

IMPROVEMENT AND IMPLEMENTATION OF

ANALOGY BASED METHOD FOR SOFTWARE

PROJECT COST ESTIMATION

LI YAN-FU

(B. Eng), WUHAN UNIVERSITY

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2009

I

Acknowledgements

First and foremost, I would like to record the deepest gratitude to my advisors,

Prof. Xie Min and Prof. Goh Thong Ngee, whose patience, motivation,

guidance and supports from the very beginning to the final stage of my PhD life

enabled me to complete the research works and this thesis.

Besides my advisors, I would like to thank the professors who taught me

lectures and gave me wise advices, the student colleagues who provided me a

stimulating and fun environment, the laboratory technicians and secretaries

who offered me great assistants in many different ways.

I wish to thank my wife and my best friends in NUS for helping me get

through the difficult times, and for all the emotional support, entertainment,

and caring they provided.

Last but not the least, I should present my full regards to my parents who bore

me, raised me, and loved me.

To them I dedicate this thesis.

Yanfu Li

II

Table of Contents

SUMMARY .. VI

LIST OF TABLES ... VII

LIST OF FIGURES ..X

LIST OF ABBREVIATIONS... XII

CHAPTER 1 INTRODUCTION ...1

1.1 Software Cost Es timation ...1

1.2 Introduction to Cost Es timation Methods ..3

1.2.1 Expert Judgment Based Estimation ...3

1.2.2 Algorithmic Based Estimation ..3

1.2.3 Analogy Based Es timation ...4

1.3 Motivations ...5

1.4 Research Objective ...8

CHAPTER 2 LITERATURE REVIEW ON SOFTWARE COST

ESTIMATION METHODS ...12

2.1 Introduction..12

2.2 Literature Survey and Classification System ..13

2.3 Cost Estimation Methods ..18

2.3.1 Expert Judgment..18

2.3.2 Parametric Models ...21

2.3.3 Regressions...27

2.3.4 Machine Learning ..31

2.3.5 Analogy Based Es timation ...37

2.4 Evaluation Criteria...48

2.4.1 Relative Error based Metrics ..50

2.4.2 Sum of S quare Errors based Metrics ...54

2.4.4 Ratio Error based Metrics ...58

III

CHAPTER 3 FEATURE SELECTION BASED ON MUTUAL

INFORMATION ..60

3.1 Introduction..61

3.2 Mutual Information Based Feature Selection for Analogy Based Es timation 63

3.2.1 Entropy and Mutual Information ...63

3.2.2 Mutual Information Calculation ...67

3.2.3 Mutual Information Based Feature Selection for Analogy Based Estimation ..68

3.3 Experiment Design ...70

3.3.1 Evaluation Criteria..71

3.3.2 Data Sets ...72

3.3.3 Experiment Design...74

3.4 Results ..76

3.4.1 Results on Desharnais Dataset..76

3.4.2 Results on Maxwell Dataset...83

3.4 Summary and Conclusion Remarks ..90

CHAPTER 4 PROJECT SELECTION BY GENETIC ALGORITHM92

4.1 Introduction..93

4.2 Project Selection and Feature Weighting ...95

4.3 Experiment Design .. 103

4.3.1 Datasets .. 103

4.3.2 Experiment Design.. 104

4.4 Results ... 108

4.4.1 Results on Albrecht Dataset ... 108

4.4.2 Results on Desharnais Dataset..111

4.5 Artificial Datasets and Experiments on Artificial Datasets 113

4.5.1 Generation of Artificial Datasets .. 114

4.5.2 Results on Artificial Datasets ... 119

CHAPTER 5 NON-LINEAR ADJUSTMENT BY ARTIFICIAL NEURAL

NETWORKS ...123

5.1 Introduction... 124

5.2 Non-linearity Adjusted ABE System .. 125

5.2.1 Motivations ... 125

5.2.2 Artificial Neural Networks ... 130

IV

5.2.3 Non-linear Adjusted Analogy Based System.. 132

5.3 Experiment Design .. 139

5.3.1 Datasets .. 139

5.3.2 Experiment Design.. 143

5.4 Results ... 146

5.4.1 Results on Albrecht Dataset ... 146

5.4.2 Results on Desharnais Dataset... 150

5.4.3 Results on Maxwell Dataset.. 153

5.4.4 Results on ISBS G Dataset... 155

5.5 Analysis on Dataset Characteristics ... 158

5.5.1 Artificial Dataset Generation ... 161

5.5.2 Comparisons on Modeling Accuracies .. 163

5.5.3 Analysis on ‘Size’ .. 165

5.5.4 Analysis on ‘Proportion of categorical features’ .. 167

5.5.5 Analysis on ‘Degree of non-normality’ ... 168

5.6 Discussions ... 170

CHAPTER 6 PROBABILISTIC ANALOGY BASED ESTIMATION173

6.1 Introduction... 173

6.2 Formal Model of Analogy Based Estimation .. 175

6.3 Probabilistic Model of Analogy Based Estimation ... 177

6.3.1 Assumptions .. 177

6.3.2 Conditional Distributions ... 179

6.3.3 Predictive Model and Bayesian Inference .. 180

6.3.4 Implementation Procedure of Probabilistic Analogy Based Es timation 184

6.4 Experiment Design .. 185

6.4.1 Datasets .. 185

6.4.2 Prediction Accuracy ... 187

6.4.3 Experiment Procedure ... 191

6.5 Results ... 192

6.5.1 Results on UIMS Dataset .. 192

6.5.2 Results on QUES Dataset.. 195

CHAPTER 7 CONCLUSIONS AND FUTURE WORKS200

BIBLIOGRAPHY ..205

V

APPENDIX A ..215

APPENDIX B ..218

VI

Summary

Cost estimation is an important issue in project management. The effective

application of project management methodologies often relies on accurate

estimates of project cost. Cost estimation for software project is of particular

importance as a large amount of the software projects suffer from serious

budget overruns. Aiming at accurate cost estimation, several techniques have

been proposed in the past decades. Analogy based estimation, which mimics

the process of project managers making decisions and inherits the formal

expressions of case based reasoning, is one of the most frequently studied

methods.

However, analogy based estimation is often criticized for its relatively poor

predictive accuracy, large computational expense, and intolerance to uncertain

inputs. To alleviate these drawbacks, this thesis is devoted to improve the

analogy based method from three aspects: accuracy, efficiency, and

robustness.

A number of journal/conference papers have been published under this

objective. The research works that have been done are grouped into four

chapters (each chapter is focused on one component of analogy based

estimation): chapter 3 summarizes the work on mutual information based

feature selection technique for similarity function; chapter 4 presents the

research on genetic algorithm based project selection method for historical

database; chapter 5 presents the work on non-linear adjustment to solution

function; chapter 6 presents the probabilistic model of analogy based

estimation with focus on the number of nearest neighbors. The remaining

chapters in this thesis, namely chapters 2 and 7, are the literature review and

the conclusions and future works.

Research in chapters 3 to 5 aims to enhance analogy based estimation‟s

accuracy. For instance, in chapter 5 the adjustment mechanism has been

largely improved for a more accurate analogy based method. Efficiency is

another important aspect of estimation performance. In chapter 3, our study on

refining the historical dataset has achieved a significant reduction of

unnecessary projects and therefore improved the efficiency of analogy based

method. Moreover, in chapter 6 the study on probabilistic model lead to a

more robust and reliable analogy based method tolerable to uncertain inputs.

The promising results show that this thesis makes significant contributions to

the knowledge of analogy based software cost estimation in both the fields of

software engineering and project management.

VII

List of Tables

Table 2.1: Number of publicat ions in each year from 1999 to 2008..16

Table 2.2: Summary of d ifferent similarity functions...40

Table 2.3: Summary of papers investigating different number of nearest neighbors..................43

Table 2.4: Summary of publications with different solution functions ...45

Table 3.1: Comparisons of different feature selection schemes ..77

Table 3.2: Selected features in three data splits ...78

Table 3.3: Times consumed to optimize feature subset (seconds)..80

Table 3.4: MIABE estimation results on Desharnais Dataset ...82

Table 3.5: Comparisons with published results ...83

Table 3.6: Comparisons of different feature selection schemes ..84

Table 3.7: Selected variables for three splits ..86

Table 3.8: Time needed to optimize feature subset (seconds) ...87

Table 3.9: MIABE estimation results on Maxwell Dataset ...89

Table 3.10: Comparisons with published results ...89

Table 4.1: Results of FWPSABE on Albrecht Dataset .. 109

Table 4.2: The results and comparisons on Albrecht Dataset... 110

Table 4.3: Results of FWPSABE on Desharnais Dataset ... 112

Table 4.4: The results and comparisons on Desharnais Dataset .. 112

Table 4.5: The part ition of artificial data sets.. 119

Table 4.6: The results and comparisons on artificial moderate non-Normality Dataset.......... 120

VIII

Table 4.7: The results and comparisons on Artificial Severe non-Normality Dataset 121

Table 5.1: Comparison of published adjustment mechanisms ... 127

Table 5.2: Results of NABE on Albrecht dataset ... 147

Table 5.3: Accuracy comparison on Albrecht dataset.. 148

Table 5.4: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages.. 149

Table 5.5: Results of NABE on Desharnais dataset... 150

Table 5.6: Accuracy comparisons on Desharnais dataset.. 151

Table 5.7: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages.. 152

Table 5.8: Results of NABE on Maxwell dataset... 153

Table 5.9: Accuracy comparisons on Maxwell dataset.. 154

Table 5.10: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages.. 155

Table 5.11: Results of NABE on ISBSG dataset .. 156

Table 5.12: Accuracy comparisons on ISBSG dataset... 156

Table 5.13: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages.. 158

Table 5.14: Characteristics of the four real world datasets ... 159

Table 5.15: Art ificial datasets and properties .. 163

Table 5.16: Comparative performance of NABE to other methods .. 164

Table 5.17: Testing MMREs under different dataset size ... 165

Table 5.18: Mann-Whitney U tests of dataset size influences ... 166

Table 5.19: Testing MMREs under different proportions of categorical features 167

Table 5.20: Wilco xon tests of proportion of categorical features influences............................. 168

Table 5.21: Testing MMREs under different degrees of non-normality..................................... 169

IX

Table 5.22: Wilcoxon tests of non-normality influences... 169

Table 6.1: Correlations between CHANGE and OO metrics ... 187

Table 6.2: Point predict ion accuracy on UIMS dataset ... 192

Table 6.3: Wilcoxon signed-rank test on UIMS dataset .. 194

Table 6.4: Results of interval prediction at 95% confidence level .. 195

Table 6.5: Point predict ion accuracy on QUES dataset... 196

Table 6.6: Wilcoxon signed-rank test on QUES dataset ... 197

Table 6.7: Results of interval prediction at 95% confidence level .. 198

X

List of Figures

Figure 1.1: The ABE system structure ..6

Figure 1.2: The distribution of research works ..9

Figure 2.1: The classificat ion of software cost estimation methods ..16

Figure 2.2: The distribution of publicat ions of each class during 1999 - 2008............................18

Figure 2.3: Rayleigh function in SLIM model...26

Figure 2.4: An example of art ificial neural network...35

Figure 3.1: The relations between mutual informat ion and the entropy..66

Figure 3.2: The schematic d iagram of proposed MIABE algorithm..69

Figure 3.3: The boxplots of MRE values of feature selection methods ..78

Figure 3.4: Mutual in formation diagram for the features in three training data splits80

Figure 3.5: The boxplots of MRE values of feature selection methods (EX is not applicable) 85

Figure 3.6: Mutual in formation diagram for the features in training dataset87

Figure 4.1: Chromosome for FWPSABE ...97

Figure 4.2: The train ing stage of FWPSABE.. 101

Figure 4.3: The testing stage of FWPSABE.. 103

Figure 4.4: The testing results on Albrecht Dataset ... 110

Figure 4.5: The testing results on Desharnais Dataset... 113

Figure 4.6: Cost versus size of Albrecht dataset... 115

Figure 4.7: Cost versus size of Desharnais dataset .. 115

XI

Figure 4.8: Y versus x1sk of moderate non-Normality Data set ... 118

Figure 4.9: Y versus x1sk of severe non-Normality Data set .. 118

Figure 4.10: The testing results on Artificial Moderate non-Normality Dataset 120

Figure 4.11: The testing results on Artificial Severe non-Normality Dataset............................ 122

Figure 5.1: The general framework of analogy based estimation with adjustment 126

Figure 5.2: Train ing stage of the ANN adjusted ABE system with K nearest neighbors 136

Figure 5.3: Predicting stage of the ANN ad justed ABE system with K nearest neighbors..... 138

Figure 5.4: Boxplots of absolute residuals on Albrecht dataset ... 149

Figure 5.5: Boxplots of absolute residuals on Desharnais dataset .. 152

Figure 5.6: Boxplots of absolute residuals on Maxwell dataset .. 155

Figure 5.7: Boxplots of absolute residuals on ISBSG dataset.. 157

Figure 6.1: Boxplots of Absolute residuals and MREs on UIMS dataset 193

Figure 6.2: Confidence zones on UIMS dataset ... 195

Figure 6.3: Boxplots of Absolute residuals and MREs on QUES dataset.................................. 197

Figure 6.4: Confidence zones on QUES dataset. ... 198

XII

List of Abbreviations

ABE: Analogy based estimation

ANN: Artificial neural network

BABE: Bootstrapped analogy based estimation

CART: Classif ication and regression trees

CASE: Computer-aided software engineering

FWABE: Feature weighting for analogy based estimation

FWPSABE: Simultaneous feature weighting and project selection for analogy

based estimation

GABE: Genetic algorithm optimized linear function adjusted analogy based

estimation

KNNR: K-nearest neighbor regression

LABE: Linear function adjusted analogy based estimation

MdMRE: Median Magnitude of Relative Error

MIABE: Mutual information based features selection for analogy based

estimation

MMRE: Mean magnitude of relative error

MRE: Magnitude of relative error

NABE: Non-linear function adjusted analogy based estimation

PABE: Probabilistic model of analogy based estimation

PRED(0.25): Prediction at level 0.25

PSABE: Project selection for analogy based estimation

RABE: „Regression toward the mean‟ adjusted analogy based estimation

RBF: Radial basis function networks

SABE: Similarity function adjusted analogy based estimation

OLS: Ordinary least square regression

SVR: Support vector regression

SWR: Stepwise regression

Chapter I. Introduction

1

Chapter 1 Introduction

Recently, the software industry has faced a dramatic increase in the

demand of new software products. On the other hand, software became more

and more complex and difficult to produce and maintain. This demand-supply

contradiction has contributed to the continuous improvements on software

project management in which the ultimate goal is producing low cost and high

quality software in short time. Successful software project management

requires effective planning and scheduling supported by a group of activities,

among which estimating the development cost (or effort) is fundamental to

guide other activities. This task is known as Software Cost Estimation.

Software cost estimation is a very active research field as it was more than 30

years ago, when the difficulties of estimation were discussed in “The Mythical

Man Month” (Brooks 1975).

1.1 Software Cost Estimation

Cost estimation is a critical issue in project management (Chen 2007,

Henry et al. 2007, Pollack-Johnson and Liberatore 2006). It is particularly

important for software projects, as numerous software projects suffer from

overruns (Standing 2004) and accurate cost estimation is one of the key points

to the success of software project management.

Chapter I. Introduction

2

Software cost (or effort) estimation is the process of predicting the

amount of effort required to build a software system (Boehm 1981). It is a

continuous activity which can or must start at the early stage of the software

life cycle and continues throughout the life time. During the first phases of

software life cycle, cost estimation is of necessity for software developing

team to decide whether or not to proceed, though accurate estimates are

obtained with great difficulties at this point due to the wrong assumptions or

imprecise data. During the middle phases, the cost estimates are useful for

rough validation and process monitoring. After completion, cost estimates are

useful for project productivity assessment.

Since the software cost estimation affects almost all aspects of software

project development such as bidding, budgeting, planning and risk analysis.

The estimation has great impacts on software project management. If the

estimation is too low, then the software development will be running under

considerable constraints to finish the product in time, and the resulting

software may not be fully functional or tested. On the other hand, if the

estimation is too high, then too many resources will be committed to the

project and this may result in significant amount of wasted resources.

Furthermore, if the company is engaged in a contract, then too high an

estimate may lead to loss of business opportunity.

Despite its importance, the estimation of software cost is still a weakness

in software project management. Aiming at accurate and robust estimation,

Chapter I. Introduction

3

various cost estimation techniques have been proposed in past decades.

Section 1.2 presents a brief introduction to these techniques including our

research focus: analogy based estimation.

1.2 Introduction to Cost Estimation Methods

According to Angelis and Stamelos (2000)‟s classification system, cost

estimation methods can be grouped under three categories: expert judgment,

algorithmic estimation, and analogy based estimation.

1.2.1 Expert Judgment Based Estimation

Expert judgment requires the consultation of one or more experts to

derive the cost estimate (Hughes 1996). A Dutch study carried out by

Heemstra (1992) revealed that 62% of estimators/organizations use this

intuition technique and a study carried out later by Vigder and Kark (1994)

also confirmed the widespread use of this technique. Despite its popularity

this method seems to have received a poor reputation and it is often regarded

as subjective and unstructured which makes it vulnerable compared with more

structured methods (Angelis and Stamelos 2000).

1.2.2 Algorithmic Based Estimation

To date, the algorithmic method is the most popular technique in the

literature. In algorithmic method, cost value is estimated by using certain

Chapter I. Introduction

4

mathematical function to link it to the inputs metrics such as „line of source

code‟ and „function points‟. The mathematical model is often built upon some

information abstracted from historical projects. Algorithmic method has some

advantages over expert judgment: it has well defined formal structure; it

produces identical outputs given the same inputs; it is efficient and good for

sensitivity analysis (Selby and Boehm 2007).

The algorithmic method consists of a large number of techniques which

can be further divided into two classes: function based methods and machine

learning methods. Examples of function based methods are: COCOMO model

(Boehm 1981), Function Points Analysis (Albrecht and Gaffney 1983), SLIM

model (Putnam 1978), and Regressions (Schroeder et al. 1986). Examples of

machine learning methods are: Artificial Neural Networks (Srinivasan and

Fisher 1995), Classification and Regression Trees (CART) (Brieman et al.

1984).

1.2.3 Analogy Based Estimation

Analogy based estimation (Shepperd and Schofield 1997) is the process

of identifying one or more historical projects that are similar to the project

being developed and deriving the estimates from the similar historical projects.

This technique is intended to mimic the process of an expert making decisions

based on his/her experience. On the other hand, analogy based estimation has

a concrete and well-defined estimation framework, given that similar past

Chapter I. Introduction

5

projects can be easily retrieved and the mechanism applying the nearest

neighbors is correct. Thus, analogy based estimation is a very flexible method

which allows the combination of the good aspects in both algorithmic

methods and expert judgment. It has several advantages such as: it is able to

deal with poorly understood domains, its output is relatively easy to interpret,

and it offers the chance to learn from past experiences (Walkerden and Jeffery

1999).

1.3 Motivations

As explained in the previous section, analogy based estimation is one

successful technique for cost estimation. However, it also has been criticized

for relatively poor predictive accuracy, large computational expense, and

intolerance to uncertainties. To overcome these drawbacks, many research

works have been focusing on improving the four key components of analogy

based system: similarity function, historical database, number of retrieved

nearest neighbors and solution function (shown in Fig 1.1).

Similarity function (Shepperd and Schofield 1997), which measures the

level of similarity between two different projects, is one of the key

components in analogy based system. The choice of measure is an important

issue since it affects the projects to be selected as the nearest neighbors. Many

works (Auer et al., 2006, Huang and Chiu, 2006, Mendes et al., 2003) have

been devoted to optimize the similarity function or feature weights, and the

Chapter I. Introduction

6

prediction accuracy of the analogy based system was reported to be

significantly improved if the appropriate similarity functions or feature

weights have been selected.

The historical database is the storage of the past projects‟ information,

and it is used to retrieve the nearest neighbors. However, due to the instability

of software development process the historical databases always contain noisy

or redundant projects which might ultimately hinder the prediction accuracy

of analogy based estimation. One possible solution is to reduce the whole

database into smaller subset that consists of merely the representative projects.

Similarity function

Input

projects

Predicted value

 Historical

projects

Solution function

Retrieve k nearest

neighbors

ABE system

Figure 1.1: The ABE system structure

Chapter I. Introduction

7

Despite the importance of subset selection, very few research works (Kirsopp

and Shepperd 2002) have been focused on this topic.

The number K of retrieved nearest neighbors decides how many nearest

neighbors should be selected for the solution function to generate final

prediction. Many works (Li and Ruhe. 2008, Mittas et al. 2008, Auer et al.

2006, Mendes et al. 2003, Leung 2002) have investigated the impacts of this

value on the estimation results and/or considered optimizing this value.

However, to our knowledge there is no widely accepted technique to choose K

except the empirical trial-and-error method. Therefore, it is of great interest to

develop systematic ways to optimize this parameter.

The solution function calculates the final estimation results from the

nearest neighbors retrieved from the historical database. If an appropriate

solution function is used, the prediction performance of analogy based system

could be improved significantly. In the literature, only linear solution

functions (Chiu and Huang, 2007, Jorgensen et al., 2003) have been

considered though the relationships between the cost value and input features

are usually non- linear. There is still a lack of research works to investigate the

feasibility of applying non- linear solution functions.

As discussed above, many studies have been devoted to achieve accurate

prediction by improving the four components of the analogy based system;

however there still exists great opportunities to improve analogy based

estimation for better performance. Moreover, most of the previous studies

Chapter I. Introduction

8

merely focused on improving accuracy which is one aspect of performance.

The robustness, which is another important indicator, has received few

concerns. As budget uncertainty is an important issue in project management

(Yang 2005, Barraza and Bueno 2007), some authors pointed out that it is

safer to generate probabilistic predictions such as probability distributions o f

the effort values or interval estimates with a probability. However, very little

research (Angelis and Stamelos 2000, Jorgensen and Sjoberg 2003, van Koten

and Gray 2006) has been done on probabilistic predictions.

1.4 Research Objective

The objective of this thesis is to improve accuracy, efficiency and

robustness of analogy based estimation. Accuracy is the indicator of the cost

estimator‟s ability to produce the quality predictions that match the software

projects‟ costs. Efficiency is the speed of the cost estimator to complete a

certain amount of estimation tasks. Robustness reflects the cost estimator‟s

tolerance to uncertain inputs such as missing values and noisy data.

A number of journal/conference papers have been published under this

objective. The research works that have been done are grouped into four

chapters (each chapter is focused on one component of analogy based

estimation): chapter 3 summarizes the works on mutual information based

feature selection technique for similarity function; chapter 4 presents the

research on genetic algorithm based project selection method for historical

Chapter I. Introduction

9

database; chapter 5 presents the work on non-linear adjustment to solution

function; chapter 6 presents the probabilistic model of analogy based

estimation which is focused on the number of nearest neighbors. The

distribution of chapters 3 to 6 in the framework of analogy based system is

illustrated in fig 1.2 where the shaded boxes with characters „CH‟ stand for

chapters (e.g. CH 3 stands for chapter 3). The remaining chapters in this thesis,

namely chapters 2 and 7, are the literature review and the conclusions.

All of our research works share a common objective - enhance the

analogy based estimation‟s capability to achieve more accurate results. In

Similarity function

Input

projects

Predicted value

 Historical

projects

Solution function

CH 4

CH 5 CH 6

Retrieve k nearest

neighbors

CH 3
ABE system

Adjustment

Figure 1.2: The ABE system structure and distributions of the research works Figure 1.2: The distribution of research works

Chapter I. Introduction

10

practice, this is very important for the software enterprises to maintain a better

control of the budget throughout their software development processes.

Theoretically speaking, these studies have contributed to the optimization of

individual component of analogy based system. For instance, historical

database and solution function have been largely refined or improved in our

works. Furthermore, these studies point out a feasible direction to the global

optimization of analogy based system.

Efficiency is another important aspect of estimation performance. In

practice, improving estimation efficiency means enhancing the chance of

winning bids. Many machine learning methods such as ANN and RBF can be

very accurate in some situations, but they are often suffering from slow

training speed. In addition, expert judgment could also be time consuming, as

it usually takes time to gather/interview experts. Our studies on refining the

historical dataset of analogy based system have achieved a significant

reduction of unnecessary projects. Consequently, the efficiency of analogy

based system is largely improved by our algorithm.

Moreover, the studies on probabilistic model lead to a more robust and

reliable analogy based system. These studies could enhance the system‟s

capability to deal with a broader scope of situations such as missing values

and ambiguous inputs. Additionally, the probabilistic prediction provides a

feasible way to model the inherited uncertainties and variabilities in the

software development process.

Chapter I. Introduction

11

As mentioned above, our research on analogy based estimation is of

significant theoretical value and practical value. For a better understanding of

our research work, the detailed background information of our research work

is presented in the literature review in next chapter.

Chapter II. Literature Review on Software Cost Estimation Methods

12

Chapter 2 Literature

Review on Software Cost

Estimation Methods

To obtain accurate software project cost estimates, various kinds of

methods have been proposed. This chapter provides a detailed summary of the

software cost estimation methods published in the past decade. The evaluation

criteria for the prediction accuracy of these methods are also summarized and

analyzed.

2.1 Introduction

In the literature there are several comprehensive overviews on the cost

estimation methods, such as Walkerden and Jeffery (1997), Boehm et al.

(2000), Briand and Wieczorek (2002), Jorgensen (2004a) and Jorgensen and

Shepperd (2007). Among them, some reviews (Walkerden and Jeffery 1997,

Boehm et al. 2000, Briand and Wieczorek 2002) have proposed different

classification systems.

Walkerden and Jeffery (1997) introduced a system with four classes of

estimation methods: empirical, analogical, theoretical, and heuristic. However,

they stated that expert judgment cannot be included into their system.

Moreover, there are overlaps between analogical and empirical, as analogical

Chapter II. Literature Review on Software Cost Estimation Methods

13

estimation process often involves empirical decisions (such as the choice of

similarity measures in analogy based method) (Briand and Wieczorek 2002).

Lately, Briand and Wieczorek (2002) defined a hierarchical scheme starting

from two major classes (model-based methods, non-model-based methods)

that are further divided into several sub-classes. The sub-classes contain

further divisions and so on. Although the authors claimed that their system

covers most types of estimation methods, the hierarchical system has a more

complicated tree type structure with more intermediate nodes than other flatter

systems and each intermediate node needs its own definition (such as „data

driven‟ and „proprietary‟). Boehm et al. (2000) proposed a simpler but

comprehensive framework consisting of six major classes: parametric models,

expert judgment, learning oriented techniques, regression based methods,

dynamic based models, and composite methods. Directly under each major

class are the estimation methods and this system can include most types of

estimation methods (Boehm et al. 2000). Our classification system is modified

from Boehm‟s framework with the consideration to balance the number of

recent publications under each major class.

2.2 Literature Survey and Classification System

Prior to our classification system, a structured literature survey is

conducted to select the related journal papers during the period between 1999

and 2008. The keywords used for searches in SCI engine are „software cost

Chapter II. Literature Review on Software Cost Estimation Methods

14

estimation‟, „software effort estimation‟, „software resource estimation‟,

„software effort prediction‟, „software cost prediction‟, „software resource

prediction‟, and „software prediction‟. The main criterion for including a

journal paper in the survey is that the paper presents research on software

development effort or cost estimation. Papers related to prediction of software

size/defects, modeling of software process, or identification of factors

correlated with software project cost, are included only if the main purpose of

the study is to improve software cost estimation. The papers with pure

discussions or opinions are excluded. The process above results in a collection

of 158 journal papers.

To construct our classification system, we first calculate the number of

publications under each category in Boehm (2000)‟s system. The results

reveal that the recent research trend has different emphases on each category,

for example there are more than 80 papers related to „learning oriented

techniques‟ while only 5 papers and 4 papers under „dynamic based models‟

and „composite methods‟ respectively. In addition, Boehm‟s scheme does not

include the discrete event simulation model which has only recently appeared

as one promising technique. Moreover, there are 35 papers related to „analogy

based estimation‟ which stands for the largest proportion among the „learning

oriented techniques‟.

For a more balanced structure, we combine the classes „dynamic based

models‟, „composite methods‟ and other emerging methods (such as discrete

Chapter II. Literature Review on Software Cost Estimation Methods

15

event simulation) to form the category „Other methods‟. Furthermore, we split

the „analogy based estimation‟ from the „learning oriented techniques‟ to be a

major class, and we rename the remaining methods under „learning oriented

techniques‟ as „machine learning techniques‟. The reason for this splitting is

that analogy based method is the learning oriented method with highest

amount of publications and many previous studies (Walkerden and Jeffery

1997, Angelis and Stamelos 2000) have already regarded it as one major class.

Analogy based estimation is particularly popular in the context of software

cost estimation which might be due to the fact that analogy based estimation

build up the connections between project managers making cost estimation

based on the memories of past experiences and the formal use of analogies in

Case Based Reasoning (CBR) (Kolodner 1993).

From the discussion above, our classification system is established in Fig

2.1. It contains six major categories: expert judgment, parametric models,

regressions, machine learning methods, analogy based estimation, and other

methods.

Based on our classification system, the number of publications per year of

each major class is summarized in table 2.1. It is seen that regressions and

machine learning methods are the most popular methods in the past decade.

Parametric models and analogy based estimation rank at the third place.

Chapter II. Literature Review on Software Cost Estimation Methods

16

COCOMO: constructive cost model, FPM: Function point model, SLIM: software life-cycle model,

ANN: artificial neural networks, BM: Bayesian methods, CART: classification and regression trees,

RBF: radial basis functions, SVM: support vector machine, GP: genetic programming, FL: fuzzy logic,

OLS: ordinary least-square regression, RR: robust regression, SWR: stepwise regression, DM: dynamics

models, CM: composite methods, SM: simulation models.

Table 2.1: Number of publicat ions in each year from 1999 to 2008

Year EJ PM RE ML AB OT

1999 2 3 4 1 1 1

2000 1 2 5 5 3 1

2001 3 4 8 6 5 3

2002 0 4 4 4 1 1

2003 4 2 6 5 6 2

2004 7 1 3 3 1 2

2005 3 3 6 6 1 1

2006 2 6 5 8 3 4

2007 3 6 8 5 5 3

2008 3 4 10 10 9 2

Total 28 35 59 53 35 20

EJ: expert judgment, PM: parametric models, RE: regressions

ML: machine learning methods, AB: analogy based estimation, OT: other methods

Estimation

methods

Expert

judgment

Machine

learning

 Parametric

models

Analogy based

estimation

COCOMO

Regressions

FPM SLIM

Other

method

s

OLS RR SWR DM

CM

ANN BM CART RBF SVM GP FL

SM

Figure 2.1: The classificat ion of software cost estimation methods

Chapter II. Literature Review on Software Cost Estimation Methods

17

To investigate the trends of publications, the proportion of each class

from 1999 to 2008 is depicted in the bar-charts of fig 2.2. The whole period is

divided into three nearly equal segments: 1999 – 2001, 2002 – 2004, and 2005

– 2008. Fig 2.2 suggests that:

 Regression technique is the most frequently used method. This

observation confirms with Jorgensen and Shepperd (2007)‟s survey.

Among the regression papers, a large number of papers use regressions to

compare with the estimation methods they propose.

 The proportion of papers on machine learning methods is constantly

increasing and they have the same proportion of publications as

regressions have in recent 4 years. Unlike regression papers, majority of

machine learning papers introduce or propose new cost estimation

techniques.

 The proportions of papers on parametric models and analogy based

estimation are around 15% with some small fluctuations.

 The popularity of expert judgment based estimation was at its highest in

the period 2002-2004.

 The proportion of „other methods‟ is around 8% throughout the past

decade.

 The distributions of the papers become more and more even, as in the

period after 2001 no method stands for a proportion larger than 25%. This

observation is one supportive evidence for our modifications to Boehm‟s

classification system.

In the following sections, a comprehensive review is presented for each

major class.

Chapter II. Literature Review on Software Cost Estimation Methods

18

Figure 2.2: The distribution of publicat ions of each class during 1999 - 2008

EJ: expert judgment, PM: parametric models, RE: regressions, ML: machine learning

methods, AB: analogy based estimation, OT: other methods

2.3 Cost Estimation Methods

2.3.1 Expert Judgment

Expert judgment requires the consultation of one or more experts to derive

the cost estimate (Hughes 1996). With their experience and understanding of

the new project and the experience from past projects, the experts could obtain

the estimation by a non-explicit and non-recoverable reasoning process, i.e.,

“intuition”. As reported in the business forecasting study conducted by

Blattberg and Hoch (1990), most estimation processes have both intuitive and

explicit reasoning elements. In fact, even formal software cost estimation

models may require expert estimates as important input parameters (Pengelly,

0%

5%

10%

15%

20%

25%

30%

35%

1999-2001 2002-2004 2005-2008

D
is

tr
ib

u
ti

o
n

s
o

f
p

u
b

lic
at

io
n

s

Years

EJ PM RE ML AB OT

Chapter II. Literature Review on Software Cost Estimation Methods

19

1995). Jorgensen (2004a) presented an extensive review of studies related to

the expert estimations conducted before 2003. As a subsequent work of

Jorgensen (2004a)‟s, we focus on the expert judgment studies published after

2003. Expert judgment often encounters a number of issues, such as estimate

uncertainty, bias caused by over-optimism, and etc. A number of research

works are aiming to solve these problems.

To describe the uncertainty of cost estimate, Jorgensen and Sjoberg (2003)

proposed and evaluated a Prediction Interval (PI) approach, which is based on

the assumption that the estimation accuracy of earlier software project predicts

the cost PIs of new projects. Lately, Jorgensen et al. (2004) conducted four

studies on expert judgment based PIs. The results suggest that the PIs were

generally much too narrow to reflect the chosen level of confidence. Moreover,

Jorgensen (2004b) claimed that the traditional request for PIs is not optimal

and leads to overoptimistic views about the level of estimation uncertainty.

Many works are devoted to the study of the over-optimism phenomenon.

Moløkken and Jørgensen (2005) observed that people with technical

competence provided more overoptimistic estimates than those with less

technical competence. Jørgensen et al. (2006) examined the degree to which

level of optimism in software engineers‟ predictions is related to optimism on

previous predictions. Jørgensen et al. (2007) concluded that optimistic

software engineers have a number of characteristics such as higher confidence

in their own predictions, lower development skills, poorer ability or

Chapter II. Literature Review on Software Cost Estimation Methods

20

willingness to recall effort on previous tasks, and etc. Some techniques are

proposed to reduce the bias towards over-optimism. Jorgensen (2005)

provided some evidence based guidelines for assessing the uncertainties in

expert judgment. Moløkken and Jørgensen (2004) propose an approach

combining the judgments of experts with different backgrounds by means of

group discussion.

In addition, other studies summarize different characteristics of expert

judgment. Jorgensen and Sjoberg (2004) discovery that customer expectations

of a project's total cost can have a very large impact on expert judgment.

McDonald (2005) shows that cost estimates are dependent upon two kinds of

team experience: (1) the average experience for the members of each team and

(2) whether or not any members of the team have similar project experience.

Grimstad and Jørgensen (2007) reported a high degree of inconsistency in the

previous experts‟ estimates. Jorgensen (2004d) suggested that the recall of

very similar previously completed projects seemed to be a pre-condition for

accurate top-down based estimates.

Although expert judgment has been used widely, the estimates are

obtained in a way that is not explicit and consequently difficult to be repeated.

Nevertheless, expert judgment can be an effective estimate tool when used as

an adjustment factor for algorithmic models (Gray et al. 1999).

Chapter II. Literature Review on Software Cost Estimation Methods

21

2.3.2 Parametric Models

Parametric models are defined by mathematical formula and need to be

calibrated to local circumstances in order to establish the relationship between

the cost and one or more project features (cost drivers). Usually, the principal

cost driver used in such models is software size (for instance, lines of source

code, the number of function points, pages, etc.). This section includes three

function methods, COCOMO (Boehm, 1981), Function Points Analysis

(Albrecht and Gaffney, 1983), and SLIM model (Putnam, 1978).

