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Summary 

Near-infrared (NIR) diffuse optical tomography (DOT) has been proven in last 

decade as a promising non-invasive optical imaging modality for soft tissue 

imaging, especially suitable for human breast imaging. This research aims to 

explore the feasibility of a novel tomographic imager to characterize the 

optical properties of human breast tissue in vivo. The innovation of this 

approach is to use a high speed pseudorandom bit sequence (PRBS) to acquire 

the time-resolved signals or the temporal point spread functions (TPSF). The 

prototype system was constructed. Its performance was assessed in phantom 

experiments. Furthermore, the prototype system was used to characterize the 

optical properties and physiological parameters of human breast tissues in vivo. 

Correlations between optical properties, physiological parameters of the breast 

tissue and the demographic factors (age, menopausal state and body mass 

index) were established. The preliminary in vivo results are promising. The 

prototype system based on the spread spectrum correlation technique has 

demonstrated a couple of advantages, including sub-nanosecond (~0.8 ns) 

temporal resolution, fast data acquisition and the favorable insensitivity of 

detection to environmental illumination. All of these features demonstrate the 

novel time-domain DOT developed in this research is highly potential for the 

clinical applications of breast cancer detection.  
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Chapter 1. Introduction 

The near-infrared (NIR) optical diffuse imaging (DOI) technique was firstly 

proposed by Jöbsis in 1977 [1]. With the rapid development of semiconductor 

technologies, computation technologies and instrumentation industry in the 

last two decades, the performance of DOI techniques has been significantly 

improved. Meanwhile, the system cost has greatly reduced. Nowadays, 

various DOI techniques are under research worldwide. The application has 

extended from laboratory bench top to preclinical field. DOI has been proven 

with great potential to complement conventional structural/functional imaging 

modalities for clinical imaging, especially breast cancer detection.  

1.1 Motivation  

Breast cancer is the 2nd most common cancer all over the world after lung 

cancer and the 5th most common cause of cancer death. According to world 

health organization (WHO) statistics in 2004, breast cancer approximately 

cause 519 000 deaths worldwide every year (7% of cancer death; almost 1% 

of all deaths) [2]. In America, it is estimated that 12.5% woman will develop 

breast cancer in her lifetime [3]. In Europe, approximately 9% women will be 

diagnosed breast cancer in her lifetime [4]. In Singapore, the breast cancer 

occurrence rate is lower. The chance is estimated to be 4% to 5% - about 1/3 

of American women and half of European women. Even though, breast cancer 

is still the most common cancer in Singapore women, with almost 1 300 new 

cases diagnosed each year, of which 270 cases die from it [5].  
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Early detection and cure can significantly reduce the mortality rate of breast 

cancer [6]. Breast imaging is a commonly used approach to find breast cancer. 

Conventional breasts imaging modalities, such as x-ray mammography, 

magnetic resonance imaging (MRI), and ultrasound, provide 

structural/functional imaging information. But their performance is limited 

more and less by their own shortcomings. The diffuse optical imaging 

modalities are advantageous on non-ionization hazard, non-invasiveness, low 

cost, portability as well as unique differentiation capability among soft tissues, 

which has been proven especially suitable for breast cancer detection at early 

stage. 

In the last decade, NIR DOIs for breast cancer detection has got fruitful 

advances. Nowadays researchers worldwide are racing toward the next 

generation optical mammography, which can be clinically acceptable for 

breast cancer patients. 

As we known, most all conventional time-domain DOT systems use a pulsed 

laser as the light source to illuminate the tissue, and use streak cameras or 

time-correlated single photon counters (TCSPC) to detect the photons emitted 

from tissue. The systems using streak camera are normally limited by small 

photon collection area, small dynamic range, and temporal nonlinearity. The 

TCSPC-based systems are more popular for large dynamic range, high 

temporal linearity, and high temporal resolution. However, the TCSPC-based 

DOTs are normally limited by a slow data acquisition speed, which would 

cause problem if multiple source-detector channels work together. Also it 

should be noted that the TCSPC system must work in an extremely dark 

environment to achieve the best performance. This condition is practically 
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difficult to satisfy. Last, ns/ps/fs-pulse lasers and TCPSC (or streak camera) 

usually lead to a high system cost and a more complex control structure. This 

situation will become prohibitive if multiple channels are used. For these 

reasons, it is necessary to develop a novel DOT imaging approach. 

This PhD research leads to the development of advanced fast multi-channel 

time-resolved optical tomography imaging instrument, as well as the clinical 

applications for examining early-stage human breast cancer. 

1.2 Objectives 

The objective of this research is to develop a new fast time-domain diffuse 

optical tomographic imager. The laboratory prototype system will be 

implemented. In this new approach, the NIR light is modulated by a train of 

high speed pseudorandom bit sequence (PRBS). The modulated NIR light 

goes through phantom or tissue. The emitted optical signals are demodulated 

by correlating with the reference PRBS. In this way the time-resolved signals, 

or temporal point spread functions (TPSF) can be acquired very fast. For 

image reconstruction, the theory of diffuse equation and the semi-infinite 

boundary conditions will be adopted to resolve the forward and inversed 

problems. The map of spatial variations of optical properties will be 

reconstructed. The performance of prototype system will be assessed in 

phantom experiments. As last, preclinical in vivo experiments will be carried 

out on human breasts and the preliminary spectroscopic data will be acquired 

and analyzed before moving forward to in vivo clinic imaging applications.   

Specifically, this research aims 
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• to propose, design, implement, optimize and evaluate a novel time-

resolved DOT technique. Emphasis will be placed on achieving 

optimal temporal resolution and signal to noise ratio, fast data 

acquisition speed and stable performance.  

• to design an optical hand-held probe and the detection geometry.  

• to develop advanced image reconstruction algorithms for high quality 

optical mammography. The spatial resolution of tomographic images 

should get into sub-centimeter regime.  

• to obtain reference data from subjects and establish correlation 

between optical properties and physiological parameters. 

1.3 Thesis organization 

This thesis is constituted by three parts: the first part reviews the fundamental 

tissue optics, which closely relates to this research. The second part describes 

the proposal of a fast time-domain diffuse optical tomography prototype 

system, followed by the detailed descriptions of prototype system 

implementation and system performance assessment in phantom experiments. 

The last part describes the in vivo experiments, which establishes the 

preliminary relationship between the optical properties and the physiological 

parameter versus subjects’ demographic information.   

In detail, each part is organized as below: 

Part I: 

Chapter 2 is a preparatory chapter. Topics of tissue optics are selectively 

reviewed in this chapter. Chapter 2 constitutes the base of the entire research.  
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Chapter 3 starts with brief reviews of three commonly used image 

modalities for breast cancer detection, including X-ray mammography, MRI, 

and ultrasound. After that, optical imaging/spectroscopy theories are reviewed 

in-deep, including three most popular DOT/DOS techniques: continuous-wave 

(CW), frequency-domain (FD) and time-domain technique.  

Part II: 

Chapter 4 systematically describes the working principle of the novel fast 

TD-DOT system based on the spread spectrum correlation technique.  

Chapter 5 describes the phantom experiments, including phantom 

preparation, experiment setup, system assessment, etc. The image 

reconstruction algorithm and results were described in detail. Chapter 4 and 5 

constitute the first contribution from this research [7, 8]. 

Part III: 

Chapter 6 describes in detail the preliminary in vivo diffuse optical 

spectroscopic experiment on human breast tissues. The experimental data 

processing and results analyses are described. Chapter 6 constitutes the second 

contribution from this research [9].   

Chapter 7 summarizes the entire thesis and proposes the feasible 

improvements for the upcoming in vivo clinical applications.  



Chapter 2. Tissue optics on breasts  

This chapter selectively reviews some fundaments of tissue optics, which 

constitutes the base of this research.  

2.1 Fundamental tissue optics 

The light-tissue interaction can be classified into two types: destructive and 

nondestructive. The destructive light-tissue interaction will lead to the 

alternations of tissue structures or compositions. The major types include 

photochemical, photothermal, photoablative and electromechanical effects. 

The DOT/DOS techniques belong to the nondestructive light-tissue interaction 

regime because the optical power used in the tissue illumination is normally 

range from small to medium power (Class III), so that the above destructive 

effects will not occur [10]. 

The light propagation though the tissue can be classified into two types: 

absorption and scattering, which are quantified by using absorption coefficient 

aμ  and scattering coefficient sμ   (or reduced scattering coefficient 'sμ ), 

respectively. 

2.1.1 Absorption 

The wavelength-dependent absorption coefficient )(λμa  (unit: cm-1) is defined 

by, 

( ) dxIdI a ⋅⋅−= λμ      (2-1) 
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where  is the differential change of the optical intensity. dI I  is the intensity 

of  the incident light. dx  is an infinitesimal path of a homogeneous non-

scattering medium where the light passes though. 

For a slab of homogenous scattering-free medium in Fig. 2-1, the integrating 

of Eq. (2-1) over the medium thickness   yields, d

d
io

aeII ⋅−⋅= )(λμ

      (2-2) 

iI oI
d

 

Fig. 2-1 Attenuation of light in a non-scattering homogenous absorptive 
medium.  

)(The absorption coefficient μ λa  can also be expressed in terms of particle 

density ρ  and absorption cross section aσ  as 

aa σρλμ ⋅=)

d
i

d
io

aa eIeII ⋅⋅−⋅− ⋅=⋅= σρλμ )(

(      (2-3) 

which yields the Beer-Lambert law, 

     (2-4) 

/The reciprocal, aμ1  is called the absorption path length and equals to the 

mean free path that a photon travels between two consecutive absorption 

events.  

Another parameter that is commonly used is the specific extinction coefficient 

ε . It represents the level of absorption per micro molar of compound per liter 

of solution per cm (unit ). For most general cases in which multiple 11 −− ⋅cmMμ
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absorbers with individual absorption coefficients )(λμi ( [ ]Ni K2,1∈  ) coexist 

in a non-scattering medium, Eq. (2-2) can be expressed as: 

∑
⋅= =

⋅−
N

i
ia d

io eII 1
)(λμ

    (2-5) 

Then the Beer-Lambert law can be expressed as 

( )
N

i
ii

N

i
a

i

d

i eIeII
−⋅− ∑

⋅=
∑

⋅= == 11
0

ρμ λ ii d⋅⋅σ

   (2-6) 

where  is the slab distance for absorber i . For a homogenous absorptive 

medium with a thickness of , the absorption coefficient is the contributed by 

all of the absorptive constituents, i.e.: 

id

d

∑
=

⋅=
N

i
ia

1
)( σρλμ       (2-7) 

The transmission T  is defined as the ratio of the transmitted intensity I  to 

the incident intensity ,  

0

iI

i

o

I
IT =      (2-8) 

The wavelength-dependent optical density (OD) of an attenuating medium at 

wavelength λ is defined by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟

⎠
⎞

⎜
⎝
⎛=

i

o

I
I

T
OD lg1lg)(λ     (2-9) 

( ) dc ⋅⋅)de
I
I

OD a
i

o =⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ()(lglg)( λελμλ    (2-10) 

where )(λε is the specific absorption coefficient of medium at wavelength λ . 

is the concentration of absorber in unit of c Mμ . 
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2.1.2 Refractive index 

The light speed  in a specific medium with a refractive index is defined by c rn

.0

rn
c = c

0

      (2-11) 

where c is the light speed in vacuum.  

When a light beam arrives the interface between two different media in an 

angle of iθ , it will be refracted into the medium in an propagation angle of rθ  

(Fig. 2-2), where iθ , rθ  and n follow the Snell’s law, 

rrii nn θθ sinsin =      (2-12) 

iθ
rθ

iθ

 

Fig. 2-2 Refractive effect of light when travels across two media with different 
refractive indices ( > ). rn in

In breast, different tissues have different refractive indices. The refractive 

index varies from 1.33 (water) to approximately 1.55 (fat and concentrated 

protein solution). In most researches, a refractive index of 1.40 was widely 

accepted for the overall breast tissue [11, 12].  

2.1.3 Scattering 

Scattering is the phenomenon that causes the light propagation direction to be 

changed within a medium. It can be quantified using the scattering coefficient
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( )λμs . For a collimated beam with intensity of 0I  , its intensity iI after going 

through a non-absorptive homogenous scattering medium with a thickness of 

Fig. 2-3), is given by,  

     (2-13)  

d  (

d
io

seII ⋅−⋅= )(λμ

iI
oI

d

 

Fig. 2-3 Light scattering after going through a non-absorptive homogeneous 
scattering medium. 

where the scattering coefficient )(λμs  is wavelength dependent. It anc  also be 

defined in terms of particle density ρ  and scattering cross section sσ : 

ss σρλμ ⋅=)(     (2-14) 

The scattering coefficient quantifies the probability of a photon being scattered 

per unit length. Its reciprocal )(/1 λμs  is called the mean scattering path, which 

quantifies an average distanc photon travels between two consecutive 

 be pro

,q

e that a 

scattering events.  

When a photon travels through the medium, it will bably scattered into 

any angles in three dimensions. The phase function )(p vvf  is used quantify the 

probability of a photon to be scattered from direction pv  into direction qv  (Fig. 

2-4)  

)(cos),( θff =qp vv     (2-15) 

The phase function in a random media is independent on the orientation of the 

scatter. Except some cases such as muscle and white matter, this assumption is 
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valid for most biological tissue. Thus Eq. (2-15) can be expressed as a 

function of the scalar product of the unit vectors in the initial an l 

directions ),( qp

d fina

vv
 which  equal to the cosine of the scattering angle )cos(is θ . 

The aniso actor,tropy f  g  is then defined as the mean cosine of

angle: 

    (2-16) 

terin

 the scattering 

∫ ⋅= θθθ cos)(cos ddg
π4

If 1=g , the scat g is completely forward; if 1−=g  , the scattering is 

backscattered;  if  , then the scattering is isotrop0=g ic. 

pv

qv

θ

α
 

ig. 2-4 Phase function ),( qp vv
F f . 

The anisotropy factor g  depends on the scatter size, shape and the mismatch 

of the refractive index between two scatters. Biological tissues are strongly 

forward scattering medium i e (650 - 1150 nm) because the 

anisotropy factor is typically 99.069.0

n NIR regim

≤≤ g ormal breast tissues, the 

typical values of an isotropic factor is 99.09.0

 
[11]. For n

≤≤ g , which means that the 

light photon almost keep its original direction within a few millimete  

propagation. Therefore it is appropriate to reduce the scattering coefficient s

rs

μ  

by the factor ( )g−1 , which gives the de nitfi ion 

, 's

of reduced scattering 

coefficient or transport scattering coefficient μ  : 
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( ) ( ) ( )λμλμ ss g ⋅−= 1'      (2-17) 

The quantity 'sμ  represents the isotropic scattering property. Its reciprocal '
1

sμ
 

represents the distance that a photon has a probability of e/1  to get an isotropic 

scattering action. The reciprocal can also be interpreted as the free mean path 

between two consecutive scattering events along photon propagation. 

2.1.4 Mean free path 

Regarding the absorptive and scattering effects together, one can define a total 

attenuation coefficient as 

sat μμμ +=      (2-18) 

where tμ/1  is commonly referred as mean free path between any two 

consecutive light-tissue interaction events. Similarly, one can define the 

transport attenuation coefficient, trμ  as  

( ) '1 sasatr g μμμμμ +=−+=     (2-19) 

2.2 Chromophores in breast tissues 

Most soft tissues contain a couple of substances that exhibit absorption in NIR 

regime (650 – 1150 nm). They are known as chromophores. In breast tissue, 

the significant chromphores to NIR light are water, lipids, hemoglobin and 

melanin.   
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2.2.1 Water 

The absorption spectrum of water in NIR regime is shown as solid line in Fig. 

2-5 [13]. At 785 nm and 808 nm, the absorption coefficients are 0.0252 cm-1 

and 0.0218 cm-1, respectively. In normal breasts, the water concentration 

varies from 10% - 30%, depending on menstruation and the menopausal status 

[14-17].  
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Fig. 2-5 Absorption coefficient of water and lipid in the near-infrared region. 

2.2.2 Lipid 

Adipose tissue (or fatty tissue) is another dominant constituent in normal 

breast tissue. Its absorption spectrum is shown in dashed line in Fig. 2-5 [18]. 

At 785nm and 808 nm, the absorption coefficients of lipid are 0.00357 cm-1 

and 0.00497 cm-1, respectively. In normal breasts, the lipid concentration is in 

range 50% - 58%. Such a high concentration leads to an accumulative 
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absorption which makes lipids one of the dominant absorbers in breast tissues. 

Meanwhile, its effect will increase with women ageing because older women 

tend to have less fibrous tissue and more adipose tissue.  

2.2.3 Hemoglobin 

Oxyhemoglogin (HbO) and deoxyhemoglobin (Hb) are the most significant 

chromophores in breast tissues because they are highly dependent on the 

oxygenation level of the blood. Fig. 2.6 shows the molar absorption 

coefficients of HbO and Hb in the NIR regime (650 nm - 1050 nm) [13]. The 

differences in the absorption spectra give us a possibility to differentiate these 

two compounds by using two wavelengths. These two molar absorption 

coefficients of two compounds cross over at 800 nm. This property means two 

wavelengths on both sides can be eligible to resolve the concentrations of HbO 

and Hb. 
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Fig. 2-6 Specific molar absorption coefficient of oxy-hemoglobin (HbO) and 
deoxy-hemoglobin (Hb). 
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2.2.4 Other chromophores 

In addition to these four major chromphores (water, lipid, HbO and Hb), there 

are some other minor chromophores coexisting in breasts, such as melanin and 

cytochrome.  

2.2.4.1 Melanin 

Melanin is found in cells ‘melanosomes’ in the epidermis layer of the skin. 

The concentration of melanin is normally low [19-21]. In NIR window (650 nm - 

1050 nm), melanin is a relatively high absorber. However, due to its ultra low 

concentration and the property of oxygenation independence, its effect upon 

the overall absorption property can be ignored in breast tissue hemodynamic 

assessment, with considering to the above four major chromophores. 

2.2.4.2 Cytochrome 

Like melanin, cytochrome also has a very low but constant concentration in 

breast. Although it has a relatively high absorption in NIR regime (650 – 1050 

nm), its contribution to the overall breast tissue still can be ignored when the 

hemodynamic matter is analyzed.  

For these reasons, we only concern water, lipid, Hb and HbO when analyzing 

the absorption properties of overall breast tissue. Contributions from melanin 

and cytochrome will be ignored.  

2.3 Optical properties of breast tissues 

The human breast tissues are majorly constituted by glandular tissue and fatty 

tissue. The concentrations of water and lipids normally change only with 

menstrual status and ageing. However, the concentrations of HbO and Hb are 
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not stable as water or lipid. They will not only change with age, menstruation 

state, but also is highly dependent on the local hemodynamic changes. When 

local vascularization or angiogenesis occur, the corresponding concentrations 

change of Hb and HbO will become significant.  

Therefore, we assumed in this study the wavelength-dependent absorption 

coefficients of the breast tissue are solely contributed by: water, lipid, HbO 

and Hb. From Eq. (2-7) we have,  

2

2

2

785785 785 785 785

808808808 808 808
2.303 H Oa Hb HbO Hb Lipid

H O Lipid
LipidH Oa Hb HbO HbO

C
C C

C

εμ ε ε ε
εεμ ε ε

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥= ⋅ ⋅ + ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦  

 (2-20) 

where  and  are the absorption coefficients of bulky breast tissue at 

wavelength 785 nm and 808 nm, respectively.  ,  and   are 

molar extinction coefficients of Hb and HbO at 785 nm and 808 nm.  and 

are molar extinction coefficients of water at 785 nm and 808 nm.  

and are molar extinction coefficients of lipid at 785 nm and 808 nm. 

These extinction values can be obtained in literature [22].  and  

represent the unknown concentrations of Hb and HbO, respectively.  and 

 represent the concentrations of water and lipid, respectively. As the 

concentrations of water and lipid are normally constant, thus we assumed in 

this study the relative concentration of lipid was 56%, the water concentration 

of premenopausal and postmenopausal women were 11% and 26%, 

respectively [23]. With regarding to these assumptions, we can resolve the 

785
aμ

808
Lipid

808
aμ
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Hbε 808

Hbε 785
HbOε
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808
HbOε
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2OHε

ε
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OHC
2
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LipidC
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spatial distribution of the absorption coefficient  and  from the time-

resolved TPSF measurements at 785 nm and 808 nm, respectively. 

785
aμ

808
aμ

2.4 Physiological parameter of breast tissues  

From Eq. (2-20), we can calculate the physiological parameters  and  

simultaneously and get two more physiological parameters. One is total 

hemoglobin concentration (THC), which is defined as [11, 21] 

HbC HbOC

HbHbO CCTHC +=     (2-21) 

and blood oxygenation saturation (SO), which is defined as [11, 21] 

%100%100 ×
+

=×=
HbO

HbOHbO

C
C

THC
C

SO
HbC   

(2-22) 

Parameter THC  is in unit of micro-molar per liter (µMol/L). It quantifies the 

blood volume in the breast, which can also be interpreted as the total blood 

supply in the breast. Parameter SO  can be interpreted as the oxygen 

consumption level of breast tissue. Normally, the local cancerous tissues 

require much more blood supply and oxygen consumption. This inherent 

property will significantly alter the positional optical properties as well as the 

individual physiological parameters alternation of breast tissue. Therefore, the 

positional differences (inhomogeneities) of aμ , 'sμ ,  and  can be 

used to as indicators of breast abnormities.  

THC SO

The average aμ  and 'sμ of normal breast tissue in most recent researches are 

tabulated in [24, 25]. Although they were resolved by using different 

methodologies and apparatus, the data shown in Table 2.1 exhibits a 

uniformity of absorption properties among different studies. The global 
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average absorption properties of normal breast tissue are found to be 0.04 cm-1 

at 700 – 800 nm and 0.05 cm-1 at 800 – 900 nm. The averaged reduced 

scattering properties are found to be 8.0 cm-1 for both 700 – 800 nm and 800 – 

900 nm regimes. These data will be used as reference throughout this research. 
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2.5 Early breast cancer  

Breast cancer is the abnormalities which most probably occur at ducts (i.e. 

ductal carcinoma in-situ, DCIS) and lobules (i.e. lobular carcinoma in-situ, 

LCIS). Almost 90% breast cancer starts from duct and 10% breast cancer start 

from lobule. Like other cancers, breast cancer also starts from a single cell. 

The transformation from a normal cell into a tumor cell is typically a 

progression from a pre-cancerous lesion to malignant tumors. These changes 

may be the result of interactions between a genetic factor and the following 

three external carcinogens: 

• Physical carcinogens, such as ultraviolet and ionizing radiation;  

• Chemical carcinogens, such as components of tobacco smoke and 

arsenic; 

• Biological carcinogens, such as infections of viruses, bacteria or 

parasites. 

Aging is another very important factor for cancer development because the 

overall cancer risk is combined with the tendency for cellular repair 

mechanisms to be less effective as a person grows older. 

The breast cancer is diagnostically classified by cancer stages primary on the 

basis of tumor size, invasiveness or non-invasiveness, whether lymph nodes 

are involved, and whether the cancer has spread beyond the breast. The 

commonly used staging system is the 4-stage system.  

Stage 0 - the breast cancers is non-invasive. Like DCIS and LCIS, there 

is no evidence of cancer cells or non-cancerous abnormal cells 

breaking out of the part of the breast where they started, or 
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invading neighboring normal tissue. The tumor size is less 

than 1 cm. 

Stage I - the breast cancer normally becomes invasive. The cancer cells 

breaks though and invades neighboring normal tissue. The 

tumor size is less than 2 centimeters, and no lymph nodes are 

involved. 

Stage II - the breast cancer at stage II when the tumor size is more than 2 

cm, but less than 5 cm across and/or the lymph nodes in the 

axillary are affected. 

Stage III - the breast cancer at stage III when the tumor size is more than 

5 cm across and the lymph nodes in the axillary are affected 

without further spreading. 

Stage IV - Breast cancer has spread to other organs of the body - usually 

the lungs, liver, bone, or brain. The tumor size is larger than 5 

cm and can be any size. 

Clinically, breast cancer at stage 0, I, II, and some stage III are regarded as 

“early” stage, while other stage III and stage IV are regarded as “later” or 

“advanced” stage.  

Survival rate of breast cancer depends on many factors: cancer type, 

treatments, lifestyle, and genetics. Table 2-2 shows the statistics of 5-year 

survival rate survival rates by breast cancer stage. It also shows the survival 

rate of breast cancer can be improved significantly if cancer at ‘early’ stage 

(stage 0, I, II, III) can be cured than the ‘later’ stage (stage III, IV). Therefore, 

women at 40s and above are strongly invited to attend routine breast cancer 

screening [35, 36] after tissue constituents start altering.  
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Table 2-2 Average 5-year surviving rate of breast cancer at each stage 

 Stage US * Singapore # 

Early 
0 100% 90% 
I 100% 75% 
II 81%~92% 60% 

Later 
III 54%~67% 50% 
IV 20% 50% 

* American College of Surgeons National Cancer Data Base from 1995-
1998.  http://www.breastcancerandtreatment.com/Breast_Cancer_Survival_Rate.html    

# Data source:  
http://www.singaporecancersociety.org.sg/lac-fcb-classifications.shtml 

 

   

22 
 

http://www.breastcancerandtreatment.com/Breast_Cancer_Survival_Rate.html
http://www.singaporecancersociety.org.sg/lac-fcb-classifications.shtml


Chapter 3. Breast Tissue Imaging 

This chapter reviews the pros and cons of non-optical structural imaging 

modalities for breast examination and diagnosis, including X-ray 

mammography, MRI and ultrasound. The emphasis is placed on the novel 

non-invasive optical imaging modalities, especially the diffuse optical 

tomography (DOT) and the time-resolved diffuse optical spectroscopy (DOS) 

techniques.  

3.1 Biomedical imaging modalities 

The most commonly used biomedical imaging modalities for breast imaging 

and diagnoses include X-ray mammography, MRI and ultrasound.  

3.1.1 X-ray mammography 

The X-ray radiation can penetrate most biological tissues (e.g. the breast 

tissue) with little attenuation. When X-ray is used for breast screening, it is 

called X-ray mammography. The imaging of the absorption properties 

(namely mammograms) are used to find potential signs of breast cancer such 

as tumors, small clusters of calcium (microcalcifications) and abnormal 

changes in the skin.  

The imaging contrast of the mammogram is not only depended on the 

distribution of absorptive substance in the tissues, but also the thickness of 

breast that the X-ray will go through. Healthy breast tissues are normally 

constituted by fat and the glandular tissues, such as ducts and lobules, which 

lead to a medium dose exposure. At cancerous conditions, the absorption of 
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breast tissue to the X-ray radiation is limited by the microcalcification. In 

order to obtain an optimal imaging contrast and minimize the ionization 

hazard, the breasts are normally compressed in between two transparent plates 

during screening. The thickness between two parallel plates is normally 2-8 

cm, which enables high contrast whilst keeping the ionization dose within an 

acceptable level. Such breast suppression might cause discomfort to patients, 

which requests the screening finish as quick as possible. Most current 

mammography imaging can be finished in 15 (film mammography) - 30 

minutes (digital mammography). 

Until now, the X-ray mammography is still called ‘gold standard’. It can find 

cancers at early stage, when they are small and most responsive to treatment. 

Meanwhile, X-ray mammography has a good imaging contrast of benign 

tumors like cyst, fibroadenomas, macrocalcification to malignant tumors such 

as the invasive microcacification.  

For young women with dense breast tissues, the attenuation of the glandular 

tissue to the X-ray radiation is higher, which induces difficulties for X-ray 

mammograms to distinguish benign and malignant tumors. As women ageing, 

the glandular tissue is gradually supplanted by fat so that the breast density 

gradually decreases. This physiological change reduces the absorption of the 

breast to the X-ray radiation, which would increase the imaging contrast. For 

most of the past two decades, the American Cancer Society has been 

recommending women age 40 and older should have an annual screening 

mammogram and should continue to do so for as long as they are in good 

health. 
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Due to the high false-positive rate, many women have to undergo follow-up 

biopsy, leading to unnecessary physical and psychological morbidity. 

Additionally, X-Ray mammography causes extra ionization radiation and has 

limited benefit for younger women with dense breast. Table 3-1 summarizes 

the pros and cons of X-ray mammography for breast cancer imaging.  

