

ALGORITHMS FOR MULTI-POINT RANGE QUERY
AND REVERSE NEAREST NEIGHBOUR SEARCH

NG HOONG KEE
(M. IT, UKM)

(B. IT, USQ)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2009

i

Acknowledgements

I would like to take this opportunity to extend my sincerest, heartfelt gratitude

to the two great gentlemen of my life, my research supervisor Associate

Professor Dr. Leong Hon Wai and my father Ng Hock Wai. They provided

great and undying support while I was pursuing this degree. No words of

thanks in this world can express enough how I feel. To Prof. Leong, I thank

you for being my bright guiding star and a source of inspiration, particularly

the invaluable advice and teachings. I cherish all the memories that we spent

together all these years discussing research in your office or chit-chatting in

the canteens. To dad Hock Wai, I thank you for being my pillar of strength

and a source of unquestionable love, encouragement and comfort.

Equally, I accord great admiration to my beloved mother Poh Pei,

whose support was always wonderful. I would also like to express sincere

thanks to sisters Sook Fong and Sook Mei, as well as my wife Mee Yee for

their continual encouragements, enthusiasm, and undefeated patience. Thanks

also to Yin Fung for being distracting and noisy but cute.

Next, a word of recognition and commendation is accorded to all

members of Prof. Leong’s Research Allocation & Scheduling (RAS) research

group, whom I have had great pleasure to meet and hold many a discussion on

research and everyday topics. Particularly, a motion of thanks goes to David

Ong Tat-Wee, Foo Hee Meng, Ho Ngai Lam, Dr. Ning Kang, Dr. Li Shuai

Cheng, Dr. Kal Ng Yen Kaow, Chong Ket Fah, Melvin Zhang Zhiyong, Ye

Nan, Max Tan Huiyi and Sriganesh Srihari for being very kind to me and

incredibly helpful. To all the unmentioned RAS members and other NUS staff

and students whom I’ve had the good fortune to meet, I assure you that you

will be remembered and I will treasure all the time we’ve spent together.

Last but not least, I express my sincerest appreciation to the National

University of Singapore for awarding a research scholarship to me so that I

could realise my dreams of pursuing this higher degree. I am also grateful for

the many knowledgeable, wonderful and helpful professors and lecturers that

have taught me in NUS. May this beloved alma mater flourish in many more

years to come.

ii

Table of Contents

Acknowledgements .. i

Table of Contents .. ii

Summary ... vi

List of Tables.. viii

List of Figures .. xi

Chapter 1 Introduction ...1

1.1 Overview of Proximity Query ..3

1.2 Motivation...5

1.3 Research Objectives and Scope ..7

1.4 Contributions of Thesis...10

1.5 Organisation of Thesis ..12

Chapter 2 MPRQ and Related Work..15

2.1 Space Partitioning and Data Partitioning..16

2.2 Coarse Filtering and Fine Filtering ...17

2.3 Point-Region Quadtrees ..17

2.4 R-trees ...19

2.5 Proximity Queries ...24

2.6 Variants of Multiple Range Queries ...26

2.7 MPRQ Terminologies...27

2.8 MPRQ Formal Problem Definition and Framework30

Chapter 3 Main Memory Algorithms for MPRQ...33

3.1 MPRQ Algorithms..33

3.1.1 Preliminaries ... 34

3.1.2 Algorithm 1: RRQ .. 35

3.1.3 Algorithm 2: MPRQ-MinMax.. 36

3.2 Experiments and Results...44

3.2.1 Datasets... 45

3.2.2 Effect of the Number of Query Points .. 49

3.2.3 Effect of the Search Distance ... 50

3.2.4 Effect of Clustered Dataset ... 51

3.2.5 Performance of Real-Life Routes ... 52

3.2.6 Performance of Data Structures.. 53

iii

3.2.7 Effectiveness of Pruning Rules... 56

3.2.8 MPRQ vs Traditional Query... 57

3.3 Summary...59

Chapter 4 External Memory Algorithms for MPRQ......................................61

4.1 External Memory Experimentation Systems ..62

4.2 Porting MPRQ to Disks ..64

4.3 MPRQ Algorithms..67

4.3.1 Algorithm 3: MPRQ-Sorted Path ... 67

4.3.2 Algorithm 4: MPRQ-Rectangle Intersection 72

4.3.3 Running Time ... 75

4.4 Experimental Setup...76

4.4.1 Datasets... 76

4.4.2 Experiment Settings.. 77

4.5 MPRQ-Disk Performance Evaluation ..80

4.5.1 Baseline Comparison of MPRQ and MPRQ-Disk 80

4.5.2 Data Structures.. 83

4.5.3 Small Set of Query Points... 90

4.5.4 Effectiveness of Pruning Rules... 92

4.5.5 Size of the Search Distance .. 94

4.5.6 Performance of Real-life Routes .. 95

4.5.7 Comparison of MPRQ Algorithms... 95

4.5.8 Effect of LRU Buffering... 98

4.6 MPRQ-Disk vs Spatial Join Algorithms...99

4.6.1 High-Performance Spatial Join... 99

4.6.2 Slot Index Spatial Join (SISJ) ... 103

4.7 Summary...106

Chapter 5 RNN and Related Work...110

5.1 The RkNN Problem ..111

5.2 Formal Problem Definition...111

5.3 Related Work ..113

5.4 Variants of the RNN Problem...118

5.5 Summary of RNN Algorithms..118

5.6 Statistical Analysis..120

iv

5.6.1 Correlations between NN and RNN ... 121

5.6.2 Randomness of Clusters ... 124

Chapter 6 RNN-Grid: An Estimated Approach for RNN Query127

6.1 The Grid File...127

6.2 RNN-Grid Algorithms ..129

6.2.1 Best-First Wavefront (BFW) Algorithm .. 131

6.2.2 Best-First Cell Expansion (BFCE) Algorithm.................................. 133

6.2.3 BFCE with Perpendicular Bisector (BFCE-PB) Algorithm 136

6.2.4 BFCE with Constrained Region (BFCE-CR) Algorithm 140

6.3 Experiments and Results...145

6.3.1 Experiment Settings.. 145

6.3.2 BFW vs BFCE .. 147

6.3.3 Effect of Grid Cell Size .. 149

6.3.4 Effect of Disk Page Size ... 151

6.3.5 Precision and Recall Analysis .. 152

6.3.6 High Dimensional Data .. 155

6.3.7 Performance Comparisons.. 157

6.3.8 Dataset Distributions .. 160

6.4 Summary...161

Chapter 7 RNN-C Tree: An Exact Approach for RNN Query162

7.1 Preliminaries ...163

7.2 RNN-C Tree Construction ..165

7.3 R1NN Queries with RNN-C Tree...171

7.4 RkNN Queries with RNN-C Tree ...174

7.5 Experiments and Results...179

7.5.1 Effect of Pruning Rules .. 179

7.5.2 Performance Comparisons.. 181

7.6 Summary...184

Chapter 8 Conclusion and Future Work...186

8.1 Conclusion ..186

8.2 Future Work for MPRQ..187

8.2.1 Velocity and Trajectory .. 188

8.2.2 k-Nearest Neighbour MPRQ... 188

v

8.3 Future Work for RNN-C Tree ..189

8.3.1 Multi-point RkNN Problem .. 189

8.3.2 Dynamic RNN-C Tree Structure .. 190

8.3.3 Bichromatic RNN and Beyond... 191

8.3.4 Moving Query Point ... 192

Bibliography...194

Appendix A PepSOM: An Application of MPRQ-Disk207

A.1 Peptide Identification in Bioinformatics ...207

A.2 Problem Description..209

A.3 PepSOM Algorithm...211

A.3.1 Self-Organising Map ...211

A.3.2 Multi-Point Range Query ..213

A.3.3 Converting Spectra to Vectors...214

A.3.4 PepSOM ..216

A.4 Experiments...218

A.4.1 Experiment Settings and Datasets ...218

A.4.2 Accuracy Measures ...220

A.4.3 Results and Analyses...221

A.4.3.1 Quality of PepSOM Results ..221

A.4.3.2 Performance of PepSOM...222

A.4.3.3 Filtering Rate...223

A.4.3.4 Effect of Search Distance ..224

vi

Summary

This research delves into two major areas of database research, namely (i)

spatial database queries specifically for transportation and routing, and (ii) the

reverse nearest neighbour (RNN) queries. Novel algorithms are introduced in

both areas which outperforms the current state-of-the-art methods for the same

types of queries.

Firstly, this research work focuses on a type of proximity query called

the multi-point range query (MPRQ). We showed that MPRQ is a natural

extension to standard range queries and can be deployed in a wide range of

applications, from real-life traveller information systems to computational

biology problems. Motivation for MPRQ comes from the need to solve this

type of query in a real-life traveller information system (the Route ADvisory

System (RADS) application, as well as its cousin web service Earth@sg Route

Advisory Service at http://www.earthsg.com/ras). We researched various

techniques used to solve MPRQ and discovered three approaches, presented

their algorithms and analysed each of them in detail. Extensive, in-depth

experiments were carried out to understand the MPRQ in a wide variety of

problem parameters and MPRQ performs well in all of them against the

conventional technique for solving MPRQ, i.e. the repeated range query

(RRQ), used in proximity query systems today. Naturally, we extended MPRQ

for external memory because in the real world, almost all applications deal

with data that can never fit into internal memory. MPRQ also outperforms

spatial join approaches for answering similar queries, such as the Slot Index

Spatial Join (SISJ).

vii

Secondly, this thesis lent contribution to RNN queries in the form of a

hierarchical, novel data structure to find exact RNN results in metric space.

The data structure is called RNN-C tree, making use of kNN graphs and

inherent data clustering to find RNN. The RNN query is related to the nearest

neighbour (NN) queries but is much harder to solve. Besides the RNN-C tree,

we also presented several algorithms based on the grid file to find approximate

RNN results, but is much faster. In some time-critical applications, sometimes

approximate results are a good tradeoff between accuracy and response time.

To the best of our knowledge, ours is also the first attempt to adapt the grid

file data structure for solving RNN queries. As RNN is related to NN, the grid

file becomes a natural choice as it can return NN results efficiently.

viii

List of Tables

Table 1. The nature of the RADS database that became the primary

database for internal main memory experimentations46

Table 2. The average search time in milliseconds of the PR quadtree
implementation with various bucket sizes and maximum tree
depths limited to various depth levels ..53

Table 3. The average memory used per node in bytes of the PR
quadtree with various bucket sizes and maximum tree depths
limited to various depth levels ...54

Table 4. The average search time in milliseconds of various
implementations of node splitting heuristics and R-tree bulk-
loading algorithms with various bucket sizes ..55

Table 5. The average memory used per node in bytes of various
implementations of node splitting heuristics and R-tree bulk-
loading algorithms with various bucket sizes ..55

Table 6. The effectiveness of applying different pruning rule
combinations. NodeOut was used as the baseline. The percentage
value represents the time taken for answering the multi-point range
query. In interpreting the results, we used the mean running time57

Table 7. The average query time in milliseconds comparison of various
implementations of node splitting heuristics and R-tree bulk-
loading algorithms between the multi-point range query and the
traditional repeated range query...58

Table 8. Different software components widely used for research in the
performance of external (secondary) memory data structures and
algorithms...62

Table 9. Various approaches to answering the multi-point range query,
the amount of processing done per node and total running time. N
is the size of the spatial database, m is the cardinality of node, n is
the size of input query path, k is the size of the results, and t is the
amount of processing per node...75

Table 10. The number of spatial objects for various datasets from
TIGER/Line. Road segments make up the bulk of the spatial
objects. Our experiments only involve all the road objects78

Table 11. The search distance d vs percentage of overlap for various
datasets ...80

Table 12. The effectiveness of applying different pruning rule
combinations, comparing internal and external memory. For this
comparison, only one real-life dataset is shown ..92

ix

Table 13. The effectiveness of applying different pruning rule
combinations, comparing different datasets...93

Table 14. Performance of MPRQ-Disk vs SJ4 in large dataset with
small, medium and large routes..102

Table 15. Performance of MPRQ-Disk vs SJ4 in very small routes..............103

Table 16. Performance of MPRQ-Disk vs SISJ in large dataset with
small, medium and large routes. All four slot index construction
policies are compared...105

Table 17. Non-exhaustive list of RNN algorithm summary properties
adapted from [TaPL04], and expanded. This list only includes
monochromatic RNN algorithms for static query points119

Table 18. Synthetic datasets of randomly generated points of size
2i*1000 (0 ≤ i ≤ 6) and their standard deviation at different levels
of the kNN graphs (level 0 is the leaf level). The ratio of the size to
its lower level is also calculated...125

Table 19. Two real-life dataset MD and RI used to construct kNN
graphs. ..126

Table 20. A pre-computed table of true results for random datasets
used to evaluate the quality of estimated RNN query results. The
values are computed using the slow naïve method146

Table 21. Performance of BFW and BFCE in dataset of 20K with cell
size 64 and disk page 4K..148

Table 22. Effect of grid cell size with 100K dataset, disk page 4K and
k=1..150

Table 23.The precision and recall values of the two best RNN-Grid
algorithms compared to the ERkNN algorithm..153

Table 24. Comparison of RkNN queries in 2-d and 8-d datasets. The
number of distance computations of BFCE-CR and TPL are shown156

Table 25. Performance comparison (number of I/Os) of all RNN-Grid
algorithms with ERkNN, TPL and TYM...158

Table 26. Performance comparison (number of distance computations)
of all RNN-Grid algorithms with ERkNN, TPL and TYM......................159

Table 27. Performance comparison (query time in seconds) of all
RNN-Grid algorithms against ERkNN, TPL and TYM...........................160

Table 28. The value of k1 for P(Rk2NN(q) ⊆ k1NN(q)) > 0.9 for
different dataset distributions ...160

x

Table 29. Notations used in the RNN-C tree ...165

Table 30. The average number of pruning rules fired at different levels
of the RNN-C tree for MD dataset across 1 ≤ k ≤ 32...............................181

Table 31. Performance comparison (max values) of RNN-C tree, TPL
and TYM for the TIGER/Line MD dataset ..184

Table 32: Parameters for the generation of databases and theoretical
spectra...220

Table 33: Statistical results on the quality of candidates identification
by PepSOM. For specificity and sensitivity, the results for “first-
rank peptide / best-match peptide” are shown ...221

Table 34: Comparison of different algorithms on the accuracies of
peptide identification. In each column, the “Specificity /
Sensitivity” values are listed ..222

Table 35: PepSOM-generated candidates size, average query size and
coarse filtering rate...223

xi

List of Figures

Figure 1. Proximity query modelled from a user scenario3

Figure 2. An example of RADS route planning. Route A represents
optimal travelling time while Route B represents optimal transit
mode. In real life, there are many possible route combinations to
travel from start point to destination point ...4

Figure 3. An point-region quadtree and the data points it represents.
The data points are organised hierarchically in the order they
appear, causing space to be decomposed w.r.t. data points18

Figure 4. An example of a bulk-loaded R-tree. The R-tree is built from
bottom up..20

Figure 5. An example of applying Peano-Hilbert space filling curve to
(a) an 8×8 grid in 2-d, and (b) the SG dataset ..22

Figure 6. MBRs of the R-tree of the SG dataset constructed with
STRPack with cardinality n = 32 ...23

Figure 7. The concept of MinDist, and MinMaxDist as used by
[RoKV95] for branch-and-bound k-nearest neighbour search...................25

Figure 8. A planned route consisting of a series of directed segments
joined by nodes, each node/point representing a possible stop. A
node is also associated to a time when that node is reached27

Figure 9. Conventional technique for performing proximity queries on
a planned route P. MPRQ is broken down into smaller queries with
each being executed sequentially and the results combined29

Figure 10. Performing queries on some route P gives many duplicate
results; some queries like the one performed on point pi even
become almost redundant...30

Figure 11. Performing multi-point range query on the planned route P.
We are interested in all the non-duplicate incidental events that are
within a distance d from all nodes in P ..30

Figure 12. The multi-point range query framework depicts various
areas that this research addresses, among others constructing the
spatial index, proximity query pruning rules and duplicates
processing...31

Figure 13. Algorithm for implementation of RRQ ..36

Figure 14. Different cases of MinDist. We illustrate the case where the
point lies outside a node (MBR) and within a node...................................37

xii

Figure 15. Different cases of MaxDist. The MaxDist is still defined
when point p lies within a node..38

Figure 16. Calculating MaxDist(node, p) using the point p, the centroid
c and a corner vertex v of rectangle R ..39

Figure 17. An example to illustrate the pruning rules NodeOut and
NodeIn. In this scenario we have MBR A, which contains MBRs B,
C and D. The planned route with all the search points and the
circular query regions are shown. (Note that in actual case, the
boundary of an MBR tightly bounds the boundary of its child
MBRs) ..40

Figure 18. An example to illustrate the pruning rule PointOut.
Additional labels are given to the two query regions to the left of
MBR A (Regions E and F) and one query region to the right of
MBR A (Region G) ..42

Figure 19. Algorithm for implementation of MPRQ44

Figure 20. Graphical representation of the RADS database. The rough
map of Singapore is formed by (a) 2 clusters (20%, 10%) + 70%
uniform, (b) 8 clusters (8% × 2, 4% × 6) + 60% uniform, and (c)
100% uniform. The percentage specified is the percentage of total
points used. In (a), we used two long planned routes, one consists
of multiple bus stops and the other is an MRT journey, both
passing through a clustered area. In (b), we see one planned route
that misses the clustered area and the other goes through many
clustered area. In (c), we see synthetic routes with regular intervals
called H-path, V-path and D-path ..48

Figure 21. Comparison of MPRQ and RRQ for query route H-path and
d=500m ..49

Figure 22. Zoom in on Figure 21 for 1-10 query points49

Figure 23. Comparison of MPRQ and RRQ for H-path with 80 points50

Figure 24. Comparison of MPRQ and RRQ using clustered data, V-
path and d=500m..51

Figure 25. Comparison of MPRQ and RRQ for real-life routes (route1-
4)...52

Figure 26. Different R-tree data structures: HilbertPack, R*-tree,
STRPack and KDTopDownPack. (a) comparison of MPRQ and
RRQ for d=500m, (b) showing MPRQ only for d=500m..........................54

Figure 27. Algorithm for MPRQ-Disk...67

Figure 28. Sorting the query points in route P along the axis major69

xiii

Figure 29. right_bsearch returns the point on path P along the sorted
axis that is less than or equal to the right edge of the “augmented”
MBR R'...70

Figure 30. Algorithm for the MPRQ-SP PointOut pruning rule70

Figure 31. Algorithm for the MPRQ-SP NodeIn pruning rule71

Figure 32. The MaxDist(R, p) is given by the distance of p to the
opposite diagonal corner of MBR R from the quadrant where p lies.
The quadrant where p lies is determined by the centre C of MBR R.........72

Figure 33. Transforming the PointOut rule into a rectangle intersection
problem. Given two sets of orthogonal rectangles, find all
overlapping that occurs between them...73

Figure 34. Algorithm for the MPRQ-RI PointOut pruning rule75

Figure 35. Real-life TIGER/Line datasets defining roads, rails and
streams, among others, provided by the US Census Bureau using
topology and graph theory design principles ...77

Figure 36. The (a) New Jersey, (b) Montgomery County, MD, and (c)
Rhose Island datasets from TIGER/Line; the regionised query
paths are shown; all figures not drawn to scale..79

Figure 37. Baseline comparison of MPRQ and RRQ in internal and
external memory using query path H-path and d=500m82

Figure 38. Comparison of MPRQ-Disk and RRQ-Disk for NJ dataset,
query path V-path and d=75...82

Figure 39. PR quadtree (query-time/point) vs (tree depth)83

Figure 40. PR quadtree (query time/point) vs (LDBS)83

Figure 41. Bucket PR quadtree (query time/point) vs (tree depth) for
logical disk block size of 4...85

Figure 42. Bucket PR quadtree (query time/point) vs (tree depth) for
logical disk block size of 8...85

Figure 43. Bucket PR quadtree (query time/point) vs (bucket size) for
logical disk block size of 4...85

Figure 44. Bucket PR quadtree (query time/point) vs (bucket size) for
logical disk block size of 8...85

Figure 45. R-tree (Linear Split) of different logical disk block size86

Figure 46. R-tree (R*-Split) of different logical disk block size86

xiv

Figure 47. R-tree (HilbertPack) of different logical disk block size................87

Figure 48. R-tree (STRPack) of different logical disk block size....................87

Figure 49. R-tree (KDTopDownPack) of different logical disk block
size..87

Figure 50. R-tree (Linear Split) of different bucket sizes88

Figure 51. R-tree (R*-Split) of different bucket sizes......................................88

Figure 52. R-tree (HilbertPack) of different bucket sizes89

Figure 53. R-tree (STRPack) of different bucket sizes89

Figure 54. R-tree (KDTopDownPack) of different bucket sizes89

Figure 55. MPRQ-Disk performance on different R-tree data structures:
HilbertPack, R*-tree, STRPack and KDTopDownPack for query
distance d=500m ..90

Figure 56. MPRQ-Disk performance with small number of query
points (m ≤ 10) and d=500m ..91

Figure 57. MPRQ-Disk performance for varying distances d with H-

path 80 query points...94

Figure 58. MPRQ-Disk performance for real-life paths (route1-4)95

Figure 59. Performance of the MPRQ-MinMax (red), MPRQ-SP
(green) and MPRQ-RI (blue) for (a) NJ dataset and (b) RI dataset97

Figure 60. MPRQ-Disk and RRQ-Disk under different buffer sizes...............99

Figure 61. (a) The performance of distance semi-join algorithms (B-
KDJ and AM-KDJ from [ShML02]; HS-KDJ from [HjSa98])
compared to SJ4 (SJ-SORT), (b) the performance of SJ4 full
spatial join algorithm reproduced from [HjSa98]100

Figure 62. Benchmarking SJ4 to MPRQ-Disk using the NJ dataset of
331,544 (roads) × 9,759 (railways) ..101

Figure 63. Roads from all the 5 counties of the California dataset,
obtained from TIGER/Line 2006 ...101

Figure 64. An R-tree and a slot index built over it. (a) the entries for an
R-tree at level 1, (b) a slot index built from the R-tree entries and
hashed data from the non-indexed dataset. Data that spread across
two or more slots are replicated for queries. Data that are outside
all slots are filtered. SISJ is performed between a slot and its
corresponding hashed data only ...104

xv

Figure 65. A reverse nearest neighbour example with k = 1..........................111

Figure 66. The case where |kNN(q)| > k when k < 4. This is because all
points p1, p2, p3, p4 lie in equal distance from q. In cases like these,
an arbitrary set kNN(q) of size k will be returned112

Figure 67. Example of constrained regions around a query point q
using Euclidean metric in 2-d space...115

Figure 68. The TPL algorithm. (a) A bisector perpendicular line ⊥(p1,q)
prunes off half the space. Point p2 and MBR N1 are both nearer to
p1 than q, therefore can be pruned (b) When p3 is discovered, a new
⊥(p3,q) is introduced leading to more pruned space where RNN
cannot exist (c) An MBR N2 is pruned by three bisector
perpendicular lines, only the points that fall in the residual area
(shaded) can be the result ...116

Figure 69. Correlation analysis between NN and RNN for uniform (left)
and normal (right) distributions. The chart plots the probability
values against the number of NN (k1). Each line represents a k2
value ...122

Figure 70. Correlation analysis between NN and RNN for 4 real-life
datasets. The chart plots the probability values against the number
of NN (k1). Each line represents a k2 value ..123

Figure 71. An example of (a) grid file and (b) fixed grid. By allowing
flexible axes, the data points can be split into the partitions evenly.
In the fixed grid, it is difficult to find a fixed interval so that all
data points are evenly distributed...128

Figure 72. Basis pseudocode for all the RNN-Grid algorithms (BFW,
BFCE, BFCE-PB) except BFCE-CR ...131

Figure 73. Best-First Wavefront (BFW) algorithm for RNN-Grid. (a)
Each wave consists of cells one unit adjacent to the cell of q in the
beginning and to the previous wave subsequently. (b) Cells within
a wave is maintained and visited/processed in the ascending order
of their distances from q. Note that in a real grid file, the cells are
not likely to be squares; the example is for illustration only132

Figure 74. The Best-First Wavefront (BFW) algorithm for RNN-Grid.........133

Figure 75. Best-First Cell Expansion (BFCE) algorithm for RNN-Grid.
(a) In the beginning, the entire cells one unit adjacent to q is
inserted into queue Q in ascending order of their distances to q.
Note that not all cell index numbers are shown. (b) Next, we
process the nearest cell (1) and found a point p. All cells not in Q
are inserted, again in ascending order of their distances to p. (c) We
then process the next nearest cell (2) and expand accordingly. Note

xvi

that the number in the red cells indicates the order in which they
are inserted ...134

Figure 76. The Best-First Cell Expansion (BFCE) algorithm for RNN-
Grid...135

Figure 77. The Best-First Cell Expansion with Perpendicular Bisector
(BFCE-PB) algorithm for RNN-Grid...138

Figure 78. Updating the pruned set PS with an incoming point z. The
number in square brackets is the counter. The +1 indicates that the
counter will be incremented by 1 ...139

Figure 79. The Best-First Cell Expansion with Constrained Regions
(BFCE-CR) algorithm for RNN-Grid ..143

Figure 80. Regions as divided in the constrained region concept. The
angle for a candidate point is calculated anti-clockwise from the
line parallel to the x-axis. If a candidate point p3 is discovered and
it does not fall within 60° of previously discovered points, all bits
within 60° of ∠xqp3 is marked and they cuts across regions144

Figure 81. Effect of grid cell size with 100K dataset, disk page 4K and
k=1..150

Figure 82. Effect of disk page size with 100K dataset, bucket size 16K
and k=1 ...151

Figure 83. Calculating precision and recall values from true positives
(TP), false negatives (FN) and false positives (FP).152

Figure 84. Comparison of RkNN queries in 8-d data. The average
query time for BFCE-CR and TPL are shown ...156

Figure 85. An example of the RNN-C tree hierarchical index data
structure of 200 data points. The tree is built from bottom-up. At
each level, clusters are formed by the data points’ inherent position.
One way to build the tree is by selecting a representative point
from each cluster to become a data point in the next level164

Figure 86. The RNN-C tree construction algorithm168

Figure 87. Constructing the RNN-C tree for a dataset of 12 points.
Note that x�y denotes NN(x) is y. (a) find each point’s 1NN and
calculate the centroid (white point) for each resulting cluster, (b)
the centroid becomes a data point on the next level; repeat the same
process as in (a) at this level, (c) stop when 3 or less data points
remain...170

Figure 88. An example illustrating the conditions for Lemma 5 (left)
and Lemma 6 (right)...172

xvii

Figure 89. RNN-C tree query algorithm for k=1..173

Figure 90. A sketch for the proof for Lemma 7. Dotted straight lines
represent the distance between 2 cluster centroids plus a radius. C2

1
can be pruned if k ≥ σ2

2. Note that data points may not be
accurately represented within a cluster ..174

Figure 91. Illustration of the band (shaded area) between C3
1 and q.

Three clusters are disqualified by the sum of clusters rule testing.
Four clusters exist within this band and therefore eligible for mirror
pruning rule testing (eventually C3

5 failed but the rest passed)................176

Figure 92. RNN-C tree query algorithm for k>1..177

Figure 93. The average number of (a) sum of clusters rule and (b)
mirror pruning rule fired in MD and RI datasets180

Figure 94. Comparison of number of distance computations in
TIGER/Line MD dataset of RNN-C tree, TPL and TYM........................182

Figure 95. Comparison of # I/Os in TIGER/Line MD dataset of RNN-
C tree, TPL and TYM ..183

Figure 96. Comparison of query cost (s) in TIGER/Line MD dataset of
RNN-C tree, TPL and TYM...183

Figure 97: An example of LC/MS/MS peptide identification process...........210

Figure 98: (a) In this example of SOM generated from spectra, each
spectrum is represented by a grayscale dot. Notice that
neighbouring dots have mutually similar shades of grey. (b) A
sample of SOM training of Escherichia coli for a 100x100
orthogonal grid being visualized. Similar colours represent
similarity of trained sequences...213

Figure 99: Applying MPRQ on the SOM map to retrieve peptide
similarity candidates. The search distance d can be used to control
the number of candidates desired to achieve a tradeoff balance
between efficiency (query time) and accuracy...214

Figure 100: Diagram for the peptide identification with PepSOM................216

Figure 101: Algorithm for PepSOM uses SOM and MPRQ for coarse
filtering ...217

Figure 102: Average query size (query distance radius d vs % of
database size) for ISB dataset...224

1

Chapter 1 Introduction

Wayfinding is a human need. In the past 20 years, an Internet boom has led to

practical applications such as map viewing and driving route planning to be

available on-line. These applications typically obtain a traveller’s location and

other desired preferences as input and return, after searching an underlying

spatial database, the best available route to reach a destination. Most of them

also provide many other services, most commonly the ability to show what is

near the computed travelling route. These services have brought real-time

information on-demand to reality.

In a transportation network scenario, public transportations such as

buses and subways are modelled. In addition, extra services such as private

vehicles routing and taxis routing (independent of a pre-determined route

which is the case for buses), real-time traffic dispersal, searching of POIs such

as public buildings, amenities and parks, are provided. Typically, a user is able

to specify some preferences like reducing travelling costs, travelling time, or

preference for certain roads. All these are made possible by advances in

technologies such as the Global Positioning System (GPS) that can pinpoint a

traveller’s world coordinates to reasonable accuracy and mature third

generation (3G) mobile devices that can be fitted into a car or be carried

around (like PDAs and cellular phones). In the reports released by the U.S.

Department of Commerce [DoC98, DoC01], 35% of the GPS units sold in the

market is for car navigation, 22% for consumers’ (private) use, 16% for

survey/mapping (geographic information system related), 13% for tracking or

2

machine control, the rest accounted for by OEM, aviation, marine and military

use. By the year 2008, sales of civilian GPS reached US$28 billion.

In the telecommunications sector, location-based services (LBS) have

long been touted as the next killer application for the wireless industry. Faced

with growing subscribers equipped with GPS-enabled cellular phones and

PDAs, there is a rush to develop commercially viable new applications like

mobile yellow pages, safety calls and roadside assistance, location-based street

and business directory search, traffic alerts, location-based games, personal

navigation and tracking services. These are the kind of applications that many

large corporations and government agencies will invest a great amount of

money into. Despite the economic slowdown several years ago, Allied

Business Intelligence has projected that the worldwide mobile data revenue

will reach US$43 billion by 2014. Many researchers are funded by grants from

their local transportation boards, municipal councils, state governments or

private companies to carry out research aimed at modelling route queries,

improving routing/searching algorithms, inventing efficient transportation

models, expediting spatial operations and information retrieval (e.g. spatial

join, closest pairs queries [Corr02], kNN-related queries), and so on.

One such recent work is the Route Advisory System (RADS) by

[Lao99, FLLL99, TaLe04] which modelled the transportation network in

Singapore and presented an algorithm that gives an optimal route based on

multiple criteria tradeoffs (time against cost against number of transits) on

multiple transport modes combination such as bus, subway and short walking.

In addition to route planning, RADS is able to perform a proximity query that

computes the points of interest (POI) and events that occur along the planned

3

route that coincide with the time the traveller reaches that particular point in

the route. It is not uncommon for a traveller to make a stop along the route to

run an errand or simply to participate in some activities of interest such as

exhibitions or sale.

1.1 Overview of Proximity Query

Let us define a typical route from point A to point B. To be a little more

precise, the route comprises of a list of k segments of straight lines, where two

consecutive segments are joined at a stop and there are k-1 stops. A value d

representing the maximum distance of walking from any of the stops is given.

We can roughly model the query as in Figure 1. In the remainder of this thesis,

we shall refer to this type of user query as a proximity query. A mathematical

definition of proximity query is found in Section 2.5.

The POIs that match the user query are divided into two types, namely static

events and dynamic events. Static events are found at any one location

Figure 1. Proximity query modelled from a user scenario

A

B

willing walk
distance

possible areas that contain
points of interest and events

d

d

d

d
d

d

planned route possible stops

d

d

d

4

permanently, e.g. buildings, lakes, bus terminals, parks, petrol stations and

other establishments. Dynamic events usually occur at any location for a

momentary period of time. They are characterised by a starting and ending

time, or a daily recurring time window, e.g. a sale, blood donation drive,

national day parade, musical concerts, etc.

The first part of this research was initiated as a natural extension to the

RADS. RADS is a prototype software [FLLL99] that allows optimum trip

planning for commuters with respect to one or more criteria combination of

travelling cost, travelling time or transit mode. The first two criteria are self-

explanatory. For transit mode, it means the switching of modes of transport in

a single journey. This usually incurs waiting time for the next mode of

transport to arrive at the stop, which is viewed as a penalty. The current RADS

uses map and route data from the city of Singapore, but it can be easily suited

to just about any cities in the world on availability of data.

In Singapore, there are two major modes of public transportation, namely

buses and subway called Mass Rapid Transit (MRT). In Figure 2, we illustrate

Figure 2. An example of RADS route planning. Route A represents optimal travelling time
while Route B represents optimal transit mode. In real life, there are many possible route

combinations to travel from start point to destination point

start

destination

bus, 3 min

walk, 1 min subway, 4 min

bus, 3 min

bus, 3 min

bus, 3 min bus, 3 min

bus, 3 min

Route A

Route B

walk, 2 min
bus, 3 min

Route C

5

the capabilities of the route planning engine of RADS with the three necessary

modes to move from a start point to destination point (the third one is walking,

modelled with an acceptable walking distance constraint). According to the

statistics released by the Department of Statistics of the Ministry of Trade and

Industry (MTI), Singapore [MTI09], in 2008 the average daily ridership was

approximately 3.085 million, 1.809 million and 0.907 million trips for buses,

MRT/LRT and taxis respectively. These figures are huge as the population is

4.839 million for the same period. Public transportation is the major mode of

transportation in many parts of the world. Consequently, RADS is useful to

the general public as a tool for smarter journeys, making available all

alternatives of a journey at all times; to the public transport providers, RADS

can help provide the big picture of the average journey, and to help identify

missing/inadequate bus lines, enhance existing bus lines or plan the location of

new bus stops (through generating extensive use cases).

With respect to the proximity query shown in Figure 1, we define the

problem of finding all POIs and events (results) for a given set of stops (query

points) within a given constrained distance d (a circular region of radius d

centred at a stop) from each and every stop as multi-point range query. This

type of proximity query is central to many applications and is widely studied

in the literature.

1.2 Motivation

Multi-point range query (MPRQ) has many applications. Besides

transportation planning problem, it can be adopted in air traffic control,

water/electric/gas utilities, telephone networks, urban management, sewer

6

maintenance and irrigation canal management [LaTh92, VTST93, ShLi97].

For example, in the telephone network problem we can find out how many

users of different categories (e.g. business, residential, industrial, etc.) is

dependent on a given telephone network line (e.g. one manifestation could be

a non-weighted directed acyclic graph (DAG) whose vertices represent the

telephone poles) so as to help in identifying heavy dependency on or usage of

a particular line and for telephone network connection redistribution.

As another example, MPRQ can be generalised to a bigger scenario

where each query point represents a town or a city, and the search distance

represents the availability of certain establishments (e.g. a certain petrol

station) within the town or city area. Coupled with a time factor, it could

model town-to-town or city-to-city drive, providing an advanced knowledge

on the availability of a favoured petrol station in upcoming locations and the

estimate of petrol remaining at the time of reaching those locations (with

petrol consumption tracking). The possibility of deployment in so many

applications motivated us to research the MPRQ.

In many web applications that provide route planning as well as

proximity query, the current approach is still limited to only performing

proximity query one at a time on sections of the map (segment by segment),

usually demarcated by road junctions or stretches of an expressway, even if

the whole route is already pre-determined for the traveller. This has

inadvertently localised the proximity information available to the traveller,

supposedly in favour of saving Internet bandwidth and computation power.

We foresee such web applications to be more intelligent in the future in that

7

they not only provide the proximity information as requested but provide them

accurately and quickly. Thus, the need for MPRQ as an enabling technology.

Note that this is by no means an exhaustive application of MPRQ. As

another example, if we model electricity poles carrying a stretch of connected

electricity cable along a road, performing MPRQ with the electricity poles as

the query points will result in the number of households that are possibly

connected to these switches. In a “what-if” analysis, MPRQ can be used to

determine the number of households affected if the electricity cable is

damaged or shut down temporarily.

The methods and algorithms that our research delve into are motivated

by the following observation: when a path comprising many query points is

given, and the objective is to return all events (also called object candidates

[KMNP99] or sites [SoRo01]) near to these query points, where the searching

mechanism for all query points is identical and related, and the results of that

proximity query must be clean of any duplicate points. In our approach, we do

not use a slicing technique to sample the path as in [SoRo01]; instead we

explored query optimisation as a means to improve query processing.

1.3 Research Objectives and Scope

Conventionally, proximity query is solved by breaking down the route into

many smaller segments interconnected by stops and performing multiple

searches on spatial indexes to locate objects that are near each of the stops.

Recall that this approach helps save bandwidth and improve response time in

route planning applications on the web. One problem of this method is that it

might result in many duplicate results if the segments are close to one another.

8

Therefore, a more specific query technique suitable for optimised spatial

proximity querying is needed.

This research aims to achieve several objectives. We wanted to

understand real-life GIS applications and the way they offer proximity

querying. We studied and evaluated a type of query that we call multi-point

range query (MPRQ), which can potentially perform proximity queries in a

more intuitive approach. Many factors that affect the efficiencies of a

proximity query were scrutinised, for instance, identifying a data structure that

can support MPRQ. We rediscovered KDTopDownPack, a hybrid R-tree bulk-

loading algorithm of [GaLL98] and subsequently designed some experiments

to measure the performance of various data structures that can be used to

support MPRQ.

Another objective of this research is to propose better search

algorithms that can work well for answering MPRQ. There are many issues

we need to address in order to achieve this objective. For example, the way

pruning should be performed on the data structure during a search, and how

effective they can be. Since MPRQ is observed to have some distinct

properties, intuitively the orthodox set of pruning rules applicable for the

general tree data structures might be inadequate. As a result, we defined some

pruning rules that are implemented on a basic search algorithm. Experiments

showed that applying our pruning rules are indeed more effective than without

using them in the traditional query. Along this line, we have researched three

techniques for fast pruning of input query points.

Last but not least, it is interesting to adopt the results of this research,

the MPRQ, to genuine wide-ranging applications where it will be really useful.

9

Naturally, the first target application that comes to mind is where range query

is widely used, which is a traveller information system. MPRQ was

implemented as an extension in RADS. A brave, second application for

MPRQ was targeted for the computational biology domain where research

momentum is picking up very quickly in the past decade. Together with the

self-organising map (SOM), MPRQ is part of a approach to perform multiple

sequences similarity search in the peptide/protein identification problem.

The scope of the MPRQ research is narrowed down by a few

assumptions: (i) the temporal aspects (time domain for dynamic events) of a

proximity query is not considered, only static data is considered. Initial studies

showed that temporal pruning first reduces the number of candidates by less

than 5% on average whereas spatial pruning first gives a reduction of over

90% from the initial candidates set, (ii) the query algorithm is for ℜ2 space

and the computation techniques based on L2 Euclidean distance metric, (iii)

query region is circular (using distance d as a radius), (iv) a 2-d query point

represents the centroid of any polygonal objects on the map. Further

computations are assumed to precisely confirm the correctness of a 2-d point

result, (v) spatial objects on the map are adequately bounded by a minimum

bounding rectangle (MBR). All the above assumptions hold for all MPRQ

results presented in this thesis, unless otherwise stated.

It is argued that the road distance (L1 Manhattan distance) is a better

representative for determining the result of MPRQ, particularly in the case of

transportation and road networks. We state that our method works for other

distance metrics, as long as consistently applied. In general, we meant for

10

MPRQ to work in other scenarios too, such as in bioinformatics problems,

where the edit distance might be more appropriate.

1.4 Contributions of Thesis

This thesis consists of three major contributions. Its principal contribution is

the in-depth study of the multi-point range query for both internal and external

memory cases, and the introduction of the MPRQ algorithm, an efficient

algorithm for the processing of range query with multiple points as input.

Instead of performing a range query for each and every point, MPRQ takes as

input the whole set of points and perform the query once. MPRQ visits the

spatial index only once by utilising smart pruning rules at every level of query

processing within the spatial data structure, resulting in optimal I/Os. The key

idea of MPRQ is about the efficient pruning of the input (of multiple points)

with respect to each node encountered during the traversal of the spatial index,

as well as optimising the results returned (for example, a large enough search

distance will cover an intermediate level node which means all nodes and

eventually leaf objects under it becomes the results) to decrease unnecessary

computations in obvious cases. Several techniques have been developed for

pruning of the input. Empirical results show that MPRQ can significantly

improve query processing time both in internal and external memory

[NgLH04, NgLe04].

Secondly, this thesis lent a huge contribution to the reverse nearest

neighbour problem (RNN). The RNN query is a proven non-trivial problem no

less than nearest neighbour (NN) queries. Although related to NN, the RNN

results cannot be derived from NN’s. RNN queries are categorised into those

11

that find exact results and those that find estimated results. A novel,

hierarchical data structure to find exact RNN results in metric space was

presented. The data structure is called RNN-C tree, making use of kNN graphs

and inherent data clustering to find RNN. Besides the RNN-C tree, we also

presented several algorithms based on the grid file to find approximate RNN

results, but is much faster. These algorithms are collectively called RNN-Grid.

As RNN is related to NN, the grid file [NiHS84] becomes a natural choice as

it can return NN results efficiently. Empirical results show that RNN-Grid is

faster than other RNN algorithms in the same category, yet it can achieve

higher recall. As for RNN-C tree, to the best of our knowledge, it is one of

only two available RNN algorithms that can solve RNN in general metric

space. Compared to its competitor, RNN-C tree is 1.5 times faster and does

one order of magnitude less distance computation, which is central to pruning

rules.

The third contribution of this thesis is two successful applications of

MPRQ in traveller information system and computational biology research.

We had successfully adopted MPRQ as a natural extension to the query

processing in RADS. Based on the pre-planned multi-criteria, multi-modal

route that a RADS user obtained as input, MPRQ is able to efficiently return

all the POIs in the map within the vicinity of the route. We had also

successfully adapted the MPRQ algorithm for performing similarity sequences

queries by coupling it with a trained self-organising map (SOM) [Koho01].

