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SUMMARY 

 

The aim of this work is to investigate the influence of various surface modifications on, in 

turn, ITO surface properties, hole injection efficiency, and finally device performance.  

This research is expected to provide important information on good understanding of hole 

injection mechanisms in OLED devices.  

 

In this study, extensive work involving surface modifications of ITO was carried out. 

These included gas plasma treatments, electrochemical treatments, and insulating buffer 

layer. In order to understand the governing factors of ITO surface properties, ITO samples 

were treated with different types of plasma (i.e., H2, Ar, O2, and CF4) and characterized by 

in terms of surface morphology by AFM, surface chemical states by XPS, electron 

transfer kinetics by CV, and surface energy by contact angle measurements. 

Electrochemical process was first proposed as a new approach for ITO surface treatment. 

Similar to the plasma treatments, the electrochemically treated ITO surfaces were also 

characterized in surface properties. SiO2 buffer layers produced by thermals evaporation, 

self-assembled-monolayer, and sol-gel processes were applied on to ITO surfaces as well. 

The SiO2 buffered ITO surfaces were characterized by AFM and CV techniques. OLED 

devices based on the ITO electrodes modified by the different processes were fabricated 

and characterized in terms of L-I-V behaviour and EL efficiencies. More importantly, 

nucleation and initial growth of hole transport layer on the treated ITO surfaces were 

morphologically investigated to understand the influence of surface modification methods 

on interface property and therefore hole injection. Based on the results of surface 
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properties and device performance, phenomenal interface models were proposed for 

discussion of hole injection mechanism and the influence of hole injection on EL 

efficiency.  

 

The results show that oxidative plasma and electrochemical treatments change ITO 

surface chemical states by decontamination, oxidation and surface etching. The resulted 

polar species alter the surface energy, especially its polar component. OLED device 

performance is correlated to the surface polarities of the ITO electrodes, namely, the 

higher the surface polarity, the more effective the hole injection. The improved device 

performance is attributed to the improved ITO/HTL interface properties (i.e., the good 

contacts between ITO and hole transporting layer) by refining the HTL deposit and 

reducing voids and defects at the interface. In contrast, all the insulating buffer layers 

block hole injection by reducing the effective contact areas at the ITO/HTL interface. For 

the same coating process, thicker buffer layers block more holes. Being of the similar 

thickness, the denser coating blocks more holes than the porous coating. More importantly, 

the electrochemical treatment of ITO surface was found to be capable of increasing not 

only hole injection but also EL efficiency at the same time.  
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Chapter 1 

Introduction 

Abstract  

 

In this chapter, a brief overview of the organic light-emitting diodes (OLEDs) with the 

emphasis on device structure and electrical behavior, especially charge injection and 

transport is provided first. Background information related to charge injection and 

transport, including energy band diagram in OLED device and influence of surface 

properties on energy band diagram, are then introduced. Next, the influence of surface 

properties of indium tin oxide (ITO) on hole injection and thus on the performance of 

OLEDs is presented. After that, recent developments on ITO surface modifications are 

reviewed. Based on the literature review, research topics are proposed, and finally, the 

aims and outline of this thesis are addressed. 
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1.1 Organic Light-Emitting Diodes 

 

1.1.1 Historical Background 

 

Electroluminescence (EL) is the emission of light generated from the radiative 

recombination of electrons and holes electrically injected into a luminescent 

semiconductor. EL devices are conventionally made of inorganic direct-band gap 

semiconductors. Recently EL devices based on conjugated organic small molecules and 

polymers have attracted increasing attention. The operating principles of organic light-

emitting diodes (OLEDs) are fundamentally distinct from conventional inorganic 

semiconductor-based light-emitting diodes (LEDs). The rectification and light-emitting 

properties of inorganic LEDs are due to the electrical junction between oppositely doped, 

p and n type regions of the inorganic semiconductor [1].  In contrast, OLEDs are formed 

using an undoped, insulating organic material, and the rectification and light-emitting 

properties of the OLED are caused by the use of asymmetric metal contacts. 

 

Organic electroluminescence has been investigated since the 1950s [2], most notably in 

the works of Pope et al. and Helfrich et al. [3,4], which were observed on single crystals 

of anthracene, first published in the early 1960s. These initiated considerable efforts to 

achieve light-emitting devices from molecular crystals. In spite of the principal 

demonstration of an operating organic electroluminescent display incorporating even an 

encapsulation scheme similar to the ones used in nowadays commercial display 

applications [5], there were several draw-backs preventing practical use of these early 
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devices. For example, neither high enough current densities and light output nor sufficient 

stability could be achieved. The main obstacles were the high operating voltage as a 

consequence of the crystal thickness in the micrometer range together with the difficulties 

in reproducible crystal growth as well as preparing stable and sufficiently well-injecting 

contacts to them. Nevertheless, these investigations have established the basic processes 

involved in organic injection-type EL, namely injection, transport, capture and radiative 

recombination of oppositely charged carriers inside the organic material [6,7]. A further 

step towards applicable organic electroluminescent devices was made in the 1970s by the 

usage of thin organic films prepared by vacuum vapor deposition or the Langmuir–

Blodgett technique instead of single crystals [8-10]. The reduction of the organic layer 

thickness well below 1 µm allowed the achieving of electric fields comparable to those 

which were applied to single crystals but now at considerably lower voltage. Apart from 

the morphological instability of these polycrystalline films, there arises the problem of 

fabricating pin-hole-free thin films from these materials. These problems could be 

overcome in the early 1980s by the usage of morphologically stable amorphous films, as 

demonstrated by Partridge's work on films of polyvinylcarbazole doped with fluorescent 

dye molecules [11]. However, the development of organic light-emitting device (or diode) 

known as today’s OLED technology actually began 1980s by Tang and coworkers [12,13]. 

 

The development of organic multi-layer structures considerably improved the efficiency 

of light-emission by achieving a better balance of the number of opposite charge carriers 

and further lowered the operating voltage by reducing the mismatch of energy levels 

between the organic materials and the electrodes. Their research was followed by the 

disclosure of the doped emitter using the highly fluorescent organic dyes for color tuning 
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and efficiency enhancement. Since the late 1990s, OLEDs have entered the stage of 

commercialization and are considered as promising candidates for the next generation of 

large area flat-panel displays [14,15]. In addition, the first light-emitting devices 

containing luminescent polymer thin films were demonstrated in 1990 [16]. The 

polymeric materials have also been widely examined and are going to be commercialized 

with the same good prospects for display and lighting applications as the above-mentioned 

small molecules [17,18]. Since then, the development of polymeric LEDs and small 

molecular LEDs proceeded in parallel. The most considerable difference between theses 

two classes of molecular semiconductors is the degree of order and the subsequent 

macroscopic migration process. The mobility of photo-generated charges in small 

molecules is limited by the relatively small π overlap and hence electron hopping from 

molecule to molecule is dominant, while the intrinsic mobility on a conjugated polymer 

chain is determined by strong covalent intrachain interactions. Although the understanding 

of the device physics has proceeded in parallel for the two types of OLEDs, the 

conclusions presented are generally applicable to both molecular and polymeric LEDs 

[19].  

 

1.1.2 Device Structure and Working Principle 

 

In general, the basic processes occurring during OLED operation include: 1) charge carrier 

injection; 2) charge carrier transport; 3) electron-hole interaction (formation of excitons) 

and 4) radiative recombination [20]. The simplest organic electroluminescent device 

consists of a thin film of organic electroluminescent material sandwiched between two 



 5 

metal contacts, at least one of which is transparent. Efficient hole and electron injection 

requires high work function metal to be the anode and low work function metal to be the 

cathode. When a voltage or bias is imposed onto the two electrodes, charge carriers (holes 

from anode and electrons from cathode) are injected into the organic layer and these 

carries are mobile under the influence of the high (> 105 V/cm) electric field. Some of 

these carriers may recombine within the emissive layer yielding excited electron-hole 

pairs, termed excitons. These excitons may be produced in either the singlet or triplet 

states and may radiatively decay to the ground state by fluorescence (FL) or 

phosphorescence (PL) pathways.  

 

 

Figure 1.1 The structure of a typical multi-layer OLED device. 

 

In reality, multilayer structure is frequently adopted, e.g., hole transport layer (HTL), 

emission layer (EML), and electron transport layer (ETL) in sequence from the anode to 

the cathode, as shown in Figure 1.1. The virtues of the multilayer device are the balanced 

transport of electrons and holes and the confinement of the emission region away from the 
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metal electrodes, which results in high efficiency and luminance at low operating voltages. 

In some cases, the bilayer device has been emphasized due to its simplicity, in which HTL 

is used for the transport of holes, and ETL is used for both the transport of electrons and 

emission of light [12]. 

 

1.1.3 Dependence of Device Performance on Charge Carrier 

Injection 

 

Commercial applications of OLEDs require low driving voltage, high efficiency, and 

extended device lifetime. Since minimizing the driving voltage would increase the power 

efficiency, establish compatibility with conventional integrated circuitry, and also reduce 

both thermal heating and potential voltage-driven electrochemical degradation at the 

organic/metal interfaces, it would be favorable to drive the device at low voltage, 

preferably at the “turn-on” voltage. In reality, most OLEDs emit light of about 100 cd/m2 

(candela per square meter – luminance SI unit) at an operating voltage of two to four times 

the turn-on voltage [21]. Although it is not fully understood what causes this internal 

resistance and the subsequent voltage increase, there are reports indicating that driving 

voltage is closely related to both bulk properties of organic materials [22] and charge 

carrier injection [21-24]. In other words, in order to achieve the lowest possible voltage it 

is necessary to maximize the drift mobility of both types of carriers (hole and electron) 

and to have ohmic electrode/organic contacts. The former is highly reliant of organic 

materials, while the latter is controlled by the surface and interface properties.  
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Furthermore, charge injection across the electrode/organic interface also plays an 

important role in optimizing the device efficiency of an OLED [25-27]. This is because an 

unbalanced injection results in an excess of one carrier type that contribute to the current 

but not the light emission. Meanwhile, the unbalanced charge injection can also result in 

an enhanced non-radiative recombination due to the interactions of excitons with the 

excess charge carriers. Consequently, over the past decade, increasing research activities 

have focused on improving charge injection efficiency at both cathode/organic and 

anode/organic interfaces [28-33]. 

 

1.1.4 Issues at Electrode/Organic Interface 

 

Ideally, the operating voltage of a LED should be close to the photon energy (Eg) divided 

by the elementary charge (q), i.e. Eg/q, which has been reached for inorganic 

semiconductor LEDs. This condition is generally not achieved in OLEDs mainly due to 

non-ideal charge carrier injection limited by the formation of barriers at the interfaces of 

electrode/organic [34], therefore, questions about the nature of these interfaces arise. Over 

the past decade, surface science has begun to play a key role in developing a deeper 

fundamental understanding of electrode/organic interfaces, particularly with respect to the 

way electronic structure and chemistry relate to charge carrier injection [35-40].  

 

Photoelectron spectroscopy has been extensively employed to determine the electronic 

structure and chemistry at the metal/organic interfaces. Dipoles, chemical reaction, and 

atomic diffusion are readily observed in the near interface region. As a consequence, the 
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determination of the carrier injection barrier is not just a simple matter of calculating the 

difference between the metal work function and the energy levels of the organic solid 

owing to the presence of interfacial dipoles and chemical reaction. For almost all the 

interfaces formed by depositing organic materials on metal surfaces under ultrahigh 

vacuum conditions, a dipole layer is formed at metal–organic interface, due to various 

origins such as charge transfer across the interface, redistribution of electron cloud, 

interfacial chemical reaction, and other types of rearrangement of electronic charge [41]. 

The interface dipole scenario was originally proposed by Seki and his coworkers [38,42] 

and has received extensive support from other research groups [23,43]. Experiments by a 

number of research groups indicate that dipoles are found at all metal–organic interfaces, 

while the dependence of the interface dipole magnitude on the metal work function varies 

from organic to organic [42, 44]. 

 

Although the dipole theory has been extensively used to describe the organic-on-metal 

interfaces at high vacuum conditions, it is still questionable for the theory to be used in 

actual systems formed at low vacuum or environmental conditions such as the fabrication 

of polymeric LEDs. Furthermore, various surface modifications make the interfacial 

structure more complex. Therefore, a deep understanding of the interfacial nature and the 

charge injection mechanism, especially in the case of surface modifications, is necessary 

and meaningful for further improvement of OLED device. 
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1.2 Theory of Charge Carrier Injection and Transport 

 

1.2.1 Difference between Organic and Inorganic Diodes 

 

A fundamental understanding of how charge is injected from a metal to a conjugated 

organic system is essential to the design and operation of organic electronic devices. 

Although significant advances have been made in the understanding of injection EL on the 

inorganic p-n junctions, the studies of organic systems have lagged behind due to the 

complexities of the organic solids. In the case of crystalline inorganic diodes, charge 

carrier injection and transport processes can be described by the Schottky-Mott energy 

band model [45,46]. On a microscopic scale, however, charge-carrier transport in 

molecular solids is different from the conduction mechanisms in “classic” inorganic 

semiconductors [25]. 

 

Unlike crystalline inorganic semiconductor material, most polymeric or low-molecular 

weight materials used in OLEDs form disordered amorphous films without a macroscopic 

crystal lattice. Furthermore, since organic semiconductors are absent of extended 

delocalized states, charge transport is usually not a coherent motion in well-defined bands 

but rather a stochastic process of hopping between localized states.  This results in the 

typically observed carrier mobility (µ) in the range of 10−3 ~ 10−7 cm2/Vs, which is at least 

3 orders lower than that of inorganic semiconductors. Consequently, excitations are only 

localized on either individual molecules or a few monomeric units of a polymer and 

usually have a large exciton binding energy of some tenths of an eV. Additionally, many 
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of the materials in OLEDs are wide-gap materials with energy gaps of 2–3 eV, sometimes 

even more. Therefore the intrinsic concentration of thermally generated free carriers is 

generally negligible (<1010 cm−3) and from this viewpoint the materials can be considered 

more as insulators than as semiconductors. Although impurities exist in organic 

semiconductors due to the residuals from the synthesis of the material, structural 

imperfects, and oxygen or moisture, they usually act as traps rather than as sources of 

extrinsic mobile charge carriers. 

 

Therefore, direct transfer of the inorganic semiconductor physics to organic solids is 

generally a very poor approximation and has been shown to be quantitatively incorrect for 

many interfaces involving organic EL materials [39,47,48]. This suggests that the classical 

band theory can give only a qualitative understanding of the charge carrier injection and 

transport processes in OLEDs. Even so, conventionally the Mott-Schottky energy band 

model is still used as a theoretical basis for investigation on the charge injection and 

transport in OLEDs, because a specific theory for organic-based LEDs has not been 

established. 

 

1.2.2 Energy Band Diagram 

 

1.2.2.1 Flat Band Diagram 

 

As stated in the ideal Schottky-Mott model [45], charge carrier injection is believed to be 

limited by the formation of barriers at the metal/semiconductor interface, which can be 
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identified on an energy band diagram. To construct such diagram, the energy band 

diagrams of the metal and the semiconductor without contact are first considered, and then 

they are aligned using the same vacuum level as shown in Figure 1.2(a). When the metal 

and the semiconductor are brought together, the Fermi energies of them do not change 

right away. This yields the flat-band diagram of Figure 1.2(b). In the absence of doping, 

interface dipoles and other interfacial effects and assuming vacuum level alignment, the 

barrier height (ΦB) is defined as the potential difference between the Fermi energy of the 

metal (EFM) and the band edges where the charge carriers reside (EC for electrons and EV 

for holes). As a result, the metal-semiconductor junction will therefore form a barrier for 

electrons and holes if EFM as drawn on the flat band diagram is somewhere between EC 

and EV. 

 

 

          (a)             (b) 

Figure 1.2 Energy band diagram of the metal and the semiconductor before (a) and 
after (b) contact is made.  
 

According to the flat band diagram, the energy barrier (ΦB) to charge carrier injection is 

determined by the work function of the metal (ΦM) and the electron affinity (χS) or 

ionization potentials (IP) of the semiconductor and can be expressed as 



 12 

ΦBe = │χS – ΦM│         (1.2.1) 

for electrons, and 

ΦBh = │ΦIP – ΦM│ 

       = │Eg + χS – ΦM│        (1.2.2) 

for holes, respectively, where Eg is the band gap energy of the semiconductor. This 

indicates that if the Schottky-Mott rule is valid, the barriers to electron injection (ΦBe) and 

hole injection (ΦBh) should be linear functions of ΦM. 

 

It should be noted that the values of χS and Φ are dominated by the bulk cohesion of the 

atoms, but are affected by the following surface phenomena: 

• reconstruction, where the surface atoms rearrange in the surface plane  

• relaxation, where the atoms move slightly away from their bulk positions 

• surface states 

• impurities at the surface 

• dipole layer due to charge leakage out of the surface (i.e., electron spill-off) 

 

1.2.2.2 Band Bending 

 

Since the Fermi energy in the metal differs from that in the semiconductor, the flat band 

diagram shown in Figure 1.2(b) is not in a thermal equilibrium. When the metal and the 

semiconductor are put into contact, both the Fermi levels and the vacuum levels need to 

align up. Having different work functions, this dual alignment is obtained by shifting 

some electrons from one material to the other to create a dipole with an electrical potential 
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equal to the difference in Fermi levels, Vbi=ΦM - ΦS, which is so-called built-in potential 

at the junction.  

 

For example, electrons in the n-type semiconductor can lower their energy by traversing 

the junction. As the electrons leave the semiconductor, a positive charge due to the ionized 

donor atoms, stays behind. This charge creates a negative field and lowers the band edges 

of the semiconductor. Electrons flow into the metal until equilibrium is reached between 

the diffusion of electrons from the semiconductor into the metal and the drift of electrons 

caused by the field created by the ionized impurity atoms. This equilibrium is 

characterized by a constant Fermi energy throughout the structure. As a result, the energy 

bands of the n-type semiconductor exhibit upward bending, as shown in Figure 1.3(a). In 

contrast, the downward band bending occurs for metal p-type semiconductor contact, as 

shown in Figure 1.3(b). 

 

              (a)         (b) 

Figure 1.3 Energy band diagram of (a) metal n-type semiconductor contact and (b) 
metal p-type semiconductor contact. 
 

Compared with flat band model, band bending model does not change the barriers to 

charge injection. However, the band bending model is valid only if free charges exist in 
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the semiconductor. It should be noted that most of organic semiconductors are used with 

high purity and are intrinsic semiconductors. Therefore, free charge density is very small 

and can be neglected. In other words, organic semiconductors can be treated as insulators 

in many cases. This means that band bending rarely occur at organic/metal interface 

because no charge transfer exists [49]. 

 

1.2.2.3 Energy Band Diagram of Single Layer OLED Device 

 

One of fundamental processes occurring in OLEDs is charge injection from the metal 

contacts into the organic semiconductor thin film. The charge injection can be 

qualitatively understood by considering the electronic energy structure of the thin organic 

film. In the limit of no interaction between an electrode and an organic film in physical 

contact, energy barrier to hole injection is specifically defined as difference between the 

Fermi level of the anode and the highest occupied molecular orbital (HOMO) band of the 

organic thin film. Similarly, energy barrier to electron injection is defined as difference 

between the Fermi level of the cathode and the lowest unoccupied molecular orbital 

(LUMO) band of the organic film [39, 48]. 

 

To realize optimal injection, HOMO and LUMO of organic materials should lie as close 

as possible to Fermi levels of anode and cathode, respectively. Consequently, this 

becomes the basis for selection of electrode materials, that is, high work function metals 

(e.g., Au, and indium tin oxide) serve as anodes and low work function metals (e.g., Al, 

Mg, Ba or Ca) as cathodes. 
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Figure 1.4 Energy band diagram of single layer OLED. 
 

Figure 1.4 schematically shows the energy band diagram of a single layer OLED device, 

which is generally accepted by most researchers. Although organic semiconductors are 

disordered materials without a well-defined band structure, for simplicity, the spatial 

variation of the molecular energy levels is usually drawn in a band-like fashion. In 

addition, this diagram also does not include polaronic effects, i.e. the fact that due to a 

structural relaxation the energy levels of charged molecules are different from the neutral 

state levels. The luminescent organic systems are often treated as intrinsic semiconductors 

with a rigid band structure [50,51]. This treatment is reasonable because of low carrier 

mobilities and negligible free carrier densities [50]. 

 

 

Figure 1.5 Schematic illustration of energy band diagram of a single layer OLED in 
different conditions, i.e., before contact, after contact, Vappl=Vbi, and Vappl>Vbi. 
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As shown in Figure 1.5, the two electrodes with different work functions (EAF for Fermi 

level of anode and ECF for Fermi level of cathode) are necessary in order to obtain double-

carrier injection in OLEDs, but lead to the presence of a non-negligible built-in voltage 

(Vbi) across the organic layer. Neglecting energy level shifts due to various interface 

phenomena, Vbi is equal to the contact-potential difference of the two metal electrodes, i.e. 

Vbi = (EAF - ECF)/q, which is presented by Φbi/q in Figure 1.4. The physical importance of 

Vbi is that the applied external voltage (Vappl) is reduced in terms of effectiveness such that 

a net drift current in forward bias direction can only be achieved if Vappl exceeds Vbi, as 

shown in Figure 1.5. The effective voltage, Veff, can be presented as Vappl -Vbi across the 

organic layer under forward bias conditions.  

 

Although the built-in potential can be obtained by photoconductivity measurements [52], 

the barrier height difference is the parameter to be considered only if no interaction occurs 

at the interface [53], which is rarely satisfied in reality. Care should be taken when using 

the work functions of pure metals measured in ultra-high vacuum (UHV), as the 

preparation conditions of OLEDs are usually not clean enough to exclude the oxidation of 

low work function metals or the formation of adsorbate layers even on noble metals. In 

addition, chemical reactions between the organic layer and the metals can lead to the 

formation of an interfacial layer with different properties than the bulk materials which in 

turn significantly modifies the energetics at the injecting contact [42,54]. 
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1.2.3 Influence of Interface Dipole on Energy Barrier 

 

The Schottky-Mott model was based on the hypothesis of no interaction taking place at 

the metal/semiconductor interface. Unfortunately, experimental barrier heights often differ 

from the ones calculated using Eq. (1.2.1) or Eq. (1.2.2) due to the non-ideal interface 

between metal and semiconductor in reality. Numerous photoelectron studies and Kelvin 

probe measurements have demonstrated that the charge injection barrier is affected by the 

dipole Dint at the conjugated material/metal interface [38,41,44,55-57]. 

 

An interface dipole with its negative pole pointing toward the organic layer and its 

positive pole toward the metal increases the HOMO energy of the organic layer by adding 

an electrostatic energy and decrease the Fermi energy (i.e. increases the metal work 

function). As a result, the hole injection barrier ΦBh is reduced. Accordingly, reversing the 

direction of the interface dipole reduces the electron injection barrier ΦBe. Thus, increased 

work function of anode and decreased work function of cathode are associated with 

improvement of hole and electron injections, respectively [58]. 

 

The origins of the interface dipole are still in dispute. One of the explanations is that when 

the organic molecules are adsorbed on the metal surface, the surface electrons are 

compressed back into the sample surface [58,59]. The metal work function is considered 

to be composed of two parts: bulk electronic structure and surface dipole contributions. A 

neutral metal surface in a vacuum presents a surface dipole because a deficit of electronic 

density exist inside the metal close to the surface, while an excess of electronic density is 
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obtained outside the surface. As a consequence, the electrostatic potential jumps from its 

bulk value (inner potential) to a higher value outside the metal (outer potential). The 

difference between the inner and outer electrostatic potentials defines the metal surface 

dipole potential energy, which can reach several eVs [58,60]. 

 

With a compression of the surface electrons in presence of the adsorbed (chemisorbed or 

physisorbed) organic molecules, the metal work function will decrease. The interface 

dipole barrier increases the energy difference between Fermi level of the metal and the 

HOMO of the organic molecules, leading to higher hole injection barrier. In addition, 

when the molecules are actually chemisorbed on the metal surface, their electron density 

interacts with that of the metal such that new chemical bonds can be formed. Bond 

formation is accompanied by an electron density flow through the atoms involved in a 

newly formed bond, whose direction depends on the relative electronegativity. This partial 

charge transfer between metal and adsorbate constitutes the second contribution to the 

interface dipole [58]. Another explanation about the formation of interface dipole is free 

charge transfer, rather than the partial charge transfer in formation of chemical bonding 

[61,62]. 

 

However, the charge transfer explanation is not supported by other experimental results 

[49,63], since most organic semiconductors are of large band gap and lack of enough free 

charge, charge transfer cross the metal/organic semiconductor junction is not expected, as 

mentioned previously. 
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1.2.4 Vacuum Level Shift 

 

It is commonly accepted that the vacuum level shift (∆) is attributed to an interfacial 

dipole between metal and semiconductor [41]. Other origins of the vacuum level shift 

were also proposed, including image force and the tailing of electron clouds of metal into 

vacuum [63,64]. 
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                   (a)      (b) 

Figure 1.6 Schematic of an organic-metal interface energy diagram without (a) and 
with (b) vacuum level shift. 
 

Due to the vacuum shift, energy band diagram of metal/organic semiconductor will be 

different from that of metal/inorganic semiconductor. The Fermi level alignment between 

metal and organic semiconductor relies on the vacuum shift instead of the band bending 

because no charge transfer occurs, as shown in Figure 1.6. Such Fermi level alignments 

have been observed at some metal/organic interfaces such as C60/metal [65], 

PTCDA/metal [44], and TPD/metals (Cu, Mg, Ag) [49]. 
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1.3 Indium Tin Oxide as an Anode 

 

The primary requirements for an anode in OLEDs are that its work function should be 

high enough to enable good injection of holes and that it must be sufficiently transparent 

to permit the exit of light from the organic light-emitting layer. Up to now, the most 

prevalent materials used for the anode is indium-tin-oxide (ITO), which has low resistivity 

(~2X10-4 Ω cm) [91], high optical transmittance over the visible wavelength region (> 

90% at 550 nm) [92], excellent adhesion to the substrates, stable chemical property, 

relatively high work function (4.5-5.0 eV) [93,94], and easy processibility (for patterning) 

[12].  

 

The properties of ITO films are strongly dependent on the preparation method. The 

techniques employed to produce ITO films include RF (radio-frequency) magnetron 

sputtering, direct-current (DC) magnetron sputtering, reactive evaporation, reactive 

sputtering, electron beam evaporation, as well as spray pyrolysis. Among them, DC 

magnetron sputtering is the most used process for mass production of ITO films, since the 

process can provide homogeneous ITO films with low resistivity and good reproducibility 

[95]. 

 

1.3.1 Conduction Mechanism 

 

Electrical conductivity (σ) depends on concentration (N) and mobility (µ) of the relevant 

free carrier as follows: 
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σ = N µe, 

where e is the electron charge. In order to obtain films with high conductivity, high carrier 

concentration and mobility should be simultaneously realized. 

 

The electrical properties of the oxides depend critically upon the oxidation state of the 

metal component (stoichiometry of oxide) and on the nature and quantity of impurities 

incorporated in the films, either intentionally or inadvertently. Perfectly stoichiometric 

oxides are either insulator or ionic conductor. The later is of no interest as a transparent 

conductor due to the high activation energy required for ionic conductivity.  

 

In2O3 has the cubic bixbyte structure in which O2- ions occupy, in an ordered manner, 

three-fourths of the tetrahedral interstices of a face-centered-cubic In3+ - ion array [96]. 

The indium oxide has a filled O2-:2p valence band that is primarily oxygen 2p in character 

[97]. The In:3d core lies below the valence-band edge Ev. The conduction band is the 

metal-5s band with an edge Ec about 3.5 eV above Ev [98]. The next higher band is the 

metal-5p band. As prepared, indium oxide generally lacks stoichiometry due to oxygen-

array vacancies VO. At high VO concentration, a VO impurity band forms and overlaps Ec at 

the bottom of the conduction band producing a degenerate semiconductor. The oxygen 

vacancies act as doubly ionized donors and contribute at a maximum two electrons to the 

electrical conductivity as shown in the following equation: 

)(
2
1

2 2 gOeVO O

X

O ++→ −

 

The material composition can be represented as In2O3-x. In addition to providing 

conduction electrons, the oxygen vacancies also allow for O2- ion mobility. Therefore, 
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In2O3-x should be a mixed conductor, having both electronic and O2- ion conduction [97], 

although the latter is negligible when compared to the electronic conduction.  

 

ITO is essentially formed by substitutional doping of In2O3 with Sn (Tin) which replaces 

the In3+ atoms from the cubic bixbyte structure of the parent oxide. Sn thus forms an 

interstitial bond with oxygen and exists either as SnO or SnO2, accordingly having a 

valency of +2 or +4, respectively. This valency state has a direct bearing on the ultimate 

conductivity of ITO. The lower valence state of SnO results in a net reduction in carrier 

concentration since a hole is created, which acts as a trap and reduces conductivity. On the 

other hand, predominance of the SnO2 state means Sn4+ acts as an n-type donor releasing 

electrons to the conduction band. However, the good conductivity of ITO is attributed to 

both Sn dopants and oxygen vacancies [97,99,100]. The non-stoichiometric oxide 

semiconductor contains several percent of the oxygen sites in vacant, leading to 

degenerate n-type doping [100].  

 

Each vacancy is an electron donor, providing two electrons (difference in charge between 

an oxygen anion and the vacancy). Oxygen vacancies and dopant Sn atoms form donor 

levels, which account for the carrier density in the conduction band. Since ITO inherently 

contains a large number of defects, the Sn atoms, as well as the randomly located 

vacancies, the conductivity also depends on details of sample preparation and thermal 

history as well as on the degree of crystallization. 

 

Achievement of the lowest possible resistivity of ITO is of practical significance in the 

respect that it provides some flexibility in selecting the film thickness in order to achieve 



 23 

high optical transmission while still retaining low sheet resistance. However, transparency 

in the visible region is strongly affected by the electrical properties of the film [101], 

because the mechanisms of electrical conduction and optical transmission are very much 

interdependent. As a result, the electrical properties are usually achieved at the expense of 

transmission. The direct optical bandgap of ITO films is generally in a range of values 

from 3.5 to 4.06 eV [97,102]. The high optical transmittance of these films is a direct 

consequence of them being a wide bandgap semiconductor. The fundamental absorption 

edge generally lies in the ultraviolet of the solar spectrum and shifts to shorter 

wavelengths with increasing carrier concentration, N. This is because the bandgap exhibits 

an N2/3 dependence due to the Moss-Burstein shift [103]. 

 

1.3.2 Morphology and Crystallographic Orientation  

 

As-deposited ITO film by DC magnetron sputtering features with a so called “grain-

subgrain” surface morphology and  polycrystalline structure, as shown in Figure 1.7(a) 

(height mode) or Figure 1.7(b) (phase mode). Each “grain” (200-600 nm in size) consists 

of a cluster of 10-40 nm sized subgrains, which are highly aligned in crystalline 

orientation. More discussions on their crystalline features are reported in literature [95,99]. 
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Figure 1.7 AFM image of as-clean ITO thin film deposited by DC magnetron 
sputtering: (a) height mode and (b) phase mode, showing three different types of grains 
marked by A, B, and C, oriented respectively with their <400>, <222> and <440> axes 
normal to the substrate surface. The scan area is 1 × 1 µm2. 
 

These grains are generally classified into three groups: (A) square subgrains, (B) 

triangular subgrains, and (C) rectangular subgrains with film thickness in the order of 

A>B>C. According to Kamei et al. [95], A, B, and C were confirmed to be oriented 

respectively with their <400>, <222> and <440> axes, normal to the substrate surface. 

However, only (400) planes are always exposed at the surface for the above mentioned 

three axes due to higher durability of (400) planes against re-sputtering during film growth, 

resulting in the difference in the height of grains with different orientations [95,99]. The 

difference in height seems to be a factor in describing surface roughness of ITO films. The 

domains with different morphology have different heights, and thus many protrusions and 

steps are expected to be formed on the surface. The root-mean-square (RMS) roughness 

value is in the range of 2-4 nm [104]. 
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1.3.3 Chemical and Electrochemical Stabilities of ITO Film 

 

ITO is usually considered to be redox inert as a substrate. In general, ITO is insoluble in 

alkaline solutions but is vulnerable to chemical attack in aqueous acid. This behavior has 

been utilized, for example, in the pattern-wise etching of ITO, which is indispensable for 

the fabrication of all kinds of display devices. The etching kinetics for thin film ITO in 

aqueous acidic solution has been well investigated [105,106]. Like the situation of 

chemical etching, ITO is somewhat unstable electrochemically [107]. Cathodic reduction 

of oxides into metals on ITO surface has been reported in electrolytes with various pH 

values [108-110]. 

 

In a general way, oxides are expected to be stable against oxidative processes when the 

metal cation is at its highest oxidation state. However, there are examples in literature of 

anodic corrosion not brought on by a reduction mechanism but occurred through the 

breaking of the surface bonds without change in the metal valence state [111a,111b,112]. 

