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SUMMARY 

According to Global Cancer Statistics 2002, brain cancer, one of the 

most challenging cancers to treat, with its high mortality rate, accounted for 

189,000 new cases and 142,000 deaths worldwide annually. Cancer Statistics 

2005 reported 18,500 new cases and 12,760 deaths in the United States. 

Current therapies for brain cancer treatment include chemotherapy, 

radiotherapy and surgical removal. However, such treatments were reported 

to have limitations and complications that result in poor prognosis; difficulty in 

surgical removal, low long-term survival rate and side effects from 

chemotherapy and radiotherapy confound the efficacy of brain cancer therapy.  

Growing evidences point to the potential of phytochemicals such as 

plumbagin, genistein and curcumin as anti-cancer agents. However, the 

molecular mechanism(s) of action of these phytochemicals remain to be 

elucidated. Thus, by utilizing a variety of molecular and cytogenetic 

techniques, this study aims to investigate the potential of these 

phytochemicals with special attention paid to its possible role in the inhibition 

of telomerase and other oncogenic pathways in brain cancer cells.  

In the present study, we show dose-dependent decrease in cell viability 

following plumbagin and curcumin treatments accompanied by increased 

DNA damage which correlates to cell cycle arrest and cell death. Furthermore, 

treatment of cancer cells with these phytochemicals were shown to result in 

differential expression of genes and proteins related to cell cycle and cell 

death such as PTEN, E2F1, CCNE1, CDK2, Bcl2 and Survivin. Interestingly, 

genistein induced cell cycle arrest at G2/M phase without causing DNA 

damage and cell death. This cytostatic characteristic is a proposition for the 



 xxii

use of genistein in combinatorial treatment to arrest or sensitize cancer cells 

to secondary cytotoxic drugs. We also found that radiosensitive cells have a 

higher tendency to undergo cell cycle arrest and cell death whereas 

radioresistant cells showed otherwise.  In addition, all three drugs were shown 

to inhibit telomerase activity in brain cancer cells, resulting in shortening of 

telomere length following long-term treatment. To date, this property of 

plumbagin is the first to be reported in our study. 

The understanding of the molecular and genetic mechanisms involved 

in cancer resistance will be helpful in the development and validation of novel 

therapeutic agents in the treatment of human malignancies. As telomerase is 

expressed in 90 % of human tumours, telomerase inhibition is an attractive 

target for anticancer therapy. We propose that the above drugs may elicit 

anticancer effects via gene regulation and telomerase inhibition. 
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Chapter 1   INTRODUCTION 

1.1 Brain anatomy and brain tumours 

The central nervous system includes three major parts of the brain 

(cerebrum, cerebellum and brainstem) and the spinal cord. The cerebrum is 

the largest area of the brain that is largely made up of neurons and glial cells 

(astrocytes, oligodendrocytes and ependymal cells). It consists of the left and 

right cerebral hemispheres; the hemispheres are further subdivided into 

frontal lobes, temporal lobes, parietal lobes and occipital lobes. The function 

of frontal lobes is to manage emotion, thought, reasoning, behaviour and 

memory; Parietal lobes govern sensory and motor information; Temporal 

lobes process sounds and spoken languages; Occipital lobes interpret images 

and written words.  

The second largest part of the brain, the cerebellum, located at the 

lower back of the cerebrum, coordinates motor functions and controls balance. 

The brain stem, located in front of cerebellum and under the cerebrum, 

controls the unconscious activities such as breathing, heart rate, swallowing, 

wakefulness and sleep (Figure 1.1) (Black, 2006). 
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Figure 1.1. Anatomy of human brain. Human brain consists of cerebrum, 
cerebellum, brainstem and spinal cord. Cerebrum is further divided into frontal 
lobe, parietal lobe, occipital lobe and temporal lobe. (Picture taken from 
http://www.ohsu.edu) 
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1.1.1 Brain tumour incidence and mortality rate 

According to Global Cancer Statistics 2002 (Parkin et al., 2005), brain 

cancer accounted for 189,000 new cases and 142,000 deaths worldwide 

annually. This phenomenon is especially prominent in developed countries 

such as the United States, Canada and Japan. Cancer Statistics 2005 also 

reported that there were 18,500 new cases and 12,760 deaths in the United 

States (Jemal et al., 2005). New cases and deaths in 2008 in United States 

were estimated in a recent report in SEER Cancer Statistics Review 1975 - 

2005 to be 21,810 and 13,070 respectively (Ries LAG et al., 2009). The 

reasons of such a high mortality rate are mainly attributed to poor prognosis, 

difficulty in surgical removal and low long-term survival rate. Advances in 

neuroimaging technologies contribute to the increasing trend of new cases. 

Unlike tumour types that reside in other parts of the body, both benign 

and malignant brain tumours are fatal. A growing tumour in the brain places 

pressure on and compresses the neighbouring normal tissue against the skull, 

leading to brain tissue damage and dysfunction that can result in severe 

disability and even death. The tumour may also obstruct blood flow or spinal 

fluid from circulating around the brain. In malignant cases, the tumour may 

metastasize into the spinal fluid and spread into other parts of the brain and 

spinal cord.  

 

1.1.2 Types and grades of brain tumours 

There are many different types of tumours in the brain, spinal cord and 

meninges. Different names are given to these tumours depending on the 

location where they reside; Primary brain tumours are categorized into benign 
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and malignant tumours. Benign tumours consist of meningiomas, pituitary 

adenomas, vestibular schwannomas and carniopharyngiomas; they are slow 

growing and rarely spread. Histologically, these tumours have distinct borders. 

Common types of malignant tumours derived from glial cells include 

astrocytomas, glioblastomas, oligodendrogliomas, ependymomas and 

gangliogliomas. Other common types of malignant brain tumours include 

medulloblastomas and pineocytomas. Malignant tumours are more life-

threatening due to their uncontrollable growth and invasiveness.  

Given that a large portion of the brain is made up of glial cells, gliomas 

are the most common type of brain tumour in both children and adults. 

However, a higher proportion of malignant tumours tend to be found in adults, 

whereas the slower-growing gliomas are more often seen in children. Adult 

gliomas such as glioblastoma multiforme are commonly found in cerebral 

hemispheres, while children have a higher tendency of getting 

medulloblastoma which generally occur in the cerebellum and brain stem.  

The different types of gliomas are further graded based on their 

pathologic evaluation, that is, their morphology in comparison to normal brain 

tissue observed under microscope. According to World Health Organization 

(WHO), astrocytomas are categorized into 4 different grades. For example, 

grade I gliomas are well-differentiated and usually have only a few fast 

proliferating cells. This tumour grade is usually considered safe and generally 

classified under benign tumours, it can be easily identified and removed and 

has a low possibility of recurrence. An example of grade I glioma is the 

pilocytic astrocytoma. Grade IV brain tumours such as glioblastoma 

multiforme and medulloblastoma however are less differentiated with more 
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uncontrolled proliferating cells and usually appear disorganised; blood vessels 

and necrotic cells can often be found in biopsy samples. This tumour grade is 

commonly known as malignant tumour. Grade II and III brain tumours are the 

intermediate-grade tumours that are categorised by their aggressiveness in 

between Grade I and IV (Black, 2006). 

 

1.1.3 Symptoms of brain tumours 

Depending on the location where brain tumours reside, body and 

physiological functions controlled by that brain region may be affected. 

Tumours that reside in the cerebrum often cause seizures and neurological 

dysfunctions. Tumours in the frontal lobes may affect personality, behaviour, 

intellectual dysfunction, hemiparensis, aphasia and focal motor seizures. 

Patients suffering from hemisensory impairment, visual disturbances and focal 

sensory seizures may have damages or tumours in parietal lobes. Tumours in 

temporal lobes cause visual disturbances, olfactory or gustatory hallucinations 

and psychomotor seizures. Tumours in occipital lobes may lead to visual 

disturbances, aura flashes of light and seizures. In the case of tumours in the 

cerebellum, patients can suffer from ataxia, nystagmus, dysmetria and 

unsteady gait. Other common symptoms of brain tumours include nausea and 

vomiting, visual impairments, weakness, confusion, imbalance, depression 

and fatigue. Spinal cord gliomas may cause pain, weakness or numbness in 

the extremities (Figure 1.2) (Virginia and Dubay, 2003). 
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Figure 1.2. Common symptoms and disabilities in different parts of the brain 
of patients suffer from brain injuries and brain tumours (Picture taken from 
http://www.ohsu.edu). 
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1.1.4 Diagnosis, conventional treatments and limitations 

Computed Tomography (CT), Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET) and Magnetic Resonance 

Spectroscopy (MRS) are widely used in the detection of brain tumours. CT 

scans show the axial image of the brain and provide important information to 

allow for anatomical comparisons between the left and right hemispheres to 

be made so as to identify distortions on either of the cerebral hemispheres. 

MRI detects the differences in magnetic properties of brain tissues, blood 

vessels and spinal fluid. PET scans detect the physiological differences in the 

brain tissue. Although PET images do not show fine details as in an MRI scan, 

it reveals the differences in metabolism of the brain cells, distinguishing 

malignant from benign tumour cells. MRS is a technique where brain water is 

suppressed. It detects ions and compounds like choline, creatine and N-acetyl 

aspartate (NAA) without the use of radioisotopes as in PET scan. MRS not 

only shows the presence of a tumour but also provides information on the 

grade of tumour and whether necrosis is present. Other methods use to 

diagnose brain tumours include single-photon emission computed 

tomography (SPECT) scan, electroencephalogram (EEG) and evoked 

responses (Virginia and Dubay, 2003). 

The conventional treatments for brain tumours that are widely used are 

neurosurgery, chemotherapy and radiotherapy. In neurosurgery, 

neurosurgeons first perform a biopsy by craniotomy, a surgical opening of the 

skull, to extract a piece of the tumour to be examined by pathologist so as to 

confirm the diagnosis and to determine the appropriate treatment. Once the 

tissue has been confirmed as a tumour, further neurosurgery may be 
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performed to resect the tumour. However, neurosurgery has its own 

complications. The procedure greatly depends on the size and location of the 

tumour; tumours that reside in deep structures of the brain such as the brain 

stem and spinal cord are usually impossible to be extricated surgically 

compared to tumours found in meninges (outer layer of the brain). The 

presence of blood vessels around the tumours also further complicates the 

surgical procedures due to possibility of internal bleeding and infection. In 

many cases, neurological functions such as motor strength or coordination 

may become impaired immediately following surgery; patients may have to go 

through physical therapy, speech therapy and occupational therapy for 

rehabilitation (Virginia and Dubay, 2003).  

Chemotherapy refers to the use of medication to treat cancer by 

inhibiting cancer cell growth and proliferation. Chemotherapy is given in 

cycles, which are daily medication for 3 to 8 weeks, to ensure that there is 

enough time for the bone marrow to recover and other toxicity of normal 

tissue to resolve besides killing cancer cells. Common drugs that are given 

orally include CCNU (lomustine), temozolomide (temodar®), procarbazine 

(matulane®) and etoposide (VP-16), while common intravenous drugs include 

BCNU (carmustine), carboplatin (paraplatin), cyclophosphamine (cytoxan), 

cisplatin, CPT-11 (camptosar®), etoposide (VP-16) and vincristine (Oncovin®).  

A fundamental problem in chemotherapy using synthetic drugs is the side 

effects that follow treatments, such as hair loss, anaemia (low red blood cells 

count), neutropenia (low white blood cells count), thrombocytopenia (low 

platelet count), weight loss, stomach ulceration, pulmonary fibrosis (lung 

scarring), kidney damage, peripheral neuropathy (numbness), severe nausea 
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and impotence. Also, complications such as bioavailability and blood-brain 

barrier (BBB) permeation often appear as a main concern in designing new 

drugs for brain cancer treatment. Bioavailability is the absorption of drug 

through the gastrointestinal tract when a drug is taken orally. BBB refers to 

the protective mechanism imposes restriction on drugs and other substances 

from crossing the capillary walls into brain tissues (Virginia and Dubay, 2003).  

Radiotherapy is a treatment that is given in fractions (daily exposure of 

low dose in centiGray, cGy) of ionising radiation to target and induce DNA 

breaks in the cells. Normal cells and cancer cells are both exposed to the 

same risk of DNA damage. However, cancer cells generally have lower DNA 

repair efficiency. Over a treatment period of a few days, damaged DNA in 

cancer cells cannot be repaired and this eventually leads to cell death. There 

are various types of radiotherapies. Stereotactic radiosurgery and Gamma 

Knife are highly focused radiation therapy that focus a single high dose of 

radiation (15 ~ 30 Gray, Gy) to a small precise area of tumour. Brachytherapy 

is another technique whereby a radioactive material (pellet, seed or balloon 

catheter) is implanted inside of the tumour that emits the radiation energy 

from the inside of the tumour. The major side effects of partial or whole brain 

radiotherapy are fatigue, short term memory loss, cognitive changes, radiation 

necrosis, brain haemorrhages, hair loss, visual disturbances and loss of body 

coordination. The presence of radioresistant brain cancer cells further 

complicates the treatment and decreases the effectiveness of radiotherapy 

(Virginia and Dubay, 2003). 

There are difficulties in surgical removal and treatments in brain 

tumours as compared to any other solid tumour types. Any damages to the 
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brain cells may also deteriorate normal body functions. Therefore, inevitably, 

we have chosen brain cancer cell lines in this study. Thus, two common grade 

IV brain tumours in adults and children i.e. glioblastoma multiforme and 

medulloblastoma are investigated.  

 

1.2 Telomere and telomerase 

1.2.1 Telomere biology 

Telomeres were first identified by Hermann Muller and Barbara 

McClintock (Müller, 1938; McClintock, 1938; McClintock, 1941). Telomeres 

are the terminal ends of a chromosome and they have a series of repeats of 

the hexameric sequence 5’-TTAGGG-3’ (in mammals) ranging from 5 to 20 kb 

that forms a 3’-end overhang structure. The overhang structure is protected 

by a self-forming loop that caps the DNA ends and prevents it from being 

recognized as a broken DNA strand. The loop is constructed by folding the 

telomere sequences to form a telomere loop (t-loop), the overhang strand 

invades and base-pairs with an upstream double-stranded region of the DNA, 

serving to stabilize the t-loop structure. The displaced strand thus forms the 

D-loop (displacement loop) (Greider, 1990; Blackburn, 1991; Greider, 1991; 

Griffith et al., 1999). Studies have reported that DNA sensing and repair 

proteins and other telomere binding proteins such as TRF1, TRF2, ATM, 

Ku86, POT1, TIN2, TANK, MRE11, NBS1 and RAD50 were found in TRF1 

and TRF2 complexes in this telomere loop (Figure 1.3) (http://www. 

genomeknowledge.org) 

At every round of DNA replication during S phase of the cell cycle, the 

DNA strand unwinds and the telomere sequence is exposed. According to the 
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‘end replication problem’ model proposed by Olovnikov and Watson (Figure 

1.4) (Watson, 1972; Olovnikov, 1973), terminal DNA sequences progressively 

shorten due to an unfilled gap left by replication primers at the 5’-end of 

leading strand. Loss of DNA residues ranging from 50 to 150 base pairs due 

to the end-replication problem have been reported (Harley et al., 1990; Hastie 

et al., 1990; Levy et al., 1992; Lansdorp, 2000). The loss of coding functional 

DNA sequences are believed to be protected from nuclease attack and 

aberrant recombination by the presence of non-coding telomeric DNA at the 

end of every chromosome (de Lange, 2002; Artandi and Attardi, 2005).  

As depicted in Figure 1.5, progressive telomere loss due to the end-

replication problem eventually results in replicative senescence where cells 

stop proliferation but remain metabolically active at the G0 quiescent phase; 

this stage was later termed as ‘Hayflick limit’ or Mortality stage 1 (M1) (Wright 

and Shay, 1992). However, some cells may inactivate tumour suppressor 

proteins such as p53 and Rb (retinoblastoma) (Dyson et al., 1989; Werness et 

al., 1990), thereby bypassing replicative senescence. These cells are able to 

proliferate for an additional 20 to 30 doublings until the telomeres are critically 

short, resulting in dysfunctional telomeres and genomic instability. At this 

stage, cell death is triggered to prevent accumulation of genetic aberrations. 

This stage is known as ‘Crisis’ or Mortality stage 2 (M2) (Wright and Shay, 

1992).  In very rare events, one in ten million cells bypass Crisis by triggering 

telomere maintenance mechanisms via activation of a reverse transcriptase 

enzyme called telomerase (Shay and Wright, 2005a); some cells also rescue 

short telomeres by initiating a homologous recombination mechanism called 

Alternative Lengthening of Telomere (ALT) (Wright and Shay, 1992; Bryan et 
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al., 1995; Bryan et al., 1997; Reddel et al., 2001). Cells that bypass Crisis 

acquire infinite replicative potential and become immortalised (Wright and 

Shay, 1992). The infinite replicative potential has been recognised as one of 

the hallmarks of cancer development (Hanahan and Weinberg, 2000). 
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Figure 1.3. Telomere interacting proteins that bind onto t-loop and D-loop of 
telomere structure. (Modified from http://www.genomeknowledge.org) 
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Figure 1.4. End replication problem. Telomeres at the end of DNA strand 
shorten progressively with every round of DNA replication due to the unfilled 
gap left by primers at the 5’-end of lagging strand (Modified from Shay and 
Wright, 2000). 
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Figure 1.5. Telomere hypothesis of ageing. Progressive loss of telomeres in 
somatic cells resulting in replicative senescence (M1) and crisis (M2). 
Activation of telomerase enzyme or initiation of ALT mechanism rescue short 
telomeres but initiate carcinogenesis.  
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1.2.2 Telomerase enzyme 

Telomerase is a ribonucleoprotein discovered by Carol W. Greider and 

Elizabeth Blackburn (Greider and Blackburn, 1985). It consists of an RNA 

component (TR) (Greider and Blackburn, 1987; Feng et al., 1995), a catalytic 

subunit of reverse transcriptase (TERT) (Nakamura et al., 1997) and dyskerin 

protein complex (Mitchell et al., 1999; Vulliamy et al., 2001). The RNA 

component consists of a nucleotide template with an 11 nucleotide sequence 

complementary to telomeric repeats (Greider and Blackburn, 1989).  

Telomerase synthesises new TTAGGG sequence by annealing its RNA 

template to the 3’ overhang DNA of telomeres and using its reverse 

transcriptase to transcribe and extend the hexameric repeats (Greider and 

Blackburn, 1989; Shippen-Lentz and Blackburn, 1990; Yu et al., 1990), thus 

replacing the sequences lost during DNA replication.  

Telomerase is only detected in embryonic cells, germline cells, 

hematopoietic stem cells, activated lymphocytes, basal cells of the epidermis, 

intestinal crypt cells and most cancer cells (Hiyama et al., 1995; Taylor et al., 

1996; Wright et al., 1996; Harle-Bachor and Boukamp, 1996; Tahara et al., 

1999). In most human somatic cells, telomerase activity is absent (Kim et al., 

1994; Shay and Bacchetti, 1997; Shay and Wright, 2002; Shay and Wright, 

2005b); It has been reported that 85 to 90 % of cancer cells express active 

telomerase and acquire the ability to proliferate infinitely, thereby achieving 

immortalisation (Kim et al., 1994; Bryan and Cech, 1999).  

 

 

 



 17

1.2.3 Telomerase inhibition therapy for cancer treatment 

Activation of telomerase enzyme is one of the characteristics of cancer 

cells. In addition, it has been reported that inhibition of telomerase can limit 

the growth of cancer cells (Shay and Bacchetti, 1997; Keith et al., 2004). 

Hence, telomerase has become an attractive target for inhibition of cancer. 

In the recent years, several strategies for the treatment of cancer have 

been proposed to develop potent catalytic inhibitors against the action of the 

telomerase enzyme either by denying the access of telomerase to the 

telomere in situ or perturbing the telomere structure (Parkinson and Minty, 

2007). Key targets include hTERT and hTR genes and proteins, telomerase 

complex and telomere structure (Figure 1.6). Antisense oligonucleotides, RNA 

interference, ribozymes, dominant-negative mutant expression and 

telomerase oncolytic virus are categorized under immunotherapy, 

oligonucleotides-based therapy and gene therapy, these are the strategies 

proposed in cancer therapeutics (Cunningham et al., 2006; Shay and Wright, 

2006). 

In the strategy of telomerase inhibition as shown in Figure 1.7, all cell 

types with telomerase activity will be affected at different extents. Telomere 

lengths will decrease during the treatment but as long as the telomere length 

is still considerable, these cells will not be very much affected. However, as 

cancer cells develop from somatic cells with critically short telomeres, these 

cells may be more sensitive to telomere deregulation from telomerase 

inhibition, eventually leading to cell death (Chen et al., 2009). Another aspect 

to look at in cancer therapy is the uncontrolled division of cancer cells, which 

usually have shorter doubling times and defective contact inhibition properties 
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compared to non-cancerous cell types. As cancer cells proliferate faster and 

have critically short telomeres, they are believed to be more vulnerable to 

apoptosis by telomerase inhibition (Shay and Wright, 2002; Chen et al., 2009).  
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Figure 1.6. Strategy of targeting telomerase enzyme, disrupting telomerase 
access to telomere and manipulating telomere structure. 
 

 
 
Figure 1.7. Telomerase inhibition of different cell types and cancer cells with 
different levels of telomerase activity may lead to different responses 
(Modified from Herbert et al., 2001). 
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1.3 Complementary and Alternative Medicine 

Complementary and Alternative Medicine (CAM) is a group of diverse 

medical and health care systems, practices and products that are not 

generally considered part of conventional medicine (Barnes et al., 2008). 

CAM has emerged as an option to complement or provide a substitute to the 

conventional medicinal methods. According to National Centre for 

Complementary and Alternative Medicine (NCCAM), CAM treatments are 

categorized into 5 major categories: whole major systems, mind-body 

medicines, biologically-based practices, manipulative and body-based 

practices and energy medicines. 

Many studies have been reported to use CAM treatments such as the 

use of natural plant products (Newman and Cragg, 2007; Mukherjee et al., 

2007), diet and nutrition (Divisi et al., 2006), acupuncture (Lee et al., 2005; Lu 

et al., 2008), yoga and meditation (Bower et al., 2005; DiStasio, 2008) and 

Qigong (Chen and Yeung, 2002; Lee et al., 2007) to complement traditional 

cancer treatments.  

CAM treatments based on natural plant products have been reported to 

have much potential in palliative therapy and in supportive strategies in the 

current cancer modalities (Munshi et al., 2008). In the present study, we 

sought to investigate the effects of three phytochemicals on brain cancer cells. 

 

1.4 Phytochemicals 

Phytochemicals are biologically active non-nutrient secondary 

metabolites in fruits, vegetables, spices, grains and other plants that protect 

the plants against external threats such as pathogens, parasites, predators, 
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viruses and bacterial infections; Phytochemicals have the function of 

producing colour pigments that display vibrant colours to attract insects. 

