnetic resonance imaging is a high 

resolution imaging modality without ionising radiation that provides excellent 

anatomical details of soft tissue. When cells are sufficiently loaded with iron oxide 

particles, they can be tracked throughout the therapeutic period. However, non-

phagocytic cells such as fMSC take up insufficient amounts of small clinically-

available particles (<100nm diameter) or large commercial particles (>900nm) to 

enable tracking of small groups of cells. Particles with diameters between 100 to 

900nm have not been previously explored as a cell label. 

The key requirement of a useful MR cell label is to enable sufficient labelling 

efficiency without affecting viability or function of the cells. The new label should 

demonstrate improved in vivo reporting of cellular location that is verifiable with 

histological analysis of sacrificed animals.  

6.1 Hypothesis 

The aim of the thesis is to develop a new label that provides better labelling efficiency 

than clinically-available agents. (i) Magnetic microgel iron oxide particles (MGIO) 

can be synthesized to have diameters over the range of 100nm to 1µm, a size range 

not previously explored as cell labels. (ii) With MGIO of various sizes, theoretical 

models of MR relaxation can be verified. (iii) The labelling efficiency of MGIO can 

be tested on a non-phagocytic cell type, such as fMSC, to show better labelling 

efficiency without deleterious effects to cells. (iv) The utility of MGIO can be 

demonstrated in the tracking of fMSC migration in an animal stroke model.  
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6.2 Summary of Findings 

MGIO in the sub-micron diameter range was synthesized by in situ co-precipitation of 

preformed precursor microgel. The iron oxide weight content varied among MGIO 

models from 33 to 82 wt%. The structure of MGIO consists of numerous primary iron 

oxide nanoparticles held by a polymer matrix. MGIO has a high average 

magnetization of about 86 Am2/kg of iron oxide, and although not superparamagnetic, 

the remnant magnetization is low. The diameters of water-suspended MGIO were 87 

to 765nm as measured by DLS. The MR relaxation of M250 and larger particles are in 

good agreement to theoretical values from relaxation model. The poor agreement of 

M150 and smaller particles is probably due to the failure of DLS to estimate their 

effective sizes. 

When MGIO was used to label fMSC by simple incubation, the labelling efficiency 

depended on the particle diameter. M600 provide three- to six-fold increase in iron 

loading compared to ferucarbotran or other models of MGIO. The difference in 

loading is significant and may be attributed to size-dependent activation of endocytic 

pathways. M600-labelled fMSC retained their proliferation rates and multi-lineage 

differentiation capacity but showed down regulation of cell cycle related genes, 

possibly due to the transient effect of exposure to labels in the medium. As an 

alternative cell model, EPC were efficiently labelled by M600 and retained 

phenotypical and functional properties.  

A photochemical cerebral thrombosis rat model was successfully created as a 

platform for verifying the capacity of MGIO. M600-labelled fMSC injected 

intracerebrally or intraveneously migrated to the stroke site over 12 days and were 
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tracked by MR. Compared to ferucarbotran-labelling, M600-labelling provided six to 

seven fold higher sensitivity for cellular detection. Histology analysis showed that 

fMSC survived for up to five days post transplantation at the stroke site and were 

rejected by Day 12, regardless of whether they were labelled. The cause is most likely 

acute immune rejection of fMSC due to incomplete immunosuppression in the 

xenotransplantation model used. Nonetheless, the superiority of M600 over 

ferucarbotran as a label for MR tracking was demonstrated.  

6.3 Limitations 

A limitation of synthesis result is that each PMG and MGIO model was synthesied 

only once, with the exception of M600 which was synthesised three times under the 

same conditions. However, all physicochemical characterisation of M600, with the 

exception of TGA was performed only on the first batch synthesised. All three 

batches were used for cell labelling experiments, including the labelling of MSC 

transplanted into animals, and the results with different batches were pooled and 

treated as replicates. The tight standard deviation of the iron mass loading with M600 

may indicate the reproducibility of the synthesis method, but thorough 

characterisation of each batch will be a better proof of reproducibility.  

