
IMPROVING TCP PERFORMANCE IN THE

MOBILE, HIGH SPEED, HETEROGENOUS AND

EVOLVING INTERNET

WU XIUCHAO

NATIONAL UNIVERSITY OF SINGAPORE

2009

IMPROVING TCP PERFORMANCE IN THE

MOBILE, HIGH SPEED, HETEROGENOUS AND

EVOLVING INTERNET

WU XIUCHAO

B.E., USTC

M.Sc., NUS

A THESIS SUBMITTED

FOR THE DEGREE OF PH.D. IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2009

Acknowledgements

I want to express my deeply-felt thanks to my M.Sc. and Ph.D. supervisor, A/P Akkihebbal
L. Ananda, for his inspiring ideas, valuable suggestions, and constant encouragement during
all these years. Without him, the work would not have been possible. I am grateful to
my Ph.D. co-supervisor, Dr. Mun Choon Chan, for his thoughtful and important advices
throughout this work.

I wish to express my special thanks to Dr. Wei Tsang Ooi, Dr. Haifeng Yu, and Dr.
Rajesh Krishna Balan, for their comments and suggestions on my thesis. I would also like
to express my gratitude to all present and former members of Communication and Internet
Research Lab, as well as my friends and classmates who helped me at different periods of
my work. In particular, I would like to thank Mr. Chetan Ganjihal, Dang Thanh Son,
Myo Myint, Soe Hla Win, Huynh Gia Huy, and Indradeep Biswas for the countless hours in
coding together, as well as the interesting discussions. I would like thank Mr. Venkatesh S.
Obanaik, Aurbind Sharma, and Feng Xiao for their patient help in locating and using lab re-
sources. I would also express special thanks to Dr. Sridhar K.N. Rao, Mingze Zhang, Binbin
Chen, Tao Shao, Zhiguo Ge, and Yong Xiao for their helps in many aspects of my work and
my life. I would like to thank all my friends who supported me in the completion of my study.

Lastly, my special thanks go to my wife, my daughter, and all my family who always support
me and encourage me in my life.

Contents

1 Introduction 1
1.1 TCP Congestion Control Mechanism . 1

1.1.1 TCP Newreno . 2
1.2 Problem Formulation . 5

1.2.1 Improving TCP Performance in Heterogeneous Mobile Environments 6
1.2.2 Improving TCP Performance on Long Fat Network Pipes 8
1.2.3 Re-engineering TCP Implementation for the Heterogeneous and Evolv-

ing Internet . 10
1.3 Thesis Contributions . 12

1.3.1 TCP-HO . 12
1.3.2 Sync-TCP . 13
1.3.3 TCP KentRidge . 14

1.4 Thesis Organization . 14

2 TCP-HO: A Practical Adaptation for Heterogeneous Mobile Environments 16
2.1 Introduction . 16
2.2 TCP During Handoff . 19
2.3 Related Work . 21
2.4 TCP HandOff Mechanism . 23

2.4.1 Design Principles . 24
2.4.2 Details of TCP-HO . 24

2.5 Performance Evaluation . 29
2.5.1 Testbed Setup . 30
2.5.2 Experimental Results . 31

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 38
2.6.1 Wireless Link Bandwidth Estimation Mechanisms 38
2.6.2 Effects of Mobile Host’s Bandwidth Estimation Error 39
2.6.3 TCP-HO Performance under Achievable Bandwidth Estimation Accu-

racy . 46
2.7 Summary . 49

3 Sync-TCP: A New Approach to High Speed Congestion Control 50
3.1 Introduction . 50
3.2 Background . 54

3.2.1 TCP Vegas . 54

CONTENTS iii

3.2.2 Delay-based HSCC Algorithms . 56
3.3 Challenges and Key Observations . 62

3.3.1 How to Simultaneously Detect Queue-Delay-Based Congestion Signals? 64
3.3.2 How to Reduce cwnd for Emptying the Queue of the Bottleneck Link? 67
3.3.3 How to Increase cwnd for Efficiency and Fairness? 70

3.4 The Design of Sync-TCP . 71
3.4.1 Overview of Sync-TCP . 71
3.4.2 Queue Delay Measurement and Congestion Detection 73
3.4.3 Delayed cwnd Decrease/Increase . 75
3.4.4 RTT-Independent cwnd Increase Rule 76
3.4.5 Adaptive Queue-delay-based cwnd Decrease Rule 77
3.4.6 Deployment Issues . 79
3.4.7 Parameter Selection Guidelines . 83

3.5 Simulation Results . 86
3.5.1 Synchronization of Congestion Signals 88
3.5.2 Scalability of Sync-TCP . 90
3.5.3 RTT Fairness . 93
3.5.4 Rerouting Issue . 95
3.5.5 Dynamic Scenarios . 97

3.6 Testbed Evaluation Results . 105
3.6.1 High Speed Network Testbed . 105
3.6.2 Synchronization of Congestion Signal 106
3.6.3 Flow Number Scalability . 107
3.6.4 Effects of Buffer Sizes . 108
3.6.5 Dynamic Scenario . 109
3.6.6 Summary of Testbed Evaluations . 111

3.7 Related Work . 112
3.8 Summary and Future Work . 113

4 TCP KentRidge: A New TCP Framework for the Heterogeneous and
Evolving Internet 114
4.1 Introduction . 114
4.2 TCP in the Heterogeneous Internet . 115
4.3 TCP Implementation in the Heterogeneous and Evolving Internet 121
4.4 State of the Art TCP Implementations . 123

4.4.1 FreeBSD . 124
4.4.2 Linux . 125
4.4.3 Windows . 125

4.5 Design of TCP KentRidge . 126
4.5.1 The Architecture . 126
4.5.2 DC-TCP: The Workhorse . 128
4.5.3 Network Pipe Classification . 134

4.6 Implementation Status of TCP KentRidge 138
4.6.1 The Loadable Kernel Module . 138
4.6.2 TCP KentRidge Console . 142

CONTENTS iv

4.7 Summary and Future Work . 145

5 Conclusion and Future Work 146
5.1 Research Summary . 146
5.2 Future Work . 148

Reference 151

A Additional Simulation Results of Sync-TCP 161
A.1 Scalability of Sync-TCP . 161

A.1.1 Scalability with Propagation Delay 161
A.1.2 Scalability with Queue Size . 163
A.1.3 Scalability with Packet Loss Rate . 164

A.2 Door and Tower Scenarios with Varying Background Traffic 164
A.3 Multiple Congested Links Fairness . 171
A.4 Coexistence with TCP Flows . 172
A.5 Cross Traffic and the Value of λ . 173

Abstract

As the de facto standard transport protocol, TCP has contributed to the enormous success
of the Internet. TCP provides an attractive connection-oriented end-to-end transport service
and ensures a reliable and in-order transfer of data. With TCP congestion control, TCP has
also ensured good performance of applications and kept the stability of the exponentially
increasing Internet. However, in recent years, many new types of networks with different
characteristics have been deployed in the Internet. Within these new types of networks,
the original assumptions of TCP congestion control, such as reliable links with low/medium
bandwidth and stationary hosts, are frequently undermined, and it is very important to
improve the performance of TCP in these networks. In this thesis, three very important
problems are addressed to improve the performance of TCP in the context of the mobile,
high speed, heterogeneous and evolving Internet.

Firstly, as we deploy many different kinds of wireless networks, the mobile Internet ac-
cess through heterogeneous wireless networks will become more and more popular. Since
TCP congestion control is designed for stationary hosts, TCP performs quite badly when
users move around these heterogeneous wireless networks and handoff occurs frequently.
This problem is investigated further in this thesis, and TCP-HO, a sender+receiver centric
practical adaptation for handoff, is proposed to improve the performance of TCP in hetero-
geneous mobile environments through exploiting explicit cooperation between fixed servers
and mobile hosts. TCP-HO has been implemented in FreeBSD. Experimental results indi-
cate that in heterogeneous mobile environments, TCP-HO can improve TCP performance
substantially without adversely affecting cross traffic, even while a mobile host has only a
coarse estimation of new wireless link’s bandwidth. Considering that more and more users
are accessing the Internet through heterogeneous wireless networks and mobile host could
have a coarse estimation of wireless link’s bandwidth, it should be worthwhile to change
both fixed server and mobile host for improving the performance of TCP.

Secondly, as bandwidth in the Internet continues to grow, there will be more and more
long fat network pipes with abundant residual bandwidth. It is well known that TCP
cannot work well on these network pipes and a new high speed congestion control (HSCC)
algorithm is needed by bandwidth-greedy and elastic applications for efficient utilization of
the abundant bandwidth. Considering that there are many different kinds of applications
in the Internet, the tradeoff between efficiency and friendliness is investigated further in
this thesis. In this thesis, Sync-TCP, a sender-centric delay-based HSCC algorithm, is also
proposed to safely ramp up the throughput of bandwidth-greedy and elastic applications.
Based on queue delay (a noisy and delayed network feedback), Sync-TCP is designed to
drive the network to operate around the knee and to distribute residual bandwidth fairly

CONTENTS vi

among competing flows, even when the number of competing flows varies and their round
trip propagation delays differ significantly. Sync-TCP has been implemented in NS-2 and
FreeBSD. Extensive simulations and preliminary testbed evaluations show that Sync-TCP
achieves its design goals and it performs better than existing HSCC approaches including
Fast TCP, Compound TCP and Cubic-TCP, especially in the trade-off between throughput
and friendliness.

Thirdly, these new types of networks not only bring challenges to TCP protocol, they also
bring challenges on how to implement TCP. With their deployment, the Internet is becoming
a highly heterogeneous inter-network and it will keep evolving continuously. Hence, TCP
implementation of a host needs to run on different kinds of network pipes, and the classical
TCP implementation, that uses the same congestion control mechanism for all, cannot always
achieve good performance. In this thesis, TCP KentRidge, a new TCP implementation
framework, is proposed for the heterogeneous and evolving Internet. This new framework is
carefully designed so that new congestion control mechanisms can be added conveniently for
new types of networks, and the host can intelligently apply the most appropriate congestion
control mechanism to each connection based on its current environment. An initial prototype
of TCP KentRidge has been implemented in FreeBSD.

At the end of this thesis, future works relating to Sync-TCP and TCP KentRidge are
also discussed.

List of Tables

1.1 Algorithms Used by TCP Newreno . 5

2.1 Problems Brought by Different Kinds of Handoff 20
2.2 Handoff Probability and Disconnection Time 36

3.1 Parameters of Sync-TCP . 86
3.2 VoIP User Experience (Dynamic Scenario of Testbed Evaluation) 110

A.1 Average Throughput (Mbps) of Different Flows 171
A.2 The Load of Cross Traffic Generated by Web Surfing 174
A.3 The Load of Cross Traffic Generated by the Legacy FTP Applications 174

List of Figures

1.1 State Transition Diagram of a TCP Newreno Sender 2
1.2 Mobile Internet Access through Heterogeneous Wireless Networks: Cars Run

Around a Campus Covered by WCDMA Network and Wi-Fi Hot-spots . . . 7
1.3 Bandwidth Measurement Statistics (http://www.speedtest.net/) on 2010-03-12 8
1.4 The Highly Heterogeneous Internet: an Example 11

2.1 BDP Fingerprints of Different Kinds of Handoff 18
2.2 TCP Options for TCP-HO . 25
2.3 State Transition Diagram of TCP-HO Sender 26
2.4 Time vs. Sequence Number Graph of TCP Newreno and TCP-HO under Four

Kinds of Handoff Occurred in the Same Mobile Scenario 28
2.5 Improvement of TCP-HO on Data Flow Disconnection Time 29
2.6 Testbed for TCP-HO Evaluation . 30
2.7 WCDMA Scenario: Average and 95% Confidence Interval of the Throughput

Received by the Flow between Server and Mobile Host 33
2.8 WCDMA Scenario: Average and 95% Confidence Interval of Cross Traffic

Flow’s Throughput . 33
2.9 WLAN Scenario: Average and 95% Confidence Interval of the Throughput

Received by the Flow between Server and Mobile Host 35
2.10 WLAN Scenario: Average and 95% Confidence Interval of Cross Traffic Flow’s

Throughput . 35
2.11 WCDMA&WLAN Scenario: Average and 95% Confidence Interval of the

Throughput Received by the Flow between Server and Mobile Host 37
2.12 WCDMA&WLAN Scenario: Average and 95% Confidence Interval of Cross

Traffic Flow’s Throughput . 37
2.13 cwnd vs. Time Graphs of TCP and TCP-HO When b̂ is Larger Than ĉ . . . 41
2.14 cwnd vs. Time Graphs of TCP and TCP-HO When b̂ is Less Than ĉ 43
2.15 Bandwidth Estimation Error Sensitivity Analysis 45
2.16 Average Throughput Received by the Flow between Server and Mobile Host

with 15% Bandwidth Estimation Error . 47
2.17 Average Throughput of Cross Traffic Flow with 15% Bandwidth Estimation

Error . 48

3.1 Network Performance Model as a Function of Network Load (from R. Jain) . 51
3.2 Packet Arrival Time of Two Competing Flows 64

LIST OF FIGURES ix

3.3 The Effects of Delayed ACK on RTT Measurement 65
3.4 Queue Delay Measurement and Detection of Two Competing Fast TCP Flows

with the Same RTPD . 66
3.5 State Transition Diagram of Sync-TCP . 72
3.6 Dumbbell Network Topology . 87
3.7 Block Scenario: the Arrival and Departure Sequence of Flows 88
3.8 Queue Delay Measurement and cwnd Evolution Behaviors of Competing Sync-

TCP Flows Which Coexist with a lot of Cross Traffic 89
3.9 Decision Points and Queue Delay Observed by Competing Flows 89
3.10 Scalability with Flow Number . 92
3.11 Scalability with Flow Number: User Experience of Cross Traffic Applications 92
3.12 RTT Fairness (per = 10−6) . 94
3.13 RTT Fairness (per = 10−8) . 94
3.14 Throughput Trajectories of Flows Which Experience Rerouting 96
3.15 Flows Arrival and Departure Sequence of Dynamic Scenarios 97
3.16 Door Scenario: Throughput Trajectories of All Competing Flows (Mbps) . . 99
3.17 Door Scenario: Utilization Ratio of the Bottleneck Link 100
3.18 Door Scenario: Queue Dynamics at the Bottleneck Link (byte) 101
3.19 Tower Scenario: Throughput Trajectories of Flows 0, 10, 20, 30 (Mbps) . . . 102
3.20 Tower Scenario: Utilization Ratio of the Bottleneck Link 103
3.21 Tower Scenario: Queue Dynamics at the Bottleneck Link (byte) 104
3.22 High Speed Network Testbed . 105
3.23 Synchronization of Congestion Detection through Queue Delay 106
3.24 Scalability with Flow Number (Testbed Evaluation) 107
3.25 Effects of Different Buffer Sizes (Testbed Evaluation) 109
3.26 Flow Arrive and Leave Sequence of Dynamic Scenario (Testbed Evaluation) . 110
3.27 Throughput Trajectory of Two Sync-TCP Flows (Mbps) 110
3.28 Tradeoff Between Efficiency and Friendliness 111

4.1 An Ideal TCP Implementation for a Highly Heterogeneous Internetwork . . . 122
4.2 Classical TCP Implementation of BSD-like Unix Operating Systems 124
4.3 TCP KentRidge: the Architecture . 127
4.4 Design Pattern of DC-TCP: the two level backplane-slots framework 129
4.5 Network Pipe Classification . 137
4.6 Locations of Slices and Elements . 140
4.7 TCP KentRidge Console: Menu Items . 143
4.8 View and Change TCP Adaptation Used by TCP Socket 144

A.1 Scalability with Propagation Delay (per=10−6) 162
A.2 Scalability with Propagation Delay (per=10−8) 162
A.3 Scalability with Queue Size . 163
A.4 Scalability with Packet Loss Rate . 164
A.5 Door Scenario with Varying Background Traffic: Throughput Trajectories of

All Competing Flows (Mbps) . 165

LIST OF FIGURES 0

A.6 Door Scenario with Varying Background Traffic: Utilization Ratio of the Bot-
tleneck Link . 166

A.7 Door Scenario with Varying Background Traffic: Queue Dynamics at the
Bottleneck Link (byte) . 167

A.8 Tower Scenario with Varying Background Traffic: Throughput Trajectories of
Flows 0, 10, 20, 30 (Mbps) . 168

A.9 Tower Scenario with Varying Background Traffic: Utilization Ratio of the
Bottleneck Link . 169

A.10 Tower Scenario with Varying Background Traffic: Queue Dynamics at the
Bottleneck Link (byte) . 170

A.11 Parking-lot Network Topology . 171
A.12 Coexistence with TCP . 172
A.13 Coexistence with TCP When the Load of Background Traffic Varies 173
A.14 Queue Dynamics at the Bottleneck Link When the Load of Web Surfing Varies175
A.15 Queue Dynamics at the Bottleneck Link When the Load of Legacy FTP Cross

Traffic Varies . 176

Chapter 1

Introduction

1.1 TCP Congestion Control Mechanism

Everyday innumerable business and personal activities are being carried out over the In-

ternet, and as such the Internet has become an indispensable entity in our lives. The

cornerstone of the Internet is the TCP/IP protocol suite. IP [111] is the glue that holds

heterogeneous networks together and provides necessary functions to transfer packets over

these networks. TCP [112] provides an attractive connection-oriented end-to-end service and

ensures a reliable and in-order transfer of data. Due to its congestion control mechanism,

TCP has also provided good performance to network applications and kept the stability of

the exponentially increasing Internet.

TCP congestion control is responsible to probe network capacity, respond to network

dynamics, and maintain network stability. Over these years, it has become one of the most

active research areas. TCP congestion control was originally designed for highly reliable

links with low/medium bandwidth and stationary hosts [70]. With better understanding of

the Internet behavior, several new TCP versions (TCP Reno [17], TCP Newreno [53], and

TCP SACK [100]) are designed and standardized to improve the performance of TCP. In the

following subsection, more details of TCP Newreno, the latest and the most widely deployed

1.1 TCP Congestion Control Mechanism 2

version of TCP congestion control, will be presented.

1.1.1 TCP Newreno

For carrying out congestion control, TCP Newreno sender maintains two variables, cwnd

and ssthresh. Along with the current round trip time, cwnd determines the current sending

rate. As for ssthresh, it can be regarded as the coarse estimation of the fair share bandwidth

delay product. Based on the state transition diagram shown in figure 1.1, the behaviors of

TCP Newreno are described in the following paragraphs.

SS CA

timeout

timeout

NEWACK
NEWACK

no yes

FR

3DUPACK

timeout

3DUPACK

DUPACK

FULLACK

established

cwnd>ssthresh?

PARTIAL
ACK

SR

NEWACK

timeout

 cwnd = cwnd + mss;
 RTT measurement; slide window;
 transmit new segments if cwnd allows;

 cwnd = cwnd + mss^2/cwnd;
 RTT measurement; slide window;
 transmit new segments if cwnd allows;

 cwnd = mss;
 ssthresh = 65535;

 cwnd=cwnd + mss;
 retransmit the lost segment
 detected by this PARTIALACK ;
 slide window;
 transmit new segments if cwnd allows

 cwnd = cwnd + mss;
 transmit a new segment
 if cwnd allows

 cwnd = ssthresh;
 slide window;
 transmit new segments
 if cwnd allows;

 slide window;
 transmit new segments
 if cwnd allows

 ssthresh = cwnd/2;
 cwnd = mss;
 retransmit the lost segment

timeout

 retransmit the segment that is lost again;
rto = rto * 2;

 restart retransmission timer;

ssthresh = cwnd/2;
 retransmit the lost segment;
 cwnd = ssthresh+3*mss;
Nrecover = the largest seq. no

 that have been transmitted

3DUPACK

Byte is the unit of cwnd and ssthresh.
mss is the maximum number of bytes

that a TCP segment can hold.

Figure 1.1: State Transition Diagram of a TCP Newreno Sender

After a connection is established, cwnd is initialized to one segment, i.e., a packet that

includes at most mss bytes, ssthresh is set to 65535 bytes, and the sender begins to increase

1.1 TCP Congestion Control Mechanism 3

cwnd for probing network capacity.

In order to probe the network capacity well and avoid frequent network congestion, two

sub-states of capacity probing are used by TCP Newreno. If cwnd < ssthresh, TCP sender

is in SS (slow start) state and cwnd is increased by one segment for each incoming NEWACK,

that acknowledges some new data. Consequently, cwnd is doubled per RTT. Hence, cwnd

is increased exponentially in SS state so that TCP sender can quickly reach its fair share of

network capacity. If cwnd ≥ ssthresh, TCP sender is in CA (congestion avoidance) state

and cwnd is increased by one segment per RTT. Hence, cwnd is increased linearly in CA state

so that TCP sender can keep probing network capacity without causing network congestion

frequently.

When probing network capacity, the sender also carries out congestion detection. TCP

Newreno regards segment loss as the only signal of network congestion. And two signals,

timeout (the expiration of TCP retransmission timer) and 3DUPACK (the arrival of three

consecutive duplicate ACK packets), are used for segment loss detection. Compared to

timeout, 3DUPACK can detect congestion earlier when the segments, that follow the lost

segment, still can arrive the receiver and trigger the duplicate ACK packets. But 3DUPACK

may give a false congestion signal in networks with packet-reordering. timeout is the most

reliable congestion signal, and rto (the timeout value of TCP retransmission timer) is updated

based on the smoothed average and the variance of RTT samples. RTT is measured when

TCP sender receives a NEWACK. If Timestamp option is used, TCP sender can get one

RTT sample per NEWACK. Otherwise, only one RTT sample can be measured per window

of data. When rto is calculated according to RTT samples, rto should be large enough to

tolerate RTT variance. On the other hand, rto should not be too large since large rto will

slow down TCP sender’s response to severe network congestion.

When congestion is detected in SS or CA state, the lost segment is retransmitted and

ssthresh is set to half of the current cwnd. If congestion is detected by timeout, cwnd is

set to one segment, and the sender enters into SR (Slow Recovery), a kind of congestion

1.1 TCP Congestion Control Mechanism 4

recovery state. If congestion is detected by 3DUPACK, cwnd is set to ssthresh + 3 ∗mss

and the sender enters into another congestion recovery state, FR (fast recovery).

In SR state, if timeout is detected, it indicates that the retransmitted segment is lost

again. In this case, the segment is retransmitted again and a binary exponential back-off

algorithm is adopted by TCP retransmission timer. More specifically, rto is doubled to

reduce the sending rate further. When a NEWACK is received in SR state, it indicates

that the retransmitted segment is received correctly and the network has recovered from

congestion. Hence, the sender will slide its sending window, discard acknowledged data, and

enter into SS state.

In FR state, if timeout is detected, the sender will halve ssthresh again, set cwnd to

one segment, and enter into the SR state. When a DUPACK is received in FR state, cwnd

is increased by one segment so that TCP sender can keep filling the network pipe. As for

NEWACK received in FR state, TCP Newreno further differentiates NEWACK into PAR-

TIALACK, which acknowledges part of the segments sent out before the first lost segment

is detected, and FULLACK, which acknowledges all segments sent out before the first lost

segment is detected. TCP Newreno exits FR state only when FULLACK is received. When

a PARTIALACK is received, the sender slides its sending window, discards acknowledged

data, and increases cwnd by one segment. The sender also retransmits the lost segment

just detected by this PARTIALACK, and if its sending window allows, new segments are

transmitted too. Through this scheme, TCP Newreno can avoid to reduce cwnd more than

once when multiple segments are dropped in one congestion event.

According to the above description, the core functions of TCP congestion control can

be divided into initialization, capacity probing, congestion detection, congestion recovery,

and RTT measurement. Table 1.1 summarizes the corresponding algorithms used by TCP

Newreno. Since retransmission is tightly involved with congestion control, this function is

also listed. In summary, TCP Newreno is a simple sender-centric, loss and window based

congestion control algorithm designed for reliable links with low/medium bandwidth and

1.2 Problem Formulation 5

Components Algorithms

initialization cwnd = mss, ssthresh = 65535
capacity probing exponential increase in SS : cwnd = cwnd + mss per NEWACK

linear increase in CA: cwnd = cwnd + mss per RTT
congestion detection timeout and 3DUPACK
congestion recovery timeout : ssthresh = cwnd/2, cwnd = mss

3DUPACK: ssthresh = cwnd/2; cwnd = ssthresh + 3 ∗mss
persistent loss: rto = rto ∗ 2

RTT measurement one sample per window of data, or
one sample per NEWACK if Timestamp option is used.
∆ = srtt− rtt, srtt = rtt/8 + srtt ∗ 7/8
rttvar = rttvar ∗ 3/4 + |∆|/4, rto = srtt + 4 ∗ rttvar

retransmission retransmit the lost segment detected by timeout or 3DUPACK.
PARTIALACK is also used to detect and retransmit
the segments that are lost in the same congestion event

Table 1.1: Algorithms Used by TCP Newreno

stationary hosts. When segment loss is detected mainly through 3DUPACK, cwnd is regu-

lated by linear/additive increase algorithm in CA state and multiplicative decrease (by half)

algorithm when congestion is detected. This is why TCP congestion control is regarded as

an AIMD (Additive Increase and Multiplicative Decrease) algorithm with fixed parameters

[43]. TCP congestion control is also frequently characterized as AIMD(1, 0.5), i.e., cwnd is

increased by one segment per RTT in CA state and it is decreased by half when segment

loss is detected [146].

1.2 Problem Formulation

Over the years, TCP has become the dominant transport protocol of the Internet and its

congestion control algorithm has also become the de facto standard. TCP has facilitated the

development of various network applications, such as FTP, Telnet, and WWW, which are

responsible for the enormous success of the Internet.

However, in recent years, many new types of networks with different characteristics have

been deployed. Within these new types of networks, the original assumptions of TCP con-

1.2 Problem Formulation 6

gestion control are frequently undermined, and TCP performs very badly. Considering the

current wide deployment of TCP, TCP will continue to be the dominant transport protocol

in the foreseeable future, and it is very valuable to improve the performance of TCP in these

networks.

In this thesis, three major trends are noticed in the ever expanding Internet. Firstly,

more and more users are accessing the Internet through various wireless networks, such as

WCDMA [1], Wi-Fi [8], etc. Secondly, the bandwidth of the Internet is increasing very

quickly and there will be more and more long fat network pipes. Hence, it is imperative

that one should improve TCP performance in these two network scenarios. Thirdly, we also

observe that the Internet is becoming more and more heterogeneous and it still keeps chang-

ing continuously. These changes bring many challenges to TCP implementation, and a new

implementation framework, along with TCP adaptations proposed for different networks, is

necessary to provide efficient service to users in the heterogeneous and evolving Internet.

This thesis focuses on the above three problems, and their details are discussed further

in the following subsections.

1.2.1 Improving TCP Performance in Heterogeneous Mobile En-

vironments

In recent years, many kinds of wireless networks, such as cellular network (WCDMA [1],

etc.) and Wireless LAN (Wi-Fi [8], etc.), have been deployed and have become integral

parts of the Internet. These wireless networks complement each other in terms of coverage,

bandwidth, latency, etc. and form a heterogeneous mobile environment. These networks

along with portable and affordable computing devices, such as laptops and PDAs that are

installed with multiple different kinds of wireless interface cards, enable wide spread and

affordable mobile Internet access. Figure 1.2 illustrates a typical scenario of mobile Internet

access through heterogeneous wireless networks.

But TCP congestion control was designed for reliable links and stationery hosts. The

1.2 Problem Formulation 7

Figure 1.2: Mobile Internet Access through Heterogeneous Wireless Networks: Cars Run
Around a Campus Covered by WCDMA Network and Wi-Fi Hot-spots

characteristics of wireless networks, such as lossy wireless link and user mobility, bring severe

problems to TCP. Hence, it is very important to improve TCP performance in wireless

networks. This area has been a research hot-spot for quite a long time and many solutions

have been proposed so that TCP can work well on lossy wireless links. In this thesis,

we focus on the challenges brought by user mobility in a heterogeneous mobile environment.

Handoff will occur when a user moves around and switches among different wireless channels.

Compared with common network dynamics, network path characteristics could vary much

more significantly during handoff. This thesis tries to address the following questions.

1. What kinds of handoff may occur in a heterogeneous mobile environment? What are

the challenges faced by TCP during each kind of handoff?

2. How to design a mechanism so that it could systematically solve the challenges brought

by all kinds of handoff? This mechanism should be deployable in the heterogeneous

mobile environment, and it should not bring new problems. For example, TCP flows

1.2 Problem Formulation 8

supported by this mechanism should not hurt the cross traffic, and users cannot cheat

through this mechanism to acquire (un-fairly) more bandwidth.

1.2.2 Improving TCP Performance on Long Fat Network Pipes

The bandwidth of the Internet has been increasing very quickly. For example, expected

capacity of the forthcoming TPE (Trans-Pacific Express) is 5.12 Tera-bps and FTTx (Fiber

To The Home, Building, etc.) has been widely deployed in many countries. Recent band-

width measurement statistics (figure 1.3) show that the average download speeds vary from

7.73Mbps in Europe to 1.39Mbps in Africa. The average download speed for the top 6

countries already exceeds 15Mbps. In some countries, for example, Singapore, the goal is to

provide up to 1Gbps broadband access by 2015.

Figure 1.3: Bandwidth Measurement Statistics (http://www.speedtest.net/) on 2010-03-12

As the bandwidth of the Internet continues to grow, there will be more and more long

1.2 Problem Formulation 9

fat network pipes with abundant residual bandwidth. However, it is well known that TCP

cannot work well on long fat network pipe where the bandwidth-delay product (BDP) is

large [51]. Due to the loss based AIMD(1, 0.5) algorithm, legacy TCP versions (TCP Reno,

Newreno, SACK, etc.) cannot send out data fast enough.

In order to address this problem, many high speed congestion control (HSCC) algorithms,

such as Highspeed TCP [51], Cubic-TCP [59], H-TCP [91], Fast TCP [75], TCP Illinois [94],

and Compound TCP (CTCP) [125], have been proposed in recent years. Some of them have

also been deployed in popular operating systems. For example, Compound TCP has been

distributed with Windows Vista, and Linux has selected Cubic-TCP as its default congestion

control mechanism.

For bandwidth-greedy and elastic applications, such as video/software distribution and

P2P file sharing, it is now easy and irresistible to adopt a HSCC algorithm, which can ef-

ficiently utilize the abundant residual bandwidth and provide higher throughput to users

on long fat network pipes of the Internet. On the other hand, bandwidth-greedy and elas-

tic applications are not the only applications running in the Internet. Considering that

a HSCC algorithm probes the network more aggressively for higher throughput, it should

pay more attention on friendliness to cross traffic. In particular, its deployment should not

hurt the applications using legacy TCP and the interactive applications, such as web surfing

and media-streaming that are more important and profitable to network providers. More

specifically, existence of HSCC-based bandwidth-greedy and elastic applications should not

significantly increase packet loss rate, queue delay, and jitter experienced by these cross

traffic applications. However, the existing proposals cannot satisfy this criteria [142].

As pointed out in [73], an end-to-end delay-based congestion control algorithm has the

potential of driving the network to operate around the knee, at which network throughput

is high, queue delay is short, and packet drop rate is minimum. Hence, a delay-based HSCC

algorithm may enable bandwidth-greedy and elastic applications to efficiently utilize long

fat network pipes while not hurting the cross traffic. In this thesis, we try to address the

1.2 Problem Formulation 10

following questions encountered by such a delay-based HSCC algorithm.

1. How to learn network state correctly based on queue delay, a noisy and delayed net-

work feedback? Estimation of RTPD (Round Trip Propagation Delay) is already a

very challenging task since it is highly correlated with congestion control behaviors of

distributed senders [49].

2. How to drive the network to operate around the knee and distribute bandwidth fairly

among competing flows, irrespective of the number of competing flows and the values

of their RTPD?

3. How to solve the challenges brought by re-routing, varying loads of cross traffic gener-

ated by different kinds of applications, etc.?

1.2.3 Re-engineering TCP Implementation for the Heterogeneous

and Evolving Internet

The Internet has become a highly heterogeneous inter-network comprising networks with

varying characteristics (bandwidth, delay, packet error rate, etc.), such as optical network,

satellite network, Ethernet, ADSL, Wi-Fi, etc. The routers may also have different queue

sizes and adopt different queue management schemes. Figure 1.4 illustrates the heterogeneity

of the current Internet in part.

Within the highly heterogeneous Internet, a host needs to communicate with other hosts

that spread across the globe. Hence, TCP implementation of a host needs to run on network

pipes with different characteristics. On many of these network pipes, the assumptions of TCP

congestion control are frequently violated and a connection with standard TCP congestion

control mechanism can only utilize a few percent of the provisioned bandwidth [26][51].

In recent years, significant research work have been done to improve TCP performance on

different kinds of network pipes, and many TCP adaptations have been proposed for these

network pipes [16][22][45][46][60][69][104]. But, very few of them have been implemented

1.2 Problem Formulation 11

Figure 1.4: The Highly Heterogeneous Internet: an Example

in the popular operating systems. The classical TCP implementation still uses the same

standardized congestion control mechanism for all active connections and cannot always

achieve good performance in the heterogeneous Internet. An intelligent TCP, with which

a host can automatically apply the most appropriate TCP adaptation on each connection

according to the current end-to-end path characteristics, will be useful. However, there are

a very few studies on how to implement such an ideal TCP.

