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Summary 

 

The performance of organic solar cells (OSCs) is severely limited by poor light 

absorption, exciton dissociation and charge transport. This challenge can be partially 

overcome through the use of the bulk heterojunction (HJ) solar cell structure because it 

has the potential to guarantee the effective exciton dissociation and carrier transport by 

forming the interpenetrating network. The purpose of this thesis is to investigate the 

mechanisms of bulk HJ solar cells and then design the novel solar cell structure to 

improve the power conversion efficiency.  

In this thesis, the microscopic mechanisms of the short circuit current density (JSC) 

and the open circuit voltage (VOC) in bulk HJ solar cells are investigated. JSC suffers from 

the serious optical interference effect, non-ideal exciton dissociation probability, low 

mobility and short carrier lifetime. All these factors are investigated and considered to 

predict JSC. Another parameter, VOC has a direct relationship with the offset energy 

between the donor (D) and the acceptor (A) materials both in layered and bulk HJ solar 

cells. However, in the two types of devices, VOC shows different dependences on the 

electrodes. VOC of layered HJ OSCs shows a very weak dependence on the electrodes, 

while VOC of bulk HJ solar cells shows a strong dependence on the electrodes. It is 

suggested that their distinct structures lead to the different dependences of VOC on the 

electrodes, although VOC of the two types of solar cells follow the same mechanism and 

are mainly determined by the light injected carriers at the D/A interface and the 

electrodes.  
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Based on the above understandings, experimental studies are carried out to increase 

JSC and enhance VOC of the poly(3-hexylthiophene-2,5-diyl): [6,6]-phenyl-C61-butyric 

acid methyl ester (P3HT:PCBM) solar cells. It is found that the sequence of the thermal 

annealing is critical for the performance of the polymer-fullerene bulk HJ solar cells. The 

post-annealed device shows a higher JSC. This is attributed to the improved contact at 

polymer/aluminum interface, the improved phase-structured morphology due to the 

prohibition of the overgrowth of PCBM and the enhanced P3HT crystallinity. It is also 

found that a significant increase of VOC is obtained in polymer-fullerene bulk HJ solar 

cells by using e-beam evaporated Al cathodes. This is because that the energetic particles 

of Al in the e-beam deposition damage the surface of P3HT and induce deep hole traps at 

the P3HT/Al interface while leave fullerene unaffected. These deep hole traps will induce 

the negative image charges in the cathode and form “dipoles”. The “dipoles” lower down 

the Al effective work function and induce a very strong increase of VOC. Based on these 

findings, the post-annealed devices with the e-beam Al cathodes are optimized around the 

first and second optical interference peaks. 

At last, a simple tandem structure design for efficient light harvesting is proposed. 

In this device structure, PCBM is employed simultaneously to form a bilayer HJ 

photovoltaic (PV) subcell with the underlying CuPc and a bulk HJ PV subcell with the 

blended P3HT. In comparison with the conventional tandem structure, the omission of 

the semitransparent intercellular connection layer reduces the complexity of the device 

and the light loss. This structure effectively improves JSC and the overall power 

conversion efficiency (PCE).  
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Chapter 1  

Introduction 
 

1.1 Need for renewable clean energy 

There is continuous increase of the global energy demand every year [1.1]. 

However, till now the vast portion of global energy production comes from fossil fuels 

(coal, oil and natural gas as shown in Fig. 1.1). It is widely known that the combustion of 

fossil fuels has detrimental long term effects on the natural balance by increasing the 

concentration of carbon dioxide (CO2) in the atmosphere, which contributes to the 

greenhouse effect [1.2]. Today’s plants are unable to absorb this huge amount of extra 

CO2. As a result, the CO2 in the atmosphere continues to mount and induce the global 

warming [1.4]. Another more important problem is that fossil fuels will expire in roughly 

50 years [1.5]. Hydroelectricity is a type of renewable energy. However, the construction 

of hydropower stations may destroy the ecological balance and cause the ecological 

disaster. Nuclear power is another promise candidate. But, it produces highly dangerous 

and long lasting radioactive waste that requires expensive containment. Thus, renewable 

clean energy sources (RCESs) have been considered as the best alternatives as they do 

not produce waste and are readily available. RCESs include things such as wind power, 

geothermal sources and solar power. Among them, the most abundant, but not yet well 

utilized is the solar energy (Fig. 1.1 and Fig. 1.2). The total amount of solar irradiation 

per year on the earth’s surface is about 89 PW [1.6]. Only capturing less than 0.02% 

would be enough to meet the current energy needs. It has been widely recognized that 

harvesting energy directly from the sunlight by using photovoltaic (PV) technology is an  
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Fig. 1.1 According to the US Energy Information Administration’s 2006 
estimation, the estimated 471 EJ total consumption in 2004 was divided as 
in the inset, with fossil fuels supplying 86% of the world's energy [1.3]. 

 

Fig. 1.2 Available renewable energy. The volumes of the cubes represent the 
amount of available geothermal, hydropower, wind and solar energy in TW, 
although only a small portion is recoverable. The small red cube shows the 
proportional global energy consumption [1.3]. 
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essential component to utilize the solar energy. Such a way of using the sunlight as a 

primary energy source is enormous. It has been calculated that covering only 0.1% of the 

earth’s surface area with solar cells of 10% efficiency will be enough for the global 

electricity consumption [1.7]. The vast application potential of solar cells attracts a great 

deal of research interests in the past few decades. 

1.2 Solar cells 

Solar cells have obvious advantages as they are silent and panels can be placed 

upon walls or rooftops so they do not interfere with views or surroundings. Additionally, 

the sun itself is the primary source of energy for the whole planet. Solar cells provide us 

with a great opportunity to harness this energy source for everyday use.  

1.2.1 Inorganic solar cells (ISCs) 

The modern age of solar power technology arrived in 1954 when the first crystalline 

silicon solar cell was developed at Bell Laboratory [1.8]. This resulted in the production 

of the first practical solar cells with the power conversion efficiency (PCE) of around 6%. 

Since then, PCE of silicon solar cells has increased steadily and reached 25% in the 

laboratory [1.9], which is approaching the theoretical PCE limiting of 33% [1.10]. 

Besides the Si solar cells, other types of solar cells have also been made from many other 

semiconductor materials with various device configurations, such as monocrystalline, 

polycrystalline, and amorphous thin-film structures as shown in Fig. 1.3. However, Si-

based solar cells are by far the most dominant type of solar cells used and account for 

99% of all PV devices [1.11, 1.12]. Conventional ISCs are almost based on the p-n 

junction, where the photovoltage is generated and the electric field is formed. Under the 
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light illumination, the holes and electrons produced in or near the p-n junction region are 

separated by the electric field and move towards the proper electrodes.  

 

Fig. 1.3 Progress of research-scale PV device efficiencies, under AM 1.5 simulated solar 
illumination, for a variety of technologies [1.13]. 

 

With the increasing PCE and decreasing production cost, the solar cell production 

has grown by 20-25% each year since 1980. However, these semiconductor PV devices 

only account for less than 0.1% of the total world energy production [1.11]. One of the 

major obstacles is still the large production cost for Si based technology. For example, 

the production of high quality monocrystalline silicon uses extremely high temperature 

making it very costly [1.14].  A further disadvantage of silicon and other crystalline 

devices is that they are inflexible and generally very brittle, so they have to be kept flat or 
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well supported. Otherwise, they will break and be rendered useless. Even though all the 

obstacles are overcome, large scale production of Si-based solar cells is still limited by 

the availability of raw Si materials. To ensure a sustainable development of PV devices, it 

is clear that a cheaper, cleaner and more easily processable material is needed.  

1.2.2 Organic solar cells (OSCs) 

Organic materials fulfill all of the above requirements. Compared to inorganic 

semiconductors like Si, they are very cheap. In addition, organic materials usually have 

extremely high optical absorption coefficients which offer the possibility to fabricate the 

very thin solar cells. Thus the material consumption in the production is expected to be 

very low. Organic materials are generally soluble and then it is possible to fabricate the 

solar cells only by using fewer steps and cheaper technologies, such as various coating 

methods. Additional attractive feature of organic materials is the property of flexibility. 

And it is possible for the thin flexible devices to be fabricated using high-throughput, low 

temperature approaches which employ the well established printing techniques in a roll-

to-roll process [1.15, 1.16]. Organic materials have further advantages. They can be 

designed in molecules at the atomic level by the method of synthetic chemistry according 

to the requirements [1.17, 1.18]. By this method, it is also possible to change the 

molecules to absorb more light and much more suited for the solar spectrum [1.19]. The 

obvious advantages of organic materials attract more and more research interest. PCE of 

OSCs has been steadily improved in recent years as shown in Fig. 1.4. Now it has been 

believed that OSCs bear the potential to develop a long term technology that is 

economically viable for large-scale power generation based on environmentally safe 

materials with unlimited availability. 
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Fig. 1.4 Progress in PCE for both small-molecular weight and polymer PV cells 
over a span of 30 years. Also shown for comparison is the progress made in a 
more conventional thin-film technology, amorphous Si. Note that the initial 
slope of a-Si cell progress is similar to what we are experiencing today in 
organic thin films [1.20]. 
 
 

1.3 Development of OSCs 

The first study of OSCs was reported when studying an anthracene single crystal in 

1959 [1.21]. This device was based on a single organic material and exhibited a 

photovoltage of 200 mV with an extremely low PCE. After that for many years, OSCs 

were not used for any possible application because their typical PCE was generally very 

poor (in the range of 10-3 to 10-2%) [1.22]. A major breakthrough came in 1985 when a 
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bilayer-structure OSC was firstly demonstrated by Tang, which
 
exhibited the PCE around 

1% based on two organic materials: perylene tetracarboxylic derivative and copper 

phthalocyanine (CuPc) [1.23]. The record was kept for many years and only broken at the 

turn of the millennium [1.24]. Now the layered OSCs have been the widely investigated 

devices. Another important discovery occurred in early 1990s when the ultra-fast 

photoinduced charge transfer at the interface between a conjugated polymer and the 

Buckminster fullerene C60 was found [1.25]. Following that, another revolutionary 

development in OSCs came with the introduction of the bulk heterojunction (HJ), where 

the donor (D) and acceptor (A) materials are blended together. This bulk HJ structure 

forms the interpenetrating network in the active region of OSCs. In the ideal condition, 

this structure can ensure the efficient dissociation of the produced excitons and at the 

same time guarantee the carrier transport. In the past decade, both layered and bulk HJ 

PV cells have been investigated by using either molecules, conjugated polymers, 

combinations of small molecules and conjugated polymers or combinations of inorganic 

and organic materials as the active layer. The performance of OSCs has been steadily 

improved [1.26]. A recent development of OSCs is summarized in Table 1.1. 

Because small molecules show limited solubility in the solvents, traditionally they 

are mainly deposited by vacuum deposition techniques. In contrast, conjugated polymers 

are easy to be dissolved in common solvents. The polymer solution can be cast to form a 

thin organic film by using very simple deposition method, such as spin coating, screen 

printing or ink jet printing. Thus the conjugated polymers do not require high vacuum 

sublimation equipment. Now both the sublimed and solution processed OSCs are being 

developed very fast and the best performance of them shows the comparable efficiency as 
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shown in Table 1.1.  Both of them are now under the intense investigation. The head-to-

head race is going between them and which type of PV cell will win the race is still 

unknown yet. 

 

Table 1.1 Summary of various organic PV cell results 
 

Materials JSC(mA/cm2) VOC(V) η (%) 
inP  

(mW/cm2) 

Ref. 

Donor Acceptor 

Single layer based solar cells 

Merocyanine 0.18 1.2 0.62 78 1.27 

ZnPc 4106.5 −×  0.59 4103 −×  0.1 1.28 

Small molecules based solar cells 

CuPc  C60 9.7 1.0 5.7 100 1.29 

CuPc  C60 15 0.54 5.0 100 1.30 

MeO-TPD, ZnPc C60 10.8 1.0 3.8 130 1.31 

DCV5T C60 8.25 0.98 3.4 118 1.32 

SubPc C60 3.36 0.97 2.1 100 1.33 

CuPc PTCBI 11 0.49 2.7 100 1.34 

Petacene C60 8.8 0.3 1.6 80 1.35 

Polymer-fullerene solar cells 

P3HT PCBM 9.5 0.63 5.0 80 1.36 

P3HT PCBM 11.1 0.6 4.9 80 1.37 

PCPDTBT PC71BM 16.2 0.62 5.5 100 1.38 

P3HT PCBM 11.1 0.61 5.0 90 1.39 

P3HT PCBM 10.8 0.61 4.4 100 1.40 
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P3HT PCBM 10.1 0.60 3.5 100 1.41 

P3HT PC71BM 10.8 0.59 4.1 85 1.42 

P3HT PCBM 9.1 0.60 3.4 100 1.43 

APFO-G5 PCBM 8.2 0.61 2.2 100 1.44 

MEH-PPV PCBM 7.0 0.85 1.5 130 1.45 

MDMO-PPV PCBM 8.2 0.76 3 100 1.46 

PCPDTBT PC71BM 11 0.7 3.2 100 1.47 

PEBT PCBM 3.1 1.01 1.1 100 1.48 

P3OT PCBM 3.5 0.35 0.60 100 1.49 

Inorganic nanoparticle-polymer solar cell 

OC1C10-PPV CdSe 9.1 0.76 2.8 89 1.50 

P3HT CdSe 8.79 0.62 2.6 92 1.51 

APFO-3 CdSe 7.23 0.95 2.4 100 1.52 

P3HT CdSe 6.07 0.70 1.7 100 1.53 

MDMO-PPV ZnO 2.4 0.81 1.6 100 1.54 

MEH-PPV ZnO 2.3 1.14 1.1 90 1.55 

P3HT TIO2 2.76 0.44 0.42 100 1.56 

P3HT ZnO-dye 2.00 0.28 0.20 100 1.57 

P3HT CuInSe2 0.30 1.00 0.15 80 1.58 

P3HT PbSe 1.08 0.35 0.14 100 1.59 

P3OT SWNT 0.5 0.75 0.22 100 1.60 

 

 

Although great progress has been made in the development of OSCs, there are still 

many open questions regarding the working mechanisms, the device structure designs 
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and the fabrication processes. The short circuit current (JSC) is still low in OSCs 

compared to their inorganic counterparts. This is directly related to the optical-electrical 

process in organic materials. As is known, excitons rather than free carriers are usually 

produced in organic materials. The production, motion and dissociation of the excitons 

have a great influence on JSC. A good understanding of the exciton properties is essential 

to increase JSC. Another important limiting parameter in OSCs is the open circuit voltage 

(VOC). It is known that the metal-insulator-metal (MIM) model describes VOC well for the 

single layer OSCs. However, the situation becomes different for OSCs based on the HJ 

structure. For this type of solar cells, VOC is rather a complicated function of D and A 

interface conditions and morphology of the active layer. A good understanding of the 

determining factors is important to increase VOC. Various fabrication processes, such as 

post-annealing process (anneal the device after metal deposition) and cathode deposition 

method, also affect the OSCs performance. Huge amount of experimental work is needed 

to optimize the fabrication process. For the further improvement of OSCs, other efforts, 

such as novel structure design, are also urgently needed. All these issues will be 

addressed in this work.  

1.4 Outline of the study 

In Chapter 2, the general theory related to organic semiconductors in PV devices is 

introduced. Compared to the inorganic materials, excitons rather than free carriers are 

produced in the organic materials. This property determines the working processes of 

OSCs: light absorption (exciton generation), exciton diffusion, exciton dissociation 

(charge generation) and charge transport. Every process has its own limiting factors. In 
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order to overcome these limiting factors, various structures are proposed. In this chapter, 

the fundamental background about organic PV cells will be briefed.  

In Chapter 3, we will focus on the microscopic generation mechanism of JSC in bulk 

HJ solar cells. Compared to the inorganic materials, the absorption coefficients of organic 

materials are usually very high, which makes the active layer very thin. Thus, the optical 

interference effect becomes very important in OSCs. At the same time, not all the 

excitons can be dissociated into free carriers and contribute to JSC. The exciton 

dissociation probability has an important influence on JSC. These factors are considered in 

this chapter, and the calculation of JSC is introduced. Finally, the influence of carrier 

lifetime on JSC will be discussed. 

Another important parameter, VOC, is discussed in Chapter 4. It has been shown that 

VOC has a direct relationship with the energy difference between the highest occupied 

molecular orbital (HOMO) of D and the lowest unoccupied molecular orbital (LUMO) of 

A in both the layered and bulk HJ PV cells. However, how the electrodes affect VOC is 

still not well understood. Experimental results show that VOC of layered HJ organic PV 

cells shows a very weak dependence on the electrodes, while VOC of bulk HJ PV cells 

shows a strong dependence on the electrodes. In this chapter, the mechanism behind this 

phenomenon is investigated.  

Based on the above theoretical studies, the poly(3-hexylthiophene-2,5-diyl): [6,6]-

phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells are investigated in 

Chapter 5. It is found that the sequence of the thermal annealing is critical for the 

performance of the polymer-fullerene bulk HJ solar cells. The post-annealed device 

shows a higher JSC. This is attributed to the improved contact at polymer/aluminum 
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interface, the improved phase-structured morphology due to the prohibition of the 

overgrowth of PCBM and the enhanced P3HT crystallinity. It is also found that a 

significant increase of VOC is obtained in polymer-fullerene bulk HJ solar cells by using 

e-beam evaporated Al cathodes. This is because the energetic particles of Al in the e-

beam deposition damage the surface of P3HT and induce deep hole traps at the P3HT/Al 

interface while leaving PCBM unaffected. These deep hole traps induce the negative 

image charges in the cathode and form “dipoles”. The “dipoles” lower down the Al 

effective work function and induce a very strong increase of VOC. Based on these findings, 

the post-annealed device with the e-beam Al cathode is optimized around the first and 

second optical interference peaks. 

In Chapter 6, a simple tandem structure design of OSCs for efficient light 

harvesting is proposed and demonstrated. It is well known that PCE of OSCs is still low 

compared to their inorganic counterparts despite their recent fast development. One 

important factor is the limited overlap of the absorption spectra of organic materials with 

the solar spectrum. The design of tandem structures, in which two or more cells are 

stacked, is an effective way to overcome this problem. In this chapter, a simple tandem 

structure of OSCs is proposed and demonstrated for efficient light harvesting. In this 

device structure, PCBM is employed simultaneously to form a bilayer HJ PV subcell with 

the underlying CuPc and a bulk HJ PV subcell with the blended P3HT. In comparison 

with the conventional tandem structure, the omission of the semitransparent intercellular 

connection layer reduces the light loss and the complexity of the device fabrication. 

At last, the important results of this work are summarized and some suggestions for 

future work are discussed in Chapter 7. 
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Chapter 2 

Organic solar cell fundamentals  
 

OSCs are based on organic materials that have semiconductor properties. In 1977， 

the conductivity and semi-conductivity of polymers were discovered [2.1]. This opened 

the research on organic molecules and polymers for classical semiconductor applications, 

such as transistors, light emitting diodes and solar cells. Now there have been various 

organic semiconductor materials. In spite of their broad variation of chemical structures 

and practical applications, they have common properties which are different from the 

traditional inorganic materials. In this chapter, we will compare the organic 

semiconductor materials with the traditional inorganic semiconductor materials and then 

introduce the fundamental properties of organic semiconductors. These properties 

determine the basic operation principles and the device structures of OSCs. These various 

structures of OSCs and their corresponding limiting factors will be discussed. The 

experimental and characterization methods will also be introduced in this chapter.  

2.1 Excitons in organic semiconductor materials 

Light absorption in semiconductor materials is able to excite an electron from an 

occupied state below the bandgap to an available state above the bandgap. However, 

there are some differences in this process between the inorganic and organic materials. 

As is well known, the free electrons and holes are usually generated immediately in 

inorganic semiconductor materials (such as Si) upon light absorption under the normal 

condition. The generated free carriers distribute throughout the bulk according to the 
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exponential decrease of the incident light density. However, instead of the immediately 

generation of free charges, excitons are usually produced in organic materials upon light 

absorption [2.2]. Exciton is an excited state in which the electron and hole are still tightly 

bound due to Coulombic attraction. Excitons are electrical neutral and the external 

electric field cannot drift them to move. And they usually move by diffusion. A good 

understanding of the exciton behaviors is the key to understand the operation principles 

of OSCs. Why excitons rather than free carriers are produced in organic materials can be 

interpreted by two main reasons [2.2]: 

(1)  Compared to most inorganic semiconductors (dielectric constant, εr>10), the 

dielectric constant of the organic materials is usually low (εr≈2-4). Thus the attractive 

Coulombic potential in organic materials is very large and extends over a greater 

volume than it does in inorganic semiconductors. The typical exciton binding 

energies (EB) of photogenerated electron-hole pairs in inorganic semiconductors are 

typically far below kBT (kB is Boltzmann’s constant, T is temperature, and kBT is 26 

meV at room temperatures) such that free charge carriers are generated upon photo-

excitation due to thermal dissociation. While for organic materials, EB is far larger 

than kBT and is localized on a few polymer repetition units or a molecule [2.3]. This 

fundamental difference of EB between organic and inorganic materials is 

schematically illustrated in Fig. 2.1. 