Table 3-1 Advantage and disadvantages of X-ray mammography for breast 
cancer imaging 

Advantages Disadvantages 

• High differentiation capability 

among benign and malignant 

cancers; 

• High sensitivity and high 

resolution; 

• High detection rate for early stage 

breast cancer (~95%). 

• Large penetration depth; 

• Relative low cost; 

• Low contrast on high dense breast 

tissue; 

• Potential ionizing radiation hazard; 

• Discomfort to patients because of the 

breast compression; 

• Long projection time; 

• Relatively high false-positive rates; 

• Accuracy is affected by the silicone 

implantations; 

3.1.2 MRI 

The phenomenon of nuclear magnetic resonance (NMR), when used in 

imaging, is called magnetic resonance imaging (MRI).  

3.1.2.1 Nuclear magnetic resonance (NMR) 

Nuclei have an intrinsic quantum property called spin. For those atoms with 

odd number of protons, such as the hydrogen atom, the nucleus spinning forms 

small magnetic moments (Fig. 3-1). In a thermal equilibrium, all protons move 

in a random direction and the magnetic moment of each proton are randomly 

oriented. The overall magnetic moment or net magnetic moment is zero.  
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Fig. 3-1 Spin of nuclei in an external magnetic field B0. 

 

In human body, water proportion is approximately 60%. The abundance of the 

hydrogen atoms with only one proton is used for imaging by MRI. Placing the 

human body into a magnetic field with magnetic field intensity of , the 

randomly moving hydrogen atoms in thermal equilibrium will be lined up 

along the applied magnetic field. Half of the hydrogen atoms will be lined up 

with orientation along the magnetic field at a lower energy state. Another half 

of hydrogen atoms are lined up against the magnetic field at a higher energy 

state. The atoms number at lower energy state is slightly more than the atoms 

at high energy state. These excess number of protons result in a net magnetic 

moments, whose Larmour frequency is proportional to the magnetic field   

(e.g. 42.57  MHz for hydrogen nucleus). When another radio frequency (RF) 

pulse with same Larmour frequency is radiated to the human body in a 

direction perpendicular to the magnetic field, the protons absorb the energy 

and spins are knocked out of alignment with  (see Fig. 3-2). When the 

excited RF energy ceases, excited spins return to their initial state soon, 

emitting a radio frequency signal. The amplitude of the emitting signal 

depends on the number of protons in resonance. These signals are picked up 

0B

0B

0B

0B
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by coils placing around the body, from which the proton density (known as 

spin density, SD) varying among tissues can be visualized. It is this resonant 

radiation that constitutes the signal in NMR.  

 

Fig. 3-2 Spin of nuclei flips after it absorbs a photon at its Larmor frequency. 

 

3.1.2.2 Magnetic resonance imaging (MRI) 

MRI differs from NMR in that an image is obtained. Normally in NMR, a 

single uniform magnetic field  is applied to the whole sample. There is no 

way to determine where a given proton with its signatures of relaxation times 

is located. By imposing a spatially varying magnetic field, i.e. a magnetic field 

gradient upon the constant magnetic field , one can obtain a range of proton 

resonant frequencies. Each is dependent on the position of the particular 

proton within the body.  

0B

0B

Slice selection is accomplished by using a frequency-selective pulse applied 

simultaneously with on the magnetic field gradient. The slice selection 

direction, x , and  determines the orientation of coronal, sagittal, and axial 

of the image.  

y z
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3.1.2.3 Breast MRI 

Most MRI techniques for breast imaging use a contrast material called 

Gadolinium DTPA (Gd-DTPA), which is injected intravenously into arms 

before or during the examination to improve the image quality. Gd-DTPA’s 

paramagnetic property would reduce the T1 relaxation time (and to some 

extent the T2 and T2* relaxation times) in NMR. It is this property that helps 

MRI to get a stronger and clearer image to "highlight" any abnormalities.  

The increased vascularity of tumors normally produces a preferential uptake of 

agent (Gd-DTPA). This effect can be used to improve the contrast of tumors 

from the surrounding normal tissue. If MRI scans are repeatedly acquired 

along with the contrast injection, the dynamic nature of between the normal 

and cancerous tissue can be differentiated. This is called dynamic contrast-

enhancement MRI. 

As an example,  Fig. 3-3 illustrated a 1.5-Tesla breast MRI developed by 

Siemens company which provides a bilateral imaging capability for both 

breasts imaging The total imaging time can be reduced to about 30 minutes 

compared from 60 minutes required by conventional MRI which utilizes 

lateral imaging technique [37, 38]. 
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Fig. 3-3 Magnetom Espree-Pink, a 1.5-Tesla MRI dedicated for breast 
imaging. (a) Instrument overview. (b) Breast array coil for bilateral breast 

imaging. 

 

3.1.2.4 Pros and Cons of breast MRI 

MRI is a very useful diagnostic tool for breast cancer detection when works in 

conjunction with X-ray mammography. It has been proven to be remarkably 

effective to image the augmented breast. MRI can also be used effectively to 

gain information about breast abnormalities detected with mammography, 

physical examination, or other breast imaging modalities. Because of the high 

sensitivity, the American Cancer Society also recommended that young 

women at very high risk of the disease receive annual MRI exams in addition 

to annual mammograms. MRI may also useful for women who have been 

diagnosed with breast cancer to detect cancer in the opposite breast, to 

evaluate treatment options, and to follow-up after treatment has been 

completed. Table 3-2 summarizes the pros and cons of MRI breast cancer 

diagnosis.  
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Table 3-2 Advantages and disadvantages of MRI for breast cancer imaging 

Advantages Disadvantages 
• Non-ionization hazard; 

• Effective for dense breast; 

• Can image breast 

implants/ruptures; 

• Can detect residual cancer and 

recurrence of cancer  after 

lumpectomy; 

• Useful for high-risk women; 

• Can provide high resolution (typ. 

0.5 mm) imaging details on axial 

plane, coronal plane, and sagittal 

plane; 

• Functional imaging to study the 

blood flow (angiography). 

• Can image deep internal organs 

and tissues that are inaccessible 

to mammography. 

• Expensive;  

• Requires agent injections 

(Gadolinium) for imaging 

contrast; 

• Can not detect 

microcalcification at early 

cancer stage; 

• Unsuitable for patient with 

claustrophobia; 

• Relatively long scanning times 

compared with X-ray 

mammography; 

• Relative high false positive 

ratios, resulting in unnecessary 

biopsies; 

• Long imaging time (30-60 min) 

than X-ray mammography (15-

30 min). 

 

3.1.3 Ultrasound 

In medical applications, the ultrasound with frequency from 1 MHz to 30 

MHz is widely used. Since the normal breast tissue is constituted by fat and 

glandule, the sound wave in breast tissue can get a speed of 1550 m/s, with a 

variation about ±6%. Thus for ultrasound frequency from 1 MHz to 30 MHz, 

the wavelength is from 1.5 mm to 0.05 mm and the spatial resolution is 

typically in the order of millimeters [39].  
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For breast imaging, a hand-held transducer is used as the ultrasound wave 

source, in which a piezoelectric crystal is driven to generate the ultrasound 

wave with frequency from 1 to 15 MHz. These ultrasound waves are 

generated intermittently. The pulse width is shorter (normally <1 us) than the 

repetition time (normally > 1ms). Because the acoustic impedances of air 

(0.0004 MRayl) and breast tissue (1.38 MRayl) are very different, almost 

100% of the sound wave will reflect back. To increase the percentage of the 

transmission, an impedance matching medium (usually a gel) is smeared on 

the breast before scanning. The ultrasound wave transmitting inside the breast 

tissue will be reflected back once it encounters an acoustic impedance 

mismatch. Taking the fluid filled cyst as an example, its acoustic impedance is 

larger (1.48 MRayl) than the surrounding fat (1.38 MRayl). Thus at the cyst-

fat boundary, 23% of the ultrasound wave will be reflected back and detected 

by the transducer. This effect greatly improves the imaging contrast between 

the cystic tissues and the surrounding tissues, which makes ultrasound 

particularly useful for detection of these kinds of lesions. Meanwhile, for 

young women who have dense breast, ultrasound offers an effective approach 

to detect these lesions, where the mammography is often unsuitable. This 

capability makes breast ultrasound a useful complementary examination to the 

X-ray mammography. 

In addition, the Doppler Effect describes the frequency difference generated 

from still and moving targets. This effect is utilized in medical ultrasound to 

monitor the hemodynamic of blood flowing. Regarding to breast cancer 

detection, the Doppler ultrasound can monitor the blood flow and so can be an 

indicator of vasularization of a malignant tumor in the breast. 
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Table 3-3 summarizes the advantages and disadvantages of the medical 

ultrasound technique for breast imaging. 

Table 3-3 Advantages and disadvantages of medical ultrasound for breast 
imaging 

Advantages Disadvantages 
• Relatively cheap; 

• Imaging in real-time; 

• Portable; 

• Non-ionization hazard; 

• Can yield vascularization 

information by applying Doppler 

Effect; 

• Suitable for dense breast; 

• Suitable for cystic lesions detection; 

• Excellent contrast resolution; 

• Supplementary to the 

mammography; 

• Can be used to accurate guide for 

biopsy; 

• Complement to the mammography 

• Not suitable for LCIS; 

• Not suitable for 

calcification; 

• Highly depended on 

operator’s skill; 

• High false positive/negative 

rate from time-to-time; 

• Prominent image artifacts; 

• Not suitable for obese 

patient; 

• Limited resolution (in 

millimeters range); 

• Can not provide volume 

information; 

 

3.1.4 From non-optical imaging modality to optical imaging modality 

In addition to X-ray mammography, MRI and ultrasound, there are recently 

some other useful imaging modalities [40, 41] like contrast-enhanced breast MRI 

[42-44], clinical breast magnetic resonance spectroscopy (MRS) [45], radionuclide 

imaging like single photon emission computed tomography (SPECT) [46] and 

positron emission tomography (PET) [46], near-infrared optical imaging [47], 

diffuse optical imaging (DOT) [48, 49], diffuse optical spectroscopy (DOS) [14, 15, 

17, 50-54], near-infrared imaging fluorescence [55] . There are also various kinds 
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of hybrid imaging modalities available, like PET-CT [46], MRI-PET [56], X-ray-

DOT [57], Ultrasound-DOT [58, 59] and so on. Although these new imaging 

modalities have demonstrated promising results on breast cancer imaging, they 

are still unable to match the performance of X-ray mammography for routine 

screening [60]. In more cases, these imaging modalities play a supporting role 

to supplement X-ray mammography by providing more detailed information 

from other perspectives. For example, the main limitation of X-ray 

mammography is that it has a poor specificity for tumor type so that it is not 

suitable for dense breast tissue. This shortcoming can be compensated by 

MRI, ultrasound and other imaging modalities which provide additional 

information for tumor diagnose and thus reduce unnecessary biopsies. 

Among these supplementary imaging modalities, optical imaging modalities 

have a unique imaging capability for non-invasive breast cancer detection. In 

the following part, emphases are placed on this new imaging modality. 

3.2 Non-invasive optical imaging modalities 

3.2.1 Introduction 

Biomedical optics for breast tissue imaging (also named optical 

mammography) make use of the near-infrared (NIR) illumination. This 

principle has got fast development both on academia as well as in the 

industrial R&D laboratories in the last decades. Comparing with those non-

optical imaging modalities, the optical modality offers a couple of advantages, 

which make it extraordinarily suitable for non-invasive breast tissue 

examination and diagnoses.  
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• First of all, the optical imaging is a very safe and very comfort imaging 

modality for breast imaging. Using low dose of NIR light for 

illumination, ionization hazard will not happen at all. Patients could 

repeat imaging examination frequently without worrying about any 

radiative harm.  

• Second, optical imaging modality is non-invasive. No extra contrast 

agent is used. This advantage greatly releases patients’ morbidity. 

• Third, optical imaging provides excellent contrast in terms of optical 

properties (commonly by absorption coefficients and scattering 

coefficients) among various tissues types. This feature makes optical 

imaging a very useful tool to compensate X-ray mammography for 

dense breast tissues. 

• Forth, optical imaging using multiple wavelengths and can be utilized 

for NIR spectroscopic application, through which the optical properties 

of each specific chromophores (especially the oxygenated hemoglobin, 

HbO and the deoxygenated hemoglobin, Hb) can be quickly quantified. 

The quantification of these two significant chromophores offers an 

approach to assess tissues’ angiogenesis and vascularization. 

Nowadays, the optical imaging modalities for breast cancer imaging and 

diagnosis mainly focus on two application fields. One application field is near-

infrared optical spectroscopy [15, 17, 51-54, 61-66]. The other application field is 

near-infrared optical imaging [14, 15, 23, 26, 27, 29, 65, 67-72]. In addition to breasts, 

optical imaging is also widely used to research the brain functional imaging [16, 

73-78], arms imaging [69, 79-81], brain trauma monitoring and surgical 

interventions [82-87]. 
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In the optical imaging applications, the optical properties commonly in interest 

are absorption coefficient aμ  and reduced scattering coefficients 'sμ . 

Choromophores in breast tissue at different concentration has corresponding 

characteristic absorption spectra and scattering spectra. Concentration of these 

chromophores in normal and cancerous tissues will be different. Quantifying 

these differences among chromophores could help we well understand the 

health of the breast tissue. 

3.2.2 Photon transportation in tissue 

In most optical imaging and spectroscopy application in biomedical system the 

light -tissue interactions should be taken into account. When a collimated NIR 

beam shines on the tissue’s surface, some optical energy will reflected back 

into air and the remaining energy will go into the tissue. In breast tissue, the 

water, lipid, and hemoglobin may either cause photons to be absorbed, 

keeping propagating in its original direction, or change it propagating 

direction by elastic scattering. 

Although the interaction between photon and the biological cell membrane 

unpredictably change the photon propagation direction, the behavior of vast 

photons passing though a scattering tissue will follow an underlying statistics. 

The photon propagation track inside the tissue can be classified into 3 types: 

ballistic, snake and diffused [87]  (Fig. 3-4).  
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Fig. 3-4 Tissue-optic interactions of NIR light photons. 

• Ballistic photons 

As shown in Fig. 3-4, unscattered photons and photons undergoing forward 

scattering constitute the group of ballistic photons (photons travelling straight 

along the direction of the incident laser beam).  

• “Snake” photons 

The group of “snake” photons is composed by the photons that undergo a 

few elastic scattering events during transmission. The snake photons constitute 

the first measureable part on the time-resolved signals.  

• Diffused photons: 

The group of diffused photons is very intensive. It contains the majority of 

the incident photons after they have participated in many scattering events. 

The diffused photons carry information of the scattering properties of the 

medium.  

3.2.3 Photon detection  

With considering on target’s shape, for example, the cone shape of breast, 

different detection geometries should be taken into account to detect the 

optical signal. Two illumination-detection layouts are commonly used, as 
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shown in Fig. 3-5 and Fig. 3-6 respectively. The detection layouts in Fig. 3-5 

records the transmitted photons (i.e. in a transmission mode) while the 

detection layout in Fig. 3-6 takes advantages of their backscattering (reflective 

mode). In the transmission mode, the source fibers and the detectors (normally 

fiber and photodiode, etc) are placed on the opposite sides of the tissue slab. In 

the reflective mode, the source and the detector are placed on the same sides. 

For the transmission mode, the breasts normally need to be slightly suppressed 

to decrease the thickness. But for the reflective mode, the breast suppression is 

not required. 

 

Fig. 3-5 Transmission mode: light source fibers and detectors are placed on 
opposite sides of tissue slab. 

 

Fig. 3-6 Reflective mode: light source fibers and the detectors are placed on 
the same side of tissue. 
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3.2.4 Model of the photon transportation in biological tissue 

This subsection describes the biophysical models of light propagation in 

tissues. The focus was placed on the forward and inverse problems for a semi-

infinite boundary condition because the prototype system reported in this 

thesis is working on the reflective mode. The in-depth mathematical and 

physical derivations of these subjects can be found in publications [12, 88]. 

3.2.4.1 Diffusion equation  

The optical propagation in the turbid medium can be described using the 

diffusion equation,   
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where D is the photon diffusion coefficient, g  is the isotropic factor, 

')1( ssst g μμμ =−=  is the linear transport coefficient, and 
st

trl
μ
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= is the 

transport mean free path. sμ  is the scattering coefficient. c  is the light speed 

in the tissue. ( t,r )φ  is the measurable fluence rate. t  is time and r is the 

spatial position of the detector.  ( )tS ,r  is the light source in the medium [89, 90]. 

The diffusion equation is essentially an energy conservation equation, where 

absorption + flow + diffusion = sources.  

The diffusion equation is valid to describe the photon propagation in the 

medium with two prior assumptions [12]: 

• The scattering effect is dominant over the absorption effect. 
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• The distance from source-to-detector should be sufficient large. 

For most biological tissue, the scattering properties are usually much stronger 

(more than 100 times greater) than the absorption properties ( as μμ >> ), that 

means the photons will be almost isotropically scattered. For human breast 

tissue, the scattering coefficient (normally sμ  = 8.0 cm-1) is 160 times greater 

than the absorption coefficients (normally aμ = 0.05 cm-1) [11], which validates 

the 1st assumption [91-93].   

The 2nd assumption actually depends on the tissue probing setup. In this 

research, we designed a hand-held probe, which mounts the source fibers and 

detection fibers with separation more than 1 cm. These separations allow the 

photons experience multiple scatterings before reaching the detection fibers. 

Overall, the research work in this thesis is based on the diffusion equation. The 

solutions to the diffusion equation can be classified into analytical methods 

and numerical methods [94-96]. The numerical solutions commonly make use of 

the Monte-Carlo (MC) method [93 97, 98 99 100] and the finite element method 

(FEM) [101 102]. The analytical approaches mostly focus on the Green’s 

functions. In this study, the analytical solutions are adopted. Details of the 

numerical and analytical solutions to solve the diffusion equation can be found 

in a couple of literatures [12, 93, 96, 103, 104]. 

3.2.4.2 Analytical solutions 

The analytical solution to the time-dependent diffusion equation can be 

classified into three different types with regarding to the medium geometries: 

infinite medium, semi-infinite medium and finite slab medium [105]. For 

different medium, different boundary conditions are applied. Therefore the 
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solutions to the diffusion equation have different forms [12, 104]. All of them are 

discussed below.  

3.2.4.2.1 Infinite boundary condition 

For a layout of source-detector pair (optode) in an infinite medium shown in 

Fig. 3-7, we assume that only the fluence rate ( )t,rφ  become small at very 

long distances away from the source. Then the Green’s function to the 

diffusion equation due to a pulsed laser at an unit energy emitted from the 

origin at time 'tt −  is [12] 
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Fig. 3-7 Light source and detector in infinite boundary medium. 

 

3.2.4.2.2 Semi-infinite boundary condition 

The semi-infinite boundary condition showing in Fig. 3-8 assumes the 

boundary extend to infinite in direction of 0<z . An effective isotropic point 

light source (called ‘real’ light source), which can be thought of as simulating 

a narrow collimated laser beam incident at 00 =z , is placed at depth 
'sμ

1
rz =
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interpolated into the medium. A so-called ‘image’ counterpart of the real 

source is formed by the reflection of the real source about the plane of the 

“extrapolated boundary”. In combination with the boundary condition

0)0,( === tzz bφ , one can get the analytical solution for detectors located on 

the surface of the semi-infinite medium, as [12, 87, 106] 
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Fig. 3-8 Light source and detector in a semi-infinite boundary medium.  
 

where is the radial distance from the input 

source fiber to the detection fiber in the x-y plane. 
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distance from the real light source to the detector fiber. ( )[ ]2122
2 2 bzrr ++= rz

is the distance from the image light source to the detector fiber. Here 
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boundary and is the effective reflection coefficient on the interface [ 107, 108,  

109, 110]. 

effR

r
rr

eff n
nn

0063.0608.071.044.1
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where 
out

in
r n

n
n = , the ratio of the refraction index of the “inside” medium to 

the “outside” medium. The values of  for different interfaces can be found 

in literature [104].  

effR

3.2.4.2.3 Slab medium solutions 

The solution to a finite slab boundary, as showing in Fig. 3-9 can be described 

using approximate boundary conditions 0)0,0( === tzφ . Then fluence 

reflectance is give by [12, 106].  

( )
( )[ ] ( ) ( ) ⋅⎥

⎦

⎤
⎢
⎣

⎡
−−

−
−×

−
=

4
'− '

'4
exp

'

1,,
2

2
3 ttc

ttDc
r

ttDC
ttdr aμ

π
φ  

( ) ( ) ( )
( )⎥⎦

⎤
⎢
⎣

⎡

−
−

−−−
⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−exp

− '4
2exp2

'4

2
0

0

2
0

0 ttDc
zdzd

ttDc
zz

 

( ) ( )
( ) ....

'4
2exp2

2
0

0
⎪⎭

⎪
⎬
⎫

+⎥
⎦

⎤
⎢
⎣

⎡

−
+

−++
ttDc

zdzd   (3-6) 

Similarly, the fluence transmission is given by 
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where  is the thickness of the finite slab. In d

,0

Eq. (3-4), extrapolated boundary 

condition is used to describe single boundary. However, the slab medium 

showing Fig. 3-9 has an additional boundary. The boundary condition 

0)0( ===z tφ  can be met by adding two sources near dz 2=  as shown 

in Fig. 3-9. However, the boundary condition at 0=z  is violated for . 

Both boundary conditions above can be met at all times only by adding an 

infinite number of dipole sources. Thus the measurable reflectance and 

transmission fluencies emitted from slab medium can be described by Eq. 

cdt /2=

(3-6) 

and Eq. (3-7), respectively [12, 106]. 

 

 

Fig. 3-9 Light sources and detectors in a finite slab medium. 
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The derivation of analytical solution under the three main boundary conditions 

involves the superimposing of the Green’s functions. Taking the semi-infinite 

boundary as an example (Fig. 3-8), the temporal point spread functions (TPSF) 

for the optical properties aμ  = 0.05 cm-1 and 'sμ  =10 cm-1 is normalized and 

shown in Fig. 3-10. Analytical solutions for other complex geometries, such as 

spheres and cylinders are explored by literatures [12, 104, 111]. Although there are 

no general solutions for inhomogeneous media, analytical expressions have 

been derived, which are capable of incorporating a single point-like absorbing 

perturbation into an otherwise homogeneous medium.  
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Fig. 3-10 A typical temporal point spread function (TPSF) calculated using 
Green’s function from a semi-infinite boundary. 

 

3.2.5 Image reconstruction 

DOT imaging modalities aim to quantify and map the difference of optical 

properties between normal and abnormal tissues by determining the optical 

properties of the theoretical values acquired from the same setup used for 
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experiment. This can be realized by solving the forward model and the inverse 

problem. 

3.2.5.1 Forward model 

The forward model of DOT imaging can be described in equation: 

XJY ⋅=      (3-8) 

where Y  is the signal which can be got from experiments, X  is the known 

optical property of object, and  is Jacobian matrix (or weight matrix). Given 

the prior information of spatial arrangements of light sources and detectors 

(optodes) and the optical properties of objects under illumination, the value of 

 can be calculated. 

J

Y

3.2.5.2 Inverse problem 

To get the unknown optical properties of the target under investigation, we 

should resolved by inverting Eq. X (3-8) as, 

YJX ⋅= −1      (3-9) 

where Y  represent the measurements data (e.g. TPSF data) acquired from the 

DOT experiments, X  represents the optical properties to be uncovered and 

 represents the inversion of Jacobian matrix.  1−J

3.2.5.3 Image reconstruction 

3.2.5.3.1 Perturbation theory 

According to the perturbation theory, a small change in the object (e.g. the 

presence of heterogeneous optical properties in the homogeneous background) 

will consequently lead to a corresponding change in the data acquired. This 

change can be expanded in a series from the known function describing the 
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original state of the object. The measurements Y  acquired from light source 

 and detector m  for the objects with optical properties  can be described 

in Taylor series,  

n X
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where  is the distribution of optical properties throughout the object. 

If we neglect the terms above the first derivative and rearrange Eq. 
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where the values of  over the volume of the object is known as the 

photon density measurement function (PDMF) [112], which maps the 

magnitude of the change in the measurements Y  that results from a unit 

change in optical prosperities 

),( mnJ

x  at position r  for a source-to-detector pair 

. The Jacobian matrix J  is composed by all the derivatives of  

for all source-to-detector pairs at all volume voxels.  

),( mn ),( mnJ

3.2.5.3.2 Linear image reconstruction 

The linear reconstruction is the simplest way to reconstruct 2-D/3-D images. 

For the measurement differences induced by the heterogeneity presence in a 

homogeneous background, Eq. (3-11) can be rewritten as 

xJY mnmn Δ=Δ ),(),(      (3-12) 

If the optical properties perturbation is small, one can solve the above equation 

by inverting the Jacobian matrix J  after calculating the homogeneous 
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background (forward model). To invert Jacobian matrix, there are several 

features which may complicate the process: 

1) The matrix is ill-posed, which means the independent measurement is 

less than the unknown voxel numbers; 

2) The matrix is ill-conditioned, which means the condition number is 

typically very large, resulting in the magnification both of 

measurement errors and numerical errors on inversion. 

In order to solve these errors, DOT imaging reconstructions make use of 

methods like singular value decomposition or Tikhonov regularization. The 

latter one can improve the matrix’s condition by adding an identity matrix I  

with a weight factorλ . i.e 

[ ] yJIJJx TT Δ⋅⋅+⋅=Δ
−1λ    (3-13) 

The advantage of linear reconstruction is that it does not require a good 

forward model to be derived for achieving reasonable results. The main 

disadvantage is that it is can only reconstruct small changes in the optical 

properties. In this thesis research, linear image reconstruction, especially the 

Tikhonov method is adopted for image reconstructions. 

3.2.5.3.3 Non-linear image reconstruction 

Non-linear reconstruction involves generating a forward model, comparing its 

predictions with the experimental data and updating the sensitivity matrix to 

minimize the difference. This process is repeated iteratively until the model 

data is within an acceptable degree of the experimentally measured data. 
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3.2.6 Optical instrument types 

This section reviews three diffuse optical imaging techniques and their 

instrumentations: continuous-wave, frequency-domain and time-domain. 

3.2.6.1 Continuous-wave method 

3.2.6.1.1 Principle 

Continuous illumination of breast or ‘diaphonography’ is used to produce 

shadow images. It was firstly introduced by Culter in 1929 [113]. In 1977, 

Jöbsis [1] firstly proved that the intensity change of continuous intensity light 

after going though the tissue can be recorded for tissue optical properties 

characterization. The typical working principle of continues-wave (CW) mode 

diffuse optical imaging is shown in Fig. 3-11. A collimated beam of NIR light 

with intensity of  is incident on the tissue slab. The intensity of the emission 

is ( ). The attenuation of the input intensity with respect to the output 

intensity of the NIR light is primarily caused by the presence of absorber and 

scatterer inside the tissue. Arridge has proven that the information of intensity 

change alone is not sufficient to distinguish between the changes between 

absorption and scatter [114]. To be able to resolve absorption properties, one has 

to assume that the scattering properties of the tissue are homogeneous 

throughout the tissue and estimate their average value. With this assumption, 

the intensity change can be dependent on the absorption only. Thus the 

absorption properties can be resolved accordingly. 

iI

oI io II ≤

For multiple pairs of light sources and detectors, the absorption coefficient of 

the tissue can be simultaneously derived from the measurement using the 
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spectroscopy-like detection setup. However, for multiple wavelengths, the 

assumptions that the scattering is constant will induce error to the absorption 

coefficients. Therefore the difficulty of the continuous wave optical approach 

should increase to non-linear mode if one wants to resolve the chrompohore 

concentrations. 

  

Fig. 3-11 Continuous-wave technique. 

3.2.6.1.2 Instrumentations 

The geometry of the light source and detector employed in the continuous 

wave optical approach determines the corresponding instruments, which can 

be spectroscopic systems (for single pair of light source and detector fiber) or 

CCD camera system (for multiple light source and detector fibers).  

The advantages using fiber-coupled CCD camera are depended on the speed 

performance. Normally a CCD spectrometer can operate at frequency up to 

100 Hz, which enables a possibility to realize high speed tomography imaging 

performance. The limitations of CW measurements are that the path length for 

photon travelling must be estimated and the scattering properties must be 

assumed. This estimation will cause errors in absorption resolution. 

Meanwhile, CW methods are also suitable for application including thick 

tissue since the attenuation measurements are subject to the signal-to-noise 
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ratio (SNR). Comparing to the frequency-domain method and the time-domain 

method, CW is not suitable for tomographic imaging applications as the 

measurements severely limit the resolving accuracy of tissue’s  optical 

properties [115].  

