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SUMMARY  

 

Human embryonic stem cells (hESC) are pluripotent stem cells that have the unique 

ability to differentiate into cells of the three germ line lineages. Hence, they have wide 

potential to be used in cell replacement therapy and drug discovery. To realize the clinical 

potential of hESC, a deeper understanding of the molecular and cellular mechanism 

underlying their unique capacity for self-renewal and differentiation is required. This thesis is 

focused on the role of the Sonic Hedgehog (SHH) signaling pathway, a key pathway essential 

for the normal development of mammals. By testing the requirement of SHH in 

undifferentiated hESC cultures, it was revealed that exogenous SHH was not able to maintain 

the pluripotency or increase the proliferation of hESC. Instead, the SHH pathway was 

activated upon differentiation and exogenous SHH promoted differentiation to the 

neuroectoderm lineage. Using a defined neural differentiation protocol, it was found that 

overexpression of SHH in hESC resulted in a significant increase in neural stem cell marker 

expression as well as increased proliferation of neuroprogenitors. This demonstrated that 

SHH enhanced the neural induction and expansion of neuroprogenitors, which resulted in an 

increased yield of dopaminergic neurons derived from the neuroprogenitors. Transcriptional 

profiling of overexpressing SHH neuroprogenitors and in silico GLI DNA-binding site 

analysis identified putative direct and biologically relevant target genes of the SHH pathway. 

It also revealed an extensive network of genes involved in neural development, 

neuroprogenitor proliferation, neural specification and axon guidance. Therefore, this thesis 

contributes to the understanding of SHH signaling in hESC self-renewal and differentiation 

and provides a comprehensive view of the SHH transcriptional network in hESC-derived 

neuroprogenitors. 
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CHAPTER 1 INTRODUCTION 

1.1 Background  

Human embryonic stem cells (hESC) are a widely envisioned source of cells for use 

in cell replacement therapy. In particular, medical conditions arising from the loss of neurons, 

like Parkinson’s disease, Alzheimer’s disease, stroke and spinal cord injuries, are potential 

beneficiaries of the cell replacement therapy. The inherent limited capacity of the central 

nervous system for self-repair means that transplantation of functional neurons into the sites 

of injury is one potential approach to restore physiological function. Unfortunately, the lack 

of transplantable neurons has rendered these conditions to be currently incurable. Therefore, 

the ability of hESC to differentiate to all cell types of the body has spurred intensive research 

towards understanding the biology of hESC self-renewal as well as to differentiate hESC 

towards cells of the neural lineage. 

The process of neural differentiation is governed by both extrinsic signals from the 

microenvironment like growth factors, substrates and cell-to-cell contact, and intrinsic gene 

regulation. Therefore, to achieve efficient directed differentiation of neurons, it is essential 

that there is sufficient knowledge of the differentiation process and the underlying molecular 

mechanisms controlling cell fate choices. 

Principles gleaned from developmental biology studies have been effective when 

applied to in vitro neural differentiation of hESC. The process requires the use of inductive 

signals applied in a timely and coordinated fashion, with the aid of stromal cells or genetic 

manipulation (Kawasaki et al., 2000; Carpenter, 2001; Zhang et al., 2001; Chung et al., 2002; 

Perrier et al., 2004; Gerrard et al., 2005; Du et al., 2006; Hedlund et al., 2008).  As a result, 

hESC have been successfully differentiated into a great variety of cells that make up the 

central nervous system including dopaminergic neurons, motor neurons, glial cells, 

astrocytes, oligodendrocytes, neural crest stem cell cells and retinal cells (Bjorklund et al., 

2002; Faulkner and Keirstead, 2005; Lamba et al., 2006; Lee et al., 2006; Lim et al., 2006; 

Lee et al., 2007a).  
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The Sonic Hedgehog (SHH) signaling pathway is one of the key pathways that 

control the development of the central nervous system in mammals. It is also important in the 

development of many other organs such as the limbs, bone, lung and the gut. As a 

morphogen, SHH is one of the crucial patterning factors used in conjunction with other 

molecules to efficiently generate several subtypes of neurons, including motor neurons and 

dopaminergic neurons from hESC (Perrier et al., 2004; Lee et al., 2007b).  

1.2 Motivation 

Given the importance of hESC, it is essential to understand the mechanisms that 

direct the balance between the states of self-renewal and differentiation. Several 

developmentally important signaling pathways like the fibroblast growth factor (FGF) and 

transforming growth factor beta (TGF") pathways have been identified to be instrumental in 

governing hESC self-renewal (Vallier et al., 2005, Xu et al., 2005). However, the exact 

cellular and molecular mechanisms are still being elucidated. To date, there has not been any 

in-depth study investigating the potential function of the SHH signaling pathway in hESC.   

Despite being able to obtain several neural cell types from hESC, there are gaps in 

the understanding of the molecular pathways controlling the differentiation of hESC along 

the neural lineage. This is reflected in current neural differentiation protocols that often result 

in a heterogeneous population of neural cells that are at different stages of differentiation 

(Pruszak et al., 2007). Furthermore, the specific ways by which SHH is able to direct neural 

differentiation towards the motor neuron and dopaminergic neuron lineages is often obscured 

as SHH is studied together with its partner molecules (Lee et al., 2000, Kim et al., 2002, Yan 

et al., 2005). Therefore, a systematic study into the role of SHH in neural differentiation and 

the gene networks it controls will provide insight into the hESC differentiation process. The 

knowledge gained can also potentially be used in the future to better control the 

developmental fate of cells and achieve more efficient differentiation of hESC to the desired 

neural cell type.  
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1.3 Objectives 

Hence, the proposed research work revolves around two principle objectives which is 

to investigate the role of SHH signaling pathway in the: 

1. Self-renewal and maintenance of pluripotency in undifferentiated hESC 

2. Directed differentiation of hESC towards the neural lineage 

Objective 1 was achieved by examining the capacity of the SHH pathway in maintaining 

pluripotent marker expression and cell proliferation of undifferentiated hESC. Objective 2 

was achieved by studying the effect of overexpression of SHH in hESC-derived 

neuroprogenitors and identifying novel downstream target genes of the SHH pathway in 

neuroprogenitors. 

 

1.4 Organization 

This thesis has 7 chapters. Chapter 1 describes the background, motivation and 

objectives of this thesis. It follows with Chapter 2 which presents a literature review of the 

SHH pathway and its function during mammalian development. It also covers the current 

understanding of undifferentiated hESC and strategies for in vitro differentiation of hESC to 

the neural lineage. Chapter 3 provides details on the materials and methods used in this 

thesis. Chapter 4 evaluates the presence and activation of the SHH pathway in hESC. It also 

studies the effect of SHH during spontaneous differentiation. Chapter 5 presents the directed 

neural differentiation of hESC and the changes observed from overexpression of SHH in 

hESC-derived neuroprogenitors. Chapter 6 examines the regulated genes by SHH and 

proposes novel target genes of the SHH pathway in hESC-derived neuroprogenitors. Chapter 

7 is a summary of the findings of this thesis and provides recommendations for future work. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview of SHH signaling pathway 

The Hedgehog gene was first discovered by Nusslein-Volhard and Wieschaus 

(Nusslein-Volhard and Wieschaus, 1980) during a Drosophila mutant screen for genes that 

were important for the “development of the fruit fly larval body plan”. The larvae of the 

mutated gene had spiky cuticles, which prompted the authors to name the gene hedgehog 

(hh). Since its discovery, the hh gene has been discovered in many species, including the 

puffer fish, zebrafish, chick, mouse and human (Ingham, 2001). Many key components of the 

SHH pathway are evolutionarily conserved from the Drosophila to the zebrafish, and to 

mammals, which signifies its importance. At the same time, there are important intraspecies 

divergences within the pathway that reflect its ability to control development in a species-

specific manner (Huangfu, 2006). Drosophila carries a single hh gene while vertebrates have 

3 Hh genes: Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh). All 3 

Hh proteins are are able to bind to the Patched 1 (Ptch1) receptor (Pathi et al., 2001) and can 

function redundantly (Zhang et al., 2001). However, their differences in expression patterns 

enable them to play different roles in development (Ingham, 2001; Varjosalo and Taipale, 

2008). Shh is the most broadly expressed Hh protein that mediates the most functions in 

development (Varjosalo and Taipale, 2008), and hence will be the focus of this thesis.  

 

2.2 SHH processing, pathway components and signal transduction 

2.2.1 SHH processing  

The Shh protein is synthesized as an approximately 45 kDa precursor which is then 

processed to a 19 kDa active signaling peptide (Figure 2.1). The signal peptide is cleaved 

when the full-length precursor protein is transported into the endoplasmic reticulum. The 

precursor protein then undergoes proteolytic autoprocessing in a reaction catalyzed by its 

own C-terminal domain, to generate the smaller 19 kDa N-terminal signaling molecule (Shh-



 

   5 

N). Following that, a cholesterol moiety is added to the C-terminus of Shh-N. Then, a 

palmitic acid moiety is added to the N-terminus of Shh-N (Porter et al., 1996; Chamoun et 

al., 2001; Lee and Treisman, 2001). These modifications result in an active 19 kDa fragment 

that contains all its known signaling activity. The cholesterol modification of Shh enables the 

ligand to attach tightly to cell membranes and is proposed to be required for the distribution 

of Shh-N in vivo (Guerrero and Chiang, 2007).  

 

Figure 2.1 Processing of the Shh full-length protein to form the Shh-N signaling peptide.   

 

2.2.2 SHH pathway components 

The Shh pathway signals via two receptors, Smoothened (Smo) and its negative 

regulator Ptch1, which are predicted to have 7 and 12 transmembrane spans respectively. In 

mammals, there are two Ptch members, Ptch1 and Ptch2 that have similar amino acid 
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identities (Carpenter et al., 1998). The secretion of Shh depends on Dispatched, a 12-span 

transmembrane protein homologous to Ptch (Burke et al., 1999; Ma et al., 2002).  

In mammals, there exist three transcriptional effectors of the pathway: GLI-Kruppel 

family member 1 (Gli1), Gli2 and Gli3. The Gli3 protein exists in 2 forms, the full-length 

form which can activate transcription and the truncated form that represses transcription of 

Shh dependent genes (Wang et al., 2000). Gli3 is normally phosphorylated and 

proteolytically processed to the repressor form and this cleavage is inhibited by Shh (Wang et 

al., 2000; Wang and Li, 2006). Gli3 functions mainly as a repressor of Shh signaling by 

repressing target gene expression (Sasaki et al., 1997; Wang et al., 2000). While Gli2 is 

similarly processed like Gli3 by the proteosome, the processing appears to be inefficient due 

to differences in their C-terminus regions (Pan et al., 2006; Pan and Wang, 2007). Gli1 lacks 

the N-terminal repression domain present in Gli2 and Gli3 and therefore functions only as an 

activator (Ruiz i Altaba, 1999; Sasaki et al., 1999). Gli1 and Gli2 act primarily as 

transcriptional activators and have overlapping functions (Park et al., 2000; Bai and Joyner, 

2001). Since transcription of Gli1 is controlled by active Shh signaling (Dai et al., 1999) and 

Gli1 knockout mutant mice are viable (Bai and Joyner, 2001), Gli1 is believed to be a 

secondary effector of the Shh signal transduction and serves to amplify the response to Shh 

(Bai et al., 2002).  

In mammalian Shh signaling, there are other additional molecules that regulate the 

activity of the Shh signaling by binding to Shh. Cdo and Boc are cell surface 

immunoglobulin superfamily members that bind to Shh to promote its activity (Tenzen et al., 

2006; Yao et al., 2006; Zhang et al., 2006). Another cell surface protein Gas1 is similarly a 

positive component of the signaling pathway (Allen et al., 2007). Gas1 and Cdo promote Shh 

signaling by acting synergistically with Ptch1 to enhance Shh binding to Ptch1 (Allen et al., 

2007; Martinelli and Fan, 2007). On the other hand, the hedgehog inhibitory protein (Hhip) is 

a membrane-associated protein that binds and diminishes the effect of Shh ligand by 

sequestration. Hhip is a transcriptional target of Shh (Chuang and McMahon, 1999; Jeong 

and McMahon, 2005), and is part of the negative feedback loop to limit the range of Shh 
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signaling. Therefore, these molecules modulate the range and concentration of Shh, and are 

necessary for Shh to carry out its function as a long-range morphogen.  

There are other negative regulators of the pathway. Suppressor of fused (Sufu) is one 

such protein, which inhibits Gli proteins from initiating transcription by sequestering Gli 

proteins to the cytoplasm (Kogerman et al., 1999; Stone et al., 1999; Dunaeva, 2003). Sufu 

also binds with Gli proteins while they are bound to DNA and inhibits their ability to initiate 

transcription (Cheng et al., 2002). Rab23 is another cytoplasmic protein that was recently 

identified to be a negative regulator of Shh signaling (Eggenschwiler et al., 2001). Rab23 

works downstream of Smo and is suggested to be a link between Smo and Gli whereby it 

inhibits the formation of the Gli2 activator form (Eggenschwiler et al., 2006). However, the 

exact mechanism of Rab23 has yet to be elucidated.   

2.2.3 SHH signal transduction 

The mammalian Shh signal transduction pathway requires the primary cilium, a small 

microtubule-based structure that extends out of the cell surface and acts as a 

microenvironment for signal transduction. Intact cilia and intraflagellar transport components 

necessary for cilia assembly are crucial for Shh signaling (Huangfu et al., 2003). Essential 

components of the pathway Smo, Ptch1, Sufu, Gli2 and Gli3 have been detected on the 

cilium of cells in the mouse neural tube, limb bud and embryonic fibroblasts (Corbit et al., 

2005; Haycraft et al., 2005; Rohatgi et al., 2007). In the absence of Shh, Ptch1 inhibits Smo 

by preventing Smo from accumulating at the cilia (Rohatgi et al., 2007) (Figure 2.2). Full 

length Gli2 and Gli3 are then phosphorylated by kinases and targeted for proteolysis to 

generate the repressor form. The Gli repressor proteins then move to the nucleus to repress 

transcription of target genes. 

Upon stimulation with Shh, Ptch1 is internalized into the cell and Smo is able to 

move into the primary cilium (Corbit et al., 2005; Rohatgi et al., 2007).  Live cell 

visualization of Smo tagged to a fluorescent protein revealed that intraflagellar transport 

proteins are required to move Smo from intracellular pools to the primary cilium (Wang et 
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al., 2009). The relief of inhibition of Ptch1 results in the phosphorylation of the cytosolic C-

terminus of Smo, which then induces a conformational change in Smo and activates 

downstream signaling (Zhao et al., 2007).  

 

 

Figure 2.2 Shh signaling pathway. In the absence of the Shh ligand, Ptch1 inhibits Smo 

activity by preventing its accumulation at the cilia. In this state, the Gli3 transcription 

factor is cleaved to a repressor form and translocates to the nucleus to repress 

transcription. In the presence of Shh, Ptch1 moves away from the cilia and Smo moves 

to the cilia, possibly with the help of intraflagellar transport (IFT) proteins. Gli2 and 

Gli3 are no longer cleaved and the full length Gli activator translocates to the nucleus to 

initiate transcription of target genes, e.g. Ptch1 and Gli1. Hhip, Gas1 and Cdo are 

membrane proteins that bind to the Shh ligand to help regulate the Shh signal. This 

figure was modified from Simpson et al., 2009. 

 

A novel pathway component, Kif7, has been recently identified to transduce the 

signal from Smo to the Gli proteins (Cheung et al., 2009; Endoh-Yamagami et al., 2009; 
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Liem et al., 2009) (Figure 2.2). Kif7 is the mammalian ortholog of costal-2, which is an 

important component of the Hh pathway in Drosophila. Kif7 is located at the cilia and 

interacts with the Gli proteins and controls its processing (Cheung et al., 2009; Liem et al., 

2009).  Gli repressor forms are no longer produced and Gli activators are formed instead. 

This processing of the Gli proteins requires the help of intraflagellar transport proteins as 

well (Haycraft et al., 2005; Huangfu and Anderson, 2005). At the same time, Sufu has also 

been shown to control Gli2 and Gli3 stability independently of the cilia (Chen et al., 2009). 

 

2.3 SHH in embryogenesis 

The Shh signaling pathway plays a critical role in the growth of a myriad of tissues 

and organs of the mammal. This includes the nervous system, lungs, heart, left-right 

asymmetry of the body, limbs, gastrointestinal tract and teeth, among many others (Ingham, 

2001; Hooper and Scott, 2005).  

The Shh knockout mouse model demonstrated the widespread requirement for Shh in 

embryonic patterning (Chiang et al., 1996). The Shh knockout mice died at birth and analysis 

of the embryos revealed severe defects like the absence of limbs and spinal column, smaller 

brains and cyclopia (Chiang et al., 1996). Shh is first secreted from the notochord, which is a 

rod-like structure derived from the mesoderm (Roelink et al., 1994). Shh diffuses from the 

notochord to the overlying neural tube and induces the formation of the floor plate cells 

which in turn secretes Shh (Roelink et al., 1994; Marti et al., 1995) (Figure 2.3). Together, 

the floor plate and notochord are the main signaling centers that confer ventral character to 

the neural tube. Elsewhere, in the embryo, Shh is expressed in the zone of polarizing activity 

(ZPA) in the limb bud that controls the polarity of limbs (Echelard et al., 1993).   

The expression of Shh is controlled by several enhancer-elements that are located 

near or within the Shh gene or distal to the transcription start site (Epstein et al., 1999).  They 

cooperatively regulate the expression of Shh along the rostral-caudal axis of the neural tube, 

including parts of the forebrain, midbrain and spinal cord (Epstein et al., 1999) (Figure 2.3). 
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The expression of Shh is also regulated by Forkhead box A2 (FoxA2) transcription factor as 

FoxA2 binds to the Shh floor plate enhancer 2 to drive transcription of Shh in the floor plate 

(Jeong, 2003).  

 

Figure 2.3 Expression of Shh during development. Whole-mount in-situ hybridization of 

Shh in E9.5 days post coitum mouse embryo showing (A) the cross section of the spinal 

cord (dotted line ’ in B) showing Shh expression in the notochord (arrow head) and 

floor plate above. (B) The expression of Shh in the floor plate throughout the neural 

tube. Labeled are the subdivisions along the rostral-caudal axis of the forebrain, 

midbrain, hindbrain and the spinal cord. This figure was reproduced from Epstein et 

al., 1999. 

 

2.4 SHH and neural development 

During the initial phase of neural induction, the ectoderm is induced by signals from 

the underlying mesoderm to divide into three regions, the neural plate, non-neural ectoderm 

and neural plate border, which will eventually give rise to the central nervous system (CNS), 

epidermis and the neural crest, respectively (Figure 2.4). Neurulation occurs when the 

epithelium on the neural plate thickens and the ends fold up and fuse together to form the 

neural tube along the rostral (head) and caudal (tail) axis (Colas and Schoenwolf, 2001). The 

folded edges form the dorsal part of the tube while the area closest to the underlying 

notochord is the ventral area.  
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After neurulation, the epithelial cells on the neural plate (or neuroepithelial cells) 

undergo an expansion phase where they proliferate rapidly. Their progeny, termed neural 

precursors, assume positional identities and eventually leave the cell cycle and give rise to a 

diverse array of post-mitotic neurons that make up the CNS.  

 

The position of the neuroepithelial cells along the rostral-caudal and dorsal-ventral 

axis determines the morphogens the cells gets exposed to, that will restrict and specify the 

eventual identity of the progeny. The rostro-caudalizing signals come mainly from retinoic 

acid (RA), Wnt and fibroblast growth factors (FGF) that organize the neural tube into the 

forebrain, midbrain, hindbrain and spinal cord. The Shh and bone morphogenetic proteins 

(BMP) play important roles in patterning the dorsal-ventral aspect of the neural tube.  

The BMP signal the ectoderm to become the epidermis while blocking specification 

of the neuroectoderm (Muñoz-Sanjuán and Brivanlou, 2002). Bmp are secreted from roof 

plate cells in the dorsal neural tube and induce formation of neural crest stem cells and dorsal 

interneurons (Barth et al., 1999). Antagonists of Bmp signaling like chordin, noggin and 

follistatin are secreted from the notochord below and this antagonism of Bmp signaling 

Figure 2.4 Formation of the neural tube. (A) During neural induction, the neural plate is 

flanked by the non-neural ectoderm. The notochord (N) lies below the neural plate. (B) 

The neural plate folds up upon itself plate and fuses to form the neural tube. The 

underlying notochord secretes SHH which is necessary for the formation of the floor 

plate (F). The non-neural ectoderm eventually forms the epidermis. The arrows indicate 

the dorsal-ventral axis of the neural tube. This figure was modified from Briscoe et al., 

1999. 
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permits neuroectoderm differentiation. Bmps also intersect with the Shh pathway to limit the 

ventralizing activity of Shh (Liem et al., 2000). 

The function of Shh in specifying the diverse and distinct neuronal cell fates in the 

neural tube, in particular in the spinal cord, has been extensively studied. The 

neuroepithelium in the ventral half of the spinal cord can be divided into progenitor domains 

known as pMN, p3, p2, p1 and p0 (Figure 2.5). Eventually, 5 populations of neurons will 

arise from their respective progenitor domains. They are namely motor neurons (MN) and the 

interneurons V3, V2, V1 and V0 that help to coordinate motor output (Jessell et al., 2000; 

Briscoe and Ericson, 2001). Loss-of-function studies have shown that without Shh, the neural 

tube lacked the floor plate and p3, pMN and p2 domains, while p1 and p0 domains were 

displaced dorsally (Litingtung and Chiang, 2000). 

Shh which is initially secreted from the notochord and floor plate cells, diffuses along 

the dorsal-ventral axis to form a concentration gradient of Shh, which is responsible for 

specifying cell fates (Briscoe and Ericson, 1999). In chick neural tube explant cultures, 

different concentrations of Shh managed to induce different identities of cells. Higher 

concentrations of Shh were required to induce the most ventral neuronal subtypes while 

lower concentrations specified more dorsal neuronal subtypes (Ericson et al., 1997) (Figure 

2.5). The Ptch1 receptor for Shh is similarly expressed in a gradient in the neural tube with 

the highest levels at the floor plate (Goodrich et al., 1996).  

Shh is proposed to achieve patterning of the neural tube by regulating homeodomain 

transcription factors, which are expressed in distinct positions in the neural tube (Figure 2.5) 

(Briscoe et al., 2000). The homeodomain transcription factors are divided into two classes: 

Class I and II. At the dorsal neural tube, the class I transcription factors like paired box 7 

(Pax7), Pax6, developing brain homeobox 1 (Dbx1) and Dbx2 are repressed by Shh while the 

Class II proteins like NK2 homeobox 2 (Nkx2-2) and Nkx6-1 are induced by Shh (Mansouri 

and Gruss, 1998; Briscoe et al., 1999, 2000; Sander et al., 2000). The Class I and II proteins 

in adjacent domains also cross-repress one another. For instance, the targeted removal of 

Nkx6-1 resulted in the normally dorsal domains of Dbx2 expanding into the ventral region 
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and the disruption in formation of the pMN domain and corresponding motor neurons 

(Sander et al., 2000). Therefore, different sensitivities to the repressive or activating effects 

of Shh and a cross repressive action of the class I and II proteins result in a code that leads to 

defined progenitor domains. This eventually translates to generation of specific post-mitotic 

neurons that have unique positional identity.  

 

Figure 2.5 A model for how Shh patterns neurons of distinct cell fate in the spinal cord. 

Shh from the floor plate diffuses dorsally to establish a concentration gradient. The 

neural tube is divided into distinct progenitor domains (p0-3, pMN) that generate 

distinct neuronal subtypes: interneurons V0-V3 and motor neurons (MN). The 

progenitor domains are characterized by  transcription factors that are broadly 

grouped into Class I and II genes. Shh induces the Class I genes Nkx6-1, Nkx2-2 and 

Olig2, which are more ventrally expressed. The Class I genes Dbx1, Dbx2, Irx3 and 

Pax6 are dorsally expressed and repressed by SHH. 

 

The confirmation of Shh as a morphogen working through long distances was 

provided by studies whereby disruption of the Shh transduction pathway resulted in 

transformations of neuronal fates. The ectopic expression in the neural tube of the mutated 

form of Ptch1, which was insensitive to Shh binding, resulted in cells having a dorsal identity 

instead of the expected ventral identity (Briscoe et al., 2001). Similarly, Smo knockout 

mutant mice that were unable to transduce the Shh signal did not form the floor plate nor the 

MN, V3, V2, or V1 interneurons (Wijgerde et al., 2002). Conversely, ectopic expression of a 
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constitutively active form of Smo was able to mimic the effect of Shh to induce ventral cell 

types throughout the neural tube in a cell autonomous manner (Hynes et al., 2000).   

All the Gli proteins are required to mediate responses to Shh during patterning of the 

neural tube (Bai et al., 2004). Gli2 knockout mice do not specify the ventral most cells in the 

neural tube (Ding et al., 1998; Park et al., 2000). Shh is also required to inhibit the repressive 

action of Gli3 that is normally expressed in the neural tube. In the absence of Shh, Gli3 acts 

primarily to dorsalize the neural tube (Litingtung and Chiang, 2000). Shh thus acts to prevent 

Gli3 repressor formation and induce the formation of Gli3 activator protein, which is required 

for ventral specification of the neural tube (Koebernick and Pieler, 2002; Bai et al., 2004) 

 

2.5 SHH and proliferation 

The patterning of the neural tube must be accompanied by expansion of the 

neuroepithelial cells to generate sufficient numbers before they exit the cell cycle and begin 

terminal differentiation to diverse neuronal cell types (Lupo et al., 2006; Wilson and Stice, 

2006). Several studies have shown that another function of Shh is to promote the proliferation 

and survival of neuroepithelial cells. This was demonstrated when ectopic activation of the 

pathway via the constitutively active Smo induced overgrowth of the dorsal neural tube 

(Hynes et al., 2000). Similarly, mouse embryos that lacked the inhibitory protein Hhip had 

noticeably larger neural tubes (Jeong and McMahon, 2005).  At the same time, blockade of 

Shh signaling in neuroepithelial cells resulted in a decrease in cell survival and proliferation 

(Cayuso et al., 2006a). Later on in development after the structures of the brain are formed, 

Shh also regulates the proliferation of neural precursors in the cerebellum (Dahmane and 

Ruiz i Altaba, 1999; Wechsler-Reya and Scott, 1999; Pons et al., 2001).  

In the adult brain, Shh maintains the neural stem cells (NSC) population that are 

found in two areas, the hippocampal gyrus and the subventricular zone of the lateral vesicles. 

NSC from these two areas of the brain express components of the Shh pathway (Palma et al., 

2005), and conditional removal of the Smo receptor reduces the ability of the NSC to 
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proliferate and reform neurospheres in culture (Machold et al., 2003). On the other hand, 

exposure to Shh increases the proliferation of the NSC (Lai et al., 2003; Palma et al., 2005). 

Shh controls proliferation of cells via cell cycle proteins like Cyclin D1 and N-Myc (Kenney 

and Rowitch, 2000; Kenney et al., 2003; Oliver et al., 2003). The mode of action of Shh in 

cell survival is also attributed to the induction of the anti-apoptotic factor, Bcl2 (Bigelow et 

al., 2004; Cayuso et al., 2006b).  

 

2.6 SHH in developmental disorders and cancer 

Striking consequences arise from deregulation of the SHH pathway during human 

development. Mutations in the SHH, PTCH1 and GLI2 genes causes the developmental 

disorder holoprosencephaly (Roessler et al., 1996; Ming et al., 2002; Roessler et al., 2003). 

Holoprosencephaly is characterized by forebrain malformation and associated with mental 

retardation and severe craniofacial anomalies like cyclopia or proboscis formation (Ming and 

Muenke, 1998). The most severe form is embryonic lethal. The mutations in SHH have been 

reported to result in impaired synthesis of SHH and dysregulation of target genes (Schell-

Apacik et al., 2003; Singh et al., 2009). Mutations in GLI3 have also been implicated in two 

other congenital syndromes, Greig cephalopolysyndactyly and the Pallister-Hall syndrome 

(Biesecker, 2006).   

Dysregulation of the SHH pathway in adults can also lead to several cancers. One of 

the first known cancers linked to the SHH pathway is the nevoid basal cell carcinoma 

syndrome (Gorlin’s syndrome), a disorder that predisposes the patient to developmental 

anomalies and different neoplasms, most often basal cell carcinoma. Constitutive activation 

of the SHH pathway following PTCH1 mutation accounts for 30-40% of patients with 

Gorlin’s syndrome (Mullor et al., 2002). Medulloblastomas, a cancer of the brain, is also 

caused by mutations in SHH pathway components, resulting in the activation of the pathway 

(Dahmane et al., 2001; Berman et al., 2002). Therefore, therapeutic drugs targeting the SHH 

pathway are currently being developed, such as inhibition of the pathway with a small 
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molecule inhibitor of Smo, which eliminated medulloblastomas in the mouse model and 

promoted tumor-free survival of the mice (Romer et al., 2004).  

Given the importance of SHH in early mammalian development, there is significant 

value in studying its function in human embryonic stem cells (hESC), which are in vitro 

counterparts of the inner cell mass of the pre-implantation human embryo. hESC therefore 

serve as an effective in vitro system to study complex events underlying human nervous 

system development (Ben-Nun and Benvenisty, 2006; Dvash et al., 2006).  

 

2.7 Embryonic stem cells and induced pluripotent stem cells 

Embryonic stem cells (ESC) have two characteristics that distinguish them from 

other stem cells, in that they are capable of long-term self-renewal and they can differentiate 

to all cell types present in the body. Nearly three decades ago, the first mouse ESC (mESC) 

were isolated from the inner cell mass of the blastocyst from the pre-implantation embryo. 

(Evans and Kaufman, 1981).  

The blastocyst is formed after a fertilized egg undergoes multiple cellular divisions 

and is composed of 3 layers - the outer trophoblast that eventually becomes the placenta, a 

hollow cavity and finally the inner cell mass, which will eventually develop into the embryo. 

During gastrulation, the inner cell mass undergoes spatial reorganization to generate the three 

embryonic germ layers – ectoderm, mesoderm and endoderm. The ectoderm gives rise to the 

nervous system, skin and eyes; the mesoderm gives rise to the circulatory system including 

the heart, bone, muscles and kidneys; while the endoderm gives rise to the gastrointestinal 

tract, respiratory tract, liver and pancreas. As ESC are derived from the inner cell mass, they 

retain the ability to differentiate to cell types of all three germ layers in vitro (Figure 2.6). 

It was not until 14 years later that similar cells were isolated from human embryos 

generated through in vitro fertilization (Bongso et al., 1994) and subsequently propagated 

indefinitely in culture (Thomson et al., 1998). Since then, there has been intense research on 

hESC worldwide.  Like mESC, hESC are able to differentiate into all cell types of the body 
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too. However, there are crucial differences between mESC and hESC, one of which is the 

difference in signaling pathways required to maintain pluripotency. mESC self-renew via the 

leukaemia inhibitory factor (LIF) activated JAK/STAT pathway. However, this pathway has 

been found to be dispensable for maintenance of hESC (Humphrey et al., 2004).  mESC and 

hESC also have differing cell morphology and gene expression profiles (Ginis et al., 2004; 

Wei et al., 2005). Interestingly, a recently mESC-like cell line, known as  epiblast stem cells 

(EpiSC) have been found to be a more similar to hESC than the traditional mESC (Brons et 

al., 2007; Tesar et al., 2007). EpiSC are derived at a later stage of embryonic development 

from the post-implantation embryo as compared to mESC, which could account for their 

resemblance with hESC. Therefore, the study of SHH signaling in hESC offers to augment 

the current understanding of the role of SHH in humans, that is based largely on the mouse 

model. 

  

Figure 2.6 Human embryonic stem cells (hESC) derived from the blastocyst are able to 

differentiate into cells from each germ layer. This figure was modified from Hyslop et 

al., 2005b. 
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A breakthrough in stem cell research occurred recently when researchers genetically 

reprogrammed adult somatic cells to a stem cell-like state (Takahashi and Yamanaka, 2006). 

These cells termed as induced pluripotent stem cells (iPSC) were established by introducing 

the four ‘Yamanaka’ factors – Oct4, Sox2, c-myc and Klf4 into mouse embryonic fibroblasts. 

The expression of these 4 factors were sufficient to reprogram the cells back into a 

pluripotent state. The iPSC were shown to be able to differentiate into cells from all three 

germ layers, form teratomas in vivo and contribute to chimeras (Takahashi and Yamanaka, 

2006). Human iPSC were subsequently derived from human dermal fibroblasts using the 

same four factors (Takahashi et al., 2007). Another human iPSC cell line, iPSC(IMR90) 

which was used in this thesis, was reprogrammed from lung fibroblasts using an alternative 

panel of factors OCT4, SOX2, NANOG and LIN28 (Yu et al., 2007). Since then, there have 

been a great number of laboratories that have generated iPSC from an array of differentiated 

cells from both the mouse and human sources using different approaches (Maherali and 

Hochedlinger, 2008; Feng et al., 2009). iPSC present the possibility of producing patient-

specific stem cells. Cells from patients can first be reprogrammed into iPSC, which can then 

be differentiated into the required cell type for subsequent autologous transplantation. This 

has been explored in the mouse model of Parkinson’s disease and sickle cell anemia (Hanna 

et al., 2007; Wernig et al., 2008). While iPSC and hESC can be distinguished by their global 

epigenetic methylation patterns, genetic and microRNA expression patterns, they are believed 

to behave in a largely similar manner (Chin et al., 2009b; Doi et al., 2009). The 

iPSC(IMR90) cell line will be used in this research thesis as a second pluripotent stem cell 

line to confirm the results observed in hESC.  

  

2.8 Culture of hESC 

There are several methods for maintaining hESC in an undifferentiated state in vitro. 

Traditionally, hESC are grown in co-culture with a mouse embryonic fibroblast (MEF) feeder 

layer (Thomson et al., 1998; Reubinoff et al., 2000). They can also be cultured without 
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feeders on an extra-cellular matrix, like Matrigel, but still requiring media conditioned by 

MEF (Xu et al., 2001; Choo et al., 2006) or human-derived fibroblasts (Richards et al., 2003; 

Inzunza et al., 2005). In the drive to move away from undefined factors in serum and possible 

xenopathogens present in animal-derived feeders or extracellular matrices, defined animal 

and serum-free media have been developed to qualify hESC for future clinical use (Chin et 

al., 2009a).  

In the various kinds of culture conditions, exogenous FGF2, TGF" and activin A are 

crucial factors required for the maintenance of self-renewal (Vallier et al., 2004; Beattie et 

al., 2005; Dvorak et al., 2005; Xu et al., 2005; Levenstein et al., 2006; Xiao et al., 2006). It 

must be noted that for mESC, despite its similarities to hESC, self-renew via the leukaemia 

inhibitory factor (LIF) activated JAK/STAT pathway. However, this pathway that has been 

found to be dispensable in hESC culture (Humphrey et al., 2004).  