The anodic corrosion occurs only at potentials in the range of 0.9-1.3 V vs. saturated 

calomel electrode (SCE), where chlorine is oxidized rather than oxygen is released 

[111a,111b]. Therefore, the stability of ITO against electrochemical process is related to 

not only the imparted potential, but also the type of electrolyte. It is known that when 

proper aqueous electrolyte and potential are selected, oxygen evolution will take place by 

electrolysis of water without anodic corrosion. The highly active oxygen atom will then 

oxidize any unsaturated states of the metal atoms on the ITO surface.  
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1.3.4  Faults of ITO as Hole Injection Electrode 

 

The physi-chemical and morphological properties of the ITO substrate, for example work 

function, roughness, surface energy and polarity are of crucial importance in improving 

the OLED device performance [27,113-115]. Work function has particularly been 

identified as the most important surface property, as the HOMO of most organic materials 

lies more than 5 eV below vacuum, even at around 6 eV for some organics. The 

significant energy barrier to hole injection due to the insufficient high work function of 

bare ITO results in hole-limited devices characterized with high driving voltage 

[35,41,116,117]. Moreover, abnormal device behaviors such as shorting, and unstable 

current-voltage characteristics have been observed in OLEDs with bare ITO surfaces 

[118]. In order to mitigate these problems, modifications of ITO surface have been 

proposed, as reviewed in next section. 
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1.4 ITO Surface Modifications 

 

1.4.1 Surface Treatments 

 

Previous theoretical and experimental work shows that hole injection into organic layer is 

mainly influenced by the properties of ITO anode, especially work function. As it is 

known, work function is a surface property and it is possible to alter its value by proper 

surface modification processes. Many ITO surface treatment processes have been reported, 

including ultraviolet (UV) ozone exposures [13,119-122], gas plasma treatments 

[113,123,124], Aquaregia (70wt%HNO3:30wt%HCl:DI = 1:3:20) [93] acid and base 

adsorption [37,57,125,126]. Experiences showed that reducing treatments, such as 

hydrogen plasma, increases the required drive voltage whereas oxidative treatments, such 

as UV-ozone and oxygen plasma, decrease it [113]. This is consistent with the generally 

observed result that oxygen adsorption increases metallic work functions [127]. Although 

a long-term stability of ITO treated by oxygen plasma was reported [93], a common 

problem of the above ITO surface treatments is instability. It was found that the modified 

surface work function degrades slowly back to its initial value in a few hours or minutes 

[120,128].  

 

Some theories and physical models were proposed to explain the increase in ITO work 

function by the surface treatments, such as removal of the surface carbon 

contamination[93,94,113,129], metal depletion on treated ITO surface [113,130], surface 

defects [131], and formation of dipoles [115,131,132].  
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1.4.2 Insertion of Hole Injection Buffer Layer 

 

One of the methods to control the hole injection is the insertion of a buffer layer between 

ITO anode and HTL film. Nanometer thick high work function metallic films, such as Pt 

[23], Au [133] and Ni [114], have been capped on the ITO anode as hole injection layer 

(HIL), which results in lowering of the operation voltage and increasing of hole injection 

current, but with no observable improvement in power efficiency [23,114]. Clearly, this 

implies reduced quantum efficiencies. Furthermore, such metals are only semitransparent, 

hence there are diminishing gains in efficiencies resulting from the high work functions.  

 

On the contrary, the integration of an organic buffer layer between anode and HIL has 

resulted in enhanced luminous efficiency and device duration. Organic semiconductors, 

such as copper phthalocyanine (CuPc) [119], starburst amine [134], and polyaniline 

(PANI) [116] are the widely used buffer materials with suitable HOMO energy levels. 

However, disadvantages of the organic buffer layers are significant, such as 

incompatibility to fabrication processes and substantial increase of drive voltage. 

Inorganic semiconductors, such as CuOx [135,136], NiO [132,137], WO3 [138], VOx and 

MoOx [139], have been successfully utilized as HIL. The turn-on voltage is reduced to 3-4 

V, and the brightness is also greatly improved. Unfortunately, the optical transmittance of 

the inorganic semiconductor films is not very high, rendering the difficulty to realize the 

most optimal performance.  
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Insertion of an insulating buffer layer between the ITO and an organic medium has been 

widely reported to improve OLED device performance. Modification of ITO surface by 

Langmuir-Blodgett (LB) layers and self-assembled monolayers (SAMs) were reported for 

manipulating the energy level offset at ITO-HTL interface  [57,134,140-143]. With polar 

adsorbate molecules oriented outward from ITO surface, an artificial dipolar layer is 

formed and ITO work function is increased [133,144]. With molecules carrying a high 

dipole moment oriented perpendicular to the metal surface, it has been observed that the 

total interface dipole can be rather easily tuned by changing the magnitude of the 

molecular dipole moment chemically [40,145,146]. The dipolar SAMs provide a method 

of tuning the work function of ITO electrode to the HOMO of the HTL, thus improving 

device performance. However, the dipolar property of the monolayer on ITO surface may 

change with the deposition of HTL, leading to a recovery of the modified ITO work 

function [147].  

 

A more interesting finding is the modification of ITO surface with ultra thin SAMs that 

have less dipolar effect, such as n-butylsiloxane [148] and octachlorotrisiloxane [149]. 

This ultra thin buffer layer enhances hole injection and charge recombination efficiency, 

while blocking electron transport to the anode. Unlike the atomically flat crystal surfaces 

used in most investigations with SAMs, ITO has a rugged surface, which is expected to 

limit adsorbate mobility and disrupt the circulation of solution over the surface, which are 

necessary for achieving long-range order. In addition, most SAMs could not be used in 

polymeric OLEDs as the monolayer on ITO is subjected to the strong solution process. 

Therefore, another approach was proposed to improve hole injection efficiency by the 

insertion of an insulating hole injection buffer layer between the ITO and an organic 
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medium, such as Al2O3 [150], SiO2 [151], Pr2O3 [152], Si3N4 [153], Teflon [154,155] and 

even LiF [156]. 

 

1.5 Disputes over Hole Injection Mechanisms 

  

1.5.1 Energy Barrier Theory 

 

Although physical and chemical properties of ITO surfaces treated by various processes 

have been investigated in order to understand the effect of the surface treatments on hole 

injection, majority of the research work had been concentrated on work function. A 

general understanding of the hole injection mechanism is that the increased work function 

by the surface treatments reduces the energy barrier for hole injection, and therefore the 

driving voltage [93,122,131,148,157,158], as shown in Figure 1.8.  

 

 

    

   
 
Figure 1.8 Energy diagrams showing the influence of change in work function on 
energy barrier. Compared with a sample without surface treatment (a), hole injection 
barrier will be either decreased (b) or increased (c), depending on the shift of Fermi level 
of the anode.  
 

Unfortunately, the change in work function could not perfectly explain the improvements 

in EL efficiency and device stability [93,159]. Some experimental results showed that 

oxygen-plasma treatment of the ITO anodes gives the highest operational stability and 
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efficiency of polymer LEDs, even when an aqueous based PEDOT:PSS [=poly(3,4-

ethylenedioxythiophene) poly(styrenesulfonate)] is used as the hole injection layer [115]. 

This result also challenges the work function hypothesis because the formation of 

hydroxyl groups on treated ITO surface in this case has a negative effect on ITO work 

function.  

 

Moreover, the work function elucidation has been intensively questioned partially due to 

the invalidity of Schottky-Mott model for organic semiconductors, which is mainly caused 

by vacuum shift at the ITO/organic interface [41,44] and no charge transfer cross the 

junction [49,63]. The work function hypothesis is further challenged by the findings that 

showed markedly different performance on the devices with ITO films being of similar 

work functions [160], and less influence of energy barrier on hole injection efficiency 

[161]. Tadayyon et al. recently concluded that the increased ITO work function by dipoles 

did not influence the energy barrier because the dipoles also shift the vacuum level [162]. 

 

1.5.2 Image Force Model 

 

The effect of insulator-buffered ITO surface on hole injection has been attributed to the 

reduced charge back scattering and improved charge balance. It is generally accepted that 

an image force model is applicable to charge injection from electrodes into organic solids. 

Hence, injected charges induce counter charges on the electrode surface which in turn 

exerts a force on charges being injected away from the electrode. This so-called image 

force effect has both negative and positive characteristics with respect to charge injection. 
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At close proximities to the electrode (≤ 1 nm), the charge back-scattering region, charges 

experience Coulombic forces attracting them back to the electrode, thereby retarding 

injection. If the charge escapes this region, they experience a lower barrier and injection is 

facilitated [163]. However, this model has not been quoted as widely as tunneling theory. 

 

1.5.3 Tunneling Theory 

 

Tunneling theory was used to explain the enhancements in hole injection efficiency of the 

devices with the insulating buffer layer. On the other hand, the improvement in luminance 

efficiency was attributed to balanced carrier injection due to the blocking effect of the 

insulating buffer layer on injected holes. The conflict explanations are clearly unable to 

improve the device performance in both hole injection and EL efficiency. 

 

It is obvious that both image force and tunneling theories requires an assumption that the 

insulating buffer layer is a continuous ultra thin film sandwiched between the electrode 

and the organic. In reality, neither dry vapor deposition nor wet SAM process can produce 

full coverage of ITO by an ultra thin film with nominal thickness less than 1 nm, due to 

the poor uniformity of ITO surface in chemical composition and morphology. Instead, 

previous experimental work demonstrates that once ITO surface was fully covered by an 

insulating layer, the operating voltage of OLED based on the modified ITO surface was 

significantly increased [149]. Based on the partially covered ITO surface, it is puzzling 

that charge injection prefers the more insulating area instead of the more conductive 

uncovered ITO. Therefore, the previously proposed explanations to the effects of 
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insulating buffer layer on OLED performance are suspected to be invalid. Further 

investigations are needed to have good understanding of the mechanism. 
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1.6 Scope of This Thesis 

 

1.6.1 Possible Topics of Investigation 

 

As a transparent electrical conductor, ITO shows exceptional properties that have been 

exploited in both displays and solar cells. In particular, it has been widely used as an 

anode in OLEDs for hole injection. As mentioned above, the ITO/organic interface 

properties significantly influence the performance of OLED devices. The interface 

properties are verified to have been changed with ITO surface modifications.  

 

The mechanisms behind the improved device performance by ITO surface modifications 

are still disputed. Changes in work function and therefore the energy barrier for carrier 

injection have been the major concern in most reports. However, the work function 

elucidation is impuissant in some device physics, such as enhanced efficiency and 

extended lifetime. There are virtually no systematic experimental investigations of these 

and many other effects, and many areas remain as current or future research topics for 

organic-based electronic devices. 

 

Despite many ITO surface modification methods such as acidic etching, gas plasma, UV 

ozone, and ultra thin buffer coatings being proposed and characterized, electrochemical 

treatment of ITO surface has not been reported.  
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More importantly, few studies have been done to morphologically characterize the hole 

transport layer on modified ITO surfaces, thus the influence of thin film morphology on 

device performance is poorly characterized. Being more specific, there are almost no 

studies that describe the nucleation and growth of hole transport layer on the modified 

ITO surfaces and the importance of the interface evolution in understanding the 

microscopic mechanisms of ITO surface modifications.  

 

1.6.2 Aims and Objectives 

 

The aim of this work is to investigate the influence of various surface modifications on, in 

turn, ITO surface properties, hole injection efficiency, and finally device performance.  

This research is expected to provide important information on good understanding of hole 

injection mechanisms in OLED devices.  

 

With this goal in mind, extensive work involving surface modifications of ITO was 

carried out. These included gas plasma treatments, electrochemical treatment, and 

insulating buffer layers. In order to understand the governing factors of ITO surface 

properties, ITO samples were treated with different types of plasma (i.e., neutral, reductive 

and oxidative) and characterized by in terms of surface morphology, chemical states, 

electron transfer kinetics, and surface energy. Electrochemical process was proposed as a 

new approach for ITO surface treatment. Similar to the plasma treatments, the 

electrochemically treated ITO surfaces were also characterized in surface properties. 

Insulating buffer layers produced by wet and dry processes were applied on to ITO 
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surfaces as well, which are expected to influence hole injection in a different way from 

plasma and electrochemical treatments. More importantly, nucleation and initial growth of 

hole transport layer on the treated ITO surfaces were morphologically investigated to 

understand influence of the surface modification methods on interface property and 

therefore hole injection. Based on the results of surface properties and device performance, 

a physical interface model was proposed for discussion of hole injection mechanism.  

 

1.6.3 Layout of Thesis 

 

Chapter 2 will briefly describe the major surface characterization techniques used in this 

study, including atomic force microscopy for morphological study of interface evolution, 

X-ray photospectroscopy for analysis of chemical states, cyclic voltammetry for 

characterization of surface electron transfer kinetics, and contact angle measurements for 

estimation of surface energy. In addition, general procedures for sample preparation, 

device fabrication and characterizations are also described in this chapter. 

 

Chapter 3 contains studies of various plasma treatments of ITO electrodes and their effects 

on the surface properties of ITO and device performance.  

 

Chapter 4 proposes the electrochemical methods for modifying the ITO surface. The 

electrochemically treated ITO electrodes were characterized by various analytical 

techniques.  
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Chapter 5 presents the effects of insulating buffer layers on hole injection. 

 

Chapter 6 involves morphological investigation into the effects of surface modification on 

nucleation and growth of hole transport layer on the treated ITO surface.  

 

Chapter 7 discusses the mechanism of hole injection and its effect on EL efficiency by 

proposing phenomenal models.  

 

Chapter 8 summarizes the important findings and conclusions and proposes a few research 

topics worth of following up. 
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Chapter 2 

Experimental and Characterization Techniques 

 

Abstract  

 

In this chapter, an overview of the instrumentation and characterization techniques that are 

specifically used for studying ITO surface properties, including atomic force microscopy, 

photoemission spectroscopy, electrochemical analysis, and estimation of surface energy 

by contact angle measurements, is provided.  
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2.1 Atomic Force Microscopy 

 

2.1.1 Introduction 

 

Atomic force microscopy (AFM), as a member of scanning probe microscopy (SPM) 

family, was invented by G. Binnig et al. in 1986 [164]. By measuring the distance 

dependent forces between the surface and a molecular-sized tip as a sensor, one probes the 

topography of both conducting and isolating samples on a fine scale, down to the level of 

molecules and groups of atoms. AFM can produce images of materials as small as 1 nm 

and provide a true three-dimensional surface profile. Most AFM modes can work perfectly 

well in ambient air and samples viewed by AFM do not require any special treatments 

(such as metal coatings).  

 

In this section, AFM is briefly introduced in terms of system set up and operation modes. 

Details on the AFM technique can be found in literature [165-172]. 

 

2.1.2 AFM System 

 

An AFM system, as schematically shown in Figure 2.1, consists of a surface having 

structural and physicochemical characteristics, an interaction processing characteristic 

strength and range, and a probe (also called cantilever) which can be located and 

controlled in the spatial and temporal domains, with its own characteristics [168]. The 

flexible cantilever made of silicon or silicon nitride has a sharp tip on its free end. The 
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curvature radius of the sharp tip is on the order of nanometers, normally in the range of 3-

50 nm. The operation of an AFM is based on the measurement of the force between the 

sample surface and the sharp probe. When the tip is brought into close proximity of a 

sample surface, the short-range attractive or repulsive force (<10-9 N) between the tip and 

the sample, such as van der Waals force, leads to a vertical deflection of the cantilever 

from its equilibrium position according to Hooke’s law. A laser beam focused on the top 

of the cantilever is reflected from the cantilever to a four segment photo-detector that is 

position-sensitive, and the deflection (in the sub-angstrom range) is measured by changes 

in differential voltage signal. The feedback circuit regulates the z-control in order to 

achieve a constant deflection signal from the photo-detector while the sample is raster 

scanned.  
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Figure 2.1 Basic principle of the AFM technique after Myhra [168]. 
 

Generally, the sample is mounted on a piezoelectric tube that can move the sample in the z 

direction for maintaining a constant force, and the x and y directions for scanning the 

sample. By scanning the tip parallel to the surface, either the local variation of the tip-
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surface repulsive force or the z-scanner position required for maintaining a constant force 

is converted into an atomic-scale height or deflection (force) image. A scan may cover a 

distance of over 100 micrometers in the x and y directions and 4 micrometers in the z 

direction, which is an enormous range. 

 

2.1.3 Operation Modes 

 

Depending on the distance between the tip and surface (i.e. on the interaction strength 

between the two), AFM can be divided in three main operation modes: (1) contact mode, 

(2) noncontact mode, and (3) tapping mode, which is a transition mode between the 

contact and noncontact modes, as shown in Figure 2.2.  

 

Figure 2.2 Schematic illustration of the region for contact (a), non-contact (b) and 
tapping mode (c) AFM, after Magonov [169] and Howland [170]. 
 

Contact mode means that the tip comes through the fluid layer on the sample surface, and 

thus, directly contacts the surface. Under ambient air conditions, most surfaces are 

covered by a layer of adsorbed gases (condensed water vapor and other contaminants) 
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which is typically several nanometers thick. When touching this layer, the tip meets two 

additional forces pulling it down into the layer, thus increasing the overall force on the 

sample: A higher surface tension results from capillary actions that cause a meniscus to 

form, and trapped electrostatic charges both on the tip and sample contribute to additional 

adhesive forces, that lead to hysteresis in the force-vs-distance curve. Consequently, the 

scanning tip can exert strong vertical and lateral shear forces on the sample. The later may 

cause inelastic or elastic surface deformations or the removal of weakly bounded and 

defective layers, thus probing mechanical properties (e.g. indentation, adhesion or friction) 

of sample. During imaging in contact mode, changes in cantilever deflection are 

monitored. Maintaining a constant deflection, i.e. a constant repulsive force between tip 

and sample, the height profile displays the vertical movement of the z-scanner at each (x, 

y) data point. 

 

In noncontact mode, the surface is tracked with a tip oscillating above the fluid layer with 

amplitude of a few nanometers. In this way, neither tip nor sample can be contaminated 

during scanning, and no force is exerted to the surface. The height profile results of the 

spatial variation of the attractive long-range van der Waals forces as measured by a 

decrease of the resonance frequency of the cantilever. Usually, noncontact mode only 

works with low scan rates (1-2 Hz) on very flat, extremely hydrophobic surfaces, where 

the adsorbed fluid layer is at a minimum. 

 

Theoretically, any type of sample can be scanned by AFM. However, scanning soft 

samples (like oligomers, polymers, biological samples) in contact mode may cause 

damage of the sample. On the other hand, because most samples develop a liquid 
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meniscus layer, keeping the probe tip close enough to the sample for these inter-atomic 

forces to become detectable while preventing the tip from sticking to the surface presents 

a major hurdle for noncontact mode in ambient conditions. To bypass these problems, a 

new probe scanning technique with dynamic contact or semi-contact was developed, in 

which the cantilever is oscillated such that it comes in contact with the sample with 

schemes for noncontact. The cantilever oscillates vertically at its resonance frequency or 

close to it (typically values are found in the range of 50 kHz to 500 kHz) with an 

amplitude ranging from 20 nm to 100 nm. Mechanical oscillations of the cantilever are 

excited by the piezo-driver that has a direct contact with the cantilever substrate. The 

particular feature of this mode is that the oscillating tip slightly knocks the sample surface 

during the scanning only in the lowest point of its amplitude. In the same time, during the 

most of its oscillation period the cantilever does not touch the surface and their interaction 

level is relatively low.  

 

Dynamic contact operations include frequency modulation and the more common 

amplitude modulation. In frequency modulation, changes in the oscillation frequency 

provide information about a sample’s characteristics. In amplitude modulation, better 

known as tapping mode, changes in the oscillation amplitude yield topographic 

information about the sample. Additionally, changes in the phase of oscillation under the 

tapping mode can be used to discriminate between different types of materials on the 

surface. In tapping mode, soft surfaces are less modified than during imaging in contact 

mode. 
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2.2 X-ray Photoelectron Spectroscopy 

 

2.2.1 Theoretical Background 

 

Photoelectron spectroscopy (PES) is widely used to examine the composition and 

chemical state distribution of species at solid surfaces. The basis of this technique is the so 

called photoelectric effect discovered already in 1887 by Hertz and theoretically explained 

in 1905 by Einstein. This effect simply consists in the emission of electrons from a surface 

upon irradiation with electromagnetic radiation with a known energy E (usually presented 

in electron volt, eV) given by the Einstein relation:  

E = hv,           (2.2.1) 

where h is Planck constant ( 6.62 x 10-34 J s ), and v is frequency (Hz) of the radiation.  
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Figure 2.3 Working principle of photoemission spectroscopy (after Hoflund [173]) 
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PES is carried out by illuminating a sample with electromagnetic radiation and analyzing 

the kinetic energy distribution of the photoelectrons. In this process, the excitation 

radiation is chosen to be monochromatic. An incident photon of known energy (hv) is 

used to impart energy on an electron, as shown in Figure 2.3(a). The electron uses this 

energy to overcome the binding energy (BE) holding it to the atom and the electron’s 

remaining energy is in the form of kinetic energy (KE), as shown in Figure 2.3(b). KEs of 

the emitted electrons forming the spectral peaks are measured using an electrostatic 

charged-particle energy analyzer, from which BEs of these electrons can be calculated 

from the following equation [173]: 

KE = hv - BE +φs          (2.2.2) 

where φs is the work function of the spectrometer rather than the specimen. 

 

The KE of the photoelectrons usually varies from a few electron volts up to a few hundred 

electron volts, depending on the photon energy used. The BE of the photoelectrons 

depends strongly on the excited atoms and therefore gives elemental information. In order 

to excite the electrons from their bound states in the sample, different sources of 

electromagnetic radiation, operating at various energies, can be used. Generally two 

regimes are identified: XPS for energies hv > 100 eV and ultraviolet photoelectron 

spectroscopy (UPS) for energies hv < 100 eV. Electromagnetic radiation can penetrate 

deep into the sample but only electrons emitted in a region very close to the surface can 

leave it and reach detector. Although conceptually similar, XPS and UPS measurements 

offer different kinds of information about the sample. In XPS, the photons are absorbed by 

atoms in solid, leading to ionization and emission of core (inner shell) electrons. By 
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contrast, in UPS the photons interact with valence levels of the solid, leading to ionization 

and emission of these valence electrons.  

 

2.2.2 Instrumentation and Resolution of XPS 

 

The schematic illustration of an XPS instrument is given in Figure 2.4(a). In a typical XPS 

experiment, an X-ray beam strikes the sample surface, giving photoelectron radiation. 

These electrons pass the electron optics and enter the hemispherical analyzer. At the other 

end of the analyzer electrons are detected, counted, and a spectrum of photoelectron 

intensity versus binding energy is displayed. An ion gun (not shown here) is frequently 

attached for ion bombardment of the sample surface to obtain composition profile in depth. 
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Figure 2.4 Schematic XPS instrumentation (a) and a typical XPS spectrum of an ITO 

surface (b). 

 

XPS is commonly carried out with either monochromatic Al Kα radiation (hv = 1486.6 eV) 

or Mg Kα (hv = 1253.6 eV) sources. A typical XPS survey spectrum consists of well-

defined spectral peaks on a large background of inelastically scattered electrons formed 

during transport of photoelectrons to the surface, as shown in Figure 2.4(b). The electrons 
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comprising the spectral peaks carry most of the useful information although the fraction of 

these electrons in the total emission yield is very small (<< 1 %). The primary peaks arise 

from the valence-band structure, which is not shown in Figure 2.4(b), from shallow core 

levels (BE < 50 eV), from deeper core levels and from Auger processes for each of the 

elements present at or above the detection levels in the near-surface region of the sample. 

X-rays have a low absorption cross section in solids so that most penetrate many hundreds 

of nm. However, most of the photoelectrons having KEs between 100 and 1500 eV travel 

only a few nm before losing energy by suffering an inelastic collision, then becoming part 

of the broad background rather than contributing to the elemental peaks [173]. 

 

Diagram of a basic, typical PES instrument used in XPS, where the radiation source is an 

X-ray source.  When the sample is irradiated, the released photoelectrons pass through the 

lens system which slows them down before they enter the energy analyzer.  The analyzer 

shown is a spherical deflection analyzer which the photoelectrons pass through before 

they are collected at the collector slit. 

 

Hence although X-rays penetrate to a depth of several micrometers, ejected photoelectrons 

generally come from only the first several nanometers of material. Thus, XPS is very 

much a surface technique. The sampling depth in XPS is in the range of 1-5 nm, 

corresponding to 4 - 20 atomic or molecular monolayers, depending upon the attenuation 

length of the photoelectrons being collected. The distribution of photoelectrons in depth 

tails exponentially into a solid, which means that the composition determined from XPS 

data is a weighted average over the region being examined and the near-surface layers 

contribute more intensity to the total signal. The imaged and analyzed area varies between 
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2 and 500 µm with a sensitivity limit of 0.1 ~ 1 % of a monolayer corresponding to 1012 ~ 

1013 atoms/cm2 within the analyzed volume [171]. 

 

In addition to analysis of surface composition and chemical states, XPS can also be used 

for composition variation with depth of thin film, although which is not used in this study. 

One of the most frequently used techniques is the destructive depth profiling, which is 

realized by bombardment of the film surface with Ar+ ions at controlled power and timing. 

After certain time of this “bombardment erosion”, the composition is analyzed before next 

bombardment starts. Thus a composition depth profile is obtained.  

 

2.2.3 Information Disclosed by XPS 

 

The information sought from XPS data is normally that of composition and/or chemical 

state. Because no two elements have the same set of BEs, the photoelectron spectrum from 

an element will be characteristic of that element. The presence of peaks at particular BEs 

therefore indicates the presence of a specific element in the sample under study. 

Furthermore, the intensity of the peaks is related to the concentration of the element 

within the sampled region, which is therefore used to determine the sample stoichiometry 

at the surface. Thus, the technique provides a quantitative analysis of the surface 

composition through calculation of the peak areas with appropriate sensitivity factors.   

 

More importantly, XPS is a powerful analysis technique to identify chemical states on the 

sample surface, as the BE is dependent on the chemical environment of the atom. 
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Different chemical environments often induce slight modifications of the core level 

positions. These modifications, also known as chemical shifts, can be detected by XPS 

and can be interpreted in terms of the interactions between the different chemical species 

present at the surface. This information is of special interest when investigating adsorbate 

as it allows to evaluate the adsorbate coverage and to learn about its interaction with the 

substrate. Chemical-state assignments are usually based on the most prominent peaks 

because they have the highest delectability, but some of the less prominent peaks often 

exhibit larger shifts in BE for a given chemical state, so it is useful in such cases to base 

chemical-state analysis on them. Information on BEs and peak shapes for various chemical 

states has been well documented in literature [174-177]. 

 

In practice, however, the binding energies of elemental species may be so closely spaced 

that XPS is unable to distinguish between them. This difficulty is complicated further by 

the presence of more than two overlapping chemical states. In these cases, peak separation 

is necessary by fitting the spectra with a nonlinear least-squares algorithm, such as 

Gaussian and Lorentzian functions. The curve-fittings could separate a spectrum into 

several sub-peaks, which is helpful to determine the different chemical states of the 

discussed elements on a sample surface.  

 

2.2.4 Spectra Calibration of XPS 

 

For accurate XPS analysis, spectra calibration is necessary. Many calibration methods 

have been reported for different applications [173]. One popular method is to assign the 

energy of the C 1s peak due to carbon contamination (referred to as adventitious carbon) 
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on the sample to the internationally accepted value of 284.6 eV, which then allows the 

BEs of all other features to be found [176]. In the ideal case, this carbon consists only of 

hydrocarbons in electrical contact with all surface species. Although this method has 

serious drawbacks, it has been used more often than all others. The drawbacks include the 

facts that the adventitious carbon is not well characterized, that it may not be in electrical 

contact with the species being examined, and that it may consist of several different 

chemical states of carbon leading to a complex peak shape.  

 

To solve the problems, an empirical method is frequently used based on internal spectral 

self-consistency. Instead of assigning the BE of an alleged contamination peak to the C 1s 

value given above, a peak from one of the major constituents in the sample is chosen, and 

on the basis of the probable chemical state of that constituent (from other evidence) a BE 

is assigned to that peak. With this trial assignment, the BEs of all other features can then 

be assigned, at which point self-consistency must be examined. If the assignment is 

correct, then not only will the assignment of a C 1s peak to adventitious carbon appear 

reasonable, but the interpretation of all the other spectral features will be compatible with 

published values of BEs. If consistency is not obtained in that interpretation, then either an 

adjustment must be made to the trial BE or another element selected and the procedure 

repeated.  
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2.3 Cyclic Voltammetry 

 

2.3.1 Introduction 

 

Cyclic voltammetry (CV) is an electrochemical equilibrium technique for the study of 

redox processes that occur in an electrochemical cell containing electrodes, electrolyte(s) 

and analyte(s). In a cyclic voltammetry experiment, a potential is applied to the system, 

and the current response over a range of potentials (a potential window) is measured. The 

electrode potential follows a linearly ramping potential vs. time as shown in Figure 2.5(a). 

The potential is increased linearly with time to some specified potential value and then 

decreased over the same period of time back to the initial potential. These data are then 

plotted as current vs. potential, as shown in Figure 2.5(b). 

 

As the waveform shows, the forward scan produces a current peak for any analytes that 

can be reduced through the range of the potential scan. The current will increase as the 

potential reaches the reduction potential of the analyte, but then falls off as the 

concentration of the analyte is depleted close to the electrode surface. As the applied 

potential is reversed, it will reach a potential that will reoxidize the product formed in the 

first reduction reaction, and produce a current of reverse polarity from the forward scan. 

This oxidation peak will usually have a similar shape to the reduction peak. As a result, 

information about the redox potential and electrochemical reaction rates of the compounds 

is obtained. 

 



 53 

t0 t1 t2 t3 t4

Time (s)

C
a

th
o

d
ic

 P
o

te
n

ti
a

l 
(m

V
)

t0 t1 t2 t3 t4

Time (s)

C
a

th
o

d
ic

 P
o

te
n

ti
a

l 
(m

V
)

C
a

th
o

d
ic

 P
o

te
n

ti
a
l 
(m

V
)

Time (s)

-200 0 200 400 600

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

 

 

C
u

rr
e

n
t,

 m
A

Potential vs Ag/AgCl(3M.KCl), mV

 

       (a)               (b) 

Figure 2.5 Cyclic voltammetry potential waveform (a) and the corresponding CV 
graph (b). 
 

CV is a fast and simple method for initial characterization of a redox-active system. In 

addition to providing an estimate of the redox potential, CV can also provide information 

about the rate of electron transfer at the electrode-solution interface, and the stability of 

the analyte in the electrolyzed oxidation states. More importantly, characteristics of the 

CVs are dependent on the electrode employed and, in return, studies of CVs reveal 

properties of the electrode surface. In this respect, the ITO films modified by plasma 

treatments, electrochemical process, and ultra thin insulating films were used as an 

electrode for CV. 

 

2.3.2 Electrical Double-Layer and Charging Current 

 

The changing arrangement of ions, solvent, and electrons in the electrode/solution 

interfacial region near the electrode surface has been the focus of considerable 
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investigation [178]. The electrical double-layer is associated with an ideally polarized 

electrode in which no charge transfer can occur regardless of the potential imposed by an 

external voltage source, as schematically shown in Figure 2.6. The specific nature of the 

structure and the interactions of the electrical double-layer should be considered in the 

interpretation of electroanalytical data. Various models have been proposed describing the 

interface region near the electrode surface, such as Helmholtz double-layer model, Gouy-

Chapman diffuse double-layer model, Stern model, etc [179-181]. 

Positively charged 

electrode surface

Water Solvated 

ions  

Figure 2.6 Schematic diagram of electrical double layer found at a positively charged 
electrode [181]. 
 

Helmholtz parallel-plate capacitor model [182,183] is widely used to interpret some 

phenomena occurs at electrode/solution interface due to its simplicity, although it does not 

account for the possible specific adsorption or random motion of ions. Based on this 

parallel-plat capacitor model, a current is required to change the potential applied to the 

electrode, and this is referred to as the charging current. Since the potential in a cyclic 

voltammetry experiment is constantly changing, there is an (approximately) constant 
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charging current throughout the experiment that makes a major contribution to the 

background current.  

 

2.3.3 Faradic Current and Nernst Equation 

 

Since the real power of CV technique lies in its ability to investigate mechanisms and 

potentials of electrode reactions, the CV experiment is usually carried out under the 

conditions where charging current is much small, compared to the current from transfer of 

electrons between the energy levels of the working electrode and the molecular energy 

levels of the species under study. This current is often referred to as the faradic current. 

Transfer of electrons from filled electrode orbitals to vacant molecular orbitals is referred 

as reduction, whereas transfer of electrons from filled molecular orbitals to vacant 

electrode orbitals is referred to as oxidation. Whether oxidation or reduction can occur 

depends upon the relative energies of the Fermi level of the electrode (i.e., the energy of 

the highest occupied electrode orbital) and the frontier molecular orbitals of the studied 

species. For example, reduction can occur if the Fermi level is higher than the lowest 

unoccupied molecular orbital, whereas oxidation requires that the Fermi level is lower 

than the highest occupied molecular orbital.  

 

Faradic current depends on two things: the kinetics of electron transfer and the rate at 

which the redox species diffuses to the surface. In the case of reduction, for instance, 

oxidized specie (O) diffuses to the electrode surface, receives an electron becoming 

reduced specie (R), and diffuses away from the electrode surface. Current at the surface is 
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generated by the transfer of electrons from the electrode to the oxidized species (O). In 

solution current is carried by migration of ions.  