COCOMO (Constructive Cost Model)

COCOMO I is one of the best known and best documented software cost

estimation model (Boehm 1981). It is a set of three modeling levels: basic,

intermediate, and detailed. The basic COCOMO takes the following

relationship between cost (effort) and size:

bKLOCaY)(
 (2.1)

where Y is the project effort/cost, KLOC represents the size in terms of

thousands of lines of source code, and the coefficients a and b depend on

COCOMO‟s modeling level and the mode of the project to be estimated

(organic, semidetached, embedded). In all cases, the value of b is greater than

1. The intermediate and detailed COCOMO takes the following general form:

Chapter II. Literature Review on Software Cost Estimation Methods

22

i
i

b EMKLOCaY
15

1

)(


 (2.2)

where EMi is the ith effort multiplier. Effort multiplier is the parameter

that affects effort the same degree regardless of project size. However,

COCOMO together with its Ada (Kaplan 1991) update are prone to

difficulties in estimating the costs of software developed in new lifecycle

processes and capabilities (such as iterative model and spiral model).

The research on COCOMO II started in 1994. COCOMO II (Boehm et al.

1995) has two models (early design and post architecture) for cost estimation

at different development stages. Early design model is used in the initial

stages of a software project when very little information is known about the

product being developed. The post architecture model is the most detailed

estimation model and it is used when software lifecycle architecture has been

developed. The early design and post architecture models share a common

form:










5

1

1

)(01.001.1

)(

j

j

i

n

i

b

factorscaleb

EMKLOCaY

 (2.3)

where the five „scale factors‟ are the parameters that have large influence

on big projects and small influence on small projects (which is different from

Chapter II. Literature Review on Software Cost Estimation Methods

23

the effort multipliers). The scale factors are precedentedness, development

flexibility, risk resolution, team cohesion, and process maturity. Early design

model and post architecture model have different number (n) of effort

multipliers. Detailed descriptions about the effort multipliers can be found in

(Boehm et al. 1995)

Lately, a lot of research works have been done on the COCOMO models.

Chulani et al. (1998) proposed a new version of COCOMO II model which

includes a 10% weighted average approach to adjust prior expert determined

model parameters. Moreover, Chulani et al. (1999) introduced the Bayesian

inference for the tuning of the expert determined model parameters.

Jongmoon et al. (2002) proposed a way of integrating CASE tool into

COCOMO II and their approach resulted in an increase in the prediction

accuracy. Benediktsson et al. (2003) introduced the COCOMO-style cost

model for the incremental development and explore the relationship between

effort and the number of increments. Han et al. (2005) adopted COCOMO

model for software project financial budget optimization. Huang et al. (2007)

proposed a novel neuro-fuzzy COCOMO model and the authors report that

this model greatly improves estimation accuracy. More recently, Fairley (2007)

provided a comprehensive overview on COCOMO models. This paper

presents a summary of recent work on COCOMO modeling and provides

future directions for COCOMO-based education and training.

Chapter II. Literature Review on Software Cost Estimation Methods

24

Function Points Model (FPM)

The function point (FP) measure was first developed by Albrecht (1979)

as an alternative to lines of code for measuring the software size. The function

point method defines five basic function types to estimate the size of the

software. The five functions types are internal logical files (ILF), external

interface files (EIF), external inputs (EI), external outputs (EO), and external

inquiries (EQ).

Based on the definition of function points, a number of researchers

(Albrecht and Gaffney 1983, Kemerer 1987, Matson et al. 1994, Abran and

Robillard 1996) used FP for cost estimation. In their studies, each function

point is first classified into one of three complexity levels: low, average or

high. Then an integer complexity value is assigned to the function point based

on the ordinal scale complexity classification. Furthermore all the identified

function complexity values are added together to derive an unadjusted

function point count (FPC). Additionally, this count is often adjusted by up to

14 technical complexity factors that account for a variety of non-functional

system requirements (e.g. performance, reliability, backup and recovery etc.)

to give an adjusted function point count (AFPC). The resulting counts are then

used to derive the cost estimate by using the following form:

)(AFPCFPCbaY  (2.4)

Chapter II. Literature Review on Software Cost Estimation Methods

25

where a and b are the coefficients determined by ordinary linear regression

method. As the software industry keeps evolving rapidly, many other types of

size metrics are developed, such as Weighted Methods per Class (WMC),

Number Of Children (NOC) (Chidamber and Kemerer 1994), and Class Point

(CP) (Costagliola et al. 2005). However, many current papers still considered

function point as one of the critical factors in their cost models (Kitchenham

et al. 2002, Ahn et al 2003, Moses and Farrow 2005).

Software Life-cycle Model (SLIM)

Putnam (1992) first developed the Software Life-cycle Model (SLIM).

The basic assumption of SLIM is that the Rayleigh distribution (See Fig 2.3)

can be used to model the change of staff levels on large software projects

which have more than 70,000 „Thousands of Delivered Source Instruction‟s

(KDSI). It is assumed that the number of people working on a project is a

function of time. A project starts with relatively few people and the manpower

reaches a peak and then falls off. The decrease in manpower during the testing

is less than that during the earlier construction phase. In addition, Putnam

explicitly excluded requirements analysis and feasibility studies from the life

cycle.

The basic Rayleigh curve (Fig 2.3) defining the effort distribution is

described by the following differential equation:

Chapter II. Literature Review on Software Cost Estimation Methods

26

)exp(2 2atKat
dt

dy
 (2.5)

where t is elapsed time from the starting point of a software project, K is the

total project effort, and a is a constant that determines the shape of the curve.

Figure 2.3: Rayleigh function in SLIM model

In order to obtain the total project effort K and development time td, the

following two formulas can be derived after a few algebraic manipulations:

7

4

0

7

9

7

1

3

0

3

D
C

S
K

CD

S
td





















 (2.6)

where S is the system size measured by KDSI (Thousands of Delivered

Source Instructions), D0 is the manpower acceleration, and C is the

Staff Level

Time

Chapter II. Literature Review on Software Cost Estimation Methods

27

technology factor. SLIM does not gain much popularity as COCOMO and

FPM. However, in the early 2000‟s the company named „Quantitative

Software Management‟ has developed a successful package of three tools

based on Putnam‟s SLIM. These include SLIM-Estimate, SLIM-Control and

SLIMMetrics. SLIM-Estimate is a project planning tool, SLIM-Control is a

project tracking and oversight tool, and SLIM-Metrics is a software metrics

repository and benchmarking tool. More information on these SLIM tools can

be found at http://www.qsm.com.

2.3.3 Regressions

According to our survey, regression methods are most popular in the past

decade. The most commonly used regressions method is the Ordinary Least

Square (OLS) regression which has also been criticized for its restrictive

assumptions and poor performance. This section also includes other types of

regression such as robust regression and stepwise regression. These

techniques are regarded as the improved version of OLS regression.

Ordinary least-square regression (OLS regression)

OLS regression is one of the most commonly used models for cost

estimation. In general, a linear regression has the following form:

eXbXbXbaY nn  ...ˆ
2211 (2.7)

http://www.qsm.com/

Chapter II. Literature Review on Software Cost Estimation Methods

28

where Ŷ denotes the dependent variable (project cost/effort), Xi stands for

independent variables (project features/cost drivers), and bi is the so called

regression coefficient, a is referred as the intercept, and the error term e is a

random noise with a normal distribution.

The OLS regression has a number of strong assumptions. One important

assumption is the so called homoscedasticity which means that the differences

between the actual values and the predicted values do not change under

different values of Xi. Another assumption is that OLS variables are all

continuous in nature. Thirdly, OLS regression requires that there are no outlier

values in both independent and dependent variables. However, extreme

outliers are commonly found in software engineering dataset, probably due to

the misunderstandings or lack of precision in the data collection process.

Finally, no missing data is allowed in OLS regression. On the contrary,

missing data is often reported when there is limited time and budget for data

collection. In all, many of the difficulties discussed above can be solved by

some advanced techniques such as robust regression, logistic regression and

data imputation. However these advanced techniques remain difficult to be

implemented by most engineers and managers, and applying them still

requires extensive training and experience (Briand and Wieczorek 2002).

Although OLS regression is one of the oldest methods for cost estimation,

it is still widely applied and continuously improved for more accurate

Chapter II. Literature Review on Software Cost Estimation Methods

29

predictions. Kitchenham (1998) proposed analysis of variance (ANOVA) and

OLS regression to analyze unbalanced data sets. Angelis et al. (2001)

proposed categorical regression (CATREG) for the datasets with large number

of categorical attributes, such as ISBSG (ISBSG, 2007) dataset. Sentas et al.

(2005) modified the standard OLS regression to produce the interval

predictions. Jeffery et al. (2000) applied OLS regression on both ISBSG data

and company specific data with comparison against analogy based method.

More recently, Jorgensen (2004) conducted some regression analysis of cost

estimation on a data collection of 49 software development projects. Lucia et

al. (2005) applied multivariate OLS regression for corrective maintenance

effort estimation. Mendes et al. (2005) applied multivariate OLS regression

for Web effort estimation. Multivariate OLS has identified „total number of

Web pages‟ and „features provided by the application‟ to be the two most

influential effort predictors. Costagliola et al. (2005) applied multivariate OLS

regression to predict development effort of object oriented systems by using

class points.

Robust Regressions (RR)

Robust regressions are an improved version of OLS regression. They

alleviate OLS regression‟s sensitivity to outliers. Instead of minimizing the

sum of square of absolute error in OLS regression, robust regressions use

other objectives for optimization. There are several types robust regression

Chapter II. Literature Review on Software Cost Estimation Methods

30

such as LMS (least median of squares) which minimizes the median of square

of absolute error (Rousseuw and Leroy, 1987), LBRS (least-squares of

balanced relative errors) which minimizes the sum of squares of balanced

relative error, and LIBRE (least-squares of inverted balanced relative errors)

which minimizes the sum of squares of inverted balanced relative error

(Miyazaki et al. 1994).

Another approach that can be regarded as robust regression is a technique

that only uses the data points lying within two (or three) standard deviations

of the mean response variable (Boehm et al. 2000). This method automatically

filters out outliers and it can be used only when there are sufficient

observations. Although this technique has the weakness of eliminating outliers

without direct reasoning, it is still very useful for developing software

estimation models on the dataset where there are only a few project features.

Stepwise regression (SWR)

Stepwise regression (Schroeder et al. 1986) is based on an important

assumption that some independent variables in a multivariate regression do

not have an important explanatory effect on the dependent variable. If this

assumption is true, to keep only the statistically significant variables is a

convenient simplification. Usually, stepwise procedure takes the form of a

sequence of F-tests, but other techniques are also applicable, such as t-tests

and adjusted R-square. The stepwise regression main approaches are: (1)

Chapter II. Literature Review on Software Cost Estimation Methods

31

forward selection, which involves starting with no variables in the model,

trying out the variables one by one and including them if they are statistically

significant; and (2) backward selection, which involves starting with all

candidate variables and testing them one by one for statistical significance,

deleting any that are not significant. Stepwise regression has been frequently

employed for cost estimation (Shepperd et al. 1997, Shepperd and Kadoda

2001, Mendes et al., 2003).

2.3.4 Machine Learning

Machine learning (ML) methods imitate some functionality of human

mind and allow us to deal with large and complex problems at a relatively

high speed (Schank 1982). The ML techniques have been successfully applied

to many difficult problems such as pattern recognition, biology, stock market

analysis, and etc. Recently they become increasingly popular in software cost

estimation research. In literature, Classification and Regression Trees

(Brieman et al. 1984), Bayesian Methods (Chulani et al. 1998), and Artificial

Neural Networks (Lawrence, 1994) are the most common ML techniques.

Other ML techniques (such as radial basis function, support vector machine,

and genetic programming) are also introduced for cost estimations. This

section provides a detailed overview on ML methods.

Chapter II. Literature Review on Software Cost Estimation Methods

32

Classification and Regression Trees (CART)

The classification and regression tree method was first proposed by

Brieman et al. (1984). This method is originally a non-parametric and tree

structured analysis procedure that can be used for classification. Lately the

trees are used for problems with numerical targets, so they are named as

regression trees. Being the combination of both types of trees, the total

method is called classification and regression tree (CART).

The construction of the CART involves recursively splitting the data set

into (normally two) relatively homogeneous subsets until the terminate

conditions (for numerical variables e.g. Q: is weight > 50? And for categorical

variables e.g. Q: is transparency high?) are satisfied. The partition is

determined by splitting rules associated with each of the internal nodes. Each

instance in the data set is assigned to a unique leaf node, where the conditional

distribution of the response variable is determined. The best tree is determined

by cross-validation using a spread minimization criterion.

CART provides additional information about the tree generated. At each

partition, it gives a list of „competition‟ and „surrogates‟ for the independent

variables. The variables with „competition‟ tag will be kept for the next split.

„Surrogate‟ variables are highly correlated with the independent variables used

to partition the data and surrogate variables could be used as alternative

factors.

CART has the following advantages: the capability of dealing with

Chapter II. Literature Review on Software Cost Estimation Methods

33

categorical features, the easily understandable diagram of complex data and

the ability to identify the major subsets in the total dataset (Srinivasan and

Fisher 1995). Due to these advantages, CART is frequently adopted by

researchers in cost estimation area (Briand et al.1998, Kitchenham 1998,

Briand et al. 1999, Khoshgoftaar et al. 1999, Pickard et al. 1999,

Stensrud .2001, Stewart 2002, Mendes et al. 2003).

Bayesian Methods

Chulani et al. (1999) criticized the traditional software effort estimation

models that software engineering data sets do not follow the parametric

assumptions and traditional models do not provide any support for risk

assessment and mitigation. They first proposed the Bayesian inferences to

address these problems. Bayesian inference provides posterior distributions for

model parameters of interest by the following formula:

)(

)()|(
)|(

Xf

fXf
Xf


  (2.8)

where)|(Xf  is the posterior distribution of the parameter  given

the distribution of the data sample X,)(Xf is the distribution of data sample

X,)(f is the prior distribution of parameter  , which represents

knowledge about the parameter prior to data collection (Gelman et al., 1998),

and)|(Xf is the sampling distribution representing the distribution of the

Chapter II. Literature Review on Software Cost Estimation Methods

34

data sample X given the parameters used to model the data.

Since Bayesian inference is a promising technique to integrate

information from different sources, it gains significant popularity in software

cost estimation. For example, Jongmoon et al. (2002) employed Bayesian

inference to combine two sources of information, from expert-judged and

data-determined, to increase prediction accuracy. Many other recent studies

also use Bayesian inference, such as Moses (2002), Moses and Farrow (2003),

Moses and Farrow (2005), Van Koten and Gray (2006).

Besides Bayesian inference, the Bayesian Belief Networks (BBN) also

receives increasing concerns as a successful alternative for uncertainty

modeling. The main concepts behind Bayesian inference also hold for BBN.

The BBN is a directed acyclic graph describing probabilistic cause-effect

relations among the linked nodes. Each node represents a random variable that

can takes discrete or continuous values according to a probability distribution,

which can be different for each node. Each influence relationship is

represented by an arc starting from the influencing variable (parent node) and

ending on the influenced variable (child node). The independence (conditional)

of two variables can be determined by the conditions of d-separations (Pearl

1988).

BBN is adopted by many authors for cost estimation. Stewart et al. (2002)

investigated the utility of the Naive-Bayes classifier which is a special kind of

BBN. Stamelos et al. (2003) illustrated the use of BBN to support expert

Chapter II. Literature Review on Software Cost Estimation Methods

35

judgment for software cost estimation. Pendharkar et al. (2005) illustrated

how a belief updating procedure can be used to incorporate decision-making

risks.

Artificial Neural Network (ANN)

Artificial neural network (ANN) is one of the machine learning

techniques that have played an important role in solving complex problems

with difficult or unknown analytical solution (Lawrence, 1994). It has become

an important element in approximating nonlinear relationships.

The inputs and outputs are linked according to specific topologies where

each neuron is connected to at least one other neuron in a mesh-like fashion.

Data Inputs Model output

Cost estimation

Project feature 1

Project feature 2

Project feature n

Project feature 3

.

.

.

.

.

.

Figure 2.4: An example of art ificial neural network

Chapter II. Literature Review on Software Cost Estimation Methods

36

There are three distinct layers in a neural network: the input layer, the hidden

layer(s), and the output layer. The connections of neurons across layers

represent the transmission of information between neurons. Fig 2.4 depicts a

three layer network consisting of a stream of input project features to the input

layer, a hidden layer of some neurons and an output layer with cost estimate as

the output value.

Due to its good approximation capability, neural network has been

frequent studied/applied for cost estimation. Many studies aim to improve the

performance of ANN. Srinivasan and Fisher (1995) first proposed neural

network for cost estimation. Samson et al. (1997) introduced the Albus

perceptron based neural network for cost estimation. Lee et al. (1998)

integrated neural network with cluster analysis. Shukla (2000) proposed a

neural network (NN) predictor trained genetic algorithm. Eung and Jae (2001)

proposed a search method that finds the right level of relevant cases for the

neural network model. Other studies simply adopted NN as a candidate

method for the comparisons against their estimation methods (Finnie et

al.1997, Gray and MacDonell 1997, Wittig and Finnie 1997, Gray and

MacDonell 1999, Burgess and Lefley 2001, Shepperd and Kadoda 2001, Heiat

2002, Pendharkar and Subramanian 2002, Mair et al. 2000, Heiat 2002, de

Barcelos et al. 2007).

Chapter II. Literature Review on Software Cost Estimation Methods

37

Other Machine Learning Methods

In addition to the techniques described above, many different types of

machine learning methods also appeared in the literature. Examples are Radial

Basis Function (Shin and Goel 2000, Dri et al. 2006), Support Vector Machine

(Vapnik 1995, Adriano 2006), Genetic Algorithm/Programming (Shukla 2000,

Burgess and Lefley 2001, Aguilar-Ruiz et al. 2001), and Fuzzy Logic

(Ahmeda et al. 2005, Engel and Last 2007).

2.3.5 Analogy Based Estimation

Analogy based estimation (ABE), which was first proposed by Sternberg

(1977), is essentially a case-based reasoning (CBR) approach (Shepperd and

Schofield 1997). The principle of ABE is relatively simple: when provided a

new project, it identifies one or more historical projects that are similar to the

current project and then derives the final estimates from these nearest

neighbors. Generally, ABE consists of four components: similarity function,

historical database, number of retrieved nearest neighbors and solution

function (See Fig 1.1). The ABE system procedure normally consists of the

following four stages:

 Collect the past projects‟ information and prepare the historical data set

 Select current project‟s features such as Function Points (FP) and Lines

of Source Code (LOC), which are also collected with past projects

 Calculate the similarities between new project and the past projects, and

Chapter II. Literature Review on Software Cost Estimation Methods

38

identify the nearest neighbors. The commonly used similarity function is

the reciprocal of weighted Euclidean distance.

 Predict the cost of the new project from the chosen nearest neighbors by

using the solution function. Usually the mean value function is used as

solution function.

Aiming to improve ABE‟s performance, many works have been devoted

to improve its four components. The following paragraphs present detailed

descriptions of these components and summarize published works under these

components:

Similarity Function

The similarity function, which measures the level of similarity between

two different projects, is one of the key components in ABE. The choice of

measure is important since it affects which projects are selected as the nearest

neighbors. The similarity function has the general form (Li et al. 2007):

 )',(,),',(),',()',(2211 nn ffLsimffLsimffLsimfppSim  (2.9)

where p and p′ denote any two projects, fi and fi′ denote the features of project,

n is the number of features in each project, and)(Lsim is the so called local

similarity function of every project feature. The function  f and)(Lsim

together define the structure of similarity function. All types of similarity

Chapter II. Literature Review on Software Cost Estimation Methods

39

functions are special cases of this general form. Among various types of

similarity functions, Euclidean distance based similarity (ES) and Manhattan

distance based similarity (MS) are most popular. The Euclidean similarity is

based on the Euclidean distance between two projects:







 














 



,0

,1

,)'(

)',(

)',(1)',(

2

1

ii

ii

n

i

iii

ff

ffDis

ffDiswppSim 

if if and 'if are numeric or

ordinal

if if and 'if are nominal and if

= 'if

if if and 'if are nominal and if

 'if

(2.10)

where p and p’ denote any two projects, if and 'if denote the ith features

of projects p and p’ respectively, wi  [0, 1] is weight of ith feature,  is a

small constant to prevent the situation that the denominator equals 0, and n is

the total number of features. The Manhattan similarity is based on the

Manhattan distance which is the sum of the absolute distances for each pair of

features.







 











 



,0

,1

,'

)',(

)',(1)',(
1

ii

ii

n

i

iii

ff

ffDis

ffDiswppSim 

If if and 'if are numeric or ordinal

If if and 'if are nominal and if =

'if

If if and 'if are nominal and if 

'if

 (2.11)

Chapter II. Literature Review on Software Cost Estimation Methods

40

In the literature, there are many other types of similarity measures, such

as Maximum distance based similarity (Angelis and Stamelos 2000),

Minkowski distance based similarity (Angelis and Stamelos 2000), and rank

mean similarity (which is the mean value of the ranking of each project

feature) (Walkerden and Jeffery 1997). A summary of the similarity functions

used in a previous paper is provided in table 2.2. Table 2.2 shows that

Euclidean similarity is the most popular similarity function, as it has the

straightforward geometrical definition of the distance between two points in

the k-dimension Euclidean space.

Table 2.2: Summary of d ifferent similarity functions

Source Euclidean

Similarity

Manhattan

Similarity

Maximum

Similarity

Minkowski

Similarity

Rank

Mean

Shepperd and Schofield

(1997)

Yes No No No No

Walkerden and Jeffery

(1999)

No No No No Yes

Angelis and Stamelos

(2000)

Yes Yes Yes No No

Leung (2002) No Yes No No No

Mendes et al. (2003) Yes No Yes No No

Jorgensen et al. (2003) Yes No No No No

Auer et al. (2006) Yes No No No No

Huang and Chiu (2006) Yes No No No No

Chiu and Huang (2007) Yes Yes No Yes No

Li et al. (2007) Yes No No No No

Mittas et al. (2008) Yes No No No No

Li and Ruhe (2008a) Yes No No No No

Li and Ruhe (2008b) Yes No No No No

Keung et al. (2008) Yes No No No No

Totals 12 3 2 1 1

Chapter II. Literature Review on Software Cost Estimation Methods

41

In the literature, there are some works comparing the performances of

different similarity functions. Angelis and Stamelos (2000) concluded that the

Euclidean similarity, Manhattan similarity, and Maximum similarity produced

almost the same results. However, they also state that this result may be

affected by the choices of data set. Mendes et al. (2003) have found out that

the maximum similarity for one and three nearest neighbors produces

statistically worse results than Euclidean similarity. Chiu and Huang (2007)

claimed that the differences among Euclidean similarity, Manhattan similarity

and Minkowski similarity are trivial. In all, there is still no solution to the

problem of under which condition what type of similarity function is

preferable. The relationship between choice of similarity function and

characteristics of historical dataset is worth explorating.

Using the similarity functions in (2.10) and (2.11), it is reasonable to

conjecture that different features may have different importance to the total

similarity (for example, in many cost models the feature „function point‟ is

more important than the feature „programming language‟). Moreover, many

researchers point out that there exist large potentials to improve ABE‟s

accuracy by assigning appropriate weights to the right feature. In this direction,

several research works are focusing on determining the optimal weight of

each feature (feature weighting). Shepperd and Schofield (1997) set each

weight to be either 1 or 0 and then apply a brute-force approach to choose

optimal weight values, Walkerden and Jeffery (1999) used human judgment to

Chapter II. Literature Review on Software Cost Estimation Methods

42

determine the feature weights, Angelis and Stamelos (2000) determined the

feature weight by some statistics (such as inverse variance or range values),

Mendes et al. (2003) employed a statistically significant correlation approach

for the assignment of feature weights, Auer et al. (2006) developed a flexible

exhaustive search method to determine the weights, Most recently, Huang and

Chiu (2006) proposed the genetic algorithm for feature weighting.

Historical Database

The historical database used for retrieving the similar past projects is also

a key component in ABE system. Reducing the whole historical data set into a

smaller subset that consists only of representative projects can significantly

improve ABE‟s performance. First, it reduces the search space and therefore

can save computational time searching for nearest neighbors. Second, it

produces quality results because it may eliminate some outliers in the dataset.

However, very list research has been done on this topic. Kadoda et al. (2000)

conducted one preliminary study on project selection via forward sequential

selection. Recently, Li et al. (2007, 2009b) proposed a genetic algorithm

based framework to optimize both project subset and feature weights.

Number of Nearest Neighbors: K

The number of nearest neighbors K is another important parameter in

ABE system. Many papers have investigated the impacts of this parameter on

Chapter II. Literature Review on Software Cost Estimation Methods

43

estimation results or considered optimizing this number (See table 2.3).

Table 2.3: Summary of papers investigating different number of nearest neighbors

Source # of nearest

neighbors (K)

Method of

selecting K

Comments

Shepperd and Schofield

(1997)

1-3 Cross

validation

No one approach is

consistently more accurate

so the decision requires a

certain amount of

experimentation on the part

of the estimators.

Walkerden and Jeffery

(1999)

1 Predefine N.A.

Angelis and Stamelos

(2000)

1-23 Cross

validation

No rule to decide this

number without

experiments

Leung, 2002 2 Predefine Two nearest neighbors have

a higher referencing value

and overcome some

problems with one nearest

neighbor.

Mendes et al., 2003 2,3 Predefine N.A.

Jorgensen et al. (2003) 1-3 Predefine The best performance was

achieved using the closest

analogue. Inclusion of two

or three analogues did not

improve the accuracy.

Auer et al. (2006) 1 Predefine N.A.

Huang and Chiu (2006) 1-3 Cross

validation

The use of closest two or

three analogues presents

better result than use

closest analogue.

Chiu and Huang (2007) 1 Predefine The decision is case-to-case

since no heuristic method

currently exists.

Li et al. (2007) 1-80 Cross

validation

Jack-knife for optimizing K

and T.

Mittas et al. (2008) 1-10 Cross

validation

N.A.

Li and Ruhe (2008a) 1-80 Dynamic K N.A.

Li and Ruhe (2008b) 1-80 Dynamic K N.A.

Chapter II. Literature Review on Software Cost Estimation Methods

44

Five of the previous studies have specified a certain range for K values,

and then applied the cross-validation procedure to select the optimal K value

with which the ABE could produce the predictions optimizing the error metric

on the training dataset. Moreover, six papers (Walkerden and Jeffery 1999,

Leung 2002, Mendes et al., 2003, Jorgensen et al. 2003, Auer et al. 2006, Chiu

and Huang 2007) predefine K at fixed values. More recently, Li and Ruhe

(2008a, 2008b) adopted a method named „dynamic K‟ which was first

proposed by Kadoda et al. (2000). In this approach, the projects falling within

a certain distance threshold (T) of the target project are treated as nearest

neighbors and the number of neighbors may vary when different target

projects appear. This method can also be regarded as one cross validation

scheme. The advantage of cross validation is that it takes into account the

information from dataset.

The Solution Function

The final prediction for the new project is produced by the solution

function based on the selected K nearest neighbors. The solution function has

the following general form.

),,,(ˆ
21 Kx CCCgC  (2.12)

where xĈ is the estimation value, iC is the cost value of ith nearest neighbor,

Chapter II. Literature Review on Software Cost Estimation Methods

45

and K denotes the number of nearest neighbors. Different types of solution

functions have been proposed for more accurate estimating results. Table 2.4

summarizes the published solution functions. The solution functions presented

in table 2.4 are: the un-weighted mean, the median, and the inverse distance

weighted mean.

Table 2.4: Summary of publications with different solution functions

Source Un-weighted

mean

Weighted

mean

Median Adjustment

Shepperd and Schofield

(1997)

Yes Yes No No

Walkerden and Jeffery

(1999)

Yes* No No Yes

Angelis and Stamelos (2000) Yes No Yes No

Leung (2002) Yes No No Yes

Mendes et al. (2003) Yes Yes Yes No

Jorgensen et al. (2003) Yes* No No Yes

Auer et al. (2006) Yes* No No No

Huang and Chiu (2006) No Yes No No

Chiu and Huang (2007) Yes* No No Yes

Li et al. (2007) No Yes No No

Mittas et al. (2008) No Yes No Yes

Li and Ruhe (2008a) No Yes No No

Li and Ruhe (2008b) No Yes No No

Totals 4+4* 7 2 5

* means only one nearest project is used

The un-weighted mean is the simple average of the cost values of K

nearest neighbors, where K > 1. It is a classical measure of central tendency

and treats all most similar projects as being equally influential on the cost

estimates.

Chapter II. Literature Review on Software Cost Estimation Methods

46

The median is the median of the cost values of K nearest neighbors,

where K > 2. It is another measure of central tendency and it is a more robust

statistic when the number of nearest neighbors increases (Angelis and

Stamelos, 2000).

The inverse distance weighted mean (Kadoda, et al 2000) allows more

similar projects to have more influence than less similar ones. The formula for

weighted mean is shown in (2.13):







K

k

pn

i

k

k
p k

C

ppSim

ppSim
C

1

1

),(

),(ˆ (2.13)

where p denotes the new project being estimated, pk represents the kth nearest

neighbors, Sim(p, pk) is the similarity between project pk and p,
kpC is the

cost value of pk, and K is the total number of nearest neighbors.

The weighted mean has become more and more popular in recent years

(except those using unique nearest project). This might be due to the fact that

the weighted mean allows the more similar projects to have more influence

than the lower ones (Huang and Chiu 2006). However, in light of our

knowledge there is no solid evidence or proof that supports this argument.

In addition, the last column of table 2.4 presents the studies on the

adjustments to the solution functions. The adjustment on the solution function

is necessary since it can capture the differences between the new project and

Chapter II. Literature Review on Software Cost Estimation Methods

47

the retrieved projects, and refine the retrieved solution into the target solution

(Walkerden and Jeffery, 1999). Many researchers have proposed different

techniques to adjust the solution function. Leung (2002) proposed a

refinement which is based on the relative location of the target project.

Jorgensen et al. (2003) proposed Regression Toward the Mean (RMT)

adjusting the analogy based results:

)1()(ˆ

ˆˆ

rPMPP

PFPC

kkx

xx




 (2.14)

where xC denotes the cost of a new project x,
xP̂ denotes the adjusted

productivity (productivity = cost/FP) of the new project, kP is the average of

the k nearest neighbors, M is the mean productivity of the similar projects, and

r is the correlation coefficient between the productivity of closest analogues

and the actual productivity.

More recently, Chiu and Huang (2007) proposed an additive adjustment.

AdjCCx  1
ˆ (2.15)

where
 1C is the cost value of the first nearest neighbor to x and





n

i

ixii ffAdj
1

1)( is the adjustment term. xif is the ith feature of the

new project x.
if1
denotes the ith feature of the nearest project. Then GA is

Chapter II. Literature Review on Software Cost Estimation Methods

48

applied to optimize the coefficients i . In a more recent work, Mittas et al.

(2008) introduced the iterated bagging (Bootstrap aggregating) technique to

adjust the solution function. The bagging predictor is defined as:





T

t

t

x C
T

C
1

)(

1

1ˆ (2.16)

where)(

1

tC is the nearest neighbor cost value obtained on the bootstrap

sample t = 1,…, T. T is the total number of bootstrapped samples.

We can tell from the above that most previous works were focusing on

linear type of adjustments. Since non- linearity is a common characteristic

throughout the software engineering data sets, the non- linear type of

adjustment is of great practical importance for investigation.

2.4 Evaluation Criteria

Evaluation criteria are essential for the empirical validations of cost

estimation methods. To measure the accuracy of estimation methods, various

kinds of evaluation criteria have been developed. In this section, we collect 19

different criteria appeared in the publications of the past decade. Among all

evaluation criteria, the Mean Magnitude of Relative Error (MMRE) and

Prediction at level q (PRED (q)) (Conte et al. 1986) are most frequently used.

Although MMRE is biased and not always reliable as a performance metric, it

still has been the de facto standard in the software cost estimation literature.

Chapter II. Literature Review on Software Cost Estimation Methods

49

In addition, other types of evaluation criteria have also been used. For

instance, Kemerer (1987) introduced R-Square as an error metric for cost

estimation. Miyazaki et al. (1994) proposed the use of the Balanced Mean

Magnitude of Relative Error (BMMRE) as well as the Inverted Balanced

Mean Magnitude of Relative Error (IBMMRE). Jorgensen et al. (1995)

introduced the Median Magnitude of Relative Error (MdMRE). Lo and Gao

(1997) proposed two error metrics: the Weighted Mean of Quartiles of relative

errors (WMQ) and the Standard Deviation of the Ratios of the estimate to

actual observation (SDR). The Mean Magnitude of Error Relative to the

estimate (MMER) or Mean Variation From Estimate (MVFE) as a different

name, are introduced by Kitchenham et al. (2001), and Hughes et al. (1998)

respectively. Kitchenham et al. (2001) also suggested Mean of the Absolute

Residual (MAR) and Median of the Absolute Residual (MdAR) as the

candidate metrics.

The development of new metrics is an ongoing process. More recent

metrics that have been introduced or proposed are: Adjusted Mean Square

Error (AMSE) (Burgess and Lefley 2001), Standard Deviation (SD) (Foss et

al. 2003), Relative Standard Deviation (RSD) (Foss et al. 2003), Logarithmic

Standard Deviation (LSD) (Foss et al. 2003), and Logarithmic Relative Error

(LRE) (Jorgensen 2004).

Based on the mathematical structure of the error metrics, we classify all

of them into four different groups: relative error based metrics, absolute error

Chapter II. Literature Review on Software Cost Estimation Methods

50

based metrics, sum of squares errors based metrics, and ratio error based

metrics.

2.4.1 Relative Error based Metrics

The error metrics in this group are based on the relative error named

Magnitude of Relative Error (MREi) (Conte et al. 1986):

i

ii
i

C

CC
MRE

ˆ


 (2.17)

where iC denotes the actual cost of the ith project, and
iĈ denotes the

estimated effort of ith project.

Mean Magnitude of Relative Error (MMRE) (Conte et al. 1986)

The MMRE is defined as:

)(
ˆ1

1

i

n

i i

ii M R Em e a n
C

CC

n
M M R E 


 



 (2.18)

where n denotes the number of projects being estimated, iC denotes the

actual effort of ith project, and
iĈ denotes the estimated effort of ith project.

Small MMRE value indicates a low level of estimation error. However, this

metric is unbalanced and it penalizes overestimation more than

Chapter II. Literature Review on Software Cost Estimation Methods

51

underestimation.

PREDiction at level q (PRED (q)) (Conte et al. 1986)

The PRED is the percentage of predictions that fall within a specified

percent of the actual cost:










 


0,0

0,1
)(

)(
1

)(
1

x

x
x

qMRE
n

qPRED
n

i

i





 (2.19)

where q is a predefined threshold. PRED(q) computes the percentage of the

predictions whose MRE values are less than or equal to q. In most

publications, q is set to 0.25 or 0.30.

Mean of weighted qualities (MWQ) (Lo and Gao 1997)

MWQ is the weighted mean of MREs:

6

32 321 QQQ
MWQ


 (2.20)

where Q1 is the first quartile, Q2 is the second quartile and Q3 is the third

quartile of the MREs. The smaller the MWQ is, the more accurate the

estimation is. It is shown that MWQ and MMRE are consistent when there are

no outliers and the estimation is unbiased (Lo and Gao 1997).

Chapter II. Literature Review on Software Cost Estimation Methods

52

Median Magnitude of Relative Error (MdMRE) (Jorgensen et al. 1995)

MdMRE is the median of the MREs:

)(MREmedianMdMRE

(2.21)

It is an aggregate measure and compared to MMRE it is less sensitive to

extreme values (Foss et al. 2003).

Balanced Mean Magnitude of Relative Error (BMMRE) (Miyazaki et al.

1994)

To overcome the drawback of MMRE that penalizes overestimation more

than underestimation, Miyazaki et al. (1994) proposed the so called balanced

MMRE.







n

i ii

ii

CC

CC

n
BMMRE

1)ˆ,min(

ˆ1

(2.22)

Inverted Balanced Mean Magnitude of Relative Error (IBMMRE) (Miyazaki

et al. 1994)

This metric is similar to BMMRE, the only difference is that the

denominator of IBMMRE is the maximum of real cost and predicted cost:

Chapter II. Literature Review on Software Cost Estimation Methods

53







n

i ii

ii

CC

CC

n
IBMMRE

1)ˆ,max(

ˆ1
 (2.23)

Mean Magnitude of Error Relative to the estimate (MMER) (Kitchenham et al.