This is a novel approach in two ways: (a) the SOM is mostly used for

clustering analysis and visual representation of sequences for detecting

similarities [BeGe01, MMSG04, ASKK06]. Researchers mostly view a

12

trained SOM as the end result for spotting sequences similarity (using it

manually by visual), and almost never exploiting it for further uses (post-

trained SOM uses). To the best of our knowledge, post-trained SOMs were

only adopted in image retrieval applications for large image databases

[ZhZh95] but they have never been used in sequences similarity problem; (b)

by applying MPRQ on the SOM, we are able to perform a single similarity

query not just for a single input sequence, but rather a series of input

sequences simultaneously and obtain results that are similar to the input

sequences as a whole.

1.5 Organisation of Thesis

This thesis is divided into 2 parts: Part I focuses on MPRQ and spans Chapters

2, 3 and 4; whilst Part II focuses on RNN and is covered in Chapters 5, 6 and 7.

A brief outline of this thesis is as follows: Chapter 2 summarises the relevant

literature regarding data partitioning, query results filtering methods, data

structures and discusses the MPRQ framework. Chapter 3 presents techniques

for algorithms, experimental results and analysis of MPRQ in internal memory.

Chapter 4 presents the extension of the internal memory MPRQ algorithms to

external memory, introducing two more algorithms, with experimental results

and analysis. It also covers a comprehensive look into the performance of

MPRQ in external memory against relevant spatial join algorithms that can

possibly be used to solve MPRQ.

Chapter 5 summarises the relevant literature for related approaches to

solving the reverse nearest neighbour (RNN) problem. This chapter also

features some statistical analysis on the parameters used by RNN-Grid to

13

estimate results, as well as on the bounds of RNN-C tree height. Chapter 6

explores the RNN and presents four algorithms in the RNN-Grid approach for

solving RNN with estimated results. Chapter 7 subsequently describes a data

structure we call the RNN-C tree for solving RNN with exact results.

Finally, Chapter 8 concludes with some proposed extensions to this

research and future work, for both MPRQ and RNN problems. Appendix A

briefly describes a piece of research work this author has published, i.e.

applications of MPRQ in problems from the computational biology domain,

with emphasis on the peptide identification problem.

14

PART I

Multi-Point Range Query

15

Chapter 2 MPRQ and Related Work

Many applications that provide route-related services have an underlying

database that does not change very frequently, as we do not expect bus stops

and subway stations to be relocated all the time, if at all. Such databases are

termed static. In contrast, databases that are subject to frequent updates are

said to be dynamic. Usually, we query a spatial database to look for only

subsets of objects that fit the conditions of our queries. This is called a region

query. A special case of a region with zero area is called a point query. In

order to facilitate searching of the database efficiently, suitable data structures

are used to store the objects in the database based on the knowledge of the

data being static or dynamic, and their distribution in space. Since

geographical objects relate to each other primarily based on their relative

position to one another, we term this as spatial indexing.

Data structures and spatial indexing are just two aspects of a spatial

query. [Knut98] listed the three typical queries: point query, to find a point

data with exact attribute; range query, to find all point data that exist in a given

region; and boolean query, which answers the existence of point data

satisfying point query or range query. Recent advances in geographical

applications created the need for many operators for spatial searching,

including intersection, enclosure, adjacency, spatial join and nearest neighbour

queries [LuOo93, GaGü98].

In many scientific, geographic and engineering applications, the

storage and efficient retrieval of multi-dimensional data is extremely crucial.

16

Traditional one-dimensional data structures such as B-trees [BaMc72] or hash

tables do not provide the answer to storing polygons, squares and rectangles.

A number of data structures have been designed to cater for multi-dimensional

data, such as the two-dimensional index R-tree [Gutt84] and high-dimensional

indexes such as M-tree [CiPZ97] or iDistance [YOTJ01, JOTY05]. In

performing proximity queries, we need to implement an indexing scheme that

is most suitable for organising the data points so as to effectively prune away

most unnecessary results. We describe several methods in the literature.

2.1 Space Partitioning and Data Partitioning

A data structure used for indexing can be divided into two categories: space

partitioning (SP) and data partitioning (DP).

In SP, search space in the problem domain (usually Euclidean space in

planes, in general ℜd in hyperplanes) is divided into two or more disjoint (non-

overlapping) subset space so that during query, data can be found in exactly

one of the subset space. SP schemes are usually hierarchical in nature, and a

smaller piece of subset space can be recursively space-partitioned to become

smaller non-overlapping space at a lower level. The space is organised as

multiple levels of a tree, and the tree is termed an SP-based indexing data

structure.

On the other hand, if the search space in the problem domain is divided

into two or more disjoint subset space based on the positions of data points,

such schemes are called DP. Similar to SP-based index, DP-based index

structures are also mostly hierarchical. The structure of a DP-based index is

17

highly dependent on the order in which the data points are presented (insertion

order) as well as their positions when the index is constructed.

2.2 Coarse Filtering and Fine Filtering

One common strategy in query processing involves the use of coarse and fine

filters [NiWi97], which is also called filter-and-refine technique [SeKr98,

SCRF99] or geometric filtering and exact geometry processing [KrSB93]. In

terms of spatial query processing, the trend to use a two-level processing is

relatively new.

Firstly, approximate geometric techniques such as the minimal

orthogonal bounding rectangle of an extended spatial object is used to quickly

and cheaply filter out as many objects as possible. This coarse filter is usually

easy to perform and cheap on computational time and cost [NiWi97]. The

overall running time of the whole spatial query is very much influenced by the

success of the implementation of a coarse filter. This is because in the

subsequent fine filter, or refine process, exact geometry is applied on every

remaining candidate objects to eliminate false positive results. This process is

extremely expensive as heavy computation is not uncommon to eliminate

large candidate objects as they may have tens or hundreds of dimension (a

typical polygon representing an accurate, complex real-world object typically

has 1000 or more edges).

2.3 Point-Region Quadtrees

The quadtree [FiBe74] is a well-known class of DP-based hierarchical data

structure for storing data points. Data points are assigned into one of four

18

quadrants in the tree, based on their coordinates in relation to points already

inserted into the tree. There are always four child nodes to each internal node,

and each internal node contains a data point (its coordinates). [Same89]

described PR quadtree (point region quadtree), an extension that associates

each quadrant with a relative data point region where data points are stored

only at the leaf nodes. The structure of the quadtree encourages sub-dividing

of the data space, even when two points are actually very close by and

therefore have a great chance of answering a range query.

In order to save time and space in sub-dividing the space into four sub-

regions (where three of them will be empty), some form of bucket methods

were proposed [Knot71, Oren82, MaHN84]. A bucket is a presumably short

linked list which holds data points that are close to each other in space. The

size of the bucket is determined by a certain threshold; if f is the fanout size of

the quadtree, the bucket size is usually between f and 2f. When a query reaches

the leaf node which contains a bucket, all the points in the bucket are

compared sequentially. An example of PR quadtree is illustrated in Figure 3.

Figure 3. An point-region quadtree and the data points it represents. The data points

are organised hierarchically in the order they appear, causing space to be decomposed
w.r.t. data points

p1

p2

p3

p4

p5

p6

p7

p8

p1

p2 p3 p4 p5

p6 p7 p8

19

The PR quadtree was invented to overcome some of the drawbacks of using

fixed grid cells structure. When data points are not uniformly distributed,

many cells in the fixed grid will be empty, which is not efficient in terms of

memory usage and utilisation. PR quadtree is a combination of the fixed grid

method and binary search tree which can handle non-uniform data well.

2.4 R-trees

The R-tree was introduced by [Gutt84] and has since become a popular data

structure for spatial searching. One reason is that, apart from its elegant

generalisation from B-tree for storing multi-dimensional objects, the R-tree is

capable of storing a myriad of complex objects such as lines, polygons in

addition to mere points. Like the B-tree, R-tree is a hierarchical, height-

balanced on-line data structure where all the leaf nodes are on the same level

(or differ by at most 1). Each internal node of the R-tree has the form (MBR,

ptr) where MBR is the minimum bounding rectangle that encompasses all the

MBRs of its child nodes in space (the MBR enclosure property).

An MBR is characterised by a set of minimum and maximum

coordinates defining a rectangle whose sides are parallel to the coordinate axis.

Using the MBR instead of exact geometrical representation, any complex

object is reduced to two points that define the most important feature of that

object (i.e. its position and extension). The root node of an R-tree has an MBR

that is the minimum rectangle of all the objects in the search space. Each leaf

node of the R-tree also has the form (MBR, ptr) where the pointer points to an

object being stored, rather than to another node. An internal node can have

more than one child whose MBR overlaps and possibly covers a particular

20

object. Therefore, in order to search for that object, it is compulsory to traverse

all the children nodes involved. Due to this inefficiency, the R+-tree was

invented by [SeRF87] which eliminated overlapping altogether.

An R-tree node has to be split when an object is inserted into a leaf node that

is full. The splitting causes its immediate parent node to have one more child,

and if the parent is full, it is also split. This process propagates up the tree until

it hits a node that is not full or the root is split. [Gutt84] introduced three node

splitting heuristics called exponential, quadratic and linear split. Many other

splitting strategies were reported that minimised the overlapping area after the

split [BKSS90, KaFa94, AnTa97].

The R*-tree [BKSS90] is a variant of the R-tree which is different in

overflow handling and splitting policies. To handle an overflow node, it

removes some rectangles from the overflowed node and re-inserts them from

Figure 4. An example of a bulk-loaded R-tree. The R-tree is built from bottom up

p1

p2

p3

p14

p11

p12

p7

p8

p9

p10

p4

p5

p13

p6

R0
R1

R2

R3

R4
R5

R6

R7

R0

R1 R2

R3 R4 R5 R6 R7

p14 p1 p3 p5 p13 p6 p11 p2 p8 p9 p10 p4 p12 p7

21

the root of the tree in the hope that they would be accommodated by some

other non-full nodes.

The data structures discussed so far are all on-line data structures. They

generally could have up to 73% node utilisation [AnSa96]. Their node

utilisations and tree structures are compromised by the ability to insert or

delete rectangle data dynamically. If we have a priori knowledge of the data

before the data structure is built, we could possibly produce a fully packed R-

tree that greatly facilitates searching. This method of constructing a spatial

index is called bulk-loading.

Hilbert-Sort R-tree

[KaFa93, KaFa94] proposed the Hilbert-Sort (called HilbertPack in this thesis)

R-tree which imposes a linear ordering based on the mapping of the Peano-

Hilbert fractal curve [Hilb91], a space-filling curve as shown in Figure 5(a).

The idea of space filling curves is to group similar data together, in this case

the MBRs. The centre points of the MBRs are sorted based on their distance

from the origin, measured along the Hilbert curve. This determines the linear

order in which they are placed into the nodes of the R-tree.

The R-tree is built bottom-up starting from the leaf level (external

nodes pointing to spatial data), resulting in a tree that is fully packed except, of

course, for the last node at every level of the tree. Under the Hilbert curve,

objects with close linear order number are also spatially close (although the

reverse is not true). Query processing is proven more efficient than other

dynamic versions of R-trees (e.g. R*-tree) of up to 36%. The structure of

HilbertPack R-tree is adapted from B*-tree, where the keys refer to the Hilbert

22

value of the data MBRs. Figure 5(b) reveals that some MBRs of HilbertPack

at higher levels are very large, which will have an adverse impact on query

processing as confirmed in our experiments.

(a) (b)

Sort-Tile-Recursive R-tree

Sort-Tile-Recursive (called STRPack in this thesis) is a bulk-loading

algorithm for the R-tree [LeEL97]. The basic idea for the STR algorithm is to

tile the data space using nr vertical slices so that each slice contains enough

rectangles to pack roughly nr nodes, where r is the number of rectangles

and n is the cardinality. The centroids of rectangles are used as reference

points. Rectangles are sorted by x-coordinates and partitioned into nr

vertical slices each containing r rectangles. The process is recursively

repeated but now with rectangles sorted by their y-coordinates. Figure 6

reveals that most MBRs of STRPack are elongated, which will also have an

adverse impact on query processing. The authors claim that STRPack

outperforms HilbertPack for mildly skewed or uniform data.

Figure 5. An example of applying Peano-Hilbert space filling curve to
(a) an 8×8 grid in 2-d, and (b) the SG dataset

23

Top-down Greedy Split R-tree

Top-down Greedy Split (TGS) is another bulk-loading algorithm proposed by

[GaLL98]. TGS is motivated by the two key ideas: (i) it minimises the top

levels first since the potential for cost reduction is higher, while (ii)

considering all partitions induced by guillotine cuts such that resulting sub-

trees are fully packed. TGS is an aggressive approach to greedily construct the

various sub-trees of the R-tree. It recursively applies a basic split step which

partitions a set of r rectangles into two subsets by a cut orthogonal to an axis.

A cut must meet the condition that minimises the cost of some objective

function f(r1, r2) where r1 and r2 are MBRs of two ensuing partitions, and one

subset must result in a fully-packed sub-tree. The recursion is applied to both

subsets until there is one subset per child.

Two major disadvantages are that TGS is difficult to implement and it

requires a relatively much larger loading time. This led us to discover an

algorithm modified from TGS which has similar performance but fast, which

we call KDTopDownPack.

Figure 6. MBRs of the R-tree of the SG dataset constructed with
STRPack with cardinality n = 32

24

2.5 Proximity Queries

We use the term proximity query to describe a type of spatial query that is

unorthodox in the sense that consideration is given to the multi-point input for

each instance of the range query. We view the multi-point input and the

combined results that we obtained from the query as one proximity range

query. The points that form the input to the proximity query are given in a list

or array, in addition to a given search distance. The objective is to perform

range query efficiently and report all the points (or objects) that lie within the

range of the distance from the set of query points. Mathematically, for the

general range query, given a finite set of points P = {p1, p2, …, pn} ⊆ ℜ2 and a

circular region R ⊆ ℜ2, find the set of points Q = P ∩ R.

At present, research interests are focused on addressing the k-nearest

neighbour (kNN) queries. It has become a hot topic in the database research

community and also is addressed by the computational geometry research

community because it is useful in numerous applications such as data mining

and knowledge discovery, multimedia database, pattern recognition, urban

management and CAD/CAM systems.

In short, the general kNN problem is defined as given a set S = {p1,

p2, …, pn} of n objects, and a query point q, find a subset S' ⊆ S of size k ≤ n

such that for any p1 ∈ S' and p2 ∈ S – S', dist(q, p1) ≤ dist(q, p2). Various

techniques and algorithms were proposed for performing this type of queries

in low-dimension, which is also the focus of this research. For example,

[RoKV95] proposed a branch-and-bound method to answer 1NN queries (BB-

NN) and then generalised them for finding kNN. The BB-NN algorithm was

25

based on two metrics for ordering the NN search, and three pruning rules

when visiting nodes during the search. Figure 7 illustrates. The various metrics

and the concept of distance are detailed in Chapter 3.

Later, [PaMa96] extended this work using a multi-disk multi-processor

architecture, deriving the parallel nearest neighbour (P-NN) method. Since the

BB-NN is a sequential algorithm, the P-NN algorithm generally outperforms it

as the value of k increases, with as much as 60% improvements for large

values of k (e.g. k = 400).

Only very recently, research focus on spatial queries has started to

address the problem of kNN for a moving query point (k-NNMP), which is

useful for applications in transportation and logistics where a continuously

moving car wants to track where the nearest petrol stations are [SoRo01]. This

problem is different from the MPRQ in that the problem addresses the need to

know the kNN of a moving query point at any one time along its path.

Figure 7. The concept of MinDist, and MinMaxDist as used by [RoKV95] for
branch-and-bound k-nearest neighbour search

MBR

MBR

MBR

query point

MinDist

MinDist

MinMaxDist

MinMaxDist

26

2.6 Variants of Multiple Range Queries

Query scheduling for multiple range queries was studied by [PaMa98]. Based

on the idea that the performance of multiple queries can be improved if they

share common data (subsequent nearby queries retrieve a lot of the same data),

the authors presented an algorithm that sort its queries (of rectilinear

rectangles), group them together so that they are spatially close, and finally

pass them for processing. Results were shown for R-trees built on Hilbert-

curve sorted objects. Although the queries seem similar to the MPRQ, the

main differences are (i) they are doing inter-query optimization, while MPRQ

is a single query, (ii) the combined results obtained by joining the queries

raised another issue which is the separation of results; extra processing needed

to determine which objects belong to a specific range query. MPRQ generates

cumulative results that answer the query as a whole.

There are many variants of the multiple queries problem. One such

recent work is the group NN queries [PSTM04], where two sets of points P

(database) and Q (multiple input) are given and the aim is to find a point p

from P that minimizes the sum of distances |pqi| for all qi ∈ Q. In [ZMPT04],

for the same sets of points, the aim is to find the nearest neighbour from P for

each and every point in Q. Three algorithms were described. The first is

multiple NN (MNN) which is similar to RRQ in this thesis, except that the

latter returns all points, instead of the nearest, w.r.t. the query points in Q. This

approach is straightforward and already proven to be very slow in both

[ZMPT04] and this thesis (Section 3.2.8). The second is batched NN (BNN)

which is designed for cases where Q cannot fit in memory. BNN breaks all

27

points in Q into arbitrary groups (bounded by two thresholds, max number of

points per group and MBR size of the grouped points) to be processed together

against P. The third approach is hash-based NN (HANN) where the points in

P and Q are hashed to a grid and subsequently loaded pairs <HQ,HP> (HP ∈ P,

HQ ∈ Q) of buckets covering the same region are searched for each point in HA

its NN in HB (with consideration for points near grid borders that might have

NN in an adjacent region).

2.7 MPRQ Terminologies

This thesis deals with numerous issues regarding proximity queries,

particularly a type of spatial query we call multi-point range queries (MPRQ),

as well as its optimisation. The planned route in Figure 8 is returned by most

route planning systems as it is the core functionality of a routing engine.

Terminologies used throughout this thesis will be defined below.

Definition (Path): Given a start point s and an end point z, a path is defined

as any sequence of directed, non-cyclic, connected points from s to z

represented as (s, p1, p2, …, pk, z) and consists of (k+2) nodes.

Figure 8. A planned route consisting of a series of directed segments joined by nodes,
each node/point representing a possible stop. A node is also associated

to a time when that node is reached

(p1,t1)

(p2,t2)
(p3,t3)

(pn,tn)

28

Definition (Planned route): A planned route P is a path that is also

associated to a corresponding sequence of arrival time T at each point when

the path is traversed. T is represented as (ts, t1, t2, …, tk, tz) where ts is termed

the start time. The route size of P, denoted |P| is equal to the number of points

in P. A planned route is usually optimal w.r.t. some user-specified criterion

such as time, cost or |P|.

With a planned route P returned by the routing algorithm, we perform

proximity query on the set of points. To find all the POIs along the path, the

conventional technique is to perform range query |P| times of the radius d, and

returning the union of the search results set R. Mathematically, it can be

written as R = U
Pp

i

i

dp
∈

),Query(where Query(pi, d) is a nearest-neighbour

query that returns all the nearest neighbours of distance d from point pi. We

call this straightforward technique repeated range queries (RRQ). This

technique works when the search regions do not overlap, as shown in Figure 9.

However, this is actually not a common occurrence in most real-life situations.

Definition (Incidental event): Given a path P = (p1, p2, …, pn), a distance d

and the proximity query result set R, an event e incidental to P is a dynamic or

static point-of-interest (POI) that is found in the spatial database which

satisfies: dist(e, pi) ≤ d,∃ pi ∈ P. An event can be incidental to more than one

intermediate point in P (i.e. p2...pn-1).

29

d

d

d

d
d

d

As the search region d is enlarged, the conventional method becomes very

inefficient because the combined results contain many duplicate events and

some queries become almost redundant. This is evident in Figure 10. In a

transportation network setting, route P can be a bus route while the nodes in P

can be the bus stops that the bus calls at during the journey. On average, for a

city that heavily relies on public transportations, bus stops are built within

200-300 metres of one another. Almost all the time in most queries there are

some number of duplicates results. Therefore, we strive to perform the

proximity query just once, using techniques to effectively remove duplicate

results and efficiently execute the query.

Definition (Multi-point range query): Given a planned route P and a

distance d, using a single query, find all the events incidental to all the

intermediate points in P and return the non-duplicate results set R.

Figure 9. Conventional technique for performing proximity queries on a planned route P.
MPRQ is broken down into smaller queries with each being executed sequentially

and the results combined

30

d
d

d

 pi

2.8 MPRQ Formal Problem Definition and Framework

The formal definition of the MPRQ is presented in this section. Firstly, the

constants and variables are defined. This is followed by giving the definition

and the constraints of the MPRQ.

 Let d be any search distance where d > 0, N be a spatial database of 2-d

points, P = (p1, p2, …, pn) be a planned non-empty route with n-1 segments

where each pi ∈ ℜ2 forms the segment from pi to pi+1, 1 ≤ i < n and P ∉ N.

Figure 10. Performing queries on some route P gives many duplicate results; some queries
like the one performed on point pi even become almost redundant

d

d

d

d
d

d

Figure 11. Performing multi-point range query on the planned route P. We are interested in all
the non-duplicate incidental events that are within a distance d from all nodes in P

31

Find the set of results R = {pi ∈ P | dist(e, pi) ≤ d, ∀e ∈ N}. The set R implies

two observations: (i) the size of the results set being at most equal to the size

of the spatial database (i.e. no duplicates are allowed); (ii) any event reported

in the results set R will be within the distance d from some point in P.

Map
database

Object
Representa-

tion

Construct
Spatial Index

User Query
(Path)

Searching
in Main
Memory

Searching
in External
Memory

Duplicates
Processing

Pruning Rules

Final
Results

Figure 12 depicts the multi-point range query framework upon which

implementations for this research is based. The user query is in the form of a

set of segments forming an acyclic path. The final results is a set of object

references (or pointers) of all valid non-repeating objects that answer the

query. In the scope of research, the MPRQ is constrained to use an averaged

midpoint (centroid) to approximate any polygonal spatial objects for query

processing.

Figure 12. The multi-point range query framework depicts various areas that
this research addresses, among others constructing the spatial index, proximity

query pruning rules and duplicates processing

32

MPRQ not only performs the query but also filters off duplicate points

and cleanly return only the results set of unique points. In other words, the

results given by MPRQ do not include duplicates by default. On the contrary,

RRQ cannot perform duplicates removal as each query point is processed

independently of each other, sequentially. When all the results are obtained,

the combined results must be post-processed for duplicates removal. It is

already too late as the costs to obtain all results have been incurred.

In our proximity query, the distance or metric used in calculating the

proximity of any POI from the planned route is based on the L2 metric, i.e. the

Euclidean distance dist(x, y) = 2
21

2
21)()(yyxx −+− for our case in 2-d

space. It follows that all the results must satisfy the following four conditions

for a metric to hold true: for any three points x, y and z,

• dist(x, y) ≥ 0: distance is a nonnegative number

• dist(x, y) = 0 ⇔ x = y: distance of an object to itself is 0, i.e. identity

• dist(x, y) = dist(y, x): distance is symmetric

• dist(x, y) ≤ dist(x, z) + dist(z, y): distance observes the triangle

inequality principle

It is possible to use any Minkowski metric, but for consistency with most other

research works in the literature [RoKV95, PaMa96, MaMo01] we chose the

Euclidean metric. We shall emphasise that our algorithms are, without loss of

generalisation, valid for other metrics of any order of p (p-norm distance) in k-

dimensional space which is defined as

Lp =
p

k

i

p

ii yx

/1

1

||

−∑

=

 for 1 ≤ p ≤ ∞, and Lp = ||max
1

ii
ki

yx −
≤≤

 for p = ∞.

33

Chapter 3 Main Memory Algorithms for MPRQ

In this chapter, we formally present the study of multi-point range query

(MPRQ) for internal memory. This is because MPRQ is believed to work very

well for small route and small database. Recall that in Section 2.7, we

presented a problem scenario and definitions that describe a typical route and

its connection to proximity query. The concept of MPRQ is subsequently

formulated mathematically in Section 2.8. Moreover, implementation of

MPRQ in this chapter follows the framework we defined for solving MPRQ

also found in the same section.

Algorithms and techniques for solving MPRQ are presented in Section

3.1, followed by extensive experimentations described in Section 3.2. In the

next chapter, MPRQ is investigated for cases where the database is stored in

external memory.

3.1 MPRQ Algorithms

As our approach, we used a depth-first search strategy aided by various

pruning rule techniques that would prematurely halt the search in an

intermediate MBR (when certain conditions are met) and retrace its steps

backwards. Technically, it can be termed as a branch-and-bound technique.

The similarity is that we would still avoid many branches and their sub-trees

altogether when the pruning condition matches. The major difference is that

we do not keep track of an objective value and use it to terminate the search in

a branch. Instead, pruning rules tell us when to shrink our query region size

34

(temporarily remove some input search points at different levels of the R-tree)

and when to know that all subsequent objects under an MBR qualifies as the

result (thereby reducing unnecessary computations).

 Our pruning rules show promising results. Applying them on the

MPRQ produces improvement in query processing time of up to 94.2% on

average from the standard query processing time in which only the basic

pruning rule is activated (i.e. avoid going into MBRs not intersecting with the

query regions), which is the standard branch-and-bound technique.

3.1.1 Preliminaries

Definition (Node colour): Consider a planned route P = {p1, p2, …, pn}, a

node R in the R-tree and C(p, d) as the query region centred at point p, with

radius d. Then,

• R is said to be white w.r.t. P iff R ∩ C(pj, d) = ∅ for all pj ∈ P,

• R is said to be black w.r.t. P iff R ∩ C(pj, d) = R for some pj ∈ P,

• R is said to be grey w.r.t. P otherwise.

MPRQ will prune off the white nodes and search only the grey and black

nodes in the R-tree. Note that these are natural extensions of the normal range

query. This pruning rule is called NodeOut.

Definition (Query point colour): Consider a query path P = {p1, p2, …, pn}

and a node R in the R-tree. Then,

• pj is said to be white w.r.t. R iff R ∩ C(pj, d) = ∅,

• pj is said to be black w.r.t. R iff R ∩ C(pj, d) ≠ ∅.

35

The MPRQ algorithm will also prune off the white query points. This is where

it enjoys the advantage of simultaneous pruning. This pruning rule is called

PointOut.

3.1.2 Algorithm 1: RRQ

A straightforward approach to answer the multi-point range query is to apply

the standard range query (RQ) to each and every point in P and combining the

results, i.e. MPRQ(P, d) =),(dpRQ
Pp∈

U . We call this repeated range query

(RRQ). Since a call to RQ is independent of one another, each query will

search the spatial index once. This is repeated as many times as the size of our

planned route (|P|) to retrieve all results. A post-processing step is usually

needed to eliminate the duplicates that result from overlapping of query

regions (Figure 10). Apparently, this method is extremely expensive even

when the whole spatial index resides in internal memory.

This method is used by many web-based proximity query applications

that disguise their weaknesses behind multiple, separate web pages for two

reasons: (i) web pages displaying partial results are more intuitive to navigate

and digest (reducing information overload) and reduces loading time; (ii) web

pages are used to break up multiple points query using standard RQ as it is

easier to implement, and they might not have an efficient algorithm to retrieve

results given multiple query points.

36

 RRQSearch(R, P, d, Obj)
 // Input: MBR R, a query path P, a search distance d
 // Output: Obj – set of objects within distance d of some
 // point in P
 begin

 R � R-tree.root
 for each pi in P do
 RQSearch(R, pi, d, Obj);
 endfor
 end; {procedure RRQSearch}

 RQSearch(R, p, d, Obj)
 begin

 if (R is a leaf-node) then
 Process objects in R wrt point p;
 else
 for each Rc of node R do
 RQSearch(Rc, p, d, Obj);
 endfor

 endif

 end; {procedure RQSearch}

3.1.3 Algorithm 2: MPRQ-MinMax

We introduce a combination of techniques called pruning rules that solve

multi-point range query and make it possible to sustain good performance

even when simultaneously dealing with a large set of query points. Recall that

the R-tree data structure organises its nodes in a hierarchical manner where

each node stores the minimum bounding rectangle (MBR) that contains child

nodes of which no area is outside the MBR of their parent. Besides the MBR

of a node, the pruning rules include two metrics computed to aid the pruning

process, called MinDist and MaxDist, which are described below.

Definition (MinDist): Given a point p, and a node in the tree, MinDist(node,

p) is the smallest possible distance between p and any points contained by the

node. If p is located outside the MBR of the node, we measure the distance of

point p from the nearest boundary or the nearest vertex (corner) of the node’s

Figure 13. Algorithm for implementation of RRQ

37

MBR. If p is located within the MBR of the node, MinDist is defined as having

zero distance.

Lemma 1. For any point p, MBR R, search distance d and C(p, d) is the circle

with centre p and radius d, ∀q ∈ R, dist(p, q) > d if and only if R ∩ C(p, d) =

∅.

Proof. Since all objects q are bounded by R and the minimum distance

between R and p is > d, it follows that the distance of any q ∈ R will be > d.

This is the condition for MinDist. ■

p3

p1

p2

node node node

MinDist(node,p1)

MinDist(node,p2) MinDist(node,p3)=0

Definition (MaxDist): Given a point p, and a node in the tree, MaxDist(node,

p) is the maximum distance between p and any points contained by the node.

We measure the distance of point p from the furthest vertex (corner) of the

node’s MBR.

Figure 14. Different cases of MinDist. We illustrate the case where
the point lies outside a node (MBR) and within a node

38

p1

p2

 p3

node node node

MaxDist(node,p1)

MaxDist(node,p2) MaxDist(node,p3)

The concept of MinDist and MaxDist is illustrated in Figure 14 and Figure 15.

These two metrics computed for each query point during query capture its

suitability for pruning in the pruning process as a whole. Computing squares is

less costly than computing square roots. Thus, in actual implementation, to

achieve computational efficiency, the square root function is not used for

MaxDist and the last case of MinDist. Instead, the first to third cases of

MinDist are squared to keep the metric consistent for comparisons.

Mathematically, MinDist and MaxDist are computed as follows. Given,

node(x1, y1, x2, y2), p(x, y), i ∈ {x1, x2}, j ∈ {y1, y2}

0 if (x1 ≤ x ≤ x2) and (y1 ≤ y ≤ y2)
min(|x – i |) if (y1 ≤ y ≤ y2) and ((x ≤ x1) or (x ≥ x2))
min(|y – j |) if (x1 ≤ x ≤ x2) and ((y ≤ y1) or (y ≥ y2)) MinDist(node, p) =

min(22)()(jyix −+−) otherwise

MaxDist(node, p) = max(22)()(jyix −+−)

The computation of MinDist(node, p) involves more case analysis and was

described to great depth in [RoKV95, Chan01]. For computing MaxDist(node,

Figure 15. Different cases of MaxDist. The MaxDist is still defined
when point p lies within a node

39

p), it is very obvious that the maximum distance must occur at one of the

vertices (corners) of the MBR and so we shall restrict our considerations to

only the vertices of an MBR. This is more closely illustrated in Figure 16.

Let p = (px, py) and let c = (cx, cy) be the centroid of the MBR R, and v = (vx, vy)

be any corner vertex of R. Then,

MaxDist(R, p) = 22 |)||(||)||(| yyyyxxxx cvcpcvcp −+−+−+−

The following lemma forms the basis of MPRQ-MinMax. Lemma 2 postulates

that any node satisfying the condition is grey, thus requiring further

investigation (downward traversal).

Lemma 2. For any point p, MBR R, and any object q ∈ R, R is grey if and

only if MinDist(R, p) ≤ dist(p, q) < MaxDist(R, p).

Proof. The first part of the condition, MinDist(R, p) ≤ dist(p, q), follows

directly from Lemma 1. This means the query region of p overlaps R. The

second part of the condition implies that the largest distance of an object in R

Figure 16. Calculating MaxDist(node, p) using the point p, the centroid c
and a corner vertex v of rectangle R

(c x , c y)

R

(v x , v y)

(p x , p y)

40

from p is smaller than R’s distance from p. This means that the query region is

not large enough to totally cover R. Therefore R is grey. ■

A

B

C

D

q

Pruning Rule 1: NodeOut

In the example of Figure 17, during the index traversal, at a certain point down

the R-tree tree we will find that the MBR of the current node (MBR A, which

is not an external node yet) partially intersects the query regions. At this point,

it contains several children labelled MBRs B, C and D. Some of the children’s

MBR do not intersect with any query regions. For example, MBR B (a white

node) does not intersect with any query regions but MBRs C and D do.

Therefore, we can safely ignore MBR B as well as all its children because they

will not be among the potential results as their parent is already further away

from the query region than allowed. However, MBR C (a black node) is

totally contained in the search region and MBR D (a grey node) partially

Figure 17. An example to illustrate the pruning rules NodeOut and NodeIn. In this scenario
we have MBR A, which contains MBRs B, C and D. The planned route with all the search

points and the circular query regions are shown. (Note that in actual case, the boundary
of an MBR tightly bounds the boundary of its child MBRs)

41

overlaps the search region, therefore we need to traverse down these two

nodes in order to be sure.

 Pruning MBR B can be done by establishing the condition that

MinDist of MBR B to each and every query point is never smaller than the

search distance, i.e. given planned route Q and search distance d, {q | q ∈ Q,

MinDist(B, q) ≤ d} = ∅.

To summarise, pruning rule NodeOut helps avoid traversing white

nodes that do not overlap with any query regions. The rationale behind

NodeOut is that in most proximity query instances, which are based on a

planned route, the search engine can safely ignore all the MBRs that do not

overlap with the search regions. In a very vast map, NodeOut quickly helps

zoom into the query regions after several iterations of searching. It is

imperative to note that NodeOut is achieved by the hierarchical R-tree data

structure used to index the spatial data points, and any hierarchical data

structures that use the concept of bounding boxes will also work.

Pruning Rule 2: NodeIn

In the example of Figure 17, we see that MBR C is totally contained by the

query regions. It clearly shows that the circular search region, which is formed

by the radius of search distance, completely encloses MBR C (hence, a black

node). Therefore, we can be certain to recursively report all the results in all

the children MBRs under MBR C without further MinDist/MaxDist

computation and comparisons, right down to the leaf level (done by

FastReport(Rc) in Figure 19). This can be determined as we compute

MaxDist of MBR C and find that the MaxDist value is less than or equal to the

42

search distance, i.e. given planned route Q and search distance d, ∃q ∈ Q,

MaxDist(C, q) ≤ d. As for MBR D, the condition MinDist(D, q) ≤ d <

MaxDist(D, q) w.r.t. point q is true (Lemma 2). Hence it is a grey node and we

have to traverse further down MBR D.

To summarise, pruning rule NodeIn helps improve query time by

automatically reporting all the results under a node that is completely

contained by a query region. The rationale behind NodeIn is that in an instance

where the search distance is amply large (for example, modelling it as

customer coverage between cities), we can achieve early termination of

pruning rules checking and just return all results. This is actually the case in

most multi-point range queries of a reasonably large given search distance.

The query usually terminates halfway down the search tree, reporting all

qualified events correctly.

Pruning Rule 3: PointOut

Figure 18. An example to illustrate the pruning rule PointOut. Additional labels are given to the
two query regions to the left of MBR A (Regions E and F) and one query region to the right of

MBR A (Region G)

43

In the example of Figure 18, suppose we have traversed down to MBR A. It is

obvious that we should not consider the three query points q1, q2, q6 (defined

as white points) that define Query Regions E, F, G respectively because they

do not overlap MBR A and therefore have no chance of hitting objects under

MBR A. This pruning is guided by the computation that MinDist of MBR A

from each of the three white points is already greater than the radius of their

defined query region. The set of query points found at any level of the tree is

always segmented into two mutually-exclusive sets, one in which the query

points intersects\ the current MBR (the black points), and another in which

they don’t (the white points), i.e. for any two sets X and Y where Q is the set of

query points, find X ⊆ Q, Y ⊆ Q such that {x | x ∈ X, MinDist(MBR, x) ≤ d},

{y | y ∈ Y, MinDist(MBR, y) > d}, X ∪ Y = Q and X ∩ Y = ∅.

Continuing the example, as we consider the children of MBR A, we

subsequently prune away MBR B (rule NodeOut) and MBR C (rule NodeIn)

and two more query points q3, q4 that do not overlap with MBR D (white

points w.r.t. MBR D). The power of PointOut lies in that it can quickly shorten

the query route length to only the remaining relevant query points w.r.t. the

current MBR being investigated.

To summarise, pruning rule PointOut helped improve search time

greatly by removing white query points that does not overlap the node being

investigated. The rationale behind PointOut is that as the search progresses

down the spatial index, the intermediate nodes cover less area than their parent

nodes, and hence are representing a (sometimes significantly) smaller defined

area. Therefore the chances of a lower level node covering some query points

are reduced, and hence we can safely prune away those query points too.

44

 MPRQSearch(R, P, d, Obj)
 // Input: MBR R, a query path P, a search distance d
 // Output: Obj – set of objects within distance d of some
 // point in P
 begin

 if (R is a leaf-node) then
 Process objects in R wrt path P;
 else
 for each Rc of node R do
 PointOut-Rule(Rc, P, d, Pnew); // pruning rule PointOut
 if (Pnew <> empty) then
 if NodeIn-Rule(Rc, P, d) then // pruning rule NodeIn
 FastReport(Rc); // report all objects
 else MPRQSearch(Rc, Pnew, d, Obj);
 endfor

 endif

 end; {procedure MPRQSearch}

The algorithm combining the abovementioned pruning techniques is shown in

Figure 19. In a nutshell, pruning rule NodeOut avoids traversing nodes that do

not overlap with any query point at all. Pruning rule NodeIn reports all events

under a node if a query region entirely encloses the node, terminating further

search within that node branch immediately. Pruning rule PointOut considers

only a subset of the query points when traversing the data structure, effectively

pruning query points that are not in the vicinity of the node as we go deeper

down the children of each node (as they focus on a smaller area of the map).

3.2 Experiments and Results

In all spatial queries, processing efficiency is the bottleneck. To improve the

processing of proximity queries, two main directions can be pursued. Firstly,

we could speed up the geometric algorithms in order to answer complex

spatial queries efficiently. In MPRQ, there are a significant number of spatial

overlay comparisons between MBRs and the query points. To cut down on the

number of these comparisons, we introduced some pruning rules without loss

Figure 19. Algorithm for implementation of MPRQ

45

of generality. Secondly, we could improve the retrieval time of spatial objects

that are handled with spatial access methods (SAM). We experimented with

various existing data structures such as quadtrees and R-trees. On top of the

data structures, for the R-trees we implemented different node splitting

heuristics and bulk-loading (offline packing) algorithms.

Empirically, we compared the performance of various kinds of data

structures suitable for implementing the query engine using the MPRQ-

MinMax algorithm (simply called MPRQ in experiment results in the

remaining of this chapter). We also performed an in-depth study of the effect

of applying the various combinations of our pruning rules. We compared the

performance of MPRQ against the RRQ for answering proximity queries.

3.2.1 Datasets

The map database used in all experiments as well as the choice of datasets and

the combination of experiment parameters are based on four factors, namely (i)

the number of event points, (ii) the distribution of event points and the effect

of clustering of event points, (iii) the search distance, and (iv) the modes and

combination of different types of routes.

We used the RADS database as the underlying source of GIS data to

work with. The RADS database, based on the map of Singapore, consists of a

collection of geographical objects represented by a series of coordinates. The

nature of the RADS database is briefly described in this section in order to

more understand the kind of GIS data we used in our applications. The RADS

database was widely used in [FLLL99, Lao99, Ho00, NgLH04, NgLe04,

NgLe07] for experiments. Firstly, the database represents real-life data

46

comprising the map of Singapore including definitions for landscapes, bus

stops, subway stations, roads (partially) and buildings (partially). Secondly,

because the RADS database consists of real-life data, we can expect the data

distribution to be non-uniform. This provides an opportunity to conduct

experiments on hot areas using real-life data.

Definition (Hot area): Hot areas represent a concentration of activities that

lead to a significant number of events within a span of a small area. We

represent hot areas with clusters of different intensity, expressed in a

percentage of the total events. Events not in the hot areas are randomly

uniformly distributed.

Thirdly, because the real-life datasets are based on Singapore, work can be

carried out on a full dataset of one city totally in the main memory. Later, we

could further scale up the implementation into external memory to apply the

results on a larger city. Experiments were run with various parameters as listed

in Table 1.

Number of points
(events)

10000, 20000, 40000, 80000, 160000

Clustering and
distribution of points
(hot area)

• 100% uniform points
• 2 clusters (20%, 10%) + 70% uniform
• 4 clusters (10% x 2, 5% × 2) + 70% uniform
• 8 clusters (8% x 2, 4% × 6) + 60% uniform

Search distance 100m, 500m, 1000m, 5000m
Planned routes R1, R2, R3, R4, R5, R6

The number of points represents the events that will be available for search at

any one time. The number of clusters (0, 2, 4 or 8) represents hot areas that

Table 1. The nature of the RADS database that became the primary
database for internal main memory experimentations

47

have a concentration of activities. It is realistic to assume at any one time there

will be a few places with a concentration of activities. The search distance is

representative of short walking to a destination (100m or 500m), a connecting

short drive or shuttle buses taken from boarding to alight point (1000m or

5000m).

The query routes (R1, R2, R3, R4, R5, R6) chosen are more subjective.

The aim is to simulate different kinds of transportation that a typical traveller

may take. R1 is a typical journey using the subway going from the west to the

east of Singapore. The stops are generally far away from each other (ranging

from 900m to 4800m). R2 is a journey of taking a bus, then switching to the

subway, getting off at a hot area (clustered), and continuing the journey on a

connecting bus again. The entire journey passes by four hot areas. R3 consists

of a long route by buses that pass through a hot area and continuing

northbound. R4 is a typical long journey by bus from one end of Singapore

(northwest) to the other (southeast), with many stops which are very close to

each other (approximately 400m). It passes in between two clusters. R5 and

R6 are short journeys (less than 10 stops) which do not pass through any

clusters, both at two different parts of the map. They are used as control and

correctness measure. Figure 20 illustrates some of the different parameters.

Synthetic query route. A uniformly spaced horizontal route (called H-path)

with 80 query points (at regular interval 500m apart) is used across all

experiments, i.e. |H-path| = 80. We also have a vertical query path V-path with

38 points and a diagonal query path D-path with 45 points. Figure 20(c)

illustrates.