3.2.6.1.3 CW systems at present 

Currently, almost all CW imaging/fluorescence applications make use of NIR 

CCD cameras as detector to get a fast detection speed (multi channels in 

parallel) and a large detection area. Ulas [116, 117] employs the CCD camera to 

detect the intensity of the fluorescence around the tumor region to study the 

drug delivery effect. Barbour developed an 18 channels a CW system named 

IRIS-OPTI scanner [118]. Schmitz [119] proposed a CW method to record the 

breast cancer using high speed CCD camera. Researchers in Hitachi (Tokyo, 

Japan) developed a commercial product for topographic mapping of cortical 

activity [120].  

3.2.6.2 Frequency-domain method 

3.2.6.2.1 Principle 

Fig. 3-12 illustrates the schematic of a typical frequency-domain (FD) optical 

imaging technique. In FD, intensity-modulation technique is used to modulate 

light source and the heterodyne technique is used to resolve the optical 

properties from the transmitted or reflected acquisitions. In practice a NIR 

laser diode (LD) is intensity-modulated (by modulating the working current)at 

one or few radio frequencies (RF). The RF frequencies are normally in few 

hundred MHz. The modulated light is guided to illuminate the tissue. The 

transmitted and/or the reflected signals, often known as the photon density 
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waves (PDW) are fiber-coupled into the photomultipliertubes (PMT), where 

the optoelectronic (O/E) conversions are down-converted into audio frequency 

signals by correlating with the reference signal. As a result, the modulation 

frequency-dependent light power (intensity) ( )fM , phase shift ( )fφ  and the 

modulation depth of the detection signals relative to the input reference signals 

can be extracted.  

( )ωφΔ

( )ωMΔ

 

Fig. 3-12 Frequency-domain (frequency-modulate) techniques. 

 

For example, the analytical expressions for the intensity modulation intensity 

 and the phase ( )fM ( )fφΔ derived by the Fourier transformation of Eq. (3-3) 

at modulation frequency in an infinite boundary condition (Fig. 3-7), are 

defined by [88] 

f
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For the fixed values of r  and , the absorption coefficient and scattering 

coefficients can be obtained by a multidimensional Newton-Raphson 

algorithm designed to solve Eqs. 

f

(3-13) and (3-14).  

It has been proven that the scattering and the absorption of tissues have 

independent affects on both the intensity and phase shift measurements of the 

transmitted and/or the reflected signals [88, 121]. Therefore, the change of these 

signals can be used to separate the absorption and scattering information 

without prior knowledge of the path length, which makes FD approach 

different to the continuous wave approach. The standard technique of 

frequency-domain spectroscopy configurations and the imaging has been 

reviewed in literatures [88, 94, 121-123]. 

3.2.6.2.2 Instrumentations 

Gao et al. have proven that the sensitivity to absorption and scattering (for 

spectroscopy), and the spatial resolution of the FD imaging systems are 
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dependent on the frequency chosen [124]. Theoretically, the more spread 

frequency spectra were utilized in the FD system, the higher accuracy the 

TPSF can be achieved. But in practice, the laser diode (LD) cannot be 

modulated by arbitrarily high frequencies due to the limitations of the LD 

construction (primarily due to the bandwidth limitation associated with the 

conjunction capacitance). Thus in most cases, the RF frequencies used range 

from tens to few hundred MHz (typically from 50 MHz up to 250 MHz).  This 

RF range equivalently corresponds to a few nanoseconds in the time-domain 

technique. For actual instrumentations, two modulation schemes are widely 

used. The system either uses a single LD which is modulated by multi 

frequencies, or uses multiple LDs, which are modulated in a single frequency. 

Comparing with the later one, the former scheme offers system advantages 

like low cost and compactness. However, the system architecture is normally 

complex. For a few specific RF frequencies, the data acquisition time by using 

single LD will significantly increase, which consequently reduces the 

superiority of the FD technique. 

3.2.6.2.3 FD systems at present 

The first frequency-domain measurement of photon migration in tissues was 

reported by Lakowicz and Berndt in 1990 [125]. After that, the effectiveness of 

frequency domain systems for tissue imaging have been demonstrated by 

different research groups [71, 121, 125-129], including the first in-vivo images [121, 

130, 131]. Apart from academia, some industrial companies have involved in this 

promising field. Several breast imaging prototype systems based on FD 

measurements have been built by Carl Zeiss ,[132] Siemens [133] and Philips [134] 
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companies, respectively. The preliminary clinical trials have already been 

conducted using prototypes at each company. 

3.2.6.3 Time-domain (TD) method 

3.2.6.3.1 Principle  

Fig. 3-13 illustrates a typical time-domain diffuse optical imaging technique, 

which can be used for time-resolve spectroscopy of imaging applications. An 

ultrashort pulse laser (typically from few femtoseconds up to a few 

nanoseconds in pulse width) is used to illuminate the tissue. The photon will 

become spatially and temporally dispersed with time after transmitting 

through or reflecting back from the tissue. A histogram of the time-of-flight of 

individual photons, or so-called the temporal point spread function (TPSF), 

can then be accumulated. As the ultrashort pulse light is essentially constituted 

by ultra broad band frequency spectrum information, so the retrieved TPSF 

contain very broad spectra information. This feature theoretically makes TD 

superior over the CW technique, in which only DC signal is investigated and 

the FD technique, in which a limited few RF signals are investigated.  In 

addition, extra information can be extracted from the TPSF measurements. For 

example, the integrated intensity of the TPSF is the same as a continuous wave 

measurement. The amplitude and the temporal shifting of the TSPF can be 

used to retrieve the optical properties of the tissue. The full theory of the time-

domain optical measurement has been investigated in a couple of literatures 

[12, 68, 104, 106, 135]. 
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Fig. 3-13 Time-domain diffuse optical technique.  

3.2.6.3.2 Instruments 

The time-resolved spectroscopy and tomography imaging are intensively 

explored for breast examination. The ultrashort pulse laser (from CO2, He-Ne 

Lasers and so on) is multiplexed into multiple fibers channels using optical 

switch/router. These fibers are attached on the tissue in a specific spatial 

layout in order to get maximal independent optical information. Meanwhile, to 

measure the TPSFs from the transmission and the reflectance, time-correlated 

single photon counting (TCSPC) [23, 67, 69, 71, 74, 136-140] and streak camera [133, 141-

143], are the widely used for optical signal detection. 

3.2.6.3.2.1 Streak camera  

Streak camera can record full TPSFs. Fig. 3-14 shows the working principle of 

streak camera. The diffused photons escaping from the breast tissue enter the 

streak camera through a slit, after that the photons are converted into electrons, 

which is proportionally to the sensitivity of the photocathode. The 

photonelectrons are accelerated by the following high electric field and go 

through a deflection tube. An external temporal sweeping voltage deflects the 

direction of these electrons in vertical direction. The deflected electron hit the 
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phosphor screen. Then the time-resolved intensity can be acquired using a 

high speed CCD camera. 

B
re

as
t t

is
su

e

 

Fig. 3-14 TPSF acquisition using streak camera. 

Since the arriving time of each photon to the slit is depended on the absorption 

and scattering properties of the tissue, then the accumulation of the streak 

intensity on the phosphor screen over time results in the TPSF measurement 

accordingly. Illuminating the photocathode directly by the ultrashort pulsed 

laser can create a reference pulse on the phosphor screen, from which the 

absolute time of flight can be calibrated. 

The TPSF acquisition using streak camera setup gives the time-resolved 

systems advantages including excellent temporal resolution (normally down to 

a few picoseconds) and fast data acquisition. However, the disadvantage is 

about the high system cost. The detection area is subject to the aperture size of 

camera, which is normally in a small size (normally < 1 mm2). In addition, the 

dynamic range of streak camera is normally limited (approximately 104). 

Finally, the temporal nonlinearity is inherently subject to the ramp voltage. 

For these reasons the streak camera method has limited applications for 

diffuse optical imaging. 
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3.2.6.3.2.2 Time­correlated single photon counting  

Time-correlated single photon counting (TCSPC) is based on the detection of 

single photons of a periodical light signal. Fig. 3-15 shows the detection time 

of each individual photon and the waveform accumulation from individual 

time measurements. This method makes use of a straightforward fact: the light 

intensity signals of high repetitions rate is usually so low that the probability 

of detecting one photon in one signal periods is much less than one. Therefore, 

the detection possibility of several photons can be neglected. 

 

Fig. 3-15 TPSF measuring using TCSPC techniques. 

In the time-domain TPSF measurement, a periodical short pulse laser with 

high repetition rate is used to illuminate the tissue. Each pulse will disperse 

with time after transmitting though or reflecting from the tissue. Each of this 

dispersed pulse will be coupled into the fast detector such as a time-to-

amplitude (TAC) converter. Although each pulse consists of a large amount of 

photons, only one photon can be detected by the TCSPC at each measurement 

( ). The timing of each detected photon is specified by the 

reference photon. It is should be noted the possibility to detect more than one 

niM i K0, =
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photon at each detection time is very rare and the possibility of detecting 

nothing does exist. After many photons and a period detection time, the 

randomly detected photons and the corresponding timing pulse stored in the 

system memory can be accumulated into the TPSF.  

The TCSPC-based signal acquisition techniques have been widely applied in 

ultra fast recording of optical waveforms, fluorescence lifetime measurements, 

fluorescence lifetime imaging and optical tomography. The advantages of 

TCSPC-based system are of high dynamic range and excellent temporal 

linearity. If combining with the micro-channel plate (MCP) PMT, the system 

additionally offers a desired goodness on large detection areas. The low cost 

replacement to MCP-PMT is to use high speed avalanche photodiode (APD)  

[144]. However, such a replacement is limited by a smaller dynamic range. 

The disadvantage of TCSPC system is lower temporal resolution (typically in 

a range of tens to hundreds of picoseconds). TCSPC devices’ high optical 

sensitivity requires an extreme dark environment for TPSF acquisition. This 

will cause discomfort to patients in clinical application. To detect the TPSF 

with sufficient signal-to-noise ratio, the data acquisition time usually extends 

to tens of minutes or longer due to the slow photon accounting rate (usually 

from 104 up to 106 per second). The data acquisition will be significantly 

extended if multiple light sources and detectors are employed. This system 

limitation also limits its applicability for those clinical applications, in which 

fast data acquisition performance is crucial. 
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3.2.6.3.3 TD systems at present 

With the development of ultrafast laser technique and NIR semiconductor 

detection devices, the time-domain optical imaging system got profound 

advances. 

In Japan, Oda et al reported an advanced 64-channel TCSPC system using the 

TAC for time-resolved function [145]. Also in Japan, Prof. Yamada’s group 

reported a 16-channel time-resolved DOT system using TCSPC devices for 

anatomic imaging [69, 124, 146-148]. 

In US, Prof. Chance’s group reported an 8-channel time-resolved TCSPC NIR 

spectroscopy instrument for motor cortex activity monitoring and the 

tomographic breast phantom studies [26, 121, 149-152]. In UC Irvine, Prof. 

Tromberg’s group constructed a time-resolved NIR spectroscopy for benign 

and malignant breast tissue characterization [23, 153-156].  

In UK, UCL has built a 32 channels time-resolved DOT, named MONSTIR 

using TCSPC-based devices [70, 74, 157, 158] and streak camera devices [136]. The 

research focuses on human breast tissue and neonatal brain hemodynamic 

study.  

3.2.7 Comparison between optical techniques 

As a summarization, Table 3-4 compares pros and cons of the above three 

main diffuse optical imaging techniques. 
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Table 3-4 Pros and Cons of CW, FD and TD techniques for DOT/DOS 

 Advantage Disadvantages 

CW 

• Low cost; 

• High speed; 

• Simple architecture; 

• Low detection depth; 

• Less information; 

• Susceptibility to SNR; 

FD 

• Relatively low cost; 

• Fast system response; 

• High speed; 

• Relative simple 

architecture; 

• Lower temporal resolution  

(< 1 GHz or equally a few 

nanoseconds); 

TD 

• High temporal resolution; 

• Large detection area; 

• High dynamic range; 

• High system cost; 
• Susceptible to environmental 

noise; 

 



Chapter 4. Design and implementation of 

novel fast time-domain diffuse optical 

tomography  

This chapter systematically describes the design and implementation of a 

novel fast time-domain diffuse optical system, which is advantageous on fast 

spectroscopic and tomographic imaging performance for breast tissue 

characterization in vivo.  

The first part describes the working principle. Emphasis is placed on spread 

spectrum correlation technique using high-speed pseudorandom bit sequence 

and its potential to acquire time-resolved data in a fast speed. The second part 

technically describes the details of the implementation. All of key modules 

and functionalities which affect system performance are discussed separately. 

The last part shows the system performance assessment. 

4.1 Principle 

4.1.1 Correlation of spread spectrum signals 

It is well known that a spread spectrum system possesses many desirable 

properties, such as selective addressing capability, low error rate, and 

interference rejection which make it extremely useful in communication 

industry. Taking the pseudorandom bit sequence (PRBS) as an example, the 

PRBS code has only a weak cross-correlation with other codes, while the 

autocorrelation function shows a delta-function-like function. Therefore, a 

receiving system can pick up the correct code sequence, differentiate it from 

environmental noise and interference, and is able to distinguish the same 
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sequence that arrives at different times from multiple paths. These properties 

are utilized in our time-resolved optical system, in which photons detected at 

different time delays can be resolved. Higher signal-to-noise ratio, shorter data 

acquisition time, and low system cost are the expected advantages of our new 

diffuse optical tomography system by using the PRBS modulation technique 

[159]. 

We denote  as the time-dependent response of a sample to the excitation of 

an ultrashort pulse. A light source continuously modulated with a 

pseudorandom bit sequence is used to illuminate the sample. So the ac 

component in the detected signal is proportional to a convolution of the 

impulse response and the excitation: 

( )tI

( ) ( ) ( )tPtIAtR ⋅⋅=      (4-1) 

where A  is the modulation depth, ( )tP  is a maximal length sequence, which 

has a circular autocorrelation function similar to a delta function: 
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where τ  is the time delay,  is the period of one-bit. 0T ( )τg   is a delta-shape 

function when τ  is in region [ ]00,TT− . In regions out of [ , the 

autocorrelation approximate to zero when N  is big enough. Correlating  

with  yields 

]00,TT−

( )tR

( )tP

( ) ( ) ( ) ( ) ( )ττττ gItPtRf ⊗=−=     (4-3) 

Eq. (4.3) is valid when the time span of TPSF is less than . If  is small 

enough, 

0NT 0T

( )τf  at a specific delay time τ  is well approximated by ( )τI . When 
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0T  becomes comparable to the time scale of ( )τI , ( )τg  acts as an equivalent 

temporal gating window. So the impulse response or its integral over a time 

window can be retrieved by the correlation method. 

4.1.2 Simulation  

Fig. 4-1 shows a typical non-return-to-zero (NRZ) PRBS signal at a bit rate of 

2.488-Gb/s (OC-48) and pattern length of 29-1 = 511 bits. Each pattern has 

period of 205.38 ns.   

Fig. 4-2 shows the simulation results (with normalization) of the 

autocorrelation of the PRBS with a data bit rate of 2.488 Gbps and pattern 

length of 511 bits. The repetition rate of autocorrelation is exactly equal to the 

pattern length, i.e. 205.38 ns. 

A zoom-in view of each autocorrelation (rectangle area in Fig. 4-2) is shown 

in Fig. 4-3. The delta-shape function has theoretical full width at half 

maximum (FWHM) of 401.929 ps, which equals to two folders of the 

reciprocal of the data bit rate of the PRBS signal.  

 

Fig. 4-1 Pattern of a NRZ 511-bit, 2.488-Gbps PRBS. 
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Fig. 4-2 Autocorrelation of 511-bit, 2.488-Gbps PRBS signals (NRZ). 
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Fig. 4-3 Autocorrelation of 2.488-Gbps PRBS (zoom-in view of Fig. 4-2).  
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4.2 System Design and Implementation 

4.2.1 General objectives 

This research firstly aims to develop and construct a high quality time-domain 

DOT/DOS system by utilizing the above spread spectra correlation technique. 

The following objectives highlight the most important features of the system, 

which will guide the whole research.  

• The whole system is a fully simplex. The prototype system contains 9 

light source fibers and 4 detection channels (totally 36 source-detector 

pairs) for TPSF acquisition. The system should be fully automatically 

controlled by computer via software (LabVIEWTM and MatlabTM) and 

hardware interfaces (data acquisition card) in a friendly user control 

GUI (graphic user interface).  

• In order to improve the data accuracy against to the environment 

changes, the temperature whole system should be kept stable within a 

sufficiently long duration (> 1 hour). 

• The temporal resolution is a very important system specification. 

Theoretically it can reach 401.929 ps. However, due to the limited 

bandwidths of the optical devices (such as laser diodes and 

photodetectors) and RF components, the real time-resolution is usually 

worse than the theoretical value. But we choose components carefully 

to achieve the highest possible time-resolution. . 

• The crosstalk between source and detection channels should be 

negligible comparing with the TPSF intensities acquired. The effect of 

environmental illuminations should be negligible, too. The maximum 

dynamic ranges of TPSF signal acquisition should be around 104. 
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• At least two NIR wavelengths should be employed to quantify the 

concentration changes of Hb and HbO. Super stable laser diodes (LD) 

will provide stable light sources.  

• A hand-held probe in reflectance mode is designed to mount all fiber 

and bundles. Balance between number of sources and detectors and the 

data acquisition speed should be optimized. High data acquisition 

speed is desired. Nearly real-time imaging performance is expected. 

• The computation time for imaging reconstruction should be much 

faster than data acquisition. 

• There is a research budget $120k for prototype system development, 

supporting equipment purchasing and in vivo experiments. The total 

cost of prototype system should be less than $ 70k. The prototype 

system should be compact, robust and lightweight. 

4.2.2 System overview 

Fig. 4-4 shows the schematic diagram of fast TD-DOT prototype system 

developed in this research [160]. A PRBS function generator continuously 

generates a train of 2.488-Gbps signals. The pattern length is 511-bit. This 

PRBS signal is spitted into two even arms by a power splitter. One arm is used 

to modulate the NIR light. The other arm is used as reference to decode the 

optical signals emitted from tissue. Laser beams from two low-cost LD (

7851 =λ  nm and 8082 =λ nm) have optical powers of 5 mW. Two NIR light 

beams are coupled into a single mode fiber then go through an external Mach-

Zehnder intensity modulator. In modulator, their intensities are respectively 

modulated by the PRBS modulating signals. After modulator, the encoded 
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light beams are fiber-coupled to a Y-shape tap coupler. A minor portion (~2%) 

of the optical power is tapped out for intensity stability monitoring. The major 

portion (~98%) of the optical power is guided to a 1 × 9 fiber optical switch. 

The switch sequentially multiplexes the laser beam into 9 output fibers. A 

hand-held probe mounts 9 fiber and together with another 4 fiber bundles. The 

probe is placed on the top surface of tissue-like phantom or breast tissue. The 

reflectance optical signals from the phantom/tissue are collected by fiber 

bundles and guided to 4 avalanche photodiodes (APD). After O/E conversion, 

the signals are pre-amplified by lower noise amplifiers before being fed into 4 

mixers through the radio frequency (RF) port. Meanwhile the reference PRBS 

signals feeding into the local oscillation port (LO) after appropriate sequential 

time delay are used as reference for demodulation. The down-conversion 

signals, i.e. the TPSFs are amplified by operational amplifiers (OP-AMP). 

Computer gets these TPSF signals from data acquisition card (DAQ). The 

tomographic images or the spectroscopic information are reconstructed and 

analyzed, and the optical properties, including absorption coefficient, reduced 

scattering coefficient, and the physiological information, including the 

oxygenation saturation and the total haemoglobin concentration are extracted 

and mapped. 

Fig. 4-5 shows the picture of fast time-domain DOT/DOS prototype system. 

Details of each module are described in the following parts.  
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Fig. 4-5 DOT/DOS prototype system on a 19-inch rack (front view).  

4.2.3 Optical modules 

The optical modules play key roles in the whole system. Research was focused 

on the stabilization of modulation depth, optical power modulation, and 

temporal delay between optical modules.Laser sources 

Two laser source schemes are available and tested, respectively. Scheme one 

will use a wavelength-tunable stable laser diode (DL 100, TOPTICA, US). 

Scheme two will use two NIR laser diodes (780 nm and 808 nm). Scheme one 

is reserved for spectroscopy application in future. The laser diode is 

constructed in the prototype system for image/spectroscopy study at present. 
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4.2.3.1.1 Wavelength -tunable stable grating laser diode 

The tunable wavelength LD is purchased from TOPTICA [161]. During system 

calibration, one single wavelength (at 785 nm) is picked up by default. The 

laser diode driver provides excellent temperature stability as well as a fast 

warming up speed. The output optical power can be accurately and easily 

changed using current controller and monitor on the instrument panel. The 

limitation of this wavelength tunable laser diode system is its slow wavelength 

tuning speed, which would increase the data acquisition time in the 

spectroscopy applications. Table 4-1 summarizes main specifications of the 

wavelength-tunable LD scheme. 

Table 4-1 Specs of the wavelength-tunable laser diode 

Model DL series 
Mode SM 

Tunable Wavelength (nm) 632-1700 
Modulation (mode-hop free range) (GHz) >  20 

Wavelength (nm) 785 ± 3 
Power Settings (mW) 

Power Max (mW) 
~20 mW 
50 mW 

Driver DCC110; DTC110; DC110; SC110; 
Manufacturer TOPTICA PHOTONICS 

 

4.2.3.1.2 NIR laser diodes 

The dual NIR wavelengths can be got from two dedicated laser diodes (LD). 

These two LDs are employed in the spectroscopy system to resolve the 

concentrations of HbO and Hb. During system calibration and tomographic 

image reconstruction, lasers at 785 nm or 808 nm were selected sequentially. 

The optical power from two LDs is monitored using power meter 

(NEWPORT). Table 4-2 summarizes the specifications and the configurations 
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of two wavelength-fixed LDs. Fig. 4-6 shows the setup picture of dual 

wavelength LDs in the system. In the following part, the description is focused 

on the applications using two independent NIR LDs. 

Table 4-2 Two wavelength-fixed NIR LDs in the DOT/DOS system 

 1λ  2λ  

Model DL-7140-201S DL-8141-035 
Mode SM SM 
Driver ITC102 ITC102 

Wavelength (nm) 785 ± 3 808 ± 10 
Average power (mW) 

Max power (mW) 
~ 20 
70 

~20 
150 

Beam Divergence Perpendicular (o) 
Beam Divergence Parallel (o) 

17 ± 3 
8  ± 2 

16 ± 4 
8  ± 2 

Off Axis Angle Perpendicular (o) 
Off Axis Angle Parallel (o) 

0  ± 3 
0  ± 2 

0 ± 3 
0 ± 3 

Manufacturer SANYO SANYO 
 

 

 

Fig. 4-6 Photograph of the dual-wavelength light sources and the combiner on 
a 19’’ optical rack. 
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4.2.3.2 Fibers 

There are three types of fibers are utilized in the system: the SM/PM FC 

fibers, the multimode (MM) fibers and the quartz fiber optical light guide 

(fiber bundles). The SM/PM FC fiber conducts the constant optical power NIR 

laser from the LD into the intensity modulator. Nine MM fibers were used as 

light source fibers to conduct the PRBS-modulated optical signal from optical 

fiber switch to the hand-held probe (see Fig. 4-4). In order to mount 9 fibers in 

the hand-held probe, the fiber cladding were taken away. The optical light 

guides who were mounted on the hand-held probe together with the MM fiber 

serve as the detection channels. They are used to collect the reflective optical 

signal emitting from phantom/tissue and transmit the optical signals to the 

APD array (see Fig. 4-4). 

Table 4-3 Specification of optical fibers used in the prototype system 

Model F-PM630-C-2FC SF13048M-001 NT38-955 
Description Fiber  Bare fiber Light guide 

Wavelength (nm) 630 780 780 
Mode SM MM MM 
PM Yes No No 

Core size (mm) 0.01 0.05 3.175 
Cladding size 

(mm) 0.400 0.125 - 

N.A 0.11 0.11 0.17 
Distributors Newport Photoniks EO Edmund  

 

4.2.3.3 Modulator 

In our system, the constant intensity laser beams need to be intensity 

modulated by the 2.488 Gb/s PRBS signal. This can be realized by using an 

external intensity modulator.  There are two types of modulators available for 

high speed analog modulation: Electroabsorption modulator (EAM) and 
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interferometric modulator (generally the Mach-Zehnder intensity modulator, 

MZM). Comparing with EAMs, the MZMs generally offer the maximum 

power handling capability, the minimum optical loss, the maximum 

modulation depth and the cost-effectiveness. Because of these highly desirable 

features, our system would adopt MZM to realize the PRBS modulation for 

the NIR beams. The drawback of the MZM also deserves careful handling. 

The inherent modulation instability will induce an undesired bias drifting 

effect. So it is necessary to introduce an external bias controller to 

dynamically stabilize the modulation depth of the MZM (see section 4.2.4.8 

for modulation stabilization).  

The MZM deployed in our system is 2-port, Z-cut titanium-indiffused lithium 

neobate (Ti:LiNbO3) interferometric MZM (Fig. 4-7), which is commercially 

available from EOSPACE, US [162]. This kind of MZM product provides a 

stable analog modulation speed at 10 Gb/s and a sufficient bandwidth (>10 

GHz), which fully satisfy the requirements at 2.488 Gb/s analog modulation. 

The RF port is connected to the 2.488-Gbps PRBS signal for modulation. The 

DC port is connected to bias voltage to keep the working point biased at the 

desired positive quadrature point. Table 4-4 summarizes the main 

specifications and configurations of the MZM in our system.  

 

 

Fig. 4-7 Interferometric Mach-Zehnder intensity modulator. 
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Table 4-4 Specifications of the MZM 

Wavelength (nm) 780 
Modulation speed 10 Gb/s 

Bandwidth >10 GHz 
Input fiber mode PM  

Output fiber SM and PM 
Bandwidth (GHz) >  10 

Optical insertion loss (dB) 3.7 
RF port:  @ 1GHz (V) πV 1.7 

Bias  πV 1.7 

Extinction ratio (dB) 21 
Crystal cut/materials Z-cut LiNbO3 

Model AZ-0K1-10-PFU-SFU-780-S 
Manufacturer EOSPACE, US 

 

4.2.3.4 Fiber optic switch 

The fiber optical switch sequentially deliveries the PRBS-modulated laser 

beam from the MZM into 9 independent source fibers. It is a fast and compact 

component from PHOTONIK Company [163]. The optical multiplexing is TTL 

programmable by computer through a 9-pin D-shape connector. Two laser 

beams 785 nm and 808 nm are alternately coupled into a 1 × 9 fiber optics 

switch. Table 4-5 summarizes of the primary specifications of the fiber optics 

switch. 

Table 4-5 Specifications of the fiber optics switch 

Wavelength (nm) 850 

Insertion loss (dB) <  1.0 

Return loss (dB) SM:  > 55;   MM:  > 25 

Cross talk (dB) <  -60 

Switching time (ms) <  10 

Vendor PHOTONIK Singapore 
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4.2.4 Electrical modules 

This part describes the main electrical modules; including the PRBS signal 

generation, transmission, correlation and performance control. All of the 

electrical modules are encased in the three drawers as shown in Fig. 4-5. 

4.2.4.1 PRBS generators  

Currently we adopt two available approaches to obtain the 2.488-Gbps NRZ 

PRBS signal in our system. One approach is to use the field programmable 

gate array (FPGA). The other approach is to use transceiver.  

4.2.4.1.1 FPGA approach 

FPGA developing board is purchased from commercially available products 

(model VIRTEX-II PRO from Xilinx Company) [164]. The chips are 

programmable instructed using a logic circuit diagram in combination with 

a source code of hardware description language (HDL). The chips can be 

configured to realize any logical function as same as what an application-

specific integrated circuit (ASIC) can perform.  

 

Fig. 4-8 PRBS generation using FPGA developing board. 
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The 2.488-Gbps PRBS generation using FPGA can be realized using the M-

sequence algorithm. Fig. 4-8 shows the FPGA developing board. 

4.2.4.1.2 Transceiver approach 

The PRBS generation using FPGA developing board offers system versatility 

for pattern configuration. However, normally middle/high-end FPGA 

developing board is usually high cost (approximately 3,000 US dollars). The 

board size (25 cm × 25 cm) is large which is not desired for low cost and 

portable applications. Therefore it is necessary to substitute it with an 

economical alternative. 