2001) or Mean Variation From Estimate (MVFE) (Hughes et al. 1998)







n

i i

ii

C

CC

n
MMER

1
ˆ

ˆ1

(2.24)

This metric is proposed because project managers are normally aware of

the estimated cost for a project before the actual cost and a measurement

based on the ratio |actual-estimate|/estimate would seem to be a more accurate

reflection of managerial concerns (Hughes et al. 1998).

2.4.2 Absolute Error based Metrics

In the literature, there are only two metrics based on the absolute error.

These metrics seem to be less popular than the relative error based ones. The

reason might be that the cost values of software projects often vary a lot and it

is difficult to use the absolute errors to compare one group of projects with

very small costs against another group of projects with large costs. However,

as the absolute error is a balanced metric, many studies (Mendes et al. 2003,

Li et al. 2009) also use it to diagnose the conclusion made by relative errors.

Chapter II. Literature Review on Software Cost Estimation Methods

54

Mean of the Absolute Residual (MAR) (Kitchenham et al. 2001)

 MAR is the mean value of the absolute errors:





n

i

ii CC
n

MAR
1

ˆ1

(2.25)

Median of the Absolute Residual (MdAR) (Kitchenham et al. 2001)

 MdAR is the median value of the absolute errors:

)ˆ(ii CCmedianMdAR 

(2.26)

2.4.2 Sum of Square Errors based Metrics

Sum of square errors (or mean of square errors) is often used by

statisticians to measure the errors. Many studies using statistical techniques

such as regressions consider the sum of square errors based metrics, especially

R-square.

Root Mean Square (RMS) (Conte et al. 1986)

It is the root of the mean square error:

n

CC

RMS

n

i

ii




 1

2)ˆ(

(2.27)

Chapter II. Literature Review on Software Cost Estimation Methods

55

Relative Root Mean Square (RRMS) (Conte et al. 1986)

It is the RMS divided by the mean of the actual costs:

n

C

RMSRRMS

n

i

i
 1

(2.28)

Adjusted Mean Square Error (AMSE) (Burgess and Lefley 2001)

It is the sum of the squared errors divided by the product of the actual and

the estimated cost:


 




n

i ii

ii

CC

CC
AMSE

1

2

ˆ

)ˆ(

(2.29)

R-Square & Adjusted R-square (Kemerer 1987)

R-square and Adjusted R-square indicate the percentage of total variation

explained by the regression model. They are the common measures of the

regression‟s goodness of fit. R-square has the following mathematical

expression:














n

i

ii

n

i

ii

CC

CC

R

1

2

1

2

2

)(

)ˆ(

 (2.30)

Chapter II. Literature Review on Software Cost Estimation Methods

56

where iC is the mean of the real cost values iC . R–square describes the

percentage of total variance explained by the model. A high R-square value

indicates a good model fit with observed data. However, the R-square also

increases along with the number of explanatory variables in the linear

equation even though these variables are not significant in explaining the

variability of the dependent variable. Therefore, the adjusted R-square is used.

)1(
1

1 22 R
pn

n
Radj 




 (2.31)

where n is the number of projects in the datasets and p is the number of

explanatory variables.

Standard Deviation (SD) (Foss et al. 2003)

The standard deviation is a common metric to evaluate the variance of the

predicted values:

1

)ˆ(
1

2









n

CC

SD

n

i

ii

 (2.32)

Relative Standard Deviation (RSD) (Foss et al. 2003)

 RSD is modified from SD and it incorporates the size of the project:

Chapter II. Literature Review on Software Cost Estimation Methods

57

1

)
ˆ

(
1

2










n

x

CC

RSD

n

i i

ii

(2.33)

where the variable x is the number of function points (FP). The rationale

behind RSD is to measure the dispersion relative to the x value (e.g., FP)

rather than relative to the C value to avoid one of the problems with MMRE.

One of MMRE‟s problems is that small actual costs (small Cs) will have a (too)

large influence on the mean MRE since a number divided by a small number

tends to be a large number. Contrary to MRE, which is almost uncorrelated

with size, SD is positively correlated with size because software project data

sets are often heteroscedastic. As opposed to SD, RSD is almost uncorrelated

with size. We observe that RSD is limited to models with a single predictor

variable. In many software studies, this is, however, not a serious limitation

since it is common to create prediction models based on FP and effort. More

importantly, we can provide a rationale for choosing this metric as well as an

interpretation of its meaning.

Logarithmic Standard Deviation (LSD) (Foss et al. 2003)

1

)
2

(
1

2
2









n

s
e

LSD

n

i

i

iii CCe ˆlnln 

(2.34)

Chapter II. Literature Review on Software Cost Estimation Methods

58

The term s2 is an estimator of the variance of the residual ei. The rationale

behind LSD is as follows: Data sets with a large heteroscedasticity will be

very much influenced by the large projects. Thus, the usual SD is more

sensitive to large projects than to small projects and it may therefore not be a

stable, reliable measure for such data sets. On the other hand, LSD lends itself

well to data sets that comply with a log-linear model because the residual error

is independent of size (i.e., homoscedastic) on the log scale.

2.4.4 Ratio Error based Metrics

Because MRE is an unbalanced metric, many authors consider the

alternatives based on the ratio error metrics. The ratio error is defined as

follows:

i

i
i

C

C
R

ˆ


(2.35)

where iC is the actual cost/effort and
iĈ is the estimated cost/effort.

Logarithmic Relative Error (LRE) (Jorgensen 2004c)

LRE is the absolute value of the logarithm of the ratio error:

 iRLRE ln

(2.36)

Chapter II. Literature Review on Software Cost Estimation Methods

59

Standard Deviation of R (SDR) (Lo and Gao 1997)

SDR measures the estimation consistency of Ri:

1

)(
1

2










n

RR

SDR

n

i

i

(2.37)

where R is the mean of the ratio Ri. The smaller the SDR, the more

consistent the estimation is (Lo and Gao 1997).

Chapter III. Feature Selection Based on Mutual Information

60

Chapter 3 Feature

Selection Based on Mutual

Information1

As mentioned in the previous chapter, feature selection is an important

preprocessing stage of analogy based estimation. Most existing feature

selection methods of ABE are „wrappers‟ which can usually yield high fitting

accuracy at the cost of high computational complexities and poor explanations

of the selected features. In this chapter, the mutual information based feature

selection technique (MIABE) is proposed. This approach hybridizes both

„wrapper‟ and „filter‟ mechanism. „Filters‟ are another type of feature selectors

with much lower computation complexity and more interpretable resulting

features, though they may not produce the fitting results as accurate as

„wrappers‟ do. The MIABE is compared with several established feature

selectors. The results show that MIABE is an effective feature selector which

can produce quality predictions with low computational cost and explainable

features.

1
 This chapter is relevant to the publication Li et al. 2009a

Chapter III. Feature Selection Based on Mutual Information

61

3.1 Introduction

The fundamental principle of ABE is simple: given a new project for

estimation, the most similar historical projects are selected to predict the cost

of the new project by using a similarity measure. As one of the key

components of ABE, the similarity measure is used to aggregate the similarity

under each project feature (or cost driver). As shown in section 2.3.5, the

choice of project features has large impact on the estimation results. The

feature selection is proposed to determine the optimum subset of features that

give the most accurate estimation (Mendes et al., 2003).

In software cost estimation literature, some feature selection methods

have been proposed, such as exhaustive search (Shepperd and Schofield,

1997), hill climbing and forward sequential selection (Kirsopp et al., 2002).

However, most existing feature selectors are the so called „wrappers‟ (Kohavi

and John, 1997). The „wrappers‟ convolve with ABE method, with the direct

goal to minimize the fitting error of the particular problem. Usually, „wrappers‟

can yield high fitting accuracy at the cost of high computational complexity

and low interpretations of the selected features. It is fairly possible that less

informative features lead to poorer prediction accuracy.

To address these issues, in this chapter we propose a novel feature

selection algorithm combining wrapper mechanism and filter mechanism

(Almuallim and Dietterich, 1994, Kohavi and John, 1997). Unlike

„wrappers‟, the filter mechanism selects features by evaluating some preset

Chapter III. Feature Selection Based on Mutual Information

62

criteria independently of the fitting accuracy of ABE. In general, the filter

approach has much lower complexity than wrappers, and the features selected

by „filters‟ are more interpretable, which in turn could generate more accurate

predictions (Peng et al., 2005).

In filter mechanism, we choose mutual information (MI) (Battiti, 1994,

Kwak and Choi, 2002(a), Kwak and Choi, 2002(b), Peng et al., 2005) as the

preset criterion. The reasons to consider mutual information are: 1) it is

capable of measuring arbitrary relations (include both linear and non- linear)

between features, 2) it is independent of the transformations (such as

normalization and scaling) acted on features (Battiti, 1994). Based on mutual

information criterion, we propose mutual information based feature selection

approach for analogy based estimation (MIABE). MIABE adopts filter

mechanism in the inner stage and the wrapper mechanism in the outer stage.

The inner stage selects the feature subsets maximizing mutual information

between the selected features and the target feature (software cost). The outer

stage searches for the feature subset maximizing the fitting accuracy from the

candidate feature subsets generated by the inner stage.

The rest of this chapter is organized as follows: section 3.2 presents the

concepts related to mutual information, the algorithms to calculate mutual

information and the proposed MIABE algorithm. Section 3.3 presents the

experiment setup of this study. Section 3.4 describes two numerical examples

and the analysis of the results.

Chapter III. Feature Selection Based on Mutual Information

63

3.2 Mutual Information Based Feature Selection for

Analogy Based Estimation

A number of selection criteria, such as correlation coefficient and least

square regression error, are available for the filter mechanism for feature

selection. In our study, mutual information (MI) (Shannon and Weaver, 1949)

is chosen as the selection criterion because MI is capable of measuring a

general dependence between two features without assuming the distributions

of the features. This capability of MI matches one important property of ABE:

ABE requires no assumption on the distributions of features to derive the

solutions (Walkerden and Jeffery, 1999). In addition, MI is capable to manage

both numerical and categorical features which often simultaneously appear in

software engineering datasets.

In section 3.2.1, we briefly introduce basic concepts and notations of the

theory related to MI. In section 3.2.2, the calculation of MI is discussed. In

section 3.2.3, the MIABE approach is presented.

3.2.1 Entropy and Mutual Information

In feature selection problem, the relevant features have important

information regarding the output of ABE, whereas the irrelevant features

contain little information regarding the output of ABE. The objective of

feature selection is to find those features that contain as much informa tion

about the output as possible. For this purpose, Shannon‟s information theory

Chapter III. Feature Selection Based on Mutual Information

64

(Shannon and Weaver, 1949) provides a feasible way to measure the

information by entropy and mutual information.

The entropy H(X) is a measure of the uncertainty of a random variable X.

For a discrete random variable X, with the probability mass function p(x), the

entropy of X is defined as:





x

xpxpXH)(log)()((3.1)

where Φ is the sample space of variable X, and the logarithm is based on 2.

Information entropy is expressed in bits. The joint entropy of X and Y with

joint pdf: p(x, y) is defined as follows:


 


x y

yxpyxpYXH),(log),(),((3.2)

where  is the sample space of variable Y, When certain variables are known

and other variables are unknown, the remaining uncertainty is measured by

the conditional entropy:





 







x y

x

xypyxp

xXYHxpXYH

)|(log),(

)|()()|(

 (3.3)

Chapter III. Feature Selection Based on Mutual Information

65

From formulae (3.1), (3.2) and (3.3), the joint entropy and conditional entropy

have the following relation:

)|()()|()(),(YXHYHXYHXHYXH  (3.4)

Based on definitions about entropy, the mutual information (MI) between

two variables is defined as below:


 


x y ypxp

yxp
yxpYXI

)()(

),(
log),();((3.5)

If the mutual information is large, the two variables X and Y are closely related,

while if the mutual information becomes zero, the two variables X and Y

become independent. The mutual information and the entropy have the

following relationships:

)();(

);();(

),()()();(

)|()();(

)|()();(

XHXXI

XYIYXI

YXHYHXHYXI

XYHYHYXI

YXHXHYXI











 (3.6)

An illustrative presentation of the relationships is given in fig 3.1. The mutual

information corresponds to the intersection part between the entropy of X and

the entropy of Y.

Chapter III. Feature Selection Based on Mutual Information

66

So far the concepts of entropy and mutual information are introduced for

the discrete variables. But in software engineering databases many software

project features are continuous in nature. For continuous variables the entropy

and mutual information are defined as follows:

dxdy
ypxp

yxp
yxpYXI

dxxpxpXH









)()(

),(
log),();(

)(log)()(

 (3.7)

H(X) and I(X; Y) of continuous variables have the same properties as what the

H(X) and I(X; Y) of discrete variables have in (3.6). However, when the

underlying probability density functions (p(x), p(y), and p(x, y)) are

continuous, it is often impossible to obtain the analytical integration.

Therefore, approximation methods have been proposed (Moddemeijer, 1989,

Kwak and Choi 2002(b)).

H(X|Y)

H(X)

H(X, Y)

H(Y)

H(Y|X)

I(X; Y)

Figure 3.1: The relations between mutual informat ion and the entropy

Chapter III. Feature Selection Based on Mutual Information

67

3.2.2 Mutual Information Calculation

Continuous software project features such as project cost, lines of code,

function points, often appear in software engineering datasets. However, the

approximation of MI between continuous variables is difficult. One possible

solution is the traditional histogram approach (Moddemeijer, 1989) which

involves discretizing the data into equally sized intervals. Although the

histogram approache can obtain satisfactory results under low-dimensional

conditions, the accuracy of most histogram estimations is substantially

degraded when high dimensional data appears (Fraser and Swinney, 1986). An

alternative solution is using the continuous kernel based density estimator to

approximate I(X; Y), as proposed by (Kwak and Choi 2002(b)).

In this method, given N samples of a random variable X, the approximate

density function has the following form:





N

i

i hxx
N

xp
1

)(),(
1

)(ˆ  (3.8)

where)( is the Parzen window function (Parzen, 1962), x(i) is the ith

sample, and h is the window width. Parzen has proven that with the properly

chosen)( and h, the estimation)(ˆ xp can converge to the true density

p(x) when N tends to infinity. Usually,)( is chosen as the Gaussian

window:

Chapter III. Feature Selection Based on Mutual Information

68

)
2

exp(
)2(

1
),(

2

1

212 h

zz

h
hz

dd










 (3.9)

where z = x –x(i), d is the dimension of the sample x and  is the covariance

of z. In our study, the calculation is accomplished by using Peng‟s „Mutual

Information computation‟ MATLAB package available online (Peng 2007).

3.2.3 Mutual Information Based Feature Selection for Analogy Based

Estimation

In this section, the proposed algorithm for feature selection using mutual

information (MIABE) is presented. The algorithm consists of two stages: the

inner stage, at which the classical MIFS algorithm (Battiti, 1994) is used to

select out m number of features, and the outer stage, which determines the

value of m by minimizing the fitting error of ABE on training dataset. The

system diagram of the proposed feature selection approach is shown in fig.

3.2.

In the inner stage, the classical MIFS algorithm is performed by the

following procedure:

1) (Initialization) Set F = „whole feature set‟, S = „empty set‟, let C

represents the cost value, fi represents the ith project feature.

2) Ff i  , compute I(C; fi).

3) Find the feature fi that maximizes I(C; fi), set F F\{ fi }, S {fi}.

4) (Greedy selection) repeat until desired number m of features are

Chapter III. Feature Selection Based on Mutual Information

69

selected.

a) (Computation of the MI between features) for all couples of

features),(si ff , SfFf si  , , compute);(si ffI , if it is not yet

available.

b) (Selection of the next feature) choose the feature Ff i  that

maximizes  


Sf sii
s

ffIfCI);;();( set F  F\{ fi }, S  {fi}

S .

5) Output the subset S containing m selected features. m will be

optimized in the outer stage by maximizing ABE‟s fitting accuracy.

 Figure 3.2: The schematic d iagram of proposed MIABE algorithm

Whole feature set

Empty set

Feature selection

Training dataset

Maximizing

I (C; fi)

Selected features subsets

Predict cost value

Analogy based estimation
Minimizing

MMRE

Is the smallest

MMRE

No

Yes

Optimal feature subsets

O
u
ter o

p
tim

iza
tio

n
 (w

rap
p
er)

In
n
er search

 (filter)

Chapter III. Feature Selection Based on Mutual Information

70

The parameter  controls the redundancy among the features. If  is

zero, the mutual information among features is not taken into consideration

and the algorithm selects features in the order of the mutual information

between features and project cost. As  grows, the mutual information

among features begins to influence the selection process and the redundancy

among features is reduced. However, if  is too large, the feature-cost

relation will be overwhelmed by the relations among the features. In this study

 is set to 0, because only the feature-cost relation is of interest and the

computation of  demands extra computational resources.

The outer stage solves the remaining issue in the inner stage: determining

the optimal number of features m. Suppose that there are a total number of n

features in the dataset. The MIFS is used to select 1 to n features and this

process leads to n sequential feature sets nnm SSSSS  121

Then compare all the n sequential feature sets S1,…,Sm,…, Sn to find the set Sm

with the minimal training error of ABE (MMRE is used to measure training

error in this study). Therefore, m is the optimal number of features and Sm is

the optimal feature set.

3.3 Experiment Design

 The evaluation criteria and data sets for experiments are presented in

section 3.3.1 and section 3.3.2 respectively.

Chapter III. Feature Selection Based on Mutual Information

71

3.3.1 Evaluation Criteria

Evaluation criteria are essential to the experiments. In the literature,

several quality metrics have been proposed to assess the performances of

estimation methods. More specifically, Mean Magnitude of Relative Error

(MMRE), PRED(0.25) (Conte et al. 1986), and Median Magnitude of Relative

Error (MdMRE) (Jorgensen et al. 1995) are three popular metrics.

The MMRE is as defined below:

i

ii
i

n

i

i

C

CC
M R E

M R E
n

M M R E

ˆ

1

1




 


 (3.10)

where n denotes the totoal number of projects, iC denotes the actual cost of

project i, and
iĈ denotes the estimated cost of project i. Small MMRE value

indicates a low level of estimation error. However, this metric is unbalanced

and penalizes overestimation more than underestimation.

The MdMRE (Kitchenham et al. 2001) is the median of all the MREs.

)
ˆ

(
i

ii

C

CC
medianMdMRE


 (3.11)

It exhibits a similar pattern to MMRE but it is more likely to select the true

model especially in the underestimation cases since it is less sensitive to

Chapter III. Feature Selection Based on Mutual Information

72

extreme outliers (Foss et al., 2003). The PRED(0.25) is the percentage of

predictions that fall within 25 percent of the actual value.










 


0,0

0,1
)(

)25.0(
1

)25.0(
1

x

x
x

MRE
n

PRED
n

i

i





 (3.12)

The PRED(0.25) identifies cost estimations that are generally accurate,

while MMRE is a biased and not always reliable as a performance metric.

However, MMRE has been the de facto standard in the software cost

estimation literature. In addition to the metrics mentioned above, there are

several metrics available in the literature. Interested readers can refer to

section 2.4 for more information.

3.3.2 Data Sets

Two representative datasets are selected for experiments. They are

Desharnais dataset (Desharnais 1989) containing merely numerical features

and Maxwell dataset (Maxwell, 2002) mainly composed of categorical

features.

Despite the fact that Desharnais dataset is quite old, it is still one of the

large and publicly available datasets. Therefore it still has been used by many

recent research works, such as Mair et al. (2000), Burgess and Lefley, (2001),

and Auer et al. (2006). This data set includes 9 numerical features and 81

Chapter III. Feature Selection Based on Mutual Information

73

projects. Four out of 81 projects have been excluded due to the missing

feature values. This process results in the 77 complete projects for

experiments (Mair et al. 2000). The eight independent features of this data set,

namely “TeamExp”, “ManagerExp”, “YearEnd”, “Transactions”, “Entities”,

“PointsAdjust”, “Envergure”, and “PointsNonAjust” are all considered for

constructing the models. The dependent feature “Effort” is measured in 1000

h. The detailed definitions and descriptive statistics of all the features are

shown in table B.3 and table B.4 of Appendix B.

The Maxwell dataset with 62 projects‟ data from one of the biggest

commercial banks in Finland is a relatively new software project datasets and

has been used by some recent research works (Maxwell, 2002, Sentas et al.,

2005). The detailed definitions and descriptive statistics of all the features are

shown in table B.5 and table B.6 of Appendix B. Most features in this dataset

are categorical and the numerical features are time, duration, size and effort.

The categorical features can be further classified into ordinal features and

nominal features. The ordinal feature and nominal feature have to be

distinguished while calculating the similarity measure (See formula (2.10) and

(2.11)).

The ordinal features are „nlan‟, and „t01‟-„t15‟, while the nominal features

are „app‟, „har‟, „dba‟, „ifc‟, „source‟ and „telonuse‟. By following Maxwell‟s

process, in our analysis we used the new features „subapp‟ and „subhar‟,

instead of the features „app‟ and „har‟. These new features are subsets of the

Chapter III. Feature Selection Based on Mutual Information

74

original ones and they contain categories with 3 or more observations. More

specifically, the levels of „subapp‟ are 1, 2, 3 and 5 and the levels of „subhar‟

are 1, 2, and 5.

3.3.3 Experiment Design

Before the experiments, all types of features (numerical, ordinal, and

nominal) in the two data sets are normalized into [0, 1] in order to eliminate

the different influences of the features. For the purpose of comparing our

method to the published works, different validation schemes are applied.

For Desharnais dataset, our method is compared to Mair‟s work (Mair et

al. 2000) where methods are trained and tested by the three-folder

cross-validation. This cross-validation yields three different training- testing set

combinations. Each testing set is randomly generated from the original dataset

and the remaining projects are used as the training set. Therefore, for the

Desharnais datasets we obtain three different training splits and three testing

splits. By following the splitting scheme of Mair et al. (2000), the 87% split

(87% in the training set and 13% in the testing sets) is used. The training set is

only used to develop the estimating methods, while the testing set is

exclusively used to test the estimation performance of the candidate methods.

The accuracies across all training splits are aggregated as the training results,

and the accuracies across all testing splits are aggregated as the testing results.

For Maxwell dataset, our method is compared to Maxwell‟s work in

Chapter III. Feature Selection Based on Mutual Information

75

(Maxwell, 2002) and Sentas et al.‟s work in (Sentas et al. 2005). Therefore,

we prepare the training and testing datasets by following their splitting

method. The 50 projects that completed before 1992 form the training set, and

the 12 projects that finished from 1992 to 1993 are used as testing set.

After determining the validation scheme, the following experiment

procedures are conducted on two datasets.

 Firstly, the performances of MIABE feature selection are investigated by

fixing the ABE parameter settings. As mentioned in last chapter, ABE has

three controllable parameters: similarity measure, number of nearest

neighbors K, and solution function (historical dataset is excluded from

consideration). In line with Kirsopp et al. (2002)‟s setting, these

parameters are fixed to Euclidean distance, K = 3 and inverse distance

weighted mean respectively. Then MIABE is compared against other

wrapper feature selection methods: Exhaustive selection (EX) (Shepperd

and Schofield 1997), Hill Climbing feature selection (HC), and Forward

Sequential feature selection (FSS) (Kirsopp et al. 2002). The

implementations of these methods are realized by using the automatic

tool archANGEL. The configurations of HC and FSS follow Kirsopp et

al. (2002).

 Secondly, the features that selected by feature selection methods are

analyzed by mutual information diagrams. The MI diagram is a useful

tool for diagnosing the feature selection phase.

Chapter III. Feature Selection Based on Mutual Information

76

 Thirdly, the computational efficiencies of the feature selection methods

are tested and compared.

 Finally, the MIABE‟s three parameters are optimized and the optimal

MIABE is compared with the published works.

 The results and analyses are presented in the following two sections.

3.4 Results

To validate the proposed MIABE method, this section summarizes the

results of two empirical studies on the two datasets described in Section 3.3.2.

3.4.1 Results on Desharnais Dataset

The experimental results on Desharnais data are presented in following

paragraphs. Fixing the three parameters (similarity measure, number of

nearest neighbors K, and solution function) of ABE method, we first compare

MIABE with three „wrapper‟ feature selection techniques: exhaustive feature

selection, hill climbing and forward sequential selection. Then, the three

parameters of ABE method are optimized by empirical trial and the optimal

MIABE is compared to published results.

Comparisons of Feature Selection Techniques

Table 3.1 presents the results of each method‟s performance on three data

splits with Euclidean distance, K = 3 and inverse distance weighted mean

Chapter III. Feature Selection Based on Mutual Information

77

(Kirsopp et al. 2002). The EX, HC, FSS and MI denote the EXhaustive

feature selection, Hill Climbing feature selection, Forward Sequential feature

selection, and MIABE respectively. The results show that MI achieves better

testing performances under MMRE, PRED(0.25), and MdMRE than other

wrapper methods while MI‟s training errors are among the largest ones. These

findings confirm the argument that wrappers usually can yield high fitting

accuracy but low generalization to other conditions (Peng et al., 2005).

Table 3.1: Comparisons of different feature selection schemes

Feature selection

methods

Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

MI 0.77 0.29 0.45 0.41 0.23 0.35

EX 0.67 0.29 0.39 0.49 0.20 0.46

HC 0.67 0.29 0.39 0.49 0.20 0.46

FSS 0.67 0.32 0.34 0.45 0.23 0.41

Euclidean distance, K = 3, and inverse distance weighted mean adaptation.

As mentioned in Section 3.3.1, MMRE stands for the mean value of

MREs, PRED(0.25) calculates the proportion of those MREs which are equal

to or less than 25%, and MdMRE is the median value of the MREs. These

error metrics reflect different aspects of the statistical characteristics of MRE

values. To further analyze the MRE values from the testing dataset, we draw

out the box plot of MRE values in Fig 3.3. The boxplots illustrate the median,

the inter-quartile range, and the outliers. The MI based feature selection shows

a lower median line, and a slightly smaller inter-quartile range of the MRE

Chapter III. Feature Selection Based on Mutual Information

78

values than other feature selection methods. Table 3.2 summarizes the selected

features from the training data splits. Results from different feature selection

techniques are presented.

Figure 3.3: The boxplots of MRE values of feature selection methods

Table 3.2: Selected features in three data splits

 Datasets

Variables

SP1 SP2 SP3

EX FSS HC MI EX FSS HC MI EX FSS HC MI

TeamExp

ManagerExp 1 1 1 1 1 1 1

YearEnd 1 1

Transactions 1 1

Entit ies 1 1 1 1 1 1

PointsAdjust 1 1 1 1 1

Envergure 1 1 1 1

PointsNonAjust 1 1 1 1 1 1 1 1 1 1

Chapter III. Feature Selection Based on Mutual Information

79

The symbol „1‟ denotes the feature in its corresponding row is selected by

the selection method in its corresponding column. The table shows that MI

selects the same three features „Entities‟, „PointsAdjust‟, and „Envergure‟

across all three splits. In particular, MI maintains the most informative feature,

„PointsAdjust‟.

The mutual information diagram provides a useful graphic tool for a

better understanding of the selected features. Fig 3.4 shows the mutual

information diagram of the value of MI between different features and the cost

value in the three data splits. The mutual information diagram provides useful

information for diagnosing the feature extraction phase. In Fig 3.4, it is

apparent that feature 7 („PointsAdjust‟) has the highest amount of information

shared with the cost value while feature 3 („YearEnd‟) has the lowest mutual

information with cost value. Surprisingly, EX and HC both select feature 3 in

SP3 (see table 3.2). As the wrapper selectors use MMRE value on the training

data for optimization and there is no clear relationship between mutual

information and MMRE, a feature subset with low mutual information value

may still achieve low MMRE value.

The computational complexity is another important criterion for

evaluating feature selection method, especially when the dataset is large with

more features and more projects, the speed of selection might have priority

over accuracy. Therefore, the computational expense is also considered in our

study. Time statistics needed for feature selection are provided in table 3.3.

Chapter III. Feature Selection Based on Mutual Information

80

The efficiency of each feature selection technique is measured by seconds. All

methods are tested on a PC with Core Duo T2400 1.8GHz and 1G RAM.

Table 3.3 shows that MI is most efficient among all methods.

Figure 3.4: Mutual in formation diagram for the features in three training data splits

Table 3.3: Times consumed to optimize feature subset (seconds)

Data split SP1 SP2 SP3

MI 3 2 3

EX 96 98 100

FSS 7 10 8

HC 47 45 39

Chapter III. Feature Selection Based on Mutual Information

81

Comparison of MIABE to Published Results

The three-fold cross-validation approach mentioned in section 3.3.3 is

utilized to optimize ABE‟s parameters on Desharnais dataset. Table 3.4

summarizes the training and testing results with different parameter

combinations from the parameter space: two distance measures (Euclidean

distance and Manhattan distance), five K values (1, 2, 3, 4 and 5), and four

solution functions (Closest Analogy (CA), Mean, Inverse distance Weighted

Mean (IWM), and Median).

The results show that in general the choice of different similarity

measures has an insignificant influence on both the training and testing

performances. As for the solution functions, the closest analogy does not

obtain best results and the median gets slightly better results than mean and

IWM when K = 4 and K = 5. The choice of K value has some influence on the

accuracies. Smaller errors are obtained when the estimation is based on a

relatively larger number of analogies (K = 4, and K = 5). The best parameter

combination (Manhattan similarity, K = 4, and median solution function) on

the training dataset is selected to compare with the published training and

testing results.

Chapter III. Feature Selection Based on Mutual Information

82

Table 3.4: MIABE estimation results on Desharnais Dataset

 Solution Training Testing

Similarity K

value

function MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean

K = 1 CA 0.83 0.24 0.48 0.50 0.27 0.44

K = 2 Mean 0.77 0.29 0.47 0.50 0.27 0.42

 IWM 0.80 0.28 0.49 0.59 0.20 0.49

K = 3 Mean 0.75 0.32 0.42 0.43 0.27 0.41

 IWM 0.77 0.29 0.45 0.41 0.23 0.35

 Median 0.75 0.29 0.42 0.41 0.27 0.35

K = 4 Mean 0.73 0.34 0.39 0.40 0.37 0.40

 IWM 0.76 0.28 0.43 0.40 0.43 0.28

 Median 0.71 0.34 0.44 0.40 0.33 0.39

K = 5 Mean 0.71 0.32 0.43 0.44 0.33 0.38

 IWM 0.74 0.29 0.41 0.42 0.30 0.38

 Median 0.69 0.32 0.37 0.37 0.33 0.35

Manhattan

K = 1 CA 0.78 0.24 0.47 0.42 0.37 0.36

K = 2 Mean 0.78 0.30 0.42 0.46 0.23 0.39

 IWM 0.72 0.32 0.45 0.50 0.20 0.40

K = 3 Mean 0.72 0.28 0.44 0.46 0.27 0.39

 IWM 0.74 0.30 0.41 0.48 0.27 0.40

 Median 0.76 0.30 0.44 0.42 0.33 0.32

K = 4 Mean 0.69 0.32 0.44 0.43 0.43 0.45

 IWM 0.71 0.30 0.43 0.44 0.33 0.44

 Median 0.68 0.32 0.39 0.36 0.40 0.33

K = 5 Mean 0.71 0.33 0.39 0.41 0.40 0.36

 IWM 0.72 0.33 0.39 0.38 0.40 0.34

 Median 0.69 0.30 0.39 0.36 0.37 0.30

In table 3.5, the best MIABE (with Manhattan similarity, K = 4, and

median solution function) is compared to the published results (Mair et al.

2000). In Mair et al. (2000) the statistics (Mean, Median, Min and Max) of the

MRE values from three-folder cross-validation were given. Table 3.5 shows

that MIABE obtains smallest mean, median, and min of MREs, and the second

lowest max value of MREs. Although in our study the three-folder

cross-validation is also used to build and test MIABE method, the conclusion

Chapter III. Feature Selection Based on Mutual Information

83

that MIABE‟s results are better than the published results should be treated

with caution. Because the three- folder cross-validation data splits are

randomly generated, the splits used in our study may not be exactly the sa me

as the ones used in Mair‟s study.

Table 3.5: Comparisons with published results

Published Techniques
MRE

Mean Median Min Max

ANN (Mair et al. 2000) 0.47 0.53 0.21 0.66

ABE (Mair et al. 2000) 0.57 0.49 0.43 0.80

LSR (Mair et al. 2000) 0.62 0.47 0.38 1.00

RI (subset selection)

(Mair et al. 2000)

0.90 0.89 0.41 1.41

MIABE 0.36 0.33 0.01 0.78

3.4.2 Results on Maxwell Dataset

The experimental results on Maxwell are presented in this section. In

order to compare MIABE with published works, we prepare the training and

testing datasets by following the splitting method of Maxwell‟s and Sentas et

al.‟s (Maxwell, 2002, Sentas et al. 2005). The 50 projects that completed

before 1992 form the training set, and the 12 projects finished between 1992

and 1993 are used as testing set.

Comparison of Feature Selection Techniques

Table 3.6 summarizes the results of each selector‟s performance on

training dataset and testing dataset with the same configuration used in

Chapter III. Feature Selection Based on Mutual Information

84

Desharnais dataset: Euclidean similarity, K = 3 and inverse distance weighted

mean (Kirsopp et al. 2002). Due to large number of features (25 features), the

exhaustive search is not applicable with our computation resource. The results

show that MI achieves better or equally good testing performances when

compared to wrapper methods, and MI‟s training performance is improved

compared with the results in table 3.1. Specifically, MI‟s training PRED(0.25)

and MdMRE rank first, and its training MMRE ranks second.

Table 3.6: Comparisons of different feature selection schemes

Feature selection

methods

Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

MI 0.55 0.40 0.34 0.42 0.42 0.29

EX NA
a
 NA NA NA NA NA

HC 0.58 0.40 0.40 1.01 0.42 0.42

FSS 0.48 0.34 0.35 0.45 0.33 0.31

Euclidean distance, K = 3, and inverse distance weighted mean adaptation.

a
: Not Applicable

To further analyze the MRE values from the testing dataset, we draw out

the box plot of MRE values in fig 3.5. It is shown that MI has a slightly lower

median line than HC and FSS. The MI‟s inter-quartile range is smaller than

HC‟s but a bit larger than FSS‟s.

Chapter III. Feature Selection Based on Mutual Information

85

Figure 3.5: The boxplots of MRE values of feature selection methods (EX is not applicable)

Table 3.7 presents the selected features from the training dataset. The

symbol „1‟ denotes the feature in its corresponding row is selected by the

selection method in its corresponding column. The symbol „-‟ denotes the

selection method in its corresponding column is not applicable. The table

shows that MI selects three features „T14‟, „Duration‟ and „Size‟, FSS chooses

„T05‟, „Duration‟ and „Size‟, and HC selects 12 out of 25 features.

Chapter III. Feature Selection Based on Mutual Information

86

Table 3.7: Selected variables for three splits

 Datasets

Variab les

Training Set

EX FSS HC MI

Time - 1

App - 1

Har -

Dba

Ifc -

Source - 1

Telonuse - 1

Nlan - 1

T01 - 1

T02 -

T03 -

T04 -

T05 - 1

T06 1

T07 - 1

T08 - 1

T09 -

T10 -

T11 -

T12 -

T13 -

T14 1 1

T15

Duration 1 1 1

Size 1 1 1

„1‟ denotes that the feature is not selected

Fig 3.6 shows the mutual information diagram of the value of MI between

different features and the cost value in the training dataset. In fig 3.6, it is

apparent that features 22, 24 and 25 („T14‟, „Duration‟ and „Size‟) have the

highest MIs, while features 5, 6 and 16 („Ifc‟, „Source‟, and „T08‟) have the

lowest MIs. Table 3.7 shows that features 22, 24 and 25 are selected by all

methods, but HC selects feature 6 and 16.

Chapter III. Feature Selection Based on Mutual Information

87

Figure 3.6: Mutual in formation diagram for the features in training dataset

The computation efficiency of each feature selector is also tested. The

time (in seconds) consumed for selecting the optimal feature subset are

provided in table 3.8 The results in Table 3.8 show that MI is fastest among all

feature selection methods.