Phytochemical extracts have been used throughout the world for centuries as 

traditional therapies and as homeopathic remedies to reduce the risk of major 

chronic diseases such as hypertension, cancer development, cardiovascular 

disease and diabetes (Boyer and Liu, 2004; Dhawan and Jain, 2005; Duthie 

et al., 2006; Seymour et al., 2008). 

Studies have shown that phytochemicals are able to modulate DNA 

repair mechanisms, inhibit cell cycle progression, invasion and metastasis, 

and trigger apoptosis (Srinivas et al., 2004; Dhawan and Jain, 2005; Ouchi et 

al., 2005; Lanzilli et al., 2006). Phytochemicals can be categorized into 

carotenoids, phenolics, alkaloids, nitrogen-containing compounds, 

organosulfur compounds and quinones as shown in Figure 1.8. Phenolic 

compounds are one of the major groups of phytochemicals that are being 

extensively explored for their potential in cancer prevention (Liu, 2004).  

In this study, special interest is focused on cellular and molecular 

responses triggered by three phytochemicals, plumbagin (napthtoquinone), 

genistein (isoflavones) and curcumin (phenolic acids). Genistein and curcumin 

are active ingredients found in Asian diets such as that of Chinese, Indian, 

and Japanese, whereas plumbagin is a well-established anti-bacterial and 

anti-fungal drug that has recently gained attention in the field of cancer 

treatment research.  
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1.4.1 Plumbagin 

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) (Figure 1.9A) is a 

bicyclic napthoquinone present in members of the Plumbagineae and 

Droseraceae (Sundew) families. Common plants that contain plumbagin 

include sea lavender, Venus’ flytrap, leadwort and sundew. Plumbagineae are 

found in Africa, Asia and Europe. Droseraceae are found in many temperate 

and tropical regions of the world, notably in Australia, New Zealand and South 

Africa. Impure extracts of plumbagin have been widely used in folk medicine 

for the treatment of rheumatoid arthritis, dysmenorrhoea and toothache 

(Mitchell and Rook, 1984; Mitchell and Rook, 2004). 

Anti-microbial and anti-fungal properties of plumbagin have been well 

documented for the past 40 years (Durga et al., 1990; de Paiva et al., 2003; 

Chen et al., 2006). However, only in the recent years have the anticancer 

properties of plumbagin started to attract the attention of scientists, making 

plumbagin a candidate chemotherapeutic agent for human tumours (Kuo et al., 

2006; Thasni et al., 2008a; Nair et al., 2008; Wang et al., 2008; Powolny and 

Singh, 2008). 

Plumbagin has been shown to downregulate the expression of 

epidermal growth factor receptor-neu receptor (EGFR/Neu) 

(Gomathinayagam et al., 2008) and its downstream signalling targets such as 

phosphatidylinositol 3-kinase/AKT (PI3K/AKT) and transcription factor Nuclear 

Factor-kappa B (NFKB) (Kuo et al., 2006; Sandur et al., 2006; 

Gomathinayagam et al., 2008). Inhibition of NFKB activation further decreases 

the expression of anti-apoptotic and proliferation genes such as Inhibitor of 

Apoptosis (IAP), BCL2, BIRC5 and CCND1 (Sandur et al., 2006). Plumbagin 
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has also been shown to induce cell cycle arrest at G2/M phase, upregulate 

p21/WAF1 and downregulate CCNB1 (Kuo et al., 2006; Hsu et al., 2006; 

Wang et al., 2008). An earlier report showed that plumbagin treatment 

resulted in the loss of mitochondrial membrane potential, which subsequently 

led to the release of cytochrome c and production of reactive oxygen species 

(ROS) (Srinivas et al., 2004). Generation of ROS induces the inhibition of 

topoisomerase II by stabilising Topo II-DNA cleavable complex, leading to 

DNA cleavage and subsequently apoptosis (Kawiak et al., 2007). To date, 

there is no study reporting on the telomerase inhibitory properties of 

plumbagin.  

 

1.4.2 Genistein 

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one) is an  

isoflavone under the polyphenolic compound group (Figure 1.9B). Genistein is 

produced exclusively by the Leguminosae family. A common member of 

Leguminosae family is the soybean that is commonly found in the Asian diet 

especially in the Chinese and Japanese population. Soybean is generally 

consumed in the form of soy sauce, soymilk, tofu (bean curd) and miso 

(fermented bean paste) soup.  

Genistein is a well-known phytoestrogen, it is structurally similar to 

estradiol that could help to cure or reduce the risk of hormonal related cancers 

such as breast cancer, colon carcinoma, endometrial cancer and prostate 

cancer (Chen et al., 2003; Kim et al., 2005; Luo et al., 2008; Jian, 2008; Sha 

and Lin, 2008). Conflicting reports have shown that genistein can trigger 
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estrogenic or anti-estrogenic effects (Bouker and Hilakivi-Clarke, 2000; 

Lamartiniere, 2000; Faqi et al., 2004; Jefferson et al., 2007). 

 Many studies have reported that genistein induces cell cycle arrest at 

the G2/M phase (Schmidt et al., 2008; Li et al., 2008). Genistein has been 

shown to have a role in matrix metalloproteinase inhibition and urokinase 

plasminogen activation, both of which can trigger the degradation of 

extracellular matrix proteins and thus prevent cancer cell invasion and 

metastasis (Farina et al., 2006; Puli et al., 2006). Genistein has also displayed 

the ability to downregulates c-Myc expression leading to decreased 

expression and transcriptional activity of hTERT, the catalytic component of 

telomerase (Ouchi et al., 2005; Jagadeesh et al., 2006). 

 The cytostatic and telomerase inhibition properties of genistein hint at 

its great potential to be developed as an effective anticancer drug. However, 

telomere shortening which happens during DNA replication cannot be initiated 

in an arrested cell. Hence, it is reasonable that genistein exerts its telomerase 

inhibition effect as a secondary anticancer strategy on cells that have escaped 

cell cycle arrest and continued to proliferate, thus selectively targeting tumour 

cells and exerting its growth inhibitory mechanism. In order to understand the 

mechanisms, it is essential to study gene expression patterns in cancer cells 

after exposure to genistein treatment to identify the key players in the growth 

inhibitory and telomerase inhibition mechanisms.  

 

1.4.3 Curcumin 

Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hepta-

diene-3,5-dione) is a polyphenolic compound isolated from turmeric (Curcuma 
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longa) (Figure 1.9C), it is also known as kunyit in some Asian countries. 

Turmeric is commonly found in Indian spices especially in curry powder; it has 

also been used as a colouring additive for mustard, yogurts, canned 

beverages and baked products. In some traditional medication in India, it is 

used as an antiseptic for cuts and wounds. 

Curcumin has been shown to sensitize TRAIL-induced cell death in 

various cancer cells (Gao et al., 2005; Jung et al., 2005; Deeb et al., 2005; 

Jung et al., 2006; Shankar et al., 2007; Wahl et al., 2007). Expression of pro-

apoptotic BAX and suppression of anti-apoptotic BCL2 were also reported in 

cells treated with curcumin (Chakraborty et al., 2006; Mukherjee Nee et al., 

2007). Curcumin has also been shown to induce mitochondrial 

hyperpolarization that results in the damage of mitochondrial DNA (mtDNA) 

and nuclear DNA (nDNA) (Cao et al., 2006; Cao et al., 2007). Inhibition of 

telomerase activity by curcumin has been reported in some cancer models 

(Ramachandran et al., 2002; Chakraborty et al., 2006; Cui et al., 2006; 

Mukherjee Nee et al., 2007). In addition, curcumin has been shown to inhibit 

telomerase by suppressing the translocation of hTERT to the nucleus in a  

hTR- or c-Myc-independent manner (Ramachandran et al., 2002; Chakraborty 

et al., 2006). 

The biological effects of curcumin are multifactorial and telomerase 

inhibition may merely be one of the aspects of its overall growth inhibitory 

mechanisms that affect tumour cell growth (Ramachandran et al., 2002). 

While the telomerase inhibition effects of curcumin have only been reported 

on a few cancer cell types such as breast cancer (Ramachandran et al., 2002), 

leukemia (Chakraborty et al., 2006; Mukherjee Nee et al., 2007) and 
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pancreatic cancer (Teng and Fahey, III, 2002), no such study has yet been 

carried out on brain cancer cells. In addition, the relationship between 

telomerase inhibition and apoptosis has not been fully understood.  

It is hypothesized that curcumin may selectively target cells that 

express telomerase enzyme; by inhibiting the telomerase enzyme, cells may 

become more sensitive to the cytotoxic effects of curcumin. Although many 

studies have been carried out to investigate the mechanisms of curcumin, 

more work must be done in order to understand the correlation between cell 

death, growth inhibition and telomerase inhibition. 
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 Name IUPAC* name Molecular weight 

A Plumbagin 5-hydroxy-2-methyl-1,4-naphthoquinone 188.18 

B Genistein 5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-
one 270.24 

C Curcumin (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl) -
1,6-heptadiene-3,5-dione 368.38 

 
Figure 1.9. Chemical structures and molecular weights of phytochemicals 
used in this study. A) Plumbagin (napthtoquinone). B) Genistein (isoflavones). 
C) Curcumin (polyphenolic compound).  
 
* International Union of Pure and Applied Chemistry Nomenclature 
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1.5 Hypothesis 

Majority of the previous studies using phytochemicals were mainly 

focused on signalling pathways. To date, there is still little known about the 

telomerase inhibitory effects of plumbagin, genistein and curcumin. 

Telomerase inhibition is recognized as a newly discovered strategy for cancer 

treatment as telomerase is a unique enzyme that is detected in more than 90 

percent of human cancer cells. As suggested by Ramachandran et al. (2002), 

any chemopreventive agent that could inhibit telomerase activity will be more 

important compared to those that could not.  

However, as in any kind of therapy, the effectiveness of treatments is 

not solely based on the pathways that are triggered upon drug treatment, but 

also dependent on the characteristics of tumour cell types. These include the 

pathways that are defective specifically in target cells and the aberrations 

these cells carry that may affect the sensitivity of the cells toward the 

treatment. Hence in this study, we sought to investigate the mechanisms of 

actions of these phytochemicals based upon the understanding of the basal 

cell characteristics. 

In this study, we hypothesize that the phytochemicals, plumbagin, 

genistein and curcumin, have great potential in telomerase inhibition apart 

from triggering multiple signalling cascades and immune responses. 

 

1.6 Objectives 

Cancer chemopreventive agents that inhibit telomerase activity are of 

great importance to cancer therapy as they are non-invasive yet specific. 

Hence, we set out to investigate the potential of natural plant products as 
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anticancer drugs.  Three natural plant products of our interest are plumbagin, 

genistein and curcumin. In our study, investigations on the effects of the 

above phytochemicals were initiated based on the on the following objectives: 

 

1) To determine the basal characteristics of the glioblastoma and 

medulloblastoma cell lines used in this study. 

2) To investigate the growth inhibitory mechanisms of plant products on 

glioblastoma and medulloblastoma cell lines. 

3) To study the inhibitory potential of plant products on telomerase activity 

and on telomere length in glioblastoma and medulloblastoma cell lines. 

 

1.7 Significance 

The findings from this study would provide a better understanding of 

the telomerase inhibitory properties of plumbagin, genistein and curcumin that 

may enable them to be later developed as effective complementary 

anticancer drugs. In addition, this study may contribute to a deeper 

understanding of the mechanisms of these compounds that affect the 

suppression of tumour cell growth. This study will also generate information 

on the gene and protein expression profiles regulated by plumbagin, genistein 

and curcumin, especially those involved in cell cycle control, DNA damage 

and repair, apoptosis, senescence, signal transduction and transcription.  

Using the current understanding of various established mechanisms to 

explain the processes triggered by each drug, we will compare and determine 

the efficiency of each phytochemical and their potential in brain cancer 

treatment.  
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This study is focused on the cellular and molecular interactions in brain 

cancer cell models. Investigations on the bioavailability of these drugs and 

permeability into the BBB in an animal model will not be addressed in this 

study. However, we speculate that the phytochemicals used in this study 

would overcome the barrier as the sizes of each drug molecule are very much 

smaller compared to commercially available synthetic brain tumour drugs 

such as Temozolomide and Procarbazine which can cross the BBB. Some 

malignant brain tumours have been reported to have loose capillaries that 

cause the BBB to be more porous and less intact. In some chemotherapy, 

osmotic opening using concentrated sugar solution is used to temporarily 

disrupt the BBB in order to enhance targeted drug delivery (Kroll and Neuwelt, 

1998). 

Since these plant products have been well incorporated into the diet of 

some populations, we believe that these and many other phytochemicals can 

well tolerate the gastro-intestinal tract; hence they should not pose any 

complications in the bioavailability. Previous studies have also reported the 

use of these phytochemicals in animal models and clinical trials via oral 

administration (Munday and Munday, 2000; Parodi et al., 2006; Zhou et al., 

2008; Pop et al., 2008; Dhillon et al., 2008; Kurd et al., 2008).  

Our intention of this study is not to discover the magic bullet for cancer 

therapy. Instead, we hope to provide alternatives that may enhance the 

efficiency of treatment and improve the life quality of cancer patients with the 

help of natural plant products. In addition, we expect to provide additional 

insights into the regular consumption or incorporation of natural products that 

contain these active ingredients into our diet as a prophylaxis for cancer. 
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In the next chapter, the rationale of experimental design and the details 

of various techniques will be addressed in order to provide an overview of the 

experimental flow and the rationale in selecting each technique. 
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Chapter 2   MATERIALS AND METHODS 

2.1   Experiment design 

 This study is divided into three main sections. The first of which is the 

analysis of the properties of the phytochemicals. This section was performed 

to gain basic understanding on the stability of the phytochemicals under 

different conditions and the emission of fluorescence signals.  

The second section focuses on the characteristics of brain tumour cells 

without drug treatment. We investigated the population doubling rate, radio-

responses, endogenous chromosomal aberration, basal gene expressions 

and copy number variations at genome level.  

In the third section, functional and molecular responses of cells upon 

phytochemicals treatment were investigated. Experiments were performed to 

determine the mode of trafficking of the phytochemicals, cell viability, cell 

cycle profile, DNA damage, colony formation, cell death, caspase activities, 

genes and proteins expression, telomerase activity and measurement of 

telomere length. 
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Figure 2.1. Experiment design of this study. This study is divided into 3 major 
sections. 1 - the understanding of properties of the drugs. 2 - the investigation 
of the cell characteristics. 3 - the examination of cell responses upon drug 
treatments. 
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2.2   Phytochemicals preparation and treatment 

Rationale: Phytochemicals were dissolved in a universal solvent, dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich, Missouri, USA). Drugs in different ranges of 

concentrations were prepared for dose-response studies and to identify the 

growth inhibitory doses. For experimental control, final concentration of 

DMSO at 0.1 % [v/v] was used.  

Phytochemicals used in this study were plumbagin (Sigma-Aldrich), 

genistein (Sigma-Aldrich) and curcumin (Sigma-Aldrich). These 

phytochemicals were dissolved in 100 % DMSO to prepare 100 mM stock 

solution. Working concentrations were prepared by further diluting in DMSO.  

For plumbagin, 1 µl of the final concentrations in 0.0, 1.0, 2.0, 3.0, 4.0, 

5.0, 6.0 and 7.0 mM were added in the cell culture to achieve 0.0, 1.0, 2.0, 3.0, 

4.0, 5.0, 6.0 and 7.0 µM respectively. For genistein, 1 µl of the final 

concentrations in 0.0, 5.0, 15.0, 25.0, 35.0 and 50.0 mM were added in the 

cell culture to achieve 0.0, 5.0, 15.0, 25.0, 35.0 and 50.0 µM respectively. For 

curcumin, 1 µl of the final concentrations in 0.0, 20.0, 40.0, 60.0, 80.0 and 

100.0 mM were added in the cell culture to achieve same value of 

concentrations in micro molar (µM).  

 

2.3   Cell lines and cell culture 

Rationale: Treatment of brain cancer cell lines is the main focus in this study. 

Normal human lung fibroblasts (Normal1) were used as a control in initial 

functional study such as dose-response study, cell cycle profiles and DNA 

damage study. Telomerase-immortalised human foreskin fibroblasts (hTERT-

BJ1) was used as another control cell line as it is a non-cancerous cell line 
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that mimics telomerase-positive cancer cells by expressing telomerase 

enzyme and does not senesce. Normal human lung fibroblasts (Normal1) and 

telomerase-immortalised human foreskin fibroblasts (hTERT-BJ1) were used 

as experimental controls instead of primary brain cells due to limited 

availability of primary brain cells. The experimental controls in this study are 

DMSO-treated cancer cell lines.  

Human glioblastoma multiforme cell lines A172 (Japanese Collection of 

Research Bioresources, JCRB0228), KNS60 (Institute for Fermentation, 

IF050357), U251MG(KO) (Institute for Fermentation, IF050285) and 

medulloblastoma ONS76 (Institute for Fermentation, IF050355) were obtained 

from Dr. Masao Suzuki, National Institute of Radiological Sciences, Chiba, 

Japan. They were cultured in DMEM (Sigma-Aldrich) supplemented with 100 

U/ml penicillin/streptomycin (Thermo Fisher Scientific, New York, USA) and 

10 % foetal bovine serum (FBS). Normal human fibroblast cell line (GM03651) 

was obtained from Coriell Cell Repositories, New Jersey, USA. Early passage 

Normal1 cells were grown in minimum essential medium with Earle’s salt 

(MEM) (Invitrogen, California, USA) supplemented with MEM amino acids 

(Invitrogen), 10 mM MEM non-essential amino acids (Invitrogen), MEM 

vitamin solution (Invitrogen), 10 % FBS and 100 U/ml penicillin/streptomycin 

(Thermo Fisher Scientific, New York, USA). Telomerase-immortalised human 

foreskin fibroblasts, hTERT-BJ1 (Clontech Laboratories, Inc., California, USA) 

was grown in DMEM and medium 199 (Sigma-Aldrich) in 4:1 ratio and 

enriched with 10 % FBS, 200 mM L-glutamine, 100 mM sodium pyruvate and 

100 U/ml penicillin/streptomycin (Thermo Fisher Scientific). All cells were 
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maintained at 37°C in a 5 % humidified CO2 incubator, cell density was kept 

below 80 % confluence and culture medium was changed every two days. 

 

2.4   Phytochemical properties 

2.4.1   Stability study using UV-visible spectroscopy 

Rationale: Absorbance measurement is an essential step in assessing 

stability of a drug. Horizontal shift in absorbance peaks indicate changes in 

drug stability. Blue-shift (a shift towards left) is an indicator of compound 

degradation; whereas red-shift (a shift towards right) is an indicator of 

compound aggregation or polymerisation. 

The experiments were performed by scanning 10 to 50 µg of 

plumbagin and curcumin prepared from 2 different stock solutions that are 

stored at different conditions i.e. frozen with light-protected box and non light-

protected box at room temperature. Absorbance maximum (λmax) was 

recorded for both stock solutions at 0, 7 and 14 days interval using UV-VIS 

scanning spectrophotometer (Shimadzu, Kyoto, Japan). 

 

2.4.2   Emission wavelength analysis using fluorescence spectroscopy 

Rationale: By utilising the fluorescence signals emitted by the 

phytochemicals, the trafficking of drugs into the treated cells can be viewed 

using fluorescence microscopy. 

The wavelength of fluorescent emission of plumbagin and curcumin 

were studied using fluorescence spectrometer (Shimadzu). The excitation 

wavelengths (λmax) of phytochemicals obtained from UV-VIS spectroscopy 
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were used to excite the two phytochemicals and fluorescence emission 

wavelength generated was recorded. 

 

2.5   Cell lines characteristics 

2.5.1   Population doubling 

Rationale: Proliferation rate of the cell types were studied by monitoring the 

population doubling (PD). This was done to estimate the ideal treatment time 

which cells complete at least one round of cell cycle. 

 Population doubling study on cancer cell lines was carried out by using 

crystal violet staining and absorbance reading. Approximately 0.2 X 106 cells 

were plated on 6-well plate, crystal violet assay (detail in section 2.6.3) and 

absorbance readings were performed at 24, 48 and 72 hours. The formula 

used in the calculation is based on exponential regression where y = a.ebx. 

Parameters of the formula are:  

a = amplitude 

b = exponent  

Doubling time is calculated from the equation ln(2)/b and the value unit is in 

hours per doubling (hr/PD). 

 

2.5.2   Radioresponses 

Rationale: To examine whether the cells are sensitive or resistant to 

radiation-induced DNA damage and cell death, cells were exposed to ionising 

radiation. 

 Cells cultured in T25 flasks were irradiated with 2 Gy using 

Gammacell® 40 Extractor (Best Theratronics Ltd., Ontario, Canada) with a 
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dose rate of 1.16 Gy/min. After irradiation, cells were allowed to rest for 2 

hours before carrying out cell viability study, cell cycle analysis, and comet 

assay. Colony formation was performed by seeding 2 x 103 cells and allowed 

to form colonies for 10 days. Details of the each assay will be mentioned in 

section 2.6 in this chapter. 

 

2.5.3   Multicolour Fluorescence in situ Hybridisation (mFISH) 

Rationale: mFISH (Speicher et al., 1996; Hande et al., 2005) was performed 

to investigate genomic instability and chromosomal aberrations. By studying 

the aberrations and comparing across the cell lines of the same cell type, 

consistent aberrations may be identified.  

• Metaphase preparation  

 Cells at density of 70 % confluence were arrested at mitosis by 

treatment with 0.1 µg/ml of KaryoMAX® Colcemid (Invitrogen) overnight. The 

cells were then harvested and incubated with a hypotonic solution of 0.075 M 

potassium chloride at 37°C for 12 minutes followed by fixation in Carnoy's 

fixative (75 % Methanol: 25 % Acetic Acid). Chromosomes at metaphase 

were dropped onto slide and allowed to air-dry. 

• In situ hybridisation 

 The procedure was performed according to the manual of 

Metasystems Multicolour Probe Kits. Briefly, after pepsin treatment (1 g/50 ml) 

for about 2 minutes at 37°C, the chromosomes were post-fixed in 1 % 

formaldehyde in 1 X PBS with 50 mM MgCl2 for 10 minutes at room 

temperature. The chromosomes are stabilised in 1 X SSC prior to the 

denaturation and were subsequently denatured with a basal solution (0.07 N 
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NaOH). Afterwards, the chromosomes were rinsed in 1 X SSC buffer again to 

stop the denaturation process and to stabilize their structure. The 

Metasystems 24XCyte Human mFISH probe cocktail (Metasystems, 

Altlussheim, Germany) was denatured 75°C for 5 minutes. The probe was 

allowed to hybridise for half an hour at 37°C to reduce unspecific binding of 

short or repetitive DNA pieces. The denatured and prehybridised probe 

cocktail was applied onto the denatured chromosome preparation, overlaid 

with a coverslip and sealed with rubber cement. The slides were then 

incubated at 37 °C in a humidified chamber for 72 hours. Post-hybridisation 

washing was done in 1 X SSC at 75°C for 5 minutes after removing the 

coverslips. Slides were incubated in 4 X SSCT for 5 minutes and blocked with 

blocking reagent at 37°C for 10 minutes. Subsequently, slides were incubated 

with detection 1+3 reagent to detect Cy5 which is indirectly labelled. Slides 

were then counterstained with VECTASHIELD® Mounting Medium with DAPI 

(Vector Laboratories, Inc., California, USA).  

