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Summary 

 

We research into the challenge of improving the quality of the reconstructed 

distribution from spatiotemporal monitoring data collected by mobile sensor network. 

Our approach is to attack the problem from the source, by mobilizing the sensors to 

harvest data of high information content so that the reconstructed distribution has 

minimum distortion. We consider four realistic constraints in our design: limitations 

of wireless communications, limited supply of energy and sensor resources and 

difficult terrains. Our strategy is to treat each mobile sensor as an intelligent 

cooperative autonomous agent, capable of processing cooperative shared information 

independently in order to carry out its harvesting task in an optimal manner. In the 

greater scheme, the sensors are to be divided into small self-contained cooperative 

groups for two reasons. First, it improves scalability and facilitates deployment in 

difficult terrains partitioned by obstacles. Second, it is more robust to communication 

problems since communications used to facilitate the harvesting tasks are intra-group 

in nature.  

We investigate into the limitations in wireless communications through 

literature surveys and theoretical analyses. In our analysis, we examine better 

approaches to organize sensors and design our algorithm so as to alleviate the three 

main communication problems at the topological, Medium Access Control (MAC) 

and routing layers. We conclude that the sensors should move orderly where same 

neighbors are maintained in the neighborhood to prevent routing breakages. Inter-

group and multi-hop communications should be minimized. They are taken into 

consideration in the design of the dissemination protocol of our algorithm. 
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In our comparative study, we compare the performances of the following 

using relative global error and total energy consumption: three versions of our 

cooperative algorithm (cooperative, cooperative-delta and cooperative-orbital 

harvesting), mobile sensors deployed in Equally Distributed Grid (EDG), three types 

of independent methods (Broyden-Fletcher-Goldfarb-Shanno, Random Waypoint and 

our independent delta-harvesting) and static sensors. Our simulation results show that 

cooperative-orbital algorithm outperforms others. It reduces an average of 738% (with 

a range of 625% to 885%) more error than mobile sensors deployed in EDG and 35-

314% more error than independent methods by consuming 74-81% lesser energy. Our 

method also has a resource utilization efficiency of 250 times that of static sensors.  

In our stability study, we show that the following two methods improve the 

robustness of optimization: incorporation of an independence phase in our algorithm 

and division of a group into smaller groups. Therefore, the division of a group into 

smaller groups has three benefits: easy deployment in difficult terrains, robust 

communications and stable cooperation. Moreover, we show that our tracking 

mechanism is stable and the performance is robust against non-ideal communications 

and sensor failures. 

Finally, we have five research contributions. In the optimization mechanism of 

the algorithm, we adapt the pseudo-Newton algorithm and make four improvements 

to it as follows: adaptive cooperative search goals in optimization, local RBF 

interpolation in estimations, dissemination to mitigate the initial value problem and 

the concept of orientation stabilization to provide adaptive stabilized search direction. 

Our fifth contribution is the adaptation of the dynamic clustering technique to track 

continuous distribution robustly.   
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Chapter 1: Introduction 

 

This thesis is a report on the development of our cooperative control algorithm 

for the mobile sensors to optimize the harvesting of spatial environmental information 

with four realistic constraints: limitations of wireless communications, limited supply 

of energy and sensor resources and to a lesser extent, difficult terrains. The algorithm 

is inspired partially by nature [1][2] and draws upon the principles from an eclectic 

mix of cooperation [1]-[4], optimal control [5][6] and statistical decision theories. The 

following is presented in this chapter. In section 1.1, we describe the background and 

context of the research. In section 1.2, we specify our research problem. In section 

1.3, we enumerate on the significance and contributions of our research. In section 

1.4, we justify our use of mobile sensors instead of static sensors in terms of 

advantages gained. In section 1.5, we present an overview of the methodology used to 

solve our research problem. In section 1.6, we outline our research scope and aim and 

breakdown each aim into several objectives to be attained in this research. Finally, in 

section 1.7, we present the overall organization of this thesis. 

 

1.1 Background and Context 

The rapid research and technological advances in wireless communications, 

sensors and actuators have created exciting and innovative ways of using them that 

we have never seen before. We envisage a near future where the seamless integration 

of the abovementioned technologies and devices can make us understand our world 

better and a safer, efficient and greener place for us to live in. However, many 

challenges lay ahead, both within each field and in the integration of the fields of 
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research. In the areas of wireless communications, we have challenges ranging from 

connectivity and reliable communications in the networks due to poor fading channels 

to security of the networks. In the areas of wireless sensors, challenges typically 

originated from the paucity of two basic sensors resources: communication bandwidth 

and energy. Recently, we also witness new fields of research which involved creating 

smart autonomous actuating devices and robots that can adapt their behaviors 

according to time-varying sensory inputs. Within these wide overarching research 

concerns lay our research interest.  

In recent years, there is an increasing number of research problems related to 

the deployment of Wireless Sensor Networks (WSN) [7]-[14][P2][P3] in diverse 

environments to measure environmental data. These data represent physical quantities 

that emanate from sources and are diffused in space. For our research, we focus on the 

use of Mobile Sensor Networks [15]-[20] to harvest such data in an optimal manner 

so that quality information can be extracted from them. Mobile sensors are sensors 

that are mounted on vehicular platforms, which could either be land, sea or air based. 

Thus, they are capable of changing their positions adaptively based on either changes 

in the topology (for example, due to failed sensors) or internal states of the sensors 

(for example, low power) or explicit commands from a command centre. Hence, they 

are more versatile than static sensors. For example, they can be programmed to 

automatically return to a collection point when they accomplish their mission or when 

their batteries need to be recharged. Static networks are onerous to gather for disposal 

or redeployment especially when the sensors are deployed in large quantity in dense 

vegetations, seabed or hazardous environments. In the long run, battery leaks from 

uncollected sensors can cause pollutions. However, mobile networks are usually 

deployed at lower node densities with equal spacing [15]-[18]. As a result, the 
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reconstructed distribution maps are highly distorted and significant amount of post-

processing is required to enhance the quality of collected data. 

Our networks are to be deployed in environments that are either hazardous or 

impossible for human intervention. In the future, we believe that many novel 

applications in the areas of scientific monitoring and disaster management can 

germinate from such a research. For example, scientists who place high premiums on 

high quality experimental data to confirm their hypothesis and theoretical models in 

their quest to unravel the mystery of nature will find such harvested data valuable. 

Also, in search and rescue scenarios such as fire outbreaks or toxic gas explosions 

either in outdoor or indoor environments, the use of such data can facilitate 

operational planning, deployment of human rescuers and subsequent evacuations of 

casualties. Highly distorted maps may endanger the lives of rescuers. Another 

possible application is the monitoring of the toxic chemical pollution and the direction 

that it is spreading. Notice that in all the abovementioned applications, we are 

interested in both the locations of the sources and their effects on their surroundings. 

In figure 1.1a to 1.1c, we present three applications for our novel optimal harvesting 

mobile sensor network. 

Figure 1.1a shows the use of our mobile sensor network to monitor forest 

fires.  A fire has occurred in the centre of the figure. As a result, the sensors move in 

and cluster around the fire to monitor the ambient temperature. Notice that the sensors 

tend to cluster more tightly when they are nearest to the fire. This is because the 

temperature gradient is steepest when at the centre. This approach allows us to 

minimize the distortion error in the measurements given the finite number of sensors 

and hence ensure high fidelity in the reproduced information. By allowing the sensors 

to move, we have the advantage of using lower quantity of sensors to achieve the 
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same quality of information as static sensors. If the fire starts to move, the sensors can 

cluster around and track the fire. 

 Figure 1.1b shows a military application during biochemical warfare. In the 

scenario, two regions have been identified as potentially contaminated with toxic 

biological gases, probably through prior espionage and satellite mapping.  The mobile 

sensor network is deployed to monitor the concentration level of the toxic gas in the 

two regions. A safe evacuation route is then chosen for the infantry based on which 

region has the lowest concentration level of toxic gas and direction of movement of 

the gas. 

 
 

Figure 1.1: Three possible applications 
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Figure 1.1c shows the use of mobile sensor network in the search and rescue 

mission in an indoor environment. Here, an explosion in a chemical factory has 

caused toxic chemical gas leakages in the interior. Time is of the essence and 

casualties have to be searched and found without endangering the lives of the 

rescuers. A mobile sensor network is rapidly deployed to measure the concentration 

level of the toxic gases in the interior. The data is then fed to a command centre to 

plan the safest evacuation routes for the rescuers to search and evacuate the casualties.  

In the greater scheme, we envisage a vast network of self-operating sensor 

clusters, with mobile routers known as helpers acting as intermediaries to maintain 

network connectivity such as those described in [8]. Such network can be deployed in 

vast terrains with many obstacles and barriers. The formation-controlled clusters can 

initially comb the vast terrain in a systematic and incremental manner during the 

exploratory phases. Once potentially interesting areas have been detected, the 

individual clusters can settle down and execute the optimal data harvesting. An 

example of a network used for monitoring chemical pollution as shown in figure 1.2. 

 

Figure 1.2: Vast oceanic mobile sensor network 
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1.2   Research Problem 

In our research, we want to use a group of cooperative mobile sensors to 

harvest data from our environment. The data which are associated with the location 

information can then be used to construct an environmental map of the distribution. 

Given the sensor, energy and communications resources constraints, we want to 

optimize their use by placing them in a manner that the data harvested are of high 

information content with minimum amount of movements and communications. Data 

with high information content can be used to construct the environmental map with 

minimal distortion. To better appreciate the problem, we discuss using the forest fire 

scenario shown in figure 1.3. 

In figure 1.3, we show an example of a forest fire that has started to spread its 

destruction from the center of the terrain. Two smoldering dry bushes have formed at 

the southern region. This combination causes the fire to move more towards the 

southwardly direction. The top two sub-figures show the actual temperature 

distribution and contour plots. We suppose that 36 equally distributed sensors monitor 

this terrain as illustrated in figure 1.3d. The data harvested are used to reconstruct the 

two bottom subplots. From the bottom distorted contour plot, the combination of: low 

maximum temperature of 180°C, the extent of the destruction and the two missing 

smaller southern hot spots suggest that a recent fire has almost run its course and 

exhausted its destructive power. It also suggests that the fire spreads symmetrically 

from the center. If these subplots are used in fire fighting planning, it surely leads to 

complacency, especially if there are other hotspots in the vicinity to draw attention to. 

It may also lead to deployment of firemen in the wrong northern location of the 

terrain to thwart the spread. In this example, we can never extract the distributions of 

the two smothering bushes from the harvested data, even with post processing. 
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Figure 1.3: Forest fire scenario 

 

1.3 Significance and Contributions of Our Research 

There are five significant contributions from our research.  

Our distributed control algorithm consists of two optimization phases: 

cooperative and independent, and a tracking mechanism.  

In the development of the cooperative phase, a novel approach of using 

pseudo-Newton method with cooperation is used to propel the sensors rapidly into the 

optimal positions in an energy-efficient manner [P4][P5]. We make four contributions 
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in the area of cooperative optimization by developing a cooperative version of 

pseudo-Newton method for our purpose as follows: 

1. Optimal placements require the sensors to spread out and position themselves 

in areas of high curvature where the gradients have different values. 

Independent Newtonian methods search for a fixed goal–positions of zero 

gradients. Even if we assume that we can know the values of the gradients to 

search for in advance and modify the independent methods to handle fixed 

non-zero gradients, the sensors using the independent methods still cannot 

spread out properly as they tend to overlap each other in their search and end 

up chasing after same goals. Therefore, we introduce a novel improvement on 

the method where the search for positions of high curvature is adaptive and 

cooperative. It is cooperative because the current position of the sensor is also 

influenced by the current state information of the neighbors. Consequently, the 

sensors are better spread out while optimizing and there are no chasings after 

the same goals among the sensors. 

2. Independent pseudo-Newton methods perform badly in harsh environments 

because of estimation errors incurred due to localization noise. This is 

exacerbated by the accumulation of past errors in the computations which 

causes the sensors to persist in the erroneous directions even though current 

estimates are accurate until the influence of past information has faded in the 

computations. Therefore, we introduce the memory-less local Radial Basis 

Function (RBF) interpolation [21][22] to estimate the gradient and hessian 

values. This is to eliminate the adverse memory effect in harsh environments.  

3. The initial value problem in independent optimizations in which the rate and 

probability of convergence are dependent on the initial position is more severe 
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for our application. This is because we cannot make a good starting guess for 

the initial positions of the sensors as we have no advance knowledge of the 

actual distribution. Therefore, we develop a dissemination mechanism to 

mitigate the initial value problem. 

4. The fixed line search used by some independent methods such as BFGS to 

stabilize the search is inefficient as it introduces rigidity in the search. In a line 

search approach, after a direction is determined, the search is conducted along 

the straight line until a local minimum or maximum point is located. Only then 

will there be a change of direction. Therefore, we develop the concept of 

orientation stabilization in which the stabilized direction is adaptive to current 

states of the neighbors and may vary from one iterative step to another. 

 

Finally, our fifth contribution is from the development of a robust tracking 

mechanism for our algorithm. 

5. We contribute by applying the principle of dynamic clustering onto mobile 

sensor networks for tracking the continuous distribution. Dynamic clustering 

was previously used in static sensor network to track discrete targets [9]. 

 

1.4 Advantages of Mobile Sensor Network 

From our literature survey in chapter 2 on WSN, we are able to identify five 

advantages that Mobile Sensor Networks offer compared to traditional static sensor 

networks as follows. 

First, a mobile sensor is reusable. An attractive feature that arises from the 

mobility of the sensors is the ability to command the sensors to gather at a collection 

point either when we need to send them to another mission or to recharge them. This 
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differs from static sensors that are usually permanently deployed in their environment. 

Environmental concerns arise when the spent static sensors are not collected or 

difficult to collect, for example, in a densely forested area or under the sea bed. This 

is exacerbated by the fact that static sensors are deliberately dispersed with much 

higher node density than required for minimal connectivity to compensate for uneven 

dispersion and also for redundancy against sensor failures. The components such as 

batteries of the spent sensors could pollute the environment. Although mobile sensors 

are more costly than static sensors, in the long run, it is cheaper to use mobile sensors 

if the applications require us to frequently re-deploy our sensors. Furthermore, in our 

times of global warming where environmental costs of cheap disposable plastic bags 

have caused many countries to restrict or ban their use in place of more expensive, 

reusable grocery bags, the cheapness of static sensors is a weak justification for their 

use.  

Second, mobile networks have less network problems in the form of 

congestion or starvation due to lower density in deployment. Due to high density 

deployments in static sensor networks, congestion in the static sensor networks is an 

ongoing research issue which we discuss further in chapter 2. Congestion reduces the 

effectiveness of using the static networks for real-time monitoring due to delayed or 

lost data packets. It also increases the probability of starvation where a few more 

aggressive nodes are able to horde the communications for continuous transmission of 

data. Both congestion and starvation have the secondary effect of degrading the 

performance of static sensor localization.  

Third, mobile sensors can localize with higher accuracies using robotic 

localization. This is because unlike static sensors, mobile sensors can use 

heterogeneous fusion of dissimilar measurements (odometry, sonar and laser 
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scanners, etc) to improve the accuracy of its localization. Since reconstructing a high 

quality distribution require high localization accuracy, in reality, the performance of 

the static sensor network will be much worse. In real life, another way to achieve even 

higher accuracy in determining positions is to use Global Positioning System (GPS). 

It may be argued that the cost is too prohibitive for sensors. However, it must be noted 

that historically, the cost of hardware is never an insurmountable issue whenever there 

are huge commercial demands. Commercially, GPS has already been integrated into 

many small handheld devices such as palmtops and mobile phones, and are available 

in many modern motor vehicles. In fact, the cost issue is the best argument for the use 

of mobile sensors instead of static sensors for two reasons. First, based on our 

simulation in chapter 6, static sensors have to be deployed at a node density that is 

250 times greater than mobile sensors using our cooperative algorithm in order to 

achieve the same level of performance. Since we need to install GPS on every sensor, 

the total cost of GPS installation on a static sensor network will also be 250 times 

greater than our equivalent mobile sensor network. Second, as discussed above, 

mobile sensors have high reusability. Most often, static sensors are deployed 

permanently in the environment and many of them are lost due to difficulties in 

recovering them. As a result, installing GPS on static sensors are considered to be an 

investment only for one time usage, which does not make economic sense. 

Fourth, we can control the mobility of mobile sensors based on environmental 

input to extract data of high information content. Static sensor networks usually 

require high density of sensors to achieve high quality measurements because of 

uneven dispersion at deployment and inability to adjust positions in response to 

environmental changes. Current state of mobile sensor technology focuses on 
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maintaining maximal coverage with equal spacing [15]-[18]. There are no feedback 

mechanisms to adjust their positions to improve the quality of their measurements. 