Table 3.8: Time needed to optimize feature subset (seconds)

Feature selection

methods

Training set

MI 4

EX NA*

FSS 31

HC 40

NA*: Not Applicable

Chapter III. Feature Selection Based on Mutual Information

88

Comparison of MIABE to Published Results

Similar to section 3.4.1, the parameters are optimized by trial-and-error

scheme. The results of training datasets and testing datasets are presented in

table 3.9. The results show that in general there is no clear conclusion on

which similarity measure is better. As for the solution functions, the closest

analogy does not obtain best results and the median and mean gets better

testing results than IWM when K = 4 and K = 5. The choice of K value has

small influence on the accuracies. The smaller errors are obtained when the

estimation is based on a relatively larger number of nearest neighbors (K = 4,

and K = 5). The best configuration (Euclidean similarity, K = 4, and mean

solution function) on the training dataset is selected to compare with the

published training and testing results.

In table 3.10, the best MIABE (with Euclidean similarity, K = 4, and mean

solution function) is compared to the published results from stepwise

regression (Maxwell 2002) and ordinal regression (Sentas et al. 2005). In their

works, the MMRE and PRED(0.25) of training and testing datasets were given.

Table 3.10 shows that MIABE obtains best training PRED(0.25) and testing

PRED(0.25), and MIABE ranks third on both training and testing MMRE.

Chapter III. Feature Selection Based on Mutual Information

89

Table 3.9: MIABE estimation results on Maxwell Dataset

 Solution Training Testing

Similarity K

value

function MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean

K = 1 CA 0.56 0.34 0.37 0.60 0.33 0.40

K = 2 Mean 0.57 0.28 0.47 0.79 0.25 0.52

 IWM 0.55 0.24 0.44 0.97 0.42 0.67

K = 3 Mean 0.56 0.38 0.35 0.37 0.50 0.27

 IWM 0.55 0.40 0.34 0.42 0.42 0.29

 Median 0.55 0.34 0.36 0.38 0.42 0.34

K = 4 Mean 0.51 0.48 0.29 0.28 0.67 0.19

 IWM 0.55 0.40 0.41 0.64 0.17 0.42

 Median 0.50 0.34 0.37 0.27 0.58 0.22

K = 5 Mean 0.58 0.32 0.38 0.37 0.58 0.22

 IWM 0.54 0.34 0.36 0.51 0.25 0.42

 Median 0.51 0.38 0.35 0.34 0.58 0.23

Manhattan

K = 1 CA 0.59 0.18 0.48 0.65 0.25 0.46

K = 2 Mean 0.56 0.38 0.34 0.46 0.33 0.31

 IWM 0.55 0.40 0.34 0.52 0.25 0.33

K = 3 Mean 0.54 0.34 0.32 0.39 0.50 0.25

 IWM 0.51 0.44 0.32 0.41 0.42 0.27

 Median 0.53 0.32 0.33 0.51 0.33 0.37

K = 4 Mean 0.52 0.46 0.32 0.36 0.67 0.19

 IWM 0.51 0.36 0.35 0.51 0.50 0.32

 Median 0.50 0.34 0.43 0.34 0.58 0.22

K = 5 Mean 0.53 0.30 0.35 0.37 0.58 0.20

 IWM 0.52 0.36 0.38 0.42 0.33 0.28

 Median 0.53 0.34 0.45 0.34 0.58 0.23

Table 3.10: Comparisons with published results

Published Techniques
Training Testing

MMRE PRED(0.25) MMRE PRED(0.25)

Stepwise Regression (A)

(Maxwell 2002)

0.42 0.42 0.29 0.33

Stepwise Regression (B)

(Maxwell 2002)

0.43 0.34 0.32 0.58

Ordinal Regression (mean)

(Sentas et al. 2005)

0.60 0.34 0.26 0.58

Ordinal Regression (median)

(Sentas et al. 2005)

0.52 0.36 0.27 0.50

MIABE 0.51 0.48 0.28 0.67

Chapter III. Feature Selection Based on Mutual Information

90

3.4 Summary and Conclusion Remarks

Feature selection is a critical preprocessing stage of analogy based

estimation. However, most existing feature selection methods for analogy

based estimation are „wrappers‟ (Kohavi and John, 1997). Usually, wrappers

can yield high fitting accuracy at the cost of high computational complexity

and low generalization of the selected features to other conditions. Another

kind of feature selector „filters‟ (Almuallim and Dietterich, 1994, Kohavi and

John, 1997) has much lower complexity than wrappers and could select the

features with interpretations, although „filters‟ may not produce the fitting

results as accurate as „wrappers‟. In our study, a novel algorithm that

hybridizes wrapper and filter feature selection (MIABE) was proposed. The

mutual information is used as the selection criterion for filter mechanism.

To validate the proposed MIABE algorithm, the experiments are

conducted on two real world datasets. The performances of MIABE are first

investigated by fixing the ABE parameter settings. It is compared against

other wrapper feature selection methods (exhaustive search, hill climbing and

forward sequential selection) for analogy based estimation. The prediction

results suggested that MIABE could achieve better predictions on testing

datasets (generalization) even though MIABE did not perform very well on

fitting the training datasets.

In addition, the selected features by MIABE are analyzed by mutual

information diagrams. The MI diagram provides useful information for

Chapter III. Feature Selection Based on Mutual Information

91

diagnosing the feature selection phase. The results show that the MIABE can

obtain more meaningful features which can be explained by MI diagram,

while wrapper selectors do not always select informative features since they

merely optimize the error metric MMRE. This could probably explain why

MIABE could achieve better results in testing dataset. Moreover, the results

also suggest that the mutual information based feature selection may be a

feasible alternative when the wrapper techniques are facing over- fitting

problems.

Another important finding is that MI based feature selection is more

efficient than the wrappers, especially when there are large number of features

in the dataset. This finding confirms the argument that the primary advantage

of filter is the speed and ability to scale to large datasets.

Lastly, the MIABE is optimized and compared with the published works.

The optimization took into account three parameters: similarity measure

(including Manhattan distance and Euclidean distance), the number of nearest

neighbors K (K from 1 to 5) and solution functions (including closest analogy,

mean, inverse distance weighted mean and median). The comparisons show

that MIABE achieves comparable results both on training and testing

performances.

Chapter IV. Project Selection by Genetic Algorithm

92

Chapter 4 Project

Selection by Genetic

Algorithm2

To improve ABE‟s performance, many studies, such as the work in the

previous chapter, propose different approaches to optimize the weights of the

project features (feature selection can be regarded as a special case of feature

weighting with the value {0, 1}) in its similarity function. However, the

historical database of ABE often contains noisy or redundant information,

which can lead to poor prediction accuracy, large memory requirement, and

excessive computation cost. To alleviate these drawbacks, we propose in this

chapter the genetic algorithm for project selection for ABE (PSABE) which

can reduce the whole historical database into a small subset that consists only

of representative projects. Moreover, PSABE is combined with the feature

weighting scheme (FWPSABE) for a further improvement. The proposed

methods are validated on four datasets (two real-world datasets and two

artificial datasets). The promising results indicate that the project selection

technique could significantly improve ABE‟s prediction performance.

2
 The chapter is associated with the publications Li et al. 2007 and Li et al. 2009b

Chapter IV. Project Selection by Genetic Algorithm

93

4.1 Introduction

A large number of research works have been focusing on the

improvements of feature weighting/selection approaches, such as Shepperd

and Schofield (1997), Walkerden and Jeffery (1999), Angelis and Stamelos

(2000), Mendes et al. (2003), Auer et al. (2006), Huang and Chiu (2006), and

Li et al. (2009a).

However, the historical database of ABE still confronts some difficulties,

such as the non-normal characteristics including skewness, heteroscedasticity

and excessive outliers (Pickard et al. 2001) and the ever increasing sizes of the

datasets (Shepperd and Kadoda 2001). The large and non-normal historical

databases always lead ABE methods to low prediction accuracy along with

high computational cost (Huang et al. 2002). To alleviate these drawbacks, the

project selection methodology has been proposed by some authors (Kirsopp

and Shepperd, 2002). The objective of project selection (PS) is to identify and

remove redundant and noisy projects. By reducing the whole project base into

a smaller subset that consists only of the representative projects, project

selection could save the computing time used for searching similar projects

and produce quality prediction results.

Kirsopp and Shepperd (2002) first conducted a preliminary study on

project selection using hill climbing, and forward and backward sequential

selection. The combination of feature selection and project selection was also

considered by Kirsopp and Shepperd (2002). However, they provide no clear

Chapter IV. Project Selection by Genetic Algorithm

94

conclusions that project selection could significantly improve ABE‟s accuracy.

This might be due to the fact that the optimization algorithms they used are

not powerful enough to achieve global optimum and the feature selection

scheme is limited to the space {0, 1} with two elements. On the contrary, the

feature weighting scheme has a much larger space: [0, 1].

In this study, we propose genetic algorithm (GA) to perform the

optimization task. GA is a robust global optimization technique which usually

converges rapidly to solutions of good quality. Moreover, GA is capable of

optimizing the continuous feature weights which is an extension of the feature

selection problem. It is difficult for the heuristics like forward sequential

selection to optimize continuous variables. Additionally, in CBR literature it

has been frequently reported that the simultaneous optimization of feature

weighting and project selection by GA can significantly improve CBR‟s

prediction accuracy (Kuncheva and Jain 1999, Rozsypal and Kubat 2003, Ahn

et al. 2006).

Therefore, it is worthwhile to investigate GA for project selection. In this

chapter, we propose GA for project selection for ABE (PSABE) and the

simultaneous optimization of feature weights and project selection for ABE

(FWPSABE). The proposed two techniques are compared against the feature

weighting ABE (ABE), the conventional ABE and other popular cost

estimation methods including ANN, RBF, SVM and CART.

The rest of this chapter is organized as follows: section 4.2 presents the

Chapter IV. Project Selection by Genetic Algorithm

95

general framework of feature weight and project selection system for ABE.

Section 4.3 presents the real world datasets and the experiments design. In

section 4.4, the results on two real world data sets are summarized and

analyzed. In section 4.5, two artificial data sets are generated, experiments are

conducted on two artificially generated datasets, and the results are

summarized and analyzed.

4.2 Project Selection and Feature Weighting

In this section, we construct the FWPSABE system which can perform

FWABE, PSABE, and simultaneous Feature Weights and Project Selection

Analogy Based Estimation (FWPSABE). Genetic algorithm (Holland 1975) is

selected as the optimization tool for the FWPSABE system, as it is a robust

global optimization technique and has been applied to optimize the model

parameters by several cost estimation papers (Dolado 2000, Shukla 2000,

Dolado 2001, Huang and Chiu 2006). The framework and detailed description

of FWPSABE system are presented in the following paragraphs.

The system procedures of project selection and feature weighting via GA

are given in this section. The system consists of two stages: the first stage is

the supervised training stage (as shown in fig. 4.2) and the second stage is the

testing stage (as shown in fig. 4.3). In the training stage, a set of training

projects is presented to the system, the ABE method is configured by the

candidate parameters (feature weights and selection codes) to produce the cost

Chapter IV. Project Selection by Genetic Algorithm

96

predictions, and GA explores the parameter space to minimize the error (in

terms of MMRE) of ABE on the training projects by the following steps:

i. Encoding.

To apply GA for optimization, the candidate parameters are coded as a

binary code chromosome. As shown in fig 4.1, each individual chromosome

consists of two parts. The first part is the codes for feature weights with a

length of 14×n, where n is the number of features. Since the feature weights

in the ABE model are decimal numbers, the binary codes have to be

transformed into decimal values before entering the ABE method. As what

many authors (Michalewicz 1996, Ahn et al. 2006) have suggested, the

features weights are set as precisely as 1/10,000. Thus, 14 binary bits are

required to express this precision level because

1638421000028192 1413  . After the transformation, all decimal

weight values are normalized into the interval [0, 1] by the following formula

(Michalewicz 1996):

16383

'

12

'
14

ii
i

ww
w 


 (4.1)

where 'iw is the decimal conversion of the ith feature‟s binary weight. For

example, the binary code for the first feature of the sample chromosome in fig

4.1 is (10000000000001)2. Its decimal value is (8193)10 and its normalized

Chapter IV. Project Selection by Genetic Algorithm

97

value is 8193/16383 ≈ 0.5001.

The second part of the codes is for project selection. The value of each bit

is set to be either 0 or 1: 0 means the corresponding project is not selected and

1 means it is selected. The length of second part is m, and m is the total

number of projects in the historical project base.

ii. Population generation.

After the encoding of the individual chromosome, the algorithm generates

a population of chromosomes with an initialization probability of 0.5 (It means

that each bit in the population has an equal chance to be „1‟ or „0‟). For the

GA process, larger population size often results in higher chances for optimal

solutions (Doval et al. 1999). Since GA is computationally expensive, a

trade-off between the convergence time and the population size must be made.

In general, the minimum effective population size grows with problem size.

Based on some previous works (Huang and Chiu 2006, Chiu and Huang 2007),

the size of the population is set to be 10V where V is the total number of input

variables of GA search, which partially reflects the problem size.

1 2 3 … 14 1 2 3 3 … 1 2 1 2 … 14 … 14

Feature 1 Feature 2

3 ………

Feature n ……… Projects

m

1 0 0 … 1 0 1 1 1 … 1 1 0 0 … 1 … 1 1 ……… 0

Feature Weighting
Sample

Chromosome
Project Selection

Figure 4.1: Chromosome for FWPSABE

Chapter IV. Project Selection by Genetic Algorithm

98

iii. Fitness function.

Each individual chromosome is evaluated by the fitness function in GA.

MMRE is chosen to establish the fitness function but GA is designed to

maximize the fitness value. For simplicity, we set the fitness function as the

reciprocal of MMRE plus a small constant 001.0 which is used to

prevent the situation that MMRE = 0.




MMRE
f

1
 (4.2)

iv. Fitness evaluation.

After transforming the binary chromosomes into the feature weighting and

project selection parameters (see step i), the procedures of ABE are executed

as follows:

 Given one training project, the similarities between the training project

and historical projects are computed by assigning the feature weights into

the similarity functions.

 Simultaneously, the project selection part of the chromosome is used to

generate the reduced historical project databases (Reduced PDs).

 Then, ABE uses 1 to 5 nearest neighbors (K = 1 to 5) matching to search

through the reduced PD for 1 to 5 most similar historical projects.

 Finally, the ABE model assigns a prediction value to the training project

by adopting one solution function.

Chapter IV. Project Selection by Genetic Algorithm

99

The error metrics MMRE, PRED(0.25), and MdMRE are used to evaluate

the prediction performance on the training project set. Then, the fitness value

in step iii is calculated for each parameter combination (or chromosome).

v. Selection.

The standard roulette wheel mechanism is applied to select a number of

10V chromosomes from the current population.

vi. Crossover.

The selected chromosomes are consecutively paired. The 1-point

crossover operator with a probability of 0.7 is used to produce new

chromosomes. The newly created chromosomes constitute a new population.

vii. Mutation.

After crossover operation, each bit of the chromosomes in the new

population is chosen to change its value with a probability of 0.1, in such a

way that a bit „1‟ is changed to „0‟ and a bit „0‟ is changed to „1‟.

viii. Elitist strategy.

Elitist strategy is used to overcome the defect of the slow convergence

rate of GA. The elitist strategy retains good chromosomes and ensures they are

not eliminated through the mechanism of crossover and mutation. Under this

Chapter IV. Project Selection by Genetic Algorithm

100

strategy, if the minimum fitness value of the new population is smaller than

that of the old population, then the new chromosome with the minimum

fitness value will be replaced with the old chromosome with the maximum

fitness value.

viii. Stopping criteria.

There are few theoretical guidelines for determining when to terminate the

genetic search. By following the previous works (Huang and Chiu 2006, Chiu

and Huang 2007) on GA combined with the ABE method, steps v to viii are

repeated until the number of generations is equal to or exceeds 1000V trials or

the best fitness value does not change in the past 100V trials. After the

stopping criteria are satisfied, the system moves to the second stage and the

optimal parameters or chromosome are entered into the ABE model for

testing.

Chapter IV. Project Selection by Genetic Algorithm

101

Historical project

databases

Reduced project

database

Genetic

Operations

Similarity function

Feature weighting

Selection/Crossover/Mutation

Project selection

Candidate

parameters

Is Optimal?

No

Project retrieval

Solution function

Yes

Optimal

parameters

Random

generation

Training

projects

ABE system

Fitness

value

Candidate

parameters

Figure 4.2: The train ing stage of FWPSABE

Chapter IV. Project Selection by Genetic Algorithm

102

In the above procedure, the population size, crossover rate, mutation rate

and stopping condition are the controlling parameters of the GA search.

However, there are few theories to guide the assignments of these values (Ahn

et al. 2006). Hence, we determine the value of these parameters in the light of

previous studies that combines ABE and GAs. Most prior studies use 10V

chromosomes as the population size, and their crossover rate ranges from 0.5

to 0.7, while the mutation rate ranges from 0.06 to 0.1 (Ahn et al. 2006, Huang

and Chiu 2006, Chiu and Huang 2007). However, because the search space for

our GA is larger than these studies (the number of input variables V is larger

than that in previous papers), we set the parameters to the higher bounds of

those ranges. Thus, in this study the population size is 10V, the crossover rate

is set at 0.7 and the mutation rate is set at 0.1.

The second stage is the testing stage. In this stage, the system receives the

optimized parameters from the training stage to configure the ABE model. The

optimal ABE is then applied to the testing projects to evaluate the trained

ABE.

Chapter IV. Project Selection by Genetic Algorithm

103

4.3 Experiment Design

 In this section, two real world software engineering datasets are used for

the experiments and the detailed experiments designs are presented.

4.3.1 Datasets

The Albrecht dataset (Albrecht and Gaffney 1983) includes 24 projects

developed by using third generation languages. 18 of the projects were written

Similarity function

Feature weighting

Project selection

Project retrieval

Solution function

Prediction

value

Optimal

parameters
Testing

projects

ABE system

Historical project
databases

Reduced project

database

Figure 4.3: The testing stage of FWPSABE

Chapter IV. Project Selection by Genetic Algorithm

104

in COBOL, 4 were written in PL1, and 2 were written in DMS languages. Six

independent features of this data set are „input count‟, „output count‟, „query

count‟, „file count‟, „function points‟, and „lines of source code‟. The

dependent feature „person hours‟ is recorded in 1000 h. The detailed

definitions and descriptive statistics of all features are shown in table B.1 and

table B.2 of Appendix B.

The Desharnais dataset (Desharnais 1989) includes 81 projects and 11

features, 10 independent and one dependent. Since 4 out of 81 projects contain

missing feature values, they have been excluded from the dataset. This process

results in the 77 complete projects for our study. The ten independent features

of this dataset are „TeamExp‟, „ManagerExp‟, „YearEnd‟, „Length‟,

„Transactions‟, „Entities‟, „PointsAdjust‟, „Envergure‟, „PointsNonAjust‟, and

„Language‟. The dependent feature ‟person hours‟ is recorded in 1000 h. The

detailed definitions and descriptive statistics of all the features are shown in

table B.3 and table B.4 of Appendix B.

4.3.2 Experiment Design

Before the experiments, all types of features are normalized into the

interval [0, 1] in order to eliminate their different influences. The three-fold

cross-validation is used to assess the accuracies of our method, similarly to

Briand et al. (1999), Jeffery et al. (2001), and Mendes et al. (2003). Under this

scheme, the data set is randomly split into 3 equally sized subsets. At each

Chapter IV. Project Selection by Genetic Algorithm

105

time, one of the three subsets is used as the testing set exclusively for

evaluating model prediction, and the remaining two subsets are merged to

form a training set which is only used to construct the models. This process is

repeated three times and each subset has been used for testing only once.

Finally the average training error and testing error across all three trials are

computed.

Methods specifications

Four ABE based models are included in our experiments: conventional

ABE, FWABE (feature weighting analogy based estimation) (Huang and Chiu

2006), PSABE (project selection analogy based estimation), and FWPSABE

(simultaneous optimization of features weighting and project selection).

For a comprehensive evaluation of the proposed models, we include other

popular machine learning methods including artificial neural network (ANN)

(Heiat 2002), radial basis functions (RBF) (Shin and Goel 2000), support

vector machine regression (SVR) (Oliveira 2006), and classification and

regression trees (CART) (Pickard et al. 2001). The best variants of machine

learning methods are obtained by training these methods and tuning their

parameters on the historical datasets and training datasets respectively.

In ANN model, the number of hidden layers, the number of hidden nodes

and the type of transfer functions are three predefined parameters. They have

significant impacts on the prediction performance (Martin et al. 1997). Among

Chapter IV. Project Selection by Genetic Algorithm

106

these parameters, one hidden layer is often recommended since multiple

hidden layers may lead to an over parameterized ANN structure with

over- fitting characteristic. Thus, in this study we fix the number of hidden

layers at 1. The search spaces for the number of hidden neurons and hidden

layer transfer functions are set to be {1, 3, 5, 7, 9, 10} and {linear, tan-sigmoid,

log-sigmoid} respectively. During the training process, the ANN models with

different parameter configurations are first trained on the historical dataset.

Then, all ANN versions are implemented on the training set and the one

producing the lowest MMRE value is selected for the comparisons against

ABE models.

For RBF network, the forward selection strategy is utilized since forward

selection has the advantages of flexible number of hidden nodes, the tractable

model selection criteria and the relatively low computational expense (Orr

1996). In this case, the regularization parameter  is introduced. To

determine  , its search space is defined as }10,...,0,...,9,10|10{  ii .

Similar to ANN‟s training procedure, all RBFs with different  values are

trained on the historical dataset and the one yielding the lowest MMRE on

training data is selected for comparisons.

For SVR model, the common Gaussian function

})(exp{),(22yxyxK  is used as the kernel function. The predefined

parameters  , C and  , are selected from the same search space

}10,...,0,...,9,10|10{ ii
. SVR models with all kinds of parameters

Chapter IV. Project Selection by Genetic Algorithm

107

combinations (10×10×10 = 1000 combinations) are trained on the historical

dataset. The combination producing the minimal MMRE on the training set is

chosen for comparisons.

To train CART model, we first use the historical set to fit the model and

obtain a decision tree T. The tree T is then applied to the training set, and

returns a vector of cost values computed for the training projects. The cost

vector is subsequently used to prune the tree T into a size that is minimized.

The tree with optimal size is adopted for comparisons.

Experiment procedure

The following experiment procedures are conducted for comparisons:

 Firstly, the performances of FWPSABE are investigated by varying ABE

parameters other than feature weights and project subsets. In line with the

common settings of ABE parameters, we define the search spaces for

similarity function as {Euclidean similarity, Manhattan similarity},

number of nearest neighbors K as {1, 2, 3, 4, 5}, and solution functions as

{closest analogy, mean, median, inverse distance weighted mean}

respectively. All kinds of parameter combinations are executed on both

the training dataset and the testing dataset. The best configuration on

training dataset is selected out for the comparisons with other cost

estimation methods.

 Secondly, other ABE based methods are trained by the similar procedure

Chapter IV. Project Selection by Genetic Algorithm

108

described in the first step and the best variants on training set are selected

as the candidates for comparisons. In addition, the optimizations of

machine learning methods are conducted on the training dataset by

searching through their parameter spaces.

 Thirdly, the training and testing results of the best variants of all

estimation methods are analyzed and compared. The experiments results

and analyses are presented in the next section.

4.4 Results

4.4.1 Results on Albrecht Dataset

Table 4.1 presents FWPSABE‟s results on Albrecht dataset with different

parameter configurations mentioned in section 4.3. The results show that in

general, Euclidean similarity achieves slightly more accurate performances

than Manhattan similarity on both the training and testing datasets. As for the

solution function, there is no clear observation on which function is most

preferable. The choice of K value has some influence on the accuracies. The

smaller errors mostly appear when K = 3 and K = 4. Among all configurations,

the setting {Euclidean similarity, K = 4, and mean solution function} produces

best results on the training dataset and so it is selected for the comparisons

with other cost estimation methods.

Table 4.2 summarizes the results of the best variants of all cost estimation

methods on Albrecht dataset. It is observed that the FWPSABE achieves the

Chapter IV. Project Selection by Genetic Algorithm

109

best testing performance (0.30 for MMRE, 0.63 for PRED(0.25) and 0.27 for

MdMRE) among all methods, followed by PSABE, and FWABE. For a better

illustration, the corresponding testing performances are presented in fig 4.4.

Table 4.1: Results of FWPSABE on Albrecht Dataset

Similarity
K

value
Solution

Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean

K = 1 CA 0.39 0.25 0.35 0.40 0.38 0.45

K = 2 Mean 0.37 0.54 0.34 0.55 0.13 0.58

 IWM 0.40 0.58 0.34 0.57 0.32 0.42

K = 3 Mean 0.56 0.38 0.34 0.41 0.33 0.39

 IWM 0.55 0.42 0.32 0.42 0.42 0.29

 Median 0.55 0.38 0.33 0.38 0.46 0.32

K = 4 Mean 0.31 0.54 0.32 0.30 0.63 0.27

 IWM 0.35 0.52 0.33 0.44 0.50 0.32

 Median 0.40 0.54 0.37 0.37 0.58 0.28

K = 5 Mean 0.58 0.42 0.32 0.39 0.38 0.45

 IWM 0.54 0.33 0.38 0.51 0.25 0.42

 Median 0.51 0.38 0.45 0.42 0.25 0.45

Manhattan

K = 1 CA 0.50 0.25 0.41 0.45 0.25 0.53

K = 2 Mean 0.56 0.38 0.42 0.43 0.13 0.44

 IWM 0.55 0.40 0.44 0.59 0.28 0.45

K = 3 Mean 0.55 0.52 0.45 0.39 0.38 0.35

 IWM 0.51 0.44 0.42 0.42 0.25 0.40

 Median 0.53 0.32 0.43 0.51 0.33 0.32

K = 4 Mean 0.53 0.38 0.32 0.41 0.54 0.45

 IWM 0.51 0.36 0.35 0.51 0.50 0.42

 Median 0.50 0.34 0.43 0.44 0.53 0.32

K = 5 Mean 0.54 0.34 0.42 0.59 0.13 0.58

 IWM 0.52 0.36 0.48 0.52 0.23 0.48

 Median 0.53 0.34 0.45 0.51 0.13 0.46

Chapter IV. Project Selection by Genetic Algorithm

110

Table 4.2: The results and comparisons on Albrecht Dataset

Models
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.38 0.49 0.50 0.13 0.36 0.49

FWABE 0.48 0.42 0.38 0.25 0.34 0.46

PSABE 0.40 0.39 0.25 0.38 0.35 0.45

FWPSABE 0.31 0.30 0.54 0.63 0.32 0.27

SVR 0.46 0.45 0.50 0.25 0.22 0.43

ANN 0.39 0.49 0.38 0.25 0.35 0.51

RBF 0.79 0.49 0.50 0.25 0.25 0.39

CART 4.77 1.70 0.13 0.13 0.58 0.89

Figure 4.4: The testing results on Albrecht Dataset

Chapter IV. Project Selection by Genetic Algorithm

111

4.4.2 Results on Desharnais Dataset

The results of FWPSABE with different configurations on Desharnais

dataset are summarized in table 4.3. The results show that in this case the

choice of different similarity functions has little influence on both the training

and testing performances. As for the solution functions, there is no clear

conclusion on which solution function is the best. The choice of K value has

slight influence on the accuracies. The smaller errors are achieved by setting K

= 3. In all configurations, the setting {Euclidean similarity, K = 3, and mean

solution function} produces best results on the training dataset and so it is

selected for the comparisons against other cost estimation methods.

Table 4.4 presents the results of the best variants of all cost estimation

methods on Desharnais dataset. It is shown that the FWPSABE achieves the

best testing performance (0.32 for MMRE, 0.44 for PRED(0.25) and 0.29 for

MdMRE), and followed by SVR and PSABE. Fig 4.5 provides an illustrative

version of the testing results in Table 4.4.

Chapter IV. Project Selection by Genetic Algorithm

112

Table 4.3: Results of FWPSABE on Desharnais Dataset

Similarity
K

value
Solution

Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean

K = 1 CA 0.54 0.24 0.47 0.52 0.27 0.51

K = 2 Mean 0.57 0.26 0.45 0.62 0.37 0.50

 IWM 0.55 0.24 0.44 0.97 0.42 0.67

K = 3 Mean 0.40 0.36 0.36 0.32 0.44 0.29

 IWM 0.55 0.36 0.38 0.42 0.42 0.36

 Median 0.56 0.34 0.36 0.38 0.42 0.34

K = 4 Mean 0.59 0.16 0.39 0.40 0.26 0.39

 IWM 0.55 0.36 0.41 0.64 0.17 0.46

 Median 0.53 0.34 0.37 0.57 0.38 0.42

K = 5 Mean 0.55 0.24 0.56 0.43 0.28 0.48

 IWM 0.54 0.26 0.56 0.52 0.25 0.42

 Median 0.59 0.29 0.55 0.64 0.27 0.53

Manhattan

K = 1 CA 0.39 0.28 0.37 0.67 0.30 0.44

K = 2 Mean 0.54 0.32 0.48 0.47 0.25 0.51

 IWM 0.55 0.40 0.34 0.52 0.25 0.53

K = 3 Mean 0.45 0.28 0.49 0.46 0.22 0.38

 IWM 0.56 0.24 0.43 0.41 0.42 0.37

 Median 0.58 0.20 0.46 0.51 0.20 0.45

K = 4 Mean 0.51 0.24 0.48 0.57 0.33 0.51

 IWM 0.53 0.26 0.55 0.58 0.27 0.52

 Median 0.60 0.30 0.53 0.54 0.28 0.52

K = 5 Mean 0.54 0.24 0.50 0.52 0.26 0.48

 IWM 0.56 0.34 0.58 0.64 0.18 0.59

 Median 0.63 0.36 0.55 0.55 0.23 0.52

Table 4.4: The results and comparisons on Desharnais Dataset

Models
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.62 0.62 0.28 0.22 0.51 0.50

FWABE 0.51 0.46 0.12 0.22 0.48 0.39

PSABE 0.39 0.41 0.28 0.30 0.37 0.38

FWPSABE 0.40 0.32 0.36 0.44 0.36 0.29

SVR 0.42 0.40 0.28 0.37 0.45 0.37

ANN 0.45 0.57 0.36 0.22 0.44 0.43

RBF 0.57 0.42 0.24 0.37 0.49 0.29

CART 0.97 0.52 0.28 0.30 0.50 0.35

Chapter IV. Project Selection by Genetic Algorithm

113

Figure 4.5: The testing results on Desharnais Dataset

4.5 Artificial Datasets and Experiments on Artificial

Datasets

To compare different cost estimation methods, the empirical validation is

very crucial when the theoretical comparisons are difficult to conduct. This

has led to the collection of various real world data sets for experiments. Mair

et al. (2005) conducted an extensive survey of the real data sets for cost

estimation from 1980 onwards. As reported, most published real world data

sets are relatively small for the tests of significance and their true properties

may not be fully known. For example, it might be difficult to distinguish

different types of distribution in the presence of extreme outliers in a small

Chapter IV. Project Selection by Genetic Algorithm

114

data set (Shepperd and Kadoda, 2001).

Artificially generated data sets provide a feasible solution to the above

two difficulties. Firstly, the researchers can generate reasonable amount of

artificial data to investigate the significant differences among the competing

techniques. Secondly, it provides the control over the characteristics of the

artificial dataset. Particularly, researchers could design a systematic way to

vary artificial dataset properties for their research purposes (Pickard et al.

1999). In order to evaluate the proposed methods in a more convincing way,

we generate two artificial datasets for further experiments.

From each of the two real data sets, we extract a set of characteristics

describing its property, or more specifically its non-normality. The

non-normality considered in our study includes skewness, variance instability,

and excessive outliers (Pickard et al. 2001). We then use the two sets of

characteristics to generate two sets of artificial data. Section 4.5.1 presents the

details for artificial dataset generation.

4.5.1 Generation of Artificial Datasets

 To explore the non-normal characteristics of the real world data set, the

„cost-size‟ scatter plot for Albrecht dataset is drawn in fig 4.6. The scatter plot

indicates the slight skewness, moderate outliers, and slight variance instability

of the Albrecht dataset. The „cost-size‟ scatter plot of the Desharnais dataset is

in fig 4.7, which shows heavier skewness, more extreme outliers, and higher

Chapter IV. Project Selection by Genetic Algorithm

115

variance instability.

Figure 4.6: Cost versus size of Albrecht dataset

Figure 4.7: Cost versus size of Desharnais dataset

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12
x 10

4

size, nonadjusted function points

c
o
s
t,

 h
o
u
rs

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 10

4

size, nonadjusted function points

c
o
s
t,

 h
o
u
rs

Chapter IV. Project Selection by Genetic Algorithm

116

From the analysis above, software data sets often exhibit a mixture of

several non-normal characteristics such as skewness, variance instability, and

excessive outliers (Pickard et al. 2001). These characteristics do not always

appear in the same degree. In some cases they are moderately non-normal

such as the Albrecht dataset, while in other cases they are severely non-normal

such as the Desharnais dataset. We adopted Pickard‟s method of

non-normality modeling in this work. Other types of techniques for artificial

dataset generation are also available in recent literature. For more details,

readers can refer to Shepperd and Kadoda (2001), Foss at al. (2003), and

Myrtveit et al. (2005).

Following Pickard‟s method, we simulate the combination of non-normal

characteristics: skewness, unstable variance and outliers in formula (4.3):

 h e teskxskxskxy  321 2361000 (4.3)

The independent variables (x1sk, x2sk, x3sk) are generated by Gamma

distributed random variables x1‟, x2‟, and x3‟ with mean 4 and variance 8. The

skewness is embedded in Gamma distributions. In order to vary the scale of

the independent variables, we then multiply x1‟ by 10 to create the variable

x1sk, x2‟ by 3 to create the variable x2sk and x3‟ by 20 to create the variable

x3sk.

The last term ehet in formula (4.3) simulates a special form of unstable

Chapter IV. Project Selection by Genetic Algorithm

117

variance: heteroscedasticity. The heteroscedasticity occurs where the error

term is related to one of the variables in the model and either increases or

decreases depending on the value of the independent variable. The error term

ehet is related to x1sk via the formula ehet = 0.1×e×x1sk for the moderate

heteroscedasticity, and ehet = 6×e×x1sk for the severe heteroscedasticity

(Pickard et al. 2001).

The outliers are generated via multiplying or dividing the dependent

variable y by a constant. We select 1% of the data to be the outliers. Half of

the outliers are obtained by multiplying, while half of them are produced by

dividing. For the moderate outliers, we set the multiplier/divider as 2, while

for the severe outliers, we set the multiplier/divider to be 6.

The combination of moderate heteroscedasticity and moderate outliers is

used to generate the moderate non-normality dataset (fig 4.8). The

combination of severe heteroscedasticity and severe outliers is used to obtain

the severe non-normality dataset (fig 4.9).

Chapter IV. Project Selection by Genetic Algorithm

118

Figure 4.8: Y versus x1sk of moderate non-Normality Data set

Figure 4.9: Y versus x1sk of severe non-Normality Data set

0 50 100 150 200 250 300 350 400
500

1000

1500

2000

2500

3000

3500

4000

X1sk

Y

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Y

X1sk

Chapter IV. Project Selection by Genetic Algorithm

119

4.5.2 Results on Artificial Datasets

We generate two artificial data sets according to the procedures

introduced above. Each artificial data set has 500 projects. The detailed

information regarding the two artificial datasets is presented in table 4.5. For a

better assessment of accuracy, we apply an unequal split to the whole data set

making the testing subset much larger than the other subsets.

Table 4.5: The part ition of artificial data sets

Data Set

Sample size of

Artificial Moderate

non-Normality data

Sample size of

Artificial Severe

non-Normality data

Historical 50 50

Training 50 50

Testing 400 400

Total 500 500

We apply all the methods onto the two artificial data sets by following the

same procedure used for real datasets. The results and comparisons are

summarized as the following.

The results on artificial moderate non-Normality dataset are in table 4.6.

