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Summary 

 
Cost estimation is an important issue in project management. The effective 

application of project management methodologies often relies on accurate 

estimates of project cost. Cost estimation for software project is of particular 

importance as a large amount of the software projects suffer from serious 

budget overruns. Aiming at accurate cost estimation, several techniques have 

been proposed in the past decades. Analogy based estimation, which mimics 

the process of project managers making decisions and inherits the formal 

expressions of case based reasoning, is one of the most frequently studied 

methods.  

 

However, analogy based estimation is often criticized for its relatively poor 

predictive accuracy, large computational expense, and intolerance to uncertain 

inputs. To alleviate these drawbacks, this thesis is devoted to improve the 

analogy based method from three aspects: accuracy, efficiency, and 

robustness.  

 

A number of journal/conference papers have been published under this 

objective. The research works that have been done are grouped into four 

chapters (each chapter is focused on one component of analogy based 

estimation): chapter 3 summarizes the work on mutual information based 

feature selection technique for similarity function; chapter 4 presents the 

research on genetic algorithm based project selection method for historical 

database; chapter 5 presents the work on non-linear adjustment to solution 

function; chapter 6 presents the probabilistic model of analogy based 

estimation with focus on the number of nearest neighbors. The remaining 

chapters in this thesis, namely chapters 2 and 7, are the literature review and 

the conclusions and future works. 

 

Research in chapters 3 to 5 aims to enhance analogy based estimation‟s 

accuracy. For instance, in chapter 5 the adjustment mechanism has been 

largely improved for a more accurate analogy based method. Efficiency is 

another important aspect of estimation performance. In chapter 3, our study on 

refining the historical dataset has achieved a significant reduction of 

unnecessary projects and therefore improved the efficiency of analogy based 

method. Moreover, in chapter 6 the study on probabilistic model lead to a 

more robust and reliable analogy based method tolerable to uncertain inputs. 

 

The promising results show that this thesis makes significant contributions to 

the knowledge of analogy based software cost estimation in both the fields of 

software engineering and project management.  
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Chapter 1 Introduction 

 

Recently, the software industry has faced a dramatic increase in the 

demand of new software products. On the other hand, software became more 

and more complex and difficult to produce and maintain. This demand-supply 

contradiction has contributed to the continuous improvements on software 

project management in which the ultimate goal is producing low cost and high 

quality software in short time. Successful software project management 

requires effective planning and scheduling supported by a group of activities, 

among which estimating the development cost (or effort) is fundamental to 

guide other activities. This task is known as Software Cost Estimation. 

Software cost estimation is a very active research field as it was more than 30 

years ago, when the difficulties of estimation were discussed in “The Mythical 

Man Month” (Brooks 1975).  

 

1.1  Software Cost Estimation 

Cost estimation is a critical issue in project management (Chen 2007, 

Henry et al. 2007, Pollack-Johnson and Liberatore 2006). It is particularly 

important for software projects, as numerous software projects suffer from 

overruns (Standing 2004) and accurate cost estimation is one of the key points 

to the success of software project management.  
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Software cost (or effort) estimation is the process of predicting the 

amount of effort required to build a software system (Boehm 1981). It is a 

continuous activity which can or must start at the early stage of the software 

life cycle and continues throughout the life time. During the first phases of 

software life cycle, cost estimation is of necessity for software developing 

team to decide whether or not to proceed, though accurate estimates are 

obtained with great difficulties at this point due to the wrong assumptions or 

imprecise data. During the middle phases, the cost estimates are useful for 

rough validation and process monitoring. After completion, cost estimates are 

useful for project productivity assessment. 

Since the software cost estimation affects almost all aspects of software 

project development such as bidding, budgeting, planning and risk analysis. 

The estimation has great impacts on software project management. If the 

estimation is too low, then the software development will be running under 

considerable constraints to finish the product in time, and the resulting 

software may not be fully functional or tested. On the other hand, if the 

estimation is too high, then too many resources will be committed to the 

project and this may result in significant amount of wasted resources. 

Furthermore, if the company is engaged in a contract, then too high an 

estimate may lead to loss of business opportunity.  

Despite its importance, the estimation of software cost is still a weakness 

in software project management. Aiming at accurate and robust estimation, 



Chapter I. Introduction 

3 
 

various cost estimation techniques have been proposed in past decades. 

Section 1.2 presents a brief introduction to these techniques including our 

research focus: analogy based estimation. 

 

 

1.2  Introduction to Cost Estimation Methods 

According to Angelis and Stamelos (2000)‟s classification system, cost 

estimation methods can be grouped under three categories: expert judgment, 

algorithmic estimation, and analogy based estimation.  

 

1.2.1 Expert Judgment Based Estimation 

Expert judgment requires the consultation of one or more experts to 

derive the cost estimate (Hughes 1996). A Dutch study carried out by 

Heemstra (1992) revealed that 62% of estimators/organizations use this 

intuition technique and a study carried out later by Vigder and Kark (1994) 

also confirmed the widespread use of this technique. Despite its popularity 

this method seems to have received a poor reputation and it is often regarded 

as subjective and unstructured which makes it vulnerable compared with more 

structured methods (Angelis and Stamelos 2000). 

 

1.2.2 Algorithmic Based Estimation 

To date, the algorithmic method is the most popular technique in the 

literature. In algorithmic method, cost value is estimated by using certain 
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mathematical function to link it to the inputs metrics such as „line of source 

code‟ and „function points‟. The mathematical model is often built upon some 

information abstracted from historical projects. Algorithmic method has some 

advantages over expert judgment: it has well defined formal structure; it 

produces identical outputs given the same inputs; it is efficient and good for 

sensitivity analysis (Selby and Boehm 2007). 

The algorithmic method consists of a large number of techniques which 

can be further divided into two classes: function based methods and machine 

learning methods. Examples of function based methods are: COCOMO model 

(Boehm 1981), Function Points Analysis (Albrecht and Gaffney 1983), SLIM 

model (Putnam 1978), and Regressions (Schroeder et al. 1986). Examples of 

machine learning methods are: Artificial Neural Networks (Srinivasan and 

Fisher 1995), Classification and Regression Trees (CART) (Brieman et al. 

1984). 

 

1.2.3 Analogy Based Estimation  

Analogy based estimation (Shepperd and Schofield 1997) is the process 

of identifying one or more historical projects that are similar to the project 

being developed and deriving the estimates from the similar historical projects. 

This technique is intended to mimic the process of an expert making decisions 

based on his/her experience. On the other hand, analogy based estimation has 

a concrete and well-defined estimation framework, given that similar past 
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projects can be easily retrieved and the mechanism applying the nearest 

neighbors is correct. Thus, analogy based estimation is a very flexible method 

which allows the combination of the good aspects in both algorithmic 

methods and expert judgment. It has several advantages such as: it is able to 

deal with poorly understood domains, its output is relatively easy to interpret, 

and it offers the chance to learn from past experiences (Walkerden and Jeffery 

1999).  

 

1.3  Motivations 

As explained in the previous section, analogy based estimation is one 

successful technique for cost estimation. However, it also has been criticized 

for relatively poor predictive accuracy, large computational expense, and 

intolerance to uncertainties. To overcome these drawbacks, many research 

works have been focusing on improving the four key components of analogy 

based system: similarity function, historical database, number of retrieved 

nearest neighbors and solution function (shown in Fig 1.1). 

Similarity function (Shepperd and Schofield 1997), which measures the 

level of similarity between two different projects, is one of the key 

components in analogy based system. The choice of measure is an important 

issue since it affects the projects to be selected as the nearest neighbors. Many 

works (Auer et al., 2006, Huang and Chiu, 2006, Mendes et al., 2003) have 

been devoted to optimize the similarity function or feature weights, and the 
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prediction accuracy of the analogy based system was reported to be 

significantly improved if the appropriate similarity functions or feature 

weights have been selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The historical database is the storage of the past projects‟ information, 

and it is used to retrieve the nearest neighbors. However, due to the instability 

of software development process the historical databases always contain noisy 

or redundant projects which might ultimately hinder the prediction accuracy 

of analogy based estimation. One possible solution is to reduce the whole 

database into smaller subset that consists of merely the representative projects. 

 

Similarity function 

Input 

projects 

Predicted value  

 Historical 

projects 

Solution function 

 

Retrieve k  nearest 

neighbors 

ABE system 

Figure 1.1: The ABE system structure 



Chapter I. Introduction 

7 
 

Despite the importance of subset selection, very few research works (Kirsopp 

and Shepperd 2002) have been focused on this topic. 

The number K of retrieved nearest neighbors decides how many nearest 

neighbors should be selected for the solution function to generate final 

prediction. Many works (Li and Ruhe. 2008, Mittas et al. 2008, Auer et al. 

2006, Mendes et al. 2003, Leung 2002) have investigated the impacts of this 

value on the estimation results and/or considered optimizing this value. 

However, to our knowledge there is no widely accepted technique to choose K 

except the empirical trial-and-error method. Therefore, it is of great interest to 

develop systematic ways to optimize this parameter. 

The solution function calculates the final estimation results from the 

nearest neighbors retrieved from the historical database. If an appropriate 

solution function is used, the prediction performance of analogy based system 

could be improved significantly. In the literature, only linear solution 

functions (Chiu and Huang, 2007, Jorgensen et al., 2003) have been 

considered though the relationships between the cost value and input features 

are usually non- linear. There is still a lack of research works to investigate the 

feasibility of applying non- linear solution functions. 

As discussed above, many studies have been devoted to achieve accurate 

prediction by improving the four components of the analogy based system; 

however there still exists great opportunities to improve analogy based 

estimation for better performance. Moreover, most of the previous studies 
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merely focused on improving accuracy which is one aspect of performance. 

The robustness, which is another important indicator, has received few 

concerns. As budget uncertainty is an important issue in project management 

(Yang 2005, Barraza and Bueno 2007), some authors pointed out that it is 

safer to generate probabilistic predictions such as probability distributions o f 

the effort values or interval estimates with a probability. However, very little 

research (Angelis and Stamelos 2000, Jorgensen and Sjoberg 2003, van Koten 

and Gray 2006) has been done on probabilistic predictions. 

 

1.4  Research Objective 

The objective of this thesis is to improve accuracy, efficiency and 

robustness of analogy based estimation. Accuracy is the indicator of the cost 

estimator‟s ability to produce the quality predictions that match the software 

projects‟ costs. Efficiency is the speed of the cost estimator to complete a 

certain amount of estimation tasks. Robustness reflects the cost estimator‟s 

tolerance to uncertain inputs such as missing values and noisy data.  

A number of journal/conference papers have been published under this 

objective. The research works that have been done are grouped into four 

chapters (each chapter is focused on one component of analogy based 

estimation): chapter 3 summarizes the works on mutual information based 

feature selection technique for similarity function; chapter 4 presents the 

research on genetic algorithm based project selection method for historical 
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database; chapter 5 presents the work on non-linear adjustment to solution 

function; chapter 6 presents the probabilistic model of analogy based 

estimation which is focused on the number of nearest neighbors. The 

distribution of chapters 3 to 6 in the framework of analogy based system is 

illustrated in fig 1.2 where the shaded boxes with characters „CH‟ stand for 

chapters (e.g. CH 3 stands for chapter 3). The remaining chapters in this thesis, 

namely chapters 2 and 7, are the literature review and the conclusions. 

 

 

 

 

All of our research works share a common objective - enhance the 

analogy based estimation‟s capability to achieve more accurate results. In 

 

 

Similarity function 

Input 

projects 

Predicted value  

 Historical 

projects 

Solution function 

 

CH 4 

CH 5 CH 6 

Retrieve k  nearest 

neighbors 

CH 3 
ABE system 

Adjustment 

Figure 1.2: The ABE system structure and distributions of the research works Figure 1.2: The distribution of research works 
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practice, this is very important for the software enterprises to maintain a better 

control of the budget throughout their software development processes. 

Theoretically speaking, these studies have contributed to the optimization of 

individual component of analogy based system. For instance, historical 

database and solution function have been largely refined or improved in our 

works. Furthermore, these studies point out a feasible direction to the global 

optimization of analogy based system. 

Efficiency is another important aspect of estimation performance. In 

practice, improving estimation efficiency means enhancing the chance of 

winning bids. Many machine learning methods such as ANN and RBF can be 

very accurate in some situations, but they are often suffering from slow 

training speed. In addition, expert judgment could also be time consuming, as 

it usually takes time to gather/interview experts. Our studies on refining the 

historical dataset of analogy based system have achieved a significant 

reduction of unnecessary projects. Consequently, the efficiency of analogy 

based system is largely improved by our algorithm. 

Moreover, the studies on probabilistic model lead to a more robust and 

reliable analogy based system. These studies could enhance the system‟s 

capability to deal with a broader scope of situations such as missing values 

and ambiguous inputs. Additionally, the probabilistic prediction provides a 

feasible way to model the inherited uncertainties and variabilities in the 

software development process.  
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As mentioned above, our research on analogy based estimation is of 

significant theoretical value and practical value. For a better understanding of 

our research work, the detailed background information of our research work 

is presented in the literature review in next chapter. 
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Chapter 2  Literature 

Review on Software Cost 

Estimation Methods 

 

To obtain accurate software project cost estimates, various kinds of 

methods have been proposed. This chapter provides a detailed summary of the 

software cost estimation methods published in the past decade. The evaluation 

criteria for the prediction accuracy of these methods are also summarized and 

analyzed. 

 

2.1  Introduction  

In the literature there are several comprehensive overviews on the cost 

estimation methods, such as Walkerden and Jeffery (1997), Boehm et al. 

(2000), Briand and Wieczorek (2002), Jorgensen (2004a) and Jorgensen and 

Shepperd (2007). Among them, some reviews (Walkerden and Jeffery 1997, 

Boehm et al. 2000, Briand and Wieczorek 2002) have proposed different 

classification systems. 

Walkerden and Jeffery (1997) introduced a system with four classes of 

estimation methods: empirical, analogical, theoretical, and heuristic. However, 

they stated that expert judgment cannot be included into their system. 

Moreover, there are overlaps between analogical and empirical, as analogical 
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estimation process often involves empirical decisions (such as the choice of 

similarity measures in analogy based method) (Briand and Wieczorek 2002). 

Lately, Briand and Wieczorek (2002) defined a hierarchical scheme starting 

from two major classes (model-based methods, non-model-based methods) 

that are further divided into several sub-classes. The sub-classes contain 

further divisions and so on. Although the authors claimed that their system 

covers most types of estimation methods, the hierarchical system has a more 

complicated tree type structure with more intermediate nodes than other flatter 

systems and each intermediate node needs its own definition (such as „data 

driven‟ and „proprietary‟). Boehm et al. (2000) proposed a simpler but 

comprehensive framework consisting of six major classes: parametric models, 

expert judgment, learning oriented techniques, regression based methods, 

dynamic based models, and composite methods. Directly under each major 

class are the estimation methods and this system can include most types of 

estimation methods (Boehm et al. 2000). Our classification system is modified 

from Boehm‟s framework with the consideration to balance the number of 

recent publications under each major class. 

 

2.2  Literature Survey and Classification System 

Prior to our classification system, a structured literature survey is 

conducted to select the related journal papers during the period between 1999 

and 2008. The keywords used for searches in SCI engine are „software cost 
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estimation‟, „software effort estimation‟, „software resource estimation‟, 

„software effort prediction‟, „software cost prediction‟, „software resource 

prediction‟, and „software prediction‟. The main criterion for including a 

journal paper in the survey is that the paper presents research on software 

development effort or cost estimation. Papers related to prediction of software 

size/defects, modeling of software process, or identification of factors 

correlated with software project cost, are included only if the main purpose of 

the study is to improve software cost estimation. The papers with pure 

discussions or opinions are excluded. The process above results in a collection 

of 158 journal papers.   

To construct our classification system, we first calculate the number of 

publications under each category in Boehm (2000)‟s system. The results 

reveal that the recent research trend has different emphases on each category, 

for example there are more than 80 papers related to „learning oriented 

techniques‟ while only 5 papers and 4 papers under „dynamic based models‟ 

and „composite methods‟ respectively. In addition, Boehm‟s scheme does not 

include the discrete event simulation model which has only recently appeared 

as one promising technique. Moreover, there are 35 papers related to „analogy 

based estimation‟ which stands for the largest proportion among the „learning 

oriented techniques‟.  

For a more balanced structure, we combine the classes „dynamic based 

models‟, „composite methods‟ and other emerging methods (such as discrete 
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event simulation) to form the category „Other methods‟. Furthermore, we split 

the „analogy based estimation‟ from the „learning oriented techniques‟ to be a 

major class, and we rename the remaining methods under „learning oriented 

techniques‟ as „machine learning techniques‟. The reason for this splitting is 

that analogy based method is the learning oriented method with highest 

amount of publications and many previous studies (Walkerden and Jeffery 

1997, Angelis and Stamelos 2000) have already regarded it as one major class.  

Analogy based estimation is particularly popular in the context of software 

cost estimation which might be due to the fact that analogy based estimation 

build up the connections between project managers making cost estimation 

based on the memories of past experiences and the formal use of analogies in 

Case Based Reasoning (CBR) (Kolodner 1993). 

From the discussion above, our classification system is established in Fig 

2.1. It contains six major categories: expert judgment, parametric models, 

regressions, machine learning methods, analogy based estimation, and other 

methods.  

Based on our classification system, the number of publications per year of 

each major class is summarized in table 2.1. It is seen that regressions and 

machine learning methods are the most popular methods in the past decade. 

Parametric models and analogy based estimation rank at the third place.  
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COCOMO: constructive cost model, FPM: Function point model, SLIM: software life-cycle model, 

ANN: artificial neural networks, BM: Bayesian methods, CART: classification and regression trees, 

RBF: radial basis functions, SVM: support vector machine, GP: genetic programming, FL: fuzzy logic, 

OLS: ordinary least-square regression, RR: robust regression, SWR: stepwise regression, DM: dynamics 

models, CM: composite methods, SM: simulation models.  

 

 

Table 2.1: Number of publicat ions in each year from 1999 to 2008 

Year EJ PM RE ML AB OT 

1999 2 3 4 1 1 1 

2000 1 2 5 5 3 1 

2001 3 4 8 6 5 3 

2002 0 4 4 4 1 1 

2003 4 2 6 5 6 2 

2004 7 1 3 3 1 2 

2005 3 3 6 6 1 1 

2006 2 6 5 8 3 4 

2007 3 6 8 5 5 3 

2008 3 4 10 10 9 2 

Total 28 35 59 53 35 20 

EJ: expert judgment, PM: parametric models, RE: regressions 

ML: machine learning methods, AB: analogy based estimation, OT: other methods 

Estimation 

methods 

Expert 

judgment 

Machine 

learning 

 Parametric 

models  

Analogy based 

estimation 

COCOMO 

 
Regressions 

FPM SLIM 

Other 

method

s 

OLS RR SWR DM 

CM 

ANN BM CART RBF SVM GP FL 

SM 

Figure 2.1: The classificat ion of software cost estimation methods 
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To investigate the trends of publications, the proportion of each class 

from 1999 to 2008 is depicted in the bar-charts of fig 2.2. The whole period is 

divided into three nearly equal segments: 1999 – 2001, 2002 – 2004, and 2005 

– 2008. Fig 2.2 suggests that: 

 

 Regression technique is the most frequently used method. This 

observation confirms with Jorgensen and Shepperd (2007)‟s survey. 

Among the regression papers, a large number of papers use regressions to 

compare with the estimation methods they propose.  

 

 The proportion of papers on machine learning methods is constantly 

increasing and they have the same proportion of publications as 

regressions have in recent 4 years. Unlike regression papers, majority of 

machine learning papers introduce or propose new cost estimation 

techniques. 

 

 The proportions of papers on parametric models and analogy based 

estimation are around 15% with some small fluctuations. 

 

 The popularity of expert judgment based estimation was at its highest in 

the period 2002-2004. 

 

 The proportion of „other methods‟ is around 8% throughout the past 

decade. 

 

 The distributions of the papers become more and more even, as in the 

period after 2001 no method stands for a proportion larger than 25%. This 

observation is one supportive evidence for our modifications to Boehm‟s 

classification system. 

 

In the following sections, a comprehensive review is presented for each 

major class. 
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Figure 2.2: The distribution of publicat ions of each class during 1999 - 2008 

EJ: expert judgment, PM: parametric models, RE: regressions, ML: machine learning 

methods, AB: analogy based estimation, OT: other methods 

 

2.3  Cost Estimation Methods 

2.3.1 Expert Judgment 

Expert judgment requires the consultation of one or more experts to derive 

the cost estimate (Hughes 1996). With their experience and understanding of 

the new project and the experience from past projects, the experts could obtain 

the estimation by a non-explicit and non-recoverable reasoning process, i.e., 

“intuition”. As reported in the business forecasting study conducted by 

Blattberg and Hoch (1990), most estimation processes have both intuitive and 

explicit reasoning elements. In fact, even formal software cost estimation 

models may require expert estimates as important input parameters (Pengelly, 
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1995). Jorgensen (2004a) presented an extensive review of studies related to 

the expert estimations conducted before 2003. As a subsequent work of 

Jorgensen (2004a)‟s, we focus on the expert judgment studies published after 

2003. Expert judgment often encounters a number of issues, such as estimate 

uncertainty, bias caused by over-optimism, and etc. A number of research 

works are aiming to solve these problems.  

To describe the uncertainty of cost estimate, Jorgensen and Sjoberg (2003) 

proposed and evaluated a Prediction Interval (PI) approach, which is based on 

the assumption that the estimation accuracy of earlier software project predicts 

the cost PIs of new projects. Lately, Jorgensen et al. (2004) conducted four 

studies on expert judgment based PIs. The results suggest that the PIs were 

generally much too narrow to reflect the chosen level of confidence. Moreover, 

Jorgensen (2004b) claimed that the traditional request for PIs is not optimal 

and leads to overoptimistic views about the level of estimation uncertainty.  

Many works are devoted to the study of the over-optimism phenomenon. 

Moløkken and Jørgensen (2005) observed that people with technical 

competence provided more overoptimistic estimates than those with less 

technical competence. Jørgensen et al. (2006) examined the degree to which 

level of optimism in software engineers‟ predictions is related to optimism on 

previous predictions. Jørgensen et al. (2007) concluded that optimistic 

software engineers have a number of characteristics such as higher confidence 

in their own predictions, lower development skills, poorer ability or 
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willingness to recall effort on previous tasks, and etc. Some techniques are 

proposed to reduce the bias towards over-optimism. Jorgensen (2005) 

provided some evidence based guidelines for assessing the uncertainties in 

expert judgment. Moløkken and Jørgensen (2004) propose an approach 

combining the judgments of experts with different backgrounds by means of 

group discussion.  

In addition, other studies summarize different characteristics of expert 

judgment. Jorgensen and Sjoberg (2004) discovery that customer expectations 

of a project's total cost can have a very large impact on expert judgment. 

McDonald (2005) shows that cost estimates are dependent upon two kinds of 

team experience: (1) the average experience for the members of each team and 

(2) whether or not any members of the team have similar project experience. 

Grimstad and Jørgensen (2007) reported a high degree of inconsistency in the 

previous experts‟ estimates. Jorgensen (2004d) suggested that the recall of 

very similar previously completed projects seemed to be a pre-condition for 

accurate top-down based estimates. 

Although expert judgment has been used widely, the estimates are 

obtained in a way that is not explicit and consequently difficult to be repeated. 

Nevertheless, expert judgment can be an effective estimate tool when used as 

an adjustment factor for algorithmic models (Gray et al. 1999). 
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2.3.2 Parametric Models  

Parametric models are defined by mathematical formula and need to be 

calibrated to local circumstances in order to establish the relationship between 

the cost and one or more project features (cost drivers). Usually, the principal 

cost driver used in such models is software size (for instance, lines of source 

code, the number of function points, pages, etc.). This section includes three 

function methods, COCOMO (Boehm, 1981), Function Points Analysis 

(Albrecht and Gaffney, 1983), and SLIM model (Putnam, 1978). 

 

COCOMO (Constructive Cost Model) 

COCOMO I is one of the best known and best documented software cost 

estimation model (Boehm 1981). It is a set of three modeling levels: basic, 

intermediate, and detailed. The basic COCOMO takes the following 

relationship between cost (effort) and size: 

 

bKLOCaY )(
                   (2.1) 

 

where Y is the project effort/cost, KLOC represents the size in terms of 

thousands of lines of source code, and the coefficients a and b depend on 

COCOMO‟s modeling level and the mode of the project to be estimated 

(organic, semidetached, embedded). In all cases, the value of b is greater than 

1. The intermediate and detailed COCOMO takes the following general form: 
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where EMi is the ith effort multiplier. Effort multiplier is the parameter 

that affects effort the same degree regardless of project size. However, 

COCOMO together with its Ada (Kaplan 1991) update are prone to 

difficulties in estimating the costs of software developed in new lifecycle 

processes and capabilities (such as iterative model and spiral model). 

The research on COCOMO II started in 1994. COCOMO II (Boehm et al. 

1995) has two models (early design and post architecture) for cost estimation 

at different development stages. Early design model is used in the initial 

stages of a software project when very little information is known about the 

product being developed. The post architecture model is the most detailed 

estimation model and it is used when software lifecycle architecture has been 

developed. The early design and post architecture models share a common 

form: 
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               (2.3) 

 

where the five „scale factors‟ are the parameters that have large influence 

on big projects and small influence on small projects (which is different from 



Chapter II. Literature Review on Software Cost Estimation Methods  

23 
 

the effort multipliers). The scale factors are precedentedness, development 

flexibility, risk resolution, team cohesion, and process maturity. Early design 

model and post architecture model have different number (n) of effort 

multipliers. Detailed descriptions about the effort multipliers can be found in 

(Boehm et al. 1995) 

Lately, a lot of research works have been done on the COCOMO models. 

Chulani et al. (1998) proposed a new version of COCOMO II model which 

includes a 10% weighted average approach to adjust prior expert determined 

model parameters. Moreover, Chulani et al. (1999) introduced the Bayesian 

inference for the tuning of the expert determined model parameters. 

Jongmoon et al. (2002) proposed a way of integrating CASE tool into 

COCOMO II and their approach resulted in an increase in the prediction 

accuracy. Benediktsson et al. (2003) introduced the COCOMO-style cost 

model for the incremental development and explore the relationship between 

effort and the number of increments. Han et al. (2005) adopted COCOMO 

model for software project financial budget optimization. Huang et al. (2007) 

proposed a novel neuro-fuzzy COCOMO model and the authors report that 

this model greatly improves estimation accuracy. More recently, Fairley (2007) 

provided a comprehensive overview on COCOMO models. This paper 

presents a summary of recent work on COCOMO modeling and provides 

future directions for COCOMO-based education and training.  
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Function Points Model (FPM) 

The function point (FP) measure was first developed by Albrecht (1979) 

as an alternative to lines of code for measuring the software size. The function 

point method defines five basic function types to estimate the size of the 

software. The five functions types are internal logical files (ILF), external 

interface files (EIF), external inputs (EI), external outputs (EO), and external 

inquiries (EQ).  

Based on the definition of function points, a number of researchers 

(Albrecht and Gaffney 1983, Kemerer 1987, Matson et al. 1994, Abran and 

Robillard 1996) used FP for cost estimation. In their studies, each function 

point is first classified into one of three complexity levels: low, average or 

high. Then an integer complexity value is assigned to the function point based 

on the ordinal scale complexity classification. Furthermore all the identified 

function complexity values are added together to derive an unadjusted 

function point count (FPC). Additionally, this count is often adjusted by up to 

14 technical complexity factors that account for a variety of non-functional 

system requirements (e.g.  performance, reliability, backup and recovery etc.) 

to give an adjusted function point count (AFPC). The resulting counts are then 

used to derive the cost estimate by using the following form: 

 

)(AFPCFPCbaY                        (2.4) 
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where a and b are the coefficients determined by ordinary linear regression 

method. As the software industry keeps evolving rapidly, many other types of 

size metrics are developed, such as Weighted Methods per Class (WMC), 

Number Of Children (NOC) (Chidamber and Kemerer 1994), and Class Point 

(CP) (Costagliola et al. 2005). However, many current papers still considered 

function point as one of the critical factors in their cost models (Kitchenham 

et al. 2002, Ahn et al 2003, Moses and Farrow 2005).  

 

Software Life-cycle Model (SLIM) 

Putnam (1992) first developed the Software Life-cycle Model (SLIM). 

The basic assumption of SLIM is that the Rayleigh distribution (See Fig 2.3) 

can be used to model the change of staff levels on large software projects 

which have more than 70,000 „Thousands of Delivered Source Instruction‟s 

(KDSI). It is assumed that the number of people working on a project is a 

function of time. A project starts with relatively few people and the manpower 

reaches a peak and then falls off. The decrease in manpower during the testing 

is less than that during the earlier construction phase. In addition, Putnam 

explicitly excluded requirements analysis and feasibility studies from the life 

cycle.  

The basic Rayleigh curve (Fig 2.3) defining the effort distribution is 

described by the following differential equation: 
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)exp(2 2atKat
dt

dy
                      (2.5) 

 

where t is elapsed time from the starting point of a software project, K is the 

total project effort, and a is a constant that determines the shape of the curve.  

 

  

Figure 2.3: Rayleigh function in SLIM model 

 

In order to obtain the total project effort K and development time td, the 

following two formulas can be derived after a few algebraic manipulations: 
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where S is the system size measured by KDSI (Thousands of Delivered 

Source Instructions), D0 is the manpower acceleration, and C  is the 

Staff Level 

Time 
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technology factor. SLIM does not gain much popularity as COCOMO and 

FPM. However, in the early 2000‟s the company named „Quantitative 

Software Management‟ has developed a successful package of three tools 

based on Putnam‟s SLIM. These include SLIM-Estimate, SLIM-Control and 

SLIMMetrics. SLIM-Estimate is a project planning tool, SLIM-Control is a 

project tracking and oversight tool, and SLIM-Metrics is a software metrics 

repository and benchmarking tool. More information on these SLIM tools can 

be found at http://www.qsm.com. 

 

2.3.3 Regressions 

According to our survey, regression methods are most popular in the past 

decade. The most commonly used regressions method is the Ordinary Least 

Square (OLS) regression which has also been criticized for its restrictive 

assumptions and poor performance. This section also includes other types of 

regression such as robust regression and stepwise regression. These 

techniques are regarded as the improved version of OLS regression.  