• Image acquisition and analysis 

 Microscopic analysis was performed using Axioplan 2 Imaging 

fluorescence microscope (Carl Zeiss, Oberkochen, Germany) with filter sets 

for FITC, Cy3.5, Texas Red, Cy5, Aqua and DAPI. Fifty metaphases were 

captured and analysed using ISIS mFISH imaging system software 

(Metasystems). In the mFISH technique, all 24 chromosomes (1-22 and X and 

Y) are painted in different colours using combinatorial labelling by five 

varicoloured fluorochromes (DEAC, FITC, Spectrum OrangeTM, Texas Red®, 

CyTM5), so that any interchromosomal translocations are observed as colour 

junctions on individual chromosomes. 
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2.5.4   Microarray gene expression analysis 

Rationale: cDNA expression profiling of each cell line was done by using 

microarray analysis in order to determine the signal transduction pathways 

status in these cells. 

• Ribonucleic acid (RNA) extraction and cDNA synthesis 

RNA from non-treated brain cancer cells was extracted using RNA 

extraction kit (Qiagen, California, USA). Lymphocyte RNA extracted from a 

healthy individual was used as an experimental control.  Double-stranded 

cDNA was synthesised from 5 Ag of total RNA using SuperscriptTM II Reverse 

Transcriptase (Invitrogen) primed with T7-(dT)-24 primer. For biotin-labelled 

cRNA synthesis, in vitro transcription reaction was done in the presence of T7 

RNA polymerase and biotinylated ribonucleotides (Enzo Diagnostics, Ney 

York, USA).  

• RNA hybridisation 

The cRNA product was purified (Qiagen), fragmented, and hybridised 

to Affymetrix GeneChip® Human Genome Focus Array (Affymetrix, California, 

USA) in a Gene chip hybridisation oven 640 as per the Gene Chip Expression 

Analysis manual. After 16 hours of hybridisation, the gene chips were washed 

and stained using the Affymetrix Fluidic station and scanned by GeneArray® 

2500 Scanner (Agilent Technologies Inc., Santa Clara, California, USA).  

• Image analysis 

Image data were normalised and statistically analysed using 

GeneSpring 7.2 (Agilent Technologies Inc.). Subsequent data analysis 

involved agglomerative average-linkage hierarchical clustering for finding 

different patterns and levels of gene expression. 
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2.5.5   Array-based Comparative Genomic Hybridisation (Array-CGH) 

Rationale: Array-CGH provides information on the copy number variations 

(CNV) of genes at high resolution in order to identify recurrent chromosome 

aberrations such as microdeletions and amplifications.  

• Genomic DNA extraction and amplification 

Array-CGH was performed using 14693 Human Genome CGH 

Microarray 244A (Agilent Technologies Inc.). All steps were done according to 

the manufacturer’s instructions. Briefly, genomic DNA (gDNA) from cell 

culture was extracted and quantitated using NanoDrop (Thermo Fisher 

Scientific). Then amplification of gDNA was done using Qiagen REPLI-g mini 

kit (Qiagen).  

• Restriction digestion and purification of amplified gDNA 

Alu I (Promega, Wisconsin, USA) and Rsa I (Promega) were used to 

digest the amplified gDNA at 37°C for 2 hours. After digestion, the gDNA was 

purified using QIAprep Spin Miniprep Kit (Qiagen) and further quantitated 

using the NanoDrop (Thermo Fisher Scientific). 

• Fluorescent labelling of purified gDNA 

Purified gDNA was labelled with cyanine 3-dUTP (test) and cyanine 5-

dUTP (reference) separately at 37°C for 2 hours. Excess unbound cyanine 3-

dUTP and cyanine 5-dUTP were cleaned up from gDNA using Microcon YM-

30 filters (Millipore, Massachusetts, USA). Then equal amount of differently 

labelled gDNA of test and reference were combined together and mixed well.  

• Microarray hybridisation 

The Cy3-labelled (test) and Cy5-labelled (reference) gDNA mixture 

was mixed with human Cot-1 DNA (Invitrogen) before hybridisation to a 
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gasket slide and incubation in a hybridisation oven at 65°C for 40 hours with 

rotation at 20 rpm.  

• Image acquisition and analysis 

After hybridisation, the slides were scanned immediately to minimize 

the impact of environmental oxidants on signal intensities using Agilent 

scanner (Agilent Technologies Inc.) and analysed using CGH Analytics 

software (Agilent Technologies Inc.). 

 

2.6   Responses of cells after drug treatments 

2.6.1   Cytotoxicity assay for DMSO 

Rationale: This study was performed to ensure that the final concentration of 

DMSO in all controls and treated samples does not exert cytostatic or 

cytotoxic effects.  

Cells were plated in 6-well plate at density of 0.2 X 106 per well. 

Twenty-four hours later, DMSO at final concentrations of 0.0, 0.1, 0.5, 1.0, 1.5 

and 2.0 % were added to the cell culture. Crystal violet assay (detail in section 

2.6.3) was performed at 48 hours after drug treatment to determine whether 

DMSO affects cell density either by inducing growth arrest or cell death. 

 

2.6.2 Phase-contrast observation of cell morphology and fluorescence 

microscopy observations of drugs trafficking 

Rationale: After drug treatments, cells were observed under normal light 

microscope to examine the morphology of arrested or apoptotic cells. By 

utilizing the fluorescent signals emitted by the phytochemicals and the help of 
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acridine orange counter-stain, the trafficking of drugs into the treated cells can 

be viewed using fluorescence microscopy. 

For morphological observation using normal light microscope after 48-

hour of phytochemicals treatment, images of cell morphology were captured 

at 100 X and 200 X magnifications. 

Drug trafficking experiment was designed based on the emission signals 

of plant products upon UV light excitation. Cells were cultured on sterile 

coverslips that were placed in 6-well plates and treated with DMSO and drugs 

for different time-points at 2.0, 6.0, 8.0, 12.0, 24.0 and 48.0 hours. Based on 

the observation that plumbagin emits blue fluorescent signal that may 

interfere with auto-fluorescent of cells, when harvesting plumbagin-treated 

cells, coverslips were placed onto microscope slides with acridine orange (30 

µg/ml) to differentially stain the cytoplasm and nucleus. As for curcumin-

treated cells, no counter-stain was used. Fluorescent emission of plumbagin 

and curcumin together with counter stains were observed using Axioplan 2 

Imaging fluorescence microscope (Carl-Zeiss) with filter sets for FITC, TRITC 

and DAPI to monitor the drug trafficking processes. 

 

2.6.3   Crystal violet cell density assay 

Rationale: This experiment was carried out to determine the half-maximal 

concentration (IC50) of each drug that affects cell density either by inhibiting 

cell growth and/or inducing cell death. 

For plumbagin treatment, cells were treated with plumbagin to reach 

final concentrations of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 7.0 µM. For 

genistein treatment, cells were treated with genistein to reach final 
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concentrations of 0.0, 5.0, 15.0, 25.0, 35.0 and 50.0 µM. For curcumin 

treatment, cells were treated with curcumin to reach final concentrations of 0, 

20.0, 40.0, 60.0, 80.0 and 100.0 µM. Following 48 hours treatment, cell 

culture medium was aspirated and cells were gently washed with 1 X PBS. 

After aspirated the 1 X PBS, 750 µl of crystal violet staining solution (Sigma-

Aldrich) (0.75 % crystal violet in 50 % ethanol: dH2O with 1.75 % 

Formaldehyde and 0.25 % NaCl) was added to each well of the 6-well plate 

and incubated in room temperature for 15 minutes. After which, the crystal 

violet dye was aspirated gently and the 6-well plate was washed with 1 X PBS 

for few times to remove excess stain. Thereafter, 1.5 ml of 1 % SDS was 

added to each well and mixed evenly on a rotator. When the stain was 

completely dissolved, absorbance reading at 595 nm was measured using 

TECAN SpectraFluor Plus microplate reader. The absorbance readings were 

later translated into percentage of viable cells in the treatments in order to 

calculate the inhibitory concentration at 50 % cell viability (IC50). All steps 

were performed by gently adding or aspirating the solution without disturbing 

the layer of cell culture. 

In subsequent experiments, different IC50 as detected by crystal violet 

assay were used for each cell line. Twenty-four hours after seeding, cells 

were then treated with plumbagin, genistein or curcumin for 48 hours for 

short-term experiments and 15 days for long-term experiments. Final 

concentration of DMSO was 0.1 % [v/v] for all samples.  
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2.6.4   Flow cytometry cell cycle analysis 

Rationale: After identification of the IC50, cell cycle analysis was done to 

investigate at which cell cycle phase the cells are arrested at the end of the 

treatments using fluorescence-activated cell sorting (FACS) analysis; this 

study also provide information on presence of DNA fragmentation i.e. 

apoptotic cell death. 

The control and phytochemical-treated cells were washed with 1 X 

PBS and fixed overnight in 70 % ethanol. The fixed cells were later stained 

and with propidium iodide/Triton X-100 staining solution with RNase A and 

incubated at 37°C for 30 minutes. Samples were then analysed by flow 

cytometry at 488 nm excitation λ and 610 nm emission λ. Samples were then 

analysed using a FACSCaliburTM flow cytometer (Becton Dickinson, New 

Jersey, USA). Approximately 10,000 events per sample were collected and 

the data was analysed using Cytometry Software WINMDI. 

 

2.6.5   Colony formation assay 

Rationale:  In the event of growth inhibition detected in cell cycle analysis, 

colony formation assay is performed to validate the observation by showing 

that the drug-treated culture is compromised in colony formation. 

Cells were harvested after 48 hours of phytochemicals treatment. Cell 

counting was performed using trypan blue staining on haemocytometer. Two 

thousand cells were plated on 100 mm FalconTM culture dish (BD Biosciences, 

New Jersey, USA) and kept under standard culture conditions for 10 days. 

Culture medium was changed every 3 days. On day-10, cell culture medium 

was aspirated and culture dish was washed with 1 X PBS. Thereafter, 2 ml of 
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1 % crystal violet solution was added for 15 minutes. Crystal violet solution 

was then aspirated and the culture dish was air-dried before performing 

colony counting. Confirmation was done by dissolving the crystal violet with 

1 % SDS and the resultant absorbance are read at OD 595 nm. 

 

2.6.6   Single cell gel electrophoresis assay (Comet assay) 

Rationale: Comet assay was carried out to determine whether the growth 

arrest observed in cell cycle analysis was induced by DNA damage due to 

drug treatment. 

The control and phytochemical-treated cells were harvested by 

trypsinisation, washed in ice-cold 1 X PBS and resuspended in HBSS with 

10 % DMSO with EDTA. The cells were then suspended in molten 0.7 % low 

melting point agarose and immediately transferred onto the comet slide 

(Trevigen, Maryland, USA). After the gel has solidified in 4 °C, the slides were 

immersed in lysis solution at 4°C for 1 hour to remove cellular proteins. Slides 

were then placed in an electrophoresis tank containing 300 mM NaOH and 1 

mM EDTA for 40 minutes to denature the DNA strands before electrophoresis 

at 25 V, 300 mA for 20 minutes at room temperature in the same alkaline 

electrophoresis buffer. Following electrophoresis, slides were washed with 

neutralization buffer (500 mM Tris-HCL, pH 7.5) for 5 minutes and dehydrated 

by dipping in 70 % ethanol for 5 minutes. After the slides have air-dried, they 

were stained with SYBR® green and covered with coverslips. Fifty comets per 

sample were analysed and the mean tail moment (the product of the tail 

length and the fraction of total DNA in the tail) of the comets was quantified 

using CometImager software (Metasystems). 
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2.6.7   Annexin V-FITC staining 

Rationale: Apart from sub-G1 population detected in cell cycle analysis, 

apoptotic cell death is confirmed by performing annexin V staining to detect 

the population of live cells, apoptotic cells and necrotic cells using 

fluorescence-activated cell sorting (FACS) analysis. 

This experiment was done using Annexin V-fluorescein isothiocyanate 

(FITC) labelled staining kit (Sigma-Aldrich). In this experiment, three control 

treatments were used: unstained control, propidium iodide (PI)-stained 

hydrogen peroxide (H2O2)-treated cells (necrotic control) and FITC-stained 

staurosporine-treated cells (apoptotic control). Apoptosis was induced by 

adding 1 µg/ml staurosporine for 24 hours prior to harvest. Necrosis was 

induced by adding H2O2 for 2 hours prior to harvest. The 48-hour DMSO and 

phytochemical-treated cells were harvested and washed with 1 X PBS before 

mixing with 1 ml of 1 X binding buffer. Thereafter, 5 µl of annexin V-FITC and 

10 µl PI were added to each cell suspension and incubated for 10 minutes in 

37 °C incubator and protected from light. Samples were then analysed using a 

FACSCaliburTM flow cytometer (Becton Dickinson). Approximately 10,000 

events per sample were collected and the data was analysed using WINMDI.  

 

2.6.8   Caspase-3/7 activity 

Rationale: To determine if the cell death induced by drug treatment is due to 

caspase-dependent cell death pathway, activity of caspase-3/7 upon drug 

treatment was investigated. 

Activity of caspase-3/7 was performed using Caspase-Glo® Assay Kits 

(Promega). Cell density at 3 X 103 cells/well were cultured and treated with 
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phytochemicals in white-walled 96-well luminometer plate (Thermo Fisher 

Scientific) and harvested at 2, 4, 6, 12, 24 and 48 hours according to the 

manufacturer’s instructions. After 1-hour incubation at 30 ºC with equal 

volume of pre-mixed Caspase-Glo® Substrate and Caspase-Glo® Buffer, 

luminescent signal was read using TECAN SpectraFluor Plus microplate 

reader. Controls in this experiment were DMSO-treated samples and cell-free 

medium with phytochemicals. 

 

2.6.9   Oligo GEArray gene expression analysis 

Rationale: To validate the observations in functional studies, Oligo GEArray 

was carried out to study gene expression profiles of phytochemical-treated 

cells. 

• RNA extraction, cDNA and cRNA synthesis  

Gene expression profile was performed using Cancer PathwayFinder 

Oligo GEArray in HybTube Format (SABiosciences, Maryland, USA). Briefly, 

total RNA was extracted using RNA extraction kit (Qiagen), cDNA was 

reverse transcribed from the extracted RNA and the resultant cDNA was used 

to synthesise cRNA labelled with Biotin-16-UTP (Roche Molecular Systems, 

USA). 

• Hybridisation, washing, and blocking of array membrane 

Purified biotin-labelled cRNA was hybridised to the array membrane 

overnight at 60°C with agitation. Subsequent washing steps were performed 

using 2 X SSC with 1 % SDS followed by 0.1 X SSC with 0.5 % SDS at 60°C. 

Array membrane was blocked for 40 minutes at room temperature with gentle 

agitation.  
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• Alkaline phosphatase-conjugated streptavidin binding and CDP-star 

chemiluminescent substrate hybridisation 

Alkaline phosphatase-conjugated streptavidin was added to the array 

membrane and CDP-Star chemiluminescent substrate was added to produce 

chemiluminescent signals. 

• Image detection and acquisition 

Signal detection was performed by exposing array membrane to CL-

XPosure Film (Thermo Fisher Scientific) and developed using Kodak Medical 

X-ray Processor 102 (Kodak, New York, USA).  

• Data analysis 

Analysis was performed using GEArray Expression Analysis Suite 2.0 

software (http://geasuite.sabiosciences.com). 

 

2.6.10 Western blotting 

Rationale: To further confirm the gene expression patterns, protein 

expression was analysed to validate the observations in functional studies. 

• Protein extraction  

Total proteins from control and treated cells were isolated using 100 µl 

of ice-cold RIPA (radio-immunoprecipitation assay) buffer (1 % nonidet P-40, 

1 % sodium deoxycholate, 0.1 % SDS, 0.15 M NaCl, 0.01 M sodium 

phosphate, 2 mM EDTA, 50 mM sodium fluoride, 0.2 mM sodium vanadate 

and 100 U/ml aprotinin, pH 7.2) with complete protease inhibitor cocktail tablet 

(Roche Molecular Systems). Samples were gently mixed for 45 minutes at 4 

°C, then centrifuged at 14,000 rpm for 30 minutes at 4 °C to collect 

supernatant into fresh tubes. 
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• Protein quantification 

Protein concentration was estimated by the Bradford assay, using 

protein assay dye reagent (Bio-Rad, California, USA) and serial diluted bovine 

serum albumin (0.5 µg, 0.25 µg, 0.125 µg, 0.0625 µg and 0.03125 µg) to 

establish the standard curve. Concentrated protein assay dye reagent was 

diluted using distilled water at the ratio of 1:4. 1 ml of diluted reagent was 

mixed with 18 µl of distilled water and 2 µl of protein sample in cuvette. Before 

reading the absorbance at 595 nm using UV-VIS scanning spectrophotometer, 

UV-1601 (Shimadzu), machine was normalised using RIPA control as blank, 

after which, samples were measured.  

• Polyacrylamide gel preparation 

Resolving polyacrylamide gel at 7.5, 10.0, and 12.0 % were prepared 

using distilled water, Tris buffer (pH 8.8), 40 % Acrylamide/Bis Solution (Bio-

Rad), 10 % SDS, TEMED (Bio-Rad) and 10 % Ammonium Persulfate (Bio-

Rad). 

• Sample preparation 

Twenty-one microlitre of protein samples containing 45 µg each were 

mixed with 4 µl of 6 X sample buffer and boiled at 99 °C for 10 minutes. 

Samples were then quick spun and immediately loaded into 1 mm thick 

polyacrylamide gel. Precision Plus Protein Standard (Bio-Rad) was used as 

marker in each gel. 

• Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS-PAGE was performed at 100 V constant voltages until the dye-

front of loading dye reached the bottom of the gel. Proteins on the gel were 
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then transferred onto a 0.45 µm nitrocellulose membrane (Whatman, 

Springfield Mill, UK) at 100 V constant voltage at 4 °C in pre-cooled transfer 

buffer (3.03 g Tris, 14.4 g Glycine, 10 ml of 10 % SDS, 200 ml absolute 

ethanol, top-up to 1 L with distilled water). Thereafter, nitrocellulose 

membrane was stained with Ponceau S (Sigma-Aldrich) to ensure proper 

transfer. Ponceau S stain was removed by shaking in Tris-Buffered Saline 

Tween-20 (TBST). Membrane was then blocked for 1 hour in 5 % non-fat milk 

in TBST. 

• Immunoblotting (Western blotting)  

Membranes were probed with primary antibodies against Bax, Bcl2, 

Survivin, p21, p53, MDM2, Cyclin B, Cyclin D, Cdk1, Caspase-8, Caspase-9, 

PARP1 and β-actin (Santa Cruz Biotechnology, USA) at 4 °C for overnight or 

37 °C for 1 hour. Secondary antibodies of horse radish peroxidase (HRP)-

bound anti-mouse or anti-rabbit were used after washing off excess primary 

antibodies with TBST. 

• Immuno-detection 

Immuno-detection was performed by using SuperSignal West Pico 

Substrate (Thermo Fisher Scientific) and SuperSignal West Femto Maximum 

Sensitivity Substrate (Thermo Fisher Scientific). Chemiluminescent signal was 

exposed to CL-XPosure Film (Thermo Fisher Scientific) and developed using 

Kodak Medical X-ray Processor 102 (Kodak).  

• Data analysis 

Densitometry measurement was carried out using Molecular Imaging 

Systems software (Kodak). 
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2.6.11  Real Time Reverse Transcription Polymerase Chain Reaction 

(RT-PCR) of hTR and hTERT mRNA expressions 

Rationale: Real time RT-PCR was performed to investigate the expression of 

hTR and hTERT mRNA in drug-treated samples. Changes in hTR and hTERT 

mRNA expressions may implicate alteration of telomerase activity and 

telomere length. 

Quantitative detections of hTR and hTERT mRNA was performed with 

the commercially available LightCycler TeloTAGGG hTERT Quantification Kit 

(Roche Molecular Systems, USA) and LightCycler TeloTAGGG hTR 

Quantification Kit (Roche Molecular Systems) using LightCycler® instrument 

(Roche Molecular Systems). All subsequent quantification steps were done 

according to the manufacturer’s instructions. Briefly, total RNA was extracted 

using RNeasy kit (Qiagen) according to the manufacturer’s instructions. RNA 

yield and purity was assessed by Nanodrop (Thermo Fisher Scientific). Total 

RNA of 200 ng was used to perform real-time RT-PCR for hTR, hTERT and 

porphobilinogen deaminase (PBGD) in separate reactions. Expression of hTR 

and hTERT was calculated on a standard curve constructed from the 

standards supplied in the kit. For quantification, hTR and hTERT values were 

normalized to those of PBGD and expressed as the ratio of hTR and hTERT 

mRNA copy numbers to PBGD mRNA copy number.  

 

2.6.12 Telomerase activity detection using Telomeric Repeat 

Amplification Protocol (TRAP) 

Rationale: TRAP assay was carried out to investigate the changes in 

telomerase activity of drug-treated sample compared to its DMSO-treated 
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control. Decrease in telomerase activity can be interpreted either as 

interruption of the function of telomerase enzyme and/or down-regulation of 

the expression of telomerase enzyme. 

• Total protein extraction and quantification  

Telomerase activity detection was performed with the commercially 

available TRAPeze® XL Telomerase Detection Kit (Millipore). Total protein 

was extracted by incubating cell pellet in the CHAPS lysis buffer provided for 

30 minutes on ice. Samples were spun at maximum speed at 4 °C for 20 

minutes to collect supernatant. Protein quantification was carried out using 

Bradford method (section 2.6.10) and 1.5 µg proteins was treated with 1 µl/ml 

RNasin ribonuclease inhibitor (Promega) to eliminate RNA before performing 

the next step. 

• Polymerase chain reaction (PCR) setup  

In the PCR reaction, 50 µl of reaction mix containing 10 µl of the 5 X 

TRAPeze XL® Reaction Mix, 0.4 µl of 2 U Taq Polymerase (Promega), 37.6 µl 

of sterile polymerase chain reaction (PCR) water, and 2 µl of the sample cell 

extract was prepared. This mixture was then incubated at 30 °C for 30 

minutes to allow the telomerase enzyme to synthesise telomeric repeats. PCR 

amplification of the telomeric repeats was performed on a thermocycler using 

a three-step PCR at 94 °C for 30 seconds, 59 °C for 30 seconds and 72 °C for 

1 minute for 35 cycles, followed by a 55 °C at 25 minutes for extension step. 

Controls for this experiment are telomerase-positive cell lysate from human 

carcinoma cells. Standard curve was generated from TSR8 with serial 

dilutions. Negative controls in this experiment were Taq-negative control, 
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CHAPS-only negative control, heat treated sample and sulforhodamine 

house-keeping control. 

