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SUMMARY

Target tracking is an interesting problem and has important applications in secu-

rity and surveillance systems, personal robotics, computer graphics, and many other

domains. The focus of this thesis is on computing motion strategies to keep a moving

target in view in a dynamic and unknown environment using visual sensors. The

problem of motion planning is complicated by the mobility and visual obstructions

from the obstacles in the environment. Without using a-priori information about the

target and the environment, this thesis proposes an online tracking algorithm which

plans its motion strategy using local information from on-board sensors. In order to

track intelligently, the tracker has to choose an action which lowers the danger of los-

ing the target in the future while maintaining it under view in the current step. This

thesis proposes a measure called relative vantage which combines the risk of losing

the target in the current time to the risk of losing the target in the future. A local

greedy tracking algorithm called vantage tracker is proposed which chooses actions

to minimize this risk measure.

Implementing a robust robotic tracker requires dealing with sensing limitations

such as maximum range, field-of-view limits, motion limitations such as maximum

speed bound, non-holonomic constraints and operational limitations such as obstacle

avoidance, stealth, etc. This thesis proposes a general tracking framework that incor-

porates these limitations into the problem of online target tracking. A real robotic
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tracker was setup using a simple laser range finder and a differential drive robot base

and the hardware limitations were addressed in the tracking framework as planning

constraints. Such a tracker was able to successfully follow a person in a crowded

environment. A stealth constraint was formulated where the tracker has to maintain

sight of the target while trying to avoid being detected. Incorporating this stealth

constraint into the tracking problem, a stealth tracking algorithm was developed and

analyzed for various environments in simulation.

In a 3-D environment, the visibility relationships become complex easily. More-

over, the additional dimension available to the target makes the tracking problem

more difficult. A 3-D vantage tracker was developed by generalizing the approach

pertaining to the 2-D tracker. Such a tracker generates intelligent tracking actions

by exploiting the additional dimension. As an example a robotic helicopter generates

a vertical motion to avoid occlusion of the target due to the buildings in an urban

scenario when it can improve its visibility by doing so. Such a behavior was generated

based only on the locally sensed geometric parameters and no a priori knowledge of

the layout or the model of the obstacles in the environment was used.

Extensive simulation and hardware results show consistently the improvement in

tracking performance of the vantage tracker based tracking framework both in 2-D

and in 3-D as compared to previous approaches such as visual servo and those based

on increasing the shortest distance to escape for the target.
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CHAPTER 1

INTRODUCTION

This thesis presents motion strategies for a mobile sensor to continuously keep a

moving target in view. Tracking the target is an important task for autonomous robots

and has many applications. In security and surveillance systems, tracking strategies

enable mobile sensors to potentially monitor moving targets continuously in crowded

environments. In law enforcement or military operations, reliable information from

aerial systems have improved the effectiveness of operations on the ground in urban

environments. Smart tracking strategies will be required to automatically generate

unobstructed views in the presence of tall buildings and foliage in such operations. In

computer graphics, keeping a specific object or activity unoccluded is important for

automated viewpoint generation. In home care settings, a tracking robot can follow

elderly people around, giving companionship, monitoring their vital signs, and alert

caregivers in case of emergencies. Robotic porters can help people carry belongings

by tracking and following them to their desired locations.

Tracking a target (an object or human) reliably in a dynamic environment is more

than just blindly following. A specific example that illustrates this point is that of

an automated personal shopping assistant following a person in a shopping mall or

keeping an eye on young kids while their parents are shopping. The shopping mall
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is an example of a highly dynamic environment with people walking around and

creating obstruction and occlusion for the tracking robot. The standard problem of

motion planning [1] now has to take motion and visibility constraints into account.

While the layout of the environment might be available in some cases, exact maps

useful for localizing the robot are hardly provided. Moreover, the target can be

completely unpredictable in moving from one shop to another. Following and keeping

the target in view in such scenarios require intelligent positioning amid dynamic

obstacles making it a significantly challenging task.

The focus of this Ph.D research is to generate motion strategies to keep a tar-

get in view in unknown and dynamic environments. Although non-adversarial, the

target’s motion is rarely known completely. Without a-priori knowledge, the robot

has only the local information about the environment and target motion provided by

the on-board sensors. This local information is used to compute a motion plan that

keeps the target in the tracker’s view while planning to avoid future occlusions. The

problem becomes becomes more severe especially in a dynamic environment, where

such a motion plan has to be adapted to the changing situations quickly. Moreover,

hardware limitations in sensing, mobility and operational requirements have to be

satisfied while planning the robot’s motion. This thesis introduces a fast local online

algorithm to maximize the duration for keeping the target in view in an unknown

and dynamic environment. A general tracking framework is presented that integrates

various sensing, mobility, and planning limitations into the primary task of keeping

the target in view.
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1.1 Scope of the thesis

Target tracking is a complex task involving many aspects of sensing, planning and

execution. Mobile target tracking can be broken down into two major sub-tasks :

Target Detection and Target Following.

Target detection refers to identification and localization of the target in the envi-

ronment. Target identification deals with extracting the target signatures from the

raw sensory data. Such a step becomes crucial in the presence of noisy data to reduce

the probability of false positives and false negatives. Although the target has been

identified, its state may not be known accurately due to noisy data. Many applications

require the target’s location to be known very precisely, e.g. in missile interception

just knowing that a missile is present is not sufficient. Its location, heading, speed

must all be computed very precisely to intercept it. Depending on the available sensor

modality and its corresponding error characteristics, the target localization problem

can become quite daunting. In this thesis, there is only one target and a robust target

detection and localization module is assumed. Also the target is visible and identified

at the start. In the absence of such an assumption, any target search algorithm can

be utilized to locate the target.

While a target can be detected and monitored by a network of sensors, a single

mobile sensor can effectively do the job. With a mobile sensor the tracker can follow

the target to keep it in view even when it is moving away. Target following problem

refers to planning the tracker’s motion such that the target is kept within the tracker’s

view. Target detection and target following are complementary problems. For a

moving target, the detection module provides the target’s information to the target

following module. While the target following module generates motions strategies to
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ensure that the target is within the sensor’s range for the detection module to locate

and monitor the target in the next step. A smart target following algorithm can help

simplify and improve the target detection and monitoring performance. This thesis

focuses on the task of planning the motion strategies both for 2-D and 3-D to reliably

follow the moving target and keep it in view.

The environment plays a crucial role in the tracking performance. Objects in the

environment can limit the tracker’s visibility and mobility. If the map is given, the

tracker can perform offline computations for optimal actions at different locations.

Depending on the complexity of the environment a single tracker may not be guaran-

teed to track an evasive target. In many cases the target’s motion or the environment

might not be known a-priori making the problem harder. One way to address the

unknown environment is to build a map online and keep optimizing the tracker’s ac-

tions with respect to this partial map. However, this aids in tracking only when the

environment is bounded and the target visits the same locations often. For a large

environment, this approach runs into the problem of space and computational limi-

tations, especially on an embedded system with limited memory. Moreover, dynamic

environments cannot be handled in this manner.

This thesis approaches the problem of dynamic unknown environments by building

a simple polygonal local map of the environment. An objective function called risk is

formulated. This risk encodes the danger of losing sight of the target from the local

visibility in this environmental model. A tracking motion which minimizes this risk

gives the local optimal action at each time step. At each step, the environmental

model is recomputed along with the risk function and the optimal action. Dynamic
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environments can be handled in this quasi static manner as long as the sensing cycle

runs at a much higher rate than the rate of changes in the environment.

Apart from environmental obstructions the tracking robot’s own physical limita-

tions on sensing (sensor range, field of view (FoV), sensor noise, etc.) and mobility

(non-holonomic constraints, maximum speed, etc.) can lower the tracking perfor-

mance. In addition, there might exist operational limitations of safe navigation and

obstacle avoidance. For instance, in a human environment, the human must be given

higher preference and losing a target is acceptable in light of colliding with another

human. Such constraints need to be included in the motion planning of the trackers.

This thesis presents a generalized tracking framework based on a local greedy

optimization in which these limitations can be formulated as tracking constraints.

Planning under such an integrated framework generates suitable motion paths to

keep the target in view under unknown and dynamic environments.

1.2 Main Results

A list of the main results of the thesis are highlighted below:

A general tracking framework is proposed for tracking a target in an unknown

and dynamic environment both in 2-D and 3-D, using only local information

from its on-board visibility sensors. An online algorithm is presented in which

a suitably chosen risk function is optimized to maximize the time for which

the target is visible amid visual and mobility limitations. In general additional

mission requirements like stealth and localization could also be imposed on the

tracking problem. Implementing the algorithm on a tracking robot in real world

which would require dealing with hardware limitations in sensing (limited range,
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FoV), in mobility ( bounded speed, non-holonomic constraints) and operational

restrictions ( keeping a minimum distance from people walking around). The

framework handles all these by formulating these limitations into planning con-

straints. Such a framework is utilized in implementing the tracking algorithm

on a real tracking robot to show the effectiveness of the approach. The tracking

robot was able to successfully follow a person in a crowded school cafeteria using

our constrained local planning approach.

Relative vantage based tracking approach This thesis introduces the concept

of relative vantage in target tracking. In the absence of a map of the environment

and a target whose motion is unknown, the most popular tracking strategy is

to move towards the target [2] or maximize the shortest distance of the target’s

escape (SDE) from the tracker’s visibility, [3]. But these approaches do not

capture the essence of the tracking problem completely. This thesis provides

a more principled approach to identify the main components of the tracking

problem: the target position, its velocity or heading and the tracker’s position

w.r.t. the target in the tracker’s visibility. Prior work does not consider the

relative positioning of the target and the tracker in tracking.

In the proposed approach, the local environment and the relative position and

velocity of the tracker and the target is analyzed, and the tracker is continuously

positioned towards a strategic location that reduces the chances of losing the

target from its view, both in the immediate step and in the future. Experiments

show improvement in tracking performance of the proposed vantage tracker as

compared to the previous methods such as simple visual servo or those that
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maximize SDE. In the absence of any obstacles, standard visual servo tracking

can be seen as a special case of the proposed tracking strategy.

2-D Vantage Tracker Based on the concept of relative vantage, a fast, online, lo-

cal greedy 2-D vantage tracker is developed. The risk of losing the target is

developed into an analytical function based on the line of sight visibility model

and a simplified linear motion model. At each step a local plan is generated

to minimize the risk of losing the target given the local information knowledge

and relative position. A greedy step is taken along the plan generated and the

whole thing is recomputed. By approximating the risk measure into a simple

analytic form, we are able to run the tracking algorithm at a high frequency.

Re-planning at a high rate helps the tracker treat the dynamic environment as

a quasi-static environment and is robust to moving obstacles and occlusions.

As no a-priori information is assumed, only locally sensed information is used

for tracking. All computations and decisions are made w.r.t. the local en-

vironment as sensed by the tracker’s sensors. This helps avoid the difficulty

of robot localization, making it flexible enough to perform in quite complex

and unbounded environment without incurring additional computation cost or

planning errors. Local re-planning at a high rate bounds the errors in sensing,

motion and planning, and the errors do not accumulate.

This local planning approach bypasses the complexity of global planning ap-

proaches, while providing more intelligent tracking behaviors than purely reac-

tive approaches.

7



3-D Vantage Tracker A 3-D vantage tracker is developed by formulating the con-

cept of relative vantage in a 3-D environment with 3-D visibility model. The

additional dimension available to both the target and the tracker, increases

the complexity of the problem. A similar approach of local greedy planning

keeps the tracking tractable even in complex unknown environments. Results

in simulation show interesting behaviors where the tracker exploits the vertical

dimension to improve the tracking performance. To the best of our knowl-

edge, such an online tracking algorithm in 3-D for unknown environment and

unknown target is among the first to be proposed.

Stealth Tracker In keeping with the general tracking framework discussed above, a

tracking algorithm is developed in 2-D by formulating the stealth objective for

visibility based sensors. For a line of sight visibility model, visual tracking and

stealth are opposing criteria. The opposing requirements are satisfied by the

proposed stealth algorithm. A novel stealth tracking algorithm handles these

opposing requirements by restricting the motion of the tracker to the target’s

visibility limits. Simulation results show successful stealth behavior of such a

tracker in various environments.

1.3 Thesis Outline

The thesis layout is as follows. Chapter 2 covers the prior work done in target

tracking problem.

Chapter 3 introduces the tracking approach that is general to both 2-D and 3-D

environments. Specific formulation of the tracking objective function is developed

for 2-D. Qualitative and quantitative results are shown in simulation. Also control
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experiments in simulation are presented to compare the tracker with existing trackers.

Hardware implementation and results are shown to demonstrate the performance of

the algorithm in the real world.

Chapter 4 introduces the stealth tracker which follows the target while trying to

stay out of sight of the target.

Chapter 5 extends the target following problem to 3-D. A formulation of track-

ing objective function is developed for 3-D environments. The additional dimension

introduces additional considerations into the target following problem. This chapter

tries to address these concerns and extends the implementation of vantage tracker

into 3-D. Simulation results and performance are addressed.

Finally, we conclude the thesis and discuss future work in chapter 6.
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CHAPTER 2

LITERATURE REVIEW

The target tracking problem consists of two complementary sub problems Target

detection and Target following. Target detection deals with identifying and local-

izing the target from a set of noisy sensor data; while target following deals with

planning motion strategies for keeping a moving target in view. While the target

detection problem has received significant attention in the research community, the

target following is becoming more popular in light of intelligent personal robotics.

The target detection problem has been studied extensively in sensor fusion, sig-

nal processing and computer vision communities where the term target tracking is

synonymous with target detection. Classic examples in signal processing commu-

nity refer to the application in radar based object detection [4, 5, 6] especially using

Kalman filters. Such approaches have been used for detecting people [7]. Particle

filters have been applied for detecting a single target in [8, 9] and [10]. Probabilistic

data association (PDA) filter has been used in cluttered environments [11, 9]. For

handling multiple targets, data association algorithms such as joint probability data

association filters (JPDAF), multiple hypothesis tracking (MHT) is popular. JPDAF

was used in [12, 9]. Recently, sample based JPDAF has been used in indoor envi-

ronments to detect people [13]. In [14] the application of MHT for target tracking is
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shown, while an efficient implementation was proposed in [15, 16, 17]. The problem

of detecting within a stream of images has also been extensively addressed by the

computer vision community [18, 19, 20].

Classically the work in target detection deals with open spaces, e.g. detection of

missiles or aircrafts [4, 5, 6]. However, occlusion plays an important role in visibility

based tracking and has been addressed in recent years. The effect of occlusions in

target detection has been addressed explicitly both for vision [21, 22, 23], laser sensors

[7, 17, 24] and a combination of both [25]. The authors in [22] propose a robust

target detection scheme in presence of occlusions, where the occlusions are detected

using infrared and a target template is searched in the scene by removing the pixels

corresponding to the occluding object. In [7, 26, 23, 17, 24, 27] human legs are tracked

in spite of occlusions by mobile objects and other humans using bayesian inference. In

all the above mentioned work, occlusions are handled in a passive manner to improve

the detection of the target. Our approach involves actively avoiding the states where

occlusions might hinder detecting the target.

The focus of the thesis is on motion strategies for target following and a simplified

target detection approach is adopted for implementing the robot tracker. The sensor

data is segmented and a simple nearest neighbor cluster matching is performed to keep

track of the target that is initialized at the start. An algorithm running at a high rate

exploits the temporal continuity to successfully detect the target. Since a new target

position is computed for each time step without maintaining an elaborate history

of its motion, errors in target detection and target localization do not accumulate.

Motion planning that actively avoids occlusions and improves the target’s view at

each step enables us to get away with such a simple detection scheme.
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Figure 2.1. Depending on the information available about the target and the environment,
the tracking approaches differ. This thesis focuses on tracking an unknown target in an
unknown environment.

2.1 Motion Strategies in target tracking

The type of motion strategies used for target tracking depends on the amount of

information about the environment and the target available to the tracker. A simple

layout of various approaches is shown with respect to the information available to the

tracker in Figure 2.1. For example in a completely known environment with known

target trajectories, the tracker has the liberty to precompute the motion decisions

offline. This allows for the use of computationally extensive approaches to finalize

motion strategies with some notion of optimality, e.g., in terms of distance traveled

by the tracker, the number of steps for which the target is visible throughout its

trajectory, among other criteria. Such sanitized environments are usually restricted
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to industrial robotics. The availability of the map of the environment is more com-

mon than the complete knowledge of the target trajectory. In such partial a-priori

knowledge scenarios, some amount of subcomputation could still be done on environ-

mental features, e.g., layout topology (multiple pathways available for navigation) or

spatial expansiveness (classifying regions as corridors, rooms) etc.. Clearly, such an

analysis of the environment would help the tracker compute motion strategies that

are globally efficient. Our focus in this thesis is motion planning for an unknown and

dynamic environment, where there is no a-priori information and our tracker has to

utilize local information. We review well known approaches for tracking with com-

plete and partial a-priori knowledge about the environment and the target motion for

completeness.

Complete Information If both the environment and the target trajectory are

completely known, optimal tracking strategies can be computed by dynamic pro-

gramming [28] or by piecing together certain canonical curves [29], though usually at

a high computational cost. An offline approach is suitable for such scenarios where

the focus is in generating optimal paths. In [28], the tracking states are discretized

and for a valid set of trajectories, validity ensured by the target’s visibility; dynamic

programming is used to minimize a loss function that represents a combination of the

motion costs and a penalty when the target is not visible. Geometrical computations

are applied in [29] to compute a trajectory for the tracker as a combination of straight

line and leaning curves when the line of sight between the target and the tracker piv-

ots around an obstacle vertex. From a family of trajectories an optimal path is chosen

for the tracker that maximizes the time for which the target is visible or minimizes
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the time for capturing the target depending whether the the target is going to be lost

in the future. The strong assumption of the known target’s trajectory in addition

to the complete tracking environment restricts the application of such approaches to

controlled environments.

Partial Information While the environmental information is more readily avail-

able, the assumption about the target motion is quite limiting in most circumstances.

With the knowledge of the environment, however, the tracker can preprocess to de-

termine regions critical to target tracking. The framework of the pursuit-evasion

problem proposed in [30, 31] closely resembles the tracking problem. The objective

is to search for an unpredictable target in a given environment using single or multiple

trackers. Pursuit evasion has been studied in graphical environments [30], polygonal

environments [32, 33, 34], curved environments [35] and also in higher dimensions

[36, 37, 38]. Pursuit evasion has also been addressed with constraints in visibility

[39, 40] and mobility [41].

While the above techniques used in pursuit evasion focuses on finding or captur-

ing the target, analysing critical visibility events from the known environment could

help in keeping the target in view once it has been found. One can preprocess the

environment by decomposing it into cells separated by critical curves, [42, 43, 44].