In addition, many hosts with different resources, have been attached to the current Inter-

net, different operating systems are installed on these hosts, and applications with various

expectations are also running on these hosts. An intelligent TCP should also handle the

heterogeneity in these aspects.

Furthermore, the Internet also keeps changing continuously. The topology and links’

bandwidth change with the deployment and/or upgrade of network infrastructure. New net-

works technologies, such as Wi-Max [5], will be deployed soon, and new network applications

will also be introduced. Hence, it is necessary to re-engineer TCP implementation for solv-

ing the above challenges systematically, and any redesign has to evolve with the changing

Internet technologies. In this thesis, we try to address the following questions encountered

1.3 Thesis Contributions 12

by such an intelligent TCP implementation.

1. How to implement a large number of existing TCP adaptations without hurting the

maintainability of TCP source codes? How to facilitate the implementation of new

TCP adaptations that will be proposed in the future?

2. How to learn the environment of a TCP connection and select the most appropriate

adaptation accordingly? How to enable a connection to change its behaviors according

to the changes of the environment?

3. How to optimize the implementation for saving system resources?

1.3 Thesis Contributions

This thesis focuses on the above three problems and has made the following contributions.

1. TCP HandOff (TCP-HO): A practical TCP adaptation for mobile Internet access

through heterogeneous wireless networks.

2. Synchronized TCP (Sync-TCP): A novel delay-based high speed congestion control

algorithm for safely ramping up the throughput of bandwidth-greedy and elastic ap-

plications of the Internet.

3. TCP KentRidge: A new TCP implementation framework for providing efficient service

to users in the context of the heterogeneous and evolving Internet.

1.3.1 TCP-HO

Based on the observation that congestion control is carried out by the server and handoff

is only known by mobile host, TCP-HO resorts to explicit cooperation (between server and

mobile host) to solve challenges brought by heterogeneous mobile environments and improve

the performance of mobile host while not hurting the other traffics.

1.3 Thesis Contributions 13

TCP-HO is designed based on the assumptions that a mobile host is able to detect

the completion of handoff immediately and has a coarse estimation of new wireless link’s

bandwidth. When the completion of handoff is detected by mobile host, it notifies the server

about the new wireless link’s bandwidth through two DUPACK packets. After the server

receives the notification, it starts to transmit immediately and starts to update its ssthresh

based on bandwidth notification and RTT of the new path for a while. Compared to the

existing approaches, the assumptions of TCP-HO are more reasonable in the real world.

TCP-HO is also designed as a pure end-to-end proposal for facilitating the deployment.

Furthermore, the server responds to bandwidth notification only after it just experienced

timeout and it starts to transmit with cwnd=mss. Hence, TCP-HO can also thwart cheating

users and avoid to hurt cross traffic.

Experimental results indicate that TCP-HO achieves its design goals. Considering that

more and more users are accessing the Internet through heterogeneous wireless networks, it

should be worthwhile to implement TCP-HO at both server and mobile host for improving

the performance of TCP. Hence, this thesis provides a promising solution (TCP-HO) for

mobile Internet access through heterogeneous wireless networks.

1.3.2 Sync-TCP

Considering that the Internet is now very important to the world, the deployment of any

HSCC algorithm should not degrade user experience of the existing applications, especially

the interactive ones, such as web-surfing and media-streaming. Sync-TCP is perhaps the

first one that is designed to achieve this goal.

The key insight of Sync-TCP is that if competing flows could detect the same congestion

signal through queue delay, these flows can then coordinate their congestion control behaviors

for driving the network to operate around their desired point, the knee. Sync-TCP is carefully

designed such that with high probability, competing flows can detect the same congestion

signal through queue delay. In combination with synchronized congestion signal, Sync-TCP

1.4 Thesis Organization 14

uses an adaptive queue-delay-based congestion window decrease rule and a RTT-independent

congestion window increase rule. These rules are designed to drive the network to operate

around the knee and to distribute the residual bandwidth fairly even when the number of

competing flows varies and their RTPDs differ significantly.

Extensive simulations and preliminary testbed evaluations indicate that Sync-TCP achieves

its design goals and performs better than the existing proposals. Hence, this thesis also pro-

vides a promising solution (Sync-TCP) for safely ramping up the throughput of bandwidth-

greedy and elastic applications that run on long fat network pipes of the Internet.

1.3.3 TCP KentRidge

TCP KentRidge is the first proposal that systematically considers the challenges faced by a

TCP implementation in the heterogeneous and evolving Internet.

TCP KentRidge is carefully designed so that a host could have the potential of auto-

matically applying the most appropriate TCP adaptation to each connection based on the

current environment. TCP KentRidge is also designed so that new TCP adaptations can

be implemented in this framework and the necessary intelligence can be added easily. An

initial prototype of TCP KentRidge has been implemented in FreeBSD using which a host

could automatically and intelligently change its behaviors according to the environment.

1.4 Thesis Organization

Chapter 2 presents TCP HandOff (TCP-HO). This chapter first classifies handoff that may

occur in heterogeneous mobile environments, and analyzes the challenges faced by TCP

during each kind of handoff. The details of TCP-HO and experimental results are then

presented. At the end of this chapter, wireless link bandwidth estimation issues are discussed,

TCP-HO’s sensitivity to bandwidth estimation error is analyzed, and its performance under

achievable bandwidth estimation accuracy is evaluated too.

1.4 Thesis Organization 15

Chapter 3 presents Synchronized TCP (Sync-TCP). This chapter first introduces the

existing delay-based congestion control algorithms and discusses the challenges that Sync-

TCP must solve to achieve its design goals. The design of Sync-TCP is then presented in

details. Parameter selection guidelines and deployment issues are also discussed. Finally,

extensive simulations and preliminary testbed evaluations are presented in details.

Chapter 4 presents TCP KentRidge. The existing TCP adaptations proposed for dif-

ferent networks are first summarized. This chapter then discusses the challenges faced by

TCP implementation within the heterogeneous and evolving Internet. State of the art TCP

implementations are also introduced. After that, the design details of TCP KentRidge and

an initial prototype implementation are presented.

Chapter 5 concludes this thesis with a summary and points out some future works.

Chapter 2

TCP-HO: A Practical Adaptation for

Heterogeneous Mobile Environments

2.1 Introduction

In recent years, many kinds of wireless networks, such as cellular network (WCDMA [1],

GPRS [6], etc.) and Wireless LAN (Wi-Fi [8][9][10][12], HiperLAN [7], etc.), have been de-

ployed and have become integral parts of the Internet. These wireless networks complement

each other in terms of coverage, bandwidth, latency, etc. and form a heterogeneous mobile

environment. These networks along with portable and affordable computing devices, such

as laptops, PDAs, and smart phones, enable the wide spread and affordable mobile Internet

access. But the lossy wireless links and mobile hosts violate the assumptions of TCP, the

most widely used transport protocol of the Internet. As a result, TCP performs very bad

when users move around in these wireless networks.

TCP was designed for reliable links. When packets are transmitted on lossy wireless

link, they are corrupted frequently. These corrupted packets are wrongly regarded as con-

gestion signals and TCP sender reduces its sending rate unnecessarily. Hence, TCP cannot

efficiently utilize the precious bandwidth of wireless link and provides very bad performance

2.1 Introduction 17

to applications. Many mechanisms, such as I-TCP [21], Snoop [24], TCP Veno [56], TCP

Hack [117], and TCP ELN [25][83][140], had been proposed for enhancing TCP performance

over lossy wireless links. Based on the above investigations, new wireless networks normally

adopt FEC (Forward Error Correction) and/or ARQ (Automatic Retransmission reQuest)

in link layer with the aim to hide lossy characteristic of wireless link. For example, RLC

[11], the link layer protocol of GPRS/WCDMA, adopts link layer ARQ. Link layer ARQ is

also used by the MAC layer of IEEE 802.11 [8]. Hence, the current wireless networks have

already become reliable wireless networks. In reliable wireless networks, link layer ARQ may

bring large bandwidth and delay variation. This problem has also been solved by regulating

the sending rate of ACK packets or changing awnd (advertised window) of ACK packets at

the base station [41][42].

The challenges brought by lossy wireless link had been well studied. But TCP was also

designed for stationary hosts. When a user moves around in these heterogeneous wireless

networks, TCP performance is very poor due to the challenges brought by handoff. This

chapter will focus on how to enhance TCP performance when users move around in the

heterogeneous mobile environments.

Within the heterogeneous mobile environments, many kinds of handoff may occur and

they can be classified in many different ways. For example, in [121], handoff is classified

into vertical handoff and horizontal handoff according to the techniques used by the wireless

networks. In this chapter, handoff is classified from TCP point of view. More specifically,

since the BDP (Bandwidth-Delay Product) of a network path affects TCP performance

significantly, handoff is classified according to BDP of the old network path (before handoff)

and that of the new network path (after handoff).

Handoff is first classified into HH (horizontal handoff) and VH (vertical handoff) based

on whether BDP changes significantly during handoff. Within HH, BDPs of new and old

paths do not vary appreciably. For VH, the difference in BDP is large. According to the

value of BDP, HH is further divided into L-HH and H-HH. Within L-HH, BDPs of both

2.1 Introduction 18

paths are low. Within H-HH, BDPs of both paths are high. According to the direction of

BDP change, VH is further divided into D-VH (Downward-VH) and U-VH (Upward-VH)

[102]. During all kinds of handoff, there is normally a long disconnection time, which means

a period of zero BDP. Figure 2.1 shows BDP fingerprints of the above four kinds of handoff.

Figure 2.1: BDP Fingerprints of Different Kinds of Handoff

Although TCP reacts to the changes of network capacity through congestion control,

abrupt BDP changes during handoff can still bring severe challenges. In this chapter, the

potential benefits of bringing explicit cooperation between server and mobile host are studied.

TCP HandOff (TCP-HO), a practical end-to-end mechanism based on explicit cooperation,

is proposed for solving the challenges brought by all kinds of handoff with the aim to improve

TCP performance in heterogeneous mobile environments.

The rest of this chapter is organized as follows. In section 2.2, the challenges faced by

TCP during each kind of handoff are analyzed. Section 2.3 presents related work, and the

details of TCP-HO are described in section 2.4. The testbed and experimental results are

presented in section 2.5, and the issues related with wireless link bandwidth estimation are

discussed in section 2.6. This chapter is briefly summarized in section 2.7.

2.2 TCP During Handoff 19

2.2 TCP During Handoff

TCP, the most widely used transport protocol, uses congestion control to probe network

capacity and keep network stability. According to the standard TCP congestion control

mechanism described in subsection 1.1.1, TCP sender maintains two variables, cwnd and

ssthresh. When cwnd is less than ssthresh, the sender is in SS state. For each NEWACK,

cwnd is increased by one segment so that TCP sender can quickly probe network capacity.

When cwnd is larger than ssthresh, the sender is in CA state. And for each round trip

time, cwnd is increased by one segment so that the sender can still probe network capacity

and avoid frequent network congestion. TCP regards segment loss as the only signal of

network congestion. When congestion is detected, ssthresh is reduced to half of the current

cwnd. cwnd is reduced to one segment if congestion is detected by timeout. If congestion is

detected by 3DUPACK, cwnd is set to ssthresh + 3 ∗mss. When a lost segment is detected

by retransmission timer and has to be retransmitted more than once, TCP retransmission

timer adopts an exponential back-off algorithm with a maximal rto value (64 seconds).

With TCP congestion control and its ACK-based self-clock, TCP sender can react to

slow changes of network capacity and achieve good throughput. However, during handoff,

BDP changes abruptly and long disconnection destroys TCP’s self-clock. In the following

paragraphs, the problems faced by TCP during all kinds of handoff will be analyzed further.

Firstly, segments are lost because that the sender does not know the occurrence of hand-

off. The sender keeps sending data to the old base station although the old wireless link has

broken. Unless seamless handoff is implemented and the old base station can forward these

packets to the new base station, many segments are lost during handoff. For heterogeneous

wireless data access networks, availability of seamless handoff is unlikely due to standard-

ization issues, administration issues, etc. As a result, when handoff occurs, segments will be

discarded at the base station of previous wireless link.

Secondly, silly waiting occurs because that the sender does not know the completion of

handoff. After handoff is completed and the new wireless link is available, TCP sender does

2.2 TCP During Handoff 20

not know this fact and still sillily waits for timeout. Due to TCP retransmission timer’s

exponential back-off algorithm and long disconnection time of handoff, the sender may wait

for quite a long time and precious bandwidth of new wireless link cannot be utilized.

Thirdly, since the sender does not know the bandwidth difference between the new wireless

link and the old wireless link, slow start or over-shooting may also occur. After handoff

completion, the sending rate is quite slow for a long time. During handoff, timeout occurs

at TCP sender, ssthresh is reduced to half of the cwnd, and cwnd is reduced to one. TCP

sender needs some time to efficiently utilize the bandwidth of new link. Especially when

ssthresh is much less than BDP of new path, TCP sender will enter into CA state too early.

This problem is worse in H-HH than in L-HH, and it is much worse in U-VH because the

BDP of new path is much larger than ssthresh, a coarse estimation of old path’s BDP.

After the completion of D-VH, TCP sender may also over-shoot the new wireless link.

Within D-VH, the BDP of new path is much less than ssthresh, a coarse estimation of old

path’s BDP. The exponential cwnd increase in SS state may cause multiple segment loss,

trigger timeout, and adversely affect TCP throughput.

Table 2.1 summarizes the problems faced by TCP during four kinds of handoff that may

occur in the heterogeneous mobile environments.

Segment Silly Slow Start Over-shooting
Loss Waiting

L-HH yes yes a little no
H-HH yes yes severe no
U-VH yes yes very severe no
D-VH yes yes very little yes

Table 2.1: Problems Brought by Different Kinds of Handoff

2.3 Related Work 21

2.3 Related Work

The root of TCP’s poor performance during handoff is that congestion control is carried

out by the server and handoff is only known to mobile host. Based on this observation, the

related works are classified according to where adaptations take place.

1. Network-Centric Approaches: I-TCP [21] and MTCP [145] split a connection between

a server and a mobile host at the base station. Handoff is entirely handled by mobile

host and base stations. TCP server continues to send segments to the old base station

during a handoff. These segments will be buffered at the old base station and forwarded

to the new base station after handoff is completed. In this kind of approaches, handoff

is hidden from TCP servers. But within heterogeneous mobile environments, wireless

networks may use different techniques and belong to different administrative domains.

These proposals may not be practical again. In addition, base stations need to maintain

large buffers within high-speed wireless networks.

M-TCP [34] only works at the base station. Base station holds back the acknowledge-

ment of the last byte. When it detects handoff occurrence, it sends back the last byte’s

acknowledgement with zero window, which will force TCP sender to enter into persist

mode, thus the values of cwnd and ssthresh are frozen. When a new base station

detects handoff completion, it immediately notifies TCP sender to resume transmis-

sion with the frozen cwnd and ssthresh. M-TCP is a good network-centric solution.

But the overhead of base station is too large and increases with the speed of wireless

networks. More severely, M-TCP, I-TCP, and MTCP cannot work with IPSEC [81].

2. Receiver-Centric Approaches: RCP [67], which moves congestion control to mobile

host, is the most radical proposal of this category. In RCP, mobile host carries out

congestion control and notifies the current sending rate to the server. The server just

needs to transmit data according to the sending rate specified by mobile host. Since

mobile host knows handoff and carries out congestion control, it can solve all problems

2.3 Related Work 22

brought by handoff. However, mobile host has a strong motivation to cheat with the

server for acquiring high throughput. It is too dangerous to let mobile users decide the

sending rate of more powerful fixed servers, especially in today’s Internet.

Freeze-TCP [57] and TCP ACK-Pacing [102] are two other receiver-centric proposals.

They change mobile host’s behaviors during handoff with the aim to drive TCP server’s

congestion control to probe network capacity well. Freeze-TCP and TCP ACK-Pacing

are end-to-end proposals and only mobile hosts need to be changed. Hence, they

can work with IPSEC and have good deployability. But in the heterogeneous mobile

environments, Freeze-TCP and TCP ACK-Pacing also have their own problems.

Freeze-TCP shifts the tasks of M-TCP’s base station to mobile host and avoids hold

the acknowledgement of the last byte. Freeze-TCP assumes accurate prediction of

the occurrence of handoff. zero window must be sent out just before the predicted

handoff occurs so that zero window can arrive the server for freezing its state and old

wireless link will not be under-utilized. But it is very hard to accurately predict the

occurrence of handoff, especially in heterogeneous wireless networks. After handoff

completion, DUPACK is sent by mobile host to trigger the server to begin to transmit

with previous frozen cwnd and ssthresh. This mechanism may work well during L-

HH. But it violates the congestion control principle that data sender should re-probe

network capacity after a long idle time [61]. Considering the fast and faster wireless

networks, it may generate large data burst and harm cross traffics. In addition, Freeze-

TCP does not consider the challenges brought by D-VH and U-VH.

TCP ACK-Pacing has considered the challenges brought by U-VH and D-VH. It as-

sumes that a mobile host knows RTT of the new path and the bandwidth of the new

wireless link. Hence it knows the BDP of the new path when the wireless link is the

bottleneck. But mobile host normally acts as TCP receiver and does not keep mea-

suring RTT. The ACK-generation algorithm of the mobile host is changed in order to

drive the server’s cwnd converge to new path’s BDP quickly. However, less ACKs after

2.4 TCP HandOff Mechanism 23

D-VH may cause TCP sender to generate large data burst and break TCP’s self clock.

More ACKs after U-VH may consume precious uplink bandwidth of (asymmetric) wire-

less link. In addition, TCP ACK-Pacing cannot work at all if TCP Byte-Counting [18]

is used by the server. Finally, when the server and network allow TCP ACK-Pacing,

it may be exploited by misbehaving users to get unfairly high throughput (through

generating more ACK packets).

Since the root of TCP’s poor performance during handoff is that congestion control is

carried out by the server and handoff is only known to mobile host, it should be promising to

introduce explicit cooperation between server and mobile host. In the following section, TCP

HandOff (TCP-HO), a practical end-to-end TCP enhancement based on explicit cooperation,

is designed for heterogeneous mobile environments. Within TCP-HO, a mobile host reports

handoff information to the server. And the server is responsible to well utilize wireless links

based on mobile host’s feedback. Hence, TCP-HO is a sender+receiver approach and both

TCP end-points need to be changed. Considering that more and more users are accessing

the Internet through heterogeneous wireless networks, there should be enough motivations

to change both the server and mobile host for implementing TCP-HO.

2.4 TCP HandOff Mechanism

During handoff, the ideal solution is to let TCP sender stop transmitting one RTT before

handoff occurrence and immediately begin to transmit (cwnd=BDP of new path) after hand-

off completion. By this way, TCP sender can efficiently utilize the old and new wireless links

and avoid any segment loss. However, this is not a practical solution. Below is the design

principles and mechanism details of TCP-HO.

2.4 TCP HandOff Mechanism 24

2.4.1 Design Principles

1. Assumptions made must be reasonable. Since it is very hard to accurately predict

handoff in heterogeneous wireless networks, mobile host of TCP-HO does not predict

handoff and notify the server. Hence, TCP-HO cannot avoid segment loss.

2. The mechanism should be deployable in the current Internet. In order to avoid com-

plicating network infrastructure and work with IPSEC, TCP-HO should be a purely

end-to-end mechanism. In addition, it should be easy to implement TCP-HO in the

existing TCP codes.

3. The mechanism should not bring new security problems. Especially, when TCP sender

accepts the notification of new link’s bandwidth, it must use this information scrupu-

lously and discard it quickly.

4. The mechanism should be friendly to cross traffic. With the increase of the number

of mobile users and the increase of wireless link’s bandwidth, TCP-HO must consider

its effects on network stability and cross traffic. After handoff completion, instead of

sending with full speed, TCP-HO must probe network capacity as same as normal

TCP. In order to accelerate capacity probing, ssthresh can be set according to BDP

of new path.

2.4.2 Details of TCP-HO

Based on the observation that congestion control is carried out by the server and handoff

is only known by mobile host, TCP-HO resorts to explicit cooperation (between server and

mobile host) to solve challenges brought by heterogeneous mobile environments and improve

the performance of mobile host while not hurting the other traffics.

There are only two assumptions in TCP-HO. Firstly, a mobile host can immediately

know the completion of handoff. This knowledge can be acquired easily by some cross-layer

2.4 TCP HandOff Mechanism 25

implementations. Secondly, a mobile host has a coarse estimation of new wireless link’s

bandwidth. This assumption is reasonable since mobile host can estimate bandwidth based

on the type of wireless interface and the corresponding bandwidth estimation mechanisms,

such as [139][147]. These bandwidth estimation mechanisms will be discussed further in

section 2.6 when the effects of bandwidth estimation error are studied. Based on previous

studies [76][78], the knowledge of the bottleneck link’s bandwidth is helpful for improving

TCP performance. By exploiting this knowledge carefully, the performance improvement of

TCP-HO should be better than that of receiver-centric approaches.

When the completion of handoff is detected by mobile host, it notifies the server about

the new wireless link’s bandwidth through two DUPACK packets. After the server receives

the notification, it starts to transmit immediately and starts to update its ssthresh based

on bandwidth notification and RTT of the new path for a while. The details of TCP-HO

are described below.

Figure 2.2: TCP Options for TCP-HO

TCP-HO extends TCP by including two new TCP options (see Figure 2.2). TCP Capa-

bility Option is an enabling option used in SYN segments. Each bit of its 16-bits capability

mask can be used to negotiate one TCP capability. TCP-HO is negotiated through the last

bit. TCP Capability Option is designed to save precious option space of a SYN segment.

As for TCP Bandwidth Option, it is used by mobile host to notify the server about the

completion of handoff and the bandwidth of new wireless link. The unit of bandwidth in

TCP Bandwidth Option is Kbps.

2.4 TCP HandOff Mechanism 26

Within TCP-HO, when a mobile host gets to know the completion of handoff, it immedi-

ately sends out two duplicate ACKs with TCP Bandwidth Option which carries bwnew (the

bandwidth of new wireless link). Two duplicate ACKs make the notification more robust in

lossy networks. If more than two duplicate ACKs are sent out, they may waste bandwidth,

and even may trigger TCP sender’s fast retransmit and fast recovery [70].

Figure 2.3: State Transition Diagram of TCP-HO Sender

When the server receives one ACK with TCP Bandwidth Option, it starts to transmit

immediately, sets ssthresh = bwnew ∗ srttold, and enters into HO-ADJUST state (see Figure

2.3). Here, the server only responds to TCP Bandwidth Options received just after a timeout

event with the aim to avoid misbehaving users to exploit this option for acquiring higher

throughput. Mobile host also has no motivation in cheating on bwnew. If mobile host sends

out a smaller value, the sender needs more time to converge to the new wireless link’s

bandwidth and the throughput becomes lower. If mobile host sends out a much larger value,

timeout tends to occur and the throughput may become even worse.

In HO-ADJUST state, for each new RTT sample, the server keeps updating ssthresh

according to bwnew and srttnew (the smooth average of new RTT samples). If congestion

is detected in HO-ADJUST state, the server returns to normal state and works as normal

TCP. According to source codes of FreeBSD 5.4, four RTT samples can give a quite accurate

estimation of average RTT. In addition, the bandwidth of wireless link may change with

time and CPU is consumed in HO-ADJUST state for updating ssthresh. Hence, TCP-HO

2.4 TCP HandOff Mechanism 27

server also returns to normal state after four new RTT samples. Figure 2.3 shows the state

transition diagram used by TCP-HO sender.

Figure 2.4 shows the time vs. sequence number graph of TCP Newreno [53] and TCP-HO

during four kinds of handoff which occur in the same mobile scenario. For better comparison,

TCP-HO is implemented in NS2 [3] and simulations are used to generated the two graphs.

This figure shows that TCP Newreno does suffer the problems listed in Table 2.1. It also

indicates that TCP-HO solves all problems except segment loss and achieves much higher

throughput than TCP Newreno.

Within [127], a similar idea was presented and evaluated by simulation. But its network

scenario is different. In particular, the authors assume that the mobile host is the data

sender, who also knows everything about handoff.

2.4 TCP HandOff Mechanism 28

Figure 2.4: Time vs. Sequence Number Graph of TCP Newreno and TCP-HO under Four
Kinds of Handoff Occurred in the Same Mobile Scenario

2.5 Performance Evaluation 29

2.5 Performance Evaluation

With immediate transmission [37], TCP-HO can reduce the disconnection time of data flow.

This metric is very important to interactive applications, such as Telnet and WWW. The

improvement of TCP-HO can be analyzed as follows.

Figure 2.5: Improvement of TCP-HO on Data Flow Disconnection Time

Since TCP’s retransmission timer adopts binary exponential backoff algorithm with a

maximal rto value (64 seconds), when link disconnection time is so long that the rto reaches

64 seconds, the improvement is between 0 to 64 seconds. Otherwise, the improvement can

be illustrated by Figure 2.5. If the time between handoff occurrence and the N−1th timeout

is denoted as T , the time between handoff occurrence and the Nth timeout is about 2T .

We assume that handoff may be completed at any time between T and 2T . Under this

assumption, if link disconnection time during handoff is denoted as x, the improvement on

data flow disconnection time can be approximately expressed as 2T−x
x

; and the average can

be calculated by the following equation.

1

T
∗

∫ 2T

T

2T − x

x
dx =

[2T ∗ (ln(x)|2T
T)− (x|2T

T)]

T
=

2T ∗ [ln(2T)− ln(T)]− (2T − T)

T

=
2T ∗ ln(2)− T

T
= 2 ln(2)− 1 ≈ 0.3863

2.5 Performance Evaluation 30

Hence the improvement on data flow disconnection time is about 0.3863 of the link discon-

nection time. Freeze TCP can achieve the same improvement in this metric.

This section focuses on evaluating and comparing these proposals in another important

metric, the throughput of a long-lived TCP connection. For the purpose of performance

evaluation, TCP-HO is implemented in FreeBSD 5.4, a controlled network environment is

set up, and many experiments are carried out.

2.5.1 Testbed Setup

Figure 2.6 shows the topology of our network testbed. A Mobile Host is connected with

Handoff Emulator by cross-cable and all other computers are connected by two virtual LANs

of a 100Mbps 3COM Super Stack II Switch 3900.

Figure 2.6: Testbed for TCP-HO Evaluation

FreeBSD 5.4 is installed on all of these computers. The flow between Server and Mobile

Host is the flow to be investigated. A cross traffic flow is generated between Cross Traffic

Generator and Cross Traffic Sink in order to investigate the friendliness of TCP-HO. Iperf

[2] is used by Server and Cross Traffic Generator for generating long-lived data flows and

measuring their throughput. WWW Background Traffic Generator and WWW Background

Traffic Sink are responsible to generate some Internet-like background traffic. Apache is

installed on WWW Background Traffic Generator and Surge [27] is used to emulate WWW

2.5 Performance Evaluation 31

traffics generated by ten users.

Dummynet [116] is used by WAN Emulator to emulate the delay and bandwidth of a wide

area network. The bandwidth of WAN is set to 10Mbps. Considering the small number of

connections in the following experiments, the queue at WAN Emulator is set to 20 packets.

As for the delay of WAN, it is changed in different experiments in order to emulate that

mobile host accesses servers that locate at different places.

In order to better emulate the bandwidth & delay of different wireless links, instead of

Mobile Host, a separate computer (Handoff Emulator) is used and its kernel is re-built with

finer timer resolution (1ms). Dummynet is used for emulating mobile scenarios and a special

ICMP message is used by Handoff Emulator to notify Mobile Host about handoff completion

and the bandwidth of new wireless link. This ICMP message emulates handoff completion

detection and bandwidth estimation functions of Mobile Host.

2.5.2 Experimental Results

In order to evaluate TCP-HO, several mobile scenarios (handoff sequences), that may occur

in different mobile environments of the real world (WLAN and WCDMA), are first generated.

For each mobile scenario, the delay of WAN are set to different values (10ms, 20ms, 50ms,

and 100ms) to create various network scenarios.

For each network scenario, the flow between Server and Mobile Host may use TCP

Newreno, Freeze TCP, and TCP-HO. In order to analyze the effects of different parts of

TCP-HO mechanism, two additional TCP variants, TCP-HO-Immediate and TCP-HO-

Aggressive, are also investigated. Within TCP-HO-Immediate, the sender immediately be-

gins to transmit after receiving notification. But the bandwidth of new wireless link is

ignored. In TCP-HO-Aggressive, the sender sets both cwnd and ssthresh to bwnew ∗ srttold.

Hence, for each network scenario, five experiments will be carried out.

Within each experiment, the cross traffic flow uses TCP Newreno and runs simultaneously

with the connection between Server and Mobile Host. WWW background traffics are also

2.5 Performance Evaluation 32

there. In order to get accurate results, each experiment is carried out for ten times. Their

average and 95% confidence interval will be computed and presented. In the following parts,

experiment results under three emulated mobile scenarios are presented and discussed.

WCDMA Scenario

WCDMA scenario emulates that a user drives a car (speed: 60km/h) in a rural area covered

by WCDMA network (cell coverage: 2km) for half an hour. The average dwelling time is 50

seconds and the disconnection time is 3 seconds. Another assumption is that ten users share

one 2Mbps WCDMA channel and the bandwidth of each user is about 200Kbps.

Figure 2.7 shows the throughput between Server and Mobile Host when different TCP

mechanisms are used. This figure shows that Freeze TCP, TCP-HO and the variants of

TCP-HO do improve TCP performance. Their throughput is 20%-60% higher than TCP

Newreno. The difference among these mechanisms is very small. It is reasonable since L-HH

dominates the WCDMA mobile scenario and silly waiting is the main problem. These re-

sults accord with Freeze-TCP’s claim that immediate transmission dominates Freeze-TCP’s

performance enhancement. Figure 2.7 also shows that Freeze TCP performs better than

TCP-HO sometimes. The reason is that, after the completion of handoff, the sending rate

of Freeze TCP is higher than that of TCP-HO. As for TCP-HO-Aggressive, its throughput

is lower than TCP-HO even though it is more aggressive than Freeze TCP. It may be too

aggressive and hurts itself due to the large data burst after handoff completion. In addition,

Figure 2.7 shows that the throughput does not respond to the change of WAN delay well.

The reason is that RTT is dominated by the slow WCDMA link whose base station has a

large buffer (20 packets).

Figure 2.8 shows the throughput of cross traffic flow under WCDMA mobile scenario.

It indicates that under WCDMA scenario, all TCP mechanisms are friendly to cross traffic

flow. Due to the low bandwidth of WCDMA link, the flow between Server and Mobile Host

cannot significantly affect cross traffic flow, irrespective of TCP variant used by the flow.

2.5 Performance Evaluation 33

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

Figure 2.7: WCDMA Scenario: Average and 95% Confidence Interval of the Throughput
Received by the Flow between Server and Mobile Host

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

Figure 2.8: WCDMA Scenario: Average and 95% Confidence Interval of Cross Traffic Flow’s
Throughput

2.5 Performance Evaluation 34

WLAN Scenario

WLAN scenario emulates that a user drives a car (speed: 30km/h) around a campus with

some Wi-Fi hot-spots (cell coverage: 100m) for 15 minutes. The average dwelling time is

12 seconds and the disconnection time is 10 seconds (bad coverage). Per-cell user number

is either large (9∼10) or very small (1∼2). These users share 7Mbps channel bandwidth

(Effective Channel Bandwidth of IEEE 802.11b [10]). Available bandwidth for each user

depends on the number of users per cell and the value can vary significantly .

Figure 2.9 shows the throughput between Server and Mobile Host in WLAN mobile sce-

nario. It shows that TCP-HO achieves the highest throughput in all cases. Compared to

TCP Newreno, the throughput is improved by almost 100%. It is reasonable since TCP-HO

has been designed to solve the challenges brought by H-HH, U-VH and D-VH. Figure 2.9

also shows that TCP-HO-Immediate achieves trivial improvement and TCP-HO-Aggressive

is even worse than Newreno. This is reasonable since H-HH, U-VH and D-VH dominate this

mobile scenario. TCP-HO-Immediate does not solve severe ”slow start” problem of H-HH

and U-VH. In the case of TCP-HO-Aggressive, during each kind of handoff occurred in this

high-speed wireless network, the large data burst (generated immediately after handoff com-

pletion) will cause multiple segment loss and trigger timeout. Consequently, the throughput

of TCP-HO-Aggressive becomes very low.

Figure 2.9 also shows that Freeze TCP can acquire quite high throughput too. But Freeze

TCP is too aggressive under WLAN mobile scenario. Figure 2.10 shows the throughput of

cross traffic flow under WLAN mobile scenario. It indicates that under WLAN scenario,

Freeze-TCP obviously hurts cross traffic flow in all cases. The reason may be that after

handoff completion, Freeze TCP is too aggressive and the segments of cross traffic flow

are dropped due to the large data burst of Freeze TCP. Furthermore, with the handoff

occurrence prediction failure in the real world, Freeze-TCP’s performance tends to be worse.

As for TCP-HO-Aggressive, it may be too aggressive, harm itself too much, and cross traffic

flow can acquire more bandwidth when the flow driven by TCP-HO-Aggressive is idle.

