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Summary 
 

This research delves into two major areas of database research, namely (i) 

spatial database queries specifically for transportation and routing, and (ii) the 

reverse nearest neighbour (RNN) queries. Novel algorithms are introduced in 

both areas which outperforms the current state-of-the-art methods for the same 

types of queries. 

Firstly, this research work focuses on a type of proximity query called 

the multi-point range query (MPRQ). We showed that MPRQ is a natural 

extension to standard range queries and can be deployed in a wide range of 

applications, from real-life traveller information systems to computational 

biology problems. Motivation for MPRQ comes from the need to solve this 

type of query in a real-life traveller information system (the Route ADvisory 

System (RADS) application, as well as its cousin web service Earth@sg Route 

Advisory Service at http://www.earthsg.com/ras). We researched various 

techniques used to solve MPRQ and discovered three approaches, presented 

their algorithms and analysed each of them in detail. Extensive, in-depth 

experiments were carried out to understand the MPRQ in a wide variety of 

problem parameters and MPRQ performs well in all of them against the 

conventional technique for solving MPRQ, i.e. the repeated range query 

(RRQ), used in proximity query systems today. Naturally, we extended MPRQ 

for external memory because in the real world, almost all applications deal 

with data that can never fit into internal memory. MPRQ also outperforms 

spatial join approaches for answering similar queries, such as the Slot Index 

Spatial Join (SISJ). 



 

vii 

Secondly, this thesis lent contribution to RNN queries in the form of a 

hierarchical, novel data structure to find exact RNN results in metric space. 

The data structure is called RNN-C tree, making use of kNN graphs and 

inherent data clustering to find RNN. The RNN query is related to the nearest 

neighbour (NN) queries but is much harder to solve. Besides the RNN-C tree, 

we also presented several algorithms based on the grid file to find approximate 

RNN results, but is much faster. In some time-critical applications, sometimes 

approximate results are a good tradeoff between accuracy and response time. 

To the best of our knowledge, ours is also the first attempt to adapt the grid 

file data structure for solving RNN queries. As RNN is related to NN, the grid 

file becomes a natural choice as it can return NN results efficiently. 
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Chapter 1 Introduction 

 

Wayfinding is a human need. In the past 20 years, an Internet boom has led to 

practical applications such as map viewing and driving route planning to be 

available on-line. These applications typically obtain a traveller’s location and 

other desired preferences as input and return, after searching an underlying 

spatial database, the best available route to reach a destination. Most of them 

also provide many other services, most commonly the ability to show what is 

near the computed travelling route. These services have brought real-time 

information on-demand to reality. 

In a transportation network scenario, public transportations such as 

buses and subways are modelled. In addition, extra services such as private 

vehicles routing and taxis routing (independent of a pre-determined route 

which is the case for buses), real-time traffic dispersal, searching of POIs such 

as public buildings, amenities and parks, are provided. Typically, a user is able 

to specify some preferences like reducing travelling costs, travelling time, or 

preference for certain roads. All these are made possible by advances in 

technologies such as the Global Positioning System (GPS) that can pinpoint a 

traveller’s world coordinates to reasonable accuracy and mature third 

generation (3G) mobile devices that can be fitted into a car or be carried 

around (like PDAs and cellular phones). In the reports released by the U.S. 

Department of Commerce [DoC98, DoC01], 35% of the GPS units sold in the 

market is for car navigation, 22% for consumers’ (private) use, 16% for 

survey/mapping (geographic information system related), 13% for tracking or 
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machine control, the rest accounted for by OEM, aviation, marine and military 

use. By the year 2008, sales of civilian GPS reached US$28 billion. 

In the telecommunications sector, location-based services (LBS) have 

long been touted as the next killer application for the wireless industry. Faced 

with growing subscribers equipped with GPS-enabled cellular phones and 

PDAs, there is a rush to develop commercially viable new applications like 

mobile yellow pages, safety calls and roadside assistance, location-based street 

and business directory search, traffic alerts, location-based games, personal 

navigation and tracking services. These are the kind of applications that many 

large corporations and government agencies will invest a great amount of 

money into. Despite the economic slowdown several years ago, Allied 

Business Intelligence has projected that the worldwide mobile data revenue 

will reach US$43 billion by 2014. Many researchers are funded by grants from 

their local transportation boards, municipal councils, state governments or 

private companies to carry out research aimed at modelling route queries, 

improving routing/searching algorithms, inventing efficient transportation 

models, expediting spatial operations and information retrieval (e.g. spatial 

join, closest pairs queries [Corr02], kNN-related queries), and so on. 

One such recent work is the Route Advisory System (RADS) by 

[Lao99, FLLL99, TaLe04] which modelled the transportation network in 

Singapore and presented an algorithm that gives an optimal route based on 

multiple criteria tradeoffs (time against cost against number of transits) on 

multiple transport modes combination such as bus, subway and short walking. 

In addition to route planning, RADS is able to perform a proximity query that 

computes the points of interest (POI) and events that occur along the planned 
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route that coincide with the time the traveller reaches that particular point in 

the route. It is not uncommon for a traveller to make a stop along the route to 

run an errand or simply to participate in some activities of interest such as 

exhibitions or sale. 

 

1.1 Overview of Proximity Query 

 

Let us define a typical route from point A to point B. To be a little more 

precise, the route comprises of a list of k segments of straight lines, where two 

consecutive segments are joined at a stop and there are k-1 stops. A value d 

representing the maximum distance of walking from any of the stops is given. 

We can roughly model the query as in Figure 1. In the remainder of this thesis, 

we shall refer to this type of user query as a proximity query. A mathematical 

definition of proximity query is found in Section 2.5. 

 

 

The POIs that match the user query are divided into two types, namely static 

events and dynamic events. Static events are found at any one location 

Figure 1. Proximity query modelled from a user scenario 
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permanently, e.g. buildings, lakes, bus terminals, parks, petrol stations and 

other establishments. Dynamic events usually occur at any location for a 

momentary period of time. They are characterised by a starting and ending 

time, or a daily recurring time window, e.g. a sale, blood donation drive, 

national day parade, musical concerts, etc. 

The first part of this research was initiated as a natural extension to the 

RADS. RADS is a prototype software [FLLL99] that allows optimum trip 

planning for commuters with respect to one or more criteria combination of 

travelling cost, travelling time or transit mode. The first two criteria are self-

explanatory. For transit mode, it means the switching of modes of transport in 

a single journey. This usually incurs waiting time for the next mode of 

transport to arrive at the stop, which is viewed as a penalty. The current RADS 

uses map and route data from the city of Singapore, but it can be easily suited 

to just about any cities in the world on availability of data. 

 

 

In Singapore, there are two major modes of public transportation, namely 

buses and subway called Mass Rapid Transit (MRT). In Figure 2, we illustrate 

Figure 2. An example of RADS route planning. Route A represents optimal travelling time 
while Route B represents optimal transit mode. In real life, there are many possible route 

combinations to travel from start point to destination point 
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the capabilities of the route planning engine of RADS with the three necessary 

modes to move from a start point to destination point (the third one is walking, 

modelled with an acceptable walking distance constraint). According to the 

statistics released by the Department of Statistics of the Ministry of Trade and 

Industry (MTI), Singapore [MTI09], in 2008 the average daily ridership was 

approximately 3.085 million, 1.809 million and 0.907 million trips for buses, 

MRT/LRT and taxis respectively. These figures are huge as the population is 

4.839 million for the same period. Public transportation is the major mode of 

transportation in many parts of the world. Consequently, RADS is useful to 

the general public as a tool for smarter journeys, making available all 

alternatives of a journey at all times; to the public transport providers, RADS 

can help provide the big picture of the average journey, and to help identify 

missing/inadequate bus lines, enhance existing bus lines or plan the location of 

new bus stops (through generating extensive use cases). 

With respect to the proximity query shown in Figure 1, we define the 

problem of finding all POIs and events (results) for a given set of stops (query 

points) within a given constrained distance d (a circular region of radius d 

centred at a stop) from each and every stop as multi-point range query. This 

type of proximity query is central to many applications and is widely studied 

in the literature. 

 

1.2 Motivation 

 

Multi-point range query (MPRQ) has many applications. Besides 

transportation planning problem, it can be adopted in air traffic control, 

water/electric/gas utilities, telephone networks, urban management, sewer 
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maintenance and irrigation canal management [LaTh92, VTST93, ShLi97]. 

For example, in the telephone network problem we can find out how many 

users of different categories (e.g. business, residential, industrial, etc.) is 

dependent on a given telephone network line (e.g. one manifestation could be 

a non-weighted directed acyclic graph (DAG) whose vertices represent the 

telephone poles) so as to help in identifying heavy dependency on or usage of 

a particular line and for telephone network connection redistribution. 

As another example, MPRQ can be generalised to a bigger scenario 

where each query point represents a town or a city, and the search distance 

represents the availability of certain establishments (e.g. a certain petrol 

station) within the town or city area. Coupled with a time factor, it could 

model town-to-town or city-to-city drive, providing an advanced knowledge 

on the availability of a favoured petrol station in upcoming locations and the 

estimate of petrol remaining at the time of reaching those locations (with 

petrol consumption tracking). The possibility of deployment in so many 

applications motivated us to research the MPRQ.  

In many web applications that provide route planning as well as 

proximity query, the current approach is still limited to only performing 

proximity query one at a time on sections of the map (segment by segment), 

usually demarcated by road junctions or stretches of an expressway, even if 

the whole route is already pre-determined for the traveller. This has 

inadvertently localised the proximity information available to the traveller, 

supposedly in favour of saving Internet bandwidth and computation power. 

We foresee such web applications to be more intelligent in the future in that 
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they not only provide the proximity information as requested but provide them 

accurately and quickly. Thus, the need for MPRQ as an enabling technology. 

Note that this is by no means an exhaustive application of MPRQ. As 

another example, if we model electricity poles carrying a stretch of connected 

electricity cable along a road, performing MPRQ with the electricity poles as 

the query points will result in the number of households that are possibly 

connected to these switches. In a “what-if” analysis, MPRQ can be used to 

determine the number of households affected if the electricity cable is 

damaged or shut down temporarily. 

The methods and algorithms that our research delve into are motivated 

by the following observation: when a path comprising many query points is 

given, and the objective is to return all events (also called object candidates 

[KMNP99] or sites [SoRo01]) near to these query points, where the searching 

mechanism for all query points is identical and related, and the results of that 

proximity query must be clean of any duplicate points. In our approach, we do 

not use a slicing technique to sample the path as in [SoRo01]; instead we 

explored query optimisation as a means to improve query processing.  

 

1.3 Research Objectives and Scope 

 

Conventionally, proximity query is solved by breaking down the route into 

many smaller segments interconnected by stops and performing multiple 

searches on spatial indexes to locate objects that are near each of the stops. 

Recall that this approach helps save bandwidth and improve response time in 

route planning applications on the web. One problem of this method is that it 

might result in many duplicate results if the segments are close to one another. 
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Therefore, a more specific query technique suitable for optimised spatial 

proximity querying is needed. 

This research aims to achieve several objectives. We wanted to 

understand real-life GIS applications and the way they offer proximity 

querying. We studied and evaluated a type of query that we call multi-point 

range query (MPRQ), which can potentially perform proximity queries in a 

more intuitive approach. Many factors that affect the efficiencies of a 

proximity query were scrutinised, for instance, identifying a data structure that 

can support MPRQ. We rediscovered KDTopDownPack, a hybrid R-tree bulk-

loading algorithm of [GaLL98] and subsequently designed some experiments 

to measure the performance of various data structures that can be used to 

support MPRQ. 

Another objective of this research is to propose better search 

algorithms that can work well for answering MPRQ. There are many issues 

we need to address in order to achieve this objective. For example, the way 

pruning should be performed on the data structure during a search, and how 

effective they can be. Since MPRQ is observed to have some distinct 

properties, intuitively the orthodox set of pruning rules applicable for the 

general tree data structures might be inadequate. As a result, we defined some 

pruning rules that are implemented on a basic search algorithm. Experiments 

showed that applying our pruning rules are indeed more effective than without 

using them in the traditional query. Along this line, we have researched three 

techniques for fast pruning of input query points. 

Last but not least, it is interesting to adopt the results of this research, 

the MPRQ, to genuine wide-ranging applications where it will be really useful. 
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Naturally, the first target application that comes to mind is where range query 

is widely used, which is a traveller information system. MPRQ was 

implemented as an extension in RADS. A brave, second application for 

MPRQ was targeted for the computational biology domain where research 

momentum is picking up very quickly in the past decade. Together with the 

self-organising map (SOM), MPRQ is part of a approach to perform multiple 

sequences similarity search in the peptide/protein identification problem. 

The scope of the MPRQ research is narrowed down by a few 

assumptions: (i) the temporal aspects (time domain for dynamic events) of a 

proximity query is not considered, only static data is considered. Initial studies 

showed that temporal pruning first reduces the number of candidates by less 

than 5% on average whereas spatial pruning first gives a reduction of over 

90% from the initial candidates set, (ii) the query algorithm is for ℜ2 space 

and the computation techniques based on L2 Euclidean distance metric, (iii) 

query region is circular (using distance d as a radius), (iv) a 2-d query point 

represents the centroid of any polygonal objects on the map. Further 

computations are assumed to precisely confirm the correctness of a 2-d point 

result, (v) spatial objects on the map are adequately bounded by a minimum 

bounding rectangle (MBR). All the above assumptions hold for all MPRQ 

results presented in this thesis, unless otherwise stated. 

It is argued that the road distance (L1 Manhattan distance) is a better 

representative for determining the result of MPRQ, particularly in the case of 

transportation and road networks. We state that our method works for other 

distance metrics, as long as consistently applied. In general, we meant for 
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MPRQ to work in other scenarios too, such as in bioinformatics problems, 

where the edit distance might be more appropriate. 

 

1.4 Contributions of Thesis 

 

This thesis consists of three major contributions. Its principal contribution is 

the in-depth study of the multi-point range query for both internal and external 

memory cases, and the introduction of the MPRQ algorithm, an efficient 

algorithm for the processing of range query with multiple points as input. 

Instead of performing a range query for each and every point, MPRQ takes as 

input the whole set of points and perform the query once. MPRQ visits the 

spatial index only once by utilising smart pruning rules at every level of query 

processing within the spatial data structure, resulting in optimal I/Os. The key 

idea of MPRQ is about the efficient pruning of the input (of multiple points) 

with respect to each node encountered during the traversal of the spatial index, 

as well as optimising the results returned (for example, a large enough search 

distance will cover an intermediate level node which means all nodes and 

eventually leaf objects under it becomes the results) to decrease unnecessary 

computations in obvious cases. Several techniques have been developed for 

pruning of the input. Empirical results show that MPRQ can significantly 

improve query processing time both in internal and external memory 

[NgLH04, NgLe04]. 

Secondly, this thesis lent a huge contribution to the reverse nearest 

neighbour problem (RNN). The RNN query is a proven non-trivial problem no 

less than nearest neighbour (NN) queries. Although related to NN, the RNN 

results cannot be derived from NN’s. RNN queries are categorised into those 
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that find exact results and those that find estimated results. A novel, 

hierarchical data structure to find exact RNN results in metric space was 

presented. The data structure is called RNN-C tree, making use of kNN graphs 

and inherent data clustering to find RNN. Besides the RNN-C tree, we also 

presented several algorithms based on the grid file to find approximate RNN 

results, but is much faster. These algorithms are collectively called RNN-Grid. 

As RNN is related to NN, the grid file [NiHS84] becomes a natural choice as 

it can return NN results efficiently. Empirical results show that RNN-Grid is 

faster than other RNN algorithms in the same category, yet it can achieve 

higher recall. As for RNN-C tree, to the best of our knowledge, it is one of 

only two available RNN algorithms that can solve RNN in general metric 

space. Compared to its competitor, RNN-C tree is 1.5 times faster and does 

one order of magnitude less distance computation, which is central to pruning 

rules. 

The third contribution of this thesis is two successful applications of 

MPRQ in traveller information system and computational biology research. 

We had successfully adopted MPRQ as a natural extension to the query 

processing in RADS. Based on the pre-planned multi-criteria, multi-modal 

route that a RADS user obtained as input, MPRQ is able to efficiently return 

all the POIs in the map within the vicinity of the route. We had also 

successfully adapted the MPRQ algorithm for performing similarity sequences 

queries by coupling it with a trained self-organising map (SOM) [Koho01]. 

This is a novel approach in two ways: (a) the SOM is mostly used for 

clustering analysis and visual representation of sequences for detecting 

similarities [BeGe01, MMSG04, ASKK06]. Researchers mostly view a 
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trained SOM as the end result for spotting sequences similarity (using it 

manually by visual), and almost never exploiting it for further uses (post-

trained SOM uses). To the best of our knowledge, post-trained SOMs were 

only adopted in image retrieval applications for large image databases 

[ZhZh95] but they have never been used in sequences similarity problem; (b) 

by applying MPRQ on the SOM, we are able to perform a single similarity 

query not just for a single input sequence, but rather a series of input 

sequences simultaneously and obtain results that are similar to the input 

sequences as a whole. 

 

1.5 Organisation of Thesis 

 

This thesis is divided into 2 parts: Part I focuses on MPRQ and spans Chapters 

2, 3 and 4; whilst Part II focuses on RNN and is covered in Chapters 5, 6 and 7. 

A brief outline of this thesis is as follows: Chapter 2 summarises the relevant 

literature regarding data partitioning, query results filtering methods, data 

structures and discusses the MPRQ framework. Chapter 3 presents techniques 

for algorithms, experimental results and analysis of MPRQ in internal memory. 

Chapter 4 presents the extension of the internal memory MPRQ algorithms to 

external memory, introducing two more algorithms, with experimental results 

and analysis. It also covers a comprehensive look into the performance of 

MPRQ in external memory against relevant spatial join algorithms that can 

possibly be used to solve MPRQ. 

Chapter 5 summarises the relevant literature for related approaches to 

solving the reverse nearest neighbour (RNN) problem. This chapter also 

features some statistical analysis on the parameters used by RNN-Grid to 
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estimate results, as well as on the bounds of RNN-C tree height. Chapter 6 

explores the RNN and presents four algorithms in the RNN-Grid approach for 

solving RNN with estimated results. Chapter 7 subsequently describes a data 

structure we call the RNN-C tree for solving RNN with exact results. 

Finally, Chapter 8 concludes with some proposed extensions to this 

research and future work, for both MPRQ and RNN problems. Appendix A 

briefly describes a piece of research work this author has published, i.e. 

applications of MPRQ in problems from the computational biology domain, 

with emphasis on the peptide identification problem. 
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Chapter 2 MPRQ and Related Work 

 

Many applications that provide route-related services have an underlying 

database that does not change very frequently, as we do not expect bus stops 

and subway stations to be relocated all the time, if at all. Such databases are 

termed static. In contrast, databases that are subject to frequent updates are 

said to be dynamic. Usually, we query a spatial database to look for only 

subsets of objects that fit the conditions of our queries. This is called a region 

query. A special case of a region with zero area is called a point query. In 

order to facilitate searching of the database efficiently, suitable data structures 

are used to store the objects in the database based on the knowledge of the 

data being static or dynamic, and their distribution in space. Since 

geographical objects relate to each other primarily based on their relative 

position to one another, we term this as spatial indexing. 

Data structures and spatial indexing are just two aspects of a spatial 

query. [Knut98] listed the three typical queries: point query, to find a point 

data with exact attribute; range query, to find all point data that exist in a given 

region; and boolean query, which answers the existence of point data 

satisfying point query or range query. Recent advances in geographical 

applications created the need for many operators for spatial searching, 

including intersection, enclosure, adjacency, spatial join and nearest neighbour 

queries [LuOo93, GaGü98]. 

In many scientific, geographic and engineering applications, the 

storage and efficient retrieval of multi-dimensional data is extremely crucial. 
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Traditional one-dimensional data structures such as B-trees [BaMc72] or hash 

tables do not provide the answer to storing polygons, squares and rectangles. 

A number of data structures have been designed to cater for multi-dimensional 

data, such as the two-dimensional index R-tree [Gutt84] and high-dimensional 

indexes such as M-tree [CiPZ97] or iDistance [YOTJ01, JOTY05]. In 

performing proximity queries, we need to implement an indexing scheme that 

is most suitable for organising the data points so as to effectively prune away 

most unnecessary results. We describe several methods in the literature. 

 

2.1 Space Partitioning and Data Partitioning 

 

A data structure used for indexing can be divided into two categories: space 

partitioning (SP) and data partitioning (DP). 

In SP, search space in the problem domain (usually Euclidean space in 

planes, in general ℜd in hyperplanes) is divided into two or more disjoint (non-

overlapping) subset space so that during query, data can be found in exactly 

one of the subset space. SP schemes are usually hierarchical in nature, and a 

smaller piece of subset space can be recursively space-partitioned to become 

smaller non-overlapping space at a lower level. The space is organised as 

multiple levels of a tree, and the tree is termed an SP-based indexing data 

structure. 

On the other hand, if the search space in the problem domain is divided 

into two or more disjoint subset space based on the positions of data points, 

such schemes are called DP. Similar to SP-based index, DP-based index 

structures are also mostly hierarchical. The structure of a DP-based index is 
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highly dependent on the order in which the data points are presented (insertion 

order) as well as their positions when the index is constructed. 

 

2.2 Coarse Filtering and Fine Filtering 

 

One common strategy in query processing involves the use of coarse and fine 

filters [NiWi97], which is also called filter-and-refine technique [SeKr98, 

SCRF99] or geometric filtering and exact geometry processing [KrSB93]. In 

terms of spatial query processing, the trend to use a two-level processing is 

relatively new. 

Firstly, approximate geometric techniques such as the minimal 

orthogonal bounding rectangle of an extended spatial object is used to quickly 

and cheaply filter out as many objects as possible. This coarse filter is usually 

easy to perform and cheap on computational time and cost [NiWi97]. The 

overall running time of the whole spatial query is very much influenced by the 

success of the implementation of a coarse filter. This is because in the 

subsequent fine filter, or refine process, exact geometry is applied on every 

remaining candidate objects to eliminate false positive results. This process is 

extremely expensive as heavy computation is not uncommon to eliminate 

large candidate objects as they may have tens or hundreds of dimension (a 

typical polygon representing an accurate, complex real-world object typically 

has 1000 or more edges). 

 

2.3 Point-Region Quadtrees 

 

The quadtree [FiBe74] is a well-known class of DP-based hierarchical data 

structure for storing data points. Data points are assigned into one of four 
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quadrants in the tree, based on their coordinates in relation to points already 

inserted into the tree. There are always four child nodes to each internal node, 

and each internal node contains a data point (its coordinates). [Same89] 

described PR quadtree (point region quadtree), an extension that associates 

each quadrant with a relative data point region where data points are stored 

only at the leaf nodes. The structure of the quadtree encourages sub-dividing 

of the data space, even when two points are actually very close by and 

therefore have a great chance of answering a range query. 

In order to save time and space in sub-dividing the space into four sub-

regions (where three of them will be empty), some form of bucket methods 

were proposed [Knot71, Oren82, MaHN84]. A bucket is a presumably short 

linked list which holds data points that are close to each other in space. The 

size of the bucket is determined by a certain threshold; if f is the fanout size of 

the quadtree, the bucket size is usually between f and 2f. When a query reaches 

the leaf node which contains a bucket, all the points in the bucket are 

compared sequentially. An example of PR quadtree is illustrated in Figure 3. 

 

 
Figure 3. An point-region quadtree and the data points it represents. The data points 

are organised hierarchically in the order they appear, causing space to be decomposed 
w.r.t. data points 
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The PR quadtree was invented to overcome some of the drawbacks of using 

fixed grid cells structure. When data points are not uniformly distributed, 

many cells in the fixed grid will be empty, which is not efficient in terms of 

memory usage and utilisation. PR quadtree is a combination of the fixed grid 

method and binary search tree which can handle non-uniform data well. 

 

2.4 R-trees 

 

The R-tree was introduced by [Gutt84] and has since become a popular data 

structure for spatial searching. One reason is that, apart from its elegant 

generalisation from B-tree for storing multi-dimensional objects, the R-tree is 

capable of storing a myriad of complex objects such as lines, polygons in 

addition to mere points. Like the B-tree, R-tree is a hierarchical, height-

balanced on-line data structure where all the leaf nodes are on the same level 

(or differ by at most 1). Each internal node of the R-tree has the form (MBR, 

ptr) where MBR is the minimum bounding rectangle that encompasses all the 

MBRs of its child nodes in space (the MBR enclosure property).  

An MBR is characterised by a set of minimum and maximum 

coordinates defining a rectangle whose sides are parallel to the coordinate axis. 

Using the MBR instead of exact geometrical representation, any complex 

object is reduced to two points that define the most important feature of that 

object (i.e. its position and extension). The root node of an R-tree has an MBR 

that is the minimum rectangle of all the objects in the search space. Each leaf 

node of the R-tree also has the form (MBR, ptr) where the pointer points to an 

object being stored, rather than to another node. An internal node can have 

more than one child whose MBR overlaps and possibly covers a particular 
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object. Therefore, in order to search for that object, it is compulsory to traverse 

all the children nodes involved. Due to this inefficiency, the R+-tree was 

invented by [SeRF87] which eliminated overlapping altogether. 

 

 

An R-tree node has to be split when an object is inserted into a leaf node that 

is full. The splitting causes its immediate parent node to have one more child, 

and if the parent is full, it is also split. This process propagates up the tree until 

it hits a node that is not full or the root is split. [Gutt84] introduced three node 

splitting heuristics called exponential, quadratic and linear split. Many other 

splitting strategies were reported that minimised the overlapping area after the 

split [BKSS90, KaFa94, AnTa97]. 

The R*-tree [BKSS90] is a variant of the R-tree which is different in 

overflow handling and splitting policies. To handle an overflow node, it 

removes some rectangles from the overflowed node and re-inserts them from 

Figure 4. An example of a bulk-loaded R-tree. The R-tree is built from bottom up 
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the root of the tree in the hope that they would be accommodated by some 

other non-full nodes. 

The data structures discussed so far are all on-line data structures. They 

generally could have up to 73% node utilisation [AnSa96]. Their node 

utilisations and tree structures are compromised by the ability to insert or 

delete rectangle data dynamically. If we have a priori knowledge of the data 

before the data structure is built, we could possibly produce a fully packed R-

tree that greatly facilitates searching. This method of constructing a spatial 

index is called bulk-loading. 

 

Hilbert-Sort R-tree 

 

[KaFa93, KaFa94] proposed the Hilbert-Sort (called HilbertPack in this thesis) 

R-tree which imposes a linear ordering based on the mapping of the Peano-

Hilbert fractal curve [Hilb91], a space-filling curve as shown in Figure 5(a). 

The idea of space filling curves is to group similar data together, in this case 

the MBRs. The centre points of the MBRs are sorted based on their distance 

from the origin, measured along the Hilbert curve. This determines the linear 

order in which they are placed into the nodes of the R-tree. 

The R-tree is built bottom-up starting from the leaf level (external 

nodes pointing to spatial data), resulting in a tree that is fully packed except, of 

course, for the last node at every level of the tree. Under the Hilbert curve, 

objects with close linear order number are also spatially close (although the 

reverse is not true). Query processing is proven more efficient than other 

dynamic versions of R-trees (e.g. R*-tree) of up to 36%. The structure of 

HilbertPack R-tree is adapted from B*-tree, where the keys refer to the Hilbert 
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value of the data MBRs. Figure 5(b) reveals that some MBRs of HilbertPack 

at higher levels are very large, which will have an adverse impact on query 

processing as confirmed in our experiments. 

 

 
(a) (b) 

 

Sort-Tile-Recursive R-tree 

 

Sort-Tile-Recursive (called STRPack in this thesis) is a bulk-loading 

algorithm for the R-tree [LeEL97]. The basic idea for the STR algorithm is to 

tile the data space using nr  vertical slices so that each slice contains enough 

rectangles to pack roughly nr  nodes, where r is the number of rectangles 

and n is the cardinality. The centroids of rectangles are used as reference 

points. Rectangles are sorted by x-coordinates and partitioned into  nr  

vertical slices each containing r  rectangles. The process is recursively 

repeated but now with rectangles sorted by their y-coordinates. Figure 6 

reveals that most MBRs of STRPack are elongated, which will also have an 

adverse impact on query processing. The authors claim that STRPack 

outperforms HilbertPack for mildly skewed or uniform data. 

 

Figure 5. An example of applying Peano-Hilbert space filling curve to 
(a) an 8×8 grid in 2-d, and (b) the SG dataset 
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Top-down Greedy Split R-tree 

 

Top-down Greedy Split (TGS) is another bulk-loading algorithm proposed by 

[GaLL98]. TGS is motivated by the two key ideas: (i) it minimises the top 

levels first since the potential for cost reduction is higher, while (ii) 

considering all partitions induced by guillotine cuts such that resulting sub-

trees are fully packed. TGS is an aggressive approach to greedily construct the 

various sub-trees of the R-tree. It recursively applies a basic split step which 

partitions a set of r rectangles into two subsets by a cut orthogonal to an axis. 

A cut must meet the condition that minimises the cost of some objective 

function f(r1, r2) where r1 and r2 are MBRs of two ensuing partitions, and one 

subset must result in a fully-packed sub-tree. The recursion is applied to both 

subsets until there is one subset per child. 

Two major disadvantages are that TGS is difficult to implement and it 

requires a relatively much larger loading time. This led us to discover an 

algorithm modified from TGS which has similar performance but fast, which 

we call KDTopDownPack. 

 

 

Figure 6. MBRs of the R-tree of the SG dataset constructed with 
STRPack with cardinality n = 32 
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2.5 Proximity Queries 

 

We use the term proximity query to describe a type of spatial query that is 

unorthodox in the sense that consideration is given to the multi-point input for 

each instance of the range query. We view the multi-point input and the 

combined results that we obtained from the query as one proximity range 

query. The points that form the input to the proximity query are given in a list 

or array, in addition to a given search distance. The objective is to perform 

range query efficiently and report all the points (or objects) that lie within the 

range of the distance from the set of query points. Mathematically, for the 

general range query, given a finite set of points P = {p1, p2, …, pn} ⊆ ℜ2 and a 

circular region R ⊆ ℜ2, find the set of points Q = P ∩ R. 

At present, research interests are focused on addressing the k-nearest 

neighbour (kNN) queries. It has become a hot topic in the database research 

community and also is addressed by the computational geometry research 

community because it is useful in numerous applications such as data mining 

and knowledge discovery, multimedia database, pattern recognition, urban 

management and CAD/CAM systems. 

In short, the general kNN problem is defined as given a set S = {p1, 

p2, …, pn} of n objects, and a query point q, find a subset S' ⊆ S of size k ≤ n 

such that for any p1 ∈ S' and p2 ∈ S – S', dist(q, p1) ≤ dist(q, p2). Various 

techniques and algorithms were proposed for performing this type of queries 

in low-dimension, which is also the focus of this research. For example, 

[RoKV95] proposed a branch-and-bound method to answer 1NN queries (BB-

NN) and then generalised them for finding kNN. The BB-NN algorithm was 
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based on two metrics for ordering the NN search, and three pruning rules 

when visiting nodes during the search. Figure 7 illustrates. The various metrics 

and the concept of distance are detailed in Chapter 3. 

 

 

 

Later, [PaMa96] extended this work using a multi-disk multi-processor 

architecture, deriving the parallel nearest neighbour (P-NN) method. Since the 

BB-NN is a sequential algorithm, the P-NN algorithm generally outperforms it 

as the value of k increases, with as much as 60% improvements for large 

values of k (e.g. k = 400). 

Only very recently, research focus on spatial queries has started to 

address the problem of kNN for a moving query point (k-NNMP), which is 

useful for applications in transportation and logistics where a continuously 

moving car wants to track where the nearest petrol stations are [SoRo01]. This 

problem is different from the MPRQ in that the problem addresses the need to 

know the kNN of a moving query point at any one time along its path. 

 

 

 

Figure 7. The concept of MinDist, and MinMaxDist as used by [RoKV95] for 
branch-and-bound k-nearest neighbour search 
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2.6 Variants of Multiple Range Queries 

 

Query scheduling for multiple range queries was studied by [PaMa98]. Based 

on the idea that the performance of multiple queries can be improved if they 

share common data (subsequent nearby queries retrieve a lot of the same data), 

the authors presented an algorithm that sort its queries (of rectilinear 

rectangles), group them together so that they are spatially close, and finally 

pass them for processing. Results were shown for R-trees built on Hilbert-

curve sorted objects. Although the queries seem similar to the MPRQ, the 

main differences are (i) they are doing inter-query optimization, while MPRQ 

is a single query, (ii) the combined results obtained by joining the queries 

raised another issue which is the separation of results; extra processing needed 

to determine which objects belong to a specific range query. MPRQ generates 

cumulative results that answer the query as a whole. 

There are many variants of the multiple queries problem. One such 

recent work is the group NN queries [PSTM04], where two sets of points P 

(database) and Q (multiple input) are given and the aim is to find a point p 

from P that minimizes the sum of distances |pqi| for all qi ∈ Q. In [ZMPT04], 

for the same sets of points, the aim is to find the nearest neighbour from P for 

each and every point in Q. Three algorithms were described. The first is 

multiple NN (MNN) which is similar to RRQ in this thesis, except that the 

latter returns all points, instead of the nearest, w.r.t. the query points in Q. This 

approach is straightforward and already proven to be very slow in both 

[ZMPT04] and this thesis (Section 3.2.8). The second is batched NN (BNN) 

which is designed for cases where Q cannot fit in memory. BNN breaks all 



 

27 

points in Q into arbitrary groups (bounded by two thresholds, max number of 

points per group and MBR size of the grouped points) to be processed together 

against P. The third approach is hash-based NN (HANN) where the points in 

P and Q are hashed to a grid and subsequently loaded pairs <HQ,HP> (HP ∈ P, 

HQ ∈ Q) of buckets covering the same region are searched for each point in HA 

its NN in HB (with consideration for points near grid borders that might have 

NN in an adjacent region). 

 

2.7 MPRQ Terminologies 

 

This thesis deals with numerous issues regarding proximity queries, 

particularly a type of spatial query we call multi-point range queries (MPRQ), 

as well as its optimisation. The planned route in Figure 8 is returned by most 

route planning systems as it is the core functionality of a routing engine. 

Terminologies used throughout this thesis will be defined below. 

 

Definition (Path): Given a start point s and an end point z, a path is defined 

as any sequence of directed, non-cyclic, connected points from s to z 

represented as (s, p1, p2, …, pk, z) and consists of (k+2) nodes. 

 

Figure 8. A planned route consisting of a series of directed segments joined by nodes, 
each node/point representing a possible stop. A node is also associated 

to a time when that node is reached 

(p1,t1) 

(p2,t2) 
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Definition (Planned route): A planned route P is a path that is also 

associated to a corresponding sequence of arrival time T at each point when 

the path is traversed. T is represented as (ts, t1, t2, …, tk, tz) where ts is termed 

the start time. The route size of P, denoted |P| is equal to the number of points 

in P. A planned route is usually optimal w.r.t. some user-specified criterion 

such as time, cost or |P|. 

 

With a planned route P returned by the routing algorithm, we perform 

proximity query on the set of points. To find all the POIs along the path, the 

conventional technique is to perform range query |P| times of the radius d, and 

returning the union of the search results set R. Mathematically, it can be 

written as R = U
Pp

i

i

dp
∈

),Query(  where Query(pi, d) is a nearest-neighbour 

query that returns all the nearest neighbours of distance d from point pi. We 

call this straightforward technique repeated range queries (RRQ). This 

technique works when the search regions do not overlap, as shown in Figure 9. 

However, this is actually not a common occurrence in most real-life situations. 

 

Definition (Incidental event): Given a path P = (p1, p2, …, pn), a distance d 

and the proximity query result set R, an event e incidental to P is a dynamic or 

static point-of-interest (POI) that is found in the spatial database which 

satisfies: dist(e, pi) ≤ d,∃ pi ∈ P. An event can be incidental to more than one 

intermediate point in P (i.e. p2...pn-1). 
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As the search region d is enlarged, the conventional method becomes very 

inefficient because the combined results contain many duplicate events and 

some queries become almost redundant. This is evident in Figure 10. In a 

transportation network setting, route P can be a bus route while the nodes in P 

can be the bus stops that the bus calls at during the journey. On average, for a 

city that heavily relies on public transportations, bus stops are built within 

200-300 metres of one another. Almost all the time in most queries there are 

some number of duplicates results. Therefore, we strive to perform the 

proximity query just once, using techniques to effectively remove duplicate 

results and efficiently execute the query. 

 

Definition (Multi-point range query): Given a planned route P and a 

distance d, using a single query, find all the events incidental to all the 

intermediate points in P and return the non-duplicate results set R. 