 

Ordinary least-square regression (OLS regression)  

OLS regression is one of the most commonly used models for cost 

estimation. In general, a linear regression has the following form: 

 

eXbXbXbaY nn  ...ˆ
2211                (2.7) 

http://www.qsm.com/
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where Ŷ  denotes the dependent variable (project cost/effort), Xi stands for 

independent variables (project features/cost drivers), and bi is the so called 

regression coefficient, a is referred as the intercept, and the error term e is a 

random noise with a normal distribution.  

The OLS regression has a number of strong assumptions. One important 

assumption is the so called homoscedasticity which means that the differences 

between the actual values and the predicted values do not change under 

different values of Xi. Another assumption is that OLS variables are all 

continuous in nature. Thirdly, OLS regression requires that there are no outlier 

values in both independent and dependent variables. However, extreme 

outliers are commonly found in software engineering dataset, probably due to 

the misunderstandings or lack of precision in the data collection process.  

Finally, no missing data is allowed in OLS regression. On the contrary, 

missing data is often reported when there is limited time and budget for data 

collection. In all, many of the difficulties discussed above can be solved by 

some advanced techniques such as robust regression, logistic regression and 

data imputation. However these advanced techniques remain difficult to be 

implemented by most engineers and managers, and applying them still 

requires extensive training and experience (Briand and Wieczorek 2002). 

Although OLS regression is one of the oldest methods for cost estimation, 

it is still widely applied and continuously improved for more accurate 
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predictions. Kitchenham (1998) proposed analysis of variance (ANOVA) and 

OLS regression to analyze unbalanced data sets. Angelis et al. (2001) 

proposed categorical regression (CATREG) for the datasets with large number 

of categorical attributes, such as ISBSG (ISBSG, 2007) dataset. Sentas et al. 

(2005) modified the standard OLS regression to produce the interval 

predictions. Jeffery et al. (2000) applied OLS regression on both ISBSG data 

and company specific data with comparison against analogy based method. 

More recently, Jorgensen (2004) conducted some regression analysis of cost 

estimation on a data collection of 49 software development projects. Lucia et 

al. (2005) applied multivariate OLS regression for corrective maintenance 

effort estimation. Mendes et al. (2005) applied multivariate OLS regression 

for Web effort estimation. Multivariate OLS has identified „total number of 

Web pages‟ and „features provided by the application‟ to be the two most 

influential effort predictors. Costagliola et al. (2005) applied multivariate OLS 

regression to predict development effort of object oriented systems by using 

class points. 

 

Robust Regressions (RR) 

Robust regressions are an improved version of OLS regression. They 

alleviate OLS regression‟s sensitivity to outliers. Instead of minimizing the 

sum of square of absolute error in OLS regression, robust regressions use 

other objectives for optimization. There are several types robust regression 
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such as LMS (least median of squares) which minimizes the median of square 

of absolute error (Rousseuw and Leroy, 1987), LBRS (least-squares of 

balanced relative errors) which minimizes the sum of squares of balanced 

relative error, and LIBRE (least-squares of inverted balanced relative errors) 

which minimizes the sum of squares of inverted balanced relative error 

(Miyazaki et al. 1994).  

Another approach that can be regarded as robust regression is a technique 

that only uses the data points lying within two (or three) standard deviations 

of the mean response variable (Boehm et al. 2000). This method automatically 

filters out outliers and it can be used only when there are sufficient 

observations. Although this technique has the weakness of eliminating outliers 

without direct reasoning, it is still very useful for developing software 

estimation models on the dataset where there are only a few project features. 

 

Stepwise regression (SWR) 

Stepwise regression (Schroeder et al. 1986) is based on an important 

assumption that some independent variables in a multivariate regression do 

not have an important explanatory effect on the dependent variable. If this 

assumption is true, to keep only the statistically significant variables is a 

convenient simplification. Usually, stepwise procedure takes the form of a 

sequence of F-tests, but other techniques are also applicable, such as t-tests 

and adjusted R-square. The stepwise regression main approaches are: (1) 
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forward selection, which involves starting with no variables in the model, 

trying out the variables one by one and including them if they are statistically  

significant; and (2) backward selection, which involves starting with all 

candidate variables and testing them one by one for statistical significance, 

deleting any that are not significant. Stepwise regression has been frequently 

employed for cost estimation (Shepperd et al. 1997, Shepperd and Kadoda 

2001, Mendes et al., 2003).  

 

2.3.4 Machine Learning  

Machine learning (ML) methods imitate some functionality of human 

mind and allow us to deal with large and complex problems at a relatively 

high speed (Schank 1982). The ML techniques have been successfully applied 

to many difficult problems such as pattern recognition, biology, stock market 

analysis, and etc. Recently they become increasingly popular in software cost 

estimation research. In literature, Classification and Regression Trees 

(Brieman et al. 1984), Bayesian Methods (Chulani et al. 1998), and Artificial 

Neural Networks (Lawrence, 1994) are the most common ML techniques. 

Other ML techniques (such as radial basis function, support vector machine, 

and genetic programming) are also introduced for cost estimations. This 

section provides a detailed overview on ML methods. 
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Classification and Regression Trees (CART) 

The classification and regression tree method was first proposed by 

Brieman et al. (1984). This method is originally a non-parametric and tree 

structured analysis procedure that can be used for classification. Lately the 

trees are used for problems with numerical targets, so they are named as 

regression trees. Being the combination of both types of trees, the total 

method is called classification and regression tree (CART).  

The construction of the CART involves recursively splitting the data set 

into (normally two) relatively homogeneous subsets until the terminate 

conditions (for numerical variables e.g. Q: is weight > 50? And for categorical 

variables e.g. Q: is transparency high?) are satisfied. The partition is 

determined by splitting rules associated with each of the internal nodes. Each 

instance in the data set is assigned to a unique leaf node, where the conditional 

distribution of the response variable is determined. The best tree is determined 

by cross-validation using a spread minimization criterion.  

CART provides additional information about the tree generated. At each 

partition, it gives a list of „competition‟ and „surrogates‟ for the independent 

variables. The variables with „competition‟ tag will be kept for the next split. 

„Surrogate‟ variables are highly correlated with the independent variables used 

to partition the data and surrogate variables could be used as alternative 

factors.  

CART has the following advantages: the capability of dealing with 
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categorical features, the easily understandable diagram of complex data and 

the ability to identify the major subsets in the total dataset (Srinivasan and 

Fisher 1995). Due to these advantages, CART is frequently adopted by 

researchers in cost estimation area (Briand et al.1998, Kitchenham 1998, 

Briand et al. 1999, Khoshgoftaar et al. 1999, Pickard et al. 1999, 

Stensrud .2001, Stewart 2002, Mendes et al. 2003).  

  

Bayesian Methods 

Chulani et al. (1999) criticized the traditional software effort estimation 

models that software engineering data sets do not follow the parametric 

assumptions and traditional models do not provide any support for risk 

assessment and mitigation. They first proposed the Bayesian inferences to 

address these problems. Bayesian inference provides posterior distributions for 

model parameters of interest by the following formula: 

 

)(

)()|(
)|(
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fXf
Xf


                       (2.8) 

 

where )|( Xf   is the posterior distribution of the parameter   given 

the distribution of the data sample X, )(Xf  is the distribution of data sample 

X, )(f  is the prior distribution of parameter  , which represents 

knowledge about the parameter prior to data collection (Gelman et al., 1998), 

and )|( Xf  is the sampling distribution representing the distribution of the 
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data sample X given the parameters used to model the data.  

Since Bayesian inference is a promising technique to integrate 

information from different sources, it gains significant popularity in software 

cost estimation. For example, Jongmoon et al. (2002) employed Bayesian 

inference to combine two sources of information, from expert-judged and 

data-determined, to increase prediction accuracy. Many other recent studies 

also use Bayesian inference, such as Moses (2002), Moses and Farrow (2003), 

Moses and Farrow (2005), Van Koten and Gray (2006). 

Besides Bayesian inference, the Bayesian Belief Networks (BBN) also 

receives increasing concerns as a successful alternative for uncertainty 

modeling. The main concepts behind Bayesian inference also hold for BBN. 

The BBN is a directed acyclic graph describing probabilistic cause-effect 

relations among the linked nodes. Each node represents a random variable that 

can takes discrete or continuous values according to a probability distribution, 

which can be different for each node. Each influence relationship is 

represented by an arc starting from the influencing variable (parent node) and 

ending on the influenced variable (child node).  The independence (conditional) 

of two variables can be determined by the conditions of d-separations (Pearl 

1988).  

BBN is adopted by many authors for cost estimation. Stewart et al. (2002) 

investigated the utility of the Naive-Bayes classifier which is a special kind of 

BBN. Stamelos et al. (2003) illustrated the use of BBN to support expert 
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judgment for software cost estimation. Pendharkar et al. (2005) illustrated 

how a belief updating procedure can be used to incorporate decision-making 

risks. 

 

Artificial Neural Network (ANN) 

Artificial neural network (ANN) is one of the machine learning 

techniques that have played an important role in solving complex problems 

with difficult or unknown analytical solution (Lawrence, 1994). It has become 

an important element in approximating nonlinear relationships.  

 

 

 

 

The inputs and outputs are linked according to specific topologies where 

each neuron is connected to at least one other neuron in a mesh-like fashion. 

Data Inputs Model output 

Cost estimation 

Project feature 1 

Project feature 2 

Project feature n 

Project feature 3 

. 

. 

. 

. 

. 

. 

Figure 2.4: An example of art ificial neural network 
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There are three distinct layers in a neural network: the input layer, the hidden 

layer(s), and the output layer. The connections of neurons across layers 

represent the transmission of information between neurons. Fig 2.4 depicts a 

three layer network consisting of a stream of input project features to the input 

layer, a hidden layer of some neurons and an output layer with cost estimate as 

the output value. 

Due to its good approximation capability, neural network has been 

frequent studied/applied for cost estimation. Many studies aim to improve the 

performance of ANN. Srinivasan and Fisher (1995) first proposed neural 

network for cost estimation. Samson et al. (1997) introduced the Albus 

perceptron based neural network for cost estimation. Lee et al. (1998) 

integrated neural network with cluster analysis. Shukla (2000) proposed a 

neural network (NN) predictor trained genetic algorithm. Eung and Jae (2001) 

proposed a search method that finds the right level of relevant cases for the 

neural network model. Other studies simply adopted NN as a candidate 

method for the comparisons against their estimation methods (Finnie et 

al.1997, Gray and MacDonell 1997, Wittig and Finnie 1997, Gray and 

MacDonell 1999, Burgess and Lefley 2001, Shepperd and Kadoda 2001, Heiat 

2002, Pendharkar and Subramanian 2002, Mair et al. 2000, Heiat 2002, de 

Barcelos et al. 2007). 
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Other Machine Learning Methods 

In addition to the techniques described above, many different types of 

machine learning methods also appeared in the literature. Examples are Radial 

Basis Function (Shin and Goel 2000, Dri et al. 2006), Support Vector Machine 

(Vapnik 1995, Adriano 2006), Genetic Algorithm/Programming (Shukla 2000, 

Burgess and Lefley 2001, Aguilar-Ruiz et al. 2001), and Fuzzy Logic 

(Ahmeda et al. 2005, Engel and Last 2007). 

 

2.3.5 Analogy Based Estimation 

Analogy based estimation (ABE), which was first proposed by Sternberg 

(1977), is essentially a case-based reasoning (CBR) approach (Shepperd and 

Schofield 1997). The principle of ABE is relatively simple: when provided a 

new project, it identifies one or more historical projects that are similar to the 

current project and then derives the final estimates from these nearest 

neighbors. Generally, ABE consists of four components: similarity function, 

historical database, number of retrieved nearest neighbors and solution 

function (See Fig 1.1). The ABE system procedure normally consists of the 

following four stages: 

 Collect the past projects‟ information and prepare the historical data set  

 Select current project‟s features such as Function Points (FP) and Lines 

of Source Code (LOC), which are also collected with past projects  

 Calculate the similarities between new project and the past projects, and 
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identify the nearest neighbors. The commonly used similarity function is 

the reciprocal of weighted Euclidean distance. 

 Predict the cost of the new project from the chosen nearest neighbors by 

using the solution function. Usually the mean value function is used as 

solution function. 

Aiming to improve ABE‟s performance, many works have been devoted 

to improve its four components. The following paragraphs present detailed 

descriptions of these components and summarize published works under these 

components: 

 

Similarity Function 

The similarity function, which measures the level of similarity between 

two different projects, is one of the key components in ABE. The choice of 

measure is important since it affects which projects are selected as the nearest 

neighbors. The similarity function has the general form (Li et al. 2007): 

 

 )',(,),',(),',()',( 2211 nn ffLsimffLsimffLsimfppSim            (2.9) 

 

where p and p′ denote any two projects, fi and fi′ denote the features of project, 

n is the number of features in each project, and )(Lsim  is the so called local 

similarity function of every project feature. The function  f  and )(Lsim  

together define the structure of similarity function. All types of similarity 
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functions are special cases of this general form.  Among various types of 

similarity functions, Euclidean distance based similarity (ES) and Manhattan 

distance based similarity (MS) are most popular. The Euclidean similarity is 

based on the Euclidean distance between two projects: 
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(2.10) 

where p and p’ denote any two projects, if  and 'if  denote the ith features 

of projects p and p’ respectively, wi  [0, 1] is weight of ith feature,   is a 

small constant to prevent the situation that the denominator equals 0, and n is 

the total number of features. The Manhattan similarity is based on the 

Manhattan distance which is the sum of the absolute distances for each pair of 

features. 
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In the literature, there are many other types of similarity measures, such 

as Maximum distance based similarity (Angelis and Stamelos 2000), 

Minkowski distance based similarity (Angelis and Stamelos 2000), and rank 

mean similarity (which is the mean value of the ranking of each project 

feature) (Walkerden and Jeffery 1997). A summary of the similarity functions 

used in a previous paper is provided in table 2.2. Table 2.2 shows that 

Euclidean similarity is the most popular similarity function, as it has the 

straightforward geometrical definition of the distance between two points in 

the k-dimension Euclidean space.  

 

Table 2.2: Summary of d ifferent similarity functions 

Source Euclidean 

Similarity 

Manhattan 

Similarity 

Maximum 

Similarity 

Minkowski 

Similarity 

Rank 

Mean 

Shepperd and Schofield 

(1997) 

Yes No No No No 

Walkerden and Jeffery 

(1999)  

No No No No Yes 

Angelis and Stamelos 

(2000) 

Yes Yes Yes No No 

Leung (2002) No Yes No No No 

Mendes et al. (2003) Yes No Yes No No 

Jorgensen et al. (2003) Yes No No No No 

Auer et al. (2006) Yes No No No No 

Huang and Chiu (2006) Yes No No No No 

Chiu and Huang (2007) Yes Yes No Yes No 

Li et al. (2007) Yes No No No No 

Mittas et al. (2008) Yes No No No No 

Li and Ruhe (2008a) Yes No No No No 

Li and Ruhe (2008b) Yes No No No No 

Keung et al. (2008) Yes No No No No 

Totals 12 3 2 1 1 

 



Chapter II. Literature Review on Software Cost Estimation Methods  

41 
 

In the literature, there are some works comparing the performances of 

different similarity functions. Angelis and Stamelos (2000) concluded that the 

Euclidean similarity, Manhattan similarity, and Maximum similarity produced 

almost the same results. However, they also state that this result may be 

affected by the choices of data set. Mendes et al. (2003) have found out that 

the maximum similarity for one and three nearest neighbors produces 

statistically worse results than Euclidean similarity. Chiu and Huang (2007) 

claimed that the differences among Euclidean similarity, Manhattan similarity 

and Minkowski similarity are trivial. In all, there is still no solution to the 

problem of under which condition what type of similarity function is 

preferable. The relationship between choice of similarity function and 

characteristics of historical dataset is worth explorating. 

Using the similarity functions in (2.10) and (2.11),  it is reasonable to 

conjecture that different features may have different importance to the total 

similarity (for example, in many cost models the feature „function point‟ is 

more important than the feature „programming language‟). Moreover, many 

researchers point out that there exist large potentials to improve ABE‟s 

accuracy by assigning appropriate weights to the right feature. In this direction, 

several research works are focusing on determining the optimal weight of 

each feature (feature weighting). Shepperd and Schofield (1997) set each 

weight to be either 1 or 0 and then apply a brute-force approach to choose 

optimal weight values, Walkerden and Jeffery (1999) used human judgment to 
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determine the feature weights, Angelis and Stamelos (2000) determined the 

feature weight by some statistics (such as inverse variance or range values), 

Mendes et al. (2003) employed a statistically significant correlation approach 

for the assignment of feature weights, Auer et al. (2006) developed a flexible 

exhaustive search method to determine the weights, Most recently, Huang and 

Chiu (2006) proposed the genetic algorithm for feature weighting.   

 

Historical Database 

The historical database used for retrieving the similar past projects is also 

a key component in ABE system. Reducing the whole historical data set into a 

smaller subset that consists only of representative projects can significantly 

improve ABE‟s performance. First, it reduces the search space and therefore 

can save computational time searching for nearest neighbors. Second, it 

produces quality results because it may eliminate some outliers in the dataset. 

However, very list research has been done on this topic. Kadoda et al. (2000) 

conducted one preliminary study on project selection via forward sequential 

selection. Recently, Li et al. (2007, 2009b) proposed a genetic algorithm 

based framework to optimize both project subset and feature weights.  

 

Number of Nearest Neighbors: K 

The number of nearest neighbors K is another important parameter in 

ABE system. Many papers have investigated the impacts of this parameter on 
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estimation results or considered optimizing this number (See table 2.3). 

 

Table 2.3: Summary of papers investigating different number of nearest neighbors 

Source # of nearest 

neighbors (K) 

Method of 

selecting K 

Comments 

Shepperd and Schofield 

(1997) 

1-3 Cross 

validation 

No one approach is 

consistently more accurate 

so the decision requires a 

certain amount of 

experimentation on the part 

of the estimators. 

Walkerden and Jeffery 

(1999) 

1 Predefine N.A. 

Angelis and Stamelos 

(2000) 

1-23 Cross 

validation 

No rule to decide this 

number without 

experiments 

Leung, 2002 2 Predefine Two nearest neighbors have 

a higher referencing value 

and overcome some 

problems with one nearest 

neighbor. 

Mendes et al., 2003 2,3 Predefine N.A. 

Jorgensen et al. (2003) 1-3 Predefine The best performance was 

achieved using the closest 

analogue. Inclusion of two 

or three analogues did not 

improve the accuracy. 

Auer et al. (2006) 1 Predefine N.A. 

Huang and Chiu (2006) 1-3 Cross 

validation 

The use of closest two or 

three analogues presents 

better result than use 

closest analogue. 

Chiu and Huang (2007) 1 Predefine The decision is case-to-case 

since no heuristic method 

currently exists. 

Li et al. (2007) 1-80 Cross 

validation 

Jack-knife for optimizing K 

and T. 

Mittas et al. (2008) 1-10 Cross 

validation 

N.A. 

Li and Ruhe (2008a) 1-80 Dynamic K  N.A. 

Li and Ruhe (2008b) 1-80 Dynamic K  N.A. 
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Five of the previous studies have specified a certain range for K values, 

and then applied the cross-validation procedure to select the optimal K value 

with which the ABE could produce the predictions optimizing the error metric 

on the training dataset. Moreover, six papers (Walkerden and Jeffery 1999, 

Leung 2002, Mendes et al., 2003, Jorgensen et al. 2003, Auer et al. 2006, Chiu 

and Huang 2007) predefine K at fixed values. More recently, Li and Ruhe 

(2008a, 2008b) adopted a method named „dynamic K‟ which was first 

proposed by Kadoda et al. (2000). In this approach, the projects falling within 

a certain distance threshold (T) of the target project are treated as nearest 

neighbors and the number of neighbors may vary when different target 

projects appear. This method can also be regarded as one cross validation 

scheme. The advantage of cross validation is that it takes into account the 

information from dataset.  

 

The Solution Function 

The final prediction for the new project is produced by the solution 

function based on the selected K nearest neighbors. The solution function has 

the following general form.  

 

),,,(ˆ
21 Kx CCCgC                    (2.12) 

 

where xĈ is the estimation value, iC  is the cost value of ith nearest neighbor, 
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and K denotes the number of nearest neighbors. Different types of solution 

functions have been proposed for more accurate estimating results. Table 2.4 

summarizes the published solution functions. The solution functions presented 

in table 2.4 are: the un-weighted mean, the median, and the inverse distance 

weighted mean. 

 

Table 2.4: Summary of publications with different solution functions 

Source Un-weighted 

mean  

Weighted 

mean  

Median Adjustment 

Shepperd and Schofield 

(1997) 

Yes Yes No No 

Walkerden and Jeffery 

(1999)  

Yes* No No Yes 

Angelis and Stamelos (2000) Yes No Yes No 

Leung (2002) Yes No No Yes 

Mendes et al. (2003) Yes Yes Yes No 

Jorgensen et al. (2003) Yes* No No Yes 

Auer et al. (2006) Yes* No No No 

Huang and Chiu (2006) No Yes No No 

Chiu and Huang (2007) Yes* No No Yes 

Li et al. (2007) No Yes No No 

Mittas et al. (2008) No Yes No Yes 

Li and Ruhe (2008a) No Yes No No 

Li and Ruhe (2008b) No Yes No No 

Totals 4+4*  7 2 5 

* means only one nearest project is used 

 

The un-weighted mean is the simple average of the cost values of K 

nearest neighbors, where K > 1. It is a classical measure of central tendency 

and treats all most similar projects as being equally influential on the cost 

estimates. 
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The median is the median of the cost values of K nearest neighbors, 

where K > 2. It is another measure of central tendency and it is a more robust 

statistic when the number of nearest neighbors increases (Angelis and 

Stamelos, 2000). 

The inverse distance weighted mean (Kadoda, et al 2000) allows more 

similar projects to have more influence than less similar ones. The formula for 

weighted mean is shown in (2.13): 
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where p denotes the new project being estimated, pk represents the kth nearest 

neighbors, Sim(p, pk) is the similarity between project pk and p, 
kpC  is the 

cost value of pk, and K is the total number of nearest neighbors. 

The weighted mean has become more and more popular in recent years 

(except those using unique nearest project). This might be due to the fact that 

the weighted mean allows the more similar projects to have more influence 

than the lower ones (Huang and Chiu 2006). However, in light of our 

knowledge there is no solid evidence or proof that supports this argument. 

In addition, the last column of table 2.4 presents the studies on the 

adjustments to the solution functions. The adjustment on the solution function 

is necessary since it can capture the differences between the new project and 



Chapter II. Literature Review on Software Cost Estimation Methods  

47 
 

the retrieved projects, and refine the retrieved solution into the target solution 

(Walkerden and Jeffery, 1999).  Many researchers have proposed different 

techniques to adjust the solution function. Leung (2002) proposed a 

refinement which is based on the relative location of the target project. 

Jorgensen et al. (2003) proposed Regression Toward the Mean (RMT) 

adjusting the analogy based results: 
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where xC  denotes the cost of a new project x, 
xP̂ denotes the adjusted 

productivity (productivity = cost/FP) of the new project, kP is the average of 

the k nearest neighbors, M is the mean productivity of the similar projects, and 

r is the correlation coefficient between the productivity of closest analogues 

and the actual productivity. 

More recently, Chiu and Huang (2007) proposed an additive adjustment. 
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where
 1C  is the cost value of the first nearest neighbor to x and 
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new project x. 
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applied to optimize the coefficients i . In a more recent work, Mittas et al. 

(2008) introduced the iterated bagging (Bootstrap aggregating) technique to 

adjust the solution function. The bagging predictor is defined as: 
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where )(

1

tC  is the nearest neighbor cost value obtained on the bootstrap 

sample t = 1,…, T. T is the total number of bootstrapped samples.  

We can tell from the above that most previous works were focusing on 

linear type of adjustments. Since non- linearity is a common characteristic 

throughout the software engineering data sets, the non- linear type of 

adjustment is of great practical importance for investigation. 

 

2.4  Evaluation Criteria   

Evaluation criteria are essential for the empirical validations of cost 

estimation methods. To measure the accuracy of estimation methods, various 

kinds of evaluation criteria have been developed. In this section, we collect 19 

different criteria appeared in the publications of the past decade. Among all 

evaluation criteria, the Mean Magnitude of Relative Error (MMRE) and 

Prediction at level q (PRED (q)) (Conte et al. 1986) are most frequently used. 

Although MMRE is biased and not always reliable as a performance metric, it 

still has been the de facto standard in the software cost estimation literature.  
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In addition, other types of evaluation criteria have also been used. For 

instance, Kemerer (1987) introduced R-Square as an error metric for cost 

estimation. Miyazaki et al. (1994) proposed the use of the Balanced Mean 

Magnitude of Relative Error (BMMRE) as well as the Inverted Balanced 

Mean Magnitude of Relative Error (IBMMRE). Jorgensen et al. (1995) 

introduced the Median Magnitude of Relative Error (MdMRE). Lo and Gao 

(1997) proposed two error metrics: the Weighted Mean of Quartiles of relative 

errors (WMQ) and the Standard Deviation of the Ratios of the estimate to 

actual observation (SDR). The Mean Magnitude of Error Relative to the 

estimate (MMER) or Mean Variation From Estimate (MVFE) as a different 

name, are introduced by Kitchenham et al. (2001), and Hughes et al. (1998) 

respectively. Kitchenham et al. (2001) also suggested Mean of the Absolute 

Residual (MAR) and Median of the Absolute Residual (MdAR) as the 

candidate metrics. 

The development of new metrics is an ongoing process. More recent 

metrics that have been introduced or proposed are: Adjusted Mean Square 

Error (AMSE) (Burgess and Lefley 2001), Standard Deviation (SD) (Foss et 

al. 2003), Relative Standard Deviation (RSD) (Foss et al. 2003), Logarithmic 

Standard Deviation (LSD) (Foss et al. 2003), and Logarithmic Relative Error 

(LRE) (Jorgensen 2004). 

Based on the mathematical structure of the error metrics, we classify all 

of them into four different groups: relative error based metrics, absolute error 
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based metrics, sum of squares errors based metrics, and ratio error based 

metrics. 

 

2.4.1 Relative Error based Metrics  

The error metrics in this group are based on the relative error named 

Magnitude of Relative Error (MREi) (Conte et al. 1986): 
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where iC  denotes the actual cost of the ith project, and 
iĈ  denotes the 

estimated effort of ith project.  

 

Mean Magnitude of Relative Error (MMRE) (Conte et al. 1986) 

The MMRE is defined as: 
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where n denotes the number of projects being estimated, iC  denotes the 

actual effort of ith project, and 
iĈ  denotes the estimated effort of ith project. 

Small MMRE value indicates a low level of estimation error. However, this 

metric is unbalanced and it penalizes overestimation more than 
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underestimation.  

 

PREDiction at level q (PRED (q)) (Conte et al. 1986) 

The PRED is the percentage of predictions that fall within a specified 

percent of the actual cost: 
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where q is a predefined threshold. PRED(q) computes the percentage of the 

predictions whose MRE values are less than or equal to q. In most 

publications, q is set to 0.25 or 0.30. 

 

Mean of weighted qualities (MWQ) (Lo and Gao 1997) 

MWQ is the weighted mean of MREs: 

 

6

32 321 QQQ
MWQ


                  (2.20) 

 

where Q1 is the first quartile, Q2 is the second quartile and Q3 is the third 

quartile of the MREs. The smaller the MWQ is, the more accurate the 

estimation is. It is shown that MWQ and MMRE are consistent when there are 

no outliers and the estimation is unbiased (Lo and Gao 1997). 
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Median Magnitude of Relative Error (MdMRE) (Jorgensen et al. 1995) 

MdMRE is the median of the MREs: 

 

)(MREmedianMdMRE

                 

(2.21) 

 

It is an aggregate measure and compared to MMRE it is less sensitive to 

extreme values (Foss et al. 2003). 

 

Balanced Mean Magnitude of Relative Error (BMMRE) (Miyazaki et al. 

1994) 

To overcome the drawback of MMRE that penalizes overestimation more 

than underestimation, Miyazaki et al. (1994) proposed the so called balanced 

MMRE. 
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Inverted Balanced Mean Magnitude of Relative Error (IBMMRE) (Miyazaki 

et al. 1994) 

This metric is similar to BMMRE, the only difference is that the 

denominator of IBMMRE is the maximum of real cost and predicted cost: 
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Mean Magnitude of Error Relative to the estimate (MMER) (Kitchenham et al. 

2001) or Mean Variation From Estimate (MVFE) (Hughes et al. 1998) 
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This metric is proposed because project managers are normally aware of 

the estimated cost for a project before the actual cost and a measurement 

based on the ratio |actual-estimate|/estimate would seem to be a more accurate 

reflection of managerial concerns (Hughes et al. 1998).  

 

2.4.2 Absolute Error based Metrics 

In the literature, there are only two metrics based on the absolute error. 

These metrics seem to be less popular than the relative error based ones. The 

reason might be that the cost values of software projects often vary a lot and it 

is difficult to use the absolute errors to compare one group of projects with 

very small costs against another group of projects with large costs. However, 

as the absolute error is a balanced metric, many studies (Mendes et al. 2003, 

Li et al. 2009) also use it to diagnose the conclusion made by relative errors.  
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Mean of the Absolute Residual (MAR) (Kitchenham et al. 2001) 

 MAR is the mean value of the absolute errors:  
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Median of the Absolute Residual (MdAR) (Kitchenham et al. 2001) 

 MdAR is the median value of the absolute errors: 
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2.4.2 Sum of Square Errors based Metrics  

Sum of square errors (or mean of square errors) is often used by 

statisticians to measure the errors. Many studies using statistical techniques 

such as regressions consider the sum of square errors based metrics, especially 

R-square. 

 

Root Mean Square (RMS) (Conte et al. 1986) 

It is the root of the mean square error: 
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Relative Root Mean Square (RRMS) (Conte et al. 1986) 

It is the RMS divided by the mean of the actual costs: 
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Adjusted Mean Square Error (AMSE) (Burgess and Lefley 2001) 

It is the sum of the squared errors divided by the product of the actual and 

the estimated cost: 
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R-Square & Adjusted R-square (Kemerer 1987) 

R-square and Adjusted R-square indicate the percentage of total variation 

explained by the regression model. They are the common measures of the 

regression‟s goodness of fit. R-square has the following mathematical 

expression:  
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where iC  is the mean of the real cost values iC . R–square describes the 

percentage of total variance explained by the model. A high R-square value 

indicates a good model fit with observed data. However, the R-square also 

increases along with the number of explanatory variables in the linear 

equation even though these variables are not significant in explaining the 

variability of the dependent variable. Therefore, the adjusted R-square is used.  
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where n is the number of projects in the datasets and p is the number of 

explanatory variables. 