The structure of MGIO has not been thoroughly understood through current 

physicochemical analysis. The 10-fold difference between diameters reported by 

TEM and DLS suggest that MGIO has exceptional swelling capacity, or else MGIO 

models are actually aggregates of different diameters. MGIO was suggested to be the 

first verification of theoretical MR relaxation model with a set of synthesised particles 

with similar composition over the sub-micron diameter range. Although MGIO may 
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aggregate, they are stable aggregates that are inseparable by ultrasonic agitation, 

unlike the inducible and dynamic aggregation of SPIO that have relaxation rates that 

vary with aggregate sizes (Roch, 2005).  

More models of MGIO could have been synthesized with smaller separation of 

diameters, if not for the limited time available to experiment with different synthesis 

formulae. With more MGIO models, the MR relaxation models could be more 

thoroughly tested, especially at the inter-regime diameters. Furthermore, fMSC can be 

labelled with more models of MGIO with diameters between 500 to 700nm to 

confirm and understand the extensive uptake observed at with M600. The distribution 

of MGIO diameters were unimodal but were wide and overlapping between adjacent 

models. Post-synthesis method such as gradient centrifugation can be employed to 

obtain MGIO with narrowly distributed diameters, which may help to uncover the 

mechanism of the size-dependent uptake. The attachment of fluorosphores to MGIO 

will also help the analysis of their uptake mechanism. Live confocal microscopy can 

help to visualise cellular response to MGIO labels. For example, if endosomes and 

MGIO were fluorescent at two different channels, their fusion could be observed 

during endocytosis. 

Since the zeta-potential of MGIO was never measured, the various models may have 

different zeta-potential especially when the proportions of MAA to EA are different. 

Presence of particle surface charge can alter the quantity of uptake, probably due to 

alternation of particle aggregation in culture medium by electrostatic repulsion. 

Therefore, the zeta-potential is an important property that may affect particle uptake 

and explain the exceptional performance of M600. Moreover, the reported DLS 

measurements were performed with particles suspended in water instead of culture 
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medium used during cell labelling. The actual and relative diameter of the various 

models of MGIO during cell labelling may be different, especially if the zeta-

potentials were different. This means that M750 is not necessary larger than M600 in 

culture medium and therefore peak uptake could be at greater diameters. Labelling for 

durations of 6h, 12h and 48h with analysis of cell loading and proliferations will also 

strengthen the choice of 24h as the optimum labelling duration. 

The down regulation of cell cycle related genes due to M600-labelling may in part be 

due to the reagents used to synthesise MGIO. Although a month-long dialysis was 

performed to remove unreacted reagent from PMG, minute amounts may remain. 

Even polymerised monomers may be subjected to rare depolymerisation. The most 

dangerous reagent is EA, an irritant with an Acute Exposure Guideline Level One of 

6.3 ppm according to US Environment Protection Agency. Although current evidence 

is inconclusive about the classification of EA as a carcinogen, its capacity to affect 

cellular function cannot be ruled out.  

The results reported by microarray analysis may be due to transient effects of cell 

labelling. This can be confirmed by passaging labelled cells for cell cycle or 

microarray analysis. While the current analysis method has only looked at gene 

ontology related to mRNA expression, pathway analysis of the mRNA expression or 

proteomic analysis may reveal the effects of labelling. The labelled cells have not 

been tested in a cell migration assay such as Boyden chamber or chemotactic 

microfluidic device, where the remnant magnetization in MGIO may affect the 

motility of labelled cells. 

Iron loading was increased by increasing M600 concentration in the labelling medium. 

No saturation of uptake was observed even at 0.2 mg/ml, suggesting that either the 
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saturation concentration has not been reached, or that particles were attached to 

cellular surface rather than internalised into fMSC. The compartmentalisation of 

M600 can be analysed by TEM of cells labelled at various concentrations.  

MR tracking with M600 was demonstrated for up to only 5 days post-transplantation. 

A longer period of monitoring is required in clinical applications. The reason for 

rejection of the grafts was most likely the acute immune rejection of xenoantigen, and 

further histology analysis include staining for HLA-I and II can be carried out to 

confirm this. To demonstrate long term cellular tracking with MGIO, rat MSC can be 

labelled by M600 for allogeneic transplantation where better survival can be expected. 