 

 

Figure 9. Conventional technique for performing proximity queries on a planned route P. 
MPRQ is broken down into smaller queries with each being executed sequentially 

and the results combined 
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2.8 MPRQ Formal Problem Definition and Framework 

 

The formal definition of the MPRQ is presented in this section. Firstly, the 

constants and variables are defined. This is followed by giving the definition 

and the constraints of the MPRQ. 

 Let d be any search distance where d > 0, N be a spatial database of 2-d 

points, P = (p1, p2, …, pn) be a planned non-empty route with n-1 segments 

where each pi ∈ ℜ2 forms the segment from pi to pi+1, 1 ≤ i < n and P ∉ N. 

Figure 10. Performing queries on some route P gives many duplicate results; some queries 
like the one performed on point pi even become almost redundant 

 

d 

d 

d 

d 
d 

d 

 

Figure 11. Performing multi-point range query on the planned route P. We are interested in all 
the non-duplicate incidental events that are within a distance d from all nodes in P 
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Find the set of results R = {pi ∈ P | dist(e, pi) ≤ d, ∀e ∈ N}. The set R implies 

two observations: (i) the size of the results set being at most equal to the size 

of the spatial database (i.e. no duplicates are allowed); (ii) any event reported 

in the results set R will be within the distance d from some point in P. 
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Figure 12 depicts the multi-point range query framework upon which 

implementations for this research is based. The user query is in the form of a 

set of segments forming an acyclic path. The final results is a set of object 

references (or pointers) of all valid non-repeating objects that answer the 

query. In the scope of research, the MPRQ is constrained to use an averaged 

midpoint (centroid) to approximate any polygonal spatial objects for query 

processing. 

Figure 12. The multi-point range query framework depicts various areas that 
this research addresses, among others constructing the spatial index, proximity 

query pruning rules and duplicates processing 
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MPRQ not only performs the query but also filters off duplicate points 

and cleanly return only the results set of unique points. In other words, the 

results given by MPRQ do not include duplicates by default. On the contrary, 

RRQ cannot perform duplicates removal as each query point is processed 

independently of each other, sequentially. When all the results are obtained, 

the combined results must be post-processed for duplicates removal. It is 

already too late as the costs to obtain all results have been incurred. 

In our proximity query, the distance or metric used in calculating the 

proximity of any POI from the planned route is based on the L2 metric, i.e. the 

Euclidean distance dist(x, y) = 2
21

2
21 )()( yyxx −+−  for our case in 2-d 

space. It follows that all the results must satisfy the following four conditions 

for a metric to hold true: for any three points x, y and z, 

• dist(x, y) ≥ 0: distance is a nonnegative number 

• dist(x, y) = 0 ⇔ x = y: distance of an object to itself is 0, i.e. identity 

• dist(x, y) = dist(y, x): distance is symmetric 

• dist(x, y) ≤ dist(x, z) + dist(z, y): distance observes the triangle 

inequality principle 

It is possible to use any Minkowski metric, but for consistency with most other 

research works in the literature [RoKV95, PaMa96, MaMo01] we chose the 

Euclidean metric. We shall emphasise that our algorithms are, without loss of 

generalisation, valid for other metrics of any order of p (p-norm distance) in k-

dimensional space which is defined as 

Lp = 
p

k

i

p

ii yx

/1

1

|| 







−∑

=

 for 1 ≤ p ≤ ∞, and Lp = ||max
1

ii
ki

yx −
≤≤

 for p = ∞. 
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Chapter 3 Main Memory Algorithms for MPRQ 

 

In this chapter, we formally present the study of multi-point range query 

(MPRQ) for internal memory. This is because MPRQ is believed to work very 

well for small route and small database. Recall that in Section 2.7, we 

presented a problem scenario and definitions that describe a typical route and 

its connection to proximity query. The concept of MPRQ is subsequently 

formulated mathematically in Section 2.8. Moreover, implementation of 

MPRQ in this chapter follows the framework we defined for solving MPRQ 

also found in the same section.  

Algorithms and techniques for solving MPRQ are presented in Section 

3.1, followed by extensive experimentations described in Section 3.2. In the 

next chapter, MPRQ is investigated for cases where the database is stored in 

external memory. 

 

3.1 MPRQ Algorithms 

 

As our approach, we used a depth-first search strategy aided by various 

pruning rule techniques that would prematurely halt the search in an 

intermediate MBR (when certain conditions are met) and retrace its steps 

backwards. Technically, it can be termed as a branch-and-bound technique. 

The similarity is that we would still avoid many branches and their sub-trees 

altogether when the pruning condition matches. The major difference is that 

we do not keep track of an objective value and use it to terminate the search in 

a branch. Instead, pruning rules tell us when to shrink our query region size 
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(temporarily remove some input search points at different levels of the R-tree) 

and when to know that all subsequent objects under an MBR qualifies as the 

result (thereby reducing unnecessary computations). 

 Our pruning rules show promising results. Applying them on the 

MPRQ produces improvement in query processing time of up to 94.2% on 

average from the standard query processing time in which only the basic 

pruning rule is activated (i.e. avoid going into MBRs not intersecting with the 

query regions), which is the standard branch-and-bound technique. 

 

3.1.1 Preliminaries 

 

Definition (Node colour): Consider a planned route P = {p1, p2, …, pn}, a 

node R in the R-tree and C(p, d) as the query region centred at point p, with 

radius d. Then, 

• R is said to be white w.r.t. P iff R ∩ C(pj, d) = ∅ for all pj ∈ P, 

• R is said to be black w.r.t. P iff R ∩ C(pj, d) = R for some pj ∈ P, 

• R is said to be grey w.r.t. P otherwise. 

MPRQ will prune off the white nodes and search only the grey and black 

nodes in the R-tree. Note that these are natural extensions of the normal range 

query. This pruning rule is called NodeOut. 

 

Definition (Query point colour): Consider a query path P = {p1, p2, …, pn} 

and a node R in the R-tree. Then, 

• pj is said to be white w.r.t. R iff R ∩ C(pj, d) = ∅, 

• pj is said to be black w.r.t. R iff R ∩ C(pj, d) ≠ ∅. 
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The MPRQ algorithm will also prune off the white query points. This is where 

it enjoys the advantage of simultaneous pruning. This pruning rule is called 

PointOut. 

 

3.1.2 Algorithm 1: RRQ 

 

A straightforward approach to answer the multi-point range query is to apply 

the standard range query (RQ) to each and every point in P and combining the 

results, i.e. MPRQ(P, d) = ),( dpRQ
Pp∈

U . We call this repeated range query 

(RRQ). Since a call to RQ is independent of one another, each query will 

search the spatial index once. This is repeated as many times as the size of our 

planned route (|P|) to retrieve all results. A post-processing step is usually 

needed to eliminate the duplicates that result from overlapping of query 

regions (Figure 10). Apparently, this method is extremely expensive even 

when the whole spatial index resides in internal memory. 

This method is used by many web-based proximity query applications 

that disguise their weaknesses behind multiple, separate web pages for two 

reasons: (i) web pages displaying partial results are more intuitive to navigate 

and digest (reducing information overload) and reduces loading time; (ii) web 

pages are used to break up multiple points query using standard RQ as it is 

easier to implement, and they might not have an efficient algorithm to retrieve 

results given multiple query points. 
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 RRQSearch(R, P, d, Obj) 
 // Input:  MBR R, a query path P, a search distance d 
 // Output: Obj – set of objects within distance d of some 
 //         point in P 
 begin 

   R � R-tree.root 
   for each pi in P do 
     RQSearch(R, pi, d, Obj); 
   endfor 
 end; {procedure RRQSearch} 

 
 RQSearch(R, p, d, Obj) 
 begin 

   if (R is a leaf-node) then 
     Process objects in R wrt point p; 
   else 
     for each Rc of node R do 
       RQSearch(Rc, p, d, Obj); 
   endfor 

   endif 

 end; {procedure RQSearch} 

 
 

3.1.3 Algorithm 2: MPRQ-MinMax 

 

We introduce a combination of techniques called pruning rules that solve 

multi-point range query and make it possible to sustain good performance 

even when simultaneously dealing with a large set of query points. Recall that 

the R-tree data structure organises its nodes in a hierarchical manner where 

each node stores the minimum bounding rectangle (MBR) that contains child 

nodes of which no area is outside the MBR of their parent. Besides the MBR 

of a node, the pruning rules include two metrics computed to aid the pruning 

process, called MinDist and MaxDist, which are described below. 

 

Definition (MinDist): Given a point p, and a node in the tree, MinDist(node, 

p) is the smallest possible distance between p and any points contained by the 

node. If p is located outside the MBR of the node, we measure the distance of 

point p from the nearest boundary or the nearest vertex (corner) of the node’s 

Figure 13. Algorithm for implementation of RRQ 
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MBR. If p is located within the MBR of the node, MinDist is defined as having 

zero distance. 

 

Lemma 1. For any point p, MBR R, search distance d and C(p, d) is the circle 

with centre p and radius d, ∀q ∈ R, dist(p, q) > d if and only if R ∩ C(p, d) = 

∅. 

Proof. Since all objects q are bounded by R and the minimum distance 

between R and p is > d, it follows that the distance of any q ∈ R will be > d. 

This is the condition for MinDist. ■ 

 

 

p3 

p1 

p2 

node node node 

MinDist(node,p1) 

MinDist(node,p2) MinDist(node,p3)=0 

 

 

Definition (MaxDist): Given a point p, and a node in the tree, MaxDist(node, 

p) is the maximum distance between p and any points contained by the node. 

We measure the distance of point p from the furthest vertex (corner) of the 

node’s MBR. 

 

Figure 14. Different cases of MinDist. We illustrate the case where 
the point lies outside a node (MBR) and within a node 
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The concept of MinDist and MaxDist is illustrated in Figure 14 and Figure 15. 

These two metrics computed for each query point during query capture its 

suitability for pruning in the pruning process as a whole. Computing squares is 

less costly than computing square roots. Thus, in actual implementation, to 

achieve computational efficiency, the square root function is not used for 

MaxDist and the last case of MinDist. Instead, the first to third cases of 

MinDist are squared to keep the metric consistent for comparisons. 

Mathematically, MinDist and MaxDist are computed as follows. Given, 

node(x1, y1, x2, y2), p(x, y), i ∈ {x1, x2}, j ∈ {y1, y2} 

0  if (x1 ≤ x ≤ x2) and (y1 ≤ y ≤ y2) 
min( |x – i | ) if (y1 ≤ y ≤ y2) and ((x ≤ x1) or (x ≥ x2)) 
min( |y – j | )  if (x1 ≤ x ≤ x2) and ((y ≤ y1) or (y ≥ y2)) MinDist(node, p) = 











min( 22 )()( jyix −+− ) otherwise 

MaxDist(node, p) = max( 22 )()( jyix −+− ) 

 

The computation of MinDist(node, p) involves more case analysis and was 

described to great depth in [RoKV95, Chan01]. For computing MaxDist(node, 

Figure 15. Different cases of MaxDist. The MaxDist is still defined 
when point p lies within a node 
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p), it is very obvious that the maximum distance must occur at one of the 

vertices (corners) of the MBR and so we shall restrict our considerations to 

only the vertices of an MBR. This is more closely illustrated in Figure 16. 

 

 

 

Let p = (px, py) and let c = (cx, cy) be the centroid of the MBR R, and v = (vx, vy) 

be any corner vertex of R. Then, 

MaxDist(R, p) = 22 |)||(||)||(| yyyyxxxx cvcpcvcp −+−+−+−  

 

The following lemma forms the basis of MPRQ-MinMax. Lemma 2 postulates 

that any node satisfying the condition is grey, thus requiring further 

investigation (downward traversal). 

 

Lemma 2. For any point p, MBR R, and any object q ∈ R, R is grey if and 

only if MinDist(R, p) ≤ dist(p, q) < MaxDist(R, p). 

Proof. The first part of the condition, MinDist(R, p) ≤ dist(p, q), follows 

directly from Lemma 1. This means the query region of p overlaps R. The 

second part of the condition implies that the largest distance of an object in R 

Figure 16. Calculating MaxDist(node, p) using the point p, the centroid c 
and a corner vertex v of rectangle R 
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from p is smaller than R’s distance from p. This means that the query region is 

not large enough to totally cover R. Therefore R is grey. ■ 

 

 

A 

B 

C 

D 

q 

 

 

Pruning Rule 1: NodeOut 

 

In the example of Figure 17, during the index traversal, at a certain point down 

the R-tree tree we will find that the MBR of the current node (MBR A, which 

is not an external node yet) partially intersects the query regions. At this point, 

it contains several children labelled MBRs B, C and D. Some of the children’s 

MBR do not intersect with any query regions. For example, MBR B (a white 

node) does not intersect with any query regions but MBRs C and D do. 

Therefore, we can safely ignore MBR B as well as all its children because they 

will not be among the potential results as their parent is already further away 

from the query region than allowed. However, MBR C (a black node) is 

totally contained in the search region and MBR D (a grey node) partially 

Figure 17. An example to illustrate the pruning rules NodeOut and NodeIn. In this scenario 
we have MBR A, which contains MBRs B, C and D. The planned route with all the search 

points and the circular query regions are shown. (Note that in actual case, the boundary 
of an MBR tightly bounds the boundary of its child MBRs) 
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overlaps the search region, therefore we need to traverse down these two 

nodes in order to be sure. 

 Pruning MBR B can be done by establishing the condition that 

MinDist of MBR B to each and every query point is never smaller than the 

search distance, i.e. given planned route Q and search distance d, {q | q ∈ Q, 

MinDist(B, q) ≤ d} = ∅. 

To summarise, pruning rule NodeOut helps avoid traversing white 

nodes that do not overlap with any query regions. The rationale behind 

NodeOut is that in most proximity query instances, which are based on a 

planned route, the search engine can safely ignore all the MBRs that do not 

overlap with the search regions. In a very vast map, NodeOut quickly helps 

zoom into the query regions after several iterations of searching. It is 

imperative to note that NodeOut is achieved by the hierarchical R-tree data 

structure used to index the spatial data points, and any hierarchical data 

structures that use the concept of bounding boxes will also work. 

 

Pruning Rule 2: NodeIn 

 

In the example of Figure 17, we see that MBR C is totally contained by the 

query regions. It clearly shows that the circular search region, which is formed 

by the radius of search distance, completely encloses MBR C (hence, a black 

node). Therefore, we can be certain to recursively report all the results in all 

the children MBRs under MBR C without further MinDist/MaxDist 

computation and comparisons, right down to the leaf level (done by 

FastReport(Rc) in Figure 19). This can be determined as we compute 

MaxDist of MBR C and find that the MaxDist value is less than or equal to the 
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search distance, i.e. given planned route Q and search distance d, ∃q ∈ Q, 

MaxDist(C, q) ≤ d. As for MBR D, the condition MinDist(D, q) ≤ d < 

MaxDist(D, q) w.r.t. point q is true (Lemma 2). Hence it is a grey node and we 

have to traverse further down MBR D. 

To summarise, pruning rule NodeIn helps improve query time by 

automatically reporting all the results under a node that is completely 

contained by a query region. The rationale behind NodeIn is that in an instance 

where the search distance is amply large (for example, modelling it as 

customer coverage between cities), we can achieve early termination of 

pruning rules checking and just return all results. This is actually the case in 

most multi-point range queries of a reasonably large given search distance. 

The query usually terminates halfway down the search tree, reporting all 

qualified events correctly. 

 

Pruning Rule 3: PointOut 

 

 

 

 

Figure 18. An example to illustrate the pruning rule PointOut. Additional labels are given to the 
two query regions to the left of MBR A (Regions E and F) and one query region to the right of 

MBR A (Region G) 
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In the example of Figure 18, suppose we have traversed down to MBR A. It is 

obvious that we should not consider the three query points q1, q2, q6 (defined 

as white points) that define Query Regions E, F, G respectively because they 

do not overlap MBR A and therefore have no chance of hitting objects under 

MBR A. This pruning is guided by the computation that MinDist of MBR A 

from each of the three white points is already greater than the radius of their 

defined query region. The set of query points found at any level of the tree is 

always segmented into two mutually-exclusive sets, one in which the query 

points intersects\ the current MBR (the black points), and another in which 

they don’t (the white points), i.e. for any two sets X and Y where Q is the set of 

query points, find X ⊆ Q, Y ⊆ Q such that {x | x ∈ X, MinDist(MBR, x) ≤ d}, 

{y | y ∈ Y, MinDist(MBR, y) > d}, X ∪ Y = Q and X ∩ Y = ∅. 

Continuing the example, as we consider the children of MBR A, we 

subsequently prune away MBR B (rule NodeOut) and MBR C (rule NodeIn) 

and two more query points q3, q4 that do not overlap with MBR D (white 

points w.r.t. MBR D). The power of PointOut lies in that it can quickly shorten 

the query route length to only the remaining relevant query points w.r.t. the 

current MBR being investigated. 

To summarise, pruning rule PointOut helped improve search time 

greatly by removing white query points that does not overlap the node being 

investigated. The rationale behind PointOut is that as the search progresses 

down the spatial index, the intermediate nodes cover less area than their parent 

nodes, and hence are representing a (sometimes significantly) smaller defined 

area. Therefore the chances of a lower level node covering some query points 

are reduced, and hence we can safely prune away those query points too. 
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 MPRQSearch(R, P, d, Obj) 
 // Input:  MBR R, a query path P, a search distance d 
 // Output: Obj – set of objects within distance d of some 
 //         point in P 
 begin 

   if (R is a leaf-node) then 
     Process objects in R wrt path P; 
   else 
     for each Rc of node R do 
       PointOut-Rule(Rc, P, d, Pnew); // pruning rule PointOut 
       if (Pnew <> empty) then 
         if NodeIn-Rule(Rc, P, d) then  // pruning rule NodeIn 
            FastReport(Rc);        // report all objects 
         else MPRQSearch(Rc, Pnew, d, Obj); 
   endfor 

   endif 

 end; {procedure MPRQSearch} 

 
 

The algorithm combining the abovementioned pruning techniques is shown in 

Figure 19. In a nutshell, pruning rule NodeOut avoids traversing nodes that do 

not overlap with any query point at all. Pruning rule NodeIn reports all events 

under a node if a query region entirely encloses the node, terminating further 

search within that node branch immediately. Pruning rule PointOut considers 

only a subset of the query points when traversing the data structure, effectively 

pruning query points that are not in the vicinity of the node as we go deeper 

down the children of each node (as they focus on a smaller area of the map). 

 

3.2 Experiments and Results 

 

In all spatial queries, processing efficiency is the bottleneck. To improve the 

processing of proximity queries, two main directions can be pursued. Firstly, 

we could speed up the geometric algorithms in order to answer complex 

spatial queries efficiently. In MPRQ, there are a significant number of spatial 

overlay comparisons between MBRs and the query points. To cut down on the 

number of these comparisons, we introduced some pruning rules without loss 

Figure 19. Algorithm for implementation of MPRQ 
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of generality. Secondly, we could improve the retrieval time of spatial objects 

that are handled with spatial access methods (SAM). We experimented with 

various existing data structures such as quadtrees and R-trees. On top of the 

data structures, for the R-trees we implemented different node splitting 

heuristics and bulk-loading (offline packing) algorithms. 

Empirically, we compared the performance of various kinds of data 

structures suitable for implementing the query engine using the MPRQ-

MinMax algorithm (simply called MPRQ in experiment results in the 

remaining of this chapter). We also performed an in-depth study of the effect 

of applying the various combinations of our pruning rules. We compared the 

performance of MPRQ against the RRQ for answering proximity queries. 

 

3.2.1 Datasets 

 

The map database used in all experiments as well as the choice of datasets and 

the combination of experiment parameters are based on four factors, namely (i) 

the number of event points, (ii) the distribution of event points and the effect 

of clustering of event points, (iii) the search distance, and (iv) the modes and 

combination of different types of routes.  

We used the RADS database as the underlying source of GIS data to 

work with. The RADS database, based on the map of Singapore, consists of a 

collection of geographical objects represented by a series of coordinates. The 

nature of the RADS database is briefly described in this section in order to 

more understand the kind of GIS data we used in our applications. The RADS 

database was widely used in [FLLL99, Lao99, Ho00, NgLH04, NgLe04, 

NgLe07] for experiments. Firstly, the database represents real-life data 
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comprising the map of Singapore including definitions for landscapes, bus 

stops, subway stations, roads (partially) and buildings (partially). Secondly, 

because the RADS database consists of real-life data, we can expect the data 

distribution to be non-uniform. This provides an opportunity to conduct 

experiments on hot areas using real-life data. 

 

Definition (Hot area): Hot areas represent a concentration of activities that 

lead to a significant number of events within a span of a small area. We 

represent hot areas with clusters of different intensity, expressed in a 

percentage of the total events. Events not in the hot areas are randomly 

uniformly distributed. 

 

Thirdly, because the real-life datasets are based on Singapore, work can be 

carried out on a full dataset of one city totally in the main memory. Later, we 

could further scale up the implementation into external memory to apply the 

results on a larger city. Experiments were run with various parameters as listed 

in Table 1. 

 

Number of points 
(events) 

10000, 20000, 40000, 80000, 160000 

Clustering and  
distribution of points 
(hot area) 

• 100% uniform points 
• 2 clusters (20%, 10%) + 70% uniform 
• 4 clusters (10% x 2, 5% × 2) + 70% uniform 
• 8 clusters (8% x 2, 4% × 6) + 60% uniform 

Search distance 100m, 500m, 1000m, 5000m 
Planned routes R1, R2, R3, R4, R5, R6 

 

The number of points represents the events that will be available for search at 

any one time. The number of clusters (0, 2, 4 or 8) represents hot areas that 

Table 1. The nature of the RADS database that became the primary 
database for internal main memory experimentations 
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have a concentration of activities. It is realistic to assume at any one time there 

will be a few places with a concentration of activities. The search distance is 

representative of short walking to a destination (100m or 500m), a connecting 

short drive or shuttle buses taken from boarding to alight point (1000m or 

5000m). 

The query routes (R1, R2, R3, R4, R5, R6) chosen are more subjective. 

The aim is to simulate different kinds of transportation that a typical traveller 

may take. R1 is a typical journey using the subway going from the west to the 

east of Singapore. The stops are generally far away from each other (ranging 

from 900m to 4800m). R2 is a journey of taking a bus, then switching to the 

subway, getting off at a hot area (clustered), and continuing the journey on a 

connecting bus again. The entire journey passes by four hot areas. R3 consists 

of a long route by buses that pass through a hot area and continuing 

northbound. R4 is a typical long journey by bus from one end of Singapore 

(northwest) to the other (southeast), with many stops which are very close to 

each other (approximately 400m). It passes in between two clusters. R5 and 

R6 are short journeys (less than 10 stops) which do not pass through any 

clusters, both at two different parts of the map. They are used as control and 

correctness measure. Figure 20 illustrates some of the different parameters. 

 

Synthetic query route. A uniformly spaced horizontal route (called H-path) 

with 80 query points (at regular interval 500m apart) is used across all 

experiments, i.e. |H-path| = 80. We also have a vertical query path V-path with 

38 points and a diagonal query path D-path with 45 points. Figure 20(c) 

illustrates. 
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(a) (b) 

 
(c) 

 

Real-life query route. For one set of experiments, 6 real-life routes (R1 to R6) 

that are computed by the multi-criteria, multi-modal shortest-path algorithm of 

[FLLL99, Lao99] are used. The paths contain 34, 78, 120, 123, 11 and 7 query 

points respectively. The paths exhibit many aspects of a real-life travel plan 

which can consist of taking buses (query points very near to each other – 

meaning overlapping is heavy), the subway (points far apart – less incidents of 

overlapping), and combinations of the two. 

 

 

Figure 20. Graphical representation of the RADS database. The rough map of Singapore is 
formed by (a) 2 clusters (20%, 10%) + 70% uniform, (b) 8 clusters (8% × 2, 4% × 6) + 60% 

uniform, and (c) 100% uniform. The percentage specified is the percentage of total points used. 
In (a), we used two long planned routes, one consists of multiple bus stops and the other is an 

MRT journey, both passing through a clustered area. In (b), we see one planned route that misses 
the clustered area and the other goes through many clustered area. In (c), we see synthetic routes 

with regular intervals called H-path, V-path and D-path 
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3.2.2 Effect of the Number of Query Points 

 

 

  

(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points) 

 

Very naturally, we first compare MPRQ and RRQ across varying number of 

points in the path (1-80) in the horizontal query route H-path. Figure 21 and 

Figure 22 show the results comparing both the query time and the number of 

nodes visited for MPRQ and RRQ. It is clear that MPRQ outperforms RRQ. 

For the Singapore dataset (Figure 21), the query time speed-up is 81 times for 

|P| = 80; and 6.5 times for |P| = 10. In general, the query time speed-up 

increases with the number of query points. 

  
(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points) 

Figure 21. Comparison of MPRQ and RRQ for query route H-path and d=500m 

Figure 22. Zoom in on Figure 21 for 1-10 query points 
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The reduction in the number of nodes visited for MPRQ versus RRQ is 

also significant. For the case of H-path, the number of nodes visited rises 

almost linearly with the number of query points for both MPRQ and RRQ. 

Figure 21(b) shows that, on average, the number of nodes visited by MPRQ is 

about 45% and 40.8% of that for RRQ. 

In general, we expect MPRQ to perform better when the number of 

points in the query route P increases. Therefore, as a stringent test we have 

also zoomed into the cases where 1 ≤ |P| ≤ 10. The results are shown in Figure 

22 and they confirm that MPRQ outperforms RRQ even when there are only 

two points in the query route P. 

In addition, our results for the other two query routes V-path and D-

path as well as the real-life NJ dataset (not shown here) also show identical 

trends with respect to performance comparison between MPRQ and RRQ. So, 

for the remainder of this study, it suffices to report on results for H-path. 

 

3.2.3 Effect of the Search Distance 

 

 

  
(a) (query-time) vs (search-distance) (b) (# nodes-visited) vs (search-distance) 

Figure 23. Comparison of MPRQ and RRQ for H-path with 80 points 
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We now compare MPRQ and RRQ across different search distances – Figure 

23 for the Singapore dataset with |P| = 80. The results show that there is a 

significant speed-up in the query time when using MPRQ as compared to 

RRQ. In particular, Figure 23(a) shows that the speed-ups in query time (of 

MPRQ vs RRQ) are 37 times, 82 times, and 97 times for the search distance d 

= 200m, 500m, and 1000m, respectively. The distances represent no over-

lapping, moderate overlapping and heavy overlapping of query regions. 

More stringent tests with very short query route (H-path with 1 ≤ |P| ≤ 

5) and d = 3000m showed that the query time speed-up for MPRQ ranges from 

2.82 times to 13.38 times. Also, the number of nodes visited for MPRQ (as a 

ratio of that for RRQ) ranges from 0.40 to 0.63. 

 

3.2.4 Effect of Clustered Dataset 

 

 

We ran MPRQ and RRQ on the clustered datasets to observe the effect of 

clusters on proximity queries. It is not uncommon for a traveller to travel into 

and out of a hot area in a journey. For these runs (shown in Figure 24), we use 

the query route V-path that cuts across several clusters of points and d = 500m. 

  
(a) (query-time) vs (# query-points) (b) (# nodes-visited) vs (# query-points) 

Figure 24. Comparison of MPRQ and RRQ using clustered data, V-path and d=500m 
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Again, it is clear that MPRQ significantly outperforms RRQ. Compared to 

random dataset, the curves are not as smooth – most likely due to the presence 

of clusters that cause variations in the results. We can conclude that MPRQ’s 

superior performance holds even for clustered datasets.  

 

3.2.5 Performance of Real-Life Routes 

 

 

The performances of the four real-life routes (route1-4) are shown in Figure 25 

showing clear advantages of MPRQ over RRQ. We plot the ratio of query 

time for RRQ over MPRQ. In Figure 25(a), the query time speed-up for real-

life routes is generally similar to those for the synthetic H-path (shown in 

Figure 23). The lines show that speed-up continues to rise as search distance 

increases. In Figure 25(b), the reduction in the number of nodes visited for 

MPRQ widens with the search distance. 

 

 

 

  
(a) 

query-time(RRQ)
query-time(MPRQ)  vs (search-distance) (b) 

# nodes-visited(MPRQ)
# nodes-visited(RRQ)   vs (search-distance) 

Figure 25. Comparison of MPRQ and RRQ for real-life routes (route1-4) 
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3.2.6 Performance of Data Structures 

 

Extensive experiments were performed using datasets described in the 

previous section on various data structures to measure the performance of data 

structures against MPRQ. Two metrics were used as measurement for the 

various data structures, namely query time per point and memory used per 

node. Both are calculated as follows. 

Average query time = 
Total query time

Size of spatial database  

Average memory used = 
Total memory used
Total nodes in tree   

The PR quadtree was first investigated using varying bucket size and 

maximum tree depth. The bucket size determines the maximum objects stored 

at the leaf level before it overfills and be split into two. The larger the bucket, 

the better the utilisation. The maximum tree depth is imposed to prevent from 

getting a narrow, skewed and chain-like tree. Typically, an events-based GIS 

database can contain data points that share the same exact location (e.g. an 

exhibition event at a convention centre, or many different companies located 

inside a high-rise building). A bucket implementation effectively keeps the 

points (internally) together in the resulting tree node. Results are shown in 

Table 2 and Table 3. 

 

Maximum Tree Depth Average Query Time 
(ms) 9 12 15 18 21 24 
PR Quadtree 0.419 0.321 0.309 0.318 0.360 0.388 

2 0.431 0.296 0.292 0.317 0.329 0.351 
4 0.279 0.274 0.291 0.299 0.292 0.294 
8 0.236 0.236 0.234 0.253 0.240 0.253 
16 0.228 0.208 0.228 0.227 0.209 0.206 
32 0.204 0.206 0.197 0.218 0.212 0.203 

Bucket Size 

64 0.183 0.184 0.197 0.189 0.198 0.201 

Table 2. The average search time in milliseconds of the PR quadtree implementation 
with various bucket sizes and maximum tree depths limited to various depth levels 
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Maximum Tree Depth Average Memory Used 
(bytes) 9 12 15 18 21 24 
PR Quadtree 40.2 48.2 62.0 81.7 104.8 128.5 

2 40.3 48.0 59.8 75.6 93.0 109.3 
4 47.1 59.5 73.0 83.9 91.8 96.9 
8 61.3 70.9 75.5 77.9 78.5 78.8 
16 66.2 67.2 64.5 65.0 67.7 67.7 
32 61.8 61.9 61.9 61.9 61.9 61.9 

Bucket Size 

64 59.6 59.6 59.6 59.6 59.6 59.6 

 

For the PR quadtree alone without buckets, the average query time is best 

when a depth of 15 is used. The average memory used per node is increasing 

proportional to the tree depth. For the PR quadtree with varying bucket size, 

the search time improves as a larger bucket is used. The best time is achieved 

when the maximum depth is set at 15. Since the bucket is a linked list, the 

larger the bucket the longer it takes to search through it. Hence a bucket which 

is too large will adversely affect query time (the time saved from using the 

quadtree hierarchical structure cannot compensate for the time spent on 

searching buckets). As for memory used, there is more or less no difference 

when a larger bucket is used. 

 

 

Table 3. The average memory used per node in bytes of the PR quadtree with 
various bucket sizes and maximum tree depths limited to various depth levels 

  

(a) (query-time) vs (# query-points) (b) (query-time) vs (# query-points) 

Figure 26. Different R-tree data structures: HilbertPack, R*-tree, STRPack and KDTopDownPack. 
(a) comparison of MPRQ and RRQ for d=500m, (b) showing MPRQ only for d=500m 
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Bucket Size Average Query Time 
(ms) 8 16 32 64 128 

QuadSplit 0.508 0.434 0.731 0.975 1.201 
LinearSplit 0.448 1.094 1.597 1.376 1.862 
NewLinearSplit 1.031 0.843 0.741 0.790 1.228 
R*-tree 0.418 0.564 0.569 0.718 1.122 
HilbertPack 0.410 0.563 0.775 1.215 1.468 
STRPack 0.354 0.414 0.565 0.750 1.004 

R-tree 
variants 

KDTopDownPack  0.112 0.136 0.174 0.252 0.384 

 

As for the R-trees variants shown in Figure 26 (data shown in Table 4 for 

clarity), for the average query time, it is observed that as bucket size increases 

to 64, some on-line algorithms like NewLinearSplit [AnTa97] and R*-tree 

perform comparably with STRPack which is an off-line bulk-loading 

algorithm. Generally, STRPack performs very well at different bucket sizes 

compared to the rest except the KDTopDownPack. The latter is much faster 

than the former due to its design whereby it splits the search space to be 

disjoint at each level and further partition and pack each node down from the 

root level. At all levels, KDTopDownPack computes the axis major for any 

subset of rectangles it is about to organise, and uses the axis major to split its 

rectangles, resulting in well-divided, balanced area on its children. Our result 

for HilbertPack is also in line with [HKCL03] who conducted a performance 

study of main-memory R-tree variants. 

 

Bucket Size Average Memory Used 
(bytes) 8 16 32 64 128 

QuadSplit 101.3 94.0 90.4 88.6 87.3 
LinearSplit 101.4 94.3 90.8 89.5 89.6 
NewLinearSplit 96.8 89.6 86.6 85.5 85.2 
R*-tree 97.0 90.2 87.2 85.8 85.5 
HilbertPack 97.8 93.0 90.9 89.8 89.4 
STRPack 43.7 39.7 38.1 37.8 37.4 

R-tree 
variants 

KDTopDownPack  45.2 40.3 38.5 37.3 36.7 

Table 4. The average search time in milliseconds of various implementations of node 
splitting heuristics and R-tree bulk-loading algorithms with various bucket sizes 

Table 5. The average memory used per node in bytes of various implementations of node 
splitting heuristics and R-tree bulk-loading algorithms with various bucket sizes 
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Table 5 shows the average memory used by the R-tree variants. Generally, 

average memory used decreases with larger bucket sizes until it stabilises. The 

STRPack and KDTopDownPack are close to each other on this term, while the 

rest use about 3 times greater memory. This is due to both trees being packed 

to the brim even from the start, exhibiting good utilisation of buckets. When 

taking average query time into account, the proposed KDTopDownPack is 

definitely the outstanding one. Because of this, we use it as the default data 

structure for MPRQ. 

 

3.2.7 Effectiveness of Pruning Rules 

 

Using our experiment datasets, we next investigate the effectiveness of the 

pruning rules that we introduced. We applied the pruning rules (described in 

Section 3.1.3) incrementally and ran separate rounds of experiments. For easy 

referencing, they are summarised as follows. 

NodeOut. Avoid traversing nodes that do not overlap with any query point. 

NodeIn. Report all events under a node if some query region contains it. 

PointOut. Consider only a subset of query points while traversing the index. 

We start by applying rule NodeOut to the R-tree as a baseline for our 

experiment, then apply NodeIn and PointOut incrementally and we measure 

the difference in performance in terms of time taken to answer an MPRQ. 

NodeOut was picked as the baseline because it is considered to be a pruning 

technique implicitly derived from using a hierarchical data structure alone. 

Table 6 summarises the effect of these pruning rules.  
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 Percentage compared to applying 
pruning rule NodeOut as baseline 

measurement 
Pruning Rules min mean median max 
NodeOut 100.0% 100.0% 100.0% 100.0% 
NodeOut +NodeIn 45.3% 88.9% 93.3% 102.2% 
NodeOut +PointOut 0.2% 8.1% 3.0% 41.2% 
NodeOut +NodeIn+PointOut 0.2% 5.8% 2.8% 34.3% 

 

We observed that by adding pruning rule NodeIn on top of NodeOut, we 

obtain a 11.1% decrease in query processing time. By applying PointOut, we 

obtain a further 83.1% decrease in processing time (only 5.8% of the original 

time). On the other hand, applying pruning rule PointOut on NodeOut results 

in 91.9% cut in query processing time, while applying NodeIn further results 

in another 2.3% reduction.  

In general, we note that pruning rule PointOut helps in reducing more 

of the query processing time over pruning rule NodeIn. This is because a route 

might spread across a wide area (possibly the entire search space), and hence, 

eliminating irrelevant query points that do not affect the computation of 

overlapping operation greatly helps in reducing the processing time by cutting 

out a lot of branches that need not be traversed. On the other hand, pruning 

rule NodeIn only helps when the search distance is relatively larger than the 

areas covered by the nodes in a data structure, pruning thus takes place near to 

the leaf level (with smaller node coverage) of the tree. 

 

3.2.8 MPRQ vs Traditional Query 

 

It is interesting to know how well our pruning techniques perform in 

comparison to the traditional method, which is the RRQ. We conducted 

Table 6. The effectiveness of applying different pruning rule combinations. NodeOut was 
used as the baseline. The percentage value represents the time taken for answering the 

multi-point range query. In interpreting the results, we used the mean running time 
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experiments to show its merits in performance (running with all three pruning 

rules activated) in contrast to performing query processing using traditional 

methods, i.e. performing the query point-by-point and combining the results 

(with duplicates removed in post-processing). Using MPRQ-MinMax, we only 

need to perform the search once with the all the points in the route as one input 

set (incorporating the pruning rules that we described).  