2.9 Signaling pathways in hESC  

The FGF and TGF"/Activin pathways are the principal signaling pathways that 

sustain hESC pluripotency and active signaling through both pathways are required for the 

maintenance of hESC (Xu et al., 2008) (Figure 2.7). Exogenous FGF2 is widely used in the 

culture of hESC with conditioned media and at higher concentrations, in defined media (Xu 

et al., 2005; Levenstein et al., 2006). FGF2 directly activates the mitogen-activated protein 

kinase (MAPK) pathway (Li et al., 2007) and the downstream targets of FGF2 signaling 

include members of the TGF" pathway (Greber et al., 2007). FGF2 also maintains hESC self-

renewal by promoting cell adhesion and survival (Eiselleova et al., 2009) and preventing 

differentiation by suppressing the differentiating activity of BMPs present in the widely used 

commercial serum for culture of hESC. In feeder cultures, FGF2 also promotes cell growth 

by indirectly stimulating the fibroblasts to release factors like TGF"1 and insulin-like growth 

factor 1 (IGF1) that can support hESC growth (Greber et al., 2007). FGF2 has also been 

shown to induce the production of TGF" and IGF2 from fibroblasts derived from 
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differentiating hESC during culture to create a niche supporting self-renewal (Bendall et al., 

2007).  

The FGF signaling pathway acts synergistically with the TGF"/Activin pathway to 

maintain hESC pluripotency (Vallier, 2005). The secreted factors of the TGF" superfamily 

like Nodal, Activin A and TGF"1 are expressed by hESC (Beattie et al., 2005) and they 

activate the downstream SMAD2/3 proteins to regulate gene expression. Recently, the 

transcription factor NANOG that controls hESC pluripotency has been found to be a direct 

target gene of SMAD2/3 proteins (Xu et al., 2008; Vallier et al., 2009). The importance of 

the pathway was demonstrated when inhibition of the pathway induced rapid differentiation 

of hESC (James, 2005; Vallier, 2005). The TGF"1/Activin A pathway has been suggested to 

maintain hESC pluripotency by antagonizing BMP activity (Beattie et al., 2005; James, 2005; 

Vallier, 2005) and blocking differentiation towards the neuroectoderm (Vallier et al., 2004). 

On its own, exogenous Activin A is able to maintain hESC self-renewal in the absence of 

feeder layers or conditioned media (Xiao et al., 2006). Activin A also induces the expression 

of the transcription factors OCT4 and NANOG that regulate hESC pluripotency and also the 

genes of the FGF pathway like FGF2 and the receptors FGFR1, 2 and 3 (Xiao et al., 2006).  

  There are other signaling pathways operating in hESC (Figure 2.7), such the WNT 

signaling pathway that stimulates proliferation of hESC (Sato et al., 2004; Dravid et al., 

2005; Cai et al., 2007). The importance of WNT was recently demonstrated to enhance 

formation of iPSC, possibly by increasing cell proliferation during genetic reprogramming 

(Marson et al., 2008). Other factors and pathways have also been implicated in promoting 

hESC renewal like sphingosine-1-phosphate (S1P) combined with platelet-derived growth 

factor (PDGF) pathway (Pebay et al., 2005) and neurotrophins that activate the PI3K/Akt 

pathway (Pyle et al., 2006). The NOTCH signaling pathway is another developmentally 

important pathway but was found to play a negligible role in undifferentiated hESC (Noggle 

et al., 2006). 
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The abovementioned studies present a complex picture in which hESC self-renewal 

is dependent on several signaling pathways. To date, there have not been studies to address 

the possible function of the SHH signaling pathway in undifferentiated hESC. As such, it 

warrants greater study so that a more complete understanding of how hESC self-renew may 

be attained.   

 

2.10 Transcriptional networks in hESC 

NANOG, OCT4 and SOX2 are transcription factors of a conserved core 

transcriptional regulatory network that is essential for specifying the undifferentiated state of 

ESC. These three factors bind to their own promoter to maintain their own expression and 

Figure 2.7 Signaling pathways maintaining hESC self-renewal. The WNT ligand binds to 

the Frizzled receptor which allows !-Catenin to translocate to the nucleus and activate 

transcription. FGF2 binds to the FGF receptors  (FGFR) and activates the PI3K/Akt 

and MAP kinase pathways. IGF2 secreted from feeder cells binds to the IGF1 receptor 

(IGFR1) and activates the PI3K/Akt pathway as well. Activin/Nodal/TGF! belong to the 

TGF superfamily of proteins and signal via the Type I (ALK 4/5/7) and Type II 

receptors that form heterodimers, which subsequently activates SMAD2/3. BMP  signals 

via the Type I (ALK 1/2/3/6) receptors and activates SMAD1/5/8 to promote 

differentiation.   
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they co-occupy their target genes to either repress or activate expression (Boyer et al., 2005; 

Loh et al., 2006). These 3 factors are hallmarks of the pluripotent undifferentiated state of 

ESC and the loss of their expression leads to ESC differentiation. 

NANOG, named after the mythical Celtic land of Tir nan Og, is expressed in the 

inner cell mass of the early embryo and the developing germ cell (Nichols et al., 1998; 

Chambers et al., 2003; Mitsui et al., 2003). Loss of Nanog results in embryonic lethality 

(Mitsui et al., 2003). Inhibition of NANOG gene expression leads to hESC differentiation to 

the extraembryonic cell lineages (Hyslop et al., 2005a; Zaehres et al., 2005) while 

overexpression of NANOG allows hESC to proliferate independently of feeder cells (Darr et 

al., 2006). The expression of NANOG is controlled by OCT4 and SOX2 as well as PBX1 and 

KLF4 (Kuroda et al., 2005; Chan et al., 2009).  

OCT4 (also known as POU5F1) is a member of the POU family of homeobox 

transcriptional factors and like NANOG, has restricted expression in the inner cell mass and 

germ cells in the early embryo (Nichols et al., 1998). Its expression levels govern different 

fates of ESC whereby an increase in Oct4 causes differentiation into the primitive endoderm 

while loss of Oct4 causes differentiation to the trophectoderm lineage (Hansis et al., 2000; 

Niwa et al., 2000).  

SOX2 (SRY-related HMG box 2) is also expressed in the inner cell mass and epiblast 

of the blastocyst (Avilion et al., 2003). Although Sox2 is also expressed in cells of the 

neuroectoderm lineage (Avilion et al., 2003; Eminli et al., 2008), the expression of SOX2 in 

ESC indicates pluripotency and a crucial factor in maintaining hESC pluripotency (Fong et 

al., 2008). Besides transcriptional regulation of genes, the stem cell pluripotent state can be 

regulated by epigenetic modifications and microRNAs (Gan et al., 2007; Xu et al., 2009).  

 

2.11 Applications of hESC research  

There are many potential applications for hESC-derived specialized cells in human 

disease, for instance: hepatocytes for drug screening and toxicological studies, 
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cardiomyocytes to improve heart function after myocardial infarct, pancreatic beta-cells to 

replace insulin-producing cells destroyed in Type 1 diabetes and neurons to treat nervous 

system disorders (Hyslop et al., 2005b). One nervous system disorder, Parkinson’s disease, is 

a neurodegenerative movement disorder that affects individuals above the age of 60. It is 

characterized by tremor, rigidity and bradykinesia, arising from the death by apoptosis of 

dopaminergic (DA) neurons along the nigrostriatal pathway (de Lau and Breteler, 2006). DA 

neurons secrete dopamine that controls the activity of neural circuits. There is currently no 

cure for Parkinson’s disease although medication can compensate for lack of dopamine. 

Parkinson’s disease serves as a model for neuronal transplantation studies because the disease 

occurs due to death of a specific cell type (DA neurons) and in a particular area (substantia 

nigra in the midbrain).  

The loss of function following neurodegeneration may potentially be restored by cell 

replacement therapy. Before hESC were available as a source for generating neurons, most of 

the effort to derive neurons in vitro was done using neural stem cells (NSC) isolated from 

embryonic or adult CNS tissues. They are also sometimes also referred to as neural 

progenitors. NSC are clonogenic and can be cultured for long periods and retain the ability to 

give rise to the three major cell lineages of the CNS, namely, neurons, astrocytes and 

oligodendrocytes (Gage, 2000). Animal studies have shown that transplantation of fetal NSC-

derived neurons have been beneficial for the treatment of Parkinson’s disease and stroke 

(Lindvall and Hagell, 2002; Olanow et al., 2009, Jeong et al., 2003). The transplanted NSC 

are also thought to enhance survival of endogenous cells at the injured site indirectly through 

paracrine effects and modulation of inflammatory response(Bacigaluppi et al., 2008). 

Fetal or adult NSC are however not ideal sources of neurons as they have limited 

expansion capability necessary for transplantation work, and tend to generate progeny that 

are more regionally restricted, depending on the region and developmental time frame that 

they were derived from. (Guillaume and Zhang, 2008). Consequently, the attention has now 

shifted towards deriving neurons from hESC. hESC present the ideal solution because they 
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have less lineage restriction and can proliferate to large numbers as the starting material for 

differentiation into the desired neuronal cell type.  

The potential of hESC in cell replacement therapy has been demonstrated in animal 

models (Kim and De Vellis, 2009). hESC- and monkey ESC-derived neuron transplantation 

into animal models of Parkinson’s disease have shown varying degrees of correction to the 

symptoms (Ben-Hur et al., 2004; Takagi et al., 2005; Cho et al., 2008). Transplanted 

neuroprogenitors into the infarcted regions of the brains of rats after stroke was induced 

showed some improvement of sensorimotor function (Tabar et al., 2005; Hicks et al., 2009). 

On top of that, oligodendrocytes responsible for forming the myelin sheath around axons 

have been derived from hESC and were shown to improve spinal cord injuries in rats 

(Faulkner and Keirstead, 2005; Sharp et al., 2009). This advancement has prompted the 

establishment of the first-ever human clinical trial using oligodendrocytes derived from hESC 

for treatment of acute spinal cord injury (Geron Corp., 2009). 

However, there are several scientific hurdles that need to be overcome before hESC-

based therapy can be a reality. These include preventing immune rejection of transplanted 

cells (Grinnemo et al., 2008) and also ensuring the removal of residual undifferentiated cells 

that can proliferate to form tumours in the future (Bjorklund et al., 2002).  Finally, it requires 

that effective and efficient guidance of hESC down the differentiation pathway to achieve a 

pure population of the desired cell type in sufficient numbers. In order to overcome the last 

hurdle, there has been intense effort over the last few years to understand the mechanisms of 

neural differentiation. 

 

2.12 Neural differentiation of hESC 

To achieve directed differentiation of neurons, it is essential that there is sufficient 

knowledge of the differentiation process and the underlying molecular mechanisms 

controlling cell fate choices.  
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Within the numerous methods to derive neurons from hESC, the differentiation 

process generally follows a framework that first requires induction of differentiation to the 

neuroectoderm to obtain neuroprogenitors. This is then followed by the expansion and 

patterning of the neuroprogenitors such that they assume positional identity with a more 

committed cell fate. Lastly, the neuroprogenitors are further differentiated to more specific 

neuronal subtypes with unique characteristics.   

2.12.1 Neural induction 

Neural induction can be achieved by co-culture of hESC with stromal cells like PA6 

(Mizuseki et al., 2003; Park et al., 2005) and MS5 (Perrier et al., 2004; Lee et al., 2007; 

Sonntag et al., 2007). This co-culture method has been used to derive neural crest precursors 

(Pomp et al., 2005), and more commonly, DA neurons (Perrier et al., 2004; Park et al., 2005; 

Takagi et al., 2005; Chiba et al., 2008). The ability of these stromal cells to promote 

differentiation is termed stromal-derived inducing activity (SDIA). This activity has been 

attributed to secreted factors from the stromal cells and also cell surface interactions that 

enhance neurogenesis (Kawasaki et al., 2000; Vazin et al., 2008, 2009). However, the 

molecular mechanism by which stromal cells induce differentiation remains to be elucidated.  

Other groups have also employed the BMP inhibitor noggin to induce neural 

differentiation. To derive neuroprogenitors, noggin can be used with hESC grown either on a 

MEF layer (Ben-Hur et al., 2004; Peh et al., 2009), or in defined media in adherent cultures 

or in suspension as neurospheres (Gerrard et al., 2005; Itsykson et al., 2005). Noggin 

treatment upregulates the expression of neuroectoderm markers such as PAX6 and NESTIN 

(Pera et al., 2004) and enriches the culture for neuroprogenitors expressing neuronal markers 

such as PSA-NCAM (Gerrard et al., 2005; Itsykson et al., 2005). It is proposed that by 

blocking BMP signaling which is instructive for extraembryonic endoderm specification 

(Pera et al., 2004), noggin is able to promote neural differentiation and inhibit differentiation 

towards the endoderm lineage, thus increasing the proportion of neuroprogenitors obtained 

from hESC. 
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The other commonly adopted protocol begins with the formation of EB to induce 

differentiation. The EB are then plated on a defined substrate such as Matrigel or laminin and 

propogated in a defined media supplemented with FGF2 to form neuroprogenitors that 

express high levels of neuroectoderm markers (Zhang et al., 2001; Cho et al., 2008; Elkabetz 

et al., 2008).  

The methods described above produce neuroprogenitors that contain cells with a 

distinctive morphology known as rosettes that are considered a hallmark of neural 

differentiation. Rosettes are radially arranged small elongated cells resembling the early 

neural tube (Zhang et al., 2001) and express neuroectoderm markers like PAX6, NESTIN, 

MUSASHI and SOX1 (Zhang et al., 2001; Itsykson et al., 2005; Elkabetz et al., 2008). They 

are believed to have a default rostral forebrain character but at the same time, can be 

respecified to cells of the caudal fate like motor neurons (Pankratz et al., 2007; Elkabetz et 

al., 2008). Neuroprogenitors can be expanded as cellular aggregates termed neurospheres or 

as adherent cell cultures with mitogens such as epidermal growth factor (EGF) and FGF2 

over an extended period of time (Shin et al., 2006; Joannides et al., 2007).  

2.12.2 Neural subtype specification 

Neuroprogenitors can be differentiated into several desired neural subtypes using 

inductive factors that activate multiple signaling cascades. The neural subtypes are evaluated 

by criteria like cellular morphology, expression (and non-expression) of lineage specific 

markers and the exhibition of functional activity e.g. the secretion of neurotransmitters or 

firing of action potentials. This section discusses the use of SHH to differentiate 

neuroprogenitors to motor neurons and DA neurons.  

Given that SHH is crucial for the patterning of the neural tube, it is not surprising that 

SHH is one of the key factors used to limit the differentiation of hESC to neurons with 

specific regional identity. As with its in vivo function, SHH confers ventral identity to 

neuroprogenitors (Li et al., 2005; Lazzari et al., 2006), through the control of the Class I and 

II homeodomain factors (Okada et al., 2004; Crawford and Roelink, 2007).  
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The derivation of motor neurons from ESC requires the combinatorial action of both 

SHH and RA, whereby the addition of SHH and RA increased the yield of Hb9 positive 

motor neurons that express the appropriate markers and display an electrophysiological 

response. (Wichterle et al., 2002; Lim et al., 2006; Li et al., 2008). RA is a widely used 

chemical that promotes neural differentiation of ESC (Bain et al., 1995; Carpenter, 2001; 

Reubinoff et al., 2001; Park et al., 2004; Baharvand et al., 2007). It is also used as a 

patterning factor to promote differentiation of neurons towards a more caudal fate, e.g. motor 

neurons (Wichterle et al., 2002; Li et al., 2005). RA treatment induces neuroprogenitors to 

express genes commonly found in the hindbrain and spinal cord, like the Hox family genes, 

but not those found in the forebrain (Okada et al., 2004). SHH is proposed to increase motor 

neuron differentiation via upregulation of its target gene, OLIG2, which is necessary for the 

development of motor neurons (Lu et al., 2001; Zhou and Anderson, 2002). SHH also acts as 

a survival factor for OLIG2 positive motor neuron progenitors, thereby increasing the yield 

of post mitotic motor neurons (Li et al., 2008).  

The derivation of midbrain DA neurons from hESC-derived neuroprogenitors is also 

dependent on the timely application of SHH and FGF8. Midbrain DA neurons express a 

variety of other transcription factors such as engrailed homeobox 1/2 (En1, En2), LIM 

homeobox 1A/B (Lmx1A, Lmx1B), nuclear receptor related 1 (Nurr1), Pax2, Pax5, 

orthodenticle homeobox 2 (Otx2) and paired-like homeodomain 3 (Pitx3) that are important 

in the patterning, survival and maturation of DA neurons (Smidt and Burbach, 2007). As 

neurotransmitters, DA neurons release dopamine, whose production depends on the enzymes 

tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) for proper 

metabolism.  

During development in vivo, DA neurons arise from Shh-positive midbrain floor 

plate cells (Kittappa et al., 2007; Ono et al., 2007; Bonilla et al., 2008), and induction of DA 

neurons is dependent on both Shh and Fgf8 (Ye et al., 1998). The downstream target of Shh, 

FoxA2 is an important determinant of DA differentiation as the loss of FoxA2 abolishes the 

ability of midbrain explants to form DA neurons in vitro (Kittappa et al., 2007). FoxA2 
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induces the expression of neurogenin2 (Ngn2), Nurr1, Lmx1a and Lmx1b, that are necessary 

for the development and maturation of DA neurons (Ferri et al., 2007; Lin et al., 2009).  

FGF8 is expressed in the midbrain-hindbrain organizer and is important for the 

patterning of the midbrain (Crossley et al., 1996). As such early treatment of 

neuroprogenitors with FGF8 helps to direct DA neuron differentiation towards the midbrain 

phenotype that expresses the midbrain marker EN1 (Yan et al., 2005). Another signaling 

molecule TGF" is also important for the induction of DA neurons (Farkas et al., 2003), 

whereby it synergizes with SHH and FGF8 to increase the population of DA neurons derived 

from midbrain explants (Roussa et al., 2004).  

Based on the understanding from mouse developmental studies, many laboratories 

have been able to successfully derive mid-brain DA neurons from ESC (Table 2.1). The 

derivation of DA neurons can be accomplished by co-culturing hESC with stromal cells 

(Perrier et al., 2004, Schulz et al., 2004, Park et al., 2005, Sonntag et al., 2007), or feeder-

free methods that uses FGF2 or noggin to induce differentiation. The patterning molecules 

SHH and FGF8 and other related factors like BDNF, GDNF, AA, cAMP and TGF" are also 

added during the extended culture to improve the yield of DA neurons. The gene and protein 

expression of DA-related markers like TH, EN1, PITX3, LMX1, PAX2, AADC and VMAT 

are often assayed to authenticate the identity of the cells as midbrain DA neurons. Currently 

the efficiency of DA neurons derivation is varies widely from 20%-85% (Table 2.1). This is 

probably due to use of different neural inducing factors, the duration of differentiation or 

inherent differences between the various hESC lines studied.  

As presented in Table 2.1, several groups have extended their in vitro study to 

transplant the hESC-derived neuroprogenitors or neurons into mouse models (Schulz et al., 

2004, Park et al., 2005, Roy et al., 2006, Sonntag et al., 2007, Cho et al., 2008, Chiba et al., 

2008). Most groups have reported a low survival of transplanted cells. Using the parkinsonian 

rat model generated by unilateral injection of 6-hydroxydopamine into brain, Cho et al. 

reported that only around 2.7% of the transplanted neurons survived after 12 weeks. 

Nonetheless, there was behavioural recovery of the parkinsonian rats as displayed by the   
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Table 2.1 Summary of DA differentiation from hESC.  

Reference 
Neural 

induction 
Factors Markers Efficiency 

In vivo 

Transplantation 

Perrier et 

al., 2004 
MS5 

SHH, FGF8, 

BDNF, 

GDNF, 

cAMP, AA, 

TGF! 

TH, EN1, 

AADC, 

LMX 

60-70% TH 

of total 

neurons 

No 

Schulz et 

al., 2004 

MedII 

(HepG2-

conditioned 

media) 

FGF2, 

GDNF, 

BDNF 

TH, 

VMAT2, 

AADC 

70% TH of 

total neurons 

Few TH+ neurons 

survived 

Yan et al., 

2005 
FGF2 

SHH, FGF8, 

AA, BDNF, 

GDNF 

TH, EN1, 

AADC, 

VMAT2 

30% TH of 

total cells 
No 

Park et al., 

2005 
PA6-SHH 

FGF8, AA, 

ITS 

TH, PAX2, 

EN1 

40% TH of 

total neurons 

No surviving TH 

neurons 

Roy et al., 

2006 

FGF2, then 

co-culture 

with 

astrocytes 

SHH, FGF8, 

GDNF, 

BDNF, 

0.5% FBS 

EN1, 

PAX2, 

OTX2, TH 

70% TH of 

total neurons 

1% survival of 

transplanted cells, 

behavioural 

improvement, 

teratomas observed 

Sonntag et 

al., 2007 

MS5, 

Noggin 

SHH, FGF8, 

BDNF, AA, 

cAMP, 

TGF! 

TH, OTX2, 

PAX2 

25% TH of 

total cells 

Variable behavioural 

improvement, 

teratomas observed 

Cho et al., 

2008 
FGF2 

SHH, FGF8, 

AA 

TH, 

AADC, 

EN1 

86% TH of 

total neurons 

2.7% survival of 

transplanted cells, 

behavioural 

improvement, no 

teratomas observed 

Chiba et al., 

2008 

PA6, 

Noggin 
Noggin TH, EN1 Not known 

Behavioural 

improvement, 

teratomas observed 

VMAT = vesicular monoamine transporter, ITS = insulin, transferrin, selenite, HepG2 = 

human hepatocellular liver carcinoma cell line GDNF = glial cell derived neurotrophic factor, 
BDNF = brain-derived neurotrophic factor, PA6, MS5 = stromal cell lines, FBS = fetal 

bovine serum, AA = ascorbic acid, cAMP = cyclic adenosine monophosphate 

 

reduction in apomorphine-induced rotation and amphetamine-induced rotation in 

transplanted rats. However, the risk of teratoma formation following transplantation of hESC-

derived neural cells remains (Roy et al., 2006, Sonntag et al., 2007, Chiba et al., 2008).   
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Therefore, despite the encouraging initial successes, there needs to be 1) systematic 

studies to tease out the crucial steps and factors during neural differentiation so that a highly 

efficient and universal DA differentiation protocol can obtained, 2) methods to maximise the 

functional effect of hESC-derived neural cells in vivo and 3) long-term transplantation studies 

to monitor the safety of transplanted cells, before hESC-derived neural cells can proceed onto 

clinical trials. 
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CHAPTER 3 MATERIALS AND METHODS 

3.1 Molecular cloning  

3.1.1 Cloning 

The pCHEF-SHH-IRES-DsRed2 vector was constructed by subcloning the chinese 

hamster elongation factor-1# (CHEF) promoter from the pCHEF1-EGFP plasmid (Chan et 

al., 2008) into the pIRES2-DsRed2 plasmid (Clonetech, CA, USA, www.clontech.com). The 

mouse Shh gene was amplified from the Shh cDNA clone (Open Biosystems, AL, USA 

http://www.openbiosystems.com) using the oligonucleotide primers containing XhoI and SalI 

at each end and cloned into the pCHEF-IRES-DsRed2 vector to construct the pCHEF-SHH-

IRES-DsRed2 vector (Figure 3.1).  

 

 

The pCHEF-DsRed2 vector was constructed by first amplifying DsRed2 from 

pIRES2-DsRed2 using oligonucleotide primers containing AgeI and XbaI at each end. The 

EGFP sequence was excised from the pCHEF1-EGFP vector and the DsRed2 was cloned in 

to construct the pCHEF-DsRed2 vector (Figure 3.1). IRES was not included in the pCHEF-

DsRed2 vector control as stable cell lines could not be obtained from pCHEF-IRES-DsRed2 

vectors.  

The Suppressor of Fused (SUFU) expression vector was constructed by subcloning 

the entire open reading frame of the full length human SUFU cDNA clone (Open 

Figure 3.1 Schematic illustration of constructs for generating stable hESC lines. Top: 

pCHEF-IRES-DsRed2 containing the Shh transgene with DsRed2 reporter gene driven 

by CHEF promoter. Bottom:  Control vector with only DsRed2 reporter gene. CHEF = 

chinese hamster elongation factor-1", IRES = internal ribosome entry site.  
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Biosystems) into the expression vector pcDNA3.1(+) (Invitrogen, CA, USA, 

http://www.invitrogen.com). All final vectors were sequence-verified. Miss Tan Ker Sin from 

the Stem Cell Group ,Bioprocessing Technology Institute, assisted in the cloning of all 

plasmids. 

3.1.2 Plasmids 

CMV expression vectors containing mouse Gli1, mouse Gli2 and human GLI3 were 

kind gifts from Chi-Chung Hui (Hospital for Sick Children, Toronto, Canada). The 8XGli-BS 

luciferase reporter plasmid containing 8 copies of Gli-binding sites and 8XmutGli-BS 

luciferase reporter plasmid containing 8 copies of the mutated binding site were obtained as a 

gift from Hiroshi Sasaki (Centre for Developmental Biology, RIKEN, Japan) (Sasaki et al., 

1997).    

To measure the functional response of genes to GLI transcriptional activation, 

promoter luciferase reporters for selected genes were purchased from SwitchGear Genomics 

(Menlo Park, CA, USA, http://www.switchgeargenomics.com). The CMV expression vector 

containing mouse Shh was obtained from Open Biosystems.  

 

3.2 Cell Culture 

3.2.1 Immortalized mouse fibroblasts 

The immortalized mouse fibroblast cell line !E-MEF was generated previously in 

our laboratory and conditioned media obtained from this feeder line has been shown to 

support the growth of hESC (Choo et al., 2006). !E-MEFs were grown in high glucose 

DMEM (Invitrogen), 2mM L-Glutamine (Invitrogen), 50 units/ml penicillin and streptomycin 

(Invitrogen) and 10% FBS (HyClone Laboratories, UT, USA) and passaged every 3-4 days.  
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3.2.2 Preparation of conditioned media from !E-MEFs 

!E-MEFs were treated with mitomycin-C (Sigma, MO, USA, 

http://www.sigma.com) for 2.5 hours and seeded onto gelatin (Invitrogen)-coated T75 flasks 

(Nunc, NY, USA, http://www.nalgenunc.com) in !E-MEF culture media to allow cells to 

stick onto the flask. After 24 hours, media was changed to hESC culture media KNOCKOUT 

(KO) media consisting of 85% KO-DMEM, 15% KO-Serum Replacer (KO-SR), 1 mM L-

Glutamine, 1% non-essential amino acids (NEAA) and 50 units/ml penicillin and 

streptomycin (all from Invitrogen) and 0.1 mM 2-mercaptoethanol (Sigma). KO media was 

supplemented with 10 ng/ml FGF2 (Invitrogen) and allowed to equilibrate for 24 hours 

before collection and filtering through 0.22-µm filter unit (Nalgene, NY, USA, 

http://www.nalgenunc.com) to obtain the conditioned media (CM) used for daily hESC 

culture feeding. 

3.2.3 Human embryonic stem cells and induced pluripotent stem cells 

Human embryonic stem cell line HES-3 (46, XX) was from ES Cell International 

(Singapore, http://www.escellinternational.com) while the induced pluripotent stem cell line 

iPSC(IMR90) was generously provided by JA Thomson  from University of Wisconsin-

Madison, USA (Yu et al., 2007). Cells were cultured on Matrigel (BD Biosciences, CA, 

USA, http://www.bdbiosciences.com)-coated plates in CM supplemented with 10 ng/ml 

FGF2. For the iPS(IMR90) cell line, CM was supplemented with 100 ng/ml FGF2. Cells 

were kept in a 5% CO2 incubator at 37°C and media was changed daily. Cells were passaged 

every 7 days by mechanical dissociation of colonies following collagenase IV (Sigma) 

treatment.  

3.2.4 Embryoid body formation  

hESC were dissociated into small clumps by collagenase IV and cultured in 

suspension as embryoid bodies (EB) in ultra-low attachment plates (Corning Life Sciences, 

MA, USA, http://www.corning.com/lifesciences). Cells were grown in differentiation 
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medium (DM) (KO-DMEM supplemented with 20% fetal bovine serum, 1% NEAA, 1 mM 

L-glutamine, and 25 units/ml penicillin-streptomycin and 0.1 mM 2-mercaptoethanol) and 

fed every 3-4 days. For further differentiation, EB were then plated on gelatin-coated dishes 

and grown in DM for 1 week.  

3.2.5 Generation of stable cell lines  

The pCHEF-DsRed or pCHEF-SHH-DsRed plasmids were transfected into hESC 

using Lipofectamine 2000 (Invitrogen). After 24 hours, the media was changed and antibiotic 

selection with Geneticin (50 $g/ml, Invitrogen) was applied to the cells the next day for 2 

weeks. The surviving colonies were individually hand-picked using the micropipette under 

fluorescence microscope to further expand the colonies. The cytokines, neurotrophin-3 and 

neurotrophin-4 (10 ng/ml, Peprotech EC, London, UK, http://www.peprotech.com), were 

added for 1-2 weeks to enhance the survival of selected cells. Geneticin (50 µg/ml, 

Invitrogen) was used continuously in culture to maintain positive selection.  

3.2.6 Neurosphere formation 

To initiate differentiation, undifferentiated hESC were broken into clumps and grown 

as EB for 4 days. EB were then transferred onto laminin-coated 6-well plates (Figure 3.2). 

Laminin-coated plates were prepared by coating them with 10 µg/ml laminin (Sigma) for 2 

hours at 37°C or overnight at 4°C. Cells were grown in N2B27 media containing 

DMEM/F12, 1x N2, 1x B27 without Vitamin A, (all from Invitrogen), 1% NEAA, 1 mM L-

glutamine, 25 units/ml penicillin-streptomycin and 0.1 mM 2–mercaptoethanol. N2B27 

media was supplemented with 500 ng/ml Noggin and cells were fed every other day. After 10 

days, compact clumps were formed and were cut up manually with a pipette and grown as 

neurospheres in suspension in N2B27 media supplemented with 20 ng/ml EGF (Peprotech) 

and 20 ng/ml FGF2. Media was changed every 3-4 days and the neurospheres were passaged 

every 6-7 days using TrypLE Express (Invitrogen), a gentle trypsin-like enzyme.      
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3.2.7 Neural differentiation  

To induce dopaminergic differentiation, the neurospheres were first dissociated into 

small clumps using TrypLE Express (Invitrogen) and plated onto laminin-coated 24-well 

plates (Figure 3.2). The following growth factors were then added to pattern the cells: 200 

ng/ml FGF8, 200 ng/ml SHH (both from R&D Systems, Minneapolis, MN, USA, 

www.rndsystems.com), and 200 $M ascorbic acid (AA, Sigma). After 7-10 days, reformed 

rosettes were visible and were selectively excised using a 200 $l pipette tip. The excised 

rosettes were then treated with TrypLE Express for 3-5 min and gently pipetted up and down 

to achieve an almost single-cell suspension. They were then replated onto laminin-coated 

coverslips at approximately 50,000-150,000 cells per cm2 in N2B27 media. The following 

growth factors were added: 1 $M cyclic adenosine monophosphate (cAMP, Sigma), 20 ng/ml 

brain-derived neurotrophic factor (BDNF, Peprotech) and 20 ng/ml glial cell line-derived 

neurotrophic factor (GDNF, Peprotech). The cells were fed every 3-4 days and allowed to 

differentiate for up to 14 days (Figure 3.2). 

 

Figure 3.2 Summary of neural differentiation protocol. 

 

3.2.8 SHH conditioned media production 

To produce conditioned medium containing active SHH, 4x106 293-EcR Shh cells 

and HEK293 cells (both from American Type Culture Collection, VA, USA, www.atcc.org) 
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were plated on T175 flasks (Nalgene). Once the cells reached 50% confluence, growth media 

was changed to DM and 2.5 µM Ponasterone A (Invitrogen) was added to293-EcR Shh cells 

to induce expression of SHH. Culture medium was collected after 24 hours, filtered through a 

0.22-µm filter unit (Nalgene) and used as growth media for hESC-derived EB. Bulk 

quantities of CM were produced and pooled to ensure consistency. 

3.2.9 Transfection 

Transfection of plasmids into hESC was achieved using Lipofectamine 2000 

(Invitrogen) according to manufacturer’s instructions. Briefly, plasmids were diluted to the 

required concentrations in Opti-MEM Reduced Serum Medium (Invitrogen). Lipofectamine 

2000 was diluted in Opti-MEM and allowed to stand for 5 min. The above mixture was then 

added to the diluted plasmids and incubated for 20 min at room temperature. The plasmid-

lipofectamine complexes were then added to the cells in antibiotic-free media.  

3.2.10 Electrophysiology recording 

Electrophysiological properties of neurons were investigated in cultures using whole-

cell patch-clamp recording techniques carried out by Dr Wei Shunhui from Singapore 

Bioimaging Consortium (SBIC), A*STAR. The cells were prepared by seeding 

neuroprogenitors as single cells on laminin-coated coverslips, in N2B27 containing media 

supplemented with 20 ng/ml BDNF, 20 ng/ml GDNF and 20 ng/ml NGF, for three weeks. 

Using the standard protocol, a neuron intended for postsynaptic recordings was patched with 

pipettes that were pulled from borsilicate glass capillary tubes using a pipette puller. The 

whole-cell pipette solution contained (in mM) 135 CsCl, 10 HEPES, 1 EGTA, 1 Na-GTP, 4 

Mg-ATP and 10 QX-314 (pH 7.4, adjusted with CsOH). The resistance of pipettes filled with 

the intracellular solution varied between 4 and 5 M%. After formation of the whole-cell 

configuration and equilibration of the intracellular pipette solution, the series resistance was 

adjusted to 10 M%. Cells with initial resistance more than 15 M% were excluded from 

analysis. Synaptic currents were monitored using EPC-10 amplifier (HEKA, Germany). The 
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bath solution contained (in mM) 140 NaCl, 5 KCl, 2 CaCl2 or 2 MgCl2, 10 HEPES, and 10 

glucose (pH 7.4, adjusted with NaOH). Spontaneous postsynaptic currents (PSCs) and 

membrane potential were monitored. The temperature in the recording chamber was 

controlled by TC344B dual temperature controller (Warner Instruments). 

 

3.3 Transcriptional profiling 

3.3.1 RNA extraction 

RNA was extracted with RNeasy Kit (Qiagen, Hilden, Germany, 

http://www1.qiagen.com) and treated with DNase according to manufacturer’s protocol. 

Briefly, cell pellets were lysed using buffer RLT and pipetting vigorously. 70% (v/v) ethanol 

was then added and the mixture was applied to the columns and centrifuged briefly for RNA 

to bind to the column membrane. The columns were washed with buffers RW1 and RPE. 

RNA was eluted with 30 µl of nuclease free water. In certain cases where there were limited 

cell numbers, RNA isolation was done using the RNeasy Mini Kit (Qiagen). The steps were 

largely the same as the RNeasy Micro Kit, except an additional washing step with 80% v/v 

ethanol to supplement the wash buffer RPE and a longer centrifugation step of 5 min for the 

columns to dry fully before elution of RNA. RNA was eluted with 14–20 µl of nuclease-free 

water. The concentration and purity of RNA samples were determined using the ND-1000 

Spectrophotometer (NanoDrop Technologies, Rockland, DE, USA, http://www. 

nanodrop.com). RNA samples had consistent A260/A280 absorbance ratios above 1.8.  