It is shown that FWPSABE achieves the best performances in MMRE at

0.079 and MdMRE at 0.06 and the second best value 0.98 for PRED(0.25),

while ANN gets the highest PRED(0.25) value at 0.99. Comparing the

prediction error curves in fig 4.4 to the error curves in fig 4.10, it is observed

that all the methods achieve much better performance on the artificial dataset

and the differences among the candidate methods are much smaller on the

Chapter IV. Project Selection by Genetic Algorithm

120

artificial dataset. These findings imply that estimation methods in our study

may converge to equally good prediction results on the moderately

non-normal dataset with large size and FWPSABE is slightly better than o ther

methods.

Table 4.6: The results and comparisons on artificial moderate non-Normality Dataset

Models
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.068 0.116 0.98 0.94 0.048 0.093

FWABE 0.090 0.110 1.00 0.98 0.081 0.098

PSABE 0.057 0.086 1.00 0.98 0.043 0.068

FWPSABE 0.055 0.079 1.00 0.98 0.044 0.060

SVR 0.069 0.095 0.98 0.98 0.055 0.077

ANN 0.065 0.088 1.00 0.99 0.061 0.077

RBF 0.099 0.115 0.94 0.93 0.075 0.092

CART 0.099 0.109 0.98 0.95 0.074 0.090

Figure 4.10: The testing results on Artificial Moderate non-Normality Dataset

Chapter IV. Project Selection by Genetic Algorithm

121

Table 4.7 presents the results on artificial severe non-Normality dataset.

FWPSABE achieves the best performances in MMRE at 0.15 and MdMRE at

0.10 and the second best value 0.80 for PRED(0.25), while CART obtains the

highest PRED(0.25) value at 0.81. Comparing fig 4.11 to fig 4.10, it is shown

that all the methods obtain poorer performances on severe non-normal dataset.

This observation indicates that a high degree of non-normality has negative

impacts on the performance of estimation methods in our study.

Table 4.7: The results and comparisons on Artificial Severe non-Normality Dataset

Models
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.32 0.20 0.68 0.73 0.18 0.14

FWABE 0.34 0.19 0.72 0.77 0.14 0.13

PSABE 0.31 0.18 0.70 0.75 0.11 0.12

FWPSABE 0.30 0.15 0.74 0.80 0.14 0.10

SVR 0.34 0.18 0.62 0.76 0.19 0.12

ANN 0.34 0.17 0.70 0.79 0.16 0.12

RBF 0.37 0.18 0.66 0.80 0.18 0.13

CART 0.38 0.18 0.72 0.81 0.16 0.14

Chapter IV. Project Selection by Genetic Algorithm

122

Figure 4.11: The testing results on Artificial Severe non-Normality Dataset

Chapter V. Non-linear Adjustment by Artificial Neural Networks

123

Chapter 5 Non-linear

Adjustment by Artificial Neural

Networks3

ABE predicts the cost of new project by retrieving similar historical

projects. However, as mentioned in section 2.3.5, the retrieved solution has to

be adjusted to adapt to the new situation. Several studies on the adjustment

mechanisms are based on linear formula and restricted to numerical type of

project features. On the other hand, software project datasets often exhibit

non-normal characteristics together with large proportions of categorical

features. To explore the possibilities for a better adjustment mechanism, this

chapter proposes artificial neural network (ANN) for the non-linear

adjustment of ABE (NABE) with the learning ability to adapt to complex

relationships and to incorporate categorical features. The NABE is validated

on four real world datasets and compared against the linear adjusted ABEs,

CART, ANN and SWR. Moreover, eight artificial datasets are generated for a

systematic investigation on the relationship between model accuracies and

dataset properties. The comparisons and analysis show that non-linear

adjustment could generally extend ABE‟s flexibility on complex datasets with

large number of categorical features and improve the accuracies of ABE

predictions.

3
 This chapter is related to the paper Li et al. 2009c

Chapter V. Non-linear Adjustment by Artificial Neural Networks

124

5.1 Introduction

The fundamental principle of ABE is simple: when provided a new

project for estimation, the most similar historical projects (analogies) are

retrieved, the solutions (cost values) of the retrieved projects are used to

construct a „retrieved solution‟ to the new project, with the expectation that the

cost values of the retrieved projects will be similar to the rea l cost of the new

project.

However, the adjustment on the retrieved solution is of necessity since it

can capture the differences between the new project and the retrieved projects,

and refine the retrieved solution into the target solution (Walkerden and

Jeffery, 1999). In the literature, many types of adjustments have been

proposed (refer to section 2.3.5). Most of these adjustments are based on

predetermined linear forms without learning ability to adapt to more complex

situations such as non-normality in the datasets. In addition, these adjustment

techniques are limited to the numeric features despite that the categorical

features also contain valuable information to improve the cost estimation

accuracies (Angelis et al. 2000). In contrast, software project datasets often

exhibit non-normal characteristics and contain large proportion of categorical

features (Sentas and Angelis, 2006, Liu and Mintram, 2005).

To improve the existing adjustment mechanisms, we propose a more

flexible non- linear adjustment with learning ability and including categorical

features. The Non-linearity adjusted Analogy Based Estimation (NABE) is

Chapter V. Non-linear Adjustment by Artificial Neural Networks

125

achieved by adding a non- linear component (Artificial Neural Network) onto

the retrieved solution of the ABE system. In this approach, the ordinary ABE

procedure is first executed to produce an un-adjusted retrieved solution to the

new project. Then, the differences between the new project‟s features and its

neighbors‟ features are used as inputs to ANN model to generate the

non- linear adjustment. Finally, the retrieved solution and the adjustment from

ANN are combined to form the final prediction.

The rest of this chapter is organized as follows: section 5.2 describes the

details of the non- linearity adjusted ABE system (NABE). Section 5.3

introduces four real world data sets and the experiment design. In section 5.4,

the NABE is tested on the real world datasets and is compared against the

linear adjusted ABEs, ANN, CART and SWR. In section 5.5, eight artificial

data sets are generated and a systematic analysis is conducted to explore how

the model accuracies are related to dataset properties. The final section

presents the discussions of this work.

5.2 Non-linearity Adjusted ABE System

5.2.1 Motivations

Analogy based software cost estimation is essentially a case-based

reasoning (CBR) approach. Fig 5.1 illustrates the system diagram of ABE

with adjustment form in the following formula:

Chapter V. Non-linear Adjustment by Artificial Neural Networks

126

),,,(ˆ
21 Kx CCCgC  (5.1)

where
xĈ denotes the estimated cost for the new project x, iC is the cost

value of the ith closest analogy to project x, and K denotes the total number of

nearest neighbors. The retrieved solution function (5.1) only includes the „cost‟

values as its variables while other project features such as „lines of source

code‟ and „function points‟ do not appear in this function. In the literature,

several retrieved solution functions have been proposed, such as un-weighted

mean, weighted mean, and median.

However, these solution functions can be rarely directly applied to predict

xĈ . Instead, they need to be adjusted in order to fit the situations of the new

project (Walkerden and Jeffery, 1999). Therefore the adjustment mechanisms

Similarity function

retrieval o f similar

projects

Projects for

Training

Predicted value

 Historical

Projects

Retrieved Solution

Adjustment

Mechanism

Figure 5.1: The general framework of analogy based estimation with adjustment

Chapter V. Non-linear Adjustment by Artificial Neural Networks

127

should first identify the differences between the new project (features) and the

retrieved projects (features) and then convert these differences into the amount

of change in the cost value. In the literature, many adjustment techniques have

been proposed (section 2.3.5).

Table 5.1: Comparison of published adjustment mechanisms

Source Adjustment

function

Adjustment

feature

Categorical

feature

Learning

ability

Value of K

Walkerden

and Jeffery

(1999)

Linear Function

point (FP)

No No One

Mendes and

Mosley

(2003)

Linear Size related

features

No No Multiple

Jorgensen et

al. (2003)

Linear Function

point (FP)

No No Multiple

Chiu and

Huang

(2007)

Linear Size related

features

No Yes One

Li et al

(2007) and

Li and Ruhe

(2008)

Linear All relevant

features

Yes No Multiple

Table 5.1 characterizes each adjustment method from six aspects. The

first column contains the source of the adjustment. The second column is the

type of adjustment function (linear / non- linear). The third column describes

the features used in the adjustment function. The fourth column indicates

whether the categorical features are considered in the adjustment. The fifth

column shows whether the adjustment function can learn from the training

dataset to approximate a complex relationship. The last column presents the

Chapter V. Non-linear Adjustment by Artificial Neural Networks

128

number of nearest neighbors (one / multiple) used in the adjustment function.

The reasons for selecting these criteria are as follows. The function type

reflects the basic structure of the adjustment model. The adjustment feature,

categorical feature, and number of analogies together determine the inputs of

the adjustment model. The learning ability indicates whether the adjustment

mechanism has the flexibility to adapt to complex relationships.

We can tell from Table 5.1 that most works are restricted to the linear

functions without learning ability except the GA adjusted approach (Chiu and

Huang, 2007). In addition, most adjustments do not consider the categorical

features except the similarity adjusted function (Li et al. 2007, Li and Ruhe,

2007). To improve the adjustment mechanism, we propose a more flexible

non- linear adjustment mechanism with learning ability and incorporating

categorical features.

On the other hand, three relevant dataset characteristics are considered in

our study: non-normality, categorical feature, and dataset size. These

properties are likely to be relevant to the differences between the adjustment

models. Non-normality is a frequently mentioned characteristic a cross the

software engineering datasets (Pickard et al., 2001). Many existing studies

(Myrtveit and Stensrud, 1999, Shepperd and Kadoda, 2001, Mendes et al.,

2003) have considered the non-normality as an influential factor to the

accuracies of the models including analogy based methods. Generally, a

higher degree of non-normality leads to lower modeling accuracy. This

Chapter V. Non-linear Adjustment by Artificial Neural Networks

129

property appears to be relevant to the function type of the adjustment models

since the linear models usually work well under the normal condition and

non- linear models with adaptive abilities seem to produce better results under

non-normal conditions. Moreover, several applications of ANN in other

research areas show that ANN model or ANN based models are robust to the

non-normal datasets (Guh 2002, Chang and Ho 1999, Cannon 2007) and in

theory ANN is capable of approximating arbitrary relationships (Lawrence,

1994). Therefore, it is expected that ANN based adjustment might enhance

ABE model‟s robustness to non-normality.

Given the fact that categorical features frequently appear in software

engineering datasets (Sentas and Angelis, 2006, Liu and Mintram, 2005) and

they may enclose useful information which could distinguish the projects

(Angelis et al. 2000), many papers start to incorporate categorical features

into consideration (Angelis et al. 2000, Sentas et al. 2005, Li et al. 2007, Li

and Ruhe, 2008). However, most existing adjustment techniques do not

consider categorical features. NABE aims to incorporate categorical features

into the adjustment mechanism. Therefore, the appearance of categorical

features is regarded as one important data set property in our study.

The dataset size is also an influential factor of ABE methods. The ABE

system retrieves the similar cases from the historical dataset. The dataset with

more projects may provide larger searching space for ABE. If the data is not

very heterogeneous, it might lead to a higher chance for good prediction.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

130

Several papers (Auer et al. 2006, Shepperd and Kadoda 2001, Shepperd and

Schofield 1997) studied dataset size as one major factor on the accuracy of

analogy based method. In both Shepperd and Schofield‟s paper and Auer‟s

paper, the authors analyze the trends in estimation accuracy as the datasets

grow, while Shepperd and Kadoda‟s work confirms that ABE benefits from

having larger training sets. In addition, Shepperd and Kadoda also find that

ANN can achieve better results on larger training sets. Hence, the dataset size

characteristic has some connections with the learning ability of both ANN and

ABE.

As discussed above, dataset characteristics have large impacts on the

estimation results and therefore it is more meaningful to identify which is the

preferable estimation method in a particular context rather than to search for

the „best‟ prediction system for all cases. In the following sections, a detailed

description of the non- linear adjusted analogy based estimation (NABE) is

presented.

5.2.2 Artificial Neural Networks

First of all, the non- linear component of NABE - ANN is briefly

introduced. Artificial neural network (ANN) is one type of machine learning

technique that has played an important role in approximating complex

relationships. Due to its excellent learning ability, ANN has been widely

accepted for software cost estimation research.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

131

In ANN architecture, there are typically three layers: the input layer, the

hidden layers, and the output layer. All the layers are composed of neurons.

The connections between neurons across layers represent the transmission of

information between neurons. ANN has the following mathematical form:

  


))(()(
11

I

i

jiij

J

j

j xfvfwyy x (5.2)

where x is an I-dimensional vector with {x1, x2, …, xI} as its elements,)(f

is the user defined transfer function,  is a random error with 0 as its mean

value, J is the total number of hidden neurons, v ij is the weight on the

connection between the ith input neuron and the jth hidden neuron, j is the

bias of the jth hidden neuron, wj is the weight on the connection between the

jth hidden neuron and the output neuron, and  is the bias of the output

neuron. The weights and biases are determined by the training procedure

minimizing the training error. The commonly used training error function

Mean Square Error (MSE) is presented as follows:





S

s

ss yt
S

E
1

2)(
1

 (5.3)

where
sy is the output of the network when the sth sample is the ANN input,

and
st is the sth training target. The classical Back Propagation (BP)

Chapter V. Non-linear Adjustment by Artificial Neural Networks

132

algorithm is often used to update the weights and biases to minimize the

training error.

As shown by formula (5.2), ANN has three user-defined parameters: the

number of hidden layers, the number of hidden nodes and the type of transfer

function. These parameters have major impacts on ANN‟s prediction

performance (Martin et al. 1997). Among these parameters, one hidden layer

is often recommended since multiple hidden layers may lead to an over

parameterized ANN structure. For the number of hidden nodes, too few

hidden nodes can hinder the network to approximate a desired function. On

the contrary, too many hidden nodes can lead to over- fitting. The tuning of

ANN parameters is given in section 5.3.2.

In our study, ANN is used as the adaptive non-linear adjustment

component in NABE system. The NABE method and its system procedure are

described in the following section.

5.2.3 Non-linear Adjusted Analogy Based System

From the explanations in section 5.2.1, the adjustment mechanism should

capture the „update‟ that transforms the solution from the retrieved projects

into the target solution. Based on the linear adjustment model proposed by

Chiu and Huang (2007), we extend the linear adjustment model to the

following additive form:

Chapter V. Non-linear Adjustment by Artificial Neural Networks

133

),(ˆ
/ kxowx fCC Ss (5.4)

where)(f is an arbitrary function approximating the update that is

necessary to change the retrieved solution into the target solution (in our study,

)(f is the ANN model), sx is the feature vector of project x, Sk is the feature

matrix of the K nearest neighbours and Cw/o is the cost value obtained from the

ABE without adjustment (or the retrieved solution).

The NABE system consists of two stages. In the first stage, the NABE

system obtains the retrieved (un-adjusted) solution and trains the non- linear

component – ANN. In the second stage the non-linear component is used to

produce the update and then the update is added up to the retrieved solution to

generate the final prediction.

Stage I - Training

The procedures of stage I are shown in fig 5.2. The jackknife approach

(Angelis and Stamelos, 2000) (also known as leave one out cross-validation) is

employed for the training of the non- linear adjustment (ANN). For each

project in the training dataset, the following steps are performed:

Step 1: the ith project is extracted from the training dataset as the new

project being estimated, and the remaining projects are treated as the historical

projects in the ABE system.

Step 2: the ABE system finds the K nearest neighbors from the historical

projects by the similarity measure. In this study, the Euclidean distance is used

to construct the similarity function Sim(i, j):

Chapter V. Non-linear Adjustment by Artificial Neural Networks

134





























 



jqiqjqiq

jqiqjqiq

jqiqjqiq

Q

q

jqiq

ssandlcategoricaaresandsif

ssandlcategoricaaresandsif

numericaresandsifss

Dist

ssDistjiSim

,0

,1

)(

0001.0),(1),(

2

1



(5.5)

where i represents the project being estimated, j denotes one historical project,

iqs is the qth feature value of project i, jqs denotes the qth feature value of

project j, Q is the total number of features in each project and  = 0.0001 is a

small constant to prevent the situation that 0),(
1




Q

q

jqiq ssDist . In our

similarity function, we use un-weighted Euclidean distance to eliminate the

impacts of different feature weights.

After obtaining the K nearest neighbors, the retrieved solution (cost value)

to the ith project is generated. For the sake of simplicity, the un-weighted

mean (Shepperd and Schofield, 1997) is used as the retrieved solution in this

study.

Step 3: after obtaining the retrieved solution, the inputs and the training

target are prepared to train the ANN model in (5.6). The inputs of ANN are

the residuals between the features of project i and the features of its K nearest

neighbors. The training target of ANN is the residual between the ith project‟s

real cost value and the retrieved solution from its K nearest neighbors:

  
 

))((
1 111

K

k

Q

q

jkqiqkqj

J

j

j

K

k

k

i ssfvfw
K

C
C (5.6)

Chapter V. Non-linear Adjustment by Artificial Neural Networks

135

The left hand side of (5.6) is the training target: the difference between the

real cost of project i and the retrieved solution of project i. The right hand side

of (5.6) is the ANN model with siq as the qth feature of project i, skq as the qth

feature of its kth analogy (if siq and skq are categorical features, then siq - skq = 1

when siq = skq, and siq - skq = 0 when siq  skq), with wj, vkqj, j and  as

ANN weights and biases, with)(f as the transfer function, with J as the

number of hidden neurons, with K as the total number of analogies, and with

Q as the total number of features in each project. For example, if the ith

project‟s real cost is 40 and the retrieved solution is 21, then the targeting

output of ANN is 40 - 21 = 19.

Step 4: given the inputs and the targeting output, the Back Propagation

(BP) algorithm is performed to update the parameters in (5.2) to minimize the

training error MSE in (5.3).

After repeating the above procedure to all the projects in the training

dataset, the training stage is completed and the system moves to the testing

stage.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

136

 * AK means the K
th

 nearest neighbor of project i.

 Similarity function

Project i ’s cost

Project i for

Training

Training

Projects

ANN model

Input group 1

Q inputs

Retrieved solution

Extract project

Reduced

Project base

Project i ’s Q features

A1‟s Q features

A2‟s cost

AK‟s cost

A2‟s Q features

*AK‟s Q features

A1‟s cost

Input group K

Q inputs

Learn ing

target

Input group 2

Q inputs

Retrieved

nearest

neighbors

…

…

…

Figure 5.2: Train ing stage of the ANN adjusted ABE system with K nearest neighbors

Chapter V. Non-linear Adjustment by Artificial Neural Networks

137

Stage II - Predicting

The predicting stage is illustrated in fig 5.3. At this stage, a new project x

is presented to the trained NABE system. Then, a set of K nearest neighbors

are retrieved from the training dataset by applying (5.5) to calculate the

similarities. After obtaining the K nearest neighbors, the retrieved solution

function is used to generate the un-adjusted prediction, and the differences

between features of project x and its K nearest neighbors are inputted into the

trained ANN model to generate the adjustment. Finally, the ABE prediction

and the ANN adjustment are summed up as the final prediction:

  
 

))(()(ˆ
1 111

K

k

Q

q

jkqxqkqj

J

j

j

K

k

k ssfvfw
K

C
xy (5.7)

Chapter V. Non-linear Adjustment by Artificial Neural Networks

138

* AK means the K
th

 nearest neighbor of project x.

 Similarity function

Predicted

cost of x

Project x for

predicting
 Training

Projects

ANN model

Input group 1

Q inputs

Retrieved solution

Project x’s Q features
A1‟s Q features

A2‟s cost

AK‟s cost

A2‟s Q features

*AK‟s Q features

A1‟s cost

Input group K

Q inputs

Learn ing

target

Input group 2

Q inputs

Retrieved

nearest

neighbors

…

…

…

Figure 5.3: Predicting stage of the ANN ad justed ABE system with K nearest neighbors

Chapter V. Non-linear Adjustment by Artificial Neural Networks

139

5.3 Experiment Design

The data sets and experiments design are presented in this section.

5.3.1 Datasets

Four well known real world datasets are chosen for experiments. The

Albrecht dataset is a popular dataset used by many recent studies (Shepperd

and Schofield 1997, Heiat 2002, Auer et al. 2006). This dataset includes 24

projects developed by third generation languages. Eighteen out of 24 projects

were written in COBOL, four were written in PL1, and two were written in

DMS languages. There are five independent features: „Inpcout‟, „Outcount‟,

„Quecount‟, „Filcount‟, and „SLOC‟. The two dependent features are „Fp‟ and

„Effort‟. The „Effort‟ which is recorded in 1000 person hours is the targeting

feature of cost estimation. The detailed descriptions of the features are shown

in table B.1 in appendix. The descriptive statistics is presented in table B.2 in

appendix. Among these statistics, the „Skewness‟ and „Kurtosis‟ are used to

quantify the degree of non-normality of the features (Kendall and Stuart,

1976). It is noted that Albrecht is a relatively small dataset with high order

non-normality compared to the other three datasets.

The Desharnais dataset was collected by Desharnais (1989). Despite the

fact that the Desharnais dataset is relatively old, it is one of the large and

publicly available datasets. Therefore it still has been employed by many

recent research works, such as Mair et al. (2000), Burgess and Lefley, (2001),

Chapter V. Non-linear Adjustment by Artificial Neural Networks

140

and Auer et al. (2006). This data set includes 81 projects (with 9 features)

from one Canadian software company. Four of 81 projects contain missing

values, so they have been excluded from further investigation. The 8

independent features are „TeamExp‟, „ManagerExp‟, „Length‟, „Language‟,

„Transactions‟, „Entities‟, „Envergure‟, and „PointsAdjust‟. The dependent

feature „Effort‟ is recorded in 1000 h. The definitions of the features are

provided in table B.3 in appendix. The descriptive statistics of all features are

presented in table B.4 in appendix. It is shown that Desharnais is a larger

dataset with relatively lower order non-normality compared with Albrecht

dataset.

The Maxwell dataset (Maxwell, 2002) is a relatively new dataset and has

already been used by some recent research works (Sentas et al., 2005, Li et al.

2008b). This dataset contains 62 projects (with 26 features) from one of the

biggest commercial banks in Finland. In this dataset, four out of 26 features

are numerical and the remaining features are categorical. The categorical

features can be further divided into ordinal features and nominal features, and

they have to be distinguished. When calculating the similarity measure, the

ordinal features are treated as „numerical features‟ since they are sensitive to

the order while the nominal features are regarded as „categorical‟.

In Maxwell dataset, the numerical features are „Time‟, „Duration‟, „Size‟

and „Effort‟. The categorical features are „Nlan‟, „T01‟-„T15‟, „App‟, „Har‟,

„Dba‟, „Ifc‟, „Source‟ and „Telonuse‟. The ordinal features are „Nlan‟, and

Chapter V. Non-linear Adjustment by Artificial Neural Networks

141

„T01‟-„T15‟. The nominal features are „App‟, „Har‟, „Dba‟, „Ifc‟, „Source‟ and

„Telonuse‟. The definitions of all the features are presented in table B.5 in

appendix. The descriptive statistics of all features are provided in table B.6 in

appendix. It is shown that Maxwell is a relatively large dataset with relatively

lower order non-normality and larger proportion of categorical features

compared with Albrecht set and Desharnais set.

The ISBSG (International Software Benchmarking Standards Group) has

developed and refined its data collection standard over a ten-year period based

on the metrics that have proven to be very useful to improve software

development processes. To the date of this study, the latest data release of this

organization is the ISBSG R10 data repository (ISBSG 2007a) which contains

a total of 4106 projects (with 105 features) coming from 22 countries and

various organizations such as banking, communications, insurance, business

services, government and manufacturing.

Due to the heterogeneous nature and the huge size of the entire repository,

ISBSG recommends extracting out a suitable subset for any cost estimation

practice (ISBSG, 2007b). At the first step, only the relevant features

characterizing projects should be considered to create the subset. Thus, we

select out 14 important features (including project effort) suggested by ISBSG

(ISBSG 2007b): „DevType‟, „OrgType‟, „BusType‟, „AppType‟, „DevPlat‟,

„PriProLan‟, „DevTech‟, „ProjectSize‟ (consisting of six sub features:

„InpCont‟, „OutCont‟, „EnqCont‟, „FileCont‟, „IntCont‟, and „AFP‟), and

Chapter V. Non-linear Adjustment by Artificial Neural Networks

142

„NorEffort‟. The projects with missing values in any of the selected features

are excluded from the subset. Then, a further step is taken to refine the subset.

In ISBSG dataset, project data quality is rated and only projects with A or B

rating are used in published research works. Therefore the projects with the

ratings other than A and B are excluded from the subset. Moreover, since the

normalized effort („NorEffort‟) is used as the target for estimation, the risk of

using normalized effort should be noted. For projects covering less than a full

development life cycle, normalized effort is an estimate of the full

development effort and this may introduce biasness. Hence the normalized

ratio (normalized effort / summary effort) is used to refine the project subset.

As suggested by ISBSG that a ratio of up to 1.2 is acceptable (ISBSG, 2007b),

we filter out the projects with normalized ration larger than 1.2. Finally, the

subset is further reduced to the projects with „Banking‟ as „OrgType‟. All the

above procedures results in a subset with 118 projects.

The definitions of the project features are presented in table B.7. The

descriptive statistics of all features are summarized in table B.8. It is shown

that the ISBSG subset is the largest dataset with high order non-normality and

large proportion of categorical features compared with the datasets introduced

above.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

143

5.3.2 Experiment Design

Prior to the experiment setup, all types of features are normalized into [0,

1] by dividing each feature value by that feature range, similar to ANGEL

(Shepperd and Schofield 1997). The three-fold cross-validation is used to

assess the accuracies of the methods, similar to Jeffery et al. (2001), and

Mendes et al. (2003).

Experiments procedures

After determining the cross-validation scheme, the following procedures

are performed to validate the proposed NABE system with comparisons

against other methods on each dataset.

1. The performances of NABE are analyzed on both training set and testing

set by varying K values from 1 to 5 while keeping the similarity measure

as the formula in (5.5) and the retrieved solution function as the

„un-weighted mean‟. The reason for changing K values is that K is an

important parameter which determines the number of inputs to the

non- linear adjustment. The similarity measure and retrieved solution

function are fixed because the focus of this study is on non-linear

adjustment and these two parameters may not have direct impacts to the

non- linear adjustment.

2. The optimal K value of the training practice (K minimizes the MMRE on

training set) is selected to configure NABE for comparisons. Similarly,

Chapter V. Non-linear Adjustment by Artificial Neural Networks

144

the best variants of other methods on the training sets are also obtained.

The training and testing results are summarized and analyzed.

3. The Wilcoxon signed-rank tests ( = 0.05) are performed to

quantitatively identify the significance of difference of each pair-wised

methods on testing sets.

Methods specifications

Many cost estimation techniques are included for comparisons. They are:

the standard ABE (Shepperd and Schofield 1997), the Linear size adjusted

ABE (LABE) (Walkerden and Jeffery 1999), Regression toward the mean

adjusted ABE (RABE) (Jorgensen et al. 2003), GA optimized linear adjusted

ABE (GABE) (Chiu and Huang 2007), Similarity adjusted ABE (SABE) (Li

and Ruhe, 2007), and other popular cost estimation methods including the

Classification and Regression Trees (CART) (Stensrud, 2001), the Artificial

Neural Network (ANN) (Mair et al. 2000) and Stepwise Regression (SWR)

(Mendes et al. 2003).

To eliminate the impacts from different parameters, all types of ABE

methods are implemented with fixed similarity measure (Euclidean) and

retrieved solution (un-weighted mean). The only changeable parameter K

varies from 1 to 5. It is noted that, in SABE method the un-weighted similarity

function is applied since the feature weighting is not included in this study.

For ANN, there are generally three parameters: the number of hidden

Chapter V. Non-linear Adjustment by Artificial Neural Networks

145

nodes, the number of hidden layers and the types of hidden transfer functions.

In our study, only one hidden layer is considered in order to avoid the

over-parameterized ANN structure. The number of hidden nodes is chosen

from the set {1, 3, 5, 7, 10} and the type of hidden transfer function is chosen

from the set {Linear, Tan-Sigmoid, Log-Sigmoid}. Every combination of

hidden node and hidden transfer function is evaluated on the training data. The

optimal combination (minimizing MMRE) is used for testing and

comparisons.

The CART (Brieman et al. 1984) is a non-parametric and tree structured

analysis procedure that can be used for classification and regression. When the

tree structure is applied for numerical targets they are often called regression

trees. CART has the following advantages: the capability of dealing with

categorical features, the easily understandable diagram of complex data and

the ability to identify the major subsets in the total dataset (Srinivasan and

Fisher 1995). The construction of the CART involves recursively splitting the

data set into (usually two) relatively homogeneous subsets until the terminate

conditions are satisfied. The best tree is obtained by applying cross-validation

on the training set using a spread minimization criterion. The best tree model

is used in testing and comparisons.

For the stepwise regression method (SWR), the optimal regression model

is determined from the forward stepwise procedure on the training dataset.

Then the optimal linear equation is used in testing and comparisons. When the

Chapter V. Non-linear Adjustment by Artificial Neural Networks

146

categorical features appear in the dataset, the optimal scaling (or CATREG)

technique by Angelis et al. (2001) is utilized to build the regression model

based on both numerical and categorical features.

Finally, the random model (RAND) is also included in the comparisons as

the control group to produce the estimation by randomly selecting any

project‟s cost value from the dataset (training set or testing set).

All the methods are implemented via MATLAB code. The ANN

component in the NABE system and the ANN method in comparisons are

trained by BP algorithm. The mean squared error is used to determine how

well the network is trained. The training stops when the MSE drops below the

specified threshold = 0.01 in this study.

5.4 Results

In this section, the experimental results on four real world datasets are

summarized and analyzed.

5.4.1 Results on Albrecht Dataset

Table 5.2 summarizes the three-fold cross validation results of NABE

with different K values. It is observed that the setting K = 4 minimizes the

training MMRE. Thus, the NABE system with K = 4 is chosen for the

comparisons with other methods. In order to provide more insight on the

magnitude of adjustment generated by ANN, the ratio of (absolute adjustment

Chapter V. Non-linear Adjustment by Artificial Neural Networks

147

/ non-adjusted cost value) is calculated across the testing sets. The mean value

of these ratio values is 0.41 by the NABE system with K = 4.

Table 5.2: Results of NABE on Albrecht dataset

K value
Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K = 1 0.84 0.13 0.64 0.70 0.50 0.28

K = 2 0.87 0.33 0.40 0.48 0.38 0.41

K = 3 0.89 0.46 0.28 0.59 0.46 0.29

K = 4 0.82 0.29 0.31 0.41 0.36 0.25

K = 5 0.93 0.42 0.29 1.01 0.33 0.39

Table 5.3 collects the training and testing results of the best variants of all

cost estimation models. The configurations for ABE based methods are K = 2

for ABE, K= 3 for RABE, K = 1 for LABE, K = 2 for GABE and K = 1 for

SABE. The testing results in table 5.3 show that the NABE achieves the best

values in MMRE, PRED(0.25) and MdMRE. Among other types of ABEs,

LABE obtains the smallest MMRE, ABE achieves the maximum PRED(0.25),

and RABE has the minimal MdMRE. In addition, it is noted that all methods

have better performances than the random model. Another interesting

observation is that some testing results are better than the training results.

Some published cost estimation works (such as Chiu and Huang (2007) and

Huang and Chiu (2006)) also reported similar patterns. This may be due to the

fact that the machine learning techniques are data driven methods and they

learn from examples without any knowledge of the model type. If the testing

Chapter V. Non-linear Adjustment by Artificial Neural Networks

148

data happens to fit well to the model constructed on training data, then it is

possible to have better testing results than training results.

Table 5.3: Accuracy comparison on Albrecht dataset

Methods
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.82 0.41 0.29 0.36 0.31 0.25

RABE 0.85 0.66 0.37 0.21 0.36 0.45

LABE 0.81 0.61 0.29 0.21 0.39 0.53

GABE 0.92 0.77 0.40 0.33 0.45 0.48

SABE 0.84 0.81 0.33 0.25 0.41 0.46

ABE 0.93 0.87 0.29 0.33 0.46 0.43

ANN 0.97 0.85 0.46 0.33 0.30 0.39

CART 3.36 1.44 0.13 0.17 0.93 0.66

SWR 1.19 0.94 0.25 0.17 0.81 0.55

RAND 4.47 1.71 0.17 0.13 0.74 0.72

To further analyze the testing performances, we draw out the box plots of

absolute residuals, because absolute residuals are less sensitive to bias than the

asymmetric MRE values (Stensrud et al. 2003). The plots in fig 5.4 show that

NABE has a lower median, a shorter inter-quartile range, and fewer outliers

than other methods. It is also observed that the distributions of absolute

residuals are heavily skewed. This implies that the standard t-test is no longer

valid for significance testing. Thus, the assumption-free Wilcoxon signed-rank

tests are performed instead.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

149

Figure 5.4: Boxplots of absolute residuals on Albrecht dataset

Table 5.4 summarizes the p-values of Wilcoxon tests of NABE versus

other methods. Four paired comparisons have p-values smaller than 0.05.

They are NABE v.s. RABE, NABE v.s. GABE, NABE v.s. CART, and NABE

v.s. SWR. In addition, the improvements of NABE to other methods in terms

of MMRE values are presented in Table 5.4. Four of the MMRE

improvements are larger than 30% and the largest improvement is 60% on

CART. The smallest improvement is 6% on LABE.

Table 5.4: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages

 RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.02 0.19 0.04 0.08 0.08 0.12 0.00 0.00

Improvement on

MMRE (%)

13 6 26 29 34 32 60 39

Chapter V. Non-linear Adjustment by Artificial Neural Networks

150

5.4.2 Results on Desharnais Dataset

In this section, we present the results on Desharnais dataset in a way that

is similar to the analysis on Albrecht dataset. Table 5.5 illustrates the training

errors and testing errors of NABE with respect to different K values. The

setting K = 2 achieves the minimal training MMRE, and thus NABE with K =

2 is chosen for comparisons with other methods. The average of the ra tios of

(absolute adjustment / non-adjusted prediction) is 0.03 on the testing sets.

Table 5.5: Results of NABE on Desharnais dataset

K value
Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K = 1 0.41 0.44 0.28 0.66 0.34 0.45

K = 2 0.39 0.40 0.35 0.52 0.36 0.32

K = 3 0.51 0.36 0.36 0.73 0.27 0.49

K = 4 0.52 0.30 0.42 0.64 0.21 0.50

K = 5 0.42 0.38 0.33 0.69 0.23 0.46

Table 5.6 summarizes the training and testing errors of the best variants of

all cost estimation models. The optimal parameters for ABE based methods

other than NABE are: ABE with K = 1, RABE with K= 1, LABE with K = 1,

GABE with K = 2 and SABE with K = 4. The testing results show that NABE

achieves smallest MMRE and MdMRE, and second largest PRED(0.25).

Among other types of ABEs, GABE obtains the smallest MMRE, RABE

achieves the largest PRED(0.25) and the minimal MdMRE. It is also observed

that the differences between NABE and other methods are not as apparent as

those on Albrecht dataset. This observation may be attributed to the

Chapter V. Non-linear Adjustment by Artificial Neural Networks

151

characteristic of Desharnais dataset: moderate non-normality. It implies that all

methods tend to perform equally good when the data set is close to normal

distribution. As to the control group, all other methods have better predictions

than the random model.

Table 5.6: Accuracy comparisons on Desharnais dataset

Methods
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.39 0.52 0.40 0.36 0.35 0.32

RABE 0.68 0.68 0.38 0.39 0.34 0.34

LABE 0.75 0.62 0.29 0.29 0.41 0.51

GABE 0.72 0.55 0.28 0.32 0.38 0.43

SABE 0.76 0.65 0.31 0.36 0.41 0.41

ABE 0.38 0.60 0.44 0.34 0.29 0.42

ANN 0.89 0.67 0.29 0.31 0.47 0.38

CART 0.58 0.71 0.31 0.25 0.41 0.44

SWR 0.67 0.73 0.35 0.35 0.39 0.34

RAND 1.81 1.14 0.12 0.18 0.67 0.60

For further analysis, the box plots of absolute residuals on testing datasets

are presented in fig 5.5. The plots in fig 5.5 show that NABE‟s median is close

to those of RABE, GABE, ANN and SWR, NABE has the shortest

inter-quartile range, and NABE gets five outliers while SABE and CART have

fewer ones though their outliers are more extreme. The distributions of

absolute residuals are skewed and therefore Wilcoxon tests are used to

quantitatively investigate the differences between NABE and other methods.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

152

Figure 5.5: Boxplots of absolute residuals on Desharnais dataset

In table 5.7, the p-values from the Wilcoxon tests are presented together

with the improvements on MMRE. Six out of eight p-values are larger than

0.05, and the remaining two p-values are NABE vs. LABE = 0.02 and NABE

vs. CART = 0.03. All the MMRE improvements are not larger than 30%. The

largest improvement is 30% on SWR while the smallest improvement is 7%

on GABE. These observations confirm the previous observation that on

Desharnais dataset, NABE does not perform significantly better than most

methods.