We designed and realized a low cost PRBS solution by using gigabit 

transceivers. The affiliated on-board PRBS serializer verification function is 

utilized for PRBS generation. Fig. 4-9 shows the photograph of a home-made 

transceiver-based PRBS generator. The board size is only 6 cm × 4 cm. The 

cost is significantly reduced from few thousand US dollars to about one 

hundred dollars. Appendix A.3 shows the circuit design, PCB fabrication and 

the program of this PRBS generator. 

In this solution, the core chip is TLK2511 (Texas Instruments, US). The 

clocking module is picked up from programmable 1-PLL voltage control 

crystal oscillator synthesizer (CDCE913, Texas Instrument, US) [165]. The on-

board bus clock is configured in LabVIEWTM  program “CLOCK PRO” via 

USB port.  
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Fig. 4-9 PRBS generator using transceiver. 

4.2.4.2 Avalanche photodiode (APD)  

4 avalanche photodiodes (APD) are used to convert the optical reflectance 

emitted from the tissue into the electrical signal. Each of 4 APD detection 

channels is cascaded with a 50 Ω high-frequency resistors. The APD 

components (model: S2383-20) are available from company HAMMATSU, 

Japan [166]. They are in small size (TO-18 package, Fig. 4-10) and high 

quantum efficiency. Table 4-6 summarizes the configuration and settings of 

the APD used in the system. 

Table 4-6 Specifications of the APD for O/E conversion 

Bias voltage (V)  127 - 131 
Detection area (mm2) 0.78 

Bandwidth (MHz) 600 
Sensitivity range (A/W) 0.5 
Spectral response (nm) 400-1000 
Peak wavelength (nm) 800 

Terminal capacitance (pF) 6 
Gain (at 800 nm) 100 

Temperature coefficient of Vbias (V/deg.C) 0.65  
Model S2383 

Manufacturer HAMAMATSU 
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Fig. 4-10 High speed APD for O/E conversion. 

 

4.2.4.3 Mixer for demodulation 

The O/E conversion signals are amplified by two stages of RF amplifiers 

(model: ERA-3, Mini-Circuits Company, US). The amplified signals are fed 

into the RF port of mixer as shown in Fig. 4-11. The implementation of one 

detection channel is shown in Fig. 4-12. The LO port of the mixer is connected 

to the PRBS reference. Two PRBS signals are cross-correlated (by 

multiplying) in the mixer and the intermodulation results from IF port are 

down-converted by using a low pass filter (LPF). The low frequency signal is 

capacitively coupled to the DAQ. The PRBS-demodulation results, i.e. the 

TPSF of the tissue can be recorded using a specified sampling rate. Appendix 

A.2 shows the circuit design, PCB layout of the APD, amplifiers and the 

multiply mixers. 

 

Fig. 4-11 Schematic of PRBS optical demodulator (one channel). 
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Fig. 4-12 Photograph of the PRBS demodulator. 

4.2.4.4 Temporal delay 

In order to get a temporal sampling as fine as 40 ps in TPSF acquisitions, the 

reference PRBS is sequentially delayed in steps of 40 ps. This task is realized 

by using a programmable optical delay line.  

The PDDL5, GigaBaudics, US [167] used in the prototype system has an 

accurate digital control through a 25-pin TTL port. The minimum temporal 

delay step is 20 ps per LSB. The total temporal delay can be configured from 0 

picoseconds up to 10230 ps. Table 4-7    summarizes the main specifications 

and configurations of the programmable optical delay line. 

Table 4-7 Specifications of the programmable optical delay line 

Signal rate (Gbps)  0 - 5  
Minimum step size (ps) 20 

Accuracy  ± 1 LSB 
Input mode ECL 

Output mode ECL 
Jitter (ps) < 10 

Model PDDL5 
Manufacturer GigaBaudics, US 

 

79 
 



4.2.4.5 RF modules 

In the spread-spectra correlation, a 2.488-Gbps PRBS is used for NIR light 

modulation. For such a high frequency signal, it is very important to maintain 

the signal integrity during transmission between any two consecutive lumped 

RF components. There are couples of RF components that are interconnected 

in order to maintain the signal integrity and relay the RF power, including RF 

synthesizer, RF amplifiers, bias tee, RF choke, RF attenuator and ECL-TTL 

converter. These components are distributed and connected into two PRBS 

transmission braches (see Fig. 4-11 and Fig. 4-12). Table 4-8 summarizes the 

specifications and settings of all RF components locating in the PRBS 

modulation branch and the PRBS demodulation branch.  

Table 4-8 RF components utilized in the system. 

Branch Models Quan. Function Manufacturer 

PRBS 

Modulation 

ADCH-80+ x 4 RF choke 

Mini-Circuits 
ZKL-2R5 × 1 RF amplifier 

ERA-3 × 2 RF amplifier 

ZFL-11AD+ × 2 RF amplifier 

PRBS 

Reference 

ZFBT-6GW-FT × 1 Bias tee 

Mini-Circuits 
ZJL-6G+ × 1 RF amplifier 

BW-S3W2 × 2 RF attenuator 

BW-S10W2 × 1 RF attenuator 

PRBS 

Demodulation 

SYM-2500 × 4 Frequency mixer 

Mini-Circuits ZFSC-2-11+ × 2 Power splitter 

ZFSC-2-2500+ × 2 Power splitter 
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4.2.4.6 Peltier cooler for APD 

The APD is highly sensitive to environmental temperature, which requires a 

stable temperature environment for O/E conversion. The prototype system 

uses an external Peltier cooler for this purpose. The temperature around the 

APD is stabilized at 22 ± 0.05 oC at steady state. The thermal sensor is model 

MP-2731 from TETECH [168] and the controller is PID-1500 from 

WAVELENGTH ELECTRONICS [169]. The thermal sensor MP2731 is a 

negative thermoresistor with temperature sensitivity of ±0.15 oC. With on-

board PID parameter configurations, the temperature around the APDs can be 

stabilized in 15-20 min. The temperature controller PID-1500 offers ultra low 

drifting performance – about ±0.005 C in 24 hours.  

Once the temperature around the APD stabilizes, the O/E convention 

fluctuations induced by the temperature fluctuation are less than 1%, which 

offers sufficient reliability for TPSF acquisition. 

4.2.4.7  Peltier heater for MZM 

On the other hand, it is necessary to enhance the ambient temperature for 

intensity modulator from room temperature (25 oC) to a higher level (e.g. 40 

oC). This heating aims to enhance the mobility of the photon electrons and 

minimize the detrimental photorefractive effect.  

In our system, a Peltier heater (PID-1500, WAVELENGTH ELECTRONICS 

company) is utilized to stabilize the ambient temperature around the MZM at 

42 ± 0.5 oC. The thermalresistor is TH10K from THORLABS company [170] 

and the thermal controller is TC-24-10 from TETECK [171]. The 

thermalresistor TH10K is negative thermoresistor and the resolution is ±1 

Celsius degrees. This temperature stabilization can be realized in 20 minutes. 
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4.2.4.8 Bias controller for MZM 

4.2.4.8.1 Bias-drift effect 

The modulated output power of LiNbO3 MZM versus the applied voltages 

(bias) can be expressed as a modulation transfer function [172-175]. 
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where  is time, t T  is ambient temperature, A denotes the insertion loss, P  

stands for the input optical power, V is the modulating bias voltage, V  is the 

intrinsic parameter of the LiNbO3 substrate which indicates a half-wave 

voltage to turn  from the maximum level ( ) to the minimum level (

), 

i

min
o

b π

oP max
oP P

θ  is a known constant phase and )T,(tϕ is a time- and temperature-

dependent variable which is subject to the intrinsic LiNbO3 substrate 

photorefractive effect and the temperature changes. It is this factor that causes 

the detrimental bias-drift effect.  

πV

Fig. 4-13 Modulation transfer function (L1) and bias-drift effect (L2) of the 

interferometric LiNbO3 intensity modulator. 

 

Fig. 4-13 illustrates the bias-drift effect (from curve L1 to L2) in terms of eye 

diagram. In most analog modulation applications, MZM is biased at 50% 

transmission of the modulation output , or the ‘quadrature’ point max
oP

82 
 



(positive ‘quad+’ or negative ‘quad-‘) to maximize the modulation linearity. In 

our TD-DOT application, where a 2.488 Gb/s PRBS is used by setting the bias 

of MZM at ‘quad+’, the opened eye (at diagram E1) will gradually change its 

shape and may completely close (at diagram E2). That means the modulation 

depth of MZM will lose its stability. As a result, the correlation detection 

begins fluctuating. Obviously it is necessary to introduce an bias controller to 

correct the bias drifting effect by tracking and locking the working point at the 

‘quad+’ point. 

4.2.4.8.2 Bias controller 

The bias controller for ‘quad+’ point tracking is working in a dither-then-

difference mode. Fig. 4-14 and Fig. 4-15 show the schematic. A 2.5 kHz 

square wave that falls well outside of effective spectra of the 2.488-Gbps 

PRBS modulation signal is generated by DAQ and serves as a dither signal . 

It has a data length which equals to 8 periods. The peak-to-peak amplitude is 

fixed to . In addition, a DC voltage  from microcontroller is 

superimposed on  and the biased dither signal ( + ) is fed into the 

MZM through the DC port (see 

dS

πV

mod

bV

H
bV

L
b

dS dS bV

H
b

b

Fig. 4-14). The corresponding modulation 

results  are sampled (  = 8) times by the MCU: N  samples are 

acquired for MZM biasing at high dither bias ; the other N samples are 

acquired for MZM biasing at low dither bias V , whereV . The 

summation of N -sample differential amplitudes, defined by Eq. (4-5), 

indicates the modulation depth for MZM biasing at voltageV . 

A N2 N

πV+V=

L
bV=

L
b

     (4-5) ∑
=

=

−=Δ
8

1
)]()([

N

i

L
mod

H
modV iAiA

b

83 
 



[ ]

⎪
⎪
⎩

⎪⎪
⎨

⎧

=Δ

=Δ

=

=Δ

−+

;,

;,

;,,0

max
bb

min

min
bb

max

quad
b

quad
bb

V

VV

VV

VVV

bV

bVb
    (4-6) 

Δ

 

Fig. 4-14 Schematic of fast TD-DOT system and the dither-and-difference 
bias controller. 

Δ

Δ
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Fig. 4-15 Schematic of bias controller for ‘quad+’ point tracking. 
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To find out the ‘quad+’ point, the microcontroller starts bias sweeping in a 

step of 0.05  from an arbitrary bias  and simultaneously checks the 

polarity of quantity  until it changes from positive to negative for the first 

time. After that, the sweeping step decreases to a smaller size 0.01 . At each 

bias step, the corresponding 

πV start
bV

bVΔ

πV

bVΔ  compares with 
bVΔ at previous bias step and 

the smaller one is retained by MCU as the new reference for the succeeding 

comparisons. The bias sweeping and the iterative comparison stop until  

equals to or very close to zero. Then the desired ‘quad+’ point V  can be 

inferred. The arbitrarily assigned bias V  can be substituted by the so 

that the succeeding bias tracking procedure can be speeded up. For the worst 

case that a span of 2 have to be swept before finding out the ‘quad+’, a 

number of 200  ( ) acquisitions have to be performed. It 

will take about 12.8 seconds. In this a period, the distortion of the  

caused by the photorefractive effect and temperature changes can be ignored 

because the bias-drift is usually a slow, gradual process. However, to tolerate 

this worst case at stating stage and prevent MZM from over-biasing damage, 

the bias sweeping span is set as  = + = +4V . The bias 

hops 4 backward to resume the bias tracking as long as it sweeps beyond

.  

bVΔ

+

)( j
b

+
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b
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Fig. 4-16 shows the bias controller for ‘quad+’ point tracking by using the 

MSP430F-4270 from Texas Instrument Company as the core chip. Appendix 

A.1 describes the circuit design, PCB layout and C-code burning in the ROM 

of the microcontroller chip in detail. 
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Fig. 4-16 MZM bias controller for ‘quad+’ point tracking. 

4.2.5 Mechanical modules 

4.2.5.1 Hand-held probe 

The hand-held probe is designed to work in reflectance mode. All 9 light 

source fibers and 4 detection fiber bundles (quartz light guides) are mounted 

on the hand-held probe. The fiber tips are aligned to the probe surface. The 

positions of 9 light source fibers and 4 fiber bundles are arranged in a spatial 

layout as shown in Fig. 4-17. Table 4-9 shows handheld probe’s dimensions. 

The surface of the probe is painted black to prevent the optical signals from 

going back into the phantom/tissue. With this approach, the semi-infinite 

boundary condition can be applied for tomographic image reconstruction. 

A few design criteria have to be taken into account during designing the layout 

of the hand-held probe. The first rule is the optimization of the dynamic range 

that the probe could provide. The second rule is the minimum of the data 

redundancy. The third rule is about the imaging area. Each criterion has been 

allocated a certain weight during optimization simulation.    
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Fig. 4-17 Top: Picture of the hand-held probe. Bottom: Design of the hand-
held probe. The small red spots represent light source fibers. The large blue 

spots represent detection fiber bundles.  

 

Table 4-9 Separations of source (Sn) to doctor (Dm) on the hand-held probe 
(unit: cm). 

 D1 D2 D3 D4 
S1 1.5 3.5 2.3 4.3 
S2 2 3 2.8 3.8 
S3 2.5 2.5 3.3 3.3 
S4 3 2 3.8 2.8 
S5 3.5 1.5 4.3 2.3 
S6 1.5811 3.5355 2.3537* 4.329 
S7 3.5355 1.5811 4.329 2.3537*
S8 1.5811 3.5355 2.3537* 4.329 
S9 3.5355 1.5811 4.329 2.3537*

*source-detection pairs for in-vivo spectroscopy 
experiments. 

87 
 



4.2.6 Auxiliary modules 

There are some other devices that are not directly involved in the signal 

processing. Therefore they are mentioned briefly here. 

• Linear mode (MPU series, POWER-ONE, UK) and switch mode 

(TML series, TRACO) power supplies unit to convert 240 VAC to ±12 

V, ±5 V and other DC voltages; 

• NECL terminator (PRL-550NQ4, Pulse Lab, US) to convert the NECL 

signals from the programmable digital delay line into a 50Ω-

terminating RF amplifier. 

• Photodiode (VTB5051J, PerkinElmer Optoelectronics) for monitoring 

the feedback from the Y-branch tap coupler; 

• A commercialized digital transmission measuring instrument: 

SDH/SONET analyzer (ME3620A, Anritsu, Japan) for PRBS signal 

generation. It is used to offer a quick startup for prototype system 

testing; 

• Two digital storage oscilloscopes (DSO) that are intensively used for 

signal integrity analyzing and circuit trouble-shooting. One DSO is 

Agilent 54852A (2 GHz bandwidth, maximum sampling rate 10 GS/s) 

from Agilent, US. The other one is Wave Surfer 422 (200 MHz 

bandwidth, maximum sampling rate 2 GS/s) from LECROY, US; 

• High voltage (HV) linear power supplier (CA02P, EMCO, US) for 

APDs DC biasing. 

• RG-58U coaxial cables with a certain length to assist the PDDL for 

PRBS transmission delay control and interconnect every lump RF 

components. RG-58U coaxial cables keep uniform characteristic 
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impedance of 50 Ω up to few GHz in room temperature which 

minimizes the reflectance effect of the PRBS signals in transmission 

paths due to the impedance mismatch.  

• A high speed amplified photoreceiver (Model P-101, 850 nm receivers, 

CSI, US) as the PRBS modulation detector. 

• High speed VESEL laser source (Model V-126, 850 nm VESEL, CSI, 

US) for PRBS modulation verification at quick prototype system 

startup. 

4.2.7 Controlling automation 

The prototype system uses data acquisition card (model: USB-6251, National 

Instrument). LabVIEWTM and MatlabTM compatible user consoles (GUI) are 

constructed. 

4.2.7.1 Data acquisition card (DAQ) 

The NI data acquisition card USB-6251 is a high-speed multichannel 

multifunctional DAQ card, offering superior accuracy with fast sampling rates 

[176]. It can acquired analog input/output (AI/AO) signal from up to 16 single-

end or 8 differential channels at a sampling rate up to 250 KS/s/ch. This 

capability satisfies our requirement to acquire TPSF signals from 4 channels in 

parallel. Table 4-10 summarizes the main specifications of USB-6251. 
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Table 4-10 Main specifications of the DAQ card 

Card Model USB-6251 

Channels 16 SE/8 DI AI; 2 AO; 24 DIO; 

Sampling rate (MS/s) 1.25 (AI); 2.86 (AO); 

Voltage range (V) -10 - +10 

Max clock rate (MHz) 10 

Resolution (bit) 16 

Logic level TTL 

Number of counter/timer 2 

Software LabVIEW, DAQmax 

Manufacturer National Instrument, US 

 

4.2.7.2 User console GUI 

The LabVIEW and Matlab based enable user to control systems hardware, 

monitor system parameters, alarm system failure, enable the acquisition and 

display of timing histograms (TPSFs), and facilitates fully automatic execution 

of complete imaging scans.  

For this purpose, a full feature DOT/DOS GUI control console interface was 

programed, which combines the functions including the tomographic imaging 

and the time-resolved spectroscopy. In addition, the GUI offers real-time 

information including the temperature monitoring, Mach-Zehnder bias 

controlling, LD power manipulation, automatic system calibration, optical 

sweeping control, data analyzing and logging. 

The software platform includes LabVIEW (ver. 8.0) and Matlab (xer. 2006a, 

Mathworks) on the MS windows XP Professional SP3. Real-time data 

acquisition in LabVIEW and the data processing in the MATLAB are 

communicated via MS windows ActiveX technique.  
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Fig. 4-18 and Fig. 4-19 shows the full features DOT/DOS user console. 

Appendix A.5 details each function of user console. 

 

 

 

Fig. 4-18 User console GUI for TPSF “Acquisitions”. 

 

Fig. 4-19 User console GUI for DOT/DOS system “Configurations”. 
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4.2.7.3 Instrument control and data acquisition 

Fig. 4-20 shows the control schematic of the DOT system. 

 
 

Fig. 4-20 Schematic of user console GUI in DOT prototype system. 
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4.2.7.4 Data acquisition protocol 

4.2.7.4.1 TPSF data format 

The TPSF data are saved in three datasets: 1) system response; 2) TPSF from 

homogeneous phantom and 3) TPSF from tissue/heterogenous. For multiple 

light source fibers and multiple fiber bundles (e.g. 9 light sources by 4 

detectors), the dataset for each source-to-detector pair is organized as:  

Line 1:  S1, D1   
Line2:   S1, D2 
Line 3:  S1, D3 
Line 4:  S1, D4 
Line 5:  S2, D1 
Line 6:  S2, D2 
Line7:   S2, D3 
… 
Line 35: S9, D3 
Line 36: S9, D4 
 

Here, S denotes the light source which ranges from 1 to Ns (Ns ≤9). D 

represents the detector which ranges from 1 to Nd (Nd ≤ 4). Each TPSF line 

consists of M data (M = 128 and equals to the TPSF data length).  

For an example in which all 9 light sources and 4 detectors are involved, each 

scanning generates 36 TPSFs. All TPSF data are arranged in 36 rows and 

saved as TEXT (‘.txt’) file.  

4.2.7.4.2 Data logging 

The organization of the spectroscopic data is list in rows. Each row has 13 

columns. The meaning of each column is described in Table 4-11. The latest 

spectroscopic data will be appended to the bottom of the existing data. 
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Table 4-11 Data type of each column in spectroscopic analyses. 

Col 1 2 3 4 5 6 7 8 9 10 11 12 13 
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4.3 System performance evaluation 

4.3.1 System warm up 

The system should be warmed up sufficiently before conducting experiment. 

The system warm-up will activate the Peltier cooler and heater for 

temperature stabilization on APD and MZM.  

4.3.1.1 Temperature fluctuations 

First of all, the temperature stabilization around the APD is very important. As 

showing in Table 4-6, the temperature coefficient of the APD is 0.65 V/C. 

Without active temperature control, the heat generated from optoelectric 

conversions will increase the proximity temperature of the APD. In a short 

period, the O/E conversion efficiency of the APD will significantly decrease.  

Fig. 4-21 shows the temperature stabilization procedure since system warm-up 

begins by applying the active Peltier cooler control. The temperature will 

reach steady state of  23.4 ± 0.15 oC in 15-20 minutes.  
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Fig. 4-21 Temperature stabilization around four APDs (c1-c4). (A) Dynamic 
state. (B) Steady state. 

For the other components, fluctuation of a few degrees in the ambient 

temperature can also induce drift or fluctuations on the TPSF measurement.  

For example, the RG-58 A/U coaxial cable used in the PRBS transmission has 

a phase delay specification of ~150 ppm/oC, corresponding to ~1 ps/oC per 

meter of cable. Keeping the room temperature constant (e.g. 25 oC) is also 

crucial to minimize the stability of the TPSF measurement. Similarly, the 

minimized cable length can also minimize these undesired effects. In the 
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future design, it may also be advisable to choose cable types that have been 

designed to exhibit small phase delay variations with temperature. 

4.3.1.2 Power drift of the laser diodes 

The laser diode driver (ITC 102, Thorlabs, Table 4-2) provides a noise level of 

< 2 µA and a stability of < 20 µA within 30 minutes. The temperature 

coefficient is less than ±50 ppm/oC.  For a constant current mode, two NIR 

LDs can work stable within one hour, with power drifting being less than 

±1%. The instant power fluctuations are approximately ±1.3%. 

4.3.2 System noise 

The noise levels in the system can be categorized into two classes. Type I 

noise is the system floor noise, which is determined by the performance of the 

system devices. This kind of noise is very small compared with other two 

kinds of noise level. Fig. 4-22 illustrates the device’s inherent noise level in 

the system. The noise level has  consistent peak-to-peak amplitude about Vp-p 

≈ ±0.0001 V. Type II noise is cross talk noise, which is majorly caused by the 

cross talk between PRBS transmission lines as well as the resultant ground 

bounce. Fig. 4-23 shows the class II noise has a consistent peak-to-peak noise 

approximately of Vp-p ≈ ±0.01 V, which is about 100-folder larger than class 

I noise. It thus contributes to the main noise in the DOT/DOS system and the 

TPSF acquisitions. 
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Fig. 4-22 Type I noise (noise floor): random noise associated with system 
devices. Error bar shows the standard deviation. 

1 2 3 4 5
-0.02

-0.01

0

0.01

0.02

TPSF (ns)

In
te

ns
ity

 (V
)

 

 

Noise II (785 nm)

1 2 3 4 5
-0.02

-0.01

0

0.01

0.02

TPSF (ns)

In
te

ns
ity

 (V
)

 

 

Noise II (808 nm)

 

Fig. 4-23 Type II noise: noise level caused by the correlation of PRBS. Error 
bar shows the standard deviation. 

4.3.3 Data acquisition speed 

The TPSF data acquisition speed is depended on a couple of factors. 
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4.3.3.1 Fiber optical switch  

As mentioned before, 9 light source fibers multiplexed one by one. The time 

required for sweeping between adjacent two fibers is less than 10 ms 

(see Table 4-5). This time consumption is negligible. However, when the fiber 

returns from fiber 9 back to fiber 1, it requires extra time consumption due to 

the component’s internal electricmechanical mechanism. Therefore the user 

console pause the data acquisition for 200 ms until the first fiber is ready to 

start. 

4.3.3.2  Modulation and Demodulation for noise minimization 

Besides the optics fiber switch effect, the auxiliary system noise minimization 

also slow down the TPSF data acquisition speed. Because of the crosstalk 

effect, the TPSF signals are susceptible to the PRBS interference. It is difficult 

to minimize the noise caused by this effect. A passive solution is to use an 

additional modulation and demodulation technique to minimize this noise. In 

our system, a 2.5 kHz square wave from NI-DAQ injects into the DC port of 

the MZM. In addition, this 2.5 kHz square wave modulates the PRBS-

modulated light in a very low frequency comparing with the PRBS modulation 

(see Fig. 4-14). The low frequency of 2.5 kHz is specified to avoid 

interference with the broad spectrum PRBS signal.   

After PRBS demodulation finishes, i.e. at the mixer’s IF port (see Fig. 4-14), 

the TSPFs should be additionally demodulated using software to reduce the 

signal noise. The cross-correlation with reference 2.5 kHz square wave can 

significantly increase the signal-to-noise ratio of TPSF acquisition. Yet the 

overall data acquisition time will elongates. This is because the DAQ card can 
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only support data acquisition rate up to 250 KS/s for 8 differential AI/AO 

channels in parallel.  

For the optimal configuration, the 2.5 kHz modulation square wave is sampled 

in a rate of 250 KS/s, the data length for each modulation is 10 cycle. Each 

cycle consists 100 sampling points: 50 positive ones and 50 negative ones. 

Then the time to acquire 1000 sampling points (= 10 cycles × 100 S/cycles) in 

a rate of 250 KS/s would be 1000/250KS/s = 4 ms. To acquired a TPSF of 128 

sampling points, it will take 128 × 4 = 512 ms. With regardto the fiber switch 

from fiber 1 to fiber 9, the total time is approximately 512 × 9 + 10 × 9 = 

4.698 s for one complete scanning.  

4.3.4 System calibration 

4.3.4.1 System response 

In order to assess the system’s impulse response (SIR), we place a piece of 

diffusive white paper 18 cm away in front of the handheld probe (see Fig. 

4-24). Since the light beam from an optical fiber is diverging to the paper and 

the reflection from the white paper is diffusive, the specified distance of 18 cm 

provides an appropriate attenuation of the light intensity which is collected by 

the fiber bundles and fiber coupled to the APDs eventually. To minimize the 

undesired photon splashing, an absorptive medium (e.g. an absorptive black 

cloth) is placed in between the probe and the diffusive plane.  
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Fig. 4-24 System setup for system impulse response  assessment. 
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Fig. 4-25 SIR acquisition vs. prediction of the PRBS autocorrelation.  

Fig. 4-25 plots one of 36 SIR TPSFs (blue solid curve) together with the 

theoretical prediction (red dashed curve), i.e., the PRBS autocorrelation. The 

acquired SIR TPSF has a FWHM approximately of 810 ps. The rise time and 

the fall time (10% - 90%) are both around 600 ps. These values are larger than 

the theoretical prediction whose FWHM is at 402 ps and the rise time of 360 
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ps (see Fig. 4-3). This signal integrity degradation is mainly caused by the 

junction capacitance (≈ 6 pF, see Table 4-6) of the APDs and the insufficient 

bandwidth of the components along the PRBS signal transmission path. If all 

components in the system have an adequate bandwidth, the shape of the 

measured SIR TPSFs would approach to the prediction curve.  

4.3.4.2 System repeatability 

The SIR is also selected to quantify the stability of the acquired time-resolved 

signals. The error bars in Fig. 4-25 represent the standard deviations of the 

measured SIR among different channels. The variation is less than ± 2%, 

which shows a very good uniformity among the acquisitions. 

4.3.4.3 System stability  

The overall system stability is dominated by the stability of modulation depth. 

4.3.4.3.1 Evaluation 

In order to quantitatively evaluate the bias tracking performance and the 

stability improvement of the TPSF measurements by adopting the active bias 

controller described in section 4.2.4.8, TPSFs were acquired from tissue-like 

phantom experiments. As showing in Fig. 4-26, each TPSF consists of 128 

temporal sampling points with temporal interval of 40 ps. The normalized 

summation of TPSF amplitudes, denoted by ∑
=

⋅=
128

1
)(1

i

TPSFTPSF
norm iA

S
A  is selected 

to quantify the stability of the modulation depth. Here  denotes the ith 

( ) amplitude of a TPSF. The normalization constant 

)(iATPSF

]128...1[∈i
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TPSF
quad iAS  is the summation of all TPSF amplitudes for MZM biasing 

around the ‘quad+’ point.  

