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 II 

Summary 

The progress in the magnetic storage technology largely depends on the 

development of magnetic storage media (magnetic films that store information). For 

ultra-high density recording media, a large anisotropy is necessary in order to scale 

down the grain size because of the required thermal stability. 

SmCo5 is the ultimate candidate because of its uniaxial magnetocrystalline 

anisotropy (Ku=1.1~2.0×108 erg/cm3) which is the highest among all the hard 

magnetic materials. SmCo5 based thin films allow significant reduction in the grain 

size from currently about 7-9 nm in Co-alloys to about 2-3 nm based on the 

superparamagnetic limitation. Therefore, SmCo5 thin films with fine grains, specific 

texture and high coercivity are of a high interest for achieving an ultra-high areal 

density and good recording performances. 

This thesis focused on the fabrication of magnetron-sputtering derived SmCo5 

thin films for magnetic recording using a layer engineering approach. The study has 

shown that the structure and the magnetic properties of SmCo5 thin films can be 

greatly influenced by the texture and the surface morphology of the underlayer and 

deposition condition. The study has resulted in suitable multilayer designs and 

deposition control methods in order to obtain SmCo5 films with the desired structure 

and magnetic properties.  

Three layer configurations were studied:  

(11
−

2 0) textured SmCo5 / (002) textured Cr / glass; 

(0001) textured SmCo5 / (111) textured Cu / amorphous-like Ta / glass; 

(0001) textured SmCo5 / (211) textured Ni4W / amorphous-like W / glass. 

With the first configuration, a nanocrystalline SmCo5 film was obtained with a 

high in-plane intrinsic coercivity up to 26.5 kOe and a large in-plane magnetic 
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anisotropy. The film was deposited on an economical glass substrate at a relatively 

low temperature of 400 oC. With the second configuration, a Ta seed layer was found 

effective in improving the crystallinity, texture and surface morphology of the Cu 

underlayer. The optimal Ta seed layer was a thin, continuous and amorphous-like 

layer with a thickness of 4 nm. A highly (000l) textured SmCo5 thin film (with a 

small ∆θ50 value of 3.2 o) exhibiting large perpendicular anisotropy and high out-of-

plane intrinsic coercivity around 20 kOe was obtained on the Cu / Ta dual underlayer. 

The deposition temperature for SmCo5 to having the (0001) texture was as low as 

325 oC. In the last configuration, a nanocrystallined and (211)-textured Ni4W / W 

dual underlayer was found to be able to induce SmCo5 thin films with perpendicular 

anisotropy. This is due to the Ni4W-(211) plane having a hexagonal structure which 

is similar to that of the SmCo5-(0001) plane. The Ni4W underlayer can be as thin as 

13 nm. A maximum out-of-plane intrinsic coercivity of 15.5 kOe was achieved in 

SmCo5 thin films grown on Ni68W32 underlayer with Ni4W clusters. The use of the 

Ni4W underlayer has not been reported by other research groups so far. Based on the 

obtained magnetic properties, SmCo5 / Ni / Ni4W / W film was found to be a 

promising hard/soft double-layered design for perpendicular recording applications. 



 IV 

Table of Contents 

Acknowledgements………………………………………..…………….…..………..I 

Summary………………………………………..…………..…….………..……..….II 

Table of Contents........................................................................................................IV 

List of Figures ..........................................................................................................VII 

List of Tables ..........................................................................................................XIII 

List of Publications .................................................................................................XIV 

 

1 Chapter I Introduction .......................................................................................1 

1.1 Magnetic recording and magnetic recording media......................................2 

1.1.1 A brief review of magnetic recording.......................................................2 

1.1.2 Development of magnetic recording media..............................................4 

1.1.2.1 Longitudinal magnetic recording media...............................................5 

1.1.2.2 Perpendicular magnetic recording media .............................................7 

1.1.2.3 Future magnetic recording media.......................................................10 

1.1.3 Challenges of magnetic recording media................................................11 

1.2 Physical properties of SmCo5 .....................................................................14 

1.2.1 Phase diagram and crystal structure of SmCo5 .......................................14 

1.2.2 Ferromagnetism, magnetic anisotropy and coercivity mechanism of 

SmCo5 .....................................................................................................15 

1.3 Review of studies on SmCo5 thin films ......................................................16 

1.4 Motivations and objectives .........................................................................19 

1.5 References...................................................................................................22 

2 Chapter II Experimental techniques...............................................................28 

2.1 Sputtering techniques..................................................................................29 

2.2 Structure and microstructure characterization ............................................32 

2.2.1 Rutherford Backscattering Spectroscopy (RBS) ....................................32 

2.2.2 X-ray diffraction (XRD) .........................................................................33 

2.2.3 Transmission electron microscopy (TEM) .............................................35 

2.2.4 Atomic force microscopy (AFM) ...........................................................39 

2.2.5 Profilometer ............................................................................................41 

2.3 Magnetic properties characterization..........................................................41 

2.3.1 Vibrating sample magnetometer (VSM) ................................................41 



 V 

2.3.2 Superconducting Quantum Interference Device (SQUID).....................43 

2.3.3 Magnetic characterization.......................................................................44 

2.4 References...................................................................................................50 

3 Chapter III SmCo5 thin films with longitudinal anisotropy grown on Cr 

underlayer......................................................................................................52 

3.1 Experimental methods ................................................................................54 

3.2 Growth of Cr underlayer on glass substrate................................................56 

3.2.1 Effect of deposition temperature.............................................................56 

3.2.2 Effect of thickness ..................................................................................58 

3.3 Evaluation of Sm / Co atomic composition ................................................60 

3.4 Fabrication of SmCo5 films with Cr underlayer on glass substrate and 

study of their structure and magnetic properties.........................................62 

3.4.1 Effect of deposition temperature of Cr underlayer .................................62 

3.4.2 Effect of thickness of Cr underlayer .......................................................66 

3.4.3 Effect of thickness of SmCo5 layer.........................................................68 

3.4.4 Effect of Sm / Co composition ...............................................................69 

3.5 Comparison study of SmCo5 thin film grown on MgO (100) and glass 

substrates with Cr underlayer .....................................................................70 

3.5.1 Crystallographic structure and microstructure........................................71 

3.5.2 Magnetic properties ................................................................................75 

3.6 Summary.....................................................................................................82 

3.7 References...................................................................................................83 

4 Chapter IV SmCo5 thin films with perpendicular anisotropy grown on Cu 

underlayers ....................................................................................................85 

4.1 Experimental methods ................................................................................88 

4.2 Growth of Cu underlayer on Ta seed layer on glass substrate....................90 

4.2.1 Growth of Ta seed layer .........................................................................90 

4.2.2 Growth of Cu on Ta seed layer...............................................................93 

4.3 Fabrication of SmCo5 films with Cu / Ta dual underlayer on glass 

substrate and study of their structure and magnetic properties...................97 

4.3.1 Effect of thickness of Ta.........................................................................97 

4.3.2 Study of Cu diffusion............................................................................100 

4.3.3 Effect of deposition temperature of SmCo5 layer .................................103 

4.3.4 Effect of thickness of Cu underlayer ....................................................106 



 VI 

4.3.5 Effect of thickness of SmCo5 layer.......................................................108 

4.3.6 Effect of Sm / Co composition .............................................................110 

4.4 Fabrication of SmCo5 films with Cu / Ti and Cu / W dual underlayers on 

glass substrates and study of their structure and magnetic properties ......114 

4.4.1 Deposition of SmCo5 thin film on Cu / Ti underlayer ..........................114 

4.4.2 Deposition of SmCo5 thin film on Cu / W underlayer..........................116 

4.4.3 Magnetic reversal mechanism of SmCo5 thin films .............................117 

4.5 Summary...................................................................................................118 

4.6 References.................................................................................................119 

5 Chapter V SmCo5 thin films with perpendicular anisotropy grown on Ni-

alloy underlayers.........................................................................................121 

5.1 Experimental methods ..............................................................................128 

5.2 Study of Ni-W alloy underlayers ..............................................................129 

5.2.1 Crystallographic structure.....................................................................129 

5.2.2 Microstructure.......................................................................................132 

5.2.3 Magnetic properties ..............................................................................134 

5.3 Fabrication of SmCo5 films on Ni-W alloy underlayers and study of their 

structure and magnetic properties.............................................................135 

5.3.1 Deposition of SmCo5 films on Ni100-xWx underlayers ..........................135 

5.3.2 Deposition of SmCo5 films on Ni4W underlayers ................................138 

5.3.2.1 Effect of deposition temperature of SmCo5......................................138 

5.3.2.2 Effect of thickness of Ni4W underlayer............................................142 

5.3.2.3 Effect of thickness and composition of SmCo5 layer .......................144 

5.3.3 Deposition of SmCo5 film on Ni / Ni4W underlayer ............................145 

5.4 Summary...................................................................................................146 

5.5 References.................................................................................................148 

6 Chapter VI Conclusion and future work......................................................149 

6.1 Conclusion ................................................................................................150 

6.2 Future work...............................................................................................152 



 VII 

List of Figures 

 

Fig. 1.1.    Areal density trends of hard disk drives [1]. ................................................4 

Fig. 1.2.     Different types of magnetic recording media..............................................5 

Fig. 1.3.     Schematic diagram of longitudinal recording system [3]. ..........................6 

Fig. 1.4.     Schematic diagram of an AFC medium [3]. ...............................................6 

Fig. 1.5.     Schematic diagram of perpendicular recording system [3].........................8 

Fig. 1.6.     Phase diagram of Sm-Co binary alloys [58]. ............................................14 

Fig. 1.7.     Illustration of crystal structure of SmCo5..................................................15 

Fig. 2.1.     Schematic diagram of DC sputtering system. ...........................................30 

Fig. 2.2.     Schematic illustration of X-ray diffraction. ..............................................34 

Fig. 2.3.     Schematic diagram for TEM bright field imaging. ...................................37 

Fig. 2.4.     Schematic diagram for TEM dark field imaging. .....................................37 

Fig. 2.5.      Schematic diagram of an AFM system [12]. ...........................................40 

Fig. 2.6.      Schematic diagram of a VSM system. .....................................................42 

Fig. 2.7.      Typical hysteresisi loop............................................................................45 

Fig. 2.8.      Angular dependence of coercivity based on S-W model and domain wall 

motion model...........................................................................................47 

Fig. 2.9.   Schematic explanation to measure the field dependant magnetisation 

remanence (Mr) and demagnetization remanence. ..................................48 

Fig. 2.10.   Illustration of typical DCD and IRM curves. Hollow circle represents 

IRM curve and solid square represents DCD curve. ...............................48 

Fig. 2.11.     Schematic δM curves illustrating different coupling regimes [22].........49 

Fig. 3.1.     Illustration of the epitaxial relationship: SmCo5 (11
−

2 0) <0001> // Cr 

(200) <011> // MgO (200) <010>. ..........................................................53 

Fig. 3.2.       Schematic diagram of the multilayer film structure................................54 

Fig. 3.3.     XRD spectra of 60 nm Cr thin films deposited at different temperatures: 

from room temperature to 500 oC............................................................56 

Fig. 3.4.     AFM images of the surface of the Cr underlayer deposited (a) at 400 °C, 

(b) at 500 °C and (c) dependence of Rq of Cr films on the deposition 

temperature. .............................................................................................57 

Fig. 3.5.     XRD spectra of Cr thin films with different thicknesses deposited at 400 

°C: from 30 nm to 95 nm.........................................................................58 



 VIII 

Fig. 3.6.       Dependence of Rq of Cr films with different thickness. .........................59 

Fig. 3.7.       Relation between deposition rate of Sm and deposition power. .............60 

Fig. 3.8.     RBS spectra of SmCo thin films deposited on Si substrate: (a) Sm at 14 

W and Co at 50 W and (b) Sm at 20 W and Co at 50 W. The open circles 

represent the experimental data, whereas the solid curves represent the 

simulated data..........................................................................................61 

Fig. 3.9.    XRD spectra of Cr/Sm-Co/Cr thin films with the Cr underlayers deposited 

at different temperatures: (a) room temperature, (b) 200 °C, (c) 300 °C, 

(d) 400 °C, (e) 500 °C. ............................................................................63 

Fig. 3.10.    M-H loops of SmCo5 thin film with Cr underlayers deposited at different 

temperatures. ...........................................................................................65 

Fig. 3.11.   Dependence of in-plane and out-of-plane iHc of SmCo5 films on the Cr 

underlayer deposition temperature. .........................................................65 

Fig. 3.12.   XRD spectra of Cr / Sm-Co / Cr thin films with (a) 30 nm Cr underlayer 

and (b) 60 nm Cr underlayer and (c) 95 nm Cr underlayer. The inset is 

the XRD spectra of SmCo5 (11
−

2 0) peaks of these three samples with a 

long time scan..........................................................................................66 

Fig. 3.13.  Dependence of in-plane and out-of-plane iHc in SmCo5 films on the 

thickness of Cr underlayer.......................................................................67 

Fig. 3.14.   XRD spectra of Cr(40 nm) / Sm-Co(t nm) / Cr(60 nm) thin films: (a) t=10 

nm, (b) t=30 nm, (c) t=45 nm and (d) t=90 nm. ......................................68 

Fig. 3.15  Dependence of in-plane intrinsic coercivity in SmCo5 films on the 

thickness of SmCo5 layer.........................................................................69 

Fig. 3.16.   Dependence of in-plane intrinsic coercivity of SmCo5 thin films on Sm 

content. ....................................................................................................70 

Fig. 3.17.   XRD spectra of (a) Sample A and (b) Sample B. The inset in (b) shows 

the selected area electron diffraction (SAED) pattern of Sample B........72 

Fig. 3.18.    TEM bright field image and dark field image of Sample B.....................73 

Fig. 3.19.   XRD rocking curves of (a) Cr (200) and (b) SmCo5 (110) peaks of 

Sample A. ................................................................................................74 

Fig. 3.20.    XRD off-spectra phi scan of MgO (111), Cr (101) peaks and SmCo5 (111) 

of Sample A.............................................................................................74 

Fig. 3.21.   The illustration of grains distribution in (a) Sample A and (b) Sample B. 

The arrows indicate the easy axis directions. The solid arrows represent 



 IX 

the easy axes which lie in the film plane and the dash arrows represent 

those are not in the film plane. ................................................................75 

Fig. 3.22.    M-H loops of (a) Sample A, measured along the MgO [011], MgO [011], 

and MgO [100] directions; (b) Sample B, measured along 0° in-plane, 

45° in-plane and out-of-plane directions. ................................................76 

Fig. 3.23.   (a) The demagnetization curve and recoil curves for Sample B. (b) The 

normalized deviation of demagnetization remanence ΔMd(H) versus the 

applied field for Sample A and B. ...........................................................80 

Fig. 3.24.    Angular dependence of normalized coercivity of Sample A and Sample 

B. Zero field refers to in plane direction. ................................................81 

Fig. 4.1.       Illustration of lattice matching between Cu (111) and SmCo5 (0001). ...86 

Fig. 4.2.      Schematic diagram of multilayer structure. .............................................88 

Fig. 4.3.      θ-2θ XRD spectra of Ta films with different thicknesses (0-50 nm). ......90 

Fig. 4.4.      (a) Glancing angle XRD spectra of 4 nm and 10 nm Ta films measured at 

a fixed 0.5° incidence angle. (b) The electron diffraction pattern of the 4 

nm Ta film. ..............................................................................................91 

Fig. 4.5.      (a) AFM images of Ta films with different thicknesses (4 nm, 20 nm and 

50 nm). (b) The changes of roughness as a function of film thickness. ..92 

Fig. 4.6.    (a) θ-2θ XRD spectra of Cu films grown on Ta seed layer of different 

thicknesses (0-50 nm). (Inset is XRD spectrum of Cu film without Ta 

seed layer). (b) Rocking curves (ω scan) of 50 nm Cu films grown on Ta 

seed layer of different thicknesses (0-50 nm)..........................................93 

Fig. 4.7.    AFM images of 50 nm Cu films grown on (a) glass and (b) 4 nm Ta 

coated glass substrates.............................................................................94 

Fig. 4.8.     Dependence of Δθ50 and Rq of 50 nm Cu films on the thicknesses of Ta 

seed layer. ................................................................................................95 

Fig. 4.9.     XRD spectra of 65 nm SmCo5 films grown on (a) glass and (b) a 4 nm Ta 

coated glass substrates.............................................................................97 

Fig. 4.10.   M-H loops of the samples (a) without seed layer and (b) with a 4 nmTa 

seed layer. ................................................................................................98 

Fig. 4.11.  Dependence of out-of-plane iHc of SmCo5 on the thickness of Ta seed 

layer. ........................................................................................................99 

Fig. 4.12.    EDX spectrum of the SmCo5 layer. .......................................................101 



 X 

Fig. 4.13.   (a) TEM bright field image, (b) dark field image and (c) high resolution 

image of cross sectional sample of Ta (20 nm) / SmCo5 (65 nm) / Cu (50 

nm) / Ta (4 nm)......................................................................................102 

Fig. 4.14.  XRD spectra of the samples with SmCo5 layer deposited at different 

temperatures of (a) 300 oC; (b) 325 oC; (c) 350 oC; (d) 400 oC and (e) 

450 oC. ...................................................................................................103 

Fig. 4.15.  M-H loops of the samples with SmCo5 layers deposited at different 

temperatures of (a) 300 oC; (b) 325 oC; (c) 400 oC and (d) 450 oC. ......105 

Fig. 4.16.   XRD spectra of Ta / SmCo5 / Cu / Ta thin films with (a) a 15 nm Cu 

underlayer, (b) a 25 nm Cu underlayer, (c)  a 50 nm Cu underlayer and 

(d) a 100 nm Cu underlayer...................................................................106 

Fig. 4.17.  Dependence of in-plane and out-of-plane iHc in SmCo5 films on the 

thickness of Cu underlayer. ...................................................................108 

Fig. 4.18.    XRD spectra of Ta (20 nm) / SmCo5 (t nm) / Cu (50 nm) / Ta (4 nm) thin 

films: (a) t=23 nm, (b) t=35 nm, (c) t=45 nm, (d) t=65 nm and (e) t=90 

nm..........................................................................................................109 

Fig. 4.19.   Dependence of in-plane and out-of-plane intrinsic coercivity in SmCo5 

films on the thickness of SmCo5 layer. .................................................110 

Fig. 4.20.    XRD spectra of 65 nm Sm-Co films with different Sm contents grown on 

Ta (4 nm) / Cu (50 nm) underlayers. .....................................................111 

Fig. 4.21.   Dependence of full width at half maximum of the rocking curves (Δθ50) 

and integral intensity of (0002) peaks of SmCo5 according to the Sm-Co 

composition. ..........................................................................................112 

Fig. 4.22.   Dependence of in-plane and out-of-plane iHc of Sm-Co films on the Sm-

Co composition......................................................................................113 

Fig. 4.23.   (a)XRD spectrum and (b) M-H loops of the SmCo5 film grown on Cu / Ti 

dual underlayer. .....................................................................................115 

Fig. 4.24.   (a)XRD spectrum and (b) M-H loops of the SmCo5 film on Cu / W dual 

underlayer. .............................................................................................116 

Fig. 4.25.    Angular dependence of normalized coercivity of the SmCo5 films grown 

on Cu / Ta, Cu / Ti and Cu / W underlayers. Zero field refers to out-of-

plane direction. ......................................................................................117 

Fig. 5.1.       Illustration of lattice matching between Ni (111) and SmCo5 (0001)...124 

Fig. 5.2.       Phase diagram of Ni-W binary alloys [6]..............................................125 



 XI 

Fig. 5.3.     (a) Tetragonal unit cell of Ni4W. (b) The relationship between the Ni4W 

(211) plane and the SmCo5 (0001) plane...............................................127 

Fig. 5.4.       Schematic diagram of the multilayer structure. ....................................128 

Fig. 5.5.    XRD spectra of 40 nm Ni films (a) with a 4 nm W seed layer and (b) 

without seed layer..................................................................................129 

Fig. 5.6.   (a) XRD spectra of 40 nm Ni-W layers with a varying W atomic 

percentage (0 at.% ~ 100 at.%) grown on 4 nm W coated glass substrates. 

(b) The inter-planar spacing and peak integral intensity of Ni (111) and 

Ni4W (211) as a function of W content. ................................................131 

Fig. 5.7.     XRD spectrum of the obtained Ni80W20 sample within a range from 20º to 

120º........................................................................................................132 

Fig. 5.8.    (a) TEM images and diffraction patterns of 40 nm Ni, Ni80W20 (Ni4W), 

Ni68W32 and Ni50W50 films grown on 4 nm W coated glass substrates. (b) 

AFM images of 40 nm Ni, Ni80W20, and Ni68W32 films grown on 4 nm 

W coated glass substrates. .....................................................................133 

Fig. 5.9.      M-H loops of Ni-W alloys with from 0 at.% to 20 at.% of W measured in 

the direction of perpendicular to the film plane at room temperature by 

VSM. .....................................................................................................134 

Fig. 5.10.    Relation between the W content and the saturation magnetization of Ni-

W thin films...........................................................................................134 

Fig. 5.11.    XRD spectra of 65 nm SmCo5 films grown at 530 oC on 40 nm Ni100-xWx 

(x = 0 ~100) underlayers. ......................................................................135 

Fig. 5.12.   (a) Summary of in-plane and out-of-plane coercivities of 65 nm SmCo5 

films grown at 530 oC on 40 nm Ni100-xWx (x = 0 ~100) underlayers. (b) 

M-H loops of 65 nm SmCo5 films grown on 40 nm Ni68W32 layers on 4 

nm W coated glass substrates. ...............................................................137 

Fig. 5.13.    XRD spectra of W 4 nm / Ni4W 50 nm / SmCo 65 nm (410~550 °C) / W 

20 nm (410~550 °C) thin films. ............................................................139 

Fig. 5.14.   (a) Relation between the deposition temperature and the in-plane and out-

of-plane intrinsic coercivities of SmCo in W 4 nm / Ni4W 40 nm / SmCo 

65 nm (410~550 °C) / W 20 nm (410~550 °C) thin films. (b) M-H loops 

of SmCo5 deposited at 500 °C in perpendicular and longitudinal 

directions. ..............................................................................................140 



 XII 

Fig. 5.15    (a) TEM bright field image and (b) dark field image of a cross sectional 

sample of W 4 nm / Ni4W 40 nm / SmCo5 65 nm (500 °C) / W 20 nm 

(500 °C) thin films.................................................................................141 

Fig. 5.16.  Angular dependence of the normalized coercivity of the SmCo5 film 

grown on Ni4W / W underlayer. Zero field refers to out-of-plane 

direction.................................................................................................142 

Fig. 5.17.  Dependence of the out-of-plane coercivity on the thickness of Ni4W 

underlayer for a film structure of W (20 nm) / Sm-Co (65 nm) / Ni4W 

(0-80 nm) / W (4 nm). ...........................................................................143 

Fig. 5.18. (a) Dependence of the out-of-plane and in-plane coercivity on the 

thickness of SmCo5 magnetic layer for a film structure of W (20 nm)/ 

Sm-Co (20-100 nm)/Ni4W (40 nm)/W (4 nm). (b) Dependence of the 

out-of-plane and in-plane coercivity on the Sm content for a film 

structure of W (20 nm)/ Sm-Co (65 nm)/Ni4W (40 nm)/W (4 nm). .....144 

Fig. 5.19.    (a) XRD spectrum, (b) illustration of layer structure and (c) M-H loops 

of 65 nm SmCo5 films grown  at 530 oC on Ni (20 nm) / Ni4W (20 nm) / 

W (4 nm) layers on glass substrate........................................................146 



 XIII 

List of Tables 
 

 
Table 1.1.    Magnetic properties and theoretical minimal grain diatemeters of various 

media candidates of high magnetic crystal anisotropy constant, Ku. 