RNA extraction for microarray analysis was carried out using the TRIzol extraction 

method. Floating neurospheres were harvested and spent media was aspirated. 1 ml of TRIzol 

(Invitrogen) was added and the cells were lysed and homogenized using a syringe and needle. 

The lysis product was allowed to stand for 10 min at room temperature and 200 µl of 

chloroform was added. The mixture was vortexed vigorously for 15 secs and allowed to stand 

for another 10 min. The samples were then centrifuged at 4°C at 14 000g for 10 min, after 

which the colorless aqueous phase was carefully extracted without disturbing the organic 
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phase. An equal volume of isopropanol was then added to the aqueous phase containing RNA 

and kept at -20°C overnight to allow RNA precipitation. The following day, the samples were 

centrifuged at 4°C at 12 000 rpm for 10 min to obtain a white pellet containing RNA. The 

supernatant was removed and the pellet was washed in 1 ml of 70% (v/v) ethanol and 

centrifuged at 4°C at 12 000 rpm for 10 min. This washing step was repeated three times and 

then the pellet was air-dried for 15-20 min at room temperature until it became translucent. 

The pellet was then reconstituted in 50 µl nuclease-free water.  

3.3.2 Reverse transcription, polymerase chain reaction (PCR) and quantitative real-time 

PCR analysis 

Reverse transcription into cDNA was done using Superscript First Strand Synthesis 

System (Invitrogen) according to manufacturer’s protocol. Briefly, a reaction mix containing 

1 µg RNA, 50 µM oligo (dT) primer, 10 mM dNTP and water was heated for 5 min at 65°C 

and put on ice for at least 1 min. A second mix containing 5x First strand buffer, 0.1 M DTT, 

RNaseOUT and Superscript III reverse transcriptase was added to the first mix and reverse 

transcription reaction was carried out for 1 hour at 50°C and 15 min at 70°C.  

PCR amplification of genes was performed using Platinum Taq (Invitrogen) with a 

program of 94°C for 5 min, 30 cycles of 94°C for 30 secs, 54-64°C for 1 min, and 72°C for 1 

min and an extension step at 72°C for 10 min.  The primers used for these analyses are listed 

in Table 3.1.  

Table 3.1 List of primers used in RT-PCR 

Gene 5’ – 3’ Primer sequence Product size (bp) 

SHH F: CGGAGCGAGGAAGGGAAAG 262 

 R: TTGGGGATAAACTGCTTGTAGGC  

DHH F: GTTGTAAGGAGCGGGTGAAC 184 

 R: GCCAGCAACCCATACTTGTT  

IHH F: CTACGCCCCGCTCACAAAG 375 

 R: GGCAGAGGAGATGGCAGGAG  

HIP F: TGACCCAGACTCACAATGGA 315 

 R: CTCTGCGGATGTTTCTGTCC  

PTCH1 F: CTTCGCTCTGGAGCAGATTT 334 

 R: CAGGACATTAGCACCTTCT  
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PTCH2 F: TGCCCTTGAGCACACATTTG 229 

 R: GTACAAGGAAAGCCCAGAGA  

SMO F: ACGAGGACGTGGAGGGCTG 583 

 R: CGCACGGTATCGGTAGTTCT  

GLI1 F: AGTAGCTATGGCGAGCCCT 331 

 R: TAGGAGCCTCCTGGAGATGT  

GLI3 F: CAGCTCCACGACCACTGAA 317 

 R: TCCATGGCAAACACCGTCC  

OCT4 F: GAAGGATGTGGTCCGAGTGT 242 

 R: GTGACAGAGACAGGGGGAAA  

GAPDH F: TGGTATCGTGGAAGGACTCA 250 

 R: CCTGCTTCACCACCTTCTTG  

 

For quantitative real-time PCR analysis, 0.5 µg of RNA was reversed transcribed. All 

samples were run in triplicates at a reaction volume of 25 µl containing Power SYBR Green 

PCR Master Mix (Applied Biosystems, Foster City, CA, USA, http:// 

www.appliedbiosystems.com), and 200 nM primers. The reaction was run on the ABI 

Prism7000 Sequence Detection System (Applied Biosystems) using the following 

amplification parameters: 2 min at 50°C, 10 min at 95°C, and 40 cycles of 15 secs at 95ºC 

and 1 min at 60°C. Data was analyzed using the &&CT method to obtain expression levels 

relative to endogenous GAPDH control in each sample as previously described (Chan et al., 

2008). The primers used for these analyses are listed in Table 3.2.  

Table 3.2 List of primers used for real-time PCR 

Gene 5’ – 3’ Primer sequence 

AADC F: AAGCACAGCCATCAGGATTCA  

 R: ATCTGCCAATGCCGGTAGTCA  

ACTC F: ATTG GCAATGAGCGCTTCC 

 R: TGCCAGCAGATTCCATACCA 

AFP F: TCCCTCCTGCATTCTCTGATG 

 R: CCTGAGCTTGGCACAGATCC 

BMP2 F: GCAACAGCCAACTCGAAATTC  

 R: CACCAACCTGGTGTCCAAAAG  

BOC F: GGGCCTGGTCTAAGCAAAAAC 

 R: TGGCACCATAGTATACGGGCA 

COL2A F: GCCATGAAGGTTTTCTGCAAC 

 R: TTGGGAACGTTTGCTGGATT 

EN1 F: TCGTTTTCCGGAGACTTGTTG 

 R: GGCGGTTCAGTCTCGCAGT 
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EGFR F: GCCGGATCGGTACTGTATCAA 

 R: TCCGTTTCTTCTTTGCCCAG 

FGF19 F: CATGGTCCCAGAGGAGCCT 

 R: GGGCGAAGAGAACATGTCAGA 

FOXA1 F: GCTGGACTTCAAGGCATACGA 

 R: GGGCAACGTAGAGCCGTAAG 

GATA4 F: ACAGACCAGCTCCAAGCAGG 

 R: CGTGACTGTCGGCCAAGAC 

GATA6 F: GCGGCTTGGATTGTCCTGT 

 R: TGCGCCATAAGGTGGTAGTTG 

GLI1 F: CAGGCTGGACCAGCTACATCA 

 R: TGGTACCGGTGTGGGACAA 

HES5 F: CAGGAGCCCCATTCTCAGAG 

 R: CCCTGATTGTCCTAAAACGGC 

HEY2 F: TTCTTGTCACCCTTTGGGAGA 

 R: AGTGCTCCCTCCTTGCTTCAT 

HHIP F: CATATTCCAGGTTTCCTTCAAACA 

 R: GCATAGTAAAAGCAAAACTCATCCG 

HNF4# F: AGATTTAGCCGGCAGTGCG 

 R: AGCGGCACTGGTTCCTCTT 

ID1 F: TTCTCCAGCACGTCATCGACT 

 R: TTCCGAGTTCAGCTCCAACTG 

IGF2 F: CATCTCCCTTCTCACGGGAAT 

 R: GTTGCTATTTTCGGATGGCC 

LMX1B F: TGCTATCCTGGGAAACGCA 

 R: GGCACCTTGGTCTGACTCTTG 

MSI F: CAGACTACGCAGGAAGGGCT 

 R: CCGCATCACCAGACACTCC 

MSX1 F: GCCATGTCTCCTGCATAGCTT 

 R: CGCTTTTCTTGCCTGGTGTC 

NANOG F: GAAAAACAACTGGCCGAAGAAT  

 R: GGTGCTGAGGCCTTCTGC 

NESTIN F: CGTCTTGGATCTTTGCTCCC 

 R: AAAGGCTGGCACAGGTGTCT 

NGFR F: GGGCTGAGACTGGATACTGCC 

 R: ACCTCAATTCCCTCCGATGC 

NKX2-2 F: ACGTTCTGACAACTGGTGGCA 

 R: TGGCAACAATCACCACCGA 

OCT4 F: AACGACCATCTGCCGCTTT 

 R: GGCCGCAGCTTACACATGTT 

OLIG1 F: CCGAGCAAGGAAAGCATTTC 

 R: CGACAGTCCCTTCCTCTGGA 

PAX3 F: CACCGTTCACAGACCTCAACC 

 R: TCGTGCTTTGGTGTACAGTGC 

PAX6 F: CCAGCTTCACCATGGCAAAT 

 R: GGCAGCATGCAGGAGTATGAG 
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PGF F: GGGAGCTTCCGCTTTGAAAG 

 R: CCTAGCTTGCCCCTCACGA 

PITX2 F: ACGCGAAGAAATCGCTGTGT 

 R: CTTGAACCAAACCCGGACTC 

PITX3 F: AACTCACCCTTGGCCCATC 

 R: TCCGCGCACGTTTATTTCA 

PTCH1 F: GTCAGTGTCATCCGCGTGG 

 R: AGGCATAGGCGAGCATGAGTA 

SHH F: AGTCATCAGTTCCATGGGCG 

 R: GCAGCGAGGAGACGAGGAC 

SMO F: TTCAGTTTCAGCGGTGCCA 

 R: GGTGAGTGTGTGCAGCAGCT 

SMTN3 F: AAAGGGAAGCAGAACTGAGGG 

 R: GGCTTTCGCTATGAGCGCT 

SNAI2 F: ACTCCGAAGCCAAATGACAAA  

 R: GGTCAGCACAGGAGAAAATGC  

SOX1 F: CACAACTCGGAGATCAGCAA 

 R: GTCCTTCTTGAGCAGCGTCT 

TH F: TACTGGTTCACGGTGGAGTTCG  

 R: CTTCACCTCCCCGTTCTGCTTA  

TUJ1 ("-III F: GGACGAGATGGAGTTCACCG 

Tubulin) R: GGACACCAGGTCGTTCATGTT 

ZIC2 F: CAAGATCCACAAAAGGACCCA 

 R: CAAACTCACACTGGAACGGCT 

 

3.3.3 DNA microarray 

Gene expression profiling was carried out for biological quadriplicates of H3-NP, 

Vector-NP and SHH-NP that were taken independently through the neural differentiation 

procedure. Total RNA was isolated as mentioned in 3.3.1. The RNA was then cleaned up 

using the Qiagen RNeasy Midi according to manufacturer’s protocol. RNA was then 

concentrated using the salt/alcohol precipitation method. The QIAxcel System was used to 

check the integrity of RNA before proceeding to the next step of cDNA synthesis. Double 

stranded cDNA synthesis was prepared from 15 µg of RNA using the a T7-Oligo(dT) 

promoter primer kit (Affymetrix, CA, USA, http://www.affymetrix.com) and Superscript II 

reverse transcriptase. A Poly-A RNA control kit was included as a positive control for the 

subsequent labelling steps. The double-stranded cDNA was cleaned up using the GeneChip 

sample clean up module (Affymetrix) and subsequently labelled with biotin using the 



 

   42 

Genechip IVT labelling kit to obtain biotin-labelled cRNA.  The biotin-labelled cRNA was 

cleaned up with the GeneChip sample cleanup module and quantified using the 

spectrophotometer. An adjusted cRNA yield was calculated using an equation provided by 

Affymetrix to take into account any unlabeled RNA. 20 µg of purified cRNA was then 

fragmented and ran through the Qiaxcel system to ensure fragmentation was successful. A 

hybridization cocktail was then added to 15 µg of cRNA and 200 µl of this mixture was 

hybridized to the chips (HG-U133 Plus 2.0 Array) for 16 hours according to Affymetrix 

procedures. The next day, the hybridized probes were stained using the stain cocktail 

provided and washed using the Affymetrix Fluidics Station. The probes were then scanned 

with the GeneChip Scanner 3000 and the digitized image (.CEL) files were obtained.   

3.3.4 Microarray data analysis 

Microarray data analysis was done by Dr. Stanley Ng from the A*STAR Singapore 

Immunology Network. Normalized expression signals were computed from .CEL files using 

RMA (Irizarry et al., 2003). Differential hybridized features were identified using Limma, an 

R software package that implements linear models for microarray data (Smyth et al., 2005). 

In Limma, p-values were compiled from four sets of technical replicate data and obtained 

from moderated t statistics or F statistics using empirical Bayesian methods. p-values were 

then adjusted for multiple testing with Benjamini and Hochberg's method to control the false 

discovery rate (Benjamini and Hochberg, 1995). All differentially regulated genes were 

filtered using the statistic criteria of adjusted p-values <0.05 and a 1.5-fold change in 

expression ratio compared to both Vector-NP and H3-NP.  

Statistically significant over- or under- representation of particular GO term 

pathways were identified with either a classical hypergeometric test or a conditional 

hypergeometric that uses the relationships among GO terms to decorrelate the results (Falcon 

and Gentleman, 2007). All computations were done using the statistical programming 

language R in combination with Bioconductor tools. 
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3.3.5 In silico analysis of GLI binding sites 

The identification of GLI binding sites on the promoter region of SHH regulated 

genes was done by Mr Yeo Hock Chuan from the A*STAR Bioprocessing Technology 

Institute, Bioinformatics group. The regulatory sequences 5 kb upstream and downstream of 

the 1.5-fold differentially regulated genes were extracted from the Biomart database 

(http://www.biomart.org/) in May 2009. The human genome assembly used was dated March 

2006. To scan the regulatory sequences for putative GLI binding sites, the MATCH 

executable from TRANSFAC database was used, using TRANSFAC’s ‘V$GLI_Q2’ 

position-weighted matrix to describe the binding specificity. The TRANSFAC profile 

‘minFN20083.prf’ was used to minimize false negative sites. 

 

3.4 Protein and biochemical assays 

3.4.1 Immunocytochemistry  

Cells were fixed with 4% paraformaldehyde for 30 min and permeabilized with 0.1% 

Triton X-100 in PBS for 30 min and washed in 1% BSA in PBS. Cells were incubated 

overnight at 4°C with various primary antibodies in dilutions of 10% goat serum with 0.1% 

Triton X-100 in PBS (Table 3.3). 

Table 3.3 List of antibodies used for immunocytochemistry 

Primary antibody Company Species Dilution 

OCT4 

Santa Cruz 

Biotechnology,  

CA, USA Mouse 1:400 

SMO Santa Cruz Rabbit 1:100 

SMO  

Lifespan Biosciences, 

WA, UK Rabbit 1:250 

PTCH1 Abcam, Cambridge, U.K  Rabbit 1:100 

GLI1 Abcam Rabbit 1:100 

GLI3 Santa Cruz Rabbit 1:100 

Acetylated Tubulin Sigma Mouse 1:10000 

PAX6 

Developmental Studies 

Hybridoma Bank 

(DSHB), IA, USA Mouse 1:50 

NESTIN Abcam Rabbit 1:200 



 

   44 

NESTIN Neuromics, MN, USA Mouse 1:200 

SOX1 Abcam Rabbit 1:250 

TH 

Chemicon, Temecula, 

CA, USA Rabbit 1:250 

"-Tubulin III Chemicon Mouse 1:500 

GFAP 

Dako, Glostrup, 

Denmark Rabbit 1:500 

MAP2 Chemicon Mouse 1:200 

Secondary antibody Company Species Dilution 

Anti-Mouse Alexa Fluor 

488 Invitrogen Goat 1:250 

Anti-Rabbit Alexa Fluor 

488 Invitrogen Goat 1:250 
Anti-Mouse Alexa Fluor 

594 Invitrogen Goat 1:250 

Anti-Rabbit Alexa Fluor 
594 Invitrogen Goat 1:250 
Anti-Rabbit Alexa Fluor 

647 Invitrogen Goat 1:250 

 

Cells were then rinsed 3 times with 1% BSA in PBS for 5 min each time. After 

which, cells were incubated with secondary antibody for 2 hours at room temperature in 1% 

BSA in PBS. They were then rinsed three times with 1% BSA in PBS for 5 min each time. 

For cells grown on coverslips, coverslips were removed from the culture dish and transferred 

onto microscopy slides. Mounting medium containing DAPI (Vector Laboratories, CA, USA, 

http://www.vectorlabs.com/) was used for nuclei counter staining. Images were acquired 

using a Zeiss Axiovert 200M inverted fluorescent microscope (Carl Zeiss, Germany, 

www.zeiss.com).  

For confocal microscopy to visualize cilia, cells were prepared as follows: hESC 

were seeded on Matrigel-coated coverslips and fed with CM for 2 days to allow clumps to 

attach and expand before being starved in DMEM media for 4-6 days. Neurospheres were 

dissociated into small clumps, seeded on laminin-coated coverslips and starved in DMEM 

media for 7-10 days. For both hESC and neurospheres, cells were stimulated with 500 ng/ml 

SHH for the last 1-2 days. The cells were then prepared for immunocytochemistry as stated 

above. Images were acquired with the Zeiss LSM 510 Meta Confocal Microscope (Carl 

Zeiss). 
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Quantitative immunocytochemical analysis of dopaminergic neurons was determined 

by counting the number of TH, "–Tubulin III and DAPI positive nuclei per field at 200x 

magnification for each independent experiment. At least 5 visual fields were randomly 

selected and at least 1000 cell nuclei were counted per experiment.  

3.4.2 Western blot  

Cell pellets were lysed using 1% Igepal lysis buffer and resolved on 4-12% NuPAGE 

gels (Invitrogen) and transferred onto polyvinylidene fluoride (PVDF) membranes (BioRad). 

Membranes were blocked in PBS with 5% low-fat milk and probed overnight at 4°C with 

primary antibodies (Table 3.4). For the anti-SHH blots, they were probed with anti-rabbit 

horse radish peroxidase (HRP)-conjugated secondary antibody (Amersham Biosciences NJ, 

USA, http://www.amersham.com) for 1 hour at room temperature. Signals were visualized 

using the Immobilon Western Chemiluminescent HRP Substrate (Millipore, MA, USA, 

http://www.millipore.com) with x-ray film. For the rest of the blots, they were probed with 

IRDye secondary antibodies (LI-COR, NE, USA, http://www.licor.com) for 1 hour at room 

temperature in the dark (Table 3.4). Signals were detected by direct infrared fluorescence 

with the Odyssey imaging system (LI-COR).  

Table 3.4 List of antibodies used for Western blot analysis 

Primary Antibody Company Species Dilution 

SHH R&D Rabbit 1:500 

NESTIN Abcam Mouse 1:1000 

SOX1 Abcam Rabbit 1:1000 

EGFR Abcam Rabbit 1:50 

FOXA2 Abnova Mouse 1:1000 

PAX3 DSHB Mouse 1:50 

MSX1 R&D Systems Goat 1:1000 

ACTIN Abcam Mouse 1:20,000 

ACTIN Abcam Rabbit 1:20,000 

Secondary Antibody Company Species Dilution 

Anti-Rabbit IRDye 800 LI-COR Goat 1:20,000  

Anti-Rabbit IRDye 680 LI-COR Goat 1:20,000 

Anti-Mouse IRDye 800 LI-COR Goat 1:20,000  

Anti-Mouse IRDye 680 LI-COR Goat 1:20,000 

Anti-Goat IRDye 680 LI-COR Donkey 1:20,000 
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3.4.3 Flow cytometry analysis 

For detection of pluripotent markers OCT4 and TRA-1-60, hESC were dissociated 

with trypsin and harvested as single cells before fixation and permeabilization using Fix and 

Perm Cell Permeabilization reagents (Invitrogen). Cells were incubated with primary 

antibodies (Table 3.5) for 15 min at room temperature and then washed with 1% BSA in 

PBS. The secondary antibody was added and incubated for 15 min at room temperature. Cells 

were washed and resuspended in 1% BSA in PBS for flow cytometry analysis. As a negative 

control, cells were stained with the appropriate isotype control. Cells were acquired using a 

FACS Calibur (Becton Dickinson) and results were analysed with the CellQuest Software 

(Becton Dickinson).  

For detection of NSC markers, neurospheres were dissociated with TrypLE Express 

and harvested as single cells before incubation with the primary antibody (Table 3.5) in 1% 

BSA in PBS for 30 min on ice. The cells were washed with 1% BSA in PBS and incubated 

with the secondary antibody anti-mouse APC for 30 min on ice. The samples were then 

washed with 1% BSA in PBS before being acquired on the FACS Calibur. As a negative 

control, cells were stained with the appropriate isotype control. Cells were acquired using a 

FACS Calibur and results were analysed with the FlowJo software (Treestar, OR, USA, 

http://www.treestar.com).  

Table 3.5 List of antibodies used for flow cytometry analysis 

Primary antibody Company Species Dilution 

A2B5 Chemicon Mouse 1:100 

CD133-APC 

Miltenyi Biotec, 
CA, USA Mouse 1:11 

FORSE DSHB Mouse 1:100 

OCT4 Santa Cruz Mouse 1:20 

p75 Santa Cruz Mouse 1:100 

PSA-NCAM-APC Miltenyi Biotec Mouse 1:11 

TRA-1-60 Chemicon Mouse 1:50 

Secondary antibody Company Species Dilution 

Anti-Mouse Alexa Fluor 

IgG1 488 Invitrogen Goat 1:100 

Anti-Mouse APC BD Bioscience Goat 1:100 

Anti-Mouse FITC Dako Goat 1:500 
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For sorting of p75+/ PSA-NCAM+ double positive cells, neurospheres from each cell 

line were harvested with TrypLE Express, washed once in 5% FBS in PBS, followed by 

incubating with anti-p75 and APC-conjugated PSA-NCAM antibody in 1% BSA in PBS for 

30 min on ice. The cells were washed in 1% BSA in PBS and incubated with anti-mouse 

IgG1-488 antibody in 1% BSA in PBS for 30 min on ice. The samples were washed in 1% 

BSA in PBS, resuspended in 5% FBS in PBS, and filtered through a 40 µm nylon cell strainer 

(BD Biosciences) to obtain single cells. Double positive cells were sorted using the FACS 

Aria 4-color laser sorter (Becton Dickinson) which was operated by the A*STAR Biopolis 

Shared Facility. Sorted cells were then seeded onto ultra-low attachment plates in N2B27 

media with 20 ng/ml EGF and FGF2.  

3.4.4 Luciferase reporter assay 

For the 8xGli-BS luciferase reporter assay, hESC were plated in 24-well plates 4 

days before transfection. The 8XGli-BS or 8XmutGli-BS luciferase reporter plasmid was co-

transfected with 20 ng TK-Renilla internal control plasmid (pRL-TK, Promega, WI, USA, 

www.promega.com) and DNA expression vectors as indicated. Wherever required, the total 

amount of plasmid DNA transfected was adjusted to 1 µg by adding the control plasmid 

pCDNA3.1(+) (Invitrogen). To induce differentiation, hESC growth medium was changed 16 

hours after transfection to DM or DM supplemented with 5 $M retinoic acid (RA, Sigma). 

Cells were harvested after 48 hours and assayed for luciferase activity. 

For the Switchgear promoter luciferase assay, neurospheres were plated in laminin-

coated 24-well plates in N2B27 media with EGF and FGF2 4-5 days prior to transfection to 

allow cells to reach confluence. The luciferase reporter plasmids were co-transfected with 12 

ng pRL-TK internal control plasmid and the SHH expression vector as indicated. The total 

amount of plasmid DNA transfected was adjusted to 1.2 µg by adding the control plasmid 

pCDNA3.1(+). Cells were harvested after 48 hours and assayed for luciferase activity.  

Luciferase activities were measured using the Dual-Luciferase system (Promega) 

according to manufacturer’s protocol. Briefly, cells were washed with PBS buffer and lysed 
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directly in culture wells with 1x Passive Lysis Buffer. 50 µl of cell lysate was transferred to a 

microplate and 100 µl of Luciferase Assay Reagent II was added. Firefly luciferase levels 

were then measured for luminescence by the Infinite M200 microplate reader (TECAN, 

Zurich, Switzerland, www.tecan.com). Subsequently 100 µl of Stop & Glo Reagent was 

added and Renilla luciferase levels were measured as above. Luciferase activities were 

calculated as a ratio of Firefly luciferase activity over Renilla luciferase activity and 

expressed relative to an empty vector control.  All transfection experiments were performed 

at with at least three biological replicates using different batches of cells and similar results 

were obtained.  

3.4.5 Cell proliferation assay 

To detect DNA synthesis in proliferating cells, incorporation of a thymidine analog 

5-ethynyl-2’-deoxyuridine (EdU) was used (Invitrogen). hESC were treated with 10 mM 

nocodazole for 16 hours for cell cycle synchronization. Toxicity due to nocodazole was not 

observed and successful synchronization  was validated by flow cytometry. Cells were then 

treated with 1 µg/ml recombinant SHH for 24 hours and EdU was added in 2 hours prior to 

harvest for assay. EdU incorporation in cells was detected according to manufacturer’s 

instructions by using a FACS Calibur and results were analysed with the CellQuest Software. 

3.4.6 Apoptosis assay 

hESC were treated with 1 µg/ml recombinant SHH for 24 hours and apoptosis assay 

was carried out using the Annexin V-FITC apoptosis detection kit (Bender MedSystems, 

Vienna, Austria) according to manufacturer’s instructions. Cells were co-stained with 

Propidium Iodide (PI) to stain for dead cells. Flow cyomtery was performed on the FACS 

Calibur and the results were analysed with the CellQuest Software. 

3.4.7 Cell count 

p75+/PSA-NCAM+ positive neurospheres were harvested 7 and 14 days after 

isolation and treated with TrypLE Express to obtain a single cell suspension. The viable cell 
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number for each sample was determined using Trypan Blue exclusion with a hemocytometer 

(Neubauer).  

3.5 Statistics 

Statistical significance of differences between values was evaluated by an unpaired 

Student’s t-test in Microsft Excel.  Significance was set at a p value of <0.05.  
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CHAPTER 4 ROLE OF SHH IN UNDIFFERENTIATED hESC 

4.1 INTRODUCTION 

Several developmentally important pathways like the FGF, TGF" and WNT 

pathways have been identified as fundamental pathways governing hESC self-renewal and 

pluripotency (Hyslop et al., 2005). However, the function of the SHH pathway in hESC is 

less well known. There are indications that the pathway could be involved in hESC self-

renewal. Earlier studies attempting to understand the transcriptional network of NANOG, 

SOX2 and OCT4 have shown using chromatin immunoprecipitation-microarray, that the 

above transcription factors bound to the promoter region of GLI3 to repress its expression 

(Boyer et al., 2005). A similar result was obtained in mESC whereby Nanog and Oct4 

binding sites were identified upstream of Ptch1, Gli1 and Gli3 (Loh et al., 2006). 

Furthermore, the expression of Ptch1 and Gli1 was downregulated upon knockdown of Oct4 

and Nanog respectively (Mathur et al., 2008).  In hESC, PTCH1 was similarly found to be 

downregulated upon knockdown of NANOG (Babaie et al., 2007).  These lines of evidence 

led us to study in this chapter the role SHH plays in undifferentiated hESC. 

The expression of SHH pathway components was first examined in hESC and their 

differentiated progeny, embryoid bodies (EB). The state of pathway activation in both 

undifferentiated and differentiated hESC was then determined by using a GLI responsive 

luciferase assay. To understand the requirement of SHH for the maintenance of pluripotency, 

hESC were cultured in either pluripotent or sub-optimal conditions and supplemented with 

exogenous SHH. The expression of pluripotent markers was monitored and the effect of SHH 

on hESC proliferation and survival was also studied. Finally, the significance of SHH in 

promoting differentiation was studied by exposing spontaneously differentiating EB to 

exogenous SHH.   
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4.2 Expression of SHH signaling pathway components 

To determine whether SHH signaling is present in hESC, components of the SHH 

signaling pathway were analyzed by immunocytochemistry. PTCH1 and SMO receptors were 

localized to the plasma membrane while GLI1 and GLI3 co-localized with the nuclear dye, 

DAPI (Figure 4.1). 

 

Figure 4.1 hESC express SHH pathway components. (A-D) Representative images 

showing immunoflourescent staining of (A) PTCH1, (B) SMO, (C) GLI1, (D) GLI3. 

Middle panel shows corresponding DAPI nuclear staining in blue and right panel shows 

corresponding merged images. Scale bars represent 100 µm. 

 

The expression of pathway components was further confirmed by RT-PCR where 

low expression of SHH and IHH was detected whereas DHH was undetectable in 
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undifferentiated hESC. hESC also express the PTCH1, SMO but not PTCH2 receptors and 

transcription factors GLI1 and GLI3, along with the pluripotent marker OCT4 (Figure 4.2). 

This confirms that hESC express SHH signaling components necessary for signal 

transduction.   

 

Figure 4.2 Embryoid bodies (EB) express SHH pathway components. RT-PCR analysis 

of SHH signaling pathway components in undifferentiated hESC and differentiating EB 

over 14 days. EB were grown in differentiation media in suspension and harvested at 

indicated time points.   

 

During spontaneous differentiation, gene expression of SHH, DHH and IHH in EB 

was significantly higher compared to hESC over the entire 14-day differentiation period 

(Figure 4.2). Concomitantly, there were also an upregulation of GLI3, HHIP, PTCH1 and 

PTCH2 and a downregulation of SMO and GLI1. These results are consistent with previous 

data (Rho et al., 2006), which reported similar mRNA expression of SHH pathway 
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components in hESC and EB. The presence of these SHH pathway components suggests that 

SHH signaling cascade may have functional importance in undifferentiated hESC and EB.  

It was recently shown that the H1 and H9 hESC lines possess primary cilia 

containing the SMO and PTCH1 receptors and the authors also found low levels of SHH 

located at the base of the cilia (Kiprilov et al., 2008). Results in Section 5.3 indicate that 

primary cilia are similarly present in the HES-3 cell line used in this study. 

4.3 Activation of SHH signaling in undifferentiated hESC and role of GLI mediators 

The presence of the SHH pathway components in hESC led us to investigate if SHH 

signaling is active in undifferentiated hESC.  This was achieved using the GLI-mediated 

transcriptional activation assay with GLI-responsive luciferase reporter plasmid (Figure 

4.3A) (Sasaki et al., 1997a). Transfection of the 8XGli-BS luciferase reporter plasmid into 

hESC showed 7-fold induction of luciferase activity, as compared to the background 

luciferase levels of the 8XmutGli-BS luciferase reporter plasmid, indicating that there is 

endogenous activation of the SHH pathway in undifferentiated hESC (Figure 4.3B).  

To identify the role of GLI mediators in undifferentiated hESC, three GLI mediators, GLI1, 

GLI2 and GLI3 expression vectors were also co-transfected with the wildtype 8XGli-BS or 

8XmutGli-BS luciferase reporter plasmid into hESC. Expression of GLI1 and GLI2 in hESC 

induced a 4-fold and 3-fold increase in wildtype 8XGli-BS luciferase activity, respectively, 

while expression of GLI3 in hESC inhibited 8XGli-BS luciferase activity (Figure 4.3B). Co-

expression of GLI3 and GLI1 in hESC showed that GLI3 suppressed luciferase reporter 

activation by GLI1 in a dose dependent manner (Figure 4.3C).  Another component of the 

SHH pathway, SUFU, a negative  regulator of GLI mediators, was also found to significantly 

downregulate luciferase activity when it was co-expressed with GLI1 in hESC (Figure 4.3D). 

These results are consistent with those previously reported (Stone et al., 1999) and confirm 

the role of the GLI mediators in SHH signal transduction in hESC. Together, the results show 

that the SHH pathway is present in hESC and the signaling cascade downstream of SMO is 

functioning. 
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Figure 4.3 GLI mediators are functional in undifferentiated hESC. (A) Schematic of 

8xGli-BS reporter plasmid. (B-D) Luciferase activity of 8XGli-BS luciferase reporter 

plasmid. (B) hESC were transiently transfected with 8XGli-BS or 8XmutGli-BS 

luciferase reporter plasmid together with the indicated expression vectors encoding 

GLI1, GLI2 and GLI3. (C-D) The 8XGli-BS luciferase reporter plasmid and GLI1 

expression vector were co-transfected with increasing concentrations of (C) GLI3 and 

(D) SUFU expression vectors as indicated. Luciferase activities were calculated as a 

ratio of Firefly luciferase activity over Renilla luciferase activity and expressed as fold 

induction relative to vector control. Values shown are mean ± SD of a representative 

experiment carried out in triplicate and repeated at least three times. 

 

4.4 Effect of SHH on hESC pluripotency and proliferation 

Since the SHH pathway was shown to be active in hESC, we examined whether 

addition of exogenous SHH affects hESC pluripotency. hESC were cultured in conditioned 

medium (CM) for two passages with or without 1 $g/ml recombinant SHH and expression of 

pluripotent surface marker TRA-1-60 expression was evaluated by flow cytometry.  Results 

showed that cells cultured over two passages in CM with exogenous SHH (CM+SHH) 
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maintained high levels of TRA-1-60 expression which are comparable to cells cultured in 

CM (Figure 4.4A). Similarly, real-time PCR analysis of pluripotent markers OCT4 and 

NANOG showed that cells cultured in CM or CM+SHH had similar gene expression levels 

(Figure 4.4B,C). Addition of lower concentrations of SHH (10 ng/ml and 100 ng/ml) had 

similar results (data not shown). Therefore, hESC remained undifferentiated in the presence 

of high concentrations of SHH, suggesting that SHH does not induce differentiation.  

 

 

Figure 4.4 Exogenous SHH does not affect pluripotency. (A) FACS analysis of TRA-1-

60 positive cells and (B) Real-time PCR analysis of pluripotent markers OCT4 and 

NANOG expression in hESC maintained in conditioned media (CM), CM supplemented 

with 1 µg/ml SHH (CM+SHH), CM without FGF2 (CM – FGF2) or CM without FGF2 

supplemented with 1 µg/ml SHH (CM–FGF2+SHH) over two passages. The expression 

level of each gene is shown relative to undifferentiated hESC maintained in CM, which 

was arbitrarily defined as 1 unit. The values shown are mean ± SD of a representative 

experiment performed in triplicate and repeated three times. * = p<0.05, ns = non-

significant. 
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To determine if SHH maintains pluripotency when hESC are grown under 

spontaneous differentiation conditions, cells were cultured in CM without FGF2 (CM-FGF2), 

as FGF2 in CM has been shown to be necessary for the maintenance of pluripotency (Greber 

et al., 2007). After the second passage, there was a drop in expression of TRA-1-60, OCT4 

and NANOG in CM–FGF2 cells compared to cells cultured in CM (Figure 4.4), indicating 

that cells were undergoing spontaneous differentiation. When 1 $g/ml recombinant SHH was 

added daily to CM-FGF2 cells over two passages (CM-FGF2+SHH), there was a similar 

decrease in TRA-1-60, OCT4 and NANOG expression levels when compared to CM-FGF2 

cells (Figure 4.4).  These results suggest that SHH treatment does not maintain pluripotency 

of hESC. It also showed that SHH did accelerate the differentiation of hESC, which are 

similar to that reported by Heo et al., 2007, whereby mESC maintained their undifferentiated 

status with long term treatment of 0.5 $g/ml SHH over 5 passages.  