(2) The noncovalent electronic interactions between organic molecules are weak, 

resulting in a narrow bandwidth compared to the strong interatomic electronic 

interactions of covalently bonded inorganic semiconductor materials like silicon. The 
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electron’s wave function is spatially restricted, allowing it to be localized in the 

potential well of its conjugate hole (and vice versa).  
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Fig. 2.1 A schematic plot of the fundamental difference between organic 
and inorganic semiconductors (replotted from [2.2] and [2.4]). A positive 
charge (hole) is at the origin and a negative charge (electron) at the 
indicated distance from the hole. Potential wells were calculated for a 
typical inorganic semiconductor with an isotropic dielectric constant εr 
=15 and a typical organic semiconductor (εr =4) assuming point charges. It 
shows that in most conventional inorganic semiconductors, free charge 
carriers are generated upon photoexcitation, because the electron 
wavefunction extends further than rC, i.e. the radius of the Coulomb 
potential at kBT. However, in organic semiconductors the photogenerated 
electron-hole pair is electrostatically bound. When  γ= rC/rB > 1, the wave 
function of the electron is spatially restricted and “fit” deep into the 
potential well, i.e. is less delocalized. This leads to photoproduction of 
bound electron-hole pairs, or excitons. 
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Because excitons are usually produced in organic materials, they can be categorized 

to excitonic semiconductors. Whether a material belongs to the conventional 

semiconductor or excitonic semiconductor can be judged by the following criterion. This 

is done by the ratio of rC (the width of the coulombic potential well at kBT) and rB (the 

Bohr radius of the relevant charge carrier) [2.4]: 
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where q is the electronic charge, ε0 the permittivity of free space, r0 the first Bohr radius 

of an electron of the hydrogen atom, me the electron rest mass and meff the effective 

electron mass in the semiconductor. If γ > 1, an excitonic behavior can be observed, 

which is the usual case in organic materials as shown in Fig. 2.1.  

2.2 Other differences between organic and inorganic materials 

Besides the generation of excitons in organic materials, there are some other 

properties of organic materials which are different from the conventional inorganic 

materials. A summary of the differences between organic and inorganic semiconductors 

is shown in Table 2.1. The inorganic material is represented by crystalline silicon since it 

is the dominant material in the conventional inorganic semiconductors.  
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Table 2.1 Main differences between crystalline silicon and organic semiconductors. 

Materials Crystalline silicon Organic semiconductors 

Basic entities atoms molecules 

Bulk structure  crystalline amorphous 

Produced particles upon light free carriers excitons 

Carrier mobility μ  

(cm2V-1s-1) 

electron: 1500 

 hole:450 

<<0.1 

Transport mechanism band transport  hopping 

Transport property bipolar conduction unipolar conduction 

T dependence of mobility T↑→ μ ↓ T↑→ μ ↑ 

Optical excitation energy gap (Ego eV) 1.1 ≈2 

Absorption coefficient near Ego (cm-1) ≈103 ≈105

Dielectric constant 11.9 ≈2-4 

γ=rC/rB <1 >1 

Exciton binding energies 300K (meV) <26 >100 

 

2.3 Basic working principles of OSCs 

Exciton consists of one electron and one hole. Due to the electrical neutrality, 

excitons cannot contribute to the photocurrent. In order to convert light into electrical 

energy, the excitons must firstly be dissociated into free carriers. This determines the 

basic working principles in OSCs. Generally there are four separate steps for OSCs to 

finish the energy conversion as shown in Fig. 2.2. 

(1) Light absorption and exciton generation 
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(2) Exciton diffusion 

(3) Exciton dissociation and free carrier generation 

(4) Free carrier transport and collected by the electrodes 

In the following sections, the four separate steps will be discussed. 

 

 

 

Fig. 2.2 Illustration of the basic operation principles in OSCs. Generally, 
there are four separate steps. 
 

2.3.1 Light absorption 

The light absorption is directly related to JSC and determines the performance of 

OSCs. Primarily, high broadband light absorption is desired for the organic materials to 

be able to absorb most of the solar light. The absorption ability of the organic material is 

determined by the optical excitation energy gap (Ego). Here “Ego” is used instead of the 

conventional “electronic energy gap” (Ege), since a tightly bound exciton, instead of a 

free electron and hole, is produced in the organic material. Ege typically refers to the 

energy gap between the free holes at valence band and the free electrons at conduction 

band in inorganic semiconductors. The Ego and Ege have the relationship  

Ege = Ego + EB                                                   (2.2) 
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EB is the exciton binding energy with its value between 0.05–2 eV [2.7-2.12]. The widely 

used conjugated polymers in OSCs have Ego higher than 2.0 eV (for example, the widely 

used PPV and polythiophene materials). However, the solar spectrum extends well into 

the infrared region. As shown in Fig. 2.3, more than 60% of the total solar energy is in 

the wavelength region above 600 nm, which corresponds to Ego below 2.0 eV. For 

terrestrial applications, it is desirable that Ego of a solar cell material spans a range from 

1.3 eV to 2.0 eV. Thus the “photon loss” problem due to the limited absorption of organic 

materials is very common in almost all the currently reported organic PV materials and 

devices. The light absorption (or exciton generation) of the state-of-art OSCs is still far 

from being optimized. To reduce the “photon loss”, a number of recent studies have 

worked on the development of low band gap conjugated polymers [2.13-2.15]. Another 

effective way to improve the light absorption ability is the novel structure design, such as 

various tandem structures [2.14-2.16].  
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Fig. 2.3 The solar spectrum (AM 1.5) [2.17]. 
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2.3.2 Exciton migration 

After an exciton is photo-generated, it can migrate by diffusion.  At the same time, 

the exciton can also decay radiatively or non-radiatively to the ground sate. The lifetime 

of excitons is at typically pico- to nano-seconds [2.18, 2.19]. This makes the exciton 

diffusion length (LD) very small. For polymer materials, LD is measured to be about 10 

nm [2.20-2.22], which is smaller in comparison to the layer thickness of polymer films 

usually used in OSCs (>80 nm). Some small molecules have larger exciton LD. Table 2.2 

shows LD of some small molecules. Polyacenes (eg. pentacene and tetracene) and metal 

phthalocyanines (MePc) (eg. CuPc) show LD to be approximately 50 nm and 10 nm, 

respectively. C60 shows LD of 40 nm. The long LD materials can be used for the layered 

structure, where the film thickness is alleviated by the long LD; while for the small LD 

materials, the bulk HJ structure is desired, which effectively shortens the diffusion 

distance before the exciton dissociation. MePC materials have relatively small LD 

(around 10 nm), but the large light absorption ability makes the active layer thickness 

very small and then they can be used in layered structures (see Table 1.1). The discussion 

for the different structures will be given in section 2.4. 

 

Table 2.2 Summary of optical and electrical properties of some small organic materials 
in OSCs. 

Material Ionization 

potential (IP, eV) 

Electron affinity 

(EA, eV) 

Ego (eV) Mobility 

(cm2V-1s-1) 

LD (nm) Ref. 

C60 6.2 3.6 1.8 2101.5 −×  540 ±  2.23,2.24,2.25 

CuPc 5.2 3.2 1.7 4104.7 −×  310 ±  2.24,2.25,2.26 

Pentacene 5.1 3.0 1.9 1105.1 −×  1665 ±
 

2.26,2.27 

PTCBI 6.2 3.6 1.7 6104.2 −×  3.03±
 

2.24,2.25,2.26 
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2.3.3 Exciton dissociation 

For the solar cell application, excitons must be dissociated into free electrons and 

holes. Such a process can be induced by the built-in electric field, but the efficiency at 

electric fields typically found in organic electronic devices (F~106 V/cm) is low           

( Dη ~10%) [2.25]. Electronic trap sites in the bulk can also dissociate the exciton into one 

trapped carrier and one free carrier, but this is not a viable mechanism for efficient 

photoconversion [2.2]. It has been recognized that the most efficient exciton dissociation 

in organic materials occurs at a D/A interface [2.28, 2.29]. In order to dissociate the 

excitons, some energy is needed. This is efficiently supplied by the offset energy at the 

D/A interface. Fig. 2.4 shows the energy level alignment requirements for efficient 

charge transfer from the photoinduced state to take place [2.25]. The D material has a 

lower ionization potential (IP) given by HOMO level, while the acceptor material has a 

high electron affinity (EA) given by LUMO level. Then the offset energy is given by IPD-

EAA (the subscripts denote the D and A materials). For Fig. 2.4 (a), the D/A HJ has 

Ego > IPD-EAA                                                       (2.3) 

The charge-transfer reactions will take place: 

D*+A → D++A-                                                   (2.4) 

D+A* → D++A-                                                   (2.5) 

Where D* and A* are donor and acceptor excited states, and D+ and A- are hole and 

electron polarons in the donor and acceptor materials. However, for Fig. 2.4 (b), the D/A 

HJ has 

Ego < IPD-EAA                                                      (2.6) 

such that the charge-transfer reaction is energetically unfavorable. 
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Fig. 2.4 Schematic illustration of the energy level alignment requirements of 
D/A HJ for charge transfer from the photoinduced state to take place. (a) 
efficient D/A energy offset and (b) inefficient D/A energy offset. 

 

The dissociation typically occurs in the time scales of a few hundred femto-seconds 

or less [2.30, 2.31]. This is much shorter than any other competing process and assures 

the efficient dissociation at D/A HJ interfaces. After exciton dissociation, the device must 

assure that the electron and hole remain separated. This may be achieved by creating 

paths that selectively transport one type of carriers but block the other type of carriers.  

2.3.4 Carrier transport 

Once the excitons are separated, the holes need to transport toward the anode and 

electrons transport toward the cathode. The driving forces may come from the field 

created by the work function difference between the two electrodes as well as the 

“chemical potential” driving force [2.32]. With the chemical potential force, even if the 

two electrode are the same (the driving force due to work function difference is zero), the 

PV effect still can be observed [2.2, 2.32]. 
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The mobilities of organic semiconductors are typically several orders of magnitude 

less than those found in crystalline inorganic semiconductors (Table 2.1). This is because 

of the weak order in organic materials. In the weakly ordered organics, intermolecular 

forces are too weak to form well-defined conduction and valence bands. Thus the charges 

must hop between local states in contrast to the band transport in most crystalline 

inorganic semiconductors. Mobility is also limited by the confinement of the charge to 

the lattice. Once the exciton is dissociated, it relaxes to form a lattice distortion (polaron). 

In order for the polaron to migrate along the polymer backbone, it must possess enough 

energy to overcome the energy barrier associated with rearranging that distortion. The 

polaron has a large effective mass and thus is poorly mobile.  

The low mobilities in organic semiconductors limit the feasible thicknesses of the 

organic layer in solar cells to a few hundred nanometers. Fortunately, organic 

semiconductors are very strong absorbers in the UV-VIS regime (Table 2.1). Thus only 

very thin organic layers (~100 nm) are needed for effective absorption. 

2.4 OSCs structures 

The above section has introduced the working principles of OSCs. Based on these 

working principles, several device structures have been proposed in the past few decades. 

The main difference among these structures is how they deal with the process of exciton 

dissociation and charge transport. In the following, these structures will be introduced.  

2.4.1 Single layer structure 

In this structure, a single organic layer is sandwiched between two different 

electrode materials. The PV behavior of these devices can be explained by the MIM 
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model (for insulators) or by the formation of a Schottky barrier (for doped materials) 

[2.33]. As shown in Fig. 2.5, the excitons are dissociated at metal/organic (M/O) interface 

for the MIM case or dissociated by the high electric field near the contact for the 

Schottky barrier case. Single layer structure is the simplest structure and can achieve a 

very high open circuit voltage in excess of 1V [2.34]. Earlier work mainly focused on this 

type of structure [2.35, 2.36]. However this structure suffers from very low PCE. 

 

 

    

 

(a)                                                              (b) 

Fig. 2.5 Energy band diagram of a single layer organic PV device; (a) 
MIM picture and (b) Schottky picture. 

 

The low PCE is due to the very short exciton diffusion length for most OSC 

materials and the low exciton dissociation probability. Dissociation of the excitons only 

occurs in a restricted zone near the metal contacts. Most of the excitons, which are not 

generated in this zone, recombine without contribution to any external photocurrent.  

Thus, JSC of this structure device is usually very low. In addition, the series resistances in 

this structure are large. Thus this structure shows a low fill factor (FF) and a field-

dependent charge carrier collection. These thin film devices with the single layer 

structure can work well as photodetectors, as under a high reverse bias the electric field 

drives the charges to the electrodes. However, they most probably will not result in any 

practical PV application.  
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2.4.2 Heterojunction structure 

As discussed in the single layer structure, the main limits for PCE are the very short 

exciton diffusion length and the limited exciton dissociation sites (only near the contact). 

In order to overcome these shortcomings, D/A interface is introduced to OSCs. As has 

been discussed in section 2.3.3, the exciton dissociation at D/A HJ interface is ultrafast 

and efficient. The introduction of D/A HJ interfaces effectively increases the device 

performance and becomes the “driving force” of the development of OSCs in the past 

two decades. There are mainly two types of HJ solar cells: layered HJ solar cells and bulk 

HJ solar cells. 

Layered HJ solar cells 

With the introduction of an electron acceptor layer in the device, a planar HJ 

interface is formed as shown in Fig. 2.6. At the D/A interface, there is a large potential 

drop, and there the excitons can be effectively dissociated. In this structure, the four 

separate working steps are very clear as shown in Fig. 2.6. Excitons are generated and 

diffuse within both D and A materials. If they encounter the organic D/A interface, a fast 

dissociation takes place. After the exciton dissociation, the recombination rate between 

holes in D and electrons in A is several orders of magnitude smaller than the forward 

charge transfer rate [2.37, 2.38]. Then the holes and electrons can be effectively separated 

from each other. A good matching of the work function of the cathode to LUMO of A 

and anode to HOMO of  D yields optimal electron collection of the free carriers. 
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Fig. 2.6 Very clear consecutive steps in the generation of photocurrent of 
layered HJ OSCs: (a) Exciton generation, (b) Exciton migration, (c) Exciton 
dissociation and (d) Free carrier transport. 

 

Compared to the single layer device, the exciton dissociation at the D/A interface is 

more effective than that at M/O interface. After the excitons are dissociated at the D/A 
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interface, the electrons transport within the A material, and the holes transport within the 

D material. Then holes and electrons are effectively separated from each other, thus the 

recombination rate can be greatly reduced. At the same time, the charge transport is 

usually not a problem in this structure and the charge collection can be reached to 100% 

[2.25]. The photocurrent dependency on illumination intensity can be linear [2.39-2.41], 

and a large FF can be achieved [2.42].  

However, in order to contribute to the photocurrent, excitons must pass a long 

distance and reach the D/A interface before recombination. Only the excitons in the LD 

region near the D/A interface can be dissociated. Thus most of the excitons outside this 

region are lost and have no contribution to the photocurrent. To solve this problem, the 

bulk HJ structure has been proposed. 

Bulk HJ solar cells 

               

           (a)                                                                              (b) 

Fig. 2.7 Bulk HJ PV cells. In this structure, D and A are mixed together and form 
the interpenetrating network. The produced excitons can be dissociated efficiently. 

 

The bulk HJ is formed by intimately mixing the D and A components in a bulk 

volume. As shown in Fig. 2.7, in this structure, the D/A interfaces are distributed overall 

Cathode Anode 
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the active layer, so that almost all the excitons can reach the D/A interface within the 

distance of LD. Compared to layered structure, bulk HJ structure effectively increases the 

D/A interface area, and thus the exciton loss is avoided. After the exciton dissociation, 

the charges are separated within the different D and A phases. And if continuous 

pathways exist throughout the mixed layer, light-generated charges can travel along these 

respective phases towards the external contacts. Like the layered structures, the 

photocurrent also has a linear or sublinear relation with the light intensity [2.43]. 

From the above discussion, it is very clear that the morphology, the actual mixing of 

the two materials in the active layer, has a very important influence on performance of 

bulk HJ solar cells. As shown in Fig. 2.7 (a), some zones may not be included in the 

interpenetrating network. As a result, the carriers in this region cannot be collected by the 

electrodes, thus the “dead zone” is formed in the active layer. In the optimal case, it 

should guarantee an efficient mixture of D and A (for exciton dissociation) and an easy 

transport of charges via the percolation at the same time. If the domains are too large, 

separation will not be efficient. If the domains are too small, recombination of free 

charges may be favored and charge transport may be hindered. Many methods have been 

studied to improve the performance of bulk HJ solar cells. For example, P3HT can 

crystallize and achieve a higher hole mobility by thermal annealing [2.47-2.51]. It has 

also been demonstrated that the characteristics of solvent used, such as its evaporability, 

play an important role in the morphology formation of the photoactive layer [2.52-2.54]. 

2.4.3 Tandem structure 

Although OSCs have been developed fast in the past decade, PCE is still low 

compared to their inorganic counterparts. One main reason is the limited overlap between 
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the organic absorber and the solar spectrum [2.55, 2.56]. The tandem structure is 

designed to overcome this problem. In this structure, the devices are stacked on the top of 

each other and connected in series (Fig. 2.8 (a)-increase VOC) or in parallel (Fig. 2.8 (b)-

increase JSC). By combining different organic materials with complementary absorption 

spectra in tandem cell [2.57, 2.58], it can improve the spectral coverage and increase the 

photon harvesting. The tandem solar cells can be categorized into three groups: 

(1) the low molecular weight molecules are used for both the bottom and the top cells 

(2) the polymers are used for both the bottom and the top cells 

(3) hybrid tandem OSCs which include the low molecular weight molecules subcell 

and the polymer subcell. 

               

Fig. 2.8 Tandem architectures and their equivalent circuits: (a) series connection-
an increased open circuit voltage VOC and (b) parallel connection-an increased 
short circuit current JSC. 

 

Tandem structure can effectively increase the overall absorption of OSCs. By using 

this structure, the performance is further improved. Recently, tandem solar cells have 

reached PCE as high as 6.5% [2.14]. The disadvantage for this structure is mainly their 
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complex fabrication process. Tandem solar cell connects two or more cells in one device. 

And the standalone cell is still the core of this type of solar cells. 

2.5 Materials, experimental and device characterization methods 

The bulk HJ solar cell is the most promising cell because it has the potential to 

guarantee the effective exciton dissociation and at the same time guarantee the efficient 

carrier transport by well optimizing the active layer morphology. Our work is mainly 

based on this structure. In this section, we will give a brief introduction to the materials 

and the experimental and characterization methods, which will be used in this study. 

2.5.1 Materials 
 

 

(a)                                                 (b) 

Fig. 2.9 The chemical structure of a) P3HT and b) PCBM. 

There are many organic materials which have been used in OSCs. Among them, 

P3HT (Fig. 2.9 (a)) shows obvious advantages over other materials. P3HT has reasonably 

high hole mobility. For pure films of P3HT, a value of the hole mobility in the range of 

μp = 0.2 to 10-3cm2V-1S-1 [2.59, 2.60] was measured. Compared to the traditional poly(p-

phenylene vinylene) materials, P3HT has an improved absorption. P3HT has other 
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advantages, such as the environmental stability. Till now, the highest PCE achieved in 

OSCs is based on P3HT (see Table 1.1). 

For the acceptor material, the soluble fullerene PCBM is used. PCBM is a special 

spherical electron carbon cluster, whose chemical structure is shown in Fig. 2.9 (b). For 

pure films of PCBM, a value of the electron mobility in the range of 10-3 cm2V -1s-1 [2.61] 

was measured. 

2.5.2 Experimental method 

 

 

 

    

                        

                                 (a)                                                                       (b) 

 

Fig. 2.10 (a) Layer structure of our OSCs and (b) The production process flow. 

 

Fig. 2.10 shows the layer structure and the process flow for the fabrication of OSCs. 

All of our devices are fabricated on the ITO/glass substrates. Before the fabrication, the 

substrates are patterned by etching the ITO film using concentrated hydrochloric acid 

Substrate cleaning 

ITO/glass patterned  

Substrate: O2 plasma treatment  

Spin coating (PEDOT:PSS) 

PEDOT:PSS drying 

Active layer deposition 

Metal electrode deposition 

Post treatment (annealing) 

Device characterization 
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(HCl, 37%). After the patterns are formed, there are some particulates and adsorbed 

organic compounds on the substrates. The substrates must be cleaned carefully. The 

cleaning procedure is summarized in Table 2.3. After cleaning the substrate surface with 

the liquid solvents, it is usually to treat the substrate again by exposure to UV-ozone or 

O2 plasma. This step can further remove absorbed organic particles, alter the work 

function and decrease the surface roughness. In our case, the substrates are treated by O2 

plasma for three minutes. Then the poly[3,4-ethylene-dioxy-thiophene]:poly[4-

styrenesulphonate] (PEDOT:PSS, Baytron-P) are spin coated. PEDOT:PSS layer can 

facilitate the contact to the absorber layer, increase the work function of anode, and 

decrease the substrate roughness. After drying the substrates, the active layer was 

deposited. To prepare the active layer, the P3HT:PCBM solutions were prepared by 

dissolving the polymer, fullerene, or the polymer-fullerene blend in dichlorobenzen, and 

stirring for at last several hours in nitrogen glovebox. Then the metal electrode was 

deposited. At last, the devices were annealed and measured. 