(Courtesy of D. Weller and R. Skomski [57])........................................13 

Table 3.1. Calibration of the atomic compositions of Sm-Co films deposited at 

different powers......................................................................................61 

Table 3.2.    Film structure and magnetic properties of Sample A and Sample B. ....71 

Table 4.1.    Melting temperatures (Tm) and calculated values of surface free energies 

(
o

iγ ) at room temperature of different materials [16]. ...........................87 

Table 4.2.   The positions of SmCo(Cu) (0002) peak in θ - 2 θ XRD spectra and the 

lattice constants a and c. The values for SmCo5, SmCo3.3Cu1.7, SmCu5 

are based on PDF File No. 35-1400, No. 23-934 and No. 65-933, 

respectively...........................................................................................101 

Table 4.3.   ∆θ50 of Cu (111) peak and SmCo5 (0002) peak of Ta/Sm-Co/Cu/Ta thin 

films with different Cu thicknesses. .....................................................107 

Table 4.4.   ∆θ50 of SmCo5 (0001) peak and SmCo5 (0002) peak in SmCo5 films with 

different thicknesses. ............................................................................109 

Table 4.5.   ∆θ50 of the Cu (111), SmCo5 (0001) and SmCo5 (0002) peaks and Rq of 

Cu underlayers for film samples with different seed layers. ................116 

Table 5.1.   Metals with a melting temperature (Tm) higher than 1200 oC and with a 

fcc or a hcp structure and the lattice misfits between these metals and 

SmCo5. “+” represents a bigger lattice constant of listed metal compared 

with that of SmCo5, whereas “-” represents a smaller lattice constant of 

listed metal compared with that of SmCo5…………………………...123 

 



 XIV 

List of Publications 

 

1. L. N. Zhang, J. F. Hu, J. S. Chen and J. Ding, “SmCo5 with perpendicular 

anisotropy induced by Ni 4W underlayer”, IEEE transactions on magnetics (In press).  

2. L. N. Zhang, J. F. Hu, J. S. Chen and J. Ding, ”Nanostructured SmCo5 thin films 

with perpendicular anisotropy formed in a wide range of Sm-Co compositions”, J. 

Nanosci. Nanotechnol (In press). 

 

3. L. N. Zhang, J. F. Hu, J. S. Chen and J. Ding, “Microstructure and magnetic 

properties tudies of SmCo5 thin films grown on MgO and glass substrates”, J. Magn. 

Magn. Mater. 321, 2643 (2009). 

 

4. L. N. Zhang, J. F. Hu, J. S. Chen and J. Ding, “Seed layer effect on texture and   

magnetic properties of SmCo5 thin films”, J. Appl. Phys. 105, 07A743 (2009). 

 

5. J. S. Chen, L. N. Zhang, J. F. Hu and J. Ding, “Highly textured SmCo5 (001) thin 

film with high coercivity”, J. Appl. Phys. 104, 093905 (2008). 

 

6. L. N. Zhang, J. S. Chen, J. Ding, and J. F. Hu, “High-coercivity SmCo5 thin films 

deposited on glass substrates”, J. Appl. Phys. 103, 113908 (2008). 

 

 

 

 

 

 

 

 

 



Chapter1                                                                                                    Introduction 

 1 

1 Chapter I Introduction 



Chapter1                                                                                                    Introduction 

 2 

1.1 Magnetic recording and magnetic recording media 

1.1.1 A brief review of magnetic recording 

The idea of magnetic recording was first proposed by Oberlin Smith in 1878 in 

the form of audio recording on a wire. In 1898, a young Danish engineer, Valdemar 

Poulsen, invented and patented the first successful magnetic recording device which 

was named as “Telegraphone”. The idea is to record sound by varying the 

magnetization of a steel wire wrapped around a copper drum. In 1928, Fritz Pfleumer 

developed the “Magnetophone” -- the first magnetic tape recorder, using powdered 

magnetic materials coating on thin plastic tapes and ring-type magnetic head. This 

recorder enormously improved the quality of audio magnetic recording. After that, the 

technique of magnetic recording has received significant attention because of its great 

potential for commercial applications.  

Digital magnetic storage was introduced in 1947. The fundamental principle of 

magnetic storage is the conversion between magnetic field and electrical current. Any 

type of information to be recorded including audio, video, and numerical data can be 

expressed as a time-varying electrical current. During the writing process, when the 

current passes the recording head, it establishes a magnetic field in the head 

accordingly. Then the head field magnetizes the recording medium. As a result, the 

time-varying electric signal is transformed into a spatially magnetic pattern along 

tracks on the recording medium surface. On the other hand, during the read process, 

when the recorded medium is moved across the gap of a magnetic circuit, the field 

above the written bits induces a flux change in the head. Then the flux change induces 

a corresponding voltage in the coil of the read head. This voltage is amplified and read 

with an electronic signal processor to recognise the information. 
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         The first model of hard disk drive – “RAMAC” (Random Access Method of 

Accounting and Control) was invented by IBM in 1956. It had a recording density of 

2,000 bits/inch2 and a total capacity of 5 megabytes. Nowadays in the digital era, hard 

disk drive has become one of the most popular data storage devices because of its high 

capacity, short access time and low price per recording unit. With the fast growing 

popularity of giant audio and video files, more and more research has been devoted to 

developing hard disk drives with higher recording density to meet the fast growing 

demand of high capacity storage. The major parameter for the recording quality is the 

areal density. The areal recording density of hard disk drives had increased at a 

sustained annual rate of 30% from 1960s to 1991. Since 1991, new technologies such 

as advanced thin-film media and anisotropic magnetoresistance heads (MR heads) had 

brought this rate to an amazing 60% per year. After 1997, the rate further increased to 

100%. The enormous improvements come from the development of high-coercivity 

media and giant magnetoresistance heads (GMR heads). Since 2005, the rapid growth 

rate has been maintained thanks to the application of perpendicular magnetic recording 

(PMR) and tunneling magnetoresistance heads (TMR heads) technologies. In 2008, the 

Japanese company TDK announced the current world’s highest recording density of 

803 Gbits/inch2 by using PMR and TMR heads technologies. This value is 10 8 times 

the recording density of the first IBM device. The history of areal density increase is 

summarized in Fig. 1.1 [1]. 

Although a part of the market of information storage (for example mp3 players) 

has been taken over by the flash memory drives, the use of hard disk devices will 

continue to dominate the information storage market because of their much larger 

storage capacity and the huge demand in information storage that will continue to grow 

in the future [2]. 
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Fig. 1.1. Areal density trends of hard disk drives [1]. 

1.1.2 Development of magnetic recording media  

A variety of magnetic recording media have been used in the past 100 years. As 

discussed above, ferrous wires were used in very early recorders. Magnetic layers with 

magnetic particles (such as gamma ferric oxide) formed in a polymer matrix are used 

in tapes for audio and video recording. Thin magnetic films deposited in a vacuum are 

used for the most modern digital data storage (flexible or rigid disks). Various types of 

magnetic recording media are shown in Fig. 1.2.  

In digital recording, several methods are developed in order to record the bits. 

The choice of the recording method determines the requirements of structure and 

properties of recording media. The details of different recording methods and 

recording media are described in the following sections. 
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Fig. 1.2. Different types of magnetic recording media. 

1.1.2.1 Longitudinal magnetic recording media                                                

 Longitudinal magnetic recording (LMR) is a conventional recording method. 

Most of commercial hard disk drives are based on this technology. The system 

contains a ring writing head and a magnetoresistive (MR) reading head as shown in 

Fig. 1.3 [3]. It prefers media with crystallites oriented longitudinally where the easy 

axis of magnetization lies in the film plane. In a longitudinal recording medium, the 

remanent magnetization (Mr) in the longitudinal direction is much higher than the other 

directions. The demagnetization factor is proportional to Mrt/λ where Mr is the 

remanent magnetization of recording medium; t is the thickness of the film and λ is the 

bit length. As the recording density is increasing, λ becomes smaller, the 

demagnetization factor becomes less favourable unless the depth of film is reduced. 

However, reducing the thickness of the film would lower the read signal strength, 

which is proportional to Mrt. In order to overcome the contradiction of this structure, 

antiferromagnetically coupled (AFC) media was developed as an improved 
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longitudinal recording medium.       

 

Fig. 1.3. Schematic diagram of longitudinal recording system [3]. 

 

Fig. 1.4. Schematic diagram of an AFC medium [3]. 

AFC media were introduced by IBM [4] and Fujitsu [5] independently in 2000. 

It is a great improvement in longitudinal recording technology. This kind of recording 

media consists of two magnetic antiferromagnetically coupled layers connected by a 

non-magnetic Ru layer as shown in Fig. 1.4 [3]. Because the two magnetic layers are 

magnetized in antiparallel directions, the effective thickness Mrteff (also referred to as 

the remanence-thickness product) is reduced to the difference in Mrt values for each of 

the two magnetic layers. This leads to smaller transition parameter and enhanced 

thermal stability. Thus, it promotes higher recording density. 

The first longitudinal recording media introduced in 1952 were hexagonal close 
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packed (hcp)-cobalt (Co) thin films made by electrochemically deposition. They had a 

coercivity of less than 300 Oe. Since then, the hcp-Co alloys with the c-axis lying in 

the film plane have been employed for decades as the primary longitudinal recording 

layer materials. The Co-alloys with in-plane anisotropy are usually induced by a 

chromium (Cr) underlayer. The growth orientations of the Co-alloy layer on the Cr 

underlayer have been identified as Co (11
−

2 0) // Cr (100), Co (10
−

10) // Cr (112) and 

Co (10
−

1 1) // Cr (110) [6-10]. Since the anisotropy of pure Co is not very large, 

platinum (Pt) is usually added to increase the magnetocrystalline anisotropy field. This 

is because Pt is polarized when incorporated in a magnetic structure [11]. High 

anisotropic Co rich Co-Pt alloys such as Co80Pt20 are used [12]. In order to de-couple 

the magnetic grains, Cr is added in the Co-alloy matrix. The non-magnetic Cr 

precipitant at the grain boundaries enables the segregation. Boron (B) addition has 

been found to enhance the segregation. However, with increasing B concentration, 

stacking faults would appear [13]. The essential problem for metallurgical segregation 

is the inevitable fluctuations of Cr distribution from grain to grain [14]. Moreover, Cr 

is also known to reduce the magnetization and anisotropy field of Co-alloys [15].  

1.1.2.2  Perpendicular magnetic recording media 

From the end of the 1990s, perpendicular recording has been promoted as the 

approach to achieve higher areal densities because of the thermal stability limitation in 

longitudinal recording media (see discussion in section 1.1.3). The configuration of 

perpendicular recording is shown in Fig. 1.5 [3]. It consists of a single pole writing 

head instead of a ring head in longitudinal recording and a double-layered media 

composed of a recording layer and a soft magnetic underlayer (SUL). The writing 
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process occurs in the write pole and the flux path is closed through the SUL and the 

collector pole. This configuration almost doubles the write field compared to 

longitudinal recording method [16]. 

 

Fig. 1.5. Schematic diagram of perpendicular recording system [3]. 

The perpendicular recording requires media with crystallites oriented 

perpendicularly to the film plane where the easy axis of magnetization lies normal to 

the film. Such media have a much higher remanent magnetization in the perpendicular 

direction, and favor perpendicular recording. The grains in perpendicular recording 

media have a strong uniaxial orientation whereas the longitudinal media tent to have a 

random orientation in the film plane. Thus, the perpendicular media have narrower 

switching field distribution and sharper written transition [16]. Actually, this method 

has been advocated for the past 30 years. It was first proven advantageous by Professor 

Shun-ichi Iwasaki from the Tohoku Institute of Technology in Japan in 1976. 

However, the practical implementation of perpendicular recording failed because of 

“engineering problems” rather than fundamental ones [17]. This technology has 

undergone fast and substantial development in the past 10 years. In June 2005, the first 
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HDD employing the perpendicular magnetic recording system was commercialized. It 

achieves an areal recording density of 133 Gbit/inch2. 

hcp-Co alloys are also used in industry for perpendicular recording media. The 

(0001) textured Co-alloys are generally induced by (0002) textured ruthenium (Ru)-

alloy underlayers [18-20]. In the perpendicular Co-alloys recording media, the 

metallurgic segregation is replaced by non-magnetic oxides such as SiO2, Ta2O5 and 

TiO2 [21-24]. Because these oxides do not incorporate into the growing Co-alloy 

crystals, uniform two-phase microstructure with de-coupled grains forms through the 

whole thickness of the film. Therefore, the compositional variation occurring in 

metallurgic segregated Co-alloys is avoided. However, the upper density limit of 

current CoPt media is anticipated as 600 Gbit/in2 because of their relatively low 

magnetic anisotropy. Therefore, L10 ordered FePt and hcp-SmCo5 with very high 

magnetic anisotropy are investigated for next generation media as discussed in section 

1.1.3. 

Another approach to achieve high perpendicular anisotropy exploits the interface 

anisotropy in very thin films. Co / Pd and Co / Pt multilayered films exhibiting strong 

perpendicular magnetic anisotropy [25-29]. However, there is a serious problem that 

these recording media suffer from high media noise, resulting from large magnetic 

clusters produced by strong intergranular exchange coupling [30]. 

With the increasing coercivity of recording media, the write-ability is meeting an 

obstacle. Since so far the maximum obtainable saturation magnetization of a single 

pole is 2.4 T (CoFe), it is not high enough to switch the recording media with high 

anisotropy and coercivity. Recently, the exchange coupled composite (ECC) media 

have attracted great interest theoretically and experimentally [31-42]. This design can 

help to solve the write-ability problem. The basic idea of ECC is to use a soft layer as a 
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switching assistant for the hard layer without compromising thermal stability in zero 

applied field. Victora et al. [31, 32] theoretically predicted that ECC media consisting 

of magnetically hard and soft regions within each grain will reduce the switching field. 

This proposal was subsequently demonstrated by Wang et al. [34]. Okamoto et al. 

observed a decrease of coercivity of epitaxial FePt L10 nanoparticles covered with 

different thicknesses of Pt over-layers, while the energy barrier remains unaltered [38]. 

Dobin et al. demonstrated that the ultimate potential of the composite media is realized 

if the interfacial domain wall fits inside the layers. The switching occurs via domain 

wall nucleation, compression in the applied field, depinning, and propagation through 

the hard/soft interface [42]. The ECC media may allow high anisotropy materials such 

as L10 ordered FePt and hcp-SmCo5 into application. 

1.1.2.3  Future magnetic recording media 

Heat assisted magnetic recording (HAMR) and bit-pattern media have been 

identified as future technologies to extend magnetic recording. HAMR bases on the 

temperature dependence of the anisotropy of recording media [43]. The idea is to 

temporally heat the recording medium close to its Curie temperature, which reduces 

the magnetic anisotropy and allows writing using currently available writing fields. 

Then the medium is quickly cooled back to ambient temperature to store the data. Thus 

it is possible to write information on a medium with high areal density. This new 

technology has attracted more and more attention. It has been experimentally 

demonstrated that a laser spot could be used to heat the recording medium from the 

opposite side of the recording head [44]. HAMR is another technology that allows high 

anisotropy materials such as L10 ordered FePt and hcp-SmCo5 to be used.  

On the other hand, bit-pattern media rely on a completely different strategy to 
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achieve high recording density. In this kind of media, one grain or magnetic island 

represents one bit instead of recording one bit on a large number of grains (50~100) in 

conventional media [45, 46]. Thus the larger volume grain or island in bit-pattern 

media stores larger magnetic energy so that stable media can be achieved with lower 

anisotropy. This technique has been studied for years [47-50]. The critical challenges 

are the lithographic requirements, because the independent bits need to grow on 

lithographically predefined substrate. Though pattern media is able to achieve areal 

density beyond 1 Tbit/inch2, it is based on the feasibility of lithography for successful 

patterning of size down to ~10-12 nm at low cost and in a reasonably short time. 

Different lithography techniques such as deep UV lithography, extreme UV 

lithography, x-ray lithography, electron beam lithography, nano-imprint lithography 

and lithography assisted self assembly have been attempted to pattern the size down to 

10 nm. 

The ultimate density can be achieved by a combination of HAMR and bit-

patterned media with high anisotropy materials such as L10 ordered FePt and hcp-

SmCo5. 

1.1.3 Challenges of magnetic recording media 

From a material scientist's point of view, higher recording density means smaller 

bit (recording unit) size. For the current magnetic media constructions, each bit is 

composed of N random grains, Vbit = N•Vgrain. N needs to be large enough (50~100) to 

hold property variance below some threshold through averaging. In such a situation, 

signal-to-noise ratio (SNR) is determined by N, where SNR ~ 10LogN. The need to 

maintain high N for a high SNR forced Vgrain to be smaller and smaller. However, 

when the grain size is reduced to a certain level, the magnetic energy stored in each 
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grain (Ku•Vgrain) becomes as low as the thermal energy existing in each grain (kB•T), 

where Ku is the magnetic anisotropy density, kB is the Boltzmann constant and T is the 

absolute temperature. This will cause instability of the recorded data due to thermal 

perturbation, a phenomenon called superparamagnetism. Thermally activated 

switching is characterized by a time constant τ following the Arrhenius Néel law [51]: 

                                           )exp(
1

0 Tk

VK

f B

grainu
=τ                                   Eq. 1.1 

where τ is the relaxation time, f0 is the relaxation frequency on the order of 109-1012 Hz 

[52]. Based on the above equation, a thermally stable magnetic recording medium for 

more than 10 years requires a parameter of KuVgrain / kBT larger than 60 to overcome the 

superparamagnetic limit [53, 54]. Fortunately, the onset of superparamagnetic limit can 

be delayed by using ferromagnetic materials with large anisotropy energy. In other 

words, materials with large anisotropy can maintain thermal stability with smaller 

grain sizes [53-55].  

Table 1.1 summarizes a variety of intrinsic and derived properties for candidate 

materials. It can be seen that hcp SmCo5 possess the highest magnetic anisotropy 

density (1.1~2.0�108 erg/cm3) among all hard magnetic materials, which allows the 

thermally stable grain to decrease to 2.4 nm. Therefore, SmCo5 is a potential candidate 

of the future magnetic recording media. However, its poor corrosion resistance has 

prevented practical applications. Recent study indicated that its corrosion resistance 

can be significantly improved by additional Cu which makes it comparable with 

previously used CoCr media [56]. Therefore, the development of SmCo5 thin film with 

high magnetic anisotropy either in longitudinal direction or in perpendicular direction 

has received considerable attention for applications of ultra-high density magnetic 

recording. 
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Besides continued reduction in grain size, reduction in grain size distribution and 

magnetic dispersion, well oriented nanocrystalline structures and control of magnetic 

grain isolation are also required for high performance recording media. 

Table 1.1. Magnetic properties and theoretical minimal grain diatemeters of various 

media candidates of high magnetic crystal anisotropy constant, Ku. (Courtesy of D. 

Weller and R. Skomski [57]) 

Alloy 

System 

Material K1 

10
7
 erg/cm

3 

Ms 

(emu/cm
3
) 

Hk (kOe) Tc  

(K) 

Dp 

= 3
grainV   

(nm) 

CoCr20Pt15 0.25 330 15.2  12.4 

Co3Pt 2 1100 36.4 1200 6.9 

(CoCr)3Pt 0.39 410 19  10.6 

Co-alloys 

CoPt3 0.5 300 33.3 600 8.6 

Co/Pt 1 360 55.6 500 6.7 Co/Pt (Pd) 

multilayer Co/Pd 0.6 360 33.3 500 8.2 

FePd 1.7 1100 32.7 760 7.5 

FePt 7 1140 122.8 750 3.6 

CoPt 4.9 800 122.5 840 3.9 

L10 phase 

MnAl 1.7 560 60.7 650 5.7 

Fe14Nd2B 4.6 1270 72.4 585 4.5 Rare-earth 

alloy 
SmCo5 20 910 439.6 1000 2.4 

 
where Ms is the saturation magnetization of the materials, HK is the anisotropy field 

(HK = 2K1/Ms), Tc is the Curie temperature, Dp is grain size for cubic grains.  
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1.2 Physical properties of SmCo5 

1.2.1 Phase diagram and crystal structure of SmCo5 

 

Fig. 1.6. Phase diagram of Sm-Co binary alloys [58]. 

A typical Sm-Co binary alloys phase diagram is shown in Fig. 1.6 [58]. This 

phase diagram is based on bulk Sm-Co materials where SmCo5 phase is stable only 

above 805 oC. For thin film materials, the temperature for the formation of SmCo5 

phase is much lower around 300~500 oC as shown later in Chapters 3 to 5. The 

hexagonal CaCu5 structure of SmCo5 is illustrated in Fig. 1.7. It is a layer-by-layer 

configuration along to c-axis, consisting of a stack of hexagonal Co layers and 

hexagonal layers containing both Co and Sm atoms (rotated by ±30o). 
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Fig. 1.7. Illustration of crystal structure of SmCo5. 

1.2.2 Ferromagnetism, magnetic anisotropy and coercivity 

mechanism of SmCo5  

Ferromagnetism describes the magnetization mechanism of ferromagnetic 

materials in which the spins are spontaneously arranged parallel to each other, resulting 

in a net moment. With increasing temperature, the arrangement of the spins is 

disturbed by thermal agitation which is accompanied by a decrease of spontaneous 

magnetization. At a certain temperature, called the Curie point (Tc), the thermal 

agitation leads to a random arrangement of the spins and the spontaneous 

magnetization vanishes. Above the Curie point, the substance exhibits paramagnetism. 

Magnetic anisotropy describes the magnetization preference along certain 

crystallographic directions. The excess energy required to magnetize a unit volume of a 

crystal in a particular direction with respect to the energy needed in the easy axis 

direction is called magnetocrystalline anisotropy energy. Ku is used to represent the 

magnetocrystalline anisotropy energy density.  
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The ferromagnetism and high anisotropy of Sm are related to its incompletely 

filled 4f-shell. Electrons in such orbital are strongly localized and therefore easily 

retain their magnetic moments and function as paramagnetic centers [59]. Magnetic 

moments in other orbitals are often lost (quenched) due to strong overlap with the 

neighbors. The magnetic structure of SmCo5 is usually described as consisting of Sm 

sublattice and Co sublattice, respectively, each being ferromagnetic with itself. The Co 

magnetic moments couple ferromagnetically with Sm moments. The net magnetic 

moments of SmCo5 are the sum of these two sublattices. The net anisotropy of SmCo5 

is determined by the individual sublattice ainisotropies and the inter-sublattice 

exchange interaction [60]. Sm favors the c-axis alignment of Co, thus the Co 

anisotropy is strengthened (SmCo5). 