 

Query Type Average Query Time 
(ms) MPRQ RRQ 

Improvement 

QuadSplit 700.375 5128.708 7.323 
LinearSplit 733.458 5061.958 6.901 
NewLinearSplit 693.396 5120.938 7.385 
HilbertPack  673.875 4932.604 7.320 
STRPack  640.500 4850.438 7.573 

R-tree 
variants 

KDTopDownPack 609.040 4811.710 7.900 

 

Table 7 shows that MPRQ outperforms RRQ by as much as 8 times (when 

using KDTopDownPack). The reason behind this is because MPRQ can prune 

away the nodes that do not overlap the combined search regions of all search 

points at all. Once the MPRQ found a node that is contained in one of its 

query regions, it will immediately report everything under that node and not 

consider that branch anymore, saving valuable computational time. 

On the contrary, RRQ traverses down the data structure once for each 

and every search point in the whole path sequentially, oblivious to 

neighbouring search points. The spatial index is traversed as many times as the 

input route size, with the possibility of traversing down the same nodes at the 

top of the tree each time (if two consecutive query points are close to each 

other). Even in the case of internal memory here, which does not incur disk 

Table 7. The average query time in milliseconds comparison of various implementations 
of node splitting heuristics and R-tree bulk-loading algorithms between the multi-point 

range query and the traditional repeated range query 
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I/O costs which is 2 orders of magnitude higher, the RRQ loses to MPRQ. 

This is true despite MPRQ having to perform more computations than RRQ 

due to the complexity of its pruning rules. 

 

3.3 Summary 

 

Several spatial data structures used in indexing objects in isotropic search 

space were explored. These are data structures that support space 

decomposition, i.e. by dividing search space until it is small enough to 

accommodate an individual object. We implemented and investigated PR 

quadtree, kd-tree, R-tree and its many variants (different node splitting 

techniques and R-tree bulk-loading algorithms) on their performance in multi-

point range queries.  

Experimentation results showed that our KDTopDownPack bulk-

loaded R-tree (refer to [Ho00] for details) outperforms other spatial data 

structures in terms of memory use and query time. For example, it outperforms 

the PR quadtree by one-third in query processing time with about one-fifth 

savings in memory used for the data structure. Compared to other R-tree 

variants, KDTopDownPack took only half the time to answer the same query 

although the memory used is slightly more than its closest rival the STRPack 

R-tree. Therefore, we decided to focus on KDTopDownPack R-tree as our 

base data structure in all MPRQ implementations. 

MPRQ is a special type of query characterised by a series of points that 

represents a travelling route. We explored decomposition issues [KrSB93] 

with regard to multi-point range queries. We had looked into the issue of 

object decomposition (using pruning rules), where geometric tests are only 
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applied to a representative of the object which is more efficient than testing for 

the whole object [KrHS91, NiWi97, SeKr98, SCRF99]. We arranged the 

events into regions before indexing them with a spatial data structure so that 

objects are organised with respect to their location as proposed by [SeKr90]. 

This forms the implementation of object and space decomposition. Our 

experimental results show that the three pruning rules combined are very 

effective in cutting down query processing time. 

As a summary, this study has addressed many issues in dealing with 

the multi-point proximity range query, enough to develop an initial prototype 

incorporating the right data structure and pruning algorithms for a small 

database. We had expected MPRQ-MinMax to perform well for small route 

queries, and our empirical studies have proven it. In the next chapter, we 

explore MPRQ for the case of very large database involving external memory. 
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Chapter 4 External Memory Algorithms for MPRQ 

 

Often in dealing with spatial databases, even the smallest dataset may be too 

large to reside in internal memory. Not many systems can afford the luxury of 

having very fast processors with lots of internal memory. In 2000, the cost of 

memory (dollar per MB) stands at US$0.30 compared to about US$40 back in 

1990. Even so, there is the problem of not enough space and heat in packing 

too many transistors per square inch into a memory module. The largest 

memory module today for the personal computer is 4GB RAM module. New 

memory technologies with low power consumption called flash memory (such 

as CompactFlash, Secure Digital or MultiMedia Card), commonly used in 

PDAs and handheld devices, are also comparable in price to standard memory.  

Even with such a drastic drop in memory cost, the idea of processing 

large amounts of data on external storage with a small amount of internal 

memory is still unfathomable. A typical GIS database size is in the range tens 

of terabytes (1012 bytes). There are 23×109 billion indexed web pages in the 

world as of May 2010, according to Google. Due to the sheer size alone, it is 

inescapable for proximity querying applications to commonly deal with large 

amounts of data stored in secondary memory. 

 We know that the cost of disk accesses is relatively much more 

expensive than its internal memory cost counterpart even on a single 

workstation, let alone distributing the data components across the globe using 

wide area networks (WAN), which is the common practice in today’s 

globalised world. It is not uncommon to perform spatial joins of spatial 
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databases from different spatial data centres located in different geographical 

locations worldwide. 

 

4.1 External Memory Experimentation Systems 

 

In experimentation, the research world is divided and there are not any 

canonical programming methods or platforms in which research on disk-based 

algorithms are done. As disk access activities such as data-to-disk mapping, 

actual I/O calls, data buffering, caching and I/O timing and accounting are not 

standard to any programming language (C, C++ or otherwise) or operating 

system, it is generally very difficult to implement an experiment that conforms 

to the design of a sound disk-based experimentation framework. We do not 

wish to mix the algorithm part of our application with the presentation logic 

and the disk-access logic in one program. This would greatly increase 

coupling, which is not desirable. 

 

Packages Comments 

MPI General message-passing routines; supports only C (not 
C++) and Fortran 

PVM Comprehensive message-passing routines, widely used in 
educational and commercial applications 

TPIE Created to support parallel I/O systems research, many 
research papers around 

LEDA-SM Relatively new, provides basic external data structures like 
lists, stacks, queues, arrays  

STXXL An implementation of the C++ standard template library for 
out-of-core computations 

 

We researched some of the high-level packages supporting disk access that are 

freely available for research. They are generally divided into two categories, (i) 

Table 8. Different software components widely used for research in the performance 
of external (secondary) memory data structures and algorithms 
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those that facilitate computer to computer communication via message packets; 

and (ii) those that provide a templated data structure that simulates disk access 

and its fundamental methods (e.g. insertion and deletion for a disk-based data 

structure implementation). 

In Table 8, the first two packages, MPI (Message Passing Interface) 

[GrLS94, MaDo94] and PVM (Parallel Virtual Machine) [Sund90, GBDJ94] 

belongs to the message passing category. TPIE (Transparent Parallel I/O 

Environment), LEDA-SM (Library of Efficient Data Structure for Secondary 

Memory) [CMAB98, CrMe99] and STXXL (Standard Template Library for 

Extra Large datasets) [DeKS05] belongs to the access-oriented library for I/O 

implementation. After investigating, we chose TPIE for MPRQ. 

TPIE (Transparent Parallel I/O Environment) is a framework-oriented 

approach for development of I/O codes. TPIE [Veng94] is a set of templated 

classes and functions that facilitates the implementation of external memory 

algorithms. The whole process of reading data, processing and writing them 

back to disk is abstracted out by TPIE into a continuous process where the 

program is fed data mapped from an outside source (physical disk drives), 

reads into and writes data from it. The underlying details of how I/O is 

performed on a particular machine/platform are handled by TPIE, as well as 

the associated accounting such as time and memory used and I/O operations 

performed. Each disk D is a simulated stream of objects that resides on disk as 

a file. Continual support by the developer with release of newer stable 

versions and ease of deployment make TPIE a good choice. 
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4.2 Porting MPRQ to Disks 

 

To run new experiments on external memory with the previous sets of MPRQ 

codes, some modifications are in store to implement the chosen disk-based 

programming library, the TPIE. First of all, a realistic disk block size B is 

chosen. This parameter is often called the page size in the literature. Each I/O 

will consist of a read/write operation of size B that we want to simulate a true 

logical block of disk access in the underlying operating system. This is done 

by modifying the BTE_MMB_LOGICAL_BLOCKSIZE_FACTOR value inside the 

app_config.h file. The AMI (Access Method Interface) is one of the three 

components of TPIE and is the only one that we have to interact with. The 

settings for our implementation are as follows. 

BTE_IMP_MMB – we used memory mapped block transfer engine, where 

each disk D is implemented as one ordinary file in the Unix file system. This 

paradigm transparently maps the currently accessed block of a file to internal 

memory. When a node is outside the mapped block, the current block is 

unmapped (saved to the disk if modified) and a new one (a node that is 

requested) is mapped from the disk. This is equivalent to one I/O operation. 

Logical disk block size factor = 4 – we used the LDBS of 4 * O/S block size. 

We ran experiments on Linux, whose file system’s default block size is 4096 

bytes, the size of one inode (the basic building block at file system level). 

When a node is accessed, its disk_index is retrieved and a seek is made 

to the disk location before a read or write operation takes place. A seek outside 

the current logical block mapped into memory will cause an unmap operation 

of the current block and a map operation to the new block. So if the next node 
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to access is physically nearby, a read/write will not generate an I/O operation, 

as it is done within the current block. 

Each node R has a block id which consists of the bucket size (fan out) 

number of Rc (R’s children), each with their own block id. Largely, the 

handling of block ids is synonymous to the handling of pointers in main 

memory. In the MPRQ algorithm, the spatial data structure is implemented 

with a struct node which contains up to f (fan out) pointers to other struct 

node objects, at the leaf level in which they are cast to point to real spatial data 

points. In the MPRQ algorithm modified for disk, henceforth we refer to as 

MPRQ-Disk, nodes are stored in blocks that contain links (block ids) to other 

nodes (blocks). 

In previous experiments in internal memory, three metrics were used 

as a measurement for the various data structures, namely the average query 

time, the number of nodes visited during query and memory used per node. 

When focus is shifted to disk-based accesses, we are interested in the amount 

of disk I/Os that each data structure uses during operation. This figure should 

be minimised and optimal to the data on disk with respect to locality. Since the 

cost of a disk I/O operation is several orders of magnitude greater than a 

memory access, our algorithm running time is clearly dominated by it. In the 

literature, disk I/Os are commonly used for upper and lower bound analysis of 

algorithm performance. 

Measurements are obtained from the statistics provided by TPIE at the 

end of each experiment. TPIE provides statistics on the number of reads, 

writes, maps, unmaps and seeks. The number of I/Os performed by an 

algorithm is given by TPIE’s count of the number of map operations 
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performed, which is fully documented. This is also the measurement used in 

the research done in [AHVV99]. 

Two issues to look at are locality of reference and the amount of data 

to access in a single block of I/O operation. The data exchange between the 

internal memory and the external memory is one logical block at a time. 

Locality of reference means access to all data inside this block takes about the 

same time as accessing a single item within the block, because a chunk of data 

is read or written in one I/O. The question is how large a chunk (logical block) 

should be used. Many researchers go by LDBS = 4 [KrSB93] because that is 

the default block size in the Windows and Linux file system platform, the size 

of one cluster in FAT32 up to 8GB per partition. 

In our study of MPRQ in internal memory, the issue of performance 

was largely dominated by the effect of pruning of the nodes visited during the 

tree traversal. The performance speed-up of the MPRQ algorithm is more or 

less directly proportional to the number of nodes visited during the query 

process. However, when porting MPRQ to disk, several different performance 

issues needed to be studied – for instance, as disk block reads are typically 

much slower than internal memory access, the number of disk I/Os becomes 

the critical factor in performance. Since each disk block contains nodes of R-

tree, issues such as disk block size and disk buffering greatly affect the 

performance of MPRQ-Disk. 

For the disk case, given the size of spatial database N, the size of disk 

block B, at any node R in the R-tree, MPRQ-Disk now incurs O(m*B) time for 

each node, where m is the number of query points and f ≤ B is the fan out of 

node R. The former, m, is mostly internal CPU computation where the pruning 
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rules of NodeIn and PointOut take place. Since disk accesses are generally 2-3 

orders of magnitude slower than CPU computations, B becomes dominant and 

it contributes to the bulk of the query time and the total number of I/Os. In 

comparison, the RRQ has a processing time of O(f) per node in internal 

memory, but O(B) on disk. In general, RRQ-Disk answers MPRQ in 

O(m*(logB N + k/B)) using bulk-loaded R-trees (such as KDTopDownPack) 

which guarantees a bounded height of O(log n), where k is the number of 

results found. There is also a post-processing cost of O(K log K) to remove 

duplicates, where K = ∑ =
m

i ik1
. In comparison, MPRQ-Disk answers MPRQ in 

O(logB N + k/B). 

 

 MPRQ-Disk-Search(Bid, P, d, Obj) 
 // Input:  Disk block ID Bid, query set P, search distance d 
 // Output: Obj – set of objects within distance d of  
 //         some point in P 
 begin 

   Access block Bid for node R; 
   if (R is a leaf-node) then 
     Process objects in R wrt path P; 
   else 
     for each Rc of node R do 
       PointOut-Rule(Rc, P, d, Pnew);   // Pruning rule PointOut 
       if (Pnew <> empty) then 
         if NodeIn-Rule(Rc, P, d) then // Pruning rule NodeIn 
           FastReport(Rc.Bid);   // report all objects under Rc 
         else MPRQ-Disk-Search(Rc.Bid, Pnew, d, Obj); 
   endfor 
   endif 
 end; {procedure MPRQ-Disk-Search} 

 
 

4.3 MPRQ Algorithms 

 

4.3.1 Algorithm 3: MPRQ-Sorted Path 

 

With a larger database, we need to have more efficient pruning methods. The 

sorted path approach, which we shall call MPRQ-SP [NgLe04], sorts the input 

Figure 27. Algorithm for MPRQ-Disk 
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query route along the major axis and takes advantage of the fact that the query 

points are always sorted to quickly prune the path with respect to the MBR 

being processed. This technique involves making slight changes to the 

MPRQSearch algorithm of Figure 19 and is easy to implement. The main 

difference is in the way the two pruning rules, PointOut and NodeIn, are 

implemented. Hence, only the corresponding algorithms for these two pruning 

rules are presented. Other algorithms that are needed to provide supporting 

roles but are common, such as sorting and binary search, are omitted. 

MPRQ-SP prepares the planned route P for ease of pruning by sorting 

all the query points according to its major axis before the query begins. While 

traversing down the R-tree, to eliminate all the white points in P w.r.t. a node, 

it is now possible to quickly find the cut-off left and right end of P to extract a 

shorter sorted sub-path for passing down to that child node. In general, instead 

of evaluating n points for any given node and path, it now suffice just to 

evaluate O(log n) points, providing substantial savings especially when the 

size of input query is very large. 

MPRQ-SP has three major steps: determine the axis major of the input 

path P, rearrange (sort) all the points in P along the axis major, and finally 

begin query with the sorted path P. The first step is straightforward, and it 

involves scanning P to determine whether the path P is more horizontally or 

vertically inclined. This process can be achieved in O(n) time. Then all the 

points in P are sorted according to the axis major of P, i.e. the longer of the 

two axes. Sorting takes O(n log n) time. The second step is akin to mapping all 

the points to a one-dimensional structure for easy search. The first two steps 

are the pre-processing steps for MPRQ-SP.  
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Figure 28 illustrates the example where all the points are sorted using 

their x-values or y-values, depending on their axis major. The intuition to use 

the axis major stemmed from the fact that if we cut P along the axis major, 

more points can be pruned easily as P spreads out more along the axis major 

compared to the axis minor. Refer to Table 9 for the running time of MPRQ-

SP. 

  

 

 

The third final step is the searching. We present the PointOut and NodeIn 

algorithms for MPRQ-SP in Figure 30 and Figure 31 respectively. The 

difference for these two algorithms is that they both accept a sorted input route 

P rather than any input route P. The algorithms make use of binary search to 

locate along the sorted path the cut-off points for extracting a shorter pruned 

route (defined as black points) which is by default also sorted. Hence, no more 

sorting is necessary throughout this step to maintain a sorted sub-path. Two 

binary search routines appeared in the PointOut pruning rule, left_bsearch 

and right_bsearch. 

It is noted that they are modified versions of the standard binary search 

routine which, without loss of generality, also give us the cut-off point in 

O(log n) time. Their names suggest that they are either left- or right-biased. A 

direction-biased binary search, say right-biased, in this case means the routine 

Figure 28. Sorting the query points in route P along the axis major 
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is able to proceed towards searching right as long as the pivot is equal to or 

less than the target value but stops when the pivot is greater than the target 

value. The rationale behind biased binary search is to handle points that map 

to the same location along the axis major. In the example of Figure 29, the 

right-biased binary search will terminate and return the index to point pi but 

not pj since the latter is greater than the right side of the MBR R'. The same 

principle applies to the left-biased version. 

 

 

 

 MPRQ-SP-PointOut(R, P, d, Pnew) 
 // Input:  MBR R, a sorted query path P, a search distance d 
 // Output: Pnew – sorted query subpath of P 
 begin 

   lo � left_bsearch(Rsorted-axis.lower – d, P) 
   hi � right_bsearch(Rsorted-axis.upper + d, P) 
 
   forall points pt in P[lo, hi] do 
     if Rnon-sorted-axis.lower–d ≤ ptnon-sorted-axis ≤  
        Rnon-sorted-axis.upper+d then 

       Pnew � Pnew ∪ {pt} 
    endif 

  endfor 

 end; {procedure MPRQ-SP-PointOut} 

 
 
 
 
 
 
 
 

Figure 29. right_bsearch returns the point on path P along the sorted axis 
that is less than or equal to the right edge of the “augmented” MBR R' 

Figure 30. Algorithm for the MPRQ-SP PointOut pruning rule 
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 MPRQ-SP-NodeIn(R, P, d) 
 // Input:  MBR R, a sorted query subpath P, a search distance d 
 // Output: Obj – set of objects within distance d of some 
 //         point in P 
 begin 

   midpt � (Rsorted-axis.lower + Rsorted-axis.upper) / 2 
   mid � right_bsearch(midpt, P) 
 
   if GetMaxDist(P[mid], R) ≤ d then 
     return true 
   elseif GetMaxDist(P[mid+1], R) ≤ d then 
     return true 
   else 

     return false 
   endif 

 end; {procedure MPRQ-SP-NodeIn} 

 
 
In Figure 31, the NodeIn pruning rule uses at most two MaxDist computations 

because the fact that the query route is sorted allows us to ignore all the query 

points in P except the ones closest to the center of the MBR. This guarantees a 

constant time NodeIn processing with respect to the size of the route. By 

NodeIn rule, in order to determine if a given MBR R is black, we need to show 

MaxDist(R, p) ≤ d. The goal is to find the 
Ppi∈

min {MaxDist(R, pi)} that gives the 

smallest d. We start by dividing R into four quadrants with the centre C of R, 

and it follows that all the points that lie in one quadrant will produce MaxDist 

when paired with the opposite diagonal corner of R. This is illustrated in 

Figure 32. Since all the points pi are sorted along an axis, say the x-axis, the 

point that would give the smallest d would be nearest to C. Therefore, we can 

utilize the right-biased binary search tree to give us the point pl to the left of C. 

To cover the right half of R, we can immediately derive the next point pr on 

our sorted path. Suppose MaxDist(R, pl) > d and MaxDist(R, pr) > d, because 

the points in P are not sorted on the other axis, there may exists a point pi (i ≠ l ≠ 

Figure 31. Algorithm for the MPRQ-SP NodeIn pruning rule 
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r) that may give MaxDist(R, pi) < d. Even so, we are content that the NodeIn 

pruning rule will be invoked at one level lower down the R-tree. 

 

4.3.2 Algorithm 4: MPRQ-Rectangle Intersection 

 

The rectangle intersection approach, MPRQ-RI [NgLe04] for short, transforms 

the input query route into a set of rectangles to be solved as the two-set 

rectangle intersection problem, the set of child MBRs of the investigated node 

being the other set of rectangles. 

In this approach, the key idea is to transform all the points in P into a 

collection of rectangles, say R1, and find all the intersections between them 

and the current collection of child rectangles of the current MBR being 

investigated. The intuition for this approach is that once we reach a certain 

MBR, all its children are already visible so we actually could make use of all 

of them at the same time. 

Rectangle intersection problem is a well-defined research problem 

[PrSh85], which is defined as given a collection of N orthogonal rectangles, 

report all the intersecting pairs. The standard approach to solve this problem is 

by plane sweeping, i.e. scanning a sweep line horizontally across the plane, 

inserting or deleting a rectangle’s left edge into an event point schedule as the 

Figure 32. The MaxDist(R, p) is given by the distance of p to the opposite diagonal 
corner of MBR R from the quadrant where p lies. The quadrant where p lies is 

determined by the centre C of MBR R 

C 

p1 

p2 
p3 

R 



 

73 

sweep line enters or leaves a rectangle respectively. When a new rectangle is 

encountered, we perform an interval query of all the current intervals in the 

schedule with the new rectangle’s left edge interval, and report all 

intersections. The running time is O(N log N + k) where k is the number of 

rectangle pairs reported, with pre-processing time of O(N log N) to prepare the 

sweep schedule and the space complexity is O(N). Other approaches to the 

rectangle intersection problem exists, such as by using the divide-and-conquer 

method [GüSh87]. 

 

We present a simple yet elegant algorithm for processing MPRQ. As we need 

to single out all the black query points for each grey child node of the current 

MBR, one not so obvious technique is to transform all the query points into a 

set of rectangles. This is accomplished by extending length d in all four 

directions parallel to the axes from a query point, augmenting it to cover the 

circular radius of its search distance d. By doing so, we have approximated the 

circular query regions with rectangular query regions. This gives us an extra 

cover area of d2(4-π) for each query point for our coarse filter, and in some 

instances a white query point will be included in the pruned path for a 

rectangle because their corners overlap. 

Figure 33. Transforming the PointOut rule into a rectangle intersection problem. Given two sets 
of orthogonal rectangles, find all overlapping that occurs between them 
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In the example of Figure 33, there are two distinct sets of rectangles. 

The first is a collection of child MBRs for a given node. We have O(m) 

rectangles in this set, m being the bucket size (degree fanout) of the R-tree. 

The second is a collection of n rectangles, each representing a query point in 

the route. Using our PointOut rule, n is the total number of black points with 

respect to the current node, therefore it varies (and become smaller) as we 

traverse down the R-tree. 

Our approach using the rectangle intersection problem is derived from 

the general rectangle intersection problem. Instead of having one set of 

rectangles, we have two disjoint sets of rectangles and we want to report all 

the intersecting pairs between the two sets. The main objective is that we do 

not want to report the intersecting rectangles within the same set, but rather 

across the two sets. Simply put, we have: Given two sets of rectangles R1 and 

R2, find all pairs r1 ∈ R1 and r2 ∈ R2 such that r1 ∩ r2 ≠ ∅. 

We implemented the algorithm of Figure 34 using the interval sets 

[Will85, MeNä95]. At each node, we first insert the interval of all the child 

rectangles, which is equal to the bucket size m. Inserting m intervals takes O(m 

log2 m) time. Following that, we query the interval of all the points in the route 

P of n points, each query taking O(log2 m + k) time, where k is the intersecting 

rectangles pairs found and to query a path of size n takes n (log2 m + k) for 

each node. Refer to Table 9 for the running time of MPRQ-RI. 
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 MPRQ-RI-PointOut(R, P, d, Pnew) 
 // Input:  MBR R, a sorted query path P, a search distance d 
 // Output: Pnew() – array of sorted query subpath of P 
 begin 

   forall r in R do 
     insert interval [r.x1,r.x2] into rect 
   endfor 

 

   forall pt in P do 

     result � interval [pt.x – d, pt.x + d] ∩ rect 
     forall i in result do 
       if (i.y1 - d ≤ pt.y ≤ i.y2 + d) then 

         j � index of rectangle R at interval i 

       Pnew(j) � Pnew(j) ∪ {pt} 
       endif 
     endfor 
   endfor 

 end; {procedure MPRQ-RI-PointOut} 

 

4.3.3 Running Time 

 

Table 9 summarises the asymptotic running time of the four approaches that 

we had discussed. The amount of processing needed per node is also given. 

RRQ incurs a constant amount of processing as the query path is static. MPRQ 

has varied node processing time depending on the length of the query path at 

each level of the search tree. The approaches differ in the method used in path 

pruning and they all use O(N) space, where N is the size of the spatial database. 

We use k to denote the number of results returned. 

 

Approach Amount of Processing per Node 
(n is length of path when 

entering node) 

Running Time 

RRQ m * n n * N log N + k log k 

MPRQ MinMax ∑
=

+
m

i

ikn
1

)( , ki ≤ n t * N log N 

MPRQ Sorted Path ∑
=

+
m

i

ikn
1

)log2( , ki ≤ n n + n log n + t * N log N 

MPRQ Rectangle 
Intersection 

m log2 m + n (log2 m + k) t * N log N 

Figure 34. Algorithm for the MPRQ-RI PointOut pruning rule 

Table 9. Various approaches to answering the multi-point range query, the amount of 
processing done per node and total running time. N is the size of the spatial database, 
m is the cardinality of node, n is the size of input query path, k is the size of the results, 

and t is the amount of processing per node 
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4.4 Experimental Setup 

 

4.4.1 Datasets 

 

A very popular choice of GIS database for research is the Topologically 

Integrated Geographic Encoding and Referencing (TIGER) system first 

introduced in 1990 by the US Census Bureau [TIGER02, Doli01]. The 

TIGER/Line files comprise a digital database of geographic features, such as 

roads, railroads, rivers, lakes, even political boundaries and census statistical 

boundaries, covering the entire United States. The database contains 

information about these features such as their location in latitude and 

longitude, the name, the type of feature, address ranges for most streets, the 

geographical relationship to other features, and other related information.  

Many research works [APRS98, AHVV99, LeEL97, RoKV95, 

PaMa96] use the TIGER/Line database for experiments because it serves the 

purpose of uniformity for benchmarking results, is comprised of real-life data 

and is readily available in plain text format. Many free tools are available 

[GSR01] for converting TIGER to a database format suitable for research 

purposes and also for gathering, analysing and plotting the TIGER data 

graphically such as ArcExplorer, Autodesk MapGuide Viewer and Geographic 

Explorer. Therefore, for the purpose of running experiments for the external 

memory, we used the TIGER/Line datasets as well. 

There are a number of ways in which we can utilise the TIGER/Line 

dataset files. The TIGER/Line datasets organise different kinds of information 

into many logical layers of sets of maps. Each layer represents a thematic 

approach to a particular purpose. For urban planning, the layers that contain 
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data for streets, utility lines, transportation features and related information are 

useful. The U.S. Census Bureau proclaimed that the buildings represented in 

its TIGER/Line data they provide each contains a centroid calculated to be 

within the building [TIGER02]. This fits the criteria of spatial data similar to 

RADS database, except that it has more objects. We could utilise the layer that 

represents the buildings within a city as spatial data, as is used by the [SoRo01] 

who addresses the problem of k-nearest neighbour for a moving query point. 

In their experimental data, they chose real-world datasets extracted from 

TIGER/Line representing 120 hospitals, 1982 churches and 1603 schools in 

Maryland, USA. 

 

 

 

4.4.2 Experiment Settings 

 

We conducted extensive experimental study to evaluate the performance of 

MPRQ-Disk with large spatial databases that reside on disk. In this study, we 

used both synthetic datasets as well as real-life datasets. Synthetic datasets are 

Figure 35. Real-life TIGER/Line datasets defining roads, rails and streams, among others, 
provided by the US Census Bureau using topology and graph theory design principles 
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generated from the outline of the Singapore map (using various broad 

parameters as described below). As they are more suited for internal memory 

experiments, we did not report the results of synthetic datasets here. We note 

that the external memory results for the Singapore datasets are comparable to 

their internal memory counterpart. Real-life datasets originate from the 

TIGER/Line datasets [TIGER02]. 

Implementations are done in C++ compiled with gcc version 3.4.4 on a 

Pentium IV 2.0 GHz Linux machine with 512MB RAM, with TPIE for disk 

implementations. The disk page size is 4096 bytes on our experiment machine. 

We consider the following factors when evaluating the MPRQ-Disk 

performance: the number of points in the spatial database N, the search 

distance d, different query routes P, different R-tree variants as spatial index 

and the effect of LRU buffering. For all of these experiments, we measure 

both the overall query time and the number of I/Os (disk accesses) to evaluate 

the performance of MPRQ-Disk. We ran each query 100 times and take the 

average of the running times, resulting in better accuracy. 

 

Datasets New Jersey Montgomery  
County, MD 

Rhode 
Island 

Short code NJ MD RI 
All spatial objects 369,814 30,997 58,804 
Roads only 331,544 28,719 53,721 
Percentage of roads 89.65% 92.65% 91.36% 
File size 39.0MB 3.1MB 6.1MB 

 

Table 10. The number of spatial objects for various datasets from TIGER/Line. Road segments 
make up the bulk of the spatial objects. Our experiments only involve all the road objects 
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(a) 

 

(b) 

 

 

(c) 

 

Real-life dataset. Benchmark data from the TIGER/Line datasets [TIGER02] 

are used – the selected maps are New Jersey, Montgomery County, MD and 

Rhode Island. The size of spatial data is shown in Table 10. Note that New 

Jersey is about twice the size of the Singapore datasets (Figure 20), which is 

useful for comparison with the Singapore datasets used in internal memory 

experiments. 

Regionised query paths. As real-life routes for maps in the chosen cities are 

not available, different kinds of synthetic routes are used instead. The maps 

are divided into rectangular cells of equal size and within each cell, a point is 

generated and appended into the query route set if it is contained within the 

polygon that defines the map boundary. We call such query route set 

regionised query path. The final regionised route sizes are 111, 80, 96 for NJ, 

MD and RI respectively. In addition, we also generated H-path and V-path for 

them. 

Varying search distances (r). The search distances of (55, 60, 65, …, 90, 95) 

are used for the NJ case in real-life datasets. The number units here represent 

different real distances depending on maps. Most of the results reported for 

Figure 36. The (a) New Jersey, (b) Montgomery County, MD, and (c) Rhose Island datasets from 
TIGER/Line; the regionised query paths are shown; all figures not drawn to scale 
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MPRQ-Disk experiments use distance d = 75 for NJ. As other real-life maps 

exhibit similar trends to NJ, they are not included. 

 

 Singapore New Jersey Montgomery 
County, MD 

Rhode Island 

Regionised path size 80 111 96 80 
 
Search distance 

vs 
Percentage of 
overlap 

200 0.00 
500 0.31 
600 0.55 
700 1.21 
800 2.02 
900 3.03 
1000 4.48 
2000 42.15 
3000 114.09 
4000 211.61 
5000 328.96 
10000 1048.81  

50 8.11 
60 12.72 
70 18.82 
75 22.52 
80 26.59 
90 36.48 
100 48.51 
150 130.22 
250 372.38 
500 1191.27 

  
   

50 0.00 
100 1.54 
150 5.91 
175 10.27 
200 15.94 
250 30.31 
300 47.96 
400 96.94 
500 158.69 
1000 594.01 

  
   

50 0.55 
100 0.90 
200 5.48 
250 10.99 
300 18.69 
350 29.19 
400 42.13 
500 74.68 
750 186.17 
1000 334.05 

  
   

 

Data structures. We implemented both algorithms for MPRQ-Disk and RRQ-

Disk, as well as PR quadtree and several variants of the R-tree – the R*-tree, 

KDTopDownPack, HilbertPack and STRPack. Several other R-tree variants 

were also implemented but not reported here since their performance were 

worse than those from the representatives above. We also looked into the 

performance of the PR quadtree with buckets. 

 

4.5 MPRQ-Disk Performance Evaluation 

 

4.5.1 Baseline Comparison of MPRQ and MPRQ-Disk 

 

We begin by designing a series of experiments whose aim is to establish 

whether the results for MPRQ (internal memory) extend for MPRQ-Disk. In 

the previous chapter, we had established the fact that the MPRQ algorithm 

outperforms RRQ in many parameters, even in the case where the number of 

Table 11. The search distance d vs percentage of overlap for various datasets 
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query points is small. 

The results shown in Figure 37(a)-(b) were reproduced from the 

previous chapter for easy of reference. Using varying number of query points 

(between 1 to 80 in multiples of 5) in the H-path, we investigate MPRQ and 

RRQ as the input query set grows larger. The performance of MPRQ vs RRQ 

in internal memory indicate that the query time speed-up is 81 times for m = 

80; and 6.5 times for m = 10. For the case on disk, Figure 37(c), MPRQ over 

RRQ speed-up is 7.93 times for m = 80; and 2.46 times for m = 10. As for the 

number of I/Os in Figure 37(d), RRQ incurs 2.5 times more I/Os for m = 80. 

In main memory, the speed-up is significant as the MPRQ pruning 

rules cut down the query points to the necessary subset (black points) relevant 

to the MBR at any level. This significantly reduces the amount of expensive 

distance computations (at the very least, finding MinDist and MaxDist) 

needed as the spatial index is traversed. However, on disk, the savings in 

computation is negligible as the cost of an I/O (a few orders of magnitude 

larger) eclipses it. In spite of this, the MPRQ still performs well because it is 

able to minimise the I/Os by not visiting a node unnecessarily. 

 

 
(a) (query-time) vs (# query-points) 

in internal memory 

 
(b) (# nodes-visited) vs (# query-points) 

in internal memory 
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(c) (query-time) vs (# query-points) 

in external memory 

 
(d) (# I/Os) vs (# query-points) 

in external memory 

 
(a) (query-time) vs (# query-points) 

 
(b) (# I/Os) vs (# query-points) 

 
Figure 38 shows the results comparing both the query times and the number of 

I/Os for MPRQ-Disk and RRQ-Disk in real-life New Jersey dataset, where the 

data is non-uniform. We chose d = 75 such that it returns about 20% of the 

total points when m = 35 using V-path. The query time speed-up is 7 times for 

m = 35. In general, we observed that the query time speed-up increases with 

the number of query points. 

The reduction in the number of I/Os for MPRQ-Disk versus RRQ-Disk 

is also significant. For the case of query route H-path, the number of I/Os rises 

linearly with the number of query points for both MPRQ-Disk and RRQ-Disk. 

Figure 37(d) and Figure 38(b) show that, on average, the number of I/O 

requests by MPRQ-Disk is about 41.5% and 69.1% of that for RRQ-Disk for 

Figure 37. Baseline comparison of MPRQ and RRQ in internal and external memory 
using query path H-path and d=500m 

Figure 38. Comparison of MPRQ-Disk and RRQ-Disk for NJ dataset, 
query path V-path and d=75 
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the Singapore dataset and the NJ dataset, respectively. 

The results in this subsection established one fact – that the MPRQ-

Disk algorithm performs correspondingly to MPRQ. In further sections, we 

just concentrate on MPRQ-Disk to find out how it fares with other parameters 

in further experiments. 

 

4.5.2 Data Structures 

 

PR Quadtree 

 

For the PR quadtree, we observed that there are improvements in query time 

as the tree depth increases. As we vary the logical disk block size (LDBS), the 

average time does not observe any patterns of consistencies as the LDBS 

increases (bs = 1, 2, 4, 8, 16, 32). This is because the external data structures 

are mapped automatically by TPIE onto the physical location in the disk, and 

it is not possible that the whole data structure are in one consecutive region as 

our datasets include up to 160000 points. Disk fragmentation causes slight 

differences in the query time, due to the increase in latency time and seek time 

as shown in Figure 39. 

 

  
Figure 39. PR quadtree 

(query-time/point) vs (tree depth) 
Figure 40. PR quadtree 

(query time/point) vs (LDBS)  
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As we group by LDBS as in Figure 40, we observe that generally the query 

time decreases when the depth increases. At some point, the increase in depth 

(d = 9, 12, 15, 18, 21, 24) does not help to improve the query time when 

LDBS = 4 and LDBS = 16. This is due to the fact that reading a few logical 

blocks in advance may not help improve the query time because the event 

points are not necessarily near to each other in the PR quadtree. The ordering 

of the datasets plays a significant role when building the tree. 

 

Bucket PR Quadtree 

 

The bucket PR quadtree is an extension of the PR quadtree with bucket 

implementation at the leaves of the tree. In general, the query time improves 

when the depth of the tree is increased (Figure 41 and Figure 42). This is 

consistent with the results of their internal memory counterparts. When LDBS 

= 4, we see that the bucket implementation actually helps when the bucket size 

is above 8. When we double the LDBS to 8, we see that the query time is 

decreased when the bucket size is above 16 but increases when the bucket size 

and tree depth are increased. This is because the bucket implementation is a 

sequential list where the event points are stored when the tree depth is reached. 

