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vi Summary

Summary

Low-Complexity Frequency Synchronization
for Wireless OFDM Systems

The Orthogonal Frequency Division Multiplexing (OFDM) system provides
an efficient and robust solution for communication over frequency-selective
fading channels and has been adopted in many wireless communication stan-
dards. The multiple-input and multiple-out (MIMO) OFDM system further
increases the data rates and robustness of the OFDM system by using mul-
tiple transmit and receive antennas. The multi-user MIMO-OFDM system is
an extension of the MIMO-OFDM system to a multi-user context. It enables
transmission and reception of information from multiple users at the same
time and in the same frequency band. One drawback of all wireless OFDM
systems is their sensitivities to frequency synchronization errors, in the form
of carrier frequency offsets (CFO’s). CFO causes inter-carrier interference,
which significantly degrades the system performance. Accurate estimation
and compensation of CFO is thus essential to ensure good performance of
OFDM systems. To this end, many CFO estimation and compensation al-
gorithms have been described in the literature for different wireless OFDM
systems. These algorithms can be broadly divided into two categories, namely
blind algorithms and training-based algorithms.

A key drawback of blind algorithms is their high computational complexity. In
this thesis, we address this drawback by developing low-complexity blind CFO
estimation algorithms exploiting null subcarriers in single-input single-output
(SISO) OFDM systems. Null subcarriers are subcarriers at both ends of the
allocated spectrum that are left empty and used as guard bands. To reduce
the complexity of existing algorithms, we derive a closed-form CFO estimator
by using a low-order Taylor series approximation of the original cost function.
We also propose a successive algorithm to limit the performance degradation
due to the Taylor series approximation. The null subcarrier placement that
maximizes the signal to noise ratio (SNR) of the CFO estimation is also stud-
ied. We show that to maximize the SNR of CFO estimation, null subcarriers
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should be evenly spaced.

A key drawback of training-based algorithms is the training overhead from the
transmission of training sequences, as it reduces the effective data throughput
of the system. Compared to SISO-OFDM systems, the training overhead for
MIMO-OFDM systems is even larger due to the use of multiple antennas. To
address this drawback, in this thesis, we propose an efficient training sequence
design for MIMO-OFDM systems using constant amplitude zero autocorrela-
tion (CAZAC) sequences. We show that using the proposed training sequence,
the CFO estimate can be obtained using low-complexity correlation operations
and that the performance approaches the Cramer-Rao Bound (CRB). In the
uplink of multi-user MIMO-OFDM systems, there are multiple CFO values
between the base-station and different users. The maximum-likelihood CFO
estimator is not practical here because its complexity grows exponentially with
the number of users. To reduce this complexity, we propose a sub-optimal CFO
estimation algorithm using CAZAC training sequences. Using the proposed
algorithm, the CFO of each user can be estimated using simple correlation
operations, while the computational complexity grows only linearly with the
number of users. The performance approaches the single-user CRB for practi-
cal SNR values. We also find the CAZAC sequences that maximize the signal
to interference ratio of the CFO estimation.
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Chapter 1
Introduction

In this chapter, we first provide an overview of the wireless communication

system and the characteristics of the wireless communication channel. We

then describe the Orthogonal Frequency Division Multiplexing (OFDM) sys-

tem and show its numerous advantages that have made it one of the most

widely adopted systems for wireless communications. We also briefly intro-

duce the Multiple Input Multiple Output (MIMO) OFDM system and the

multi-user MIMO-OFDM system, which uses OFDM technology in a multi-

antenna and multi-user context to further increase the achievable data rates

in wireless channels. The detrimental effect of frequency synchronization error

in the form of carrier frequency offset (CFO) on the performance of OFDM

systems is described next. We show that to guarantee good performance of

OFDM systems, the CFO must be accurately estimated and compensated. We

then present a literature review on the frequency synchronization, including

CFO estimation and compensation, for different OFDM systems and high-
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Transmit 

Antenna

Receive 

Antenna

Reflector 1

Reflector 2

LOS Path

Reflection Path 1

Reflection Path 2

Wireless Communication 

Channel

Receiver

Transmitter

Fig. 1.1: Block diagram of a point to point wireless communication system.

light specific challenges, which motivate the research work in this thesis. This

chapter concludes by a description of the outline of and contributions in the

following chapters of this thesis.

1.1 Overview of Wireless Communication Systems

Figure 1.1 shows a brief block diagram of a point to point wireless communi-

cation system. The system consists of a transmitter with a transmit antenna,

a receiver with a receive antenna and the wireless communication channel in

between. For digital wireless communication systems, the transmitter takes

the information that the user wants to transmit, encodes it, modulates the en-

coded signal to an allocated frequency band, and transmits it via the transmit

antenna in the form of electromagnetic (EM) waves to the wireless commu-
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nication channel. The wireless communication channel is the media where

the transmitted EM waves from the transmit antenna propagate to the re-

ceive antenna. The functionalities of the receiver include gathering the EM

waves using the receive antenna and processing them to produce an estimate

of the transmitted information. One important parameter in wireless com-

munications is the spectrum allocated for transmission. This determines the

frequency band in which the wireless communication is allowed to take place,

and also the bandwidth of the communication system.

The wireless communication channel is characterized by multi-path propaga-

tion. Besides the direct line of sight (LOS) propagation path, the transmitted

signal reaches the receiver also via large numbers of reflection paths with differ-

ent propagation delays. These reflections are caused by the terrain and obsta-

cles in the propagation environments such as buildings, vehicles, pedestrians

and walls etc. Figure 1.1 illustrate a simple example of multipath propagations

in wireless communication channels for three paths. In this case, the trans-

mitted signal from the transmit antenna reaches the receive antenna through

both the LOS path and the reflection path 1 and 2 from reflector 1 and 2. Due

to the different delays of these propagations paths, the receive antenna will

receive multiple versions of the transmitted signal at slightly different times.

In this case, the overall channel can be modeled as the summation of different

channel components from different propagation paths [1] [2]. The maximum

delay spread of the channel is defined as the difference between the maximum

and the minimum delays among different propagation paths. As each path

component has randomly distributed amplitude and phase over time, the am-

plitude and phase of the overall channel may experience rapid fluctuations
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over a short period of time. This type of channel is called fading channel.

In digital communications, the digital information is mapped to analog wave-

forms suitable for transmission over a communication channel using a digital

modulator [3]. Normally, the digital modulator takes blocks of k binary bits

and maps them to one of M = 2k deterministic analog waveforms. Each block

of k binary bits is called a digital data symbol, while the duration of the analog

waveform corresponds to a digital data symbol is called the symbol duration.

When the bandwidth of the system is small, the symbol duration is usually

much larger than the maximum delay spread of the channel. In this case, the

gain (including both the amplitude and phase) of the overall fading channel

can be modeled as a scalar random variable in the time domain. In the fre-

quency domain, this type of channel has a constant (flat) frequency response

over the transmission band and hence, is also called flat fading channel. When

the bandwidth of the system is large, the symbol duration is smaller than the

maximum delay spread of the channel. In this case, the channel can be viewed

as a finite impulse response (FIR) filter with multiple nonzero taps and each

tap is modeled as a random variable. In the frequency domain, the channel

responses at different frequencies in the transmission band are different. This

type of fading channel is called frequency selective fading channel. In the time

domain, the frequency selective fading channel causes inter-symbol interfer-

ence (ISI) in the received signal, which can significantly degrade the system

performance.

In the past few decades, wireless communication technology has evolved enor-

mously, from expensive and exclusive professional (e.g. military) equipment
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to today’s omnipresent low-cost consumer systems such as Global System for

Mobile communications (GSM), Bluetooth, and wireless local area networks

(WLAN). We also see a trend in wireless technology from supporting only voice

and low-rate data services towards supporting high-rate multimedia applica-

tions. For example, as shown in Figure 1.2, in well under a decade, WLAN

technology has evolved from the first IEEE 802.11b system supporting a peak

data rate of 11 Mb/s [4] to the state-of-the-art IEEE 802.11n system support-

ing a peak data rate of 600 Mb/s [5]. Moreover, in the IEEE 802.11 VHT

(very high throughput) standard, which is expected to be finalized in 2012,

the peak data rate will go beyond 1 Gb/s [6]. This trend is further confirmed

by the Edholm’s law [7], which states that data rates of wireless systems evolve

exponentially over time, in lockstep with Moore’s law [8] for the evolution of

digital IC technology. To support such high data rates in the order of Mb/s or

Gb/s, the bandwidth of the system is normally in the order of tens of MHz or a

few GHz. These high data rate communication systems are also referred to as

broadband communication systems in contrast with narrow band communica-

tion systems with bandwidth in the kHz order. For broadband communication

systems, channels are usually frequency selective fading channels and they in-

troduce ISI into the received signal. One method to mitigate the detrimental

effect of ISI is to use adaptive equalization techniques [9] [10]. However, at

data rates in the order of Mbps, adaptive equalization requires high-cost and

sophisticated hardware [11].
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Fig. 1.2: Demand for data rate in WLAN systems.

1.2 Overview of OFDM Systems

As wireless communication evolves towards broadband systems to support

high data rate applications, we need a technology that can efficiently handle

frequency-selective fading. The Orthogonal Frequency Division Multiplexing

(OFDM) system is widely used in this context. The pioneering work on OFDM

was first started in the 60’s in [12] and [13]. The key idea of OFDM is to divide

the whole transmission band into a number of parallel subchannels (also called

subcarriers) so that each subchannel is a flat fading channel [14] [15]. In this

case, channel equalization can be performed in all subchannels in parallel using

simple one-tap equalizers, which have very small computational complexity.
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Fig. 1.3: Block diagram of an OFDM system.

1.2.1 Basic Principles of OFDM

A block diagram of an OFDM system is depicted in Figure 1.3. Here, for

simplicity and clearness of illustration, we leave out the channel coding block.

The incoming digital data are first passed to a serial to parallel converter (S/P)

and converted to blocks of N data symbols. Each block is called a frequency-

domain OFDM symbol and N is the number of subchannels (subcarriers). Let

us use s = [s0, s1, · · · , sN−1]T , where superscript T denotes vector transpose,

to denote one frequency domain OFDM symbol. The modulation in OFDM

is performed using the inverse discrete Fourier Transform (IDFT) as follows

x = Ws, (1.1)

where W denotes the N ×N IDFT matrix, with the (m, n)th element given

by

Wm,n =
1√
N

exp
(
j2π

mn

N

)
.
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In practice, the IDFT is normally performed using a more computationally

efficient method, the inverse fast Fourier Transform (IFFT). We call elements

of x samples. After modulation, the last Ng samples of x are appended in front

of x, such that xcp = [xN−Ng , xN−Ng+1, · · ·xN−1, x0, x1, · · · , xN−1]T is cyclic.

These Ng samples are called cyclic prefix (CP) and xcp is called a time domain

OFDM symbol. The process of CP insertion can be written in an equivalent

matrix form as xcp = Acpx, where Acp = [IN (N−Ng : N−1, :); IN ]. Here, IN

denotes the identity matrix of size N ×N and we use the MATLAB notation

IN (N −Ng : N − 1, :) to denote the last Ng rows of IN . After CP insertion,

the time-domain OFDM symbol xcp is passed to a parallel to serial converter

(P/S). The output is converted to an analog signal using a digital to analog

converter (DAC), modulated and amplified through the front-end and radio

frequency (RF) block and transmitted via the antenna to the wireless channel.

At the receiver, the received RF signal at the receive antenna is first demodu-

lated through the receiver RF and front-end block. The resulting analog signal

is then converted to digital form using the analog to digital converter (ADC)

and then the serial digital signal is converted to time-domain symbols rcp of

size N + Ng through the serial to parallel converter (S/P). Considering the

transmission of only the current OFDM symbol xcp, the kth sample of rcp can

be written as

rcp
k =

L−1∑

i=0

hk−ix
cp
i + nk, (1.2)

where hk is the kth tap of the impulse response of the multi-path channel

h = [h0, · · · , hL−1]T , xcp
i is the ith element of xcp and nk is the additive white

Gaussian noise (AWGN). Here we use L to denote the maximum length of the
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channel impulse response. To make sure there is no ISI, the length of the CP

should satisfy Ng ≥ L. Using matrix notation, the received signal in (1.2) can

be written equivalently as

rcp = Htxcp + n, (1.3)

where Ht is a (N + Ng)× (N + Ng) lower triangular Toeplitz matrix with the

first column given by [h0, h1, · · · , hL−1, 0, · · · , 0]T as shown below

Ht =




h0 0 · · · 0 · · · 0 0

h1 h0 · · · 0 · · · 0 0
...

...
. . .

...
. . .

...
...

hL−1 hL−2 · · · h0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · h0 0

0 0 · · · 0 · · · h1 h0




.

At the receiver, the first Ng samples of rcp due to the cyclic prefix are removed,

which is indicated by the CP removal block in Figure 1.3. Again this can be

written in matrix form as r = Dcprcp, where Dcp = [0N×Ng , IN ] with 0N×Ng

denotes a matrix of size N ×Ng whose elements are all 0. Hence, we have the

received time-domain signal after CP removal given by

r = DcpHtAcpWs + n

= HcWs + n, (1.4)
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where Hc = DcpHtAcp. Notice that the effects of CP insertion, channel

convolution and CP removal are combined into a single matrix Hc. It can be

easily shown that Hc is an N ×N circulant matrix given by

Hc =




h0 0 · · · 0 · · · h2 h1

h1 h0 · · · 0 · · · h3 h2

...
...

. . .
...

. . .
...

...

hL−1 hL−2 · · · h0 · · · 0 0
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · h0 0

0 0 · · · 0 · · · h1 h0




.

Next the time-domain signal r is transformed to the frequency domain using

an N -point FFT. The frequency-domain received signal can be written as

y = WHr = WHHcWs + WHn,

where WH is an N ×N DFT matrix and superscript H denotes matrix Her-

mitian. Since Hc is a circulant matrix, it can be diagonalized by the IDFT

matrix as follows

Hc = WHWH ,

where H is a diagonal matrix given by H = diag(WHhc) and hc is the first

column of Hc . In other words, the diagonal elements of H are the DFT of the

channel impulse response h and can be interpreted as the channel frequency

responses on N subchannels (subcarriers). Using this property, we can re-write
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the frequency domain received signal as

y = WHHcWs + WHn = WH
(
WHWH

)
Ws + WHn

= Hs + n′, (1.5)

where n′ is the frequency domain noise term, which is also Gaussian distributed

with zero mean and has the same variance as n. Because H is a diagonal

matrix, we see that different subcarriers are perfectly decoupled after the FFT

operation and the frequency selective fading channel can be equalized using a

simple one-tap equalizer on each subcarrier individually.

By way of illustration, the amplitude spectra of subcarriers 6 to 10 for an

OFDM system with N = 16 are sketched in Figure 1.4. We can see that

the spectra of different subcarriers are overlapping. At the center of each

subcarrier, the signals from the other subcarriers are 0. This means that

in OFDM systems, different subcarriers are orthogonal at the center of each

subcarrier, although their spectra are overlapping.

From above, we can see that in OFDM systems, the frequency selective fading

channel is divided into a number of flat fading subchannels. As a result,

complicated time-domain equalization of the frequency selective fading channel

can be performed equivalently in the frequency domain using a simple one-tap

equalizer on each subchannel. Hence, OFDM provides a more efficient method

to handle frequency selective fading compared to single-carrier systems with

time-domain equalizer.

By combining OFDM with error control coding, the coded OFDM system is
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Fig. 1.4: Amplitude spectra of subcarriers 6 to 10 for an OFDM system with 16
subcarriers.

also more robust to narrow-band interferences [16]. This is because narrow-

band interferences only affects a small number of subcarriers and causes de-

tection errors on these subcarriers. These detection errors can usually be

corrected by error control coding. Due to these advantages, OFDM has been

adopted in many modern wireless communication standards such as IEEE

802.11a/g WLAN [17] [18], IEEE 802.16e Broadband Wireless Access (also

known as WiMAX) [19], Digital Audio Broadcasting (DAB) [20] and Digital

Video Broadcasting (DVB) [21].

However, OFDM also has some disadvantages. Firstly, because the modulation

is performed using IDFT, the peak to average power ratio (PAPR) of time-

domain OFDM signals is higher compared to single-carrier systems. This puts
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high requirements on the dynamic range of the RF amplifiers and introduces

extra clipping noise in the system [22] [23]. Another disadvantage of the

OFDM system is that it is more sensitive to frequency synchronization errors

compared to single-carrier systems. This topic will be discussed in more detail

in Section 1.3.

1.2.2 MIMO-OFDM and Multi-user MIMO-OFDM systems

In wireless communications, the term multiple input multiple output (MIMO)

refers to systems using multiple transmit and multiple receive antennas. Since

the discovery in [24] and [25] that the capacity of wireless channels is lin-

early proportional to the minimum of the number of transmit and receive

antennas, MIMO has become one of the hottest topics in wireless communi-

cations. In academia, thousands of research papers were published addressing

capacity limits, transmission schemes, and receiver signal processing and al-

gorithm design. In industry, MIMO has been included in various industrial

standards, including WiMAX (IEEE 802.16e) [19], high-throughput WLAN

(IEEE 802.11n) [5] and 3rd Generation Partnership Project (3GPP) [26].

Compared to the single input single output (SISO) system, the use of multiple

antennas enables the MIMO system to exploit the extra spatial dimension.

One of the many benefits of having this extra spatial dimension can be illus-

trated using the following example. For a SISO system with a deterministic

channel h, the received signal can be written as r = hs + n, where s is the

transmitted symbol with symbol energy Es and n is the zero mean AWGN

noise with power spectrum density N0. The well-known Shannon capacity in
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bits per second per Hertz (bps/Hz) for this channel can be written as

C = log2

(
1 +

Es

N0
|h|2

)
bps/Hz. (1.6)

For a MIMO system with nt transmit and nr receive antennas, the channel is

an nr ×nt matrix and the received signal vector from nr receive antennas can

be written as




r1

...

rnr




=




H1,1 · · · H1,nt

...
. . .

...

Hnr,1 · · · Hnr,nt







s1

...

snt




+




n1

...

nnr




r = Hs + n, (1.7)

where ri is the received signal from the ith receive antenna, and Hi,j is the

channel response between the jth transmit antenna and ith receive antenna.

The nt × 1 transmitted signal vector is denoted s with covariance matrix

E
(
ssH

)
= Es/ntInt , where E(•) denotes statistical expectation and Int denotes

identity matrix with size nt×nt. The noise n is an nr×1 vector with covariance

matrix given by E
(
nnH

)
= N0Inr . The capacity of this MIMO channel can

be calculated as [27]

C = log2

[
det

(
Inr +

Es

ntN0
HHH

)]

= log2

[
det

(
Inr +

Es

ntN0
Λ

)]

=
RH∑

k=1

(
1 +

Es

ntN0
λk

)
bps/Hz, (1.8)
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where det(•) denotes the determinant of a matrix, Λ is an nr × nr diagonal

matrix with elements equal to the eigenvalues of HHH . In the last line of

(1.8), RH is the rank of the channel matrix H and λk is the kth eigenvalue

of HHH . In wireless environments with many scatterers and reflectors, such

as the indoor environment, the rank of the channel matrix RH ≈ min(nt, nr).

Comparing (1.8) with (1.6), it can be seen that in MIMO systems, multiple

(RH) parallel SISO channels are created in the spatial domain. This signifi-

cantly increases the capacity of the wireless fading channel.

MIMO systems have the following key benefits compared to SISO systems [28]:

• Array gain: The signal to noise ratio (SNR) of the received signal can be

enhanced by coherently combining the desired signals at the transmit and

receive antenna arrays. This can be done either using receive beamforming

techniques at the receiver, or using transmit beamforming techniques at the

transmitter.

• Diversity gain: In wireless channels, the received signal level fluctuates due

to channel fading. By having multiple antennas, we are able to receive

multiple independent copies of the same transmitted signal. In this way, the

probability of all these copies experiencing deep fades is significantly smaller

compared to SISO systems, where only one copy of the transmitted signal

is available. Therefore, the system is more robust to fading and this gain in

performance is called diversity gain. The diversity in MIMO systems can

be exploited at the transmitter using space-time coding techniques [29] [30],

or at the receiver using diversity combining techniques [31].

• Spatial multiplexing gain: As shown in the example above (1.8), multiple
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antennas at the transmitter and the receiver create multiple parallel SISO

transmission channels in the spatial domain. This makes it possible to

multiplex different data streams on different transmit antennas and achieve

a higher data rate using the same bandwidth.

• Interference mitigation: In a multi-user environment, interference from other

users using the same frequency band can severely degrade the performance

of the desired user. This interference can be mitigated using signal process-

ing techniques in the spatial dimension provided by MIMO systems. For

example, using beamforming techniques, the receiver can create beam pat-

terns with main lobes pointing to the desired user and with nulls pointing

to the interfering users.

Notice that the received signal model for a MIMO system in (1.7) is for flat

fading channels. In frequency selective fading channels, the channel impulse

response between each transmit and receive antennas becomes a vector. More-

over, the multiplication of H and s in (1.7) becomes the convolution of the

channel impulse response with the transmitted signal. Conventional time do-

main equalization in MIMO systems is more complicated compared to SISO

systems as there are now nt×nr channels to equalize. In SISO systems, OFDM

can transform the frequency-selective fading channel into a numbers of flat fad-

ing subchannels. This makes the combination of MIMO and OFDM, i.e. the

MIMO-OFDM system, an excellent solution for employing MIMO in frequency

selective fading channels [32] [33] [34]. A block diagram of a MIMO-OFDM

system with nt data streams, nt transmit antennas and nr receive antennas

is shown in Figure 1.5. We can see that at the transmitter, for each data

stream, there is one SISO OFDM transmitter chain similar to that in Figure
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Fig. 1.5: A block diagram of a MIMO-OFDM system.

1.3. At the receiver, the signals from different receive antennas are processed

in a parallel fashion similar to a SISO OFDM receiver to get the frequency

domain received signals y1 to ynr . On the kth subcarrier, the received signal

for a MIMO-OFDM system can be written as




y1(k)
...

ynr(k)




=




H1,1(k) · · · H1,nt(k)
...

. . .
...

Hnr,1(k) · · · Hnr,nt(k)







s1(k)
...

snt(k)




+




n1(k)
...

nnr(k)




. (1.9)

We can see that on each subcarrier in a MIMO-OFDM system, the signal

model is equivalent to a flat fading MIMO system. Therefore, the received

signal from different receive antennas can be processed subcarrier wise in the

spatial MIMO detection block as shown in Figure 1.5.
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The multi-user MIMO-OFDM system is an extension of the MIMO-OFDM

system to the multi-user context. An illustration of the multi-user MIMO-

OFDM system is shown in Figure 1.6. Here multiple users, each with one or

more transmit antennas, transmit simultaneously using OFDM in the same

frequency band. For clearness of illustration, in Figure 1.6, we only illustrate

the case where each user has one transmit antenna. The receiver is a base

station with multiple receive antennas. It uses MIMO-OFDM spatial process-

ing techniques to separate the signals from different users. If we view the

signals from different users as signals from different transmit antennas of a

virtual multi-antenna transmitter, then the whole system can be viewed as

an MIMO-OFDM system. This system is also known as the virtual MIMO-

OFDM system [35].
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1.3 Effects of Frequency Synchronization Errors in

OFDM Systems

In the previous section, we presented an overview of OFDM and MIMO-OFDM

systems. We highlighted the advantages of OFDM and MIMO-OFDM and also

mentioned that sensitivity to frequency synchronization errors in the form of

carrier frequency offset (CFO), is a key disadvantage of OFDM systems. In

this section, we present a more detailed study on the effects of CFO on the per-

formance of OFDM systems. As the name suggests, CFO is an offset between

the carrier frequency of the transmitted signal and the carrier frequency used

at the receiver for demodulation. In wireless communications, CFO comes

mainly from two sources:

• The mismatch between oscillating frequencies of the transmitter and the

receiver local oscillators (LO);

• The Doppler effect of the channel due to relative movement between the

transmitter and the receiver.

In this thesis, we focus on the CFO caused by the mismatch between the

transmitter and receiver local oscillators. At the receiver, the effect of CFO is
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mitigated through frequency synchronization. Figure 1.7 shows an OFDM re-

ceiver with frequency synchronization implemented in both the analog and the

digital domains. The received signal from the receive antenna is first passed to

the receiver front-end. Here, to ensure that the local oscillator at the receiver

front-end is operating with sufficient accuracy, its reference frequency is con-

tinuously adjusted by the analog coarse frequency synchronization unit [36],

which consists of a crystal oscillator and a frequency synthesizer. To get an

idea on the accuracy required of the analog coarse synchronization, we look at

the IEEE 802.11g standard [18] for wireless LAN systems. In the IEEE 802.11g

standard, the specifications for the worst-case frequency errors for both trans-

mitter and receiver LOs (crystal oscillator and frequency synthesizer) are ±20

ppm (parts per million). This leads to a worst-case CFO of 96 kHz (40 ppm)

for center frequency of 2.4 GHz after analog coarse frequency synchronization.

For WLAN applications, the maximum duration of a data packet is in the

order of ms and the variation of the LO output frequency within this short

time duration is negligible. Therefore, the digital domain CFO after analog

frequency synchronization can be considered a constant value and estimated

once per data packet. After the analog to digital converter, we denote the

digital domain CFO normalized with respect to the subcarrier spacing of the

OFDM system as ε. This CFO introduces a time dependent phase rotation

ej(2πεn/N) to the received digital time-domain signal, where n is the time in-

dex, and N is the number of subcarriers. Together with a constant phase

offset θ due to the channel and the analog processing, this introduces a phase

rotation of ej(2πεn/N+θ) as shown in Figure 1.7. In this way, we can write the

received time-domain signal in the mth OFDM symbol interval in the following
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form [37]

rm = EWHmsmej(2πε(m−1)(1+Ng/N)+θ) + nm. (1.10)

The CFO matrix E = diag(1, ej2πε/N , · · · , ej2π(N−1)ε/N ) is a diagonal matrix

containing the CFO value ε, and N is the number of subcarriers. Matrix W

is the N ×N IDFT matrix, Hm is a diagonal matrix containing the channel

frequency response for different subcarriers, sm is the transmitted signal for

the mth OFDM symbol and nm is the AWGN noise vector. Here we split the

phase rotation caused by the CFO into the CFO matrix E and a phase offset

ej2πε(m−1)(1+Ng/N) for OFDM symbol m.

Notice from (1.10) that the effects of the CFO ε and the constant phase offset

θ are represented in the following three terms:

1. a constant phase offset ejθ,

2. a CFO matrix E,

3. a CFO and OFDM symbol index (m) dependent phase offset

ej(2πε(m−1)(1+Ng/N)).

The constant phase offset ejθ is a common scalar multiplied with all the re-

ceived signals. This gives the same phase offset of ejθ on all the frequency

domain received signals. In this way, it can be considered as part of the

frequency domain channel and can be estimated together with the frequency

domain channel and compensated using one-tap equalizers. However, the CFO

(ε) has to be estimated and compensated in the time domain. This is because,

as we are going to show later, in OFDM systems, CFO introduces inter-carrier

interference (ICI) in the frequency-domain received signals. For IEEE 802.11g
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systems, the worst-case digital domain CFO of 96 kHz corresponds to ε = 0.31.

The power of ICI due to this CFO is much larger than that of the AWGN noise.

This makes CFO estimation in the frequency domain much more complicated

compared to that in the time domain as the signal to interference ratio in the

frequency domain is very low due to the large ICI. In Figure 1.7, the time-

domain CFO estimation is performed in the digital CFO estimation block.