Fifth, maintaining connectivity in traditional static sensor networks is an issue 

due to uneven terrain, sensor failures, channel conditions and imperfect methods of 

sensor deployment. The simplest approach is to deliberately disperse the sensors with 

higher node density than required to maintain network connectivity. In the process, 

the redundant nodes cause more problems such as high node interferences and 

contentions that lead to network congestion. Special data dissemination techniques are 

then required to deliver the data in a timely manner to a sink node for accurate 

reconstruction of the distribution. Mobile sensor networks [15]-[18] do not require 

redundant nodes to maintain global connectivity. They require only the sensors to 

move in a coordinated manner such that the topological relationships between 

adjacent neighbors are preserved. This is a special property of the mobility class. The 

unique characteristic is that in spite of the constant movement of nodes at the physical 

plane, the Delaunay graph that connects the adjacent neighbors in the topological 

plane is invariant with time (see figure 1.4). An example of a mobility class that 

exhibits this property is formation controlled mobility. This property is shown to be a 

desirable quality based on our throughput analysis of autonomous agents with random 

mobility. The reason is uncoordinated movements increase route breakages due to 

disconnections and changes in intermediate nodes which in turn tend to decrease the 

capacity of the network. Note that the property does not guarantee connectedness 

because the closest adjacent neighbors may be so far apart that they are out of 

communication range. However, it simplifies the problem of maintaining global 

connectivity by reducing it into a problem of maintaining local connectivity with the 
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same neighbors. That is, the nodes need only to ensure that they are connected to their 

closest neighbors. These are neighbors that surrounds them.  

 

Figure 1.4:  The invariance property of Delaunay graph for coordinated 
movements 

 
 

A simple scenario in figure 1.5 is used to illustrate this concept. In the 

scenario, the scouts return to their camp at night after an evening trek. They form a 

line formation in their movements. Each scout needs only to maintain visual contact 

with the same neighbor to ensure that the whole line formation remains connected. 

 

Figure 1.5:  Achieving global connectivity by maintaining local connectivity 
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1.5 Methodology 

We use an integrative approach to solve our problem by drawing upon an 

eclectic mix of principles from various theories such as: cooperation [1]-[4], control 

[5][6] and statistical decision theory. In our search for a solution, we also draw our 

inspirations from nature [1][2] and embrace the use of biological principles in our 

solution. A two-phase method is adopted in order for us to derive our solution.  

In order to cooperate, the sensors require wireless communications to 

exchange cooperative shared information. Therefore, in the first phase, we survey the 

literature on wireless communications, MANET and sensor networks, and 

subsequently perform theoretical analyses in order to better understand the principal 

difficulties and challenges that arise when a network consisting of mobile nodes are 

deployed in a harsh physical environment. The limitations of wireless 

communications and networking are taken into consideration in the design of our 

algorithm. 

In the second phase, we design our main algorithm using the top-down 

approach and by considering the various aspects that will affect our algorithm, 

inclusive of those insights gained from the first phase. In order for us to use the scarce 

energy and sensor resources economically, we leverage on cooperation to perform 

optimal harvesting. We then design our simulation in order to conduct performance 

studies on the algorithm and identified further improvements to the algorithm. 

 

1.6 Research Scope, Aims and Objectives 

The research scope is to develop a distributive cooperative control algorithm 

to control the movement of the mobile sensors in order to minimize the distortion 
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error when the harvested spatiotemporal environmental data are used to construct the 

distribution. This is to be done without losing the sensing coverage of the region. To 

elaborate, each sensor has a finite sensing area due to its sensing range. The sensing 

coverage refers to the union of the sensing areas of the sensors. The design is to take 

into consideration the following four realistic constraints. First, the spatiotemporal 

disconnections of wireless communications as the result of: mobility of the sensors, 

poor channel conditions in the harsh physical environment and network contentions at 

the MAC layer due to increasing data traffic load. Second, we have only a finite 

number of sensors deployed. Third, there is limited energy supply on each sensor. 

Fourth, difficult terrains where there are physical obstructions and obstacles such as 

walls.  

The following are our research aims and the objectives that we desire to attain 

for each aim: 

1. To investigate the principal difficulties and challenges in wireless 

communications and networking of MANET and sensor networks. 

a. Survey the connectivity issues in the networks and the various strategies 

used to mitigate the problem. 

b. Survey the issues in the MAC layer of the networks and the various 

strategies used to mitigate the problem. 

c. Survey the issues in the routing layer of the networks and the various 

strategies used to mitigate the problem. 

2. To analyze the performance of a MANET in a harsh environment with respect 

to various parameters. 

a. Theoretically analyze the connectivity of the network taking into 

consideration the mobility of the nodes and poor channel conditions. 
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b. Theoretically analyze the throughput of the network taking into 

consideration the mobility of the nodes, poor channel conditions and the 

effects of the MAC and routing layers. 

3. To develop the main distributed cooperative control algorithm 

a. Survey the theories from general literatures and literatures related to 

autonomous mobile robots that are directly relevant to the development of 

the algorithm such as those related to cooperation, control, mathematical 

interpolations and decision making in an imperfect knowledge scenario. 

b. Develop the main algorithm for the two-dimensional (2D) network 

topology scenario. 

c. To design the simulation to study the performance, identify the weakness 

in the main algorithm and further improve and refine on the main 

algorithm 

i. Design and conduct simulations for the 2D network topology. 

ii. Further improve and refine on the main cooperative algorithm based on 

the weaknesses identified during the simulation studies. 

   

1.7 Organization of the Thesis 

The thesis is organized as follows. In the next chapter, we discuss our literature 

survey on on-going research related to wireless communications, MANET, static and 

mobile sensor networks. In chapter 3, we present the insights gained from our 

preliminary study and theoretical analyses of various MANETs operating in realistic 

conditions. Subsequently, those insights gained are used to aid us in the design of our 

distributed cooperative control algorithm. In chapter 4, we present the two-phase 

algorithm for the two-dimensional topology scenario. First, we describe our general 
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design considerations. This is followed by detailed discussions of the cooperative and 

independence phases and the tracking mechanism of the algorithm. The theoretical 

stability of the algorithm is also analyzed. Finally, we examine the design of our 

algorithm from the theoretical perspective. In chapter 5, a comprehensive simulation 

study is carried out. First, we conduct the comparative performance study using two 

performance metrics: relative global error and total energy consumption per sensor 

under different scenarios. In the comparative performance study, we compare our 

three cooperative harvesting algorithms: cooperative, cooperative-delta and 

cooperative-orbital harvesting with three independent harvesting methods: BFGS, 

Random Waypoint Mobility (RWM) and independent delta harvesting heuristic. 

Moreover, we also compare all the abovementioned cooperative algorithms and 

independent methods with mobile sensors deployed in Equally Distributed Grid 

(EDG) and static sensors. Second, we examine the optimization and tracking 

stabilities. Third, we examine the effect of non-ideal communications on the 

performance. In the final chapter, we conclude our work, where we reiterate and 

examine all the objectives set up in chapter 1. Additionally, we also explore possible 

future directions for our work. 
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Chapter 2: Literature Survey 
 

 

In this chapter, we present our literature survey.  Our survey focuses on three 

different areas that are relevant to our research problems. The survey on MANET in 

section one helps us better understand the issues in communications and networking 

that affect our problem. In section 2.2, we examine the general issues that affect the 

monitoring and sensing performance of WSN. In section 2.3, we survey on coverage 

control of mobile sensor networks. Finally, we conclude the chapter.  

 

2.1 Mobile Ad-Hoc Networks 

MANETs are multi-hop communication networks that are built on the ad-hoc 

basis. That is, it is built on-the-fly and torn down rapidly without prior planning, 

configuring and organizing. Some examples of potential applications are: mobile 

conferencing, vehicular communication network, emergency and disaster 

communication services and military networks. It is also most suited for networking 

in mobile robotic networks [20]. As the name implies, the nodes are mobile, hence the 

topology of the network changes dynamically. Another notable feature is that the 

network has no infrastructure. That is, there are no special nodes such as mail, web or 

authentication servers within the network that provide centralized networking 

services. Every node is identical in its networking functions. Many researches are 

focused on improving and augmenting the capabilities of the MAC and routing 

algorithms so as to provide seamless, non-disruptive services.  
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Specifically, the focus of our survey is to identify the problems that deteriorate 

the throughput of the mobile networks and the various methods used to mitigate the 

problems. From the survey, we identified four problems as follows. The first problem 

is poor connectivity due to imperfect wireless channel conditions such as fading, node 

mobility. The second problem is contentions among the nodes for the uses of the 

communication channels. The third problem is inter-neighborhood interference which 

gives rise to hidden and exposed node problems. The fourth problem is, in multi-hop 

communications, whenever there is a need to establish or repair a route, routing 

overheads are generated. 

We generally define contention as the competitive node activity occurring 

among the neighbors inside the one-hop neighborhoods that is required to secure the 

channel for communications. Contentions among neighbors are usually resolved by 

either having a central node to coordinate and allocate the channel among them or 

imposing cooperative self-regulating behaviors among the nodes such as “listen-

before-transmit” and back-off when collisions occur. This is performed at the MAC 

layer. We define interference as node activity occurring in the regions immediately 

outside the one-hop neighborhoods that disturb the communications inside the one-

hop neighborhoods.  

 

Figure 2.1: Interference in a multi-hop network 
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The designers of MAC protocol for MANET face three challenges.  

The first challenge is link disconnections due to the unreliable nature of 

wireless channels (for example, fading and shadowing) [23] and node mobility. The 

second challenge is the presence of contentions to secure the wireless channel in order 

to transmit packet. While the first two challenges are not unique and are present also 

in a one-hop WLAN with a central base station, the third challenge is unique to 

wireless multi-hop communications. This is the node interference from adjacent 

overlapping neighborhoods beyond one-hop neighborhood [24][25] as shown in 

figure 2.1. This type of interference gives rise to the hidden terminal and exposed 

terminal problems in the literature. Briefly, many MAC protocols such as the popular 

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol 

[25][75][82]-[85] require some form of coordination and cooperation among the 

nodes in order to improve the efficiency of channel utilization. The only exception is 

the ALOHA protocol which does not have coordination and cooperation, hence each 

node transmits autonomously when it has a packet to send. As a result, the ALOHA 

protocol has the lowest efficiency in channel utilization. CSMA/CA is popular in 

MANET because the medium control is done in a distributed manner. However, in 

order to participate in any form of coordination and cooperation, depending on the 

MAC protocol, the minimum requirement is that all the nodes in the same 

neighborhood can hear each other. In figure 2.1, the neighborhood that is centered at 

node a is been interfered by 3 overlapping adjacent neighborhoods. We observe that 

the nodes in the shaded region of the overlapping neighborhoods cannot hear node a 

when node a transmits, so they cannot cooperate and remain silent if they have 

packets to transmit. As a result, we expect this type of interference to reduce the 

efficiency in channel utilization.  
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To mitigate the interference, a few approaches have been proposed. In one 

approach, we allow the nodes to vary their transmission range adaptively. It is known 

as topology control [28][29]. A second approach is to use a protocol that is more 

robust to interference of any kinds such as DS/CDMA MAC protocols [24][25][29] 

which appears to be a promising approach. However, a problem exists in the 

implementation of DS/CDMA which is traditionally used in mobile cellular networks 

where there are central infrastructures such as base stations [23] to allocate spreading 

code and regulates between the transmitting and receiving phases of the half-duplex 

hardware. To implement DS/CDMA in a multi-hop ad-hoc environment where there 

is no central infrastructures will require an additional distributed control layer at the 

MAC which we explore in [P2][P3] and chapter 3. We also analyze the throughput 

performance between CSMA/CA and DS/CDMA MAC in chapter 3. 

Finally, we also examine multi-hop networking as a mean to facilitate the 

harvesting tasks. A route needs to be established whenever two nodes are several hops 

away from each other and they need to communicate. This is accomplished by using 

routing protocols. In a MANET environment where topology changes are frequent, 

one or several links that formed the route may be broken and as a result, dynamic 

routings are required. This incurs routing overheads that consume the communication 

bandwidth, ultimately deteriorating the throughput of the network.  

Ad-hoc routing protocols [30]-[44] are the most well researched in MANET. 

The main challenge in routing protocols is to keep the routes updated because of 

frequent broken routes. Broken routes in MANET can be due to the change in 

topology as the nodes move. It could also be due to MAC layer issues such as 

prolonged unsuccessful link level transmissions when the channel condition is poor or 

there is interference or contentions are high. This is to be done with as little routing 
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overheads as possible as they consume a fair amount of channel capacity. The 

protocols can generally be classified as proactive and reactive types.  In proactive 

types, there are periodic route advertisement packets to keep all the route tables 

updated. However, many of the route updates in the route tables are actually 

unnecessary. This is especially true when the topology changes are not frequent. To 

minimize the route overheads, in reactive types such as Ad Hoc On-Demand Distance 

Vector (AODV) routing protocol [32], routes are constructed on-demand and 

reconstructed only when it is broken during transmissions.  

 

Figure 2.2: Three different approaches in active routing 
 

Therefore, if multi-hop routing is required in an environment where we have 

limited communications bandwidth and no control over the node mobility, reactive 

protocols such as AODV will be more suitable as they attempt to minimize routing 
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overheads, we will investigate further in chapter 3. Clearly, from the discussion, if our 

topology is invariant with time, there are no routing overheads at steady state as we do 

not need to reconstruct routes. However, generally for mobile networks, this is not 

possible as the nodes move with fairly random mobility. 

The application of ad-hoc multi-hop networking in mobile robots networks 

[20] has led to the proposal of active routing [46]-[52]. Active routing uses the fact 

that we can control the mobility of the nodes to mend or maintain networking routes. 

In figure 2.2a-c, the dark blue nodes represent the nodes that have their mobility 

controlled to play the main functions of active routing. In the relay line approach 

(figure 2.2a), a line of relay robots follows behind a main robot as it moves around. In 

message ferrying approach (figure 2.2b), a few robots are assigned as postmen. They 

follow pre-programmed paths to collect and send messages. In one variation, an 

underwater autonomous vehicle is used to collect or “harvest” information from the 

underwater sensors and bring it to the surface [51]. The helpers approach (figure 2.2c) 

has also been proposed. A redundant pool of helpers constantly search for critical 

links. A critical link is a link that if removed, results in the network being partitioned 

into two clusters with no communication path from one to another cluster. A depth 

first search is used to move the helpers to locations where there are critical links.  

Furthermore, among the three approaches, only the relay line and message 

ferrying approach have the invariant topology property as discussed in section 1.4, 

chapter 1, which is beneficial in minimizing routing overhead. The reason is that only 

the two approaches require the relaying nodes to coordinate their movements. For the 

helper approaches, the nodes do not need to coordinate their movements. Therefore, 

we expect the two approaches to incur the least routing overheads.  
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Finally, in all examples, the key weakness of the difficulty of multi-hop 

networking to maintain stable routes in a harsh communication environment with 

minimal overheads remains. This motivates us to use other forms of communications 

to facilitate the harvesting tasks. 

2.2   Wireless Sensor Networks 

WSN consists of cheap miniature wireless networking devices with sensing 

capability. They are usually deployed in thousands to monitor the environment over a 

large spatial region. Some of the suggested real-time applications are scientific 

monitoring, safety and surveillance. They usually send very small data packets by 

multiple hops to a sink node.  Traditionally, many researches focus on WSN with 

static nodes [9][53]-[68]. However, more recent works look into WSN with mobile 

nodes [8][12][15]-[18]. The key finding is that there are three main problems that 

deteriorate their performance. The first problem is poor connectivity due to imperfect 

wireless channel conditions such as fading and node mobility. The second problem is 

network congestion due to high node density. The third problem is high localization 

errors. 

Real time monitoring of the environment required timely delivery of sensing 

data to the sink node. In a network with poor connectivity, data are lost and this leads 

to unreliable real time monitoring. Poor connectivity is caused by imperfect 

dispersion in uneven terrain and localized conditions that deplete energy, resulting in 

early sensors failures. For WSN with static nodes, the main technique is to uniformly 

disperse the nodes at initial stage with sufficient node density to achieve network 

connectivity. Early theoretical works focus solely [54]-[59] on the minimum node 

density required to achieve certain threshold network connectivity. The rationale is 

that if we know the minimum node density, in actual situation, we can disperse the 
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nodes at a node density much greater than the minimum to guarantee the network 

connectivity. The two main causes of poor connectivity in real life scenarios that 

require much higher node density than the minimum during dispersion are as follows: 

• Dispersion at the initial stage:- Due to uneven geographical terrain and 

difficulty of controlling the vehicle that is used for dispersing the sensors 

uniformly, the sensors are not uniformly distributed. As a result, there is a 

possibility that in some areas the sensors distribution are sparse and the local 

networks are poorly connected. In the worst case, the local networks in sub-

regions can even be partitioned from the rest. 

• Environment:- Harsh environment can present problems for static sensors. In 

an underwater environment with strong undercurrents, the static sensors can 

drift from their original positions and this could lead to changes in network 

topology, connectivity and coverage area. Excessive drainage of power from 

communications due to localized channel conditions such as shadowing and 

fading or high sensing activity and communications contentions can result in 

early sensor failures. To mitigate the environment effects, redundant nodes are 

dispersed to reduce the probability of early failures. 

 

Besides the connectivity problem, high node density is also prescribed for 

good sensing coverage [10] and to reduce localization errors [68]. However, 

prescribing high node densities as a panacea is not without its side effects. It results in 

excessive contentions and interference among the many nodes which eventually 

decreases the capacity of the network. As an example, earlier researchers noted the 

occurrence of “sensing storms” in monitoring of discrete targets. Sensing storms 

occur when targets trigger many surrounding sensors within their sensing ranges. As a 
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result, an avalanche of data is sent concurrently leading to congestion, transmission 

failures and excessive retransmissions. This congestion also affects the performance 

of localization in static sensor network. The reason is that under ideal communication 

environments, localization accuracy improves as the node density increases because 

of the increase in number of neighbors used to determine the position of the sensor. 