 

Standard Deviation (SD) (Foss et al. 2003) 

The standard deviation is a common metric to evaluate the variance of the 

predicted values: 
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Relative Standard Deviation (RSD) (Foss et al. 2003) 

 RSD is modified from SD and it incorporates the size of the project: 
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where the variable x is the number of function points (FP). The rationale 

behind RSD is to measure the dispersion relative to the x value (e.g., FP) 

rather than relative to the C value to avoid one of the problems with MMRE. 

One of MMRE‟s problems is that small actual costs (small Cs) will have a (too) 

large influence on the mean MRE since a number divided by a small number 

tends to be a large number. Contrary to MRE, which is almost uncorrelated 

with size, SD is positively correlated with size because software project data 

sets are often heteroscedastic. As opposed to SD, RSD is almost uncorrelated 

with size. We observe that RSD is limited to models with a single predictor 

variable. In many software studies, this is, however, not a serious limitation 

since it is common to create prediction models based on FP and effort. More 

importantly, we can provide a rationale for choosing this metric as well as an 

interpretation of its meaning. 

 

Logarithmic Standard Deviation (LSD) (Foss et al. 2003) 
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The term s2 is an estimator of the variance of the residual ei. The rationale 

behind LSD is as follows: Data sets with a large heteroscedasticity will be 

very much influenced by the large projects. Thus, the usual SD is more 

sensitive to large projects than to small projects and it may therefore not be a 

stable, reliable measure for such data sets. On the other hand, LSD lends itself 

well to data sets that comply with a log-linear model because the residual error 

is independent of size (i.e., homoscedastic) on the log scale.  

 

2.4.4 Ratio Error based Metrics 

Because MRE is an unbalanced metric, many authors consider the 

alternatives based on the ratio error metrics. The ratio error is defined as 

follows: 
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where iC is the actual cost/effort and 
iĈ is the estimated cost/effort. 

 

Logarithmic Relative Error (LRE) (Jorgensen 2004c) 

LRE is the absolute value of the logarithm of the ratio error: 
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Standard Deviation of R (SDR) (Lo and Gao 1997) 

SDR measures the estimation consistency of Ri: 
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where R  is the mean of the ratio Ri. The smaller the SDR, the more 

consistent the estimation is (Lo and Gao 1997). 
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Chapter 3   Feature 

Selection Based on Mutual 

Information1 

 

As mentioned in the previous chapter, feature selection is an important 

preprocessing stage of analogy based estimation. Most existing feature 

selection methods of ABE are „wrappers‟ which can usually yield high fitting 

accuracy at the cost of high computational complexities and poor explanations 

of the selected features. In this chapter, the mutual information based feature 

selection technique (MIABE) is proposed. This approach hybridizes both 

„wrapper‟ and „filter‟ mechanism. „Filters‟ are another type of feature selectors 

with much lower computation complexity and more interpretable resulting 

features, though they may not produce the fitting results as accurate as 

„wrappers‟ do. The MIABE is compared with several established feature 

selectors. The results show that MIABE is an effective feature selector which 

can produce quality predictions with low computational cost and explainable 

features. 

 

 

 

                                                 
1
 This chapter is relevant to the publication Li et al. 2009a  
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3.1  Introduction 

The fundamental principle of ABE is simple: given a new project for 

estimation, the most similar historical projects are selected to predict the cost 

of the new project by using a similarity measure. As one of the key 

components of ABE, the similarity measure is used to aggregate the similarity 

under each project feature (or cost driver). As shown in section 2.3.5, the 

choice of project features has large impact on the estimation results. The 

feature selection is proposed to determine the optimum subset of features that 

give the most accurate estimation (Mendes et al., 2003). 

In software cost estimation literature, some feature selection methods 

have been proposed, such as exhaustive search (Shepperd and Schofield, 

1997), hill climbing and forward sequential selection (Kirsopp et al., 2002). 

However, most existing feature selectors are the so called „wrappers‟ (Kohavi 

and John, 1997). The „wrappers‟ convolve with ABE method, with the direct 

goal to minimize the fitting error of the particular problem. Usually, „wrappers‟ 

can yield high fitting accuracy at the cost of high computational complexity 

and low interpretations of the selected features. It is fairly possible that less 

informative features lead to poorer prediction accuracy.  

To address these issues, in this chapter we propose a novel feature 

selection algorithm combining wrapper mechanism and filter mechanism 

(Almuallim and Dietterich, 1994, Kohavi and John, 1997).  Unlike 

„wrappers‟, the filter mechanism selects features by evaluating some preset 
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criteria independently of the fitting accuracy of ABE. In general, the filter 

approach has much lower complexity than wrappers, and the features selected 

by „filters‟ are more interpretable, which in turn could generate more accurate 

predictions (Peng et al., 2005). 

In filter mechanism, we choose mutual information (MI) (Battiti, 1994, 

Kwak and Choi, 2002(a), Kwak and Choi, 2002(b), Peng et al., 2005) as the 

preset criterion. The reasons to consider mutual information are: 1) it is 

capable of measuring arbitrary relations (include both linear and non- linear) 

between features, 2) it is independent of the transformations (such as 

normalization and scaling) acted on features (Battiti, 1994). Based on mutual 

information criterion, we propose mutual information based feature selection 

approach for analogy based estimation (MIABE). MIABE adopts filter 

mechanism in the inner stage and the wrapper mechanism in the outer stage. 

The inner stage selects the feature subsets maximizing mutual information 

between the selected features and the target feature (software cost). The outer 

stage searches for the feature subset maximizing the fitting accuracy from the 

candidate feature subsets generated by the inner stage.  

The rest of this chapter is organized as follows: section 3.2 presents the 

concepts related to mutual information, the algorithms to calculate mutual 

information and the proposed MIABE algorithm. Section 3.3 presents the 

experiment setup of this study. Section 3.4 describes two numerical examples 

and the analysis of the results.  
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3.2  Mutual Information Based Feature Selection for 

Analogy Based Estimation 

A number of selection criteria, such as correlation coefficient and least 

square regression error, are available for the filter mechanism for feature 

selection. In our study, mutual information (MI) (Shannon and Weaver, 1949) 

is chosen as the selection criterion because MI is capable of measuring a 

general dependence between two features without assuming the distributions 

of the features. This capability of MI matches one important property of ABE: 

ABE requires no assumption on the distributions of features to derive the 

solutions (Walkerden and Jeffery, 1999). In addition, MI is capable to manage 

both numerical and categorical features which often simultaneously appear in 

software engineering datasets.  

In section 3.2.1, we briefly introduce basic concepts and notations of the 

theory related to MI. In section 3.2.2, the calculation of MI is discussed. In 

section 3.2.3, the MIABE approach is presented. 

 

3.2.1 Entropy and Mutual Information 

In feature selection problem, the relevant features have important 

information regarding the output of ABE, whereas the irrelevant features 

contain little information regarding the output of ABE. The objective of 

feature selection is to find those features that contain as much informa tion 

about the output as possible. For this purpose, Shannon‟s information theory 
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(Shannon and Weaver, 1949) provides a feasible way to measure the 

information by entropy and mutual information.  

The entropy H(X) is a measure of the uncertainty of a random variable X. 

For a discrete random variable X, with the probability mass function p(x), the 

entropy of X is defined as: 
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where Φ is the sample space of variable X, and the logarithm is based on 2. 

Information entropy is expressed in bits. The joint entropy of X and Y with 

joint pdf: p(x, y) is defined as follows: 
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where  is the sample space of variable Y, When certain variables are known 

and other variables are unknown, the remaining uncertainty is measured by 

the conditional entropy: 
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From formulae (3.1), (3.2) and (3.3), the joint entropy and conditional entropy 

have the following relation: 

 

)|()()|()(),( YXHYHXYHXHYXH           (3.4) 

 

Based on definitions about entropy, the mutual information (MI) between 

two variables is defined as below: 
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If the mutual information is large, the two variables X and Y are closely related, 

while if the mutual information becomes zero, the two variables X and Y 

become independent. The mutual information and the entropy have the 

following relationships: 

 

)();(

);();(

),()()();(

)|()();(

)|()();(

XHXXI

XYIYXI

YXHYHXHYXI

XYHYHYXI

YXHXHYXI











               (3.6) 

 

An illustrative presentation of the relationships is given in fig 3.1. The mutual 

information corresponds to the intersection part between the entropy of X and 

the entropy of Y. 
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So far the concepts of entropy and mutual information are introduced for 

the discrete variables. But in software engineering databases many software 

project features are continuous in nature. For continuous variables the entropy 

and mutual information are defined as follows: 
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H(X) and I(X; Y) of continuous variables have the same properties as what the 

H(X) and I(X; Y) of discrete variables have in (3.6). However, when the 

underlying probability density functions (p(x), p(y), and p(x, y)) are 

continuous, it is often impossible to obtain the analytical integration. 

Therefore, approximation methods have been proposed (Moddemeijer, 1989, 

Kwak and Choi 2002(b)).  

H(X|Y) 

H(X) 

H(X, Y) 

H(Y) 

H(Y|X) 

I(X; Y) 

Figure 3.1: The relations between mutual informat ion and the entropy 
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3.2.2 Mutual Information Calculation 

Continuous software project features such as project cost, lines of code, 

function points, often appear in software engineering datasets. However, the 

approximation of MI between continuous variables is difficult. One possible 

solution is the traditional histogram approach (Moddemeijer, 1989) which 

involves discretizing the data into equally sized intervals. Although the 

histogram approache can obtain satisfactory results under low-dimensional 

conditions, the accuracy of most histogram estimations is substantially 

degraded when high dimensional data appears (Fraser and Swinney, 1986). An 

alternative solution is using the continuous kernel based density estimator to 

approximate I(X; Y), as proposed by (Kwak and Choi 2002(b)). 

In this method, given N samples of a random variable X, the approximate 

density function has the following form: 
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where )(  is the Parzen window function (Parzen, 1962), x(i) is the ith 

sample, and h is the window width. Parzen has proven that with the properly 

chosen )(  and h, the estimation )(ˆ xp  can converge to the true density 

p(x) when N tends to infinity. Usually, )(  is chosen as the Gaussian 

window: 
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where z = x –x(i), d is the dimension of the sample x and  is the covariance 

of z. In our study, the calculation is accomplished by using Peng‟s „Mutual 

Information computation‟ MATLAB package available online (Peng 2007). 

 

3.2.3 Mutual Information Based Feature Selection for Analogy Based 

Estimation 

In this section, the proposed algorithm for feature selection using mutual 

information (MIABE) is presented. The algorithm consists of two stages: the 

inner stage, at which the classical MIFS algorithm (Battiti, 1994) is used to 

select out m number of features, and the outer stage, which determines the 

value of m by minimizing the fitting error of ABE on training dataset. The 

system diagram of the proposed feature selection approach is shown in fig. 

3.2. 

In the inner stage, the classical MIFS algorithm is performed by the 

following procedure: 

1) (Initialization) Set F = „whole feature set‟, S = „empty set‟, let C 

represents the cost value, fi represents the ith project feature. 

2) Ff i  , compute I(C; fi). 

3) Find the feature fi that maximizes I(C; fi), set F F\{ fi }, S {fi}. 

4) (Greedy selection) repeat until desired number m of features are 
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selected. 

a) (Computation of the MI between features) for all couples of 

features ),( si ff , SfFf si  , , compute );( si ffI , if it is not yet 

available. 

b) (Selection of the next feature) choose the feature Ff i   that 

maximizes  


Sf sii
s

ffIfCI );;();(   set F  F\{ fi }, S  {fi}

S . 

5) Output the subset S containing m selected features. m will be 

optimized in the outer stage by maximizing ABE‟s fitting accuracy.  

 

 Figure 3.2: The schematic d iagram of proposed MIABE algorithm 
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The parameter   controls the redundancy among the features. If   is 

zero, the mutual information among features is not taken into consideration 

and the algorithm selects features in the order of the mutual information 

between features and project cost. As   grows, the mutual information 

among features begins to influence the selection process and the redundancy 

among features is reduced. However, if   is too large, the feature-cost 

relation will be overwhelmed by the relations among the features. In this study 

  is set to 0, because only the feature-cost relation is of interest and the 

computation of   demands extra computational resources.  

The outer stage solves the remaining issue in the inner stage: determining 

the optimal number of features m. Suppose that there are a total number of n 

features in the dataset. The MIFS is used to select 1 to n features and this 

process leads to n sequential feature sets nnm SSSSS  121 ...... . 

Then compare all the n sequential feature sets S1,…,Sm,…, Sn to find the set Sm 

with the minimal training error of ABE (MMRE is used to measure training 

error in this study). Therefore, m is the optimal number of features and Sm is 

the optimal feature set. 

 

3.3  Experiment Design 

  The evaluation criteria and data sets for experiments are presented in 

section 3.3.1 and section 3.3.2 respectively.  
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3.3.1 Evaluation Criteria 

Evaluation criteria are essential to the experiments. In the literature, 

several quality metrics have been proposed to assess the performances of 

estimation methods. More specifically, Mean Magnitude of Relative Error 

(MMRE), PRED(0.25) (Conte et al. 1986), and Median Magnitude of Relative 

Error (MdMRE) (Jorgensen et al. 1995) are three popular metrics. 

The MMRE is as defined below: 
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where n denotes the totoal number of projects, iC  denotes the actual cost of 

project i, and 
iĈ  denotes the estimated cost of project i. Small MMRE value 

indicates a low level of estimation error. However, this metric is unbalanced 

and penalizes overestimation more than underestimation.  

The MdMRE (Kitchenham et al. 2001) is the median of all the MREs.  
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It exhibits a similar pattern to MMRE but it is more likely to select the true 

model especially in the underestimation cases since it is less sensitive to 
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extreme outliers (Foss et al., 2003). The PRED(0.25) is the percentage of 

predictions that fall within 25 percent of the actual value.  
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The PRED(0.25) identifies cost estimations that are generally accurate, 

while MMRE is a biased and not always reliable as a performance metric. 

However, MMRE has been the de facto standard in the software cost 

estimation literature. In addition to the metrics mentioned above, there are 

several metrics available in the literature. Interested readers can refer to 

section 2.4 for more information. 

 

3.3.2 Data Sets 

Two representative datasets are selected for experiments. They are 

Desharnais dataset (Desharnais 1989) containing merely numerical features 

and Maxwell dataset (Maxwell, 2002) mainly composed of categorical 

features.  

Despite the fact that Desharnais dataset is quite old, it is still one of the 

large and publicly available datasets. Therefore it still has been used by many 

recent research works, such as Mair et al. (2000), Burgess and Lefley, (2001), 

and Auer et al. (2006). This data set includes 9 numerical features and 81 
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projects. Four out of 81 projects have been excluded due to the missing 

feature values. This process results in the 77 complete projects for 

experiments (Mair et al. 2000). The eight independent features of this data set, 

namely “TeamExp”, “ManagerExp”, “YearEnd”, “Transactions”, “Entities”, 

“PointsAdjust”, “Envergure”, and “PointsNonAjust” are all considered for 

constructing the models. The dependent feature “Effort” is measured in 1000 

h. The detailed definitions and descriptive statistics of all the features are 

shown in table B.3 and table B.4 of Appendix B.  

The Maxwell dataset with 62 projects‟ data from one of the biggest 

commercial banks in Finland is a relatively new software project datasets and 

has been used by some recent research works (Maxwell, 2002,  Sentas et al., 

2005). The detailed definitions and descriptive statistics of all the features are 

shown in table B.5 and table B.6 of Appendix B. Most features in this dataset 

are categorical and the numerical features are time, duration, size and effort. 

The categorical features can be further classified into ordinal features and 

nominal features. The ordinal feature and nominal feature have to be 

distinguished while calculating the similarity measure (See formula (2.10) and 

(2.11)).  

The ordinal features are „nlan‟, and „t01‟-„t15‟, while the nominal features 

are „app‟, „har‟, „dba‟, „ifc‟, „source‟ and „telonuse‟. By following Maxwell‟s 

process, in our analysis we used the new features „subapp‟ and „subhar‟, 

instead of the features „app‟ and „har‟. These new features are subsets of the 
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original ones and they contain categories with 3 or more observations. More 

specifically, the levels of „subapp‟ are 1, 2, 3 and 5 and the levels of „subhar‟ 

are 1, 2, and 5. 

 

3.3.3 Experiment Design 

Before the experiments, all types of features (numerical, ordinal, and 

nominal) in the two data sets are normalized into [0, 1] in order to eliminate 

the different influences of the features. For the purpose of comparing our 

method to the published works, different validation schemes are applied.  

For Desharnais dataset, our method is compared to Mair‟s work (Mair et 

al. 2000) where methods are trained and tested by the three-folder 

cross-validation. This cross-validation yields three different training- testing set 

combinations. Each testing set is randomly generated from the original dataset 

and the remaining projects are used as the training set. Therefore, for the 

Desharnais datasets we obtain three different training splits and three testing 

splits. By following the splitting scheme of Mair et al. (2000), the 87% split 

(87% in the training set and 13% in the testing sets) is used. The training set is 

only used to develop the estimating methods, while the testing set is 

exclusively used to test the estimation performance of the candidate methods. 

The accuracies across all training splits are aggregated as the training results, 

and the accuracies across all testing splits are aggregated as the testing results.  

For Maxwell dataset, our method is compared to Maxwell‟s work in 
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(Maxwell, 2002) and Sentas et al.‟s work in (Sentas et al. 2005). Therefore, 

we prepare the training and testing datasets by following their splitting 

method. The 50 projects that completed before 1992 form the training set, and 

the 12 projects that finished from 1992 to 1993 are used as testing set.  

After determining the validation scheme, the following experiment 

procedures are conducted on two datasets.  

 Firstly, the performances of MIABE feature selection are investigated by 

fixing the ABE parameter settings. As mentioned in last chapter, ABE has 

three controllable parameters: similarity measure, number of nearest 

neighbors K, and solution function (historical dataset is excluded from 

consideration). In line with Kirsopp et al. (2002)‟s setting, these 

parameters are fixed to Euclidean distance, K = 3 and inverse distance 

weighted mean respectively. Then MIABE is compared against other 

wrapper feature selection methods: Exhaustive selection (EX) (Shepperd 

and Schofield 1997), Hill Climbing feature selection (HC), and Forward 

Sequential feature selection (FSS) (Kirsopp et al. 2002). The 

implementations of these methods are realized by using the automatic 

tool archANGEL. The configurations of HC and FSS follow Kirsopp et 

al. (2002). 

 Secondly, the features that selected by feature selection methods are 

analyzed by mutual information diagrams. The MI diagram is a useful 

tool for diagnosing the feature selection phase.  
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 Thirdly, the computational efficiencies of the feature selection methods 

are tested and compared. 

 Finally, the MIABE‟s three parameters are optimized and the optimal 

MIABE is compared with the published works.  

   The results and analyses are presented in the following two sections.  

 

3.4  Results 

To validate the proposed MIABE method, this section summarizes the 

results of two empirical studies on the two datasets described in Section 3.3.2. 

 

3.4.1 Results on Desharnais Dataset 

The experimental results on Desharnais data are presented in following 

paragraphs. Fixing the three parameters (similarity measure, number of 

nearest neighbors K, and solution function) of ABE method, we first compare 

MIABE with three „wrapper‟ feature selection techniques: exhaustive feature 

selection, hill climbing and forward sequential selection. Then, the three 

parameters of ABE method are optimized by empirical trial and the optimal 

MIABE is compared to published results.  

 

Comparisons of Feature Selection Techniques 

Table 3.1 presents the results of each method‟s performance on three data 

splits with Euclidean distance, K = 3 and inverse distance weighted mean 
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(Kirsopp et al. 2002). The EX, HC, FSS and MI denote the EXhaustive 

feature selection, Hill Climbing feature selection, Forward Sequential feature 

selection, and MIABE respectively. The results show that MI achieves better 

testing performances under MMRE, PRED(0.25), and MdMRE than other 

wrapper methods while MI‟s training errors are among the largest ones. These 

findings confirm the argument that wrappers usually can yield high fitting 

accuracy but low generalization to other conditions (Peng et al., 2005).  

 

Table 3.1: Comparisons of different feature selection schemes  

Feature selection 

methods 

Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

MI 0.77 0.29 0.45 0.41 0.23 0.35 

EX 0.67 0.29 0.39 0.49 0.20 0.46 

HC 0.67 0.29 0.39 0.49 0.20 0.46 

FSS 0.67 0.32 0.34 0.45 0.23 0.41 

Euclidean distance, K = 3, and inverse distance weighted mean adaptation. 

 

As mentioned in Section 3.3.1, MMRE stands for the mean value of 

MREs, PRED(0.25) calculates the proportion of those MREs which are equal 

to or less than 25%, and MdMRE is the median value of the MREs. These 

error metrics reflect different aspects of the statistical characteristics of MRE 

values. To further analyze the MRE values from the testing dataset, we draw 

out the box plot of MRE values in Fig 3.3. The boxplots illustrate the median, 

the inter-quartile range, and the outliers. The MI based feature selection shows 

a lower median line, and a slightly smaller inter-quartile range of the MRE 
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values than other feature selection methods. Table 3.2 summarizes the selected 

features from the training data splits. Results from different feature selection 

techniques are presented.  

 

 

Figure 3.3: The boxplots of MRE values of feature selection methods 

 

Table 3.2: Selected features in three data splits 

     Datasets 

Variables 

SP1 SP2 SP3 

EX FSS HC MI EX FSS HC MI EX FSS HC MI 

TeamExp             

ManagerExp 1 1 1 1  1 1     1 

YearEnd         1  1  

Transactions    1        1 

Entit ies    1 1   1 1  1 1 

PointsAdjust    1  1 1 1    1 

Envergure    1 1   1    1 

PointsNonAjust 1 1 1 1 1 1   1 1 1 1 
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The symbol „1‟ denotes the feature in its corresponding row is selected by 

the selection method in its corresponding column. The table shows that MI 

selects the same three features „Entities‟, „PointsAdjust‟, and „Envergure‟ 

across all three splits. In particular, MI maintains the most informative feature, 

„PointsAdjust‟. 

The mutual information diagram provides a useful graphic tool for a 

better understanding of the selected features. Fig 3.4 shows the mutual 

information diagram of the value of MI between different features and the cost 

value in the three data splits. The mutual information diagram provides useful 

information for diagnosing the feature extraction phase. In Fig 3.4, it is 

apparent that feature 7 („PointsAdjust‟) has the highest amount of information 

shared with the cost value while feature 3 („YearEnd‟) has the lowest mutual 

information with cost value. Surprisingly, EX and HC both select feature 3 in 

SP3 (see table 3.2). As the wrapper selectors use MMRE value on the training 

data for optimization and there is no clear relationship between mutual 

information and MMRE, a feature subset with low mutual information value 

may still achieve low MMRE value.  

The computational complexity is another important criterion for 

evaluating feature selection method, especially when the dataset is large with 

more features and more projects, the speed of selection might have priority 

over accuracy. Therefore, the computational expense is also considered in our  

study. Time statistics needed for feature selection are provided in table 3.3.  
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The efficiency of each feature selection technique is measured by seconds. All 

methods are tested on a PC with Core Duo T2400 1.8GHz and 1G RAM. 

Table 3.3 shows that MI is most efficient among all methods.  

 

 

Figure 3.4: Mutual in formation diagram for the features in three training data splits 

 

 

Table 3.3: Times consumed to optimize feature subset (seconds) 

Data split  SP1 SP2 SP3 

MI 3 2 3 

EX 96 98 100 

FSS 7 10 8 

HC 47 45 39 
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Comparison of MIABE to Published Results 

The three-fold cross-validation approach mentioned in section 3.3.3 is 

utilized to optimize ABE‟s parameters on Desharnais dataset. Table 3.4 

summarizes the training and testing results with different parameter 

combinations from the parameter space: two distance measures (Euclidean 

distance and Manhattan distance), five K values (1, 2, 3, 4 and 5), and four 

solution functions (Closest Analogy (CA), Mean, Inverse distance Weighted 

Mean (IWM), and Median).  

The results show that in general the choice of different similarity 

measures has an insignificant influence on both the training and testing 

performances. As for the solution functions, the closest analogy does not 

obtain best results and the median gets slightly better results than mean and 

IWM when K = 4 and K = 5. The choice of K value has some influence on the 

accuracies. Smaller errors are obtained when the estimation is based on a 

relatively larger number of analogies (K = 4, and K = 5). The best parameter 

combination (Manhattan similarity, K = 4, and median solution function) on 

the training dataset is selected to compare with the published training and 

testing results. 
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Table 3.4: MIABE estimation results on Desharnais Dataset 

  Solution Training Testing 

Similarity K 

value 

function MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

Euclidean 

K = 1 CA 0.83 0.24 0.48 0.50 0.27 0.44 

K = 2 Mean 0.77 0.29 0.47 0.50 0.27 0.42 

 IWM 0.80 0.28 0.49 0.59 0.20 0.49 

K = 3 Mean 0.75 0.32 0.42 0.43 0.27 0.41 

 IWM 0.77 0.29 0.45 0.41 0.23 0.35 

 Median 0.75 0.29 0.42 0.41 0.27 0.35 

K = 4 Mean 0.73 0.34 0.39 0.40 0.37 0.40 

 IWM 0.76 0.28 0.43 0.40 0.43 0.28 

 Median 0.71 0.34 0.44 0.40 0.33 0.39 

K = 5 Mean 0.71 0.32 0.43 0.44 0.33 0.38 

 IWM 0.74 0.29 0.41 0.42 0.30 0.38 

 Median 0.69 0.32 0.37 0.37 0.33 0.35 

Manhattan 

K = 1 CA 0.78 0.24 0.47 0.42 0.37 0.36 

K = 2 Mean 0.78 0.30 0.42 0.46 0.23 0.39 

 IWM 0.72 0.32 0.45 0.50 0.20 0.40 

K = 3 Mean 0.72 0.28 0.44 0.46 0.27 0.39 

 IWM 0.74 0.30 0.41 0.48 0.27 0.40 

 Median 0.76 0.30 0.44 0.42 0.33 0.32 

K = 4 Mean 0.69 0.32 0.44 0.43 0.43 0.45 

 IWM 0.71 0.30 0.43 0.44 0.33 0.44 

 Median 0.68 0.32 0.39 0.36 0.40 0.33 

K = 5 Mean 0.71 0.33 0.39 0.41 0.40 0.36 

 IWM 0.72 0.33 0.39 0.38 0.40 0.34 

 Median 0.69 0.30 0.39 0.36 0.37 0.30 

 

In table 3.5, the best MIABE (with Manhattan similarity, K = 4, and 

median solution function) is compared to the published results (Mair et al. 

2000). In Mair et al. (2000) the statistics (Mean, Median, Min and Max) of the 

MRE values from three-folder cross-validation were given. Table 3.5 shows 

that MIABE obtains smallest mean, median, and min of MREs, and the second 

lowest max value of MREs. Although in our study the three-folder 

cross-validation is also used to build and test MIABE method, the conclusion 
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that MIABE‟s results are better than the published results should be treated 

with caution. Because the three- folder cross-validation data splits are 

randomly generated, the splits used in our study may not be exactly the sa me 

as the ones used in Mair‟s study.  

 

Table 3.5: Comparisons with published results 

Published Techniques 
MRE 

Mean Median Min Max 

ANN (Mair et al. 2000) 0.47 0.53 0.21 0.66 

ABE (Mair et al. 2000) 0.57 0.49 0.43 0.80 

LSR (Mair et al. 2000) 0.62 0.47 0.38 1.00 

RI (subset selection) 

(Mair et al. 2000) 

0.90 0.89 0.41 1.41 

MIABE 0.36 0.33 0.01 0.78 

 

3.4.2 Results on Maxwell Dataset 

The experimental results on Maxwell are presented in this section. In 

order to compare MIABE with published works, we prepare the training and 

testing datasets by following the splitting method of Maxwell‟s and Sentas et 

al.‟s (Maxwell, 2002, Sentas et al. 2005). The 50 projects that completed 

before 1992 form the training set, and the 12 projects finished between 1992 

and 1993 are used as testing set.  

 

Comparison of Feature Selection Techniques 

Table 3.6 summarizes the results of each selector‟s performance on 

training dataset and testing dataset with the same configuration used in 
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Desharnais dataset: Euclidean similarity, K = 3 and inverse distance weighted 

mean (Kirsopp et al. 2002). Due to large number of features (25 features), the 

exhaustive search is not applicable with our computation resource. The results 

show that MI achieves better or equally good testing performances when 

compared to wrapper methods, and MI‟s training performance is improved 

compared with the results in table 3.1. Specifically, MI‟s training PRED(0.25) 

and MdMRE rank first, and its training MMRE ranks second. 