 

Table 2.3 Substrate treatment procedures 

Solvent Ttemperature Time Sonicate 

Deionized Water +detergent Room Temperature 15 mins Yes 

Deionized Water Room Temperature 15 mins Yes 

Acetone  Room Temperature 15 mins Yes 

Iso-propanol Room Temperature 15 mins Yes 
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2.5.3 Device characterization 

2.5.3.1 Absorption measurement 

The absorption measurement gives the important information about the absorption 

ability of organic materials and determines which part of the wavelength can be absorbed 

by the materials. The information is essential for the design of the solar cells. Then it is 

one of the most useful measurements taken during characterization. Absorption spectra of 

organic films on glass were measured by a Shimadzu UV-3101 PC UV-VIS-NIR 

spectrophotometer. This is a straightforward measurement using two identical substrates, 

one with the organic film on, the other kept clean and used as a reference. By using this 

method, samples could be on varying substrates but only the absorbance of the film 

would be measured. 

2.5.3.2 Current-voltage measurement 

This measurement is done by applying a voltage sweep in the dark and under light 

illumination. For every voltage (V) applied to the sample, the current density (I) flowing 

through the sample is measured. The I-V curve is measured using a Keithley 2400 

Source-Measure-Unit.  

I-V characterization in the dark 

From the measured I-V curve in the dark, some information can be derived. An 

example of the I-V curve for organic electronic devices in the dark is shown in Fig. 2.11. 

As is shown, the obvious rectifying characteristic is observed. This is attributed to the 

different M/O interface injection barriers at the forward and inverse biases (Fig. 2.11 

inset).  
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Fig. 2.11 Typical I-V curve for the organic electronic device. Inset: 
the linear scale graph and the band structure for this device of 
ITO/P3HT/Al. 

0.01 0.1 1
1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

 

 slope>2

slope=2

C
ur

re
nt

 d
en

si
ty

 (m
A

/c
m

2 )

Voltage(V)

slope=1

I

II

III

 

Fig. 2.12 Forward dark I-V characteristics in double logarithmic 
scale. The same device in Fig. 2.11. Region I, Ohmic conduction; 
Region II, ILC; Region III, SCLC. 

 



Chapter 2: Organic solar cell fundamentals 
__________________________________________________________________________________ 

38 
 

From the dark I-V curve, the charge conduction in the organic materials can be 

investigated. Typically, three different conduction regions can be observed as shown in 

Fig. 2.12 by using the double logarithmic representation. 

In region I (V < 0.1 V), the external electric field across the device is small and the 

carrier injection from the electrodes is blocked by the interface barrier. Hence the number 

of charge carriers participating in the current almost does not increase. Current depends 

on applied field and the conductivity of the material. Thus it obeys Ohm’s law and has 

the slope of logI vs logV equal to 1. In region II (0.1 V <V< 0.7 V), the voltage applied 

has surpassed the threshold of blocking for carrier injection from the electrodes. The 

number of charges participating in the total current increases rapidly with the increase of 

voltage. At this region, the bulk material is still able to accommodate these rapid 

increased carriers. This leads to injection limited conduction (ILC) and has the slope of 

logI vs logV larger than 2. If the applied voltage is increased further, more carriers are 

injected from the electrodes so that the bulk material cannot accommodate so many 

carriers and then the space charge starts to form near the injecting electrode interface 

(SCLC). This is the region III which is indicated by the slope of logI vs logV equal to 2.  

The minimum current (“current zero”) is usually achieved when the voltage is zero 

as shown in Fig. 2.11. However, sometimes the shift of current zero can be observed. 

This is due to the traps in the organic materials [2.62].  

I-V characterization under light illumination 

I-V curve under light illumination is the most important characteristic for solar 

cells and it determines the device performance. A typical solar cell I-V curve measured 
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under light illumination is shown in Fig. 2.13. Several parameters are indicated on this 

curve. 
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Fig. 2.13 A typical polymer/fullerene bulk HJ solar cell I-V curve 
measured in the dark and under light illumination (85mW/cm2) 

  

(I) The open-circuit voltage, VOC, is the maximum photovoltage that can be 

generated in the cell and corresponds to the voltage where current is zero 

under light illumination.  

(II) The short circuit current density, JSC, is the current density when the applied 

voltage is zero. 

(III) The fill factor (FF) is defined as 

                                                    
OCSCVJ

JV
FF max)(

=                                                  (2.7)                              

             FF is a measure of the I-V curve. A rectangular shape gives a large FF.  
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(IV) The power conversion efficiency (PCE, η) is the ultimate measure of the 

device efficiency in converting photons to electrons. It can be defined as  

                                             
inin

OCSC

P
VJ

P
FFVJ maxmax==η                                    (2.8)                              

Pin is the incident light power density. Efficiency is equal to the area of 

shadow rectangle divided by Pin. 

I-V curve describes the macroscopic properties of OSCs. This characteristic can be 

described by 
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where Iph is photocurrent, Is the reverse saturation current of the diode, Rs the series 

resistance, Rsh the shunt resistance, n the ideal factor. By fitting the curve, all the 

parameters can be extracted. 

Besides the electrical characterization, other methods such as tapping mode atomic 

force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and X-ray diffraction 

(XRD) are also used. 

2.6 Summary 

Due to the low dielectric constant and weak noncovalent electronic interactions 

between the molecules, excitons rather than free carriers are produced in the organic 

materials upon light absorption. These excitons play a very important role in the working 

principles of OSCs. Generally, to convert the light into electric current there are four 
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separate steps: light absorption (exciton generation), exciton diffusion, exciton 

dissociation (charge generation) and charge transport. Depends on the ways of dealing 

with the exciton dissociation and charge transport processes, there are different structure 

designs: single layer device, layered HJ device and bulk HJ device. Among them, the 

bulk HJ solar cell is the most promising cell because it has the potential to guarantee the 

effective exciton dissociation and at the same time the efficient carrier transport by 

optimizing the active layer morphology. Therefore, this is the structure of our focus. At 

last of this chapter, the materials, the experimental and device characterization methods 

are addressed.  
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Chapter 3 

Short circuit current density  

in bulk HJ OSCs 
 

In the previous chapter, the working principles and the different structure designs of 

OSCs have been introduced. It has been indicated that the bulk HJ solar cell is the most 

promising cell because it has the potential to guarantee the effective exciton dissociation 

and at the same time guarantee the efficient carrier transport by optimizing the active 

layer morphology. Many studies have been done on this structure [3.1-3.5]. In order to 

achieve the good device performance, a high JSC is essential. Thus to well understand and 

predict JSC becomes important because it can help us to figure out the limiting factors for 

JSC and propose the ways to increase the device performance. In this chapter, a model 

describing JSC in bulk HJ solar cells is proposed. Based on the model, the limiting factors 

of JSC are investigated. 

3.1 Factors describing JSC 

JSC is directly related to the absorption ability of organic materials. It is believed 

that increasing the light harvesting ability of the active layer is an effective method to 

increase JSC. In order to increase JSC, some optical models [3.6-3.8] have been built to 

optimize the active layer thickness. However, only optimizing the thickness for better 

light absorption is difficult to improve JSC. This is because that PCE depends on not only 

the light absorption, but also on exciton dissociation and charge collection. In bulk HJ 

OSCs, a blend layer consisting of conjugated polymer as the electron donor and fullerene 



Chapter 3: Short circuit current density in bulk HJ OSCs 
__________________________________________________________________________________ 

46 
 

as the electron acceptor is always used as the active layer. For a well blended layer, the 

length scale of D and A phases is smaller than the exciton diffusion length (typically less 

than 10 nm), so that most of the generated excitons can diffuse to the D/A interface 

before they decay. Even if all the excitons can reach the D/A interface, not all of them 

can be dissociated into free carriers. This is because the dissociation probability is less 

than 1 at D/A interface. The dissociation probability is not a constant and depends on 

some factors such as electric field and temperature [3.2]. When the active layer thickness 

is increased to optimize the light absorption, the electric field in the blend layer decreases, 

which lowers down the exciton dissociation probability [3.2] and makes charge collection 

less effective [3.8] simultaneously. As a result, JSC may become low, although the 

thickness has been optimized for better light absorption. Thus to obtain a higher JSC, both 

the optical and the electric properties should be considered at the same time.  

In previous works, Lacic et al. [3.9] and Monestier et al. [3.10] studied the 

characteristic of JSC. However, they neglected the influence of exciton dissociation 

probability, which is very important for OSCs [3.11]. In another study, Koster et al. [3.12] 

considered this factor, but they neglected the optical interference effect in OSCs, which is 

a basic property for the very thin organic film. All the above studies are based on the 

numerical method, and then it is not easy to solve the equations and understand the direct 

influence of various parameters on the JSC. A more direct model is needed. 

In this chapter, a model predicting JSC is proposed based on very simple analytical 

equations. From this model, it is found that optical interference effect has a very 

important influence on JSC. Besides, the carrier lifetime is also found to be an important 

factor. Generally, when the lifetimes of both electrons and holes are long enough, the 
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dissociation probability plays a very important role for a thick active layer. JSC behaves 

wavelike with the variation of the active layer thickness. When the lifetime of one type of 

carrier is too short, the accumulation of charges appears near the electrode and JSC 

increases at the initial stage and then decreases rapidly with the increase of the active 

layer thickness. The validity is confirmed by the experiment results. 

3.2 Theory 

3.2.1 Exciton generation 

The active layer in OSCs absorbs the light energy when it is propagating through 

this layer. How much energy can be absorbed depends on the complex index of refraction 

κinn +=  of the materials. At the position z in the organic film (Fig. 3.1 (a)), the time 

average of the energy dissipated per second for a given wavelength λ of incident light 

can be calculated by [3.7] 

                      
2

0 )(
2
1),( zEnczQ jαελ =                                                 (3.1) 

where c is the vacuum speed of light, 0ε  the permittivity of vacuum, n the real index of 

refraction, α  the absorption coefficient, 
λ
πκα 4

=  , and E(z) the electrical optical field at 

point z. ),( λzQ  have the unit of 3/ mW . Assuming that every photon generates one 

exciton, the exciton generation rate at position z in the material is given by 

               ),(),(),( λλ
γ
λλ zQ
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where h is Planck constant, and γ  is the frequency of incident light. The total excitons 

generated by the material at position z in solar spectrum are calculated by 

                        ∫=
800

300
),()( λλ dzGzG                                                       (3.3) 

Here the integration is performed from 300 nm to 800 nm, which is because that beyond 

this range, only very weak light can be absorbed by P3HT: PCBM active layer. In ISCs 

[3.13], ),( λzQ  is usually modeled by 

                        zeIzQ ααλ −= 0),(                                                 (3.4) 

0I  is the incident light intensity. Here, the optical interference effect of the materials is 

neglected. But in OSCs, the active layers are so thin compared to the wavelength that the 

optical interference effect cannot be neglected which will be discussed in the next section. 

3.2.2 Optical model 

In order to obtain the distribution of electromagnetic field in a multilayer structure, 

the optical transfer-matrix theory (TMF) is one of the most elegant methods, which was 

introduced by Heavens [3.14] and was firstly applied in OSCs by Pettersson [3.6]. In this 

method, the light is treated as a propagating plane wave, which is transmitted and 

reflected on the interface. As shown in Fig. 3.1 (a), OSCs usually consist of a stack of 

several layers. Each layer is treated to be smooth, homogenous and described by the same 

complex index of refraction κinn += . The optical electric field at any position in the 

stack can be decomposed into two parts: an upstream component +E and a downstream 

component −E , as shown in Fig. 3.1 (a). According to Fresnel theory, the complex  
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Fig. 3.1 Bulk HJ OSCs consist of multilayer structure between air and a semi-
infinite substrate. The light is incident on the cells from the downside. (a) the optical 
electric field in each layer can be denoted as an upstream optical electric field 

+E and a downstream optical electric field −E , and (b) treating the multilayer as a 
virtual layer to calculate the light loss due to the very thick glass substrate. 

 

reflection and transmission coefficients for a propagating plane wave along the surface 

normal between two adjacent layers i and j are 

                            
kj

kj
jk nn

nn
r

+
−

=                                                      (3.5a) 
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where jkr  and jkt  are the reflection coefficient and the transmission coefficient, jn  and 

kn  the complex index of refraction for layer j and layer k. So the interface matrix 

between the two adjacent layers is simply described as 
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When light travels in layer j with the thickness d, the phase change can be described by 

the layer matrix (phase matrix) 
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where 
λ

π
β jj

j

dn2
=  is phase change the wave experiences as it traverses in layer j.  The 

optical electric fields in the substrate (subscript 0) and the final layer (subscript m+1) 

have the relationship as  

            )1(
1

)1(

1

1

22

12

12

11

1

1

0

0
+

=
−

−
+

+
+

−
+

+
+

−

+

•⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∏ mm

m

v
vvv

m

m

m

m ILI
E

E
S
S

S
S

E

E
S

E

E
                     (3.8) 

Because in the final layer, −
+1mE  is 0, it can be derived that the complex reflection and 

transmission coefficients for the whole multilayer are: 
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In order to get the optical electric field jE (z) in layer j, S is divided into two parts,  
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At the down interface in layer j, the upstream optical electric field is denoted as                         
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Similarly, at the up interface in layer j, the downstream optical electric field is 
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The optical electric field )(zE j at any position z in layer j is the sum of upstream part 

)(zE j
+  and downstream part )(zE j

−  
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3.2.3 Light loss due to the substrate 

Because the glass substrate is very thick compared to wavelength (usually 

1mm>>wavelength), the optical interference effect in the substrate can be neglected. 

Here only the correction of the light intensity at the air/substrate and substrate /multilayer 

interfaces is made. As shown in Fig. 3.1 (b), the multilayer can be treated as a virtual 

layer whose complex reflection and transmission coefficients can be calculated using 

above equations. Then the irradiance to the multilayer is  
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gI  is described as  
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It can be derived that 

                               
)1(

*)1(2
*

0

0
*

0 RRcn
IR

E
g −
−

=+

ε
                                   (3.17) 

3.2.4 Free carrier generation 

When the excitons are generated, not all of them can be dissociated into free 

carriers. The dissociation probability depends on the electric field and temperature. 
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Recently, the dissociation probability has been taken into consideration in OSCs [3.2, 

3.12]. The geminate recombination theory, first introduced by Onsager and refined by 

Brau later, gives the probability of electron-hole pair dissociation,  
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)(),(                                            (3.18) 

where T is the temperature, F the electric field, Xk  the decay rate to the ground state and 

Dk  the dissociation rate of a bound pair. Braun gives the simplified form for dissociation 

rate 
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where a is the initial separation distance of a given electron-hole pair, BU  is electron-hole 

pair binding energy described as 
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=                                            (3.19a) 

and 

                               2
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Brεπε
=                                        (3.19b) 

rε  is the dielectric constant of the material. In equation (3.19), Rk  is a function of the 

carrier recombination. For simplification, we treat Rk  as a constant. Thus, the 

dissociation probability P only depends on the electric field F when the temperature keeps 

constant. 
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3.2.5 JSC expression equations 

 

 

                    (a)                                 (b)                                                       (c) 

Fig. 3.2 Energy band diagrams of an OSC under short circuit condition. The 
built-in voltage is 0.7 V determined by the electrodes. (a) Case I: the active layer  
thickness is shorter than both hole and electron drift lengths, (b) Case II: the 
active layer thickness is longer than hole drift length but shorter than electron 
drift length, and (c) Case III: the active layer thickness is longer than both hole 
and electron drift lengths. 

 

JSC is determined by the number of carriers collected by the electrodes in the period 

of their lifetimeτ under short circuit condition.  If the active layer thickness L is shorter 

than the electron and hole drift lengths (which is the product of carrier mobilityμ , the 

electric field F and the carrier lifetimeτ ) or in other word, the lifetimes of both types of 

carriers exceed their transit time (case I as in Fig 3.2 (a)), all generated free carriers can 

be collected by the electrodes. Considering the dissociation probability P, JSC is 

                             GLTFqPJ SC ),(=                                                     (3.20) 

where G is the average exciton generation rate in the active layer. 
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If L is longer than drift lengths of electrons and holes, that is to say that the 

lifetimes of both types of carriers are smaller than their transit time, the carriers are 

accumulated in the active layer. At steady state, JSC follows Ohm’s law [3.15]. 

Considering the dissociation probability P, JSC is 

         LVGTFqPFGTFqPJ bihheehheeSC /)(),()(),( τμτμτμτμ +=+=             (3.21) 

where biV  is the built-in potential which is usually determined by the difference between 

cathode and anode work functions. This is case III as described in Fig. 3.2 (c). 

Between case I and case III, it is case II as described in Fig. 3.2 (b). In this case, L 

is only longer than the drift length of one type of carrier. For P3HT:PCBM based OSCs, 

the mobilities of holes and electrons in P3HT:PCBM (1:1 by weight) layer are 

1128102 −−−× sVm and 1127103 −−−× sVm , respectively [3.16]. Because the hole mobility is 

one order lower than the electron mobility, holes are easy to accumulate in the active 

layer, which makes the electric field non-uniform. In order to enhance the extraction of 

holes, the electric field increases near the anode. On the other hand, in order to diminish 

the extraction of electrons, the electric field decreases near the cathode. The electric field 

is modified until the extraction of holes equal to the extraction of electrons. Goodman and 

Rose studied this case and gave an equation for the photocurrent [3.17]. Considering the 

dissociation probability P, JSC is 
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where 
ee

hhc
τμ
τμ

=  is the drift length ratio of holes and electrons. When c<<1, the equation 

is simplified to 

                         2/12/1)(),( VGTFqPJ hhsc τμ=                                      (3.23) 

3.3 Results and discussion 

3.3.1 Exciton generation profile in the active layer 

 For the studied bulk HJ cell, the D and A materials are well blended and form the 

active layer. Because the D and A domains are very small, we can neglect the complex 

reflection and transmission at D/A interfaces, and treat the whole active layer as one 

homogenous material. This method has been widely used to measure the optical constant 

of the blended active layer, which well describes the optical properties of this blend layer 

[3.10, 3.18]. All the optical constants (n, k) of the ITO, PEDOT:PSS, P3HT:PCBM active 

layers and the Al electrode [3.10, 3.18] are input into our program, and the exciton 

generation rate in OSCs is calculated.  

If the interference effect is neglected, the exciton generation rate decreases with the 

increasing thickness of the active layer as described in equation (3.4) which makes the 

corresponding average exciton generation rate (total exciton generation rate divided by 

the thickness) become smaller. However, when the optical interference effect is 

considered, the modulation effect of average exciton generation rate with the thickness 

variation is very clear as shown in Fig. 3.3. At the initial stage, the average exciton 

generation rate increases with the increasing thickness of the active layer. This is because 

the first light peak does not appear in the active layer when the active layer is thin due to  
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Fig. 3.3 The calculated exciton generation rate in the active layer when the optical 
interference effect is considered. 
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Fig. 3.4 Evolution of exciton generation in the active layer. The light wavelength is 
500 nm. It can be seen that with the increase of the active layer thickness, the first 
peak enters the active layer, which makes the average exciton generation rate become 
large. For very thick film, although other peaks can enter the active layer, the 
absolute values for the peaks become small, which leads to the corresponding 
decrease of average exciton generation rate. 
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the interference effect. With the increase of the active layer, the first light peak 

approaches and enters the active layer such that the average generation rate becomes 

larger. With the further increase of the active layer, the average generation rate decreases 

although other light peaks enter the active layer. This is because for a thicker film, the 

thickness of the active layer dominates the generation rate. This evolution of exciton 

generation is plotted in Fig. 3.4 for the 500 nm light wavelength. 

3.3.2 JSC and the active layer thickness 
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Fig. 3.5 Long carrier lifetime condition: the lifetimes of both carriers are always 
longer than their transient time. JSC is predicted with and without considering the 
dissociation probability, and experimental data are extracted from [3.10].  

 

Based on the calculated exciton generation rate, it is easy to predict JSC when the 

drift lengths of both carriers are larger than the blend layer thickness. If all the generated 
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excitons can be dissociated into free carriers, and then collected by the electrodes, JSC 

should be proportional to the total exciton generation rate and behave wavelike as shown 

in Fig. 3.5 (solid line). Monestier et al. [3.10] have found this trend based on 

P3HT:PCBM systems. In their experiments, the active layer thickness is varied from a 

few tens nanometer to 215 nm. When the thickness is 70 nm, JSC reaches the maximum 

value, and followed by a little decrease until 140 nm. When the thickness increases 

further, JSC increases again. Unfortunately, there is obvious deviation between the 

prediction and the experiment results, especially in the thick film as shown in Fig. 3.5 (a) 

(solid line). Obviously, the assumption that the dissociation probability is unity is not 

correct. The influence of dissociation probability on JSC must be considered. 

In the previous work, Mihailetchi [3.16] exactly predicted photocurrent of 

P3HT:PCBM solar cells by assuming the same e-h separation distance (a) and decay rate 

( Xk ). By fitting the experimental data, they obtained e-h separation distance of a=1.8nm, 

room temperature bound pair decay rate of 14102 −×≈ sk X  for a 120 nm active layer, and 

the dissociation probability is close to 90%. We use the same data and derive the 

parameter 18109662.3 −×= SkR  (equation (3.19)). The dissociation probability is 

calculated according to section 3.2.4. The results are shown in Fig. 3.6. Obviously, the 

exciton dissociation probability becomes lower with the increase of the active layer 

thickness. Using the results to correct JSC, another JSC curve is obtained and also shown in 

Fig. 3.5 (dash line). It can be seen that the predicted JSC is exactly in accordance with the 

experimental results. This confirms the validity of our model. In the previous work, 

Monestier [3.10] modeled JSC, and found that the predicted JSC is larger than the 

experimental data, especially for the thickness larger than 180 nm. They attributed this to 
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the thickness dependence of optical constants. Here, according to our model, it is found 

that the deviation should come from the low exciton dissociation probability for thick 

active layers.  
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Fig. 3.6 Relations of electric field and exciton dissociation probability 
with the active layer thickness. 