The effect of the CFO is compensated from the received signal using the esti-

mate. The compensated signal is passed through the -CP(CP removal) & FFT

block and is transformed to the frequency domain. The frequency-domain sig-

nal is then passed to the detector. Now let us use an example to show how

the digital domain CFO estimation is done for a practical system. Figure 1.8

shows the packet structure of a wireless LAN data packet for IEEE 802.11g

systems [18]. Each packet is made up of the following components:

• a preamble, consisting of a short and a long preamble, which contains train-

ing symbols known to the receiver for timing synchronization, CFO and

channel estimation;

• a signal field, which contains parameters values for the packet, such as

packet length Np, code rate and modulation used in the packet;

• the data: which contains Np OFDM symbols of useful data from the trans-

mitter. In each OFDM symbol, there are four subcarriers at subcarriers

-21, -7, 7 and 21 that contain pilot symbols known to the receiver. These

four subcarriers are called pilot subcarriers.

In this system, the digital domain CFO estimation is only performed at the

beginning of the packet using both short and long preambles. This estimation
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must achieve sufficient accuracy such that ICI due to the residual CFO ∆ε,

i.e. the difference between the actual ε and its estimate, is significantly smaller

than the AWGN noise. The constant phase offset ejθ is estimated as part of the

channel using the long preamble. Although the ICI due to ∆ε is insignificant,

the residual CFO still causes a OFDM symbol index (m) dependent phase

offset ej(2π∆ε(m−1)(1+Ng/N)). Different from the constant phase offset ejθ, this

phase offset cannot be estimated using channel estimation, because the channel

is only estimated at the beginning of the packet using the long preamble, and

can become significant when the number of OFDM symbols in a packet is large.

This phase offset is estimated and compensated in the frequency domain in

the residual CFO tracking block as shown in Figure 1.7 using the four pilot

subcarriers in each OFDM symbol. Notice that this phase offset estimation is

done after the initial CFO estimation and compensation using the preambles,

because without the initial CFO estimation and compensation, the ICI from

the CFO will become too large for the phase offset estimation to work properly.

As this block is only necessary for packet-based OFDM systems, where CFO

and channel estimations are performed at the beginning of the packet, we use

dotted lines in Figure 1.7 to indicate that it is optional. The research work in

this thesis concerns the time domain estimation of the CFO ε.

As shown in Figure 1.4, in OFDM systems, orthogonality between different

subcarriers is maintained only when sampling occurs at the correct frequency,

i.e. in the center of each subchannel. Figure 1.9 illustrates what happens

when there is a positive CFO ε. Firstly, the amplitude of the desired signal

is attenuated. Secondly, the orthogonality between different subcarriers is

destroyed and on the desired subcarrier, there exists non-zero ICI from all the
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Fig. 1.9: Effects of CFO in OFDM systems

other subcarriers. From (1.10), we can re-write each element of r in summation

form as

rk =
1√
N

N−1∑

l=0

Hlsl exp
(

j2π
(l + ε)k

N

)
+ nk, (1.11)

where Hl and sl are the channel response and transmitted signal on the lth

subcarrier respectively. Here we omit the constant phase offset ejθ because it

can be considered as part of the channel response. Moreover, as the length of
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the CP is larger than the length of the channel impulse response, there is no

ISI between different OFDM symbols. Hence, the OFDM symbol index m in

(1.10) is not important for the analysis and is also dropped. Taking the FFT

of the received signal r, we get the received signal on the lth subcarrier as

yl =
1√
N

N−1∑

k=0

rk exp
(
−j2πkl

N

)

=
1
N

N−1∑

k=0

N−1∑

i=0

Hisi exp
(
−j2πk

N
(l − i− ε)

)
+ n′l

=
N−1∑

i=0

Hisi exp
[
jπ(i− l + ε)

(
1− 1

N

)]
sin (π(i− l + ε)))

N sin
(

π(i−l+ε)
N

) + n′l

=

{
sin(πε)

N sin
(

πε
N

) exp(jπε(1− 1/N))

}
Hlsl + Il + n′l, (1.12)

where Il is the inter-carrier interference from all the other subcarriers on sub-

carrier l given by

Il =
N−1∑

k=0,k 6=l

Hksk exp
[
jπ(k − l + ε)

(
1− 1

N

)]
sin (π(k − l + ε))

N sin
(

π(k−l+ε)
N

) , (1.13)

and n′l is the AWGN noise in the frequency domain with variance σ2
n. Equation

(1.12) gives the mathematical description of the two detrimental effects of

the CFO in OFDM systems. Firstly the amplitude of the desired signal is

attenuated to sin(πε)

N sin(πε
N ) < 1. Secondly, besides AWGN noise n′l, there is an

additional ICI term Il. In this case, the signal to interference and noise ratio
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Fig. 1.10: SINR of the received signal in OFDM systems for different CFO values.

(SINR) of the received signal on subcarrier l is given by

SINRl =
E(|Hl|2)E(|sl|2) sin2(πε)

N2 sin2(πε
N )

E(|Il|2) + σ2
n

. (1.14)

In Figure 1.10, we plot the SINR given in (1.14) for an OFDM system with

64 subcarriers for different CFO values and for 4 signal to AWGN noise ra-

tios (E[|H|2|s|2]/σ2
n ) of 5, 10, 15 and 25 dB. From the figure, we can see

that the SINR degrades significantly as the CFO value increases. As the ICI

power is independent of the AWGN noise power, the ICI causes more degra-

dation in high SNR cases compared to low SNR cases. From Figure 1.10,

the worst-case CFO of ε = 0.31 in IEEE 802.11g WLAN systems causes a

degradation of about 21 dB for SNR of 25 dB. In the same vein, CFO also

causes significant performance degradation for MIMO-OFDM and multi-user
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MIMO-OFDM systems. Therefore, to guarantee good performance of OFDM

systems, CFO must be accurately estimated and compensated.

1.4 Status and Challenges in CFO estimation for

OFDM systems

In this section, we present a brief literature review on CFO estimation algo-

rithms for OFDM systems. We also identify challenges in the CFO estimation

for SISO, MIMO and multi-user MIMO OFDM systems and motivate the

research work carried out in this thesis.

1.4.1 CFO estimation for SISO-OFDM systems

The CFO estimation algorithms for SISO-OFDM systems can be broadly di-

vided into two categories:

1. Training-based CFO estimation algorithms;

2. Blind CFO estimation algorithms.

1.4.1.1 Training based CFO estimation algorithms

In training-based CFO estimation algorithms, specially designed training sig-

nals (including preambles and/or pilot subcarriers) known to the receiver are

inserted into the data symbols to assist the receiver in estimating the CFO.
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Two well-known training-based CFO estimation algorithms for SISO-OFDM

systems were proposed by P. Moose [38] and by T.M. Schmidl & D.C. Cox [39].

In Moose’s algorithm, two repeated OFDM symbols are transmitted as train-

ing symbols. As the second OFDM symbol is identical to the first one, the

last Ng samples of the first OFDM symbol have the same effect as the cyclic

prefix for the second OFDM symbol. Hence, it is not necessary to append a

CP to the second OFDM symbol. The assumption in this algorithm is that

the starting point of an OFDM symbol is known. In this case, using similar

notations as in (1.10), the time domain received signals in these two OFDM

symbol intervals can be written as

r =




EWHs

ej2πεEWHs


 + n, (1.15)

where r is a 2N × 1 vector containing received signal for two OFDM symbols.

Here we assume a slowly time-varying channel such that the channel within

the two OFDM symbol intervals can be considered the same. Taking the FFT

of the received signals, we get the frequency-domain signals in the two OFDM

symbol intervals given by

y =




WHEWHs

ej2πεWHEWHs


 + n′, (1.16)

where n′ is the frequency domain noise vector, which has the same statistical

properties as n. In the noiseless condition, the difference between the first and
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the second N elements of y is a constant phase shift of ej2πε due to the CFO.

It is shown in [38] that the maximum likelihood (ML) estimate of the CFO ε

is given by

ε̂ =
1
2π

tan−1

{∑N−1
l=0 =[yl+Ny∗l ]∑N−1
l=0 <[yl+Ny∗l ]

}
, (1.17)

where =(•) and <(•) denote the imaginary and the real parts of a complex

number respectively and superscript ∗ denotes complex conjugation. It is

shown in [38] that this estimate is conditionally unbiased for small CFO values.

The mean square error (MSE) of this estimator is given by

MSE(ε̂) =
1

(2π)2Nγ
, (1.18)

where

γ =
tr

(
HHH

)

N

σ2
s

σ2
n

is the SNR of the received signal. Here we use tr(•) to denote the trace of

a matrix, and σ2
s and σ2

n are the power of the transmitted signal and noise

respectively. The acquisition range of this algorithm is limited in ±0.5 subcar-

rier spacing. This is smaller than the worst-case CFO of 0.64 in IEEE 802.11a

wireless LAN systems operating in the 5 GHz band. It is suggested in [38]

that the acquisition range can be increased by using shorter repeated frequency

domain training symbols. Decreasing the length of the training symbol by a

factor of n will increase the acquisition range n times. On the other hand, from

(1.18), we can see that reducing the length of training symbol degrades the

MSE of the CFO estimation. The length of the training symbol also needs to

be kept longer than the channel delay spread so as not to cause any distortion
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when estimating the CFO.

One limitation of Moose’s algorithm is that it requires knowledge of the start-

ing point of an OFDM symbol. In [39], Schmidl & Cox proposed an algo-

rithm that can estimate timing and frequency offset using the same time-

domain training sequence. In their method, the time-domain OFDM sym-

bol used for training consists of two identical halves, i.e. xk = xk+N/2 for

k = 0, · · · , N/2−1. At the receiver, it can be easily shown that rk+N/2 = ejπεrk

for k = 0, · · · , N/2− 1. Here k = 0 corresponds to the index of the first time-

domain sample after the CP. Hence, the received signal also consists of two

identical halves, except for a phase difference ejπε that is caused by the CFO.

To determine the start of the OFDM symbol, in [39], a timing metric is cal-

culated as

Mk =

∣∣∣∑N/2−1
m=0 r∗k+mrk+m+N/2

∣∣∣
2

∑N/2−1
m=0

∣∣rk+m+N/2

∣∣2 . (1.19)

We can see that the numerator of M(k) in (1.19) is an autocorrelation function

of the received signal in a window of size N/2, while the denominator in (1.19)

is a normalization constant equal to the power of the second-half of the training

symbol.

Figure 1.11 shows an example of the timing metric Mk for an OFDM system

with 512 subcarriers and cyclic prefix equal to 64. The channel is an AWGN

channel with SNR of 20 dB and the CFO ε = 0.6. Here we put the start of

the OFDM symbol as the 0 timing point. We can see that the timing metric

function reaches a plateau of length equal to the length of the cyclic prefix.

For multi-path fading channel, the length of the plateau is equal to the length
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Fig. 1.11: An example of timing metric using the autocorrelation method (AWGN
Channel SNR=20dB).

of the cyclic prefix minus the length of the channel impulse response. The

starting point of the OFDM symbol can be taken at any point on the plateau

and there will be no inter-symbol interference (ISI) [39]. Once the timing point

k is determined, it is shown in [39] that the ML estimate of the CFO can be

obtained as

ε̂ =
1
π

∠




N/2−1∑

m=0

r∗k+mrk+m+N/2




=
1
π

tan−1


=

(∑N/2−1
m=0 r∗k+mrk+m+N/2

)

<
(∑N/2−1

m=0 r∗k+mrk+m+N/2

)

 , (1.20)

where ∠(•) denotes the angle of a complex number. The CFO estimator in

(1.20) has an acquisition range of ±1 subcarrier spacing and the MSE of the



32 Chapter 1. Introduction

CFO estimation is given by [39]

MSE(ε̂) =
2

π2Nγ
, (1.21)

which has a similar expression as the frequency domain method in (1.18).

Both methods in [38] and [39] use periodic training sequences in either the

frequency or the time domain to estimate the CFO in OFDM systems. In

both methods, the ML CFO estimate can be obtained using simple correlation

operations as shown in (1.17) and (1.20). Compared to the frequency domain

method in [38], the time domain method in [39] has two advantages. Firstly,

timing synchronization can be obtained using the same training sequence.

Secondly, frequency synchronization is performed in the time domain, thus

it saves the complexity of FFT operations required in the frequency domain

methods. As a result, time-domain periodic training sequences have been

adopted in various wireless standards as the training sequence for timing and

CFO estimation [17] [18] [5]. In [40], the authors extended the CFO estimation

using periodic sequences to the case where the number of periods is larger

than 2. A more practical treatment on CFO and timing estimation in OFDM

systems was given in [41]. The acquisition range of CFO values and method

to resolve the ambiguity in CFO estimation were addressed in [42]. In [43]

and [44], the CFO and timing estimation algorithms were studied specifically

in the context of IEEE 802.11 training sequences. The Cramer-Rao bounds

(CRB) for CFO estimation using a general and a periodic training sequence

in frequency selective fading channels were derived in [45].
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In summary, the use of periodic training sequences for CFO estimation in

SISO-OFDM systems has been extensively studied in both theoretical and

practical aspects. Moreover, the computational complexity required for CFO

estimation in SISO-OFDM systems is already very small. Therefore, in this

thesis, we will not further study the training-based CFO estimation in SISO-

OFDM systems. However, training-based CFO estimation algorithms have

some limitations. The training sequence used for CFO estimation is an ex-

tra overhead for transmission and it reduces the effective data throughput of

the system. For a typical application like IEEE 802.11a/g WLAN, the total

overhead used for CFO estimation and residual CFO tracking, including both

the short preamble and the pilots, is about 10% of the total data through-

put. The WLAN system is designed for low mobility applications, in which

the CFO can be assumed to be constant within a packet. In the case of mo-

bile systems, the CFO becomes time varying due to the Doppler effect of the

channel [46]. This requires more frequent transmission of training sequences,

which further reduces the data throughput. To avoid this problem, in this

thesis, we study another class of CFO estimation algorithms, namely blind al-

gorithms, for SISO-OFDM systems. Blind algorithms do not require training

sequences and hence have no training overhead. The disadvantage is that their

computational complexity is normally higher than that of training-based algo-

rithms. This means that in practice, the implementation of blind algorithms

requires more silicon area and it leads to higher power consumption. A de-

tailed overview on blind CFO estimation algorithms for SISO-OFDM systems

is given in Section 1.4.1.2.

For MIMO-OFDM and multi-user MIMO-OFDM systems, the computational
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complexity for blind algorithms becomes too high for practical implementa-

tions. Therefore, in Chapter 4 and Chapter 5, we will come back to training-

based algorithms. We will study low complexity CFO estimation algorithms

for MIMO-OFDM and multi-user MIMO-OFDM systems using periodic train-

ing sequences.

1.4.1.2 Blind CFO estimation algorithms

Blind CFO estimation algorithms are a class of algorithms where the CFO is

estimated using the statistical properties of the received signal only, without

explicit knowledge of the transmitted signal. Therefore, it does not require

training sequences. In SISO-OFDM systems, blind CFO estimation algorithms

usually make use of some special properties of OFDM symbols such as the

cyclic prefix in the time domain and guard null subcarriers in the frequency

domain.

In [47], the authors proposed a CFO estimation algorithm making use of the

time-domain cyclic prefix in OFDM systems. For an AWGN channel, the

received time-domain OFDM signal has the following property

E{r∗krk+N} = σ2
s exp(j2πε) + σ2

n, (1.22)

if k is in the part of the OFDM symbol that corresponds to the cyclic prefix.

Based on this property, the authors showed that a maximum-likelihood CFO
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estimator is given by

ε̂ =
1
2π

∠




t+Ng−1∑

k=t

r∗krk+N


 , (1.23)

where t is the start of the cyclic prefix portion of the received signal. From

(1.23), we can see that CFO estimation only requires the computation of the

autocorrelation of the received signal. Therefore, the computational complex-

ity is low. However, there are a few drawbacks of this method. Firstly, if the

channel is dispersive, the number of terms in (1.23) is equal to the difference

of CP length and the length of the channel impulse response. In this case,

the MSE of the CFO estimation is degraded compared to that in flat fading

channels. Secondly the acquisition range of this method is limited to ±0.5

subcarrier spacing.

Another popular blind CFO estimation method was proposed by Liu and

Tureli in [37]. This method makes use of the frequency-domain characteris-

tics of OFDM systems. Figure 1.12 shows the spectrum of a practical OFDM

system with N subcarriers. In this system, there are d1 and d2 subcarriers

at two ends of the allocated spectrum that are left empty and used as guard

bands to avoid aliasing to the adjacent channels [17]. We will refer to the non-

data-carrying subcarriers as null subcarriers and we call the data-carrying

subcarriers data subcarriers. In the absence of noise and ICI, the received

signal on the null subcarriers should be 0. Based on this observation, Liu

and Tureli proposed a blind CFO estimation algorithm based on the mini-

mization of the received signal power on null subcarriers [37]. It was shown



36 Chapter 1. Introduction

-N/2+1 0 N/2-N/2+d1 N/2-d2+1

Guard Band Guard Band

Amplitude 

Spectrum

Fig. 1.12: Typical spectrum of an OFDM system with guard bands (null subcarriers).

in [48] that this CFO estimation method is optimal in the ML sense. Because

it makes use of the frequency-domain characteristics of OFDM systems, its

performance is not affected by the length of the channel impulse response.

Moreover, compared to the method in [47], it is more robust against timing

errors. A disadvantage of the algorithm is its computational complexity. This

is because the cost function in the minimization problem in [37] is a polyno-

mial with the complex variable of order 2(N − 1). For a typical application,

like wireless LAN, N = 64 [17]. Hence, the order of the cost function becomes

126, and the computational complexity required to find the minimum is very

high. Therefore, it is important to find methods to reduce the computational

complexity of the blind algorithm in [37] to make it implementable in practice.

Moreover, it is also important that the reduction in complexity does not lead

to big performance degradations. Finding such a solution is a technical chal-

lenge that requires both mathematical analysis and practical considerations.

This challenge is addressed in Chapter 2 and Chapter 3 of this thesis.
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1.4.2 CFO estimation for MIMO-OFDM systems

For MIMO-OFDM systems, all the transmit antennas are driven by the one

local oscillator (LO) while all the receive antennas are driven by another LO.

Therefore, the CFO between the transmitter and receiver LO’s is still a single

parameter to estimate. In this sense, the CFO estimation is very similar to that

in SISO-OFDM systems. The difference here is that we have multiple received

signals from multiple receive antennas. The CFO estimation concerns how to

optimally combine these signals to extract the CFO estimate. To this end,

there have been many papers in the literature addressing the CFO estimation

in the MIMO context. In [49], the CFO estimation was performed in two steps.

Firstly, the fractional CFO, up to ±0.5, was estimated and compensated in

the time domain using cyclic prefix. Secondly the integer part of the frequency

offset was estimated in the frequency domain by cross correlating the received

frequency domain signal with the training sequence. In [50], the CFO in

MIMO-OFDM systems was estimated using periodical training sequences in a

similar fashion as for the SISO-OFDM systems. The training sequence design

for CFO estimation was addressed in [51].

Compared to SISO-OFDM systems, the training in MIMO-OFDM systems

requires significantly more overhead. For example, the channel estimation for

a MIMO-OFDM system with nt transmit and nr receive antennas requires

estimation of nr×nt channel coefficients for each subcarrier. In the literature,

this normally requires training sequences of at least nt OFDM symbols [5] [52].

On top of this, additional overhead is required for timing and CFO estimations.

Therefore, it is important and remains a challenging problem to develop low-
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overhead training schemes that enable joint estimation of CFO and channel. In

addition, for practical implementation, these schemes should also require low

computational complexity. One efficient training scheme for low-complexity

joint CFO and channel estimation is proposed in Chapter 4 of the thesis.

In the theoretical study of MIMO-OFDM systems, different antennas are as-

sumed to be independent and there is no interaction between signals from

different antennas. In practice, as MIMO antennas are placed close to each

other, the channel responses among different transmit and receive antennas are

actually correlated [53] [54] [55]. This correlation is related to the propagation

environment. Besides spatial correlation, closely placed antennas also expe-

rience mutual coupling among the antennas. The mutual coupling is due to

the interactions of electro-magnetic (EM) fields at different antennas [56] [57].

It changes the amount of spatial correlation related to the propagation en-

vironment [58] [59]. The mutual coupling also changes the signal power at

different antennas. Therefore, it is of great practical importance to study the

effects of spatial correlation and antenna coupling and their impacts on the

CFO estimation in MIMO systems. Such a study is provided in Chapter 4 of

the thesis.

1.4.3 CFO estimation for Multi-user MIMO-OFDM systems

In the uplink of a multi-user MIMO-OFDM system, different users trans-

mit simultaneously to the base station. In this case, different users use LO

signals from their own LO’s while the receiver uses an LO signal generated

by the receiver LO. Therefore, CFO exists between the base station LO and
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the LO’s from different users. The base station receiver needs to estimate

these multiple CFO values from multiple users. In [60] and [61], algorithms

were proposed to estimate multiple CFO values for MIMO systems in flat

fading channels. In [62], a semi-blind algorithm was proposed to estimate

the CFO and channel for the uplink of multi-user MIMO-OFDM systems in

frequency selective fading channels. The joint CFO and channel estimation

for multi-user MIMO-OFDM systems was studied in [63]. Training sequences

that minimize the asymptotic Cramer-Rao Bound were also designed in [63].

The computational complexity is the main problem in the CFO estimation for

multi-user MIMO-OFDM systems. Most of the existing algorithms in the lit-

erature have computational complexity that increases exponentially with the

number of users. This makes practical implementation of such algorithms dif-

ficult. Therefore, development of low complexity CFO estimation algorithms

in the multi-user context is of great practical importance. We will propose a

low-complexity algorithm to estimate these multiple CFO values in Chapter

5.

1.5 Outline and Contributions of the Thesis

In this section, we outline the contents of each chapter in the rest of the thesis.

We also highlight the contributions in each chapter. As the title of the thesis

suggests, we focus on low-complexity frequency synchronization techniques for

different wireless OFDM systems. This thesis can be divided into three parts

covering different types of wireless OFDM systems. In Chapter 2 and Chapter

3, we study low-complexity blind CFO estimation in SISO-OFDM systems. In
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Chapter 4, we move to MIMO-OFDM systems, while in Chapter 5, the CFO

estimation in multi-user MIMO-OFDM systems is studied.

In Chapter 2, we study low-complexity blind CFO estimation algorithms for

SISO-OFDM systems using null subcarriers. Compared to the existing low-

complexity method using Taylor series approximation, we propose a new fac-

torization method for the cost function such that the Taylor series approxi-

mation is more accurate, and thereby the CFO estimate. Moreover, for small

CFO values, we also derive a closed-form solution for the CFO estimate. The

contributions in this chapter also include a new successive CFO estimation

and compensation algorithm that reduces the performance degradation due to

Taylor series approximation errors in the cost function.

In Chapter 2, we found that the performance of CFO estimation is closely

related to the placement of the null subcarriers. In Chapter 3, we present

an analytical study on this relationship. We show mathematically that the

SNR of the CFO estimation is a function of the null subcarrier placement. We

then formulate the optimization problem for null subcarrier placement as an

SNR maximization problem. Optimal null subcarrier placement is obtained

analytically when the number of subcarriers is divisible by the number of

null subcarriers. For the other cases, a near-optimal placement is developed.

We further demonstrate that the SNR-optimal null subcarrier placement also

minimizes the theoretical MSE (i.e. the linear approximation of the MSE in

the high SNR region) of the CFO estimation. For practical OFDM systems, it

is necessary to have fixed-position null subcarriers as guard band. With this

constraint, we propose a method to optimally place a few null subcarriers in
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the data band and the algorithm improves the performance of CFO estimation

significantly.

In Chapter 4, we study the CFO estimation in MIMO-OFDM systems. We

develop a training scheme that uses the same constant amplitude zero auto-

correlation (CAZAC) training sequence for joint CFO and channel estimation.

We demonstrate that the training overhead can be significantly reduced using

the developed training scheme and that the computational complexity is low.

We show that the MSE of the CFO estimation approaches the Cramer Rao

bound (CRB) at practical SNR values. We also present a mathematical anal-

ysis on the effect of CFO estimation errors (residual CFO) on the performance

of channel estimation. A study on practical problems in MIMO-OFDM sys-

tems such as spatial correlation, antenna coupling and their impacts on CFO

estimation is also presented in Chapter 4.

The CFO estimation for multi-user MIMO-OFDM systems is studied in Chap-

ter 5. We first derive the ML CFO estimator and show that the computational

complexity grows exponentially with the number of users. To reduce this com-

plexity, we develop a sub-optimal CFO estimation algorithm using constant

amplitude zero autocorrelation (CAZAC) sequences, the complexity of which

grows only linearly with the number of users. The multiple CFO values in the

uplink cause interference in the CFO estimation of different users using the pro-

posed low-complexity algorithm.. To mitigate this interference, we propose a

method to find the CAZAC sequence that maximize the signal-to-interference

ratio for different classes of CAZAC sequences.

The concluding remarks of this thesis in given in Chapter 6 together with
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suggestions for possible future work.
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Chapter 2

Low-Complexity Blind CFO

Estimation for OFDM Systems

2.1 Introduction

The presence of carrier frequency offset (CFO) in an orthogonal frequency di-

vision multiplexing (OFDM) system leads to a loss of orthogonality between

subcarriers. This introduces inter-subcarrier interference (ICI) and degrades

the system performance significantly. Therefore, to guarantee good perfor-

mance of OFDM systems, the CFO must be accurately estimated and com-

pensated. Compared to training-based CFO estimation algorithms, blind CFO

estimation algorithms have the advantage that no extra training symbols are

required. In the literature, Liu and Tureli [37] proposed a blind CFO esti-
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mation algorithm exploiting null subcarriers. These are subcarriers at both

ends of the spectrum that are left empty and used as guard bands. The al-

gorithm in [37] estimates the CFO through minimizing the received signal

power on these null subcarriers. However, a drawback of the algorithm is its

high computational complexity. To reduce this complexity, a low-complexity

algorithm was proposed in [64], which uses Taylor series approximation of the

original cost function. To improve the accuracy of this approximation, we

propose a new factorization method for the cost function that helps to re-

duce the number of terms of the Taylor series. By limiting this number to 2

(first-order approximation), we also derive a closed-form solution for the CFO

estimate. Comparison with the original algorithm in [37] shows a significant

reduction in computation complexity using the new method. Moreover, the

performance of the new method is very close to that of the algorithm in [37]

for small CFO values. However, the low-order (first and second order) Taylor

series approximation can lead to some performance degradation. This degra-

dation is more obvious in the medium to high SNR region, where an error floor

appears. To mitigate this degradation, we further develop a successive CFO

estimation and compensation algorithm. In each iteration of the proposed suc-

cessive algorithm, the residual CFO from the previous iteration is estimated

and compensated from the received signal. A convergence monitoring mecha-

nism is introduced which ensures the convergence of the successive algorithm.

We further propose a decision-directed CFO estimation algorithm where the

performance of CFO estimation can be further improved at a slightly higher

computational cost.

The rest of this chapter is organized as follows. In Section 2.2, we review
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the null subcarrier based blind CFO estimation algorithm in [37] and the

low-complexity algorithm in [64]. The proposed new factorization method to

improve the Taylor series approximation is presented in Section 2.3. In 2.4,

we present the successive CFO estimation and compensation algorithm and its

decision-directed extension is developed in Section 2.5. The simulation results

are presented in Section 2.6 and concluding remarks are given in Section 2.7.