 

Table 3.6: Comparisons of different feature selection schemes  

Feature selection 

methods 

Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

MI 0.55 0.40 0.34 0.42 0.42 0.29 

EX NA
a
 NA NA NA NA NA 

HC 0.58 0.40 0.40 1.01 0.42 0.42 

FSS 0.48 0.34 0.35 0.45 0.33 0.31 

Euclidean distance, K = 3, and inverse distance weighted mean adaptation. 

a
: Not Applicable 

 

To further analyze the MRE values from the testing dataset, we draw out 

the box plot of MRE values in fig 3.5. It is shown that MI has a slightly lower 

median line than HC and FSS. The MI‟s inter-quartile range is smaller than 

HC‟s but a bit larger than FSS‟s.  
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Figure 3.5: The boxplots of MRE values of feature selection methods (EX is not applicable)  

 

Table 3.7 presents the selected features from the training dataset. The 

symbol „1‟ denotes the feature in its corresponding row is selected by the 

selection method in its corresponding column. The symbol „-‟ denotes the 

selection method in its corresponding column is not applicable. The table 

shows that MI selects three features „T14‟, „Duration‟ and „Size‟, FSS chooses 

„T05‟, „Duration‟ and „Size‟, and HC selects 12 out of 25 features.  
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Table 3.7: Selected variables for three splits  

     Datasets 

Variab les 

Training Set  

EX FSS HC MI 

Time -  1  

App -  1  

Har -    

Dba     

Ifc  -    

Source -  1  

Telonuse  -  1  

Nlan  -  1  

T01 -  1  

T02 -    

T03  -    

T04 -    

T05 - 1   

T06    1  

T07 -  1  

T08  -  1  

T09  -    

T10 -    

T11  -    

T12  -    

T13  -    

T14    1 1 

T15      

Duration  1 1 1 

Size  1 1 1 

„1‟ denotes that the feature is not selected 

 

Fig 3.6 shows the mutual information diagram of the value of MI between 

different features and the cost value in the training dataset. In fig 3.6, it is 

apparent that features 22, 24 and 25 („T14‟, „Duration‟ and „Size‟) have the 

highest MIs, while features 5, 6 and 16 („Ifc‟, „Source‟, and „T08‟) have the 

lowest MIs. Table 3.7 shows that features 22, 24 and 25 are selected by all 

methods, but HC selects feature 6 and 16.  
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Figure 3.6: Mutual in formation diagram for the features in training dataset 

 

The computation efficiency of each feature selector is also tested. The 

time (in seconds) consumed for selecting the optimal feature subset are 

provided in table 3.8 The results in Table 3.8 show that MI is fastest among all 

feature selection methods. 

 

Table 3.8: Time needed to optimize feature subset (seconds) 

Feature selection 

methods 

Training set 

MI 4 

EX NA* 

FSS 31 

HC 40 

NA*: Not Applicable 

 

 



Chapter III. Feature Selection Based on Mutual Information  

88 
 

Comparison of MIABE to Published Results 

Similar to section 3.4.1, the parameters are optimized by trial-and-error 

scheme. The results of training datasets and testing datasets are presented in 

table 3.9. The results show that in general there is no clear conclusion on 

which similarity measure is better. As for the solution functions, the closest 

analogy does not obtain best results and the median and mean gets better 

testing results than IWM when K = 4 and K = 5. The choice of K value has 

small influence on the accuracies. The smaller errors are obtained when the 

estimation is based on a relatively larger number of nearest neighbors (K = 4, 

and K = 5). The best configuration (Euclidean similarity, K = 4, and mean 

solution function) on the training dataset is selected to compare with the 

published training and testing results. 

In table 3.10, the best MIABE (with Euclidean similarity, K = 4, and mean 

solution function) is compared to the published results from stepwise 

regression (Maxwell 2002) and ordinal regression (Sentas et al. 2005). In their 

works, the MMRE and PRED(0.25) of training and testing datasets were given. 

Table 3.10 shows that MIABE obtains best training PRED(0.25) and testing 

PRED(0.25), and MIABE ranks third on both training and testing MMRE.  
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Table 3.9: MIABE estimation results on Maxwell Dataset 

  Solution Training Testing 

Similarity K 

value 

function MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

Euclidean 

K = 1 CA 0.56 0.34 0.37 0.60 0.33 0.40 

K = 2 Mean 0.57 0.28 0.47 0.79 0.25 0.52 

 IWM 0.55 0.24 0.44 0.97 0.42 0.67 

K = 3 Mean 0.56 0.38 0.35 0.37 0.50 0.27 

 IWM 0.55 0.40 0.34 0.42 0.42 0.29 

 Median 0.55 0.34 0.36 0.38 0.42 0.34 

K = 4 Mean 0.51 0.48 0.29 0.28 0.67 0.19 

 IWM 0.55 0.40 0.41 0.64 0.17 0.42 

 Median 0.50 0.34 0.37 0.27 0.58 0.22 

K = 5 Mean 0.58 0.32 0.38 0.37 0.58 0.22 

 IWM 0.54 0.34 0.36 0.51 0.25 0.42 

 Median 0.51 0.38 0.35 0.34 0.58 0.23 

Manhattan 

K = 1 CA 0.59 0.18 0.48 0.65 0.25 0.46 

K = 2 Mean 0.56 0.38 0.34 0.46 0.33 0.31 

 IWM 0.55 0.40 0.34 0.52 0.25 0.33 

K = 3 Mean 0.54 0.34 0.32 0.39 0.50 0.25 

 IWM 0.51 0.44 0.32 0.41 0.42 0.27 

 Median 0.53 0.32 0.33 0.51 0.33 0.37 

K = 4 Mean 0.52 0.46 0.32 0.36 0.67 0.19 

 IWM 0.51 0.36 0.35 0.51 0.50 0.32 

 Median 0.50 0.34 0.43 0.34 0.58 0.22 

K = 5 Mean 0.53 0.30 0.35 0.37 0.58 0.20 

 IWM 0.52 0.36 0.38 0.42 0.33 0.28 

 Median 0.53 0.34 0.45 0.34 0.58 0.23 

 

Table 3.10: Comparisons with published results 

Published Techniques 
Training Testing 

MMRE PRED(0.25) MMRE PRED(0.25) 

Stepwise Regression (A) 

(Maxwell 2002)  

0.42 0.42 0.29 0.33 

Stepwise Regression (B) 

(Maxwell 2002)  

0.43 0.34 0.32 0.58 

Ordinal Regression (mean) 

(Sentas et al. 2005) 

0.60 0.34 0.26 0.58 

Ordinal Regression (median) 

(Sentas et al. 2005) 

0.52 0.36 0.27 0.50 

MIABE 0.51 0.48 0.28 0.67 
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3.4  Summary and Conclusion Remarks 

Feature selection is a critical preprocessing stage of analogy based 

estimation. However, most existing feature selection methods for analogy 

based estimation are „wrappers‟ (Kohavi and John, 1997). Usually, wrappers 

can yield high fitting accuracy at the cost of high computational complexity 

and low generalization of the selected features to other conditions. Another 

kind of feature selector „filters‟ (Almuallim and Dietterich, 1994, Kohavi and 

John, 1997) has much lower complexity than wrappers and could select the 

features with interpretations, although „filters‟ may not produce the fitting 

results as accurate as „wrappers‟. In our study, a novel algorithm that 

hybridizes wrapper and filter feature selection (MIABE) was proposed. The 

mutual information is used as the selection criterion for filter mechanism.  

To validate the proposed MIABE algorithm, the experiments are 

conducted on two real world datasets. The performances of MIABE are first 

investigated by fixing the ABE parameter settings. It is compared against 

other wrapper feature selection methods (exhaustive search, hill climbing and 

forward sequential selection) for analogy based estimation. The prediction 

results suggested that MIABE could achieve better predictions on testing 

datasets (generalization) even though MIABE did not perform very well on 

fitting the training datasets.  

In addition, the selected features by MIABE are analyzed by mutual 

information diagrams. The MI diagram provides useful information for 
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diagnosing the feature selection phase. The results show that the MIABE can 

obtain more meaningful features which can be explained by MI diagram, 

while wrapper selectors do not always select informative features since they 

merely optimize the error metric MMRE. This could probably explain why 

MIABE could achieve better results in testing dataset. Moreover, the results 

also suggest that the mutual information based feature selection may be a 

feasible alternative when the wrapper techniques are facing over- fitting 

problems. 

Another important finding is that MI based feature selection is more 

efficient than the wrappers, especially when there are large number of features 

in the dataset. This finding confirms the argument that the primary advantage 

of filter is the speed and ability to scale to large datasets.  

Lastly, the MIABE is optimized and compared with the published works. 

The optimization took into account three parameters: similarity measure 

(including Manhattan distance and Euclidean distance), the number of nearest 

neighbors K (K from 1 to 5) and solution functions (including closest analogy, 

mean, inverse distance weighted mean and median). The comparisons show 

that MIABE achieves comparable results both on training and testing 

performances.  
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Chapter 4   Project 

Selection by Genetic 

Algorithm2 

 

To improve ABE‟s performance, many studies, such as the work in the 

previous chapter, propose different approaches to optimize the weights of the 

project features (feature selection can be regarded as a special case of feature 

weighting with the value {0, 1}) in its similarity function. However, the 

historical database of ABE often contains noisy or redundant information, 

which can lead to poor prediction accuracy, large memory requirement, and 

excessive computation cost. To alleviate these drawbacks, we propose  in this 

chapter the genetic algorithm for project selection for ABE (PSABE) which 

can reduce the whole historical database into a small subset that consists only 

of representative projects. Moreover, PSABE is combined with the feature 

weighting scheme (FWPSABE) for a further improvement. The proposed 

methods are validated on four datasets (two real-world datasets and two 

artificial datasets). The promising results indicate that the project selection 

technique could significantly improve ABE‟s prediction performance. 

  

 

                                                 
2
 The chapter is associated with the publications Li et al. 2007 and Li et al. 2009b  
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4.1  Introduction 

A large number of research works have been focusing on the 

improvements of feature weighting/selection approaches, such as Shepperd 

and Schofield (1997), Walkerden and Jeffery (1999), Angelis and Stamelos 

(2000), Mendes et al. (2003), Auer et al. (2006), Huang and Chiu (2006), and 

Li et al. (2009a). 

However, the historical database of ABE still confronts some difficulties, 

such as the non-normal characteristics including skewness, heteroscedasticity 

and excessive outliers (Pickard et al. 2001) and the ever increasing sizes of the 

datasets (Shepperd and Kadoda 2001). The large and non-normal historical 

databases always lead ABE methods to low prediction accuracy along with 

high computational cost (Huang et al. 2002). To alleviate these drawbacks, the 

project selection methodology has been proposed by some authors (Kirsopp 

and Shepperd, 2002). The objective of project selection (PS) is to identify and 

remove redundant and noisy projects. By reducing the whole project base into 

a smaller subset that consists only of the representative projects, project 

selection could save the computing time used for searching similar projects 

and produce quality prediction results. 

Kirsopp and Shepperd (2002) first conducted a preliminary study on 

project selection using hill climbing, and forward and backward sequential 

selection. The combination of feature selection and project selection was also 

considered by Kirsopp and Shepperd (2002). However, they provide no clear 
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conclusions that project selection could significantly improve ABE‟s accuracy. 

This might be due to the fact that the optimization algorithms they used are 

not powerful enough to achieve global optimum and the feature selection 

scheme is limited to the space {0, 1} with two elements. On the contrary, the 

feature weighting scheme has a much larger space: [0, 1].  

In this study, we propose genetic algorithm (GA) to perform the 

optimization task. GA is a robust global optimization technique which usually 

converges rapidly to solutions of good quality. Moreover, GA is capable of 

optimizing the continuous feature weights which is an extension of the feature 

selection problem. It is difficult for the heuristics like forward sequential 

selection to optimize continuous variables. Additionally, in CBR literature it 

has been frequently reported that the simultaneous optimization of feature 

weighting and project selection by GA can significantly improve CBR‟s 

prediction accuracy (Kuncheva and Jain 1999, Rozsypal and Kubat 2003, Ahn 

et al. 2006).  

Therefore, it is worthwhile to investigate GA for project selection. In this 

chapter, we propose GA for project selection for ABE (PSABE) and the 

simultaneous optimization of feature weights and project selection for ABE 

(FWPSABE). The proposed two techniques are compared against the feature 

weighting ABE (ABE), the conventional ABE and other popular cost 

estimation methods including ANN, RBF, SVM and CART.  

The rest of this chapter is organized as follows: section 4.2 presents the 
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general framework of feature weight and project selection system for ABE. 

Section 4.3 presents the real world datasets and the experiments design. In 

section 4.4, the results on two real world data sets are summarized and 

analyzed. In section 4.5, two artificial data sets are generated, experiments are 

conducted on two artificially generated datasets, and the results are 

summarized and analyzed. 

 

4.2  Project Selection and Feature Weighting  

In this section, we construct the FWPSABE system which can perform 

FWABE, PSABE, and simultaneous Feature Weights and Project Selection 

Analogy Based Estimation (FWPSABE). Genetic algorithm (Holland 1975) is 

selected as the optimization tool for the FWPSABE system, as it is a robust 

global optimization technique and has been applied to optimize the model 

parameters by several cost estimation papers (Dolado 2000, Shukla 2000, 

Dolado 2001, Huang and Chiu 2006). The framework and detailed description 

of FWPSABE system are presented in the following paragraphs.   

The system procedures of project selection and feature weighting via GA 

are given in this section. The system consists of two stages: the first stage is 

the supervised training stage (as shown in fig. 4.2) and the second stage is the 

testing stage (as shown in fig. 4.3). In the training stage, a set of training 

projects is presented to the system, the ABE method is configured by the 

candidate parameters (feature weights and selection codes) to produce the cost 
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predictions, and GA explores the parameter space to minimize the error (in 

terms of MMRE) of ABE on the training projects by the following steps:  

 

i. Encoding. 

To apply GA for optimization, the candidate parameters are coded as a 

binary code chromosome. As shown in fig 4.1, each individual chromosome 

consists of two parts. The first part is the codes for feature weights with a 

length of 14×n, where n is the number of features. Since the feature weights 

in the ABE model are decimal numbers, the binary codes have to be 

transformed into decimal values before entering the ABE method. As what 

many authors (Michalewicz 1996, Ahn et al. 2006) have suggested, the 

features weights are set as precisely as 1/10,000. Thus, 14 binary bits are 

required to express this precision level because  

1638421000028192 1413  . After the transformation, all decimal 

weight values are normalized into the interval [0, 1] by the following formula 

(Michalewicz 1996): 

 

16383

'

12

'
14

ii
i

ww
w 


                       (4.1) 

 

where 'iw  is the decimal conversion of the ith feature‟s binary weight. For 

example, the binary code for the first feature of the sample chromosome in fig 

4.1 is (10000000000001)2. Its decimal value is (8193)10 and its normalized 
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value is 8193/16383 ≈ 0.5001. 

The second part of the codes is for project selection. The value of each bit 

is set to be either 0 or 1: 0 means the corresponding project is not selected and 

1 means it is selected. The length of second part is m, and m is the total 

number of projects in the historical project base.  

 

 

 

 

ii. Population generation.  

After the encoding of the individual chromosome, the algorithm generates 

a population of chromosomes with an initialization probability of 0.5 (It means 

that each bit in the population has an equal chance to be „1‟ or „0‟). For the 

GA process, larger population size often results in higher chances for optimal 

solutions (Doval et al. 1999). Since GA is computationally expensive, a 

trade-off between the convergence time and the population size must be made. 

In general, the minimum effective population size grows with problem size. 

Based on some previous works (Huang and Chiu 2006, Chiu and Huang 2007), 

the size of the population is set to be 10V where V is the total number of input 

variables of GA search, which partially reflects the problem size.  

1 2 3 … 14 1 2 3 3 … 1 2 1 2 … 14 … 14 

Feature 1 Feature 2 

3 ……… 

Feature n ……… Projects  

m 

1 0 0 … 1 0 1 1 1 … 1 1 0 0 … 1 … 1 1 ……… 0 

Feature Weighting 
Sample  

Chromosome 
Project Selection  

Figure 4.1: Chromosome for FWPSABE  
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iii. Fitness function.  

Each individual chromosome is evaluated by the fitness function in GA. 

MMRE is chosen to establish the fitness function but GA is designed to 

maximize the fitness value. For simplicity, we set the fitness function as the 

reciprocal of MMRE plus a small constant 001.0  which is used to 

prevent the situation that MMRE = 0. 

 




MMRE
f

1
                         (4.2) 

 

iv. Fitness evaluation. 

After transforming the binary chromosomes into the feature weighting and 

project selection parameters (see step i), the procedures of ABE are executed 

as follows: 

 Given one training project, the similarities between the training project 

and historical projects are computed by assigning the feature weights into 

the similarity functions. 

 Simultaneously, the project selection part of the chromosome is used to 

generate the reduced historical project databases (Reduced PDs).  

 Then, ABE uses 1 to 5 nearest neighbors (K = 1 to 5) matching to search 

through the reduced PD for 1 to 5 most similar historical projects.  

 Finally, the ABE model assigns a prediction value to the  training project 

by adopting one solution function. 
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The error metrics MMRE, PRED(0.25), and MdMRE are used to evaluate 

the prediction performance on the training project set. Then, the fitness value 

in step iii is calculated for each parameter combination (or chromosome).  

 

v. Selection. 

The standard roulette wheel mechanism is applied to select a number of 

10V chromosomes from the current population.  

 

vi. Crossover. 

The selected chromosomes are consecutively paired. The 1-point 

crossover operator with a probability of 0.7 is used to produce new 

chromosomes. The newly created chromosomes constitute a new population. 

 

vii. Mutation. 

After crossover operation, each bit of the chromosomes in the new 

population is chosen to change its value with a probability of 0.1, in such a 

way that a bit „1‟ is changed to „0‟ and a bit „0‟ is changed to „1‟. 

 

viii. Elitist strategy.  

Elitist strategy is used to overcome the defect of the slow convergence 

rate of GA. The elitist strategy retains good chromosomes and ensures they are 

not eliminated through the mechanism of crossover and mutation. Under this 
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strategy, if the minimum fitness value of the new population is smaller than 

that of the old population, then the new chromosome with the minimum 

fitness value will be replaced with the old chromosome with the maximum 

fitness value. 

 

viii. Stopping criteria. 

There are few theoretical guidelines for determining when to terminate the 

genetic search. By following the previous works (Huang and Chiu 2006, Chiu 

and Huang 2007) on GA combined with the ABE method, steps v to viii are 

repeated until the number of generations is equal to or exceeds 1000V trials or 

the best fitness value does not change in the past 100V trials. After the 

stopping criteria are satisfied, the system moves to the second stage and the 

optimal parameters or chromosome are entered into the ABE model for 

testing. 
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In the above procedure, the population size, crossover rate, mutation rate 

and stopping condition are the controlling parameters of the GA search. 

However, there are few theories to guide the assignments of these values (Ahn 

et al. 2006). Hence, we determine the value of these parameters in the light of 

previous studies that combines ABE and GAs. Most prior studies use 10V  

chromosomes as the population size, and their crossover rate ranges from 0.5 

to 0.7, while the mutation rate ranges from 0.06 to 0.1 (Ahn et al. 2006, Huang 

and Chiu 2006, Chiu and Huang 2007). However, because the search space for 

our GA is larger than these studies (the number of input variables V is larger 

than that in previous papers), we set the parameters to the higher bounds of 

those ranges. Thus, in this study the population size is 10V, the crossover rate 

is set at 0.7 and the mutation rate is set at 0.1. 

The second stage is the testing stage. In this stage, the system receives the 

optimized parameters from the training stage to configure the ABE model. The 

optimal ABE is then applied to the testing projects to evaluate the trained 

ABE. 
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4.3  Experiment Design 

   In this section, two real world software engineering datasets are used for 

the experiments and the detailed experiments designs are presented. 

4.3.1 Datasets 

The Albrecht dataset (Albrecht and Gaffney 1983) includes 24 projects 

developed by using third generation languages. 18 of the projects were written 
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in COBOL, 4 were written in PL1, and 2 were written in DMS languages. Six 

independent features of this data set are „input count‟, „output count‟, „query 

count‟, „file count‟, „function points‟, and „lines of source code‟. The 

dependent feature „person hours‟ is recorded in 1000 h. The detailed 

definitions and descriptive statistics of all features are shown in table B.1 and 

table B.2 of Appendix B. 

The Desharnais dataset (Desharnais 1989) includes 81 projects and 11 

features, 10 independent and one dependent. Since 4 out of 81 projects contain 

missing feature values, they have been excluded from the dataset. This process 

results in the 77 complete projects for our study. The ten independent features 

of this dataset are „TeamExp‟, „ManagerExp‟, „YearEnd‟, „Length‟, 

„Transactions‟, „Entities‟, „PointsAdjust‟, „Envergure‟, „PointsNonAjust‟, and 

„Language‟. The dependent feature ‟person hours‟ is recorded in 1000 h. The 

detailed definitions and descriptive statistics of all the features are shown in 

table B.3 and table B.4 of Appendix B. 

 

4.3.2 Experiment Design  

Before the experiments, all types of features are normalized into the 

interval [0, 1] in order to eliminate their different influences. The three-fold 

cross-validation is used to assess the accuracies of our method, similarly to 

Briand et al. (1999), Jeffery et al. (2001), and Mendes et al. (2003). Under this 

scheme, the data set is randomly split into 3 equally sized subsets. At each 
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time, one of the three subsets is used as the testing set exclusively for 

evaluating model prediction, and the remaining two subsets are merged to 

form a training set which is only used to construct the models. This process is 

repeated three times and each subset has been used for testing only once. 

Finally the average training error and testing error across all three trials are 

computed. 

 

Methods specifications 

Four ABE based models are included in our experiments: conventional 

ABE, FWABE (feature weighting analogy based estimation) (Huang and Chiu 

2006), PSABE (project selection analogy based estimation), and FWPSABE 

(simultaneous optimization of features weighting and project selection). 

For a comprehensive evaluation of the proposed models, we include other 

popular machine learning methods including artificial neural network (ANN) 

(Heiat 2002), radial basis functions (RBF) (Shin and Goel 2000), support 

vector machine regression (SVR) (Oliveira 2006), and classification and 

regression trees (CART) (Pickard et al. 2001). The best variants of machine 

learning methods are obtained by training these methods and tuning their 

parameters on the historical datasets and training datasets respectively. 

In ANN model, the number of hidden layers, the number of hidden nodes 

and the type of transfer functions are three predefined parameters. They have 

significant impacts on the prediction performance (Martin et al. 1997). Among 
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these parameters, one hidden layer is often recommended since multiple 

hidden layers may lead to an over parameterized ANN structure with 

over- fitting characteristic. Thus, in this study we fix the number of hidden 

layers at 1. The search spaces for the number of hidden neurons and hidden 

layer transfer functions are set to be {1, 3, 5, 7, 9, 10} and {linear, tan-sigmoid, 

log-sigmoid} respectively. During the training process, the ANN models with 

different parameter configurations are first trained on the historical dataset. 

Then, all ANN versions are implemented on the training set and the one 

producing the lowest MMRE value is selected for the comparisons against 

ABE models. 

For RBF network, the forward selection strategy is utilized since forward 

selection has the advantages of flexible number of hidden nodes, the tractable 

model selection criteria and the relatively low computational expense (Orr 

1996). In this case, the regularization parameter   is introduced. To 

determine  , its search space is defined as }10,...,0,...,9,10|10{  ii . 

Similar to ANN‟s training procedure, all RBFs with different   values are 

trained on the historical dataset and the one yielding the lowest MMRE on 

training data is selected for comparisons. 

For SVR model, the common Gaussian function 

})(exp{),( 22yxyxK  is used as the kernel function. The predefined 

parameters  , C and  , are selected from the same search space 

}10,...,0,...,9,10|10{ ii
. SVR models with all kinds of parameters 
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combinations (10×10×10 = 1000 combinations) are trained on the historical 

dataset. The combination producing the minimal MMRE on the training set is 

chosen for comparisons. 

To train CART model, we first use the historical set to fit the model and 

obtain a decision tree T. The tree T is then applied to the training set, and 

returns a vector of cost values computed for the training projects. The cost 

vector is subsequently used to prune the tree T into a size that is minimized. 

The tree with optimal size is adopted for comparisons.  

 

Experiment procedure 

The following experiment procedures are conducted for comparisons:  

 Firstly, the performances of FWPSABE are investigated by varying ABE 

parameters other than feature weights and project subsets. In line with the 

common settings of ABE parameters, we define the search spaces for 

similarity function as {Euclidean similarity, Manhattan similarity}, 

number of nearest neighbors K as {1, 2, 3, 4, 5}, and solution functions as 

{closest analogy, mean, median, inverse distance weighted mean} 

respectively. All kinds of parameter combinations are executed on both 

the training dataset and the testing dataset. The best configuration on 

training dataset is selected out for the comparisons with other cost 

estimation methods. 

 Secondly, other ABE based methods are trained by the similar procedure 
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described in the first step and the best variants on training set are selected 

as the candidates for comparisons. In addition, the optimizations of 

machine learning methods are conducted on the training dataset by 

searching through their parameter spaces.  

 Thirdly, the training and testing results of the best variants of all  

estimation methods are analyzed and compared. The experiments results 

and analyses are presented in the next section. 

 

4.4  Results 

4.4.1 Results on Albrecht Dataset 

Table 4.1 presents FWPSABE‟s results on Albrecht dataset with different 

parameter configurations mentioned in section 4.3. The results show that in 

general, Euclidean similarity achieves slightly more accurate performances 

than Manhattan similarity on both the training and testing datasets. As for the 

solution function, there is no clear observation on which function is most 

preferable. The choice of K value has some influence on the accuracies. The 

smaller errors mostly appear when K = 3 and K = 4. Among all configurations, 

the setting {Euclidean similarity, K = 4, and mean solution function} produces 

best results on the training dataset and so it is selected for the comparisons 

with other cost estimation methods.  

Table 4.2 summarizes the results of the best variants of all cost estimation 

methods on Albrecht dataset. It is observed that the FWPSABE achieves the 
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best testing performance (0.30 for MMRE, 0.63 for PRED(0.25) and 0.27 for 

MdMRE) among all methods, followed by PSABE, and FWABE. For a better 

illustration, the corresponding testing performances are presented in fig 4.4. 

 

 

Table 4.1: Results of FWPSABE on Albrecht Dataset 

Similarity 
K 

value 
Solution 

Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

Euclidean 

K = 1 CA 0.39 0.25 0.35 0.40 0.38 0.45 

K = 2 Mean 0.37 0.54 0.34 0.55 0.13 0.58 

 IWM 0.40 0.58 0.34 0.57 0.32 0.42 

K = 3 Mean 0.56 0.38 0.34 0.41 0.33 0.39 

 IWM 0.55 0.42 0.32 0.42 0.42 0.29 

 Median 0.55 0.38 0.33 0.38 0.46 0.32 

K = 4 Mean 0.31 0.54 0.32 0.30 0.63 0.27 

 IWM 0.35 0.52 0.33 0.44 0.50 0.32 

 Median 0.40 0.54 0.37 0.37 0.58 0.28 

K = 5 Mean 0.58 0.42 0.32 0.39 0.38 0.45 

 IWM 0.54 0.33 0.38 0.51 0.25 0.42 

 Median 0.51 0.38 0.45 0.42 0.25 0.45 

Manhattan 

K = 1 CA 0.50 0.25 0.41 0.45 0.25 0.53 

K = 2 Mean 0.56 0.38 0.42 0.43 0.13 0.44 

 IWM 0.55 0.40 0.44 0.59 0.28 0.45 

K = 3 Mean 0.55 0.52 0.45 0.39 0.38 0.35 

 IWM 0.51 0.44 0.42 0.42 0.25 0.40 

 Median 0.53 0.32 0.43 0.51 0.33 0.32 

K = 4 Mean 0.53 0.38 0.32 0.41 0.54 0.45 

 IWM 0.51 0.36 0.35 0.51 0.50 0.42 

 Median 0.50 0.34 0.43 0.44 0.53 0.32 

K = 5 Mean 0.54 0.34 0.42 0.59 0.13 0.58 

 IWM 0.52 0.36 0.48 0.52 0.23 0.48 

 Median 0.53 0.34 0.45 0.51 0.13 0.46 
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Table 4.2: The results and comparisons on Albrecht Dataset 

Models 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

ABE 0.38 0.49 0.50 0.13 0.36 0.49 

FWABE 0.48 0.42 0.38 0.25 0.34 0.46 

PSABE 0.40 0.39 0.25 0.38 0.35 0.45 

FWPSABE 0.31 0.30 0.54 0.63 0.32 0.27 

SVR 0.46 0.45 0.50 0.25 0.22 0.43 

ANN 0.39 0.49 0.38 0.25 0.35 0.51 

RBF 0.79 0.49 0.50 0.25 0.25 0.39 

CART 4.77 1.70 0.13 0.13 0.58 0.89 

 

 

Figure 4.4: The testing results on Albrecht Dataset 
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4.4.2 Results on Desharnais Dataset 

The results of FWPSABE with different configurations on Desharnais 

dataset are summarized in table 4.3. The results show that in this case the 

choice of different similarity functions has little influence on both the training 

and testing performances. As for the solution functions, there is no clear 

conclusion on which solution function is the best. The choice of K value has 

slight influence on the accuracies. The smaller errors are achieved by setting K  

= 3. In all configurations, the setting {Euclidean similarity, K = 3, and mean 

solution function} produces best results on the training dataset and so it is 

selected for the comparisons against other cost estimation methods.  

Table 4.4 presents the results of the best variants of all cost estimation 

methods on Desharnais dataset. It is shown that the FWPSABE achieves the 

best testing performance (0.32 for MMRE, 0.44 for PRED(0.25) and 0.29 for 

MdMRE), and followed by SVR and PSABE. Fig 4.5 provides an illustrative 

version of the testing results in Table 4.4.  
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Table 4.3: Results of FWPSABE on Desharnais Dataset 

Similarity 
K 

value 
Solution 

Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

Euclidean 

K = 1 CA 0.54 0.24 0.47 0.52 0.27 0.51 

K = 2 Mean 0.57 0.26 0.45 0.62 0.37 0.50 

 IWM 0.55 0.24 0.44 0.97 0.42 0.67 

K = 3 Mean 0.40 0.36 0.36 0.32 0.44 0.29 

 IWM 0.55 0.36 0.38 0.42 0.42 0.36 

 Median 0.56 0.34 0.36 0.38 0.42 0.34 

K = 4 Mean 0.59 0.16 0.39 0.40 0.26 0.39 

 IWM 0.55 0.36 0.41 0.64 0.17 0.46 

 Median 0.53 0.34 0.37 0.57 0.38 0.42 

K = 5 Mean 0.55 0.24 0.56 0.43 0.28 0.48 

 IWM 0.54 0.26 0.56 0.52 0.25 0.42 

 Median 0.59 0.29 0.55 0.64 0.27 0.53 

Manhattan 

K = 1 CA 0.39 0.28 0.37 0.67 0.30 0.44 

K = 2 Mean 0.54 0.32 0.48 0.47 0.25 0.51 

 IWM 0.55 0.40 0.34 0.52 0.25 0.53 

K = 3 Mean 0.45 0.28 0.49 0.46 0.22 0.38 

 IWM 0.56 0.24 0.43 0.41 0.42 0.37 

 Median 0.58 0.20 0.46 0.51 0.20 0.45 

K = 4 Mean 0.51 0.24 0.48 0.57 0.33 0.51 

 IWM 0.53 0.26 0.55 0.58 0.27 0.52 

 Median 0.60 0.30 0.53 0.54 0.28 0.52 

K = 5 Mean 0.54 0.24 0.50 0.52 0.26 0.48 

 IWM 0.56 0.34 0.58 0.64 0.18 0.59 

 Median 0.63 0.36 0.55 0.55 0.23 0.52 

 

 

Table 4.4: The results and comparisons on Desharnais Dataset 

Models 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

ABE 0.62 0.62 0.28 0.22 0.51 0.50 

FWABE 0.51 0.46 0.12 0.22 0.48 0.39 

PSABE 0.39 0.41 0.28 0.30 0.37 0.38 

FWPSABE 0.40 0.32 0.36 0.44 0.36 0.29 

SVR 0.42 0.40 0.28 0.37 0.45 0.37 

ANN 0.45 0.57 0.36 0.22 0.44 0.43 

RBF 0.57 0.42 0.24 0.37 0.49 0.29 

CART 0.97 0.52 0.28 0.30 0.50 0.35 
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Figure 4.5: The testing results on Desharnais Dataset 

 

4.5  Artificial Datasets and Experiments on Artificial 

Datasets  

To compare different cost estimation methods, the empirical validation is 

very crucial when the theoretical comparisons are difficult to conduct. This 

has led to the collection of various real world data sets for experiments. Mair 

et al. (2005) conducted an extensive survey of the real data sets for cost 

estimation from 1980 onwards. As reported, most published real world data 

sets are relatively small for the tests of significance and their true properties 

may not be fully known. For example, it might be difficult to distinguish 

different types of distribution in the presence of extreme outliers in a small 
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data set (Shepperd and Kadoda, 2001). 