However, rodent MSC is known to have rather different characteristics compared to 

their human counter part. The most probable cell source for clinical trials is 

autologous or allogeneic MSC, rather than xenogeneic MSC. As a compromise 

between graft acceptance and accuracy of the preclinical model, the labelling non-

human primates MSC for allo-transplantation can also be created to determine if the 

rejection of M600 is species or xenograft-related. The issue of label transfer may 

require prior transgenic marking of transplanted cells or sex-mismatched 

transplantation to enable immunohistology analysis for the co-localisation of 

transgenic markers and MGIO. Transgenic labels are useful although some questions 

may remain as to the effect of transgenic labels like GFP to mammalian cell systems. 

6.4 Future Directions for Research 

MGIO models of more discrete diameter distribution and at more closely spaced 

diameters need to be developed by fine-tuning of synthesis formulae and post-

synthesis purification. Further analysis by TEM is required to understand the structure 
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of water-suspended MGIO. Fluorophores should be conjugated to MGIO to assist 

localization of the particles during live confocal imaging of the uptake process or 

histology of animal model. Rodent or non-human primate MSC should be labelled 

and allo-transplanted to demonstrate if the rejection of fMSC in rats is model- or 

species-related. A research MR scanner with dedicated coils can be used to enable 

high resolution localization of small groups of M600-labelled cells and determine the 

minimum cell count detectable in vivo. 
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6.5 Conclusion 

A new class of MGIO nanoparticles was synthesised to diameters of approximately 

100 to 750nm, for the application of verification of MR relaxation models, cellular 

labelling and MR tracking. High iron-loading of M600 particles in fMSC was 

demonstrated. Despite gene expression analysis showing greater numbers of 

differentially regulated genes after MGIO-labelling compared to ferucarbotran-

labelling, the stem cell properties of self-renewal and differentiation in culture were 

unaffected. The difference in gene expression may be transient and may have been the 

result of either differences in iron loading or particle composition. Although acute 

cellular death of fMSC is evident in our rat stroke model, we found imaging and 

histological evidence of engrafted cellular migration to a thrombotic stroke after 

M600-labelling. With M600, MR detection of migrated cells at the stroke site was 

improved. The greater detection sensitivity available with MGIO labelling of fMSC 

should allow better MRI tracking of small numbers of migrating stem cells. This 

technology could enable in vivo monitoring of cell therapy on standard, widely 

available clinical 1.5T MR scanners. 
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7.1 List of Overexpressed genes 

Here are the lists of up and downregulated genes that have been passed the filtering 

process by Genespring GX. The lists have been sorted in the order of fold-change 

with respect to the mock-labelled control. 

7.1.1 M600-Labelling Up-Regulated Genes (Top 50) 

 

Fold 
Change 

Affy 
ProbeID 

Genbank Gene Symbol Description 

13.1 1565762_at AK074233 RABGAP1L RAB GTPase activating protein 1-like 

12.7 233800_at AA805082 AP2B1 Adaptor-related protein complex 2, beta 1 subunit 

11.5 244464_at AA668789 UBE2E2 Ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast) 

11.3 232925_at AU156822 EGFR 
Epidermal growth factor receptor (erythroblastic leukemia viral (v-
erb-b) oncogene homolog, avian) 

13.1 1565762_at AK074233 RABGAP1L RAB GTPase activating protein 1-like 

12.7 233800_at AA805082 AP2B1 Adaptor-related protein complex 2, beta 1 subunit 

11.5 244464_at AA668789 UBE2E2 Ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast) 

11.3 232925_at AU156822 EGFR 
Epidermal growth factor receptor (erythroblastic leukemia viral (v-
erb-b) oncogene homolog, avian) 

7.8 1561139_at AF086372 COMMD1 Copper metabolism (Murr1) domain containing 1 

7.6 1561689_at AL832561  MRNA; cDNA DKFZp547G1518 (from clone DKFZp547G1518) 

7.5 222375_at AW970944 PPIG Peptidyl-prolyl isomerase G (cyclophilin G) 