The objective is to apply a cell decomposition of the configuration space and the

workspace to compute escapable cells. Once such regions are defined, the motion

strategies can be precomputed and a guarantee on tracking made. The decomposi-

tion helps to identify the best tracker action as well as to decide the feasibility of

tracking [45, 46]. In such scenarios, the problem of target tracking has been analyzed
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at a fixed distance between the pursuer and evader [43], while in [44] a target tracking

problem is analyzed with delay in sensing. In [47, 48], a shortest distance of escape

(SDE) from the tracker’s visibility is minimized for an unpredictable target, both for

single and multiple trackers. The problem of keeping a point of interest in view by

a limited field of view visual sensor has been addressed in [49, 50, 51] using a robot

with non-holonomic constraints. A region based cellular decomposition is proposed

in [52] for tracking multiple targets using multiple robots. Depending on the number

of targets and the available robots a coarse deployment strategy is applied to the

robots. At the individual level, the robots try to move towards the centroid of visible

targets to maximize target surveillance. The choice of optimal motion direction can

be done either in a deterministic manner [43, 28, 3], or by using randomized sampling

strategies [48, 47, 53, 54]. A local visibility based pursuit evasion in a graph using

randomized strategy is shown in [55]. For a partially known target motion models

in a known environment, the target searching and target following problem can be

integrated amid uncertain sensing and positioning information as a partially observ-

able Markov decision process (POMDP) [56], which can then be solved to generate

tracker actions.

A-priori information about the environment and the target helps in precomputing

critical tracking scenarios. The tracker can execute smarter strategies exploiting the

layout information to improve the tracking performance and to regain the target

once it is lost from sight. In general such information is not always readily available.

Moreover, too much dependence on a-priori information can be detrimental when

such an information is outdated or faulty. Furthermore, before the tracker is able
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to utilize the information about the environment, it has to perform self localization.

Localization itself presents a difficult problem in a dynamic environment.

Local Information Lack of information can be addressed in two ways. Firstly, to

collect and build a global model the environment while tracking and compute motion

strategies based on this global (although incomplete) map. Secondly, to plan based

on the local information collected at each step.

The former approach is utilized in [57, 58] for pursuit evasion in unknown envi-

ronments, where a two step approach is proposed, exploration: that involves mapping

out the environment first using critical visibility events, and envisioning : where this

mapped environment is searched in the information space encoded by the visibility

events. This approach fails for unbounded environments, where complete mapping is

not possible. For such situations the tracker has to rely on locally sensed information,

the second approach as mentioned before.

One of the popular approaches for local reactive tracker is to combine vision and

control in following the target, [59, 60, 2, 61, 62]. This has been referred to as Visual

Servoing. The focus is to move closer to the target in order to improve the target’s

surveillance. In an unknown and unstructured environment, bayesian robot program-

ming is proposed in [63], where significant information compression is possible by

de-coupling motion and sensor processing. A Koala robot mounted with Pan/Tilt

mechanism was shown to work successfully using a set of motion behaviors. Priors

are defined based on the intuition that the robot should avoid obstacles when close to

objects and track when far from the target. Motion to a desired goal position using

visual servo is shown in [64] that uses a single camera using motion to disambiguate

16



depth. [60] uses the optical flow to compute the displacements and a discrete steady

state Kalman Filter to generate the motion control. The success in robust control

is attributed to the computation of the states w.r.t. the local coordinates. Vision

based tracking has been attempted for various kinds of targets, for example jellyfish

in a marine environment [65] and people in office environment [66, 67]. Laser based

approaches in people following have become popular in recent years. [27] models a

person’s gait by tracking both the legs in a simplified lab environment. Following

the person of interest has been coupled with obstacle avoidance in a crowd in [68],

while [25] combines both laser and camera for tracking robustly in outdoor and un-

structured environments. Following a vehicle in forested roads has been shown in

[69].

While visual servo based tracking algorithms are simple and easy to implement,

it does not explicitly encode any information about the environment. Due to this

it fails to react to impending occlusions and motion obstructions. We compare our

algorithm with a simplified version of the servo tracker that minimizes its distance to

the target.

In an ideal situation, the tracker should be aware of the current scene and perform

intelligent tracking, by staying away from oncoming people and not block a door

or passageway [70]. However, as mentioned earlier, such a tracker requires prior

knowledge of the environment. Our goal is to generate such intelligent behavior using

only local information. We adopt the approach of active sensing [71], that plans

the motion strategy to compensate for and avoid occlusions. Notable work in this

category is [3, 72] which builds a map based on its local visibility. The target can

escape through the boundary of this visibility. Based on this map, escape paths
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that the target might take to escape from the tracker’s visibility are computed. A

data structure called escape path trees (EPT) is proposed that contains the shortest

distance to escape (SDE) of the target to each escapable boundary of the tracker’s

visibility. An objective function, risk, which carries the intuition of the risk of target’s

escape from the tracker’s visibility is formulated based on local parameters of the EPT.

The tracker chooses its actions to minimize this risk. The escape paths encode the

information of the target’s position w.r.t. the current scene, and hence the tracker is

able to keep the target in view better than visual servo controllers. This work however,

does not consider the relative position of the target and the tracker, which plays a

crucial part in determining the risk. We follow a similar risk based approach in target

tracking, but propose an improved risk function that includes the relative positioning

and show that this improves the tracking performance. We have implemented a

version of the above mentioned tracker [3] and shall provide comparisons with our

algorithm in chapter 3.

Many applications require additional objectives to be fulfilled while tracking, e.g.

maintaining stealth [73, 74, 75, 76], improving localization [77], mapping the envi-

ronment [26], human posture recognition [78] etc. We present a general tracking

framework that integrates hardware limitations and these mission constraints into the

problem of keeping the target in view.

2.2 3-D Tracking

While a lot of attention has been given to tracking problem in 2-D, there has

been little work on the 3-D tracking problem. One reason is that the 3-D visibility

relationships are significantly more complex than their 2-D counterparts. Although
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there are data structures for maintaining visibility relationships globally, e.g., aspect

graphs [79] and visibility complexes [80], processing all the critical visibility events

efficiently in a 3-D environment is a difficult task. The work of Lazebnik tries to

characterize and process these visibility events for a visibility-based pursuit-evasion

problem [36]. It decomposes the space into conservative cells using a strategy similar

to that proposed in [32]. In principle, it is possible to develop a tracking algorithm

based on such a global visibility analysis, but to the best of our knowledge, such an

algorithm has not yet been developed.

The existing algorithms on 3-D tracking and navigation mostly rely on visual

servo control [81, 82]. Visual 3-D target tracking has been applied to underwater [65]

and ground targets [83, 84] as well as aerial vehicles. The focus in aerial tracking

has been in the development of control strategies to address flight limitations of

aerial vehicles while trying to maintain a predesigned distance to a ground target

[85, 86, 87]. Aerial tracking of target aircrafts have been addressed using camera [88]

and radars [89]. Feature tracking and visual servo based navigation schemes in urban

area have been explored in [81], while tracking and landing on a moving vehicle has

been demonstrated successfully in [90]. While these approaches are able to control

a team of unmanned aerial and ground vehicles for target tracking in a probabilistic

game framework [82], they fail take into account the effect of visual occlusion by

obstacles.

We follow a similar tracking approach to the 2-D tracking. A local map is com-

puted based on the local 3-D visibility. The target’s escape through the occlusions

in this visibility is addressed and a motion plan is generated that minimizes the

possibility of the target’s escape. Interesting behaviors like increasing the altitude
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are automatically generated by exploiting the additional dimension while tracking.

This is an improvement to approaches like [87], where such vertical behaviors are

programmed and triggered based on preset criterion. Such pre-programming is not

possible in general environments.

For both 2-D and 3-D unknown and dynamic environments, our tracker plans its

motion based on local information to avoid visual occlusions while keep the target

in view. In planning under a local map and using a one step greedy approach, our

tracker can perform better than visual servo based approaches that do not account

for environmental occlusions. The local focus of the algorithm makes it tractable in

a complex and dynamic environment where complete planning may not be feasible.
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CHAPTER 3

MOTION STRATEGIES: 2-D

Target tracking in an unknown and dynamic environment is challenging. In order

to keep the target in view, the tracker must plan its motion using only local infor-

mation. Objects in the environment create visibility and mobility constraints during

tracking. Additional requirements like localization, mapping, stealth etc., might be

imposed on top of the basic tracking behavior making the problem even more difficult.

In this chapter, we present a general framework for target tracking in unknown and

dynamic environments among such conditions. An objective function, risk, is devel-

oped for both 2-D and 3-D environments, that encodes the danger of losing the target

from sight. A tracking algorithm is proposed that minimizes it in the local context

satisfying the physical and mission constraints. Such an algorithm is formalized in

2-D and a real tracking robot is built that successfully follows a person in a crowded

school cafeteria. The 3-D algorithm developed on the same principles is addressed in

Chapter 5.

3.1 Problem Formulation

Let us introduce the approach using a simple abstract Euclidean worldW contain-

ing rigid obstacles. The tracker (R) and the target (T ) are assumed point objects in

W . Irrespective of the context, either 2-D (W = <2) or 3-D tracking (W = <3), the
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concepts developed are the same. The tracker does not have any information about

the environment (W) or about the motion of the target apart from what it can sense

locally. The tracker has to keep the target in view using visibility based sensors.

3.1.1 Visibility Model

We use the standard straight-line of sight visibility model for the tracker’s sensor.

Let F denote the subset of W not occupied by obstacles. The target is visible to the

tracker if the line of sight between them is free of obstacles, and the distance between

them is less than Dmax, the maximum sensor range. The visibility set V(x) of the

tracker at position x consists of all the points q in F , such that the interior of the line

segment from x to q (xq), does not intersect with the boundary of the environment.

V(x) = {q ∈ F | xq ⊂ F and dist(x,q) ≤ Dmax},

where dist(x,q) denotes the distance between x and q. If the sensor has a minimum

range Dmin, we can impose the additional constraint dist(x,q) ≥ Dmin. Also most of

the visibility sensors have field of view (FoV) limitations, e.g a 2-D sicklms-200 laser

range finder has a FoV of [−90, 90] in the horizontal plane, while a 3-D Velodyne

HDL-64E range sensor has FoV of [−26, 2] in the vertical plane. Such a limitation

can be modeled by adding an additional constraint of the visibility to be bounded by

[θmin, θmax] for each FoV limit. In the following, the visibility set is always taken with

respect to the current tracker position, so we omit the argument x. On real robot

trackers, the visibility region is obtained by processing sensor data. In simulation, the

visibility region can be computed with a rotational plane sweep algorithm [91]. Either

way, after processing, the visibility region V is represented as a generalized-polygon.
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Figure 3.1. The visibility models for line of sight in 2-D, 3-D polygonal environment.

Environment representation There is no explicit representation or map of the

environment maintained by the tracker. The boundary of V , ∂V , essentially encodes

the locally sensed environment. ∂V(x) constitutes of points on the obstacles bound-

aries, B(x), and points in free space boundaries. B(x) can be extracted from the

sensor readings not on the sensing limits.

B(x) = {q ∈ ∂V | dist(x,q) 6= Dmax}

As before, we drop x, with the understanding that the parameters are defined for the

tracker position.

Escape Gaps Any portion of ∂V lying in F can be used by the target to exit

the tracker’s visibility. Due to this they play a central role in planning the tracking

strategy. We define them as Escape Gaps. Escape gaps (G), are of three types,

1. Occlusion gaps : generated when the line of sight is obstructed by an obstacle,
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2. FoV gaps : gaps due to the field of view limits of the sensor,

3. Range gaps : gaps due to the range limitation on the sensor.

The tracker’s visibility along with escape gaps, is shown in Figure 3.1 for 2-D and

3-D. In 2-D, escape gaps are curvilinear edges, while in 3-D they take the form of

curvilinear surfaces.

The tracker’s motion is modeled with a simple discrete-time transition equation.

Let x(t) denote the position of the tracker at time t. If it chooses a velocity v(t) at

time t, its new position x(t+ 1) after a fixed time interval ∆t is given by

x(t+ 1) = x(t) + v(t)∆t

Here, we implicitly assume that sensing occurs every ∆t time and that v(t) is constant

during this time. This discrete model is effective as long as ∆t remains small. As we

will see, our tracking strategy is very efficient and runs at the rate of 10Hz, sufficient

for keeping ∆t small in many common tasks. We define a region that can be reached

by the target from its current position in ∆t as a Reachable Region (R).

In the following discussion, for the sake of simplicity the tracker is assumed to

have a velocity bound V , but has no other kinematic or dynamic constraints. Hence,

in one time step, it can reach anywhere inside a N-spherical region, with center x(t)

and radius V∆t, unless it is obstructed by obstacles.

3.1.2 Motion Model: Target

The target’s motion is unknown, but has velocity bound V ′. We are interested

in cases when V ≥ V ′. Otherwise, the target can easily escape by running straight

ahead with maximum velocity and the tracking problem is uninteresting. Predicting
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Figure 3.2. Predicting a target’s next step.

the target’s next step, or equivalently its current velocity, can be done in many ways.

While complex algorithms like hidden Markov models (HMM) [92] or artificial neural

networks (ANN) [93, 94] might predict the motion patterns more accurately, they

usually require more information about the target and the environment or have to

maintain a significant history.

We choose a simple model based on the target’s current heading. Biasing the

target’s motion on its heading is based on the intuition that although the target moves

in an unknown fashion, its heading gives a fair idea of the target’s next step. The

target’s heading is extrapolated based on target’s current and previous positions. For

example, the two previous positions can be used together with the current position to

fit a quadratic trajectory and estimate the heading. This crude model is surprisingly

robust in practice for small ∆t.
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An estimate of the target’s heading is represented by a Gaussian distribution

N (mean, var), and its current heading mean bounded with a span (var) of proba-

bilistic heading. In general the span can be 360deg.

x′(t+ 1) = x′(t) + w(t)∆t

w(t) ∼ N (v′(t), σ2)

where σ gives the measure of confidence in estimating the target’s heading. In the

absence of a-priori knowledge, σ can be set arbitrarily high and with a better target

model or by learning the motion model [95], σ can be reduced subsequently.

Although we predict the motion of the target from its heading, in the absence of

heading information, other approaches like modeling the target motion by Brownian

motion models could also be applied in general. In fact, during our implementation

of following a person (discussed later in this chapter), a simple laser scan is unable to

disambiguate the target’s heading and we model the target’s next step by a circular

bound about its current position.

3.1.3 Problem Statement

The tracking problem can then be described formally as : For the current tracker

position, x (t) and target position x′ (t), find an action v (t), such that x(t + 1) =

v(t)∆t ∈ R and x′(t+ 1) ∈ V(x(t+ 1)) for as long as possible.

3.2 Overview of Tracking Approach

For unknown and dynamic environments, we propose a general tracking framework

that provides a mechanism to integrate various sensing, mobility and operational

limitations while trying to keep the target in view for as long as possible.
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In a dynamic and unknown environment, a fast online tracking algorithm is re-

quired that can quickly adapt to the changing environment. Due to a lack of prior

information, such an algorithm has to utilize local information from the on-board

sensors in order to plan its motion. Objects in the environment can obstruct the line

of sight to create visibility occlusions. Sensor limitations, like field of view (FoV),

further reduce the region visible to the tracker and increases the chances of the tar-

get’s moving out of the tracker’s view. While the goal of the tracker is to keep the

target in its visibility, V , for as long as possible, the boundary of the visibility, ∂V ,

has a number of escape gaps, G, through which the target may escape. We propose

a scalar function Risk(Φ), that tries to capture the danger of losing the target from

V through these escape gaps. Φ is formulated based on the geometric parameters

extracted from its local visibility, e.g. the tracker and target position, their relative

velocities and distance from the escape gaps. Φ is an aggregated measure due to

all the individual escape gaps. Since V and hence the escape gaps, depend on the

tracker’s current position, the tracker can choose its actions v(t), for each time step,

such that the escape gaps are moved away from the target in an intelligent manner

and Φ is minimized. Let v? be the optimal action that minimizes Φ,

v? = arg min
v

[Φ]

The choice of v?, however, has to satisfy the tracker motion model, i.e. non-

holonomic limitations, maximum velocity bound etc.. Some velocities that lead to

collision with obstacles are also not feasible. In addition, there might be operational

restrictions on the positions that the tracker may be allowed to take, e.g. the tracker

might have to maintain a minimum distance from all humans etc. Each of these

limitations on the tracker’s mobility can be represented by individual constraints,
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Ci. These constraints can be combined with the tracker’s reachability region R in

position space. We define a feasible region, L (x),

L(x) = R−⋂
i

Ci

Our approach of target tracking among unknown and dynamic environments is

thus cast as a local greedy optimization problem of choosing an action v?, that min-

imizes Φ while constraining the tracker in L for the time step ∆t,

v? = arg min
v

[Φ] s.t. v?∆t ∈ L (3.1)

3.3 Tracking Risk

Factors affecting the risk In the following we try to understand what factors

influence the notion of the risk of losing the target. For simplicity and clarity in

depiction we choose an example from 2-D. In general a similar case can be made in
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3-D. In the following discussion we give an intuition using 2-D examples while the

discussion and concepts are developed independently of the dimensionality.

Let us take a look at a simple case of a single escape gap, G in Figure 3.3. The

target, T , tries to escape the tracker visibility, V , by escaping through the gap,

G. Clearly the risk of losing the target from V , depends on the target’s distance to

G. The closer the target is to the gap, the easier it is for the target to escape. In

(Figure 3.3a) due to its proximity to G, T1 can be perceived to pose a higher risk to

the tracker than T2. Additionally, the target’s heading also influences the notion of

risk of losing the target. In (Figure 3.3b), both T1 and T2 are at the same distance

from G. However, the consideration of the their relative velocity towards G puts T1

at a higher risk than T2. The risk also depends on the current position of the tracker.

In Figure 3.3c, R1 being closer to the obstacle, is able to swing G away from the

target more effectively than R2. This means that at R1 the tracker is at a lower risk

of losing the target than at R2 because it can manipulate the escape gap away from

the target in a more effective manner.

Current risk vs Future risk The tracker has to plan its actions (in this context

its motion) such that it is able to minimize this risk. As seen in Figure 3.3, swinging

G counterclockwise away from the target can minimize the risk due to the target’s

position and its relative velocity to G. Such a swinging action decreases the immediate

danger of losing the target, which we refer to as current risk. However, we notice that

if the tracker were to move from R2 towards R1, it would be able to swing better in

the future and even eliminate G by reaching Ov, thereby lowering the risk of losing

the target in the future, future risk, much more effectively. However, the current risk
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remains unchanged or might even increase if the target moves closer to G while the

tracker is moving from R2 to R1. This poses the tracker with the dilemma of choosing

actions to balance decreasing the current risk vs the future risk. Given the limited

sensing and unknown dynamic environment, such a choice is not trivial.