Possible coercivity mechanisms of Sm-Co compounds have been investigated. 

Livingston interpreted that the coercivity of single-phase bulk SmCo5 was dominated 

by the nucleation of reverse domains [61]. Givord and Rossignol studied from an 

energetic approach and pointed out that a nucleus of SmCo5 expends by a thermally 

excited process [62]. Singh et al. investigated the coercivity mechanism of epitaxial 

SmCo5 thin films recently [63]. They found that the high coercivity in SmCo5 film is 

attributed to the pinning of domain walls at inhomogeneities. 

1.3 Review of studies on SmCo5 thin films 

Since the 1970s, SmCo5 thin films have been investigated by many research 

groups worldwide for their potentially large magnetic anisotropy and high coercivity. 

These studies found that the control of the crystallographic texture of thin films is the 

key factor to obtain the desired magnetic properties. The particular crystallographic 

texture of SmCo5 can be induced by single crystal substrates since the substrates 
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themselves process particular texture. If the lattice mismatch between SmCo5 and the 

single crystal substrate is small enough (<10%), the desired SmCo5 texture can be 

obtained by epitaxial growth.  

Epitaxial growth of SmCo5 films with either a (11
−

2 0) texture or (10
−

10) texture 

have been obtained when SmCo5/Cr layers were deposited on MgO (100), MgO (110) 

and Si (100) single crystal substrates. Instead of depositing SmCo5 thin films directly 

to substrates, it has been reported that growth onto an epitaxial buffer layer allows the 

phase and orientation of SmCo5 films to be easily controlled. Cr has been widely used 

as a buffer layer on MgO substrates, because the lattice misfit between Cr and MgO is 

less than 4% which is smaller than that between SmCo5 and MgO (7%). Therefore, Cr 

can follow a good heteroepitaxial growth on MgO and pass the epitaxial growth to 

SmCo5. Moreover, Cr can decrease the elastic distortion between SmCo5 films and 

substrates. In addition, Cr underlayer has been found helpful for producing dense films 

with smaller grain size and smoother surface. Fullerton et al. [64] and Singh et al. [65, 

66] have intensively studied SmCo5 grown on MgO single crystal substrates. The 

epitaxial relationships have been identified as SmCo5 (11
−

2 0) <0001> // Cr (200) 

<110> // MgO (200) <010> and SmCo5 (10
−

10) <0001> // Cr (112) <1
−

10> // MgO 

(110) <001>. They further reported that SmCo5 films with a (11
−

2 0) texture exhibit 

higher coercivity than that of SmCo5 films with (10
−

10) texture. Benaissa and Speliotis 

reported the results of epitaxial SmCo5/Cr growth on Si (100) substrate [67]. All of 

these SmCo5 films grown on single crystal substrates with Cr buffer layer exhibited 

high coercivity (>10 kOe) and large longitudinal magnetic anisotropy. Epitaxial 

growth indeed provides a good approach to control the crystal orientation and structure 



Chapter1                                                                                                    Introduction 

 18 

and to study their influence on the magnetic properties of the SmCo5 thin films. 

However, the single crystal substrates are quite expensive which limit the practical 

application. 

On the other hand, amorphous glass substrate is a prefered substrate for 

magnetic recording, because it is cheap, strong, hard, stiff and light. It is suitable for 

lowering access time and increasing data rates. The growth of SmCo5 with longitudinal 

anisotropy on glass substrate has been studied in the early 1980s [68, 69]. However, 

amorphous Sm-Co films with small in-plane intrinsic coercivity (<3 kOe) was 

obtained. In 1985, Aly et al. synthesized SmCo5 on glass substrate with high coercivity 

by applying a external magnetic field in the substrate plane during rf sputtering. 

However, only a small amount of in-plane anisotropy has been achieved [70]. From 

1990s, the Cr underlayer has been applied to glass substrate to induce in-plane 

coercivity in Sm-Co films [71-78]. High coercovity and large anisotropy Sm-Co films 

with hundreds of nanometers thickness were obtained on glass substrates after high 

temperature annealing (>700o C) [76-78]. In 2007, Zhang et al. reported a very high in-

plane coercivity of 56 kOe of SmCo5 / Cr after a rapid postannealing at 750o C [79]. 

However, the high annealing temperature would demage the glass substrates and is not 

favourable for industrial application. Therefore, it is still necessary to develop the 

technology for obtaining SmCo5 thin films with large longitudinal magnetic anisotropy 

and high in-plane coercivity grown on glass substrate at a relatively low temperature. 

Recently, SmCo5 thin films with perpendicular anisotropy have attracted great 

attention for perpendicular recording. The possibility of growing (0001) textured 

SmCo5 crystallites with perpendicular anisotropy on Cu (111) underlayer has been 

demonstrated [80-86]. However, the thickness of Cu needs to be larger than 100 nm to 

obtain the desired texture and good crystallinity. The texture of SmCo5 thin films 
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deposited on the thick Cu underlayer is poor. Hence, the thickness of the Cu underlayer 

needs to be reduced and the texture of SmCo5 film needs to be improved as well. In 

addition, there is non-controlled diffusion of Cu from Cu underlayer into SmCo5 layer 

which make it difficult to optimize the microstructure and the magnetic properties of 

SmCo5 thin films. Therefore, it is necessary to find a suitable underlayer with higher 

melting point than Cu and small lattice misfit between itself and SmCo5. An effort has 

been made by X. Liu et al. recently. They used polycrystalline Ru(Cr) underlayer to 

achieve relatively small grain size and good perpendicular anisotropy of Sm(CoCu)5 

[87]. 

1.4 Motivations and objectives 

As reviewed in section 1.1.3, a major characteristic of the SmCo5 alloy is its 

extremely strong uniaxial magnetocrystalline anisotropy with a Ku of more than 

1.1�108 erg/cm3. The strong magnetic anisotropy brings large coercivity. In addition, 

the SmCo5 alloy has a high Curie temperature. These unique properties give SmCo5 

thin films a very interesting potential for various magnetic applications including 

magnetic recording. SmCo5 thin film is a promising candidate for magnetic recording 

devices to achieve an areal density in excess of 10 Tbit/in2. However, only a few 

research groups have obtained satisfactory results so far because Sm oxidizes easily. 

Furthermore, it is difficult to obtain the SmCo5 phase and to control particular textures. 

Hence, the broad objective of this research project is to carry out a systematic study on 

SmCo5 thin films for use in magnetic recording. The main approach used in this work 

is layer engineering. The structure and magnetic properties of SmCo5 thin films are 

greatly influenced by the texture and the surface morphology of the underlayer. In this 

study, I worked on the deposition method in order to control the structure and the 
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surface morphology of the different layers. Several deposition parameters have been 

specifically considered. Temperature is the main factor that controls the phase 

formation, crystallization and microstructure whereas the thickness of the different 

layers affects the texture and the surface morphology and the composition of the alloy 

significantly influences the formation of the alloy phase. 

The specific objectives of this study are the following: 

1. To explore the feasibility of depositing SmCo5 thin films with longitudinal 

magnetic anisotropy and high in-plane coercivity on glass substrates with Cr 

underlayers (Chapter 3). In particular: 

- To explore the method of controlling the texture and surface morphology of 

the Cr underlayer; 

- To investigate the influence of the Cr underlayer on the structure and 

magnetic properties of SmCo5 films;  

- Under the optimal conditions, to study the influence of MgO single crystal 

substrates and glass substrates on the structure and magnetic properties of 

SmCo5 films.  

2. To explore the feasibility of the deposition of SmCo5 thin films with 

perpendicular magnetic anisotropy and high out-of-plane coercivity on glass 

substrate with Cu underlayers (Chapter 4). In particular: 

- To find a seed layer able to improve the structure, surface morphology and 

thickness (thinner is better) of Cu underlayers; 

- To study the influence of the seed layer and the Cu underlayer on the 

structure and magnetic properties of SmCo5 thin films.  

3. To explore the feasibility of SmCo5 thin films with perpendicular magnetic 

anisotropy and high out-of-plane coercivity on glass substrate with a Ni and/or 



Chapter1                                                                                                    Introduction 

 21 

Ni-alloy underlayers (Chapter 5). In particular: 

- To study the effects of the seed layer on the Ni underlayer; 

- To study the influence of Ni and/or Ni-alloy underlayers on the structure and 

magnetic properties of SmCo5 thin films 

- To explore hard/soft double-layered films for perpendicular recording 

applications. 
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2 Chapter II Experimental techniques 
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In this project, I used the sputtering technique for the sample fabrication, 

Rutherford Backscattering Spectroscopy (RBS) for the examination of composition, 

X-ray diffraction (XRD) for the study of crystallographic structure, transmission 

electron microscopy (TEM) for the analysis of microstructure, atomic force 

microscopy (AFM) for the study of the surface topography, as well as vibrating 

sample magnetometer (VSM) and superconducting Quantum Interference Device 

(SQUID)  for the measurement of magnetic properties. The experimental details are 

described in this chapter. 

2.1 Sputtering techniques 

In recent years, sputtering technique is widely used to fabricate thin films in 

many industries, such as semiconductor, optics and rigid disk magnetic recording, 

because it possesses unique advantages. If a material can be volatilized by sputtering, 

a uniform film can be made over a large area and compounds can be relatively 

stoichiometrical [1]. Independent controlling parameters such as deposition power, 

deposition temperature and working gas pressure makes this technique very versatile. 

The crystallographic structure and microstructure of thin films can be well controlled 

by adjusting the above parameters. Hence the desired properties of thin films can be 

effectively obtained.  
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Fig. 2.1. Schematic diagram of DC sputtering system. 

Sputtering is a physical vapour process whereby atoms in a solid target are 

ejected out due to bombardment by energetic ions. As illustrated in Fig. 2.1, a 

sputtering system consists of targets, a substrate and a vacuum system. The target is 

usually bonded to a water-cooled Cu backing plate to dissipate the heat generated by 

bombardment. The target is connected to a negative terminal of a direct current (DC) 

(for conductive materials) or an alternating current (AC) (for insulative materials) 

power supply as a cathode. The substrate is placed opposite to the target and is 
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grounded as an anode. The chamber is filled with inert gas to a pressure of few mTorr. 

With adequate voltage across the electrodes, the inert gas will break down into a 

plasma discharge. The positive inert gas ions, typically Ar+, are accelerated towards 

the target and collide with the atoms in the target to sputter the neutral target atoms 

through momentum transfer. These atoms go through the plasma and deposit on the 

substrate. In addition, as part of this collision, secondary electrons are emitted from 

the target surface. These electrons are accelerated back to collide with inert gas 

atoms to cause a further ionization of inert gas to sustain the discharge. 

Magnetron sputtering is a kind of sputtering techniques. A ring magnet is 

placed under the target so that the secondary electrons are trapped in cycloids and 

circulate over the target surface. More secondary electrons over the target surface 

result in higher ionization possibility of inert gas and higher deposition rate. 

Nowadays, more than 90% of sputtering systems use magnetron sputtering in the 

market. It offers thin, uniform and cost-effective films. 

In the present study, all films are prepared by a home-designed DC magnetron 

sputtering system located in Data Storage Institute (DSI), Singapore. There is a total 

of four target positions (cathodes) and one substrate holder (anode) which is situated 

above the targets housed in a vacuum chamber. The target used in this system is a 

plate of raw material with a diameter of 3 inch and a thickness of 3 cm. The substrate 

holder is rotating at 50 revolutions per minute (rpm) during the sputtering process to 

ensure the uniformity of deposited films. The base pressure of the vacuum chamber 

is 2�10-7 Torr or below. The pumping system consists of a mechanical pump and a 

cryopump. The chamber is filled with 99.999% pure Ar gas at a pressure of 3 mTorr 

as the sputtering gas. The sputtering rate is adjusted through the sputtering power. 

The composition of composite film is controlled by adjusting sputtering rates of 
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respective elemental targets (co-sputtering). The film thickness is controlled by 

sputtering time. An in situ heating system can heat substrate up to 700ºC. The 

substrates are loaded in a load lock system which is adapted to transfer the substrate 

to the main chamber without opening the main chamber. When targets are installed, 

before film deposition, a pre-sputtering is normally carried out for about 15 minutes 

to remove impurities from the target surface. The aim of this project is to deposit in 

situ crystallized SmCo5 thin films with desired magnetic properties for magnetic 

recording media in this system. 

2.2 Structure and microstructure characterization 

2.2.1 Rutherford Backscattering Spectroscopy (RBS) 

In this project, the composition of the deposited films is estimated by RBS. 

RBS is a highly quantitative elemental-analysis technique [1]. In RBS, a beam of 

He++ (alpha particles) impinges on a sample with energy high enough to scatter 

particles from the sample’s atomic nuclei in binary Coulomb collisions unscreened 

by the surrounding electron clouds. During the bombardment, the alpha particles 

transfer a part of their kinetic energy to the target particles. According to the kinetic 

energy remaining in the backscattered beam and the scattering angle, the target 

atomic mass can be easily calculated.  

The energy remaining in the alpha particle (Er) is given by: 

Er = k • E0                                              Eq. 2.1 

where, E0 is the energy of incident particle and k is the kinetic factor, which is given 

by: 
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where, m1 and m2 are the masses of the incident alpha particle and the target atom, 

respectively, and θ is the scattering angle of the projectile. 

Heavier elements withdraw less energy, thus the backscattering beam 

possesses higher energy. The substrate elements generate a background signal in the 

energy spectrum. Because of the stopping effect, the signal from substrates extends 

all the way from its energy to zero [2]. Therefore, a major element in the substrate 

should be lighter than one in the film to obtain good signal-to-noise ratio. In the 

present study, RBS was used to calibrate the compositions of Sm-Co magnetic layers 

and Ni-W underlayers. The calibration samples are prepared on Si or SiO2 substrates.  

2.2.2 X-ray diffraction (XRD) 

XRD is a major tool for the study of crystallographic structure. XRD is used in 

this study to identify the crystallographic phases of thin films, to calculate the lattice 

constants, to investigate the epitaxial relationship of multilayer films and to check the 

preferred orientation of polycrystalline films. XRD has the merits of being 

nondestructive and structural study from a relatively large area. The physical 

principle of XRD is based on the Brag’s law [3]: 

                                                 2dsinθ = nλ                                             Eq. 2.3 

as shown in Fig. 2.2, where n is the integer number corresponding to the order of 

diffraction, λ is the wavelength of the incident x-ray, d is the inter-planar spacing of 

the reflecting (or diffracting) plane, and θ is the angle of the incidence relative to the 

reflecting plane.  
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Fig. 2.2. Schematic illustration of X-ray diffraction. 

For a polycrystalline powder material, if the individual crystal is less than 100 

nm in size, the crystallite size along the film normal direction can be estimated 

using the Scherer equation [4]: 

θ

κλ

cosB
L =                                            Eq. 2.4 

where, к is particle shape factor (for spherical particles, к =0.9), B is full width half 

maximum (radians) and L is diameter of the crystallites (Å). In order to remove the 

instrument broadening influence to more accurately determine crystal size, Warren’s 

method [5, 6] is used:  

                                                B2
=BM

2
-BS

2                                                                  Eq. 2.5 

where, B is the true line broadening, BM is the measured breadth at half-maximum 

intensity, and BS is the peak width of a standard material, usually silicon.  

In the present study, a Philips X’pert X-ray diffractometer is employed. The 

instrument broadening (Bs) is 0.06º. X-rays are generated by a Cu cathode (Kα 

radiation with λ = 1.54056 Å). The θ - 2θ scan is the most common way to collect 
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the crystallographic information. In this method, the X-ray tube is stationary, the 

sample turns by the angle of θ and the detector turns by the angle of 2θ 

simultaneously. It detects the lattice planes of the crystal parallel to the film plane. 

According to the θ positions of the diffraction peak, crystal phases can be identified 

according to the standard database from the Joint Committee on Powdered 

Diffraction Standard (JCPDS). Moreover, by comparing the relative peak intensities 

from various planes with those from a randomly oriented reference sample consisting 

of the powdered bulk material, a qualitative evaluation of preferred crystal plane 

orientations (texture) can be made. The quality of texture parallel to the film plane 

can be further examined by the full-width at half-maximum (∆θ50) of the rocking 

curve (ω scan). In this method, the film is tilted within a certain scan range (usually 

10º) while the diffractometer is fixed on a particular Bragg peak in 2θ. When the 

thickness of the film is very small (e.g. <10nm), the θ - 2θ scan can be noisy. 

Glancing angle scan is useful in this case. When the glancing angle is small enough, 

only the few tens of nm beneath the film surface are probed, thus signal from 

substrate can be avoided. This method detects the atomic planes of the crystal 

unparallel to the film plane. 

2.2.3 Transmission electron microscopy (TEM) 

 TEM is another major tool for microstructural analysis in this thesis. The 

TEM observation is performed using either JOEL 3010 or JOEL 2010 with an 

operating voltage of 300 kV and 200 kV, respectively. Both TEMs have an energy 

dispersive analysis by X-ray (EDAX) attachment, which can analyze the composition 

of film. A parallel beam of electrons passes through the sample, where part of the 

beam is scattered by atoms to different directions. The diffracted electron beam is 
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brought into focus in the back focal plane of objective lens, forming a two 

dimensional array of spots corresponding to a particular set of plane for a single 

crystal. For polycrystalline samples, ring patterns are observed. From diffraction 

pattern, the inter-planer spacing can be derived using the relation: 

                                                   dhklR=Lλ                                              Eq. 2.6   

where, dhkl is the inter-planer spacing for a particular set of reflecting planes {hkl}, R 

is the radius of a particular diffraction ring, λ is the wavelength of the electron beam 

and L is the distance between the sample and the back focal plane. The product λL is 

known as the camera constant.  

Three kinds of images can be obtained in TEM with different mechanisms of 

image formation: bright-field, dark-field and high-resolution image. These three 

kinds of images are formed by selecting electron beams using suitable objective 

apertures for image information [7]. 

In bright-field (BF) imaging, an aperture is placed in the back focal plane of 

the objective lens that allows only the electrons in the transmitted beam to pass and 

contribute to the resulting bright field image as shown in Fig. 2.3.  

In dark field (DF) imaging, the image occurs when the objective aperture is 

positioned off-axis from the transmitted beam in order to allow only a diffracted 

beam to pass as shown in Fig. 2.4. If a sample is crystalline, many electrons will 

undergo elastic scattering from the various (hkl) planes. This scattering produces 

many diffracted beams. If any one of these diffracted beams is allowed to pass 

through the objective aperture, an image can be obtained. This image is known as a 

dark-field image. Dark-field images are particularly useful in examining grain size in 

a crystalline phase. 



Chapter 2                                                                           Experimental techniques 

 37 

 

Fig. 2.3. Schematic diagram for TEM bright field imaging.  

 

Fig. 2.4. Schematic diagram for TEM dark field imaging. 

 
In high-resolution imaging (HRTEM), a large objective aperture is used which 

allows both diffracted and directly transmitted beams to pass. The image is formed 

by the interference of the diffracted beams with the directly transmitted beam. In the 

HRTEM image, bright and dark lines correspond to columns or planes of atoms, with 
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spacings that correspond to the crystal structures of the materials. Generally, it is 

more difficult to obtain a clear HRTEM image compared with BF and DF images. 

The samples for HRTEM imaging must be very thin (<10 nm) in order to permit 

more electrons to go through, typically 500 to 2000 electrons per square Ångstrom 

[8]. Correct lens defocus, no image astigmatism and precise incident beam alignment 

are required. 

Good TEM images depend on well prepared samples. The thin films are 

prepared in both plan-view and cross-sectional geometries in the present study. 

Image of plan-view geometry straightforwardly shows the microstructure of the top 

film. On the other hand, image of cross-sectional geometry is necessary when the 

features of interest distributed throughout the depth of the sample because of its 

multi-layered structure. 

For preparation of plan-view specimens, the material of interest is first cut into 

a small piece of around 3 mm�3 mm. This small piece is stuck to the sample holder 

with wax for mechanical polishing with the film side facing down. After the film is 

polished to be thin enough, a copper ring is glued to the specimen. The glue is cured 

at a temperature of about 140ºC for about 20 minutes. Meanwhile the wax between 

sample and sample holder is melt. The specimen is taken off the holder and is 

mounted onto an ion milling stage. Then the specimen is ion-beam milled at low 

beam energies. After the ion-milling process, a hole is formed in the middle of the 

specimen. The film around the hole is thin enough to permit the transmission of 

electrons. 

The Bravman-Sinclair method [9] is used to prepare cross-sectional specimens. 

First, the specimen of interest is cut into a small piece of around 2 mm�4 mm. Then 

the sample is glued with the film side face-to-face onto additional silicon wafers. The 
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glue is cured at a temperature of about 140ºC for about 30 minutes. This stack is 

stuck on one side to the sample holder with wax. The stack is polished on one side to 

a thickness of about 500µm thick and to a mirror shining extent. Then the sample is 

heated until the wax melt. The stack is turned and the other side of the stack is stuck 

to sample holder. After the other side is polished until it is about 10µm thick, a 

copper ring is glued to the slice of the stack, and ion milling is used to further thin 

the film until a tiny hole is formed. The area close to the edge of the hole is thin 

enough for electrons to be transmitted.  

2.2.4 Atomic force microscopy (AFM) 

AFM is one of the most powerful tools for determining the surface topography 

of specimens at sub-nanometer resolution [10]. It is developed from the scanning 

tunneling microscope (STMS) which uses tunneling current to monitor the separation 

between a probe bearing a conductive tip and the specimen. The tunneling current 

varies exponentially with the tip-sample spacing. A feedback loop adjusts the height 

of the probe in order to maintain the same current allowing the tip to image the 

topology of the sample. AFM overcomes the biggest shortcoming of STM which 

requires electrically conductive samples. Instead of measuring a current, AFM is 

based on atomic forces such as Van der Waals forces. A sharp tip mounted at the end 

of a soft cantilever spring interacts with the surface of the sample [11]. The Wan der 

Waals interaction between the tip and the surface deflects the cantilever. This is 

sensed by a laser beam reflected from the top surface of the cantilever into a 

photodiode array. The generated electric signal is sent to a feedback loop which 

monitors and controls the cantilever force. Finally the force-position information can 

be converted into an image. 
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Fig. 2.5. Schematic diagram of an AFM system [12]. 