When we perform a proximity query, the events that match is all in vicinity to 

each other and there is a high chance that they are stored in the same bucket. 

The larger the LDBS, the better the performance since we are going to search 

the whole bucket when we reach a leaf. 
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When we group the results by tree depth, we see that the LDBS reduces the 

query time slightly when we double it. The only time when it helps is for the 

case where depth is 9. This happens because at a depth of 9, most event points 

get stored in the buckets. Pruning rules are less effective if a large search 

space is to be covered. Most of the time, we have to search through the 

buckets sequentially. Therefore a larger LDBS helps reduce query time by 

reading ahead. However, if the bucket is too large (e.g. bucket size of 64) we 

actually did not get any savings from increasing the LDBS especially if the 

LDBS is much smaller than the bucket size. We have to execute almost the 

same number of I/Os as in the case of the smaller LDBS. 

 

  

Figure 41. Bucket PR quadtree 
(query time/point) vs (tree depth) for 

logical disk block size of 4 

Figure 42. Bucket PR quadtree 
(query time/point) vs (tree depth) for 

logical disk block size of 8 

Figure 43. Bucket PR quadtree 
(query time/point) vs (bucket size) 

for logical disk block size of 4 

Figure 44. Bucket PR quadtree 
(query time/point) vs (bucket size) 

for logical disk block size of 8 
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R-trees and Variants 

 

We ran experiments on the R-tree family based on different node splitting 

strategies (QuadSplit, LinearSplit, NewLinearSplit, R*-Split) and different R-

tree bulk-loading strategies (HilbertPack, STRPack and KDTopDownPack). In 

Figure 45, the LinearSplit performance decreases with the increase in bucket 

size until the size reaches 32 where it remains stable. The performance of the 

R*-Split is more or less consistent regardless of the bucket size (Figure 46).  

 

  

 

On the average, the R*-Split is two times faster than the LinearSplit and 

averages between 0.12 to 0.17 seconds. 

The results of three different ways of bulk-loading an R-tree are in 

Figure 47, Figure 48 and Figure 49. The query time increases as bucket size 

increases because we segregated the event points first before building the R-

tree bottom up so that there are no overlapping MBRs. This is due to the time 

taken to construct the R-tree is consistent but the larger buckets take longer to 

be searched because there will be less branch pruning before we hit a bucket 

on the leaf node level. This problem can be addressed with parallel algorithms 

Figure 45. R-tree (Linear Split) 
of different logical disk block size 

Figure 46. R-tree (R*-Split) 
of different logical disk block size 
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when searching the R-tree. The KDTopDownPack R-tree in Figure 49 still 

retains the best performance like its internal memory counterpart. 

 

 

Now we group the bucket size together to see the effects of the LDBS. We 

observe that in Figure 50 the LDBS does not play a role in the performance, 

only the bucket size has effect on query time. In Figure 51, the R*-Split shows 

that a bucket size too large or too small has an adverse effect on the search 

time. This is true when we have a small LDBS (≤ 4), which does not help to 

cache the search space because the points are too far away (the tree is built in 

no particular order) to take advantage of the advance reading of the contiguous 

blocks. But when the LDBS becomes large (> 4) at the expense of more 

  
Figure 47. R-tree (HilbertPack) 

of different logical disk block size 
Figure 48. R-tree (STRPack) 

of different logical disk block size 

 

Figure 49. R-tree (KDTopDownPack) 
of different logical disk block size 
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internal memory used, the larger buckets (for instance, 128) are “over read” by 

the advance cache because the LDBS exceeded the bucket size making some 

of the cache unnecessary. 

 

  

 

For the three different bulk-loaded R-tree structures, their results are presented 

in Figure 52, Figure 53 and Figure 54. Different LDBS does not have any effect 

on the trees because of the time taken to build the tree is fairly consistent for 

each tree. The reason is because we are exploring with just one disk, rather 

than multiple disks which will definitely influence the time. Much of the work 

is due to computation for separating the event points into their spatial region 

before we actually index those points. Building the tree does not take a lot of 

disk reads all across the index, only disk writes onto the single disk index 

structure. This difference is only evident in the amount of time taken to build 

the tree plus searching the tree, while the query time is of course influenced by 

the bucket size instead of the LDBS. 

 

Figure 50. R-tree (Linear Split) 
of different bucket sizes 

Figure 51. R-tree (R*-Split) 
of different bucket sizes 
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Figure 54. R-tree (KDTopDownPack) 

of different bucket sizes 
 

Underlying Data Structures 

 

The underlying spatial index will have effect on the performance of MPRQ-

Disk because objects that are spatially close and indexed as such will result in 

lower I/Os and improved query time, due to locality of reference. We ran 

similar sets of experiment on different variants of the chosen R-tree data 

structures, namely, R*-tree, HilbertPack R-tree, STRPack R-tree and our own 

KDTopDownPack R-tree. The results tend to be similar to previous results for 

both MPRQ-Disk and RRQ-Disk. To obtain a more detailed comparison of the 

different R-tree variants, Figure 55 shows the performance of only MPRQ-

Disk on the different R-tree variants. 

 

Figure 52. R-tree (HilbertPack) 
of different bucket sizes 

Figure 53. R-tree (STRPack) 
of different bucket sizes 
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(a) (query-time) vs (# query-points)  

in internal memory 

 
(b) (query-time) vs (# query-points)  

in external memory 

 

For the case where database resides in internal memory, the performance 

(from best to worst) is as follows: KDTopDownPack, STRPack, HilbertPack, 

R*-tree. In particular, KDTopDownPack and STRPack are very close in terms 

of performance. However, we can clearly see that R*-tree is outperformed by 

the others which are bulk-loading algorithms that results in better indexing of 

spatial points with minimal area of MBRs overlapping. 

On the other hand, for the case where the spatial database resides on 

disk, we can arrange their performance again as in the internal memory case, 

with clear distinction. The dominance of I/O costs in the overall query time for 

different data structures clearly shows. KDTopDownPack has a better packing 

algorithm for objects as compared to the rest.  

 

4.5.3 Small Set of Query Points 

 

In general, we expect MPRQ-Disk to perform better as the number of points in 

the query route P increases. As a stringent test we have also zoomed into the 

cases where 1 ≤ m ≤ 10. Figure 56(a) shows that MPRQ-Disk runs slightly 

faster for the special case of just one query point when m = 1 (normal single 

Figure 55. MPRQ-Disk performance on different R-tree data structures: HilbertPack, 
R*-tree, STRPack and KDTopDownPack for query distance d=500m 
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point range query) because the PointOut pruning rule that generally exert more 

computations for MPRQ-Disk (as opposed to RRQ-Disk) did not fire. This is 

by design. The rule only fires when m ≥ 2. Meanwhile, the NodeIn rule is fired 

when the index traversal reaches a point where the query distance covers an 

entire MBR which triggers all of its children to be reported without further 

computations. This makes MPRQ-Disk faster than RRQ-Disk even when there 

is just one query point. 

 

 
(a) (query-time) vs (# query-points) 

 
(b) (# I/Os) vs (# query-points) 

 

As for the number of I/Os, Figure 56(b) reveals that at m = 1, both MPRQ-

Disk and RRQ-Disk incurs the exact same amount of I/Os. This is true 

because even if NodeIn rule fired, it still has to traverse until the leaf level to 

report all results although it does not need any further calculations. 

Additional results for RI and MD datasets, V-path and D-path also 

show identical trends with respect to performance comparison between 

MPRQ-Disk and RRQ-Disk. Therefore, for the remainder of this study, it 

suffices to report on results for regionised routes. 

 

Figure 56. MPRQ-Disk performance with small number of query points (m ≤ 10) 
and d=500m 
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4.5.4 Effectiveness of Pruning Rules 

 

Table 12 shows the comparison of the effectiveness of different combinations 

of pruning rules between internal and external memory. We also selected the 

RI dataset, the largest that can fit entirely into internal memory, for this set of 

experiments. Finally, the query time for RRQ is also included for comparison. 

 

Query time (sec) 
SG 

(internal) 
SG 

(external) 
RI 

(internal) 
RI 

(external) 

NodeOut 
0.1310 

(100%) 
1.5470 

(100%) 
0.0181 

(100%) 
0.5870 

(100%) 

NodeOut+PointOut 
0.0220 

(17%) 
0.4319 

(28%) 
0.0104 

(57%) 
0.1160 

(21%) 

NodeOut+NodeIn+PointOut 
0.0200 

(15%) 
0.4228 

(27%) 
0.0094 

(52%) 
0.1046 

(18%) 
RRQ 1.6590 8.4027 0.1629 2.1622 

 

Since we established that PointOut is much more effective than NodeOut in 

the internal memory case, in this experiment we focus on PointOut. We 

observed that by adding pruning rule PointOut on top of NodeOut in external 

memory, we obtain a 72% decrease in query processing time. This is not as 

good as the internal memory case of 83% as the number of I/Os has taken a 

toll on query time. PointOut computation is a memory intensive computation, 

but the bulk of query time is still tied to disk accesses no matter how much we 

prune the path with PointOut. Adding NodeIn will gain us an extra 1%-3% of 

query time in the external memory case, as we only save some computation 

time but still need to access the necessary disk nodes to obtain the results. This 

trend is similar to the internal memory case. The RI dataset also show the 

same trend in query time reduction, but at a slightly different quantum. 

Table 12. The effectiveness of applying different pruning rule combinations, comparing internal 
and external memory. For this comparison, only one real-life dataset is shown 
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We observe that for internal memory, the RRQ is almost 3 orders of 

magnitude slower than MPRQ. For external memory, the gap closes as the 

number of I/Os is the dominant factor, not internal computations. Yet, RRQ is 

still 20.67 times slower. 

 

Query time (sec) SG NJ MD RI 

NodeOut 
0.1310 

(100%) 
0.2215 

(100%) 
0.0104 

(100%) 
0.0181 

(100%) 

NodeOut+PointOut 
0.0220 

(17%) 
0.1085 

(49%) 
0.0049 

(47%) 
0.0104 

(57%) 

NodeOut+NodeIn+PointOut 
0.0200 

(15%) 
0.0741 

(33%) 
0.0045 

(43%) 
0.0094 

(52%) 
RRQ 1.6590 2.9501 0.0493 0.1629 

 

Table 13 compares the effectiveness of pruning rules across external memory 

datasets. The search distance is tweaked for each dataset such that 20% of the 

database is returned, and regionised routes are used for all datasets including 

SG. There is a difference in query time reduction between the SG and the rest. 

This is because the SG dataset is so small it can totally fit into internal 

memory. This causes less paging operations (loading disk nodes into internal 

memory) than other datasets which results in better query time. 

The trend for NJ, MD and RI is about the same; PointOut results in 

about half the query time reduction (47%-57%) and applying NodeIn will 

result in 4%-16% further reduction in query time. The NJ dataset exhibit better 

reduction for NodeIn (16%) because its map is much denser than that of MD 

and RI. Thus, once NodeIn fires it is able to return more results for the same 

number of I/Os for the same MBR area. Similar to past trends, on average 

RRQ is 2-3 orders of magnitude slower. 

 

Table 13. The effectiveness of applying different pruning rule 
combinations, comparing different datasets 
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4.5.5 Size of the Search Distance 

 

We now investigate the performance of MPRQ-Disk across different query 

distances d. Given any set of query points, when d is large, overlapping of 

query regions will result in many duplicate results obtained by RRQ-Disk 

(since each query point is a standard range query, independent of the rest of 

the points in the same query points set, no matter how close they are to the 

current point in query) which in turn results in a longer post-processing time to 

remove duplicates. 

 

 
(a) (query-time) vs (search-distance) 

 
(b) (# I/Os) vs (search-distance) 

 

Recall that for d < 250m, there is no overlapping of search area because the H-

path is made up of query points with regular interval of 500m along the x-axis. 

Figure 57 shows that for non-overlapping areas, where no redundant results 

are present, RRQ-Disk grows similarly to MPRQ-Disk (in terms of I/Os). 

However, when overlapping occurs, RRQ-Disk uses more I/O requests (for 

duplicates actually) which is totally redundant and this contributes to its long 

query time.  

Figure 57. MPRQ-Disk performance for varying distances d with H-path 80 query points 
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In fact, MPRQ-Disk growth is linear because excessive overlapping in 

query regions does not add to the algorithm’s running time. The larger the 

query distance, the longer it takes to complete the query. 

 

4.5.6 Performance of Real-life Routes 

 

Real-life routes provide an insight into how the MPRQ-Disk algorithm fares 

when deployed for use. Our target application is RADS which helps a user 

plan a route and subsequently discovers POIs along the planned route 

[NgLH04]. The performances of the four real-life routes (route1-4) are shown 

in Figure 58 showing clear advantages of MPRQ-Disk over RRQ-Disk. 

In Figure 58(a), the query time speed-up for real paths are generally 

similar to those for the synthetic H-path (shown in Figure 57). The reduction 

in the number of I/Os for MPRQ-Disk also widens with the query distance. 

 

 
(a) 

query-time(RRQ-Disk)
query-time(MPRQ-Disk)  vs (search-distance) 

 
(b) 

# I/Os(RRQ-Disk)
# I/Os(MPRQ-Disk)  vs (search-distance) 

 

4.5.7 Comparison of MPRQ Algorithms 

 

Earlier experiments established the fact that the speed-up of MPRQ-MinMax 

against RRQ increases with the number of query points, the search distance, 

Figure 58. MPRQ-Disk performance for real-life paths (route1-4) 
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the presence of clustered data, different planned routes, different spatial 

representations of the spatial database, as well as the bucket sizes. Hence, we 

will just focus on the comparison among MPRQ-SP, MPRQ-RI and MPRQ-

MinMax. 

To compare the performance of the various approaches for 

implementing the PointOut and NodeIn, we implemented all the three pruning 

rules using the algorithm described in Figure 27 and those from Section 4.3.1 

and Section 4.3.2. For the NJ dataset, we chose a random path that has 200 

query points (i.e. n = 200). For the relatively smaller RI dataset, we chose a 

random path of 100 query points. 

We did not show the total number of I/Os for MPRQ-MinMax, 

MPRQ-SP and MPRQ-RI because all three approaches does the same pruning 

(PointOut and NodeIn) under the same circumstances, i.e. the input query path 

is the same. Therefore, all three traverse the tree in the same manner. The only 

difference is in the speed of traversal attributed to the different pruning 

strategies. 

In Figure 59, the performance of MPRQ-MinMax and MPRQ-SP are 

almost similar, with the latter doing slightly better when n ≥ 80. We attribute 

this to the initially high startup cost of MPRQ-SP (sorting along axis major) 

gradually being recouped after which the performance is better for MPRQ-SP. 

In comparison, MPRQ-RI pruning performs worse than the other two even 

from the beginning. At n = 200, MPRQ-RI is 1.38 times slower than MPRQ-

SP. Our theoretical results (Table 9) already show that while the approach of 

MPRQ-RI is more elegant, the associated costs are expensive because it 
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involves multiple insertion and query of the interval set data structure with 

varied path length.  

On the other hand, MPRQ-SP can still be improved further because 

binary search on the sorted path is not quite optimal when the path is 

exceptionally short (e.g. n ≤ 5). This is because for short paths, which occur 

frequently at the bottom of the R-tree during traversal, binary search does 

more comparison than plain sequential search. Since MPRQ-SP uses a sorted 

path that relies on biased binary search routines for the PointOut pruning, we 

believe that the running time can be further improved by employing hybrid 

sequential search and biased binary search for PointOut pruning. MPRQ-SP 

requires some pre-processing time, but we shown that it generates a lot of 

savings in the later search stage. An added advantage is that it is very easy to 

implement, with relatively good results when compared to RRQ and MPRQ-

MinMax. 

 

 
(a) query time vs (# query-points) 

  
(b) query time vs (# query-points) 

 

 

 

Figure 59. Performance of the MPRQ-MinMax (red), MPRQ-SP (green) and MPRQ-RI (blue) 
for (a) NJ dataset and (b) RI dataset 
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4.5.8 Effect of LRU Buffering 

 

Using KDTopDownPack to construct the 40000 dataset, we designed a query 

consisting of a real-life path of 34 points and d = 500m. We vary the least 

recently used (LRU) buffer size from 10%, 11%, …, 19%, 20%, 30%, …, 

90% of the total internal nodes. Previous studies of LRU buffering [ThSe96, 

LeLo00] suggest that as little as 10% buffer size (i.e. buffer size equals 

n*p/100 of the total number of n nodes given p percent) could halve the 

number of I/Os required. Our aim is to prove a fair case for RRQ-Disk (as 

even a straightforward implementation benefits from a LRU of some sort in 

modern databases) against MPRQ-Disk. We aim to check the hypothesis that 

RRQ-Disk performs better with the help of LRU found in the O/S. 

We observe that an LRU buffer as little as 10% cuts down I/Os by 

approximately 68.9% for RRQ-Disk (with 91.63% buffer utilization), mostly 

because the spatial index is traversed repeatedly for each query point pi and 

down a slightly different path the next time if pi+1 is near. RRQ-Disk benefited 

if nodes from the previous search is retained in the LRU buffer. MPRQ-Disk 

does not show any effect as it optimally accesses only the nodes that are 

relevant, and only once in the spatial index, for all query points in P.  

In Figure 60, LRU buffer ≥ 17% for RRQ-Disk improves its 

performance only marginally. Our experiments run all the way to 90% 

(although in practice, this is not feasible unless the spatial database is small) 

which shows that MPRQ-Disk still requests 12.96% fewer I/Os than RRQ-

Disk in spite of the presence of LRU that should benefit the latter. 
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4.6 MPRQ-Disk vs Spatial Join Algorithms 

 

In this section, MPRQ-Disk is evaluated against spatial join approaches that 

can also be used to solve MPRQ. We have carefully chosen the high-

performance spatial join techniques of [BrKS93] which aims to join two 

datasets indexed by two R-trees, and the slot index spatial join [MaPa03] 

which aims to join a non-indexed dataset with one indexed by an R-tree. Due 

to the similarity of spatial joins to MPRQ, performance evaluation is 

imperative. 

The MPRQ-Disk algorithm used to compare with other spatial join 

algorithms defaults to MPRQ-MinMax with KDTopDownPack, using LDBS 

= 4, bucket size of 8, and with all three pruning rules (NodeOut, NodeIn, 

PointOut) in effect. All experiments for SJ4 and SISJ are performed 100 times 

and the average query time is taken. 

 

4.6.1 High-Performance Spatial Join 

 

An efficient full distance spatial join algorithm, SJ4, was introduced in 

[BrKS93]. SJ4 is already proven to outperform another class of spatial join 

Figure 60. MPRQ-Disk and RRQ-Disk under different buffer sizes 
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algorithm, the distance semi-join [ShML02]. The result is reproduced in 

Figure 61(a), with SJ4 labelled SJ-SORT. For join result size greater than 10K 

(one join pair is one result), which MPRQ is designed for, SJ4 is clearly faster 

than distance semi-join algorithms HS-KDJ, B-KDJ and AM-KDJ. The 

reported response time for SJ4 is ≈37.5 seconds (10,000 result pairs) and ≈75 

seconds (100,000 result pairs). Hence, we are motivated to compare MPRQ-

Disk to SJ4. 

 

 

Taking into account the difference in hardware speed and the amount of RAM 

between [BrKS93] and our work (Moore’s law), we benchmark SJ4 and 

MPRQ-Disk with our 2.4 GHz CPU, 4 GB RAM Linux machine. As the 

dataset used in experiments for SJ4 is no longer available (TIGER/Line 1990), 

we used our NJ dataset [TIGER02] to benchmark. A total of 331544 roads and 

9759 railways were selected for the benchmarking. Spatial indexes for SJ4 

(which requires two independent R-tree indexes) and MPRQ-Disk were 

constructed on disk using TPIE [Veng94] with our bulk-loading 

KDTopDownPack algorithm. Bulk-loading the data points significantly 

reduces the amount of overlapping rectangles, thus reducing the number of 

 
(a) 

 
(b) 

Figure 61. (a) The performance of distance semi-join algorithms (B-KDJ and AM-KDJ from 
[ShML02]; HS-KDJ from [HjSa98]) compared to SJ4 (SJ-SORT), (b) the performance of SJ4 

full spatial join algorithm reproduced from [HjSa98] 
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generated candidate pairs in the SJ4 algorithm, benefiting it directly as SJ4 

uses intersection tests and plane sweeping at every level of the index. 
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Figure 62 shows that MPRQ-Disk outperforms SJ4 in query time. Both 

MPRQ-Disk and SJ4 assume the spatial dataset to be indexed with the R-tree. 

We measured only the query time instead of the total time, which includes 

time to construct the spatial index. We are sure that SJ4 will cost even longer 

as it requires both the data points and the query points to be constructed as two 

independent R-tree, whereas MPRQ-Disk only constructs one R-tree for the 

data points. 

 

 

Figure 62. Benchmarking SJ4 to MPRQ-Disk using the NJ dataset of 
331,544 (roads) × 9,759 (railways) 

Figure 63. Roads from all the 5 counties of the California dataset, 
obtained from TIGER/Line 2006 
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For a larger dataset, we had chosen all the roads from 5 counties (Kern, Los 

Angeles, Riverside, San Bernardino and San Diego) within California, USA 

from TIGER/Line 2006 (2nd ed). There are a total of 643776 roads, as 

illustrated in Figure 63. Some features were selected to be query points (routes) 

and they are selected in such a way that we get a small, medium and large 

ratio between the data points and routes, for scalability concerns. 

Table 14 depicts the query time of MPRQ-Disk vs SJ4. For any ratio of 

database to query size, MPRQ-Disk outperforms SJ4. In the small dataset, 

MPRQ-Disk and SJ4 are almost identical. For medium and large datasets, the 

sorted intersection tests performed by SJ4 in each iteration have increased its 

response time significantly. As for MPRQ-Disk, when the R-tree is traversed, 

the set of query points are quickly reduced and vary slightly for each rectangle 

during query. Since each set of candidate points for a rectangle is a subset of 

the set at the upper level, no additional disk accesses are needed. 

 

Dataset Roads Route Ratio 
MPRQ 
(ms) 

SJ4 
(ms) 

Small Physical features 763 1:844 250 262 
Medium Railroads 9,641 1:105 266 459 

Large 
643,776 

Hydrography +  
Non-visible features 

247,890 1:2.6 1090 2316 

 

Next, we rerun some of the datasets from Section 4.4 to compare MPRQ-Disk 

and SJ4 using very small routes, in which MPRQ-Disk was originally 

designed for. The results are presented in Table 15. In the NJ dataset, SJ4 

takes much longer to run, compared to a larger dataset in Table 14 (the small 

dataset). The routes used in NJ are regionised routes designed to be spatially 

far. Due to this, SJ4 cannot take advantage of locality of reference as in the 

Table 14. Performance of MPRQ-Disk vs SJ4 in large dataset 
with small, medium and large routes 
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previous experiment where a bunch of spatially close route points would likely 

be read together into main memory. 

 

Dataset Roads × Route 
MPRQ 
(ms) 

SJ4 
(ms) 

Improvement 

NJ 331,544 × 111 190.9 447.5 134.4% 
MD 28,718 × 80 13.3 19.5 46.6% 
RI 53,721 × 96 25.0 50.1 100.4% 

 

4.6.2 Slot Index Spatial Join (SISJ) 

 

SISJ is an algorithm that joins a non-indexed dataset with one indexed by an 

R-tree [MaPa03]. In certain spatial queries, the non-indexed dataset could be 

the intermediate result of another database operator. For instance, in a multi-

way spatial join operation involving three datasets A  B  C, the spatial join 

algorithm could perform (A  B)  C or A  (B  C) with the intermediate 

result R joined to the remaining dataset. SISJ has the advantage of being useful 

when R is fairly large and it is costly to materialise R before processing it. 

SISJ distributes the R-tree entries at a specific level into S partitions, 

called slots, and builds an in-memory index from them. In each slot, a slot 

index keeps track of a list of pointers to all corresponding entries in the slot, 

along with a MBR of all the entries. Slots are basically a kind of hash table 

which is small enough to fit in main memory. The non-indexed dataset is also 

partitioned into the S buckets with the same spatial extents as the MBR of the 

slots. The algorithm finally joins each bucket with the R-tree data under the 

nodes pointed to by the corresponding slot. Figure 64 shows an example of 

SISJ for an R-tree at level 1 (second level from the root) constructed from all 

Table 15. Performance of MPRQ-Disk vs SJ4 in very small routes 
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its MBRs at that level. Note that SISJ is applied only on one specific chosen 

level of the R-tree and the slots’ MBR can also be overlapping. 

 

  

 

There are four slot index construction heuristics that determine the extents for 

space partitions used for hashing the non-indexed dataset, namely SplitXL, 

SplitHC, SplitSTR and IRS. SplitXL sorts MBRs w.r.t. their lower x-bound 

and divide them into S equal-sized groups. SplitHC sorts MBRs w.r.t. the 

Hilbert value of their centre and divide them into S equal-sized groups. 

SplitSTR sorts MBRs using STRPack algorithm and divide them into S equal-

sized groups. Finally, IRS inserts the entries into S slots using the R*-tree 

insertion algorithm. Among all four, IRS consistently gives the best query cost 

savings in the original paper. 

For comparison, we used the same dataset listed in Table 14. The 

overall query cost (in seconds) are measured and presented. Our chosen 

dataset represents very well the different scenarios that a spatial join result set 

would be. Typically, the ratio for small dataset is similar to a distance semi-

join query where a small distance limits the result to the top few results from 

an input query. The ratio for large dataset represents a spatial query that 

touches the whole map, returning many results. 

Figure 64. An R-tree and a slot index built over it. (a) the entries for an R-tree at level 1, (b) a 
slot index built from the R-tree entries and hashed data from the non-indexed dataset. Data that 

spread across two or more slots are replicated for queries. Data that are outside all slots are 
filtered. SISJ is performed between a slot and its corresponding hashed data only 
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For SISJ, the buffer size allocated was 512K with 4K disk page size. 

[MaPa03] has empirically shown that buffer size of one order of magnitude 

smaller than the dataset size is realistic, for datasets on any scale. The dataset 

size is ~5.15MB, so 512K is about one order of magnitude smaller. The larger 

the buffer is, the more hashed data from the non-indexed dataset can be stored 

in main memory for spatial join processing with the slot indices, which in turn 

helps to cut the number of disk access needed to process the hashed dataset 

buckets. For MPRQ-Disk, its parameters were carefully chosen so that the full 

route cannot fit in main memory during its execution. Note that MPRQ-Disk 

does not maintain a buffer in main memory to store MBRs. 

 

Dataset Roads Route Ratio 
 

MPRQ 
(s) 

SISJ 
IRS 
(s) 

SISJ 
SplitSTR 

(s) 

SISJ 
SplitHC 

(s) 

SISJ 
SplitXL 

(s) 

Speed-up 
MPRQ vs 
SISJ IRS 

Small 763 1:844 0.250 1.01 1.06 1.18 1.23 4.04 
Medium 9,641 1:105 0.266 9.09 9.89 11.71 12.30 34.17 
Large 

643,776 
247,890 1:2.6 1.090 176.06 194.34 232.62 256.43 161.52 

 

The SISJ slot indices performance is consistent with the results in [MaPa03], 

which shows that IRS is the fastest, followed by SplitSTR, SplitHC and 

SplitXL. MPRQ-Disk fares better compared to IRS. Table 16 shows that the 

speed-up for small dataset is 4.04 times and for large dataset is 161.52.  

For small datasets, in SISJ both the slot indices data (R-tree of indexed 

roads) and all buckets of hashed data (non-indexed route) could fit in main 

memory. So, a plane sweep algorithm is performed in main memory across all 

indices to find the spatial join result pairs. For medium datasets, only the data 

under a slot index fit in memory. In this case, SISJ uses the indexed nested 

loop join, considering the slot as the root of the R-tree; for each rectangle in 

Table 16. Performance of MPRQ-Disk vs SISJ in large dataset with small, medium and large 
routes. All four slot index construction policies are compared 
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the hash bucket, a window query is applied. To process the hash bucket fully, 

since there is not enough space in the buffer, a number of blocks have to be 

loaded from disk and an equal number of blocks have to be written from some 

other hash buckets. For large datasets, neither the data under a slot nor the 

bucket fit in memory. SISJ will perform joins similar to a recursive hash-join 

algorithm. The slot acts as the virtual root of an R-tree and a hash bucket as 

the non-indexed dataset. I/O cost is incurred for each and every slot as slot 

data are read into the buffer. 

The similarity of SISJ and MPRQ-Disk lies in an indexed R-tree, and 

that is all there is to it. SISJ needs to build an extra slot index on an R-tree as a 

pre-processing step. The performance of SISJ in reality depends on hashing 

the non-indexed input and the resulting algorithm used (different algorithm 

depending on whether the data in a slot and hash bucket could fit in main 

memory), with plane sweep being the most common. Compared to SISJ, 

MPRQ-Disk is an easier to implement method. We had looked into the plane 

sweep algorithm for MPRQ (as a rectangle intersection problem), but our 

research shows that it is slower than the simple MinMax method. 

 

4.7 Summary 

 

In this chapter, we revisited the MPRQ problem and the efficient MPRQ 

algorithm which we proposed for solving MPRQ. MPRQ and its performance 

in internal memory were studied to depth in the previous chapter, with 

comparisons to the RRQ. More often than not, spatial databases contain more 

data than can fit into the internal memory. Hence we address the case where 

the spatial database is large where external memory must be used for 
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processing MPRQ. Our equally extensive experimental results show that 

MPRQ-Disk promises good performance in answering MPRQ in terms of 

query time as well as the number of I/Os, even for the case where RRQ-Disk 

benefits from an implicit disk buffer that is the norm in database systems and 

against distance semi-join algorithms and spatial join algorithms as well. 

As expected, the speed-up increases proportionally with the number of 

query points as well as with the query distance for MPRQ-Disk. In addition, 

this speed-up holds for a large variety of problem parameters: over different 

number of query points in the query path P (even for very small queries), 

different search distances d, as well as different spatial representations of the 

spatial database. 

In the database literature, there are a plethora of spatial join algorithms 

for this is an active area of research. Interestingly, some spatial join algorithms 

can, with some modification, compete with MPRQ-Disk for solving the 

MPRQ problem. One example is the high-performance spatial join algorithm 

SJ4. Another class of spatial join algorithms seeks to join a dataset indexed in 

an R-tree to a non-indexed query set. It is fundamentally similar to the 

definition of the MPRQ problem. An example is the SISJ. Thus, we compared 

MPRQ-Disk to both SJ4 and SISJ. MPRQ outperforms both algorithms in 

three dataset to query size ratios, designed on real-life datasets that is 

representative of a real-life spatial join queries. The small ratio closely 

resembles the design of MPRQ algorithm, which was motivated by 

performing queries on a large dataset and a small input query. 

In conclusion, our study shows that MPRQ-Disk is superior to RRQ-

Disk. With this understanding, we had set out to adopt MPRQ-Disk in two 
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applications, namely (i) RADS, which was described in Chapter 1 and (ii) the 

PepSOM algorithm for the peptide identification problem in bioformatics 

[NiNL06], which is described in Appendix A. 
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Reverse Nearest Neighbour 
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Chapter 5 RNN and Related Work 

 

The reverse nearest neighbour (RNN) query is a relatively new area of 

research which was introduced by [KoMu00]. In the nearest neighbour (NN) 

problem, the concept of influence of a data point p in database is the notion 

that p exerts influence on its nearest neighbours; any changes in p might affect 

its neighbours, which is true for many real-world applications. Therefore much 

attention is focused on finding p’s nearest neighbours. The NN problem is a 

well-researched problem with many efficient kNN algorithms [Same06] 

proposed that can find the top k-nearest neighbours of any given point. 

In contrast, the notion of influence of p in the RNN problem is the 

conjecture that as other data points exert their influence on p; when p changes 

these data points must be directly affected. This is a stronger notion of 

influence compared to the case of NN. For example, in a virtual reality 

shooting game, a smart computer gear that a player Pete wears can find and 

rank Pete’s top k nearest enemies (a kNN query) so that Pete can shoot them 

(higher chance of hitting close targets). At the same time, Pete’s gear will also 

identify all enemies whose top k-nearest neighbours include Pete (a RkNN 

query) so that Pete can get far away from them! The RNN query is also useful 

in other real-life business applications such as decision support systems, 

continuous referral systems, profile-based marketing and maintaining 

document repositories [KoMu00]. 
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5.1 The RkNN Problem 

 

The RkNN problem is non-trivial and more challenging than its counterpart, 

the kNN problem because it cannot be answered by simply complementing the 

result set or the function of kNN. The relationship between kNN and RkNN is 

asymmetrical. In fact, in the latter, spatial locality w.r.t. a query point does not 

apply. We illustrate this behaviour using the example in Figure 65, with P = 

{p1, p2, p3, p4, p5} and q as the query point. We observe that q becomes the NN 

of p1 and p2 w.r.t. P ∪ {q}, hence the RNNP∪{q} of q are p1 and p2. Note that p1 

is a RNN of q although it is far away from q but p3 is not a RNN of q although 

it is closer to q than p1 and p2. 

 

 

 

5.2 Formal Problem Definition 

 

The reverse nearest neighbour (RNN) query asks the following: given a query 

point q, find a set of points whose nearest neighbour (NN) is q. The RNN 

problem is also known as finding the influence set of q problem. 

Let SDB be a database of n 2-d points (|SDB| = n). Let d be any 

Minkowski metric distance function Lp on ℜ2 and any x, y, z ∈ ℜ2 satisfy the 

Figure 65. A reverse nearest neighbour example with k = 1 
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conditions d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z) in general. 

Before we define RNN, let us define NN. The set NN of a query point q ∈ ℜ2
 

is the set NN(q) ⊆ SDB such that ∀p ∈ NN(q), ∀p' ∈ SDB \ NN(q), (d(q, p) < 

d(q, p')). We generalize this to kNN(q), the smallest unique set S that contains 

at least k points from SDB such that ∀p ∈ S, ∀p' ∈ SDB − S, (d(q, p) < d(q, 

p')). The set of reverse nearest neighbours of a point q, RkNN(q) = {p ∈ SDB | 

q ∈ kNN(p)}. R1NN(q) is correct for any arbitrary set kNN(q) where the top k 

points with the smallest distance from q, called the k-nearest neighbour, is 

chosen arbitrarily. It could be possible that |kNN(q)| > k if while processing 

the kNN query, k-1 points has been discovered and ∃p1, p2 ∈ SDB \ (k-1)NN(q) 

where d(p1, q) = d(p2, q) and |(k-1)NN(q) ∪ {p1}| = k. In this case, we 

terminate when |kNN(q)| = k is satisfied. Figure 66 illustrates the case. 

 

 

 

In the remainder of this thesis, we write 1NN(q) simply as NN(q), R1NN(q) 

simply as RNN(q), and d is L2 Euclidean distance metric for illustrative 

purposes. The terms RNN and NN can also be taken to mean the general, 

respective problem. The distance function d is equivalent to the dist used in 

previous chapters. 

Figure 66. The case where |kNN(q)| > k when k < 4. This is because all points p1, p2, p3, p4 lie in 
equal distance from q. In cases like these, an arbitrary set kNN(q) of size k will be returned 

d 
q 

p3 

p4 

p2 

p1 



 

113 

5.3 Related Work 

 

The naïve method to answer a RNN query is extremely slow and expensive. 

RkNN(q) can be answered by computing the kNN(p) for each and every data 

point p in the database of size n and subsequently returning all the points p 

whose kNN(p) contains q. The running time of this method is O(n2) for linear 

data points and O(n log n) if the data points are spatially indexed by a height-

balanced hierarchical structure such as the R-tree [Gutt84]. The space 

complexity is O(n) for k = 1 and O(n2) for k > 1. 

In general, the approaches to answering RNN queries can be classified 

into two categories: voronoi approach and hypersphere approach. Voronoi 

approaches use the concept of Voronoi cells to perform space pruning. Based 

on certain geometrical properties between data points and the properties of 

RNN, algorithms using this approach are able to filter off a large number of 

data points and keep a much smaller set of candidate points for verification. 

One disadvantage of space pruning approaches is that they do not scale for 

high-dimensional data. Hypersphere approaches use the observation that if d(p, 

q) < d(p, kNN(p)), then p is a correct answer. Algorithms using this approach 

usually perform pre-computation on all the points (each point up to its kNN 

for a given k) in the database and construct a spatial index with this 

observation embedded. The drawback of hypersphere approaches is that they 

cannot handle queries with an arbitrary k in which the spatial index is not 

constructed for. 

The RNN-tree [KoMu00] was the first approach to answer RNN 

queries. The idea is to pre-compute the distance r of a point p to its NN and 

represent it by a vicinity circle (VC) with radius r centred at p. All vicinity 
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circles VC(p, d(p, NN(p))) for all points are stored at the leaves of an R-tree. 