7.2 1560500_at BC039395  CDNA clone IMAGE:5299346 

7.1 1560474_at BM728509 NIPBL Nipped-B homolog (Drosophila) 

6.5 238281_at BF593928 RBMS1 RNA binding motif, single stranded interacting protein 1 

5.9 244524_at AI587332 PAX8 Paired box gene 8 

5.9 242611_at BF112104 DOCK7 Dedicator of cytokinesis 7 

5.9 1570087_at BC017431  Homo sapiens, clone IMAGE:4717361, mRNA 

5.0 203665_at NM_002133 HMOX1 heme oxygenase (decycling) 1 

4.5 232704_s_at AK025207 LRRFIP2 leucine rich repeat (in FLII) interacting protein 2 

4.4 1552536_at NM_145206 VTI1A 
vesicle transport through interaction with t-SNAREs homolog 1A 
(yeast) 

4.2 202859_x_at NM_000584 IL8 interleukin 8 

4.2 213112_s_at N30649 SQSTM1 sequestosome 1 

3.9 205680_at NM_002425 MMP10 matrix metallopeptidase 10 (stromelysin 2) 

3.7 1556373_a_at AF086212 MGC35361 Hypothetical protein MGC35361 

3.7 215907_at AK027193 BACH2 
BTB and CNC homology 1, basic leucine zipper transcription factor 
2 

3.5 218322_s_at NM_016234 ACSL5 acyl-CoA synthetase long-chain family member 5 

3.4 241140_at AA702962 LMO7 LIM domain 7 

3.3 239264_at AW973078 SEC8L1 SEC8-like 1 (S. cerevisiae) 

3.3 221477_s_at BF575213 MGC5618 hypothetical protein MGC5618 

3.3 1555743_s_at U92816   

3.2 244358_at AW372457   

3.2 239409_at AA828280 RAP1A RAP1A, member of RAS oncogene family 

3.1 239539_at AI291210 NEK3 NIMA (never in mitosis gene a)-related kinase 3 



Appendix 

244 

3.1 234449_at AL137625  MRNA; cDNA DKFZp434O0212 (from clone DKFZp434O0212) 

3.0 1562674_at BC034299  Hypothetical gene supported by AK001966 

3.0 1566207_at BQ286789 TCEA1 transcription elongation factor A (SII), 1 

3.0 233313_at AU158316 PTPRA Protein tyrosine phosphatase, receptor type, A 

2.9 233940_at AK022801 EML4 Echinoderm microtubule associated protein like 4 

2.9 240458_at AI242023 ITPR2 Family with sequence similarity 20, member C 

2.8 239655_at AA744843 PRDM2 PR domain containing 2, with ZNF domain 

2.8 1565567_at AF075045 STX7 Syntaxin 7 

2.8 205289_at AA583044 BMP2 bone morphogenetic protein 2 

2.8 222252_x_at AK023354 
UBQLN4 ; 
UBQLN4P 

ubiquilin 4 ; ubiquilin 4 pseudogene 

2.8 233152_x_at AL049979 TNKS 
Tankyrase, TRF1-interacting ankyrin-related ADP-ribose 
polymerase 

2.8 215791_at AF003738 ITSN1 Intersectin 1 (SH3 domain protein) 

2.8 221085_at NM_005118 TNFSF15 tumor necrosis factor (ligand) superfamily, member 15 

2.7 209875_s_at M83248 SPP1 
secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-
lymphocyte activation 1) 

2.7 1566342_at R34841  Transcribed locus 

2.7 228708_at BF438386  Clone 25194 mRNA sequence 

2.6 227188_at AI744591 C21orf63 chromosome 21 open reading frame 63 

7.1.2 M600-Labelling Down-regulated Genes (Top 50) 

Fold 
Change 

Affy 
ProbeID 

Genbank Gene Symbol Description 

0.23 218790_s_at NM_018196 TMLHE trimethyllysine hydroxylase, epsilon 

0.23 223749_at AF329836 C1QTNF2 C1q and tumor necrosis factor related protein 2 

0.24 237059_at AA423893 
Transcribed 

locus 
 

0.27 243705_at AW183689 DDHD1 DDHD domain containing 1 

0.30 203214_x_at NM_001786 CDC2 cell division cycle 2, G1 to S and G2 to M 

0.31 215509_s_at AL137654 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) 