 

We have predicted JSC precisely for the long enough carrier lifetime case. However, 

for OSCs, the performance is sensitive to the process and experimental conditions. This 

may make the carrier lifetime relatively short. For P3HT:PCBM system, because the hole 

mobility is one order of magnitude lower than the electron mobility, holes are easy to 

accumulate in the active layer and limit the photocurrent. This is the case II as described 

in section 3.2.5. By tuning the parameters to fit the experimental data [3.19], the best 

fitting curve is obtained (Fig. 3.7) when the average hole lifetime τ  is s7102.6 −× and 

dissociation probability is unity. A short lifetime τ  may imply that there are many 
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defects. These defects increase the exciton dissociation probability [3.20]. At the same 

time, the transport process becomes the dominant limiting factor for JSC, and the exciton 

dissociation process becomes relatively unimportant. Then it seems that the assumption 

of exciton dissociation probability as unity can satisfy the need of the prediction. In Fig. 

3.7, we can see that there are two regions in the fitting curve. The left region is 

determined by equation (3.20). In this region, the lifetimes of both carriers are longer than 

their transient time. The solid line in the right region is determined by equation (3.22). In 

this region, hole lifetime is shorter than its transit time and electron lifetime is longer than 

its transit time.  
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Fig. 3.7 Short hole carrier lifetime condition. Left arrow: hole lifetime is 
longer than its transient time; right arrow: hole lifetime is shorter than its 
transient time, and hole lifetime is s7102.6 −× , and electron lifetime 
is s6101 −× . Experimental data are extracted from [3.19]. 
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If it is assumed that the drift length ratio of hole and electron (
ee

hhc
τμ
τμ

= ) is very 

small, then the equation (3.23) can be used to predict JSC. As shown in Fig. 3.7 (dash line), 

it can predict JSC very well, which means c<<1. 

3.4 Summary  

In this chapter, the exciton generation rate was calculated by taking the optical 

interference effect into account. Based on the calculated exciton generation rate, the 

dependence of JSC on the active layer thickness was analyzed and compared with 

experimental data. Because of the optical interference effect, the total exciton generation 

rate does not monotonously increase with the increase of the active layer thickness, but 

behaves wavelike which induces the corresponding variation of JSC. The carrier lifetimes 

also influence JSC greatly. When the lifetimes of both electrons and holes are long enough, 

dissociation probability plays an important role for the thick active layer. JSC behaves 

wavelike with the variation of the active layer thickness. When the hole lifetime is too 

short (drift length is smaller than device thickness), accumulation of charges appears near 

the electrode and JSC increases at the initial stage and then decreases rapidly with the 

increase of the active layer thickness. The accordance between the predictions and the 

experimental results confirms the validity of the proposed model. These results give a 

guideline to optimize JSC. 

 

 



Chapter 3: Short circuit current density in bulk HJ OSCs 
__________________________________________________________________________________ 

63 
 

References 

[3.1]  C. J. Brabec, N. S. Sariciftci and J. C. Hummemen, Adv. Funct. Mater., 11, 15 (2001). 

[3.2]  V. D. Mihailetchi, L. J. A. Koster, J. C. Hummenmen, and P. W. M. Blom, Phys. Rev. Lett., 

93, 216601 (2004). 

[3.3]  C. F. Zhang, S. W. Tong, C. Y. Jiang, E. T. Kang, D. S. H. Chan and C. X. Zhu, Appl. Phys. 

Lett., 92, 083310 (2008). 

[3.4]  J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, 

Science, 317, 222 (2007). 

[3.5]  H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 16, 45 (2006). 

[3.6]  L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys., 86, 487 (1999). 

[3.7]  P. Peumans, A. Yakimov and S. R. Forrest, J. Appl. Phys., 93, 3693 (2003). 

[3.8]  N. K. Persson, H. Arwin and O. Inganas, J. Appl. Phys., 97, 34503 (2005). 

[3.9]  S. Lacic, O. Inganas,  J. Appl. Phys., 97, 124901 (2005). 

[3.10] F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. Bettignies, S. 

Guillerez and C. Defranoux, Sol. Energy Mater. Sol. Cells, 91, 405 (2007). 

[3.11] V. D. Mihailetchi, L. J. A. Koster, J. C. Hummelen, and P. W. M. Blom, Phys. Rev. Lett., 

93, 216601 (2004). 

[3.12] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom,  Phys. Rev. B, 72, 

085205 (2005). 

[3.13] A. K. Ghosh and T. Feng, J. Appl. Phys., 49, 5982 (1978). 

[3.14] O. S. Heavens, Optical Properties of Thin solid Films (Dover, New York, 1965) 

[3.15] K. C. Kao and N. W. Hwang, Electrical transport in solids: with particular reference to 

organic semiconductors, Oxford; New York: Pergamon Press vol. 14 (1981). 

[3.16] V. D. Mihailetchi, H. Xie, B. Boer，L. J. A. Koster and P. W. M. Blom, Adv. Funct. 

Mater., 16, 699 (2006). 

[3.17] A. M. Goodman and A. Rose, J. Appl. Phys., 42, 2823 (1971). 

[3.18] H. Hoppe, N. S. Sariciftci and D. Meissner, Mol. Cryst. Liq. Cryst., 385, 233 (2002). 

[3.19] G. Li, V. Shrotriya and Y. Yao, J. Appl. Phys., 98, 43704 (2005). 

[3.20] B. A. Gregg, MRS bulletin, 30, 20 (2005). 



Chapter 4: Open circuit voltage in layered and bulk HJ OSCs 
__________________________________________________________________________________ 

64 
 

Chapter 4 

Open circuit voltage  

in layered and bulk HJ OSCs 
 

Due to great efforts devoted to OSCs, their performance has been steadily improved 

in the past years [4.1-4.7]. A better understanding of the device physics behind OSCs thus 

becomes important to further improve the device performance [4.1-4.13]. In Chapter 3, 

the parameter JSC is investigated theoretically. As has been discussed, JSC is directly 

related to the light harvesting capability of organic materials. Due to the large Ego of 

organic materials (usually around 2 eV), there is a large spectral mismatch between the 

sunlight and absorption spectrum of organic materials [4.6, 4.7, 4.14, 4.15], which makes 

JSC much lower than those reported for inorganic devices. Many studies have been carried 

out to improve the device light harvesting capability, such as using small bandgap 

materials and combining different organic materials with complementary absorption 

spectra in one device [4.14-4.16]. JSC also depends on the active layer thickness. But 

simply increasing the active layer thickness may not be enough to increase the light 

absorption ability because of the optical interference effect in the very thin active layer 

[4.17-4.18]. Devices should be fabricated around the optical interference peaks. Besides, 

a proper D and A blended morphology must be guaranteed to ensure the efficient exciton 

dissociation and charge transport. The film morphology is related to the solvent type, or 

deposition method [4.19-4.20]. In addition to JSC, the performance of OSCs is also related 

to VOC, given that η=JSCVOCFF/Pin. In order to improve the device performance further, 
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another issue of considerable focus in OSCs is VOC, which will be discussed in this 

chapter.  

4.1 VOC in OSCs 

 

 

Fig. 4.1 (a) Schematic representation of the origin of VOC of organic PV cells. 
VOC1 represents the difference of anode and cathode work function. VOC2 
represents the difference of HOMO of donor and LUMO of acceptor. (b) 
Gaussian Density of States (DOS) for organic materials. Δ represents that the 

transport level in a Gaussian DOS lays below its center by 
TkB

2

9
5 σ . (c) and (d) 

show the energy diagrams of materials and device structures used in layered and 
HJ PV cells.   
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VOC has attracted much research interest in recent years [4.21-4.27]. It has been 

shown that VOC does not follow the traditional MIM model [VOC1 in Fig. 4.1 (a)], but has 

a direct relationship with the offset energy between the HOMO of D and the LUMO of A 

[VOC2 in Fig. 4.1 (a)] in both the layered and bulk HJ PV cells. A recent study including a 

total of 26 different polymer/fullerene blend devices showed that VOC varies linearly with 

HOMO of the polymer [4.24]. Then the enhancement of VOC can be obtained by using 

new materials with larger offset energies at organic heterointerfaces. However, to 

enhance VOC by increasing the offset energy usually decreases JSC, because a high 

bandgap absorber is required and thus leads to a large mismatch with the solar spectrum. 

Therefore, it is more attractive to increase VOC of the PV cells made on the given organic 

materials. This makes it necessary to better understand the factors affecting VOC beyond 

the D and A offset energies, for example, the influence of the electrodes. It has been 

observed that in layered devices, VOC shows a very weak dependence on the electrode 

work function difference. Only a small variation in VOC was observed when varying the 

work function of cathode [4.13, 4.26]. However, an obvious dependence of VOC on the 

electrodes was reported in bulk HJ PV cells [4.22, 4.23]. For example, a total of more 

than 500 mV variation of VOC was observed by varying the cathode work function [4.23].  

Since both the layered and bulk HJ PV cells are based on organic materials and 

have the same operation mechanisms (light absorption, exciton production, exciton 

dissociation and charge transport), their VOC should also follow the same mechanism. 

However, VOC of the two types of PV cells show different dependences on the metal 

electrodes. It is of great importance to understand the mechanism behind the different 
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dependences for the PV cells, because it gives us a guideline to enhance VOC by the 

electrode modification and thus improve the device performance further. 

The aim of this chapter is to investigate the factors which determine VOC of organic 

HJ PV cells. Based on the experimental results and theoretical analysis, an explanation 

for the different dependences of VOC on the metal electrodes in layered and bulk HJ PV 

cells is proposed. It is found that although VOC of both the two types of PV cells are 

determined by the electrodes and the light injected carriers at the D/A interface, the 

distinct device structures make the boundary conditions in layered and bulk HJ PV cells 

very different, which leads to the different dependences of VOC on the electrodes.  

4.2 Experimental 

The typical organic PV cells studied in this work consist of the active layer 

sandwiched between a transparent anode and a metal cathode. Briefly, the devices were 

fabricated on indium-tin-oxide (ITO)-coated glass substrates. After routine solvent 

cleaning (treated sequentially with detergent, de-ionized water, acetone, and isopropanol 

in an ultrasonic bath for about 15 mins), the dried ITO glass substrates were treated with 

oxygen plasma for about 3 mins. Then the filtered PEDOT:PSS suspension (through 

0.45 mμ filter) was spin coated on the top of the ITO surface to form a ~50 nm layer 

under ambient condition, before drying the substrates at 120oC in an oven for more than 1 

hour. For layered HJ PV cells, a ~20 nm CuPc layer was deposited by thermal 

evaporation under a pressure of about 5.4x10-5 Pa, and then followed by spin coating ~40 

nm PCBM to finish the active layer. For bulk HJ PV cells, P3HT:PCBM with different 

weight ratios were dissolved in dichlorobenzene and stirred in the glove box before spin 

casting to form a ~100 nm blend layer. Finally the metal electrode was deposited through 
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a shadow mask. The device current-voltage (I-V) characteristics were measured as 

fabricated by using a Keithley 2400 parameter analyzer under a simulated light intensity 

(AM 1.5G) with various light intensities. The light intensity was calibrated by a Thorlabs 

optical power meter. All the parameters of the used materials and the device structures 

are shown in Figs. 4.1 (c) and (d). To understand the influence of metal electrodes on VOC, 

different metal electrodes (Mg, Ag and Au) were employed to fabricate both the organic 

layered and bulk HJ PV devices. 

4.3 Experimental results 

Fig. 4.2 shows the typical I-V characteristics of the layered devices with the 

structure configuration of ITO/PEDOT:PSS/CuPc/PCBM/cathode (cathode=Ag, Au, and 

Mg). The devices with Ag, Mg and Au cathodes exhibit VOC values of 605 mV, 608 mV 

and 589 mV, respectively. The fact that VOC of the device with Au cathode is only 

slightly lower than those with Mg and Ag cathodes suggests a severely deviation from the 

prediction of the classic MIM model where VOC is limited by the difference of the anode 

and cathode work functions [VOC1 in Fig. 4.1 (a)]. According to the MIM model, a large 

variation of VOC should be observed for different cathodes with metal work function 

difference larger than 1 eV. However, here only a small variation of less than 20 mV was 

observed. Rand et al. [4.13] and Cheyns et al. [4.26] also reported that only a small 

variation in VOC was observed when varying the cathode metals, which confirms our 

experimental results that the electrodes have a weak influence on VOC in the layered PV 

cells. 
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Fig. 4.2 Characteristics of the layered HJ PV cells with different metal electrodes. 
Inset: statistical properties of VOC. The trend is clear that VOC of the layered HJ PV 
cells with high work function metal is smaller than VOC of the devices with low 
work function metal. The light intensity is 100 mW/cm2. 

 

Fig. 4.3 shows the typical I-V characteristics of the bulk HJ PV cells based on 

P3HT:PCBM (1:0.8) with different metal cathodes using the structure of 

ITO/PEDOT:PSS/ P3HT:PCBM/cathode. It is observed that the devices with Au, Ag and 

Mg electrodes show VOC of 141 mV, 592 mV and 696 mV, respectively. Here VOC shows 

a strong dependence on the metal electrodes and a variation of VOC as high as 555 mV is 

observed, which is contrary to that observed in organic PV cells using the layered 

structure. In fact, Mihailtechi et al. [4.23] have reported the similar results and explained  
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Fig. 4.3 Characteristics of the bulk HJ PV cells with different metals. The 
structure is ITO/PEDOT: PSS /1:0.8 P3HT:PCBM/cathode. A variation of VOC as 
high as 555 mV is observed. The light intensity is 100 mW/cm2. 

 

the obvious dependence of VOC on different cathodes in bulk HJ PV cells by modifying 

the classical MIM model. 

However, since the layered and bulk HJ PV cells are both based on organic 

materials and the mechanisms of light absorption, exciton production, exciton 

dissociation and charge transport are also the same, it is not possible that VOC of the two 

types of PV cells follows different mechanisms. Considering the differences of the two 

types of devices, the essential difference is that they have distinct structures. Compared 

with the layered HJ PV cell, there are no geometrically “flat” D/A and M/O interfaces in 
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the bulk HJ PV cell due to the formation of the interpenetrating network. It is supposed 

that the different dependences of VOC on the metal electrodes should have relations with 

their distinct structures. In the following, how the different structures affect the behaviors 

of VOC will be discussed. 

4.4 Discussion 

4.4.1 Theory 

In principle, VOC of a PV cell is a function of both electric and chemical potential 

energy gradients [4.8]. In the conventional inorganic (for example, silicon based) PV 

cells, electron-hole pairs are photogenerated in the same semiconducting phase, there are 

no photoinduced chemical potential gradients established, and only a classical built-in 

potential (Vbi) is required to separate the carriers. However, the situation is different for 

organic based PV cells. Because of the low dielectric constant and weak noncovalent 

electric interactions in organic materials, excitons are always produced rather than free 

carriers. It is well recognized that the most efficient exciton dissociation occurs at the 

D/A interface in organic materials. For simplification, we assume that all the excitons are 

dissociated at the D/A interfaces in organic PV cells and neglect the dissociation at M/O 

interfaces as that has been done by Cheyns et al. [4.26]. After exciton dissociation, the 

dissociated electrons and holes are separated into different phases of A and D. This 

photoinduced charge injection at the D/A interface will establish chemical potential 

gradients in the organic materials and then influence VOC. At M/O interfaces, the 

electrodes can also inject carriers into the organic materials and influence VOC. With  

knowing D/A and M/O interface conditions, the carrier concentration distribution and all 
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the electric variables in organic PV cells can be obtained at open circuit condition by 

using the “shooting algorithm”.  

4.4.1.1 Shooting algorithm 

Let consider one dimension case. The general kinetic equations for electron and 

hole current densities in one dimension are usually expressed as 

( ) ( ) ( ) ( )
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Where q is the elementary charge, n and p the electron and hole densities, nμ and pμ  the 

electron and hole mobilities, Dn and Dp electron and hole diffusion coefficients, and U the 

electric potential which is given by the Poisson equation 
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The diffusion coefficients (Dn,p) obey the Einstein relation 
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Here, Gn and Gp are the electron and hole generation rates, Rn and Rp recombination rates, 

respectively. These are the basic equations in semiconductor; and are valid under light 

illumination and in the dark environment. 

For D/A based organic PV cells, light created excitons do not affect the potential in 

organic materials due to its electric neutral property (equation (4.2)). Considering phase 

A where electrons are transported and holes can be neglected, the equations (4.1) and (4.2) 

at the open circuit condition (J=0) can be reduced to 
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The electric potential and the electric field (F(x)) have the relation 
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x
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∂                                                       (4.7) 

Thus, if the boundary conditions (carrier concentrations) are known, the carrier 

concentration distribution and electric variables in phase A can be numerically calculated 

by using above equations based on the so-called “shooting algorithm”: at the first grid 

point, D/A interface, the potential of LUMO is set to zero, then the Fermi level (EF) can 

be obtained by 

⎟
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Where NA is the LUMO density of states in phase A, which is assumed to be 25108.2 ×  

m-3 in this work. All the parameters at D/A interface are known, except the electric field 

F(0). Guess a value for F(0). The electron concentration in the next grid point i is 

calculated by discretization of equation (4.5). Once the electron concentration in point i is 

known, one can calculate electrostatic potential and the electric field in point i, by 

equations (4.6) and (4.7). This is repeated until one arrives at the M/O interface, and the 

second boundary condition (electron concentration) at M/O interface is checked. This is 

repeated with improved guesses of F(0) until the second boundary condition is fulfilled. 

Same method can be used for D phase. 

In order to use the shooting algorithm, the boundary conditions at D/A and M/O 

interfaces are needed. Now, we firstly consider one material phase (here is phase A) in 

the simple layered HJ PV cell which has geometrically “flat” D/A and M/O interfaces as 

shown in Fig. 4.4 (a).  

4.4.1.2 Boundary conditions 

D/A interface 

Under light illumination, the created excitons diffuse to D/A interface and are 

dissociated into electron-hole pairs (polarons). These polarons can be dissociated into 

free carriers and the free carriers can also return to polarons. Under the steady-state 

condition, the number of polarons is determined by 

npXkXkG
dt
dX

DXX γ+−−=                                           (4.9) 
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Fig. 4.4  (a) Bilayer HJ PV cell which has geometrically “flat” D/A and M/O 
interfaces. At the D/A interface, the excitons are dissociated into electrons and 
holes. After dissociation, hole and electron are still bound by the Coulombic 
attractive force. (b) Carrier injection from the metal to the organic material at the 
M/O interface. Thermionic emission and tunneling effect may exist at the M/O 
interface. 
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Where n and p are the electron and hole densities, GX the amount of the dissociated 

excitons into polarons, Xk  the decay rate to the ground state, Dk  the dissociation rate of a 

bound pair, and npγ  the excitons created due to the bimolecular capture of free charges at 

the interface. Usually GX has a linear dependence on the incident light intensity  

inPGX α=                                                        (4.10) 

Where α is a constant. Considering the photoinduced carriers and the carrier 

generation/recombination process, the free carrier continuity equation at the open circuit 

condition is 

    
pn

npknpXk
t
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∂
∂ γ                                     (4.11) 

The last term describes the Schokley-Read-Hall (SRH) recombination [4.26]. Assuming n 

in phase A and p in phase D are the same at the interface, the electron concentration (n) in 

phase A can be derived by combining equations (4.9)-(4.11). If the bimolecular 

recombination dominates at the interface, 
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X

p
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and if the SRH recombination dominates at the interface, 
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M/O interface 

The carrier density at the M/O interface usually depends on the potential barrier 

between the metal and organic material. When the electric field is relatively low, the 

carrier density can de described by Richardson-Schockley theory [4.30] [Fig. 4.4 (b)] for 

thermionic emission 

))(exp(
Tk

qNn
B
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φφ Δ−
−=                                    (4.14) 
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r

Fq
επε

φ
0

3

4
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Here, NA is the LUMO density of states (DOS) of A, Aφ  the barrier height between A and 

cathode, φΔ accounts for the barrier lowering effect. If the barrier is very thin and the 

electric field is very large, the carrier tunneling effect [Fig. 4.4 (b)] becomes important, 

and the carrier concentration at the M/O interface depends on the tunneling probability. 

According to the Wentzel–Kramers– Brillouin (WKB) approximation 

⎥
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⎤
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−−∝ ∫ dxExVmn )(22exp

h
                                        (4.16) 

here, m is electron effective mass, V(x) the potential of the barrier, and E the energy of 

electron. When the tunneling happens, the carrier density at M/O interface increases 

rapidly. In real devices, the thermionic emission and tunneling injection exist together. In 

the low electric field, the thermionic emission dominates and at high electric field the 
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tunneling plays a major role. At the medium electric field, there is a transition region 

where both mechanisms need to be considered to determine the boundary conditions.  