 

The Nernst equation describes the fundamental relationship between the potential applied 

to an electrode and the concentration of the redox species at the electrode surface. If an 

electrode is at equilibrium with the solution in which it is immersed, the electrode will 

have a potential, invariant with time, which is thermodynamically related to the 

composition of the solution. In solution, species O is capable of being reduced to R at the 

electrode by the following reversible electrochemical reaction: O + ne
–↔ R. If the 

kinetics of electron transfer is rapid and so is not current-limiting at any potential, the 

concentrations of O and R at the electrode surface can be assumed to be at equilibrium 

with the electrode potential. Hence, the concentrations of O and R at the electrode surface 

are governed by the Nernst equation [181]:  
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where E is the applied potential (in V), E
0’

 is the formal redox potential, R (8.31451 

J/K•mol) is the universal gas constant, T is the temperature (in Kelvin), F (96484.6 C/mol) 

is the Faraday constant, n is the number of electrons transferred, and C
S is a surface 

concentration (it is assumed in this equation that the diffusion coefficients of O and R are 

equal). Such a redox process is frequently referred to as reversible. For specific conditions, 

such as at 25 oC, the equation can also be written as [181]:     
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According to the Nernst equation, the concentration of the oxidized species at the surface 

will decrease as the potential becomes more negative. Assuming that the electron transfer 

rate is very rapid, the current i measured as the potential is decreased will be directly 

related to diffusion rate of oxidized species to the electrode surface: 

nFAJi =           (2.3.3) 

where n is the number of electrons, F is Faraday’s constant, A is the area of the electrode 

surface and J is the flux of the oxidized species to that surface. The flux is governed by 

Fick’s law: 
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where, D is the diffusion coefficient of the species, x the distance from the electrode 

surface, (dC/dx)x=0 is the concentration gradient at the surface, C* the concentration of the 

oxidized species in the bulk solution, and Cx=0 its concentration at the surface. It is 

obvious that the greater the concentration gradient, the greater the flux J and therefore the 

greater the cathodic current. 

 

2.3.4 Experimental Setup 

 

A typical experimental setup for CV scans is schematically shown in Figure 2.7. First, a 

potentiostat is required for controlling the applied potential, and a current-to-voltage 

converter is required for measuring the current. A user interface is required to define the 

way the potential is applied - the potential waveform. There are a number of different 

potential waveforms, and these are referred to by characteristic names; for example, cyclic 
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voltammetry, and differential pulse voltammetry. The potentiostat must be connected to 

the electrochemical cell.  

 

 

Figure 2.7 Schematic construction of electrochemical cell used for electrochemical 
treatment and analysis. 
 

In a cyclic voltammetry experiment, an external potential is applied to the cell, and the 

current response is measured. Better potential control is achieved using a potentiostat and 

a 3 electrode system, in which the potential of one electrode (the working electrode) is 

controlled relative to the reference electrode, and the current passes between the working 

electrode and the third electrode (the auxiliary electrode).  

 

The working electrode is the one at which the electrochemical phenomena being 

investigated takes place. The working electrode materials should be electronically 

conductive and electrochemically inert over a wide potential range (the potential window). 

Commonly used working electrode materials for cyclic voltammetry include platinum, 

gold, silver, and glassy carbon. Other materials, e.g., semiconductors, ITO glass, and other 
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metals, are also used for more specific applications. Various surface treatments and ultra 

thin coatings are also applied to the working electrode for investigating the effects of the 

surface modifications on the electrochemical properties of the electrode, such as electron 

transfer rate across the electrode-solution interface.  

 

The reference electrode has such a property that it can be taken as the reference standard 

against which the potentials of the other electrodes present in the cell can be measured. 

Silver-silver chloride electrode (SSCE) and calomel electrode (CE) are frequently used for 

CV scans. SSCE and CE in a saturated potassium chloride solution at 25 oC develop 

potentials of 199 mV and 244 mV vs. the normal (or standard) hydrogen electrode (NHE) 

(or SHE), respectively [184]. 

 

The third functional electrode is the counter or auxiliary electrode that serves as a source 

or sinks for electrons so that current can be passed from the external circuit through the 

cell. The auxiliary electrode is typically a platinum wire or glassy carbon. In order to 

support the current generated at the working electrode, the surface area of the auxiliary 

electrode must be equal to or larger than that of the working electrode. 

 

Electrolyte solutions can be aqueous or non-aqueous. A wide range of salts can be used 

for aqueous electrolyte solutions. The electrolyte solution must be able to dissolve the 

analyte (redox couple), must be chemically and electrochemically inert over a wide 

potential range, and must be pure. 
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2.3.5 CV Graph and Interpretations 

 

Figure 2.8 shows a typical CV spectrum based on the electrochemical system where ITO 

as a working electrode and FeIII(CN)6
3–/FeII(CN)6

4– as an redox couple in 0.1 mol KNO3 

electrolyte. At the start of the experiment, the bulk solution contains only R so that at 

potentials lower than the redox potential, there is no net conversion of R into O.  As the 

redox potential is approached, there is a net anodic current which increases exponentially 

with potential.  As R is converted into O, concentration gradients are set up for both R and 

O, and diffusion occurs down these concentration gradients.  At the anodic peak, the redox 

potential is sufficiently positive that any R that reaches the electrode surface is 

instantaneously oxidized to O.  Therefore, the current now depends upon the rate of mass 

transfer to the electrode surface, resulting in an asymmetric peak shape.  
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Figure 2.8 A typical plot of current vs. potential in a CV experiment. 
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Upon reversal of the scan, the current continues to decay until the potential nears the 

redox potential.  At this point, a net reduction of O to R occurs which causes a cathodic 

current which eventually produces a peak shaped response. Further decrease of potential 

results in reduced cathodic current that is governed by mass transfer, until the end of the 

cycle. 

 

The parameters of greatest interest for a CV are the peak anodic potential (Epa), the peak 

cathodic potential (Epc), the peak anodic current (Ipa), and the peak cathodic current (Ipc). 

If a redox system remains in equilibrium throughout the potential scan, the 

electrochemical reaction is said to be reversible.  In other words, equilibrium requires that 

the surface concentrations of O and R are maintained at the values required by the Nernst 

Equation.  Under reversible condition, the peak potential separation ∆Ep (= Epa - Epc) = 

(58/n) mV at all scan rates at 25 oC, where n is the number of electrons transferred. In 

practice, the difference is typically 70-100 mV. Meanwhile, the ratio of anodic to cathodic 

peak currents approaches unity, i.e., Ipa/Ipc=1. However, a larger peak separation than 

(58/n) mV and  a remarkable deviation of the Ipa/Ipc ratio from unity indicate the redox 

system is in an irreversible condition due to the retarded electron transfer kinetics, which 

the important evidences of surface passivation.     
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2.4 Contact Angle Measurements and Surface Energy 

 

2.4.1 Introduction 

 

Surface energy is an underlying concept in thin film science, which determines whether 

one material wets another and forms a uniform adherent layer. For example, a material 

with very low surface energy will tend to wet a material with a higher surface energy. On 

the other hand, if the deposited material has a higher surface energy it tends to form 

clusters or “ball up” on the low-surface-energy substrate. The mechanism behind the 

phenomena is the reduction of system free energy. Consequently, as observed in nature, a 

liquid tends to ball up to reduce its surface area, and crystals tend to facet in order to 

expose those surfaces being of the lowest energy. As surface energy is related to bond 

energy and to the number of bonds broken in creating the surface, and in turn is related to 

the binding energy of the material [186], the surface property is a direct manifestation of 

intermolecular forces. The surface of a solid, like that of a liquid, possesses additional free 

energy, but owing to the reduced molecular mobility this free energy is not directly 

observable, and it must be measured by indirect methods. For this purpose, measurement 

of contact angles is a practical technique. Although the contact angle method is also 

changed with surface heterogeneity, roughness, adsorption/desorption, inter-diffusion, 

and/or surface deformation, the method has been accepted and widely used for estimation 

of solid surface energies. 
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2.4.2 Concept of Contact Angle and Young’s Equation 

 

Thin film deposition on a solid generates new interfaces between dissimilar materials and 

involves considerations of wettability, spreading, interface evolution, and adhesion. The 

wettability of a solid by a liquid is characterized in terms of the angle of contact that the 

liquid makes on the solid [187]. The contact angle (θ) is the angle at which a liquid/vapor 

interface meets the solid surface, as illustrated in Figure 2.9. Contact angle measurements 

characterize the surface with respect to wetting properties and surface tension.  

 

Solid 

Liquid 

γSL γSV 

γLV 

Vapor 

θθθθ 

 

Figure 2.9 The shape of the droplet is determined by the Young-Laplace equation.  
 

When a liquid drop is in contact with an ideally smooth, homogeneous, rigid and insoluble 

solid, the bare surface of the solid absorbs the vapor of the liquid until the volatility of the 

absorbed material is equal to that of the liquid. With the establishment of the equilibrium, 

there is a liquid-solid interface between the two phases. The tensions at the three phase 

contact point are indicated such that LV is the liquid/vapor point, SL the solid/liquid point, 

and SV the solid/vapor point.  

 

Young [188] first proposed treating the contact angle (θ) of the liquid in equilibrium as the 

resultant of the three surface tensions:  
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γSV - γSL = γLV cosθ          (2.4.1) 

where γ is the surface tension (or surface free energy), and the subscripts refers to the 

three different interfaces. The Young’s equation was approximately presented by [189-193] 

γLV (1+cosθ) = γS + γLV – γSL,         (2.4.2) 

where, γS is the surface energy of the solid in vacuum. This equation indicates that from 

the contact angle measurement with a liquid of known γLV, only (γS - γSL) can be obtained.  

 

Models have been developed during past few decades to provide approximate answers by 

giving us another equation with which to separate γS and γSL, such as Zisman plot [193], 

equation of state [194], geometric mean [195,196], harmonic mean [197], and acid-base 

[198]. These five models are often called by different names, so it becomes tedious to 

keep track of all of them. It is very important to understand that these are, indeed, very 

approximate. The models are based on independent knowledge of how liquids and solids 

adhere to one another. Each model does better with one type of surface or another, but 

there is no recognized “correct” answer.  

 

Although controversies concerning the correctness of these methods exist in the literature, 

the estimation of solid surface energy is still bothering people. Primarily researchers 

would like to characterize surfaces without having to explicitly describe the test fluid. The 

right hand side of Young’s equation (Eq. 2.4.1) is the product of the test liquid surface 

tension and the contact angle, so surface energy is more “fundamental,” even if it cannot 

be accurately measured with today’s understanding. Secondly, the surface energy 

description mimics the surface tension description for liquids, so similar terminology is 



 65 

used for both. Thirdly, the inaccuracies in today’s models are acceptable to some. The real 

issue now is choosing a model. Careful reviews on these approaches indicate that 

geometric mean and harmonic mean methods are more widely used. The basics of the two 

methods are the same and the only difference exists between them in mathematic 

treatment.  

 

2.4.3 Estimation of Solid Surface Energy 

 

2.4.3.1 Geometric Mean Method 

 

Fowkes [199] first proposed that the surface free energy of a pure phase could be 

represented by the sum of the contributions arising from different types of force 

components, such as dispersion force, polar force, hydrogen bonding force, induction 

force (Debye), and acid/base force.  At least seven components have been identified by 

Fowkes [200], but Schultz et al. [201] suggested that the surface free energy may be 

generally expressed by two terms, namely a dispersion component and a polar component. 

Fowkes then proposed that the geometric mean of each force component is a reliable 

prediction of the interaction energies at the interface caused by the two force components. 

After a lot of theoretical and experimental work [194,196,202-204], a new expression of 

Young’s equation (Eq. 2.4.1) has been deduced for a solid-liquid system by eliminating 

the interfacial free energy (γSL) [205] 
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where the superscript d refers to the dispersion (non-polar) component due to 

instantaneous dipole moments, and p refers to the polar (non-dispersion) component, 

including all the interactions established between the solid and liquid, such as dipole-

dipole, dipole-induced dipole and hydrogen bonding, etc. [206]. 

 

In the geometric mean approach, measuring the contact angle θ for liquids 1 and 2 with 

known values of γLV
d (dispersive component) and γLV

p (polar component) on a given 

substrate, the surface energy components γS
p and γS

d can then be determined from the 

following simultaneous equations: 
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The total surface energy of the solid surface, γS, is then simply the sum of the two 

components, i.e., γS = γS
p + γS

d.  

 

2.4.3.2 Harmonic Mean Method 

 

In the harmonic mean method [197,207,208], it is assumed that the solid-liquid interfacial 

free energy is equal to the harmonic mean of free energy of solid and liquid. Applying the 

harmonic mean method in Young’s equation (Eq. 2.4.1), one has   
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Identical to the geometric mean method, two probing liquids are needed in order to solve 

for the two unknowns, the dispersive and polar components of surface energy. In the same 

way as with using the geometric mean, the harmonic mean may be used to calculate the 

dispersive and polar components of the surface energy by measuring the contact angles of 

liquids, 1 and 2, on a solid. The two simultaneous equations,  
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are then solved for γd
S and γp

S. 

 

2.4.3.3 Limitations 

 

According to Wu et al. [207], the harmonic mean is better suited for low energy surfaces 

such as polymers than geometric mean.  Since ITO surface energy is generally higher than 

that of polymers, in this study geometric mean is used. 

 

It should be pointed out that for thermodynamic equations used in the above mentioned 

methods to be valid, surfaces must be atomically flat, chemically homogenous and there 

must be no chemical interaction between the solid and liquid. In reality, the two former 

conditions are very rare and therefore any surface energy calculated on common surfaces 

is only an estimate. Therefore, the estimated surface energy is on a relative basis in the 

final analysis.  
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2.5 Sample Preparation and Film Thickness Calibration 

2.5.1 ITO Sample Cleaning 

 

In this study, the commercial ITO-coated glass (Präzisions Glas & Optik GmbH) with an 

initial sheet resistance of 20 Ω/�  were used as the substrates. Prior to their use, the ITO 

substrates were routinely cleaned by a sequence of sonications in detergent solution, 

ethanol and de-ionized (DI) water each for 10 min, and finally dried in a flow of nitrogen. 

The ITO sample just after the routing clean is denoted as “as-clean”, which was used as a 

control for comparison. 

 

2.5.2 Si Wafer Sample Cleaning 

 

Silicon (111) substrates (Semiconductor Processing Co.) were cleaned by immersing them 

in an H2O2 + sulfuric acid mixture (70 vol.% concentrated H2SO4, 30 vol.% H2O2) at 90 

oC for 30 min. This strongly oxidizing combination removes all organic contaminants on 

the surface, but does not disturb the native silicon oxide layer. The wafer samples were 

then rinsed repeatedly with DI water and finally blown dry under a stream of nitrogen. 

 

2.5.3 Calibration and Measurements of Coating Thickness 

 

For thermally evaporated coatings, the film thickness was monitored by a quartz thickness 

monitor after precise calibration by using a profilometer. However, precise calibration of 
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solution-coated thin film thickness on ITO surface is difficult due to its rougher surface. 

Therefore, cleaned silicon wafer substrates were used to calibrate wet coating thickness in 

combination with ellipsometric measurements, according to the procedures described in 

literature [209,210]. 
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Chapter 3 

Plasma Treatment 

Abstract  

 

In this chapter, various plasma treatments of ITO electrodes and their effect on the surface 

properties of ITO and device performance are described. A brief overview of the effect of 

plasma treatments of ITO surface on hole injection efficiency will be given with the 

emphasis on the hole injection mechanisms behind the surface treatment. Different types 

of plasmas, namely, hydrogen (H2-P), argon (Ar-P), oxygen (O2-P), and carbon 

tetrafluoride (CF4-P) were used to treat the ITO surface. Chemical composition, surface 

energy, and charge transfer across interface were investigated by X-ray photoelectron 

spectroscopy (XPS), contact angle goniometer, and cyclic voltammetry (CV), respectively. 

Luminance-current-voltage (L-I-V) characteristics of the OLED devices based on the 

surface treated ITO electrodes, in configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, 

[NPB=N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine and Alq3=tris(8-

hydroxyquinolato) aluminum] were also presented. The atomic force microscopy (AFM) 

results showed that change in surface morphology was not distinguishable after the plasma 

treatments under the treatment conditions employed in this study. Compared with the 

pristine ITO surface, plasma treatments, in particular O2-P and CF4-P, significantly 

increased the peak potential separation and reduced the peak current in the cyclic 

voltammograms, implying a suppressed electron transfer across the solid-solution 
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interface. More importantly, plasma treatments showed significant effect on the surface 

composition, surface energy and device performance. 



 72 

3.1 Introduction 

 

Oxygen plasma treatment of ITO surface has been widely reported to improve OLED 

device performance, in particular, driving voltage and device stability [113,115,124]. 

Although various physical and chemical properties of the plasma treated ITO surfaces 

have been investigated to understand the effect of the surface treatments on hole injection, 

the majority of discussion was concentrated on the change in work function. A general 

understanding of the hole injection mechanism is that the increased work function by the 

surface treatments reduces the energy barrier for hole injection, and therefore the driving 

voltage [93,122,131,148,157,158]. However, the effect of electrode work function has 

been questioned by many researchers [41,44,49,63,160-162]. They believed that, instead 

of work function, other surface properties such as surface energy [115], and morphology 

[160,161] may play a more important role in manipulating the device performance 

[124,211,212]. Being short of a systematic investigation on this aspect, more experimental 

work is clearly needed to understand the mechanisms behind the improved device 

performance by plasma treatments.  

 

In this chapter, four different types of plasmas, viz., hydrogen (H2-P), argon (Ar-P), 

oxygen (O2-P) and carbon tetrafluoride (CF4-P) plasmas, were used to treat ITO surfaces. 

Chemical composition, surface energy, and charge transfer kinetics across solid-solution 

interface were investigated by XPS, contact angle goniometry, and CV, respectively. L-I-

V characteristics of the OLED devices based on the treated ITO surfaces were also 

presented. This work aimed at studying the effects of plasma treatment on ITO surface 
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properties and therefore the device performance. The experimental results will provide 

further support to the discussions on hole injection mechanisms in later chapters.  
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3.2 Experimental 

 

ITO-coated glass samples were firstly cleaned as described in Section 2.5. Next, the 

plasma treatment of ITO samples was carried out in a parallel plate type plasma system 

(MARCH PX-1000) at room temperature using the working gases of Ar, H2, O2, and CF4 

(denoted as Ar-P, H2-P, O2-P, and CF4-P), respectively. In the plasma treatment chamber, 

two electrode plates were fixed at a distance of 10 mm, and the samples were placed on 

the bottom plate. All the samples were plasma treated for 3 min at an RF (13.56 MHz) 

power of 600 W, and a pressure of 30 Pa. The gas flow rates of 300 sccm were used for 

the H2 and CF4 gas plasmas, and 600 sccm for Ar and O2 gas plasmas. The treated ITO 

samples were subsequently stored in a portable desiccator with at the pressure of 30 Pa for 

further experimental work. The treated ITO samples were exposed to atmosphere about 2 

min when being transferred from the plasma treatment chamber into the desiccator, or 

from the desiccator into the vacuum chambers for surface analyses and device fabrication.  
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3.3 Results and Discussion 

 

3.3.1 Surface Morphology 

 

The surface morphology of the as-clean and plasma-treated ITO samples was examined 

using a Digital Instruments Nanoscope IIIA AFM. More information about AFM 

technique can be found in Section 2.1. 

 

The AFM images of as-clean and plasma-treated ITO samples were compared by 

measuring the RMS roughness and the “grain-subgrain” features [95,99]. The RMS 

roughness values measured by AFM fall in the range of 3-4 nm for all the plasma treated 

ITO samples, and are thus similar to the as-clean ITO. The surface morphology is also not 

sensitive to the plasma-treatment time in the range of 0-10 min that is frequently adopted 

in the fabrication of OLED devices, as shown in Figure 3.1. The results are consistent with 

the conclusions made by other research groups [213,214], in which no change in the 

microstructure of the electrode surface was observed even after 30 min of plasma 

treatment [213], and no effect was found on the surface composition after 10 min of 

plasma treatment [214].  
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(a) (b)

 

Figure 3.1 AFM (phase mode) images of (a) the as-clean ITO surface, and (b) the ITO 
surface treated by Ar plasma for 10 min under the treatment conditions described in 
Section 3.2. The scan area is 1×1 µm2. 

 

The results, however, are clearly not conclusive, as a dramatic increase in ITO surface 

roughness after Ar plasma has also been reported by Kim et al. [215] Obviously, various 

operating conditions, such as plasma generation (microwave or RF), power, gas flow rate, 

treatment time and others, have been used by different research groups for ITO surface 

plasma treatment. It is, therefore, not difficult to understand the conflicting reports on the 

effect of plasma treatment on ITO topography. As the operating conditions of plasma 

treatment used in this study do not result in measurable change of the ITO surface 

morphology, the study on nucleation and growth of HTL over the plasma-treated ITO 

surfaces can be carried out independent of the topographic factor. 

 

3.3.2 Surface Analysis by XPS 

 

XPS was used to characterize the chemical compositions and states of ITO surfaces 

treated by plasma. All XPS experiments were performed in a VG ESCALAB 220i0XL 

instrument. All spectra were recorded in the constant pass energy mode of the analyzer 
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using a monochromatic Al Kα X-ray source (1486.7 eV) at a photoelectron take-off angle 

of 90°. Survey spectra were recorded with pass energy of 150 eV and step width of 1 eV 

and high-resolution spectra were recorded with pass energy of 20 eV and step width of 0.1 

eV. With a linear background correction, the relative atomic concentration of each 

element on ITO surface was calculated according to their peak areas corrected with the 

empirical sensitivity factors, the instruments transmission function and the specific mean 

free path lengths. More information about XPS technique can be found in Section 2.2. 

 

3.3.2.1 Calibration of XPS Spectra 

 

The detected XPS spectra are usually shifted due to surface charging, and the binding 

energy values directly obtained from the spectra could not be used for qualitative or 

quantitative analysis. Therefore, a proper calibration of the XPS spectra is essential for 

meaningful discussions. The C 1s binding energy (~285 eV) of atmospheric carbon 

contaminants, normally in aliphatics, is most frequently used as a reference to calibrate the 

spectra obtained from ITO surfaces [176]. For the as-clean, O2-P, Ar-P, and H2-P samples, 

the XPS spectra can be calibrated by the main C 1s peak, as the major carbon source in 

these cases is atmospheric aliphatic contamination. However, spectra calibration is 

troublesome for CF4 plasma treated ITO, because new carbon compounds may be created 

during the treatment. Moreover, we could not assure the existence of the measurable 

amount of aliphatic sequences on the heavily fluorinated surfaces [216]. 
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Figure 3.2 C 1s and O 1s survey spectra of ITO surfaces after different plasma 
treatments 
 

Therefore, another reference must be identified to complete the spectra calibration. O 1s is 

a promising candidate as the second reference for spectra calibration. For Ar-P and CF4-P 

plasma treatments, it is reasonable to assume that most of the oxygen containing 

contaminants, such as O-H (including water) and C-O/C=O species, will be removed by 

the plasmas. On the other hand, the situation in recontamination, i.e., exposure to 

atmosphere after the plasma treatments, is in the same way for all the treated samples in 

this study. Therefore, the oxygen species on ITO surfaces treated by the two plasmas and 

thus the locations of O 1s peaks should have non detectable difference. Based on this 

assumption and deduction, O 1s obtained from Ar-P sample is used as the second 

reference for calibration of XPS spectra obtained from the ITO sample after CF4 plasma 

treatment, as shown in Figure 3.2. 
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3.3.2.2 Overview of XPS Spectra and Composition 

 

Wide-scan XPS spectra (from 200 to 800 eV) of the untreated and various plasma-treated 

ITO substrates are shown in Figure 3.3.  The most significant photoelectron signals of F, 

O, Sn, In and C were detected. The peaks at the binding energies of about 687, 530, 493, 

486, 452, 444, 285 eV correspond to F 1s, O 1s, Sn 3d3/2, Sn 3d5/2, In 3d3/2, In 3d5/2, and C 

1s core-level spectra, respectively.  
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Figure 3.3 Wide-scan XPS survey spectra of different ITO surfaces: as-clean, plasma 
treatments with oxygen (O2-P), argon (Ar-P), hydrogen (H2-P), and carbon fluoride (CF4-
P). 
 

Most of the core-level spectra are asymmetrical and broad, indicating that each spectrum 

contains multi components with different binding energy shifts. For the sample treated by 

CF4 plasma, C 1s spectrum was shifted considerably to the higher binding energy. It was 

also quite evident that the relative intensities of In 3d and Sn 3d peaks were dramatically 

reduced on the CF4-plasma treated ITO surface, compared to those of other samples. This 

was attributed to the presence of O- and/or F-rich compound layer. Similar results were 
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reported when ITO surface was treated with phosphoric acid, which was attributed to a 

acid layer formed on the substrate [126]. 

 

Assuming surface composition remains homogeneous, the chemical composition of 

various ITO surfaces can then be calculated based on the core-level peak component areas 

and their relative sensitivity factors. Table 3.1 summarizes the XPS analysis results of 

these spectra obtained from ITO surfaces before and after various plasma treatments, in 

terms of atomic concentration and ratios. The results showed that plasma treatment can 

significantly change the surface composition, in particular, the oxygen and carbon 

contents.  

 
Table 3.1. Chemical composition of ITO surfaces under different plasma treatments. 
 

ITO  Chemical Composition in at.%   Ratio 

Sample O In Sn F C   In:Sn O:In 

As-clean 43.8 24.0 10.5 - 21.7  2.3 1.8 
H2-P 40.1 27.0 11.8 - 21.0  2.3 1.5 
Ar-P 45.7 27.0 11.7 - 15.6  2.3 1.7 
O2-P 49.8 25.6 10.7 - 14.0  2.4 1.9 
CF4-P 32.8 9.4 3.7 23.2 30.9   2.5 3.5 

 
 

Compared to that of the as-clean sample surface, the relative concentration of carbon on 

the ITO surfaces changed from 21.7% to 21.0, 15.6, 14.0, and 30.9 % after H2, Ar, O2 and 

CF4 plasma treatments, respectively. The relative oxygen content was increased by O2 and 

Ar plasma treatments but decreased by H2 and CF4 plasma treatments, from 43.8% of the 

control to 49.8 and 45.7, 40.1, and 32.8%, respectively. The results demonstrated that the 

relative oxygen content changes reversely with carbon. Although no extra oxygen is added 

in Ar plasma treatment, the increase in relative oxygen content is obviously owing to the 
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partial removal of the surface contaminants by the argon ion bombardment and the 

possible atmospheric oxidation after the plasma treatment. Furthermore, O:In on the Ar-P 

sample surface was decreased. It is also noted that the oxygen reduction by CF4 plasma 

treatment is along with a presence of high content fluorine. Although having the lowest 

absolute value of oxygen content, the highest O:In ratio was obtained on CF4 plasma 

treated surface, and the sum of F and O was found to be much higher than the oxygen 

content on the O2 plasma treated ITO. The In:Sn ratios for all samples are in the range of 

2.3 – 2.5, which are clearly much lower than that of the ITO stoichiometry (about 9:1). 

This indicates that the ITO surface is rich in Sn. The data also show that the Sn 

concentration was reduced after O2 and CF4 plasma treatments. Selective etching of Sn 

was ever reported [217], especially for the Ar plasma treatment, where a stronger plasma 

bombardment was used for the surface cleaning. However, the change in In:Sn ratios 

among different plasma treatments in this study is not significant enough to conclude that 

the Sn was selectively etched by O2 and CF4 plasma.  

 

It is obvious that the chemical composition analysis is still too coarse for us to obtain a 

good understanding of the surface properties. For example, possible contributions to the 

measured oxygen content on the ITO surface include chemical species of In-O, Sn-O, OH, 

H2O, C-O, C=O, etc., being of different in binding energies. Unfortunately, it is usually 

not easy to assign the oxygen-containing compounds based on an O 1s XPS spectrum, due 

to overlaps in their binding energies. Therefore, deconvolution of XPS spectra has 

frequently been used for differentiating the chemical species under discussion. 
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3.3.2.3 Carbon Contamination and New Carbon Species Created 

by CF4-P 

 

As shown in Table 3.1, a large amount of carbon was detected for all treated and untreated 

ITO samples, which is inevitable for samples handled in the ambient [176,218]. Entire 

removal of the contaminants seems impossible, even in high vacuum environment. More 

importantly, once exposed to atmosphere the treated surfaces will be re-contaminated by 

varied amount of carbon-containing substances, depending on the type of treatment 

process. Furthermore, some surface treatments, such as CF4-P, may precipitate new carbon 

species. Therefore, discussions on decontamination effect based on the measured carbon 

contents may result in incorrect conclusions. By careful deconvolution analysis, it is 

possible to identify peaks corresponding to carbon atoms bound to different atoms, which 

is helpful for us to trace the carbon sources. 
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Figure 3.4 C 1s XPS survey spectra of ITO surfaces treated by different plasmas.  
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C 1s photoemission lines of the as-clean and plasma treated ITO surfaces are compared in 

Figure 3.4. For the as-clean and H2-P samples, besides the main peak at about 285 eV, a 

carbon compound at about 295 eV is found, which is denoted as CF3 species [173,174]. 

The carbon fluorides on the two samples possibly originate from the CF4-contaminated 

plasma treatment chamber or the sample handling nearby.  According to previous reports, 

oxygen plasma is an effective process to remove the carbon contaminants [93,113,222]. 

Therefore, the carbon detected after O2 and Ar plasma treatments is mainly from the 

atmosphere, i.e., carbon recontamination. The C 1s spectra of the atmospheric 

contaminants are fitted using two bands: a strong main peak of C-C-H at 284.7 eV, and a 

weak widen peak with a binding energy of 288.5 eV, which is related to the formation of 

oxygen to carbon single bonds C-O (chemical shift about 2 eV) and to carbon double 

bonds C=O groups (chemical shift about 3 eV) [176,223,224]. 

  

For CF4 plasma treatment, the C 1s peaks at 285 eV (C-C-H bonds) are not discernible. 

Instead, a widen C 1s peak appears at about 290 eV. The results of Table 3.1 show that the 

carbon content on the CF4-P treated surface is higher than that of as-clean ITO, suggesting 

that new carbon compounds are introduced by the treatment. However, the carbon species 

with high binding energies on the ITO surface treated by CF4 plasma are difficult to 

confirm directly, as the binding energies for C-O, C=O, and C-F species have been 

reported from 286 eV to 293 eV [176,225-229]. 
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Figure 3.5 F 1s core level spectrum from an ITO surface after CF4 plasma treatment 
and exposure to atmosphere, and the Gaussian-fitted sub-peaks illustrating the presence of 
two chemical sates of fluorine (C-F and In/Sn-F).  
 

Figure 3.5 shows that the F 1s core-level of the CF4 plasma-treated ITO can be resolved 

into two peak components with binding energies at about 685 and 688 eV, attributed to 

In/Sn-F [219,247] and C-F [176] chemical species, respectively. It is noted that the C:F 

ratio is about 1.33, as shown in Table 3.1. As In/Sn-F compounds reduce the number of F 

bound to C, it is reasonable to expect the presence of C2F species on the ITO surface after 

CF4P treatment. It is the surface fluorination that causes the missing C-C-H peak after CF4 

plasma treatment and exposure to atmosphere, as the fluorinated surfaces are not easily 

contaminated by the atmospheric hydrocarbons [216]. 

 

3.3.2.4 Asymmetry of O 1s Spectra 

 

It is well known that indium oxide generally lacks stoichiometry due to oxygen vacancies 

[97,217], i.e., the existence of In2Ox<3 and SnOx<2 species, implying that O:In ratio in the 

bulk ITO is less than 1.5. Table 3.1 shows that, except for the H2-P sample, the O:In ratios 
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are higher than that of stoichiometrical In2O3, indicating presence of additional oxygen 

sources on the ITO surfaces. The O:In ratio on the H2-P sample is lower than that of as-

clean sample, which is attributed to the reductive effect of hydrogen plasma on ITO 

surface. It is easy to understand the high O:In ratio on the O2-P sample surface due to the 

oxidation effect of the oxygen plasma. In the case of CF4-P, however, the highest O:In 

ratio up to about 3.5 was obtained. This can be attributed to the etching effect of CF4 

plasma, as the In 3d and Sn 3d signals on the CF4-P sample surface are every weak, as 

shown in Figure 3.2. It is obvious that both In and Sn were etched out by the CF4 plasma 

at a similar etching rate, as In:Sn ratio does not increase significantly. It should be pointed 

out that the samples after plasma treatments were exposed to atmosphere before the XPS 

analysis in this work. A varied amount of oxygen-containing contaminants from 

atmosphere are expected to adsorb onto the treated ITO surfaces. The unknown oxygen 

contributions from the contaminants make the O:In ratio cramped. Therefore, O:In ratio 

measured by XPS analysis after exposure of the treated samples to atmosphere may not be 

a reliable data to quantitatively explain the effect of surface modifications, although the 

ratios measured under similar conditions have frequently been used for discussions on the 

ITO surface properties after various treatments [93,113].  
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Figure 3.6 O 1s XPS high-resolution spectra of ITO surfaces treated by different 
plasmas 
 

Figure 3.6 shows the O 1s high-resolution spectra detected from the ITO surfaces after 

different plasma treatments, with normalization to the spectrum of the as-clean sample. It 

can be seen that the O 1s peaks are positioned at BE of about 530 eV, but all the spectra 

are broaden and asymmetric, indicating multiple oxide components included. The O 1s 

BEs of pure ITO, hydroxides of metals (i.e., Sn and In) and H2O have been reported in the 

range of 528–533 eV [97,217,230-232]. In this regard, the chemical shifts between the 

different chemical species can be so small that their O 1s peaks are heavily overlapped, 

and therefore that the BE alone is generally insufficient to discriminate between them.  