Table 4-12 Configurations of bias controller for ‘quad+’ point tracking 

Configurations  (unit) Values 

Wavelength (nm) 785; 808 

Temperature of MZM (oC) 25 ± 0.03; 40 ± 0.03 

Dither signal: frequency,  (kHz)sqr
ditherf  2.5 

Dither signal: duty cycle (%) 50  

Dither signal: amplitude (V) πV  

Sweeping step-size, (V) step
bV 0.01 – 0.05  πV πV

Initial bias,  (V) start
bV 1 

Max sweeping span,  (V) span
bV 4  πV

Samples of the dither signals 16  

 

It is reasonable to use quantity  to evaluate the bias shifting effect 

because  is proportional to the modulated optical power. The 

modulated optical power is determined by the modulation depth of MZM 

when the factor of temperature becomes negligible. So the quantity  

directly reflects the modulation depth with respect to the maximal value which 

is achievable only is MZM biased at the ‘quad+’ point.  

TPSF
normA

)(iATPSF

TPSF
normA

From the perspective of image reconstruction, the accuracy of TPSF 

measurements is extraordinarily critical because the distortions of the TPSF 

signals induced by the modulation depth instability would be regarded as the 

contribution from heterogeneous optical properties locating in the objects. And 

eventually it may lead to errors on the image reconstruction results. This also 
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proves that  is a good indicator to quantify the stability of our TD-DOT 

system.   

TPSF
normA

 

Fig. 4-26 TPSF acquired from phantom experiments. The error bars shows the 
standard deviations of measurements. 

 

 

Fig. 4-27 Stability improvement of TPSF signals. (S1) at 25 oC w/o bias 
control, (S2) at 40 oC w/o bias control and (S3) at 40 oC w/ bias control. 
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Fig. 4-27 compares the stability improvement of the TPSF measurements 

 before and after applying the bias controller implemented in 

section 

TPSF
normA

TPSF
normA

4.2.4.8. Curve S1 and S2 show the stability of the TPSF measurements 

 at temperatures of 25 oC and 40 oC without applying bias controller, 

respectively. Clearly the bias voltage fixed at system initialization stage fails 

to stabilize the modulation depth because the TPSF measurements fluctuate 

with time. A higher temperature of the MZM can only help slow down the 

oscillation of TPSFs [172]. Curve S3 shows a stabilized TPSF measurement 

after applying the proposed bias control. The oscillation of the TPSF 

measurements is almost eliminated. The amplitude fluctuation of is less 

than ± 2% in hours’ duration.  

TPSF
normA

Figs. 4-28 (a) and (b) show the zoom-in views (blue curves) of the stabilized 

TPSF acquisition,  at a source-detector pair at two wavelengths (785 nm 

and 808 nm) after applying the proposed bias control. We chose the standard 

deviation 

TPSF
normA

sσ  of  in 1 minute to estimate controller’s short-term 

stabilizing capability. Five such 1-minute periods were randomly selected and 

the mean value 

TPSF
normA

sσ  of five )(isσ ( ]5...1[∈i ) were found to be 0.0025 and 

0.0027 for 785 nm and 808 nm, respectively. To evaluate the controller’s 

long-term stabilizing capability, we utilized a linear equation  

to fit the TPSF measurements and picked the slope coefficient a  to estimate 

the drifting speed of the stabilized TPSF acquisition over time. The fitting 

results shown in 

( ) battATPSF
norm +=

Table 4-12 are plotted as red lines in Fig. 4-28. For all of 36 

source-detector pairs (9 sources and 4 detectors), the mean values and standard 

deviations of the slope coefficient a  are calculated and listed in Table 
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4-13. Fig. 4-28 and Table 4-13 show excellent short-term and long-term 

stabilities brought by our TD-DOT controller subsystem, respectively, which 

make our TD-DOT system eligible to acquire highly reproducible TPSF 

measurements within a period up to a few hours.  

 

Fig. 4-28 Measurements (blue) and fitting results (red) of the TPSF 
measurements with time. (a) at 785 nm; (b) at 808 nm. 

 

Table 4-13 Quantification of TPSF signals stability at two wavelengths 

 
Linear curve fitting  

 
Wavelength 

(nm) sσ
battATPSF

norm +=)(

Fitting results a (h-1) *a *
aσ (h-1)  (h-1) 

(a) 785 0.0025 )(tATPSF
norm  = 0.0001 t  + 0.9998 0.0001 0.0002 0.0062 

(b) 808 0.0027 )(tATPSF
norm = 0.0011 t  + 0.9992 0.0011 0.0015 0.0099 

* Calculated from all of 36 TPSF acquisitions. 

4.3.4.3.2 Bias reconfigurations 

In addition to tracking the ‘quad+’ point, some other meaningful bias points 

such as the negative quadrature point (‘quad-’), the maximum (‘max’) and the 

minimum point (‘min’) can also be tracked and locked using the controller 
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(see Fig. 4-15). The ‘quad-’ point can be locked by tracking the zero-crossing 

point on the rising edge. The ‘max’ or ‘min’ point can be locked by tracking 

the minimum or the maximum modulation difference, respectively. Changing 

and tracking the bias position of MZM among these four biasing points is 

easily configured by programming the microcontroller. 

4.3.4.4 System parameters  

In practice, the fiber coupling between the detection fiber bundles and the 

corresponding APDs cannot keep uniform. The variation of inter-channel 

coupling coefficient will bring in a slight difference to the TPSF 

measurements. Prior to data processing, these inter-channel coupling 

differences should be quantified. 

Fig. 4-29 shows the setup for fiber coupling coefficients characterization. The 

glass tank was filled with Lipofundin (B. Braun, MCT/LCT 20%) lipid 

emulsion. The concentration of Lipofundin lipid emulsion was 0.6%, which 

can mimic the normal human breast tissue. The optical properties of these 

liquid tissue-like phantoms include the absorption coefficient µa ≈ 0.02 cm-1 

and the reduced scattering coefficient µs’ ≈ 6.0 cm-1 [11, 177 178]. The total 

volume of the Lipofundin solution is 17 cm (length) × 15 cm (width) × 10 cm 

(depth). The hand-held probe was placed on the solution surface. For this 

setup, the Lipofundin volume can be regarded as a semi-infinite background 

medium.  

The calibration procedure and algorithms can be found in section 5.2.1 and 

Appendix A.6.  
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Fig. 4-29 System setup for phantom experiment. 

4.3.5 System limitations 

In addition to the limitation of temporal resolution (~ 800 ps), the prototype 

system has some other limitations, which deserves very careful handlings.   

4.3.5.1 Dynamic range 

The linear voltage signal that DAQ card can detect is [-10…+10] V. Signals 

beyond this range will saturate the TPSF acquisition. This will happen 

especially in the following two situations:  

1) The absorption coefficient of the tissue is very low, e.g. aged women 

with very fatty breast tissues; 

2) The incident optical power is too high, which leads to a high emission 

power.  

According to Fig. 4-23, the acquisition subsystem has floor noise about 5-10 

mV. If the maximum linear detectable range is 10 V, the maximum dynamic 

range is approximately of 20 × lg  (10V/10mV) = 60 dB, which is obviously 

smaller than that of PMT devices. 
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4.3.5.2 Handheld probe 

In order to mount 9 light source fibers and 4 detection fiber bundles, the 

handheld probe is designed to have a size of 8 cm by 6 cm (see Fig. 4-17). 

This size is comparatively larger for breast tissue examination especially for 

Southeast Asian women.  

Meanwhile, the black paint on the hand-held surface can only absorb majority 

of the photons emitting out of the medium. However a minority amount of 

photons will reenter the medium, causing another reemission. This effect will 

degrade the quality of TPSF signals and consequently the image 

reconstruction accuracy with undermining the assumption of semi-infinite 

boundary condition in solving the forward model. 

4.4 Comparison to conventional TD-DOTs 

Table 4-14 compares and summarizes the pros and cons of this novel 

prototype TD-DOT technique and prototype system developed in this research 

with respect to conventional time-domain DOT designs (by 4 famous 

examples).  

4.5 Summary 

This chapter describes a novel TD-DOT technique and the implementation of 

prototype system. Key modules are described in detail technically. The 

prototype system has realized most desired favorable features, like fast data 

acquisition speed, sub-nanosecond temporal resolution, reflectance mode 

(reflectrometry) and relatively low system cost. 

The prototype system can be configured further as a time-domain diffuse 

optical tomography system or a time-resolved spectroscopy system. Either is 
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ready for phantom-based imaging experiments and preclinical in vivo 

application. 

Table 4-14 Comparison of novel TD-DOT technique with conventional TD-
DOT technique 

Features  Conventional TD-DOTs  
(by 4 famous examples) This TD-DOT  

Data  
acquisition  

speed 

1. 25 images/s (~ 0.04 s/TPSF) [141]; 

2. ~ 18.5-33.5s /TPSF using TCPSC 

& MCP-PMT [157]; 

3. ~ 10 min to acquire 16 TPSFs 

using PMT (~ 37.5 s/TPSF) [149]; 

4. ~ 30 min to acquire 64 TPSFs 

using PMT (~ 29 s/TPSF) [146]; 

~ 4.5 s to acquire 36 

TPSFs (~ 0.5 s/TPSF); 

~ 40x – 70x faster. 

Complexity 

1. Streak Camera: Moderate 

complexity; 

2. – 4. TCSPC & MCP-PMT: High 

complexity; 

Moderate complexity; 

Cost 

1. Extremely high cost of streak 

camera; 

2. - 4. High cost of multi PMTs 

channels; 

Low cost even for 

multi APD channels; 

Temporal  
resolution 

1. High temporal resolution; 

2. -  4. Moderate temporal resolution; 

Moderate temporal 

resolution using 

programmable digital 

delay line; 

Dynamic 
range 

1. Moderate dynamic range; 

2. - 4. High dynamic range due to 

PMT; 

 Lower dynamic range 

due to APDs. 
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Chapter 5. Phantom experiments  

This chapter describes the phantom-based diffuse optical tomography (DOT) 

imaging experiments using the fast TD-DOT prototype system described 

in Chapter 4. The first part in this chapter describes the study on solid and 

liquid phantoms. The second part derives the equations and algorithm, which 

are used to solve the forward model and the inversed problem in Laplace 

domain. The last part shows the experiment results from phantom 

experiments.  

5.1 Design of tissue-like phantoms 

Prior to preclinical application, all imaging systems must be tested and 

evaluated for their safety and accuracy. This procedure can be evaluated by 

using phantoms to simulate the real clinical conditions. A phantom refers to a 

mimicry created in laboratories which aims to approximate the properties of 

the tissue of interest. Usually the optical properties of phantoms are known 

and manipulated during fabrication.  

For normal human breast tissue, it is possible to fabricate a standardized 

tissue-like phantom because the optical properties of human breast tissue have 

a good consistency, as proven in Table 2-1. The primary optical properties of 

interest are absorption coefficient aμ  and the reduced scattering coefficient

' 'sμ = 9 ± 2 cm-1 and Sμ . Their values, for normal breasts, are found to be aμ  

= 0.04 ± 0.01 cm-1. Tumors have found to be at least four-folder greater of 

absorption contrast with a lower scattering contrast. These factors will guide 
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the phantom fabrications, instrument calibration and assessments of the image 

reconstruction results throughout this research [136, 178-183]. 

It would be advantageous to use ingredients with primarily absorption contrast 

(e.g. blood, ink) and with primarily scattering contrast (e.g. Intralipid, 

Lipofundin and titanium dioxide) to fabricate the tissue-like and tumor-like 

phantom phantoms. There are a couple of fabrication methods and recipes 

available so far [136, 178, 179, 181, 183]. In general, phantoms can be classified into 

five different categories: solid resin, liquid, gelatin, semisolid, and those using 

excised tissue. In this study, only solid resin and liquid phantom are 

fabricated. 

5.1.1 Solid resin phantoms 

Solid phantoms were fabricated to mimic the optical properties ( aμ  and 'sμ ) 

of normal breast tissues in this research. The optical properties of the tissue-

like phantom would be approximately of 'sμ = 6 ± 1 cm-1 and aμ = 0.02 ± 0.01 

cm-1. The optical properties of the tumor-like phantom would be around 'sμ  = 

6 ± 1 cm-1 and aμ  = 0.06 ± 0.01 cm-1. 

5.1.1.1 Materials and optical properties 

The constituents of the solid resin phantom contain epoxy-resin, hardener, 

Indian ink and titanium dioxides (TiO2). The fabrication procedure is similar 

to the one described by Hebden [136]. These solid phantoms are permanent and 

can be machined (shaped and drilled) using standard machining equipments. 

Titanium dioxide (powder, 99.8%) (Sigma-Aldrich) serves as the scatterers 

due to its high refractive index (n = 2.7) over the surrounding epoxy medium. 

The scatter-free India ink (Pelikan Drawing Ink A 17 Black, Hanover, 
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Germany) serves as NIR wavelength absorber. Scatter-free epoxy-resin (n = 

1.46) and resin hardener (n = 1.48) from commercially available products 

(Epicote 1006 system, mixing by weight ratio 10:6, Wee Tee Tong Chemicals 

Pte Ltd Singapore) with low absorption ( aμ = 0.025 cm-1) properties serves as 

the solvent. The fabrication procedure is detailed in Appendix A.4.  

5.1.1.2 Fabrication  

All of the tissue-like solid resin phantoms are machined into slices disc (Fig. 

5-1) with a diameter of 85 mm and a thickness of 5 mm. Holes are 

perpendicularly drilled on several slices at different positions. The diameter of 

holes is 7 mm. The tumor-like phantom also has a cylindrical shape but in a 

smaller size. The diameter is 7 mm and the thickness is 5 mm so that they can 

be inserted into the holes on the tissue-like phantoms without air gaps. 

 

Fig. 5-1 (Left) Phantom discs with holes at different positions. (Center) 
Tumor-like phantom. (Right) Dimensions of the optical phantom. 

5.1.2 Liquid phantom  

5.1.2.1 Materials 

The liquid phantoms were prepared using Lipofundin emulsion and distilled 

water. Fig. 5-2 shows the commercially available Lipofundin emulsion 

product (Lipofundin MCT/LCT 20%, B.Braun Melsungen AG, Germany) [184].  

The water for lipofundin dilution is cool distilled water. The concentration of 

the lipofundion is 0.6% v/v.  

112 
 



 

Fig. 5-2 Lipofundin emulsion. 

5.1.2.2 Optical properties 

For 785 nm and 808 nm lasers, the aμ  and 'sμ  of the liquid phantom are 

dominated by water and Lipofundin, respectively. At room temperature (25 

oC), the absorption coefficient of water is 0.0252 cm-1 at 785 nm and 0.0212 

cm-1 at 808 nm, respectively. The absorption contributed from Lipofundin 

emulsion is negligible. The scattering property is dominated by scattering 

properties of Lipofundin. In order to estimate its scattering property, the Mie 

theory was used to calculate the intrinsic 'sμ  of Lipofundin solution. The 

calculation procedure can be found in Appendix A.4. The results show the 

reduced scattering coefficient 'sμ  of 0.6% Lipofundin liquid phantom is 

approximately of 6.7 cm-1. 

5.2 Diffuse optical spectroscopy experiments 

This part describes the theories which are used for image reconstruction in the 

DOT system. In order to achieve fast imaging performance, the derivations of 

forward and inversed problems were converted from time-domain to Laplace 

domain.  

The entire image reconstruction procedure can be divided into two steps. The 

first step aims to figure out the system coupling coefficients of each fiber-to-
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APD channel, with respect to the system impulse response (SIR) signals. Step 

two aims to acquire the background signals from homogeneous medium and 

the signals from the heterogeneous medium. The spatial heterogeneities 

distribution was inferred by using the perturbation theory. A couple of 2.5-D 

images were reconstructed at last using the pseudo-inverse image 

reconstruction technique.  

5.2.1 Reconstruction of optical properties 

As mentioned in section 3.2, the time-resolved diffuse optical measurements 

using a short pulse laser can be equivalently converted to frequency-domain. 

Although the information in frequency-domain technique is limited by spectra, 

its solutions to the diffusion equation are more time-efficient in solving the 

absorption and scattering properties.  

Therefore in this TD-DOT system, we borrow idea from frequency-domain 

DOT techniques to get a fast image reconstruction speed.  

5.2.1.1 Fitting method for background aμ  and 'sμ   

The time-domain diffusion equation, Eq. (3-1) has a transmitted form in 

Laplace domain as 

[ ] )(
4

)()(22 pS
D
CC

ppk ds ⋅=⋅−∇
π

ϕ    (5-1) 

where 

dtetp pt−
+∞

⋅= ∫
0

)()( ϕϕ     (5-2) 

Here p  is the Laplace transformation parameter, and are channel 

specific constants which relate to the source intensity and the detector gains, 

sC dC
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respectively.  is the system impulse response (SIR) in Laplace domain. )( pS

k is the wave number, which is defined by 

D
cp

pk a /
)(2 +
=
μ

    (5-3) 

For a reflective probing scheme, the semi-infinite boundary condition is 

adopted. And the corresponding analytical solution to the diffusion equation 

is: 
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Fig. 5-3 Semi-infinite boundary condition for solving the forward problem. 

From Fig. 5-3, we have 
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For an absorbing boundary, 
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Dlr tr 2.104.3 =≈Δ     (5-8) 

If neglecting higher order terms in rΔ , Eq. (5-4) can be rewritten as 
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Guessing the initial values of 0aμ , '0μ and , then 0D

( )
0

0
0

/
D

cp
pk a +

=
μ      (5-12) 

and  

( ) kkkkkkkkkk δδδδ ⋅+≈+⋅+=+= 0

2

0

2

0

2

0

2

0

2 22    (5-13) 

DD
cp

kkk aa

δ
δμμ

δ
+

++
=+=

0

0
0

/     (5-14) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−≈−=
)/(222

1

00
0

2
0

2

0 cpD
Dkkk

k
k

a

a

μ
δμδδ    (5-15) 

Taking logarithm on both sides in Eq.(5-11) yields, 
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Substituting Eqs.(5-18), (5-19),(5-20) into Eq.(5-17) yields, 
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Rearranging Eq.(5-21) we have 
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The coefficients of system coupling factor ( )fφΔ is -1. 

The coefficients for Dδ  is defined as , which equals to DC
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The coefficients for aδμ  is defined as , which equals to μC
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Choosing a set of Laplace parameters , , … , we can have a set of 

linear equations in terms of 

1p 2p 3p np

( )dsCCln , Dδ and aδμ . Solving the equations we 

can obtain parameters ,dsCC Dδ  and aδμ  simultaneously.  

The corresponding matrix form is 
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5.2.1.2 Fitting procedures 

The fitting procedure is illustrated in Fig. 5-4. The procedure is followed by: 

Step 1. Fitting program starts with initial values ( )0dsCC ,  and ; 0
aμ

0'sμ

Step 2. Calculating the parameters ( )dsCC , aμ  and 'sμ ;  

Step 3. Determine if the fitted absorption coefficients aμ  has sufficiently 

converged by judging if the difference is less than the acceptance 

threshold α . 

Step 4. Determine whether the fitting procedure of the reduced scattering 

coefficients 'sμ  has converged sufficiently by judging whether the 

difference is less than the acceptance criteriaβ ; 

Step 5. If requirements in step 4 or step 5 are fulfilled, the fitting iterations 

will terminate and the fitted parameters ( )dsCC , aμ  and 'sμ  are 

regarded as the true value of the background and the system 

coupling parameters. Else the calculated values of aμ  and 'sμ are 

replaced by the initial values ( )0dsCC ,  and until the fitting is 

converged.  

0
aμ

0'sμ
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Fig. 5-4 Flow chart of optical parameters fitting. 

5.2.1.3 Evaluation of fitting accuracy 

To evaluate whether the designed fitting performance is qualified for the fast 

TD-DOT system, liquid phantom experiments were conducted and assessed. 

The experiment setup is as same as Fig. 4-29. The concentration of Lipofundin 

is 0.6%. The optical properties are absorption coefficient µa ≈ 0.0252 cm-1 and 

reduced scattering coefficient µs’≈ 6.0 cm-1 for 785 nm. The overall liquid 

phantom has a volume of 17 cm (length) × 15 cm (width) × 10 cm (depth), 

which can be regarded as a semi-infinite boundary if the handheld probe is 

placed on the top surface. 

Table 5-1 shows two fitting results with two sets of initial values (set I: = 

0.03 cm-1 and = 6.00 cm-1. In set II:  = 0.05 cm-1 and = 8.00 cm-1). 

These values are firstly selected from reasonable guessing. The fitting 

algorithm converges from two opposite convergence directions. The fitting 

goodness is evaluated as below.  

0
aμ

0'sμ 0
aμ

0'sμ
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The convergence criteria were selected to be α  = 2 × 10-5 and β  = 5 × 10-6, 

respectively. Table 5-1 shows both initial values can converge to the desired 

values in several iteration steps (convergence objective: aμ  = 0.0252 cm-1 – 

absorption coefficients of water and 'sμ  = 6.09 cm-1 - reduced scattering 

coefficients of Lipofundin solution). According to our observations, the fitting 

scheme shows a robust convergence performance for any given initial 

conditions and the fitting procedure can get to the desired value within tens of 

iterations. Meanwhile, the convergence speed is almost instantaneous. The 

convergence acceptance criteria, α  = 2 × 10-5 and β = 5 × 10-6, are picked to 

balance the fitting accuracy versus the converging speed. The results of fitting 

performance are plotted in Fig. 5-5. The Matlab code for fitting can be found 

in Appendix A.6. 

Table 5-1 Convergence analysis of the fitting method  

's 'sSet Iterations dsCC a μ   
(cm-1) a

μ  
(cm-1) 

μμΔ  (Norm.) Δ
(Norm.) 

I 
 

start - 0.03 - 6.00 - 
1 69.4932 0.0244 0.1859 6.0679 0.0113 
2 71.1275 0.0251 0.0259 6.0903 0.0037 
3 71.4042 0.0252 4.4666×10-3 6.0907 6.417×10-5 

terminate 71.4118 0.0252 3.4895×10-7 6.0907 1.0971×10-7 

II 

start - 0.05 - 8.00 - 
1 71.6320 0.0160 0.6803 6.0556 0.2431 
2 68.1451 0.0230 0.04387 6.0044 0.0085 
3 70.2509 0.0251 0.0901 6.0873 0.0138 
4 71.3719 0.0252 0.0039 6.0907 5.5667×10-4 

terminate 71.4118 0.0252 4.1971×10-6 6.0907 1.1572×10-7 
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Fig. 5-5 Fitting aμ  and 'sμ  by starting with two sets of arbitrary guesses. 

 

5.3 Diffuse optical tomography experiments 

5.3.1 Image reconstruction algorithm 

The 2.5 dimensions images were reconstructed in this experiment. Showing 

in Fig. 5-6(A) are the image reconstruction structure in x-z plane. Three cross 

sectional planes along y direction are picked up to image the depth 

information. The step size in y direction is 2.5 mm, in sequence of y2, y0 to 

y1. In each x-z cross sectional plane, the absorption coefficient mapping is 

reconstructed.  

The first step is to solve the reversed problem, in which the Jacobian matrix is 

built up in advance for the known spatial layout of light sources and detectors. 

For a voxel inside the tissue (see Fig. 5-6(B)), the distances to the real source 
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and image source are noted as  and . The distances to the real and image 

detectors are noted as  and . For the semi-infinite boundary condition, 

we have 

str

'tdr

'str

tdr

( )'
4

1
stst krkr

st
st ee

Dr
−− −⋅≈

π
φ     (5-26) 
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Then the photon density from source to the detector via voxel V is 
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Meanwhile, the photon density from source to the detector directly, as 

showing in Fig. 5-6 (C) is 
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4
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where  and  are distances from real and image light sources to the 

detector. 

sdr 'sdr

Thus the normalized Jacobian matrix can be rewriteen as 
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where  and are the positions of the ligth source and 

detector. is the position of voxel V in the tissue. 
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Similarly, the normalized perturbation  resulting from the homogeneous 

measurements  and the inhomogeneous measurements  
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where  represents the discrete Laplace transformation of 

the homogeneous measurements,  represents the discrete 

Laplace transofmraiton of the inhomogeneous measurements. N represents 

the sampling numbers. 

( ) ∑
=

− Δ=
N

i

pT
ih teL i

1
φϕ

h

( ) ∑
=

− Δ=
N

i

pT
hi teL i

1
φϕ

φ  and iφ  represent homogeneous and heterogeneous 

measurements, respectively. 

In order to reconstruct the tomography images, we substitute the perturbation 

Eq. (5-31) and the Jacobian matrix, Eq. (5-30) into Eq. (3-12), yielding,  

[ ] N
p

TT
a JIJJ ϕλμ Δ⋅⋅+⋅=Δ

−1
   (5-32) 

where the Tinkhonov regulator λ  is optimized and the value is configured to 

be 0.2. aμΔ  represents the spatial distribution of the absorption coefficients. 

The inhomoegeneties aμΔ is rearranged in the predefined volume and the 

image can be reconstructed. 
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Fig. 5-6 Cross sectional imaging structure in semi-infinite medium. S: light 
source position. D: detector position. V: voxel position. 

5.3.2 Data acquisition 

To assess the image reconstruction performance of the fast TD-DOT prototype 

system, we conducted phantom experiments. The small cylindrical plastic 

123 
 



absorbers (diameter = 7 mm, length = 10 mm, µa ≈ 0.06 cm-1, µs’≈ 6.0 cm-1) 

are use to mimic tumors (see Fig. 5-1). These tumor-like phantoms (target) 

were immersed in Lipofundin solution at depth of 2 cm. Their axial directions 

were parallel to the X-axis (positions P1 and P2 in Fig. 5-7). The handheld 

probe was placed on top surface of the solution as showing in Fig. 4-29. The 

TPSFs acquired from the liquid phantom with and without absorber immersed 

were regarded as homogeneous TPSF ( ) and heterogeneous TPSF (hϕ iϕ ), 

respectively. 

For 9 light source fibers and 4 detection fiber-bundles, each scan acquires 36 

TPSFs. Fig. 5-8 plots a homogeneous TPSF with the corresponding 

heterogeneous TPSF acquired from the same channel. The distance from the 

source to the detector is 3.3 cm. The figure shows that the peak of the 

heterogeneous TPSF ( iϕ ) was attenuated by approximately of 5.9% from the 

homogeneous TPSF ( ). Meanwhile, the mean time-of-flight of photons was 

reduced by 28.57 ps after the absorber was immersed.  

hϕ

 

 

Fig. 5-7 Experimental setup for image reconstruction 
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Fig. 5-8 TPSF acquired from homogeneous and inhomogeneous medium.  
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Fig. 5-9 TPSF measurements with room light on (blue line) and room light off 
(red circles). 

From our experiment observations, our system has demonstrated a very 

attractive feature - the measurements insensitivity to the environmental 

illuminations. Fig. 5-9 demonstrates this feature by comparing two TPSFs 

acquired from room light on (dashed line) and off (triangle line). The root of 
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mean square of the noise has a voltage level approximately of 3.2 mV when 

room light is on while approximately of 2.7 mV when room light is off. The 

difference between two curves can be neglected. This feature is practically 

significant for clinical applications because it can greatly reduce patient’s 

anxiety and improve the operation convenience. 

5.3.3 Reconstructed images 

After homogeneous and heterogeneous signals acquisition, the tomographic 

image can be reconstructed. The Matlab code shown in Appendix A.6 is used 

to reconstruct 2.5-D tomographic images. Fig. 5-10 illustrates the images of 

absorption coefficients. Each figure has a cross sectional area of 50 mm × 25 

mm.   

The target is placed at P1 and then P2 in the experiments (see Fig. 5-7). The 

depth remains to be 2 cm.  Fig. 5-10(a-c) shows the image reconstruction 

results where the target is located at P1 and Fig. 5-10(d-f) shows the image 

reconstruction results where the target is horizontally moved to P2. From these 

image reconstruction results, we can rather accurately determine the target's 

position and size. For example, in Fig. 5-10(a-c), the recovered position of the 

absorber is ([x, y, z] = [0.013, 0, 1.918] cm), which is very close to the true 

position ([x, y, z] = [0, 0, 2] cm). In Fig. 5-10(d-f), the recovered position of 

the absorber is ([x,y,z] = [1.506, 0, 1.958] cm), which is also close to the true 

position ([x, y, z] = [1.5, 0, 2] cm).  Table 5-2 shows the quantitative analysis 

of the reconstructed absorption coefficient. The mean aμ  and standard 

deviation )( aμσ  were calculated with the reconstructed distribution within the 
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true target region.  It is evident that the reconstructed values are rather close to 

the true value.  

The total image reconstruction took about 3-5 s using a PC with core 2 dual 

CPU at 1.8 GHz and 2 GB RAM. It is worthy to note that the handheld probe 

is right now optimized for 2.5-D cross-sectional image reconstruction. For real 

3-D imaging in future, more TPSF signals from more the sources and 

detectors should be acquired.  