48

(a) (b)

(c)

Real-life query route. For one set of experiments, 6 real-life routes (R1 to R6)

that are computed by the multi-criteria, multi-modal shortest-path algorithm of

[FLLL99, Lao99] are used. The paths contain 34, 78, 120, 123, 11 and 7 query

points respectively. The paths exhibit many aspects of a real-life travel plan

which can consist of taking buses (query points very near to each other –

meaning overlapping is heavy), the subway (points far apart – less incidents of

overlapping), and combinations of the two.

Figure 20. Graphical representation of the RADS database. The rough map of Singapore is
formed by (a) 2 clusters (20%, 10%) + 70% uniform, (b) 8 clusters (8% × 2, 4% × 6) + 60%

uniform, and (c) 100% uniform. The percentage specified is the percentage of total points used.
In (a), we used two long planned routes, one consists of multiple bus stops and the other is an

MRT journey, both passing through a clustered area. In (b), we see one planned route that misses
the clustered area and the other goes through many clustered area. In (c), we see synthetic routes

with regular intervals called H-path, V-path and D-path

49

3.2.2 Effect of the Number of Query Points

(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points)

Very naturally, we first compare MPRQ and RRQ across varying number of

points in the path (1-80) in the horizontal query route H-path. Figure 21 and

Figure 22 show the results comparing both the query time and the number of

nodes visited for MPRQ and RRQ. It is clear that MPRQ outperforms RRQ.

For the Singapore dataset (Figure 21), the query time speed-up is 81 times for

|P| = 80; and 6.5 times for |P| = 10. In general, the query time speed-up

increases with the number of query points.

(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points)

Figure 21. Comparison of MPRQ and RRQ for query route H-path and d=500m

Figure 22. Zoom in on Figure 21 for 1-10 query points

50

The reduction in the number of nodes visited for MPRQ versus RRQ is

also significant. For the case of H-path, the number of nodes visited rises

almost linearly with the number of query points for both MPRQ and RRQ.

Figure 21(b) shows that, on average, the number of nodes visited by MPRQ is

about 45% and 40.8% of that for RRQ.

In general, we expect MPRQ to perform better when the number of

points in the query route P increases. Therefore, as a stringent test we have

also zoomed into the cases where 1 ≤ |P| ≤ 10. The results are shown in Figure

22 and they confirm that MPRQ outperforms RRQ even when there are only

two points in the query route P.

In addition, our results for the other two query routes V-path and D-

path as well as the real-life NJ dataset (not shown here) also show identical

trends with respect to performance comparison between MPRQ and RRQ. So,

for the remainder of this study, it suffices to report on results for H-path.

3.2.3 Effect of the Search Distance

(a) (query-time) vs (search-distance) (b) (# nodes-visited) vs (search-distance)

Figure 23. Comparison of MPRQ and RRQ for H-path with 80 points

51

We now compare MPRQ and RRQ across different search distances – Figure

23 for the Singapore dataset with |P| = 80. The results show that there is a

significant speed-up in the query time when using MPRQ as compared to

RRQ. In particular, Figure 23(a) shows that the speed-ups in query time (of

MPRQ vs RRQ) are 37 times, 82 times, and 97 times for the search distance d

= 200m, 500m, and 1000m, respectively. The distances represent no over-

lapping, moderate overlapping and heavy overlapping of query regions.

More stringent tests with very short query route (H-path with 1 ≤ |P| ≤

5) and d = 3000m showed that the query time speed-up for MPRQ ranges from

2.82 times to 13.38 times. Also, the number of nodes visited for MPRQ (as a

ratio of that for RRQ) ranges from 0.40 to 0.63.

3.2.4 Effect of Clustered Dataset

We ran MPRQ and RRQ on the clustered datasets to observe the effect of

clusters on proximity queries. It is not uncommon for a traveller to travel into

and out of a hot area in a journey. For these runs (shown in Figure 24), we use

the query route V-path that cuts across several clusters of points and d = 500m.

(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points)

Figure 24. Comparison of MPRQ and RRQ using clustered data, V-path and d=500m

52

Again, it is clear that MPRQ significantly outperforms RRQ. Compared to

random dataset, the curves are not as smooth – most likely due to the presence

of clusters that cause variations in the results. We can conclude that MPRQ’s

superior performance holds even for clustered datasets.

3.2.5 Performance of Real-Life Routes

The performances of the four real-life routes (route1-4) are shown in Figure 25

showing clear advantages of MPRQ over RRQ. We plot the ratio of query

time for RRQ over MPRQ. In Figure 25(a), the query time speed-up for real-

life routes is generally similar to those for the synthetic H-path (shown in

Figure 23). The lines show that speed-up continues to rise as search distance

increases. In Figure 25(b), the reduction in the number of nodes visited for

MPRQ widens with the search distance.

(a)

query-time(RRQ)
query-time(MPRQ) vs (search-distance) (b)

nodes-visited(MPRQ)
nodes-visited(RRQ) vs (search-distance)

Figure 25. Comparison of MPRQ and RRQ for real-life routes (route1-4)

53

3.2.6 Performance of Data Structures

Extensive experiments were performed using datasets described in the

previous section on various data structures to measure the performance of data

structures against MPRQ. Two metrics were used as measurement for the

various data structures, namely query time per point and memory used per

node. Both are calculated as follows.

Average query time =
Total query time

Size of spatial database

Average memory used =
Total memory used
Total nodes in tree

The PR quadtree was first investigated using varying bucket size and

maximum tree depth. The bucket size determines the maximum objects stored

at the leaf level before it overfills and be split into two. The larger the bucket,

the better the utilisation. The maximum tree depth is imposed to prevent from

getting a narrow, skewed and chain-like tree. Typically, an events-based GIS

database can contain data points that share the same exact location (e.g. an

exhibition event at a convention centre, or many different companies located

inside a high-rise building). A bucket implementation effectively keeps the

points (internally) together in the resulting tree node. Results are shown in

Table 2 and Table 3.

Maximum Tree Depth Average Query Time
(ms) 9 12 15 18 21 24
PR Quadtree 0.419 0.321 0.309 0.318 0.360 0.388

2 0.431 0.296 0.292 0.317 0.329 0.351
4 0.279 0.274 0.291 0.299 0.292 0.294
8 0.236 0.236 0.234 0.253 0.240 0.253
16 0.228 0.208 0.228 0.227 0.209 0.206
32 0.204 0.206 0.197 0.218 0.212 0.203

Bucket Size

64 0.183 0.184 0.197 0.189 0.198 0.201

Table 2. The average search time in milliseconds of the PR quadtree implementation
with various bucket sizes and maximum tree depths limited to various depth levels

54

Maximum Tree Depth Average Memory Used
(bytes) 9 12 15 18 21 24
PR Quadtree 40.2 48.2 62.0 81.7 104.8 128.5

2 40.3 48.0 59.8 75.6 93.0 109.3
4 47.1 59.5 73.0 83.9 91.8 96.9
8 61.3 70.9 75.5 77.9 78.5 78.8
16 66.2 67.2 64.5 65.0 67.7 67.7
32 61.8 61.9 61.9 61.9 61.9 61.9

Bucket Size

64 59.6 59.6 59.6 59.6 59.6 59.6

For the PR quadtree alone without buckets, the average query time is best

when a depth of 15 is used. The average memory used per node is increasing

proportional to the tree depth. For the PR quadtree with varying bucket size,

the search time improves as a larger bucket is used. The best time is achieved

when the maximum depth is set at 15. Since the bucket is a linked list, the

larger the bucket the longer it takes to search through it. Hence a bucket which

is too large will adversely affect query time (the time saved from using the

quadtree hierarchical structure cannot compensate for the time spent on

searching buckets). As for memory used, there is more or less no difference

when a larger bucket is used.

Table 3. The average memory used per node in bytes of the PR quadtree with
various bucket sizes and maximum tree depths limited to various depth levels

(a) (query-time) vs (# query-points) (b) (query-time) vs (# query-points)

Figure 26. Different R-tree data structures: HilbertPack, R*-tree, STRPack and KDTopDownPack.
(a) comparison of MPRQ and RRQ for d=500m, (b) showing MPRQ only for d=500m

55

Bucket Size Average Query Time
(ms) 8 16 32 64 128

QuadSplit 0.508 0.434 0.731 0.975 1.201
LinearSplit 0.448 1.094 1.597 1.376 1.862
NewLinearSplit 1.031 0.843 0.741 0.790 1.228
R*-tree 0.418 0.564 0.569 0.718 1.122
HilbertPack 0.410 0.563 0.775 1.215 1.468
STRPack 0.354 0.414 0.565 0.750 1.004

R-tree
variants

KDTopDownPack 0.112 0.136 0.174 0.252 0.384

As for the R-trees variants shown in Figure 26 (data shown in Table 4 for

clarity), for the average query time, it is observed that as bucket size increases

to 64, some on-line algorithms like NewLinearSplit [AnTa97] and R*-tree

perform comparably with STRPack which is an off-line bulk-loading

algorithm. Generally, STRPack performs very well at different bucket sizes

compared to the rest except the KDTopDownPack. The latter is much faster

than the former due to its design whereby it splits the search space to be

disjoint at each level and further partition and pack each node down from the

root level. At all levels, KDTopDownPack computes the axis major for any

subset of rectangles it is about to organise, and uses the axis major to split its

rectangles, resulting in well-divided, balanced area on its children. Our result

for HilbertPack is also in line with [HKCL03] who conducted a performance

study of main-memory R-tree variants.

Bucket Size Average Memory Used
(bytes) 8 16 32 64 128

QuadSplit 101.3 94.0 90.4 88.6 87.3
LinearSplit 101.4 94.3 90.8 89.5 89.6
NewLinearSplit 96.8 89.6 86.6 85.5 85.2
R*-tree 97.0 90.2 87.2 85.8 85.5
HilbertPack 97.8 93.0 90.9 89.8 89.4
STRPack 43.7 39.7 38.1 37.8 37.4

R-tree
variants

KDTopDownPack 45.2 40.3 38.5 37.3 36.7

Table 4. The average search time in milliseconds of various implementations of node
splitting heuristics and R-tree bulk-loading algorithms with various bucket sizes

Table 5. The average memory used per node in bytes of various implementations of node
splitting heuristics and R-tree bulk-loading algorithms with various bucket sizes

56

Table 5 shows the average memory used by the R-tree variants. Generally,

average memory used decreases with larger bucket sizes until it stabilises. The

STRPack and KDTopDownPack are close to each other on this term, while the

rest use about 3 times greater memory. This is due to both trees being packed

to the brim even from the start, exhibiting good utilisation of buckets. When

taking average query time into account, the proposed KDTopDownPack is

definitely the outstanding one. Because of this, we use it as the default data

structure for MPRQ.

3.2.7 Effectiveness of Pruning Rules

Using our experiment datasets, we next investigate the effectiveness of the

pruning rules that we introduced. We applied the pruning rules (described in

Section 3.1.3) incrementally and ran separate rounds of experiments. For easy

referencing, they are summarised as follows.

NodeOut. Avoid traversing nodes that do not overlap with any query point.

NodeIn. Report all events under a node if some query region contains it.

PointOut. Consider only a subset of query points while traversing the index.

We start by applying rule NodeOut to the R-tree as a baseline for our

experiment, then apply NodeIn and PointOut incrementally and we measure

the difference in performance in terms of time taken to answer an MPRQ.

NodeOut was picked as the baseline because it is considered to be a pruning

technique implicitly derived from using a hierarchical data structure alone.

Table 6 summarises the effect of these pruning rules.

57

 Percentage compared to applying
pruning rule NodeOut as baseline

measurement
Pruning Rules min mean median max
NodeOut 100.0% 100.0% 100.0% 100.0%
NodeOut +NodeIn 45.3% 88.9% 93.3% 102.2%
NodeOut +PointOut 0.2% 8.1% 3.0% 41.2%
NodeOut +NodeIn+PointOut 0.2% 5.8% 2.8% 34.3%

We observed that by adding pruning rule NodeIn on top of NodeOut, we

obtain a 11.1% decrease in query processing time. By applying PointOut, we

obtain a further 83.1% decrease in processing time (only 5.8% of the original

time). On the other hand, applying pruning rule PointOut on NodeOut results

in 91.9% cut in query processing time, while applying NodeIn further results

in another 2.3% reduction.

In general, we note that pruning rule PointOut helps in reducing more

of the query processing time over pruning rule NodeIn. This is because a route

might spread across a wide area (possibly the entire search space), and hence,

eliminating irrelevant query points that do not affect the computation of

overlapping operation greatly helps in reducing the processing time by cutting

out a lot of branches that need not be traversed. On the other hand, pruning

rule NodeIn only helps when the search distance is relatively larger than the

areas covered by the nodes in a data structure, pruning thus takes place near to

the leaf level (with smaller node coverage) of the tree.

3.2.8 MPRQ vs Traditional Query

It is interesting to know how well our pruning techniques perform in

comparison to the traditional method, which is the RRQ. We conducted

Table 6. The effectiveness of applying different pruning rule combinations. NodeOut was
used as the baseline. The percentage value represents the time taken for answering the

multi-point range query. In interpreting the results, we used the mean running time

58

experiments to show its merits in performance (running with all three pruning

rules activated) in contrast to performing query processing using traditional

methods, i.e. performing the query point-by-point and combining the results

(with duplicates removed in post-processing). Using MPRQ-MinMax, we only

need to perform the search once with the all the points in the route as one input

set (incorporating the pruning rules that we described).

Query Type Average Query Time
(ms) MPRQ RRQ

Improvement

QuadSplit 700.375 5128.708 7.323
LinearSplit 733.458 5061.958 6.901
NewLinearSplit 693.396 5120.938 7.385
HilbertPack 673.875 4932.604 7.320
STRPack 640.500 4850.438 7.573

R-tree
variants

KDTopDownPack 609.040 4811.710 7.900

Table 7 shows that MPRQ outperforms RRQ by as much as 8 times (when

using KDTopDownPack). The reason behind this is because MPRQ can prune

away the nodes that do not overlap the combined search regions of all search

points at all. Once the MPRQ found a node that is contained in one of its

query regions, it will immediately report everything under that node and not

consider that branch anymore, saving valuable computational time.

On the contrary, RRQ traverses down the data structure once for each

and every search point in the whole path sequentially, oblivious to

neighbouring search points. The spatial index is traversed as many times as the

input route size, with the possibility of traversing down the same nodes at the

top of the tree each time (if two consecutive query points are close to each

other). Even in the case of internal memory here, which does not incur disk

Table 7. The average query time in milliseconds comparison of various implementations
of node splitting heuristics and R-tree bulk-loading algorithms between the multi-point

range query and the traditional repeated range query

59

I/O costs which is 2 orders of magnitude higher, the RRQ loses to MPRQ.

This is true despite MPRQ having to perform more computations than RRQ

due to the complexity of its pruning rules.

3.3 Summary

Several spatial data structures used in indexing objects in isotropic search

space were explored. These are data structures that support space

decomposition, i.e. by dividing search space until it is small enough to

accommodate an individual object. We implemented and investigated PR

quadtree, kd-tree, R-tree and its many variants (different node splitting

techniques and R-tree bulk-loading algorithms) on their performance in multi-

point range queries.

Experimentation results showed that our KDTopDownPack bulk-

loaded R-tree (refer to [Ho00] for details) outperforms other spatial data

structures in terms of memory use and query time. For example, it outperforms

the PR quadtree by one-third in query processing time with about one-fifth

savings in memory used for the data structure. Compared to other R-tree

variants, KDTopDownPack took only half the time to answer the same query

although the memory used is slightly more than its closest rival the STRPack

R-tree. Therefore, we decided to focus on KDTopDownPack R-tree as our

base data structure in all MPRQ implementations.

MPRQ is a special type of query characterised by a series of points that

represents a travelling route. We explored decomposition issues [KrSB93]

with regard to multi-point range queries. We had looked into the issue of

object decomposition (using pruning rules), where geometric tests are only

60

applied to a representative of the object which is more efficient than testing for

the whole object [KrHS91, NiWi97, SeKr98, SCRF99]. We arranged the

events into regions before indexing them with a spatial data structure so that

objects are organised with respect to their location as proposed by [SeKr90].

This forms the implementation of object and space decomposition. Our

experimental results show that the three pruning rules combined are very

effective in cutting down query processing time.

As a summary, this study has addressed many issues in dealing with

the multi-point proximity range query, enough to develop an initial prototype

incorporating the right data structure and pruning algorithms for a small

database. We had expected MPRQ-MinMax to perform well for small route

queries, and our empirical studies have proven it. In the next chapter, we

explore MPRQ for the case of very large database involving external memory.

61

Chapter 4 External Memory Algorithms for MPRQ

Often in dealing with spatial databases, even the smallest dataset may be too

large to reside in internal memory. Not many systems can afford the luxury of

having very fast processors with lots of internal memory. In 2000, the cost of

memory (dollar per MB) stands at US$0.30 compared to about US$40 back in

1990. Even so, there is the problem of not enough space and heat in packing

too many transistors per square inch into a memory module. The largest

memory module today for the personal computer is 4GB RAM module. New

memory technologies with low power consumption called flash memory (such

as CompactFlash, Secure Digital or MultiMedia Card), commonly used in

PDAs and handheld devices, are also comparable in price to standard memory.

Even with such a drastic drop in memory cost, the idea of processing

large amounts of data on external storage with a small amount of internal

memory is still unfathomable. A typical GIS database size is in the range tens

of terabytes (1012 bytes). There are 23×109 billion indexed web pages in the

world as of May 2010, according to Google. Due to the sheer size alone, it is

inescapable for proximity querying applications to commonly deal with large

amounts of data stored in secondary memory.

 We know that the cost of disk accesses is relatively much more

expensive than its internal memory cost counterpart even on a single

workstation, let alone distributing the data components across the globe using

wide area networks (WAN), which is the common practice in today’s

globalised world. It is not uncommon to perform spatial joins of spatial

62

databases from different spatial data centres located in different geographical

locations worldwide.

4.1 External Memory Experimentation Systems

In experimentation, the research world is divided and there are not any

canonical programming methods or platforms in which research on disk-based

algorithms are done. As disk access activities such as data-to-disk mapping,

actual I/O calls, data buffering, caching and I/O timing and accounting are not

standard to any programming language (C, C++ or otherwise) or operating

system, it is generally very difficult to implement an experiment that conforms

to the design of a sound disk-based experimentation framework. We do not

wish to mix the algorithm part of our application with the presentation logic

and the disk-access logic in one program. This would greatly increase

coupling, which is not desirable.

Packages Comments

MPI General message-passing routines; supports only C (not
C++) and Fortran

PVM Comprehensive message-passing routines, widely used in
educational and commercial applications

TPIE Created to support parallel I/O systems research, many
research papers around

LEDA-SM Relatively new, provides basic external data structures like
lists, stacks, queues, arrays

STXXL An implementation of the C++ standard template library for
out-of-core computations

We researched some of the high-level packages supporting disk access that are

freely available for research. They are generally divided into two categories, (i)

Table 8. Different software components widely used for research in the performance
of external (secondary) memory data structures and algorithms

63

those that facilitate computer to computer communication via message packets;

and (ii) those that provide a templated data structure that simulates disk access

and its fundamental methods (e.g. insertion and deletion for a disk-based data

structure implementation).

In Table 8, the first two packages, MPI (Message Passing Interface)

[GrLS94, MaDo94] and PVM (Parallel Virtual Machine) [Sund90, GBDJ94]

belongs to the message passing category. TPIE (Transparent Parallel I/O

Environment), LEDA-SM (Library of Efficient Data Structure for Secondary

Memory) [CMAB98, CrMe99] and STXXL (Standard Template Library for

Extra Large datasets) [DeKS05] belongs to the access-oriented library for I/O

implementation. After investigating, we chose TPIE for MPRQ.

TPIE (Transparent Parallel I/O Environment) is a framework-oriented

approach for development of I/O codes. TPIE [Veng94] is a set of templated

classes and functions that facilitates the implementation of external memory

algorithms. The whole process of reading data, processing and writing them

back to disk is abstracted out by TPIE into a continuous process where the

program is fed data mapped from an outside source (physical disk drives),

reads into and writes data from it. The underlying details of how I/O is

performed on a particular machine/platform are handled by TPIE, as well as

the associated accounting such as time and memory used and I/O operations

performed. Each disk D is a simulated stream of objects that resides on disk as

a file. Continual support by the developer with release of newer stable

versions and ease of deployment make TPIE a good choice.

64

4.2 Porting MPRQ to Disks

To run new experiments on external memory with the previous sets of MPRQ

codes, some modifications are in store to implement the chosen disk-based

programming library, the TPIE. First of all, a realistic disk block size B is

chosen. This parameter is often called the page size in the literature. Each I/O

will consist of a read/write operation of size B that we want to simulate a true

logical block of disk access in the underlying operating system. This is done

by modifying the BTE_MMB_LOGICAL_BLOCKSIZE_FACTOR value inside the

app_config.h file. The AMI (Access Method Interface) is one of the three

components of TPIE and is the only one that we have to interact with. The

settings for our implementation are as follows.

BTE_IMP_MMB – we used memory mapped block transfer engine, where

each disk D is implemented as one ordinary file in the Unix file system. This

paradigm transparently maps the currently accessed block of a file to internal

memory. When a node is outside the mapped block, the current block is

unmapped (saved to the disk if modified) and a new one (a node that is

requested) is mapped from the disk. This is equivalent to one I/O operation.

Logical disk block size factor = 4 – we used the LDBS of 4 * O/S block size.

We ran experiments on Linux, whose file system’s default block size is 4096

bytes, the size of one inode (the basic building block at file system level).

When a node is accessed, its disk_index is retrieved and a seek is made

to the disk location before a read or write operation takes place. A seek outside

the current logical block mapped into memory will cause an unmap operation

of the current block and a map operation to the new block. So if the next node

65

to access is physically nearby, a read/write will not generate an I/O operation,

as it is done within the current block.

Each node R has a block id which consists of the bucket size (fan out)

number of Rc (R’s children), each with their own block id. Largely, the

handling of block ids is synonymous to the handling of pointers in main

memory. In the MPRQ algorithm, the spatial data structure is implemented

with a struct node which contains up to f (fan out) pointers to other struct

node objects, at the leaf level in which they are cast to point to real spatial data

points. In the MPRQ algorithm modified for disk, henceforth we refer to as

MPRQ-Disk, nodes are stored in blocks that contain links (block ids) to other

nodes (blocks).

In previous experiments in internal memory, three metrics were used

as a measurement for the various data structures, namely the average query

time, the number of nodes visited during query and memory used per node.

When focus is shifted to disk-based accesses, we are interested in the amount

of disk I/Os that each data structure uses during operation. This figure should

be minimised and optimal to the data on disk with respect to locality. Since the

cost of a disk I/O operation is several orders of magnitude greater than a

memory access, our algorithm running time is clearly dominated by it. In the

literature, disk I/Os are commonly used for upper and lower bound analysis of

algorithm performance.

Measurements are obtained from the statistics provided by TPIE at the

end of each experiment. TPIE provides statistics on the number of reads,

writes, maps, unmaps and seeks. The number of I/Os performed by an

algorithm is given by TPIE’s count of the number of map operations

66

performed, which is fully documented. This is also the measurement used in

the research done in [AHVV99].

Two issues to look at are locality of reference and the amount of data

to access in a single block of I/O operation. The data exchange between the

internal memory and the external memory is one logical block at a time.

Locality of reference means access to all data inside this block takes about the

same time as accessing a single item within the block, because a chunk of data

is read or written in one I/O. The question is how large a chunk (logical block)

should be used. Many researchers go by LDBS = 4 [KrSB93] because that is

the default block size in the Windows and Linux file system platform, the size

of one cluster in FAT32 up to 8GB per partition.

In our study of MPRQ in internal memory, the issue of performance

was largely dominated by the effect of pruning of the nodes visited during the

tree traversal. The performance speed-up of the MPRQ algorithm is more or

less directly proportional to the number of nodes visited during the query

process. However, when porting MPRQ to disk, several different performance

issues needed to be studied – for instance, as disk block reads are typically

much slower than internal memory access, the number of disk I/Os becomes

the critical factor in performance. Since each disk block contains nodes of R-

tree, issues such as disk block size and disk buffering greatly affect the

performance of MPRQ-Disk.

For the disk case, given the size of spatial database N, the size of disk

block B, at any node R in the R-tree, MPRQ-Disk now incurs O(m*B) time for

each node, where m is the number of query points and f ≤ B is the fan out of

node R. The former, m, is mostly internal CPU computation where the pruning

67

rules of NodeIn and PointOut take place. Since disk accesses are generally 2-3

orders of magnitude slower than CPU computations, B becomes dominant and

it contributes to the bulk of the query time and the total number of I/Os. In

comparison, the RRQ has a processing time of O(f) per node in internal

memory, but O(B) on disk. In general, RRQ-Disk answers MPRQ in

O(m*(logB N + k/B)) using bulk-loaded R-trees (such as KDTopDownPack)

which guarantees a bounded height of O(log n), where k is the number of

results found. There is also a post-processing cost of O(K log K) to remove

duplicates, where K = ∑ =
m

i ik1
. In comparison, MPRQ-Disk answers MPRQ in

O(logB N + k/B).

 MPRQ-Disk-Search(Bid, P, d, Obj)
 // Input: Disk block ID Bid, query set P, search distance d
 // Output: Obj – set of objects within distance d of
 // some point in P
 begin

 Access block Bid for node R;
 if (R is a leaf-node) then
 Process objects in R wrt path P;
 else
 for each Rc of node R do
 PointOut-Rule(Rc, P, d, Pnew); // Pruning rule PointOut
 if (Pnew <> empty) then
 if NodeIn-Rule(Rc, P, d) then // Pruning rule NodeIn
 FastReport(Rc.Bid); // report all objects under Rc
 else MPRQ-Disk-Search(Rc.Bid, Pnew, d, Obj);
 endfor
 endif
 end; {procedure MPRQ-Disk-Search}

4.3 MPRQ Algorithms

4.3.1 Algorithm 3: MPRQ-Sorted Path

With a larger database, we need to have more efficient pruning methods. The

sorted path approach, which we shall call MPRQ-SP [NgLe04], sorts the input

Figure 27. Algorithm for MPRQ-Disk

68

query route along the major axis and takes advantage of the fact that the query

points are always sorted to quickly prune the path with respect to the MBR

being processed. This technique involves making slight changes to the

MPRQSearch algorithm of Figure 19 and is easy to implement. The main

difference is in the way the two pruning rules, PointOut and NodeIn, are

implemented. Hence, only the corresponding algorithms for these two pruning

rules are presented. Other algorithms that are needed to provide supporting

roles but are common, such as sorting and binary search, are omitted.

MPRQ-SP prepares the planned route P for ease of pruning by sorting

all the query points according to its major axis before the query begins. While

traversing down the R-tree, to eliminate all the white points in P w.r.t. a node,

it is now possible to quickly find the cut-off left and right end of P to extract a

shorter sorted sub-path for passing down to that child node. In general, instead

of evaluating n points for any given node and path, it now suffice just to

evaluate O(log n) points, providing substantial savings especially when the

size of input query is very large.

MPRQ-SP has three major steps: determine the axis major of the input

path P, rearrange (sort) all the points in P along the axis major, and finally

begin query with the sorted path P. The first step is straightforward, and it

involves scanning P to determine whether the path P is more horizontally or

vertically inclined. This process can be achieved in O(n) time. Then all the

points in P are sorted according to the axis major of P, i.e. the longer of the

two axes. Sorting takes O(n log n) time. The second step is akin to mapping all

the points to a one-dimensional structure for easy search. The first two steps

are the pre-processing steps for MPRQ-SP.

69

Figure 28 illustrates the example where all the points are sorted using

their x-values or y-values, depending on their axis major. The intuition to use

the axis major stemmed from the fact that if we cut P along the axis major,

more points can be pruned easily as P spreads out more along the axis major

compared to the axis minor. Refer to Table 9 for the running time of MPRQ-

SP.

The third final step is the searching. We present the PointOut and NodeIn

algorithms for MPRQ-SP in Figure 30 and Figure 31 respectively. The

difference for these two algorithms is that they both accept a sorted input route

P rather than any input route P. The algorithms make use of binary search to

locate along the sorted path the cut-off points for extracting a shorter pruned

route (defined as black points) which is by default also sorted. Hence, no more

sorting is necessary throughout this step to maintain a sorted sub-path. Two

binary search routines appeared in the PointOut pruning rule, left_bsearch

and right_bsearch.

It is noted that they are modified versions of the standard binary search

routine which, without loss of generality, also give us the cut-off point in

O(log n) time. Their names suggest that they are either left- or right-biased. A

direction-biased binary search, say right-biased, in this case means the routine

Figure 28. Sorting the query points in route P along the axis major

70

is able to proceed towards searching right as long as the pivot is equal to or

less than the target value but stops when the pivot is greater than the target

value. The rationale behind biased binary search is to handle points that map

to the same location along the axis major. In the example of Figure 29, the

right-biased binary search will terminate and return the index to point pi but

not pj since the latter is greater than the right side of the MBR R'. The same

principle applies to the left-biased version.

 MPRQ-SP-PointOut(R, P, d, Pnew)
 // Input: MBR R, a sorted query path P, a search distance d
 // Output: Pnew – sorted query subpath of P
 begin

 lo � left_bsearch(Rsorted-axis.lower – d, P)
 hi � right_bsearch(Rsorted-axis.upper + d, P)

 forall points pt in P[lo, hi] do
 if Rnon-sorted-axis.lower–d ≤ ptnon-sorted-axis ≤
 Rnon-sorted-axis.upper+d then

 Pnew � Pnew ∪ {pt}
 endif

 endfor

 end; {procedure MPRQ-SP-PointOut}

Figure 29. right_bsearch returns the point on path P along the sorted axis
that is less than or equal to the right edge of the “augmented” MBR R'

Figure 30. Algorithm for the MPRQ-SP PointOut pruning rule

 R

 d

 d

 p i

R'

 p j

71

 MPRQ-SP-NodeIn(R, P, d)
 // Input: MBR R, a sorted query subpath P, a search distance d
 // Output: Obj – set of objects within distance d of some
 // point in P
 begin

 midpt � (Rsorted-axis.lower + Rsorted-axis.upper) / 2
 mid � right_bsearch(midpt, P)

 if GetMaxDist(P[mid], R) ≤ d then
 return true
 elseif GetMaxDist(P[mid+1], R) ≤ d then
 return true
 else

 return false
 endif

 end; {procedure MPRQ-SP-NodeIn}

In Figure 31, the NodeIn pruning rule uses at most two MaxDist computations

because the fact that the query route is sorted allows us to ignore all the query

points in P except the ones closest to the center of the MBR. This guarantees a

constant time NodeIn processing with respect to the size of the route. By

NodeIn rule, in order to determine if a given MBR R is black, we need to show

MaxDist(R, p) ≤ d. The goal is to find the
Ppi∈

min {MaxDist(R, pi)} that gives the

smallest d. We start by dividing R into four quadrants with the centre C of R,

and it follows that all the points that lie in one quadrant will produce MaxDist

when paired with the opposite diagonal corner of R. This is illustrated in

Figure 32. Since all the points pi are sorted along an axis, say the x-axis, the

point that would give the smallest d would be nearest to C. Therefore, we can

utilize the right-biased binary search tree to give us the point pl to the left of C.

To cover the right half of R, we can immediately derive the next point pr on

our sorted path. Suppose MaxDist(R, pl) > d and MaxDist(R, pr) > d, because

the points in P are not sorted on the other axis, there may exists a point pi (i ≠ l ≠

Figure 31. Algorithm for the MPRQ-SP NodeIn pruning rule

72

r) that may give MaxDist(R, pi) < d. Even so, we are content that the NodeIn

pruning rule will be invoked at one level lower down the R-tree.

4.3.2 Algorithm 4: MPRQ-Rectangle Intersection

The rectangle intersection approach, MPRQ-RI [NgLe04] for short, transforms

the input query route into a set of rectangles to be solved as the two-set

rectangle intersection problem, the set of child MBRs of the investigated node

being the other set of rectangles.

In this approach, the key idea is to transform all the points in P into a

collection of rectangles, say R1, and find all the intersections between them

and the current collection of child rectangles of the current MBR being

investigated. The intuition for this approach is that once we reach a certain

MBR, all its children are already visible so we actually could make use of all

of them at the same time.

Rectangle intersection problem is a well-defined research problem

[PrSh85], which is defined as given a collection of N orthogonal rectangles,

report all the intersecting pairs. The standard approach to solve this problem is

by plane sweeping, i.e. scanning a sweep line horizontally across the plane,

inserting or deleting a rectangle’s left edge into an event point schedule as the

Figure 32. The MaxDist(R, p) is given by the distance of p to the opposite diagonal
corner of MBR R from the quadrant where p lies. The quadrant where p lies is

determined by the centre C of MBR R

C

p1

p2
p3

R

73

sweep line enters or leaves a rectangle respectively. When a new rectangle is

encountered, we perform an interval query of all the current intervals in the

schedule with the new rectangle’s left edge interval, and report all

intersections. The running time is O(N log N + k) where k is the number of

rectangle pairs reported, with pre-processing time of O(N log N) to prepare the

sweep schedule and the space complexity is O(N). Other approaches to the

rectangle intersection problem exists, such as by using the divide-and-conquer

method [GüSh87].

We present a simple yet elegant algorithm for processing MPRQ. As we need

to single out all the black query points for each grey child node of the current

MBR, one not so obvious technique is to transform all the query points into a

set of rectangles. This is accomplished by extending length d in all four

directions parallel to the axes from a query point, augmenting it to cover the

circular radius of its search distance d. By doing so, we have approximated the

circular query regions with rectangular query regions. This gives us an extra

cover area of d2(4-π) for each query point for our coarse filter, and in some

instances a white query point will be included in the pruned path for a

rectangle because their corners overlap.

Figure 33. Transforming the PointOut rule into a rectangle intersection problem. Given two sets
of orthogonal rectangles, find all overlapping that occurs between them

R1

R2

R3
p1

p2

p3

p4

p5

p6

74

In the example of Figure 33, there are two distinct sets of rectangles.

The first is a collection of child MBRs for a given node. We have O(m)

rectangles in this set, m being the bucket size (degree fanout) of the R-tree.

The second is a collection of n rectangles, each representing a query point in

the route. Using our PointOut rule, n is the total number of black points with

respect to the current node, therefore it varies (and become smaller) as we

traverse down the R-tree.

Our approach using the rectangle intersection problem is derived from

the general rectangle intersection problem. Instead of having one set of

rectangles, we have two disjoint sets of rectangles and we want to report all

the intersecting pairs between the two sets. The main objective is that we do

not want to report the intersecting rectangles within the same set, but rather

across the two sets. Simply put, we have: Given two sets of rectangles R1 and

R2, find all pairs r1 ∈ R1 and r2 ∈ R2 such that r1 ∩ r2 ≠ ∅.

We implemented the algorithm of Figure 34 using the interval sets

[Will85, MeNä95]. At each node, we first insert the interval of all the child

rectangles, which is equal to the bucket size m. Inserting m intervals takes O(m

log2 m) time. Following that, we query the interval of all the points in the route

P of n points, each query taking O(log2 m + k) time, where k is the intersecting

rectangles pairs found and to query a path of size n takes n (log2 m + k) for

each node. Refer to Table 9 for the running time of MPRQ-RI.

75

 MPRQ-RI-PointOut(R, P, d, Pnew)
 // Input: MBR R, a sorted query path P, a search distance d
 // Output: Pnew() – array of sorted query subpath of P
 begin

 forall r in R do
 insert interval [r.x1,r.x2] into rect
 endfor

 forall pt in P do

 result � interval [pt.x – d, pt.x + d] ∩ rect
 forall i in result do
 if (i.y1 - d ≤ pt.y ≤ i.y2 + d) then

 j � index of rectangle R at interval i

 Pnew(j) � Pnew(j) ∪ {pt}
 endif
 endfor
 endfor

 end; {procedure MPRQ-RI-PointOut}

4.3.3 Running Time

Table 9 summarises the asymptotic running time of the four approaches that

we had discussed. The amount of processing needed per node is also given.

RRQ incurs a constant amount of processing as the query path is static. MPRQ

has varied node processing time depending on the length of the query path at

each level of the search tree. The approaches differ in the method used in path

pruning and they all use O(N) space, where N is the size of the spatial database.

We use k to denote the number of results returned.

Approach Amount of Processing per Node
(n is length of path when

entering node)

Running Time

RRQ m * n n * N log N + k log k

MPRQ MinMax ∑
=

+
m

i

ikn
1

)(, ki ≤ n t * N log N

MPRQ Sorted Path ∑
=

+
m

i

ikn
1

)log2(, ki ≤ n n + n log n + t * N log N

MPRQ Rectangle
Intersection

m log2 m + n (log2 m + k) t * N log N

Figure 34. Algorithm for the MPRQ-RI PointOut pruning rule

Table 9. Various approaches to answering the multi-point range query, the amount of
processing done per node and total running time. N is the size of the spatial database,
m is the cardinality of node, n is the size of input query path, k is the size of the results,

and t is the amount of processing per node

76

4.4 Experimental Setup

4.4.1 Datasets

A very popular choice of GIS database for research is the Topologically

Integrated Geographic Encoding and Referencing (TIGER) system first

introduced in 1990 by the US Census Bureau [TIGER02, Doli01]. The

TIGER/Line files comprise a digital database of geographic features, such as

roads, railroads, rivers, lakes, even political boundaries and census statistical

boundaries, covering the entire United States. The database contains

information about these features such as their location in latitude and

longitude, the name, the type of feature, address ranges for most streets, the

geographical relationship to other features, and other related information.

Many research works [APRS98, AHVV99, LeEL97, RoKV95,

PaMa96] use the TIGER/Line database for experiments because it serves the

purpose of uniformity for benchmarking results, is comprised of real-life data

and is readily available in plain text format. Many free tools are available

[GSR01] for converting TIGER to a database format suitable for research

purposes and also for gathering, analysing and plotting the TIGER data

graphically such as ArcExplorer, Autodesk MapGuide Viewer and Geographic

Explorer. Therefore, for the purpose of running experiments for the external

memory, we used the TIGER/Line datasets as well.

There are a number of ways in which we can utilise the TIGER/Line

dataset files. The TIGER/Line datasets organise different kinds of information

into many logical layers of sets of maps. Each layer represents a thematic

approach to a particular purpose. For urban planning, the layers that contain

77

data for streets, utility lines, transportation features and related information are

useful. The U.S. Census Bureau proclaimed that the buildings represented in

its TIGER/Line data they provide each contains a centroid calculated to be

within the building [TIGER02]. This fits the criteria of spatial data similar to

RADS database, except that it has more objects. We could utilise the layer that

represents the buildings within a city as spatial data, as is used by the [SoRo01]

who addresses the problem of k-nearest neighbour for a moving query point.

In their experimental data, they chose real-world datasets extracted from

TIGER/Line representing 120 hospitals, 1982 churches and 1603 schools in

Maryland, USA.

4.4.2 Experiment Settings

We conducted extensive experimental study to evaluate the performance of

MPRQ-Disk with large spatial databases that reside on disk. In this study, we

used both synthetic datasets as well as real-life datasets. Synthetic datasets are

Figure 35. Real-life TIGER/Line datasets defining roads, rails and streams, among others,
provided by the US Census Bureau using topology and graph theory design principles

78

generated from the outline of the Singapore map (using various broad

parameters as described below). As they are more suited for internal memory

experiments, we did not report the results of synthetic datasets here. We note

that the external memory results for the Singapore datasets are comparable to

their internal memory counterpart. Real-life datasets originate from the

TIGER/Line datasets [TIGER02].

Implementations are done in C++ compiled with gcc version 3.4.4 on a

Pentium IV 2.0 GHz Linux machine with 512MB RAM, with TPIE for disk

implementations. The disk page size is 4096 bytes on our experiment machine.

We consider the following factors when evaluating the MPRQ-Disk

performance: the number of points in the spatial database N, the search

distance d, different query routes P, different R-tree variants as spatial index

and the effect of LRU buffering. For all of these experiments, we measure

both the overall query time and the number of I/Os (disk accesses) to evaluate

the performance of MPRQ-Disk. We ran each query 100 times and take the

average of the running times, resulting in better accuracy.

Datasets New Jersey Montgomery
County, MD

Rhode
Island

Short code NJ MD RI
All spatial objects 369,814 30,997 58,804
Roads only 331,544 28,719 53,721
Percentage of roads 89.65% 92.65% 91.36%
File size 39.0MB 3.1MB 6.1MB

Table 10. The number of spatial objects for various datasets from TIGER/Line. Road segments
make up the bulk of the spatial objects. Our experiments only involve all the road objects

79

(a)

(b)

(c)

Real-life dataset. Benchmark data from the TIGER/Line datasets [TIGER02]

are used – the selected maps are New Jersey, Montgomery County, MD and

Rhode Island. The size of spatial data is shown in Table 10. Note that New

Jersey is about twice the size of the Singapore datasets (Figure 20), which is

useful for comparison with the Singapore datasets used in internal memory

experiments.

Regionised query paths. As real-life routes for maps in the chosen cities are

not available, different kinds of synthetic routes are used instead. The maps

are divided into rectangular cells of equal size and within each cell, a point is

generated and appended into the query route set if it is contained within the

polygon that defines the map boundary. We call such query route set

regionised query path. The final regionised route sizes are 111, 80, 96 for NJ,

MD and RI respectively. In addition, we also generated H-path and V-path for

them.

Varying search distances (r). The search distances of (55, 60, 65, …, 90, 95)

are used for the NJ case in real-life datasets. The number units here represent

different real distances depending on maps. Most of the results reported for

Figure 36. The (a) New Jersey, (b) Montgomery County, MD, and (c) Rhose Island datasets from
TIGER/Line; the regionised query paths are shown; all figures not drawn to scale

80

MPRQ-Disk experiments use distance d = 75 for NJ. As other real-life maps

exhibit similar trends to NJ, they are not included.