In order to study if SHH affects the proliferation of hESC, an EdU incorporation 

assay was used to investigate the cell proliferation of hESC after SHH treatment. hESC were 

treated with 1 $g/ml SHH for 24 hours and cells were labeled with EdU during the last two 

hours. Cells were co-stained for OCT4 and analyzed by flow cytometry. Results showed that 

despite treatment with 1 $g/ml SHH, the percentage of pluripotent OCT4 and EdU positive 

proliferating cells were similar to those of the control (without SHH) (Figure 4.5) 

 

Figure 4.5 Exogenous SHH does not affect proliferation of hESC. Flow cytometry 

analysis of EdU incorporation assay in undifferentiated hESC. Cells were synchronized 

with nocodazole for 16 hours and then treated with or without 1 µg/ml SHH for 24 

hours. Representative dot plots of biological triplicates showing EdU incorporation in 

hESC co-stained for OCT4. This experiment was repeated three times. 
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The effect of SHH on apoptosis was also evaluated using the Annexin V assay and the 

apoptotic cell population (Annexin V positive PI negative) was similar in cells treated with or 

without SHH (Figure 4.6) 

 

Figure 4.6 Exogenous SHH does not affect survival of hESC.  Flow cytometry analysis 

of Annexin V apoptosis assay in undifferentiated hESC whereby cells were treated with 

or without 1 µg/ml SHH for 24 hours prior to assay. Representative dot plots showing 

apoptotic cells (Annexin V positive and PI negative) from biological triplicates and 

experiment repeated thrice. 

 

  To further confirm the observations, an alternative method of introducing exogenous 

recombinant SHH was achieved by transient transfection of a CMV expression vector 

encoding the full length SHH into hESC. Western blot analysis confirmed the overexpression 

of SHH (data not shown). Despite the differential expression of cell cycle proteins upon 

overexpression of SHH, there was no change in the percentage of EdU positive proliferating 

cells (data not shown). These results suggest that SHH does not stimulate the proliferation of 

undifferentiated hESC, which is contrary to that reported in mESC whereby the authors 

observed an increase in mESC proliferation and expression of cell cycle components upon 

stimulation with as little as 50 ng/ml SHH (Heo et al., 2007). SHH was also shown to 

stimulate undifferentiated mESC proliferation via the canonical Gli pathway and non-

canonical Ca2+/PKC and EGF receptor activation pathways (Heo et al., 2007). This 

discrepancy could be due to the inherent difference in self-renewal properties between mESC 

and hESC or that the stimulatory effect of SHH on proliferation is tissue specific. 
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4.5 Activation of SHH signaling in hESC during differentiation  

  Having established the activation of the SHH pathway in undifferentiated hESC, 

pathway activation during early differentiation was studied by interrogating SHH target gene 

expression. hESC were maintained either in an undifferentiated state with CM, or induced to 

differentiate by culturing in differentiation medium (DM) or DM supplemented with 5 $M 

retinoic acid (DM+RA) for 96 hours. Gene expression of OCT4, NANOG and the SHH target 

genes PTCH1 and GLI1 were then analyzed by real time-PCR. When cells were 

differentiated with DM, there was a 50% reduction in OCT4 and NANOG gene expression 

compared to undifferentiated hESC (Figure 4.7A). Addition of RA (DM+RA) abolished 

OCT4 and NANOG expression, showing loss of pluripotency (Figure 4.7A). The drop in 

pluripotency marker expression was accompanied by 1.5-fold upregulation of PTCH1 

expression in DM treated cells and a 4-fold upregulation in DM+RA treated cells. GLI1 

expression also increased by 2.5-fold in DM+RA treated cells (Figure 4.7A), implying that 

the SHH pathway is activated during differentiation.  

In a different approach to study pathway activation, the 8XGli-BS luciferase reporter 

plasmid was transfected into hESC and treated in similar culture conditions as above. No 

increase in luciferase activity was observed for hESC cultured in DM. However, a significant 

induction of luciferase activity (2-fold) was observed in differentiating hESC treated with RA 

(Figure 4.7B). This induction in luciferase activity was inhibited by cyclopamine, an 

antagonist of the pathway that inhibits at the level of the SMO receptor (Taipale et al., 2000). 

Addition of 10 $M cyclopamine reduced the luciferase activity in CM and DM to a lower 

basal level as compared to the vehicle control in CM and DM (Figure 4.7B). There was also 

approximately 75% reduction in luciferase activity in DM+RA cells as compared to vehicle 

control in the same condition (Figure 4.7B). This indicates that endogenous SHH ligands 

activated the SHH pathway during differentiation as it is SMO-dependent. Similarly, the 

induction of luciferase activity was also inhibited by forskolin, an inhibitor of the pathway 

which activates protein kinase A (PKA) which in turn phosphylates the GLI mediator  
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Figure 4.7 Activation of SHH signaling by endogenous SHH. (A) Quantitative Real-time 

PCR analysis of target gene PTCH1 and GLI1 and pluripotent markers OCT4 and 

NANOG expression in hESC maintained in conditioned media (CM), or induced to 

differentiate with differentiation media (DM) or DM supplemented 5 µM RA (DM+5 

µM RA) for 48 hours. Gene expression is expressed relative to hESC in CM condition. 

(B) Luciferase activity of the 8XGli-BS luciferase reporter plasmid, which was 

transfected into hESC and cultured similar conditions as above. Cells were treated with 

the vehicle control (DMSO/ Ethanol) or pathway inhibitors 10 #M cyclopamine and 50 

#M forskolin. Cells were assayed for luciferase activity 48 hours post transfection. 

Luciferase activities were calculated as a ratio of Firefly luciferase activity over Renilla 

luciferase activity and expressed as fold induction relative to vehicle or vector control. 

Values shown are mean ± SD of a representative experiment carried out in triplicate 

and repeated at least three times. *, p<0.05. 

 

proteins to the repressor form (Wang et al., 2000; Sheng et al., 2006). Here, the luciferase 

activity in all culture conditions were significantly reduced by more than 50% with the 

addition of 50 $M forskolin as compared to vehicle control. 
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The GLI-mediated transcriptional activation assay corroborated with the target gene 

expression data, showing that the SHH pathway was activated in cells in DM with RA, and 

that the activation was SMO/GLI dependent (Figure 4.7B). The SHH pathway does not 

appear to be activated in DM treated cells possibly because they were partially 

undifferentiated as demonstrated by the presence of OCT4 and NANOG transcripts (Figure 

4.7A). And upon treatment with RA, a potent inducer of differentiation, there was rapid 

differentiation as OCT4 and NANOG expression was abolished, and this was accompanied by 

high activation of the SHH pathway. RA treatment could also have induced the 

differentiating cells to express the SHH ligand (Okada et al., 2004), thereby activating the 

pathway. Together with the gene expression studies, the results provide evidence that 

endogenous SHH signaling in hESC is present and can be further highly activated by the 

endogenous SHH during RA mediated differentiation.  

 

To confirm that exogenous SHH activates the pathway during differentiation, SHH 

was  overexpressed along with the 8xGli-BS luciferase reporter plasmid. Subsequently, there 

was a 2-fold increase in luciferase activity in hESC cultured in CM and in DM upon 

overexpression of SHH compared to the vector control (Figure 4.8). On top of that, 

overexpression of SHH elicited a greater increase in luciferase activity of around 3-fold in 

hESC cultured in DM+RA compared to the vector control. This result indicates that there is 

greater pathway activation by exogenous SHH during hESC differentiation with RA (Figure 

4.8). Specificity of SHH induced luciferase activity was demonstrated by the addition of 10 

µM cyclopamine which resulted in a 50% reduction in luciferase activity in cells cultured in 

CM or DM+RA when compared to vehicle control. Overexpression of GLI1 in this assay 

served as a positive control for pathway activation (Figure 4.8).  
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Figure 4.8 Activation of SHH signaling by exogenous SHH. The SHH expression vector 

was co-transfected with the 8XGli-BS luciferase reporter plasmid in the absence 

(vehicle-DMSO) or presence of 10 #M cyclopamine. GLI1 was overexpressed as a 

positive control. Luciferase activities were calculated as a ratio of Firefly luciferase 

activity over Renilla luciferase activity and expressed as fold induction relative to 

vehicle or vector control. Values shown are mean ± SD of a representative experiment 

carried out in triplicate and repeated at least three times. * = p<0.05. 

 

To confirm the pathway activation effect of overexpressing SHH plasmid, exogenous 

SHH was also introduced in the form of recombinant SHH (500 ng/ml) in the iPSC(IMR90) 

cell line and similar results were obtained (data not shown). Therefore, the results indicate 

that both endogenous and exogenous SHH can activate the pathway in hESC and higher 

activation occurs during RA differentiation. This implies that in the undifferentiated state, 

activation of the pathway by exogenous SHH is minimal but when the cells begin to 

differentiate, they become more responsive to SHH stimulation. RA is commonly used in 

several ES cell differentiation protocol as a caudalizing factor to generate cells of the neural 

linage (Wichterle et al., 2002; Bibel et al., 2004), and its function could be partly attributed to 

its activation of the SHH signaling pathway. Coupled with the expression of SHH pathway 

components in EB (Figure 4.2) SHH could play a more important role during differentiation 

and led the study towards investigating the effect of SHH signaling on the lineage 

determination during early EB differentiation. 
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4.6 SHH signaling influences lineage determination during spontaneous 

differentiation 

Expression of key components of the SHH pathway in EB and its activation during 

differentiation suggest that SHH may play a functional role during spontaneous 

differentiation. To examine the effect of SHH signaling in lineage determination during 

hESC differentiation, exogenous SHH secreted in the conditioned medium (SHH-CM) of an 

inducible SHH overexpressing cell line (293-EcR Shh) (Cooper et al., 1998) with DM was 

used to culture differentiated hESC grown as EB for 14 days. The levels of secreted SHH in 

SHH-CM was confirmed using ELISA (data not shown). Conditioned media from the normal 

HEK293 cells (Control-CM) was used as control. Production of active N-terminal SHH from 

293-EcR Shh cells was used as a more convenient and economical source of SHH than 

commercial recombinant SHH. Also, its usefulness in differentiation studies has been 

demonstrated whereby the SHH producing cells were co-cultured with mESC to promote 

motor neuron differentiation (Soundararajan et al., 2007).  

After 14 days in culture with SHH, expression of the pluripotent marker OCT4, SHH 

target genes GLI1 and PTCH1, and differentiation markers were analyzed using quantitative 

real-time PCR. Long-term treatment of SHH-CM enabled sustained activation of the SHH 

pathway as shown by the upregulation of GLI1 and PTCH1 expression (Figure 4.9A).  

OCT4 expression was downregulated in all conditions as compared to 

undifferentiated hESC indicating that the media used did not inhibit the ability of cells to 

differentiate (Figure 4.9A). An increased expression of neuroectoderm markers SOX1, 

Musashi1 (MSI), Msh homeobox 1 (MSX) and microtubule-associated protein 2 (MAP2) was 

observed in SHH-CM treated EB compared to the control group (Figure 4.9B).  The 

expression of endodermal markers alpha-fetoprotein (AFP) and GATA binding protein 4 

(GATA4) were not significantly altered, although a 30% decrease in GATA6 mRNA was 

observed. IGF2, a mesoderm marker, was downregulated, whereas there was no effect on 

COL2A expression level (Figure 4.9C).   
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Figure 4.9 Neuroectoderm markers expression are upregulated in EB after 14 days 

exposure to SHH. (A-C) EB were grown in SHH-CM or Control-CM suspension culture 

for 14 days and mRNA expression was analyzed by real time PCR to determine the 

expression of (A) SHH target genes, (B) neuroectoderm, (C) mesoderm and endoderm 

markers. Gene expression is expressed relative to undifferentiated hESC. Values shown 

are mean ± SD of a representative experiment carried out in triplicate and repeated at 

least three times. * = p<0.05 , compared to Control-CM treated EB. ns = non-

significant. 

 

Following the 14 day differentiation in suspension, EB were replated onto gelatin-

coated dishes to further differentiate for an additional 7 days in SHH-CM or Control-CM. 

Immunocytochemistry results showed that in SHH-CM treated differentiated cells, the neural 

stem cell marker, NESTIN, is more highly expressed compared with Control-CM treated 

cells (Figure 4.10).  
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Therefore, the results indicate that long-term exposure of EB to exogenous SHH 

promotes differentiation towards the neuroectoderm lineage and increases NESTIN positive 

neural derivatives, but with no significant influences on mesodermal or endodermal lineages.  

 

Figure 4.10 Immunoflourescent staining of neural stem cell marker Nestin in SHH-CM 

and Control-CM treated EB. Middle panel shows corresponding DAPI nuclear staining 

in blue and right panel shows corresponding merged images. Scale bars represent 50 

µm. 

 

These findings are consistent with the report by Maye et al., 2004, showing the 

requirement of HH signaling in establishing the neuroectoderm in mESC EB, whereby EB 

derived from mutant mESC for the Smo receptor and Ihh were not able to generate 

neuroectoderm and their neural derivatives. The increase in NESTIN positive cells in the 

SHH treated population could be due to SHH supporting the proliferation of cells expressing 

NESTIN.  This is supported by recent data that showed SHH promoted the survival of Sox1-

positive mESC-derived neuroprogenitors (Cai et al., 2008). 

 

4.7 Summary 

This chapter shows that the SHH pathway is functional and present in 

undifferentiated hESC. However, it is minimally active in undifferentiated hESC and 
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activation of SHH signaling does not maintain hESC pluripotency and proliferation. Instead, 

we propose that SHH signaling is poised for activation upon differentiation and influences 

the determination of early differentiated hESC towards the neuroectoderm lineage. The 

results presented here extend the understanding of extrinsic factors regulating hESC 

pluripotency and self-renewal.  
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CHAPTER 5 ROLE OF SHH IN NEURAL DIFFERENTIATION 

5.1 Introduction 

Most of the current neural differentiation protocols of hESC are based on co-cultures 

with stromal cells or treatment with FGF2 and noggin as inductive factors. SHH is then 

added after neural induction during the neural patterning phase to ventralize the cells so that 

neurons with ventral midbrain e.g. dopaminergic (DA) neurons or ventral hindbrain identity 

e.g. motor neurons can be obtained efficiently (Perrier et al., 2004; Yan et al., 2005; Sonntag 

et al., 2007; Cho et al., 2008; Li et al., 2008). Apart from its role in ventralizing 

neuroprogenitors, there is evidence in mESC studies that suggest SHH signaling is required 

for neuroectoderm development and neuroprogenitor survival (Maye et al., 2004; Cai et al., 

2008).  

Therefore, this chapter sets out to systematically address the second aim of the thesis, 

which is to investigate the role of SHH in neural differentiation. Moving away from the 

spontaneous differentiation method employed in the previous chapter, a protocol that allows 

for a more controlled and reproducible neural differentiation was developed, so that the study 

could be focused on cells solely from the neural lineage. A stable overexpressing SHH hESC 

line was then generated and differentiated according to the developed protocol. Since 

evidence from Section 4.6 suggested that SHH promotes the spontaneous differentiation of 

hESC to the neuroectoderm lineage, it was postulated that overexpression of SHH would 

similarly increase the overall efficiency of neural differentiation. The effect of overexpression 

of SHH was investigated at two different stages of differentiation: 1) at the neuroprogenitor 

stage for expression of NSC markers and proliferation, and 2) at the terminally differentiated 

DA neuron stage. 

5.2 Noggin treatment induces neural differentiation 

To control the differentiation of hESC into the neural lineage, the BMP inhibitor 

noggin was used to induce neural differentiation, according to a protocol that was modified 
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from established methods as reported in Zhang et al., 2001 and Pera et al., 2004. 

Differentiation was initiated by culturing hESC as embryoid bodies (EB) for 4 days in KO 

media after which the EB were transferred onto laminin-coated plates and grown in serum 

free N2B27 media supplemented with 500 ng/ml noggin. After 10 days of noggin treatment, 

the clumps displayed a compact and tight morphology that occasionally contained at the 

edges small rosettes, which are radially organized columnar epithelial cells reminiscent of the 

neural tube in vivo (Zhang et al., 2001). The tight clumps were stained positive for the 

neuroectoderm marker paired box gene 6 (PAX6) (Figure 5.1). The clumps were then 

dissected from surrounding fibroblastic cells and grown in suspension as cellular aggregates 

termed neurospheres (Figure 5.1).  

The culture media used for maintaining neurospheres was N2B27 supplemented with 

EGF and FGF2 and shall be simply referred to as N2B27. The neurospheres could be 

expanded by serial passaging for more than 5 passages but they were not passaged for any 

longer to avoid any changes in differentiation potential (Itsykson et al., 2005).  

The expression of neuroectoderm markers in the neurospheres were examined by 

real-time PCR and transcripts of SOX1, MSI, NESTIN and PAX6 were observed to be 

upregulated by more than 2.5-fold when compared to hESC from the undifferentiated state 

(Figure 5.2A). Expression of the pluripotent marker OCT4 was detected at very low levels in 

Figure 5.1 Noggin induced neural differentiation. Replated EB were treated for 10 days 

with noggin and compact clumps were formed that were (A) immunopositive for PAX6. 

The middle panel shows corresponding bright field image. (B) Bright field micrograph 

of typical neurospheres in culture. Scale bars represent 100 µm. 
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the neurospheres (Figure 5.2A). When compared with spontaneously differentiated EB, 

neurospheres had very low expression levels of mesodermal and endodermal markers alpha 

fetoprotein (AFP), alpha-cardiac actin (ACTC), GATA binding protein 6 (GATA6) and 

hepatic nuclear factor 4, alpha (HNF4!) (Figure 5.2B). This confirmed that the neurospheres 

did not contain cells from other lineages.  

 

Figure 5.2  Neuroprogenitors express neuroectoderm markers. Neurospheres were 

harvested after 7 days in culture and mRNA expression was analyzed by real-time PCR 

analysis for (A) neuroectoderm markers and OCT4 in neuroprogenitors and (B) 

mesoderm and endoderm markers in undifferentiated hESC (HESC), 14-day-old 

embryoid bodies (14D EB) and neuroprogenitors (NP). The expression level of each 

gene is shown relative to undifferentiated hESC, which was arbitrarily defined as 1 unit. 

The values shown are mean ± SD of a representative experiment carried out in triplicate 

and repeated twice. In (A), the line represents expression levels of each gene in 

undifferentiated hESC.  
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Flow cytometry analysis showed that neurospheres expressed a comprehensive set of 

NSC surface markers (Pruszak et al., 2007): A2B5 (34% ± 18%), FORSE-1 (51% ± 20%), 

p75 (83% ±12%), PSA-NCAM (94% ± 3%) and CD133 (34% ± 11%) (Figure 5.3A). To 

further characterize the cells within the neurospheres, neurospheres were dissociated into 

smaller clumps and replated on laminin-coated plates and allowed to proliferate in N2B27 

media. After 4-5 days in culture, rosettes were abundant in culture. Accordingly, 

immunofluorescent staining indicated that PAX6, NESTIN and SOX1 were detected in the 

rosettes (Figure 5.3B-D).  These results demonstrate that neural induction was achieved using 

the protocol. From this point forth, the term neuroprogenitors refer to the cells within the 

neurospheres that express NSC markers.  

 

Figure 5.3 Neuroprogenitors express NSC markers. (A) Flow cytometry analysis of 

neuroprogenitors expressing A2B5, FORSE-1, p75, PSA-NCAM and CD133. The 

shaded histogram represents staining with the negative control and open histograms 

represent staining with the respective antibodies. (B-D) Representative images showing 

immunofluorescent staining of (B) PAX6, (C) NESTIN and (D) SOX1 on 

neuroprogenitors that were replated onto laminin-coated wells. Nuclei were stained 

with DAPI. Scale bars represent 50 µm. 

 

The protocol established by Zhang et al. 2001 reported using FGF2 as the neural inducer, 

rosettes were present in replated EB after 7 days in a serum-free defined media. However, the 

formation of rosettes was not observed when FGF2 was applied in this study to replated EB, 



 

 70 

even after extending FGF2 treatment to 14 days. Instead, noggin was the more efficient 

neural inducer, whereby rosettes were observed in cell clusters after 10 days treatment. In the 

study by Pera et al., 2004, HES-3 colonies were grown on mouse feeder layers and treated 

with noggin for 10-14 days. In our protocol, extending noggin treatment to 14 days did not 

increase gene expression of SOX1, NESTIN, PAX6 and MSI in neurospheres (data not 

shown), suggesting that 10 days of noggin treatment was a sufficient period of time to 

achieve neural differentiation. 

This optimized differentiation scheme using noggin as neural inducer is an 

improvement on the currently published protocols. Firstly it eliminates the use of mouse 

feeder layer or stromal cells (Pera et al., 2004; Perrier et al., 2004) and secondly, it employs a 

serum-free, chemically defined media, both of which reduce biological variations. As cells 

are grown on an adherent layer, exclusion of fibroblastic or cystic cells is possible and only 

compact colonies containing rosettes continue to be propagated, which helps to ensure that a 

purer population of neuroprogenitors can be obtained. To confirm that the neuroprogenitors 

are multipotent, neuroprogenitors were further differentiated by replating them as monolayer 

cultures in N2B27 media without the mitogens EGF and FGF2. After 2 weeks, there was an 

abundance of cells with characteristic neuronal morphology. Immunoflourescence imaging 

showed that the neurons were positive for both the neuronal marker MAP2 and dopaminergic 

(DA) neuron marker tyrosine hydroxylase (TH) (Figure 5.4A). The presence of astrocytes 

was demonstrated by cells that stained positive for both the glial fribrillary acidic protein 

(GFAP) and neuronal marker "-Tubulin III (Figure 5.4B).  

However, oligodendrocytes were rarely obtained. A similar observation has been 

reported (Peh et al., 2009), suggesting that oligodendrocytic differentiation requires a more 

concerted effort which requires other growth factors and cell substrates (Gil et al., 2009). 

Electrophysiological studies were carried out to verify whether the neurons differentiated 

from the neuroprogenitors were mature and functional. To allow maturation, differentiated 

neuroprogenitors were further cultured on laminin-coated coverslips for another 2 weeks with 

growth factors GDNF, BDNF and NGF (all 20 ng/ml). The whole-cell patch clamp technique 
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detected spontaneous postsynaptic currents in the neurons (Figure 5.4C). Therefore, the 

neural differentiation protocol used in this study efficiently generates neuroprogenitors from 

hESC, which can be further differentiated into functional neurons and astrocytes.  

 

 

 

Figure 5.4 Neuroprogenitors are able to differentiate into astrocytes and functional 

mature neurons. (A-B) Immunocytochemistry was performed to detect (A) TH (red) 

and MAP2 (green) positive neurons and (B) !-III Tubulin (green) and GFAP (red) 

positive astrocytes. Scale bars represent 100 #m. (C) Patch clamp recordings show 

spontaneous postsynaptic currents. 

 

 

To confirm that the specification of DA neurons from neuroprogenitors was 

dependent on SHH, neuroprogenitors were first directed to differentiate to the DA lineage. To 

this end, neuroprogenitors were dissociated and plated onto laminin-coated wells for 7 days 

and treated with SHH, FGF8 and AA to pattern the cells (Perrier et al., 2004; Sonntag et al., 

2007). After 7 days, rosettes that reformed in culture were harvested and seeded as single 

cells on laminin-coated coverslips and fed with recombinant SHH, FGF8, cAMP, AA, BDNF 

and GDNF for another 10-14 days to allow further differentiation. Neurons derived from this 

protocol co-expressed TH with "-Tubulin III, signifying that they were DA neurons (Figure 
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5.5A). The removal of SHH entirely from the protocol reduced the number of DA neurons 

significantly by around 3-fold (Figure 5.5A-B). This observation was comparable to that 

reported in a similar study done on mESC (Lee et al., 2000) and established that application 

of SHH at the neural patterning stage was necessary for the efficient development of DA 

neurons from hESC. 

    

5.3 Neuroprogenitors possess cilia 

The neuroprogenitors were further characterized to determine if they possessed an 

intact primary cilium that is crucial for the SHH pathway to signal effectively (Huangfu et 

Figure 5.5 SHH is essential for the specification of DA neurons from neuroprogenitors. (A) 

Representative images showing immunofluorescent staining of TH (red) and !-Tubulin III 

(green) positive cells. Nuclei were stained with DAPI. Scale bars represent 50 µm. (B) 

Quantification of the above images. TH+ nuclei were counted and expressed as a percentage 

of the total DAPI positive cells. Numbers presented represent the average percentage ± SD 

from triplicate samples. * = p<0.05. 
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al., 2003). Recent studies have shown that undifferentiated hESC line H1 and H9 possess 

primary cilia (Kiprilov et al., 2008). Primary cilia are also present on most CNS neurons in 

the mouse brain (Whitfield, 2004) and are necessary for adult NSC formation (Han et al., 

2008). Therefore, it was important to establish if the neuroprogenitors and their parental 

HES3 cell line possessed cilia necessary for SHH signal transduction.  

 Undifferentiated hESC and neuroprogenitors were probed with the acetylated #-

tubulin antibody that labels for microtubules within primary cilia. Small cilia projections 

were observed on OCT4 positive undifferentiated hESC (Figure 5.6A). 

 

Figure 5.6 The SMO receptor localizes to primary cilia of neuroprogenitors. (A-C) 

Representative confocal images showing immunocytochemistry of (A) undifferentiated 

hESC with acetylated tubulin (AcTb), pluripotent marker OCT4, and corresponding 

merged images. (B) Neuroprogenitors were similarly probed for AcTb and the 

neuroectoderm marker NESTIN (green, middle panel). (C) Neuroprogenitors were 

stimulated with 200 ng/ml SHH for 24 - 48 hours and stained for AcTb and the SMO 

receptor (green, middle panel). The arrow points to SMO which localizes to the base of 

the primary cilia. Scale bars represent 10 µm. 
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Preliminary results showed that similar cilia projections were also observed on NESTIN 

immunopositive neuroprogenitors (Figure 5.6B). The SHH receptor SMO was also found to 

localize with the primary cilia on neuroprogenitors (Figure 5.6C). The localization of SMO to 

the primary cilium is an indication of SHH pathway activation as demonstrated in the 

NIH3T3 fibroblasts (Rohatgi et al., 2007; Wang et al., 2009).  

Real-time PCR showed there was approximately 2-fold upregulation of PTCH1 and 

1.7-fold of SMO transcripts in neuroprogenitors when compared to undifferentiated hESC 

(Figure 5.7). This indicates that SHH pathway is active in the neuroprogenitors. Taken 

together, the results support the finding in Section 4.5 that the SHH pathway is activated 

during neural differentiation and that hESC and neuroprogenitors possess the prerequisite 

components that can respond to SHH activation.  

 

Figure 5.7 SHH pathway is activated in neuroprogenitors. Real-time PCR analysis of 

genes PTCH1 and SMO in neuroprogenitors (NP). Values are expressed relative to 

undifferentiated hESC and are mean ± SD of a representative experiment performed in 

triplicate and repeated twice. * =p <0.05 

 

5.4 Overexpression of SHH in hESC 

To establish the role of SHH in hESC neural differentiation, a stable SHH 

overexpressing hESC line was generated. The overexpression of SHH was done in 

undifferentiated hESC so that exogenous SHH could be present throughout the differentiation 
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process. It would also overcome the limitation of diffusion of SHH into the inner layers of 

cells grown as clumps or spheres in suspension (Vallier et al., 2004). Furthermore, 

overexpression of SHH was not predicted to affect the undifferentiated state as it was 

established in Section 4.4 that exogenous SHH did not induce differentiation when applied to 

hESC maintained in pluripotent conditions.  

The cDNA encoding the mouse full-length Shh was cloned into an expression vector 

under the control of the Chinese hamster elongation factor 1! (CHEF) promoter, which has 

been shown to enable high-level stable transgene expression in hESC (Chan et al., 2008). The 

red fluorescent protein DsRed2 was linked through an IRES (internal ribosome entry site) to 

facilitate the monitoring of SHH expression. Undifferentiated hESC were transfected with the 

pCHEF-SHH-IRES-DsRed2 plasmid or the control empty vector pCHEF-DsRed2 plasmid 

and 2 SHH overexpressing stable cell lines were obtained after geneticin antibiotic selection. 

Only one of these lines was characterized more extensively in further experiments. 

Immunoflourescence staining of a typical colony of the overexpressing-SHH hESC line 

showed that the cells were SHH positive and co-expressed DsRed2 (Figure 5.8). The 

overexpressing SHH hESC line could be maintained in the undifferentiated state for over 10 

passages and was karyotypically stable (data not shown). 

 

Figure 5.8 Stable overexpressing-SHH hESC express SHH and DsRed2. (A) 

Representative image of a typical overexpressing-SHH hESC colony maintained in 

pluripotent conditions showing immunocytochemistry for SHH. (B) Corresponding 

fluorescent image of DsRed2 and (C) merged images. Scale bar represents 100 µm.  
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The wild-type HES3, vector-only and SHH overexpressing cell lines were 

subsequently differentiated into neuroprogenitors and referred to as H3-NP, Vector-NP and 

SHH-NP, respectively. The SHH-NP had sustained expression of the DsRed2 fluorescent 

protein (Figure 5.9).  

 

Figure 5.9 SHH-NP express the DsRed2 protein. Fluorescent image of SHH-NP and 

corresponding bright field image. Scale bars represent 50 µm. 

 

To confirm that overexpression of SHH was also consistently achieved in SHH-NP, 

SHH levels were assessed by Western blotting. Interestingly, the 45 kDa full length SHH 

protein was observed in all three cell lines. However, only the 19 kDa active N-terminal 

fragment of SHH was highly expressed in SHH-NP and was absent in both H3-NP and 

Vector-NP (Figure 5.10A). This could be due to impairment of the autoprocessing of full 

length SHH by hESC-derived neuroprogenitors and deserves further investigation. 

Quantification of SHH levels by ELISA demonstrated that the supernatant of SHH-NP 

cultures contained approximately 20-50 ng/ml of SHH (data not shown). Real-time PCR 

analysis showed that SHH was upregulated by 20-fold, while target genes PTCH1 and GLI1 

were upregulated by 7-fold and 4-fold respectively in SHH-NP when compared to H3-NP 

and Vector-NP (Figure 5.10B). These results confirmed that SHH is overexpressed in SHH-

NP which results in the activation of the SHH pathway.  

5.5 Overexpression of SHH enhances neural induction 

To determine if overexpression of SHH would improve the efficiency of neural 

differentiation, SHH-NP were characterized with an array of NSC markers. SHH-NP were  
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Figure 5.10 Overexpression of SHH in hESC-derived neuroprogenitors. (A) Western  

blot analysis of SHH-NP, Vector-NP and H3-NP probed with the anti-SHH antibody 

which detected both the full length (45 kDa) and 19 kDa active fragment. Actin was 

used as a loading control. (B) Real-time PCR analysis of SHH and target genes PTCH1 

and GLI1 in SHH-NP, Vector-NP and H3-NP. The expression value of each gene is 

shown relative to H3-NP, which was arbitrarily defined as 1. The values are mean ± SD 

of a representative experiment performed in triplicate and repeated thrice. * = p< 0.05. 

 

analyzed by real-time PCR for neuroectoderm markers. SHH-NP had a 2-fold increase in 

NESTIN and 5-fold increase in SOX1 expression in SHH-NP as compared to H3-NP and 

Vector-NP (Figure 5.11A). No significant difference in MSI and PAX6 was observed. 

Western blot analysis corroborated with the gene expression studies as demonstrated by the 

increase in NESTIN and SOX1 protein expression in SHH-NP (Figure 5.11B).   

Flow cytometry analysis for NSC surface markers showed that SHH-NP had an 

average of 41% and 29% increase in CD133 expression compared to H3-NP and Vector-NP 

respectively (Figure 5.12). There was also an 80% and 30% increase in expression of A2B5 

in SHH-NP and a 10% and 30% increase in p75 expression in SHH-NP, when compared to 

H3-NP and Vector-NP respectively (Figure 5.12).  
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A2B5 has been shown to be present on proliferative glial precursor cells in the fetal 

brain (Dietrich et al., 2002), while p75 is expressed by NSC in the adult brain (Young et al., 

2007). CD133 has been used to isolate NSC from fetal brains (Uchida et al., 2000), and 

shown that it was not expressed in more terminally differentiated neural cell types (Kania et 

al., 2005). A2B7, p75 and CD133 have all been demonstrated to be cell surface markers to 

label for highly proliferative and multipotent neuroprogenitors derived from hESC 

(Carpenter, 2001; Jiang et al., 2008; Peh et al., 2009).  

 

 

Figure 5.11 Overexpression of SHH in hESC-derived neuroprogenitors lead to 

increased expression of neuroectoderm markers. (A) Real-time PCR analysis of 

neuroprogenitors for neuroectoderm markers. The expression value of each gene is 

shown relative to H3-NP, which was arbitrarily defined as 1. The values are mean ± SD 

of a representative experiment performed in triplicate and repeated thrice. * = p< 0.05 

(B) Western blot of neuroprogenitors probed with SOX1 and NESTIN antibodies with 

ACTIN as a loading control. Values indicate quantification of protein based on the band 

intensities from the Western blot normalized to Actin using LI-COR Odyssey software. 

 

Hence, the enrichment of cells expressing the 3 NSC surface markers plus NESTIN 

and SOX1 markers in SHH-NP demonstrate that overexpression of SHH promotes the 

derivation of neuroprogenitors from hESC. This corroborates with evidence Section 4.6, that 

long-term exposure of SHH promotes neuroectoderm differentiation.  
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Figure 5.12 Overexpression of SHH in hESC-derived neuroprogenitors lead to 

increased expression NSC surface markers. Histogram representation of FACS analysis 

of CD133, A2B5 and p75 showing percentage positive cells. * = p<0.05. All values shown 

are mean ± SD of a representative experiment performed in triplicate and repeated 

thrice. 

 

5.6 Overexpression of SHH increases the proliferation of sorted neuroprogenitors  

As SHH is known to have proliferative effects on neuroepithelial cells and NSC in 

the adult brain (Kenney et al., 2003; Cayuso et al., 2006), there was interest to see if there 

was an increase in proliferation of neuroprogenitors with overexpression of SHH. The bulk 

populations of H3-NP, Vector-NP and SHH-NP did not show any increase in overall 

proliferation status as assessed by long-term observations and EdU assay (data not shown). 

This is possibly because the neuroprogenitors are a heterogeneous population (Figure 5.3) 

and changes in proliferation in a certain population may be obscured. Therefore, cell sorting 

based on the dual expression of p75 and PSA-NCAM was carried out. 

After cell sorting, equal numbers of approximately 1x105 p75+/PSA-NCAM+ cells 

from each cell line were cultured in suspension as neurospheres. The neuroprogenitors had 

very low viability after sorting and there was a lag phase of around 3-5 days before visible 

neurospheres were formed. Once neurospheres were observed, they were allowed to expand 

further for another 7 and 14 days before being harvested for the trypan blue exclusion assay.  

After 7 days, there was around a 2-fold increase of SHH-NP p75+/PSA-NCAM+ 

neuroprogenitors (Figure 5.13). This increase in cell proliferation continued after 14 days, 
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whereby there was almost a 2.5-fold increase in cell numbers of the p75+/PSA-NCAM+ 

population from SHH-NP compared to H3-NP and Vector-NP (Figure 5.13). Hence, the 

results suggested that the overexpression of SHH induced the proliferation of p75+/PSA-

NCAM+ neuroprogenitors. Further studies will be required to understand if the increase in 

cell number was through an increase in survival, proliferation or both. 

Figure 5.13 Overexpression of SHH results in increase proliferation of multipotent 

p75+/PSA-CAM+ neuroprogenitors. (A) 1x10
5
 sorted cells were seeded into 24-well 

ultra-low suspension plates and neurospheres formed after 3-5 days. Cells were 

harvested 7 and 14 days after and counted by trypan blue exclusion. * =p <0.05. All 

values shown are mean ± SD of a representative experiment performed in triplicate and 

repeated thrice. 