Hence, an RNN query is transformed into a point enclosure query where 

RNN(q) = {p ∈ SDB | q falls inside VC(p, d(p, NN(p)))} (proof in [KoMu00]). 

One drawback for this method is that it requires another spatial index to 

handle the dynamic case where insertions and deletions to the dataset are 

required. This problem was circumvented by [YaLi01] who proposed the 

Rdnn-tree so that NN and RNN queries can be answered. As a result, only one 

index needs to be maintained. The Rdnn-tree is also designed to answer NN 

and RNN queries together in a single tree traversal. Subsequently, a bulk-

loading method for the Rdnn-tree was proposed [LiNY03]. The Rdnn-tree is 

not easy to update as it still involves massive changes to many nodes in the 

dynamic case. 

One huge disadvantage of the RNN-tree and Rdnn-tree is that when 

constructed for k = 1, they can only answer R1NN queries. To answer R2NN 

queries, another index must be constructed with VC(p, d(p, 2NN(p))). In 

general, k indexes are required to answer any arbitrary RkNN(q), which is 

impractical. 

The first RNN algorithm taking the Voronoi approach was proposed in 

[StAE00, SRAE01]. Assuming Euclidean distance metric, the space around a 

query point q is divided into 6 equal constrained regions of 60° each (Figure 

67), and it can be proven that in each region Si, either there exist one and only 

one point pi ∈ Si such that pi ∈ RNN(q), or such a pi does not exist at all in Si 

[StAE00]. In a later work [SRAE01], a coarse filtering and refinement 

algorithm was proposed taking advantage of the results in [StAE00] to answer 

RNN queries. Constrained regions present a well-known fact about RNN, i.e. 
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in a plane, there can only be at most 6 RNNs for Euclidean metric and at most 

8 RNNs for Manhattan metric. However, the number of RNNs is unbounded 

for RkNN where k > 1. The problem of constrained regions is that they suffer 

from the curse of dimensionality. The number of regions to be searched 

increases exponentially with dimensionality. 

 

 

 

The idea of using the perpendicular bisector plane for pruning was proposed in 

[TaPL04] as the TPL algorithm. TPL works only on points indexed by an R-

tree. It first retrieves a set of potential candidates into Scnd in ascending order 

of their distance to the query point q. Candidate points in Scnd are pruned 

against each other and also against already seen points in a refinement set Srfn. 

Pruned items are inserted into Srfn. MBRs, however, are “half-pruned” into 

residual area by the perpendicular bisector idea when a new point is 

discovered. Subsequently, an MBR gets smaller when more points causes it to 

be further reduced in size, if not eliminated altogether. TPL is illustrated in 

Figure 68. The disadvantage of TPL is that it is being too paranoid by saving 

all pruned items in Srfn and nothing is ever discarded. As a result, although the 

size of Scnd is kept to a minimum, the refinement step is too cumbersome as 

Srfn (used for future pruning) grows very quickly. It is not unrealistic to 

Figure 67. Example of constrained regions around a query point q using 
Euclidean metric in 2-d space 
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imagine that Srfn may well outgrow main memory allocation, although this 

issue is not addressed in the paper. 

 

 

 

The existing RNN solutions mentioned so far either rely on pre-computation 

which is expensive to maintain in a dynamic setting where frequent updates 

are required [KoMu00, YaLi01, LiNY03], or are applicable only in Euclidean 

space in which similarity is based on the L2 norm [StAE00, SRAE01, TaPL04]. 

In [TaYM06], techniques for answering RNN that solves these issues were 

presented. The work is in general metric spaces that assumed no detailed 

representation of the data objects, instead the only sufficient conditions are 

that (i) there exist a computable distance between any two data objects that 

satisfies the triangle inequality property, and (ii) the distance can be indexed. 

The data structure used is the M-tree [CiPZ97] as it is a dynamic structure 

specifically designed for external-memory access and it aims to minimize the 

overlap among the cluster of indexed spheres. Since the authors did not name 

their algorithm, we simply christen it TYM in this thesis. 

Figure 68. The TPL algorithm. (a) A bisector perpendicular line ⊥(p1,q) prunes off half the space. 
Point p2 and MBR N1 are both nearer to p1 than q, therefore can be pruned (b) When p3 is 

discovered, a new ⊥(p3,q) is introduced leading to more pruned space where RNN cannot exist (c) 
An MBR N2 is pruned by three bisector perpendicular lines, only the points that fall in the 

residual area (shaded) can be the result 
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So far, all the abovementioned RNN algorithms provide an exact 

answer for the RNN of a query point q. In contrast, there is another class of 

RNN algorithms that aims to be fast but will only provide approximate RNN 

results [SiFT03, XiHL05, AFST07]. Among these approaches, [XiHL05] 

introduces ERkNN, an efficient algorithm that can be implemented on the 

widely-used R-tree, hence its immense potential. The algorithms proposed in 

[SiFT03, AFST07] are extremely slow and their performance depends heavily 

on the non-trivial efficient implementation of boolean range query. For this 

reason, we chose ERkNN for further discussion. 

ERkNN is shown to be an order of magnitude faster than [SiFT03], 

with better recall too. It is also faster than the TPL algorithm in terms of 

processing time, mainly because ERkNN is an approximate method. ERkNN 

uses a local kNN-distance estimator utilising PDE (parzen density estimator 

with uniform kernel [Fuku90]) or kDE (kNN density estimator [Fuku90, 

KaSa01]) to retrieve RkNN candidates. The local kNN-distance is the distance 

from a data point to its k-th nearest neighbour, estimated by a density function 

of a small number of neighbouring samples around the query point q. The 

advantage is estimation-based filter has a lower computation cost than space 

pruning strategies. In the coarse filtering step, ERkNN retrieve a set of 

candidates pi whose distance to q is equal to or greater than pi’s estimated 

kNN-distance as RkNN candidates. In the refinement step, range queries are 

used to verify the candidates. 

 

 

 



 

118 

5.4 Variants of the RNN Problem 

 

There are many other variants of the RNN problem which are beyond the 

scope of this research. For instance, the bichromatic-RNN problem [SRAE01, 

KMSX07], RNN in graphs [YPMT06] and continuous RNN monitoring for a 

moving query point [XiZh06, BJKS07, KMSX07, WYCT08]. 

In the bichromatic-RNN problem, given a set TDB of sites, a set SDB 

of points, and a query site q, B-RNN(q) finds all points that have q as their 

nearest neighbour site, i.e. B-RNN(q) = {pi ∈ SDB | ∀s ∈ TDB, d(q, pi) ≤ d(pi, 

s)}. The set TDB of sites can be viewed as blue-coloured points whereas the 

set SDB can be viewed as red-coloured points (hence, bichromatic) and the 

goal is to retrieve all red-coloured points closer to q than to any blue-coloured 

points. 

For the continuous-RNN problem, given a set SDB of points, some 

time interval Tj and moving query point q, the goal is to keep track of RNNj(q) 

where RNNj(q) = {pi ∈ SDB | ∀o ∈ SDB, d(q, pi) ≤ d(pi, o)} at time interval Tj. 

 

5.5 Summary of RNN Algorithms 

 

The RNN algorithms found in the literature can be broadly classified by three 

properties they possess. Table 17 shows the summary of the RNN algorithms, 

which was first compiled by [TaPL04] and expanded here to cover some of 

the newer published work together with our proposed novel RNN algorithms, 

RNN-Grid and RNN-C tree. 

 



 

119 

RNN Algorithm Dynamic data 
Arbitrary 

dimensionality 
Exact result 

KoMu00 (RNN-tree)  � � � 
StAE00 � � � 
YaLi01 (Rdnn-tree) � � � 
MaVZ02† � � � 
SiFT03† � � � 
TaPL04 (TPL) � � � 
XiHL05 (ERkNN) � � � 
TaYM06 (TYM) � � � 
RNN-Grid � � � 
RNN-C tree � � � 

 

To the best of our knowledge, apart from the RNN-C tree, only TYM is 

designed for solving RNN in metric space. However, there are several major 

differences between RNN-C tree and TYM though. The construction of RNN-

C tree is based upon 1NN distance, and the final data structure is independent 

of the order of data points. A RNN-C tree is constructed bottom-up while M-

tree is built from top-down. Due to this, the RNN-C requires no split policy. 

The construction algorithm in M-tree tries to avoid enlarging the covering 

radius when adding a node, and if that is not possible, try to minimise the 

covering radius enlargement.  

The centre of a cluster (centroid) is not a member of the cluster in 

RNN-C tree but for TYM, the centre of a node (called routing object) is one of 

the points in the intermediate entry. The fanout of a node fmin has no direct 

relationship with k in RNN-C tree but in TYM, the algorithm is designed with 

the assumption that k < fmin. The key difference in pruning strategy is that 

RNN-C tree makes use of the sum of clusters to prune clusters at all levels, 

                                                 
† These RkNN work are not covered in the related work section. For further information, refer 
to the paper. 

Table 17. Non-exhaustive list of RNN algorithm summary properties adapted 
from [TaPL04], and expanded. This list only includes monochromatic RNN 

algorithms for static query points 
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while TYM uses a node’s parent distance to save on the cost of distance 

computation. TYM was not able to make use of node size for pruning. 

 

5.6 Statistical Analysis 

 

We propose a method to answer RNN queries based on parameter extraction 

approach. A parameterised function fitting the correlation between k1NN and 

Rk2NN is designed to be used in our novel algorithm, RNN-Grid (note that we 

distinguish both k’s in this section). The goal is to find such a function so that 

for some given confidence value, we could retrieve the number of k1 NN 

candidates such that Rk2NN can be answered with certainty. As a result, the 

RNN-Grid is a fast, approximate RNN algorithm as it uses the resulting table 

from the parameterised function. Section 5.6.1 details the correlation analysis. 

Section 5.6.2 describes an analysis of the randomness of clusters 

formed by representative points picked from a cluster. Given a uniformly 

distributed spatial dataset S1 and the 1NN graph is built on S1, this will result 

in a graph of many disjoint components (called clusters) Ci. Suppose the 

centroid ci is computed from each of the Ci to form a dataset S2, a 1NN graph 

is built on S2, and the process is repeated until |Sj| ≤ 3, are all the points in Sj (j 

> 1) random? How does the size of clusters reduce from one level to the next? 

This is an important factor that determines the height of our proposed RNN-C 

tree, with respect to the dataset size.  
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5.6.1 Correlations between NN and RNN 

 

We conducted a study of the correlations between k1 and k2 by defining a 

function f(k1, k2) which returns the probability value P(Rk2NN(q) ⊆ k1NN(q)). 

The probability value is calculated using the formula 

)(NNR

)(NNR)(NN
))(NN)(NNR(P

2

21
12

qk

qkqk
qkqk

∩
=⊆  or 0 if Rk2NN(q) = ∅ 

During the study, we set k1 = k2…100 and k2 = 1…100, and measured the 

average probability value. For the analysis, we studied three types of data 

distributions: uniform, normal (Gaussian) and real-life data from the 

TIGER/Line database [TIGER02]. For uniform and normal distributions, 10K 

data points and a single query point q were generated per measurement. The 

process is repeated 100 times to obtain the average, for k1 ≥ k2. For real-life 

data, we used datasets from 4 counties to obtain the average, and only the 

query point is regenerated 100 times per dataset since the datasets are static. In 

each run, all the data points are subjected to the naïve method to compute their 

NNs for the RNN results. This method has a running time of O(n2), using 

O(n.k1) space. 

In Figure 69, the probability curves were plotted for k2 ≤ 10, against k1 

≤ 40 for the uniform and normal distributions. Each line represents the average 

P(Rk2NN(q) ⊆ k1NN(q)), for increasing k1. Recall that RkNN(q) = {p ∈ SDB | 

q ∈ kNN(p)}. Therefore, there are no probability values for k1 < k2 because the 

definition of RkNN(q) is undefined (we need exactly k NN to make the set 

definition). 
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The R1NN lines begin with 0.6242 and 0.5928 for uniform and normal 

distribution respectively and reaches 1.0 when k1 = 12. The probability value 

stays for k1 > 12. It is generally observed that the probability value stays at 1.0 

for subsequent k1 values once it is reached, for all k2 and all three data 

distributions. In fact, the starting probability value (when k1 = k2) increases 

gradually from 0.6242 to 0.8207 and stabilises at ≈0.8319 (for very large k). 

This is taken to mean that we will obtain 83% of the RNN results (for any k ≥ 

10) if we were to find the top k NN. Generally, to obtain all RNN results with 

any λ certainty, one would have to find the k1 value that corresponds to P ≥ λ.  

In the normal distribution, the starting values for 5 ≤ k2 ≤ 10 are 

0.7225, 0.7353, 0.7327, 0.7399, 0.7357 and 0.7359 respectively. This is 

approximately 10% lower than those for the uniform distribution. The reason 

for this is that our query point q is uniformly random in the plane, and at the 

edge of the plane, q is slightly disadvantaged by the sparse points inside the 

plane and no points outside the plane. The analysis also confirms our 

conjecture that when k1 >> k2, the quality of the results improve greatly. For 

Figure 69. Correlation analysis between NN and RNN for uniform (left) and normal (right) 
distributions. The chart plots the probability values against the number of NN (k1). Each line 

represents a k2 value 

 0.55 
 0.6 

 0.65 
 0.7 

 0.75 
 0.8 

 0.85 
 0.9 

 0.95 
 1 

 5  10  15  20  25  30  35  40 

R1NN 
R2NN 
R3NN 
R4NN 
R5NN 
R6NN 
R7NN 
R8NN 
R9NN 

 R10NN 

probability 

k1  0.6 
 0.65 

 0.7 
 0.75 

 0.8 
 0.85 

 0.9 
 0.95 

 1

 5  10  15  20  25  30  35  40

R1NN 
R2NN 
R3NN 
R4NN 
R5NN 
R6NN 
R7NN 
R8NN 
R9NN 

R10NN 

probability 

k1 



 

123 

instance, when k2 = 5 and k1 = 5, the P values are 0.7862 and 0.7223 for 

uniform and normal distribution respectively. But when k2 = 5 and k1 = 15, the 

P values rise to 0.9969 and 0.9570 respectively. 

 

 

 

The trend for real-life datasets is similar to those of uniform distribution, 

except with a lower R1NN starting value of 0.6052. It exceeds 0.995 at k1 = 8, 

exceeds 0.9995 at k1 = 8, and reaches 1.0 only at k1 = 53. The real-life datasets 

also conform to our conjecture that when k1 >> k2, the quality improves greatly. 

With this conjecture proven empirically, we could conclude that finding a 

much higher number of q’s NNs will increase the chances of getting the 

required RkNNs during the query. 

The results in these analyses were inserted into a probability chart in 

our RNN-Grid codes, accessible via a lookup function which is the first line of 

the pseudocode in Figure 72. The confidence level c is a user-supplied 

parameter to obtain the desired level of RkNN results. The higher the value of 

c, the more candidates will be returned, leading to a higher chance of 

obtaining the correct RNN results but at the expense of higher processing costs. 

Figure 70. Correlation analysis between NN and RNN for 4 real-life datasets. The chart plots 
the probability values against the number of NN (k1). Each line represents a k2 value 
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5.6.2 Randomness of Clusters 

 

[EpPY97] had studied data points representation similar to kNN graph and 

presented the theoretical result |Ci+1| ≈ 0.31*|Ci| which guarantees finite RNN-

C tree height. The equation says that the number of clusters is approximately 

1/3 of the number of data points at any level, which means there are 1/3 of the 

data points on a level above, to construct kNN graphs with. In other words, by 

designing effective pruning rules for pruning clusters in a RNN-C tree, the 

query algorithm can potentially prune off data points 3 times the size of a 

cluster. The higher the tree level in which pruning takes place, the more data 

points are pruned off as each cluster contains points that in turn represent even 

smaller clusters. 

One concern that motivated this analysis is the “randomness” of 

clusters formed by centroids of a cluster. Although at the leaf level the points 

may be random, the randomness of centroids of clusters is unknown. This is 

even more interesting when the clusters are not formed by random points at 

the leaf level, but instead by points with geographical significance. Hence, we 

conducted an analysis of both synthetic and real-life spatial datasets to 

measure the randomness of clusters. 

For the synthetic datasets, we randomly generated 2i*1000 (0 ≤ i ≤ 6) 

2-d points on a plane of 100002 unit sq and constructed the kNN graphs to 

form clusters. For each cluster, a centroid is calculated and propagated one 

level up to represent dataset points for another round of constructing kNN 

graphs. This is repeated until less than three points are left. At each level, the 

points are generated and built 100 times and the average and standard 
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deviation are recorded. The aim is to compute the ratio of reduction to see how 

close it is to the theoretical result. The same process is repeated for two real-

life spatial datasets, MD and RI (refer to Table 10), except that they are run 

only once per level as the data points are static. Although results for random 

points are backed by theory, it is interesting to see whether real-life datasets 

display the same traits; if not, how different the ratio would be. 

 

Level Size Ratio 
Std 
dev 

Size Ratio 
Std 
dev 

Size Ratio 
Std 
dev 

Size Ratio 
Std 
dev 

0 1000   2000   4000   8000   
1 311.70 0.31 7.43 619.90 0.31 9.00 1242.11 0.31 13.87 2477.2 0.28 13.98 
2 89.17 0.29 4.50 177.93 0.29 7.38  354.42 0.29 9.01 702.4 0.28 11.04 
3 25.61 0.29 2.76 50.41 0.28 3.91  99.61 0.28 4.60 197.2 0.27 6.49 
4 7.32 0.29 1.45 14.51 0.29 2.02  28.13 0.28 2.61 55.2 0.28 2.04 
5 2.19 0.30 0.83 4.21 0.29 1.10  7.99 0.28 1.49 16.4 0.30 1.36 
6    1.29 0.31 0.50  2.45 0.31 0.77 4.4 0.27 1.02 
7          1.4 0.32 0.80 

Level Size Ratio 
Std 
dev 

Size Ratio 
Std 
dev 

Size Ratio 
Std 
dev 

0 16000   32000   64000   
1 4965.4 0.31 27.85 9960.4 0.31 24.79 19901.8 0.31 82.80 
2 1409.7 0.28 11.01 2854 0.29 9.32 5690.4 0.29 48.77 
3 392.5 0.28 9.40 800.4 0.28 11.66 1585.2 0.28 15.17 
4 106.1 0.27 4.90 225.1 0.28 8.07 440.7 0.28 5.90 
5 30.1 0.28 3.29 63.4 0.28 3.61 120.4 0.27 3.67 
6 8.2 0.27 1.72 19.8 0.30 2.76 35.4 0.29 2.15 
7 2.6 0.32 1.36 5.4 0.28 0.80 10.6 0.30 1.36 
8    1.6 0.31 0.52 2.8 0.26 1.17 

 

The theoretical result could be observed from the calculations in Table 18. The 

ratio |Ci+1|/|Ci| lies in the range of 0.26 to 0.32, with a mean of 0.29 over all 

datasets and all levels. There is no significant difference between a small 

dataset (1000 points) and a large dataset (64000 points) except the resultant 

tree height. The standard deviation averaged 0.96% and 2.18% for levels 1 and 

2 respectively, which means the average ratio presented is truly a good 

representation. 

Table 18. Synthetic datasets of randomly generated points of size 2i*1000 (0 ≤ i ≤ 6) 
and their standard deviation at different levels of the kNN graphs (level 0 is the leaf 

level). The ratio of the size to its lower level is also calculated 
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Level MD Ratio RI Ratio 
0 28719  53721  
1 8690 0.30 16446 0.31 
2 2367 0.27 4573 0.28 
3 625 0.26 1252 0.26 
4 155 0.25 330 0.25 
5 41 0.26 82 0.30 
6 13 0.32 25 0.30 
7 3 0.23 5 0.20 

 

Table 19 shows the analysis for the real-life datasets. The ratio of clusters 

reduction ranges between 0.20 and 0.31, with a mean of 0.27 for both. This is 

quite close to the theoretical result but we cannot draw any conclusions 

because real-life datasets vary to a great extent. However, from this analysis, it 

is at least observable that cluster sizes reduce by at least 60% or more at all 

levels. This guarantees that the RNN-C tree that we propose has height that is 

not only finite, but logarithmic as well. 

In the next two chapters, we will make use of the results of the 

statistical analyses in this section to design both an estimated and an exact 

approach to answering the RNN query, namely the RNN-Grid and RNN-C 

tree respectively. 

Table 19. Two real-life dataset MD and RI used to construct kNN graphs. 
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Chapter 6 RNN-Grid: An Estimated Approach for 

RNN Query 

 

In many applications, response time is critical but the accuracy of the RNN 

results is not. A virtual reality shooting game designer may want to find out 

the top k RNN of the player quickly with some high probability (say, 0.95), 

rather than tying up resources to find all the RNN with absolute certainty 

because there are many other aspects of the game that require the same 

resources. Besides, a “missed” RNN that suddenly appears may well become 

an element of surprise for the player (enhanced playability) and there is also a 

good chance of the player shooting down this enemy first (even without the 

knowledge that the enemy is a RNN). For applications that require fast, 

approximate results, we proposed an approach based on the grid file data 

structure [NiHS84]. 

  

6.1 The Grid File 

 

The grid file is an elegant data structure that is easy to adopt and implement. It 

is an intuitive method for solving the NN problem as it provides fast O(1) 

access to cells (buckets containing data points). So, given a query point q, the 

cell where q is located can be retrieved immediately and the data points in 

surrounding cells be investigated. We begin by describing the grid file data 

structure. 

The grid file is a relaxation of the fixed grid method to allow free 

distance in all k axes. In the original fixed grid data structure, all axes are 
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partitioned into fixed intervals. Although the apparent advantage is the ease of 

cell referencing (where a simple formulae effectively pinpoints the correct cell 

for any point of any dimensionality), its drawback far outweighs its usefulness. 

A set of heavily skewed dataset would cause most data points to fall into just a 

few cells, effectively turning the fixed grid into a sequential search. The grid 

file solves this problem by allowing the freedom for the axes to be flexible, in 

tandem with the data points being inserted. To keep track of the axes, k 

additional arrays (called linear scales) are maintained to find the grid partitions. 

 

 

 

The main objective of the grid file is to evenly spread the data points into all 

its cells, thereby guaranteeing optimal I/O costs. The grid file slices the space 

of points in each of the k dimensions, producing partitions of rectangles (for k 

= 2), cubes (k = 3) or hypercubes (k > 3). Each partition is a bucket, and points 

that fall in that partition have their record placed in a block belonging to that 

bucket. To perform a search, we first need to determine the positions of the 

record in each of the k dimensions according to the linear scales. After 

locating the proper bucket in the grid array, the data block is finally accessed 

on disk. 

Figure 71. An example of (a) grid file and (b) fixed grid. By allowing flexible axes, the data 
points can be split into the partitions evenly. In the fixed grid, it is difficult to find a fixed 

interval so that all data points are evenly distributed 
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For example, a 2-d grid file dynamically partitions the search space by 

maintaining a structure of two 1-d arrays and one 2-d array. The former is 

called linear scales, and is used to maintain a partitioning of unequal cells such 

that data points in them are spread evenly and each cell of the grid array points 

to a single data bucket (more than one cell can point to the same bucket). It 

shall be noted that the partitioning is highly dependent on the order in which 

data points are inserted and the bucket size. In general, grid files have a 70% 

utilisation. 

Methods for insertion and deletion of data for the grid file have been 

proposed. In the best case, insertion operations on the grid file cost one I/O for 

accessing the linear scales (if they do not fit into memory) and another I/O for 

accessing the bucket, assuming that the new point does not make the bucket 

full. In the worst case, full buckets need to be split, causing linear scales to be 

adjusted. Deletion operations on the grid file in the worst case cause buckets to 

fall below a threshold utilisation value; they are merged with adjustments to 

the linear scales. 

 

6.2 RNN-Grid Algorithms 

 

As shown in the problem formulation, the RNN problem is interrelated to the 

NN problem. Taking advantage of this correlation, we designed an algorithm, 

which we call RNN-Grid, that makes use of the grid file for solving the NN 

problem and adapted it further to solve the RNN problem. To the best of our 

knowledge, no RNN algorithms have been designed around the grid file 

despite its obvious potential as an approximate approach to the RNN problem. 
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The key idea for the RNN-Grid is to quickly return the set k1NN(q) as 

candidates hopefully large enough to cover all the Rk2NN(q). Given the spatial 

database of multi-dimensional points SDB in a grid file data structure, the 

query point q and k2, our RNN-Grid algorithm will make use of the statistical 

analysis results to derive k1, the suitable number of NN to retrieve as 

candidates. In the refinement step, for each candidate p ∈ k1NN(q) the same 

RNN-Grid algorithm is again invoked to check whether q ∈ k2NN(p). If this 

condition is met, p is a true positive. It is easy to see that the accuracy of this 

estimated RNN-Grid approach stems from the value k1, which in turn is based 

on statistical analysis. Figure 72 illustrates the basis for RNN-Grid algorithms. 

The RNN-Grid algorithms were designed with the underlying 

assumption that the dataset is 2-d data points and there exists a distance 

function satisfying the triangle inequality principle. Firstly, we explored two 

methods for RNN-Grid, best-first wavefront (BFW) and best-first cell 

expansion (BFCE). Both methods made use of our probability statistical 

analysis results in Section 5.6.1 for generating candidates. Recall that the 

analysis provides us with an estimator for the set k1NN(q) given a confidence 

value. Experiments have shown that BFCE outperforms BFW, so the former 

was chosen as the de facto algorithm for the RNN-Grid approach. Next, the 

BFCE method was combined with theorems on pruning with the geometrical 

RNN properties that were described in [StAE00, TaPL04] to further improve 

its performance. 
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 RNN-Grid(q, k2, c, R) 
 // Input:  Query point q, the k2-th RNN, confidence c (0-1) 
 // Output: R – Rk2NN of q 
 begin 

   k1 � lookup(k2, c)  // k1 is the number of NNs required 
   RNN-Grid-algorithm(q, k1, temp) 
 
   forall p in temp do 

    temp2 � ∅ 
      RNN-Grid-algorithm(p, k2+1, temp2)   
      // +1 because p is in the dataset and must be discounted 

      last � pop(temp2)  // furthest point in temp2 from q 
      if dist(q, p) < dist(p, last) then 

       R � R ∪ {p} 
    endif 

   endfor 

 end; {procedure RNN-Grid} 

 

RNN-Grid relies on the grid file’s inherent insertion and deletion methods to 

deal with dynamic data, just as other RNN algorithms in [TaPL04, XiHL05] 

rely on its underlying R-tree data structure’s insertion and deletion methods to 

handle dynamic data. 

 

6.2.1 Best-First Wavefront (BFW) Algorithm 

 

BFW represents a first attempt at solving RNN with the grid file. The key idea 

in BFW is to locate the cell in which q is located and expand in a rectangular 

fashion outwards (in waves) to find the k1 required NN of q. In each wave, all 

cells must be processed to be considered complete. Figure 73 shows an 

example of BFW. At wave w > 0, there are exactly 8w cells to process. Let ci 

be any cell at wave i, in which all are sorted in ascending order of distances 

from q, i.e. MinDist(q, ci). The function MinDist is similar to the one defined 

in Figure 14. We also maintain a global CurrMinDist value, defined as the 

smallest distance between q and the k-th (k ≤ k1) valid results so far. 

CurrMinDist is used to prune both unseen cells and data points. A queue Q is 

Figure 72. Basis pseudocode for all the RNN-Grid algorithms 
(BFW, BFCE, BFCE-PB) except BFCE-CR 
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used to process the cells; when a cell ci is dequeued to be processed, it will be 

processed if MinDist(q, ci) < CurrMinDist. Let data point p ∈ ci. p is added to 

the result set if d(p, q) < CurrMinDist. The algorithm will terminate when ∀ci, 

MinDist(q, ci) > CurrMinDist. 

 

 

 

The algorithm for BFW is given in Figure 74. For simplicity, the part where a 

counter can be kept to check the algorithm’s termination condition is omitted. 

One disadvantage of BFW is that once a wave is started, all the cells must be 

processed and the algorithm terminates when the whole wave’s cells is further 

than CurrMinDist. This may incur unnecessary computation costs. 

 
 RNN-Grid-BFW(q, k, R) 
 // Input:  Query point q, the k-th RNN 
 // Output: R – Rk2NN of q 
 begin 

 currMinDist � 0 

 w � 1  // wave 
 
 Q � getCell(q.x, q.y)  // returns cell where q is located 
 while not Q.isEmpty do 

    cell � dequeue(Q) 

  cand � getBucket(cell)  // get all points from cell 
  if |R| ≥ k and MinDist(q, cell) > currMinDist then 
   continue;  // proceed to next cell 
  endif 

Figure 73. Best-First Wavefront (BFW) algorithm for RNN-Grid. (a) Each wave consists of cells 
one unit adjacent to the cell of q in the beginning and to the previous wave subsequently. (b) 

Cells within a wave is maintained and visited/processed in the ascending order of their distances 
from q. Note that in a real grid file, the cells are not likely to be squares; the example is for 

illustration only 

q q 

3 2 4 

1 5 

7 6 8 
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  ProcessCandidates(q, k, cand, R, currMinDist) 
 
    for i in -1*w to 1*w do 
   for j in -1*w to 1*w do 
    if i=0 and j=0 then continue;  // skip middle cell 

    cell � getCell(q.x+j, q.y+i)  
    if not cell exist then  
     continue;  // cell might be at grid boundary 
    endif 

    if |R| ≥ k and MinDist(q, cell) > currMinDist then 
     continue;  // proceed to next cell 
    endif 

    insert cell into Q sorted by ci∈Q|dist(q, ci) 
    w � w + 1 
   endfor 

  endfor 

 endwhile 

 end; {procedure RNN-Grid-BFW} 
 

 ProcessCandidates(q, k, cand, R, currMinDist) 
 begin 

 forall p in cand do 

   if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then 
        insert p into R sorted by ci∈R|dist(q, ci) 
   currMinDist � max{dist(q, p’∈R)} 
    endif 

 endfor 

 if |R| > k then  
  truncate R at position k+1;  // keep the first k results 
 endif 

 end; {procedure ProcessCandidates} 

 

6.2.2 Best-First Cell Expansion (BFCE) Algorithm 

 

The BFCE algorithm is an improvement over BFW. The key motivation is to 

find a way to process the cells efficiently and terminate as soon as we have 

enough results guaranteed to be correct. So, the improvement in BFCE stems 

from the idea that when processing a cell c, insert the neighbouring cells of c 

into the queue (of course, insertion is still subject to CurrMinDist which acts 

as baseline pruning). The visit order of cells to be processed in the queue Q is 

still as per MinDist(q, c) ∀c ∈ Q. However, the BFCE algorithm no longer 

reaches out in rectangular waves; instead it expands by aggressively inserting 

Figure 74. The Best-First Wavefront (BFW) algorithm for RNN-Grid 
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neighbouring cells of the current cell c into Q (if they are not already in Q). 

Figure 75 better illustrates an example of BFCE. 

 

 

 

During cell expansion, only selected adjacent cells qualify to be inserted into 

the processing queue Q. They are (i) unseen or newly identified cells, and (ii) 

cells ci that satisfy the condition MinDist(p', ci) < CurrMinDist where p' 

belongs to the current cell being processed. In the actual implementation, a set 

T is used to keep track of cell index numbers of cells that were discarded, so 

that a cell is not re-inserted into Q again as any given cell in the grid is 

neighbour to 8 (or less, if at grid boundary) other cells. Meanwhile, the queue 

Q holds all cells that were found, but not yet processed. Note that not all cells 

will contribute to the expansion. Some cells, when dequeued for processing, 

might have neighbour cells that were either fully enqueued (thus waiting to be 

processed) or fully discarded (pruned off) or a mixture of both. The manner of 

cell expansion is also not contiguous. Cells are always being expanded in 

Figure 75. Best-First Cell Expansion (BFCE) algorithm for RNN-Grid. (a) In the beginning, the 
entire cells one unit adjacent to q is inserted into queue Q in ascending order of their distances to 
q. Note that not all cell index numbers are shown. (b) Next, we process the nearest cell (1) and 

found a point p. All cells not in Q are inserted, again in ascending order of their distances to p. (c) 
We then process the next nearest cell (2) and expand accordingly. Note that the number in the red 

cells indicates the order in which they are inserted 
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ascending order of the distance to the current pivot point, as shown in Figure 

75(b). The algorithm for BFCE is shown in Figure 76. 

 
 RNN-Grid-BFCE(q, k, R) 
 // Input:  Query point q, the k-th RNN 
 // Output: R – Rk2NN of q 
 begin 

 currMinDist � 0 

 T � ∅  // keeps track of processed cells 
 
 Q � getCell(q.x, q.y)  // returns cell where q is located 
 while not Q.isEmpty do 

    cell � dequeue(Q) 
  cand � getBucket(cell)  // get all points from cell 
  if |R| ≥ k and MinDist(q, cell) > currMinDist then 
   continue;  // proceed to next cell 
  endif 

  ProcessCandidates(q, k, cand, R, currMinDist) 

  T � T ∪ {cell} 
 
    for i in -1 to 1 do 
   for j in -1 to 1 do 
    if i=0 and j=0 then continue;  // skip middle cell 

    cell � getCell(cell.x+j, cell.y+i) 
    if not cell exist then 
     continue;  // cell might be at grid boundary 
    endif 

    if cell ∈ Q or cell ∈ T then 
     continue;  // cell in processing queue/processed 
    endif 

    if |R| ≥ k and MinDist(q, cell) > currMinDist then 
     continue;  // proceed to next cell 
    endif 

    insert cell into Qtemp sorted by ci∈Qtemp|dist(q, ci) 
    append Qtemp to Q 
   endfor 

  endfor 

 endwhile 

 end; {procedure RNN-Grid-BFCE} 
 

 ProcessCandidates(q, k, cand, R, currMinDist) 
 begin 

 forall p in cand do 

  if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then 
        insert p into R sorted by ci∈R|dist(q, ci) 
   currMinDist � max{dist(q, p’∈R)} 
    endif 

 endfor 

 if |R| > k then  
  truncate R at position k+1;  // keep the first k results 
 endif  

 end; {procedure ProcessCandidates} 

 

Figure 76. The Best-First Cell Expansion (BFCE) algorithm for RNN-Grid 
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6.2.3 BFCE with Perpendicular Bisector (BFCE-PB) Algorithm 

 

Since BFCE performs better than BFW as our experiments have shown, BFCE 

was selected for further improvement. As described before, BFCE 

aggressively expands the cells with respect to the data points of a cell inside 

the processing queue. Although CurrMinDist acts as a baseline to prevent 

cells from being inserted into the queue, it does not help prune off cells fast 

enough. Hence, we adapted the idea of a perpendicular bisector pruning from 

the TPL algorithm [TaPL04] for a faster pruning. One can see that once a half-

plane, defined as the line that halves the space between two data points, is 

marked, one-half of the search space will be pruned forever. Therefore, we 

chose to adapt it into BFCE for maximal pruning. 

As the central idea in the TPL algorithm is to demarcate an MBR using 

multiple perpendicular bisector lines into a residual polygonal area (which 

may still contain valid RNN results), it only works with R-tree data structures. 

A main difference of our implementation of perpendicular bisector pruning is 

that we chose not to create any residual areas from cells, chiefly because it is 

too costly to maintain them and the cells in a grid file is non-hierarchical in 

nature (once a cell is pinpointed, all data points within the bucket would have 

been retrieved). Another difference of our adaptation is that we do not 

maintain a large Srfn set where all pruned MBRs and data points are sent to. 