 Singapore New Jersey Montgomery
County, MD

Rhode Island

Regionised path size 80 111 96 80

Search distance

vs
Percentage of
overlap

200 0.00
500 0.31
600 0.55
700 1.21
800 2.02
900 3.03
1000 4.48
2000 42.15
3000 114.09
4000 211.61
5000 328.96
10000 1048.81

50 8.11
60 12.72
70 18.82
75 22.52
80 26.59
90 36.48
100 48.51
150 130.22
250 372.38
500 1191.27

50 0.00
100 1.54
150 5.91
175 10.27
200 15.94
250 30.31
300 47.96
400 96.94
500 158.69
1000 594.01

50 0.55
100 0.90
200 5.48
250 10.99
300 18.69
350 29.19
400 42.13
500 74.68
750 186.17
1000 334.05

Data structures. We implemented both algorithms for MPRQ-Disk and RRQ-

Disk, as well as PR quadtree and several variants of the R-tree – the R*-tree,

KDTopDownPack, HilbertPack and STRPack. Several other R-tree variants

were also implemented but not reported here since their performance were

worse than those from the representatives above. We also looked into the

performance of the PR quadtree with buckets.

4.5 MPRQ-Disk Performance Evaluation

4.5.1 Baseline Comparison of MPRQ and MPRQ-Disk

We begin by designing a series of experiments whose aim is to establish

whether the results for MPRQ (internal memory) extend for MPRQ-Disk. In

the previous chapter, we had established the fact that the MPRQ algorithm

outperforms RRQ in many parameters, even in the case where the number of

Table 11. The search distance d vs percentage of overlap for various datasets

81

query points is small.

The results shown in Figure 37(a)-(b) were reproduced from the

previous chapter for easy of reference. Using varying number of query points

(between 1 to 80 in multiples of 5) in the H-path, we investigate MPRQ and

RRQ as the input query set grows larger. The performance of MPRQ vs RRQ

in internal memory indicate that the query time speed-up is 81 times for m =

80; and 6.5 times for m = 10. For the case on disk, Figure 37(c), MPRQ over

RRQ speed-up is 7.93 times for m = 80; and 2.46 times for m = 10. As for the

number of I/Os in Figure 37(d), RRQ incurs 2.5 times more I/Os for m = 80.

In main memory, the speed-up is significant as the MPRQ pruning

rules cut down the query points to the necessary subset (black points) relevant

to the MBR at any level. This significantly reduces the amount of expensive

distance computations (at the very least, finding MinDist and MaxDist)

needed as the spatial index is traversed. However, on disk, the savings in

computation is negligible as the cost of an I/O (a few orders of magnitude

larger) eclipses it. In spite of this, the MPRQ still performs well because it is

able to minimise the I/Os by not visiting a node unnecessarily.

(a) (query-time) vs (# query-points)

in internal memory

(b) (# nodes-visited) vs (# query-points)

in internal memory

82

(c) (query-time) vs (# query-points)

in external memory

(d) (# I/Os) vs (# query-points)

in external memory

(a) (query-time) vs (# query-points)

(b) (# I/Os) vs (# query-points)

Figure 38 shows the results comparing both the query times and the number of

I/Os for MPRQ-Disk and RRQ-Disk in real-life New Jersey dataset, where the

data is non-uniform. We chose d = 75 such that it returns about 20% of the

total points when m = 35 using V-path. The query time speed-up is 7 times for

m = 35. In general, we observed that the query time speed-up increases with

the number of query points.

The reduction in the number of I/Os for MPRQ-Disk versus RRQ-Disk

is also significant. For the case of query route H-path, the number of I/Os rises

linearly with the number of query points for both MPRQ-Disk and RRQ-Disk.

Figure 37(d) and Figure 38(b) show that, on average, the number of I/O

requests by MPRQ-Disk is about 41.5% and 69.1% of that for RRQ-Disk for

Figure 37. Baseline comparison of MPRQ and RRQ in internal and external memory
using query path H-path and d=500m

Figure 38. Comparison of MPRQ-Disk and RRQ-Disk for NJ dataset,
query path V-path and d=75

83

the Singapore dataset and the NJ dataset, respectively.

The results in this subsection established one fact – that the MPRQ-

Disk algorithm performs correspondingly to MPRQ. In further sections, we

just concentrate on MPRQ-Disk to find out how it fares with other parameters

in further experiments.

4.5.2 Data Structures

PR Quadtree

For the PR quadtree, we observed that there are improvements in query time

as the tree depth increases. As we vary the logical disk block size (LDBS), the

average time does not observe any patterns of consistencies as the LDBS

increases (bs = 1, 2, 4, 8, 16, 32). This is because the external data structures

are mapped automatically by TPIE onto the physical location in the disk, and

it is not possible that the whole data structure are in one consecutive region as

our datasets include up to 160000 points. Disk fragmentation causes slight

differences in the query time, due to the increase in latency time and seek time

as shown in Figure 39.

Figure 39. PR quadtree

(query-time/point) vs (tree depth)
Figure 40. PR quadtree

(query time/point) vs (LDBS)

84

As we group by LDBS as in Figure 40, we observe that generally the query

time decreases when the depth increases. At some point, the increase in depth

(d = 9, 12, 15, 18, 21, 24) does not help to improve the query time when

LDBS = 4 and LDBS = 16. This is due to the fact that reading a few logical

blocks in advance may not help improve the query time because the event

points are not necessarily near to each other in the PR quadtree. The ordering

of the datasets plays a significant role when building the tree.

Bucket PR Quadtree

The bucket PR quadtree is an extension of the PR quadtree with bucket

implementation at the leaves of the tree. In general, the query time improves

when the depth of the tree is increased (Figure 41 and Figure 42). This is

consistent with the results of their internal memory counterparts. When LDBS

= 4, we see that the bucket implementation actually helps when the bucket size

is above 8. When we double the LDBS to 8, we see that the query time is

decreased when the bucket size is above 16 but increases when the bucket size

and tree depth are increased. This is because the bucket implementation is a

sequential list where the event points are stored when the tree depth is reached.

When we perform a proximity query, the events that match is all in vicinity to

each other and there is a high chance that they are stored in the same bucket.

The larger the LDBS, the better the performance since we are going to search

the whole bucket when we reach a leaf.

85

When we group the results by tree depth, we see that the LDBS reduces the

query time slightly when we double it. The only time when it helps is for the

case where depth is 9. This happens because at a depth of 9, most event points

get stored in the buckets. Pruning rules are less effective if a large search

space is to be covered. Most of the time, we have to search through the

buckets sequentially. Therefore a larger LDBS helps reduce query time by

reading ahead. However, if the bucket is too large (e.g. bucket size of 64) we

actually did not get any savings from increasing the LDBS especially if the

LDBS is much smaller than the bucket size. We have to execute almost the

same number of I/Os as in the case of the smaller LDBS.

Figure 41. Bucket PR quadtree
(query time/point) vs (tree depth) for

logical disk block size of 4

Figure 42. Bucket PR quadtree
(query time/point) vs (tree depth) for

logical disk block size of 8

Figure 43. Bucket PR quadtree
(query time/point) vs (bucket size)

for logical disk block size of 4

Figure 44. Bucket PR quadtree
(query time/point) vs (bucket size)

for logical disk block size of 8

86

R-trees and Variants

We ran experiments on the R-tree family based on different node splitting

strategies (QuadSplit, LinearSplit, NewLinearSplit, R*-Split) and different R-

tree bulk-loading strategies (HilbertPack, STRPack and KDTopDownPack). In

Figure 45, the LinearSplit performance decreases with the increase in bucket

size until the size reaches 32 where it remains stable. The performance of the

R*-Split is more or less consistent regardless of the bucket size (Figure 46).

On the average, the R*-Split is two times faster than the LinearSplit and

averages between 0.12 to 0.17 seconds.

The results of three different ways of bulk-loading an R-tree are in

Figure 47, Figure 48 and Figure 49. The query time increases as bucket size

increases because we segregated the event points first before building the R-

tree bottom up so that there are no overlapping MBRs. This is due to the time

taken to construct the R-tree is consistent but the larger buckets take longer to

be searched because there will be less branch pruning before we hit a bucket

on the leaf node level. This problem can be addressed with parallel algorithms

Figure 45. R-tree (Linear Split)
of different logical disk block size

Figure 46. R-tree (R*-Split)
of different logical disk block size

87

when searching the R-tree. The KDTopDownPack R-tree in Figure 49 still

retains the best performance like its internal memory counterpart.

Now we group the bucket size together to see the effects of the LDBS. We

observe that in Figure 50 the LDBS does not play a role in the performance,

only the bucket size has effect on query time. In Figure 51, the R*-Split shows

that a bucket size too large or too small has an adverse effect on the search

time. This is true when we have a small LDBS (≤ 4), which does not help to

cache the search space because the points are too far away (the tree is built in

no particular order) to take advantage of the advance reading of the contiguous

blocks. But when the LDBS becomes large (> 4) at the expense of more

Figure 47. R-tree (HilbertPack)

of different logical disk block size
Figure 48. R-tree (STRPack)

of different logical disk block size

Figure 49. R-tree (KDTopDownPack)
of different logical disk block size

88

internal memory used, the larger buckets (for instance, 128) are “over read” by

the advance cache because the LDBS exceeded the bucket size making some

of the cache unnecessary.

For the three different bulk-loaded R-tree structures, their results are presented

in Figure 52, Figure 53 and Figure 54. Different LDBS does not have any effect

on the trees because of the time taken to build the tree is fairly consistent for

each tree. The reason is because we are exploring with just one disk, rather

than multiple disks which will definitely influence the time. Much of the work

is due to computation for separating the event points into their spatial region

before we actually index those points. Building the tree does not take a lot of

disk reads all across the index, only disk writes onto the single disk index

structure. This difference is only evident in the amount of time taken to build

the tree plus searching the tree, while the query time is of course influenced by

the bucket size instead of the LDBS.

Figure 50. R-tree (Linear Split)
of different bucket sizes

Figure 51. R-tree (R*-Split)
of different bucket sizes

89

Figure 54. R-tree (KDTopDownPack)

of different bucket sizes

Underlying Data Structures

The underlying spatial index will have effect on the performance of MPRQ-

Disk because objects that are spatially close and indexed as such will result in

lower I/Os and improved query time, due to locality of reference. We ran

similar sets of experiment on different variants of the chosen R-tree data

structures, namely, R*-tree, HilbertPack R-tree, STRPack R-tree and our own

KDTopDownPack R-tree. The results tend to be similar to previous results for

both MPRQ-Disk and RRQ-Disk. To obtain a more detailed comparison of the

different R-tree variants, Figure 55 shows the performance of only MPRQ-

Disk on the different R-tree variants.

Figure 52. R-tree (HilbertPack)
of different bucket sizes

Figure 53. R-tree (STRPack)
of different bucket sizes

90

(a) (query-time) vs (# query-points)

in internal memory

(b) (query-time) vs (# query-points)

in external memory

For the case where database resides in internal memory, the performance

(from best to worst) is as follows: KDTopDownPack, STRPack, HilbertPack,

R*-tree. In particular, KDTopDownPack and STRPack are very close in terms

of performance. However, we can clearly see that R*-tree is outperformed by

the others which are bulk-loading algorithms that results in better indexing of

spatial points with minimal area of MBRs overlapping.

On the other hand, for the case where the spatial database resides on

disk, we can arrange their performance again as in the internal memory case,

with clear distinction. The dominance of I/O costs in the overall query time for

different data structures clearly shows. KDTopDownPack has a better packing

algorithm for objects as compared to the rest.

4.5.3 Small Set of Query Points

In general, we expect MPRQ-Disk to perform better as the number of points in

the query route P increases. As a stringent test we have also zoomed into the

cases where 1 ≤ m ≤ 10. Figure 56(a) shows that MPRQ-Disk runs slightly

faster for the special case of just one query point when m = 1 (normal single

Figure 55. MPRQ-Disk performance on different R-tree data structures: HilbertPack,
R*-tree, STRPack and KDTopDownPack for query distance d=500m

91

point range query) because the PointOut pruning rule that generally exert more

computations for MPRQ-Disk (as opposed to RRQ-Disk) did not fire. This is

by design. The rule only fires when m ≥ 2. Meanwhile, the NodeIn rule is fired

when the index traversal reaches a point where the query distance covers an

entire MBR which triggers all of its children to be reported without further

computations. This makes MPRQ-Disk faster than RRQ-Disk even when there

is just one query point.

(a) (query-time) vs (# query-points)

(b) (# I/Os) vs (# query-points)

As for the number of I/Os, Figure 56(b) reveals that at m = 1, both MPRQ-

Disk and RRQ-Disk incurs the exact same amount of I/Os. This is true

because even if NodeIn rule fired, it still has to traverse until the leaf level to

report all results although it does not need any further calculations.

Additional results for RI and MD datasets, V-path and D-path also

show identical trends with respect to performance comparison between

MPRQ-Disk and RRQ-Disk. Therefore, for the remainder of this study, it

suffices to report on results for regionised routes.

Figure 56. MPRQ-Disk performance with small number of query points (m ≤ 10)
and d=500m

92

4.5.4 Effectiveness of Pruning Rules

Table 12 shows the comparison of the effectiveness of different combinations

of pruning rules between internal and external memory. We also selected the

RI dataset, the largest that can fit entirely into internal memory, for this set of

experiments. Finally, the query time for RRQ is also included for comparison.

Query time (sec)
SG

(internal)
SG

(external)
RI

(internal)
RI

(external)

NodeOut
0.1310

(100%)
1.5470

(100%)
0.0181

(100%)
0.5870

(100%)

NodeOut+PointOut
0.0220

(17%)
0.4319

(28%)
0.0104

(57%)
0.1160

(21%)

NodeOut+NodeIn+PointOut
0.0200

(15%)
0.4228

(27%)
0.0094

(52%)
0.1046

(18%)
RRQ 1.6590 8.4027 0.1629 2.1622

Since we established that PointOut is much more effective than NodeOut in

the internal memory case, in this experiment we focus on PointOut. We

observed that by adding pruning rule PointOut on top of NodeOut in external

memory, we obtain a 72% decrease in query processing time. This is not as

good as the internal memory case of 83% as the number of I/Os has taken a

toll on query time. PointOut computation is a memory intensive computation,

but the bulk of query time is still tied to disk accesses no matter how much we

prune the path with PointOut. Adding NodeIn will gain us an extra 1%-3% of

query time in the external memory case, as we only save some computation

time but still need to access the necessary disk nodes to obtain the results. This

trend is similar to the internal memory case. The RI dataset also show the

same trend in query time reduction, but at a slightly different quantum.

Table 12. The effectiveness of applying different pruning rule combinations, comparing internal
and external memory. For this comparison, only one real-life dataset is shown

93

We observe that for internal memory, the RRQ is almost 3 orders of

magnitude slower than MPRQ. For external memory, the gap closes as the

number of I/Os is the dominant factor, not internal computations. Yet, RRQ is

still 20.67 times slower.

Query time (sec) SG NJ MD RI

NodeOut
0.1310

(100%)
0.2215

(100%)
0.0104

(100%)
0.0181

(100%)

NodeOut+PointOut
0.0220

(17%)
0.1085

(49%)
0.0049

(47%)
0.0104

(57%)

NodeOut+NodeIn+PointOut
0.0200

(15%)
0.0741

(33%)
0.0045

(43%)
0.0094

(52%)
RRQ 1.6590 2.9501 0.0493 0.1629

Table 13 compares the effectiveness of pruning rules across external memory

datasets. The search distance is tweaked for each dataset such that 20% of the

database is returned, and regionised routes are used for all datasets including

SG. There is a difference in query time reduction between the SG and the rest.

This is because the SG dataset is so small it can totally fit into internal

memory. This causes less paging operations (loading disk nodes into internal

memory) than other datasets which results in better query time.

The trend for NJ, MD and RI is about the same; PointOut results in

about half the query time reduction (47%-57%) and applying NodeIn will

result in 4%-16% further reduction in query time. The NJ dataset exhibit better

reduction for NodeIn (16%) because its map is much denser than that of MD

and RI. Thus, once NodeIn fires it is able to return more results for the same

number of I/Os for the same MBR area. Similar to past trends, on average

RRQ is 2-3 orders of magnitude slower.

Table 13. The effectiveness of applying different pruning rule
combinations, comparing different datasets

94

4.5.5 Size of the Search Distance

We now investigate the performance of MPRQ-Disk across different query

distances d. Given any set of query points, when d is large, overlapping of

query regions will result in many duplicate results obtained by RRQ-Disk

(since each query point is a standard range query, independent of the rest of

the points in the same query points set, no matter how close they are to the

current point in query) which in turn results in a longer post-processing time to

remove duplicates.

(a) (query-time) vs (search-distance)

(b) (# I/Os) vs (search-distance)

Recall that for d < 250m, there is no overlapping of search area because the H-

path is made up of query points with regular interval of 500m along the x-axis.

Figure 57 shows that for non-overlapping areas, where no redundant results

are present, RRQ-Disk grows similarly to MPRQ-Disk (in terms of I/Os).

However, when overlapping occurs, RRQ-Disk uses more I/O requests (for

duplicates actually) which is totally redundant and this contributes to its long

query time.

Figure 57. MPRQ-Disk performance for varying distances d with H-path 80 query points
n
o
n
-o

v
e
rla

p
p
in

g

o
v
e
rla

p
p
in

g

n
o
n
-o

v
e
rla

p
p
in

g

o
v
e
rla

p
p
in

g

95

In fact, MPRQ-Disk growth is linear because excessive overlapping in

query regions does not add to the algorithm’s running time. The larger the

query distance, the longer it takes to complete the query.

4.5.6 Performance of Real-life Routes

Real-life routes provide an insight into how the MPRQ-Disk algorithm fares

when deployed for use. Our target application is RADS which helps a user

plan a route and subsequently discovers POIs along the planned route

[NgLH04]. The performances of the four real-life routes (route1-4) are shown

in Figure 58 showing clear advantages of MPRQ-Disk over RRQ-Disk.

In Figure 58(a), the query time speed-up for real paths are generally

similar to those for the synthetic H-path (shown in Figure 57). The reduction

in the number of I/Os for MPRQ-Disk also widens with the query distance.

(a)

query-time(RRQ-Disk)
query-time(MPRQ-Disk) vs (search-distance)

(b)

I/Os(RRQ-Disk)
I/Os(MPRQ-Disk) vs (search-distance)

4.5.7 Comparison of MPRQ Algorithms

Earlier experiments established the fact that the speed-up of MPRQ-MinMax

against RRQ increases with the number of query points, the search distance,

Figure 58. MPRQ-Disk performance for real-life paths (route1-4)

96

the presence of clustered data, different planned routes, different spatial

representations of the spatial database, as well as the bucket sizes. Hence, we

will just focus on the comparison among MPRQ-SP, MPRQ-RI and MPRQ-

MinMax.

To compare the performance of the various approaches for

implementing the PointOut and NodeIn, we implemented all the three pruning

rules using the algorithm described in Figure 27 and those from Section 4.3.1

and Section 4.3.2. For the NJ dataset, we chose a random path that has 200

query points (i.e. n = 200). For the relatively smaller RI dataset, we chose a

random path of 100 query points.

We did not show the total number of I/Os for MPRQ-MinMax,

MPRQ-SP and MPRQ-RI because all three approaches does the same pruning

(PointOut and NodeIn) under the same circumstances, i.e. the input query path

is the same. Therefore, all three traverse the tree in the same manner. The only

difference is in the speed of traversal attributed to the different pruning

strategies.

In Figure 59, the performance of MPRQ-MinMax and MPRQ-SP are

almost similar, with the latter doing slightly better when n ≥ 80. We attribute

this to the initially high startup cost of MPRQ-SP (sorting along axis major)

gradually being recouped after which the performance is better for MPRQ-SP.

In comparison, MPRQ-RI pruning performs worse than the other two even

from the beginning. At n = 200, MPRQ-RI is 1.38 times slower than MPRQ-

SP. Our theoretical results (Table 9) already show that while the approach of

MPRQ-RI is more elegant, the associated costs are expensive because it

97

involves multiple insertion and query of the interval set data structure with

varied path length.

On the other hand, MPRQ-SP can still be improved further because

binary search on the sorted path is not quite optimal when the path is

exceptionally short (e.g. n ≤ 5). This is because for short paths, which occur

frequently at the bottom of the R-tree during traversal, binary search does

more comparison than plain sequential search. Since MPRQ-SP uses a sorted

path that relies on biased binary search routines for the PointOut pruning, we

believe that the running time can be further improved by employing hybrid

sequential search and biased binary search for PointOut pruning. MPRQ-SP

requires some pre-processing time, but we shown that it generates a lot of

savings in the later search stage. An added advantage is that it is very easy to

implement, with relatively good results when compared to RRQ and MPRQ-

MinMax.

(a) query time vs (# query-points)

(b) query time vs (# query-points)

Figure 59. Performance of the MPRQ-MinMax (red), MPRQ-SP (green) and MPRQ-RI (blue)
for (a) NJ dataset and (b) RI dataset

98

4.5.8 Effect of LRU Buffering

Using KDTopDownPack to construct the 40000 dataset, we designed a query

consisting of a real-life path of 34 points and d = 500m. We vary the least

recently used (LRU) buffer size from 10%, 11%, …, 19%, 20%, 30%, …,

90% of the total internal nodes. Previous studies of LRU buffering [ThSe96,

LeLo00] suggest that as little as 10% buffer size (i.e. buffer size equals

n*p/100 of the total number of n nodes given p percent) could halve the

number of I/Os required. Our aim is to prove a fair case for RRQ-Disk (as

even a straightforward implementation benefits from a LRU of some sort in

modern databases) against MPRQ-Disk. We aim to check the hypothesis that

RRQ-Disk performs better with the help of LRU found in the O/S.

We observe that an LRU buffer as little as 10% cuts down I/Os by

approximately 68.9% for RRQ-Disk (with 91.63% buffer utilization), mostly

because the spatial index is traversed repeatedly for each query point pi and

down a slightly different path the next time if pi+1 is near. RRQ-Disk benefited

if nodes from the previous search is retained in the LRU buffer. MPRQ-Disk

does not show any effect as it optimally accesses only the nodes that are

relevant, and only once in the spatial index, for all query points in P.

In Figure 60, LRU buffer ≥ 17% for RRQ-Disk improves its

performance only marginally. Our experiments run all the way to 90%

(although in practice, this is not feasible unless the spatial database is small)

which shows that MPRQ-Disk still requests 12.96% fewer I/Os than RRQ-

Disk in spite of the presence of LRU that should benefit the latter.

99

4.6 MPRQ-Disk vs Spatial Join Algorithms

In this section, MPRQ-Disk is evaluated against spatial join approaches that

can also be used to solve MPRQ. We have carefully chosen the high-

performance spatial join techniques of [BrKS93] which aims to join two

datasets indexed by two R-trees, and the slot index spatial join [MaPa03]

which aims to join a non-indexed dataset with one indexed by an R-tree. Due

to the similarity of spatial joins to MPRQ, performance evaluation is

imperative.

The MPRQ-Disk algorithm used to compare with other spatial join

algorithms defaults to MPRQ-MinMax with KDTopDownPack, using LDBS

= 4, bucket size of 8, and with all three pruning rules (NodeOut, NodeIn,

PointOut) in effect. All experiments for SJ4 and SISJ are performed 100 times

and the average query time is taken.

4.6.1 High-Performance Spatial Join

An efficient full distance spatial join algorithm, SJ4, was introduced in

[BrKS93]. SJ4 is already proven to outperform another class of spatial join

Figure 60. MPRQ-Disk and RRQ-Disk under different buffer sizes

100

algorithm, the distance semi-join [ShML02]. The result is reproduced in

Figure 61(a), with SJ4 labelled SJ-SORT. For join result size greater than 10K

(one join pair is one result), which MPRQ is designed for, SJ4 is clearly faster

than distance semi-join algorithms HS-KDJ, B-KDJ and AM-KDJ. The

reported response time for SJ4 is ≈37.5 seconds (10,000 result pairs) and ≈75

seconds (100,000 result pairs). Hence, we are motivated to compare MPRQ-

Disk to SJ4.

Taking into account the difference in hardware speed and the amount of RAM

between [BrKS93] and our work (Moore’s law), we benchmark SJ4 and

MPRQ-Disk with our 2.4 GHz CPU, 4 GB RAM Linux machine. As the

dataset used in experiments for SJ4 is no longer available (TIGER/Line 1990),

we used our NJ dataset [TIGER02] to benchmark. A total of 331544 roads and

9759 railways were selected for the benchmarking. Spatial indexes for SJ4

(which requires two independent R-tree indexes) and MPRQ-Disk were

constructed on disk using TPIE [Veng94] with our bulk-loading

KDTopDownPack algorithm. Bulk-loading the data points significantly

reduces the amount of overlapping rectangles, thus reducing the number of

(a)

(b)

Figure 61. (a) The performance of distance semi-join algorithms (B-KDJ and AM-KDJ from
[ShML02]; HS-KDJ from [HjSa98]) compared to SJ4 (SJ-SORT), (b) the performance of SJ4

full spatial join algorithm reproduced from [HjSa98]

101

generated candidate pairs in the SJ4 algorithm, benefiting it directly as SJ4

uses intersection tests and plane sweeping at every level of the index.

0

100

200

300

400

500

600

700

800

NJ

Q
u
e
ry
 t
im
e
 (
m
s
e
c
)

MPRQ SJ4

Figure 62 shows that MPRQ-Disk outperforms SJ4 in query time. Both

MPRQ-Disk and SJ4 assume the spatial dataset to be indexed with the R-tree.

We measured only the query time instead of the total time, which includes

time to construct the spatial index. We are sure that SJ4 will cost even longer

as it requires both the data points and the query points to be constructed as two

independent R-tree, whereas MPRQ-Disk only constructs one R-tree for the

data points.

Figure 62. Benchmarking SJ4 to MPRQ-Disk using the NJ dataset of
331,544 (roads) × 9,759 (railways)

Figure 63. Roads from all the 5 counties of the California dataset,
obtained from TIGER/Line 2006

102

For a larger dataset, we had chosen all the roads from 5 counties (Kern, Los

Angeles, Riverside, San Bernardino and San Diego) within California, USA

from TIGER/Line 2006 (2nd ed). There are a total of 643776 roads, as

illustrated in Figure 63. Some features were selected to be query points (routes)

and they are selected in such a way that we get a small, medium and large

ratio between the data points and routes, for scalability concerns.

Table 14 depicts the query time of MPRQ-Disk vs SJ4. For any ratio of

database to query size, MPRQ-Disk outperforms SJ4. In the small dataset,

MPRQ-Disk and SJ4 are almost identical. For medium and large datasets, the

sorted intersection tests performed by SJ4 in each iteration have increased its

response time significantly. As for MPRQ-Disk, when the R-tree is traversed,

the set of query points are quickly reduced and vary slightly for each rectangle

during query. Since each set of candidate points for a rectangle is a subset of

the set at the upper level, no additional disk accesses are needed.

Dataset Roads Route Ratio
MPRQ
(ms)

SJ4
(ms)

Small Physical features 763 1:844 250 262
Medium Railroads 9,641 1:105 266 459

Large
643,776

Hydrography +
Non-visible features

247,890 1:2.6 1090 2316

Next, we rerun some of the datasets from Section 4.4 to compare MPRQ-Disk

and SJ4 using very small routes, in which MPRQ-Disk was originally

designed for. The results are presented in Table 15. In the NJ dataset, SJ4

takes much longer to run, compared to a larger dataset in Table 14 (the small

dataset). The routes used in NJ are regionised routes designed to be spatially

far. Due to this, SJ4 cannot take advantage of locality of reference as in the

Table 14. Performance of MPRQ-Disk vs SJ4 in large dataset
with small, medium and large routes

103

previous experiment where a bunch of spatially close route points would likely

be read together into main memory.

Dataset Roads × Route
MPRQ
(ms)

SJ4
(ms)

Improvement

NJ 331,544 × 111 190.9 447.5 134.4%
MD 28,718 × 80 13.3 19.5 46.6%
RI 53,721 × 96 25.0 50.1 100.4%

4.6.2 Slot Index Spatial Join (SISJ)

SISJ is an algorithm that joins a non-indexed dataset with one indexed by an

R-tree [MaPa03]. In certain spatial queries, the non-indexed dataset could be

the intermediate result of another database operator. For instance, in a multi-

way spatial join operation involving three datasets A B C, the spatial join

algorithm could perform (A B) C or A (B C) with the intermediate

result R joined to the remaining dataset. SISJ has the advantage of being useful

when R is fairly large and it is costly to materialise R before processing it.

SISJ distributes the R-tree entries at a specific level into S partitions,

called slots, and builds an in-memory index from them. In each slot, a slot

index keeps track of a list of pointers to all corresponding entries in the slot,

along with a MBR of all the entries. Slots are basically a kind of hash table

which is small enough to fit in main memory. The non-indexed dataset is also

partitioned into the S buckets with the same spatial extents as the MBR of the

slots. The algorithm finally joins each bucket with the R-tree data under the

nodes pointed to by the corresponding slot. Figure 64 shows an example of

SISJ for an R-tree at level 1 (second level from the root) constructed from all

Table 15. Performance of MPRQ-Disk vs SJ4 in very small routes

104

its MBRs at that level. Note that SISJ is applied only on one specific chosen

level of the R-tree and the slots’ MBR can also be overlapping.

There are four slot index construction heuristics that determine the extents for

space partitions used for hashing the non-indexed dataset, namely SplitXL,

SplitHC, SplitSTR and IRS. SplitXL sorts MBRs w.r.t. their lower x-bound

and divide them into S equal-sized groups. SplitHC sorts MBRs w.r.t. the

Hilbert value of their centre and divide them into S equal-sized groups.

SplitSTR sorts MBRs using STRPack algorithm and divide them into S equal-

sized groups. Finally, IRS inserts the entries into S slots using the R*-tree

insertion algorithm. Among all four, IRS consistently gives the best query cost

savings in the original paper.

For comparison, we used the same dataset listed in Table 14. The

overall query cost (in seconds) are measured and presented. Our chosen

dataset represents very well the different scenarios that a spatial join result set

would be. Typically, the ratio for small dataset is similar to a distance semi-

join query where a small distance limits the result to the top few results from

an input query. The ratio for large dataset represents a spatial query that

touches the whole map, returning many results.

Figure 64. An R-tree and a slot index built over it. (a) the entries for an R-tree at level 1, (b) a
slot index built from the R-tree entries and hashed data from the non-indexed dataset. Data that

spread across two or more slots are replicated for queries. Data that are outside all slots are
filtered. SISJ is performed between a slot and its corresponding hashed data only

105

For SISJ, the buffer size allocated was 512K with 4K disk page size.

[MaPa03] has empirically shown that buffer size of one order of magnitude

smaller than the dataset size is realistic, for datasets on any scale. The dataset

size is ~5.15MB, so 512K is about one order of magnitude smaller. The larger

the buffer is, the more hashed data from the non-indexed dataset can be stored

in main memory for spatial join processing with the slot indices, which in turn

helps to cut the number of disk access needed to process the hashed dataset

buckets. For MPRQ-Disk, its parameters were carefully chosen so that the full

route cannot fit in main memory during its execution. Note that MPRQ-Disk

does not maintain a buffer in main memory to store MBRs.

Dataset Roads Route Ratio

MPRQ
(s)

SISJ
IRS
(s)

SISJ
SplitSTR

(s)

SISJ
SplitHC

(s)

SISJ
SplitXL

(s)

Speed-up
MPRQ vs
SISJ IRS

Small 763 1:844 0.250 1.01 1.06 1.18 1.23 4.04
Medium 9,641 1:105 0.266 9.09 9.89 11.71 12.30 34.17
Large

643,776
247,890 1:2.6 1.090 176.06 194.34 232.62 256.43 161.52

The SISJ slot indices performance is consistent with the results in [MaPa03],

which shows that IRS is the fastest, followed by SplitSTR, SplitHC and

SplitXL. MPRQ-Disk fares better compared to IRS. Table 16 shows that the

speed-up for small dataset is 4.04 times and for large dataset is 161.52.

For small datasets, in SISJ both the slot indices data (R-tree of indexed

roads) and all buckets of hashed data (non-indexed route) could fit in main

memory. So, a plane sweep algorithm is performed in main memory across all

indices to find the spatial join result pairs. For medium datasets, only the data

under a slot index fit in memory. In this case, SISJ uses the indexed nested

loop join, considering the slot as the root of the R-tree; for each rectangle in

Table 16. Performance of MPRQ-Disk vs SISJ in large dataset with small, medium and large
routes. All four slot index construction policies are compared

106

the hash bucket, a window query is applied. To process the hash bucket fully,

since there is not enough space in the buffer, a number of blocks have to be

loaded from disk and an equal number of blocks have to be written from some

other hash buckets. For large datasets, neither the data under a slot nor the

bucket fit in memory. SISJ will perform joins similar to a recursive hash-join

algorithm. The slot acts as the virtual root of an R-tree and a hash bucket as

the non-indexed dataset. I/O cost is incurred for each and every slot as slot

data are read into the buffer.

The similarity of SISJ and MPRQ-Disk lies in an indexed R-tree, and

that is all there is to it. SISJ needs to build an extra slot index on an R-tree as a

pre-processing step. The performance of SISJ in reality depends on hashing

the non-indexed input and the resulting algorithm used (different algorithm

depending on whether the data in a slot and hash bucket could fit in main

memory), with plane sweep being the most common. Compared to SISJ,

MPRQ-Disk is an easier to implement method. We had looked into the plane

sweep algorithm for MPRQ (as a rectangle intersection problem), but our

research shows that it is slower than the simple MinMax method.

4.7 Summary

In this chapter, we revisited the MPRQ problem and the efficient MPRQ

algorithm which we proposed for solving MPRQ. MPRQ and its performance

in internal memory were studied to depth in the previous chapter, with

comparisons to the RRQ. More often than not, spatial databases contain more

data than can fit into the internal memory. Hence we address the case where

the spatial database is large where external memory must be used for

107

processing MPRQ. Our equally extensive experimental results show that

MPRQ-Disk promises good performance in answering MPRQ in terms of

query time as well as the number of I/Os, even for the case where RRQ-Disk

benefits from an implicit disk buffer that is the norm in database systems and

against distance semi-join algorithms and spatial join algorithms as well.

As expected, the speed-up increases proportionally with the number of

query points as well as with the query distance for MPRQ-Disk. In addition,

this speed-up holds for a large variety of problem parameters: over different

number of query points in the query path P (even for very small queries),

different search distances d, as well as different spatial representations of the

spatial database.

In the database literature, there are a plethora of spatial join algorithms

for this is an active area of research. Interestingly, some spatial join algorithms

can, with some modification, compete with MPRQ-Disk for solving the

MPRQ problem. One example is the high-performance spatial join algorithm

SJ4. Another class of spatial join algorithms seeks to join a dataset indexed in

an R-tree to a non-indexed query set. It is fundamentally similar to the

definition of the MPRQ problem. An example is the SISJ. Thus, we compared

MPRQ-Disk to both SJ4 and SISJ. MPRQ outperforms both algorithms in

three dataset to query size ratios, designed on real-life datasets that is

representative of a real-life spatial join queries. The small ratio closely

resembles the design of MPRQ algorithm, which was motivated by

performing queries on a large dataset and a small input query.

In conclusion, our study shows that MPRQ-Disk is superior to RRQ-

Disk. With this understanding, we had set out to adopt MPRQ-Disk in two

108

applications, namely (i) RADS, which was described in Chapter 1 and (ii) the

PepSOM algorithm for the peptide identification problem in bioformatics

[NiNL06], which is described in Appendix A.

109

PART II

Reverse Nearest Neighbour

110

Chapter 5 RNN and Related Work

The reverse nearest neighbour (RNN) query is a relatively new area of

research which was introduced by [KoMu00]. In the nearest neighbour (NN)

problem, the concept of influence of a data point p in database is the notion

that p exerts influence on its nearest neighbours; any changes in p might affect

its neighbours, which is true for many real-world applications. Therefore much

attention is focused on finding p’s nearest neighbours. The NN problem is a

well-researched problem with many efficient kNN algorithms [Same06]

proposed that can find the top k-nearest neighbours of any given point.

In contrast, the notion of influence of p in the RNN problem is the

conjecture that as other data points exert their influence on p; when p changes

these data points must be directly affected. This is a stronger notion of

influence compared to the case of NN. For example, in a virtual reality

shooting game, a smart computer gear that a player Pete wears can find and

rank Pete’s top k nearest enemies (a kNN query) so that Pete can shoot them

(higher chance of hitting close targets). At the same time, Pete’s gear will also

identify all enemies whose top k-nearest neighbours include Pete (a RkNN

query) so that Pete can get far away from them! The RNN query is also useful

in other real-life business applications such as decision support systems,

continuous referral systems, profile-based marketing and maintaining

document repositories [KoMu00].

111

5.1 The RkNN Problem

The RkNN problem is non-trivial and more challenging than its counterpart,

the kNN problem because it cannot be answered by simply complementing the

result set or the function of kNN. The relationship between kNN and RkNN is

asymmetrical. In fact, in the latter, spatial locality w.r.t. a query point does not

apply. We illustrate this behaviour using the example in Figure 65, with P =

{p1, p2, p3, p4, p5} and q as the query point. We observe that q becomes the NN

of p1 and p2 w.r.t. P ∪ {q}, hence the RNNP∪{q} of q are p1 and p2. Note that p1

is a RNN of q although it is far away from q but p3 is not a RNN of q although

it is closer to q than p1 and p2.

5.2 Formal Problem Definition

The reverse nearest neighbour (RNN) query asks the following: given a query

point q, find a set of points whose nearest neighbour (NN) is q. The RNN

problem is also known as finding the influence set of q problem.

Let SDB be a database of n 2-d points (|SDB| = n). Let d be any

Minkowski metric distance function Lp on ℜ2 and any x, y, z ∈ ℜ2 satisfy the

Figure 65. A reverse nearest neighbour example with k = 1

p1

p2

p3

p4

p5

q

112

conditions d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) in general.

Before we define RNN, let us define NN. The set NN of a query point q ∈ ℜ2

is the set NN(q) ⊆ SDB such that ∀p ∈ NN(q), ∀p' ∈ SDB \ NN(q), (d(q, p) <

d(q, p')). We generalize this to kNN(q), the smallest unique set S that contains

at least k points from SDB such that ∀p ∈ S, ∀p' ∈ SDB − S, (d(q, p) < d(q,

p')). The set of reverse nearest neighbours of a point q, RkNN(q) = {p ∈ SDB |

q ∈ kNN(p)}. R1NN(q) is correct for any arbitrary set kNN(q) where the top k

points with the smallest distance from q, called the k-nearest neighbour, is

chosen arbitrarily. It could be possible that |kNN(q)| > k if while processing

the kNN query, k-1 points has been discovered and ∃p1, p2 ∈ SDB \ (k-1)NN(q)

where d(p1, q) = d(p2, q) and |(k-1)NN(q) ∪ {p1}| = k. In this case, we

terminate when |kNN(q)| = k is satisfied. Figure 66 illustrates the case.

In the remainder of this thesis, we write 1NN(q) simply as NN(q), R1NN(q)

simply as RNN(q), and d is L2 Euclidean distance metric for illustrative

purposes. The terms RNN and NN can also be taken to mean the general,

respective problem. The distance function d is equivalent to the dist used in

previous chapters.

Figure 66. The case where |kNN(q)| > k when k < 4. This is because all points p1, p2, p3, p4 lie in
equal distance from q. In cases like these, an arbitrary set kNN(q) of size k will be returned

d
q

p3

p4

p2

p1

113

5.3 Related Work

The naïve method to answer a RNN query is extremely slow and expensive.

RkNN(q) can be answered by computing the kNN(p) for each and every data

point p in the database of size n and subsequently returning all the points p

whose kNN(p) contains q. The running time of this method is O(n2) for linear

data points and O(n log n) if the data points are spatially indexed by a height-

balanced hierarchical structure such as the R-tree [Gutt84]. The space

complexity is O(n) for k = 1 and O(n2) for k > 1.

In general, the approaches to answering RNN queries can be classified

into two categories: voronoi approach and hypersphere approach. Voronoi

approaches use the concept of Voronoi cells to perform space pruning. Based

on certain geometrical properties between data points and the properties of

RNN, algorithms using this approach are able to filter off a large number of

data points and keep a much smaller set of candidate points for verification.

One disadvantage of space pruning approaches is that they do not scale for

high-dimensional data. Hypersphere approaches use the observation that if d(p,

q) < d(p, kNN(p)), then p is a correct answer. Algorithms using this approach

usually perform pre-computation on all the points (each point up to its kNN

for a given k) in the database and construct a spatial index with this

observation embedded. The drawback of hypersphere approaches is that they

cannot handle queries with an arbitrary k in which the spatial index is not

constructed for.

The RNN-tree [KoMu00] was the first approach to answer RNN

queries. The idea is to pre-compute the distance r of a point p to its NN and

represent it by a vicinity circle (VC) with radius r centred at p. All vicinity

114

circles VC(p, d(p, NN(p))) for all points are stored at the leaves of an R-tree.

Hence, an RNN query is transformed into a point enclosure query where

RNN(q) = {p ∈ SDB | q falls inside VC(p, d(p, NN(p)))} (proof in [KoMu00]).

One drawback for this method is that it requires another spatial index to

handle the dynamic case where insertions and deletions to the dataset are

required. This problem was circumvented by [YaLi01] who proposed the

Rdnn-tree so that NN and RNN queries can be answered. As a result, only one

index needs to be maintained. The Rdnn-tree is also designed to answer NN

and RNN queries together in a single tree traversal. Subsequently, a bulk-

loading method for the Rdnn-tree was proposed [LiNY03]. The Rdnn-tree is

not easy to update as it still involves massive changes to many nodes in the

dynamic case.

One huge disadvantage of the RNN-tree and Rdnn-tree is that when

constructed for k = 1, they can only answer R1NN queries. To answer R2NN

queries, another index must be constructed with VC(p, d(p, 2NN(p))). In

general, k indexes are required to answer any arbitrary RkNN(q), which is

impractical.

The first RNN algorithm taking the Voronoi approach was proposed in

[StAE00, SRAE01]. Assuming Euclidean distance metric, the space around a

query point q is divided into 6 equal constrained regions of 60° each (Figure

67), and it can be proven that in each region Si, either there exist one and only

one point pi ∈ Si such that pi ∈ RNN(q), or such a pi does not exist at all in Si

[StAE00]. In a later work [SRAE01], a coarse filtering and refinement

algorithm was proposed taking advantage of the results in [StAE00] to answer

RNN queries. Constrained regions present a well-known fact about RNN, i.e.