Relative Vantage We propose the concept of relative vantage with respect to a

given gap, to encode this dilemma of current vs future into a single objective. Relative

vantage refers to the tracker having a strategically better position compared to the

target. Instead of worrying about the short-long term dilemma, the tracker only has

to consider keeping itself in a position that has a better relative vantage. As long as

there is a guarantee that attaining such a relative vantage will ensure tracking success

in the present and the future, the tracker’s primary objective should be to plan for

attaining such a vantage position. This idea follows from the simple intuition that

the risk of losing the target is low, both in the short term and long term, if the tracker

has a strategically superior position.

Let us take a simple example to illustrate the concept of relative vantage. The

target and the tracker are in a convex room with a single exit as shown in Figure 3.4.

Let us also assume that the tracker’s visibility covers the entire room. The target is

trying to escape through the exit in the room and the tracker is trying to prevent

it from escaping by closing the door. Assuming the same maximum velocities of the

target and the tracker, we see that the tracker at R being closer than T1 can reach the

exit faster. In this case there is at least one action, that of moving straight towards

the exit, which will guarantee preventing T1’s exit. In this case we say that R has a

better strategic position w.r.t. T1. Clearly, this is not true for T2. The position of
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over T1, and not w.r.t. T2

the tracker R w.r.t. the exit partitions the space into dangerous and safe regions in

light of the target’s ability to escape.

Danger zone In the context of local target tracking, the escape gaps represent

the exit. The tracker can prevent the target’s escape by reaching and eliminating G.

This gives a similar partition around each gap into regions of safety and danger. We

say that all positions of the tracker, from where the tracker can eliminate G before

the target can escape through it, are strategically superior positions and hence have

relative vantage over the target.

Such a partition of V is shown in Figure 3.5a. The green shaded area depicts the

region where the tracker does not have a relative vantage over the target. We call

this region as danger zone, D. As long as the target is outside the region D, the

target is guaranteed not to be able to escape. The proof is shown in Section 3.4.1.
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Figure 3.5. Danger zone, D defined for an occlusion edge G, (η = 1). The target is inside
D and so the tracker does not have a relative vantage to the target.

Mathematically,

D = {q : q ∈ V∧ time(q,G) < time(R,G)} (3.2)

where time(q,G) denotes the time taken by a target at position q to reach G, and

time(R,G) for the tracker to reach G. If both the target and the tracker take the

shortest path to G, the condition becomes,

time(q,G) < time(x,G)

dist(q,G) < η dist(R,G)

where η is the ratio of the maximum velocity of the target to the tracker, η = V ′/V .

We draw D for various η in Figure 3.5b. In this Chapter and later, we use η = 1

without loss of generality.

The target must first enter D before it can escape through G. As long as the

tracker is able to manipulate D such that the target remains outside, the target
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cannot reach G and the tracking is guaranteed. The objective of keeping the target

outside D resolves the dilemma of minimizing the current risk vs the future risk. The

basis of our tracking approach is to always try to keep the target outside D and the

time taken by the tracker to manipulate D to bring the target outside gives a measure

of the tracking risk (ϕ).

Vantage time The primary risk factors, i.e. the target position, the target heading

and the tracker position, can all be incorporated into the term called vantage time

(tr.v). When the target is inside D, tr.v gives the measure of time to move the target

to the boundary of D.

Mathematically,

Dist(T ,D) =
∫ tr.v

0
Veff (T ,D)dt (3.3)

where Dist(T ,D) gives the distance of the target from the boundary of D. The

distance is positive when the target is inside and negative when outside. Negative

values of ϕ are not interesting since the target is guaranteed not to escape when

it is outside. Veff (T ,D) denotes the relative velocity with which ∂D approaches

the target inside D. The velocity of ∂D can be computed from the velocity of a

representative point on the ∂D. Computing tr.v from Equation 3.3 in its exact form

requires the knowledge of the target motion. This is not available for most targets.

We approximate this equation by Equation 3.4, extrapolating the current velocity of

the target for ∆t:

tr.v ≈ Dist(T ,D)

Veff (T ,D)
= ϕ (3.4)
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Such an approximation does not introduce a large error as the algorithm recom-

putes this value at a high rate by keeping ∆t small. We use the approximated vantage

time, tr.v, as the measure of risk (ϕ) of losing the target. The risk is positive when

the target is inside D and negative outside. Negative risk just denotes that the target

is safely in view.

Escape time Range gaps and FoV gaps are generated due to the sensor’s limitations

and remain fixed relative to the tracker’s frame. Hence the tracker’s motion affect

these gap. In such a situation, the definition of tr.v is redundant. We instead use

the escape time, tesc, which is defined as the measure of time taken for the target to

escape given the current position, velocity of the tracker and the target. Similar to

tr.v, tesc can be defined as,

Dist(T ,G) =
∫ tesc

0
Veff (T ,G)dt

tesc ≈ Dist(T ,G)

Veff (T ,G)
(3.5)

For range and FoV gaps, tesc is used as a measure of risk. However, tesc can be defined

for occlusion gaps too.

Vantage time vs Escape time tr.v gives a measure of how much time is required

by the tracker to attain relative vantage and tesc gives a measure of how much time the

tracker has before the target escapes. Note that tesc gives a measure of the current

risk alone where as tr.v gives a combined short-term vs long-term estimate of the

risk. In critical situations where the target is too close to the edge and losing it is

unavoidable, the tracker should maximize the remaining time for viewing the target

by maximizing tesc. This is achieved by optimizing tr.v conservatively for occlusion
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Figure 3.6. A 2-D tracking scenario.

gaps when tr.v < tesc, otherwise tesc is optimized. tesc is also optimized for FoV or

range gaps.

The concepts defined here, are independent of the dimensionality of the Euclidean

space they occupy. They can be used not only in 2-D tracking as shown in this

Chapter, but also in 3-D as will be shown in Chapter 5.

3.4 Computing risk analytically for 2-D

For the rest of the Chapter we will focus on 2-D tracking (Figure 3.6). A typical

tracking scenario of following a person in an office environment is shown in Figure 3.6a.

A geometrical abstraction is shown in Figure 3.6b. In the 2-D context the escape

gaps are actually curvilinear-linear edges. Let us now derive the expressions for

Equation 3.4 for a single escape edge. As mentioned earlier the target has to be

prevented from escaping through occlusion, range and FoV escape edges. Let us first
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consider the more interesting type of gap edges, occlusion edges. Let G represent an

occlusion edge.

3.4.1 Occlusion edges
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Figure 3.7. Calculating tr.v for occlusion edges. DN and DR are written outside D for
clarity, although they represent components of D.

To get an analytical formula for Equation 3.4 & Equation 3.5, let us define some

parameters as shown in Figure 3.7. Let Ov denote the obstacle vertex abutting G
(Figure 3.7). Based on the proximity to either the G or the Ov, we can divide the

region in D into DN and DR (Figure 3.7b).

DN = {q ∈ D|nearest(q,G) ∈ (G −Ov)}

DR = {q ∈ D|nearest(q,G) = Ov}

where nearest(q,G) computes the closest point on the G to q.

CASE I: DN Let e and r denote the shortest distance of the target and the tracker

from G respectively. r′ measures the distance from Ov to the foot of the perpendicular
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Figure 3.8. The effect of tracker motion on D.

dropped from the target to G. Assuming the target is inside D, the distance of the

target from the outer boundary of D is

Dist(T ,D) = r − e

As mentioned earlier, V and hence D depends on the tracker’s motion. We decompose

the tracker’s velocity (v) into components parallel (vr) and perpendicular (vn) to G.

Let P be a point on ∂D that is closest to the target. P has the highest relative

velocity of all points on ∂D towards the target. We shall choose P to compute our

estimated vantage time.

As shown in Figure 3.8, vr moves the tracker closer to Ov in Figure 3.8a. This

shrinks D towards G at the rate of vr providing an additional velocity of vr towards

the target. vn causes G to rotate about Ov with the angular velocity ω = vn/r. Acting

as a rigid body, D rotates with the same angular velocity. The angular velocity ω,

gives a linear velocity (vn(r/r′)) to P towards the target.
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Denoting the velocity component of the target along the shortest path to G, (v′e),

we get the relative velocity of D to the target as

Veff (T ,D) =
vn
r
r′ + vr − v′e

This gives the risk as

tr.v = ϕ =
Dist(T ,D)

Veff (T ,D)
=

r − e
vn
r r
′ + vr − v′e

(3.6)

The choice of vn and vr should be restricted to the condition where the D “gains”

on the target, (vnr
′ + vrr − v′er > 0). Moreover, as mentioned earlier, in order

to be conservative in our approach, this optimization should be constrained by the

condition, tr.v < tesc. We define tesc as

tesc =
Dist(T ,G)

Veff (T ,G)
=

e

v′e − vn
r r
′

The constraint then reduces to,

tesc − tr.v > 0

evr + vnr
′ − rv′e > 0

This makes the optimization as,

v?(vr, vn) = arg min
(vr,vn)

(
r − e

vn
r r
′ + vr − v′e

)
subject to |v?| < V

evr + vnr
′ − rv′e > 0

vnr
′ + vrr − v′er > 0 (3.7)

Hence, for a single gap edge G, target tracking reduces to minimizing the risk

function ϕ. Note that from Equation 3.6, assuming all other parameters constant,
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ϕ is a function of (vn and vr). Thus the action to minimize the local estimate of ϕ

would be to move along the negative gradient of ϕ computed with respect to vn and

vr:

−∇ϕ =
ϕ

veff

(
r′

r
n̂ + r̂

)
. (3.8)

In Equation 3.8, n̂ and r̂ are unit vectors in the tangential and radial directions

respectively, and veff = vr + vn(r′/r) − v′e is the effective velocity in the direction

along the shortest path from the target to G.

The tracker’s action v with respect to G is simply −∇ϕ. Equation 3.8 shows

that the direction of v is (1/
√
r2 + r′2)(r′n̂ + rr̂). It depends only on r and r′, which

intuitively measures the tracker’s and the target’s abilities to swing the visibility line

G against each other. When r is smaller than r′, swinging is effective. Thus, the

tangential component gets higher weight. When r is larger than r′, the opposite

holds. The magnitude of v acts as a weight when there are multiple gap edges. It

depends on all three quantities, r, r′, and e. In particular, when e is small with

respect to a gap edge G, ϕ becomes large. Thus, −∇ϕ becomes large according to

Equation 3.8, and the corresponding action gets higher weight.

CASE II: DR This corresponds to region DR marked in Figure 3.7b, and the closest

point in G to the target is the occlusion vertex Ov. The e and r is now defined with

respect to the circular section of D, and v′e is along the radial direction to Ov. The

tangential component vn has no effect on this part of D. By definition Equation 3.4,

ϕ =
Dist(T ,D)

Veff (T ,D)

=
r − e
vr − v′e

(3.9)
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Again we should restrict vr by vr − v′e > 0. This makes the optimization as,

v?(vr, vn) = arg min
(vr,vn)

(
r − e
vr − v′e

)
subject to |v?i | < V

evr − rv′e > 0

vr > v′e (3.10)

The corresponding gradient of ϕ is then

−∇ϕ =
ϕ

veff

r̂, (3.11)

where veff is still the effective velocity in the direction along the shortest path from

the target to G, but this time, it is directed towards Ov and is equal to vr − v′e.
An interesting observation is that Equation 3.11, can be obtained from Equa-

tion 3.8 by placing r′ = 0 i.e. when physically the moment arm of the target is zero.

Clearly in such a situation swinging does not help and so we get an action directed

in vr direction. Together, Equation 3.8 and Equation 3.11 reveal that the tracker’s

action is continuous over the entire domain, if the target’s action is continuous too.

This gives an important advantage in practice for smooth control of the tracker.

Guarrantee of tracking

Let us now show mathematically that the target tracking is guaranteed for a single

escape edge once the target is outside D for that G. Although we derive the proof for

a 2-D scenario, similar arguments could be proposed in the 3-D as well.

In Figure 3.9, the dashed lines denote the boundary of D, (∂D). Since D com-

pletely envelops the gap edge by definition, the only way for the target to escape is

to enter D. We can prove the target is kept in view if we show that at each step,
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the distance between ∂D and T is non-decreasing for each time step. We show below

that even though the maximal velocities of the tracker and the target are the same,

the tracker can ”gain” on the target.

Theorem 1 For each time step ∆t, for V ′ ≤ V , Dist(T ,D)t+∆t ≥ Dist(T ,D)t ,

where Dist(T ,D)t denotes the shortest distance between Tand D at time t.

Proof: Let us assume that the target moves towards ∂D at its maximum speed

(V ′) as shown in the Figure 3.9. The case of V ′ < V is trivial. We focus here on the

case where V ′ = V and V =
√
vn2 + vr2. Let the velocity of P be denoted by v∂D.

v∂D ≥ V ′

vr + vn
r′

r
≥ V ′
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vr
2 + vn

2 r
′2

r2
+ 2vrvn

r′

r
≥ vr

2 + vn
2 taking sq

vn
r′2 − r2

r2
+ 2vr

r′

r
≥ 0 (3.12)

If r′ > r, Equation 3.12 holds as the LHS is a positive number. For r′ < r, if the

tracker chooses its velocities as,

vr = V
r√

r2 + r′2

vn = V
r′√

r2 + r′2

vr
vn

=
r

r′
(3.13)

Combining Equation 3.12 with Equation 3.13 gives,

2
vr
vn
r′r + r′2 − r2 ≥ 0

r2 + r′2 ≥ 0 (3.14)

in which case Equation 3.12 holds again.

Hence there is at least one choice of vr, vn for the tracker to move ∂D faster than

v′. This means that at each time step there is at least one action from the tracker,

s.t.

(v∂D − V ′)∆t ≥ 0

v∂D∆t− V ′∆t ≥ 0

Dist(T ,D)t+∆t −Dist(T ,D)t ≥ 0 (3.15)

This proves that the target will not be able to reach ∂D once it is outside D as

the distance between them can be consistently prevented from decreasing.
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3.4.2 Visibility limitations

Apart from environmental occlusions, limits of the visibility sensors also pose

a risk from which the target can escape. In general there are two kinds of sensor

limitations, i.e. limits on the maximum and minimum sensing range (range edges)

and limits on the field of view fov edges. These edges are special because they cannot

be eliminated by the tracker itself. The tracker needs external sensors or additional

trackers to be able to eliminate them. In the absence of the ability to eliminate these

edges the best strategy is to delay the target’s escape through these edges, i.e. by

maximizing tesc.

θmin
θmax

δθωR

ωT

f

v′e

vr

e
T

R

Dmin

Dmax

(a) FoV Limits (b) Range Limits

Figure 3.10. Handling visibility sensor limitations.

Field of View Edges Most of the visibility sensors like lasers or camera have

a limited field of view (FoV). This imposes an additional constraint on the tracking

strategy to keep the target within the boundaries of FoV, preferably around its center.
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The FoV can be modeled as an annular sector with the tracker at the center, the radii

given by the visibility spanning from θmin to θmax (Figure 3.10a).

For guarding against FoV constraints, we use the same approach of manipulating

the FoV edges (f in Figure 3.10a) away from the target. FoV can be manipulated

either by rotating the visibility sensor or moving the tracker base away from the

target. Although a combined motion can be modeled, for simplicity we just use the

rotation primitive. This is more natural in case the visibility sensor has an additional

degree of freedom over the tracker, e.g. a pan mechanism, the angular velocity of

the panning (ωR) is then the action of the tracker. On the other hand, if the sensor

is attached rigidly to the tracker base, the turning of the tracker itself acts to rotate

the FoV. In that case we treat ωR as the rotation of the tracker.

As we deal with the angular motion, it is natural to derive tesc using these ro-

tational parameters. Based on the target’s motion, we can approximate its angular

velocity, ωT towards FoV. This gives Veff (T , f) = ωT − ωR, and Dist(T , f) = δθ.

Treating tesc as the risk,

ϕ =
δθ

ωeff
(3.16)

where ωeff = ωT −ωR. The tracker’s angular velocity ωR, is chosen to maximize this

tesc by choosing action along ∇ϕ,

∇ϕ =
ϕ

weff
∇ωR (3.17)

Range Edges As with FoV edges, the tracker cannot eliminate range edges as they

are induced by its own sensor limitations. In Figure 3.10b, Dmax and Dmin show the

visibility range limits.
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In a similar approach as above, for range edges we use tesc as the risk. In this case

e is the distance towards the nearest point in the range edges. From Figure 3.10b we

can calculate the ϕ as,

ϕ =
e

vr − v′e
(3.18)

where v′e is the velocity component of the target towards the escape edge Dmax, and vr

is the tracker’s velocity in pushing the range edge away from the target. The tracker

chooses actions based on the local gradient,

∇ϕ =
e

veff 2
∇vr (3.19)

where veff = v′e − vr The analysis for Dmin is identical in which case, the tracker

would actually back away from the target to guard the Dmin.

An interesting thing to note is that the behavior generated by the range edges

alone, makes the tracker move towards the target. This is exactly the visual servo

behavior. This shows that visual servo is a special case of vantage tracking when

there are no occlusions.

3.4.3 Qualitative performance analysis

We now show the performance of the algorithm with respect to existing approaches

and analyse the results qualitatively. We first compare the risk based approach to a

simple implementation of visual servo Visual Servo tracker where the tracker tries to

minimize its distance to the target. Subsequently, we compare our vantage tracker to

another risk based approach SDE tracker [3], which maximizes the shortest distance

of escape from the tracker’s visibility.
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Vantage Tracker vs Visual Servo Tracker

To illustrate the fundamental difference in the tracking approach from a simple

visual servo based tracker, we run both the algorithms in a small room which has

one exit in the northern wall, Figure 3.11. For the vantage tracker, we only compute

the risk for occlusion edges and not of FoV in this example to show the effect of

occlusions clearly. In the first and second column, the red robot is the target while

the blue robot is the tracker. The trail of the tracker shows the tracking behavior. The

third column shows the tracker’s view of the tracking scene. In this local visibility, the

blue lines show occlusion edges while the green segment shows the motion decision

taken. We look at the actions taken by both the algorithms once when the exit is

closed (Figure 3.11(a-c)) and when the exit is opened subsequently (Figure 3.11(d-

f )). In all cases the red robot (target) and the blue robot (tracker) start at the same

points.

Closed exit In the first case where the exit is closed, Figure 3.11(a-c), the whole

room is visible to the tracker. The standard visual servo action is to move towards

the target as shown in Figure 3.11(a). However, in the objective of keeping the target

in view, no action is required as the target cannot escape the tracker’s view anywhere

inside the room. As there is no occlusion edge, there is no risk of losing the target

and hence there is no action generated for the vantage tracker. In such a scenario, the

vantage tracker comes up with the smarter alternative of staying put Figure 3.11(b,c).