• Fluorescence signal detection 

Fluorescence signals of PCR products were measured according to 

fluorescein (Ex: 485 nm; Em: 535 nm) and sulforhodamine (Ex: 585 nm; Em: 

620 nm) using SpectraFluor Plus fluorescence plate reader (TECAN, 

Männedorf, Switzerland).  

• Data analysis 

The telomerase activity of each sample was determined by calculating 

the ratio of the increase in fluorescein absorbance (produced by the 

amplification of telomeric repeats) to the increase in sulforhodamine 

absorbance. 

 

2.6.13 Telomere length measurements using Terminal Restriction 

Fragment (TRF) 

Rationale: Telomere length analysis was performed to correlate telomere 

shortening to telomerase activity in long-term treatment studies. This assay 

also used to study massive telomere attrition and alternative lengthening of 

telomere (ALT). 

• Isolation and digestion of genomic DNA 

Telomere length analysis was performed with the commercially 

available TeloTAGGG Telomere Length Assay kit (Roche Molecular Systems). 

Genomic DNA was extracted from 15-day drug-treated samples using DNA 

extraction kit (Qiagen). DNA was digested using Hinf I and Rsa I restriction 
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enzymes at 37°C for 2 hours to generate the telomere restriction enzyme 

fragments. 

• DNA electrophoresis 

One microgram of digested DNA was then run on 0.8 % agarose gel at 

60 V. The gel was first submerged in acid solution to depurinate DNA strands 

then alkaline solution to denature DNA into single strand and finally 

neutralisation solution before it was set up for southern blot transfer. 

• Southern blot transfer 

 Southern blot was setup by placing agarose gel on top of a wet sponge 

with 20 X SSC with a nylon membrane put above the agarose gel. Pressure 

was applied evenly using paper towels and weights to create capillary action. 

The transfer was allowed to carry out overnight. 

• Hybridisation with DIG-labelled probe and anti-DIG alkaline 

phosphatase 

After southern blotting, the membrane was cross-linked using UV and 

washed with 2 X SSC salt solutions. Hybridisation was performed by 

incubating membrane with DIG-labelled probe for 3 hours. After washing off 

excess probe, anti-DIG alkaline phosphatase was incubated with the bound 

hybridisation probe on the membrane. Detection buffer and substrate were 

then added to the membrane for signal detection.  

• Analysis of telomere length 

Telomere signals were developed onto x-ray film, and the mean 

telomere lengths were estimated using Molecular Imaging Systems software 

(Kodak). 
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2.7 Statistical analysis 

Statistical comparisons between and among the groups were made 

using two-way ANOVA, Student’s t-test (two-tailed) and contingency tables 

analysis (chi-square test and Fisher’s exact test) using Microsoft Excel 2003 

(Microsoft Corporation, Washington, USA) and GraphPad Prism version 4.00 

for Windows (GraphPad Software, USA). The statistically significant 

differences are represented as follows: * indicates p < 0.05, ** indicates p < 

0.01, *** indicates p < 0.001. 
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Chapter 3   RESULTS AND DISCUSSION 

3.1 Properties of phytochemicals. 

The effectiveness of a treatment is determined by the efficacy of the 

interaction and synergy between the exogenous and endogenous factors of a 

therapy. Exogenous factors include the duration of treatment, treatment 

cycles and drug properties. The endogenous factors are based on the 

characteristics of all cells without treatment. In this section, properties of the 

phytochemicals such as compound stability and emission of fluorescence 

signals are investigated. 

 

3.1.1. Plumbagin, genistein and curcumin are stable at room 

temperature and to the exposure to light. 

The stability of phytochemicals remains to be an important issue in 

determining the duration of treatment. To explore these phytochemicals as 

potential cancer therapeutics, studies on the stability of phytochemicals are 

first carried out using the spectrophotometer. All phytochemicals used in this 

study were dissolved in dimethyl sulfoxide (DMSO) to get a final concentration 

of 0.1 %. The stability of plumbagin, genistein and curcumin was investigated 

by comparing the UV-VIS spectra of these phytochemicals under two different 

conditions: exposed to light and stored at room temperature versus protected 

from light and at stored at -20οC. Chemical compound degradation is 

indicated by a λmax wavelength shift towards lower wavelength (left-shift), 

whereas aggregation of chemical compound is shown by a λmax wavelength 

shift towards higher wavelength (right-shift). Figures 3.1A, 3.1B and 3.1C 

show that over a period of 7 and 14 days, plumbagin, genistein and curcumin 
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stored at two different conditions did not exhibit any shift in the λmax. The 

amplitude of the absorbance curve did not change drastically indicating that 

the concentration remained the same as that on day 0. This experiment 

shows that plumbagin, genistein and curcumin can be stored at room 

temperature and exposed to light without detectable deterioration by light 

absorbance. In addition, freezing and thawing of the phytochemicals did not 

result in any shift in the peaks of the wavelength. However, as a precaution, 

these phytochemicals are kept in the dark and at -20°C to avoid changes in 

concentration that might occur due to decreases in drug volume over time. 

Freeze-thaw processes were avoided by aliquoting the phytochemicals. 
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Figure 3.1. Absorbance values of A) plumbagin B) genistein and C) curcumin 
stored at -20°C protected from light and room temperature (RT) exposed to 
light measured at day 0, 7 and 14. 
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3.1.2. Plumbagin and curcumin but not genistein emit fluorescence 

signals upon excitation by ultra-violet light. 

The absorbance values of the compounds not only serve as an 

indicator of compound aggregation or degradation but are also used to 

determine the excitation wavelength for measuring fluorescence of the 

phytochemicals. The fluorescence spectra of plumbagin showed distinct 

peaks with maximal emission wavelength at 414 and 472 nm when excited at 

412 nm (Figure 3.2A and 3.2B). As the emission wavelength at 414 nm is in 

close proximity to the excitation wavelength used and therefore might interfere 

with the emission reading, emission wavelength at 472 nm (blue fluorescence) 

was selected. Also, the use of excitation wavelength at 267 nm as indicated in 

Figure 3.2A did not emit fluorescence signals. Genistein showed a maximal 

excitation peak at 265 nm when analysed using UV-VIS spectrophotometer. 

However no fluorescence signal was detected when genistein was excited at 

the wavelength of 265 nm. As for curcumin, the maximal excitation 

wavelength at 435 nm was used to generate a maximal emission signal at 

531 nm, corresponding to the green region in the UV-VIS spectra (Figure 

3.2C and 3.2D). In these experiments, the emission wavelengths of each 

phytochemical were determined and used in drug localization studies during 

treatments with phytochemicals. The drug trafficking observation will be 

further discussed in section 3.3.2.1 for plumbagin and 3.3.4.1 for curcumin. 

Overall, the absorbance analyses show that phytochemicals used in 

this study are stable in normal storage conditions. Of the three 

phytochemicals used, only plumbagin and curcumin emit fluorescence that is 

useful in tracking the route of drug in the cell during treatment. 
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Figure 3.2. Detection of the excitation and emission wavelengths of plumbagin 
and curcumin. A) Plumbagin excites at 267 nm and 412 nm. B) Plumbagin 
emits fluorescence at 414 nm and 472 nm. C) Curcumin excites at 435 nm. D) 
Curcumin emits fluorescence at 531 nm. 
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3.2. Characteristics of brain cancer cells 

Besides understanding the properties of the phytochemicals, it is 

equally important to look at the characteristics of the brain cancer cells used 

in this study. Understanding the basal properties of cells will help to explain 

the differential responses to different drugs. The flow of the investigation of 

this study will start with the basal population doubling rate. Thereafter, the 

relationship of p53 mutations and responses to irradiation will be addressed. 

Lastly, integrative genomic analysis using chromosomal aberrations, gene 

expression and oligonucleotide array-based comparative genomic 

hybridisation (array-CGH) studies will be discussed. 

 

3.2.1. Population doubling rates in different cancer cell lines 

To measure the basal growth rate of the brain cancer cells, the optical 

density (OD) values of cells cultured for 3 consecutive days were measured 

after staining with crystal violet. As shown in Figure 3.3, all brain cancer cell 

lines exhibited different population doubling rates. The medulloblastoma cell 

line, ONS76, displayed the fastest doubling rate at 22.62 hours/generation. 

Among the glioblastoma cell lines, the A172 cell line showed the slowest 

growth rate at 40.67 hours/generation. All cell lines underwent exponential 

growth that resulted in higher cell density at day 3. The population doubling 

rates obtained will greatly facilitate our understanding of cell responses 

related to growth rate and also justify the use of 48 hours as treatment 

duration. 
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Figure 3.3. Population doubling rates of brain cancer cell lines. ONS76 grew 
faster at a doubling time of 22.62 hours while A172 displayed the slowest 
doubling rate at 40.67 hours/generation. 
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3.2.2. Brain cancer cell lines used in this study carry endogenous TP53 

mutations and exhibit different responses to radiotherapy 

In this section, we sought to categorize the brain cancer cell lines as 

radioresistant or radiosensitive by testing the sensitivities of the brain cancer 

cell lines towards gamma irradiation. The responses of the brain cancer cells 

to radiotherapy were correlated to their status of the endogenous p53 proteins.  

The four brain cancer cell lines used in this study carry different mutations in 

the p53 tumour suppressor gene (Ishikawa et al., 2006). A172 and ONS76 

cell lines harbour a mutation at codon 72 in the proline-rich domain which 

alters the ability of p53 to induce apoptosis and diminish its DNA repair 

capacity (Hu et al., 2005; Siddique and Sabapathy, 2006). The KNS60 cell 

line carries a mutation at codon 193 while U251MG(KO) has a mutation at 

codon 273, both of which are within the DNA binding domain. Mutation in this 

domain can cause major conformational change of the folding of core-binding 

domain in p53 protein, thus affecting the DNA binding ability and stability of 

p53 (Lu et al., 2007; Ma et al., 2005). 

To study the radioresponse, cell cycle profile, colony formation and 

DNA damage response were analysed upon irradiation of the brain cancer 

cells with a dose of 2 Gy. Cell cycle analysis was carried out to examine cell 

death and cell arrest upon irradiation. As shown in Figure 3.4, irradiated cells 

show different degrees of cell death and arrest. The cell cycle profiles show 

that most cell lines exhibited a similar trend of cell cycle arrest at the S and 

G2/M phase with a significant decrease in the G1 population. However, 

KNS60 did not exhibit any significant changes in the S and G2/M populations. 

In summary, the cell cycle analysis shows that A172, ONS76 and 
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U251MG(KO) cells responded to the damage induced upon radiation via cell 

cycle arrest at the S and G2/M phase. In addition, U251MG(KO) exhibited 

increased cell death as depicted by the increased in the sub-G1 region. 

With the observation that some cells were arrested upon radiation 

treatment, colony formation assay was performed to further investigate the 

clonogenicity of cells. In the colony formation assay (Figure 3.5), all irradiated 

cells showed a reduction in the colony numbers after 10 days of culture 

compared to control cell lines. A172, ONS76 and U251MG(KO) cell lines 

exhibited  a greater decrease in colony numbers compared to the KNS60 cell 

line. This finding suggests that A172, ONS76 and U251MG(KO) cells are 

sensitive to irradiation.  

The amount of damaged DNA induced by radiation was also 

investigated. The comet assay, also known as single cell gel electrophoresis 

assay, was carried out to investigate the sensitivity of cell lines towards 

radiation-induced DNA damage. As shown in Figure 3.6, all cell lines 

exhibited an increase in the mean tail moment, a representation of DNA 

damage. The A172 and ONS76 cell lines exhibited significantly more damage 

compared to their untreated controls. KNS60 did not exhibit any significant 

increase in damages upon irradiation. U251MG(KO) cell showed high levels 

of DNA damage in both untreated and irradiated samples, indicating that the 

cells might have harboured higher level of DNA damage even without any 

treatment. The comet results suggest that the A172 and ONS76 cell lines are 

more susceptible to the damages induced by irradiation than KNS60 and 

U251MG(KO). 
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Taken together, it is plausible that A172 and ONS76 cell lines are more 

sensitive to radiation-induced damage compared to KNS60 and U251MG(KO) 

cell lines. The higher population of cells detected in the sub-G1 region and the 

reduction in colony numbers in irradiated U251MG(KO) may not be seen as 

an effect of radiation treatment, instead, it is more likely to be attributed to 

higher endogenous DNA damage where the radiation treatment 

synergistically enhance the effects resulting in the induction of cell death and 

reduction of clonogenicity.  Hence, it can be postulated that cells harbouring a 

mutation at codon 72 in the proline-rich domain of p53 may be more 

susceptible to radiation-induced damage, while cells that have mutations in 

other regions of p53 are relatively resistant to radiation-induced damage. 

Observation of the radioresponses closely correlates with an earlier report by 

Ishikawa et al. (2006). Genes that may be involved in the radioresponses will 

be discussed in section 3.2.3. 
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Figure 3.4. Cell cycle analysis of irradiated brain cancer cell lines using 
propidium iodide staining and flow cytometry detection. All cell lines exhibited 
a significant decrease in G1 phase population, and most cell lines have a 
higher population of cells in S and G2/M phase after irradiation at 2 Gy 
without significant cell death. ** indicates p < 0.01, *** indicates p < 0.001. 
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Figure 3.5. Colony formation assay of irradiated brain cancer cell lines. All cell 
lines showed a decrease in colony numbers after irradiation. Significant 
reduction was observed in A172, ONS76, and U251MG(KO) cell lines. *** 
indicates p < 0.001. 
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Figure 3.6. DNA damage analysis of brain cancer cell lines performed using 
single cell gel electrophoresis assay. A) A172 and ONS76 cell lines harbour 
more damages after irradiation compared to KNS60 and U251MG(KO) cell 
lines. B) Representation of DNA content in comet tails in percentage. * 
indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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3.2.3. Integrative genomic analysis of chromosomal aberration analysis, 

microarray gene expressions and array-CGH 

To further analyse the characteristics of brain cancer cells, integrative 

genomic analysis was performed by analysing the data generated from 

multicolour Fluorescence in situ Hybridisation (mFISH), microarray gene 

expression and array-CGH. Chromosomal aberration analysis was carried out 

using the mFISH technique. As shown in Figure 3.7, all cell lines exhibited 

aneuploidy, a phenotype typical of cancer cells. Complex and simple 

chromosomal translocations were observed in all cell lines. The A172 cell line 

showed incidences of translocation between chromosomes 1–11–17, 2–14–5, 

3–21–9 and 6–16–7 (Figure 3.7A). The KNS60 cell line exhibited consistent 

translocations in chromosomes 3–6, 8–21–5, 16–14 and 9–20–7 (Figure 

3.7B). Translocations in the ONS76 cell line were present in chromosomes 4–

7, 6–8, 16–20 and 3–9 (Figure 3.7C). In the U251MG(KO) cell line, complex 

translocations were found in chromosomes 2–19–8, 11–10–15 and 13–7 

(Figure 3.7D). Global deletion of chromosome 19 was observed in all 

karyograms and chromosome 7 was found to have undergone multiple 

translocations in all brain cancer cell lines. However, there were no noticeable 

chromosomal aberrations that differentiated between the glioblastoma and 

medulloblastoma cell lines, and between radiosensitive and radioresistant cell 

lines, probably because the aberrations that determine the radioresponses 

and brain cancer types are not present at the chromosomal levels but at the 

gene levels, thus the resolution of mFISH is insufficient for identifying those 

aberrations. It is important to note that translocation of alleles do not 

necessarily represent dysfunction of genes present in the translocated allele. 
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Nonetheless, the mFISH data has corroborated the fact that cancer cells have 

extremely complex genomic aberrations with multiple chromosomal 

translocations.  

Further investigation using microarray gene expressions analysis was 

carried out using Affymetrix GeneChip® Human Genome Focus Array to 

identify differentially regulated genes in all brain cancer cell lines as compared 

to normal human lymphocyte cells. Figure 3.8 shows the hierarchical cluster 

analysis of four brain cancer cell lines in a heat-map format. From 3435 genes 

analysed using the Affymetrix platform, selected groups of differentially 

regulated genes were clustered using the online DAVID Functional Annotation 

Tool. The gene clusters include genes involved in apoptosis and cell death 

regulation, cell cycle regulation, DNA damage and repair regulation, signal 

transductions, angiogenesis, migration and invasion, and telomere regulation. 

These clusters of differentially regulated genes are presented in Figure 3.9. In 

A172 cells, 744 genes in the mentioned groups were upregulated and 1141 

genes were downregulated. For KNS60 cells, 596 genes were overexpressed, 

whereas 1030 gene expressions were suppressed. ONS76 cells showed 

upregulation of 677 genes and downregulation of 1189 genes. Finally, in 

U251MG(KO) cells, enhanced expression of 719 genes and decreased 

expression of 1169 genes was identified. Most of the differentially regulated 

genes in all cell lines were involved in cell cycle and cell death gene clusters. 

Among the clusters, the KNS60 cell line exhibited a relatively different profile 

compared to the other three brain cancer cell lines.  

From the data presented in the gene clusters, selected gene 

expression profiles from the microarray analysis were further classified under 
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different molecular events such as cell cycle, apoptosis and signal 

transduction molecules. As shown in Figure 3.10, the same trends with 

different degrees of gene expressions were identified in all cell lines. Cell 

cycle regulatory genes such as CDK2, CDKN1B and CDKN2A were all 

downregulated in the brain cancer cells. Among these genes, CDKN2A 

showed the greatest decrease in gene expression. Incidentally, CDKN2A 

encodes for p16, a CDK4 inhibitor, which is frequently mutated or deleted in a 

wide variety of tumours suggesting the fact that cell cycle inhibition in these 

cells are not efficient. Apoptosis regulatory genes, BCL2L1, TERT, 

TNFRSF10B and TNFRSF1A were overexpressed in all cell lines, whereas 

BIRC5, CASP9 and HTATIP2 were suppressed. BCL2L1 that exhibits anti-

apoptotic activity is the most highly expressed gene. Pro-apoptotic genes 

such as CASP9 and HTATIP2 were downregulated, indicating that these brain 

cancer cell lines may be resistant to cell death. In the signal transduction 

molecules cluster, most of the selected genes showed expressions below the 

threshold values of detection. Figure 3.11A shows that medulloblastoma cells 

specifically express certain genes differentially from glioblastoma cells. 

Among these genes, there were great differences in the expression of MDM2 

and ETS2 in medulloblastoma and glioblastoma cells. When comparing the 

gene expressions between the radiosensitive and radioresistant cells, three 

genes as shown in Figure 3.11B were identified. Interestingly, while all cell 

types showed decreased expression of S100A4, the radioresistant cell lines 

expressed a larger magnitude of decreases. The other two genes were at the 

marginal levels of the threshold of detection. This evaluation suggests that 

these three genes may be potential target genes for further investigation for 
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the identification of genetic markers of different brain cancer types or different 

radioresponses. It should be noted that this data is preliminary; by studying a 

larger number of brain cancer cell lines, a larger and more accurate database 

can be acquired for better characterisation of brain cancer cells.  

In another attempt to characterize brain cancer cells, array-CGH was 

carried out to study the copy number variation (CNV) and common 

aberrations. Figure 3.12 shows the CNV profiles of A172, KNS60, ONS76 and 

U251MG(KO) cell lines respectively in comparison with commercially 

available genomic DNA control. These CNV profiles were subsequently 

compared and converted into data that represent common aberrations to 

show amplified and deleted genes. In Figure 3.13A, the common aberration 

analysis of all brain cancer cell lines are presented. All cell lines exhibited 

heterozygous and homozygous aberrations in chromosome 4, 3p, 6q, 11q, 13 

and 18q while heterozygous and homozygous amplifications were found in 

chromosome 1q, 5, 7, 9, 16, 17, 19 and 20. Due to the limitation of having 

only one medulloblastoma cell line available in this study, the common 

aberration analysis for medulloblastoma was not performed. Following the 

removal of the medulloblastoma profile, the common aberration analysis of 

glioblastoma cells was generated as indicated in Figure 3.13B. Apart from the 

aberration analysis for brain cancer cells and glioblastoma cells, common 

aberration analyses of radiosensitive cell lines (A172 and ONS76) and 

radioresistant cell lines (KNS60 and U251MG(KO)) were also shown. 

Common aberration analyses of radiosensitive cells and radioresistant cells 

were presented in Figure 3.13C and 3.13D respectively. Radiosensitive cells 

displayed greater aberrations in chromosome 1q, 6q, 12, 17, 19 and Xq 
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whereas radioresistant cells exhibited distinct aberrations in chromosome 4q 

and 7p. These results have elucidated certain locations and regions of 

chromosomes that may contain potential aberrations for the identification of 

brain cancer and glioblastoma cells. Alleles that may be involved in 

radioresponses are also shown here. However, in order to conclusively 

determine the distinct aberrations that potentially serve as genetic markers of 

glioblastoma cells, more samples should be cross-compared. 

Interestingly, chromosome 19 is detected using this technique while it 

was not detected in all the brain cancer cell lines as presented by mFISH. In 

Figure 3.14, most of the cell lines showed regions in pink, indicating 

heterozygous amplification of chromosome 19. The ONS76 cell line exhibits 

homozygous amplification as represented by red regions while KNS60 shows 

some regions in green indicating deletion. These results suggest that 

chromosome 19 might have undergone multiple translocations that are 

beyond the detection resolution of mFISH.  

As discussed in the microarray analysis (Figure 3.10), the BCL2L1 

gene was upregulated while the CDKN2A gene was downregulated. The 

differential regulations of these two genes are the most striking among the 

genes studied. Hence, the CNV profiles of the BCL2L1 and CDKN2A genes 

were investigated using array-CGH (Figure 3.15A and 3.15B). As expected, 

the copy number variation of BCL2L1 gene in chromosome 20 showed 0.5 to 

2.0 copies increase in expression, indicating both heterozygous and 

homozygous amplifications. On the other hand, the copy number variation of 

CDKN2A gene showed 1.0 to 4.0 folds suppression, suggesting homozygous 

deletion. These results correlate with the findings in the microarray analysis 
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and confirm that the differential regulation of these two genes was influenced 

by copy number difference. 