Artificially generated data sets provide a feasible solution to the above 

two difficulties. Firstly, the researchers can generate reasonable amount of 

artificial data to investigate the significant differences among the competing 

techniques. Secondly, it provides the control over the characteristics of the 

artificial dataset. Particularly, researchers could design a systematic way to 

vary artificial dataset properties for their research purposes (Pickard et al. 

1999). In order to evaluate the proposed methods in a more convincing way, 

we generate two artificial datasets for further experiments.  

From each of the two real data sets, we extract a set of characteristics 

describing its property, or more specifically its non-normality. The 

non-normality considered in our study includes skewness, variance instability, 

and excessive outliers (Pickard et al. 2001). We then use the two sets of 

characteristics to generate two sets of artificial data. Section 4.5.1 presents the 

details for artificial dataset generation.  

 

4.5.1 Generation of Artificial Datasets 

  To explore the non-normal characteristics of the real world data set, the 

„cost-size‟ scatter plot for Albrecht dataset is drawn in fig 4.6. The scatter plot 

indicates the slight skewness, moderate outliers, and slight variance instability 

of the Albrecht dataset. The „cost-size‟ scatter plot of the Desharnais dataset is 

in fig 4.7, which shows heavier skewness, more extreme outliers, and higher 
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variance instability. 

 

Figure 4.6: Cost versus size of Albrecht dataset 

 

 

Figure 4.7: Cost versus size of Desharnais dataset 
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From the analysis above, software data sets often exhibit a mixture of 

several non-normal characteristics such as skewness, variance instability, and 

excessive outliers (Pickard et al. 2001). These characteristics do not always 

appear in the same degree. In some cases they are moderately non-normal 

such as the Albrecht dataset, while in other cases they are severely non-normal 

such as the Desharnais dataset. We adopted Pickard‟s method of 

non-normality modeling in this work. Other types of techniques for artificial 

dataset generation are also available in recent literature. For more details, 

readers can refer to Shepperd and Kadoda (2001), Foss at al. (2003), and 

Myrtveit et al. (2005). 

Following Pickard‟s method, we simulate the combination of non-normal 

characteristics: skewness, unstable variance and outliers in formula (4.3): 

 

                  h e teskxskxskxy  321 2361000        (4.3) 

 

The independent variables (x1sk, x2sk, x3sk) are generated by Gamma 

distributed random variables x1‟, x2‟, and x3‟ with mean 4 and variance 8. The 

skewness is embedded in Gamma distributions. In order to vary the scale of 

the independent variables, we then multiply x1‟ by 10 to create the variable 

x1sk, x2‟ by 3 to create the variable x2sk and x3‟ by 20 to create the variable 

x3sk.  

The last term ehet in formula (4.3) simulates a special form of unstable 
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variance: heteroscedasticity. The heteroscedasticity occurs where the error 

term is related to one of the variables in the model and either increases or 

decreases depending on the value of the independent variable. The error term 

ehet is related to x1sk via the formula ehet = 0.1×e×x1sk for the moderate 

heteroscedasticity, and ehet = 6×e×x1sk for the severe heteroscedasticity 

(Pickard et al. 2001). 

The outliers are generated via multiplying or dividing the dependent 

variable y by a constant. We select 1% of the data to be the outliers. Half of 

the outliers are obtained by multiplying, while half of them are produced by 

dividing. For the moderate outliers, we set the multiplier/divider as 2, while 

for the severe outliers, we set the multiplier/divider to be 6.  

The combination of moderate heteroscedasticity and moderate outliers is 

used to generate the moderate non-normality dataset (fig 4.8). The 

combination of severe heteroscedasticity and severe outliers is used to obtain 

the severe non-normality dataset (fig 4.9). 
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Figure 4.8: Y versus x1sk  of moderate non-Normality Data set 

 

 

 

 

Figure 4.9: Y versus x1sk  of severe non-Normality Data set 
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4.5.2 Results on Artificial Datasets 

We generate two artificial data sets according to the procedures 

introduced above. Each artificial data set has 500 projects. The detailed 

information regarding the two artificial datasets is presented in table 4.5. For a 

better assessment of accuracy, we apply an unequal split to the whole data set 

making the testing subset much larger than the other subsets. 

 

Table 4.5: The part ition of artificial data sets 

Data Set 

Sample size of 

Artificial Moderate 

non-Normality data 

Sample size of 

Artificial Severe 

non-Normality data  

Historical 50 50 

Training 50 50 

Testing 400 400 

Total 500 500 

   

We apply all the methods onto the two artificial data sets by following the 

same procedure used for real datasets. The results and comparisons are 

summarized as the following. 

The results on artificial moderate non-Normality dataset are in table 4.6. 

It is shown that FWPSABE achieves the best performances in MMRE at 

0.079 and MdMRE at 0.06 and the second best value 0.98 for PRED(0.25), 

while ANN gets the highest PRED(0.25) value at 0.99. Comparing the 

prediction error curves in fig 4.4 to the error curves in fig 4.10, it is observed 

that all the methods achieve much better performance on the artificial dataset 

and the differences among the candidate methods are much smaller on the 
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artificial dataset. These findings imply that estimation methods in our study 

may converge to equally good prediction results on the moderately 

non-normal dataset with large size and FWPSABE is slightly better than o ther 

methods. 

 

Table 4.6: The results and comparisons on artificial moderate non-Normality Dataset 

Models 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

ABE 0.068 0.116 0.98 0.94 0.048 0.093 

FWABE 0.090 0.110 1.00 0.98 0.081 0.098 

PSABE 0.057 0.086 1.00 0.98 0.043 0.068 

FWPSABE 0.055 0.079 1.00 0.98 0.044 0.060 

SVR 0.069 0.095 0.98 0.98 0.055 0.077 

ANN 0.065 0.088 1.00 0.99 0.061 0.077 

RBF 0.099 0.115 0.94 0.93 0.075 0.092 

CART 0.099 0.109 0.98 0.95 0.074 0.090 

 

 

Figure 4.10: The testing results on Artificial Moderate non-Normality Dataset 
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Table 4.7 presents the results on artificial severe non-Normality dataset. 

FWPSABE achieves the best performances in MMRE at 0.15 and MdMRE at 

0.10 and the second best value 0.80 for PRED(0.25), while CART obtains the 

highest PRED(0.25) value at 0.81. Comparing fig 4.11 to fig 4.10, it is shown 

that all the methods obtain poorer performances on severe non-normal dataset. 

This observation indicates that a high degree of non-normality has negative 

impacts on the performance of estimation methods in our study. 

 

Table 4.7: The results and comparisons on Artificial Severe non-Normality Dataset 

Models 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

ABE 0.32 0.20 0.68 0.73 0.18 0.14 

FWABE 0.34 0.19 0.72 0.77 0.14 0.13 

PSABE 0.31 0.18 0.70 0.75 0.11 0.12 

FWPSABE 0.30 0.15 0.74 0.80 0.14 0.10 

SVR 0.34 0.18 0.62 0.76 0.19 0.12 

ANN 0.34 0.17 0.70 0.79 0.16 0.12 

RBF 0.37 0.18 0.66 0.80 0.18 0.13 

CART 0.38 0.18 0.72 0.81 0.16 0.14 
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Figure 4.11: The testing results on Artificial Severe non-Normality Dataset 
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Chapter 5   Non-linear 

Adjustment by Artificial Neural 

Networks3 
 

ABE predicts the cost of new project by retrieving similar historical 

projects. However, as mentioned in section 2.3.5, the retrieved solution has to 

be adjusted to adapt to the new situation. Several studies on the adjustment 

mechanisms are based on linear formula and restricted to numerical type of 

project features. On the other hand, software project datasets often exhibit 

non-normal characteristics together with large proportions of categorical 

features. To explore the possibilities for a better adjustment mechanism, this 

chapter proposes artificial neural network (ANN) for the non-linear 

adjustment of ABE (NABE) with the learning ability to adapt to complex 

relationships and to incorporate categorical features. The NABE is validated 

on four real world datasets and compared against the linear adjusted ABEs, 

CART, ANN and SWR. Moreover, eight artificial datasets are generated for a 

systematic investigation on the relationship between model accuracies and 

dataset properties. The comparisons and analysis show that non-linear 

adjustment could generally extend ABE‟s flexibility on complex datasets with 

large number of categorical features and improve the accuracies of ABE 

predictions. 

                                                 
3
 This chapter is related to the paper Li et al. 2009c  
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5.1   Introduction 

The fundamental principle of ABE is simple: when provided a new 

project for estimation, the most similar historical projects (analogies) are 

retrieved, the solutions (cost values) of the retrieved projects are used to 

construct a „retrieved solution‟ to the new project, with the expectation that the 

cost values of the retrieved projects will be similar to the rea l cost of the new 

project. 

However, the adjustment on the retrieved solution is of necessity since it 

can capture the differences between the new project and the retrieved projects, 

and refine the retrieved solution into the target solution (Walkerden and 

Jeffery, 1999). In the literature, many types of adjustments have been 

proposed (refer to section 2.3.5). Most of these adjustments are based on 

predetermined linear forms without learning ability to adapt to more complex 

situations such as non-normality in the datasets. In addition, these adjustment 

techniques are limited to the numeric features despite that the categorical 

features also contain valuable information to improve the cost estimation 

accuracies (Angelis et al. 2000). In contrast, software project datasets often 

exhibit non-normal characteristics and contain large proportion of categorical 

features (Sentas and Angelis, 2006, Liu and Mintram, 2005). 

To improve the existing adjustment mechanisms, we propose a more 

flexible non- linear adjustment with learning ability and including categorical 

features. The Non-linearity adjusted Analogy Based Estimation (NABE) is 
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achieved by adding a non- linear component (Artificial Neural Network) onto 

the retrieved solution of the ABE system. In this approach, the ordinary ABE 

procedure is first executed to produce an un-adjusted retrieved solution to the 

new project. Then, the differences between the new project‟s features and its 

neighbors‟ features are used as inputs to ANN model to generate the 

non- linear adjustment. Finally, the retrieved solution and the adjustment from 

ANN are combined to form the final prediction. 

The rest of this chapter is organized as follows: section 5.2 describes the 

details of the non- linearity adjusted ABE system (NABE). Section 5.3 

introduces four real world data sets and the experiment design. In section 5.4, 

the NABE is tested on the real world datasets and is compared against the 

linear adjusted ABEs, ANN, CART and SWR. In section 5.5, eight artificial 

data sets are generated and a systematic analysis is conducted to explore how 

the model accuracies are related to dataset properties. The final section 

presents the discussions of this work. 

 

5.2  Non-linearity Adjusted ABE System 

5.2.1 Motivations 

Analogy based software cost estimation is essentially a case-based 

reasoning (CBR) approach. Fig 5.1 illustrates the system diagram of ABE 

with adjustment form in the following formula: 
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),,,(ˆ
21 Kx CCCgC                      (5.1) 

 

where 
xĈ denotes the estimated cost for the new project x, iC  is the cost 

value of the ith closest analogy to project x, and K denotes the total number of 

nearest neighbors. The retrieved solution function (5.1) only includes the „cost‟ 

values as its variables while other project features such as „lines of source 

code‟ and „function points‟ do not appear in this function. In the literature, 

several retrieved solution functions have been proposed, such as un-weighted 

mean, weighted mean, and median. 

 

 

 

However, these solution functions can be rarely directly applied to predict 

xĈ . Instead, they need to be adjusted in order to fit the situations of the new 

project (Walkerden and Jeffery, 1999). Therefore the adjustment mechanisms 

 

Similarity function 

retrieval o f similar 

projects 

Projects for 

Training 

Predicted value 

 Historical 

Projects 

Retrieved Solution 

 

Adjustment 

Mechanism 

Figure 5.1: The general framework of analogy based estimation with adjustment 
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should first identify the differences between the new project (features) and the 

retrieved projects (features) and then convert these differences into the amount 

of change in the cost value. In the literature, many adjustment techniques have 

been proposed (section 2.3.5). 

 

Table 5.1: Comparison of published adjustment mechanisms  

Source Adjustment 

function 

Adjustment 

feature 

Categorical 

feature 

Learning 

ability 

Value of K 

Walkerden 

and Jeffery 

(1999) 

Linear  Function 

point (FP) 

No No One 

Mendes and 

Mosley 

(2003) 

Linear  Size related 

features 

No No Multiple 

Jorgensen et 

al. (2003) 

Linear  Function 

point (FP) 

No No Multiple 

Chiu and 

Huang 

(2007) 

Linear  Size related 

features 

No Yes One 

Li et al 

(2007) and 

Li and Ruhe 

(2008) 

Linear  All relevant 

features 

Yes No Multiple 

 

Table 5.1 characterizes each adjustment method from six aspects. The 

first column contains the source of the adjustment. The second column is the 

type of adjustment function (linear / non- linear). The third column describes 

the features used in the adjustment function. The fourth column indicates 

whether the categorical features are considered in the adjustment. The fifth 

column shows whether the adjustment function can learn from the training 

dataset to approximate a complex relationship. The last column presents the 
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number of nearest neighbors (one / multiple) used in the adjustment function. 

The reasons for selecting these criteria are as follows. The function type 

reflects the basic structure of the adjustment model. The adjustment feature, 

categorical feature, and number of analogies together determine the inputs of 

the adjustment model. The learning ability indicates whether the adjustment 

mechanism has the flexibility to adapt to complex relationships.  

We can tell from Table 5.1 that most works are restricted to the linear 

functions without learning ability except the GA adjusted approach (Chiu and 

Huang, 2007). In addition, most adjustments do not consider the categorical 

features except the similarity adjusted function (Li et al. 2007, Li and Ruhe, 

2007). To improve the adjustment mechanism, we propose a more flexible 

non- linear adjustment mechanism with learning ability and incorporating 

categorical features. 

On the other hand, three relevant dataset characteristics are considered in 

our study: non-normality, categorical feature, and dataset size. These 

properties are likely to be relevant to the differences between the adjustment 

models. Non-normality is a frequently mentioned characteristic a cross the 

software engineering datasets (Pickard et al., 2001). Many existing studies 

(Myrtveit and Stensrud, 1999, Shepperd and Kadoda, 2001, Mendes et al., 

2003) have considered the non-normality as an influential factor to the 

accuracies of the models including analogy based methods. Generally, a 

higher degree of non-normality leads to lower modeling accuracy. This 
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property appears to be relevant to the function type of the adjustment models 

since the linear models usually work well under the normal condition and  

non- linear models with adaptive abilities seem to produce better results under 

non-normal conditions. Moreover, several applications of ANN in other 

research areas show that ANN model or ANN based models are robust to the 

non-normal datasets (Guh 2002, Chang and Ho 1999, Cannon 2007) and in 

theory ANN is capable of approximating arbitrary relationships (Lawrence, 

1994). Therefore, it is expected that ANN based adjustment might enhance 

ABE model‟s robustness to non-normality. 

Given the fact that categorical features frequently appear in software 

engineering datasets (Sentas and Angelis, 2006, Liu and Mintram, 2005) and 

they may enclose useful information which could distinguish the projects 

(Angelis et al. 2000), many papers start to incorporate categorical features 

into consideration (Angelis et al. 2000, Sentas et al. 2005, Li et al. 2007, Li 

and Ruhe, 2008). However, most existing adjustment techniques do not 

consider categorical features. NABE aims to incorporate categorical features 

into the adjustment mechanism. Therefore, the appearance of categorical 

features is regarded as one important data set property in our study.  

The dataset size is also an influential factor of ABE methods. The ABE 

system retrieves the similar cases from the historical dataset. The dataset with 

more projects may provide larger searching space for ABE. If the data is not 

very heterogeneous, it might lead to a higher chance for good prediction. 
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Several papers (Auer et al. 2006, Shepperd and Kadoda 2001, Shepperd and 

Schofield 1997) studied dataset size as one major factor on the accuracy of 

analogy based method. In both Shepperd and Schofield‟s paper and Auer‟s 

paper, the authors analyze the trends in estimation accuracy as the datasets 

grow, while Shepperd and Kadoda‟s work confirms that ABE benefits from 

having larger training sets. In addition, Shepperd and Kadoda also find that 

ANN can achieve better results on larger training sets. Hence, the dataset size 

characteristic has some connections with the learning ability of both ANN and 

ABE. 

As discussed above, dataset characteristics have large impacts on the 

estimation results and therefore it is more meaningful to identify which is the 

preferable estimation method in a particular context rather than to search for 

the „best‟ prediction system for all cases. In the following sections, a detailed 

description of the non- linear adjusted analogy based estimation (NABE) is 

presented. 

 

5.2.2 Artificial Neural Networks 

First of all, the non- linear component of NABE - ANN is briefly 

introduced. Artificial neural network (ANN) is one type of machine learning 

technique that has played an important role in approximating complex 

relationships. Due to its excellent learning ability, ANN has been widely 

accepted for software cost estimation research. 
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In ANN architecture, there are typically three layers: the input layer, the 

hidden layers, and the output layer. All the layers are composed of neurons. 

The connections between neurons across layers represent the transmission of 

information between neurons. ANN has the following mathematical form: 

 

  
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where x is an I-dimensional vector with {x1, x2, …, xI} as its elements, )(f  

is the user defined transfer function,   is a random error with 0 as its mean 

value, J is the total number of hidden neurons, v ij is the weight on the 

connection between the ith input neuron and the jth hidden neuron, j  is the 

bias of the jth hidden neuron, wj is the weight on the connection between the 

jth hidden neuron and the output neuron, and   is the bias of the output 

neuron. The weights and biases are determined by the training procedure 

minimizing the training error. The commonly used training error function 

Mean Square Error (MSE) is presented as follows: 
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where 
sy is the output of the network when the sth sample is the ANN input, 

and 
st is the sth training target. The classical Back Propagation (BP) 
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algorithm is often used to update the weights and biases to minimize the 

training error. 

As shown by formula (5.2), ANN has three user-defined parameters: the 

number of hidden layers, the number of hidden nodes and the type of transfer 

function. These parameters have major impacts on ANN‟s prediction 

performance (Martin et al. 1997). Among these parameters, one hidden layer 

is often recommended since multiple hidden layers may lead to an over 

parameterized ANN structure. For the number of hidden nodes, too few 

hidden nodes can hinder the network to approximate a desired function. On 

the contrary, too many hidden nodes can lead to over- fitting. The tuning of 

ANN parameters is given in section 5.3.2. 

In our study, ANN is used as the adaptive non-linear adjustment 

component in NABE system. The NABE method and its system procedure are 

described in the following section.  

 

5.2.3 Non-linear Adjusted Analogy Based System 

From the explanations in section 5.2.1, the adjustment mechanism should 

capture the „update‟ that transforms the solution from the retrieved projects 

into the target solution. Based on the linear adjustment model proposed by 

Chiu and Huang (2007), we extend the linear adjustment model to the 

following additive form: 
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where )(f  is an arbitrary function approximating the update that is 

necessary to change the retrieved solution into the target solution (in our study, 

)(f  is the ANN model), sx is the feature vector of project x, Sk is the feature 

matrix of the K nearest neighbours and Cw/o is the cost value obtained from the 

ABE without adjustment (or the retrieved solution). 

The NABE system consists of two stages. In the first stage, the NABE 

system obtains the retrieved (un-adjusted) solution and trains the non- linear 

component – ANN. In the second stage the non-linear component is used to 

produce the update and then the update is added up to the retrieved solution to 

generate the final prediction.  

 

Stage I - Training 

The procedures of stage I are shown in fig 5.2. The jackknife approach 

(Angelis and Stamelos, 2000) (also known as leave one out cross-validation) is 

employed for the training of the non- linear adjustment (ANN). For each 

project in the training dataset, the following steps are performed: 

Step 1: the ith project is extracted from the training dataset as the new 

project being estimated, and the remaining projects are treated as the historical 

projects in the ABE system.  

Step 2: the ABE system finds the K nearest neighbors from the historical 

projects by the similarity measure. In this study, the Euclidean distance is used 

to construct the similarity function Sim(i, j): 
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where i represents the project being estimated, j denotes one historical project, 

iqs  is the qth feature value of project i, jqs  denotes the qth feature value of 

project j, Q is the total number of features in each project and  = 0.0001 is a 

small constant to prevent the situation that 0),(
1




Q

q

jqiq ssDist . In our 

similarity function, we use un-weighted Euclidean distance to eliminate the 

impacts of different feature weights.  

After obtaining the K nearest neighbors, the retrieved solution (cost value) 

to the ith project is generated. For the sake of simplicity, the un-weighted 

mean (Shepperd and Schofield, 1997) is used as the retrieved solution in this 

study. 

Step 3: after obtaining the retrieved solution, the inputs and the training 

target are prepared to train the ANN model in (5.6). The inputs of ANN are 

the residuals between the features of project i and the features of its K nearest 

neighbors. The training target of ANN is the residual between the ith project‟s 

real cost value and the retrieved solution from its K nearest neighbors: 
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The left hand side of (5.6) is the training target: the difference between the 

real cost of project i and the retrieved solution of project i. The right hand side 

of (5.6) is the ANN model with siq as the qth feature of project i, skq as the qth 

feature of its kth analogy (if siq and skq are categorical features, then siq - skq = 1 

when siq = skq, and siq - skq = 0 when siq  skq), with wj, vkqj, j  and   as 

ANN weights and biases, with )(f  as the transfer function, with J as the 

number of hidden neurons, with K as the total number of analogies, and with 

Q as the total number of features in each project. For example, if the ith 

project‟s real cost is 40 and the retrieved solution is 21, then the targeting 

output of ANN is 40 - 21 = 19. 

Step 4: given the inputs and the targeting output, the Back Propagation 

(BP) algorithm is performed to update the parameters in (5.2) to minimize the 

training error MSE in (5.3). 

After repeating the above procedure to all the projects in the training 

dataset, the training stage is completed and the system moves to the testing 

stage. 
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Figure 5.2: Train ing stage of the ANN adjusted ABE system with K nearest neighbors 



Chapter V. Non-linear Adjustment by Artificial Neural Networks 

137 
 

             

Stage II - Predicting 

The predicting stage is illustrated in fig 5.3. At this stage, a new project x 

is presented to the trained NABE system. Then, a set of K nearest neighbors 

are retrieved from the training dataset by applying (5.5) to calculate the 

similarities. After obtaining the K nearest neighbors, the retrieved solution 

function is used to generate the un-adjusted prediction, and the differences 

between features of project x and its K nearest neighbors are inputted into the 

trained ANN model to generate the adjustment. Finally, the ABE prediction 

and the ANN adjustment are summed up as the final prediction: 
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Figure 5.3: Predicting stage of the ANN ad justed ABE system with K nearest neighbors 
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5.3  Experiment Design 

The data sets and experiments design are presented in this section.  

 

5.3.1 Datasets 

Four well known real world datasets are chosen for experiments. The 

Albrecht dataset is a popular dataset used by many recent studies (Shepperd 

and Schofield 1997, Heiat 2002, Auer et al. 2006). This dataset includes 24 

projects developed by third generation languages. Eighteen out of 24 projects 

were written in COBOL, four were written in PL1, and two were written in 

DMS languages. There are five independent features: „Inpcout‟, „Outcount‟, 

„Quecount‟, „Filcount‟, and „SLOC‟. The two dependent features are „Fp‟ and 

„Effort‟. The „Effort‟ which is recorded in 1000 person hours is the targeting 

feature of cost estimation. The detailed descriptions of the features are shown 

in table B.1 in appendix. The descriptive statistics is presented in table B.2 in 

appendix. Among these statistics, the „Skewness‟ and „Kurtosis‟ are used to 

quantify the degree of non-normality of the features (Kendall and Stuart, 

1976). It is noted that Albrecht is a relatively small dataset with high order 

non-normality compared to the other three datasets.  

The Desharnais dataset was collected by Desharnais (1989). Despite the 

fact that the Desharnais dataset is relatively old, it is one of the large and 

publicly available datasets. Therefore it still has been employed by many 

recent research works, such as Mair et al. (2000), Burgess and Lefley, (2001), 
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and Auer et al. (2006). This data set includes 81 projects (with 9 features) 

from one Canadian software company. Four of 81 projects contain missing 

values, so they have been excluded from further investigation. The 8 

independent features are „TeamExp‟, „ManagerExp‟, „Length‟, „Language‟, 

„Transactions‟, „Entities‟, „Envergure‟, and „PointsAdjust‟. The dependent 

feature „Effort‟ is recorded in 1000 h. The definitions of the features are 

provided in table B.3 in appendix. The descriptive statistics of all features are 

presented in table B.4 in appendix. It is shown that Desharnais is a larger 

dataset with relatively lower order non-normality compared with Albrecht 

dataset. 

The Maxwell dataset (Maxwell, 2002) is a relatively new dataset and has 

already been used by some recent research works (Sentas  et al., 2005, Li et al. 

2008b). This dataset contains 62 projects (with 26 features) from one of the 

biggest commercial banks in Finland. In this dataset, four out of 26 features 

are numerical and the remaining features are categorical. The categorical 

features can be further divided into ordinal features and nominal features, and 

they have to be distinguished. When calculating the similarity measure, the 

ordinal features are treated as „numerical features‟ since they are sensitive to 

the order while the nominal features are regarded as „categorical‟.  

In Maxwell dataset, the numerical features are „Time‟, „Duration‟, „Size‟ 

and „Effort‟. The categorical features are „Nlan‟, „T01‟-„T15‟, „App‟, „Har‟, 

„Dba‟, „Ifc‟, „Source‟ and „Telonuse‟. The ordinal features are „Nlan‟, and 
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„T01‟-„T15‟. The nominal features are „App‟, „Har‟, „Dba‟, „Ifc‟, „Source‟ and 

„Telonuse‟. The definitions of all the features are presented in table B.5 in 

appendix. The descriptive statistics of all features are provided in table B.6 in 

appendix. It is shown that Maxwell is a relatively large dataset with relatively 

lower order non-normality and larger proportion of categorical features 

compared with Albrecht set and Desharnais set.  

The ISBSG (International Software Benchmarking Standards Group) has 

developed and refined its data collection standard over a ten-year period based 

on the metrics that have proven to be very useful to improve software 

development processes. To the date of this study, the latest data release of this 

organization is the ISBSG R10 data repository (ISBSG 2007a) which contains 

a total of 4106 projects (with 105 features) coming from 22 countries and 

various organizations such as banking, communications, insurance, business 

services, government and manufacturing.  

Due to the heterogeneous nature and the huge size of the entire repository, 

ISBSG recommends extracting out a suitable subset for any cost estimation 

practice (ISBSG, 2007b). At the first step, only the relevant features 

characterizing projects should be considered to create the subset. Thus, we 

select out 14 important features (including project effort) suggested by ISBSG 

(ISBSG 2007b): „DevType‟, „OrgType‟, „BusType‟, „AppType‟, „DevPlat‟, 

„PriProLan‟, „DevTech‟, „ProjectSize‟ (consisting of six sub features: 

„InpCont‟, „OutCont‟, „EnqCont‟, „FileCont‟, „IntCont‟, and „AFP‟), and 
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„NorEffort‟. The projects with missing values in any of the selected features 

are excluded from the subset. Then, a further step is taken to refine the subset. 

In ISBSG dataset, project data quality is rated and only projects with A or B 

rating are used in published research works. Therefore the projects with the 

ratings other than A and B are excluded from the subset. Moreover, since the 

normalized effort („NorEffort‟) is used as the target for estimation, the risk of 

using normalized effort should be noted. For projects covering less than a full 

development life cycle, normalized effort is an estimate of the full 

development effort and this may introduce biasness. Hence the normalized 

ratio (normalized effort / summary effort) is used to refine the project subset. 

As suggested by ISBSG that a ratio of up to 1.2 is acceptable (ISBSG, 2007b), 

we filter out the projects with normalized ration larger than 1.2. Finally, the 

subset is further reduced to the projects with „Banking‟ as „OrgType‟. All the 

above procedures results in a subset with 118 projects.  

The definitions of the project features are presented in table B.7. The 

descriptive statistics of all features are summarized in table B.8. It is shown 

that the ISBSG subset is the largest dataset with high order non-normality and 

large proportion of categorical features compared with the datasets introduced 

above. 
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5.3.2 Experiment Design 

Prior to the experiment setup, all types of features are normalized into [0, 

1] by dividing each feature value by that feature range, similar to ANGEL 

(Shepperd and Schofield 1997). The three-fold cross-validation is used to 

assess the accuracies of the methods, similar to Jeffery et al. (2001), and 

Mendes et al. (2003). 

 

Experiments procedures 

After determining the cross-validation scheme, the following procedures 

are performed to validate the proposed NABE system with comparisons 

against other methods on each dataset.  