Using simple heuristics, data points are discarded from the Srfn when they can 

no longer be a true RNN of q. 
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 RNN-Grid-BFCEPB(q, k, R) 
 // Input:  Query point q, the k-th RNN 
 // Output: R – Rk2NN of q 
 begin 

 currMinDist � 0 

 PS � ∅  // set of pruned data points 
 T � ∅   // keeps track of processed cells 
 
 Q � getCell(q.x, q.y)  // returns cell where q is located 
 while not Q.isEmpty do 

    cell � dequeue(Q) 

  cand � getBucket(cell)  // get all points from cell 
  if |R| ≥ k and MinDist(q, cell) > currMinDist then 
   continue;  // proceed to next cell 
  endif 

  ProcessCandidates(q, k, cand, R, currMinDist, PS) 

  T � T ∪ {cell} 
 
    for i in -1 to 1 do 
   for j in -1 to 1 do 
    if i=0 and j=0 then continue;  // skip middle cell 

    cell � getCell(cell.x+j, cell.y+i) 
    if not cell exist then 
     continue;  // cell might be at grid boundary 
    endif 

    if cell ∈ Q or cell ∈ T then 
     continue;  // cell in processing queue/processed 
    endif 

    forall p in PS do 

     terminate � false 
     if MinMaxDist(p, cell) < dist(p, q) then 

      terminate � true 
      break;  // proceed to next cell 
     endif 

     if terminate then continue; // proceed next cell 
    endfor 
    if |R| ≥ k and MinDist(q, cell) > currMinDist then 
     continue;  // proceed to next cell 
    endif 

    insert cell into Qtemp sorted by ci∈Qtemp|dist(q, ci) 
    append Qtemp to Q 
   endfor 

  endfor 

 endwhile 

 end; {procedure RNN-Grid-BFCEPB} 
 

 ProcessCandidates(q, k, cand, R, currMinDist, PS) 
 begin 

 forall p in cand do 

  if |R| < k or dist(q, p) < max{dist(q, p’∈R)} then 
        insert p into R sorted by ci∈R|dist(q, ci) 
   currMinDist � max{dist(q, p’∈R)} 
  else 

   UpdatePrunedSet(q, p, PS, k)  // make use of p 
    endif 

 endfor 

 if |R| > k then  
  truncate R at position k+1;  // keep the first k results 
 endif  
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 end; {procedure ProcessCandidates} 
 

 UpdatePrunedSet(q, z, PS, k) 
 // update the PS set with newcomer data point z 
 begin 

   touchedCounter � 0 
   //counts how many points in PS is closer to z than z is to q 
 forall p in PS do 
  if dist(z, p) < dist(z, q) then 

   touchedCounter � touchedCounter + 1 
   if touchedCounter ≥ k then  // z cannot be RNN of q 
    break; 
   endif 

  endif 

 endfor 

 forall p in PS do 
  if dist(p, z) ≤ dist(p, q) then 
    if p.count ≥ k then 

    PS � PS – {p} 
   else 

    p.count � p.count + 1 
   endif 

  endif 
 endfor 

 if touchedCounter < k then  // retain z in PS 

  z.count � touchedCounter 

  PS � PS ∪ {z} 
 endif 

 end; {procedure UpdatePrunedSet} 

 

The BFCE-PB algorithm utilises an additional set PS to retain pruned data 

points. The discarded candidates can be put to better use in two ways: (i) to be 

retained in the set PS for pruning all the newly identified cells that are located 

inside the p’s side of ⊥(p,q) ∀p ∈ PS, and (ii) to trim the set PS of unwanted 

members to keep PS size small. Each data point in PS has the property count, 

initially set to 0, in addition to its coordinates. Note that in the algorithm 

BFCE-PB, during ProcessCandidates instead of discarding a candidate p 

that was pruned, it is sent to the UpdatePrunedSet to trim PS or to be added 

into PS. The set PS, in turn, is used during the cell expansion to prevent cells 

not in q’s half-plane to be added into the processing queue (bisector 

perpendicular pruning). BFCE-PB also uses MinMaxDist from [RoKV95]. 

Figure 77. The Best-First Cell Expansion with Perpendicular Bisector (BFCE-PB) 
algorithm for RNN-Grid 
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Since the RNN-Grid algorithms aim to find the required NNs as 

candidates (Figure 72) for evaluating RNN, it is not entirely obvious why PS 

is maintained according to RNN conditions. The main reason is that pruned 

points are considered to be not a candidate for NN(q), but it could in fact still 

be the RNN(q), which is the final objective of all the RNN-Grid algorithms. 

However, if a incoming point z is not accepted into PS, it means that z is 

definitely a true negative. For points that are already in PS, they too can be 

discarded if enough incoming points (either accepted into PS or not) are seen 

so that they no longer can be a true positive result. The condition for this to 

occur is p ∈ PS, p.count ≥ k.  

 

 

 

Figure 78 shows an example of a pruned set PS with 4 items, {p1, p2, p3, p4} 

and their counter value is 3, 3, 1 and 0 respectively. When point z is incoming, 

the first step is to find out z’s counter. The variable touchedCounter serves 

this purpose. The moment touchedCounter ≥ k, it signals that z cannot be a 

RNN of q and therefore will not be added into PS. In the example, if k < 5, z 

would be disqualified (q is the 5NN of z) but if k ≥ 5, z would be added into 

PS. Next, the counters of existing points pi ∈ PS are incremented by 1 

Figure 78. Updating the pruned set PS with an incoming point z. The number in square brackets 
is the counter. The +1 indicates that the counter will be incremented by 1 

z [4] 

q 

p3 [1]+1 

p4 [0] 

p1 [3]+1 p2 [3]+1 
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regardless of whether z is accepted or rejected, because z is a real point in the 

dataset. However, the increment for pi’s counter only takes place when d(pi, z) 

≤ d(pi, q). If, after incrementing, pi’s counter value ≥ k, pi is removed from PS 

as it can no longer be a true RNN of q. In the example again, say k = 4, p1 and 

p2 will be removed from PS after the increment exercise. 

 

6.2.4 BFCE with Constrained Region (BFCE-CR) Algorithm 

 

The concept of constrained region [StAE00] proposed that three straight lines, 

one of which is parallel to the x-axis, intersecting at q divide the space around 

q into six regions of 60° each (assuming L2 metric). In each region, there can 

only be exactly 1 RNN or none at all in the case of k = 1. This concept was 

proven in [StAE00] and to answer RkNN for any k, we extend the work in that 

paper and further generalise this concept to any k using the following lemma. 

Lemma 3. For any k, if we retrieve exactly k candidate points closest to q 

from each region, the 6k points will be sufficient to answer RkNN. 

Proof. Let 3 contiguous regions around q be r1, r2, r3 and let there be infinitely 

many data points. Let the points retrieved from a region always start with the 

closest points from q (recall that we are using cell expansion which discovers 

points in this order). Suppose we retrieve k-1 points from q in r2 and both r1 

and r3 contain no points. It is easy to see that the k-th point in r2 could be a 

valid RNN of q and we had missed it. Suppose we retrieve k+n points from r2 

(n ≥ 1) and both r1 and r3 contain no points, since there are at least k points 

before the (k+1)th point (k+n ≥ k+1), the extra n points can never be a RNN of 

q. Now, let all regions contain some points and we retrieve k points from r2. 

Let u be the k-th point in r2 and point p ∈ {r1, r3} located such that either d(u, 
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p) ≤ d(u, q) or d(u, p) > d(u, q) is true. If the first condition is true, then u is 

not a valid RNN of q (since now there are k-1 points plus point p, for a total of 

k points, closer to u than q) but this fact does not affect our final query answer. 

If the second condition is true, the fact that u is returned as a candidate of the 

RNN query shows that we are correct. Hence, this proof shows that it is 

sufficient to retrieve exactly k points closest to q from each region to answer 

RkNN. ■ 

The key idea behind BFCE-CR is twofold: (i) retrieve up to k points 

per each of the six regions for a total of 6k points, and (ii) for the special case 

where k = 1, also prune points that falls within 60° of a candidate that has 

already been discovered (constrained region pruning). Unlike the BFW, BFCE 

and BFCE-PB algorithms, this algorithm is the only RNN-Grid variant that 

does not follow the general RNN-Grid paradigm as shown in Figure 72. The 

reason is because BFCE-CR requires the use of six vectors to store up to k 

points from six regions. Figure 79 shows the algorithm in detail. 

 
 RNN-Grid-BFCECR(q, k, R) 
 // Input:  Query point q, the k-th RNN 
 // Output: R – RkNN of q 
 begin 

 initialize regions[1..6]  // vector of six vectors 
 filter(q, k, regions[]) 
 refinement(q, k, regions[], R)  // to discard disqualified cand 
 end; {procedure RNN-Grid-BFCECR} 
 
 filter(q, k, regions[]) 
 begin 

   currMinDist[1..6] � ∞ 
 initialize bit vector horizon[0..359]  // set all bits to 0 
 
 Q � getCell(q.x, q.y)  // returns cell where q is located 
 while not Q.isEmpty do 

    cell � dequeue(Q) 

  cand � getBucket(cell)  // get all points from cell 
  if |R| ≥ k and MinDist(q, cell) > currMinDist then 
   continue;  // proceed to next cell 
  endif 

  ProcessCandidates(q, k, cand, horizon, regions[], currMinDist[])  
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    for i in -1 to 1 do 
   for j in -1 to 1 do 
    if i=0 and j=0 then continue;  // skip middle cell 

    cell � getCell(cell.x+j, cell.y+i) 
    if not cell exist then 
     continue;  // cell might be at grid boundary 
    endif 

    for r in 1 to 6 do 

     if cell ∈ r and dist(q, cell) > currMinDist[r] then 
      if cell ∉ Q then 
       insert cell into Q sorted by ci∈Q|dist(q, ci) 
      endif 
     endif 
    endfor 
   endfor 

  endfor 

 endwhile 

 end; {procedure filter} 
 

 ProcessCandidates(q, k, cand, horizon, regions[], currMinDist[]) 
 begin 
 forall p in cand do 
  if k = 1 then  // check bitvector first 

   if horizon[∠xqp] bit = 1 then 
    continue  // skip point 
   else  

    set horizon[ ∠xqp ± 60] bit � 1  // wrap around 0-360 
   endif 

  endif 

  r � getRegion(p)  // each region is 60 degrees, anti-clockwise 
                        // starting from line parallel to x-axis 
  if |region[r]| < k or dist(q, p) < currMinDist[r] then 

        insert p into region[r] sorted by ci∈region[r]|dist(q, ci) 
   currMinDist[r] � max{dist(q, p’∈region[r])} 
    endif 

 endfor 

 if |region[r]| > k then  
  truncate region[r] at position k+1; 
     // keep the first k results per region 
 endif  

 end; {procedure ProcessCandidates} 
 

 refinement(q, k, regions[], R) 
 begin 

 forall r in regions do 

  currRank � 0  // the number of pts already known to be nearer 
  forall p in r do 

   currRank � currRank + 1 

   distCurrItemFromQ � dist(q, p) // dist(q, p) is increasing 

   numNearer � currRank – 1 

   done � ProcessRegion(p, r, numNearer, distCurrItemFromQ, k) 
        // process points in the current region 
   if done then continue endif 

   done � ProcessRegion(p, r-1, numNearer, distCurrItemFromQ, k) 
        // process points in the left adjacent region 
   if done then continue endif 

   done � ProcessRegion(p, r+1, numNearer, distCurrItemFromQ, k) 
        // process points in the right adjacent region 
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   if done then continue endif 

   R � R ∪ {p} 
  endfor 

 endfor 

 end; {procedure refinement} 
 
 ProcessRegion(p, r, numNearer, distCurrItemFromQ, k) 
 begin 
 forall u in r do  // points are already in ascending order from q 
  if dist(u, p) > distCurrItemFromQ then 

   numNearer � numNearer + 1 
  else 

   return true 
  endif 

  if numNearer > k then 
   return true 
  endif 

 endfor 

 return false 
 end; {procedure ProcessRegion} 

 

BFCE-CR makes use of six vectors called regions to store up to k points 

nearest to q discovered from each region in the coarse filtering stage. For the 

special case where k = 1, a candidate point p is checked against the horizon 

bit vector first. If p falls in an area with bit 1, p is eliminated immediately as it 

cannot be a valid result. Otherwise, p is inserted into its correct region, and 

horizon is updated to mark the 60° space to the left and right of p. Note that 

the marking of the bit vector cuts across regions and wraps around the 

beginning and end of the bit vector. It might overlap into areas with bit already 

set to 1. In this case, the area of 1-bits will be simply enlarged. Regions are 

marked 1 to 6 and have a corresponding currMinDist of size six also, to 

record the currMinDist for each individual region. ∠xqp refers to the angle 

from the x-axis in an anti-clockwise fashion. Figure 80 illustrates constrained 

regions and angles.  

The refinement stage aims to eliminate candidate points by counting if 

there are at least k points that are nearer to a candidate point. Let p be the k-th 

Figure 79. The Best-First Cell Expansion with Constrained Regions (BFCE-CR) 
algorithm for RNN-Grid 
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candidate point in a region r. Within the same region r, BFCE guarantees that 

there are at most k-1 points between p and q (from p towards q). However, on 

the other direction (away from q), there might exist points nearer to p than p is 

to q. Hence, when processing all candidates p in r, three variables are used in 

the processing of r and r’s two adjacent regions (written as r-1 and r+1): (i) 

currRank is used to record the number of points between p and q within r 

only (i.e. p being the k-th point from q), (ii) numNearer counts the number of 

candidates between p and q as discovered in r, r-1 and r+1, (iii) 

distCurrItemFromQ is a convenience variable assigned as d(p, q) so that it is 

not re-computed for all the regions. Note that numNearer starts with the value 

currRank-1 as through BFCE we know there already exists k-1 points if p’s 

ranking is k. When processing a region, we simply increment numNearer the 

moment we discover a point u nearer to p than q. As soon as numNearer 

exceeds k or d(u, p) exceeds distCurrItemFromQ, processing is terminated 

for the current region and the next point in r is processed immediately. 

 

 

 

Figure 80. Regions as divided in the constrained region concept. The angle for a candidate point 
is calculated anti-clockwise from the line parallel to the x-axis. If a candidate point p3 is 

discovered and it does not fall within 60° of previously discovered points, all bits within 60° of 
∠xqp3 is marked and they cuts across regions 
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6.3 Experiments and Results 

 

In our experiments, we first set out to compare the various RNN-Grid 

algorithms. The ERkNN (estimated) approach was chosen to pit against the 

RNN-Grid algorithms. ERkNN is a fast algorithm utilising statistical 

estimators to return the candidate set while preserving high recall values, and 

it outperforms the boolean range query approach (also estimated) of [SiFT03] 

by a large margin in terms of accuracy and speed. 

 

6.3.1 Experiment Settings 

 

Three measures were used to compare the performance of our RNN 

algorithms, namely the number of I/Os (disk block accesses), the number of 

distance computations (CPU cost) and the query time. These measures are 

consistent with other RNN algorithms in the literature, making performance 

comparisons possible. The number of I/Os denote the number disk accesses 

required when answering a RkNN query. The number of distance 

computations (for short, written as #distcomp in the remainder of this thesis) is 

another accurate measurement, as any algorithm designed to solve RNN is 

comprised of a distance function as the basic unit to compute the similarity of 

two data points. A good algorithm tends to perform the optimal #distcomp by 

filtering only the right candidates from the dataset. Lastly, the query time is 

measured to compare the overall performance of a RkNN algorithm. 
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RkNN 
Avg 

|result| 
RkNN 

Avg 
|result| 

RkNN 
Avg 

|result| 
RkNN 

Avg 
|result| 

RkNN 
Avg 

|result| 
20000 50000 100000 200000 400000 

1 1.012 1 0.982 1 1.030 1 1.030 1 0.950 
2 1.992 2 2.016 2 1.998 2 2.024 2 1.930 
4 3.974 4 4.020 4 3.894 4 4.002 4 4.002 
8 8.050 8 7.996 8 7.938 8 7.942 8 7.998 
16 15.616 16 15.914 16 15.940 16 15.930 16 15.926 
32 31.796 32 31.478 32 31.744 32 31.732 32 31.644 

 

For our experiments, we generated random datasets of size 20K, 50K, 100K, 

200K and 400K in uniform distribution. A set of 500 randomly generated 

query points is used throughout all experiments. Using the very slow naïve 

O(n2) method, the RkNN is performed 500 times (each time a different query 

point from the query dataset) with its average taken, for k = 1, 2, 4, 8, 16 and 

32. In the RNN-Grid, which is an estimated approach, the results size is 

averaged over 500 RkNN queries (using query dataset) and compared to the 

pre-computed results. For example, the naïve method takes ~3.5 hours to 

answer RkNN for 400K 2-d points with k = 32. 

Table 20 lists all the values of the true results derived from the naïve 

method. By doing so, we are able to evaluate the quality of our RNN-Grid 

algorithms and find out how close they are to the true value. The values in the 

table are upper bounds as typically estimated algorithms miss some true 

results. The table of true results is also used to ensure that the RNN-C tree 

returns correct results, which effectively means using the naïve method to 

double-check its results.  

The confidence value for RNN-Grid algorithms was set at 0.995. For 

high-dimensional datasets, we used a set of 40,700 8-d feature vectors 

[Gold99], generated from images downloaded from NASA. The feature 

Table 20. A pre-computed table of true results for random datasets used to 
evaluate the quality of estimated RNN query results. The values are computed 

using the slow naïve method 
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vectors are normalised to a range of [0, 1]. The ERkNN algorithm was run 

with its best parameters using the local kNN-distance estimator with global 

adjustments as suggested in [XiHL05]. The TPL and TYM algorithms were 

run without any modifications. 

The experiments were run on a Pentium IV 2.4 GHz Linux machine, 

with 4 GB RAM. Implementations for RNN-Grid and RNN-C tree were done 

in C++ and compiled with gcc version 4.1.2. The disk page size is 4096 bytes 

on the same machine. The I/Os implementation is taken with permission from 

[TaPL04], thus giving a level platform for fair comparison.  

Recall that ERkNN is an estimated algorithm, so we compare RNN-

Grid against ERkNN. It uses a local kNN-distance (density function) estimator 

around query point q to estimate the number of candidates required. This 

approach to guess the number of suitable candidates is similar to RNN-Grid. 

Therefore, we compare RNN-Grid against ERkNN. In some tables, the results 

for exact algorithms (TPL or TYM) are also included, for reference. In the last 

subsection, we show the performance comparison in all three measures. 

 

6.3.2 BFW vs BFCE 

 

The two different approaches for finding NN(q) in the RNN-Grid are 

compared. This set of experiments is run to decide the better algorithm of the 

two to serve as the basis for further enhancement. Table 21 shows the results 

for BFW and BFCE for RkNN queries with different values of k. In terms of 

I/Os, BFCE consistently makes more disk access than BFW. This is because 

BFW always accesses adjacent cells when processing each wave. So, it is able 

to take advantage of locality of reference. In contrast, BFCE jumps around the 



 

148 

edge of the expanding cells because it processes the cells in a queue of cells 

sorted in ascending order of MinDist(q, ci). 

BFW returns more candidates during coarse filtering as a result of the 

wave requirement. When a wave w > 0 has started, all 8w cells in that wave 

have to be fully processed. The extra candidates require extra distcomp 

although they do not contribute to the final results. BFCE uses fewer distcomp 

as it compares the minimum cells to locate the required k NNs. When k is 

large, BFCE actually does more distcomp than BFW. This is due to the fact 

that BFCE sees more cells than BFW. Each expansion potentially adds 5 to 7 

cells into the queue and all must be checked (at least one distcomp if the 

whole cell is pruned, or up to c distcomp – one for each point in the cell, 

where c is the grid cell size). 

 

 Avg # I/O Avg # distcomp Avg query time (s) 
k BFW BFCE BFW BFCE BFW BFCE 
1 3.252 3.252 1020.24 916.612 0.00060 0.00046 
2 3.578 3.578 1197.09 1079.65 0.00066 0.00060 
4 4.030 4.036 1806.84 1639.68 0.00110 0.00094 
8 5.238 5.268 3142.69 2887.74 0.00214 0.00194 
16 7.434 7.696 6197.31 5931.95 0.00494 0.00484 
32 11.528 12.650 16104.70 16994.70 0.01594 0.01724 

 

BFCE alone is not much better off than BFW. But since BFCE outperforms 

BFW, albeit not very significantly, we had decided to use BFCE as the base 

algorithm and enhance it with other known RNN techniques (i.e. 

perpendicular bisector line and constrained regions) for further performance 

improvements. 

 

 

Table 21. Performance of BFW and BFCE in dataset of 20K 
with cell size 64 and disk page 4K 
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6.3.3 Effect of Grid Cell Size  

 

The grid cell size is a parameter of the grid file. As a grid cell is implemented 

as a bucket, it is also called bucket size. It is the maximum size of the bucket 

for any grid file cell. This is where the grid file is different from the fixed grid. 

In the latter, we typically control the grid by specifying the number of 

partitions. For a randomly distributed dataset of n d-dimensional data points, it 

is logical to divide into d n  partitions in the hope that each cell will roughly 

contain the same number of data points. However, in the grid file, its 

partitioning algorithm partitions the grid based on data points already in the 

grid. We typically specify the maximum size that a grid cell can store data 

points. 

Table 22 shows the performance of RNN-Grid algorithms when 

different grid cell size is used. In general, the average number of I/Os is 

expected to decrease when cell size increases. This is because more data 

points can fit into a cell, so fewer cells need to be accessed. We can see this 

trend in all algorithms except BFCE-CR. This is due to the fact that BFCE-CR 

is the only algorithm not following the RNN-Grid paradigm, i.e. not using the 

probability values table to determine the required number of NNs. As evident 

in this experiment, apparently BFCE-CR became less efficient than the other 

three algorithms when 16 ≤ k ≤ 32, which means it retrieved more candidates 

than the others (i.e. the O(6k) candidates exceeded the number of candidates 

required from the probability values table). As the bucket size grows larger (k 

≥ 32), BFW and BFCE’s performance almost equals, with the former leading 

by a slight margin in the average number of I/Os. 
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BFW BFCE BFCE-PB BFCE-CR 
Bucket 

size Avg  
# I/O 

Avg 
#distcomp 

Avg 
# I/O 

Avg 
#distcomp 

Avg 
# I/O 

Avg 
#distcomp 

Avg 
# I/O 

Avg 
#distcomp 

2 9.820 275.884 7.974 111.982 7.974 123.904 4.670 33.810 
4 8.996 301.482 7.956 144.636 7.964 180.204 5.318 44.704 
8 6.808 356.064 6.806 224.846 6.818 304.114 5.760 74.114 
16 5.296 450.654 5.446 332.694 5.478 466.980 5.220 105.998 
32 4.010 647.802 4.030 535.808 4.200 761.772 4.728 157.146 
64 3.404 1044.000 3.408 933.494 3.464 1348.040 3.948 226.640 
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(a) avg # I/O vs bucket size (b) avg #distcomp vs bucket size 

 

As for the #distcomp, shown in Figure 81(b), when bucket size increases, 

generally the #distcomp also increases. Although in all our algorithms we have 

CurrMinDist to help us prune off cells before and after they enter the 

processing queue, for those cells that are not pruned, the number of candidates 

to check increased, leading to an overall increasing #distcomp. BFW incurs 

the most #distcomp for small k (< 16) due to the waves that it needs to process, 

whereas BFCE-PB incurs the most #distcomp for large k (> 16) due to the 

extra processing in maintaining the pruned set. Had we not modified the 

pruned set to drop some candidates, BFCE-PB would be doing the most 

#distcomp for any k. This result tallies with the TPL algorithm (for exact RNN 

results) which is known to be distcomp intensive. BFCE-CR is the clear 

winner with a speed-up of 3.31 to 4.12 times over its closest rival, BFCE. 

Table 22. Effect of grid cell size with 100K dataset, disk page 4K and k=1 

Figure 81. Effect of grid cell size with 100K dataset, disk page 4K and k=1 
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6.3.4 Effect of Disk Page Size 

 

This section details the effect of disk page size for the RNN-Grid. Figure 82 

shows that the disk page size seems to have little effect on all four algorithms, 

except that the BFCE-CR sees an increase in the average number of I/Os. The 

grid file structure guarantees at most two I/Os for any bucket retrieval; one I/O 

each to access the partition index and the actual bucket. The grid file actually 

requires more disk accesses during construction than query. During 

construction, when a bucket is full, the grid file will try to split the bucket in 

half in one of the dimensions, selecting the dimension that gives the least data 

points movement (re-distributing overflowing points into other buckets). 

During query, both the BFW and BFCE algorithms discover data 

points outwards toward the edges of the plane, with the cell where the query 

point hits as the centre. Since they depend on the probability values table, they 

need to return more candidates than BFCE-CR. BFCE-CR only requires 6k 

candidates; hence it will at most incur 6 disk accesses. For the #distcomp, 

BFCE-PB reacts to the increasing disk page size likely because of the pruned 

set that it maintains. The overall performance in Section 6.3.7 details more. 
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Figure 82. Effect of disk page size with 100K dataset, bucket size 16K and k=1 
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6.3.5 Precision and Recall Analysis 

 

Precision and recall are two measures of a search algorithm’s sensitivity in an 

approximate query. In the RNN-Grid algorithms, due to the fact that we 

estimate the top k1 NNs to contain Rk2NN of q, the results retrieved from such 

a query is bound to contain a small number of false positives (FP), in addition 

to the true RNN results (true positives, TP). FP refers to the number of data 

points included in the RNN results, but should not. Figure 83 depicts the RNN 

result set from a RNN-Grid query. Oftentimes, in the larger picture, there may 

be some correct data points not included in the RNN-Grid query result, as they 

may lie beyond the top k1 NN of q, yet are indeed the RNNs of q. These data 

points are wrongly regarded as non-result, therefore labelled as false negatives 

(FN). 

 

 

 

Using the true results known a priori that are also used to calculate the table of 

true results (Table 20), the FP and FN values can be determined from any 

result set of any of the RNN-Grid algorithms. The precision and recall values 

are computed as follows 

Precision = 
TP

TP + FP   Recall = 
TP

TP + FN  

A high precision value indicates that there are very few false RNN results that 

were included by the algorithm, which is good. In fact, a precision value of 1.0 

Figure 83. Calculating precision and recall values from true positives (TP), 
false negatives (FN) and false positives (FP). 

TP FP TP 

FP 

FN 

result set 
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means that every result retrieved was correct but did not tell whether all 

correct results were retrieved. A high recall value means that there are very 

few true RNN results that were missed by the algorithm, which is good. In fact, 

a recall value of 1.0 means that all correct results were retrieved but did not 

tell how many incorrect results were also retrieved. 

 

Precision Recall 
k 

BFCE-PB BFCE-CR ERkNN BFCE-PB BFCE-CR ERkNN 
1 0.635 0.535 0.823 0.986 0.998 0.994 
2 0.511 0.383 0.827 0.970 0.999 0.992 
4 0.465 0.378 0.818 0.948 0.994 0.990 
8 0.455 0.374 0.834 0.953 0.996 0.983 
16 0.445 0.343 0.842 0.958 0.988 0.982 
32 0.468 0.310 0.810 0.987 0.990 0.980 

 

In our experiments, we used the 100K dataset, a bucket size of 64, disk page 

size 4K, and confidence values of 0.99 for BFW, BFCE and BFCE-PB 

algorithms. The experiments were conducted for various RkNN queries 

(varying k). First of all, we note that the ERkNN algorithm does produce high 

recall values for our experimental dataset. The recall decreases as k increases, 

but it is still above 0.98 for k ≤ 32, which is considerably high.  

In all our RNN-Grid algorithms, the recall values are very high, above 

0.94. This is because our statistical analysis method works well for the random 

data distribution. Comparing BFW and BFCE, the BFCE has a slightly higher 

recall than BFW. The recall values of BFCE and BFCE-PB are similar 

because the latter actually added an extra method of pruning on top of the 

former. This merely affects the order in which candidate points are found and 

inserted into the result set, but the final candidates set is still the same. In fact, 

in the next section, we showed that BFCE-PB does not add value to BFCE. In 

Table 23.The precision and recall values of the two best RNN-Grid 
algorithms compared to the ERkNN algorithm. 
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fact, the recall for BFCE is not as good as ERkNN’s, which means the 

statistical analysis alone may not be sufficient to compete with the local kNN-

distance estimator in the ERkNN algorithm, except when k is very large (k ≥ 

32). The local kNN-distance estimator is merely estimating the number of 

candidates from a small sample of data points around the query point q and 

works only for random data distribution. In the case when k is small, it can 

predict the number of candidates to retrieve from its small samples pool. 

When k is large, the prediction might be off. BFCE and BFCE-PB outperform 

ERkNN for large k as the statistical analysis is done on a much larger pool of 

data points, therefore increasing the effectiveness of the method.  

On the other hand, BFCE-CR consistently produces a higher recall rate 

than ERkNN for all k. The simple reason is that BFCE-CR returns larger 

number of candidates (6k) than the ERkNN algorithm. So the RNN results are 

almost complete in the BFCE-CR algorithm, at the expense of additional 

running time spent in the refinement step to verify the candidates. 

The precision values for BFCE-PB and BFCE-CR, however, were 

consistently lower than ERkNN. This is because BFCE-CR has expanded and 

included too many false positives. As each cell in the grid file is most likely 

not a square, many results may have been included during cell expansion. This 

can be improved by reducing the bucket size of the grid file (hence effectively 

reducing density) and employing distance calculations in the refinement step 

to filter the data points in each cell. We note that BFCE-PB has better 

precision than BFCE-CR as the method keeps track of pruned data points to 

act as bisector pruning for future data points. This indirectly cuts away a lot of 

false positives data points that share a cell with true positives during expansion. 
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6.3.6 High Dimensional Data 

 

Although the grid file is a dynamic structure that is extensible to higher 

dimensions, it is known to degrade in performance for indexing data in very 

high dimensions (say, d > 100). Unlike the fixed grid which can be easily 

modified to any dimensions as long as the size of the hyperplane is known, the 

grid file needs to maintain an array of partition indices for each partition. This 

means that high dimensions actually results in costlier maintenance of 

partition index arrays, not to mention the algorithms for repartitioning of high-

dimensional data points becomes inefficient, due to the 2d-1 possible ways to 

split the grid, when a bucket is full. 

Similarly, the performance of the TPL algorithm also suffers from the 

curse of dimensionality, as acknowledged in the original paper. The 

performance of TPL degrades due to the underlying R-tree data structure that 

it uses. The bisector perpendicular line used for pruning has become a 

hyperplane (d > 2), and its coarse filtering encounters many more potential 

candidates which leads to a much costlier refinement step, as all points and 

MBRs in the refinement set Srfn are used for pruning. 

With this understanding, experiments were conducted to look at the 

performance of RkNN queries in an 8-d real-life dataset, a set of 40700 feature 

vectors of NASA images. The 2-d dataset are randomly generated. As the 

BFCE-CR is the best of all RNN-Grid algorithms, it is selected for comparison 

in this experiment. A bucket size of 64 and disk page size 4K for BFCE-CR 

were used. For the TPL algorithm, the disk page size used is also 4K. To be 

fair, we note that in this comparison, BFCE-CR is an estimated approach 

while TPL is an exact approach to answer the RkNN query. Therefore, BFCE-
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CR is expected to show better performance as TPL needs to do much more 

work to ensure the results returned are accurate. 

 

 BFCE-CR TPL BFCE-CR TPL 
k (2-d data) (8-d data) 
1 226 1669 574 86653 
2 266 2676 753 97149 
4 355 4428 1109 167905 
8 587 8420 1970 431335 
16 1297 19969 3634 749178 
32 3427 56477 6936 1342755 

 

TPL performs 12.47 times more distcomp than BFCE-CR (k = 4), but it incurs 

2-3 orders of magnitude more #distcomp than BFCE-CR in the 8-d dataset. In 

fact, the experiment results in Table 24 suggest that TPL has #distcomp 

increase of between 1.12 and 2.57 times, as k increases. The R-tree becomes 

less efficient with more overlaps in high dimensions [ThSe96] as it is 

impossible to construct an R-tree with only 10% overlap. Owing to this, TPL 

spends up to 98% of query cost spent on the filtering step.  

 

 

Next, we look at the query time used by both algorithms in Figure 84. At 8-d, 

the TPL algorithm is at least one order of magnitude slower than BFCE-CR 

Table 24. Comparison of RkNN queries in 2-d and 8-d datasets. The number of 
distance computations of BFCE-CR and TPL are shown 

Figure 84. Comparison of RkNN queries in 8-d data. The average 
query time for BFCE-CR and TPL are shown 
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and grows to 4 orders of magnitude, and still growing, for large k. Query costs 

generally explodes for both BFCE-CR and TPL in tandem with higher 

dimensions; as data points move to hyperplanes, the #distcomp in operations 

like “find enclosure” (the R-tree’s MBR in TPL) increases tremendously.  

 

6.3.7 Performance Comparisons 

 

Finally, we compare all the RNN-Grid algorithms (BFW, BFCE, BFCE-PB 

and BFCE-CR) to ERkNN, in all three measures. The corresponding values 

for the same measures for TPL and TYM algorithms are also presented as a 

reference. The experiments are performed using the 100K dataset, a bucket 

size of 64, disk page size 4K, and confidence values of 0.99 for BFW, BFCE 

and BFCE-PB algorithms. 

In Table 25, the number of disk accesses is compared. Note that the 

BFCE-CR started off with more disk accesses than BFW, BFCE and BFCE-

PB. As k becomes large, it is evident that BFCE-CR requires less I/Os as it 

only need to retrieve O(6k) candidates, compared to up to 15k candidates 

needed for answering a RkNN query for large k. On the average, most RNN-

Grid algorithms need fewer I/Os than ERkNN, except for k ≥ 32 when BFW, 

BFCE and BFCE-PB begin to lose out to ERkNN’s method of estimating the 

required NN candidates. This means that they sought more candidates than 

ERkNN at that point and hence requires more I/Os. However, this is actually 

in response to our stricter confidence level of 0.995 to discover all RkNN 

results; but then this results in a higher recall that outperforms the ERkNN’s 

recall. This was presented in Table 23, when k = 32 the recalls of BFW, BFCE, 

BFCE-PB and BFCE-CR are higher than that of ERkNN’s. We also showed 
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that the grid file structure is as good as the R-tree (for ERkNN) for answering 

RNN queries. For reference, the TPL and TYM algorithms need much more 

disk accesses as they need to ensure exact RkNN results.  

 

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM 
1 3.404 3.408 3.464 3.948 5.696 915 524 
2 3.618 3.622 3.694 4.186 6.604 991 572 
4 4.240 4.244 4.318 4.614 7.150 1103 610 
8 5.384 5.436 5.570 5.544 7.948 1300 664 
16 7.734 7.928 8.104 7.854 9.440 1584 751 
32 11.966 13.06 13.358 11.160 11.364 2105 848 

 

The performance in terms of #distcomp is shown in Table 26. The efficiency 

of the RNN-Grid algorithms are always BFCE-PB > BFW > BFCE > BFCE-

CR. This is easily explained by looking at the BFCE-PB algorithm. It incurs 

the most #distcomp because it has to maintain a pruned set PS, at the cost of 

O(2|PS|) distcomp. The pruned set was originally designed to help in the 

coarse filtering by quickly pruning off large regions of space where any data 

point found in these regions is guaranteed as a non-result. However, this 

method introduces unavoidable distcomp necessary to maintain PS as well as 

using PS for coarse filtering. 

Although BFW is a simple idea, it actually performs better than the 

BFCE-PB. It is about 1.3 to 1.7 times more efficient than BFCE-PB. As 

shown earlier in Section 6.3.2 where we need to decide between BFW and 

BFCE to extend, the BFCE is consistently faster than BFW except that for k = 

32. Since a typical RNN query (say, a virtual reality shooting game) focuses 

on small k, the BFCE was chosen. The BFCE-CR is by far the fastest 

estimated algorithm, has 2.7 to 8.9 times fewer distcomp than ERkNN yet 

Table 25. Performance comparison (number of I/Os) of all RNN-Grid 
algorithms with ERkNN, TPL and TYM 
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outperforming ERkNN with a higher recall. The BFW and BFCE made fewer 

#distcomp than ERkNN for k ≥ 4, and BFCE-PB, k ≥ 8. This indicates that the 

ERkNN algorithm is not efficient for large k, even though the query 

aggregation of ERkNN has helped to reduce up to 75% of distcomp. As 

expected, the exact algorithms (TPL and TYM) perform more distcomp than 

estimated algorithms. In particular, the TYM algorithm uses significantly 

more distcomp even for k = 1, because it is an algorithm for the general metric 

space, and it cannot take advantage of well-known Euclidean geometric 

properties for pruning. 

 

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM 
1 1044.00 933.494 1348.04 226.640 614.086 1669.196 100529 
2 1203.61 1078.00 1612.34 266.968 1017.184 2676.826 101053 
4 1859.36 1677.69 2532.71 355.426 2038.812 4428.880 103673 
8 3220.01 2955.66 4575.94 587.498 4608.038 8420.356 115201 
16 6489.35 6204.03 10335.82 1297.317 11518.299 19969.190 163409 
32 16670.00 17446.71 28360.53 3427.315 30177.252 56477.908 360433 

 

Finally, we compare the performance of all the estimated algorithms in terms 

of query time. The trend is similar to the #distcomp. BFCE-PB takes the 

longest to run and the BFCE-CR is the fastest among all estimated algorithms, 

except when k = 1, ERkNN is equal. The TYM algorithm runs in the range of 

seconds, as it was contributed by the high #distcomp cost. The results of TPL 

and TYM are presented here to provide an idea of how long it takes to arrive 

at exact results. 

Overall, we reiterate that the BFCE is consistently faster than BFW, 

hence it was chosen to be extended. The BFCE-PB is not a viable extension as 

it performed worse than BFCE. This shows that the perpendicular bisector 

Table 26. Performance comparison (number of distance computations) of all 
RNN-Grid algorithms with ERkNN, TPL and TYM 



 

160 

pruning is not workable, because although finally we are looking for RNN 

results, the approach to obtain candidates is by NN. On the contrary, BFCE-

CR is a very good improvement on the BFCE, as it not only runs fast, but 

manage to produce very high recall values (≥ 0.988, from Table 23). 