115

in a plane, there can only be at most 6 RNNs for Euclidean metric and at most

8 RNNs for Manhattan metric. However, the number of RNNs is unbounded

for RkNN where k > 1. The problem of constrained regions is that they suffer

from the curse of dimensionality. The number of regions to be searched

increases exponentially with dimensionality.

The idea of using the perpendicular bisector plane for pruning was proposed in

[TaPL04] as the TPL algorithm. TPL works only on points indexed by an R-

tree. It first retrieves a set of potential candidates into Scnd in ascending order

of their distance to the query point q. Candidate points in Scnd are pruned

against each other and also against already seen points in a refinement set Srfn.

Pruned items are inserted into Srfn. MBRs, however, are “half-pruned” into

residual area by the perpendicular bisector idea when a new point is

discovered. Subsequently, an MBR gets smaller when more points causes it to

be further reduced in size, if not eliminated altogether. TPL is illustrated in

Figure 68. The disadvantage of TPL is that it is being too paranoid by saving

all pruned items in Srfn and nothing is ever discarded. As a result, although the

size of Scnd is kept to a minimum, the refinement step is too cumbersome as

Srfn (used for future pruning) grows very quickly. It is not unrealistic to

Figure 67. Example of constrained regions around a query point q using
Euclidean metric in 2-d space

q

S1

S2

S3

S4

S5

S6

 p1

 p2

 p3

 p4

 p5
 p6

 p7

116

imagine that Srfn may well outgrow main memory allocation, although this

issue is not addressed in the paper.

The existing RNN solutions mentioned so far either rely on pre-computation

which is expensive to maintain in a dynamic setting where frequent updates

are required [KoMu00, YaLi01, LiNY03], or are applicable only in Euclidean

space in which similarity is based on the L2 norm [StAE00, SRAE01, TaPL04].

In [TaYM06], techniques for answering RNN that solves these issues were

presented. The work is in general metric spaces that assumed no detailed

representation of the data objects, instead the only sufficient conditions are

that (i) there exist a computable distance between any two data objects that

satisfies the triangle inequality property, and (ii) the distance can be indexed.

The data structure used is the M-tree [CiPZ97] as it is a dynamic structure

specifically designed for external-memory access and it aims to minimize the

overlap among the cluster of indexed spheres. Since the authors did not name

their algorithm, we simply christen it TYM in this thesis.

Figure 68. The TPL algorithm. (a) A bisector perpendicular line ⊥(p1,q) prunes off half the space.
Point p2 and MBR N1 are both nearer to p1 than q, therefore can be pruned (b) When p3 is

discovered, a new ⊥(p3,q) is introduced leading to more pruned space where RNN cannot exist (c)
An MBR N2 is pruned by three bisector perpendicular lines, only the points that fall in the

residual area (shaded) can be the result

⊥(p3,q)

q

p1

p2

p3
N2

⊥(p1,q)

⊥(p3,q)

⊥(p2,q)

q

p1

p2

N1

⊥(p1,q)

(a)

q

p1

p2

p3

N1

⊥(p1,q)

(b) (c)

117

So far, all the abovementioned RNN algorithms provide an exact

answer for the RNN of a query point q. In contrast, there is another class of

RNN algorithms that aims to be fast but will only provide approximate RNN

results [SiFT03, XiHL05, AFST07]. Among these approaches, [XiHL05]

introduces ERkNN, an efficient algorithm that can be implemented on the

widely-used R-tree, hence its immense potential. The algorithms proposed in

[SiFT03, AFST07] are extremely slow and their performance depends heavily

on the non-trivial efficient implementation of boolean range query. For this

reason, we chose ERkNN for further discussion.

ERkNN is shown to be an order of magnitude faster than [SiFT03],

with better recall too. It is also faster than the TPL algorithm in terms of

processing time, mainly because ERkNN is an approximate method. ERkNN

uses a local kNN-distance estimator utilising PDE (parzen density estimator

with uniform kernel [Fuku90]) or kDE (kNN density estimator [Fuku90,

KaSa01]) to retrieve RkNN candidates. The local kNN-distance is the distance

from a data point to its k-th nearest neighbour, estimated by a density function

of a small number of neighbouring samples around the query point q. The

advantage is estimation-based filter has a lower computation cost than space

pruning strategies. In the coarse filtering step, ERkNN retrieve a set of

candidates pi whose distance to q is equal to or greater than pi’s estimated

kNN-distance as RkNN candidates. In the refinement step, range queries are

used to verify the candidates.

118

5.4 Variants of the RNN Problem

There are many other variants of the RNN problem which are beyond the

scope of this research. For instance, the bichromatic-RNN problem [SRAE01,

KMSX07], RNN in graphs [YPMT06] and continuous RNN monitoring for a

moving query point [XiZh06, BJKS07, KMSX07, WYCT08].

In the bichromatic-RNN problem, given a set TDB of sites, a set SDB

of points, and a query site q, B-RNN(q) finds all points that have q as their

nearest neighbour site, i.e. B-RNN(q) = {pi ∈ SDB | ∀s ∈ TDB, d(q, pi) ≤ d(pi,

s)}. The set TDB of sites can be viewed as blue-coloured points whereas the

set SDB can be viewed as red-coloured points (hence, bichromatic) and the

goal is to retrieve all red-coloured points closer to q than to any blue-coloured

points.

For the continuous-RNN problem, given a set SDB of points, some

time interval Tj and moving query point q, the goal is to keep track of RNNj(q)

where RNNj(q) = {pi ∈ SDB | ∀o ∈ SDB, d(q, pi) ≤ d(pi, o)} at time interval Tj.

5.5 Summary of RNN Algorithms

The RNN algorithms found in the literature can be broadly classified by three

properties they possess. Table 17 shows the summary of the RNN algorithms,

which was first compiled by [TaPL04] and expanded here to cover some of

the newer published work together with our proposed novel RNN algorithms,

RNN-Grid and RNN-C tree.

119

RNN Algorithm Dynamic data
Arbitrary

dimensionality
Exact result

KoMu00 (RNN-tree) � � �
StAE00 � � �
YaLi01 (Rdnn-tree) � � �
MaVZ02† � � �
SiFT03† � � �
TaPL04 (TPL) � � �
XiHL05 (ERkNN) � � �
TaYM06 (TYM) � � �
RNN-Grid � � �
RNN-C tree � � �

To the best of our knowledge, apart from the RNN-C tree, only TYM is

designed for solving RNN in metric space. However, there are several major

differences between RNN-C tree and TYM though. The construction of RNN-

C tree is based upon 1NN distance, and the final data structure is independent

of the order of data points. A RNN-C tree is constructed bottom-up while M-

tree is built from top-down. Due to this, the RNN-C requires no split policy.

The construction algorithm in M-tree tries to avoid enlarging the covering

radius when adding a node, and if that is not possible, try to minimise the

covering radius enlargement.

The centre of a cluster (centroid) is not a member of the cluster in

RNN-C tree but for TYM, the centre of a node (called routing object) is one of

the points in the intermediate entry. The fanout of a node fmin has no direct

relationship with k in RNN-C tree but in TYM, the algorithm is designed with

the assumption that k < fmin. The key difference in pruning strategy is that

RNN-C tree makes use of the sum of clusters to prune clusters at all levels,

† These RkNN work are not covered in the related work section. For further information, refer
to the paper.

Table 17. Non-exhaustive list of RNN algorithm summary properties adapted
from [TaPL04], and expanded. This list only includes monochromatic RNN

algorithms for static query points

120

while TYM uses a node’s parent distance to save on the cost of distance

computation. TYM was not able to make use of node size for pruning.

5.6 Statistical Analysis

We propose a method to answer RNN queries based on parameter extraction

approach. A parameterised function fitting the correlation between k1NN and

Rk2NN is designed to be used in our novel algorithm, RNN-Grid (note that we

distinguish both k’s in this section). The goal is to find such a function so that

for some given confidence value, we could retrieve the number of k1 NN

candidates such that Rk2NN can be answered with certainty. As a result, the

RNN-Grid is a fast, approximate RNN algorithm as it uses the resulting table

from the parameterised function. Section 5.6.1 details the correlation analysis.

Section 5.6.2 describes an analysis of the randomness of clusters

formed by representative points picked from a cluster. Given a uniformly

distributed spatial dataset S1 and the 1NN graph is built on S1, this will result

in a graph of many disjoint components (called clusters) Ci. Suppose the

centroid ci is computed from each of the Ci to form a dataset S2, a 1NN graph

is built on S2, and the process is repeated until |Sj| ≤ 3, are all the points in Sj (j

> 1) random? How does the size of clusters reduce from one level to the next?

This is an important factor that determines the height of our proposed RNN-C

tree, with respect to the dataset size.

121

5.6.1 Correlations between NN and RNN

We conducted a study of the correlations between k1 and k2 by defining a

function f(k1, k2) which returns the probability value P(Rk2NN(q) ⊆ k1NN(q)).

The probability value is calculated using the formula

)(NNR

)(NNR)(NN
))(NN)(NNR(P

2

21
12

qk

qkqk
qkqk

∩
=⊆ or 0 if Rk2NN(q) = ∅

During the study, we set k1 = k2…100 and k2 = 1…100, and measured the

average probability value. For the analysis, we studied three types of data

distributions: uniform, normal (Gaussian) and real-life data from the

TIGER/Line database [TIGER02]. For uniform and normal distributions, 10K

data points and a single query point q were generated per measurement. The

process is repeated 100 times to obtain the average, for k1 ≥ k2. For real-life

data, we used datasets from 4 counties to obtain the average, and only the

query point is regenerated 100 times per dataset since the datasets are static. In

each run, all the data points are subjected to the naïve method to compute their

NNs for the RNN results. This method has a running time of O(n2), using

O(n.k1) space.

In Figure 69, the probability curves were plotted for k2 ≤ 10, against k1

≤ 40 for the uniform and normal distributions. Each line represents the average

P(Rk2NN(q) ⊆ k1NN(q)), for increasing k1. Recall that RkNN(q) = {p ∈ SDB |

q ∈ kNN(p)}. Therefore, there are no probability values for k1 < k2 because the

definition of RkNN(q) is undefined (we need exactly k NN to make the set

definition).

122

The R1NN lines begin with 0.6242 and 0.5928 for uniform and normal

distribution respectively and reaches 1.0 when k1 = 12. The probability value

stays for k1 > 12. It is generally observed that the probability value stays at 1.0

for subsequent k1 values once it is reached, for all k2 and all three data

distributions. In fact, the starting probability value (when k1 = k2) increases

gradually from 0.6242 to 0.8207 and stabilises at ≈0.8319 (for very large k).

This is taken to mean that we will obtain 83% of the RNN results (for any k ≥

10) if we were to find the top k NN. Generally, to obtain all RNN results with

any λ certainty, one would have to find the k1 value that corresponds to P ≥ λ.

In the normal distribution, the starting values for 5 ≤ k2 ≤ 10 are

0.7225, 0.7353, 0.7327, 0.7399, 0.7357 and 0.7359 respectively. This is

approximately 10% lower than those for the uniform distribution. The reason

for this is that our query point q is uniformly random in the plane, and at the

edge of the plane, q is slightly disadvantaged by the sparse points inside the

plane and no points outside the plane. The analysis also confirms our

conjecture that when k1 >> k2, the quality of the results improve greatly. For

Figure 69. Correlation analysis between NN and RNN for uniform (left) and normal (right)
distributions. The chart plots the probability values against the number of NN (k1). Each line

represents a k2 value

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 5 10 15 20 25 30 35 40

R1NN
R2NN
R3NN
R4NN
R5NN
R6NN
R7NN
R8NN
R9NN

 R10NN

probability

k1 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 5 10 15 20 25 30 35 40

R1NN
R2NN
R3NN
R4NN
R5NN
R6NN
R7NN
R8NN
R9NN

R10NN

probability

k1

123

instance, when k2 = 5 and k1 = 5, the P values are 0.7862 and 0.7223 for

uniform and normal distribution respectively. But when k2 = 5 and k1 = 15, the

P values rise to 0.9969 and 0.9570 respectively.

The trend for real-life datasets is similar to those of uniform distribution,

except with a lower R1NN starting value of 0.6052. It exceeds 0.995 at k1 = 8,

exceeds 0.9995 at k1 = 8, and reaches 1.0 only at k1 = 53. The real-life datasets

also conform to our conjecture that when k1 >> k2, the quality improves greatly.

With this conjecture proven empirically, we could conclude that finding a

much higher number of q’s NNs will increase the chances of getting the

required RkNNs during the query.

The results in these analyses were inserted into a probability chart in

our RNN-Grid codes, accessible via a lookup function which is the first line of

the pseudocode in Figure 72. The confidence level c is a user-supplied

parameter to obtain the desired level of RkNN results. The higher the value of

c, the more candidates will be returned, leading to a higher chance of

obtaining the correct RNN results but at the expense of higher processing costs.

Figure 70. Correlation analysis between NN and RNN for 4 real-life datasets. The chart plots
the probability values against the number of NN (k1). Each line represents a k2 value

 0.6

 0.65

 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 5 10 15 20 25

R1NN
R2NN
R3NN
R4NN
R5NN
R6NN
R7NN
R8NN
R9NN

R10NN k1

probability

124

5.6.2 Randomness of Clusters

[EpPY97] had studied data points representation similar to kNN graph and

presented the theoretical result |Ci+1| ≈ 0.31*|Ci| which guarantees finite RNN-

C tree height. The equation says that the number of clusters is approximately

1/3 of the number of data points at any level, which means there are 1/3 of the

data points on a level above, to construct kNN graphs with. In other words, by

designing effective pruning rules for pruning clusters in a RNN-C tree, the

query algorithm can potentially prune off data points 3 times the size of a

cluster. The higher the tree level in which pruning takes place, the more data

points are pruned off as each cluster contains points that in turn represent even

smaller clusters.

One concern that motivated this analysis is the “randomness” of

clusters formed by centroids of a cluster. Although at the leaf level the points

may be random, the randomness of centroids of clusters is unknown. This is

even more interesting when the clusters are not formed by random points at

the leaf level, but instead by points with geographical significance. Hence, we

conducted an analysis of both synthetic and real-life spatial datasets to

measure the randomness of clusters.

For the synthetic datasets, we randomly generated 2i*1000 (0 ≤ i ≤ 6)

2-d points on a plane of 100002 unit sq and constructed the kNN graphs to

form clusters. For each cluster, a centroid is calculated and propagated one

level up to represent dataset points for another round of constructing kNN

graphs. This is repeated until less than three points are left. At each level, the

points are generated and built 100 times and the average and standard

125

deviation are recorded. The aim is to compute the ratio of reduction to see how

close it is to the theoretical result. The same process is repeated for two real-

life spatial datasets, MD and RI (refer to Table 10), except that they are run

only once per level as the data points are static. Although results for random

points are backed by theory, it is interesting to see whether real-life datasets

display the same traits; if not, how different the ratio would be.

Level Size Ratio
Std
dev

Size Ratio
Std
dev

Size Ratio
Std
dev

Size Ratio
Std
dev

0 1000 2000 4000 8000
1 311.70 0.31 7.43 619.90 0.31 9.00 1242.11 0.31 13.87 2477.2 0.28 13.98
2 89.17 0.29 4.50 177.93 0.29 7.38 354.42 0.29 9.01 702.4 0.28 11.04
3 25.61 0.29 2.76 50.41 0.28 3.91 99.61 0.28 4.60 197.2 0.27 6.49
4 7.32 0.29 1.45 14.51 0.29 2.02 28.13 0.28 2.61 55.2 0.28 2.04
5 2.19 0.30 0.83 4.21 0.29 1.10 7.99 0.28 1.49 16.4 0.30 1.36
6 1.29 0.31 0.50 2.45 0.31 0.77 4.4 0.27 1.02
7 1.4 0.32 0.80

Level Size Ratio
Std
dev

Size Ratio
Std
dev

Size Ratio
Std
dev

0 16000 32000 64000
1 4965.4 0.31 27.85 9960.4 0.31 24.79 19901.8 0.31 82.80
2 1409.7 0.28 11.01 2854 0.29 9.32 5690.4 0.29 48.77
3 392.5 0.28 9.40 800.4 0.28 11.66 1585.2 0.28 15.17
4 106.1 0.27 4.90 225.1 0.28 8.07 440.7 0.28 5.90
5 30.1 0.28 3.29 63.4 0.28 3.61 120.4 0.27 3.67
6 8.2 0.27 1.72 19.8 0.30 2.76 35.4 0.29 2.15
7 2.6 0.32 1.36 5.4 0.28 0.80 10.6 0.30 1.36
8 1.6 0.31 0.52 2.8 0.26 1.17

The theoretical result could be observed from the calculations in Table 18. The

ratio |Ci+1|/|Ci| lies in the range of 0.26 to 0.32, with a mean of 0.29 over all

datasets and all levels. There is no significant difference between a small

dataset (1000 points) and a large dataset (64000 points) except the resultant

tree height. The standard deviation averaged 0.96% and 2.18% for levels 1 and

2 respectively, which means the average ratio presented is truly a good

representation.

Table 18. Synthetic datasets of randomly generated points of size 2i*1000 (0 ≤ i ≤ 6)
and their standard deviation at different levels of the kNN graphs (level 0 is the leaf

level). The ratio of the size to its lower level is also calculated

126

Level MD Ratio RI Ratio
0 28719 53721
1 8690 0.30 16446 0.31
2 2367 0.27 4573 0.28
3 625 0.26 1252 0.26
4 155 0.25 330 0.25
5 41 0.26 82 0.30
6 13 0.32 25 0.30
7 3 0.23 5 0.20

Table 19 shows the analysis for the real-life datasets. The ratio of clusters

reduction ranges between 0.20 and 0.31, with a mean of 0.27 for both. This is

quite close to the theoretical result but we cannot draw any conclusions

because real-life datasets vary to a great extent. However, from this analysis, it

is at least observable that cluster sizes reduce by at least 60% or more at all

levels. This guarantees that the RNN-C tree that we propose has height that is

not only finite, but logarithmic as well.

In the next two chapters, we will make use of the results of the

statistical analyses in this section to design both an estimated and an exact

approach to answering the RNN query, namely the RNN-Grid and RNN-C

tree respectively.

Table 19. Two real-life dataset MD and RI used to construct kNN graphs.

127

Chapter 6 RNN-Grid: An Estimated Approach for

RNN Query

In many applications, response time is critical but the accuracy of the RNN

results is not. A virtual reality shooting game designer may want to find out

the top k RNN of the player quickly with some high probability (say, 0.95),

rather than tying up resources to find all the RNN with absolute certainty

because there are many other aspects of the game that require the same

resources. Besides, a “missed” RNN that suddenly appears may well become

an element of surprise for the player (enhanced playability) and there is also a

good chance of the player shooting down this enemy first (even without the

knowledge that the enemy is a RNN). For applications that require fast,

approximate results, we proposed an approach based on the grid file data

structure [NiHS84].

6.1 The Grid File

The grid file is an elegant data structure that is easy to adopt and implement. It

is an intuitive method for solving the NN problem as it provides fast O(1)

access to cells (buckets containing data points). So, given a query point q, the

cell where q is located can be retrieved immediately and the data points in

surrounding cells be investigated. We begin by describing the grid file data

structure.

The grid file is a relaxation of the fixed grid method to allow free

distance in all k axes. In the original fixed grid data structure, all axes are

128

partitioned into fixed intervals. Although the apparent advantage is the ease of

cell referencing (where a simple formulae effectively pinpoints the correct cell

for any point of any dimensionality), its drawback far outweighs its usefulness.

A set of heavily skewed dataset would cause most data points to fall into just a

few cells, effectively turning the fixed grid into a sequential search. The grid

file solves this problem by allowing the freedom for the axes to be flexible, in

tandem with the data points being inserted. To keep track of the axes, k

additional arrays (called linear scales) are maintained to find the grid partitions.

The main objective of the grid file is to evenly spread the data points into all

its cells, thereby guaranteeing optimal I/O costs. The grid file slices the space

of points in each of the k dimensions, producing partitions of rectangles (for k

= 2), cubes (k = 3) or hypercubes (k > 3). Each partition is a bucket, and points

that fall in that partition have their record placed in a block belonging to that

bucket. To perform a search, we first need to determine the positions of the

record in each of the k dimensions according to the linear scales. After

locating the proper bucket in the grid array, the data block is finally accessed

on disk.

Figure 71. An example of (a) grid file and (b) fixed grid. By allowing flexible axes, the data
points can be split into the partitions evenly. In the fixed grid, it is difficult to find a fixed

interval so that all data points are evenly distributed

 Age Salary

 24

 40

 46

 59

 65

1025

 510

 975

650

 425
Age

S
al

ar
y

Age

S
al

ar
y

(a) (b)

129

For example, a 2-d grid file dynamically partitions the search space by

maintaining a structure of two 1-d arrays and one 2-d array. The former is

called linear scales, and is used to maintain a partitioning of unequal cells such

that data points in them are spread evenly and each cell of the grid array points

to a single data bucket (more than one cell can point to the same bucket). It

shall be noted that the partitioning is highly dependent on the order in which

data points are inserted and the bucket size. In general, grid files have a 70%

utilisation.

Methods for insertion and deletion of data for the grid file have been

proposed. In the best case, insertion operations on the grid file cost one I/O for

accessing the linear scales (if they do not fit into memory) and another I/O for

accessing the bucket, assuming that the new point does not make the bucket

full. In the worst case, full buckets need to be split, causing linear scales to be

adjusted. Deletion operations on the grid file in the worst case cause buckets to

fall below a threshold utilisation value; they are merged with adjustments to

the linear scales.

6.2 RNN-Grid Algorithms

As shown in the problem formulation, the RNN problem is interrelated to the

NN problem. Taking advantage of this correlation, we designed an algorithm,

which we call RNN-Grid, that makes use of the grid file for solving the NN

problem and adapted it further to solve the RNN problem. To the best of our

knowledge, no RNN algorithms have been designed around the grid file

despite its obvious potential as an approximate approach to the RNN problem.

130

The key idea for the RNN-Grid is to quickly return the set k1NN(q) as

candidates hopefully large enough to cover all the Rk2NN(q). Given the spatial

database of multi-dimensional points SDB in a grid file data structure, the

query point q and k2, our RNN-Grid algorithm will make use of the statistical

analysis results to derive k1, the suitable number of NN to retrieve as

candidates. In the refinement step, for each candidate p ∈ k1NN(q) the same

RNN-Grid algorithm is again invoked to check whether q ∈ k2NN(p). If this

condition is met, p is a true positive. It is easy to see that the accuracy of this

estimated RNN-Grid approach stems from the value k1, which in turn is based

on statistical analysis. Figure 72 illustrates the basis for RNN-Grid algorithms.

The RNN-Grid algorithms were designed with the underlying

assumption that the dataset is 2-d data points and there exists a distance

function satisfying the triangle inequality principle. Firstly, we explored two

methods for RNN-Grid, best-first wavefront (BFW) and best-first cell

expansion (BFCE). Both methods made use of our probability statistical

analysis results in Section 5.6.1 for generating candidates. Recall that the

analysis provides us with an estimator for the set k1NN(q) given a confidence

value. Experiments have shown that BFCE outperforms BFW, so the former

was chosen as the de facto algorithm for the RNN-Grid approach. Next, the

BFCE method was combined with theorems on pruning with the geometrical

RNN properties that were described in [StAE00, TaPL04] to further improve

its performance.

131

 RNN-Grid(q, k2, c, R)
 // Input: Query point q, the k2-th RNN, confidence c (0-1)
 // Output: R – Rk2NN of q
 begin

 k1 � lookup(k2, c) // k1 is the number of NNs required
 RNN-Grid-algorithm(q, k1, temp)

 forall p in temp do

 temp2 � ∅
 RNN-Grid-algorithm(p, k2+1, temp2)
 // +1 because p is in the dataset and must be discounted

 last � pop(temp2) // furthest point in temp2 from q
 if dist(q, p) < dist(p, last) then

 R � R ∪ {p}
 endif

 endfor

 end; {procedure RNN-Grid}

RNN-Grid relies on the grid file’s inherent insertion and deletion methods to

deal with dynamic data, just as other RNN algorithms in [TaPL04, XiHL05]

rely on its underlying R-tree data structure’s insertion and deletion methods to

handle dynamic data.

6.2.1 Best-First Wavefront (BFW) Algorithm

BFW represents a first attempt at solving RNN with the grid file. The key idea

in BFW is to locate the cell in which q is located and expand in a rectangular

fashion outwards (in waves) to find the k1 required NN of q. In each wave, all

cells must be processed to be considered complete. Figure 73 shows an

example of BFW. At wave w > 0, there are exactly 8w cells to process. Let ci

be any cell at wave i, in which all are sorted in ascending order of distances

from q, i.e. MinDist(q, ci). The function MinDist is similar to the one defined

in Figure 14. We also maintain a global CurrMinDist value, defined as the

smallest distance between q and the k-th (k ≤ k1) valid results so far.

CurrMinDist is used to prune both unseen cells and data points. A queue Q is

Figure 72. Basis pseudocode for all the RNN-Grid algorithms
(BFW, BFCE, BFCE-PB) except BFCE-CR

132

used to process the cells; when a cell ci is dequeued to be processed, it will be

processed if MinDist(q, ci) < CurrMinDist. Let data point p ∈ ci. p is added to

the result set if d(p, q) < CurrMinDist. The algorithm will terminate when ∀ci,

MinDist(q, ci) > CurrMinDist.

The algorithm for BFW is given in Figure 74. For simplicity, the part where a

counter can be kept to check the algorithm’s termination condition is omitted.

One disadvantage of BFW is that once a wave is started, all the cells must be

processed and the algorithm terminates when the whole wave’s cells is further

than CurrMinDist. This may incur unnecessary computation costs.

 RNN-Grid-BFW(q, k, R)
 // Input: Query point q, the k-th RNN
 // Output: R – Rk2NN of q
 begin

 currMinDist � 0

 w � 1 // wave

 Q � getCell(q.x, q.y) // returns cell where q is located
 while not Q.isEmpty do

 cell � dequeue(Q)

 cand � getBucket(cell) // get all points from cell
 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

Figure 73. Best-First Wavefront (BFW) algorithm for RNN-Grid. (a) Each wave consists of cells
one unit adjacent to the cell of q in the beginning and to the previous wave subsequently. (b)

Cells within a wave is maintained and visited/processed in the ascending order of their distances
from q. Note that in a real grid file, the cells are not likely to be squares; the example is for

illustration only

q q

3 2 4

1 5

7 6 8

133

 ProcessCandidates(q, k, cand, R, currMinDist)

 for i in -1*w to 1*w do
 for j in -1*w to 1*w do
 if i=0 and j=0 then continue; // skip middle cell

 cell � getCell(q.x+j, q.y+i)
 if not cell exist then
 continue; // cell might be at grid boundary
 endif

 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 insert cell into Q sorted by ci∈Q|dist(q, ci)
 w � w + 1
 endfor

 endfor

 endwhile

 end; {procedure RNN-Grid-BFW}

 ProcessCandidates(q, k, cand, R, currMinDist)
 begin

 forall p in cand do

 if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then
 insert p into R sorted by ci∈R|dist(q, ci)
 currMinDist � max{dist(q, p’∈R)}
 endif

 endfor

 if |R| > k then
 truncate R at position k+1; // keep the first k results
 endif

 end; {procedure ProcessCandidates}

6.2.2 Best-First Cell Expansion (BFCE) Algorithm

The BFCE algorithm is an improvement over BFW. The key motivation is to

find a way to process the cells efficiently and terminate as soon as we have

enough results guaranteed to be correct. So, the improvement in BFCE stems

from the idea that when processing a cell c, insert the neighbouring cells of c

into the queue (of course, insertion is still subject to CurrMinDist which acts

as baseline pruning). The visit order of cells to be processed in the queue Q is

still as per MinDist(q, c) ∀c ∈ Q. However, the BFCE algorithm no longer

reaches out in rectangular waves; instead it expands by aggressively inserting

Figure 74. The Best-First Wavefront (BFW) algorithm for RNN-Grid

134

neighbouring cells of the current cell c into Q (if they are not already in Q).

Figure 75 better illustrates an example of BFCE.

During cell expansion, only selected adjacent cells qualify to be inserted into

the processing queue Q. They are (i) unseen or newly identified cells, and (ii)

cells ci that satisfy the condition MinDist(p', ci) < CurrMinDist where p'

belongs to the current cell being processed. In the actual implementation, a set

T is used to keep track of cell index numbers of cells that were discarded, so

that a cell is not re-inserted into Q again as any given cell in the grid is

neighbour to 8 (or less, if at grid boundary) other cells. Meanwhile, the queue

Q holds all cells that were found, but not yet processed. Note that not all cells

will contribute to the expansion. Some cells, when dequeued for processing,

might have neighbour cells that were either fully enqueued (thus waiting to be

processed) or fully discarded (pruned off) or a mixture of both. The manner of

cell expansion is also not contiguous. Cells are always being expanded in

Figure 75. Best-First Cell Expansion (BFCE) algorithm for RNN-Grid. (a) In the beginning, the
entire cells one unit adjacent to q is inserted into queue Q in ascending order of their distances to
q. Note that not all cell index numbers are shown. (b) Next, we process the nearest cell (1) and

found a point p. All cells not in Q are inserted, again in ascending order of their distances to p. (c)
We then process the next nearest cell (2) and expand accordingly. Note that the number in the red

cells indicates the order in which they are inserted

2

13 9 11

10

q 12

p

2

q

16

14

15

1

2
q

135

ascending order of the distance to the current pivot point, as shown in Figure

75(b). The algorithm for BFCE is shown in Figure 76.

 RNN-Grid-BFCE(q, k, R)
 // Input: Query point q, the k-th RNN
 // Output: R – Rk2NN of q
 begin

 currMinDist � 0

 T � ∅ // keeps track of processed cells

 Q � getCell(q.x, q.y) // returns cell where q is located
 while not Q.isEmpty do

 cell � dequeue(Q)
 cand � getBucket(cell) // get all points from cell
 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 ProcessCandidates(q, k, cand, R, currMinDist)

 T � T ∪ {cell}

 for i in -1 to 1 do
 for j in -1 to 1 do
 if i=0 and j=0 then continue; // skip middle cell

 cell � getCell(cell.x+j, cell.y+i)
 if not cell exist then
 continue; // cell might be at grid boundary
 endif

 if cell ∈ Q or cell ∈ T then
 continue; // cell in processing queue/processed
 endif

 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 insert cell into Qtemp sorted by ci∈Qtemp|dist(q, ci)
 append Qtemp to Q
 endfor

 endfor

 endwhile

 end; {procedure RNN-Grid-BFCE}

 ProcessCandidates(q, k, cand, R, currMinDist)
 begin

 forall p in cand do

 if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then
 insert p into R sorted by ci∈R|dist(q, ci)
 currMinDist � max{dist(q, p’∈R)}
 endif

 endfor

 if |R| > k then
 truncate R at position k+1; // keep the first k results
 endif

 end; {procedure ProcessCandidates}

Figure 76. The Best-First Cell Expansion (BFCE) algorithm for RNN-Grid

136

6.2.3 BFCE with Perpendicular Bisector (BFCE-PB) Algorithm

Since BFCE performs better than BFW as our experiments have shown, BFCE

was selected for further improvement. As described before, BFCE

aggressively expands the cells with respect to the data points of a cell inside

the processing queue. Although CurrMinDist acts as a baseline to prevent

cells from being inserted into the queue, it does not help prune off cells fast

enough. Hence, we adapted the idea of a perpendicular bisector pruning from

the TPL algorithm [TaPL04] for a faster pruning. One can see that once a half-

plane, defined as the line that halves the space between two data points, is

marked, one-half of the search space will be pruned forever. Therefore, we

chose to adapt it into BFCE for maximal pruning.

As the central idea in the TPL algorithm is to demarcate an MBR using

multiple perpendicular bisector lines into a residual polygonal area (which

may still contain valid RNN results), it only works with R-tree data structures.

A main difference of our implementation of perpendicular bisector pruning is

that we chose not to create any residual areas from cells, chiefly because it is

too costly to maintain them and the cells in a grid file is non-hierarchical in

nature (once a cell is pinpointed, all data points within the bucket would have

been retrieved). Another difference of our adaptation is that we do not

maintain a large Srfn set where all pruned MBRs and data points are sent to.

Using simple heuristics, data points are discarded from the Srfn when they can

no longer be a true RNN of q.

137

 RNN-Grid-BFCEPB(q, k, R)
 // Input: Query point q, the k-th RNN
 // Output: R – Rk2NN of q
 begin

 currMinDist � 0

 PS � ∅ // set of pruned data points
 T � ∅ // keeps track of processed cells

 Q � getCell(q.x, q.y) // returns cell where q is located
 while not Q.isEmpty do

 cell � dequeue(Q)

 cand � getBucket(cell) // get all points from cell
 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 ProcessCandidates(q, k, cand, R, currMinDist, PS)

 T � T ∪ {cell}

 for i in -1 to 1 do
 for j in -1 to 1 do
 if i=0 and j=0 then continue; // skip middle cell

 cell � getCell(cell.x+j, cell.y+i)
 if not cell exist then
 continue; // cell might be at grid boundary
 endif

 if cell ∈ Q or cell ∈ T then
 continue; // cell in processing queue/processed
 endif

 forall p in PS do

 terminate � false
 if MinMaxDist(p, cell) < dist(p, q) then

 terminate � true
 break; // proceed to next cell
 endif

 if terminate then continue; // proceed next cell
 endfor
 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 insert cell into Qtemp sorted by ci∈Qtemp|dist(q, ci)
 append Qtemp to Q
 endfor

 endfor

 endwhile

 end; {procedure RNN-Grid-BFCEPB}

 ProcessCandidates(q, k, cand, R, currMinDist, PS)
 begin

 forall p in cand do

 if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then
 insert p into R sorted by ci∈R|dist(q, ci)
 currMinDist � max{dist(q, p’∈R)}
 else

 UpdatePrunedSet(q, p, PS, k) // make use of p
 endif

 endfor

 if |R| > k then
 truncate R at position k+1; // keep the first k results
 endif

138

 end; {procedure ProcessCandidates}

 UpdatePrunedSet(q, z, PS, k)
 // update the PS set with newcomer data point z
 begin

 touchedCounter � 0
 //counts how many points in PS is closer to z than z is to q
 forall p in PS do
 if dist(z, p) < dist(z, q) then

 touchedCounter � touchedCounter + 1
 if touchedCounter ≥ k then // z cannot be RNN of q
 break;
 endif

 endif

 endfor

 forall p in PS do
 if dist(p, z) ≤ dist(p, q) then
 if p.count ≥ k then

 PS � PS – {p}
 else

 p.count � p.count + 1
 endif

 endif
 endfor

 if touchedCounter < k then // retain z in PS

 z.count � touchedCounter

 PS � PS ∪ {z}
 endif

 end; {procedure UpdatePrunedSet}

The BFCE-PB algorithm utilises an additional set PS to retain pruned data

points. The discarded candidates can be put to better use in two ways: (i) to be

retained in the set PS for pruning all the newly identified cells that are located

inside the p’s side of ⊥(p,q) ∀p ∈ PS, and (ii) to trim the set PS of unwanted

members to keep PS size small. Each data point in PS has the property count,

initially set to 0, in addition to its coordinates. Note that in the algorithm

BFCE-PB, during ProcessCandidates instead of discarding a candidate p

that was pruned, it is sent to the UpdatePrunedSet to trim PS or to be added

into PS. The set PS, in turn, is used during the cell expansion to prevent cells

not in q’s half-plane to be added into the processing queue (bisector

perpendicular pruning). BFCE-PB also uses MinMaxDist from [RoKV95].

Figure 77. The Best-First Cell Expansion with Perpendicular Bisector (BFCE-PB)
algorithm for RNN-Grid

139

Since the RNN-Grid algorithms aim to find the required NNs as

candidates (Figure 72) for evaluating RNN, it is not entirely obvious why PS

is maintained according to RNN conditions. The main reason is that pruned

points are considered to be not a candidate for NN(q), but it could in fact still

be the RNN(q), which is the final objective of all the RNN-Grid algorithms.

However, if a incoming point z is not accepted into PS, it means that z is

definitely a true negative. For points that are already in PS, they too can be

discarded if enough incoming points (either accepted into PS or not) are seen

so that they no longer can be a true positive result. The condition for this to

occur is p ∈ PS, p.count ≥ k.

Figure 78 shows an example of a pruned set PS with 4 items, {p1, p2, p3, p4}

and their counter value is 3, 3, 1 and 0 respectively. When point z is incoming,

the first step is to find out z’s counter. The variable touchedCounter serves

this purpose. The moment touchedCounter ≥ k, it signals that z cannot be a

RNN of q and therefore will not be added into PS. In the example, if k < 5, z

would be disqualified (q is the 5NN of z) but if k ≥ 5, z would be added into

PS. Next, the counters of existing points pi ∈ PS are incremented by 1

Figure 78. Updating the pruned set PS with an incoming point z. The number in square brackets
is the counter. The +1 indicates that the counter will be incremented by 1

z [4]

q

p3 [1]+1

p4 [0]

p1 [3]+1 p2 [3]+1

140

regardless of whether z is accepted or rejected, because z is a real point in the

dataset. However, the increment for pi’s counter only takes place when d(pi, z)

≤ d(pi, q). If, after incrementing, pi’s counter value ≥ k, pi is removed from PS

as it can no longer be a true RNN of q. In the example again, say k = 4, p1 and

p2 will be removed from PS after the increment exercise.

6.2.4 BFCE with Constrained Region (BFCE-CR) Algorithm

The concept of constrained region [StAE00] proposed that three straight lines,

one of which is parallel to the x-axis, intersecting at q divide the space around

q into six regions of 60° each (assuming L2 metric). In each region, there can

only be exactly 1 RNN or none at all in the case of k = 1. This concept was

proven in [StAE00] and to answer RkNN for any k, we extend the work in that

paper and further generalise this concept to any k using the following lemma.

Lemma 3. For any k, if we retrieve exactly k candidate points closest to q

from each region, the 6k points will be sufficient to answer RkNN.

Proof. Let 3 contiguous regions around q be r1, r2, r3 and let there be infinitely

many data points. Let the points retrieved from a region always start with the

closest points from q (recall that we are using cell expansion which discovers

points in this order). Suppose we retrieve k-1 points from q in r2 and both r1

and r3 contain no points. It is easy to see that the k-th point in r2 could be a

valid RNN of q and we had missed it. Suppose we retrieve k+n points from r2

(n ≥ 1) and both r1 and r3 contain no points, since there are at least k points

before the (k+1)th point (k+n ≥ k+1), the extra n points can never be a RNN of

q. Now, let all regions contain some points and we retrieve k points from r2.

Let u be the k-th point in r2 and point p ∈ {r1, r3} located such that either d(u,

141

p) ≤ d(u, q) or d(u, p) > d(u, q) is true. If the first condition is true, then u is

not a valid RNN of q (since now there are k-1 points plus point p, for a total of

k points, closer to u than q) but this fact does not affect our final query answer.

If the second condition is true, the fact that u is returned as a candidate of the

RNN query shows that we are correct. Hence, this proof shows that it is

sufficient to retrieve exactly k points closest to q from each region to answer

RkNN. ■

The key idea behind BFCE-CR is twofold: (i) retrieve up to k points

per each of the six regions for a total of 6k points, and (ii) for the special case

where k = 1, also prune points that falls within 60° of a candidate that has

already been discovered (constrained region pruning). Unlike the BFW, BFCE

and BFCE-PB algorithms, this algorithm is the only RNN-Grid variant that

does not follow the general RNN-Grid paradigm as shown in Figure 72. The

reason is because BFCE-CR requires the use of six vectors to store up to k

points from six regions. Figure 79 shows the algorithm in detail.

 RNN-Grid-BFCECR(q, k, R)
 // Input: Query point q, the k-th RNN
 // Output: R – RkNN of q
 begin

 initialize regions[1..6] // vector of six vectors
 filter(q, k, regions[])
 refinement(q, k, regions[], R) // to discard disqualified cand
 end; {procedure RNN-Grid-BFCECR}

 filter(q, k, regions[])
 begin

 currMinDist[1..6] � ∞
 initialize bit vector horizon[0..359] // set all bits to 0

 Q � getCell(q.x, q.y) // returns cell where q is located
 while not Q.isEmpty do

 cell � dequeue(Q)

 cand � getBucket(cell) // get all points from cell
 if |R| ≥ k and MinDist(q, cell) > currMinDist then
 continue; // proceed to next cell
 endif

 ProcessCandidates(q, k, cand, horizon, regions[], currMinDist[])

142

 for i in -1 to 1 do
 for j in -1 to 1 do
 if i=0 and j=0 then continue; // skip middle cell

 cell � getCell(cell.x+j, cell.y+i)
 if not cell exist then
 continue; // cell might be at grid boundary
 endif

 for r in 1 to 6 do

 if cell ∈ r and dist(q, cell) > currMinDist[r] then
 if cell ∉ Q then
 insert cell into Q sorted by ci∈Q|dist(q, ci)
 endif
 endif
 endfor
 endfor

 endfor

 endwhile

 end; {procedure filter}

 ProcessCandidates(q, k, cand, horizon, regions[], currMinDist[])
 begin
 forall p in cand do
 if k = 1 then // check bitvector first

 if horizon[∠xqp] bit = 1 then
 continue // skip point
 else

 set horizon[∠xqp ± 60] bit � 1 // wrap around 0-360
 endif

 endif

 r � getRegion(p) // each region is 60 degrees, anti-clockwise
 // starting from line parallel to x-axis
 if |region[r]| < k or dist(q, p) < currMinDist[r] then

 insert p into region[r] sorted by ci∈region[r]|dist(q, ci)
 currMinDist[r] � max{dist(q, p’∈region[r])}
 endif

 endfor

 if |region[r]| > k then
 truncate region[r] at position k+1;
 // keep the first k results per region
 endif

 end; {procedure ProcessCandidates}

 refinement(q, k, regions[], R)
 begin

 forall r in regions do

 currRank � 0 // the number of pts already known to be nearer
 forall p in r do

 currRank � currRank + 1

 distCurrItemFromQ � dist(q, p) // dist(q, p) is increasing

 numNearer � currRank – 1

 done � ProcessRegion(p, r, numNearer, distCurrItemFromQ, k)
 // process points in the current region
 if done then continue endif

 done � ProcessRegion(p, r-1, numNearer, distCurrItemFromQ, k)
 // process points in the left adjacent region
 if done then continue endif

 done � ProcessRegion(p, r+1, numNearer, distCurrItemFromQ, k)
 // process points in the right adjacent region

143

 if done then continue endif

 R � R ∪ {p}
 endfor

 endfor

 end; {procedure refinement}

 ProcessRegion(p, r, numNearer, distCurrItemFromQ, k)
 begin
 forall u in r do // points are already in ascending order from q
 if dist(u, p) > distCurrItemFromQ then

 numNearer � numNearer + 1
 else

 return true
 endif

 if numNearer > k then
 return true
 endif

 endfor

 return false
 end; {procedure ProcessRegion}

BFCE-CR makes use of six vectors called regions to store up to k points

nearest to q discovered from each region in the coarse filtering stage. For the

special case where k = 1, a candidate point p is checked against the horizon

bit vector first. If p falls in an area with bit 1, p is eliminated immediately as it

cannot be a valid result. Otherwise, p is inserted into its correct region, and

horizon is updated to mark the 60° space to the left and right of p. Note that

the marking of the bit vector cuts across regions and wraps around the

beginning and end of the bit vector. It might overlap into areas with bit already

set to 1. In this case, the area of 1-bits will be simply enlarged. Regions are

marked 1 to 6 and have a corresponding currMinDist of size six also, to

record the currMinDist for each individual region. ∠xqp refers to the angle

from the x-axis in an anti-clockwise fashion. Figure 80 illustrates constrained

regions and angles.