2.5 Performance Evaluation 35

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

Figure 2.9: WLAN Scenario: Average and 95% Confidence Interval of the Throughput
Received by the Flow between Server and Mobile Host

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

Figure 2.10: WLAN Scenario: Average and 95% Confidence Interval of Cross Traffic Flow’s
Throughput

2.5 Performance Evaluation 36

WCDMA&WLAN Scenario

This scenario emulates that a user drives a car (speed: 45km/h) around a city with WCDMA

coverage and sporadic Wi-Fi hot-spots for 20 minutes. If Wi-Fi hot-spot exists, the user

always switches to Wi-Fi. Otherwise, WCDMA is used. The probability of handoff between

two networks and the disconnection time follow the numbers in Table 2.2. These numbers

are calculated based on the assumption that two Wi-Fi hot-spots exist in one WCDMA cell.

Handoff Probability / WCDMA WLAN
Disconnection Time

WCDMA 0.33 / 3s 0.67 / 5s
WLAN 0.9 / 5s 0.1 / 10s

Table 2.2: Handoff Probability and Disconnection Time

The average dwelling time of WCDMA cell is 20 seconds and per-user bandwidth is

200Kbps. The average dwelling time of Wi-Fi is 8 seconds and per-cell user number follows

the same distribution used by WLAN scenario.

Figure 2.11 shows the throughput between Server and Mobile Host in WCDMA&WLAN

mobile scenario. It indicates that TCP-HO can achieve the highest throughput. Its through-

put is about 70% higher than TCP Newreno. Freeze TCP and TCP-HO-Immediate are also

quite good. TCP-HO-aggressive is only a little better than Newreno. Figure 2.11 looks like

a mixture of the results of WCDMA scenario and WLAN scenario. It is reasonable since

L-HH, H-HH, U-VH, and D-VH all occur in this scenario.

Figure 2.11 also indicates that TCP-HO does help WCDMA users to utilize Wi-Fi hot-

spots. If Newreno is used, a user who uses WLAN and WCDMA interfaces alternately

cannot acquire much higher throughput than a user who only uses the WCDMA interface.

Figure 2.12 shows the throughput of cross traffic flow under WCDMA&WLAN mobile

scenario. It indicates that Freeze TCP is still too aggressive and harms cross traffic flow in

some cases.

2.5 Performance Evaluation 37

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

Figure 2.11: WCDMA&WLAN Scenario: Average and 95% Confidence Interval of the
Throughput Received by the Flow between Server and Mobile Host

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

WAN Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

Figure 2.12: WCDMA&WLAN Scenario: Average and 95% Confidence Interval of Cross
Traffic Flow’s Throughput

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 38

According to the above results, TCP-HO is the best mechanism. In most of the above

experiments, it can improve mobile host’s throughput without adversely affecting cross traffic

flow. Although Freeze TCP can improve mobile host’s throughput quite well, it is too

aggressive and even one Freeze-TCP flow can obviously harm cross traffic flow in some

cases, especially under WLAN mobile scenario. Considering that more and more users

will access the Internet through wireless network and the bandwidth of wireless network

is increasing quickly [9][12], Freeze TCP is not a safe solution again. Under the handoff

occurrence prediction failure in the real world, Freeze-TCP’s performance tends to be even

worse. With the considerations that more and more users are accessing the Internet through

wireless networks and wireless link is normally the last link with the smallest bandwidth, it

should be worthwhile to deploy TCP-HO by changing both TCP end-points.

2.6 TCP-HO and Wireless Link Bandwidth Estima-

tion Mechanisms

Bandwidth estimation error can be regarded as the reason that TCP suffers slow start and

over-shooting during handoff. The server regards the bandwidth probed on old wireless link

as the bandwidth of the new wireless link. During handoff, especially during vertical handoff,

compared with the server, mobile host normally has better opportunity to estimate the new

wireless link’s bandwidth timely and accurately. This fact is the main motivation of TCP-

HO. In this section, we will discuss wireless bandwidth estimation at mobile host, analyze

the effects of its bandwidth estimation error on TCP-HO, and present TCP-HO performance

under the achievable bandwidth estimation accuracy.

2.6.1 Wireless Link Bandwidth Estimation Mechanisms

The estimation of a wireless link’s bandwidth has been used by base station selection, routing

protocol, and other cross-layer optimizations [89][90][128], and a lot of mechanisms have been

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 39

proposed to estimate the bandwidth of a wireless link [47][88][89][90][128][135][139][147].

These mechanisms estimate the bandwidth based on the model of layer 2 protocol with

the parameters of signal strength and contention state that are acquired through passively

monitoring the wireless link or actively transmitting several probing frames.

In the real world, the type of wireless link can be learned based on which network interface

card (NIC) is used. Hence, layer 2 protocol model can be determined. Signal strength and

data rate used for coding have also been provided by tools from NIC manufacturers. If the

wireless link is a dedicated channel or time slot, its available bandwidth can be estimated

without any further support. If the wireless link is shared, such as IEEE 802.11-based

WLAN, contention state could be acquired by modifying the firmware and drivers of NIC,

and this method had been verified in [135]. Hence, these bandwidth estimation mechanisms

should be implementable in the real systems. Existing simulation and field trial results show

that mobile host with these mechanisms can get an accurate estimation of the bandwidth

in a short time. It is reported that, even in the complex IEEE 802.11 network, bandwidth

estimation relative error can be less than 10% [135].

In the case of TCP-HO, before sending out the first TCP segment through the new

wireless link, mobile host need associate to the new wireless network, acquire IP address

from it, and complete layer 3 handoff [36]. Quite a few packets will be exchanged in these

procedures, and these procedures can take several seconds in some networks [35]. During

this period, mobile host with these mechanisms could learn wireless link’s quality and its

contention state. Hence, a quite accurate bandwidth estimation is feasible for mobile host

when TCP Bandwidth Option needs to be sent out.

2.6.2 Effects of Mobile Host’s Bandwidth Estimation Error

In this part, TCP-HO performance under wireless link bandwidth estimation error is numer-

ically studied. In the following analysis, b̂ represents the real BDP after handoff, x̂ represents

the product of bandwidth estimated by mobile host and RTT estimated by the server, and

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 40

ĉ is the ssthresh maintained by the server before handoff.

When b is small, bandwidth estimation accuracy has a much less significant effect on the

performance of TCP-HO. Firstly, when x̂ is smaller than the small b̂, since TCP-HO still

increases cwnd after it has been exponentially increased to x̂, TCP-HO can efficiently utilize

the new wireless link very soon. Secondly, even when x̂ is larger than the small b̂, queue

at the new base station can accommodate the extra segments. Hence, in this analysis, only

U-VH and H-HH, during which b̂ is quite large, are considered.

For simplicity, it is reasonable to assume that x̂ follows a normal distribution (mean: b̂,

variance: σ2) and σ will vary when analyzing TCP-HO sensitivity to bandwidth estimation

error. x̂ is also limited to be within (0, 2b̂]. This constraint is made so that when b̂ < x̂ < 2b̂,

queue at the new base station can accommodate these extra segments. Hence, we can avoid

to analyze the effects of segment loss. Considering the achievable bandwidth estimation

accuracy, this range should be large enough.

With the above assumptions, TCP-HO performance in two cases, b̂ > ĉ and b̂ < ĉ, are

first modeled. Its sensitivity to bandwidth estimation error is also analyzed by fixing b̂ and

ĉ according to several typical handoff scenarios and varying the value of σ.

The difference between Ntcpho and Ntcp are used for comparing the performance of TCP-

HO and TCP and analyzing TCP-HO sensitivity to bandwidth estimation error. Here, Ntcpho

and Ntcp are the number of segments, that are transmitted by TCP-HO and TCP before the

new wireless link can be well utilized by both protocols. Since the purpose is to analyze the

effects of bandwidth estimation error, the effects of TCP-HO’s immediate transmission is

ignored and it is assumed that TCP-HO and TCP begin to transmit at the same time. This

will result similar performance for TCP-HO and TCP when the difference between b̂ and ĉ

is small. Nevertheless, the analysis will show that TCP-HO performance will not degrade

much even when there is substantial bandwidth estimation error.

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 41

Model for b̂ > ĉ

According to the approximate cwnd vs. time graphes shown in figure 2.13, without consid-

ering Delayed ACK [44], Ntcp and Ntcpho can be deduced in the following three scenarios.

(a) x̂ < ĉ < b̂ (b) ĉ < x̂ < b̂ (c) ĉ < b̂ < x̂

Figure 2.13: cwnd vs. Time Graphs of TCP and TCP-HO When b̂ is Larger Than ĉ

1. x̂ < ĉ < b̂: As shown in figure 2.13(a), in the unit of RTT, T1 = log2x̂, T2 = log2ĉ −
log2x̂, T3 = b̂− ĉ, and T4 = (b̂− x̂)− T2 − T3 = ĉ− x̂ + log2x̂− log2ĉ. Hence,

Ntcp = AT1+T2 + AT3 + AT4 = ĉ +
(b̂2 − ĉ2)

2
+ b̂(ĉ− x̂ + log2x̂− log2ĉ)

Ntcpho = AT1 + AT2+T3+T4 = x̂ +
(b̂2 − x̂2)

2

M1 (x̂) = Ntcpho −Ntcp = − x̂2

2
+ (b̂ + 1)x̂− b̂log2x̂ +

ĉ2

2
− (b̂ + 1)ĉ + b̂log2ĉ

2. ĉ < x̂ < b̂: As shown in figure 2.13(b), T1 = log2ĉ, T2 = log2x̂− log2ĉ, T3 = b̂− x̂, and

T4 = (b̂− ĉ)− T2 − T3 = x̂− ĉ + log2ĉ− log2x̂. Hence,

Ntcp = AT1 + AT2+T3+T4 = ĉ +
(b̂2 − ĉ2)

2

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 42

Ntcpho = AT1+T2 + AT3 + AT4 = x̂ +
(b̂2 − x̂2)

2
+ b̂(x̂− ĉ + log2ĉ− log2x̂)

M2 (x̂) = Ntcpho −Ntcp = − x̂2

2
+ (b̂ + 1)x̂− b̂log2x̂ +

ĉ2

2
− (b̂ + 1)ĉ + b̂log2ĉ

3. ĉ < b̂ < x̂: As shown in figure 2.13(c), T1 = log2ĉ, T2 = log2b̂ − log2ĉ, and T3 =

(b̂− ĉ)− T2 = b̂− ĉ + log2ĉ− log2b̂. Hence,

Ntcp = AT1 + AT2+T3 = ĉ +
(b̂2 − ĉ2)

2

Ntcpho = AT1+T2 + AT3 = b̂ + b̂(b̂− ĉ + log2ĉ− log2b̂)

M3 (x̂) = Ntcpho −Ntcp =
b̂2 + ĉ2

2
+ b̂− ĉ− b̂ĉ + b̂log2ĉ− b̂log2b̂

Finally, the expected performance improvement of TCP-HO can be calculated by the

following equation. Here, p(x̂) = 1
σ
√

2π
exp(− (x̂−b̂)2

2σ2).

M (b̂, ĉ, σ) =

∫ ĉ

0
M1 (x̂)p(x̂) +

∫ b̂

ĉ
M2 (x̂)p(x̂) +

∫ 2b̂

b̂
M3 (x̂)p(x̂)

∫ 2b̂

0
p(x̂)

(2.1)

Model for b̂ < ĉ

Since only U-VH and H-HH are considered, for simplicity, it is assumed that ĉ < 2b̂. Hence,

we can assume that TCP will not cause segment loss. Consequently, the analysis can be

simplified and the analyzed TCP-HO performance improvement is lower than its improve-

ment in the real world. Following the methods used in the above case, the following results

are deduced.

1. x̂ < b̂ < ĉ: As shown in figure 2.14(a), in the unit of RTT, T1 = log2x̂, T2 = log2b̂ −
log2x̂, and T3 = (b̂− x̂)− T2 = b̂− x̂ + log2x̂− log2b̂. Hence,

Ntcp = AT1+T2 + AT3 = b̂ + b̂(b̂− x̂ + log2x̂− log2b̂)

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 43

(a) x̂ < b̂ < ĉ (b) b̂ < x̂ < ĉ (c) b̂ < ĉ < x̂

Figure 2.14: cwnd vs. Time Graphs of TCP and TCP-HO When b̂ is Less Than ĉ

Ntcpho = AT1 + AT2+T3 = x̂ +
(b̂2 − x̂2)

2

∇1(x̂) = Ntcpho −Ntcp = − x̂2

2
+ (b̂ + 1)x̂− b̂log2x̂− b̂2

2
− b̂ + b̂log2b̂

2. b̂ < x̂ < ĉ: As shown in figure 2.14(b), the curves of TCP and TCP-HO are totally

overlapped. Hence, ∇2(x̂) = 0.

3. b̂ < ĉ < x̂: As shown in figure 2.14(c), ∇3(x̂) also equals to 0.

Finally, the expected performance improvement of TCP-HO can be calculated by the

following equation. Here, p(x̂) = 1
σ
√

2π
exp(− (x̂−b̂)2

2σ2).

∇(b̂, ĉ, σ) =

∫ b̂

0
∇1(x̂)p(x̂)
∫ 2b̂

0
p(x̂)

(2.2)

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 44

Bandwidth Estimation Error Sensitivity Analysis

In this part, bandwidth estimation error sensitivity analysis is carried out by fixing b̂ and ĉ

according to several typical handoff scenarios and varying the value of σ from 5% to 50% of

b. The following four handoff scenarios are used.

1. U-VH Scenario(b̂ = 117, ĉ = 8): In this scenario, the effects of bandwidth estima-

tion error are investigated when mobile host switches from a WCDMA link (band-

width=200Kbps, RTT=500ms, and ĉ ≈ 8 segments) to a WLAN channel (band-

width=7Mbps, RTT=200ms, and b̂ ≈ 117 segments). b̂ and ĉ in equation 2.1 are

substituted with these values and 4 is calculated with different σ through MATLAB.

2. U-VH Scenario(b̂ = 58, ĉ = 8): This is another U-VH scenario whose BDP difference

is smaller than the above one.

3. H-HH Scenario(b̂ = 58, ĉ = 50): In this scenario, the effects of bandwidth estimation

error are investigated when mobile host switches between two different WLAN channels

and the new channel has a little more available bandwidth. And the same method used

by U-VH scenarios is adopted.

4. H-HH Scenario(b̂ = 58, ĉ = 66): In this scenario, the effects of bandwidth estimation

error are investigated when mobile host switches between two different WLAN channels

and the new channel has a little less available bandwidth. b̂ and ĉ in equation 2.2 are

substituted with these values and ∇ is calculated with different values of σ.

Figure 2.15 shows these results of sensitivity analysis. It indicates that TCP-HO per-

formance during U-VH and H-HH is not sensitive to the accuracy of bandwidth estimation.

During U-VH, due to the large difference in BDP, TCP-HO still can improve TCP per-

formance a lot even when mobile host only has a coarse bandwidth estimation. During

H-HH, the performance of TCP-HO is just a little worse than TCP when mobile host has a

significant bandwidth estimation error.

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 45

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50

D
if

fe
re

nc
e

be
tw

ee
n

N
_t

cp
-h

o
an

d
N

_t
cp

Bandwidth Estimation Relative Error (%)

U-VH(b=117, c=8)
U-VH(b=58, c=8)

H-HH(b=58, c=50)
H-HH(b=58, c=66)

Figure 2.15: Bandwidth Estimation Error Sensitivity Analysis

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 46

2.6.3 TCP-HO Performance under Achievable Bandwidth Esti-

mation Accuracy

In the experiments of section 2.5, we assume that mobile host can estimate the bandwidth

of new wireless link very accurately. In this subsection, TCP-HO is evaluated when mobile

host only has an achievable accurate estimation of wireless link’s bandwidth with the aim

to evaluate the effects of bandwidth estimation error.

WCDMA, WLAN, and WCDMA&WLAN mobile scenarios are re-generated, and the

seeds of random number generator are different with subsection 2.5.2. The bandwidth sent

to Mobile Host is different with the bandwidth emulated by Handoff Emulator, and the

simulated bandwidth estimation error is within 15% of the new wireless link’s emulated

bandwidth. The experiments of subsection 2.5.2 are re-run with these new mobile scenarios,

and figures 2.16 and 2.17 show the new experiment results. These results are similar to

the results in subsection 2.5.2. Compared to TCP Newreno, TCP-HO can improve the

throughput of mobile host by 30%-100% and cross traffic is not adversely affected. They

indicate that TCP-HO still can improve TCP performance substantially without adversely

affecting cross traffic, even when mobile host only has a coarse estimation of wireless link’s

bandwidth.

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 47

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

(a) WCDMA Scenario

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

(b) WLAN Scenario

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

WAN Delay (ms)

TCP Newreno
TCP-HO Immediate
TCP-HO Aggressive

Freeze TCP
TCP-HO

(c) WCDMA&WLAN Scenario

Figure 2.16: Average Throughput Received by the Flow between Server and Mobile Host
with 15% Bandwidth Estimation Error

2.6 TCP-HO and Wireless Link Bandwidth Estimation Mechanisms 48

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

WAN Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

(a) WCDMA Scenario

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

WAN Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

(b) WLAN Scenario

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

WAN Delay (ms)

with TCP Newreno
with TCP-HO Immediate
with TCP-HO Aggressive

with Freeze TCP
with TCP-HO

(c) WCDMA&WLAN Scenario

Figure 2.17: Average Throughput of Cross Traffic Flow with 15% Bandwidth Estimation
Error

2.7 Summary 49

2.7 Summary

In this chapter, TCP-HO, the first practical end-to-end TCP enhancement based on explicit

cooperation, is proposed to solve the challenges brought by all kinds of handoff that may

occur in heterogeneous mobile environments. Experimental results indicate that in hetero-

geneous mobile environments, TCP-HO improves TCP performance substantially without

adversely affecting cross traffic. Considering that more and more users are accessing the

Internet through heterogeneous wireless networks and mobile hosts could have a coarse esti-

mation of wireless link’s bandwidth, it should be worthwhile to implement TCP-HO at both

server and mobile host for improving TCP performance.

Chapter 3

Sync-TCP: A New Approach to High

Speed Congestion Control

3.1 Introduction

In recent years, bandwidth of the Internet continues to increase quickly. For example, design

capacity of the forthcoming Trans-Pacific Express [4] is 5.12 Tera-bps and FTTx (Fiber

To The Home, Building, Neighborhood, etc.) has been widely deployed in many countries.

Recent bandwidth measurement statistics (http://www.speedtest.net/ at 2010-03-12) show

that the average download speeds vary from 7.73Mbps in Europe to 1.39Mbps in Africa.

The average download speed for the top 6 countries already exceeds 15Mbps. In some

countries, for example, Singapore, the goal is to provide up to 1Gbps broadband access by

2015. Considering that networks are and likely to remain lightly-loaded [107], in the future

high speed Internet, there will be more and more long fat network pipes with abundant

residual bandwidth, which is very attractive to bandwidth-greedy and elastic applications,

such as video and software distribution, data backup, peer-to-peer file sharing, etc.

However, TCP, the de-facto standard transport protocol of the Internet, adopts a win-

dow and loss based congestion control algorithm [70], and it is well known that standard

3.1 Introduction 51

TCP congestion control variants (TCP Reno [17], TCP Newreno [53], TCP SACK [100],

etc.) cannot work well on long fat network pipes whose bandwidth-delay product (BDP)

is large [51][79]. When segment loss is detected mainly through 3DUPACK, these legacy

TCP versions can be characterized as AIMD(1, 0.5) [146]. Due to this simple algorithm

with fixed parameters, these legacy TCP versions cannot send data fast enough to utilize

long fat network pipes efficiently. It may be better to explain this issue with the network

performance model shown in figure 3.1, in which network load is the data that all senders

pump into the network. The load, that legacy TCP flows can generate, is too low (far left

away from the knee) to efficiently utilize the bandwidth of a long fat network pipe.

Figure 3.1: Network Performance Model as a Function of Network Load (from R. Jain)

In order to address this problem, many high speed congestion control (HSCC) algorithms,

such as Highspeed TCP [51], Cubic-TCP [59], H-TCP [91], Fast TCP [75], TCP Illinois

[94], Compound TCP [125], Yeah-TCP [20], TCP Fusion [77], and Delay-based AIMD [48],

have been proposed in recent years. Some of these proposals have also been implemented

in popular operating systems. For example, Compound TCP has been implemented in

Windows, and Linux has selected Cubic-TCP as its default congestion control mechanism.

For bandwidth-greedy and elastic applications, it is now easy and irresistible to adopt a

HSCC algorithm, which can efficiently utilize the abundant residual bandwidth and provide

higher throughput to end users on long fat network pipes.

3.1 Introduction 52

On the other hand, bandwidth-greedy and elastic applications are not the only applica-

tions running in the Internet. Considering that a HSCC algorithm probes network resources

more aggressively for higher throughput, it should pay more attention on friendliness to

cross traffic, especially applications using legacy TCP versions and the interactive ones,

such as web surfing and media-streaming that are more important to users’ daily life and are

more profitable to network providers. More specifically, existence of HSCC-based bandwidth-

greedy and elastic applications should not significantly increase packet loss rate, queue delay,

and jitter experienced by these cross traffic applications. As shown in figure 3.1, it is de-

sirable if a HSCC algorithm could drive the network to operate around the knee, at which

network throughput is high, queue delay is short, and packet drop rate is minimum. Such a

HSCC algorithm could enable bandwidth-greedy and elastic applications to utilize long fat

network pipes of the Internet efficiently without hurting the other applications.

But most of the existing HSCC algorithms are not designed to drive the network to

operate around the knee [137][141], and a new HSCC algorithm is needed for safely ramping

up the throughput of bandwidth-greedy and elastic applications on long fat network pipes of

the Internet. The open problem is how to drive the network to operate around the knee and

to distribute bandwidth fairly even when the number of competing flows varies and their

round trip propagation delays (RTPD) differ significantly.

As pointed out in [73], an end-to-end delay-based congestion control algorithm has the

potential of driving the network to operate around the knee. Although there are some

controversies on regarding queue delay as a congestion signal and some measurement results

in the Internet are also quite negative [29][99][113], it is another story on long fat network

pipes of the Internet. On these network pipes, per-flow throughput can be high and the

senders could have enough RTT samples to learn network state correctly through queue

delay. Furthermore, there are abundant residual bandwidth for bandwidth-greedy and elastic

applications and their behaviors can affect the point at which these network pipes will

operate. Hence, a delay-based HSCC algorithm should have the potential of driving long

3.1 Introduction 53

fat network pipes to operate around the knee and to distribute bandwidth fairly among

competing flows. Following this promising direction, Synchronized TCP (Sync-TCP) is

designed and evaluated in this chapter.

The key insight of Sync-TCP is that if competing flows could detect the same conges-

tion signal through queue delay, these flows can then coordinate their congestion control

behaviors for driving the network to operate around their desired point, the knee. This is

in contrast to the classic view on the legacy loss-based TCP versions in which congestion

synchronization leads to bad performance since it is caused by traffic overload and competing

flows simultaneously reduce their sending rate (blindly) by half [13].

Based on the above observation, Sync-TCP is carefully designed such that with high

probability, competing flows can detect the same congestion signal through queue delay.

In combination with synchronized congestion signal, Sync-TCP uses an adaptive queue-

delay-based congestion window decrease rule, and a RTT-independent congestion window

increase rule. These rules are designed to drive the network to operate around the knee

and to distribute the residual bandwidth fairly even when the number of competing flows

varies and their RTPDs differ significantly. Extensive simulations and preliminary testbed

evaluations indicate that Sync-TCP does achieve its design goals.

This chapter is organized as follows. Section 3.2 firstly presents several influential delay-

based congestion control algorithms. The challenges, that should be solved for driving the

network to operate around the knee and for distributing bandwidth fairly among competing

flows, are then discussed in section 3.3. After that, section 3.4 presents the details of Sync-

TCP, its deployment issues, and parameter selection guidelines. Extensive simulations and

preliminary testbed evaluations are presented in section 3.5 and 3.6. Finally, related work is

discussed in section 3.7, and this chapter is summarized in section 3.8.

3.2 Background 54

3.2 Background

Since the potential of delay-based congestion control was pointed out [73], many delay-based

congestion control algorithms have been proposed. A sender driven by such an algorithm

can be regarded as an intelligent agent that learns and controls network state based on queue

delay, which must be deduced from RTT samples measured at the sender. In the rest of this

section, several influential delay-based congestion control algorithms will be introduced based

on how a sender samples RTT experienced by its packets, deduces queue delay from these

RTT samples, determines network state according to queue delay, and adjusts its sending

rate accordingly with the aim to drive the network to operate around its desired point.

3.2.1 TCP Vegas

TCP Vegas [33], a matured and influential delay-based congestion control algorithm, was

proposed in 1994 and had attracted a lot of attention [65][95][103]. At the end of each round

trip time, TCP Vegas measures srtt, the RTT experienced by the packet transmitted at the

start of the current round trip time. TCP Vegas then calculates 4, the difference between

the expected and the actual throughput, according to equation 3.1.

4 = (threxpected − thractual) ∗ brtt

= (
cwnd

brtt
− cwnd

srtt
) ∗ brtt =

cwnd ∗ (srtt− brtt)

brtt ∗ srtt
∗ brtt

= thractual ∗ (srtt− brtt) = thractual ∗ qd (3.1)

Here, brtt is set to the minimum of all RTT samples. Approximately, brtt can be regarded

as the estimation of RTPD. qd is the difference between srtt and brtt, and it can be regarded

as the estimation of current queue delay’s absolute value.

As shown in the following equation, the new calculated 4 is then compared with two

3.2 Background 55

constants, γ1 and γ2 (γ1 < γ2), and cwnd is adjusted based on these comparison results.

cwndi+1 =

cwndi + 1 4 < γ1,

cwndi − 1 4 > γ2,

cwndi otherwise.

It is obvious that TCP Vegas adjusts cwnd with the aim to maintain several packets (between

γ1 and γ2) in the queue of the bottleneck link. Consequently, with the increase in the number

of competing TCP Vegas flows, more and more packets are maintained in the queue of the

bottleneck link, and the operation point of the bottleneck link slides from the knee to the

cliff. Hence, TCP Vegas is not designed to drive the network to operate around the knee

independent of the number of competing TCP Vegas flows.

In addition, as existing TCP Vegas flows have already maintained some packets in the

queue of the bottleneck link, a new flow may not learn its RTPD correctly, and its brtt is

very likely to be larger than its real RTPD. Hence, compared with existing flows, a new flow

will maintain more packets in the queue and acquire more bandwidth. Furthermore, with

the arrival and departure of competing flows, RTPD estimation error of active flows can be

increased and they may drive the network to operate in a persistent-congested state [87].

Due to the above problems and the possibility of being starved by loss-based TCP Reno

[103], TCP Vegas has not been widely deployed in the Internet. Since TCP Vegas increases

cwnd by at most one segment per round trip time, TCP Vegas is not suitable for bandwidth-

greedy and elastic applications on long fat network pipes of the Internet. Similarly, some

delay-based congestion control algorithms, such as TCP-LP [85] and TCP Nice [130] that

are proposed for low-priority background transfers, are not suitable too.

3.2 Background 56

3.2.2 Delay-based HSCC Algorithms

Fast TCP [75]

Fast TCP is designed to utilize long fat network pipes efficiently, stably, and fairly. Fast

TCP uses pacing [13] to smooth the packets to be transmitted and RTT is sampled on

each acknowledgement (ACK). The smooth average of these RTT samples, srtt, is used to

judge network state, and it is updated based on the exponentially weighted moving average

(EWMA) algorithm shown in equation 3.2. Here, µk, the smooth factor, is adjusted based

on the value of cwnd when rttk (the kth RTT sample) is measured so that srtt can reflect

queue dynamics of a time window, whose length is about one round trip time.

srttk+1 = (1− µk) ∗ srttk + µk ∗ rttk

At the end of every other round trip time, Fast TCP updates cwnd based on equation

3.2 with the aim to maintain γ packets in the queue of the bottleneck link. Here, η is a

smooth factor used for updating cwnd. brtt is the minimum of all RTT samples.

cwndi+1 = (1− η) ∗ cwndi + η ∗ (
brtt

srtt
∗ cwndi + γ) (3.2)

In Fast TCP, the value of γ also determines how quickly Fast TCP can increase or

decrease its cwnd based on queue delay. In order to work well on long fat network pipes,

this value has to be sufficiently large as well. In the prototype implementation of Fast TCP

[75], γ is a large constant (about 100 segments). Hence, Fast TCP can be regarded as a high

speed version of TCP Vegas and it also inherits the problems found in TCP Vegas. With

a large γ, more packets remain in the network and these problems even become worse. A

small number of Fast TCP flows will drive the network to operate far (right) away from the

knee. Furthermore, due to the large γ, many packets could be dropped if buffer-overflow

occurs before Fast TCP flows could detect congestion through queue delay. Consequently,

3.2 Background 57

cross traffic can be adversely affected.

To improve its scalability with network bandwidth, the authors of Fast TCP also propose

that when qd (the difference between srtt and brtt) is very small, γ can be a function of

cwnd. But this modification’s effects on the metrics of convergence and fairness should be

investigated further. Strange convergence behaviors have been observed in some experimen-

tal studies [93]. In this chapter, Fast TCP without this modification will be evaluated and

compared with Sync-TCP.

In addition, even when the network is under-utilized, srtt still can be a little larger than

brtt due to the variance of processing delay at each node of the network path (endpoints,

routers, etc.) and the burstiness of cross traffic. According to equation 3.2, when cwnd is

huge, this small difference may cause Fast TCP to estimate network state in wrong, decrease

its sending rate unnecessarily, and result in network under-utilization.

Compound TCP (CTCP) [125]

Compound TCP runs two congestion control algorithms concurrently: the legacy TCP’s

AIMD algorithm and a delay-based HSCC algorithm. win, which determines the sending

rate of CTCP, is the sum of cwnd and dwnd. Here, cwnd follows the legacy TCP’s AIMD

algorithm, and dwnd is adjusted based on its delay-based HSCC algorithm.

In its delay-based HSCC algorithm, CTCP measures one RTT sample per millisecond

(ms). At the end of each round trip time, 4 is calculated according to equation 3.1, in which

cwnd is substituted by win, brtt is still the minimum of all RTT samples, but srtt is the

arithmetic average of RTT samples measured in the current round trip time. Based on 4
and a global constant (γ), dwnd is adjusted according to equation 3.3.

dwndi+1 =

dwndi + (α ∗ wink
i − 1)+ 4 < γ,

(dwndi − ζ ∗ 4)+ 4 ≥ γ,

(wini ∗ (1− β)− cwnd/2)+ loss.

(3.3)

3.2 Background 58

Here, (·)+ is defined as max(· , 0) so that dwnd will not be less than 0 and CTCP will

not acquire less throughput than the legacy TCP. β is a constant and is now set to 1/2 so

that CTCP will reduce sending rate by half when segment loss is detected.

α and k are also constants whose values are carefully selected so that when 4 is less

than γ, CTCP increases win like Highspeed TCP [51]. When congestion is detected through

queue delay, the reduction of dwnd is related with 4 (a little larger than γ) and may

become too small when per-flow throughput is high. Hence, when driven by the delay-based

HSCC algorithm, CTCP acts like a MIAD (Multiplicative Increase and Additive Decrease)

algorithm and competing flows converge slowly [43][92]. Considering that competing CTCP

flows may act like the legacy TCP at different times, convergence behaviors of these flows

can be very complex [136].

ζ is a constant that affects the desired operation point of CTCP. The number of packets,

that each CTCP flow maintains in the queue of the bottleneck link, fluctuates between φ

and γ (φ < γ). The smaller ζ is, the larger φ is. However, even when ζ > 1, CTCP

still cannot ensure that the queue of the bottleneck link can be emptied. According to

equation 3.1, flows with higher throughput will detect congestion before flows with lower

throughput. Although this method can speed up convergence, competing flows will not detect

congestion simultaneously. Hence, competing flows cannot reduce dwnd simultaneously, and

consequently the queue of the bottleneck link cannot be emptied and new flows cannot

estimate their RTPDs correctly. Furthermore, the number of packets buffered in the queue

of the bottleneck link also tends to increase with the increasing number of competing CTCP

flows. In a word, CTCP will also suffer the problems found in TCP Vegas.

In CTCP, γ should not be too small. According to equation 3.1, when thractual is high on

long fat network pipes and γ is small, the noise in RTT samples can be wrongly regarded as

congestion signals. These spurious signals will result in unnecessary sending rate reduction

and network under-utilization. This issue also indicates that CTCP-Tube [124] may not

work well when its auto-tuned γ becomes too small [92].

3.2 Background 59

With a large γ, a small number of CTCP flows may also cause buffer-overflow before

congestion could be detected through queue delay. As the rate, that dwnd is increased, is

related with win and can be very large on long fat network pipes, many packets could be

dropped in a congestion event and cross traffic could be hurt.

Yeah-TCP [20]

At the end of each round trip time, Yeah-TCP still uses equation 3.1 to judge network state.

Here, srtt is the minimum of RTT samples measured in this round trip time. Although RTT

samples in one round trip time are lower bounded by the sum of RTPD and the current

queue delay, different flows may observe different srtt since only one RTT sample is used,

RTT samples are noisy, and network load may vary even within one round trip when a HSCC

algorithm is used. Hence, Yeah-TCP flows are likely to suffer short-term unfairness.