0.31 219148_at NM_018492 PBK PDZ binding kinase 

0.31 204558_at NM_003579 RAD54L RAD54-like (S. cerevisiae) 

0.33 223381_at AF326731 CDCA1 cell division cycle associated 1 

0.33 207165_at NM_012485 HMMR hyaluronan-mediated motility receptor (RHAMM) 

0.34 203755_at NM_001211 BUB1B 
BUB1 budding uninhibited by benzimidazoles 1 homolog beta 
(yeast) 

0.35 203764_at NM_014750 DLG7 discs, large homolog 7 (Drosophila) 

0.35 225687_at BC001068 C20orf129 chromosome 20 open reading frame 129 

0.35 213599_at BE045993 OIP5 Opa interacting protein 5 

0.35 222958_s_at AK000490 DEPDC1 DEP domain containing 1 

0.36 221591_s_at BC005004 FAM64A family with sequence similarity 64, member A 

0.36 221520_s_at BC001651 CDCA8 cell division cycle associated 8 

0.36 212142_at AI936566 MCM4 MCM4 minichromosome maintenance deficient 4 (S. cerevisiae) 

0.36 1554997_a_at AY151286 PTGS2 
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase 
and cyclooxygenase) 

0.36 218009_s_at NM_003981 PRC1 protein regulator of cytokinesis 1 

0.36 229610_at AW088063 FLJ40629 hypothetical protein FLJ40629 

0.37 204146_at BE966146 RAD51AP1 RAD51 associated protein 1 

0.37 203213_at AL524035 CDC2 Cell division cycle 2, G1 to S and G2 to M 

0.37 204709_s_at NM_004856 KIF23 kinesin family member 23 

0.37 222608_s_at AK023208 ANLN anillin, actin binding protein (scraps homolog, Drosophila) 

0.38 218542_at NM_018131 C10orf3 chromosome 10 open reading frame 3 

0.38 214710_s_at BE407516 CCNB1 cyclin B1 

0.38 220473_s_at NM_014150 ZCCHC4 zinc finger, CCHC domain containing 4 

0.39 218782_s_at NM_014109 ATAD2 ATPase family, AAA domain containing 2 
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0.39 202094_at AA648913 BIRC5 baculoviral IAP repeat-containing 5 (survivin) 

0.39 237466_s_at AW444502 HHIP hedgehog interacting protein 

0.39 229490_s_at AW271106 IQGAP3 IQ motif containing GTPase activating protein 3 

0.39 210821_x_at BC002703 CENPA centromere protein A, 17kDa 

0.39 209709_s_at U29343 HMMR hyaluronan-mediated motility receptor (RHAMM) 

0.39 226980_at AK001166 DEPDC1B DEP domain containing 1B 

0.40 203418_at NM_001237 CCNA2 cyclin A2 

0.40 209714_s_at AF213033 CDKN3 
cyclin-dependent kinase inhibitor 3 (CDK2-associated dual 
specificity phosphatase) 

0.40 205167_s_at NM_001790 CDC25C cell division cycle 25C 

0.40 210559_s_at D88357 CDC2 cell division cycle 2, G1 to S and G2 to M 

0.41 204887_s_at NM_014264 PLK4 polo-like kinase 4 (Drosophila) 

0.41 228729_at N90191 CCNB1 cyclin B1 

0.41 210052_s_at AF098158 TPX2 TPX2, microtubule-associated, homolog (Xenopus laevis) 

0.41 201292_at AL561834 TOP2A topoisomerase (DNA) II alpha 170kDa 

0.42 209642_at AF043294 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) 

0.42 204886_at AL043646 PLK4 polo-like kinase 4 (Drosophila) 

0.42 1555758_a_at AF213040 CDKN3 
cyclin-dependent kinase inhibitor 3 (CDK2-associated dual 
specificity phosphatase) 