The refinement stage aims to eliminate candidate points by counting if

there are at least k points that are nearer to a candidate point. Let p be the k-th

Figure 79. The Best-First Cell Expansion with Constrained Regions (BFCE-CR)
algorithm for RNN-Grid

144

candidate point in a region r. Within the same region r, BFCE guarantees that

there are at most k-1 points between p and q (from p towards q). However, on

the other direction (away from q), there might exist points nearer to p than p is

to q. Hence, when processing all candidates p in r, three variables are used in

the processing of r and r’s two adjacent regions (written as r-1 and r+1): (i)

currRank is used to record the number of points between p and q within r

only (i.e. p being the k-th point from q), (ii) numNearer counts the number of

candidates between p and q as discovered in r, r-1 and r+1, (iii)

distCurrItemFromQ is a convenience variable assigned as d(p, q) so that it is

not re-computed for all the regions. Note that numNearer starts with the value

currRank-1 as through BFCE we know there already exists k-1 points if p’s

ranking is k. When processing a region, we simply increment numNearer the

moment we discover a point u nearer to p than q. As soon as numNearer

exceeds k or d(u, p) exceeds distCurrItemFromQ, processing is terminated

for the current region and the next point in r is processed immediately.

Figure 80. Regions as divided in the constrained region concept. The angle for a candidate point
is calculated anti-clockwise from the line parallel to the x-axis. If a candidate point p3 is

discovered and it does not fall within 60° of previously discovered points, all bits within 60° of
∠xqp3 is marked and they cuts across regions

Region 2

Region 3

Region 1

p3

60°

60°

x q

p1 ∠xqp1 = 95°

x
q

p2

∠xqp2 = 280°

Region 5

Region 6
Region 4

145

6.3 Experiments and Results

In our experiments, we first set out to compare the various RNN-Grid

algorithms. The ERkNN (estimated) approach was chosen to pit against the

RNN-Grid algorithms. ERkNN is a fast algorithm utilising statistical

estimators to return the candidate set while preserving high recall values, and

it outperforms the boolean range query approach (also estimated) of [SiFT03]

by a large margin in terms of accuracy and speed.

6.3.1 Experiment Settings

Three measures were used to compare the performance of our RNN

algorithms, namely the number of I/Os (disk block accesses), the number of

distance computations (CPU cost) and the query time. These measures are

consistent with other RNN algorithms in the literature, making performance

comparisons possible. The number of I/Os denote the number disk accesses

required when answering a RkNN query. The number of distance

computations (for short, written as #distcomp in the remainder of this thesis) is

another accurate measurement, as any algorithm designed to solve RNN is

comprised of a distance function as the basic unit to compute the similarity of

two data points. A good algorithm tends to perform the optimal #distcomp by

filtering only the right candidates from the dataset. Lastly, the query time is

measured to compare the overall performance of a RkNN algorithm.

146

RkNN
Avg

|result|
RkNN

Avg
|result|

RkNN
Avg

|result|
RkNN

Avg
|result|

RkNN
Avg

|result|
20000 50000 100000 200000 400000

1 1.012 1 0.982 1 1.030 1 1.030 1 0.950
2 1.992 2 2.016 2 1.998 2 2.024 2 1.930
4 3.974 4 4.020 4 3.894 4 4.002 4 4.002
8 8.050 8 7.996 8 7.938 8 7.942 8 7.998
16 15.616 16 15.914 16 15.940 16 15.930 16 15.926
32 31.796 32 31.478 32 31.744 32 31.732 32 31.644

For our experiments, we generated random datasets of size 20K, 50K, 100K,

200K and 400K in uniform distribution. A set of 500 randomly generated

query points is used throughout all experiments. Using the very slow naïve

O(n2) method, the RkNN is performed 500 times (each time a different query

point from the query dataset) with its average taken, for k = 1, 2, 4, 8, 16 and

32. In the RNN-Grid, which is an estimated approach, the results size is

averaged over 500 RkNN queries (using query dataset) and compared to the

pre-computed results. For example, the naïve method takes ~3.5 hours to

answer RkNN for 400K 2-d points with k = 32.

Table 20 lists all the values of the true results derived from the naïve

method. By doing so, we are able to evaluate the quality of our RNN-Grid

algorithms and find out how close they are to the true value. The values in the

table are upper bounds as typically estimated algorithms miss some true

results. The table of true results is also used to ensure that the RNN-C tree

returns correct results, which effectively means using the naïve method to

double-check its results.

The confidence value for RNN-Grid algorithms was set at 0.995. For

high-dimensional datasets, we used a set of 40,700 8-d feature vectors

[Gold99], generated from images downloaded from NASA. The feature

Table 20. A pre-computed table of true results for random datasets used to
evaluate the quality of estimated RNN query results. The values are computed

using the slow naïve method

147

vectors are normalised to a range of [0, 1]. The ERkNN algorithm was run

with its best parameters using the local kNN-distance estimator with global

adjustments as suggested in [XiHL05]. The TPL and TYM algorithms were

run without any modifications.

The experiments were run on a Pentium IV 2.4 GHz Linux machine,

with 4 GB RAM. Implementations for RNN-Grid and RNN-C tree were done

in C++ and compiled with gcc version 4.1.2. The disk page size is 4096 bytes

on the same machine. The I/Os implementation is taken with permission from

[TaPL04], thus giving a level platform for fair comparison.

Recall that ERkNN is an estimated algorithm, so we compare RNN-

Grid against ERkNN. It uses a local kNN-distance (density function) estimator

around query point q to estimate the number of candidates required. This

approach to guess the number of suitable candidates is similar to RNN-Grid.

Therefore, we compare RNN-Grid against ERkNN. In some tables, the results

for exact algorithms (TPL or TYM) are also included, for reference. In the last

subsection, we show the performance comparison in all three measures.

6.3.2 BFW vs BFCE

The two different approaches for finding NN(q) in the RNN-Grid are

compared. This set of experiments is run to decide the better algorithm of the

two to serve as the basis for further enhancement. Table 21 shows the results

for BFW and BFCE for RkNN queries with different values of k. In terms of

I/Os, BFCE consistently makes more disk access than BFW. This is because

BFW always accesses adjacent cells when processing each wave. So, it is able

to take advantage of locality of reference. In contrast, BFCE jumps around the

148

edge of the expanding cells because it processes the cells in a queue of cells

sorted in ascending order of MinDist(q, ci).

BFW returns more candidates during coarse filtering as a result of the

wave requirement. When a wave w > 0 has started, all 8w cells in that wave

have to be fully processed. The extra candidates require extra distcomp

although they do not contribute to the final results. BFCE uses fewer distcomp

as it compares the minimum cells to locate the required k NNs. When k is

large, BFCE actually does more distcomp than BFW. This is due to the fact

that BFCE sees more cells than BFW. Each expansion potentially adds 5 to 7

cells into the queue and all must be checked (at least one distcomp if the

whole cell is pruned, or up to c distcomp – one for each point in the cell,

where c is the grid cell size).

 Avg # I/O Avg # distcomp Avg query time (s)
k BFW BFCE BFW BFCE BFW BFCE
1 3.252 3.252 1020.24 916.612 0.00060 0.00046
2 3.578 3.578 1197.09 1079.65 0.00066 0.00060
4 4.030 4.036 1806.84 1639.68 0.00110 0.00094
8 5.238 5.268 3142.69 2887.74 0.00214 0.00194
16 7.434 7.696 6197.31 5931.95 0.00494 0.00484
32 11.528 12.650 16104.70 16994.70 0.01594 0.01724

BFCE alone is not much better off than BFW. But since BFCE outperforms

BFW, albeit not very significantly, we had decided to use BFCE as the base

algorithm and enhance it with other known RNN techniques (i.e.

perpendicular bisector line and constrained regions) for further performance

improvements.

Table 21. Performance of BFW and BFCE in dataset of 20K
with cell size 64 and disk page 4K

149

6.3.3 Effect of Grid Cell Size

The grid cell size is a parameter of the grid file. As a grid cell is implemented

as a bucket, it is also called bucket size. It is the maximum size of the bucket

for any grid file cell. This is where the grid file is different from the fixed grid.

In the latter, we typically control the grid by specifying the number of

partitions. For a randomly distributed dataset of n d-dimensional data points, it

is logical to divide into d n partitions in the hope that each cell will roughly

contain the same number of data points. However, in the grid file, its

partitioning algorithm partitions the grid based on data points already in the

grid. We typically specify the maximum size that a grid cell can store data

points.

Table 22 shows the performance of RNN-Grid algorithms when

different grid cell size is used. In general, the average number of I/Os is

expected to decrease when cell size increases. This is because more data

points can fit into a cell, so fewer cells need to be accessed. We can see this

trend in all algorithms except BFCE-CR. This is due to the fact that BFCE-CR

is the only algorithm not following the RNN-Grid paradigm, i.e. not using the

probability values table to determine the required number of NNs. As evident

in this experiment, apparently BFCE-CR became less efficient than the other

three algorithms when 16 ≤ k ≤ 32, which means it retrieved more candidates

than the others (i.e. the O(6k) candidates exceeded the number of candidates

required from the probability values table). As the bucket size grows larger (k

≥ 32), BFW and BFCE’s performance almost equals, with the former leading

by a slight margin in the average number of I/Os.

150

BFW BFCE BFCE-PB BFCE-CR
Bucket

size Avg
I/O

Avg
#distcomp

Avg
I/O

Avg
#distcomp

Avg
I/O

Avg
#distcomp

Avg
I/O

Avg
#distcomp

2 9.820 275.884 7.974 111.982 7.974 123.904 4.670 33.810
4 8.996 301.482 7.956 144.636 7.964 180.204 5.318 44.704
8 6.808 356.064 6.806 224.846 6.818 304.114 5.760 74.114
16 5.296 450.654 5.446 332.694 5.478 466.980 5.220 105.998
32 4.010 647.802 4.030 535.808 4.200 761.772 4.728 157.146
64 3.404 1044.000 3.408 933.494 3.464 1348.040 3.948 226.640

0

2

4

6

8

10

12

2 4 8 16 32 64

k

a
v
g
 I
/O

s

BFW

BFCE

BFCE-PB

BFCE-CR

0

200

400

600

800

1000

1200

1400

1600

2 4 8 16 32 64

bucket size

a
v
g
 #

 d
is

t
c
o
m

p

BFW

BFCE

BFCE-PB

BFCE-CR

(a) avg # I/O vs bucket size (b) avg #distcomp vs bucket size

As for the #distcomp, shown in Figure 81(b), when bucket size increases,

generally the #distcomp also increases. Although in all our algorithms we have

CurrMinDist to help us prune off cells before and after they enter the

processing queue, for those cells that are not pruned, the number of candidates

to check increased, leading to an overall increasing #distcomp. BFW incurs

the most #distcomp for small k (< 16) due to the waves that it needs to process,

whereas BFCE-PB incurs the most #distcomp for large k (> 16) due to the

extra processing in maintaining the pruned set. Had we not modified the

pruned set to drop some candidates, BFCE-PB would be doing the most

#distcomp for any k. This result tallies with the TPL algorithm (for exact RNN

results) which is known to be distcomp intensive. BFCE-CR is the clear

winner with a speed-up of 3.31 to 4.12 times over its closest rival, BFCE.

Table 22. Effect of grid cell size with 100K dataset, disk page 4K and k=1

Figure 81. Effect of grid cell size with 100K dataset, disk page 4K and k=1

151

6.3.4 Effect of Disk Page Size

This section details the effect of disk page size for the RNN-Grid. Figure 82

shows that the disk page size seems to have little effect on all four algorithms,

except that the BFCE-CR sees an increase in the average number of I/Os. The

grid file structure guarantees at most two I/Os for any bucket retrieval; one I/O

each to access the partition index and the actual bucket. The grid file actually

requires more disk accesses during construction than query. During

construction, when a bucket is full, the grid file will try to split the bucket in

half in one of the dimensions, selecting the dimension that gives the least data

points movement (re-distributing overflowing points into other buckets).

During query, both the BFW and BFCE algorithms discover data

points outwards toward the edges of the plane, with the cell where the query

point hits as the centre. Since they depend on the probability values table, they

need to return more candidates than BFCE-CR. BFCE-CR only requires 6k

candidates; hence it will at most incur 6 disk accesses. For the #distcomp,

BFCE-PB reacts to the increasing disk page size likely because of the pruned

set that it maintains. The overall performance in Section 6.3.7 details more.

5

5.1

5.2

5.3

5.4

5.5

1 2 4 8

disk page size

a
v
g
 #

 I
/O

BFW

BFCE

BFCE-PB

BFCE-CR

0

100

200

300

400

500

600

1 2 4 8

disk page size

a
v
g
 #

 d
is

t
c
o
m

p

BFW

BFCE

BFCE-PB

BFCE-CR

(a) avg # I/Os vs disk page size (b) avg # dist comp vs disk page size

Figure 82. Effect of disk page size with 100K dataset, bucket size 16K and k=1

152

6.3.5 Precision and Recall Analysis

Precision and recall are two measures of a search algorithm’s sensitivity in an

approximate query. In the RNN-Grid algorithms, due to the fact that we

estimate the top k1 NNs to contain Rk2NN of q, the results retrieved from such

a query is bound to contain a small number of false positives (FP), in addition

to the true RNN results (true positives, TP). FP refers to the number of data

points included in the RNN results, but should not. Figure 83 depicts the RNN

result set from a RNN-Grid query. Oftentimes, in the larger picture, there may

be some correct data points not included in the RNN-Grid query result, as they

may lie beyond the top k1 NN of q, yet are indeed the RNNs of q. These data

points are wrongly regarded as non-result, therefore labelled as false negatives

(FN).

Using the true results known a priori that are also used to calculate the table of

true results (Table 20), the FP and FN values can be determined from any

result set of any of the RNN-Grid algorithms. The precision and recall values

are computed as follows

Precision =
TP

TP + FP Recall =
TP

TP + FN

A high precision value indicates that there are very few false RNN results that

were included by the algorithm, which is good. In fact, a precision value of 1.0

Figure 83. Calculating precision and recall values from true positives (TP),
false negatives (FN) and false positives (FP).

TP FP TP

FP

FN

result set

153

means that every result retrieved was correct but did not tell whether all

correct results were retrieved. A high recall value means that there are very

few true RNN results that were missed by the algorithm, which is good. In fact,

a recall value of 1.0 means that all correct results were retrieved but did not

tell how many incorrect results were also retrieved.

Precision Recall
k

BFCE-PB BFCE-CR ERkNN BFCE-PB BFCE-CR ERkNN
1 0.635 0.535 0.823 0.986 0.998 0.994
2 0.511 0.383 0.827 0.970 0.999 0.992
4 0.465 0.378 0.818 0.948 0.994 0.990
8 0.455 0.374 0.834 0.953 0.996 0.983
16 0.445 0.343 0.842 0.958 0.988 0.982
32 0.468 0.310 0.810 0.987 0.990 0.980

In our experiments, we used the 100K dataset, a bucket size of 64, disk page

size 4K, and confidence values of 0.99 for BFW, BFCE and BFCE-PB

algorithms. The experiments were conducted for various RkNN queries

(varying k). First of all, we note that the ERkNN algorithm does produce high

recall values for our experimental dataset. The recall decreases as k increases,

but it is still above 0.98 for k ≤ 32, which is considerably high.

In all our RNN-Grid algorithms, the recall values are very high, above

0.94. This is because our statistical analysis method works well for the random

data distribution. Comparing BFW and BFCE, the BFCE has a slightly higher

recall than BFW. The recall values of BFCE and BFCE-PB are similar

because the latter actually added an extra method of pruning on top of the

former. This merely affects the order in which candidate points are found and

inserted into the result set, but the final candidates set is still the same. In fact,

in the next section, we showed that BFCE-PB does not add value to BFCE. In

Table 23.The precision and recall values of the two best RNN-Grid
algorithms compared to the ERkNN algorithm.

154

fact, the recall for BFCE is not as good as ERkNN’s, which means the

statistical analysis alone may not be sufficient to compete with the local kNN-

distance estimator in the ERkNN algorithm, except when k is very large (k ≥

32). The local kNN-distance estimator is merely estimating the number of

candidates from a small sample of data points around the query point q and

works only for random data distribution. In the case when k is small, it can

predict the number of candidates to retrieve from its small samples pool.

When k is large, the prediction might be off. BFCE and BFCE-PB outperform

ERkNN for large k as the statistical analysis is done on a much larger pool of

data points, therefore increasing the effectiveness of the method.

On the other hand, BFCE-CR consistently produces a higher recall rate

than ERkNN for all k. The simple reason is that BFCE-CR returns larger

number of candidates (6k) than the ERkNN algorithm. So the RNN results are

almost complete in the BFCE-CR algorithm, at the expense of additional

running time spent in the refinement step to verify the candidates.

The precision values for BFCE-PB and BFCE-CR, however, were

consistently lower than ERkNN. This is because BFCE-CR has expanded and

included too many false positives. As each cell in the grid file is most likely

not a square, many results may have been included during cell expansion. This

can be improved by reducing the bucket size of the grid file (hence effectively

reducing density) and employing distance calculations in the refinement step

to filter the data points in each cell. We note that BFCE-PB has better

precision than BFCE-CR as the method keeps track of pruned data points to

act as bisector pruning for future data points. This indirectly cuts away a lot of

false positives data points that share a cell with true positives during expansion.

155

6.3.6 High Dimensional Data

Although the grid file is a dynamic structure that is extensible to higher

dimensions, it is known to degrade in performance for indexing data in very

high dimensions (say, d > 100). Unlike the fixed grid which can be easily

modified to any dimensions as long as the size of the hyperplane is known, the

grid file needs to maintain an array of partition indices for each partition. This

means that high dimensions actually results in costlier maintenance of

partition index arrays, not to mention the algorithms for repartitioning of high-

dimensional data points becomes inefficient, due to the 2d-1 possible ways to

split the grid, when a bucket is full.

Similarly, the performance of the TPL algorithm also suffers from the

curse of dimensionality, as acknowledged in the original paper. The

performance of TPL degrades due to the underlying R-tree data structure that

it uses. The bisector perpendicular line used for pruning has become a

hyperplane (d > 2), and its coarse filtering encounters many more potential

candidates which leads to a much costlier refinement step, as all points and

MBRs in the refinement set Srfn are used for pruning.

With this understanding, experiments were conducted to look at the

performance of RkNN queries in an 8-d real-life dataset, a set of 40700 feature

vectors of NASA images. The 2-d dataset are randomly generated. As the

BFCE-CR is the best of all RNN-Grid algorithms, it is selected for comparison

in this experiment. A bucket size of 64 and disk page size 4K for BFCE-CR

were used. For the TPL algorithm, the disk page size used is also 4K. To be

fair, we note that in this comparison, BFCE-CR is an estimated approach

while TPL is an exact approach to answer the RkNN query. Therefore, BFCE-

156

CR is expected to show better performance as TPL needs to do much more

work to ensure the results returned are accurate.

 BFCE-CR TPL BFCE-CR TPL
k (2-d data) (8-d data)
1 226 1669 574 86653
2 266 2676 753 97149
4 355 4428 1109 167905
8 587 8420 1970 431335
16 1297 19969 3634 749178
32 3427 56477 6936 1342755

TPL performs 12.47 times more distcomp than BFCE-CR (k = 4), but it incurs

2-3 orders of magnitude more #distcomp than BFCE-CR in the 8-d dataset. In

fact, the experiment results in Table 24 suggest that TPL has #distcomp

increase of between 1.12 and 2.57 times, as k increases. The R-tree becomes

less efficient with more overlaps in high dimensions [ThSe96] as it is

impossible to construct an R-tree with only 10% overlap. Owing to this, TPL

spends up to 98% of query cost spent on the filtering step.

Next, we look at the query time used by both algorithms in Figure 84. At 8-d,

the TPL algorithm is at least one order of magnitude slower than BFCE-CR

Table 24. Comparison of RkNN queries in 2-d and 8-d datasets. The number of
distance computations of BFCE-CR and TPL are shown

Figure 84. Comparison of RkNN queries in 8-d data. The average
query time for BFCE-CR and TPL are shown

0.001

0.01

0.1

1

10

100

1000

1 2 4 8 16 32

k

a
v
g
 q
u
e
ry
 t
im
e
 (
s
)

TPL

BFCE-CR

157

and grows to 4 orders of magnitude, and still growing, for large k. Query costs

generally explodes for both BFCE-CR and TPL in tandem with higher

dimensions; as data points move to hyperplanes, the #distcomp in operations

like “find enclosure” (the R-tree’s MBR in TPL) increases tremendously.

6.3.7 Performance Comparisons

Finally, we compare all the RNN-Grid algorithms (BFW, BFCE, BFCE-PB

and BFCE-CR) to ERkNN, in all three measures. The corresponding values

for the same measures for TPL and TYM algorithms are also presented as a

reference. The experiments are performed using the 100K dataset, a bucket

size of 64, disk page size 4K, and confidence values of 0.99 for BFW, BFCE

and BFCE-PB algorithms.

In Table 25, the number of disk accesses is compared. Note that the

BFCE-CR started off with more disk accesses than BFW, BFCE and BFCE-

PB. As k becomes large, it is evident that BFCE-CR requires less I/Os as it

only need to retrieve O(6k) candidates, compared to up to 15k candidates

needed for answering a RkNN query for large k. On the average, most RNN-

Grid algorithms need fewer I/Os than ERkNN, except for k ≥ 32 when BFW,

BFCE and BFCE-PB begin to lose out to ERkNN’s method of estimating the

required NN candidates. This means that they sought more candidates than

ERkNN at that point and hence requires more I/Os. However, this is actually

in response to our stricter confidence level of 0.995 to discover all RkNN

results; but then this results in a higher recall that outperforms the ERkNN’s

recall. This was presented in Table 23, when k = 32 the recalls of BFW, BFCE,

BFCE-PB and BFCE-CR are higher than that of ERkNN’s. We also showed

158

that the grid file structure is as good as the R-tree (for ERkNN) for answering

RNN queries. For reference, the TPL and TYM algorithms need much more

disk accesses as they need to ensure exact RkNN results.

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM
1 3.404 3.408 3.464 3.948 5.696 915 524
2 3.618 3.622 3.694 4.186 6.604 991 572
4 4.240 4.244 4.318 4.614 7.150 1103 610
8 5.384 5.436 5.570 5.544 7.948 1300 664
16 7.734 7.928 8.104 7.854 9.440 1584 751
32 11.966 13.06 13.358 11.160 11.364 2105 848

The performance in terms of #distcomp is shown in Table 26. The efficiency

of the RNN-Grid algorithms are always BFCE-PB > BFW > BFCE > BFCE-

CR. This is easily explained by looking at the BFCE-PB algorithm. It incurs

the most #distcomp because it has to maintain a pruned set PS, at the cost of

O(2|PS|) distcomp. The pruned set was originally designed to help in the

coarse filtering by quickly pruning off large regions of space where any data

point found in these regions is guaranteed as a non-result. However, this

method introduces unavoidable distcomp necessary to maintain PS as well as

using PS for coarse filtering.

Although BFW is a simple idea, it actually performs better than the

BFCE-PB. It is about 1.3 to 1.7 times more efficient than BFCE-PB. As

shown earlier in Section 6.3.2 where we need to decide between BFW and

BFCE to extend, the BFCE is consistently faster than BFW except that for k =

32. Since a typical RNN query (say, a virtual reality shooting game) focuses

on small k, the BFCE was chosen. The BFCE-CR is by far the fastest

estimated algorithm, has 2.7 to 8.9 times fewer distcomp than ERkNN yet

Table 25. Performance comparison (number of I/Os) of all RNN-Grid
algorithms with ERkNN, TPL and TYM

159

outperforming ERkNN with a higher recall. The BFW and BFCE made fewer

#distcomp than ERkNN for k ≥ 4, and BFCE-PB, k ≥ 8. This indicates that the

ERkNN algorithm is not efficient for large k, even though the query

aggregation of ERkNN has helped to reduce up to 75% of distcomp. As

expected, the exact algorithms (TPL and TYM) perform more distcomp than

estimated algorithms. In particular, the TYM algorithm uses significantly

more distcomp even for k = 1, because it is an algorithm for the general metric

space, and it cannot take advantage of well-known Euclidean geometric

properties for pruning.

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM
1 1044.00 933.494 1348.04 226.640 614.086 1669.196 100529
2 1203.61 1078.00 1612.34 266.968 1017.184 2676.826 101053
4 1859.36 1677.69 2532.71 355.426 2038.812 4428.880 103673
8 3220.01 2955.66 4575.94 587.498 4608.038 8420.356 115201
16 6489.35 6204.03 10335.82 1297.317 11518.299 19969.190 163409
32 16670.00 17446.71 28360.53 3427.315 30177.252 56477.908 360433

Finally, we compare the performance of all the estimated algorithms in terms

of query time. The trend is similar to the #distcomp. BFCE-PB takes the

longest to run and the BFCE-CR is the fastest among all estimated algorithms,

except when k = 1, ERkNN is equal. The TYM algorithm runs in the range of

seconds, as it was contributed by the high #distcomp cost. The results of TPL

and TYM are presented here to provide an idea of how long it takes to arrive

at exact results.

Overall, we reiterate that the BFCE is consistently faster than BFW,

hence it was chosen to be extended. The BFCE-PB is not a viable extension as

it performed worse than BFCE. This shows that the perpendicular bisector

Table 26. Performance comparison (number of distance computations) of all
RNN-Grid algorithms with ERkNN, TPL and TYM

160

pruning is not workable, because although finally we are looking for RNN

results, the approach to obtain candidates is by NN. On the contrary, BFCE-

CR is a very good improvement on the BFCE, as it not only runs fast, but

manage to produce very high recall values (≥ 0.988, from Table 23).

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM
1 0.00086 0.00064 0.00150 0.00032 0.00032 0.00096 3.93
2 0.00100 0.00076 0.00188 0.00038 0.00039 0.00136 5.35
4 0.00162 0.00124 0.00304 0.00044 0.00065 0.00286 5.41
8 0.00292 0.00244 0.00584 0.00060 0.00232 0.01034 5.52
16 0.00654 0.00592 0.01480 0.00098 0.00346 0.05076 5.86
32 0.01920 0.01994 0.04360 0.00184 0.00771 0.30570 6.21

6.3.8 Dataset Distributions

One lingering concern is the effectiveness and accuracy of RNN-Grid as it

depends on a pre-computed table determined from statistical analysis. When

an actual dataset is given, its distribution may be different from the data used

in the statistical analysis. This section looks into the problem of using a

different statistical table that we derived in Section 5.6.1 for crossed-value

distributions of data. For the analysis, we studied three types of data

distributions: uniform, normal (Gaussian) and real-life data from the

TIGER/Line database [TIGER02].

k Real-life Normal Uniform
1 2 3 3
2 4 4 4
4 6 8 6
8 11 15 11
16 20 21 20
32 39 44 42

Table 27. Performance comparison (query time in seconds) of all RNN-Grid
algorithms against ERkNN, TPL and TYM

Table 28. The value of k1 for P(Rk2NN(q) ⊆ k1NN(q)) > 0.9
for different dataset distributions

161

We selected the probability value of 0.9 for a more realistic comparison

between the different dataset distributions. The results show that the values of

k1 is very similar for the three distributions, which suggest that the robustness

of the accuracy of RNN-Grid across different data distributions.

6.4 Summary

In this chapter, several ideas based on the grid file for estimating RkNN results

were explored. As a result, the RNN-Grid algorithms based on the grid file

data structure were developed. The RNN-Grid is a very fast alternative for

answering the RNN query where full accurate results are not desired, in

exchange for speed in query response time. Experiments showed that the

RNN-Grid outperforms other estimated RNN approaches such as the ERkNN

and SFT. Not only is RNN-Grid faster than ERkNN, it also has better recall in

the results it returned.

The best-first cell expansion algorithm, combined with constrained

region pruning technique (BFCE-CR), is shown to be a promising approach

resulting in fast execution and very high recall. BFCE-CR is almost similar to

ERkNN in terms of running time when the dimension k is small. For larger k,

BFCE-CR is much faster than ERkNN, retaining the same high recall value

that ERkNN does.

In terms of implementation, we believe RNN-Grid algorithms are

easier to implement, and the underlying grid file data structure also has the

same advantage of insertion, deletion and update (point query) as does the R-

tree that ERkNN was based upon.

162

Chapter 7 RNN-C Tree: An Exact Approach for

RNN Query

To answer the RNN query with certainty is a much more challenging and

harder problem. The main challenge is how to process minimal data points, be

sure that the RNN results are correct and terminate the query. As the NN and

RNN are asymmetrical, we cannot use distance from q as the terminating

condition. Worse, some techniques described for RNN processing only work

on the assumption of a certain distance metric or data dimensionality.

 In this section, we propose a novel hierarchical data structure and

corresponding query algorithm for answering the RNN query, called RNN-C

(C for cluster) tree. We chose to design a RNN algorithm for the general

metric distance, which work as long as a distance function is defined between

two data points (or objects) that conform to the triangle inequality principle. In

general metric distance indexing, our algorithm cannot assume any location

information on the data points, therefore pruning techniques that make use of

absolute coordinates cannot be used. This makes it all the more challenging,

but results in an algorithm that works across all distance metrics.

RNN-C tree has several advantages. It is designed especially for

finding exact RNN results. It is also simple to understand and implement. Our

experimental results show that RNN-C tree outperforms the current state-of-

the-art algorithm for metric distance RNN query [TaYM06]. The RNN-C is

based on the concept of kNN graphs, first introduced in [SeKi02] for pattern

recognition research, which proposed that data points be linked to their 1NN,

which results in cyclic graphs of disjoint components we call clusters. The

163

topology of the kNN graph is deterministic and inherent from the position of

data points, regardless of the order in which they are presented (unlike the R-

tree which is dependent on presentation order of data points, but not including

those built by bulk-loading techniques).

7.1 Preliminaries

The key design concept of the RNN-C tree data structure is to construct a data

structure that satisfies the following conditions: (i) be able to answer RkNN

queries, (ii) be able to index metric distances and make use of them for

pruning, (iii) hierarchical so that pruning a node will ensure that that branch of

child nodes do not contain valid RNN results, and (iv) easy to implement and

understand.

The RNN-C tree is based on the idea of kNN graph. We took the idea

one step further by regenerating the kNN graphs on multiple levels and linked

them up to form a hierarchical tree structure. The main reason for doing so is

because the kNN graph represents a forest of clusters in which each cluster is a

minimum spanning tree. This is a direct consequence of each data point

linking to its 1NN. All points in a cluster are stored as a node in the RNN-C

tree as they are closely related for answering the RkNN query.

164

(a)

(b)

(c)

(d)

(e)

The RNN-C tree is built one level at a time from bottom up. At the bottom

level (leaf), the kNN graph is computed from the dataset SDB, where clusters

are formed. This is essentially the same as a kNN graph. To construct the next

level, the centroid ci
j (j-th centroid at the i-th level) of a cluster Ci

j is

Figure 85. An example of the RNN-C tree hierarchical index data structure of 200 data points.
The tree is built from bottom-up. At each level, clusters are formed by the data points’ inherent

position. One way to build the tree is by selecting a representative point
from each cluster to become a data point in the next level

165

computed and it will become a data point for the construction of the kNN

graph at the (i+1)-th level. Note that ci
j
 ∉ Ci

j, therefore ci
j
 ∉ SDB. ci

j
 is

merely a representation of Ci
j. The reason a centroid is computed for any Ci

j

is due to the fact that the RNN-C tree uses a minimum bounding circle (MBC)

to represent Ci
j and the pruning is based on MBC. This process is repeated

until the root level where < 3 points is left. Table 29 lists the notations related

to the RNN-C tree.

Notation Definition
SDB dataset
q the query point
k the number of RkNN
Ci all clusters at level i (at leaf level, i = 0)
|Ci| number of clusters at level i
Ci

j cluster j at level i
ci

j the centroid for cluster Ci
j

ri
j radius for MBC of Ci

j centred at centroid ci
j

σi
j
 the population for cluster Ci

j, defined as

=

>
= ∑

−

=
−

0||

0
||

1
1

1

iifC

iif

j
i

C

m

m
ij

i

i

σ
σ

ni total number of points at level i. n0 = |SDB|. ni+1 = |Ci|.
note that ni >> |Ci|

|Ci
j
| the size of Ci

j, excluding centroid. ∑|Ci
j
| = n0, for i = 0

h height of RNN-C tree, 1 ≤ j ≤ h

7.2 RNN-C Tree Construction

For our RNN-C tree, initially questions were abound and there were three

distinct directions to pursue. First, to go with 1NN linkage (at leaf level) and

check whether it is even possible, let alone sufficient, to answer a RkNN query

for any k. Second, if the first method is implausible, to explore whether it is

possible to expand a RNN-C tree (based on 1NN) dynamically via

computation during query execution to answer a RkNN query for any k. Third,

to exploit a RNN-C tree based on kNN (k to be determined) that could answer

Table 29. Notations used in the RNN-C tree

166

a RkNN query for any k. Eventually, our research had proven that the first

direction was plausible and adheres beautifully to our aim of an algorithm that

is simple to implement.

Figure 86 lists the algorithm for constructing a RNN-C tree. We

highlight three important areas in the algorithm, namely (i) an algorithm

needed to find the 1NN of a data point, (ii) computing the radius ri
j for a

cluster Ci
j, and (iii) computing the population of a cluster. To tackle the first

problem, we adopted the fast branch-and-bound NN algorithm of [RoKV95],

but any implementation of exact NN algorithms can be used. To compute the

radius, we redefined a data point to include a link (index) to the clusters that it

represents as a centroid (in addition to its coordinates), for all non-leaf data

points. The population of a cluster is the number of data points contained in

the cluster including all clusters at the lower levels. At level 0, the population

σi
j of a cluster Ci

j is simply the size of the cluster |Ci
j
|. At intermediate levels

(i > 0), the population σi
j of a cluster Ci

j is σi
j
 = ∑|Ci-1

j'
| ∀p ∈ Ci

j where p

⇔ ci-1
j'. The purpose of σi

j
 is for pruning in RkNN query, where k > 1.

 In the algorithm, whichCluster is a straightforward implementation of

the member function of a set, so it is not shown. calcCentroid is also not

presented because it is also a straightforward computation of the centre of a

cluster across all data points in the cluster, averaged for each dimension.

167

 RNN-C-tree-build(SDB, T)
 // Input: spatial database SDB
 // Output: RNN-C tree T
 begin

 h � 0 // height of final RNN-C tree

 n � |SDB| // number of points at this level
 repeat

 h � h + 1
 RNN-C-tree-build-level(SDB, C[])

 SDB � ∅
 for i = 1 to c do

 p.x � C[i].centroid.x

 p.y � C[i].centroid.y

 p.link � i

 SDB � SDB ∪ {p} // each point links back to its cluster
 endfor

 n � |SDB|

 T[h] � C[] // building of RNN-C tree level by level
 until n ≤ 3
 end; {procedure RNN-C-tree-build}

 RNN-C-tree-build-level(SDB, C[])
 // Input: spatial database SDB
 // Output: array of c sets of data points C[1..c]
 begin

 c � 0 // number of clusters at this level

 //generate clusters
 forall p in SDB do

 p’ � NN(p, 1) // find 1NN(p) from SDB
 if p.inserted = false and p’.inserted = true then

 temp � whichCluster(p’, C[]) // add to same cluster as p’

 C[temp] � C[temp] ∪ {p}
 p.inserted � true
 elseif p.inserted = false and p’.inserted = false then

 c � c + 1 // form a new cluster

 C[c] � C[c] ∪ {p,p’}
 p.inserted � true

 p’.inserted � true
 elseif p.inserted = true and p’.inserted = true then

 temp � whichCluster(p, C[]) // link both clusters together

 temp2 � whichCluster(p’, C[])

 C[temp] � C[temp] ∪ C[temp2]
 delete C[temp2]
 c � c - 1
 elseif p.inserted = true and p’.inserted = false then

 temp � whichCluster(p, C[]) // add to same cluster as p

 C[temp] � C[temp] ∪ {p’}
 p’.inserted � true
 endif

 endfor

 //compute the centroid and radius for all clusters at this level
 for i = 1 to c do

 C[i].centroid � calcCentroid(C[i])

 C[i].radius � calcRadius(C[i], i)

 C[i].population � calcPopulation(C[i], i)
 endfor

168

 end; {procedure RNN-C-tree-build-level}

 calcRadius(C, i)
 // Input: a cluster C, level where C is
 // Ouptput: the radius that covers the cluster C
 begin

 radius � 0 // the radius of the cluster to compute
 forall p in C do

 dist � dist(p, C.centroid)
 if dist > radius then

 radius � dist
 endif

 endfor

 // recursively expand the cluster radius to cover clusters below
 if i > 0 then
 forall p in C do

 dist � calcRadius(C[p.link], i-1)
 if dist > radius then

 radius � dist
 endif

 endfor

 endif

 return radius;
 end; {procedure calcRadius}

 calcPopulation(C, i)
 // Input: a cluster C, level where C is
 // Output: total population of the cluster, including its children
 begin
 if i = 0 then // leaf level

 total � |C|
 else // intermediate level

 total � 0
 forall p in C do

 total � total + calcPopulation(C[p.link], i-1)
 endfor

 endif

 return total;
 end; {procedure calcPopulation}

To build the RNN-C tree data structure, the initial dataset SDB is read. Then

the algorithm attempts to build a kNN graph (with 1NN relation) from the data

points, which will results in |C0| clusters at the leaf level (level 0). During

cluster construction, the data points are processed sequentially to find their

1NN. Each data point p also has a Boolean value to indicate whether it has

been previously inserted into a cluster, or newly discovered. In actual

Figure 86. The RNN-C tree construction algorithm

169

implementation, a bit vector of size |SDB| can be used. Let NN(p) be p'. There

are 4 possible outcomes for p and p'. If p is a new data point but p' is not, p

will join the cluster of p', and vice versa. If both p and p' are new data points,

then a new cluster is born, as neither p nor p' is connected to other clusters. If

both p and p' were inserted before (p must have been the NN of some other

point, and now p’s NN is p' which belongs to another cluster), so both clusters

are linked up. At the end of the procedure, each data point in SDB would be

inserted into one and only one cluster. Finally, the centroid ci
j for each

discovered cluster is computed. To compute the radius, for the case where the

level is 0 (leaf), ri
j is max{d(ci

j, p)} ∀p ∈ Ci
j. For cases of intermediate

nodes, ri
j is recursively grown to cover the MBC of all clusters in each point.

The centroid is extracted from each cluster and a link (index) is added

to the cluster which the centroid represents, to form the new dataset (of

smaller size, which is equal to |C0|). The process is repeated until the dataset

size |Ch| is ≤ 3. One concern about the RNN-C is whether the construction

algorithm will terminate.

Lemma 4 proves that the RNN-C tree will not result in an unbalanced

or skewed tree. Furthermore, we had empirically shown in our statistical

analysis (Section 5.6.2) that |Ci| reduces to approximately 0.20 to 0.32 of its

size at the next level, both for random dataset and real-life GIS dataset. In

theory, the reduction is at most 0.5. Figure 87(a) illustrates how the RNN-C

tree is constructed on a dataset of 12 data points, n0 = |SDB| = 12.

Firstly, for all pi ∈ SDB, 1 ≤ i ≤ 12, find NN(pi). The directed edges in

the diagram is merely a visual representation of pi with NN(pi), in actual

implementation, an array of pointers of size n0 would suffice. Note that there

170

are 4 clusters formed (C0
1 to C0

4, and |C0| = 4). Secondly, for C0
i, 1≤ i ≤ 4,

calculate the centroids of each cluster (c0
1 to c0

4, respectively). They are

denoted as white dots in the figure. Thirdly, using the centroids for each

cluster, determine a radius large enough to cover the cluster, i.e. computing r0
1

to r0
4. Finally, compute the population of the cluster. Then we are done for this

level. Repeat all the steps above recursively with the 4 centroids assumed as

data points on the next level. In Figure 87, horizontal dotted lines connecting

from white dots in (a) to black dots in (b) indicate this (similarly, from white

dots in (b) to black dots in (c)). The construction algorithm terminates when nh

≤ 3, where h is the height of the resulting RNN-C tree. In Figure 87(b), n1 = 4

and |C1| = 2. In Figure 87(c), n2 = 2, |C2| = 1 and the construction algorithm

terminates with h = 2 since the condition n2 ≤ 3 is met.

Figure 87. Constructing the RNN-C tree for a dataset of 12 points. Note that x�y denotes NN(x)
is y. (a) find each point’s 1NN and calculate the centroid (white point) for each resulting cluster,
(b) the centroid becomes a data point on the next level; repeat the same process as in (a) at this

level, (c) stop when 3 or less data points remain

(a) (b) (c)

171

Lemma 4. The algorithm to construct RNN-C tree will always terminate with

the finite height h of O(log2 n).