 

A previous study by Cai et al., 2008 suggested that Shh may not play an important role 

in neural determination, but rather, improves survival and proliferation of Sox1-positive cells 

during neurogenesis of mESC. The results here support the findings of that study, in that 

overexpression of SHH increases the expansion of hESC-derived neuroprogenitors. At the 

same time, data from Section 4.6 and Chapter 6 suggest that SHH may also play a role in 

neural induction or determination. More studies will have to be done to be able to ascertain 

the predominant mechanism, if any, by which SHH is able to promote derivation of 

neuroprogenitors from hESC.  
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5.7 Overexpression of SHH leads to increase in DA neurons 

The enrichment of neuroprogenitors expressing NSC markers within SHH-NP 

offered the prospect that there may be downstream effects of an increase in differentiated 

progeny. In this case, the DA neuron lineage was chosen as a readout of neuroprogenitor 

differentiation efficiency because noggin has been shown to improve DA neuron 

differentiation from hESC differentiated on PA6 cells (Chiba et al., 2008). In addition, it has 

been demonstrated that efficient derivation of DA neurons from neuroprogenitors required 

the presence of SHH. Therefore, the DA lineage would provide a reliable model to study the 

functional outcome of an increase in neuroprogenitor population.  

The three cell lines, referred to as H3-NN (neuron), Vector-NN and SHH-NN in this 

section, were differentiated to DA neurons according to the protocol described in Section 5.2. 

Briefly, the neurospheres from each cell line were plated onto laminin-coated wells and both 

H3-NN and Vector-NN were treated with 200 ng/ml SHH, 200 ng/ml FGF8 and 200 µM AA. 

SHH-NN cultures were treated with only AA and FGF8.  Rosettes that reformed in culture 

from the 3 cell lines were then seeded as single cells on coverslips. The H3-NN and Vector-

NN cultures were supplemented with similar concentrations of SHH, FGF8, cAMP, AA, 

BDNF and GDNF. SHH-NN was supplemented with the same growth factors with the 

exception of recombinant SHH. Although the concentration of SHH protein present in SHH-

NN cultures was not determined, its level was expected to be high based on the western blot 

in Figure 5.9 and mRNA analysis in Figure 5.15. Therefore, this experiment sought to 

investigate the effect of overexpression of SHH from the undifferentiated stage through the 

entire process of neural differentiation as compared cells that were only exposed to SHH at 

the later stages of neural patterning and differentiation at concentrations commonly used 

(Perrier et al., 2005, Yan et al., 2005).  
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Figure 5.14 Overexpression of SHH in 

hESC-derived neuroprognitors leads to an 

increase in TH+ neurons. (A) 

Immunofluorescent images of SHH-NN, 

Vector-NN and H3-NN differentiated 

neuroprogenitors stained for TH (purple) 

and !-Tubulin III (green). Nuclei are 

stained by DAPI. Scale bars represent 100 

µm. These are representative images of an 

experiment repeated four times with 

similar results. (B) Quantification of the 

above images. TH+ nuclei were counted 

and expressed as a percentage of the total 

!-Tubulin III+ cells. Numbers presented 

represent the average percentage ± SD 

from triplicate samples. * = p<0.05. 
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In all three cultures, long neurite extensions were evident within 2-3 days and 

subsequently complex neurite networks were formed. After 14 days of differentiation, the 

neurons were probed with antibodies against "-Tubulin III and TH. Visualization by 

immunoflourescence showed that there were more TH+ "-Tubulin III neurons in SHH-NN 

cultures as compared to H3-NN and vector-NN (Figure 5.14A). Quantification of images was 

carried out and of the "-Tubulin III neurons in H3-NN and Vector-NN cultures, 

approximately 30% were TH+ neurons (Figure 5.14B). In contrast, approximately 50% of the 

"-Tubulin III neurons were TH+ neurons in SHH-NN cultures, representing a 20% increase 

in yield of TH+ neurons.  

Markers for DA neurons were then examined by real-time PCR analysis in SHH-NN. 

PTCH1 and SHH were upregulated in SHH-NN, affirming that the overexpression of SHH 

and activation of the pathway was sustained throughout the differentiation process (Figure 

5.15). There was an approximately 1.5-fold increase in gene expression of the dopamine 

neuron enzymes AADC and TH in SHH-NN cultures compared to H3-NN and Vector-NN 

(Figure 5.15).  

 

Figure 5.15 Neurons express dopaminergic neuron marker genes. Real-time PCR 

analysis of DA neurons. The expression value of each gene is shown relative to H3-NN, 

which was arbitrarily defined as 1. The values are mean ± SD of a representative 

experiment performed in triplicate and repeated thrice. * = p< 0.05 
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There was also a 6-fold increase in the midbrain DA marker EN1. However, there were no 

significant changes in mRNA expression of the neuronal marker TUJ1 or other midbrain DA 

transcription factors PITX3 and LMX1B in SHH-NN (Figure 5.15). Therefore, the results 

showed that overexpression of SHH led to the increased production of TH+ neurons that 

expressed appropriate gene markers of DA neurons. We postulate that the increase in TH+ 

DA neurons in SHH-NN cultures was due to the higher starting number of NSC in SHH-NP 

that were able to eventually differentiate successfully into DA neurons.   

 

5.8 Summary 

This chapter presents a series of experiments designed to understand the role of SHH 

in neural differentiation by studying the effect of its overexpression in differentiating hESC. 

An effective neural differentiation protocol was first developed based on established 

methods, requiring the use of noggin as the neural inducer. The neuroprogenitors derived 

expressed appropriate neural markers like NESTIN, SOX1, PAX6 and MSI and surface 

markers FORSE-1, PSA-NCAM, A2B5 and CD133. The neuroprogenitors were able to 

differentiate into functional mature neurons and astrocytes. It was then confirmed that SHH 

was an important factor in the ability to obtain DA neurons from the neuroprogenitors. It was 

also established that the SHH pathway receptor SMO receptor localized with primary cilia 

present on neuroprogenitors upon SHH stimulation, validating the ability of the cells to 

respond to SHH. Next, a stable overexpressing SHH hESC line was established and 

subsequently led down the neural differentiation pathway. The overexpression of SHH 

resulted in the increase of neuroectoderm markers NESTIN and SOX1 in neuroprogenitors as 

compared to the control cell lines. There was a concomitant increase in cells expressing the 

NSC surface markers CD133, A2B5 and p75. Together, the results suggest that SHH can 

work with noggin to push hESC towards the neuroprogenitor fate. p75 and PSA-NCAM 

double positive neuroprogenitors had an increased cell number with the overexpression of 

SHH, suggesting that SHH has a role in promoting the expansion of neuroprogenitors. 
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Further differentiation of the neuroprogenitors showed that there was an increase in the yield 

of DA neurons from SHH-NP, when compared to H3-NP and Vector-NP that were only 

exposed to SHH in the later part of the differentiation protocol. This suggested that the 

enrichment of NSC within SHH-NP resulted in the increase in subsequent in DA neurons. 

Taken together, the results in this chapter elucidated the role of SHH in neural differentiation, 

which is to promote neural induction, neuroprogenitor expansion, as well as neuron 

specification towards the DA lineage.  
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CHAPTER 6  IDENTIFICATION OF SHH TARGET GENES IN 

NEUROPROGENITORS 

6.1 Introduction 

This chapter aims to identify genes regulated by SHH and uncover novel target genes 

of the pathway in hESC-derived neuroprogenitors. Even though it is known that SHH is 

required to direct the differentiation of hESC to several neural subtypes, the genes of the 

pathway that regulate the diversity of cellular responses arising from SHH activation have yet 

to be elucidated. Most of the current understanding of the SHH pathway in neural 

development was obtained from zebrafish or mouse studies. Therefore, hESC provide an 

excellent opportunity to discover novel target genes of SHH in humans.  

There are some genes like PTCH1, GLI1 and HHIP that are canonical target genes of 

the pathway in all cell types (Chuang and McMahon, 1999). There are also other genes that 

are cell type or tissue specific. For example, FoxA2 (or Hnf3") in the neural floor plate 

(Roelink et al., 1995; Sasaki et al., 1997), Nkx2-2 in neuralized mouse embryoid bodies 

(Vokes et al., 2007), Igfbp-6 in the prostate and epithelial cells (Yoon et al., 2002; Lipinski et 

al., 2005), FoxF1 in the developing lung and foregut (Mahlapuu et al., 2001), sFRP-2 in the 

sclerotome and mesenchymal stem cells (Lee et al., 2000; Ingram et al., 2002), and Sox14 in 

the spinal cord (Hargrave et al., 2000). To add to the complexity, the same gene under similar 

SHH activation can be upregulated or downregulated, depending on the tissue that they are 

expressed in, e.g Sfrp2 (Lee et al., 2000; Ingram et al., 2002).  

Therefore, this chapter aims to identify genes that are regulated by SHH responsible 

for promoting neural differentiation in hESC.  To achieve that aim, genome wide 

transcriptional profiling of neuroprogenitors overexpressing SHH (SHH-NP) was carried out 

to identify genes that were positively or negatively regulated compared to the wild type H3 

neuroprogenitors (H3-NP) and vector-control neuroprogenitors (Vector-NP). The 

differentially expressed genes were then interrogated using bioinformatics to identify 

potential target genes that contain putative GLI binding site on their promoters. The outcome 
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of this analysis identified a list of putative direct and indirect SHH target genes that includes 

(a) genes that have been previously demonstrated to be induced by SHH in other tissues or 

organisms but not in hESC and (b) novel genes that have not been reported to be regulated by 

SHH in any cellular context.   

6.2 Microarray Analysis 

A comparative gene expression analysis of SHH-NP, Vector-NP and H3-NP was 

performed using the Affymetrix Human Genome U133 array, which analyzes the expression 

level of approximately 38,500 well characterized human genes. RNA from SHH-NP, Vector-

NP and H3-NP were harvested after 1 week in culture and 12 microarray experiments were 

performed with quadruplicate RNA samples. For identification of relevant differentially 

expressed genes, only genes with more than 1.5-fold difference in expression were 

considered for further evaluation. On top of that, the genes had to be differentially expressed 

in both SHH-NP versus H3-NP and SHH-NP versus Vector-NP data sets.  A total of 337 

annotated genes were identified by the array: 182 were upregulated and 155 were 

downregulated in SHH-NP when compared to H3-NP and Vector-NP. The top 20 

upregulated and downregulated genes are shown in Table 6.1 and Table 6.2 respectively. The 

remaining genes are listed in Appendix A. A heat map representation of the expression levels 

of the top 20 upregulated and downregulated genes is shown in Figure 6.1A.  

The differentially expressed genes (DEG) were then categorized according to the Gene 

Ontology (GO) biological processes and the top 8 categories of genes enriched in SHH-NP 

were cellular developmental process, nervous system development, generation of neurons, 

neurite morphogenesis, neuron development, cellular morphogenesis during differentiation 

and cell adhesion (Figure 6.1B).  
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Table 6.1 List of top 20 significantly upregulated genes in SHH-NP. Genes are ranked 

according to their fold change values. 

  Fold change p-value 

Symbol Description SHH vs 

Vector 

SHH vs 

H3 

SHH vs 

Vector 

SHH vs 

H3 

NKX2-2 NK2 homeobox 2 17.496 15.376 3.89E-10 7.08E-07 

FOXD1 forkhead box D1 8.568 7.644 1.05E-11 7.83E-08 

NTRK2 neurotrophic tyrosine kinase, receptor, 

type 2 

7.999 5.892 7.26E-10 9.23E-07 

FOXA1 forkhead box A1 7.648 8.422 2.20E-12 3.68E-08 

HEY2 hairy/enhancer-of-split related with 

YRPW motif 2 

7.045 3.405 1.52E-09 1.63E-06 

DDC dopa decarboxylase (aromatic L-amino 

acid decarboxylase) 

6.556 6.574 4.76E-10 7.88E-07 

SYT4 synaptotagmin IV 6.507 2.800 2.16E-08 1.08E-05 

POSTN periostin, osteoblast specific factor 6.395 1.825 9.21E-05 4.18E-03 

CYP1B1 cytochrome P450, family 1, subfamily 

B, polypeptide 1 

6.131 5.502 1.33E-09 1.54E-06 

NTN1 netrin 1 5.990 5.998 2.54E-10 4.95E-07 

PCDH8 protocadherin 8 5.906 4.155 2.69E-05 1.68E-03 

C4orf18 chromosome 4 open reading frame 18 4.671 2.875 2.74E-08 1.29E-05 

C8orf46 chromosome 8 open reading frame 46 4.655 4.352 1.01E-08 6.08E-06 

SPARCL1 SPARC-like 1 (hevin) 4.385 3.838 1.76E-11 8.75E-08 

ST18 suppression of tumorigenicity 18 

(breast carcinoma) (zinc finger protein) 

4.335 4.123 4.90E-09 3.53E-06 

COL12A1 collagen, type XII, alpha 1 4.178 1.989 3.06E-07 6.46E-05 

FSTL5 follistatin-like 5 4.138 2.448 9.56E-06 7.78E-04 

PRMT8 protein arginine methyltransferase 8 4.136 4.144 3.04E-08 1.31E-05 

 

Table 6.2 List of top 20 significantly downregulated genes in SHH-NP. Genes are 

ranked according to their fold change values. 

    Fold change p-value 

Symbol Description SHH vs 

Vector 

SHH vs 

H3 

SHH vs 

Vector 

SHH vs 

H3 

ID1 

inhibitor of DNA binding 1, dominant 

negative helix-loop-helix protein 0.167 0.193 3.22E-11 1.27E-07 

KBTBD10 

kelch repeat and BTB (POZ) domain 
containing 10 0.216 0.428 6.96E-04 1.90E-02 

GLT8D4 glycosyltransferase 8 domain containing 4 0.236 0.247 1.42E-09 1.61E-06 

LPL lipoprotein lipase 0.238 0.150 1.29E-11 7.83E-08 

LGALS1 lectin, galactoside-binding, soluble, 1 0.254 0.367 1.40E-07 3.92E-05 

COL1A2 collagen, type I, alpha 2 0.268 0.410 1.54E-05 1.10E-03 

TFPI 

tissue factor pathway inhibitor 

(lipoprotein-associated coagulation 

inhibitor) 0.286 0.290 7.49E-08 2.53E-05 

PAX3 paired box 3 0.292 0.267 1.19E-11 7.83E-08 

MSX2 msh homeobox 2 0.301 0.222 7.38E-12 6.73E-08 

LGALS3 lectin, galactoside-binding, soluble, 3 0.302 0.320 4.30E-09 3.25E-06 

CTTN cortactin 0.305 0.578 4.09E-04 1.28E-02 

SNAI2 snail homolog 2 (Drosophila) 0.323 0.404 3.83E-09 3.03E-06 

ACTN3 actinin, alpha 3 0.323 0.608 4.89E-04 1.47E-02 

CDH6 

cadherin 6, type 2, K-cadherin (fetal 

kidney) 0.329 0.390 4.04E-08 1.61E-05 

PDGFRA platelet-derived growth factor receptor, 0.339 0.527 6.58E-05 3.26E-03 



 

 89 

alpha polypeptide 

RRAS 

related RAS viral (r-ras) oncogene 

homolog 0.342 0.506 3.39E-06 3.83E-04 

PLAU plasminogen activator, urokinase 0.355 0.422 6.27E-07 1.09E-04 

SMEK2 

SMEK homolog 2, suppressor of mek1 

(Dictyostelium) 0.358 0.653 1.03E-03 2.54E-02 

MSX1 msh homeobox 1 0.359 0.177 1.02E-10 2.93E-07 

APOE apolipoprotein E 0.364 0.429 1.99E-06 2.57E-04 

 

The transcriptional profiling confirmed the upregulation of the canonical target genes 

of the SHH pathway in SHH-NP, namely PTCH1, GLI1 and HHIP as anticipated (Figure 

A.1). There was also a high fold change of neural tissue specific target genes FOXA2 and 

NKX2-2 (Table A.2). Meanwhile, there was downregulation of the known negatively 

regulated genes of the pathway including BOC and CDON (Tenzen et al., 2006) (Table A.2). 

The expression patterns of PTCH1, GLI1, HHIP, FOXA2, NKX2-2 and BOC were validated 

by real-time PCR analysis (Figure 6.2). Together, this provided greater confidence that the 

other DEG found by the DNA microarray were valid targets of the pathway and could be 

expected to play a role in SHH dependent neural differentiation. 

 

Figure 6.1 Analysis of SHH-NP expression profiling. (A) Microarray gene expression heat map 

comparing SHH-NP with H3-NP and Vector-NP showing top 20 upregulated and 

downregulated genes. Shades of red denotes upregulation while shades of green denote 

downregulation. (B) Upregulated genes were classified into categories by Gene ontology 

Biological Processes terms and ranked according to false discovery rates in ascending order. 

Frequencies of upregulated genes in each category are shown as percentages. 
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Figure 6.2 Known SHH target genes identified by microarray profiling were validated 

by real-time PCR. RNA for the microarray study was re-probed by real-time PCR 

analysis. The expression value of each gene is shown relative to H3-NP, which was 

arbitrarily defined as 1. The values are mean ±SD of biological triplicates. * = p<0.05.  

 

6.3 Validation of differentially expressed genes (DEG) 

Real-time PCR analysis was carried out to confirm the expression profile of 10 other 

selected upregulated genes, AADC, EGFR, FGF19, FOXA1, HES5, HEY2, OLIG1, PGF, 

PITX2 and STMN3 and 5 downregulated genes BMP2, ZIC2, ID1, MSX1, PAX3 and SNAI2 

(Figure 6.3). The results paralleled the findings of the microarray analysis. The upregulation 

of EGFR and FOXA2 and downregulation of MSX1 and PAX3 were also confirmed by 

Western blot (Figure 6.3)  

 

To determine if the SHH regulated genes observed in the microarray experiment are 

broadly observed, the expression pattern of the validated genes from the above section were 

analyzed in another stem cell line. iPSC(IMR90) cells were differentiated into 

neuroprogenitors in the presence of 200 ng/ml recombinant SHH for the whole duration of 

the differentiation process. This concentration was chosen as it is the typical concentration 

that is used in most dopaminergic (DA) neuron differentiation protocols.  
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Figure 6.3 Differentially expressed genes identified from the transcriptional profiling 

were validated by real-time PCR and Western blot analysis. (A-B) Real-time PCR 

analysis of RNA used for the DNA microarray study probed for  (A) upregulated genes 

and (B) downregulated genes. The expression value of each gene is shown relative to 

H3-NP, which was arbitrarily defined as 1. The values are mean ±SD of biological 

triplicates. * = p<0.05.  (C) Cell lysates from SHH-NP, Vector-NP and H3-NP were 

probed with antibodies against upregulated targets EGFR, FOXA2 and downregulated 

targets, MSX1 and PAX3. Actin was used as a loading control.  
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Figure 6.4 Target genes of SHH are upregulated in iPSC(IMR90)-derived 

neuroprogenitors treated with exogenous SHH. iPSC(IMR90) cells were differentiated 

into NP and were treated with (or without) 200 ng/ml recombinant SHH from the start 

of the differentiation process. Gene expression was analyzed after 1 week in culture by 

real-time PCR. The expression value of each gene is shown relative to untreated NP, 

which was arbitrarily defined as 1. The values are mean ±SD of triplicates and the 

experiment was repeated twice. * = p<0.05. 

 

Real-time PCR analysis of iPSC(IMR90) neuroprogenitors showed that the expression of the 

target genes PTCH1, GLI1, NKX2-2 and FOXA2 were highly upregulated compared to 

untreated cells (Figure 6.4). The genes HEY2, PITX2, HES5, PGF, FOXA1, FOXF1, 

NESTIN, SOX1, STMN3, EGFR and FOXF2 were also upregulated by more than 1.5-fold 

with recombinant SHH treatment (Figure 6.4). There was also an almost 80% decrease in 

MSX1 expression and 50% decrease in PAX3 and BMP4 expression (Figure 6.4). The strong 
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correlation in the gene expression pattern between HES3- and iPSC(IMR90)-derived 

neuroprogenitors in response to SHH treatment confirmed further that the genes are genuine 

targets of SHH signaling.  

 

 

6.4 In silico analysis of potential GLI binding sites on DEG 

Some of the genes identified in the microarray study have been previously reported 

to be regulated by SHH signaling but there are also many others which are novel targets of 

the pathway. To better understand the molecular mechanisms by which SHH controls neural 

differentiation, it was necessary to investigate whether the DEG identified in the microarray 

were direct transcriptional targets or indirect downstream targets. To do so, in silico analysis 

was carried out by the Bioinformatics Group in Bioprocessing Technoloy Institute, to identify 

GLI binding sites on the promoters of differentially expressed genes. The TRANSFAC match 

program was used to search within 5 kb of the 5’ upstream and 3’ downstream region of 

differentially expressed genes for sites containing the GLI consensus binding sequence 

GACCACCCA (Kinzler and Vogelstein, 1990), which all 3 GLI proteins are able to bind  

(Agren et al., 2004).  

Of the 182 upregulated genes found in SHH-NP, 129 genes contained at least 1 

putative GLI binding site within the 5kb region 5’ upstream of their transcription start sites 

and 123 genes had at least 1 putative GLI binding site within the 5kb region 3’ downstream 

of their transcription start sites. This suggests that they are direct targets of SHH signaling. 

Upregulated genes that have 6 or more GLI binding sites in their upstream and downstream 

regions are shown in Table 6.3 and Table 6.4 respectively. The remaining data can be found 

in Appendix B (Table B1 and Table B2) 
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Table 6.3 List of SHH upregulated genes that have 6 or more putative GLI binding sites 

in the 5’ promoter region. The number of binding sites were located 5 kb upstream of 

the transcription start site. The genomic coordinates and GLI binding start site(s) are 

on the NCBI36 (March 2006) Human Genome Assembly. Chr = chromosome, 1 = 

positive strand, -1 = negative strand of DNA.  

Gene Name Chr Strand No. of 

binding 

sites 

NCBI36 (March 2006) genome coordinates 

FZD9 7 1 8 ;72481606; 72481853; 72481875; 72482104; 72482320; 

72483067;72484598;72485502 

RAB33A X 1 8 ;129129153; 129129588; 129130120; 129130516; 

129130618;129131992;129132854; 129132880 

VSX1 20 -1 8 ;25011505; 25012240; 25012526; 25012646; 

25013160;25013277;25015330;25015527 

LL22NC03-

75B3.6 

22 -1 7 ;43029839;43029989;43030996;43031831;43031863;4303

1997;43032026 

NKX2-2 20 -1 7 ;21443440;21444126;21445002;21445631;21446000;2144

6079;21446266 

STMN3 20 -1 7 ;61756113;61756586;61757610;61758173;61758187;6175

8959;61759752 

ATBF1 16 -1 6 ;71551550;71552606;71553830;71554216;71555143;7155

5698 

DSCR1 21 -1 6 ;34909918;34910454;34910621;34911242;34913941;3491

4009 

FGF19 11 -1 6 ;69228284;69228297;69228830;69229223;69230020;6923

1791 

FOXA2 20 -1 6 ;22512908;22513270;22513312;22513957;22514033;2251

7225 

GLI1 12 1 6 ;56138973;56140064;56141787;56142041;56142299;5614

2451 

HES5 1 -1 6 ;2451751;2453850;2453901;2454104;2454904;2455611 

MFSD6 2 1 6 ;191004024;191004217;191004305;191004326;19100562

6;191007076 

PGF 14 -1 6 ;74491925;74493288;74494277;74494969;74495100;7449

5713 

PTCHD1 X 1 6 ;23259788;23259840;23260188;23260346;23261869; 

23262487 

 

For the 130 genes downregulated by SHH, 121 genes had at least 1 putative GLI 

binding site in their 5’ upstream while 116 genes had at least 1 putative GLI binding in their 

3’ region (Appendix B, Table B3 and Table B4).  

GLI binding sites have been demonstrated in the known target genes of SHH: Ptch1 

(Agren et al., 2004), Gli1 (Dai et al., 1999), FoxA2 (Sasaki et al., 1997), Nkx2-9 (Santagati et 

al., 2003), Nkx2-2 (Vokes et al., 2007) and FoxF1 (Madison et al., 2009). Based on our 

bioinformatics search, the same genes PTCH1, GLI1, FOXA2, FOXF1, NKX2-2 and SHH had 
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4 or more putative GLI binding sites on their 5’ promoter region, confirming the accuracy of 

the analysis. 

Table 6.4 List of SHH upregulated genes that have 6 or more putative GLI binding sites 

in the 3’ downstream region. The number of binding sites were located 5 kb upstream 

of the transcription start site. The genomic coordinates and GLI binding start site(s) are 

on the NCBI36 (March 2006) Human Genome Assembly. Chr = chromosome, 1 = 

positive strand, -1 = negative strand of DNA. 

Gene 

Name 

Chr Strand No. of 

binding 

sites 

NCBI36 (March 2006) genome coordinates 

STMN3 20 -1 10 ;61738659;61739139;61739997;61740022;61740381;61741203;
61742099;61742424;61742438;61743022 

NKX2-2 20 -1 8 ;21435749;21435912;21436720;21436951;21436955;21437332;

21437362;21440495 
PGF 14 -1 7 ;74475458;74475984;74476709;74477157;74477183;74477619;

74477671 

RASD1 17 -1 7 ;17334611;17335648;17335794;17336270;17336351;17336501;

17339086 

NTN1 17 1 7 ;9084482;9084698;9084856;9084914;9085197;9087102;908807

6 

HES6 2 -1 7 ;238807423;238807492;238808274;238809654;238810489;238

810734;238811159 

FGD3 9 1 7 ;94837741;94838378;94840147;94840156;94841107;94841942;

94842654 

DDC 7 -1 7 ;50493623;50496104;50496411;50496677;50496987;50497308;

50497329 
C20orf100 20 1 7 ;42130891;42131962;42132720;42132967;42133493;42133670;

42134593 

LMCD1 3 1 6 ;8584290;8584452;8586437;8587144;8587365;8588169 

FGF19 11 -1 6 ;69218951;69218960;69219624;69221328;69223029;69223042 

PLEKHH
2 

2 1 6 ;43847492;43849284;43849516;43849649;43850535;43851004 

FAM181

A 

14 1 6 ;93465733;93465904;93467123;93467518;93468439;93469682 

MLC1 22 -1 6 ;48838431;48839817;48839886;48840090;48841198;48841581 

 

 

6.5 Transcriptional activation of target gene promoters by SHH 

To confirm that target genes with putative GLI binding sites on their 5’ promoter 

region are responsive to SHH, plasmids containing the 5’ promoter sequences tagged to a 

luciferase reporter were purchased for 8 target genes. HEY2, FGF19, PGF, PITX2 and 

STMN3 were chosen for further study as they have been implicated in neural development 

but have not been explored in ESC neural differentiation. The other genes FOXA1, OLIG1 

and HES5 have important functions in neural development and have been associated with 
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SHH signaling (Lu et al., 2000; Wall et al., 2009; Yoon et al., 2009). However, it has not 

been ascertained if they are direct targets of SHH. Plasmids for the promoters of NKX2-2 and 

FOXF1 were also purchased as positive controls. For each promoter-luciferase plasmid, the 

promoter sequence contained at least 1 putative GLI binding site (Table 6.5).  

Table 6.5 Promoter-luciferase plasmids containing GLI binding sites on selected SHH 

target genes. Promoter coordinates refer to the genomic coordinates of the promoter 

sequences present in the Switchgear luciferase plasmids. The GLI binding site refers to 

starting genomic position of which GLI binding motif is found on. Coordinates are from 

the March 2006 Human Genome Assembly. Chr = chromosome 

Gene Chr Promoter Coordinates 
GLI binding 

site(s) 
GLI binding motif 

FOXA1 14 37133913-37135669 37135473 ccaCCACCcagg 

FOXF1 16 85100854-85101796 85101068 cgcCCACCaacg 

   85101355 tgtgGGAGGgcg 

FGF19 11 69227793 - 69228889 69228860 ggcCCGCCcacc 

HES5 1 2451406-2452421 2452316 cctgGGAGGaca 

HEY2 6 126111659 - 126112694 126111963 ggaCCACCgagt 

NKX2-2 20 21442607 - 21443576 21443349 caaCCACCaacg 

   21443536 gcttGGTGGtg 

OLIG1 21 33363427-33364526 33363804 aatgGGTGGagc 

PITX2 4 111763490- 111764408 111764366 gaaCCACCaaac 

PGF 14 74491865 - 74492941 74492684 tgtgGGAGGccc 

STMN3 20 61755116-61756117 61755533 ggtgGGGGGtct 

 

 

hESC-derived neuroprogenitors were co-transfected with the promoter-luciferase 

plasmids and the pCMV-Shh expression vector. Transfection efficiency was normalized by 

co-transfection with pRL-TK as an internal reference and measured 48 hours post-

transfection. The luciferase activities of positive controls NKX2-2 and FOXF1 reporter 

plasmids increased by approximately 1.7-fold and 1.6-fold upon co-transfection with the 
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SHH expression plasmid. Similarly, overexpression of SHH consistently resulted in a 1.5–2 

fold increase in luciferase activity for the HES5, HEY2, FOXA1, OLIG1, PITX2, PGF and 

STMN3 reporters (Figure 6.5). No increase in luciferase activity was observed for FGF19 

plasmid. This could be because one GLI binding site is not sufficient for the transactivation 

of the FGF19 promoter in response to SHH. These results provide additional evidence that 

SHH signaling regulates the expression of these genes through GLI transcriptional activation 

and that DEG containing putative GLI binding sites are potential direct targets of SHH 

signaling.  

 

Figure 6.5 SHH is able to transactivate the promoters of target genes. Luciferase 

reporter genes containing fragments of promoters of target genes were co-transfected in 

to H3-NP along with Renilla vector and in indicated cases, with or without the SHH 

expression vector. Luciferase activities were calculated as a ratio of Firefly luciferase 

activity over Renilla luciferase activity and expressed as fold induction relative to 

pCDNA3.1 vector control. Values shown are mean ± SD of a representative experiment 

carried out in triplicate and repeated at least three times. * = p<0.05, ns = not 

significant. 

 

 

However, as the increase in luciferase activation observed was only modest at around 

1.5-2 fold, more studies are currently being carried out. They include the addition of the SHH 

pathway inhibitor cyclopamine as well site mutagenesis of the putative binding sites to 
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abolish the increase in luciferase values that may confirm the specificity of activation of the 

promoters by SHH.  

It must be noted that the DEG identified by transcriptional profiling without any 

predicted GLI binding site on the their promoter regions could still be direct targets of SHH 

signaling. In the study by Vokes et al., 2007, a subset of Gli responsive genes identified by 

mouse Gli chromatin immunoprecipitation lacked a Gli consensus binding site. This 

suggested that certain direct target genes of Gli may not necessarily possess a Gli consensus 

binding site or that other transcriptional regulators could be involved in the co-binding of Gli 

to the promoters of target genes.  

To complement the findings of this chapter, future studies can include chromatin 

immunoprecipitation of GLI-DNA complexes from SHH-NP. Subsequent PCR analysis can 

be carried out to see if DEG identified by transcriptional profiling are among the DNA 

sequences that are bound to GLI. This can provide additional confirmation of direct 

regulation of the DEG by SHH, including those genes that may not have GLI binding sites on 

their promoter regions. 

 

6.6 SHH target genes discussion 

In the following sections, the DEG identified by transcriptional profiling will first be 

discussed according to their broad functional categories. Genes from each functional category 

that have been validated by real-time PCR analysis or the promoter-luciferase assay 

(summarized in Table 6.6), will then be discussed in greater detail about their functions and 

possible roles in SHH-mediated neural differentiation.  
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Table 6.6 Summary of target genes of SHH in hESC-derived neuroprogenitors 

 

Fold change = average of the fold-change from SHH vs H3 and SHH vs Vector. 

neuroprogenitors. Genes in BOLD = Confirmed by promoter-luciferase reporter assay. ! = 
Validated by real-time PCR analysis. # = Validated by Western blot or FACS analysis. ^ = 

Validated by real-time PCR analysis in iPSC(IMR90) SHH-treated neuroprogenitors. ? = 

undetermined. BS = Binding sites. 
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6.6.1 Differentially expressed genes (DEG) 

Gene Ontology (GO) biological processes was used to assign the DEG into functional 

categories. Based on the analysis, many of the DEG in SHH-NP corresponded to categories 

that are involved with neural differentiation (Figure 6.1). However, as the GO categories are  

hierarchical in nature, the same gene could be classified in multiple GO categories. Hence for 

better resolution of their potential function, the target genes from the overrepresented GO 

categories were clustered into more precise functional groups (Table 6.6). The analysis 

showed that the SHH target genes were those involved in neural induction, NSC 

proliferation, dorsal-ventral patterning, DA neuron development and function, axon guidance 

and neural development. 

 

In a comparison with a recent study that conducted transcriptional profiling of Shh 

responsive genes in neuralized mouse embryoid bodies (EB) (Vokes et al., 2007), several 

genes identified in that study to be upregulated by Shh overlapped with those described here, 

including DDC, EBF3, FABP7, NKX6-1, NR2E1, NTN1, OLIG1, SLIT2 and STMN3. Vokes 

et al. also described data from another independent study (Tenzen et al., 2006) that listed 

several genes that were downregulated by Shh in the mouse neural tube. Downregulated 

genes observed in both the SHH-NP and that listed in the Vokes et al., study include 

CNTNAP2, FAP, GLI3, MSX1, MSX2, PRRX1, SNAI2, TWIST1, ZIC2 and ZIC5. These 

conserved genes observed between species could prove to be important in SHH regulated 

neural differentiation and warrant more in-depth studies in the future. 

 

6.6.2 Neural induction 

The process of obtaining neurons from hESC precedes with the induction of hESC to 

differentiate towards the neural fate. Consistent with the evidence from Chapter 5 that SHH 

promotes neural induction of hESC (Figure 5.10, Figure 5.11), NESTIN and SOX1 were 
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identified for the first time to possess putative GLI binding sites on their 5’ and 3’ promoter 

regions respectively (Table 6.6).  

Nestin is an intermediate filament that is first expressed by neuroepithelial cells in 

the early neural tube (Lendahl et al., 1990). Nestin is also expressed in proliferating neural 

precursors and adult NSC (Lothian and Lendahl, 1997; Fukuda et al., 2003). Its widespread 

expression in the CNS signifies its importance and is a widely used marker for NSC, however 

the exact function of Nestin is not well understood. It is suggested to play a role in the 

distribution of cytoskeletal proteins during cell division (Chou et al., 2003). While the 

expression of Nestin has been demonstrated to be regulated by POU transcription factors 

(Josephson et al., 1998; Tanaka et al., 2004), the presence of putative GLI binding sites on its 

5’ promoter region suggest that NESTIN is also a direct target of SHH signaling.  

The bioinformatics analysis identified 3 putative GLI binding sites on the 3’ 

downstream region of SOX1, suggesting it may be a downstream target gene of SHH. Sox1 is 

expressed early on in neuroectoderm development in the neural plate and later on, in 

neuroepithelial cells (Pevny et al., 1998; Wood and Episkopou, 1999). It has an important 

function in neural induction as indicated by overexpression studies of Sox1, which drove 

pluripotent embryonal carcinoma cells and mESC towards the neuroectoderm lineage (Pevny 

et al., 1998; Suter et al., 2009). The continuous forced expression of Sox1 in 

neuroprogenitors also maintained cells at stage and prevented their differentiation (Suter et 

al., 2009).  