 

As it is well known, for an element with high negativity, reduced BE means reaction with 

elements having lower electronegativity. It is generally believed that the O 1s peak at 

lower binding energy (about 530 eV) is derived from the O bonded to In and/or Sn atoms 

being of lower electronegativity. However, once samples are exposed to atmosphere, H2O 

will be present on the ITO surface in a form of either molecular absorbent or metallic 
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hydroxides of (i.e., In-OH and Sn-OH species) [233,234]. O 1s peak is therefore expected 

to be shifted to the higher BE region due to the O-H bond in the hydroxides, and 

especially the absorbed water [217]. According to the previous reports, the O 1s at about 

530 eV is due to the oxygen in bulk ITO [235], but the O 1s at about 532 eV is originated 

from the oxygen in hydroxyl groups at the outermost surface as well as adsorbed water 

[158,236,237]. However, Fan et al. [97] believed that the O 1s due to the chemisorbed 

H2O should be at 533 eV. Nevertheless, the high BE shift and broadening of O 1s peaks in 

this work are mainly attributed to the hydroxyl groups and adsorbed water. In particular, 

the water adsorption onto the CF4-P sample surface may promote In-F/Sn-F.xH2O 

compounds [238], leading to the highest O:In ratio. This is also the possible reason why 

the heavily fluorinated ITO surface is still hydrophilic. 

 

3.3.2.5 Oxidation States of In and Sn Atoms on ITO Surfaces 

 

The O 1s, In 3d and Sn 3d core level spectra for the as-clean and plasma-treated films are 

shown in Figure 3.7. The results show that the In 3d5/2 and Sn 3d5/2 peaks measured from 

the as-clean sample are located at the lower binding energies of 443.6 and 485.7 eV, 

respectively, corresponding to In or In2Ox<3, and Sn or SnOx<2 [176,230,239,240]. 
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Figure 3.7 XPS spectra of O 1s, Sn 3d5/2, and In 3d5/2 for different treatments: (a) as-
clean, (b) O2-P, (c) Ar-P, (d) H2-P, and (e) CF4-P.  
 

According to the previous reports, metal In/Sn and In2Ox<3/SnOx<2 species might be 

reduced during ITO sputtering process [223,241-244], which results in the lower binding 

energy peaks of the as-clean sample. Theoretically, H2-P treatment would reduce ITO 

surface layer to either metals (In/Sn) or nonstoichiometric oxides (In2Ox<3/SnOx<2) [240]. 

Compared to the as-clean sample, however, no significant change in the bonding states of 

both In and Sn after H2-P treatment was found in this study. This is likely because the 

reduced species are partially re-oxidized and/or hydrolyzed once the treated sample is 

exposed to the atmosphere. For Ar-P and O2-P samples, the binding energies of In 3d5/2 

(444.3 eV) and Sn 3d5/2 (486.3 eV) compare very well with those reported for oxides of In 

and Sn [97,246-248]. In this case, the two peaks correspond to the saturated oxidation 

states of the two metals, i.e., In3+ from In2O3 and Sn4+ from SnO2, respectively 

[176,217,230]. 
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Figure 3.8 XPS spectra of Sn 3d5/2 and Sn 3d3/2 obtained from the ITO samples after 
different surface treatments. Each of the two spectra obtained from CF4P treated sample is 
Gaussian-fitted with two sub-peaks. 
 

More interestingly, CF4-P treatment results in a BE shift (~ 0.5 eV) of In 3d5/2 and Sn 3d5/2 

peaks to the higher energy band, compared to the O2-P treatment. This is obviously related 

to the formation of In-F, especially Sn-F species, as F is more electronegative than O. This 

is further confirmed by deconvolutions of the Sn 3d5/2 and Sn 3d3/2 spectra, as shown in 

Figure 3.8. Compared with those obtained from other plasma treatments, the Sn 3d spectra 

obtained from CF4 plasma-treated ITO are broad and each of them, especially the Sn 3d3/2, 

is clearly composed of two components at the lower and higher binding energies, 

corresponding to the metal oxides and the metal fluorides, respectively.   

 

3.3.3 Surface Analysis by Cyclic Voltammetry 

 

CV scans were carried out using a potentiostat (Solatron Instruments) and a standard 

three-electrode electrochemical cell. Ag/AgCl (3 M KCl) with electrode potential of 210 
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mV vs. NHE  [185] was used as the reference electrode and Pt wire as the auxiliary 

electrode. The ITO working electrode area (0.93 cm2) was defined by the size of a rubber 

o-ring. The CV data were obtained in a solution containing 0.1 M KNO3 (supporting 

electrolyte) and 1.0 mM K4Fe(CN)6 (redox couples) at room temperature and a scan rate 

of 100 mV/s, and in a potential range from -200 to +800 mV. All potentials were reported 

with respect to Ag/AgCl (3M KCl). Before any CV scan, the electrolyte was nitrogen 

bubbled for 30 min to reduce the oxygen content in the electrolyte. More information 

about CV technique can be found in Section 2.3. 

 

The voltammograms of the as-clean and plasma-treated ITO electrodes in a solution of 1 

mM [Fe(CN)6]
3–/4– redox couple in 0.1 M KNO3 supporting electrolyte are compared in 

Figure 3.9. Peak voltages and peak currents are summarized in Table 3.2. It is clearly seen 

that the electrochemical processes for all samples are irreversible because the peak 

potential separations (∆Ep = Epa - Epc) are much larger than 58 mV and the Ipa/Ipc ratio is 

smaller than unity. These findings clearly imply surface passivation by contamination or 

oxidation, which are discussed in details below. Compared with the CV data obtained 

from the as-clean ITO sample, peak potential separation is almost unchanged for the H2-P 

sample, slightly decreased for the Ar-P sample, but significantly increased for the O2-P 

sample and, in particular, the CF4-P sample. Similarly, the peak current is also changed 

with the plasma treatments, but in the opposite way. 
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Figure 3.9 Cyclic voltammograms for ITO electrodes with different surface conditions: 
As-clean, Ar-P, H2-P, O2-P, and CF4-P. Electrolyte: 1.0 mM Fe(CN)6

3–/4–  in 0.1 M KNO3. 
Reference electrode: Ag/AgCl (3 M KCl). Scan rate: 100 mV/s. 
 

As well known, Faradic current depends on two things: the kinetics of electron transfer 

and the rate at which the redox species diffuses to the surface. There are three major 

causes for the irreversible behavior, viz., slow electron transfer kinetics, chemical 

reactions of redox couples, and uncompensated solution resistance. It is reasonable to 

assume that there is no chemical reaction of redox couples on the ITO surfaces during the 

CV scans. In this work, the operating conditions, such as electrolyte and redox couple, 

scanning rate, temperature, etc., were kept the same for all the ITO samples. The change 

in peak potential separation and peak current is therefore attributed to the different plasma 

treatments. In other words, plasma treatment is the only reason causing the change in 

electron transfer kinetics. It is simply noted that peak potential separation is a function of 

the rate constant for electron transfer, which decreases as redox couples are unable to 

reach the electrode surface. 
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Table 3.2. Summary of CV characteristics extracted and calculated from Figure 3.9, 
including peak anodic potential (Epa), peak cathodic potential (Epc), peak potential 
separation (∆Ep) formal redox potential (Epa+Epc)/2, peak cathodic current (Ipc), peak 
anodic current (Ipa), and Ipa/Ipc ratio. 
 

ITO 
Sample 

Epa 

(mV) 
Epc 

(mV) 
∆Ep 

(mV) 
(Epa+Epc)/2 

(mV) 
Ipa 

(mV) 
Ipc 

(mV) 
Ipa/Ipc 

 

As-Clean 298 157 141 227.5 0.217 0.239 0.908 

O2-P 321 130 191 225.5 0.196 0.215 0.912 

Ar-P 283 165 118 224.0 0.230 0.245 0.939 

H2-P 300 158 142 229.0 0.215 0.236 0.911 

CF4-P 350 73 277 211.5 0.151 0.165 0.915 

 

The reduced peak currents and increased peak potential separations in the cyclic 

voltammograms with the Fe(CN)6
3–/4– redox couple are possibly caused either by the 

partially blocking of ITO electrode surface or by hindering of the redox couple diffusion 

to the electrode surface. The XPS results have revealed that the as-clean ITO surface is 

contaminated by substantial amounts of adventitious carbon. In addition, the complete 

hydrolysis products of the ITO surface, i.e., In(OH)3-like species, may not be strongly 

bound to the ITO lattice [214]. The presence of the hydrocarbon contaminants and the 

insulating hydroxides on ITO surface reduce the effective surface area for electron transfer. 

Liau and co-workers [212] also found that the ITO surface contains electrochemical “hot 

spots” and “dead regions”, which are attributed to the inhomogeneous distribution of 

oxygen vacancies [213]. However, the electrochemical dead regions are obviously related 

to the areas covered by the insulating contaminants or hydroxides.  

 

The XPS results in the previous section reveal that H2-P is not effective in removing the 

hydrocarbon contaminants. This is further verified by the CV results, as no remarkable 
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change in cyclic voltammogram after H2-P treatment was observed. In comparison, the 

reduced peak potential separation and increased peak current for the Ar-P sample imply 

the removal of the contaminants, at least to a certain extent, which is consistent with the 

results from XPS. However, the hydrocarbon recontamination owing to the exposure of 

sample to atmosphere may cover up the cleaning effect of the Ar-P treatment, as the 

difference in cyclic voltammogram between the as-clean and the Ar-P samples is not 

substantial.  

 

On the contrary, the larger peak potential separation and lower peak current of the O2-P 

and CF4-P samples indicate that electron transfer rate at the ITO surfaces are notably 

suppressed by the two plasma treatments, especially the CF4-plasma. It is obvious that the 

highly electronegative species in the plasmas, such as O and F atoms, can effectively 

remove the carbon contaminants and the hydroxides. Because of the same environment 

after plasma treatments for all samples, the lower electron transfer rates suggest that 

electrochemical “hot spots” have been destroyed by the oxidative plasma treatments. As 

above mentioned, the oxygen vacancies contribute to the good conductivity of ITO films 

[97,217]. However, the oxygen vacancies also imply the existence of In2Ox<3 and SnOx<2 

species [176,230,239,240]. During O2 and CF4 plasma treatments, the reactive O and F are 

expected to react with the unsaturated oxides on the ITO surfaces and therefore decrease 

the oxygen vacancies, which therefore provide ITO surface with low conductivity due to 

the reduced free electrons [157]. In other words, the oxidative plasma treatments could 

result in an insulating oxide layer, which is clearly an obstacle against the electron transfer 

of the redox couple at the surface. In particular, the most electronegative F atoms could 
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more significantly remove the oxygen vacancies by etching of In and Sn at the ITO 

surface, and therefore lead to the lowest electron transfer rate.  

 

Another cause for the sluggish electron transfer kinetics is the increase in negative charge 

of the ITO surface resulting from exposure of the surface to the oxidative plasmas [249]. 

The negative charge would repel the highly negatively charged Fe(CN)6
4– from the surface 

and further impede electron transfer. However, this negative surface charge speculation is 

short of supporting evidence, as both anodic and cathodic peaks are positioned in the 

positive potential region. Furthermore, it can be argued that the negative charges formed 

during oxygen plasma treatment due to the dangling bonds (e.g., In-O• or Sn-O•) still exist 

once the ITO surface is in contact with the aqueous electrolyte [222]. In addition, the 

much larger peak potential separation caused by CF4-P treatment in our study obviously 

do not support the negative surface change elucidation, because there are no dangling 

bonds available in the Sn-F or In-F species.  

 

Interestingly, the peak cathodic current is larger than the anodic peak current for all 

samples, as shown in Table 3.2. The common phenomenon of the larger cathodic current 

in our CV experiments is speculated to be related to the double layer formed at the ITO-

solution interface. Refer to Figure 2.7, when ITO electrode is positively polarized, 

negative charges in the electrolyte (NO3
– in this study) will be accumulated on the 

electrode surface, forming a double layer. For redox reactions, Fe(CN)6
4– is oxidized into 

Fe(CN)6
3– by giving off an electron for anodic current, and Fe(CN)6

3– is reduced into 

Fe(CN)6
4– by capturing an electron for cathodic current. The negative charges of the 
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double layer repel more intensely against Fe(CN)6
4– than Fe(CN)6

3–, leading to lower 

anodic current and higher cathodic current. 

 

3.3.4 Contact Angle Measurements and Estimation of Surface 

Energy 

 

The contact angle measurements are carried out using a Ramé-Hart contact angle 

goniometer (Model 100-22) by the sessile drop technique [208] at 20 oC and 60% relative 

humidity. At the first, a substrate placed on the sample stage of the goniometer, and a 

liquid drip of 0.045 cm3 is delivered onto a horizontally oriented substrate from a micro-

syringe placed at a fixed height approximately 2 cm above the sample. Contact angle 

measurements are carried out by magnifying the cross-section of the sessile drop by a 

traveling microscope with a miniature protractor eyepiece. In this process, digital images 

of the contact angles are obtained by a CCD camera fit into the ocular of the microscope. 

Images are captured after a minimum of 10 s to allow the liquid and solid surfaces to 

interact completely. Both the displayed left and right angles are recorded and the average 

of them is taken to be the characteristic contact angle of the liquid droplet. To minimize 

statistical variation, the characteristic contact angle is measured for five droplets per 

sample. The average of the characteristic contact angles is then used to calculate the 

surface energy being analyzed. The error associated with the contact angle measurements 

is ±2o. Three samples for each treatment are prepared and the surface energy for the 

treated surface is the average value from the three samples.  

 



 96 

The surface energy (γs), sum of the dispersive (γs
p) and polar (γs

p) components, are 

calculated based on the geometric-mean method [205]. DI water and glycerol (from 

Aldrich Chem. Co.) are used as the probe liquids in this work, and their respective surface 

tensions (γ) and the corresponding polar component (γ 
p) and dispersive component (γ 

d) 

are given in Table 3.3. 

 

Table 3.3. Surface tensions (γ) and the corresponding polar component (γ 
p) and 

dispersive component (γ 
d) of water and glycerol, where γ is the sum of γ 

p
 and γ 

d.  
 

Probe Liquid 
γ

p 

(mJ/m
2
) 

γ
d 

(mJ/m
2
) 

γ
 

(mJ/m
2
) 

    

Water 51.0 21.8 72.8 

Glycerol 26.4 37.0 63.4 

 

More information about the estimation of surface energy based on the contact angle data 

can be found in Section 2.4. Surface polarities (χp), defined as the ratio of the polar 

component (γs
p) to total surface energy (γs) [115], i.e., χp = γs

p
 /γs, were also calculated. 

 

3.3.4.1 Change in Surface Energy and Polarity with Plasma 

Treatments 

 

Table 3.4 summarizes the contact angles, calculated surface energies and polarities of ITO 

samples treated with different plasmas. The details on estimation of surface energy by 

contact angle measurements have been described in Section 2.4. The results show that, γs 
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of ITO was remarkably increased by Ar-P, O2-P and CF4-P treatments, but slightly 

reduced by H2-P treatment, compared to the as-clean ITO sample. It should be noted that 

the Ar-P, O2-P and CF4-P increase γs
p, in the order of CF4-P>O2-P>Ar-P, but decrease γS

d. 

On the contrary, H2-P renders the highest γS
d and the lowest γs

p. CF4-P yields the 

maximum χp of 0.87 and hydrogen plasma, on the opposite end, the minimum χp of 0.62, 

compared to 0.65 of the as-clean ITO.  

 

Table 3.4. Contact angles, calculated surface energies and polarities for different 
plasma treatments of the ITOs. The total surface energy (γs) is the sum of the polar (γs

p) 
and dispersive (γs

d) components (γs = γs
p + γs

d) and the polarity (χp) is the ratio of the polar 
component to the total surface energy (χp = γs

p/γs). 
 

Contact angle (
o
) γs

p
 γs

d
 γs=γs

p +γs
d
 χχχχs=γs

p /γs 
Sample 

Water Glycerol (mJ/m2) (mJ/m2) (mJ/m2)  

As-Clean 40.7 34.3 36.6 19.8 56.4 0.65 

H2-P 42.6 34.8 34.1 21.2 55.3 0.62 

Ar-P 23.0 21.3 50.2 17.1 67.3 0.75 

O2-P 7.9 21.8 62.4 11.8 74.2 0.84 

CF4-P 11.9 27.3 65.1 9.5 74.6 0.87 

 

 

3.3.4.2 The Factors Governing Surface Polarity 

 

The results in Table 3.4 show that plasma treatments change ITO surface energy mainly 

through its polar component. It is interesting to understand how the plasma treatment 

changes the surface polarity. It is generally accepted that there are two origins of the polar 

component (γs
p) in surface energy (γs), the surface dipole and the hydrogen bonding. The 
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former is the predominating factor in influencing work function [222]. As-clean ITO 

surface is suspected to have various chemical species [128,232], such as M, M-O-M, M-

OH, as well as CHx, where M denotes metallic atoms (i.e., In and Sn in this study) and 

CHx the organic contaminants. These species collectively contribute to the polar 

component in surface energy.  

 

M-O-M bond is more hydrophobic [215] than its corresponding metallic bond due to its 

symmetric structure and resulting low polarity. Experimental studies showed that M-O-M 

has a tendency to be incompletely hydrolyzed [250-252]. Therefore, considerable 

quantities of OH groups are present on ITO surface, and have been estimated to be in the 

order of 1 OH group per 1 nm2 of ITO surface [253]. The polarity of M-OH bond is 

believed to be in the same order of M, which is supported by the fact that work function of 

ITO is independent of dehydoxylation and rehydroxylation [222]. In addition, hydrogen 

bonds have considerable contribution to the ITO surface energy [130] due to the existence 

of oxygen-containing species, such as M-O-M and M-OH. In addition, contamination of 

ITO surface must be considered, which might also influence the ITO surface energy 

[115,120,122]. The organic contaminants are insulating and have lower polarity due to 

their more covalent bond features. A fractional coverage of ITO surface with such 

hydrocarbon contaminants will decrease surface energy through reducing the exposure of 

M-O-M and M-OH species.  

 

For Ar plasma treatment, there should be no chemical reaction due to the inert property of 

Ar. However, decontamination effect of the Ar ion bombardment has been confirmed by 

the XPS results (as shown in Table 3.1). Although Ar plasma has also removed OH group 
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(i.e., dehydroxylation), the treated sample is easily rehydrolyzed in presence of water 

[222], leading to limited change in OH group concentration once exposed to humid air. 

Therefore, the increase in polarity after Ar plasma treatment can be attributed to the 

decontamination effect instead of dehydroxylation and rehydroxylation. An increase of 

about 37.2% in polar component of surface energy after Ar plasma, as shown in Table 3.4, 

indicates that the as-clean ITO surface used in this study is heavily contaminated. The 

decontamination by Ar plasma has been confirmed to promote hole injection 

[113,254,255], although it does not change work function [113,124,130].  

 

When the reductive H2 plasma is applied, physical adsorption of a hydrogen atom onto M-

O-M surface may result in a negative dipole as well. As shown in Table 3.4, however, 

minor change of the surface polarity after H2 plasma (lowered by only 0.3) implies that a 

fraction of M-O-M or M-OH has been reduced into M with higher surface energy that 

partially compensate the negative effect of the plasma treatment on polarity, which is 

supported by the lowest O:In ratio for the H2-P sample, as shown in Table 3.1. This is 

further supported by the fact that the dispersive component of surface energy (γsd) is raised 

after H2 plasma, by about 1.4 mJ/m2. Because the dispersive component of surface energy 

is directly related to London-van der Waals dispersion forces [199] that increase with the 

size of surface molecules/atoms in question [221], higher concentration of larger metals 

such as In and Sn firmly results in higher dispersive component of surface energy and 

lower work function due to the relative deficiency of oxygen atoms. Significant decrease 

in ITO work function by H2 plasma treatment has been reported by several research 

groups [256-258]. 
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In contrast, hydrocarbon contaminants on ITO surface can be effectively removed by the 

O2 plasma treatment [255], which contributes to the high surface polarity for the same 

reason as the Ar plasma treatment. More importantly, O2 plasma converts the M-OH or 

M-OOH into M-O• through OH group oxidation chemistry [222]. Because M-O• can be 

stabilized by ‘‘resonance’’ delocalization of unpaired spin density among lattice oxygen, it 

would be expected to be stable even in the presence of water [222]. As a consequence, this 

oxidation increases the ITO surface dipole layer, leading to higher polarity. Other 

hypotheses have also been proposed to explain the increase in polarity by the O2 plasma 

treatment, such as adsorption of oxygen anions and water [122,130]. However, 

hydroxylation or dehydroxylation has been proved not to be a primary factor in 

determining the work function of ITO, which is related predominantly to surface dipole 

[222]. Therefore, the O2 plasma treatment increases the surface polarity possibly through 

removing contaminants and producing highly polar and stable M-O• species. It should be 

noted that this speculation has not been proven experimentally.  

 

Compared to the case of O2-P, CF4-P is more effective for removing hydrocarbon 

contaminants from ITO surfaces. Furthermore, the XPS results show that the released 

fluorine atoms or ions during CF4-P treatment produce M-F bond, as shown in Figure 3.5 

and Figure 3.8. The higher negativity of F and asymmetric structure of M-F bond provide 

ITO surface with more positive dipole and stronger hydrogen bonding than M-O•, which 

might be the reason causing the highest surface polarity (χp) of 0.87, as shown in Table 3.4.  
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3.3.4.3 A Comparison with Si Sample 

 

To further understand the influencing factors on surface polarity, Si wafer samples with 2 

nm native oxide (SiO2) were also treated by the same plasmas as described above and the 

surface energies are listed in Table 3.5.  

 

Table 3.5. Surface energies and polarities of the Si wafer sample with 2 nm native 
oxide (SiO2) and the ITOs after different plasma treatments. The total surface energy (γs) 
is the sum of the polar (γs

p) and dispersive (γs
d) components, i.e., γs = γs

p + γs
d, and the 

polarity (χp) is the ratio of the polar component to the total surface energy, i.e., χp = γs
p/γs. 

 
Contact angle (

o
) γs

p
 γs

d
 γs=γs

p +γs
d
 χχχχs=γs

p /γs Silicon 

Sample Water Glycerol (mJ/m2) (mJ/m2) (mJ/m2)  

S1-Clean 23.0 21.3 50.2 17.1 67.3 0.75 

S2-Ar-P 9.1 4.3 54.0 18.1 72.1 0.75 

S3-H2-P 23.0 25.3 53.3 14.5 67.8 0.79 

S4-O2-P 5.3 7.0 55.9 17.0 72.9 0.77 

S5-CF4-P 43.1 44.0 42.8 12.1 54.9 0.78 

 

It was found surprisingly that unlike ITO, minor changes in surface polarity of SiO2 were 

observed after various plasma treatments. As Si has the similar electronegativity (in 

Pauling scale) as those of In and Sn, i.e., 1.8 for Si vs. 1.7 for In and 1.8 for Sn, minor 

difference in permanent dipole should exist between Si-O-Si and In-O-In or Sn-O-Sn. 

This suggests that other factors also contribute to the formation of dipole layer and/or the 

surface polarity. Besides their crystal structures, the most significant difference between 

SiO2 and ITO is that SiO2 is an insulator but ITO a conductor with considerable amount of 

free electrons. Therefore, the high sensitivity of ITO surface polarity to plasma treatment 

is related to its high conductivity. Furthermore, poly-crystalline ITO contains more defects 



 102 

than single crystal Si wafer, which may also influence the responsive behavior of ITO to 

plasma treatment.  
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Figure 3.10 Dependence of surface energy on atmospheric exposing time after oxygen 
plasma treatment for Si wafer and ITO samples. 
 

This speculation can be further verified by comparing ITO sample with Si wafer in surface 

energy decay with exposing time to the air, as shown in Figure 3.10. Compared with Si 

wafer, a greater drop in surface energy with time is detected for ITO sample, suggesting 

that ITO surface is inclined to the atmospheric carbon contaminants. The high energy 

defects on ITO surface are the preferential sites for adsorption of hydrocarbon molecules, 

leading to fast decay in surface energy. On the contrary, the surface energy decay of single 

crystal Si wafer is much slow due to its shortage of such high energy defects. 
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3.3.5 Effect of Plasma Treatments on Device Performance 

 

3.3.5.1 Device Configuration and Fabrication 

 

The ITO-coated glasses (Präzisions Glas & Optik GmbH, 20 Ω/� ) were routinely cleaned 

according to Section 2.5, followed by different plasma treatments as described in Section 

3.2.  Based on the as-clean and plasma-treated ITO substrates, the OLED devices with a 

configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al [NPB=N,N'-bis(1-naphthyl)-N,N'-

diphenyl-1,1'-biphenyl-4,4'-diamine and Alq3=tris(8-hydroxyquinolato) aluminum] were 

fabricated by subsequent deposition of the functional layers using the conventional 

thermal evaporation technique at a pressure of 5×10-4 Pa. According to the ITO surface 

conditions, the fabricated OLED devices were denoted in the same way as Section 3.2, 

viz., as-clean, Ar-P, O2-P, H2-P, and CF4-P, respectively. The deposition process starts 

with the evaporation of 60 nm thick NPB as the hole transport layer, followed by 60 nm 

thick Alq3 as the electron transport and light emissive layer emitting in the green with a 

broad emission peaking at 530 nm [12]. The deposition rate for the two organic 

semiconductor layers is 0.2 nm/s. After the deposition of organic layers, a 0.6 nm thick 

LiF electron injection layer and a 150 nm thick Al layer were deposited immediately as 

the cathode at rates of 0.03 nm/s and 0.3 nm/s, respectively. The aluminum cathodes were 

deposited through a shadow mask to form devices with active area of 0.09 cm2. The film 

thickness was monitored by a quartz thickness monitor. To ensure the valid comparison of 

the experimental results, all the functional layers were deposited successively on the 

differently treated samples during one vacuum run.  
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3.3.5.2 L-I-V Characteristics 

 

Basic characterization of the OLED devices involved measuring the device luminance (L) 

having a unit of candela per square meter (cd/m2) and current density (I) having a unit of 

milliamp per square centimeter (mA/cm2) as a function of the applied voltage (V), viz., 

luminance-current-voltage (L-I-V). The voltage was supplied by a computer driven 

Keithley 2400 source using a linear staircase of 0.2 V with a 0.2 s delay between 

measurements, and the current was measured by a Keithley 2000 multimeter. The 

luminous output from the light emission area of 0.09 cm2 was collected with a calibrated 

silicon photodiode. In addition, current efficiency having unit of candela per ampere (cd/A) 

and power efficiency (also called luminous efficacy) having unit of lumen per watt (lm/W), 

where lumen is SI unit of luminous flux and can be calculated by cd×sr, were obtained 

using the same system. All the L-I-V characteristics were carried out in a dark box and 

ambient atmosphere at room temperature. 

 

Figure 3.11(a) and 3.11(b) show, respectively, the I-V and L-V characteristics of the 

devices with ITO substrates pre-treated by different plasmas. In comparison with the 

control sample (as-clean), both the I-V and L-V curves shift to the lower voltage region for 

the devices with ITO pre-treated by Ar-P, O2-P and CF4-P, but to the higher voltage 

region for the device with H2-plasma treated ITO.  For instance, the operating voltages at 

luminance of 200 cd/m2 are 4.1, 5.6, 6.4, 7.0, and 7.2 V for the samples of CF4-P, O2-P, 

Ar-P, as-clean, and H2-P, respectively.  
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Figure 3.11 I-V (a) and L-V (b) characteristics of the OLED devices made with ITOs 
treated by different plasmas, with a device configuration of 
ITO/NPB(60nm)/Alq3(60nm)/LiF/Al. 
 

In the present study, I-V curve shift can be viewed as a direct indicator of the change of 

hole injection efficiency. The results in Figure 3.11(a) suggest that O2 and CF4-P 

treatments promotes the hole injection from ITO to HTL, while H2-P treatment depressed 

the hole injection efficiency, which is consistent with the previous findings that reducing 

treatments increase the required drive voltage whereas oxidative treatments decrease it 

[124]. In comparison, Ar-P is moderately helpful to enhance the hole injection, which is 
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similar to the results reported by Wu et al. [113], although there were other reports 

showing the negligible or even negative effect [115,124]. 

 

Figure 3.12(a) shows the current efficiency (cd/A) versus current density (mA/cm2) of the 

devices. Compared with the as-clean sample, current efficiency is in principle unchanged 

for Ar-P and H2-P treatments, but lowered by O2-P and CF4-P treatments. For instance, at 

a given current density of ~30 mA/cm2, current efficiencies of devices with as-clean, Ar-P, 

H2-P, O2-P, and CF4-P treated ITO substrates are 2.88, 2.84, 2.80, 2.55 and 2.34 cd/A, 

respectively. It is interesting to note that these results do not agree with those reported in 

the literature [124], where current efficiency is raised by O2-P and lowered by H2-P.  

 

In contrast to current efficiency, the power efficiency (lm/W) shows totally different effect, 

as shown in Figure 3.12(b). The device with CF4-P treatment is prominent over the 

measurable current density range. At about 11 mA/cm2, maximum power efficiencies are 

obtained for the devices with as-clean, Ar-P, H2-P, and O2-P treated ITO substrates in an 

order of O2-P (1.25 lm/W) > Ar-P (1.22 lm/w) > as-clean (1.14 lm/W) > H2-P (1.09 lm/W). 

However, the corresponding power efficiency for device with CF4-P treatment is up to 

1.67 lm/W which is ~34% higher than that of O2-P, although the value is not the 

maximum point of power efficiency.  
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Figure 3.12 Current efficiency (a) and power efficiency (b) vs. current density curves of 
OLED devices made with ITOs treated by different plasmas, with a device configuration 
of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al. 
 

For an electron injection limited device, excess hole injection will contribute to the device 

current but not the electron-hole recombination, leading to a lower current efficiency. The 

significant decrease of the operating voltage by the O2-P and CF4-P treatments of ITO 

indicates a remarkable improvement of hole injection, as shown in Figure 3.11. A 

comparison between Figure 3.11(a) and Figure 3.12(a) shows that the devices in this study 

are electron injection limited, as hole injection was improved by O2-P and CF4-P 
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treatments at the expenses of current efficiency. Therefore, the excess hole injection 

should be responsible to the lower current efficiencies due to the unbalanced charge 

injection and/or the recombination zone shift closer to the Al cathode [143]. For a hole 

injection limited device, the influence of plasma treatments on efficiency may be 

concluded differently, where the treatments raising hole injection should enhance the 

current efficiency of OLED devices. This may explain the controversial reports in 

literatures on the dependence of efficiency upon the same surface treatment.  

 

Power efficiency is another important performance indicator of OLED devices. It is clear 

that with the same luminance, power efficiency depends on not only the current density 

but also the driving voltage. Lowered driving voltage can significantly raise power 

efficiency, which causes the difference between current and power efficiencies in this 

study, as shown in Figure 3.12(a) and Figure 3.12(b), respectively. For instance, compared 

with the as-clean sample, the operating voltage (at 200 cd/m2) after CF4-P treatment is 

reduced by about 2.9 V. The considerable drop of driving voltage overwhelms the 

negative effect from the excess hole injection, leading to significant increase of power 

efficiency from 1.14 lm/W to 1.67 lm/W, or ~46%.   

 

3.3.5.3 Effect of Surface Properties on Hole Injection 

 

The AFM results in Section 3.3.1 have revealed that the plasma treatments under the 

operating conditions used in this study do not result in measurable change of the ITO 

surface morphology. XPS results in Section 3.3.2 show that the plasma treatments have 

significant effects on the ITO surface chemical states, which was further verified by the 
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CV results in Section 3.3.3. As discussed in Section 3.3.4, the concentration of polar 

species, such as OH, M-O•, and M-F dominates the surface energy (γs), especially its polar 

component (γsp), and therefore the surface polarity (χp = γsp/γs). Refer to Table 3.4, the 

calculated surface polarities of the different samples are in the sequence of CF4-P(0.87) > 

O2-P(0.84) > Ar-P(0.75) > as-clean(0.65) > H2-P(0.62). Compared to the I-V curves in 

Figure 3.11(a), the sequence in surface polarity is surprisingly identical to that of hole 

injection efficiency. In comparison, the ranking in operating voltage at luminance of 200 

cd/m2 are exactly conversed, viz., CF4-P(4.1V) < O2-P(5.6V) < Ar-P(6.4V) < as-

clean(7.0V) < H2-P(7.2V). This suggests that hole injection of the OLED devices in this 

study is controlled by the ITO surface polarity. 

 

In the OLED device fabrication, the hole transport material, NPB, is first deposited onto 

an ITO surface, and the ITO/NPB interface comes into being. As described in Section 

3.3.5.1, the cathode for electron injection was the same in all the devices based on the 

different ITO substrates, and the devices were fabricated in the same batch. The marked 

changes in hole injection are obviously attributed to the plasma treatments that have 

modified the ITO surfaces and then the ITO/NPB interfaces. O2-P and CF4-P significantly 

increase the surface polarities, which is expected to enhance hole injection through 

improving the adhesion of NPB onto the ITO surfaces and then forming good electric 

contacts [115]. This speculation will further be verified in Chapter 6 and discussed in 

Chapter 7.  
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3.5 Conclusion 

 

In this chapter, the plasma-treated ITO surfaces were investigated in morphology, surface 

composition and chemical states, electron transfer kinetics, and surface energy by AMF, 

XPS, CV, and contact angle goniometer, respectively. OLED devices based on the plasma 

treated ITO, in a structural configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al 

substrates, were also fabricated and characterized in luminance and electrical properties. 