It is important to note that this data is preliminary and hence not 

entirely conclusive for determining genetic markers for brain cancer until the 

study involving larger sample numbers and comparisons with other cancer 

cell types is carried out. 
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Figure 3.7. Karyograms of A) A172, B) KNS60, C) ONS76 and D) 
U251MG(KO) cell lines showing complex chromosomal aberrations. Red 
boxes indicate common aberrations present in 50 metaphases. 
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Figure 3.8. Two-way condition tree and expression scale of microarray 
analysis performed on four brain cancer cell lines. 
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Figure 3.9. Gene clustering charts showing differentially regulated genes of 
selected gene groups in A) A172, B) KNS60, C) ONS76 and D) U251MG(KO) 
cell lines. 
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Figure 3.10. Microarray gene expression profiles of genes in selected cellular 
pathways in brain cancer cells. Dotted lines indicate threshold level at ±0.2. 
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Figure 3.11. Differentially regulated genes in A) medulloblastoma versus 
glioblastoma B) radiosensitive versus radioresistant cell lines. ONS76 is the 
medulloblastoma cells whereas A172, KNS60 and U251MG(KO) are the 
glioblastoma multiforme cell lines. A172 and ONS76 cells are radiosensitive 
whereas KNS60 and U251MG(KO) cell lines are radioresistant. Dotted lines 
indicate threshold level at ±0.2. 
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Figure 3.12. Copy number variation profile of A) A172, B) KNS60, C) ONS76 
and D) U251MG(KO) cell lines. The analysis was carried out using the ADM-2 
statistical algorithm in CGH Analytics software.   
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Figure 3.13. Ideogram display of common aberrations of A) all brain cancer, B) 
glioblastoma multiforme, C) radiosensitive and D) radioresistant cell lines. 
Dark green and light green signals indicate homozygous and heterozygous 
deletion respectively whereas red and pink indicate homozygous and 
heterozygous amplification respectively. 
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Figure 3.14. Aberration summary of chromosome 19 in brain cancer cell lines. 
Dark green and light green signals indicate homozygous and heterozygous 
deletion respectively whereas red and pink indicate homozygous and 
heterozygous amplification respectively. 
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Figure 3.15. Copy number variation profile of A) chromosome 20 showing 
amplification of BCL2L1 gene and B) chromosome 9 showing deletion of 
CDKN2A gene in all brain cancer cell lines. 
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3.3. Cell response to drug treatments. 

The main focus of this section is to investigate the mechanisms or 

pathways triggered and regulated by three phytochemicals, i.e. plumbagin, 

genistein and curcumin. For this, phenotypical and molecular responses 

ranging from morphology to gene and protein expressions of each cell line will 

be discussed in detail. 

 

3.3.1. Dimethyl sulfoxide (DMSO) at low concentration does not induce 

cell death and DNA damage. 

To study the cell response to the drug alone, comparison with the drug 

solvent is necessary. As all three phytochemicals were dissolved in the 

solvent DMSO, it is important to validate that DMSO does not induce major 

changes in cell responses that might give rise to false positive results. Hence 

in this section, cell density, morphology and DNA damage analysis upon 

DMSO treatment were performed. DMSO at different concentrations ranging 

from 0.0 % [v/v] to 2.0 % [v/v] was used to study its toxicity in all brain cancer 

cell lines which are used in this investigation. As shown in Figure 3.16, cell 

density decreases in a dose-dependent manner. At DMSO 0.1 % [v/v], there 

was insignificant cell death observed using crystal violet cell density assay, 

indicating that this concentration of DMSO is non-cytotoxic. Thus, all 

phytochemicals used in this study were dissolved in DMSO to achieve a final 

concentration of 0.1 % [v/v] in the total cell culture media volume.  

To further confirm that the 0.1 % [v/v] of DMSO is not cytotoxic, cell 

morphology was observed using a light microscope. Figure 3.17 shows the 

morphology of the normal untreated cells and cells treated with DMSO. 
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DMSO-treated cells show no changes in cell density and morphology 

compared to the untreated controls. This data shows that 0.1 % [v/v] of DMSO 

does not affect the density and morphology of brain cancer cell lines. 

Subsequently, we investigated the DNA damage induced by DMSO 

treatment using the comet assay which was performed on brain cancer cells 

that are treated with 0.1 % [v/v] DMSO. As shown in Figure 3.18A, DMSO 

triggered very low levels of DNA damage with mean tail moments lower than 

1 μm. DMSO-treated cells did not exhibit any significant increase in DNA 

damage when compared with untreated controls. Figure 3.18B shows the 

representation of the percentage of DNA content measured from the comet 

tails; none of the cell lines show significant increase in the DNA content in the 

comet tails post DMSO treatment suggesting that 0.1 % [v/v] DMSO does not 

induce any significant DNA damage and is hence appropriate to be used to 

dissolve the drugs of interest. 

Altogether, these results have shown that a final concentration of 0.1 % 

[v/v] of DMSO does not induce significant increase in DNA damage and does 

not affect cell morphology and density. 
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Figure 3.16. Cell density assay of brain cancer cell lines after 48 hours of 
DMSO treatment.  All brain cancer cell lines showed a dose-dependent 
decrease in cell density after DMSO treatment. As seen in the graph, DMSO 
concentration at 0.1 % [v/v] (dotted line) does not lead to any significant 
decrease in cell density. 
 
 

 

 

 

 

 

 

 

 
Figure 3.17. Morphological appearances of brain cancer cell lines treated with 
0.1 % [v/v] of DMSO. No noticeable changes in cell morphology were 
observed after treatment in any of the cell lines used. 
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Figure 3.18. DNA damage analysis performed using single cell gel 
electrophoresis (Comet) assay. A) Degree of DNA damage induced by DMSO 
is measured in Mean Tail Moment. B) Percentage of DNA content measured 
from comet tails. 
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3.3.2. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) 

In this section, plumbagin was explored as a potential therapeutic for 

brain cancer cell lines whereby functional and molecular responses, such as 

cell cycle arrest, cell death, DNA damage and telomerase-telomere regulation 

were studied. Information obtained from this study will greatly improve our 

knowledge on cellular responses, particularly in the context of cancer 

treatment. 

 

3.3.2.1. Plumbagin binds to cell surface membrane to enter cytoplasm 

and reduces cell density. 

To investigate the effective concentration of plumbagin that causes 

50 % reduction of cell population upon treatment, brain cancer cell lines and 

normal human lung fibroblasts were treated with increasing concentrations of 

plumbagin ranging from 0 to 7 µM for 48 hours. Difference in cell density was 

demonstrated by crystal violet assay and the effective inhibitory concentration 

resulting in 50 % reduction in cell density (half-maximal concentration, IC50) 

was determined. As shown in Figure 3.19, exposure to plumbagin resulted in 

dose-dependent decrease in cell density in the following manner of reduction: 

with KNS60 being the most sensitive, followed by Normal1, ONS76, hTERT-

BJ1, A172, then U251MG(KO). Specifically, the IC50 for plumbagin in the 

glioblastoma cell line, KNS60 cell line was 2.5 µM. A172 and U251MG(KO) 

cell lines showed the greatest resistance to plumbagin as indicated by the IC50 

at 5.5 µM. Plumbagin led to a moderate decrease in cell density in the 

medulloblastoma cell line, ONS76, with IC50 at 4.5 µM. Generally, effective 

concentrations of plumbagin were found in the range between 2.5 µM to 5.5 
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µM. Established IC50 concentrations of plumbagin for the individual cell lines 

were used to conduct subsequent experiments. 

 Reduction in the optical density (OD) readings of the crystal violet 

assay suggests cell death and/or growth arrest. To determine which process 

was involved, morphological changes were observed at 48-hours after cells 

were treated with plumbagin at the respective concentrations corresponding 

to the pre-determined IC50. As shown in Figure 3.20A, while cells treated with 

DMSO continued to proliferate resulting in higher confluency, all cell lines 

exhibited different morphologies from that of DMSO controls, in that they were 

more sparse after plumbagin treatment. Flattened or enlarged cells were 

identified in plumbagin-treated KNS60 and ONS76 cells (Figure 3.20B), 

suggesting that some of these cells underwent growth arrest. Floating and 

rounded cells indicating dead or dying cells were also found in all plumbagin-

treated samples. The appearance of dendritic spines in cellular morphology 

was increased notably particularly in KNS60 and ONS76 cells (Figure 3.20B), 

indicating that these cells are affected by plumbagin treatment. In addition, 

ONS76 and U251MG(KO) cells exhibited vacuolated morphology, an indicator 

of pre-apoptotic autophagy cell death. Preliminary morphological observation 

suggests that 48 hours of plumbagin treatment induces cell death leading to a 

reduction in live adherent cells. This data correlates with our observations in 

crystal violet assay. 

In order to understand how plumbagin interacts with cells, we analysed 

the process of drug uptake via fluorescence microscopy. Excitation and 

emission wavelengths of plumbagin obtained from fluorescence 

spectrophotometry indicated that plumbagin emits a blue fluorescent signal at 
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a wavelength of 472 nm (Figure 3.2). Cells were stained with acridine orange 

which differentially stains the nucleus in green and cytoplasm in red. The 

route of drug trafficking was observed using fluorescence microscopy with 

DAPI, FITC and TRITC filters. As shown in Figure 3.21, KNS60 cell treated 

with plumbagin were compared with untreated and DMSO controls. Untreated 

and DMSO treated cells did not exhibit any blue fluorescence signal and cell 

nuclei remained intact. However upon plumbagin treatment, blue fluorescence 

was detected on the outer membrane of the cells. In some cells, blue signals 

in the cytoplasm and nucleus were observed, indicating a drug diffusion event. 

These observations suggest that plumbagin binds to the cell surface 

membrane and gradually permeates into the cytoplasm and nucleus of the 

cells. It is possible that plumbagin binds to death receptors present on the cell 

membrane and activates death signalling cascades subsequently. Plumbagin 

may also infiltrate into cells and inhibit or disrupt proteins and RNA, thus 

affecting normal cellular processes, eventually leading to cell death. 

In summary, it is shown that 48 hours of treatment with plumbagin 

resulted in a decrease in cell density as compared to DMSO control cells. 

Morphological observations showed that plumbagin induces apoptotic cell 

death, as indicated by cell shrinking, nuclear fragmentation, membrane 

blebbing, possibly by binding and infiltrating into cells.  
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Figure 3.19. Crystal violet assay on 48-hour plumbagin treated cells. Cell 
density decreases in a dose-dependent manner; KNS60 cells showing highest 
sensitivity, whereas A172 and ONS76 cells exhibiting resistance to plumbagin. 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.20. Morphology of cells after plumbagin treatment. A) Plumbagin 
exerts a cytotoxic effect on all cells resulting in cell death and lower cell 
density at 100 X magnification. B) Pictures of cell morphology captured at 200 
X magnification. 
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Figure 3.21. Plumbagin emits blue fluorescence signal that shows the route of 
drug trafficking into KNS60 cell. Cells were stained with acridine orange that 
differentially stain nucleus and cytoplasm. Plumbagin accumulates at cell 
surface membrane and permeates into the cytoplasm and trigger apoptotic 
cell death. 
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3.3.2.2. Plumbagin induces cell cycle arrest, cell death and suppresses 

the clonogenicity of cells.  

To validate the cytotoxicity of plumbagin, cells were stained with 

propidium iodide (PI) and subjected to fluorescence-activated cell sorting 

(FACS) analysis. Increase in the sub-G1 population was observed in all the 

cell lines except A172 (Figure 3.22), indicating DNA fragmentation and hence 

cell death. Consistent with the crystal violet assay result on cell survival, 

KNS60 cells seemed very sensitive to plumbagin treatment as indicated by 

the increase in sub-G1 population that made up of 50 % of the entire 

population. However, A172 and U251MG(KO) cells were more resistant to 

plumbagin-induced cell death as low levels of sub-G1 population were 

detected. From the cell cycle profiles, it can be seen that plumbagin treatment 

also induces an increase in the G2/M population in KNS60, ONS76 and 

U251MG(KO) cells, suggestive of cell cycle arrest accompanied by a 

corresponding decrease in the G1 population. A172 cells on the other hand 

displayed a slight decrease in G2/M population with a corresponding increase 

in G1 population. This observation shows that plumbagin not only triggers cell 

death, but also induces cell cycle arrest predominantly at the G2/M phase of 

the cell cycle.  

As a continuation of the cell cycle arrest investigation, brain cancer 

cells treated with plumbagin for 48 hours were harvested and 2 X 103 cells 

were reseeded in drug-free media for 10 days to study colony forming ability 

after drug treatment. As shown in Figure 3.23, the numbers of colonies 

formed by all the brain cancer cells were reduced in plumbagin treated 

samples. Taken together with the cell cycle data discussed earlier, the data 
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suggests that cell cycle arrest prevents further proliferation. Interestingly, the 

results obtained from this clonogenic assay showed A172 to be most affected 

in terms of colony forming ability after drug treatment.  

The ability of cells to form colonies following drug treatments is 

believed to be influenced mostly by population doubling rate and cell viability. 

Population doubling may be influenced by cell cycle arrest after drug 

treatment and the inherent rate of cell division; cells that are arrested are 

unable to proliferate and form colony, while cells that are naturally slow 

growing such as A172 may have the even lesser colonies if cells were 

arrested (Figure 3.3). Hence, A172 may exhibit a lack of ability to form 

colonies following plumbagin treatment not only due to cell cycle arrest but 

also its inherently slow rate of growth compared to the other cell lines. Thus 

although the same number of different brain cancer cells (2 X 103 cells) was 

seeded onto the culture dish for the colony formation assay, not all A172 

seeded cells formed colonies that were sufficiently large enough for detection. 

With respect to the cell sustainability after plumbagin treatment, a high IC50 for 

A172 may indicate the resistance of the cell line at the 48-hour time point to 

drug treatment. There is a possibility that A172 cells that exhibited resistance 

to plumbagin might be sensitized to cytotoxic effects at a later time point such 

that if these treated cells continued to grow in a drug-free media, they may 

undergo apoptosis gradually and also lead to less colony formation. These 

explain why plumbagin treatment can lead to a drastic decrease in colony 

numbers on slow growing A172 cells. 

To summarise this section, the crystal violet assay has shown that all 

cell lines responded to plumbagin treatment in a dose-dependent manner. 
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Plumbagin treatment led cells to undergo morphological changes and 

eventually apoptosis. FACS analysis also showed that most cell lines 

underwent cell death and cell cycle arrest. In the colony formation assay, not 

all 2 X 103 plumbagin-treated cells were able to proliferate and form colonies. 

Some of these cells remained arrested while some apoptosised gradually 

over the period of 10 days in culture, leaving only those plumbagin-resistant 

cells that maintained clonogenic ability.   
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Figure 3.22. Cell cycle profile of plumbagin treated cells analysed using flow 
cytometry. Most cell lines exhibited higher sub-G1 population and cell cycle 
arrest at G2/M phase. 
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Figure 3.23. Colony formation assay was performed to study the clonogenic 
property of cell lines after plumbagin treatment. A) Pictures of colony 
formation assay done on 100 mm culture dish. B) Graphical representation of 
colony numbers obtained after 10 days of growth in culture. 
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3.3.2.3. Plumbagin-induced cell cycle arrest and apoptosis are 

associated with increased DNA damage.  

To investigate whether the cell cycle arrest and cell death are 

associated with DNA damage, single cell gel electrophoresis assay, also 

known as the comet assay, was performed following 48-hour treatment with 

plumbagin. This assay allows the detection of both single and double strand 

DNA breaks. As shown in Figure 3.24, all the cell lines showed various 

degrees of increase in the mean tail moment after plumbagin treatment. 

Although the KNS60 cells were most sensitive to plumbagin treatment as 

indicated by crystal violet assay, the extent of DNA damage induced in it was 

not as significant as that in the ONS76 cells. The phenomenon of the ONS76 

cells exhibiting the highest DNA damage without a major decrease in cell 

density as projected by crystal violet assay may be due to its high proliferation 

rate that is able to compensate for the loss of cells as a result of DNA damage 

and cell death. On the other hand, A172 and U251MG(KO) cells did not show 

any significant increase in DNA damage, indicating that these cell lines are 

resistant to the DNA damaging effects of plumbagin. Here, it is shown that the 

KNS60 is relatively sensitive to plumbagin treatment as demonstrated by the 

low but significant degree of damage and highest susceptibility to cell death.  

To validate that plumbagin triggers cell death in these brain cancer cell 

lines, annexin V-FITC and PI staining were carried out using FACS analysis. 

As shown in Figure 3.25A and 3.25B, while all the brain cancer cells exhibited 

cell death at early and late apoptosis, minimal necrotic cells were detected. 

Among the viable cells, the KNS60 cells showed the smallest population after 

treatment while the A172 cells had the highest viable population. KNS60 and 
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ONS76 cells exhibited as high as 40 % cell population in the late apoptosis 

region indicating that these cells responded to plumbagin in the early hours 

upon treatment. A172 and KNS60 cells showed 45 % of cell population in the 

early apoptosis region which suggests that they underwent apoptotic cell 

death at a later time point after plumbagin treatment while ONS76 and 

U251MG(KO) cells had around 30 % of the population in the early apoptosis 

region. In conclusion, most cell lines responded to plumbagin treatment at an 

early time point except for the A172 cells that only showed significant 

apoptotic cell death at 48-hour after plumbagin treatment. Marginal necrosis 

was detected in all cells tested, indicating that plumbagin does not kill the 

cells randomly but specifically through programmed cell death. 

 Altogether, the cell death and cell cycle arrest reported above were 

associated with plumbagin-induced DNA damage. It is plausible that the 

significant DNA damage present in both the KNS60 and ONS76 cells led to a 

high population of apoptotic cells in early and late apoptosis. A172 and 

U251MG(KO) cells which showed lesser DNA damage corroborate with the 

observations in the annexin V staining and crystal violet assay in that these 

cell lines are relatively resistant to plumbagin treatment. 
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Figure 3.24. Degree of DNA damage detected in cells treated with plumbagin. 
A) Most cells showed an increase in the mean tail moment, an indicator of 
DNA damage, after plumbagin treatment. ONS76 cells exhibited the highest 
degree of damage. B) Representation of comet tail moment in percentage of 
DNA content. *** indicates P < 0.001. 
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Figure 3.25. Annexin V staining of plumbagin treated cells. A) Dot-plot data of 
FITC and PI staining, indicating populations of viable, apoptotic and necrotic 
cells. B) Graphical representation of dot-plot data projecting apoptosis, not 
necrosis, as the main pathway of cell death. *** indicates P < 0.001. 
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3.3.2.4. Plumbagin may induce cell cycle arrest by downregulating E2F1, 

CCNE1 genes and Cyclin B1 protein.  

In order to understand the underlying mechanisms leading to cell cycle 

arrest, the gene and protein expressions after plumbagin treatment were 

studied using Oligo GEArray® Cancer PathwayFinder and western blot 

analysis. As shown in Figure 3.26, selected genes that may affect cell cycle 

progression and cell proliferation such as CCNE1, CDK2, E2F and PTEN 

were investigated. It is interesting to note that E2F was downregulated in all 

brain cancer cells upon plumbagin treatment, suggesting that transcription of 

cyclins, cdks, and checkpoint regulators were disrupted. After 48 hours of 

plumbagin treatment, expression of the CCNE1 gene was decreased in most 

cell lines even though CDK2 expression was upregulated in some cells. 

Downregulation of CCNE1 suggests that cells may arrest at G1 phase of the 

cell cycle. PTEN which serves as an important negative regulator of the AKT 

cell proliferation and survival pathway was upregulated following plumbagin 

treatment, indicating that cell proliferation may have been inhibited. In 

conclusion, changes in the expression of E2F and CCNE1 genes may 

account for the cell cycle arrest at the G2/M phase in most cell lines. This is 

strongly supported by the over expression of PTEN gene. 

Western blotting was performed to validate the observations of the cell 

cycle arrest as reported earlier. Particularly of interest were proteins involved 

in cell cycle regulation, such as MDM2, p53, p21 and Cyclin B1. Figure 3.27 

shows that MDM2, p53, p21 and Cyclin B1 exhibited different degrees of 

expression in plumbagin-treated brain cancer cells. Unlike the other cell lines, 

ONS76 cells exhibited an opposite trend where there is an increase in MDM2 
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and a slight decrease in p53. MDM2 functions as a negative regulator of p53 

by exporting p53 from the nucleus to the cytoplasm and promoting the 

ubiquitination of p53, leading to its degradation by the proteasome. The A172 

and ONS76 cells showed an increase in p21 protein expression suggesting 

cell cycle arrest, but p21 could not be detected in KNS60 and U251MG(KO) 

cells even at the basal level. As discussed earlier in section 3.2.2, cell lines 

with different TP53 mutation and radioresponses have been used in the study. 

Cell lines harbouring mutations at the DNA binding domain (KNS60 and U251) 

were found to express high basal levels of the p53 protein. These cell lines 

also showed a higher basal expression of the MDM2 protein, suggesting an 

enhanced feedback loop whereby MDM2 is upregulated so as to reduce p53 

levels. In contrast, absence of p21 protein suggesting abrogated p53-

dependent p21 transcription, which is probably due to the mutation of TP53 

gene which render the ability of p53 to bind DNA and activate transcription of 

p21. On the other hand, cell lines with non-functional p53 (A172 and ONS76) 

expressed low levels of p53 and MDM2 but high levels of p21, suggesting 

p53-independent p21 transcription in these cells; p21 functions as a cdk 

inhibitor (CDKI) to suppress cyclin/cdk complexes, thereby preventing RB 

phosphorylation and cell cycle progression. Cyclin B1 was also found to be 

downregulated in all brain cancer cells studied, indicating that cells were 

unable to progress through the G2/M phase and thus arrested at that phase. 

These results suggest that most cells treated with plumbagin underwent G2/M 

phase arrest as established by the downregulation of Cyclin B1 and 

upregulation of p53 and p21, the data consistent with cell cycle results.  
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Overall, the gene and protein expression analyses have validated 

earlier observations of growth arrest at the G2/M phase as indicated by 

downregulation of the CCNE1 and E2F genes. In addition, PTEN that inhibits 

AKT cell proliferation pathway was also upregulated. Furthermore, western 

blot data exhibited a decrease in the expression of Cyclin B1 upon plumbagin 

treatment, suggesting cell cycle arrest at G2/M phase.  

In the next section, genes and proteins involved in cell death will be 

analysed to confirm the findings of plumbagin-induced cell death as discussed 

in section 3.3.2.3. 
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Figure 3.26. Expression analysis of cell cycle related genes using Oligo 
GEArray® on plumbagin treated brain cancer cells. Expression data showed 
trends of gene expression that support cell cycle arrest. Red-dotted lines 
indicate threshold level at ± 0.2. 
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Figure 3.27. Western blot analysis of cell cycle related proteins after 
plumbagin treatment. A) Protein expressions of MDM2, p53, p21 and Cyclin 
B1 in brain cancer cell lines. Blots were probed with the indicated antibodies. 
Actin was used as a loading control. B) Fold change of protein expressions 
against β-actin was calculated using densitometer. * indicates p < 0.05, ** 
indicates p < 0.01, *** indicatesp < 0.001. 
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3.3.2.5. Plumbagin may induce cell death via the decreased expression 

of Bcl2 and Survivin proteins. 