Therefore, these results suggest that SHH is able to promote neural induction of 

hESC through its target genes NESTIN and SOX1. 

6.6.3 Neuroprogenitor proliferation  

As SHH was demonstrated to induce the proliferation of sorted neuroprogenitors in 

the previous chapter, the DEG were examined for genes related to cell cycle or cell 

proliferation. Surprisingly, transcriptional profiling revealed that there was no significant 

induction of Cyclin D1 or N-MYC in SHH-NP. Cyclin D1 and N-myc have been reported to 
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be targets genes of Shh in neuronal precursors, and were shown to be responsible for SHH-

induced proliferation (Oliver et al., 2003). This indicates that Cyclin D1 and N-myc are 

tissue-specific targets of SHH signaling and there are other means by which SHH induces 

proliferation in SHH-NP. Genes that are involved in proliferation like HES5, HEY2 and 

EGFR which were identified in our study to be targets of SHH signaling could potentially 

mediate SHH-induced proliferation of neuroprogenitors (Table 6.6). 

HES5 is a transcription factor belonging to the NOTCH signaling pathway. An active 

NOTCH pathway is important in neural development as it maintains the proliferation of 

neuroprogenitors and keeps them in the undifferentiated state (Gaiano et al., 2000; Ohtsuka et 

al., 2001; Iso et al., 2003). The role of the NOTCH pathway in proliferation has been 

demonstrated in hESC-derived rosettes as inhibition of NOTCH signaling decreased the 

rosette like structures in culture (Woo et al., 2009). HES5 has also been used as a marker to 

trace neural induction in hESC as it is expressed during the rosette/neuroprogenitor stage but 

is downregulated upon terminal differentiation (Placantonakis et al., 2009). Transcriptional 

profiling of HES5 positive neuroprogenitors showed enrichment for SHH pathway genes 

SMO, GLI2 and GLI3 (Placantonakis et al., 2009), providing evidence of cross-talk between 

the pathways. Hes5 has been previously shown to be induced by Shh in retinal explants (Wall 

et al., 2009) but the results shown here for the first time proposes that HES5 is a direct target 

of SHH signaling (Figure 6.5). 

This study also uncovered another NOTCH target gene HEY2 to be a direct target of 

SHH (Figure 6.5). Hey2 has been demonstrated to inhibit neurogenesis by repressing pro-

neural bHLH genes like Ngn2 and Mash1 and maintaining the population of Nestin positive 

neural precursors (Sakamoto et al., 2003). Therefore, the results suggest that SHH activates 

the NOTCH effector gene HES5 and HEY2 independently of a NOTCH ligand, which may 

in turn mediate the proliferation of neuroprogenitors.  

The EGFR tyrosine kinase receptor is also suggested to be a mediator of SHH-

induced proliferation as its expression is upregulated by SHH (Figure 6.3). The binding of the 

mitogen EGF to its receptor EGFR activates tyrosine kinase activity and leads to stimulation 



 

 103 

of downstream pathways like the Ras/ERK and PI3K pathways that regulate cell proliferation 

and death. A study on the role of SHH in mESC revealed that both Gli activation and EGFR 

activation were required for the stimulation of proliferation of mESC by SHH (Heo et al., 

2007). Furthermore, SHH was able to induce EGFR signal transactivation in the absence of 

exogenous EGF (Heo et al., 2007). Therefore, the upregulation of EGFR by SHH may induce 

proliferation of neuroprogenitors by activating EGFR signaling and also amplifying the 

response of neuroprogenitors to EGF present in culture.  

6.6.4 Dorsal-ventral patterning 

In harmony with the role of SHH as a ventralizing factor necessary for the 

development of several neural subtypes (Briscoe, 2009), transcriptional profiling showed the 

upregulation of NKX2-2 and NKX6-1 in SHH-NP as anticipated (Figure 6.2 and 6.3). These 

homeobox genes are induced by Shh in the neural tube and are necessary for the specification 

of ventral neuronal identity (Briscoe and Ericson, 2001). While NKX2-2 has been recently 

established to be a direct target gene (Vokes et al., 2007), the data demonstrates for the first 

time that NKX6-1 may be a direct target of SHH as it contains 3 putative GLI binding sites 

upstream and downstream of its transcription start site (Table 6.6). 

 The overexpression of SHH also resulted in the downregulation of several genes that 

are important in dorsal specification like PAX3, MSX1 and SNAI1,  (Figure 6.3). These genes 

are normally expressed in the dorsal neural tube (Goulding et al., 1991; Watanabe et al., 

1998; Liu et al., 2004). Pax3 shares sequence similarity with another Class I protein Pax7, 

where it helps to restrict the ventral identity of neuroepithelial cells (Ericson et al., 1996; 

Mansouri and Gruss, 1998). Msx1 and Msx2 are homeodomain factors induced by BMP 

signals that mediate the role of BMP signaling in dorsal neuronal specification (Hollnagel et 

al., 1999; Ramos and Robert, 2005). SHH also negatively regulates the expression of BMP2 

(Figure 6.3), which encodes for secreted BMP2 protein of the BMP signaling pathway that is 

essential in the patterning of the dorsal neural tube (Liem et al., 1997). The downregulation 
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of MSX1 and MSX2 by SHH could be due to direct inhibition the genes or by antagonizing 

the BMP pathway. 

Therefore, the results show that SHH ventralizes neuroprogenitors via the target 

genes NKX2-2 and NKX6-1 and also through the inhibition of genes important in dorsal 

patterning. This implies that derivation of neural cells from the dorsal region from hESC, e.g. 

neural crest stem cells, might require inhibition of the SHH pathway to release the inhibition 

of key genes in dorsal specification. 

As BMP2 is also responsible for driving extraembryonic endodermal differentiation 

of hESC (Pera et al, 2004), the downregulation of BMP2 by SHH suggests that SHH can 

cooperate with noggin to further inhibit BMP signaling to enhance the differentiation of 

hESC to the neuroectoderm lineage.  

6.6.5 Dopaminergic neuron development and function 

SHH is an important factor for the genesis of DA neurons from hESC (Perrier et al., 

2004; Yan et al., 2005). Transcriptional profiling showed that the closely related FOXA1 and 

FOXA2 genes were upregulated by SHH. The promoter-luciferase assay indicates that 

FOXA1 is a direct target of SHH (Figure 6.5, Table 6.6).  

FoxA1 and FoxA2 have overlapping functions in regulating the differentiation of DA 

progenitors by regulating the expression of other genes like Ngn2, Lmx1A/B, Nkx2-2 and Th 

that are important for the specification and differentiation of DA neurons (Ferri et al., 2007; 

Lin et al., 2009). Midbrain DA progenitors from double FoxA1/FoxA2 knock out mutants 

failed to express key markers of mature DA neurons like Nurr1, Th or Aadc, displaying the 

requirement of FoxA1 and FoxA2 for the maturation of DA progenitors (Ferri et al., 2007). 

In addition, overexpression of FoxA1 promoted neural induction of pluripotent embryonal 

carcinoma cells (Tan et al., 2009), while overexpression of FoxA2 was able to induce DA 

neuron differentiation of mESC in vitro, even in the absence of active Shh signaling 

(Kittappa et al., 2007). Therefore, SHH is likely to promote DA neuron differentiation from 

hESC through the actions of its target genes FOXA1 and FOXA2.   
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 The DA neuron marker AADC (or DDC) was also highly upregulated by SHH in 

neuroprogenitors (Figure 6.3). AADC is one of the enzymes necessary for the production of 

dopamine (Gjedde et al., 1991). Although AADC does not contain any GLI binding site in its 

5’ promoter region, there are 7 GLI binding sites in the 3’ promoter region, making it a 

possible direct target gene (Table 6.6). Alternatively, the upregulation of AADC could have 

been due to the upregulation of FOXA1 and FOXA2 as the AADC promoter contains a 

FOXA2 binding site (Raynal et al., 1998). Nevertheless, it suggests that SHH plays a role in 

mature DA neurons by promoting the expression of a key enzyme required for proper DA 

neuron function. 

6.6.6 Axon guidance 

During the development of the neuronal network in the CNS, the growth and 

extension of neurons with long axonal extensions require axon guidance to find their correct 

targets (Tessier-Lavigne and Goodman, 1996). Several genes relating to axon guidance were 

found to be upregulated by SHH (Table 6.6).  They include the Slit and Netrin proteins that 

are instructive molecules that guide the growth of neuronal axons through chemoattraction or 

repulsion (Killeen and Sybingco, 2008). As Shh itself is also a chemoattractant for neurons 

(Charron et al., 2003; Hammond et al., 2009), the upregulation of many genes involved in 

axonal guidance suggest that SHH can enhance axonal outgrowth of neurons during hESC 

neural differentiation.  

Transcriptional profiling and the promoter-luciferase assay identified PGF as a novel 

target gene of SHH (Figure 6.3, Figure 6.5). To the best of our knowledge, regulation of PGF 

expression by SHH has not been previously described. PGF is a ligand within the vascular 

endothelial growth factor (VEGF) family of proteins, which have a variety of functions in the 

nervous system (Ruiz De Almodovar et al., 2009). VEGF can stimulate axonal outgrowth 

(Sondell et al., 1999, 2000), enhance the survival of neurons during ischemia and also 

promote neurogenesis in vivo (Jin et al., 2000, 2002). The specific role of PGF is less well 

understood. PGF has been shown to reduce the death of ischemic astrocytes (Freitas-Andrade 
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et al., 2008) and PGF treatment aided chemoattraction and growth cone formation of neurons 

from the dorsal root ganglion (Cheng et al., 2004). VEGF and isoform 2 of PGF act via the 

neuropilin-1 (NRP-1) receptor (Migdal et al., 1998). Interestingly, the expression of NRP-1 is 

also induced by SHH (Table 6.6). Therefore, this study presents PGF to be a novel target of 

the SHH pathway in hESC-derived neuroprogenitors. Although the function of PGF in 

neuronal differentiation of hESC is not known, we propose that it may play a role in SHH-

mediated axon guidance.  

6.6.7 Neural development 

Many of the target genes of SHH identified by transcriptional profiling were 

annotated by Gene Ontology biological processes classification to be important for the 

development of the nervous system.  

One particular gene in that category, STMN3, was upregulated by around 2-fold in 

SHH-NP (Figure 6.3) The promoter-luciferase assay confirmed that STMN3 was direct target 

gene of SHH (Figure 6.5, Table 6.6). STMN3 (synonyms SCLIP or SCG10-like) belongs to 

the stathmin familiy of phosphoproteins that regulate microtubule assembly (Charbaut et al., 

2001). In a survey of stathmin family gene expression in human tissues, STMN3 had wide 

expression in most human tissues with the highest mRNA concentrations in neural tissue like 

the fetal brain, spinal cord and cerebellum (Bieche et al., 2003). Gain- and loss-of-function 

studies showed that Stmn3 is essential for the growth of purkinje cells from the developing 

rat cerebellum (Poulain et al., 2008). STMN3 is also believed to be a regulator of neuronal 

morphogenesis (Baldassa et al., 2007; Poulain et al., 2008). Interestingly, Stmn3 was also 

identified to be upregulated by Shh in neuralized mouse EB (Vokes et al., 2007). This 

suggests that SMTN3 may be an important target gene of SHH that could have a functional 

role in SHH-mediated neural differentiation. 

Although the FGF19 promoter-luciferase reporter did not show any increase in 

transactivation by SHH, the presence of 6 putative GLI binding sites in its 5’ promoter region 

point towards the possibility that FGF19 is a potential direct target gene of SHH in 
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neuroprogenitors. More studies will need to be done to confirm if it is indeed so. 

Nonetheless, the mouse ortholog of human FGF19, Fgf15 has been demonstrated by 

luciferase assays to be a direct target of Shh (Saitsu et al., 2005). The precise function of 

Fgf19 in mammals is not well understood. Analysis of Fgf19 expression in the chick neural 

tube found that Fgf19 localized with Nkx2-2 and Nkx6-1 positive neuroepithelial cells 

(Gimeno and Martinez, 2007). In the same study, Shh and Fgf8 were able to induce ectopic 

expression of Fgf19 (Gimeno and Martinez, 2007). Along with our results, it suggests that 

FGF19 may play a role in neural differentiation. 

Pitx2 has been shown to be induced by Shh where it mediates Shh-dependent left-

right asymmetry of the vertebrate body (Ryan et al., 1998). The promoter-luciferase assay 

confirms that PITX2 is a direct target gene of SHH (Figure 6.5). Its function in neural 

development however is not understood. PITX2 has been described to be present in PSA-

NCAM positive hESC-derived neuronal precursors (Freed et al., 2008). Pitx2 mutant mice 

revealed that Pitx2 regulates the terminal neuronal differentiation in the midbrain by acting 

primarily as a regulator of neuronal migration (Martin et al., 2004; Skidmore et al., 2008). 

More studies have to be done to understand the role of PITX2 in the SHH signaling network.  

Olig1 is another gene that has been shown to be induced by Shh to promote 

oligodendrocyte formation (Lu et al., 2000, 2001). Olig1, with Olig2 is also necessary for 

motor neuron specification (Zhou and Anderson, 2002). While Olig1 was found to be 

upregulated by Shh in mouse EB (Vokes et al., 2007), chromatin immunoprecipitation 

analysis did not reveal any binding of Gli on Olig1. In our studies however, the promoter-

luciferase assay confirm that OLIG1 is a direct target gene of SHH in hESC-derived 

neuroprogenitors (Figure 6.5), indicating that SHH is potentially able to promote motor 

neuron and oligodendrocyte differentiation from hESC through induction of OLIG1.  

ID1 was highly downregulated in SHH-NP (Figure 6.3) and the presence of 5 

putative GLI binding sites on both the 5’ upstream and 3’ downstream regions, suggested that 

ID1 is a direct negatively regulated target gene of SHH (Table 6.6). ID1  belongs to a family 

of transcriptional regulators that inhibit neuronal differentiation by negatively regulating pro-
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neural transcription factors, like NEUROD1 and MASH1 (Peddada et al., 2006; Obayashi et 

al., 2009). ID1 is also target gene of BMP signaling and is repressed by noggin treatment 

during neural induction (Hollnagel et al., 1999; Gerrard et al., 2005). Thus, SHH may be able 

to promote neuronal differentiation indirectly by inhibiting ID1.  

 

 As depicted in Figure 6.6, the transcriptional profiling and GLI binding site analysis 

revealed the underlying gene network downstream of SHH signaling that could confer the 

multiple functions of SHH during hESC neural differentiation. As each of these functions are 

highly specific, involving a large number of interacting factors, SHH may have different roles 

in each of these contexts and require future study.  

 

Figure 6.6 The transcriptional network of SHH in hESC-derived neuroprogenitors. 

Target genes of the pathway are indicated by the solid lines while suggested 

consequences of pathway activation are indicated by dotted lines. 
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6.7 Summary  

Multiple genes are involved in the process of neural differentiation from hESC to 

terminal differentiation. As SHH is commonly used in combination with several growth 

factors at a time, the aim of this chapter was to dissect at the molecular level the specific 

target genes of the pathway that could potentially mediate SHH-driven neural differentiation 

of hESC. Gene expression changes resulting from the overexpression of SHH in 

neuroprogenitors were examined by transcriptional profiling. 182 genes were identified to be 

upregulated in SHH-NP and another 155 were downregulated. Analysis of the differentially 

expressed genes showed that they are involved in numerous cellular processes including 

neural induction, NSC proliferation, dorsal-ventral patterning DA neuron development and 

function, axon guidance and neural development. In silico analysis of the differentially 

expressed genes also revealed that many of them contained 1 or more putative GLI binding 

sites in the promoter region 5’ upstream and 3’ downstream of their transcriptional start site, 

suggesting that they are direct target genes of the pathway. Selected genes were further 

examined by using a promoter-luciferase assay that confirmed the transactivation of the 

promoters of HES5, HEY2, FOXA1, OLIG1, PITX2, PGF and STMN3 by SHH. This 

provided evidence for the first time that the above genes are directly regulated by SHH. 

Therefore, this study has uncovered putative novel target genes of the pathway and we 

propose these downstream genes contribute to the overall effect of SHH in hESC neural 

induction, expansion and patterning.  
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

 

7.1  Conclusions 

This thesis set out with two major objectives, which were to elucidate the role of 

SHH signaling in (1) the self-renewal of undifferentiated human embryonic stem cells 

(hESC) and (2) the directed differentiation of hESC towards the neural lineage.  

In the studies that aimed to address the first objective, several observations and 

conclusions were derived. hESC were found to express the major components of the SHH 

pathway, as evidenced by transcriptional and immunocytochemical analysis. A SHH/GLI 

responsive luciferase reporter assay showed that the pathway was active in hESC and there 

was a functional signaling cascade downstream of the SMO receptor. However, 

supplementation with exogenous SHH failed to maintain the pluripotency of SHH nor did it 

stimulate the proliferation of hESC. Further analysis with the GLI responsive luciferase 

reporter revealed that the pathway was minimally active in hESC but highly activated upon 

RA-induced differentiation. Furthermore, exogenous SHH was able to activate the pathway 

only when the cells were differentiated. Finally, long-term exposure of embryoid bodies to 

exogenous SHH increased the expression of neural markers. Therefore, these evidence point 

to a model whereby SHH is minimally active in hESC but is primed for activation upon 

differentiation, and consequently promotes differentiation toward the neuroectoderm lineage. 

To meet the second objective, a directed neural differentiation protocol was first 

developed to efficiently differentiate hESC to neuroprogenitors using noggin as a neural 

inducer. SHH was then confirmed to be required for efficient specification of 

neuroprogenitors towards the dopaminergic (DA) neuron lineage as removal of SHH from 

the differentiation protocol resulted in a significant decrease in the population of DA neurons 

produced. A stable SHH overexpressing hESC line was then generated and differentiated 

according to the developed protocol to investigate the effect of SHH at the different stages of 
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neural differentiation. Investigation at the neuroprogenitor stage showed that overexpression 

of SHH increased the expression of neural stem cell markers in the neuroprogenitors. After 

obtaining a more homogenous population of neuroprogenitors by cell sorting, it was found 

that overexpression of SHH concomitantly increased the proliferation of these cells. These 

findings suggest that overexpression of SHH in hESC result in an enriched neuroprogenitor 

population with appropriate neural stem cell identity. Further differentiation of the 

neuroprogenitors showed that overexpression of SHH led to an increased production of DA 

neurons, which we postulate, was due to the higher starting neural stem cell population in 

overexpressing SHH neuroprogenitors. 

These findings led to the hypothesis that apart from its known function in neural 

subtype specification, SHH has other functions in neural differentiation, which are to 

promote neural induction and neuroprogenitor proliferation.  

Given the role of SHH in promoting neural differentiation, transcriptional profiling of 

overexpressing SHH neuroprogenitors was carried out to identify the molecular targets of the 

SHH pathway. 182 genes were found to be upregulated while another 155 genes were 

downregulated by more than 1.5-fold in overexpressing SHH neuroprogenitors when 

compared to the wild-type and vector control neuroprogenitors. Functional classification of 

the differentially expressed genes found that the largest significantly enriched class of genes 

were involved in neural development. Specifically, these genes have a range of functions in 

neural induction, neuroprogenitor proliferation, dorsal-ventral patterning, DA neuron 

development and axonal guidance. These findings show an extensive transcriptional network 

downstream of SHH activation in neuroprogenitors, which could potentially mediate the 

multiple functions of SHH during neural differentiation.  

In order to identify potential novel direct targets of SHH, in silico analysis was 

carried out by searching for potential GLI consensus binding sites on the 5’ upstream and 3’ 

downstream promoter regions of the differentially expressed genes. This identified 129 

upregulated genes that had 1 or more putative GLI binding sites within 5 kb of the 5’ 

upstream promoter region, suggesting that these gene are direct targets of SHH signaling. 
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Promoter-luciferase assays showed the increase in transactivation of the promoters of PGF, 

PITX2, OLIG1, STMN3, HES5 and HEY2 by SHH. This results provides confirmation that 

these genes are putative direct target genes of SHH and provide new insight into the SHH 

signal transduction cascade in neuroprogenitors. Furthermore, as HES5 and HEY2 are target 

genes of the NOTCH signaling pathway, this study demonstrates potential functional cross-

talk between the SHH and NOTCH signaling pathway in neuroprogenitors. 

Taken together, the studies presented in this thesis have led to the understanding that 

the SHH pathway plays a minimal role in regulating hESC self-renewal but upon 

differentiation, SHH is able to promote neural induction, neuroprogenitor expansion and 

neuronal subtype specification. It also led to the elucidation of a gene network downstream of 

SHH activation that builds a more comprehensive understanding of how SHH carries out its 

roles in neural differentiation.  

 

7.2 Recommendations for future research 

7.2.1 Loss of function study 

To complement the findings of this thesis, a loss of SHH function can be carried out 

using pharmacological reagents like the SMO receptor inhibitor cyclopamine (Taipale et al., 

2000). Alternatively, knockdown of SMO or GLI to abolish the ability of hESC to carry out 

SHH signal transduction can be performed. We can then investigate if it would lead to any 

impairment of the capacity of hESC to differentiate to neuroprogenitors or DA neurons. The 

results from the loss of function study would supplement the overexpression studies carried 

out and provide confirmation of the function of SHH in neural differentiation.  

7.2.2 Cross-talk between NOTCH and SHH signaling pathways 

The NOTCH signaling pathway is important for maintaining the proliferation of 

hESC-derived neuroprogenitors (Woo et al., 2009). During NOTCH signaling, the members 

of the Jagged and Delta family bind to the NOTCH receptor, which is subsequently cleaved. 
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The intracellular portion of the receptor is then shuttled into the nucleus to activate 

transcription of target genes, like the HES and HEY family of transcription factors (Iso et al., 

2003). HES5 and HEY2 were shown in this thesis to be target genes of SHH in 

neuroprogenitors, thus these genes appear to be at the intersection of the SHH and NOTCH 

signaling pathways. Crosstalk between SHH and other NOTCH effectors have also been 

reported in other tissues and cell types as well (Hallahan et al., 2004; Ingram et al., 2008; 

Wall et al., 2009), suggesting that there may be functional importance of the crosstalk in 

hESC-derived neuroprogenitors. 

More studies can be carried out to investigate if SHH is able to activate HES5 and 

HEY2 independently of a NOTCH ligand. It would also be of interest to understand whether 

the effect of SHH on neuroprogenitor proliferation requires the activity of HES5 and HEY2. 

A recent study showed that hESC-derived rosettes treated with the NOTCH ligands, JAG1 

and DLL4, plus SHH had the most robust growth compared to those treated with other 

signaling molecules like RA, noggin and WNT3a  (Elkabetz et al., 2008). Further studies can 

be done to examine the synergism, if any, between NOTCH and SHH signaling in 

maintaining proliferation of neuroprogenitors.   

7.2.3 Exploration of novel target genes  

The transcriptional profiling study has revealed several novel direct target genes of 

SHH signaling e.g. PGF, FGF19, and STMN3 which have implicated in neural development 

but whose significance is uncertain. Two other SHH putative target genes identified in this 

study, namely FABP7 and PCDH8 were also picked up in other transcriptional profiling 

studies to be specifically upregulated in hESC-derived neuroprogenitors (Pankratz et al., 

2007) and dopaminergic neurons (Lee et al., 2007), respectively. This suggests that these 

genes have possible functions in neural differentiation.  

The relevance of the above genes can be clarified by studying their co-expression 

with Shh in vivo. Gain- or loss-of-function studies by overexpression or knockdown of the 

target genes in hESC will also shed light on their function in neural differentiation. In 
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addition, as the transcriptional profiling was performed on samples from a single time point, 

future work can include more time points, e.g. at the dopaminergic neuronal stage to capture 

dynamic gene expression changes that may offer more insights into their function.  

7.2.4 MicroRNA and SHH signaling 

MicroRNAs (miRNA) are post-transcriptional negative regulators of gene expression 

that bind to the 3’ region of specific mRNA and represses their translation (Bartel, 2004). 

miRNA been linked to SHH signaling, where they are able to regulate the pathway that 

affects the development of the hindlimb (Hornstein et al., 2005). Similarly in neuronal 

precursor cells, microRNAs were demonstrated to target Smo and Gli1, leading to inhibition 

of cell growth (Ferretti et al., 2008). miRNA have also been implicated in medulloblastomas 

with aberrant constitutive SHH signaling, whereby the upregulated expression of a cluster of 

microRNAs synergized with SHH to induce proliferation of the cells (Northcott et al., 2009; 

Uziel et al., 2009). 

Many miRNA are widely expressed in the mammalian brain and they are regarded to 

be involved in the regulation of neural development (Krichevsky et al., 2003; Kim et al., 

2004; Kosik and Krichevsky, 2005) Recently, there has been evidence showing that miRNA 

are important in neural differentiation of mESC (Krichevsky et al., 2006; Kim et al., 2007). 

The profiling of different hESC lines with a bias to different neuronal cell types also 

suggested that the distinct expression of miRNA was instrumental in specifying cell fate (Wu 

et al., 2007). Therefore, it would be interesting to investigate if there exists any collaboration 

between SHH and miRNA to promote neural differentiation of hESC.  
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ABBREVIATIONS 

AA  Ascorbic acid 

AcTb  Acetylated tubulin 

AFP  Alpha feto protein 
APC  Allophycocyanin 

Bcl-2  B-cell leukemia/lymphoma 2 

BDNF  Brain-derived neurotrophic factor 
bHLH  Basic helix-loop-helix 

BMP  Bone morphogenetic proteins 

Boc Biregional cell adhesion molecule-related/down-regulated by oncogenes 
(Cdon) binding protein 

bp  Base pairs 

BSA  Bovine Serum Albumin 

c-myc  v-myc myelocytomatosis viral oncogene homolog (avian) 
cAMP  Cyclic adenosine monophosphate 

CD  Cluster of differentiation 

cDNA  Complemntary DNA 
Cdo  Cell adhesion molecule-related/down-regulated by oncogenes 

CM  Conditioned media 

CMV  Cytomegalovirus 

CNS  Central nervous system 
COL2A  Collagen, type II, alpha 1 

DAPI  4,6-diamino-2-phenylindole 

DMSO  Dimethyl sulfoxide 
DNA  Deoxyribonucleic acid 

dNTP  Deoxy nucleotide triphosphate 

DsRed2  Discosoma sp. red fluorescent protein 2 
EB  Embryoid bodies 

EdU  5-ethynyl-2’-deoxyuridine 

EGF  Epidermal growth factor 

ELISA  Enzyme-linked immunosorbent assay 
EN1/2  Engrailed 1/2 

FACS     Flourescence Activated Cell Sorting 

FBS  Fetal bovine serum 
FGF (FGFR) Fibroblast growth factor (receptor) 

FITC  Flourescein-5-isothiocyanate 

FOXA  Forkhead factor A 
Gas1  Growth arrest specific 1  

GATA  GATA binding protein  

GDNF  Glial cell-derived neurotrophic factor 

GFAP  Glial fibrillary acidic protein 
GLI  GLI-Kruppel family member GLI1 

hESC  Human embryonic stem cells 

HEK  Human embryonic kidney cells 
HRP  Horse radish peroxidase 

Ig   Immunoglobulin 

iPSC  Induced pluripotent stem cells 

kb  Kilo bases 
kDa  Kilo dalton 

Kif7  Kinesin family member 7 

KLF4  Kruppel-like factor 4 (gut) 
LIF  Leukemia inhibitory factor 

LIN28  Lin-28 homolog (C. elegans)  
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LMX1A/B LIM homeobox 1A/B  

M  Mol/litre 
MAP2  Microtubule-associated protein  

MAPK  Mitogen-activated protein kinase 

mESC  Mouse embryonic stem cells 

mRNA  Messenger RNA 
MSI  Musashi 

N-myc v-myc myelocytomatosis viral related oncogene, neuroblastoma derived 

(avian) 
NANOG Nanog homeobox 

NEAA  Non-essential amino acids 

NP  Neuroprogenitors 
NSC  Neural stem cells 

NURR1 Nuclear receptor related 1  

OCT4  Octamer binding protein-4 

OLIG  Oligodendrocyte lineage transcription factor 
OTX2  Orthodenticle homeobox 2  

p75  p75 nerve growth factor receptor 

PAX  Paired box 
PCR  Polymerase chain reaction 

PI3K  phosphatidyl-inositol-3-kinase 

PITX3  Paired-like homeodomain 3 
PKA  Protein Kinase A 

PSA-NCAM Poly-sialated neural cell adhesion molecule 

PTCH  Patched 

Rab23  RAB23, member RAS oncogene family 
RNA  Ribonucleic acid 

rpm  Revolutions per minute 

RT-PCR Reverse transcriptase polymerase chain reaction 
SD  Standard deviation 

SHH  Sonic hedgehog 

SOX  SRY (sex determining region Y)-box 

SR  Serum replacement 
SUFU  Suppresor of fused 

TGF  Tumour growth factor 

TH  Tyrosine hydroxylase 
TRA  Tumour recognition antigen 

TUJ1  Beta-III Tubulin  

WNT  Wingless 
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APPENDIX A MICROARRAY DATA 

Table A 1 List of significantly upregulated genes (> 1.5-fold) in SHH-NP. Genes are 

ranked according to their fold change values. 

  Fold change p-value 

Symbol Description SHH vs 

Vector 

SHH vs 

H3 

SHH vs 

Vector 

SHH vs 

H3 

NKX2-2 NK2 homeobox 2 17.496 15.376 3.89E-10 7.08E-07 

FOXD1 forkhead box D1 8.568 7.644 1.05E-11 7.83E-08 

NTRK2 neurotrophic tyrosine kinase, receptor, 

type 2 

7.999 5.892 7.26E-10 9.23E-07 

FOXA1 forkhead box A1 7.648 8.422 2.20E-12 3.68E-08 

HEY2 hairy/enhancer-of-split related with 

YRPW motif 2 

7.045 3.405 1.52E-09 1.63E-06 

DDC dopa decarboxylase (aromatic L-amino 

acid decarboxylase) 

6.556 6.574 4.76E-10 7.88E-07 

SYT4 synaptotagmin IV 6.507 2.800 2.16E-08 1.08E-05 

POSTN periostin, osteoblast specific factor 6.395 1.825 9.21E-05 4.18E-03 

CYP1B1 cytochrome P450, family 1, subfamily 

B, polypeptide 1 

6.131 5.502 1.33E-09 1.54E-06 

NTN1 netrin 1 5.990 5.998 2.54E-10 4.95E-07 

PCDH8 protocadherin 8 5.906 4.155 2.69E-05 1.68E-03 

C4orf18 chromosome 4 open reading frame 18 4.671 2.875 2.74E-08 1.29E-05 

C8orf46 chromosome 8 open reading frame 46 4.655 4.352 1.01E-08 6.08E-06 

SPARCL1 SPARC-like 1 (hevin) 4.385 3.838 1.76E-11 8.75E-08 

ST18 suppression of tumorigenicity 18 

(breast carcinoma) (zinc finger protein) 

4.335 4.123 4.90E-09 3.53E-06 

COL12A1 collagen, type XII, alpha 1 4.178 1.989 3.06E-07 6.46E-05 

FSTL5 follistatin-like 5 4.138 2.448 9.56E-06 7.78E-04 

PRMT8 protein arginine methyltransferase 8 4.136 4.144 3.04E-08 1.31E-05 

BCOR BCL6 co-repressor 3.996 1.801 2.80E-07 6.14E-05 

NEUROD1 neurogenic differentiation 1 3.991 1.845 1.57E-06 2.15E-04 

CRHBP corticotropin releasing hormone 

binding protein 

3.942 3.824 2.00E-09 1.99E-06 

PLCL1 phospholipase C-like 1 3.891 3.477 9.51E-07 1.48E-04 

MTTP microsomal triglyceride transfer protein 3.873 2.900 1.20E-06 1.76E-04 

MOXD1 monooxygenase, DBH-like 1 3.847 1.657 1.12E-06 1.68E-04 

DCLK1 doublecortin-like kinase 1 3.769 1.890 2.04E-06 2.61E-04 

COL3A1 collagen, type III, alpha 1 3.759 3.125 4.33E-09 3.25E-06 

OXCT1 3-oxoacid CoA transferase 1 3.526 1.672 4.60E-05 2.51E-03 

PROS1 protein S (alpha) 3.506 2.122 1.61E-07 4.24E-05 

NKX6-1 NK6 homeobox 1 3.465 3.635 3.25E-11 1.27E-07 

FOXF2 forkhead box F2 3.453 3.771 2.69E-12 3.68E-08 

FOXA2 forkhead box A2 3.443 3.449 2.34E-09 2.19E-06 

FOXF1 forkhead box F1 3.401 2.568 1.19E-07 3.45E-05 

PCDH20 protocadherin 20 3.380 3.246 7.31E-07 1.21E-04 

OLIG1 oligodendrocyte transcription factor 1 3.234 3.719 1.01E-10 2.93E-07 

PTCH1 patched homolog 1 (Drosophila) 3.162 2.832 4.03E-09 3.15E-06 

FLRT2 fibronectin leucine rich transmembrane 

protein 2 

3.060 2.131 5.42E-09 3.79E-06 

FREM1 FRAS1 related extracellular matrix 1 3.038 2.719 8.50E-11 2.73E-07 

ARL13B ADP-ribosylation factor-like 13B 2.966 1.809 5.42E-06 5.35E-04 

GOLSYN Golgi-localized protein 2.943 2.310 2.79E-07 6.14E-05 

SLC4A4 solute carrier family 4, sodium 

bicarbonate cotransporter, member 4 

2.936 2.385 2.41E-06 2.96E-04 
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VEPH1 ventricular zone expressed PH domain 

homolog 1 (zebrafish) 

2.884 2.134 3.57E-06 4.00E-04 

PITX2 paired-like homeodomain 2 2.829 2.413 5.37E-09 3.79E-06 

TBX3 T-box 3 2.807 1.681 2.91E-04 1.01E-02 

EBF3 early B-cell factor 3 2.738 1.619 2.94E-04 1.02E-02 

PTCHD1 patched domain containing 1 2.721 4.719 2.11E-11 9.62E-08 

PAPPA pregnancy-associated plasma protein A, 

pappalysin 1 

2.645 1.688 1.34E-06 1.93E-04 

SPG3A spastic paraplegia 3A (autosomal 

dominant) 

2.629 2.477 1.66E-08 8.96E-06 

RASD1 RAS, dexamethasone-induced 1 2.628 2.019 1.49E-07 4.10E-05 

PCSK1 proprotein convertase subtilisin/kexin 

type 1 

2.545 2.551 1.80E-08 9.38E-06 

SCG3 secretogranin III 2.522 1.668 6.60E-07 1.13E-04 

SHH sonic hedgehog homolog (Drosophila) 2.515 2.526 7.52E-06 6.57E-04 

FAT3 FAT tumor suppressor homolog 3 

(Drosophila) 