The effect of plasma treatments on ITO surface properties and thus the hole injection 

efficiency across ITO/NPB interface, as well as their relations were discussed.  

 

AFM observations showed that the rms roughness values measured by AFM fall in the 

range of 3-4 nm for all plasma treated ITO samples, being similar with the as-clean ITO. 

The surface morphology is also not sensitive to the plasma-treating time in the range of 0-

10 min. XPS analysis revealed that as-clean ITO sample was heavily contaminated by 

substantial amounts of adventitious hydrocarbon. The H2-P treatment could not remove 

the carbon contaminants, but the Ar-P treatment was moderately effective for carbon 

decontamination. In comparison, O2-P was extremely effective to remove the adventitious 

hydrocarbon. For CF4-P treatment, carbon recontamination was not observed but new 

carbon species were found on the ITO surface. High O:In ratios on the O2-P and CF4-P 

ITO surfaces were attributed to surface oxidation and etching, respectively. The resulted 

polar surface species make the ITO surface less conductive, which was further verified by 

CV scans.  
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Based on the contact angle measurements, the calculated surface polarities on the different 

plasma treated samples are correlated to the hole injection efficiency of the OLED devices. 

More specifically, the higher the surface polarity, the higher the hole injection efficiency. 

The plasma treatments modify the ITO surfaces and then the ITO/NPB interfaces. O2-P 

and CF4-P significantly increase the surface polarities, which is expected to enhance hole 

injection through improving the adhesion of NPB onto the ITO surfaces and then forming 

good electric contacts.  

 
 



 112 

Chapter 4 

Electrochemical Treatment 

Abstract  

 

In this chapter, a brief overview on various ITO surface treatment processes for 

enhancement of hole injection efficiency, with the emphasis on stability issues, is first 

given. A new surface treatment method using electrochemical process is then proposed for 

hole injection improvement, with optimized treating parameters. Surface properties of the 

electrochemically treated ITO substrates are characterized in terms of morphology, surface 

composition and chemical states, electron transfer kinetics, as well as surface energy, with 

help of AFM, XPS, CV, and contact angle goniometer. OLED devices based on the 

electrochemically treated ITO surfaces, in configuration of 

ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, are fabricated and characterized in term L-I-V 

behaviors and electroluminescence (EL) efficiencies. The aim of the present work is to 

understand the dependence of ITO surface properties on treatment parameters and their 

influence on device performance. The results show that surface composition and surface 

energy are sensitive to the treatment applied voltage. Substantial improvement in hole 

injection and EL efficiencies was observed in devices based on the electrochemically pre-

treated ITO substrates at an optimized treatment voltage. The mechanisms behind this 

performance enhancement were discussed.  
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4.1 Introduction 

 

In Chapter 3 it was found that total surface energy of ITO was changed considerably by 

plasma treatment through its polar component, and the polar component of the ITO surface 

energy is affected more significantly than the dispersion component by oxygen plasma 

treatment. We therefore proposed that oxidative plasma treatments, such as O2-P and CF4-

P, significantly increased the ITO surface polarity via decontamination and formation of 

more dipolar species. The plasma surface treatments demonstrate their effectiveness, to a 

certain extent, in improving device performance. According to the previous report, 

however, the plasma treated ITO surfaces are highly sensitive to the environment. For 

example, the increased work function due to plasma treatment decays over time and returns 

to its original value within hours [120,128,259]. In fact, the surface instability is a common 

problem observed for all the surface treatments reported so far. For those surface 

treatments reported using chemical means [256,260,261], their effectiveness was found to 

be very sensitive to the type and the concentration of the solutions used, leading to 

difficulties in consistency and efficiency for process control. The limitations of the 

reported processes in reproducibility and stability of the resulting surfaces suggest that 

more effective and robust processes are required for ITO surface treatment.  

 

In this chapter, we report an electrochemical method for the surface modification of ITO 

film. Surface morphology, chemical composition, electron transfer kinetics and surface 

energy of the electrochemically treated ITO films are characterized by AFM, XPS, CV, 

and contact angle goniometer, with an emphasis on the correlation between the surface 
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properties and the treatment voltages. OLED devices based on the electrochemically 

treated ITO surfaces, with configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, are 

fabricated and characterized in term L-I-V behaviors and electroluminescence (EL) 

efficiencies. The aim of the present work is to understand the dependence of ITO surface 

properties on treatment parameters and their influence on device performance. The results 

show that surface composition and surface energy are noticeably sensitive to the treatment 

voltage. The performance of OLEDs can be significantly improved when the 

electrochemically treated ITO at an optimized treatment voltage is used as the anode 

material. The device turn-on voltage has been remarkably reduced and the EL efficiency 

has been notably increased, in comparison with the corresponding devices fabricated with 

the untreated ITO film. 
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4.2 Experimental 

 

Electrochemical treatment was performed in the same electrochemical processing system 

used for CV test, as illustrated in Figure 2.7, but the counter electrode in this case is a Pt 

plate with an active area of 30X30 mm2. ITO glass sheet (25X25 mm) with an exposed 

area of 0.93 cm2, defined by the size of a rubber o-ring, was used as the working electrode. 

The ITO sheet and the Pt counter electrode were arranged in parallel and the distance 

between the two electrodes was kept in 10 mm. The electrolytes were 0.1 M aqueous 

solutions of NaCl, KCl, NaOH, Na2CO3, Na2WO4, Na3PO4, K4P2O7, and Na4P2O7. The 

applied voltages were set and reported vs. NHE. 

 

At the first, the electrolyte and potential window were screened out for the electrochemical 

treatments with criteria of low water contact angle and invisible morphological change on 

the treated ITO surfaces, by using goniometer and AFM, respectively. After the screening 

work, the ITO samples were positively polarized in the selected electrolyte for 30 s at 

varied voltages from 1.2 to 2.8 V with a interval of 0.4 V, denoted as ECT+1.2V, 

ECT+1.6V, ECT+2.0V, ECT+2.4V, and ECT+2.8 V, correspondingly. An ITO sample 

was immersed in the selected electrolyte under the same working conditions without 

polarization (denoted as ECT+0.0V) to serve as the control for comparison. All the treated 

samples were thoroughly rinsed, via sonication in DI water, to remove the residual 

electrolyte, before the final drying by blowing with nitrogen. 
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The electrochemically treated samples were then characterized in terms of morphology by 

AFM, chemical bonding status by XPS, electron transfer kinetics by CV, and surface 

energy by contact angle methods. OLED devices based on the electrochemically modified 

ITO substrates, in configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, were fabricated 

and characterized in terms of L-I-V behaviors and EL efficiencies. The detailed 

information on the experimental procedures for ITO sample pre-cleaning, surface property 

characterization, as well as device fabrication and characterization are similar to those in 

Chapter 3.  
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4.3 Results and Discussion 

 

4.3.1 Selection of Electrolyte and Potential Window  

 

Table 4.1 summarized the contact angles (with probe liquid of DI water) of ITO samples 

positively polarized at a voltage of 2 V for 30 s in 0.1 M electrolytes of NaCl, KCl, NaOH, 

Na2CO3, Na2WO4, Na3PO4, K4P2O7, and Na4P2O7, respectively. θ0 in the table denotes the 

water contact angles measured instantly after the treatments, and θ24 the values obtained 

after keeping of 24 hours in air. The angle difference between the two measurements, ∆θ = 

θ24 - θ0 was also calculated and listed in the table.  

 

Table 4.1. Contact angles (with probe liquid of DI water) measured on the 
electrochemically-treated ITO surfaces at +2 V in different electrolytes and with different 
keeping time after the treatments.  
 

Contact 

Angle (
o
) 

As-Clean KCl NaOH Na2CO3 Na2WO4 Na4PO4 NaP2O7 K4P2O7 

θ0 41.0  29.8  13.0  19.5  13.6  13.6  <5* <5* 

θ24 41.5  34.0  48.0  40.0  33.0  35.5  25.0  15.5  

∆θ 0.5  4.2  35.0  20.5  19.4  21.9  20.0  10.5  

 
 

*Note: The measurable limit of the contact angle goniometer used in this study is 5o, and 
the value was used for calculation of ∆θ in the cases of K4P2O7, and Na4P2O7. 
 

The contact angles of the ITO surfaces measured immediately after the electrochemical 

treatment varied from 5 to 29.8o, with the maximum from KCl and the minimum from both 

Na4P2O7 and K4P2O7, which are significantly lower than that of the as-clean sample (41o). 

This result suggests that electrochemical treatment is an effective method for improvement 
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of ITO surface hydrophilicity or wetting property that is an important factor affecting the 

adhesion between a thin film and the substrate. Considering the ability to reduce contact 

angle, the electrolytes listed in the table can be ranked in descending sequence as Na4P2O7 

= K4P2O7 > NaOH > Na4PO4 = Na2WO4 > KCl. It can be seen that electrochemical 

treatments at +2 V in both Na4P2O7 and K4P2O7 electrolytes results in a contact angle less 

than 5o, which implies that pyrophosphate anions may take a role in the treatment. Contact 

angle decay, ∆θ= θ24 - θ0, provides the direct evidence about the stability of the 

corresponding treated surface. A comparison in contact angle decay (∆θ) demonstrates that 

K4P2O7 is a superior electrolyte, by the smallest θ0 and ∆θ. Therefore, 0.1 M K4P2O7 

electrolyte will be selected for electrochemical treatment of ITO surfaces and the 

electrochemical experiments in  the later part of the chapter are all based on the selected 

electrolyte. 
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Figure 4.1. Changes in thickness and roughness of ITO films electrochemically treated 
at varying voltages in 0.1 M K4P2O7 electrolyte. 

 

ITO samples were electrochemically treated in 0.1 M K4P2O7 by varying voltage from 0 to 

+5 V. The thickness and RMS roughness of the treated ITO surfaces were measured by 
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using ellipsometry and AFM, respectively, and plotted versus the treatment voltages in the 

Figure 4.1. It can be seen that the values of rms roughness for all the samples fall in a range 

from 4.0 nm for 0V to 3.3 nm for +5 V. Although the fluctuated changes in roughness with 

treatment voltage, a down trend in the gross can be observed with increasing voltage. 

However, the variation in surface roughness is not significant enough to differentiate the 

treatment voltages, because the measurements for the untreated ITO films drop in the same 

range, i.e. 3-4 nm. On the other hand, thickness measurements present a different scenario, 

where the changes in thickness are trivial for the samples treated at a voltage below +2.4 V, 

but considerable when a higher voltage is applied. More specifically, the measured 

variation of thickness is within 4 nm for the samples treated at voltages in between 0 and 

+2.4V, but as high as 64 nm of thickness reduction was found when the treatment voltage 

was increased from +2.4 V to +5.0 V. This result implies a noticeable etching of the ITO 

films, which has been verified in both low and high pH value solutions [111a,111b]. It is 

believed that ITO is etched in acidic (e.g., HCl) solutions through the breaking of surface 

bounds without change in the metal valence state, rather than by a reduction mechanism 

[112,262], which has widely used for ITO patterning. However, the electrolyte used in this 

study is basic in nature, suggesting that DC sputtered polycrystalline ITO film is 

electrochemically unstable even in basic solution. This is further supported by AFM 

observation. 
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Figure 4.2. AFM (phase mode) images of ITO surfaces electrochemically treated at 0 
V (a), +2.0 V (b), +2.8 V (c), and +3.2 V (d) in 0.1 M K4P2O7 electrolyte. The scan area is 
1×1 µm2. 
 

AFM phase mode (see Section 2.1) images of the ITO surfaces electrochemically treated at 

0, +2.0, +2.8, and +3.2 V were obtained using a Digital Instruments Nanoscope IIIA AFM 

and shown in Figure 4.2. Compared with the untreated ITO sample, no significant change 

in grain-subgrain textures [95,99] (Refer to Section 1.3.2 for details) is observed for the 

sample treated at +2.0V. It seems that the subgrains are slightly leveled after the treatment. 

However, the grain-subgrain textures on ITO surface are trailing off after the treatment at 

+2.8 V, even disappearing when a voltage of +3.2 V is applied. The AFM observations are 

consistent with the measurements in RMS roughness and thickness, shown in Figure 4.1. 

These results demonstrate that ITO surfaces were electrochemically etched at treatment 

voltages of  ≥ +2.8 V. 
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4.3.2 Surface Analysis by XPS 

 

XPS was used to characterize the chemical compositions and states of ITO surfaces pre-

treated by electrochemical process. The C 1s binding energy (~285 eV) of atmospheric 

carbon contaminants was used as a reference [176] to calibrate the spectra obtained from 

the electrochemically treated ITO surfaces. The XPS experimental details are similar to 

Section 3.3.2. 

 

4.3.2.1 XPS Spectra and Chemical Compositions   

 

Wide-scan XPS spectra (from 100 to 800 eV) of the untreated and electrochemically 

treated ITO substrates are shown in Figure 4.3. Ssignificant photoelectron peaks at the BEs 

of 530, 445, 486, and 285 eV, corresponding to O 1s, In 3d5/2, Sn 3d5/2, and C 1s core-level 

signals, respectively, are clearly detected.  Other peaks, such as In 3d3/2, In 3p3/2, Sn 3d3/2, 

Sn 3p3/2, as well In 4s, are also marked for reference. More importantly, weak peaks 

(displayed as insets in the figure) at about 133, 292, and 295 eV are detected on some 

surfaces, which are assigned to P 2p3/2, K 2p3/2 and K 2p1/2, respectively.  
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Figure 4.3. Wide-scan XPS spectra of ITO surfaces electrochemically treated at 
varying voltages in 0.1 M K4P2O7 electrolyte. 
 

With the assumption that the ITO surface was homogeneous in chemical composition 

within the XPS sampling area and depth, the chemical compositions of various ITO 

surfaces were calculated by using the core level peak areas and their relative sensitivity 

factors. In practice, the calculation work was carried out by a build-in program of the XPS 

system. Table 4.2 summarizes the XPS analysis results of these spectra obtained from ITO 

surfaces pre-treated at different voltages, in terms of the atomic concentration and ratios. 

The results clearly show the changes in surface composition after the electrochemical 

treatments. 

 

Carbon content changes from 16.4% of the sample without imposing voltage (i.e., 

ECT+0.0V) to 11.3, 12.6, 12.7, 15.5 and 20.6 % after electrochemical treatments at 

voltages between +1.2 and +2.8 V with an interval of 0.4 V, respectively. The relative 
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oxygen content was increased from 49.4% of ECT+0.0V to 51.6, 53.5, 54.0, 55.3 and 

50.7%, correspondingly. Notably, it was found that element P was found on both 

ECT+0.0V and ECT+2.8V, but element K on ECT+0.0V only.  

Table 4.2. Changes in surface atomic concentrations (derived from the relative XPS O 
1s, Sn 3d5/2, In 3d5/2, C 1s, P 2p3/2, and K 2p3/2 spectral area ratios) for ITO substrates 
electrochemically treated at different voltages in 0.1 M K4P2O7 electrolyte. 
 

ITO Chemical Composition in at.%  Ratios 

Sample O In Sn K P C  In:Sn O:In 

ECT+0.0V 49.4  25.7  2.7  3.6  2.4  16.4  9.72  1.92  
ECT+1.2V 51.6  32.7  3.4  - - 11.3   9.69  1.61  
ECT+1.6V 53.5  30.7  3.2  - - 12.6   9.54  1.74  
ECT+2.0V 54.0  30.2  3.2  - - 12.7   9.52  1.79  
ECT+2.4V 55.3  26.4  2.9  - - 15.5   9.19  2.10  
ECT+2.8V 50.7  24.2  2.8  -  1.8  20.6   8.50  2.10  

 
 

The XPS analysis reveals that the electrochemical treatment is an effective method to 

remove the adventitious carbon contaminants adsorbed on the ITO surfaces. The high O:In 

ratio on the ECT+0.0 surface is attributed to the presence of the pyrophosphate 

contaminant. The O:In and O:Sn ratios increase with the treatment voltage, implying the 

presence of unsaturated oxidation states of In and Sn on the pristine ITO surface, such as 

In2Ox<3 and SnOx<2, as reported by other research groups [176,230,239,240]. Another 

reason causing the increase in O:In and O:Sn ratios is electrochemical etching. 

Furthermore, the decrease in In:Sn ratio with moving up the treatment voltage suggests that 

more In than Sn atoms were etched out from the ITO surfaces by the electrochemical 

process. In particular, the In:Sn ratio decreases from 9.71 of ECT+0.0V to 8.50 of 

ECT+2.8. The electrochemical etching leads to remarkable change in topography of the 

ITO surface, as shown in Figure 4.2.  
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It should be noted that such a chemical composition analysis is too coarse to provide good 

understanding of the surface properties. For example, possible contributions to the 

measured oxygen content on the ITO surface include ITO, metal hydroxides, carboxylic 

compounds, water, as well as phosphates as contaminants or new chemical species. 

Therefore, the information disclosed by the atomic percentages is limited. However, the 

atomic composition is helpful for investigating the chemical bonding status when it is used 

in combination with the analysis of chemical shifts.  

 

4.3.2.2 Analysis of Surface Contamination 

 

As shown in Table 4.2, a large amount of carbon was detected for all the 

electrochemically-treated ITO samples. The presence of carbon residues is inevitable 

because the electrochemical treatments were carried out in the ambient. Furthermore, the 

treated samples were exposed to the atmosphere prior to XPS analysis, as in the case of 

plasma treatments. Compared with the E+0.0V sample, the carbon decontamination by the 

electrochemical treatments at voltages from +1.2 to +2.4 V is discernible, but not 

significant. This is obviously related to the recontamination of the electrochemically 

treated ITO samples. In comparison, ECT+2.8V sample surface adsorbs more carbon 

contaminants, which can be attributed to the existence of P-containing compounds. 

 

According to previous reports, oxidative treatments such as oxygen plasma and UV-ozone 

are effective processes for removing the carbon contaminants adsorbed on the ITO surfaces 

[93,113,222]. For electrochemical treatments, the carbon decontamination is clearly related 
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to the high density of oxygen released from the positively polarized ITO surface. A similar 

electrochemical decontamination was also reported by Comninellis et al [263,264], where 

SnO2 was used as an anode for waste water treatment. They observed that organic 

pollutants were destroyed by electro-oxidation at a potential more positive than 1.0 V 

against SCE.  
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Figure 4.4. XPS C 1s, K 2p3/2 and K 2p1/2 spectra of the ITO surfaces 
electrochemically treated at different voltages in 0.1 M K4P2O7 electrolyte, normalized to 
the spectrum of ECT+0.0V sample. 
 

Figure 4.4 shows that besides the main peak at about 285 eV that serves as a BE reference, 

a weak and broad higher energy component with BE > 290 eV is also discernible for 

ECT+0.0V. The wider and asymmetric peak is obviously due to spectra overlap. The peak 

was Gaussian-fitted using two sub-peaks at 295.1 and 292.9 eV, being assigned to K 2p1/2 

and K 2p3/2 (K4P2O7) [174], respectively. The presence of K4P2O7 on ECT+0.0V surface is 

supported by the fact that P 2p3/2 peak (at the BE of 132.6 eV) were detected on the same 

sample, as shown in Figure 4.5. The adsorbed K4P2O7 [265] contaminant originates from 
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the electrochemical treatment solution, most likely due to the insufficient rinsing after the 

treatment (i.e., immersing without applied voltage).  
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Figure 4.5. XPS In 4s and P 2p3/2 spectra of the ITO surfaces electrochemically treated 
at different voltages in 0.1 M K4P2O7 electrolyte. 
 

A comparison between Figure 4.4 and Figure 4.5 shows that the P 2p3/2 peak (at 134 eV) is 

also discernible for ECT+2.8V, but no K signal was detected on the sample surface. This 

suggests that a new P-containing compound rather than K4P2O7 was formed on the ITO 

surface. Compared with ECT+0.0V, the P 2p3/2 peak had shifted about +1.4 eV (from 

132.6 to 134 eV), indicating that InPO4 could have been formed [266].  

 

4.3.2.3 Elucidation of Oxygen Content and O 1s Spectra 

 

Figure 4.6 shows the O 1s spectra detected from the ITO surfaces after electrochemical 

treatment at different voltages, normalized to the spectrum of ECT+0.0V sample. Two O 



 127 

1s peaks were found, one positioned at the lower BE (about 530 eV) for all the samples, 

the other at the higher BE (about 531.5 eV) for ECT+0.0V and ECT+2.8V samples only. 

The O 1s peak at 530.1 eV is derived from the O bonded to In and/or Sn atoms (i.e. bulk 

ITO), as discussed in Chapter 3. The O1s peak at higher binding energy for ECT+0.0V and 

ECT+2.8V samples is obviously attributed to the existence of phosphates, as P is more 

electronegative than In an Sn. Compared with ECT+0.0V sample, the O 1s peak at higher 

BE for ECT+2.8V is shift slightly (about +0.4 eV) to the higher energy band, likely due to 

the higher Pauling-scale electronegativity of In (1.7) than K (0.9). 
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Figure 4.6. XPS O 1s spectra of the ITO surfaces electrochemically treated at different 
voltages in 0.1 M K4P2O7 electrolyte, normalized to the spectrum of ECT+0.0V sample. 
 

From Figure 4.6, it is also noted that all the O 1s spectra are asymmetric and their long tails 

extend to higher BE bands, indicating more oxygen-containing species are included 

besides those from phosphates and ITO, which is similar to those in the case of plasma 

treatments. However, their assignments are difficult due to the extensive overlap of the 

corresponding O 1s spectra. As the aqueous electrolyte was used for the electrochemical 
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treatment, it was unavoidable for H2O to be present on the ITO surfaces in a form of either 

molecular absorbent or metallic hydroxides (i.e., In-OH and Sn-OH species) [233,234]. As 

the electronegativity of element H is 2.1 (in Pauling-scale), which is higher than those of In 

and Sn, the BEs of O 1s peaks for H-O-H, In-O-H, and Sn-O-H are expected to be located 

at higher BE regions than that for pure ITO (BE = 530.2 eV). For example, BEs from 532.1 

to 533 eV have been attributed to the oxygen in hydroxyl groups at ITO surface as well as 

adsorbed water [97,158,236,237]. Nevertheless, the high energy extension of O 1s peaks in 

this study is mainly due to the existence of O-H bonds on the ITO surfaces. 

 

4.3.2.4 Oxidation States of In and Sn Atoms 

 

The In 3d5/2 and Sn 3d5/2 core-level spectra for the electrochemically pre-treated ITO 

samples are shown in Figure 4.7. The results show that the In 3d5/2 and Sn 3d5/2 peaks 

measured from ECT+0.0V and ECT+1.2V samples are located at the lower BEs of 443.6 

and 485.7 eV, respectively, corresponding to the metal In and Sn, as well as the 

nonstoichiometric oxide species (e.g., In2Ox<3 and SnOx<2) [176,230,239,240]. The 

shoulders on the higher BE bands for the two samples are attributed to In2O3 and SnO2 

[239,240]. According to the previous reports [223,241-244], metal In/Sn and In2Ox<3 and 

SnOx<2 might be reduced from ITO during sputtering process, which results in the lower 

binding energy peaks of ECT+0.0V and ECT+1.2V samples. The similarity in spectral 

lineshape from the two samples suggests that the electrochemical pretreatment at voltages 

≤ +1.2 V did not change the oxidation states of In/Sn atoms on the ITO surface in this work.  
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Figure 4.7. XPS spectra of Sn 3d5/2 and In 3d5/2 for ITO surfaces electrochemically 
treated at different applied voltages in 0.1 M K4P2O7 electrolyte.  
 

When the treatment voltage is higher than +1.6 V, the peaks of In 3d5/2 and Sn 3d5/2 appear 

at the higher BEs of 444.3 eV and 486.4 eV, respectively. In these cases, the two peaks 

correspond to the saturated oxidation states of the two metals, i.e., In3+ from In2O3 and Sn4+ 

from SnO2, respectively [97,176,217,230,246,257,247]. Compared to the ECT+0.0V and 

ECT+1.2V samples, the chemical shift of about +0.7 eV implies that surface oxidation 

took place in the electrochemical treatments at voltages ≥ +1.6V.  

 

4.3.2.5 Oxidative Processes Controlled by Treatment Voltage 

 

In the present study, positive voltages were imposed on ITO samples in the K4P2O7 

electrolyte. If ITO and P2O7
4− in the electrolyte are stable in the potential window 

(0~+2.8V against NHE), half-cell reactions listed below at the positively polarized 

electrode are likely to take place under certain conditions, according to the literature [267]. 
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O2(g) + H2O + 2e−     HO2
− + OH−   +0.076 

O2(g) + 2H2O + 4e−      4OH−    +0.401 
O2(g) + 2H+ + 2e−    H2O2    +0.682 
O2(g) + 4H+ + 4e−    2H2O    +0.815 ([H+] = 10-7 mol dm-3) 
HO2

− + H2O + 2e−    3OH−   +0.88 
O2(g) + 4H+ + 4e−    2H2O   +1.229 
O3(g) + H2O + 2e−    O2(g) + 2OH−  +1.24 
O3(g) + 6H+ + 6e−    3H2O   +1.501 
H2O2 + 2H+ + 2e−    2H2O   +1.776 
O3(g) + 2H+ + 2e−    O2(g) + H2O   +2.076 

 

 

 

 

 

 

 

 

 

 

 

It can be seen that when the treatment voltage is below +1.229 V, less oxygen will be 

released because the concentration of OH− and/or H+ species in the electrolyte is small, 

which is the case where a voltage of +1.2 V is applied in the present study. It is expected 

that a treatment voltage between 0 V and +1.229 V may not result in intense oxidation of 

the ITO surface and therefore ineffective in decontamination. As a result, no significant 

change in surface oxidation states is observed after electrochemical treatment at +1.2 V, as 

shown in Figure 4.7. However, a different situation appears when the treatment voltage 

reaches +1.229 V, where concentrated oxygen atoms are released on the anode surfaces 

due to the electrolysis of water. Moreover, with the increase of the treatment voltage from 

+1.24 V to +2.07 V, more reactions will take place on the anode surface with the formation 

of oxidative species, such as O3 and H2O2. The highly active oxygen atoms released on the 

anode surface are expected to effectively remove the organic contaminants on the ITO 

surface. More importantly, the pre-treatments at voltages from +1.6 to +2.8 V  can oxidize 

some In2Ox<3 and SnOx<2 species into their saturated oxidation states, i.e., In2O3 and SnO2 

[97,176,217,230,246,257,247], respectively, as shown in Figure 4.7. As mentioned 

previously, however, higher treatment voltages of ≥ +2.8 V leads to serious 

electrochemical etching.  
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4.3.3 ITO Surface Passivation by Electrochemical Treatments  

 

In Figure 4.8, current was plotted against treatment voltage for ITO samples with different 

treatment time from 5 to 30 s in an aqueous electrolyte containing 0.1 M K4P2O7. It can be 

seen that at +1.2 V, current was not responding to the treatment time. Starting from +1.6 V 

the current flow decreases with the treatment time, in particular for high voltage. During 

the electrochemical treatments, two sources of current can be anticipated. The first is the 

current required to charge the capacitive interface between the electrolyte and the working 

electrode. It is obvious that a time of more than 5 s is most likely enough to complete the 

charging processes. This is supported by the fact that at the treatment voltage of +1.2 V, no 

significant change in current is observed with increasing treatment time from 5 s to 30 s. 

The second is the Faradic current originated from transfer of electrons across the interface 

between the electrolyte and the ITO working electrode under study, implying the existence 

of redox reactions near and/or on the electrode surface, e.g. electrolysis of water. The very 

low current at the treatment voltage of +1.2 V is likely to have been generated by the 

presence of atmospheric oxygen in the electrolyte, which can promote water electrolysis at 

lower applied voltage, as described in last section. In other words, a voltage of +1.2 V is 

lower than the electrochemical potential required for the main redox reactions.  
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Figure 4.8. Current-voltage curves for ITO samples with 2×2mm active area, treated in 
an aqueous electrolyte containing  0.1 M K4P2O7 for varied treatment time from 5 to 30 s. 
 

The decreased current with treatment time indicates an increased resistance against the 

charge transfer across the interface, which is likely attributed to the passivation of the ITO 

surface.  It is also noted that the current-voltage behaviors do not follow the Nernst 

equation. This is because there is no exotic redox couples existed in the electrolyte and the 

redox reactions rise from the electrolysis of H2O in the electrolyte. Therefore, the 

concentration of conducting ions is positively changed with increasing treatment voltage. 

 

In order to confirm the existence of passivation on ITO surface during the electrochemical 

treatment, a Pt plate was used to replace the ITO sample and treated under the same 

conditions. A comparison of the current-voltage curves between the two samples treated 

for 30 s is shown in Figure 4.9. It can be seen that when treated at +1.2 V, the current flows 

for both Pt and ITO samples are close to zero. However, with increasing voltage, the 

current flows for Pt and ITO samples are increased but at different rates, i.e., the more 

current flows through Pt than ITO for the voltage window used in this study. It appears that 
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the higher the treatment voltage, the lager the difference. As Pt is chemically and 

electrochemically inert in the working conditions, it is reasonable to assume that no oxide 

that can significantly change the Faradic current is formed in the working conditions of this 

study. It is then expected that the lower current flow through ITO sample is due to the 

lower conductivity in the bulk and surface of ITO. Assuming that the bulk conductivity of 

ITO is constant in this study, the lower rates of current change with treatment voltage for 

the ITO sample is clearly related to the higher resistance against charge transfer across the 

ITO/electrolyte interface, which indicates that ITO surface has been passivated.  
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Figure 4.9. Current-voltage curves for Pt and ITO samples with 2×2 mm active area, 
treated in an aqueous electrolyte containing  0.1 M K4P2O7 for 30 s. 
 

Conductivity of ITO films is attributed to both Sn dopants and oxygen vacancies of the 

oxide lattice (duo to the presence of In2Ox<3 and SnOx<2 species) [97,99,100]. The change 

in surface conductivity of ITO films during electrochemical treatment is attributed to the 

surface oxidation by the oxygen released due to water electrolysis and the electrochemical 

etching of the ITO surface, which have been verified by the XPS results. Both the causes 
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lead to the lower conductivity by reducing the surface oxygen vacancies [97,100].  In 

addition, the surface passivation could be severer when insulating metal phosphates are 

formed on the ITO surface, as discussed in the last section.  

 

CV scans were carried out using a potentiostat (Solatron Instruments) and a standard three-

electrode electrochemical cell. Experimental details of the CV scans are similar to those in 

Section 3.3.3.  The voltammograms of the electrochemically treated ITO electrodes at 

different treatment voltages in a solution of 1 mM [Fe(CN)6]
3–/4– redox couple in 0.1 M 

KNO3 supporting electrolyte are shown in Figure 4.10. Peak potentials and peak currents 

are summarized in Table 4.3. Similar to the plasma treatments, the peak potential 

separations (∆Ep = Epa - Epc) for all the electrochemically treated samples are much larger 

than 58 mV and the Ipa/Ipc ratios deviate from unity, implying irreversible electrochemical 

conditions.  Compared with that of the ECT+0.0V sample, peak potential separation is 

almost not changed after electrochemical treatment at +1.2V, slightly decreased for the 

ECT+1.6V sample, slightly increased for the ECT+2.0V and ECT+2.4V samples, but 

significantly increased for the ECT+2.8V. Similarly, the peak current is also changed with 

the treatment voltage, but in the opposite way. 
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Figure 4.10. Cyclic voltammograms for ITO electrodes electrochemically treated at 
voltages from 0 to 2.8 V. Electrolyte: 1.0 mM Fe(CN)6

3–/4–  in 0.1 M KNO3. Reference 
electrode: Ag/AgCl (3 M KCl). Scan rate: 100 mV/s. 
 

As mentioned in Chapter 3, peak potential separation is a function of the rate constant for 

electron transfer, which decreases as redox couples are unable to reach the electrode 

surface. If the CV test parameters are kept the same for all samples, the major factor 

causing the difference in peak potential separation can be attributed to the varied electrode 

surface conditions. The reduced peak currents and increased peak potential separations in 

the cyclic voltammograms with the Fe(CN)6
3–/4–  redox couple are possibly caused by 

either partial blocking of the ITO electrode surface or hindering of the redox couple 

diffusion to the electrode surface. The XPS analysis reveals that ECT+0.0V sample surface 

was contaminated by substantial amounts of adventitious carbon. In addition, the complete 

hydrolysis products of the ITO surface, i.e., In(OH)3-like species, may not be strongly 

bound to the ITO lattice [214]. The presence of the hydrocarbon contaminants and the 

insulating hydroxides on ITO surface reduce the effective surface area for electron transfer. 
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Liau and co-workers [212] also found that ITO surface contained electrochemical “hot 

spots” and “dead regions”, which can be attributed to the inhomogeneous distribution of 

oxygen vacancies [213]. However, the electrochemical dead regions in this study are 

obviously related to the areas covered by the insulating contaminants or hydroxides. 

 

Table 4.3. Summary of CV characteristics extracted and calculated from Figure 4.10, 
including peak anodic potential (Epa), peak cathodic potential (Epc), peak potential 
separation (∆Ep)formal redox potential (Epa+Epc)/2, peak anodic current (Ipa), peak cathodic 
current (Ipc), and Ipa/Ipc ratio. 
 