2.2 Previous Methods

For an OFDM system with N subcarriers and P data subcarriers, after re-

moving the cyclic prefix, the received time-domain OFDM signal in the kth

OFDM symbol interval can be written as

rk = EWPHkskejφ0(k−1)(N+Ng) + nk (2.1)

where E = diag(1, ejφ0 , · · · , ej(N−1)φ0) is the diagonal CFO matrix and φ0 is

the actual angular CFO given by φ0 = 2πε0/N . Here we use angular CFO φ0

to simplify notification so that in later derivations, we need not deal with the

constant factor 2π/N to the original CFO ε. The difference between (2.1) and

(1.10) is that s is a P × 1 vector containing the transmitted signal on the P

data subcarriers. Correspondingly, H is a P × P diagonal matrix containing

the channel responses on the P data subcarriers and WP is a N×P submatrix

that is obtained from the N×N IDFT matrix W by extracting the P columns

that correspond to the data subcarriers. Let us define l = [l1, l2, · · · ld] as the

null subcarrier indices and d = N − P as the number of null subcarriers.
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In [37], Liu and Tureli showed that a CFO estimate can be obtained from the

minimization of a cost function J (z) given by

J (z) =
K∑

k=1

d∑

i=1

∥∥∥wH
li
Z−1rk

∥∥∥
2
, (2.2)

where K is the total number of OFDM symbols used for CFO estimation, wH
li

is row li of the DFT matrix and Z = diag
(
1, z, z2, · · · , z(N−1)

)
with z = ejφ.

Here φ is the trial value for the actual CFO φ0. Using (2.2), it can be shown

that z = ejφ0 is a zero of J (z) in the absence of noise.

This algorithm is shown to have a good performance as compared to Cramer-

Rao bound (CRB) [37] and its acquisition range for CFO is much larger than

that of the blind CFO estimation algorithm using the cyclic prefix [47]. It is

shown in [37] that the CFO estimate that minimizes the cost function in (2.2)

can be attained by using either a MUSIC-like search algorithm or a rooting

method [65]. The practical aspects of this blind CFO estimation algorithm

and its experimental implementations are further studied in [66]. The iden-

tifiability of CFO using this algorithm is studied in [48] and [67]. A major

disadvantage of this algorithm is its high computational complexity. The cost

function J (z) represents a polynomial of order 2(N − 1) in the complex vari-

able z. For a typical application, like wireless LAN (IEEE 802.11a standard),

N = 64. Hence, the order of J (z) becomes 126, and the computational com-

plexity required to find its roots is very high. To reduce this complexity, an

ESPRIT-like method is proposed in [68]. However, the computational com-

plexity is still very high as a subspace computation is required.
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In [64], a method is proposed to reduce the computational complexity of the

method in [37]. This algorithm exploits the fact that the inverse diagonal

matrix Z−1 in (2.2) can be re-written as follows

Z−1 = diag
(
1, e−jφ, e−j2φ, · · · , e−j(N−1)φ

)

= e−jφ(N−1)/2diag
(
ejφ

(N−1)
2 , ejφ

(N−3)
2 , · · · , ejφ

(1−N)
2

)
.

(2.3)

Taking into account the fact that the residual CFO after analog coarse fre-

quency synchronization tends to be very small in practice, using Taylor series

expansion of an exponential function, we have

Z−1 ≈ e−jφ(N−1)/2 ×
Q∑

n=0

(jφ)n

2nn!
Dn (2.4)

where D = diag((N − 1), (N − 3), · · · , (1 − N)) and Q is a suitable integer

(Q ¿ N) such that the error due to the series truncation in (2.4) is negligible

[64]. The assumption of small residual CFO in the digital domain is justified,

on the one hand, by the use of a coarse synchronization at the analog part

of the receiver [36] [69] and, on the other hand, by the precision of currently

available crystal oscillators [70]. In IEEE 802.11a WLAN standard [17], the

precision of the carrier frequency at both the transmitter and the receiver is

±20 ppm maximum. This leads to a worst case CFO value of ±0.64 subcarrier

spacing or φ0 = 0.063 at a carrier frequency of fc = 5 GHz. Furthermore,

the accuracy of the LO’s has been further improved in recent years. In the

comparison criterion document of the IEEE 802.11n high-throughput wireless

LAN working group [71], the CFO value between the transmitter and receiver
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LO’s has been strengthened to 13.675 ppm which corresponds to normalized

CFO value of φ0 = 0.023 at fc = 5 GHz. All these facts show that the

assumption of |φ| ¿ 1 is valid in practice. Now using (2.4) in (2.2) and letting

ai,n(k) = wH
li
Dnrk, we get the approximated cost function given by

J2Q(φ) =
2Q∑

l=0

clφ
l (2.5)

where the polynomial coefficients cl are given by

cl =
(

j

2

)l l∑

m=0

(−1)m

(l −m)!m!

d∑

i=1

K∑

k=1

ai,l−m(k)a∗i,m(k) (2.6)

with ai,l(k) = 0 for l > Q. The new cost function (2.5) is a polynomial of

the real variable φ of degree 2Q. In addition, it has been proven in [64] that

all the polynomial coefficients are real-valued. The minimization of (2.5) can

be carried out by setting the derivative to 0 and using some standard rooting

methods to search for the CFO estimate. Since Q ¿ N , the computational

complexity required to find the root of (2.5) is significantly lower than that

for the original problem. Moreover, as both φ and the polynomial coefficients

are real, the rooting methods require only real arithmetic operations. This on

its own provides large computational savings.
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2.3 Proposed New Factorization Method

The factorization in (2.3) is aimed at increasing the denominators of the Taylor

series terms in (2.4) by a factor of 2n so that a good approximation to Z−1 can

be achieved with a limited number of terms. Next, we will propose another

factorization method which allows us to increase this number to (2n)2 = 4n

and more if needed. Based on (2.3), we can write

Z−1 = e−jφ(N−1)/2(E1 + E2), (2.7)

where

E1 = diag
(
ejφ

(N−1)
2 , ejφ

(N−3)
2 , · · · , ejφ 1

2 , 0, · · · , 0
)

= ejφ(N−1)/4diag
(
ejφ

(N−1)
4 , · · · , ejφ

(3−N)
4 , 0, · · · , 0

)
,

E2 = diag
(
0, · · · , 0, e−jφ 1

2 · · · , ejφ
(1−N)

2

)

= ejφ(1−N)/4diag
(
0, · · · , 0, ejφ

(N−3)
4 , · · · , ejφ

(1−N)
4

)
. (2.8)

Now, using Taylor series expansion in (2.8), we obtain

E1 =
+∞∑

m=0

(jφ)m

4mm!
(N − 1)m

+∞∑

n=0

(jφ)n

4nn!
Dn

1

=
+∞∑

m=0

+∞∑

n=0

(jφ)n+m

4n+mn!m!
(N − 1)mDn

1 ,

(2.9)
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where

Dn
1 = diag((N − 1)n, (N − 5)n, · · · (3−N)n, 0, · · · , 0). (2.10)

Similarly, we can show that

E2 =
+∞∑

m=0

+∞∑

n=0

(−1)m (jφ)n+m

4n+mn!m!
(N − 1)mDn

2 , (2.11)

where

Dn
2 = diag(0, · · · , 0, (N − 3)n, (N − 7)n, · · · (1−N)n). (2.12)

Substituting (2.9) and (2.11) into (2.7) leads to

Z−1 = ejφ(N−1)/2
+∞∑

m=0

+∞∑

n=0

(jφ)n+m

4n+mn!m!
(N − 1)m [Dn

1 + (−1)mDn
2 ] . (2.13)

If the Taylor series of each exponential is truncated to a suitable number of

Q terms, then equation (2.13) can be approximated by the following matrix

polynomial

Z−1 ≈ ejφ(N−1)/2
2Q∑

q=0

Cqφ
q, (2.14)

where

Cq =
(

j

4

)q q∑

m=0

(N − 1)m

m!(q −m)!

[
D(q−m)

1 + (−1)mD(q−m)
2

]
. (2.15)
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Note that Cq is a non-zero matrix for q = 0, 1, · · · 2Q and it is equal to the

zero-matrix for q > 2Q. To simplify the calculations, let us define the scalar

bi,q(k) as follows

bi,q(k) = wH
li
Cqrk. (2.16)

Now, let us substitute (2.14) into the cost function (2.2). This leads to the

new approximate cost function

J (z = ejφ) ≈ J4Q(φ) =
2Q∑

r=0

2Q∑

l=0

φl+r
d∑

i=1

K∑

k=1

bi,l(k)b∗i,r(k)

=
4Q∑

q=0

dqφ
q,

(2.17)

where the polynomial coefficients are given by

dq =
q∑

s=0

d∑

i=1

K∑

k=1

bi,q−s(k)b∗i,s(k). (2.18)

We can notice that bi,l(k) = 0 for l > 2Q as Cl is a zero matrix for l > 2Q.

Moreover, it is straightforward to show that dq = d∗q . Hence, all the coefficients

of the polynomial are real-valued.

In practice, the residual CFO can be so small that only a very limited number

of terms is needed for the Taylor series approximation. In this case, we can

compute directly the CFO through a simple formula as follows. For Q = 1,

the cost function polynomial is of degree four and its derivative with respect to

φ is a cubic polynomial whose zeroes or roots can be computed directly using

Cardano’s formula [72]. To this end, we should first rewrite the derivative of
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the cost function as follows:

1
4d4

∂J4Q(φ)
∂φ

= φ3 + uφ2 + vφ + r = 0, (2.19)

where

u =
3d3

4d4
, v =

d2

2d4
, r =

d1

4d4
. (2.20)

Now, let us compute

a = (3v − u2)/3, b = (2u3 − 9uv + 27r)/27,

S =

(
− b

2
+

√
b2

4
+

a3

27

)1/3

, T =

(
− b

2
−

√
b2

4
+

a3

27

)1/3

.

(2.21)

Finally, the three roots are given by [72]

φ̃1 = (S + T )− u

3
,

φ̃2 = −1
2
(S + T ) + j

√
3

2
(S − T )− u

3
,

φ̃3 = −1
2
(S + T )− j

√
3

2
(S − T )− u

3
.

(2.22)

Once the three roots are determined, we substitute them in (2.17) and choose

the one that leads to the minimum of J4(φ) as the CFO estimate. As we are

looking for a real solution, we should test only the real roots for the minimum.

The complex-valued roots need not be tested. It is worthwhile to mention

that for a cubic polynomial with real coefficients as in our case, at least one

of the roots will always be real [73]. The summary of this algorithm is given

in Table 2.1.
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Initialization
Start with the received signal vector r0, and set Q = 1.
Algorithm:
1) Compute the coefficients dq of the cost function polynomial J4(φ) using
(2.18) for q = 0, 1, 2, 3, 4.
2) Compute the coefficients u, v and r of 1

4d4

∂J4(φ)
∂φ using (2.20).

3) Compute the three roots φ̃1, φ̃2 and φ̃3 using (2.22) and discard the
complex roots. At least one root should be real as explained in the text.
4) If more than one root is real, then compute J4(φ) for each root and
choose the one that leads to the smallest value for J4(φ).

Table 2.1: Summary of the closed-form CFO estimator using the new factorization
method.

To complete our discussion, we need to examine closely the computational

complexity of the proposed algorithm. Since Q = 1, the computational com-

plexity due to (2.20), (2.21) and (2.22) is negligible as compared to the com-

plexity of computing the 5 polynomial coefficients d0 to d4. Every coefficient

dq requires the computation of bi,q(k) in (2.16), where we can easily notice

that Cq is just a diagonal matrix and both wH
li

and y(k) are just vectors.

As a result, the computational complexity for obtaining the polynomial coef-

ficients can be shown to be about O(dKN), that is, it is similar to that of the

method in [64] when Q = 1. The ESPRIT method in [68] is proposed as a low-

complexity method for the CFO estimator in [37]. The method is based on the

estimation and computation of a certain matrix A, its pseudo inverse and the

construction of another matrix called ∆. These operations have at least the fol-

lowing computational complexities O(K(N −M)(M +1)2), O(P 3)+O(MP 2)

and O((MP )2), where M ≥ P and P is the number of data subcarriers. In

practice, both M and P are of comparable size as N . Hence, it should be

obvious that the computational complexity of the proposed method is much
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lower than that of the methods in [37] and [68]. It is worth to note that the

computational complexity using the new factorization method with Q = 1 is

similar to that of the previous method in [64] with Q = 2. As we are going

to show later using simulations, the performance using the new factorization

method with Q = 1 is better than that of [64] with Q = 2.

2.4 Successive Blind CFO Estimation and Compen-

sation

The performance of the closed-form CFO estimator using the new factorization

method depends on the accuracy of the Taylor series approximation of the

cost function in (2.2), which is determined by the number of terms used in the

summation as well as the residual CFO values. As we only use Q = 1 (low

cost) in the proposed method, the accuracy of the approximation is degraded

when the actual CFO value is relatively large. As a result, there will be

some performance degradation in the Mean Square Error (MSE) of the CFO

estimation compared to the method in [37]. To reduce this degradation and

further improve the performance of the proposed method, we present, in this

section, an effective successive CFO estimation and compensation algorithm.

In the first iteration of the algorithm, we use the proposed method to find

an initial estimate of the CFO, say φ̂0. Then, the CFO compensation can be

performed on the received signal rk. To this end, let us define the CFO com-

pensation matrix in the first iteration as T1 = diag(1, e−jφ̂0 , · · · , e−j(N−1)φ̂0).

The time-domain received signal after the CFO compensation can thus be
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written as

r̃k = T1e
−jφ̂0(k−1)(N+Ng)rk

= E1WPHskejφ1(k−1)(N+Ng) +
(
nk

)′
, (2.23)

where E1 = diag(1, ejφ1 , ej2φ1 , · · · , ej(N−1)φ1) denotes the residual CFO matrix

with φ1 = φ0− φ̂0 representing the residual CFO after the first iteration. The

noise vector
(
nk

)′ = T1e
−jφ̂0(k−1)(N+Ng)nk.

Let us consider the residual CFO after the first iteration E1e
jφ1(k−1)(N+Ng) in

(2.23). It is obvious that when the CFO estimation is perfect, we should have

φ̂0 = φ0 and φ1 = 0. In this case, we have E1e
jφ1(k−1)(N+Ng) = I. Next, we

consider the case where the CFO is not perfectly estimated (φ̂0 6= φ0) but it

is close enough to φ0 for the following condition to hold

|φ1| =
∣∣∣φ0 − φ̂0

∣∣∣ < |φ0| . (2.24)

Note that the mean of the noise term n′(k) after CFO compensation is E(n′(k)) =

0 = E(n(k)), and its covariance matrix can be calculated as

R = E
(
T1e

−jφ̂0(k−1)(N+Ng)nk
(
nk

)H
ejφ̂0(k−1)(N+Ng)TH

1

)

= T1e
−jφ̂0(k−1)(N+Ng)E

(
nk

(
nk

)H
)

ejφ̂0(k−1)(N+Ng)T1
H

= σ2
nT1e

−jφ̂0(k−1)(N+Ng)Iejφ̂0(k−1)(N+Ng)TH
1

= σ2
nI, (2.25)
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and is seen to be equal to the covariance matrix of nk. This means that the

noise power remains constant after carrier offset compensation and the CFO

estimation and compensation process does not introduce any noise amplifica-

tion. In the second iteration, since (2.24) holds, it is obvious that the residual

CFO after the first iteration ejφ1 can be represented more accurately using

the first order Taylor series approximation as compared to ejφ0 and therefore,

our estimation method will lead to a better estimate for φ1. That is, after the

second iteration, we get the residual CFO after the second iteration φ2 such

that |φ2| = |φ1− φ̂1| = |φ0− (φ̂0 + φ̂1)| is very small. Now if after every itera-

tion, we have the residual CFO smaller than that after the previous iteration,

i.e.,

|φi+1| = |φi − φ̂i| < |φi|, (2.26)

then eventually, as the iteration number goes to infinity, we have the residual

CFO

lim
i→∞

|φi+1| = 0 and lim
i→∞

[
Ei+1e

jφi+1(k−1)(N+Ng)
]

= I.

The question now is how can we ensure, or at least monitor the algorithm

such that the condition in (2.26) is met after each iteration so as to guarantee

convergence. In the successive algorithm, we can monitor the convergence

through the amplitude of the residual CFO estimate |φ̂i| from the second

iteration onwards. If |φ̂i| < |φ̂i−1|, then the algorithm is moving in the right

direction1. We can also use |φ̂i| to stop the algorithm should we find that |φ̂i|
1Ideally, we should monitor the amplitude of the actual residual CFO |φi| for different

iterations. If |φi| < |φi−1|, then the algorithm is converging. However, we do not know |φi|
as it requires the knowledge of the true CFO value φ0. To overcome this, an alternative
approach is to monitor the amplitude of the CFO estimates |φ̂i| at different iterations. If the
algorithm is converging, then we should expect the amplitude of the residual CFO estimate
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is too small and reiterating the estimator one more time will not lead to any

significant improvement in the CFO estimation.

Our objective is to minimize the computational complexity while improving

the CFO estimation. Therefore, we need to keep the order of Taylor series

approximation as small as possible and the number of iterations as low as

possible. If |φ̂i| > |φ̂i−1|, we know that the successive algorithm is likely to

diverge. In this case, we need to have a better estimate to ensure convergence.

This can be achieved, for example, by increasing the order of Taylor series

approximation in iteration [i−1]. In the simulations, we have found that under

practical conditions, the first-order Taylor series approximation is adequate.

Given that the convergence condition is continuously monitored and enforced

through iterations, the proposed successive CFO estimation and compensation

algorithm approaches the performance of the algorithm in [37]. The proposed

successive algorithm is summarized in Table 2.2. Here η is a small threshold

value for CFO. When the estimated residual CFO gets smaller than this value,

there is no point in going on with the iterations as the improvement will be

marginal.

The computational complexity of the successive algorithm is roughly nitn times

the complexity of the closed-form CFO estimator, where nitn is the number

of iterations. As we are going to show later in the simulation results, the

performance of the successive algorithm converges to that of the algorithm

in [37] in 2 to 3 iterations for practical CFO values. Therefore, the complexity

of the successive algorithm is still much lower than that of the ESPRIT method

|φ̂i| to decrease as the number of iterations increases.
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Initialization
Set iteration number i = 1 and the CFO threshold η.
Algorithm:
1) Substitute rk into cost function (2.2) and solve for the residual CFO

estimate for the ith iteration φ̂i using the method in Table 2.1.
2) Perform CFO compensation and update the new r̃k according

to (2.23).
3) If φ̂i < η, exit iteration, else go to 4)
4) If {|φ̂i| < |φ̂i−1| and i > 1} or {i = 1}

i = i + 1, go back to 1).
Else

Go back to iteration [i− 1] and increase the order of Taylor
series approximation.

Table 2.2: Summary of the proposed successive CFO estimation and compensation
algorithm.

in [68].

2.5 Decision-directed Successive Algorithm

Due to averaging, the MSE of the CFO estimation gets smaller as the number

of null subcarriers, i.e., d used in cost function (2.2), gets larger. In practice,

we cannot afford to have many null subcarriers in one OFDM symbol as this

reduces the bandwidth efficiency. However, if the CFO estimation is accurate

in the initial iteration, by performing CFO compensation and OFDM detection

on a set of high SNR data subcarriers, we are able to obtain relatively accurate

estimates ŝk of the transmitted signals sk on these high-SNR subcarriers. Here,

in order to keep the computational complexity low, we limit ourselves to the

case where only 1 OFDM symbol is used for CFO estimation, i.e. K = 1 as in

(2.2)and later in the simulation results section, we will show that K = 1 gives
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us good performance for all the proposed algorithms. In this case, we can drop

the OFDM symbol index k in all the following formulations. Let us denote

the selected high-SNR data subcarriers as d and the set of null subcarriers

as l. We can thus use a decision-directed method and re-formulate the cost

function as

J (z) =
∑

i∈d

∥∥wH
i Z−1r− hiŝi

∥∥2
+

∑

i∈l

∥∥wH
i Z−1r

∥∥2
, (2.27)

where hi, ŝi are the channel response and detected signal on subcarrier i.

The two terms in the summation in (2.27) correspond to the cost function

on the selected data subcarriers and the null subcarriers. Using Taylor series

expansion as before, the decision-directed cost function is given by

J (φ) =
∑

i∈d

∥∥∥∥∥w
H
i

+∞∑

n=0

(jφ)n

n!
Dn

dr− hiŝi

∥∥∥∥∥

2

+ J4Q(φ), (2.28)

where Dd = diag(0,−1,−2, · · · , 1−N) and here we use subscript d to denote

decision-directed. The function J4Q(φ) is the same cost function on the null

subcarriers given in (2.17). Comparing (2.28) to (2.3), we can see that for

the data subcarriers, we can no longer bring e−jφ
(N−1)

2 out of the modulus

operation. Therefore, in the Taylor series summation, we do not have the 2n

term in the denominator. As a result, the amplitudes of higher-order terms do

not decay as fast as for (2.2) and we need to include more terms in the Taylor

series summation in order to get a good approximation of Z−1.

Suppose we use M terms in the Taylors series approximation and set ai,n =
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wH
i Dn

dr, then the cost function in (2.28) can be expanded as

J (φ) =
∑

i∈d

[
M∑

n=0

M∑

m=0

(jφ)n

n!
((jφ)m)∗

m!
ai,na∗i,m

−2Re

(
M∑

n=1

(jφ)n

n!
ai,n (h(i)s(i))∗

)
+ |hisi|2

]
+ J4Q(φ),

(2.29)

where Re(•) denotes the real part of a complex number. Here, we assume

the channel to be known at the receiver 2. In practice, the decision-directed

method is only invoked starting from the second iteration onwards as the

detected symbol is only available after the first iteration. That means that

an initial CFO estimate is already obtained in the first iteration. Therefore,

what the decision-directed method needs to estimate is only the residual CFO,

which is much smaller than φ0. Note that the cost function of data subcarriers

is a function of φ with order 2M . In practice, we can set M = 2 such that the

cost functions of the data subcarriers and the null subcarriers are both of order

4. The overall cost function in (2.29) is therefore also order 4 and we can use

the proposed closed-form solution to find the φ that minimizes the total cost.

However, the coefficients of the polynomial need to be re-calculated according

to (2.29). Note that to ensure convergence of the algorithm, we again need to

monitor the amplitude of the CFO estimate |φ̂i| after different iterations.

The complexity of the decision-directed blind CFO estimation technique is

higher because more subcarriers are used in the cost function calculation. In

2The channel can also be estimated blindly using blind channel estimation methods such
as [74].
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practice, the size of d should be chosen such that a good trade-off between

complexity and performance is achieved. The decision-directed CFO estima-

tion algorithm can be summarized as shown in Table 2.3.

Initialization
set iteration number i = 1 and the threshold CFO η
Algorithm:
1) Substitute r into (2.2) and solve for φ̂i using the method in Table 2.1.
2) Perform CFO compensation and update the new r̃ according to (2.23).
3) If φ̂i < η, exit iteration, else go to 4).
4) If {|φ̂i| < |φ̂i−1| and i > 1} or {i = 1}

4.1) Form the set of subcarriers used in CFO estimation by combining
null subcarriers and the chosen set of high-SNR data subcarriers.

4.2) Perform OFDM detection on the set of chosen data subcarriers
to obtain ŝi.

4.3) Increment iteration number i=i+1.
4.4) Substitute r into cost function in (2.29) and solve for φ̂i that

minimizes (2.29). Go to 2).
Else

4.5) Go back to iteration [i− 1] and increase the order of Taylor
series approximation.

Table 2.3: Summary of the proposed decision-directed successive CFO estimation and
compensation algorithm.

2.6 Simulation Results

Computer simulations were performed to study the performance of the pro-

posed low-complexity blind CFO estimation algorithms using frequency-domain

null subcarriers. We use an OFDM system with N = 64 subcarriers and

length-16 cyclic prefix. We define the subcarrier spacing as ω = 2π/N . To

assess the performance of the proposed method, we define the estimation MSE
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Fig. 2.1: MSE of CFO estimation using the new method (−0.25ω ≤ φ0 ≤ 0.25ω).

as [68]

MSE =
1

Ns

Ns∑

i=1

(
φ̂− φ0

ω

)2

, (2.30)

where φ̂ and φ0 represent the estimated and actual CFO values, respectively,

and Ns denotes the total number of Monte Carlo trials. In all the simulations,

we only use 1 OFDM symbol to perform CFO estimation, i.e K = 1 in all the

cost functions. We use channel model A of the HiperLan II channel models

[75] in all the simulations. It is a multi-path Rayleigh fading channel with

exponential power delay profile and root mean square (RMS) delay spread

equal to 50 ns.
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2.6.1 Simulation Results for the New Factorization Method

According to the specifications given in IEEE 802.11a, the null subcarriers

are placed consecutively from subcarriers 27 to 37 [17]. Figure 2.1 shows

the MSE of the new factorization method. Here, the actual CFO for each

OFDM symbol is modeled as a uniformly-distributed random variable between

[−0.25ω, 0.25ω]. We compare the performance of the new method with that of

the previous method in [64]. We can see that the new method with Q = 1 has

a better MSE performance than the previous low-complexity method in [64]

with both Q = 1 and Q = 2. Using the new method with Q = 1, the cost

function is a 4th order polynomial. From a complexity point of view, this

is similar to the method in [64] with Q = 2. However, due to the 4n term

in the denominator of the Taylor Series expansion, the new method achieves

better performance. Also shown in the same figure is the MSE performance

of the original algorithm in [37] with the CFO estimate obtained using search

method, which is also the ML performance [48]. Only at high SNR regions,

the new method suffers some degradation as compared to the search method

in [37].

In [67], a study shows that if the null subcarriers are placed consecutively

as in the IEEE 802.11a standard, then the CFO value that minimizes (2.2)

might not be unique. It was also shown in [48] that the optimal placement

of the null subcarriers to minimize the Cramer-Rao bound is to place them

evenly spaced across the whole OFDM symbol. Such null subcarrier placement

guarantees unique identifiability of CFO up to 2πd/N where d is the number

of null subcarriers. We thus adopted this null subcarrier placement in the
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Fig. 2.2: MSE of CFO estimation using the new method for evenly placed null sub-
carriers (−0.5ω ≤ φ0 ≤ 0.5ω).

subsequent simulations. We use a total of 11 subcarriers (same number as the

consecutive null subcarrier case) spaced 6 subcarriers apart, that is we placed

the null subcarriers at the following locations [1, 7, · · · , 55, 61].

The MSE of the new method using evenly-spaced null subcarriers for −0.5ω ≤
φ0 ≤ 0.5ω is shown in Figure 2.2. In this case, we purposely set the CFO value

larger such that the degradation due to lower-order approximation in the cost

function is more visible. We can see that the new method with Q = 1 still

performs better than the previous method in [64] with Q = 1 and Q = 2.

For evenly spaced null-subcarrier placements, the performance gain by using

the new method is not as large as in the case of consecutive null subcarriers.

The symbol error rate (SER) of the three schemes using QPSK modulation is

compared in Figure 2.3. Here, we first use the proposed blind method to obtain

the CFO estimate. The estimated offset is then compensated from the received



2.6 Simulation Results 67

10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

 

 

No CFO compensation
Previous method, Q=1
Previous method, Q=2
New Method Q=1
 Perfect CFO compensation

Fig. 2.3: SER with CFO estimation using the new method for evenly placed null
subcarriers using QPSK modulation (−0.5ω ≤ φ0 ≤ 0.5ω).

signal, and OFDM detection is carried out to detect the transmitted data. To

separate issues of channel estimation from CFO estimation, we assume that the

channel estimation is perfect. We can see that without CFO estimation and

compensation, the OFDM system fails. Using the new method with Q = 1, the

performance is about 8 dB better than for the previous method in [64] (Q=1)

at SER of 10−3. The new method with Q = 1 achieves similar performance as

the previous method in [64] for Q = 2.

One major observation from Figure 2.2 is the error floor effect in the high-SNR

region. This is due to the inaccuracy of the first-order approximation of the

cost function used. The same observation can be made from the SER perfor-

mance in Figure 2.3. We will show later that this error floor can be effectively

removed using the proposed successive CFO estimation and compensation al-
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gorithm.