As discussed earlier in section 3.3.2.3, plumbagin induces DNA 

damage in all cells possibly resulting in apoptosis, but not necrosis. In this 

section, we investigated which genes or proteins may be responsible for 

plumbagin-induced apoptosis in the brain cancer cells. As shown in Figure 

3.28, expression analysis was carried out to study cell death related genes 

such as BCL2L1, BIRC5, TNFRSF1A and TNFRSF25. The protein encoded 

by the pro-apoptotic gene, BCL2L1 is responsible for regulating outer 

mitochondrial membrane channel (VDAC) and hence for the release of 

reactive oxygen species (ROS) and cytochrome c. All brain cancer cell lines 

showed upregulation of BCL2L1 gene upon plumbagin treatment. BIRC5, a 

gene encoding the anti-apoptotic Survivin protein, was detected to be at very 

low levels. TNFRSF1A and TNFRSF25 encode for tumour necrosis factor 

receptors that play a role in triggering death signalling cascades via the 

stimulation of NFKB activity and regulation of apoptosis. These two genes 

show different degrees of upregulation; TNFRSF1A exhibits a marginal 

upregulation upon plumbagin treatment and TNFRSF25 shows a drastic 

increase in most cell lines. Altogether, these gene expression results suggest 

that the intrinsic and extrinsic pathways of apoptotic cell death in all brain 

cancer cell lines may be activated after plumbagin treatment. 

Western blot was carried out to investigate the expression of several 

proteins, including that of Caspase-9, Caspase-8, Bcl2 and Survivin (Figure 

3.29A and 3.29B). Caspase-9 and Caspase-8, the initiator caspases of the 

intrinsic and extrinsic pathways respectively, could not be detected in any of 
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the cells. Only the uncleaved form of the caspases, procaspases, were 

detected, suggesting that activation of Caspase-8 and Caspase-9 may occur 

early and not after 48-hours of treatment. Interestingly, the anti-apoptotic 

proteins Bcl2 and Survivin were found to be downregulated in most cells after 

48 hours of plumbagin treatment. 

To further investigate the caspase activation upon plumbagin treatment, 

the activity of caspase was measured at different time points using Caspase-

Glo® Assay Kit. Figure 3.30 represents the activity of caspase-3/7 in Relative 

Luminescence Units (RLU). As shown in Figure 3.30, a gradual increase in 

caspase-3/7 activity, an effector caspase, was detected early in all plumbagin 

treated samples indicating the fact that plumbagin triggers caspase-3/7 

activity throughout the treatment duration. A distinct increase in caspase-3/7 

activity was detected at 12 hours for plumbagin-treated A172 cell, 24 hours for 

plumbagin-treated KNS60 and U251MG(KO) cells and 48 hours for 

plumbagin-treated ONS76 cells. Although DMSO also induces caspase-3/7 

activity, the extent of caspase activation was lesser than that induced by 

plumbagin.  

The gene and protein expression analyses taken together with the 

caspase activity assay support the induction of apoptotic cell death in 

plumbagin treated samples.  
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Figure 3.28. Expression analysis of cell death related genes using Oligo 
GEArray® on plumbagin treated brain cancer cells. Expression data showed 
promising trends of gene expression that support cell death. Red-dotted lines 
indicate threshold level at ±0.2. 
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Figure 3.29. Western blot analysis of cell death related proteins upon 
plumbagin treatment. A) Protein expressions of Procaspase-9, Procaspase-8, 
Bcl2 and Survivin in brain cancer cells. Blots were probed with the indicated 
antibodies. Actin was used as a loading control. B) Fold changes of protein 
expressions against β-actin measured was calculated using a densitometer. * 
indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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Figure 3.30.  Activity of caspase-3/7 at different time points. Plumbagin-
treated brain cancer cells exhibited high caspase-3/7 activity at 24 to 48 hours. 
* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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3.3.2.6. Plumbagin inhibits telomerase activity leading to telomere 

shortening.  

Besides directly triggering cell cycle arrest and cell death to control 

cancer cell proliferation, plumbagin may exert its anti-tumourigenic effects on 

other signalling pathways and protein expressions. Specifically, plumbagin 

may inhibit telomerase activity. In this section, effects of plumbagin on 

telomerase activity and telomere length are examined. The main factors that 

affect telomerase activity such as hTERT and hTR expressions are also 

investigated. Telomeric Repeat Amplification Protocol (TRAP) was employed 

to measure the telomerase activity of each cell line. Figure 3.31A shows the 

value of the Total Product Generated (TPG), a representation of telomerase 

activity, upon plumbagin treatment. KNS60 and ONS76 cells exhibited drastic 

decrease in telomerase activity compared to other cells and as indicated in 

Figure 3.31B, the decrease was more than 50 % compared to basal 

telomerase activities. On the other hand, A172 and U251MG(KO) did not 

display any significant changes in the TPG values. Results from TRAP assay 

correlates with the sensitivity and resistance of the cells against plumbagin 

treatment as reported earlier where A172 and U251MG(KO) cells were shown 

to be resistant, whereas KNS60 and ONS76 cells were shown to be sensitive 

to plumbagin. 

To further investigate whether the changes of telomerase activity is a 

direct result of changes in expression levels of telomerase mRNA, levels of 

hTERT and hTR mRNA upon plumbagin treatment were analysed using real-

time reverse transcription PCR. As shown in Figure 3.32, plumbagin treatment 

induced different levels of hTERT and hTR mRNA expression in each cell line. 
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Figure 3.32A shows that upon treatment, suppression of hTERT mRNA was 

detected in ONS76 and U251MG(KO) cells. However, A172 and KNS60 cells 

exhibited increased levels compared to DMSO controls. As for hTR mRNA 

(Figure 3.32B), there were no significant changes in expression in any of the 

cells except for the U251MG(KO). Downregulation of hTERT expression in 

ONS76 and U251MG(KO) cells maybe responsible for the decreased in 

percentage changes of the telomerase activity (Figure 3.32B), while KNS60 

cells exhibited reduction in telomerase activity despite increased hTERT 

expression following plumbagin treatment, which suggests that plumbagin 

may also inhibit telomerase activity independent of hTERT expression 

changes. 

Subsequently, telomere length, dictated by telomerase activity, was 

studied. Cells were cultured in half the concentration of the respective IC50 

continuously for 15 days with a change of fresh media and drug every two 

days. On day-15, DNA was extracted to perform Terminal Restriction 

Fragment (TRF) analysis to examine telomere length. After 15 days of 

treatment with plumbagin (Figure 3.33A and 3.33B), brain cancer cells 

showed a significant decrease in telomere length. Consistent with reduced 

TPG, KNS60 and ONS76 cells exhibited a remarkable decrease in telomere 

length. Despite a reduction of TPG that was insignificant, A172 and KNS60 

cells also exhibited telomere length decrease albeit not as significant as that 

of other two cell lines. This data correlates well with that obtained from the 

TRAP assay whereby a greater decrease in telomerase activity leads to 

greater telomere shortening. 
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Taken together, 48 hours of plumbagin treatment led to a reduction in 

the telomerase activity in all cell lines and the continued repression of 

telomerase activity in a 15-day treatment resulted in telomere shortening. 

However, there was no correlation between telomerase activity and hTERT or 

hTR mRNA expression levels. This suggests that the decrease in telomerase 

activity maybe attributed to other factors such as hTERT nuclear translocation, 

hTERT ubiquitination or inactivation of telomerase enzyme. 
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Figure 3.31. Telomerase activity of cells investigated using the TRAP assay. 
A) KNS60 and ONS76 cells showed significant reduction of telomerase 
activity as represented by Total Product Generated (TPG). B) Percentage 
changes of telomerase activity relative to DMSO vehicle control. *** indicates 
p < 0.001. 
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Figure 3.32. Expression analysis of hTERT and hTR mRNA levels of 
plumbagin-treated cells using real-time RT-PCR. A) Fold change of hTERT 
mRNA expression relative to that of DMSO treated controls. B) Fold change 
of hTR mRNA expression of all brain cancer cells relative to DMSO treated 
controls. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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Figure 3.33. Telomere length analysis of plumbagin-treated cells using TRF 
assay. A) Southern blot analysis of telomeric regions in brain cancer cells. 
High and low positive samples were included as positive controls. Analysis 
was done using Kodak imaging software. B) Graphical representation of 
telomere length in percentage value relative to DMSO treated controls. 
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3.3.2.7. Discussion 

In view that the therapeutic potential of plumbagin, not much anticancer 

research pertaining to this phytochemical has been carried out. Previous 

studies on the anticancer effects of plumbagin were performed on lung, liver, 

breast, prostate and cervical cancer cells (Srinivas et al., 2004; Zhao and Lu, 

2006; Ahmad et al., 2008; Aziz et al., 2008; Shih et al., 2009). This is the first 

study to investigate the anticancer effect of plumbagin in human brain cancer 

cells, in particular glioblastoma multiforme and medulloblastoma cells. 

Compared to previous reports, the concentrations of plumbagin used in 

this study for cancer cells treatment were within acceptable range and 

duration. The concentrations of plumbagin used in each study are determined 

based on the responsiveness of cells studied, some cancer cells may appear 

to be resistant to plumbagin and therefore require higher doses to show 

significant responses. The concentration of plumbagin at 2.5 µM and 3.0 µM, 

both for 48 hours, were used for breast cancer cells, MCF-7 and MDA-MB-

231 and lung cancer cell line, A549 (Kuo et al., 2006; Shieh et al., 2009). 

However, for the same duration of treatment, prostate cancer cell lines, PC-3, 

LNCaP and C4-2 and skin carcinoma cells, A-431 showed IC50 at 7.5 µM and 

25 µM respectively (Powolny and Singh, 2008; Nazeem et al., 2009).  

An earlier study described that administration of plumbagin in mice that 

have undergone ectopic implantation of prostate cancer cells delayed the 

tumour growth by 3 weeks and reduced the tumour weight and volume by 

90 %. In addition, discontinuation of plumbagin administration for 4 weeks in 

the same mouse model showed that there was no increase of tumour growth 

(Aziz et al., 2008). These observations are corroborated by the colony 
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formation assay (Figure 3.23) in this study which showed that brain cancer 

cells treated with plumbagin for 48 hours exhibited reduced ability to form 

colonies as compared to control cells on continual culture for 10 days in drug-

free culture conditions. Plumbagin-induced growth inhibition was mainly 

attributed to cell cycle arrest at the S-G2/M phase accompanied by the 

downregulation of cell cycle regulatory proteins such as Cyclin B1, Cyclin A, 

Cdc2, Cdc25C and upregulation of p21 protein (Kuo et al., 2006; Zhao and Lu, 

2006; Hsu et al., 2006; Gomathinayagam et al., 2008; Wang et al., 2008). 

Similar findings were also obtained in the present study particularly in the 

radiosensitive A172 and ONS76 cells (Figure 3.22), suggesting that 

plumbagin indeed has cancer therapeutic potentials by exerting cell cycle 

arrest in brain cancer cells. 

Besides the induction of growth arrest, plumbagin treatment was also 

reported to trigger apoptotic cell death as validated by translocation of 

phosphatidyl serine from the inner to the outer cellular membrane in the 

Annexin V assay (Figure 3.25). Plumbagin was shown to produce reactive 

oxygen species (ROS) production that induced apoptotic cell death (Srinivas 

et al., 2004; Powolny and Singh, 2008; Wang et al., 2008; Nazeem et al., 

2009). Furthermore, induction of ROS may lead to DNA damage (Srinivas et 

al., 2004; Demma et al., 2009; Nazeem et al., 2009). In line with this, this 

study also showed that plumbagin treatment induces DNA damage (Figure 

3.24). Subsequently, an orchestra of molecular events associated with cell 

death such as i) the downregulation of Bcl2 and NFκB, ii) upregulation of Bax, 

iii) reduction in the expression of anti-apoptotic and proliferation genes such 

as Inhibitor of Apoptosis (IAP) and Survivin, iv) induction of Caspase-3/7 
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activity were observed in the present (Figure 3.29 and 3.30) and past 

investigations (Gomathinayagam et al., 2008; Kuo et al., 2006; Sandur et al., 

2006; Zhao and Lu, 2006; Wang et al., 2008; Ahmad et al., 2008; Nazeem et 

al., 2009). Supporting the evidence that plumbagin induces cell death while 

the AKT pathway was found to be inhibited after plumbagin treatment (Kuo et 

al., 2006; Gomathinayagam et al., 2008). This study has shown upregulation 

of PTEN gene (Figure 3.26), a negative regulator of AKT cell survival pathway. 

We report here for the first time that plumbagin can inhibit telomerase 

activity in human brain cancer cells. Plumbagin was found to suppress the 

activity of telomerase enzyme particularly in fast dividing cancer cells (Figure 

3.31) resulting in greater telomere attrition in a 15-day treatment with half-

dose of IC50 (Figure 3.32). This is a novel observation. 

Overall, plumbagin has great potential in controlling the growth of brain 

cancer cells, especially those that are sensitive to radiation. A schematic 

diagram representing the plausible events or pathways involved in the 

induction of cell cycle arrest and apoptosis upon plumbagin treatment in this 

study is illustrated in Figure 3.34.  
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Figure 3.34. Schematic representation of cellular pathways possibly triggered 
upon plumbagin treatment. Plumbagin induces DNA damage that leads to 
downregulation of E2F1 and upregulation of PTEN genes. Regulations of 
these genes inhibit cell proliferation and activate caspase-3/7 that eventually 
triggers cell death mechanisms. Suppression of telomerase enzyme by 
plumbagin results in the reduction of telomere length in long-term plumbagin 
treatment. Green arrows represent possible events whereas red arrows 
indicate inhibited pathways. 
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3.3.3. Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one) 

In this segment, genistein was used as the treatment drug for brain 

cancer cell lines. Functional and molecular studies were performed to 

examine the responses and sensitivity of each cell line to drug treatment. 

 

3.3.3.1. Genistein decreases cell density by inducing cell cycle arrest.  

To assess the growth inhibitory effects of genistein, brain cancer cells 

were treated with genistein (0 to 50 µM) for 48 hours. For experimental 

controls, normal human lung fibroblasts (Normal1) and hTERT-transfected 

BJ1 human foreskin fibroblast (hTERT-BJ1) cells were used. Exposure to 

genistein resulted in a decrease in cell density as shown in Figure 3.35. Cell 

lines more sensitive to genistein showed a greater decrease in cell density as 

seen in the crystal violet assay. Normal1 cells were the most sensitive cell line 

to genistein-induced reduction in cell density at 50 µM. This is followed by 

ONS76, A172, KNS60, U251MG(KO) and finally hTERT-BJ1. The marked 

reduction in the density of Normal1 could be attributed to its slower 

proliferation rate of 43.63 Hr/PD compared to the cancer cell lines as 

mentioned in figure 3.3 (Kimura et al., 2005). All brain cancer cell lines 

exhibited enlarged and flattened morphology with little sign of apoptosis as 

observed under bright field microscope after genistein treatment (Figure 

3.36A and 3.36B), this suggests that 50 µM genistein inhibits cell growth but 

does not induce cell death. Due to the fact that IC50 was not able to be 

determined at high dose of genistein, the optimal concentration of genistein to 

be used was fixed at 50 µM for the subsequent experiments.  
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To investigate whether the reduction of cell density following genistein 

treatment is indeed associated with growth arrest, cell cycle analysis was 

performed by staining genistein-treated cells with propidium iodide and 

analysed by fluorescent-activated cell sorting (FACS). As shown in Figure 

3.37, all the cell lines except A172 exhibited an increase in the G2/M 

population following genistein treatment, suggestive of G2/M arrest. A172 on 

the other hand, displayed an increase in G1 population indicating G1 phase 

arrest. While genistein induced a G2/M arrest in the majority of the cell lines, 

the extent of G2/M arrest in Normal1 and hTERT-BJ1 were marginal 

compared to that of brain cancer cell lines KNS60, ONS76 and U251MG(KO). 

Our results suggest that genistein works more effectively in fast proliferating 

cancer cells than in slow growing cancer and control cells in inducing 

extensive cell cycle arrest at G2/M phase and hence growth arrest. 

To study the long-term effects of genistein, cells were treated for 48 

hours before harvesting and 2 X 103 cells were reseeded in drug-free medium 

and allowed to grow for 10 additional days to explore their colony forming 

ability. As shown in Figure 3.38A and 3.38B, 10-day maintenance of all 48-

hour genistein-treated brain cancer cell lines exhibited decreased colony 

forming abilities as compared to DMSO treated controls. Most brain cancer 

cell lines showed more than 50 % reduction in colony numbers except for 

ONS76 cell line, which showed a 30 % reduction. This observation suggests 

that growth arrest triggered by genistein can be sustained for at least 10 days 

after drug removal. Taken together, our results show that genistein exhibited 

its cytostatic effect by inducing cell cycle arrest and not cell death, and such 

effect is maintained even after withdrawal of the drug. 
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Figure 3.35. Growth inhibitory effects of genistein on all cell lines were 
determined using crystal violet assay after 48 hours of genistein treatment. 
Fifty micro Molar (µM) of genistein was established to be the working 
concentration for subsequent studies. 
 

                                              

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.36. Morphology of cells after genistein treatment. A) Genistein exerts 
cytostatic effect without inducing of cell death in all cells resulting in lower cell 
density as shown in 100 X magnification. B) Pictures of genistein-treated cells 
captured at 200 X magnification. 
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Figure 3.37. Cell cycle profiles of genistein treated cell lines detected using 
flow cytometry. Most cell lines exhibit G2/M arrest without showing significant 
changes in sub-G1 population. 
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Figure 3.38. Colony formation assay was performed to study the clonogenic 
property of cell lines after genistein treatment. A) Pictures of colony formation 
done on 100 mm culture dish. B) Graphical representation of colony numbers. 
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3.3.3.2. Genistein does not induce DNA damage and cell death. 

As the data above suggests, genistein induces growth arrest. We 

therefore, proceeded to investigate whether genistein induces cell death and 

DNA damage. According to the cell cycle analysis shown in Figure 3.37, 

minimal sub-G1 populations were detected in all DMSO and genistein treated 

cell lines. Sub-G1 population is an indicator of apoptotic cells with degraded 

DNA, which manifests as events with hypodiploid DNA content. None of the 

cell lines treated with genistein shows any considerable increase in the sub-

G1 population when compared to the corresponding DMSO control, 

suggesting that 48-hour treatment with genistein does not induce cell death at 

50 µM. 

To confirm the observation that genistein does not induce cell death, 

annexin V-FITC staining was carried out to detect apoptotic and necrotic cells. 

As shown in Figure 3.39, all brain cancer cell lines showed a negligible 

increase in their necrotic and apoptotic populations, indicating that minimal 

cells underwent necrosis and apoptosis respectively. In view of this finding, it 

should be noted that there is a corresponding marked reduction of cells in the 

viable population. This confirms that genistein does not cause cell death 

either by necrosis or apoptosis. Generally, the low cytotoxic effect of genistein 

is associated with little DNA damage whereby there are minuscule changes in 

the apoptotic and necrotic populations of cells. 

Comet assay was carried out to examine the extent of DNA damage, if 

any, triggered by genistein treatment. Detection of DNA damage by Comet 

analysis (Figure 3.40) is represented by tail moments. All the cell lines treated 

with both DMSO and genistein showed low and insignificant levels of DNA 
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damage. This indicates that genistein does not induce significant damage on 

DNA and also explains the unsubstantial sub-G1 population observed in cell 

cycle analysis. 
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Figure 3.39. Genistein does not induce cell death. Annexin V-FITC staining 
assay was performed to determine the viability of cells. A) Genistein-treated 
cells remained viable with insignificant populations in necrosis, early and late 
apoptosis. B) Graphical representation of cell population according to results 
in Figure 3.25A. * indicates p < 0.05, *** indicates p < 0.001. 
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Figure 3.40. Genistein does not induce significant DNA damage. A) Single 
Cell Gel Electrophoresis (Comet) assay showed a low degree of DNA 
damage on each cell line following a 48-hour genistein treatment. The tail 
moment measured correlates to the extent of DNA damage. B) Graphical 
representation of DNA content measured from comet tail. 
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3.3.3.3. Cell cycle arrest in radiosensitive brain cancer cells correlated 

with downregulation of Cyclin B1 and Cdk1. 

Present study shows that cells treated with genistein underwent growth 

arrest independent of DNA damage, with no cell death involved. While the 

mechanism by which genistein induces cell cycle arrest is as yet unclear, 

previous studies have reported that genistein induces cell cycle arrest by 

upregulating CDK inhibitors and downregulating cyclin/cdk complexes 

(Casagrande and Darbon, 2000; Choi et al., 2000). 

In this study, brain cancer cells with different TP53 mutations and 

radioresponses were used to investigate if these parameters affect their 

responses to genistein treatment. According to Ishikawa et al. (2006), the four 

brain cancer cell lines which are used in this study harbour TP53 mutations at 

different codons. A172 and ONS76 cell lines harbour a mutation at codon 72 

that is located in the proline-rich region of TP53. Cell lines with mutation at 

this region have been reported to show higher growth arrest and capacity to 

repair DNA damage. In addition, these two cell lines were reported to be 

radiosensitive. For KNS60 and U251MG(KO) cell lines, the TP53 mutations 

are at codon 193 and 273 respectively, both of which are in the DNA-binding 

domain. Mutations that occur within this domain have been reported to affect 

the DNA binding affinity of p53, consequently disrupting its transcriptional 

activities. In the same report, KNS60 and U251MG(KO) were reported to be 

radioresistant. 

 As shown in Figure 3.41, A172 and ONS76 have less endogenous 

p53 protein as compared to KNS60 and U251MG(KO) cell lines. The 

expressions of the p53 protein after genistein treatment did not show 
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significant change in any of the brain cancer cell lines.  A similar observation 

was also made in the levels of phosphorylated p53. Despite the lack of 

increase in p53 and phosphorylated p53, p21 as a cell cycle regulatory protein 

downstream of p53, increased in expression in most of the brain cancer cell 

lines following genistein treatment. The upregulated expressions were more 

apparent in A172 and ONS76 and this is consistent with the knowledge that 

these two cell lines probably have higher DNA repair capacity (Hu et al., 2005; 

Siddique and Sabapathy, 2006). Interestingly, there was decreased 

expression of Cyclin B1 and Cdk1 corresponding with the increased 

expression of p21 in A172 and ONS76 cell lines, suggesting that these 

proteins are working in concert to bring about cell cycle arrest to allow for 

repair.  

KNS60 and U251MG(KO) harbour TP53 mutations within the DNA 

binding domain (Ishikawa et al., 2006). Incidentally, there are barely 

detectable levels of endogenous p21, possibly due to the mutations present in 

the DNA binding domain of p53 that may have affected the transcription of 

p21. The low levels of the p21 protein, even after genistein treatment, may be 

insufficient to exert an overt cell cycle arrest, leading to continued cycling as 

indicated by the increased expressions of Cyclin B1 and Cdk1 proteins. This 

is consistent with the increased ability of these cells to form colonies 

compared to A172 and ONS76 following genistein treatment. 

Unlike that of western blotting, using Oligo GEArray® Cancer 

PathwayFinder, we did not notice a specific trend between radiosensitive and 

radioresistant cell lines. Expression of CCNE1 and CDK2 genes were lower 

as compared to the DMSO controls (Figure 3.42). Thus suggesting that either 
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there was inhibition of G1/S transition or that the cells were progressing 

towards S phase. Downregulation of E2F1 gene may suggest the reduction of 

its transcriptional activity resulting in cell cycle arrest. Overall, this gene 

expression analysis indicated that brain cancer cells were undergoing cell 

cycle arrest upon genistein treatment. 