2.506 2.430 2.95E-07 6.27E-05 

STMN3 stathmin-like 3 2.459 1.604 7.86E-06 6.81E-04 

POU3F2 POU class 3 homeobox 2 2.389 2.209 2.14E-08 1.08E-05 

GABRA2 gamma-aminobutyric acid (GABA) A 

receptor, alpha 2 

2.386 2.821 2.33E-07 5.51E-05 

EGR2 early growth response 2 (Krox-20 
homolog, Drosophila) 

2.384 1.705 5.67E-05 2.92E-03 

HES6 hairy and enhancer of split 6 

(Drosophila) 

2.343 1.501 9.93E-06 7.98E-04 

SHISA3 shisa homolog 3 (Xenopus laevis) 2.279 2.314 6.81E-05 3.34E-03 

SLIT1 slit homolog 1 (Drosophila) 2.264 2.557 8.41E-08 2.72E-05 

RHBDL3 rhomboid, veinlet-like 3 (Drosophila) 2.257 1.786 2.21E-06 2.78E-04 

GRHL1 grainyhead-like 1 (Drosophila) 2.250 1.963 3.00E-08 1.30E-05 

NRP1 neuropilin 1 2.240 1.528 4.35E-06 4.64E-04 

NR2E1 nuclear receptor subfamily 2, group E, 
member 1 

2.197 4.102 1.10E-09 1.34E-06 

PGBD5 piggyBac transposable element derived 

5 

2.185 1.574 2.69E-05 1.68E-03 

HHIP hedgehog interacting protein 2.171 2.261 1.08E-06 1.63E-04 

KLHDC8A kelch domain containing 8A 2.167 1.775 9.78E-08 2.99E-05 

BHLHB5 basic helix-loop-helix domain 

containing, class B, 5 

2.126 1.889 1.64E-04 6.49E-03 

ANKH ankylosis, progressive homolog 

(mouse) 

2.118 1.725 1.27E-06 1.84E-04 

RPS6KA2 ribosomal protein S6 kinase, 90kDa, 

polypeptide 2 

2.111 1.525 2.38E-04 8.61E-03 

TTC6 tetratricopeptide repeat domain 6 2.107 2.027 3.11E-06 3.60E-04 

MAB21L1 mab-21-like 1 (C. elegans) 2.103 1.871 1.93E-05 1.31E-03 

JAM2 junctional adhesion molecule 2 2.097 1.515 6.01E-05 3.06E-03 

BICC1 bicaudal C homolog 1 (Drosophila) 2.091 1.596 1.75E-04 6.80E-03 

RGS20 regulator of G-protein signaling 20 2.075 1.988 1.57E-08 8.65E-06 

SLIT2 slit homolog 2 (Drosophila) 2.068 1.507 7.77E-06 6.75E-04 

SOHLH2 spermatogenesis and oogenesis specific 

basic helix-loop-helix 2 

2.064 2.358 4.15E-06 4.46E-04 

PDE4B phosphodiesterase 4B, cAMP-specific 

(phosphodiesterase E4 dunce homolog, 

Drosophila) 

2.059 1.669 7.24E-07 1.21E-04 

GLRB glycine receptor, beta 2.052 1.708 1.32E-05 9.92E-04 

MTHFD2L methylenetetrahydrofolate 

dehydrogenase (NADP+ dependent) 2-

like 

2.047 1.624 2.05E-05 1.38E-03 
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PTPRO protein tyrosine phosphatase, receptor 

type, O 

2.043 1.510 3.30E-05 1.93E-03 

FAT4 FAT tumor suppressor homolog 4 

(Drosophila) 

2.042 1.811 1.54E-05 1.10E-03 

NLRP2 NLR family, pyrin domain containing 2 2.041 1.600 5.63E-05 2.92E-03 

VSTM2A V-set and transmembrane domain 

containing 2A 

2.035 2.078 8.06E-05 3.78E-03 

RGMA RGM domain family, member A 2.030 2.826 2.73E-09 2.37E-06 

CCDC48 coiled-coil domain containing 48 2.010 1.843 8.02E-06 6.91E-04 

NRXN1 neurexin 1 2.006 1.653 2.13E-05 1.41E-03 

RASSF2 Ras association (RalGDS/AF-6) 

domain family member 2 

1.995 1.639 2.06E-05 1.38E-03 

EGFR epidermal growth factor receptor 

(erythroblastic leukemia viral (v-erb-b) 
oncogene homolog, avian) 

1.974 1.625 1.66E-06 2.26E-04 

FOXD2 forkhead box D2 1.955 1.691 4.82E-06 4.89E-04 

FZD9 frizzled homolog 9 (Drosophila) 1.947 2.023 2.04E-06 2.61E-04 

MAGEL2 MAGE-like 2 1.945 2.081 1.23E-07 3.53E-05 

FGF19 fibroblast growth factor 19 1.940 1.895 1.05E-07 3.13E-05 

RCAN1 regulator of calcineurin 1 1.937 1.524 1.80E-05 1.24E-03 

KCNJ8 potassium inwardly-rectifying channel, 

subfamily J, member 8 

1.923 1.987 6.56E-08 2.31E-05 

ARX aristaless related homeobox 1.920 2.143 2.20E-08 1.08E-05 

SLC40A1 solute carrier family 40 (iron-regulated 
transporter), member 1 

1.916 1.743 5.81E-06 5.64E-04 

PGF placental growth factor 1.914 2.097 1.66E-05 1.16E-03 

ARL4A ADP-ribosylation factor-like 4A 1.908 1.520 8.92E-07 1.41E-04 

ZFHX3 zinc finger homeobox 3 1.901 1.534 5.55E-04 1.61E-02 

C8orf4 chromosome 8 open reading frame 4 1.901 1.919 9.63E-08 2.96E-05 

SPP1 secreted phosphoprotein 1 1.899 1.983 1.82E-05 1.25E-03 

CSPG5 chondroitin sulfate proteoglycan 5 

(neuroglycan C) 

1.894 1.964 2.27E-07 5.42E-05 

LRRTM2 leucine rich repeat transmembrane 

neuronal 2 

1.888 1.549 7.61E-06 6.63E-04 

ITGB8 integrin, beta 8 1.878 1.758 1.34E-05 9.98E-04 

RASSF4 Ras association (RalGDS/AF-6) 

domain family member 4 

1.870 1.868 3.47E-08 1.44E-05 

ELMO1 engulfment and cell motility 1 1.864 1.543 2.68E-05 1.68E-03 

OLFML3 olfactomedin-like 3 1.861 1.745 1.12E-05 8.74E-04 

MCTP1 multiple C2 domains, transmembrane 1 1.860 1.627 4.57E-05 2.50E-03 

NLGN1 neuroligin 1 1.857 1.666 2.14E-05 1.42E-03 

KCND3 potassium voltage-gated channel, Shal-

related subfamily, member 3 

1.853 1.668 3.01E-05 1.80E-03 

RAB33A RAB33A, member RAS oncogene 

family 

1.846 1.517 1.92E-06 2.51E-04 

OLFM4 olfactomedin 4 1.831 1.891 1.43E-04 5.92E-03 

PLEKHH2 pleckstrin homology domain 

containing, family H (with MyTH4 

domain) member 2 

1.828 2.014 4.87E-05 2.63E-03 

PHOX2B paired-like homeobox 2b 1.827 1.574 1.40E-03 3.16E-02 

SOX1 SRY (sex determining region Y)-box 1 1.827 1.899 2.04E-06 2.61E-04 

OTP orthopedia homeobox 1.805 1.790 2.67E-05 1.67E-03 

ZC3HAV1 zinc finger CCCH-type, antiviral 1 1.796 1.502 1.17E-05 9.02E-04 

NTNG1 netrin G1 1.791 1.855 5.76E-07 1.04E-04 

FLT4 fms-related tyrosine kinase 4 1.790 1.597 9.33E-04 2.36E-02 

ANGPT1 angiopoietin 1 1.788 1.773 3.31E-06 3.77E-04 

PIK3R3 phosphoinositide-3-kinase, regulatory 

subunit 3 (gamma) 

1.784 1.521 5.77E-06 5.63E-04 
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HES5 hairy and enhancer of split 5 

(Drosophila) 

1.779 2.390 1.09E-07 3.23E-05 

DYNC1I1 dynein, cytoplasmic 1, intermediate 

chain 1 

1.777 1.557 2.53E-04 9.01E-03 

FAM181A family with sequence similarity 181, 

member A 

1.767 1.620 6.54E-06 6.11E-04 

VSX1 visual system homeobox 1 1.766 1.904 5.65E-05 2.92E-03 

LOC10013

2832 

similar to postmeiotic segregation 

increased 2-like 5 

1.765 1.718 1.44E-04 5.93E-03 

CXCR7 chemokine (C-X-C motif) receptor 7 1.757 2.160 2.91E-09 2.48E-06 

SNCAIP synuclein, alpha interacting protein 1.736 1.850 2.52E-08 1.20E-05 

TOX2 TOX high mobility group box family 

member 2 

1.736 2.430 7.60E-09 4.95E-06 

NRCAM neuronal cell adhesion molecule 1.735 2.468 5.13E-10 8.02E-07 

RGMB RGM domain family, member B 1.730 1.857 4.21E-08 1.66E-05 

FHOD3 formin homology 2 domain containing 
3 

1.716 1.554 2.53E-05 1.62E-03 

FABP7 fatty acid binding protein 7, brain 1.697 1.771 1.69E-08 9.05E-06 

HS3ST3B1 heparan sulfate (glucosamine) 3-O-

sulfotransferase 3B1 

1.695 1.957 2.82E-06 3.36E-04 

LONRF2 LON peptidase N-terminal domain and 

ring finger 2 

1.693 1.741 3.96E-05 2.22E-03 

HIVEP2 human immunodeficiency virus type I 

enhancer binding protein 2 

1.690 1.572 1.99E-05 1.34E-03 

TMTC2 transmembrane and tetratricopeptide 

repeat containing 2 

1.688 1.715 1.01E-05 8.08E-04 

GNG2 guanine nucleotide binding protein (G 

protein), gamma 2 

1.678 1.719 3.20E-07 6.66E-05 

FLJ20160 FLJ20160 protein 1.668 1.925 7.40E-06 6.49E-04 

GRIK3 glutamate receptor, ionotropic, kainate 

3 

1.667 1.644 5.87E-04 1.67E-02 

QKI quaking homolog, KH domain RNA 

binding (mouse) 

1.666 1.685 3.00E-07 6.36E-05 

FOXB1 forkhead box B1 1.662 1.607 1.32E-04 5.57E-03 

GLI1 glioma-associated oncogene homolog 1 

(zinc finger protein) 

1.661 1.819 6.74E-06 6.22E-04 

PDPN podoplanin 1.655 1.838 1.54E-07 4.16E-05 

KIAA0182 KIAA0182 1.651 1.660 2.43E-07 5.70E-05 

ADAMTS12 ADAM metallopeptidase with 
thrombospondin type 1 motif, 12 

1.650 1.657 1.05E-06 1.60E-04 

NEDD4 neural precursor cell expressed, 

developmentally down-regulated 4 

1.640 1.689 1.85E-06 2.44E-04 

SLC44A5 solute carrier family 44, member 5 1.637 2.018 1.03E-06 1.58E-04 

PNMA2 paraneoplastic antigen MA2 1.633 1.661 1.83E-07 4.70E-05 

SPON1 spondin 1, extracellular matrix protein 1.630 2.009 5.57E-08 2.06E-05 

FAM107A family with sequence similarity 107, 

member A 

1.627 2.744 5.81E-10 8.40E-07 

FGD3 FYVE, RhoGEF and PH domain 

containing 3 

1.625 1.596 2.23E-04 8.19E-03 

SPOCK1 sparc/osteonectin, cwcv and kazal-like 

domains proteoglycan (testican) 1 

1.624 1.630 4.69E-06 4.81E-04 

C20orf103 chromosome 20 open reading frame 

103 

1.619 1.696 1.73E-06 2.31E-04 

CXCL12 chemokine (C-X-C motif) ligand 12 

(stromal cell-derived factor 1) 

1.619 2.315 2.78E-07 6.14E-05 

KCNC1 potassium voltage-gated channel, 

Shaw-related subfamily, member 1 

1.618 1.511 1.53E-04 6.17E-03 

DCX doublecortin 1.618 1.996 9.42E-08 2.92E-05 

C12orf39 chromosome 12 open reading frame 39 1.613 1.536 6.72E-05 3.32E-03 
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NES nestin 1.610 1.513 6.53E-06 6.11E-04 

LMCD1 LIM and cysteine-rich domains 1 1.602 1.535 1.77E-05 1.22E-03 

FLJ14213 protor-2 1.594 1.549 1.20E-05 9.20E-04 

COTL1 coactosin-like 1 (Dictyostelium) 1.582 1.619 2.84E-05 1.74E-03 

SULF1 sulfatase 1 1.582 1.724 1.92E-06 2.51E-04 

BTBD11 BTB (POZ) domain containing 11 1.576 1.535 8.79E-04 2.25E-02 

LRIG1 leucine-rich repeats and 

immunoglobulin-like domains 1 

1.567 1.598 2.66E-05 1.67E-03 

SYT6 synaptotagmin VI 1.564 1.508 4.68E-05 2.55E-03 

PAPLN papilin, proteoglycan-like sulfated 

glycoprotein 

1.564 1.611 2.60E-03 4.94E-02 

CRB1 crumbs homolog 1 (Drosophila) 1.564 1.857 5.95E-08 2.14E-05 

LL22NC03-

75B3.6 

KIAA1644 protein 1.563 1.588 1.92E-06 2.51E-04 

PLXNC1 plexin C1 1.555 1.917 8.95E-08 2.81E-05 

CAPN6 calpain 6 1.546 4.214 1.20E-10 3.13E-07 

CHN2 chimerin (chimaerin) 2 1.538 1.536 3.30E-06 3.77E-04 

DTX4 deltex 4 homolog (Drosophila) 1.536 1.676 1.53E-05 1.10E-03 

INSM2 insulinoma-associated 2 1.529 1.790 7.59E-05 3.61E-03 

MGST1 microsomal glutathione S-transferase 1 1.528 1.557 1.71E-05 1.19E-03 

INHBB inhibin, beta B 1.521 1.634 2.47E-04 8.83E-03 

SPOCK3 sparc/osteonectin, cwcv and kazal-like 

domains proteoglycan (testican) 3 

1.520 1.962 3.84E-06 4.24E-04 

MLC1 megalencephalic leukoencephalopathy 

with subcortical cysts 1 

1.516 1.593 1.50E-05 1.08E-03 

OSBPL6 oxysterol binding protein-like 6 1.515 1.775 3.06E-05 1.83E-03 

ELL2 elongation factor, RNA polymerase II, 

2 

1.512 2.325 4.50E-08 1.75E-05 

COL21A1 collagen, type XXI, alpha 1 1.505 1.704 2.97E-06 3.48E-04 

ATP2C2 ATPase, Ca++ transporting, type 2C, 

member 2 

1.504 1.930 8.33E-06 7.07E-04 
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Table A 2 List of significantly downregulated genes (>1.5-fold) in SHH-NP. Genes are 

ranked according to their fold change values. 

 

    Fold change p-value 

Symbol Description 

SHH vs 

Vector 

SHH vs 

H3 

SHH vs 

Vector 

SHH vs 

H3 

ID1 

inhibitor of DNA binding 1, dominant 

negative helix-loop-helix protein 0.167 0.193 3.22E-11 1.27E-07 

KBTBD10 

kelch repeat and BTB (POZ) domain 
containing 10 0.216 0.428 6.96E-04 1.90E-02 

GLT8D4 

glycosyltransferase 8 domain containing 

4 0.236 0.247 1.42E-09 1.61E-06 

LPL lipoprotein lipase 0.238 0.150 1.29E-11 7.83E-08 

LGALS1 lectin, galactoside-binding, soluble, 1 0.254 0.367 1.40E-07 3.92E-05 

COL1A2 collagen, type I, alpha 2 0.268 0.410 1.54E-05 1.10E-03 

TFPI 

tissue factor pathway inhibitor 

(lipoprotein-associated coagulation 

inhibitor) 0.286 0.290 7.49E-08 2.53E-05 

PAX3 paired box 3 0.292 0.267 1.19E-11 7.83E-08 

MSX2 msh homeobox 2 0.301 0.222 7.38E-12 6.73E-08 

LGALS3 lectin, galactoside-binding, soluble, 3 0.302 0.320 4.30E-09 3.25E-06 

CTTN cortactin 0.305 0.578 4.09E-04 1.28E-02 

SNAI2 snail homolog 2 (Drosophila) 0.323 0.404 3.83E-09 3.03E-06 

ACTN3 actinin, alpha 3 0.323 0.608 4.89E-04 1.47E-02 

CDH6 

cadherin 6, type 2, K-cadherin (fetal 

kidney) 0.329 0.390 4.04E-08 1.61E-05 

PDGFRA 

platelet-derived growth factor receptor, 

alpha polypeptide 0.339 0.527 6.58E-05 3.26E-03 

RRAS 

related RAS viral (r-ras) oncogene 

homolog 0.342 0.506 3.39E-06 3.83E-04 

PLAU plasminogen activator, urokinase 0.355 0.422 6.27E-07 1.09E-04 

SMEK2 

SMEK homolog 2, suppressor of mek1 

(Dictyostelium) 0.358 0.653 1.03E-03 2.54E-02 

MSX1 msh homeobox 1 0.359 0.177 1.02E-10 2.93E-07 

APOE apolipoprotein E 0.364 0.429 1.99E-06 2.57E-04 

UNC5C unc-5 homolog C (C. elegans) 0.366 0.364 1.90E-09 1.93E-06 

CLDN11 claudin 11 0.376 0.600 1.46E-06 2.04E-04 

CPNE8 copine VIII 0.384 0.508 6.88E-07 1.17E-04 

GADD45B 

growth arrest and DNA-damage-

inducible, beta 0.385 0.561 2.93E-04 1.01E-02 

WRNIP1 Werner helicase interacting protein 1 0.385 0.626 1.89E-03 3.91E-02 

CLDN3 claudin 3 0.385 0.593 7.01E-05 3.39E-03 

MAF 

v-maf musculoaponeurotic fibrosarcoma 

oncogene homolog (avian) 0.394 0.657 1.77E-05 1.22E-03 

RIPK4 

receptor-interacting serine-threonine 

kinase 4 0.397 0.571 4.06E-06 4.39E-04 

CAT catalase 0.400 0.660 8.47E-05 3.93E-03 

BST2 bone marrow stromal cell antigen 2 0.407 0.546 1.36E-05 1.01E-03 

CEBPD 

CCAAT/enhancer binding protein 

(C/EBP), delta 0.410 0.594 1.19E-03 2.81E-02 

BOC Boc homolog (mouse) 0.410 0.452 9.72E-06 7.86E-04 

ICAM1 intercellular adhesion molecule 1 0.415 0.540 1.85E-06 2.44E-04 

BICD1 bicaudal D homolog 1 (Drosophila) 0.420 0.652 8.43E-04 2.19E-02 

PTGS1 

prostaglandin-endoperoxide synthase 1 

(prostaglandin G/H synthase and 

cyclooxygenase) 0.428 0.531 8.81E-06 7.28E-04 

MAB21L2 mab-21-like 2 (C. elegans) 0.428 0.480 1.60E-07 4.24E-05 
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GREM1 

gremlin 1, cysteine knot superfamily, 

homolog (Xenopus laevis) 0.432 0.226 6.09E-09 4.16E-06 

ROR1 

receptor tyrosine kinase-like orphan 

receptor 1 0.435 0.599 5.44E-05 2.85E-03 

S100A4 S100 calcium binding protein A4 0.437 0.513 4.86E-06 4.90E-04 

PRRX1 paired related homeobox 1 0.440 0.419 2.12E-07 5.16E-05 

COL1A1 collagen, type I, alpha 1 0.440 0.527 1.33E-05 9.95E-04 

TNNT1 troponin T type 1 (skeletal, slow) 0.444 0.535 8.25E-06 7.03E-04 

KRT19 keratin 19 0.447 0.497 8.22E-07 1.33E-04 

PCDHGC3 protocadherin gamma subfamily C, 3 0.450 0.621 2.69E-07 6.02E-05 

AHNAK AHNAK nucleoprotein 0.453 0.502 1.24E-06 1.80E-04 

FIGF 

c-fos induced growth factor (vascular 

endothelial growth factor D) 0.459 0.281 1.52E-11 8.30E-08 

GPR160 G protein-coupled receptor 160 0.460 0.625 3.71E-05 2.12E-03 

COL9A3 collagen, type IX, alpha 3 0.461 0.433 1.82E-07 4.70E-05 

TFAP2C 

transcription factor AP-2 gamma 

(activating enhancer binding protein 2 

gamma) 0.465 0.447 2.87E-08 1.29E-05 

FXYD5 

FXYD domain containing ion transport 

regulator 5 0.471 0.603 7.41E-06 6.49E-04 

ZNF385B zinc finger protein 385B 0.476 0.560 8.10E-04 2.13E-02 

STX3 syntaxin 3 0.476 0.573 5.90E-04 1.68E-02 

CUL4B cullin 4B 0.480 0.644 7.27E-05 3.49E-03 

RSPO3 R-spondin 3 homolog (Xenopus laevis) 0.481 0.243 1.94E-10 4.02E-07 

CDON Cdon homolog (mouse) 0.482 0.349 1.39E-10 3.32E-07 

CDH11 

cadherin 11, type 2, OB-cadherin 

(osteoblast) 0.487 0.652 1.59E-04 6.37E-03 

CDC42EP5 

CDC42 effector protein (Rho GTPase 

binding) 5 0.490 0.610 2.00E-06 2.58E-04 

FOS 

v-fos FBJ murine osteosarcoma viral 
oncogene homolog 0.498 0.475 6.28E-07 1.09E-04 

BMP5 bone morphogenetic protein 5 0.505 0.527 8.24E-07 1.33E-04 

MAGEA3 melanoma antigen family A, 3 0.505 0.635 3.92E-06 4.28E-04 

ID2 

inhibitor of DNA binding 2, dominant 
negative helix-loop-helix protein 0.505 0.496 8.93E-08 2.81E-05 

HIST1H2A

C histone cluster 1, H2ac 0.506 0.660 2.54E-03 4.85E-02 

BAIAP2L1 BAI1-associated protein 2-like 1 0.507 0.557 2.61E-07 5.88E-05 

MYL9 myosin, light chain 9, regulatory 0.516 0.343 2.44E-09 2.19E-06 

FBXO2 F-box protein 2 0.516 0.573 2.90E-05 1.77E-03 

C7orf58 chromosome 7 open reading frame 58 0.517 0.581 2.40E-05 1.56E-03 

CNTNAP2 contactin associated protein-like 2 0.517 0.382 2.78E-08 1.29E-05 

FAM123A family with sequence similarity 123A 0.518 0.594 4.36E-06 4.64E-04 

SPINT1 serine peptidase inhibitor, Kunitz type 1 0.518 0.602 3.68E-04 1.19E-02 

SERPINB9 

serpin peptidase inhibitor, clade B 
(ovalbumin), member 9 0.519 0.647 6.99E-07 1.19E-04 

PPP1R1A 

protein phosphatase 1, regulatory 

(inhibitor) subunit 1A 0.520 0.607 1.21E-06 1.77E-04 

PLCD4 phospholipase C, delta 4 0.523 0.606 3.55E-05 2.04E-03 

TPD52L1 tumor protein D52-like 1 0.524 0.557 1.66E-05 1.16E-03 

WIPI1 

WD repeat domain, phosphoinositide 

interacting 1 0.527 0.539 8.38E-07 1.35E-04 

CDH1 

cadherin 1, type 1, E-cadherin 

(epithelial) 0.529 0.515 2.47E-04 8.83E-03 

VAMP8 

vesicle-associated membrane protein 8 

(endobrevin) 0.531 0.361 1.69E-06 2.28E-04 

ZIC5 

Zic family member 5 (odd-paired 

homolog, Drosophila) 0.531 0.442 6.12E-07 1.08E-04 
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SCML4 sex comb on midleg-like 4 (Drosophila) 0.531 0.164 6.02E-12 6.58E-08 

MMP23B matrix metallopeptidase 23B 0.532 0.665 5.72E-04 1.64E-02 

MAFF 

v-maf musculoaponeurotic fibrosarcoma 

oncogene homolog F (avian) 0.535 0.661 1.10E-04 4.80E-03 

DACT1 

dapper, antagonist of beta-catenin, 

homolog 1 (Xenopus laevis) 0.536 0.556 7.45E-07 1.23E-04 

IFIT3 

interferon-induced protein with 

tetratricopeptide repeats 3 0.536 0.614 6.44E-05 3.22E-03 

ZIC2 

Zic family member 2 (odd-paired 

homolog, Drosophila) 0.537 0.450 2.47E-08 1.18E-05 

KRT18 keratin 18 0.537 0.542 2.17E-06 2.75E-04 

HIST1H2B

G histone cluster 1, H2bg 0.539 0.636 1.04E-03 2.56E-02 

PCDH7 protocadherin 7 0.540 0.580 8.99E-05 4.11E-03 

EMP3 epithelial membrane protein 3 0.540 0.611 5.12E-06 5.14E-04 

IFITM1 

interferon induced transmembrane 
protein 1 (9-27) 0.545 0.643 2.43E-05 1.58E-03 

C13orf15 chromosome 13 open reading frame 15 0.547 0.374 3.82E-10 7.08E-07 

BNC1 basonuclin 1 0.551 0.564 1.79E-04 6.92E-03 

RCAN3 RCAN family member 3 0.552 0.497 3.65E-06 4.09E-04 

WWC2 WW and C2 domain containing 2 0.554 0.643 4.67E-04 1.41E-02 

RAB11FIP1 

RAB11 family interacting protein 1 
(class I) 0.555 0.591 1.43E-05 1.05E-03 

HOXC6 homeobox C6 0.555 0.368 2.16E-08 1.08E-05 

ATF3 activating transcription factor 3 0.556 0.552 1.57E-07 4.19E-05 

GUCA1A guanylate cyclase activator 1A (retina) 0.558 0.579 3.31E-06 3.77E-04 

UNC5B unc-5 homolog B (C. elegans) 0.559 0.592 1.21E-05 9.22E-04 

GDF15 growth differentiation factor 15 0.559 0.414 1.95E-06 2.53E-04 

TNFRSF11

B 

tumor necrosis factor receptor 

superfamily, member 11b 0.560 0.269 2.92E-08 1.30E-05 

ANXA2 annexin A2 0.562 0.499 4.48E-07 8.50E-05 

EVI1 ecotropic viral integration site 1 0.563 0.599 3.39E-06 3.83E-04 

RSPO1 R-spondin homolog (Xenopus laevis) 0.563 0.462 3.41E-09 2.78E-06 

PTGS2 

prostaglandin-endoperoxide synthase 2 

(prostaglandin G/H synthase and 
cyclooxygenase) 0.564 0.337 3.89E-08 1.59E-05 

ELTD1 

EGF, latrophilin and seven 

transmembrane domain containing 1 0.566 0.375 8.33E-08 2.71E-05 

ZFP36 

zinc finger protein 36, C3H type, 

homolog (mouse) 0.566 0.609 8.83E-05 4.05E-03 

TGFBI 

transforming growth factor, beta-

induced, 68kDa 0.567 0.462 6.45E-07 1.11E-04 

PCDH10 protocadherin 10 0.568 0.535 8.57E-06 7.18E-04 

MAP3K8 

mitogen-activated protein kinase kinase 

kinase 8 0.574 0.458 9.32E-07 1.46E-04 

GAD1 

glutamate decarboxylase 1 (brain, 

67kDa) 0.575 0.579 1.65E-06 2.24E-04 

FAM150B 

family with sequence similarity 150, 

member B 0.575 0.396 2.90E-07 6.25E-05 

CYR61 cysteine-rich, angiogenic inducer, 61 0.576 0.643 5.61E-06 5.51E-04 

TFAP2A 

transcription factor AP-2 alpha 

(activating enhancer binding protein 2 

alpha) 0.578 0.534 3.99E-08 1.60E-05 

TWIST1 twist homolog 1 (Drosophila) 0.581 0.504 3.82E-07 7.49E-05 

SLC7A8 

solute carrier family 7 (cationic amino 
acid transporter, y+ system), member 8 0.581 0.423 1.43E-08 7.98E-06 

MEF2C myocyte enhancer factor 2C 0.583 0.563 9.30E-06 7.62E-04 

KRT8 keratin 8 0.585 0.661 2.81E-05 1.73E-03 
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BAMBI 

BMP and activin membrane-bound 

inhibitor homolog (Xenopus laevis) 0.586 0.449 5.65E-08 2.07E-05 

F2RL2 

coagulation factor II (thrombin) 

receptor-like 2 0.591 0.602 5.60E-05 2.91E-03 

RASGEF1A RasGEF domain family, member 1A 0.593 0.592 1.24E-04 5.26E-03 

MAGEA2B melanoma antigen family A, 2B 0.600 0.657 8.60E-06 7.19E-04 

MPP1 

membrane protein, palmitoylated 1, 

55kDa 0.602 0.543 1.86E-07 4.74E-05 

TACSTD1 

tumor-associated calcium signal 

transducer 1 0.607 0.558 1.61E-04 6.43E-03 

MGMT 

O-6-methylguanine-DNA 
methyltransferase 0.607 0.657 1.40E-03 3.16E-02 

FBLN2 fibulin 2 0.608 0.620 3.40E-05 1.98E-03 

RAB3B RAB3B, member RAS oncogene family 0.609 0.545 2.12E-07 5.16E-05 

RNF135 ring finger protein 135 0.610 0.661 3.86E-05 2.18E-03 

TAGLN transgelin 0.611 0.296 4.29E-11 1.57E-07 

C9orf150 chromosome 9 open reading frame 150 0.611 0.630 4.09E-06 4.41E-04 

ID3 

inhibitor of DNA binding 3, dominant 

negative helix-loop-helix protein 0.612 0.512 4.71E-08 1.81E-05 

GLI3 GLI-Kruppel family member GLI3 0.613 0.603 4.47E-06 4.68E-04 

BMP2 bone morphogenetic protein 2 0.613 0.479 1.98E-07 4.95E-05 

PPFIBP2 

PTPRF interacting protein, binding 
protein 2 (liprin beta 2) 0.615 0.615 1.39E-05 1.03E-03 

ALG10B 

asparagine-linked glycosylation 10 

homolog B (yeast, alpha-1,2-

glucosyltransferase) 0.617 0.611 8.33E-05 3.89E-03 

GAL galanin prepropeptide 0.618 0.391 7.18E-05 3.46E-03 

FOXA3 forkhead box A3 0.618 0.587 1.70E-04 6.66E-03 

SAMD4A 

sterile alpha motif domain containing 

4A 0.619 0.665 3.25E-06 3.73E-04 

FAP fibroblast activation protein, alpha 0.623 0.439 8.22E-07 1.33E-04 

MAGEA2 melanoma antigen family A, 2 0.627 0.661 7.67E-05 3.63E-03 

PTPRM 

protein tyrosine phosphatase, receptor 

type, M 0.628 0.601 1.02E-06 1.56E-04 

JAG1 jagged 1 (Alagille syndrome) 0.630 0.632 1.64E-05 1.15E-03 

CDS1 

CDP-diacylglycerol synthase 

(phosphatidate cytidylyltransferase) 1 0.631 0.518 1.23E-07 3.53E-05 

PMP22 peripheral myelin protein 22 0.633 0.531 1.36E-06 1.94E-04 

DMRT3 

doublesex and mab-3 related 

transcription factor 3 0.634 0.550 1.14E-05 8.87E-04 

SLC26A6 solute carrier family 26, member 6 0.637 0.656 6.19E-05 3.13E-03 

TLE1 

transducin-like enhancer of split 1 

(E(sp1) homolog, Drosophila) 0.639 0.647 5.96E-06 5.72E-04 

TMEM204 transmembrane protein 204 0.640 0.528 4.38E-06 4.65E-04 

HSPB1 heat shock 27kDa protein 1 0.641 0.657 2.38E-05 1.55E-03 

TFAP2B 

transcription factor AP-2 beta (activating 

enhancer binding protein 2 beta) 0.642 0.574 7.86E-07 1.29E-04 

MRCL3 myosin regulatory light chain MRCL3 0.642 0.597 1.06E-06 1.60E-04 

COL8A2 collagen, type VIII, alpha 2 0.643 0.608 8.69E-06 7.24E-04 

PHLDA2 

pleckstrin homology-like domain, 

family A, member 2 0.647 0.457 2.93E-07 6.27E-05 

EYA4 eyes absent homolog 4 (Drosophila) 0.650 0.458 1.12E-06 1.68E-04 

OLFM3 olfactomedin 3 0.657 0.385 2.44E-09 2.19E-06 

VAMP5 

vesicle-associated membrane protein 5 

(myobrevin) 0.666 0.528 1.60E-07 4.24E-05 

ZNF185 zinc finger protein 185 (LIM domain) 0.667 0.596 1.54E-04 6.18E-03 
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APPENDIX B GLI BINDING SITES ANALYSIS 

Table B 1 List of SHH upregulated genes that have putative GLI binding sites within 5 

kb of the 5’ upstream region from the transcriptional start site. 