Table 5.7: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages

 RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.28 0.02 0.23 0.20 0.23 0.25 0.03 0.22

Improvement on

MMRE (%)

24 17 7 20 14 23 27 30

Chapter V. Non-linear Adjustment by Artificial Neural Networks

153

5.4.3 Results on Maxwell Dataset

This section presents the results and comparisons on Maxwell dataset.

Table 5.8 presents the three-fold cross validation results of NABE with

different K values. The best setting K = 3 which minimizes the training

MMRE is chosen for comparisons with other methods. The mean of the ratios

of (absolute adjustment / non-adjusted prediction) is 0.37 on the testing sets.

Table 5.8: Results of NABE on Maxwell dataset

K value
Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K = 1 0.91 0.23 0.61 1.21 0.16 0.57

K = 2 0.87 0.27 0.61 1.22 0.21 0.58

K = 3 0.80 0.23 0.51 0.80 0.35 0.45

K = 4 0.89 0.21 0.54 0.77 0.19 0.49

K = 5 0.89 0.24 0.56 0.93 0.19 0.56

Table 5.9 presents the training and testing accuracies of different cost

estimation models. The results from best variants of a ll methods are collected

in this table. The configurations for ABE based methods are: ABE with K = 3,

RABE with K = 3, LABE with K = 2, GABE with K = 3 and SABE with K = 4.

The results show that NABE achieves the best testing MMRE, PRED(0.25)

and MdMRE. Among other types of ABEs, SABE obtains the smallest MMRE,

LABE achieves the largest PRED(0.25), and SABE has the minimal MdMRE.

As to the control group, all other methods seem to be better than the random

model.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

154

Table 5.9: Accuracy comparisons on Maxwell dataset

Methods
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.80 0.80 0.23 0.35 0.51 0.45

RABE 0.78 0.88 0.23 0.16 0.57 0.62

LABE 0.74 1.08 0.24 0.31 0.44 0.63

GABE 0.92 0.98 0.21 0.26 0.45 0.52

SABE 0.94 0.85 0.15 0.23 0.60 0.50

ABE 0.92 1.04 0.23 0.21 0.63 0.62

ANN 1.19 1.32 0.34 0.13 0.52 0.62

CART 1.60 1.52 0.23 0.26 0.61 0.65

SWR 1.53 1.09 0.18 0.23 0.65 0.76

RAND 2.49 1.70 0.16 0.05 0.66 0.81

To further analyze the testing results, we draw out the box plots of

absolute residuals. The plots in Fig 5.6 show that NABE has a median close to

those of GABE and SABE; NABE has an inter-quartile range close to those of

GABE, SABE and CART; NABE gets five outliers while RABE, GABE, ABE,

ANN and SWR have fewer outliers though some of their outliers are more

extreme. The distributions of absolute residuals suggest using the Wilcoxon

tests to identify the differences between NABE and other methods.

Table 5.10 summarizes the p-values of Wilcoxon tests and the

improvements on MMRE values. Four out of eight p-values are smaller than

0.05. Two of the MMRE improvements are larger than 30%. The largest

improvement is 48% on CART and the smallest improvement is 7% on GABE.

These observations confirm the finding that NABE performs significantly

better than other methods except SABE and GABE, on Maxwell dataset.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

155

Figure 5.6: Boxplots of absolute residuals on Maxwell dataset

Table 5.10: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages

 RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.09 0.02 0.14 0.15 0.06 0.00 0.02 0.02

Improvement on

MMRE (%)

11.00 27.00 7.00 20.00 24.00 40.00 48.00 28.00

5.4.4 Results on ISBSG Dataset

In this section, we present the results and comparisons on ISBSG dataset.

Table 5.11 illustrates the training and testing errors of NABE with different K

values. The setting K = 2 achieves the minimal training MMRE and therefore

NABE with K = 2 is chosen for comparisons with other methods. The mean

value of the ratios of (absolute adjustment / non-adjusted prediction) is 0.43 on

the testing sets, which is close to that of Albrecht data set and Maxwell data

Chapter V. Non-linear Adjustment by Artificial Neural Networks

156

set. Table 5.12 summarizes the comparisons among the best variants of

different cost estimation models. The optimal parameters for ABE based

methods are: ABE with K = 3, RABE with K = 3, LABE with K = 1, GABE

with K = 3 and SABE with K = 5. The results show that the NABE achieves

the best testing MMRE, PRED(0.25), and MdMRE. Among other types of

ABEs, SABE obtains the smallest MMRE, RABE achieves the largest

PRED(0.25) and the minimal MdMRE. As to the control group, all methods

appear to be better than the random model.

Table 5.11: Results of NABE on ISBSG dataset

K value
Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K = 1 0.98 0.25 0.60 0.87 0.26 0.55

K = 2 0.89 0.33 0.46 0.74 0.31 0.42

K = 3 0.97 0.26 0.53 0.89 0.22 0.49

K = 4 1.00 0.15 0.63 0.95 0.22 0.58

K = 5 1.10 0.10 0.69 1.03 0.23 0.61

Table 5.12: Accuracy comparisons on ISBSG dataset

Methods
MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.89 0.74 0.33 0.30 0.46 0.42

RABE 1.16 1.36 0.28 0.28 0.51 0.54

LABE 1.19 1.13 0.29 0.17 0.53 0.58

GABE 1.13 1.09 0.25 0.21 0.54 0.60

SABE 0.91 0.85 0.23 0.18 0.51 0.58

ABE 0.97 0.98 0.16 0.22 0.63 0.59

ANN 0.82 0.96 0.27 0.25 0.49 0.60

CART 1.26 1.07 0.19 0.18 0.73 0.61

SWR 0.77 0.82 0.29 0.19 0.54 0.60

RAND 2.17 2.29 0.13 0.09 0.73 0.70

Chapter V. Non-linear Adjustment by Artificial Neural Networks

157

The box plots of absolute residuals on testing sets are provided for further

analysis. The plots in fig 5.7 show that NABE achieves a lower median, the

shorter inter-quartile range than other methods. Another observation is that all

methods are prone to extreme outliers. This may be attributed to the fact that

ISBSG dataset was collected inter-organizationally and internationally. Due to

the diverse sources of data, even two similar projects might have significantly

different amounts of cost. In the next step, Wilcoxon tests are used to assess

the differences between NABE and other methods.

Figure 5.7: Boxplots of absolute residuals on ISBSG dataset

In table 5.13, the p-values from the Wilcoxon tests are presented together

with the improvements on MMRE. In this table, all p-values are not larger

than 0.05. As for the MMRE improvement, four MMRE improvements are

Chapter V. Non-linear Adjustment by Artificial Neural Networks

158

larger than 30%. The largest improvement is 48% on RABE while the

smallest improvement is 14% on SWR.

Table 5.13: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in

percentages

 RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.02 0.05 0.04 0.05 0.02 0.02 0.01 0.02

Improvement

on MMRE (%)

48 31 35 17 29 27 34 14

5.5 Analysis on Dataset Characteristics

In section 5.4, results and comparisons are presented on each real dataset

individually. However, the results vary significantly from one dataset to

another. For instance, NABE is statistically better than RABE on ISBSG

dataset (p = 0.02) but their performances are similar to each other

statistically on Desharnais dataset (p = 0.28). This is probably due to the fact

that model accuracies are not only affected by the parameters selections but

also affected by other factors such as the dataset characteristics (Shepperd and

Kadoda, 2001). In this section, we conduct a systematic investigation in order

to explore the relationship between model accuracy and the dataset

characteristics, and identify under which conditions NABE is the preferred

prediction system and under what conditions other methods can also be

recommended.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

159

Table 5.14 summarizes a set of characteristics of the real world datasets.

The columns in this table list the dataset name, the number of projects, the

total number of features, the number of categorical features, and the average

value of absolute skewness and the average of kurtosis of each feature. The

skewness and kurtosis values together reflect the degree of non-normality of

the dataset.

Table 5.14: Characteristics of the four real world datasets

Dataset Number

of

Projects

Number

of

Features

Number of

Categorical

Features

Avg.

Skewness

Avg.

Kurtosis

Albrecht 24 7 0 2.03 7.27

Desharnais 77 9 1 1.18 5.03

Maxwell 62 26 6 0.97 5.42

ISBSG 118 14 7 1.67 7.42

This table provides some insights to each dataset. It is shown that

software datasets often exhibits a mixture of several characteristics such as

skewness and excessive outliers (kurtosis). These characteristics do not

always appear in the same degree. In some cases they are moderate such as

the Albrecht dataset, while in other cases they are severe such as the ISBSG

dataset. It is also noted that the data sets are largely contrasting to each other,

for example Albrecht dataset has a relatively small size and small proportion

of categorical features while Maxwell dataset is larger and has a large

proportion of categorical features. However, based on only the real world

datasets, there are still some difficulties for a systematic analysis. The real

Chapter V. Non-linear Adjustment by Artificial Neural Networks

160

dataset properties are uncontrollable and the real world datasets cannot cover

the full range of the combinations of the properties being studied.

Artificially generated dataset by simulation (Pickard et al. 1999, Shepperd

and Kadoda 2001) is a feasible solution to the above difficulties. This

approach generates artificial dataset from predefined distributions and

equations. The simulated dataset provides the researcher with more control

over the characteristics of a dataset. It especially enables the researcher to

vary one property at a time and thus allows a more systematic exploration of

the relationship between dataset characteristics and model accuracies. As a

simple but powerful tool for empirical evaluations, this technique has been

frequently implemented by several recently published studies (Myrtveit et al.

2005, Li et al. 2008a).

Besides the simulation approach, bootstrapping (Efron and Gong 1983) is

often used to produce artificial datasets to study the uncertainties in the

predictions (Angelis and Stamelos, 2000). Its principle is to generate several

new datasets with the same size as the original dataset by randomly sampling

original data with replacement. Each new dataset may have some items from

the original dataset appearing more than once while some not appearing at all.

However, bootstrapping is not considered for artificial dataset generation in

this study. The reason is that our study mainly emphasizes on varying dataset

properties to investigate the relationships between dataset properties and

model accuracies but bootstrapping only generates a series of datasets based

Chapter V. Non-linear Adjustment by Artificial Neural Networks

161

on original data and offers limited variability for changing the dataset

properties. Also, the simulation technique provides a more explicit control

over the dataset properties such as adjusting the distribution parameters to

vary the skewness and kurtosis of the variable distribution.

In section 5.5.1, we simulate 8 artificial datasets to match the 8 different

combinations of the 3 data characteristics. Due to the computa tional limits, we

only considered two levels for each characteristic: such as Large/Small for the

„Dataset size‟, Large/Small for the „Proportion of categorical features‟, and

Severe/Moderate for the „Non-normality‟.

5.5.1 Artificial Dataset Generation

In this section, we present the procedures of artificial datasets generation.

We extend Pickard‟s equation of artificial dataset generation in this work.

Other types of simulation techniques for artificial dataset generation are also

available in the literature. For more details, readers can refer to Shepperd and

Kadoda (2001), Foss at al. (2003), and Myrtveit et al. (2005).

Based on Pickard‟s method, we simulate the combinations of

characteristics from the equation (5.8):

eskxskxskxskxskxskxy  654321 1052361000 (5.8)

The independent variables are x1sk, x2sk, x3sk, x4sk, x5sk, and x6sk. Among

Chapter V. Non-linear Adjustment by Artificial Neural Networks

162

them, x1sk, x2sk, and x3sk are continuous variables, and x6sk is a categorical

variable. The first variable x1sk is treated as the feature „function point‟ for the

linear adjustment methods. The last term e in (5.8) is the normally distributed

noise with mean 0 and variance 1. To simulate different proportions of

categorical features (Large/Small), x4sk and x5sk are defined as categorical

variables for the situation of large proportion (50%) while x4sk and x5sk are set

to be continuous to represent the situation of small proportion of categorical

features (16.7%).

The non-normality is represented by skewness and outliers (kurtosis). For

the continuous variables, the skewnesses are generated by five independent

Gamma distributed random variables x1‟, x2‟, x3‟, x4‟, and x5‟with scale

parameter θ = 2 and shape parameter k = 3 representing moderate skewness,

and θ = 2 and k = 1 for the severe skewness. For the categorical variables, the

moderate skewnesses are simulated by the independent discrete random

variables x4‟, x5‟, and x6‟ with the distribution {P(X = 1) = 0.1; P(X = 2) = 0.1,

P(X = 3) = 0.5, P(X = 4) = 0.2, P(X = 5) = 0.1} and the severe skewnesses are

simulated by the distribution {P(X = 1) = 0.7; P(X = 2) = 0.1, P(X = 3) = 0.1,

P(X = 4) = 0, P(X = 5) = 0.1}. To vary the scale of the independent variable,

we then multiply x1‟ by 10 to create variable x1sk, x2‟ by 3 to create the

variable x2sk, x3‟ by 20 to create the variable x3sk, x4‟ by 5 to create the

variable x4sk, x5‟ by 2 to create the variable x5sk, and x6‟ by 1 to create the

variable x6sk. The outliers are generated by multiplying or dividing the

Chapter V. Non-linear Adjustment by Artificial Neural Networks

163

dependent variable y by a constant. We select 1% of the data points to be the

outliers. Half of the outliers are obtained by multiplying while half of them are

obtained by dividing. For the moderate outliers, we set the constant value as 2,

while for the severe outliers, 6 is chosen to be the constant.

For dataset sizes, we generate 400 projects to form the large sized dataset

and 40 projects to construct the small sized dataset. Table 5.15 summarizes the

properties of the 8 artificial datasets.

Table 5.15: Art ificial datasets and properties

Dataset

ID

Size (number

of projects)

Number of

Categorical

features

(proportion)

Degree of Non-normality

(Avg. skewness, Avg

kurtosis)

#1 Small (40) Small (16.7%) Moderate (0.75, 3.10)

#2 Small (40) Small (16.7%) Severe (2.32, 9.87)

#3 Small (40) Large (50%) Moderate (0.61, 3.37)

#4 Small (40) Large (50%) Severe (2.84, 9.71)

#5 Large (400) Small (16.7%) Moderate (0.93, 3.72)

#6 Large (400) Small (16.7%) Severe (3.21, 13.9)

#7 Large (400) Large (50%) Moderate (0.82, 3.63)

#8 Large (400) Large (50%) Severe (3.32, 10.09)

5.5.2 Comparisons on Modeling Accuracies

The experimental procedures presented in section 5.3 are applied on all

artificial datasets. The comparisons between NABE and other models are

presented first, since the relative performances of NABE to other methods

could provide more insights about how to choose an appropriate cost

estimation method under a certain condition. Table 5.16 summarizes the

Chapter V. Non-linear Adjustment by Artificial Neural Networks

164

results of Wilcoxon signed rank tests. These significance tests assess the

differences between the absolute residuals of NABE‟s predictions and the

absolute residuals of other methods‟ predictions. The confidence limit is set at

 = 0.05. In Table 5.16, the entry with „Y‟ indicates that NABE performs

significantly better than the method located in this entry‟s corresponding

column. The last column summarizes the total number of „Y‟s in each row

(dataset).

Table 5.16: Comparative performance of NABE to other methods

Dataset ID RABE LABE GABE SABE ABE ANN CART SWR Totals

#1 0

#2 Y Y 2

#3 Y Y Y 3

#4 Y Y Y Y Y Y Y Y 8

#5 Y Y 2

#6 Y Y 2

#7 Y Y Y Y 4

#8 Y Y Y Y Y Y Y Y 8

The results in table 5.16 show that NABE achieves better performance

than all other methods on datasets #4 and #8. Both have large proportions of

categorical features and severe non-normality. This observation suggests that

NABE might be the best choice among all methods in our study, when the

dataset is highly non-normal and with large proportion of categorical features.

This observation also confirms the findings on ISBSG dataset which has

similar properties to dataset #8. Another interesting observation is that NABE

obtains the equally good predictions as other methods on dataset #1 which has

small size, small number of categorical features and moderate non-normality.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

165

When Compared to the real world datasets, Dataset #1‟s properties are closest

to those of Desharnais set on which NABE also performs equally as other

methods except LABE and CART.

The analysis above clarifies the conditions under which NABE is

preferable to other methods. To further study the relationship between dataset

property and model accuracy, we analyze the model predictions under single

dataset characteristic.

5.5.3 Analysis on ‘Size’

Table 5.17 summarizes the testing MMREs of each cost estimation model

on the artificial datasets grouped under different „size‟. The results show that

NABE achieves the lowest MMREs on datasets #2, #4, #5, #6, #7, and #8. It is

also observed that the dataset size might largely influence the prediction

accuracies. More specifically, almost all the methods obtain smaller MMRE

values on larger datasets.

Table 5.17: Testing MMREs under different dataset size

Dataset Size NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17

#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44

#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68

#5 Large 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65

Chapter V. Non-linear Adjustment by Artificial Neural Networks

166

To further investigate the „size‟ property, we compare the absolute

residuals of predictions using the small datasets and the large datasets. The

difference is tested by using the Mann-Whitney U test setting the confidence

limit at  = 0.05, since the sample sizes are not equal (40 data points vs. 400

data points). The results are presented in Table 5.18. The entry with „Y‟ means

the difference between the datasets pair in its row is significant when using the

model in its column. Table 5.18 shows that a larger dataset size may

significantly reduce prediction error measured by absolute residuals. Most

approaches including NABE could benefit from having larger datasets.

However, SWR seems to be not influenced by the dataset size. This may be

attributed to the fact that SWR constructs the regression line from the data

with only a few critical data points. This finding also confirms the suggestion

from Shepperd and Kadoda (2001) that for the machine learning methods,

large dataset size could reduce the prediction errors when other properties are

fixed.

Table 5.18: Mann-Whitney U tests of dataset size influences

Datasets

pair

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #5 Y Y Y

#2 vs. #6 Y Y Y Y Y

#3 vs. #7 Y Y Y Y Y Y

#4 vs. #8 Y Y Y Y Y Y Y

Chapter V. Non-linear Adjustment by Artificial Neural Networks

167

5.5.4 Analysis on ‘Proportion of categorical features’

This section presents the analysis on the proportion of categorical features.

Table 5.19 is essentially a re-arrangement of the rows in table 5.17. In table

5.19, the artificial datasets are grouped under different „proportion of

categorical features‟. It is observed that large proportion of categorical features

may have negative impacts on the prediction accuracy. This finding is

reflective of the fact that categorical features may have less statistical power

compared with numerical features (Kirsopp et al. 2003).

Table 5.19: Testing MMREs under different proportions of categorical features

Dataset Proportion

of

categorical

features

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17

#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44

#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47

#3 Large 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65

Table 5.20 presents the results of Wilcoxon signed rank tests with

confidence level at  = 0.05 on the absolute residuals of predictions using the

datasets with smaller number of categorical features and the datasets with

larger number of categorical features.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

168

Table 5.20: Wilcoxon tests of proportion of categorical features influences

Datasets

pair

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #3 Y Y Y Y Y

#2 vs. #4 Y Y Y Y Y Y Y Y Y

#5 vs. #7 Y

#6 vs. #8 Y Y Y Y Y Y Y Y Y

In general, all methods are more or less affected by this property. Among

them, NABE, SABE and SWR are least sensitive to the categorical values.

The probable reason is that CATREG technique is adopted in SWR model,

and NABE and SABE both can make use of the categorical features in their

adjustment mechanism.

5.5.5 Analysis on ‘Degree of non-normality’

This section provides the analysis on degree of non-normality. Table 5.21

is also a re-arrangement of the rows in table 5.17. In table 5.21, the artificial

datasets are grouped under different „degree of non-normality‟. It is noted that

most methods obtain larger MMRE values under severe non-normal

conditions. This indicates a trend that the increase of non-normality may result

in a decrease of the prediction accuracy. However, NABE appeared to be least

sensitive to non-normality while SWR seems to be most sensitive to

non-normality. This observation supports our argument in section 5.2 that

ANN could enhance ABE‟s robustness to non-normal data.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

169

Table 5.21: Testing MMREs under different degrees of non-normality

Dataset Non-

normality

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Moderate 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17

#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15

#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12

#2 Severe 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65

Table 5.22 presents the results of Wilcoxon signed rank tests with

confidence level at  = 0.05 on the absolute residuals of predictions using

moderate non-normal datasets and severe non-normal datasets. The results

confirm the finding that NABE is least sensitive to non-normality while SWR

is most sensitive to the non-normal property. Table 5.22 also can partially

support Shepperd and Kadoda‟s (2001) argument that ABE is preferred to

SWR if the dataset contains large proportion of outliers.

Table 5.22: Wilcoxon tests of non-normality influences

Datasets

pair

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #2 Y Y

#3 vs. #4 Y Y Y Y Y Y Y Y

#5 vs. #6 Y

#7 vs. #8 Y Y Y Y Y Y Y Y

Chapter V. Non-linear Adjustment by Artificial Neural Networks

170

5.6 Discussions

To improve the adjustment mechanism, this chapter presents a flexible

non- linear adjustment mechanism with learning ability and incorporating

categorical features. The non- linearity adjusted Analogy Based Estimation

(NABE) is implemented by adding a non- linear component (Artificial Neural

Network) onto the retrieved solution of the ABE system. The proposed NABE

is validated on four real world datasets with the comparisons against the

published linear adjusted ABEs and three well established methods: CART,

ANN and SWR. The results and comparisons show that NABE generally

achieves best MMRE, PRED(0.25) and MdMRE values on the real world

datasets.

To answer the question: under what conditions NABE is preferred, we

generate eight artificial datasets to analyze the relationships between model

accuracies and dataset characteristics (non-normality, categorical feature, and

dataset size). The analyses show that NABE performs significantly better than

other methods on the artificial datasets with severe non-normality and large

proportion of categorical features.

In the domain of cost estimation, the lessons learnt via this study are as

follows:

 The non-linear based adjustment to ABE system is generally an effective

approach to extend ABE‟s flexibility on complex datasets and improve

the accuracy of ABE.

Chapter V. Non-linear Adjustment by Artificial Neural Networks

171

 NABE is likely to be a more accurate method than other types of ABE

methods on the dataset with high degree of non-normality and large

proportion of categorical features.

 On the dataset with a relatively small size, a relatively small proportion

of categorical features and a moderate non-normality, NABE may not be

an ideal option, since it is likely to have equal accuracy to other ABE

methods and it has a more complex structure than other ABE methods.

 There are strong relationships between the successes of NABE and

dataset properties (non-normality, categorical feature, and dataset size).

Thus, the practitioners should be aware of the tradeoffs among datasets

properties, model complexity and model accuracy, when implementing

NABE.

Nevertheless, there are also some limitations of NABE. To focus on

different adjustment mechanisms, we pre-determined the similarity measure

and the retrieved solution function in ABE system. However, there are many

options for these two components. For the similarity measures there are

alternatives based on Manhattan and Minkowski distances (Mendes, et al.

2003, Huang and Chiu, 2006, Li and Ruhe, 2007), and for the retrieved

solutions there are weighted mean and median (Angelis and Stamelos, 2000,

Mendes, et al. 2003).

Moreover, feature selection (Kirsopp et al. 2003) and project selection (Li

et al. 2009a) are important preprocessing steps of ABE method since there are

Chapter V. Non-linear Adjustment by Artificial Neural Networks

172

often many irrelevant features and noisy projects in the software engineering

datasets. The possibility of further improvement of the NABE systems also

lies in the appropriate selection of relevant features and representative

projects.

Furthermore, missing values often appear in the software engineering

datasets. Many studies (Myrtveit et al. 2001, Strike et al. 2001, Jonsson and

Wohlin 2006, Song and Shepperd 2007) have proposed different data

imputation techniques to recover missing data by estimating replacement

values. However, the missing values are excluded from our study. This might

cause some difficulties for practitioners to apply the NABE system to the

datasets with significant amount of missing values. For example during the

ISBSG subset preparation, we realize that missing values cause the deletion of

many projects.

Finally, the non- linear adjustment in our study is based on artificial neural

networks. Other types of non- linear approximations such as Radius Basis

Functions (Hardy, 1971) and Support Vector Machines (Vapnik, 1995) can

also be employed as the non- linear adjustment. They may achieve better

performance than ANN does, because they have fewer parameters than ANN

and they have the regularization mechanism to prevent the over- fitting

problem suffered by ANN.

Chapter VI. Probabilistic Analogy Based Estimation

173

Chapter 6 Probabilistic

Analogy Based Estimation4

Most published research works have been focusing on improving ABE‟s

accuracy (such as the works in Chapter 3, Chapter 4, and Chapter 5). However,

due to the inherent uncertainties and complexities in cost estimation process,

the accurate point estimates are often obtained with great difficulties. From

the perspective of industrial engineering, it is more practical to generate

probabilistic predictions. In the literature, there is still a lack of formal

framework for ABE to generate probabilistic predictions. In this chapter, we

first propose a probabilistic model of ABE (PABE). The prediction of PABE is

obtained by integrating over the parameter K, the number of nearest neighbors,

via Bayesian inference. In addition, PABE is tested on two well-known

datasets with comparisons against other established estimation techniques.

The promising results show that PABE could largely improve the point

estimations of ABE and achieve quality probabilistic predictions.

6.1 Introduction

Several techniques have been proposed to improve ABE‟s accuracy.

However, it still has been reported that ABE sometimes produces misleading

4
 This chapter is associated with the papers Li et al. 2008a and Li et al. 2008b.

Chapter VI. Probabilistic Analogy Based Estimation

174

results (van Koten and Gray 2006). This may be due to the inherent

uncertainty in the estimation process (because a cost estimate is an assessment

of a future condition and therefore the uncertainty is embedded in the

estimation) and the unclear project requirement in the early stages of software

life cycle. Therefore, Angelis and Stamelos (2000) pointed out that it is safer

to generate probabilistic predictions such as probability distribution of the cost

value or interval estimate of cost with a certain probability.

Recently, more and more researches are devoted onto probabilistic

predictions. The published studies include bootstrapped ABE method (Angelis

and Stamelos 2000), expert judgments (Jorgensen and Sjoberg 2003), and

Bayesian networks (van Koten and Gray 2006). However, very few of these

studies have proposed probabilistic model for conventional ABE. The

bootstrapped ABE (Angelis and Stamelos 2000) is one important attempt.

However, bootstrapping technique is a simulation based re-sampling method

with high computational cost and limited interpretations. To the best of our

knowledge, there is still a lack of interpretable and efficient formal

probabilistic model of ABE. In other research fields, few initiatives (Holmes

and Adams 2002) on probabilistic K-Nearest Neighbor Regression (KNNR)

model have been taken. ABE is equivalent to KNNR in the statistics literature.

In this chapter, we present a continuous probabilistic model of ABE

(PABE). Then, Bayesian inference is used to produce the probabilistic

prediction by integrating over the parameter K, the number of nearest

Chapter VI. Probabilistic Analogy Based Estimation

175

neighbors, because Bayesian inference is capable of handling missing data,

learning causal relationships, combining prior knowledge and data, and

avoiding over- fitting problems (Heckerman 1997).

The rest of this chapter is organized as follows. Section 6.2 presents a

brief introduction to the formal model of ABE and its parameter K, the

number of nearest neighbors. Section 6.3 describes the prior distributions of

PABE model, the Bayesian inference approach, and the predictive PABE

model. In section 6.4, the experiments setup for empirical validations is

presented. The last section presents the results and comparisons on two

object-oriented maintenance datasets.

6.2 Formal Model of Analogy Based Estimation

As pointed out by Mittas et al. (2008), although ABE seems to be an

empirical technique, it still has the mathematical form which is known as

K-Nearest Neighbor Regression in the context of statistics. Prior to the

introduction of the probabilistic model of ABE, we recall ABE‟s formal model

in Mittas et al. (2008)‟s work.

Let)},(),...,,(),,{(},{ 2211 nn yyyYXD xxx be the historical dataset which

contains a set of n independent historical projects, X = {x1, x2,…, xn} = (x ij)n×d

be an n × d random matrix of project features (or cost drivers) with xi as a

vector of d project features and x ij as the jth feature of the ith project, and Y =

{y1, y2,…, yn} be an n–dimensional random vector with yi as the cost value of

Chapter VI. Probabilistic Analogy Based Estimation

176

the ith project. Given a new project x and its cost value y unknown, the ABE‟s

point estimate of y is the weighted sum of the cost values of x‟s K nearest

neighbors:





)}({

),()(ˆˆ
xx|i

xxx
Ki N

iii ywYy (6.1)

where NK(x) is the neighborhood set of x which comprises K nearest projects

of x, and wi(xi, x) is the weight function depending on the features of

historical project xi and new project x. Usually, the summation of weights is

set to be 1 for the purpose of normalization.

The number of nearest neighbors K is the key parameter of ABE. Many

studies (Li and Ruhe. 2008, Mittas et al. 2008, Li et al. 2008c, Chiu and

Huang 2007, Huang and Chiu 2006, Auer et al. 2006, Mendes et al. 2003,

Leung 2002, Angelis and Stamelos 2000, Shepperd and Schofield 1997) have

attempted to optimize this parameter; however most optimization methods are

brute force empirical approaches. Table 2.3 in Chapter 2 summarizes the

relevant works. It is shown that most previous studies have specified a certain

range for K values and this is followed by the cross-validation procedure to

select the K value with which the ABE could produce the predictions

optimizing the error value on the training dataset. Moreover, three papers

(Chiu and Huang 2007, Leung 2002, Auer et al. 2006) predefined K at fixed

values, and Li and Ruhe (2008) proposed a method named „dynamic K‟. In

Chapter VI. Probabilistic Analogy Based Estimation

177

this approach, the projects falling within a certain distance threshold (T) of the

target project are treated as nearest neighbors and the number of neighbors

may vary when different target projects appear. However, this method is also

under the cross validation scheme. The advantage of cross validation is that it

takes into account the effort data under study. Regardless of how K is

selected, the predictions made by all ABE studies in table 2.3 have no

probabilistic interpretations. This lack of a probabilistic interpretation in the

predictions makes it difficult to incorporate ABE into the software cost

estimation process where predictions are uncertain in nature.

6.3 Probabilistic Model of Analogy Based Estimation

The objective of PABE model is to obtain the marginal distribution of the

cost value p(y | x, Y, X) given the historical dataset D = {X, Y} and the features

of project x regardless of the value of K. In this section, we first define the

conditional prior distribution p(Y | X, K) and the conditional predictive

distribution p(y | x, Y, X, K), then utilize Bayesian inference to obtain the final

marginal distribution p(y | x, Y, X).

6.3.1 Assumptions

Before the definition of conditional prior distribution, three fundamental

assumptions of PABE are introduced as follows:

1) Given the historical project dataset D, the cost value y of project x is

a normally distributed independent variable with mean  and variance 2 .

Chapter VI. Probabilistic Analogy Based Estimation

178

2) The mean value  equals to the output of the conventional ABE

model in (6.1).

3) The variance 2 is related to the summation of the similarities

between project x and its K nearest neighbors.

Assumption 1) appears invalid in the real world applications, since the

real cost values must be positive and are often with extreme outliers.

However, the cost value can be transformed to normal distribution.

Experience and theory have shown that the logarithmic and square root

transformation can effectively produce normally distributed quantities from

non-normal distributions (Angelis and Stamelos 2000, Jeffery et al. 2000,

Mittas et al. 2008).

Assumption 2) requires that the expectation of PABE should be point

ABE estimate in (6.1), so that we can obtain  as:





)}(|{)}(|{

),()),(()|(
xNxi

iii

xNxi

iii

KiKi

ywywEDYE xxxx  (6.2)

where the weight wi(xi, x) is defined as:






)}(

),(

xx|{i

xx

Ki N

i

i
ii

s

s
w (6.3)

Chapter VI. Probabilistic Analogy Based Estimation

179

where si is the similarity between project x and its ith nearest project and

NK(x) is the neighborhood set of x. Recall from the formula of similarity

measure in (2.11), si is defined as follows:

i

i
dc

s



1

 (6.4)

where di is the Euclidean distance between project x and its ith nearest project,

and c is a small constant to avoid the situation di = 0. We set c = 0.0001 in this

study.

Assumption 3) reflects the intuition that the estimations with higher total

similarity 



Ki Nx

iss acquire higher precision. Assumption 3) is reminiscent of

the definition of precision matrix in Gaussian Markov Random Field (Ferreira

and Victor 2007).

6.3.2 Conditional Distributions

By assumption 1), the cost value yi is independent from each other. Given

the feature matrix X and parameter K, the conditional distribution of Y is

described as below:

 
 

















n

i iin

j

ii

ij

s
y

s

s
NKXYp

Kj1)1(1

1
,~),|(

x

 (6.5)

Chapter VI. Probabilistic Analogy Based Estimation

180

where n denotes the total number of projects in the historical dataset, (n - 1)K

represents the K sized neighborhood system in the set of (n – 1) projects

excluding project xi, ijs is the similarity between project xi, and xj,





Kj N

ijii ss
)1(x

is the total similarity of project xi. Under this circumstance, the

probability of yi is conditioned on only those K nearest projects.

Given the features of new project x, the conditional predictive distribution

of its cost value y is:

















 s

y
s

s
NKXYyp

Kj Nx

j

j

1

1
,~),,,|(x (6.6)

where 



Kj N

jss
x

 is the total similarity between project x and its K nearest

neighbors.

6.3.3 Predictive Model and Bayesian Inference

Our goal is to obtain the marginal predictive model p(y | x, Y, X)

regardless of the value of K. It can be obtained by integrating the joint

predictive distribution (6.6) over the space of parameter K :








K

XYKpKXYyp

dKXYKpKXYypXYyp

),|(),,,|(

),,|(),,,|(),,|(

x

xxx

 (6.7)

Chapter VI. Probabilistic Analogy Based Estimation

181

 where the conditional predictive model p(y | x, Y, X, K) is given in (6.6), and

the posterior distribution p(K | Y, X) can be solved by Bayesian inference.

The Bayesian inference often involves three steps: 1. assign a prior p(K) to the

unknown parameter K; 2. define the likelihood p(Y | X, K) of observing Y

given K; 3. determine the posterior p(K | Y, X) of K.

The prior distribution of K is considered first. It is important to choose an

appropriate prior distribution which results in computationally tractable

posterior distribution. In our study, the prior of the parameter K is assumed to

be uniformly distributed, since we have little prior knowledge about the likely

values of K, and the uniform distribution is a maximum entropy distribution.

},,1{)(maxKUKp  (6.8)

where U denotes the uniform distribution. The distribution p(Y | X, K) is given

in (6.5). With the (6.5) and (6.8), the posterior distribution of K can be

rewritten as:

),(

)|(
)(),|(),|(

XYp

KXp
KpKXYpXYKp  (6.9)

By definition, the occurrences of the observed features X are independent

from the value of K, and therefore p(X | K) can be regarded as some constant.