 

 
Y = 0.00 cm Y = 0.00 cm 

 

 
Y = 0.25 cm Y = 0.25 cm 

 

 
Y = 0.50 cm Y = 0.50 cm 

 

Fig. 5-10  Image reconstructions of absorption coefficient. (a-c) images for y = 
0.00, 0.25 and 0.50 cm, respectively. Target (absorber) position is P1 = [0.0, 
0.0, 2.0] cm.  (d-f) images for y = 0.00, 0.25 and 0.50 cm, respectively. The 

target is horizontally 1.5 cm away from P1. 
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Table 5-2 Analysis of the reconstructed absorption coefficient µa. 

 True value 
(cm-1) 

Reconstructed value (cm-1) 
Mean aμ Standard deviation ( )aμσ  

Case 1 (P1) 0.06 0.0442 0.0198 
Case 2 (P2) 0.0407 0.0140 

5.4 Reliability improvement with a bias controller 

As mentioned in section 4.3.4.3, bias controller was used to stabilize the 

modulation depth of MZM. In order to assess the corresponding improvements 

on image reliability after stabilizing the modulation depth of MZM, the same 

phantom-based experiment was repeated. The cylindrical absorber was placed 

at position  = (-1.0, 0.0, 1.5) cm. The cross-sectional images at ),,( zyxP y = 

0.0 cm are reconstructed and shown in Fig. 5-11(A)-(D). Fig. 5-11(E) shows 

the bias voltages of MZM at which the TPSF signals for image (A)-(C) are 

acquired. Each two biases are separated by approximately 6/πV=Δ . Fig. 

5-11(A) shows the image when the MZM biases at the ‘quad+’ point at system 

initialization stage. Fig. 5-11(B)-(C) shows image results after the bias of 

MZM drifts away from the ‘quad+’ point, respectively. Clearly, it is the bias-

drift that cause the position (mass center) of the absorber in images gradually 

shifts leftward from its expected position. This effect degrades image quality 

and reproducibility. Meanwhile, undesirable image artifacts emerge at the 

right-hand side, which increases the risk of false-positive rates for target 

identification. Fig. 5-11(D) shows the image when the MZM is kept locking at 

the ‘quad+’ point after one hour brought by the bias controller. Comparing 

with image Fig. 5-11(A) at the starting stage, the target position (mass center) 

is almost unchanged and the artifacts do not appear. The image quality and 

reproducibility have been greatly improved. 
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Fig. 5-11 Reliability improvement of image reconstruction results after using 
MZM bias controller. (A-C) w/o bias control; (D) w/ bias control. (E) MZM 

bias for image (A)-(C) are reconstructed, respectively. 

5.5 Summary 

This chapter describes in detail the fabrication of tissue phantoms as well as 

the phantom-based diffuse optical tomography imaging experiments. The 

image reconstruction results are assessed quantitatively. The heterogeneities of 

absorption coefficient can be spotted easily on imaging results. The bias 

voltage controller greatly improves the image reliability and repeatability. 
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In summary, the fast time-domain DOT prototype developed in this research 

has demonstrated a couple of advantageous features over the conventional 

time-domain DOT systems, including the high speed on TPSF acquisition and 

system SNR, relatively simple system structure and low cost have been 

realized. To expand these valuable advantages, we conducted preclinical 

experiments on normal human breast tissue in vivo. Details are reported in the 

next chapter.  



Chapter 6. Optical and physiological 

characterizations of breast tissue in-vivo 

This chapter describes the in-vivo preclinical experiments on human breast 

tissues by using the novel time-domain diffuse optical spectroscopy (DOS) 

prototype system.  

In this study, two bundles of information are quantified from the time-resolved 

acquisitions. The first bundle is optical properties, especially the absorption 

coefficient ( aμ ) and the reduced scattering coefficient ( 'sμ ). The second 

bundle is physiological parameters, specifically the concentration of 

oxyhemoglobin (HbO) and the concentration of deoxyhemoglobin (Hb), the 

total hemoglobin concentration (THC ) and the oxygenation saturation ( SO). 

In addition, this study analyzes the correlation of these two bundles of 

information with the physiological factors including menopausal states, ages 

and body mass index (BMI).  

According to the in vivo experiment results, the optical properties of breast 

(especially the aμ ) and physiological parameters (  and ) varied 

significantly between premenopausal and postmenopausal women. 

Meanwhile, the experiment results also showed a conspicuous contrast in 

optical and physiological parameters between young (below 40-year-old) and 

old women (above 40-year-old). Quantitative analysis shows that there is a 

close correlation of optical/physiological parameters with the age, BMI and 

the menopausal states of women. 

THC SO
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6.1 Human study protocols 

6.1.1 Recruit of volunteers 

A total number of 19 Singapore women subjects were recruited in this in vivo 

spectroscopy research. All subjects are healthy with no known breast diseases 

and any artificial implantations. The physical information of all subjects is 

shown in Table 6-1.  

Table 6-1 Statistics of 19 women subjects  

# Age (y/o) Height (m) Weight (kg) BMI Menopausal 
V1 50 1.65 75 27.5 Pre- 
V2 48 1.57 53 21.5 Pre- 
V3 50 1.63 54 20.3 Pre- 
V4 23 1.64 58 21.6 Pre- 
V5 41 1.65 68 25.0 Pre- 
V6 45 1.56 49 20.1 Pre- 
V7 23 1.60 49 19.1 Pre- 
V8 49 1.51 57 24.9 Pre- 
V9 23 1.58 47 18.8 Pre- 
V10 47 1.65 56 20.6 Pre- 
V11 49 1.47 43 19.9 Pre- 
V12 26 1.60 52 20.3 Pre- 
V13 26 1.68 68 24.1 Pre- 
V14 50 1.62 80 30.6 Post- 
V15 44 1.58 53 21.2 Post- 
V16 43 1.64 55 20.4 Pre- 
V17 51 1.61 64 24.7 Pre- 
V18 50 1.59 54 21.4 Pre- 
V19 49 1.59 63 24.9 Post- 

 

These subjects were divided into groups by their menopausal states and age in 

research because aging and menopause states are strongly associated with the 

replacement of glandular tissue with fatty tissue [151]. As shown in Table 6-2, 3 
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postmenopausal (Post-) women age from 44, 49 to 50 years old. The rest 16 

premenopausal (Pre-) women ages from 23 to 50 years. There are 5 women 

younger than 40 years old and 14 women are older than 40 years old. The 

youngest and oldest subjects were 23 and 50 years old, respectively. The 

average age of all subjects was 41.7 years old and the standard deviation (SD) 

was 11.1 years.    

Table 6-2 Statistics of 19 volunteer women subjects. 

 Age Menopausal states 
 Young (< 40) Old (≥ 40) Pre- Post- 

Number of subjects 5 14 16 3 
Mean (years) 24.2 47.9 40.8 47.0 
SD (years) 1.6 2.8 11.4 2.6 

Mean (years) 41.7 
SD (years) 11.1 

 

6.1.2 RBN approval  

The in-vivo breast tissue experiments using time-resolved DOS instrument 

have been approved by Institute Review Board of National University of 

Singapore. 

6.1.3 Pre-scanning preparations 

1) Warm up system to stabilize the temperature of the APDs and the MZM. 

This procedure usually takes approximately 15-25 minutes. 

2) Acquire system impulse response by placing a white diffusive paper at 

18 cm away from the hand-held probe (see section 4.3.4). 
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3) System characterization by solving the system coupling coefficients (i.e. 

the parameters  and  at 785 nm and 808 nm, 

respectively). 

785
dsCC 808

dsCC

4) System calibration: DOS system to be recalibrated before each scanning 

session to ensure accuracies before taking measurements, and every 30 

minutes thereafter. 

5) Operators A and B to be appropriately dressed in lab coat. Gloves should 

also be worn during the scan. 

6) Comfortable chair to be provided to seat subject. The subjects keep 

sitting posture during data acquisition. 

7) Probe surface to be sterilized with denatured alcohol using cotton balls 

before being used to contact subject. 

8) Briefing instructions during experiments are conducted by operator to 

volunteer subjects. Consents from all volunteer subjects are obtained.  

6.1.4 Probing positions 

Subjects were probed in a sitting posture without any external compressions 

upon breast. The hand-held probe was placed on the left and right breasts 

sequentially. In order to keep the probe fully contact with the breast tissue, a 

slight pressure will be applied upon the breast. Because of the small effective 

area, the breasts shape would not change too much to be completely covered. 

This will not cause any discomfort to subjects. Meanwhile, the fiber tips and 

the fiber bundles mounted on the probe have been alighted in surface with the 

probing plane, the laser beam will go into the breast and the emission signals 

can be collected by fiber bundles without inducing gap reflections. Also, the 
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small breast shape deformation (normally 1-2 mm due to probe pressure) 

could be ignored safely comparing with the accuracy of tomography images 

and the detectable cancer/tumor size (~1.0 cm). For the spectroscopic 

application, which only cares about the optical properties and physiological 

parameters of whole breasts, the pressure effect could be completely ignored.   

As shown in Fig. 6-1, the probing positions on each breast are 3, 6, 9, 12 

o’clock. At each position, 72 TPSFs are acquired from 9 source fibers and 4 

detectors for 2 wavelengths. Each scan takes approximately 5 seconds. In this 

period, the subject was asked to hold breath in order to minimize the breast 

fluctuation. To further minimize detrimental impact induced by heart beating 

and operator hand trembling, the scanning at each position repeated 5 times. 

Thus a total of time-resolved measurements contains 36 × 2 × 8 × 5 = 2 880 

TPSFs from each subject, which can be accomplished in 10 - 15 minutes. 

 

 

Fig. 6-1 Four probing positions on left (L) and right (R) breasts of each subject.  

6.1.5 Scanning procedure and data acquisition 

1) Subject will be asked to hold her breath each time when a reading is 

taken. There is a 3 seconds lapse thereafter, as the system switches 

from one laser to another, and during this period, the subject will be 
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able to take a breath (exhale and inhale). Two lasers at different 

wavelengths are used for each reading.  

2) Operators will do a pre-scanning on each subject by placing the probe 

on locations 5, 6, 7, 8 (see Fig. 6-1) to simulate the actual locations 

during the scan. One reading is taken at position 5 and position 7, and 

2 readings are taken at position 8. A total of 5 readings will be taken 

during the pre-scanning.    

3) 40 sets of TPSF measurements will be taken per subject, 20 sets of 

TPSF measurements taken from each breast. The probe placed at 4 

different locations on the breast (see Fig. 6-1). 5 measurements will be 

made at each location. 

4) During scanning, operator B should monitor the values of the optical 

parameters calculated by the software from the data. It will be up to the 

discretion of operator to determine if more measurements should be 

taken if the data collected is not of a good quality. The experiment 

results will be automatically saved into data file for post-experiment 

analysis.  

6.2 Spectroscopy data processing  

The data processing procedure for spectroscopy is similar to the data 

processing procedure developed for the spectroscopic study (see section 5.2). 

The optical properties of the whole breast tissue are calculated from the time-

resolved measurements. Instead, two wavelengths (785 nm and 808 nm) NIR 

laser were simultaneously utilized. In addition, few more physiological 

information data types are extracted from the resultant optical properties ( aμ
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and 'sμ ), including the concentration of the hemoglobin , the 

concentration of the deoxyhemoglobin  , the total hemoglobin 

concentration , the oxygenation saturation of the blood S

HbOC

HbOC

THC O . The 

calculation formula for these parameters can be found in Eq. (2-21) and Eq. 

(2-22). 

The TPSF obtained from channel with source-to-detector separation of 2.35 

cm (channel D3-S6 in Table A-3) was selected to calculate the optical 

properties ( aμ  and 'sμ ). This separation allows the incident photons to go into  

the breast tissue up to centimeters [23]. The , 'sμ ,  and THC SOaμ  of each 

subject were calculated from 8 probing positions. The results data sets

( ) ( ) ( ) ( )iSOiiR a ,( [ is ,' ]  ( )THCi ,) μμ= 81K=i of each subject were averaged in 

order to minimize the positional variations. Results were expressed by (mean 

value ± standard deviations). The Matlab code of TD-DOS can be found in 

Appendix A.7.  

6.3 Spectroscopy results 

Table 6-3 summarizes the optical properties and physiological parameters of 

all 19 subjects. The mean aμ  of 19 subjects was found to be 0.0503 cm-1 with 

a standard deviation of 0.0151 cm-1 at 785nm. At 808 nm, the values of aμ

were (0.0518 ± 0.0153) cm-1. The reduced scattering coefficient showed 

similar results at two different wavelengths: at 785 nm showing (10.53 ± 1.19) 

cm-1 and at 808 nm showing (10.49 ± 1.17) cm-1. The blood oxygenation 

saturation ( SO) of all 19 subjects was found to be (64.8 ± 10.3) % while the 

total hemoglobin concentration (THC ) was found to be (22.3 ± 7.5) µMol/L.  
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The in vivo optical spectroscopy on bulk breast has been investigated 

worldwide. However, there are a little bit differences between different 

research groups. The differences can be ascribed to the constitution difference 

of women subjects (ages, menopausal states, races and so on), different 

methodologies and apparatus, and the different laser wavelengths used. Table 

6-4 compiles some recent in vivo research results on healthy breast tissue 

using different spectroscopy techniques. All data are rounded properly for 

comparison. Taking the Caucasian women as an example, Durduran et al 

reported the aμ of (0.04 ± 0.03) cm-1 and 'sμ  of (9 ± 2) cm-1 at 780 nm from 

experiments on 52 healthy women [26]. Results reported by Pogue et al showed 

a slight difference. The averaged aμ  and 'sμ  were (0.05 ± 0.04) cm-1 and (10 

± 2) cm-1 respectively [31]. In addition to the difference on optical parameters, 

the physiological parameter results between each group are also slightly 

different. The average value of SO ranges from 61% to 77% and THC  from 

16 µMol/L to 34 µMol/L. So far there are very few reports published for 

Asian women. Suzuki  reported that the average aμ  from 30 Japanese women 

was (0.05 ± 0.01) cm-1 and the average 'sμ was (9 ± 2) cm-1 [34]. In this study 

only Southeast Asian women were involved, the mean values of the optical 

properties and physiological parameters, as shown in Table 6-4, showed a 

good agreement with to the data of Caucasian women as well as other regional 

Asian women.   
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Table 6-3 Average optical properties and physiological parameters of 19 
subjects. 

 785 nm 808 nm 

aμ (cm-1) 0.0503 ± 0.0151 0.0518 ± 0.0153 

'sμ  (cm-1) 10.53 ± 1.20 10.49 ± 1.19 

SO (%) 64.8 ± 10.3 
THC  (µMol/L) 22.3 ± 7.5 

 

Table 6-4 Comparison of optical/physiological parameters from this study and 
recent literatures.  refers to the number of subjects involved in different 

studies while 
N

'sμ and aμ  are rounded properly for consistency. 

 N  'sμ (cm-1) aμ  (cm-1) SO (%) THC  (µMol/L) 

Durduran [26] 52 9 ± 2 0.04 ± 0.03 68 ± 8 34 ± 9 
Grosenick [27] 28 10 ± 2 0.04 ± 0.01 74 ± 3 17 ± 8 
Tomas [28] 36 8 ± 2 0.04 ± 0.02 77 ± 8 17 ± 10 
Spinelli [29] >50 11 ± 2 0.04 ± 0.01 66 ± 9 16 ± 5 
Taroni [30] 101 11 ± 1 0.05 ± 0.01 71 ± 8 20 ± 7 
Pogue [31] 46 10 ± 2 0.05 ± 0.04 61 ± 1 22 ± 7 
Poplack [32] 23 12 ± 2 0.05 ± 0.02 69 ± 9 24 ± 12 
Suzuki [34] * 30 9 ± 1  0.05 ± 0.01 - - 
This study 19 10 ± 1 0.05 ± 0.02 65 ± 10 22 ± 8 

*Data was obtained using wavelength at 753 nm 

 

6.4 Correlation of parameters and demographic factors 

To assess the performance on spectroscopy, the data result was analyzed with 

respect to the physiological factors, including the menopausal status, the age, 

and the body mass index (BMI). 
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6.4.1 Menopausal status 

To explore the relationships between menopausal states and the 

optical/physiological parameters, 3 postmenopausal women and the 16 

premenopausal women were examined, respectively. 

6.4.1.1 Optical parameters 

'sFig. 6-2 (A) and (B) show scatter plots of data μ  versus aμ  from 

premenopausal women (in blue circles) and postmenopausal women (in red 

blocks) at two wavelengths, respectively. 2-dimensional error bars show the 

standard deviations on two optical parameters. It can be found that 'sμ  and 

aμ of postmenopausal women are generally smaller than that of 

premenopausal women, which show an agreement to the observations in 

literature [15]. Statistical results in Table 6-5 show that the averaged aμ  of 

premenopausal women was (0.0541 ± 0.0141) cm-1 at 785nm - approximately 

60% larger than that of premenopausal women at (0.0338 ± 0.0044) cm-1. At 

808 nm, aμ shows a similar trend of being larger in premenopausal women at 

(0.0557 ± 0.0141) cm-1  - and approximately 61% higher than that in 

postmenopausal women which was found to be (0.0347 ± 0.0041) cm-1 . The 

difference of 'sμ between 785 nm and 808 nm is not significant. At 785 nm, 

the 'sμ of premenopausal women were found to be (10.75 ± 1.17) cm-1 on 

average, which is approximately 12% larger than that of postmenopausal 

women at (9.6 ± 0.83) cm-1. At 808 nm, the contrast is similar. The 'sμ  of 

premenopausal women is about 12% larger than that of postmenopausal 

women.  
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Fig. 6-2 Scatter plot of 'sμ versus aμ  of all subjects. (A): at 785 nm. (B): at 
808 nm. Red blocks represent results of postmenopausal subjects. Blue circles 
represent the results of premenopausal subjects. 2-dimensional error bars are 

standard deviations of 8 probing positions of each subject. 
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6.4.1.2 Physiological parameters 
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Fig. 6-3 Scatter plot of THC  versus SO of all subjects.  Red triangles 
represent results of postmenopausal subject. Blue circles represent results of 
premenopausal subject. 2-dimensional error bars represent standard deviation 

of 8 probing positions of each subject. 

 

Table 6-5 Statistics of optical properties and physiological parameters of post- 
and pre-menopausal subjects 

 
Postmenopausal Premenopausal 

Mean Std. Dev. Mean Std. Dev. 

aμ at 785nm (cm-1) 0.0338 0.0044 0.0541 0.0141 

aμ at 808nm (cm-1) 0.0347 0.0041 0.0557 0.0141 

'sμ at 785nm (cm-1) 9.60 0.83 10.75 1.17 

'sμ at 808nm (cm-1) 9.54 0.81 10.70 1.14 

SO (%) 61.6 9.8 65.1 10.3 
THC  (µMol/L) 14.3 2.3 24.1 7.1 

 

 

Fig. 6-3 shows a scatter plot of THC  versus . It is clear that the THC  of 

premenopausal women, in general, is higher than that of postmenopausal 

SO
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women. Table 6-5 shows THC  of the premenopausal group is (24.1 ± 7.1) 

µMol/L, which is approximately 69% larger than that of postmenopausal 

group which is (14.3 ± 2.3) µMol/L. The SO  difference between the 

postmenopausal women and premenopausal women is not significant. 

6.4.2 Age 

In the past two decades, the American Cancer Society has been recommending 

annual mammograms and other intensive breast cancer examinations 

beginning at 40s and older for women with a moderate and high breast cancer 

risk. The starting annual mammograms for women with low breast cancer risk 

can be postponed to 50s and older [35]. So in this research, we picked 40 years 

old as the criteria to group the subjects for analyzing the relationship between 

age and optical/physiological alternations (see Table 6-6). The young women 

group has 5 women subjects, with ages of (24.2 ± 1.6) years old. The old 

women group has 14 women subjects, with ages of (47.9 ± 2.8) years old. 

6.4.2.1 Optical parameters 

Table 6-6 summarizes the averaged optical properties and physiological 

parameters in terms of age. Significant contrast between two groups can be 

found in absorption coefficient ( aμ ) and total hemoglobin concentration (

).  THC

The aμ  of young women group at 785 nm was found to be (0.0617 ± 0.0143) 

cm-1, which is approximately 38% larger than the old women group in which 

the averaged aμ  was found to be (0.0447 ± 0.0122) cm-1. At 808 nm, the aμ  

of young women group was found to be (0.0631 ± 0.1392) cm-1, which is 

approximately 36% larger than that of aged women group at (0.0462 ± 0.1261) 
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cm-1. The higher aμ  values associated with young women group may be 

explained by the greater content of fibroglandular tissue in the 

mammographically dense breasts. Fig. 6-4 shows a scatter plot of aμ among 

young and old women group. 

The difference of reduced scattering coefficients 'sμ  between young women 

group and aged women group is not significant. Young women group shows 

an average 'sμ  of (11.307 ± 1.010) cm-1 at 785 nm and (11.268 ± 0.987) cm-1 

at 808 nm. Both are approximately 11% larger than that of old women group.   

6.4.2.2 Physiological parameters 

Table 6-6 also shows a difference on the physiological parameter of THC . 

The THC  of young women group was found to be (27.9 ± 7.0) µMol/L while 

the THCof aged women group was (19.6 ± 6.1) µMol/L. The former group is 

approximately 42% larger than the latter group. Fig. 6-5 shows a scatter plot 

of  versus the age of subjects in groups of young and old. For easy 

comparison, data of young women group are shown in red triangles and data 

of aged women group are plotted in blue circles. Error bar shows the standard 

deviation on corresponding parameters. 

THC

The parameter of SObetween young women group and aged women group is 

(63.8 ± 7.6) % versus (64.7 ± 11.4) %. Values are almost the same.  
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Fig. 6-4 Scatter plot of aμ  versus ages of 19 subjects. Red triangles represent 
results of young subject group while blue circles represent results of aged 

subject group. Error bars represent standard deviation of aμ . 
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Fig. 6-5 Scatter plot of parameter THC  versus ages of 19 subjects. Red 
triangles represent results of young subject group while blue circles represent 
results of aged subject group. Error bars represent standard deviation of THC . 
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Table 6-6 Mean and standard deviation of optical properties and physiological 
parameters of 19 subjects 

 
Old (age > 40) Young (age < 40) 

Mean Std.dev. Mean Std.dev. 

aμ at 785 nm (cm-1) 0.0447  0.0122 0.0617 0.0143 

aμ at 808 nm (cm-1) 0.0462 0.1261 0.0631 0.1392 

'sμ at 785 nm (cm-1) 10.154 1.103 11.307 1.010 

'sμ at 808 nm (cm-1) 10.108 1.077 11.268 0.987 

SO (%) 64.7 11.4 63.8 7.6 
THC  (µMol/L) 19.6 6.1 27.9 7.0 

 

 

6.4.3 Correlation analysis 

In order to examine the correlation between the optical/physiological 

parameters and women’s age, menopausal states and BMI, the correlation 

analysis using Pearson’s correlation coefficients was conducted. The 

Pearson’s correlation coefficient is defined by [185] 
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  (6-1) 

where  represent the sampling number. x  and  represent variable and the 

dependent variable respectively. r  represents the correlation results. For 

menopausal women, the dependent parameter was chosen as 1. For 

premenopausal women, the dependent parameter was chose as 0. 

The correlation analysis using Pearson’s correlation coefficients are shown 

in Table 6-7, the high correlation coefficients shows that the optical properties 

of 'saμ  and μ  are closely correlated with age, BMI and menopausal status of 

subject in sequence from high to low. Physiological parameter THC  shows 
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similar close correlation on women’s age, BMI and menopausal as well. The 

correlation to the parameter SO is not significant.  

Table 6-7 Pearson’s correlation coefficient between optical, physiological 
parameters and subjects’ parameters 

's
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 aμ μ   SO   THC  

Age -0.6245 [a] -0.6590 [a] 0.0609 [c] -0.6294 [a] 
BMI -0.5059 [b] -0.5245 [b] 0.2427 [c] -0.5097 [b] 

Menopausal states * -0.4883 [b] -0.3836 [c] -0.1485 [c] -0.4720 [b] 
[a]   p < 0.005;  [b]   p < 0.05;  [c]   p < 0.1; 

* 0 for premenopausal women; 1 for postmenopausal women. 

6.5 Conclusions 

In conclusion, the in-vivo spectroscopy functionality of time-domain diffuse 

optical imaging system has been evaluated. The optical properties and 

physiological parameters of breast tissues from 19 healthy Singapore women 

subjects were characterized for the first time. The preliminary experiments 

results shows a close correlation of optical properties ( 'saμ and μ ) and 

physiological parameters ( ) with age, menopausal states and BMI. 

Although experiments on a larger series of subjects are highly desired to 

statistically evaluate the optical properties and physiological parameters in 

near future, the results presented above still could serve as a rough reference 

for diseased breast tissue study in near future.  

THC

 



Chapter 7. Summary and future prospects  

This final chapter summarizes the state of this research project at present and 

the likely future prospects in next research stage. Feasible design features for 

next generation device and the prospects for clinical applications are 

discussed. 

7.1 Summary 

This thesis has explored a novel spread spectrum time-domain diffuse optical 

tomography technique. The prototype system was established. A 2.488-Gbps 

PRBS was used to modulate the dual near-infrared light. The encoded near-

infrared light passed through the phantom or human breast tissue in-vivo, the 

reflectance light was correlated with the reference PRBS. The information of 

time-of-flight of photon, i.e. the temporal point spread function were acquired. 

The diffusion equation was used to approximate the model the photon 

propagation in the turbid medium. The semi-infinite boundary conditions were 

used to solve the forward problem. The system calibration was conducted 

prior to the imaging and spectroscopy experiments. The optical properties, 

especially the absorption coefficient aμ  and the reduced scattering coefficient 

'sμ  were calculated in the Laplace domain.  2.5-D tomographic images were 

reconstructed using the pseudo-inverse technique.  

This novel TD-DOT/DOS instrument has achieved most desired objectives:  

• Fast data acquisition speed: the total time for time-resolved data 

acquisition, system calibration, imaging reconstruction and 
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spectroscopic analysis has been greatly reduced down to a few 

seconds. 

• Compactness: this instrument employs two near-infrared laser diodes 

as the light sources. Meanwhile, it employs 4 avalanche photodiodes 

as the detectors. This instrument architecture was straightforward and 

pretty compact including to the peripheral supporting devices and 

components.  

• Low cost: laser diodes and avalanche photodiodes used in the 

instrument are of low cost, which greatly reduce the overall system 

cost. Compared to the conventional TD_DOT instruments, in which 

multichannel of ultrashort pulse laser and single photon counting 

devices were used, this instrument cost is only up to ten thousand US 

dollars, approximately 10% cost of the conventional instrument 

setups. 

In addition, the preliminary in-vivo experiments on the healthy women 

subjects were conducted to characterize the breast tissue’s optical properties 

and physiological parameters. Pronounced correlation between optical 

properties, physiological parameter and the demographic factors were 

analyzed and established. 

7.2 Future prospects 

7.2.1 Improvement of system performance 

Although this prototype TD-DOT/DOS system has achieved most desired 

objectives, there are still some limitations, which deserve further improvement 

and optimization before finalization.  
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• Noise level 

To obtained high quality image reconstruction and spectroscopic 

results, the time-resolved data should possess a good enough signal-to-

noise ratio (SNR) and a sufficient dynamic range. The prototype system 

right away can only offer a medium range of SNR up to 56 dB and a 

best image resolution about 1 cm. Although these features are good 

enough for detection stage I tumor-like heterogeneities at depth of 2-3 

centimeters, there is still a lot of rooms for us to increase the detection 

depth if we can decrease the noise level. The noise showing in the 

detection signals primarily come from the PRBS cross-correlation (see 

section 4.3.2), which can be possibly reduced with a more sophisticated 

circuit and more optimal PCB layout design. Increasing the dynamic 

range of the signal measurements is another feasible way to improve the 

system SNR. For a straightforward example, we can replace the linear 

Op-Amp in the signal amplification circuit (see Fig. 4-11) with non-

linear amplification (e.g. using exponential amplifiers) so that we can 

get an significantly enlarged signal measurement range.  