Hence, the localization noise is reduced. However, due to congestion, not all 

messages sent by the neighbors are received and the average delay in messages arrival 

increases. In the worst case, the messages arrived beyond the periodic computation 

intervals. Therefore, the effective number of neighbors communicating with the 

sensor decreases beyond a critical point as the node density increases. As a result, the 

localization noise is not decreased and may even increase. Generally, static sensors 

have poor localization accuracies. Congestion in the networks sets a limit in 

improving the localization accuracies which is essential for many applications, 

including ours as it affects the accurate reconstruction of continuous distribution in 

our application. 

The earliest known work to characterize decreases in capacity when node 

density increases beyond a certain magic number is the simple model developed in 

[60] that uses the ALOHA MAC protocol. More sophisticated models that use Time 

Division Multiple Access (TDMA) [69]-[74] and CSMA/CA MAC have been 

developed [75]. This includes our own works [P1]-[P3] that explore node mobility, 

different environments (terrestrial vs. acoustic) and the DS/CDMA MAC protocols. 

To resolve these problems, current research has broadly branched out to three 

different strategies. The first strategy is to continue with a purely static WSN and find 

ways to alleviate the side effects. The second strategy is to augment the static WSN 

with high performance mobile nodes to enhance the connectivity and thus hopefully 
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relax the requirement to disperse the nodes with too high a node density. The third 

strategy is to use a WSN that is made up of mobile nodes that have their mobility 

controlled to maintain coverage and connectivity, thus effectively allowing the WSN 

to operate at the minimum possible node density for network connectivity. We will 

briefly cover the first two strategies. The third strategy will be discussed in the next 

section. 

One of the characteristics of sensor data is that it is highly spatially correlated. 

This is especially true in target tracking. Therefore, the data that are transmitted are 

highly redundant and they may cause congestion in the network during periods of 

high sensing activity. Congestion in the network affects the punctual arrivals of 

crucial data to the sink node for decision-making. In the worst case, the crucial data 

can be lost. High node density in the network increases the amount of spatially 

correlated data circulating in the network that eventually leads to congestion. In order 

to resolve this problem, two main techniques are used. The sensing range refers to the 

average maximum distance that a target can be away from the sensor and still remains 

detectable by the sensor.  

 

Figure 2.3: Minimum covering set 

The first technique is to manage the coverage [10]-[11][61] by a combination 

of topology control and minimum covering set. The minimum covering set is 

illustrated in figure 2.3 for a target tracking scenario.  There are two independent 
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covering sets A and B that can completely cover the center shaded region in the 

figure. Therefore, at any time, we only need to switch on the sensors that belong to 

one covering set thus reducing excessive data transmission. Finally, it is determined 

theoretically that to ensure connectivity, the communication range must be at least 

twice the sensing range. The communication range can be adjusted through topology 

control. The main disadvantage is that this method only works if the sensor has a 

sensing range. If the sensor is performing measurements at a single point in space, 

such as temperature measurement, we cannot use this technique. This is especially 

true if the temperature gradient is not uniformly distributed.  

The second technique is to manage the flow of data dissemination [62]-[64] to 

the sink node through data clustering and aggregation. The idea is to use a hierarchy 

of intermediate sink nodes to collect regional data and aggregate them as shown in 

figure 2.4. Aggregation can either be data compression or the averaging operations 

using filters. Since the regional data are highly spatially correlated, we expect to 

achieve, for example, high compression ratio in the aggregation process. Therefore, 

the redundant data circulating in the network is kept to the minimum.  

 

Figure 2.4: Data clustering and aggregation 
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This approach has several disadvantages. First, the hierarchy of sink nodes 

introduces single points of failures that reduce the robustness of the WSN. Second, 

the nodes have to be equipped with better processors in order to perform the data 

aggregation. Third, network clustering introduces a networking overhead. If the 

clustering is static, the overhead is a one-off cost otherwise the overhead will be an 

on-going cost. The benefits of data aggregation can only be fully realized if there is 

high enough spatial correlation in the data. If the event that we are monitoring varies 

in space with time such as target-tracking, the amount of benefit that we can reap 

using a static data clustering is not maximal. One possible approach to realize the 

benefit is for the cluster to adapt to the environment. For example, in a target tracking 

scenario, the data cluster has to dynamically form around the target [9] as it moves 

across the WSN in order to achieve high spatial correlation in the data. In conclusion, 

in order to reap maximal benefit, we are required to incur additional on-going 

overhead. Finally, in our application scenario in which we are interested in the 

continuous distribution of measurements, the aggregation is not beneficial to us. This 

is because the spatial correlation is low, especially in regions of steep temperature 

gradients. In short, unlike target tracking in which we are only interested in discrete 

points in space, in constructing a continuous distribution map over the entire space of 

interest, every node matters. However, a proper sampling distribution can minimize 

the distortion. 

 

Figure 2.5: Maximum area covered by the mobile node in its search 
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The second strategy is to augment the static WSN with high-performance 

mobile nodes [12][65]. Essentially, the general approach is similar to the helpers 

approach (see figure 2.5) described in the previous section. The high performance 

mobile nodes attempt to seek out regions of disconnected nodes. They then disperse 

extra static nodes to enhance the connectivity of the region. In addition, they also act 

as extra routers in regions of high traffic loads. Currently, this is still a relatively new 

area of research and its successful development remains to be seen. However, there 

are three limitations in this approach that have to be overcome in future.  

First, the velocity of many present day autonomous vehicles which is about 30 

m/s sets an upper limit to the region that the vehicles can cover in their search for 

failed or disconnected sensors. For example, in figure 2.5, if we can tolerate a delay of 

5 s in the disconnection and the vehicle has a sensing radius that is equal to the 

communication range of about 250 m, even at the most optimistic, the distance that 

the vehicle can cover is only 150 m which is less than one hop. Routing protocols 

such as AODV [32] will wait at most 2 s for the MAC protocol to attempt to re-

establish the link before it searches for a new route. If there is an alternative route, the 

whole re-routing process which may involve a search over the entire network for a 

suitable route will take less than 5 s and during this time, the vehicle can only cover 

less than one hop in its search. Clearly, for the approach to be a feasible solution, the 

mobile node must be able to search more than one hop within the acceptable delay 

tolerance. Therefore, this limits the nodes in our scenario to operate at communication 

ranges that are less than 150 m. Furthermore, if the WSN is to spread over a large 

geographical region, in order to achieve a significant reduction in static node density 

and simultaneously a reasonable delay tolerance, it is likely that many such high 

performance mobile nodes have to be deployed.  
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Second, as we decrease the static node density to close to the minimum node 

density, the role that the mobile nodes play in maintaining the network connectivity 

becomes more crucial. Ironically, this makes the entire network vulnerable to 

connectivity problem because the mobile nodes are single points of failures. The 

approach in [12] is particularly susceptible to this problem. This is because the 

authors propose to let the high performance mobile nodes carry the main backbone of 

the data traffic. The idea is to conserve the energy of the static sensors so that their 

lives can be prolonged. The robustness issue makes the approach unattractive in a 

military battle scenario where the vulnerable mobile nodes can be deliberately chosen 

by enemy as targets.  

Third, the mobility of the nodes may eventually decrease the capacity of the 

network. We will discuss this in chapter 3. This is especially true if their movements 

are uncoordinated and they are frequently chosen as intermediate nodes by the routing 

protocol. Their movements cause frequent broken routes and route repairs which 

generate routing overheads. The routing overheads consume a portion of the capacity. 

The approach in [12] is particularly susceptible to this problem because the main bulk 

of data traffic passes through unstable routes formed partially from the mobile nodes. 

However in these two strategies, the two key environmental-unfriendly 

weaknesses in static WSN remain unresolved. Although static sensors are cheap and 

disposable, poor reusability and the need to be deployed in thousands in order to: 

maintain connectivity, maximize sensing coverage and minimize localization error are 

especially of great concerns in our times when many countries have already restricted 

or banned the use of cheap disposable plastic bags in favor of more expensive 

reusable grocery bags due to increase in global environmental damages. Therefore, 

we are motivated to survey mobile sensors as suitable substitutes. 
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2.3 Mobile Sensor Networks 

Mobile Sensor Networks have generated much research interests. It is a multi-

disciplinary field that draws researchers from diverse areas such as robotic control and 

networking. We focus on coverage control which is of interest to our research. In 

coverage control, we control the motion of the mobile sensors to spread out over a 

region of interest so as to obtain a good sensing coverage. Previously, there is a 

debate that due to the lower node density of mobile sensor networks, it is unable to 

provide effective sensing coverage. However, a recent theoretical work [97] 

demonstrates that mobile sensor networks can achieve coverage that is comparable to 

static sensor networks by the use of intelligent motion control of the mobile sensors.  

Generally, motion control can be centralized or distributed [2]. In centralized 

motion control, there is usually a coordinating agent that performs the task of ensuring 

that other agents are moving in order. This approach is not scalable and to solve the 

scalability issue, a hierarchy of coordinating agents is used to issue the chain of 

commands when the group gets too large. However, the remedy creates lethargic 

response and movement of the entire group. The problem tends to worsen as the 

group gets bigger. Due to the problems in centralized control of a large group of 

mobile robots, many researches on the mobile sensing coverage of the mobile sensor 

networks use the distributed approach which is highly scalable. The main idea is that 

rather than providing a hierarchy of coordinating robots to coordinate the entire 

group, each robot is programmed with cooperative self-regulating behavior. The idea 

is biologically inspired and originated from observations of how large insect swarms 

and flocks of migratory birds are able to coordinate their movements and 

simultaneously navigate rapidly the whole group through sharp turns. It is observed 

that the birds do not need to communicate with the leader. Rather they each take 
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reference to the positions of their immediate neighbors when they move. This 

behavior in their movement is also known as cooperative movement as opposed to 

autonomous movement. This approach is highly attractive to mobile sensors 

applications where we need to coordinate the movement of a large group of mobile 

nodes in respond to rapid changes in the surrounding.  

There are many ways to achieve sensing coverage in mobile sensor networks. 

The simple approaches that use minimum computations are usually very poor in 

energy efficiency and slow in movement. An example is [98] in which the sensors use 

a probabilistic mobility model known as Particle Swarm Optimization. A pure 

random mobility method is energy inefficient. In order to overcome the weakness, the 

model has two parameters which control how far the mobile sensors can move away 

from the fixed predefined locations in the region of interest. These locations are 

usually where the routers or fixed sink nodes are located. This solution has two 

weaknesses. First, network connectivity is not guaranteed. Second, as the sensors are 

in constant motion, the energy consumption is quite high. Another example using a 

simple approach is [99], the problem is formulated as sensing holes searching 

problem. By the exchange of local messages, the sensors eventually discover that 

there are holes in the region of interest. The sensors then bid among themselves using 

the estimated minimum energy consumed to reach the location as the cost. The 

sensors that have the lowest bid will then move to the holes. This solution has two 

weaknesses. First, the communications overheads are quite high. We need more than 

one message exchange in order to make one move. It is also slow and inefficient. It 

takes time for the sensors to discover the holes. When a few neighboring sensors 

move simultaneously to cover one hole, they may leave a hole behind it. As a result, it 

may result in a never-ending problem of “filling the holes left behind”. A second 
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weakness is that even when the holes are eventually filled up, it is difficult to maintain 

coverage as some sensors may fail at steady state. To resolve this problem, the authors 

develop a separate sensor relocation protocol in [100].  

Due to the weaknesses in the simple approaches, several papers explored the 

use of control theoretic approaches.  

An example of centralized control approach is used in [101] in the coverage 

control problem. The scheme is formulated from control theory. However, it has high 

computational complexity as a double integral has to be evaluated in real time. The 

scheme also assumes that there is a communication mechanism that delivers the 

control information to a sink node for the computations. As a result, it is difficult to 

scale the network to large number of sensors as the computational and 

communications delay will slow down the system response. 

In [15]-[18], the principle of distributed linear control is applied on mobile 

sensor networks to provide maximum sensing coverage while maintaining 

connectivity. Each sensor maintains equidistance from all its adjacent neighbors, so 

that the sensors are spread out evenly. When additional sensors are added into the 

network, the network automatically expands to accommodate new sensors. However, 

if there are failed sensors, the neighboring sensors automatically close in to take over 

the failed sensors, thereby maintaining network connectivity. The connectivity is 

rapidly restored as the movements of the closing-in sensors are kept to the minimum. 

This approach automatically resolves the connectivity problem without resorting to 

the need to deploy sensor networks using high node densities. Another attractive 

feature is that the nodes are homogeneous. That is, there are no single points of failure 

and the network is robust. Finally, a further attractive feature is that there are 
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minimum topology changes in the entire network. The topology changes occurred 

only when sensors fail. Therefore, the re-routing overheads are kept to the minimum.  

However, the weakness is the rigidity of the networks. In order to fit into coverage 

regions of different size, a control gain parameter has to be set. To solve this 

weakness, in [102]-[105], a non-linear distributed approach based on artificial 

potential field or virtual force is used to maintain coverage. This creates elasticity 

among the sensors and enables the mobile sensor networks to fit into spaces of any 

sizes by contracting or expanding. In another variation from [102]-[105], in [106], 

fuzzy logic and clustering are used to maintain equal spacing among the sensors.  

 In [107], the authors discuss an interesting problem in a real life multi-

disciplinary project known as the Autonomous Ocean Sampling Network II (AOSN II) 

project. Their problem is to locate correctly the local minima and maxima of the 

distribution in a search region by using the gradient search algorithm. Local minima 

and maxima are positions on the distribution that have zero gradients. Instead of using 

one autonomous sensor to perform the independent gradient search, they use a group 

of sensors. They encounter stability issues in their design and thus decouple the 

motion control into two levels to stabilize the group.  

First, in the intra-group level control, they adopt the potential field method 

[102]-[105] to maintain the cohesiveness of the formation controlled group. They 

adopt the potential field method to allow the whole group to expand and contract by a 

scaling factor in order to increase or decrease their sensing coverage while moving. 

The expansion and contraction of the group is controlled by a central controller which 

determines the optimal scaling factor based on the inputs from the members of the 

group. The central controller then feeds back the scaling factor to the group members 
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for their individual adjustments. The authors define this form of intra-group level 

control as cooperative control. 

Second, in the group level formation control, a central controller is in charge 

of two tasks.  

Its main task is to compute the next move using the gradient search algorithm 

based on all the data collected from the sensors. From the data, the central computer 

performs Kalman filtering and averaging operations to obtain a representative 

gradient for the collective group. The authors call this the virtual body concept. In the 

virtual body concept, the sensor group is treated as though it is one single independent 

entity. A virtual leader is appointed as a representative. The members behave as if 

they are following the virtual leader. Since the group-level controller treats the group 

as a single entity, any independent gradient search algorithm can be used directly.  

The second task of the central controller is to compute the optimal scaling 

factor discussed in the above paragraph on cooperative control and feed back to the 

members for their individual adjustments. The estimation of the gradient from the 

data collected is subjected to estimation error. Therefore, the authors develop a 

computational method to minimize the estimation error by formulating it as an 

optimal formation problem. From their analysis, they conclude that to minimize 

estimation error, the group must form regular geometrical shapes with equal spacing. 

For example, a group of four sensors should form a regular tetrahedron. The optimal 

scaling factor can be obtained from the computational method. Note that in the 

method, although the group expands and contracts, the spacing of the sensors remains 

almost equal with some room for slight deviations. 
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Note that due to the use of centralized control to perform complex 

computations, it inherits the scalability problem similar to the centralized control 

discussed in [102]. 

The main weakness of all the abovementioned approaches [15]-[18][98]-[107] 

is that the mobile sensors are equally spaced. However, as explained in chapter 1, 

section 1.2, for our application, in order to maximize the quality of measurements, the 

sensors must spread out unevenly. Specifically, the sensors must cluster more tightly 

in regions where the temperature gradients are steep. The second weakness is that 

their targets for monitoring and searching are single discrete entities. Even in [107], 

where the problem is monitoring the distribution, the main objective of the sensors as 

a collective group is to locate the special discrete points in space: local maxima and 

minima. 

A work that examines a problem that requires the sensors to spread out non-

uniformly is in [108]. The problem in [108] is that the sensors are given two tasks: to 

maintain coverage and to monitor special discrete locations that are known in 

advance. The discrete locations are locations that the sensors need to pay more 

attention to. The sensors that are closest to the locations will first move to the 

locations. A modified aggregation algorithm is executed to fill up the sensing holes 

which are left behind when the original sensors move to the special locations in order 

to maintain sensing coverage. The aggregation algorithm is essentially an averaging 

algorithm. In the execution, initially, the closest neighbors of the original sensors will 

fill up the holes by taking the positions mid-way through the averaging operation. 

After the closest neighbors move, the new holes that are left over by them are filled 

up iteratively by the sensors further downstream. The main weakness is that in their 

problem the locations of the discrete sources are known whereas in our problem the 
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locations of our sources are unknown and the distributions that we want to monitor 

are continuous in space.  

Therefore, due to the abovementioned weaknesses, we are motivated to 

develop a new approach while embracing the behavioral based paradigm in the design 

of our cooperative algorithm in chapter 4. 

2.4 Conclusion 

In this chapter, we presented our literature review.   