Based on ∆, Yeah-TCP also adjusts cwnd with the aim to maintain γ (a constant) packets

in the queue of the bottleneck link. Hence, Yeah-TCP is not designed to drive the network to

operate around the knee, irrespective of the number of competing flows. Furthermore, Yeah-

TCP tries to detect whether it is competing with loss-based flows. If there is no competing

loss-based flows, Yeah-TCP is in slow mode and acts like Fast TCP. Otherwise, it is in fast

mode and does not reduce cwnd when congestion is detected through queue delay.

In addition, when segment loss is detected, unlike TCP Vegas, Fast TCP, and CTCP

that reduce sending rate by half, Yeah-TCP follows TCPW-RE [132], that reduces cwnd

based on the value of queue delay. Hence, Yeah-TCP can work better in high speed wireless

network, in which BDP is large and packet corruption rate is high.

TCP Fusion [77]

At the end of each round trip time, TCP Fusion also uses equation 3.1 to judge network

state. However, it does not specify how to sample RTT and how to update srtt based on

RTT samples. Furthermore, the thresholds (γ1 and γ2), that ∆ is compared with, are set to

3.2 Background 60

cwnd ∗ 4ms
srtt

and cwnd ∗ 12ms
srtt

. According to equation 3.1, TCP Fusion fundamentally judges

network state by comparing the absolute value of queue delay with 4ms and 12ms. Hence,

TCP Fusion is not designed to maintain several packets in the queue of the bottleneck link

for each flow. In fact, all competing TCP Fusion flows adjust their cwnd with the aim to

keep the queue delay (at the bottleneck link) between 4ms and 12ms. That means TCP

Fusion has the potential of being scalable with the number of competing TCP Fusion flows.

However, since the existing flows still try to occupy some part of the queue of the bottleneck

link, unfairness to old flow and persistent congestion found in TCP Vegas still may exist.

Like CTCP, to avoid being starved by the legacy TCP, TCP Fusion maintains cwndreno

by strictly following the legacy TCP’s AIMD algorithm and its sending rate is determined

by cwndreno when cwnd ≤ cwndreno. Hence, TCP Fusion is not designed for driving the

network to operate around the knee too. In addition, when segment loss is detected, TCP

Fusion acts like Yeah-TCP in the way of reducing cwnd.

Delay-based AIMD [48]

Delay-based AIMD is the first HSCC algorithm that is explicitly designed to drive the

network to operate around the knee, irrespective of the number of competing flows. To

perform good in the metrics of convergence and fairness, an adaptive AIMD algorithm is

adopted by Delay-based AIMD.

For each ACK, RTT is sampled and srtt is a smoothed estimation of these samples.

However, it does not specify how to smooth RTT samples. Network state is then judged

based on qd (the difference between srtt and brtt) and τ0 (a threshold). Here, brtt is still

the minimum of all RTT samples.

If qd < τ0, Delay-based AIMD tries to increase cwnd by α segments per round trip time.

As shown in equation 3.4, when each ACK is received, α is updated following the same

convex and RTT-independent function used by H-TCP. Here, t is the absolute time elapsed

3.2 Background 61

since the last cwnd reduction, and T0 is set to one second.

α(t) =

1 t ≤ T0,

1 + 10 ∗ (t− T0) + (t−T0

2
)2 t > T0.

(3.4)

If qd ≥ τ0 and cwnd is larger than some threshold, cwnd is reduced immediately and a

new congestion epoch begins. Here, congestion epoch is the period between two consecutive

cwnd reductions. As for β (the multiplicative decrease factor), it is calculated according to

equation 3.5.

β = δ ∗ brtt

srtt
, δ < 1 (3.5)

The authors argue that brtt
srtt

is the value, with which the queue of the bottleneck link can

be emptied if there is no RTPD estimation error. By multiplying with δ, which is smaller

than one, cwnd is over-reduced and the correct RTPD can be finally observed even when

the initial brtt is larger than the real RTPD [49].

However, depending on the kind and the load of cross traffic applications, β in equation

3.5 may not be small enough to empty the queue of the bottleneck link. This issue is

discussed further in subsection 3.3.2. Furthermore, there is one implicit assumption that

queue delay is simultaneously regarded as a congestion signal by almost all competing Delay-

based AIMD flows. Otherwise, only a part of competing flows will reduce their sending rate,

and the total reduction of network load may not be large enough to empty the queue of the

bottleneck link. But Delay-based AIMD does not carefully consider how to carry out queue

delay measurement for assuring this assumption. It even adjusts τ0 based on the following

equation for coexisting with flows driven by loss-based congestion control algorithms.

τ0 = (1− ζ) ∗ τ0 + ζ ∗ (rttmax − brtt)

Since there is no upper bound for rttmax (the maximum of all RTT samples), τ0 main-

3.3 Challenges and Key Observations 62

tained by competing flows may be different. Hence, it is even harder for competing flows to

simultaneously regard queue delay as a congestion signal.

In addition, cwnd is reduced immediately when congestion is detected through queue

delay. Considering that queue delay is a delayed network feedback, the cwnd reduction based

on queue delay at one round trip time ago may not be large enough, especially when Delay-

based AIMD is used and α can be large. After cwnd is reduced, cwnd is also immediately

increased for probing network resources. It is very likely that the queue of the bottleneck

link will not be emptied and competing flows cannot observe their real RTPD. In a word,

Delay-based AIMD may not be able to achieve its design goals.

3.3 Challenges and Key Observations

Based on the above section, most of the existing delay-based HSCC algorithms are not

designed for driving the network to operate around the knee and Delay-based AIMD still

has some problems to achieve its aims on long fat network pipes of the Internet. Hence,

it should be worthwhile to further investigate the challenges, that Sync-TCP must solve,

for driving these network pipes to operate around the knee and for distributing network

resources fairly based on queue delay, especially when the number of competing flows varies

and their RTPDs differ significantly.

In order to achieve the above purposes, Sync-TCP should first enable competing flows

to learn network state correctly based on queue delay. First of all, competing flows should

know which point is the knee. In another word, these flows should be able to learn their

RTPD correctly. However, it is not an easy task on long fat network pipes of the Internet.

In the existing delay-based congestion control algorithms, brtt, the estimation of RTPD,

is set to the minimum of all RTT samples. This method is reasonable as RTT samples are

lower bounded by RTPD. However, if the distributed senders cannot cooperate with each

other and some packets always remain in the queue of the bottleneck link, the new arrival

3.3 Challenges and Key Observations 63

flows will not be able to observe their correct RTPD. With the arrival and departure of flows,

RTPD estimation error of active flows can be increased and the network will not operate

around the knee. Hence, the correlation between congestion control mechanism and RTPD

estimation must be considered carefully.

The key insight of Sync-TCP is that if competing flows could detect the same conges-

tion signals through queue delay, these flows can then coordinate their congestion control

behaviors for driving the network to operate around their desired point, the knee. More

specifically, they can reduce cwnd based on the value of queue delay so that the queue of the

bottleneck link can be emptied periodically and the network will not be under-utilized ob-

viously. Consequently, the new flows can estimate their RTPD correctly and the bottleneck

link can keep operating around the knee with the arrival and departure of flows. This is in

contrast to the classic view on loss-based TCP, in which congestion synchronization leads to

bad performance since segment loss is caused by traffic overload and competing flows blindly

reduce their sending rate by half at the same time [13].

It is important to note while the term synchronize is used to describe how competing flows

should detect a congestion signal through queue delay, all Sync-TCP needs is a consistent

view. Hence, the measurements need not enable competing flows to detect congestion at the

same time1. Instead, the congested state only need last for a sufficiently long period so that

competing flows have high probability of detecting the same congestion state.

In the following subsections, we will discuss how to enable competing flows to simulta-

neously detect congestion signal through queue delay. According to simple analysis [43] and

stochastic matrix model [119], AIMD-based flows can converge quickly and share network

resources fairly in synchronized communication networks. Hence, Sync-TCP will adopt an

adaptive AIMD algorithm. In the following subsections, we will also discuss how to set β

(the multiplicative decrease factor) for emptying the queue of the bottleneck link and how

to set α (the additive increase factor) for efficiency, fairness, etc.

1In fact, queue delay is a delayed network feedback. It may be impossible for competing flows with
different RTPDs to detect congestion through queue delay at the same time.

3.3 Challenges and Key Observations 64

3.3.1 How to Simultaneously Detect Queue-Delay-Based Conges-

tion Signals?

As an end-to-end congestion control mechanism, Sync-TCP is fundamentally a distributed

algorithm. Even under the assumption that RTPD is correctly estimated by brtt, it is still

not easy to enable competing flows to detect congestion simultaneously through queue delay,

which must be deduced from the RTT samples measured at the sender. Although competing

flows all pass through the same bottleneck link, they still may not be able to have the same

view of queue dynamics at the bottleneck link.

flow id

time

1

0

i rtt i+1 rtt i+2 rtt

(a) TCP

flow id

time

1

0

i rtt i+1 rtt i+2 rtt

(b) Pacing

Figure 3.2: Packet Arrival Time of Two Competing Flows

Firstly, queue delay is an elusive network feedback. Queue dynamics of the bottleneck

link can only be observed by a sender through RTT experienced by its sampled packets.

Since TCP is a window-based congestion control, packets sent by a TCP flow tend to be

clustered [123]. Figure 3.2(a) depicts the time, that the packets of two competing TCP flows

with the same RTPD arrive at the bottleneck link. When a HSCC algorithm is used, queue

length may be changed obviously during one round trip time. Hence, different flows, that

pass through the same bottleneck link, may have different view of network state and acquire

3.3 Challenges and Key Observations 65

different throughput. In addition, as shown in 3.3(a), Delayed ACK [44] may also cause

large noise in RTT samples.

Sender Receiver

100ms
Delayed ACK Timer

rtt 1
rtt 2

rtt 3

rtt 4

(a) TCP

Sender Receiver

rtt 1

rtt 2

rtt 3

rtt 4

(b) Pacing

Figure 3.3: The Effects of Delayed ACK on RTT Measurement

As shown in figure 3.2(b) and 3.3(b), pacing [13] can distribute a window of segments

evenly within one round trip time and the above problems can be solved. Curiously, among

the existing delay-based HSCC algorithms, only Fast TCP explicitly adopts pacing to smooth

large data burst generated by the sender in high speed networks.

One consideration is that pacing may consume too much system resources, especially

CPU time spent for context switches that are triggered by the expiration events of pacing

timer. Since computers are more and more powerful, pacing is very useful on long-fat network

pipes, and there are some efficient pacing algorithms [84], the overhead should be low and

3.3 Challenges and Key Observations 66

worthwhile. According to our implementation in FreeBSD and third party’s implementation

in Linux [75], CPU processing overhead only increases slightly when the pacing granularity

is several millisecond.

It has also been reported that pacing will synchronize congestion signals (segment loss)

among TCP flows and achieve less overall throughput since TCP flows reduce their cwnd

by half simultaneously [13]. However, the synchronization of queue-delay-based congestion

signal is just what Sync-TCP needs. Sync-TCP can also reduce cwnd based on the value of

queue delay so that the network will not be under-utilized obviously.

Secondly, due to cross traffic, scheduling granularity, and processing delay, RTT samples

measured by a flow can be very noisy. Considering that per-flow throughput on long fat

network pipes can be high, the sender could have enough RTT samples to learn network

state correctly through queue delay. It can use srtt, the smoothed average of these RTT

samples, to estimate the current queue delay and judge network state.

flow id

time

1

0

Decision Point of flow 0

Decision Point of flow 1 Queue dynamic in this period is represented by srtt of flow 1

Queue dynamic in this period is represented by srtt of flow 0

...

...
T

Figure 3.4: Queue Delay Measurement and Detection of Two Competing Fast TCP Flows
with the Same RTPD

Thirdly, many existing delay-based HSCC algorithms determine network state at the

end of each or each other round trip time based on srtt, which is normally the average of

RTT samples measured in the current round trip time. Figure 3.4 illustrates the problem

when two Fast TCP flows with the same RTPD pass through the same bottleneck link and

compete with each other. It is obvious that these competing flows try to detect congestion at

different times based on queue delay values, which reflect queue dynamics of the bottleneck

3.3 Challenges and Key Observations 67

link during different time windows. On long fat network pipes, RTPD is normally quite long

and T∆ (the interval between the nearest points that competing flows determine network

state) may also be quite large. After a HSCC algorithm is deployed, queue length of the

bottleneck link may change significantly even within T∆. Hence, competing flows may end up

having different views of the congestion level. When competing flows have different RTPD,

the situation would likely be worse. To solve these issues, srtt should reflect queue dynamics

of a fixed-length time window and the senders should judge network state more frequently.

Fourthly, many existing delay-based HSCC algorithms judge network state through com-

paring ∆, which is calculated according to equation 3.1, with some constants. With this

method, flows with higher throughput will detect congestion earlier than flows with lower

throughput. Although this method can speed up convergence, competing flows will not de-

tect congestion simultaneously. Hence, Sync-TCP should detect congestion by comparing

the absolute value of queue delay with a constant.

Finally, the existing delay-based HSCC algorithms reduce cwnd immediately when con-

gestion is detected through queue delay. Since RTT samples are noisy, when one flow detects

congestion through queue delay, queue delay observed by other competing flows may still be

less than the threshold. If this flow reduces cwnd immediately, other flows may miss this

congestion signal. To solve this problem, Sync-TCP should freeze its cwnd and delay the

reduction of cwnd so that network load can keep to be high for a while and competing flows

could also observe this congestion signal.

3.3.2 How to Reduce cwnd for Emptying the Queue of the Bottle-

neck Link?

When a congestion signal is detected by all competing flows simultaneously through queue

delay, cwnd should be reduced based on the value of queue delay so that the queue of the

bottleneck link can be emptied and the network will not be under-utilized. But there are

still several issues to be considered, and it is even impossible to achieve these goals under

3.3 Challenges and Key Observations 68

some scenarios of the Internet.

Firstly, the existing delay-based HSCC algorithms reduce cwnd immediately after conges-

tion is detected through queue delay. However, queue delay is a delayed network feedback.

The real queue delay can be much larger than the current queue delay observed by the

sender, especially when a HSCC algorithm is adopted. For reducing cwnd based on the real

queue delay caused by the current cwnd, the sender should freeze cwnd for at least one RTT

before reducing cwnd. This is another reason for delaying the reduction of cwnd.

Secondly, after cwnd is reduced, the existing delay-based HSCC algorithms begin to in-

crease cwnd immediately. However, the sender should wait for a while so that the bottleneck

link can empty packets previously buffered in the queue and competing flows can learn their

RTPD correctly.

Thirdly, there are different kinds of cross traffic applications and they may consume dif-

ferent amount of bandwidth. This fact makes it even harder to decide how to reduce cwnd.

The following analysis indicate that cwnd should be reduced based on not only the value of

queue delay, but also the kind and the load of cross traffic applications.

For simplicity, we assume that all flows have the same RTPD and the following symbols

are defined for analyzing this issue further based on Little’s Law in queueing theory.

1. C: the bandwidth of the bottleneck link.

2. Ws: the number of packets that are pumped into the network pipe by all competing

Sync-TCP flows before cwnd is reduced. Here, Ws =
∑N−1

i=0 cwndi and N is the number

of competing Sync-TCP flows.

3. W−
c : the number of packets that are pumped into the network pipe by cross traffic

applications before competing Sync-TCP flows reduce their cwnd.

4. W+
c : the number of packets that are pumped into the network pipe by cross traffic

applications after competing Sync-TCP flows have reduced their cwnd.

3.3 Challenges and Key Observations 69

5. srttreduce: the value of srtt when cwnd is reduced. Since all competing Sync-TCP flows

have the same RTPD, we can assume that these flows observe the same srttreduce.

6. β: the multiplicative decrease factor used by competing Sync-TCP flows. Since all

competing flows have the same RTPD and observe the same srttreduce, they should use

the same β.

Before competing Sync-TCP flows reduce their cwnd, the bottleneck link is fully utilized

since its queue is not empty. Hence, Ws +W−
c = C ∗ srttreduce. To make sure that the queue

of the bottleneck link can be emptied, β should satisfy the following condition.

Ws ∗ β + W+
c <= C ∗ brtt ⇐⇒ β <=

C ∗ brtt−W+
c

C ∗ srttreduce −W−
c

In the case that W+
c > C ∗ brtt, the queue of the bottleneck link cannot be emptied even

when all competing Sync-TCP flows totally stop to transmit. This scenario may exist when

cross traffic applications themselves can fully utilize the network and they do not reduce

sending rate when queue delay is increased. In this scenario, bandwidth-greedy and elastic

applications had better switch back to the legacy TCP for acquiring their fair share of

bandwidth.

In the case that W+
c < C ∗ brtt, it becomes possible to empty the queue of the bottleneck

link. However, even without considering the dynamics of cross traffic flows, the kind and the

load of cross traffic still bring many challenges to the way of calculating β.

If cross traffic applications are rate-based or transactional, such as VoIP and web surfing,

based on Law of Large Numbers, we can assumed that Rc, the data rate generated by all

cross traffic applications, is a constant. Hence,

W+
c = Rc ∗ brtt, and W−

c = Rc ∗ srttreduce

β <=
C ∗ brtt−Rc ∗ brtt

C ∗ srttreduce −Rc ∗ srttreduce

=
brtt

srttreduce

3.3 Challenges and Key Observations 70

This value has been adopted by TCPW-RE [132], TCP Fusion, Delay-based AIMD, etc.

However, if cross traffic applications are long-lived flows driven by window-based flow control,

such as the legacy FTP applications whose throughput is constrained by socket buffer, queue

delay can affect their sending rate. With Law of Large Numbers, it is more reasonable to

assume that the number of packets pumped into the network pipe by these cross traffic

applications, is a constant.

W−
c = W+

c = Nc ∗B = C ∗ x

Here, Nc is the number of cross FTP flows and B is the socket buffer size of the legacy FTP

clients. For simplicity, x is used to specify the load of legacy FTP applications. Hence, β

should satisfy the following condition.

β <=
C ∗ brtt− C ∗ x

C ∗ srttreduce − C ∗ x
=

brtt− x

srttreduce − x
(3.6)

Obviously, the value of β depends on not only queue delay, but also the kind and the load

of cross traffic applications.

Considering that on long fat network pipes of the Internet, there are many kinds of cross

traffic applications and they may acquire different amount bandwidth of the bottleneck link,

we should pay more attention on how to calculate β based on queue delay.

3.3.3 How to Increase cwnd for Efficiency and Fairness?

When designing the rule used to increase cwnd, many metrics (efficiency, convergence, fair-

ness, etc.) must be well balanced. In Sync-TCP, α, the additive increase factor, should

be designed based on the following considerations with the aim to utilize network resources

efficiently and share network resources fairly independent of their RTPD values.

• In order to work well on long fat network pipes, α should increase with the elapse of

time. The reason is that if congestion is not detected after an extended period of time,

3.4 The Design of Sync-TCP 71

there are either very few competing flows or there are substantial excess bandwidth,

and cwnd should be increased more quickly.

• In order to distribute bandwidth fairly among competing flows independent of their

RTPD values, α should be calculated by a RTT-independent function. Furthermore,

instead of increasing cwnd by α segments per round trip time, it should be increased

by α segments per fixed-length period so that all competing flows will increase cwnd

by the same amount of segments in the same period.

3.4 The Design of Sync-TCP

Based on observations in previous section, Sync-TCP is carefully designed such that with high

probability, competing flows can detect the same congestion signals through queue delay. In

combination with synchronized congestion signals, Sync-TCP uses an adaptive queue-delay-

based congestion window decrease rule and a RTT-independent congestion window increase

rule. These rules are designed to drive the network to operate around the knee and to

distribute the residual bandwidth fairly even when the number of competing flows varies

and their RTPDs differ significantly. In this section, Sync-TCP is first briefly introduced.

The design details of Sync-TCP, its deployment issues, and parameter selection guidelines

are then presented in the following sub-sections.

3.4.1 Overview of Sync-TCP

Sync-TCP can be summarized through the state transition diagram shown in figure 3.5. In

all sub-states of Sync-TCP (Probing, Waiting, and Emptying), RTT is sampled periodically.

After each RTT sample is measured, the state variables related with queue delay measure-

ment are updated. Only in the Probing sub-state, cwnd is increased and queue-delay-based

congestion detection is carried out.

3.4 The Design of Sync-TCP 72

 Sync-TCPTCP

cwnd > Tht2s

Emptying

Probing

Waiting

 reduce cwnd

cwnd < Ths2t

segment loss is detected

congestion is detected
through queue delay

Twait has passed

Twait has passed

yes

no

Figure 3.5: State Transition Diagram of Sync-TCP

1. When congestion is detected through queue delay, the sender leaves Probing sub-state

and enters into Waiting sub-state. In Waiting sub-state, cwnd is frozen and queue-

delay-based congestion detection is not carried out. The sender will stay in Waiting

sub-state for a short period (Twait) so that network load can be high for a while and

competing flows will detect the same congestion signal.

2. When Sync-TCP leaves the Waiting sub-state, cwnd is reduced. The sender will then

enter into Emptying sub-state, in which the just reduced cwnd is also frozen and queue-

delay-based congestion detection is not carried out too. The sender will also stay in

Emptying sub-state for Twait so that the bottleneck link could have some time to empty

packets previously buffered in its queue.

3. When Sync-TCP leaves the Emptying sub-state, the sender enters into Probing sub-

state and starts to increase cwnd for probing network capacity again. When probing

network capacity, queue-delay-based congestion detection is also carried out.

As shown in figure 3.5, when segment loss is detected, Sync-TCP will reduce its sending

rate immediately for safety. Figure 3.5 also illustrates that a flow will switch between Sync-

3.4 The Design of Sync-TCP 73

TCP and TCP. At the beginning, TCP is used as default since the sender does not know the

size of its network pipe. When its throughput is higher than a threshold (cwnd > Tht2s),

the sender will switch to Sync-TCP for efficiently utilizing the abundant network bandwidth.

When its throughput becomes lower than another threshold (cwnd < Ths2t), the sender will

also switch back to TCP. The reason is that Sync-TCP is a delay-based congestion control

algorithm. It should be used only when there are enough RTT samples to learn network state

correctly. Switching back to TCP can also avoid that a Sync-TCP flow is totally starved

when rerouting occurs, when the flow passes through multiple congested links, or when some

loss-based flows coexist.

Since there are some adverse effects when working with TCP [13], pacing is activated only

when Sync-TCP is used. Hence, pacing needs to be switched on/off when the sender switches

between Sync-TCP and TCP. When TCP is used, pacing is deactivated and Delayed ACK

may generate large noise in RTT samples. To avoid detecting spurious congestion signal

(queue delay) immediately after switching to Sync-TCP, when cwnd > Tht2s, the sender

will activate pacing and enter into Emptying sub-state, in which Sync-TCP does not carry

out congestion detection through queue delay. When Sync-TCP leaves Emptying sub-state

after Twait and enters into Probing sub-state, pacing should have already distributed packets

evenly within a round trip time and Delayed ACK is not a threat any more.

3.4.2 Queue Delay Measurement and Congestion Detection

RTT Sampling

In order to save system resources (CPU, Memory, etc.) of a sender in high speed networks,

instead of sampling on each ACK, Sync-TCP only measure RTT once per Tsample. Here,

Tsample should be much smaller than round trip time of a long fat network pipe. In Sync-

TCP, pacing is also adopted so that a sender can sample queue delay evenly within one

round trip time. Sync-TCP does not require Tpace, the granularity of pacing timer, to be

very small. It is enough if Tpace is less than Tsample.

3.4 The Design of Sync-TCP 74

srtt, brtt, and brttepoch Updating

Considering that RTT samples are noisy and the importance of a RTT sample decreases with

the elapse of time, srtt, that is used for calculating queue delay, should be an exponentially

smoothed average of all measured RTT samples (without the boundary of round trip time).

Hence, after measuring a RTT sample (rtti), srtt is updated based on equation 3.7, which

is essentially an EWMA algorithm.

srtti+1 = (1− Tsample

Twin

) ∗ srtti +
Tsample

Twin

∗ rtti (3.7)

In order to ensure competing flows, whose RTPD may be different, to have a consistent view

of network state, it is necessary that the values of their srtt reflect queue dynamics of a

fixed-length time window. Hence, Twin should be a global constant, and the typical value

could be the average of round trip times experienced by all Sync-TCP flows on long fat

network pipes of the Internet. Except srtt, brtt and brttepoch should also be updated based

on the current RTT sample (rtti).

brtt = min(brtt, rtti); brttepoch = min(brttepoch, rtti)

In Sync-TCP, brtt is also the minimum of all RTT samples. Hence, brtt is immediately set

to rtti if it is less than the current brtt. As for brttepoch, it is the minimum of RTT samples

observed in the current congestion epoch. In Sync-TCP, congestion epoch is defined as the

period between two consecutive cwnd reductions. When cwnd is reduced, brttepoch will be

used to judge whether previous cwnd reduction is large enough to empty the queue of the

bottleneck link, and β will be adjusted correspondingly.

3.4 The Design of Sync-TCP 75

Congestion Detection

After srtt is updated with the current RTT sample, Sync-TCP calculates qd (the difference

between srtt and brtt) and compares it with Thqd, a global constant. If qd > Thqd, a

congestion signal is detected by this Sync-TCP flow.

The value of Thqd reflects the amount of buffering desired at the bottleneck link (inde-

pendent of the number of competing flows) and determines queue delay & jitter that cross

traffic applications will experience. Section 3.4.7 will discuss how to set the value of Thqd.

Since Sync-TCP flow determines network state per RTT sample, when pacing is adopted,

T∆ (the interval between the nearest points that determines the network state of competing

flows) should not be much larger than Tsample, which is much smaller than RTPD of a flow

on long fat network pipe. Hence, competing flows should be able to detect congestion at

almost the same time and queue delay observed by them should be close to each other.

3.4.3 Delayed cwnd Decrease/Increase

According to discussions in section 3.3, after a congestion signal is detected through queue

delay, instead of reducing cwnd immediately, cwnd is frozen for Twait before it is reduced. In

this Waiting period, RTT is sampled, srtt & brtt & brttepoch are updated, but queue delay

based congestion detection is not carried out and cwnd is not changed.

This delayed cwnd reduction is introduced for two purposes. Firstly, queue delay is a

delayed network feedback. With this delayed cwnd reduction, end hosts can reduce cwnd

based on the real queue delay caused by the frozen cwnd. Secondly, by keeping network

load constant and high for a period (Twait), it is unlikely that competing flows will miss this

congestion signal and observe different queue delay. In general, for synchronizing congestion

signal, Twait should be larger than κ ∗ Twin. Here, κ is a small integer. For reducing cwnd

based on the correct queue delay, Twait should be larger than RTTmax + κ ∗ Twin. Here,

RTTmax is the longest RTT experienced by all Sync-TCP flows. Hence, Twait should be set

according to RTTmax + κ ∗ Twin.

3.4 The Design of Sync-TCP 76

After cwnd is reduced, brttepoch is set to a huge value for tracking the minimal RTT

sample that will be observed in the following congestion epoch. Instead of increasing cwnd

immediately, Sync-TCP will also freeze the just reduced cwnd for Twait so that the bottleneck

link could have some time to empty packets previously buffered in its queue and competing

flows could estimate their RTPD more accurately. Due to the following adaptive queue-

delay-based cwnd decrease rule adopted by Sync-TCP, this Emptying period will not lead

to much lower link utilization ratio as there are still sufficient packets in the network. In

this Emptying period, the behaviors of Sync-TCP are identical to the behaviors in the above

Waiting period.

According to discussions in section 3.3, cwnd should be adjusted based on an adaptive

AIMD algorithm. The following subsections will present the details.

3.4.4 RTT-Independent cwnd Increase Rule

In Sync-TCP, a flow increases cwnd by α segment per Twin, and α is calculated based on

equation 3.8. Here, t is the clock-time elapsed since Sync-TCP began to increase cwnd, in

the unit of second.

α = max((1 + t +
t4

32
) ∗ Thqd − qd

Thqd

, 1) (3.8)

Hence, Sync-TCP and H-TCP adopt the same general form of how α should be increased.

α = a0 + a1 ∗ t + ai ∗ ti, (i ≥ 2).

α is first increased slowly (through the constant and linear term t) for safety. With the elapse

of time, α increases very faster depending on the values of ai and i. In H-TCP [91], a0, a1, i

and ai are set to 1, 10, 2, and 1
4

respectively. Sync-TCP adopts different values so that cwnd

can be increased much slower at the beginning for friendliness and the acceleration speed

can be much higher for efficiency. By setting a0, a1, i and ai to 1, 1, 4, and 1
32

respectively,

3.4 The Design of Sync-TCP 77

the higher order term dominates over the linear term t when t increases beyond 2.4s. Note

that the exact coefficients and power of these terms are not crucial for the correctness but

do affect the aggressiveness of cwnd increase and the speed of convergence. These values

are currently selected based on simulation results. In addition, α will not be less than one

segment so that when probing network resources, Sync-TCP will not be slower than the

legacy TCP.

Considering that queue delay is a delayed network feedback,
Thqd−qd

Thqd
is used here to slow

down the increase of α as qd approaches Thqd such that the maximal queue delay will not be

much larger than Thqd. It may be better if α has an upper bound, such as 5ms
srtt

∗ cwnd ∗ Twin

srtt
,

which could make sure that queue delay will not be increased by more than 5ms per round

trip time. But the convergence among competing flows may be slowed down. For results

presented in section 3.5 and section 3.6, α does not have such an upper bound.

In order to save CPU, α is updated only once per Twin (based on qd at that moment).

As for cwnd, it is adjusted when a RTT sample is measured (per Tsample) so that cwnd is

evenly increased by α segments per Twin.

3.4.5 Adaptive Queue-delay-based cwnd Decrease Rule

With highly synchronized congestion signals and the delayed cwnd decrease mechanism,

competing Sync-TCP flows could reduce cwnd simultaneously based on the real queue delay.

Sync-TCP calculates, β, the multiplicative decrease factor, based on equation 3.9. Here,

srttreduce is the value of srtt when cwnd is reduced and qdreduce is the difference between

srttreduce and brtt.

β = 1− λ ∗ qdreduce

srttreduce

, 0.125 ≤ β ≤ 0.95 (3.9)

Based on discussions in subsection 3.3.2, to ensure that the queue of the bottleneck link is

emptied and the network is not under-utilized, β should adopt different values according to

queue delay and the kind & the load of cross traffic. Hence, λ should be an adaptive value

3.4 The Design of Sync-TCP 78

that is always larger than 1. Considering that it is very hard for endpoints to estimate the

kind & the load of cross traffic, λ is adjusted based on the following simple rule.

In Sync-TCP, the default value of λ is set to a small constant (1.25). When cwnd is

reduced, Sync-TCP first calculates the difference between brttepoch and brtt, and the result

is used to judge whether the current λ is appropriate.

If the difference is larger than Themptied, it indicates that β calculated with the current

λ cannot empty the queue of the bottleneck link. Hence, λ is increased by one. This large

increase step is used to ensure that the queue of the bottleneck link can be emptied in a

short time. If the difference is less than Themptied, it indicates that the current λ is large

enough and λ might need to be decreased. Considering that we cannot deduce how much

the current λ is larger than its optimal value, λ is reset to 1.25.

Due to the noise in RTT samples, brttepoch still can be larger than brtt even when the

queue of the bottleneck link is empty. Since timer and scheduling granularity of the current

operating systems used by end hosts is normally 1ms, Themptied is set to 2ms in this work.

Although the above adaptive rule performs quite well in simulations and testbed evaluations,

the adaptive rule and its parameters might need to be tuned according to the real world.

Since brttepoch is used to judge whether the queue is emptied and λ is reset to a common

value when the queue is emptied, it is unlikely that λ of competing flows will converge to

different values.

Considering that queue delay is a highly synchronized congestion signal and the additive

increase rule used by Sync-TCP is RTT-independent, all competing Sync-TCP flows will

increase their cwnd by the same number of segments (Nincr) within a congestion epoch. In

a converged state, for each flow, Nincr equals to Ndecr, the number of segments that cwnd

is reduced due to a queue-delay-based congestion signal. Hence, all competing flows should

3.4 The Design of Sync-TCP 79

have the same Ndecr.

Ndecr = (1− β) ∗ cwnd =
λ ∗ qdreduce

srttreduce

∗ cwnd = λ ∗ qdreduce ∗ thr−

According to the above equation, thr− (the throughput acquired before cwnd is reduced)

should equal to each other since Sync-TCP is carefully designed so that competing flows

could observe the same queue delay and use the same λ. In summary, Sync-TCP is designed

to distribute bandwidth fairly among competing flows independent of their RTPD values.

3.4.6 Deployment Issues

Handling Segment Loss

When Sync-TCP (a delay-based HSCC algorithm) is used, segments are lost mainly due to

transmission error. Hence, segment loss normally is not a signal of network congestion. When

segment loss is detected, Sync-TCP still reduces cwnd for safety. In order to avoid under-

utilizing the lossy and fast links, β (the multiplicative decrease factor) is also calculated

based on equation 3.9.

On the other hand, segment loss may also be a signal of severe network congestion. For

example, when many flows arrive simultaneously or the queue of the bottleneck link is too

small, segments can be dropped due to buffer overflow. Hence, when segment loss is detected,

the upper bound of β is set to 0.875 and cwnd is reduced immediately.

Switching between TCP and Sync-TCP

In general, when a flow begins to transmit, it does not know the type of its network pipe.