Taken together, gene expression analysis has shown that genistein 

treatment induces suppression of cell cycle regulatory genes such as CCNE1, 

CDK2 and E2F1. However, protein expressions exhibited two different 

patterns where radiosensitive cells exhibited stronger signals of cell cycle 

arrest as compared to radioresistant cells, the fact which is consistent with the 

cancer aggressiveness. 
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Figure 3.41. Cyclin B and Cdk1 are downregulated during G2/M cell cycle 
arrest in radiosensitive brain cancer cells but upregulated in radioresistant 
cancer cells. A) Radiosensitive brain cancer cells that harbour functional p53 
show activation of downstream p21. B) Graphical representation of the band 
intensities on the western blots were measured using Kodak Molecular 
Imaging Software. *** indicates p < 0.001. 
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Figure 3.42. Expression analysis of cell cycle related genes performed using 
Oligo GEArray® on genistein-treated brain cancer cell lines. Expression data 
showed trends of gene expression that support cell cycle arrest observation. 
Red-dotted lines indicate cut-off threshold level at ± 0.2. 
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3.3.3.4. Radiosensitive brain cancer cell lines exhibited downregulation 

of cell survival associated genes, Bcl2 and Survivin. 

 In radiosensitive cell lines, A172 and ONS76, there was a distinct 

reduction in Cyclin B1 and Cdk1 protein levels after genistein treatment 

(Figure 3.41). This observation corresponded with lower expressions of Bcl2 

and Survivin proteins (Figure 3.43). In contrast, there was increased 

expression levels of Bcl2 and Survivin proteins upon genistein treatment in 

the radioresistant cell lines, KNS60 and U251MG(KO). These results suggest 

that the A172 and ONS76 cell lines are more sensitive to genistein-induced 

growth arrest than their radioresistant counterparts. 

 This interesting observation prompted the investigation of the 

expression of other cell death related proteins such as Caspase-8 and 

Caspase-9, especially in A172 and ONS76 cell lines. Surprisingly, although 

cell survival related proteins such as Bcl2 and Survivin of radiosensitive cell 

lines showed decreased expression after genistein treatment, pro-caspases 

involved in apoptosis remained intact and no caspases were found to be 

cleaved (Figure 3.43). This suggests that either genistein does not cause 

apoptosis or no death signalling pathway was triggered at 50 µM genistein for 

48 hours. To note, the decreased levels of Bcl2 and Survivin following 

genistein treatment deviated from earlier observations that genistein does not 

promote cell death.   

Based on the data presented above, we speculate that cell death may 

impend following 48-hour of genistein treatment. KNS60 and U251MG(KO) 

cell lines may activate certain signalling pathways to improve chances of 

survival following genistein treatment. This pathway may include the activation 
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of Cyclin B1 and Cdk1 leading to a G2/M arrest and the upregulation of 

survival proteins, Bcl2 and Survivin. However, in the radiosensitive cell lines, 

A172 and ONS76, there appears to be no activation of these survival proteins 

to promote cell viability, thus rendering these two cell lines more sensitive to 

genistein treatment.  

To investigate this observation at the level of genes, Oligo GEArray® 

was carried out on brain cancer cell lines upon genistein treatment. However, 

there was no supportive evidence of cell death in favour of radiosensitive cells 

(Figure 3.44). All cell lines showed decrease in expression of TNF receptor 

superfamily genes, suggesting potential cell survival. However, expression of 

TERT gene was also abrogated in genistein-treated A172 and ONS76 cell 

lines. This result correlated with earlier observation that genistein treatment 

does not induce cell death. 

Altogether, decreased expression of death receptor genes has given a 

clue that supports the non-cytotoxicity of genistein. On the other hand, protein 

expression analysis has revealed more information on responses of 

radiosensitive cells to genistein treatment. 
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Figure 3.43. Radiosensitivity status affects molecular cell death responses in 
genistein-treated cells. Protein expression profile of cell death related proteins 
after genistein treatment. A) Western blots showed that there is no initiation of 
caspase-dependent cell death. B) Graphical representation of the band 
intensities on the western blots were measured using Kodak Molecular 
Imaging Software. *** indicates p < 0.001. 
 
 

 

 

A) 

B) 



 144

 

 

 

 

 

 

 

TERT TNFRSF10B TNFRSF1A TNFRSF25
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

DMSO

Genistein

DMSO

Genistein

DMSO
Genistein

DMSO
Genistein

A172 KNS60 ONS76 U251MG(KO)

Lo
g 1

0 r
at

io

 

Figure 3.44. Gene expression analysis of selected cell death related genes in 
genistein-treated cell lines. Gene expression was performed using Oligo 
GEArray® Cancer PathwayFinder. TNF receptor superfamily genes showed 
downregulation upon genistein treatment. Red-dotted lines indicate cut-off 
threshold at ± 0.2. 
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3.3.3.5. Low telomerase activity was associated with downregulation of 

hTERT and hTR mRNA expressions, leading to telomere 

shortening. 

It is well documented that inhibition of telomerase may synergise 

cancer therapy (Keith et al., 2004). By inhibiting the telomerase enzyme, 

telomere length progressively shorten with every round of DNA replication, 

resulting in critically short telomere that elicits apoptosis and senescence. 

Inhibiting the telomerase enzyme thus limits the proliferation capability of 

cancer cells and thereby conferring mortality on cancer cells (Shay and Wright, 

2006). 

In this study, various aspects of telomerase expression and functions 

were examined. Real-time PCR was carried out to investigate the expression 

of hTERT and hTR genes (Figure 3.45A and 3.45B). Expression of hTERT 

and hTR were reduced in all brain cancer cells after genistein treatment 

except for insignificant increase in hTR expression in A172 cell line. Overall, 

the decrease in the expression of hTERT and hTR suggests that genistein 

can regulate expression of hTERT and hTR at the mRNA level. 

The TRAP assay shows that all brain cancer cell lines except KNS60 

exhibited a significant decrease in telomerase activity as represented by the 

TPG (Figure 3.46A) and percentage changes of telomerase activity (Figure 

3.46B). In addition, the basal telomerase activities of ONS76 and 

U251MG(KO) were higher as compared to that in A172 and KNS60 cell lines. 

Possibly only in situations where high basal levels of telomerase activity are 

present, or when the activity levels exceed a certain threshold, genistein 

exhibits its anti-telomerase effect.   
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As a measure of the effectiveness of genistein in inhibiting telomerase 

function for long term, telomere length of the brain cancer cells was measured 

after 15-day treatment with genistein. 

Figure 3.47 shows that in spite of treatment with genistein for 15 days, 

there is no drastic shortening of telomere length in any of the brain cell lines. It 

should be noted that the 15-day DMSO controls for each cell type showed a 

greater decrease in telomere length compared to the genistein treated cells. 

This suggests that although genistein is able to suppress telomerase activity, 

such suppression does not lead to drastic telomere attrition. It is known that 

telomeres undergo shortening with each successive round of cellular 

replication. In this study, genistein has been shown to induce cell cycle arrest, 

and thus cells undergo limited proliferation. As such, the effect of genistein on 

telomerase and consequently on telomere length is not apparent in an 

environment that is not permissive to cell cycling.  

Overall, results indicate that genistein downregulates the expression of 

hTERT and hTR mRNA leading to the decrease in telomerase activity as 

evident in TRAP experiment. However, decrease in telomerase activity did not 

result in drastic shortening of telomere length, possibly due to the fact that 

genistein has triggered cell cycle arrest that thus slows down the proliferation 

rate.  
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Figure 3.45. Genistein led to reduced mRNA levels of hTERT and hTR in 
brain cancer cells. A) Levels of hTERT mRNA were considerably reduced as 
observed via real-time PCR analysis. B) Genistein led to a similar reduction in 
mRNA levels of hTR in most brain cancer cells. * indicates p < 0.05, *** 
indicates p < 0.001.  
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Figure 3.46. Telomerase activity of genistein-treated cells performed using 
TRAP assay. A) Decrease in telomerase activity as represented by Total 
Product Generated (TPG). B) Percentage changes of telomerase activity 
relative to DMSO vehicle control. ** indicates p < 0.01, *** indicates p < 0.001. 
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Figure 3.47. Telomere length measurement of genistein-treated cells using 
TRF assay. A) Detection of telomeric regions using southern blot transfer and 
telomere specific DIG-labelled probe. B) Graphical representation of mean 
telomere length. ** indicates p < 0.01, *** indicates p < 0.001. 
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3.3.3.6. Discussion 

In the present study, 50 µM of genistein was used for all experiments. 

At this concentration, no cell death was observed as shown in crystal violet 

assay (Figure 3.34) and cell cycle analysis (Figure 3.36). Consistent with our 

findings, a similar study also reported that genistein treatment ranging from 1 

to 100 µM did not exhibit cytotoxic effects (Farina et al., 2006). Further 

investigations on cell death using annexin V staining (Figure 3.38) and DNA 

damage using comet assay (Figure 3.39) also indicated that neither apoptosis 

nor DNA damage was detected after genistein treatment, corroborating with 

an earlier report that genistein concentration of up to 180 µM did not induce 

significant DNA damage (Darbon et al., 2000). However, these findings 

contradict with some other studies that show DNA damage and apoptotic cell 

death with the observations of cytochrome c release, ROS induction, 

caspase-3/7, 8, 9 activations and decreased Bcl2/Bax ratio following genistein 

treatment (Rucinska et al., 2007; Thasni et al., 2008b; Li et al., 2008; Jin et al., 

2009; Rucinska and Gabryelak, 2009). 

Genistein has been shown in this study to induce cell cycle arrest at 

the G1 and G2/M phases. The cell cycle arrest was associated with the 

downregulation of CCNE1, CDK2 and E2F1 genes (Figure 3.41). Interestingly, 

western blotting showed that brain cancer cells with differing radiosensitivity 

displayed opposite trends in the cell cycle protein expressions (Figure 3.40 

and 3.42). Radiosensitive cells, A172 and ONS76, exhibited an increase in 

the p21 protein with reductions in Cyclin B1 and Cdk1 protein expressions, 

suggesting that radiosensitive cells underwent growth arrest upon genistein 

treatment. Observations of cell cycle arrest elicited by genistein were also 
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reported in numerous previous studies, where downregulation of Cyclin B and 

cyclin dependent kinases (CDKs), upregulation of CDK inhibitors (CDKIs) 

such as p21, p27 and p16 were among the commonly reported molecular 

responses (Raffoul et al., 2006; Yu et al., 2008; Majid et al., 2008; Li et al., 

2008). In the case of radioresistant cells, KNS60 and U251MG(KO), 

increased expression of Cyclin B1 and Cdk1 proteins together with 

overexpression of Survivin and Bcl2 proteins suggest that these cells are 

relatively resistant to the cytostatic effect of genistein.  

Besides the cell cycle arrest and cell death events, this study has 

shown that genistein suppresses the expression of hTERT and hTR (Figure 

3.44), leading to lower activity of telomerase enzyme (Figure 3.45) and 

shorter telomere length compared to DMSO controls (Figure 3.46). Other 

studies also corroborate with our data as they have reported that genistein 

decreases expression and transcriptional activity of hTERT, the catalytic 

component of telomerase, via the downregulation of c-Myc expression in 

different cancer cells (Ouchi et al., 2005; Jagadeesh et al., 2006; Li et al., 

2009). 

Many studies have independently reported that genistein elicits cell 

cycle arrest, cell death and telomerase inhibition concurrently (Alhasan et al., 

2001; Chinni et al., 2003). However, the data from the current work reveals 

that genistein does not cause cell death despite the presence of cell cycle 

arrest and telomerase inhibition. Since telomere shortening happens only 

during physiological DNA replication and thus cannot be initiated in an 

arrested cell, it seems redundant for telomerase to be inhibited in cells that 

are arrested. However, it is reasonable to conclude that genistein exerts its 



 152

telomerase inhibition effect as a secondary strategy selectively targeting 

cancer cells that have escaped cell cycle arrest and continued to proliferate. 

Inhibition of the telomerase enzyme may lead to shortening of telomere length 

in replicating cells. When the telomere length becomes critically short, more 

genomic instability ensues, eventually resulting in cell death. 

In summary, genistein treatment has been shown to initiate growth 

arrest and telomerase inhibition in all brain cancer cell lines. However, based 

on the molecular observations, observations of growth arrest were more 

prominent in radiosensitive cells compared to radioresistant cells, suggesting 

that genistein may be more effective in cancer therapy only in radiosensitive 

tumours. Figure 3.48 shows a schematic illustration of potential molecular 

events triggered upon the treatment with genistein. 
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Figure 3.48. Schematic representation of cellular pathways potentially 
triggered upon genistein treatment. Genistein does not induce DNA damage 
and cell death; the cytostatic effect exhibited by genistein may be due to the 
downregulation of E2F1 gene. However, cells with different radioresponses 
showed opposite regulation of protein expressions. Inhibition of telomerase 
activity may act as a second attack to cancer cells that escape cell cycle 
arrest. Green arrows represent possible events whereas red arrows indicate 
inhibited pathways. 
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3.3.4. Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hepta 

-diene-3,5-dione) 

In this section, we explored curcumin as a potential treatment drug for 

brain cancer cell lines. Functional and molecular aspects of cell cycle, cell 

death and telomere-telomerase regulations were investigated to understand 

the response and sensitivity of each cell line toward curcumin. 

 

3.3.4.1. Curcumin binds to cell surface membrane and infiltrates into 

cells to induce cell death.  

To investigate the inhibitory concentration of curcumin that leads to 

50 % reduction of cell density (IC50), crystal violet assay was performed. Cells 

were treated with curcumin at different concentrations ranging from 0 to 100 

μM for 48 hours. The crystal violet assay (Figure 3.49) showed that curcumin 

treatment results in dose-dependent decrease in cell density. The responses 

of the cell lines are presented in the following order of decreasing sensitivity: 

hTERT-BJ1, KNS60, A172, U251MG(KO), ONS76 and finally Normal1. 

Among the brain cancer cells, the KNS60 cell line appears to be the most 

sensitive to curcumin whereas the ONS76 cell line shows a greater resistance 

towards any cytotoxic effects of curcumin. As for the two control cell lines, 

telomerase negative Normal1 reached 50 % cell density at a high dose of 90 

μM while the IC50 of hTERT-BJ1 cell was at 20 μM. This is interesting as 

curcumin may sensitise cells that express the telomerase enzyme, thus 

resulting in a lower IC50 range of less than 50 μM for all brain cancer cells and 

the hTERT-BJ1 cells. This observation suggests that cells with activated 

telomerase, such as cancer cells, may be a promising target for curcumin. 
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Concentrations of curcumin at each determined IC50 were used for 

subsequent experiments. 

In order to examine the effects of curcumin on cell density and 

morphology, DMSO and curcumin-treated cells were observed under normal 

light microscope at 100 X and 200 X magnifications. As shown in Figure 

3.50A, treatment of curcumin for 48 hours led to significant changes in cell 

density and morphology in all cell lines treated. Upon curcumin treatment, all 

brain cancer cell lines showed a reduced density compared to their 

corresponding DMSO control. As low dose of DMSO does not induce cell 

death or cell cycle arrest, DMSO-treated cells continue to proliferate and 

increase in cell density. However, curcumin-treated cells may have undergone 

a certain degree of cell death and cell cycle arrest, causing the cells to detach 

from the culture dish, resulting in a lower cell density. As shown in Figure 

3.50B, the 200 X magnification of cell morphology of most curcumin-treated 

cells exhibited granulated and condensed cytoplasm, indicating that cells 

were undergoing apoptotic cell death. The ONS76 cell line showed a vacuole-

associated phenotype resembling autophagy (Tanaka et al., 2000). Enlarged 

or flattened cell morphology was also seen in U251MG(KO) curcumin-treated 

cells. All these phenotypical observations suggest that the brain cancer cell 

lines in this study react to curcumin treatment strongly, resulting in more cell 

death and hence lower cell density. 

By using the excitation and emission wavelengths of curcumin obtained 

from fluorescence spectrophotometer (section 3.1.2), the route of drug 

trafficking into the cells was investigated using fluorescence microscopy at 

different time-points. The FITC filter was used to detect green fluorescence 
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emitted by curcumin at 531 nm while the DAPI filter was used to detect blue 

fluorescence emitted by the auto-fluorescence of the U251MG(KO) cells. 

Figure 3.51 depicts a series of pictures of cell death observed throughout the 

duration of curcumin treatment. Curcumin bound to the cell surface 

membrane at an early time point after treatment and was later taken up into 

the cells, or infiltrated into the cell cytoplasm, leading to the induction of 

apoptotic events such as the disruption of cell membrane, nuclear 

fragmentation and cell disintegration. This observation clearly demonstrates 

the cytotoxicity of curcumin over a period of 48 hours of treatment. These 

observations were only presented as a series of cell death events. The 

possibility that some cells were still alive or in a late stage of apoptosis, at any 

point in time during curcumin treatment cannot be ruled out.   
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Figure 3.49. Crystal violet cell density assay on 48-hour curcumin-treated 
cells. Telomerase negative Normal1 cells appear to be resistant to curcumin 
treatment, whereas all telomerase positive cells showed lower IC50 values, 
indicating sensitivity to curcumin. 
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Figure 3.50. Cell morphology after curcumin treatment. A) Curcumin exerts a 
cytotoxic effect on all cells resulting in lower cell density through the induction 
of cell death as shown in 100 X magnification. Pictures of cell morphology 
captured at 200 X magnification. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.51. Green fluorescence of curcumin showing the route of drug 
trafficking into U251MG(KO) cell line. Auto-fluorescence of cells is indicated 
by blue signals. Curcumin accumulates at cell surface membrane and 
permeates into the cytoplasm and trigger apoptotic cell death. 
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3.3.4.2. Curcumin induces cell cycle arrest at G2/M phase and 

suppresses the clonogenic property of cells.  

To investigate the two related aspects of cell viability that may result in 

decrease in cell density, cell cycle arrest and cell death were examined. In 

this section, cell cycle analysis was carried out by staining drug-treated cells 

with propidium iodide, followed by FACS analysis. Figure 3.52 shows the cell 

cycle profiles of all cell lines after 48 hours of DMSO and curcumin treatment. 

While some cell lines such as hTERT-BJ1, KNS60 and ONS76 underwent 

growth arrest at G2/M phase upon curcumin treatment, the other cell lines 

such as Normal1, A172 and U251MG(KO) did not show significant changes in 

their cell cycle profile. In addition, KNS60 and ONS76 had an increase in the 

sub-G1 population, with ONS76 showing more cell death as indicated by the 

high sub-G1 region. 

In order to study the long-term effects of cell cycle arrest triggered by 

curcumin, clonogenicity of cells after treatment was explored. Colony 

formation assay was performed by treating the cells for 48 hours, after which 

2 X 103 cells were reseeded and maintained in culture with drug-free medium 

for 10 days. As shown in Figure 3.53, all curcumin-treated cell lines showed 

decreased colony numbers compared to DMSO controls. Even though the 

KNS60 cell line was most sensitive to curcumin as shown in the crystal violet 

assay, this cell line showed resistance to the clonogenic inhibitory effect of 

curcumin. The same observation was also found in the ONS76 cell line. 

These observations suggest that in the case of fast growing cells, although 

cell death was triggered, removal of curcumin from the culture media allows 

the cells to continue to proliferate and form colonies. In contrast, A172 and 
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U251MG(KO) cells exhibited different responses where the colony numbers 

decreased drastically in the drug-free medium after 10 days of incubation, 

suggesting that 48 hours of curcumin treatment resulted in cell death and/or 

cytostasis in A172 and U251MG(KO) cells to bring about reduced colony 

numbers. Put together, these findings propose that cells that are sensitive to 

curcumin such as hTERT-BJ1, KNS60 and ONS76, responded by acutely 

exhibiting more cell death and/or cell cycle arrest, whereas A172, 

U251MG(KO) and Normal1 cells are less sensitive to cell death induced by 

curcumin at 48-hour. It is only in the event that when cells continue to grow in 

drug-free media after 48 hours of curcumin treatment, these cells began to 

manifest the cytotoxic and/or cytostatic effects of curcumin resulting in 

decreased clonogenicity. 
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Figure 3.52. Cell cycle profiles of curcumin-treated cell lines stained with 
propidium iodide and subjected to flow cytometry analysis. Normal1, A172 
and U251MG(KO) cells did not show any significant changes in their cell cycle 
profiles, indicating resistance to curcumin. Contrastingly, ONS76 cell showed 
a higher population in G2/M and sub-G1 region suggesting enhanced 
sensitivity to curcumin. 
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Figure 3.53. Colony formation assay of curcumin-treated brain cancer cells. A) 
Colonies were stained with crystal violet for visualization. B) Graphical 
representation of numbers of colonies counted in 100 mm culture dishes. 
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3.3.4.3. Cell death is associated with curcumin-induced DNA damage.  

Apart from inducing cell cycle arrest, curcumin treatment has also led 

to significant levels of cell death in some cell lines as depicted by the sub-G1 

region of the cell cycle profile. In this section, cell death analysis was 

validated by the use of caspase assay and annexin V staining. In addition, the 

degree of DNA damage induced by curcumin treatment was also examined 

using the comet assay.  

As shown in Figure 3.54, DMSO and curcumin treatments induced 

various degrees of caspase-3/7 activity. Specifically, caspase-3/7 activity 

increased significantly after treatment with curcumin in A172, KNS60 and 

U251MG(KO) cell lines. A172 cell line exhibited highest caspase-3/7 activity 

at 24 and 48 hours after treatment. Overall, the caspase assay clearly 

indicates that the apoptotic cell death induced by curcumin was a result of 

caspase-3/7 activity. The reduction of caspase-3/7 levels in ONS76 may be a 

result of the massive cell death observed in the cell cycle, leading naturally to 

decreased expression of all genes. 

To validate that apoptotic cell death was triggered by curcumin 

treatment, annexin V staining was performed using FACS analysis. 

Consistent with earlier observation, all cell lines underwent apoptosis upon 

curcumin treatment (Figure 3.55A). There is minimal population of necrotic 

cells detected in all cell lines, suggesting that the cell death encountered with 

curcumin treatment is largely due to apoptosis. Populations of early and late 

apoptosis were relatively balanced in most cell lines except for A172 and 

ONS76 cell lines that had more cells at the late apoptotic region (Figure 
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3.55B). This suggests that A172 and ONS76 cells may have been triggered to 

apoptosis in the early hours of curcumin treatment. 

Comet assay was carried out to determine if curcumin induces DNA 

damage. Figure 3.56A shows that curcumin induced various degrees of DNA 

damage in different cell lines and these damages were relatively higher than 

that triggered by plumbagin (Figure 3.24) and genistein (Figure 3.40). 