2.6.2 Simulation Results for the Successive CFO Estimation

and Compensation Algorithm

The performance of the successive CFO estimation method is evaluated using

computer simulations following the same simulation setup as before. Figure

2.4 shows the MSE performance of the successive CFO estimation and com-

pensation algorithm for −0.7ω ≤ φ0 ≤ 0.7ω. Here we purposely increase the

value of the CFO such that the worst-case CFO of ±0.64ω specified by IEEE

802.11a [17] is included. We can see that the performance is improved signifi-

cantly using the proposed successive algorithm (Table 2.2). The MSE after the

first iteration has a floor of 3× 10−3. Using the proposed successive method,

this floor is removed after the second iteration. Hence, in practice, the succes-

sive method can be stopped after the second iteration and the extra complexity

introduced is very low. If we compare the MSE after convergence with the

MSE of the search method in [37], we can see that after two iterations, the

proposed method achieves almost the same MSE performance as that in [37].

We have implemented the convergence monitoring mechanism shown in Ta-

ble 2.2 in the algorithm. We found that Q = 1 is good enough to guarantee

convergence for all considered SNR values. Figure 2.5 also shows the SER

performance of the successive algorithm using QPSK modulation. We can see

that the SER performance takes only 2 iterations to achieve a performance

similar to the case where we have a perfect estimation and compensation of

the CFO.
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Fig. 2.4: MSE of CFO estimation using the successive CFO estimation and compen-
sation algorithm (−0.7ω ≤ φ0 ≤ 0.7ω).
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Fig. 2.5: SER with CFO estimation using the successive CFO estimation and com-
pensation algorithm for QPSK modulation(−0.7ω ≤ φ0 ≤ 0.7ω).
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Fig. 2.6: Convergence behavior of the successive algorithm (φ0 = 0.7ω, SNR=20dB).

Figure 2.6 shows the convergence behavior of the successive algorithm for a

particular channel realization at an SNR of 20 dB. The actual CFO value is

fixed at φ0 = 0.7ω. From the upper figure in Figure 2.6, we can see that the

MSE of the CFO estimation converges to that using the search method in 2

iterations, which is consistent with the results shown in Figure 2.4. The lower

figure in Figure 2.6 plots the amplitude of the CFO estimates |φ̂i| for different

iterations. We can see that the amplitude of |φ̂i| is indeed decreasing as the

number of iterations i increases, which is an indication of the convergence of

the algorithm as explained earlier.

As the successive CFO estimation and compensation algorithm is generic, it

is applicable to the previous low-complexity method in [64] as well. Figure 2.7
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Fig. 2.7: CFO estimation using the previous method with Q = 1 and the successive
algorithm (−0.7ω ≤ φ0 ≤ 0.7ω).

shows the performance of the successive algorithm when used in combination

with the low-complexity method in [64] for Q = 1. The successive method

again significantly improves the performance of blind CFO estimation and

effectively removes the error floor in the high-SNR region. In this case, the

MSE also converges after 3 iterations to the same MSE as the search method

in [37]. Figure 2.8 shows the SER performance of the successive algorithm

combined with the low-complexity method in [64] for Q = 1 using QPSK

modulation. We can see that the SER performance converges to that with

perfect CFO compensation after 3 iterations.

From the MSE and SER performances, we can observe that the performance

degradation due to the first-order approximation in Taylor series can be effec-

tively reduced using the successive algorithm.
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Fig. 2.8: SER with CFO estimation using the previous method with Q = 1 and the
successive algorithm with QPSK modulation (−0.7ω ≤ φ0 ≤ 0.7ω).

2.6.3 Simulation Results for the Decision-directed Algorithm

Simulations were also carried out to study the performance of the decision-

directed CFO estimation algorithm in Table 2.3. Figure 2.9 shows the MSE of

the CFO estimation. Here, in the first iteration, we use the proposed closed-

form approximation method to get the initial CFO estimate. The estimated

CFO is then compensated. We then use a zero-forcing one-tap equalizer on

each subcarrier to equalize the effect of the frequency selective channel. The

estimate of the transmitted signal is obtained using a minimum Euclidean

distance detector. From the second iteration onwards, we use both the null

subcarriers and the reliable data subcarriers to perform CFO estimation. As

we have more subcarriers available to perform CFO estimation, we expect

better performance compared to the non-decision-directed method. This is
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Fig. 2.9: CFO estimation using decision-directed algorithm with Q = 1 (−0.25ω ≤
φ0 ≤ 0.25ω).

also evident from Figure 2.9. In this simulation, we choose the 11 highest-SNR

data subcarriers combined with the 11 null subcarriers for CFO estimation.

We use M = 2 and Q = 1 in the cost function (2.29). As we use twice the

number of subcarriers for CFO estimation, we expect a performance gain of

3 dB compared to non-decision-directed method. This is confirmed by Figure

2.9.

The best performance is achieved when all the subcarriers are used for CFO

estimation. However, the complexity of such a method is high and error prop-

agation due to wrong decisions will be worse compared to using only high-SNR

subcarriers. Therefore, a trade-off between complexity and MSE performance

should be found.
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2.7 Conclusions

In this chapter, we developed a new factorization method to approximate the

cost function for blind CFO estimation in OFDM systems using null subcar-

riers. Using this new method, we further derived closed-form solutions for the

CFO estimate using a first-order Taylor series approximation. This new CFO

estimator reduces the computational complexity of the CFO estimation sig-

nificantly. We also proposed a successive CFO estimation and compensation

algorithm which further improves the performance of the new CFO estima-

tor. Indeed, using the proposed successive algorithm, we were able to achieve

similar performance as the method in [37] yet at a much lower computational

complexity. A decision-directed extension of the successive algorithm was also

given, which achieves even better performance at the cost of slightly higher

computational complexity.



Chapter 3

Optimal Null Subcarrier Placement

for Blind CFO Estimation

3.1 Introduction

In Chapter 2, we studied the blind CFO estimation algorithm using null sub-

carriers by Liu and Tureli [37] and proposed new algorithms to reduce the

computational complexity when the CFO is small. In this chapter, we present

a mathematical analysis on the relationship between the placement of null sub-

carriers and the performance of the CFO estimation. A previous work in [67]

showed that consecutively placed null subcarriers at both ends of the spectrum

does not guarantee unique solution for the CFO estimates. The identifiability

of the CFO estimator in [37] with different null subcarrier placement is further
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studied in [48]. Moreover, it was also shown that equally spaced null subcarrier

placement minimizes the Cramer Rao bound (CRB) of the CFO estimation.

As the CRB is not always achievable for practical CFO estimation schemes, in

this chapter, we study the relationship between the null subcarrier placement

and the following two more practical performance-related parameters

• SNR of the CFO estimation;

• Theoretical MSE of the CFO estimation, which is a linear approximation

of the actual MSE of CFO estimation in the high SNR region.

Based on the obtained relationship, we find the null subcarrier placement that

maximizes the SNR and minimizes the theoretical MSE, respectively. We show

that the two optimization problems are equivalent and a single optimal null

subcarrier placement exists. For the case when the number of subcarriers is

divisible by the number of null subcarriers, the exact optimal placement can be

found. Interestingly, this is also the null subcarrier placement that minimizes

the CRB as given in [48]. When the number of subcarriers is not divisible

by the number of null subcarriers, it is difficult to prove the optimality of the

null subcarrier placement due to the integer constraints on the null subcarrier

positions. However, we will develop a heuristic procedure on how to place the

null subcarriers where good performance can still be achieved. We verify that

the null subcarrier placement obtained using the proposed heuristic procedure

is indeed optimal using exhaustive computer search when the number of null

subcarriers is small. We also extend the optimization problem to a practical

OFDM system where guard bands are required at both ends of the spectrum.

In this case, if given a few more null subcarriers that can be inserted freely
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in the OFDM symbol, we show how to place them to guarantee the SNR

optimality in the CFO estimation. We show from computer simulations that

with the proposed null subcarrier placement, the performance of the CFO

estimation can be significantly improved. We further show that for practical

OFDM systems with guard bands, introduction of a few extra null subcarriers

leads to much better performance of the blind CFO estimation.

The rest of this chapter is organized as follows. In Section 3.2, we study the

relationship between the null subcarrier placement and the SNR of the CFO

estimation. We find the null subcarrier placement that maximizes this SNR,

which we call SNRCFO to distinguish it from the SNR of the received signal. In

Section 3.3, we derive the theoretical MSE of the CFO estimation and obtain

its relationship with the null subcarrier placement. We then show that the

null subcarrier placement that minimizes the theoretical MSE also maximizes

the SNRCFO. Optimal null subcarrier placement for practical OFDM systems

with guard bands is studied in Section 3.4. In Section 3.5, we present computer

simulation results and conclusions are drawn in Section 3.6.
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3.2 Placement of Null Subcarriers Based on SNRCFO

Maximization

For an OFDM system with a CFO value of ε0, the received frequency domain

signal on a null subcarrier li of OFDM symbol m can be written as

ym
li

= wH
li
rm =

N−1∑

n=0,n6∈lm

hm
n sm

n Cm
n−li

(ε0) + nm
li

= ICImli (ε0) + nm
li

, (3.1)

where wH
li

is row li of the DFT matrix, and rm is the time domain received

signal for the mth OFDM symbol given in (2.1). We use hm
li

and sm
li

to denote

the channel response and transmitted data on subcarrier li of OFDM symbol

m. Vector lm contains indices of all the null subcarriers in OFDM symbol m.

The ICI due to CFO of ε0 on subcarrier li is denoted as ICImli (ε0) and nm
li

is

the AWGN noise. The value of Cm
k (ε0) is given by [76]

Cm
k (ε0) =

sin [π(k + ε0)]
N sin

[
π
N (k + ε0)

] exp (jπ(k + ε0)(1− 1/N))

exp (j2πε0(m− 1)(1 + Ng/N)) . (3.2)

Using (3.1), the cost function in (2.2), which is the summation of the received

signal power over all the null subcarriers, can be equivalently re-written as
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J (ε) =
K∑

m=1

d∑

i=1

∣∣∣wH
li

diag(1, e−j2πε/N , e−j2π2ε/N , · · · , e−j2π(N−1)ε/N )rm
∣∣∣
2

=
K∑

m=1

d∑

i=1

∣∣ICImli (ε0 − ε) + nm
li

∣∣2

=
K∑

m=1

d∑

i=1

∣∣∣∣∣∣

N−1∑

n=0,n6∈lm

hm
n sm

n Cm
n−li

(ε0 − ε) + nm
li

∣∣∣∣∣∣

2

.

(3.3)

Correspondingly, the estimate of the CFO is given by

ε̂ = arg min
ε
J (ε). (3.4)

Note that the received signal on a null subcarrier li in (3.1) is the sum of ICImli

and nm
li

. In these two terms, ICImli is the useful signal term which we can

use to estimate the CFO ε0, and nm
li

is the noise term, which is uncorrelated

with ICImli . Therefore, using (3.1) we can define an objective function, called

SNRCFO as

SNRCFO =
E

(∑K
m=1

∑d
i=1

∣∣ICImli (ε0)
∣∣2

)

E
(∑K

m=1

∑d
i=1

∣∣∣nm
li

∣∣∣
2
) , (3.5)

where E denotes statistical expectation. Note that the objective function can

be interpreted as the SNR of the CFO estimation. The power of ICI on

subcarrier li in OFDM symbol m can be written as



80Chapter 3. Optimal Null Subcarrier Placement for Blind CFO Estimation

E
∣∣ICImli (ε0)

∣∣2 = E





∣∣∣∣∣∣

N−1∑

n=0,n6∈lm

hm
n sm

n Cm
n−li

(ε0)

∣∣∣∣∣∣

2


=





N−1∑

n=0,n6∈lm

E|hm
n sm

n |2
sin2 [π(n− li + ε0)]

N2 sin2
[

π
N (n− li + ε0)

]


 . (3.6)

We note from (3.6) that the power of ICI for the mth OFDM symbol depends

only on the signals in OFDM symbol m and is not affected by the other OFDM

symbols. We also assume that the channels from different OFDM symbols

have the same statistical distribution and are independent of the transmitted

signal. As a result, E|hm
n sm

n |2 becomes independent of the OFDM symbol

index m. As the noise in OFDM symbol m is also independent of the noise

in other OFDM symbols, the SNRCFO optimization from the null subcarrier

placements for K OFDM symbols can be performed on each OFDM symbol

independently. Therefore, the optimization only needs to be performed for

one OFDM symbol. From now on, for ease of notation, we drop the OFDM

symbol index m. In this case, the null subcarrier placement l that maximizes

the SNRCFO in (3.5) can be found by

l = arg max
l

(SNRCFO) = arg max
l


E

(∑d
i=1 |ICIli(ε0)|2

)

E
(∑d

i=1 |nli |2
)


 . (3.7)

The noise variance is the same for all the subcarriers, therefore, the denom-

inator of (3.7) is independent of the null subcarrier selection l. Accordingly,
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the optimization of the null subcarrier placement reduces to

l = arg max
l

E

(
d∑

i=1

|ICIli(ε0)|2
)

= arg max
l

E





d∑

i=1

∣∣∣∣∣∣

N−1∑

n=0,n6∈l

hnsnCn−li(ε0)

∣∣∣∣∣∣

2


= arg max
l

d∑

i=1





N−1∑

n=0,n6∈l

E|hnsn|2 sin2 [π(n− li + ε0)]
N2 sin2

[
π
N (n− li + ε0)

]




= arg max
l

d∑

i=1





N−1∑

n=0,n6∈l

1
sin2

[
π
N (n− li + ε0)

]


 , (3.8)

as E|hnsn|2 = E{|hn|2}E{|sn|2} is independent of the null subcarrier place-

ment. Here, without apriori knowledge of the channels, we assume that

the channels at different subcarriers hn have the same average power and

this makes E{|hn|2} independent of the subcarrier index n. The numerator

sin2 [π(n− li + ε0)]] is equal to sin2(πε0). Hence, it is also independent of the

null subcarrier placement. In practice, ε0 is normally modeled as a random

variable with a uniform distribution [68] as follows

p(ε0) =





1
2θ , ε0 ∈ [−θ, θ)

0, elsewhere,
(3.9)

where θ is the magnitude of the worst case CFO. In this case, the cost function,
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averaging over the random variable ε0, can be written as

l = arg max
l





∫ +θ

−θ

d∑

i=1




N−1∑

n=0,n6∈l

1
sin2

[
π
N (n− li + ε0)

]

 p(ε0)dε0





= arg max
l





d∑

i=1

N−1∑

n=0,n6∈l

1
2θ

N

π
f(n− li)



 , (3.10)

where f(k) is given by

f(k) =
[
cot

( π

N
(k − θ)

)
− cot

( π

N
(k + θ)

)]

for k = −(N − 1),−(N − 2) · · · ,−1, 1, 2, · · · , N − 1. (3.11)

Note that k = n − li 6= 0 for n 6∈ l. It can be easily shown that f(k) has the

following two properties:

1. f(k) is periodic with period N , i.e. f(k) = f(k + N). Therefore, for the

subsequent optimization, we only need to consider the function f(k) over

one period, i.e. k = 1, 2, · · · , N − 1.

2. f(k) is an even function of k, i.e. f(k) = f(−k) for any integer k.

Discarding the constants in (3.10), we can re-write the optimization problem

in the following form

l = arg max
l





d∑

i=1

N−1∑

n=0,n6∈l

f(n− li)





= arg max
l

d∑

i=1





N−1∑

n=0

f(n− li)−
∑

n∈l,n6=li

f(n− li)− f(0)



 . (3.12)
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We can notice that the third term in (3.12), that is f(0), is independent of l

and hence can be dropped. Now, we prove that the first term in the summation

c1 =
∑N−1

n=0 f(n− li) in (3.12) is also independent of li.

Proof. Let k be any arbitrary positive integer between 1 and N − 1, then

N−1∑

n=0

f(n− li) =
k−1∑

n=0

f(n− li) +
N−1∑

n=k

f(n− li).

Using the periodicity of f(k), we can write

N−1∑

n=0

f(n− li) =
N+k−1∑

n=N

f(n− li) +
N−1∑

n=k

f(n− li)

=
N−1∑

m=0

f(m + k − li). (3.13)

Since (3.13) holds for arbitrary k ∈ [1, N − 1], it holds for k = li. Substituting

k = li in (3.13), we get

c1 =
N−1∑

n=0

f(n− li) =
N−1∑

m=0

f(m + li − li) =
N−1∑

m=0

f(m).

This proves that c1 is independent of li.

Therefore, the cost function in (3.12) can be simplified to
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l
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l
3

k
1

k
2

k
3

N

Fig. 3.1: Illustration of the placement of 3 null-subcarriers.

l = arg min
l





d∑

i=1

∑

n∈l,n6=li

f(n− li)



 = arg min

l





d∑

i=1

d∑

j=1,j 6=i

f(li − lj)



 .(3.14)

Notice that the new cost function in (3.14) depends only on the spacing, not the

absolute positions, of the null subcarriers. Let us define the spacing between

the ith and (i + 1)th null subcarriers as ki = li+1 − li for i = 1, 2...d − 1 and

kd = N + l1 − ld. For illustration, we first give the new formulation of (3.14)

for the simple case of d = 3 and then generalize the result to arbitrary d.

Figure 3.1 illustrates the problem of placing d = 3 null subcarriers. Without

loss of generality, we place l1 at subcarrier 0. From (3.14), the optimization

of the placement of the null subcarriers l1, l2 and l3 is equivalent to the op-

timization of the spacing between these null subcarriers, that is k1 = l2 − l1,

k2 = l3 − l2 and k3 = N + l1 − l3 = N − l3 as l1 = 0. Note that there is now a

constraint on the values of k1, k2 and k3, i.e. k1 + k2 + k3 = N . We can now

re-write the cost function in (3.14) as

l = arg min
k1,k2,k3

J (k1, k2, k3),

subject to: k1 + k2 + k3 = N,
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where

J (k1, k2, k3) =
3∑

i=1

3∑

j=1,j 6=i

{f(li − lj)}

= f(l1 − l2) + f(l1 − l3) + f(l2 − l3) + f(l2 − l1) + f(l3 − l1) + f(l3 − l2)

= {f(k1) + f(k1 + k2)}+ {f(k2) + f(k2 + k3)}+ {f(k3) + f(k3 + k1)} .

(3.15)

Here we made use of the evenness property of f(k), e.g. f(l1− l2) = f(−k1) =

f(k1).

To extend the formulation in (3.15) to arbitrary number (d) of null sub-

carriers, we first define pi,m =
∑m−1

j=0 k[(i+j−1)mod d]+1 for i = 1, 2, · · · d and

m = 1, 2, · · · d − 1. Here, we use [i mod d] for integers i and d to denote the

integer remainder of i/d. The subscript i indicates the k index of the first

term in the summation, because [(i + 0 − 1)mod d] + 1 = i. The subscript

m indicates the total number of terms in the summation. Therefore, pi,m is

actually the spacing between the ith null-subcarrier and its mth neighbouring

null subcarrier to the right in the cyclic sense1. Therefore, the contribution to

the total cost function due to a particular null subcarrier i is the summation of

f(li−lj) from all its d−1 neighbouring null subcarriers, i.e.
∑d

j=1,j 6=i f(li−lj).

As pi,m is the spacing between the ith null subcarrier and its mth neighbouring

null subcarrier, we can write
∑d

j=1,j 6=i f(li − lj) =
∑d−1

m=1 f(pi,m). Summing

this over all the d null subcarriers, i.e. d possible values of i, the new cost

1The length of the cycle is d as there are only d null subcarriers.
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function can be written as

J (k1, k2, · · · , kd) =
d∑

i=1

d−1∑

m=1

f(pi,m) =
d−1∑

m=1

{
d∑

i=1

f(pi,m)

}

subject to:
d∑

i=1

ki = N. (3.16)

Notice that the optimization problem in (3.16) has all variables being positive

integers. Such an integer programming problem is difficult to solve analyti-

cally. Therefore, we first relax the constraints on all ki’s being positive integers

and assume them to be positive real numbers. This approach has been com-

monly used in finding the optimal bit allocations for multiuser or multicarrier

systems, see for example [77]. For ease of analysis, we also assume that θ < 1

so that k − θ > 0 and k + θ < N are satisfied for all possible values of k. It

can be easily shown that if θ < 1 is satisfied, the double derivative of f(k)

with respect to k, d2

dk2 f(k) > 0 for 1 < k < N − 1. Therefore, f(k) is a convex

function for 1 < k < N −1 and θ < 1. It is stated in [78] that if f(k) is convex

for k1, k2, · · · , kd, and given λ1, λ2, · · · , λd with λ1 + λ2 + · · ·+ λd = 1, then

f(λ1k1 + λ2k2 + · · ·+ λdkd) ≤ λ1f(k1) + λ2f(k2) + · · ·+ λdf(kd). (3.17)

This relationship is also known as the Jensen inequality. By setting λ1 = λ2 =

· · · = λd = 1
d , we have

1
d

d∑

i=1

f(pi,m) ≥ f

(
1
d

d∑

i=1

pi,m

)
= f

(
mN

d

)
for m = 1, 2, · · · d− 1. (3.18)
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Here we make use of the fact that
∑d

i=1 pi,m = mN because
∑d

i=1 ki = N .

When k1 = k2 = · · · = kd = N
d , the equality in (3.18) holds for all the values

of m. Therefore, we get

J (k1, k2, · · · , kd) =
d−1∑

m=1

{
d∑

i=1

f(pi,m)

}
≥

d−1∑

m=1

d

{
f

(
mN

d

)}
. (3.19)

This cost function is minimized when k1 = k2 = · · · = kd = N
d . This means

that the null subcarriers should be placed evenly-spaced across the whole

OFDM symbol.

If N
d is an integer, the null subcarriers should be placed N

d apart to maximize

SNRCFO. Therefore, in system design when we can freely choose the number

of null subcarriers d, we should always choose d such that N
d is an integer

to ensure the optimality of null subcarrier placement. However, for systems

where N is not divisible by d, it turns out difficult to prove the optimality of a

particular null subcarrier placement because of the integer constraints on the

values of ki’s. However, from the optimal solution for real ki, we know that to

maximize the SNRCFO, the spacing between the null subcarriers should be as

even as possible. In the following, we propose a heuristic procedure to achieve

this.

Let kl = bN
d c and ku = dN

d e where kl and ku are both integers. Here we use

bxc to denote the largest integer that is smaller than or equal to x, while dxe
denotes the smallest integer that is larger than or equal to x. We know that

to achieve close to even spacing between the null subcarriers, all the ki values

should be chosen as either kl or ku. Next we determine how many ki’s should
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take the value kl and how many ki’s should take the value ku and we use nl

and nu to denote these two numbers respectively. The values of nl and nu can

be obtained by solving





nl + nu = d

nl × kl + nu × ku = N.

Now the problem of placing the null subcarriers is equivalent to placing these

nl kl’s and nu ku’s as evenly as possible. It is obvious that if we place all the

kl’s consecutively and all the ku’s consecutively, the spacing between the null

subcarriers will not be very even. They should be placed alternately in some

way. Without loss of generality, let us assume nl ≥ nu. If nl
nu

= q is an integer,

we should group q kl’s followed by one ku into one group and place nu of such

groups as illustrated in Table 3.1. Otherwise, we let ql = b nl
nu
c. In this case,

we should have two kinds of placing groups. The type 1 group consists of ql

kl’s followed by one ku and the type 2 group consists of ql + 1 kl’s followed by

one ku. The number of type 1 groups gl and number of type 2 groups gu can

be obtained by solving





gl + gu = nu

gl × ql + gu × (ql + 1) = nl.

These two types of groups should be placed alternately. A summary of this

heuristic placement method is given in Table 3.1.

Let us illustrate this procedure with an example. Suppose we want to place
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• Find kl, ku and solve for the corresponding nl nu.
• if nl is divisible by nu, i.e. nl

nu
= q then

{ • The spacing between null subcarriers should be

[

nugroups︷ ︸︸ ︷
kl, kl, · · · , kl︸ ︷︷ ︸

q

, ku︸︷︷︸
1

, · · · , kl, kl, · · · , kl︸ ︷︷ ︸
q

, ku︸︷︷︸
1

]

}
else{

• calculate ql = b nl
nu
c and gl and gu from gl + gu = nu

and gl × ql + gu × (ql + 1) = nl

• The spacing between the null subcarriers should be

[

type 1 group︷ ︸︸ ︷
kl, kl, · · · , kl︸ ︷︷ ︸

ql

, ku︸︷︷︸
1

,

type 2 group︷ ︸︸ ︷
kl, kl, · · · , kl︸ ︷︷ ︸

ql+1

, ku︸︷︷︸
1

,

type 1 group︷ ︸︸ ︷
kl, kl, · · · , kl︸ ︷︷ ︸

ql

, ku︸︷︷︸
1

· · · · · · ]

}
Table 3.1: Heuristic null subcarrier placement when N is not divisible by d (nl > nu).

10 null subcarriers for an OFDM system with N = 64 subcarriers. We first

calculate kl = b64
10c = 6 and ku = d64

10e = 7. We can also get nl = 6, nu = 4.

Now we need to place these 6 kl’s and 4 k′us as evenly as possible. Next we

determine ql = b1.5c = 1, gl = 2 and gu = 2. In this case, the ki’s should be

divided into two types of groups. The type one group consists of one (ql) kl

followed by one ku, while the type 2 group consists of two (ql+1) kl followed by

one ku. And these two types of groups should be placed alternately. Therefore,

the spacing between the null subcarriers should be [6 7 6 6 7 6 7 6 6 7]. Hence,

one possible null subcarrier placement using this heuristic approach is [0 6 13

19 25 32 38 45 51 57].2

The null subcarrier placement for d = 4 to d = 11 null subcarriers for an

2Because the positions of the null subcarriers can be cyclically shifted without affecting
the value of the cost function, there are multiple solutions to the null subcarrier placement.
What we have here is just one possible placement.
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OFDM system with N = 64 subcarriers using the proposed heuristic method

is listed in Table 3.2. For the case of d = 5 and 6, we have verified that the null

subcarrier placement using the heuristic method is the same as the optimal

placement obtained through exhaustive computer search3.

d ki index of null subcarriers
5 [13 13 13 13 12] [0 13 26 39 52]
6 [11 11 10 11 11 10] [0 11 22 32 43 54]
7 [9 9 9 9 9 9 10] [0 9 18 27 36 45 54]
8 [ 8 8 8 8 8 8 8 8] [0 8 16 24 32 40 48 56]
9 [7 7 7 7 7 7 7 7 8] [0 7 14 21 28 35 42 49 56]
10 [6 7 6 6 7 6 7 6 6 7] [0 6 13 19 25 32 38 45 51 57]
11 [6 6 6 6 5 6 6 6 6 6 5] [0 6 12 18 24 29 35 41 47 53 59]

Table 3.2: Heuristic null subcarrier placement for d=4 to 11 for N=64 OFDM systems

Note that our previous derivation is based on the assumption that θ < 1 to

ensure that f(k) is convex for k = 1, 2, · · ·N − 1. This is a valid assumption

for most indoor communication systems operating in the 2.4GHz and 5GHz

bands, such as wireless local area network (LAN) systems [17]. According to

the IEEE 802.11a standard [17], the tolerance of transmit and receive center

frequency should be ±20 ppm. Therefore, the worst case CFO is 40 ppm,

which is about 200 KHz for a 5.2 GHz center frequency. This worst case CFO

corresponds to the value of θ = 0.66. Moreover, for indoor applications, due to

low mobility and high carrier frequency (5GHz for IEEE 802.11a system), the

CFO due to doppler shift is negligible. Therefore, this is a valid assumption

in practice, especially for indoor wireless LAN based applications due to the

high-quality oscillators currently used.