Hence, the legacy TCP (e.g. Reno) should be used first and Sync-TCP is activated only

when the flow is sure that it is on a long fat network pipe. In another word, Sync-TCP is

activated only when cwnd is large enough. Furthermore, due to the following considerations,

when its throughput is too low, Sync-TCP flow should also switch back to TCP.

3.4 The Design of Sync-TCP 80

Firstly, per-flow throughput should be high enough so that the senders have enough RTT

samples to measure queue delay correctly. Secondly, for all of the following possible scenarios

in which the throughput is low, Sync-TCP has justified reasons to switch back to TCP.

• Taking into account how Sync-TCP detects congestion and handles segment loss, it

should be obvious that when the network utilization ratio is high because of the

increased legacy TCP applications and interactive applications, Sync-TCP may be

starved and per-flow throughput becomes low. In this scenario, letting flows of bandwidth-

greedy and elastic applications act as legacy TCP is fairer and provides more incentives

to adopt Sync-TCP.

• Since Sync-TCP detects congestion by comparing queue delay with a constant, a Sync-

TCP flow which passes through multiple congested links (MCL), can be starved by

Sync-TCP flows which only pass through one of these congested links. We argue

that it is reasonable since this flow consumes more network resources for transmitting

the same amount of data. MCL unfairness of Sync-TCP may motivate large content

providers to deploy more mirrors and reduce the load of core networks. In addition,

when a flow does pass through MCL and the throughput becomes too low, it should

switch back to TCP to avoid being totally starved.

• When there are huge number of competing Sync-TCP flows, per-flow throughput will

become low. Considering that queue delay is a delayed network feedback and srtt is

a smoothed average of RTT samples, even though cwnd is frozen when queue delay is

regarded as a congestion signal by the sender, qdmax, the maximal queue delay at the

bottleneck link should be larger than Thqd.

This fact is helpful for synchronizing competing Sync-TCP flows. However, when there

are huge number of competing flows, the difference between qdmax and Thqd can be

quite large. For controlling the jitter suffered by cross traffic and potential segment

loss, when per-flow throughput is low, it is better to switch back to TCP (with the

3.4 The Design of Sync-TCP 81

cost of increased average queue delay). Based on Little’s Law in queueing theory, this

issue is analyzed further in the following paragraphs.

For simplicity, we assume that Sync-TCP flows have identical RTPD, which is close

to Twin. According to equation 3.8, when qd approaches Thqd and there are many

competing flows, α should equal to one segment. Since cwnd is frozen in waiting

period, qdmax should satisfy the following equation.

C ∗ rttdetect + N ∗mss = C ∗ (brtt + qdmax)

Here, C is the bottleneck link’s bandwidth, N is the number of competing Sync-TCP

flows, mss is the maximum segment size, and rttdetect is the value of the RTT sample

which triggers Sync-TCP to regard queue delay as a congestion signal. Considering

that srtt is used to calculate qd, rttdetect should be a little larger than brtt + Thqd.

Approximately,

C

N
=

mss

brtt + qdmax − rttdetect

≈ mss

qdmax − Thqd

Since bandwidth-greedy and elastic applications may not acquire all bandwidth, the

throughput of each Sync-TCP flow should be less than C
N

. Consequently, we can

decide qdmax based on QoS (Quality of Service) requirements of the expected cross

traffic applications (VoIP, etc.) and calculate the threshold of per-flow throughput

according to equation 3.10.

Ththr =
mss

qdmax − Thqd

(3.10)

When per-flow throughput is lower than Ththr, Sync-TCP should switch back to the

legacy TCP.

3.4 The Design of Sync-TCP 82

Handling Rerouting

In Sync-TCP, brtt is also set to the minimum of all RTT samples. However, if RTPD is

increased due to the change of network path, RTPD cannot be correctly estimated and λ

will always be increased when cwnd is reduced. Although the long fat link of core network is

not likely to be changed during the life of a Sync-TCP flow, other links in regional networks

still can be changed due to mobility, load balance, etc. Hence, this issue must be considered.

In the case that there are some competing Sync-TCP flows, this flow will receive low and

lower throughput. Hence, it will switch back to TCP. When switching to TCP, Sync-TCP

will set brtt to a huge value so that this flow can correctly learn the increased RTPD and

take back its fair share of bandwidth.

In the case that there is no other competing Sync-TCP flows or all flows experience

rerouting simultaneously, this flow may not switch back to TCP since β has a lower bound.

Consequently, Sync-TCP is still used, its sending rate will keep fluctuating a lot, and the

bottleneck link can be slightly under-utilized. Hence, when cwnd is reduced and λ is adjusted,

if λ is huge (> 20) and brttepoch is still larger than brtt, Sync-TCP will set brtt to brttepoch

and λ is reset to 1.25.

Misbehaving Users

Fundamentally, Sync-TCP is a delay-based high speed congestion control algorithm. When

users access servers driven by Sync-TCP, they have a very strong motivation to conceal

queue delay from the server and get higher throughput. For example, when the real RTPD

is 100ms and there is no queue delay, the receiver puts off its ACK packets for 20ms and

the sender’s RTPD estimation becomes 120ms. When queue is built up in network, the

receiver can shorten the period, that ACK packets are delayed, according to the value of

current queue delay. Hence, the sender cannot detect congestion through queue delay and

this misbehaving user acquires (unfairly) higher throughput.

To perform the above attack without being caught up, the misbehaving user should be

3.4 The Design of Sync-TCP 83

able to estimate queue delay in the network accurately. When time stamp option is used

for RTT measurement, queue delay can be estimated based on the change of one way delay

exposed by time stamp option. Hence, time stamp option is not used by Sync-TCP. To

sample RTT experienced by a packet, the sender will record the sequence number and the

sending time, and RTT is calculated when the corresponding acknowledgement is received.

Hence, Sync-TCP increases the difficulty of this kind of attack through consuming more

system resources of TCP sender. This is why we claim that RTT measurement is expensive

and only one sample is measured per Tsample.

3.4.7 Parameter Selection Guidelines

Although many parameters are used by Sync-TCP, we only need to determine the values

of the following global parameters. As for other parameters, they can be deduced based on

these global parameters and/or host-specific configurations.

Twin

Twin is an important global variable of Sync-TCP. As shown in equation 3.7, when the sender

updates srtt, Twin is used so that competing flows could have a consistent view of network

state independent of their RTPD values. Twin must be large enough so that enough samples

are considered, the noise in RTT samples can be filtered out, and srtt can correctly reflect

queue dynamics in the last Twin period. On the other hand, if Twin is too large, response to

changes in queue dynamics will be affected.

The value of Twin is determined in the following way. First, as Tsample determines the

amount of processing and memory overhead required, we assume that a value of 10ms can

be supported by most endpoints without imposing excessive load. Next, a sample size of at

least 10 within a window of Twin is assumed to be needed for filtering out noise. Hence, the

value of Twin is set to 100ms, so that there are at least 10 samples, with at least one sample

every 10ms.

3.4 The Design of Sync-TCP 84

Since the value of Tsample is set to 10ms, T∆, the interval between the nearest points

that competing flows determine network state, will not be larger than Tsample and will be

much smaller than round trip time of a long fat network pipe. Hence, competing Sync-TCP

flows will determine network state much more frequently. Consequently, they will detect

congestion signal at almost the same time. In addition, with the current value of Tsample,

Tpace can be as large as several milliseconds and CPU overhead of pacing will not be high.

Twait

This global variable is used for synchronizing congestion signal and reducing cwnd based on

the real queue delay caused by the frozen cwnd. In order for Sync-TCP to function correctly,

Twait must be long enough so that all Sync-TCP endpoints detect this synchronization signal.

For this to be the case with high probability, Twait should be larger than RTTmax+κ∗Twin.

Here, RTTmax is the longest RTT experienced by all Sync-TCP flows and κ is a small

number (not less than 1). This is to ensure all endpoints will detect the congestion signal

with sufficient confidence. Taking into the maximum possible network path in a terrestrial

network and the light speed in wire, Twait is currently set to 500ms.

Thqd

As the threshold used for detecting congestion through queue delay, the value of Thqd re-

flects the amount of buffering desired at the bottleneck link (independent of the number of

competing flows). Considering that srtt is a smoothed average of RTT samples and queue

delay is a delayed network feedback, the largest queue delay at the bottleneck link should

be larger than Thqd. If qdmax is the largest queue delay that cross traffic applications can

tolerate, Thqd should be a value that is less than qdmax.

Considering that average one-way jitter experienced by VoIP should be targeted at less

than 30ms2 and VoIP packets may pass through multiple congested links, qdmax is set to

2http://www.ciscopress.com/articles/article.asp?p=357102

3.4 The Design of Sync-TCP 85

20ms when deciding parameters of Sync-TCP. With qdmax = 20ms, Thqd is now set to 12ms.

The current Thqd should be large enough to avoid regarding noise in RTT samples as a

congestion signal. Since Sync-TCP reduces cwnd based on qdreduce, which is normally larger

than Thqd, the current Thqd should also be large enough so that competing Sync-TCP flows

can converge quickly.

In order to prevent a flow from switching too frequently between TCP and Sync-TCP,

two thresholds in the unit of segment, Tht2s and Ths2t (Tht2s>Ths2t), are adopted. When

cwnd is larger than Tht2s, the sender switches from TCP to Sync-TCP and it also switches

from Sync-TCP to TCP when cwnd is less than Ths2t. For each flow, it can calculate Ths2t

based on Ththr in equation 3.10 and its own brtt. Currently, Ths2t in the unit of segment is

set according to equation 3.11. As for Tht2s, it is set to 2 ∗ Ths2t.

Ths2t = (
mss

qdmax − Thqd

) ∗ brtt

mss
=

brtt

8ms
(3.11)

Hence, when Sync-TCP is adopted, each flow should be able to transmit at least one segment

per 8ms. Considering that Tsample can be as large as 10ms, when Sync-TCP is used, the

sender should have enough packets to sample queue delay correctly. Under the assumption

that mss = 1500 bytes, when Sync-TCP is used, per-flow throughput will not be less than

1.5Mbps. This value should be high enough to motivate the deployment of Sync-TCP.

Please note that there are some assumptions in equation 3.10. Since some flows may

have larger RTPD values, the load of cross traffic may fluctuate, etc., the queue size of

the bottleneck link should be over-provisioned for avoiding congestive segment loss in more

cases. More specifically, although Ths2t is deduced with qdmax = 20ms, the queue size of the

bottleneck link should be larger than C ∗ 20ms.

Among the three global variables, Thqd must be followed by all senders. As for Twin and

Twait, Sync-TCP still can work if the senders adopt slightly different values, but the fairness

3.5 Simulation Results 86

among their flows will be affected. Table 3.1 lists the parameters used by Sync-TCP. It also

gives their values used in the evaluations of Sync-TCP.

Scope Value Usages
Twin global 100ms the time window used for updating srtt. cwnd is also in-

creased by α per Twin

Twait global 500ms the period that Sync-TCP stays in Waiting and Emptying
states

Tsample host 10ms the interval between two consecutive RTT samples
Tpace host 5ms the granularity of pacing timer
Thqd global 12ms the threshold used to detect congestion through queue delay

Ths2t host brtt
8ms

the threshold used to decide whether to switch to Sync-TCP

Tht2s host brtt
4ms

the threshold used to decide whether to switch back to TCP

Table 3.1: Parameters of Sync-TCP

In the following two sections, we will present evaluation results of Sync-TCP. Sync-TCP

has been evaluated through both simulation and testbed experiments. In the simulation,

we can experiment with more high speed TCP variants, more variations in traffic load, and

in particular, a much larger number of HSCC and cross traffic flows. On the other hand,

we have a more realistic environment in the testbed evaluations, but the availability of high

speed TCP variants and the scalability of the traffic load are much lower.

3.5 Simulation Results

Sync-TCP has been implemented in the framework of NS-2 TCP-Linux [133] so that we can

compare it with HSCC algorithms that have been implemented in Linux, such as Cubic-

TCP [59]. The leaky-bucket-based TCP pacing algorithm proposed in [84] is implemented

for Sync-TCP and Fast TCP. Following the initial proposals, CTCP and Fast TCP are

implemented in NS-2 TCP-Linux, and their parameters are set to default values. In this

section, Sync-TCP is evaluated and compared with Cubic-TCP, CTCP, and Fast TCP. The

legacy TCP implemented in Linux is also compared under the assumption that socket buffer

is set to a large value and window scale option is enabled for supporting high speed data

3.5 Simulation Results 87

transmission. Although Delay-based AIMD is more similar to Sync-TCP, many details of

Delay-based AIMD are not available and it is not evaluated here.

R1

D0

Dn-2

R2

Dn-1

(bw, delay, per)

(droptail, qsize)

...

D1

S0

Sn-2

Sn-1

...

S1

......

......

Figure 3.6: Dumbbell Network Topology

Unspecified, the dumbbell network configuration shown in figure 3.6 is used in this section.

The link between R1 and R2 is a simulated transoceanic optical fibre link whose bandwidth

is 1Gbps and DropTail is used by the routers. The simulated side links, that connect Si

to R1 or connect Di to R2, are all highly reliable and fast enough so that R1 ↔ R2 is the

only bottleneck. In all experiments, the flows from Si to Di are the flows to be investigated.

For each experiment, five simulations are carried out, and in each simulation, one of the five

congestion control algorithms to be investigated is used by these flows. With the results of

these simulations, the five congestion control algorithms are compared.

The two clouds are responsible for generating background traffic. The links, that connect

nodes in clouds to the two routers, are also highly reliable and fast enough. Their propa-

gation delay follow an uniform distribution whose range is [5ms,25ms]. According to the

connection-based web traffic model [39], the two clouds generate 3200 (800) HTTP sessions

per second in the forward (reverse) path. For collecting user experience of the cross traffic

applications, there are also several VoIP (Voice over IP) flows and several legacy FTP flows

which are driven by the legacy TCP and are configured with small socket buffer (64KB).

3.5 Simulation Results 88

These background traffic consumes about 300Mbps in the forward path and 100Mbps in

the reverse path. Unspecified, this background traffic will be generated in all experiments

presented in this section and Appendix A.

Background Traffic

... N flows

20 1020 1040

Figure 3.7: Block Scenario: the Arrival and Departure Sequence of Flows

Without specifying explicitly, flow arrival and departure sequence shown in block scenario

(figure 3.7) is being used. In the following subsections, the setup of each experiment is

described, simulation results are presented, and Sync-TCP is compared with other proposals.

3.5.1 Synchronization of Congestion Signals

The first experiment is to demonstrate that competing Sync-TCP flows can have a consistent

view of network state and detect congestion simultaneously through queue delay. Dumbbell

topology and block scenario are used, and the bottleneck link is configured as propagation

delay or delay=50ms, packet error rate or per=10−8, and queue buffer size or qsize=0.5BDP.

N , the number of competing flows to be investigated, is set to 2, and propagation delay of

the side links are all set to 5ms.

Figure 3.8 shows the queue dynamics of the bottleneck link and the behaviors of compet-

ing Sync-TCP flows. It indicates that competing Sync-TCP flows can observe their correct

RTPD (queue can be emptied periodically), have a consistent view of network state (qd

values observed by them are close to each other), and detect congestion and reduce cwnd si-

multaneously. Within the 1000 seconds simulation of this experiment, 122 congestion signals

are detected by Sync-TCP flows through queue delay and no single Sync-TCP flow misses

anyone of these signals. As for Fast TCP and CTCP, figure 3.9 shows that competing flows

3.5 Simulation Results 89

 0

 500

 1000

 1500

 2000

 280 285 290 295Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(a) Queue dynamics at the bottleneck link (packet)

 0

 5

 10

 15

 20

 280 285 290 295

Q
ue

ue
 D

el
ay

 (
m

s)

Time (s)

Flow 0
Flow 1

(b) Queue delay measurement at the competing senders (ms)

 2800
 3000
 3200
 3400
 3600
 3800
 4000
 4200

 280 285 290 295

C
W

N
D

 (
pa

ck
et

)

Time (s)

Flow 0
Flow 1

(c) CWND at the competing senders (packet)

Figure 3.8: Queue Delay Measurement and cwnd Evolution Behaviors of Competing Sync-
TCP Flows Which Coexist with a lot of Cross Traffic

 0
 1
 2
 3
 4
 5
 6
 7
 8

 280 285 290 295

Q
ue

ue
 D

el
ay

 (
m

s)

Time (s)

Flow 0
Flow 1

(a) Compound TCP

 0
 1
 2
 3
 4
 5
 6
 7
 8

 280 285 290 295

Q
ue

ue
 D

el
ay

 (
m

s)

Time (s)

Flow 0
Flow 1

(b) Fast TCP

Figure 3.9: Decision Points and Queue Delay Observed by Competing Flows

3.5 Simulation Results 90

judge network state at different times based on different qd values.

For the rest of the experiments presented below, the total simulation time is about 32,000

seconds. During these simulations, 5853 congestion signals are detected by Sync-TCP flows

through queue delay and 5651 of these signals are detected by all competing Sync-TCP flows.

Note that in some simulations, the number of competing Sync-TCP flows can be very large

(40, 64, 256, etc.) and their RTPD values can differ significantly. 202 of these congestion

signals are not detected by all competing Sync-TCP flows mainly because some flows have

just experienced segment loss and are in the Emptying sub-state, in which queue-delay-based

congestion detection is not carried out.

3.5.2 Scalability of Sync-TCP

In this subsection, dumbbell topology and block scenario are used. Propagation delay of

the side links are all set to 5ms so that all competing flows have the same RTPD. As for

delay, per, qsize of the bottleneck link and N (the number of competing flows), different

values are adopted. For each group of experiments, one parameter is varying and the other

three parameters are fixed for investigating these congestion control algorithms’ scalability

with the varying parameter. In order to evaluate and compare these congestion control

algorithms, the metrics to be used are listed below. Considering that Fast TCP and CTCP

implementations in NS2 adopt the simple slow start algorithm of TCP, many segments may

be dropped at the end of the first slow start phase. In order to avoid the bias on Fast TCP

and CTCP in the metric of packet loss rate, we only present simulation results in steady

state. More specifically, only the results during [100:1000] are plotted in this subsection.

1. Network Oriented Metrics: Three metrics, Link Utilization Ratio, Delay and Jitter,

and Packet Loss Rate, are used to judge whether a congestion control algorithm can

drive the network to operate around the knee. Link Utilization Ratio is the average

utilization ratio of the bottleneck link. Delay and Jitter are the average queue delay

and jitter experienced by packets at the bottleneck link. And Packet Loss Rate is the

3.5 Simulation Results 91

probability that a packet is lost at the bottleneck link.

2. User Oriented Metrics: Fairness is measured by Jain’s fairness index [72] of the average

throughput acquired by competing flows. It is used to investigate whether flows can

share network resources fairly in long term.

Jain’s fairness index of the average throughput acquired by competing flows in 1 second

interval is also calculated, and their average during [100,1000] is used as the Short-term

Fairness index. Short-term Fairness index is used to investigate the interaction among

competing flows in small time scale.

In addition, the stability or smooth of a flow’s throughput is also evaluated. Following

[75], Si, the stability index of flow i, is the standard deviation normalized by the

average throughput. Here, x̄i is the average throughput of flow i during the interval

[100,1000]. xi is sampled per second during this interval. Hence, m equals to 900. The

smaller the stability index, the less oscillation a flow experiences.

Si =
1

x̄i

√√√√ 1

m− 1

m∑

k=1

(xi(k)− x̄i)2

The stability metric shown in the following plots is the average over N flows.

Scalability with Flow Number

In this group of experiments, the bottleneck link is configured as delay=50ms, per=10−6,

and qsize=0.5BDP. N is then set to 1, 4, 16, 64, and 256 with the aim to investigate whether

Sync-TCP can drive the network to operate around the knee independent of the number of

competing flows.

Figure 3.10 shows link utilization ratio, packet loss rate, and queue delay & jitter of the

bottleneck link. It indicates that Sync-TCP can drive the network to operate around the

knee independent of the number of competing flows. Hence, the cross traffic applications will

3.5 Simulation Results 92

Link Utilization Ratio Queue Delay and Jitter (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

 0
 10
 20
 30
 40
 50
 60

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

Packet Loss Rate Stability

 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

Long-term Fairness Short-term Fairness

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 4 16 64 256

TCP
CUBIC
CTCP
FAST
SYNC

Figure 3.10: Scalability with Flow Number

VoIP OneWayDelay Avg. (ms) VoIP OneWayDelay Jitter (ms)

 70

 80

 90

 100

 110

 120

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

 0

 5

 10

 15

 20

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

VoIP Packet Loss Rate FTP Throughput (Mbps)

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

 0
 1
 2
 3
 4
 5
 6

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

WWW 4K Response Time (s) WWW 64K Response Time (s)

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

1 4 16 64 256

with TCP
with CUBIC
with CTCP
with FAST
with SYNC

Figure 3.11: Scalability with Flow Number: User Experience of Cross Traffic Applications

3.5 Simulation Results 93

not be hurt. This argument is supported by figure 3.11, which shows user experience of the

VoIP, web surfing, and legacy FTP traffic. With 64 flows running other HSCC algorithms,

the delay for web and VoIP traffic is almost 25% longer compare to Sync-TCP and the

throughput for legacy FTP traffic is 30% lower.

Figure 3.10 also shows the fairness and stability indexes of competing flows. It indicates

that Sync-TCP performs the best in all of these metrics, especially short-term fairness and

stability. Hence, Sync-TCP can utilize the bottleneck link fairly and stably.

These congestion control algorithms have also been evaluated and compared when there

are 1024 competing flows. In this case, per-flow throughput becomes very low and Sync-TCP

will not be enabled. Simulation results do indicate that the performance is similar to TCP

and is not worse than other HSCC algorithms. If Sync-TCP is always enabled, Sync-TCP

can keep the friendliness to cross traffic even when N = 1024.

Scalability of Sync-TCP with respect to propagation delay, queue size, and packet loss

rate have also been evaluated, and the simulation results are attached in Appendix A.1.

Sync-TCP performs very well in all cases except when queue size is very small, such that

the maximum queue delay is much less than Thqd. In this case, Sync-TCP cannot detect

congestion through queue delay, and
Thqd−qd

Thqd
cannot effectively reduce α when buffer overflow

approaches. It may be worthwhile to let a flow switch between Sync-TCP and Cubic TCP

based on whether it can observe queue delay that is larger than Thqd.

3.5.3 RTT Fairness

Dumbbell topology and block scenario are also used here. N is set to 2. As for the bottleneck

link, delay=20ms, per=10−6, and qsize=0.5BDP. Propagation delay of side links are set to

different values in different experiments so that RTPD of flow 0 is always 60ms and RTPD

of flow 1 is 60, 120, 240, 360, or 480ms.

Figure 3.12 shows the throughput ratio (Thr0

Thr1
) against the RTPD ratio (RTPD1

RTPD0
). It

3.5 Simulation Results 94

 1

 10

 1 2 3 4 5 6 7 8 9 10

T
hr

_f
lo

w
0

/ T
hr

_f
lo

w
1

RTPD_flow1 / RTPD_flow0

TCP
CUBIC
CTCP
FAST
SYNC

Figure 3.12: RTT Fairness (per = 10−6)

indicates that Sync-TCP performs the best in the metric of RTT fairness. Irrespective of

the competing flows’ RTPD, Sync-TCP can distribute bandwidth fairly among them.

Curiously, although Fast TCP is designed to be RTT-independent, when Fast TCP is

used, flow 0 still acquires higher throughput. The reason is that when some packets are

corrupted and the sending rate of flow 0 and/or flow 1 is reduced, flow 0 can increase its

cwnd with a higher frequency (due to its shorter RTPD). As shown in figure 3.13, when per

is very small (10−8), Fast TCP performs quit good in the metric of RTT fairness. Hence,

this conjecture is confirmed.

 1

 10

 1 2 3 4 5 6 7 8 9 10

T
hr

_f
lo

w
0

/ T
hr

_f
lo

w
1

RTPD_flow1 / RTPD_flow0

TCP
CUBIC
CTCP
FAST
SYNC

Figure 3.13: RTT Fairness (per = 10−8)

However, when per is very small (10−8), in the metric of RTT fairness, CTCP does not

performs any better than TCP. The reason is that, slow start of TCP is used by CTCP. When

3.5 Simulation Results 95

the first congestive segment loss occurs, the sending rate of flow 1 is still very small (due

to its long round trip time). After that, the two CTCP flows are driven by its delay-based

HSCC algorithm, which acts like a MIAD algorithm. Consequently, the two flows converge

very slowly and flow 1 keeps receiving much less throughput. With better algorithms in slow

start phase, the situation may be better.

3.5.4 Rerouting Issue

In this group of experiments, dumbbell topology and block scenario are used. N is set to

2. The parameters of the bottleneck link are delay=50ms, per=10−6, and qsize=0.5BDP.

Propagation delay of side links are all set to 5ms at the beginning. At the 300th second,

propagation delay of the link between D0 and R2 is changed to 7ms. This is used to simulate

that flow 0 experiences rerouting and its RTPD is increased by 4ms. At the 600th second,

propagation delay of the link between D1 and R2 is changed to 9ms. This is used to simulate

that flow 1 experiences rerouting and its RTPD is increased by 8ms.

Figure 3.14 shows throughput trajectories of the two flows that are driven by CTCP,

Fast TCP or Sync-TCP in which brtt is used. It indicates that only Sync-TCP can drive

the two flows to converge to the fair and efficient point again. However, Sync-TCP flow,

that experiences rerouting, cannot learn the increased RTPD correctly until it switches back

to TCP. Hence, for a short period, its throughput will be very low. It may be worthwhile

to investigate this issue further and improve Sync-TCP performance when rerouting occurs

frequently in high speed wireless networks.

3.5 Simulation Results 96

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 200 400 600 800 1000T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Flow 0

(a) CTCP competing flows

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 200 400 600 800 1000T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Flow 0

(b) FAST TCP competing flows

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 200 400 600 800 1000T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Flow 0

(c) Sync-TCP competing flows

Figure 3.14: Throughput Trajectories of Flows Which Experience Rerouting

3.5 Simulation Results 97

3.5.5 Dynamic Scenarios

In the following experiments, dumbbell topology is used, and the bottleneck link is configured

as delay=50ms, per=10−6, and qsize=0.5BDP. Flow arrival and departure sequences shown

in figure 3.15 are used for evaluating these proposals as new flows arrived and old flows left.

Two dynamic scenarios, door (figure 3.15(a)) and tower (figure 3.15(b)), are used for this

purpose. There are 5 flows in door scenario, and different values are adopted by propagation

delay of side links so that different flows may have different RTPDs. Tower scenario has 40

flows, and flows that belong to different groups also have different RTPDs. The results under

door and tower scenarios are plotted in figure 3.16-3.18 and figure 3.19-3.21, respectively.

Background Traffic
1 X 120 ms

20 4520 4540

1 X 300 ms
1 X 200 ms

1 X 120 ms
1 X 200 ms

520 15201020 2020 3520 402030202520

(a) Door

10 X 120 ms

10 X 400 ms

20 4020 4040

10 X 200 ms
10 X 300 ms

520 1020 1520 352030202520

Background Traffic

(b) Tower

Figure 3.15: Flows Arrival and Departure Sequence of Dynamic Scenarios

Figure 3.16 and figure 3.19 first show throughput trajectories of these competing flows un-

der door and tower scenarios. They indicate that with the arrival and departure of flows, only

Sync-TCP can drive active flows to converge to the new bandwidth allocation equilibrium

rapidly and stably. In the equilibrium, Sync-TCP flows also receive the same throughput

independent of the values of their RTPD.

Figure 3.17 and figure 3.20 show utilization ratio of the bottleneck link under door and

3.5 Simulation Results 98

tower scenarios, respectively. Queue dynamics of the bottleneck link under door and tower

scenarios are also plotted in figure 3.18 and figure 3.21, respectively. It is obvious that Sync-

TCP is the only one that can drive the network to operate around the knee in both door and

tower scenarios. Hence, Sync-TCP could utilize the bottleneck link efficiently and maintain

short queue length independent of the number of competing flows, the values of their RTPD,

and the arrival and departure of these flows.

The above experiments with door and tower scenarios have also been repeated when the

total load of cross traffic applications is varying. Simulation results are attached in Appendix

A.2. These results indicate that Sync-TCP can maintain the above merits even when the

load of cross traffic is varying.

Apart from the above experiments, many experiments, which use different parameter

values (bw, per, delay, qsize,N), different flow arrival and departure sequences, and different

cross traffic loads, have also been carried out. They are not presented here due to the

similarity of these results. But their results all support the argument that Sync-TCP can

drive long fat network pipes to operate around the knee and distribute the residual bandwidth

fairly among competing flows, irrespective of the number of competing flows and the values

of their RTPD.

We have also studied MCL unfairness of Sync-TCP and its coexistence issues with the

legacy TCP. These simulation results are attached in Appendix A.3 and A.4. In Appendix

A.5, several simulation results are also attached to illustrate the necessary of letting λ react

to network environment.

3.5 Simulation Results 99

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure 3.16: Door Scenario: Throughput Trajectories of All Competing Flows (Mbps)

3.5 Simulation Results 100

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure 3.17: Door Scenario: Utilization Ratio of the Bottleneck Link

3.5 Simulation Results 101

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure 3.18: Door Scenario: Queue Dynamics at the Bottleneck Link (byte)

3.5 Simulation Results 102

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure 3.19: Tower Scenario: Throughput Trajectories of Flows 0, 10, 20, 30 (Mbps)

3.5 Simulation Results 103

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure 3.20: Tower Scenario: Utilization Ratio of the Bottleneck Link

3.5 Simulation Results 104

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure 3.21: Tower Scenario: Queue Dynamics at the Bottleneck Link (byte)

3.6 Testbed Evaluation Results 105

3.6 Testbed Evaluation Results

In order to evaluate Sync-TCP in more realistic environments, Sync-TCP has been imple-

mented in FreeBSD 7.1, and a high speed network testbed has also been set up. In this

section, we first introduce configurations of the testbed. Experiment results are then pre-

sented and analyzed.

3.6.1 High Speed Network Testbed

Figure 3.22 illustrates the topology and configurations of our high speed network testbed.

A HP Procurve 2900 switch, which is configured with two VLANs (Virtual LAN), is used to

connect all computers. Three high end Dell PowerEdge T300 servers (SENDER, EMULA-

TOR, and SINK), which are equipped with Myricom 10Gbps Ethernet cards, are connected

to this switch’s four 10Gbps ports.

Figure 3.22: High Speed Network Testbed

SENDER is installed with FreeBSD 7.1, Fedora 9, and Windows Vista so that we can

compare CTCP on Windows Vista, Cubic-TCP on Linux, and Sync-TCP on FreeBSD. Iperf

[2] is used by SENDER and SINK to generate long-lived flows and collect statistics. In

order to emulate the networks to be studied, EMULATOR is installed with FreeBSD and

Dummynet [116], and the FreeBSD kernel is also rebuilt with a higher scheduling frequency

3.6 Testbed Evaluation Results 106

for emulating a high speed network accurately. DropTail is emulated in all experiments.

As for SINK, FreeBSD and Dummynet are installed. The Dummynet on SINK is used to

emulate flows with different RTPDs.

Four lower end computers are connected to 1Gbps ports. They use D-ITG [32] to collect

user experience of VoIP. Iperf is also used to emulate legacy FTP flows with a small socket

buffer (64KB). These computers are also used to generate large amount of bursty traffic for

emulating web-like traffic.

When setting up the following experiments, we make sure that there is enough memory

for all flows and that the CPU is not the bottleneck. Hence, the number of flows per machine

does not exceed 30, and the emulated bandwidth is not higher than 1Gbps even though the

link rate is 10Gbps.

3.6.2 Synchronization of Congestion Signal

To verify whether Sync-TCP flows can detect congestion correctly in a testbed setting, three

Sync-TCP flows with different RTTs (90ms, 100ms, and 110ms, respectively) are established

between SENDER and SINK. EMULATOR emulates a bottleneck link whose bw=500Mbps,

delay=25ms, per=10−6, and qsize=0.5BDP. Web-like background traffic consumes about

40Mbps, and there are also a VoIP flow and a legacy FTP flow.

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 10 20 30 40 50 60 70 80 90

S
yn

c-
T

C
P

 S
en

de
r

S
ta

te

Time (second)

flow 0
flow 1
flow 2

Figure 3.23: Synchronization of Congestion Detection through Queue Delay

The length of this experiment is about 90 seconds. Figure 3.23 plots the changes of

3.6 Testbed Evaluation Results 107

the three competing Sync-TCP flows’ state with the time. ”0” is used to represent Probing

state, ”1” is used to represent Waiting and Emptying states, and one pulse represents that

a flow detects one congestion signal. Figure 3.23 indicates that except at the 15th and 42th

seconds, all flows detect the same congestion signals. When background traffic is bursty and

packet corruption is emulated (per=10−6), a small amount of congestion misses are expected.

According to log data at EMULATOR, the queue of the bottleneck link is indeed emptied

periodically, allowing accurate queue delay measurements.