Proof. The kNN graph is based on the 1NN relationship of all the points in the

dataset to their 1NN. Let {p1, p2, p3} ∈ SDB, n = |SDB|, NN(p1) be p2 and

2NN(p2) = {p1, p3}. By definition of kNN graph, an edge always connects

from p1 to p2. In this situation, there are 2 possibilities for p2, either d(p2, p1) <

d(p2, p3) which means NN(p2) is p1, or d(p2, p1) ≥ d(p2, p3) which means

NN(p2) is p3. For the former, there will be an edge from p2 to p1, and assuming

all other clusters have the same conditions, there will be n/2 clusters, which

means n/2 points on the upper level. Assuming the same conditions,

eventually we will arrive at a RNN-C tree of height log2 n. ■

7.3 R1NN Queries with RNN-C Tree

Having presented the RNN-C tree construction algorithm, we now discuss and

prove two lemmas, presented below, which are used by the query algorithms

to traverse the RNN-C tree and prune away points during traversal.

Lemma 5. A cluster Ci
j with centroid ci

 j and radius ri
 j does not have a RNN

of any query point q if d(ci
 j, q) > 2ri

 j.

Proof. To prune off the whole cluster Ci
j
 we need to show that q ∉ NN(pi) for

all pi ∈ Ci
j. Since all pi are enclosed by MBC(ci

 j, ri
j), d(ci

 j, pi) is at most ri
 j.

In the worst case, ∃pj where d(ci
 j, pj) = ri

 j. This pj could become the NN of q

if d(q, pj) ≤ d(pj, ci
 j) (which is ri

 j). Therefore, if d(q, pj) > d(pj, ci
 j), q cannot

be the NN of pj. Since d(q, pj) > ri
j and d(ci

 j, pj) = ri
j, then when d(ci

 j, q) >

2ri
 j
 none of pi can be the NN of q. ■

172

Lemma 6. In a cluster Ci
j where the longest edge is e with length |e|, Ci

j does

not have a RNN of any query point q if d(q, (pi ∈ Ci
j)) > |e|.

Proof. To prune off the whole cluster Ci
j
 in this situation, we need to show

that d(q, pi) > |e| for all pi ∈ Ci
j. Let us pick two random points pj, pk ∈ Ci

j

which is connected by an edge ej. If d(q, pj) ≤ d(pj, NN(pj)) then pj would be a

NN of q. Note that NN(pj) could be pk or some points. So when d(q, pj) > d(pj,

NN(pj)), it follows that q ∉ NN(pj). However, it may happen that d(q, pj) <

d(pj, pk) because |ej| < d(pk, NN(pk)). This can be avoided if ej is the longest

edge e in Ci
j. Therefore none of the pi’s can be the NN of q if d(q, pi) > |e|. ■

Two pruning rules are used during top-down traversal of RNN-C tree when

answering R1NN queries. Recall that each cluster in the RNN-C tree has a

centroid and radius that defines a MBC that covers all clusters in its subtree.

When traversing down the RNN-C tree, for each cluster, we first determine

whether we can prune off a cluster Ci
j by using the two lemmas in this section.

Let edge emax ∈ Ci
j
 such that ∀em ∈ Ci

j, emax ≥ em, if d(q, ci
j) > emax and d(q,

ci
j) > 2ri

j then Ci
j
 can be pruned. If Ci

j does not meet either one of conditions,

we recursively traverse each p ∈ Ci
j which represents Ci-1

j' where j' = 1 to |Ci
 j|.

A point to note is the need to compute d(p, NN(p)) ∀p ∈ Ci
j, which could best

Figure 88. An example illustrating the conditions for Lemma 5 (left) and Lemma 6 (right)

ri
j
 ri

j
 ri

 j

q

p1
ci

j

p2
p3

p4 pj

Ci
j

q
ej

pj

pk

Ci
j

173

be implemented as a hash table lookup (using p’s index for j-th cluster at level

i) since it has been pre-computed and stored during tree construction. This

would take O(1) time. Alternatively, if such information is not available,

|NN(p)| << ni as NN(p) ∈ Ci
j, therefore we only need to search within the

same cluster, which is typically < 10 points.

 R1NN-C-tree-query(q, i, j, R)
 // Input: query point q, current tree level i, cluster index j
 // Output: R - the R1NN results of q
 begin

 if i = 0 then // leaf level
 forall p in C[0,j] do
 if dist(q, p) ≤ dist(p, NN(p)) then

 R � R ∪ {p}
 endif
 endfor

 else // intermediate level
 // find max edge length in the cluster
 maxEdgeLen � 0
 forall p in C[i,j] do

 dist � dist(p, NN(p))
 // NN(p) is searched within C only
 if dist > maxEdgeLen then

 maxEdgeLen � dist
 endif

 endfor

 // 2*radius and max edge length pruning rules
 if dist ≤ 2*C[i,j].radius or dist ≤ maxEdgeLen then
 for t = 1 to |C[i,j]| do
 R1NN-C-tree-query(q, i-1, t, R)
 endfor

 endif
 endif

 end; {procedure R1NN-C-tree-query}

When the traversal reaches a cluster at the leaf level, all the data points in the

cluster will be checked to determine the correct R1NN results for q. Recall

that the RNN-C tree uses pruning techniques for metric space, therefore we

can only prune based on distance function alone and there must be no

assumption made on the coordinates or relative positions of a cluster to

another.

Figure 89. RNN-C tree query algorithm for k=1

174

7.4 RkNN Queries with RNN-C Tree

The logic for pruning intermediate clusters is similar to MBR of R-tree. After

much hard work, we were able to generalise our query algorithm for k > 1.

Although the query algorithms for the case of k = 1 and k > 1 are presented

separately, it is easy to combine both algorithms to provide RkNN query using

RNN-C for any k > 0.

To answer RkNN queries for k > 1, we propose a technique called the

sum of clusters. The key idea is to exploit the relationship between clusters

and make use of the cluster population to prune off a cluster. This is also the

key difference between RNN-C tree and TYM. TYM was not able to make use

of its node size for pruning; it merely uses the distance from a node to its

parent to save on computation cost. The following lemma describes the sum of

clusters technique, and Figure 90 provides a sketch of the proof.

Figure 90. A sketch for the proof for Lemma 7. Dotted straight lines represent the distance
between 2 cluster centroids plus a radius. C2

1 can be pruned if k ≥ σ2
2. Note that data points may

not be accurately represented within a cluster

q

p1

c2
1

p4
C2

1

r2
1

p2

c2
2

p3

C2
2

r2
2

p5

p7

c2
3

p6
C2

3

r2
3

d(c2
3
, c2

1)+r2
1 d(c2

1
, c2

2)+r2
2

d(q,c2
1)

d(c2
1
, c2

2)–r2
2

175

Lemma 7. Let q be a query point for a RkNN query (k > 1). Let Ci
z ∈ Ci be

any cluster with centroid ci
z, radius ri

z and population σi
 j at level i of a RNN-

C tree. Let S = {Ci
j
 ∈ Ci | d(ci

z, ci
j) – ri

j
 > ri

z
 and d(ci

z, ci
j) + ri

z
 + ri

j < d(q,

ci
z), j ≠ z} be a set of clusters which met the condition. If ∑ ∈SC

j

ij
i

σ ≥ k then

Ci
z
 can be pruned.

Proof. S is derived from clusters meeting two conditions. The first condition

d(ci
z, ci

j) – ri
j
 > ri

z (can be rewritten as d(ci
z, ci

j) > ri
z + ri

j) means that Ci
z

∩ Ci
j = ∅. The second condition d(ci

z, ci
j) + ri

z + ri
j < d(q, ci

z) means that

the furthest possible data point in Ci
j w.r.t. ci

z is closer to ci
z than ci

z is to q.

Note that since d(ci
z, ci

j) > ri
z + ri

j, so 2(ri
z + ri

j) < d(q, ci
z), and it follows

that d(q, ci
z) ± ri

z > 2ri
j. Thus, a cluster Cu ∈ S with corresponding population

σu means that there are at least σu points closer to any point p ∈ Ci
z than q,

because Ci
z ∩ Ci

j = ∅. Since all Cu ∈ S satisfy the two conditions, therefore

if ∑σu ≥ k, no points in Ci
z can be a RkNN of q. ■

Notice that the sum of clusters rule requires that we find all the clusters in the

“band” outside Ci
z but inside q, i.e. MBC(ci

z, d(ci
z, q)) – Ci

z. As a matter of

fact, the sum of clusters is a two-pronged approach. Besides looking for

clusters Cu ∈ S, at the same time the query algorithm determines whether Cu

can be pruned w.r.t. Ci
z
 (the current cluster under processing). This is called

the mirror pruning rule. The mirror pruning rule identifies in advance the

clusters that can be pruned, so that they are bypassed straight away in the main

processing loop. The mirror rule works on the conjecture that Cu in at least

half the search space could be pruned, if the sheer size of Ci
z satisfies |Ci

z| ≥ k.

176

In the example of Figure 90, both C2
2 and C2

3 are in the set S. Assuming σ2
1 ≥

k, the mirror pruning rule causes C2
3 to be marked as pruned, because d(c2

3,

c2
1)+r2

1
+r2

3 < d(c2
3, q) which means C2

1 (with population σ2
1) lies between C2

3

and q, so no points in C2
3
 can be RkNN(q). However, C2

2 is not marked as

pruned as it does not satisfy the distance condition.

RkNN-C-tree-query(q, i, k, R)
 // Input: query point q, current tree level i, the number of RkNN k
 // Output: R - the RkNN results of q
 begin

 forall C ∈ Ci do
 C.pruned � false
 endfor

 forall C ∈ Ci do
 if C.pruned = true then continue; // C was pruned by mirror rule

 S � ∅ // remember all clusters in C’ lying between C and q
 sum � 0 // sum of points closer to cluster C than q

 dist � d(q, C.centroid)

 forall C’ ∈ Ci do
 if C = C’ then continue; // skip same cluster

 dist2 � d(C.centroid, C’.centroid)
 if dist2 - C’.radius > C.radius and
 dist2 + C’.radius + C.radius < dist then
 // mirror pruning rule

 if C’.pruned = false and C.population ≥ k and
 dist2 + C.radius + C’.radius < d(q, C’.centroid) then

 C’.pruned � true
 endif

 // sum of clusters pruning rule

 S � S ∪ C’

Figure 91. Illustration of the band (shaded area) between C3
1 and q. Three clusters are

disqualified by the sum of clusters rule testing. Four clusters exist within this band and therefore
eligible for mirror pruning rule testing (eventually C3

5 failed but the rest passed)

q

c3
1 c3

6

c3
3

c3
4

c3
5

c3
2

c3
7

c3
8

177

 sum � sum + C’.population

 if sum ≥ k then
 C.pruned � true
 break; // C is pruned, sum need not be fully updated
 endif

 endif

 endfor

 if C.pruned = false then // sum fully updated if C is unpruned
 if i = 0 then

 if sum + C.population ≤ k then
 R � R ∪ C // all points in C are valid results
 else

 refineCluster(q, k, C, S, R)
 endif

 else
 RkNN-C-tree-query(q, i-1, k, R) // traverse the cluster
 endif

 endif
 endfor

end; {procedure RkNN-C-tree-query}

 refineCluster(q, k, C, S, R)
// Input: query point q, the number of RkNN k, current cluster C,
// set of clusters in band S
 // Output: R - the RkNN results of q
 begin
 forall p in C do

 count � 0 // count the number of points nearer to p than q

 dist � d(p, q)

 // process points within cluster C first
 forall p’ in C do
 if p = p’ then continue; // skip same point
 if d(p, p’) < dist then

 count � count + 1

 if count ≥ k then goto next p; // continue main loop
 endif

 endfor

 // process the clusters in band

 forall T ∈ S do
 if d(T.centroid, q) + T.radius < dist then

 count � count + T.population

 if count ≥ k then goto next p; // continue main loop
 else // look into individual points in T

 forall p’ ∈ T do
 if d(p, p’) < dist then

 count � count + 1

 if count ≥ k then goto next p; // continue main loop
 endif

 endfor
 endif

 endfor

 // p is a result since count < k

 R � R ∪ {p}
 endfor

end; {procedure refineCluster}

 Figure 92. RNN-C tree query algorithm for k>1

178

During query processing, the running population sum (i.e. ∑σu | Cu ∈ S) is

kept. As soon as we encountered k points, Ci
z is pruned and we proceed to the

next point immediately. Suppose at the end of the loop, less than k points are

encountered, it means that there are either no clusters within the band, or their

combined population sum cannot lead us to conclude that there are at least k

points closer to the cluster Ci
z than q. In this case, for intermediate levels, we

will traverse down the RNN-C tree recursively and process all the clusters

under Ci
z. At the leaf level, if ∑σu + σi

z ≤ k then all points in Ci
z qualifies as

the RkNN of q. Otherwise, we know that only a partial set of points in Ci
z

qualifies. To find out which, we had to refine the cluster Ci
z.

The refineCluster step is necessary because if Ci
z
 is not pruned, it

means that there are not enough points (∑σu < k, where σu is the

corresponding population of Cu ∈ S) found in between Ci
z and q. However,

the sum of clusters technique only applies on Ci
z’s surrounding clusters. When

this technique fails to prune Ci
z, we will have to consider the data points

within because now for the cluster Ci
z, min{|Cu|} < k < |Ci

z
|+∑σu is true. This

means that in the best case, a data point p ∈ Ci
z is in RkNN(q) because

min{|Cu|} < k for p with min{d(p, q)}. In the worst case, p is not in RkNN(q)

since |Ci
z
|+∑σu > k for p with max{d(p, q)}. The refineCluster procedure

filters off those p ∉ RkNN(q) by counting whether enough siblings p' of p

exist between p and q (that is, p' exist such that d(p, p') < d(p, q)). Next, we

proceed to the clusters in the band. Here we segregate those clusters Cu which

satisfy the condition d(Cu, q) + ru < d(p, q) and those that do not. For those

179

that satisfy, we could merely add σu to the count and save the computation cost

for each member of Cu.

7.5 Experiments and Results

The TPL and TYM algorithms were chosen for the exact approach category,

to pit against the RNN-C tree. The former uses the well-known half-plane

pruning technique and is extremely fast. The latter is the only approach to

solve the RkNN problem in metric space, to the best of our knowledge. As the

RNN-C tree is also designed for answering RkNN in metric space, TYM is the

only true state-of-the-art competitor for RNN-C tree at present.

The experiment settings are similar to those described in the

experiments for RNN-Grid algorithms, found in Section 6.3.1.

7.5.1 Effect of Pruning Rules

Firstly, we check the effect of the sum of clusters pruning rule and the mirror

pruning rule. Counters were used to capture the number of times the two rules

fired, and they are enabled only for the purpose of counting in this subsection.

We used two real-life datasets, MD and RI, from the TIGER/Line database,

with 4K disk page and 500 RkNN queries to obtain the average.

 Figure 93(a) shows the number of sum of clusters being activated to

prune away the current cluster under investigation. On the average, the figures

decrease slightly with k, but very slowly. The average number of sum of

clusters is directly related to the number of clusters available at any particular

level of the RNN-C tree. This rule is fired when the total sum of the

180

population for those clusters that satisfy the conditions of Lemma 7, is greater

than k. In actual implementation, the rule is fired as soon as the total sum

exceeds k, whereby the current cluster is pruned off and processing continues

with the next cluster. For any k, the total sum for the same dataset is constant,

so as k increases, the rule is fired less. Our empirical results suggest that it

takes a very large k to reduce the effect of this pruning rule.

Figure 93(b) shows the number of mirror pruning rules fired for the two

datasets. Here it is more evident that the number of times it fired decreases as

k increases. A pre-requisite for this pruning rule to fire is σ ≥ k, where C is the

current cluster under investigation and σ is C’s population (Figure 92).

Typically, |C| ≤ 4 at the leaf level. Hence, when k > 4, the incidence of this

rule firing is significantly reduced especially at higher levels of the tree. When

processing the RNN-C tree at higher levels (nearer to the root), the mirror

pruning rule is more useful. Note that the mirror pruning rule does not reduce

the #distcomp directly, as it still incurs one distcomp per cluster. However, it

helps prune off clusters earlier so that subsequent processing in the main loop

is able to skip the pruned clusters.

0

500

1000

1500

2000

2500

1 2 4 8 16 32

k

av
g

su

m
 o

f
cl

us
te

rs
 f

ir
ed

-

MD

RI

0

500

1000

1500

2000

2500

1 2 4 8 16 32

k

av
g

m

ir
ro

r
ru

le
 f

ir
ed

 -

MD

RI

(a) (b)

Figure 93. The average number of (a) sum of clusters rule and (b) mirror pruning rule
fired in MD and RI datasets

181

h
Avg # of sum

of clusters
Avg # of mirror

pruning rule
0 609.8 230.0
1 406.0 277.5
2 133.8 103.2
3 56.0 48.8
4 25.0 18.0

Table 30 depicts the average number of incidence of both pruning rules at

different levels of the RNN-C tree for the MD dataset. Note that h = 0 is the

leaf (data) level, and h = 4 is the root. At high levels, the number of clusters is

small and σ is large. Assuming |C| = 4, the probability of sum of clusters firing

is 0.348% and mirror pruning is 0.252%. At the leaf level, however, the

probability increased to 8.48% and 3.2% respectively.

7.5.2 Performance Comparisons

The RNN-C tree is compared against the TPL and TYM algorithms, both

exact RkNN algorithms. We used the real-life MD dataset from the

TIGER/Line database, with 4K disk page and 500 RkNN queries to obtain the

average.

In Figure 94, the #distcomp is compared. TPL has the lowest

#distcomp among the three algorithms. In fact, at k = 1, it is approximately

two orders of magnitude smaller than RNN-C tree and TYM. However, the

growth of TPL is huge. When k = 32, it incurs 56477.91 distcomp, which is

33.84 times the distcomp when k = 1. Even so, it is just half of the #distcomp

of RNN-C tree. The lower #distcomp of the TPL algorithm is explained by the

use of geometrical properties (bisector pruning) in the Euclidean metric space

to filter candidates. Bisector pruning reduces the #distcomp between

Table 30. The average number of pruning rules fired at different levels
of the RNN-C tree for MD dataset across 1 ≤ k ≤ 32

182

subsequent data points by a very large factor. RNN-C tree and TYM, both

being generic metric space algorithm, do not benefit from any properties that

only work in one distance metric.

The RNN-C tree generally sees a growth in the #distcomp as well, but

relatively constant for k ≤ 32. The TYM, on the other hand, grows streadily,

and it is almost 4 times larger than RNN-C tree when k is large.

0

100

200

300

400

1 2 4 8 16 32

x1000

k

a
v
g
 #

 d
is

t
c
o
m

p

-

RNN-C tree

TPL

TYM

In Figure 95, the average number of disk access indicates that the TPL

algorithm’s disk access grows as k increases. This is because the TPL

algorithm is based on the R-tree index, so the larger the k, the more objects

will have to be accessed for use in refining the candidate set. Our results show

that the R-tree does not support RNN type of queries efficiently, as even the

average number of I/Os needed to answer R1NN is almost 1.8 times that of

RNN-C tree. The R-tree was originally designed for answering NN queries.

Owing to the nature of RNN, where an answer can be very far away from a

query point q, the MBR of an R-tree is not a good choice (since it minimises

the solution space which is of course good for NN queries). The RNN-C tree

and the TYM algorithm require almost the same number of disk accesses,

which is expected because both structures store data points in at most one

Figure 94. Comparison of number of distance computations in TIGER/Line MD dataset
of RNN-C tree, TPL and TYM

183

branch of the tree and both use similar pruning techniques involving the radius

of a cluster (for RNN-C tree) or node (TYM).

0

500

1000

1500

2000

2500

1 2 4 8 16 32

k

a
v
g

 #
 I
/O

RNN-C tree

TPL

TYM

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32

k

a
v
g
 q

u
e
ry

 t
im

e
 (

s
)

-

RNN-C tree

TPL

TYM

Finally, the overall cost of a query is tied to the number of disk accesses and

#distcomp. For TPL, its query time increases as k increases but it is still faster

than both RNN-C tree and TYM. Although TPL is shown to have a higher

disk access cost than the other two, it actually incurs far fewer #distcomp due

to its bisector pruning of candidates. Adding to the fact that the gap between

I/O cost and CPU cost is closing, TPL stands to benefit since it is disk access

intensive. Overall, TPL is still the fastest of the three algorithms. The major

disadvantage for TPL is that it only works for RNN queries in Euclidean

Figure 95. Comparison of # I/Os in TIGER/Line MD dataset of RNN-C tree, TPL and TYM

Figure 96. Comparison of query cost (s) in TIGER/Line MD dataset of RNN-C tree,
TPL and TYM

184

metric. When k >> 32, one can see the benefits of a generic metric distance

algorithm. The average query time will be lower than TPL.

For TYM and RNN-C tree, both incurs high “startup” cost whereby

any RNN query will be sure to incur. Beyond the initial startup cost, the

growth in query time is actually very small and negligible. This high cost is

attributed to the minimum #distcomp and disk accesses needed in order to

traverse down the RNN-C tree structure to look for the correct results, as data

points are stored at the leaf level. The M-tree in which TYM is based on, also

stores data points at leaf level, thereby exhibiting the same high startup cost.

The maximum values for the performance comparisons for all 3

metrics are shown in Table 31. The trends are similar to the average cases. The

number of max disk accesses is very similar for both RNN-C tree and TYM,

but the max query time for RNN-C tree is about half of TYM’s. For k ≤ 8, the

maximum #distcomp and disk accesses for RNN-C tree and TYM are

comparable, but RNN-C is 2.02 times faster.

max #distcomp max #I/Os max query time (s)
k RNN-C

tree TPL TYM RNN-C
tree TPL TYM RNN-C

tree TPL TYM

1 94721.8 2338.4 101216 543 941 554 0.75 0.00260 1.14
2 95109.3 3015.2 101356 572 1010 610 0.78 0.01236 1.54
4 102511.2 5536.1 104513 622 1142 622 0.78 0.01493 1.56
8 106326.9 9472.9 115848 663 1309 689 0.79 0.02102 1.61
16 110808.6 21217.3 163492 753 1607 775 0.79 0.04768 1.69
32 112400.3 58242.8 361101 854 2125 860 0.83 0.09225 1.79

7.6 Summary

In this chapter, the RNN problem, a relatively new kind of query, was

explored. We proposed a novel data structure to solve the exact RNN problem

Table 31. Performance comparison (max values) of RNN-C tree, TPL and TYM
for the TIGER/Line MD dataset

185

for any k, giving full accurate results. The RNN-C tree is a unique tree based

on the kNN graph, where the dataset is pre-processed and connected as a forest

of very small subgraphs with the 1NN relation. We showed that the RNN-C

tree can be used to answer RkNN queries efficiently.

The RNN-C tree is compared to other algorithms in the same class

(exact results), such as TPL and TYM. RNN-C tree and TYM are the only two

algorithms designed to work in metric space, as long as a distance function is

defined between two objects. RNN-C tree is shown to be faster and more

efficient than the TYM, because it prunes effectively based on both inter-

cluster distances as well as cluster population.

We strongly believe that RNN-C tree has potential in RNN queries and

it has wide applications because of its minimal requirements (only a distance

function). In the coming chapter, we propose several further problems for

RNN-C tree.

186

Chapter 8 Conclusion and Future Work

8.1 Conclusion

In conclusion, this research has addressed two major issues in MPRQ. Firstly,

we researched into various techniques used to solve MPRQ. As a result, we

discovered three approaches that can be used, presented their algorithms and

analysed each of them in detail. Intelligent pruning rules form the key for the

good query time that MPRQ enjoys. Extensive experiments were carried out to

understand the MPRQ in a wide variety of problem parameters and MPRQ

performs well in all of them against the conventional technique RRQ and

state-of-the-art spatial join algorithms used in many proximity queries today.

Secondly, we adapted the best results from our study into an application of a

vastly different domain of computer science: bioinformatics.

 MPRQ can be solved with the MPRQ-MinMax, MPRQ-Sorted Path or

MPRQ-Rectangle Intersection approach. The most straightforward method is

MPRQ-MinMax which is easy to implement and deploy in any applications

that do proximity queries. We showed that MPRQ does even better as search

distance and the number of query points increase, and the overall total query

time grows very slowly. We investigated the effect of applying different

combinations of pruning rules, and found out the reasons behind MPRQ’s

good performance and the effect of pruning rules have on MPRQ.

It is also shown that MPRQ can be used with other structures such as

SOM to perform sequence similarity search to identify peptides in the

bioinformatics domain. The results we obtained are very encouraging – our

187

PepSOM algorithm (which contains MPRQ) is as fast as the best de novo-

database hybrid approach at present, and PepSOM database filtration rate is

high without sacrificing peptide similarity accuracies.

For the RNN problem, we proposed two different approaches which

are highly effective. For an everyday application that does not require accurate

results (approximate RNNs will do) but does require fast response time, we

proposed the RNN-Grid that is very efficient and has very high recall. We

have shown that the RNN-Grid is fast even for solving RNN of high-

dimensional datasets. We proposed three algorithms for the RNN-Grid and

conducted an in-depth study of their performances, as well as when compared

to other estimated RNN algorithms.

Applications that require exact answers for a RNN query will benefit

from our proposed novel data structure, called the RNN-C tree, which is able

to answer RkNN queries in any metric space. The RNN-C tree is useful in

many applications such as decision making, outlier detection, data mining,

data retrieval, etc. As long as there is a defined distance function between any

two objects in a dataset, and it satisfies the triangle inequality principle, the

RNN-C tree can be used to solve RkNN queries given any query object. To the

best of our knowledge, the RNN-C tree is one of only two RNN algorithms

that work with data points in metric space, the other being the TYM algorithm.

And RNN-C is shown to outperform TYM.

8.2 Future Work for MPRQ

This thesis leaves a number of topics unexplored and the issues highlighted

here can be further pursued in future as possible extensions or new research

188

directions. They are broadly classified as (i) considering velocity and

trajectory in the input, and (ii) finding kNN for MPRQ.

8.2.1 Velocity and Trajectory

One area of further work could be to extend the model of MPRQ to include

the ability to process temporal information in addition to spatial information.

It was explained in our research scope that the time domain will not be

considered in this research because results can be easily processed with time

information when the spatial query is done. Our experiments also showed that

including time specific pruning into our MPRQ algorithms does not make

much sense as the number of pruned spatial points is not significant since the

MPRQ results contain points that are relatively static. However, this is not true

if the spatial points move.

Moving spatial points (where each point has assigned velocity and

direction) in a spatial index might make more sense to pursue research in this

direction. For example, in addition to the relatively static spatial index of

events, there exists another index for moving points (say, vehicles), then work

can be done to answer MPRQ w.r.t. both indexes. This area of research is new

and there are many work done [ŠJLL00, AgAE00, TPZL05] on a single

moving query point but not a single moving query point in pre-planned path.

8.2.2 k-Nearest Neighbour MPRQ

Can the MPRQ be used to answer kNN queries? In this research, we stated

that the main objective is to find all the events that are close to a given

planned route in the fastest time. It might be possible to apply ranking to all

189

the points within the result set such that, when given a value k, we are able to

find the top k-nearest points closest to the path. Or perhaps, a further extension

would be to find the top k-nearest points closest to each and every query point.

The ability to answer kNN queries using the multi-point range query is

useful in many ways. Suppose the MPRQ represents a particular line of

telephone poles running through a residential area, the events being the nearby

houses whose telephones are connected to it. It is very common task to

identify the top k houses that lie closest to the poles because telephone lines

run through them before reaching their neighbours next door. This can help

facilitate the maintenance and troubleshooting of faulty or noisy lines.

8.3 Future Work for RNN-C Tree

It is believed that the RNN-C holds immense potential to solve other variants

of the RNN problem. Possible future new research directions in this area can

be broadly classified as follows: (i) extension for processing multiple RkNN

queries simultaneously in one tree traversal, (ii) designing the RNN-C tree to

be a dynamic structure, (iii) using RNN-C tree to solve the bichromatic

version of the RNN problem, and (iv) continuous tracking of a moving query

point.

8.3.1 Multi-point RkNN Problem

In the spirit of MPRQ, a possible future extension to the RNN problem is to

design algorithms to answer RkNN for multiple query points simultaneously.

This is a more challenging problem than a single query point. Since the

notion of RkNN(q) represents the influence of q as within the top k NN of

190

some data point p ∈ RkNN(q), the motivation for the RNN problem has

always been the belief that any changes in q will affect p. So it isn’t hard to

imagine that given Q as a set of query points and k, find RkNN(Q) efficiently.

It can also be argued, like the RRQ, that we execute the RkNN(q) query

separately ∀q ∈ Q and join the outcome results. However, optimisations in the

query might be possible in the RNN-C tree if we know in advance that there is

more than one query point.

Possible uses include diverse applications in decision support systems,

continuous referral systems and maintaining document repositories. For

example, in a document repository, the NN relationship is based on

similarities between two technical documents already filed. When a batch of

new technical documents in the same category are filed, the repository can

execute a RkNN(Q) to retrieve the authors of all similar documents and let

them know of the possibly interesting new entries.

8.3.2 Dynamic RNN-C Tree Structure

In this research work, we focused on solving the RNN problem with the

assumption that the underlying dataset is static. It will be highly convincing to

claim that a dataset of spatial nature will require far fewer updates than when

the dataset is of another domain, say data mining or information retrieval. At

this point, the construction algorithm for the RNN-C tree, described in Section

7.2, does not delve into methods for inserting a new data point or for deleting

existing data points in an already constructed RNN-C tree. In order to do so, as

the structure of the RNN-C tree is dependent on the 1NN graph derived from

191

the coordinates of the data points (instead of the order in which they are

encountered), efficient techniques similar to [SPKS03] can be discovered.

An initial strategy to answer the RNN query when it was first proposed

involved constructing a duplicate R-tree (the original is used for NN queries)

called RNN-tree [KoMu00] where the leaf nodes store vicinity circles (VC)

instead of the point (the RNN-tree and VCs were mentioned in Section 5.3).

This is obviously not efficient because two R-trees have to be maintained.

Hence, future work to make the RNN-C tree structure dynamic must be

directly effected on the data structure itself. We also believe that lazy deletion

of data points is possible with the RNN-C tree, especially when the MBC on

intermediate nodes of the RNN-C tree is not affected. These two issues make a

good direction to explore.

8.3.3 Bichromatic RNN and Beyond

Can the RNN-C tree be adapted to solve the bichromatic RNN problem?

Given a set TDB of sites, a set SDB of points, and a query site q, B-RNN(q) =

{p ∈ SDB | ∀s ∈ TDB, d(q, p) ≤ d(p, s)}. Currently the RNN-C tree is

constructed from a 1NN graph of single-coloured points. There are at least two

possible techniques to extend the RNN-C tree for B-RNN: (i) via the kNN

graph, and (ii) by constructing one RNN-C tree each for SDB and TDB. In the

first method, all points and sites are set on the plane and we “capture and

label” the colour of the points before building a RNN-C tree. Extra

information about the minimum distance between a point and a site might

have to be stored in the MBC on intermediate levels of the tree. For the second

192

method, two RNN-C trees may be constructed and the traversal proceeds in

tandem for both trees, for pruning conditions checking.

 A more daring proposition is to solve the k-chromatic RNN challenge,

for any general k number of sites. To the best of our knowledge, there is no

research work that addresses trichromatic RNN and beyond.

8.3.4 Moving Query Point

Tracking of a continuously moving query point q to answer RNN queries has

received some attention recently [XiZh06, BJKS07, KMSX07, WYCT08]. For

the continuous-RNN problem, given a set SDB of points, some time interval Tj

and moving query point q, the goal is to keep track of RNNj(q) where RNNj(q)

= {p ∈ SDB | ∀o ∈ SDB, d(q, p) ≤ d(p, o)} at time interval Tj. The assumption

is that all p ∈ SDB are continuously moving in non-predictable fashion, in

addition to the moving query point q. A variant of the continuous-RNN is

where the input is a set of query points Q.

Continuous-RNN queries are useful for location-aware applications

such as mixed-reality games and vehicle traffic monitoring systems where

positions of objects and query points are frequently updated. For example, in a

battlefield, all soldiers may be issued a GPS device each that not only can

pinpoint their location, but also perform a continuous-RNN query for a

particular soldier to monitor other nearby comrades who might be wounded

and require help.

Let us focus on the case for a single moving query point. For

continuous-RNN queries, the RNN-C tree must be sensitive to monitoring

regions. These regions are defined around the query point, so that when the

193

underlying dataset points change outside of them, it guarantees that the query

results will not be affected (that is, updated correctly).

194

Bibliography

[AFST07] Apaydin T., Ferhatosmanoglu H., Singh A. & Tosun A.S.,
2007, “A Unified Method for Multi-dimensional NN, RNN,
and Matching Queries”, Technical Report OSU-CISRC-8/07-

TR58, Ohio State University.

[AgAE00] Agarwal P.K., Arge L. & Erickson J., 2000, “Indexing Moving
Points”, Proceedings of the 19th ACM Symposium on

Principles of Database Systems (PODS 2000), pp.175-186.

[AHVV99] Arge L., Hinrichs K.H., Vahrenhold J. & Vitter J.S., 1999,
“Efficient Bulk Operations on Dynamic R-Trees”, Proceedings
of the 1st Workshop on Algorithms Engineering &

Experimentation (ALENEX 99), LNCS 1619: 328-348.

[AnSa96] Ang C.H. & Samet H., 1996, “Approximate Average Storage
Utilization of Bucket Methods with Arbitrary Fanout”, Nordic

Journal of Computing, 3(3): 280-291.

[AnTa97] Ang C.H. & Tan T.C., 1997, “New Linear Node Splitting
Algorithm for R-Trees”, Proceedings of the 5th International
Symposium on Advances in Spatial Databases (SSD 97), LNCS
1262: 339-349.

[APRS98] Arge L., Procopiuc O., Ramaswamy S., Suel T. & Vitter J.S.,
1998, “Scalable Sweeping-Based Spatial Join”, Proceedings of
the 24th International Conference on Very Large Databases

(VLDB 98), pp. 570-581.

[ASKK06] Abe T., Sugawara H., Kanaya S., Kinouchi M. & Ikemura T.,
2006, “Self-Organizing Map (SOM) Unveils and Visualizes
Hidden Sequence Characteristics of a Wide Range of
Eukaryote Genomes”, Gene, 365: 27-34.

[BaMc72] Bayer R. & McCreight E.M., 1972, “Organization and
Maintenance of Large Ordered Indexes”, Acta Informatica, 1:
173-189.

[BeGe01] Bertone P. & Gerstein M., 2001, “Integrative Data Mining: The
New Direction in Bioinformatics”, IEEE Engineering in

Medicine and Biology Magazine, 20(4): 33-40.

195

[BJKS07] Benetis R., Jensen C.S., Karĉiauskas G. & Ŝaltenis S., 2007,
“Nearest and Reverse Nearest Neighbor Queries for Moving
Objects”, The International Journal on Very Large Data Bases,
15(3): 229-249.

[BKSS90] Beckmann N., Kriegel H.P., Schneider R. & Seeger B., 1990,
“The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles”, Proceedings of the 1990 ACM

SIGMOD International Conference on Management of Data,
19(2): 322-331.

[BrKS93] Brinkhoff T., Kriegel H.P. & Seeger B., 1993, “Efficient
Processing of Spatial Joins using R-Trees”, Proceedings of the
1993 ACM SIGMOD International Conference on Management

of Data, pp. 237-246.

[CaWe07] Cannon W. R. & Webb-Robertson B., 2007, “Computational
Proteomics: High-Throughput Analysis for Systems Biology”,
Pacific Symposium on Biocomputing, 12: 403-408.

[Chan01] Chan E.P.F., 2001, “Evaluation of Buffer Queries in Spatial
Databases”, Proceedings of the 7th International Symposium on

Advances in Spatial and Temporal Databases (SSTD 2001),
LNCS 2121: 197-216.

[CiPZ97] Ciaccia P., Patella M. & Zezula P., 1997, “M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces”,
Proceedings of the 23rd International Conference on Very

Large Databases (VLDB 97), pp. 426-435.

[CMAB98] Crauser A., Mehlhorn K., Althaus E., Brengel K., Buchheit T.,
Keller J., Krone H., Lambert O., Schulte R., Thiel S., Westphal
M. & Wirth R., 1998, “On the performance of LEDA-SM”,
Technical Report, Max-Planck Institut für Informatik,
Germany.

[CNLP06] Chong K.F., Ning K., Leong H.W. & Pevzner P., 2006,
“Characterization of Multi-Charge Mass Spectra for Peptide
Sequencing”, Proceedings of the 4th Asia-Pacific Bioinforma-

tics Conference (APBC 2006), pp. 109-119.

[Corr02] Corral, A., 2002, “Algorithms for Processing of Spatial Queries
using R-trees. The Closest Pairs Query and its Application on
Spatial Databases”, Ph.D. Thesis, Department of Languages
and Computation, University of Almeria, Spain.

196

[CrMe99] Crauser A. & Mehlhorn K., 1999, “LEDA-SM: A Platform for
Secondary Memory Computation”, Proceedings of the 3rd
International Workshop on Algorithm Engineering (WAE 99),
LNCS 1668: 228-242.

[DACV99] Dancik V., Addona T., Clauser K.R., Vath J.E. & Pevzner P.A.,
1999, “De novo Protein Sequencing via Tandem Mass-
Spectrometry”, Journal of Computational Biology, 6(3-4): 327-
342.

[DDKN06] Desiere F., Deutsch E.W., King N.L., Nesvizhskii A.I., Mallick
P., Eng J., Chen S., Eddes J., Loevenich S.N. & Aebersold R.,
2006, “The PeptideAtlas Project”, Nucleic Acids Research, 34:
D655-D658.

[DeKS05] Dementiev R., Kettner L. & Sanders P., 2005, “Stxxl: Standard
Template Library for XXL Data Sets”, Proceedings of the 13th
Annual European Symposium on Algorithms (ESA 2005),
LNCS 3669: 640-651.

[DoC98] “Global Positioning System Market Projections and Trends in
the Newest Global Information Utility”, International Trade
Administration, Office of Telecommunications, U.S.
Department of Commerce, September 1998.

[DoC01] “Trends in Space Commerce”, Office of Space
Commercialization, U.S. Department of Commerce, June 2001.

[Doli01] Dolin R., 2001, “TIGER Files and Their Applications”,
Department of Urban & Regional Planning, University of
Illinois at Urbana-Champaign,
http://www.urban.uiuc.edu/Courses/up330/old_essays/2001_Do
lin_w04.pdf

[EnMY94] Eng J.K., McCormack A.L. & Yates J.R., 1994, “An Approach
to Correlate Tandem Mass Spectral Data of Peptides with
Amino Acid Sequences in a Protein Database”, Journal of the
American Society for Mass Spectrometry, 5(11): 976-989.

[EpPY97] Eppstein D., Paterson M.S. & Yao F.F., 1997, “On Nearest-
Neighbor Graphs”, LNCS 623: 416-426.

[FiBe74] Finkel R.A. & Bentley J.L., 1974, “Quad Trees: A Data
Structure for Retrieval on Composite Keys”, Acta Informatica,
4: 1-9.

197

[FLLL99] Foo H.M, Lao Y.Z., Leong H.W. & Lau H.C., 1999, “A Multi-
Criteria, Multi-Modal Passenger Router Advisory System”,
Proceedings of the IES-CTR International Symposium on

Advanced Technologies in Transportation.

[FrPe05] Frank A. & Pevzner P., 2005, “PepNovo: De Novo Peptide
Sequencing via Probabilistic Network Modeling”, Analytical
Chemistry, 77(4): 964 -973.

[FTBP05] Frank A., Tanner S., Bafna V. & Pevzner P., 2005, “Peptide
Sequence Tags for Fast Database Search in Mass
Spectrometry”, Journal of Proteome Research, 4(4): 1287-
1295.

[Fuku90] Fukunaga K., 1990, “Introduction to Statistical Pattern
Recognition”, 2nd ed., Academic Press, October 1990.

[GaGü98] Gaede V. & Günther O., 1998, “Multidimensional Access
Methods”, ACM Computing Surverys, 30(2): 170-231.

[GaLL98] García Y.J, López M.A. & Leutenegger S.T., 1998, “A Greedy
Algorithm for Bulk Loading R-Trees”, Proceedings of the 6th
ACM International Symposium on Advances in Geographic

Information Systems (ACM-GIS 98), pp. 163-164.

[GBDJ94] Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R. &
Sunderam V.S., 1994, “PVM: Parallel Virtual Machine”, MIT
Press, November 1994.

[Gold99] Goldwasser M., 1999, “The Sixth DIMACS Implementation
Challenge”, Center for Discrete Mathematics & Theoretical
Computer Science, Rutgers The State University of New
Jersey,
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html

[GrLS94] Gropp W., Lusk E. & Skjellum A., 1994, “Using MPI: Portable
Parallel Programming with the Message-Passing Interface”,
MIT Press, Cambridge, October 1994.

[GSR01] “GIS Software and Resources”, GeoPlan Center, University of
Florida, http://www.geoplan.ufl.edu/software.html

[GüSh87] Güting R.H. & Schilling, W., 1987, “A Practical Divide-and-
Conquer Algorithm for the Rectangle Intersection Problem”,
Information Sciences, 42(2): 95-112.

198

[Gutt84] Guttman A., 1984, “R-Trees: A Dynamic Index Structure for
Spatial Searching”, Proceedings of the 1984 ACM SIGMOD

International Conference on Management of Data, 14(2): 47-
57.

[Hilb91] Hilbert D., 1891, “Ueber stetige Abbildung einer Linie auf ein
Flächenstück”, Mathematische Annalen, 38: 459-460.

[HjSa98] Hjaltason G.R. & Samet H., 1993, “Incremental Distance Join
Algorithms for Spatial Databases”, Proceedings of the 1998
ACM SIGMOD International Conference on Management of

Data, 27(2): 237-248.

[HKCL03] Hwang S., Kwon K, Cha S.K. & Lee B.S., 2003, “Performance
Evaluation of Main-Memory R-tree Variants”, LNCS 2750: 10-
27.

[Ho00] Ho N.L., 2000, “Proximity Search for Route Advisory
Systems”, Honours Year Project Report, Dept. of Computer
Science, School of Computing, National University of
Singapore.