3The complexity of exhaustive computer search grows exponentially with the number of
null subcarriers. Although this could be done offline, the complexity is still not practical for
systems with large number of null subcarriers and data subcarriers.
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It is shown in [48] that the evenly spaced null subcarrier placement will intro-

duce an ambiguity in the CFO estimation of uN/d where u is a positive inte-

ger. However, the CFO is uniquely identifiable in [−N
2d , N

2d) [48]. In a practical

OFDM system, the number of null subcarriers is normally kept below 15% of

the total number of subcarriers to ensure high spectral efficiency [17]. In such

a case, the SNR-optimal subcarrier placement results in the null subcarrier

spacing N/d ≥ 6. Therefore, using the SNR-optimal null subcarrier place-

ment, the CFO is uniquely identifiable within [−N
2d , N

2d), which is normally

larger than [−3, 3). In modern wireless communication systems, especially

wireless LAN systems, the practical values of CFO are normally within ±1

subcarrier spacing. Therefore, knowing that the CFO is very small, we can

limit the search range for the CFO values that minimizes (2.2), for example

within [-1, +1]. In this case, the ambiguity in CFO estimation can be avoided.

3.3 Placement of Null Subcarriers Based on the The-

oretical MSE Minimization

In this section, we first derive the theoretical MSE of the CFO estimation,

which is a linear approximation of the actual MSE in the high SNR region.

Then we find the relationship between the null subcarrier placement and the

theoretical MSE. Based on this, we formulate the theoretical MSE optimiza-

tion problem of the null subcarrier placement and find the optimal null sub-

carrier placement.

Let us define ∆ε = ε0 − ε̂ as the CFO estimation error. Using a first-order
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approximation, we get [66]

0 =
∂J (ε)

∂ε

∣∣∣∣
ε=ε̂

≈ ∂J (ε)
∂ε

∣∣∣∣
ε=ε0

−∆ε
∂J 2(ε)

∂ε2

∣∣∣∣
ε=ε0

, (3.20)

where J (ε) is the cost function given in (3.3) and ε̂ is the CFO estimate that

minimizes J (ε). As a result, the linear approximation of the CFO estimation

error can be obtained as

∆ε =

∂J (ε)
∂ε

∣∣∣
ε=ε0

∂2J (ε)
∂ε2

∣∣∣
ε=ε0

. (3.21)

Evaluating the first derivative of J (ε) with respect to ε at ε = ε0, we get

∂J (ε)
∂ε

∣∣∣∣
ε=ε0

= −2<




K∑

m=1

d∑

i=1

N−1∑

n=0,n6∈l

hm
n sm

n (nm
li

)∗
π

N sin
[

π
N (n− lmi )

] exp
[
−jπ

n− lmi
N

]

 ,

(3.22)

where <(•) denotes the real part of a complex number. Similarly, at high

SNR, we can write

∂J 2(ε)
∂ε2

∣∣∣∣
ε=ε0

≈ 2
K∑

m=1

d∑

i=1

N−1∑

k=0,k 6∈lm

N−1∑

n=0,n6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗π2 exp
(−jπ k−n

N

)

N2 sin
(

π
N (k − lmi )

)
sin

(
π
N (n− lmi )

) .

(3.23)

Details on the derivation of (3.22) and (3.23) are given in the Appendix. Sub-



3.3 Placement of Null Subcarriers Based on the Theoretical MSE
Minimization 93

stituting (3.22) and (3.23) into (3.21), we get in the high SNR region, the CFO

estimation error ∆ε can be approximated as

∆ε = −
<





∑K
m=1

∑d
i=1

∑N−1
n=0,n6∈l h

m
n sm

n (nm
li

)∗
exp

[
−jπ

n−lmi
N

]

sin[ π
N

(n−lmi )]





∑K
m=1

∑d
i=1

∑N−1
k=0,k 6∈lm

∑N−1
n=0,n6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗π exp(−jπ k−n
N )

N sin( π
N

(k−lmi )) sin( π
N

(n−lmi ))

.

(3.24)

Assuming the noise on different subcarriers to be independent and identi-

cally distributed (i.i.d.) with zero-mean and variance σ2
n, we can show that

En(∆ε) = 0. Therefore, the linearized estimator is unbiased. This also means

that the MSE of the CFO estimation is equal to the variance of ∆ε. The

squared error of the CFO estimator can be obtained from (3.21) as

(∆ε)2 =
Num
Den

=


<





∑K
m=1

∑d
i=1

∑N−1
n=0,n6∈l h

m
n sm

n (nm
li

)∗
exp

[
−jπ

n−lmi
N

]

sin[ π
N

(n−lmi )]








2

(∑K
m=1

∑d
i=1

∑N−1
k=0,k 6∈lm

∑N−1
n=0,n6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗π exp(−jπ k−n
N )

N sin( π
N

(k−lmi )) sin( π
N

(n−lmi ))

)2 .

(3.25)

As the noise is i.i.d., we can take the expectation of the numerator with respect

to the noise and get

En (Num) =
σ2

n

2

K∑
m=1

d∑

i=1

N−1∑

k=0,k 6∈lm

N−1∑

n=0,n 6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗ exp
[−jπ k−n

N

]

sin
[

π
N (k − lmi )

]
sin

[
π
N (n− lmi )

] , (3.26)
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and hence

En

[
(∆ε)2

]
=

N2σ2
n

2π2
∑K

m=1

∑d
i=1

∑N−1
k=0,k 6∈lm

∑N−1
n=0,n 6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗ exp[−jπ k−n
N ]

sin[ π
N (k−lmi )] sin[ π

N (n−lmi )]

.

(3.27)

Let us assume that the transmitted signal sm
k is i.i.d. with zero-mean and

unit-variance, i.e. E[sm
k (sm

n )∗] = δ(k − n), where δ(•) denotes the dirac delta

function. Averaging En

[
(∆ε)2

]
over transmitted signal leads us to

Lemma 1: In the high SNR region, the theoretical MSE of the CFO estimation

for a realization of a multipath channel h for K OFDM symbols is

MSE(ε|h) = En,s

[
(∆ε)2|h]

=
N2σ2

n

2π2
∑K

m=1

∑d
i=1

∑N−1
n=0,n6∈lm |hm

n |2 1
sin2[ π

N
(n−lmi )]

.

(3.28)

Now we average the theoretical MSE over different realizations of channel h.

Similar as before, we assume that channel response on each subcarrier is zero-

mean with unit variance, i.e. E(hm
n )=0 and E(|hm

n |2)=1 for n = 0, 1, · · · , N−1

and m = 1, · · · ,K, we get the following result:

Lemma 2: In the high SNR region, the theoretical MSE of the CFO estimation

is

MSE(ε) = En,s,h

[
(∆ε)2

]
=

N2σ2
n

2π2
∑K

m=1

∑d
i=1

∑N−1
n=0,n6∈lm

1
sin2[ π

N
(n−lmi )]

. (3.29)

Now, let us look at the null subcarrier optimization problem again. The null

subcarrier placement that minimizes the theoretical MSE can be formulated
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as

l = arg min
l

(MSE) = arg max
l




K∑

m=1

d∑

i=1

N−1∑

n=0,n6∈lm

1
sin2

[
π
N (n− lmi )

]

 . (3.30)

If
∑d

i=1

∑N−1
n=0,n6∈lm

1
sin2[ π

N
(n−lmi )] is maximized for every value of m, i.e. for each

OFDM symbol, then the cost function in (3.30) is maximized. Therefore, the

optimization problem over K OFDM symbols is equivalent to the optimization

in one OFDM symbol given by

l = arg min
l

(MSE) = arg max
l

d∑

i=1




N−1∑

n=0,n6∈l

1
sin2

[
π
N (n− li)

]



= arg max
l




d∑

i=1

N−1∑

n=0,n6∈l

g(n− li)


 , (3.31)

where g(k) = 1
sin2[ π

N
(n−li)] . It is straight-forward to show that g(k) is also

periodic with period of N . Using a similar approach as in Section 3.2, the cost

function in (3.31) can be simplified to

l = arg max
l



c1 −

d∑

i=1

∑

n∈l,n6=li

g(n− li)





= arg min
l





d∑

i=1

d∑

j=1,j 6=i

g(li − lj)



 . (3.32)

It can also be shown that g(x) is a convex function of real number x for

1 < x < N − 1. Therefore, the cost function in (3.32) is essentially of the

same form as the cost function in (3.14) as g(x) and f(x) are both convex.
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This means the optimal null subcarrier placement l that minimize both cost

functions are the same. Thus we have proven

Proposition: The null subcarrier placement that maximizes the SNR of CFO

estimation defined in (3.5) also minimizes the theoretical MSE of the CFO

estimation given in (3.29).

3.4 Practical Considerations

For practical OFDM systems, it is usually necessary to place some null sub-

carriers consecutively at both ends of the spectrum as guard bands. We call

these null subcarriers the guard null subcarriers. In this section, we show

that given the fixed positions of the guard null subcarriers, if there are a few

null subcarriers to place freely in the OFDM symbol for the purpose of CFO

estimation, which we call free null subcarriers, how we should place them to

maximize SNRCFO.

Figure 1.12 illustrates an OFDM system having two guard bands with d1

and d2 null subcarriers respectively. Here, we have re-arranged the OFDM

subcarrier index from −N/2 + 1 to N/2 such that the purpose of the guard

bands is more obvious. However, such re-arrangement does not affect the

formulation of the cost function due to the circular symmetry of the OFDM

system. Suppose that we have dn free null subcarriers that we can place freely

between subcarrier −N/2 + d1 and N/2− d2 + 1, the whole set of all the null
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subcarriers becomes

l = [l1, l2, · · · , ld1 , ld1+1, · · · , ld1+dn , ld1+dn+1, · · · , ld],

where d = d1 + d2 + dn is the total number of null subcarriers. Again we

define ki = li+1 − li as the spacing between null subcarrier li+1 and null

subcarrier l and pi,m =
∑m−1

j=0 k[(i+j−1)mod d]+1 as the spacing between the ith

null-subcarrier and its mth neighbouring null subcarrier to the right in the

cyclic sense. Notice that given the positions of the guard null subcarriers fixed

at both ends of the spectrum, the positions of the free null subcarriers are

uniquely determined by the following quantities:

• The spacing kd1 between the left most free null subcarrier ld1+1 and the

right most guard null subcarrier in the left guard band ld1 ,

• The spacing kd1+dn between the right most free null subcarrier ld1+dn and

the left most guard null subcarrier in the right guard band ld1+dn+1,

• The spacing kd1+1 · · · kd1+dn−1 between the free null subcarriers.

Following a similar procedure as in Section 3.2, we obtain the cost function of

null subcarrier placement for an OFDM system with guard band as

J (kd1 , kd1+1, · · · , kd1+dn) =
d∑

i=1

d−1∑

m=1

f(pi,m)

subject to:
d∑

i=1

ki = N. (3.33)

Comparing (3.33) with (3.16), we can see that the summation is still across
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all the d null subcarriers, including both the guard and free null subcarriers.

However, for this problem, we cannot reach the same optimal solution as in

Section 3.2 because that solution requires the ki’s to be equal for all i =

1, 2, · · · , d, which means the null subcarriers should be placed evenly across

the whole OFDM symbol. This is impossible for our problem as we do not have

the freedom to place all the null subcarriers freely due to the fixed-positions

of the guard null subcarriers. As a result, the closed-form optimal solution

for (3.33) is difficult to find. However, in practice, the number of free null

subcarriers dn must be kept small to minimize the loss of in transmission data

rate as they occupy the useful spectrum of the data subcarriers. Therefore, it

is usually possible to resort to computer search to find the optimal placement

of these subcarriers offline. Table 3.3 shows the optimal placement of dn free

null subcarriers with different dn values for an IEEE 802.11a compliant system

obtained by computer search. In such a system, there are total N = 64

subcarriers. Subcarriers [−31 : −27, 27 : 32] are used as guard bands, i.e.

d1 = 5 and d2 = 6. Here the θ value used is 0.5.

dn Free Null Subcarrier Index
2 [-7, 7]
3 [-12, 0, 12] 6

4 [-15, -5, 5, 15]

Table 3.3: SNR-optimal free null subcarrier placement for IEEE 802.11a systems

In the case where the offline computer search is not feasible, for example, when

the number of subcarriers is high or in MIMO-OFDM systems, we hereby pro-

pose a suboptimal solution for the null subcarrier placement. From (3.10), we
6In practise, the DC subcarrier is normally subject to large interference from DC offset

and other RF impairments and therefore not reliable for CFO estimation. As a result, we
could replace the 0 subcarrier with subcarrier 1 or -1 for practical implementations.
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can see that f(k) is proportional to the power of ICI on a particular subcar-

rier due to another subcarriers that is k away. The ICI power on a particular

subcarrier due to another subcarrier decreases as the spacing between these

two subcarriers increases. Therefore, f(k) is monotonically decreasing as the

magnitude of k increases. As a result, the ICI power on one particular null

subcarrier li due to all the other null subcarriers
∑d−1

m=1 f(pi,m) is dominated

by the contribution from its two nearest neighbours. Therefore, we could make

the following approximation

d−1∑

m=1

f(pi,m) ≈ f(pi,1) + f(pi,d−1) = f(ki) + f(ki−1).

Therefore, the cost function in (3.33) can be approximated by

J (kd1 , kd1+1, · · · , kd1+dn) =
d∑

i=1

d−1∑

m=1

f(pi,m) ≈
d∑

i=1

(f(ki) + f(ki−1))

= 2
d∑

i=1

f(ki) = 2


(d1 + d2 − 1)f(1) +

d1+dn∑

i=d1

f(ki)


 ,

(3.34)

because the spacing between the guard null subcarriers is 1. Substituting this

into the optimization problem, we get the sub-optimal solution given by

[kd1 , · · · , kd1+dn ] = arg min




d1+dn∑

i=d1

f(ki)


 . (3.35)
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Due to the convexity of f(k), we have

d1+dn∑

i=d1

f(ki) ≥ (dn + 1)f

(∑d1+dn
i=d1

(ki)
dn + 1

)
= (dn + 1)f

(
N − d1 − d2 + 1

dn + 1

)

(3.36)

where the equality holds when ki = N−d1−d2+1
dn+1 for i = d1, · · · , d1 +dn. There-

fore, our suboptimal solution shows that the free null subcarriers should be

evenly distributed across the data subcarriers of the OFDM symbol. For an

IEEE 802.11a system with 4 free null subcarriers, the sub-optimal solution

leads to the placement of the null subcarriers at [-16 -5 5 16], which is very

close to the optimal placement of [-15 -5 5 15] given by computer search. Later

we will show using computer simulations that the performance difference be-

tween the sub-optimal and the optimal placement is marginal.

For indoor wireless communication systems with bursty transmission, such

as wireless LAN systems, channel tracking within a packet is not so impor-

tant due to the low mobility and the short packet duration, which is usually

smaller than the coherence time of the channel. Therefore, the pilot subcar-

riers are mainly used for residual frequency offset estimation and correction.

For these systems, it makes practical sense to replace these pilots by null sub-

carriers. Firstly the replacement of pilot subcarriers by null subcarriers does

not reduce the transmission rate. Secondly, the residual frequency offset could

be estimated from the null subcarriers using the method in [37], or the low

complexity methods in [64] [79] [80]. Moreover, replacing pilots with null sub-

carriers provides savings in transmission power as the transmission power of

null subcarriers is zero.
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3.5 Simulation Results

Computer simulations were performed for an OFDM system with 64 sub-

carriers and length-16 cyclic prefix. According to the specifications given in

IEEE 802.11a, there is a total of 11 null subcarriers placed consecutively from

subcarriers 27 to 37 [17]. To achieve a fair comparison, we also use 11 null sub-

carriers in our simulations. We only use 1 OFDM symbol for CFO estimation,

i.e. K = 1. We use channel model A of the HiperLan II channel models [75]

in all the simulations. This is a multipath Rayleigh fading channel with expo-

nential power delay profile and root mean square (RMS) delay spread equal to

50 ns. To assess the performance of the proposed null subcarrier placement,

we define the estimation MSE as [68]

MSE =
1

Ns

Ns∑

i=1

(ε0 − ε̂)2 , (3.37)

where ε̂ and ε0 represent the estimated and the actual CFO’s, respectively,

and Ns denotes the total number of Monte Carlo trials.

A comparison between the MSE obtained through simulations and the the-

oretical MSE obtained from (3.29) is depicted in Figure 3.2. The SNR on

the x-axis is the SNR of the received signal, not the CFO estimation SNR we

are trying to optimize. The CFO value we use in the simulation is uniformly

distributed between −0.5 and +0.5. We compare the theoretical MSE and

the MSE obtained from simulations for both the consecutive null subcarriers

placed from 27 to 37 according to IEEE 802.11a, and the proposed null sub-

carrier placement according to Table 3.2. From the comparison, we can see
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Fig. 3.2: Comparison between the theoretical MSE and the MSE obtained from sim-
ulations.

that the theoretical MSE approximates the actual MSE very closely for SNR

larger than 10 dB.

Figure 3.3 shows the performance of the blind carrier offset estimation us-

ing the method in [37] with null subcarriers placed with different spacings.

Without loss of generality, we always place the first null subcarrier at 0. By

“n-sub spacing’, we mean that the null subcarriers are placed n subcarriers

apart like [0, n, · · · , (d− 1)n]. Just as above, the proposed scheme places the

null subcarriers according to Table 3.2. We can see that with the proposed

null subcarrier placement, the CFO estimation accuracy is improved signif-

icantly. The performance gain, compared to the consecutive null subcarrier

placement, is as large as 10 dB. We can also see that the further apart the

null-subcarriers are placed, the better the MSE performance. Although we can

not prove the optimality of the null subcarrier placement obtained using the
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Fig. 3.3: MSE performance of the CFO estimation using different null subcarrier
placements.

heuristic procedure in Table 3.1, from the results, we can see that it still leads

to very good performance in CFO estimation. Figure 3.4 shows the symbol

error rate (SER) performance of OFDM systems with CFO estimation using

different null subcarrier placements. In this simulation, the CFO is estimated

using the method in [37] and compensated. We use QPSK modulation and

assume perfect channel estimation. A performance gain of about 3.5 dB can

be achieved using the proposed placement compared to consecutively-placed

null subcarriers.

Figure 3.5 shows the improvement in CFO estimation achieved by introducing

a few optimally-placed free null subcarriers besides the guard null subcarriers.

The system follows IEEE 802.11a specifications with 11 guard null subcarri-

ers. The CFO value we used in the simulation is again uniformly distributed

between −0.5 and +0.5. We can see by introducing 2 extra free null sub-
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Fig. 3.4: SER performance with CFO estimation using different null subcarrier place-
ments (QPSK modulation).
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carriers, the performance of the CFO estimation can be improved by 5 dB

compared to using guard null subcarriers alone. The performance can be fur-

ther improved by introducing more free null subcarriers. The gain, on the

other hand, becomes smaller as the number of free null subcarriers increases.

We also compared the performance of using 4 free null subcarriers with the

optimal placement by computer search and the sub-optimal placement by us-

ing the approximated cost function. The results show that the performance

difference between these two placement is rather marginal.

3.6 Conclusion

In this chapter, we formulated the optimization of null subcarrier placement

for blind CFO estimation in an OFDM system using the SNRCFO maximiza-

tion criterion. We showed that for small CFO values, this leads to a convex

optimization problem, and that the optimal placement is achieved by placing

the null subcarriers evenly across the OFDM symbol. We proved that this

optimal null subcarrier placement also minimizes the theoretical MSE of the

CFO estimation. For systems where the number of subcarriers is divisible

by the number of null subcarriers, this optimal placement can be achieved.

Otherwise, based on a heuristic procedure, we showed how to place the null

subcarriers such that a good performance in CFO estimation can still be at-

tained. We also studied the optimal free null subcarrier placement for practi-

cal OFDM systems with fixed guard bands. We demonstrated using computer

simulations that the performance of CFO estimation is improved significantly

by using the proposed null subcarrier placements.
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Appendix: Derivation of Linear Approximation of

CFO Estimation Errors

Proof of (3.22): Differentiating J (ε) with respect to ε, we can write

∂J (ε)
∂ε

=

K∑
m=1

d∑

i=1




N−1∑

k=0,
k 6∈lm

N−1∑
n=0,
n6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗
∂Cm

k−li
(ε0 − ε)
∂ε

(
Cm

n−li(ε0 − ε)
)∗+

N−1∑

k=0,
k 6∈lm

N−1∑
n=0,
n 6∈lm

hm
k (hm

n )∗sm
k (sm

n )∗Cm
k−li(ε0 − ε)

∂
(
Cm

n−li
(ε0 − ε)

)∗
∂ε

+

N−1∑

k=0,
k 6∈lm

hm
k sm

k (nm
li )∗

∂Cm
k−li

(ε0 − ε)
∂ε

+
N−1∑
n=0,
n6∈lm

(hm
n )∗(sm

n )∗nm
li

∂
(
Cm

n−li
(ε0 − ε)

)∗
∂ε


 ,

(3.38)

where Cm
k (ε) is given in (3.2) and

∂Cm
n−li

(ε0 − ε)
∂ε

=

−
{

jπ

(
1− 1

N

)
sin (π(n− li + ε0 − ε))

N sin
(

π
N (n− li + ε0 − ε)

) exp
(

jπ(n− li + ε0 − ε)
(

1− 1
N

))
+

[
π cos (π(n− li + ε0 − ε))

N sin
(

π
N (n− li + ε0 − ε)

) − π sin (π(n− li + ε0 − ε)) cos
(

π
N (n− li + ε0 − ε)

)

N2 sin2
(

π
N (n− li + ε0 − ε)

)
]

exp
(

jπ(n− li + ε0 − ε)
(

1− 1
N

))}
exp (j2π(ε0 − ε)(m− 1)(1 + Ng/N))−

(j2π(m− 1)(1 + Ng/N))
sin [π(k + ε0 − ε)]

N sin
[

π
N (k + ε0 − ε)

] exp
(

jπ(k + ε0 − ε)(1− 1
N

)
)

exp (j2π(ε0 − ε)(m− 1)(1 + Ng/N)) . (3.39)
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At ε = ε0, we get

∂J (ε)
∂ε
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,

which gives us (3.22).
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Proof of (3.23): Differentiating (3.38) one more time, we obtain

∂2J (ε)
∂ε2

=
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(3.40)

Similarly to [66], we can assume high SNR. i.e. |hnsn|2 À |nli |2. In this case,

the second and third terms in (3.40) are much smaller than the first term and

hence can be dropped in the approximation. Again at ε = ε0, we get the

following approximation

∂J 2(ε)
∂ε2
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) ,

(3.41)

which leads to (3.23).



Chapter 4

CFO Estimation for MIMO-OFDM

Systems

4.1 Introduction

Multiple-input multiple-output systems increase the capacity of rich scatter-

ing wireless fading channels enormously by using multiple antennas at both

the transmitter and the receiver [24] [25] [81]. Most of the early studies on the

capacity of MIMO systems were based on the assumption of flat-fading chan-

nels. For frequency-selective fading channels, combining MIMO with OFDM

provides an effective solution. MIMO-OFDM transforms a frequency selec-

tive MIMO system to a number of flat fading MIMO systems on different

subcarriers. Therefore, MIMO-OFDM has been adopted in various industrial
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standards for wireless communications, such as IEEE 802.11n high-throughput

wireless LAN [5], IEEE 802.16 WiMAX [19] and 3GPP long term evolution

(3GPP-LTE) [26].

Similar to single-input single-output (SISO) OFDM systems, carrier frequency

offset (CFO) is still a major impairment for MIMO-OFDM systems. It de-

stroys the orthogonality between different subcarriers and causes inter-carrier

interference (ICI). ICI can cause severe degradation to the system performance

if not properly compensated. Therefore, accurate estimation and compen-

sation of CFO is essential for both SISO and MIMO OFDM systems. For

single-user MIMO-OFDM systems, all the transmit antennas are driven by

a centralized local oscillator (LO) and so are all the receive antennas. As a

result, the CFO between the transmitter LO and the receiver LO is a single

scalar parameter. Hence, the CFO estimation in this system is very similar to

SISO-OFDM systems. Some CFO estimation algorithms for MIMO-OFDM

systems are proposed in [34] [49] [50] [82].

Channel estimation for MIMO-OFDM systems is more complicated than for

SISO-OFDM systems. For a MIMO-OFDM system with nt transmit and nr

receive antennas, nr×nt channel responses must be estimated per subcarrier.

To estimate the channel responses between a certain receive antenna and dif-

ferent transmit antennas using training sequences, the receiver must be able to

distinguish between the training sequences from different transmit antennas.

Therefore, for training-based channel estimation, some orthogonality among

training sequences from different transmit antennas is required. In [52], a

frequency-domain orthogonal training sequence design is proposed. The train-
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ing sequences from different transmit antennas occupy different subcarriers.

The length of the training sequence must be at least nt OFDM symbols to get

the channel estimate on all the subcarriers. Another approach uses orthogonal

Walsh-Hadamard spreading codes to spread one training sequence to differ-

ent OFDM symbols such that the training sequences from different transmit

antennas are orthogonal in the code domain [5] [83]. This approach again

requires a training sequence of at least nt OFDM symbols. Both approaches

require significantly larger overhead for channel estimation compared to SISO-

OFDM systems. In [82], a time domain training sequence design is proposed

for MIMO-OFDM systems. This time domain approach requires only train-

ing sequences of length nt × L, where L is the length of the channel impulse

response and is much smaller than the OFDM symbol length. However, the

proposed training sequences are impulses in time and hence have very high

peak to average power ratio (PAPR).

In this chapter, we propose to use constant amplitude zero autocorrelation

(CAZAC) sequences, which have constant amplitude elements and zero auto-

correlation for any nonzero circular shifts, for joint CFO and channel estima-

tion for MIMO-OFDM systems. We first formulate the Maximum-Likelihood

(ML) CFO and channel estimator. Similar to [49] [50], we show that ML

CFO estimate can be obtained with low computational complexity by trans-

mitting two periods of the same training sequence. After compensating the

estimated CFO, the channel estimation can be performed in the time domain.

The advantages of the proposed training sequences are:

• One training sequence for both CFO and channel estimation.
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• No calculation of matrix inversion is required to obtain channel estimates.

• Significantly reduced training overhead. The minimum length required for

channel estimation is only nt × L.

• The PAPR of the training sequence in time domain is 1.

The residual CFO after CFO compensation degrades the performance of the

channel estimation. In this chapter, we also derive an approximation on the

mean square error (MSE) of channel estimation in the presence of the residual

CFO. We show from computer simulations that this approximation is accu-

rate. From the approximation, we can see that the degradation caused by the

residual CFO in the channel estimation is negligible.

In the study of MIMO and MIMO-OFDM systems, a common assumption

used in the literature is that the channel responses between different trans-

mit and receive antennas are statistically independent. In practice, due to

the close proximity among the antennas, the channel responses are spatially

correlated [53] [55] [84]. The spatial correlation is related to the propagation

environment. It is a function of the distributions of angle of arrival (AOA)

at the receive antennas and the angle of departure (AOD) at the transmit

antennas. Besides this spatial correlation, the electromagnetic (EM) fields at

closely-placed antennas also interact with each other and cause mutual cou-

pling among the antennas [56] [57]. This coupling changes the spatial corre-

lation and also the power of the transmitted/received signals at the antennas.

In this chapter, we present a study on the effects of spatial correlation and mu-

tual coupling and in particular, their impacts on the performance of the CFO

estimation. The simulation results show that spatial correlation degrades the
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performance of the CFO estimation. Mutual coupling has two effects. Firstly

it reduces the spatial correlation, which is beneficial. On the other hand, it

also reduces the power of the desired signal, which is detrimental. Simula-

tions results show that the combined effects of mutual coupling introduces

additional degradation on CFO estimation.

The rest of this chapter is organized as follows. In Section 4.2, we develop

the system model for the MIMO-OFDM system and derive the ML CFO

and channel estimators. We then propose the CAZAC training sequence and

derive the simplified ML CFO and channel estimators in Section 4.3. We also

show that using the proposed training sequence, the training overhead can

be significantly reduced compared to conventional frequency-domain training.