 

k BFW BFCE BFCE-PB BFCE-CR ERkNN TPL TYM 
1 0.00086 0.00064 0.00150 0.00032 0.00032 0.00096 3.93 
2 0.00100 0.00076 0.00188 0.00038 0.00039 0.00136 5.35 
4 0.00162 0.00124 0.00304 0.00044 0.00065 0.00286 5.41 
8 0.00292 0.00244 0.00584 0.00060 0.00232 0.01034 5.52 
16 0.00654 0.00592 0.01480 0.00098 0.00346 0.05076 5.86 
32 0.01920 0.01994 0.04360 0.00184 0.00771 0.30570 6.21 

 

6.3.8 Dataset Distributions 

 

One lingering concern is the effectiveness and accuracy of RNN-Grid as it 

depends on a pre-computed table determined from statistical analysis. When 

an actual dataset is given, its distribution may be different from the data used 

in the statistical analysis. This section looks into the problem of using a 

different statistical table that we derived in Section 5.6.1 for crossed-value 

distributions of data. For the analysis, we studied three types of data 

distributions: uniform, normal (Gaussian) and real-life data from the 

TIGER/Line database [TIGER02].  

 

k Real-life Normal Uniform 
1 2 3 3 
2 4 4 4 
4 6 8 6 
8 11 15 11 
16 20 21 20 
32 39 44 42 

Table 27. Performance comparison (query time in seconds) of all RNN-Grid 
algorithms against ERkNN, TPL and TYM 

Table 28. The value of k1 for P(Rk2NN(q) ⊆ k1NN(q)) > 0.9 
for different dataset distributions 
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We selected the probability value of 0.9 for a more realistic comparison 

between the different dataset distributions. The results show that the values of 

k1 is very similar for the three distributions, which suggest that the robustness 

of the accuracy of RNN-Grid across different data distributions. 

 

6.4 Summary 

 

In this chapter, several ideas based on the grid file for estimating RkNN results 

were explored. As a result, the RNN-Grid algorithms based on the grid file 

data structure were developed. The RNN-Grid is a very fast alternative for 

answering the RNN query where full accurate results are not desired, in 

exchange for speed in query response time. Experiments showed that the 

RNN-Grid outperforms other estimated RNN approaches such as the ERkNN 

and SFT. Not only is RNN-Grid faster than ERkNN, it also has better recall in 

the results it returned.  

The best-first cell expansion algorithm, combined with constrained 

region pruning technique (BFCE-CR), is shown to be a promising approach 

resulting in fast execution and very high recall. BFCE-CR is almost similar to 

ERkNN in terms of running time when the dimension k is small. For larger k, 

BFCE-CR is much faster than ERkNN, retaining the same high recall value 

that ERkNN does. 

In terms of implementation, we believe RNN-Grid algorithms are 

easier to implement, and the underlying grid file data structure also has the 

same advantage of insertion, deletion and update (point query) as does the R-

tree that ERkNN was based upon. 
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Chapter 7 RNN-C Tree: An Exact Approach for 

RNN Query 

 

To answer the RNN query with certainty is a much more challenging and 

harder problem. The main challenge is how to process minimal data points, be 

sure that the RNN results are correct and terminate the query. As the NN and 

RNN are asymmetrical, we cannot use distance from q as the terminating 

condition. Worse, some techniques described for RNN processing only work 

on the assumption of a certain distance metric or data dimensionality. 

 In this section, we propose a novel hierarchical data structure and 

corresponding query algorithm for answering the RNN query, called RNN-C 

(C for cluster) tree. We chose to design a RNN algorithm for the general 

metric distance, which work as long as a distance function is defined between 

two data points (or objects) that conform to the triangle inequality principle. In 

general metric distance indexing, our algorithm cannot assume any location 

information on the data points, therefore pruning techniques that make use of 

absolute coordinates cannot be used. This makes it all the more challenging, 

but results in an algorithm that works across all distance metrics. 

RNN-C tree has several advantages. It is designed especially for 

finding exact RNN results. It is also simple to understand and implement. Our 

experimental results show that RNN-C tree outperforms the current state-of-

the-art algorithm for metric distance RNN query [TaYM06]. The RNN-C is 

based on the concept of kNN graphs, first introduced in [SeKi02] for pattern 

recognition research, which proposed that data points be linked to their 1NN, 

which results in cyclic graphs of disjoint components we call clusters. The 
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topology of the kNN graph is deterministic and inherent from the position of 

data points, regardless of the order in which they are presented (unlike the R-

tree which is dependent on presentation order of data points, but not including 

those built by bulk-loading techniques). 

 

7.1 Preliminaries 

 

The key design concept of the RNN-C tree data structure is to construct a data 

structure that satisfies the following conditions: (i) be able to answer RkNN 

queries, (ii) be able to index metric distances and make use of them for 

pruning, (iii) hierarchical so that pruning a node will ensure that that branch of 

child nodes do not contain valid RNN results, and (iv) easy to implement and 

understand. 

The RNN-C tree is based on the idea of kNN graph. We took the idea 

one step further by regenerating the kNN graphs on multiple levels and linked 

them up to form a hierarchical tree structure. The main reason for doing so is 

because the kNN graph represents a forest of clusters in which each cluster is a 

minimum spanning tree. This is a direct consequence of each data point 

linking to its 1NN. All points in a cluster are stored as a node in the RNN-C 

tree as they are closely related for answering the RkNN query. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 

The RNN-C tree is built one level at a time from bottom up. At the bottom 

level (leaf), the kNN graph is computed from the dataset SDB, where clusters 

are formed. This is essentially the same as a kNN graph. To construct the next 

level, the centroid ci 
j (j-th centroid at the i-th level) of a cluster Ci 

j is 

Figure 85. An example of the RNN-C tree hierarchical index data structure of 200 data points. 
The tree is built from bottom-up. At each level, clusters are formed by the data points’ inherent 

position. One way to build the tree is by selecting a representative point 
from each cluster to become a data point in the next level 
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computed and it will become a data point for the construction of the kNN 

graph at the (i+1)-th level. Note that ci 
j
 ∉ Ci 

j, therefore ci 
j
 ∉ SDB. ci 

j
 is 

merely a representation of Ci 
j. The reason a centroid is computed for any Ci 

j 

is due to the fact that the RNN-C tree uses a minimum bounding circle (MBC) 

to represent Ci 
j and the pruning is based on MBC. This process is repeated 

until the root level where < 3 points is left. Table 29 lists the notations related 

to the RNN-C tree. 

 

Notation Definition 
SDB dataset 
q the query point 
k the number of RkNN 
Ci all clusters at level i (at leaf level, i = 0) 
|Ci| number of clusters at level i 
Ci 

j cluster j at level i 
ci 

j the centroid for cluster Ci 
j 

ri 
j radius for MBC of Ci 

j centred at centroid ci 
j 

σi 
j
 the population for cluster Ci 

j, defined as 
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ni total number of points at level i. n0 = |SDB|. ni+1 = |Ci|. 
note that ni >> |Ci| 

|Ci 
j
| the size of Ci 

j, excluding centroid. ∑|Ci 
j
| = n0, for i = 0 

h height of RNN-C tree, 1 ≤ j ≤ h 

 

7.2 RNN-C Tree Construction 

 

For our RNN-C tree, initially questions were abound and there were three 

distinct directions to pursue. First, to go with 1NN linkage (at leaf level) and 

check whether it is even possible, let alone sufficient, to answer a RkNN query 

for any k. Second, if the first method is implausible, to explore whether it is 

possible to expand a RNN-C tree (based on 1NN) dynamically via 

computation during query execution to answer a RkNN query for any k. Third, 

to exploit a RNN-C tree based on kNN (k to be determined) that could answer 

Table 29. Notations used in the RNN-C tree 



 

166 

a RkNN query for any k. Eventually, our research had proven that the first 

direction was plausible and adheres beautifully to our aim of an algorithm that 

is simple to implement. 

Figure 86 lists the algorithm for constructing a RNN-C tree. We 

highlight three important areas in the algorithm, namely (i) an algorithm 

needed to find the 1NN of a data point, (ii) computing the radius ri 
j for a 

cluster Ci 
j, and (iii) computing the population of a cluster. To tackle the first 

problem, we adopted the fast branch-and-bound NN algorithm of [RoKV95], 

but any implementation of exact NN algorithms can be used. To compute the 

radius, we redefined a data point to include a link (index) to the clusters that it 

represents as a centroid (in addition to its coordinates), for all non-leaf data 

points. The population of a cluster is the number of data points contained in 

the cluster including all clusters at the lower levels. At level 0, the population 

σi 
j of a cluster Ci 

j is simply the size of the cluster |Ci 
j
|. At intermediate levels 

(i > 0), the population σi 
j of a cluster Ci 

j is σi 
j
 = ∑|Ci-1 

j'
| ∀p ∈ Ci 

j where p 

⇔ ci-1 
j'. The purpose of σi 

j
 is for pruning in RkNN query, where k > 1. 

 In the algorithm, whichCluster is a straightforward implementation of 

the member function of a set, so it is not shown. calcCentroid is also not 

presented because it is also a straightforward computation of the centre of a 

cluster across all data points in the cluster, averaged for each dimension.  
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 RNN-C-tree-build(SDB, T) 
 // Input:  spatial database SDB 
 // Output: RNN-C tree T 
 begin 

 h � 0  // height of final RNN-C tree 

 n � |SDB|  // number of points at this level 
 repeat 

  h � h + 1 
  RNN-C-tree-build-level(SDB, C[]) 

  SDB � ∅ 
  for i = 1 to c do 

   p.x � C[i].centroid.x 

   p.y � C[i].centroid.y 

   p.link � i 

   SDB � SDB ∪ {p} // each point links back to its cluster 
  endfor 

  n � |SDB| 

  T[h] � C[]  // building of RNN-C tree level by level 
 until n ≤ 3 
 end; {procedure RNN-C-tree-build} 
 
 RNN-C-tree-build-level(SDB, C[]) 
 // Input:  spatial database SDB 
 // Output: array of c sets of data points C[1..c] 
 begin 

 c � 0  // number of clusters at this level 
 
 //generate clusters 
 forall p in SDB do 

  p’ � NN(p, 1)  // find 1NN(p) from SDB 
  if p.inserted = false and p’.inserted = true then 

   temp � whichCluster(p’, C[]) // add to same cluster as p’ 

   C[temp] � C[temp] ∪ {p} 
   p.inserted � true 
  elseif p.inserted = false and p’.inserted = false then 

   c � c + 1  // form a new cluster 

   C[c] � C[c] ∪ {p,p’} 
   p.inserted � true 

   p’.inserted � true 
  elseif p.inserted = true and p’.inserted = true then 

   temp � whichCluster(p, C[]) // link both clusters together 

   temp2 � whichCluster(p’, C[]) 

   C[temp] � C[temp] ∪ C[temp2] 
   delete C[temp2] 
   c � c - 1 
  elseif p.inserted = true and p’.inserted = false then 

   temp � whichCluster(p, C[]) // add to same cluster as p 

   C[temp] � C[temp] ∪ {p’} 
   p’.inserted � true 
  endif 

 endfor 

 

 //compute the centroid and radius for all clusters at this level 
 for i = 1 to c do 

  C[i].centroid � calcCentroid(C[i]) 

  C[i].radius � calcRadius(C[i], i) 

  C[i].population � calcPopulation(C[i], i) 
 endfor 



 

168 

 end; {procedure RNN-C-tree-build-level} 
 
 calcRadius(C, i) 
 // Input:   a cluster C, level where C is 
 // Ouptput: the radius that covers the cluster C 
 begin 

 radius � 0  // the radius of the cluster to compute 
 forall p in C do 

  dist � dist(p, C.centroid)  
   if dist > radius then 

   radius � dist 
  endif 

 endfor 

 

 // recursively expand the cluster radius to cover clusters below 
 if i > 0 then 
  forall p in C do 

   dist � calcRadius(C[p.link], i-1) 
   if dist > radius then 

    radius � dist 
   endif 

  endfor 

 endif 

 

 return radius; 
 end; {procedure calcRadius} 
 
 calcPopulation(C, i) 
 // Input:  a cluster C, level where C is 
 // Output: total population of the cluster, including its children 
 begin 
 if i = 0 then  // leaf level 

  total � |C| 
 else  // intermediate level 

  total � 0 
  forall p in C do 

   total � total + calcPopulation(C[p.link], i-1) 
  endfor 

 endif 

   return total; 
 end; {procedure calcPopulation} 

 

 

To build the RNN-C tree data structure, the initial dataset SDB is read. Then 

the algorithm attempts to build a kNN graph (with 1NN relation) from the data 

points, which will results in |C0| clusters at the leaf level (level 0). During 

cluster construction, the data points are processed sequentially to find their 

1NN. Each data point p also has a Boolean value to indicate whether it has 

been previously inserted into a cluster, or newly discovered. In actual 

Figure 86. The RNN-C tree construction algorithm 
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implementation, a bit vector of size |SDB| can be used. Let NN(p) be p'. There 

are 4 possible outcomes for p and p'. If p is a new data point but p' is not, p 

will join the cluster of p', and vice versa. If both p and p' are new data points, 

then a new cluster is born, as neither p nor p' is connected to other clusters. If 

both p and p' were inserted before (p must have been the NN of some other 

point, and now p’s NN is p' which belongs to another cluster), so both clusters 

are linked up. At the end of the procedure, each data point in SDB would be 

inserted into one and only one cluster. Finally, the centroid ci 
j for each 

discovered cluster is computed. To compute the radius, for the case where the 

level is 0 (leaf), ri 
j is max{d(ci 

j, p)} ∀p ∈ Ci 
j. For cases of intermediate 

nodes, ri 
j is recursively grown to cover the MBC of all clusters in each point. 

The centroid is extracted from each cluster and a link (index) is added 

to the cluster which the centroid represents, to form the new dataset (of 

smaller size, which is equal to |C0|). The process is repeated until the dataset 

size |Ch| is ≤ 3. One concern about the RNN-C is whether the construction 

algorithm will terminate. 

Lemma 4 proves that the RNN-C tree will not result in an unbalanced 

or skewed tree. Furthermore, we had empirically shown in our statistical 

analysis (Section 5.6.2) that |Ci| reduces to approximately 0.20 to 0.32 of its 

size at the next level, both for random dataset and real-life GIS dataset. In 

theory, the reduction is at most 0.5. Figure 87(a) illustrates how the RNN-C 

tree is constructed on a dataset of 12 data points, n0 = |SDB| = 12.  

Firstly, for all pi ∈ SDB, 1 ≤ i ≤ 12, find NN(pi). The directed edges in 

the diagram is merely a visual representation of pi with NN(pi), in actual 

implementation, an array of pointers of size n0 would suffice. Note that there 
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are 4 clusters formed (C0
1 to C0

4, and |C0| = 4). Secondly, for C0
i, 1≤ i ≤ 4, 

calculate the centroids of each cluster (c0
1 to c0

4, respectively). They are 

denoted as white dots in the figure. Thirdly, using the centroids for each 

cluster, determine a radius large enough to cover the cluster, i.e. computing r0
1 

to r0
4. Finally, compute the population of the cluster. Then we are done for this 

level. Repeat all the steps above recursively with the 4 centroids assumed as 

data points on the next level. In Figure 87, horizontal dotted lines connecting 

from white dots in (a) to black dots in (b) indicate this (similarly, from white 

dots in (b) to black dots in (c)). The construction algorithm terminates when nh 

≤ 3, where h is the height of the resulting RNN-C tree. In Figure 87(b), n1 = 4 

and |C1| = 2. In Figure 87(c), n2 = 2, |C2| = 1 and the construction algorithm 

terminates with h = 2 since the condition n2 ≤ 3 is met. 

 

 

 

 

Figure 87. Constructing the RNN-C tree for a dataset of 12 points. Note that x�y denotes NN(x) 
is y. (a) find each point’s 1NN and calculate the centroid (white point) for each resulting cluster, 
(b) the centroid becomes a data point on the next level; repeat the same process as in (a) at this 

level, (c) stop when 3 or less data points remain 

(a) (b) (c) 
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Lemma 4. The algorithm to construct RNN-C tree will always terminate with 

the finite height h of O(log2 n). 

Proof. The kNN graph is based on the 1NN relationship of all the points in the 

dataset to their 1NN. Let {p1, p2, p3} ∈ SDB, n = |SDB|, NN(p1) be p2 and 

2NN(p2) = {p1, p3}. By definition of kNN graph, an edge always connects 

from p1 to p2. In this situation, there are 2 possibilities for p2, either d(p2, p1) < 

d(p2, p3) which means NN(p2) is p1, or d(p2, p1) ≥ d(p2, p3) which means 

NN(p2) is p3. For the former, there will be an edge from p2 to p1, and assuming 

all other clusters have the same conditions, there will be n/2 clusters, which 

means n/2 points on the upper level. Assuming the same conditions, 

eventually we will arrive at a RNN-C tree of height log2 n.  ■ 

 

7.3 R1NN Queries with RNN-C Tree 

 

Having presented the RNN-C tree construction algorithm, we now discuss and 

prove two lemmas, presented below, which are used by the query algorithms 

to traverse the RNN-C tree and prune away points during traversal.  

Lemma 5. A cluster Ci 
j with centroid ci

 j and radius ri
 j does not have a RNN 

of any query point q if d(ci
 j, q) > 2ri

 j. 

Proof. To prune off the whole cluster Ci 
j
 we need to show that q ∉ NN(pi) for 

all pi ∈ Ci 
j. Since all pi are enclosed by MBC(ci

 j, ri 
j), d(ci

 j, pi) is at most ri
 j. 

In the worst case, ∃pj where d(ci
 j, pj) = ri

 j. This pj could become the NN of q 

if d(q, pj) ≤ d(pj, ci
 j) (which is ri

 j). Therefore, if d(q, pj) > d(pj, ci
 j), q cannot 

be the NN of pj. Since d(q, pj) > ri 
j and d(ci

 j, pj) = ri 
j, then when d(ci

 j, q) > 

2ri
 j
 none of pi can be the NN of q.  ■ 
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Lemma 6. In a cluster Ci 
j where the longest edge is e with length |e|, Ci 

j does 

not have a RNN of any query point q if d(q, (pi ∈ Ci 
j)) > |e|. 

Proof. To prune off the whole cluster Ci 
j
 in this situation, we need to show 

that d(q, pi) > |e| for all pi ∈ Ci 
j. Let us pick two random points pj, pk ∈ Ci 

j
 

which is connected by an edge ej. If d(q, pj) ≤ d(pj, NN(pj)) then pj would be a 

NN of q. Note that NN(pj) could be pk or some points. So when d(q, pj) > d(pj, 

NN(pj)), it follows that q ∉ NN(pj). However, it may happen that d(q, pj) < 

d(pj, pk) because |ej| < d(pk, NN(pk)). This can be avoided if ej is the longest 

edge e in Ci 
j. Therefore none of the pi’s can be the NN of q if d(q, pi) > |e|. ■ 

 

Two pruning rules are used during top-down traversal of RNN-C tree when 

answering R1NN queries. Recall that each cluster in the RNN-C tree has a 

centroid and radius that defines a MBC that covers all clusters in its subtree. 

When traversing down the RNN-C tree, for each cluster, we first determine 

whether we can prune off a cluster Ci 
j by using the two lemmas in this section. 

Let edge emax ∈ Ci 
j
 such that ∀em ∈ Ci 

j, emax ≥ em, if d(q, ci 
j) > emax and d(q, 

ci 
j) > 2ri 

j then Ci 
j
 can be pruned. If Ci 

j does not meet either one of conditions, 

we recursively traverse each p ∈ Ci 
j which represents Ci-1

j' where j' = 1 to |Ci
 j|. 

A point to note is the need to compute d(p, NN(p)) ∀p ∈ Ci 
j, which could best 

Figure 88. An example illustrating the conditions for Lemma 5 (left) and Lemma 6 (right) 
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j
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be implemented as a hash table lookup (using p’s index for j-th cluster at level 

i) since it has been pre-computed and stored during tree construction. This 

would take O(1) time. Alternatively, if such information is not available, 

|NN(p)| << ni as NN(p) ∈ Ci 
j, therefore we only need to search within the 

same cluster, which is typically < 10 points. 

 

 R1NN-C-tree-query(q, i, j, R) 
 // Input:  query point q, current tree level i, cluster index j 
 // Output: R - the R1NN results of q 
 begin 

 if i = 0 then  // leaf level 
  forall p in C[0,j] do 
   if dist(q, p) ≤ dist(p, NN(p)) then 

    R � R ∪ {p} 
   endif 
  endfor 

 else  // intermediate level 
  // find max edge length in the cluster 
  maxEdgeLen � 0 
  forall p in C[i,j] do 

   dist � dist(p, NN(p)) 
   // NN(p) is searched within C only 
   if dist > maxEdgeLen then 

    maxEdgeLen � dist 
   endif 

  endfor 

 
  // 2*radius and max edge length pruning rules 
  if dist ≤ 2*C[i,j].radius or dist ≤ maxEdgeLen then 
   for t = 1 to |C[i,j]| do 
    R1NN-C-tree-query(q, i-1, t, R) 
   endfor 

  endif 
 endif 

 end; {procedure R1NN-C-tree-query} 

 
 

When the traversal reaches a cluster at the leaf level, all the data points in the 

cluster will be checked to determine the correct R1NN results for q. Recall 

that the RNN-C tree uses pruning techniques for metric space, therefore we 

can only prune based on distance function alone and there must be no 

assumption made on the coordinates or relative positions of a cluster to 

another. 

Figure 89. RNN-C tree query algorithm for k=1 
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7.4 RkNN Queries with RNN-C Tree 

 

The logic for pruning intermediate clusters is similar to MBR of R-tree. After 

much hard work, we were able to generalise our query algorithm for k > 1. 

Although the query algorithms for the case of k = 1 and k > 1 are presented 

separately, it is easy to combine both algorithms to provide RkNN query using 

RNN-C for any k > 0. 

To answer RkNN queries for k > 1, we propose a technique called the 

sum of clusters. The key idea is to exploit the relationship between clusters 

and make use of the cluster population to prune off a cluster. This is also the 

key difference between RNN-C tree and TYM. TYM was not able to make use 

of its node size for pruning; it merely uses the distance from a node to its 

parent to save on computation cost. The following lemma describes the sum of 

clusters technique, and Figure 90 provides a sketch of the proof. 

 

 

 

 

 

Figure 90. A sketch for the proof for Lemma 7. Dotted straight lines represent the distance 
between 2 cluster centroids plus a radius. C2

1 can be pruned if k ≥ σ2
2. Note that data points may 

not be accurately represented within a cluster 
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Lemma 7. Let q be a query point for a RkNN query (k > 1). Let Ci 
z ∈ Ci be 

any cluster with centroid ci 
z, radius ri 

z and population σi
 j at level i of a RNN-

C tree. Let S = {Ci 
j
 ∈ Ci | d(ci 

z, ci 
j) – ri 

j
 > ri 

z
 and d(ci 

z, ci 
j) + ri 

z
 + ri 

j < d(q, 

ci 
z), j ≠ z} be a set of clusters which met the condition. If ∑ ∈SC

j

ij
i

σ ≥ k then 

Ci 
z
 can be pruned. 

Proof. S is derived from clusters meeting two conditions. The first condition 

d(ci 
z, ci 

j) – ri 
j
 > ri 

z (can be rewritten as d(ci 
z, ci 

j) > ri 
z + ri 

j) means that Ci 
z 

∩ Ci 
j = ∅. The second condition d(ci 

z, ci 
j) + ri 

z + ri 
j < d(q, ci 

z) means that 

the furthest possible data point in Ci 
j w.r.t. ci 

z is closer to ci 
z than ci 

z is to q. 

Note that since d(ci 
z, ci 

j) > ri 
z + ri 

j, so 2(ri 
z + ri 

j) < d(q, ci 
z), and it follows 

that d(q, ci 
z) ± ri 

z > 2ri 
j. Thus, a cluster Cu ∈ S with corresponding population 

σu means that there are at least σu points closer to any point p ∈ Ci 
z than q, 

because Ci 
z ∩ Ci 

j = ∅. Since all Cu ∈ S satisfy the two conditions, therefore 

if ∑σu ≥ k, no points in Ci 
z can be a RkNN of q.  ■ 

 

Notice that the sum of clusters rule requires that we find all the clusters in the 

“band” outside Ci 
z but inside q, i.e. MBC(ci 

z, d(ci 
z, q)) – Ci 

z. As a matter of 

fact, the sum of clusters is a two-pronged approach. Besides looking for 

clusters Cu ∈ S, at the same time the query algorithm determines whether Cu 

can be pruned w.r.t. Ci 
z
 (the current cluster under processing). This is called 

the mirror pruning rule. The mirror pruning rule identifies in advance the 

clusters that can be pruned, so that they are bypassed straight away in the main 

processing loop. The mirror rule works on the conjecture that Cu in at least 

half the search space could be pruned, if the sheer size of Ci 
z satisfies |Ci 

z| ≥ k. 
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In the example of Figure 90, both C2
2 and C2

3 are in the set S. Assuming σ2
1 ≥ 

k, the mirror pruning rule causes C2
3 to be marked as pruned, because d(c2

3, 

c2
1)+r2

1
+r2

3 < d(c2
3, q) which means C2

1 (with population σ2
1) lies between C2

3 

and q, so no points in C2
3
 can be RkNN(q). However, C2

2 is not marked as 

pruned as it does not satisfy the distance condition.  

 

 

 
RkNN-C-tree-query(q, i, k, R) 
 // Input:  query point q, current tree level i, the number of RkNN k  
 // Output: R - the RkNN results of q 
 begin 

 forall C ∈ Ci do 
  C.pruned � false 
 endfor 

 

 forall C ∈ Ci do 
  if C.pruned = true then continue;  // C was pruned by mirror rule 

  S � ∅  // remember all clusters in C’ lying between C and q 
  sum � 0   // sum of points closer to cluster C than q 

  dist � d(q, C.centroid) 

  forall C’ ∈ Ci do 
   if C = C’ then continue;  // skip same cluster 

   dist2 � d(C.centroid, C’.centroid) 
   if dist2 - C’.radius > C.radius and  
    dist2 + C’.radius + C.radius < dist then 
    // mirror pruning rule 

    if C’.pruned = false and C.population ≥ k and 
     dist2 + C.radius + C’.radius < d(q, C’.centroid) then 

     C’.pruned � true 
    endif 

 

    // sum of clusters pruning rule 

    S � S ∪ C’ 

Figure 91. Illustration of the band (shaded area) between C3
1 and q. Three clusters are 

disqualified by the sum of clusters rule testing. Four clusters exist within this band and therefore 
eligible for mirror pruning rule testing (eventually C3

5 failed but the rest passed) 
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    sum � sum + C’.population 

    if sum ≥ k then  
     C.pruned � true  
     break;  // C is pruned, sum need not be fully updated 
    endif 

   endif 

  endfor 

  if C.pruned = false then  // sum fully updated if C is unpruned 
   if i = 0 then 

    if sum + C.population ≤ k then 
     R � R ∪ C  // all points in C are valid results 
    else 

     refineCluster(q, k, C, S, R) 
    endif 

   else 
    RkNN-C-tree-query(q, i-1, k, R)  // traverse the cluster 
   endif 

  endif 
 endfor 

end; {procedure RkNN-C-tree-query} 
 
 refineCluster(q, k, C, S, R) 
// Input:  query point q, the number of RkNN k, current cluster C, 
//    set of clusters in band S 
 // Output: R - the RkNN results of q 
 begin 
 forall p in C do 

  count � 0  // count the number of points nearer to p than q 

  dist � d(p, q) 
 
  // process points within cluster C first 
  forall p’ in C do 
   if p = p’ then continue;  // skip same point 
   if d(p, p’) < dist then 

    count � count + 1 

    if count ≥ k then goto next p;  // continue main loop 
   endif 

  endfor 

  // process the clusters in band 

  forall T ∈ S do 
   if d(T.centroid, q) + T.radius < dist then 

    count � count + T.population 

    if count ≥ k then goto next p;  // continue main loop 
   else  // look into individual points in T 

    forall p’ ∈ T do 
     if d(p, p’) < dist then 

      count � count + 1 

      if count ≥ k then goto next p;  // continue main loop 
     endif 

    endfor 
   endif 

  endfor 

  // p is a result since count < k 

  R � R ∪ {p} 
 endfor 

end; {procedure refineCluster} 

 Figure 92. RNN-C tree query algorithm for k>1 
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During query processing, the running population sum (i.e. ∑σu | Cu ∈ S) is 

kept. As soon as we encountered k points, Ci 
z is pruned and we proceed to the 

next point immediately. Suppose at the end of the loop, less than k points are 

encountered, it means that there are either no clusters within the band, or their 

combined population sum cannot lead us to conclude that there are at least k 

points closer to the cluster Ci 
z than q. In this case, for intermediate levels, we 

will traverse down the RNN-C tree recursively and process all the clusters 

under Ci 
z. At the leaf level, if ∑σu + σi 

z ≤ k then all points in Ci 
z qualifies as 

the RkNN of q. Otherwise, we know that only a partial set of points in Ci 
z 

qualifies. To find out which, we had to refine the cluster Ci 
z. 

The refineCluster step is necessary because if Ci 
z
 is not pruned, it 

means that there are not enough points (∑σu < k, where σu is the 

corresponding population of Cu ∈ S) found in between Ci 
z and q. However, 

the sum of clusters technique only applies on Ci 
z’s surrounding clusters. When 

this technique fails to prune Ci 
z, we will have to consider the data points 

within because now for the cluster Ci 
z, min{|Cu|} < k < |Ci 

z
|+∑σu is true. This 

means that in the best case, a data point p ∈ Ci 
z is in RkNN(q) because 

min{|Cu|} < k for p with min{d(p, q)}. In the worst case, p is not in RkNN(q) 

since |Ci 
z
|+∑σu > k for p with max{d(p, q)}. The refineCluster procedure 

filters off those p ∉ RkNN(q) by counting whether enough siblings p' of p 

exist between p and q (that is, p' exist such that d(p, p') < d(p, q)). Next, we 

proceed to the clusters in the band. Here we segregate those clusters Cu which 

satisfy the condition d(Cu, q) + ru < d(p, q) and those that do not. For those 
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that satisfy, we could merely add σu to the count and save the computation cost 

for each member of Cu. 

 

7.5 Experiments and Results 

 

The TPL and TYM algorithms were chosen for the exact approach category, 

to pit against the RNN-C tree. The former uses the well-known half-plane 

pruning technique and is extremely fast. The latter is the only approach to 

solve the RkNN problem in metric space, to the best of our knowledge. As the 

RNN-C tree is also designed for answering RkNN in metric space, TYM is the 

only true state-of-the-art competitor for RNN-C tree at present. 

The experiment settings are similar to those described in the 

experiments for RNN-Grid algorithms, found in Section 6.3.1. 

 

7.5.1 Effect of Pruning Rules 

 

Firstly, we check the effect of the sum of clusters pruning rule and the mirror 

pruning rule. Counters were used to capture the number of times the two rules 

fired, and they are enabled only for the purpose of counting in this subsection. 

We used two real-life datasets, MD and RI, from the TIGER/Line database, 

with 4K disk page and 500 RkNN queries to obtain the average.  

 Figure 93(a) shows the number of sum of clusters being activated to 

prune away the current cluster under investigation. On the average, the figures 

decrease slightly with k, but very slowly. The average number of sum of 

clusters is directly related to the number of clusters available at any particular 

level of the RNN-C tree. This rule is fired when the total sum of the 
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population for those clusters that satisfy the conditions of Lemma 7, is greater 

than k. In actual implementation, the rule is fired as soon as the total sum 

exceeds k, whereby the current cluster is pruned off and processing continues 

with the next cluster. For any k, the total sum for the same dataset is constant, 

so as k increases, the rule is fired less. Our empirical results suggest that it 

takes a very large k to reduce the effect of this pruning rule.  

 

 

Figure 93(b) shows the number of mirror pruning rules fired for the two 

datasets. Here it is more evident that the number of times it fired decreases as 

k increases. A pre-requisite for this pruning rule to fire is σ ≥ k, where C is the 

current cluster under investigation and σ is C’s population (Figure 92). 

Typically, |C| ≤ 4 at the leaf level. Hence, when k > 4, the incidence of this 

rule firing is significantly reduced especially at higher levels of the tree. When 

processing the RNN-C tree at higher levels (nearer to the root), the mirror 

pruning rule is more useful. Note that the mirror pruning rule does not reduce 

the #distcomp directly, as it still incurs one distcomp per cluster. However, it 

helps prune off clusters earlier so that subsequent processing in the main loop 

is able to skip the pruned clusters. 
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Figure 93. The average number of (a) sum of clusters rule and (b) mirror pruning rule 
fired in MD and RI datasets  
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h 
Avg # of sum 

of clusters 
Avg # of mirror 

pruning rule 
0 609.8 230.0 
1 406.0 277.5 
2 133.8 103.2 
3 56.0 48.8 
4 25.0 18.0 

 

Table 30 depicts the average number of incidence of both pruning rules at 

different levels of the RNN-C tree for the MD dataset. Note that h = 0 is the 

leaf (data) level, and h = 4 is the root. At high levels, the number of clusters is 

small and σ is large. Assuming |C| = 4, the probability of sum of clusters firing 

is 0.348% and mirror pruning is 0.252%. At the leaf level, however, the 

probability increased to 8.48% and 3.2% respectively. 

 

7.5.2 Performance Comparisons 

 

The RNN-C tree is compared against the TPL and TYM algorithms, both 

exact RkNN algorithms. We used the real-life MD dataset from the 

TIGER/Line database, with 4K disk page and 500 RkNN queries to obtain the 

average. 

In Figure 94, the #distcomp is compared. TPL has the lowest 

#distcomp among the three algorithms. In fact, at k = 1, it is approximately 

two orders of magnitude smaller than RNN-C tree and TYM. However, the 

growth of TPL is huge. When k = 32, it incurs 56477.91 distcomp, which is 

33.84 times the distcomp when k = 1. Even so, it is just half of the #distcomp 

of RNN-C tree. The lower #distcomp of the TPL algorithm is explained by the 

use of geometrical properties (bisector pruning) in the Euclidean metric space 

to filter candidates. Bisector pruning reduces the #distcomp between 

Table 30. The average number of pruning rules fired at different levels 
of the RNN-C tree for MD dataset across 1 ≤ k ≤ 32 
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subsequent data points by a very large factor. RNN-C tree and TYM, both 

being generic metric space algorithm, do not benefit from any properties that 

only work in one distance metric. 

The RNN-C tree generally sees a growth in the #distcomp as well, but 

relatively constant for k ≤ 32. The TYM, on the other hand, grows streadily, 

and it is almost 4 times larger than RNN-C tree when k is large. 
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In Figure 95, the average number of disk access indicates that the TPL 

algorithm’s disk access grows as k increases. This is because the TPL 

algorithm is based on the R-tree index, so the larger the k, the more objects 

will have to be accessed for use in refining the candidate set. Our results show 

that the R-tree does not support RNN type of queries efficiently, as even the 

average number of I/Os needed to answer R1NN is almost 1.8 times that of 

RNN-C tree. The R-tree was originally designed for answering NN queries. 

Owing to the nature of RNN, where an answer can be very far away from a 

query point q, the MBR of an R-tree is not a good choice (since it minimises 

the solution space which is of course good for NN queries). The RNN-C tree 

and the TYM algorithm require almost the same number of disk accesses, 

which is expected because both structures store data points in at most one 

Figure 94. Comparison of number of distance computations in TIGER/Line MD dataset 
of RNN-C tree, TPL and TYM 
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branch of the tree and both use similar pruning techniques involving the radius 

of a cluster (for RNN-C tree) or node (TYM).  
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Finally, the overall cost of a query is tied to the number of disk accesses and 

#distcomp. For TPL, its query time increases as k increases but it is still faster 

than both RNN-C tree and TYM. Although TPL is shown to have a higher 

disk access cost than the other two, it actually incurs far fewer #distcomp due 

to its bisector pruning of candidates. Adding to the fact that the gap between 

I/O cost and CPU cost is closing, TPL stands to benefit since it is disk access 

intensive. Overall, TPL is still the fastest of the three algorithms. The major 

disadvantage for TPL is that it only works for RNN queries in Euclidean 

Figure 95. Comparison of # I/Os in TIGER/Line MD dataset of RNN-C tree, TPL and TYM 

Figure 96. Comparison of query cost (s) in TIGER/Line MD dataset of RNN-C tree, 
TPL and TYM 
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metric. When k >> 32, one can see the benefits of a generic metric distance 

algorithm. The average query time will be lower than TPL. 