 

ITO 
Sample 

Epa 

(mV) 
Epc 

(mV) 
∆Ep 

(mV) 
(Epa+Epc)/2 

(mV) 
Ipa 

(mV) 
Ipc 

(mV) 
Ipa/Ipc 

 

ECT+0.0V 290 145 145 217.5 0.232 0.243 0.955 

ECT+1.2V 290 146 144 218.0 0.236 0.246 0.959 

ECT+1.6V 282 143 139 212.0 0.241 0.255 0.945 

ECT+2.0V 313 129 184 221.0 0.215 0.223 0.964 

ECT+2.4V 315 126 189 220.5 0.209 0.216 0.968 

ECT+2.8V 325 100 225 212.5 0.166 0.175 0.949 

 

The XPS results also demonstrate that the electrochemical treatments at voltages ≤ +1.2 V 

were not effective to remove the hydrocarbon contaminants. This is further verified by the 

CV results, as no significant change in cyclic voltammogram occurred after 

electrochemical treatment at +1.2 V. In comparison, the reduced separation of peak 

potential and increased peak current for the ECT+1.6V sample imply the removal of the 

contaminants, at least to a certain extent, which is consistent with the results from XPS 

analysis. With further increase in the treatment voltage, more reactions will take place on 

the anode surface with the formation of oxidative species, such as O3 and H2O2 [267]. The 

oxidative species released on the ITO surfaces are expected to oxidize not only the carbon 
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contaminants but also the nonstoichiometric oxide species, such as In2Ox<3 and SnOx<2. 

Therefore, the larger peak potential separation and smaller peak current observed for the 

ITO pre-treated at voltages from 2.0 to 2.8 V imply the existence of obstacles against the 

electron transfer of the redox couple at the pre-treated ITO surface. This is possibly due to 

the surface oxidation and electrochemical etching, which have been proved by the results 

in Figure 4.8 and Figure 4.9. This is consistent with the increase in O:In ratio and the 

decrease in In:Sn ratio with treatment voltage, as shown in Table 4.2. Besides the surface 

oxidation and the electrochemical etching, other causes may contribute the largest peak 

potential separation and the lowest peak current for ECT+2.8. XPS results show the 

presence of insulating metal phosphates on the sample surface, which should also be 

responsible to the CV behaviors.  

 

4.3.4 Contact Angle and Estimation of Surface Energy 

 

The contact angle measurements were carried out using a Ramé-Hart contact angle 

goniometer (Model 100-22) with DI water and glycerol as the probe liquids. The surface 

energies (γs), sum of the polar (γs
p) and dispersive (γs

d) components, i.e., γs = γs
p + γs

d,  are 

calculated by the geometric-mean method [205] using the measured contact angles. More 

information about the estimation of surface energy based on the contact angle data can be 

found in Section 2.4.  Surface polarities (χp), defined as the ratio of the polar component 

(γs
p) to the surface energy (γs) [115], i.e., χp = γs

p
 /γs, were also calculated. 
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4.3.4.1 Changes in Surface Energy with Treatment Voltage 

 

Table 4.4 summarizes the γs
p, γs

d, γs, and χp of the ITO samples electrochemically treated at 

different voltages. The corresponding contact angles, based on which the surface energies 

were calculated, are also listed in the table for reference. The results show that surface 

wettability (i.e., water contact angle), γs
p, γs

d, γs, and χp are strongly dependent on the 

treatment voltage. 

 

Table 4.4. Surface energies and polarities of ITO samples pre-treated at different 
voltages, based on contact angle measurement and calculation by geometric mean method. 
The total surface energy (γs) is the sum of the polar (γs

p) and dispersion (γs
d) components 

(γs = γs
p + γs

d) and the polarity χp is the ratio of the polar component to the total surface 
energy (χp = γs

p/γs).  
 

ITO Contact angle (o) γs
p γs

d  γs=γs
p+γs

d  χp=γs
p/γs 

Sample Water Glycerol (mJ/m2) (mJ/m2) (mJ/m2)  

ECT+0.0V 49.4 35.2 24.1 28.8 52.9 0.46 
ECT+1.2V 51.5 36.8 22.2 29.6 51.8 0.43 
ECT+1.6V 23.8 18.9 47.8 18.9 66.8 0.72 
ECT+2.0V 16.9 29.7 63.6 9.4 72.9 0.87 
ECT+2.4V 13.8 21.9 59.1 12 72.1 0.82 
ECT+2.8V 50.2 34.4 22.3 30.9 53.2 0.42 

 

From Table 4.4, it can be seen that the electrochemical treatment at +1.2 V results in 

negligible change in γs, as it decreases from 52.9 mJ/m2 for the ECT+0.0V sample to 51.8 

mJ/m2. With increasing the treatment voltage, γs increases until the maximum value of 72.9 

mJ/m2 is reached for ECT+2.0 V, which is comparable to that from the oxygen plasma 

treatment (74.2 mJ/m2). However, further increase of the treatment voltage from +2.0 V to 

+2.8 V significantly reduces γs from 72.9 mJ/m2 to 53.2 mJ/m2. It is also found that the 
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electrochemical treatments change both γs
p and γs

d in a reverse manner, and a higher χp 

normally corresponds to a higher γs
p and a lower γs

d. For instance, +2.0 V treatment yields 

the maximum χp of 0.87 with γs
p  = 63.6 mJ/m2 and γs

d = 9.4 mJ/m2, while +2.8 V treatment 

gives the minimum χp of 0.42 with γs
p = 22.2 mJ/m2 and γs

d = 29.6 mJ/m2. In short, the most 

polar surface can be obtained by the electrochemical treatment at a treatment voltage near 

+2.0 V, while treatments at a voltage of ≤ +1.2 V or ≥ +2.8 V may cause the surface 

polarity to change less or to decrease. 

 

4.3.4.2 Surface Energy Controlled by Chemical States 

 

It is interesting to understand how the electrochemical treatment changes the surface 

energy of ITO films. Table 4.4 has shown that surface energy is closely correlated to the 

treatment voltage used for the electrochemical treatment of ITO surface. In fact, the 

apparent dependence of the surface property on the treatment voltage is determined by the 

changes in chemical bond of ITO surface. As mentioned above, contamination and 

oxidation state are the two major factors controlling γs, especially γs
p.  

 

The organic contaminants are insulating in nature and have lower χp due to their more 

covalent chemical bonds. A fractional coverage of ITO surface by CHx contaminants will 

decrease γs, through reducing the exposure of M-O-M and M-OH polar species, and 

therefore the dipoles and hydrogen bonds, as described in Chapter 3. Thus, the low γs of 

ECT+0.0V (see Table 4.4) is partially related to the adventitious carbon species. As 

mentioned above, the voltage used for the electrochemical decontamination must be higher 
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than +1.229 V (i.e., the potential required for oxygen release), which is experimentally 

supported by other research groups [263,264]. This is the reason why no significant change 

in surface polarity is observed after the electrochemical treatment at +1.2V.  

 

It is generally accepted that there are two origins of the γs
p in γs, the surface dipole and the 

hydrogen bonding. Extensive hydroxylation of the ITO surface may take place by positive 

polarization in the aqueous electrolyte. In such a way, a substantial amount of M-OH 

species, which is more hydrophilic than M-O-M species [215], will be formed on the ITO 

surface during the electrochemical process. In addition, hydrogen bonds can considerably 

contribute to the ITO surface energy [130] due to the existence of M-OH species. It is 

obvious that hydrogen bonding is present for the M-OH species rather than M and CHx 

species. As a consequence, a surface covered with a high concentration of M-OH species 

shows high polarity, which is increased with treatment voltage.  

 

It should be noted that when the treatment voltage is higher than +2.4 V (e.g., +2.8 V in 

this study), indium phosphate may be generated and adhered onto the ITO surface, as 

shown in Figure 4.5 and Table 4.2. Similar to the hydrocarbon contaminants, the metal 

phosphate layer stops the formation of the polar M-OH bonds. In addition, the highest 

carbon content of 20.55 at.% was detected on ECT+2.8, which is clearly related to the 

presence of the metal phosphates. As a consequence, the surface energy was reduced.  
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4.3.5 Effect of Electrochemical Treatments on Device Performance 

 

4.3.5.1 Device Configuration and Fabrication 

 

The ITO-coated glasses (Präzisions Glas & Optik GmbH, 20 Ω/� ) were routinely cleaned 

according to Section 2.5, followed by electrochemical treatment at different voltages as 

described in Section 4.2 and Section 4.3.1.  Based on the electrochemically pre-treated ITO 

substrates, the OLED devices with a configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al 

were fabricated using the same procedures and deposition parameters described in section 

3.3.5.1. According to the treatment voltages of +0.0, +1.2, +1.6, +2.0, +2.4, and +2.8 V, 

the fabricated OLED devices were denoted in the same way as the ITO samples, viz., 

ECT+0.0V, ECT+1.2V, ECT+1.6V, ECT+2.0V, ECT+2.4V, and ECT+2.8V, respectively.  

 

4.3.5.2 L-I-V Characteristics 

 

Figures 4.11(a) and 4.11(b) show, respectively, the current-voltage (I-V) and luminance-

voltage (L-V) characteristics of the OLED devices made with ITO substrates 

electrochemically treated at various voltages. In comparison with the control sample 

(ECT+0.0V), both the I-V and L-V curves shift to the lower voltage region for the devices 

with ITO pre-treated with voltages in the range of +1.6 to +2.4 V. However, higher turn-on 

voltages are observed for the devices with ITO pre-treated at the low voltage of +1.2 V and 
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high voltage of +2.8 V. The I-V and L-V behavior for the devices with pre-treatments at 

+2.0 V and +2.4 V are similar. 
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Figure 4.11. I-V (a) and L-V (b) characteristics of the OLED devices made with ITO 
electrochemically treated at different voltages, with a configuration of 
ITO/NPB(60nm)/Alq3(60nm)/LiF/Al. 
 

Figure 4.12(a) and 4.12(b) show, respectively, the current efficiency and power efficiency 

versus current density of the devices.  Compared to the control device, both the current 

efficiency and power efficiency are enhanced with the increase in treatment voltage from 

+1.6 V to +2.4 V, although the enhancement of current efficiency at lower current densities 

is not as significant as that at higher current densities. On the contrary, remarkable lower 

efficiencies are observed for the device with ITO pre-treated at +2.8 V. For the device with 
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ITO pre-treated at +1.2 V, the efficiencies remain almost unchanged, except for the decline 

at small current densities.  
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Figure 4.12. Plots of current efficiency (a) and power efficiency (b) vs. current density 
for the OLED devices made with ITO electrochemically treated at different voltages, with 
a configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al.  
 

In general, the devices based on ITO substrate electrochemically-treated at voltages from 

+1.6 V to +2.4 V exhibit improved EL performance, especially at the treatment voltage of 

+2.4 V.  For the devices with ITO treated at +1.6, +2.0, and +2.4 V, the device turn-on 

voltages are reduced correspondingly to about 4.1, 2.8, and 2.9 V, from about 5.3 V for the 

control device. The corresponding operating voltage at 200 cd/m2 is also reduced to about 

7.0, 5.6, and 5.8 V, from about 8.4 V. It can be noted that treatments in the voltage range 
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from +1.6 to +2.4 V provide devices with higher current and power efficiencies. For 

instance, at a given current density of 20 mA/cm2, the current efficiency and power 

efficiency of the device with treatment at +2.0 V are as high as 3.4 cd/A and 1.24 lm/W, 

respectively. These values are 13% and 48% higher than those of the corresponding values 

in the device ECT+0.0V. It is concluded that the optimized electrochemical treatment 

voltage is about +2.0 V, as the treatment leads to the highest surface polarity of ITO and 

the best device performance.  

 

4.3.5.3 Effect of Surface Properties on Hole Injection 

 

XPS results in Section 4.3.2 show that the electrochemical treatment voltage has 

significant effects on the ITO surface chemical states, which was further verified by the 

CV results in Section 4.3.3. More specifically, the concentration of polar species (e.g., M-

OH), which depends on the treatment voltage, dominates the surface energy (γs), especially 

its polar component (γsp), and therefore the surface polarity (χp = γsp/γs). Refer to Table 4.4, 

the calculated surface polarities of the different samples based on the contact angle 

measurements are in the sequence of ECT+2.0V(0.87) > ECT+2.4V(0.82) > 

ECT+1.6V(0.72) > ECT+0.0V(0.46) > ECT+1.2V(0.45) > ECT+2.8V(0.42). Compared to 

the I-V curves in Figure 4.11(a), the sequence in surface polarity is surprisingly identical to 

that of hole injection efficiency. In comparison, the ranking in operating voltage at 

luminance of 200 cd/m2 are exactly conversed, viz., VECT+2.0V < VECT+2.4V < VECT+1.6V < 

VECT+0.0V < VECT+1.2V < VECT+2.8V. This suggests that hole injection of the OLED devices in 
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this study is correlated to the ITO surface polarity that is controlled by the surface chemical 

states. 

 

In the OLED device fabrication, the hole transport material, NPB, is first deposited onto an 

ITO surface, and the ITO/NPB interface comes into being. As described in Section 4.3.5.1, 

the cathode for electron injection was the same in all the devices based on the ITO 

substrates electrochemically treated at different voltages, and the devices were fabricated in 

the same batch. The marked changes in hole injection are obviously attributed to the 

electrochemical treatments that have modified the ITO surfaces and then the ITO/NPB 

interfaces. Electrochemical treatments at voltages from +1.6 to +2.4 V, especially the 

optimized +2.0 V, significantly increase the surface polarities, which have enhanced hole 

injection through improving the adhesion of NPB onto the ITO surfaces and then forming 

good electric contacts [115]. However, the electrochemical treatment at +1.2 V did not 

improve the device performance due to less change in surface polarity. Furthermore, 

treatment at higher than +2.4 V lead to the lower surface polarity that deteriorates the 

ITO/NPB interface, and therefore the hole injection is significantly decreased. The 

interface evolution and its effect on hole injection will be discussed in Chapter 6. 

 

Notably, the results show that electrochemical treatment of ITO surface is able to improve 

not only hole injection but also EL efficiency, which is not attainable by the plasma 

treatment in the present study. This difference will be discussed in Chapter 7. 



 146 

4.4 Conclusion 

 

In this chapter, electrochemical process was developed to modify ITO surface for 

improving OLED device performance. Effect of the electrochemical treatments on surface 

morphology, composition and chemical state, surface passivation status and electron 

transfer kinetics, and surface energy were investigated by AFM, XPS, CV, and contact 

angle goniometer, respectively, with an emphasis on the correlation between the surface 

properties and the treatment voltages. The influence of the electrochemical treatments on 

the ITO surface properties and thus the hole injection efficiency across ITO/HTL interface, 

as well as their relations were discussed.  

 

AFM observations show that no visible change in morphology and ITO film thickness was 

observed when a treatment voltage below +2.4 V was used. However, when treatment 

voltage is larger than +2.4 V, the ITO film thickness is substantially reduced, suggesting 

electrochemical etching.   

 

XPS analysis revealed that the electrochemical treatment is an effective method to remove 

the adventitious carbon contaminants adsorbed on the ITO surfaces. With increase in the 

electrochemical treatment voltage, the ITO surfaces the nonstoichiometric oxide species on 

were oxidized into their saturated oxidation states. However, In:Sn ratio is decreased with 

increase in treatment voltage, suggesting electrochemical etching took place on the ITO 

surfaces, especially for the treatment voltages higher than +2.4 V. The electrochemical 

etching leads to remarkable change in topography of ITO surface. The electrochemical 
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etching of In and Sn from ITO surface also contributes to the high O:In and O:Sn ratios. In 

addition, when the treatment voltage of +2.8 V was applied, metal phosphates were 

promoted. 

 

ITO surface passivation by the electrochemical treatment was detected and varied with 

treatment time and voltage. Cyclic voltammograms of the ITO electrodes 

electrochemically treated at different voltages further confirmed the ineffectiveness of 

treatment at a voltage below +1.2 V. The significantly reduced electron transfer rates by 

the treatment at a voltage higher than +2.0 V implies that insulating surface layers were 

formed by the electrochemical treatments. This is attributed to the surface oxidation and 

electrochemical etching, as well as the formation of insulating metal phosphate formed at 

treatment voltage higher than +2.8 V.  

 

Surface energy study of ITO film demonstrated that the treatment voltage can affect the 

polarity of ITO surface. Starting from +1.2 V, with increase in treatment voltage, the 

surface polarity is increased up to +2.0 V and then decreased. The maximum polarity of 

0.87 and the minimum polarity of 0.42 are obtained by the treatments at +2.0 and +2.8 V, 

respectively. The increased surface polarity is attributed to the decontamination and 

surface oxidation, leading to more polar surface species. However, severe electrochemical 

etching takes place if the treatment voltage is higher than +2.0 V, leading to the 

deterioration of the surface properties. In addition, the presence of metal phosphate on 

ECT+2.8V also contributes to its lowest polarity. 
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Based on the OLED devices with a configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, 

the turn-on voltage was reduced from 5.3 V for device with the pristine ITO electrode to 

2.8 V for device with the ITO electrode pre-treated at +2.0 V. The current efficiency and 

power efficiency at 20 mA/cm2 were increased, correspondingly, from 3.0 cd/A and 0.84 

lm/W to 3.4 cd/A and 1.24 lm/W. These show that the electrochemical treatment of ITO 

surfaces at the optimized voltage is effective in reducing the device turn-on and operating 

voltages of the OLEDs, implying significant improvement of hole injection. The hole 

injection efficiency is correlated to the surface polarity. With the moving up the surface 

polarity of the ITO electrodes, the operating voltage is decreased correspondingly. In other 

words, the higher the surface polarity, the higher the hole injection efficiency. The 

electrochemical treatments modify the ITO electrode surfaces and then the ITO/NPB 

interfaces. The treatment at about +2.0 V significantly increases the surface polarity that is 

controlled by the surface chemical states. Similar to the plasma treatment, the high surface 

polarity enhances the hole injection through improving the adhesion of NPB onto the ITO 

electrode surfaces and then forming good electric contacts.  
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Chapter 5 

Insulating Buffer Layers 

Abstract  

 

In this chapter, a brief overview on the effect of insulating buffer layer between ITO and 

HTL on hole injection and therefore device performance is first given. ITO surfaces are 

coated with SiO2 thin films deposited by E-beam thermal evaporation (TE), self-

assembled monolayer (SAM), and sol-gel (S-G) processes, respectively. The buffer layer 

coated ITO surfaces are then characterized using AFM and CV to understand the influence 

of coating processes and film thickness on the coating morphology and the electron 

transfer kinetics. OLED devices with a configuration of 

ITO/SiO2/NPB(60nm)/Alq3(60nm)/LiF/Al are fabricated and characterized in terms of L-

I-V behaviours. The results show that insulating buffer layers sufficiently block hole 

injection of the devices based on the modified ITO surfaces due to the reduction of 

effective contact areas between ITO and NPB. The effects of the coating processes and the 

buffer layer thickness on the device performance are also discussed.  
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5.1 Introduction 

 

It is generally accepted that the optimization of charge injection and transport processes is 

of critical importance for a bright and efficient OLED device. Besides surface treatments, 

such as plasma and electrochemical treatments, ultra thin insulating buffer layers have 

been inserted between ITO and HTL by various processes for controlling hole injection. 

Kurosaka et al. [150] used Al2O3 as a buffer layer in a device with configuration of 

ITO/Al2O3/TPD/Alq3/Mg:Ag. Such device exhibited a doubled quantum efficiency (0.6% 

against 0.35%) compared to the device based on a bare ITO substrate. However, this 

improvement in EL efficiency was obtained at a cost of higher turn-on voltage, which was 

increased from 10 V in the device without the Al2O3 layer to 20 V in the device with such 

a buffer layer. A high bright and efficient device was fabricated by Deng et al. [151] 

through insertion a 1-nm-thick SiO2 film as a hole injection layer. Although the EL 

efficiency was improved, the turn-on voltage in the device was still not lowered down 

sufficiently. In addition, Pr2O3 [114] and other non-oxide insulating layers, such as Si3N4 

[153], Teflon [152], and even LiF [156] were also used for this purpose.  

 

The device performance by insertion of the insulating buffer layer has been elucidated in 

the basis of tunneling model by the most researchers [114,151-153,269-271], which 

request the buffer layer to be uniform and continuous. It is noted that most of the 

insulating buffer layers were deposited by vacuum vapor deposition processes, although 

SAM SiO2 [149] and sol-gel TiO2 [268] were also reported. As it is known, in vapor 

deposition processes, deposition starts from nucleation and growth. In most cases, the 
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morphology of the deposit at the beginning of deposition stage appears in the form of 

isolated islands. As a result, the substrate is not fully covered until the islands are linked 

together. The optimized thickness of the insulating buffer layers for the best device 

performance has been estimated to be about 1 nm [114,151,271] using image force model. 

However, the minimum thickness of the insulating buffer layer for fully covering ITO 

surface is much larger than 1 nm [114,156]. In addition, the anisotropic nature of the 

vapor deposition processes also enlarges the minimum film thickness for the full coverage, 

especially for rough and flawed surfaces such as ITO. As a consequence, the use of 

tunneling theory in these cases is questionable due to the insufficient coverage of ITO 

surface by the dielectric materials. Therefore, it is meaningful to further investigate the 

effect of the insulating buffer layers. 

 

In this study, SiO2 buffer layers with varied thickness were deposited on ITO surfaces 

using thermal evaporation (TE), self-assembled-monolayer (SAM), and sol-gel (S-G) 

processes. The buffer layer coated ITO surfaces were characterized by AFM and CV to 

understand the influence of coating morphology and thickness on electron transfer kinetics. 

OLED devices based on the buffer modified ITO surfaces, with configuration of 

ITO/SiO2/NPB(60nm)/Alq3(60nm)/LiF/Al, were fabricated and characterized in terms of 

L-I-V behaviors.  
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5.2 Experimental 

 

Substrate cleaning: After pre-cleaning by sonications, Si and ITO substrates were exposed 

to Ar plasma for 3 min to eliminate the influence by the adventitious carbon contaminants. 

The details of sonication cleaning and plasma treatment can be found in Chapter 2. 

 

E-beam evaporated buffer layers: SiO2 layers with different thickness in the range 0–15 

nm were deposited onto the cleaned ITO or Si wafer substrates at a deposition rate of 0.1–

0.2 Å/s and a pressure of 5×10-4 Pa by an e-beam evaporation system from a tungsten 

crucible.  

 

Self-assembled SiO2: The cleaned ITO and Si(111) substrates were heated in air at 125 °C 

for 15 min and placed into a antechamber of a glove box, where a vacuum of 25-50 mTorr 

was applied for 20 min to remove excess surface moisture. The samples were then 

transferred into a reaction vessel in the glove box with highly purified nitrogen. A 50 mM 

solution of tetrachlorosiloxane in freshly distilled heptane was added to the reaction vessel 

in sufficient quantity to totally immerse the substrates. The substrates were allowed to 

react with the stirring siloxane solution for 30 min. Following removing from the siloxane 

solution, the substrates were rinsed and sonicated two successive times in freshly distilled 

dry pentane in the same glove box. The substrates were then removed from the glove box, 

washed, sonicated with acetone, and subsequently dried in air at 125 °C for 15 min. This 

process was repeated to form SAM SiO2 thin films being of incremental thickness. The 

experimental procedures and the chemical reaction mechanism for SAM SiO2 coating on 
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ITO surface was proposed, as shown in Figure 3.1, which is similar to that in the literature 

[149]. 

 

 

 

 

Figure 5.1. Schematic diagram showing the experimental procedures and the chemical 
reaction mechanism for SAM SiO2 coating on ITO surface. 
 

Sol-gel deposited SiO2: The precursor for silicon dioxide sol-gel solutions was tetra ethyl 

orthosilicate (TEOS) [(C2H5O)4Si]. The sol-gel solutions with different concentrations of 

Si were prepared following the method reported in literature [273]. The sol-gel solution 

was filtered using 0.2 µm Teflon filter to remove big gel particles. A sol-gel SiO2 layer 

was then deposited onto the prepared ITO and Si wafer substrates by spin-casting process 

at a speed of 2500 rpm, followed by drying in air at 150 oC for 30 min. This process was 

repeated to form SiO2 layers being of incremental thickness. The experimental procedures 

and the chemical reaction mechanism for sol-gel SiO2 coating on ITO surface was 

proposed, as shown in Figure 5.2, based on the sol-gel theory in the literature [273]. 

 

 

 

 

 

Figure 5.2. Schematic diagram showing the experimental procedures and the chemical 
reaction mechanism for sol-gel SiO2 coating on ITO surface. 
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5.3 Results and Discussion 

 

5.3.1 Influence of Coating Process on Buffer Layer Morphology 

 

5.3.1.1 Thermal Evaporation Process 

 

AFM observation of ITO surfaces coated with TE SiO2 layers: The morphology of the TE 

SiO2 is in isolated-islands growth mode, as shown in Figure 5.3. The scattered-particle 

feature of the dielectric coating is more clearly presented on Si substrate (refer to Figure 

6.10(b)). A uniform distribution of the deposited SiO2 particles is clearly seen, which 

means that nucleation of the SiO2 film is not sensitive to the topographic conditions of 

ITO surface. With further deposition, the number of the SiO2 particles is increased, but the 

size of the particles is not increased significantly. The ITO surface feature disappears after 

coated with 5 nm SiO2 and the coating is in a particle-stack structure with clearly porous 

features. 
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(a) (b)

(d)(c)

 

Figure 5.3. AFM phase mode images of the ITO surfaces modified by TE SiO2 buffer 
layers with different thickness: (a) 0.5 nm, (b) 1.0 nm, (c) 2.0 nm, and (d) 5.0 nm. The 
scan area is 1×1 µm2. 
 

5.3.1.2 SAM Process 

 

Calibration of SAM SiO2 thickness: To make a more uniform and denser coating of SiO2 

on a rough ITO substrate, SAM process is also exercised. Figure 5.4 shows spectroscopic 

ellipsometer measurements on a series of self-assembled SiO2 layers on Si(111) substrates. 

The plot of thickness vs. number of coating layers shows that film thickness increases 

monotonically with repeated layer depositions. From the slope of the least-squares line, it 

can be inferred that the thickness of each SAM SiO2 layer is about 0.24 nm, under the 

deposition conditions employed in this study. The linear relation of thickness to the 

number of coating layers provides us with great convenience in tailoring the cumulative 
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dielectric thickness on not only the Si substrates but also the ITO films.  
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Figure 5.4. Spectroscopic ellipsometer measured thickness of SAM SiO2 films vs.  the 
number of layers deposited on single-crystal Si(111), showing the monotonic increase in 
total film thickness with number of depositions. The line is a least-squares fit to the data. 
 

AFM observation of ITO surfaces coated with SAM SiO2 layers: A morphological 

comparison between ITO surfaces without coating and with 6-layer SAM SiO2, as shown 

in Figure 5.5, reveals that SAM SiO2 buffer layers are essentially featureless and 

extremely smooth, with no indication of island growth, film cracking, or pitting. The 

featureless characteristic of SAM SiO2 on ITO surface was reported by Malinsky et al.  

[149], where their SAM SiO2 coating is per layer much thicker than ours due to a different 

precursor applied. From the AFM images, the SAM coatings are indistinguishable from its 

ITO substrate. Nevertheless, the existence of SAM SiO2 on ITO surfaces has been verified 

by the above spectroscopic ellipsometer measurements and will be further confirmed by 

the previously discussed CV results. It is therefore expected that SAM process is more 

suitable for depositing smooth, uniform and dense thin films on ITO surfaces.  
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(a) (b)

 

Figure 5.5. AFM phase mode images showing a morphological comparison between (a) 
the as-clean ITO film and (b) the ITO surface modified by 6 layers of SAM SiO2. The 
scan area is 1×1 µm2 
 

5.3.1.3 Sol-gel Process 

 

Calibration of sol-gel SiO2 thickness: Spectroscopic ellipsometer measurements (Figure 

5.6) on a series of S-G SiO2 coated Si(111) substrates indicate that the total deposited film 

thickness increases monotonically with repeated layer depositions. From the slope of the 

least-squares line, it can be inferred that each S-G spin-coat results in a SiO2 layer with a 

thickness of about 0.6 nm. This linearity in the S-G SiO2 deposition process affords 

considerable precision in tailoring the cumulative dielectric thickness on Si(111) substrate. 

The thickness calibration results obtained from Si wafer substrate are also used to estimate 

the S-G coating thickness on ITO surface in this study.   
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Figure 5.6. Spectroscopic ellipsometer measured thickness data for S-G SiO2 layers 
spin-coated on single-crystal Si(111), showing the monotonic increase in total film 
thickness with number of coats. The line is a least-squares fit to the data. 
 

AFM observation of Si surfaces coated with S-G SiO2 layers: AFM images of Si (111) 

spin-coated with varied number of S-G SiO2 layers in Figure 5.7 demonstrates that the S-

G SiO2 films on Si wafer substrate grow in an “islands-lakes” mode. After the first coat, a 

network of S-G SiO2 (named as “islands” in this study) is established on the Si substrate. 

With repeating the spin-coating process, the number of “islands” or “lakes” (i.e., the 

exposed Si substrate) does not change significantly and the surface coverage increases 

through extension of the S-G “islands”. With increasing the sol-gel layers, the small sol-

gel particles in the lake areas are increased. It is clearly seen that the number of S-G SiO2 

layers requested for fully covering the Si substrate under the present coating conditions 

seems more than 6, which corresponds to a thickness of about 3.4 nm. The discontinuous 

feature of the S-G coating also suggests that the coating thickness measured by 

spectroscopic ellipsometer is only an approximation. The citation of coating thickness in 

the context should be, therefore, read with focusing on the differentiation in thickness, 



 159 

rather than its absolute value.  

 

(a) (b) (c)

(d) (e) (f)

 

Figure 5.7. AFM height mode images of Si (111) surfaces modified by varied number 
of S-G SiO2 layers: (a) 1 layer, (b) 2 layers, (c) 3 layers, (d) 4 layers, (e) 5 layers, and 6 
layers. The scan area is 1×1 µm2. 
 

AFM observation of ITO surfaces coated with S-G SiO2 layers: The “islands-lakes” 

morphology of S-G SiO2, however, does not appear on ITO surfaces and a smoother 

coating is obtained, as shown in Figure 5.8. This is attributed to the rougher surface of the 

ITO film (RMS ~ 4 nm), compared with the Si substrate (RMS ~ 0.3 nm). The AFM 

images show that the S-G SiO2 covers the grain and/or subgrain boundaries first. It 

inferred that the noticeable peak-valley feature of the ITO films has an obstacle effect to 

prevent the S-G coating from phase conglomeration that results the “islands-lakes” 

coating morphology on the Si substrates.  
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(c) (d)

(a) (b)

 

Figure 5.8. AFM phase mode images of ITO surfaces modified by S-G SiO2 buffers 
with varied number of layers: (a) 1 layer, (b) 2 layers, (c) 4 layers, and (d) 6 layers. The 
scan area is 1×1 µm2 
 

5.3.2 Analysis of Buffer Layer Coated ITO Surfaces by Cyclic 

Voltammetry 

 

CV scans were carried out using a potentiostat (Solatron Instruments) and a standard 

three-electrode electrochemical cell. Ag/AgCl (3 M KCl) with electrode potential of 210 

mV vs. NHE  [185] was used as the reference electrode and Pt wire as the auxiliary 

electrode. The ITO working electrode area (0.93 cm2) was defined by the size of a rubber 

o-ring. The CV data were obtained in a solution containing 0.1 M KNO3 (supporting 

electrolyte) and 1.0 mM K4Fe(CN)6 (redox couples) at room temperature and a scan rate 

of 100 mV/s, and in a potential range from -200 to +800 mV. All potentials were reported 
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with respect to Ag/AgCl (3M KCl). Before any CV scan, the electrolyte was nitrogen 

bubbled for 30 min to reduce the oxygen content in the electrolyte. More information 

about CV technique can be found in Section 2.3. 

 

5.3.2.1 Thermal Evaporation SiO2 Buffer Layers 

 

Figure 5.9 shows cyclic voltammograms for Fe(CN)6
3–/4– redox couple using an as-clean 

ITO surface and a series of ITO surfaces coated by thermal evaporation (TE) SiO2 thin 

films with different thickness from 0 to 15 nm. All of the voltammograms display 

relatively facile electron transfer kinetics, with peak potential separations ranging from 

140 to 160 mV. Interestingly, thickness of the dielectric film has little effect on the 

voltammetric response (i.e., peak potential separation and peak current), as the TE SiO2 

buffer layers yield CV plots similar to that obtained from as-clean ITO. The AFM images 

in Figure 5.3 clearly show that ITO surface can be fully covered by 5 nm SiO2 film being 

of particle-stack feature. The less reduction in peak current with increasing coating 

thickness measured for the fully covered ITO sample demonstrates that the particle-

stacked dielectric films contain connected pores, which provide channels for electrolyte 

approaching ITO surface. Therefore, the Faradic current is sensitive to the density of the 

dielectric deposit, although apparent surface coverage has frequently been used for 

discussion in electron transfer across coated ITO/solution interface. This can be further 

verified by producing a denser buffer layer on ITO surface.   
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Figure 5.9. Cyclic voltammograms of 1.0 mM [Fe(CN)6]
3– in 0.1 M KNO3 supporting 

electrolyte at an as-clean ITO film and a series of ITO surfaces coated with 0.5, 1, 3, 5, 
and 15 nm TE  SiO2. The sweep rate is 100 mV/s and the working electrode area is 0.93 
cm2. The lines through the data points are drawn as a guide to the eye. 
 