In Section 4.4 we analyze the MSE of the channel estimation in the presence

of the residual CFO. An accurate closed-form approximation on the MSE is

derived. Simulation results on the performance of the joint CFO and channel

estimator are presented in Section 4.5. In Section 4.6, we study the effect of

spatial correlations and its impact on the performance of CFO estimation. The

effect of mutual coupling is studied in Section 4.7. The concluding remarks

are given in Section 4.8.

4.2 System Model

In a single-user MIMO-OFDM system, the CFO can be quantified by a single

parameter φ. We assume perfect timing synchronization has been achieved.
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In this case, the received signal at the ith receive antenna can be written as

ri(k) = ejφk 1√
nt

nt∑

m=1

L−1∑

d=0

hi,m(d)sm(k − d) + ni(k), (4.1)

where k is the time index, nt is the number of transmit antennas, L is the

length of the impulse response of the multi-path channel, hi,m(d) is the dth

tap of the channel impulse response between the ith receive antenna and the

mth transmit antenna, sm is the transmitted signal from the mth transmit

antenna and ni(k) is the AWGN noise. Here we assume that the power of sm

for all m is 1, and 1/
√

nt is used to normalize the total transmission power

from all antennas to 1. We consider a training sequence of length N and cyclic

prefix (CP) of length L. After removing the cyclic prefix, we can write the

received signal at the ith receive antenna in an equivalent matrix form as

ri =
1√
nt

nt∑

m=1

E(φ)Smhi,m + ni (4.2)

where E(φ) is the CFO matrix, which is a diagonal matrix with diagonal

elements equal to [1, exp(jφ), · · · , exp(j(N − 1)φ)]. We use Sm to denote the

transmitted signal matrix from the mth transmit antenna. This is a circulant

matrix with the first column defined by [sm(0), sm(1), · · · , sm(N−1)]T , where

we use superscript T to denote vector/matrix transpose. Here we assume

N > L, so the channel vector between the mth transmit antenna and the

ith receive antenna hi,m is a N × 1 vector obtained by appending the L × 1

channel impulse response [hi,m(0), · · · , hi,m(L− 1)]T vector with N −L zeros,

i.e. hi,m = [hi,m(0), · · · , hi,m(L − 1), 0, · · · , 0]T . The AWGN noise at the ith
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receive antenna is denoted as ni.

Gathering the received signal from all the receive antennas, we get

R = E(φ)SH + N , (4.3)

where

R = [r1 · · · , rnr ]{N×nr} ,

S =
1√
nt

[S1, · · · ,Snt ]{N×(N×nt)}

H =




H1

...

Hnt



{(N×nt)×nr}

,

with Hi = [h1,i, · · · ,hnr,i]{N×nr}. For ease of understanding, we use a sub-

script inside curved brackets to denote dimensions of matrices. The noise

matrix is given by N = [n1, · · · ,nnr ].

Because the noise is Gaussian and uncorrelated, the likelihood function for the

CFO φ and the channel matrix H can be written as

Λ(φ̃, H̃) =
1

(πσ2
n)N×nr

exp
{
− 1

σ2
n

∥∥∥R−E(φ̃)SH̃
∥∥∥

2
}

, (4.4)

where φ̃ and H̃ are trial values for φ and H and σ2
n is the variance of the re-

ceiver AWGN noise. The maximum-likelihood estimates for CFO and channel

can be obtained by finding the φ̃ and H̃ that maximize (4.4).
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4.3 CAZAC Sequences for Joint CFO and Channel

Estimation

We propose to use constant amplitude zero autocorrelation (CAZAC) se-

quences for joint CFO and channel estimation in MIMO-OFDM systems. Each

element of a CAZAC sequence has a amplitude equal to one, i.e. constant am-

plitude. The autocorrelation of a length-N CAZAC sequence s1 satisfies

R(k) =
N−1∑

n=0

s1(n)s∗1(nª k) =





N k = 0;

0 k 6= 0.
(4.5)

where ª denotes circular subtraction and superscript ∗ denotes complex con-

jugation. This means that the CAZAC sequence is orthogonal to all non-zero

circular shifts. Let S1 be a circulant matrix with the first column equal to

[s1(0), s1(1), · · · , s1(N − 1)]T . The autocorrelation property of the CAZAC

sequence can be written in an equivalent matrix form as

SH
1 S1 = NI, (4.6)

where superscript H denotes conjugate transpose. This means that S1 is both

a unitary (subject to a normalization constant N) and a circulant matrix.

Commonly used CAZAC sequences include the Frank-Zadoff sequences [85],

the Chu sequences [86] and the S&H sequences [87].

We use s1 as the training sequence from the first transmit antenna. The

training sequence from the mth transmit antenna is a circularly shifted version
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of s1, i.e. sm(n) = [s1(n ª τm)]T , where τm is the shift value. It is straight-

forward to show that the cross-correlation between the training sequences from

different transmit antennas satisfies

SH
i Sj = Iτj−τi (4.7)

where Iτj−τi denotes a matrix resulting from circularly shifting the one ele-

ments of the identify matrix to the right by τj − τi. Note that the matrix

Sm can be obtained by circularly shifting the rows of S1 τm rows downwards.

Hence, we have

Smhi,m = S1hτm
i,m, (4.8)

where hτm
i,m = [hi,m(N − τm), · · · , hi,m(0), · · ·hi,m(N − τm−1)]T is obtained by

circularly shifting hi,m τm rows downwards. Making use of this property, we

can rewrite the received signal at receive antenna i as

ri =
1√
nt

E(φ)
nt∑

m=1

Smhi,m =
1√
nt

E(φ)S1

nt∑

m=1

hτm
i,m. (4.9)

Collecting the received signals from all receive antennas, we get

R =
1√
nt

E(φ)S1H+ N , (4.10)

where

H =

[
nt∑

m=1

hτm
1,m,

nt∑

m=1

hτm
2,m, · · · ,

nt∑

m=1

hτm
nr,m

]

{N×nr}
.

From (4.10), we can see that by using CAZAC training sequence, the channel
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impulse responses are contained in a smaller matrix H of size N × nr as

compare to the (N × nt)× nr channel matrix H in the more general received

signal model in (4.3).

Without loss of generality, let us examine the first column of the H matrix,
∑nt

m=1 hτm
1,m. We know that only the first L elements in the N × 1 vector

h1,m are nonzero. We choose the length of the CAZAC sequence N such that

N ≥ nt × L and we can make τm − τm−1 ≥ L for m = 2, · · · , nt. In this

case, there will be no overlap between the non-zero channel impulse responses

from different transmit antennas. As a result, after obtaining the estimate

of the first column of H, i.e.
∑nt

m=1 hτm
1,m, we can obtain the channel impulse

responses from different transmit antennas by taking appropriate elements of

the column. The same principle applies to the other columns of H. In this

case, the estimation of the channel impulse responses between all the transmit

and receive antenna pairs is converted equivalently to the estimation of matrix

H.

In [38] and [39], CFO estimation methods using periodic training sequences

were proposed. Here, we adopt a similar approach. We successively transmit

two periods of training sequences in time, i.e. the training sequence from the

ith transmit antenna, xi = [sT
i , sT

i ]T , is of length 2N . Assuming the channel

does not change within the duration of 2N , the received signal can be written

as:

R{2N×nr} = E(φ){2N×2N}X{2N×N}H{N×nr} + N {2N×nr}, (4.11)
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where

X =
1√
nt




S1

S1


 .

Using the received signal model given in (4.11), the likelihood function of the

CFO φ and the channel response H can be written as

Λ(φ̃, H̃) =
1

(πσ2
n)2N×nr

exp
{
− 1

σ2
n

tr
{

[R−E(φ̃)XH̃]H

[R−E(φ̃)XH̃]
}}

(4.12)

where tr denotes the trace of a matrix.

Following a similar approach as in [45], we find that by keeping φ̃ fixed, the

ML estimate of the channel H is given by

Ĥ(φ̃) =
(
XHX

)−1
XHEH(φ̃)R. (4.13)

Substituting (4.13) into (4.12), and after some algebraic manipulations we get

the ML estimator of the CFO φ is given by

φ̂ = arg max
φ̃

{
tr

{
RHE(φ̃)BEH(φ̃)R

}}
, (4.14)
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where

B = X
(
XHX

)−1
XH =

1
2N




S1

S1


 I{N×N}

[
SH

1 ,SH
1

]

=
1
2




I{N×N} I{N×N}

I{N×N} I{N×N}


 . (4.15)

We can also rewrite E(φ) and R in the following form

E(φ) =




E1(φ) 0

0 ejNφE1(φ)


 ,

where E1(φ) = diag[1, ejφ, · · · , ej(N−1)φ] and

R =




R1

R2


 ,

where R1 denotes the first N rows of R and R2 denotes rows N + 1 to 2N

of R. Substituting these new expressions into (4.14), we can further simplify

the cost function for CFO estimation to

J (φ̃) = <
{

ejNφ̃tr(RH
2 R1)

}
, (4.16)

where <(•) denotes the real part of a complex number. Correspondingly, the
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ML estimate of φ is given by

φ̂ = arg max
φ̃
<

{
ejNφ̃tr(RH

2 R1)
}

. (4.17)

Using scalar notations, the ML CFO estimator in (4.17) can be written equiv-

alently as

φ̂ =
1
N

∠
{

N∑

k=1

nr∑

m=1

r∗m(k)rm(k + N)

}
, (4.18)

where ∠(•) denotes the angle of a complex number and rm(k) denotes the

received signal from the mth receive antenna at time k. This ML estimate is

very similar in form to its SISO counterpart as shown in [39] [45] and it can

be easily obtained using low-complexity correlation operations.

The performance of the ML CFO estimator for SISO-OFDM systems has

been extensively studied in the literature [38], [39], [45]. Following a similar

approach as in SISO-OFDM systems, we can show that the Cramer-Rao Bound

(CRB) of the CFO estimation is given by [50]

E[(φ̂− φ)2] ≥ CRB =
1

nrN3γ
, (4.19)

where γ is the SNR per receive antenna. Notice that the CRB decays with

N3 and hence in practice, only small values of N are needed.

Having obtained the CFO estimate φ̂, we can simply plug it into (4.13) to get
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the channel estimate as follows

Ĥ =
(
XHX

)−1
XHEH(φ̂)R =

nt

2N
XHEH(φ̂)R

=
√

nt

2N

[
SH

1 ,SH
1

]



EH
1 (φ̂) 0

0 e−jNφ̂EH
1 (φ̂)







R1

R2




=
√

nt

2N

(
SH

1 EH
1 (φ̂)R1 + e−jNφ̂SH

1 EH
1 (φ̂)R2

)
. (4.20)

From (4.20), we can see that the channel estimate can be obtained using sim-

ple matrix multiplications. Due to the orthogonal property of the S1 matrix,

a complicated matrix inversion can be avoided. This provides a large saving

in the computational complexity of channel estimation. Another advantage

of this training sequence is the low overhead. For channel estimation alone,

we only need training sequences of length N where N ≥ nt × L. By compar-

ison, the conventional frequency-domain channel estimation requires training

sequence of length at least nt × M , where M is the length of the OFDM

symbol. In a practical OFDM system, the length L of the channel impulse

response is similar to the length of the cyclic prefix, which is much smaller

than the length of the OFDM symbol M . Therefore, by using the proposed

training sequence for channel estimation, we can reduce the training overhead

by a factor of (M/L− 1). Moreover, the training signal is constant-amplitude

in time and therefore has peak to average power ratio (PAPR) equal to 1.

Notice that the constant amplitude property of CAZAC training sequences

guarantees a PAPR equal to 1. This means that training sequence will not suf-

fer from nonlinear distortions from the transmitter power amplifier. The ZAC
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property guarantees orthogonality between the estimated channel impulse re-

sponses from different transmit antennas. In this sense, all CAZAC sequences

can be used for low-complexity joint CFO and channel estimation in MIMO-

OFDM systems and are considered in this Chapter. However, there are still

some practical considerations. For example, for sequence length N = 16, all

elements of the Frank-Zadoff sequences are BPSK symbols while for N = 64,

all elements are BPSK and QPSK symbols. This is simple to implement in

practice. The disadvantage is that the Frank-Zadoff sequences exist only for

sequence length N = K2 where K is any positive integer greater than 1. In

comparison, the Chu sequences exist for any sequence length N , however, the

elements of Chu sequences have more possible phase angles, which requires

more bits in binary representation.

4.4 MSE Analysis of Channel Estimation with Resid-

ual CFO

In practical systems, there exists some residual CFO after CFO compensation

due to the inaccuracy of the CFO estimation. In this section, we examine how

the residual CFO affects the performance of the channel estimation.

Substituting the expression for R1 and R2 into (4.20) and denoting the resid-
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ual CFO (φ− φ̂) by φd, we get

Ĥ =
1

2N

(
SH

1 E1(φd)S1H+
√

ntSH
1 EH

1 (φ̂)N 1

+ ejNφdSH
1 E1(φd)S1H+ e−jNφ̂√ntSH

1 EH
1 (φ̂)N 2

)
,

(4.21)

where N 1 contains the first N rows of N in (4.11) and N 2 contains rows N +1

to 2N of N . As EH
1 (φ̂) is a unitary matrix, EH

1 (φ̂)N 1 is statistically the same

as N 1. Similarly e−jNφ̂EH
1 (φ̂)N 2 is statistically the same as N 2. Therefore,

for ease of notation, we still use N 1 and N 2 to denote the new noise. With

this simplification of notation, the channel estimate can be rewritten as

Ĥ =
1

2N

(
1 + ejNφd

)
SH

1 E1(φd)S1H+
√

nt

2N
(SH

1 N 1 + SH
1 N 2). (4.22)

The MSE of the channel estimation is given by

MSE =
1

Nnr
tr

{
E

[
(H− Ĥ)H(H− Ĥ)

]}
, (4.23)

where E[•] denotes statistical expectation over the AWGN noise.

When the CFO estimation is perfect, i.e. φd = 0, it can be easily shown that

MSE =
nt

4N2

1
Nnr

tr
{
E

[N H
1 S1SH

1 N 1

]
+ E

[N H
2 S1SH

1 N 2

]}

=
ntσ

2
n

2N
. (4.24)
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Making use of the Taylor’s series expansion, we can write the exponential

function as eφ = 1 +
∑∞

k=1
φk

k! . Substituting this into (4.22), we get

Ĥ =
1 + δ

N
SH

1 (I + ∆(φd))S1H+
N ′

N
, (4.25)

where δ = 1/2
∑∞

k=1
(jNφd)k

k! and ∆(φd) is a diagonal matrix with the nth

element equal to
∑∞

k=1
(j(n−1)φd)k

k! . Here we use one AWGN noise matrix N ′

to denote
√

nt

2 (SH
1 N 1 +SH

1 N 2). Note that the variance of each element of N ′

is Nnt
2 σ2

n. Using this new expression, we can write the difference between the

channel estimate and the actual channel as

Ĥ − H =
N ′

N
+Hδ +

1 + δ

N
SH

1 ∆(φd)S1H. (4.26)

Here the first term N ′
N is the estimation error caused by the AWGN noise

while the last two terms in the summation describe the extra estimation error

caused by the residual CFO error φd.

Using (4.26), we can show that the MSE of the channel estimation is given by

MSE =
1

N3nr

{
N2|δ|2tr {ΨH}+ 2N< [

(δ∗ + |δ|2)tr [
∆(φd)S1ΨHSH

1

]]

+ |1 + δ|2tr [
∆(φd)H∆(φd)S1ΨHSH

1

]}
+

ntσ
2
n

2N
.

(4.27)

where ΨH = E(HHH). The details of the derivation is given in the ap-

pendix of this chapter. Now let us assume that the channels between differ-
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ent transmit and receive antennas are uncorrelated in space and the different

paths in the multi-path channel are also uncorrelated. We define pi,m =

[pi,m(1), · · · , pi,m(N)]T as the power delay profile of the channel between the

mth transmit antenna and the ith receive antenna. Since the length of the

channel impulse response is L, pi,m(N) = 0 for N > L− 1. Using this, we can

write

ΨH = E(HHH) = diag

[
nt∑

i=1

(
nr∑

k=1

pk,i(nª τi)

)]
, (4.28)

where pk,i(nªτi) denotes a vector obtained by circularly shift pk,i τi elements

downwards. We normalize the channel such that the total transmit signal

power equals the receive signal power per receive antenna. As a result, the

power of the channel taps between all the transmit and receive antenna pairs

adds up to nt × nr. Therefore, we have

tr[ΨH] = ntnr.

We further define F = S1ΨHSH
1 . It can be shown that the ith diagonal element

of F, F (i, i) is given by

F (i, i) =
N∑

m=1

Ψ(j, j) = tr[ΨH] = ntnr. (4.29)

As ∆(φd) is a diagonal matrix, we have

tr
[
∆(φd)S1ΨHSH

1

]
= ntnrtr [∆(φd)] ,
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and similarly

tr
[
∆(φd)H∆(φd)S1ΨHSH

1

]
= ntnrtr

[
∆(φd)H∆(φd)

]
.

As we are going to show later from the simulations, the performance of CFO

estimation reaches the CRB at SNRs of practical interest. Therefore, the

residual CFO value φd is usually very small. We can use a first-order Taylor

series expansion to get a good approximation of the exponential function, i.e.

δ = 1/2
∑∞

k=1
(jNφd)k

k! ≈ jNφd/2 and ∆(φd) ≈ diag[0, jφd, j2φd, · · · , j(N −
1)φd]. Substituting these into (4.27), we get

MSE =
ntσ

2
n

2N
+ 2<

{
(N − 1)φ2

dnt

4
+

jN(N − 1)φ3
dnt

8

}

+
(

1 +
N2φ2

d

4

)
nt(N − 1)(2N − 1)φ2

d

6N2
+

ntNφ2
d

4

=
ntσ

2
n

2N
+

nt

(
9N3 − 2N2 − 6N + 2

)

12N2
φ2

d +
nt(N − 1)(2N − 1)

24
φ4

d

≈ ntσ
2
n

2N
+

nt

(
9N3 − 2N2 − 6N + 2

)

12N2
φ2

d. (4.30)

Here we drop the φ4
d term in the MSE expression because the estimation error

φd is very small in practical SNR regions and higher-order terms have only

negligible contribution to the overall MSE. As we are going to show later

using simulations, the variance of φd touches the CRB at moderate to high

SNR regions. Therefore, we can approximate φ2
d in (4.30) with the CRB

expression, i.e.

φ2
d ≈

1
nrN3γ

.
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Table 4.1: Extra MSE caused by residual CFO for different training sequence lengths
and different number of receive antennas .

Training Sequence Length 2 Rx Ant 3 Rx Ant

25 0.127 dB 0.085 dB

36 0.089 dB 0.060 dB

49 0.066 dB 0.044 dB

Substituting this into (4.30), we get the MSE of channel estimation in the

presence of residual CFO φd given by

MSE ≈ ntσ
2
n

2N
+

nt

(
9N3 − 2N2 − 6N + 2

)

12N5γnr

= σ2
n

(
nt

2N
+

nt

(
9N3 − 2N2 − 6N + 2

)

12N5nr

)
. (4.31)

The first term in (4.31) is the MSE due to the AWGN noise while the second

term is the extra MSE caused by the residual CFO φd. The ratio between

these two MSE terms amounts to

MSERCFO

MSEAWGN
=

(9N3 − 2N2 − 6N + 2)
6N4nr

. (4.32)

As N is larger than 32 in practical systems and the denominator is one or-

der larger than the numerator, the MSE caused by the interference is usually

negligible compared to the MSE caused by the AWGN noise. Computer sim-

ulations, which will be presented later, show that the approximation given by

(4.31) is very close to actual MSE obtained from simulations.
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Table 4.1 shows the extra MSE in channel estimation caused by the residual

CFO φd obtained through the approximation in (4.31) for different sequence

lengths and different number of receive antennas. From the table, we can see

that the MSE degradation is indeed very marginal.

4.5 Simulation Results

We performed computer simulations to study the performance of the CFO and

channel estimations using the proposed CAZAC sequences. We simulated a

MIMO OFDM system with 2 transmit and 2 receive antennas. The number

of subcarriers is equal to 64 with length 16 cyclic prefix. The CFO is fixed

at half the subcarrier spacing, i.e. φ = 0.5 × 2π
64 . We use CAZAC sequences

of length 36 and the circular shift between transmit antenna 1 and 2 is 18

taps. The total length of the training sequence is 72 as two periods of the

same CAZAC sequence are transmitted for CFO estimation. The channel is a

16-tap multi-path fading channel with uniform power delay profile.

Figure 4.1 shows the performance of CFO estimation using the proposed train-

ing sequence. Here, the MSE of the CFO estimation is normalized with respect

to the subcarrier spacing as follows

MSE =
1

Ns

Ns∑

i=1

(
φ̂− φ

2π/64

)2

,

where φ̂ and φ represent the estimated and actual CFO values, respectively,

and Ns denotes the total number of Monte Carlo trials. In comparison, we
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Fig. 4.1: MSE of CFO estimation using the proposed training sequence.

also plotted the CRB of the CFO estimation, again normalized with respect

to the subcarrier spacing 2π/64. We can see that the performance of the CFO

estimator touches the CRB when SNR is larger than 5 dB.

Figure 4.2 shows the performance of channel estimation using the proposed

CAZAC training sequences in the presence of a residual CFO φd. Comparing

the channel estimation with perfect CFO compensation, we can see that the

performance degradation due to the residual CFO φd is really negligible, which

is consistent with the theoretical prediction. In the lower left corner of the

figure, we plotted the zoomed-in MSE performance of the channel estimation.

We can see that the theoretical MSE approximation by (4.31) is very accurate

compared to the MSE obtained through simulations.
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Fig. 4.2: Performance of channel estimation using the proposed CAZAC sequence in
the presence of residual CFO.

4.6 Effect of Spatial Correlation on CFO Estima-

tion

In this section, we study the spatial correlation among antennas related to

the propagation environment and also its effects on the performance of the

CFO estimation in MIMO systems. As the correlation effect is similar for

different paths in a multi-path channel, in this section, we only consider the

effect on one path, i.e. we only consider a flat fading channel. To simplify

the analysis, we only look at the spatial correlation at the receive antennas,

while assuming zero correlation among the transmit antennas. The spatial

correlation is related to the propagation environment and is dependent on the

distributions of angle of arrival (AOA) and angle of departure (AOD), which
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are specified by the power angular spectrum (PAS). We study how PAS affects

the performance of CFO estimation. For a Laplacian PAS, which is a good

model for the indoor propagation environment [88] [89], we also study how the

performance of CFO estimation is affected by the mean AOA values.

We consider a MIMO system with Nt transmit and Nr receive antennas in flat

fading channels. The received signal on nr receive antennas can be written as

r = Hs + n (4.33)

where s is the transmitted signal from nt transmit antennas, H is the nr × nt

channel matrix with the i, jth element Hi,j as the channel response between

the jth transmit antenna and the ith receive antenna and n is the AWGN

noise. In practice, MIMO channels are correlated in the spatial domain. Such

correlation can be modeled as [90]

H = [Rrx]
1/2 Hiid

(
[Rtx]

1/2
)T

, (4.34)

where Hiid is the channel matrix generated using independent, identically, dis-

tributed (i.i.d.) zero-mean complex Gaussian random variables. The transmit

and receive correlation matrices are denoted as Rtx and Rrx respectively. For

a 3× 3 channel, the two matrices take on the following form [90]
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dsin

r1(t,
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Fig. 4.3: Received signal for a two-element antenna array spaced d for a plane wave
impinging at angle θ.

Rtx =




1 ρtx,1,2 ρtx,1,3

ρtx,2,1 1 ρtx,2,3

ρtx,3,1 ρtx,3,2 1




,

Rrx =




1 ρrx,1,2 ρrx,1,3

ρrx,2,1 1 ρrx,2,3

ρrx,3,1 ρrx,3,2 1




, (4.35)

where ρtx,i,j is the correlation coefficient between the ith and jth transmit

antennas and ρrx,i,j is the correlation coefficient between the ith and jth receive

antennas. The spatial correlation is determined by the PAS of AOA at the

receiver and the PAS of the AOD at the transmitter.

In the derivation of the spatial correlation, we consider a two-antenna receiver
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for easy illustration. The results can be extended to more than two antennas

straight-forwardly. Figure 4.3 illustrates a receiver with two antennas spaced

d meters apart. There is a plane wave (s(t, θ)) impinging at an AOA of θ. The

received signal at the ith receive antenna can be expressed as [91]

ri(t, θ) =
√

Gi(θ)s(t, θ)ej2π[fc+(i−1) d
λ

sin θ], (4.36)

where s(t, θ) is the impinging signal, t is time and θ is the AOA of s(t, θ). The

carrier frequency is denoted as fc, d is the spacing between the antennas and

λ is the wavelength. The power gain of the antenna at angle θ is denoted as

G(θ). The covariance matrix of the received signal can be written as

Rr = Et,θ







r1(t, θ)

r2(t, θ)




[
r∗1(t, θ) r∗2(t, θ)

]



=




P1 Et,θ (r1(t, θ)r∗2(t, θ))

Et,θ (r∗1(t, θ)r2(t, θ)) P2


 , (4.37)

where we use Et,θ to denote statistical expectation taken over both time t and

the angle θ. The received signal power at each receive antenna is given by

Pi = Et,θ

(
Gi(θ)|s(t, θ)|2

)
. The correlation coefficients of the received signals

at the two antennas are defined as [92]

ρ1,2 =
Et,θ [r1(t, θ)r∗2(t, θ)]− Et,θ [r1(t, θ)] Et,θ [r∗2(t, θ)]√

P1P2
. (4.38)

We assume that the impinging signal s(t, θ) has zero mean over all angles, so
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that

Et,θ [r1(t, θ)] = Eθ

[√
G1(θ)Et [s(t, θ)] ej2πfc

]
= 0, (4.39)

where Eθ and Et denote expectations over angle θ and time t respectively.

Similarly we have Et,θ [r2(t, θ)] = 0. Therefore, the correlation coefficient can

be simplified to

ρ1,2 =
Et,θ [r1(t, θ)r∗2(t, θ)]√

P1P2
, (4.40)

and the covariance matrix can be re-written as

Rr =
√

P1P2




1 ρ1,2

ρ∗1,2 1


 =

√
P1P2Rrx, (4.41)

where Rrx is the receiver correlation matrix as in (4.35). Denoting D = 2π d
λ ,

we can write

Et,θ [r1(t, θ)r∗2(t, θ)] = Et,θ

[√
G1(θ)G2(θ) |s(t, θ)|2 e−jD sin θ

]

= Eθ

[√
G1(θ)G2(θ)Et

(
|s(t, θ)|2

)
e−jD sin θ

]
.

(4.42)

It is reasonable to assume that different antenna elements in an antenna array

have the same radiation pattern, i.e. G1(θ) = G2(θ) = G(θ). In this case, we

also have P1 = P2 = P . We use Ps(θ) = Et

(
|s(t, θ)|2

)
to denote the power of

the impinging signal from angle θ. It is reasonable to assume that the power

of the impinging signal is independent of θ and hence we will use Ps instead.

We also use PAS(θ) to denote the PAS of the received signal at angle θ. Then,
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we can rewrite the correlation coefficient in (4.40) as

ρ1,2 =
Et,θ [r1(t, θ)r∗2(t, θ)]

P

=
Ps

∫ π
−π G(θ)PAS(θ)e−jD sin θdθ

P

=

∫ π
−π G(θ)PAS(θ)e−jD sin θdθ∫ π

−π G(θ)PAS(θ)dθ
. (4.43)

A common assumption used in the analysis of the spatial correlation is that the

AOA is uniformly distributed between 0 and 360 degrees, i.e. PAS(θ)=1/(2π)

for all θ values. In this case, the correlation coefficient is given by

ρ1,2 =

∫ π
−π e−jD sin θG(θ)dθ∫ π

−π G(θ)dθ
. (4.44)

Moreover, if the antenna is omni-directional, i.e. G(θ) = G for all the angles,

ρ1,2 = J0(D) where J0 is the Bessel function of the first kind and order 0.