There are three imaging modes: contact mode, tapping (semi-contact) mode 

and non-contact mode. In contact mode, the tip actually makes physical contact with 

the surface and the cantilever drags across the sample surface. The feedback system 

adjusts the position of the probe in order to maintain a constant deflection of the 

cantilever. In tapping mode, the cantilever oscillates up and down at near its 

resonance frequency. When the tip gets closer to the surface, it “taps” the surface and 

the amplitude of oscillation decreases. The feedback system adjusts the position of 

the cantilever in order to maintain a constant oscillation amplitude. The schematic 

illustration of tapping mode AFM is shown in Fig. 2.5. This is preferable over the 
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contact mode as it eliminates shear forces, thus it is less damaging for the sample 

surface and the tip, and higher image resolution is obtained. In non-contact mode, the 

cantilever oscillates at a frequency slightly above its resonance frequency. When the 

tip gets closer to the surface, the resonance frequency of the cantilever decreases, the 

feedback system adjusts the position of the cantilever in order to maintain a constant 

oscillation amplitude. This latter mode is used for “soft” or liquid samples. In the 

present study, a DI multimode AFM is employed and the most widely used tapping 

mode is chosen. 

2.2.5 Profilometer 

The thicknesses of films are measured using a profilometer. The profilometer 

measures the surface topography with a stylus that is dragged across the sample 

surface with a constant load. The fluctuations of the stylus height are recorded as a 

function of position. An appropriate software calculates surface parameters such as 

peak-to-valley height and average roughness. In the present study, a KLA-Tencor P-

12EX Disk Profiler was employed. It scans with a stationary stylus and a moving 

sample stage. The scan speed can be controlled from 1 um/sec to 25 mm/sec. The 

error of height measurement is better than 1 nm for films with thicknesses below 200 

nm. 

2.3 Magnetic properties characterization 

2.3.1 Vibrating sample magnetometer (VSM) 

VSM is widely used for magnetic properties measurement. The physical 

principle of VSM is based on the Faraday’s law of electromagnetic induction, which 

states that the voltage V(t) induced in an electrical circuit is proportional to the rate 
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of change of magnetic flux dφ/dt through the circuit.  

V(t) = - C�dφ/dt                       Eq. 2.7 

A typical VSM set up is shown in Fig. 2.6, the sample is suspended on a non-

magnetic rod which vibrates vertically at a frequency of 72 Hz. The sample is placed 

in a magnetic field which is usually created by two electromagnets. As the 

magnetized sample oscillates in the magnetic field, the magnetic flux through the 

pick-up coil changes which induces an electrical signal in the coils. The induced AC 

voltage is proportional to the magnetic moment of the sample at the applied magnetic 

field. The frequency and amplitude of the vertical vibration are maintained constant 

by a capacitor (reference signal generator). The magnetic moment of the sample is 

extracted, by feeding the signals from the pick-up coils and the reference signal into 

a demodulator.   

 

Fig. 2.6. Schematic diagram of a VSM system. 

In this study, a Lakeshore 7400 VSM with a maximum applied field of 20 kOe 
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and a DMS model 10 VSM with a maximum applied field of 29 kOe are employed. 

All the samples are carefully cut in a size of 5×5 mm by a diamond cutter and are 

measured at room temperature. Before VSM measurement, first the sample holder is 

adjusted to make sure it is at the middle of the magnetic field; second a standard 5×5 

mm Ni foil is used to calibrate the magnetic moment of the equipment. Finally a 

sample is tied to the sample holder and the measurements are taken according to the 

programmed settings.                                                           

2.3.2 Superconducting Quantum Interference Device 

(SQUID)  

SQUID is a very sensitive magnetometer based on superconducting loops 

containing Josephson junctions. In 1911 H. K. Onnes discovered superconductivity 

in certain materials at very low temperature. The phenomenon was explained 

successfully by Bardeen, Cooper and Schrieffer (BCS theory). In 1956 Cooper 

explained a process by which two electrons near the Fermi level could couple to 

form an effective new particle, even under a very weak attractive force. The 

superconductivity is due to the Cooper pair transportation in a circuit. If two 

superconducting regions are kept isolated from each other by a very thin non-

superconducting material, there will be a tunneling current across the gap. The 

tunneling of the electron-pairs across the gap carrying a superconducting current was 

predicted by Josephson [13].  

In the present study, a superconducting quantum interference device (SQUID, 

MPMS, Quantum design, USA) with a maximum applied field of 50 kOe is used for 

measurement of SmCo5 thin films with in-plane anisotropy. The samples are cut to 

0.5×0.5 cm. A special straw provided by Quantum Design is used as a sample holder. 
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Before measurement, the magnet is reset to eliminate the remnant magnetic field 

trapped in superconducting coil. Then a sample is put into the straw and the 

measurements are taken according to the programmed settings.  

2.3.3 Magnetic characterization 

Various magnetic curves including hysteresis loop, angular dependence of 

coercivity, isothermal remanence (IRM) and DC demagnetization (DCD) remanence 

curves can be obtained by VSM and SQUID. The magnetization is obtained by M 

=m/V, where M is the magnetization of the film, m is the measured moment of the 

film and V is the volume of the film.  

For hysteresis loop measurement, a strong magnetic field is applied to 

saturate sample along the applied field direction. Then the field is decreased step by 

step and the magnetization is measured at each step. By plotting the applied magnetic 

field (H) versus magnetization (M), a hysteresis loop is obtained. A typical hysteresis 

loop is shown in Fig. 2.7. The saturation magnetization Ms is reached when the 

external field is large enough to saturate the magnet. Even when the external field is 

removed, the magnet will retain some magnetization which is called remanent 

magnetization Mr. The reverse field needed to restore M to zero is called intrinsic 

coercive field iHc. iHc is a good measure of the resistance of magnetising a material. 

Other information that can be extracted from the hysteresis loop is the loop 

squareness which is defined as: 

S=
s

r

M

M
                                                   Eq. 2.8 
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Fig. 2.7. Typical hysteresisi loop. 

By rotating the sample, an external magnetic field can be applied at different 

directions to the film plane, thus angular dependence of coercivity (iHc) can be 

measured. Conventionally it is measured in the angular range of 90º. It determines 

the magnetization reversal mechanism of magnetic thin films. The reversal 

mechanism can be sorted into two kinds: (1) coherent rotation following the Stoner-

Wohlfarth (S-W) theory; and (2) domain wall motion following the Kondorsky’s 

model. Since the S-W model is based on the assumption of non-interacting 

magnetically isolated grains, the measurement of angular dependence coercivity can 

also be used to obtain the qualitative information about the grains isolation by 

comparing the experimental results with the S-W theory. According to the S-W 

theory, coercivity is defined by [14-17]:  

            2
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3
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and, according to Kondorsky’s model indicating the domain wall motion mechanism 

[18], coercivity is given by:  

                
ψ

ψ

cos
1

)0(

)(
=

ci

ci

H

H
, 0o
≤ ψ ≤ 90o     

                                         Eq. 2.11 

where, iHc(ψ) is the intrinsic coercivity at an angle ψ and ψ the angle between the 

applied field and the easy axis direction. In this thesis, SmCo5 thin films with the 

easy axis parallel to the film plane and perpendicular to the film plane were 

respectively studied. Correspondingly, ψ was defined with respect to the film plane 

or the film normal, respectively. The angular dependences of coercivity based on 

these two models are shown in Fig. 2.8. 

For the IRM curve measurement, the sample needs to be demagnetized first. 

Then a positive field is applied to the sample, the applied field is removed and the 

remnant magnetization is measured as shown in Fig. 2.9 [19]. This cycle is repeated 

several times with progressively stronger applied fields until saturation is reached. 

The IRM curve is obtained by plotting the remnant magnetization versus the 

corresponding applied positive field. For the DCD remanence curve measurement, 

the sample is magnetized to saturation first. Then a reverse field is applied to the 

sample, the applied field is removed and the remnant magnetization is measured as 

shown in Fig. 2.9 [19]. This cycle is repeated several times with progressively 

increased reverse field until the negative saturation is reached. The DCD remanence 

curve is obtained by plotting the remnant magnetization versus the corresponding 

applied reverse field. The typical IRM curve and DCD remanence curve are shown 

in Fig. 2.10. 

 The Wohlfarth relation links these two remanence curves:  

Md(H) = Mr,max – 2Mr(H)                                  Eq. 2.12 
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where, Md(H) is the DCD remanence and Mr(H) is the IRM remanence. It is derived 

for an assembly of non-interacting single domain particles with uniaxial anisotropy 

where magnetization reversal occurs by coherent rotation. 

The deviation ∆Md has been widely used for the investigation of inter-granular 

interaction. It is defined as the deviation of measured DCD remanence Md(H) from 

the demagnetization remanence calculated from the Wohlfarth model [20, 21]: 

                           ∆Md(H)=Md(H) – [Mr,max – 2Mr(H)]                        Eq. 2.13 

A plot of ∆Md(H) verses applied field (H) gives a curve which could present 

the interactions. Two typical kinds of ∆Md(H) curves are shown in Fig. 2.11 [22]. A 

positive ∆Md(H) plot (curve 1 in Fig. 2.11) is usually associated with exchange 

coupled granular systems [23].  On the other hand, a negative ∆M(H) plot (curve 2 in 

Fig. 2.11) indicates interactions that attempt to demagnetize the material.  

 

Fig. 2.8. Angular dependence of coercivity based on S-W model and domain wall 

motion model. 
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Fig. 2.9. Schematic explanation to measure the field dependant magnetisation 

remanence (Mr) and demagnetization remanence. 

 

 

Fig. 2.10. Illustration of typical DCD and IRM curves. Hollow circle represents 

IRM curve and solid square represents DCD curve. 
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Fig. 2.11. Schematic δδδδM curves illustrating different coupling regimes [22]. 
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3 Chapter III SmCo5 thin films with longitudinal 

anisotropy grown on Cr underlayer
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As discussed in Chapter 1, there is an epitaxial relationship between SmCo5, 

Cr and MgO: SmCo5 (11
−

2 0) <0001> // Cr (200) <011> // MgO (200) <010> as 

illustrated in Fig. 3.1. However, MgO single crystal substrate is rather expensive for 

industrial application. Hence, it is necessary to develop the technology for obtaining 

SmCo5 thin films with longitudinal anisotropy and high in-plane coercivity grown on 

glass substrate at a relatively low temperature. Since glass substrates are amorphous 

and cannot induce some specific textures of SmCo5, controlling the texture of the Cr 

underlayer by varying deposition conditions plays a critical role for the granular 

epitaxial growth (polycrystalline epitaxial growth) of SmCo5. Therefore, in order to 

obtain the desired properties of SmCo5 thin films, the key point is to understand the 

mechanism of the growth of Cr thin films and the conditions that would make Cr 

have the (200) texture. 

 

Fig. 3.1. Illustration of the epitaxial relationship: SmCo5 (11
−

2 0) <0001> // Cr (200) 

<011> // MgO (200) <010>. 

In this chapter, the effects of the deposition temperature, the thickness of the 

Cr underlayer, the thickness of the SmCo5 layer and the composition of the Sm-Co 
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layer on the structure and the magnetic properties of SmCo5 / Cr films on glass 

substrates were systematically investigated. Moreover, a comparison study was 

conducted concerning the structural and magnetic properties of SmCo5 thin films 

with a Cr underlayer grown either on a glass substrate or on a MgO single crystal 

substrate. 

3.1 Experimental methods 

 

Fig. 3.2. Schematic diagram of the multilayer film structure. 

The film structure studied in this chapter is shown in Fig. 3.2. Four series of 

experiments were conducted to study the effects of the following factors on the 

structure and magnetic properties of Sm-Co films grown on glass substrate: 

(1) The effect of the deposition temperature of the Cr underlayer;  

(2) The effect of the thickness of the Cr underlayer;  

(3) The effect of the thickness of the SmCo5 layer; 

(4) The effect of the composition of the Sm-Co layer.  
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In (1), (2) and (4), the thickness of the SmCo5 film was kept at 45 nm. In (1), 

the deposition temperature of the Cr underlayer was adjusted from room temperature 

to 500 °C, while the thickness of the Cr underlayer was fixed at 60 nm. In (2), the 

deposition temperature was kept at 400 °C and the thickness of the Cr underlayer 

varied from 15 nm to 150 nm. In (3), the thickness of the Cr underlayer was kept at 

60 nm and the deposition temperature was kept at 400 °C. The thickness of the 

SmCo5 layer varied from 10 nm to 90 nm. In (4), the composition of 45 nm Sm-Co 

films varied from Sm13Co87 to Sm33Co67 when the thickness of the Cr underlayer was 

kept at 60 nm and the deposition temperature was kept at 400 °C. A 40 nm thick Cr 

cover layer was deposited to protect the Sm-Co layer from oxidation. The deposition 

temperature for the SmCo5 films was always fixed at 400 °C. This is the optimal 

deposition temperature according to the study of SmCo5 films grown on Cu 

underlayer (discussed in Chapter 4). Finally, a Cr (cover layer, 40 nm) / SmCo5 (45 

nm) / Cr (underlayer, 50 nm) film was deposited at 400 °C (temperature and 

thickness conditions found to be optimal) on a MgO (100) single crystal substrate for 

comparison between a glass substrate and a MgO (100) substrate. 
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3.2 Growth of Cr underlayer on glass substrate 

3.2.1 Effect of deposition temperature 

 

Fig. 3.3. XRD spectra of 60 nm Cr thin films deposited at different temperatures: 

from room temperature to 500 
o
C. 

Cr films were deposited at different temperatures on glass substrate. The XRD 

spectra are shown in Fig. 3.3. The Cr film deposited at room temperature shows 

amorphous-like structure, while the film deposited at 200 °C exhibits the (110) 

texture which is the closest packed plane of bcc Cr. When the deposition temperature 

reaches 300 °C or above, the (200) peak appears. Here the integrated intensity ratio 

110

200

I

I
 is used to quantitatively characterize the preferred orientation of Cr films, 
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where I200 and I110 are the integrated intensity of Cr (200) and (110) peaks. By 

comparing the value of 
110

200

I

I
 for standard isotropic Cr powder sample (0.2) with the 

one obtained when deposing Cr at 400 °C or above (0.95), it can be determined that 

the preferred texture is (200) for the Cr thin film. The mechanism of the dependence 

of the Cr crystallographic textures on the substrate temperature was studied by Feng 

et al. [1]. They stated that before a continuous Cr film forms, the crystallographic 

texture originates from the preferential orientation of nucleation islands. High 

temperature increases the surface diffusion and hence promotes the initial islands 

which have (200) planes parallel to the film plane. Thus the (200) texture develops in 

the Cr film at elevated temperature.     

 

Fig. 3.4. AFM images of the surface of the Cr underlayer deposited (a) at 400 °C, (b) 

at 500 °C and (c) dependence of Rq of Cr films on the deposition temperature.  
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AFM was used to examine the surface structure and roughness of the Cr 

underlayers deposited at different temperatures. Relatively smooth Cr layer with a 

small particle size was found when the deposition temperature was below 400 °C. 

The root mean square roughness (Rq) increases from 1.6 nm for the film deposited at 

400 °C to 3.2 nm after deposition at 500 °C as shown in Fig. 3.4a and b. The changes 

of Rq at different temperature are summarized in Fig. 3.4c. It indicates that high 

temperature (~500 °C) deteriorates the surface roughness. The roughness of the Cr 

underlayer may affect the crystallinity of the subsequently deposited SmCo5 film. 

3.2.2 Effect of thickness  

 

Fig. 3.5. XRD spectra of Cr thin films with different thicknesses deposited at 400 °C: 

from 30 nm to 95 nm. 
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From section 3.2.1, it can be seen that 400 °C is the optimized temperature for 

the growth of a high quality Cr (200) textured layer with a relatively small 

roughness. I studied the crystallographic structure and surface morphology of the 

pure Cr underlayers with different thickness deposited at 400 °C as shown in Fig. 

3.5. The Cr underlayer with a thickness of 30 nm shows a disordered structure, as the 

crystalline peaks are very weak. The Cr underlayer with a thickness of 60 nm shows 

a clear (200) texture and an improved crystallinity. When the film thickness is 

increased to 95 nm, the crystallinity improves further, while the (200) texture 

declines. The AFM study indicates that there is no significant difference in the 

smoothness among the Cr underlayers with different thickness. The Rq are 1.6 nm, 

1.6 nm and 2.3 nm for the Cr films with the thickness of 30 nm, 60 nm and 95 nm, 

respectively (Fig. 3.6). 

 

Fig. 3.6. Dependence of Rq of Cr films with different thickness. 
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3.3 Evaluation of Sm / Co atomic composition  

All the Sm-Co films were deposited on Si substrates for calibration. The 

deposition power of Co was fixed at 50 W where its deposition rate was 3.3 nm / 

min. The deposition power of Sm was adjusted from 12 W to 30 W. The relation 

between the deposition rate of Sm and the deposition power is plotted in Fig. 3.7. 

The deposition rate is proportionally increasing with the deposition power. 

 

Fig. 3.7. Relation between deposition rate of Sm and deposition power. 

Thus the deposition rate of Sm at different deposition power can be estimated 

from this relation. Thereafter the composition of Sm-Co films can be estimated by 

the following equation: 
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where, A is the number of atoms, NA is Avogadro constant, D is density, v is 

deposition rate, t is deposition time and M is molar mass. 

 

        (a)                                          (b) 

Fig. 3.8. RBS spectra of SmCo thin films deposited on Si substrate: (a) Sm at 14 W 

and Co at 50 W and (b) Sm at 20 W and Co at 50 W. The open circles represent the 

experimental data, whereas the solid curves represent the simulated data. 

Table 3.1. Calibration of the atomic compositions of Sm-Co films deposited at 

different powers. 

Sm power 

(W) 

Sm 

deposition 

rate 

(nm/min) 

Co  

deposition 

rate 

 (nm/min) 

Estimated 

SmCox 

Calibrated 

composition 

by RBS 

12 2.15  3.3 SmCo4.8  SmCo6.7 

13  2.36  3.3  SmCo4.3  SmCo5.8 

14 2.57  3.3  SmCo4.0  SmCo5 

15  2.78  3.3  SmCo3.7  SmCo4.4 

16 2.98  3.3  SmCo3.4  SmCo3.8 

18 3.40  3.3  SmCo3.0 SmCo2.9 

20 3.82  3.3  SmCo2.7  SmCo2.2 

22  4.24  3.3  SmCo2.4  SmCo1.6 
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In order to calibrate accurately the Sm-Co composition, two samples were 

carefully evaluated by Rutherford Backscattering Spectometry (RBS). Fig. 3.8 shows 

the RBS spectra of two Sm-Co films deposited at (a) 14 W for Sm and 50 W for Co; 

(b) 20 W for Sm and 50 W for Co, respectively. The atomic compositions of these 

two films are identified as SmCo5 and SmCo2.2 respectively. According to those, I 

calibrated the atomic compositions of all the films deposited at different powers as 

summarized in Table 3.1.  

3.4 Fabrication of SmCo5 films with Cr underlayer on 

glass substrate and study of their structure and 

magnetic properties 

3.4.1 Effect of deposition temperature of Cr underlayer  

XRD spectra of the SmCo5 films with the Cr underlayer deposited at different 

temperatures are shown in Fig. 3.9. The Cr diffraction line indexing is based on PDF 

File No. 06-0694 and the SmCo5 indexing is based on PDF File No. 35-1400. It can 

be seen that only the Sm-Co film with the Cr underlayer deposited at 400 °C shows a 

clear SmCo5 (11
−

2 0) peak. The Sm-Co layers might have a disordered structure 

(amorphous-like) in the cases where Cr underlayer was deposited at relatively lower 

deposition temperatures (room temperature to 300 °C). Furthermore, the average 

grain size of SmCo5 on glass substrate was calculated to be 5-10 nm according to 

Scherrer’s equation. However, no SmCo5 peaks could be found on the Cr underlayer 

when it was deposited at 500 °C. This is probably due to the rough surface of the Cr 

underlayer deposited at 500 °C which may affect the crystallinity of the subsequently 

deposited SmCo5 film as discussed in the Cr underlayer study (Fig. 3.4). 
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Fig. 3.9. XRD spectra of Cr/Sm-Co/Cr thin films with the Cr underlayers deposited 

at different temperatures: (a) room temperature, (b) 200 °C, (c) 300 °C, (d) 400 °C, 

(e) 500 °C. 

Fig. 3.10 shows the corresponding M-H loops of SmCo5 thin film with Cr 

underlayers deposited at different temperatures. The dependence of the in-plane and 

out-of-plane iHc of 45 nm SmCo5 films on the deposition temperature of the Cr 

underlayer are summarized in Fig. 3.11. Results indicate that the iHc of SmCo5 films 

strongly depends on the deposition temperature of the Cr underlayer. The in-plane 

iHc of the SmCo5 film increases slightly as the deposition temperature of Cr 

underlayer varies from room temperature to 300 °C, while it increases greatly to 18 

kOe at 400 °C, but it drops to 2 kOe at 500 °C. This is probably due to the rough 

surface of Cr underlayer deposited at 500 °C (Fig. 3.4) that affected the growth of 
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Sm-Co film as discussed in the above section. On the other hand, all the films exhibit 

very small out-of-plane iHc (<1 kOe). These results indicate that the films exhibit a 

large in-plane magnetic anisotropy, suggesting that the easy axis of magnetization of 

SmCo5 lies in the film plane. The high in-plane intrinsic coercivity and high in-plane 

magnetic anisotropy demonstrated in the SmCo5 film with the Cr underlayer 

deposited at 400 °C is due to a good crystallinity of SmCo5 phase with a (11
−

2 0) 

texture as shown in Fig. 3.9.  

From the above results, one can conclude that the intrinsic coercivity of Sm-Co 

film is strongly dependent on the crystallinity and texture, which can be strongly 

affected by the Cr underlayer (crystallinity, texture and roughness). 
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Fig. 3.10. M-H loops of SmCo5 thin film with Cr underlayers deposited at different 

temperatures. 

 

 

Fig. 3.11. Dependence of in-plane and out-of-plane iHc of SmCo5 films on the Cr 

underlayer deposition temperature. 
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3.4.2 Effect of thickness of Cr underlayer 

The effect of the Cr underlayer thickness on the magnetic properties of SmCo5 

films was investigated. As shown in Fig. 3.12, the SmCo5 film deposited on the Cr 

underlayer with a thickness of 30 nm shows a poor crystallinity, indicated by a weak 

and broad (11
−

2 0) peak. On the other hand, a relatively strong (11
−

2 0) peak in 

SmCo5 film with a 95nm Cr underlayer shows an improved crystallinity. 

 

Fig. 3.12. XRD spectra of Cr / Sm-Co / Cr thin films with (a) 30 nm Cr underlayer 

and (b) 60 nm Cr underlayer and (c) 95 nm Cr underlayer. The inset is the XRD 

spectra of SmCo5 (11
−

2 0) peaks of these three samples with a long time scan. 

Fig. 3.13 summarizes the in-plane and out-of-plane intrinsic coercivities for 

SmCo5 films which were deposited on Cr underlayers with different thicknesses in 
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the range of 15-150 nm. It can be seen that Sm-Co films show soft isotropic 

magnetic properties without a Cr underlayer or with a thin Cr underlayer. The in-

plane iHc of the SmCo5 films increases significantly with the increased thickness of 

Cr underlayer from 30 nm to 45 nm. The results indicate that the crystallinity of Cr 

plays an important role in the magnetic properties of SmCo5 films. 