Open exit Since the visual servo does not take the environment into account while

planning, its action does not change when the exit is opened (Figure 3.11(d)). On the

other hand, the vantage tracker sees two new occlusion edges. This generates a risk
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Visual Servo Tracker Vantage Tracker Local Visibility

(a) (b) (c)

(d) (e) (f )

Figure 3.11. Comparing the difference in nature of visual servo based tracker to relative
vantage tracking.

of losing the target through these edges. The vantage tracker then moves towards the

source of the edges, the exit, to prevent the target’s escape (Figure 3.11(e,f )). This

action prevents the foreseeable escape of the target through the exit in the future.

Vantage Tracker vs SDE Tracker

The benefits of the new risk function (Vantage Tracker) are best illustrated in

comparison with a related risk function introduced in earlier work [3] (SDE Tracker).

For occlusion edges, the SDE tracker risk function is a monotonic function of the
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ratio r/e and completely ignores r′. To simplify the presentation, we assume that the

tracker and the target have the same velocity bounds in all the following examples.

We implement the algorithm for a single occlusion edge (in C++ using the geomet-

ric library LEDA), to qualitatively compare its performance with previous shortest

distance to escape (SDE) based methods. We implement the SDE tracker in [3] to

compare our vantage tracker with. In these experimental screen-shots, the shaded

region indicates V . A small blue circle marks the tracker position. A filled black

triangle marks the target position. The associated arrows indicate the tracker’s and

target’s velocity directions. Again the target and the tracker start from the same

positions for both algorithms.

Effect of relative position SDE trackers only take e into account for deciding

tracking decisions. Moving the target parallel to the edge does not affect its decision

(Figure 3.12(a & c)). The closer the target is to the occlusion vertex, the effectiveness

of the tracker’s swinging action (vn) decreases proportionately. SDE trackers do not

consider this fact and loses the target eventually. On the other hand, vantage tracker

adapts to the changing position of the target and gives more weight to vr when

swinging becomes ineffective (Figure 3.12(d)).

Balancing current vs future risk SDE based risk formulation tries to maximize

the shortest distance, which in effect decreases the current risk. This preoccupation

with current risk limits its actions towards improving the future risk. Now consider

scenario (Figure 3.13). The target is very close to the gap edge, and thus e is small.

As a result, the SDE based risk function generates a motion more towards vn to swing

the gap edge away from the target. However, the situation is in fact not that critical.
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SDE Tracker Vantage Tracker

(a) (b)

(c) (d)

Figure 3.12. Comparing the SDE tracker vs Vantage tracker in response to change in
relative position of the target.

The target is still a small distance away from the gap edge, leaving some time for

maneuvering. More importantly, the tracker is slightly closer to the occlusion point

than the target. A small swing is sufficient to keep the target visible. Too much swing

in the tangential direction reduces the motion in the radial direction and increases

the future escape risk. The preoccupation with the current risk eventually causes

the SDE tracker to lose the target. The vantage based risk formulation handles this

49



SDE Tracker Vantage Tracker

Figure 3.13. A scenario in which too much swinging increases future risk.

situation much better. It always keeps the target visible while trying to position itself

in a better location, until it “eliminates” the gap edge in the end (Figure 3.13). This

example shows that the proposed relative vantage based risk formulation can balance

the current risk vs future risk more effectively.

Effect of target heading The vantage risk takes into account the target’s velocity.

In Figure 3.14(a & b), we compare the risk assignment based on SDE to that on
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(a) SDE based risk (b) Vantage based risk

Figure 3.14. The effect of using the target’s velocity information on the risk and tracker
motion decision. The purple segments are proportional to the amount of risk perceived by
the tracker and is pointed towards its corresponding occlusion edge.

vantage. We see that a SDE based tracker assigns higher risk to the closer edge (here

the left occlusion edge) when clearly the target heading suggests that the right edge

has to be guarded against. Taking into account this heading information, the vantage

tracker is able to assign a higher risk to the right edge.

3.5 Handling Multiple Edges

The target can escape V though any of the escape edges (occlusion, fov or range)

and hence the total risk (Φ) of losing sight of the target is a combination of the risks

from individual escape gaps. Let ϕi represent risk due to a ith gap Gi. Theoretically,

ϕi is not independent of each other. However, to simplify the formulation, we assume

independence of ϕi. We show from our experimental results that such a simplification

does not break down the algorithm. We approximate Φ by the expected risk of all
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the gaps.

Φ = E[ϕi]

≈ ∑
i

piϕi

where pi is the probability of the target’s escape through the ith escape edge, Gi.
Let v? be the optimal action that minimizes the total risk Φ,

v? = arg min
v

Φ

≈ ∑
i

pi(arg min
v
ϕi)

=
∑
i

piv
?
i (3.20)

where v?i are the optimal action taken for each of the individual escape edges.

3.5.1 Prediction

A visibility set may contain many gap edges. Based on the target’s motion pat-

terns, we can identify the important ones and improve tracking performance. Let

the heading probability pg be the probability of the target headed to a gap edge G.

To estimate heading probabilities, we need the current target velocity v′. At any

time, we maintain an estimate of v′ by storing a short history of the target trajectory

and extrapolating. Many other methods for velocity estimation are possible. For

simplicity, the uncertainty in estimating the direction θ of v′ is assumed to follow a

Gaussian distribution f(θ). The variance of the Gaussian indicates our confidence in

estimating the target behavior. Other distributions, even non-parametric ones, can

be used instead of the Gaussian, depending on the method of velocity estimation.
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Our method for computing heading probabilities is general and works with any dis-

tribution. We derive the probability pg for an occlusion edge G. The approach is

identical for computing pg for FoV and range edges.

It is natural to assume that the target will exit a gap G, if it is headed to G. In

other words, suppose that λθ is the ray originating from the current target position

and having direction θ. The target will exit G if λθ intersects G. Thus, pg can be

estimated from the target’s estimated velocity distribution and the angle subtended

by G:

pg =
∫
ΘG

f(θ) dθ,

where θ lies in the angular range ΘG if and only if λθ intersects G (Figure 3.15). This

seems reasonable, unless we consider a gap edge subtending zero angle, e.g., the one

marked as G0 in Figure 3.15a. It is a distinct possibility that the target may exit G0.

We must relax our initial assumption and incorporate this situation. To do this, we

expand every gap edge by a pre-defined distance δ and call the resulting region the

gap zone:

G(G) = {q ∈ V | Dist(q,G) ≤ δ},

where Dist(q,G) denotes the shortest distance from q to G. Now the heading prob-

ability of G depends on the angle subtended by its gap zone instead of gap edge. In

general, adjacent gap zones may overlap, and the probability in overlapping region

must be split evenly among all gap zones involved. Taking all these into account, we

have the following formula for computing the heading probability of G:

pg =
∫
ΘG

f(θ)/h(θ) dθ, (3.21)

where ΘG is the angular range subtended by the gap zone G of G and h(θ) is the

number of gap zones that λθ intersects. Note that h(θ) ≥ 1.
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Figure 3.15. Estimating heading probabilities.

The threshold δ for determining the gap zone basically says that the target may

exit G whenever it comes within a distance δ of G. It can be chosen according to

our understanding of target behaviors. In our experiments, we chose δ to be the

distance that the target can reach with maximum velocity in one time step. This is

an aggressive choice, indicating high confidence in the target motion model.

Effect of prediction

The tracker’s prediction of the target’s motion can help it focus its attention to

more critical escape gaps. We show the improvement in the tracking performance

due to target motion prediction.

Too much clutter can confuse the tracker without proper prediction Good

velocity prediction helps the tracker to focus on the important gap edges and ignore

clutter (extraneous edges) and improve tracking performance. Consider the example
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(a) Distance based prediction (b) Velocity based prediction

Figure 3.16. The prediction based on velocity information helps in focusing on more im-
portant escape edges.

in Figure 3.16. It compares our new tracking strategy with the one in [3], which

does not use velocity prediction. Each image in Figure 3.16 shows several small line

segments rooted at the current tracker position. Each segment corresponds to the

heading probability of a gap edge. The length of the segment is proportional to

the heading probability, and its orientation points to the gap edge associated with

the heading probability. For the SDE tracker, all the gap edges are weighted with

probabilities proportional to the SDE of the tracker to that edge. For the vantage

tracker, the gap edge which the target is headed has a distinctively large heading

probability, indicated by a long segment.

Wrong prediction can be overcome by fast update rate When the target

makes abrupt turns, the linear velocity prediction is usually inaccurate. Our tracking

strategy may cause the tracker to make the wrong move. Consider the example in

Figure 3.17. The target makes several abrupt turns. However, the velocity prediction
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SDE Tracker Vantage Tracker

Figure 3.17. An example in which the target makes abrupt turns.

is reasonable for most of the time. Despite the wrong moves, our tracking strategy

follows the target to the end and performs better than the SDE tracker, which loses

the target midway.

3.6 Adding Constraints

The choice of v?, as in Equation 3.20, has to satisfy many constraints (Ci) :

physical constraints like reachability, motion dynamics or planning constraints like

obstacle avoidance, stealth etc. The constraints are projected into the position space.

We define a feasible region as, L (x), that satisfies all the constraints Ci (Figure 3.18),

L(x) = R−⋃
i

Ci,

The local greedy optimization then becomes choosing an action (v?), that mini-

mizes Φ while keeping the tracker in L for the time step ∆t,
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Figure 3.18. Feasible region, L

v? = arg min
v

Φ s.t. v?∆t ∈ L (3.22)

3.6.1 Locally optimal constrained action

We plot the risk function for the proximity of the tracker position in Figure 3.19.

Without loss of generality the origin is chosen at Ov, while y-axis coincides with

the occlusion edge. The positions of the tracker and the target are shown in Fig-

ure 3.19(a). The tracking scenario is akin to the target being in DN in Figure 3.7.

For an action computed from Equation 3.6, risk plot is generated in the tracker’s

neighborhood as shown in Figure 3.19b. We see that the risk function is smooth,

continuous, and monotonic in the neighborhood of the tracker position x. Consider

the linear approximation of ϕ at x:

ϕ(x + ∆x) ≈ ϕ(x) +∇ϕ(x) ·∆x. (3.23)
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Figure 3.19. MATLAB risk plot. The negative risk gradient is towards the top-right corner

Minimizing function Equation 3.23 is equivalent to

min
∆x
∇ϕ(x) ·∆x subject to ∆x ∈ L

The feasible region can be approximated by a list of convex polygons, then the problem

reduces to linear programming [91]. The minimum solution ∆x = v?∆t must lie at

the vertex of one of the convex polygons. By projecting all the vertices in the feasible
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region along v?, we can find the vertex with minimum risk. The optimal heading for

the tracker is taken to be along this vertex.

As an example, we develop the constraint for obstacle avoidance below. Similar

approach is used for mission constraints like localization, safe navigation or stealth,

all of which restrict R. In the Chapter 4 we develop a mission constraint stealth in

detail, that requires the tracker to track the target while preventing its discovery by

the target.

3.6.2 Obstacle avoidance

We show the case of obstacle avoidance as an example of constrained optimiza-

tion as described above. We approximate the tracker’s size by the radius (sr) of its

bounding circle. Also, depending on the tracker’s current velocity, there is a finite

braking distance sb, sb =
∫
∆t a(x)dt based on the max deceleration of the tracker.

Combined sr and sb denote a region around the obstacle (C) that must be avoided

for safe navigation.

C(x) = {q ∈ V : d(q,B) ≤ (sr + sb)} (3.24)

The choice of motion then is restricted to the feasible region L = R−C as shown

in (Figure 3.20d). The problem of obstacle avoidance becomes a problem in real

world. Fortunately, the Equation 3.24 can be represented quite easily as a polyline

by choosing a small set of samples from the range based sensor. This makes the

computation of the obstacles quite fast.
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Figure 3.20. Obstacle Avoidance

3.6.3 Local target recovery

Our algorithm tries to keep the target in view for as long as possible. But many

times it is impossible to guarantee this. In case the target steps out of view, the

tracker can try to retrieve it. This brings the problem into the domain of target

searching in an unknown environment. In our case, we try a simple two step strategy

of recovering the target, Figure 3.21. Let the possible position of escape be P and r′
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Figure 3.21. Local target recovery strategy

be the distance OP . If the target escapes with a high r′ that means that it is easier to

recover by swinging, On the other hand when r′ is small swinging does not help and

the tracker should move more towards the occlusion vertex, O of the escaped edge.

Based on this observation we propose a simple recovery velocity as

v =
rr̂ + r′n̂√
r2 + r′2

V

We execute this strategy for a fixed number of steps. In case the tracker fails to

recover the target, the tracker moves to eliminate the gap, Gi.
However, there might be cases where after reaching the last known target position,

the tracker either does not find any target. At that moment we stop the algorithm.

In such cases choosing the next most probable target’s exit could help. Here the

problem switches from target tracking into target searching for which any general

search strategies can be applied [33, 96].
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Table 3.1. Performance comparison of the SDE and the vantage tracking strategies.

Env. Total No. SDE Tracker
Target Steps No. Steps Visible (%) No. Times Lost (Steps Lost)

Maze 82 35 (43%) 2 (11,12)
City Blocks 156 78 (49%) 6 (14, 15, 16, 15, 8, 10)

Vantage Tracker
Target Steps No. Steps Visible (%) No. Times Lost (Steps Lost)

Maze 82 74 (90%) 1 (8)
City Blocks 156 131 (84%) 2 (13, 12)

3.7 Experimental Results

In the following, we show quantitative results in simulation to show the effective-

ness of the vantage tracker. We show that vantage tracker consistently out-performs

the previous approaches both for a simplistic sensor and motion model as well as

when sensing and mobility limits are introduced.

3.7.1 Tracking in Polygonal Environments

In this set of experiments we compare the performance of the risk formulation

without visibility or mobility constraints, i.e., the tracker has omni directional vision

and holonomic mobility. As a point tracker in a polygonal world, we do not have to

address the obstacle avoidance problem either. We compare the Vantage tracker to

the SDE tracker as before. To have a fair comparison, we provided the SDE tracker

the same emergency actions that the vantage tracker uses, though they are not in the

original work.
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SDE Tracker Vantage Tracker

(a) (b)

(c) (d)

Figure 3.22. Two environments with complex geometry. (a,b) show the tracking path for
the Maze environment while (c,d) are results for the City Blocks experiment. Black crosses
depict the target’s path, while the blue void circles show the tracker’s trajectory. The
portions of the tracker’s trajectory where the target is lost is marked by filled cyan circles.
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a) Maze. (Figure 3.22(a,b)) This environment brings together various geometric

features, such as long corridors, open spaces, and sharp turns. The target takes a long

and winding path. Even with emergency actions, the SDE tracker loses the target

midway. The vantage tracker follows the target to the end. It loses the target once,

but recovers it quickly through emergency actions.

b) City blocks. (Figure 3.22(c,d)) This example mimics city blocks in an urban

environment. The SDE tracker has lots of difficulty in this environment. It loses the

target many times for extended periods (see Table 3.1) and fails to follow the target

to the end. The vantage tracker has much improved performance.

Detailed performance statistics on these two environments are shown in Table 3.1.

Column 2 of the table lists the length of the target trajectory in time steps. For the

SDE tracker, column 3 lists the number of steps that the tracker has the target visible

as well as the number as a percentage of the total number of target steps. Column 4

lists the number of times that the target is lost and recovered with emergency actions,

as well as the durations for which the target is lost. The comparison in these two

environments shows that the vantage tracker (i) less likely loses the target, (ii) has

the target visible for much longer total duration, and (iii) always follows the target

to the end. All these indicate better performance.

3.7.2 Tracking in Realistic Office Environments

Next we implement the algorithm in a more realistic simulation in Player/Stage

[97]. As we model a realistic model of a differential drive Pioneer tracker and a SICK-

lms200 laser sensor with FoV (-90:90)deg and a fixed maximum range of 8m. The
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scene is an indoor office environment. The algorithm now has to consider the sensing

constraints and mobility constraints.

(a) Visual Servo Tracker (b) SDE Tracker

(c) Vantage Tracker

Figure 3.23. The green tracker is trying to follow the red target. The trails show their
actual path. The light blue shaded region denotes the tracker’s visibility. Target is lost in
(a) and (b), whereas in (c) the target is still in tracker’s view.

In (Figure 3.23 & Figure 3.24), we compare more comprehensively the performance

of the different algorithms: the visual servo, SDE tracker and our vantage tracker.

The trackers start from the same location and tries to track a target executing a fixed

path. The target’s path is unknown to the tracker. In fig.3.24(a), we compare the

performance of the trackers using the metric of SDE. The plots stop as soon as the

target is lost by the tracker. We see that visual servo loses the target first around step
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(a) (b)

Figure 3.24. (a) Plotting SDE for various algorithms, (b) Plotting SDE and the risk value
for the vantage tracker.

#160, (3.23a,3.24a) and then the SDE tracker around #300 (3.23b,3.24a) where as

the vantage tracker manages to continue till the end (3.23c,3.24a). The visual servo

tracker ignores the environment due to which it loses out early. The SDE tracker

performs better, but it focuses more on the short term goals of immediate target

loss. This is seen in fig.3.23b as a highly curved path due to the swinging actions.

The vantage tracker balances the short term and long term goals better. Around

step #300 when the SDE tracker loses out, the vantage tracker is much closer to the

occlusion edge than the SDE tracker at that time step and is better positioned to

handle the occlusion edge. Fig.3.24b plots the vantage risk value over the same path

and this plot shows why the vantage tracker performs better. The risk plot shows

peaks in the risk value when the SDE starts to fall (as the target comes closer to the

occlusion edge). Anticipating this risk early allows the vantage tracker to improve its

future position and keep the target safely in view.
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(a) Expt 1 (b) Expt 2

(c) Expt 3

Figure 3.25. The simulation experiment paths taken by the target (red) and the path of
the vantage tracker (green).

Quantitative comparison We run the algorithms for three other target paths,

shown in Figure 3.25, and compare them for the percentage of the number of steps in

which target was visible. For longer runs, local target recovery modes were activated.

The visual servo tracker tried to regain the target by moving directly towards the last

position seen, while the SDE and the vantage tracker both followed the local recovery

algorithm mentioned earlier in this paper.

The results are shown in Table 3.2. Column 2 of the table lists the length of

the target trajectory in time steps. For the each strategy, the first column lists the

number of steps that the tracker has the target visible as well as the number as a
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Table 3.2. Performance comparison of visual servo, SDE and vantage trackers.