0.42 206364_at NM_014875 KIF14 kinesin family member 14 

0.42 209891_at AF225416 SPBC25 spindle pole body component 25 homolog (S. cerevisiae) 

0.42 223307_at BC002551 CDCA3 cell division cycle associated 3 

0.42 208079_s_at NM_003158 STK6 serine/threonine kinase 6 

7.1.3 Ferucarbotran-Labelling Up-regulated Genes 

Fold 
Change 

Affy 
ProbeID 

Genbank Gene Symbol Description 

11.6 244464_at AA668789 UBE2E2 Ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast) 

4.7 241883_x_at R54203   

4.7 1560474_at BM728509 NIPBL Nipped-B homolog (Drosophila) 

4.3 1554195_a_at BC021680 MGC23985 similar to AVLV472 

3.0 1562674_at BC034299 Hypothetical gene supported by AK001966 

3.0 233609_at AU145587 PTPRK Protein tyrosine phosphatase, receptor type, K 

2.7 218322_s_at NM_016234 ACSL5 acyl-CoA synthetase long-chain family member 5 

2.7 230597_at AI963203 SLC7A3 
solute carrier family 7 (cationic amino acid transporter, y+ system), 
member 3 

2.7 207537_at NM_002625 PFKFB1 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 

2.6 235786_at AI806781 RABEP1 Rabaptin, RAB GTPase binding effector protein 1 

2.6 243090_at AA534466 KIAA0427 KIAA0427 

2.5 237792_at R95743  
Transcribed locus, strongly similar to XP_529427.1 PREDICTED: 
hypothetical protein XP_529427 [Pan troglodytes] 

2.4 232164_s_at AL137725 EPPK1 epiplakin 1 

2.4 232165_at AL137725 EPPK1 epiplakin 1 

2.4 239162_at H04394 DAPK1 Death-associated protein kinase 1 

2.3 238000_at BF195340 KIAA0265 KIAA0265 protein 

2.2 242311_x_at H37943 WHSC1 Wolf-Hirschhorn syndrome candidate 1 

2.2 230538_at AI027957 RaLP rai-like protein 

2.2 244086_at AA872567 KIAA1363 Arylacetamide deacetylase-like 1 

2.2 230188_at AW138350 ICHTHYIN ichthyin protein 

2.2 238753_at AI079596 FREQ Frequenin homolog (Drosophila) 

2.2 227550_at AW242720 LOC143381 hypothetical protein LOC143381 

2.2 239671_at AV703555 CDNA FLJ31085 fis, clone IMR321000037 

2.2 215204_at AU147295 SENP6 SUMO1/sentrin specific peptidase 6 

2.1 231658_x_at BG151154 
LOC127295 ; 
LOC391209 

similar to 60S ribosomal protein L36 ; similar to ribosomal protein 
L36; 60S ribosomal protein L36 

2.1 235666_at AA903473 Transcribed locus, moderately similar to NP_055301.1 neuronal thread protein AD7c-
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NTP [Homo sapiens] 

2.1 215387_x_at AK021505 GPC6 Glypican 6 

2.1 1553990_at BC039154 MGC21830 hypothetical protein MGC21830 

2.0 238666_at BF438300 FDFT1 Farnesyl-diphosphate farnesyltransferase 1 

2.0 235084_x_at AI809831 TRIM38 Tripartite motif-containing 38 

2.0 218995_s_at NM_001955 EDN1 endothelin 1 

2.0 1557360_at CA430402 LRPPRC leucine-rich PPR-motif containing 

7.1.4 Ferucarbotran-Labelling Down-regulated Genes 

Fold 
Change 

Affy 
ProbeID 

Genbank Gene Symbol Description 

0.21 1557197_a_at AW085690 LGALS3 Lectin, galactoside-binding, soluble, 3 (galectin 3) 

0.21 217053_x_at X87175 ETV1 ets variant gene 1 

0.25 240853_at BF224109   

0.25 233522_at AL050132  CDNA FLJ43429 fis, clone OCBBF2027511 

0.27 207334_s_at NM_003242 TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