After knowing the D/A and M/O interface conditions, all the parameters in phase A 

can be obtained at the open circuit condition by using the “shooting algorithm” described 

in the above. For symmetry reasons, the same method can be applied to phase D. Thus, 

the behaviors of VOC for layered and bulk HJ PV cells can be investigated.   

4.4.2 Layered HJ PV Cells 

In order to interpret the behavior of layered HJ PV cells, we firstly consider the 

light saturation condition for simplification. Under this condition, there are enough 

carriers generated at D/A interface under very intense light so that almost all the LUMO 

states of A at D/A interface are filled. On the other hand, at M/O interface the boundary 

condition is set by the injected carriers from the metal, which depends on the M/O barrier 

height [equation (4.14)]. Both the calculated electron carrier concentration and potential 

energy distribution in phase A are calculated and shown in Figs. 4.5 (a) and (b) with 

different M/O barrier heights from 0.0 eV to 1.0 eV. The x-scale is from the D/A 

interface to M/O interface [see Fig. 4.4 (a)], and the LUMO potential energy at D/A 

interface is taken as the ground potential energy. From Fig. 4.5 (a), at D/A interface, the 

electron carrier density is constant since all the LUMO states of A at D/A interface are 

filled under light saturation condition; on the other hand, at M/O interface, the electron 

carrier density decreases greatly with the increase of the barrier height, causing electron 

carrier concentration profile becoming steeper from D/A interface to M/O interface in the 

interior of phase A. Fig. 4.5 (b) shows the corresponding LUMO profile. It can be seen  
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Fig. 4. 5 (a) Calculated carrier density profile for different barriers. Step: 0.2 eV. The 
positions of x=0 and 40 nm refer to the D/A and M/O interfaces, respectively. (b) The 
corresponding variation of LUMO profile. Light injected carriers at D/A interface will 
“pin” the metal Fermi level. Here, the LUMO potential at D/A interface is set as the 
ground potential. (c) Band diagram for a layered HJ PV cell with Ohmic anode and a 0.4 
eV barrier cathode. HOMO of D and LUMO of A set the upper limit of VOC. Not 
consider the barrier lowering effect.  

(a) 

(b) 

(c) 
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that when M/O interface is with a large barrier, the LUMO profile is almost a straight line 

and there is no band bending because of the relatively low carrier injection. When M/O 

interface is Ohmic contact or there is very small barrier, an obvious band bending at M/O 

interface is observed due to the large amounts of electrons injected from the cathode 

causing the electron accumulation occurred at the phase A near M/O interface. 

Mihailtechi et al [4.23] have noted this band bending and claimed that it could decrease 

VOC. However, according to our results, no matter whether it is Ohmic contact or non-

Ohmic contact, VOC should be the same. This is because that the Fermi level of the metal 

electrode is apt to be “pinned” to LUMO level of A at D/A interface irrespective with the 

barrier height as shown in Fig. 4.5 (b). Similarly, the same things happen in phase D. As 

a result, VOC is determined by the difference of LUMO at A and HOMO of D at D/A 

interface and is independent with the barrier height at M/O interfaces or to say the work 

function of the metal electrodes. This explains why VOC shows a direct relation with D/A 

offset energies in the experiments [4.13, 4.24]. According to the above results, an 

example of a bilayer HJ PV cell with an Ohmic contact at anode and a 0.4 eV barrier 

height at cathode is plotted in Fig. 4.5 (c).  

In fact, it is difficult for the layered HJ PV cell to reach saturation under 1 sun 

illumination at room temperature [4.13]. Non-saturation condition, under which not all 

the LUMO states of A at D/A interface are filled, makes the value of VOC become smaller. 

Fig. 4.6 (a) and (b) show the calculated electron density and potential energy under light 

non-saturation conditions assuming the M/O barrier height is kept at 0.5 eV. Since the 

barrier height is fixed, the electron carrier concentration at M/O interface does not change 

with different light intensities if neglecting the barrier lowering effect [equation (5.15)].  
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Fig. 4.6 (a) Carrier density profile for different light injection. The positions of x=0 and 
40 nm refer to the D/A and M/O interfaces, respectively. (b) Corresponding LUMO 
diagram. The LUMO potential at D/A interface is set as the ground potential. (c) 
Corresponding variation of electric field at M/O interface. (d) Band diagram of a bilayer 
HJ PV cell with light injection carrier density of 221046.8 × . VΔ means the decrease of 
VOC under non-saturation condition. The value of VOC is indicated. All above have a M/O 
barrier of 0.5 eV and do not consider the barrier lowering effect. 

 

On the other hand, at D/A interface, the electron carrier density decreases with the drop 

of light intensity which causes carrier concentration profile less steep in the interior of A 

as shown in Fig. 4.6 (a). Fig. 4.6 (b) plots the corresponding LUMO profile. The quasi 

Fermi level of phase A at D/A interface is lowered below its LUMO level because of the 
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decrease of the injected carrier density at D/A interface. The metal Fermi level is also 

lowered since it has to be aligned to the quasi Fermi level of phase A at D/A interface. 

Due to the same reason, the Fermi level of the anode shifts up with the dropped light 

intensity. As a result, VOC decreases with the dropping of the light intensity as observed 

in the studies [4.9, 4.13]. An example of a bilayer HJ PV cell with Ohmic anode and a 0.5 

eV barrier cathode is shown in Fig. 4.6 (d) when the light injected carrier density at D/A 

interface is 221046.8 × m-3. Here, VΔ indicates the decreased value of VOC in phase A due 

to the non-saturation condition. Assuming DOS of HOMO in phase D equals to that of 

LOMO in phase A (NA=ND), the value of VOC is lowered by 2 VΔ compared with the D/A 

offset energies.  

According to above discussions, no matter under light saturation or non-saturation 

conditions, the Fermi level of the metal electrode has to be aligned to the quasi Fermi 

level at D/A interface. Then in the layered HJ PV cells, VOC seems to mainly depend on 

the D/A interface condition. This explains why VOC only shows a very weak dependence 

on the electrodes. However, although the variation of VOC with different electrodes is 

very small, the trend is clear that VOC decreases slightly with the increase of metal 

cathode work function (see the statistic results of VOC in the inset of Fig. 4.2). The barrier 

lowering effect at the M/O interface may account for this phenomenon. It is expected that 

the lowered barrier increases the carrier concentration at M/O interface [equation (4.14)], 

which shifts the metal Fermi level and then affects VOC. Fig. 4.7 shows how the barrier 

lowering influences on VOC under the light saturation condition. Due to the barrier 

lowering (Fig. 4.7 (b)), more carriers are injected into the organic material, which 

changes the boundary condition at the M/O interface compared with that not considering  
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(a)                                        (b) 

Fig. 4.7 Influence of barrier lowering on VOC. (a) Not considering the barrier lowering 
effect (b) Considering the barrier lowering effect. The barrier lowering induces the 
decrease of VOC. φΔ  represents the value of barrier lowering, and lowVΔ  represents the 
decrease of VOC. The LUMO potential at D/A interface is set as the ground potential. 

 

the barrier lowering effect. This lowers the metal electrode Fermi level and thus 

decreases VOC. lowVΔ  in Fig. 4.7 (b) indicates this effect. The value of lowVΔ  depends on 

the electric field since the value of the barrier lowering depends on the electric field. Fig. 

4.6 (c) shows the electric field at M/O interface under different light injection conditions 

when the M/O barrier height is 0.5 eV. There is only a small barrier lowering of about 

0.020 eV at an electric field of 6101× V/m and 0.064 eV at an electric field of 7101× V/m 

as shown in Fig. 4.8. Thus, the corresponding value of lowVΔ  is also small and then VOC 
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shows a weak dependence on different electrodes. Although the barrier lowering is small, 

the trend is clear. The higher the metal work function is, the larger the electric field is at 

the cathode interface. Thus VOC decreases slightly with the increase of the cathode work 

function (inset of Fig. 4.2). 
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Fig. 4.8 Field dependent barrier lowering 

 

Now, considering the light injection at D/A interface, electrode injection at M/O 

interface, and the distribution of DOS in organic materials, the expression for VOC can be 

derived. If the bimolecular recombination dominates at the D/A interface, 
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γ         (4.17) 

If the SRH recombination dominates at the D/A interface, 
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where Δ  accounts for the fact that the transport level in a Gaussian DOS locates below 

its center as shown in Fig. 4.1 (b), and its value is given by 
TkB

2

9
5 σ  with σ  the 

broadening of DOS [4.23]. UB is the polaron binding energy 

a
qU

r
B επε 0

2

4
=                                                       (4.19) 

here a  is the initial separation distance of the electron-hole pair at the interface. VLow 

accounts for the lowered voltage due to the barrier lowering. The rest accounts for the 

influence of light intensity.  
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Fig. 4.9 Variation of electric field at the M/O interface with the M/O barrier and the 
film thickness under light saturation condition (semi-logarithm scale). Only the 
positive electric field is shown (positive direction point to the interface). 
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The value of VLow depends on M/O interface conditions. For the case of the layered 

HJ PV cells, they have geometrically “flat” D/A and M/O interfaces, and the effective 

thickness from the D/A interface to the M/O interface is large (usually several tens 

nanometers). Thus the electric field at M/O interface is relatively small as shown in Fig. 

4.9 and then VLow is very low. Thus it shows that VOC almost does not depend on the 

metal electrode work function, which is consistent with the reported study [4.26].  

4.4.3 Bulk HJ PV Cells 

Different from the layered HJ PV cells, a strong dependence of VOC on the 

electrodes in bulk HJ PV cells was observed (Fig. 4.3). In theory, VOC of bulk HJ PV 

cells should obey the same principle as that in layered HJ PV cells. Compared with 

layered HJ PV cells, the essential difference is the distinct device structure. In the bulk HJ 

PV cell, the D (polymer) and A (fullerene) materials are mixed together to form the 

interpenetrating network which makes the D and A domains very small. In addition to the 

“non-flat” D/A interface, the average distance from the D/A interface to the M/O 

interface (denoted as “effective thickness” in the following discussion) is significantly 

decreased compared with the layered HJ PV cell, which influences the electric field at 

M/O interface. The trend in Fig. 4.9 has shown that the electric field is expected to 

become very large when the M/O barrier is very high and the effective thickness is very 

small. Considering the extremely small effective thickness in bulk HJ PV cells, even the 

carrier tunneling effect may occur when there is a high M/O barrier. Then the number of 

injected carriers from the electrode becomes very large. This induces a large value of 

VLow. The higher the barrier is, the larger the value of VLow will be. Compared with the 

Ag and Mg electrodes, the barrier for the Au electrode is the highest and thus the VOC is 
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expected to be the smallest, which explains the very large variation of VOC with different 

metal electrodes. 
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Fig. 4.10 Variation of VOC with the different weight ratios of P3HT: PCBM (1:0.8, 
1:2 and 1:4). All the devices have the same structure except the metal cathode. VOC 
for Au device is obviously increased with a higher PCBM ratio, while VOC for Mg 
electrode almost keeps constant. 

 

If the above discussion is correct, VOC of bulk HJ PV cells can be changed by 

modulating the effective thicknesses of phase D and phase A, which can be obtained by 

changing the D and A ratio in the blend layer. For high PCBM ratio, the PCBM domain is 

expected to be enlarged. This means that the effective thickness of phase A becomes 

large. For a high M/O barrier, the increased thickness of phase A decreases the electric 

field effectively. As a result, the value of VLow becomes small and VOC is expected to 

become large. However, for a low M/O barrier, the change of the electric field is 
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relatively small and then the increase of VOC is expected to be small. Fig. 4.10 shows the 

variation of VOC for the devices with different P3HT:PCBM ratios. As expected, for the 

Au electrode, VOC is increased from 141 mV (P3HT:PCBM 1:0.8 weight ratio) to 381 

mV (P3HT:PCBM 1:2 weight ratio) and further increased to 463 mV (P3HT:PCBM 1:4 

weight ratio). For Ag electrode, VOC is increased from 592 mV (P3HT:PCBM 1:0.8 

weight ratio) to 716 mV and then almost kept as a constant. The variation of VOC for Mg 

electrode is the smallest. These results are in accordance with the expectation and thus 

confirm the validity of the proposed explanation. 

The assumption that VOC of bulk HJ PV cells obeys the same principle as that of 

layered HJ PV cells can also be validated by the variation of VOC in bulk HJ PV cells 

with the light intensity. According to equation (4.17) or (4.18), VOC should have a linear 

relation with the logarithm of light intensity. As the prediction, VOC indeed linearly 

depends on the logarithm of light intensity as shown in Fig. 4.11. The lines with the slop 

of around 60 mV/decade means that the bimolecular recombination dominates at the D/A 

interface, which is consistent with the previous study that the bimolecular recombination 

is the most important recombination mechanism in OSCs [4.10]. The similar results of 

VOC on the light intensities reported by Koster et al. in OSCs based on MDMO-

PPV:PCBM [4.32] confirm our observation. Then it can be concluded that VOC of bulk 

HJ PV cells obeys the same mechanism as layered HJ PV cells and the different 

dependences of VOC on the electrodes origin from their distinct structures. 
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Fig. 4.11 Variation of VOC with the light intensity for devices with different 
P3HT:PCBM weight ratios. The weight ratios are labeled in the graph after metal 
names. All the devices have the same structure except the metal cathode. The 
lines show the slopes around 60 mV/decade which means that the bimolecular 
recombination dominates at the D/A interface.  

 

As discussed above, VOC of bulk HJ PV cells strongly depends on the effective 

thickness of D and A domains, which is to say that their VOC can be influenced by the 

morphology of the blend layer. After thermal annealing, the D and A domains increase 

due to the phase separation. Correspondingly, the D and A effective thicknesses are 

increased, which explains why VOC is usually enhanced after the thermal annealing for 

bulk HJ PV cells [4.14, 4.20]. VOC of bulk HJ PV cells also strongly depends on the 

electrodes. This gives us a way to increase VOC of bulk HJ PV cells by using the interface 
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engineering. In fact, many works has been done to increase VOC of bulk HJ PV cells by 

modifying the interface between the blend layer and the electrode [4.33-4.36]. However, 

because VOC of layered HJ PV cells only slightly depends on the electrodes, there are few 

papers which focus on the interface engineering to increase VOC of layered HJ PV cells.  

4.5 Summary  

In this chapter, we studied the origin of VOC in layered and bulk HJ PV cells. It was 

found that VOC of layered and bulk HJ PV cells show different dependences on the 

electrodes. When the electrodes are changed, VOC of layered HJ PV cells almost keeps 

constant, while VOC of bulk HJ PV cells shows an obvious variation. The experimental 

results and theoretical analysis showed that VOC of the two types of PV cells follow the 

same mechanism and are mainly determined by the light injected carriers at the D/A 

interface and the electrodes. But their distinct structures lead to the different dependences 

of VOC on the electrodes. The layered HJ PV cells have geometrically “flat” D/A and 

M/O interfaces which make the effective thickness from the D/A interface to the M/O 

interface is very large. The large effective thickness leads to a thick barrier and a low 

electric field at M/O interface. Thus the barrier lowering is low and the number of 

carriers injected from the metal electrode by thermionic emission is relatively small. 

Under this condition, the light injected carriers at D/A interface tend to “pin” the Fermi 

level of the electrodes. As a result, VOC shows only a very weak dependence on the work 

function of the electrodes. On the other hand, the formation of the interpenetrating 

network in bulk HJ PV cells decreases D and A domain dimensions greatly which makes 

the effective thicknesses of D and A domains very small. When there is a very high 

potential barrier, the electric field is very high at M/O interface and even the carrier 
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tunneling effect may occur. Then a large number of carriers are injected from the metal 

electrode into the organic materials. Thus, the light injected carriers at D/A interface 

cannot “pin” the metal Fermi level any more. As a result, a strong dependence of VOC on 

the metal electrodes for bulk HJ PV cells is observed. VOC of layered HJ PV cells is 

difficult to be increased by the interface engineering. However, the interface engineering 

can help to increase VOC of bulk HJ PV cells.  This gives us a way to increase VOC in 

bulk HJ PV cells. 
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Chapter 5 

Experimental studies to improve P3HT:PCBM 

Bulk HJ OSCs 
 

In the previous two chapters, the most important parameters (JSC and VOC) in OSCs 

have been investigated theoretically. The factors affecting these parameters have been 

indicated. In this chapter, the experimental studies are carried out to increase JSC and 

enhance VOC based on the previous studies. The overall device performance is also 

optimized at the end of this chapter. 

5.1 The effect of annealing sequence on JSC 

5.1.1 Introduction 

Various experimental studies have been reported for the blended P3HT:PCBM bulk 

HJ solar cells [5.1-5.12]. Although PCBM can act as a good electron acceptor in this type 

of solar cells, the undesirable destruction of ordering in the P3HT chains takes place in 

the presence of PCBM [5.12-5.14]. Compared to the P3HT material alone, the optical 

absorption of the P3HT:PCBM system has a weaker absorption in red light region. For 

this type of solar cells, numerous reports have indicated that PCE increases with the 

crystallinity of P3HT [5.1-5.6]. Annealing [5.8-5.12, 5.15] has been widely applied to 

recover the P3HT crystallinity. In this section, it is pointed out that the post-annealing 

(anneal the device after the cathode deposition) can improve the performance of the solar 

cells more effectively than the pre-annealing (anneal the device before the cathode 
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deposition) because of the Al cathode confinement. This is supported by XPS study. It 

indicates that the stronger contact could be formed at the interface between the 

P3HT:PCBM blend and the Al cathode, due to the formation of Al-O-C bonding and the 

P3HT-Al complex for the post-annealed device. The Al cathode can effectively prevent 

the overgrowth of the PCBM molecules. UV-Vis absorption spectroscopy also shows the 

improved light absorption property in the post-annealed blend layer.  

5.1.2 Experimental 

All ITO substrates used were cleaned with detergent, deionized water, acetone and 

isopropanol for 15 mins, respectively. For the device fabrication, the PEDOT:PSS 

(Baytron P VP AI 4083) with a thickness of ~50 nm was firstly spin coated on the top of 

the ITO surface and dried at 110 °C in an oven. The P3HT:PCBM blend layer (1:0.8 

weight ratio) was then spin coated from the dichlorobenzene solvent on the PEDOT:PSS 

layer. The Al metal (~100 nm) was then further thermally evaporated through a shadow 

mask giving an active device area of 0.2 cm2. Different annealing conditions were used: 

(i) without annealing (pristine device); (ii) pre-annealing and (iii) post-annealing. All 

annealing processes were finished by using direct contact with a hot plate for about 10 

min in the dry box. The solar cells were characterized by a Keithley 2400 source-measure 

unit in the dark and under Am 1.5 solar illumination at intensity of 100 mW/cm2. 

Absorption spectra of organic films on glass substrates were measured by Shimadzu UV-

3101 PC UV-VIS-NIR Spectrophotometer. The structural analysis of the samples was 

investigated by using a Shimadzu X-ray diffractometer with a copper x-ray beam (λ = 

0.1542 nm). 
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The x-ray photoelectron spectroscopy (XPS) samples were consisted of identical 

sandwiched structure: ITO coated glass/P3HT:PCBM(100 nm)/Al(3 nm). The XPS 

spectra were measured by transferring the samples to the chamber of a Kratos AXIS HSi 

spectrometer at once. The operating pressure of the analysis chamber was maintained at 8 

x 10-9 Torr. A 1486.71 eV monochromatic Al Kα x-ray gun source was used to achieve 

the Al 2p, O 1s, C 1s and S 2p spectra.  

Tapping mode atomic force microscopy (AFM) measurements of three samples 

were taken with a Nanoscope III A (Digital Instruments) scanning probe microscope. The 

samples were prepared in the same sequence as the XPS samples. Two of the samples 

were arranged to undergo pre-annealing and post-annealing respectively, while one was 

used as the reference. The phase images and the line scanning profiles of the samples 

were then recorded under air operation.  

5.1.3 Experimental Results and Discussion 

To compare the impact of the annealing process on the performance of the PV 

device, three solar cells were fabricated based on P3HT:PCBM in an identical manner 

except for the annealing conditions. They are pristine solar cell, pre-annealed solar cell 

and post-annealed solar cell to represent the cells without annealing, with pre-annealing 

and with post-annealing, respectively. A plot of I-V curves for the devices is shown in 

Fig. 5.1.   

The pre-annealed and the post-annealed devices exhibit an obvious increase in JSC 

compared with the pristine device. PCE is also greatly improved correspondingly. The 

pristine device only shows PCE of 0.13%. However, after the annealing, PCE increases to 

1.58 % for the pre-annealed device and near 3% for the post-annealed device. Obviously, 
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the post-annealed device shows the best performance. Compared with the pre-annealed 

device, FF of the post-annealed device increases from 0.43 to 0.61. The increases in JSC 

and FF imply a significant reduction in the series resistance (Rs) of the solar cell (defined 

as the slope of the I-V curve at I=0 mA/cm2). In fact, the value of Rs is reduced from 22.2 

Ωcm2 for pre-annealed device to 5.64 Ωcm2 for post-annealed device. 
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Fig. 5.1 I-V characteristics of the PV cells ITO/PEDOT:PSS/ P3HT:PCBM/Al 
under AM 1.5 illumination, with the P3HT:PCBM active layer thickness about 
80 nm. 
 