Visual Servo SDE Vantage
Expt. Target Visible No. Times Visible No. Times Visible No. Times
No. Steps Steps (%) Lost Steps (%) Lost Steps (%) Lost
1. 1200 268 (22%) 2, lost 230 (19%) 2, lost 1015 (85%) 4
2. 1700 467 (39%) 6, lost 295 (17%) 1, lost 705 (42%) 5
3. 1200 309 (26%) 4, lost 237 (20%) 1, lost 399 (33%) 5

percentage of the total number of target steps. The next column lists the number of

times that the target is lost and recovered with emergency actions. In case the target

was not recovered even after executing emergency actions, it is marked as lost. The

comparison in these two environments shows that even in the presence of constraints,

the vantage tracking performs better.

3.8 Hardware Implementation

Building a successful tracking system requires implementation of both the Target

detection and Target following modules. While the previous sections deal with sim-

plistic models of sensing and motion, these hardly hold true in the real world. The

problem of reliable target identification is bypassed as the simulator can be queried

for the exact position of the target. In reality however, uncertain and noisy sensor

data makes target identification and localization unreliable. The tracking algorithm

has to handle scenarios of false detection and no detection.

For the synthetic environment the tracking algorithm does not have to deal with

the physical characteristics of the tracking robot. The robot was treated as a point

object and it could move arbitrarily close to obstacles. In reality the robot has a
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(a) Tracking tracker (b) Canteen environment

Figure 3.26. Pioneer 3D-X with an on board SICK lms-200 as a tracker. It was deployed
in the school cafeteria to test the effectiveness in a cluttered and dynamic environment.

finite size and may have kinematic and dynamic constraints that need to be consid-

ered. Moreover, the robot controls are no longer accurate and there is uncertainty in

robot’s motion. Safe robot navigation is necessary not only for the sake of the robot

but also to prevent damaging the environment. In fact safety becomes a critical

issue when introducing the robot in human environments. All these issues provide

serious challenges in implementing a robust tracking robot. Below we present the

implementation approach for our vantage tracker.

The tracking algorithm is implemented on a Pioneer P3-DX differential drive

tracker. A SICK-lms200 is mounted on the tracker. The laser returns 361 readings

on a field of view of 180deg at the resolution of 0.5deg. The maximum range of the

tracker is 8m. The control algorithm runs on a Pentium M Processor @1.5GHz laptop

running Player server v-2.0.5 [97] on Linux. The algorithm runs at 10Hz. The target

is a person walking around the lab corridors in the presence of other people.
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For illustration purposes, a snapshot of the algorithm running in the stage sim-

ulator is shown in Figure 3.27a. The green circle is the tracker and the red object

is the target. Figure 3.27(b-e), are shown in the local frame of the tracker with the

origin at R.

(a) Tracking scene (b) Raw laser data (c) Escape edges

(d) Target detection (e) Obstacle dilation

Figure 3.27. Snapshots of the implementation at various stages.

Visibility polygon The output of the sensor is a radial scan of range values ( Fig-

ure 3.27b). The data points with max-range readings form the range edges. We

detect the continuity of the remaining data point to its neighbors by thresholding the

range value change in adjacent data points. These changes represent the occlusion

edges and their location can be extracted from the corresponding data points. Two

70



additional edges are added at the orientation of the min/max angular limits to form

the FoV limits. This is shown in Figure 3.27c.

Target identification The problem of robust target detection and identification

from noisy data is an important problem that has been addressed in significant details

by the computer vision and data processing research community. Since this thesis

focuses on the motion planning aspect of the tracking problem, the target detection

module has been possibly unfairly trivialized. Very simple and ad-hoc mechanisms

have been incorporated during the implementation that provides reasonable target

detection. However, our tracking framework is general enough to incorporate ad-

vance detection techniques that handle uncertainty models of the sensor, probabilis-

tic frameworks for detection and maintaining target hypothesis seamlessly into the

implementation. In fact such approaches are essential for the deployment of such

tracking systems in real applications for realistic time durations. The following dis-

cussion summarizes the efforts to build a simple target detection mechanism robust

enough to validate the motion strategies for our tracking framework.

Data points into clusters (Figure 3.27b). These clusters represent physical objects

in the sensing range, e.g. walls, furniture, other people, etc.. In fact, one of the

clusters is the target. We start with a known target, and focus on the subsequent

target matching. In our experience, we find that a simple nearest neighbor match

gives reliable target identification for reasonable target behaviors, even in a crowded

environment. We perform the identification as follows.

The clusters are filtered based on average human leg size with some tolerance to

give a set of potential target clusters. These potential clusters can be the chair or
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table legs, pipes or other human legs. Given the target’s maximum speed, we can

estimate a bound on the target’s future position in time ∆t, V ′ ∆t. Within this

bound, we choose the cluster closest to the target’s previous position. False negatives

are handled by increasing this bound by a fixed number of steps before declaring the

target lost. In fact, this even helps in cases of momentary occlusion when someone

walks between the target and the tracker.

Clearly, this method will fail if V ′ ∆t is too large. However, the practical success

of this simple technique can be found in : (a) small ∆t as the algorithm runs at a high

frequency of about 10Hz, (b) target speed being slow enough, average human walking

speed 1m/s (giving the tolerance level of about 10cm) and (c) low false negative rate

for cluster detection. The cluster based target detection is more reliable than shape

based feature detection (e.g. arc based leg detection) since leg features may partially

occlude, eclipse or fuse with each other in the process of walking.

We found that maintaining a list of the non-target clusters in addition to the

target using a simple nearest neighbor match, decreases the rate of false positives. Of

course, algorithms like EKF, MHT can make the target detection much more robust.

Obstacle avoidance The clusters computed earlier create motion obstructions in

addition to the visibility occlusions. We utilize an implementation of applying Equa-

tion 3.24 to the data points directly. This saves us considerable computation in

extracting the actual shape of the cluster to compute C. To achieve this we perform

a radial transformation in to move each data point towards the tracker by (sr +sb).

sb is estimated based on the relative velocity and the maximum relative acceleration

towards the data point. The result is shown in Figure 3.27e.
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Robot Motion control The optimal velocity v?, generated from the algorithm

does not take into account the non-holonomicity of the tracker base. We apply a

simple low level control on the tracker velocity that tries to achieve v? (similar to

[3]). From the structure of the risk function we see that Φ is locally smooth. Due to

this, v? also changes slowly and the controller is stable.

Uncertainty in sensing and execution As the algorithm uses only local geomet-

ric information available to the tracker’s visual sensors, it does not require a global

map and thus bypasses the difficulty of localization with respect to a global map.

Noisy sensor data and the uncertainty in tracker’s control can affect the performance

of the target’s relative localization and especially the target’s velocity estimate. In

the hardware experiments we found that reliability of the target’s velocity was quite

poor. Still the tracker was able to successfully track the target by focusing more on

the worst case scenarios. Moreover, uncertainty in sensing and motion control does

not accumulate, because the tracker’s action is computed using sensor data acquired

in the current step only. This improves the reliability of tracking.

3.8.1 Experimental Results

We implement the system as shown in Figure 3.26. In the following we show snap-

shots of the video from the experiments. All the videos and additional results are up-

loaded at http://guppy.mpe.nus.edu.sg/ mpeangh/tirtha/PhD/thesis.html. Individual

videos can be accessed from http://guppy.mpe.nus.edu.sg/ mpeangh/tirtha/PhD/[Video-

id].mov. Alternate encodings in mpeg is also available as http://guppy.mpe...../[Video-

id.avi].
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Dynamic Environment Expt In Figure 3.29, a box is pushed between the target

and the tracker to occlude the target. Since, the vantage tracker actively tries to

avoid future possible occlusions, it is able to adapt to the changing environment

(Figure 3.29b-1 ). A point to note is that the vantage tracker does not model the

motion of the environment but just re-plans its motion at a high frequency. This

makes the performance of the tracker independent of the dynamic nature of the

environment. Later the box stops and the target starts to move (Figure 3.29c) and

the tracker is able to successfully follow the target till the end (Figure 3.29d).

Guarding FoV Fig.3.30, shows the tracker guarding the target against its FoV by

turning on the spot.

Cluttered Environment In fig.3.31, the tracker follows the target through the

department lobby. The chairs in the lobby generate a large number of escape edges

that the tracker has to handle. Note that the tracker tends to generate motion

decisions biased towards left 3.31(c) as there are larger number of escape edges there.

Due to the online nature and fast computation of the risk the tracker is able to

successfully follow the target around.

Canteen crowd (Figure 3.32)

The canteen environment is inherently complex with the table and chair legs

having a similar signature as the target person’s legs. Moreover in lunch hour the

crowds appear and dissolve changing the environment significantly and reducing the

visibility and mobility. In the presence of humans the tracker must also plan to avoid

moving human obstacles.
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(a) (b) (c)

Figure 3.28. Visual Servo : Since the tracker does not take into account the environment
information, it moves straight ahead towards the target (b) and loses the target to the
occluding box (c). (Video-id: VisualServo-MovingBox)

(a) (b-1 ) (b-2 ) (c) (d)

Figure 3.29. Vantage tracker : (b-2 ) shows the tracker’s local perception of the environment.
The target is marked by T , the blue lines are the occlusion edges, red line is the most critical
occlusion and the green segment starting from R denotes the tracker’s motion decision.
The tracker sees the target too close to the occlusion and swings out. (Video-id: Vantage-
MovingBox)

Temporary occlusion (Figure 3.33)

A challenging aspect of following the target in a crowd is when someone walks in

between the tracker and the target. In this video snapshots the tracker is following the

target in green t-shirt as seen in Figure 3.33(a) when it faces a temporary occlusion

by a lady (in purple) walking across as seen in Figure 3.33(b-d). Since the tracker
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(a) (b) (c) (d)

Figure 3.30. When the target doubles back, the tracker has to guard against its fov limits
and makes a turn as well. (Video-id: Vantage-FoV)

has range information about the target and the algorithm is run at a high frequency,

it can recover from these temporary occlusions in such a dynamic environment.

3.9 Summary

In this chapter, the concept of relative vantage is developed that captures the risk

of losing the target from sight and an tracking algorithm is proposed that optimizes

it in the local context. Incorporation of the relative positioning of the tracker and

the target in the tracker’s local visibility improves the tracking performance as shown

in controlled experiments in simulation w.r.t previous trackers like SDE and visual

servo. In fact, we can show that in the absence of obstacles or visual occlusions, the

proposed approach boils down to the visual servo tracker.

The proposed tracking approach makes it easy to accommodate multiple hardware

constraints like FoV, and mission constraints like obstacle avoidance and stealth. This

eases the implementation on a real hardware, details of which are discussed. Such a

tracking robot is shown to work well in a real crowded environment such as a school

cafeteria. The tracker exhibits robust behavior for temporary occlusions.
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(a) (b) (c)

(d) (e) (f )

Figure 3.31. The tracker tracks the target in cluttered environment. Due to the clutter
of chairs the tracker has to guard against a lot of potential gap edges.(Video-id: Vantage-
cluttered)

In the Chapter 4, we develop in detail a mission constraint of stealth, and show

how such a constraint is incorporated into the tracking framework.
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(a) (b)

(c) (d)

Figure 3.32. The tracker tracks the target in crowded canteen environment. (Video-id:
Vantage-crowd)
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(a) (b)

(c) (d)

(e)

Figure 3.33. Handling temporary occlusions in a dynamic environment. (Video-id: Vantage-
ladyOcclude)
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CHAPTER 4

2-D STEALTH TRACKER

In this Chapter, we develop motion strategies for an autonomous mobile robot

to track a moving target among obstacles and, at same time, remain hidden from

the target. This problem is relevant in many applications. For example, in military

surveillance, a robot tracker follows a target to acquire information and may endanger

itself if exposed. Other examples include graphic animation and monitoring animals

in the wild. In all these applications, it is important that a robot tracker not only

follows the target, but also avoids detection by the target.

More specifically, both the tracker and the target are equipped with visual sensors.

The tracker has two objectives: tracking—keeping the target inside the field of view—

and stealth—staying outside the target’s field of view. We call such a tracker a stealth

tracker. The obstacles in the environment provide motion and visibility constraints

as in the normal tracking problem. As described in Chapter 3, we follow the tracking

framework that integrates the physical and operational requirements into the tracking

problem. In this Chapter, we develop the requirement of maintaining stealth into a

planning constraint in visibility based tracking.

Stealth in Tracking Ideally the tracker always moves to keep the target in the

middle of its visibility region so that the target cannot escape easily. At the same time,
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the tracker is required to stay outside the target’s visibility region to remain hidden.

If the target has a smaller sensing range than the tracker, the tracker can always stay

just out of the target’s range, which is equivalent of tracking with a minimum distance

constraint. We consider the more interesting problem where both the target and the

tracker have the same range. This forces the tracker to exploit the local environment

and execute intelligent motion to hide within the target’s visibility. However, if the

target has the same sensing capability as the tracker, i.e., the line of sight visibility

relationship is symmetric: if the tracker sees the target, the target sees the tracker.

This apparent dilemma can be resolved due to asymmetry in sensing. Although the

tracker and the target have the same visual sensors, the visibility relationship may

not be exactly symmetric. Since detection requires processing of the visibility data,

unless the target is initially aware of the tracker, it may not try to detect the tracker

even if the tracker is in fact visible. In reality, detection algorithms do not perform

very well near the boundaries of the sensor’s limits due to sensor noise. Moreover, the

tracker might be partially occluded due to the obstacles in the environment making

such a detection difficult. So we assume that the tracker can operate safely near the

boundary of the target’s visibility region and quickly run outside if it detects risk of

exposure. This provides the tracker the “slack” needed to achieve its dual objectives

of tracking and stealth.

The stealth tracking problem introduced here is related to the more common

tracking problem without the stealth requirement. However, the stealth requirement

makes the problem more difficult. We have already mentioned the conflict between

the dual objectives of tracking and stealth. In addition, good tracking strategies

may not work for stealth tracking at all. For example, in a star-shaped environment,
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without the stealth requirement, the tracker can simply stay in the middle of the

environment, but this does not work for stealth tracking. Fortunately, as we will

see, a suitable formulation of the problem translates the stealth requirement as a

constraint on the motion of the tracker. The resulting algorithm is almost as efficient

as that of tracking without the stealth requirement.

Stealth tracking with mobile trackers have relatively little research results. A few

notable works are mentioned in the following. In [73], the tracker displays stealth

behavior during navigation. The observer and the goal positions are given and the

tracker tries to find a path that minimizes exposure to the observer. Such a tracker

has been developed into a real world stealth tracking tracker. Covert tracking has

been explored for known and unknown environments in [74, 75]. A visibility model has

been developed based on the distance transform from the known observer locations

and the tracker tries to follow a path that minimizes the exposure measure for the

whole path. In [98], the motion of a tracker is planned in spatio temporal domain for

known terrain using models of the observer’s motion. For known target and known

environment, a detection map is generated and an interception route to the target is

planned with minimum exposure.

All the above work focuses on finding a path to a goal position while avoiding the

visibility of the observer. As maintaining the view of the observer is not essential, the

line of sight visibility detection is rigidly followed i.e., the tracker and target detect

each other immediately when they have a line of sight. In our case we try to keep

the target in view all the time, for which we have to soften the line of sight stealth

requirement. We exploit the limitations of the target’s visibility due to occlusion and

try to keep close to the target’s occlusion edges.

82



4.1 Problem Formulation

We develop the stealth constraint for tracking and analyze the behavior of the

resultant stealth tracker in different environments. As before, the environment and

the target’s motion are unknown to the tracker. For simplicity of formulation and

analysis, we shall restrict ourselves to a pure geometric framework. In general, ex-

tending the tracker to real world will follow the steps similar to those discussed in

the Chapter 3.

As in the previous formulation, the tracker,R, and the target, T , are point objects

in a planar environment, W . The environment, W , tracker visibility, V and mobility,

v, and the target’s velocity v′, are modeled as in Chapter 3. For simplicity, we

assume omni-directional visibility and mobility for both the target and the tracker.

Extensions could be made as in the case of standard tracking without stealth without

loss of generality. The tracker visibility can be computed either by a rotational plane

sweep algorithm [91] which has a complexity of O(nlogn), n being the number of

segments or by thresholding the range data from a sensor, complexity O(n), n being

the number of data points, as the range data are sorted during sensing. We assume

similar line of sight visibility model for both the target and the tracker.

4.1.1 Target visibility

In an unknown environment, the complete target’s visibility might not be possible

to compute based on the target’s position. The tracker can only compute a subset

of the target’s actual visibility that is contained inside the tracker’s own visibility V .

Let V ′ denote this portion. Simply stated, V ′ ⊂ V , (Figure 4.1). Stealth is defined

against the target’s visibility, V ′ :
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(a) Tracker’s visibility V (b) Target’s visibility V ′

Figure 4.1. Target’s visibility, V ′ , shown in the darker shade, is computed inside V. G′ is
generated along V ′ boundaries.

V ′ = {q : q ∈ V | Tq ⊂ V and dist(T ,q) ≤ Dmax}

where Dmax is the max range of the target’s visibility.

4.1.2 Stealth constraint

As can be seen, V ′ is bounded by the tracker’s visibility edges as well as occlusion

edges inside the tracker’s visibility due to the obstacles in the environment. Such

an occlusion edge is called stealth edge and is shown in Figure 4.1(b) by G ′. Stealth

edge denotes the boundary that demarcates the tracker-target line of sight and hence

separates regions from which the tracker can hide from the target as compared to

regions from where the tracker can track the target. The tracker has two contradictory

objectives, tracking and stealth. For perfectly symmetrical visibility models between

the target and the tracker, absolute stealth tracking cannot be achieved. However,
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Figure 4.2. Stealth tracking formulation. (a) The stealth region is maintained at a distance
L from G′ (b) The feasible region L is the intersection of R and S

in reality the visibility relationship is not exactly symmetric. The target may not be

initially aware of the tracker and may not detect the tracker even if the tracker is

inside the visibility region, V ′ . Moreover, sensing and detection is not accurate at

the sensor edges.

Lookout region In order to stay out of the target’s attention, the tracker must

stay near the stealth edges. We define a lookout region close to the stealth edge from

where the tracker will be able to escape the V ′ within a determined time span, ∆t

(Figure 4.5). Since there is an upper bound on the tracker’s maximum velocity, this

translates into a distance threshold (L) that must be maintained by the tracker to

prevent detection. L = V∆t. Based on L, the lookout region of a stealth edge G ′ is

Sg = {q ∈ V ′ | dist(q,G ′) ≤ L}
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The total lookout region S is then the union of Sg over all stealth edges (G ′) of

V ′ . The stealth constraint then limits the tracking motion to within S.

Problem Statement

The problem of stealth tracking can then be stated as: For a current target

position, x′ (t), and tracker position x (t), choose a locally optimal tracking action,

v (t), such that : x′(t+ 1) ∈ V(x(t+ 1)) and x(t+ 1) ∈ S(t+ 1).