We first examine the communication and networking issues by surveying the 

literature on wireless ad-hoc networking of mobile nodes in harsh environments 

which is most relevant to our application. The key finding is that there are four main 

problems that deteriorate the performance of the networks. The first problem is poor 

connectivity due to imperfect wireless channel conditions such as fading, node 

mobility. The second problem is contentions for the use of channels. The third 

problem is inter-neighborhood interference. The fourth problem is, in multi-hop 

communications, whenever there is a need to establish or repair a route, routing 

overheads are generated.  

Next, we examine the issues related to monitoring, detection and sensing by 

surveying the WSN. The key finding is that there are three main problems that 

deteriorate their performance. The first problem is poor connectivity due to imperfect 

wireless channel conditions such as fading and node mobility. The second problem is 

network congestion due to high node density. The third problem is high localization 

errors.  

We narrow our survey to focus on coverage control of mobile sensor 

networks. Our three key findings in our survey on the coverage control algorithms 

are: the coverage control results in equal spacing of mobile sensors over the terrain, 
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the targets that the sensors monitor are assumed to be single discrete entities and 

sophisticated centralized control schemes are not scalable with the number of sensors. 

As explained in chapter 1, section 1.2, for our application, in order to maximize the 

quality of measurements, the sensors are spread out according to the characteristics of 

the data to be collected, which usually results in a non-uniform or uneven distribution 

over the area of interest. Specifically, the sensors must cluster more tightly in regions 

where the temperature gradients are steep. Furthermore, we are monitoring continuous 

distributions that we do not have advance knowledge of. Therefore, we are motivated 

to develop a new scalable approach while embracing the behavioral based paradigm 

in the design of our cooperative algorithm in chapter 4. 
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Chapter 3: Preliminary Investigation and 

Analysis 

 

In this chapter, we present our preliminary investigations and analyses of a 

group of cooperative autonomous mobile agents. Autonomous mobile agents refer to 

mobile robots or sensors that are capable of performing any missions without 

requiring a human to manually control their movements from a remote interface. Our 

emphasis is on the communication and networking aspects of the cooperative mobile 

agents. In section 3.1, we analyze the effect of mobility and the Rayleigh fading 

channel on the connectivity of such a network on a terrestrial environment. In section 

3.2, we analyze the effect of mobility and the Rayleigh fading channel on the 

throughput of such a network on a terrestrial environment. In Section 3.3, we analyze 

the effect of mobility and the Rayleigh fading channel on the throughput of such a 

network in an underwater environment. In section 3.4, we highlight the main research 

contributions of our work. Finally, we conclude the chapter with a summary of 

insights. 

 

3.1 Connectivity Analysis of a MANET of cooperative 

autonomous mobile agents 

We study the connectivity of a Mobile Ad Hoc Network (MANET) of 

autonomous cooperative mobile agents (e.g. mobile robots) under the Rayleigh fading 

channel [see List of Publications, P1]. Connectivity is a critical performance 

parameter of cooperative robots deployed in real-time scenarios such as disaster and 
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rescue scenarios. There are two major factors that affect the connectivity of the 

MANET. First, the mobility of the nodes causes the separation between any pair of 

nodes to fluctuate. Second, atmospheric condition and obstacles can cause the 

transmission range of the nodes to fluctuate. Based on these factors, stochastic 

analysis is performed to derive the connectivity probability. The connectivity 

probability represents the fraction of time that a node is connected to at least one other 

node. This probability is used to study the effect of mobility and fading on the 

connectivity as the transmission range or number of nodes in the network varies. Such 

analytical results can form the basis of performance modeling of MANET routing 

protocols and network optimization. 

3.1.1 The Method 

Our approach to this study is based on the use of theoretical analysis. The 

detail of the analysis can be found in our paper [see List of Publications, P1]. In the 

analysis, we consider the movement of the nodes and the radio channel fluctuations 

independently. In a high data rate, low velocity environment, the fading is slow-

varying [23]. Hence, the fading process is effectively independent of the mobility of 

the node. We first model the random movement of the nodes using the Probabilistic 

Mobility Model (PMM) [77]. The radio channel is modeled using the free space 

propagation model with Rayleigh fading [23]. From these two stochastic models, we 

derive the connectivity probability of an arbitrary node a, ca as follows: 
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N is the node count or the total number of nodes in the region and b is the 

index that represents another node in the region. cab is the pair-wise one-hop 

connectivity probability which is given as follows: 
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where, RBabB is the Euclidean separation of two arbitrary nodes,  a and b and η0 is the 

free space transmission range. 
aa yx ππ  and 

bb yx ππ  are the stationary position 

probabilities of node a and b at coordinates (xBa B, y BaB) and (xBb B, y Bb B) respectively given in 

our work [see List of Publications, P1]. 

On a final note, we use the PMM to model the mobility as it leads to tractable 

result. However, Random Walk Mobility Model (RWMM) is a random mobility 

model that is popularly used in the MANET simulations. In our paper [see List of 

Publications, P1], we demonstrate the concept of the statistically equivalent mobility 

model to show that the conclusion obtained from our results can be approximately 

generalized to RWMM. This is verified in our simulation results. 

3.1.2 Numerical and Simulation Results 

In this section, we generate a few plots to study the effects of varying the 

system parameters on the connectivity of the network. There are two motivations for 

such studies. First, usually the system parameters represent scarce resources which we 

will like to minimize given a reasonable quality of connectivity in the network. 

Second, the minimization of system resources has an additional benefit of reducing 

interference and channel contentions at the MAC layer [25]. In addition, we will look 

into the effect of the channel fading on the connectivity of the network. By choosing 

an appropriate value for the fading parameter, we could characterize the aggregate 
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effect of the radio environment on the connectivity of the network. The details on the 

value of our parameters are provided in our paper [see List of Publications, P1]. 

First, we are interested in the connectivity of the nodes in an enclosed room as 

the transmission range of the nodes increases. One way to achieve an increase in 

transmission range will be to increase the transmission power of the node. Hence, by 

looking at the connectivity probability, we will know the amount of transmission 

power required to achieve a certain level of connection. In figure 3.1a, we show the 

connectivity probability over different transmission ranges for the cases with and 

without fading. The node count, N is fixed at 25 nodes for this plot. From the graph, 

the connectivity probabilities increase for both cases as the transmission range 

increases. When there is no fading, the connectivity probability increases at a faster 

rate. For example, when there is no fading, the connectivity probability is 

approximately one when the transmission range is 250m. The average number of hops 

is about (1000/250 =) 4 hops for this case. However, when there is fading, the 

transmission range is increased to 380m in order to achieve the same connectivity 

probability, with an average number of 2.6 hops. 

 

Figure 3.1: Study on the effects of varying the transmission range and 
node count on the connectivity probability. 
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Second, we are interested in the connectivity of the nodes in an enclosed room 

as the node count increases. In figure 3.1b, we show the connectivity probability over 

different node count for the cases with and without fading. The free space 

transmission range, η0 is fixed at 250m for this plot. From the graph, the connectivity 

probabilities increase for both cases as the node count increases. Again, when there is 

no fading, the connectivity probability increases at a faster rate.  

Simulations using PMM and RWMM for both no fading and fading cases are 

used to verify our analysis. The simulation plots in figure 3.1a and b show that the 

simulation results converge well to the theoretical results. They also show that PMM 

provides very good approximation to the RWMM.  

3.1.3 Conclusion 

Connectivity of MANET is affected by the mobility of the nodes and the 

fading of the signals in the radio channel due to varying atmospheric conditions and 

scattering obstacles. In our analysis, we address the issues using stochastic modeling. 

We derive the connectivity probability and study the effects of varying the system 

parameters on the connectivity of the network. We hope that from the study, we could 

find ways to minimize the scarce resources given a reasonable quality of connectivity 

in the network. This minimization of the scarce resources also has an additional 

benefit of reducing interference and channel contentions at the MAC layer. In 

addition, we also study the aggregate effect of the channel fading on the connectivity 

of the network. It is shown from the numerical result that for the case with fading, we 

need either a higher transmission power or node count in order to achieve the same 

level of connectivity compared to the case without fading. Furthermore, we observe 
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that the connectivity of the network is actually not very sensitive to the parameters in 

the mobility model. In future, this model will serve as a basis to further analytical 

modeling of MANET routing protocols and network optimization. 

Finally, the two implications of the connectivity analysis on the design of our 

algorithm are as follows: 

1. To minimize connectivity problem due to mobility, a possible solution is to 

ensure that our motion control algorithm results in a coordinated orderly 

movement with minimal changes of neighbors in the network neighborhoods.  

2. To minimize connectivity problem due to channel fading condition, one 

approach is to use physical layer techniques such as spreading code 

modulation used in DS/CDMA which is known to be robust to fading 

channels. Finally, to further improve the robustness of our algorithm to the 

connectivity problem, our control algorithm should make use of only the 

information from three closest neighbors out of the other network neighbors. 

Since, they are the closest, they have better chances of been heard as, 

statistically, their mean received signal strengths are highest. 

 

3.2 CSMA/CA Throughput Analysis of a MANET of 

cooperative autonomous mobile agents under the 

Rayleigh Fading Channel 

The deployment of cooperative autonomous mobile agents in harsh terrains 

deem to be hazardous for humans to accomplish a variety of missions such as search 

and rescue is an active area of research.  An important aspect is the relaying of audio-

visual and other real-time information to a control station via multi-hop mobile ad-hoc 
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networking (MANET). Multi-hop networking has many advantages such as energy 

savings from reduced distance dependent transmission loss and robustness against 

shadowing due to the ability to communicate around obstacles without line of sight 

obstructions. It is also purported to achieve capacity gain through spatial diversity. 

We investigate the feasibility of using MANET for cooperative autonomous mobile 

agents by looking at a popular configuration that uses Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA) MAC protocol (adopted in IEEE 802.11 

MAC) [27] and Ad Hoc On-Demand Distance Vector (AODV) routing protocol [78]. 

The MANET in our scenario operates under the time-varying connectivity constraints 

due to node mobility and non-ideal radio channels [79][80]. This time-varying 

connectivity has a significant impact on the MAC and routing protocols in real life 

scenarios [80]. However, it is usually not investigated in many theoretical analyses 

[69]-[75]. Our stochastic model realistically evaluates the impact of the factors. It 

allows us to identify areas of improvement and propose strategies to optimize the 

network performance based on the MANET configuration.  

Specifically, three salient features are modeled. The first two features are: 

interference from hidden and exposed node [25] and time-varying connectivity that 

lead to diminishing spatial diversity gain in multi-hop communications. The third 

feature is the multi-hop communications overheads in two forms: the increase in 

routing overheads due to time-varying connectivity that results in congestion and long 

delays and the additional traffic load each node, acting as intermediate node, is 

obliged to carry for others. 

The performance metric used in our analysis is the average data throughput 

per node. The average data throughput per node is usually defined as the data rate in 

bits per second that each node can transmit. For analytical purpose, we normalize the 



 

 47

average data throughput per node over the maximum data rate the radio channel can 

support. Note that the nodes can only transmit at the maximum data rate under these 

three ideal conditions: the radio channel has no fading, the nodes are not moving and 

there are only one pair of nodes communicating. The third condition is equivalent to 

the condition that there is no nodes contending and interfering with each other for the 

use of the radio channel. Hence, by performing the normalization, we could 

appreciate quantitatively the deteriorating effect on the MANET communications in a 

practical non-ideal situation. 

3.2.1 Method 

We use theoretical analysis to access the performance. In our approach, we 

model each component of the network separately, namely: The CSMA/CA protocol 

used in the networking communications, the connectivity model which characterizes 

the effect of the mobility of the nodes and the Rayleigh fading channel and the effect 

of the disconnection on the routing layer. From the model, we derive the data 

throughput per node by studying incrementally more complex scenarios in the 

following order: non-overlapping independent neighborhoods, overlapping 

neighborhoods with no multi-hop communications and finally overlapping 

neighborhoods with multi-hop communications. This allows us to isolate various 

issues involved in networking and communications. 

3.2.1.1 The Analytical Model 

In CSMA/CA protocol adopted in IEEE 802.11 MAC is first modeled. The 

protocol is distinguished by two salient features: 4-way handshaking and the 

exponential backoff algorithm. Their details can be found in [77][27][93]. In 

particular, [77] provides the description on the use of the 4-way handshaking to 
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mitigate the hidden node problem. Briefly, the operation of 4-way handshaking is 

shown in figure. 3.2. The abbreviations are listed in Table II. 

 

Figure 3.2: Timing diagram for a successful transmission followed by a failed 
transmission 

 

Table 3.1: Abbreviations in timing diagram 

 Description 
TDIFST DCF Inter Frame Space. Listening time prior to transmitting a RTS 

packet. 
TRTST TRequest-To-Send packet. Used by transmitter to reserve the channelT. 

TDelayT TPropagation and synchronization delayT. 
TSIFST Short Inter Frame Space. Listening time prior to transmitting CTS, 

DATA or ACK. 
TCTST TClear-To-Send packet. Used by receiver to indicate which node can send 

its data.T 
TDATAT TData packet from the transmitter. 
TACKT TAcknowledgement packet from the receiver to indicate successful 

receipt.TTT 
 

In figure 3.2, the channel is first reserved using the RTS-CTS packet 

exchanges between the transmitter and receiver. Failed transmissions occurred when 

there is a collision of RTS packets when transmitting nodes contend to reserve the 

channel. The contending nodes realize that there is a collision when there is no CTS 

packet after the maximum waiting duration. The vulnerable period for collisions is 

shown in figure 3.2. When a collision is detected, each node executes the exponential 

backoff algorithm [75][85]. The algorithm determines a random backoff period in 

time slots that the node must wait before it can retransmit its data packet again. Prior 
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to our analysis, we need the throughput of a slotted CSMA/CA protocol using the 

exponential backoff algorithm for a one-hop network with M nodes having poisson 

packet arrival rates with mean, λ. This scenario is well analyzed and the result is 

obtained [75] as: 
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Note that in [75], the notation S(M) is used instead of S(M,λ). We add λ to 

emphasize that the throughput is also dependent on the traffic load. πi(M, λ) is the 

stationary probability distribution of the backlogged nodes given that there are M 

nodes. A node is backlogged if it has a packet to retransmit after a collision. i is the 

state of the Markov chain which represents the number of backlogged nodes in the 

neighborhood. PBs B(i,λ) is the probability of successful packet transmissions given that 

there are i backlogged nodes. iI  is the average idle period in the channel given that 

there are i backlogged nodes. T and C are the periods of successful and failed 

transmissions. 

 The connectivity model has already been discussed in section 3.1. The time-

varying connectivity in the network is due to node mobility and fading channel. The 

model we used here is identical to those we use in the analysis of connectivity in 

section 3.1. An important quantity is the average number of temporal neighbors in a 

time-varying connectivity environment, Φ  expressed as: 

1)1( +−=Φ links cN     (3.4) 

The derivation for Φ  is presented in appendix A. Temporal neighbors are 

neighbors at one discrete time step. NBs B is the node count in the square region and clink 

is the pair-wise link connectivity which is equaled to cab in equation (3.2) 
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AODV routing protocol [79] is a reactive routing protocol which builds 

routing tables on demand adopted by the Mobile Ad Hoc Networking Working Group 

of the Internet Engineering Task Force (IETF).  There are two types of behavior 

which give rise to routing overheads. First, when either there is no route to a 

destination or the routes in the routing table expire, the routing protocol initiates a 

new route search. This behavior dominates at transient state of network where many 

route tables are empty. It also dominates at low traffic condition where the mean 

packet inter-arrival time is long and the routes in the table expired. At steady state, 

with moderate to high traffic conditions, whenever there are unrecoverable link 

breakages due to disconnections, the routing protocol initiates local repairs which 

dominate the overheads. Local repairs use an expanding ring broadcast search. It is 

illustrated in figure 3.3 for first two tries. When a route is found, it is unicast back. 

The default setting for the search is three tries with increasing ring radii in numbers of 

hop: 1, 3 and 5. Referring to figure 3.3, intermediate node IN which detects the 

breakage at downstream always initiates the search at each try. Also the broadcast is 

in the outward direction because nodes that receive multiple copies of the same search 

packet suppress sending them.  

 

Figure 3.3:  Expanding ring search for the first two tries 
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To model the effect of the routing protocol, we use an approximate model. 

From the model we derive the cost, λ BrouteB. The detailed is given in appendix A. It is 

the total AODV route traffic load generated per node per second. λ BrouteB is normalized 

to the data packet transmission time. It is given as: 

∑ ∑= = − −−≈ 2
0 0 1 )1(),()12( i

i
j

j
linklinkjjj

N
route ccIrhop ωωωλ   (3.5) 

NBhopB is the estimated average number of hops per route. )12( −hopN  is the count of all 

combinations of multi-hop routes from 1 to NBhop B hops. ωBj B is the number of local repair 

packets generated when ring radius is (2j+1) hops in current try. r is the ratio of routing 

to data packet transmission time; it is use to normalize λBrouteB. I(a,b) is the indicator 

function; it is 1 if (a ≠ b), 0 otherwise.  

3.2.1.2 Discussion on various scenarios used in the derivation  

First, we study the hypothetical case of non-overlapping independent 

neighborhoods. In this case, the nodes are mobile and moved in an independent, 

memoryless and uncoordinated manner described by the PMM. The physical radio 

channel they used for wireless communications is a Rayleigh fading channel. 

Therefore, their communications are disrupted by occasionally fading of radio signals. 