1. The performances of NABE are analyzed on both training set and testing 

set by varying K values from 1 to 5 while keeping the similarity measure 

as the formula in (5.5) and the retrieved solution function as the 

„un-weighted mean‟. The reason for changing K values is that K is an 

important parameter which determines the number of inputs to the 

non- linear adjustment. The similarity measure and retrieved solution 

function are fixed because the focus of this study is on non-linear 

adjustment and these two parameters may not have direct impacts to the 

non- linear adjustment. 

2. The optimal K value of the training practice (K minimizes the MMRE on 

training set) is selected to configure NABE for comparisons. Similarly, 
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the best variants of other methods on the training sets are also obtained. 

The training and testing results are summarized and analyzed.  

3. The Wilcoxon signed-rank tests ( = 0.05) are performed to 

quantitatively identify the significance of difference of each pair-wised 

methods on testing sets. 

 

Methods specifications  

Many cost estimation techniques are included for comparisons. They are: 

the standard ABE (Shepperd and Schofield 1997), the Linear size adjusted 

ABE (LABE) (Walkerden and Jeffery 1999), Regression toward the mean 

adjusted ABE (RABE) (Jorgensen et al. 2003), GA optimized linear adjusted 

ABE (GABE) (Chiu and Huang 2007), Similarity adjusted ABE (SABE) (Li 

and Ruhe, 2007), and other popular cost estimation methods including the 

Classification and Regression Trees (CART) (Stensrud, 2001), the Artificial 

Neural Network (ANN) (Mair et al. 2000) and Stepwise Regression (SWR) 

(Mendes et al. 2003). 

To eliminate the impacts from different parameters, all types of ABE 

methods are implemented with fixed similarity measure (Euclidean) and 

retrieved solution (un-weighted mean). The only changeable parameter K 

varies from 1 to 5. It is noted that, in SABE method the un-weighted similarity 

function is applied since the feature weighting is not included in this study.  

For ANN, there are generally three parameters: the number of hidden 



Chapter V. Non-linear Adjustment by Artificial Neural Networks 

145 
 

nodes, the number of hidden layers and the types of hidden transfer functions. 

In our study, only one hidden layer is considered in order to avoid the 

over-parameterized ANN structure. The number of hidden nodes is chosen 

from the set {1, 3, 5, 7, 10} and the type of hidden transfer function is chosen 

from the set {Linear, Tan-Sigmoid, Log-Sigmoid}. Every combination of 

hidden node and hidden transfer function is evaluated on the training data. The 

optimal combination (minimizing MMRE) is used for testing and 

comparisons. 

The CART (Brieman et al. 1984) is a non-parametric and tree structured 

analysis procedure that can be used for classification and regression. When the 

tree structure is applied for numerical targets they are often called regression 

trees. CART has the following advantages: the capability of dealing with 

categorical features, the easily understandable diagram of complex data and 

the ability to identify the major subsets in the total dataset (Srinivasan and 

Fisher 1995). The construction of the CART involves recursively splitting the 

data set into (usually two) relatively homogeneous subsets until the terminate 

conditions are satisfied. The best tree is obtained by applying cross-validation 

on the training set using a spread minimization criterion. The best tree model 

is used in testing and comparisons.  

For the stepwise regression method (SWR), the optimal regression model 

is determined from the forward stepwise procedure on the training dataset. 

Then the optimal linear equation is used in testing and comparisons. When the 
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categorical features appear in the dataset, the optimal scaling (or CATREG) 

technique by Angelis et al. (2001) is utilized to build the regression model 

based on both numerical and categorical features. 

Finally, the random model (RAND) is also included in the comparisons as 

the control group to produce the estimation by randomly selecting any 

project‟s cost value from the dataset (training set or testing set).  

All the methods are implemented via MATLAB code. The ANN 

component in the NABE system and the ANN method in comparisons are 

trained by BP algorithm. The mean squared error is used to determine how 

well the network is trained. The training stops when the MSE drops below the 

specified threshold = 0.01 in this study. 

 

5.4  Results 

In this section, the experimental results on four real world datasets are 

summarized and analyzed. 

 

5.4.1 Results on Albrecht Dataset 

Table 5.2 summarizes the three-fold cross validation results of NABE 

with different K values. It is observed that the setting K = 4 minimizes the 

training MMRE. Thus, the NABE system with K = 4 is chosen for the 

comparisons with other methods. In order to provide more insight on the 

magnitude of adjustment generated by ANN, the ratio of (absolute adjustment 
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/ non-adjusted cost value) is calculated across the testing sets. The mean value 

of these ratio values is 0.41 by the NABE system with K = 4. 

 

Table 5.2: Results of NABE on Albrecht dataset 

K value 
Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

K = 1 0.84 0.13 0.64 0.70 0.50 0.28 

K = 2 0.87 0.33 0.40 0.48 0.38 0.41 

K = 3 0.89 0.46 0.28 0.59 0.46 0.29 

K = 4 0.82 0.29 0.31 0.41 0.36 0.25 

K = 5 0.93 0.42 0.29 1.01 0.33 0.39 

 

Table 5.3 collects the training and testing results of the best variants of all 

cost estimation models. The configurations for ABE based methods are K = 2 

for ABE, K= 3 for RABE, K = 1 for LABE, K = 2 for GABE and K = 1 for 

SABE. The testing results in table 5.3 show that the NABE achieves the best 

values in MMRE, PRED(0.25) and MdMRE. Among other types of ABEs, 

LABE obtains the smallest MMRE, ABE achieves the maximum PRED(0.25), 

and RABE has the minimal MdMRE. In addition, it is noted that all methods 

have better performances than the random model. Another interesting 

observation is that some testing results are better than the training results. 

Some published cost estimation works (such as Chiu and Huang (2007) and 

Huang and Chiu (2006)) also reported similar patterns. This may be due to the 

fact that the machine learning techniques are data driven methods and they 

learn from examples without any knowledge of the model type. If the testing 
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data happens to fit well to the model constructed on training data, then it is 

possible to have better testing results than training results.  

 

Table 5.3: Accuracy comparison on Albrecht dataset 

Methods 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

NABE 0.82 0.41 0.29 0.36 0.31 0.25 

RABE 0.85 0.66 0.37 0.21 0.36 0.45 

LABE 0.81 0.61 0.29 0.21 0.39 0.53 

GABE 0.92 0.77 0.40 0.33 0.45 0.48 

SABE 0.84 0.81 0.33 0.25 0.41 0.46 

ABE 0.93 0.87 0.29 0.33 0.46 0.43 

ANN 0.97 0.85 0.46 0.33 0.30 0.39 

CART 3.36 1.44 0.13 0.17 0.93 0.66 

SWR 1.19 0.94 0.25 0.17 0.81 0.55 

RAND 4.47 1.71 0.17 0.13 0.74 0.72 

 

To further analyze the testing performances, we draw out the box plots of 

absolute residuals, because absolute residuals are less sensitive to bias than the 

asymmetric MRE values (Stensrud et al. 2003). The plots in fig 5.4 show that 

NABE has a lower median, a shorter inter-quartile range, and fewer outliers 

than other methods. It is also observed that the distributions of absolute 

residuals are heavily skewed. This implies that the standard t-test is no longer 

valid for significance testing. Thus, the assumption-free Wilcoxon signed-rank 

tests are performed instead.  
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Figure 5.4: Boxplots of absolute residuals on Albrecht dataset 

 

Table 5.4 summarizes the p-values of Wilcoxon tests of NABE versus 

other methods. Four paired comparisons have p-values smaller than 0.05. 

They are NABE v.s. RABE, NABE v.s. GABE, NABE v.s. CART, and NABE 

v.s. SWR. In addition, the improvements of NABE to other methods in terms 

of MMRE values are presented in Table 5.4. Four of the MMRE 

improvements are larger than 30% and the largest improvement is 60% on 

CART. The smallest improvement is 6% on LABE.  

  

Table 5.4: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in 

percentages 

 RABE  LABE  GABE  SABE  ABE ANN CART SWR 

p-value 0.02 0.19 0.04 0.08 0.08 0.12 0.00 0.00 

Improvement on 

MMRE (%) 

13 6 26 29 34 32 60 39 
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5.4.2 Results on Desharnais Dataset 

In this section, we present the results on Desharnais dataset in a way that 

is similar to the analysis on Albrecht dataset. Table 5.5 illustrates the training 

errors and testing errors of NABE with respect to different K values. The 

setting K = 2 achieves the minimal training MMRE, and thus NABE with K = 

2 is chosen for comparisons with other methods. The average of the ra tios of 

(absolute adjustment / non-adjusted prediction) is 0.03 on the testing sets.  

 

Table 5.5: Results of NABE on Desharnais dataset 

K value 
Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

K = 1 0.41 0.44 0.28 0.66 0.34 0.45 

K = 2 0.39 0.40 0.35 0.52 0.36 0.32 

K = 3 0.51 0.36 0.36 0.73 0.27 0.49 

K = 4 0.52 0.30 0.42 0.64 0.21 0.50 

K = 5 0.42 0.38 0.33 0.69 0.23 0.46 

 

Table 5.6 summarizes the training and testing errors of the best variants of 

all cost estimation models. The optimal parameters for ABE based methods 

other than NABE are: ABE with K = 1, RABE with K= 1, LABE with K = 1, 

GABE with K = 2 and SABE with K = 4. The testing results show that NABE 

achieves smallest MMRE and MdMRE, and second largest PRED(0.25). 

Among other types of ABEs, GABE obtains the smallest MMRE, RABE 

achieves the largest PRED(0.25) and the minimal MdMRE. It is also observed 

that the differences between NABE and other methods are not as apparent as 

those on Albrecht dataset. This observation may be attributed to the 
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characteristic of Desharnais dataset: moderate non-normality. It implies that all 

methods tend to perform equally good when the data set is close to normal 

distribution. As to the control group, all other methods have better predictions 

than the random model. 

 

Table 5.6: Accuracy comparisons on Desharnais dataset 

Methods 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

NABE 0.39 0.52 0.40 0.36 0.35 0.32 

RABE 0.68 0.68 0.38 0.39 0.34 0.34 

LABE 0.75 0.62 0.29 0.29 0.41 0.51 

GABE 0.72 0.55 0.28 0.32 0.38 0.43 

SABE 0.76 0.65 0.31 0.36 0.41 0.41 

ABE 0.38 0.60 0.44 0.34 0.29 0.42 

ANN 0.89 0.67 0.29 0.31 0.47 0.38 

CART 0.58 0.71 0.31 0.25 0.41 0.44 

SWR 0.67 0.73 0.35 0.35 0.39 0.34 

RAND 1.81 1.14 0.12 0.18 0.67 0.60 

 

For further analysis, the box plots of absolute residuals on testing datasets 

are presented in fig 5.5. The plots in fig 5.5 show that NABE‟s median is close 

to those of RABE, GABE, ANN and SWR, NABE has the shortest 

inter-quartile range, and NABE gets five outliers while SABE and CART have 

fewer ones though their outliers are more extreme. The distributions of 

absolute residuals are skewed and therefore Wilcoxon tests are used to 

quantitatively investigate the differences between NABE and other methods.  
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Figure 5.5: Boxplots of absolute residuals on Desharnais dataset 

 

In table 5.7, the p-values from the Wilcoxon tests are presented together 

with the improvements on MMRE. Six out of eight p-values are larger than 

0.05, and the remaining two p-values are NABE vs. LABE = 0.02 and NABE 

vs. CART = 0.03. All the MMRE improvements are not larger than 30%. The 

largest improvement is 30% on SWR while the smallest improvement is 7% 

on GABE. These observations confirm the previous observation that on 

Desharnais dataset, NABE does not perform significantly better than most 

methods. 

 

Table 5.7: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in 

percentages 

 RABE  LABE  GABE  SABE  ABE ANN CART SWR 

p-value 0.28 0.02 0.23 0.20 0.23 0.25 0.03 0.22 

Improvement on 

MMRE (%) 

24 17 7 20 14 23 27 30 
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5.4.3 Results on Maxwell Dataset 

This section presents the results and comparisons on Maxwell dataset. 

Table 5.8 presents the three-fold cross validation results of NABE with 

different K values. The best setting K = 3 which minimizes the training 

MMRE is chosen for comparisons with other methods. The mean of the ratios 

of (absolute adjustment / non-adjusted prediction) is 0.37 on the testing sets.  

 

Table 5.8: Results of NABE on Maxwell dataset 

K value 
Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

K = 1 0.91 0.23 0.61 1.21 0.16 0.57 

K = 2 0.87 0.27 0.61 1.22 0.21 0.58 

K = 3 0.80 0.23 0.51 0.80 0.35 0.45 

K = 4 0.89 0.21 0.54 0.77 0.19 0.49 

K = 5 0.89 0.24 0.56 0.93 0.19 0.56 

 

Table 5.9 presents the training and testing accuracies of different cost 

estimation models. The results from best variants of a ll methods are collected 

in this table. The configurations for ABE based methods are: ABE with K = 3, 

RABE with K = 3, LABE with K = 2, GABE with K = 3 and SABE with K = 4. 

The results show that NABE achieves the best testing MMRE, PRED(0.25) 

and MdMRE. Among other types of ABEs, SABE obtains the smallest MMRE, 

LABE achieves the largest PRED(0.25), and SABE has the minimal MdMRE. 

As to the control group, all other methods seem to be better than the random 

model. 
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Table 5.9: Accuracy comparisons on Maxwell dataset 

Methods 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

NABE 0.80 0.80 0.23 0.35 0.51 0.45 

RABE 0.78 0.88 0.23 0.16 0.57 0.62 

LABE 0.74 1.08 0.24 0.31 0.44 0.63 

GABE 0.92 0.98 0.21 0.26 0.45 0.52 

SABE 0.94 0.85 0.15 0.23 0.60 0.50 

ABE 0.92 1.04 0.23 0.21 0.63 0.62 

ANN 1.19 1.32 0.34 0.13 0.52 0.62 

CART 1.60 1.52 0.23 0.26 0.61 0.65 

SWR 1.53 1.09 0.18 0.23 0.65 0.76 

RAND 2.49 1.70 0.16 0.05 0.66 0.81 

 

To further analyze the testing results, we draw out the box plots of 

absolute residuals. The plots in Fig 5.6 show that NABE has a median close to 

those of GABE and SABE; NABE has an inter-quartile range close to those of 

GABE, SABE and CART; NABE gets five outliers while RABE, GABE, ABE, 

ANN and SWR have fewer outliers though some of their outliers are more 

extreme. The distributions of absolute residuals suggest using the Wilcoxon 

tests to identify the differences between NABE and other methods.  

Table 5.10 summarizes the p-values of Wilcoxon tests and the 

improvements on MMRE values. Four out of eight p-values are smaller than 

0.05. Two of the MMRE improvements are larger than 30%. The largest 

improvement is 48% on CART and the smallest improvement is 7% on GABE. 

These observations confirm the finding that NABE performs significantly 

better than other methods except SABE and GABE, on Maxwell dataset. 
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Figure 5.6: Boxplots of absolute residuals on Maxwell dataset 

 

Table 5.10: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in 

percentages 

 RABE  LABE  GABE  SABE  ABE ANN CART SWR 

p-value 0.09 0.02 0.14 0.15 0.06 0.00 0.02 0.02 

Improvement on 

MMRE (%) 

11.00 27.00 7.00 20.00 24.00 40.00 48.00 28.00 

 

5.4.4 Results on ISBSG Dataset 

In this section, we present the results and comparisons on ISBSG dataset. 

Table 5.11 illustrates the training and testing errors of NABE with different K  

values. The setting K = 2 achieves the minimal training MMRE and therefore 

NABE with K = 2 is chosen for comparisons with other methods. The mean 

value of the ratios of (absolute adjustment / non-adjusted prediction) is 0.43 on 

the testing sets, which is close to that of Albrecht data set and Maxwell data 
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set. Table 5.12 summarizes the comparisons among the best variants of 

different cost estimation models. The optimal parameters for ABE based 

methods are: ABE with K = 3, RABE with K = 3, LABE with K = 1, GABE 

with K = 3 and SABE with K = 5. The results show that the NABE achieves 

the best testing MMRE, PRED(0.25), and MdMRE. Among other types of 

ABEs, SABE obtains the smallest MMRE, RABE achieves the largest 

PRED(0.25) and the minimal MdMRE. As to the control group, all methods 

appear to be better than the random model.  

 

Table 5.11: Results of NABE on ISBSG dataset 

K value 
Training Testing 

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE 

K = 1 0.98 0.25 0.60 0.87 0.26 0.55 

K = 2 0.89 0.33 0.46 0.74 0.31 0.42 

K = 3 0.97 0.26 0.53 0.89 0.22 0.49 

K = 4 1.00 0.15 0.63 0.95 0.22 0.58 

K = 5 1.10 0.10 0.69 1.03 0.23 0.61 

 

 

Table 5.12: Accuracy comparisons on ISBSG dataset 

Methods 
MMRE PRED(0.25) MdMRE 

Training Testing Training Testing Training Testing 

NABE 0.89 0.74 0.33 0.30 0.46 0.42 

RABE 1.16 1.36 0.28 0.28 0.51 0.54 

LABE 1.19 1.13 0.29 0.17 0.53 0.58 

GABE 1.13 1.09 0.25 0.21 0.54 0.60 

SABE 0.91 0.85 0.23 0.18 0.51 0.58 

ABE 0.97 0.98 0.16 0.22 0.63 0.59 

ANN 0.82 0.96 0.27 0.25 0.49 0.60 

CART 1.26 1.07 0.19 0.18 0.73 0.61 

SWR 0.77 0.82 0.29 0.19 0.54 0.60 

RAND 2.17 2.29 0.13 0.09 0.73 0.70 
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The box plots of absolute residuals on testing sets are provided for further 

analysis. The plots in fig 5.7 show that NABE achieves a lower median, the 

shorter inter-quartile range than other methods. Another observation is that all 

methods are prone to extreme outliers. This may be attributed to the fact that 

ISBSG dataset was collected inter-organizationally and internationally. Due to 

the diverse sources of data, even two similar projects might have significantly 

different amounts of cost. In the next step, Wilcoxon tests are used to assess 

the differences between NABE and other methods.  

 

 

Figure 5.7: Boxplots of absolute residuals on ISBSG dataset 

 

In table 5.13, the p-values from the Wilcoxon tests are presented together 

with the improvements on MMRE. In this table, all p-values are not larger 

than 0.05. As for the MMRE improvement, four MMRE improvements are 
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larger than 30%. The largest improvement is 48% on RABE while the 

smallest improvement is 14% on SWR.  

 

 

Table 5.13: NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in 

percentages 

 RABE  LABE  GABE  SABE  ABE ANN CART SWR 

p-value 0.02 0.05 0.04 0.05 0.02 0.02 0.01 0.02 

Improvement 

on MMRE (%) 

48 31 35 17 29 27 34 14 

 

 

5.5  Analysis on Dataset Characteristics  

In section 5.4, results and comparisons are presented on each real dataset 

individually. However, the results vary significantly from one dataset to 

another. For instance, NABE is statistically better than RABE on ISBSG 

dataset (p = 0.02) but their performances are  similar  to each other 

statistically on Desharnais dataset (p = 0.28). This is probably due to the fact 

that model accuracies are not only affected by the parameters selections but 

also affected by other factors such as the dataset characteristics (Shepperd and 

Kadoda, 2001). In this section, we conduct a systematic investigation in order 

to explore the relationship between model accuracy and the dataset 

characteristics, and identify under which conditions NABE is the preferred 

prediction system and under what conditions other methods can also be 

recommended. 
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Table 5.14 summarizes a set of characteristics of the real world datasets. 

The columns in this table list the dataset name, the number of projects, the 

total number of features, the number of categorical features, and the average 

value of absolute skewness and the average of kurtosis of each feature. The 

skewness and kurtosis values together reflect the degree of non-normality of 

the dataset. 

 

Table 5.14: Characteristics of the four real world datasets 

Dataset Number 

of 

Projects 

Number 

of 

Features 

Number of 

Categorical 

Features  

Avg. 

Skewness 

Avg. 

Kurtosis 

Albrecht 24 7 0 2.03 7.27 

Desharnais 77 9 1 1.18 5.03 

Maxwell 62 26 6 0.97 5.42 

ISBSG 118 14 7 1.67 7.42 

 

This table provides some insights to each dataset. It is shown that 

software datasets often exhibits a mixture of several characteristics such as 

skewness and excessive outliers (kurtosis). These characteristics do not 

always appear in the same degree. In some cases they are moderate such as 

the Albrecht dataset, while in other cases they are severe such as the ISBSG 

dataset. It is also noted that the data sets are largely contrasting to each other, 

for example Albrecht dataset has a relatively small size and small proportion 

of categorical features while Maxwell dataset is larger and has a large 

proportion of categorical features. However, based on only the real world 

datasets, there are still some difficulties for a systematic analysis. The real 
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dataset properties are uncontrollable and the real world datasets cannot cover 

the full range of the combinations of the properties being studied.  

Artificially generated dataset by simulation (Pickard et al. 1999, Shepperd 

and Kadoda 2001) is a feasible solution to the above difficulties. This 

approach generates artificial dataset from predefined distributions and 

equations. The simulated dataset provides the researcher with more control 

over the characteristics of a dataset. It especially enables the researcher to 

vary one property at a time and thus allows a more systematic exploration of 

the relationship between dataset characteristics and model accuracies. As a 

simple but powerful tool for empirical evaluations, this technique has been 

frequently implemented by several recently published studies (Myrtveit et al. 

2005, Li et al. 2008a).  

Besides the simulation approach, bootstrapping (Efron and Gong 1983) is 

often used to produce artificial datasets to study the uncertainties in the 

predictions (Angelis and Stamelos, 2000). Its principle is to generate several 

new datasets with the same size as the original dataset by randomly sampling 

original data with replacement. Each new dataset may have some items from 

the original dataset appearing more than once while some not appearing at all. 

However, bootstrapping is not considered for artificial dataset generation in 

this study. The reason is that our study mainly emphasizes on varying dataset 

properties to investigate the relationships between dataset properties and 

model accuracies but bootstrapping only generates a series of datasets based 
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on original data and offers limited variability for changing the dataset 

properties. Also, the simulation technique provides a more explicit control 

over the dataset properties such as adjusting the distribution parameters to 

vary the skewness and kurtosis of the variable distribution.  

In section 5.5.1, we simulate 8 artificial datasets to match the 8 different 

combinations of the 3 data characteristics. Due to the computa tional limits, we 

only considered two levels for each characteristic: such as Large/Small for the 

„Dataset size‟, Large/Small for the „Proportion of categorical features‟, and 

Severe/Moderate for the „Non-normality‟. 

 

5.5.1 Artificial Dataset Generation 

In this section, we present the procedures of artificial datasets generation. 

We extend Pickard‟s equation of artificial dataset generation in this work. 

Other types of simulation techniques for artificial dataset generation are also 

available in the literature. For more details, readers can refer to Shepperd and 

Kadoda (2001), Foss at al. (2003), and Myrtveit et al. (2005). 

Based on Pickard‟s method, we simulate the combinations of 

characteristics from the equation (5.8): 

 

eskxskxskxskxskxskxy  654321 1052361000    (5.8) 

 

The independent variables are x1sk, x2sk, x3sk, x4sk, x5sk, and x6sk. Among 
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them, x1sk, x2sk, and x3sk are continuous variables, and x6sk is a categorical 

variable. The first variable x1sk is treated as the feature „function point‟ for the 

linear adjustment methods. The last term e in (5.8) is the normally distributed 

noise with mean 0 and variance 1. To simulate different proportions of 

categorical features (Large/Small), x4sk and x5sk are defined as categorical 

variables for the situation of large proportion (50%) while x4sk and x5sk are set 

to be continuous to represent the situation of small proportion of categorical 

features (16.7%).  

The non-normality is represented by skewness and outliers (kurtosis). For 

the continuous variables, the skewnesses are generated by five independent 

Gamma distributed random variables x1‟, x2‟, x3‟, x4‟, and x5‟with scale 

parameter θ = 2 and shape parameter k = 3 representing moderate skewness, 

and θ = 2 and k = 1 for the severe skewness. For the categorical variables, the 

moderate skewnesses are simulated by the independent discrete random 

variables x4‟, x5‟, and x6‟ with the distribution {P(X = 1) = 0.1; P(X = 2) = 0.1, 

P(X = 3) = 0.5, P(X = 4) = 0.2, P(X = 5) = 0.1} and the severe skewnesses are 

simulated by the distribution {P(X = 1) = 0.7; P(X = 2) = 0.1, P(X = 3) = 0.1, 

P(X = 4) = 0, P(X = 5) = 0.1}. To vary the scale of the independent variable, 

we then multiply x1‟ by 10 to create variable x1sk, x2‟ by 3 to create the 

variable x2sk, x3‟ by 20 to create the variable x3sk, x4‟ by 5 to create the 

variable x4sk, x5‟ by 2 to create the variable x5sk, and x6‟ by 1 to create the 

variable x6sk. The outliers are generated by multiplying or dividing the 
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dependent variable y by a constant. We select 1% of the data points to be the 

outliers. Half of the outliers are obtained by multiplying while half of them are 

obtained by dividing. For the moderate outliers, we set the constant value as 2, 

while for the severe outliers, 6 is chosen to be the constant.  

For dataset sizes, we generate 400 projects to form the large sized dataset 

and 40 projects to construct the small sized dataset. Table 5.15 summarizes the 

properties of the 8 artificial datasets.  

 

Table 5.15: Art ificial datasets and properties 

Dataset 

ID 

Size (number 

of projects) 

Number of 

Categorical 

features 

(proportion) 

Degree of Non-normality 

(Avg. skewness, Avg 

kurtosis) 

#1 Small (40) Small (16.7%) Moderate (0.75, 3.10) 

#2 Small (40) Small (16.7%) Severe (2.32, 9.87) 

#3 Small (40) Large (50%) Moderate (0.61, 3.37) 

#4 Small (40) Large (50%) Severe (2.84, 9.71) 

#5 Large (400) Small (16.7%) Moderate (0.93, 3.72) 

#6 Large (400) Small (16.7%) Severe (3.21, 13.9) 

#7 Large (400) Large (50%) Moderate (0.82, 3.63) 

#8 Large (400) Large (50%) Severe (3.32, 10.09) 

 

 

5.5.2 Comparisons on Modeling Accuracies  

The experimental procedures presented in section 5.3 are applied on all 

artificial datasets. The comparisons between NABE and other models are 

presented first, since the relative performances of NABE to other methods 

could provide more insights about how to choose an appropriate cost 

estimation method under a certain condition. Table 5.16 summarizes the 
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results of Wilcoxon signed rank tests. These significance tests assess the 

differences between the absolute residuals of NABE‟s predictions and the 

absolute residuals of other methods‟ predictions. The confidence limit is set at 

 = 0.05. In Table 5.16, the entry with „Y‟ indicates that NABE performs 

significantly better than the method located in this entry‟s corresponding 

column. The last column summarizes the total number of „Y‟s in each row 

(dataset). 

 

Table 5.16: Comparative performance of NABE to other methods 

Dataset ID RABE LABE GABE SABE ABE ANN CART SWR Totals 

#1         0 

#2  Y      Y 2 

#3 Y Y    Y   3 

#4 Y Y Y Y Y Y Y Y 8 

#5  Y Y      2 

#6  Y      Y 2 

#7 Y Y Y  Y    4 

#8 Y Y Y Y Y Y Y Y 8 

 

The results in table 5.16 show that NABE achieves better performance 

than all other methods on datasets #4 and #8. Both have large proportions of 

categorical features and severe non-normality. This observation suggests that 

NABE might be the best choice among all methods in our study, when the 

dataset is highly non-normal and with large proportion of categorical features. 

This observation also confirms the findings on ISBSG dataset which has 

similar properties to dataset #8. Another interesting observation is that NABE 

obtains the equally good predictions as other methods on dataset #1 which has 

small size, small number of categorical features and moderate non-normality. 
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When Compared to the real world datasets, Dataset #1‟s properties are closest 

to those of Desharnais set on which NABE also performs equally as other 

methods except LABE and CART.  

The analysis above clarifies the conditions under which NABE is 

preferable to other methods. To further study the relationship between dataset 

property and model accuracy, we analyze the model predictions under single 

dataset characteristic.  

 

5.5.3 Analysis on ‘Size’ 

Table 5.17 summarizes the testing MMREs of each cost estimation model 

on the artificial datasets grouped under different „size‟. The results show that 

NABE achieves the lowest MMREs on datasets #2, #4, #5, #6, #7, and #8. It is 

also observed that the dataset size might largely influence the prediction 

accuracies. More specifically, almost all the methods obtain smaller MMRE 

values on larger datasets.  

 

Table 5.17: Testing MMREs under different dataset size 

Dataset Size NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17 

#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44 

#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15 

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68 

#5 Large 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14 

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47 

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12 

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65 
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To further investigate the „size‟ property, we compare the absolute 

residuals of predictions using the small datasets and the large datasets. The 

difference is tested by using the Mann-Whitney U test setting the confidence 

limit at  = 0.05, since the sample sizes are not equal (40 data points vs. 400 

data points). The results are presented in Table 5.18. The entry with „Y‟ means 

the difference between the datasets pair in its row is significant when using the 

model in its column. Table 5.18 shows that a larger dataset size may 

significantly reduce prediction error measured by absolute residuals. Most 

approaches including NABE could benefit from having larger datasets. 

However, SWR seems to be not influenced by the dataset size. This may be 

attributed to the fact that SWR constructs the regression line from the data 

with only a few critical data points. This finding also confirms the suggestion 

from Shepperd and Kadoda (2001) that for the machine learning methods, 

large dataset size could reduce the prediction errors when other properties are 

fixed. 

  

Table 5.18: Mann-Whitney U tests of dataset size influences  

Datasets 

pair  

NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 vs. #5 Y   Y  Y    

#2 vs. #6 Y Y Y   Y  Y  

#3 vs. #7 Y Y Y  Y  Y Y  

#4 vs. #8 Y Y Y Y Y Y Y   
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5.5.4 Analysis on ‘Proportion of categorical features’ 

This section presents the analysis on the proportion of categorical features. 

Table 5.19 is essentially a re-arrangement of the rows in table 5.17. In table 

5.19, the artificial datasets are grouped under different „proportion of 

categorical features‟. It is observed that large proportion of categorical features 

may have negative impacts on the prediction accuracy. This finding is 

reflective of the fact that categorical features may have less statistical power 

compared with numerical features (Kirsopp et al. 2003). 