 

Gene Name Chr Strand No. of 

binding 

sites 

NCBI36 (March 2006) genome coordinates 

FZD9 7 1 8 ;72481606;72481853;72481875;72482104;72482320;7248

3067;72484598;72485502 

RAB33A X 1 8 ;129129153;129129588;129130120;129130516;12913061

8;129131992;129132854;129132880 

VSX1 20 -1 8 ;25011505;25012240;25012526;25012646;25013160;2501

3277;25015330;25015527 

LL22NC03-

75B3.6 

22 -1 7 ;43029839;43029989;43030996;43031831;43031863;4303

1997;43032026 

NKX2-2 20 -1 7 ;21443440;21444126;21445002;21445631;21446000;2144

6079;21446266 

STMN3 20 -1 7 ;61756113;61756586;61757610;61758173;61758187;6175

8959;61759752 

ATBF1 16 -1 6 ;71551550;71552606;71553830;71554216;71555143;7155

5698 

DSCR1 21 -1 6 ;34909918;34910454;34910621;34911242;34913941;3491

4009 

FGF19 11 -1 6 ;69228284;69228297;69228830;69229223;69230020;6923

1791 

FOXA2 20 -1 6 ;22512908;22513270;22513312;22513957;22514033;2251

7225 

GLI1 12 1 6 ;56138973;56140064;56141787;56142041;56142299;5614

2451 

HES5 1 -1 6 ;2451751;2453850;2453901;2454104;2454904;2455611 

MFSD6 2 1 6 ;191004024;191004217;191004305;191004326;19100562

6;191007076 

PGF 14 -1 6 ;74491925;74493288;74494277;74494969;74495100;7449

5713 

PTCHD1 X 1 6 ;23259788;23259840;23260188;23260346;23261869; 

23262487 

CCDC48 3 1 5 ;130231796;130232141;130233496;130234185;13023459

7 

CSPG5 3 -1 5 ;47595763;47597782;47598556;47599213;47599436 

CYP1B1 2 -1 5 ;38156808;38157766;38159555;38159613;38160929 

FOXF2 6 1 5 ;1330402;1332821;1333599;1333836;1334917 

GRIK3 1 -1 5 ;37273227;37273290;37274905;37275515;37277119 

MLC1 22 -1 5 ;48865548;48865615;48867677;48867693;48868854 

RASSF2 20 -1 5 ;4730054;4730455;4731106;4732534;4734522 

RPS6KA2 6 -1 5 ;167197269;167197843;167197920;167198219;16719877
0 

SOHLH2 13 -1 5 ;35688075;35688364;35688896;35689796;35691050 
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AC079061.8 8 -1 4 ;110726460;110726917;110730589;110730724 

ANKH 5 -1 4 ;14925285;14925961;14926129;14929322 

BHLHE22 8 1 4 ;65652242;65653282;65655024;65655041 

COTL1 16 -1 4 ;83209763;83210848;83210995;83212427 

EGR2 10 -1 4 ;64245902;64247566;64248012;64249585 

FOXA1 14 -1 4 ;37134954;37134958;37135660;37137384 

FOXF1 16 1 4 ;85096876;85099150;85101068;85101355 

GABRA2 4 -1 4 ;46086388;46087546;46089110;46089872 

MAB21L1 13 -1 4 ;34950716;34951077;34951504;34951979 

NR2E1 6 1 4 ;108590803;108592768;108593565;108594629 

NRP1 10 -1 4 ;33665708;33666300;33666589;33667007 

OTP 5 -1 4 ;76970181;76970428;76970531;76972821 

PTCH1 9 -1 4 ;97311302;97311437;97314067;97314385 

SHH 7 -1 4 ;155300111;155300211;155300369;155302360 

AC009656.11 11 1 3 ;36375441;36376159;36376172 

C12orf39 12 1 3 ;21568383;21568656;21569793 

C8orf46 8 1 3 ;67563655;67563809;67564748 

CAPN6 X -1 3 ;110393870;110394824;110398095 

COL3A1 2 1 3 ;189545278;189545664;189546826 

EBF3 10 -1 3 ;131652106;131652904;131655389 

ELL2 5 -1 3 ;95326026;95326108;95327644 

FAM107A 3 -1 3 ;58531888;58532052;58532765 

FLT4 5 -1 3 ;180009778;180010059;180011267 

FOXD2 1 1 3 ;47673562;47676053;47676094 

GNG2 14 1 3 ;51485345;51485511;51485658 

HES6 2 -1 3 ;238813366;238813379;238815601 

HEY2 6 1 3 ;126108554;126109501;126111963 

KLHDC8A 1 -1 3 ;203580189;203580474;203581099 

LRIG1 3 -1 3 ;66634504;66635413;66638035 

MTHFD2L 4 1 3 ;75255621;75256139;75258771 

NTN1 17 1 3 ;8862429;8864096;8864474 

OLFM4 13 1 3 ;52498738;52499748;52499915 

OLIG1 21 1 3 ;33361359;33361545;33363804 

PGBD5 1 -1 3 ;228581001;228581627;228581797 

PLXNC1 12 1 3 ;93062670;93063011;93066864 

POU3F2 6 1 3 ;99385491;99387104;99389053 

QKI 6 1 3 ;163752067;163752884;163754525 

RASD1 17 -1 3 ;17340450;17343633;17344940 

RGS20 8 1 3 ;54952321;54954099;54955431 

RHBDL3 17 1 3 ;27614231;27616075;27616521 

SNCAIP 5 1 3 ;121750997;121752028;121753944 

SPOCK1 5 -1 3 ;136863461;136864219;136865564 

SYT4 18 -1 3 ;39111618;39113416;39113927 

TMTC2 12 1 3 ;81601591;81601702;81604746 

ANGPT1 8 -1 2 ;108580847;108582437 
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BTBD11 12 1 2 ;106495361;106498430 

C20orf103 20 1 2 ;9440625;9443173 

DCAMKL1 13 -1 2 ;35598574;35602873 

DCX X -1 2 ;110543426;110544671 

ELMO1 7 -1 2 ;36902210;36905884 

FAM181A 14 1 2 ;93459325;93461207 

FGD3 9 1 2 ;94775996;94777226 

FOXB1 15 1 2 ;58082783;58082799 

HIVEP2 6 -1 2 ;143138521;143140512 

HS3ST3B1 17 1 2 ;14143984;14145083 

JAM2 21 1 2 ;25929963;25931330 

KCNJ8 12 -1 2 ;21821600;21821780 

LONRF2 2 -1 2 ;100306470;100307043 

MGST1 12 1 2 ;16397485;16398212 

NES 1 -1 2 ;154914597;154915381 

NKX6-1 4 -1 2 ;85638908;85640392 

NLGN1 3 1 2 ;174801364;174802856 

NTRK2 9 1 2 ;86471814;86475065 

PAPLN 14 1 2 ;72773046;72773862 

PNMA2 8 -1 2 ;26423287;26424403 

PRMT8 12 1 2 ;3466055;3468781 

PROS1 3 -1 2 ;95175589;95178980 

SHISA3 4 1 2 ;42090073;42091052 

SLC40A1 2 -1 2 ;190156432;190157618 

SLC4A4 4 1 2 ;72317244;72320677 

SPOCK3 4 -1 2 ;168395136;168395185 

SPP1 4 1 2 ;89113107;89115867 

ST18 8 -1 2 ;53289592;53289966 

SYT6 1 -1 2 ;114484420;114484969 

TBX3 12 -1 2 ;113605897;113606559 

ZC3HAV1 7 -1 2 ;138445448;138447240 

ADAMTS12 5 -1 1 ;33929360 

ARL13B 3 1 1 ;95179967 

ARL4A 7 1 1 ;12691862 

ARX X -1 1 ;24948229 

ATP2C2 16 1 1 ;82958047 

BICC1 10 1 1 ;59941684 

C20orf100 20 1 1 ;42034002 

C4orf18 4 -1 1 ;159315230 

C8orf4 8 1 1 ;40127562 

CRHBP 5 1 1 ;76280725 

EGFR 7 1 1 ;55052083 

FAT4 4 1 1 ;126453009 

FLRT2 14 1 1 ;85154682 

HHIP 4 1 1 ;145785912 
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INHBB 2 1 1 ;120818017 

INSM2 14 1 1 ;35068959 

ITGB8 7 1 1 ;20333860 

KCND3 1 -1 1 ;112327076 

MOXD1 6 -1 1 ;132764358 

MTTP 4 1 1 ;100711136 

OXCT1 5 -1 1 ;41908808 

PAPPA 9 1 1 ;117955474 

PCDH8 13 -1 1 ;52323404 

PITX2 4 -1 1 ;111766765 

PLEKHH2 2 1 1 ;43721687 

RASSF4 10 1 1 ;44782105 

SLIT1 10 -1 1 ;98936553 

TTC6 14 1 1 ;37330662 

VEPH1 3 -1 1 ;158699514 

LMCD1 3 1 0  

PHOX2B 4 -1 0  

SCG3 15 1 0  

OSBPL6 2 1 0  

GLRB 4 1 0  

FHOD3 18 1 0  

SLIT2 4 1 0  

OLFML3 1 1 0  

PCSK1 5 -1 0  

NEUROD1 2 -1 0  

PDE4B 1 1 0  

POSTN 13 -1 0  

DYNC1I1 7 1 0  

DDC 7 -1 0  

PTPRO 12 1 0  

FABP7 6 1 0  

SOX1 13 1 0  

COL12A1 6 -1 0  

CRB1 1 1 0  

VSTM2A 7 1 0  
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Table B 2 List of SHH upregulated genes that have putative GLI binding sites within 5 

kb of the 3’ downstream region from the transcriptional start site. 

Gene 

Name 

Chr Strand No. of 

binding 

sites 

NCBI36 (March 2006) genome coordinates 

STMN3 20 -1 10 ;61738659;61739139;61739997;61740022;61740381;61741203;

61742099;61742424;61742438;61743022 

NKX2-2 20 -1 8 ;21435749;21435912;21436720;21436951;21436955;21437332;

21437362;21440495 

PGF 14 -1 7 ;74475458;74475984;74476709;74477157;74477183;74477619;

74477671 

RASD1 17 -1 7 ;17334611;17335648;17335794;17336270;17336351;17336501;

17339086 

NTN1 17 1 7 ;9084482;9084698;9084856;9084914;9085197;9087102;908807

6 

HES6 2 -1 7 ;238807423;238807492;238808274;238809654;238810489;238

810734;238811159 

FGD3 9 1 7 ;94837741;94838378;94840147;94840156;94841107;94841942;

94842654 

DDC 7 -1 7 ;50493623;50496104;50496411;50496677;50496987;50497308;
50497329 

C20orf100 20 1 7 ;42130891;42131962;42132720;42132967;42133493;42133670;

42134593 

LMCD1 3 1 6 ;8584290;8584452;8586437;8587144;8587365;8588169 

FGF19 11 -1 6 ;69218951;69218960;69219624;69221328;69223029;69223042 

PLEKHH
2 

2 1 6 ;43847492;43849284;43849516;43849649;43850535;43851004 

FAM181

A 

14 1 6 ;93465733;93465904;93467123;93467518;93468439;93469682 

MLC1 22 -1 6 ;48838431;48839817;48839886;48840090;48841198;48841581 

CSPG5 3 -1 5 ;47574123;47575145;47575565;47576735;47578730 

MTTP 4 1 5 ;100764473;100764735;100766112;100766603;100766903 

FOXF1 16 1 5 ;85106186;85108099;85108134;85108433;85108890 

PNMA2 8 -1 5 ;26416559;26417997;26419262;26419329;26419703 

RPS6KA2 6 -1 5 ;166742258;166742291;166743111;166744528;166745003 

FLT4 5 -1 5 ;179963764;179963868;179967096;179967689;179967726 

RASSF2 20 -1 5 ;4710113;4711103;4711458;4712261;4712811 

OLIG1 21 1 5 ;33366791;33367351;33368463;33369690;33369984 

PCDH8 13 -1 5 ;52313626;52313699;52314389;52316110;52316376 

ZC3HAV

1 

7 -1 4 ;138378035;138378380;138381650;138382574 

SLIT1 10 -1 4 ;98745985;98746489;98746993;98748130 

C8orf46 8 1 4 ;67591096;67591164;67593911;67595601 

SHH 7 -1 4 ;155284761;155285326;155285582;155285877 

CRHBP 5 1 4 ;76301778;76303836;76304151;76304479 

OTP 5 -1 4 ;76957648;76957791;76958991;76959563 

ANKH 5 -1 4 ;14761346;14762296;14762834;14762850 

PGBD5 1 -1 4 ;228523183;228524095;228524653;228524868 

HES5 1 -1 4 ;2446376;2447319;2449054;2449560 

LL22NC0

3-75B3.6 

22 -1 4 ;42973083;42973326;42973509;42976688 

PAPLN 14 1 4 ;72809256;72810002;72811279;72813576 

FABP7 6 1 4 ;123147422;123148974;123149090;123150538 

NES 1 -1 4 ;154904027;154904378;154904887;154905650 
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MTHFD2

L 

4 1 4 ;75389394;75390798;75391306;75391319 

FOXD2 1 1 4 ;47681468;47681560;47681983;47682106 

ARX X -1 4 ;24928975;24930107;24930128;24931650 

FZD9 7 1 4 ;72488481;72489992;72492108;72492630 

PAPPA 9 1 4 ;118201348;118202504;118202560;118203048 

RAB33A X 1 3 ;129149392;129149778;129150523 

OLFM4 13 1 3 ;52523677;52526715;52527089 

COTL1 16 -1 3 ;83154710;83156949;83156962 

INHBB 2 1 3 ;120827711;120828316;120828332 

OLFML3 1 1 3 ;114327885;114328718;114330095 

TTC6 14 1 3 ;37382286;37383512;37385455 

LRIG1 3 -1 3 ;66509847;66510899;66511284 

KLHDC8

A 

1 -1 3 ;203568631;203569747;203571319 

SYT6 1 -1 3 ;114433690;114433931;114436454 

ADAMTS

12 

5 -1 3 ;33559408;33559412;33561745 

NRP1 10 -1 3 ;33522712;33524401;33525276 

FAM107

A 

3 -1 3 ;58523989;58526544;58526717 

DCX X -1 3 ;110428330;110428686;110429830 

PROS1 3 -1 3 ;95072050;95073370;95075670 

SOX1 13 1 3 ;111771896;111771900;111774614 

BTBD11 12 1 3 ;106575879;106577803;106579469 

VEPH1 3 -1 3 ;158457544;158457705;158459571 

PRMT8 12 1 3 ;3573432;3573883;3575364 

GLI1 12 1 2 ;56154612;56156476 

SPP1 4 1 2 ;89123510;89126655 

FOXF2 6 1 2 ;1341335;1342384 

ATP2C2 16 1 2 ;83055878;83059492 

ANGPT1 8 -1 2 ;108331629;108332521 

ARL13B 3 1 2 ;95258135;95258270 

PDE4B 1 1 2 ;66613312;66614739 

ELMO1 7 -1 2 ;36857561;36860560 

SOHLH2 13 -1 2 ;35636259;35636624 

GNG2 14 1 2 ;51505264;51507253 

MFSD6 2 1 2 ;191073251;191074392 

PTPRO 12 1 2 ;15639399;15642953 

FLRT2 14 1 2 ;85161083;85164488 

SPOCK1 5 -1 2 ;136338821;136340312 

BICC1 10 1 2 ;60261453;60262767 

MOXD1 6 -1 2 ;132657045;132659696 

GRIK3 1 -1 2 ;37038694;37039085 

NTRK2 9 1 2 ;86618907;86619978 

RASSF4 10 1 2 ;44808964;44809621 

C20orf103 20 1 1 ;9462028 

KCNJ8 12 -1 1 ;21807797 

OSBPL6 2 1 1 ;178973407 

C12orf39 12 1 1 ;21578467 

ITGB8 7 1 1 ;20417554 

SYT4 18 -1 1 ;39101553 

SLC4A4 4 1 1 ;72655101 

SLC40A1 2 -1 1 ;190133019 
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SNCAIP 5 1 1 ;121828904 

CCDC48 3 1 1 ;130245842 

FHOD3 18 1 1 ;32615370 

TMTC2 12 1 1 ;82054481 

INSM2 14 1 1 ;35076760 

SLIT2 4 1 1 ;20231285 

BHLHE22 8 1 1 ;65659611 

NKX6-1 4 -1 1 ;85628694 

RHBDL3 17 1 1 ;27676085 

FOXA2 20 -1 1 ;22510098 

C8orf4 8 1 1 ;40134657 

ST18 8 -1 1 ;53186724 

RGS20 8 1 1 ;55035363 

EGFR 7 1 1 ;55244190 

HHIP 4 1 1 ;145882235 

PITX2 4 -1 1 ;111755837 

KCND3 1 -1 1 ;112115278 

SHISA3 4 1 1 ;42101864 

AC07906

1.8 

8 -1 1 ;110652391 

TBX3 12 -1 1 ;113591704 

FOXB1 15 1 1 ;58089590 

POSTN 13 -1 1 ;37033695 

LONRF2 2 -1 1 ;100265947 

C4orf18 4 -1 1 ;159266980 

DYNC1I1 7 1 1 ;95568154 

ARL4A 7 1 1 ;12699922 

NLGN1 3 1 1 ;175486095 

NR2E1 6 1 1 ;108618210 

VSX1 20 -1 1 ;25003691 

SPOCK3 4 -1 1 ;167889370 

AC00965

6.11 

11 1 1 ;36445296 

MGST1 12 1 1 ;16409194 

CRB1 1 1 1 ;195718042 

CAPN6 X -1 1 ;110371973 

JAM2 21 1 1 ;26012787 

HS3ST3B

1 

17 1 1 ;14191131 

FAT4 4 1 1 ;126635617 

VSTM2A 7 1 0  

GABRA2 4 -1 0  

MAB21L

1 

13 -1 0  

PTCHD1 X 1 0  

PTCH1 9 -1 0  

EBF3 10 -1 0  

HEY2 6 1 0  

HIVEP2 6 -1 0  

QKI 6 1 0  

POU3F2 6 1 0  

COL12A1 6 -1 0  

DSCR1 21 -1 0  

PCSK1 5 -1 0  
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COL3A1 2 1 0  

NEUROD

1 

2 -1 0  

ATBF1 16 -1 0  

GLRB 4 1 0  

CYP1B1 2 -1 0  

PLXNC1 12 1 0  

DCAMKL

1 

13 -1 0  

FOXA1 14 -1 0  

EGR2 10 -1 0  

ELL2 5 -1 0  

PHOX2B 4 -1 0  

SCG3 15 1 0  

OXCT1 5 -1 0  

 

Table B 3 List of SHH downregulated genes with putative GLI binding sites within 5 kb 

of the 5’ upstream region from the transcriptional start site 

Gene Name Chr Strand Transcript 

Start Site 

No. of 

binding 

sites 

Binding Site Start 

GDF15 19 1 18357968 11 ;42;210;1372;2849;2998;3108;3396;393

5;4038;4158;4171 

EMP3 19 1 53520454 9 ;1404;1886;2313;3054;3132;3294;3395;

3435;4897 

MYL9 20 1 34603311 9 ;1203;1207;1286;2265;2618;3040;4840;

4945;4979 

AHNAK 11 -1 62039950 9 ;523;604;895;2867;2981;3155;3715;387

7;4951 

RCAN3 1 1 24701974 9 ;132;1649;1697;2026;2056;2086;2109;2

161;2733 

LGALS1 22 1 36401559 8 ;268;298;427;635;769;1485;1870;4189 

CDH1 16 1 67328696 8 ;450;953;2268;3319;3485;3682;4253;47

35 

ICAM1 19 1 10242765 8 ;295;1280;1596;2074;2226;2636;3269;4

475 

KRT8 12 -1 51577238 8 ;1210;1559;3168;3177;3406;3449;4614;

4753 

KBTBD10 2 1 170074458 8 ;146;533;838;1024;1512;2023;2184;354
5 

MMP23B 1 1 1557423 8 ;6;2218;2353;2605;2626;2788;3039;380

2 

COL1A1 17 -1 45616456 7 ;886;1081;1143;3824;3934;4069;4513 

HSPB1 7 1 75769859 7 ;38;674;1169;1330;1456;2956;4393 

BAIAP2L1 7 -1 97760007 7 ;197;1167;1476;2021;2034;3228;4748 

JAG1 20 -1 10566334 7 ;266;593;872;876;1176;2628;3819 

VAMP8 2 1 85658228 7 ;497;2478;2974;3020;4176;4558;4810 

GAL 11 1 68208559 7 ;448;492;1767;3386;3427;4106;4252 

FBXO2 1 -1 11631037 7 ;187;1822;1835;2616;2930;4419;4572 

COL9A3 20 1 60918859 7 ;83;841;1804;1961;3427;4394;4928 

PPFIBP2 11 1 7491627 7 ;55;68;709;1926;2196;3818;4468 

VAMP5 2 1 85665042 7 ;669;813;960;1430;1745;2500;3713 
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BST2 19 -1 17374750 6 ;557;863;1183;1498;2341;3986 

ZFP36 19 1 44589293 6 ;118;2129;2814;2857;3811;3832 

CAT 11 1 34417054 6 ;1181;1194;1747;3062;4553;4596 

MAFF 22 1 36927944 6 ;6;1226;1328;2623;2861;3231 

PTGS1 9 1 124173050 6 ;470;834;1932;2217;2237;3958 

PHLDA2 11 -1 2906079 6 ;14;1120;1285;2458;3330;4387 

COL8A2 1 -1 36333424 6 ;669;985;1283;1708;3950;4938 

TAGLN 11 1 116575296 6 ;60;637;2005;2484;3053;4775 

ID2 2 1 8739564 6 ;698;1192;2346;3046;3250;4169 

APOE 19 1 50100879 5 ;218;823;1647;3712;3990 

GADD45B 19 1 2427135 5 ;378;1414;3875;4005;4090 

TACSTD1 2 1 47449954 5 ;1282;1799;2990;4126;4544 

PDGFRA 4 1 54790204 5 ;168;1634;2370;2721;3000 

COL1A2 7 1 93861809 5 ;635;648;2147;3545;3664 

ATF3 1 1 210805320 5 ;833;2182;2874;3250;4914 

CDC42EP5 19 -1 59668022 5 ;771;1256;1730;2756;4339 

CYR61 1 1 85819041 5 ;462;710;1267;4317;4325 

BNC1 15 -1 81715659 5 ;850;2375;3848;3988;4330 

RASGEF1A 10 -1 43009990 5 ;1425;2112;3729;4524;4817 

BAMBI 10 1 29006430 5 ;2633;2769;3537;3849;4271 

S100A4 1 -1 151782722 5 ;1021;1145;3754;4168;4725 

GUCA1A 6 1 42231162 5 ;1099;1817;2517;3288;4312 

SERPINB9 6 -1 2832507 5 ;395;2149;2568;2832;3104 

ID1 20 1 29656753 5 ;167;1919;1963;3113;4264 

RRAS 19 -1 54830364 4 ;234;600;3520;3988 

HOXC6 12 1 52708461 4 ;764;1140;2420;3426 

PRRX1 1 1 168899937 4 ;401;2297;2505;4071 

HIST1H2BG 6 -1 26324470 4 ;2527;3203;3751;4205 

GAD1 2 1 171381446 4 ;143;147;1610;3559 

KRT19 17 -1 36933396 4 ;99;4094;4279;4603 

RNF135 17 1 26322082 4 ;683;1843;4148;4428 

IFITM1 11 1 304041 4 ;2326;2391;3376;4445 

CUL4B X -1 119542476 4 ;176;189;1570;3550 

PCDH7 4 1 30331135 4 ;2686;3313;4423;4814 

RIPK4 21 -1 42032614 4 ;2389;2610;2888;3699 

MGMT 10 1 131155510 4 ;810;1036;1145;2911 

UNC5B 10 1 72642298 4 ;2310;2436;3725;4157 

TLE1 9 -1 83388423 4 ;2442;2802;2811;3578 

FXYD5 19 1 40337467 4 ;623;1511;2761;3479 

KRT18 12 1 51628922 4 ;1045;1548;3629;4568 

IFIT3 10 1 91082246 4 ;2167;3802;3993;4366 

TFAP2A 6 -1 10504902 4 ;2186;2900;3536;4879 

HIST1H2AC 6 1 26232432 4 ;986;2576;3366;4233 

PMP22 17 -1 15073822 4 ;1088;2306;2931;4679 

RAB3B 1 -1 52157425 4 ;828;1923;2308;3381 

CLDN11 3 1 171619359 3 ;2486;4081;4382 

TMEM204 16 1 1523659 3 ;45;736;3712 

LGALS3 14 1 54665574 3 ;1085;2703;3443 

DMRT3 9 1 966964 3 ;2993;4148;4791 

CDH11 16 -1 63538186 3 ;2627;3126;3698 

ZIC5 13 -1 99413276 3 ;197;726;3665 

CPNE8 12 -1 37332259 3 ;184;3445;4669 

TFPI 2 -1 188051553 3 ;1440;2915;2994 



 

   157 

RSPO3 6 1 127481749 3 ;2907;3165;4045 

SLC7A8 14 -1 22664346 3 ;874;1305;2049 

PCDHGA12 5 1 140835753 3 ;173;186;2239 

ANXA2 15 -1 58426625 3 ;1426;1984;3120 

MPP1 X -1 153660162 3 ;1481;4656;4827 

MAF 16 -1 78185729 3 ;3005;3853;4918 

MAGEA2 X -1 151669044 3 ;2662;4425;4767 

ROR1 1 1 64012281 3 ;594;2153;2579 

AP005329.1 18 1 3237528 2 ;736;1418 

TWIST1 7 -1 19121633 2 ;4118;4499 

TFAP2C 20 1 54637765 2 ;745;4565 

CDH6 5 1 31229553 2 ;1048;3554 

F2RL2 5 -1 75947064 2 ;1866;4210 

SAMD4A 14 1 54104387 2 ;3974;4513 

CTTN 11 1 69922292 2 ;2461;3340 

GREM1 15 1 30797497 2 ;3588;4581 

TNFRSF11B 8 -1 120004978 2 ;781;4564 

CNTNAP2 7 1 145444902 2 ;1796;1808 

UNC5C 4 -1 96308712 2 ;3576;4451 

GPR160 3 1 171239397 2 ;1980;3708 

MAGEA3 X -1 151685309 2 ;2468;2705 

SCML4 6 -1 108130060 2 ;956;2821 

WRNIP1 6 1 2710665 2 ;2438;3070 

TPD52L1 6 1 125517119 2 ;419;4341 

ID3 1 -1 23757012 2 ;889;4063 

PLAU 10 1 75340896 2 ;2059;2375 

DACT1 14 1 58174527 2 ;2645;4952 

CLDN3 7 -1 72821263 2 ;1252;2181 

ELTD1 1 -1 79128037 2 ;1701;1714 

MSX2 5 1 174084181 1 ;1171 

CDON 11 -1 125331927 1 ;2942 

MAP3K8 10 1 30762872 1 ;1857 

WIPI1 17 -1 63929018 1 ;4656 

STX3 11 1 59279108 1 ;57 

FOXA3 19 1 51059358 1 ;755 

MAB21L2 4 1 151722753 1 ;2468 

ALG10B 12 1 36996824 1 ;1282 

C9orf150 9 1 12765012 1 ;4452 

FOS 14 1 74815284 1 ;4613 

BOC 3 1 114414065 1 ;4075 

FIGF X -1 15273640 1 ;1588 

BMP2 20 1 6696745 1 ;3775 

SNAI2 8 -1 49992880 1 ;723 

TFAP2B 6 1 50894398 1 ;532 

C13orf15 13 1 40929542 1 ;3700 

ZIC2 13 1 99432320 1 ;2975 

GLI3 7 -1 41967072 1 ;2631 

FAP 2 -1 162735448 0  

CDS1 4 1 85723081 0  

LPL 8 1 19840870 0  

EYA4 6 1 133604188 0  

BMP5 6 -1 55728199 0  

MSX1 4 1 4912293 0  
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PTGS2 1 -1 184907592 0  

OLFM3 1 -1 102040721 0  

RSPO1 1 -1 37850071 0  

Table B 4 List of SHH downregulated genes with putative GLI binding sites within 5 kb 

of the 3’ downstream region from the transcriptional start site.tart 

 

Gene Name Chr Strand Transcript 

Start Site 

No. of 

binding 

sites 

Binding Site Start 

BST2 19 -1 17374750 11 ;260;1460;2180;2312;2999;3303;3382;347

8;4359;4589;4969 

KRT8 12 -1 51577238 10 ;1111;1495;1775;2702;2834;3002;3292;39

46;4557;4933 

LGALS1 22 1 36401559 9 ;1687;1953;2343;2356;2480;3988;4001;48

67;4880 

MMP23B 1 1 1557423 9 ;46;379;390;435;2914;3587;3850;4217;469

9 

RNF135 17 1 26322082 9 ;161;1575;3358;3371;3549;3633;3974;479

4;4867 

GDF15 19 1 18357968 8 ;1350;1820;3024;3190;3325;3810;3958;47

46 

CDH1 16 1 67328696 8 ;542;706;969;3202;3861;4156;4169;4278 

GAL 11 1 68208559 8 ;231;572;800;1102;1158;1335;1724;1866 

SLC7A8 14 -1 22664346 8 ;132;390;1882;2421;2457;3050;3138;4778 

PPFIBP2 11 1 7491627 8 ;856;1354;2048;3227;3276;3846;4242;473

7 

PHLDA2 11 -1 2906079 8 ;1163;2295;3296;3519;3896;4047;4816;48

34 

AHNAK 11 -1 62039950 8 ;50;405;1459;2887;2903;3160;4074;4635 

KRT18 12 1 51628922 8 ;1250;1553;1695;2225;2238;3021;3807;41

22 

APOE 19 1 50100879 7 ;505;940;2111;2762;3399;3610;3622 

COL1A1 17 -1 45616456 7 ;943;2156;3666;3823;4280;4626;4630 

RRAS 19 -1 54830364 7 ;349;581;1379;1971;2834;2991;2998 

HSPB1 7 1 75769859 7 ;1216;2321;3336;3394;4082;4383;4871 

MYL9 20 1 34603311 7 ;465;1663;2451;2570;3123;3291;4330 

FBXO2 1 -1 11631037 7 ;625;2021;3183;3538;3551;4046;4461 

IFITM1 11 1 304041 7 ;532;650;1913;1920;2582;3111;3176 

ID3 1 -1 23757012 7 ;394;1468;3120;3530;4178;4184;4188 

TFAP2C 20 1 54637765 6 ;1677;1963;2123;2526;3580;3698 

BAIAP2L1 7 -1 97760007 6 ;1441;2558;3064;4166;4301;4314 

HIST1H2B

G 

6 -1 26324470 6 ;129;417;825;1900;3421;4770 

COL9A3 20 1 60918859 6 ;1785;1798;1953;2702;4102;4115 

BNC1 15 -1 81715659 6 ;1679;1859;2966;3219;4585;4589 

RASGEF1A 10 -1 43009990 6 ;533;1320;2397;2812;4328;4636 

WRNIP1 6 1 2710665 6 ;1700;1855;2268;2732;3384;4528 

RCAN3 1 1 24701974 6 ;621;821;1706;2376;2389;3387 

GUCA1A 6 1 42231162 6 ;53;1567;1889;3371;3740;4939 

CLDN11 3 1 171619359 5 ;636;2272;2776;3581;4650 

DMRT3 9 1 966964 5 ;11;1833;2372;2586;2937 

CTTN 11 1 69922292 5 ;67;364;1061;1917;4389 
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GAD1 2 1 171381446 5 ;486;626;2339;3817;4592 

FOXA3 19 1 51059358 5 ;103;194;1320;1928;2481 

TNFRSF11

B 

8 -1 120004978 5 ;3051;3273;3812;4052;4218 

MAFF 22 1 36927944 5 ;660;3147;3898;4347;4968 

GPR160 3 1 171239397 5 ;1966;2158;3216;4068;4100 

UNC5B 10 1 72642298 5 ;1006;1667;2020;2682;2857 

MPP1 X -1 153660162 5 ;957;2108;2608;3463;3605 

ZIC2 13 1 99432320 5 ;695;2076;2303;4907;4969 

CLDN3 7 -1 72821263 5 ;33;1931;2628;3091;3997 

ID1 20 1 29656753 5 ;778;2274;3378;3644;4425 

TMEM204 16 1 1523659 4 ;68;1128;1279;2032 

GADD45B 19 1 2427135 4 ;1549;3211;3545;4418 

TACSTD1 2 1 47449954 4 ;683;1217;2015;4670 

EMP3 19 1 53520454 4 ;973;1210;3770;4875 

ICAM1 19 1 10242765 4 ;835;2342;2916;3939 

KRT19 17 -1 36933396 4 ;1049;2464;3067;3364 

PCDHGA1

2 

5 1 140835753 4 ;3433;4092;4355;4376 

TLE1 9 -1 83388423 4 ;290;3393;3557;4402 

FXYD5 19 1 40337467 4 ;860;1036;2338;3722 

S100A4 1 -1 151782722 4 ;17;1351;1462;4010 

MSX1 4 1 4912293 4 ;944;3085;4241;4335 

ID2 2 1 8739564 4 ;179;2111;3502;4471 

PLAU 10 1 75340896 4 ;125;819;3311;4197 

HOXC6 12 1 52708461 3 ;1039;1259;1900 

ZFP36 19 1 44589293 3 ;544;1844;3320 

VAMP8 2 1 85658228 3 ;274;1487;4616 

CDS1 4 1 85723081 3 ;1198;4269;4737 

F2RL2 5 -1 75947064 3 ;2455;3627;3792 

MAP3K8 10 1 30762872 3 ;2510;3174;4584 

WIPI1 17 -1 63929018 3 ;2446;3781;4291 

STX3 11 1 59279108 3 ;1399;1775;3730 

LPL 8 1 19840870 3 ;2543;2710;3136 

C9orf150 9 1 12765012 3 ;2649;2734;3679 

FOS 14 1 74815284 3 ;1402;3665;3678 

BOC 3 1 114414065 3 ;1295;1695;3337 

PTGS1 9 1 124173050 3 ;2078;3935;4326 

PCDH7 4 1 30331135 3 ;3697;4105;4237 

BAMBI 10 1 29006430 3 ;767;1347;2066 

TPD52L1 6 1 125517119 3 ;3126;3453;3466 

MSX2 5 1 174084181 2 ;899;4862 

TWIST1 7 -1 19121633 2 ;422;4089 

CAT 11 1 34417054 2 ;1607;2313 

JAG1 20 -1 10566334 2 ;2430;3083 

CDH6 5 1 31229553 2 ;3637;4010 

CDH11 16 -1 63538186 2 ;3700;3704 

KBTBD10 2 1 170074458 2 ;23;4719 

ZIC5 13 -1 99413276 2 ;3971;4228 

COL1A2 7 1 93861809 2 ;2581;4949 

ALG10B 12 1 36996824 2 ;2189;2967 

CNTNAP2 7 1 145444902 2 ;2225;4035 

CDC42EP5 19 -1 59668022 2 ;3623;4168 

VAMP5 2 1 85665042 2 ;2957;4721 
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MAGEA3 X -1 151685309 2 ;608;862 

EYA4 6 1 133604188 2 ;4478;4849 

TAGLN 11 1 116575296 2 ;1767;4242 

C13orf15 13 1 40929542 2 ;2115;3352 

IFIT3 10 1 91082246 2 ;186;4795 

DACT1 14 1 58174527 2 ;2012;3177 

MAGEA2 X -1 151669044 2 ;1387;3353 

HIST1H2A

C 

6 1 26232432 2 ;723;1014 

PMP22 17 -1 15073822 2 ;1002;3455 

RAB3B 1 -1 52157425 2 ;682;3973 

RSPO1 1 -1 37850071 2 ;3853;3941 

AP005329.1 18 1 3237528 1 ;4989 

LGALS3 14 1 54665574 1 ;817 

PDGFRA 4 1 54790204 1 ;3329 

SAMD4A 14 1 54104387 1 ;848 

GREM1 15 1 30797497 1 ;4007 

ATF3 1 1 210805320 1 ;928 

CYR61 1 1 85819041 1 ;4695 

RIPK4 21 -1 42032614 1 ;3612 

MGMT 10 1 131155510 1 ;856 

FIGF X -1 15273640 1 ;4442 

BMP5 6 -1 55728199 1 ;3107 

BMP2 20 1 6696745 1 ;3575 

SNAI2 8 -1 49992880 1 ;4078 

COL8A2 1 -1 36333424 1 ;3238 

TFAP2B 6 1 50894398 1 ;4070 

GLI3 7 -1 41967072 1 ;4053 

MAF 16 -1 78185729 1 ;1197 

SERPINB9 6 -1 2832507 1 ;701 

ELTD1 1 -1 79128037 1 ;4559 

ROR1 1 1 64012281 1 ;3573 

FAP 2 -1 162735448 0  

PRRX1 1 1 168899937 0  

CDON 11 -1 125331927 0  

CPNE8 12 -1 37332259 0  

TFPI 2 -1 188051553 0  

RSPO3 6 1 127481749 0  

MAB21L2 4 1 151722753 0  

UNC5C 4 -1 96308712 0  

CUL4B X -1 119542476 0  

SCML4 6 -1 108130060 0  

ANXA2 15 -1 58426625 0  

PTGS2 1 -1 184907592 0  

TFAP2A 6 -1 10504902 0  

OLFM3 1 -1 102040721 0  
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