In this scenario, the nodes formed clusters or one-hop neighborhoods and the one-hop 

neighborhoods are completely isolated and decoupled from each other in relation to 

communications. We can visualize this scenario as many isolated neighborhoods 

within an enclosed region where the total number of nodes are fixed. Note that due to 

node mobility, we expect nodes to constantly move in and out of a neighborhood. 

However, as PMM is a stable stationary Markovian stochastic process, at steady state, 

the average number of nodes within each neighborhood is constant.  There are two 

purposes to this assumption. First, it is to eliminate the hidden and exposed node 
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problems associated with the use of the MAC protocol in MANET. Second, as there 

are no couplings, multi-hop communications is not possible. Therefore, we need not 

consider the issue of routing overheads at the routing layer of the MANET. Therefore, 

in this scenario, we could examine solely the effects of node mobility and Rayleigh 

fading channel on the data throughput. 

One of the benefits of multi-hop communications is the spatial diversity gain 

in capacity. The idea of spatial diversity gain is that isolated neighborhoods form 

partially independent “communication spaces” for the nodes. As a result, if we can 

divide a large group of nodes into smaller groups of nodes, the average data 

throughput per node will increase. This is analogous to a situation that we have a large 

group of people having a single meeting. In this situation, the opportunity that each 

person can talk (or the talk-time) is reduced because only one person can talk at one 

time and this talk-time is been shared by a large group of people. If we divide this 

group of people into smaller groups and put them in separate isolated rooms and hold 

the meetings concurrently, we will now have an increase in average talk-time for each 

person because in each small group, there are now fewer people contending for the 

talk-time. From this analogy, we see the rationale of using the completely isolated 

neighborhoods scenario. This is because only through this assumption that the spatial 

diversity gain is at maximum as there are no inter-group interference. 

In our derivation in appendix A, we show that the adverse effect of the 

mobility of the nodes and the fading radio channel on the data throughput is to almost 

completely diminish the spatial diversity gain. The first reason is the use of the 

independent memoryless random mobility model to model the movement of the node. 

These is analogous to a situation where in a meeting, the uncooperative members 

leave and join randomly at any time they wish and without any prior reasons 
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(memoryless), resulting in disruptive communications. While this ad-hoc type of 

situation may sound ridiculous in the human context, it is in fact a common realistic 

situation where a MANET is expected to operate in. An important conclusion we 

draw from this situation is that in order for the communications to be effective, 

especially in relation to the spatial diversity gain, either all the nodes must be 

stationary or there must be some forms of cooperative behaviors in the movement of 

the nodes. One possible approach to achieve this is through the use of formation 

control. This has the effect of making the topology of the network appears stationary 

or invariant to individual nodes. The second reason is the effect of fading channel. To 

combat this, we will have to explore other methods of communications that are more 

robust to fading channel. One possible method is to explore the use of spread 

spectrum communications.  

  Second, we study the scenario of overlapping neighborhoods with no multi-hop 

communications. This scenario has been used by [75] to study the throughput in a 

stationary ad-hoc network by analyzing the hidden node problems. Essentially, in our 

approach, we calculate the average overlapping area of a typical neighborhood that is 

overlapped with others. From this, we could quantify approximately the extent of 

interference from the hidden and exposed nodes. The most important parameter 

required to compute the average overlapping area is the average transmission range. 

This parameter is independent of the mobility of the node. As our channel fading is a 

stationary stochastic process, the average is a constant value. The detailed derivation is 

in appendix A. The importance of studying this interference is its role in exacerbating 

the throughput per node when the node density increases. It must be noted that the 

reduction in throughput as the node density increases is caused by both inter-

neighborhood hidden and exposed node interference and intra-neighborhood 
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contentions. In related literature, it is also equivalently studied as the optimal number 

of neighbors required for maximum throughput per node. Therefore, any MAC 

protocol that is known to combat interference will be a suitable protocol to solve this 

problem. One such protocol is the Direct Sequence Code Division Multiple Access 

(DS/CDMA) which makes use of the property of spread spectrum modulation.  

  Third, we study the scenario of overlapping neighborhoods with multi-hop 

communications. This is a realistic MANET scenario. Here, we approximately derive 

the data throughput per node at the routing layer by separating the routing overheads 

from the actual data stream. This is important because constant route disruptions due to 

mobility and link disconnections due to fading channel caused the AODV routing 

protocol to generate routing packets to either repair or search for a completely new 

route to a multi-hop destination node. This overhead consumes a significant amount of 

the communication bandwidth. The final expression for the data throughput per node, 

data
mhopS is given as below. 

mhoplinkdata
data
mhop SrS )( λλ=     (3.6) 

λdata and λlink are the actual data traffic and the total traffic in a link respectively. Smhop 

is the MAC throughput per node. The detailed derivation is discussed in appendix A. 

3.2.2 Numerical and Simulation Results 

In our Glomosim simulation, at initial time, every node is assigned as source 

node with its destination node randomly assigned such that no destination node 

receives from more than one source node. The assignment remains the same 

throughout each run. The pairs can be more than one hop away from each other. In 

Table 3.2, common parameters for both numerical computations and simulation are 

listed. The parameters for the equivalent Random Waypoint Mobility Model 
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(RWMM) are obtained based on the formula in [see List of Publications, P1]. Figure 

3.4a shows the average number of neighbors as node count, Ns is varied. It is used to 

validate the accuracy of average number of temporal neighbors, Φ  in equation (3.4). 

Our simulation collects the number of neighbors of every node in the square region 

during each time step. Φ  is then obtained by averaging the numbers of neighbors of 

every node over all time steps. The simulation is run for two cases. In the first case, a 

uniformly distributed stationary ad-hoc network with a channel that has free-space 

transmission loss only is simulated. In the second case, a MANET using Probabilistic 

Mobility Model (PMM) with a Rayleigh fading channel that has free-space 

transmission loss is simulated. Altogether, 2×10P

5
P samples are collected for each case. 

From the figure, we see that our theoretical analysis is well validated by the 

simulation. We observe that the average number of neighbors is smaller for the case 

where there is Rayleigh fading in the channel. This is due to attenuation in 

transmission power caused by random fading. 

Table 3.2: Values for the common parameters used in the throughput 
simulation of a MANET using CSMA/CA and AODV protocols 

 
Parameter Value Parameter Value 

Run 40 Route Packet Duration 560 μs 
Simulation duration 2,000 s Data Packet Duration 6,256 μs 
Warm up duration for 
mobility 

1,000 s Transmission Loss 
Model 

Free 
Space 

Square Region dimension 1 × 1 kmP
2 P Transmission Range for 

ad-hoc networks, ηB0 B 
250 m 

Data Packet Size (Max size 
of TCP data packets) 

1460 B Rayleigh Fading 
Parameter, σ P2P 

0.3 

RWMM: minimum and 
maximum speed, [v Bmin B v BmaxB] 

[0 20] m/s Propagation and 
synchronization delay 

1 slot 

RWMM Travel Time 9 s Slot Time, Tslot 20 μs 
RWMM Pause Time 2 s SIFS Duration 1 slot 
PMM Time Step 1 s DIFS Duration 3 slot 
PMM Step Size 10 m ACK/CTS Duration 248 μs 
PMM average speed 10 m/s RTS Duration 272 μs 
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Figure 3.4: Results for the throughput simulation of a MANET using CSMA/CA 
and AODV protocols 

 

Figure 3.4b shows the throughput per node as the data traffic per node in 

packets/s, λBdataB is varied. The node count is 25 for all four cases. The first case is a 

one-hop network where all the nodes can hear each other. It is used as a benchmark to 

study the actual spatial diversity gain in ad-hoc networks. The second case is a 

uniformly distributed stationary ad-hoc network with only space transmission loss. 

Only hidden and exposed node problems are present in this case due to overlapping 

transmission regions. The third case is a MANET using PMM with a Rayleigh fading 

channel. Therefore, it suffers from time-varying connectivity in addition to hidden 

and exposed node problems. The fourth case is a MANET using RWMM with a 
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Rayleigh fading channel. This case is plotted to verify the claim in [see List of 

Publications, P1] that PMM is a good approximation for RWMM when analyzing the 

average performance. We observe that our theoretical analysis agrees well with the 

simulation results and PMM is a good approximation for RWMM.  

First important observation is in the throughput of stationary ad-hoc network. 

At low traffic load up to 1 packet/s, there is some spatial diversity gain in relation to 

one-hop network. However, this gain diminishes rapidly due to increase severity of 

hidden and exposed nodes at higher traffic loads. Also, simulation and numerical 

results of MANET with PMM and Rayleigh fading confirm the discussion in section 

3.1.2.2 that time-varying connectivity can present a serious problem as it eliminates 

the spatial diversity gain. There is no significant gain even at low traffic loads. This is 

exacerbated by the loss due to hidden and exposed node problems. Second important 

observation is the effect of additional traffic generated by routing packets due to 

disconnections. Referring to figure 3.2a, the average number of neighbors contending 

for the channel is about three for MANET with PMM and Rayleigh fading. However, 

in figure 3.2b, when there is time-varying connectivity, the throughput saturates only 

slightly better than the one-hop scenario with 25 nodes contending. The stationary 

case fairs much better than the former two cases as it generates less routing packets. 

This implies that a network with time-varying connectivity congests more rapidly 

which results in exponentially increasing delay.  

Based on the above observations, two strategies are proposed in the design. 

First, the robots must be designed to maintain connectivity with the same neighbors 

when they are moving in a Rayleigh fading channel in order to achieve optimal 

throughput. This is to mitigate the problem of time-varying connectivity. One possible 

solution is to divide the large team into small groups of robots and implement 
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formation control for the groups. Second, a MAC protocol such as Direct 

Sequence/Code Division Multiple Access (DS/CDMA) that is more robust to 

interference in the overlapping regions can be implemented. This is to mitigate the 

hidden and exposed node problems. 

Figure 3.4c and 3.4d examine the throughput per node as the average number 

of neighbors is varied for a MANET with PMM and Rayleigh fading channel and a 

stationary ad-hoc network with no fading for different data traffic loads respectively. 

The optimal number of neighbors occurs at the point where the throughput is at 

maximum. In both cases, the same pattern emerges. At low traffic loads, the network 

can support higher optimal number of neighbors. However, as traffic load increases, 

the optimal number decreases. For example, for a traffic load of 1 packet/s, optimal 

numbers for the mobile and stationary ad-hoc networks are about 4.5 and 5.5 

respectively. The reason that the optimal number of neighbors the MANET can 

support is lower is because the effective traffic loads which include route packets 

generated by the time-varying connectivity is much higher.  

We now see two conflicting objectives. As can be seen from the results of our 

connectivity analysis in section 3.1, network connectivity increases with the node 

density and eventually saturates. However, an increase in node density also resulted in 

an increase in both contentions and interference. As a result, the throughput per node 

decreases. On one hand it is desirable to increase the node density in order to increase 

connectivity; on the other hand, increasing the node density also resulted in an 

increase in contentions and interference. Therefore, there exists a balancing point 

which is known as “the optimal number of neighbor” problem in the literature.  

Advancing this reasoning further, we infer that any factor that results in an 

increase in contentions and interference will also affect the optimal number of 
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neighbors, for example, the total or effective traffic load. That is, if we increase the 

data traffic per node in the network, it will result in an aggregate increase in 

interference and contentions. As discussed earlier, our data in figure 3.4c-d supports 

this hypothesis. In our analysis in appendix A, we show that in multi-hop 

communications, they are three components that constitute the effective traffic load. 

The first component is the actual data originated from the node. The second 

component is the multi-hop data each node is obliged to carry for others. The third 

component is the routing overheads.  

Due to the presence of the second component, the number of optimal 

neighbors that we can support will always be lower compared to single-hop 

communications. The significance of this in our optimal harvesting sensor network is 

that the number of optimal neighbors represents the local node density, which sets a 

limit to how close we can cluster our nodes in a local region before local 

communications collapsed and start to inhibit the performance. Since optimal 

harvesting requires nodes to cluster closer in an information fertile region, it is better 

to implement only single-hop communications in our cooperative control protocol in 

order to eliminate the second component. Another characteristic of this component is 

that it is proportional to the total number of nodes in the network. Clearly, if we 

required multi-hop communications for other purposes, it is better to limit this 

component by dividing a large group of sensors into smaller clusters. Occasionally 

communications can then be confined at the level of cluster-heads. 

The third component is affected by disconnections which are in turn affected 

by random node mobility and channel fading. The solution to this problem has been 

discussed earlier in section 3.2.1.2. It is to implement motion control such as 

formation control to reduce the communication disruptions due to frequent change of 
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neighbors. Also, a better protocol that is more robust to fading such as DS/CDMA 

should be used. Furthermore, DS/CDMA protocol is more robust to any form of 

interference and therefore can support a higher number of neighbors. A final 

conclusion is that there is no ultimate optimal number as it depends on the effective 

traffic loads. 

3.2.3 Conclusion 

We analyzed the theoretical throughput of a team of cooperative autonomous 

mobile agents operating in the Rayleigh Fading Channel using the MANET 

configuration consisting of CSMA/CA MAC (IEEE 802.11 MAC) and AODV 

routing protocol. Three salient features are modeled: interference from hidden and 

exposed node, time-varying connectivity due to mobility and Rayleigh fading and 

multi-hop communications overheads due to routing overheads and additional traffic 

load each intermediate node carries for others. Our results show that time-varying 

connectivity, hidden and exposed node problems lead to severely diminished spatial 

diversity gain in MANET. Additionally, an increase in routing overheads due to time-

varying connectivity causes rapid increase in delay due to network congestion. 

Finally, the optimal number of neighbors for maximum throughput depends on the 

effective traffic loads.  

Finally, the three implications of the DS/CDMA throughput analysis on the 

design of our algorithm are as follows: 

1. Motion control should be implemented to ensure that there are minimum 

changes in network neighbors. 

2. It is better to divide a large group of sensors into smaller groups and 

implement one-hop communications to facilitate the harvesting tasks. 
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Occasional multi-hop communications required for other purposes should be 

confined to the level of cluster-heads.  

3. It is better to use a MAC protocol that is more robust to fading and 

interference such as DS/CDMA. 

 

3.3 DS/CDMA Throughput of Multi-hop Sensor Network in a 

Rayleigh Fading Underwater Acoustic Channel 

In the previous section, we discuss the possibility of using DS/CDMA instead 

of CSMA/CA as the MAC protocol for the MANET because it is more robust to 

noise, interference and fading. In this section, we study an underwater multi-hop 

sensor network in a challenging noisy environment. Asynchronous half-duplex 

Direct-Sequence Code-Division Multiple-Access (DS/CDMA) is a suitable candidate 

for the MAC protocol design of Underwater Acoustic (UWA) sensor networks due to 

its many attractive features. However, its basic form is only suitable to be used in a 

one-hop network. Our ad-hoc multi-hop network is infrastructure-less without 

centralized base stations and power control. Therefore, we develop an asynchronous 

distributed half-duplex control protocol to regulate between the transmitting and 

receiving phases of transmissions. Furthermore, multi-hop communications is very 

sensitive to the time variability of fading and the snapping shrimp dominated ambient 

noise in the harsh underwater environment because a broken link in the multi-hop 

path is enough to disrupt the communications and initiate new route searches. In our 

configuration, we use the Ad hoc On-Demand Distance Vector (AODV) routing 

protocol optimized for UWA networks. Empirical studies show that we can model the 

channel as slow-varying Rayleigh fading and frequency non-selective. We 
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theoretically analyze the throughput of our configuration by considering three salient 

features: ability of the receiver to demodulate the data, effect of our control protocol 

and effect of disconnections on generation of routing packets. The throughput under 

various operating conditions is then examined. It is observed that at optimal node 

separation, the throughput is improved by a factor of 10. 

3.3.1 Methods 

The details of the study and the approach of our analysis can be found in our 

papers [see List of Publications: P2, P3]. We first model the connectivity of the 

network and the DS/CDMA system model. As DS/CDMA cannot be directly 

implemented onto a multi-hop network, we implement an asynchronous half duplex 

MAC protocol. This portion of the operation is also modeled. We then derive the 

MAC throughput of the network.  

  To model the connectivity, we developed a sensor network model for analysis 

as shown in figure 3.5. We assume that Ns sensor nodes are initially placed uniformly 

over a region in the square lattice formation. All the nodes are independently and 

identically distributed (i.i.d.). The spacing of the nodes is εη0, where ]( 1,0∈ε . η0 is 

the transmission range of the node for a channel which has a transmission loss with 4th 

power of range. 

 

Figure 3.5: Sensor network model 
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  We follow the approach that is used in section 3.1 and 3.2 from which we 

obtain the average link connectivity probability, clink of two arbitrary nodes: node a 

and node m as:  
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a and m are the indices for any pair of nodes in the network. Ram is the separation 

between the two nodes, a and m. η is a random variable representing the Rayleigh 

faded transmission range.  

To model the behavior of the DS/CDMA de-spreading operations at the 

receiver, we use a system model which is partially based on the model in [96].  This 

model is required for us to determine the probability that a received packet is 

successfully modulated in the presence of Multi-Access Interference (MAI), Rayleigh 

fading and the ambient noise through the de-spreading operations denoted as PMAI(K). 