 

Table 5.19: Testing MMREs under different proportions of categorical features  

Dataset Proportion 

of 

categorical 

features 

NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17 

#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44 

#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14 

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47 

#3 Large 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15 

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68 

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12 

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65 

 

Table 5.20 presents the results of Wilcoxon signed rank tests with 

confidence level at  = 0.05 on the absolute residuals of predictions using the 

datasets with smaller number of categorical features and the datasets with 

larger number of categorical features.  
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Table 5.20: Wilcoxon tests of proportion of categorical features influences 

Datasets 

pair  

NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 vs. #3  Y Y Y   Y Y  

#2 vs. #4 Y Y Y Y Y Y Y Y Y 

#5 vs. #7      Y    

#6 vs. #8 Y Y Y Y Y Y Y Y Y 

 

In general, all methods are more or less affected by this property. Among 

them, NABE, SABE and SWR are least sensitive to the categorical values. 

The probable reason is that CATREG technique is adopted in SWR model, 

and NABE and SABE both can make use of the categorical features in their 

adjustment mechanism. 

 

 

5.5.5 Analysis on ‘Degree of non-normality’ 

This section provides the analysis on degree of non-normality. Table 5.21 

is also a re-arrangement of the rows in table 5.17. In table 5.21, the artificial 

datasets are grouped under different „degree of non-normality‟. It is noted that 

most methods obtain larger MMRE values under severe non-normal 

conditions. This indicates a trend that the increase of non-normality may result 

in a decrease of the prediction accuracy. However,  NABE appeared to be least 

sensitive to non-normality while SWR seems to be most sensitive to 

non-normality. This observation supports our argument in section 5.2 that 

ANN could enhance ABE‟s robustness to non-normal data. 
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Table 5.21: Testing MMREs under different degrees of non-normality 

Dataset Non- 

normality 

NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 Moderate 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17 

#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15 

#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14 

#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12 

#2 Severe 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44 

#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68 

#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47 

#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65 

 

Table 5.22 presents the results of Wilcoxon signed rank tests with 

confidence level at  = 0.05 on the absolute residuals of predictions using 

moderate non-normal datasets and severe non-normal datasets. The results 

confirm the finding that NABE is least sensitive to non-normality while SWR 

is most sensitive to the non-normal property. Table 5.22 also can partially 

support Shepperd and Kadoda‟s (2001) argument that ABE is preferred to 

SWR if the dataset contains large proportion of outliers.  

 

 

Table 5.22: Wilcoxon tests of non-normality influences 

Datasets 

pair  

NABE RABE LABE GABE SABE ABE ANN CART SWR 

#1 vs. #2   Y      Y 

#3 vs. #4  Y Y Y Y Y Y Y Y 

#5 vs. #6         Y 

#7 vs. #8 Y Y  Y Y Y Y Y Y 
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5.6  Discussions 

To improve the adjustment mechanism, this chapter presents a flexible 

non- linear adjustment mechanism with learning ability and incorporating 

categorical features. The non- linearity adjusted Analogy Based Estimation 

(NABE) is implemented by adding a non- linear component (Artificial Neural 

Network) onto the retrieved solution of the ABE system. The proposed NABE 

is validated on four real world datasets with the comparisons against the 

published linear adjusted ABEs and three well established methods: CART, 

ANN and SWR. The results and comparisons show that NABE generally 

achieves best MMRE, PRED(0.25) and MdMRE values on the real world 

datasets.  

To answer the question: under what conditions NABE is preferred, we 

generate eight artificial datasets to analyze the relationships between model 

accuracies and dataset characteristics (non-normality, categorical feature, and 

dataset size). The analyses show that NABE performs significantly better than 

other methods on the artificial datasets with severe non-normality and large 

proportion of categorical features.  

In the domain of cost estimation, the lessons learnt via this study are as 

follows: 

 The non-linear based adjustment to ABE system is generally an effective 

approach to extend ABE‟s flexibility on complex datasets and improve 

the accuracy of ABE. 
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 NABE is likely to be a more accurate method than other types of ABE 

methods on the dataset with high degree of non-normality and large 

proportion of categorical features. 

 On the dataset with a relatively small size, a relatively small proportion 

of categorical features and a moderate non-normality, NABE may not be 

an ideal option, since it is likely to have equal accuracy to other ABE 

methods and it has a more complex structure than other ABE methods.  

 There are strong relationships between the successes of NABE and 

dataset properties (non-normality, categorical feature, and dataset size). 

Thus, the practitioners should be aware of the tradeoffs among datasets 

properties, model complexity and model accuracy, when implementing 

NABE. 

Nevertheless, there are also some limitations of NABE. To focus on 

different adjustment mechanisms, we pre-determined the similarity measure 

and the retrieved solution function in ABE system. However, there are many 

options for these two components. For the similarity measures there are 

alternatives based on Manhattan and Minkowski distances (Mendes, et al. 

2003, Huang and Chiu, 2006, Li and Ruhe, 2007), and for the retrieved 

solutions there are weighted mean and median (Angelis and Stamelos, 2000, 

Mendes, et al. 2003).  

Moreover, feature selection (Kirsopp et al. 2003) and project selection (Li 

et al. 2009a) are important preprocessing steps of ABE method since there are 
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often many irrelevant features and noisy projects in the software engineering 

datasets. The possibility of further improvement of the NABE systems also 

lies in the appropriate selection of relevant features and representative 

projects. 

Furthermore, missing values often appear in the software engineering 

datasets. Many studies (Myrtveit et al. 2001, Strike et al. 2001, Jonsson and 

Wohlin 2006, Song and Shepperd 2007) have proposed different data 

imputation techniques to recover missing data by estimating replacement 

values. However, the missing values are excluded from our study. This might 

cause some difficulties for practitioners to apply the NABE system to the 

datasets with significant amount of missing values. For example during the 

ISBSG subset preparation, we realize that missing values cause the deletion of 

many projects. 

Finally, the non- linear adjustment in our study is based on artificial neural 

networks. Other types of non- linear approximations such as Radius Basis 

Functions (Hardy, 1971) and Support Vector Machines (Vapnik, 1995) can 

also be employed as the non- linear adjustment. They may achieve better 

performance than ANN does, because they have fewer parameters than ANN 

and they have the regularization mechanism to prevent the over- fitting 

problem suffered by ANN.  
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Chapter 6  Probabilistic 

Analogy Based Estimation4 

 

Most published research works have been focusing on improving ABE‟s 

accuracy (such as the works in Chapter 3, Chapter 4, and Chapter 5). However, 

due to the inherent uncertainties and complexities in cost estimation process, 

the accurate point estimates are often obtained with great difficulties. From 

the perspective of industrial engineering, it is more practical to generate 

probabilistic predictions. In the literature, there is still a lack of formal 

framework for ABE to generate probabilistic predictions. In this chapter, we 

first propose a probabilistic model of ABE (PABE). The prediction of PABE is 

obtained by integrating over the parameter K, the number of nearest neighbors, 

via Bayesian inference. In addition, PABE is tested on two well-known 

datasets with comparisons against other established estimation techniques. 

The promising results show that PABE could largely improve the point 

estimations of ABE and achieve quality probabilistic predictions.  

 

6.1  Introduction 

Several techniques have been proposed to improve ABE‟s accuracy. 

However, it still has been reported that ABE sometimes produces misleading 

                                                 
4
 This chapter is associated with the papers Li et al. 2008a and Li et al. 2008b.  
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results (van Koten and Gray 2006). This may be due to the inherent 

uncertainty in the estimation process (because a cost estimate is an assessment 

of a future condition and therefore the uncertainty is embedded in the 

estimation) and the unclear project requirement in the early stages of software 

life cycle. Therefore, Angelis and Stamelos (2000) pointed out that it is safer 

to generate probabilistic predictions such as probability distribution of the cost 

value or interval estimate of cost with a certain probability.  

Recently, more and more researches are devoted onto probabilistic 

predictions. The published studies include bootstrapped ABE method (Angelis 

and Stamelos 2000), expert judgments (Jorgensen and Sjoberg 2003), and 

Bayesian networks (van Koten and Gray 2006). However, very few of these 

studies have proposed probabilistic model for conventional ABE. The 

bootstrapped ABE (Angelis and Stamelos 2000) is one important attempt. 

However, bootstrapping technique is a simulation based re-sampling method 

with high computational cost and limited interpretations. To the best of our 

knowledge, there is still a lack of interpretable and efficient formal 

probabilistic model of ABE. In other research fields, few initiatives (Holmes 

and Adams 2002) on probabilistic K-Nearest Neighbor Regression (KNNR) 

model have been taken. ABE is equivalent to KNNR in the statistics literature.  

In this chapter, we present a continuous probabilistic model of ABE 

(PABE). Then, Bayesian inference is used to produce the probabilistic 

prediction by integrating over the parameter K, the number of nearest 
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neighbors, because Bayesian inference is capable of handling missing data, 

learning causal relationships, combining prior knowledge and data, and 

avoiding over- fitting problems (Heckerman 1997). 

The rest of this chapter is organized as follows. Section 6.2 presents a 

brief introduction to the formal model of ABE and its parameter K, the 

number of nearest neighbors. Section 6.3 describes the prior distributions of 

PABE model, the Bayesian inference approach, and the predictive PABE 

model. In section 6.4, the experiments setup for empirical validations is 

presented. The last section presents the results and comparisons on two 

object-oriented maintenance datasets.  

 

6.2  Formal Model of Analogy Based Estimation 

As pointed out by Mittas et al. (2008), although ABE seems to be an 

empirical technique, it still has the mathematical form which is known as 

K-Nearest Neighbor Regression in the context of statistics. Prior to the 

introduction of the probabilistic model of ABE, we recall ABE‟s formal model 

in Mittas et al. (2008)‟s work.  

Let )},(),...,,(),,{(},{ 2211 nn yyyYXD xxx be the historical dataset which 

contains a set of n independent historical projects, X = {x1, x2,…, xn} = (x ij)n×d 

be an n × d random matrix of project features (or cost drivers) with xi as a 

vector of d project features and x ij as the jth feature of the ith project, and Y = 

{y1, y2,…, yn} be an n–dimensional random vector with yi as the cost value of 
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the ith project. Given a new project x and its cost value y unknown, the ABE‟s 

point estimate of y is the weighted sum of the cost values of x‟s K nearest 

neighbors: 

 



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xxx
Ki N

iii ywYy                   (6.1) 

 

where NK(x) is the neighborhood set of x which comprises K nearest projects 

of x, and wi(xi, x) is the weight function depending on the features of 

historical project xi and new project x. Usually, the summation of weights is 

set to be 1 for the purpose of normalization. 

The number of nearest neighbors K is the key parameter of ABE. Many 

studies (Li and Ruhe. 2008, Mittas et al. 2008, Li et al. 2008c, Chiu and 

Huang 2007, Huang and Chiu 2006, Auer et al. 2006, Mendes et al. 2003, 

Leung 2002, Angelis and Stamelos 2000, Shepperd and Schofield 1997) have 

attempted to optimize this parameter; however most optimization methods are 

brute force empirical approaches. Table 2.3 in Chapter 2 summarizes the 

relevant works. It is shown that most previous studies have specified a certain 

range for K values and this is followed by the cross-validation procedure to 

select the K value with which the ABE could produce the predictions 

optimizing the error value on the training dataset. Moreover, three papers 

(Chiu and Huang 2007, Leung 2002, Auer et al. 2006) predefined K at fixed 

values, and Li and Ruhe (2008) proposed a method named „dynamic K‟. In 
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this approach, the projects falling within a certain distance threshold (T) of the 

target project are treated as nearest neighbors and the number of neighbors 

may vary when different target projects appear. However, this method is also 

under the cross validation scheme. The advantage of cross validation is that it 

takes into account the effort data under study. Regardless of how K is 

selected, the predictions made by all ABE studies in table 2.3 have no 

probabilistic interpretations. This lack of a probabilistic interpretation in the 

predictions makes it difficult to incorporate ABE into the software cost 

estimation process where predictions are uncertain in nature. 

 

6.3  Probabilistic Model of Analogy Based Estimation 

The objective of PABE model is to obtain the marginal distribution of the 

cost value p(y | x, Y, X) given the historical dataset D = {X, Y} and the features 

of project x regardless of the value of K. In this section, we first define the 

conditional prior distribution p(Y | X, K) and the conditional predictive 

distribution p(y | x, Y, X, K), then utilize Bayesian inference to obtain the final 

marginal distribution p(y | x, Y, X). 

 

6.3.1 Assumptions 

Before the definition of conditional prior distribution, three fundamental 

assumptions of PABE are introduced as follows: 

1) Given the historical project dataset D, the cost value y of project x is 

a normally distributed independent variable with mean   and variance 2 . 
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2)  The mean value   equals to the output of the conventional ABE 

model in (6.1). 

3) The variance 2  is related to the summation of the similarities 

between project x and its K nearest neighbors. 

Assumption 1) appears invalid in the real world applications, since the 

real cost values must be positive and are often with extreme outliers. 

However, the cost value can be transformed to normal distribution. 

Experience and theory have shown that the logarithmic and square root 

transformation can effectively produce normally distributed quantities from 

non-normal distributions (Angelis and Stamelos 2000, Jeffery et al. 2000, 

Mittas et al. 2008). 

Assumption 2) requires that the expectation of PABE should be point 

ABE estimate in (6.1), so that we can obtain   as: 
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where the weight wi(xi, x) is defined as: 
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where si is the similarity between project x and its ith nearest project and 

NK(x) is the neighborhood set of x. Recall from the formula of similarity 

measure in (2.11), si is defined as follows: 

 

 
i

i
dc

s

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1

                          (6.4) 

  

where di is the Euclidean distance between project x and its ith nearest project, 

and c is a small constant to avoid the situation di = 0. We set c = 0.0001 in this 

study. 

Assumption 3) reflects the intuition that the estimations with higher total 

similarity 



Ki Nx

iss acquire higher precision. Assumption 3) is reminiscent of 

the definition of precision matrix in Gaussian Markov Random Field (Ferreira 

and Victor 2007). 

 

6.3.2 Conditional Distributions 

By assumption 1), the cost value yi is independent from each other. Given 

the feature matrix X and parameter K, the conditional distribution of Y is 

described as below: 
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where n denotes the total number of projects in the historical dataset, (n - 1)K 

represents the K sized neighborhood system in the set of (n – 1) projects 

excluding project xi, ijs  is the similarity between project xi, and xj, 





Kj N

ijii ss
)1(x

is the total similarity of project xi. Under this circumstance, the 

probability of yi is conditioned on only those K nearest projects. 

Given the features of new project x, the conditional predictive distribution 

of its cost value y is: 
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where 



Kj N

jss
x

 is the total similarity between project x and its K nearest 

neighbors.  

 

6.3.3 Predictive Model and Bayesian Inference 

Our goal is to obtain the marginal predictive model p(y | x, Y, X) 

regardless of the value of K. It can be obtained by integrating the joint 

predictive distribution (6.6) over the space of parameter K : 
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 where the conditional predictive model p(y | x, Y, X, K) is given in (6.6), and 

the posterior distribution p( K | Y, X ) can be solved by Bayesian inference. 

The Bayesian inference often involves three steps: 1. assign a prior p(K) to the 

unknown parameter K; 2. define the likelihood p(Y | X, K) of observing Y 

given K; 3. determine the posterior p( K | Y, X ) of K.  

The prior distribution of K is considered first. It is important to choose an 

appropriate prior distribution which results in computationally tractable 

posterior distribution. In our study, the prior of the parameter K is assumed to 

be uniformly distributed, since we have little prior knowledge about the likely 

values of K, and the uniform distribution is a maximum entropy distribution.  

 

},,1{)( maxKUKp                      (6.8) 

 

where U denotes the uniform distribution. The distribution p(Y | X, K) is given 

in (6.5). With the (6.5) and (6.8), the posterior distribution of K can be 

rewritten as: 
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By definition, the occurrences of the observed features X are independent 

from the value of K, and therefore p(X | K) can be regarded as some constant. 

Then (6.9) can be rewritten as follows: 
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Since the prior of K is uniformly distributed and p(K) = 1/Kmax, then the 

posterior in (6.10) can be rewritten as: 
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where p(Y | X, K) is the conditional distribution of Y defined in (6.5). The 

value of p(Y | X, K) can be computed by substituting the historical projects 

features and effort values into its equation. To simplify the notations, let 
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It is noted that the predictive PABE model is in fact the weighted 

summation of a series of normal distributions. Therefore, the resulting 

distribution is also normally distributed and the mean and variance of this 

distribution are: 
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where 





max

1

K

K

K

K
K

Z

Z
f  represents the proportion of the probability of observing 

Y with K neighbors, and 



Kj N

jss
x

 is changing with different K values. 

Comparing with the point ABE model in (6.1), the expectation of PABE 

model in (6.13) is further adjusted by a sequence of weights fK which reflects 
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the likelihood of historical data with different K values. In applications, 

maxK and 2

m axK  together determine the final predictive model.  

From the presentations above, we obtain the predictive PABE by 

integrating over the parameter K  instead of relying on some optimal K values, 

because optimization often fails to take into account the inherent uncertainty 

in parameters. There is no „true‟ value for the parameter which can be found 

by optimization. However, there is a range of possible values for the 

parameter, each with some associated density (Denison et al. 2002). 

 

6.3.4 Implementation Procedure of Probabilistic Analogy Based 

Estimation 

The detailed implementation procedure of PABE to predict the cost value 

y of a new project x is presented as follows: 

1. Prepare the historical data set D = {X, Y}, where X is the project feature 

matrix and Y is the vector of project efforts. Take the necessary 

transformation (logarithm or square root) to transform Y to normal 

distribution. Set Kmax equal to 10. 

2. Calculate the point estimate 
 Kj Nx

j
i y

s

s
 and the total similarity 





Kj Nx

jss  of the new project x for each K value from 1 to 10. The 

similarity is calculated by (6.4). In all, a vector of ten cost estimates and a 

vector of ten total similarities are obtained.  
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3. Calculate the likelihood of observing Y, P(Y | X, K) for each K value from 

1 to 10 by formula (6.5). At this step, a vector of ten likelihood values is 

obtained. 

4. Calculate the probability distribution y by specifying maxK and 2

m axK  

using the formula in (6.13) and (6.14).  

5. Convert the point prediction maxK  and interval estimation 

][ max2/max KK Z     to the final predictions by exponential or square 

transformation. 

 

6.4  Experiment Design 

In this section, we evaluate PABE on two real world datasets with the 

comparisons to other estimation techniques. The datasets are described first. 

Then the prediction accuracy measures of point prediction and interval 

prediction are introduced. After that, the cross-validation scheme is presented. 

Lastly, other comparative methods and the detailed experiment procedures are 

described. 

 

6.4.1 Datasets 

For the purpose of comparing PABE to the published software 

maintenance effort estimation methods, we select the two well known 

objective oriented software maintainability datasets by Li and Henry (1993). 

These datasets have been frequently used by recent studies to evaluate their 
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methods (Zhou and Leung 2007, van Koten and Gray 2006, Thwin and Quah 

2005). The first data set, UIMS, contains 39 classes collected from a User 

Interface Management System. The second data set, QUES, contains 71 

classes from a QUality Evaluation System. Both UIMS and QUES datasets 

consist of 11 metrics: 9 object-oriented metrics, one traditional size metric, 

and one maintainability metric. Among the object-oriented metrics, WMC, 

DIT, RFC, NOC, and LCOM are proposed by Chidamber and Kemerer 

(1994), and MPC, DAC, NOM and SIZE2 are proposed by Li and Henry 

(1993). SIZE1 is the traditional lines of code size metric. Maintainability is 

measured with the CHANGE metric by counting the number of lines in the 

code that were changed per class during a 3-year maintenance period. Table 

B.9 provides the description of each metric.  

The descriptive statistics of the UIMS and QUES datasets are shown in 

table B.10 and table B.11 respectively. As Briand et al. (2000) pointed out, 

metrics that vary little are not likely to be useful predictors and only the 

metrics with more than five non-zero values are recommended for 

experiments. In table B.10, most metrics of UIMS dataset show large variance 

except DIT. For DIT, the number of its non-zero values is larger than five. 

Thus, all metrics of UIMS data set are used in experiments. From table B.11, 

it is seen that NOC has only zero values. Therefore, the metric NOC is 

removed from QUES dataset for experiments. 
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Table 6.1 shows the Spearman‟s rank correlations between 

maintainability and the OO metrics on UIMS and QUES datasets. There is a 

significant correlation between CHANGE and the OO metrics. However, table 

6.1 also shows that the correlations in the UIMS dataset are  different from the 

correlations in the QUES dataset. In addition, table B.10 and table B.11 show 

that the characteristics of the UIMS dataset are different from the QUES 

dataset. Thus, the UIMS and QUES datasets are regarded as heterogeneous.  

 

Table 6.1: Correlations between CHANGE and OO metrics  

Metric Spearman‟s correlation coefficient  

 UIMS dataset QUES dataset 

DIT -0.10  -0.04  

NOC 0.31  NA  

MPC 0.69*  0.55*  

RFC 0.63*  0.38*  

LCOM 0.76*  -0.05  

DAC 0.48*  -0.19  

WMC 0.73*  0.08  

NOM 0.62*  0.05  

SIZE1 0.76*  0.62*  

SIZE2 0.57*  -0.01  

Correlation is significant at the 0.01 level (2-tailed) 

 

 

6.4.2 Prediction Accuracy 

Since PABE can produce both point and probabilistic predictions, the 

performance metrics for these two kinds of predictions are introduced in this 

section. 
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Point prediction evaluation 

To measure the accuracies of effort estimation methods, the selection of 

accuracy metrics is crucial. The magnitude of relative error (MRE) is the de 

facto error metric in software effort estimation literature. Based on it, Mean 

Magnitude of Relative Error (MMRE), Max Magnitude of Relative Error 

(MaxMRE), Median Magnitude of Relative Error (MdMRE) and PREDiction 

at level k PRED(k) are proposed to describe different aspects of MRE. In this 

study, q is set to be 0.25 and 0.30 since they are commonly used in the cost 

estimation literature (Lucia et al. 2005, Kitchenham et al. 2002). The 

MaxMRE measures the maximum relative discrepancy which is the maximum 

error relative to the actual value in the prediction (van Koten and Gray 2006). 

The PRED identifies the estimations that are generally accurate, while MMRE 

is a biased and not always reliable as a performance metric.  

 

Probabilistic Prediction Evaluation 

The probabilistic predictions can be easily transformed into interval 

predictions with a certain probability. Evaluating prediction intervals is 

different from evaluating point estimates. A point estimate can be compared 

with the actual value, while an interval prediction has no corresponding actual 

value. Instead, the „hit rate‟ (Jørgensen and Sjøberg 2003), which calculates 

the proportion of the projects with the actual cost falling into the prediction 

interval, is considered as the accuracy measure in our study.  
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where mini and maxi are the minimum and maximum values of the prediction 

interval for project i, Acti is the actual cost of project i and n is the total 

number of projects being estimated. 

In addition, the efficient use of uncertainty information means that the 

prediction interval can be narrower without losing the correspondence 

between confidence level and hit rate. A measure able to compare the interval 

prediction‟s efficiency is the median of the relative widths of the prediction 

intervals (Jørgensen and Sjøberg 2003). The width of a prediction interval is 

defined as: 

 

effortredictedP

effortMinmumeffortMaximum
PIWidth


           (6.16) 

 

Cross Validation 

For the purpose of validation, the jack-knife validation schemes is utilized 

in this study. The jackknife method which is also known as leave-one-out 

cross validation (LOOCV) is a useful tool to obtain nearly unbiased estimators 

of prediction error. In this approach, at each stage a project is removed from 



Chapter VI. Probabilistic Analogy Based Estimation  

190 
 

the historical dataset for testing and the remaining projects are used as the 

training set at each stage. This procedure is repeated N times (N is the number 

of projects in historical dataset) and then the accuracies across all projects are 

aggregated. The reasons to choose jack-knife approach are: 1) jack-knife 

validation is a widely used variant of v-fold cross-validation, 2) it is closer to a 

real world situation than k-cross validation (k < n) (Myrtveit et al. 2005), 3) 

unlike k-fold cross validation (k < n), the jack-knife validation is deterministic, 

i.e. no sampling is involved, 4) it ensures the largest amount of data for 

training which presumably increases the chance of getting more accurate 

predictions (Witten and Frank 2000).  

 

Estimation Methods 

Two types of ABE models are included in our experiments. The first 

model is the proposed PABE. The second model is conventional ABE (CABE) 

with the parameter K optimized by cross-validation. The specified range of K 

values is from 1 to 10. To eliminate the impacts from different factors, all 

ABE based methods are implemented with the similarity measure fixed to 

Euclidean based similarity.  

For a more comprehensive evaluation of PABE, we also compare it with 

other popular machine learning methods including Stepwise Regression SWR 

(Mendes et al. 2003), Artificial Neural Network ANN (Heiat 2002), 

Classification and Regression Trees CART (Pickard et al. 2001). The best 
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variants of these methods are obtained by tuning their parameters on the 

training datasets.  

 

6.4.3 Experiment Procedure  

The following procedures are taken to validate the proposed PABE model 

with comparisons against other methods on each dataset. 

 The PABE model is implemented by jack-knife scheme with the ABE 

similarity measure fixing to Euclidean distance. The MREs and residuals 

of its point prediction, and the HitRate and PIwidth of its probabilistic 

predictions, across all test projects are computed.  

 The conventional ABE, SWR, ANN, and CART are trained and tested by 

jack-knife validation. The best variants of these methods on the training 

sets are used to predict the testing projects. The MREs and Absolute 

residuals of their prediction are collected.  

 The comparative results on the MRE based error metrics are analyzed and 

the Wilcoxon signed-rank tests are performed to identify the significance 

of difference in absolute residual values and MRE values of all methods. 

 The Bootstrapped conventional ABE (BABE) is performed and its 

interval predictions are compared with PABE. 
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6.5  Results 

In this section, the results and comparisons on each dataset are presented 

according to the experiment steps mentioned in section 6.4.3. 

 

6.5.1 Results on UIMS Dataset 

Table 6.2 presents the point prediction accuracies obtained by PABE, 

CABE, SWR, ANN, and CART on the UIMS dataset with jack knife 

validation. The table shows that PABE achieves the lowest MMRE and 

MdMRE, the highest PRED(25) and PRED(30), and the second lowest 

MaxMRE value among all methods. The results indicate that PABE performs 

generally better than other methods under MRE based error metrics except its 

maximum MRE value is larger than that of CABE. 

 

  

Table 6.2: Point predict ion accuracy on UIMS dataset 

Methods MaxMRE MMRE PRED(25) PRED(30) MdMRE 

PABE 3.93 0.56 0.46 0.49 0.31 

CABE 2.95 0.74 0.15 0.18 0.64 

SWR 9.97 2.13 0.28 0.33 0.95 

ANN 16.31 2.45 0.18 0.23 0.75 

CART 14.26 2.48 0.26 0.36 0.82 

 

To further analyze the performances, we draw out the box plots of MRE 

values and absolute residuals of all methods in fig 6.1 because absolute 

residuals are less vulnerable to bias than the asymmetric MRE values 

(Stensrud et al. 2003). For the MRE boxplots, PABE has the lowest median 
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line and least outliers, but its box width and whiskers are slightly larger than 

those of CABE. For the absolute residual boxplots, PABE has the narrowest 

box and least outliers, but its median line is close to that of CABE and its 

whiskers are larger than those of CART. In all, the boxplots does not provide a 

clear conclusion on whether PABE is significantly better than other methods. 

It is also revealed that the distributions of both MREs and absolute residuals 

are heavily skewed. This implies that the standard t-test is no longer valid for 

the statistical comparisons. Therefore, the assumption-free Wilcoxon 

signed-rank tests are performed for the significance of differences. 

 

Figure 6.1: Boxplots of Absolute residuals and MREs on UIMS dataset 

 

Table 6.3 presents the Z statistic and p-value of the two-tailed Wilcoxon 

signed-rank test for Absolute Residual (AR) and MRE values of the PABE vs. 

CABE, SWR, ANN, and CART paired comparisons. It is shown that PABE is 
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significantly better than all other methods on MRE criterion and PABE is 

better than CABE and ANN under AR criterion with the p-values less than 

0.05. Though the p-values of PABE vs. SWR and PABE vs. CART on AR 

criterion are greater than 0.05 which is the most widely adopted threshold, 

they are smaller than or equal to 0.1 which is another commonly used 

threshold for significant tests (Jørgensen and Sjøberg 2003).  

 

 

Table 6.3: Wilcoxon signed-rank test on UIMS dataset 

Methods  CABE   SWR   ANN   CART  

 AR MRE  AR MRE  AR MRE  AR MRE 

PABE Z-value 2.15
 a
 2.36

 a
  1.66

 a
 2.47

 a
  2.02

 a
 3.41

 a
  1.73

 a
 2.33

 a
 

 p-value 0.03 0.02  0.10 0.01  0.04 0.00  0.08 0.02 

a
 T+ < T-. 

 

For the interval based predictions, PABE is compared against the well 

established bootstrapping ABE (BABE) proposed by Angelis and Stamelos 

(2000). The results are summarized in table 6.4. In terms of HitRate, PABE 

achieves higher hit rate than BABE. With respect to the Median PIwidth, 

though PABE‟s intervals are wider than those of BABE, they are still in the 

reasonable range (smaller than 3). Another important advantage of the PABE 

is its computational efficiency. The time in seconds needed to train the models 

in the jack-knife validation is recorded in the last row of table 6.4. It is shown 

that PABE is more than 10 times faster than BABE. Fig 6.2 presents the actual 

efforts of the same data set along with the 95% confidence intervals by PABE 

and BABE. For better interpretation, in fig 6.2 we present all the lower and all 
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the upper bounds connected with a dashed line forming a 95% confidence 

zone. As we can see from the figures, the PABE generally has wider 

confidence intervals on UIMS dataset compared to those of BABE. 