Surprisingly, although curcumin treatment induced extensive DNA damage in 

Normal1 and A172 cell lines, their cell cycle profiles did not reflect the extent 

of damage incurred as seen by low levels of sub-G1 and lack of cell cycle 

arrest. It is possible that the Normal1 cell line has a highly efficient DNA repair 

mechanism that allows them to continue growing while the damages were 

being repaired, whereas the A172 cell line may have a rather inefficient repair 

system that render the cells prone to massive cell death that may occur only 

after 48-hour of curcumin treatment, especially when caspase activity 

increases preceding cell death. As for the other brain cancer cell lines, 

although the tail moments indicating DNA damage were not as high as that 

seen in Normal1 and A172, considerable DNA were present in tail moments 

suggest that they contain more damaged DNA than that of DMSO-treated 

controls (Figure 3.56B). In conclusion, comet assay has shown that all cell 

lines underwent various degrees of DNA damages upon curcumin treatment; 

the DNA content in comet tails of brain cancer cell lines was considerably 

higher than that in non-cancerous cell lines, suggesting that brain cancer cells 

suffered more damages in curcumin treatment.  

Overall, these results have validated that 48 hours of curcumin 

treatment induces DNA damage and cell death. Annexin V staining confirms 
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that curcumin does not trigger necrotic cell death but apoptosis. Caspase 

assay shows that curcumin treatment leads to caspase-3/7 induction at 24 to 

48 hours. All these cell death events are believed to be associated with DNA 

damage induced by curcumin. 
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Figure 3.54.  Activities of caspase-3/7 at different time points after curcumin 
treatment. Casapase-3/7 activity is mainly contributed by curcumin treated 
samples. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 
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Figure 3.55. Annexin V staining of curcumin treated cell lines. A) Dot-plot data 
of FITC and PI staining measured by FACS analysis. B) Graphical chart 
representation of viable, necrosis, and apoptosis populations. *** indicates p < 
0.001. 
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Figure 3.56. Degree of DNA damage in cell lines treated with curcumin. A) All 
cell lines showed significant increases in DNA damage after treatment with 
curcumin. A172 harboured the highest degree of damages. B) Graphical 
representation of DNA content in comet tails. * indicates p < 0.05, *** indicates 
p < 0.001. 
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3.3.4.4. Downregulation of CCNE1 and E2F1 genes together with 

upregulation of p21 protein resulting in growth arrest at G2/M 

phase. 

 In order to further elucidate the cell cycle arrest event, gene and 

protein expression analyses were carried out using Oligo GEArray® Cancer 

PathwayFinder and western blotting respectively. Genes involved in cell cycle 

regulation such as CCNE1, CDK2, E2F1 and PTEN were also studied. As 

shown in Figure 3.57, all genes studied exhibited decreasing expressions 

except for the PTEN gene that was upregulated upon curcumin treatment. 

PTEN is a negative regulator of AKT cell survival and proliferation pathway. 

Upregulation of the PTEN gene indicates an inhibition in cell proliferation. 

Reduced expressions of CCNE1 and CDK2 genes, which encode for cyclin E 

and cdk2 proteins respectively, suggest that cells may arrest at G1 phase of 

cell cycle. In addition, E2F was downregulated in all brain cancer cell lines 

upon curcumin treatment, suggesting that the transcription of cyclins, cdks 

and checkpoint regulators were interrupted. Overall, the differential 

expressions of these selected genes suggest that cells underwent growth 

arrest that prevented them from continuing proliferation following curcumin 

treatment. 

Western blot was then performed to validate the findings of cell cycle 

gene expressions. Figure 3.58 shows the cell cycle regulatory proteins 

including p53, p21, Cyclin B1 and Cdk1 which were analysed following 

curcumin treatment. All the cell lines exhibited a minimal difference in the 

expression of the Cdk1 protein except for ONS76 cells which showed a 

significant decrease. Moreover, ONS76 cells also exhibited an increase in the 
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expression of p21. Decrease in Cdk1 together with Cyclin B1 proteins coupled 

with an increased p21 expression very likely to have contributed to ONS76 

cell cycle arrest at G2/M phase at the 48-hour time point. However, both the 

radioresistant cell lines, KNS60 and U251MG(KO), showed an enhanced 

expression of Cyclin B1 and low expression level for p21. These findings 

propose that KNS60 and U251MG(KO) cells did not undergo cell cycle arrest 

as observed in the ONS76 cell line. Additionally, radiosensitive cells have a 

low expression of p53 in both control and treated cells, but radioresistant cells 

have a high basal level of p53 that decreased upon curcumin treatment. This 

verifies that KNS60 and U251MG(KO) cell lines were indeed not arrested 

upon curcumin treatment. Protein expression analysis indicates that cell cycle 

arrest occurred in ONS76 cell but not in other cell lines. All together, these 

evidences of cell cycle gene and protein expressions correlate well with the 

cell cycle profiles demonstrating that curcumin treatment induces G2/M cell 

cycle arrest in the ONS76 cell line but not in KNS60 and U251MG(KO) cells. 
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Figure 3.57. Gene expression analysis performed using Oligo GEArray® 
Cancer PathwayFinder. Cell cycle regulation genes include CCNE1, CDK2, 
E2F1 and PTEN were analysed. Red-dotted lines indicate cut-off threshold at 
± 0.2. 
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Figure 3.58. Western blot analysis of brain cancer cell lines treated with 
curcumin. A) Western blot of cell cycle regulatory proteins. Blots were probed 
with indicated antibodies. B) Fold change analysis of protein expressions 
obtained using densitometer. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001. 
 
 
 

B) 

A) 



 173

3.3.4.5. Curcumin triggers apoptotic cell death by over expressing Bax 

and downregulating Bcl2 and Survivin. 

To elucidate the cell death events triggered by curcumin, gene and 

protein expression analyses were carried out by employing the same methods 

as discussed in section 3.1.1.4. Figure 3.59 shows the selected gene 

expression analysis of BIRC5, TNFRSF10B and TNFRSF1A. BIRC5 that 

encodes for the Survivin protein is upregulated upon curcumin treatment in all 

the brain cancer cell lines except for the A172 cells. Similarly, TNFRSF1A 

displayed the same trend as observed in BIRC5. It is important to note that all 

the overexpressing trends of BIRC5 and TNFRSF1A were actually below or 

marginally above the detection threshold of the experiment as indicated by the 

red dotted lines, suggesting that the regulations may not be significant. 

TNFRSF10B encodes for a tumour necrosis factor receptor that plays a role in 

triggering death signalling cascades. Most cells showed a decrease in 

TNFRSF10B expression upon curcumin treatment; downregulation of this 

gene may imply that cells are less responsive to the cell death induction by 

tumour necrosis factor. Hence, this result suggests that all cells, except for 

KNS60, are more resistant to curcumin treatment.  

In another attempt to verify the cell death events induced by curcumin 

treatment, western blot analysis was performed on selected cell death related 

proteins. As shown in Figure 3.60, protein expressions of Bcl2, Bax, PARP1 

and Survivin were examined. Contrary to mRNA levels, Survivin protein level 

was decreased in all brain cancer cells. In addition, protein level of Bcl2 was 

also decreased, indicating that these anti-apoptotic proteins were 

downregulated and cells were susceptible to apoptosis. In addition, most cells 
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except for KNS60 cells exhibited an increase in the expression of Bax, a pro-

apoptotic protein, confirming the cell death events discussed earlier. It is 

interesting to note that PARP-1 did not show any significant change in its 

expression, and no cleaved-PARP-1 was detected in the western blot. This 

finding shows that PARP-1-independent cell death was activated and all 

proteins studied have verified the apoptotic cell death event triggered by 

curcumin. Overall, the protein expression analysis, but not gene expression 

analysis, has shown the correlation while confirming the findings of apoptotic 

cell death triggered by curcumin. Gene expression analysis failed to show 

conclusive results due to the low quality and quantity mRNA of the treated 

cells. 
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Figure 3.59. Gene expression analysis of selected cell death related genes in 
curcumin-treated cell lines. Gene expression analyses of BIRC5, TNFRSF10B 
and TNFRSF1A were performed using Oligo GEArray® Cancer 
PathwayFinder. Red-dotted lines indicate cut-off threshold at ± 0.2. 
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Figure 3.60. Western blot analysis of brain cancer cell lines treated with 
curcumin. A) Western blot data on cell death-related proteins. Blots were 
probed with the indicated antibodies. B) Fold changes analysis of protein 
expressions obtained using densitometer. ** indicates p < 0.01, *** indicates p 
< 0.001. 
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3.3.4.6. Curcumin inhibits telomerase activity by downregulating hTERT 

mRNA expression, leading to telomere shortening.  

Besides the study of the growth arresting and cytotoxic properties of 

curcumin, another potential anticancer property such as the inhibition of 

telomerase activity was also investigated. This section mainly focuses on the 

telomerase inhibitory effect of curcumin that was demonstrated by the TRAP 

assay as well as real-time RT-PCR analysis on hTERT and hTR mRNA 

expression levels. The telomere length of cells that had undergone long-term 

treatment with curcumin was measured using the TRF assay. As shown in 

Figure 3.61A, telomerase activities, represented by the Total Product 

Generated (TPG), were downregulated after 48 hours of curcumin treatment. 

Although KNS60 and ONS76 cell lines exhibited exceptionally high basal 

telomerase activity, curcumin treatment significantly suppressed telomerase 

activity as demonstrated in Figure 3.61B. Although in A172 and U251MG(KO) 

cells, where the basal telomerase activity was not as high, the percentage 

decrease in activity after curcumin treatment was as dramatic as that seen in 

KNS60 and ONS76 cells. This suggests that curcumin may have effective 

inhibitory effect on telomerase in all these cell lines. In conclusion, curcumin 

has been shown to produce a significant decrease in the TPG values in cell 

lines with high basal telomerase activities; All cell lines exhibited a significant 

decrease in the percentage change in telomerase activity.   

In order to examine factors affecting the reduction in telomerase 

activity, expression analyses of hTERT and hTR mRNA were performed using 

real-time RT-PCR. Figure 3.62A and 3.62B show the fold change in the 

expression of hTERT and hTR mRNA respectively. Upon curcumin treatment, 
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all cell lines exhibited a lower fold change in the value of hTERT mRNA 

expression as compared to DMSO controls. The DMSO controls were 

normalized across all samples to obtain a comparative fold change among the 

cell lines. Similar to the trend reported in the TRAP assay, KNS60 and ONS76 

cell lines showed more than 50 % decrease in the expression of hTERT 

mRNA. Even though A172 and U251MG(KO) cells exhibited significant 

decreases in hTERT expression, these decreases were relatively low 

compared to the other two cell lines. On the other hand, the hTR mRNA 

expression did not project a conclusive trend as that seen in the hTERT 

expression. Surprisingly, ONS76 and U251MG(KO) cells exhibited an 

increase in the expression of hTR mRNA upon curcumin treatment compared 

to A172 and KNS60 cell lines. These results suggest that the expression of 

hTERT but not hTR mRNA, may be associated with curcumin-induced 

inhibition of telomerase activity.   

To demonstrate the effectiveness of curcumin-induced telomerase 

inhibition, cells were treated with half the concentration of their respective IC50 

for 15 continuous days with fresh medium and drug replenished every two 

days. As presented in Figure 3.63A, the southern blot analysis shows that all 

cell lines displayed a reduction in the mean telomere length following long-

term treatment with curcumin. Interestingly, the decrease in telomere length 

projected a similar trend as shown in TRAP assay (Figure 3.61B). KNS60 and 

ONS76 cell lines, which had long basal telomere lengths, exhibited drastically 

shortened telomeres at the end of the long-term treatment. A172 and 

U251MG(KO) cells, which had shorter basal telomere lengths, showed a less 

extensive but significant shortening of telomere. These results directly 
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correlate the shortening of telomeres with a decrease in the telomerase 

activity that is probably directly a result of the reduction in the hTERT mRNA 

expression upon curcumin treatment. 
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Figure 3.61. Telomerase activity of curcumin-treated cells as detected by the 
Telomeric Repeat Amplification Protocol (TRAP) assay. A) Decrease in 
telomerase activity is represented by a reduction in the Total Product 
Generated (TPG). B) Representation of telomerase activity in percentage 
changes compared to telomerase positive control of the experiment. * 
indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001. 

 

 

A) 

B) 



 181

 

 

A172 KNS60 ONS76 U251MG(KO)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

DMSO Curcumin

***

***

***

***

Fo
ld

 c
ha

ng
e

 

A172 KNS60 ONS76 U251MG(KO)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

DMSO Curcumin

** *

***
**

Fo
ld

 C
ha

ng
e

 

Figure 3.62. Real-time RT-PCR results of hTERT and hTR mRNA expression 
of curcumin-treated cell lines. A) Fold change of hTERT mRNA expression as 
compared to DMSO controls. B) Fold change of hTR mRNA expression as 
compared to DMSO controls. * indicates p < 0.05, ** indicates p < 0.01, *** 
indicates p < 0.001. 
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Figure 3.63. Analysis of telomere length of curcumin-treated cells using 
Terminal Restriction Fragment (TRF) assay. A) Telomeric probes were used 
to detect telomeric regions via southern blot. Black lines indicate the mean 
telomere length. B) Graphical representation of percentage changes in 
telomere length from southern blot data. ** indicates p < 0.01, *** indicates p < 
0.001. 
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3.3.4.7. Discussion 

The growth inhibitory effects of curcumin are multifactorial and 

telomerase inhibition may merely be one of the ways it affects tumour cell 

growth (Ramachandran et al., 2002). Various aspects of cellular and 

molecular responses upon curcumin treatment have been investigated in this 

study; Curcumin was found to induce cell cycle arrest (Figure 3.50) and cell 

death (Figure 3.47) associated with DNA damage induction (Figure 3.54) in all 

brain cancer cell lines. Similar findings have reported the cytotoxic effects of 

curcumin in different cancer cells such as pancreatic cancer, ovarian cancer 

and lung carcinoma (Zheng et al., 2006; Lin et al., 2008; Sahu et al., 2009). 

Interestingly, our data shows that telomerase negative human lung fibroblast 

exhibited higher IC50 and no cell cycle arrest, suggesting that non-cancerous 

cells may have better tolerance to the cytotoxic effects of curcumin.  

Data from annexin V staining (Figure 3.53) and the Capase-3/7 activity 

assay (Figure 3.52) supported the notion of apoptotic cell death triggered by 

curcumin. In addition, most cell lines exhibited decreased expression of Bcl2, 

Survivin and increased expression of Bax following treatment with curcumin 

(Figure 3.58). In line with this, previous studies have associated curcumin-

related cell death events with the inhibition of NFκB (Zheng et al., 2004; 

Samuhasaneeto et al., 2009), activation of death receptors (Bush et al., 2001; 

Lu et al., 2009), induction of ROS (Su et al., 2006; Thayyullathil et al., 2008) 

and induction of mitochondrial hyperpolarisation (Cao et al., 2006; Cao et al., 

2007).  

Gene expression analysis in this study showed that curcumin 

downregulates CCNE1, CDK2, E2F1 and upregulates PTEN genes (Figure 
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3.55), suggesting that cancer cells treated with curcumin may undergo cell 

cycle arrest and cease proliferation. Meanwhile, western blotting showed that 

curcumin treatment resulted in increased expression of p21 and Cyclin B1 

proteins in radiosensitive cells, indicating cell cycle arrest, whereas 

radioresistant cells projected an opposite trend where p53 was downregulated 

and Cyclin B1 was upregulated, suggesting resistance to cell cycle arrest 

(Figure 3.56). To date, there is no study reporting the differential responses of 

cell lines with different radioresponses following curcumin treatment, leading 

this study to be the first report to compare the molecular responses of 

radiosensitive and radioresistant cells with the same drug treatment.  

While the telomerase inhibition effects of curcumin have only been 

reported on a few cancer cell types such as breast cancer (Ramachandran et 

al., 2002), leukaemia (Chakraborty et al., 2006; Mukherjee Nee et al., 2007) 

and pancreatic cancer (Teng and Fahey, III, 2002), no such study has yet 

been carried out on brain cancer cells. In this study, curcumin has proved to 

be promising in the suppression of telomerase activity in brain cancer cells 

(Figure 3.59). This inhibition of telomerase activity was associated with the 

reduction of hTERT expression (Figure 3.60). Previous studies have reported 

the association of decreased telomerase activity with hTERT downregulation 

(Ramachandran et al., 2002; Cui et al., 2006; Mukherjee Nee et al., 2007) and 

suppression of the translocation of hTERT to the nucleus (Chakraborty et al., 

2006) in a  hTR- or c-Myc-independent manner (Ramachandran et al., 2002). 

In support, this study has shown that long-term curcumin treatment on brain 

cancer cell lines resulted in significant telomere shortening (Figure 3.61), 
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suggesting that curcumin has great potential to be used as a telomerase 

inhibitor clinically.  

This study hypothesizes that curcumin may selectively target cells that 

express telomerase enzyme; by inhibiting the telomerase enzyme, cells may 

become more sensitive to the cytotoxic effects of curcumin. Although many 

studies have sought to investigate the mechanisms of curcumin, more work 

must be done in order to understand the correlation between its effects on cell 

death, growth inhibition and telomerase inhibition. A schematic diagram 

representing the cellular events upon curcumin treatment is shown in Figure 

3.64. 
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Figure 3.64. Schematic representation of cellular events triggered upon 
curcumin treatment in brain cancer cell lines. Treatment with curcumin has 
shown downregulation of E2F1, CCNE1 and CDK2 genes together with 
overexpression of PTEN rendering the cells towards growth inhibition and 
apoptosis. Suppression of telomerase activity through the downregulation of 
hTERT and hTR expressions has resulted in telomere shortening. Green 
arrows represent possible events whereas red arrows indicate inhibited 
pathways. 
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Chapter 4   CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Reviews and justifications of the objectives in this study. 

The objectives of this study are reviewed and justified in this section. 

The strengths and shortcomings of this study as well as future directions are 

proposed in each objective.  

 

4.1.1 Objective 1: To determine the basal characteristics of the 

glioblastoma and medulloblastoma cell lines used in this study. 

The basal characteristics of brain cancer cells were investigated in the 

first section. Several cytogenetic markers and common aberrations were 

identified from the integrated analysis of mFISH, microarray and array-CGH 

experiments. However, these genomic signatures may only have the potential 

to serve as additional validation of histological observation in determining 

brain cancer types. These markers are not suitable to be used solely for the 

prediction of brain cancer due to two main reasons. Firstly, the markers 

identified here were generated from a small sample size. To accurately 

identify promising markers, a larger sample set of the same brain cancer 

types, different cancer grades and different cancer types should be compared 

and analysed. Secondly, the cytogenetic markers and common aberration 

profiles developed from the in vitro cell culture may not fully represent the in 

vivo condition in brain cancer tissue; cell lines maintained in culture over a 

period of time may accumulate further mutations overtime. 

 

4.1.2 Objective 2: To investigate the growth inhibitory mechanisms of 

plant products on glioblastoma and medulloblastoma cell lines. 
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This study has successfully analysed various aspects of cellular 

responses triggered upon phytochemicals treatment including that of cell 

viability, cell cycle, cell death, clonogenicity, DNA damage and caspase 

activity. Plumbagin and curcumin displayed similar effects on growth inhibition 

wherein cell cycle arrest was associated with DNA damage. Cells that acquire 

severe DNA damage often initiate caspase-3/7 activation and apoptotic cell 

death whereas cells that can better sustain damage usually undergo cell cycle 

arrest rather than cell death.  

The growth rate of cells may be an important factor that decides 

tumour growth; fast growing cells can compensate for cell loss by having 

faster cell division even if there is significant cell death, while slow growing 

cells hardly tip the balance of live cells over dead cells. As an example, both 

radiosensitive cells (A172 and ONS76) are susceptible to curcumin treatment 

as indicated by the comet assay (DNA damage) and annexin V staining (Cell 

death). However, the ONS76 cell line, which has higher population doubling 

rate, compensated the loss of cells during treatment. On the other hand, A172 

cells with its slower doubling rate was unable to regain the equilibrium and 

thus exhibited greater cell death upon treatment. 

For genistein treatment, all cells underwent cell cycle arrest without 

showing significant cell death and DNA damage. This brings about the 

possibility of using genistein in combination with either plumbagin or curcumin 

for cancer treatment. Pre-treatment with genistein can inhibit the proliferation 

of cancer cells and treatment with a secondary cytotoxic drug such as 

plumbagin, curcumin or other known cytotoxic drugs with a lower IC50 

concentration can boost apoptosis synergistically in arrested or sensitized 



 189

cells. Recent studies have also reported the use of genistein in combinatorial 

approaches to treat cancers (Zhao et al., 2009; Mohan et al., 2009; Karmakar 

et al., 2009; Shiau et al., 2009; Harper et al., 2009). 

 

4.1.3 Objective 3: To study the inhibitory potential of plant products on 

telomerase activity and on telomere length in glioblastoma and 

medulloblastoma cell lines. 

In this study, it is of particular importance, to show that the 

phytochemicals can be used as effective anticancer drugs through the 

inhibition of telomerase activity and shortening of telomere length. 

For the first time, this study has demonstrated the telomerase inhibitory 

effects of plumbagin in brain tumour cells which eventually led to the decrease 

of telomere length following long-term treatment. For genistein and curcumin, 

even though they have been reported to inhibit telomerase function 

(Ramachandran et al., 2002; Ouchi et al., 2005; Jagadeesh et al., 2006; Cui 

et al., 2006; Li et al., 2009), not many studies have tested their potential 

effects telomere status after long term treatment. In this study, investigation 

on telomere length has been successfully carried out to validate the 

significance and outcome of telomerase inhibition. 

It is known that telomere shortening occurs only in dividing cells, while 

arrested cells would not exhibit any decrease in telomere length (Holt et al., 

1996). As genistein exerts its cytostatic effect by inhibiting cell proliferation, 

any decrease in telomere length was not expected in this study. However, the 

TRAP and TRF assays showed that genistein suppressed telomerase activity 

resulting in shortening of telomere length. This suggests that the additional 
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telomerase inhibition property exerted by genistein has strengthened its effect 

by affecting cancer cells that have escaped from cell cycle arrest. 

In agreement with a previous study by Ramachandran et al. (2002), the 

present investigation showed that curcumin may selectively target telomerase 

positive cells and spare telomerase negative cells as suggested in crystal 

violet assay. However, more work needs to be done to relate the cytotoxic 

effect of curcumin to the telomerase activity of more cell lines in order to 

investigate whether its cytotoxic effects are telomerase-dependent. 

In summary, the findings reported in this thesis suggest that the 

phytochemicals may have a great potential to be used as effective anticancer 

drugs. Nevertheless, more work need to be carried out to establish an 

effective drug combination so that a lower IC50 of each drug can be used to 

minimize non-specific killing of neighbouring healthy normal cells. 

 

4.2 Conclusion 

As mentioned in the introduction chapter, the intention of this study is 

to explore alternative options such as natural plant products that may 

enhance the efficiency of cancer treatment or to compliment the current 

therapy to improve the quality of life of cancer patients. Regular consumption 

or incorporation of natural plant products into the daily diet can then be 

recommended to healthy individuals as a chemopreventive measure as well. 
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