• System expand 

The prototype system at present has 9 light sources and 4 detection 

fiber bundles for TPSF acquisition. These system configurations are still 

not able to offer high quality imaging performance for large area 

applications. Increasing light sources and detectors can increase not only 

the detection area in one-time scanning but also the resolution of the 

image. We plan to increase the light sources from 9 to 36 and the 

detectors from 4 to 16 soon. The light source expansion can be easily 
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realized by cascading a 1 × 4 optical fiber switch component between 

the MZM and the 1 × 9 optical fiber switch. The expansion of the 

detection channels can also be easily realized by duplicating 16 

avalanche photodiodes in parallel. Consequently, the hand-held probe 

need to mount all of 36 light source fibers and 16 fiber bundles, which 

deserves very careful design and mechanical machining. Although the 

system expansion will slow downthe data acquisition speed a little bit 

and increase the system cost accordingly, the prices are still cost-

effective in terms of its significant performance improvement on image 

quality/resolution and the  imaging area. 

7.2.2 Clinical studies on breast  

The ultimate objective of this research is to provide a clinically applicable 

instrument for women breast cancer detection. In the next research stage, 

research will focus on the functional and structural analyses. Women subjects 

with healthy and diseased breast tissue will be recruited for  system 

performance evaluations in deep. 

Firstly, the spectroscopic analyses will be conducted on healthy and diseased 

breast tissue respectively. The optical properties and the physiological 

parameters will be extracted. We will further analyze these spectroscopic 

parameters to explore and establish the intrinsic correspondence between the 

spectroscopic results and the breast cancer. Information will be compiled and 

reorganized as the prior knowledge before conducting clinical cancer 

diagnosis.  

Secondly, the following in-vivo experiments will also be explored to evaluate 

the instrument mapping performance on the reduced scattering coefficient and 
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the absorption coefficient. The mapping results from healthy and diseased 

breast tissue will be imaged simultaneously for easy comparison and 

characterization side-by-side. The hemodynamic information will be imaged 

and analyzed in real time to offer a functional imaging performance. 

Lastly, the instrument will be used to analyze the positional information on the 

women with cancerous breast. In the in-vivo experiments, the women will 

change her posture from sitting to supine, which will reduce the fluctuations of 

signal measurements induced by heart-beating and breathing of subject. In 

addition, the probing positions illustrated in Fig. 6-1 will change to new 

positions as illustrated in Fig. 7-1 because cancer occurrence rates are 

significant different at these four quadrants.  Generally the regions around the 

armpits (e.g. R2 and L1 in Fig. 7-1) have higher cancer occurrence rate (> 

68%) than the other three quadrant regions. Detection of abnormalities in these 

two regions would help to determine the cancer presence at the early stage 

before the cancer cell invades into other quadrants and other parts of body. 

 

Fig. 7-1 Probing positions on 4 quadrant regions on the Left and Right breast 
(front view). 
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Appendix 

A.1 Bias controller using MSP430F4270  

A.1.1 Schematic 
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Fig. A- 1 Circuit schematic of bias controller for MZM (1/2). 
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Fig. A- 2 Circuit schematic of bias stabilizer for MZM (2/2). 
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A.1.2 Software (C-code) – compiled using IARTM (Ver. 4.11) IDE. 

///////////////////////////////////////////////////////////////
////// 
// Intensity modulator stabilizer using MSP430F4270. 
///////////////////////////////////////////////////////////////
////// 
#include  <msp430x42x0.h> 
 
#define Num_of_Results 8  // acq. Samples using 2.5 KHz square 
wave 
#define Vpi 773           // Vpi = 773 x 3V(ref) x 3(amp)/4096 
= 1.698 Vact  
 
#define Ath 400   // accep.thres. btw 1st & 2nd sample datasets  
#define OPT 100   // Optimal range btw 1st & 2nd sample 

s  dataset
#define BigStep 8         // step size 
#define SmallStep 4       // step size 
 
int DIR;                  // bias shifting direction 
 
unsigned char Vstep  = 8;     

// step = 10 x 3V (ref) x 3(amp) 
/ 4096 // =  0.035 Vact = 2% Vpi 

unsigned char sIndex = 0;     // index of data acquisition 
 
unsigned char tP1IES;         // temp var. to save P1IES   
 
unsigned int V785 = 0;        // bias for 785 nm  
unsigned int V808 = 0;        // bias for 808 nm  
unsigned int SCount = 0;      // samples (by count) depend on 

a duration square w ve 
unsigned int Vout, rVout;     // (dynamic) bias voltage 
unsigned int DelayCount;      // delay btw two bias updating 
events 
 
unsigned long  fAvg,  sAvg;   // avg. of 1st half & 2nd half 
unsigned long rfAvg, rsAvg;   // avg. of 1st half & 2nd half 
(ref) 
 
long Diff, rDiff;         // Diff btw 1st & 2nd part of sample 
data 
static unsigned int results[2 * Num_of_Results];  
                          // data: 1st half-'High' & 2nd half-
'Low' 
 
void Sys_Setu void);         // Function protos. p(
void Sample (void); 
 
void Sample_H(void); 
void Sample_L(void); 
 
void FirstRound (void); 
void SecondRound(void);   
void ThirdRound (void);   
 
void UpdateBias(void); 
void Sys_Delay(); 
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unsigned long Avg_1st_Half(void); 
unsigned long Avg_2nd_Half(void); 
 
///////////////////////////////////////////////////////////////

// ////
void Sys_Delay(int DelayCounts) 
{ 
  int i; 
  for(i=1; i<=DelayCounts; i++); 
}  
///////////////////////////////////////////////////////////////
////// 
unsigned long Avg_1st_Half(void) // sum of 1st half 
{ 
  unsigned int i;   
  unsigned long Avg = 0;  
  for (i = 0; i< Num_of_Results; i++) 
    Avg += results[i]; 
  return (Avg); 
} 
 
///////////////////////////////////////////////////////////////
////// 
unsigned long Avg_2nd_Half(void) // sum of 2nd half 
{ 
  unsigned int i; 
  unsigned long Avg = 0;   
  for (i = Num_of_Results; i< 2 * Num_of_Results; i++) 
    Avg += results[i]; 
  return (Avg); 
} 
 
///////////////////////////////////////////////////////////////
////// 
void main(void) 
{ 
  WDTCTL = WDTPW + WDTHOLD;       // Stop watchdog timer            
  Sys_Setup();     
   
  tP1IES = P1IES;                 // store the status of P1IES   
  while (1) 
  { 
    SCount = 0; 
     
    P1IE = BIT7;     
    P1IFG = 0; 
    _EINT(); 
    LPM0;                         // wait for one LD to be 
turned on 
     
    if (P1IES == 0x00)            // LD = 785 nm 
    { 
      if (V785 != 0) rVout = V785; 
      else           rVout = 1365;  
                // ini bias = 1365 x 3(ref) x 3 (amp) / 4096 = 
1 Vact  
    } 
     
    if (P1IES == 0x80)             // LD = 808 nm 
    { 
      if (V808 != 0) rVout = V808; 
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      else           rVout = 1365;  
                      // ini bias = 1365 x 3(ref) x 3 (amp) / 
4096 = 1 Vact       
    } 
     
    FirstRound();   
     
    if ((rDiff > Ath) | (rDiff < -Ath))  //adj. step for 2nd 
round 
      Vstep = BigStep; 
    else 
    { 
      if (((rDiff >0) & (rDiff <= OPT)) | ((rDiff <0) & 
(rDiff >= OPT))) 
        Vstep = 2; 
      else  
        Vstep = SmallStep; 
    }    
    SecondRound();            
            

while (SCount <= (128*8))  
                      // continuous sample for specified 

samples 
      ThirdRound();           
     
    P1IES = tP1IES;       // restore P1IES  

if (tP1IES == 0x00)   
    V785 = Vout;      // update & store bias for LD = 785         
if (tP1IES == 0x80)   
    V808 = Vout;      // update & store bias for LD = 808  

              
    P1IES ^= BIT7;     // toggle BIT7 for next wavelength 
    tP1IES = P1IES;    // store the toggled P1IES  
  } 
} 
 
///////////////////////////////////////////////////////////////
////// 
void Sys_Setup(void) 
{  
  // 1. Ports 
  P1DIR  = 0x23;           // All P1 as outputs except P1.2, 
1.3, 1.4  
                           // Do not change 1.4 as output ! 
  P1OUT  = BIT0;           // lit up indicator LED 
   
  P1IE  = 0x80;                // Disable switch interrupt    
  P1IES = 0;                   // L to H transition for 
interrupt 
  P1IFG = 0;                   // Clear any pending IFGs   
   
  P2DIR = 0xff;                // Output direction, except P2.3   
  P2OUT = 0;                   // All P2 low 
  P5DIR = 0xff;                // Output direction, except P2.3   
  P5OUT = 0;                   // All P5 low 
   
  P6DIR  = 0xfc;               // all P6 as Output except P6.0 
& P6.1   
   
  // 2. Registers   
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  DAC12_0CTL = DAC12OPS + DAC12SREF_1 + DAC12IR + DAC12AMP_7 + 
DAC12ENC; 
                 // DAC output external, Ref Voltage = AVcc, 
                 // O/p Voltage range = 1x ref, Enable 
conversion 1 
                 // 1 LSB = 3/4096 = 0.732 mV   
   
  SD16CTL = SD16REFON + SD16SSEL0;  // 1.2V ref, SMCLK   
  SD16CCTL0  |= SD16SNGL + SD16IE;  // single conv., Enable 
interrupt   
  SD16INCTL0 |= SD16INTDLY_0;       // Interrupt on 4TH sample   
  Sys_Delay(0x3600);          
} 
 
///////////////////////////////////////////////////////////////
////// 
void Sample (void) // Begin ADC sampling -> save to global var 
'results[]' 
{        
  _EINT(); 
  SD16CCTL0 |= SD16SC;          // Set bit to start conversion 
  _BIS_SR(LPM0_bits);           // Enter LPM0 
   
  P6OUT ^= BIT2;    // double-check the data acquisition 
timepoint   
  SCount ++; 
} 
 
///////////////////////////////////////////////////////////////

// ////
void Sample_H (void) 
{       
  P1IFG = 0; 
  P1IE  = BIT3;                     // enable interrupt  
  P1IES = 0;                        // L-> H trigger 
  _BIS_SR(LPM0_bits + GIE);         // waiting for trigger 
(rise edge) 
   
  P1IE &= ~BIT3;                    // disable trigger 
interrupt    
  P1IFG = 0;         
  Sys_Delay(100); 
  Sample();     
  Sys_Delay(1050);  
} 
 
///////////////////////////////////////////////////////////////

// ////
void Sample_L (void) 
{         
  P1IFG = 0; 
  P1IE  = BIT3;                     // enable interrupt  
  P1IES = BIT3;                     // H -> L trigger 
  _BIS_SR(LPM0_bits + GIE);         // waiting for trigger 
(fall edge) 
   
  P1IE &= ~BIT3;                    // disable trigger 
interrupt    
  P1IFG = 0;      
  Sys_Delay(100);   
  Sample(); 
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  Sys_Delay(1050); 
} 
 
///////////////////////////////////////////////////////////////

// ////
void FirstRound(void)      // serve as reference 
{  
  DAC12_0DAT = rVout;      // output Bias to MZM 
   
  for (sIndex = 0; sIndex < Num_of_Results; sIndex++) 
    Sample_H();   
  for (sIndex = Num_of_Results; sIndex < 2*Num_of_Results; 
sIndex++) 
    Sample_L();   
   
  rfAvg = Avg_1st_Half();         // analyze modulation depth 
  rsAvg = Avg_2nd_Half();  
  rDiff = rfAvg - rsAvg; 
} 
 
///////////////////////////////////////////////////////////////
////// 
void SecondRound (void) 
{     
  Vout = rVout - Vstep;     // backward 1 step 
  DAC12_0DAT = Vout;        // update Bias 
   
  for (sIndex = 0; sIndex < Num_of_Results; sIndex++) 
    Sample_H();   
  for (sIndex = Num_of_Results; sIndex < 2*Num_of_Results; 
sIndex++) 
    Sample_L();     
   
  fAvg = Avg_1st_Half();         // analyze modulation depth 
  sAvg = Avg_2nd_Half();   
  Diff = fAvg - sAvg; 
} 
 
///////////////////////////////////////////////////////////////
////// 
void UpdateBias(void)        // 'PID' ctrl based on Hysteresis 
ctrl 
{   
  // difference in acceptable range 
  if (((Diff <= Ath) & (Diff >=0)) | ((Diff >= -Ath) & (Diff 
<0)))  
  { 
    // keep curr. direction & reduce step-size to fine correct 
bias 

Vstep = SmallStep;    
 
// difference is very small 

    if (((Diff <= OPT) & (Diff >=0)) | ((Diff >= OPT) & (Diff < 
0)))  
    { 
      DIR = 0;        // maintain the current direction 
      rVout = Vout;   // maintain current bias  
      return;         // without any correction actions 
    }     
  }   
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  else   // difference is outside of acceptable range   
  { 
    Vstep = BigStep;  // restore large step to approach bias 
quickly 
    if (Diff > Ath) 
    { 
      DIR = 1; 
      if (fAvg <= rfAvg) 
      { 
        if (rVout < Vout) 
        { 
          rVout = Vout; 
          rDiff = Diff; 
          rfAvg = fAvg; 
          rsAvg = sAvg; 
        } 
      } 
      else 
      { 
        if (rVout < Vout) 
        { 
          rVout = Vout; 
          rDiff = Diff; 
          rfAvg = fAvg; 
          rsAvg = sAvg; 
        } 
      } 
    } 
     
    else 
    { 
      DIR = -1; 
      if (fAvg <= rfAvg) 
      { 
        if (Vout < rVout) 
        { 
          rVout = Vout; 
          rDiff = Diff; 
          rfAvg = fAvg; 
          rsAvg = sAvg; 
        } 
      } 
      else 
      { 
        if (Vout < rVout) 
        { 
          rVout = Vout; 
          rDiff = Diff; 
          rfAvg = fAvg; 
          rsAvg = sAvg; 
        } 
      } 
    } 
  } 
 
  Vout = rVout + DIR * Vstep;  // shift bias according to the 
'DIR'    
  if (Vout > 3120)     // hop back if bias > 4 Vpi (773 x 4 = 
3092) 
    Vout -= 2 * Vpi; 
  if (Vout < 800)      // hop up if bias is < 1 Vpi (773) 
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    Vout += 2 * Vpi;  
} 
 
///////////////////////////////////////////////////////////////

// ////
void ThirdRound (void) 
{    
  UpdateBias();                // update rVout & Vout      
  DAC12_0DAT = Vout;   
   
  for (sIndex = 0; sIndex < Num_of_Results; sIndex++) 
    Sample_H();   
  for (sIndex = Num_of_Results; sIndex < 2*Num_of_Results; 
sIndex++) 
    Sample_L();     
   
  fAvg = Avg_1st_Half();       // analyze modulation depth 
  sAvg = Avg_2nd_Half();   
  Diff = fAvg - sAvg;  
} 
 
// interrupt service routines 
///////////////////////////////////////////////////////////////
////// 
#pragma vector=PORT1_VECTOR //P1.3 ISR to 2.5 KHz square wave 
(trig.) 
__interrupt void P1_ISR (void) 
{    
  if ((P1IFG & BIT3) == BIT3)   // only P1.3 & mask other 
interrupts 
  {    
    P1IFG = 0; 
    LPM0_EXIT; 
  } 
   
  if ((P1IFG & 0x80) == 0x80)   // P1.7 interrupt for sampling  
  {    
    P1IFG = 0;    
    LPM0_EXIT; 
  }     
} 
 
#pragma vector=SD16_VECTOR 
__interrupt void SD16ISR(void) 
{ 
  switch (SD16IV) 
  { 
  case                          // SD16MEM Overflow  2:
    break; 
  case 4:                         // SD16MEM0 IFG 
    results[sIndex] = SD16MEM0;   // Save CH0 (clear IFG auto.)                   
    break;     
  } 
  LPM0_EXIT; 
} 
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A.2 Optical detector 
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Fig. A- 3 Circuit schematic of PRBS correlation. 
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A.3 PRBS transceiver 

GN
D

1 122 27
pF

C4
2

1
1

2
2

27
pF

C4
3

GN
D

GN
D

5V

10
k

R2
7

2.
2k

R2
4

GN
D

VC
C2

23
2

GN
D

GN
D

5V

11 2 2

0.
1u

F
C4

0

11 2 2

0.
1u

F
C4

7

US
B_

3.
3V

_O
UT

GN
D

GN
D

5V

11 2 2

0.
1u

F
C5

8

11 2 2

0.
1u

F
C5

7

US
B_

1.
8V

_O
UT

US
B_

1.
8V

_E
N

GN
D

GN
D

1.
8V 10

k

R5
8

10
k

R5
7

1 122

22
0p

F
C7

0

GN
D

20
0k

R5
4

US
B_

3.
3V

_O
UT

SC
L

SD
A

US
B_

3.
3V

_O
UT

1kR2
6

1 122

0.
1u

F
C4

5

GN
D

US
B_

1.
8V

_E
N

1
1

2
2

0.
1u

F
C5

5

1
1

2
2

0.
1u

F
C5

6

GN
D

US
B_

3.
3V

_O
UT

1
1

2
2

10
nF

C2
61

1
2

2
33

nF

C5
21

1
2

2
0.

1u
F

C4
6

GN
D

11 2 2

0.
1u

F
C4

8

GN
D2 211

47
0

R1
6

VC
C2

23
2

11 2 2

1K
 @

 1
00

M
HZ

L5

5V

11 2 2

0.
1u

F
C4

4

GN
D

11 2 2

10
uF

C3
5

GN
D

1
1

2
2

1K
 @

 1
00

M
HZ

L4

11 2 2

10
uF

C3
7

11 2 2

10
nF

C4
1

GN
D

GN
D

J2
3

11 2 2

47
pF

C3
8

26
.7

R3
1

26
.7

R3
0

1 122

33
nF

C4
9

2
2

1
1

1.
5k

R1
9GN

D

GN
D

GN
D

4.
7u

F

C1
6

1u
F

C1
8

4.
7u

F

C2
0

1u
F

C2
4

GN
D

GN
D

US
B_

3.
3V

_O
UT

1.
8V

US
B 

dr
iv

er
 fo

r C
DC

E9
13

 p
ro

gr
am

mi
ng

PR
BS

 g
en

er
at

or
 fo

r D
O

T 
ap

pl
ic

at
io

n

GN
D

4

US
BD

P
3

US
BD

M
2

VC
C

1
J1 CO

NN
 U

SB
 T

YP
E 

B 
FE

M

GN
D

1

EN
2

IN
3

IN
1

4

RE
SE

T
8

NC
7

OU
T

6

OU
T1

5

U1
3

TP
S7

75
33

D

GN
D

1

EN
2

IN
3

IN
1

4

RE
SE

T
8

NC
7

OU
T

6

OU
T1

5

U2
0

TP
S7

75
18

D

VC
C

8

OR
G

7

NC
6

VS
S

5
DO

UT
4

DI
3

CL
K

2
CS

1
U1

6

93
C6

6B
/T

SS
OP

IN OUT

Y2 6 
M

Hz

AV
DDVC

C2
23

2

US
B 

5V
5V

XT
OU

T

XT
IN

3V
3O

UT
6

US
BD

M
8

US
BD

P
7

RS
TO

UT
#

5

XT
IN

43

XT
OU

T
44

RE
SE

T#
4

EE
CS

48

EE
SK

1

EE
DA

TA
2

TE
ST

47

GND 18

GND 25

GND 34

GND 9

AGND 45

PW
RE

N#
41

SI
/W

UB
26

BC
BU

S3
27

BC
BU

S2
28

BC
BU

S1
29

BC
BU

S0
30

BD
BU

S0
40

BD
BU

S1
39

BD
BU

S2
38

BD
BU

S3
37

BD
BU

S4
36

BD
BU

S5
35

BD
BU

S6
33

BD
BU

S7
32

AC
BU

S3
11

AC
BU

S2
12

AC
BU

S1
13

AC
BU

S0
15

AD
BU

S4
20

AD
BU

S7
16

AD
BU

S6
17

AD
BU

S5
19

AD
BU

S3
21

AD
BU

S2
22

AD
BU

S1
23

AD
BU

S0
24

VCCIOB31 VCCIOA14

VCC42 VCC3

AVCC46

SI
/W

UA
10

U1
7

FT
22

32
L

5.
6k

R5
6

5.
6k

R5
5

US
B_

3.
3V

_O
UT

EE
CS

EE
SK

EE
DA

TA

US
BD

M

US
BD

P

RS
TO

UT
#

11 2 2

0.
1u

F
C5

9

cl
os

e 
to

 P
CA

93
06

 V
re

f1
Cl

os
e 

to
 P

CA
93

06
 V

re
f2

GN
D

1

Vr
ef

1
2

SC
L1

3

SD
A1

4

EN
8

Vr
ef

2
7

SC
L2

6

SD
A2

5

U2
1

PC
A9

30
6D

CU
R

 

Fig. A- 4 Circuit schematic of PRBS (2.488 Gb/s, pattern length 127 bit) (1/3). 
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Fig. A- 5 Circuit schematic of PRBS (2.488 Gb/s, pattern length 127 bit) (2/3). 
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Fig. A- 6 Circuit schematic of PRBS (2.488 Gb/s, pattern length 127 bit) (3/3). 



A.4 Phantom fabrication  

'sμ  of liquid phantom (Lipofundin solution) A.4.1 Calculating the 

The Lipofundin emulsion was purchased from product (Lipofundin MCT/LCT 

20%, B.Braun Melsungen AG, Germany). Every 1000 ml Lipofundin 

emulsion contains  

* Oil: Soya oil 100.0 g 

* Phospholipids: Egg Lecithin 12.0 g 

* Isotonic substance: Glycerol 25.0 g 

* Medium-chain Triglycerides: 100.0 g 

The physical parameters are [186 187 188] :  

* Particles size in 20% emulsion: ~ 265 um; 

* Number of particles for 20% MCT: ~ 140 × 1015 /Liter. 

To use Mie calculator [189], a real refractive index of 1.46 and an imaginary 

refractive index of 0 were selected for Lipofundin emulsion [190].  

According to the calculation results (see Table A-1), the isotropic scattering 

factor g  is about 0.35, which gives a reduced scattering coefficient 

approximately of 'sμ  = (1- g ) × sμ  = (1- 0.35) × 10.3 cm-1 = 6.5 cm-1. The 

overall absorption coefficient of the Lipofundin solution is solely contributed 

by distilled water, which is approximately of 0.022 cm-1 at 785 nm at room 

temperature. These values were used for prototype system calibration. 
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Table A- 1 Calculation results using Mie scattering calculation 

Parameters Value Unit 

Sphere Diameter 0.265 microns 

Refractive Index of Medium (20oC) 1.3316 

Real Refractive Index of Sphere 1.46 

Imaginary Refractive Index of Sphere 0.000016 

Wavelength in Vacuum 0.785 microns 

Concentration 0.84* spheres/micron3 

Wavelength in Medium 0.58952 microns 

Size Parameter 1.4122 

Average Cosine of Phase Function 0.3478 

Scattering Efficiency 0.02233 

Extinction Efficiency 0.022378 

Backscattering Efficiency 0.01038 

Scattering Cross Section 0.0012316 micron2 

Extinction Cross Section 0.0012342 micron2 

Backscattering Cross Section 0.0005725 micron2 

Scattering Coefficient 1.0346 mm-1 

Total Attenuation Coefficient 1.0368 mm-1 

*0.6% Lipofundin solution × (140×1015/liter) = 0.84 sphere/um3 

 

A.4.2 Fabrication of solid phantom 

A.4.2.1 Quantities of ingredients 

In Hebden’s recipe [136], 330g of resin and 99 g of hardener were used. 1.4 g of 

titanium dioxide and 0.5 ml of 2% ink were added. The ingredients used in 

this research were similar to this recipe. 

The amount of TiO2 was assumed to be 0.325% of the total amount of resin 

and hardener (accelerator component is included if used). The factor of 

0.325% is given by: 

Factor for TiO2 usage = Weight of TiO2 / Total weight of ingredients, less ink 
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                                                      %325.0
4.199330

4.1

=
++

=
 

The 2% ink was first prepared using 98ml of distilled water and 2ml of 

Pelikan 4001 ink. This 2% ink solution is subsequently used for all 

experiments. The amount of ink used was also assumed to be relative to the 

fraction of volume of ink used over the total weight of the epoxy resin in the 

above recipe. For example, 

Factor for ink used = volume of ink used / total weight of ingredients, less ink 

                       %1162.0
4.199330

5.0

=
++

=
 

In this study, the elementary recipe contains 10 g epoxy resin, 6 g hardener, 

0.04 g TiO2 and 0.02 ml 2% ink. The Petri dishes (molds) that are used require 

a total volume of about 40 g (25 g resin, 15 g hardener). Thus the new factors 

involved are: 

• Amount of TiO2 = 0.325% × (Total amount of epoxy resin used) 

         = 0.325% × (25 + 15) 

            = 0.13 g (rounded up to 1 d.p.) 

• Factor for ink used remains as 0.1162% as the amount of ink remains 

unchanged.  

      Amount of 2% ink = 0.1162% × (Total amount of epoxy resin used) 

 = 0.1162% × (25 + 15) 

    = 0.047 ml 

Therefore the quantities of ingredients for making the optical phantom (disc) 

are: 
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* 25 g resin (Epicote 1006 System, Wee Tee Tong Chemicals Pte Ltd, 

SG); 

* 15 g hardener (Epicote 1006 System, Wee Tee Tong Chemicals Pte 

Ltd, SG); 

* 0.13 g titanium dioxide; 

* 47 μl 2% ink (Pelikan 4001 ink). 

A.4.2.2 Fabrication procedure 

1. Mix appropriate amounts of resin, ink well in glass beaker. 

2. Add appropriate amount of TiO2 in glass beaker and mix well. 

3. Degas mixture in desiccators/ break vacuum and repeat 3-4 times. 

4. Add 50% of hardener and mix well especially bottom. 

5. Add remaining hardener; mix well. 

6. Degas again in desiccators as before, taking note of the 

viscosity/texture (indication of curing). 

7. Remove from desiccators before it gets hot/ starts to react. 

8. Pour mixture slowly into container/mold. 

9. Let cure in hood (room temp.) or oven (higher temp.), not under 

vacuum. 

10. When hardened, machine to finished cylinder. 
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A.5 DOT/DOS GUI 

 

Fig. A- 7 Console of TPSF acquisition. 

 

 

Fig. A- 8 Console of instrument configuration. 
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Table A- 2 Function descriptions (C: controller; I: Indicator) 

# Label Type Function description 
0 Imaging/Spectroscopy C Function selection 

1 Det. C Detectors number 

2 Fibers C Source fibers number 

3 Freeze C Freeze fiber sweeping.  

4 Ds-d (cm) I Separation of optode. 

5 5ns 10ns C TPSF length (5.12ns / 10.24 ns) 

6 Samp. Step(ps) C Sampling interval (40ps / 80 ps) 

7 Data Len. I TPSF data length (64 /128 / 256 / 512) 

8 TPSF  I TPSF display  

9 Auto/Manual C Switch NIR LD “auto” or “manually” 

10 LD ON C LD software switch 

11 Save ref C Save current signal to data file 

12 Current I Current light source fiber. 

13 R785/R808 C Data file for 785 nm & 808 nm 

14 Name of Medium C Name of medium 

15 Recal./Result C Show spectroscopic results 

16 CsCd1, CsCd2 I Calibration value of 785nm and 808 nm 

17 a1, a2 I µa of 785 nm and 808 nm 

18 da1,da2 I Fitting error of a1 & a2 

19 s1,s2 I µs’  at 785 nm and 808 nm 

20 ds1, ds2 I Fitting error of s1 & S2. 

21 785/808 Done I Indicator for system calibration done 

22 Fit Ua 785/Us’ 785 I Fitted µa at 785 nm and fitted µs’ at 785 nm 

23 Fit Ua 808/Us’ 808 I Fitted µa at 808 nm and fitted µs’ at 808 nm 

24 Vbd/SO I Physiological parameter: THC and SO 

25 2s C Extra pause for operator to relocate probe 

26 Ua 785 / Us’ 785 I Fitted µa at 785 nm and fitted µs’ at 785 nm 

27 Ua 808 / Us’ 808 I Fitted µa at 808 nm and fitted µs’ at 808 nm 

28 Ho785 / Ho808 C Data file for homogeneous measurements 

29 Stability C Show on/off stability monitoring 

30 Method C Reconstruction method 

31 MZM stability I Stability monitoring of the MZM 
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32 Stop C Stop and quit program 

33 Img done I Indicator of image reconstruction finish 

34 Temperature C Show on/off temperature 

35 Tempearture I Temperature monitoring 

36 Ini Ua Us’ C Initial Ua Us’ guess 

37 nLtr/separations C Separation of the optode for spectroscopy 

38 “Configurations” C System hardware configurations 
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A.6 Matlab code for DOT 

The main functions of TD-DOT are shown in Fig. A- 9 in a hierarchy view. 