 

Table 6.4: Results of interval prediction at 95% confidence level 

Quality metrics  PABE BABE 

HitRate 0.67 0.56 

MPIwidth 2.82 1.50 

Time used (s) 29 428 

 

 

Figure 6.2: Confidence zones on UIMS dataset 

 

6.5.2 Results on QUES Dataset 

The point prediction accuracies obtained by PABE, CABE, SWR, ANN, 

and CART on the QUES dataset are presented in table 6.5.  
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Table 6.5: Point predict ion accuracy on QUES dataset 

Methods MaxMRE MMRE PRED(25) PRED(30) MdMRE 

PABE 1.25 0.27 0.59 0.66 0.17 

CABE 1.43 0.31 0.58 0.61 0.19 

SWR 1.98 0.37 0.44 0.54 0.28 

ANN 2.31 0.42 0.42 0.51 0.29 

CART 3.13 0.57 0.38 0.39 0.34 

 

It is shown that PABE achieves the lowest MaxMRE, MMRE and 

MdMRE, and the highest PRED(25) and PRED(30).  Different from the 

results on UIMS dataset, CABE‟s error metric values seem very close to those 

of PABE. 

For a further analysis, the box plots of MRE values and absolute residuals 

of all methods are illustrated in fig 6.3. For the MRE boxplots, PABE has the 

narrowest box and whiskers, but its median line is very close to that of CABE 

and it has more outliers than CABE and ANN. For the absolute residual 

boxplots, PABE has the lowest median line, the narrowest box and whiskers, 

but it has the highest number of outliers. In all, the boxplots do not provide a 

clear conclusion on whether PABE is better than other methods. Thus, the 

Wilcoxon signed-rank tests are performed for the significance of differences. 
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Figure 6.3: Boxplots of Absolute residuals and MREs on QUES dataset 

 

Table 6.6 presents the Z statistic and p-value of the two-tailed Wilcoxon 

signed-rank test for Absolute Residual (AR) and MRE values of the PABE vs. 

CABE, SWR, ANN, and CART paired comparisons. It is shown that PABE is 

significantly better than all other methods on both AR and MRE criteria with 

the p-values less than 0.05.  

 

Table 6.6: Wilcoxon signed-rank test on QUES dataset 

Methods  CABE   SWR   ANN   CART  

 AR MRE  AR MRE  AR MRE  AR MRE 

PABE Z-value 2.67
a
 2.99

 a
  2.02

 a
 2.54

 a
  3.23

 a
 3.41

 a
  3.41

 a
 4.01

 a
 

 p-value 0.01 0.00  0.04 0.01  0.00 0.00  0.00 0.00 

a
 T+ < T-.  
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Table 6.7: Results of interval prediction at 95% confidence level 

Quality metrics  PABE BABE 

HitRate 0.94 0.74 

MPIwidth 2.42 0.76 

Time used (s) 202 1248 

 

 
Figure 6.4: Confidence zones on QUES dataset. 

 

For the interval based predictions, similar to UIMS dataset, PABE is 

compared against bootstrapping ABE (BABE). The results are summarized in 

table 6.7. PABE achieves higher HitRate than BABE and its HitRate is close 

to the corresponding confidence level (95%). As to the Median PIwidth, 

PABE‟s intervals are wider than those of BABE, but they are still in the 

reasonable range (median smaller than 2.5). Table 6.7 also presents the 

computational efficiency of each method. It is observed that PABE is more 

than 6 times faster than BABE on QUES dataset. Fig 6.4 presents the actual 
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costs of the same data set along with the 95% confidence intervals generated 

by PABE and BABE. As we can observe from fig 6.4, PABE‟s intervals cover 

most actual cost values. 
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Chapter 7   

Conclusions and 

Future Works 

 

Aimed at improving analogy based software cost estimation, this thesis is 

composed of several studies on the components of analogy based method. The 

research works are grouped into four chapters: chapter 3 summarizes the 

works on mutual information based feature selection technique for similarity 

function; chapter 4 presents the research on genetic algorithm based project 

selection method for historical database; chapter 5 presents the work on 

non- linear adjustment to solution function; chapter 6 presents the probabilistic 

model of analogy based estimation which is focused on the number of nearest 

neighbors.  

Research in chapters 3 to 5 aims to enhance the analogy based 

estimation‟s capability to achieve more accurate results. For instance, in 

chapter 5 the adjustment mechanism has been largely improved for a more 

accurate analogy based method. Efficiency is another important aspect of 

estimation performance. In chapter 3, the study on refining the historical 

dataset has achieved a significant reduction of unnecessary projects. 

Consequently, the efficiency of analogy based system is largely improved. 

Moreover, in chapter 6 the study on probabilistic model leads to a more robust 
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and reliable analogy based method. This study could enhance the system‟s 

capability to deal with a wider range of complicated situations such as missing 

values and ambiguous inputs.  

From the perspectives of software engineering, these works lead to an in 

depth knowledge of analogy based cost estimation with significant 

enhancement of ABE‟s accuracy, efficiency and robustness. From the 

perspectives of industrial engineering, these works can be regarded as 

successful applications of IE methodologies, such as optimization and 

probabilistic modeling. To highlight the contributions and the feasible 

extensions of our research, the following paragraphs summarize the 

conclusions and the possible future works of chapters 3 to 6 individually.  

In chapter 3, the feature selection for similarity measure is investigated. 

Mutual Information based hybrid wrapper and filter feature selection scheme 

(MIABE) is proposed to improve the efficiency and the interpretation of the 

existing feature selectors. The results suggested that MIABE could achieve 

better predictions on testing datasets (generalization) though MIABE did not 

perform very well on fitting the training datasets. In addition, MIABE can 

obtain more meaningful features which can be explained by mutual 

information diagram. Another important finding is that MI based feature 

selection is more efficient than the wrappers, especially when there are more 

features in the dataset. 

However, there are limitations in this study. First, comparisons with the 
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wrapper methods are restricted to fixed parameter settings. Based on the fixed 

parameter setting, it is difficult to conclude that MI based feature selection 

could achieve equally good results under other conditions. Therefore, 

sensitivity analysis i.e. how prediction performance is affected by varying 

parameters, is worth to investigate for future work. In addition, only two real 

world datasets were used for experiments in this study. Future work could 

include more real world datasets (such as ISBSG dataset) for the validation of 

MIABE. 

Chapter 4 focuses on the subset selection of historical database. We 

introduce the powerful genetic algorithm to perform the optimization of 

project selection as well as the simultaneous optimization of feature weights 

and project selection. The promising results clearly indicate that project 

selection can improve prediction accuracies and reduce the computation 

complexity.  

One of the major limitations of chapter 4 is the dataset. The experiments 

in chapter 4 were performed on two relatively aged but frequently used 

datasets. The projects in these two datasets were developed by the traditional 

waterfall approach. However, a large number of recent software projects are 

developed by new types of software development models (such as spiral 

model and agile model) which often have new types of project features (such 

as percentage of reuse) different from the waterfall approach. Therefore, new 

datasets should be considered for the validation of our method to generate 
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more meaningful conclusions for the contemporary cost estimation practices. 

Moreover, our current analogy based method is intolerant to missing feature 

values. In future work, the data imputation techniques can be taken into 

considerations to fill the missing information in the historical project 

databases. 

In chapter 5, adjustment to the solution function is studied. A non-linear 

adjustment mechanism with learning ability and incorporating categorical 

features is proposed. The results show that NABE is generally an effective 

approach to extend ABE‟s flexibility on complex datasets and to improve the 

accuracy of ABE on complex datasets. NABE is likely to be a more accurate 

method than other types of ABE methods on the dataset with high degree of 

non-normality and large proportion of categorical features.  

Nevertheless, there are some limitations of NABE. The similarity 

measure and solution function are pre-determined in this study. Further studies 

can be designed to systematically investigate the influences of similarity 

measure and solution function. The sensitivity analysis on these components 

can be conducted as well. Moreover, additional real world datasets and 

additional dataset characteristics can be explored to enhance the external 

validity of the current research. Thirdly, other types of non-linear 

approximators, such as RBF and SVM, could be considered as the adjustment. 

In chapter 6, the probabilistic model of ABE is proposed and validated. 

We first propose an analytical probabilistic framework for ABE (PABE) which 



Chapter VII. Conclusions and Future Works 

204 
 

accounts for uncertainty that is often ignored in the conventional ABE method.  

The predictive model is generated by integrating over the parameter K via 

Bayesian inference. The results show that PABE could produce promising 

results. For the point estimation, it is more accurate than conventional ABE, 

stepwise regression, artificial neural networks and classification and 

regression trees. For the interval prediction, PABE generates higher hit rates 

than BABE with prediction intervals‟ width in a reasonable range.  

However, there are some limitations for PABE. The similarity measures 

and retrieved solutions are fixed in this study. Future works can be done to 

investigate the impacts from these parameters. Exploring more data 

characteristics and including more data sets for experiments could enhance the 

external validity of the findings.  Thirdly, other types of effort value 

distributions could be incorporated into future studies. Moreover, PABE 

model assumes that software projects are independent from each other. 

However, in real world applications, many projects are accomplished in 

similar environment, and hence it is highly possible that some projects are 

related to each other. How to incorporate the interactions between projects 

remains to be one important issue of future research. 
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Appendix A 
 

Table A.1: Journal publications under each method 1999-2008 
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Moser et al., 
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Schooff and 
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(Boehm et al., 
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(Boehm et al., 
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2000, Dolado, 
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(Boehm et al., 

2000, Mair et al., 
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Burgess and 

Lefley, 2001, 

Moores, 2001, 

Briand and Wust, 

2001, Hastings 

and Sajeev, 2001, 

Caban et al., 

2001, Dolado, 

2001, Myrtveit et  

al., 2001) 

(Kadoda et al., 

2001, Burgess 

and Lefley, 

2001, Mizuno et 

al., 2001, Briand  

and Wust, 2001, 

Jun and Lee, 

2001, Dolado, 

2001) 

(Kadoda et al., 

2001, Burgess 

and Lefley, 

2001, Stamelos 

and Angelis, 

2001, Jun and 

Lee, 2001, 

Strike et al., 

2001) 

(Myrtveit et al., 

2001, Strike et  

al., 2001, 

Calzo lari et al., 

2001) 

2002   (Smith, 2002, 

Kitchenham et  

al., 2002, Abran  

et al., 2002, Baik 

et al., 2002)  

(Kitchenham et  

al., 2002, Heiat, 

2002, Abran et al., 

2002) 

(Heiat, 2002, 

Pendharkar and  

Subramanian, 

2002, Moses, 

2002, Oh et al., 

2002) 

(Idri et al., 

2002) 

(Koch and 

Schneider, 2002) 
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Year EJ PM RE ML AB Others 

2003 (Jorgensen et 

al., 2003, 

Jorgensen and 

Sjoberg, 2003, 

MacDonell 

and Shepperd, 

2003, 

Stamelos et al., 

2003a) 

(Ahn et al., 2003, 

Benediktsson et 

al., 2003)  

(Mendes et al., 

2003, Ahn et al., 

2003, De Lucia et  

al., 2003, 

MacDonell, 2003, 

MacDonell and  

Shepperd, 2003, 

Moses and 

Farrow, 2003) 

(Mendes et al., 

2003, Lefley and  

Shepperd, 2003, 

MacDonell, 

2003, Moses and 

Farrow, 2003, 

Stamelos et al., 

2003a) 

(Mendes et al., 

2003, Jo rgensen 

et al., 2003, 

Jorgensen and 

Sjoberg, 2003, 

Kirsopp et al., 

2003, 

MacDonell and  

Shepperd, 2003, 

Stamelos et al., 

2003b) 

(Stensrud et al., 

2003, 

Staub-French et 

al., 2003) 

2004 (Jorgensen, 

2004d, 

Jorgensen, 

2004c, 

Jorgensen, 

2004a, 

Jorgensen and 

Molokken, 

2004, 

Jorgensen and 

Molokken-Ost

vold, 2004, 

Jorgensen et 

al., 2004, 

Molokken-Ost

vold and 

Jorgensen, 

2004) 

(Xu and  

Khoshgoftaar, 

2004) 

(Jorgensen, 

2004b, 

Kaczmarek and  

Kucharski, 2004, 

Kitchenham and  

Mendes, 2004) 

(Oh et al., 2004b, 

Oh et al., 2004a, 

Xu and 

Khoshgoftaar, 

2004) 

(Ohsugi et al., 

2004) 

(Benediktsson 

and Dalcher, 

2004, Molokken  

et al., 2004) 

2005 (Jorgensen, 

2005b, 

Jorgensen, 

2005a, 

Molokken-Ost

vold and 

Jorgensen, 

2005) 

(Ahmed et al., 

2005, Ben  

Lamine et al., 

2005, De Lucia 

et al., 2005) 

(Myrtveit et al., 

2005, Sentas et 

al., 2005, Mendes 

et al., 2005, Liu  

and Mintram, 

2005, McDonald, 

2005, Moses and 

Farrow, 2005) 

(Ahmed et al., 

2005, MacDonell 

and Gray, 2005, 

Moses and 

Farrow, 2005, 

Pendharkar et al., 

2005, Sicilia et  

al., 2005, 

Musilek and  

Meltzer, 2005) 

(Myrtveit et al., 

2005) 
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Year EJ PM RE ML AB Others 

2006 (Cuadrado-Gal

lego et al., 

2006, 

Jorgensen and 

Molokken-Ost

vold, 2006) 

(Cuadrado-Galle

go et al., 2006a, 

Wehrmann and 

Gull, 2006, 

Subramanian et  

al., 2006, 

Costagliola et al., 

2006, 

Cuadrado-Galleg

o et al., 2006b, 

Choi and Sircar, 

2006) 

(Huang and Chiu, 

2006, Iwata et al., 

2006, Oliveira, 

2006, Yu , 2006, 

Sentas and 

Angelis, 2006) 

(Crespo and 

Marban, 2006, 

Huang and Chiu, 

2006, Huang et 

al., 2006a, 

Huang et al., 

2006b, Oliveira, 

2006, Song et al., 

2006, 

Stefanowski, 

2006, van Koten 

and Gray, 2006) 

(Auer et al., 

2006, Huang 

and Chiu, 2006, 

Lee and Lee, 

2006) 

(Grimstad et al., 

2006, Issa et al., 

2006, Rodriguez 

et al., 2006, 

Menzies and 

Hihn, 2006) 

2007 (Jorgensen and 

Shepperd, 

2007, 

Kitchenham et  

al., 2007, 

Grinistad and 

Jorgensen, 

2007) 

(Jorgensen and 

Shepperd, 2007, 

Kitchenham et  

al., 2007, 

Fairley, 2007, 

Huang et al., 

2007, Gallego et 

al., 2007, 

Cuadrado-Galleg

o and Sicilia , 

2007)  

(Chiu and Huang, 

2007) (Jorgensen 

and Shepperd, 

2007, Kitchenham 

et al., 2007, 

Morgenshtern et 

al., 2007, 

Cuadrado-Gallego 

and Sicilia, 2007, 

Bourque et al., 

2007, Baresi and  

Morasca, 2007, 

Agrawal and  

Chari, 2007) 

(Chiu and 

Huang, 2007, 

Huang et al., 

2007, Jo rgensen 

and Shepperd, 

2007, 

Kitchenham et  

al., 2007, 

Gallego et al., 

2007) 

(Chiu and 

Huang, 2007, Li 

et al., 2007, 

Jorgensen and 

Shepperd, 2007, 

Kitchenham et  

al., 2007, Song 

and Shepperd, 

2007) 

(Song and 

Shepperd, 2007, 

Pendharkar and  

Subramanian, 

2007, 

Kouskouras and 

Georgiou, 2007) 

2008 (Park and  

Baek, 2008, 

Gruschke and 

Jorgensen, 

2008, Boehm 

and Valerdi, 

2008) 

(Tronto et al., 

2008, Marban et  

al., 2008, Boehm 

and Valerdi, 

2008) 

(Tronto et al., 

2008, Park and  

Baek, 2008, Park 

et al., 2008, 

Mittas and 

Angelis, 2008, 

Mendes and 

Mosley, 2008, 

Mendes et al., 

2008, 

Lopez-Martin et  

al., 2008, Kumar 

et al., 2008, 

Huang et al., 

2008b, Capra et  

al., 2008) 

(Tronto et al., 

2008, Park and  

Baek, 2008, Park 

et al., 2008, 

Moreno Garcia 

et al., 2008, 

Mendes and 

Mosley, 2008, 

Lopez-Martin et  

al., 2008, Kumar 

et al., 2008, 

Huang et al., 

2008a, Bibi et  

al., 2008, Aroba 

et al., 2008) 

(Song et al., 

2008, Mittas et 

al., 2008, Mittas 

and Angelis, 

2008, Mendes 

and Mosley, 

2008, Mendes 

et al., 2008, Li 

and Ruhe, 

2008b, Li and  

Ruhe, 2008a, 

Keung et al., 

2008, Huang et 

al., 2008a) 

(Xia et  al., 2008, 

Daneva and 

Wieringa, 2008) 



Appendix 

218 
 

 

Appendix B 
 

 

 

Table B.1: Feature definit ion of Albrecht dataset 

Features Full name Type Description 

Inpcount Input count Numerical Count of inputs 

Outcount Output count Numerical Count of outputs 

Quecount Query count Numerical Count of queries  

Filcount File count Numerical Count of files  

Fp Function points Numerical Number of function points  

SLOC Lines of source 

code 

Numerical Lines of source code 

Effort Development effort Numerical Measured in 1000 hours 

 

 

Table B.2: Descriptive statistics of all features of A lbrecht dataset 

Features Mean Std Dev Min Max Skewness Kurtosis 

Inpcount 40.25 36.91 7.00 193.00 3.07 13.44 

Outcount 47.25 35.17 12.00 150.00 1.28 4.29 

Quecount 17.38 15.52 3.00 60.00 1.40 3.96 

Filcount 16.88 19.34 0 75.00 1.94 6.46 

Fp 61.08 63.68 3.00 318.00 2.90 12.19 

SLOC 199.00 1902.00 647.63 488.00 1.44 4.02 

Effort 21.88 28.42 0.50 105.20 2.16 6.51 
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Table B.3: Feature definit ion of Desharnais dataset 

Features Full name Type Description 

TeamExp Team experience Numerical Measured in years 

ManagerExp Manager‟s experience  Numerical Measured in years 

YearEnd Year of end Numerical The ending year of 

development 

Length Length of project Numerical The number of years used 

for development 

Transactions Transactions Numerical Number of transactions  

Entities Entities Numerical Number of entities 

PointsNonAdjust Non-adjusted function 

points 

Numerical Number of non-adjusted 

function points 

PointsAdjust Adjusted function points  Numerical Number of adjusted 

function points 

Envergure Development environment Numerical Development environment 

Language Programming language Categorical 1 = 1
st
 generation 

2 = 2
nd

 generation 

3 = 3
rd

 generation 

Effort Development effort Numerical Measured in 1000 hours 

 

 

 

Table B.4 Descriptive statistics of all features of Desharnais dataset 

Features Mean Std Dev Min Max Skewness Kurtosis 

TeamExp 2.30 1.33 0 4.00 -0.05 1.73 

ManagerExp 2.65 1.52 0 7.00 0.22 3.01 

YearEnd 85.78 1.14 83.00 88.00 -0.20 3.05 

Length 11.30 6.79 1.00 36.00 1.43 5.49 

Language 1.56 0.72 1.00 3.00 0.88 2.45 

Transactions 177.47 146.08 9.00 886.00 2.34 10.09 

Entities  120.55 86.11 7.00 387.00 1.36 4.37 

Envergure 27.45 10.53 5.00 52.00 -0.19 2.58 

PointsNonAdjust 282.39 186.36 62.00 1116.00 1.70 7.08 

PointsAdjust 298.01 182.26 73.00 1127.00 1.81 7.67 

Effort 4.83 4.189 0.55 23.94 2.00 7.89 
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Table B.5 Feature definition in Maxwell dataset 

Features Full name Type Description 

Time Time Numerical Time = syear – 1985 + 1, with levels: 

1,2,3,4,5,6,7,8,9..  

App Application type Categorical 1 = Information/on-line service (infServ) 

2 = Transaction control, logistics, order processing 

(TransPro) 

3 = Customer service (CustServ) 

4 = Production control, logistics, order processing 

(ProdCont) 

5 = Management information system (MIS) 

Har Hardware 

platform 

Categorical 1 = Personal computer (PC) 

2 = Mainframe (Mainfrm) 

3 = Multi-platform (Multi) 

4 = Mini computer (Mini) 

5 = Networked (Network) 

Dba Database Categorical 1 = Relatnl (Relational)  

2 = Sequentl (Sequential) 

3 = Other (Other) 

4 = None (None) 

Ifc 

 

User interface Categorical 1 = Graphical user interface (GUI) 

2 = Text user interface (TextUI) 

Source 

 

Where 

developed 

Categorical 1 = In-house (Inhouse) 

2 = Outsourced (Outsrced) 

Telonuse  

 

Telon use Categorical 0 = No 

1 = Yes 

Nlan Number of 

different 

development 

languages used 

Ordinal 1 = one language used 

2 = two languages used 

3 = three languages used 

4 = four languages used 

T01 Customer 

participation 

Ordinal: 1 = Very low 

T02 Development 

environment 

adequacy 

 2 = Low 

T03  Staff availability   3 = Nominal 

T04 Standards use  4 = High 

T05 Methods use  5 = Very high 

T06  Tools use   

T07 Software‟s 

logical 

complexity 

  

T08  Requirements 

volatility 
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Features Full name Type Description 

T09  Quality 

requirements 

  

T10 Efficiency 

requirements 

  

T11  Installation 

requirements 

  

T12  Staff analysis 

skills 

  

T13  Staff application 

knowledge 

  

T14  Staff tool skills    

T15  Staff team skills   

Duration Duration Numerical Duration of project from specification until delivery, 

measured in months 

Size Application size  Numerical Function points measured using the experience method 

Effort Effort Numerical Work carried out by the software supplier from 

specification until delivery, measured in hours 
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Table B.6 Descriptive statistics of all features of Maxwell data set 

Features Mean Std Dev Min Max Skewness Kurtosis 

Time 5.58 2.13 1.00 9.00 -0.42 2.25 

App 2.35 0.99 1.00 5.00 0.96 4.11 

Har 2.61 1.00 1.00 5.00 1.43 4.09 

Dba 1.03 0.44 0.00 4.00 4.74 35.13 

Ifc 1.94 0.25 1.00 2.00 -3.55 13.57 

Source 1.87 0.34 1.00 2.00 -2.21 5.90 

Telonuse  2.55 1.02 1.00 4.00 -0.04 1.91 

Nlan 0.24 0.43 0.00 1.00 1.21 2.45 

T01 3.05 1.00 1.00 5.00 -0.20 2.05 

T02 3.05 0.71 1.00 5.00 -0.07 3.57 

T03  3.03 0.89 2.00 5.00 0.51 2.51 

T04 3.19 0.70 2.00 5.00 0.02 2.60 

T05 3.05 0.71 1.00 5.00 0.48 4.98 

T06  2.90 0.69 1.00 4.00 -0.46 3.49 

T07 3.24 0.90 1.00 5.00 -0.08 2.52 

T08  3.81 0.96 2.00 5.00 -0.17 1.97 

T09  4.06 0.74 2.00 5.00 -0.58 3.32 

T10 3.61 0.89 2.00 5.00 0.00 2.22 

T11  3.42 0.98 2.00 5.00 0.12 2.02 

T12  3.82 0.69 2.00 5.00 -0.66 3.83 

T13  3.06 0.96 1.00 5.00 -0.24 2.35 

T14  3.26 1.01 1.00 5.00 -0.15 2.37 

T15  3.34 0.75 1.00 5.00 0.09 3.99 

Duration 17.21 10.65 4.00 54.00 1.25 4.34 

Size 673.31 784.08 48.00 3643.00 2.28 7.80 

Effort 8223.21 10499.90 583.00 63694.00 3.27 15.52 
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Table B.7 Feature definition in ISBSG dataset 

Features Full name Type Description 

DevType Development 

type 

Categorical 1 = Enhancement 

2 = New development 

3 = Re-development 

OrgType Organization 

type 

Categorical 1 = Banking 

2 = Communication 

3 = Community services 

4 = Computer, Software, ISP 

5 = Electricity, Gas, Water; 

6 = Financial, Property & Business Services; 

7 = Insurance; 

8 = Manufacturing; 

9 = Government, Public Administration 

10 = Transport & Storage; 

11 = Wholesale & Retail Trade; 

12 = Others. 

BusType Business 

Area Type 

Categorical 1 = Accounting; 

2 = Banking; 

3 = Engineering; 

4 = Financial; 

5 = Insurance, Actuarial; 

6 = Inventory; 

7 = Legal; 

8 = Logistics; 

9 = Manufacturing 

10 = Personnel; 

11 = Research & Development; 

12 = Sales & Marketing; 

13 = Telecommunications; 

14 = Others. 

AppType 

 

Application 

Type 

Categorical 1 = Billing; 

2 = Office information system, Executive information 

system, Decision support system; 

3 = Electronic Data Interchange; 

4 = Financial; 

5 = Management Information System; 

6 = Network Management, Communications; 

7 = Process control, sensor control, real 

time; 

8 = Transaction/Production System; 

9 = Others. 

DevPlat 

 

Development 

Platform 

Categorical 1 = Mainframe 

2 = Mid-range 
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3 = Multi; 

4 = Personal Computer.  

Features Full name Type Description 

PriProLan  

 

Primary 

Programming 

Language 

Categorical 1 = ABAP; 

2 = Access; 

3 = ASP; 

4 = C; 

5 = C++; 

6 = COBOL; 

7 = JAVA; 

8 = Lotus Notes; 

9 = NATURAL; 

10 = ORACLE; 

11 = PL/I; 

12 = PL/SQL; 

13 = PowerBuilder; 

14 = SQL; 

15 = Visual Basic; 

16 = Others. 

DevTech Development 

Techniques 

Categorical 1 = Business area modeling; 

2 = Data Modelling; 

3 = Event Modelling 

4 = Joint Application Development; 

5 = Multifunction teams 

6 = Object Oriented Analysis; 

7 = Object Oriented Design; 

8 = Process Modelling; 

9 = Prototyping; 

10 = Rapid Application Development; 

11 = WaterFall; 

12 = Others. 

InpCont Input Count Numerical The count of inputs 

OutCont Output Count Numerical: The count of outputs 

EnqCont Enquiry 

count 

Numerical: The count of enquiries 

FileCont File count Numerical: The count of files 

IntCont Interface 

count 

Numerical: The count of interfaces 

AFP Adjusted 

function 

points 

Numerical: The adjusted function point-count number 

NorEffort Normalized 

Work Effort 

Numerical: For project covering less than a full development life cycle, 

this value is an estimate of the full development effort in 

hours. 
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Table B.8 Descriptive statistics of all features of ISBSG data set 

Features Mean Std Dev Min Max Skewness Kurtosis 

DevType 1.52 0.50 1.00 2.00 -0.07 1.00 

BusType 7.55 6.36 2.00 15.00 0.29 1.11 

AppType 5.76 2.14 1.00 9.00 0.18 1.85 

DevPlat 6.25 4.50 1.00 12.00 0.03 1.12 

PriProLan 1.45 0.77 1.00 4.00 1.87 6.07 

DevTech 10.19 3.96 4.00 16.00 0.10 1.66 

InpCont 75.05 128.38 0 780.00 3.37 15.78 

OutCont 68.90 96.81 0 648.00 3.42 17.50 

EnqCont 41.49 75.80 0 398.00 2.70 10.23 

FileCont 61.25 79.03 0 383.00 2.24 8.23 

IntCont 28.07 36.74 0 172.00 1.83 6.02 

AFP 284.41 340.65 10.00 2190.00 2.81 12.63 

NorEffort 4309.08 5520.68 508.00 36046.00 2.86 13.29 

 

 

Table B.9 Definition of software metrics 

Metric Definition 

DIT (Depth of inheritance tree)  The length of the longest path from a given class to 

the root in the inheritance hierarchy 

NOC (Number of children)  The number of classes that directly inherit from a 

given class 

MPC (Message-passing 

coupling)  

The number of send statements defined in a given 

class 

RFC (Response for a class)  The number of methods that can potentially be 

executed in response to a message being received by 

an object of a given class 

LCOM (Lack of cohesion in 

methods) 

The number of pairs of local methods in a given class 

using no attribute in common 

DAC (Data abstraction 

coupling) 

The number of abstract data types defined in a given 

class 

WMC (Weighted methods per 

class) 

The sum of McCabe‟s cyclomatic complexity of all 

local methods in a given class 

NOM (Number of methods) The number of methods implemented within a given 

class 

SIZE1 (Lines of code) The number of semicolons in a given class 

SIZE2 (Number of properties) The total number of attributes and the number of local 

methods in a given class 

CHANGE (Number of lines 

changed in the class) 

Insertion and deletion are independently counted as 1, 

change of the contents is counted as 2 
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Table B.10 Descriptive statistics of UIMS dataset 

 

 

 

Table B.11 Descriptive statistics of QUES dataset 

 

Metric Maximum Median Minimum Mean Standard 

deviation 

Skewness Kurtosis 

DIT 4 2 0 2.15 0.90 -0.54 0.09 

NOC 8 0 0 0.95 2.01 2.24 4.28 

MPC 12 3 1 4.33 3.41 0.731 -0.70 

RFC 101 17 2 23.21 20.19 2.00 4.94 

LCOM 31 6 1 7.49 6.11 2.49 6.86 

DAC 21 1 0 2.41 4.00 3.33 12.87 

WMC 69 5 0 11.38 15.90 2.03 3.98 

NOM 40 7 1 11.38 10.21 1.67 1.94 

SIZE1 439 74 4 106.44 114.65 1.71 2.04 

SIZE2 61 9 1 13.97 13.47 1.89 3.44 

CHANGE 289 18 2 46.82 71.89 2.29 4.35 

Metric Maximum Median Minimum Mean Standard 

deviation 

Skewness Kurtosis 

DIT 4 2 0 1.92 0.53 -0.10 5.46 

NOC 0 NA 0 0 0.00 NA NA 

MPC 42 17 2 17.75 8.33 0.88 1.17 

RFC 156 40 17 54.44 32.62 1.62 1.96 

LCOM 33 5 3 9.18 7.34 1.35 1.10 

DAC 25 2 0 3.44 3.91 2.99 12.82 

WMC 83 9 1 14.96 17.06 1.77 3.33 

NOM 57 6 4 13.41 12.00 1.39 1.40 

SIZE1 1009 211 115 275.5

8 

171.60 2.11 5.23 

SIZE2 82 10 4 18.03 15.21 1.71 3.42 

CHANGE 217 52 6 64.23 43.13 1.36 2.17 