 

Fig. 3.13. Dependence of in-plane and out-of-plane iHc in SmCo5 films on the 

thickness of Cr underlayer. 

 
This work shows again, that high intrinsic coercivity is accompanied by good 

crystallinity. The largest in-plane intrinsic coercivity, 26.5 kOe, was obtained in the 

sample with the Cr underlayer of 150nm which was measured by SQUID with a 

maximum filed of 50 kOe. 
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3.4.3 Effect of thickness of SmCo5 layer 

 

Fig. 3.14. XRD spectra of Cr(40 nm) / Sm-Co(t nm) / Cr(60 nm) thin films: (a) t=10 

nm, (b) t=30 nm, (c) t=45 nm and (d) t=90 nm. 

The following work is the investigation of the effect of the thickness of SmCo5 

layer on the magnetic properties of SmCo5 films. Sm-Co films with layer thickness 

ranging from 10 to 90 nm were prepared on 60 nm Cr underlayer at 400 °C. The 

corresponding XRD spectra for these samples are shown in Fig. 3.14. With the 

increasing Sm-Co film thickness, the SmCo5 (11
−

2 0) peak becomes visible and 

stronger. Though the film thickness can affect the peak intensity, the much higher 

intensity of the (11
−

2 0) peak of the SmCo5 film with a thickness of 90 nm implies an 
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improved crystallinity. The out-of-plane iHc remain low, similar to the results shown 

in Fig. 3.11 and Fig. 3.13. The in-plane iHc as a function of the thickness of the Sm-

Co films is shown in Fig. 3.15. It can be seen that the iHc increases with the 

increasing SmCo5 film thickness and goes to a value of 20 kOe at a thickness of 90 

nm. The increase of the in-plane intrinsic coercivity may be due to the improvement 

of the crystallinity of SmCo5 (11
−

2 0).  

 

Fig. 3.15 Dependence of in-plane intrinsic coercivity in SmCo5 films on the thickness 

of SmCo5 layer. 

3.4.4 Effect of Sm / Co composition 

Fig. 3.16 shows the dependence of the in-plane iHc on Sm content. The highest 

iHc is achieved in the SmCo5 films where Sm content is 16.7%. The iHc decreases 

rapidly with either lower Sm content (SmCo7) or higher Sm content (SmCo4 - 

SmCo2.2). From the XRD results, it was observed that only the film with a 
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composition of SmCo5 shows (11
−

2 0) peak. The other Sm-Co films show no distinct 

SmCo5 peaks. Therefore the high iHc in SmCo5 film is probably due to a better 

crystallinity compared to other films. Speliotis et al. [2] and Zhang et al. [3] reported 

similar results. 

 

Fig. 3.16. Dependence of in-plane intrinsic coercivity of SmCo5 thin films on Sm 

content. 

3.5  Comparison study of SmCo5 thin film grown on MgO 

(100) and glass substrates with Cr underlayer 

For the comparison study, the Sm-Co/Cr thin films were deposited on the 

MgO (100) (Sample A) and glass substrates (Sample B) at the optimal condition as 

shown in Table 3.2. 
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Table 3.2. Film structure and magnetic properties of Sample A and Sample B. 

 Substrate Film structure Tsub 

(°C) 

Hc 

(kOe) 

Mr/M

s 

Sample 

A 

MgO (100) 

single 

crystal 

Cr 40 nm / SmCo5 45 nm / 

Cr 50 nm 

400 17.5 0.80 

Sample 

B 

Corning 

glass 

Cr 40 nm / SmCo5 45 nm / 

Cr 50 nm 

400 18.5 0.88 

 

3.5.1 Crystallographic structure and microstructure 

Fig. 3.17a and b show the XRD spetra of Sample A and Sample B. For Sample 

A, the peaks from MgO (200), Cr (200) and SmCo5 (11
−

2 0) reflections are clearly 

observed. The average grain size of SmCo5 is around 20 nm based on the XRD 

(calculated from SmCo5 (11
−

2 0) peak using the Scherrer’s equation) and TEM 

examinations. For Sample B, both (110) and (200) peaks of Cr were detected. As 

discussed before, the pure Cr underlayer grown on glass substrate has a preferred 

(200) orientation because the 
110

200

I

I
 ratio of the Cr underlayer is 0.95, where I200 and 

I110 are the integrated intensity of Cr (200) and (110) peaks. This ratio is much larger 

than that of standard isotropic Cr sample (0.2). A relatively weak and broad peak 

from SmCo5 (11
−

2 0) shows the possibility of a (11
−

2 0) texture. According to 

Scherrer’s equation, the average grain size of SmCo5 on glass substrate is around 8 

nm. The inset in Fig. 3.17b shows the selected area electron diffraction pattern 

(SAED) of the SmCo5 film from a cross section of Sample B. The diffraction ring 
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from SmCo5 (11
−

2 0) is observed which confirms the SmCo5 (11
−

2 0) texture in 

Sample B. The microstructure of the SmCo5 films was examined using TEM.  

 

Fig. 3.17. XRD spectra of (a) Sample A and (b) Sample B. The inset in (b) shows the 

selected area electron diffraction (SAED) pattern of Sample B. 

The TEM bright field of Sample A and Sample B are shown in Fig. 3.18. The 

Cr underlayer, SmCo5 magnetic layer and Cr cover layer are clearly shown. The 

interface between the Cr underlayer and the SmCo5 magnetic layer is relatively 

smooth whereas the interface between the SmCo5 layer and the Cr cover layer is 

relatively rough because of the high deposition temperature. The nanocrystalline 

structure could be seen in the SmCo5 layer. Amorphous or amorphous-like structure 
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has been reported in Sm-Co films [6-9]. Liu et al. proposed that very small 

crystallites of 5nm are surrounded by amorphous phase in Sm-Co films [8]. 

 

Fig. 3.18. TEM bright field image and dark field image of Sample B. 

The epitaxial relationships between the SmCo5 film, the Cr underlayer and the 

MgO substrate were investigated by off-specular reflection (also called phi scan). For 

Sample A, the off-specular MgO (111), Cr (101) and SmCo5 (111) phi scans (53.5º, 

45º and 32º away from the specular rod, respectively) were used to measure the 

epitaxial relationships among SmCo5/Cr/MgO. The typical phi scan results of 

Sample A are shown in Fig. 3.20. Four MgO {111} diffraction peaks with an even 

spacing of 90º are observed and four Cr {101} peaks are found at the same positions. 

Four SmCo5 {111} peaks with an even 90° spacing appear at 45° rotated positions 

with respect to the Cr surface. This indicates that the Cr underlayer epitaxially grows 

on the MgO substrate and SmCo5 in turn follows an epitaxial growth on Cr. 

According to the relative directions of the MgO, Cr and SmCo5 crystalline 

axes, the epitaxial relationship is derived as SmCo5 (11
−

2 0) <0001> // Cr (200) 

<110> // MgO (200) <010>. The epitaxial relationship is illustrated in Fig. 3.1. This 
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epitaxial relationship was first reported by Fullerton et al. [4] and later was proved by 

Singh et al. using pole figure measurements [5]. On the other hand, for Sample B, Cr 

(101) and SmCo5 (111) phi scans have been measured but no peaks are observed. 

 

Fig. 3.19. XRD rocking curves of (a) Cr (200) and (b) SmCo5 (110) peaks of Sample 

A. 

 

Fig. 3.20. XRD off-spectra phi scan of MgO (111), Cr (101) peaks and SmCo5 (111) 

of Sample A. 
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Hence, with the results discussed above, the microstructure models are 

proposed for Sample A and Sample B as illustrated in Fig. 3.21. For Sample A, the 

SmCo5 film is well (11
−

2 0) textured with the easy axis – [0001] either along Cr [011] 

or Cr [01
−

1 ] directions. The grain size is around 20 nm. For Sample B, the SmCo5 

film has only a preferred (11
−

2 0) orientation. The easy axes of SmCo5 grains are 

supposed to have a random distribution. 

 

Fig. 3.21. The illustration of grains distribution in (a) Sample A and (b) Sample B. 

The arrows indicate the easy axis directions. The solid arrows represent the easy 

axes which lie in the film plane and the dash arrows represent those are not in the 

film plane. 

3.5.2 Magnetic properties 

Fig. 3.22 shows the magnetic hysteresis loops of Sample A and Sample B 

measured in three different directions: for Sample A, in the film plane along the 

MgO [010], in the film plane along the MgO [001], and in the out-of-plane direction 

(along the MgO [100]); for Sample B, in the film plane along a certain direction, in 

the film plane after a rotation of 45° and in the out-of-plane direction. It can be seen 

that both samples show high in-plane anisotropy. The iHc of sample A and B are 17.5 
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kOe and 18.5 kOe respectively while the out-of-plane iHc of both samples are small 

around 2 kOe. 

 

Fig. 3.22. M-H loops of (a) Sample A, measured along the MgO [011], MgO [011], 

and MgO [100] directions; (b) Sample B, measured along 0° in-plane, 45° in-plane 

and out-of-plane directions. 

 
Besides the in-plane anisotropy, a large in-the-film-plane anisotropy is 

exhibited in the epitaxial SmCo5 film grown on MgO substrate. Here I defined the 

“in-the-film-plane anisotropy” as the dependence of the internal energy on the 

direction of easy magnetization in the film plane. For example, Sample A exhibits 

higher coercivity field and remanent magnetization along the MgO [011] direction 

than those along the MgO [010] direction (shown in Fig. 3.22a). The increases of 

coercivity along the MgO [011] direction were reported by other researchers [4, 5, 

10]. Benaissa and Krishnan proposed the possible reason for the enhancement of 
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coercivity in the bicrystalline microstructure [10]. Due to the ferromagnetic exchange 

coupling, a “cluster” may form by an ensemble of adjacent SmCo grains which are 

along either the Cr [011] or the Cr [01
−

1 ] directions (as illustrated in Fig. 3.1). Such a 

cluster has an effective anisotropy along the MgO [011]. The increase of coercivity 

along the MgO [011] direction depends on the strength of the inter-granular 

exchange coupling. The increase of coercivity along the MgO [011] in my sample 

maybe due to the exchange coupling which will be discussed below. Unfortunately, 

due to the limited applied field of the available VSM, the M-H loop can not be 

saturated along MgO [011] direction. Thus the observed coercivity may be smaller 

than the real value. On the other hand, Sample B shows similar hysteresis loops at 

different in-plane directions. It indicates that there is no distinct easy axis direction 

within the film plane. 

I also studied remanence for the two samples. For the remanence analysis, The 

measurements in MgO [010] direction and MgO [011] direction were performed for 

Sample A. If it is assumed that the [0001] direction of the SmCo5 grains randomly 

lies along either in the direction of the Cr [011] or [01
−

1 ], there should be a 50% 

possibility for each case. Therefore, when a sufficiently strong external field is 

applied along the MgO [010] (Cr [011]), all magnetizations are aligned to MgO 

[010] direction. When the external field decreases to 0, 50% of the domain 

magnetizations turn back to their easy axis direction (// Cr [01
−

1 ]), which do not 

contribute to the overall magnetization along the MgO [010] with a perpendicular 

configuration. The remanent magnetization Mr should be one-half (0.5) of the 

saturation magnetization Ms. On the other hand, when a strong external field is 

applied along the MgO [011], all magnetizations are parallel to the direction of the 
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MgO [011]. When the external field is removed, every domain magnetization rotates 

to its easy axis direction along the direction of either Cr [011] or [01
−

1 ]. Thus the 

remanent magnetization Mr should be 2 /2 Ms  (0.71). The remanence along the 

direction of the MgO [011] is expected to be higher than that along the direction of 

the MgO [010]. Sample A shows a remanent magnetization Mr along MgO [010] 

direction is 0.80 Ms while the Mr along MgO [011] direction is 0.94 Ms. Though the 

measurements agree with my expectation (higher remanence along the MgO [011] 

direction), the values are significantly higher than the expected values (0.5 and 0.71). 

The high remanence values may be attributed to exchange coupling between grains, 

as discussed below. 

For Sample B, a part the SmCo5 grains show the (11
−

2 0) orientation, the easy 

axes of which are expected to distribute randomly in the film plane. The rest grains 

may not have their easy axes aligned in the film plane. The distribution of the easy 

axes in sample B should be between 2 dimensional isotropic distribution (if easy axes 

are randomly distributed in the film plane) and 3 dimensional distribution (if easy 

axes are randomly distributed without any preferred orientation). The intensity of the 

remanent magnetization is calculated to be [11]: 

         ssr M=θdθM
π

=M 0.637cos
1 2

2

∫
−

π

π

   (2D model)                          Eq. 3.1 

         ssr MdM=M 5.0sincos
2

0

=∫ θθθ

π

    (3D model)                         Eq. 3.2 

where, θ is the angle between the direction of applied field and easy axis (in the film 

plane). 
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However, the remanent magnetization Mr of Sample B is 0.88 Ms which is 

much larger than both of these models above. The remanence enhancement was 

explained by the exchange coupling between spins in the grain boundary areas [12, 

13]. The exchange coupling occurs when the grain size is comparable to the 

exchange length which is two times the thickness of the domain wall. The thickness 

of the domain wall is 2.2-2.7 nm for SmCo5 [14]. As discussed above, the SmCo5 

grain size of Sample A and Sample B are around 20 nm and 8 nm respectively. The 

small grain sizes in the two samples are comparable to the thickness of the domain 

wall and result in exchange coupling. The exchange coupling leads to the increased 

coercivity along the MgO [011] in Sample A and enhanced remanence in both 

sample A and sample B. A smaller grain size in Sample B leads to a larger 

remanence increase. The remanence enhancement in nanocrytalline SmCo has been 

reported previously [15]. The film structure and magnetic properties of Sample A 

and Sample B are summarized in Table 3.2. 

The demagnetization curve and recoil curves for Sample B are shown in Fig. 

3.23a. The curves are similar to those of nanocrystalline single-phase Nd12Fe14B 

magnets showing remanence enhancement [12, 13]. The reversible ability of the 

SmCo5 film is high (spring-magnet behavior [12, 13]). As discussed in Chapter 2, 

according to the demagnetization curve, the Wohlfarth relationship: Md(H) = Mr,max – 

2Mr(H) could be decuced and it has been widely used for the investigation of 

intergranular interaction. The deviation ∆Md has been used to characterize the 

interactions.  
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Fig. 3.23. (a) The demagnetization curve and recoil curves for Sample B. (b) The 

normalized deviation of demagnetization remanence ΔΔΔΔMd(H) versus the applied 

field for Sample A and B. 

Fig. 3.23b shows the curves of the normalized deviation ∆Md versus the applied 

field for Sample A and Sample B. Both of the curves from two samples show 

positive peaks which indicate exchange coupling between grains. For Sample B, the 

curve shows a relatively large positive peak, which indicates a strong exchange 

coupling between grains in the nanocrystalline SmCo5 film. The result is associated 

with the large remanence enhancement discussed before. Moreover, because of the 

strong interactions between these oriented grains and the neighbour grains, although 

only part of the grains have a (11
−

2 0) orientation, they can hold the overall 

magnetization direction in the film plane to enable a large in-plane anisotropy and 

high remanence. In contrast, the textured SmCo5 film with larger grains grown on 

MgO substrate shows a much smaller positive peak due to the weak interactions 

between the grains. 

Fig. 3.24 shows the angular dependence of coercivity field for SmCo5 films 

deposited on different substrates. ψ is the angle between the applied field and the 
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easy direction of magnetization. The Sample A shows increased coercivity in the 

range of 0°-45° which is similar to Kondorsky’s relation. The analytical model-

Kondorsky’s relation which is proportional to 1/cos(ψ) usually indicates a 

domain wall motion mechanism [16]. It may indicate that there are some pinning 

sites in Sample A. For Sample B, the coercivity field keeps decreasing with the 

increasing angle. It might due to the large misalignment of easy axis in Sample B. 

Since the single domain diameter of SmCo5 was around 710 - 960 nm [14], the 

particles (here grains) in my samples are too small to contain a domain wall 

inside of a grain. The switching modes of two samples may follow the incoherent 

nucleation curling model [17-19]. 

 

Fig. 3.24. Angular dependence of normalized coercivity of Sample A and Sample B. 

Zero field refers to in plane direction. 
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3.6 Summary 

Three effects on magnetic properties of SmCo5/Cr films deposited on glass 

substrates have been investigated. It has been found that a high-quality Cr underlayer 

can be obtained after deposition at 400 °C with a good (200) texture and a smooth 

surface. A lower deposition temperature prefers the formation of a disordered Cr film 

with a (110) texture, while a higher deposition temperature causes rough film 

surface. The Cr underlayer needs a minimum thickness of 40-60 nm in order to have 

a good crystallinity. When SmCo5 is deposited at 400 °C, a (11
−

2 0) texture can be 

induced if the Cr underlayer has a (200) texture. Again, high intrinsic coercivity 

requires a minimum thickness of the SmCo5 layer in the order of 50 nm, as a thinner 

film possesses a poor crystallinity. The resultant films exhibit high in-plane 

coercivity and a large in-plane magnetic anisotropy with a nanocrystalline structure. 

High in-plane intrinsic coercivity up to 26.5 kOe and large in-plane anisotropy can 

be achieved in SmCo5 films on glass substrate, if a smooth Cr underlayer with a 

(200) texture is present.  

Moreover, a comparison study was conducted concerning the crystallographic 

structure, microstructure and magnetic properties of the SmCo5 thin films with Cr 

underlayer grown on MgO (100) and glass substrates. The epitaxial relationship 

SmCo5 (11
−

2 0) <0001> // Cr (200) <011> // MgO (200) <010> is demonstrated 

between SmCo5, Cr and MgO substrate. Polycrystalline SmCo5 with a preferred 

(11
−

2 0) orientation on amorphous glass substrate shows an even higher in-plane 

coercivity and remanence enhancement due to the nanocrystalline structure and 

strong interaction between grains. 
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4 Chapter IV SmCo5 thin films with perpendicular 

anisotropy grown on Cu underlayers 
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In the previous chapter, SmCo5 thin films with longitudinal anisotropy were 

successfully prepared by introducing a Cr underlayer. Since SmCo5 thin films with 

perpendicular anisotropy have attracted increasing attention for perpendicular 

recording, attempts to create perpendicular anisotropy in SmCo5 thin films were 

carried out in this chapter.  

Copper (Cu) is considered as a possible underlayer to induce a (0001) textured 

SmCo5 layer based on the small lattice misfit between the (111) lattice of Cu and the 

(0001) lattice of SmCo5 which is around 2% for the standard samples (as illustrated 

in Fig. 4.1).  

 

Fig. 4.1. Illustration of lattice matching between Cu (111) and SmCo5 (0001). 

The possibility of growing SmCo5 crystallites with perpendicular anisotropy 

on a Cu underlayer has recently been demonstrated [2-11]. Moreover, it has been 

studied that the corrosion resistance of SmCo5 film can be significantly improved by 

the Cu additive and was comparable with previous used CoCr media [7]. The control 

of the texture and surface morphology of the Cu underlayer plays a key role in 

obtaining the desired texture and magnetic properties of SmCo5 magnetic layer. 

However, a good texture requires a certain thickness of Cu and the crystallinity of Cu 
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needs to be improved [2, 3]. SmCo5 (0001) textured films with perpendicular 

anisotropy have been obtained on Cu (111) underlayer with a thickness that is greater 

than 100 nm by sputtering a SmCo5 alloy target and laminating the Co and Sm sub-

layers alternatively [2]. However, the texture and perpendicular anisotropy of SmCo5 

thin films were poor. It is challenging to decrease the thickness of Cu and maintain 

good texture and crystallinity at the same time. Sayama et al. reported that the 

thickness of Cu underlayer can be reduced with a good (111) texture when a titanium 

(Ti) seed layer is used [4]. Otherwise, a ruthenium (Ru) seed layer can be used to 

decrease the Cu surface roughness [5]. However, although Cu with good (111) 

texture has been obtained with either Ti or Ru seed layers, only relatively weak 

SmCo5 (0001) and SmCo5 (0002) peaks have been observed [4-6].  

Table 4.1. Melting temperatures (Tm) and calculated values of surface free energies 

(
o

i
γ ) at room temperature of different materials [16]. 

Material Tm (oC) o

i
γ  (Jm-2) 

( at 298.2K) 
Cu 1084 1.934 
Ta 2996 3.018 
Ti 1660 2.570 
W 3410 3.468 

 
A seed layer with high melting point and large surface free energy can help the 

succeeding layer to form a layer-like structure (as opposed to island-like) with small 

grains and smooth surface [12-15]. Tantalum (Ta) possessing high melting 

temperature and surface energy (Table 4.1 [16]) has been reported to improve texture 

for Co alloys [17] as well as to be an effective diffusion barrier to prevent Cu 

diffusing into Si and SiO2 substrates [18, 19]. Therefore, this chapter focuses on the 

study of Ta seed layers. Cu / Ta dual underlayers were prepared to induce SmCo5 thin 
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films with large perpendicular anisotropy. The influence of the thickness of the Ta 

seed layer on the surface morphology and texture of the Cu underlayer, and the 

influence of the resulting Cu underlayer on the structure and magnetic properties of 

SmCo5 thin films were studied. The effects of the deposition temperature of SmCo5 

layer, the thickness of the Cu underlayer, the thickness and composition of the Sm-

Co layer on the structure and magnetic properties of Sm-Co / Cu / Ta films were also 

systematically investigated. Moreover, at the optimal conditions, titanium (Ti) and 

tungsten (W) which also have high melting temperature and surface free energy 

(Table 4.1 [16]) were tried as seed layers for SmCo5 thin films as well. 

4.1 Experimental methods 

 

Fig. 4.2. Schematic diagram of multilayer structure. 

The film structure studied in this chapter is shown in Fig. 4.2. Six series of 

experiments were conducted:  

(1) To study the effect of the thickness of the Ta seed layer, the thickness of Ta 
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varied from 0 nm to 50 nm, the thicknesses of the Cu and SmCo5 layers were fixed at 

50 nm and 65 nm respectively. The Ta and Cu layers were deposited at room 

temperature while the SmCo5 layer was deposited at 400 oC which is the temperature 

found to be optimal;  

(2) To study the effect of the deposition temperature of SmCo5, SmCo5 (65 nm) 

/ Cu (50 nm) / Ta (4 nm) films were prepared. Cu / Ta underlayers were deposited at 

room temperature and SmCo5 layers were deposited at a temperature ranging from 

300 oC to 450 oC;     

(3) To study the effect of the thickness of the Cu underlayer, SmCo5 (65 nm) / 

Cu (15 ~ 100 nm) / Ta (4 nm) films were prepared;  

(4) To study the effect of the thickness of the SmCo5 layer, SmCo5 (20 ~90 nm) 

/ Cu (50 nm) / Ta (4 nm) films were prepared;  

(5) To study the effect of the composition of the Sm-Co layer, Sm-Co layer with 

a composition from Sm13Co87 to Sm37Co63 were fabricated;  

(6) To study the effect of different seed layers (Ti and W), SmCo5 (65 nm) / Cu 

(50 nm) / Ti or W (4 nm) films were prepared. 