The codes are listed below. 

 

Fig. A- 9 Code hierarchy of TD-DOT functions. 

A.6.1 Function “ImagRec.m” 

%% DOT image reconstruction for single wavelength (785 nm) 
function [fitMua fitMusp im_mua] = ImgRec(RefFile, HomoFile, 
TPSF, mua0, musp0, Ri, nltr) 
% input argument: 
%   RefFile  - input data file of reference 
%   HomoFile - input data file of homogeneous medium 
%   TPSF     - acquired TPSF data 
%   mua0     - ini. absorption coef. of background (0.02) 
%   musp0    - ini. reduced scattering coef. of background (4.5) 
%   Ri       - refractive index (H2O=1.33; epoxy resin= 1.56)  
%   nltr     - numbers of ltr for the extropolated boundary 
% 
% output arguments: 
%    fitMua   - fitted mua of the background; 
%    fitMusp  - fitted mus'of the background; 
%               & the reconstructed image data 
  
%% define source and detector  
source = 9; 
detect = 4; 
  
temp1 =  fliplr(importdata(RefFile)); 
temp2 =  fliplr(importdata(HomoFile)); 
  
s9d4_2D_new;  % define geometry of hand-held probe  
  
ns = size(s_geom,1); 
nd = size(d_geom,1);  
  
%% Fig out CsCd 
cscd = zeros(1,36); 
bgMusp = zeros(1,36); 
bgMua = zeros(1,36); 
  
ref = zeros(1,128); 
sig = zeros(1,128); 
dmua = 1000; dmusp = 1000; 
% count = 0; 
while (dmua>=0.0005) | (dmusp > 0.001) 
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%     count = count +1 
    for ss = 1:9 
        for dd = 1: 4 
            sd_num = (ss-1)*detect + dd;  %% index the S-D pair; 
            ref(1, :) = temp1(sd_num,:);  
            sig(1, :) = temp2(sd_num,:);   
            % clear temp1 temp2; 
  
            s_end = 0.3; 
            s_laplace = [0.05 : 0.05 : s_end] * 1e9; 
            s_num = length(s_laplace); 
  
            Dstep = Dstep * 1e-12; 
            t_insec = 0 : Dstep : (127*Dstep);   
            Dstep = 40; 
  
            dt = t_insec(2) - t_insec(1); 
  
            c_light = 3e10 / Ri; 
            c = c_light; 
  
            D0 = 1 / 3 / musp0; 
            r = sddist; 
  
            clear klp0 k_laplace; 
            for kk = 1 : s_num 
                k_laplace(kk,:) = exp(-s_laplace(kk) * t_insec); 
                klp0(kk)= sqrt((mua0+s_laplace(kk)/c_light)/D0); 
            end 
  
            lpd = zeros(s_num,3); 
            lpd(:,1) = -1; 
            clear lpm; 
  
            for kk = 1 : s_num 
                phi_lp(kk)=sum(sig(1,:).*k_laplace(kk,:))*Dstep; 
                ref_lp(kk)=sum(ref(1,:).*k_laplace(kk,:))*Dstep; 
                temp = klp0(kk) * r(sd_num); 
                lpd(kk, 2)=temp*(-1+1/(1+temp))/D0/2 +1/D0; 
                lpd(kk, 3) = temp * (1-1/(1+temp)) / 
(mua0+s_laplace(kk) / c_light) / 2; 
                lpm(kk) = log(1+temp) - temp - log(phi_lp(kk)) 
+ log(ref_lp(kk)) + log((10.2^2)*D0) - 3*log(r(sd_num)); 
            end 
            lpp = lpd \ lpm'; 
  
            bgMusp(sd_num) = 1 / 3 / (D0+lpp(2)); 
            bgMua(sd_num) = mua0 + lpp(3); 
            cscd(sd_num) = exp(lpp(1)); 
        end; 
    end; 
  
    % Mua0 = mean(bgMua); 
    % Musp0 = mean(bgMusp); 
    mua1  = mean(bgMua (find( (sddist>=2.5) & (sddist<3.5) ))) 
    musp1 = mean(bgMusp(find( (sddist>=2.5) & (sddist<3.5) ))) 
  
    dmua = abs( (mua1 - mua0)/mua0 ); 
    dmusp = abs( (musp1 -musp0)/musp0 ); 
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mua0 = mua1 
musp0 = musp1     
end  % while loop 
  
clear ref sig; 
  
ref = zeros(36,1000); 
sig = zeros(36,1000); 
  
%% Figure out Mua, Mus' - based on Laplace transformation 
ref(1: source*detect, :) = [temp1(:,:) zeros(source*detect, 
1000-128)];   
sig(1: source*detect, :) = [temp2(:,:) zeros(source*detect, 
1000-128)]; 
  
temp3 = fliplr(TPSF); 
sig1(1 : source*detect, :)    = [temp3  zeros(source*detect, 
1000-128)]; 
  
s_end = 0.4; 
s_laplace = [0.15 : 0.05 : s_end] * 1e9;  
s_num = length(s_laplace); 
  
t_insec = 0 : 40e-12 : (999*40e-12); 
dt = t_insec(2)-t_insec(1); 
  
c_light = 3e10 / Ri; 
c = c_light; 
  
D0 = 1 / 3 / musp0; 
r = sddist; 
  
clear klp0 k_laplace; 
for kk = 1 : s_num 
    k_laplace(kk,:)  =  exp(-s_laplace(kk) * t_insec); 
    klp0(kk) = sqrt( (mua0+s_laplace(kk) / c_light) / D0);     
end  
  
lpd = zeros(s_num,3); 
lpd(:,1) = -1; 
clear lpm; 
  
for sd_num = 1 : 36 
    for kk = 1 : s_num 
        phi_lp(kk) = sum(sig(sd_num,:) .* k_laplace(kk,:)) * 
40e-12; 
        ref_lp(kk) = sum(ref(sd_num,:) .* k_laplace(kk,:)) * 
40e-12; 
        temp = klp0(kk) * r(sd_num); 
        lpd(kk, 2) = temp * (-1+1/(1+temp)) / D0 / 2 + 1/D0;  
        lpd(kk, 3) = temp * (1-1/(1+temp)) / (mua0+s_laplace(kk) 
/ c_light) / 2;  
        lpm(kk) = log(1+temp) - temp - log(phi_lp(kk)) + 
log(ref_lp(kk)) + log((10.2^2)*D0) + log(cscd(sd_num)) - 
3*log(r(sd_num)); 
    end 
    lpp = lpd \ lpm'; 
    musp(sd_num) = 1 / 3 / (D0+lpp(2)); 

191 
 



    mua(sd_num) = mua0 + lpp(3); 
end 
  
mua0  = mean(mua (find( (sddist>=2.3) & (sddist<3.1) ))) 
musp0 = mean(musp(find( (sddist>=2.3) & (sddist<3.1) ))) 
ltr   = 1 / (mua0 + musp0); 
  
fitMusp = musp0; 
fitMua = mua0;  
  
D0 = 1/(fitMua+fitMusp)/3; 
  
%% calculate Jacobian Matrix 
clear klp0 k_laplace; 
for kk = 1:s_num 
    k_laplace(kk,:) = exp(-s_laplace(kk)*t_insec); 
    klp0(kk) = sqrt((mua0+s_laplace(kk)/c_light)/D0);     
end;  % Laplace kernel 
  
Jac2Da = []; 
deltax = 0.5; 
deltay = 1; 
deltaz = 0.5; 
dz = [0 0 nltr*D0*3]; 
  
pix1 = 0;   
yi = 0;  
  
for xi = -2.5:deltax:2.5 
    for zi = 0.25:deltaz:2.5 
        pix1 = pix1 + 1; 
        rt = [xi, yi, zi]; 
        p1a = []; 
        for jj = 1:ns 
            rst = sqrt(sum((s_geom(jj,:)-rt).^2)); 
            rst1 = sqrt(sum((s_geom(jj,:)-rt-dz).^2)); 
            phil = (exp(-klp0*rst)-exp(-klp0*rst1))/4/pi/D0/rst; 
            for kk = 1:nd 
                rtd = sqrt(sum((d_geom(kk,:)-rt).^2)); 
                rtd1 = sqrt(sum((d_geom(kk,:)-rt-dz).^2)); 
                temp = -phil.*(exp(-klp0*rtd)-exp(-
klp0*rtd1))/4/pi/D0/rtd; 
                rsd = sqrt(sum((s_geom(jj,:)-d_geom(kk,:)).^2)); 
                rsd1 = sqrt(sum((s_geom(jj,:)-d_geom(kk,:)-
dz).^2)); 
                phisd = (exp(-klp0*rsd)-exp(-
klp0*rsd1))/4/pi/D0/rsd; 
                p1a = [p1a; (temp./phisd)']; 
            end 
        end 
        Jac2Da = [Jac2Da p1a]; 
    end 
end 
  
%% reconstruction using pseudo-inverse tech. 
aa = (eye(55)/(Jac2Da'*Jac2Da+0.2*eye(55)))*Jac2Da';  
  
sigl = []; 
sig1l = []; 
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refl = []; 
  
for jj = 1:ns 
    for kk = 1:nd 
        ss = sig((jj-1)*4+kk,:); 
        ss1 = sig1((jj-1)*4+kk,:); 
        rr = ref((jj-1)*4+kk,:); 
        rr = rr/sum(rr); 
        for ll = 1:s_num 
            sigl = [sigl; dt*sum(ss.*k_laplace(ll,:))]; 
            sig1l = [sig1l; dt*sum(ss1.*k_laplace(ll,:))]; 
            refl = [refl; dt*sum(rr.*k_laplace(ll,:))]; 
        end 
    end 
end 
  
dm = (sig1l-sigl)./sigl; 
dm = dm.*(sign(-dm)+1)/2;  
dmua1 = aa*dm;  
  
clear im_mua; 
for kk = 1:11 
    for jj = 1:5 
        im_mua(jj,kk) = dmua1((kk-1)*5+jj); 
    end 
end 
  
maxPt = 1.05 * max(max(im_mua)); 
figure(1); 
imagesc(-2.5:0.5:2.5,0.25:0.5:2.5, im_mua);    
hold on;  axis equal;  xlabel 'X (cm)'; ylabel 'Depth (cm)'; 
colorbar; 
 

A.6.2  Function “S9D4_2D_new.m” 

%% define the geometry of the hand-held probe 
source = 9; 
detect = 4; 
  
% source geometry 
s_geom = zeros(source,3);  
s_geom = [  -1     0  0; 
          -0.5     0  0; 
             0     0  0; 
           0.5     0  0; 
             1     0  0; 
            -1  -0.5  0; 
             1  -0.5  0; 
            -1   0.5  0; 
             1   0.5  0]; 
  
%detector geometry 
d_geom = zeros(detect,3);  
d_geom = [ -2.5     0   0; 
            2.5     0   0; 
           -3.3     0   0; 
            3.3     0   0]; 
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Measmnt=[];  
k1=0; 
pairs = zeros(source,detect); 
sddist_matrix = zeros(source,detect); 
  
seldist = 10; 
for ii=1:source; 
    k=(ii-1)*detect; 
  
    for jj=1:detect; 
        k=k+1; 
        k1=k1+1; 
        sddist_matrix(ii,jj)=sqrt((s_geom(ii,1)-
d_geom(jj,1))^2+(s_geom(ii,2)-d_geom(jj,2))^2); 
  
        if(sddist_matrix(ii,jj)<1 | 
sddist_matrix(ii,jj)>seldist)   
            k1=k1-1; 
        else 
            sddist(k1)=sddist_matrix(ii,jj); 
            Measmnt(k1,2)=jj; 
            Measmnt(k1,1)=ii; 
            pairs(ii,jj)=1; 
       nd  e
    end 
end 
Nmeas=size(Measmnt,1); 
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A.7 Matlab code for DOS 

Fig. A- 10 shows a hierarchy diagram of main functions for TD-DOS. The 

codes implementations are shown below. 

 

Fig. A- 10 Hierarchy diagrams of functions of TD-DOS. 

A.7.1 Function “DOT_Spec.m” 

%% in-vivo breast spectroscopy (main function) 
% calc. DOT-style spectroscopy for 19 healthy subjects:  
%     1. absorption coefficients Ua 
%     2. reduced scattering coefficient Us' 
%     3. oxygenation saturation 
%     4. total hemoglobin concentration 
% user need to specify data directory where breast scanning 
data is 
% 1st step: calibration system 
% 2nd step: calculate the desired (above 4 types) data 
  
clc; 
Age = [50 48 50 23 41 45 23 49 50 47 49 26 26 48 44 43 51 50 49 
23];  % ages of subjects 
BMI = [27.5 21.5 20.3 21.6 25 20.1 19.1 24.9 30.6 20.6 19.9 
20.3 24.1 23.5 21.2 20.4 24.7 21.4 24.9 18.8]; % BMIs of 
subjects 
  
Data = zeros(800, 11); 
AvgData = zeros(160, 14); 
  
dataS = zeros(5,1); 
dataV = zeros(5,1); 
dataA1 = zeros(5,1); 
dataA2 = zeros(5,1); 
dataS1 = zeros(5,1); 
dataS2 = zeros(5,1); 
 
% probe location on the breasts.   
Loc = ['R1'; 'R2'; 'R3'; 'R4'; 'L1'; 'L2'; 'L3'; 'L4'];   
 
% define background constituents: water and lipid in 
concentration 
Cpre  = 0.26;  % H2O concen. of PRE- (default: 0.26+-0.06) 
Cpost = 0.11;  % H2O concen. of POST- (default: 0.11 +-0.01) 
Cw = Cpre * ones(1,20);    % pre  -  
Cw(1,[14,15,19]) = Cpost;  % post -  
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Cf = 0.57 * ones(1,20);   % lipid concentration (57%) 
  
%% data file location 
for iii = 1:20        
    DataDir = [..\V' int2str(iii) '\']; 
    
    Ref_785 = [DataDir 'r785.txt']; 
    Ref_808 = [DataDir 'r808.txt']; 
     
    Phan_785 = [DataDir 'p785.txt'];     
    Phan_808 = [DataDir 'p808.txt'];     
    CsCd_Fit; 
     
    for jjj = 1:8 
        for mmm = 1:5 
            TPSF_785 = [DataDir '785-v' int2str(iii) '-' 
Loc(jjj,:) '-' int2str(mmm) '.txt']; 
            TPSF_808 = [DataDir '808-v' int2str(iii) '-' 
Loc(jjj,:) '-' int2str(mmm) '.txt']; 
            UaUs_Fit; 
            Row =(iii-1)*40+(jjj-1)*5+mmm; 
            Data(Row, 1:11) = [iii jjj mmm real(CsCd1) 
real(CsCd2) real(fMua1) real(fMusp1) real(fMua2) real(fMusp2) 
real(S) real(V)]; 
            disp(Data(Row,:)); 
        end; 
         
        dataA1 = Data(Row-4:Row, 6); 
        avgA1 = GetAvg(dataA1); 
         
        dataS1 = Data(Row-4:Row, 7); 
        avgS1 = GetAvg(dataS1); 
         
        dataA2 = Data(Row-4:Row, 8); 
        avgA2 = GetAvg(dataA2); 
         
        dataS2 = Data(Row-4:Row, 9); 
        avgS2 = GetAvg(dataS2); 
         
        dataS  = Data(Row-4:Row, 10); 
        avgS = GetAvg(dataS);            %% special filter 
         
        dataV  = Data(Row-4:Row, 11); 
        avgV = GetAvg(dataV);       
         
        [avgSS avgVV ] = SV_Simp2(avgA1,avgA2, Cw(iii), 
Cf(iii)); 
         
        AvgData((iii-1)*8+jjj, 1:14) = [iii jjj real(CsCd1) 
real(CsCd2) avgA1 avgS1 avgA2 avgS2 avgS avgSS avgV avgVV 
Age(iii) BMI(iii)]; 
    end; 
     
end;  
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A.7.2 Function “CsCd_Fit.m” 

%% fitting CsCd at 785 nm & 808 nm. 
da1 = 1000; da2 = 1000; dsp1 = 1000; dsp2 = 1000; % huge values 
a1 = 0.02; sp1 = 7; a2 = 0.02; sp2 = 7; 
  
%% data for processing 
Lambda = 1 ; 
WindLen = 5120; SN  = 6; DN  = 3; Dstep = 40; minStep = 40; Ri 
= 1.54;   
  
%% 785 nm 
a0 = 0.03; sp0 = 6; 
   [CsCd1 a1 sp1]  =  CsCd(WindLen, SN, DN, Dstep, minStep, 
Ref_785, Phan_785, a0, sp0, Ri); % calibrate coupling 
coefficients 
   da1   = abs(a1 - a0) / a0; 
   dsp1  = abs(sp1 - sp0) / sp0; 
  
   while ( (da1 >= 0.00002) || (dsp1  >=0.000005) )   % refine 
       a0  = a1; 
       sp0 = sp1; 
       [CsCd1 a1 sp1]  =  CsCd(WindLen, SN, DN, Dstep, minStep, 
Ref_785, Phan_785, a0, sp0, Ri); % fitting coupling 
coefficients 
       da1  = abs(a1 - a0) / a0; 
       dsp1 = abs(sp1 - sp0) / sp0; 
   end; 
  
%% 808 nm 
a0 = 0.03; sp0 = 6; 
  [CsCd2 a2 sp2]  =  CsCd(WindLen, SN, DN, Dstep, minStep, 
Ref_808, Phan_808, a0, sp0, Ri); % calibrate coupling 
coefficients 
  da2   = abs(a2 - a0) / a0; 
  dsp2  = abs(sp2 - sp0) / sp0; 
  
   while ( (da2 >= 0.00002) || (dsp2 >= 0.000005) )  % refine 
       a0  = a2; 
       sp0 = sp2; 
       [CsCd2 a2 sp2]  =  CsCd(WindLen, SN, DN, Dstep, minStep, 
Ref_808, Phan_808, a0, sp0, Ri); % fitting coupling 
coefficients 
       da2  = abs(a2 - a0) / a0; 
       dsp2 = abs(sp2 - sp0) / sp0; 
   end; 
 

A.7.3 function “UsUa_Fit.m” 

%% fitting Ua & Us at 785 & 808 nm 
Ri =1.4; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mua0 = 0.05; musp0 = 10;  
for kk1 = 1:200 
    [fMua1, fMusp1]  =  UaUs(WindLen, SN, DN, Dstep, minStep, 
Ref_785, TPSF_785, mua0, musp0, Ri, CsCd1); 
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    Err1 = abs((fMua1 - mua0) / mua0); 
    Err2 = abs((fMusp1 - musp0) / musp0); 
    if ( (Err1 <= 0.0005) && (Err2 <= 0.00005) )   % close 
enough,  
        break; 
    else 
        mua0 = fMua1; musp0 = fMusp1; 
    end; 
end; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
mua0 = 0.05; musp0 = 10;  
for kk2 = 1:200 
    [fMua2, fMusp2]  =  UaUs(WindLen, SN, DN, Dstep, minStep, 
Ref_808, TPSF_808, mua0, musp0, Ri, CsCd2); 
     
    Err1 = abs((fMua2 - mua0) / mua0); 
    Err2 = abs((fMusp2 - musp0) / musp0); 
    if ( (Err1 <= 0.0005) && (Err2 <= 0.00005) ) % close enough 
        eak; br
    else 
        mua0 = fMua2; musp0 = fMusp2; 
    d; en
end; 
  
%% calculate the SO and Vblood 
c1 = fMua1; 
c2 = fMua2; 
[S V] = SV_Simp (c1, c2, Cw(iii), Cf(iii)); 
  

A.7.4 Function “CsCd.m” 

%% Spectrometer for HbO2 and Saturation  
 
function [cscd bgMua bgMusp] = CsCd(WindLen, SN, DN, Dstep, 
minStep, RefFile, TPSF, mua0, musp0, Ri) 
% input arguments: 
%    WindLen  - window length for TPSF extension (5120* or 
10240 ps); 
%    SN, DN   - index of source fiber and detection channel 
%    Dstep    - Delay step of the PDDL (40* or 80 ps) 
%    minStep  - min delay step of the PDDL (40* or 80 ps) 
%    Dstep    - Delay step of the PDDL 
%    ref      - Reference data. 9 sources 4 detectors 
%    TPSF     - acquired TPSF data. One source 4 detectors. 
%    mua0     - initial guess of absorption coef. 
%    musp0    - initial guess of reduced scattering coef. 
%    Ri       - refractive index of medium (H2O=1.33;epoxy 
resin=1.56)  
% 
% output arguments: 
%    bgMua   - fitted mua0; 
%    bgMusp  - fitted mus'; 
  
%% initialize and load data 
s9d4_2D_new;  % define probe geometry 
ns = size(s_geom,1); 
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nd = size(d_geom,1); 
  
temp1 = fliplr(importdata(RefFile)); 
temp3 = fliplr(importdata(TPSF));      
  
sd_num = (SN-1)*detect + DN;   %% index S-D pair; 
  
% use 1st value of each TPSF for the large delay intervals; 
ref(1, :) = temp1(sd_num,1:(Dstep/minStep):end);  
sig(1, :) = temp3(sd_num,:);   
clear temp1 temp3; 
  
%% forward solution - based on Laplace transform 
s_end = 0.62; 
s_laplace = [0.42 : 0.05 : s_end] * 1e9;  
s_num = length(s_laplace); 
  
Dstep = Dstep * 1e-12; 
  
t_insec = 0 : Dstep : ((WindLen*1e-12/Dstep -1)*Dstep);   
  
dt = t_insec(2) - t_insec(1); 
  
c_light = 3e10 / Ri; 
c = c_light; 
  
D0 = 1 / 3 / musp0; 
r = sddist; 
  
clear klp0 k_laplace; 
for kk = 1 : s_num 
    k_laplace(kk,:)  =  exp(-s_laplace(kk) * t_insec); 
    klp0(kk) = sqrt( (mua0+s_laplace(kk) / c_light) / D0);     
end  
  
lpd = zeros(s_num,3); 
lpd(:,1) = -1; 
clear lpm; 
  
for kk = 1 : s_num 
    phi_lp(kk) = sum(sig(1,:) .* k_laplace(kk,:)) * Dstep; 
    ref_lp(kk) = sum(ref(1,:) .* k_laplace(kk,:)) * Dstep; 
    temp = klp0(kk) * r(sd_num); 
    lpd(kk, 2) = temp * (-1+1/(1+temp)) / D0 / 2; 
    lpd(kk, 3) = temp * (1-1/(1+temp)) / (mua0+s_laplace(kk) / 
c_light) / 2; 
    lpm(kk) = log(1+temp) - temp + log((10.2^2)*D0/8/pi) - 
3*log(r(sd_num)) + log(ref_lp(kk)) - log(phi_lp(kk)); 
end 
lpp = lpd \ lpm'; 
  
bgMusp = 1 / 3 / (D0+lpp(2)); 
bgMua = mua0 + lpp(3); 
cscd = exp(lpp(1)); 
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A.7.5 Function “UaUs.m” 

%% Spectrometer for HbO2 and Saturation 
% cal. background mua and musp ahead 
% regarding inhomogeneous TPSF as evenly distributed 
homogeneous TPSF 
% non-zero padding 
  
function [bgMua bgMusp] = UaUs(WindLen, SN, DN, Dstep, minStep, 
RefFile, TPSF, mua0, musp0, Ri, cscd ) 
% input arguments: 
%    WindLen  - window length for TPSF extension (5120* or 
10240 ps); 
%    SN, DN   - index of source fiber and detection channel 
%    Dstep    - Delay step of the PDDL (40* or 80 ps) 
%    minStep  - min delay step of the PDDL (40* or 80 ps) 
%    ref  -  Reference data. 9 sources 4 detectors 
%    TPSF     - acquired TPSF data. One source 4 detectors. 
%    mua0     - initial guess of absorption coef. 
%    musp0    - initial guess of reduced scattering coef. 
%    Ri       - refractive index of medium (H2O=1.33;epoxy 
resin=1.56) 
% output arguments: 
%    bgMua   - fitted mua0; 
%    bgMusp  - fitted mus'; 
  
%% load and initialize data 
s9d4_2D_new;  % define probe geometry 
ns = size(s_geom,1); 
nd = size(d_geom,1); 
  
temp1 = fliplr(importdata(RefFile)); 
temp3 = fliplr(importdata(TPSF)); 
  
sd_num = (SN-1)*detect + DN;   %% index S-D pair; 
  
ref(1, :) = temp1(sd_num,1:(Dstep/minStep):end);  
sig(1, :) = temp3(sd_num,:);   
clear temp1 temp3; 
  
%% forward solution - based on Laplace  
s_end = 0.62; 
s_laplace = [0.42 : 0.05 : s_end] * 1e9; 
s_num = length(s_laplace); 
  
Dstep = Dstep * 1e-12; 
  
t_insec = 0 : Dstep : ((WindLen*1e-12/Dstep -1)*Dstep); 
  
dt = t_insec(2) - t_insec(1); 
  
c_light = 2.997e10 / Ri; 
c = c_light; 
  
D0 = 1 / 3 / musp0; 
r = sddist; 
  
clear klp0 k_laplace; 
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for kk = 1 : s_num 
    k_laplace(kk,:)  =  exp(-s_laplace(kk) * t_insec); 
    klp0(kk) = sqrt( (mua0+s_laplace(kk) / c_light) / D0); 
end 
  
lpd = zeros(s_num,2); 
  
clear lpm; 
  
for kk = 1 : s_num 
    phi_lp(kk) = sum(sig(1,:) .* k_laplace(kk,:)) * Dstep; 
    ref_lp(kk) = sum(ref(1,:) .* k_laplace(kk,:)) * Dstep; 
    temp = klp0(kk) * r(sd_num); 
    lpd(kk, 1) = temp * (-1+1/(1+temp)) / D0 / 2  ;%+ 1/D0; 
    lpd(kk, 2) = temp * (1-1/(1+temp)) / (mua0+s_laplace(kk) / 
c_light) / 2; 
    lpm(kk) = log(1+temp) - temp + log((10.2^2)*D0/8/pi) - 
3*log(r(sd_num))+ log(cscd) + log(ref_lp(kk)) - log(phi_lp(kk)); 
end 
lpp = lpd \ lpm'; 
  
bgMusp = 1 / 3 / (D0+lpp(1)); 
bgMua = mua0 + lpp(2); 
   
 

A.7.6 Function “SV_Simp.m” 

%% calc. one Saturation & blood volume 
function [S V] = SV_Simp2(c1, c2, Cw, Cf); 
% input: 
%       c1: reconstructed coefficient of Mua of 785 nm 
%       c2: reconstructed coefficient of Mua of 808 nm 
%       a : absorption coefficient of deoxy-hemoglobin at 785 
nm 
%       b : absorption coefficient of oxy-hemoglobin at 785 nm 
%       c : absorption coefficient of deoxy-hemoglobin at 808 
nm 
%       d : absorption coefficient of oxy-hemoglobin at 808 nm 
% output: 
%       S : saturation of the oxygen; 
%       V : blood volume of the tissue; 
  
% extinction coff.: unit:  /cm/uM; 
% a * [Hb] + b * [HbO] = Mua_785; 
% c * [Hb] + d * [HbO] = Mua_808; 
  
% 20% water (post-menupausal: 11+-1%; pre-menupausal: 26+-6%),  
% 57% lipid; 
cb785 = 0.0252*Cw + 0.00357*Cf; 
cb808 = 0.0218*Cw + 0.00497*Cf; 
  
% delta Ua 785 and delta Ua808 
c1 = c1 - cb785; 
c2 = c2 - cb808; 
  
% a = 2.2962e-3;  b = 1.7682e-3; c = 1.8508e-3;  d = 2.1096e-
3;  %UCL  
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a = 2.2048e-3;  b = 1.6812e-3; c = 1.6663e-3;  d = 1.9714e-
3;  %OMLC  
  
Hb  = (c1*d - c2*b)/(a*d - b*c); 
HbO = (a*c2 - c*c1)/(a*d - b*c); 
  
S = HbO/(HbO+Hb); 
V = Hb + HbO; 
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