4.2 Stealth Tracking Algorithm

4.2.1 Overview

The main essence of stealth tracking is to choose motion strategies to improve the

tracker’s view while the tracker remains hidden. We apply the tracking framework

developed in Chapter 3 for stealth tracking in unknown and dynamic environments.

The stealth requirement is developed as a planning constraint and integrated into the

local greedy tracker as described before. The optimal direction to move is given by

minimizing a risk function that tries to maximize the time for which the target will

be kept in view.

v? = arg min
v

[Φ] s.t. v?∆t ∈ L (4.1)

As before the velocity is constrained by the feasible regions. The feasible region

consists of the reachable region, R limited by the lookout regions S. If there are

additional constraints, e.g. obstacle avoidance Cj, L is computed as :

L = R ⋂ S − ⋃
j

Cj (4.2)
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In the following we propose algorithms to compute the target’s visibility and the

lookout regions. We also show that overall such a stealth tracking algorithm has the

complexity of O(n).

4.2.2 Computing the target’s visibility

x

x′

pi

pj

p0

pj−1

Figure 4.3. Computing the target’s visibility region from the tracker’s local visibility. P is
the portion of the visibility polygon to the left of the red dotted line and P ′ is the right
portion.

The target’s visibility V ′ , is computed within the tracker’s visibility V . Since V is

a simple polygon, V ′ can be computed in optimal O(n) time [99, 100, 101]. However,

a simpler algorithm is possible here, because V is star-shaped.

Our basic idea is to walk along the boundary of V and compute the vertices of

V ′ incrementally. To initialize, we use the line that goes through x and x′ to divide

V into two halves, P and P ′ (see Figure 4.3). We now describe the algorithm for P ,

the left half.
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Let p0 be the point where the ray
−→
xx′ intersects the boundary of V . We number

the vertices p0, p1, p2, . . . of P in counter-clockwise order, starting from p0. Every

vertex of P is visible to R, because P is a subset of the visibility region of R. The

first vertex of the target’s visibility region V ′ is p0, which is visible to T because x′

lies on the line segment xp0. Now we walk along the boundary of P and visit the

vertices p1, p2, . . . in this order. Let pi be the latest vertex of P that is visible to T .

For every new vertex pj encountered, where j > i, if
−−→
x′pj lies to the right of

−−→
x′pi, we

simply move to pj+1, because pj must be blocked by edges adjacent to pi. If
−−→
x′pj lies

to the left of
−−→
x′pi, we claim that pj is visible to T . To see this, we have to show that

no boundary edge of V intersects x′pj. Suppose, for the purpose of contradiction,

that some edges of P intersect x′pj. Let e be the intersecting edge closest to Talong

x′pj. If e belongs to the polygonal chain between p0 and pi, the chain must cross

x′pi. This is impossible, because pi is visible to T . If e belongs to the polygonal

chain between pi and pj, then some vertex on the chain (excluding pi and pj) must

be visible to T . This contradicts the fact that pi is the latest vertex visible to T .

If e belongs to the polygonal chain after pj, the chain must cross xpj. This is also

impossible, because pj is visible to R. Of course, none of the edges in P ′ can intersect

x′pi, otherwise, they would block the visibility line through x and x′. Hence, pj is

visible to T . We compute the intersection of the ray
−−→
x′pi and the edge pj−1pj and

add both the intersection point and pj to V ′ as new vertices. We then move to pj+1

and continue until all vertices are visited.

The right half of V can be processed similarly, except that now, we walk along

the boundary in clockwise order. We then merge the two halves of V ′ .
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Our initialization step takes O(n) time, where n is the number of vertices in V .

When walking along the boundary of V , we encounter each vertex exactly once and

process it in constant time. Hence the following theorem.

Theorem 2 Let n be the number of vertices of the tracker’s visibility region V. Given

a target position x′, the visibility region of T within V can be computed in O(n) time.

4.2.3 Computing Feasible Region

R

L

V
S

V ′

p1

p2

p3
p4

p5

p6

p7

(a) (b)

Figure 4.4. Feasibility region (a) L is computed based on all G′ (b) Assuming polygonal
approximation of L, the minimum risk lies on one of the vertices.

In a successful stealth tracking strategy, the tracker’s new position must satisfy

the following constraints :

• x ∈ R. The tracker is limited by its reachability region.

• x′ ∈ V . Since the environment is not known to the tracker, the tracker should

maintain the target in view.
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• x ∈ S. The tracker has to maintain stealth.

We combine these constraints into a feasible region L that the tracker can step

into being the intersection of reachable regions (R) and lookout regions (S).

L = R ⋂ S

In Figure 4.4, the intersection of R, S, and V , produces L for the next time step.

To obtain the feasible region, we first compute the intersection I = V ⋂R. Let

pi, i = 1, 2, . . . , n be the vertices of V in counter-clockwise order. Since V is star-

shaped, we represent it as a list of triangles xpipi+1 for i = 1, 2, n − 1. We then

intersect each triangle with R and obtain a new convex shape in constant time. So I

can be computed in O(n) time.

The set I is basically the visibility region V clipped by the boundary circle of

R. Usually the time step ∆t is small. Thus R is also small and contains only a

small constant number of obstacle vertices and edges, if any. By merging consecutive

convex shapes in I whenever possible, the resulting I has only constant size.

For each gap edge G ′ of V ′ , there is a lookout region Sg, which may be quite

complex if many obstacles are close together. We compute a simpler set S ′g, which

consists of a possibly clipped rectangle adjacent to G ′ and two circular sectors that

cap the rectangle (Figure 4.5). The width of the rectangle and the radius of the

circular sectors are both L, which is the distance threshold for satisfying the stealth

requirement. Compared with Sg, the set S ′g ignores all the obstacles except the two

at the end points of G ′. The set S ′g is sufficient for computing the feasible region,

because Sg ∩ I = S ′g ∩ I. A point in the obstacle is certainly outside V ⊃ I.

It is important to observe that S ′g can be represented as a union of at most three

convex shapes, each of which has constant size. Assuming I has constant size, we can
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T

G ′

Figure 4.5. Comparing Sg and S ′g. The obstacle in the middle right is ignored in S ′g.

intersect every convex shape in I with S ′g in constant time. There are at most O(n)

gap edges, and thus we can compute the feasible region in O(n) time. The feasible

region is represented as a list of convex shapes approximated by convex polygons, all

having constant sizes. Again, if we assume that R is small enough, then R intersects

only a constant number of lookout regions, and the feasible region has a constant size.

We summarize the result in the lemma below.

Lemma 1 The feasible region for the tracker’s position can be computed in O(n)

time, where n is the number of vertices in the tracker’s visibility region V.

4.2.4 Constrained Risk

The risk function has the same goal as before: to move the tracker to have better

view of the target and keep the target away from the escape gaps. The tracker now
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optimizes the risk inside L. As done in Chapter Section 3.6, we linearize the risk

around the tracker position x.

As the feasible region consists of a list of convex polygons, the problem reduces to

linear programming [91]. The minimum solution ∆x = v?∆t must lie at the vertex of

one of the convex polygons. By projecting all the vertices in the feasible region along

v?, we can find the minimum in O(c) time, where c is the number of vertices describing

the feasible region. We now set the tracker’s new position x(t+ ∆t) = x(t) + ∆x.

The computation of the total Φ and the optimal velocity v? depends on the number

of Gs and hence can be computed in O(n), from V of n sides. Combining the above

result with Lemma 1 gives the following theorem.

Theorem 3 Let n be the number of vertices in the tracker’s visibility region V. The

best action for the tracker to minimize the risk function ϕ within the feasible region,

L, can be computed in O(n) time at each time step.

Without preprocessing, we cannot hope to achieve running time better than O(n).

However, as the tracker’s visibility region changes at each time step, there is little

opportunity for preprocessing.

4.3 Experiments

The experiments seek to demonstrate and discuss qualitative aspects of the stealth

tracker. To test the effectiveness of our tracking algorithm, we implemented it in C++

using the LEDA library and ran it with different environments in simulation. Any

kind of objective function can be used depending on the mission objective. The risk

function used for the experiments is taken from [3], which maximizes the shortest

distance to escape. In Figures 4.6–4.10, we show five representative experiments to
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illustrate the behavior of the algorithm. In these figures, dark blue regions indicate

obstacles. Red crosses mark the target’s trajectory. Blue boxes mark the tracker’s

trajectory. Two circles mark the target’s and the tracker’s current positions. The

tracker’s visibility region is marked with thick blue lines. The target’s visibility region

is shaded in light red. The lookout region is marked with thin black lines.

4.3.1 Stealth behavior: target turning a corner

This example shows the tracker’s behavior when the target turns round a corner

in a corridor. Initially the tracker stays near the lower right corner of the obstacle

inside a lookout region to maintain stealth (Figure 4.6a). When the target makes

the turn, a new lookout region develops, and the line of sight pivots about the upper

right corner of the obstacle. The tracker follows the gradient of the risk function to

take advantage of this. It swings out to improve its visibility (Figure 4.6b). Finally

the tracker goes towards the upper right corner and stays there to maintain stealth

(Figure 4.6c).

target

tracker

(a) (b) (c)

Figure 4.6. The target turns around a corner.
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large lookout:

target path tracker path

(a) (b) (c)

small lookout:

target path

tracker path

(d) (e) (f )

Figure 4.7. The tracker’s behavior changes due to different sizes of lookout regions.

4.3.2 Effect of lookout region

The tracker’s behavior and success may change drastically, depending on how

much risk of exposure that it is willing to take. Recall that the distance threshold L

controls the size of lookout regions and reflects the tracker’s estimate or willingness to

take risk of exposure. If L is large, the tracker has more room to maneuver, usually

resulting in more successful tracking.

Consider the environment shown in Figure 4.7. The target moves roughly along

a straight path through the zigzag pathway. When L is large, lookout regions from
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two sides of the pathway often merge and the tracker can jump from one side to the

other, using obstacles on both sides for cover (Figures 4.7a–c). It thus follows the

target very closely.

For the same environment and target motion, the tracker’s performance worsens

when L is small. It is unable to move from one side to the other, because the lookout

regions are small and do not merge. It is stuck in one lookout region and has to wait

for another lookout region to come close as a result of target motion (Figures 4.7d–

e). However, by then, it falls behind the target by a large distance (Figure 4.7f ).

Although the tracker does not lose the target here, the target can escape easily by

making a turn at the end of its straight-line motion. No simple emergency action

can recover the target, because the distance between the target and the tracker is too

large.

4.3.3 Stealth behavior in cluttered environment: forest

Imagine a target going straight along a road passing through a dense forest. If

the tracker follows behind the target on the road, it risks exposure. The figures show

the path that the tracker chooses when faced with such a situation. In general, the

tracker stays on the side of the road near the obstacles to avoid the risk of exposure.

It tries to trail the target as closely as possible, given the constraint that it must stay

inside the lookout region of some gap edge (Figure 4.8a). When the lookout regions

of two gap edges merge, the tracker immediately switches to the new lookout region

to further reduce the risk function (Figure 4.8b).

95



(a) (b)

Figure 4.8. The tracker switches lookout regions in a forest like cluttered environment.

4.3.4 Stealth tracking in complex environments

Maze (Figure 4.9) The geometry of this environment is more complex than the

others. The target also takes a long and winding path. The tracker is able to follow

the target till the end, with the help of emergency actions. In Figure 4.9a–4.9b, the

tracker moves almost entirely in the direction ∇e, because the target is very close to

the gap edge and the current escape risk is high. At this moment, the tracker does not

have the luxury to move along ∇r to reduce the future escape risk. Unfortunately

the tracker still loses the target (Figure 4.9c). Taking the emergency action (see

Section 3.6.3), the tracker runs to the vertex that abuts the gap edge from which that

the target has escaped and regains the target (Figure 4.9d). The tracker loses the

target eight times during tracking, but every time it regains the target after taking

the emergency action.

96



(a) (b)

(c) (d)

Figure 4.9. Losing and regaining the target in the Maze environment.

City Blocks (Figure 4.10) This environment resembles urban areas with roads and

housing blocks and gives another example with many obstacles. The target takes a

long path, but the tracker successfully follows the target till the end, with a little help

from emergency actions.

Table 4.1 shows the performance statistics of the tracker in the above environ-

ments. Column 2 lists the total time of target motion. Column 3 lists the length

for which the target is visible to the tracker. Column 4 shows the number of times
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Figure 4.10. Tracking a target among many obstacles in an urban built up environment,
with lanes and alleys.

the target is lost and regained. From the table, we see that the tracker loses the

target in the two environments where there are many obstacles. In the City Block

environment, the tracker loses the target two times, for a duration of one step each.

Every time that the tracker loses the target, it recovers it in the next step by taking

the emergency action. In the Maze environment, which is more complex, the tracker

loses the target eight times. It always recovers the target, but it takes more time than

that needed in City Block. When there are many obstacles causing occlusions, the

tracker is more likely to lose the target. The emergency action, despite it simplicity,

seems quite effective in such environments.

4.4 Discussion

We now discuss some limitations of our approach and possible solutions.
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Table 4.1. Tracking performance.
Environment Total No. Steps No. Steps Visible No. Times Lost & Re-

gained
Corridor 102 102 0
Forest 214 214 0
Zigzag (large L) 130 130 0
Zigzag (small L) 130 130 0
Maze 730 663 8
City Blocks 468 466 2

“Discontinuity” in the lookout regions. Sometimes a lookout region may sud-

denly disappear. Consider the example shown in Figure 4.11. Initially the tracker

is at x, safely inside the lookout region of a gap edge G. As it moves to the new

position, V is reduced. Although the target has not moved at all, G now lies outside

V . The tracker can no longer ascertain the existence of G and the associated lookout

region, and assumes that it is exposed. This happens, because the tracker uses only

local information from the sensor and knows only the environment within V . If the

tracker had fused sensor data through history to produce a global map, it would know

that it is inside the lookout region of G. The use of only local information is clearly

a limitation here.

This situation occurs only if the tracker is close to the obstacle vertex Ov that

supports the line gap edge G (Figure 4.11). If the tracker crosses Ov, the G disappears

from V . This situation can be addressed by truncating the lookout region Sg so that

the tracker always remains closer to Ov, than the interior of G. This can be done by

effectively removing the circular capped region around Ov of Sg.
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Figure 4.11. The target’s visibility regions before and after the tracker’s move. The dashed
lines indicate V. The shaded region indicates V ′ .

4.5 Summary

We have introduced the stealth tracking problem, in which a tracker tries to track

a moving target among obstacles and remain hidden from the target at the same

time. As before, the tracking algorithm uses only local information from the tracker’s

visual sensors and assumes no prior knowledge of target motion or a global map of

the environment. It defines a function that measures the target’s escape risk and

tries to minimize the risk function, subject to the stealth constraint, in order to

achieve the dual objectives of tracking and stealth. The algorithm is efficient, taking

O(n) time at each time step, where n is number of vertices of the tracker’s visibility

region. Experiments in simulation show that the algorithm performs well in difficult

environments.

100



CHAPTER 5

MOTION STRATEGIES: 3-D

In this chapter we develop the vantage tracker for the 3-D environment. Moving

from 2-D to 3-D space offers opportunities to improve tracking performance. The

3-D space is more flexible: the tracker gains one additional degree of freedom to

maneuver, which potentially improves tracking performance. For example, a tracker

helicopter follows and monitors a ground target. If the target turns around at the

corner of a building, the helicopter may choose to fly over the building to keep the

target visible, instead of following the target around the building. However, the same

flexibility leads to several challenges. Just as the tracker, the target may also gain

more room to maneuver and more easily escape from the tracker sensors’ visibility

region. In addition, the visibility relationships in 3-D are more complex than those

in 2-D.

5.1 Problem formulation

The basic formulation of the problem remains the same as in Section 3.1. The

tracking environment is now a 3-D Euclidean space cluttered with obstacles. Such

environments may occur either indoors (e.g., tracking a human in a regular home or

office environment) or outdoors (e.g., tracking a target in an urban environment).
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5.1.1 3-D Motion Model

The tracker and the target are modeled as free flying point objects with no motion

constraints, except for bounds on their maximum speeds, V and V ′, respectively. As

before, assume V ′ ≤ V ; otherwise, the problem becomes uninteresting if the target

tries to escape by moving faster than the tracker. The tracker motion is modeled as

a simple discrete-time transition equation. If at time t, the tracker at position x(t)

moves with a velocity v(t), its position at time t+ 1 is given by

x(t+ 1) = x(t) + v(t)∆t

with |v(t)| ≤ V for all t. So the region R, of the tracker in ∆t is a sphere of radius

V∆t centered at x(t). The equations are the same as in 2-D except that the vectors

x and v are now defined in 3-D euclidean space.

5.1.2 3-D Visibility Model

Obstacle

Robot

Target

Occlusion Plane

Range Edges

Occlusion Edges

Obs Edge

Free Surfaces

Obs. Surface

Oe
Be

Op

R

Or

Ov

(a) 3-D occlusion surface (b) Occlusion plane (G) notations

Figure 5.1. 3-D Visibility model.
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The assumptions on the environment and the target motion are the same: both

are unknown to the tracker a priori, but we assume that the target is initially visible

to the tracker. The tracker uses 3-D visual sensors, e.g., cameras or laser range

finders, for sensing the target and its surroundings. For simplicity, we assume omni

directional sensing capabilities for the sensors, although field of view based models

can be incorporated easily. Visibility is modeled here as simple line of sight sensing,

bounded by a maximal range Dmax. Thus, in an open space, the tracker’s visibility

region is a sphere of radius Dmax with the center at x(t). Obstacles in the environment

may obstruct visibility. Let F denote the space that is within the sphere and is free of

obstacles. The set of all points q within F visible to the tracker defines the visibility

region, V , of the tracker at position x:

V(x) = {q ∈ F | xq ⊂ F and dist(x,q) ≤ Dmax}

where xq denotes the line segment joining q and x. Clearly, V is now a star-shaped

generalized polyhedral. Note that although we use the same symbol V for the tracker’s

visibility as in the previous chapter 3, the visibility set is defined in 3-D.

The tracker plans its actions using local geometric information from its sensors.

Based on a polyhedral approximation for the environment geometry, V takes the shape

of a generalized polyhedron bounded by two types of surfaces (shown in Figure 5.1a):

the surfaces that are the boundaries of the polyhedral obstacles, obstacle surfaces, and

the surfaces that lie in F , free surfaces. The free surfaces can be further divided into

occlusion surfaces that are caused by the obstruction of visibility and range surfaces

that are caused by the visibility limits Dmax. The free surfaces pose the risk of losing

the target.
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In general, the occlusion surfaces can be made up of a number of occlusion planes

concatenated to each other. Adjacent occlusion planes meet in the occlusion edges.