Then (6.9) can be rewritten as follows:

Chapter VI. Probabilistic Analogy Based Estimation

182















max

1

)(),|(

)(),|(

)(),|(

)(),|(

)|(
)()|(),|(

)(),|(

)|(
),,(

)(),|(
),|(

K

K

KpKXYp

KpKXYp

dKKpKXYp

KpKXYp

KXp
dKKpKXpKXYp

KpKXYp

KXp
dKKXYp

KpKXYp
XYKp

 (6.10)

Since the prior of K is uniformly distributed and p(K) = 1/Kmax, then the

posterior in (6.10) can be rewritten as:





max

1

),|(

),|(
),|(

K

K

KXYp

KXYp
XYKp (6.11)

where p(Y | X, K) is the conditional distribution of Y defined in (6.5). The

value of p(Y | X, K) can be computed by substituting the historical projects

features and effort values into its equation. To simplify the notations, let

K

n

t iiNx

j

ii

ij
Z

s
y

s

s
NKXYp

Kj

















 
 1)1(1

1
,~),|(, so that the final predictive

model has the following form:

Chapter VI. Probabilistic Analogy Based Estimation

183
































































max

max

max

max

1

1

1

1

1

1
,~

),|(

),|(
),,,|(

),|(),,,|(

),,|,(),,|(

K

K
K

K

K

K

Nx

j

j

K

k
K

K

k

Z

Z

s
y

s

s
N

KXYp

KXYp
KXYyp

XYKpKXYyp

dKXYKypXYyp

Kj

x

x

xx

 (6.12)

It is noted that the predictive PABE model is in fact the weighted

summation of a series of normal distributions. Therefore, the resulting

distribution is also normally distributed and the mean and variance of this

distribution are:

 
 
















max

1

max

K

K Nx

j

j

KK

Kj

y
s

s
f (6.13)
















max

1

22

max
1

1K

K

KK
s

f (6.14)

where





max

1

K

K

K

K
K

Z

Z
f represents the proportion of the probability of observing

Y with K neighbors, and 



Kj N

jss
x

 is changing with different K values.

Comparing with the point ABE model in (6.1), the expectation of PABE

model in (6.13) is further adjusted by a sequence of weights fK which reflects

Chapter VI. Probabilistic Analogy Based Estimation

184

the likelihood of historical data with different K values. In applications,

maxK and 2

m axK together determine the final predictive model.

From the presentations above, we obtain the predictive PABE by

integrating over the parameter K instead of relying on some optimal K values,

because optimization often fails to take into account the inherent uncertainty

in parameters. There is no „true‟ value for the parameter which can be found

by optimization. However, there is a range of possible values for the

parameter, each with some associated density (Denison et al. 2002).

6.3.4 Implementation Procedure of Probabilistic Analogy Based

Estimation

The detailed implementation procedure of PABE to predict the cost value

y of a new project x is presented as follows:

1. Prepare the historical data set D = {X, Y}, where X is the project feature

matrix and Y is the vector of project efforts. Take the necessary

transformation (logarithm or square root) to transform Y to normal

distribution. Set Kmax equal to 10.

2. Calculate the point estimate 
 Kj Nx

j
i y

s

s
 and the total similarity





Kj Nx

jss of the new project x for each K value from 1 to 10. The

similarity is calculated by (6.4). In all, a vector of ten cost estimates and a

vector of ten total similarities are obtained.

Chapter VI. Probabilistic Analogy Based Estimation

185

3. Calculate the likelihood of observing Y, P(Y | X, K) for each K value from

1 to 10 by formula (6.5). At this step, a vector of ten likelihood values is

obtained.

4. Calculate the probability distribution y by specifying maxK and 2

m axK

using the formula in (6.13) and (6.14).

5. Convert the point prediction maxK and interval estimation

][max2/max KK Z    to the final predictions by exponential or square

transformation.

6.4 Experiment Design

In this section, we evaluate PABE on two real world datasets with the

comparisons to other estimation techniques. The datasets are described first.

Then the prediction accuracy measures of point prediction and interval

prediction are introduced. After that, the cross-validation scheme is presented.

Lastly, other comparative methods and the detailed experiment procedures are

described.

6.4.1 Datasets

For the purpose of comparing PABE to the published software

maintenance effort estimation methods, we select the two well known

objective oriented software maintainability datasets by Li and Henry (1993).

These datasets have been frequently used by recent studies to evaluate their

Chapter VI. Probabilistic Analogy Based Estimation

186

methods (Zhou and Leung 2007, van Koten and Gray 2006, Thwin and Quah

2005). The first data set, UIMS, contains 39 classes collected from a User

Interface Management System. The second data set, QUES, contains 71

classes from a QUality Evaluation System. Both UIMS and QUES datasets

consist of 11 metrics: 9 object-oriented metrics, one traditional size metric,

and one maintainability metric. Among the object-oriented metrics, WMC,

DIT, RFC, NOC, and LCOM are proposed by Chidamber and Kemerer

(1994), and MPC, DAC, NOM and SIZE2 are proposed by Li and Henry

(1993). SIZE1 is the traditional lines of code size metric. Maintainability is

measured with the CHANGE metric by counting the number of lines in the

code that were changed per class during a 3-year maintenance period. Table

B.9 provides the description of each metric.

The descriptive statistics of the UIMS and QUES datasets are shown in

table B.10 and table B.11 respectively. As Briand et al. (2000) pointed out,

metrics that vary little are not likely to be useful predictors and only the

metrics with more than five non-zero values are recommended for

experiments. In table B.10, most metrics of UIMS dataset show large variance

except DIT. For DIT, the number of its non-zero values is larger than five.

Thus, all metrics of UIMS data set are used in experiments. From table B.11,

it is seen that NOC has only zero values. Therefore, the metric NOC is

removed from QUES dataset for experiments.

Chapter VI. Probabilistic Analogy Based Estimation

187

Table 6.1 shows the Spearman‟s rank correlations between

maintainability and the OO metrics on UIMS and QUES datasets. There is a

significant correlation between CHANGE and the OO metrics. However, table

6.1 also shows that the correlations in the UIMS dataset are different from the

correlations in the QUES dataset. In addition, table B.10 and table B.11 show

that the characteristics of the UIMS dataset are different from the QUES

dataset. Thus, the UIMS and QUES datasets are regarded as heterogeneous.

Table 6.1: Correlations between CHANGE and OO metrics

Metric Spearman‟s correlation coefficient

 UIMS dataset QUES dataset

DIT -0.10 -0.04

NOC 0.31 NA

MPC 0.69* 0.55*

RFC 0.63* 0.38*

LCOM 0.76* -0.05

DAC 0.48* -0.19

WMC 0.73* 0.08

NOM 0.62* 0.05

SIZE1 0.76* 0.62*

SIZE2 0.57* -0.01

Correlation is significant at the 0.01 level (2-tailed)

6.4.2 Prediction Accuracy

Since PABE can produce both point and probabilistic predictions, the

performance metrics for these two kinds of predictions are introduced in this

section.

Chapter VI. Probabilistic Analogy Based Estimation

188

Point prediction evaluation

To measure the accuracies of effort estimation methods, the selection of

accuracy metrics is crucial. The magnitude of relative error (MRE) is the de

facto error metric in software effort estimation literature. Based on it, Mean

Magnitude of Relative Error (MMRE), Max Magnitude of Relative Error

(MaxMRE), Median Magnitude of Relative Error (MdMRE) and PREDiction

at level k PRED(k) are proposed to describe different aspects of MRE. In this

study, q is set to be 0.25 and 0.30 since they are commonly used in the cost

estimation literature (Lucia et al. 2005, Kitchenham et al. 2002). The

MaxMRE measures the maximum relative discrepancy which is the maximum

error relative to the actual value in the prediction (van Koten and Gray 2006).

The PRED identifies the estimations that are generally accurate, while MMRE

is a biased and not always reliable as a performance metric.

Probabilistic Prediction Evaluation

The probabilistic predictions can be easily transformed into interval

predictions with a certain probability. Evaluating prediction intervals is

different from evaluating point estimates. A point estimate can be compared

with the actual value, while an interval prediction has no corresponding actual

value. Instead, the „hit rate‟ (Jørgensen and Sjøberg 2003), which calculates

the proportion of the projects with the actual cost falling into the prediction

interval, is considered as the accuracy measure in our study.

Chapter VI. Probabilistic Analogy Based Estimation

189










 


iiii

iii

i

n

i

i

ActorAct

Act
h

h
n

HitRate

minmax,0

maxmin,1

1

1 (6.15)

where mini and maxi are the minimum and maximum values of the prediction

interval for project i, Acti is the actual cost of project i and n is the total

number of projects being estimated.

In addition, the efficient use of uncertainty information means that the

prediction interval can be narrower without losing the correspondence

between confidence level and hit rate. A measure able to compare the interval

prediction‟s efficiency is the median of the relative widths of the prediction

intervals (Jørgensen and Sjøberg 2003). The width of a prediction interval is

defined as:

effortredictedP

effortMinmumeffortMaximum
PIWidth


 (6.16)

Cross Validation

For the purpose of validation, the jack-knife validation schemes is utilized

in this study. The jackknife method which is also known as leave-one-out

cross validation (LOOCV) is a useful tool to obtain nearly unbiased estimators

of prediction error. In this approach, at each stage a project is removed from

Chapter VI. Probabilistic Analogy Based Estimation

190

the historical dataset for testing and the remaining projects are used as the

training set at each stage. This procedure is repeated N times (N is the number

of projects in historical dataset) and then the accuracies across all projects are

aggregated. The reasons to choose jack-knife approach are: 1) jack-knife

validation is a widely used variant of v-fold cross-validation, 2) it is closer to a

real world situation than k-cross validation (k < n) (Myrtveit et al. 2005), 3)

unlike k-fold cross validation (k < n), the jack-knife validation is deterministic,

i.e. no sampling is involved, 4) it ensures the largest amount of data for

training which presumably increases the chance of getting more accurate

predictions (Witten and Frank 2000).

Estimation Methods

Two types of ABE models are included in our experiments. The first

model is the proposed PABE. The second model is conventional ABE (CABE)

with the parameter K optimized by cross-validation. The specified range of K

values is from 1 to 10. To eliminate the impacts from different factors, all

ABE based methods are implemented with the similarity measure fixed to

Euclidean based similarity.

For a more comprehensive evaluation of PABE, we also compare it with

other popular machine learning methods including Stepwise Regression SWR

(Mendes et al. 2003), Artificial Neural Network ANN (Heiat 2002),

Classification and Regression Trees CART (Pickard et al. 2001). The best

Chapter VI. Probabilistic Analogy Based Estimation

191

variants of these methods are obtained by tuning their parameters on the

training datasets.

6.4.3 Experiment Procedure

The following procedures are taken to validate the proposed PABE model

with comparisons against other methods on each dataset.

 The PABE model is implemented by jack-knife scheme with the ABE

similarity measure fixing to Euclidean distance. The MREs and residuals

of its point prediction, and the HitRate and PIwidth of its probabilistic

predictions, across all test projects are computed.

 The conventional ABE, SWR, ANN, and CART are trained and tested by

jack-knife validation. The best variants of these methods on the training

sets are used to predict the testing projects. The MREs and Absolute

residuals of their prediction are collected.

 The comparative results on the MRE based error metrics are analyzed and

the Wilcoxon signed-rank tests are performed to identify the significance

of difference in absolute residual values and MRE values of all methods.

 The Bootstrapped conventional ABE (BABE) is performed and its

interval predictions are compared with PABE.

Chapter VI. Probabilistic Analogy Based Estimation

192

6.5 Results

In this section, the results and comparisons on each dataset are presented

according to the experiment steps mentioned in section 6.4.3.

6.5.1 Results on UIMS Dataset

Table 6.2 presents the point prediction accuracies obtained by PABE,

CABE, SWR, ANN, and CART on the UIMS dataset with jack knife

validation. The table shows that PABE achieves the lowest MMRE and

MdMRE, the highest PRED(25) and PRED(30), and the second lowest

MaxMRE value among all methods. The results indicate that PABE performs

generally better than other methods under MRE based error metrics except its

maximum MRE value is larger than that of CABE.

Table 6.2: Point predict ion accuracy on UIMS dataset

Methods MaxMRE MMRE PRED(25) PRED(30) MdMRE

PABE 3.93 0.56 0.46 0.49 0.31

CABE 2.95 0.74 0.15 0.18 0.64

SWR 9.97 2.13 0.28 0.33 0.95

ANN 16.31 2.45 0.18 0.23 0.75

CART 14.26 2.48 0.26 0.36 0.82

To further analyze the performances, we draw out the box plots of MRE

values and absolute residuals of all methods in fig 6.1 because absolute

residuals are less vulnerable to bias than the asymmetric MRE values

(Stensrud et al. 2003). For the MRE boxplots, PABE has the lowest median

Chapter VI. Probabilistic Analogy Based Estimation

193

line and least outliers, but its box width and whiskers are slightly larger than

those of CABE. For the absolute residual boxplots, PABE has the narrowest

box and least outliers, but its median line is close to that of CABE and its

whiskers are larger than those of CART. In all, the boxplots does not provide a

clear conclusion on whether PABE is significantly better than other methods.

It is also revealed that the distributions of both MREs and absolute residuals

are heavily skewed. This implies that the standard t-test is no longer valid for

the statistical comparisons. Therefore, the assumption-free Wilcoxon

signed-rank tests are performed for the significance of differences.

Figure 6.1: Boxplots of Absolute residuals and MREs on UIMS dataset

Table 6.3 presents the Z statistic and p-value of the two-tailed Wilcoxon

signed-rank test for Absolute Residual (AR) and MRE values of the PABE vs.

CABE, SWR, ANN, and CART paired comparisons. It is shown that PABE is

Chapter VI. Probabilistic Analogy Based Estimation

194

significantly better than all other methods on MRE criterion and PABE is

better than CABE and ANN under AR criterion with the p-values less than

0.05. Though the p-values of PABE vs. SWR and PABE vs. CART on AR

criterion are greater than 0.05 which is the most widely adopted threshold,

they are smaller than or equal to 0.1 which is another commonly used

threshold for significant tests (Jørgensen and Sjøberg 2003).

Table 6.3: Wilcoxon signed-rank test on UIMS dataset

Methods CABE SWR ANN CART

 AR MRE AR MRE AR MRE AR MRE

PABE Z-value 2.15
 a
 2.36

 a
 1.66

 a
 2.47

 a
 2.02

 a
 3.41

 a
 1.73

 a
 2.33

 a

 p-value 0.03 0.02 0.10 0.01 0.04 0.00 0.08 0.02

a
 T+ < T-.

For the interval based predictions, PABE is compared against the well

established bootstrapping ABE (BABE) proposed by Angelis and Stamelos

(2000). The results are summarized in table 6.4. In terms of HitRate, PABE

achieves higher hit rate than BABE. With respect to the Median PIwidth,

though PABE‟s intervals are wider than those of BABE, they are still in the

reasonable range (smaller than 3). Another important advantage of the PABE

is its computational efficiency. The time in seconds needed to train the models

in the jack-knife validation is recorded in the last row of table 6.4. It is shown

that PABE is more than 10 times faster than BABE. Fig 6.2 presents the actual

efforts of the same data set along with the 95% confidence intervals by PABE

and BABE. For better interpretation, in fig 6.2 we present all the lower and all

Chapter VI. Probabilistic Analogy Based Estimation

195

the upper bounds connected with a dashed line forming a 95% confidence

zone. As we can see from the figures, the PABE generally has wider

confidence intervals on UIMS dataset compared to those of BABE.

Table 6.4: Results of interval prediction at 95% confidence level

Quality metrics PABE BABE

HitRate 0.67 0.56

MPIwidth 2.82 1.50

Time used (s) 29 428

Figure 6.2: Confidence zones on UIMS dataset

6.5.2 Results on QUES Dataset

The point prediction accuracies obtained by PABE, CABE, SWR, ANN,

and CART on the QUES dataset are presented in table 6.5.

Chapter VI. Probabilistic Analogy Based Estimation

196

Table 6.5: Point predict ion accuracy on QUES dataset

Methods MaxMRE MMRE PRED(25) PRED(30) MdMRE

PABE 1.25 0.27 0.59 0.66 0.17

CABE 1.43 0.31 0.58 0.61 0.19

SWR 1.98 0.37 0.44 0.54 0.28

ANN 2.31 0.42 0.42 0.51 0.29

CART 3.13 0.57 0.38 0.39 0.34

It is shown that PABE achieves the lowest MaxMRE, MMRE and

MdMRE, and the highest PRED(25) and PRED(30). Different from the

results on UIMS dataset, CABE‟s error metric values seem very close to those

of PABE.

For a further analysis, the box plots of MRE values and absolute residuals

of all methods are illustrated in fig 6.3. For the MRE boxplots, PABE has the

narrowest box and whiskers, but its median line is very close to that of CABE

and it has more outliers than CABE and ANN. For the absolute residual

boxplots, PABE has the lowest median line, the narrowest box and whiskers,

but it has the highest number of outliers. In all, the boxplots do not provide a

clear conclusion on whether PABE is better than other methods. Thus, the

Wilcoxon signed-rank tests are performed for the significance of differences.

Chapter VI. Probabilistic Analogy Based Estimation

197

Figure 6.3: Boxplots of Absolute residuals and MREs on QUES dataset

Table 6.6 presents the Z statistic and p-value of the two-tailed Wilcoxon

signed-rank test for Absolute Residual (AR) and MRE values of the PABE vs.

CABE, SWR, ANN, and CART paired comparisons. It is shown that PABE is

significantly better than all other methods on both AR and MRE criteria with

the p-values less than 0.05.

Table 6.6: Wilcoxon signed-rank test on QUES dataset

Methods CABE SWR ANN CART

 AR MRE AR MRE AR MRE AR MRE

PABE Z-value 2.67
a
 2.99

 a
 2.02

 a
 2.54

 a
 3.23

 a
 3.41

 a
 3.41

 a
 4.01

 a

 p-value 0.01 0.00 0.04 0.01 0.00 0.00 0.00 0.00

a
 T+ < T-.

Chapter VI. Probabilistic Analogy Based Estimation

198

Table 6.7: Results of interval prediction at 95% confidence level

Quality metrics PABE BABE

HitRate 0.94 0.74

MPIwidth 2.42 0.76

Time used (s) 202 1248

Figure 6.4: Confidence zones on QUES dataset.

For the interval based predictions, similar to UIMS dataset, PABE is

compared against bootstrapping ABE (BABE). The results are summarized in

table 6.7. PABE achieves higher HitRate than BABE and its HitRate is close

to the corresponding confidence level (95%). As to the Median PIwidth,

PABE‟s intervals are wider than those of BABE, but they are still in the

reasonable range (median smaller than 2.5). Table 6.7 also presents the

computational efficiency of each method. It is observed that PABE is more

than 6 times faster than BABE on QUES dataset. Fig 6.4 presents the actual

Chapter VI. Probabilistic Analogy Based Estimation

199

costs of the same data set along with the 95% confidence intervals generated

by PABE and BABE. As we can observe from fig 6.4, PABE‟s intervals cover

most actual cost values.

Chapter VII. Conclusions and Future Works

200

Chapter 7

Conclusions and

Future Works

Aimed at improving analogy based software cost estimation, this thesis is

composed of several studies on the components of analogy based method. The

research works are grouped into four chapters: chapter 3 summarizes the

works on mutual information based feature selection technique for similarity

function; chapter 4 presents the research on genetic algorithm based project

selection method for historical database; chapter 5 presents the work on

non- linear adjustment to solution function; chapter 6 presents the probabilistic

model of analogy based estimation which is focused on the number of nearest

neighbors.

Research in chapters 3 to 5 aims to enhance the analogy based

estimation‟s capability to achieve more accurate results. For instance, in

chapter 5 the adjustment mechanism has been largely improved for a more

accurate analogy based method. Efficiency is another important aspect of

estimation performance. In chapter 3, the study on refining the historical

dataset has achieved a significant reduction of unnecessary projects.

Consequently, the efficiency of analogy based system is largely improved.

Moreover, in chapter 6 the study on probabilistic model leads to a more robust

Chapter VII. Conclusions and Future Works

201

and reliable analogy based method. This study could enhance the system‟s

capability to deal with a wider range of complicated situations such as missing

values and ambiguous inputs.

From the perspectives of software engineering, these works lead to an in

depth knowledge of analogy based cost estimation with significant

enhancement of ABE‟s accuracy, efficiency and robustness. From the

perspectives of industrial engineering, these works can be regarded as

successful applications of IE methodologies, such as optimization and

probabilistic modeling. To highlight the contributions and the feasible

extensions of our research, the following paragraphs summarize the

conclusions and the possible future works of chapters 3 to 6 individually.

In chapter 3, the feature selection for similarity measure is investigated.

Mutual Information based hybrid wrapper and filter feature selection scheme

(MIABE) is proposed to improve the efficiency and the interpretation of the

existing feature selectors. The results suggested that MIABE could achieve

better predictions on testing datasets (generalization) though MIABE did not

perform very well on fitting the training datasets. In addition, MIABE can

obtain more meaningful features which can be explained by mutual

information diagram. Another important finding is that MI based feature

selection is more efficient than the wrappers, especially when there are more

features in the dataset.

However, there are limitations in this study. First, comparisons with the

Chapter VII. Conclusions and Future Works

202

wrapper methods are restricted to fixed parameter settings. Based on the fixed

parameter setting, it is difficult to conclude that MI based feature selection

could achieve equally good results under other conditions. Therefore,

sensitivity analysis i.e. how prediction performance is affected by varying

parameters, is worth to investigate for future work. In addition, only two real

world datasets were used for experiments in this study. Future work could

include more real world datasets (such as ISBSG dataset) for the validation of

MIABE.

Chapter 4 focuses on the subset selection of historical database. We

introduce the powerful genetic algorithm to perform the optimization of

project selection as well as the simultaneous optimization of feature weights

and project selection. The promising results clearly indicate that project

selection can improve prediction accuracies and reduce the computation

complexity.

One of the major limitations of chapter 4 is the dataset. The experiments

in chapter 4 were performed on two relatively aged but frequently used

datasets. The projects in these two datasets were developed by the traditional

waterfall approach. However, a large number of recent software projects are

developed by new types of software development models (such as spiral

model and agile model) which often have new types of project features (such

as percentage of reuse) different from the waterfall approach. Therefore, new

datasets should be considered for the validation of our method to generate

Chapter VII. Conclusions and Future Works

203

more meaningful conclusions for the contemporary cost estimation practices.

Moreover, our current analogy based method is intolerant to missing feature

values. In future work, the data imputation techniques can be taken into

considerations to fill the missing information in the historical project

databases.

In chapter 5, adjustment to the solution function is studied. A non-linear

adjustment mechanism with learning ability and incorporating categorical

features is proposed. The results show that NABE is generally an effective

approach to extend ABE‟s flexibility on complex datasets and to improve the

accuracy of ABE on complex datasets. NABE is likely to be a more accurate

method than other types of ABE methods on the dataset with high degree of

non-normality and large proportion of categorical features.

Nevertheless, there are some limitations of NABE. The similarity

measure and solution function are pre-determined in this study. Further studies

can be designed to systematically investigate the influences of similarity

measure and solution function. The sensitivity analysis on these components

can be conducted as well. Moreover, additional real world datasets and

additional dataset characteristics can be explored to enhance the external

validity of the current research. Thirdly, other types of non-linear

approximators, such as RBF and SVM, could be considered as the adjustment.

In chapter 6, the probabilistic model of ABE is proposed and validated.

We first propose an analytical probabilistic framework for ABE (PABE) which

Chapter VII. Conclusions and Future Works

204

accounts for uncertainty that is often ignored in the conventional ABE method.

The predictive model is generated by integrating over the parameter K via

Bayesian inference. The results show that PABE could produce promising

results. For the point estimation, it is more accurate than conventional ABE,

stepwise regression, artificial neural networks and classification and

regression trees. For the interval prediction, PABE generates higher hit rates

than BABE with prediction intervals‟ width in a reasonable range.

However, there are some limitations for PABE. The similarity measures

and retrieved solutions are fixed in this study. Future works can be done to

investigate the impacts from these parameters. Exploring more data

characteristics and including more data sets for experiments could enhance the

external validity of the findings. Thirdly, other types of effort value

distributions could be incorporated into future studies. Moreover, PABE

model assumes that software projects are independent from each other.

However, in real world applications, many projects are accomplished in

similar environment, and hence it is highly possible that some projects are

related to each other. How to incorporate the interactions between projects

remains to be one important issue of future research.

References

205

Bibliography

Abran, A., Robillard, P. N. 1996, Function points analysis: an empirical study of its

measurement processes, IEEE Transactions on Software Engineering, 22(12),

895-910.

Adriano L. I. 2006. Estimation of software project effort with support vector regression.

Neurocomputing, 69(13-15), 1749–1753.

Agrawal M., Chari K. 2007. Software effort, quality, and cycle time: A study of CMM

level 5 projects. IEEE Transactions on Software Engineering, 33(3), 145-156.

Aguilar-Ruiz J. S., Ramos I., Riquelme J. C., Toro M. 2001. An evolutionary approach to

estimating software development projects. Information and Software Technology,

43(14), 875-882.

Ahmeda M. A., Saliub M. O., AlGhamdia J. 2005. Adaptive fuzzy logic-based framework

for software development effort prediction. Information and Software Technology,

47(1), 31–48.

Ahn Y., Suh J., Kim S., Kim H.. 2003. The software maintenance project effort estimation

model based on function points. Journal of Software Maintenance and Evolution:

Research and Practice, 15(2), 71-85.

Albrecht A.J., Gaffney J. 1983. Software function, source lines of code, and development

effort prediction, IEEE Transactions on Software Engineering 9(6), 639–648.

Albrecht A.J. 1979. Measuring application development productivity. Proceedings of the

Joint SHARE/GUIDE and IBM Application Development Symposium, 83–92.

Andolfi M., Costamanga M., Paschetta E., Rosenga G. 1996. A multicriter ia-based

methodology for the evaluation of software cost estimation models and tools,

Conference on Software Measurement and Management, 239-248.

Angelis L., Stamelos I., Morisio M. 2001. Building a software cost estimation model

based on categorical data, Proceedings of the 7
th

 IEEE International Software Metrics

Symposium, 4–15.

Angelis L., Stamelos I. 2000. A simulation tool for efficient analogy based cost

estimation. Empirical Software Engineering, 5(1), 35–68.

Abran A., Silva I., Primera L. 2002 Field studies using functional size measurement in

building estimation models for software maintenance. Journal of Software

Maintenance and Evolution Research and Practice, 14(1), 31-64.

Armstrong J.S. 2001. The forecasting dictionary, in: Principles of Forecasting: A

Handbook for Researchers and Practitioners, Kluwer, Boston.

Auer M., Trendowicz A., Graser B., Haunschmid E., Biffl S. 2006. Optimal project

feature weights in analogy-based cost estimation: Improvement and limitations. IEEE

Transactions on Software Engineering, 32(2), 83-92.

Barcelos Tronto I.F., Silvaa J. D. S., Sant‟Anna N. 2007. An investigation of artificial

neural networks based prediction systems in software project management. Journal of

Systems and Software, 81(3), 356-367.

Benediktsson O., Dalcher D., Reed K. 2003. COCOMO-based effort estimation for

References

206

iterative and incremental software development. Software Quality Journal, 11(4),

265-281

Blattberg R.C., Hoch S.J., 1990. Database models and managerial intuition: 50% model +

50% manager. Management Science, 36(8), 887–899.

Bocco M. G., Moody D. L., Piattini M. 2005 Assessing the capability of internal metrics

as early indicators of maintenance effort through experimentation. Journal of

Software Maintenance and Evolution Research and Practice, 17(3), 225-246.

Boehm B. 1981. Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.

Boehm B., Wolverton R. W. 1980. Software cost modeling: Some lessons learned.

Journal of Systems and Software, 1(3), 195-201.

Boehm B., Clark B., Horowitz E., Westland C. 1995. Cost models for future software life

cycle processes: COCOMO 2.0. Annals of Software Engineering, 1(1), 57-94.

Boehm B., Abts C., Chulani S. 2000. Software development cost estimation approaches –

A survey. Annals of Software Engineering 10(1-4), 177–205.

Briand L.C., El-Emam K., Bomarius F. 1998. COBRA: A hybrid method for software

cost estimation, benchmarking and risk assessment. Proceedings of 20th International

Conference on Software Engineering. 390-399.

Briand L.C., El-Emam K., Maxwell K., Surmann D., Wieczorek I. 1999. An assessment

and comparison of common cost software project estimation methods. Proceedings of

21st International Conference Software Engineering. 313-322.

Briand L.C., Wieczorek I. 2002. Resource Estimation in Software Engineering.

International Software Engineering Research Network, Technical Report.

Briand, L.C., Wust, J., Daly, J.W., Porter, D.V., 2000. Exploring the relationships

between design measures and software quality in object-oriented systems. Journal of

Systems and Software, 51(3), 245–273.

Brieman L., Friedman J., Olshen R., Stone C. 1984. Classification and Regression Trees.

Belmont:Wadsworth Inc.

Burgess C. J., Lefley M. 2001. Can genetic programming improve software effort

estimation? A comparative evaluation. Information and Software Technology, 43(14),

863-873.

Calzolari F., Tonella P., Antoniol G. 2001 Maintenance and testing effort modeled by

linear and nonlinear dynamic systems. Information and Software Technology, 43(8),

477-486.

Chidamber S.R., Kemerer C.F. 1994. A metrics suite for Object-Oriented design. IEEE

Transactions on Software Engineering, 20(6), 476-493.

Chiu N. H., Huang S. J. 2007. The adjusted analogy-based software effort estimation

based on similarity distances. Journal of Systems and Software. 80(4), 628-640.

Chulani S., Boehm B., Steece B. 1999. Bayesian analysis of empirical software

engineering cost models. IEEE Transactions on Software Engineering, 25(4),

573-583.

Conte S., Dunsmore H., Shen V.Y. 1986. Software Engineering Metrics and Models.

Menlo Park, Calif.: Benjamin Cummings.

Costagliola G., Ferrucci F., Tortora G., Vitiello G. 2005. Class point: An approach for the

size estimation of object-oriented systems. IEEE Transactions on Software

Engineering, 31(1), 52-74.

References

207

Dillibabu R., Krishnaiah K. 2005. Cost estimation of a software product using COCOMO

II.2000 model - a case study. International Journal of Project Management. 23(4),

297–307.

Dri A., Abran A., Mbarki S. 2006. An experiment on the design of radial basis function

neural networks for software cost estimation. International Conference on

Information & Communication Technologies: from Theory to Applications, 6.

Ebrahimi N.B. 1999. How to improve the calibration of cost models. IEEE Transactions

on Software Engineering, 25(1), 136 - 140.

Engel A., Last M. 2007. Modeling software testing costs and risks using fuzzy logic

paradigm. Journal of Systems and Software, 80(6), 817-835.

Eung S. J., Jae K. L. 2001. Quasi-optimal case-selective neural network model for

software effort estimation. Expert Systems with Applications, 21(1), 1-14.

Fairley R. E. 2007. The influence of COCOMO on software engineering education and

training. Journal of Systems and Software, 80(8), 1201-1208.

Finnie G. R., Wittig G. E., Desharnais J. M. 1997. A comparison of software effort

estimation techniques: Using function points with neural networks, case-based

reasoning and regression models. Journal of Systems and Software, 39(3), 281-289.

Fioravanti F., Nesi P. 2001 Estimation and prediction metrics for adaptive maintenance

effort of object-oriented systems. IEEE Transactions on Software Engineering, 27(12),

1062-1084.

Foss T., Stensrud E., Kitchenham B., and Myrtveit I. 2003. A Simulation Study of the

Model Evaluation Criterion MMRE. IEEE Transactions on Software Engineering,

29(11), 985-995.

Gelman A., Carlin J.B., Stern H.S., Rubin D.B. 1998. Bayesian Data Analysis. Chapman

& Hall.

Gray A. R., MacDonell S. G. 1997. A comparison of techniques for developing predictive

models of software metrics. Information and Software Technology, 39(6), 425-437.

Gray A. R., MacDonell S. G. 1999. Software metrics data analysis-exploring the relative

performance of some commonly used modeling techniques. Empirical Software

Engineering. 4(4), 297-316.

Grimstad S., Jørgensen M. 2007. Inconsistency of expert judgment-based estimates of

software development effort. Journal of Systems and Software, 80(11), 1770-1777.

Hardy R. L. 1971 Multiquadratic equations of topography and other irregular surfaces.

Journal of Geophysics Research. 76, 1905–1915.

Heiat A. 2002. Comparison of artificial neural network and regression models for

estimating software development effort. Information and Software Technology,

44(15), 911-922.

Hsia P., Hsu C. T., Kung D.C., Byrne E.J. 1998 Incremental delivery reduces

maintenance cost: a COCOMO-based study. Journal of Software Maintenance:

Research and Practice, 10(4), 225-247.

Huang S. J., Chiu N, H. 2006. Optimization of analogy weights by genetic algorithm for

software effort estimation. Information and Software Technology 48(11), 1034–

1045.

Huang X. S., Ho D., Ren J., Capretz L. F. 2007. Improving the COCOMO model using a

neuro-fuzzy approach. Applied Soft Computing, 7(1), 29–40.

References

208

Hughes R.T. 1996. Expert judgment as an estimating method. Information and software

technology, 38(2), 67-75.

Hughes R.T., Cunliffe A., Young-Martos F. 1998. Evaluating software development effort

model-building techniques for application in a real-time telecommunications

environment. IEE Proceedings Software, 145(1), 29-33.

Idri A., Khoshgoftaar T. M., Abran A. 2002. Investigating soft computing in case-based

reasoning for software cost estimation. Engineering Intelligent Systems for Electrical

Engineering and Communications, 10(3), 147-157.

Jeffery R., Ruhe M., Wieczorek I., 2000. A comparative study of two software

development cost modeling techniques using multi-organizational and

company-specific data, Information and Software Technology 42(14), 1009–1016.

Jongmoon B., Boehm B., Steece B. M. 2002. Disaggregating and calibrating the CASE

tool variable in COCOMO II. IEEE Transactions on Software Engineering, 28(11),

1009-1022.

Jorgensen M., 1995. An empirical study of software maintenance tasks. Journal of

Software Maintenance: Research and Practice, 7(1), 27–48.

Jorgensen, M. 1995 Experience with the accuracy of software maintenance task effort

prediction models. IEEE Transactions on Software Engineering, 21(8), 674-681.

Jorgensen M. 2004 a. A review of studies on expert estimation of software development

effort. Journal of Systems and Software, 70(1-2), 37–60.

Jorgensen M. 2004 b. Realism in assessment of effort estimation uncertainty: It matters

how you ask. IEEE Transactions on Software Engineering, 30(4), 209-217.

Jorgensen M. 2004 c. Regression models of software development effort estimation

accuracy and bias. Empirical Software Engineering, 9(4), 297–314.

Jorgensen M. 2004 d. Top-down and bottom-up expert estimation of software

development effort. Information and Software Technology, 46(1), 3–16.

Jorgensen M. 2005. Evidence-based guidelines for assessment of software development

cost uncertainty. IEEE Transactions on Software Engineering, 31(11), 942 - 954.

Jorgensen M., Faugli B., Gruschke T. 2006. Characteristics of software engineers with

optimistic predictions. Journal of Systems and Software, 80(9), 1472-1482.

Jorgensen M., Indahl U., Sjoberg D. 2003. Software effort estimation by analogy and

„regression toward the mean‟. Journal of Systems and Software, 68(3), 253–262.

Jorgensen, M., Shepperd, M. 2007. A Systematic Review of Software Development Cost

Estimation Studies. IEEE Transactions on Software Engineering. 33(1), 33 – 53.

Jorgensen M., Sjøberg D.I.K. 2003. An effort prediction interval approach based on the

empirical distribution of previous estimation accuracy. Information and Software

Technology 45(3), 123–136.

Jorgensen M., Sjoberg D. I. K. 2004. The impact of customer expectation on software

development effort estimates. International Journal of Project Management, 22(4),

317–325.

Jorgensen M., Teigen K. H., Moloken K. 2004. Better sure than safe? Over-confidence in

judgment based software development effort prediction intervals. Journal of Systems

and Software, 70(1-2), 79–93.

Jorgensen M., Faugli B., Gruschke T. 2007. Characteristics of software engineers with

optimistic predictions. Journal of Systems and Software, 80(9), 1472-1482.

References

209

Jun E. S., Lee J. K. 2001. Quasi-optimal case-selective neural network model for

software effort estimation. Expert Systems with Applications, 21(1), 1-14.

Kadoda, G., Cartwright, M., Chen, L., Shepperd, M. 2000. Experiences using

case-based reasoning to predict software project effort. Proceedings EASE 2000

conferences – 4
th
 International Conference on Empirical Assessment and Evaluation

in Software Engineering. Staffordshire, U.K.

Kaplan, H. T. 1991. The Ada COCOMO cost estimating model and VASTT development

estimates vs. actuals. Vitro Technical Journal, 9(1), 48-60

Kemerer C. F. 1987. An empirical validation of software cost estimation models.

Communications of the ACM, 30, 416-429.