3.6.3 Flow Number Scalability

In this set of experiments, the configuration is bw=500Mbps, delay=25ms, per=10−6, and

qsize=0.5BDP. Web-like background traffic consumes about 100Mbps, and there are one

legacy FTP flow and one VoIP flow. N , the number of competing HSCC flows, is set to 2,

6, 10, 16, and 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 6 10 16 20

Li
nk

 U
til

iz
at

io
n

R
at

io

Flow Number

CUBIC
SYNC
CTCP

(a) Link Utilization Ratio

 55
 60
 65
 70
 75
 80
 85
 90

2 6 10 16 20

A
ve

ra
ge

 D
el

ay
 (

m
s)

Flow Number

CUBIC
SYNC
CTCP

(b) Delay of VoIP (ms)

Figure 3.24: Scalability with Flow Number (Testbed Evaluation)

3.6 Testbed Evaluation Results 108

The duration of each experiment is 600 seconds. Figure 3.24 plots utilization ratio of the

bottleneck link and user experience of VoIP. Link utilization ratio observed is lower than 1

due to Iperf measurement, header overhead, and Dummynet inaccuracy when emulating high

speed networks. Based on these plots, we find that when N is small (2 or 6), CTCP cannot

efficiently utilize the bottleneck link. A possible reason is that when per-flow throughput is

high, CTCP is more likely to regard the noise in RTT samples as congestion signal. When

N is large, CTCP can utilize the bottleneck link efficiently, but VoIP packets also experience

longer delay. Cubic-TCP can efficiently utilize the bottleneck link in all cases. However,

VoIP packets also always experience long delay, and the performance degrades with the

increase of N . As for Sync-TCP, it can efficiently utilize the bottleneck link and keep the

friendliness to cross traffic independent of the value of N .

While the results are not shown here, we observed that when Cubic-TCP is used, through-

put of legacy FTP drops by about 50%, compared to the case where either Sync-TCP or

CTCP is used.

3.6.4 Effects of Buffer Sizes

In this set of experiments, we vary the amount of buffer available on the router. The

bottleneck link is emulated as bw=1Gbps, delay=25ms, per=10−6, and qsize varies from

0.1BDP to 2.0BDP. 30 flows, which are driven by CTCP, Cubic-TCP, or Sync-TCP, are

established between SENDER and SINK. As for background traffic, web-like traffic consumes

about 200Mbps and there are also a VoIP flow and 30 legacy FTP flows. Each experiment

runs for 600 seconds.

Figure 3.25(a) plots the utilization ratio of the bottleneck link. It indicates that Sync-

TCP will cause slightly lower utilization ratio when the queue size is smaller than the value

expected by Sync-TCP (C∗12ms). Please note that this value is independent of flow number.

Figure 3.25(b) plots the average delay experienced by VoIP packets, when queue size

varies. It indicates that when queue size is large, the deployment of CTCP and Cubic-TCP

3.6 Testbed Evaluation Results 109

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.25 0.5 1.0 2.0

Li
nk

 U
til

iz
at

io
n

R
at

io

Queue Size (BDP)

CUBIC
SYNC
CTCP

(a) Link Utilization Ratio

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

0.1 0.25 0.5 1.0 2.0

A
ve

ra
ge

 D
el

ay
 (

m
s)

Queue Size (BDP)

CUBIC
SYNC
CTCP

(b) Delay of VoIP (ms)

Figure 3.25: Effects of Different Buffer Sizes (Testbed Evaluation)

can severely degrade user experience of VoIP.

3.6.5 Dynamic Scenario

In this set of experiments, we evaluate whether Sync-TCP can work well with changes in

HSCC flows and cross traffic. The bottleneck link is emulated as bw=1Gbps, delay=25ms,

per=10−6, and qsize=0.5BDP. Figure 3.26 shows the timing of traffic generation for these

experiments.

Results from D-ITG and Iperf show that all three TCP variants can efficiently utilized the

bottleneck link. Table 3.2 shows the VoIP user experience (delay and packet loss rate) when

different HSCC TCP variants are adopted. It can be seen that Cubic-TCP has the highest de-

lay and loss rate, follow by CTCP and finally Sync-TCP. Another way to interpret the delay

measurement is to translate this delay into normalized average buffer occupancy. For exam-

ple, when Sync-TCP is used, normalized average buffer occupancy is 61ms−RTPD
MaximumQueuingDelay

=

3.6 Testbed Evaluation Results 110

1 VoIP+ 1 Quake + 10 legacy FTP + 160M Web-like Traffic

10 HSCC TCP Flows

50

10 HSCC TCP Flows

1 VoIP+ 1 Quake + 10 legacy FTP + 130M Web-like Traffic

100 150 450 500 550 600

Figure 3.26: Flow Arrive and Leave Sequence of Dynamic Scenario (Testbed Evaluation)

44% since RTPD = 50ms and Maximum Queueing Delay is 25ms (queue size is 0.5BDP).

This value can be more than 100% since there is imprecision in the scheduling interval and

there can be buffering elsewhere. Interpreted this way, the impact of Cubic-TCP and CTCP

on VoIP traffic can be very significant if large buffer is used.

VoIP Packets Cubic-TCP CTCP Sync-TCP
Average Delay (ms) 86 75 61

Normalized Average Buffer Occupancy 144% 100% 44%
Packet Loss Rate 0.0075 0.0061 0.0031

Table 3.2: VoIP User Experience (Dynamic Scenario of Testbed Evaluation)

Figure 3.27 shows that Sync-TCP flows starting at different times can converge to the

equilibrium point quickly, about 10s in this case. As for Cubic-TCP and CTCP, their results

are much worse. In many cases, these HSCC flows do not converge to a steady state within

the duration of the experiment.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450 500 550

T
hr

ou
gh

pu
t (

M
bp

s)

Time (second)

Sync-TCP Flow 1
Sync-TCP Flow 11

Figure 3.27: Throughput Trajectory of Two Sync-TCP Flows (Mbps)

3.6 Testbed Evaluation Results 111

3.6.6 Summary of Testbed Evaluations

For each of the above described experiments, we calculate the tuple consisting of (1) the

ratio of wasted bandwidth (1 - link utilization ratio) and (2) the normalized average buffer

occupancy. These tuples are plotted in Figure 3.28, each point corresponding to a testbed

experiment. For a HSCC algorithm, the ideal performance is that bandwidth is not wasted

and the buffering occupancy is minimum. Hence, the ideal performance is indicated by the

position (0,0). Points closer to this location have better performance since they achieve good

tradeoff between efficiency and friendliness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 B
uf

fe
r

O
cc

up
an

cy

1 - Link Utilization Ratio

CUBIC
CTCP
SYNC

Figure 3.28: Tradeoff Between Efficiency and Friendliness

Figure 3.28 shows that Cubic-TCP always achieves very good efficiency. However, the

cross traffic also always experience long queue delay and possible high packet loss rate.

Hence, Cubic-TCP achieves high efficiency at the cost of hurting cross traffic (web surfing,

VoIP, etc.). As for CTCP, there is quite a lot of variation in efficiency. When CTCP performs

good in efficiency, buffer occupancy also becomes high.

Figure 3.28 also shows that Sync-TCP achieves the best tradeoff between efficiency and

friendliness. Its performance is more reliable in terms of provide good link utilization while

3.7 Related Work 112

making sure that average delay is also low.

This section presents preliminary testbed evaluations of Sync-TCP. As for implementa-

tion details and additional experimental results, please refer to [129].

3.7 Related Work

Scalable TCP [80], a pure MIMD (Multiplicative Increase and Multiplicative Decrease) con-

gestion control algorithm, was first proposed for long fat network pipes with large BDP. Since

then, a lot of end-to-end HSCC algorithms have been proposed for distributing bandwidth

more fairly and being more friendly to cross traffic. Highspeed TCP [51] adopts well-defined

functions for its α and β with the aim to converge quickly and avoid large burst of segment

loss. Bic-TCP [144] adopts a concave cwnd growth function for improving RTT fairness and

reducing the number of packets dropped in one congestion event, and hence packet loss rate

of cross traffic will be reduced. Cubic-TCP [59], an offspring of Bic-TCP, improves RTT

fairness further by using a RTT-independent concave cwnd growth function. For reducing

packet loss rate suffered by cross traffic, queue delay is exploited by TCP Illinois [94] whose

α decreases with the increase of queue delay. This technique is also adopted by Sync-TCP

for avoiding the case that queue delay is much larger than Thqd. H-TCP [91] adopts AIMD

for improving convergence and fairness. For improving RTT fairness, its additive increase

factor, α, is designed as a function of the clock time. These techniques of H-TCP are followed

by Sync-TCP. Sync-TCP also increases cwnd by α segments per Twin for improving RTT

fairness further.

All the above proposals decrease cwnd only when segment loss is detected. Hence, the

network needs to operate at the cliff sometimes and the cross traffic will unavoidably expe-

rience long queue delay. Based on this consideration, several delay-based HSCC algorithms

are also proposed. As discussed in section 3.2.2, Fast TCP cannot drive the network to op-

erate around the knee when there are many competing flows. In the metrics of friendliness,

3.8 Summary and Future Work 113

CTCP may be worse as it needs to act as loss-based TCP for ensuring that its throughput

is not less than the legacy TCP. In this aspect, Yeah-TCP [20] and TCP Fusion [77] act

like CTCP. Hence, they are not designed to drive the network to operate around the knee

too. Although Delay-based AIMD [48] tries to drive the network to operate around the knee

independent of the number of competing flows, it does not carefully consider how to empty

the queue of the bottleneck link so that RTPD can be estimated correctly. Rerouting issue

and the effects of cross traffic are not discussed too.

Except the above end-to-end HSCC algorithms, some mechanisms [68][79], that need

supports from intermediate routers, have also been proposed for long fat network pipes.

3.8 Summary and Future Work

In this chapter, Sync-TCP, a new delay-based high speed congestion control algorithm, is

proposed for safely ramping up the throughput of bandwidth-greedy and elastic applications

on long fat network pipes of the Internet. Sync-TCP is designed to drive these network pipes

to operate around the knee and distribute the residual bandwidth fairly among competing

flows even when the number of competing flows varies and their RTPDs differ significantly.

Extensive simulations and preliminary testbed evaluations indicate that Sync-TCP does

enable bandwidth-greedy and elastic applications to utilize long fat network pipes efficiently

and fairly without hurting the cross traffic applications, especially the interactive ones.

In the next step, more testbed evaluations and live experiments in the Internet will

be carried out for evaluating Sync-TCP thoroughly under more realistic environments. The

values of system parameters will also be investigated for tuning the performance of Sync-TCP.

More information about Sync-TCP can be found at http://cir.nus.edu.sg/synctcp/.

Chapter 4

TCP KentRidge: A New TCP

Framework for the Heterogeneous and

Evolving Internet

4.1 Introduction

With the deployment of different communication technologies, the Internet has become a

highly heterogeneous inter-network, and it is still evolving continuously. Such an inter-

network not only brings many challenges to TCP protocol, it also affects how TCP should

be implemented, especially the congestion control mechanism.

Over these years, it has been a hot research topic to improve TCP performance in the

heterogeneous Internet and a large number of TCP adaptations have been proposed for dif-

ferent kinds of networks, such as LFN (Long Fat Network) [69], LTN (Long Thin Network)

[104], Slow Link [45], Lossy Link [46], Asymmetric Link [22], Satellite Link [16], MANET

(Mobile Ad hoc Network) [60], etc. However, very few of them have been implemented in the

popular operating systems. The classical TCP implementation still uses the same standard-

ized congestion control mechanism for all connections and cannot achieve good performance

4.2 TCP in the Heterogeneous Internet 115

under many scenarios of the heterogeneous Internet. In this chapter, we will focus on how to

implement TCP so that it can work well in the heterogeneous Internet and can easily evolve

with the changing Internet. More specifically, a new TCP implementation framework will

be designed so that a large number of TCP adaptations can be easily implemented and a

connection could have the potential of learning its current environment and automatically

selecting the most appropriate TCP adaptation to be used.

This chapter is organized as follow. In section 4.2, we first summarize the existing TCP

adaptations, that have been proposed for different kinds of network pipes and may be utilized

by TCP KentRidge. The challenges faced by a TCP implementation in the heterogeneous

and evolving Internet are then discussed in section 4.3. The state of the art TCP implemen-

tations are also discussed in section 4.4. After that, section 4.5 presents the details of TCP

KentRidge, which is designed to provide modular congestion control, per-connection conges-

tion control configurability, and the capability of automatically and intelligently changing

TCP adaptation used by a connection according to its current environment. TCP KentRidge

implementation status in FreeBSD 7 is also introduced in section 4.6. Finally, section 4.7

summarizes the work that have been done and points out the necessary future works.

4.2 TCP in the Heterogeneous Internet

When segment loss is detected mainly through 3DUPACK, the standardized TCP congestion

control versions (Reno, SACK, and Newreno) are very simple and can be characterized as

AIMD(1, 0.5). Except these variants, many other congestion control mechanisms have also

been proposed for TCP.

TCP Westwood [40][131] tries to measure available bandwidth by observing the returning

rate of ACK packets. When congestion is detected, TCP Westwood sets ssthresh based on

the measured bandwidth and the smallest observed RTT sample. In-path capacity estimation

has also been adopted by PCP [19] and RAPID [82], and they directly adjust the sending

4.2 TCP in the Heterogeneous Internet 116

rate based on the estimated bandwidth.

Apart from segment loss, other congestion signals have also been utilized by some pro-

posals. Based on the network performance model as a function of network load [73], many

delay-based congestion control algorithms have been proposed and they have been discussed

in chapter 3. Not only end-to-end congestion control mechanisms based on Droptail queue,

some congestion control mechanisms, such as TCP ECN [114] that is designed based on

active queue disciplines (RED [54], etc.), have been proposed too.

Nowadays, many different links with different characteristics (bandwidth, delay, packet

error rate, etc.) are attached to the Internet and these links pose different challenges to

TCP. Hence, a large number of TCP adaptations have been proposed for some specific kind

of network, and these proposals are summarized in the following subsections. Before that,

the metrics of a network path and the ways that they affect TCP performance are first

discussed in the following list.

• Available Bandwidth: the smallest available bandwidth among all links of a specific

network path. It is also the highest throughput that can be achieved by the sender.

Available bandwidth normally keeps changing due to cross-traffic and other reasons.

The ultimate goal of TCP congestion control is to keep the sending rate as close to the

current available bandwidth as possible.

• RTT (Round Trip Time) and Jitter (RTT Variance): RTT is the sum of propagation

delay of all links, queue & process delay of all routers and the two endpoints. RTT

determines the speed of capacity probing. RTT samples may also signal network con-

gestion through queue delay. Jitter is the variance of RTT samples. RTT may change

due to many reasons, such as changes of queue delay, re-route, link layer retransmis-

sion, etc. Jitter and the smooth average of RTT samples determine the value of rto,

which is used by TCP retransmission timer. Hence, they affect the speed that the

TCP sender responds to network congestion. In addition, large jitter may also cause

spurious timeout.

4.2 TCP in the Heterogeneous Internet 117

• PLR (Packet Loss Rate): the probability that a packet is dropped at any router (con-

gestion) or corrupted on any link (transmission error) of a network path. PLR affects

TCP performance since TCP regards segment loss as the signal of network congestion.

According to TCP throughput model [101][108], RTT, PLR, rto, segment size, and the

number of segments acknowledged by each ACK determine the throughput of a TCP

flow. Hence, the networks, that have extreme values of RTT, Jitter, and PLR, should

be investigated.

• BDP (Bandwidth Delay Product): AvailableBandwidth ∗ RTT . BDP is the optimal

value of cwnd and networks with extreme BDP values should be investigated.

• Packet Reordering: the phenomenon that the receiving order of packets is different

with the sending order. Packet Reordering is not a rare event in the Internet. Different

segments may use different paths of IP networks, some routers may reorder packets for

optimization, and some networks’ link layer protocols may not support in-order data

transmission. The reordering of ACK packets interrupts TCP’s self-clock mechanism

and causes large data burst at TCP sender. When TCP segments is reordered slightly,

TCP receiver sends a NEWACK after one or two DUPACK. Thus, data transmission

also becomes a little more bursty. When the reordering of TCP segments is larger than

three, spurious fast retransmission is triggered and cwnd is reduced unnecessarily.

• Path Asymmetry: the large difference of network path characteristics between the two

directions of a network path. The commonest asymmetry is bandwidth asymmetry of

access link, such as ADSL and GPRS. In this case, the downlink cannot be efficiently

utilized because the uplink does not have enough bandwidth to transmit all ACKs

generated by the receiver [23].

Many networks may have extreme values for several of these metrics. For example, GPRS

has low available bandwidth, long RTT, large jitter, high PLR, and asymmetric bandwidth.

4.2 TCP in the Heterogeneous Internet 118

Due to the large number of combinations, the following paragraphs will summarize the

existing solutions according to the extreme values of each metric.

TCP Adaptations for Large BDP

BDP of long fat networks, such as optical and satellite networks, can be very large. TCP

faces several problems in these networks since TCP congestion control was originally designed

for links with low/medium bandwidth.

Firstly, TCP sender cannot efficiently utilize the abundant bandwidth due to its AIMD

algorithm with fixed parameters. Many HSCC algorithms have been proposed for solve this

issue and these proposals have been discussed in chapter 3.

Secondly, with large BDP, ssthresh will also be very large. The exponential increase at

the end of SS phase will cause the loss of many segments. When cwnd is larger than some

threshold, Limited Slow-Start [52] slows down the exponential increase algorithm used in SS

state.

TCP Adaptations for Small BDP

In the current Internet, there are still some networks with small BDP, such as dial-up and

GPRS. Due to the large initial value of ssthresh, multiple segments will be dropped at the

end of the first slow start phase. This problem is called slow start overshoot. In [40][66][140],

the authors propose to set ssthresh according to the BDP that may be measured by the

sender or reported from the receiver. When BDP is small and a segment is lost, there may

not be enough segments to trigger the receiver to send three consecutive DUPACK packets.

Limited Transmit [14] lets TCP sender send out a new segment when the first or the second

DUPACK packet is received. Consequently, TCP receiver will transmit more ACK packets

and the sender is more likely to detect segment loss through 3DUPACK.

4.2 TCP in the Heterogeneous Internet 119

TCP Adaptations for Estimable Available Bandwidth

Available bandwidth may be fixed or estimable, especially when the access link (dial-up and

ADSL, etc.) is slow and becomes the bottleneck link. With the fixed or estimable available

bandwidth, TCP sender can just set its cwnd according to available bandwidth and RTT.

In [140], the authors propose to set the maximum value of cwnd according to the last link’s

available bandwidth and RTT.

The estimable available bandwidth may also change frequently. For example, available

bandwidth of a Wi-Fi node may change due to link quality, contention, and handoff. But the

available bandwidth still can be estimated by some mechanisms [88][139]. Many solutions

have been proposed for this kind of networks and they have been discussed in chapter 2.

TCP Adaptations for Long RTT

In CA state, cwnd is increased by one segment per RTT. This is unfair to connections with

long RTT. In [50], the authors suggest to change TCP’s AIMD algorithm so that all senders

increase their sending rate with the same speed, irrespective of their RTT values. Based on

this observation, some algorithms have been designed in [38][64].

TCP Adaptations for Large Jitter

When RTT changes abruptly, spurious timeouts may occur [58]. To solve this problem,

Conservative RTO [58] and Delay Injection [126] propose to generate large rto value for

avoiding spurious timeout. But these methods will slow down TCP response to the real

network congestion. DSACK [55] and Eifel [97] try to detect spurious timeout and undo the

unnecessary cwnd reduction. In [41][42], the authors try to hide large jitter and bandwidth

variance of 3G networks by regulating the sending rate of ACK packets or changing awnd

(advertised window) of ACK packets at the base station.

4.2 TCP in the Heterogeneous Internet 120

TCP Adaptations for Packet Reordering

When the reordering of TCP segments is larger than three, spurious fast retransmission

will occur. In this case, DSACK [55] and Eifel algorithm [97] can also be used to detect

spurious fast retransmission and undo the unnecessary cwnd reduction. In [30][98], the

authors propose to adjust (blindly or according to network environment) the threshold used

by the sender to detect congestion through consecutive DUPACK packets. In addition, when

the ACK packets are reordered, they will cause large data burst and traffic shaping at TCP

sender should be helpful.

TCP Adaptations for High Packet Loss Rate

When ACK packets are lost, data burst may occur and traffic shaping should be used at

the sender. Furthermore, the loss of ACK slows down capacity probing since TCP sender

increases cwnd according to the number of received ACKs. To solve this issue, TCP Byte

Counting [18], which increases cwnd according to the number of bytes acknowledged by an

incoming ACK, has been proposed.

When many segments are corrupted over some lossy links, TCP sender will reduce its

cwnd unnecessarily. Small mss could be used to reduce the packet loss rate due to transmis-

sion error. Segment corruption can also be hidden from TCP through PEP (Performance

Enhancement Proxy) proposals [21][24][31] and/or link layer proposals, such as Link Layer

Automatic Retransmission reQuest and Forward Error Correction [8][11].

There are many mechanisms that try to differentiate corruption and congestion according

to the correlation between the increase of RTT and congestive segment loss [28][56][109].

Furthermore, explicit transport error notification is also adopted by TCP HACK [117] and

some other mechanisms [25][83][140]. However, when the server runs these mechanisms, the

clients can acquire more bandwidth through cheating [86].

4.3 TCP Implementation in the Heterogeneous and Evolving Internet 121

TCP Adaptations for Bandwidth Asymmetry

If the bandwidth difference between two directions is very large, bandwidth of the downlink

cannot be efficiently utilized because the uplink cannot transmit ACK packets generated

by the receiver [23]. Large mss can be used to reduce the number of ACK packets. ACK

Congestion Control have also been proposed to solve this problem [23].

In summary, many TCP adaptations have been proposed for different kinds of networks.

Through classifying them based on the type of network pipe that they are proposed for,

we can draw some guidelines on how to select the most appropriate TCP adaptation for

a connection based on its environment. In the following section, we will discuss how TCP

should be implemented in the heterogeneous and evolving Internet.

4.3 TCP Implementation in the Heterogeneous and

Evolving Internet

As the deployment of various communication technologies, the Internet has become a highly

heterogeneous inter-network composed of networks with varying characteristics (bandwidth,

delay, etc.), such as optical network, satellite network, ADSL, Broadband over Power Line,

Wi-Fi, WCDMA, etc. In addition, many hosts with different resources (CPU, memory,

power supply, etc.), such as Mainframe and smart phone, have been attached to the Internet.

Different operating systems (Windows, Linux, etc.) with their own TCP implementations

are installed on these hosts, and applications (FTP, WWW, etc.) with different expectations

are also running on these hosts. Figure 1.4 in chapter 1 illustrated the heterogeneity of the

Internet in part. In the following paragraphs, we will investigate how the heterogeneous and

evolving Internet affects the way of implementing TCP.

1. Firstly, a host needs to communicate with other hosts that spread across the globe.

4.3 TCP Implementation in the Heterogeneous and Evolving Internet 122

For example, a server needs to handle clients that come from different places through

various access networks. A client also needs to access many servers located at different

places. With the availability of Peer to Peer applications, clients need to communicate

with each other too. Consequently, within the heterogeneous Internet, different con-

nections driven by the same TCP implementation of a host need to run on network

pipes with different characteristics. Even for the same connection, its network pipe may

also have varying characteristics at different times due to mobility. Especially, with

multiple network interface cards and mobile IP [36], a TCP connection may run on

different kinds of network pipes during its life time. In summary, TCP implementation

of a host needs to face challenges brought by different network path characteristics.

In addition, routers in the Internet may also have different queue sizes and adopt

different queue management schemes, such as DropTail and Active Queue Management

with ECN (explicit congestion notification) [114]. In another word, they may provide

different kinds of congestion signals, such as segment loss, queue delay, and ECN

bit. Hence, TCP implementation of a host needs to handle different network feedback

provided by these routers.

TCP Adaptation for
Long-Fat Network

TCP Adaptation for
Long-Thin Network

TCP Adaptation for
Mobile Adhoc Network

Standard
TCP Congestion Control

TCP Adaptation
for X Network

TCP Adaptation
for Y Network

TCP Adaptation for
Lossy Wireless Network

TCP Adaptation for
Asymmetry Network

TCP
implementation

that can dynamically select
the most appropriate TCP adaptation

for each connection based on
the type of its current network pipe

Figure 4.1: An Ideal TCP Implementation for a Highly Heterogeneous Internetwork

4.4 State of the Art TCP Implementations 123

Based on the above observations, it is unlikely that a TCP implementation with only

one congestion control mechanism could always work well in the Internet. In order to

support diverse environments, it is now worthwhile to bring more TCP adaptations and

more intelligence into TCP implementation. More specifically, TCP implementation

should keep learning current characteristics of the network pipe used by each connection

and select the most appropriate TCP adaptation accordingly. With such an ideal TCP

implementation (shown in figure 4.1), a user could surf the heterogeneous Internet with

more fulfilling experience.

2. Secondly, hosts of the Internet are installed with different operating systems, whose

TCP codes may have different capabilities. Hence, TCP implementation of a host

needs to talk with different TCP versions. In addition, TCP implementation of a host

normally serves applications with different expectations (short delay, high throughput,

smoothness, etc.). Furthermore, a TCP implementation may run on computing devices

with different constraints (CPU, memory, battery, etc.). These heterogeneity should

also be systematically handled by an ideal TCP implementation.

3. Finally, but very importantly, the Internet is still changing continuously in the aspects

of network infrastructure, communication technologies, network applications, etc. An

ideal TCP implementation should be modularized for better maintainability and exten-

sibility. More specifically, it should be carefully designed so that new TCP adaptations

and their corresponding intelligence can be added with ease.

4.4 State of the Art TCP Implementations

As a part of network protocol stack, TCP is normally implemented in the kernel of operating

systems for efficiency and security. In this section, TCP implementations in three prominent

operating systems (FreeBSD, Linux, and Windows) are described and discussed, particularly

with focus on their ways of implementing congestion control.

4.4 State of the Art TCP Implementations 124

4.4.1 FreeBSD

Source codes of many Unix-based operating systems, including FreeBSD, originate from BSD

Unix. Hence, BSD’s way of implementing TCP is also inherited by these operating systems.

Classical TCP Implementation

tcp_input.c
tcp_do_segment()

...

tcp_output.c
tcp_output()

...

tcp_timer.c
tcp_timer_rexmt()

...

...

congestion recoverycapacity probinginitialization

Figure 4.2: Classical TCP Implementation of BSD-like Unix Operating Systems

In FreeBSD 7.1, congestion control is highly interleaved with other TCP codes which

are maze-like complex. The source codes related with congestion control are spread across

several files and tens of functions. As illustrated in figure 4.2, FreeBSD 7.1 TCP codes, that

reduce cwnd, appear in tcp timer rexmt(), tcp do segment(), and tcp output(), etc. With

such an implementation, it is inconvenient and difficult to change the existing codes. With

the addition of congestion control related TCP adaptations and other features, the source

codes tend to become more complex and unwieldy.

Except for TCP Reno [17], several RFCs in standards track, such as TCP Newreno

[53], TCP SACK [100], Large Initial Window [15], and Limited Transmit [14], have been

implemented in FreeBSD 7.1. These mechanisms can be enabled/disabled, but through

global variables. Hence, the same set of standardized mechanisms will be used by all active

connections of a host installed with FreeBSD 7.1.

4.4 State of the Art TCP Implementations 125

4.4.2 Linux

In Linux, congestion control is now implemented in a framework, that is similar to the

backplane-slot framework proposed in ADAPTIVE [118]. More specifically, congestion con-

trol has been abstracted and modularized for maintainability, extensibility, and configurabil-

ity. Core functions of congestion control are implemented separately and are called through

function pointers at corresponding places (slots) of the remaining TCP codes (backplane).

In Linux 2.6.26, more than ten TCP adaptations have been implemented according to

this framework and Cubic-TCP is now the default congestion control mechanism. In the per-

connection TCP control block, a new variable is defined to specify the TCP adaptation used

by a connection. A new socket option has also been provided for facilitating per-connection

congestion control configuration.

Although Linux has modularized congestion control, provided per-connection configura-

tion, and implemented many TCP adaptations, it is still not good enough for the Internet.

Firstly, the slots in Linux focus on how to change cwnd & ssthresh. They are not general

enough to implement TCP adaptations that use some new TCP options [117][143]. Sec-

ondly, Linux does not consider how to learn the environment of a connection and how to

dynamically select the most appropriate TCP adaptation for this connection. Considering

that application developers and end users may not know congestion control very well, it is

too risky to empower them to determine the TCP adaptations used in the Internet.

4.4.3 Windows

Except standard TCP congestion control, Compound TCP [125] has also been implemented

in Windows (Vista and Windows Server 2008), and the user can switch between standard

TCP and Compound TCP [125] by changing a global variable. Since source codes are

not available, it is impossible to know how congestion control is implemented in Windows.

Anyway, the same kind of congestion control, standard TCP congestion control or Compound

TCP, will be used by all active connections of a host installed with Windows.

4.5 Design of TCP KentRidge 126

In summary, none of these implementations can solve all challenges brought by the In-

ternet, which are discussed in section 4.3. It is now necessary and worthwhile to reengineer

TCP implementation for handling these challenges systematically.

4.5 Design of TCP KentRidge

In this section, we present the details of our proposal, TCP KentRidge. TCP KentRidge is

a new TCP framework designed to provide modular congestion control, per-connection con-

gestion control configurability, and the potential to automatically and intelligently change

TCP adaptation used by a connection according to its environment. This section first intro-

duces the architecture of TCP KentRidge, and the details of its two important components

(DC-TCP and Network Pipe Classification) are then presented.

4.5.1 The Architecture

Figure 4.3 depicts the architecture of TCP KentRidge comprising of four components, Knowl-

edge Base, DC-TCP, Network Pipe Classification, and Intelligent Agent.

Knowledge Base includes the knowledge of all TCP adaptations supported by TCP Ken-

tRidge. For each TCP adaptation, it holds the kind of network pipe that this adaptation is

proposed for, the capabilities that this adaptation depends on, and the advantages & short-

comings of this adaptation. For example, the network pipe, that Sync-TCP [142] is proposed

for, is long fat network with large queue; the advantages of Sync-TCP are in-protocol fairness

and friendliness to cross traffic; and its shortcomings are MCL unfairness and the starvation

by loss-based TCP adaptations. The survey of the existing TCP adaptations presented in

section 4.2 should be helpful in building Knowledge Base.

DC-TCP (Dynamically Configurable TCP Framework) is a framework that supports per-

connection configuration and enables the host to dynamically change the TCP adaptation

used by a connection. Following a backplane-slots framework, congestion control in DC-

4.5 Design of TCP KentRidge 127

ApplicationsTCP KentRidge

Lower Layers

data

data

Cross Layer and Network Feedback

Per-Connection Statistics
Peer Notification

Application Expectations
Peer Capabilities

Selected

TCP Adaptation

Knowledge Base

TCP Adaptations : Network Pipe
Advantages, Shortcomings, Dependence

O
 p e r a tin g S y s te m

Network Pipe
Classification

DC-TCP
Dynamically (Per-Connection)
Configurable TCP Framework

Intelligent
Agent

Platform Information

Figure 4.3: TCP KentRidge: the Architecture

TCP is modularized and abstracted to improve maintainability & extensibility and support

dynamically switching among TCP adaptations. In addition, DC-TCP collects the environ-

mental variables of a connection, such as application’s expectations and peer’s capabilities.

Statistics of the network pipe, such as packet loss rate and the achieved throughput, are also

maintained through passive observing TCP data flow. Furthermore, DC-TCP handles the

explicit notification from the peer and triggers Network Pipe Classification if needed.

Network Pipe Classification is responsible to determine the type of the current network

pipe used by a connection. It makes the decision mainly based on network path characteris-

tics passively observed by DC-TCP. In some trustworthy environments, explicit notification

from the peer, the network, or lower layers, may also be used. If it finds out that the type

of the current network pipe has changed, Intelligent Agent is triggered immediately.

Intelligent Agent chooses TCP adaptation for a connection based on its environment.

The environment variables include the type of the current network pipe, peer’s capabilities,

4.5 Design of TCP KentRidge 128

application’s expectations, and platform information. Based on these variables, Intelligent

Agent queries Knowledge Base to get the most appropriate TCP adaptation and instructs

DC-TCP to use the selected adaptation when processing the future events of this connection.

4.5.2 DC-TCP: The Workhorse

DC-TCP is the workhorse of TCP KentRidge. It fulfils TCP functions and collects informa-

tion for Network Pipe Classification and Intelligent Agent.

Similar to the popular operating systems, DC-TCP follows the event-driven model. In

order to improve maintainability, all events that are related with congestion control are first

determined. For each related event, a slice is designed, and all congestion control related

codes triggered by this event are put into the procedure written for this slice. At the proper

locations (slots) of the remaining TCP codes (backplane), the procedures written for these

slices are called. Hence, congestion control related codes are separated from other TCP

codes and the maintainability is improved.

The main task of these slices is to fulfil congestion control. Congestion control has been a

hot research topic in recent years, and many TCP adaptations have been proposed for differ-

ent kinds of networks. These adaptations are different mainly in core functions of congestion

control, such as capacity probing and congestion recovery. In order to facilitate the imple-

mentation of these adaptations and enable a host to dynamically and intelligently switch

among them, core functions of congestion control are further modularized and abstracted.

More specifically, an element is designed for each core function and the codes, that fulfil the

function, will be organized into a procedure written for this element. For example, all codes,

that reduce sending rate, will be organized into element cr. When slices are processing their

corresponding events, they will call elements through function pointers at proper locations

(sub-slots) to fulfil congestion control. Hence, a slice can be regarded as a sub-backplane

with sub-slots for calling elements. Figure 4.4 illustrates such a two level backplane-slots

framework used by DC-TCP.