Let us take the occlusion plane G as shown in Figure 5.1b. G consists of the interior

of the occlusion plane (Op) bounded by a pair of occlusion edges (Oe) at the lateral

sides, obstacle edge (Be) in front and range edge (Or) at the rear. Let us term the

vertex at which Oe and Be meet as an occlusion vertex (Ov).

R

T

G

Target Path

G

R

T

Lateral motion

(a) Target tries to escape through G (b) A small lateral motion can
prevent the target’s escape.

Figure 5.2. Increase in complexity of planning due to additional degree of freedom in 3-D
tracking.

Complexity of 3rd dimension In the 3-D case, occlusion planes replace occlu-

sion edges, and the tracker and the target gain one additional degree of freedom to

maneuver. This introduces additional complexity in the tracking problem. To illus-

trate this, let us take a simple scenario as shown in Figure 5.2a. The gray object

occludes the trackers view to above the occlusion plane. The target moves in a path
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that intersects this plane and escapes the tracker’s visibility. To prevent this, the

tracker has to manipulate the occlusion plane away from the target. The usual steps

as seen from the 2-D formulation would be to swing the plane away from the target

and move towards the obstacle in view of eliminating the occlusion plane. As the

visibility plane is finite, the tracker also has the option of shifting the plane, by a

lateral motion, such that the target’s projected path does not intersect the occlusion

plane in 3-D as shown in Figure 5.2b. Such a lateral motion is not automatically

obvious by a simple extension of the 2-D approach. The effect of any other occlusion

plane can be eliminated by making the occluding obstacle in Figure 5.2 arbitrarily

short in the vertical direction.

In spite of the additional dimension, the intuition on balancing the short-term

and long-term goals, as illustrated in the 2-D example, remains basically the same.

Below we propose a carefully constructed risk function to capture this intuition for

each free surface. The total risk is a sum of these risks, weighted by the probabilities

of the target’s escaping through the corresponding surfaces. The tracker’s action is

then a local greedy step to minimize the total risk.

5.2 Relative Vantage in 3-D

The concept of relative vantage and danger zone, D that partitions V into dan-

gerous and safe zones remain the same as in Section 3.1. We construct a danger zone

(D), such that for any position of the target within that region, the tracker cannot

eliminate G (by moving towards Be) before the target reaches G, given the target’s

and tracker’s current velocities. We have the same definition as in the 2-D case except
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that now the vectors are in 3-D and G represents a finite plane.

D = {q : q ∈ V∧ time(q,G) < time(x,G)} (5.1)

Be

Op

R

G

Oe

Be

G
Be

G

(a) DN (b) DL (c) DR

Be

G

Ov

R

D

(d) DV (e) D = DN ⋃DL ⋃DR ⋃DV
Figure 5.3. Vantage Zone D for a single occlusion plane

As shown in Figure 5.1b, the occlusion plane (G) can be seen as a union of Op,
Oe, Be, Or and Ov. Or exists due to the sensor range limitation and we shall address

it later in Section 5.3.2. Based on the proximity to these geometric features, D can

be partitioned into four regions, shown in Figure 5.3.

• DN : The region in D that is closest to the interior of G, i.e. Op.

DN = {q ∈ D|nearest(q,G) ∈ Op}

This region is depicted in Figure 5.3a.

• DL : The region in D nearest to the occlusion edge Oe.

DL = {q ∈ D|nearest(q,G) ∈ Oe}
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DL is depicted by semi-circular cylindrical pieces abutting the occlusion edges,

Figure 5.3b.

• DR : The region in D closest to the obstacle edge Be, as shown in Figure 5.3c.

DR is a semi-circular cylindrical piece abutting Be.

DR = {q ∈ D|nearest(q,G) ∈ Be}

• DV : The regions in D nearest to the occlusion vertex, Ov, as shown in Fig-

ure 5.3d. DV is a pair of spherical sectors.

DV = {q ∈ D|nearest(q,G) = Ov}

Be

G

R

vn

vp

vr

n̂

r̂

p̂ R

vn
−ωnp̂

(a) v components (b) vn

R

ωpn̂

vp R
vr

vr

vr

(c) vp (d) vr

Figure 5.4. The effect of tracker velocities vn,vp and vr on D
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Effect of tracker velocity G depends on the tracker’s position w.r.t. the obstacle,

and so the tracker can manipulate G by its motion. Let us introduce a reference

frame on the tracker n̂, p̂ and r̂, shown in Figure 5.4a, to simplify the analysis. The

tracker motion normal to G, along n̂, increases the plane’s distance to the target by

swinging about Be (Figure 5.4b). Similarly, motion parallel to Be, along p̂, increases

the distance of the Oe to the target by swinging Oe laterally about Ov (Figure 5.4c).

Both these velocity components help in achieving the short term goal of preventing the

target’s immediate escape. On the other hand, motion towards G, along r̂, improves

the future tracking capability of the tracker. Moving closer to the obstacle allows G
to be swung more effectively (similar to 2-D swinging).

Tracking approach In order to maintain a good relative vantage over the target,

the tracker must manipulate D such that the target is pushed out of D if it is inside,

else move D as far from the target as possible. A good estimate of the relative vantage,

is the shortest amount of time, tr.v, the target needs to reach the boundary of D. tr.v

(vantage time) is positive if the target is inside D and negative if outside. Let P be

the point through which the target exits D. tr.v can then be approximated by,

tr.v =
Dist(T ,P)

Veff (T ,P)
(5.2)

where Dist(T ,P) and Veff (T ,P), represent the relative distance and velocity of the

target to P .

Depending on the tracker’s motion, P can lie either in DN , DL, DR or DV . Op-

timizing tr.v over all the four regions involves finding an optimal velocity v? such

108



that,

v? = arg min
v

(tr.v) ∀P ∈ DN ,DL,DR,DV (5.3)

To simplify computation, let us approximate tr.v by its lowest bound,

tr.v = min(tDN , tDL, tDR, tDV) (5.4)

Once tr.v is found, the gradient of tr.v computed at the current values gives the

optimal direction to move. The optimization then reduces to finding v? that minimizes

tr.v, and moving one step along the direction:

∇tr.v =
∂tr.v
∂vr

r̂ +
∂tr.v
∂vn

n̂ +
∂tr.v
∂vp

p̂ (5.5)

The minimization is done analytically or by a few steps of the Newton-Raphson

routine.

5.3 Computing risk analytically

Let us now compute the analytical forms for tr.v Equation 5.2.

5.3.1 Occlusion Planes

Risk parameters As in 2-D, we define the danger zone that partitions V into

regions with relative vantage. The risk of the target’s escape through G depends on

its shortest distance of escape (SDE) to the plane, as denoted by e in Figure 5.5a. The

smaller the e is, the higher is the risk of the target’s escaping. The risk also depends

on how well the tracker can manipulate G away from the target. The effectiveness

of manipulation depends on the relative positioning of the tracker and the target

w.r.t. G. Let r be the distance between the tracker and Be, and r′ be the distance

between the target and Be, projected into the occlusion plane, shown in Figure 5.5a.
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Figure 5.5. Parameters involved in the Risk Formulation

If r′ > r, the tracker has an advantage in swinging G farther away from the target

given the same velocity components of the tracker and target normal to G. Similarly

in Figure 5.5b, if d′ is the distance of the target’s projection on Oe from Ov and d

the corresponding measure for the tracker, d′ > d gives the tracker an advantage in

swinging Oe about Ov.

Relative velocity As shown earlier, the tracker can manipulate D by its motion.

vr causes D to shrink towards G (Figure 5.4d), vn causes D to swing about Be (Fig-

ure 5.4b), in the normal direction to the G by an angular velocity ωn and vp shifts

D along Be by swinging Oe laterally by an angular velocity ωp (Figure 5.6). From

Figure 5.5(a & b) and Figure 5.6,

ωn = −(vn/r)p̂

ωp = ((vp cos β − vr sin β)/d)n̂.
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Figure 5.6. Computing ωp

In order to find the analytical expressions for tr.v in the four regions, let us take

V = V ′. This does not take away the generality of the derivation as we can introduce

a scale factor η such that, V = ηV ′. Let us define the distance of the tracker to G, as

Dsafe: Dsafe = Dist(R,G). For the following, we take η = 1, which gives Dsafe = r.

Computing tDN

Figure 5.7 shows a portion of DN . Let the target’s velocity along the normal

direction be v′n. The relative velocity of the planar DN surface w.r.t. the target is

veff = vr + ωnr
′ − v′n and effective Dist(T ,P) = Dsafe − e, giving,

tDN =
r − e

vr + ωnr
′ − v′n

Note that tDN does not depend on vp. This is to be expected since moving parallel

to the G does not change the tracking parameters and hence the risk.

The optimal action to minimize tDN is given as,

v∗DN (vr, vn, vp) = arg min
(vr,vn,vp)

(
r − e

vr + ωnr
′ − v′n

)
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Figure 5.7. Computing tDN

=
tDN
veff

(
r′

r
n̂ + r̂

)
(5.6)

Interestingly, the result takes the same form as risk optimization in 2-D, Section 3.4.1.

This shows that in a tracking scenario with infinite occlusion planes, ( infinite polygons

and infinite sensing ranges), the 3-D tracking can be treated as a 2-D tracking problem

for individual occlusion planes.

Computing tDL

Let us ignore vr for now. Figure 5.8 shows a portion of DL. The resultant motion

of the target and DL can be shown to lie along section AA′. If P lies on DL, projecting

the target velocity and the distance to a section AA′ that is perpendicular to Oe, does

not change the ratio of the distance to the velocity. We can then safely compute tr.v

by just considering the motion in AA′ plane. Let us introduce a coordinate system

fixed at occlusion vertex Ov {̂i, ĵ, k̂} as shown in Figure 5.8. Let the target position
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Figure 5.8. Computing tDL

w.r.t. the new coordinates be denoted by x′DL. Then,

x′DL = −txî + d′̂j + ek̂

The effective velocity, veff , is a resultant of three components: the normal and lateral

swing, the shrinking of D and the velocity of the target v′.

veff = ωnp̂× x′DL + ωpk̂× x′DL − v′

= (−ωpd′ + ωne sin β)̂i + (−ωptx − ωne cos β)̂j + ωnr
′k̂− v′0

where β is the angle ĵ makes with r̂. The effect of vr is to shrink R towards Oe. This

gives the condition,

| x′DL + veff × tr.v |ik= Dsafe − vrtr.v.

Solving for tDL gives,

tDL =
−(−txv′x + ev′z + rvr)±

√
(−txv′x + ev′z + rvr)

2 − 4(v′x
2 + v′z

2 − vr2)(tx
2 + e2 − r2)

2(v′x
2 + v′z

2 − vr2)

(5.7)
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Where, tDL is chosen to be the lower positive value. In the proposed approximation it

is not necessary to solve Equation 5.7 exactly, and minimizing tDL is done using a few

iterations of any minimization routine. We use the Newton-Raphson minimization

due to its simplicity.

v∗DL(vr, vn, vp) = arg min
(vr,vn,vp)

(tDL)

(5.8)

As the actual optimization formulation is transient and changes at each time step,

we just take a few steps in minimizing tDL. In the next time step the current values

are chosen as initial parameters. As the objective function itself changes at a lower

frequency than the computation cycle, the solution tends to converge towards the

relevant local minima.

Computing tDR and tDV

v′r

G
Ov

r vr

e

DR

p̂

n̂

Figure 5.9. Computing tDR
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DR and DV behave in a similar way that, neither ωn nor ωp cause any relative

velocity of the surface towards the target in this case, as shown in Figure 5.9. Taking

the radial component of velocity and distance, veff = vr − v′r and dist(target,P) =

Dsafe − e giving,

tDR = tDV =
r − e
vr − v′r

tDV is given by the same expression for its corresponding case.

Minimizing v∗DR,

v∗DR(vr, vn, vp) = arg min

(
r − e
vr − v′r

)

=
tDR
veff

r̂ (5.9)

The action is to go straight towards Be. vp and vn do not contribute to minimizing

tDR.

5.3.2 Formulation for Range Edges

v′r

vr

e
Dmax P

R

range

Dmin

Figure 5.10. Computing tr.v for Range
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The tracker cannot eliminate range surfaces by moving towards it. As before we

use a measure of escape time, tesc, to formulate the risk of the target’s escape through

R,

tesc =
Dist(T ,P)

Veff (T ,P)

In the definition of tesc, we redefine P to be the nearest point along the radial

direction to the range surface as shown in Figure 5.10. Then the effective velocity

becomes veff = vr− v′r, and dist(target,P) = Dmax− e. e is then calculated from P .

Minimizing tesc,

vrange(vr, vn, vp) = arg min

(
Dmax − e
vr − v′r

)

=
tesc
veff

r̂ (5.10)

As mentioned earlier, the behavior generated by the range surfaces alone, makes

the tracker move towards the target. This is the same as visual servo behavior. This

again shows that visual servo is a special case of vantage tracking when there are no

occlusions.

5.3.3 Handling Multiple Occlusions

Multiple occlusion planes are handled by weighing the individual actions by the

probability of the target’s escape through the particular occlusion plane,

∇Φ =
∑
i

pi(
∂tr.v
∂vr

r̂ +
∂tr.v
∂vn

n̂ +
∂tr.v
∂vp

p̂).

In the following section we show how the prediction of the target’s escape is made

for each escape plane.
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5.4 Prediction

For finding the probability of the target’s escape through any particular occlusion

pi, we predict the motion of the target by independent distributions p(θ) and p(φ) on

its azimuth (θ) and zenith (φ) angle. We assume that the target speed remains con-

stant, but in general, this can also be modeled by a distribution p(s). The probability

is measured in terms of the integral of the volume subtended by the plane,

pi(φ, θ) =
∫ θ2

θ1

∫ φ2

φ1

p(φ)p(θ)dφdθ

φ

θ

T

v′

Pred. future vel.
(zenith)

(azimuthal)
T

v′

G

A

B

C

D

(a) (b)

θ axis

φ axis

V

dθ

φi

φj

θ1 θ2

A’
B’

C’

D’

(c)

Figure 5.11. (a) Spherical coordinates for the target velocity (b) Solid angle subtended by
the occlusion plane ABCD on the target (c) Escape Probability is the volume under the
surface
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For a locally predictable target, it is highly unlikely that the target would make

abrupt changes in its velocity pattern in the immediate future. We model this by

any distribution that places a higher likelihood of choosing a velocity closer to the

current velocity. This gives us a probability distribution p(φ) on the zenith angle (φ)

in the target spherical coordinates, shown in Figure 5.11a. Similarly the probability

of the target’s choice of any azimuthal angle (θ) is modeled as p(θ). We could also

have a distribution over the choice of the speed of the target, but in the current

analysis we assume that the target would not change its speed. The joint distribution

for the predicted velocity direction is shown in figure.5.11c, where the V plane from

Figure 5.11b) has been mapped to the (φ − θ) plane. Linear extrapolation of the

target’s predicted motion in all possible directions gives us a measure of the target’s

probability of escape through all the occlusion surfaces.

The probability of the target’s escape through any occlusion plane G, is then the

normalized volume under the probability distribution surface subtended by G at the

target’s current position.

pi(φ, θ) =
∫ θ2

θ1

∫ φ2

φ1

p(φ)p(θ)dφdθ (5.11)

As an example, when p(φ) is a Gaussian distribution and p(θ) is uniform,the

probability is calculated by the formula,

pi =
∫ θ2

θ1
(erf(φj)− erf(φi))dθ (5.12)

Where, erf(φ) =
2√
π

∫ φ

0
e−t

2

dt
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5.5 Experiments

We performed different tests on the algorithm by providing it with various envi-

ronments and analyzing the results. In the first test, we check for specific behaviors

of the algorithm with different configurations of the target in a simple environment,

Figure 5.12. In the second test, we run the algorithm in a more complex urban

environment amid sensor uncertainties, Figure 5.13, and analyzed its performance.

5.5.1 Qualitative Analysis : Single occlusion plane

(a) CASE I (b) CASE II (c) CASE III

Figure 5.12. Control Experiments to analyze the behavior of a single occlusion plane.

We create a simple scenario in Figure 5.12, where the target (red cube) tries

to escape the visibility of the tracker (blue sphere), by moving behind the obstacle

(maroon wall). To analyze the fundamental characteristics of the tracker motion in

response to the target’s motion against an occlusion plane, we turn off all the occlusion

planes except the light blue plane at the top of the wall. The dotted lines depict the

previous path executed by the target and the tracker, while the solid segments show

their current heading. For all the cases, the tracker is placed in front of the wall. The
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target’s path is unknown to the tracker. The tracker’s velocity is generated at each

step by Equation 5.3.

CASE I : When the target is placed in front of the wall, shown in Figure 5.12a, its

shortest path of escape from the tracker’s visibility passes through the top edge

of the wall. This means that any amount of swinging of the occlusion plane

by the tracker would be fruitless and the tracker should move towards this

edge. This behavior is reproduced by the tracker, as vr is the only component

produced by Equation 5.3.

CASE II : Next, let the target be placed above the wall somewhere middle along

its horizontal length, shown in Figure 5.12b. For such a position, the target’s

closest point of escape is its normal projection on the occlusion plane. In such a

situation then, it makes sense to swing the occlusion plane away from the target.

The algorithm manages to produce a combination of vn and vr to address the

scenario. vn helps in swinging the plane, and vr helps in improving the vantage

by moving closer to Be. This combination, that balances the long term and

short term goals, generates a curved path as seen in the figure.

CASE III : If the target is placed not at the middle, but towards one end over the

wall, a lateral swing can increase the shortest distance value in addition to the

normal swinging motion. This is characteristic to 3-D environments where the

tracker can prevent the target’s escape by shifting the plane laterally away from

under the target. In general, humans tend to show this kind of behavior in

such a situation. This behavior is also shown by the algorithm as it generates

a horizontal component vp, in addition to vn and vp. This shows that the
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algorithm is able to exploit the additional dimension available to the tracker in

3-D. Moreover, this is achieved using only local information.

5.5.2 Realistic simulation

(a) (b)

(c)

Figure 5.13. Realistic simulation setup using Gazebo. (a) Environment setup, (b) Robot
viewpoint, (c) Extracting G from 3-D range scan

We next test the effectiveness of our algorithm in a realistic scenario by imple-

menting it in the Gazebo tracker simulator [102]. Gazebo is a multi-tracker simulator
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for both indoor and outdoor environments in 3-D. It generates realistic sensor feed-

back, object collision, and dynamics. Using Gazebo, we build an urban environment

in which a tracking robot helicopter tracks our target, another helicopter, shown in

Figure 5.13. The environment has buildings of various sizes, separated by alleys and

pathways. We mount a 3-D sweeping laser range finder on the tracker helicopter. In

general, this can be replaced by any reliable vision system without much impact on

our algorithm. The 3-D range data is processed to extract occlusion planes. Fig-

ure 5.13c shows an example. The set of points is the sensor data from the laser

range finder. The dark blue planes are the occlusion planes obtained by the range

discontinuity upon thresholding. The red dot indicates the target position.