[JOTY05] Jagadish H.V., Ooi B.C., Tan K.L., Yu C. & Zhang R., 2005,
“iDistance: An Adaptive B+-tree Based Indexing Method for
Nearest Neighbor Search”, ACM Transactions on Database

Systems, 30(2): 364-397.

[KaFa93] Kamel I. & Faloutsos C., 1993, “On Packing R-trees”,
Proceedings of the 2nd International Conference on

Information and Knowledge Management (CIKM 93), pp. 490-
499.

[KaFa94] Kamel I. & Faloutsos C., 1994, “Hilbert R-tree: An Improved
R-tree Using Fractals”, Proceedings of the 20th International
Conference on Very Large Databases (VLDB 94), pp. 500-509.

[KaKK98] Kaski S., Kangas J. & Kohonen T., 1998, “Bibliography of
Self-Organizing Map (SOM) Papers: 1981-1997”, Neural

Computing Surveys, 1: 102-350.

[KaSa01] Katayama N. & Satoh S., 2001, “Distinctiveness-Sensitive
Nearest-Neighbor Search for Efficient Similarity Retrieval of
Multimedia Information”, Proceedings of the 17th

International Conference on Data Engineering (ICDE 2001),
pp. 493-502.

199

[KHKL96] Kohonen T., Hynninen J., Kangas J. & Laaksonen J., 1996,
“SOM_PAK: The Self-Organizing Map Program Package”,
Technical Report A31, Laboratory of Computer and
Information Science, Helsinki University of Technology.

[KMNP99] Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.,
Silverman R. & Wu A., 1999, “Computing Nearest Neighbors
for Moving Points and Applications to Clustering”,
Proceedings of 10th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 99), pp. 931-932.

[KMSX07] Kang J.M., Mokbel M.F., Shekhar S., Xia T. & Zhang D.,
2007, “Continuous Evaluation of Monochromatic and
Bichromatic Reverse Nearest Neighbors”, Proceedings of the
23rd International Conference on Data Engineering (ICDE

2007), pp. 806-815.

[Knot71] Knott G.D., 1971, “Expandable Open Addressing Hash Table
Storage and Retrieval”, Proceedings of the 1971 ACM-

SIGFIDET Workshop on Data Description, Access and

Control, pp. 186-206.

[Knut98] Knuth D.E., 1998, “The Art of Computer Programming”, 2nd
ed., Addison-Wesley, Redwood City, California, April 1998.

[Koho01] Kohonen T., 2001, “Self-Organizing Maps”, Springer Series in
Information Sciences, Vol. 30, 3rd ed., Springer-Verlag, Berlin,
January 2001.

[KoMu00] Korn F. & Muthukrishnan S., 2000, “Influence Sets Based on
Reverse Nearest Neighbor Queries”, Proceedings of the 2000
ACM SIGMOD Iinternational Conference on Management of

Data, pp. 201-212.

[KPNS02] Keller A., Purvine S., Nesvizhskii A.I., Stolyar S., Goodlett
D.R. & Kolker E., 2002, “Experimental Protein Mixture for
Validating Tandem Mass Spectral Analysis”, Omics, 6(2): 207-
212.

[KrHS91] Kriegel H.P., Horn H. & Schiwietz M., 1991, “The
Performance of Object Decomposition Techniques for Spatial
Query Processing”, Proceedings of the Second International
Symposium on Advances in Spatial Databases (SSD 91), LNCS
525: 257-276.

[KrSB93] Kriegel H.P., Schneider R. & Brinkhoff T., 1993, “Potentials
for Improving Query Processing in Spatial Database Systems”,
Neuvièmes Journées Bases de Données Avancées, pp. 11-35.

200

[Lao99] Lao Y.Z., 1999, “Multi-Modal Route Planning in Public Land
Transportation”, Honours Year Project Report, Dept. of
Computer Science, School of Computing, National University
of Singapore.

[LaTh92] Laurini R. & Thompson D., 1992, “Fundamentals of Spatial
Information Systems”, APIC Series in Data Processing, Vol.
37, Academic Press, London, March 1992.

[LeEL97] Leutenegger S., Edgington J. & Lopez M., 1997, “STR: A
Simple and Efficient Algorithm for R-Tree Packing”,
Proceedings of the 13th International Conference on Data

Engineering (ICDE 97), pp. 497-506.

[LeLo00] Leutenegger S. & Lopez M.A., 2000, “The Effect of Buffering
on the Performance of R-Trees”, IEEE Transactions on

Knowledge and Data Engineering, 12(1): pp 33-44.

[LiNY03] Lin K., Nolen M. & Yang C., 2003, “Applying Bulk Insertion
Techniques for Dynamic Reverse Nearest Neighbor Problems”,
Proceedings of the 7th International Database Engineering &

Applications Symposium (IDEAS 2003), pp. 290-297.

[LuOo93] Lu H.J. & Ooi B.C., 1993, “Spatial Indexing: Past and Future”,
IEEE Data Engineering Bulletin, 16(3): 16-21.

[MaDo94] Martin J.L. & Dongarra J., 1994, “MPI: A Message-Passing
Interface Standard”, International Journal of Supercomputer

Applications and High Performance Engineering, 8(3-4): 165-
416.

[MaHN84] Matsuyama T., Hao L.V. & Nagao M., 1984, “A File
Organisation for Geographic Information Systems Based on
Spatial Proximity”, Computer Vision, Graphics and Image

Processing, 26(3): 303-318.

[MaMo01] Maneewongvatana S. & Mount D.M., 2001, “An Empirical
Study of a New Approach to Nearest Neighbor Searching”,
Proceedings of the 3rd International Workshop on Algorithm

Engineering and Experimentation (ALENEX 2001), LNCS
2153: 172-187.

[MaPa03] Mamoulis N. & Papadias D., 2003, “Slot Index Spatial Join”,
IEEE Transactions on Knowledge and Data Engineering,
15(1): 211-231.

201

[MaVZ02] Maheshwari A., Vahrenhold J. & Zeh N., 2002, “On Reverse
Nearest Neighbor Queries (Extended Abstract)”, Proceedings
of the 14th Canadian Conference on Computational Geometry

(CCCG 2002).

[MeNä95] Mehlhorn K. & Näher S., 1995, “LEDA: A Platform for
Combinatorial and Geometric Computing”, Communications of

the ACM, 38(1): 96-102.

[MMSG04] Mahony S., McInerney J.O., Smith T.J. & Golden A., 2004,
“Gene Prediction using the Self-Organizing Map: Automatic
Generation of Multiple Gene Models”, BMC Bioinformatics,
5(23).

[MTI09] “Singapore Resident Population 1990-2009” and “Land
Transport”, 2009, Department of Statistics, Ministry of Trade
and Industry, Singapore,
http://www.singstat.gov.sg/keystats/people.html

[MZHL03] Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby
A. & Lajoie G., 2003, “PEAKS: Powerful Software for Peptide
De Novo Sequencing by MS/MS”, Rapid Communications in

Mass Spectrometry, 17(20): 2337-2342.

[NgLe04] Ng H.K. & Leong H.W., 2004, “Path-Based Range Query
Processing Using Sorted Path and Rectangle Intersection
Approach”, Proceedings of the 9th International Conference on

Database Systems for Advanced Applications (DASFAA 2004),
LNCS 2973: 184-189.

[NgLe07] Ng H.K. & Leong H.W., 2007, “Multi Point Queries in Large
Spatial Databases”, Proceedings of the 3rd IASTED

International Conference on Advances in Computer Science

and Technology (ACST 2007), pp. 408-413.

[NgLH04] Ng H.K., Leong H.W. & Ho N.L., 2004, “Efficient Algorithm
for Path-Based Range Query in Spatial Databases”,
Proceedings of the 8th International Database Engineering &

Applications Symposium (IDEAS 2004), pp. 334-343.

[NgNL07] Ng H.K., Ning K. & Leong H.W., 2007, “A New Approach for
Similarity Queries of Biological Sequences in Databases”,
Proceedings of the 11th Pacific-Asia Knowledge Discovery and

Data Mining conference (PAKDD 2007), pp. 728-736.

[NiHS84] Nievergelt J., Hinterberger H. & Sevcik K.C., 1984, “The grid
file: An adaptable, symmetric multikey file structure”, ACM

Transactions on Database Systems, 9(1): 38-71.

202

[NiNL06] Ning K., Ng H.K. & Leong H.W., 2006, “PepSOM: An
Algorithm for Peptide Identification by Tandem Mass
Spectrometry Based on SOM”, Genome Informatics, 17(2):
194-205.

[NiWi97] Nievergelt J. & Widmayer P., 1997, “Spatial Data Structure:
Concepts and Design Choices”, Proceedings of Algorithmic

Foundations of Geographic Information Systems, LNCS 1340:
153-197.

[OjKK03] Oja M., Kaski S. & Kohonen T., 2003, “Bibliography of Self-
Organizing Map (SOM) Papers: 1998-2001 Addendum”,
Neural Computing Surveys, 3: 1-156.

[Oren82] Orenstein J.A., 1982, “Multidimensional Tries Used For
Associative Searching”, Information Processing Letters, 14(4):
150-157.

[PaMa96] Papadopoulos A. & Manolopoulos Y., 1996, “Parallel
Processing of Nearest Neighbor Queries in Declustered Spatial
Data”, Proceedings of the 4th ACM International Workshop on

Advances in Geographic Information Systems (ACM-GIS 96),
pp. 35-43.

[PaMa98] Papadopoulos A. & Manolopoulos Y., 1998, “Multiple Range
Query Optimization in Spatial Databases”, Proceedings of the
2nd East European Symposium on Advances in Databases and

Information Systems (ADBIS 98), LNCS 1475: 71-82.

[PCWL04] Prince J.T., Carlson M.W., Wang R., Lu P. & Marcotte E.M.,
2004, “The Need for a Public Proteomics Repository”, Nature

Biotechnology, 22(4): 471-472.

[PeDT00] Pevzner P.A., Dancik V. & Tang C.L., 2000, “Mutation-
Tolerant Protein Identification by Mass Spectrometry”, Journal
of Computational Biology, 7(6): 777-787.

[PPCC99] Perkins, D.N., Pappin, D.J.C., Creasy, D.M., & Cottrell, J.S.,
1999, “Probability-based Protein Identification by Searching
Sequence Databases using Mass Spectrometry Data”,
Electrophoresis, 20(18): 3551-3567.

[PrSh85] Preparata F.P. & Shamos M.I., 1985, “Computational
Geometry: An Introduction”, pp. 351-355, Springer-Verlag,
New York, August 1985.

203

[PSTM04] Papadias D., Shen Q., Tao Y. & Mouratidis K., 2004, “Group
Nearest Neighbor Queries”, Proceedings of the 20th

International Conference on Data Engineering (ICDE 2004),
pp. 301-312.

[RMNP06] Ramakrishnan S.R., Mao R., Nakorchevskiy A.A., Prince J.T.,
Willard W.S., Xu W., Marcotte E.M. & Miranker D.P., 2006,
“A Fast Coarse Filtering Method for Peptide Identification by
Mass Spectrometry”, Bioinformatics, 22(12): 1524-1531.

[RoKV95] Roussopoulos N., Kelly S. & Vincent F., 1995, “Nearest
Neighbor Queries”, Proceedings of the 1995 ACM SIGMOD

International Conference on Management of Data, pp. 71-79.

[Same89] Samet H., 1989, “The Design And Analysis of Spatial Data
Structure”, Addison-Wesley, Reading, August 1989.

[Same06] Samet H., 2006, “Foundations of Multidimensional and Metric
Data Structures”, Morgan Kaufmann Publishers, San Francisco,
2006.

[SCRF99] Shekhar S., Chawla S., Ravada S., Fetterer A., Liu X. & Lu.
C.T., 1999, “Spatial Databases: Accomplishments and
Research Needs”, IEEE Transactions on Knowledge and Data

Engineering, 11(1): 45-55.

[SeKi02] Sebastian T.B. & Kimia B.B., 2002, “Metric-based shape
retrieval in large databases”, Proceedings of the 16th

International Conference on Pattern Recognition (ICPR 2002),
pp. 291-296.

[SeKr90] Seeger B. & Kriegel H.P., 1990, “The Buddy-Tree: An
Efficient and Robust Access Method for Spatial Data Base
Systems”, Proceedings of the 16th International Conference on

Very Large Databases (VLDB 90), pp. 590-601.

[SeKr98] Seidl T. & Kriegel H.P., 1998, “Optimal Multi-Step k-Nearest
Neighbor Search”, Proceedings of the 1998 ACM SIGMOD

International Conference on Management of Data, 27(2): 154-
165.

[SeRF87] Sellis T.K., Roussopoulos N. & Faloutsos C., 1987, “The R+-
tree: A Dynamic Index for Multi-Dimensional Objects”,
Proceedings of the 13th International Conference on Very

Large Databases (VLDB 87), pp. 507-518.

204

[ShLi97] Shekhar S. & Liu D.R., 1997, “CCAM: A Connectivity-
Clustered Access Method for Networks and Network
Computations”, IEEE Transactions on Knowledge and Data

Engineering, 9(1): 102-119.

[ShML02] Shin H., Moon B. & Lee S., 2002, “Adaptive and Incremental
Processing for Distance Join Queries”, Technical report 02-03,
Department of Computer Science, The University of Arizona.

[SiFT03] Singh A., Ferhatosmanoglu H. & Tosun A.S., 2003, “High
Dimensional Reverse Nearest Neighbor Queries”, Proceedings
of the 12th International Conference on Information and

Knowledge Management (CIKM 2003), pp. 91-98.

[ŠJLL00] Šaltenis S., Jensen C.S., Leutenegger S.T. & Lopez M.A.,
2000, “Indexing the Positions of Continuously Moving
Objects”, Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, 29(2): 331-
342.

[SoRo01] Song Z. & Roussopoulos N., 2001, “K-Nearest Neighbor
Search for Moving Query Point”, Proceedings of the 7th

International Symposium on Advances in Spatial and Temporal

Databases (SSTD 2001), LNCS 2121: 79-96.

[SPKS03] Skopal T., Pokorný J., Krátký M. & Snášel V., 2003,
“Revisiting M-Tree Building Principles”, Proceedings of the
7th East European Conference on Advances in Databases and

Information Systems (ADBIS 2003), LNCS 2798: 148-162.

[SRAE01] Stanoi I., Riedewald M., Agrawal D. & El Abbadi A., 2001,
“Discovery of Influence Sets in Frequently Updated
Databases”, Proceedings of the 27th International Conference

on Very Large Data Bases, pp. 99-108.

[StAE00] Stanoi I., Agrawal D. & El Abbadi A., 2000, “Reverse Nearest
Neighbor Queries for Dynamic Databases”, ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge

Discovery, pp. 44-53.

[Sund90] Sunderam V.S., 1990, “PVM: A Framework for Parallel
Distributed Computing”, Concurrency: Practice & Experience,
2(4): 315-339.

[TaJo97] Taylor J.A. & Johnson R.S., 1997, “Sequence Database
Searches via De Novo Peptide Sequencing by Tandem Mass
Spectrometry”, Rapid Communications in Mass Spectrometry,
11(9): 1067-1075.

205

[TaJo01] Taylor J.A. & Johnson R.S., 2001, “Implementation and Uses
of Automated De Novo Peptide Sequencing by Tandem Mass
Spectrometry”, Analytical Chemistry, 73(11): 2594-2604.

[TaLe04] Tan J.S. & Leong H. W., 2004, “Least-Cost Path in Public
Transportation Systems with Fare Rebates That Are Path- and
Time-Dependent”, Proceedings of the 7th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2004),
pp. 1000-1005.

[TaPL04] Tao Y., Papadias D. & Lian X., 2004, “Reverse kNN Search in
Arbitrary Dimensionality”, Proceedings of the 30th

International Conference on Very Large Databases (VLDB

2004), pp. 744-755.

[TaYM06] Tao Y., Yiu M.L. & Mamoulis N., 2006, “Reverse Nearest
Neighbor Search in Metric Spaces”, IEEE Transactions on
Knowledge and Data Engineering, 18(9): 1239-1252.

[ThSe96] Theodoridis Y. & Sellis T., 1996, “A Model for the Prediction
of R-tree Performance”, Proceedings of the 15th ACM

Symposium on Principles of Database Systems (PODS 96), pp.
161-171.

[TIGER02] “Topologically Integrated Geographic Encoding and
Referencing system – TIGER/Line®”, U.S. Census Bureau,
February 2002, http://www.census.gov/geo/www/tiger/

[TPZL05] Tao Y., Papadias D., Zhai J. & Li Q., 2005, “Venn Sampling: A
Novel Prediction Technique for Moving Objects”, Proceedings
of the 21st International Conference on Data Engineering

(ICDE 2005), pp. 680-691.

[Veng94] Vengroff D.E., 1994, “A Transparent Parallel I/O
Environment”, Proceedings of the 3rd DAGS Symposium on

Parallel Computation and Problem Solving Environments

(DAGS 94), pp.117-134.

[VTST93] Vonderohe A.P., Travis L., Smith R.L. & Tsai V., 1993,
“Adaptation of Geographic Information Systems for
Transportation”, NCHRP Report 359, Transportation Research
Board, National Academy Press, Washington D.C.

[Will85] Willard D.E., 1985, “New Data Structures for Orthogonal
Range Queries”, SIAM Journal of Computing, 14(1): 232-253.

206

[WYCT08] Wu W., Yang F., Chan C.Y. & Tan K.L., 2008, “Continuous
Reverse k-Nearest-Neighbor Monitoring”, Proceedings of the
9th International Conference on Mobile Data Management

(MDM 2008), pp. 132-139.

[XiHL05] Xia C., Hsu W. & Lee M.L., 2005, “ERkNN: Efficient Reverse
kNearest Neighbors Retrieval with Local kNNDistance
Estimation”, Proceedings of the 14th ACM International

Conference on Information and Knowledge Management

(CIKM 05), pp. 533-540.

[XiZh06] Xia T. & Zhang D., “Continuous Reverse Nearest Neighbor
Monitoring”, Proceedings of the 22nd International Conference

on Data Engineering (ICDE 2006), pp. 77-86.

[YaLi01] Yang C. & Lin K., 2001, “An Index Structure for Efficient
Reverse Nearest Neighbor Queries”, Proceedings of the 17th
International Conference on Data Engineering (ICDE 2001),
pp. 485-492.

[YOTJ01] Yu C., Ooi B.C., Tan K.L. & Jagadish H.V., 2001, “Indexing
the Distance: An Efficient Method to KNN Processing”,
Proceedings of the 27th International Conference on Very

Large Databases (VLDB 2001), pp. 421-430.

[YPMT06] Yiu M.L., Papadias D., Mamoulis N. & Tao Y., “Reverse
Nearest Neighbors in Large Graphs”, IEEE Transactions on
Knowledge and Data Engineering, 18(4): 540-553.

[ZhZh95] Zhang H. & Zhong D., 1995, “A Scheme for Visual Feature-
Based Image Indexing”, Proceedings of the 3rd Conference on

Storage and Retrieval for Image and Video Databases (SPIE

95), 2420: 36-46.

[ZMPT04] Zhang J., Mamoulis N., Papadias D. & Tao Y., 2004, “All-
Nearest-Neighbors Queries in Spatial Databases”, Proceedings
of the 16th International Conference on Scientific and

Statistical Database Management (SSDBM 2004), pp. 297-306.

207

Appendix A PepSOM: An Application of MPRQ-
Disk

We briefly describe an example of the real-life application of MPRQ in

addition to RADS: the integration of MPRQ and the self-organising map

(SOM) to serve as a coarse filter for identifying peptides (short proteins) as

one of the most challenging problems in the bioinformatics (also known as

computational biology) domain – peptide identification (and in general the

biological sequence similarity problem [NgNL07]). A novel algorithm called

PepSOM [NiNL06] is developed which provides for a non-trivial method for

transforming spectrum similarity (a representation of peptides) to similarity of

vectors, and then to neighbourhood similarity of points in 2-d plane.

A.1 Peptide Identification in Bioinformatics

Peptide identification by tandem mass spectrometry (MS/MS) is a challenging

problem in proteomics. Current high throughput mass spectrometers [CaWe07]

have generated a huge amount of spectra, and the analysis of these spectra

must keep pace. Fast algorithms for peptide identification are crucial for such

analysis.

Unfortunately, the process of analyzing these spectrum data is still

slow and not accurate. Approaches for peptide identification can be

categorized into database search algorithms [EnMY94, FTBP05, PPCC99] or

de novo algorithms [DACV99, FrPe05, MZHL03, TaJo97]. The former are

suitable for known peptide sequences that already exist in the database.

However, they apparently do not perform well in discovering new peptide

208

sequences not already available in database. For such peptide sequences, the

de novo algorithms are the method of choice. De novo algorithms work from

the ground up by interpreting peptide sequences from spectrum data purely by

analyzing the intensity and correlation of the peaks in the spectrum data.

In the peptide identification problem, database search usually return

the peptide sequences that match the parent mass of the spectrum. However,

the accuracy depends on the quality of the database, and the process is slow

(usually a few minutes). Typical analyses of an LC/LC/MS/MS experimental

dataset using the popular BioWorks program by ThermoFinnigan with a single

processor take several hours for computation (e.g. 30,000 scans against the

Escherichia coli database). The de novo algorithm can find tags with high

accuracy [CNLP06, FTBP05], and the process is fast (always within 1 minute)

but tags are usually not complete sequences for the spectra.

Hence, how to achieve a balance between identification completeness

and efficiency yet manage reasonable accuracy for peptide identification by

tandem mass spectrum is an important consideration. This is where our

proposed novel algorithm comes in. PepSOM is an algorithm using the

database search approach but it is very fast, without the slow processing

problems that plagued other database-based approach. It identifies candidate

peptide sequences by selection from database via a technique by the

combination of SOM [Koho01] and MPRQ (course filter), then scores and

ranks these peptide sequences (fine filter) by comparing their theoretical

spectrum with the experimental spectrum. Since the candidates are essentially

found by database search algorithm, all the candidates in database that are

similar (whose number are controlled with MPRQ’s search distance d) to the

209

experimental spectrum are retrieved. With this technique, completeness and

efficiency are achieved with reasonable accuracy attained.

Recently, coarse and fine filtering methods commonly associated with

database search techniques were introduced for peptide identification

[RMNP06]. The spectra are mapped to vectors, and using a metric space

indexing algorithm, initial candidates for later fine filtering were produced. A

variant of shared peaks count (SPC) scoring function was used to compute the

similarity among spectra. The coarse filtering can reduce the number of

candidates to about 0.5% of the database and for fine filtering, a Bayesian

scoring scheme is applied on candidate spectra to more accurately identify

peptide sequences.

A.2 Problem Description

Proteomics is the study of proteins expressed by a genome. They are

systematically studied by cataloguing and analysing proteins to determine

when a particular protein is expressed, its expression level (amount expressed),

and how proteins interact with one another. By studying proteins, we could

determine the types of proteins present in normal vs diseased cells. We can

also identify drug targets as well as discover new drugs for treatment of

illnesses.

A typical MS/MS proteomics process calls for individual proteins to be

separated via a process called 2-d PAGE (two-dimensional poly acrylamide

gel electrophoresis). Proteins are first isolated and then sliced into parent

peptides by enzymatic digestion, which usually involve the enzyme trypsin.

The parent peptides are then ionised and isolated from each other. One of the

210

methods to perform peptide isolation is by high-performance liquid chromato-

graphy (HPLC), and peptides are further separated by their mass-to-charge

ratios (m/z). This forms the first stage of the mass spectrometry (MS) process.

In tandem mass spectrometry (MS/MS), an isolated peptide (target) is then

sent through collision-induced dissociation (CID) causing it to fragment into

many pieces. The m/z of each and every piece is measured to obtain an

MS/MS spectrum. Figure 97 illustrates.

Definition (Theoretical spectrum): The ion fragmentation pattern of a

particular peptide, usually stored on databases, derived from training data or

expert opinion. Typically it is represented as a chart of peak intensity vs mass-

to-charge ratio (m/z).

Definition (Experimental spectrum): The ion fragmentation pattern of a

particular peptide derived from an MS/MS process, is a set of mass peak of

fragment ions.

Figure 97: An example of LC/MS/MS peptide identification process

mass-to-charge

ratio

enzyme

HPLC
(high-performance
liquid chromatography)
separation

experimental
MS/MS spectrum

theoretical
MS/MS spectrum

database search

or
de novo algorithms

(digestion)

protein
peptides

trypsin

CID
(collision-induced
dissociation)

peptide

211

Peptide identification can be used to identify proteins present in a sample. In a

perfect world, an oracle would be able to look at the sample and tell us exactly

what proteins are contained therein. In reality, we must derive the

experimental spectrum of a peptide via the MS/MS process. Unfortunately this

process is not perfect, and it also introduces noise into the experimental

spectrum, making it harder to compare with theoretical spectra to identify the

correct peptide. Sources of noise include from MS instruments, the loss of

water (H2O) and ammonia (NH3) during fragmentation and post-translation

modifications (enzymes altering the protein after the translation process) such

as phosphorylation, glycosylation, myristoylation or methylation. This is

where algorithms like PepSOM fit in. PepSOM will efficiently process

multiple experimental spectra and quickly derive peptides from databases that

are similar to them.

A.3 PepSOM Algorithm

We first describe SOM and MPRQ followed by some notes on converting

spectra to vectors (binning of peaks). Next, we present our novel peptide

identification algorithm, PepSOM.

A.3.1 Self-Organising Map

SOM is a method for unsupervised learning, based on a grid of artificial

neurons whose weights are adapted to match input vectors in a training set. In

the training process, a SOM (map) is built and the neural network organises

itself using a competitive process. The SOM usually consists of a two-

dimensional regular grid of nodes. The node whose weights are closest to the

212

input vector, termed the best-matching or winner node, is updated to be more

similar to it while the winner’s surrounding neighbours are also updated (to a

smaller extent) to be more similar to the input vector. As a result, when a

SOM is trained over a few thousand epochs, it gradually evolves into clusters

whose data (peptides) are characterised by their similarity. Therefore, it is very

suitable for analysis of the similarities among sequences and is very widely

used [KaKK98, OjKK03]. Increasingly, SOM is used as an efficient and

powerful tool for analysing and extracting a wide range of biological

information as well as for gene prediction [BeGe01, MMSG04, ASKK06].

For spectrum data, each node represents an observation of the

spectrum (converted to vector), and the distance between nodes represent their

similarities. The closer two nodes are located to each other, the more similar

they are. For a visual illustration, we give an example of SOM with 995

spectra (the ISB test dataset, which we will describe in Section A.4) on a

50×50 grid. Figure 98(a) illustrates the relationship among these spectra.

Observe that some of the spectra (black dots) are clustered together and are

hard to distinguish. Many spectra are surrounded by grey dots representing

similar vectors (updated by SOM algorithm during training phase but not

representing any spectrum in particular). It follows that spectrum similarities

are represented by neighbourhoods of the points on SOM.

213

(a) (b)

A.3.2 Multi-Point Range Query

MPRQ is an important component of the PepSOM algorithm. It provides a fast

mechanism for peptide similarity queries.

Once the theoretical spectra for the peptide sequences in the database

are mapped as 2-d points on a SOM, they are indexed with our

KDTopDownPack bulk-loaded R-tree data structure since the peptide

sequences database rarely change. The spatial index can then be reused many

times. To perform similarity query, we transform the experimental spectra into

query points in 2-d plane and proceed to query. At this point, it is possible to

use many experimental spectra as the query simultaneously, which translates

to multiple points as the input for MPRQ algorithm.

Experiments showed that a large input (up to 1000 experimental

spectra or more) does not increase the overall query time by much. This

phenomenon is due to the intelligent pruning rules NodeIn and PointOut

embedded within the MPRQ algorithm. Apart from a set of query points, the

MPRQ algorithm also accepts as input a parameter d that controls the radius of

Figure 98: (a) In this example of SOM generated from spectra, each spectrum is represented by a
grayscale dot. Notice that neighbouring dots have mutually similar shades of grey. (b) A sample

of SOM training of Escherichia coli for a 100x100 orthogonal grid being visualized. Similar
colours represent similarity of trained sequences

214

the search distance. The larger the value of d, the more candidate peptides will

be returned. MPRQ can efficiently process the multiple input points

simultaneously with respect to d and the MBRs during query, effectively

performing multi-spectra similarity search (which is adjustable) on a database

of known peptides.

A.3.3 Converting Spectra to Vectors

The very first step of PepSOM is to convert spectra in database to high-

dimensional vectors of the same dimension in vector space. The PepSOM

algorithm requires both theoretical and experimental spectra to be converted to

statistical vectors so that the SOM can be trained and queried. This is related

to the binning of the peaks in spectrum. The binning idea was used in

[PeDT00] for mass spectrum alignment. In [PeDT00], the intensity peaks of a

spectrum are packed into many bins, and the spectrum was translated into

sequences comprising 0’s and 1’s. We used a similar method for binning,

except that our binning results are sequences of real numbers.

Figure 99: Applying MPRQ on the SOM map to retrieve peptide similarity candidates. The
search distance d can be used to control the number of candidates desired to achieve a tradeoff

balance between efficiency (query time) and accuracy

215

Binning is used to remove noisy peaks from a spectrum while

converting them into vectors. A less noisy spectrum translates into more

accurate identification results and faster processing time as fewer peaks are

considered.

The important parameters for binning of peaks include the size of the

bins, the amino acids interpretation of supporting peaks (bins), the mass

tolerance value as well as the peaks intensity. For simplicity, it is suffice to say

that given the properly set value of mass tolerance, binning can preserve the

spectrum accuracies, while at the same time decrease the computational cost

greatly, especially for noisy spectra. We refer the reader to our paper [NiNL06]

for precise details and proofs.

The binning process also includes scoring of bins to eliminate bins

with very low peak intensity. Based on domain knowledge, the important

parameters for scoring should include peak intensity, the number of supporting

peaks and mass error. Based on the analysis of the scores of peaks in the

spectrum, the lowest 20% bins in scores ranking, or those bins with scores less

than 1% of the highest rank are filtered out.

216

A.3.4 PepSOM

Figure 100 depicts how the PepSOM algorithm works as a coarse filtering step.

Peptides from the database are converted to theoretical spectra which are

further converted to high-dimensional vectors and then used to train a SOM

(map). This only needs to be performed once unless the database changes.

Figure 100: Diagram for the peptide identification with PepSOM

…CGT…
…GKR…

…DFGTK…
…HGFR…

…

theoretical
spectra

vectors

SOM

MPRQ on SOM
results
(vectors)

experimental spectra
(multiple input)

peptide results peptide results (ranked)

score and rank
by SPC

database

vectors

CGTGDHTK
VSTSQKR
PQRSTSTK
GKTTSTVR
……

binning

binning

Trained SOM

first-rank
result

SOM training

…
…
.

VSTSQKR
CGTGDHTK
GKTTSTVR
PQRSTSTK
……

217

In the query process stage, each experimental spectrum is converted to

vector (via binning) and then matched with the trained SOM map to obtain its

best-matching node (expressed in (x,y)-coordinates). The resulting coordinates

form the basis input points for the MPRQ algorithm to perform a single,

efficient similarity query. Candidate peptides are selected from the database

this way, and then fine-filtered by comparing their theoretical spectrum with

experimental spectrum by shared peaks count (SPC). The SPC score is

computed as the number of shared peaks between experimental spectrum and

theoretical spectrum of candidates (within tolerance). First rank result simply

refers to the first result returned by MPRQ. While it is not necessarily the best,

it gives an indication of the quality of results when a “quick result” is

warranted.

PepSOM(DB, ES, d)
// input: peptide database DB, expt spectra ES, similarity d
// output: candidates results set C
begin

 TS � bin all peaks of putative peptides in DB;

 V1 � GenerateVectors(TS);

 som_map � TrainSOM(V1); // SOM training

 2d_map � MapSOM(som_map, V1); // map of (x,y)-coords

 ES � bin all peaks of ES; // bin ES if not previously done so

 V2 � GenerateVectors(ES);

 Q � MapSOM(som_map, V2); // obtain multi points query set
 MPRQSearch(2d_map.root, Q, d, C); // obtain candidates set C
 return C;
end; {procedure PepSOM}

Figure 101 lists the PepSOM algorithm. Although SOM has been used before

to predict genes, this is the first attempt of its kind to combine SOM with

spatial database query for peptide identification. Many efficient algorithms

exist for spatial database queries in orthogonal 2-d grids or hierarchical data

Figure 101: Algorithm for PepSOM uses SOM and MPRQ for coarse filtering

218

structures. SOM is useful because we believe it satisfies the condition that the

distance on the map reflects the similarity of peptides.

A.4 Experiments

A.4.1 Experiment Settings and Datasets

Experiments were performed on a Linux machine with 3.0 GHz CPU and 1

GB RAM. PepSOM was implemented in C++ and Perl. SOM_PAK [KHKL96]

was the SOM implementation used. We had selected two database search

algorithms, Sequest [EnMY94] and InsPecT [FTBP05], as well as two de novo

algorithms with freely available implementations, Lutefisk [TaJo01] and

PepNovo [FrPe05], for comparison and analysis. We treated Sequest result

with a cross-correlation score (Xcorr) above 2.5 as ground truth. In a typical

setting, Xcorr ≥ 2.0 from Sequest is considered of good quality. We strived for

more stringent results.

Spectrum datasets were obtained from the Open Proteomics Database

(OPD) [PCWL04], PeptideAtlas database [DDKN06] and Institute for

Systems Biology (ISB) [KPNS02]. The three datasets chosen are of vastly

different sizes to enable us to examine the issue of scalability of PepSOM

compared to other algorithms.

For OPD, the spectrum dataset used was opd00001_ECOLI,

Escherichia coli spectra 021112.EcoliSol 37.1(000). The spectra were

obtained from E. coli HMS 174 (DE3) cell, which is grown in LB medium

until ~0.6 abs (OD 600). The spectra were generated by the ThermoFinnigan

ESI-Ion Trap “Dexa XP Plus” and the sequences for these spectra were

219

validated by Sequest. There are 3903 spectra in total; we chose all the 202

spectra that were identified with Xcorr ≥ 2.5.

Spectra from PeptideAtlas were also selected. The spectrum dataset

A8_IP were obtained from Human Erythroleukemia K562 cell line.

Electrospray ionization source of an LCQ Classic ion trap mass spectrometer

(ThermoElectron, San Jose, CA) was used, and DTA files were generated

from the MS/MS spectra using TurboSequest. The dataset consists of a total of

1564 spectra; we chose all the 44 spectra that were identified with Xcorr ≥ 2.5.

The ISB dataset was generated using an ESI source from a mixture of

18 proteins, obtained from ion trap mass spectrometry. The ISB dataset was of

low quality, having between 200-700 peaks each with an average of 400 peaks.

The entire dataset consists of a total of 37044 spectra; we chose all the 995

spectra that were identified with Xcorr ≥ 2.5.

The databases that we used were theoretical spectrum generated from

the respective protein sequences dataset. Specifically, E. coli K12 protein

sequences for OPD datasets, IPI HUMAN protein sequences for PeptideAtlas

dataset and human plus control protein mixture for ISB dataset. As the number

of protein sequences were very large for PeptideAtlas (60,090) and ISB

(88,374) datasets, we used only the protein sequences corresponding to spectra

identified with Xcorr ≥ 2.5 (our ground truth set). However, the sizes of

databases were still very large because of many fragmentations.

The parameters for the generation of databases, the test datasets and

theoretical spectra are shown in Table 32. Additionally, we use a search

distance radius d = 0.25 as the MPRQ parameter.

220

Parameters Values
 OPD PeptideAtlas ISB
No. of protein sequences 4,279 31 3,553
Total database size 494,049 9,421 1,248,212
Test dataset size 202 44 995
Fragments mass tolerance 0.5 Da
Parent mass tolerance 1.0 Da
Modifications –
Charge +2, +3
Ion type a, b, y, –H2O, –NH3
Missed cleavages 0
Protease Trypsin
Mass range 0-6000 Da

A.4.2 Accuracy Measures

The following accuracy measures were used to compare the different

algorithms:

Sensitivity =
#correct

 |ρ| Specificity =
#correct

 |P|

where #correct is the number of correctly identified amino acids. It is

computed as the longest common subsequence (LCS) of the actual correct

peptide sequence ρ and the identification result P of the PepSOM algorithm.

|ρ| and |P| depict the length of the respective peptide sequences.

Sensitivity indicates the quality of the identification result with respect

to the actual correct peptide sequence – a high sensitivity being that the

identification algorithm (in our experiments – InsPecT, Lutefisk, PepNovo and

PepSOM) recovers a large portion of the correct peptide. For a fairer

comparison with de novo algorithms like PepNovo that only outputs the

highest scoring tags (subsequences), we also use a specificity measure, which

measures the number of correctly identified amino acids within the

identification result given by the algorithm (independent of the actual correct

peptide sequence ρ).

Table 32: Parameters for the generation of databases and theoretical spectra

221

A.4.3 Results and Analyses

A.4.3.1 Quality of PepSOM Results

We analyzed the quality of peptide sequences identified by PepSOM as

candidates. These candidates would be tested against the experimental spectra

(test size) to return the final results. Generally, the size of candidates set

should be as small as possible (minimal false positives) yet able to yield the

final results. The first among the results we obtained using the test set is

labeled as first-rank peptide. Best-match peptide is the peptide from all

candidates that match with “real” peptide with the highest specificity (and

sensitivity). The latter can be thought of as an upper bound of the results

obtained.

Datasets
Database

Size
Test
Size

No. of
Complete
Correct

Complete
Correct

Accuracy
Specificity Sensitivity

Time
(ms)

OPD 494,049 202 44 0.218 0.560 / 0.785 0.428 / 0.593 10.6
PeptideAtlas 9,421 44 10 0.227 0.334 / 0.377 0.445 / 0.637 10.5
ISB 1,248,212 995 116 0.117 0.529 / 0.895 0.680 / 0.726 10.8

From Table 33, it is clear that both sensitivity and specificity for PepSOM is

high. For example, in the OPD dataset, both sensitivity and specificity are

higher than 0.55 (best-match); as for the ISB dataset, the sensitivity is higher

than 0.65 (both). There are also a significant number (10% to 25%) of

completely correct peptide identifications among top-rank peptide sequences.

The time taken for peptide identification is also very small; this is expected

when using both SOM and MPRQ combined (more details will be provided

Table 33: Statistical results on the quality of candidates identification by PepSOM.
For specificity and sensitivity, the results for “first-rank peptide / best-match peptide” are shown

222

later). The average query time per spectrum is approximately 11 ms. This is

comparable to InsPecT (with average 10 ms search time per spectrum with

default settings, but based on smaller database) which is one of the fastest

database search algorithms because PepSOM is able to filter a small set of

high quality candidates and yet keep the accuracy of the resulting set.

A.4.3.2 Performance of PepSOM

Next, we compared PepSOM with other well-known peptide identification

algorithms, namely Sequest, Lutefisk, PepNovo and InsPecT among others.

Recall that the Sequest algorithm provides the spectra identified with high

Xcorr score (≥ 2.5). Therefore here we treated them as ground truth.

Datasets
Database

Size
Test
Size

Sequest InsPecT Lutefisk PepNovo PepSOM

OPD 494,049 202 1.0 / 1.0 0.592 / 0.556 0.129 / 0.008 0.252 / 0.200 0.560 / 0.428
PeptideAtlas 9,421 44 1.0 / 1.0 0.811 / 0.402 0.162 / 0.063 0.291 / 0.135 0.334 / 0.445
ISB 1,248,212 995 1.0 / 1.0 0.602 / 0.633 0.032 / 0.032 0.563 / 0.593 0.529 / 0.680

We observe from Table 34 that both specificity and sensitivity of PepSOM are

better than Lutefisk and PepNovo (both de novo algorithms), and they are

comparable to InsPecT. Although InsPecT has higher specificity, our results

outperform InsPecT in sensitivity. Specifically, for the OPD dataset, both the

algorithms have specificity and sensitivity of about 0.55. For the PeptideAtlas

dataset, the specificity of our algorithm is much worse than that of InsPecT,

but the sensitivity is about 10% better. For the ISB dataset, PepSOM has lower

specificity than InsPecT, but the sensitivity value is higher.

Table 34: Comparison of different algorithms on the accuracies of peptide identification.
In each column, the “Specificity / Sensitivity” values are listed

223

From these experiments, we note that the results for PepSOM are at

best preliminary because of the use of conventional SPC scoring. We believe

that by implementing an improved scoring function (e.g. incorporating

statistical analysis or reliable tags generated by a de novo process), our results

could be better. All in all, PepSOM’s performance is comparable to InsPecT in

both accuracy and efficiency.

A.4.3.3 Filtering Rate

One of the most important features of PepSOM is that it is very fast. For batch

processing of multiple spectra query, Table 33 and Table 35 show that it can

perform peptide identification for large spectrum datasets (> 500) in mere

seconds (for example, 500 × 10.8 ms = 5.4 secs).

Database Database
Size

Test
Size

Candidates
Size

Average
Query Size

Coarse
Filtering Rate

OPD 494,049 202 68,610 339.7 0.069%
PeptideAtlas 9,421 44 654 14.9 0.158%
ISB 1,248,212 995 101,443 102.0 0.008%

Traditional database search algorithms such as Sequest are much slower than

PepSOM. Although de novo algorithms are usually faster than PepSOM,

currently they cannot generate results with comparable accuracy. In Table 35,

the candidates size represents the combined total results from coarse filtering

of the database using the experimental spectra (test size) as the input query

points for the MPRQ algorithm. The average query size represents the average

peptide sequence candidates for each spectrum (query point). Coarse filtering

rate is computed by averaging query size over the original database size. We

Table 35: PepSOM-generated candidates size, average query size and coarse filtering rate

224

only need to compare each spectrum against the candidates identified for it by

MPRQ. Therefore, the coarse filtering rate is very low. Compared to the

tandem cosine coarse filter used in [RMNP06] which filters to around 0.5% of

the database, it is obvious PepSOM has a better filtering efficiency. This

explains why PepSOM could achieve fast query time.

A.4.3.4 Effect of Search Distance

From Figure 102 we see that the larger search distance radius d that we use,

the larger the average query size (due to the increased number of candidates),

and the selection of d = 0.25 is a compromise between efficiency and accuracy.

Accuracy generally improves by a little with larger d but it is not significant.

In this application, the MPRQ input search distance d serves as a control

mechanism for efficiency vs accuracy.

Figure 102: Average query size (query distance radius d vs % of database size) for ISB dataset