Except in (5), the atomic ratio of Sm/Co in the Sm-Co layer was controlled to 

be 1:5 by adjusting the sputtering rate of the two targets as discussed in Chapter 3. A 

20 nm cover layer was deposited to protect SmCo5 from oxidization. Here the same 

material for seed layer and cover layer were used because of the limited targets 

positions in the sputtering chamber employed. Cu can be deposited at room 

temperature since it naturally forms the (111) texture which is this close-packed 

plane thus having the lowest surface energy. Moreover, room temperature is favorable for 

industrial applications and results in a smoother surface of Cu [5]. 
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4.2 Growth of Cu underlayer on Ta seed layer on glass 

substrate 

4.2.1 Growth of Ta seed layer 

 

Fig. 4.3. θ-2θ XRD spectra of Ta films with different thicknesses (0-50 nm). 

Pure Ta films with different thicknesses of 1 nm, 4 nm, 10 nm, 20 nm and 50 

nm were deposited on glass substrates at room temperature. Then 50 nm Cu films 

were grown at room temperature on Ta films with different thicknesses of 0nm, 1 

nm, 4 nm, 10 nm, 20 nm and 50 nm. 

Fig. 4.3 shows the conventional θ-2θ XRD spectra of Ta seed layers with 

different thicknesses. There is no peak observed for the Ta films with a thickness of 
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10 nm or below which indicates a disordered structure in these Ta films (amorphous-

like). For the 20 nm Ta film, the β-Ta (002) peak begins to appear, indicating the 

beginning of crystallization. For the 50 nm Ta film, both the β-Ta (002) and (202) 

peaks appear and the peaks intensities increase. It implies that the crystallization is 

enhanced.  

 

Fig. 4.4. (a) Glancing angle XRD spectra of 4 nm and 10 nm Ta films measured at a 

fixed 0.5° incidence angle. (b) The electron diffraction pattern of the 4 nm Ta film. 

The XRD intensity is dependent on the film thickness in the θ-2θ mode. 

Therefore, a careful glancing angle XRD study was performed to examine these thin 

films (≤10 nm) with a scan time of more than 20 hours. The results are shown in Fig. 

4.4a. β-Ta (002) and (202) peaks are observed in the Ta film with a thickness of 10 

nm, whereas no peak can be seen in the Ta film with a thickness of 4 nm. It indicates 

that the Ta film of 10 nm is crystallized (it might be a mixture of crystalline and 

amorphous phases) and the 4 nm Ta film stays in the disordered (amorphous-like) 

state. The electron diffraction pattern of the Ta film of 4 nm shows amorphous ring 

which further confirms the amorphous state in the Ta film of 4 nm (shown in Fig. 
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4.4b). Here the metastable tetragonal β-Ta phase (a=0.534 nm, c=0.994 nm) was 

observed rather than the bcc structure of α-Ta (a=0.33058 nm) in thicker Ta films 

(≥10 nm) after deposition at room temperature. It has been reported that metastable 

β-Ta is often formed on corning glass [18, 20, 21]. Hieber and Mayer reported that β 

phase transforms into stable α phase after a post-annealing at elevated temperatures 

for thicker Ta films [21]. 

 

Fig. 4.5. (a) AFM images of Ta films with different thicknesses (4 nm, 20 nm and 50 

nm). (b) The changes of roughness as a function of film thickness. 

 
The AFM images of Ta films with different thicknesses are shown in Fig. 4.5a. 

It can be seen that the Ta film of 4 nm shows a very smooth surface. On the other 

hand, the thicker Ta films with higher crystallization degree show rougher surface. 

The dependence of surface root-mean-square roughness (Rq) on the thickness of 

films is plotted in Fig. 4.5b. The surface roughness continually increases in thicker 
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films. 

4.2.2 Growth of Cu on Ta seed layer 

 

Fig. 4.6. (a) θ-2θ XRD spectra of Cu films grown on Ta seed layer of different 

thicknesses (0-50 nm). (Inset is XRD spectrum of Cu film without Ta seed layer). (b) 

Rocking curves (ω scan) of 50 nm Cu films grown on Ta seed layer of different 

thicknesses (0-50 nm). 

The thickness of Cu was fixed to be 50 nm in this work, and the Cu underlayer 

was deposited at room temperature. For fcc structured Cu, (111) is its close packed 

plane which has the lowest surface energy. Therefore, Cu films tend to have a (111) 

texture. From Fig. 4.6a, it can be seen that (111) peaks appear in all of the Cu films 

no matter with or without Ta seed layers. However, the intensities of the (111) peaks 

vary significantly. The Cu film grown directly on glass shows a very weak (111) 

peak which indicates a poor crystallinity or/and a poor texture. On the other hand, the 

Cu film grown on a 4 nm Ta seed layer shows a clear peak with strong intensity. This 

indicates that the Cu film has good crystallinity and probably a good texture. In order 

to examine the texture quality, X-ray rocking curve analysis (ω scan) of Cu (111) 

peak was conducted. From Fig. 4.6b, it can be seen that the full width at half 
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maximum of the rocking curve (∆θ50) of Cu film grown directly on glass substrate is 

undetectable within the measurement range of 20°. A broad peak appears when there 

is a Ta seed layer of 1 nm. The sharpest ∆θ50 peak is found at the Ta seed layer with a 

thickness of 4 nm. And with thicker Ta seed layers, θ50 of Cu (111) increases 

considerably.  

 

Fig. 4.7. AFM images of 50 nm Cu films grown on (a) glass and (b) 4 nm Ta coated 

glass substrates. 

 
Fig. 4.7 shows the AFM images of Cu films grown on 0 nm or 4 nm Ta seed 

layers. The surface roughness Rq of Cu reduced from 4.3 nm to 0.5 nm when a 4 nm 

Ta seed layer is added. Moreover, the Cu film has a smaller particle size when grown 

on a 4 nm Ta seed layer compared to that grown directly on glass substrate. 
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Fig. 4.8. Dependence of ΔΔΔΔθ50 and Rq of 50 nm Cu films on the thicknesses of Ta seed 

layer. 

The changes in Δθ50 of Cu (111) peak and the surface root-mean-square 

roughness (Rq) of 50nm Cu films are plotted in Fig. 4.8 as a function of underlying 

Ta layer thickness. Δθ50 and Rq show the similar trend: they decrease significantly 

from 0 nm Ta to 4 nm Ta and then increase slowly from 4 nm Ta to 50 nm Ta. The 

best texture and smoothness of Cu films happen for a 4 nm Ta seed layer. The Δθ50 

of Cu (111) peak and the Rq of Cu surface are as small as 3.9° and 0.5 nm, 

respectively. These results indicate that with addition of Ta seed layer, the texture and 

surface roughness of Cu films are effectively improved and the improvement 

depends on the thickness of Ta seed layer.  

There is no epitaxial relationship between β-Ta and Cu. The possible reason 

for the significant improvements in the texture, crystallinity and smoothness of Cu 

film on Ta seed layer could be explained by surface free energy and kinetic effects. 

Cu has relatively low melting point and surface free energy compared to those of Ta 
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seed layer (Table 4.1). It has been noticed that Cu is hard to wet on glass substrate 

because of the small surface free energy, as shown by poor adhesion. It is possible 

that Cu forms three-dimensional islands or clusters at the initial stage on glass 

substrate. Therefore, the following growth of Cu tends to have a random orientation 

distribution and rough surface. On the other hand, due to the large surface energy of 

Ta layer, Ta seed layer tends to soon cover the substrate surface and forms layer-like 

film with a smooth surface [18]. The wetting of Cu is favorable on Ta seed layer. Cu 

is strongly adhesive to the Ta layer. It is likely that Cu formed two-dimensional flat 

islands with a (111) preferred orientation at the initial stage. Then the oriented islands 

impinge on each other and a highly textured polycrystalline (111) Cu film forms. If 

the Ta seed layer is only 1 nm thick, the film may not fully cover the glass substrate. 

If the thickness of the Ta seed layer is 10 nm or larger, larger grain size and greater 

roughness of the Ta seed layer may cause the decline of the quality of the Cu layer. 

Therefore, the greatest improvements of Cu texture and surface smoothness appear 

with a 4 nm Ta seed layer.  



Chapter 4             SmCo5 with perpendicular anisotropy grown on Cu underlayers                                                                                                     

 97 

4.3 Fabrication of SmCo5 films with Cu / Ta dual 

underlayer on glass substrate and study of their 

structure and magnetic properties 

4.3.1 Effect of thickness of Ta 

 

Fig. 4.9. XRD spectra of 65 nm SmCo5 films grown on (a) glass and (b) a 4 nm Ta 

coated glass substrates. 

SmCo5 films with a fixed thickness of 65 nm were deposited at a constant 

temperature of 400 °C on Cu (50 nm) / Ta (0-50 nm) underlayers. 400 °C is the 

optimized deposition temperature for SmCo5 film as discussed in the next section. 

The XRD spectra of the samples grown on glass and 4nm Ta coated glass substrates, 
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respectively, are shown in Fig. 4.9a and b. For the sample without a Ta seed layer, the 

integrated intensity of the SmCo5 (0001) and SmCo5 (0002) peaks are only 17.5 and 

59.2 (counts per second). ∆θ50 is undetectable when measuring in 20° range. On the 

other hand, for the sample with a 4 nm Ta seed layer, the integrated intensity of the 

SmCo5 (0001) and SmCo5 (0002) peaks significantly increase to 298 and 1556 

(counts per second). The ∆θ50 of SmCo5 (0001) and SmCo5 (0002) peaks are 3.4o and 

3.2o, respectively. A SmCo5 (0003) reflection peak is also observed. It indicates a 

good crystallinity and texture in the SmCo5 film grown on the Cu (50 nm) / Ta (4 

nm) underlayer. With thicker Ta seed layers, ∆θ50 of SmCo5 (0001) and SmCo5 

(0002) peaks increases, showing similar trend as those of Cu (111) peaks (Fig. 4.8). 

 

Fig. 4.10. M-H loops of the samples (a) without seed layer and (b) with a 4 nmTa 

seed layer. 

 



Chapter 4             SmCo5 with perpendicular anisotropy grown on Cu underlayers                                                                                                     

 99 

It has been found that all the samples show perpendicular anisotropy. The M-H 

loops of SmCo5 thin films grown on Cu underlayer without and with a 4nm Ta seed 

layer are shown in Fig. 4.10. For the sample without Ta seed layer, the out-of-plane 

and in-plane iHc are 2.5 kOe and 0.5 kOe, respectively. By introducing a thin Ta seed 

layer, the out-of-plane iHc of the SmCo5 dramatically increases to 19.5 kOe which is 

much higher than that of the reported SmCo5 thin film fabricated by laminating Sm 

and Co sublayer alternatively [4]. The in-plane coercivity somewhat increased to 2.3 

kOe. A kink is observed in the out-of-plane M-H loop of the SmCo5 thin film with a 

Ta seed layer. It implies that a small amount of soft magnetic phase which could be 

the amorphous Sm-Co phase exists in the hard magnetic SmCo5 thin films. The 

inhomogeneity causes the non-uniform demagnetization. 

 

Fig. 4.11. Dependence of out-of-plane iHc of SmCo5 on the thickness of Ta seed layer. 

The out-of-plane iHc of SmCo5 films as a function of the thickness of Ta seed 

layer is shown in Fig. 4.11. The trend is consistent with that of SmCo5 (0001) texture, 
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as a larger out-of-plane iHc corresponds to a smaller ∆θ50.  

These results indicate that a Cu / Ta dual underlayer with a good Cu (111) 

texture and smooth surface offers excellent template for the granular epitaxial growth 

of SmCo5. Thus it leads to a good crystallinity and good (0001) texture of SmCo5. 

This desired crystallographic structure of SmCo5 films results in large perpendicular 

anisotropy and perpendicular coercivity. 

4.3.2 Study of Cu diffusion 

It is to note that in Fig. 4.9 the (0001) and (0002) peaks of SmCo5 shift to a 

smaller 2θ angle compared to standard bulk SmCo5. Table 4.2 lists the 2θ positions of 

(0002) peaks and the calculated lattice constants of a and c of standard SmCo5, 

SmCo3.3Cu1.7, SmCu5 powder samples and my samples. It can be seen that the SmCo5 

(0002) peak of my sample is located at 44.8o which is close to that of SmCo3.3Cu1.7. 

Since the atomic radius of Cu (1.28 Å) is slightly larger than that of Co (1.25 Å), 

when a Cu atom substitutes a Co atom, the lattice constant would expand and 2θ 

would shift to a smaller angle. The peak shifts towards a smaller angle indicating that 

an amount of the Co atoms in SmCo5 are replaced by Cu atoms. A cross sectional 

TEM sample of the SmCo5 / Cu / Ta was prepared for the Nanobeam EDX analysis. 

The EDX analysis of the SmCo5 layer shows a composition of SmCo3Cu2.1 (Fig. 

4.12). It proves the Cu diffusion into the SmCo5 layer. Similar results have been 

reported by Takahashi et al. [6] who proved by energy filtered elemental map that the 

diffusion of Cu into the Sm-Co layer forms a Sm(Co, Cu)5 solid solution. Sayama et 

al. states that the formation of a Sm(Co, Cu)5 alloy favors good crystallinity and large 

perpendicular anisotropy [7].  
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Table 4.2. The positions of SmCo(Cu) (0002) peak in θ - 2 θ XRD spectra and the 

lattice constants a and c. The values for SmCo5, SmCo3.3Cu1.7, SmCu5 are based on 

PDF File No. 35-1400, No. 23-934 and No. 65-933, respectively. 

 2θ (0002) (o) a (Å) c (Å) 

SmCo5 45.61 4.995 3.978 

SmCo3.3Cu1.7 45.00 5.006 4.018 
SmCu5 44.12 5.080 4.100 

My sample 44.80 -- 4.027 

 

 

Fig. 4.12. EDX spectrum of the SmCo5 layer. 
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Fig. 4.13. (a) TEM bright field image, (b) dark field image and (c) high resolution 

image of cross sectional sample of Ta (20 nm) / SmCo5 (65 nm) / Cu (50 nm) / Ta (4 

nm). 

Fig. 4.13 shows the TEM bright field image, dark field image and high 

resolution (HRTEM) image of the cross sectional sample of the Ta (20 nm) / SmCo5 

(65 nm) / Cu (50 nm) / Ta (4 nm) thin film. The multilayer structure is clearly 

observed in the bright field image. The dark field image indicates that the grain size 

of SmCo5 and Cu are both around 60 nm. In the HRTEM image, the lattice fringes 

with an inter-fringe spacing of 0.3 nm are clearly observed in the SmCo5 layer. This 

spacing is close to the inter-plane distance of the (11
−

2 0) planes in hcp-structured 
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SmCo5. Because the (11
−

2 0) planes is perpendicular to the (0001) plane in SmCo5, 

the (11
−

2 0) planes should be observed in the cross-sectional (0001) textured SmCo5 

sample. This result further confirms the (0001) texture and indicates a good 

crystallinity of the SmCo5 phase. 

4.3.3 Effect of deposition temperature of SmCo5 layer 

 

Fig. 4.14. XRD spectra of the samples with SmCo5 layer deposited at different 

temperatures of (a) 300 
o
C; (b) 325 

o
C; (c) 350 

o
C; (d) 400 

o
C and (e) 450 

o
C. 

The temperature dependence of the crystallization of SmCo5 phase and (0001) 

texture was investigated when a 4-nm Ta seed layer and a 50-nm Cu underlayer were 

used. Fig. 4.14 shows the XRD spectra of the samples with SmCo5 layers deposited 

at various temperatures. At 300 oC, no SmCo5 (0001) or (0002) peak is observed, 

suggesting either that the Sm-Co film is amorphous or that the grain size is too small 
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to be detected. At 325 oC, sharp SmCo5 (0001) and (0002) diffraction peaks are 

observed. At 350 oC, a small SmCo5 (0003) peak starts to appear in the XRD 

spectrum. The integrated intensity of both SmCo5 (000l) and (0002) diffraction peaks 

increases at elevated temperatures. The ∆θ50 of the SmCo5 (0001) peak decreases 

monotonically from 4.4o to 3.1o with the increase of the temperature from 325 oC to 

450 oC. These results indicate that the crystallization of SmCo5 has already occurred 

at the temperature of 325 oC and the (0001) texture and crystallinity of SmCo5 films 

are improved by elevating the temperature. The intensity of the Cu (111) diffraction 

peak slightly increases and the ∆θ50 of the Cu (111) peak decreases from 6.5o to 3.8o 

with the increase in temperature from 300 oC to 450 oC. It may be attributed to the 

post-annealing effect on Cu underlayers occurring during the increase in temperature 

from room temperature to the different target temperatures. Besides the temperature 

effect on the crystallization and texture improvement of SmCo5, the post-annealing 

effect improves the (111) texture of the Cu underlayer. Moreover, the degree of Cu 

diffusion into the SmCo5 layer increases with the temperature. The two above 

reasons may also contribute to the improvement in crystallization and texture of 

SmCo5 films. 

Fig. 4.15 shows the corresponding M-H loops of SmCo5 thin film deposited at 

different temperatures. Results indicate that the in-plane and out-of-plane iHc of 

SmCo5 films strongly depend on the deposition temperature of the SmCo5 layer. 

After deposition at 300 oC, the SmCo5 film possesses an amorphous-like structure 

and shows isotropic magnetic properties. Both in-plane and out-of-plane iHc are 

around 7.7 kOe. Perpendicular anisotropy appears in the film deposited at 325 oC, 

when the crystalline SmCo5 phase with the (0001) texture is found in the XRD 

examination (Fig. 4.14). The out-of-plane iHc increases from 7.6 kOe to 19.5 kOe 
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when the temperature increases from 325 oC to 400 oC. This corresponds to a better 

crystallinity and (0001) texture of SmCo5. However, the out-of-plane iHc of SmCo5 

film drops significantly to 2.3 kOe after deposition at 450 °C. This is probably due to 

the increased grain size of SmCo5 and heavier Cu diffusion. The average grain size 

of SmCo5 increased from 45 nm to 53 nm with the increase of the deposition 

temperature from 400 oC to 450 oC based on the XRD results (calculated from 

SmCo5 (0001) peak using the Scherrer’s equation). 

 
Fig. 4.15. M-H loops of the samples with SmCo5 layers deposited at different 

temperatures of (a) 300 
o
C; (b) 325 

o
C; (c) 400 

o
C and (d) 450 

o
C. 

From the above results, it can be seen that 400 oC is the optimal deposition 

temperature for the SmCo5 layer, thus the deposition temperature was fixed at 
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400 oC for SmCo5 layers in the following studies. 

4.3.4 Effect of thickness of Cu underlayer 

 

Fig. 4.16. XRD spectra of Ta / SmCo5 / Cu / Ta thin films with (a) a 15 nm Cu 

underlayer, (b) a 25 nm Cu underlayer, (c)  a 50 nm Cu underlayer and (d) a 100 

nm Cu underlayer. 

I investigated the effect of the thickness of the Cu underlayer on the magnetic 

properties of SmCo5 films. As shown in Fig. 4.16, the SmCo5 film deposited on the 

Cu underlayer with a thickness of 15 nm shows a poor crystallinity, indicated by a 

weak and broad (0002) peak. With the increasing thickness of Cu underlayers, 

SmCo5 films show improved crystallinity and texture. Strong SmCo5 (0001) and 

(0002) peaks are clearly observed for SmCo5 films grown on the 50 nm and 100 nm 

Cu underlayers. The ∆θ50 values of the Cu (111) peak and SmCo5 (0002) peak are 
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summarized in Table 4.3. The continuous decrease in the ∆θ50 of SmCo5 (0002) 

peaks is consistent with the decrease of the ∆θ50 of Cu (111) peaks, which indirectly 

demonstrates the granular epitaxial growth of SmCo5 on Cu (111) underlayers. The 

integrated intensity of the Cu (111) peak increases with the increase of thickness. 

However, the integrated intensity of the SmCo5 (0002) peak does not monotonically 

increase when the thickness of Cu is larger than 50 nm. This is probably due to a 

deteriorated surface roughness of the 100 nm Cu underlayer (Rq=1.1 nm) compared 

with the one of the 50 nm Cu underlayer (Rq=0.5 nm) which in turn influenced the 

crystallinity of SmCo5 phase.  

Fig. 4.17 summarizes the in-plane and out-of-plane iHc for SmCo5 films which 

were deposited on Cu underlayers with different thicknesses in the range of 15-100 

nm. It can be seen that 50 nm is the optimal thickness for the Cu underlayer. The out-

of-plane iHc of SmCo5 film reaches its maximum value with a 50 nm Cu underlayer. 

The results indicate that the crystallinity of SmCo5 plays an important role in the 

magnetic properties of SmCo5 films.  

Table 4.3. ∆θ∆θ∆θ∆θ50 of Cu (111) peak and SmCo5 (0002) peak of Ta / Sm-Co / Cu / Ta thin 

films with different Cu thicknesses. 

Thickness of Cu 
(nm) 

∆θ50 of  
Cu (111) (o) 

∆θ50 of 
SmCo5(0002) (o) 

15 10.5 10.2 
25 9.0 3.4 
50 3.9 3.2 

100 2.9 3.0 
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Fig. 4.17. Dependence of in-plane and out-of-plane iHc in SmCo5 films on the 

thickness of Cu underlayer. 

 

4.3.5 Effect of thickness of SmCo5 layer 

In this study, the effect of the thickness of SmCo5 layer on the magnetic 

properties of SmCo5 films is investigated. SmCo5 films with thicknesses ranging 

from 20 to 90nm were prepared on Cu (50 nm) / Ta (4 nm) underlayer at 400 °C. The 

XRD spectra for these samples are shown in Fig. 4.18. With the increasing thickness, 

the intensities of SmCo5 (0001) and (0002) peaks continuously increase. Although 

the film thickness can affect the peak intensity, the much higher intensities in the 

SmCo5 films with a thickness of 65nm and 90 nm imply improved crystallinities. 

Moreover, the ∆θ50 of SmCo5 (0001) and (0002) continuously decrease in the thicker 

SmCo5 films indicating an improved (0001) texture as shown in Table 4.4.  
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Fig. 4.18. XRD spectra of Ta (20 nm) / SmCo5 (t nm) / Cu (50 nm) / Ta (4 nm) thin 

films: (a) t=23 nm, (b) t=35 nm, (c) t=45 nm, (d) t=65 nm and (e) t=90 nm. 

Table 4.4. ∆θ∆θ∆θ∆θ50 of SmCo5 (0001) peak and SmCo5 (0002) peak in SmCo5 films with 

different thicknesses. 