Comparing with visual servo We compare our algorithm with the popular visual

servo algorithm. To evaluate the performance, we compare the shortest distance to

escape (SDE) from the target position to the nearest occlusion plane. Clearly, if

an algorithm alway maintains superior SDE throughout, thereby keeping the target

away from the possible escape regions, it can be considered to have a better tracking

performance.

Figures 5.14a & 5.14b, show the tracking results for the servo algorithm and

our vantage algorithm, respectively. The target executes an identical path, which is

marked in Figure 5.14a. The tracker starts from the same position in the lower right

part of the figures. The dotted paths show the tracker’s paths under the control of

the two algorithms.

The servo tracker loses the target at step 23, whereas the vantage tracker continues

until we stop the simulation at step 46, at which time the target is still visible. The
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(a) Servo controller (b) Vantage controller

(c) SDE plots for Servo vs. Vantage (d) Risk and SDE plot of Vantage

Figure 5.14. Experimental Results

SDE plots, in Figure 5.14c, show that the two trackers have comparable performance

until around step 20. After that, the SDE for the servo tracker drops to 0, while

the vantage tracker still maintains good SDE values and is able to continue tracking

the target. The reason behind the success of the vantage tracker becomes clearer

when we look at Figure 5.14d, which plots the risk values computed by the vantage

tracker at each step. We see that the risk values peak for certain steps. Careful

inspection reveals that such peaks occur whenever the target turns around a corner.

For example, the target turns right sharply in steps 15–20, then again around step
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30, and we have peaks in the risk plots accordingly. From the peaked risk values, the

vantage tracker perceives the danger of losing the target in the near future and moves

to reduce it, thereby successfully keeping the target visible. The servo tracker does

not consider the effect of occlusion by obstacles and loses the target.

Figure 5.15. Characteristic motion of Vantage tracker in 3-D. Two views of the tracker’s
climbing action.

3-D climbing behavior In Figure 5.15, we show an example where the vantage

tracker exploits the additional dimensionality in 3-D to its advantage. The target

path is similar to that shown previous example, the only difference is now the height

of the target path is similar to that of the shorter building (one on the left). The red

balls show the path of the tracker. This triggers the lateral motion as in Figure 5.12c.

As the target turns around the corner of the building, the tracker rises vertically

and hovers over the top of the building. This gives it an advantage of being able to

guard any side of the building against the target with equal ease. To the authors’ best
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knowledge, the emergence of such a behavior achieved using only local information has

not been shown before. Additional snapshots of the video are shown in Figure 5.16.

Figure 5.16. A set of snapshots showing the tracker’s climbing behavior. The green tracker
helicopter tracks the blue target helicopter using on board 3-D range sensor. We can see
the tracker climb the shorter building and keep track of the target which is making a turn
around the building. Again, when the target turns around the taller building, the tracker
starts following it. (Video-id: Vantage3D-climb)
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5.6 Summary

In this chapter, we propose a 3-D tracker that can keep in view an unknown

target in an unknown environment. The risk function is based on the concept of

relative vantage formulated in the earlier chapter 3. 3-D tracking proposed additional

complexity due to an extra degree of motion available to both the target and the

tracker. We formulate analytical forms for the risk function that can be minimized to

compute the local optimal motion. Simulation results show that such a formulation

is able to exploit the additional dimension to keep the target in view more effectively

compared to visual servoing.
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CHAPTER 6

CONCLUSION

This thesis focuses on the problem of generating motion strategies for tracking

a moving target in an unknown and dynamic environment for both 2-D and 3-D.

The tracker plans using only local information and has to take into account sensing,

mobility and operational limitations. A general tracking framework is provided which

integrates these limitations into the tracking problem as planning constraints for a

local greedy online tracking algorithm that maximizes the relative vantage of the

tracker with respect to the target in the locally sensed environment.

6.1 Contributions

In order to track in an unknown and dynamic environment an online local ap-

proach has been taken. On board sensors compute the local visibility and based on

the escape gaps in the visibility a risk function is proposed that encodes the danger

of losing the target through these escape gaps. Focusing only on local information

instead of trying to build a global map keeps the tracking algorithm tractable in a

complex or cluttered environment like crowded places. Moreover, such a tracker does

not care about the boundedness of the environment or about loops in the environment.
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In 3-D such an advantage is significant. As an example, a tool tip tracking using vi-

sual cameras during surgery would not require complete modeling of the pulsating

organs which periodically might occlude the line of sight.

While the local planning approach evades the complexity of global planning, it

performs better than the purely reactive approaches like visual servoing which does

not incorporate the environment information. The intelligence in tracking comes from

the risk function that includes the information about the environment and the relative

position of the target and the tracker in it. By analyzing relative positioning of the

target and the tracker in the environment, a relative vantage based risk formulation

is proposed. Optimizing such a risk function allows the tracker to move itself towards

a strategic location from where the escape gaps can be kept away from the target in

an effective manner. Such a vantage tracker performs better that other risk based

approaches that maximizes the shortest distance to escape for the target. The advan-

tage of the vantage tracker which exploits the local information is that it is able to

successfully balance the requirement of keeping the target in view for the immediate

step while preventing the chances of visual occlusions in the future. In this way both

short term and long term goals are achieved.

For both 2-D and 3-D we propose analytical formulations for risk function. This

leads to a fast computation of the optimal motion to be taken and the algorithm

can be run at a high frequency. The high frequency of sampling and planning makes

the robot robust to dynamic obstructions and changes in the environment and allows

rapid recovery from unexpected scenarios. As an example for the latter, the tracker

can instantly modify its tracking behavior when a door is opened in a closed room

and additional escape routes are exposed. Approaches that build a global map while
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tracking will have a lag before this information is propagated into the map and actions

modified accordingly.

The thesis presents a general tracking framework where hardware and operational

limitations can be incorporated into such a local planning approach. Such a frame-

work makes implementing the tracker on a real robot possible. Limitations on sensing

are incorporated into the visibility, while the reachable regions are limited by the mo-

bility constraints. Additional mission requirements can be incorporated in a same

way into the tracking problem. As an example, a stealth tracker is proposed. The

stealth requirement is formulated into a stealth planning constraint by exploiting the

target’s estimated visibility in the environment. It is shown that the tracking behav-

ior changes when this stealth constraint is added. An advantage of such an approach

for an online local tracking approach is that such constraints can be added or removed

at runtime. A higher AI loop or a human operator could add or remove operational

requirements of stealth or human avoidance for different targets or environment.

For the 2-D formulation, this framework is utilized to build a tracking robot using

only an on board laser sensor on a standard differential drive robot. The tracker was

tested in crowded environments in the school cafeteria during lunch time. Crowds

may occlude a significant portion of the environment and a robot that depends on

the global information might have difficulty in localizing itself. Modeling the crowd

behavior in a dynamic manner is extremely difficult using only the on board sensors of

the tracker. The local information based tracking approach avoids this problem. The

fast online re-planning helps the robotic tracker to recover from temporary occlusions.

Moreover, the uncertainty in sensing and motion was bounded as the local information

was extracted at each step and re-planning of the motion done making the tracking
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more robust to accumulation of errors. The tracking robot was able to successfully

follow a person in the crowded cafeteria. Such a system can be easily upgraded into

a prototype robotic personal porter for use in airports, railway stations or shopping

malls.

In a 3-D environment, the visibility relationships are complex and the current

tracking techniques are mostly based on visual servo approach. This thesis presents

an intelligent vantage tracker which exploits the local information and computes a

tracking motion in an online fashion. A relative vantage based risk generates intel-

ligent tracking actions while keeping the computation load similar to that of visual

servo. As an example, in simulation a robotic helicopter utilizes a vertical motion

to avoid occlusion of the target due to the buildings in an urban scenario when ad-

vantageous. Such a behavior is generated based only on the locally sensed geometric

parameters and no a-priori knowledge of the layout or the model of the obstacles in the

environment is used. Another thing to note is generating such behaviors for environ-

ments with complex and cluttered generalized polygons still keeps the computation

tractable.

6.2 Limitations

The target tracking approach proposed has limitations of a local approach. Since

the planning is done in a local online fashion, the actions are not guaranteed to

provide globally optimal motion paths. Without a global map, the tracker is not able

to exploit environmental pathways that would ensure the maximizing of the total

time for keeping the target in view. For example, the local optimization would not

favor motion strategies for losing the target for a short duration eventhough it might
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improve the tracking significantly in the future. Effective motion algorithms to search

and regain the target cannot be utilized due to the lack of a map. In addition due to

the usage of limited history the tracker may get trapped unnecessarily into a series

of oscillating maneuvers as discussed in Section 4.4.

There are situations, where continuous tracking is not desirable. E.g, in the

monitoring of an elderly person, some privacy is necessary when the target goes to the

washroom. The proposed approach to tracking cannot handle monitoring the target’s

location without keeping the target in sight. For such situations, the searching and

tracking problem has to be combined by the target’s location uncertainty which can

then be tracked [56].

Since the algorithm does not keep a memory of the environment (does not build a

map), it might generate transient occlusion gaps which physically lead to a dead end,

e.g when the visibility rays are at grazing angle to an obstacle. This occlusion gap

disappears when the incident angle decreases, and re-appears when angle increases

again. Such spurious occlusion gaps can create wavy motion while tracking. This is

a disadvantage of a limited temporal local information model.

6.3 Future Work

Incorporating Uncertainty Although the tracking framework proposed is general,

the focus of this thesis has been on deterministic analysis of the actions from a

given visibility polygon. The uncertainty in sensing and motion has not been

incorporated explicitly into the formulation. A significant improvement of the

tracking performance can be made by developing and incorporating probabilistic
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models for potential target features to identify clutter and filter them before

generating the visibility polygon.

Multiple robots Multiple robot based vantage tracking is an interesting extension.

A single tracker is bound to fail in certain cases. Additional robots can po-

tentially increase the time the target is kept under surveillance. However, this

increases the complexity of the problem as now the individual sensor information

have to be fused in an intelligent manner to extract local geometrical feature.

Also, the control of individual tracker quickly increase the dimensionality of the

planning problem. This makes the problem challenging.

Computer vision based target disambiguation The major drawback of the track-

ing system is the assumption of reliable target detection, which is difficult in

real environments. The tracking strategy assumes the target is visible and ini-

tialized in the beginning. It also does not focus too much on recovering the

target, once it is lost for a long duration. Such a limitation can be addressed by

having a robust target detection algorithm that can detect and disambiguate

the target from the background. A vision based system can be integrated with

the range data to make the target detection and recovery more robust. Com-

bining the computer vision with laser recognition would lead to improved target

identification and hence improved target tracking capabilities.

Stealth tracker in hardware Implementation of the stealth tracker presented on

real hardware would be an interesting extension of this work. However, several

significant issues must be investigated. For one, the identification of the target

from partial occlusions as well as from an analysis of the shadow regions (regions
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not currently in view) would be an important component. Moreover, the phys-

ical structure of the tracking robot must also be incorporated into the planning

aspect to determine the stealth regions it could physically be accommodated in.

3-D tracking in hardware The motion model for the 3-D tracker is a free flying

holonomic model. In real applications, like gliders or helicopters, the kinematics

and dynamics of the robot have to be taken into account. It would be interesting

to integrate the non-holonomic motion models of such robots and see how the

tracking performance is affected. The execution of such a strategy might reveal

new 3-D maneuvers.

Using global information effectively Extending the concept of relative vantage

beyond the local visibility, when the map of the environment is known is an

interesting problem. If the criterion is to maximize the total time for which

the target is kept in view, it may be in the tracker’s interest to let the target

move out of sight for a short duration while moving to a strategic location that

significantly improves future tracking. This in conjunction with a multi-robot

risk formulation can create a robust indoor surveillance system.
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2007.

• T. Bandyopadhyay, Y.P. Li, Ang Jr. M.H., and D. Hsu. A greedy strategy

for tracking a locally predictable target among obstacles. In Proc. IEEE Int.

Conf. on Robotics & Automation, pp. 2342-2347, 2006.

• T. Bandyopadhyay, Y.P. Li, Ang Jr. M.H., and D. Hsu. Stealth tracking of

an unpredictable target among obstacles. In M. Erdmann and others, editors,

Algorithmic Foundations of Robotics VI, pp. 43-58, Springer-Verlag, 2004.
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[80] Frédo Durand, George Drettakis, and Claude Puech, “The 3d visibility com-
plex,” ACM Trans. on Graphics, vol. 21(2), pp. 176–206, April 2002.

[81] Luis O. Mejias, Srikanth Saripalli, Pascual Cervera, and Gaurav S. Sukhatme,
“Visual servoing of an autonomous helicopter in urban areas using feature track-
ing,” Journal of Field Robotics, vol. 23, no. 3, pp. 185–199, 2006.

[82] R. Vidal, O. Shakernia, H.J. Kim, D.H. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: theory, implementation, and experimental evaluation,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 662 – 669,
Oct. 2002.

[83] Zhen Jia, A. Balasuriya, and S. Challa, “Sensor fusion based 3d target vi-
sual tracking for autonomous vehicles with imm,” in Proc. IEEE International
Conference on Robotics and Automation ICRA 2005, 2005, pp. 1829–1834.

[84] Zlien Jia, A. Balasuriya, and S. Challa, “Visual 3d target tracking for au-
tonomous vehicles,” in Proc. IEEE Conference on Cybernetics and Intelligent
Systems, 2004, vol. 2, pp. 821–826.

[85] Khurram Shafiq Mubarak Shah. Fahd Rafi, Saad M. Khan, “Autonomous tar-
get following by unmanned aerial vehicles,” in SPIE Defence and Security
Symposium, Orlando FL., 2006.

[86] A. Ruangwiset, “Path generation for ground target tracking of airplane-typed
uav,” in Proc. IEEE International Conference on Robotics and Biomimetics
ROBIO 2008, 2009, pp. 1354–1358.

142



[87] H. Helble and S. Cameron, “3-d path planning and target trajectory prediction
for the oxford aerial tracking system,” in Proc. IEEE International Conference
on Robotics and Automation, 2007, pp. 1042–1048.

[88] Chengyu Cao and N. Hovakimyan, “Vision-based aerial tracking using intel-
ligent excitation,” in Proc. American Control Conference the 2005, 2005, pp.
5091–5096 vol. 7.

[89] Gai Ming-jiu, Yi Xiao, He You, and Shi Bao, “An approach to tracking a 3d-
target with 2d-radar,” in Proc. IEEE International Radar Conference, 2005,
pp. 763–768.

[90] Srikanth Saripalli, James F. Montgomery, and Gaurav S. Sukhatme, “Visually-
guided landing of an unmanned aerial vehicle,” IEEE Transactions on Robotics
and Automation, vol. 19, no. 3, pp. 371–381, Jun 2003.

[91] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications., vol. 2nd Edition, Springer, Berlin,
2000.

[92] Q. Zhu, “Hidden markov model for dynamic obstacle avoidance of mobile robot
navigation,” IEEE Trans. on Robotics and Automation,, vol. 7, no. 3, pp. 390–
397, 1991.

[93] N.H.C. Yung and Cang Ye, “An intelligent mobile vehicle navigator based on
fuzzy logic and reinforcement learning,” IEEE Trans. on Systems, Man and
Cybernetics, Part B, vol. 29, no. 2, pp. 314–321, 1999.

[94] C.C. Chang and K.-T. Song, “Dynamic motion planning based on real-time ob-
stacle prediction,” Proceedings on IEEE International Conference on Robotics
and Automation, vol. 3, pp. 2402 – 2407, 1996.

[95] M. Bennewitz, W. Burgard, and S. Thrun, “Using EM to learn motion behaviors
of persons with mobile robots,” in Proceedings of the Conference on Intelligent
Robots and Systems (IROS), Lausanne, Switzerland, 2002.

[96] B. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion with
limited field of view,” in Proceedings of the AAAI National Conference on
Artificial Intelligence, San Jose, CA, 2004.

[97] T.H. Collett, B.A. MacDonald, and B.P Gerkey, “Player 2.0: Toward a practical
robot programming framework.,” in Proceedings of the Australasian Conference
on Robotics and Automation (ACRA 2005)., 2005.

143



[98] Y. Ansel Teng, Daniel DeMenthon, and Larry S. Davis, “Stealth terrain nav-
igation,” IEEE Trans on Systems, Man and Cybernetics, vol. 23, no. 1, pp.
96–109, Jan/Feb 1993.

[99] H. ElGindy and D. Avis, “A linear algorithm for computing the visibility of
polygon from a point,” J. Algorithms, vol. 2, pp. 186–197, 1981.

[100] D.T. Lee, “Visibility of a simple polygon,” Computer Vision, Graphics, &
Image Processing, vol. 22, pp. 207–221, 1983.

[101] B. Joe and R.B. Simposon, “Corrections to Lee’s visibility polygon algorithm,”
BIT, vol. 27, pp. 458–473, 1987.

[102] http://playerstage.sourceforge.net.

144


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction 
	Scope of the thesis
	Main Results
	Thesis Outline

	Literature Review
	Motion Strategies in target tracking
	3-D Tracking

	Motion Strategies: 2-D
	Problem Formulation
	Visibility Model
	Motion Model: Target
	Problem Statement

	Overview of Tracking Approach
	Tracking Risk 
	Computing risk analytically for 2-D
	Occlusion edges
	Visibility limitations
	Qualitative performance analysis

	Handling Multiple Edges
	Prediction

	Adding Constraints
	Locally optimal constrained action
	Obstacle avoidance
	Local target recovery

	Experimental Results
	Tracking in Polygonal Environments
	Tracking in Realistic Office Environments

	Hardware Implementation
	Experimental Results

	Summary

	2-D Stealth Tracker
	Problem Formulation
	Target visibility
	Stealth constraint

	Stealth Tracking Algorithm
	Overview
	Computing the target's visibility
	Computing Feasible Region
	Constrained Risk

	Experiments
	Stealth behavior: target turning a corner
	Effect of lookout region
	Stealth behavior in cluttered environment: forest
	Stealth tracking in complex environments

	Discussion
	Summary

	Motion Strategies: 3-D 
	Problem formulation
	3-D Motion Model
	3-D Visibility Model

	Relative Vantage in 3-D
	Computing risk analytically
	Occlusion Planes
	Formulation for Range Edges
	Handling Multiple Occlusions

	Prediction
	Experiments
	Qualitative Analysis : Single occlusion plane 
	Realistic simulation

	Summary

	Conclusion
	Contributions
	Limitations
	Future Work

	Publications
	Bibliography