5.3.2.2 SAM SiO2 Buffer Layers 

 

CV tests were carried out on the ITO surfaces modified by SAM SiO2 films with varied 

number of layers from 0 to 6, as shown in Figure 5.10. As judged by both the separation 

between anodic and cathodic potential peaks, and by the overall magnitude of current 

flowing at any potential, there is a successive passivation of the ITO surface toward this 

redox chemistry as the buffer layer thickness is increased. The reduced peak current and 

large peak potential separation with only one to two layers of the dielectric material 

demonstrates that the redox processes are significantly suppressed by the SAM dielectric 

coatings. Furthermore, the electron transfer is totally blocked when the ITO surface is 

covered by 4- and 6-layer SAM coatings, because no Faradic (peak) current is detected for 

the two samples, as shown in Figure 5.10. This is an indirect evidence to confirm the 
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existence of SAM coatings on ITO surface, although they are not clearly visible in AFM 

images, as shown in Figure 5.5.  From the plots in Figure 5.4, it can be seen that the 

thickness of the 4-layer SAM SiO2 film is only about 1 nm. This implies that SAM 

process is much superior to TE process in terms of film density and ITO passivation effect.  
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Figure 5.10. Cyclic voltammograms of 1.0 mM [Fe(CN)6]
3– in 0.1 M KNO3 supporting 

electrolyte at an as-clean ITO film and a series of ITO surfaces coated with one layer, two 
layers, four layers, and six layers of self-assembled SiO2. The sweep rate is 100 mV/s and 
the working electrode area is 0.93 cm2.  
 

5.3.2.3 S-G SiO2 Buffer Layers 

 

The electrochemical performance of S-G SiO2 coated ITO surfaces with varied number of 

coating layers from 0 to 6 is displayed in Figure 5.11. All the voltammograms obtained 

from the S-G coated ITO surfaces exhibit larger peak potential separation values (∆Ep) 

than that of the as-clean ITO sample, more specifically, the peak potential separation 

enlarges with increasing the buffer thickness. Meanwhile, the peak current is dropped, 
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correspondingly.  

 

In contrast, the change in peak current and peak potential separation with the increased S-

G SiO2 layers is not large as expected. From Figure 5.8, it can be seen that the ITO surface 

feature almost disappears after coated with 6-layer S-G SiO2 film, suggesting the majority 

of the ITO surface is covered by the dielectric film. On the other hand, the less reduction 

in peak current obtained from the 6-layer coated ITO surface is conclusive proof of the 

existence of substantial ITO surface areas in contact with electrolyte. This reveals that the 

S-G SiO2 film is highly porous in microscopic point of view.  
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Figure 5.11. Cyclic voltammograms of 1.0 mM [Fe(CN)6]
3– in 0.1 M KNO3 supporting 

electrolyte at an as-clean ITO film and a series of ITO surfaces coated with one layer, two 
layers, three layers, and four layers of S-G SiO2. The sweep rate is 100 mV/s and the 
working electrode area is 0.93 cm2. The lines through the data points are drawn as a guide 
to the eye. 
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5.3.2.4 Apparent Coverage versus Film Density 

 

As it is commonly known, the performance of ITO used in electrochemical applications is 

primarily determined by electron-transfer kinetics. Since the process of electron transfer is 

confined to the interface between the electrode and the electrolyte, the redox kinetics will 

be influenced by the effective surface area, i.e., density of active electron-transfer sites. 

Peak potential separation and peak current are the two indicators to present electron 

transfer rate, which decreases as redox couples are unable to reach the electrode surface. 

Insulating buffer layers are definitely barriers against electron transfer at the ITO/solution 

interface. According to the conventional discussions, the electrochemical performance of 

the coated ITO surface is mostly affected by the buffer layer coverage. However, the 

findings in this study indicate that the film density, depending on the coating processes, 

plays a more critical role in the electrochemical performance of the coated ITO surfaces 

than the apparent coating coverage. 

 

5.3.3 OLED Device Performance  

 

The ITO-coated glasses (20 Ω/� ) were routinely cleaned according to Section 2.5, 

followed by buffer coating by different coating processes, as described in Section 5.2. To 

remove the effect of surface contamination due to the buffer layer coating processes and 

exposing to the atmosphere, all the ITO surfaces were treated by Ar plasma, according to 

the procedures in Section 3.2, prior to the OLED fabrications. The device based on the 

ITO surfaces without coatings are denoted as 0nm or 0L, depending on the coating 
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process adopted. Based on the ITO substrates (with and without coatings), the OLED 

devices with a configuration of ITO/SiO2/NPB(60nm)/Alq3(60nm)/LiF/Al were fabricated 

using the same procedures and deposition parameters described in section 3.3.5.1.  

 

5.3.3.1 OLED Device Based on ITO Modified by Thermal 

Evaporated SiO2 

 

The L-I-V measurements of the OLED devices are similar to Section 3.2.5. Figure 5.12 

shows the L-I-V curves measured from the OLED devices based on ITO surfaces coated 

by TE SiO2 buffer layers. Some critical data presenting the device performance are 

summarized in Table 5.1. It is clearly seen that the TE SiO2 buffer layers with varied 

thickness from 0.5 to 15 nm render no benefit to the device performance in terms of 

improved hole injection and EL efficiencies. Compared with the device without buffer 

layer, for example, L-I-V curve moves to the right (high driving voltage) side  for 0.5 nm 

thick buffer, and then to the left (low driving voltage) side for 1.0 nm thick buffer with 

ceiling of the control sample (0.0nm), but to the right side again for 2.0 nm thick buffer. 

Further increasing the buffer thickness, e.g., in the cases of 5 and 15 nm, unidirectional 

and prominent right shifts of the L-I-V curves are observed. The left-right swing 

phenomenon of the L-I-V curve for the devices with ultra thin films was frequently 

reported in literature [114,138,151]. 
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Figure 5.12. Current density (a) and luminance (b) vs applied voltage plots for OLED 
devices made with thermal evaporated SiO2 buffer layers in configuration of 
ITO/SiO2/NPB/Alq3/LiF/Al, showing the effect of buffer layer thickness on L-I-V 
characteristics. The lines through the data points are drawn as a guide to the eye. 
 

More specifically, the turn-on voltage is increased from 4.3 V for the coating free sample 

to 4.5, 4.6, 5.1, 6.7 and 10.1 V for the devices with 0.5, 1, 2, 5 and 15 nm SiO2 thin films, 

respectively. The operating voltage for a luminance of 100 cd/m2 is also increased from 

7.5 V to 8.3, 7.7, 8.6, 10.7 and 12.0 V, correspondingly. This means that hole injection is 

inversely related to the coating thickness. The results in the present study are clearly in 

disagreement with those reported by other groups [114,138,151,156], where the device 

performance was more or less improved. The inconsistent results is likely to be due to the 
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different pre-cleaning processes, as solvent sonication was used in this study but plasma 

cleaning processes were adopted by them. 

 

Table 5.1. Summary of L-I-V characteristics for the devices with TE SiO2 buffer 
layers with varied thickness. V --- voltage (V), I --- current density (mA/cm2),  CE --- 
current efficiency (cd/A), PE --- power efficiency (lm/W) 
   0nm 0.5nm 1nm 2nm 5nm 15nm 

Turn-on V 4.3 4.5 4.6 5.1 6.7 10.1 

Turn-on I 0.7  0.4  0.7  0.6  0.5  0.5  

V@100cd/m
2
 7.5 8.3 7.7 8.6 10.7 12.0 

I@100cd/m
2
 4.0 3.8 4.2 4.1 3.8 4.1 

CE@100cd/m
2
 2.6  2.7  2.5  2.6  2.6  2.7 

PE@100cd/m
2
 1.07 1.02 1.04 0.95 0.76 0.71 

Max.CE 2.77@9.3V 2.75@8.9V 2.66@9.3V 2.80@9.9V 2.73@12.5V 2.75@13.5V 

Max.PE 1.27@4.5V 1.50@4.7V 1.17@5.3V 1.50@3.5V 1.40@5.7V 0.75@11.1V 

 
Note: “Turn-on” voltage and current are defined as those corresponding to a luminance of 
1 cd/m2. 
 

Figure 5.13 shows the changes of current (a) and power (b) efficiencies with current 

density for the six different devices. Again, the devices with TE SiO2 buffer layers are 

inferior to that without buffer layers in both current and power efficiencies. The right-

moving L-I-V curve and the reduced current efficiency evidently imply the blocking of 

hole injection by the coatings.  
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Figure 5.13. Current (a) and power (b) efficiency vs current density plots for OLED 
devices made with thermal evaporated SiO2 buffer layers in configuration of 
ITO/SiO2/NPB/Alq3/LiF/Al, showing the effect of buffer layer thickness on device 
efficiency. 
 

5.3.3.2 OLED Device Based on ITO Modified by SAM SiO2 

 

Figure 5.14 shows the L-I-V curves for the OLED devices based on the SAM SiO2 coated 

ITO surfaces with varied number of coating layers (from 0 to 6). A summary of the device 

performance for different samples is given in Table 5.2. 
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Figure 5.14. Current density (a) and luminance (b) vs applied voltage plots for OLED 
devices with SAM SiO2 buffer layers in configuration of ITO/SiO2/NPB/Alq3/LiF/Al, 
showing the effect of the layer thickness on L-I-V characteristics.  
 

It can be seen that L-I-V curves obtained from the devices with SAM SiO2 buffer layers 

behave in the similar way to the TE SiO2 samples. Figure 5.14(a) shows that at a given 

current density, the change in driving voltage with the number of coating layers (denoted 

as xL, x =0, 1, 2, 4, and 6) is in the order of V0L < V2L < V1L < V4L < V6L. The same trend 

is also observed for the L-V plots, as shown in Figure 5.14(b).  
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Table 5.2. Summary of L-I-V characteristics for devices with varied number of SAM 
SiO2 buffer layers. V --- voltage (V), I --- current density (mA/cm2),  CE --- current 
efficiency (cd/A), PE --- power efficiency (lm/W) 
   0L 1L 2L 4L 6L 

Turn-on V 3.9 5.5 5.0 6.8 7.2 

Turn-on I 0.58 0.75 0.64 0.77 0.24 

V@100cd/m
2
 7.6 10.1 9.2 11.1 11.4 

I@100cd/m
2
 3.7 3.8 4.7 5.1 5.4 

CE@100cd/m
2
 2.70 2.60 2.16 2.05 1.91 

PE@100cd/m
2
 1.10 0.82 0.74 0.58 0.51 

Max.CE 2.93@9.4V 2.68@11.8V 2.73@12.4V 2.19@13.0V 1.91@11.6V 

Max.PE 1.12@6.8V 0.85@9.2V 0.77@10.6V 0.58@11.2V 0.57@11.2V 

 

Note: “Turn-on” voltage and current are defined as those corresponding to a luminance of 
1 cd/m2. 
 

Compared with the reference device based on the as-clean ITO, however, the devices with 

the SAM buffer layers need higher driving voltages to achieve the same value of 

luminance. Specifically, the turn-on voltage is increased from 3.9 V for the reference 

device to 5.5, 5.0, 6.8, and 7.2 V for the devices with 1, 2, 4, and 6 buffer layers, 

respectively, as shown in Table 5.2. The operating voltage for a luminance of 100 cd/m2 is 

also increased from 7.6 V to 10.1, 9.2, 11.1, and 11.4 V, correspondingly. This means that 

hole injection is significantly suppressed by insertion of a SAM buffer layer between ITO 

and HTL, which is in agreement with the results obtained by Malinsky et al [149].  
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Figure 5.15. Current (a) and power (b) efficiency vs current density plots for OLED 
devices made with SAM SiO2 buffer layers in configuration of 
ITO/SiO2/NPB/Alq3/LiF/Al, showing the effect of buffer layer thickness on device 
efficiency. One layer is approximately corresponding to 0.24 nm.  
 

As shown in Figure 5.15 and Table 5.2, the severe hole blocking by SAM SiO2 buffer 

layers in the present study lead to noticeable drops in both current and power efficiencies. 

For example, at the driving voltage (for 100 cd/m2), the current efficiency is decreased 

from 2.7 cd/A for the reference device to 2.6, 2.16, 2.05, 1.91 cd/A for 1, 2, 4, and 6 layers, 

respectively. Meanwhile, the power efficiency is also dropped from 1.10 lm/W to 0.82, 

0.74, 0.58 and 0.51 lm/W, correspondingly. Compared to the devices with TE SiO2, it can 
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be found that the SAM SiO2 buffer layers are much more effective in hole blocking, which 

is possibly attributed to the high density of SAM coatings.  

 

5.3.3.3 OLED Devices Based on ITO Modified by Sol-Gel SiO2  

 

Figure 5.16(a) and 5.16(b) show L-I-V curves for the OLED devices based on the ITO 

surfaces coated with varied number of S-G SiO2 layers (from 0 to 4). The L-I-V curves for 

the devices based on as-clean ITO surface (i.e., without Ar plasma treatment and coatings) 

are shown here for comparison. Some critical characteristics of the devices are 

summarized in Table 5.3. 

 

It is clearly seen that when the S-G SiO2 buffer layer is thinner than about 1.2 nm (2 layers) 

the device performance can be significantly improved, compared with the as-clean device. 

For the samples with buffer layer thicknesses of 0.6 nm (1 layer) and 1.2 nm (2 layer), the 

turn-on voltage is reduced from 4.2 V for the device without buffer layer to 2.6 V and 3.2 

V, respectively.  
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Figure 5.16. Pots of current density (a) and luminance (b) vs. applied voltage for OLED 
devices based on the ITO substrates modified by S-G SiO2 layers in configuration of 
ITO/SiO2/NPB/Alq3/LiF/Al, showing the effect of buffer thickness on L-I-V 
characteristics. One layer is approximately corresponding to 0.6 nm in thickness.  
 

Similarly, the operating voltage (at 100 cd/m2) was also reduced from 7.6 V to 3.8 V and 

4.4 V, respectively. The best L-I-V performance was observed from the device modified 

by 1 layer S-G SiO2, which is comparable with that of the device based on the control 

device with Ar plasma pre-treatment. Compared with the as-clean sample, the I-V and L-

V curves for thinner buffer layers (0.6 nm and 1.2 nm in this study) shift towards the 

lower voltage region, suggesting improved hole injection. In contrast, thicker buffer layers 
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(1.8 nm and 2.4 nm in this study) obviously deteriorated the device performance, as both 

I-V and L-V curves move to the higher voltage regions than that of the buffer layer free 

device.  

Table 5.3. Summary of L-I-V characteristics for devices with varied number of S-G 
buffer layers. V --- voltage (V), I --- current density (mA/cm2),  CE --- current efficiency 
(cd/A), PE --- power efficiency (lm/W) 
 
   0L 1L 2L 3L 4L As-clean 

Turn-on V 2.5 2.6 3.2 6.4 6.6 4.2 

Turn-on I 0.24  0.37  0.53  0.67  0.86  0.50  

V@100cd/m
2
 3.8 3.8 4.4 8.4 10.2 7.6 

I@100cd/m
2
 5.6 5.5 4.3 7.8 8.6 3.7 

CE@100cd/m
2
 1.84  1.99  2.53  1.28  1.30  2.70  

PE@100cd/m
2
 1.52 1.65 1.85 0.48 0.04 1.11 

Max.CE 2.33@6.6V 2.24@6.2V 3.00@5.8V 3.00@9.2V 2.00@11.6V 2.93@9.0V 

Max.PE 1.55@4.2V 1.65@3.8V 1.88@4.2V 1.03@9.0V 0.56@10.8V 1.12@6.8V 

 
A good OLED device should possess not only the high luminance but also the high 

luminance efficiency. The results shown in Figure 5.17(a) reveal that, in comparison with 

the as-clean sample and in the current density range of < 25 mA/cm2, current efficiency is 

increased for the devices with 1.2 and 1.8 nm thick buffer layers, but decreased for the rest, 

including the Ar plasma treated sample. It should be pointed out that the selected current 

density range in the comparisons is meaningful because the current density for a typical 

operating luminance, e.g. 100 cd/m2 for display and 1000 cd/m2 for lighting, is much 

smaller than 25 mA/cm2. In contrast, power efficiency shown in Figure 5.17(b) change 

with coating thickness in a different way, in which the devices with 1.0 nm and 1.2 nm 

thick buffer layers as well as Ar plasma treatment possess better performance, but the 

devices with thicker buffer layers perform worse. As well-known, luminance (lm) is 

candela per square meter (cd/m2). According to the definitions of current efficiency (cd/A) 



 176 

and power efficiency (lm/W), the only difference between the two efficiencies is that, 

other than current density, driving voltage is also considered in the later. With increasing 

coating thickness, the driving voltage requested to achieve a certain current density is 

significantly increased, as more ITO surface is covered by the thicker insulating SiO2. The 

increased driving voltage is the direct cause for the declined power efficiency with 

increasing coating thickness.  
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Figure 5.17. Current (a) and power (b) efficiency vs current density for OLED devices 
based on the ITO substrates modified by S-G SiO2 layers in configuration of 
ITO/SiO2/NPB/Alq3/LiF/Al, showing the effect of buffer layer thickness on device 
efficiency. One layer is approximately corresponding to 0.6 nm in thickness.  
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As mentioned above, the reference device is a hole injection limited device. The 

enhancement in both hole injection and current efficiency in the cases of, e.g., 1.2 and 1.8 

nm thick buffer layers, indicates that there is an opportunity for the reference device to 

further enlarge hole population so as to enhancing current efficiency. More importantly, 

the results in Table 5.3 show that at an operating voltage of 100 cd/m2, the highest current 

efficiency of 2.53 cd/A and power efficiency of 1.85 lm/W were simultaneously achieved 

for the sample with 1.2 nm buffer layer, which is much better than the reference device.  

 

5.3.3.4 Effect of Coating Processes on Device Performance 

 

The results reveal that insulating buffer layers block hole injection by reducing the 

effective contact areas at the ITO/NPB interface. For the same coating process, thicker 

buffer layers block more holes. The hole blocking effect is also related to the coating 

process adopted. For example, more holes were blocked by the SAM SiO2 than TE SiO2 

and S-G SiO2 buffers, with similar coating thickness. This is attributed to the denser thin 

films produced by SAM process than TE and S-G process in this work, which has been 

verified by the CV results. 

 

For an easy comparison, Table 5.4 listed some key device performance indicators from the 

OLED devices based on the ITO modified by TE, SAM and S-G SiO2 buffer layers with 

optimized coating thickness. It is clearly seen that the device based on 2-layer (~1.2 nm 

thick) S-G SiO2 buffer in combination with Ar plasma post-treatment shows the lowest 

turn-on voltage and operation voltages, and the highest current and power efficiencies.    
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Table 5.4. A comparison of key device performance indicators at 200 cd/m2 between 
the OLED devices based on the ITO modified by TE, SAM and S-G SiO2 buffer layers 
with the optimized thickness. V --- voltage, CE --- current efficiency, and PE --- power 
efficiency (lm/W). 
   Turn-on V V@200cd/m

2 CE@200cd/m
2 PE@200cd/m

2 

TE SiO2 – 1 nm 4.6 10.2 2.60 0.80 

SAM SiO2 – 2L 5.0 10.1 2.44 0.77 

S-G SiO2 – 2L 3.2 4.8 2.85 1.87 

 

Section 5.3.1 revealed that buffer layer morphology was significantly different from one 

coating process to another, in particular the ultra thin S-G SiO2 layer showing the netted 

texture. Buffer layer morphology is suspected to affect the formation of ITO/NPB 

interface and therefore the OLED device performance, which will be studied in Chapter 6 

and discussed in Chapter 7. 
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5.4 Conclusion 

 

The aim of this work is to study the effect of ITO electrodes modified by SiO2 buffer 

layers on OLED device performance. E-beam thermal evaporation (TE), self-assembled-

monolayer (SAM), and sol-gel (S-G) processes were used to modify ITO surface.  

 

The TE SiO2 thin films on ITO surfaces are in particle-stacked structure, more specifically, 

discontinuous and very porous. The AFM images of SAM SiO2 coatings on ITO surfaces 

are featureless, implying high density and uniformity of the coatings. The SiO2 coatings 

on ITO surface by S-G process are continuous and porous in the form of network. The CV 

results reveal that substantial amount of pores exist in the TE and S-G thin film, leading to 

less sensitivity of electron transfer rate to the film thickness. In contrast, 1nm thick SAM 

SiO2 film sufficiently suppresses the electron transfer rate, which is another evidence to 

verify the high density of the SAM coatings.  

 

The L-I-V characteristics of the OLED devices based on the ITO modified by the SiO2 

buffer layers reveal that insulating buffer layers block hole injection by reducing the 

effective contact areas at the ITO/NPB interface. For the same coating process, thicker 

buffer layers block more holes. Being of the similar thickness, the denser SAM SiO2 

blocks more holes than the porous TE SiO2 and S-G SiO2. By comparison, an ultra thin 

(~1 nm thick) S-G SiO2 provides OLED device with the best performance, which is 

related to the netted texture of the S-G coated oxide film. 
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Chapter 6 

Morphological Study of ITO/NPB Interface 

 

Abstract 

 

In this chapter, nucleation and growth process of the NPB hole transport layers on the ITO 

surfaces modified by different surface modifications are investigated using AFM to find 

out the factors controlling the evolution of ITO/organic interface. It is found that surface 

polarity is responsible for the density and distribution of NPB nucleation sites on plasma 

and electrochemically treated surfaces. The verdict is supported by deposition ultra thin 

NPB onto the Si wafer samples treated by different plasmas, where similar NPB 

morphologies were observed on the surfaces with similar polarities. The results obtained 

by deposition of NPB films on the ITO surfaces coated with insulating buffer layers, 

however, demonstrate that the confinement effect of the scattered buffer deposits on NPB 

nucleation and growth is significant.    
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6.1 Introduction 

 

Although plasma treatments change both surface energy and work function of ITO 

electrodes [122,148], no direct correlation between the surface energy and the work 

function has been found and the dominant factor controlling hole injection is still under 

dispute. For instance, Ar plasma increases ITO surface energy rather than work function 

as documented in literature [115,148]. Moreover, oxidative plasma treatments of ITO 

improve the devices stability, which could not be explained by the work function 

hypothesis.  

 

Recent experimental work [160,161] showed that OLED devices fabricated on ITO 

substrates with similar work functions but different surface morphologies (e.g. roughness) 

exhibited markedly different performance. Chen et al. [161] reported their experimental 

results using different HILs with different HOMOs, and concluded that the energy barrier 

difference at the ITO/HIL interface was not the main factor in determining the hole 

injection efficiency from the ITO anode to HIL. Instead, they proposed that the 

morphology of HIL and therefore the contact between HIL and hole transport layer (HTL) 

would play a decisive role in the device performance.  

 

The results in previous chapters show that ITO surface modifications impose their 

influence on device performance through changing ITO surface compositions and/or 

morphology. In this chapter, the nucleation and growth process of NPB hole transport 
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layer on the modified ITO surfaces are investigated to find out the factors controlling the 

evolution of ITO/organic interface and its relation with hole injection. 
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6.2 Thin Film Growth Modes 

 

For thin film growth on a substrate, three possible modes are distinguished [274,275]. In 

the “island growth”, or VOLMER-WEBER mode, small clusters are nucleated directly on 

the substrate surface and then grow and form “islands” of the condensed phase. This 

happens when the deposited molecules are more strongly bound to each other than to the 

substrate, where the cohesion energy between atoms of the deposit is larger than the 

adhesion energy between atoms of the substrate and the deposit. Therefore, this mode is 

displayed by many systems of higher surface energy materials on lower surface energy 

substrates, such as metals growing on insulator including many metals on alkali halides, 

graphite or compounds like mica.   

 

The “layer-by-layer”, or FRANK-VAN DER MERVE mode, displays the opposite 

characteristics. In this case, the adhesion energy is much larger than the cohesion energy. 

Since the molecules are strongly bound to the substrate than to each other, the first 

molecules that condense form a complete monolayer on the surface. Subsequently, this 

first layer is covered by a somewhat less tightly bound second layer. This growth mode is 

observed in the case of adsorbed gases, such as several rare gases on graphite and on 

several metals in some metal-metal systems, and in semiconductor growth on 

semiconductors. 

 

The “layer plus island” or STRANSKI-KRASTANOV, growth mode is an intermediate case. 

After forming the first monolayer, or a few monolayers, subsequently layer growth is 



 184 

unfavorable and islands are formed on top of the intermediate layer. There are many 

possible reasons for this mode to occur and almost any factor which disturbs the 

monotonic decrease in binding energy characteristics may be cause. 

 

Many factors influence the growth mode of thin films. One of the important factors is 

surface and/or interface energy. In general, a higher surface energy of the substrate is 

beneficial to a smooth growth of the film (i.e. layer growth mode) and a strong bonding of 

the film to the substrate, whereas an island growth mode is corresponding to a relatively 

low surface energy of the substrate. In most thin film deposition processes, nucleation of 

the product phase occurs heterogeneously at some preferential sites on the substrate, such 

as grain boundaries [279], subgrain boundaries [280], dislocations [281], or other surface 

defects [282-284], where the surface energy is remarkably higher than the rest of the 

surface. When the substrate is not uniform in surface energy, the adsorbed molecules are 

locked or irreversibly trapped on to the surface defects and grow into stable nuclei 

[283,285] because the energy barrier for nucleation is significantly lower at high surface 

energy areas. On the other hand, the arrived species on the lower surface energy sites tend 

to migrate towards the active sites and finally add onto the stable nuclei. In this case, the 

bonding energy between two deposited atoms is greater than the average bonding energy 

between a deposited atom and a substrate atom [286], leading to thin film growth in island 

mode [287,288]. 



 185 

6.3 Experimental 

 

ITO glass and Si(111) wafer were used as the substrates for the morphological study. 

After the surface modifications, as described in Section 3.2 for plasma treatments, Section 

4.2 for electrochemical treatments, and Section 5.2 for insulating buffer layers, NPB films 

with different thickness ranging from 2 to7 nm were deposited onto the modified ITO and 

Si substrates by thermal evaporation at a deposition rate of 0.2 nm/s and a pressure of 

5×10-4 Pa from a quartz crucible. The film thickness was monitored by a quartz thickness 

monitor.  

 

The surface morphology of the ultra thin NPB films on ITO surfaces were characterized 

using a Digital Instruments Nanoscope IIIA AFM. The images for the morphological 

studies had a scan area of 1 × 1 µm2. Non-contact AFM with tapping mode was used, as 

the contact mode is not appropriate due to its constant force applied which is sufficient to 

physically distort the organic films. All AFM results are shown in phase modulation to 

provide a clearer picture of the organic film morphology. More information about sample 

pre-cleaning processes and AFM technique can be found in Chapter 2. 
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6.4 Results and Discussion 

 

6.4.1 NPB Morphology on Plasma Treated ITO Surfaces 

 

Figure 6.1 shows the AFM images of 2 nm NPB thin film (i.e., the dark phase on the 

images) deposited on the as-clean ITO surface (a), and the pre-treated ITO surfaces by Ar-

P (b), H2-P (c), CF4-P (d), and O2-P (e). It can be seen that the coverage percentage (φ) of 

ITO surface by the 2 nm thick NPB depends on the type of plasma treatment, in the 

sequence of φCF4-P > φO2-P > φAr-P >φas-clean > φH2-P. For the as-clean, Ar-P and H2-P treated 

ITO surfaces, island-like morphology (i.e., VOLMER-WEBER growth mode) is observed, 

although there are slight differences in shape and distribution. Basically, the islands 

discontinuously distribute along grain boundaries, but the wetting features of NPB on the 

three substrates are clearly different, with wettability in an order of Ar-P>as-clean>H2-P. 

On the contrary, CF4-P and O2-P treatments of ITO led to more uniform NPB thin film 

coverage without conglomeration, and the NPB films grow in a mode similar to FRANK-

VAN DER MERVE mode. In this case, NPB film covers not only the grain boundaries but 

also the sub-grain boundaries, although subgrains are not fully covered. It is observed that 

the CF4-P treatment led to more subgrains covered by the 2 nm thick NPB film than the 

O2-P treatment. Considering the fact that deposition rate and substrate temperature 

strongly influence the surface morphology of organic films [277,278], the NPB of a given 

thickness was deposited onto the ITO samples in discussion in the same batch and thus the 

morphological difference is caused by the different plasma treatments. 
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(a) (b) (c)

(e)(d)

 

 
Figure 6.1. AFM (phase mode) images of 2 nm thick NPB on the ITO surfaces with 
different plasma treatments: (a) as-clean; (b) Ar-P; (c) H2-P; (d) CF4-P; (e) O2-P. The dark 
phase on the images is NPB thin film. The scan area is 1×1 µm2.  
 

Figure 6.2 shows that, except for the H2-P treated sample, 7 nm thick NPB almost fully 

covers the ITO surfaces pre-treated by Ar-P, O2-P and CF4-P plasmas. Once the ITO 

surface is fully covered by the NPB deposit, the interface evolution is completed and the 

growth of NPB thin film is then dependent of the NPB film surface conditions and the 

temperature rather than the film-substrate interaction [289]. In other words, the effect of 

ITO surface properties on NPB growth mode is gradually diminished and eventually 

disappeared with the increasing NPB thickness. This can be clearly seen by comparing 

Figure 6.1 and Figure 6.2.  
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(a) (b)

(c) (d)

 
 

Figure 6.2. AFM (phase mode) images of 7 nm thick NPB on the ITO surfaces with 
different plasma treatments of H2 plasma (a); Ar plasma (b); CF4 plasma (c); and O2 
plasma (d). The dark phase on the images is NPB thin film. The scan area is 1×1 µm2.  
 

 

6.4.2 NPB Morphology on Electrochemically-Treated ITO Surfaces 

 

Figure 6.3 shows the phase AFM images of 2 nm NPB thin film deposited on the ITO 

surfaces treated by 0V (a), +1.2 V (b), +1.6 V (c), +2.0 V (d), +2.4 V (e), and +2.8 V (f), 

respectively. It can be seen that the surface covering of the 2 nm thick NPB depends on 

the treating voltage. Island-like morphology is observed for all the electrochemically 

treated ITO surfaces, although there are differences in shape and distribution. Basically, 

the NPB islands discontinuously distribute along grain boundaries. It is obvious that +2.0 

V and +2.4 V treatments lead to more uniform covering of NPB thin film on the ITO 

surface. In comparison, the pre-treatment at +2.0 V is preferred due to the indiscernible 
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conglomeration of the NPB phase on the sample surface. Similar to the case of plasma 

treatment, the deposition of NPB on all the ITO samples was carried out in the same batch, 

and thus the morphological difference is attributed to the different treating voltages. 

 

2nmnpb (a)

(d)

(c)

(e) (f)

(b)

 

Figure 6.3. AFM (phase mode) images of 2 nm thick NPB on the ITO surfaces 
pretreated at different voltages: (a) 0 V; (b) +1.2 V; (c) +1.6 V; (d) +2.0 V; (e) +2.4 V; (f) 
+2.8 V. The NPB deposits are the dark areas on the images. The dark phase on the images 
is NPB thin film. The scan area is 1×1 µm2.  
 

Figure 6.4 shows that 5 nm thick NPB almost fully covers the electrochemically treated 

ITO surfaces. However, their dissimilarities in morphology become more considerable.  

For example, a fine and continuous layer of 5 nm thick NPB thin film was observed on the 

ITO surface treated by +2.0 V, whereas coarse and large islands become the dominant 

feature for the samples treated by 0 V, +1.2 V and +2.8 V. Compared with the case of 2 

nm NPB, it can be found that the nucleation sites do not significantly increased with 
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further deposition and that the increase in surface coverage relies on NPB lateral growth 

of the nuclei until they coalesce. Therefore, morphology of the first layer NPB depends on 

the interaction between the organic molecules and the substrate until the ITO surface is 

fully covered by the NPB clusters. In practice, a few layers of uniform film may be 

required to disencumber the influence from the substrate [289], as the ITO surface is 

highly uneven in properties. 

 

(a)

(d)

(c)

(e) (f)

(b)

 

Figure 6.4. AFM (phase mode) images of 5 nm thick NPB on the ITO surfaces treated 
with at voltages: (a) 0 V; (b) +1.2 V; (c) +1.6 V; (d) +2.0 V; (e) +2.4 V; (f) +2.8 V. The 
dark phase on the images is NPB thin film. The scan area is 1×1 µm2. 
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6.4.3 Influence of Surface Energy and Polarity 

 

The results in Chapter 3 and Chapter 4 demonstrate that the electrochemical and plasma 

treatments significantly change the ITO surface polarity, χP. Comparisons of the surface 

polarities in Table 3.3 and Table 4.5 with the AFM images in Figure 6.1 and Figure 6.3, 

respectively, a conclusion is reached that the polarity of ITO surface is correlated to the 

morphology of NPB thin film via governing the NPB nucleation and growth, and the 

higher the surface polarity, the more uniform the NPB thin film. For example, the higher 

polarity for the samples electrochemically treated at +2.0 V (χP=0.87) and plasma treated 

with CF4 (χP=0.87) is corresponding to fine NPB thin film and high covering of the ITO 

surface, whereas the lower polarity for the samples electrochemically treated at +2.8 V 

(χP=0.42) and treated by H2 plasma (χP=0.62) lead to coarse NPB thin film and low 

covering of the ITO surface.   