  Nodes in distributed multi-hop sensor networks cannot transmit and receive 

simultaneously. Since there are no centralized base stations, we have implemented a 

distributed control protocol at the MAC layer to regulate between the Transmit and 

Receive phases of the node. Our analysis took into account this implementation by 

modeling its behavior using the Markov Model. This is used to derive the probability 

that the packet is received successfully without collisions with other packets due to 

contentions, PRS. In order to do this, we have to examine the state diagram of the 

protocol, as shown in figure 3.6, to better appreciate the transmitting and receiving 

behaviors of the node. 

 The state diagram of our protocol is shown in figure 3.6a. There are two timers 

in the protocol. The Wait timer commences when there is at least one packet waiting 

to be transmitted. Prior to transmission, the packet is delayed randomly with a 

uniform distribution between [α, Tp + α]. α is a fixed time which is at least equal to 
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the maximum propagation delay of the network. Tp is the packet transmission 

duration. This is necessary to prevent nodes in the neighborhood from locking into the 

Transmit state since there are no centralized base stations to synchronize between the 

two different states. This is similar to the half-Aloha MAC protocol implementation 

in Quadnet. The main difference is that the protocol in Quadnet does not support 

DS/CDMA.  

 

Figure 3.6: State diagram for the synchronous half-duplex protocol 
   

 In order to support DS/CDMA in an asynchronous distributed half-duplex 

environment, two conditions are introduced into our state diagram. First, any 

simultaneous packets received in one of the branches of the receiver can cause a 

transition from either the Idle or Wait state to the Receive state in the state diagram. 

Notice that a transmitting packet arriving at the Idle state has to go into Wait state. 

This is because we cannot wait to receive a packet once it has arrived so priority has 

to be given to receiving the packet. Second, there is a Receive timer and it is at least 

2Tp duration. This timer is required to give the node a chance to transmit its packets if 

there are packets waiting to be transmitted without been locked in the Receive state 

perpetually. However, beyond 2Tp duration, if there is no packet waiting to be 

transmitted, the node can still remain in the Receive state and continue to receive the 
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packets until a packet to be transmitted arrived. The reason that the Receive timer 

cannot be less than 2Tp is explained in figure 3.6b. In figure 3.6b, during Receive 

state, the packets from neighboring nodes arrive at different times relative to the first 

arriving packet. In the worst case, the last packet arrives only after a relative delay of 

Tp. Therefore, a minimum of 2Tp is required for the node to receive multiple 

concurrent packets. The node only receives a packet successfully in Receive state 

when the packet arrived at least Tp before the end of Receive state. Our protocol 

ensures that the node can receive multiple packets and at the same time, allows the 

node a chance to transmit.  

 From the state and the timing diagram analysis, PRS can be derived. This is in 

turn used to derive the throughput, SM given as:  
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The detail of the derivation is found in our papers [see List of Publications: P2, P3]. 

3.3.2 Numerical and Simulation Results 

In this section, we present the numerical and simulation results for our 

DS/CDMA throughput analysis. The details on the simulation setup can be found in 

our papers [see List of Publications: P2, P3]. 

  In figure 3.7, the MAC throughput is plotted as the data packet arrival rate per 

second per node, λdata is varied to about 10 × λmax. From the plot, we see that the 

simulation results are well approximated by our theoretical results. When λdata is low 

(≈ 0.0001 to 0.02), the simulation throughput is slightly higher. This is due to the 

additional amount of route packets generated for new route search when the routing 

table expired which is not accounted for in the analysis. An important observation is 
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that the throughput saturates at near the maximum packet transmission rate, λmax. As 

the average delay increases exponentially beyond saturation, this implies that we can 

transmit at high data rates with low average delays.  

 

Figure 3.7: Results for the throughput simulation of an UWA multi-hop sensor 
network using DS/CDMA and AODV protocols 

 

  This is different from CSMA/CA MAC protocol which saturates more rapidly 

due to contentions and retransmissions. The result from a more realistic topology is 

also included. Here, each node a, with a position, (xa, ya) is randomly displaced with 

uniform distribution within the boundary given by (xa ± 0.5εη0, ya ± 0.5εη0) where 

εη0 is defined in section 3.3.1 as the spacing of the nodes. It is observed that the 

throughput has been scaled by about half due to the poorer connectivity of the 

network. However, the characteristic saturation point of the curve remains the same. 

This is consistent with our discussion that the saturation is caused by the time-varying 

connectivity because it affects the amount of AODV overheads generated. It can be 

inferred further that the throughputs of different network topologies differ by only 

constant fractional scaling factors without changes in their general characteristics, 
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provided that the topologies do not vary in time. In sum, our theoretical throughput 

provides an upper limit when different static topologies are examined. 

  In figure 3.7b, the MAC throughput per node is plotted as the node separation 

is reduced from 100% to 50% of the transmission range, η0. It is observed that 

initially the throughput increases up to the optimal separation of about 65% and 70% 

of η0. At optimal separation, there is an improvement of a factor of 10 in the MAC 

throughput. The initial increase in throughput is due to improve network connectivity 

as the separation is reduced. However, the throughput decreases when the node 

separation is further reduced beyond the optimal separation. This is because of 

increase in interference from other nodes due to increase in the number of neighbors. 

Also, the throughput of the random topology is about half of that of the square lattice 

topology. This is consistent with the preceding discussion. In particular, the 

improvement factor at optimality remains at 10. 

3.3.3 Conclusion 

The theoretical MAC throughput of UWA multi-hop ad-hoc sensor networks 

with the use of an improved asynchronous half-duplex DS/CDMA protocol is 

analyzed and evaluated. Our ad-hoc multi-hop network is infrastructure-less which 

means that there are no centralized base stations. Hence, we have developed an 

asynchronous distributed half-duplex MAC protocol to regulate between the 

transmitting and receiving phases of transmissions. Our analysis accounts for two 

salient features of our implementations. First, the ability of the correlators in the 

DS/CDMA receiver to demodulate or de-spread the data in a Rayleigh fading channel 

with alpha-stable distributed ambient noise when no power control is implemented. 

Second, the effect of our asynchronous distributed half-duplex MAC protocol. Our 

networks can be deployed in shallow coastal waters for surveillance purposes. 
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However, they suffer from frequent disconnections due to Rayleigh multipath fading 

and high snapping shrimps dominated ambient noise. This is made worse by 

congestion of the channel due to the control packets generated to search for new 

routes. Unlike other works which simply abstracts the additional traffic load generated 

by the AODV protocol; it is explicitly accounted for in our analysis. Our results show 

that even with frequent disconnections, our network can transmit at close to maximum 

packet rate with low delay which is important for real-time applications. Furthermore, 

when the node separation is reduced, the throughput initially increases due to improve 

connectivity. It then decreases due to increase interference from increasing number of 

neighbors. The optimal node separation occurs between 65% and 70% of the 

transmission range for the Rayleigh fading parameter, σ2 = 0.3. The MAC throughput 

at optimal node separation is increased by 10 times. 

 

3.4 Conclusion 

In this chapter, we investigate and analyze the communication and networking 

aspects of the MANET operating in realistic harsh environment where the radio 

transmission is subject to fading and noise. This gives us better insights into our 

problem and prepares us for the development of our cooperative control algorithm.  

In our theoretical analysis on communications, we examine the connectivity, MAC 

and routing issues to better understand on how to organize the sensors and design the 

control algorithm as follows:  

The first problem is poor connectivity due to node mobility and fading channel 

conditions. When poor connectivity is due to independent random node mobility, the 

solution is to ensure that our motion control algorithm results in a coordinated orderly 

movement with minimal changes of neighbors in the network neighborhoods. For the 
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poor fading channel condition, one approach is to use physical layer techniques such 

as spreading code modulation used in DS/CDMA which is known to be robust to 

fading channels. Finally, to further improve the robustness of our algorithm to the 

connectivity problem, our control algorithm makes use of only the information from 

three closest neighbors out of the other network neighbors. Since, they are the closest, 

they have better chances of been heard as, statistically, their mean received signal 

strengths are highest. 

The second problem is contentions and interference. One approach is to 

organize the sensors into small cooperative groups and design our algorithm in such a 

way as to minimize inter-group communications. Another approach is to use 

DS/CDMA which is known to be robust to interference in the MAC layer.  

The third problem is route breakages in networking resulting in excessive 

routing overheads and network congestion. Our analysis shows that there are two 

factors that affect the effective data traffic: presence of disconnections and routing 

overheads that are proportional to the total number of nodes in the network. 

Therefore, it is better to organize our sensors into a few small isolated cooperative 

groups and use intra-group communications to facilitate the harvesting tasks. The 

routing overheads can be further minimized if most communications are one-hop 

communications.  

Our theoretical analysis on the wireless communication issues focused on a 

connectivity model that takes into account: random mobility and Rayleigh fading, an 

asynchronous half-duplex MAC layer for DS/CDMA in the multi-hop ad-hoc network 

environment and an analytical model to analyze the throughput of the DS/CDMA in 

UWA channel with Rayleigh fading and alpha-stable distributed noise.  
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Chapter 4: The Cooperative Control Algorithm 
 

 

In this chapter, we discuss our main cooperative control algorithm which is 

used to control the movement of the mobile sensors in order to optimize the 

harvesting of spatial environmental information under energy constraints. In section 

4.1, we explain the general design of the algorithm which takes into consideration the 

communication and energy constraints of mobile sensors operating in harsh 

environments. Our design is drawn upon the principles from an eclectic mix of 

cooperation, optimal control and statistical decision theories. In section 4.2, we 

present our cooperative algorithm. In section 4.3, we discuss our algorithm from the 

theoretical perspective. This is followed by the conclusion of the chapter. 

 

4.1 General Overview 

In this section, we give a general overview by emphasizing the three key 

elements in the algorithm. First, we discuss our choice in organizing the mobile 

sensor group to perform the data harvesting task. Second, we discuss our method in 

controlling the mobility of the nodes. Third, we discuss the information processing 

aspect.  

4.1.1 Organization of the Mobile Sensor Group 

There are three main approaches we can organize our group to perform the 

data harvesting task. The organization of the group is important because it determines 

the cooperative relationship among the sensors.   
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Figure 4.1a shows a coordination structure. In a coordination structure, each 

sensor in the group collects environmental information and reports this together with 

its current location to a controller. We define the concatenated environmental and 

location information as the state information as it is sufficient to drive the sensor to 

the next position. After aggregation and processing of all the information, the 

controller issues a command stating the next positions that the sensors should move 

to.  

 

Figure 4.1: Different ways of organizing our mobile sensor group 

 

In this structure, the controller has the collective global view of the terrain that 

the sensors are deployed in. In other words, it has almost full knowledge of the 

environment. It also bears all the processing loads. The sensors are essentially dumb 
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sensors as they do not perform any processing and passively wait for the controller to 

drive their next positions. Note that the controller is an abstract concept and refers to a 

role that the agent is playing. In figure 4.1a, it is shown as the command center since 

this is the sink node where all the information in the network is sent and therefore the 

most natural node to take on this role. However, there is nothing to prevent any 

sensors in the group to take on this role if it has the required processing capacity. If 

this structure is adopted, our algorithm will be a centralized control algorithm. This is 

one of the popular structures mentioned in the robotic literature. The relationship 

between the sensors and the sink node is sometimes described as the “master-slave” 

relationship in the literature.  

However, this approach has two disadvantages. First, since all the processing 

is performed in a single node, it must have a very powerful processor to reduce 

processing delay. This is especially true if the group size is large as the processing 

load and therefore delay increases exponentially with the number of state information 

inputs. Second, the group is highly dependent on the reliability of the wireless 

communications to perform its task. A loss in the communication packets could delay 

the movement of the group as the individual member has to wait passively for the 

packets to be resent before it knows what to do next. In a large network, multi-hop 

communications is required. If we characterize the reliability based on link failure 

probability, the reliability will drop by a multiplier every time the data packet 

transverses one hop towards its destination. That is, the probability that the packet is 

lost increases with the number of hops that the packet is required to traverse to reach 

the destination node. Moreover, excessive uses of multi-hop communications cause 

flooding and congestion of the network, locking up the communication resources. 
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Due to these two reasons, this approach is not scalable with the number of nodes, 

especially in a harsh communication environment. 

Since the reliability of communications is a constraint in a harsh environment, 

one possible approach is to completely do away with communications. Figure 4.1b 

shows the independence structure. This structure is made possible due to the advance 

in processor technology, leading to smart sensors. Each sensor is described to be 

autonomous as it decides the next move independently based on its own current state 

input and past state inputs in its memory. With this definition, the sensors in figure 

4.1a are non-autonomous. This approach results in a distributed control which is 

scalable with the number of sensors. Essentially each sensor plays the role of its own 

controller. This type of control is sometimes known as a self-regulated or self-

controlled system model. However, this approach suffers from two weaknesses. First, 

as it no longer has shared information from others, its knowledge of the surroundings 

is limited to its own past memories. In a fast changing environment, the outdated 

memory it uses for processing could lead to erroneous response. Second, if we 

incrementally use the past information that is further back in time, there is more delay 

in the system response.   

Finally, figure 4.1c shows the cooperation structure. An autonomous agent is 

described to be cooperative if its state behavior is partially influenced by the state 

behaviors of others. The level of cooperation will be determined by the level of 

influence. Notice that in figure 4.1c, sensor 2 obtains cooperatively shared state 

information from both sensor 1 and sensor 3. Intelligence can be defined briefly as the 

ability of the agent to digest information to its best advantage in adapting its behavior 

in order to achieve its goal in an optimal manner. Since this form of structure is able 

to acquire the most information at any time, the sensors in the cooperation structure 
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are the more intelligent thus they exhibit also the more optimal behavior than the 

independent sensors.  

We adopted the structure in figure 4.1c for our algorithm. Therefore, our main 

algorithm takes the form of a distributed control algorithm. This structure requires 

communications among the sensors. We restrict the communications in the 

cooperative relationship to one-hop communications for three reasons. First, as 

mentioned above, multi-hop communications are more unreliable and could lead to 

congestion and delay as discussed in chapter 3, section 3.2.2, eventually starving up 

scarce communication resources for other purposes. Second as the sensors only move 

around their neighborhoods in each time step, the information provided by the 

neighbors is more important. Third, too much unnecessary information results in 

processing delays and erroneous behaviors. This is especially true when the extra 

information is either unreliable, outdated or of low information content. We will 

discuss more in section 4.1.3.   

4.1.2 Motion Control 

 

Figure 4.2: Cooperative optimal control 

  

In Figure 4.2, we present a more detailed block diagram at the individual sensor 

level. The general scheme of our cooperative control block is similar to the optimal 

control block presented in [5]. The obvious difference is the use of state information 
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from the neighbors. Generally, the state information is dependent on the context of the 

problem. We will define the state information for our context in the following section. 

Optimal control requires the sensor to monitor the environment changes. It also uses 

the current position as the collective input to the information processing block to 

generate the next move. The information processing block is to be implemented in the 

algorithm. Also, there is a comparison block in the optimal block. This is the block 

where the measure known as a metric is compared with a control goal to determine 

whether the system is performing optimally. The metric acts as a figure of merit for 

the sensor and is usually computed from measurable quantities that are observable by 

the sensor. The comparison block is also implemented within the algorithm. Note, 

also that the next position is completely determined by the current position and the 

measurement of the sensor and those of its neighbors. There is no usage of past 

historical state information. As a result, we can have a faster system response time. 

4.1.3 Information Processing 

There are three aspects of information that will affect the motion behavior of 

the sensor.  

First aspect is the reliability of the information. This is usually modeled as 

noise in the data. Usually, noise filtering is required to alleviate the problem. In our 

context, there are two main types of noises. The first is the measurement noise in 

localization and sensor measurements. This is usually mitigated by the use of noise 

filtering, for example, particle filters. The second is channel noise. This is usually 

mitigated by the use of physical layer communication filters. As they have been 

researched by many others, they are beyond our research scope.  

The second aspect is the timeliness of the information. That is whether the 

information is outdated. In our context, this occurs when the distribution is non-
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stationary. That is, external events are changing too fast that past information is 

useless and may even be misleading. In fact, many available pseudo Newton’s search 

methods in the literature are known to be badly behaved if the past state information 

is not accurate, since they assume stationary distributions. Usually, the problem of 

outdated information can be mitigated by increasing the frequency of measurements 

(or equivalently, shortening the iteration time step size). Furthermore, if past 

information is used, usually some forms of expiration techniques are required for us to 

phase out the past information. 

The third aspect is the information content of the data. The concept of 

information content is fairly abstract. Generally, the information content of the data is 

which that gives value to the user of the data. Therefore, it is a relative concept, 

depending on the context of the problem. In our context, the user is the sensor. From 

the perspective of the sensor, the data of higher information will be of higher value 

because it can better aid the sensor in more accurate and faster search of the optimal 

position. To digress, Shannon in his work on information theory coined the term 

entropy for the information content and attempts to define a generalized method to 

measure it. It leads to research on source coding which is a method used in 

communications and compression techniques. Essentially, the main motivation behind 

the techniques is for us to pack as much information as possible on a per data bit 

basis.  