The post-annealed device shows the better performance than the pre-annealed 

device. It is inferred that different interfacial structures should be addressed from the two 

systems. To investigate the chemical structure at the interface of the polymer and Al 
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metal, the surface-sensitive XPS analysis is thus studied. Only a thin Al metal (3 nm) is 

deposited on the polymer blend in order to prevent weak XPS scanning signals from the 

polymer. Multiple peaks have been fitted in the XPS core level spectra by using Gaussian 

method. According to the published values of the binding energy (BE) as listed in Table 

5.1, the bonding states are clearly marked on each XPS spectrum. 

 

Table 5.1 Summary of the XPS binding energies of different bonding states. 

Samples Al 2p [eV] C 1s 
[eV] O 1s [eV] S 2p 

[eV] 

Al-O-C 74.6 [5.17] 286.2 [5.17] 531 [5.18]  

Al2O3 
74.95 
[5.16]  532.3 [5.24]  

Al-S 76 
[5.19,5.22]   162.45 [5.19, 5.22,5.25] 

COOH  289.5 [5.25] 532.3 [5.25]  

C-C  285.1 
[5.19,5.22,5.25]   

C-S  285.7 [5.20,5.21]  164.1,165.3 [5.19-5.22] 

         

The evolutions of the corresponding Al 2p, C 1s, O 1s and S 2p core level spectra 

are illustrated in Fig. 5.2. The bottom and the top curves in each graph are the spectra of 

the pre-annealed and the post-annealed samples, respectively. The position of the Al 2p 

main line is located at the BE of 74.95 eV, which is attributed to the Al oxide [5.16]. 

Both the two samples exhibit a peak at the BE of 74.6 eV, which is corresponded to the 

Al-O-C bonding [5.17]. The existence of the Al-O-C bonding has been confirmed by the 
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Fig. 5.2 High-resolution Al 2p, C 1s, O 1s and S 2p XPS spectra of the pre- 
annealed and the post-annealed samples. The configuration of the samples is 
ITO/P3HT:PCBM(100 nm)/Al(3 nm). 

 

peaks located at the BE of 286.2 eV [5.17] in the C 1s spectrum and 531 eV [5.18] in the 

O 1s spectrum. It has been proposed that the Al-O-C bonding can improve the contact 

between the polymer and the metal [5.2]. Our results indicate that this favorable bonding 

exists in both the pre-annealed and the post-annealed samples. However, an additional 
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shoulder peak at the BE of 76 eV in the Al 2p spectrum is observed in the post-annealed 

sample. The evolution of this new chemical state suggests that there are structural 

differences between the samples that are annealed in different sequence. From the S 2p 

spectrum of the pre-annealed sample, the typical peaks of P3HT appeared at the BE of 

164.1 eV (2p3/2) and 165.3 eV (2p1/2) due to the spin-orbit coupling are discovered [5.19-

5.22]. We can also observe the emergence of an extra shoulder peak at the BE of 162.4 

eV in the post-annealed sample. The donation of electron density from the Al metal to the 

thiophene ring of P3HT is suggested to be the reason of the formation of the peak at 

162.4 eV [5.19, 5.22]. The interaction between P3HT and the Al metal is likely to occur 

under the post-annealing. 

It has been reported that the Al atoms have a preference to react with the carbonyl 

groups than the thiophene ring of the polymer [5.22, 5.23]. Similarly, our results show 

that the Al metal preferentially reacts with the carbonyl oxygen in PCBM to form the Al-

O-C bonding than the thiophene ring of P3HT. This can be understood by the fact that the 

electronegativity of the oxygen atoms is higher than the sulfur and carbon atoms [5.17].  

Though the charge transfer between the Al metal and the thiophene ring of P3HT 

(including some conjugated carbon atoms) only occurs in the post-annealed system, the 

location of the C 1s main peak between two annealing conditions only has a slight energy 

difference (~0.1 eV shift in BE). This is because the C 1s peak is dominated by the 

aliphatic carbon atoms while the Al metal preferentially reacts with the carbon atoms in 

the conjugated system (thiophene ring of P3HT in this case) [5.21, 5.22, 5.24]. Thus the 

signal arose from the interaction between P3HT and the Al is too weak to be detected in 

the C 1s spectrum in the post-annealed sample.  
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Based on the above findings, we propose that there is a transition from P3HT to 

P3HT-Al complex upon the post-annealing as shown in Fig. 5.3. Since the direct reaction 

between the Al metal and the sulfur atoms is unlikely to occur because of the inherently 

high electron density on the sites, thus we believe that the Al metal forms bonds with the 

carbon atoms on the thiophene ring in the positions adjacent to the sulfur atom and affects 

the electron density of the sulfur atoms [5.20, 5.25]. In the P3HT-Al complex, the overall 

charge density of the sulfur atoms is smaller than that of the pristine P3HT. Thus the S 2p 

peaks located at the BE of 164.1 eV and 165.3 eV are shifted to the higher BE side at 

164.3 eV and 165.5 eV after the post-annealing, respectively.  

 

 

Fig. 5.3 The molecular structure transits from P3HT to P3HT-Al complex. 

Different notions about the role of similar complex have been reported previously 

[5.17, 5.26]. Ling et al. proposed that the Al metal can effectively transfer the electron to 

the conjugated polymer with the sulfide species and this feature makes it as a potential 

cathode for polymeric electronics [5.17]. Boman et al. reported that the delocalization of 

the π–electron system is reduced due to the Al2-thiophene complexes [5.26]. We believe 

that the latter effect does not play an important role in our solar cells because a good PV 

effect is achieved from the post-annealed device. From our point of view, the improved 
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PV effect in the post-annealed device is partly attributed to the stronger contacts at the 

polymer/metal interface with two interfacial bondings of Al-O-C and P3HT-Al 

complexes. Facilitated charge collection via the improved contact can result in the 

reduction of the series resistance in the post-production annealed solar cell.  

The effect of the annealing sequence on the morphology is investigated by the AFM 

study. Figs. 5.4 a-f show the phase images and the cross-sectional profiles of the different 

samples. The sample structure is ITO/P3HT:PCBM/Al. The root mean square roughness 

of the pristine, the pre-annealed and the post-annealed samples are 5.5, 6.3 and 5.9 nm 

respectively. Both annealing sequences lead to the growth of the polymer domains and 

the increase of the surface roughness.  

 

    

Fig. 5.4 Tapping-mode AFM phase images of Al covered P3HT:PCBM blend films: 
a) pristine, b) pre-annealed and c) post-annealed. Corresponding cross sectional 
profiles are shown in d) to f).  

 

(a) (c) (b) 

(f) (e) (d) 
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It has been shown that the main effect of the annealing is the redistribution of 

PCBM [5.3, 5.12, 5.13, 5.27, 5.32]. Diffused PCBM from the P3HT:PCBM system 

allows the transformation from P3HT aggregates to P3HT crystallites. The P3HT:PCBM 

blend with such conformation can improve the optical absorption property of P3HT and 

hence the PV effect. However, the rapid PCBM diffusion is also the main limiting 

parameter in the blend films [5.28, 5.29]. This induces the formation of the large PCBM 

aggregates in the P3HT:PCBM polymer blend and deteriorates the interpenetrating 

networks [5.28, 5.30]. Charge generation and interfacial contact between P3HT and 

PCBM will most likely be reduced due to the overgrowth of PCBM [5.12, 5.28]. Thus the 

appropriate annealing should be undergone to prevent the overgrowth of PCBM.  

The appropriate annealing should be performed to prevent PCBM from 

overgrowing. In the pre-annealed devices, it is very easy for the PCBM domain to 

overgrow. Compared with the pre-annealing (Fig. 5.4e), the average peak-to-peak height 

and the width of the polymer domains can be reduced 20% and 33%, respectively by 

using the post-annealing (Fig. 5.4f). Smaller domain size implies that the overgrowing of 

PCBM can be effectively prevented by overlaying an Al cathode. A better nanoscale 

control of the morphology can be promoted by prohibiting a coarse phase segregation of 

PCBM molecules. Similar metal effect was also demonstrated on the organic surface by 

using silver caps [5.31]. More efficient charge separation in the increased interfacial areas 

between P3HT and PCBM is believed to be one of the reasons for the improvement of the 

post-annealed device. The XPS and AFM results show that the Al capping layer not only 

induces a stronger interfacial contact at the polymer/metal interface, but also reduces the 
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roughness of the Al covered polymer (prevents the overgrowth of PCBM) in the 

annealing process. 

 

 

Fig. 5.5 The optical absorption spectra of the P3HT:PCBM blend films: a) 
pristine, b) annealed, c) pristine with Al, d) pre-annealed with Al and e) post-
annealed with Al. 

 

Fig. 5.5 shows the effect of the annealing on the UV-Vis absorption spectra for the 

P3HT:PCBM blend films. As indicated in spectra (a) and (b) in Fig. 5.5, an apparent 

increase in the optical absorption can be achieved after the thermal annealing of the 

polymer films. To understand the effects of the Al metal on the light harvesting property 
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of the polymer film during the annealing, the absorption spectra of the polymer capped 

with the Al metal are also measured. Similar spectral improvement is arisen upon 

annealing. Particularly, the most progressive increase in absorption is found in the post-

annealed polymer film.  

 

 

Fig. 5.6 The x-ray diffraction spectra of the Al covered P3HT: PCBM blend films: 
a) pristine, b) pre-annealed and e) post-annealed. 

 

The enhancement in the light absorption can be explained by the XRD results. The 

XRD data are obtained from the samples made of polymer capped with the Al metal. The 

evolution of the XRD diffraction peak at 2θ=5.4° is a well known signature for the P3HT 

crystallites [5.33] as shown in Fig. 5.6. The highest height (h) and the smallest full width 

at half maximum (Δ2θ) of the peak reflect the largest P3HT crystallinity inside the post-
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annealed polymer layer. Based on Bragg’s law [5.34] and Scherrer relation [5.35], the 

corresponding lattice constant (d) and the size of the polymer crystallites (L) can be 

determined respectively. 

  θλ sin2dn =                                                         (5.1) 

θ
λ

θ cos
9.0

2Δ
=L                                                        (5.2) 

where λ is the wavelength of the x-ray, and θ is the Bragg’s angle.   

 

Table 5.2 Summary about x-ray diffraction peaks of P3HT:PCBM  under different 

annealing conditions (calculated from Fig. 5.6 and equations (5.1), (5.2)). 

Annealing 2θ [°] Δ2θ [°] h [counts/s] L [nm] d 

No 5.49 0.83 318 9.6 1.61 

Pre-treatment  5.44 0.61 596 13 1.625 

Post-production  5.44 0.45 617 17.7 1.625 

 

 

As shown in Table 5.2, all polymer layers have the lattice constant of 1.62 ± 0.01 

nm. The peak height, which is proportional to the number of the P3HT crystallites per 

unit volume [5.34], of the post-annealed sample is the highest. In contrast to the pristine 

P3HT:PCBM layer, the sizes of the P3HT crystallites can be dramatically increased by 

35% and 84% (calculated by the the value of L in Table 5.2) after the pre- and the post- 

annealing, respectively. The most pronounced P3HT crystallinity leads to the 

improvement of the light harvesting property of the post-annealed films [5.1, 5.3]. From 
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the literature, strong diffusion of PCBM from the P3HT matrix reduces the P3HT 

crystallinity and optical absorption property [5.1, 5.36]. Therefore, it is expected that the 

efficient inhibition of the overgrowth of PCBM by the overlaying Al metal can facilitate 

the crystallization of the P3HT during the annealing. This conformation should also 

increase the inter-chain interaction among the P3HT chains, result in more delocalized 

conjugated π electrons, and increase the optical absorption. Thus the charge generation 

can be facilitated with the larger light harvesting property of the post-annealed films.  

5.1.4 Conclusion 

The sequence of the thermal annealing is critical for the performance of the 

P3HT:PCBM based solar cells. As shown by the XPS, AFM, UV-Vis and XRD studies, 

the post-annealing should be performed to enhance PCE of the devices. We attribute the 

increased PCE to three factors: (i) the improved contact at polymer/aluminum interface 

due to the formation of Al-O-C and P3HT-Al complex; (ii) the improved phase-

structured morphology due to the prohibition of the overgrowth of PCBM and (iii) the 

enhanced P3HT crystallinity and thus a better light harvesting property of the polymer 

film. These advantageous factors can facilitate the charge collection, separation and 

generation in the post-annealed devices.  

5.2 The effect of cathode deposition on VOC 

5.2.1 Introduction 

To improve the device performance further, it is very clear that another very 

important approach of enhancing VOC must be considered. As discussed in chapter 4, VOC 



Chapter 5: Experimental studies to improve P3HT:PCBM bulk HJ OSCs 
__________________________________________________________________________________ 

108 
 

is proportional to the offset energy between HOMO of D and LUMO of A [5.37, 5.38]. 

Then in order to enhance VOC, we can increase the offset energy between HOMO of D 

and LUMO of A. However, this method usually decreases JSC, because a high bandgap 

absorber is required which has a large mismatch with the solar spectrum. Therefore it is 

challenging to increase VOC while maintaining or increasing JSC at the same time. In 

addition, the best performance of the state-of-art devices is almost based on some special 

materials (such as P3HT, PCBM, CuPc anc C60). Thus it is important to increase VOC 

based on these given materials. Recently, enhancement of VOC in the polymer solar cells 

has been achieved by using a very thin layer of LiF between the active layer and the 

cathode [5.39, 5.40]. LiF can increase VOC by introducing dipoles at the cathode interface. 

However, the extra layer of LiF and its critical thickness control increase the complexity 

of the fabrication process.  

In this section, we will demonstrate a simple method to achieve a very strong 

enhancement of VOC while not affecting JSC and FF by only using the e-beam deposited 

Al cathode in the polymer solar cells. The method of e-beam deposition, which is the 

industrial process of choice for many large area metallic coating, has rarely been applied 

to devices based on organic materials because of its possible damage to the organic layer 

due to the existence of the energetic particles. Here we show that e-beam deposited Al 

cathode can effectively increase VOC and enhance the performance of OSCs. Compared 

with the device with the thermal evaporated Al cathode (VOC=596mV), the increased VOC 

(664 mV) makes the overall PCE improved greatly. Through the investigations of the 

electrical characteristics, it is found that the deep interface traps in polymer induced by 

the e-beam deposition play an important role for the enhancement of VOC. 
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5.2.2 Experimental  

The devices were fabricated on ITO-coated glass substrates. After routine solvent 

cleaning (treated sequentially with detergent, de-ionized water, acetone, and isopropanol 

in an ultrasonic bath for about 15 minutes), the dried ITO glass substrates were treated 

with oxygen plasma for about three mins. Then the filtered PEDOT:PSS suspension was 

spin coated on the top of the ITO surface under ambient condition and dried at 110 °C in 

an oven. The P3HT:PCBM solution dissolved in dichlorobenzene with a weight ratio of 

1:0.8 was spin coated on the top of the PEDOT:PSS film in the glove box to form the 

active layer. Finally, Al cathode was deposited by e-beam evaporation or the thermal 

evaporation through a shadow mask. P3HT and PCBM single layer devices were also 

fabricated. Finally the complete devices were annealed in the nitrogen. The current-

voltage (I-V) characteristics were measured using a Keithley 2400 parameter analyzer in 

the dark and under a simulated light intensity of 100 mW/cm2 (AM 1.5G) calibrated by an 

optical power meter. 

5.2.3 Experimental results and discussion 

To compare the impact of the metal deposition methods on the performance of the 

PV devices, two types of solar cells were fabricated in an identical manner except for the 

cathode deposition methods. One used the thermal evaporated Al cathode, and the other 

used the e-beam deposited Al cathode. All these devices were measured after the post-

annealing process. 
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Fig. 5.7 (a) I-V characteristics of typical solar cells with e-beam deposited Al 
cathode and thermal evaporated Al cathode as fabricated and after annealing at 
160oC for 10 minutes. And (b) Statistical results of VOC for the both types of 
solar cells after annealing at 160oC for 10 minutes. 
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Fig. 5.7 (a) shows the I-V characteristics of the devices with the e-beam deposited 

Al cathode (e-beam Al device) and the thermal evaporated Al cathode (thermal Al 

device). After thermal annealing at 160oC for 10 mins, both of the two types of devices 

show the comparable JSC and FF (10.75 mA/cm2, 60% for the thermal Al device and 

10.55 mA/cm2, 61% for the e-beam Al device). However, their VOC shows different 

behaviors. As shown in Fig. 1 (a), the thermal annealing process only slightly increases 

VOC from 583 mV to 595 mV for the thermal Al device. But an obviously higher VOC of 

664 mV is obtained for the e-beam Al device after the thermal annealing. The higher VOC 

obtained by the e-beam Al device than the thermal Al device is more easily observed 

from the statistical results of VOC as shown in Fig. 5.7 (b). As a result, compared with the 

thermal Al device (VOC=595 mV), the increased VOC (664 mV) by using the e-beam 

deposited Al cathode makes the overall PCE obviously increased by 12.4% (from 3.79% 

to 4.26%). 

To well understand the influence of the e-beam deposited Al on the device 

performance, the I-V characteristics of the e-beam Al devices under different thermal 

annealing conditions are shown in Fig. 5.8 (a). Similar with the reported thermal Al 

devices and the results of the previous section, both JSC and FF increase significantly 

after the thermal annealing. However, different from the thermal Al device where the 

increased value of VOC is relatively small (form 580 mV to 600 mV), a very strong 

enhancement of VOC is observed for the e-beam Al device. As shown in Fig. 5.8 (b), VOC 

is increased steadily with the increase of the annealing temperature until it begins to 

saturate when the temperature is above 180oC. The strong boost in VOC makes the 

performance improve further. As shown in Fig. 5.8 (a), although JSC and FF of the  
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Fig. 5.8 (a) I-V characteristics of devices with the e-beam evaporated Al 
cathode that have undergone the thermal annealing from room temperature 
(30oC) to 200oC for 10 minutes. (b) Statistical results of VOC under different 
annealing temperatures. VOC is increased steadily with the increase of the 
annealing temperature until it begins to saturate when the temperature is 
above 180oC.  
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devices are almost the same for the annealing temperature of 150 oC (10.49 mA/cm2, 61%) 

and 160 oC (10.55 mA/cm2, 61%), the increased VOC makes the ovrerall PCE further 

increase from 4.09% (150 oC) to 4.26% (160 oC). 
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Fig. 5.9 Dark I-V characteristics of typical P3HT:PCBM solar cells with e-
beam deposited Al cathode and thermal evaporated Al cathode as fabricated 
and after annealing at 160oC for 10 minutes. 

 

In order to understand the origin of the enhancement of VOC, the dark I-V curves for 

the e-beam Al device and the thermal Al device are investigated. As shown in Fig. 5.9, 

obvious differences are shown for the two types of devices. For the thermal Al device, the 

minimum current (“current zero”) is observed when the voltage is zero. However, an 

obvious shift of current zero is observed for the e-beam Al device before and after the 

thermal annealing. This indicates that the deep traps are induced in the e-beam Al device 

[5.42]. It is noticed that the unique difference between the two types of devices is the 

cathode deposition method. Considering the existence of energetic particles of Al in the 
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e-beam deposition, these deep traps are believed to be induced by the damage of the 

blend layer in the cathode deposition process. 
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Fig. 5.10 Dark I-V characteristics of P3HT and PCBM single layer devices 
with e-beam deposited Al cathode as fabricated and after annealing at 160oC 
for 10 minutes. 

 

Since there are two different materials, P3HT and PCBM, in the solar cells, single 

layer of P3HT or PCBM has been used to fabricate devices with e-beam deposited Al 

cathode to find if the traps are located in P3HT or PCBM domains. Fig. 5.10 exhibits 

their dark I-V characteristics. No shift of current zero is observed for PCBM single layer 

device before and after the thermal annealing. This implies that PCBM is immune from 

the damage of the e-beam deposition. However, a very obvious shift of current zero is 

observed in the P3HT single layer device. This suggests that the energetic particles in the 

e-beam deposition damage and induce the deep interface traps in P3HT. The shift of 



Chapter 5: Experimental studies to improve P3HT:PCBM bulk HJ OSCs 
__________________________________________________________________________________ 

115 
 

current zero is decreased after the thermal annealing. This trend is the same as in the 

P3HT:PCBM solar cell (inset in Fig. 5.10) and thus confirms that the deep traps in 

P3HT:PCBM solar cell is located in P3HT. 

 

 

Fig. 5.11 Schematics illustrating the effects of deep interface hole traps on the 
polymer-fullerene solar cell. Red region means P3HT domain, and Blue region 
means PCBM domain. E-beam deposited Al cathode induces deep hole traps at 
P3HT/Al interface, and these positive trapped holes will induce the negative image 
charges in the cathode and thus forms the “dipoles”. 

 

The existence of the deep interface traps in P3HT can affect the device electrical 

characteristics and should be responsible to the strong enhancement of VOC. However, the 

behind mechanism is still not well understood. Here a possible interpretation is proposed. 

Since P3HT is a p-type material, holes will be trapped in these deep traps. These positive 

trapped holes can induce the negative image charges in the cathode and thus form the 

“dipoles” as shown in Fig. 5.11. It is well known that even a monomolecular dipole layer 

can cause a significant vacuum level offset and lower the metal work function as has been 

shown for a very thin LiF layer [5.39, 5.40]. Similarly, here the interface “dipoles” 
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induced by the interface deep traps can also lower the Al effective work function and thus 

increase VOC. Recently, Ahlswede et al. [5.43] reported that sputtered cathode can 

increase VOC. We believe that it is also due to the deep interface hole traps induced by the 

sputter deposition. 