 

To further verify the conclusion, 2 nm thick NPB was deposited on Si wafers treated by 

Ar, H2, CF4, and O2 plasmas, respectively. The corresponding AFM images are shown in 

Figure 6.5. The values of total surface energy (γS) and surface polarity (χP) are also given 

in the figures. Different plasmas cause a change of 33% in γS, from the minimum of 54.9 

mJ/m2 for CF4-P to the maximum of 72.9 mJ/m2. However, only 5% difference in χP is 

found between the minimum and the maximum values. On the other hand, the 

morphologies of 2 nm thick NPB on the four samples wondrously resemble, in terms of 

shape, distribution and surface coverage. It is surface polarity that control the nucleation 

and initial growth of NPB film on ITO and Si substrates.  
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Ar-P, χχχχP=0.75 H2-P, χχχχP=0.79

CF4-P, χχχχP=0.78 O2-P, χχχχP=0.77

 

Figure 6.5. AFM (phase mode) images of 2 nm thick NPB on the Si wafer surfaces 
treated by different plasmas marked on the images. The values of surface polarity (χp) 
displayed on the images are from Table 3.4. The dark phase on the images is NPB thin 
film. The scan area is 1×1 µm2. 
 

6.4.4 Ultra Thin Buffer Layers and Their Influence on NPB 

Morphology 

 

Figure 6.6 shows the AFM images of 2 nm NPB thin film on ITO surfaces modified by Ar 

plasma and coated by sol-gel (S-G) SiO2 with different thicknesses: (a) Ar-P, (b) 1.2 nm, 

(c) 1.8 nm, and (d) 2.4 nm. It should be noted that the particles with size of 80-100 nm are 

discernible, which are suspected to originate from sol-gel solution and pass through the 

0.2 µm filter. 
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(a) (b)

(c) (d)

 

Figure 6.6. AFM (phase mode) images of 2 nm thick NPB thin film on the ITO 
surfaces modified by Ar plasma and S-G SiO2 with different thicknesses: (a) Ar-P, (b) 0.6 
nm, (c) 1.2 nm, and (d) 1.8 nm. The dark phase on the images is NPB thin film. The scan 
area is 1×1 µm2. 
 

Compared with the isolated NPB islands on the Ar-P sample surface shown in Figure 

6.6(a), the uniformity of NPB film is significantly improved on the ITO surface coated 

with 1.2 nm S-G SiO2, as shown in Figure 6.6(b). In particular, no island-like morphology 

is observed. However, with increasing S-G layer thickness, the continuity of the NPB film 

becomes worse, as shown in Figure 6.6(c) and 6.6(d). This implies that the ITO surface 

areas without coating are the preferential sites for NPB film nucleation. This can be 

further confirmed by the morphology of thicker NPB deposits. 
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(a) (b)

(c) (d)

 

Figure 6.7. AFM (phase mode) images of 7 nm thick NPB thin film on the ITO 
surfaces modified by S-G SiO2 buffer layers with different thicknesses: (a) 0.6 nm, (b) 1.2 
nm, (c) 1.8 nm, and (d) 2.4 nm. The dark phase on the images is NPB thin film. The scan 
area is 1×1 µm2. 
 

The S-G modified ITO surfaces were coated with 7 nm thick NPB film, as shown in 

Figure 6.7. It is obvious that the thicker S-G layer means higher coverage of SiO2 deposit 

on ITO surface, and more NPB thin film is therefore deposited on SiO2 film than ITO 

surface. It is clearly seen that the NPB films become coarser with increasing S-G layer 

thickness from 0.6 to 2.4 nm. In particular, a distinctly wavy NPB film can be observed on 

the 2.4 nm S-G coated ITO sample, as shown in Figure 6.7(d). This is attributed to the 

reduction of the ITO surface areas without coating, which are preferential sites for NPB 

nucleation.  
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(a) (b)

(d)(c)

 

Figure 6.8. AFM (phase mode) images of 2 nm thick NPB thin film on the ITO 
surfaces modified by (a) 0.5 nm, (b) 1 nm, (c) 2 nm, and (d) 5 nm TE SiO2 buffer layers. 
The dark phase on the images is NPB thin film. The scan area is 1×1 µm2. 
 

Similar to the S-G coated ITO samples, the morphological dependence of NPB thin film 

on the buffer layer thickness were also observed on the ITO surface modified by thermally 

evaporated (TE) SiO2 layers, as shown in Figure 6.8 and Figure 6.9. When the film 

thickness is increased from 0.5 to 1 nm, the uniformity of 2 nm NPB film is slightly 

improved, with less island-like feature. However, the island-like characteristics of 2 nm 

NPB film become more perceptible with increasing the TE SiO2 layer thickness, in 

particular, for the sample with 5 nm SiO2 buffer layer, as shown in Figure 6.8(d).  
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(a) (b)

(d)(c)

 

Figure 6.9. AFM (phase mode) images of 7 nm thick NPB thin film on the ITO 
surfaces modified by (a) 0.5 nm, (b) 1 nm, (c) 2 nm, and (d) 5 nm TE SiO2 buffer layers. 
The dark phase on the images is NPB thin film. The scan area is 1×1 µm2. 

 

This effect of TE SiO2 buffer layers on NPB nucleation and growth is enlarged when 7 nm 

thick NPB thin film is applied on the modified ITO surfaces. Figure 6.9 shows that with 

increasing S-G layer thickness, the NPB film becomes more crimpled and more substrate 

surface is exposed. This is attributed to incompatibility of SiO2 film with the NPB film, as 

the coarsest NPB film was observed on the 5 nm SiO2 coated ITO surface, where the ITO 

surface is fully covered by the TE SiO2 buffer layer, as shown in Figure 5.1.  
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Chapter 5 has revealed that SiO2 thin film thermally evaporated on ITO surface at room 

temperature takes island growth mode, and that the SiO2 phase in a form of particle 

scatters across ITO surface. In the present study, the ITO surface could not be fully 

covered with a TE SiO2 layer thinner than 5 nm. In particular, when 1 nm SiO2 is 

deposited on to an ITO surface, as shown in Figure 6.10, the surface coverage seems to be 

much less than 10%. Because the ITO surface is not so flatten for clear identification of 

SiO2 phase coverage, 1 nm thick SiO2 was deposited on a Si wafer surface treated by Ar 

plasma as described in Chapter 3. Figure 6.10(b) shows that the 1 nm thick SiO2 

distributes on the Si surface in particles and the surface coverage is about 15%. More 

importantly, the presence of SiO2 islands results in uniform distribution of NPB deposit on 

both ITO and Si surfaces. Figure 6.10(c) and 6.10(d) demonstrate that the initial deposit of 

NPB on the SiO2 modified surfaces covers the exposed ITO or Si first, instead of TE SiO2 

deposit.  
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(a) (b)

(c) (d)

 

Figure 6.10. AFM (phase mode) images of 1 nm TE SiO2 buffer layers on the ITO (a) 
and Si wafer (b) surfaces and of 2 nm NPB on the TE SiO2 modified ITO (c) and Si wafer 
(d). The dark phase on the images is NPB thin film. The scan area is 1×1 µm2. 
 

The results in Chapter 3 have shown that NPB thin film grows on Ar-P treated Si surface 

in island mode. In comparison, the uniform NPB thin film shown in Figure 6.10(d) is 

clearly caused by the SiO2 particles. It is reasonable to deduce that the SiO2 particles 

increase the lateral diffusion energy barrier that confines the NPB molecules in a small 

area without further coagulations into islands. The SiO2 particles, therefore, act as 

“anchors” to fix the organic molecules nearby. Moreover, the steps formed between the 

SiO2 particles and the Si substrate are preferential sites for NPB nucleation.  

 

In actual applications, the nominal thickness of the thermally evaporated insulating buffer 

layer is usually controlled within 1 nm for improving device performance. In this case, the 
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insulating materials are discontinuously distributed in a particle format, with covering 

percentage of less than 10-15%. In other words, more than 85-90% of the ITO surface 

coated with the ultra thin buffer layer exposes directly to the NPB molecules rather than 

the insulating materials. The coating coverage situation for S-G buffer layer is similar, 

although the differentiation in morphology. The findings suggest that the tunneling model 

frequently used for discussion over the effect of insulating buffer layer on hole injection 

efficiency is invalid in this study. 



 200 

6.5 Conclusion 

 

By using AMF analysis, nucleation and initial growth of NPB films on the ITO surfaces 

modified by different processes. The results show that the nucleation and initial growth 

modes of NPB films on the plasma- and electrochemically-treated ITO surfaces are 

correlated to the type of plasma and the electrochemical treatment voltage, respectively. 

For plasma and electrochemical treatments, the polarity of ITO surface affects the 

morphology of NPB thin film via governing the NPB nucleation and growth. More 

uniform and finer NPB deposit is corresponding to the higher surface polarity. However, 

the effect of the ITO surface property on NPB morphology is diminished once the ITO 

surface is fully covered by the NPB deposit. 

 

More uniform NPB films on the ITO surfaces with ultra thin SiO2 buffer deposits, which 

is attributed to the creation of more nucleation sites and shorten the lateral diffusion length 

of the adsorbed NPB molecules. However, with increasing the buffer layer thickness, the 

NPB films become coarser due to the incompatibility of NPB with SiO2. It is also 

concluded that buffer layers thinner than 1 nm is not continuous on the ITO surface and its 

surface coverage is less than 10-15% for S-G and TE SiO2 coatings, and therefore the 

tunneling model for hole injection is not applicable in this study. 
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Chapter 7 

Discussion 

 

Abstract  

 

In this chapter, phenomenal models of ITO/NPB interface evolution are proposed to have 

good understanding of the mechanisms behind the improved device performance by 

different ITO surface modifications, in particular, the effect of surface modification the 

hole injection. The influence of hole injection on EL efficiency is also discussed.  
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7.1 Introduction 

 

The results in this study show that the OLED device performance is correlated to the ITO 

surface properties that are suspected to have influence on the evolution of 

electrode/organic interface.  

 

Chapter 3 and Chapter 4 demonstrate that plasma and electrochemical treatments of ITO 

surface introduce significant changes in chemical composition of ITO surfaces, which is 

generally believed to be the major factor controlling ITO surface WF by changing surface 

dipoles. Although WF is not the only surface property that is controlled by surface 

chemical states, change in WF is usually the first concern when the influence of surface 

treatment on device performance is discussed. This is because WF is the key parameter in 

modeling the electronic structure at ITO/organic interface. The influence of WF on the 

hole injection across ITO/organic has been well discussed in literature by using energy 

band theory [122,131,148,157,158]. It is generally accepted that the increased WF, i.e. 

lowering Fermi energy level (presented as the change in WF here, ∆Φ) via negative 

dipoles produced by surface treatments, reduces the energy barrier for holes’ getting over 

the ITO/HTL interface, and therefore the driving voltage, as schematically shown in 

Figure 7.1.  
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Figure 7.1. Schematic energy band diagram showing the reduced energy barrier for 

hole injection through increased surface WF by oxidative surface treatments.  

 

It is clear that the intrinsic WF of the bulk ITO (ΦBulk) is conceptually different from the 

surface WF (ΦSurf), as the former is entirely dependent of crystallinic structure rather than 

surface dipole. Therefore, surface WF can be presented as: 

ΦSurf = ΦBulk + ∆Φ 

For negative dipole (point inwards) ∆Φ is positive, and vice-versa for the positive dipole.  

 

The ∆Φ induced by surface treatments decays over time and returns to its original value 

within hours [120,128,259]. The ultimate cause of this erratic increase of WF is yet to be 

understood. Possible explanations include the diffusion of high concentration oxygen on 

ITO surface into the ITO bulk [299] and/or adsorption of ambient carbon during handling 

[300-302]. It is clear that the later can be avoided by preventing the treated samples from 

exposing to atmosphere. It is reasonable to deduce that if the former speculation is true, 

the improvements of OLED performance would be diminished correspondingly with the 
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decay of ITO WF, according to the energy band theory. However, there has been no such 

report on device instability attributed to the oxygen plasma treatment. Some results 

showed that oxygen-plasma treatment of the ITO anodes gives the highest operational 

stability and efficiency of polymer LEDs, even when an aqueous based PEDOT:PSS 

[Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)] is used as the hole injection 

layer [115]. This result is clearly inconsistent with WF explanation, as ITO surface WF is 

independent of dehydoxylation and rehydroxylation [222].  

 

Moreover, the WF elucidation has been intensively questioned partially due to the 

invalidity of Schottky-Mott model for organic semiconductors, which is mainly caused by 

vacuum shift at the ITO/organic interface [41,44], as shown in Figure 1.6, and no charge 

transfer cross the junction [49,63]. Years ago, in fact, surface WF was proven to be 

significantly changed as soon as atoms or molecules are deposited onto the surface under 

consideration [303]. The immediate consequence of the vacuum level shift is that the 

overall change in energy barrier is small or even zero, as the increased surface dipoles 

move downward not only the ITO Fermi level but also the vacuum level at the interface 

[162]. This conclusion is supported by many experimental results. For example, a 

markedly different performance was observed on the devices with ITO films being of 

similar work functions but different morphologies [160]. Chen et al. [161] recently 

reported their experimental results using different HILs being of varied HOMO levels, and 

concluded that the energy barrier difference at the ITO/HIL interface was not the main 

factor in determining the hole injection from the ITO anode to HIL. They proposed that 

besides the WF, other surface properties are also play an important role in influencing hole 

injection and device performance [115,124,211,212], one of which is surface energy [123]. 
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Plasma treatments change not only ITO work function but also surface energy based on 

dipole theory [115,122,148]. Surface energy of a crystal is the energy required, per unit 

area of new surface formed, to split the crystal in two along a plane [304,305]; while WF 

is equal to the minimum work that must be done to remove an electron from the highest 

energy state of a solid to infinity at 0 K [306-308]. The two surface properties are 

conceptually different because WF is basically related to electromagnetic force, while 

surface energy is related to both electromagnetic force and nuclear force that has unknown 

quantitative expression. Although some efforts have been put to correlate the two surface 

properties [309,310], no quantitative expression for the correlation is yet reached. 

Furthermore, both theoretical calculations and experimental measurements over 40 

closely-packed elemental metals [311] show that there is indeed no consistent relation 

existed between WF and surface energy. It is expected that the situation is much more 

complex in the study of compound systems, such as ITO. This suggests that the two 

surface properties may not be governed by the identical factors and in the same way. 

 

In this chapter, the hole injection mechanisms behind ITO surface modifications with 

emphasis on the factors rather than WF.   
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7.2 Phenomenal Model of ITO/HTL Interface Evolution 

 

The results in Chapter 6 clearly show that ITO surface properties have critical influence 

on the morphology of NPB film. In particular, the polarity of ITO surface controls the 

initial growth mode of NPB film, which thereafter is a determinant factor influencing 

OLED performance. Furthermore, the morphological studies suggest that the high density 

of nucleation sites and more uniform NPB layer promote hole injection from ITO to NPB 

layer. As discussed previously, the performance of OLEDs is strongly influenced by the 

properties of the interface between the organic layers and electrodes and a better electrical 

contact between the two materials is expected to enhance the charge carrier injection 

through the interface. From micro point of view, however, the interfacial properties are 

varied over the ITO surface due to the inhomogeneous HTL nucleation. 

 

It is believed that a good contact is formed at the nucleation NPB sites on ITO surface, 

compared with the neighboring areas, in terms of mechanical, electrical and electronic 

properties. This is because, at preferential nucleation sites, the interaction between 

absorbing molecules and the substrate surface is stronger due to the higher overlap of 

electron clouds, resulting in more stable interface with lower energy. A better electrical 

contact at the preferential nucleation sites results in “active” spots being of lower barrier 

to hole injection and/or lower resistance to current flow. Driving voltage, a macro property 

of OLED associated with hole injection efficiency, is then controlled by the number of 

such active spots, i.e., the higher the spot density, the lower the driving voltage.  
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In addition, the electrical properties at the interface are also influenced by the effective 

interface area. As well-known, a deposition process producing islands on the surface 

inevitably leads to shadowing of portions of the surface from the incoming flux as islands 

come together. When atoms do not move sufficiently after deposition to fill gaps and 

shadows between coalescing islands, the result is narrow voids between adjacent grains in 

the film. This situation is severe in the case of large island on a rougher and poorly wetted 

surface. The interfacial voids obviously reduce the effective contact area between ITO and 

NPB, and therefore the number of active spots, which deteriorates hole injection further.  

 

Another point should be addressed is the influence of ITO grain boundaries on carrier 

injection, where contains so large number of crystal misfits and defects that they are of 

properties of amorphous materials [232]. It was previously shown that polycrystalline ITO 

films allow for more efficient electron transfer than amorphous films [213]. Unfortunately, 

grain boundaries and other defects are often the preferential nucleation sites due to their 

higher surface energy than the polycrystalline surfaces. As a consequence, poor hole 

injection is frequently observed in the device based on an untreated ITO surface.   

 

In regard of active spots, the actual situation is much more complicated, as the electrical 

properties of the active spots are varied from one to another due to the surface 

inhomogeneity. Therefore, the term of “active” is very conceptual and relative and the 

number of the active spots changes with electric field. This means that charge carriers can 

also be injected through other areas besides the indicated active spots, however, the 

voltage required to activate the so-called inactive areas is higher due to their higher 

interface barrier caused by poorer electrical contact. 
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(a) 
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Active spot ITO substrate Inactive area 
 

(b) 

Figure 7.2. Schematic elucidation of active, inactive and void areas for NPB film on 
ITO substrates with lower surface energy (a) and higher surface energy (b). 
 

For treated ITO surfaces with low surface polarity, the preferential nucleation sites are 

mainly located on the grain boundaries, as shown in Chapter 6, leading to fewer active 

spots for carrier passing through at a given voltage, as depicted in Figure 7.2(a). This is 

true for the samples of as-clean, H2-P, ECT+1.2V and ECT+2.8V. On these samples, NPB 

film nucleates mainly along grain boundaries with low density of nucleation sites. The 

effectiveness of the “active” spots along the grain boundaries on hole injection is therefore 

discounted, as higher energy barrier exists on the grain boundaries.  

 



 209 

By contrast, oxidative surface treatment, such as O2 and CF4 plasmas and electrochemical 

treatments at +2.0 and +2.4 V, significantly “passivate” ITO surface through removing the 

active sites on the grain boundaries. In other words, the high surface polarity obtained by 

the oxidative treatments can effectively suppress the preference of grain boundaries for 

nucleation. A result of the oxidative surface treatments is denser and more uniform 

nucleation over ITO surface, leading to smaller nucleus size and thus more active spots, as 

depicted in Figure 7.2(b). Furthermore, the resulted good wetting morphology can 

effectively reduce the possibility of voiding and therefore increase the actual contact areas. 

It is speculated that the void effect on device performance becomes more visible at high 

driving voltage, where carriers will be injected through both the active and the inactive 

areas but not the voids. 
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7.3 Phenomenal Models of EL Efficiency Controlled by Charge 

Injection  

 

As described in Chapter 1, in an typical bilayer OLED device, the injected charges with 

opposite signs are transported in the applied field towards the counter electrode through 

HTL (e.g., NPB in this study) for holes and ETL (e.g., Alq3) for electrons and finally 

recombine and form excitons in EML (e.g., Alq3), which then decay either radiatively or 

nonradiatively. Understanding the charge transport is very important in discussion over 

the effect of hole injection on EL efficiency. 

 

There are a number of factors influencing the charge transport. Due to the disorder of the 

organic semiconductors charge carrier transport in organic materials is to be described by 

hopping between sites with different energy and distance. Additionally, the injected 

charge carriers can be intermittently trapped in gap states originating from impurities or 

structural traps, which are mostly the exciton quenching sites. Both the intrinsic hoping 

transport and the presence of band-gap energy states are responsible to the resulted low 

carrier mobilities, which are typically between 10−3 and 10−7 cm2/V s at room temperature 

and in many cases strongly depend on temperature and the magnitude of the applied 

electric field [327].  

 

In addition, charge accumulation at interfaces must be taken into account. For a device 

with the typical structure of ITO/NPB/Alq3/Al, it is unavoidable for the injected charges to 

accumulate at the NPB/Alq3 interface due to the presence of energy barriers for holes and 
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electrons, as schematically shown in Figure 7.3 without consideration of the band gap 

states. 

LiF/Al

NPB

ITO

Alq3

 

Figure 7.3. Schematic energy level diagram of an NPB/Alq3 double-layer device with 
ITO as hole injection electrode and LiF/Al as electron injection electrode, showing the 
imbalanced charging at the NPB/Alq3 hetero-junction. 
 

As the overall device is neutral, the imbalance accumulation of the opposite charges at the 

interface is able to change the electric field redistribution. For instance, if the number of 

electrons exceeds that of holes at the interface as shown in Figure 7.3, the electric field 

strength will be increased in NPB but decreased in Alq3. The field redistribution due to the 

imbalanced charging at the interface has influence of charge injection and mobility to 

certain extent. It should be kept in mind that the situation of imbalanced charging at the 

interface may be altered with changes in organic/electrode interfaces governing charge 

injection and overall field strength influencing both charge injection and mobility. 

Similarly, the space charge caused by the excessive charge injection with respect to the 

lower charge-drift mobility can also change the field redistribution.  

 

It is conventionally accepted that turn-on voltage is controlled by hole injection; but EL 

efficiency by electron injection [25,26], and that an opposite effect of ITO surface 

modification on driving voltage and EL efficiency has been frequently reported. More 
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specifically, enhancement of hole injection generally results in lowering current efficiency, 

which has been attributed to excessive hole injection. Apart from previous reports, the 

results obtained from the devices with electrochemically treated ITO show that 

simultaneous improvement of both hole injection and EL efficiency is possible by using 

optimized pre-treating processes. The mechanism behind is clearly important for device 

design and fabrication aiming at high performance. 

 

Besides the nonradiative triplets in fluorescent materials, which set a theoretical top limit 

of 25% in quantum efficiency [328,329], exciton quenching in particular at interfaces has 

a great influence on device efficiency [13]. Therefore, the location of recombination zone 

in the emitting layer takes a critical role in EL efficiency for a given device structure, 

which is highly correlated to the mobilities of the opposite charges as well as the position 

and density of the exciton quenching sites. As mentioned above, in Alq3 layer, there are a 

lot of electron traps near NPB/Alq3 and Alq3/LiFAl interfaces, which are most likely 

formed due to the interaction between the two electron systems and/or their structural 

changes during the interface evolution. These electron traps possess varied energies 

located between LUMO and HOMO levels, i.e., band gap states.  The injected higher 

energy electrons at LUMO level are inclined to filling the lower energy traps. In addition, 

the electrons trapped in the band gap states are also transfer mutually, most likely from 

higher energy traps to the lower ones. If the trapped electrons are unable to be re-excited 

into LUMO level by higher electric field, they will be captured by the holes from the 

counter electrode with nonradiative decay to the ground state. Therefore, recombination in 

the trap concentrated zone, such as zone A and zone C in Figure 7.4, definitely leads to 

lower EL efficiency. In contrast, an ideal recombination zone is in such an area that is far 
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enough from the interfaces, such as zone B shown in the same figure, as more excitons in 

this region will decay radiatively.  
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Figure 7.4. Schematic energy level diagram of an NPB/Alq3 double-layer device with 
ITO as hole injection electrode and LiF/Al as electron injection electrode, showing the 
recombination zone shift towards the NPB/Alq3 interface.  
 

If hole injection is insufficient, as shown in Figure, the injected electrons fill the traps near 

Alq3/cathode interface with first priority, then transport across Alq3 layer, and finally fill 

the traps near the NPB/Alq3 interface. Meanwhile, the excessive electrons accumulate at 

the interface due to the large energy barrier for electron surmounting the interface. In 

comparison, the accumulation of holes at the interface is not as serious, as the energy 

barrier for holes to overcome are small. As a consequence, a substantial number of 

injected holes will capture the low energy electrons trapped in zone A, without 

contribution to light emission. Meanwhile, the accumulated high energy electrons at 

LUMO level successively fill the vacated low energy traps. This situation becomes more 

serious with increasing driving voltage, as the mobility of electron in Alq3 has stronger 

dependence of the electric field than that of holes in NPB [327,330,331]. This is the 

reason why declining EL efficiency at high driving voltage is generally observed. In 

addition, hole mobility in Alq3 is much lower than electron mobility in Alq3 [332]. It is 
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therefore speculated that the lower current density and EL efficiency obtained from a hole 

limited device (i.e., insufficient hole injection) is due to the shift of recombination zone 

towards the HTL/EML interface. Typical examples for this case in this study are the 

devices based on ITO surfaces modified by thicker buffer layers.  
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Figure 7.5. Schematic energy level diagram of an NPB/Alq3 double-layer device with 
ITO as hole injection electrode and LiF/Al as electron injection electrode, showing the 
position of recombination zone for the best performance in EL efficiency.  
 

With improved hole injection, as shown in Figure 7.5, more holes will diffuse into zone B 

being of less energy traps, leading to more radiative exciton decays and then high EL 

efficiency. Ideally, if the number of holes approaching zone B is sufficient that the 

majority of incoming electrons will be captured by the holes, the injected electrons have 

small probability to reach zone A. The ideal condition has been schematically displayed in 

Figure, which is rarely achieved in practice.  Concurrent enhancement in both current 

density and current efficiency for the samples ECT+2.0V and ECT+2.4V suggests that 

electrochemical treatment of ITO is a useful technique to balance charge carrier injections 

to tune the position of combination zone for high EL efficiency at higher current density. 
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Figure 7.6. Schematic energy level diagram of an NPB/Alq3 double-layer device with 
ITO as hole injection electrode and LiF/Al as electron injection electrode, showing the 
recombination zone shift towards the Alq3/cathode interface.  
 

Following the same model, it is easy to deduce an immediate consequence if excessive 

holes are injected. From Figure 7.6, it can be seen that the relative surplus holes will push 

the recombination zone towards zone C near Alq3/cathode interface, where high density of 

lower energy traps exist. In this case, the number of electrons diffused into the effective 

recombination zone B is reduced, resulting in lower efficiency accompanying high current 

density. A typical example is the oxygen plasma treatment of ITO surface, where the 

reduced turn-on and driving voltages are obtained at a cost of lowering current efficiency. 

The loss of EL efficiency due to excessive hole injection will be worsened at high driving 

voltages, as hole mobility in Alq3 is much more sensitive to electric field than electron 

mobility [332]. 
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Chapter 8 

Conclusion and Further Work 

 

8.1 Summary of the Work 

 

The aim of this work is to investigate the influence of various surface modifications on, in 

turn, ITO surface properties, hole injection efficiency, and finally device performance.  

This research is expected to provide important information on good understanding of hole 

injection mechanisms in OLED devices.  

 

In this study, extensive work involving surface modifications of ITO was carried out, 

including gas plasma treatments, electrochemical treatments, and insulating buffer layers. 

In order to understand the governing factors of ITO surface properties, ITO samples were 

treated with different types of plasma (i.e., H2, Ar, O2, and CF4) and characterized in terms 

of surface morphology by AFM, chemical states by XPS, electron transfer kinetics by CV, 

and surface energy by contact angle measurements. Electrochemical process was first 

proposed as a new approach for ITO surface treatment. Similar to the plasma treatments, 

the electrochemically treated ITO surfaces were also characterized in the surface 

properties. SiO2 buffer layers produced by thermal evaporation (TE), self-assembled-

monolayer (SAM), and sol-gel (S-G) processes were applied on to ITO surfaces as well, 

and characterized by AFM and CV techniques. OLED devices based on the modified ITO 

electrodes, in configuration of ITO/NPB(60nm)/Alq3(60nm)/LiF/Al, were fabricated and 
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characterized in terms of L-I-V behavior and EL efficiencies. More importantly, 

nucleation and initial growth of hole transport layer on the treated ITO surfaces were 

morphologically investigated to understand the influence of surface modification methods 

on interface property and therefore hole injection. Based on the results of surface 

properties and device performance, phenomenal interface models were proposed for 

discussing the hole injection mechanism and the influence of hole injection on EL 

efficiency.  
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8.2 Findings and Conclusions 

 

AFM analysis showed that plasma treatments at the working conditions used in this study 

did not cause detectable change in ITO surface morphology. ITO surface composition and 

chemical states were found by XPS to be sensitive to the plasma types. O:In ratios on the 

ITO surfaces were in a sequence of CF4-P > O2-P > Ar-P > as-clean > H2-P, indicating the 

plasma-induced oxidation/reduction of the ITO surface. The highest O:In ratio on CF4-P 

ITO surface was an evidence of In-etching. In addition, In/Sn-F species were also detected 

on the CF4 plasma treated ITO surface, leading to ITO surface passivation. Both the 

surface oxidation and the passivation were clearly verified by CV experiments. 

Interestingly, ITO surface polarity was also plasma type sensitive and ranked in the same 

sequence as O:In ratio. The distinguished change in surface polarity after plasma 

treatments was attributed to the different contents of the polar species. Furthermore, 

surface polarity was correlated to the hole injection efficiency of the corresponding OLED 

device. More specifically, the higher the surface polarity, the higher the hole injection 

efficiency. However, the current efficiency based on the O2-P and CF4-P ITO samples 

were lowered due to the excess hole injection in comparison with the electron injection 

from the counter electrode.  

 

Similar to plasma treatment, electrochemical treatment also led to significant changes in 

ITO surface properties, especially surface polarity, and in OLED performance. The 

surface polarity was sensitive to the treatment voltage, being of a max. value for the ITO 

sample treated at +2.0V and small values for those treated at +1.2 and +2.8V. The high 
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surface polarities of ITO samples treated at a voltage from +1.6 to 2.4 V were attributed to 

the anodic oxidation verified by XPS, which was caused by the water electrolysis 

requiring ITO polarized at a voltage more than +1.23 V. When a voltage higher than 

+2.4V was applied, however, significant surface corrosion ITO surface was clearly 

observed by AFM. Furthermore, XPS analysis confirmed the existence of  insulating In/Sn 

phosphate on the ITO surface treated at +2.8V, which was the main reason causing the 

lowest surface polarity. More importantly, the electrochemical treatment at +2.0V 

provided ITO sample with much stable surface properties, compared with the most 

frequently used O2 plasma treatment in OLED fabrication. Furthermore, the 

electrochemical treatment improved not only hole injection but also current efficiency of 

the corresponding ITO device. This finding suggested that electrochemical treatment 

could be used to tune hole injection by changing treatment voltage for improved device 

performance.  

 

In comparison, insulating buffer layers affected hole injection and device performance in a 

different way from the plasma and electrochemical surface treatments. Buffer layer 

morphology on ITO surface was related to coating process. AFM and CV analyses 

revealed the coating density was in a rank of SAM SiO2 > S-G SiO2 > TE) SiO2. More 

importantly, the L-I-V characteristics of the OLED devices based on the ITO modified by 

the SiO2 buffer layers demonstrated that insulating buffer layers retarded hole injection. 

Denser buffer layer was consistent with lower hole injection efficiency. For the same 

coating process, thicker buffer layers blocked more holes. In addition, ~1 nm thick SiO2 

could not fully cover the rough ITO surface regardless of the coating processes used in 
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this study, implying that both tunneling and image force models might not be suitable for 

discussing the effect of insulating buffer layer on hole injection. 

 

By using AMF analysis, nucleation and initial growth of NPB films on the ITO surfaces 

modified by plasma and electrochemical surface treatments and insulating SiO2 buffer 

layers were investigated to understand the mechanisms behind the effect of the ITO 

surface modifications on hole injection and then OLED performance. The results showed 

that NPB thin film morphologies on the plasma- and electrochemically-treated ITO 

surfaces were correlated to the type of plasma and the electrochemical treatment voltage, 

respectively, which was attributed to the governing effect of surface polarity on the 

nucleation and growth of the NPB thin film. The higher the surface polarity, the finer and 

more uniform the NPB deposit. As a consequence, the improved adhesion of NPB film 

onto the ITO surfaces led to good electric contacts and therefore the enhanced hole 

injection.  

 

In contrast, the uniform NPB films on the ITO surfaces coated with ultra thin (~ 1 nm 

thick) SiO2 layers were attributed to the increased nucleation sites and the shorten lateral-

diffusion length of the adsorbed NPB molecules, being beneficial to the adhesion of NPB 

film to ITO surface and then the hole injection. This positive effect of the ultra thin 

insulating buffer layer to hole injection, however, was limited to a layer thickness about 1 

nm, and likely concealed by the reduced ITO/NPB contacts. In these cases, the majority of 

interfacial contacts were ITO/NPB rather than SiO2/NPB. With increasing buffer layer 

thickness and therefore the ITO surface coverage with SiO2, hole injection was 

significantly blocked due to the large fraction of SiO2/NPB contacts at the interface.   
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8.3 Further Work 

 

The findings in this thesis have demonstrated that CF4 and O2 plasma treatments and 

electrochemical treatments at a voltage of +2.0~+2.4V can significantly improve the hole 

injection across ITO/NPB interface (refer to Chapters 3 & 4). In contrast, almost all SiO2 

buffer layers blocked the hole injection (refer to Chapter 5). It is therefore an interesting 

topic to combine the three ITO surface modification techniques for balancing charge 

injection and improving OLED device performance. 

 

This study has also shown that the ITO surface electrochemically-treated at +2.0V has 

much better stability in terms of surface energy than that of oxygen plasma treatment 

(refer to Section 4.3.1). The mechanisms behind the stable surface properties need to be 

further investigated. Furthermore, the work on lifetime and stability of the OLED devices 

after ITO surface modifications hasn’t been carried out yet, and will be one of the focuses 

in the further work. 
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