It was found in [88] [89] that the PAS for indoor environments closely matches

a Laplacian distribution and is given by

PAS(θ) =
1√
2σ

exp

(
−

∣∣∣∣∣

√
2(θ − µ)

σ

∣∣∣∣∣

)
(4.45)

where σ is the angular spread, µ is the mean AOA and both are in degrees.

For this PAS, there is no closed-form solution for the correlation coefficients.

Therefore, we use numerical integration to calculate ρ1,2.

Figure 4.4 shows the effect of angular spread on the correlation coefficients
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Fig. 4.4: Correlation coefficients for different angular spreads for a fixed mean AOA
of 0o.

for a fixed mean AOA of 0o for the Laplacian-PAS given in (4.45), assuming

omni-directional antenna elements. In comparison, we also plot the correlation

coefficients for uniformly distributed AOA. From the figure, we can see that

the correlation coefficients for Laplacian-distributed PAS are much higher than

a uniform PAS. Comparing between different angular spread values, we can

see that larger angular spreads lead to smaller correlations. In Figure 4.5, we

plot the correlation coefficient for a fixed angular spread of 20o and different

mean AOA values for a Laplacian PAS. Again we assume all the antenna

elements are omni-directional. We can see that for the same angular spread,

the correlation becomes larger when the mean AOA becomes larger.

We use computer simulations to study the effects of different angular spreads

and mean AOA values on the performance of CFO estimation for a 2×2 MIMO
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Fig. 4.5: Correlation coefficients for different mean AOA values for a fixed angular
spread of 20o.

system for flat fading channels. The spacing between the 2 receive antennas is

0.5λ. We use two periods of length-16 CAZAC sequence as training sequence

for CFO estimation. The CFO estimate is obtained using the estimator in

(4.18). Figure 4.6 shows the MSE of CFO estimation for different angular

spread values for a fixed mean AOA of 0o. From the figure, we can see that

the performance of CFO estimation is degraded compared to that of the i.i.d.

channel due to the spatial correlation. The degradation is larger for smaller

angular spread values due to the larger spatial correlation. Figure 4.7 shows

the performance of CFO estimation for different mean AOA (µ) values for a

fixed angular spread of 20o. From the results, we can see that the performance

degradation is larger for larger mean AOA values. This is because, as shown in

Figure 4.5, the spatial correlation is larger for larger mean AOA values. The
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Fig. 4.6: MSE of CFO estimation for different angular spreads for a fixed mean AOA
of 0o.

performance difference for different µ values is small when µ is smaller than

40o. When the mean AOA is larger than 40o, the degradation due to larger

mean AOA becomes more significant.

4.7 Effect of Antenna Mutual Coupling on CFO Es-

timation

Mutual coupling among different antenna elements in an antenna array is

caused by the interactions of the EM waves received at different antenna ele-

ments. This effect is related to the antenna array and is independent of the

propagation environment. The effects of mutual coupling were studied in [56]
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Fig. 4.7: MSE of CFO estimation for different mean AOA values for a fixed angular
spread of 20o.

and [57]. It was shown that with mutual coupling among different antennas,

the effective channel can be re-written as

H =
[
CrxRrxCH

rx

]1/2
Hiid

([
CtxRtxCH

tx

]1/2
)T

, (4.46)

where Crx and Ctx are the coupling matrices for the receiver and transmitter

respectively. In this section, for simplicity of illustration, we only consider the

effects of propagation environments and mutual coupling at the receiver. In

this case, the effective channel can be simplified to

H =
[
CRCH

]1/2
Hiid. (4.47)
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Here we dropped the subscript of rx for simplicity of illustration. In [58] [59]

[93], it was shown that mutual coupling reduces the spatial correlation between

the antennas. On the other hand, mutual coupling also results in power loss

on the desired signal when the two antennas are placed too close [94]. Next,

we look at the overall effects of mutual coupling on the performance of CFO

estimation in MIMO systems.

In this study, we consider a receiver with two dipole antennas with the follow-

ing parameters:

• l: length of the dipole antenna;

• D: D = 2π d
λ where d is the spacing between the two antennas and λ is the

wavelength;

• Zs = Rs + jXs: self impedance of the antenna;

• Zm = Rm + jXm: mutual impedance between the antennas due to mutual

coupling;

• Zload = Rload + jXload: loading impedance of the antennas.

From [56], the coupling matrix in (4.47) is given by

C = (Zload + Zs)




Zload + Zs Zm

Zm Zload + Zs




−1

. (4.48)

In this study, we assume that the loading impedance is matched to the self

impedance of the antenna, i.e. Zload = Z∗s . The mutual impedance Zm is a

function of the dipole length l, the antenna spacing D and the antenna place-

ment configuration. The mutual impedance can be calculated numerically
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using the induced Electromagnetic Fields (EMF) method [95]. Combining

the effect of coupling with the spatial correlation related to the propagation

environment, we have

CRCH =




C1,1 C1,2

C2,1 C2,2







1 ρ1,2

ρ2,1 1







C∗
1,1 C∗

2,1

C∗
1,2 C∗

2,2




= P




1 ρ̃1,2

ρ̃2,1 1


 . (4.49)

From (4.49), we can see that there are two effects from mutual coupling.

Firstly, the mutual coupling changes the spatial correlation. Secondly, the

received signal power is scaled by P .

The effective correlation (|ρ̃1,2|) as a function of the antenna spacing for a

2-antenna receiver is depicted in Figure 4.8. Here, we assume two dipole

antennas with length l = 0.5λ placed side by side. For such antennas, the

self-impedance is Zs = (73 + j42) Ω [95]. We also assume that the AOA has a

uniform distribution from 0 to 360o. We can see that with the effect of mutual

coupling, the spatial correlation between the antennas is reduced. The power

P as a function of the antenna spacing is shown in Figure 4.9. The plot shows

that the system suffers significant power loss if the two antennas are spaced

too closely. The power loss becomes insignificant when the antenna spacing

is about 1λ. In summary, the effect of mutual coupling is two-fold. Firstly

it reduces the spatial correlation between the antennas, which is a desirable

effect. On the other hand, it introduces extra power loss, which is undesirable.
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Fig. 4.8: Effective spatial correlation due to coupling for two λ/2 dipole antennas
with Zload = Z∗s .
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Fig. 4.9: Power loss due to coupling for two λ/2 dipole antennas with Zload = Z∗s .
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Fig. 4.10: Effects of mutual coupling on the performance of CFO estimation.

We used computer simulations to investigate the combined effect of mutual

coupling on the performance of the CFO estimation. We simulated a 2 × 2

MIMO system for flat fading channels. We assume the transmit antennas

are independent and only consider the effect of coupling at the receiver. The

spacing between two receive antenna is 0.5λ. We also assume an uniformly

distributed AOA at the receiver. The performance of CFO estimation with and

without considering the effect of coupling is compared in Figure 4.10. We can

see that the spatial correlation introduced by the propagation environment

degrades the MSE performance as compared to the i.i.d. channel. Mutual

coupling adds additional degradation to the performance. This means that

the detrimental effect due to the power loss (as shown in Figure 4.9) is larger

than the beneficial effect due to reduced spatial correlation (as shown in Figure

4.8).
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4.8 Conclusions

In this chapter, we proposed to use CAZAC sequence as training sequences for

joint CFO and channel estimation for MIMO-OFDM systems. We derived the

corresponding maximum-likelihood (ML) joint CFO and channel estimator.

We showed that using this sequence, the ML CFO estimate can be obtained

using simple correlation operations. No matrix inversion needs to be performed

to obtain the channel estimate. Moreover, the training overhead of the sys-

tem can be significantly reduced compared to conventional frequency- domain

training. We derived an accurate closed-form approximation on the MSE of

channel estimation in the presence of the residual CFO. We showed that the

extra degradation due to the residual CFO is negligible. We also studied the

effects of spatial correlation and antenna mutual coupling on the performance

of CFO estimation in MIMO systems. We showed that spatial correlation

degrades the performance of CFO estimation. The mutual coupling has two

effects. Firstly it reduces the spatial correlation, which is beneficial for CFO

estimation. Secondly it introduces power loss on the received signal, which is

detrimental. Computer simulations showed that the overall effect of mutual

coupling adds additional degradation to the performance of CFO estimation.
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Appendix: Derivation of MSE of Channel Estimation

in the Presence of a Residual CFO φd

Using (4.26), we can write

(Ĥ − H)H(Ĥ − H)

=
1

N2

{
N2|δ|2HHH+ N(δ∗ + |δ|2)HHSH

1 ∆(φd)S1H

+ Nδ∗HHN ′ + N(δ + |δ|2)HHSH
1 ∆(φd)HS1H

+ |1 + δ|2HHSH
1 ∆(φd)H∆(φd)S1H+ (1 + δ∗)HHSH

1 ∆(φd)HS1N ′

+ NδN ′HH+ (1 + δ)N ′HSH
1 ∆(φd)S1H+ N ′HN ′

}
. (4.50)

Taking expectation over the AWGN noise, we get

En

[
(Ĥ − H)H(Ĥ − H)

]
=

1
N2

{
N2|δ|2HHH+ N(δ∗ + |δ|2)HHSH

1 ∆(φd)S1H.

+ N(δ + |δ|2)HHSH
1 ∆(φd)HS1H

+ |1 + δ|2HHSH
1 ∆(φd)H∆(φd)S1H+

N2nt

2
σ2

nInr

}
.

Here En denotes expectation over AWGN noise and Inr is an identity matrix

of size nr×nr. Thus, we can write the MSE of channel estimation conditioned

on a particular channel realization H as
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MSE|H =
1

Nnr
tr

{
En

[
(Ĥ − H)H(Ĥ − H)

]}

=
1

N2

1
Nnr

{
N2|δ|2tr(HHH)

+ 2N< [
(δ∗ + |δ|2)tr [

∆(φd)S1HHHSH
1

]]

+ |1 + δ|2tr [
∆(φd)H∆(φd)S1HHHSH

1

]}
+

ntσ
2
n

2N
.

(4.51)

Now averaging the MSE of the channel estimation over all the channel real-

izations, we get

MSE = EH
{
MSE|H

}

=
1

N3nr

{
N2|δ|2tr {ΨH}+ 2N< [

(δ∗ + |δ|2)tr [
∆(φd)S1ΨHSH

1

]]

+ |1 + δ|2tr [
∆(φd)H∆(φd)S1ΨHSH

1

]}
+

ntσ
2
n

2N
,

(4.52)

where ΨH = E(HHH).



Chapter 5
CFO Estimation for Multi-user

MIMO-OFDM Uplink Using

CAZAC Sequences

5.1 Introduction

The multi-user MIMO-OFDM system can be considered as an extension of the

MIMO-OFDM system to the multi-user context. In the multi-user MIMO-

OFDM system shown in Figure 5.1, multiple users, each with one or multiple

antennas, transmit simultaneously using OFDM in the same frequency band.

For clearness of illustration, in Figure 5.1, we only illustrate the case where

each user has one transmit antenna. The receiver is a base station equipped
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Fig. 5.1: Illustration of the multi-user MIMO-OFDM system.

with multiple antennas. It uses spatial processing techniques to separate the

signals of different users. If we view the signals from different users as signals

from different transmit antennas of a virtual transmitter, then the whole sys-

tem can be viewed as an MIMO system. This system is also known as the

virtual MIMO system [35].

As we discussed in previous chapters, in OFDM systems, CFO destroys the or-

thogonality between subcarriers and causes inter-carrier interference (ICI). To

ensure good performance of OFDM systems, the CFO must be accurately es-

timated and compensated. For SISO-OFDM systems, it was shown in [38] and

[39] that by using periodic training sequences, the maximum-likelihood (ML)

CFO estimate can be obtained using simple correlation operations. Moreover,

the mean square error (MSE) of the CFO estimate reaches the Cramer-Rao

bound (CRB). A similar approach was used for single-user MIMO-OFDM sys-
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tems [49] [34] [96], where all the transmit antennas are driven by a centralized

local oscillator (LO) and so are all the receive antennas. In this case, the CFO

is still a single parameter. For multi-user MIMO-OFDM systems, each user

has its own LO, while the multiple antennas at the base station (receiver) are

driven by a centralized LO. Therefore, in the uplink, the receiver needs to

estimate multiple CFO values, one for each user. In [60] and [61], methods

were proposed to estimate multiple CFO values for MIMO systems in flat fad-

ing channels. In [62], a semi-blind method was proposed to jointly estimate

the CFO and channel for the uplink of multi-user MIMO-OFDM systems in

frequency selective fading channels. An asymptotic Cramer-Rao bound for

joint CFO and channel estimation in the uplink of MIMO-Orthogonal Fre-

quency Division Multiple Access (OFDMA) system was derived in [97] and

training strategies that minimize the asymptotic CRB were studied. In [98], a

reduced-complexity CFO and channel estimator was proposed for the uplink of

MIMO-OFDMA systems using an approximation of the ML cost function and

a Newton search algorithm. It was also shown that the reduced-complexity

method is asymptotically efficient. The joint CFO and channel estimation

for multi-user MIMO-OFDM systems was studied in [63]. Training sequences

that minimize the asymptotic CRB were also designed in [63].

It is known in the literature that the computational complexity for obtain-

ing the ML CFO estimates in the uplink of multi-user MIMO-OFDM system

grows exponentially with the number of users [63] [98]. A low-complexity al-

gorithm was proposed in [63] for CFO estimation in the uplink of multi-user

MIMO OFDM systems based on importance sampling. However, the complex-

ity required to generate sufficient samples for importance sampling may still
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be high for practical implementations. In this chapter, we study algorithms

that can further reduce the computational complexity of the CFO estimation.

In particular, we propose a low-complexity CFO estimation algorithm using

constant amplitude zero autocorrelation (CAZAC) training sequences. Fol-

lowing a similar approach as in [45], we first derive the ML estimator for the

multiple CFO values in frequency selective-fading channels. Obtaining the

ML estimates requires a search over all possible CFO values and the computa-

tional complexity is prohibitive for practical implementations. To reduce the

computational complexity, we propose a sub-optimal algorithm using CAZAC

training sequences. Using the proposed algorithm, the CFO estimates for dif-

ferent users can be obtained using simple correlation operations similar to

single-user MIMO-OFDM systems. Moreover, the computational complexity

of the algorithm grows only linearly with the number of users. However, we

show that multiple CFO values in the uplink introduce multiple access in-

terference (MAI) in the CFO estimation using the proposed algorithm. This

causes an irreducible error floor in the MSE performance. We derive an expres-

sion for the signal to multiple access interference ratio (SIR) in the presence

of multiple CFO values. To reduce the MAI, we find the training sequences

that maximize the SIR. Note that the training sequence optimization problem

we try to solve in this chapter is different from those in [63] and [97], where

training sequences are optimized to minimize the CRB. In this chapter, we

try to find the training sequences that maximize the SIR due to multiple CFO

values specially for the proposed low-complexity CFO estimation algorithm

using CAZAC training sequences. The optimal training sequences turn out to

be dependent on the actual CFO values from different users. This is obviously
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not practical as it is not possible to know the CFO values and hence select

the optimal training sequences in advance. To remove this dependency, we

propose a new cost function, which is the Taylor’s series approximation of the

original cost function. The new cost function is independent of the actual CFO

values and is an accurate approximation of the original SIR based cost func-

tion for small CFO values. Using the new cost function, we obtain the optimal

training sequences for the following three classes of CAZAC sequences:

• the Frank & Zadoff sequences [85];

• the Chu Sequences [86];

• the polyphase sequences by Sueshiro and Hatori (S&H Sequences) [87].

Both the Frank & Zadoff sequences and the S&H sequences exist for sequence

length N = K2, where N is the length of the sequence and K is a posi-

tive integer larger than 1, while Chu sequences exist for any integer length

N > 1. For both the Frank & Zadoff and the Chu sequences, there are a

finite number of sequences for each sequence length. Therefore, the optimal

sequences can be obtained using an off-line search among these sequences.

However, for S& H sequences, there are infinitely many possible sequences.

As the optimization problem for the S& H sequences cannot be solved analyt-

ically, we resort to a numerical method to obtain a near-optimal solution. To

this end, we use the adaptive simulated annealing (ASA) technique [99]. For

small sequence lengths, for example N = 16 and N = 36, we are able to use

exhaustive search to verify that the solution obtained using ASA is globally

optimal. We use computer simulations to evaluate the performance of the

proposed CFO estimation algorithm using CAZAC sequences. We first com-
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pare the performance using CAZAC sequences with the performance using two

other sequences with good correlation properties, namely, the IEEE 802.11n

short training field (STF) [5] and the m sequences [100]. The results show

that the error floor using CAZAC sequences is more than 10 times smaller

compared to the other two sequences. Comparing among the three classes

of CAZAC sequences, we find that the performance of the Chu sequences is

better than the Frank & Zadoff sequences due to the larger degree of freedom

in the sequence construction. The S&H sequences have the largest number of

degree of freedom in the construction of the CAZAC sequences. However, the

simulation results show that they have only very marginal performance gain

compared to the Chu sequences. This makes Chu sequences a good choice

for practical implementation due to its simple construction and flexibility in

sequence lengths. By using the identified optimal sequences, the error floor

in the CFO estimation is significantly lower compared to using a randomly

selected CAZAC sequence.

The rest of this chapter is organized as follows. In Section 5.2, we present the

system model and derive the ML estimator for the multiple CFO values. The

sub-optimal CFO estimation algorithm using CAZAC sequences is proposed

in Section 5.3. The training sequence optimization problem is formulated in

Section 5.4 and methods are given to obtain the optimal training sequence.

In Section 5.5, we present the computer simulation results and Section 5.6

concludes the chapter.
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5.2 System Model

In this chapter, we study a multi-user MIMO-OFDM system with nt users. For

simplicity of illustration and analysis, we assume that each user has a single

transmit antenna. The base station has nr receive antennas, where nr ≥ nt.

The received signal at the ith receive antenna can be written as

ri(k) =
nt∑

m=1

(
ejφmk

L−1∑

d=0

hi,m(d)sm(k − d)

)
+ ni(k), (5.1)

where φm is the CFO of the mth user, k is the time index, and L is the length

of the channel impulse response. The d-th tap of the channel impulse response

between the mth user and the ith receive antenna is denoted as hi,m(d), sm

denotes the transmitted signal from the mth user and ni is the additive white

Gaussian noise (AWGN) at the ith receive antenna. Here we assume the initial

phase for each user is absorbed in the channel impulse response. From (5.1),

we can see that we have nt different CFO values (φm’s) to estimate. We

consider a training sequence of length N and cyclic prefix (CP) of length L.

The received signal after removal of CP can be written in an equivalent matrix

form

ri =
nt∑

m=1

E(φm)Smhi,m + ni (5.2)

where ri = [ri(0), · · · , ri(N −1)]T and superscript T denotes vector transpose.

The CFO matrix of user m is denoted E(φm) and is a diagonal matrix with di-

agonal elements equal to [1, exp(jφm), · · · , exp(j(N−1)φm)]. We use Sm to de-

note the transmitted signal matrix for the mth user. This is an N×N circulant
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matrix with the first column defined by [sm(0), sm(1), sm(2), · · · , sm(N−1)]T .

Here we assume N > L so the channel vector between the mth user and the

ith receive antenna hi,m is a N × 1 vector by appending the L × 1 channel

impulse response [hi,m(0), · · · , hi,m(L− 1)]T vector with N − L zeros.

Using this system model, the received signals from all nr receive antennas can

be written as

R = A(φ)H + N , (5.3)

where

R = [r1 · · · , rnr ]{N×nr} ,

A(φ) = [E(φ1)S1, · · · ,E(φnt)Snt ]{N×(N×nt)} .

For clearness of presentation, we use subscripts inside curved brackets to de-

note the sizes of corresponding matrices. The vector φ = [φ1, · · · , φnt ] is the

CFO vector containing the CFO values from all users, and the channels of all

users are stacked into the channel matrix H given as

H =




H1

...

Hnt



{(N×nt)×nr}

,

with Hi = [h1,i, · · · ,hnr,i]{N×nr} being the channel matrix for the ith user.

The AWGN noise matrix is given by N = [n1, · · · ,nnr ].



156
Chapter 5. CFO Estimation for Multi-user MIMO-OFDM Uplink Using

CAZAC Sequences

Because the noise is Gaussian and uncorrelated, the likelihood function for the

channel H and CFO values φ can be written as

Λ(H̃, φ̃) =
1

(πσ2
n)N×nr

exp
{
− 1

σ2
n

∥∥∥R−A(φ̃)H̃
∥∥∥

2
}

, (5.4)

where H̃ and φ̃ are trial values for H and φ and σ2
n is the variance of the

AWGN noise. Following a similar approach as in [45], we find that for a fixed

CFO vector φ̃, the ML estimate of the channel matrix is given by

Ĥ(φ̃) =
[
AH(φ̃)A(φ̃)

]−1
AH(φ̃)R, (5.5)

where superscript H denotes matrix Hermitian. Substituting (5.5) into (5.4)

and after some algebraic manipulations, we obtain that the ML estimate of

the CFO vector φ is given by

φ̂ = arg max
φ̃

{
tr

(
RHB(φ̃)R

)}
, (5.6)

with

B(φ̃) = A(φ̃)
[
AH(φ̃)A(φ̃)

]−1
AH(φ̃),

and tr (•) denotes the trace of a matrix. To obtain the ML estimate of the

CFO vector φ, a search needs to be performed over the possible ranges of CFO

values of all the users. The complexity of this search grows exponentially with

the number of users and hence the search is not practical.
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5.3 CAZAC Sequences for Multiple CFO’s Estima-

tion

To reduce the complexity of the CFO estimation for multi-user MIMO-OFDM

systems, in this section, we propose a sub-optimal algorithm using CAZAC

sequences as training sequences. CAZAC sequences are special sequences with

constant amplitude elements and zero autocorrelation for any non-zero circular

shifts. This means for a length-N CAZAC sequence, we have s(n) = exp(jθn)

and the auto-correlation

R(k) =
N∑

n=1

s(n)s∗(nª k) =





N k = 0;

0 k 6= 0.
(5.7)

for all values of k = 0, 1, · · · , N − 1. Here we use ª to denote circular sub-

traction and superscript ∗ denotes complex conjugation. Let S be a circulant

matrix with the first column equal to [s(0), s(1), · · · , s(N−1)]T . The autocor-

relation property of CAZAC sequences can be written in an equivalent matrix

form as

SHS = NIN , (5.8)

where IN is the identity matrix of size N × N . This means that S is both a

unitary (up to a normalization factor of N) and a circulant matrix.

In [101], we showed that for single-user MIMO-OFDM systems, using CAZAC

sequences as training sequences reduces overhead for channel estimation while

achieving Cramer Rao Bound (CRB) performance in the CFO estimation.
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Here, we extend this approach to the estimation of multiple CFO values in

the uplink of multi-user MIMO-OFDM systems. Let the training sequence of

the first user be s1. The training sequence of the mth user is the circularly-

shifted version of the first user, i.e. sm(n) = [s1(nª τm)]T , where τm denotes

the shift value. It is straightforward to show that the training sequences for

different users have the following properties:

• The autocorrelation of the training sequence for the ith user satisfies

SH
i Si = NIN (5.9)

for i = 1, · · · , nt.

• The cross correlation between training sequences of the ith and jth users

satisfies

SH
i Sj = NIτj−τi (5.10)

where Iτj−τi denotes a matrix which results from circularly shifting the one

elements of the identify matrix to the right by τj − τi positions.

For SISO-OFDM systems, an efficient CFO estimation technique is to use

periodic training sequences [38] [39]. In this chapter, we extend this approach

to multi-user MIMO-OFDM systems. In this case, each user transmits two

periods of the same training sequences and the received signal over two periods
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can be written as1

R =




E(φ1)S1 · · · E(φnt)Snt

ejNφ1E(φ1)S1 · · · ejNφntE(φnt)Snt


H + N . (5.11)

Without loss of generality, we show how to estimate the CFO of the first user.

The same procedure is applied to all the other users to estimate the other

CFO values. Since same procedure is applied to all the users, the complexity

of this CFO estimation method increases linearly with the number of users.

We first consider a special case when there are no CFO’s for all the other users

except user one, i.e. φm = 0 for m = 2, · · · , nt. In this case, we cross correlate

the training sequence of the first user with the received signal as shown below

Y ′
1 = W1R

=




SH
1 0

0 SH
1







E(φ1)S1 · · · Snt

ejNφ1E(φ1)S1 · · · Snt


H + N ′

=




SH
1 E(φ1)S1H1 +

∑nt
m=2 SH

1 SmHm

ejNφ1SH
1 E(φ1)S1H1 +

∑nt
m=2 SH

1 SmHm


 + N ′

=




SH
1 E(φ1)S1H1 +

∑nt
m=2 IτmHm

ejNφ1SH
1 E(φ1)S1H1 +

∑nt
m=2 IτmHm


 + N ′, (5.12)

Because Iτm is an matrix resulting from circularly shifting the identity ma-

trix to the right by τm elements, IτmHm produces a matrix resulting from

1We assume here that timing synchronization is perfect. We also assume that a cyclic
prefix with length L is appended to the training sequence during transmission and removed
at the receiver.
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circularly shifting the rows of Hm by τm elements downwards.

We make sure that the circular shift between the (m−1)th and mth users is no

smaller than the length of the channel impulse response, i.e. τm − τm−1 ≥ L.

Since the channel has only L multi-path components, only the first L rows in

the N × nr matrix Hm are nonzero. Therefore, IτmHm has all zero elements

in the first L rows when τm − τm−1 ≥ L for m = 2, · · · , nt and N − τnt ≥ L.

Notice that to ensure these conditions hold, we need to have the training

sequence length N ≥ ntL. Hence, the first L rows of Y ′
1 will be free of the

interference from all the other users. Let us define IL as the first L rows of

the N ×N identity matrix, we have

Y1 =




IL 0

0 IL


Y ′

1 =




ILSH
1 E(φ1)S1H1

ejNφ1ILSH
1 E(φ1)S1H1


 + N ′′. (5.13)

The multiplication of IL serves to select the first L rows from the matrix

SH
1 E(φ1)S1H1. Because the CFO’s of all the other users are 0, the shift

orthogonality between their training sequences and user 1’s training sequence

is maintained. In this case, Y1 is free of interferences from the other users.

Following a similar approach as in [101], we can show that the ML estimate

of user 1’s CFO given Y1 can be obtained as

φ̂1 =
1
N

∠
{

L∑

k=1

nr∑

m=1

Y∗1 (k, m)Y1(k + N, m)

}
, (5.14)

where ∠(•) denotes the angle of a complex number. The computational com-

plexity of this estimator is low.
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When the other users’ CFO values are not zero, Y1 is given by

Y1 =




ILSH
1 E(φ1)S1H1

ejNφ1ILSH
1 E(φ1)S1H1


 +




IL

∑nt

m=2 SH
1 E(φm)SmHm

IL

∑nt

m=2 ejNφmSH
1 E(φm)SmHm


 + N ′′

=




ILSH
1 E(φ1)S1H1

ejNφ1ILSH
1 E(φ1)S1H1


 + V + N ′′. (5.15)

From (5.15), we can see that the orthogonality between the training sequences

from different users is destroyed by the non-zero CFO values φm. As a result,

there is an extra Multiple Access Interference (MAI) term V in the correlation

output Y1. This interference is independent of the noise and therefore it will

cause an irreducible error floor in MSE of the CFO estimator in (5.14).