For TYM and RNN-C tree, both incurs high “startup” cost whereby 

any RNN query will be sure to incur. Beyond the initial startup cost, the 

growth in query time is actually very small and negligible. This high cost is 

attributed to the minimum #distcomp and disk accesses needed in order to 

traverse down the RNN-C tree structure to look for the correct results, as data 

points are stored at the leaf level. The M-tree in which TYM is based on, also 

stores data points at leaf level, thereby exhibiting the same high startup cost. 

The maximum values for the performance comparisons for all 3 

metrics are shown in Table 31. The trends are similar to the average cases. The 

number of max disk accesses is very similar for both RNN-C tree and TYM, 

but the max query time for RNN-C tree is about half of TYM’s. For k ≤ 8, the 

maximum #distcomp and disk accesses for RNN-C tree and TYM are 

comparable, but RNN-C is 2.02 times faster. 

 

max #distcomp max #I/Os max query time (s) 
k RNN-C 

tree TPL TYM RNN-C 
tree TPL TYM RNN-C 

tree TPL TYM 

1 94721.8 2338.4 101216 543 941 554 0.75 0.00260 1.14 
2 95109.3 3015.2 101356 572 1010 610 0.78 0.01236 1.54 
4 102511.2 5536.1 104513 622 1142 622 0.78 0.01493 1.56 
8 106326.9 9472.9 115848 663 1309 689 0.79 0.02102 1.61 
16 110808.6 21217.3 163492 753 1607 775 0.79 0.04768 1.69 
32 112400.3 58242.8 361101 854 2125 860 0.83 0.09225 1.79 

 

7.6 Summary 

 

In this chapter, the RNN problem, a relatively new kind of query, was 

explored. We proposed a novel data structure to solve the exact RNN problem 

Table 31. Performance comparison (max values) of RNN-C tree, TPL and TYM 
for the TIGER/Line MD dataset 



 

185 

for any k, giving full accurate results. The RNN-C tree is a unique tree based 

on the kNN graph, where the dataset is pre-processed and connected as a forest 

of very small subgraphs with the 1NN relation. We showed that the RNN-C 

tree can be used to answer RkNN queries efficiently. 

The RNN-C tree is compared to other algorithms in the same class 

(exact results), such as TPL and TYM. RNN-C tree and TYM are the only two 

algorithms designed to work in metric space, as long as a distance function is 

defined between two objects. RNN-C tree is shown to be faster and more 

efficient than the TYM, because it prunes effectively based on both inter-

cluster distances as well as cluster population. 

We strongly believe that RNN-C tree has potential in RNN queries and 

it has wide applications because of its minimal requirements (only a distance 

function). In the coming chapter, we propose several further problems for 

RNN-C tree. 
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Chapter 8 Conclusion and Future Work 

 

8.1 Conclusion 

 

In conclusion, this research has addressed two major issues in MPRQ. Firstly, 

we researched into various techniques used to solve MPRQ. As a result, we 

discovered three approaches that can be used, presented their algorithms and 

analysed each of them in detail. Intelligent pruning rules form the key for the 

good query time that MPRQ enjoys. Extensive experiments were carried out to 

understand the MPRQ in a wide variety of problem parameters and MPRQ 

performs well in all of them against the conventional technique RRQ and 

state-of-the-art spatial join algorithms used in many proximity queries today. 

Secondly, we adapted the best results from our study into an application of a 

vastly different domain of computer science: bioinformatics. 

 MPRQ can be solved with the MPRQ-MinMax, MPRQ-Sorted Path or 

MPRQ-Rectangle Intersection approach. The most straightforward method is 

MPRQ-MinMax which is easy to implement and deploy in any applications 

that do proximity queries. We showed that MPRQ does even better as search 

distance and the number of query points increase, and the overall total query 

time grows very slowly. We investigated the effect of applying different 

combinations of pruning rules, and found out the reasons behind MPRQ’s 

good performance and the effect of pruning rules have on MPRQ. 

It is also shown that MPRQ can be used with other structures such as 

SOM to perform sequence similarity search to identify peptides in the 

bioinformatics domain. The results we obtained are very encouraging – our 
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PepSOM algorithm (which contains MPRQ) is as fast as the best de novo-

database hybrid approach at present, and PepSOM database filtration rate is 

high without sacrificing peptide similarity accuracies. 

For the RNN problem, we proposed two different approaches which 

are highly effective. For an everyday application that does not require accurate 

results (approximate RNNs will do) but does require fast response time, we 

proposed the RNN-Grid that is very efficient and has very high recall. We 

have shown that the RNN-Grid is fast even for solving RNN of high-

dimensional datasets. We proposed three algorithms for the RNN-Grid and 

conducted an in-depth study of their performances, as well as when compared 

to other estimated RNN algorithms. 

Applications that require exact answers for a RNN query will benefit 

from our proposed novel data structure, called the RNN-C tree, which is able 

to answer RkNN queries in any metric space. The RNN-C tree is useful in 

many applications such as decision making, outlier detection, data mining, 

data retrieval, etc. As long as there is a defined distance function between any 

two objects in a dataset, and it satisfies the triangle inequality principle, the 

RNN-C tree can be used to solve RkNN queries given any query object. To the 

best of our knowledge, the RNN-C tree is one of only two RNN algorithms 

that work with data points in metric space, the other being the TYM algorithm. 

And RNN-C is shown to outperform TYM. 

 

8.2 Future Work for MPRQ 

 

This thesis leaves a number of topics unexplored and the issues highlighted 

here can be further pursued in future as possible extensions or new research 
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directions. They are broadly classified as (i) considering velocity and 

trajectory in the input, and (ii) finding kNN for MPRQ. 

 

8.2.1 Velocity and Trajectory 

 

One area of further work could be to extend the model of MPRQ to include 

the ability to process temporal information in addition to spatial information. 

It was explained in our research scope that the time domain will not be 

considered in this research because results can be easily processed with time 

information when the spatial query is done. Our experiments also showed that 

including time specific pruning into our MPRQ algorithms does not make 

much sense as the number of pruned spatial points is not significant since the 

MPRQ results contain points that are relatively static. However, this is not true 

if the spatial points move. 

Moving spatial points (where each point has assigned velocity and 

direction) in a spatial index might make more sense to pursue research in this 

direction. For example, in addition to the relatively static spatial index of 

events, there exists another index for moving points (say, vehicles), then work 

can be done to answer MPRQ w.r.t. both indexes. This area of research is new 

and there are many work done [ŠJLL00, AgAE00, TPZL05] on a single 

moving query point but not a single moving query point in pre-planned path. 

 

8.2.2 k-Nearest Neighbour MPRQ 

 

Can the MPRQ be used to answer kNN queries? In this research, we stated 

that the main objective is to find all the events that are close to a given 

planned route in the fastest time. It might be possible to apply ranking to all 
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the points within the result set such that, when given a value k, we are able to 

find the top k-nearest points closest to the path. Or perhaps, a further extension 

would be to find the top k-nearest points closest to each and every query point. 

The ability to answer kNN queries using the multi-point range query is 

useful in many ways. Suppose the MPRQ represents a particular line of 

telephone poles running through a residential area, the events being the nearby 

houses whose telephones are connected to it. It is very common task to 

identify the top k houses that lie closest to the poles because telephone lines 

run through them before reaching their neighbours next door. This can help 

facilitate the maintenance and troubleshooting of faulty or noisy lines. 

 

8.3 Future Work for RNN-C Tree 

 

It is believed that the RNN-C holds immense potential to solve other variants 

of the RNN problem. Possible future new research directions in this area can 

be broadly classified as follows: (i) extension for processing multiple RkNN 

queries simultaneously in one tree traversal, (ii) designing the RNN-C tree to 

be a dynamic structure, (iii) using RNN-C tree to solve the bichromatic 

version of the RNN problem, and (iv) continuous tracking of a moving query 

point. 

 

8.3.1 Multi-point RkNN Problem 

 

In the spirit of MPRQ, a possible future extension to the RNN problem is to 

design algorithms to answer RkNN for multiple query points simultaneously.  

This is a more challenging problem than a single query point. Since the 

notion of RkNN(q) represents the influence of q as within the top k NN of 
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some data point p ∈ RkNN(q), the motivation for the RNN problem has 

always been the belief that any changes in q will affect p. So it isn’t hard to 

imagine that given Q as a set of query points and k, find RkNN(Q) efficiently. 

It can also be argued, like the RRQ, that we execute the RkNN(q) query 

separately ∀q ∈ Q and join the outcome results. However, optimisations in the 

query might be possible in the RNN-C tree if we know in advance that there is 

more than one query point. 

Possible uses include diverse applications in decision support systems, 

continuous referral systems and maintaining document repositories. For 

example, in a document repository, the NN relationship is based on 

similarities between two technical documents already filed. When a batch of 

new technical documents in the same category are filed, the repository can 

execute a RkNN(Q) to retrieve the authors of all similar documents and let 

them know of the possibly interesting new entries. 

 

8.3.2 Dynamic RNN-C Tree Structure 

 

In this research work, we focused on solving the RNN problem with the 

assumption that the underlying dataset is static. It will be highly convincing to 

claim that a dataset of spatial nature will require far fewer updates than when 

the dataset is of another domain, say data mining or information retrieval. At 

this point, the construction algorithm for the RNN-C tree, described in Section 

7.2, does not delve into methods for inserting a new data point or for deleting 

existing data points in an already constructed RNN-C tree. In order to do so, as 

the structure of the RNN-C tree is dependent on the 1NN graph derived from 
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the coordinates of the data points (instead of the order in which they are 

encountered), efficient techniques similar to [SPKS03] can be discovered. 

An initial strategy to answer the RNN query when it was first proposed 

involved constructing a duplicate R-tree (the original is used for NN queries) 

called RNN-tree [KoMu00] where the leaf nodes store vicinity circles (VC) 

instead of the point (the RNN-tree and VCs were mentioned in Section 5.3). 

This is obviously not efficient because two R-trees have to be maintained. 

Hence, future work to make the RNN-C tree structure dynamic must be 

directly effected on the data structure itself. We also believe that lazy deletion 

of data points is possible with the RNN-C tree, especially when the MBC on 

intermediate nodes of the RNN-C tree is not affected. These two issues make a 

good direction to explore. 

 

8.3.3 Bichromatic RNN and Beyond 

 

Can the RNN-C tree be adapted to solve the bichromatic RNN problem? 

Given a set TDB of sites, a set SDB of points, and a query site q, B-RNN(q) = 

{p ∈ SDB | ∀s ∈ TDB, d(q, p) ≤ d(p, s)}. Currently the RNN-C tree is 

constructed from a 1NN graph of single-coloured points. There are at least two 

possible techniques to extend the RNN-C tree for B-RNN: (i) via the kNN 

graph, and (ii) by constructing one RNN-C tree each for SDB and TDB. In the 

first method, all points and sites are set on the plane and we “capture and 

label” the colour of the points before building a RNN-C tree. Extra 

information about the minimum distance between a point and a site might 

have to be stored in the MBC on intermediate levels of the tree. For the second 
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method, two RNN-C trees may be constructed and the traversal proceeds in 

tandem for both trees, for pruning conditions checking. 

 A more daring proposition is to solve the k-chromatic RNN challenge, 

for any general k number of sites. To the best of our knowledge, there is no 

research work that addresses trichromatic RNN and beyond. 

 

8.3.4 Moving Query Point 

 

Tracking of a continuously moving query point q to answer RNN queries has 

received some attention recently [XiZh06, BJKS07, KMSX07, WYCT08]. For 

the continuous-RNN problem, given a set SDB of points, some time interval Tj 

and moving query point q, the goal is to keep track of RNNj(q) where RNNj(q) 

= {p ∈ SDB | ∀o ∈ SDB, d(q, p) ≤ d(p, o)} at time interval Tj. The assumption 

is that all p ∈ SDB are continuously moving in non-predictable fashion, in 

addition to the moving query point q. A variant of the continuous-RNN is 

where the input is a set of query points Q. 

Continuous-RNN queries are useful for location-aware applications 

such as mixed-reality games and vehicle traffic monitoring systems where 

positions of objects and query points are frequently updated. For example, in a 

battlefield, all soldiers may be issued a GPS device each that not only can 

pinpoint their location, but also perform a continuous-RNN query for a 

particular soldier to monitor other nearby comrades who might be wounded 

and require help.  

Let us focus on the case for a single moving query point. For 

continuous-RNN queries, the RNN-C tree must be sensitive to monitoring 

regions. These regions are defined around the query point, so that when the 
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underlying dataset points change outside of them, it guarantees that the query 

results will not be affected (that is, updated correctly). 
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Appendix A PepSOM: An Application of MPRQ-
Disk 

 

We briefly describe an example of the real-life application of MPRQ in 

addition to RADS: the integration of MPRQ and the self-organising map 

(SOM) to serve as a coarse filter for identifying peptides (short proteins) as 

one of the most challenging problems in the bioinformatics (also known as 

computational biology) domain – peptide identification (and in general the 

biological sequence similarity problem [NgNL07]). A novel algorithm called 

PepSOM [NiNL06] is developed which provides for a non-trivial method for 

transforming spectrum similarity (a representation of peptides) to similarity of 

vectors, and then to neighbourhood similarity of points in 2-d plane. 

 

A.1 Peptide Identification in Bioinformatics 

 

Peptide identification by tandem mass spectrometry (MS/MS) is a challenging 

problem in proteomics. Current high throughput mass spectrometers [CaWe07] 

have generated a huge amount of spectra, and the analysis of these spectra 

must keep pace. Fast algorithms for peptide identification are crucial for such 

analysis. 

Unfortunately, the process of analyzing these spectrum data is still 

slow and not accurate. Approaches for peptide identification can be 

categorized into database search algorithms [EnMY94, FTBP05, PPCC99] or 

de novo algorithms [DACV99, FrPe05, MZHL03, TaJo97]. The former are 

suitable for known peptide sequences that already exist in the database. 

However, they apparently do not perform well in discovering new peptide 
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sequences not already available in database. For such peptide sequences, the 

de novo algorithms are the method of choice. De novo algorithms work from 

the ground up by interpreting peptide sequences from spectrum data purely by 

analyzing the intensity and correlation of the peaks in the spectrum data. 

In the peptide identification problem, database search usually return 

the peptide sequences that match the parent mass of the spectrum. However, 

the accuracy depends on the quality of the database, and the process is slow 

(usually a few minutes). Typical analyses of an LC/LC/MS/MS experimental 

dataset using the popular BioWorks program by ThermoFinnigan with a single 

processor take several hours for computation (e.g. 30,000 scans against the 

Escherichia coli database). The de novo algorithm can find tags with high 

accuracy [CNLP06, FTBP05], and the process is fast (always within 1 minute) 

but tags are usually not complete sequences for the spectra. 

Hence, how to achieve a balance between identification completeness 

and efficiency yet manage reasonable accuracy for peptide identification by 

tandem mass spectrum is an important consideration. This is where our 

proposed novel algorithm comes in. PepSOM is an algorithm using the 

database search approach but it is very fast, without the slow processing 

problems that plagued other database-based approach. It identifies candidate 

peptide sequences by selection from database via a technique by the 

combination of SOM [Koho01] and MPRQ (course filter), then scores and 

ranks these peptide sequences (fine filter) by comparing their theoretical 

spectrum with the experimental spectrum. Since the candidates are essentially 

found by database search algorithm, all the candidates in database that are 

similar (whose number are controlled with MPRQ’s search distance d) to the 
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experimental spectrum are retrieved. With this technique, completeness and 

efficiency are achieved with reasonable accuracy attained. 

Recently, coarse and fine filtering methods commonly associated with 

database search techniques were introduced for peptide identification 

[RMNP06]. The spectra are mapped to vectors, and using a metric space 

indexing algorithm, initial candidates for later fine filtering were produced. A 

variant of shared peaks count (SPC) scoring function was used to compute the 

similarity among spectra. The coarse filtering can reduce the number of 

candidates to about 0.5% of the database and for fine filtering, a Bayesian 

scoring scheme is applied on candidate spectra to more accurately identify 

peptide sequences. 

 

A.2 Problem Description 

 

Proteomics is the study of proteins expressed by a genome. They are 

systematically studied by cataloguing and analysing proteins to determine 

when a particular protein is expressed, its expression level (amount expressed), 

and how proteins interact with one another. By studying proteins, we could 

determine the types of proteins present in normal vs diseased cells. We can 

also identify drug targets as well as discover new drugs for treatment of 

illnesses. 

A typical MS/MS proteomics process calls for individual proteins to be 

separated via a process called 2-d PAGE (two-dimensional poly acrylamide 

gel electrophoresis). Proteins are first isolated and then sliced into parent 

peptides by enzymatic digestion, which usually involve the enzyme trypsin. 

The parent peptides are then ionised and isolated from each other. One of the 
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methods to perform peptide isolation is by high-performance liquid chromato-

graphy (HPLC), and peptides are further separated by their mass-to-charge 

ratios (m/z). This forms the first stage of the mass spectrometry (MS) process. 

In tandem mass spectrometry (MS/MS), an isolated peptide (target) is then 

sent through collision-induced dissociation (CID) causing it to fragment into 

many pieces. The m/z of each and every piece is measured to obtain an 

MS/MS spectrum. Figure 97 illustrates. 

 

Definition (Theoretical spectrum): The ion fragmentation pattern of a 

particular peptide, usually stored on databases, derived from training data or 

expert opinion. Typically it is represented as a chart of peak intensity vs mass-

to-charge ratio (m/z). 

 

Definition (Experimental spectrum): The ion fragmentation pattern of a 

particular peptide derived from an MS/MS process, is a set of mass peak of 

fragment ions. 

 

 
Figure 97: An example of LC/MS/MS peptide identification process 
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Peptide identification can be used to identify proteins present in a sample. In a 

perfect world, an oracle would be able to look at the sample and tell us exactly 

what proteins are contained therein. In reality, we must derive the 

experimental spectrum of a peptide via the MS/MS process. Unfortunately this 

process is not perfect, and it also introduces noise into the experimental 

spectrum, making it harder to compare with theoretical spectra to identify the 

correct peptide. Sources of noise include from MS instruments, the loss of 

water (H2O) and ammonia (NH3) during fragmentation and post-translation 

modifications (enzymes altering the protein after the translation process) such 

as phosphorylation, glycosylation, myristoylation or methylation. This is 

where algorithms like PepSOM fit in. PepSOM will efficiently process 

multiple experimental spectra and quickly derive peptides from databases that 

are similar to them. 

 

A.3 PepSOM Algorithm 

 

We first describe SOM and MPRQ followed by some notes on converting 

spectra to vectors (binning of peaks). Next, we present our novel peptide 

identification algorithm, PepSOM.  

 

A.3.1 Self-Organising Map 

 

SOM is a method for unsupervised learning, based on a grid of artificial 

neurons whose weights are adapted to match input vectors in a training set. In 

the training process, a SOM (map) is built and the neural network organises 

itself using a competitive process. The SOM usually consists of a two-

dimensional regular grid of nodes. The node whose weights are closest to the 
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input vector, termed the best-matching or winner node, is updated to be more 

similar to it while the winner’s surrounding neighbours are also updated (to a 

smaller extent) to be more similar to the input vector. As a result, when a 

SOM is trained over a few thousand epochs, it gradually evolves into clusters 

whose data (peptides) are characterised by their similarity. Therefore, it is very 

suitable for analysis of the similarities among sequences and is very widely 

used [KaKK98, OjKK03]. Increasingly, SOM is used as an efficient and 

powerful tool for analysing and extracting a wide range of biological 

information as well as for gene prediction [BeGe01, MMSG04, ASKK06]. 

For spectrum data, each node represents an observation of the 

spectrum (converted to vector), and the distance between nodes represent their 

similarities. The closer two nodes are located to each other, the more similar 

they are. For a visual illustration, we give an example of SOM with 995 

spectra (the ISB test dataset, which we will describe in Section A.4) on a 

50×50 grid. Figure 98(a) illustrates the relationship among these spectra. 

Observe that some of the spectra (black dots) are clustered together and are 

hard to distinguish. Many spectra are surrounded by grey dots representing 

similar vectors (updated by SOM algorithm during training phase but not 

representing any spectrum in particular). It follows that spectrum similarities 

are represented by neighbourhoods of the points on SOM. 
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(a) (b) 

 

A.3.2 Multi-Point Range Query 

 

MPRQ is an important component of the PepSOM algorithm. It provides a fast 

mechanism for peptide similarity queries. 

Once the theoretical spectra for the peptide sequences in the database 

are mapped as 2-d points on a SOM, they are indexed with our 

KDTopDownPack bulk-loaded R-tree data structure since the peptide 

sequences database rarely change. The spatial index can then be reused many 

times. To perform similarity query, we transform the experimental spectra into 

query points in 2-d plane and proceed to query. At this point, it is possible to 

use many experimental spectra as the query simultaneously, which translates 

to multiple points as the input for MPRQ algorithm.  

Experiments showed that a large input (up to 1000 experimental 

spectra or more) does not increase the overall query time by much. This 

phenomenon is due to the intelligent pruning rules NodeIn and PointOut 

embedded within the MPRQ algorithm. Apart from a set of query points, the 

MPRQ algorithm also accepts as input a parameter d that controls the radius of 

Figure 98: (a) In this example of SOM generated from spectra, each spectrum is represented by a 
grayscale dot. Notice that neighbouring dots have mutually similar shades of grey. (b) A sample 

of SOM training of Escherichia coli for a 100x100 orthogonal grid being visualized. Similar 
colours represent similarity of trained sequences 
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the search distance. The larger the value of d, the more candidate peptides will 

be returned. MPRQ can efficiently process the multiple input points 

simultaneously with respect to d and the MBRs during query, effectively 

performing multi-spectra similarity search (which is adjustable) on a database 

of known peptides. 

 

 

 

A.3.3 Converting Spectra to Vectors 

 

The very first step of PepSOM is to convert spectra in database to high-

dimensional vectors of the same dimension in vector space. The PepSOM 

algorithm requires both theoretical and experimental spectra to be converted to 

statistical vectors so that the SOM can be trained and queried. This is related 

to the binning of the peaks in spectrum. The binning idea was used in 

[PeDT00] for mass spectrum alignment. In [PeDT00], the intensity peaks of a 

spectrum are packed into many bins, and the spectrum was translated into 

sequences comprising 0’s and 1’s. We used a similar method for binning, 

except that our binning results are sequences of real numbers. 

Figure 99: Applying MPRQ on the SOM map to retrieve peptide similarity candidates. The 
search distance d can be used to control the number of candidates desired to achieve a tradeoff 

balance between efficiency (query time) and accuracy 
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Binning is used to remove noisy peaks from a spectrum while 

converting them into vectors. A less noisy spectrum translates into more 

accurate identification results and faster processing time as fewer peaks are 

considered. 

The important parameters for binning of peaks include the size of the 

bins, the amino acids interpretation of supporting peaks (bins), the mass 

tolerance value as well as the peaks intensity. For simplicity, it is suffice to say 

that given the properly set value of mass tolerance, binning can preserve the 

spectrum accuracies, while at the same time decrease the computational cost 

greatly, especially for noisy spectra. We refer the reader to our paper [NiNL06] 

for precise details and proofs. 

The binning process also includes scoring of bins to eliminate bins 

with very low peak intensity. Based on domain knowledge, the important 

parameters for scoring should include peak intensity, the number of supporting 

peaks and mass error. Based on the analysis of the scores of peaks in the 

spectrum, the lowest 20% bins in scores ranking, or those bins with scores less 

than 1% of the highest rank are filtered out.  
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A.3.4 PepSOM 

 

Figure 100 depicts how the PepSOM algorithm works as a coarse filtering step. 

Peptides from the database are converted to theoretical spectra which are 

further converted to high-dimensional vectors and then used to train a SOM 

(map). This only needs to be performed once unless the database changes. 

Figure 100: Diagram for the peptide identification with PepSOM 

…CGT… 
…GKR… 

…DFGTK… 
…HGFR… 

… 

theoretical 
spectra 

vectors 

SOM 

 

MPRQ on SOM 
results 
(vectors) 

experimental spectra 
(multiple input) 

peptide results  peptide results (ranked)  

score and rank 
by SPC 

database 

vectors 

CGTGDHTK 
VSTSQKR 
PQRSTSTK 
GKTTSTVR 
…… 

binning 

binning 

Trained SOM 

first-rank 
result 

SOM training 

…
…
. 

VSTSQKR 
CGTGDHTK 
GKTTSTVR 
PQRSTSTK 
…… 



 

217 

In the query process stage, each experimental spectrum is converted to 

vector (via binning) and then matched with the trained SOM map to obtain its 

best-matching node (expressed in (x,y)-coordinates). The resulting coordinates 

form the basis input points for the MPRQ algorithm to perform a single, 

efficient similarity query. Candidate peptides are selected from the database 

this way, and then fine-filtered by comparing their theoretical spectrum with 

experimental spectrum by shared peaks count (SPC). The SPC score is 

computed as the number of shared peaks between experimental spectrum and 

theoretical spectrum of candidates (within tolerance). First rank result simply 

refers to the first result returned by MPRQ. While it is not necessarily the best, 

it gives an indication of the quality of results when a “quick result” is 

warranted. 

 

PepSOM(DB, ES, d) 
// input: peptide database DB, expt spectra ES, similarity d 
// output: candidates results set C 
begin 

   TS � bin all peaks of putative peptides in DB; 

   V1 � GenerateVectors(TS); 

  som_map � TrainSOM(V1); // SOM training 

   2d_map � MapSOM(som_map, V1); // map of (x,y)-coords 

   ES � bin all peaks of ES;  // bin ES if not previously done so 

  V2 � GenerateVectors(ES); 

   Q � MapSOM(som_map, V2);   // obtain multi points query set 
   MPRQSearch(2d_map.root, Q, d, C); // obtain candidates set C 
  return C; 
end; {procedure PepSOM} 

 

Figure 101 lists the PepSOM algorithm. Although SOM has been used before 

to predict genes, this is the first attempt of its kind to combine SOM with 

spatial database query for peptide identification. Many efficient algorithms 

exist for spatial database queries in orthogonal 2-d grids or hierarchical data 

Figure 101: Algorithm for PepSOM uses SOM and MPRQ for coarse filtering 
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structures. SOM is useful because we believe it satisfies the condition that the 

distance on the map reflects the similarity of peptides. 

 

A.4 Experiments 

 

A.4.1 Experiment Settings and Datasets 

 

Experiments were performed on a Linux machine with 3.0 GHz CPU and 1 

GB RAM. PepSOM was implemented in C++ and Perl. SOM_PAK [KHKL96] 

was the SOM implementation used. We had selected two database search 

algorithms, Sequest [EnMY94] and InsPecT [FTBP05], as well as two de novo 

algorithms with freely available implementations, Lutefisk [TaJo01] and 

PepNovo [FrPe05], for comparison and analysis. We treated Sequest result 

with a cross-correlation score (Xcorr) above 2.5 as ground truth. In a typical 

setting, Xcorr ≥ 2.0 from Sequest is considered of good quality. We strived for 

more stringent results. 

Spectrum datasets were obtained from the Open Proteomics Database 

(OPD) [PCWL04], PeptideAtlas database [DDKN06] and Institute for 

Systems Biology (ISB) [KPNS02]. The three datasets chosen are of vastly 

different sizes to enable us to examine the issue of scalability of PepSOM 

compared to other algorithms. 

For OPD, the spectrum dataset used was opd00001_ECOLI, 

Escherichia coli spectra 021112.EcoliSol 37.1(000). The spectra were 

obtained from E. coli HMS 174 (DE3) cell, which is grown in LB medium 

until ~0.6 abs (OD 600). The spectra were generated by the ThermoFinnigan 

ESI-Ion Trap “Dexa XP Plus” and the sequences for these spectra were 
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validated by Sequest. There are 3903 spectra in total; we chose all the 202 

spectra that were identified with Xcorr ≥ 2.5. 

Spectra from PeptideAtlas were also selected. The spectrum dataset 

A8_IP were obtained from Human Erythroleukemia K562 cell line. 

Electrospray ionization source of an LCQ Classic ion trap mass spectrometer 

(ThermoElectron, San Jose, CA) was used, and DTA files were generated 

from the MS/MS spectra using TurboSequest. The dataset consists of a total of 

1564 spectra; we chose all the 44 spectra that were identified with Xcorr ≥ 2.5. 

The ISB dataset was generated using an ESI source from a mixture of 

18 proteins, obtained from ion trap mass spectrometry. The ISB dataset was of 

low quality, having between 200-700 peaks each with an average of 400 peaks. 

The entire dataset consists of a total of 37044 spectra; we chose all the 995 

spectra that were identified with Xcorr ≥ 2.5. 

The databases that we used were theoretical spectrum generated from 

the respective protein sequences dataset. Specifically, E. coli K12 protein 

sequences for OPD datasets, IPI HUMAN protein sequences for PeptideAtlas 

dataset and human plus control protein mixture for ISB dataset. As the number 

of protein sequences were very large for PeptideAtlas (60,090) and ISB 

(88,374) datasets, we used only the protein sequences corresponding to spectra 

identified with Xcorr ≥ 2.5 (our ground truth set). However, the sizes of 

databases were still very large because of many fragmentations. 

The parameters for the generation of databases, the test datasets and 

theoretical spectra are shown in Table 32. Additionally, we use a search 

distance radius d = 0.25 as the MPRQ parameter. 
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Parameters Values 
 OPD PeptideAtlas ISB 
No. of protein sequences 4,279 31 3,553 
Total database size 494,049 9,421 1,248,212 
Test dataset size 202 44 995 
Fragments mass tolerance 0.5 Da 
Parent mass tolerance 1.0 Da 
Modifications – 
Charge +2, +3 
Ion type a, b, y, –H2O, –NH3 
Missed cleavages 0 
Protease Trypsin 
Mass range 0-6000 Da 

 

A.4.2 Accuracy Measures 

 

The following accuracy measures were used to compare the different 

algorithms: 

Sensitivity = 
#correct

 |ρ|       Specificity = 
#correct

 |P|
  

where #correct is the number of correctly identified amino acids. It is 

computed as the longest common subsequence (LCS) of the actual correct 

peptide sequence ρ and the identification result P of the PepSOM algorithm. 

|ρ| and |P| depict the length of the respective peptide sequences. 

Sensitivity indicates the quality of the identification result with respect 

to the actual correct peptide sequence – a high sensitivity being that the 

identification algorithm (in our experiments – InsPecT, Lutefisk, PepNovo and 

PepSOM) recovers a large portion of the correct peptide. For a fairer 

comparison with de novo algorithms like PepNovo that only outputs the 

highest scoring tags (subsequences), we also use a specificity measure, which 

measures the number of correctly identified amino acids within the 

identification result given by the algorithm (independent of the actual correct 

peptide sequence ρ). 

Table 32: Parameters for the generation of databases and theoretical spectra 
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A.4.3 Results and Analyses 

 

A.4.3.1 Quality of PepSOM Results 

 

We analyzed the quality of peptide sequences identified by PepSOM as 

candidates. These candidates would be tested against the experimental spectra 

(test size) to return the final results. Generally, the size of candidates set 

should be as small as possible (minimal false positives) yet able to yield the 

final results. The first among the results we obtained using the test set is 

labeled as first-rank peptide. Best-match peptide is the peptide from all 

candidates that match with “real” peptide with the highest specificity (and 

sensitivity). The latter can be thought of as an upper bound of the results 

obtained. 

 

Datasets 
Database 

Size 
Test 
Size 

No. of 
Complete 
Correct 

Complete 
Correct 

Accuracy 
Specificity Sensitivity 

Time 
(ms) 

OPD 494,049 202 44 0.218 0.560 / 0.785 0.428 / 0.593 10.6 
PeptideAtlas 9,421 44 10 0.227 0.334 / 0.377 0.445 / 0.637 10.5 
ISB 1,248,212 995 116 0.117 0.529 / 0.895 0.680 / 0.726 10.8 

 

From Table 33, it is clear that both sensitivity and specificity for PepSOM is 

high. For example, in the OPD dataset, both sensitivity and specificity are 

higher than 0.55 (best-match); as for the ISB dataset, the sensitivity is higher 

than 0.65 (both). There are also a significant number (10% to 25%) of 

completely correct peptide identifications among top-rank peptide sequences. 

The time taken for peptide identification is also very small; this is expected 

when using both SOM and MPRQ combined (more details will be provided 

Table 33: Statistical results on the quality of candidates identification by PepSOM. 
For specificity and sensitivity, the results for “first-rank peptide / best-match peptide” are shown 
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later). The average query time per spectrum is approximately 11 ms. This is 

comparable to InsPecT (with average 10 ms search time per spectrum with 

default settings, but based on smaller database) which is one of the fastest 

database search algorithms because PepSOM is able to filter a small set of 

high quality candidates and yet keep the accuracy of the resulting set. 

 

A.4.3.2 Performance of PepSOM 

 

Next, we compared PepSOM with other well-known peptide identification 

algorithms, namely Sequest, Lutefisk, PepNovo and InsPecT among others. 

Recall that the Sequest algorithm provides the spectra identified with high 

Xcorr score (≥ 2.5). Therefore here we treated them as ground truth. 

 

Datasets 
Database 

Size 
Test 
Size 

Sequest InsPecT Lutefisk PepNovo PepSOM 

OPD 494,049 202 1.0 / 1.0 0.592 / 0.556 0.129 / 0.008 0.252 / 0.200 0.560 / 0.428 
PeptideAtlas 9,421 44 1.0 / 1.0 0.811 / 0.402 0.162 / 0.063 0.291 / 0.135 0.334 / 0.445 
ISB 1,248,212 995 1.0 / 1.0 0.602 / 0.633 0.032 / 0.032 0.563 / 0.593 0.529 / 0.680 

 

We observe from Table 34 that both specificity and sensitivity of PepSOM are 

better than Lutefisk and PepNovo (both de novo algorithms), and they are 

comparable to InsPecT. Although InsPecT has higher specificity, our results 

outperform InsPecT in sensitivity. Specifically, for the OPD dataset, both the 

algorithms have specificity and sensitivity of about 0.55. For the PeptideAtlas 

dataset, the specificity of our algorithm is much worse than that of InsPecT, 

but the sensitivity is about 10% better. For the ISB dataset, PepSOM has lower 

specificity than InsPecT, but the sensitivity value is higher. 

Table 34: Comparison of different algorithms on the accuracies of peptide identification. 
In each column, the “Specificity / Sensitivity” values are listed 
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From these experiments, we note that the results for PepSOM are at 

best preliminary because of the use of conventional SPC scoring. We believe 

that by implementing an improved scoring function (e.g. incorporating 

statistical analysis or reliable tags generated by a de novo process), our results 

could be better. All in all, PepSOM’s performance is comparable to InsPecT in 

both accuracy and efficiency. 

 

A.4.3.3 Filtering Rate 

 

One of the most important features of PepSOM is that it is very fast. For batch 

processing of multiple spectra query, Table 33 and Table 35 show that it can 

perform peptide identification for large spectrum datasets (> 500) in mere 

seconds (for example, 500 × 10.8 ms = 5.4 secs). 

 

Database Database 
Size 

Test 
Size 

Candidates 
Size 

Average 
Query Size 

Coarse 
Filtering Rate 

OPD 494,049 202 68,610 339.7 0.069% 
PeptideAtlas 9,421 44 654 14.9 0.158% 
ISB 1,248,212 995 101,443 102.0 0.008% 

 

Traditional database search algorithms such as Sequest are much slower than 

PepSOM. Although de novo algorithms are usually faster than PepSOM, 

currently they cannot generate results with comparable accuracy. In Table 35, 

the candidates size represents the combined total results from coarse filtering 

of the database using the experimental spectra (test size) as the input query 

points for the MPRQ algorithm. The average query size represents the average 

peptide sequence candidates for each spectrum (query point). Coarse filtering 

rate is computed by averaging query size over the original database size. We 

Table 35: PepSOM-generated candidates size, average query size and coarse filtering rate 
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only need to compare each spectrum against the candidates identified for it by 

MPRQ. Therefore, the coarse filtering rate is very low. Compared to the 

tandem cosine coarse filter used in [RMNP06] which filters to around 0.5% of 

the database, it is obvious PepSOM has a better filtering efficiency. This 

explains why PepSOM could achieve fast query time.  

 

A.4.3.4 Effect of Search Distance 

 

From Figure 102 we see that the larger search distance radius d that we use, 

the larger the average query size (due to the increased number of candidates), 

and the selection of d = 0.25 is a compromise between efficiency and accuracy. 

Accuracy generally improves by a little with larger d but it is not significant. 

In this application, the MPRQ input search distance d serves as a control 

mechanism for efficiency vs accuracy. 

 

 

 

Figure 102: Average query size (query distance radius d vs % of database size) for ISB dataset 