 We elaborate further on the importance of the third aspect in our problem. In 

our problem, the sensor does not have a-priori knowledge of the environment except 

that the distribution is continuous in space. At each time step, it relies on its own 

discrete measurements together with its neighbors’ to interpolate in order to estimate 

the gradient and hessian which is required for the sensor to navigate its surrounding. 
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This is analogous to the echolocation used by the blind bat to navigate the cave. By 

relying on a series of discrete sonar pulses it emits and from the time and phase 

differences of the discrete echoes, it estimates a continuous space which allows it to 

navigate safely in the cave and capture the prey. Note that performing this estimation 

does not require the bat to know in advance (a-priori knowledge) the map of the cave 

and the actual shapes, sizes and locations of the obstacles and preys. The same 

challenge is presented in our problem in that our sensors are also blind; they 

essentially make use of the discrete sensor data to navigate and will behave 

erroneously when the information content of the data is low.     

  

4.2 The Algorithm 

Our optimization design consists of two phases. The first phase requires the 

sensors to concurrently spread out and optimally place themselves such that (s.t.) 

there are more sensors in information fertile regions while maintaining sensing 

coverage. The sensing coverage refers to the union of the sensing range of all the 

individual sensors. In our context, our sensors attempt to sense the temperature of a 

source. If a source is located too far from a sensor, the temperature variation will be 

too small to be detectable. The second phase is where the optimally placed sensors 

move independently to harvest data around their localities. Moreover, each sensor has 

two states: Optimize and Track. This is to cater to possible movements in the sources 

in practical situations. The high-level framework of our algorithm with the three 

components is shown in figure 4.3 
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Figure 4.3: The high-level framework of our algorithm 

We adopt the pseudo-Newton method to optimize the sensors’ placements in a 

distributed manner. However, four problems are encountered. First, independent 

Newtonian methods search for a fixed goal − positions of zero gradients. Even after 

modifying the independent methods to handle fixed non-zero gradients, the sensors 

using the independent methods cannot spread out properly as they tend to overlap 

each other in their search and end up chasing after the same few goals. Second, 

independent pseudo-Newton method performs badly in a harsh environment because 

of estimation errors incurred due to localization noise. This is exacerbated by the 

accumulation of past errors which causes the sensors to persist in the erroneous 

direction even though current estimate is accurate until the influence of past 

information has faded. Third, the initial value problem in independent optimization in 

which the rate and probability of convergence is dependent on the initial position is 

more severe for our application. This is because we cannot make a good starting guess 

for the initial positions of the sensors as we have no advanced knowledge of the actual 

distributions. Fourth, the fixed line search used by some independent methods such as 

BFGS to stabilize the search is inefficient.  Also, a fifth problem is encountered when 

there are moving sources. Movements of multiple sources at sufficiently high speed 

and different directions may cause confusions and disorderly behaviors among the 

For Current Iteration, k: 
1. If (State = Optimize) 

a. If (Phase = Cooperative) {Cooperative Optimal Placement} 
b. Else If (Phase = Independent) {Independent Harvesting} 

2. Else If (State = Track) 
a. {Tracking} 

3. End 
Next Iteration, (k+1) 
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sensors as their temperature measurements are the superposition of the effects of 

multiple sources. 

4.2.1 Cooperative Optimal Placements 

 

 

 

 

 
Figure 4.4: The main cooperative control algorithm 

Our cooperative optimization algorithm is shown in figure 4.4. We will 

elaborate the three main blocks: Cooperative Pseudo-Newton Optimization (S2), 

Stabilization (S3) and Dissemination and Extraction (S4, S1) in the sub-sections. 

Without loss of generality, we discuss our problem in the context of temperature 

measurements. 

4.2.1.1 Cooperative Pseudo-Newton Optimization (S2) 

In this section, we first consider the one-dimensional (1D) case in order to 

elucidate the main concept. We then extend our results to the two-dimensional (2D) 

case. 

4.2.1.1.1 One-Dimensional Case 
 

Figure 4.5 illustrates our problem in 1D case. In the top left hand side, five 

sensors are placed equally along a single line to measure the variation of a scalar 

quantity of interest, θ. Without loss of generality, we assume θ to be temperature. On 

the top right hand side, the data harvested are used to reconstruct a distribution map 

using linear interpolation. In the bottom sub-plots, we place the sensors in an optimal 

For Current Iteration, k: 
S2. Extract Search Information from Neighbors.  
S3. Perform Cooperative Pseudo-Newton Optimization. 
S4. Perform Stabilization Procedure. 
S5. Disseminate New State Information. 
Next Iteration, (k+1) 
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manner so that the same number of samples produces a better map with a correct 

peak. 

Our optimization strategy is described as follows. Each node asynchronously 

and continuously adjusts its position w.r.t. its two adjacent neighbors until it 

determines through a metric that it has reached an optimum position. The two 

stationary boundary nodes are used as reference nodes. In actual implementation, 

these reference nodes are also beacons in the context of localization [14][66]-[68]. 

Furthermore, in order for us to perform these adjustments, the nodes will have to 

broadcast their state information at regular intervals. The state information of node i, 

consists of the location information concatenated with the temperature in the form, [xi, 

θi]. We limit this broadcasting of state information to the local neighborhood to 

prevent excessive consumption of communication bandwidth.  

 

Figure 4.5: Quality enhanced reconstructed distribution map using optimally 
spaced sensors  

 

Figure 4.6: Local distortion metrics 
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In order for us to implement a distributed form of optimal control, we need to 

identify a goal that is observable and measurable at the individual node level. We 

divide our sensors into many small groups of three that are coupled together so that 

every node is a member of two adjacent groups. Figure 4.6 shows two possible 

scenarios that a group of three sensors: {i−1, i, i+1} can handle in a small segment of 

the distribution. This is based on the assumption that there is sufficient number of 

sensors so that practically, every three nodes will see either a simple convex or 

concave curve.  

We shall now formulate our problem from the control perspective. In a control 

problem, we want to control and adjust the behavior of a system so that the behavior 

moves towards one that can attain a desired outcome or system goal. The principle 

requires that the selected behavior is controllable and observable. In our context, the 

system is the individual mobile sensor and the behavior of the mobile sensor that we 

desire to control is the position of the sensor. We will first define our cooperative 

control problem from control-theoretic perspective using the difference equation since 

our control is performed at discrete time step instead of continuous time. The general 

expression for our cooperative control problem is defined as follows:  

( ))()()()1( k
sn

k
i

k
i

k
i Cppp Δ+=+        (4.1)  

Where: 

)(k
ip  The position of sensor i in the kth time step. 

)(k
iθ  The measurement made by sensor i in position )(k

ip  in the kth time 

step.  

)(k
is  The state vector of sensor i in the kth time step. It is defined as the 
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concatenation of )(k
ip and )(k

iθ . ],[ )()()( k
i

k
i

k
i ps θ=∴ . 

)(k
snC  The set that represents the states of the sensors belonging to the 

same cooperative group in the kth time step. 

( ))()( k
sn

k
i CpΔ  This is the position control function in the kth time step. It takes 

)(k
snC  as the input and computes the amount of adjustment to be 

added to the current position, )(k
ip  in order to obtain the next 

position. 

)(
,
k
sniV  The set that represents the states of the Voronoi neighbors of sensor 

i in the kth time step, exclusive of sensor i. 

 

The control equation describes the dependency of the position of sensor i with 

the states of all the sensors within the same cooperative group of sensor i. It can be 

implemented in a distributive manner by having each sensor performs the 

computation in (4.1) based on information gathered from its cooperative group. 

Therefore, there is no central authority that gathers information on behalf of the group 

and assigns the set of next positions for the mobile sensors in the cooperative group.  

Finally, before we move on, it is instructive for us to examine the basic 

structure of the simplest form of (4.1). We look at the structure of the simplest linear 

autonomous control equation: 

( ){ })()()1( k
iigoalu

k
i

k
i suuKpp −+=+      (4.2) 

In (4.2), the control function consists of a goal function, ugoal. The principle 

dictates that the control goal must be observable and measurable by the system (that 

is, the sensor i). At position )(k
ip , sensor i computes a value, ( ))(k

ii su  which is 

dependent only on the current state of sensor i for autonomous control. The amount of 
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adjustment or control requires for the behavior (that is, the position) of sensor i 

depends on the deviation of ( ))(k
ii su  from the goal. The larger the deviation, the more 

adjustment we need to make to its position. The value Ku is known as the control gain 

and is a constant in linear control. If Ku is too small, the system takes a long time to 

converge to its desired behavior and if Ku is too large, the system is highly oscillatory 

and may never converge to its desired behavior. Clearly, from the discussion, before 

we can solve (4.2), we must first define and express our control goal in the form that 

is both observable and measurable. 

Let θ̂  be the piecewise linear approximation map of θ based on the sensor 

readings. We shall now formally define our measure of distortion by the global 

distortion error metric, De in two variations as follows: 

∫ −=
E

e dxD θθ ˆ         (4.3a) 
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e ppdxD θθθ      (4.3b) 

The second variation of De in (4.3b) which is derived from (4.3a) is more 

important for a practical reason because it expresses the global distortion error as the 

sum of local distortion errors. This form suggests that it is sufficient for the 

distributed algorithm to use the local distortion error to adjust the individual node 

positions in order to achieve the global minimum. 

Referring to Figure 4.7, De can be visualized as the area between the actual 

temperature distribution θ and the approximate map θ̂  from the sensor reading. θ is 

composed of a concave region follow by a convex region. Clearly, our objective is to 

select the positions of the mobile sensors, P such that the total area is minimized. 
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Figure 4.7: Distortion error 

An important observation is that for concave/convex regions, our approximate 

map θ̂  is lower/upper bounded by θ. For example, in the concave region, to minimize 

the distortion, we only need to choose the position p2 so that it minimizes the local 

area of θ̂ . This is because we know that this local area of θ̂  must be lower bounded 

by the local area of θ and vice versa. The second observation is that whether the 

region is concave or convex can be determined by testing the sign of the second 

derivative of the locality. The local area of the approximate map as seen by sensor i, 

LAi, is given as: 

( )( ) ( )( )[ ]iiiiiiiii ppppLA −++−+= ++−− 11112
1 θθθθ     (4.4) 

Referring to Figure 4.7 again, our optimization strategy can be briefly 

described as follows: 

• For the concave region, sensor 2 should adjust its position p2 with respect to 

its 2 Voronoi neighbors in order to minimize LA2. Since, we know that our 

approximate map is lower bounded by θ. 
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• For the convex region, sensor 4 should adjust its position, p4 with respect to its 

2 Voronoi neighbors in order to maximize LA4. Since we know that our 

approximate map is upper bounded by θ. 

We now examine the condition for minimum/maximum. We differentiate (4.4) 

w.r.t. pi.  
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The condition in (4.6) states that in order for us to obtain a minimum 

/maximum point, we should adjust the position of sensor i such that the gradient at the 

tangent point (pi, θi) is equal to the gradient of the secant line bounded by the Voronoi 

neighbors of sensor i. In other words, the tangent is parallel to the secant line at the 

minimum/maximum. The optimal condition for Figure 4.7 is illustrated in Figure 4.8. 
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Figure 4.8: Optimal condition of minimum distortion error 

For a continuous function, (4.6) holds and we can always find an intermediate 

point that has a tangent which is parallel to the secant line based on Mean Value 

Theorem. Therefore, it shows us that it is possible for intermediate node i to adjust its 

position in between its two neighbors to minimize distortion without changing the 

relative topological relationship with its Voronoi neighbors. Applying the argument 

inductively, it is feasible for us to develop a distributive algorithm that preserves the 

network topology.  

We now take the second derivative of LAi using (4.5), 
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Note that by virtue of the ordering ( )11 −+ − ii pp  is always positive. For the 

concave region, 00 2
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p
θ . Therefore, the optimal point is a minimum 

and vice versa. This is in agreement with our observation in Figure 4.7 and 4.8 that 

we should minimize/maximize the area in the concave/convex region in order to 

minimize distortion because they are bounded by θ. 

However, we need to address two issues. First, since it is unlikely that node i 

reaches this goal initially, we need an adaptive approach to progressively move node i 
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in the correct direction and speed in order to reach this goal. Second, the temperature 

gradient is not directly measurable since our sensors do not have a-priori knowledge 

of the actual distribution. It has to be estimated. We will resolve these two issues for 

the 2D case. The detailed derivation can also be found in appendix B. 

4.2.1.1.2 Two-Dimensional Case 

In 2D, it can be shown that our optimization requires concurrent maximization 

of the volumes of the tetrahedrons bounded by the sensors and their three neighbors. 

In figure 4.9, we show sensor i in the center of the group enclosed by three nearest 

surrounding neighbors labeled 1, 2 and 3 in the anti-clockwise direction. Although we 

have illustrated the concept of neighborhood couplings using equidistant nodes, it is 

also applicable for non-equidistant nodes. 

 

Figure 4.9: Neighborhood couplings 

The neighbors themselves form the centers of other groups due to the 

couplings. Particularly, sensor 1 is the center of another neighborhood and sensor i is 

its neighbor. There are several practical benefits in the use of nearest neighbors. 

Wireless communications tends to be unreliable and the sensors are subjected to time-

variable link failures [79][80][see List of Publications: P1-P3]. Statistically, the closer 

the neighbors are, the better is the received signal strength. Therefore, it makes our 

application robust. Also, the sensor is constrained to move within the triangular 

enclosure formed by the three neighbors in each step so that the network topology is 
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invariant with time. This has the beneficial effect of reducing multi-hop routing 

overheads. This is useful as our network is likely to serve other purposes that require 

multi-hop communications. 

Recall that in the derivation for the 1D case, we examine the area of the 

distribution under a node bounded by two referencing neighbors. Therefore, based on 

current state information, the node chooses the best position to move towards so as to 

either maximize or minimize the area of the distribution. The individual goal turns out 

to be equivalent to seeking a position such that the temperature gradient in that 

position is equal to the mean gradient taken over the two reference points and the 

intermediate node. 

We use the same argument to obtain the expression for the 2D case, by 

considering the volume bounded by an intermediate node and three referencing 

neighbors which is the volume of the tetrahedron with four vertices: ( )111 ,, θyx , 

( )222 ,, θyx , ( )333 ,, θyx  and ( )iii yx θ,, . Let V be the volume of the tetrahedron, we 

have,  
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To maximize/minimize V, set 0=
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Substituting the above into the gradient equation, we have our objective function as: 

T

i

i

i

i
i CBA

yx
][1 −=⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=∇ −θθθ       (4.11) 

Let ][1 CBAugoal −= − .  

goali u=∇∴ θ          (4.12) 

Therefore, simply stated, the equation requires the node to search for a point in 

the triangular region bounded by its three neighbors such that the gradient at that point 

is equal to the mean gradient taken over the triangular region.  
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Since, we are looking at a continuous temperature distribution, an appropriate 

class of search methods will be the descent method. Newton search method is the 

search method in this class that offers a rapid second order of convergence.  The rapid 

convergence is due to the use of more information (first and second order derivatives) 

in the search method. The assumption in this method is that we have a-priori perfect 

knowledge of the distribution. We will look at the modifications required for the case 

where we do not have a priori perfect knowledge of the distribution. A discussion of 

the Newton Search Method can be found in [5]. 

Ignoring the constant term, 
6
1  in (4.8), we let  

( ) ( ) ( )[ ]213312321 θθθθθθ −+−−−=′ yyyxV i

( ) ( ) ( )[ ]2332321 θθθθθθ −+−−−− iii yyyx  

( ) ( ) ( )[ ]1331312 θθθθθθ −+−−−+ iii yyyx ( ) ( ) ( )[ ]1221213 θθθθθθ −+−−−− iii yyyx  

The idea of Newton’s method is to maximize V ′  w.r.t. ),( iii yxp =  by 

maximizing the quadratic approximation of V ′  about ),( iii yxp = . This 

maximization is performed at each iterative step of the algorithm. Specifically, using a 

second-order Taylor series expansion around the point, ),( iii yxp = , we may write: 
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For a continuous function, ( ) ( )
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, therefore, the Hessian, H(k) is 

symmetric. The change )( ipV ′Δ  is minimized or maximized when [ ] 0)( =′Δ∇ ipV . 

Therefore, differentiating (4.13) w.r.t ipΔ  to obtain [ ])( ipV ′Δ∇ , we have, 
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We express the first and second partial derivatives of ( )kV ′  as the temperature 

derivatives and substitute them into g(k) and H(k) as follows: 
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to (4.18) into g(k) and H(k), we have,  

[ ] )()( k
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T ACBkg θ∇+−=        (4.19)  

)(2)( k
iAkH θ∇=         (4.20) 

The form presented in (4.15) is the form used in Newton Search Method. We write 

(4.15) in the standard control equation form for the purpose of stabilization. 
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)()(1)( kgkHp k
i

−−=Δ { } u
k

igoal Ku )(θ∇−=      (4.21) 

where 1)(2 )( −∇= k
iuK θ  is the control gain.  

The goal which is the gradient to be searched is cooperative because it is 

adaptive and dependent on the current state information of the neighbors. This novel 

approach allows the sensors to concurrently spread out and optimize their positions. 

Now, (4.21) represents the ideal case where the distribution is known a-priori to the 

sensors. In our problem, the distribution is unknown and thus the current gradient and 

hessian of the temperature, ∇θi
(k) and ∇2θi

(k)  cannot be directly evaluated. We do not 

have any a-priori information on the temperature distribution except that iθ  is smooth 

and continuous.  

To obtain an approximation of iθ , we perform a local interpolation of the 

measurements available at the four points: pi, p1, p2 and p3 using the RBF 

Interpolation and derive the approximate partial derivatives. The RBF interpolation is 

chosen for our 2D formulation because it can be done with three neighbors that are 

not confined to a square grid. A bilinear interpolation in 2D would require a point to 

be surrounded by at least four neighbors located on a rectangular grid.  