Khoshgoftaar T.M., Allen E.B., Naik A., Jones W.D., Hudepohl J.P., 1999. Using

classification trees for software quality models: lessons learned. International Journal

of Software Engineering and Knowledge Engineering, 9(2), 217-231.

Kitchenham B.A. 1990. Software Development Cost Models. Software Reliability

Handbook, Elsevier Applied Science, New York. 333-376.

Kitchenham B.A. 1998. A Procedure for Analyzing Unbalanced Datasets . IEEE

Transactions on Software Engineering, 24(4), 278-301.

Kitchenham B.A., MacDonell S.G., Pickard L.M., Shepperd M.J. 2001. What Accuracy

Statistics Really Measure,” IEE Proceeding Software Engineering, 148(3), 81-85.

Kitchenham B.A., Linkman S. 1997. Estimates, Uncertainty and Risk, IEEE Software,

14(3), 69-74.

Kitchenham B.A., Pfleeger S. L., McColl B., Eagan S. 2002. An empirical study of

maintenance and development estimation accuracy, Journal of Systems and Software,

64(1), 57-77.

Kwak, N., Choi C. H. 2002(a) Input feature selection for classification problems.

IEEE Transactions on Neural Networks, 13(1), 143-159

Kwak, N., Choi, C. H. 2002(b) Input feature selection by mutual information based

on parzen window. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(12), 1667–1671.

Lawrence J. 1994. Introduction to Neural Networks: Design, Theory, and Applications.

California Scientif ic Software. Nevada City, CA.

Leach R.J. 1996 Methods of measuring software reuse for the prediction of maintenance

effort. Journal of Software Maintenance: Research and Practice, 8(5), 309-320.

Lee A., Chun H., Cheng, Balakrishnan J., 1998. Software development cost estimation:

integrating neural network with cluster analysis. Information and Management, 34(1),

1-9.

Leung, H.K.N. 2002. Estimating maintenance effort by analogy. Empirical Software

Engineering, 7(2), 157-75.

Li W., Henry S. 1993. Object-oriented metrics that predict maintainability. Journal of

Systems and Software 23(2), 111–122.

Li J. Z., Ruhe G., Al-Emran A., Richter M. 2007. A flexible method for software effort

estimation by analogy. Empirical Software Engineering, 12(1), 65-106.

Li J. Z., Ruhe G. 2008. Analysis of attribute weighting heuristics for analogy-based

software effort estimation method AQUA+. Empirical Software Engineering, 13(1),

63-96.

References

210

Li J. Z., Ruhe G. 2008. Software effort estimation by analogy using attribute selection

based on rough set analysis. International Journal of Software Engineering and

Knowledge Engineering, 18(1), 1-23.

Li Y. F., Xie M., Goh T. N. 2007. A study of genetic algorithm for project selection for

analogy based software cost estimation. Proceedings of the IEEE International

Conference on Industrial Engineering and Engineering Management 2007,

1256-1260.

Li Y. F., Xie M., Goh T. N. 2008a. A Bayes ian inference approach for probabilistic

analogy based software maintenance effort estimation. Proceedings of the Pacific Rim

International Symposium on Dependable Computing 2008, 176-183.

Li Y. F., Xie M., Goh T. N. 2008b. A study of analogy based sampling for interval based

cost estimation for software project management. Proceedings of the International

Conference on Management of Innovation and Technology 2008, 281-286.

Li Y. F., Xie M., Goh T. N. 2008c. Optimization of feature weights and number of

neighbors for analogy based cost estimation in software project management.

Proceedings of the IEEE International Conference on Industrial Engineering and

Engineering Management 2008, 1542-1546.

Li Y. F., Xie M., Goh T. N. 2009a. A study of mutual information based feature selection

for case based reasoning in software cost estimation. Expert Systems with

Applications. 36(3), 5921-5931.

Li Y. F., Xie M., Goh T. N. 2009b. A study of project selection and feature weighting for

analogy based software cost estimation. Journal of Systems and Software. 82(2),

241-252.

Li Y. F., Xie M., Goh T. N. 2009c. A study on the non-linear adjustment for analogy

based software cost estimation. Empirical Software Engineering. 14(6), 1382-3256.

Liu Q. Mintram R. C. 2005. Preliminary data analysis methods in software estimation.

Software Quality Journal, 13, 91–115.

Lo B.W.N., Gao X. Z. 1997. Assessing software cost estimation models: criteria for

accuracy, consistency and regression. Australian Journal of Information Systems, 5(1),

30-44.

Lucia A., Pompella E., Stefanucci S. 2005. Assessing effort estimation models for

corrective maintenance through empirical studies. Information and Software

Technology, 47(1), 3-15.

MacDonell S.G. 1994. Comparative Review of Functional Complexity Assessment

Methods for Effort Estimation. Software Engineering Journal, 9(3), 107-116.

Macdonell S.G., Fletcher T., Wong B.L.W. 1999. Industry practices in project

management for multimedia information systems. International Journal of Software

Engineering and Knowledge Engineering, 9(6), 801-815.

Macdonell S. G., Shepperd M. J. 2003. Combining techniques to optimize effort

predictions in software project management. Journal of Systems and Software, 66(2),

91–98.

Mair C., Shepperd M., Jorgensen M. 2005. An analysis of data sets used to train and

validate cost prediction systems. Proceedings of the 2005 workshop on Predictor

Models in Software Engineering, 1 – 6.

Mair C., Kadoda G., Lefley M., Phalp K., Schofield C., Shepperd M., Webster S. 2000.

References

211

An investigation of machine learning based prediction systems, Journal of Systems

and Software, 53(1), 23-29.

Marbán O., Menasalvas E., Fernández-Baizán C. 2007. A cost model to estimate the

effort of data mining projects (DMCoMo). Information Systems, 33(1), 133 – 150.

Matson, J.E., Barrett, B.E., and Mellichamp, J.M. 1994. Software development cost

estimation using function points, IEEE Transactions on Software Engineering, 20(4),

275–287.

McDonald J. 2005. The impact of project planning team experience on software project

cost estimates. Empirical Software Engineering, 10(2), 219-234.

Mendes E., Watson I., Triggs C., Mosley N., Counsell S. 2003. A comparative study of

cost estimation models for Web hypermedia applications. Empirical Software

Engineering, 8, 163–196.

Mendes E., Mosley N., Counsell S. 2005. Investigating Web size metrics for early Web

cost estimation. Journal of Systems and Software, 77(2), 157-72.

Mendes, E., Di Martino, S., Ferrucci, F., Gravino, C. 2008. Cross-company vs.

single-company Web effort models using the Tukutuku database: an extended study.

Journal of Systems and Software, 81(5), 673-690.

Mendes, E., Lokan, C. 2008. Replicating studies on cross- vs single-company effort

models using the ISBSG Database. Empirical Software Engineering, 13(1), 3-37.

Menzies T., Chen Z., Hihn J., Lum K. 2008. Selecting best practices for effort estimation.

IEEE Transactions on Software Engineering, 32(11), 883-895.

Mittas, N., Athanasiades, M., Angelis, L. 2008 Improving analogy-based software cost

estimation by a resampling method. Information and Software Technology, 50(3),

221-230.

Miyazaki Y., Terakado K., Ozaki K., Nozaki H. 1994. Robust regression for developing

software estimation models. Journal of Systems and Software, 27, 3-16.

Moløkken-Ostvold K., Jørgensen M. 2004. Group Processes in Software Effort

Estimation. Empirical Software Engineering, 9(4), 315-334.

Moløkken K., Jørgensen M. 2005. Expert Estimation of Web-Development Projects: Are

Software Professionals in Technical Roles More Optimistic Than Those in

Non-Technical Roles? Empirical Software Engineering, 10(1), 7-30.

Moses, J. 2002. Measuring Effort Estimation Uncertainty to Improve Client Confidence.

Software Quality Journal, 10, 135-148.

Moses J., Farrow M. 2003. A Procedure for Assessing the Influence of Problem Domain

on Effort Estimation Consistency. Software Quality Journal, 11(4), 283-300.

Moses J., Farrow M. 2005. Assessing Variation in Development Effort Consistency Using

a Data Source with Missing Data. Software Quality Journal, 13(1), 71-89.

Musilek P., Pedrycs W., Succi G., Reformat M. 2000. Software cost estimation with fuzzy

models. Applied Computing Review, 8(2), 24-29.

Myrtveit Y., Stensrud E., Shepperd M. 2005. Reliability and Validity in Comparative

Studies of Software Prediction Models. IEEE Transactions on Software Engineering

31(5) 380-391

NASA, 1990. Manager‟s Handbook for Software Development, Goddard Space Flight

Center, NASA Software Engineering Laboratory, Greenbelt, MD.

Oliveira A. L.I. 2006. Estimation of software project effort with support vector regression.

References

212

Neurocomputing, 69(13-15),1749–1753.

Park B. J., Pedrycz W., Oh S. K. 2008. An approach to fuzzy granule-based hierarchical

polynomial networks for empirical data modeling in software engineering.

Information and Software Technology, 50(9-10), 912-923.

Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann.

Pendharkar P. C., Subramanian G. H. 2002. Connectionist models for learning,

discovering, and forecasting software effort: an empirical study. Journal of Computer

Information Systems, 43(1), 7-14

Pendharkar P. C., Subramanian G. H., Rodger J. A. 2005. A Probabilistic Model for

Predicting Software Development Effort. IEEE Transactions on Software

Engineering, 31(7), 615-624.

Pendharkar P. C., Subramanian G. H. 2006. An empirical study of ICASE learning curves

and probability bounds for software development effort. European Journal of

Operational Research. 183(3), 1086 – 1096.

Peng H. C. 2007. http://www.mathworks.com/matlabcentral/fileexchange/14888

Pengelly A., 1995. Performance of effort estimating techniques in current development

environments. Software Engineering Journal, 10 (5), 162–170.

Pickard L., Kitchenham B., Linkman S., 1999. An investigation analysis techniques for

software datasets, Proceedings of 6
th
 International Software Metrics Symposium, 130

– 142.

Pickard L., Kitchenham B., Linkman S. 2001. Using simulated data sets to compare data

analys is techniques used for software cost modeling. IEE Proceedings of Software

148(6).

Putnam L., Myers W. 1992. Measures for Excellence, Yourdon Press Computing Series.

Ramanujan S., Scamell R. W., Shah J. R. 2000 An experimental investigation of the

impact of individual, program, and organizational characteristics on software

maintenance effort. Journal of Systems and Software, 54(2), 137-157.

Rousseeuw P. J., Leroy A. M. 1987. Robust Regression and Outlier Detection, Wiley,

New York.

Samson B., Ellison D., Dugard P. 1997. Software cost estimation using an Albus

perceptron (CMAC). Information and Software Technology, 39(1), 55-60.

Schank R. C. 1982. Dynamic Memory: A Theory of Reminding and Learning in

Computers and People. Cambridge University Press, Cambridge.

Schroeder L., Sjoquist D., Stephan, P. 1986. Understanding Regression Analysis : An

Introductory Guide. No. 57. In Series: Quantitative Applications in the Social

Sciences, CA, USA: Sage Publications, Newbury Park.

Selby R., Boehm B. 2007. Software engineering: Barry W. Boehm's lifetime contributions

to software development, management, and research. Wiley-IEEE Computer Society.

Sentas P., Angelis L., Stamelos I., Bleris G. 2005. Software productivity and effort

prediction with ordinal regression. Information and Software Technology, 47(1),

17–29.

Sentas P., Angelis L. 2006. Categorical missing data imputation for software cost

estimation by multinomial logistic regression. Journal of Systems and Software, 79(3),

404-414.

http://www.mathworks.com/matlabcentral/fileexchange/14888

References

213

Shepperd M., Schofield C. 1997. Estimating Software Project Effort Using Analogies.

IEEE Transactions on Software Engineering, 23(12), 733-743.

Shepperd M., Cartwright M., Kadoda G. 2000. On building prediction systems for

software engineers. Empirical Software Engineering. 5(3), 175-182

Shepperd M., Kadoda G. 2001. Comparing software prediction techniques using

simulation. IEEE Transactions on Software Engineering, 27(11), 1014-1022.

Shin M., Goel A.L. 2000. Empirical Data Modeling in Software Engineering Using

Radial Basis Functions. IEEE Transactions on Software Engineering, 26(6), 567 –

576.

Shukla K. K. 2000. Neuro-genetic prediction of software development effort. Information

and Software Technology, 42(10), 701-713.

Song Q. B., Shepperd M., Cartwright M. 2005. A short note on safest default missingness

mechanism assumptions. Empirical Software Engineering, 10(2), 235-243.

Song Q. B., Shepperd M. 2007. A new imputation method for small software project data

sets. Journal of Systems and Software, 80, 51–62.

Srinivasan R., Fisher D. 1995. Machine Learning Approaches to Estimating Software

Development Effort, IEEE Transactions on Software Engineering. 21(2), 126-137.

Stamelos I., Angelis L. 2001. Managing uncertainty in project portfolio cost estimation.

Information and Software Technology, 43(13), 759-768.

Stamelos I., Angelis L., Dimou P., Sakellaris E. 2003. On the use of Bayesian belief

networks for the prediction of software productivity. Information and Software

Technology, 45(1), 51-60.

Standing G. 2004. CHAOS, 2004, http://www.projectsmart.co.uk/docs/chaos_report.pdf.

Stensrud, E.2001. Alternative approaches to effort prediction of ERP projects.

Information and Software Technology, 43(7), 413-423.

Stensrud E., Foss T., Kitchenham B., Myrtveit I. 2003. A further empirical investigation

of the relationship between MRE and project size. Empirical Software Engineering.

8(2), 139-161.

Sternberg, R., 1977. Component processes in analogical reasoning. Psychological Review

84 (4), 353–378.

Stewart B. 2002. Predicting project delivery rates using the Naive-Bayes classifier.

Journal of Software Maintenance and Evolution: Research and Practice, 14(3),

161-179.

Strike K., El-Emam K., Madhavji N. 2001. Software cost estimation with incomplete data.

IEEE Transactions on Software Engineering, 27(10), 890-908.

Van Koten C., Gray A.R. 2006. Bayes ian statistical effort prediction models for

data-centred 4GL software development, Information and Software Technology,

48(11), 1056-1067.

Van Koten C., Gray A.R. 2006 An application of Bayesian network for predicting

object-oriented software maintainability. Information and Software Technology, 48(1),

59-67.

Vapnik V. 1995. The nature of statistical learning theory. New York: Springer.

Walkerden F., Jeffery D. R. 1999. An empirical study of analogy-based software effort

estimation. Empirical Software Engineering, 4, 135–158.

Xu Z., Khoshgoftaar T. M. 2004. Identification of fuzzy models of software cost

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=5968&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.projectsmart.co.uk%252Fdocs%252Fchaos_report.pdf

References

214

estimation. Fuzzy Sets and Systems, 145(1), 141-163.

Yu L.G. 2006 Indirectly predicting the maintenance effort of open-source software.

Journal of Software Maintenance and Evolution, 18(5), 311-332.

Zhou Y. M., Leung H. 2007 Predicting object-oriented software maintainability using

multivariate adaptive regression splines. Journal of Systems and Software, 80(8),

1349-1361.

Appendix

215

Appendix A

Table A.1: Journal publications under each method 1999-2008

Year EJ PM RE ML AB Others

1999 (Myrtveit and

Stensrud,

1999, Chulan i

et al., 1999)

(Moser et al.,

1999) (Ferens,

1999, Chulani et

al., 1999)

(Ebrahimi, 1999,

Myrtveit and

Stensrud, 1999,

Moser et al.,

1999, Maxwell et

al., 1999)

(Chulan i et al.,

1999)

(Myrtveit and

Stensrud, 1999)

(Padberg, 1999,

Schooff and

Haimes, 1999)

2000 (Boehm et al.,

2000)

(Boehm et al.,

2000, Lokan,

2000)

(Boehm et al.,

2000, Jeffery et

al., 2000,

Costagliola et al.,

2000, Dolado,

2000, Fioravanti

and Nesi, 2000)

(Boehm et al.,

2000, Mair et al.,

2000, Sh in and

Goel, 2000,

Dolado, 2000,

Shukla, 2000)

(Boehm et al.,

2000, Jeffery et

al., 2000, Mair

et al., 2000)

(Lederer and

Prasad, 2000,

Runeson et al.,

2000)

2001 (Jorgensen and

Sjoberg, 2001,

Shepperd and

Cartwright,

2001,

Miranda,

2001)

(Hastings and

Sajeev, 2001,

Caban et al.,

2001, Smith et

al., 2001, Jun

and Lee, 2001)

(Fioravanti and

Nesi, 2001,

Burgess and

Lefley, 2001,

Moores, 2001,

Briand and Wust,

2001, Hastings

and Sajeev, 2001,

Caban et al.,

2001, Dolado,

2001, Myrtveit et

al., 2001)

(Kadoda et al.,

2001, Burgess

and Lefley,

2001, Mizuno et

al., 2001, Briand

and Wust, 2001,

Jun and Lee,

2001, Dolado,

2001)

(Kadoda et al.,

2001, Burgess

and Lefley,

2001, Stamelos

and Angelis,

2001, Jun and

Lee, 2001,

Strike et al.,

2001)

(Myrtveit et al.,

2001, Strike et

al., 2001,

Calzo lari et al.,

2001)

2002 (Smith, 2002,

Kitchenham et

al., 2002, Abran

et al., 2002, Baik

et al., 2002)

(Kitchenham et

al., 2002, Heiat,

2002, Abran et al.,

2002)

(Heiat, 2002,

Pendharkar and

Subramanian,

2002, Moses,

2002, Oh et al.,

2002)

(Idri et al.,

2002)

(Koch and

Schneider, 2002)

Appendix

216

Year EJ PM RE ML AB Others

2003 (Jorgensen et

al., 2003,

Jorgensen and

Sjoberg, 2003,

MacDonell

and Shepperd,

2003,

Stamelos et al.,

2003a)

(Ahn et al., 2003,

Benediktsson et

al., 2003)

(Mendes et al.,

2003, Ahn et al.,

2003, De Lucia et

al., 2003,

MacDonell, 2003,

MacDonell and

Shepperd, 2003,

Moses and

Farrow, 2003)

(Mendes et al.,

2003, Lefley and

Shepperd, 2003,

MacDonell,

2003, Moses and

Farrow, 2003,

Stamelos et al.,

2003a)

(Mendes et al.,

2003, Jo rgensen

et al., 2003,

Jorgensen and

Sjoberg, 2003,

Kirsopp et al.,

2003,

MacDonell and

Shepperd, 2003,

Stamelos et al.,

2003b)

(Stensrud et al.,

2003,

Staub-French et

al., 2003)

2004 (Jorgensen,

2004d,

Jorgensen,

2004c,

Jorgensen,

2004a,

Jorgensen and

Molokken,

2004,

Jorgensen and

Molokken-Ost

vold, 2004,

Jorgensen et

al., 2004,

Molokken-Ost

vold and

Jorgensen,

2004)

(Xu and

Khoshgoftaar,

2004)

(Jorgensen,

2004b,

Kaczmarek and

Kucharski, 2004,

Kitchenham and

Mendes, 2004)

(Oh et al., 2004b,

Oh et al., 2004a,

Xu and

Khoshgoftaar,

2004)

(Ohsugi et al.,

2004)

(Benediktsson

and Dalcher,

2004, Molokken

et al., 2004)

2005 (Jorgensen,

2005b,

Jorgensen,

2005a,

Molokken-Ost

vold and

Jorgensen,

2005)

(Ahmed et al.,

2005, Ben

Lamine et al.,

2005, De Lucia

et al., 2005)

(Myrtveit et al.,

2005, Sentas et

al., 2005, Mendes

et al., 2005, Liu

and Mintram,

2005, McDonald,

2005, Moses and

Farrow, 2005)

(Ahmed et al.,

2005, MacDonell

and Gray, 2005,

Moses and

Farrow, 2005,

Pendharkar et al.,

2005, Sicilia et

al., 2005,

Musilek and

Meltzer, 2005)

(Myrtveit et al.,

2005)

Appendix

217

Year EJ PM RE ML AB Others

2006 (Cuadrado-Gal

lego et al.,

2006,

Jorgensen and

Molokken-Ost

vold, 2006)

(Cuadrado-Galle

go et al., 2006a,

Wehrmann and

Gull, 2006,

Subramanian et

al., 2006,

Costagliola et al.,

2006,

Cuadrado-Galleg

o et al., 2006b,

Choi and Sircar,

2006)

(Huang and Chiu,

2006, Iwata et al.,

2006, Oliveira,

2006, Yu , 2006,

Sentas and

Angelis, 2006)

(Crespo and

Marban, 2006,

Huang and Chiu,

2006, Huang et

al., 2006a,

Huang et al.,

2006b, Oliveira,

2006, Song et al.,

2006,

Stefanowski,

2006, van Koten

and Gray, 2006)

(Auer et al.,

2006, Huang

and Chiu, 2006,

Lee and Lee,

2006)

(Grimstad et al.,

2006, Issa et al.,

2006, Rodriguez

et al., 2006,

Menzies and

Hihn, 2006)

2007 (Jorgensen and

Shepperd,

2007,

Kitchenham et

al., 2007,

Grinistad and

Jorgensen,

2007)

(Jorgensen and

Shepperd, 2007,

Kitchenham et

al., 2007,

Fairley, 2007,

Huang et al.,

2007, Gallego et

al., 2007,

Cuadrado-Galleg

o and Sicilia ,

2007)

(Chiu and Huang,

2007) (Jorgensen

and Shepperd,

2007, Kitchenham

et al., 2007,

Morgenshtern et

al., 2007,

Cuadrado-Gallego

and Sicilia, 2007,

Bourque et al.,

2007, Baresi and

Morasca, 2007,

Agrawal and

Chari, 2007)

(Chiu and

Huang, 2007,

Huang et al.,

2007, Jo rgensen

and Shepperd,

2007,

Kitchenham et

al., 2007,

Gallego et al.,

2007)

(Chiu and

Huang, 2007, Li

et al., 2007,

Jorgensen and

Shepperd, 2007,

Kitchenham et

al., 2007, Song

and Shepperd,

2007)

(Song and

Shepperd, 2007,

Pendharkar and

Subramanian,

2007,

Kouskouras and

Georgiou, 2007)

2008 (Park and

Baek, 2008,

Gruschke and

Jorgensen,

2008, Boehm

and Valerdi,

2008)

(Tronto et al.,

2008, Marban et

al., 2008, Boehm

and Valerdi,

2008)

(Tronto et al.,

2008, Park and

Baek, 2008, Park

et al., 2008,

Mittas and

Angelis, 2008,

Mendes and

Mosley, 2008,

Mendes et al.,

2008,

Lopez-Martin et

al., 2008, Kumar

et al., 2008,

Huang et al.,

2008b, Capra et

al., 2008)

(Tronto et al.,

2008, Park and

Baek, 2008, Park

et al., 2008,

Moreno Garcia

et al., 2008,

Mendes and

Mosley, 2008,

Lopez-Martin et

al., 2008, Kumar

et al., 2008,

Huang et al.,

2008a, Bibi et

al., 2008, Aroba

et al., 2008)

(Song et al.,

2008, Mittas et

al., 2008, Mittas

and Angelis,

2008, Mendes

and Mosley,

2008, Mendes

et al., 2008, Li

and Ruhe,

2008b, Li and

Ruhe, 2008a,

Keung et al.,

2008, Huang et

al., 2008a)

(Xia et al., 2008,

Daneva and

Wieringa, 2008)

Appendix

218

Appendix B

Table B.1: Feature definit ion of Albrecht dataset

Features Full name Type Description

Inpcount Input count Numerical Count of inputs

Outcount Output count Numerical Count of outputs

Quecount Query count Numerical Count of queries

Filcount File count Numerical Count of files

Fp Function points Numerical Number of function points

SLOC Lines of source

code

Numerical Lines of source code

Effort Development effort Numerical Measured in 1000 hours

Table B.2: Descriptive statistics of all features of A lbrecht dataset

Features Mean Std Dev Min Max Skewness Kurtosis

Inpcount 40.25 36.91 7.00 193.00 3.07 13.44

Outcount 47.25 35.17 12.00 150.00 1.28 4.29

Quecount 17.38 15.52 3.00 60.00 1.40 3.96

Filcount 16.88 19.34 0 75.00 1.94 6.46

Fp 61.08 63.68 3.00 318.00 2.90 12.19

SLOC 199.00 1902.00 647.63 488.00 1.44 4.02

Effort 21.88 28.42 0.50 105.20 2.16 6.51

Appendix

219

Table B.3: Feature definit ion of Desharnais dataset

Features Full name Type Description

TeamExp Team experience Numerical Measured in years

ManagerExp Manager‟s experience Numerical Measured in years

YearEnd Year of end Numerical The ending year of

development

Length Length of project Numerical The number of years used

for development

Transactions Transactions Numerical Number of transactions

Entities Entities Numerical Number of entities

PointsNonAdjust Non-adjusted function

points

Numerical Number of non-adjusted

function points

PointsAdjust Adjusted function points Numerical Number of adjusted

function points

Envergure Development environment Numerical Development environment

Language Programming language Categorical 1 = 1
st
 generation

2 = 2
nd

 generation

3 = 3
rd

 generation

Effort Development effort Numerical Measured in 1000 hours

Table B.4 Descriptive statistics of all features of Desharnais dataset

Features Mean Std Dev Min Max Skewness Kurtosis

TeamExp 2.30 1.33 0 4.00 -0.05 1.73

ManagerExp 2.65 1.52 0 7.00 0.22 3.01

YearEnd 85.78 1.14 83.00 88.00 -0.20 3.05

Length 11.30 6.79 1.00 36.00 1.43 5.49

Language 1.56 0.72 1.00 3.00 0.88 2.45

Transactions 177.47 146.08 9.00 886.00 2.34 10.09

Entities 120.55 86.11 7.00 387.00 1.36 4.37

Envergure 27.45 10.53 5.00 52.00 -0.19 2.58

PointsNonAdjust 282.39 186.36 62.00 1116.00 1.70 7.08

PointsAdjust 298.01 182.26 73.00 1127.00 1.81 7.67

Effort 4.83 4.189 0.55 23.94 2.00 7.89

Appendix

220

Table B.5 Feature definition in Maxwell dataset

Features Full name Type Description

Time Time Numerical Time = syear – 1985 + 1, with levels:

1,2,3,4,5,6,7,8,9..

App Application type Categorical 1 = Information/on-line service (infServ)

2 = Transaction control, logistics, order processing

(TransPro)

3 = Customer service (CustServ)

4 = Production control, logistics, order processing

(ProdCont)

5 = Management information system (MIS)

Har Hardware

platform

Categorical 1 = Personal computer (PC)

2 = Mainframe (Mainfrm)

3 = Multi-platform (Multi)

4 = Mini computer (Mini)

5 = Networked (Network)

Dba Database Categorical 1 = Relatnl (Relational)

2 = Sequentl (Sequential)

3 = Other (Other)

4 = None (None)

Ifc

User interface Categorical 1 = Graphical user interface (GUI)

2 = Text user interface (TextUI)

Source

Where

developed

Categorical 1 = In-house (Inhouse)

2 = Outsourced (Outsrced)

Telonuse

Telon use Categorical 0 = No

1 = Yes

Nlan Number of

different

development

languages used

Ordinal 1 = one language used

2 = two languages used

3 = three languages used

4 = four languages used

T01 Customer

participation

Ordinal: 1 = Very low

T02 Development

environment

adequacy

 2 = Low

T03 Staff availability 3 = Nominal

T04 Standards use 4 = High

T05 Methods use 5 = Very high

T06 Tools use

T07 Software‟s

logical

complexity

T08 Requirements

volatility

Appendix

221

Features Full name Type Description

T09 Quality

requirements

T10 Efficiency

requirements

T11 Installation

requirements

T12 Staff analysis

skills

T13 Staff application

knowledge

T14 Staff tool skills

T15 Staff team skills

Duration Duration Numerical Duration of project from specification until delivery,

measured in months

Size Application size Numerical Function points measured using the experience method

Effort Effort Numerical Work carried out by the software supplier from

specification until delivery, measured in hours

Appendix

222

Table B.6 Descriptive statistics of all features of Maxwell data set

Features Mean Std Dev Min Max Skewness Kurtosis

Time 5.58 2.13 1.00 9.00 -0.42 2.25

App 2.35 0.99 1.00 5.00 0.96 4.11

Har 2.61 1.00 1.00 5.00 1.43 4.09

Dba 1.03 0.44 0.00 4.00 4.74 35.13

Ifc 1.94 0.25 1.00 2.00 -3.55 13.57

Source 1.87 0.34 1.00 2.00 -2.21 5.90

Telonuse 2.55 1.02 1.00 4.00 -0.04 1.91

Nlan 0.24 0.43 0.00 1.00 1.21 2.45

T01 3.05 1.00 1.00 5.00 -0.20 2.05

T02 3.05 0.71 1.00 5.00 -0.07 3.57

T03 3.03 0.89 2.00 5.00 0.51 2.51

T04 3.19 0.70 2.00 5.00 0.02 2.60

T05 3.05 0.71 1.00 5.00 0.48 4.98

T06 2.90 0.69 1.00 4.00 -0.46 3.49

T07 3.24 0.90 1.00 5.00 -0.08 2.52

T08 3.81 0.96 2.00 5.00 -0.17 1.97

T09 4.06 0.74 2.00 5.00 -0.58 3.32

T10 3.61 0.89 2.00 5.00 0.00 2.22

T11 3.42 0.98 2.00 5.00 0.12 2.02

T12 3.82 0.69 2.00 5.00 -0.66 3.83

T13 3.06 0.96 1.00 5.00 -0.24 2.35

T14 3.26 1.01 1.00 5.00 -0.15 2.37

T15 3.34 0.75 1.00 5.00 0.09 3.99

Duration 17.21 10.65 4.00 54.00 1.25 4.34

Size 673.31 784.08 48.00 3643.00 2.28 7.80

Effort 8223.21 10499.90 583.00 63694.00 3.27 15.52

Appendix

223

Table B.7 Feature definition in ISBSG dataset

Features Full name Type Description

DevType Development

type

Categorical 1 = Enhancement

2 = New development

3 = Re-development

OrgType Organization

type

Categorical 1 = Banking

2 = Communication

3 = Community services

4 = Computer, Software, ISP

5 = Electricity, Gas, Water;

6 = Financial, Property & Business Services;

7 = Insurance;

8 = Manufacturing;

9 = Government, Public Administration

10 = Transport & Storage;

11 = Wholesale & Retail Trade;

12 = Others.

BusType Business

Area Type

Categorical 1 = Accounting;

2 = Banking;

3 = Engineering;

4 = Financial;

5 = Insurance, Actuarial;

6 = Inventory;

7 = Legal;

8 = Logistics;

9 = Manufacturing

10 = Personnel;

11 = Research & Development;

12 = Sales & Marketing;

13 = Telecommunications;

14 = Others.

AppType

Application

Type

Categorical 1 = Billing;

2 = Office information system, Executive information

system, Decision support system;

3 = Electronic Data Interchange;

4 = Financial;

5 = Management Information System;

6 = Network Management, Communications;

7 = Process control, sensor control, real

time;

8 = Transaction/Production System;

9 = Others.

DevPlat

Development

Platform

Categorical 1 = Mainframe

2 = Mid-range

Appendix

224

3 = Multi;

4 = Personal Computer.

Features Full name Type Description

PriProLan

Primary

Programming

Language

Categorical 1 = ABAP;

2 = Access;

3 = ASP;

4 = C;

5 = C++;

6 = COBOL;

7 = JAVA;

8 = Lotus Notes;

9 = NATURAL;

10 = ORACLE;

11 = PL/I;

12 = PL/SQL;

13 = PowerBuilder;

14 = SQL;

15 = Visual Basic;

16 = Others.

DevTech Development

Techniques

Categorical 1 = Business area modeling;

2 = Data Modelling;

3 = Event Modelling

4 = Joint Application Development;

5 = Multifunction teams

6 = Object Oriented Analysis;

7 = Object Oriented Design;

8 = Process Modelling;

9 = Prototyping;

10 = Rapid Application Development;

11 = WaterFall;

12 = Others.

InpCont Input Count Numerical The count of inputs

OutCont Output Count Numerical: The count of outputs

EnqCont Enquiry

count

Numerical: The count of enquiries

FileCont File count Numerical: The count of files

IntCont Interface

count

Numerical: The count of interfaces

AFP Adjusted

function

points

Numerical: The adjusted function point-count number

NorEffort Normalized

Work Effort

Numerical: For project covering less than a full development life cycle,

this value is an estimate of the full development effort in

hours.

Appendix

225

Table B.8 Descriptive statistics of all features of ISBSG data set

Features Mean Std Dev Min Max Skewness Kurtosis

DevType 1.52 0.50 1.00 2.00 -0.07 1.00

BusType 7.55 6.36 2.00 15.00 0.29 1.11

AppType 5.76 2.14 1.00 9.00 0.18 1.85

DevPlat 6.25 4.50 1.00 12.00 0.03 1.12

PriProLan 1.45 0.77 1.00 4.00 1.87 6.07

DevTech 10.19 3.96 4.00 16.00 0.10 1.66

InpCont 75.05 128.38 0 780.00 3.37 15.78

OutCont 68.90 96.81 0 648.00 3.42 17.50

EnqCont 41.49 75.80 0 398.00 2.70 10.23

FileCont 61.25 79.03 0 383.00 2.24 8.23

IntCont 28.07 36.74 0 172.00 1.83 6.02

AFP 284.41 340.65 10.00 2190.00 2.81 12.63

NorEffort 4309.08 5520.68 508.00 36046.00 2.86 13.29

Table B.9 Definition of software metrics

Metric Definition

DIT (Depth of inheritance tree) The length of the longest path from a given class to

the root in the inheritance hierarchy

NOC (Number of children) The number of classes that directly inherit from a

given class

MPC (Message-passing

coupling)

The number of send statements defined in a given

class

RFC (Response for a class) The number of methods that can potentially be

executed in response to a message being received by

an object of a given class

LCOM (Lack of cohesion in

methods)

The number of pairs of local methods in a given class

using no attribute in common

DAC (Data abstraction

coupling)

The number of abstract data types defined in a given

class

WMC (Weighted methods per

class)

The sum of McCabe‟s cyclomatic complexity of all

local methods in a given class

NOM (Number of methods) The number of methods implemented within a given

class

SIZE1 (Lines of code) The number of semicolons in a given class

SIZE2 (Number of properties) The total number of attributes and the number of local

methods in a given class

CHANGE (Number of lines

changed in the class)

Insertion and deletion are independently counted as 1,

change of the contents is counted as 2

Appendix

226

Table B.10 Descriptive statistics of UIMS dataset

Table B.11 Descriptive statistics of QUES dataset

Metric Maximum Median Minimum Mean Standard

deviation

Skewness Kurtosis

DIT 4 2 0 2.15 0.90 -0.54 0.09

NOC 8 0 0 0.95 2.01 2.24 4.28

MPC 12 3 1 4.33 3.41 0.731 -0.70

RFC 101 17 2 23.21 20.19 2.00 4.94

LCOM 31 6 1 7.49 6.11 2.49 6.86

DAC 21 1 0 2.41 4.00 3.33 12.87

WMC 69 5 0 11.38 15.90 2.03 3.98

NOM 40 7 1 11.38 10.21 1.67 1.94

SIZE1 439 74 4 106.44 114.65 1.71 2.04

SIZE2 61 9 1 13.97 13.47 1.89 3.44

CHANGE 289 18 2 46.82 71.89 2.29 4.35

Metric Maximum Median Minimum Mean Standard

deviation

Skewness Kurtosis

DIT 4 2 0 1.92 0.53 -0.10 5.46

NOC 0 NA 0 0 0.00 NA NA

MPC 42 17 2 17.75 8.33 0.88 1.17

RFC 156 40 17 54.44 32.62 1.62 1.96

LCOM 33 5 3 9.18 7.34 1.35 1.10

DAC 25 2 0 3.44 3.91 2.99 12.82

WMC 83 9 1 14.96 17.06 1.77 3.33

NOM 57 6 4 13.41 12.00 1.39 1.40

SIZE1 1009 211 115 275.5

8

171.60 2.11 5.23

SIZE2 82 10 4 18.03 15.21 1.71 3.42

CHANGE 217 52 6 64.23 43.13 1.36 2.17