4.5 Design of TCP KentRidge 129

TCP
Framework

disconnect_handler

establish_handler

options_handler flags_handler

data_handler pre_transmit_handler

icmp_handler

newack_handler

function pointer
element_cp

dupack_handler

function pointer
element_cr

timeout_handler

function pointer
element_cr

tcpcb

options_creator flags_creator

post_transmit_handler

DC-TCP

TCP Adaptations
Cubic-TCP

element_cp

element_cr

element_rttm

element_initialize

Sync-TCP

element_cp

element_cr

element_rttm

element_initialize

...

ccalg

ccvariables
(overloadable cc specific
variables)

TCP KentRidge related
variables

...

TCP Newreno

element_cp

element_cr

element_rttm

element_initialize

commands_handler

...

...

...

Figure 4.4: Design Pattern of DC-TCP: the two level backplane-slots framework

4.5 Design of TCP KentRidge 130

With this framework, a TCP adaptation can be implemented by instantiating a few

elements. Hence, the modularity, maintainability, and extensibility are improved, and it is

now much easier to implement the existing adaptations and new adaptations that may be

proposed in the future.

A new structure, tcp ccalg, is defined to hold the addresses of procedures written for these

elements. For each supported TCP adaptation, there will be a corresponding tcp ccalg. In

the per-connection TCP control block, there is a pointer (ccalg) that points to the tcp ccalg

structure of the TCP adaptation used by this connection. Through changing ccalg, a host

can dynamically change the adaptation used by a connection.

Considering that TCP KentRidge will support many TCP adaptations, it is impossible

to insert the variables used by all of these adaptations into the per-connection TCP control

block. Hence, ccvariables is declared in TCP control block for reserving some space. ccvari-

ables is used to hold state variables required by a TCP adaptation, and it will be overloaded

when the adaption used by a connection is changed.

Except congestion control, the slices of DC-TCP also carry out some other tasks of TCP

KentRidge. For example, they collect application’s expectations and peer’s capabilities,

which are needed by Intelligent Agent. These slices also update statistics of the network

pipe through passively observing TCP data flow. These slices are also responsible to handle

explicit notification from the peer and call Network Pipe Classification if needed.

In the following paragraphs, all slices and elements of DC-TCP are described in details.

Elements for Core Functions of Congestion Control

Since core functions of congestion control are to adjust sending rate based on network state,

element initialize is designed for initializing the sending rate, element cp is designed for

increasing the sending rate, and element cr is designed for reducing the sending rate. In

addition, it is a very important task of TCP congestion control to set rto appropriately and

4.5 Design of TCP KentRidge 131

element rttm is also designed for this purpose.

A core function of congestion control may be triggered by different events. For example,

the sending rate will be reduced when 3DUPACK is received, the retransmission timer

expires, or ECN-bit is received. Hence, the codes of a procedure (that is written for an

element) are normally organized according to the slices, in which the element is called.

1. element initialize: After a connection is established or the sender begins to transmit

after a long idle period, this element is called to initialize cwnd, ssthresh, and other

variables related with congestion control.

2. element cp: This element is responsible to increase cwnd for probing network capacity.

It is called when NEWACK is received, and it may also be called when some explicit

notification comes from the network, the peer, or other layers.

3. element cr : This element is responsible to reduce cwnd so that the network can recover

from congestion. ssthresh and other related variables may also be adjusted in this

element. Within a TCP adaptation, sending rate may be reduced in different ways

when congestion is detected through different signals (timeout, 3DUPACK, etc.). Some

explicit notification, that comes from the network, the peer, and other layers of the

host, may also trigger this element.

4. element rttm: After a RTT sample is measured, this element will be called to update

srtt (smoothed RTT), rttvar (variance of RTT samples), and rto. brtt (the minimal

RTT sample) may also be tracked for calculating queue delay. If Timestamp option is

used, for each NEWACK, this element will be called. Otherwise, this element will be

called once per window of data.

Slices for Congestion Control Related Events

In DC-TCP, congestion control related events include the establishment/disconnection of a

connection, the expiration of retransmission timer, the arrival of a TCP segment, the arrival

4.5 Design of TCP KentRidge 132

of an ICMP message, and system calls. Since DC-TCP processes different parts of a TCP

segment sequentially, several slices are designed for different parts of a TCP segment, such

as flags, options, acknowledgement number, sequence number, etc. Two slices are designed

for acknowledgement number since DUPACK and NEWACK are treated very differently.

1. commands handler :

This slice is called when an application specifies its expectations through TCP socket

options. It will store these information in TCP control block.

2. establish handler :

This slice is called after a connection is established. Its main function is to initial-

ize cwnd, ssthresh, and other related variables. Hence, it has a sub-slot for calling

element initialize. In this slice, DC-TCP may also deduce application’s expectations

based on the port used by a connection.

3. disconnect handler :

This slice is called after a connection is disconnected. Some TCP adaptations may

cache network information learned by this connection for the future usage.

4. flags creator and flags handler :

flags creator is called when TCP sets flags of an outgoing segment, and flags handler

is called when TCP flags of an incoming segment are processed. Considering that all

TCP flag bits had been allocated, the two slices are designed solely for implementing

TCP ECN [114]. Hence, element cr will be called in flags handler.

5. options creator and options handler :

options creator is called when TCP constructs options of an outgoing segment, and

options handler is called when TCP options of an incoming segment are processed.

The two slices are designed to implement TCP adaptations that utilize TCP options

for explicit cooperation, etc.

4.5 Design of TCP KentRidge 133

During three-way-handshake, the two slices are also responsible to negotiate the ca-

pabilities of the peer. For example, TCP SACK is negotiated through TCP SACK

Permit option. Peer’s capabilities will be stored in TCP control block.

During data transmission, options handler may call different elements for different

purposes based on the option to be processed. For example, when Timestamp option

is processed, element rttm will be called.

6. newack handler :

This slice is called when TCP processes a NEWACK. If the sender is in SS or CA

state, element cp will be called for probing network capacity. When the sender is in

FR state, this slice is responsible to differentiate FULLACK and PARTIALACK, and

act accordingly. When Timestamp option is not supported by the peer, this slice is

also responsible to call element rttm for measuring RTT, updating rto, etc.

7. dupack handler :

This slice is called when a DUPACK is received. This slice is responsible to detect

congestion through 3DUPACK if the sender is in SS or CA states. When congestion

is detected, this slice will retransmit the lost segment and call element cr. When the

sender is in FR state, this slice needs to treat DUPACK more carefully for maintaining

an appropriate number of segments in the network pipe.

8. data handler :

This slice is called when the sequence number of an incoming segment is processed. It

judges whether this packet is an in-order segment and decides whether an ACK packet

should be sent back.

9. pre transmit handler :

This slice is called when the sender tries to send out a segment. It will call ele-

ment initialize if the sender has stayed idly for a long period. This slice also decides

4.5 Design of TCP KentRidge 134

the data to be transmitted or retransmitted.

10. post transmit handler :

This slice is called after the outgoing segment is passed to IP layer. When Timestamp

option is not used, some variables need to be updated for RTT measurement.

11. timeout handler :

This slice is called when retransmission timer expires. element cr is called to reduce

cwnd and update ssthresh. For the first expiration, some state variables may be

saved to implement Eifel algorithm that undoes cwnd reduction triggered by spurious

timeout [96]. For the subsequent expirations due to persistent segment loss, this slice

will double rto to reduce sending rate further.

12. icmp handler :

This slice is called when an ICMP message is processed. ICMP message may come

from routers of the Internet. Other layers of the same host may also notify TCP some

useful information through ICMP message. For example, physical layer can report

wireless link quality, with which TCP may deduce packet corruption rate and decide

how to react to segment loss. This slice may call element cp or element cr to adjust

sending rate based on the content of ICMP message.

In addition, the procedures written for the above slices should also collect statistics through

observing TCP data flow. These statistics will be used by Network Pipe Classification for

passively learning the type of the network pipe.

4.5.3 Network Pipe Classification

Network Pipe Classification is responsible for learning the most dynamic part of a connec-

tion’s environment. More specifically, its task is to determine the type of the current network

pipe used by this connection, based on network path characteristics. As discussed in section

4.5 Design of TCP KentRidge 135

4.2, the network path characteristics, that could affect TCP performance, include Available

Bandwidth, RTT, Jitter, Re-ordering, PLR, and Asymmetry.

Many mechanisms have been proposed to estimate these characteristics of a network

path. Based on whether probing packets are needed, these mechanisms can be divided into

two categories: Intrusive and Passive. Intrusive mechanisms send packets in some special

sequences and deduce network path characteristics through analyzing the experience of these

probing packets [71][74][115]. Passive mechanisms deduce network path characteristics by

analyzing the experience of the packets, that belong to the existing data flow. In the context

of TCP KentRidge, since there is already a data flow, it mainly depends on the following

per-connection statistics, that are passively maintained by DC-TCP.

1. Available Bandwidth: The current sending rate, cwnd/srtt, can be regarded as a

coarse estimation of the current available bandwidth. Some in-path capacity estimation

mechanisms [40][19][82][110] can also be used for estimating available bandwidth more

accurately.

2. RTT and Jitter: For setting rto properly, RTT and Jitter has been maintained by TCP

sender. Based on some EWMA (Exponentially Weighted Moving Average) filters, the

sender maintains srtt (a smoothed average of RTT samples) and rttvar (a smoothed

average of variance). brtt, the smallest RTT sample that can be regarded as the

estimation of RTPD, is a very valuable metric and should also be tracked.

3. Packet Reordering: Packet reordering can be measured by calculating the number

of consecutive DUPACK packets, in the case that spurious fast retransmission is de-

tected. Hence, DSACK [55] or Eifel [97] should be used for carrying out spurious fast

retransmission detection.

4. PLR: For reliable data transmission and congestion control, TCP sender has already

carried out segment loss detection. Hence, the interval between two consecutive loss

events can be measured, and PLR can be calculated based on the smoothed average

4.5 Design of TCP KentRidge 136

of loss intervals. Packet loss pattern, sporadic or bursty, may also be estimated by

measuring the number of fast retransmit (caused by sporadic packet loss) and time-

out (caused by bursty packet loss). In addition, the frequency of persistent timeout

should also be maintained. It can be used to judge whether the network is frequently

disconnected. Furthermore, TCP packet may be lost due to network congestion or

transmission error. In some scenarios, queue delay can be used to differentiate the loss

reason, and packet corruption rate can be calculated.

5. Asymmetry: If a TCP connection has bi-directional data flows, end-points may co-

operate to find the asymmetry of the network path. If data flow of the application is

uni-direction, the sender can count the number of transmitted data segments and the

number of received ACK packets. The ratio between the two numbers can be used to

judge whether the connection pass through some asymmetric networks.

According to the statistics passively maintained by DC-TCP, Network Pipe Classification

can periodically determine the type of the current network pipe and trigger Intelligent Agent

if needed. Hence, a new timer is necessary so that a connection can keep changing its

behaviors with the change of its environment. Figure 4.5 shows the current model and rules

used by Network Pipe Classification. The thresholds of each metric should be selected very

carefully. For example, watermark violation proposed in [122] should be used to avoid that

a sender keeps changing its TCP adaptation too frequently.

Normally, the routers can know the network much better than TCP sender. Lower lay-

ers also has more information about the first link used by TCP sender. Furthermore, in

the current Internet, the access link normally dominates the characteristics of a network

path, especially when wireless link or slow link is used by TCP receiver. In this case, TCP

receiver has better opportunity to estimate the last link’s characteristics timely and accu-

rately [139][147]. Based on the above observations, instead of only utilizing the statistics

passively maintained by DC-TCP, explicit notification, that comes from the peer, the net-

work, or other layers of the same host, is also used by Network Pipe Classification in some

4.5 Design of TCP KentRidge 137

cwnd rtt samples
(srtt, variance,
queue delay)

packet loss
spurious fast

retransmit

repeated
timeout

High Speed
Network

Long Fat
Network

(small queue)

Long Thin
Network

Reliable
Wireless
Network

ack ratio

Reorder
Network

Lossy
Network

Asymmetry
Network

Mobile
Network

spurious
timeout

Long Fat
Network

(large queue)

1

2

3 4
5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

frequently spurious fast retransmit : Reorder Network

large cwnd & long rtt : Long Fat Network

small observed queue delay & Long Fat Network : Long Fat Network with small queue

large observed queue delay & Long Fat Network : Long Fat Network with large queue

large cwnd & short rtt : High Speed Network

small cwnd & long rtt : Long Thin Network

large jitter & frequent timeout : Reliable Wireless Network

packet loss & small queue delay : packet corruption

frequently packet corruption : Lossy Network

frequently repeated timeout : Mobile Network

large ratio between the number of transmitted segments and received ack : Asymmetry Network

packet
corruption

Long Fat
Network

Figure 4.5: Network Pipe Classification

4.6 Implementation Status of TCP KentRidge 138

trustworthy environments.

When TCP KentRidge receives some explicit notification from the peer (through TCP

option), the network (through ICMP message), or other layers (through ICMP message), it

normally indicates that some important events happen. Hence, Network Pipe Classification

will immediately judge the type of the current network pipe, and trigger Intelligent Agent if

the type of network pipe has changed.

4.6 Implementation Status of TCP KentRidge

Although Linux TCP is more similar to TCP KentRidge, FreeBSD 7.1 is selected as the plat-

form for implementing TCP KentRidge since its source codes are stabler and have been well

documented by [134][138]. To keep the stability of kernel source codes and facilitate the de-

velopment, TCP KentRidge is implemented as a Loadable Kernel Module. TCP KentRidge

Console, a Graphical User Interface tool, is also provided to researchers for investigating

congestion control with TCP KentRidge.

4.6.1 The Loadable Kernel Module

TCP source codes of FreeBSD 7.1 are read through, and slots (the locations of DC-TCP’s

slices) are first located. Congestion control related codes are then extracted out and reorga-

nized into procedures written for slices of DC-TCP.

At these slots, the procedures written for slices are called through function pointers so

that these procedures can be put into the loadable kernel module. During the implementation

of TCP KentRidge, these procedures written for slices need to be changed frequently for

supporting new features and network path characteristics estimation, such as TCP Pacing

[13] and TCP Probing [110]. Putting these procedures in a loadable kernel module can

speed up the development. For example, the kernel needs to be rebuilt only when some new

variables are inserted into tcpcb, the per-connection TCP control block. The much more

4.6 Implementation Status of TCP KentRidge 139

fallible logic programming can be carried out through rebuilding the codes and reloading the

module into the kernel.

In the kernel, a new global variable, tcp itcp loaded is defined to hold whether the module

has been loaded. A new global structure, tcp intelligence, is also defined to support the

loadable kernel module. After the module is loaded, tcp intelligence will hold addresses of

the procedures that instantiate the slices of DC-TCP. List 4.1 shows how the remaining TCP

codes call a procedure written for a slice at the corresponding slot.

Listing 4.1: Call Procedure Written for slice: newack handler

i f (t c p i t c p l o ad ed && (t c p i n t e l l i g e n c e . newack h != NULL)) {
t c p i n t e l l i g e n c e . newack h (tcpcb , . . .) ;

} else { . . . }

tcp intelligence also holds the addresses of two procedures (implemented in the module)

that return the default TCP adaptation and all supported TCP adaptations of TCP Ken-

tRidge. Finally, tcp intelligence holds the address of the procedure that instantiates Network

Pipe Classification. This procedure is called by a new timer so that a connection can react

to the network periodically.

DC-TCP

These procedures written for slices of DC-TCP are refined. A new variable, ccstate, is

inserted into tcpcb for explicitly holding congestion control state of a TCP sender, and the

codes of these slices are changed accordingly for improving maintainability.

Many other variables are inserted into tcpcb for holding statistics of the network pipe

used by a connection. And the codes that maintain these variables, are inserted into these

procedures written for slices.

More importantly, within the procedures written for slices, sub-slots (the locations of

DC-TCP’s elements) are located. At these sub-slots, the procedures written for elements

are also called through function pointers so that core functions of congestion control can be

4.6 Implementation Status of TCP KentRidge 140

abstracted. Figure 4.6 shows the locations of the slots for all slices and the locations of the

sub-slots for all elements.

tcp_timer.c

tcp_input.c

tcp_syncache.c

tcp_output.c

tcp_subr.c

tcp_timer_rexmt

tcp_syncache_add

tcp_syncache_respond

tcp_dooptions

tcp_do_segment

tcp_mss

tcp_output

tcp_discardcb

timeout_handler

options_handler

dupack_handler

data_handler

flags_handler

establish_handler

newack_handler

options_creator

flags_creator

post_transmit_handler

pre_transmit_handler

icmp_handler

disconnect_handler

element_initialize

element_cp

element_cr

element_rttm

tcp_newtcpcb

tcp_ctlinput

File Function Slice

Element
tcp_usrreq.c tcp_ctloutput commands_handler

Figure 4.6: Locations of Slices and Elements

With these sub-slots designed for elements, a TCP adaptation can be implemented by

instantiating these elements. A new structure, tcp ccalg, is defined for holding the addresses

of procedures written for elements. For each supported TCP adaptation, there is a corre-

sponding tcp ccalg structure in the loadable kernel module. Currently, except the standard

TCP congestion control, Sync-TCP and Cubic-TCP have also been implemented in TCP

4.6 Implementation Status of TCP KentRidge 141

KentRidge. The codes of all supported TCP adaptations are also put into the same loadable

kernel module.

In tcpcb, there is a pointer (ccalg) that points to the tcp ccalg structure of the TCP

adaptation used by this connection. Through changing this pointer, TCP KentRidge can

change TCP adaptation used by a connection. List 4.2 shows how a slice calls a procedure

written for an element at the corresponding sub-slot.

Listing 4.2: Call Procedure Written for an element : element cp

i f (tcpcb−>c ca l g !=NULL && (tcpcb−>cca lg−>e lement cp !=NULL)) {
tcpcb−>cca lg−>e lement cp (tcpcb , . . .) ;

} else { . . . }

In addition, ccvariables is also defined in tcpcb to reserve 64 bytes. ccvariables is used

to hold variables needed by a TCP adaptation, and it will be overloaded when the adaption

used by a connection is changed.

Knowledge Base, Intelligent Agent, and Network Pipe Classification

In this loadable kernel module, Knowledge Base is instantiated as a table. For each supported

TCP adaptation, there is a corresponding row, which holds the kind of network pipe that

the TCP adaptation is proposed for, the capabilities that the adaptation depends on, and

the advantages & shortcomings of the adaptation.

As for Intelligent Agent, it is instantiated as a procedure which looks up Knowledge

Base based on the current environment of a connection with the aim to select the most

appropriate TCP adaptation for this connection. It will instruct DC-TCP to use the selected

TCP adaptation through changing ccalg of this connection’s tcpcb.

Network Pipe Classification is also instantiated as a procedure. After this procedure

determines the kind of network pipe used by a connection and finds out that the network

has changed, it will call Intelligent Agent to re-select TCP adaptation for this connection.

Network Pipe Classification will be called when some explicit notification comes from the

4.6 Implementation Status of TCP KentRidge 142

peer, the network, or other layers. In addition, a new timer is added into tcpcb so that a

connection can trigger Network Pipe Classification periodically. Hence, a connection will be

able to keep changing its behaviors according to the changes of its environment.

With this loadable kernel module, we can significantly shorten the time used for compil-

ing the modified codes. On a PC with normal configuration (CPU: PIV 1.6GHz, Memory:

512MB), it needs more than half an hour to compile the kernel with the modified TCP codes.

With this loadable kernel module, we can compile the module with the changed codes and

load it into the kernel within a few minutes. With the two level backplane-slots framework of

DC-TCP, new TCP adaptations can also be implemented easily. Sync-TCP and Cubic-TCP

have been implemented in DC-TCP within three days.

4.6.2 TCP KentRidge Console

To facilitate researchers, TCP KentRidge Console, a GUI tool, has also been provided.

Figure 4.7 shows menu items of TCP KentRidge Console. Through this tool, users can carry

out the following tasks.

1. Rebuild the kernel when it is necessary.

2. Rebuild the loadable kernel module of TCP KentRidge after its codes are changed.

3. Load the module into the kernel.

4. Unload the model from the kernel.

5. View TCP adaptations used by active TCP sockets.

6. Change TCP adaptation used by a TCP socket.

Figure 4.8(a) shows the interface designed for displaying TCP adaptations used by active

TCP sockets, and figure 4.8(b) illustrates how to change the adaptation used by a TCP

4.6 Implementation Status of TCP KentRidge 143

(a) Investigation

(b) Development

Figure 4.7: TCP KentRidge Console: Menu Items

4.6 Implementation Status of TCP KentRidge 144

(a) View Active Sockets

(b) Change TCP Adaptation of a TCP Socket

Figure 4.8: View and Change TCP Adaptation Used by TCP Socket

4.7 Summary and Future Work 145

socket. In the case that X Window is not available, two commands can be used to view TCP

adaptations used by active TCP sockets (tcpccview) and change the adaptation used by a

TCP socket (tcpccchange). When executing tcpccchange, four tuples of this socket (source

IP, source port, destination IP, destination port) and the name of the adaptation to be used

by this socket must be specified.

4.7 Summary and Future Work

In this chapter, the existing TCP adaptations proposed for different networks are first sum-

marized. The necessity of re-engineering TCP implementation for the heterogeneous and

evolving Internet is then discussed, and the design of TCP KentRidge is presented in detail.

An initial prototype of TCP KentRidge has also been implemented in FreeBSD 7.1. The de-

tails of TCP KentRidge implementation on FreeBSD 5.4 can be found in [106][120]. More in-

formation about TCP KentRidge can be found at http://cir.nus.edu.sg/tcpkentridge.

However, there are still a lot of work to be done before TCP KentRidge can be a full-

fledged solution. For example, more TCP adaptations should be implemented, Knowledge

Base should be expanded accordingly, and the algorithms used by Intelligent Agent and

Network Pipe Classification should also be refined. The necessary future works will be

discussed further in chapter 5.

Chapter 5

Conclusion and Future Work

Improving the performance of TCP in the Internet has been a hot research topic for quite

a long time. As TCP is the de-facto standard transport protocol of the Internet, it is very

valuable to improve its performance. Furthermore, the Internet is changing continuously,

and challenges faced by TCP seem to be endless.

In this thesis, we focus on three very important recent trends of the Internet, namely

mobile Internet access, high speed Internet, and the heterogeneous and evolving Internet.

For the first two trends, we propose the corresponding TCP enhancements to improve the

performance of TCP. As for the last trend, we consider the challenges faced by TCP im-

plementation in the heterogeneous and evolving Internet, and propose a new TCP imple-

mentation framework, with which a host could have the potential of changing its behaviors

according to the environment automatically and intelligently. In this chapter, the detailed

research results and contributions of this thesis are summarized, and the potential future

work is discussed.

5.1 Research Summary

To improve TCP performance in a heterogeneous mobile environment, TCP HandOff (TCP-

HO), a practical end-to-end mechanism, is proposed in this thesis (chapter 2). TCP-HO

5.1 Research Summary 147

is designed after analyzing the kind of handoff that may occur in a heterogeneous mobile

environment and the challenges that TCP faces during each kind of handoff. We assume

that a mobile host is able to detect the completion of handoff immediately and has a coarse

estimation of new wireless link’s bandwidth. TCP-HO is then proposed to improve the

performance of mobile host through exploiting the explicit cooperation between server and

mobile host. The design of TCP-HO also considers how to thwart cheating users and how

to avoid to hurt cross traffic. Experimental results indicate that in a heterogeneous mo-

bile environment, TCP-HO can improve TCP performance significantly without adversely

affecting cross traffic, even when mobile host has only a coarse estimation of new wireless

link’s bandwidth. Considering that more and more users are accessing the Internet through

heterogeneous wireless networks and mobile host could have a coarse estimation of wireless

link’s bandwidth, it should be worthwhile to implement TCP-HO at both server and mobile

host for improving the performance of TCP. Hence, this thesis provides a promising solution

(TCP-HO) for mobile Internet access through heterogeneous wireless networks.

Synchronized TCP (Sync-TCP), a new delay-based high speed congestion control algo-

rithm, is also proposed in this thesis (chapter 3) for safely ramping up the throughput of

bandwidth-greedy and elastic applications that run on long fat network pipes (with large

queue) of the Internet. The existing delay-based congestion control algorithms are first ana-

lyzed and the challenges, that Sync-TCP must solve to achieve its design goals, are discussed.

The key insight of Sync-TCP is that if competing flows could detect the same congestion

signal through queue delay, these flows can coordinate their behaviors and drive the network

to operate around their desired point, the knee. Based on this observation, Sync-TCP is

carefully designed to convey highly synchronized congestion signals to competing flows, even

though queue delay is a noisy and delayed network feedback. An adaptive queue delay based

congestion window decrease rule and a RTT-independent congestion window increase rule

are adopted for driving the network to operate around the knee and for distributing the

residual bandwidth fairly among competing flows, even when the number of competing flows

5.2 Future Work 148

varies and their round trip propagation delays differ significantly. Extensive simulations

and preliminary testbed evaluations indicate that Sync-TCP does achieve its design goals.

Hence, this thesis also provides a promising solution (Sync-TCP) for safely ramping up the

throughput of bandwidth-greedy and elastic applications that run on long fat network pipes of

the Internet.

In this thesis (chapter 4), TCP KentRidge, a new TCP implementation framework, is

proposed for the heterogeneous and evolving Internet. We first summarizes the existing TCP

adaptations proposed for different networks. The challenges faced by a TCP implementation

in the Internet are then discussed. After that, TCP KentRidge is carefully designed so

that a host could have the potential of automatically applying the most appropriate TCP

adaptation to each connection according to its current environment. TCP KentRidge is

also carefully designed so that new TCP adaptations can be implemented in this framework

and the necessary intelligence can be added easily. An initial prototype of TCP KentRidge

has been implemented in FreeBSD. Hence, this thesis has made a solid step towards the

intelligent TCP, with which a host could automatically and intelligently change its behaviors

according to the environment.

5.2 Future Work

Several extensions to the research work presented in this thesis are possible. Firstly, although

preliminary testbed evaluations have been carried out, it is worthwhile to further evaluate

and tune Sync-TCP on a high speed network testbed and in the live Internet. These results

can be used to convince the community and advertise Sync-TCP as a standard way of

ramping up the throughput of bandwidth-greedy and elastic applications. Secondly, we have

implemented only an initial prototype of TCP KentRidge. Many algorithms, that instantiate

the intelligence, still need to be designed. Hence, there are still a lot of works to be done

before it could become a full-fledged TCP implementation. Below is a list of these necessary

5.2 Future Work 149

works and open problems.

1. Firstly, the two level backplane-slots framework of DC-TCP should be re-scrutinized.

Its maintainability and extensibility should also be evaluated quantitively. For exam-

ple, we can compare the time spent to implement a TCP adaptation in DC-TCP with

the time spent to implement the same TCP adaptation in the kernel.

2. Secondly, the existing TCP adaptations should be investigated thoroughly for achiev-

ing consensuses on which TCP adaptation should be used on each kind of network

pipe. We have to decide the TCP adaptations to be supported by TCP KentRidge,

implement these adaptations in the framework of DC-TCP, and construct Knowledge

Base accordingly. Furthermore, with TCP KentRidge, different TCP adaptations will

be simultaneously used in the Internet. Coexistence issues among these supported

adaptations should also be studied.

3. Thirdly, Network Pipe Classification needs some algorithms to ensure that senders can

learn their environment correctly. Thresholds used by the model illustrated in figure

4.5 should also be carefully selected so that these algorithms could make sure that the

distributed senders on the same network pipe can converge to the correct type. This

task is very challenging since TCP learns the environment intrusive. For example,

the sender learns the bandwidth through adjusting its sending rate and observing

network congestion state. However, at the same time, its behaviors also change the

phenomenons observed by other senders.

4. Fourthly, Intelligent Agent also needs to be refined. In the current Internet, many

networks can be classified to multiple types. For example, GPRS network has small

available bandwidth, long RTT, large jitter, high PLR, and asymmetric bandwidth.

The algorithms used by Intelligent Agent should be well designed so that the sender

can select the most appropriate TCP adaptation for these networks.

5.2 Future Work 150

In addition, assuming that application’s expectations and peer’s capabilities will not

change during the life time of a connection, the Intelligent Agent may first filter out

TCP adaptations that cannot be applied to a connection after the connection is es-

tablished. The kind of filtering is executed only once, and it may speed up Intelligent

Agent a lot in the remaining life time of this connection.

5. Finally, compared with the existing TCP implementations, TCP KentRidge, which is

designed to be more intelligent, will be more complex. Hence, TCP KentRidge will

unavoidably consume more resources (CPU, memory, etc.). When implementing TCP

KentRidge, more attention should be paid to optimizations so that TCP KentRidge

will not become a bottleneck.

Bibliography

[1] 3gpp. Available online at http://www.3gpp.org.

[2] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[3] Ns2 network simulator. http://www.isi.edu/nsnam/ns/.

[4] Trans-pacific express. Available online at http://www.networkworld.com/news/2006/121806-
verizon-business.html.

[5] Wimax. Available online at http://www.wimaxforum.org.

[6] General packet radio service (gprs) service description, ver. 7.1.0. European Standard
301 344, GSM 03.60, August 1999.

[7] High performance radio local area network, type 2, requirements and architectures for
wireless broadband access. TR 101 031 V2.2.1, January 1999.

[8] Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE
P802.11, 1999.

[9] Wireless lan medium access control (mac) and physical layer (phy) specifications—
high-speed physical layer in the 5 ghz band. IEEE P802.11, 1999.

[10] Wireless lan medium access control (mac) and physical layer (phy) specifications—
higher-speed physical layer extension in the 2.4ghz band. IEEE P802.11, 1999.

[11] Rlc protocol specification. 3G TS 25.322, V3.2.0, March 2000.

[12] Wireless lan medium access control (mac) and physical layer (phy) specifications—
amendment 4: Further higher data rate extension in the 2.4 ghz band. IEEE P802.11,
2003.

[13] Amit Aggarwal, Stefan Savage, and Thomas Anderson. Understanding the perfor-
mance of tcp pacing. In INFOCOM, 2000.

[14] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing tcp’s loss recovery using limited
transmit. RFC 3042, January 2001.

[15] M. Allman, S. Floyd, and C. Partridge. Increasing tcp’s initial window. RFC 3390,
2002.

BIBLIOGRAPHY 152

[16] M. Allman, D. Glover, and L. Sanchez. Enhancing tcp over satellite channels using
standard mechanisms. RFC 2488, 1999.

[17] M. Allman, V. Paxson, and W. Stevens. Tcp congestion control. RFC 2581, April
1999.

[18] Mark Allman. Tcp congestion control with appropriate byte counting (abc). RFC
3465, February 2003.

[19] Thomas Anderson, Andrew Collins, Arvind Krishnamurthy, and John Zahorjan. Pcp:
Efficient endpoint congestion control. In NSDI, 2006.

[20] Andrea Baiocchi, Angelo P. Castellani, and Francesco Vacirca. Yeah-tcp: Yet another
highspeed tcp. In PFLDnet Workshop, 2007.

[21] A. Bakre and B.R. Badrinath. I-tcp: indirect tcp for mobile hosts. In ICDCS, 1995.

[22] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyababdara. Tcp
performance implications of network path asymetry. RFC 3449, 2002.

[23] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The effects of asymmetry on
tcp performance. In MOBICOM, 1997.

[24] H. Balakrishnan, S. Seshan, E. Amir, and R.H. Katz. Improving tcp/ip performance
over wireless networks. In MOBICOM, 1995.

[25] Hari Balakrishnan and Randy H. Katz. Explicit loss notification and wireless web
performance. In Globecom, 1998.

[26] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H.
Katz. A comparison of mechanisms for improving tcp performance over wireless links.
IEEE/ACM Transactions on Networking, 5, 1997.

[27] Paul Barford and Mark Crovella. Generating representative web workloads for network
and server performance evaluation. In ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, 1998.

[28] S. Biaz and N. Vaidya. Sender-based heuristics for distinguishing congestion losses
from wireless transmission losses. Technical report, TAMU, June 1998.

[29] Saad Biaz and Nitin H. Vaidya. Is the round-trip time correlated with the number of
packets in flight? In IMC, 2003.

[30] Ethan Blanton and Mark Allman. On making tcp more robust to packet reordering.
Computer Communication Review, 32, January 2002.

[31] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance enhancing
proxies intended to mitigate link-related degradations. RFC 3135, June 2001.

BIBLIOGRAPHY 153

[32] Alessio Botta, Alberto Dainotti, and Antonio Pescap. Multi-protocol and multi-
platform traffic generation and measurement. In INFOCOM (DEMO), 2007.

[33] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas: New
techniques for congestion detection and avoidance. In SIGCOMM, 1994.

[34] Kevin Brown and Suresh Singh. M-tcp: Tcp for mobile cellular networks. Computer
Communication Review, 27, October 1997.

[35] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden. A measurement
study of vehicular internet access using in situ wifi networks. In MOBICOM, 2006.

[36] Ed. C. Perkins. Ip mobility support for ipv4. RFC 3344, August 2002.

[37] Ramon Caceres and Liviu Iftode. Improving the performance of reliable transport pro-
tocols in mobile computing environments. IEEE Journal on Selected Areas in Com-
munications, 13, June 1995.