0.33 241470_x_at R97781  Transcribed locus 

0.37 209160_at AB018580 AKR1C3 
aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid 
dehydrogenase, type II) 

0.37 207761_s_at NM_014033 DKFZP586  

0.37 1554997_a_at AY151286 PTGS2 
prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase 
and cyclooxygenase) 

0.38 238533_at AA651750 EPHA7 EPH receptor A7 

0.38 211088_s_at Z25433 PLK4 polo-like kinase 4 (Drosophila) ; polo-like kinase 4 (Drosophila) 

0.39 209906_at U62027 C3AR1 complement component 3a receptor 1 

0.39 1565595_at AU144979 SLC6A16 Solute carrier family 6, member 16 

0.4 206631_at NM_000956 PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 

0.41 231697_s_at AV660825 VMP1 Transmembrane protein 49 

0.42 241381_at W35132 CXorf36 chromosome X open reading frame 36 

0.42 236207_at BE083088 SSFA2 sperm specific antigen 2 

0.42 231741_at NM_005226 EDG3 
endothelial differentiation, sphingolipid G-protein-coupled receptor, 
3 

0.46 206819_at NM_014549 DKFZP43  

0.46 218000_s_at NM_007350 PHLDA1 pleckstrin homology-like domain, family A, member 1 

0.46 203354_s_at AW117368 PSD3 pleckstrin and Sec7 domain containing 3 

0.46 1568971_at BE564868 C14orf135 Chromosome 14 open reading frame 135 

0.46 230333_at BE326919 SAT Spermidine/spermine N1-acetyltransferase 

0.47 244203_at AI082507  Transcribed locus 

0.47 228708_at BF438386  Clone 25194 mRNA sequence 

0.48 1553011_at NM_153809 TAF1L 
TAF1-like RNA polymerase II, TATA box binding protein (TBP)-
associated factor, 210kDa 

0.49 229288_at BF439579 EPHA7 EPH receptor A7 

0.49 1558706_a_at AL831857 ATOH8 Atonal homolog 8 (Drosophila) 

0.5 221440_s_at NM_006606 RBBP9 retinoblastoma binding protein 9 
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7.2 Record of Experimental Animals 

The following experimental groups were established to demonstrate to evaluate MR 

tracking with M600. 

 Group 0: Verification of stroke model 

 Group 1: Stroke induced, M600-fMSC injected contralaterally 

 Group 2: Stroke induced, ferucarbotran-fMSC injected contralaterally 

 Group 3: Stroke induced, M600-fMSC injected intraveneously 

 Group 4: No stroke, M600-fMSC injected 

 Group 5: Stroke induced, no cells injected 

 Group 6: Stroke induced, mock-labelled fMSC injected contralaterally 

Group 1 and 2 are needed to demonstrate that M600-labelling improves the detection 

of cellular migration when compared with ferucarbotran-labelling. Group 3 is needed 

to show that M600-fMSC can home when delivered in a clinically-relevant route. 

Group 4 is a negative control on the stroke model to show that cellular homing is 

specific to the stroke. Group 5 is a control to show the host response to the stroke 

alone. Group 6 is a control to show that host response to cells alone without the 

effects of labels. 
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Group 
Name 

Description 
Rats 
attempted 

0a Unsuccessful stroke by MCAo 1 

0b Unsuccessful stroke by ICA ligation 2-3 

0c Stroke by photo-thrombosis 4-9 

0d Injection of 103, 104 and 105 M600-fMSC 10 

0e Stroke by photo-thrombosis, T2 MRI then TTC 14 

1a Stroke induced at Day-2 
2.104 M600-fMSC injected contralaterally at Day 0 
sacrificed at Day 12  

11, 15, 17, 
21, 29, 32, 
37, 40, 46-
48, 50, 56-
59, 64, 66, 
67, 70-72  

1b Same as Group 1 but animal was sacrificed at Day 1 73 

1c Same as Group 1 but animal was sacrificed at Day 5 74 

2a Stroke induced at Day-2 
2.104 ferucarbotran-fMSC injected contralaterally at Day 0 
sacrificed at Day 12 