As shown in Fig. 5.9 and Fig. 5.10, the shift of current zero changes with the 

annealing temperature. This implies that the annealing temperature can change the 

distribution of these deep traps, which explains why VOC varies with the thermal 

annealing temperature (Fig. 5.8 (b)). When the temperature cannot change the trap 

distribution any more, VOC should also keep constant. This is reflected by the gradual 

saturation of VOC above 180oC. Because these deep traps exist at the surface of P3HT 

(induced in the e-beam deposition), it should not influence the formation of the optimized 

morphology in the interior of the P3HT:PCBM layer. At the same time, PCBM is 

immune from the damage, thus the carrier extraction should not be affected because the 

electrons transport in PCBM and are collected by the cathode while holes transport in 

P3HT and are collected by the anode. As a result, the e-beam Al device obtains an 

increased VOC and, at the same time, maintains the similar JSC and FF as the thermal Al 

device.  

5.2.4 Conclusion  

 In this section, the influence of metal deposition on VOC was investigated. It was 

found that the energetic particles in the e-beam deposition can damage the surface of 

P3HT and induce deep hole traps at the surface while leave the fullerene unaffected. It 

was proposed that the deep trapped holes will induce the negative image charges in the 

cathode and form “dipoles”. These “dipoles” lower down the Al effective work function 
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and thus induce a very strong increase of VOC. By using e-beam deposited Al cathode 

instead of the thermal evaporated Al cathode, VOC was obviously increased from 596 mV 

to 664 mV while maintaining JSC and FF almost unchanged, which made PCE improved 

by 12.4%.  

5.3 Overall optimization of P3HT:PCBM OSCs 

5.3.1 Introduction 

The annealing process can efficiently improve the performance of P3HT:PCBM 

OSCs. As discussed above, the performance enhancement is related to the annealing 

sequence. Post-annealing is more favored by the devices. E-beam deposited Al cathode is 

also observed to efficiently increase VOC. In this section, all the OSCs were made with 

the e-beam deposited Al cathode and post-annealed. These devices were used to optimize 

the overall solar cell performance.  

Because the active layer is very thin in OSCs compared with the incident light 

wavelength, the optical interference effect influences the absorption and then JSC as 

discussed in chapter 3. According to the simulated results based on the optical model, the 

thickness is optimized around the first and second optical interference peaks in this 

chapter. 

5.3.2 Experimental  

The fabrication process is the same as before. The devices were fabricated on the 

ITO-coated glass substrates. After routine solvent cleaning (treated sequentially with 

detergent, de-ionized water, acetone, and isopropanol in an ultrasonic bath for about 15 

minutes), the dried ITO glass substrates were treated with oxygen plasma for about three 
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mins. Then the filtered PEDOT:PSS suspension was spin coated on the top of the ITO 

surface under ambient condition. The P3HT:PCBM solution dissolved in 

dichlorobenzene with a weight ratio of 1:0.8 was spin coated in the glove box. Finally, Al 

cathode was deposited by e-beam evaporation through a shadow mask. All the devices 

have same structure: ITO\PEDOT:PSS\P3HT:PCBM\Al, and only the thicknesses of the 

P3HT:PCBM active layers are different. The active layer thickness was controlled by 

changing the spin speed and solution concentration. Then different annealing 

temperatures are tested for the devices based on post-annealing to find the optimized 

conditions. The current-voltage (I-V) characteristics were measured using a Keithley 

2400 parameter analyzer in the dark and under a simulated light intensity of 100 mW/cm2 

(AM 1.5G) calibrated by an optical power meter.  

5.3.3 Experimental results and discussion 

Optical interference effects and active layer thickness optimization 
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Fig. 5.12 JSC versus P3HT:PCBM thickness, P3HT:PCBM with weight ratio of 
1:0.8 and device structure of ITO/PEDOT:PSS/P3HT:PCBM/Al. 
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The TMF as discussed in chapter 3 is used to predict JSC for the active layer 

thickness in a range from 50 nm to 250 nm for 1:0.8 P3HT:PCBM active layer. The 

optical constants (n, k) of the active layer were derived from the literature [5.44]. The 

results are plotted in Fig. 5.12. As predicted, obvious oscillatory behavior is observed 

because of the very thin active layer compared with the light wavelength. When the 

P3HT:PCBM ratio is 1:0.8, the first and second optical interference peaks are found at 

the P3HT:PCBM layer thicknesses of around 85 nm and 230 nm. Both the two optical 

interference peaks should be used to optimize the active layer thickness.  
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Fig. 5.13 Optimization of active layer thickness. (a) around the first optical 
interference peak, and (b) around the second optical interference peak. All 
devices were post-annealed at 160oC for 10 mins.  
 
According to the simulated results, the devices were fabricated around the first and 

the second optical interference peaks. The experimental results for the different active 

layer thicknesses are shown Fig. 5.13. As predicted, JSC shows a periodic behavior with 

the variation of the active layer thickness. The JSC increases from as low as 6.25 mA/cm2 

(for the device with active layer thickness, t=64 nm) to as high as 6.93 mA/cm2 (for t=80 
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nm), and then decreases around the first interference peak. The same trend is observed 

around the second optical interference peak at a thickness of 208 nm. JSC reaches a value 

as high as 10.37 mA/cm2 at the second optical interference peak. The higher JSC comes 

from the better absorption ability. It is obviously shown that the second peak can absorb 

more light than the first peak as shown in Fig. 5.14. Thus the second optical interference 

peak is more preferred to achieve a higher PCE. Then around this peak, the annealing 

conditions are investigated. 
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Fig. 5.14 UV-visible absorption spectra of P3HT:PCBM (about 80 nm 
thick) and P3HT:PCBM (about 208 nm thick).  

 

Optimization of annealing conditions 

The device performance depends greatly on annealing temperatures as clearly seen 

from Fig. 5.15. The reasons for the performance to be improved by the annealing process 

have been widely investigated. It is clear that for an efficient organic bulk HJ solar cell, 
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Fig. 5.15 Optimization of Glass/ITO/PEDOT:PSS/P3HT: PCBM/Al 
devices. (a) and (b): Relations of device performance and annealing 
conditions. The P3HT:PCBM layer thickness keeps constant of 208 nm. 

 

D and A domains must be small enough so that most of the excitons can diffuse into the 

D/A interfaces before they decay. At the same time, the interpenetrating transport 

network must be formed for the efficient charge transport. Thus, the morphology 

optimization is of great important. By varying the annealing condition, the morphology 

can be well controlled. Padinger et al [5.9] reported that JSC and FF were obviously 

enhanced by annealing the device with an applied voltage. A latter study by Li et al. [5.45] 

also reported that the device performance was improved by a slowing dry process. 

These results were related to the better morphology as discussed in previous and 

also related to the increase of the charge carrier mobility. The same reason should also be 

responsible for our results. The highest PCE in our experiments is achieved when the 

annealing temperature is 160oC which is very close to the annealing temperatures 
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reported by Ma et al. [5.2] and Reyes et al [5.5]. The analysis of changes in film 

morphology has shown that the changes in film crystallinity and aggregation within the 

film PCBM nanophase lead to the improved PV characteristics at this temperature [5.28]. 

When the annealing temperature is increased, a steady enhancement of VOC is observed 

because the e-beam evaporated Al can induce dipoles at the interface between active 

layer and cathode as discussed above. 
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Fig. 5.16 Characteristics of the device around the second optical interference 
peak. Inset: the equivalent circuit of the solar cell is also shown. 

 

 Having been annealed at 160oC for 10 min, the device shows the optimized 

performance. Use the macroscopic equation 
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The curve is fitted (Fig. 5.16) and the macroscopic parameters are extracted and listed in 

Table 5.3.  

Table 5.3  Parameters extracted from the I-V curves (Fig. 5.16) 

parameters Iph(mA/cm2) IS(mA/cm2) Rs(Ωcm2) Rsh(Ωcm2) n 

value 10.409 0.00094 3.1 679.7 2.75 

 

5.3.4 Conclusion 

The effects of the optical interference and the annealing on device performance 

were presented. Due to the optical interference effect, JSC showed a periodic behaviour 

with the variation of thickness. With the help of the simulated results, the first two optical 

interference peaks were found to be corresponding to thicknesses of 80 nm and 208 nm. 

At the same time, the effect of annealing on the performance was also studied. Based on 

post-annealing, different annealing temperatures were tested. The optimized annealing 

condition was found to be 160oC for 10 min in a nitrogen atmosphere.  

5.4 Summary  

The experimental studies were carried out to investigate P3HT:PCBM based HJ PV 

cells in this chapter. It was found that the strengthened contact due to the bonding 

reinforcements (Al-O-C bonds and P3HT-Al complex) at the blend/metal interface for 

post-annealed device improves the charge collection at the cathode side. Carrier 

separation can be facilitated via the improved nanoscaled morphology of the post-

annealed polymer blend. The Al capping layer promotes efficient formation of the P3HT 

crystallites and thus enhances the light harvesting property of the polymer blend. 
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Evidence for the latter has been derived from the improved shape of the absorption 

spectrum. The results underline the importance of applying the most efficient annealing 

sequence in order to achieve the best PV device performance. 

By using the e-beam deposited Al cathode, a significant increase of VOC was 

obtained in the polymer-fullerene bulk HJ solar cell. Electrical characterizations 

suggested that the energetic particles in the e-beam deposition induce deep interface hole 

traps in the P3HT/Al interface while leaving the fullerene unaffected. The deep trapped 

holes near the P3HT/Al interface could induce the image negative charges in the cathode 

and thus form “dipoles”. These “dipoles” lead to the lowering of the Al effective work 

function and cause the enhancement of VOC. 

Based on above findings, P3HT:PCBM bulk OSCs were optimized. As predicted by 

the TMF method, an obvious oscillatory behavior of JSC was observed in the experiments. 

The devices were optimized around the first two optical interference peaks. It was found 

that the optimized thicknesses are 80 nm and 208 nm. Based on the post-annealing, 

different annealing temperatures have been tested. The optimized annealing condition 

was found to be 160oC for 10 min in a nitrogen atmosphere.  
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Chapter 6 

Tandem structure design for the performance 

 enhancement of OSCs  
 

In the previous chapters, great efforts have been devoted into the P3HT:PCBM bulk 

HJ OSCs both in the mechanism and experimental research. A clear picture of the device 

working mechanism has been built. By the experimental research, the performance of 

P3HT:PCBM based OSCs has been improved. However, compared to the inorganic 

counterparts, PCE of OSCs is still very low [6.1-6.4]. Several factors limit PCE of 

organic PV cells. One such important factor is the limited overlap between the organic 

absorber and the solar spectrum [6.5-6.8]. The widely used organic materials can only 

absorb a limited spectrum range. The P3HT:PCBM absorber system has its main 

absorption below 650nm. However, as we know, there is approximately more than 60% 

of the total solar energy at the wavelengths λ> 600nm [6.6]. Obviously, to enhance solar 

absorption ability of the organic PV cells is a very effective way to improve the device 

performance. Beyond modifying the properties of the materials to match the solar 

spectrum, other methods are also used to enhance spectral coverage [6.6-6.9]. Among 

them, the tandem structure is a very effective method to overcome this problem. As 

discussed in Chapter 2, the conventional tandem cells are stacked on the top of each other 

and connected in series or in parallel. By combining different organic materials with 

complementary absorption spectra in tandem cell [6.6-6.8], it can improve the spectral 

coverage and increase the photon harvesting. However, achieving an effective tandem 

cell still presents its own difficulties. Usually, between the front cell and the back cell, 
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there is a thermal evaporated metal layer as the intermediate layer. This layer can reflect 

light and decrease the transmitted light easily. Moreover, in a series tandem solar cell, JSC 

generated by each subcell must be equal to prevent buildup of photogenerated charges 

which lead to a lower efficiency [6.2]. Thus it needs careful control of the respective 

layer thickness. In addition, for tandem polymer solar cells, spin coating multiple layers 

can result in significant damage to the bottom layer from the solvent used for spin coating 

of the subsequent layers [6.10]. In order to overcome these technology difficulties, in this 

chapter we demonstrate a new tandem structure to improve the spectral coverage. In this 

new tandem cell, no semitransparent intermediate layer is required in comparison with 

the conventional tandem solar cells. This decreases the complexity of device fabrication 

and reduces the light loss. The new tandem solar cell shows promising performance. 

6.1 Structure design 
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Fig. 6.1 Extinction coefficient of CuPc and P3HT:PCBM blend materials 
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CuPc and P3HT:PCBM materials can absorb complementary absorption spectra as 

shown in Fig. 6.1. By combining these materials together, it is expected to improve the 

light harvesting ability. Thus these two material systems are fit for the tandem structure. 

But because of the difficulties discussed above, to fabricate the tandem solar cell using 

the traditional structure is not easy. It is well known that CuPc and PCBM can be used for 

the bilayer structure. Based on this point, here we propose a simple tandem structure. In 

this structure, a CuPc layer is inserted between the P3HT:PCBM blend layer and the 

PEDOT:PSS layer. The proposed structure and the corresponding energy level diagram 

of the device are shown in Fig. 6.2.  

The work principles of this structure can be well understood by comparing with the 

standalone solar cells. As shown in Fig. 6.3, in a standalone CuPc:PCBM bilayer solar 

cell, excitons can be easily dissociated at the interface of CuPc/PCBM and collected by 

the electrodes because of the energy offset between CuPc and PCBM (0.2 eV in LUMO 

offset and 1 eV in HOMO offset). The same thing also happens in the proposed structure. 

Thus, essentially CuPc and PCBM form a bilayer HJ PV subcell. In the same way, the 

blend P3HT and PCBM also form a bulk HJ PV subcell. In this subcell, excitons are 

dissociated throughout the interface of the blend layer. The free electrons pass the blend 

layer and are collected by the cathode as in the standalone solar cell. However, there is a 

small difference for the hole transport process compared with the standard standalone 

P3HT:PCBM bulk solar cell. As shown in Fig. 6.2 (a), the holes must pass through the 

extra CuPc layer. From the energy level diagram (Fig. 6.2 (a)), almost the same HOMO 

energies of CuPc and P3HT make it easy for the holes to pass through CuPc layer and 

collected by the anode. 



Chapter 6: Tandem structure design for the performance enhancement of OSCs  
__________________________________________________________________________________ 

131 
 

 

 

(a) 

                                      

   (b) 

Fig. 6.2 Proposed tandem structure (a) layout structure and energy 
diagram of the proposed tandem PV cell. PCBM is simultaneously used to 
form CuPc/PCBM bilayer HJ subcell and P3HT:PCBM blend bulk HJ 
subcell; and (b) a simple equivalent circuit model of the PV cell. The extra 
resistor indicates the fact that holes generated in the blend layer have to 
pass the CuPc layer.  All the material parameters are extracted from the 
literatures [5.11, 5.12]. 

Resistor
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(a) 

 

(b) 

Fig. 6.3 (a) Energy diagram of standalone CuPc/PCBM bilayer HJ cell, and 
(b) Energy diagram of standalone P3HT:PCBM blend bulk HJ cell 

 

As discussed above, PCBM is simultaneously used to form the bilayer HJ PV 

subcell (CuPc/PCBM) and the bulk HJ PV subcell (P3HT:PCBM). This structure can be 

regarded as a parallel connection of two individual subcells, as described in the simple 

circuit model of Fig. 6.2 (b). The extra resistor indicates the fact that holes generated in 

the blend layer have to pass the extra CuPc layer. This structure is different from the 

conventional tandem PV cells. In the latter, the design and control of the intercellular 

layer are of critical importance to ensure that the recombination is effective and sufficient 
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light can reach the back cell. For our proposed tandem structure, an intercellular 

connection layer is not required. Thus, photon loss due to reflection and absorption of the 

intercellular layer and the complexity of the devices are significantly reduced. 

6.2 Device modeling 

Theoretical analysis by optical modeling is a powerful way to understand and 

predict the performance of OSCs. In order to evaluate the validity of the structure, the 

optical aspects are investigated in this section. The extinction coefficients of CuPc and 

P3HT:PCBM have been shown in Fig. 6.1 and will be used in the TMF method [5.11, 

5.12] as described in chapter 3.  

Fig. 6.4 shows the calculated total excitons generated in the multilayers. Obvious 

oscillatory phenomenon of the exciton number in the active layer is observed with the 

thickness variation of the P3HT:PCBM layer and the CuPc layer. This is because of the 

intense optical interference effect induced by the very thin layer compared with the 

incident light, which has been discussed in chapter 3. Line I refers to the exciton number 

variation with the P3HT:PCBM layer thickness when there is no CuPc layer. Maxima are 

found at the P3HT:PCBM layer thickness of 85 and 230 nm. Line II and line III show the 

total exciton number variation with the CuPc layer while keeping the P3HT:PCBM layer 

thickness fixed at 85 and 230 nm, respectively. Obviously, with a thin CuPc layer 

underneath, the exciton number is increased effectively. The increased excitons can 

contribute to the photocurrent because of the easy exciton dissociation at the 

CuPc/PCBM interface. As shown in Fig. 6.4, the optical interference peaks are obviously 
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observed along Line II and III for this multilayer. These two regions are preferred for the 

proposed structure. 
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Fig. 6.4 Variation of total exciton number with the layer thickness in the proposed 
structure. Line I: the exciton number variation with the P3HT:PCBM layer 
thickness when there is no CuPc layer. Line II and III: the exciton number 
variation with the CuPc layer thickness when the P3HT:PCBM layer is kept at 85 
nm and 230 nm, respectively. 

 

6.3 Experimental  

All the devices in this work were fabricated using ITO-coated glass substrates. 

After routine solvent cleaning (treated sequentially with detergent, de-ionized water, 

acetone, and isopropanol in an ultrasonic bath for about 15 minutes), the dried ITO glass 

substrates were treated with oxygen plasma for about three mins. Then the filtered 

PEDOT:PSS suspension (through 0.45 mμ filter) was spin coated on the top of the ITO 
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surface to form a ~50 nm layer, under ambient conditions, before drying the substrates at 

90oC in an oven for more than 3 hours. And then the CuPc layer was deposited by 

thermal evaporation under a pressure of about 5.4x10-5 Pa. P3HT:PCBM was dissolved in 

dichlorobenzene at a weight ratio of 1:0.8 and stirred for more than 72 hours in the glove 

box before spin casting to form the blend layer. The blend layer thickness was controlled 

by changing the spin speed and solution concentration. Finally an Al electrode of about 

100 nm in thickness was deposited by e-beam evaporation at a pressure of 2.4x10-4 Pa 

through a shadow mask. No buffer layer between the organic layer and cathode was used. 

For comparison, the standalone P3HT:PCBM blend and CuPc/PCBM bilayer OSCs were 

also fabricated. The current-voltage (I-V) characteristics were measured using a Keithley 

2400 parameter analyzer under a simulated light intensity of 100 mW/cm2 (AM 1.5G) 

calibrated by an optical power meter.  

Absorption spectra of organic films on glass were measured using a Shimadzu UV-

3101 PC UV-VIS-NIR spectrophotometer. AFM measurement was taken with a 

Nanoscope III A (Digital Instruments) scanning probe microscope. 

6.4 Experimental results and discussion  

The simulation has confirmed the validity of this proposed structure. Based on these 

results, the proposed solar cells (CuPc/P3HT:PCBM) as well as the standalone bilayer HJ 

(CuPc/PCBM) and bulk HJ (P3HT:PCBM) PV cells have been fabricated in the same 

batch. In the following sections, we will focus on the electrical characteristics of the 

devices.  
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6.4.1 First optical interference peak 

The first optical interference peak was firstly used to fabricate the proposed tandem 

device as shown in Fig. 6.2. A CuPc layer was deposited before spin coating the 

P3HT:PCBM film. To evaluate the absorption ability of the multilayer, the absorption 

spectra were measured and shown in Fig. 6.5. 
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Fig. 6.5 UV-VIS absorption spectra of P3HT:PCBM (80 nm), CuPc (20 nm) and 
CuPc (8 nm)/P3HT:PCBM (80 nm). The absorption bands of P3HT:PCBM and 
CuPc complement each other, and by combining these materials in the new 
tandem solar cell, the absorption spectrum can be spread over almost the entire 
visible spectrum. 

 

As shown in Fig. 6.5, the absorption spectra of P3HT:PCBM and CuPc complement 

each other, making them appropriate for the use in a single device to expend the 

absorption spectra. The absorption peak of the P3HT:PCBM film is located at 490 nm, 

and the absorption range extends from the ultraviolet (UV) up to approximately 650 nm. 
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The CuPc film absorbs weakly in the wavelength range of 400~550 nm. However, it has 

two strong absorption bands: one in the wavelength range between 550~800 nm and the 

other below 400 nm. Combining these materials, the absorption spectrum of the proposed 

tandem PV cell covers almost the entire visible spectrum. This enhanced absorption 

spectrum is expected to lead to a larger number of photogenerated excitons, and thus a 

larger photocurrent.  