[38] Carlo Caini and Rosario Firrincieli. Tcp hybla: a tcp enhancement for heteroge-
neous networks. International Journal of Satellite Communications and Networking,
22, 2004.

[39] Jin Cao, William S. Cleveland, Yuan Gao, Kevin Jeffay, F. Donelson Smith, and
Michele Weigle. Stochastic models for generating synthetic http source traffic. In
INFOCOM, 2004.

[40] Claudio Casetti, Mario Gerla, Saverio Mascolo, M.Yahya Sanadidi, and Ren Wang.
Tcpwestwood: End-to-end bandwidth estimation for enhanced transport over wireless
links. Wireless Networks, 8:467–479, 2002.

[41] Mun Choon Chan and Ram Ramjee. Tcp/ip performance over 3g wireless links with
rate and delay variation. In MOBICOM, 2002.

[42] Mun Choon Chan and Ram Ramjee. Improving tcp/ip perfornance over third gener-
ation wireless networks. In INFOCOM, 2004.

[43] Dah Ming Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Computer Networks and ISDN Systems
archive, 7, June 1989.

[44] David D. Clark. Window and acknowledgement stratedgy in tcp. RFC 813, July 1982.

[45] S. Dawkins, G. Montenegro, M. Kojo, and V. Magret. End-to-end performance impli-
cations of slow links. RFC 3150, 2001.

[46] S. Dawkins, G. Montenegro, M. Kojo, V. Magret, and N. Vaidya. End-to-end perfor-
mance implications of links with errors. RFC 3155, 2001.

[47] M. Deziel and L. Lamont. Implementation of an ieee 802.11 link available bandwidth
algorithm to allow cross-layering. In IEEE WiMobapos, 2005.

BIBLIOGRAPHY 154

[48] D.Leith, R.Shorten, G.McCullagh, J.Heffner, L.Dunn, and F.Baker. Delay-based aimd
congestion control. In PFLDnet Workshop, 2007.

[49] D.Leith, R.Shorten, G.Mccullagh, L.Dunn, and F.Baker. Making available base-rtt
for use in congestion control applications. IEEE Comm. Letters, 12(6):429–431, June
2008.

[50] S. Floyd. Connections with multiple congested gateways in packet-switched networks
part 1: One way traffic. Computer Communication Review, 21, 1991.

[51] S. Floyd. Highspeed tcp for large congestion windows. RFC 3649, December 2003.

[52] S. Floyd. Limited slow-start for tcp with large congestion windows. RFC 3742, March
2004.

[53] S. Floyd, T. Henderson, and A. Gurtov. The newreno modification to tcp’s fast recovery
algorithm. RFC 3782, April 2004.

[54] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[55] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matt Podolsky. An extension to the
selective acknowledgment (sack) option for tcp. RFC 2883, July 2000.

[56] Cheng Peng Fu and Soung C. Liew. Tcp veno: Tcp enhancement for transmission
over wireless access networks. IEEE Journal on Selected Areas in Communications,
21, 2003.

[57] Tom Goff, James Moronski, D. S. Phatak, and Vipul Gupta. Freeze-tcp: A true end-
to-end tcp enhancement mechanism for mobile environments. In INFOCOM, 2000.

[58] Andrei Gurtov and Reiner Ludwig. Responding to spurious timeouts in tcp. In IN-
FOCOM, 2003.

[59] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed tcp
variant. Operating Systems Review, 42:64–74, July 2008.

[60] Ahmad Al Hanbali, Eitan Altman, and Philippe Nain. A survey of tcp over mobile ad
hoc networks. Technical report, INRIA, France, May 2004.

[61] M. Handley, J. Padhye, and S. Floyd. Tcp congestion window validation. RFC 2861,
June 2000.

[62] Garrett Hardin. The tragedy of the commons. Science, 162(3859):1243–1248, December
1968.

[63] G. Hasegawa, K. Kurata, and M. Murata. Analysis and improvement of fairness
between tcp reno and vegas for deployment of tcp vegas to the internet. In ICNP,
2000.

BIBLIOGRAPHY 155

[64] T.R. Henderson, E. Sahouria, S. McCanne, and R.H. Katz. On improving the fairness
of tcp congestion avoidance. In GLOBECOM, 1998.

[65] U. Hengartner, J. Bolliger, and Th. Gross. Tcp vegas revisited. In INFOCOM, 2000.

[66] J. C. Hoe. Improving the startup behavior of a congestion control scheme for tcp. In
SIGCOMM, 1996.

[67] H. Hsieh, K. Kim, Y. Zhu, and R. Sivakumar. A receiver-centric transport protocol
for mobile hosts with heterogeneous wireless interfaces. In MOBICOM, 2003.

[68] Xiaomeng Huang, Chuang Lin, and Fengyuan Ren. A novel high speed transport
protocol based on explicit virtual load feedback. Computer Networks, 51:1800–1814,
2007.

[69] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for high performance. RFC
1323, May 1992.

[70] Van Jacobson. Congestion avoidance and control. In SIGCOMM, 1988.

[71] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement methodology,
dynamics, and relation with tcp throughput. IEEE/ACM Transactions on Networking,
11(4):537–549, August 2003.

[72] R. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quantitative measure of fair-
ness and discrimination for resource allocation in shared computer systems. Technical
report, DEC, 1984.

[73] Raj Jain. A delay-based approach for congestion avoidance in interconnected hetero-
geneous computer networks. Computer Communication Review, 19:56–71, October
1989.

[74] Wenyu Jiang. Detecting and measuring asymmetric links in an ip network. Technical
Report CUCS009 -99, Columbia University, 1999.

[75] Cheng Jin, David X. Wei, and Steven H. Low. Fast tcp: motivation, architecture,
algorithms, performance. In INFOCOM, 2004.

[76] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Explicit window
adaptation: A method to enhance tcp performance. IEEE/ACM Transactions on
Networking, 10:338–350, June 2002.

[77] Kazumi Kaneko, Tomoki Fujikama, Zhou Su, and Jiro Katto. Tcp-fusion: A hybrid
congestion control algorithm for high-speed networks. In PFLDnet Workshop, 2007.

[78] Aditya Karnik and Anurag Kumar. Performance of tcp congestion control with explicit
rate feedback. IEEE/ACM Transactions on Networking, 13:108–120, February 2005.

[79] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for future high
bandwidth-delay product environments. In SIGCOMM, 2002.

BIBLIOGRAPHY 156

[80] Tom Kelly. Scalable tcp: improving performance in highspeed wide area networks.
Computer Communication Review, 33:83–91, 2003.

[81] S. Kent and R. Atkinson. Security architecture for the internet protocol. RFC 2401,
November 1998.

[82] Vishnu Konda and Jasleen Kaur. Rapid: Shrinking the congestion-control timescale.
In INFOCOM, 2009.

[83] Rajesh Krishnan, James P. G. Sterbenz, Wesley M. Eddy, Craig Partridge, and Mark
Allman. Explicit transport error notification (eten) for error-prone wireless and satellite
networks. Computer Networks, 46, October 2004.

[84] Joanna Kulik, Robert Coulter, Dennis Rockwell, and Craig Partridge. A simulation
study of paced tcp. Technical report, NASA, January 2000.

[85] Aleksandar Kuzmanovic and Edward W. Knightly. Tcp-lp: A distributed algorithm
for low priority data transfer. In INFOCOM, 2003.

[86] Aleksandar Kuzmanovic and Edward W.Knightly. A performance vs. trust perspective
in the design of end-point congestion control protocols. In ICNP, 2004.

[87] R. La, J. Walrand, and V. Anantharam. Issues in tcp vegas. Technical Report, ERL,
UC Berkeley, 2000.

[88] K. Lakshminarayanan, V.N. Padmanabhan, and J. Padhye. Bandwidth estimation in
broadband access networks. In Internet Measurement Conference, 2004.

[89] H.K. Lee, V. Hall, K.H. Yum, K.I. Kim, and E.J. Kim. Bandwidth estimation in
wireless lans for multimedia streaming. In ICME, 2006.

[90] S. Lee, S. Banerjee, and B. Bhattacharjee. The case for a multi-hop wireless local area
network. In INFOCOM, 2004.

[91] D.J. Leith, R.N. Shorten, and Y. Lee. H-tcp: A framework for congestion control in
high-speed and long-distance networks. In PFLDnet Workshop, 2005.

[92] Douglas J. Leith, Lachlan L. H. Andrew, Tom Quetchenbach, Robert N. Shorten,
and Kfir Lavi. Experimental evaluation of delay/loss-based tcp congestion control
algorithms. In PFLDnet Workshop, 2008.

[93] Yee-Ting Li, Douglas Leigh, and Robert N. Shorten. Experimental evaluation of tcp
protocols for high-speed networks. IEEE/ACM Transactions on Networking, 15, Oc-
tober 2007.

[94] Shao Liu, Tamer Basar, and R. Srikant. Tcp-illinois: A loss and delay-based congestion
control algorithm for high-speed networks. In ValueTools, 2006.

[95] Steven H. Low, Larry L. Peterson, and Limin Wang. Understanding tcp vegas: a
duality model. Journal of the ACM, 49(2):207–235, March 2002.

BIBLIOGRAPHY 157

[96] R. Ludwig and A. Gurtov. The eifel response algorithm for tcp. RFC 4015, February
2005.

[97] Reiner Ludwig and Randy H. Katz. The eifel algorithm: making tcp robust against
spurious retransmissions. Computer Communication Review, 30, January 2000.

[98] Changming Ma and Ka-Cheong Leung. Improving tcp reordering robustness in multi-
path networks. In LCN, 2004.

[99] Jim Martin, Arne Nilsson, and Injong Rhee. Delay-based congestion avoidance for tcp.
IEEE/ACM Transactions on Networking, 11(3):356–369, June 2003.

[100] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Tcp selective acknowledgment
options. RFC 2018, 1996.

[101] M. Mathis, J. Semske, J. Mahdavi, and T. Ott. The macroscopic behavior of the tcp
congestion avoidance algorithm. Computer Communication Review, 27, July 1997.

[102] Yosuke Matsushita, Takahiro Matsuda, and Miki Yamamoto. Tcp congestion control
with ack-pacing for vertical handoff. In WCNC, 2005.

[103] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean Walrand. Analysis and
comparison of tcp reno and vegas. In INFOCOM, 1999.

[104] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya. Long thin networks.
RFC 2757, 2000.

[105] Kashif Munir, Michael Welzl, and Dragana Damjanovic. Linux beats windows! or the
worrying evolution of tcp in common operating systems. In PFLDnet Workshop, 2007.

[106] Myo Myint. A reconfigurable transport service for converged networks. Honours Year
Project Report, National University of Singapore, 2006.

[107] Andrew Odlyzko. Data networks are lightly utilized, and will stay that way. Review
of Network Economics, 2(3):210–237, September 2003.

[108] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp throughput: A simple
model and its empirical validation. In SIGCOMM, 1998.

[109] C. Parsa and J.J. Garcia-Luna-Aceves. Differentiating congestion vs. random loss: a
method for improvingtcp performance over wireless links. In WCNC, 2000.

[110] Anders Persson, Cesar A.C. Marcondes, Ling-Jyh Chen, Li Lao, M.Y. Sanadidi, and
Mario Gerla. Tcp probe: A tcp with built-in path capacity estimation. In IEEE Global
Internet Symposium in conjunction with INFOCOM, 2005.

[111] J. Postel. Internet protocol. RFC 791, September 1981.

[112] Jon Postel. Transmission control protocol - darpa internet program protocol specifica-
tion. RFC 793, September 1981.

BIBLIOGRAPHY 158

[113] Ravi S. Prasad, Manish Jain, and Constantinos Dovrolis. On the effectiveness of delay-
based congestion avoidance. In PFLDnet Workshop, 2004.

[114] K. Ramakrishnan, S. Floyd, and D. Black. The addition of explicit congestion notifi-
cation (ecn) to ip. RFC 3168, September 2001.

[115] Vinay J. Ribeiro, Rudolf H. Riedi, Jiri Navratil, Les Cottrell, and Richard G. Baraniuk.
pathchirp: Efficient available bandwidth estimation for network paths. In Proceedings
Workshop on Passive and Active Measurement, 2003.

[116] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols.
Computer Communication Review, 27(1):31–41, 1997.

[117] R.K.Balan, B.P.Lee, K.R.R.Kumar, L.Jacob, W.K.G.Seah, and A.L.Ananda. Tcp
hack: a mechanism to improve performance over lossy links. Computer Networks,
39:347–361, 2002.

[118] D. Schmidt, D. Box, and T. Suda. Adaptive: A dynamically assembled protocol
transformation, integration, and evaluation environment. Concurrency: Practice and
Experience, 5, June 1993.

[119] Robert Shorten, Fabian Wirth, and Douglas Leith. A positive systems model of tcp-
like congestion control: asymptotic results. IEEE/ACM Transactions on Networking,
14, June 2006.

[120] Hla Win Soe. Implementing congestion control framework for reactive tcp project.
Honours Year Project Report, National University of Singapore, 2007.

[121] Mark Stemm and Randy H. Katz. Vertical handoffs in wireless overlay networks.
Mobile Notworks and Applications, 3, 1998.

[122] Pradeep Sudame and B.R. Badrinath. On providing support for protocol adaptation in
mobile wireless networks. Mobile Networks and Applications, 6:43–55, January 2001.

[123] Yutaka Sugawara, Takeshi Yoshino, Mary Inaba, and Kei Hiraki. Fine tune for parallel
tcp streams on long fat-pipe network using hardware engine. In PFLDnet Workshop,
2008.

[124] Kun Tan, Jingmin Song, and Murari Sridharan. Ctcp-tube: Improving tcp friendliness
over low buffered network links. In PFLDnet Workshop, 2008.

[125] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. A compound tcp ap-
proach for high-speed and long distance networks. In INFOCOM, 2006.

[126] Klein T.E., Leung K.K., Parkinson R., and Samuel L.G. Avoiding spurious tcp time-
outs in wireless networks by delay injection. In GLOBECOM, 2004.

[127] K. Tsukamoto, Y. Fukuda, Y. Hori, and Y. Oie. New flow control schemes of tcp for
multimodal mobile hosts. In VTC-Spring, 2003.

BIBLIOGRAPHY 159

[128] S. Vasudevany, K. Papagiannakiz, C. Diotz, J. Kurosey, and D. Towsley. Facilitat-
ing access point selection in ieee 802.11wireless networks. In Internet Measurement
Conference, 2005.

[129] Chetan Ganjihal Veerabhadrappa. Experimental evaluation of synctcp and other high-
speed congestion control algorithms. Master Thesis, National University of Singapore,
2009.

[130] Arun Venkataramani, Ravi Kokku, and Mike Dahlin. Tcp nice: A mechanism for
background transfers. In OSDI, 2002.

[131] Ren Wang, M.Yahya Sanadidi, and Mario Gerla. Tcp with sender-side intelligence to
handle dynamic, large, leaky pipes. IEEE Journal on Selected Areas in Communica-
tions, 23:235–248, 2005.

[132] Ren Wang, Massimo Valla, M.Y. Sanadidi, Bryan Ng, and Mario Gerla. Efficien-
cy/friendliness tradeoffs in tcp westwood. In IEEE Symposium on Computers and
Communications, 2002.

[133] David X. Wei and Pei Cao. Ns-2 tcp-linux: An ns-2 tcp implementation with congestion
control algorithms from linux. In ACM ValueTools - Workshop of NS-2, 2006.

[134] G. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 2: The Implementa-
tion. Addison-Wesley, 1995.

[135] G. Wu and T. Chiueh. Passive and accurate traffic load estimation for infrastructure-
mode wireless lan. In ACM MSWIM, 2007.

[136] Xiuchao Wu. A simulation study of compound tcp. Technical Report, School of
Computing, National University of Singapore, 2007.

[137] Xiuchao Wu. Effects of applying high speed congestion control algorithms in the
internet. Technical Report, School of Computing, National University of Singapore,
2008.

[138] Xiuchao Wu. Overview of freebsd 7 tcp implementation. Technical Report, School of
Computing, National University of Singapore, 2009.

[139] Xiuchao Wu and A. L. Ananda. Link characteristics estimation for ieee 802.11 dcf
based wlan. In LCN, 2004.

[140] Xiuchao Wu, Indradeep Biswas, Mun Choon Chan, and A. L. Ananda. Utilizing
characteristics of last link to improve tcp performance. In IPCCC, 2005.

[141] Xiuchao Wu, Mun Choon Chan, and A. L. Ananda. Effects of applying high-speed
congestion control algorithms in satellite network. In ICC, 2008.

[142] Xiuchao Wu, Mun Choon Chan, A. L. Ananda, and Chetan Ganjihal. Sync-tcp: A
new approach to high speed congestion control. In ICNP, 2009.

BIBLIOGRAPHY 160

[143] Xiuchao Wu, Mun Choon Chan, and A.L. Ananda. Improving tcp performance in het-
erogeneous mobile environments by exploiting the explicit cooperation between server
and mobile host. Computer Networks, 52, November 2008.

[144] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control for
fast long distance networks. In INFOCOM, 2004.

[145] Raj Yavatkar and Namrata Bhagawat. Improving end-to-end performance of tcp over
mobile intemetworks. In IEEE Worhhop on Mobile Computing Systems and Applica-
tions, 1994.

[146] Y.R.Yang and S.S.Lam. General aimd congestion control. In ICNP, 2000.

[147] Jian Zhang, Liang Cheng, and Ivan Marsic. Models for non-intrusive estimation of
wireless link bandwidth. In Personal Wireless Communication Conference, September
2003.

[148] Y. Zhang, N. Duffield, Vern Paxson, and S. Shenker. On the constancy of internet
path properties. In Internet Measurement Workshop, 2001.

Appendix A

Additional Simulation Results of
Sync-TCP

A.1 Scalability of Sync-TCP

In the following simulations, dumbbell topology (figure 3.6) and block scenario (figure 3.7)
are always used. Web-like cross traffics described at the beginning of section 3.5 are also
generated. The number of competing flows, N , is fixed to 2. Propagation delay of the
side links are all set to 5ms so that all competing flows have the same RTPD. Through
varying propagation delay, queue size, or packet loss rate of the bottleneck link, scalability
of Sync-TCP is investigated further.

A.1.1 Scalability with Propagation Delay

In this group of experiments, the bottleneck link is configured as per=10−6 and qsize=0.5BDP.
The varying parameter is delay, and it is set to 25ms, 50ms, 100ms, and 200ms. Figure A.1
shows the results which indicate that Sync-TCP performs the best in almost all metrics,
independent of the value of round trip time.

Interestingly, when delay is large, Fast TCP performs quite bad, especially in the metric
of link utilization ratio. The possible reason is that with per = 10−6, there are still some
corrupted segments. When segment loss (due to corruption) is detected, Fast TCP always
reduces cwnd by half and cwnd is then increased by at most γ packets per round trip time.
With the increase of delay, BDP of the network pipe will be increased, and Fast TCP flows
cannot take back network bandwidth quickly enough. Hence, link utilization ratio of Fast
TCP becomes lower when delay is large. As shown in figure A.2, when per is very small
(10−8), Fast TCP can efficiently utilize the bottleneck link, irrespective of the value of delay.
Hence, the above conjecture is confirmed.

A.1 Scalability of Sync-TCP 162

Link Utilization Ratio Queue Delay and Jitter (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0
 20
 40
 60
 80

 100
 120
 140

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Packet Loss Rate Stability

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Long-term Fairness Short-term Fairness

 0.5

 0.6

 0.7

 0.8

 0.9

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Figure A.1: Scalability with Propagation Delay (per=10−6)

Link Utilization Ratio Queue Delay and Jitter (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0
 20
 40
 60
 80

 100
 120
 140

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Packet Loss Rate Stability

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Long-term Fairness Short-term Fairness

 0.5

 0.6

 0.7

 0.8

 0.9

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

25 50 100 200

TCP
CUBIC
CTCP
FAST
SYNC

Figure A.2: Scalability with Propagation Delay (per=10−8)

A.1 Scalability of Sync-TCP 163

A.1.2 Scalability with Queue Size

In this group of experiments, the bottleneck link is configured as delay=50ms and per=10−6.
qsize is the varying parameter, and it is set to 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 BDP of the
bottleneck link.

Figure A.3 indicates that Sync-TCP still can perform quite well even when queue is small
and queue delay cannot be larger than Thqd. It is not worse than other algorithms except in
the metric of packet loss rate. The reason of higher packet loss rate is that congestion cannot
be detected through queue delay,

Thqd−qd

Thqd
cannot effectively reduce α when buffer overflow

approaches, and many segments are dropped in each congestion event.
Considering that queue delay and jitter cannot be large when queue size is small, it may

be better to use Cubic-TCP since it can efficiently utilize the bottleneck link and maintain
a low packet loss rate. Hence, a flow may switch between Sync-TCP and Cubic-TCP based
on whether it can observe queue delay that is larger than Thqd.

Link Utilization Ratio Queue Delay and Jitter (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

Packet Loss Rate Stability

 1e-07
 1e-06
 1e-05

 0.0001
 0.001
 0.01

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

Long-term Fairness Short-term Fairness

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.02 0.05 0.1 0.2 0.5 1.0

TCP
CUBIC
CTCP
FAST
SYNC

Figure A.3: Scalability with Queue Size

A.2 Door and Tower Scenarios with Varying Background Traffic 164

A.1.3 Scalability with Packet Loss Rate

In this group of experiments, the bottleneck link is configured as delay=50ms and qsize=0.5BDP.
per is the varying parameter, and it is set to 10−8, 10−7, 10−6, 10−5, 10−4, and 10−3.

Figure A.4 indicates that Sync-TCP can perform well with the increase of per. When per
is quite high, although Sync-TCP flows may not be able to detect congestion simultaneously
through queue delay, they still can utilize the bottleneck link quite efficiently. In other
metrics, its performance is not obviously worse than other HSCC algorithms.

Link Utilization Ratio Queue Delay and Jitter (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

-5
 0
 5

 10
 15
 20
 25
 30
 35
 40

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

Packet Loss Rate Stability

 1e-09
 1e-08
 1e-07
 1e-06
 1e-05

 0.0001
 0.001

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

 0

 0.5

 1

 1.5

 2

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

Long-term Fairness Short-term Fairness

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

TCP
CUBIC
CTCP
FAST
SYNC

Figure A.4: Scalability with Packet Loss Rate

A.2 Door and Tower Scenarios with Varying Background

Traffic

In order to evaluate Sync-TCP in more dynamically environments, experiments in subsection
3.5.5 are repeated with varying background traffic. Except the background traffic generated
by web surfing (described at the beginning of section 3.5), a 240Mbps CBR (Constant Bit
Rate) UDP flow is turned on/off alternately. More specifically, the length of each active/de-
active period is 200 seconds, which is close to the temporal constancy of available bandwidth
in the Internet [148]. The results shown in figure A.5-A.7 and figure A.8-A.10 indicate that,
Sync-TCP can maintain its merits even when the load of cross traffic is also varying signifi-
cantly.

A.2 Door and Tower Scenarios with Varying Background Traffic 165

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure A.5: Door Scenario with Varying Background Traffic: Throughput Trajectories of
All Competing Flows (Mbps)

A.2 Door and Tower Scenarios with Varying Background Traffic 166

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure A.6: Door Scenario with Varying Background Traffic: Utilization Ratio of the Bot-
tleneck Link

A.2 Door and Tower Scenarios with Varying Background Traffic 167

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(a) TCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(b) CUBIC

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(c) CTCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(d) FAST

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (s)
(e) SYNC

Figure A.7: Door Scenario with Varying Background Traffic: Queue Dynamics at the Bot-
tleneck Link (byte)

A.2 Door and Tower Scenarios with Varying Background Traffic 168

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 20
 40
 60
 80

 100
 120
 140

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure A.8: Tower Scenario with Varying Background Traffic: Throughput Trajectories of
Flows 0, 10, 20, 30 (Mbps)

A.2 Door and Tower Scenarios with Varying Background Traffic 169

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure A.9: Tower Scenario with Varying Background Traffic: Utilization Ratio of the Bot-
tleneck Link

A.2 Door and Tower Scenarios with Varying Background Traffic 170

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(a) TCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(b) CUBIC

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(c) CTCP

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(d) FAST

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)
(e) SYNC

Figure A.10: Tower Scenario with Varying Background Traffic: Queue Dynamics at the
Bottleneck Link (byte)

A.3 Multiple Congested Links Fairness 171

A.3 Multiple Congested Links Fairness

 S1

D3

 R1

S4 S5

 D2

 R4
...

 R2 R3

D4 S6 D5

...

 S2 D1

S3 D6

1Gbps, 25ms

10^(-8)

1Gbps, 25ms

10^(-8)

1Gbps, 25ms

10^(-8)

Figure A.11: Parking-lot Network Topology

In order to investigate MCL unfairness of Sync-TCP, a typical parking-lot topology shown
in figure A.11 is used. Web-like cross traffics (described at the beginning of section 3.5) are
also generated between the two clouds. The flow arrival and departure sequence shown in
block scenario (figure 3.7) is used too, and six flows are generated between Si and Di.

In the park-lot topology, flow 1 and 2 are the two flows that pass through multiple (two)
congested links, the link between R1 and R2 and the link between R3 and R4. As for flow 3,
4, 5, and 6, they pass through only one of the two congested links.

TCP CUBIC CTCP FAST SYNC

Flow 1 and 2 55.5 88.8 92.6 104.3 14.8
Flow 3 and 4 199.1 268.9 260.5 253.2 336.6
Flow 5 and 6 232.7 268.7 262.1 253.7 336.4

Table A.1: Average Throughput (Mbps) of Different Flows

Table A.1 shows the average throughput of different kinds of flows when different con-
gestion control algorithms are adopted. It indicates that, in the metric of MCL unfairness,
Sync-TCP is even much worse than TCP. The following is a simple explanation.

Sync-TCP detects congestion by comparing queue delay with Thqd. In this experiment,
qdflow3 = qdr1, qdflow5 = qdr3, and qdflow1 = qdr1 + qdr3. Here, qdr1 is the queue delay at the
router R1 and qdr3 is the queue delay at the router R3. Flow 1 may detect congestion and
reduce cwnd even when both flow3 and flow5 do not detect congestion. Hence, congestion
signals detected by flow 1 can be much more than the sum of congestion signals detected
by flow 3 and flow 5. In addition, flow 1 also increases λ frequently and uses a small β.
Consequently, flow 1 receives much less throughput.

The above results are reasonable since flow 1 consumes more network resources for trans-
mitting the same amount of data. In addition, MCL unfairness of Sync-TCP may motivate
large content providers, such as YouTube, to deploy more mirrors and reduce the load of core
networks. Finally, Sync-TCP will switch back to TCP when throughput is too low. Hence,
Sync-TCP flows, which pass through MCLs, will not be totally starved.

A.4 Coexistence with TCP Flows 172

A.4 Coexistence with TCP Flows

In this group experiments, we will investigate the coexistence between a HSCC algorithm
and TCP. In another word, part of bandwidth-greedy and elastic applications adopt a HSCC
algorithm and the others adopt the legacy TCP under the assumption that socket buffer is
large enough and window scale option is enabled for supporting high speed data transmission.

Dumbbell topology (figure 3.6) and block scenario (figure 3.7) are still used. The web-like
background traffics (described at the beginning of section 3.5) are also generated between the
two clouds, and delay of side links are all set to 5ms. As for the bottleneck link, bw=1Gbps,
delay=50ms, qsize=0.5BDP, and per is set to 10−8, 10−7, 10−6, 10−5, 10−4, and 10−3. The
number of flows is set to 4, flow 0 and 1 use TCP, and the other two flows use a HSCC
algorithm. Figure A.12 shows the average throughput of flow 0 and 1 and the average
throughput of flow 2 and 3. The average throughput of the four flows, in the case that they
all use TCP, is also plotted.

CUBIC CTCP

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 CUBIC Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 CTCP Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

FAST SYNC

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 FAST Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 SYNC Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

Figure A.12: Coexistence with TCP

Figure A.12 indicates that Cubic-TCP flows always steal a lot of bandwidth from the
competing TCP flows. CTCP flows do not steal bandwidth from the competing TCP flows.
When per is very low, TCP flows cannot steal bandwidth from CTCP flows too since CTCP is
designed to never receive less throughput than TCP. When per is high, CTCP can also utilize
the bandwidth that cannot be utilized by TCP flows. Hence, CTCP performs very good in
the aspect of coexistence with TCP. However, the cost is that it cannot drive network to
operate around the knee. Their convergence behaviors are also very complex, and competing
CTCP flows may not share network resources fairly, especially when their life-span is short.

As for Fast TCP and Sync-TCP, when per is very low, TCP flows can steal bandwidth
from Fast TCP or Sync-TCP flows. The reason is that TCP is a loss-based congestion
control algorithm that only reduces its sending rate when segment loss is detected. Sync-
TCP and Fast TCP are delay-based HSCC algorithms which will reduce cwnd when the
earlier congestion signal, queue delay, is detected.

We should note that the results are measured in the scenario that the load of background
traffic is almost constant during the simulation. By activating a 240Mbps CBR UDP flow

A.5 Cross Traffic and the Value of λ 173

CUBIC CTCP

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 CUBIC Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 CTCP Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

FAST SYNC

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 FAST Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t (

M
bp

s)

packet error rate

Avg. of 2 SYNC Flows
Avg. of 2 TCP Flows
Avg. of 4 TCP Flows

Figure A.13: Coexistence with TCP When the Load of Background Traffic Varies

during the periods ([200,300], [400,500], [600,700], [800,900]), as shown in figure A.13, even
when per is low, the average throughput of Sync-TCP/Fast TCP flows is still comparable
to that of the competing TCP flows. The reason is that when the load of background
traffic is reduced, Sync-TCP/Fast TCP can quickly acquire the suddenly increased available
bandwidth.

In addition, Sync-TCP will switch back to TCP if throughput is too low. Hence, Sync-
TCP flows will not be totally starved by the competing TCP flows.

As for the coexistence with loss-based HSCC algorithms, it has been reported that CTCP
can be starved by Bic-TCP [105]. As for Sync-TCP, it should perform even worse than
CTCP. According to The Tragedy of the Commons in game theory [62], it is impossible for
endpoints to simultaneously solve this unfairness issue and drive network to operate around
the knee. For solving the unfairness issue, Sync-TCP must also try to drive network to
operate around the cliff and it cannot keep its friendliness to cross traffic. Standardization
and/or queue mechanisms, such as ZL-RED [63] that catches and punishes loss-based flows,
should be adopted for solving this fundamental confliction.

A.5 Cross Traffic and the Value of λ

In Sync-TCP, λ is used to calculate β based on equation 3.9 in subsection 3.4.5. For emptying
the queue of the bottleneck link while not under-utilizing the network, λ should be slightly
larger than 1. According to analysis in subsection 3.3.2, it is better if λ could be adjusted
based on the kind and the load of cross traffic. In this subsection, we will demonstrate
the effects of the kind & the load of cross traffic and the necessity of adjusting λ based on
network environment.

Dumbbell topology (figure 3.6) and block scenario (figure 3.7) are used here. As for
the bottleneck link, bw=1Gbps, delay=50ms, qsize=1.0BDP, and per is set to 10−6. The
number of competing Sync-TCP flows is set to 16 and delay of side links are all set to 5ms.

In the first group of experiments, cross traffic is generated by web surfing, and the load

A.5 Cross Traffic and the Value of λ 174

Time (s) [0:200] [200:400] [400:600] [600:800] [800:1000]
HTTP Transactions per second) 3200 6400 9600 6400 3200
Approximate Data Rate (Mbps) 300 600 900 600 300

Table A.2: The Load of Cross Traffic Generated by Web Surfing

Time (s) [0:200] [200:400] [400:600] [600:800] [800:1000]
Number of Legacy FTP Flow 50 100 150 100 50

Approximate Data Rate (Mbps) 240 480 720 480 240

Table A.3: The Load of Cross Traffic Generated by the Legacy FTP Applications

varies according to table A.2. Figure A.14 illustrates queue dynamics of the bottleneck link
when λ is fixed to 1.25, is fixed to 2.0, or is adjusted based on network environment. In the
second group of experiments, cross traffic are generated by legacy FTP applications whose
socket buffer is 64KB, and the load varies according to table A.3. Figure A.15 illustrates
queue dynamics of the bottleneck link when λ is fixed to 1.25, is fixed to 2.0, or is adjusted
based on network environment.

Figure A.14 and A.15 indicate that the kind and the load of cross traffic do affect the
value of λ that should be adopted for emptying the queue of the bottleneck link periodically.
A fixed value of λ cannot work well in the heterogeneous Internet. Figure A.14 and A.15 also
indicate that, through making λ adaptive to network environment, Sync-TCP can empty the
queue periodically, and hence drive the bottleneck link to operate around the knee under
more scenarios.

A.5 Cross Traffic and the Value of λ 175

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(a) λ = 1.25

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(b) λ = 2.0

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(c) Adaptive λ

Figure A.14: Queue Dynamics at the Bottleneck Link When the Load of Web Surfing Varies

A.5 Cross Traffic and the Value of λ 176

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(a) λ = 1.25

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(b) λ = 2.0

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 200 400 600 800 1000Q
ue

ue
 L

en
gt

h
(p

ac
ke

t)

Time (s)
(c) Adaptive λ

Figure A.15: Queue Dynamics at the Bottleneck Link When the Load of Legacy FTP Cross
Traffic Varies