Thickness of 
SmCo5 (nm) 

∆θ50 of  
Cu (111) (o) 

∆θ50 of 
SmCo5(0002) (o) 

23 11.1 5.6 
35 10.2 4.8 
45 3.8 3.5 
65 3.4 3.2 
90 3.2 3.1 

 

The out-of-plane and in-plane iHc as a function of the thickness of the SmCo5 

film is summarized in Fig. 4.19. All the SmCo5 films show perpendicular anisotropy. 

The out-of-plane iHc and perpendicular anisotropy increase with the increasing 

SmCo5 film thickness. The increase of the out-of-plane iHc is again due to the 
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improvement of the crystallinity and a better texture of SmCo5 (0001).  

 

Fig. 4.19. Dependence of in-plane and out-of-plane intrinsic coercivity in SmCo5 

films on the thickness of SmCo5 layer. 

 

4.3.6 Effect of Sm / Co composition 

Fig. 4.20 shows the XRD spectra of Sm-Co films grown on Cu (50 nm) / Ta (4 

nm) underlayers with different Sm-Co compositions where the atomic percentage of 

Sm varies from 13.2 at.% to 37.0 at.%. The peaks of Cu (111), SmCo5 (0001) and 

SmCo5 (0002) are clearly observed in all the films and no other crystalline peak 

could be observed. It indicates that a crystallographic (111) texture forms in 50 nm 

Cu underlayers, that a crystallographic (0001) texture forms in 65 nm SmCo5 

magnetic layers and 4 nm Ta seed layers and that 20 nm Ta cover layers stay in 

amorphous like structure. Surprisingly, the respective positions of SmCo5 (0001) and 

(0002) peaks for different samples remain the same despite the Sm-Co composition 

varying in a large range. It implies that SmCo5 is the preferable phase to form in all 

the films. However, the intensities of the SmCo5 (0001) and (0002) peaks vary 
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significantly. The Sm-Co film with a content of Sm of 16.7 at.% corresponding to the 

stoichiometric composition of SmCo5 shows very strong SmCo5 (0001) and (0002) 

peaks indicating a good crystallinity and/or good texture. The texture quality was 

studied by measuring the rocking curves of the SmCo5 (0002) peaks. The variations 

of the integral intensity and the full width at half maximum of the rocking curve (Δθ50) of SmCo5 (0002) peak as a function of Sm content are summarized in Fig. 

4.21.  

 

Fig. 4.20. XRD spectra of 65 nm Sm-Co films with different Sm contents grown on 

Ta (4 nm) / Cu (50 nm) underlayers. 

 



Chapter 4             SmCo5 with perpendicular anisotropy grown on Cu underlayers                                                                                                     

 112 

 
 

Fig. 4.21. Dependence of full width at half maximum of the rocking curves (ΔΔΔΔθ50) 

and integral intensity of (0002) peaks of SmCo5 according to the Sm-Co 

composition. 

The intensity of the SmCo5 (0002) peak increases significantly when the Sm 

content increases from 13.2 at. % to 16.7 at. %. It reaches a maximum at 16.7 at. % 

and decreases continuously from 16.7 at. % to 37.0 at. %. The Δθ50 reaches a 

minimum of 3.2o at 16.7 at. % of Sm indicating an excellent (000l) texture of the 

SmCo5 phase. One may notice that the intensity of the Cu (111) peak is different in 

the different samples. The intensity of Cu (111) peak was the same for all samples 

before the deposition of the Sm-Co film at high temperature. During the deposition 

of Sm-Co film, the structure of the Cu underlayer is deteriorated due to diffusion 

which is significantly dependent on the composition of the Sm-Co film. 

Consequently, the deteriorated texture of the Cu underlayer affects the texture of 

SmCo5. Therefore, the texture of Sm-Co layer is affected by both Sm content and the 

subsequently deteriorated Cu underlayer. 
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Fig. 4.22. Dependence of in-plane and out-of-plane iHc of Sm-Co films on the Sm-Co 

composition. 

The trends of iHc in the in-plane and out-of-plane direction of Sm-Co films 

with different compositions are summarized in Fig. 4.22. All the films exhibit a 

perpendicular anisotropy where the out-of-plane iHc is much larger than the in-plane 

iHc. The coercivities of the films are strongly dependent on the Sm-Co composition. 

The out-of-plane iHc trend is consistent with the trend of the intensity and the Δθ50 

of the SmCo5 (0002) peak shown in Fig. 4.21, where larger out-of-plane iHc 

corresponds to larger intensity and smaller ∆θ50 of the SmCo5 (0002) peak.  
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4.4 Fabrication of SmCo5 films with Cu / Ti and Cu / W 

dual underlayers on glass substrates and study of 

their structure and magnetic properties 

As discussed earlier, the improvement of the crystallinity of the Cu underlayer 

was due to the smooth metallic seed layer of Ta.  Ta has a much higher melting 

temperature and surface free energy than those of Cu.  It is easier to form a smooth 

seed layer on glass substrate even if the metallic layer is very thin (4 nm).  It is 

interesting to study how melting temperature of metal may affect the crystallinity and 

texture of Cu underlayer and its effect on the magnetic properties of the subsequently 

deposited SmCo5 layer.  In this project, other two metals (Ti and W) were 

investigated as the seed layer.  The selection of the two metals was based on their 

melting temperatures (Tm = 1668 oC for Ti, which is much lower than that of Ta, 

while W has a much higher Tm – 3422 oC).  

SmCo5 films were deposited on Cu (50 nm) / Ti or W (4 nm) underlayers under 

the optimal conditions found previously where the thickness of SmCo5 layer was 

fixed at 65 nm and the deposition temperature of SmCo5 was fixed at 400 °C. 

4.4.1 Deposition of SmCo5 thin film on Cu / Ti underlayer 

Fig. 4.23a shows the XRD spectrum of the SmCo5 thin film grown on Cu / Ti 

underlayer. The Cu (111), SmCo5 (0001) and SmCo5 (0002) reflection peaks are 

clearly observed. The ∆θ50 of these peaks are summarized in Table 4.5. The table also 

includes the surface roughness (Rq) of the Cu underlayer deposited on a 4 nm Ti seed 

layer. The Rq of the Cu underlayer significantly decreases from 4.3 nm to 0.8 nm 
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when grown on a 4 nm Ti seed layer. Results from the SmCo5 films deposited with 

only a Cu underlayer and a Cu / Ta underlayer are also listed for comparison. For the 

sample with only a Cu underlayer, the rocking curves of SmCo5 (0001) and SmCo5 

(0002) peaks are a horizontal line within the measurement range of 20o and thus it is 

believed that the ∆θ50 is larger than 20o. The ∆θ50 of Cu (111), SmCo5 (0001) and 

SmCo5 (0002) peaks significantly decreases to 4.0o, 3.4o and 3.9o, respectively when 

a 4nm Ti seed layer is introduced.  

 

Fig. 4.23. (a)XRD spectrum and (b) M-H loops of the SmCo5 film grown on Cu / Ti 

dual underlayer. 

 

Fig. 4.23b shows the M-H loops of the SmCo5 thin film grown on Cu / Ti 

underlayer. The out-of-plane iHc is around 6 kOe and the in-plane coercivity is only 

0.5 kOe. The perpendicular anisotropy and out-of-plane coercivity of the SmCo5 film 

are enhanced by a thin Ti seed layer. The enhancements are attributed to the 

improved crystallinity and texture of the SmCo5 phase. 

Compared with a Ta seed layer, a Ti seed layer is slightly less effective with 

respect to the improvement of the surface roughness and the (111) texture of Cu 

underlayer, and the improvement of the (0001) texture and out-of-plane coercivity of 
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the SmCo5 film. But the results imply that Ti is still an effective seed layer for 

improving the crystallinity, the (0001) texture and the out-of-plane coercivity of 

SmCo5 films. 

Table 4.5. ∆θ∆θ∆θ∆θ50 of the Cu (111), SmCo5 (0001) and SmCo5 (0002) peaks and Rq of Cu 

underlayers for film samples with different seed layers. 

Seed layer ∆θ50 of Cu 
(111) 

(o) 

∆θ50 of 
SmCo5 (0001) 

(o) 

∆θ50 of 
SmCo5 (0002) 

(o) 

Rq of Cu 
(nm) 

No seed layer undetectable > 20 > 20 4.3 
Ta 3.9 3.4 3.2 0.5 
Ti 4.0 3.4 3.9 0.8 
W 3.1 2.4 2.5 0.8 

 

4.4.2 Deposition of SmCo5 thin film on Cu / W underlayer 

 

Fig. 4.24. (a)XRD spectrum and (b) M-H loops of the SmCo5 film on Cu / W dual 

underlayer. 

Fig. 4.24 shows the XRD spectrum and the M-H loops of the SmCo5 thin film 

grown on Cu / W underlayer. The Cu (111), SmCo5 (0001) and SmCo5 (0002) 
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reflection peaks are clearly observed. A SmCo5 (0003) reflection peak is also 

observed. A W (110) peak comes from the 20 nm W cover layer. From Table 4.5, it 

can be seen that with a Cu / W underlayer, the ∆θ50 of Cu (111), SmCo5 (0001) and 

SmCo5 (0002) peaks are 3.1o, 2.4o and 2.5o, respectively which are even smaller that 

the results from the SmCo5 film grown on Cu / Ta underlayer. It suggests that W 

serves as the most effective seed layer for improving the crystallinity and the (0001) 

texture of SmCo5 films. The better texture does not bring larger coercivity. The out-

of-plane coercivity of the SmCo5 film grown on Cu / W underlayer is around 20.5 

kOe which is slightly larger than the one grown on Cu / Ta underlayer (19.5 kOe).  

4.4.3 Magnetic reversal mechanism of SmCo5 thin films 

 

Fig. 4.25. Angular dependence of normalized coercivity of the SmCo5 films grown 

on Cu / Ta, Cu / Ti and Cu / W underlayers. Zero field refers to out-of-plane 

direction. 

The angular dependences of normalized coercivity were measured to 
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investigate the magnetization reversal mechanism. Fig. 4.25 shows the angular 

dependences of the normalized coercivity for SmCo5 films deposited on Cu / Ta, Cu / 

Ti and Cu / W underlayers. ψ is the angle between applied field and easy direction of 

magnetization. For all the samples, the coercivities keep decreasing with the 

increasing angle. These curves resemble to the S-W model. It indicates that the 

SmCo5 grains rotate coherently.  

4.5 Summary 

A Ta seed layer can effectively improve the crystallinity, texture and surface 

morphology of the Cu underlayer. The improvement is strongly dependent on the 

thickness of the seed layer. The optimal Ta seed layer is a thin, continuous and 

amorphous-like layer with a thickness of 4 nm. The crystallinity, (0001) texture and 

magnetic properties of SmCo5 thin films are found to be dependent on the deposition 

temperature, the texture of the Cu (111) underlayer, the roughness of the Cu 

underlayer and the formation of Sm(Co,Cu)5 alloy through the diffusion of Cu. 

Under the optimal conditions, with a Cu (50 nm) / Ta (4 nm) underlayer, after 

deposition at 400 oC the SmCo5 magnetic layer possesses a good (0001) texture, a 

small ∆θ50 value (3.2o) and a large perpendicular coercivity around 19.5 kOe. 

Furthermore, a thin Ti and a thin W seed layer have been proved to be effective in 

improving the crystallinity, (0001) texture and magnetic properties of SmCo5 thin 

films as well. 
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5 Chapter V SmCo5 thin films with perpendicular 

anisotropy grown on Ni-alloy underlayers 
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As we saw in Chapter 4, Cu-(111) is an effective underlayer to induce (000l) 

textured SmCo5 thin films showing perpendicular anisotropy. Different seed layers 

including titanium (Ti) [1], ruthenium (Ru) [2], tantalum (Ta) [3, 4] and tungsten 

(W) have been found useful in improving the quality and crystallinity of the (111)-

textured Cu underlayer.  

However, a Cu underlayer poses two main issues: heavy diffusion of Cu into 

the SmCo5 layer and formation of large grains of SmCo5. First, Cu diffusion is 

problematic because it forms the Sm(Co, Cu)5 alloy which decreases the intrinsic 

magnetocrystalline anisotropy of the thin film and also because it is more difficult to 

optimize the microstructure and the magnetic properties of the thin film in the 

presence of an uncontrollable diffusion phenomenon (although it has been proven 

that Cu can lower the crystallization temperature of SmCo5). Second, relatively large 

grains of SmCo5 tend to form on the Cu underlayer even if the crystallinity of the Cu 

underlayer is poor. Large grains are not desirable for magnetic recording. 

As shown in Chapter 4, Cu diffusion may produce inhomogeneities which are 

evidenced by the apparition of a step around the magnetic remanence in the 

hysteresis loop (due to non-uniform demagnetization) and the Sm(Co, Cu)5 grains 

can be as large as 60 nm. 

Therefore, it is necessary to look for an alternative underlayer with a much 

lower diffusion rate and which can induce the (0001) texture of SmCo5 with a 

nanocrystalline microstructure. Recently, Seifert et al. [5] reported that epitaxial 

SmCo5 with perpendicular anisotropy could be prepared on a Ru buffered Al2O3 

(0001) single crystal substrate without any Cu addition. However, the lattice misfit 

between Ru (0002) and SmCo5 (0001) is rather large (8 %) which generates misfit 

dislocations and results in a rough surface morphology. Moreover, the expensive 
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sapphire substrate and exceedingly rare Ru are not favorable for practical 

applications. Therefore, an economic layer system with good properties, based on a 

glass substrate and producible at relatively low deposition temperature needs to be 

investigated. 

Selection of alternative metallic underlayer 

Table 5.1. Metals with a melting temperature (Tm) higher than 1200 
o
C and with a 

fcc or a hcp structure and the lattice misfits between these metals and SmCo5. “+” 

represents a bigger lattice constant of listed metal compared with that of SmCo5, 

whereas “-” represents a smaller lattice constant of listed metal compared with that 

of SmCo5. 

 

Metals with a higher melting temperature (Tm) can be expected to have a 

smaller diffusion rate than that of Cu. The suitable candidates should possess an fcc 

structure or an hcp structure because the (111) plane of the fcc structure or the (0001) 

plane of the hcp structure can possibly match the (0001) plane of the hcp structured 

SmCo5 as perpendicular magnetic media. The possible candidates are listed in Table 

5.1 with a higher Tm than that of Cu and with a fcc or a hcp structure. The calculated 

Structure Metals Tm  

(oC) 
Lattice constant 

(Å) 
Lattice misfit 

(%) 
fcc Cu 1084 a=3.61 +2.1 

     
fcc Ni 1455 a=3.54 -0.4 

fcc Mo 2623 a=3.14 -12.6 
fcc Rh 1964 a=3.80 +7.0 
fcc Pd 1555 a=3.88 +8.9 
fcc Ir 2466 a=3.83 +7.7 
fcc Pt 1768 a=3.92 +9.8 

     
hcp Ti 1668 a=2.95 +15.3 
hcp Co 1495 a=2.50 -0.4 
hcp Ru 2334 a=2.71 +7.7 
hcp Re 3186 a=2.76 +9.4 
hcp Os 3033 a=2.73 +8.4 
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lattice misfits between the candidate metals and SmCo5 are also listed. It can be seen 

that fcc-Ni and hcp-Co have small lattice misfits with SmCo5. However, Co films 

deposited at room temperature may not be of the single hcp-phase, as the fcc-phase 

may be mixed. Therefore, it is difficult to form a (0001) textured hcp Co thin film at 

room temperature. Thus, Ni is the only ideal candidate. 

Structure of Ni and Ni-W alloy 

 

Fig. 5.1. Illustration of lattice matching between Ni (111) and SmCo5 (0001). 

As discussed above, Nickel (Ni) is a possible candidate underlayer for 

inducing (0001) textured SmCo5 because of the excellent lattice-matching between 

Ni close-packed (111) planes and SmCo5 (0001) planes with a lattice misfit of only 

0.4% (as shown in Fig. 5.1). However, Ni is a soft ferromagnet with a Curie 

temperature of 354 °C. If a SmCo5 layer is deposited on a soft magnetic underlayer, 

it may significantly reduce the overall coercivity and magnetic remanence. 

Therefore, the Curie temperature of Ni has to be reduced below room temperature. In 

this project, the method of alloying with another non-magnetic element was used to 

reduce the Curie temperature. The alloying metal should have a high melting 

temperature to avoid diffusion into the SmCo5 layer and to avoid a significant 
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decrease in the melting temperature of the Ni-alloy. Thus, the refractory metals, such 

as W, Re, Ta and Mo, are possible candidates. However, the dopant should be able to 

form a solid solution phase with Ni at room temperature in a relatively large 

compositional range in order to keep the fcc structure of the Ni-alloy and reduce the 

Curie temperature to below room temperature.  After the investigation of the binary 

phase diagrams between the refractory metals and Ni, W has been indentified to be 

the suitable candidate. 

 

Fig. 5.2. Phase diagram of Ni-W binary alloys [6].  

The Ni-W phase diagram is shown in Fig. 5.2 [6]. Doping with W can reduce 

the Curie temperature of Ni below room temperature by the formation of a fcc Ni-W 

solid solution with a W concentration of approximately 8 at.% or higher (see ref. 

[7]). The solubility of W in Ni is around 12 at.% at room temperature. Moreover, in 
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the Ni-W phase diagram, the presence of the intermediate phase Ni4W is noticed. It 

is also able to induce hcp-SmCo5 as discussed in the next paragraph. 

The crystal structure of the Ni4W phase is shown in Fig. 5.3a. Ni4W is an 

ordered superstructure of an fcc lattice of the Ni4Mo type [8-10]. This tetragonal 

structure belongs to the I4/m space group. The dimensions of unit cell are a=5.73Å 

and c=3.553Å based on PDF file No. 65-2673 (as shown in Fig. 5.3a). The close-

packed ordered plane (211) is outlined and labeled in Fig. 5.3a. As reported in Ref. 

11, the Ni-Ni and Ni-Mo distances are equal in the Ni4Mo structure type. Therefore, 

the nearest atomic distances of Ni-Ni and Ni-W in the (211) plane of the Ni4W 

structure is 2.56 Å calculated from the dimensions of the unit cell. An experimental 

confirmation has been provided by Nasu et al. [11] who claimed that the nearest Ni–

Ni distance was 2.49 Å and the Ni–W distance was 2.50 Å by using EXAFS and 

SAXS methods. 

The Ni and W atoms in the (211) plane have a hexagonal structure which is 

very similar to the structure of the SmCo5 (0001) plane (as shown in Fig. 5.3b). Sm 

and Co atoms can match either Ni or W atoms. The lattice misfit between Ni4W 

(211) and SmCo5 (0001) is around 2.3%. Therefore, it should be possible to induce a 

(0001)-textured SmCo5 film on a (211)-textured Ni4W underlayer. 

In this chapter, a systematic study was carried out on the structure and the 

magnetic properties of SmCo5 films on Ni-W underlayers with different W 

concentration. 

. 
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Fig. 5.3. (a) Tetragonal unit cell of Ni4W. (b) The relationship between the Ni4W (211) 

plane and the SmCo5 (0001) plane. 
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5.1 Experimental methods 

 

Fig. 5.4. Schematic diagram of the multilayer structure. 

The multilayer film structure developed in this chapter is shown in Fig. 5.4. 

Experiments were conducted in three parts: 

(1) Study of the Ni-W underlayer. A 4 nm W seed layer was first deposited on 

glass substrate at room temperature. The Ni100-xWx (x=0~100) underlayer of 40 nm 

was then deposited at room temperature through co-sputtering of two elemental Ni 

and W targets. The alloy composition was adjusted through the sputtering power.  

(2) Study of SmCo5 thin films grown on Ni100-xWx (x=0~100) / W underlayer. 

Two targets of Sm and Co were used for the co-sputtering of Sm-Co thin films. 65 

nm thick SmCo5 films were deposited at 530 oC on Ni100-xWx (x = 0 ~ 100) (40 nm) / 

W (4 nm) underlayers. 

(3) Study of Sm-Co thin films grown on a Ni4W / W underlayer. 65 nm of 

SmCo5 was deposited at different substrate temperatures ranging from room 
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temperature to 550 °C. SmCo5 (20-100 nm) / Ni4W (40 nm) / W (4 nm) and SmCo5 

(65 nm) / Ni4W (0-80 nm) / W (4 nm) films were prepared to study the effect of the 

thickness of the Sm-Co layer and the Ni4W underlayer at the temperature of 500 °C 

(found to be optimal).  In the composition study, the composition of the Sm-Co layer 

ranges from Sm13Co87 to Sm33Co67 . 

A 20 nm W cover layer was deposited in each sample to avoid the oxidation of 

the Sm-Co layer. 

5.2 Study of Ni-W alloy underlayers 

5.2.1 Crystallographic structure 
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Fig. 5.5. XRD spectra of 40 nm Ni films (a) with a 4 nm W seed layer and (b) 

without seed layer. 

As discussed in Chapter 4, a metal seed layer with a high melting point can 

improve the crystallinity and surface roughness of the Cu (111) underlayer. From 
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Fig. 5.5, with a 4 nm W film as the seed layer, the 40 nm Ni film shows an improved 

crystallinity and texture. On the other hand, without the W seed layer, the Ni layer 

shows a poor crystallinity as the (111) peak has much lower intensity. Therefore, in 

this work, the Ni-W underlayers were deposited on W seed layers with a thickness of 

4 nm. 

XRD spectra of the Ni-W films are shown in Fig. 5.6a. Only the (111) 

diffraction peak appears in the XRD spectrum of the pure Ni film. However, the 

texture is poor, as no signal could be obtained in the rocking curve. The intensity of 

the (111) peak decreases when increasing the W concentration until 8 at.% of W, 

indicating poor crystallinity in the Ni-W solid solution films. The fcc-(111) peak 

shifts slightly to a smaller angle when increasing the W concentration. This is due to 

the lattice expansion because the atomic radius of W (0.137 nm) is larger than that of 

Ni (0.125 nm). The intensity of the peak at 40~50 degree increases in Ni84W16 and 

reaches its maximum value in Ni80W20. The peak intensity decreases again at 22 at. 

% and disappears at higher W concentrations, indicating the formation of an 

amorphous-like structure. The peak intensity and its d-spacing are plotted in Fig. 

5.6b. My XRD study shows the formation of the specific intermediate phase Ni4W in 

the W concentration range of 16-22 at. %. In order to confirm the formation of the 

Ni4W phase, a XRD scan from 20° to 120° was conducted for the Ni80W20 film. As 

shown in Fig. 5.7, the Ni4W (422) peak at 96.0o is clearly observable which proves 

the formation of a Ni4W phase with a (211) texture. A broad rocking curve was 

observed for Ni80W20, as shown in the inset in Fig. 5.6a, indicating a better texture 

compared with pure Ni. 
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Fig. 5.6. (a) XRD spectra of 40 nm Ni-W layers with a varying W atomic percentage 

(0 at.% ~ 100 at.%) grown on 4 nm W coated glass substrates. (b) The inter-planar 

spacing and peak integral intensity of Ni (111) and Ni4W (211) as a function of W 

content. 
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Fig. 5.7. XRD spectrum of the obtained Ni80W20 sample within a range from 20º to 

120º.  