The optimum condition for our device configuration was firstly investigated. When 

the thickness of P3HT:PCBM is 80 nm, the standard cell (ITO/PEDOT:PSS/ 

P3HT:PCBM/Al) shows the optimum PV response with JSC=6.87 mA/cm2, VOC=0.63 V, 

FF=58% and η=2.50% [Fig. 6.6 and Table 6.1]. This efficiency is comparable to those 

reported in the literature with the same device structure [5.13-5.16]. Keeping the 

optimized P3HT:PCBM thickness as 80 nm constant, Fig 6.7 shows the variation of JSC 

with the CuPc layer thickness in the proposed tandem PV cell. Obviously, with a thin 

CuPc layer underneath, JSC increases effectively. However, a thick CuPc layer degrades 

the device performance, because a thicker CuPc layer increases the series resistance and 

hinders carrier transport. Moreover, according to the working principles of bilayer PV 

cells, only the excitons in the CuPc layer that can diffuse to the interface can contribute to 

the photocurrent. Thus, for a thick CuPc layer, some excitons are lost. The photoactive 

region is about 8 nm from the D/A interface [5.17], beyond this region the excitons 

cannot contribute to the current. If the CuPc layer is too thick, it also reduces the number 

of photons reaching the P3HT:PCBM blend layer due to their overlap in absorption 

spectra, and thus the P3HT:PCBM subcell is degraded. Considering these effects, the 

predicted JSC is shown in Fig. 6.8. The thickness of the optimized CuPc layer is about 8  



Chapter 6: Tandem structure design for the performance enhancement of OSCs  
__________________________________________________________________________________ 

138 
 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-10

-5

0

5

10

 

 

 
C

ur
re

nt
 D

en
si

ty
 (m

A
/c

m
2 )

Voltage (V)

 Bilayer heterojunction cell
 Bulk heterojunction cell
 New tandem cell
 "Ideal cell"

 

Fig. 6.6 I-V characteristics of three types of devices. Standalone bilayer HJ cell: 
ITO/PEDOT:PSS/CuPc/PCBM/Al; Standalone blend bulk HJ cell: 
ITO/PEDOT:PSS/P3HT:PCBM/Al; Proposed tandem PV cell: 
ITO/PEDOT:PSS/CuPc/P3HT:PCBM/Al; “Ideal cell”: a theoretical cell with 
the sum of photocurrents of the standalone bilayer HJ cell and the blend bulk HJ 
cell. The illumination intensity is 100 mW/cm2 (AM 1.5G). 

 

Table 6.1 Electrical properties of standalone CuPc/PCBM and P3HT:PCBM PV cells, 
the proposed tandem PV cell, and the “ideal cell” (Fig. 6.6). 

 

Cell type 

Voc 

(V) 

Jsc 

(mA/cm2) 

FF  

(%) 

η 

(%) 

Standalone bilayer HJ cell: 

ITO/PEDOT:PSS/CuPc/PCBM/Al 

 

0.55 

 

2.09 

 

38 

 

0.43 

Standalone bulk HJ cell: 

ITO/PEDOT:PSS/P3HT:PCBM/Al 

 

0.63 

 

6.87 

 

58 

 

2.50 

Proposed tandem PV cell: 

ITO/PEDOT:PSS/CuPc/P3HT:PCBM/Al 

 

0.60 

 

8.63 

 

54 

 

2.79 

“Ideal parallel PV cell” 0.61 8.96 51 2.81 
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Fig. 6.7 Dependence of JSC on the CuPc film thickness in the proposed tandem 
PV cell. The P3HT:PCBM layer is kept as constant of 80 nm. Device structure: 
ITO/PEDOT:PSS/CuPc/P3HT:PCBM/Al. 

 

    

Fig. 6.8 The calculated JSC with different layer thickness. Considering the 
photoactive region in CuPc is 8 nm. As can be seen from the graph, JSC 
decreases when the CuPc layer is larger than 8 nm. 
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nm as shown in Fig. 6.7, which is just the photoactive region thickness. Using an 8 nm 

CuPc layer, the standalone CuPc/PCBM PV cell exhibits a PV response with JSC=2.09 

mA/cm2, VOC=0.55 V, FF=38% and η=0.43% [Fig. 6.6 and Table 6.1]. 

For the optimized layer thicknesses (CuPc～8nm and P3HT:PCBM～80nm), the 

tandem solar cell exhibits typical performance of JSC=8.63 mA/cm2, VOC=0.60 V, 

FF=54% and ηe=2.79%, as shown in Fig. 6.6 and Table 6.1. To confirm the parallel 

connection of the subcells in the tandem cell, we simply add the photocurrents of the two 

standalone bilayer and bulk HJ cells together and denote it as an “ideal cell”, whose I-V 

curve is also shown in Fig. 6.6. From the summarized electrical properties in Table 6.1, it 

is found that JSC (8.63 mA/cm2) and PCE (2.79%) of the fabricated tandem cell are just 

slightly lower than JSC (8.96 mA/cm2) and PCE (2.81%) of the “ideal cell”. Thus, the PV 

performance is in accordance with that expected from the parallel connection in the 

proposed tandem cell and Kirchhoff’s law. The slightly reduced JSC and PCE can 

probably be attributed to overlap in absorption spectra between the CuPc layer and 

P3HT:PCBM layer. The statistical results of JSC and PCE for the optimized tandem cell, 

as well as for the standalone cells, are shown in Fig. 6.9. Although the performance of the 

devices varies due to sample non-uniformity, it can be clearly seen that the proposed 

tandem cells have the respective JSC and PCE values close to the sum of the standalone 

bulk and bilayer HJ cells. 

Till now, the proposed tandem cell has been demonstrated around the first optical 

interference peak. The performance of the proposed tandem cell is equivalent to the 

combined performances of the two standalone single cells. Next we will show the devices 

around the second optical interference peak.  
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Fig. 6.9 Statistical properties of JSC (a) and PCE (b). Bilayer cell: standalone 
CuPc/PCBM bilyar HJ PV cell; Bulk HJ cell: standalone P3HT:PCBM bulk HJ 
PV cell; Proposed tandem cell: CuPc/P3HT:PCBM PV tandem cell. 
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6.4.2 Second optical interference peak 
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Fig. 6.10 UV-visible absorption spectra of P3HT:PCBM (~80 nm), 
P3HT:PCBM (~208 nm), CuPc (~20 nm), CuPc (~8 nm)/P3HT:PCBM (~80 
nm) and CuPc (~8 nm)/P3HT:PCBM (~208 nm) structures. The absorption 
bands of P3HT:PCBM and CuPc complement each other, and by combining 
these materials in the proposed tandem PV cell, the absorption spectrum 
covers almost the entire visible range. 

 

We have initially (chapter 5) optimized the standalone P3HT:PCBM OSCs 

(ITO/PEDOT:PSS/ P3HT:PCBM/Al) around the second optical interference peak. And 

the optimized P3HT:PCBM layer thickness is ~208 nm. Around this thickness, the film 

shows better absorption ability compared to the ~80 nm film (Fig. 6.10), which should 

increase JSC. 

A thin CuPc layer is then inserted between the PEDOT:PSS and blend layer, and its 

influence is studied by keeping the P3HT:PCBM blend layer of 208 nm thick and varying 
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the CuPc thickness (~4, ~8, and ~12 nm). From the absorption spectra shown in Fig. 6.10, 

the absorption spectrum of the multilayer structure extends covering almost the entire 

visible spectrum. Furthermore, the structure with CuPc(~8 nm)/P3HT:PCBM(~208 nm) 

absorbs more light in comparison with that with CuPc(~8 nm)/P3HT:PCBM(~80 nm) 

around the first optical interference peak. The inset of Fig. 6.11 shows that JSC increases 

at the initial stage and then decreases with the CuPc thickness. The device shows a 

maximum JSC of 12.54 mA/cm2 when CuPc is of ~ 8 nm thick. This is inconsistent with 

the simulation result of the continuously increased total exciton number with CuPC 

thickness (Fig. 6.4). As around the first optical interference peak, this discrepancy results 

from the short exciton diffusion length of CuPc (Fig. 6.8).  
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Fig. 6.11 I-V characteristics of three types of devices. Standalone bilayer HJ cell: 
ITO/PEDOT:PSS/CuPc/PCBM/Al; Standalone blend bulk HJ cell: ITO/PEDOT:PSS 
/P3HT:PCBM/Al; Tandem PV cell: ITO/PEDOT:PSS/CuPc/P3HT:PCBM/Al. Inset: 
dependence of JSC on the CuPc film thickness in the proposed tandem PV cell. The 
P3HT:PCBM layer is kept constant at ~208 nm.  
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Fig. 6.11 shows the I-V characteristics of the optimized devices. The standalone 

P3HT:PCBM solar cell exhibits PCE of 3.95% with JSC=10.61 mA/cm2, VOC=0.65 V, 

FF=57.1% and the standalone CuPc/PCBM solar cell exhibits PCE of 0.54% with 

JSC=2.30 mA/cm2, VOC=0.58 V, FF=41.1%. For the optimized tandem solar cell, PCE of 

4.13% with JSC=12.54 mA/cm2, VOC=0.64 V, FF=51.1% is measured. The enhanced 

JSC=12.54 mA/cm2 of the tandem structure is nearly the sum of those of the standalone 

cells of CuPc/PCBM (JSC=2.31 mA/cm2) and P3HT:PCBM (JSC=10.61 mA/cm2), which 

confirms the parallel connection of the subcells in the tandem cell. Despite the enhanced 

JSC, the series resistance (Rs), estimated to be about ~15.64 Ω cm2 in the tandem cell, is 

larger than that of the standalone P3HT:PCBM solar cell (~10.94 Ω cm2). Meanwhile, FF 

of the tandem solar cell also decreases to 51.1% from 57.1% of the standalone 

P3HT:PCBM solar cell. Both the changes of series resistance and FF imply that the 

additional interfaces (P3HT:PCBM/CuPc and CuPc/PEDOT:PSS) and CuPc in the 

tandem solar cell influence the charge transport and make the overall PCE only increased 

from 3.95% to 4.13%. It is expected that a further study of carrier transport in this 

structure can continuously improve the device performance. 

6.5 Methods to further improve the proposed devices 

 Although the absorption spectra of CuPc and P3HT:PCBM can complement each 

other, the overall absorption spectra are only extended to 800 nm. Much light with the 

wavelength larger than 800 nm is missed. There is still an overlap between the absorption 

spectra of CuPc and P3HT:PCBM. All these factors limit the increase of PCE. Then the 

materials with better light harvesting ability and complemented absorption spectra are 

needed. 
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Fig. 6.12 AFM image of CuPc film grown on ITO/glass. The thickness of 
CuPc layer is 15 nm. Data scale is 10 nm. The root-mean-square roughness 
(σrms) of CuPc surface was measured to be only 1.26 nm. 

 

Another way to improve the performance of the proposed tandem cell is to increase 

the CuPc and P3HT:PCBM interface areas. As discussed above, the thickness of the 

CuPc layer is limited by the photoactive region. As a result, only 8 nm CuPc layer is used. 

AFM shows that the root-mean-square roughness (σrms) of CuPc surface is low and only 

1.26 nm. If σrms can be made large, the CuPc and P3HT:PCBM interface area will be 

greatly increased. This will greatly decrease the needed exciton diffusion length and then 

increase the CuPc photoactive region. If σrms is enhanced further, CuPc and PCBM may 

form another bulk HJ subcell as the P3HT:PCBM subcell. This will efficiently increase 

the exciton dissociation probability [5.17, 5.18]. It has been reported that the growth of 

CuPc layer can be controlled to form the needle-like crystals [5.18]. This growth method 

can help to increase the total CuPc and P3HT:PCBM interface areas. Thus it gives a great 

potential to improve the proposed tandem cell further. 
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6.6 Summary 

PCE of OSCs is still low compared to their inorganic counterparts. One important 

limiting factor is the limited overlap of the absorption spectra of organic materials with 

the solar spectrum. Tandem structure is an effective approach to overcome this problem. 

In this chapter, we proposed and demonstrated a simple tandem structure of organic PV 

cell for efficient light harvesting. In this device structure, PCBM is employed 

simultaneously to form a bilayer HJ PV subcell with the underlying CuPc and a bulk HJ 

PV subcell with blended P3HT. In comparison with the conventional tandem structure, 

the omission of the semi-transparent intercellular connection layer reduces the 

complexity of the device and the light loss. This structure effectively improved JSC and 

PCE. By using this structure, around the first optical interference peak, the optimized 

device showed JSC of 8.63 mA/cm2 and PCE of 2.79%. Around the second optical 

interference peak, the optimized solar cell showed JSC of 12.54 mA/cm2 and PCE of 

4.13%.  



Chapter 6: Tandem structure design for the performance enhancement of OSCs  
__________________________________________________________________________________ 

147 
 

References 

[6.1]  C.J. Brabec, N.S.Sariciftci, and J.C.Hummemen, Plastic Solar Cells, Adv. Funct. Mater. 11, 

15 (2001). 

[6.2]  P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys., 93, 3693 (2003). 

[6.3]  K. Kim, J. liu, M.A.G. Namboothiry, and D.L. Carroll, Appl. Phys. Lett. 90, 163511 (2007). 

[6.4]  J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.Q. Nguyen, M. Dante, and A.J. Heeger, 

Science, 317, 222 (2007).  

[6.5]  B. P. Rand, J.G. Xue, F. Yang, and S.R. Forrest, Appl. Phys. Lett. 87, 233508 (2005). 

[6.6]  A. G. F. Janssen, T. Riedl, S. Hamwi, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 

91, 073519 (2007). 

[6.7]  G. Dennler, H.J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N.S. Sariciftci, Appl. 

Phys. Lett. 89, 073502 (2006). 

[6.8]  A. Hadipour, B. Boer,and P.W.M. Blom, J. Appl. Phys. 102, 074506 (2007). 

[6.9]  M.Y. Chan, S.L. Lai, M.K. Fung, C.S. Lee, and S.T. Lee, Appl. Phys. Lett. 90, 023504 

(2007). 

[6.10] V. Shrotriya, E.H. Wu, G. Li, Y. Yao, and Y. Yang, Appl. Phys. Lett. 88, 064104 (2006).  

[6.11] O. S. Heavens, Optical Properties of Thin solid Films (Dover, New York, 1965). 

[6.12] L. A. A. Pettersson, L.S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999). 

[6.13] J. Y. Kim, S.H. Kim, H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 

572 (2006). 

[6.14] H.J. Kim, W.W. So, and S.J. Moon, Solar Energy Materials & Solar Cells, 91, 581 (2007). 

[6.15] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, Appl. Phys. Lett. 

90, 163517 (2007). 

[5.16] E. Ahlswede, J. Hanisch, and M. Powalla, Appl. Phys. Lett. 90, 163504(2007). 

[6.17] Peumans P, Yakimov A, Forrest SR. J. Appl. Phys., 93, 3693 (2003). 

[6.18] P. Schilinsky, C. Waldauf, and C.J. Brabec, Appl. Phys. Lett. 81, 3885 (2002). 

[6.19] F. Yang, M. Shtein and S. R. Forrest, Natural Materials, 4, 37(2005). 



Chapter 7: Conclusion   
__________________________________________________________________________________ 

147 
 

Chapter 7 

Conclusion and outlook 
 

7.1 Conclusions 

The purpose of this work is to study the device mechanisms and design the novel 

structure of OSCs to improve the power conversion efficiency. Through this work, a clear 

theoretical picture of JSC and VOC was built, and the limited factors for them were also 

indicated. Experimental studies improved the P3HT:PCBM device performance. 

Specially, based on these understandings, a simple tandem structure was proposed, which 

efficiently improved the overall device performance. Generally, the main results and 

conclusions of this work are summarized as below. 

The microscopic mechanism of JSC in Bulk HJ solar cells was investigated. It was 

found that the optical interference effect becomes very important in OSCs. This is due to 

the very high absorption coefficients of organic materials compared to the inorganic 

materials which make the active layer very thin. Because excitons rather than free carriers 

are generated in organic materials, the exciton dissociation probability should be 

considered when predicting JSC. Neglecting this factor, JSC will be overestimated. At the 

same time, the influence of the carrier lifetime on JSC also cannot be neglected. When the 

carrier lifetime is relatively short, JSC only increases at the initial stage and then decreases 

rapidly with the increase of the active layer thickness. However, for a relatively long 

carrier lifetime, JSC behaves wave-like with the increase of the active layer thickness. The 

validity of this model is confirmed by the experimental results. 
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Another important parameter, VOC, was also investigated. Layered and bulk HJ PV 

cells showed different dependences on the electrodes. By the analysis, it was found that 

although VOC of the two types of PV cells follows the same mechanism and is mainly 

determined by the light injected carriers at the electrodes and the D/A interface, their 

distinct structures lead to the different dependences of VOC on the electrodes. The layered 

HJ OSCs have geometrically “flat” D/A and M/O interfaces, which make the effective 

thickness from the D/A interface to the M/O interface is very large. The large effective 

thickness leads to a thick barrier and a low electric field at M/O interface. Thus the 

barrier lowering is low and the number of carriers injected from the metal electrode by 

thermionic emission is relatively small. Under this condition, the light injected carriers at 

D/A interface tend to “pin” the Fermi level of the electrodes. As a result, VOC shows only 

a very weak dependence on the work function of the electrodes. On the other hand, the 

formation of the interpenetrating network in bulk HJ OSCs decreases D and A domain 

dimensions greatly, which makes the effective thickness of D and A domains very small. 

When there is a high potential barrier at M/O interface, the electric field will be very high 

at M/O interface and even the carrier tunneling may occur. Then a large number of 

carriers will be injected from the metal electrodes into the organic materials. Thus, the 

light injected carriers at D/A interface cannot “pin” the metal Fermi level any more. A 

strong dependence of VOC on the metal electrodes for bulk HJ PV cells is observed. This 

indicates that VOC of bulk HJ OSCs can be increased by the interface engineering and 

guides us to increase VOC of bulk HJ OSCs. 
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Based on the above understandings, the experimental studies were carried out to 

increase JSC and enhance VOC of the P3HT:PCBM solar cells. Experimentally, two main 

results were achieved: 

(a)  The post-annealing is preferred by the P3HT:PCBM bulk HJ OSCs. This is 

because of the improved contact at polymer/aluminum interface due to the formation of 

Al-O-C and P3HT-Al complex, the improved phase-structured morphology due to the 

prohibition of the overgrowth of PCBM and the enhanced P3HT crystallinity and thus a 

better light harvesting property of the polymer film.  

 (b) The e-beam deposited cathode should be used in the fabrication of 

P3HT:PCBM bulk HJ solar cells because it can efficiently improve VOC. Electrical 

studies suggested that the energetic particles of Al could damage the P3HT/Al surface 

and induce deep hole traps while leaving fullerene unaffected. The trapped holes induce 

the image negative charges in the cathode and thus form “dipoles”. These “dipoles” lower 

down the Al work function and should be responsible for the enhancement of VOC. 

Based on above findings, P3HT:PCBM bulk HJ OSCs with the e-beam evaporated 

Al cathode were post-annealed and used for the device optimization. The optimized 

thicknesses of the first two optical interference peaks were found to be 80 nm and 208 nm, 

respectively. Through the optimization, the device showed PCE around 4% at the second 

optical interference peak. 

Although PCE is improved, the value is still low compared to inorganic 

counterparters. To increase the performance further, a simple tandem solar cell was 

proposed. In this device structure, PCBM is employed simultaneously to form a bilayer 

HJ PV subcell with the underlying CuPc and a bulk HJ PV subcell with blended P3HT. In 
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comparison with the conventional tandem structure, the omission of the semitransparent 

intercellular connection layer reduces the complexity of the device and the light loss. In 

the experiment, this structure effectively improved JSC and PCE. Around the second 

optical interference peak, the optimized solar cell exhibited JSC of 12.54 mA/cm2 and 

PCE of 4.13%, which showed the potential of the proposed structure.  

7.2 Recommendations for future work 

The present study can help to improve the performance of OSCs. However, some 

issues should be further investigated. 

For the standard P3HT:PCBM bulk HJ OSCs, the morphology needs to be further 

optimized. In this type of solar cells, P3HT and PCBM are blended randomly in the 

solution. The P3HT and PCBM domains and the interpenetrating network are formed by 

the self-phase separation. Usually, the “dead zones” (Chapter 2) are inevitable. Although 

thermal annealing process can improve the morphology and charge transport greatly, 

there is still a distance from the ideal morphology. The dynamics of the phase separation 

should be further investigated. This can help to better control the morphology. Other 

methods, such as electrical field, magnetic field and microwave separately or combining 

with the thermal annealing, may help further improve the morphology and should be 

investigated. The ordered structures, which can help form the ideal interpenetrating 

network, should be also studied and used in OSCs. 

For the proposed tandem cell, the series resistance is increased and FF is decreased 

compared to the standard P3HT:PCBM OSCs. This is because that the additional 

interfaces (P3HT:PCBM/CuPc and CuPc/PEDOT:PSS) and CuPc itself in the tandem 

solar cell affect the charge transport. Then a further study of carrier transport is needed to 
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improve the device performance. Another way to improve the performance of the 

proposed tandem cell is to increase the CuPc and P3HT:PCBM interface area. Compared 

to the P3HT:PCBM bulk HJ subcell, the CuPc/PCBM bilayer subcell is less efficient. The 

very short exciton diffusion length in CuPc and the absorption spectra overlap between 

CuPc and P3HT:PCBM limit the thickness of CuPc of only 8 nm. By increasing CuPc 

and P3HT:PCBM interface area and at last forming the CuPc:PCBM bulk HJ subcell can 

efficiently increase the CuPc thickness and thus improve the performance of the proposed 

tandem solar cell. 
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