12, 20, 28, 
31,  43, 44, 
45,  

2b Same as Group 2a but 2.105 cells injected 34 

3 Stroke induced at Day -2 
2.106 M600-fMSC injected intraveneously at Day 0 
Sacrificed at Day 19 

36, 39, 41, 49

4a No stroke induced. 
2.104 M600-fMSC injected contralaterally at Day 0 
Sacrificed at Day12 

18, 38, 69 

4b Same as Group 4a but 2.104 ferucarbotran-fMSC injected 33 

5 Stroke induced at Day -2 
No cells injected 

16, 19, 25, 
26, 30, 35, 
62, 63, 65, 68

6 Stroke induced at Day -2 
2.104 mock-labelled fMSC injected contralaterally at Day 0 
sacrificed at Day 12 

75 

Table 19: Record of experimental animals used in our study classified by the 
experimental groups. 
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7.3 Publications 

The following publications and presentations were achieved during the preparation of 

this thesis. 

Journal Publications  
  
Eddy SM Lee, J Chan, B Shuter, LG Tan, MSK Chong, DL 
Ramachandra, GS Dawe, J Ding, SH Teoh, O Beuf, A Briguet, KC 
Tam, M Choolani, SC Wang. Microgel Iron Oxide Nanoparticles For 
Tracking Human Fetal Mesenchymal Stem Cells Through Magnetic 
Resonance Imaging. Stem Cells 2009;27:1921-1931 

Accepted  
30 Apr 2009 

  
Eddy SM Lee, B. Shuter, J Chan, MSK Chong, J Ding, SH Teoh, 
Olivier Beuf, Andre Briguet, KC Tam, M Choolani, SC Wang. The use 
of Microgel Iron Oxide Nanoparticles in the Studies of Magnetic 
Resonance Relaxation and Endothelial Progenitor Cell Labelling. 
Biomaterials (In Press) 

Accepted 
10 Jan 2010 

  
ZY Zhang, SH Teoh, MSK Chong, Eddy SM Lee, LG Tan, C Mattar, 
NM Fisk, M Choolani, J Chan. Neo-vascularization and bone formation 
mediated by fetal mesenchymal stem cell tissue-engineered bone 
grafts in critical-size femoral defects. Biomaterials 2010; 31; 608-620  

Accepted 
21 Sep 2009 

 

Oral Presentations  
  
27th International Fetal Medicine and Surgery Society (IFMSS), 
Athens, Greece 

Sep 2008 

Travel award for the presentation on “MRI Tracking of Fetal 
Mesenchymal Stem Cells”  (Group Prize) – Best Young Investigator 
(Jerry Chan)  

 

  
6th Singapore Congress in O&G, Singapore 21 - 25 Mar 2007 
2nd prize for best oral presentation on “MRI of fMSC with Microgel-Iron 
Oxide Particles” 

 

  
Contrast Media Research, Evian, France  
Awarded Young Investigator Award for oral presentation on 
“Biodistribution of Anionic Magnetic Nanoparticle” 

Oct 2005 

 

Poster Presentations  
  
7th Annual Meeting of the ISSCR, Barcelona, Spain 8 - 11 Jul 2009 
Poster on “MRI Tracking of Human Fetal Mesenchymal Stem Cells”  
  
World Molecular Imaging Congress, Nice, France 10 - 13 Sep 2008 
Poster on “In Vivo Tracking of Human Fetal Stem Cells With a 
Magnetic Microgel: Histological Evaluation” 

 

  
Joint Molecular Imaging Conference, Rhode Island, USA 8 – 11 Sep 2007 
Poster on “In Vivo Tracking of Human Fetal Stem Cells With a  
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Magnetic Microgel” 
  
  
5th Annual Meeting of the ISSCR, Cairns, Australia 11 - 14 Jun 2007 
Poster on “MRI of human fetal MSC using magnetic microgels on a 
clinical scanner” 

 

  
4th Annual Meeting of Molecular Imaging, Cologne, Germany 7 - 10 Sep 2005 
Poster on “Analysis of Hepatic Uptake of Anionic Magnetic 
Nanoparticles” 
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