5.2.2  Microstructure 

Fig. 5.8a shows the bright field and dark field plane-view TEM images of the 

Ni and the Ni4W (Ni80W20) thin films and HRTEM images of the Ni68W32 and the 

Ni50W50 thin films deposited at room temperature. The microstructure of the pure Ni 

film is not uniform with a relatively broad grain size distribution of 10-40 nm. The 

selected area electron diffraction pattern (SAED) inserted in the figure confirms the 

fcc-Ni phase. The Ni4W (Ni80W20) film has a much smaller grain size of 

approximately 10 nm. Moreover, the SAED shows a very bright (211) diffraction 

ring and visible (130), (420) and (422) rings which indicates that the (211) is the 

preferred orientation in the Ni4W film. The high-resolution TEM image of the 

Ni68W32 film shows some dark patches. The SAED pattern shows a weak ring of 

(211)-Ni4W, indicating the presence of small Ni4W clusters. The Ni50W50 film shows 

a uniform amorphous structure. The surface morphologies of Ni, Ni4W and Ni68W32 
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films were studied by AFM, as shown in Fig. 5.8b. It can be seen that the Ni4W film 

shows a relatively smooth surface (with a surface roughness Rq =1.07 nm) and the 

Ni68W32 film shows a very smooth surface (Rq = 0.58 nm). On the other hand, the Ni 

film shows a much rougher surface (Rq =2.07 nm). 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
 

Fig. 5.8. (a) TEM images and diffraction patterns of 40 nm Ni, Ni80W20 (Ni4W), 

Ni68W32 and Ni50W50 films grown on 4 nm W coated glass substrates. (b) AFM 

images of 40 nm Ni, Ni80W20, and Ni68W32 films grown on 4 nm W coated glass 

substrates. 
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5.2.3 Magnetic properties 

Fig. 5.9 shows the M-H loops of the Ni–W films at room temperature. The 

room temperature saturation magnetization (Ms) of Ni-W films decreases with 

increasing W concentrations and disappears when the W concentration is 8 at.% or 

higher. The Ni4W phase shows a paramagnetic behavior at room temperature. Fig. 

5.10 shows that the Ms of Ni-W films is inversely proportional to the W content.  

 

Fig. 5.9. M-H loops of Ni-W alloys with from 0 at.% to 20 at.% of W measured in 

the direction of perpendicular to the film plane at room temperature by VSM. 

 

Fig. 5.10. Relation between the W content and the saturation magnetization of Ni-W 

thin films. 
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5.3 Fabrication of SmCo5 films on Ni-W alloy underlayers 

and study of their structure and magnetic properties 

5.3.1 Deposition of SmCo5 films on Ni100-xWx underlayers 

 

Fig. 5.11. XRD spectra of 65 nm SmCo5 films grown at 530
 o
C on 40 nm Ni100-xWx (x 

= 0 ~100) underlayers. 

65 nm-thick SmCo5 films were deposited on Ni100-xWx (x = 0~100) 

underlayers with different compositions at the deposition temperature of 530 °C. The 

detailed studies of the optimization of deposition temperature and thickness will be 
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discussed in the Section 5.3.2. Fig. 5.11 shows the XRD spectra of SmCo5 thin films. 

It can be seen that no crystalline peaks for SmCo5 can be found at lower W contents 

(0 and 4 at. %), indicating an amorphous-like structure. The crystalline peaks of 

SmCo5 (0001) and (0002) start to appear on the Ni92W8 underlayer, and SmCo5 

(0001) and (0002) peaks are clearly visible on the Ni80W20 underlayer. It is to note 

that the W-(110) peak appears in every XRD spectrum because of the W cover layer. 

Except (0001) and (0002), no other crystalline peaks corresponding to the SmCo5 

phase could be observed, indicating a good crystallographic (0001) texture. 

Surprisingly, the SmCo5 film grown on the Ni68W32 underlayer also shows a good 

crystallinity and a strong (0001) texture. The Ni68W32 underlayer exhibits an 

amorphous-like structure under XRD and shows Ni4W nanoclusters under TEM with 

an excellent surface smoothness as shown in Fig. 5.8. The above results suggest that 

a smooth surface may be favourable to the growth of SmCo5 films with a good 

crystallinity and texture. On the contrary, the amorphous-like Ni50W50 underlayer 

without nano-clusters results in amorphous-like Sm-Co film as no crystalline peak of 

SmCo5 can be observed in the XRD spectrum. It implies that the (211) oriented 

Ni4W nano-clusters in the Ni68W32 underlayer are still needed to induce the growth of 

a (0001) textured SmCo5 thin film. 
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Fig. 5.12. (a) Summary of in-plane and out-of-plane coercivities of 65 nm SmCo5 

films grown at 530 
o
C on 40 nm Ni100-xWx (x = 0 ~100) underlayers. (b) M-H loops of 

65 nm SmCo5 films grown on 40 nm Ni68W32 layers on 4 nm W coated glass 

substrates. 

Fig. 5.12a summarizes the in-plane and out-of-plane intrinsic coercivities (iHc) 

of SmCo5 films on different Ni100-xWx (x = 0~100) underlayers. Results indicate that 

almost all the SmCo5 films exhibit perpendicular anisotropy. Large out-of-plane 

coercivities and strong perpendicular anisotropy are obtained in the SmCo5 thin films 
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grown on (211) textured Ni4W (Ni80W20) underlayer and amorphous-like Ni68W32 

underlayer with Ni4W clusters, when the (0001)-textured crystalline SmCo5 phase is 

found in the XRD examination (Fig. ). The M-H loops of the SmCo5 film deposited 

on the Ni68W32 underlayer are shown in Fig. 5.12b. The out-of-plane loop has a 

square shape with an iHc of 15.5 kOe whereas the in-plane loop shows a very low 

coercivity. Compared with the previous results for SmCo5 on Cu underlayers [3, 4], 

SmCo5 thin film grown on a Ni68W32 underlayer shows a better squareness and 

higher perpendicular anisotropy with a nanocrystalline structure as shown in the 

TEM examination. This work has showed that a (211)-textured Ni4W underlayer can 

induce (0001)-textured SmCo5 with a high coercivity and large perpendicular 

anisotropy. Nanocrystalline Ni4W with a smooth surface may be more effective in 

generating (0001)-texture SmCo5 with excellent magnetic properties as observed 

with the Ni68W32 underlayer. 

5.3.2 Deposition of SmCo5 films on Ni4W underlayers 

5.3.2.1  Effect of deposition temperature of SmCo5  

SmCo5 films with a fixed thickness of 65 nm were used to study the effects of 

the deposition temperature on the structure and the magnetic properties. Fig. 5.13 

shows the XRD spectra of these SmCo5 thin films deposited at elevated temperatures 

on a 40nm Ni4W underlayer. It can be seen that no crystalline peaks for SmCo5 can 

be seen if the deposition temperature is below 500 °C, indicating an amorphous-like 

structure. The crystalline peaks of SmCo5 (0001) and (0002) start to appear at 500°C. 

It is to note that except (0001) and (0002), no other crystalline peaks corresponding 

to the SmCo5 phase could be observed, indicating a good crystallographic (0001) 

texture. However, when the deposition temperature is further increased to 550°C, the 
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(0001) peak of SmCo5 disappears and the (0002) peak becomes weaker, indicating a 

poor crystallinity at higher deposition temperatures. 

 

 

Fig. 5.13. XRD spectra of W 4 nm / Ni4W 50 nm / SmCo 65 nm (410~550 °C) / W 20 

nm (410~550 °C) thin films. 

Fig. 5.14a shows the relation between the deposition temperature and the in-

plane and out-of-plane iHc of SmCo5 films. Results indicate that the iHc of SmCo5 

films strongly depends on the deposition temperature. For a deposition temperature 

ranging between room temperature and 410 °C, the coercivity is practically zero. The  
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Fig. 5.14. (a) Relation between the deposition temperature and the in-plane and out-

of-plane intrinsic coercivities of SmCo in W 4 nm / Ni4W 40 nm / SmCo 65 nm 

(410~550 °C) / W 20 nm (410~550 °C) thin films. (b) M-H loops of SmCo5 deposited 

at 500 °C in perpendicular and longitudinal directions.  
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film after deposition at 440 °C has an amorphous or similar structure and possesses a 

relatively high in-plane coercivity which indicates that the amorphous-like SmCo5 

shows in-plane anisotropy. High perpendicular anisotropy appears after deposition at 

500°C, when the crystalline SmCo5 phase with (0001) texture can be found in the 

XRD examination (Fig. 5.13). The M-H loops corresponding to the SmCo5 film 

deposited at 500 ºC are shown in Fig. 5.14b. The coercivity is around 12.7 kOe in the 

direction perpendicular to the film plane. The initial curve of the sample indicates a 

pinning-type reversal mechanism. In addition, Fig. 5.15 shows the bright field and 

dark field cross-section TEM image of the SmCo5 film deposited at 500 °C where it 

can be seen that the SmCo5 layer has a nanocrystalline structure. 

 

Fig. 5.15 (a) TEM bright field image and (b) dark field image of a cross sectional 

sample of W 4 nm / Ni4W 40 nm / SmCo5 65 nm (500 °C) / W 20 nm (500 °C) thin 

films. 

As shown in Fig. 5.14a, the coercivity of the sample after deposition at 550 °C 

decreases significantly. The low coercivity is certainly consistent with the poor 

crystallinity found in the XRD examination, as shown in Fig. 5.13. The poor 

(a) (b) 
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crystallinity could be associated with a diffusion of W from the cover layer occurring 

at high temperature. 

 

Fig. 5.16. Angular dependence of the normalized coercivity of the SmCo5 film grown 

on Ni4W / W underlayer. Zero field refers to out-of-plane direction. 

 
Fig. 5.16 shows the angular dependence of the normalized coercivity of the 

SmCo5 sample deposited at 500 °C. The curve trend follows the Kondorsky model 

(1/cosψ), indicating a domain motion coercivity mechanism. Similar results were 

reported in Ref. 5 and 6. 

5.3.2.2  Effect of thickness of Ni4W underlayer 

From the above discussion, the optimal deposition temperature for the SmCo5 

layer is around 500-530 oC (Fig. 5.13). Therefore, I have studied the effects of the 

thickness of the Ni4W underlayer, the thickness of the SmCo5 magnetic layer and the 

Sm/Co composition, when all the Sm-Co films were deposited at 500 oC. Fig. 5.177 

shows the dependence of the out-of-plane coercivity on the thickness of Ni4W 

underlayer for a film structure of W (20 nm)/ Sm-Co (65 nm) / Ni4W (0-80 nm) / W 

(4 nm). The SmCo5 film exhibits high out-of-plane coercivities around 12 kOe when 
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grown on a Ni4W underlayer with a thickness of not less than 13 nm. But without the 

Ni4W underlayer, the SmCo5 film only shows a very small coercivity of 0.7 kOe. 

This indicates that a Ni4W underlayer is essential for obtaining SmCo5 thin films 

with high perpendicular coercivity and perpendicular anisotropy. The thickness of 

the Ni4W underlayer does not influence the coercivity significantly when it reaches 

13 nm and above. Compared with my previous results [7, 8], it is therefore possible 

to generate a coercivity in SmCo5 as high as when using a 50 nm Cu underlayer with 

a much thinner 13 nm Ni4W underlayer. The thinner Ni4W underlayer is more 

favorable for practical applications because it reduces the magnetic spacing loss 

between the soft magnetic underlayer of a double-layered medium and the writing 

head. 

 

Fig. 5.17. Dependence of the out-of-plane coercivity on the thickness of Ni4W 

underlayer for a film structure of W (20 nm) / Sm-Co (65 nm) / Ni4W (0-80 nm) / W 

(4 nm). 
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5.3.2.3  Effect of thickness and composition of SmCo5 layer 

 

 

Fig. 5.18. (a) Dependence of the out-of-plane and in-plane coercivity on the 

thickness of SmCo5 magnetic layer for a film structure of W (20 nm)/ Sm-Co (20-

100 nm)/Ni4W (40 nm)/W (4 nm). (b) Dependence of the out-of-plane and in-plane 

coercivity on the Sm content for a film structure of W (20 nm)/ Sm-Co (65 

nm)/Ni4W (40 nm)/W (4 nm). 

 

The coercivity of the SmCo5 magnetic layer is found to be dependent on its 

thickness. From Fig. 5.188a, the coercivity increases continuously with the increase 
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of the thickness of SmCo5. This is due to the improved crystallinity of the SmCo5 

phase in a thicker SmCo5 film. Similar results have been discussed in chapter 3 and 

chapter 4. In addition, the Sm/Co composition influence the coercivity of Sm-Co thin 

films significantly. As shown in Fig. 5.188b, the highest out-of-plane coercivity is 

achieved in the Sm-Co film with the 1/5 atomic ratio of Sm/Co. A deviation of 

Sm/Co composition from the 1/5 ratio leads to a significant decrease in out-of-plane 

coercivity. 

5.3.3 Deposition of SmCo5 film on Ni / Ni4W underlayer 

As shown in Fig. 5.11, no crystalline SmCo5 can be formed on a pure Ni 

underlayer with a relatively poor texture and a relatively large roughness. In order to 

understand if highly textured SmCo5-(0001) can be formed on a well textured Ni-

(111) underlayer, 20 nm of Ni was deposited on a Ni4W underlayer, as shown in Fig. 

5.19b. The XRD study shows that well crystallined and highly textured Ni-(111) can 

be formed after the deposition on highly textured Ni4W-(211). The rocking curve 

(shown in the insert in Fig. 5.19a) shows a ∆θ value of 2.77°. The subsequently 

deposited SmCo5 shows clear (0001) and (0002) peaks (Fig. 5.19a), confirming its 

(0001)-texture. The M-H loops are shown in Fig. 5.19c. An out-of-plane coercivity 

of 11.5 kOe with a large perpendicular anisotropy is shown in the M-H loops, as the 

in-plane M-H loop has a very small coercivity. The step at zero field in the out-of-

plane M-H loop is attributed to the soft-magnetic Ni phase. This layer structure could 

be developed to a double-layered perpendicular recording medium where Ni acts as 

the soft magnetic underlayer (SUL) below the SmCo5 thin film that acts as the 

magnetic recording layer. 
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Fig. 5.19. (a) XRD spectrum, (b) illustration of layer structure and (c) M-H loops of 

65 nm SmCo5 films grown  at 530 
o
C on Ni (20 nm) / Ni4W (20 nm) / W (4 nm) 

layers on glass substrate. 

5.4 Summary 

In summary, a nanocrystallined and (211)-textured Ni4W underlayer was 

successfully deposited on a 4 nm W seed layer at room temperature. The Ni4W-(211) 

plane has a hexagonal structure which is similar to that of the SmCo5-(0001) plane. 

The deposition of the SmCo5 layers on the (211)-Ni4W underlayer led to a strong 

(0001) texture with a nano-grained structure after deposition at a temperature in the 

range of 500-540°C. High coercivity over 10 kOe with a large perpendicular 
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anisotropy has been achieved on a Ni4W underlayer on glass substrate, if the 

thickness of the Ni4W underlayer is 13 nm or thicker. 

Moreover, SmCo5 thin films grown on Ni100-xWx (x = 0 ~ 100)/W underlayers 

were studied. (0001) textured SmCo5 thin films were successfully prepared on 

Ni68W32 underlayer with Ni4W clusters. The maximum out-of-plane iHc of 15.5 kOe 

was achieved in SmCo5 thin films grown on Ni68W32 underlayer. Highly textured Ni-

(111) underlayer can be obtained on highly textured (211)-Ni4W. The results 

obtained have shown that the film structure of SmCo5 / Ni / Ni4W / W is a promising 

candidate for hard / soft double-layered film for perpendicular recording. 
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6 Chapter VI Conclusion and future work 
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6.1 Conclusion 

In this thesis, I prepared SmCo5 thin films with the desired magnetic 

properties using multilayer technology and magnetron sputtering deposition. Both 

longitudinal anisotropy and perpendicular anisotropy were obtained by choosing 

suitable underlayers to induce the desired structure. The crystallographic structure, 

microstructure and magnetic properties of the films were investigated. The results 

obtained are summarized as the following: 

1. SmCo5 thin films have been successfully fabricated with a large 

longitudinal anisotropy and coercivity up to 26.5 kOe on glass substrates with a Cr 

underlayer. The satisfactory properties of SmCo5 films can be attributed to the 

specific texture and smooth surface of the Cr underlayer: when SmCo5 was 

deposited at 400 °C, a (11
−

2 0) texture can be induced if the Cr underlayer had a 

(200) texture and a smooth surface. It was found that a high-quality Cr underlayer 

can be obtained after deposition at 400 °C. A lower deposition temperature favored 

the formation of a disordered Cr film or a Cr film with a (110) texture, while a 

higher deposition temperature caused rough film surface. The Cr underlayer needed 

a minimum thickness of 50-60 nm in order to have a good crystallinity. High 

intrinsic coercivity required a minimum thickness of the SmCo5 layer in the order of 

50 nm, as a thinner film possessed a poor crystallinity. The resultant films exhibited 

large in-plane magnetic anisotropy and high in-plane coercivity with a 

nanocrystalline structure. Under these optimal conditions, a SmCo5 film was 

deposited on an MgO substrate as well. The crystallographic structure, 

microstructure and magnetic properties of the SmCo5 thin films with a Cr 

underlayer grown on MgO (100) and glass substrates were found to be different. 
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The epitaxial relationship: SmCo5 (11
−

2 0) <0001> // Cr (200) <110> // MgO (200) 

<001> was demonstrated between SmCo5, Cr and MgO. This SmCo5 film exhibited 

in-plane anisotropy, in-the-plane anisotropy and remanence enhancement. On the 

other hand, polycrystalline SmCo5 film with a preferred (11
−

2 0) orientation was 

grown on a Cr underlayer with a (200) texture on an amorphous glass substrate. 

This SmCo5 film showed even larger in-plane anisotropy and remanence 

enhancement due to the nanocrystalline structure and strong interaction between 

grains. 

2. Highly (111) textured Cu underlayers were fabricated on glass substrates 

by introducing Ta seed layers. Highly (000l) textured SmCo5 thin films exhibiting 

large perpendicular anisotropy and high out-of-plane coercivity were obtained on 

the Cu / Ta dual underlayers. A Ta seed layer was effective in improving the 

crystallinity, texture and surface morphology of the Cu underlayer. The 

improvement strongly depended on the thickness of the Ta seed layer. The optimal 

Ta seed layer was a thin, continuous and amorphous-like layer with a thickness of 4 

nm. The crystallinity, texture, and surface morphology of the Cu underlayer 

significantly influenced the crystallinity, texture and magnetic properties of the 

SmCo5 layer. Under the optimal conditions, when the SmCo5  was deposited at 400 

oC on a Cu (50 nm) / Ta (4 nm) dual underlayer, the SmCo5 magnetic layer 

possessed a good (000l) texture, a small ∆θ50 value (3.2o) and a large out-of-plane 

coercivity around 20 kOe. When the Ta seed layer was present, well crystallized 

SmCo5 films with (0001) texture can be obtained at a deposition temperature that is 

as low as 325 oC. Moreover, Cu from the Cu underlayer diffused into the SmCo5 

layer which resulted in the improved crystallinity of the film by forming 
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Sm(Co,Cu)5 phase but rather large grain size of around 50 nm. 

3. For the first time, a nanocrystallined and (211)-textured Ni4W / W dual 

underlayer was found to be able to induce SmCo5 thin films with perpendicular 

anisotropy. This is due to the Ni4W-(211) plane having a hexagonal structure which 

is similar to that of the SmCo5-(0001) plane. The deposition of the SmCo5 layers on 

the (211)-Ni4W / W underlayer led to a strong (0001) texture with a nano-grained 

structure after deposition at a temperature in the range of 500-540°C. High 

coercivity over 10 kOe with a large perpendicular anisotropy has been achieved on a 

Ni4W underlayer on glass substrate if the thickness of the Ni4W underlayer is 13 nm 

or thicker. Moreover, SmCo5 thin films were also prepared on a Ni68W32 underlayer 

with Ni4W clusters. A maximum out-of-plane iHc of 15.5 kOe was achieved in 

SmCo5 thin films grown on Ni68W32 underlayer. Highly textured Ni-(111) 

underlayers can be obtained on highly textured (211)-Ni4W. The results have shown 

that the film structure of SmCo5 / Ni / Ni4W / W is a promising candidate for 

hard/soft double-layered film for perpendicular recording. 

6.2 Future work 

In the competitive race towards ever higher magnetic recording densities, 

SmCo5 is a very promising candidate as shown by the high coercivity and the large 

anisotropy of the films produced using the methods presented in this thesis. In this 

respect, the work completed here represents a great step forward towards the 

applicability of the SmCo5 thin film technology in real-life applications such as 

magnetic data storage and micro-electronic-mechanical systems (MEMS). 

However, many practical problems need to be solved and many technical 

optimizations need to be completed for SmCo5 thin films to be readily usable in 
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actual hard disk drives. 

First, a major concern is the relatively poor corrosion resistance of SmCo5. 

Good corrosion resistance is an important factor for practical use as a recording 

medium. Therefore, strategies to improve the corrosion resistance such as the use of 

additive elements in the SmCo5 layer or the use of a protective cover layer should be 

quantitatively investigated. 

Second, further experimental work should be done on reducing the thickness 

and the grain size of the SmCo5 layer. This can be achieved by adding non-magnetic 

materials such as C in the SmCo5 layer and by controlling the microstructure of the 

underlayer. Besides, non-magnetic additives in SmCo5 can also decrease the 

exchange coupling between grains in order to increase the signal-to-noise ratio. 

Third, for perpendicular recording, a soft magnetic underlayer (SUL) is 

needed to increase the writing ability and the read back signal amplitude. The SUL 

should have a specific texture in order to induce the desired texture in the recording 

layer. My preliminary results show that SmCo5 / Ni / Ni4W / W is a promising layer 

configuration for a hard/soft double-layered film. However, the microstructure of 

the Ni layer (acting as a SUL) should be further adjusted so that there is no distinct 

domain wall in the film. This is necessary in order to avoid “spike noise”. Moreover, 

an appropriate intermediate layer between the SUL and the recording layer needs to 

be discovered. The intermediate layer should be able to de-couple these two layers 

and to control the texture and microstructure of the recording layer. In addition, this 

intermediate layer should be thin enough to avoid spacing loss and should be 

immiscible with the SUL and the recording layer. 

Last, the read-write characteristics for SmCo5 / Ni / Ni4W thin films as 

perpendicular recording media should be practically evaluated.  
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I also believe that SmCo5 films with satisfactory structures and properties 

such as the one fabricated in this thesis can be applied not only to conventional 

recording but also to advanced recording technologies such as pattern recording and 

heat assisted recording. 

In addition, SmCo5 with a high coercivity and a large perpendicular 

anisotropy may be also interested for other applications, such as MEMS and as a 

magnetic layer in spintronics devices. The future work includes the exploration of 

SmCo5 thin films for other hard magnetic applications. 