The covariance matrix of the MAI can be expressed as

E
{

VVH
}

= E








IL

∑nt

m=2 SH
1 E(φm)SmHm

IL

∑nt

m=2 ejNφmSH
1 E(φm)SmHm




[
∑nt

m=2 HH
mSH

mEH(φm)S1IH
L

∑nt

m=2 e−jNφmHH
mSH

mEH(φm)S1IH
L

]}

We assume that the channels between different transmit and receive antennas

are uncorrelated in space and that different paths in the multi-path channel

are also uncorrelated. We define pi,m = [pi,m(0), · · · , pi,m(L− 1), 0, · · · 0]T(N×1)

as the power delay profile (PDP) of the channel between the mth user and the
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ith receive antenna and we have

E
{HmHH

n

}
=





0 m 6= n,

diag(
∑nr

i=1 pi,m) n = m.
(5.16)

Defining Pm = diag(
∑nr

i=1 pi,m), we can re-write the covariance matrix of the

interference as

E
{VVH

}
=




C D

DH C


 , (5.17)

where

C = IL

{
nt∑

m=2

SH
1 E(φm)SmPmSH

mEH(φm)S1

}
IH

L and

D = IL

{
nt∑

m=2

e−jN2φmSH
1 E(φm)SmPmSH

mEH(φm)S1

}
IH

L .

We see that the interference power is a function of the training sequence Sm,

the channel delay power profile matrix Pm and the CFO matrices E(φm).

5.4 Training Sequence Optimization

In the previous section, we showed that the multiple CFO values introduce

multiple access interference (MAI) in the CFO estimation. In this section, we

study how to find the training sequences such that the signal to interference
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ratio (SIR) is maximized.

5.4.1 Cost Function Based on SIR

From the signal model in (5.15), we can define the SIR for CFO estimation of

the first user as

SIR1 =
tr

[IL{SH
1 E(φ1)S1P1SH

1 EH(φ1)S1}IH
L

]

tr
[IL{

∑nt
m=2 SH

1 E(φm)SmPmSH
mEH(φm)S1}IH

L

] . (5.18)

From the denominator of (5.18), we can see that the total interference power

depends on the CFO values φm of all the other users. As a result, the optimal

training sequence that maximizes the SIR is also dependent on φm for m =

1, · · · , nt. In this case, even if we can find the optimal training sequences for

different values of φm, we still do not know which one to choose during the

actual transmission as the values φm are not available before transmission.

This makes (5.18) an unpractical cost function.

To solve this problem, let us look at user 1 again. In the absence of the CFO,

all the signal from user 1 is contained in the first L rows of the correlation

output Y ′
1. When the CFO is present, this orthogonality is destroyed and

some information from user 1 will be “spilled” to the other rows of Y ′
1, thus

causing interference to the other users. For user 1, therefore, to keep the

interference to the other users small, such “spilled” signal power should be

minimized. On the other hand, the useful signal we used to estimate the CFO

of user 1 is contained in the first L rows of Y ′
1 and this signal power should

be maximized. Therefore, considering user 1 alone, we can define the signal
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to “spilled” interference (to other users) ratio for user 1 as

SIR′1 =
tr

[IL{SH
1 E(φ1)S1P1SH

1 EH(φ1)S1}IH
L

]

tr
[
IL{SH

1 E(φ1)S1P1SH
1 EH(φ1)S1}IL

H
] (5.19)

where IL is the complement of IL, i.e. IL is the last N−L rows of the N×N

identity matrix.

The denominator in (5.19) can be expressed as

tr
[
IL{SH

1 E(φ1)S1P1SH
1 EH(φ1)S1}IL

H
]

= Ntr
[
S1P1SH

1

]− tr
[IL{SH

1 E(φ1)S1P1SH
1 EH(φ1)S1}IL

H
]

= N2tr [P1]− tr
[IL{SH

1 E(φ1)S1P1SH
1 EH(φ1)S1}IL

H
]
.

Substituting this into (5.19), we have

SIR′1 =
tr

[IL{SH
1 E(φ1)S1P1SH

1 EH(φ1)S1}IH
L

]

N2tr[P1]− tr
[IL{SH

1 E(φ1)S1P1SH
1 EH(φ1)S1}IH

L

] .

(5.20)
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Now we can define the training sequence optimization problem as

Sopt = arg max
S̃1

SIR′1

= arg max
S̃1

tr
[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

]

N2tr[P1]− tr
[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

]

= arg min
S̃1

N2tr[P1]− tr
[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

]

tr
[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

]

= arg min
S̃1





N2tr[P1]

tr
[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

] − 1





= arg max
S̃1

{
tr

[
IL{S̃H

1 E(φ1)S̃1P1S̃H
1 EH(φ1)S̃1}IH

L

]}
. (5.21)

From (5.21), we can see that the optimal training sequence depends on the

power delay profile P1 and the actual CFO value φ1. The channel delay profile

is an environment-dependent statistical property that does not change very

frequently. Therefore, in practice, we can store a few training sequences for

different typical power delay profiles at the transmitter and select the one that

matches the actual channel delay profile. On the other hand, it is impossible

to know the actual CFO φ in advance to select the optimal training sequence.

Next, we will propose a new cost function based on SIR approximation which

can remove the dependency on the actual CFO φ1 in the optimization.
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Table 5.1: Number of possible Frank-Zadoff and Chu sequences for different sequence
lengths.

N Frank-Zadoff Seq Chu Seq
16 2 8
36 2 12
64 4 32

5.4.2 CFO-Independent Cost Function

Let us assume that the CFO value φ is small. In this case, we can approximate

the exponential function in the original cost function by its first-order Taylor

series expansion, i.e. exp(jφ) ≈ 1 + jφ. Therefore, we have

E(φ1) ≈ IN + jφ1N, (5.22)

where N is a diagonal matrix given by N =diag[0, 1, 2, · · · , N − 1]. Using this

approximation, we get

SHE(φ)SPSHEH(φ)S ≈ SH(I + jφN)SPSH(I− jφN)S

= P + jφSHNSP− jφPSHNS + φ2SHNSPSHNS.

(5.23)

Here we omitted the subscript 1 for clearness of presentation. Therefore, the

optimization problem can be approximated as

Sopt = arg max
S̃

{
tr

[
IL

(
P + jφS̃HNS̃P− jφPS̃

H
NS̃ + φ2S̃HNS̃PS̃

H
NS̃

)
IH

L

]}
.

(5.24)
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Notice that the first term P in the summation is independent of S̃ and hence

can be dropped. It can be shown that the diagonal elements of the second term

jφS̃HNS̃P are constant and independent of S̃. Therefore tr
[
IL(jφS̃HNS̃P)IH

L

]

is also independent of S̃ and hence can be dropped from the cost function. The

same applies to the third term −jφPS̃
H
NS̃, which is the conjugate of the sec-

ond term. Therefore, the final form of the optimization using Taylor’s series

approximation can be written as

Sopt = arg max
S̃

{
tr

[
IL

(
S̃HNS̃PS̃

H
NS̃

)
IH

L

]}
. (5.25)

The advantage of (5.25) is that the optimization problem is independent of

the actual CFO value φ as long as the value of φ is small enough to ensure the

accuracy of the Taylor’s series approximation in (5.22).

Now we look at how we can obtain the optimal CAZAC training sequences for

the cost function in (5.25). In particular, we look at three classes of CAZAC

sequences, namely the Frank-Zadoff sequences [85], the Chu sequences [86]

and the S&H sequences [87]. The Frank-Zadoff sequences exist for sequence

length N = K2 where K is any positive integer greater than 1. For N = 16, all

elements of the Frank-Zadoff sequences are BPSK symbols while for N = 64,

all elements are BPSK and QPSK symbols. Therefore the advantage of the

Frank-Zadoff sequences is that they are simple for practical implementation.

The disadvantage is that there are limited numbers of sequences available for

each sequence length as shown in Table 5.1. The advantage of the Chu se-

quences is that the length of the sequence can be an arbitrary positive integer

N > 1. Compared to the Frank-Zadoff sequences, there are more sequences
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available for the same sequence length as shown in Table 5.1. For both the

Frank-Zadoff and the Chu sequences, there is a finite number of possible se-

quences for each N . The optimal sequence can be found by using a computer

search using the cost function in (5.25). The S&H sequences only exists for

sequence length N = K2. The sequences are constructed using a size K phase

vector exp(jθ) = [ejθ1 , · · · , ejθK ]T . Therefore the optimization of training

sequence S is equivalent to the optimization on the phase vector θ given by

θ = arg max
θ̃

{
J (θ̃)

}
with

J (θ̃) = tr
[
IL

(
SH(θ̃)NS(θ̃)PS

H
(θ̃)NS(θ̃)

)
IH

L

]
. (5.26)

Notice that each element of the phase vector can take any values in the interval

[0, 2π). From the construction of the S&H sequence [87], it can be easily show

that S(θ + ψ) = ejψS(θ), where θ + ψ = [θ1 + ψ, · · · , θK + ψ]T . Hence,

from (5.26), we can get J (θ) = J (θ + ψ). By letting ψ = −θ1, the original

optimization problem over the K-dimension phase vector θ = [θ1, θ2, · · · , θK ]T

can be simplified to the optimization over a (K − 1)-dimension phase vector

θ′ = [0, θ′1, · · · , θ′K−1]
T where θ′k = θk+1 − θ1.

Since there is an infinite number of possible S&H sequences for each sequence

length, it is impossible to use exhaustive computer search to obtain the opti-

mal sequence for the cost function in (5.26). Instead, we resort to numerical

methods and use the adaptive simulated annealing (ASA) method [99] to find

a near-optimal sequence. To test the near-optimality of the sequence obtained
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using the ASA, for smaller sequence lengths of N = 16 and N = 36, we use

exhaustive computer search to obtain the globally optimal S&H sequence 2.

The obtained sequence through computer search is consistent with the se-

quence obtained using ASA and this suggests the effectiveness of the ASA in

approaching the globally optimal sequence.

5.5 Simulation Results

In this section, we use computer simulations to study the performance of the

CFO estimation using CAZAC sequences and demonstrate the performance

gain achieved by using optimal training sequences. In the simulations, we

assume a multi-user MIMO-OFDM systems with two users. Each user has

one transmit antenna and the base station has two receive antennas. We

simulate an OFDM system with 128 subcarriers. The CFO is normalized with

respect to the subcarrier spacing. Unless otherwise stated, the actual CFO

values for the two users are modeled as random variables uniformly distributed

between [-0.5, 0.5]. The mean square error (MSE) of the CFO estimation is

defined as

MSE =
1

Ns

Ns∑

i=1

nt∑

m=1

(
φ̂m − φm

2π/M

)2

, (5.27)

where φ̂m and φm represent the estimated and true CFO’s of the mth user

respectively, nt is the number of users, M is the number of subcarriers, and

2Because CFO values are continuous variables, strictly speaking, it is not possible to
obtain the exact optimum using exhaustive computer search, because the search works with
discrete variables. If we keep the step size in the search small enough, we can be sure that
the obtained ”optimum” is very close to the actual optimum and can be practically assumed
to be the actual optimum.
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Ns denotes the total number of Monte Carlo trials.

First we compare the performance of CFO estimation using CAZAC sequences

with the following two sequences which also have good autocorrelation prop-

erties

1. IEEE 802.11n short training field (STF) [5];

2. m sequences [100].

In the simulations, we use the 802.11n STF for 40MHz operations which has a

length of 32. For the m sequence, we use a sequence length of 31. To provide

a fair comparison, we compare the performance using the 802.11n STF with

a length-32 Chu (CAZAC) sequence generated by [86]

s(n) = exp
[
jπ

(n− 1)2

N

]
, (5.28)

and we compare the performance with the m sequence using a length-31 Chu

sequence generated by [86]

s(n) = exp
[
jπ

(n− 1)n
N

]
. (5.29)

The performance of CFO estimation using the 802.11n STF and N = 32

Chu sequence is shown in Figure 5.2. Here we use 16-tap multipath channels

with uniform power delay profile and the circular shift between the training

sequences of the two users τ2 = 16. The SNR on the x-axis is the average SNR



5.5 Simulation Results 171

per user per receive antenna defined as

γ =
E

(
‖∑nt

m=1

∑nr
k=1 Smhk,m‖2

)

Nntnrσ2
n

, (5.30)

where E(•) denotes statistical expectation, Sm is the transmitted signal from

the mth user and hk,m is the channel impulse response between the mth user

to the kth receiver antenna. We use nt to denote the number of users and

nr to denote the number of receive antennas and σ2
n is the variance of the

receiver AWGN noise. To gauge the performance of the CFO estimation, we

also included the single-user CRB in the comparison. The single-user CRB is

obtained by assuming no MAI and can be shown to be [50]

CRB =
M2

4π2nrN3γ
, (5.31)

where M is the number of subcarriers and γ is the SNR per user per receive

antenna. From the results, we can see that the CFO estimation using the

802.11n STF has a very high error floor above MSE of 10−3. The performance

using CAZAC sequences is much better. In low to medium SNR regions, the

performance is very close to the single-user CRB. An error floor starts to

appear at SNR of about 25 dB. The error floor is around 100 times smaller

compared to the error floor using the 802.11n STF.

The performance of the CFO estimation using the N = 31 m sequence and

Chu sequence is shown in Figure 5.3. Here to satisfy the condition of N ≥ ntL,

we use 15-tap multipath fading channels with uniform power delay profile and
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Fig. 5.2: MSE of CFO estimation using N = 32 Chu sequences and IEEE 802.11n
STF for uniform power delay profile.

the circular shift between user 1 and 2’s training sequence is also set to 15.

Again, using CAZAC sequences leads to a much better performance. We can

see that in low to medium SNR regions, the performance is very close to the

single-user CRB. The error floor using CAZAC sequences is more than 10

times smaller than that using the m sequence.

Figure 5.4 shows the symbol error rate (SER) performance of the uplink of

a 2-user MIMO-OFDM systems with QPSK modulation using four different

training sequences for CFO estimation, namely, the N = 32 IEEE 802.11n

STF, the N = 31 m sequence, the N = 32 and N = 31 Chu sequences.

As in [102] [103], we assume that the CFO’s from different users are first

estimated at the base station using the proposed algorithm and transmitted

back to different users using a downlink control channel. These CFO’s are
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Fig. 5.3: Comparison of CFO estimation using N = 31 Chu sequences and m sequence
for uniform power delay profile.
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Fig. 5.4: Comparison of SER using QPSK modulation for CFO estimation using
different sequences for uniform power delay profile.
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pre-compensated at each user’s transmitter and the SER is measured at the

receiver for this transmission. We assume perfect channel knowledge at the

receiver and linear minimum mean square error (LMMSE) detection is used.

We can see that the system fails if there is no CFO estimation. Due to the

high error floor in the CFO estimation using the IEEE 802.11n STF, the SER

performance is very poor. The performance using m sequence is better and has

an error floor at SER of 0.002. The performance using the two Chu sequences

does not have any error floor and is very close to the performance of perfect

CFO estimation for SNR above 15 dB.

The performance of CFO estimation using different CAZAC sequences is com-

pared in Figure 5.5. Here we fix the sequence length to 36 and the multi-path

channel has L = 18 taps with uniform power delay profile. Comparing the

performances of the optimal Chu sequence and the optimal Frank-Zadoff se-

quence, we can see that the error floor of the Chu sequence is smaller. This

is because there are more possible Chu sequences compared to Frank-Zadoff

sequences and hence more degrees of freedom in the optimization. However,

comparing the performance of the optimal Chu sequence with that of the op-

timal S&H sequences, we can see that the additional degrees of freedom in the

S& H sequence do not lead to significant performance gain. Compared to the

performance using a randomly selected CAZAC sequence, we can see that the

error floor using an optimized sequence is significantly smaller.

From Figure 5.5, we can see that the gain of using S& H sequences compared

to Chu sequences is really small. Therefore, in practical implementation, it

is better to use the Chu sequence because it is simple to generate and it is
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Fig. 5.5: Comparison of CFO estimation using different N = 36 CAZAC sequences
for L = 18 channel for uniform power delay profile.

available for all sequence lengths. Another advantage of the Chu sequence is

that the optimal Chu sequence obtained using cost function (5.25) is the same

for the uniform power delay profile and some exponential power delay profiles

we tested. Hence, a common optimal Chu sequence can be used for both the

uniform and exponential PDP’s. This is not the case for the S & H sequences.

Figure 5.6 shows the performance of CFO estimation for different lengths of

optimal Chu sequences. Here we fix the channel length to L = 18. From the

previous sections, to accommodate two users, the minimum sequence length is

ntL. Therefore, we need Chu sequences of length at least 36. We compare the

performance of the optimal length-36 sequence with that of optimal length-49

and length-64 sequences. For the length-49 sequence, the circular shift between

training sequence of two users is 24, while for length-64 sequence, the circular
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Fig. 5.6: Comparison of CFO estimation using different length of optimal Chu se-
quences for L = 18 channel for uniform power delay profile.

shift is 32. From the comparison, we can see that there are two advantages

using a longer sequence. Firstly, in the low to medium SNR regions, there is

SNR gain in the CFO estimation due to the longer sequence length. Secondly,

in the high SNR region, the error floor using longer sequences is much smaller.

This can be explained using Figure 5.7. In Figure 5.7, we plotted the signal

power for user 1 and user 2 after the correlation operation in (5.12) for sequence

length of 36 and 64 using Chu sequences. In the absence of the CFO, the signal

of user 1 should be contained in the first 18 samples (L = 18). However, due to

CFO, some signal components are leaked into the other samples, and become

interference to user 2. For the case of L = 18 and N = 36, all the leaked

signals from user 1 become interference to user 2 and vice versa. If we use

a longer training sequence, there is some “guard time” between the useful

signals of the two users as shown in Figure 5.7 for the N = 64 case. As
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Fig. 5.7: Comparison of useful signal and interference power for different sequence
lengths using Chu sequences (uniform power delay profile).

we only take the useful L samples for CFO estimation (5.13), only part of

the leaked signal becomes interference. Hence, the overall SIR is improved.

The cost of using longer sequences is the additional training overhead that

is required. Therefore, based on the requirement on the precision of CFO

estimation, the system designer should choose the best sequence length that

achieves the best compromise between performance and overhead.

5.6 Conclusions

In this chapter, we studied the CFO estimation algorithm in the uplink of

the multi-user MIMO-OFDM systems. We proposed a low-complexity sub-

optimal CFO estimation algorithm using CAZAC sequences. The complexity

of the proposed algorithm grows only linearly with the number of users. We

showed that in this algorithm, multiple CFO values from multiple users cause

multiple access interference in the CFO estimation. To reduce this detrimental
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effect, we formulated an optimization problem based on the maximization of

the signal to interference ratio (SIR) in the CFO estimation. However, the

optimization problem is dependent on the actual CFO values which are not

known in advance. To remove this dependency, we proposed a new cost func-

tion which closely approximates the SIR for small CFO values. Using the new

cost function, we can obtain optimal training sequences for different classes

of CAZAC sequences. Computer simulations showed that the performance of

the CFO estimation using CAZAC sequences is very close to the single user

CRB for low to medium SNR values. For high SNR values, there is an error

floor due to the multiple access interference. By using the obtained optimal

CAZAC sequences, this floor can be significantly reduced compared to using

a randomly chosen CAZAC sequence.
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Conclusions and Future Work

6.1 Conclusions

Sensitivity to carrier frequency offset (CFO) is a major drawback of orthogo-

nal frequency division multiplexing (OFDM) systems. In this thesis, we study

low-complexity frequency synchronization techniques that can accurately esti-

mate the CFO for wireless OFDM systems. The focus is on finding frequency

synchronization techniques that achieve a good balance between performance

and computational complexity. We developed CFO estimation algorithms for

various wireless OFDM systems that can be implemented with low complexity,

and at the same time achieve close to maximum-likelihood (ML) or Cramer-

Rao Bound (CRB) performance for practical CFO values.

In Chapters 2 and 3 of the thesis, we studied low-complexity blind CFO esti-

mation algorithms that exploit frequency-domain null subcarriers, which are
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subcarriers that are left empty. Existing algorithms of this type have a high

computational complexity because the cost function of CFO estimation is a

high-order polynomial and a search method is needed to find the CFO esti-

mate. By using a low-order Taylor series approximation of the cost function,

we derived a closed-form solution for the CFO estimate. We also developed

a new factorization of the cost function such that the error between the orig-

inal cost function and the low-order Taylor series approximation is reduced.

We noticed that when the CFO is large, the approximation error still causes

some performance degradation in CFO estimation especially in the high SNR

region. To reduce this degradation, we further developed a successive algo-

rithm, in which the CFO is estimated and compensated successively in several

iterations. A convergence monitoring method was implemented to ensure that

the CFO obtained using the successive algorithm converges to the same CFO

obtained using the high-complexity search method. We showed using com-

puter simulations that the proposed successive algorithm achieves the same

performance as the search method in 2 to 3 iterations. The computational

complexity of the developed algorithm is significantly lower than that using

the search method. In the literature, it was shown that the CRB of the CFO

estimation is minimized if the null subcarriers are placed with equal spacing in

an OFDM symbol. In our study in Chapter 3, we found that the signal to noise

ratio (SNR) of the CFO estimation is related to the null subcarrier placement.

To gain additional insight on the best null subcarrier placement, we studied

the null subcarrier placement that maximizes this SNR. For small CFO val-

ues, we showed that this optimization problem is convex and the SNR of the

CFO estimation is maximized when the null subcarriers are evenly spaced.



6.1 Conclusions 181

This is consistent with the null subcarrier placement that minimizes the CRB.

However, when the number of subcarriers is not divisible by the number of

null subcarriers, it is not possible to place null subcarriers with even spac-

ing. To solve this practical problem, we proposed a heuristic null subcarrier

placement, which still leads to good performance in the CFO estimation. For

practical OFDM systems where two guard bands are required at both ends of

the spectrum, we showed that by placing a few null subcarriers optimally in-

side the data band, the performance of the CFO estimation can be significantly

improved.

In Chapter 4, we studied frequency synchronization for multiple input multiple

output (MIMO) OFDM systems. We proposed an efficient training sequence

design for joint CFO and channel estimation in MIMO-OFDM systems. We

showed that using the proposed training sequence, the ML CFO and channel

estimates can be obtained with low computational complexity. The training

overhead is also significantly lower than for the conventional frequency-domain

training sequence. Moreover, we derived an accurate closed-form approxima-

tion of the performance of channel estimation in the presence of residual CFO.

In Chapter 4, we also studied the effects of spatial correlation and antenna

mutual coupling on the performance of CFO estimation in MIMO systems. We

showed that spatial correlation degrades the performance of CFO estimation.

Antenna mutual coupling has two effects. Firstly, it reduces spatial correla-

tion, which is beneficial. Secondly it also reduces the power of the received

signal, which is detrimental. Computer simulations showed that the combined

effect of mutual coupling adds additional degradation to the CFO estimation

performance.
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In Chapter 5, we studied the frequency synchronization in the uplink of multi-

user MIMO-OFDM systems. We proposed a low-complexity CFO estimation

algorithm using constant amplitude zero autocorrelation (CAZAC) training

sequences. We showed that using the proposed algorithm, the CFO estimates

of different users can be obtained using simple correlation operations. The

computational complexity of the proposed algorithm is much lower than ex-

isting algorithms in the literature, while the performance is close to optimum.

Moreover, the computational complexity of the proposed algorithm only grows

linearly with the number of users. However, we showed that multiple CFO’s

cause multiple access interference (MAI) in the CFO estimation of different

users using the proposed low-complexity algorithm. This leads to an error

floor in the mean square error (MSE) of the CFO estimates. To reduce this

degradation, we formulated an optimization problem to find the training se-

quences that maximize the signal to multiple access interference ratio (SIR).

However, the optimal training sequences depend on the actual CFO values,

which are not known in advance. To solve this problem, we developed a new

cost function that closely approximates the SIR for small CFO values and is

independent of the actual CFO values. We showed using computer simula-

tions that the performance of CFO estimation using the proposed CAZAC

sequences reaches the single user CRB for low to medium SNR regions. By

using the proposed optimal CAZAC sequence, the error floor in the high SNR

region is much lower than for a randomly selected CAZAC sequence.
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6.2 Future Work

In this section, we would like to make the following recommendations on the

possible future work based on the research carried out in this thesis.

• In practical wireless OFDM systems, it is usually required by industrial

standards to have guard bands at both ends of the spectrum to avoid alias-

ing to the adjacent bands and also to avoid interference from the adjacent

bands. In this case, the frequency responses of training sequences on the

subcarriers in the guard bands are required to be zero. We did not consider

this constraint, which must be satisfied in a practical OFDM system, in the

design of CAZAC training sequences in MIMO-OFDM systems. Therefore,

it is of practical importance to investigate whether there are CAZAC se-

quences that satisfy this constraint. If not, then it would be interesting to

see what other sequences we should use and how to construct and optimize

them. In designing a good training sequence with the guard band con-

straint, we believe there is a trade-off between small guard band response

and small auto-correlation of the sequence. Therefore, it is interesting to

investigate how we can formulate this trade-off and find a good practical

training sequence. Moreover, the constant amplitude requirement on the

CAZAC training sequence is not essential as long as the peak to average

power ratio (PAPR) of the training sequence is reasonably small. Thus, we

can relax the constant amplitude constraint in the training sequence design,

which gives us additional degrees of freedom.

• Due to time constraints, in this thesis, we did not consider channel estima-

tion for different users in the uplink of multi-user MIMO-OFDM systems
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using CAZAC sequences. It is worthwhile to study the joint CFO and

channel estimation and the effect of residual CFO on the channel estima-

tion in the multi-user systems. This study will aid us in the design of a

single training sequence for joint CFO and channel estimation in the up-

link of multi-user MIMO-OFDM systems. Moreover, a comparison with

the results obtained in Chapter 4 for single-user MIMO-OFDM systems

can provide us with additional insights on the training sequence design for

multi-user systems.

• In Chapter 5, when we studied the symbol error rate (SER) performance

in the uplink of multi-user MIMO-OFDM systems, we assumed there is a

downlink control link, using which the CFO values for different users are sent

back to the transmitter and pre-compensated. It is an interesting problem

to study how CFO compensation can be performed at the receiver. In this

case, the communication of the CFO values back to the transmitter is not

necessary and the system design can be simplified significantly. However,

the CFO compensation in a multi-user receiver is not trivial, as compensat-

ing one user’s CFO might worsen the CFO of another user. If CFO’s can

be successfully compensated with low complexity, we can re-estimate the

residual CFO’s using the compensated received signal and obtain a better

CFO estimates. This is because the multiple access interference (MAI) for

the CFO estimation in multi-user MIMO-OFDM systems is directly related

to the amplitude of the CFO. If the initial CFO’s are estimated with suf-

ficient accuracy, after CFO compensation, the residual CFO’s are smaller

than the initial CFO and hence introduce less MAI. Therefore, the residual

CFO’s can be estimated with better accuracy. In this way, we can re-use
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the successive CFO estimation and compensation algorithm developed in

Chapter 2 in the uplink multi-user MIMO-OFDM systems to improve the

performance of the CFO estimation.

• Recently, cooperative wireless communication has become a hot research

topic. In a cooperative wireless communication system, different wireless

nodes in a communication network cooperate to enhance the quality of the

communication link between any two nodes. There are many papers in the

literature focusing on transmission strategies to maximize the link through-

put or minimize the bit error rate of the transmission. Most of these papers

assume perfect timing and frequency synchronization. In practice, both

timing and frequency synchronization in cooperative communication sys-

tems are difficult due to the distributed nature of the wireless nodes and

also the potentially large number of nodes in the network. Due to this dif-

ficulty, many transmission strategies have been designed considering only

asynchronous communication, which has inferior performance compared to

a fully synchronized system. Since the algorithms we proposed in Chap-

ter 5 are targeted to multi-user communication systems, it is interesting

to investigate their applicability in and possible extensions to cooperative

communication systems.
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