Let •  be the norm of a vector. Let ( ) ( )22 2exp σϕ hh pppp −−=− , 

where h = i, 1, 2, and 3. We choose the RBF in Gaussian form although other 

equivalent choices are available [22] for the ease of manipulating the expression 

mathematically to a compact form. The temperature of an arbitrary point p, inside the 

region surrounded by the three neighbors is given by,  

( )h
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3
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where, the weight vector, [ ]Ti wwwww 321=  is obtained from the interpolation 

matrix, Φ as follows: 

θ1−Φ=w          (4.23) 

where, 
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 and ( )hilh pp −= ϕϕ ,  l = i, 1, 2, and 3. Also, 

[ ]Ti 321 θθθθθ =  

We can now obtain the gradients from (4.22) by differentiation as follows: 
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Now we substitute p = pi
(k) into (4.24) and (4.25). Let I2 be the 2×2 identity 

matrix. Let [ ]Thihiih yyxxd )()(2 −−−=′ −σ  and )( 2
2I−−′′=′′ σT

ihihih ddd . Equation 

(4.22), (4.25) and (4.26) can then be expressed in compact matrix form as, 
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To summarize, the main equations to compute for our cooperative 
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optimization step are given as: 

Estimation of gradient and Hessian:  

θ

σσ

σϕ

ϕθϕθ

1
321

2
2)()(2

22)()(

3

1

)(23

1

)(

][

)(;)(

)2exp(

;

−

−−

==

Φ==

−′′=′′−−=′

−−=

′′≈∇′≈∇ ∑∑

T
i

T
ijijij

Tk
j

k
iij

k
j

k
iij

ijij
j

i
k

iijij
j

i
k

i

wwwww

dddppd

pp

dwdw

I

    (4.29) 

where: pi
(k) =(xi

(k), yi
(k)) is the position of sensor i at kth step. T

i ][ 321 θθθθθ = , 

][ lhϕ=Φ  is the 4×4 interpolation matrix and I2 is the 2×2 identity matrix.  

Computation of next position to move:  

{ } u
k

igoal
k

i Kup )()( θ∇−=Δ        (4.30) 

where 1)(2 )( −∇= k
iuK θ  is the control gain.  

A novel feature in our approach is that it does not use past information. 

Together with the use of dissemination discussed in section 4.2.1.3, our approach can 

search more accurately and faster than independent approaches. This feature allows us 

to eliminate the adverse memory effect which slows down the optimization due to two 

causes. First, in a harsh environment with localization errors, use of past information 

tends to cause accumulated estimation error. Second, in the simulation, the use of 

(4.29) becomes more accurate as the sensor and its three neighbors converge to 

optimal positions. Thus, the use of poor quality past information would have actually 

hindered the search. Particularly, it is observed in the simulation for sensors using 

BFGS, past information acts as a burden in harsh environment as they are given 

weights in the estimation and their influences take time to fade. Consequently, sensors 

using BFGS tend to persist stubbornly in the erroneous direction for a longer time 

than those using our approach.  
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The detailed derivation of this subsection can also be found in appendix C. 

4.2.1.2 Stabilization (S3) 

Stabilization of search is required initially. This is because the sensors are not 

near optimal positions. Therefore, the cooperatively shared state information those 

sensors provide among themselves as search information has low information content. 

This problem is also present in independent pseudo-Newton algorithms. To elaborate, 

in the early stage of an independent search, past and current information are collected 

near the vicinity of the search. As a result, they are low in content and do not 

contribute much to the estimation. This problem is especially severe when the initial 

position is far from the optimal point, leading to erratic and badly behaved search. 

Generally, independent algorithms adopt conservative approaches in the initial stage. 

The approach used in BFGS method is to initialize the hessian as the identity matrix. 

Consequently, the initial search is the stable but slow gradient descent search. 

However, note that this method of initialization may still lead to erratic search if the 

initial position is too far from the search goal. To further stabilize the search, a 

constrained line search is performed. In a line search, an approximate local optimal 

point is searched along a straight line. Only when it is found that there is a change of 

direction. Inefficiency occurs in the initial stage as most likely a wrong direction is 

chosen. In the worst case, the search continues along this direction until the boundary 

of the constrained feasible space is reached.  

We resolve this issue by making our stabilized direction adaptive. This is 

inspired by how flocks of birds fly or move in search of food. The movement of each 

bird is guided by the leading neighbors in the general flow of the larger movement. 

Essentially, we capitalize on the cooperatively shared information and adopt the 

method of Maximal Ratio Combining (MRC) in statistical decision making theory to 
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select the most reliable steering direction.  Our objective is to make a choice in a 

manner that minimizes the cost of the decision error. The cost is assumed to be 

quantifiable. It is also assumed that we could measure the reliability of a choice, 

usually through a metric. The MRC strategy is considered to be the most appropriate 

when there is a group of reliable choices and the standard deviation is not too large 

among them. In this strategy, we use a weighted average of the choices. The average 

is weighted such that the most reliable choice is given the highest weight. It is 

considered the best among the three possible strategies (see Appendix C for other 

strategies and detailed derivations) because it provides diversification of risks as well 

as minimization of the cost of decision error due to the use of unreliable choice. 

In our problem, a good measure of reliability is the magnitude of the mean 

temperature gradient along the path leading to one of the neighbors. This is because it 

indicates the likelihood that there are minimum or maximum points in that direction. 

We would use this to help the node decides on the best direction to move. First, we 

define the mean directional derivative from point pi to pj as follows: 

ij
ij

ij
ij u

pp
D

−

−
=

θθ
        (4.31)   

where uij is the unit steering directional vector pointing from point i to point j, given 

as: 

ij

ij
ij pp

pp
u

−

−
=         (4.32) 

The mean directional derivative Dij describes the average temperature change 

when a point moves along the straight path from point i to j. 

To perform the orientation stabilization, we use the mean directional 

derivative as a criterion to choose a steering direction. Let Dst and ust be the 
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directional derivative and the unit directional vector for the steering node respectively. 

Dst is obtained from MRC as follows: 

∑
=

=
3

1

2

j
ijijst uDD         (4.33) 

ust is then obtained as follows: ststst DDu =  

Δpi
(k) obtained in (4.30) is then restrained to move along ust as:  

Δpi,st
(k) = ⏐ust

TΔpi
(k)⏐ ust       (4.34) 

We name our concept in (4.34) as orientation stabilization. This stems from 

our simulation studies of the trajectory plots that the sensors appear erratic and 

disorientated without orientation stabilization. At the later stage, as the general flow 

of movement for the group as a whole stabilizes and moves towards convergence, the 

directions provided by Δpi
(k) and ust become gradually aligned. That is, the restraint 

imposed by the steering direction, ust, will eventually become redundant.  

Two additional practical constraints are imposed to stabilize the cooperative 

group. First, the sensors are limited to move up to a maximum radius from their initial 

positions. This constraint is imposed to prevent the sensors from attracting too near to 

a hotspot. Without this constraint, it may result in an eventual loss of sensing 

coverage if all the sensors are attracted and concentrated in one spot in the terrain. 

Sufficient sensing coverage in the terrain is a practical requirement as spontaneous 

events may occur in random locations. Second, due to the limits in the accuracies of 

the temperature and location measurements, we impose constraints to prevent the 

sensors from being over-sensitive and jittery about their positions. Let εp and εθ be the 

limits in the accuracies of the localization and temperature measurements. The sensors 

stop if either one of the inequalities is satisfied: 

⏐Δpi,st
(k)⏐ < εp ; ⏐(∇θi

(k))T(Δpi,st
(k))⏐< εθ      (4.35) 
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We briefly discuss the stability of our network under heat sources jitter. When 

they jitter, the optimal positions that the sensors are locked in will also shift. For 

stability, the sensors need to restore back to the positions in the next step. Since our 

optimization is based on the Newton’s Method, the search will converge to the goal in 

one step if the locality of the distribution is approximately quadratic. It is shown in 

detail in appendix D by using the Taylor’s expansion around the locality that a stable 

convergence region centered at the optimal position with a radius, ρ >0 will always 

exist. 

4.2.1.3 Dissemination and Extraction (S4, S1) 

In section 4.2.1.2, we discuss about the importance of using cooperatively 

shared information of high content in the search as it leads to stable, efficient and 

more accurate search. The weakness of independent search is, if the initial position is 

in the locality where the distribution is essentially flat, it leads to erratic search with 

slow convergence or even divergence. This is known as the initial value problem. Our 

cooperative optimization mitigates this problem by obtaining information from 

neighbors which are spread out further. However, in a situation where the distribution 

is flat over a large region, this approach may not be sufficient. To mitigate the 

problem further, we develop a communication mechanism inspired by the foraging 

behavior of social animals and insects such as ants that could pass on not only 

neighborhood information, but better information further upstream without using 

multi-hop routing in order to alleviate network congestion.  

Figure 4.10a shows the dissemination mechanism of the state information. It 

corresponds to S4 of figure 4.4. As with orientation stabilization, the gradient is used 

as the proxy for the content of the information. A receiving sensor will now have the 

flexibility of working with either the primary or secondary source of information 
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using the extraction mechanism shown in figure 4.10b. It corresponds to S1 in figure 

4.4. 

 

 

 

 

 

 

Figure 4.10a: Dissemination mechanism (S4) 

 

 

 

 

 

 

 

Figure 4.10b: Extraction mechanism (S1) 

The rule for using the information is: always use the primary source of 

information unless, the content of primary source of information is below a threshold, 

λthreshold. This rule is put in place because in multiple hotspots scenario, there may be 

smaller hotspots in the vicinity of the sensors. Even if the secondary source of 

information indicates that there is a larger hotspot in a faraway region, we would 

prefer to mobilize our sensor to explore the smaller hotspots in the vicinity first. This 

rule also prevents all the sensors from converging greedily to the largest hotspot in the 

region, ignoring other hotspots. The same principle also applies in figure 4.10a for 

1.For each network neighbor j : 
a. Compute the average gradient w.r.t. node i: λij =(θj

(k)- θi
(k))÷║ pj

(k)- pi
(k)║ 

b.Identify a subset Γ of all gradients such that: Γ={⏐λij⏐>λthreshold} 
2.Identify node l such that its gradient belong to Γ  and at the same time, it is 

nearest to node i. 
a. If (found) broadcasts state information of node i and node l. 
b.If (not found) broadcasts only state information of node i. 

1.Determine 3 nearest neighbors 
a. Construct the Local Delaunay Map of the network neighbors. 
b.Perform Delaunay triangulation over the network neighbors. 
c. Locate the triangle that current position is in. The vertices of the triangle are 

the 3 nearest neighbors.  
2.For Each Nearest Neighbor 

a. Compute the average gradient λij,pri w.r.t. node i, based on primary 
information. 

b.If (λij,pri >λthreshold) includes primary information for optimization. 
c. Else computes λij,sec  based on secondary information 
i. If  (λij,sec>λij,pri) includes secondary information for optimization. 
Next Neighbor 
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selecting secondary information for dissemination. 

Finally, as the dissemination piggybacked on the existing communications 

over a one-hop neighborhood used to facilitate harvesting tasks, it does not require 

additional time slots for transmission. For a network with Ns sensors, the total 

message overhead is O(Ns). Note that the dissemination and communication protocols 

discussed for facilitating the harvesting task are implemented at the higher layer. In 

actual implementation, there exist supporting network functions in wireless sensor 

network such as: MAC [94] and physical layers to handle non-ideal physical 

communication channels.  

4.2.1.4 Effect of stabilization and dissemination on the trajectory 

We show some trajectory plots from our simulation study in order to better 

appreciate how the control algorithm operates and the importance of various 

components in the control algorithm. The simulation study is conducted using 

MATLAB.  

In figure 4.11a, we show an example of a plot where there is no orientation 

stabilization. We observe that the sensors appear to be moving in disorientated and 

disorderly manners. In figure 4.11b, we observe the effect of orientation stabilization 

on another example, notice now that the sensors are able to move in a more orderly 

manner. The twists and turns in the movements are within normal expectations as 

without perfect knowledge of the whole terrain, the trajectory will not be smooth. 

This is analogous to two methods of driving a car from the source to a destination 

location. If the car has a pre-installed GPS system with preloaded maps, the system 

can plan the shortest and smoothest path for us to reach the destination. Otherwise, we 

can only plan the next step forward in small increments, based on current available 

information and on some occasions where we hit a dead end, we will need to reverse. 
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Figure 4.11a: An example of a trajectory plot of the movements of the 25 
mobile sensors without orientation stabilization 

 

 

Figure 4.11b: An example of trajectory plot of the movements of the 49 
mobile sensors with orientation stabilization 
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Figure 4.12a: An example of trajectory plot of the movements of 4 groups of 25 
mobile sensors without information dissemination for the first 7 iterations 

 

Figure 4.12b: An example of trajectory plot of the movements of 4 groups of 25 
mobile sensors with information dissemination for the first 7 iterations 
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In figure 4.12a, we look at an example where a large proportion of the sensors 

are far from the hotspots and there is no information dissemination. The sensor group 

as a whole is not very responsive in the first seven iterations.  In figure 4.12b, we 

implemented the information dissemination. It can now be observed that the sensors 

are more responsive and accurate. 

4.2.1.5 Performance bounds 

The performance of our algorithm is limited by the estimation of the gradient 

and hessian in (4.4). Therefore, a lower bound can be obtained by considering an ideal 

algorithm where the sensor has perfect knowledge of the distribution, sources and 

states of its neighbors. Likewise, in the worst case, the sensor has no knowledge of its 

surrounding. Both the direction and magnitude of Δpi
(k) will be random with uniform 

distribution. As our approach is memory-less, such a sensor will move with RWM 

within the circular constrained region. By examining RWM, we can derive an 

approximate upper bound. At the Kth iteration, the sensor would have collected (K+1) 

data points. As the data points are positioned in a continuous space, there are infinite 

numbers of combinations. Therefore, instead, we will derive the approximate bound 

by examining the two extreme scenarios.  

Given that the sensor has no knowledge and it is allowed to choose the 

positions s.t. as many points as possible lands on the information fertile region, it 

makes the least decision error statistically if the data points are distributed with equal 

spacing.  

To elaborate, the problem of optimal data harvesting of non-adaptive mobile 

sensors can be formulated into the problem of optimal decision making in statistics as 

follows: 
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1. To minimize the mean distortion error, we want to place as many sensors 

as possible in regions where there are hotspots. 

2. No a-priori knowledge of the locations and sizes of the hotspots.  

In a statistical situation where we are faced with many choices and we have 

completely no knowledge of which of the choices are more reliable than others, the 

best approach is to give equal weights to all the choices in order to minimize the risk 

of decision error. This is akin to our situation where there are infinitely many 

positions for us to choose from and we have no way to know reliably the hotspots are 

located in which positions. Therefore, the optimal way to harvest the data points is to 

give equal weights to all the positions by distributing the discrete number of 

harvesting points equally over the terrain. 

Finally, the worst scenario occurs if it wagers all the points approximately in 

one same location.  

Let θ(x,y) be the actual distribution. Let Ψ(ω) be the distribution interpolated 

from points with EDG positions of spacing, ω using the cubic-spline interpolation 

available in MATLAB. Let h be the spacing used in error computations. Let xmax and 

ymax be the maximum values of the x and y coordinates of the terrain. The approximate 

upper bound for relative global error, ξub in percentage can be computed by averaging 

the two abovementioned scenarios: 
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where, m=xmax/h, n=ymax/h and Γ = ⎣(K+1)0.5⎦. 

4.2.2 Independent Optimal Harvesting  

Once the sensors are locked respectively in their optimal positions, there is no 

further data harvesting. To further harvest data to reduce the error, we introduce a 
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coordinator to monitor and usher in the independence phase in which the sensors 

move around their localities to further harvest data of high information content. In this 

approach, the role of the coordinator is taken by the same sensor that plays the cluster-

head or aggregation node in networking. It also participates in harvesting as a sensor 

can take on multiple roles. Our approach also allows for integration with the 

networking functions as the information is piggybacked along with other essential 

services, resulting in a more efficient use of the communication bandwidth. Our 

coordination protocol is shown in figure 4.13. 

We briefly describe the protocol in figure 4.13. The coordinator maintains an 

array of First-In-First-Out (FIFO) queues. Each queue stores the positions of the 

members in the last three iterations. The purpose of these queues is to compute the 

moving averages of the last three positions. This allows us to smooth out the jittery 

effects of the movements of the sensors.   

For practical purposes, we say that the sensors have stopped when the change 

in positions of the sensors is smaller than the location error, εp. Although, we want the 

members to transit to the independence phase only after all of them have stopped, this 

may not be feasible in those special cases where a few sensors may be oscillating 

about their equilibrium positions. This occurs at a time when to continue the 

cooperative phase is infeasible because the harvesting only produces minimum error 

reduction at the expense of continual energy consumption. Thus, it is better for the 

coordinator to usher in the independence phase without waiting for them to conserve 

energy. A variable, nos_of_sensors_threshold is used to set the maximum number of 

sensors to wait before the group transits. 

 In the independence phase, there is no communications. This is because in this 

stage of data harvesting where the sensors are near their optimal positions, the use of 
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cooperative shared information would have no further large gains except to consume 

communication resources (bandwidth and energy). Thus, it is more frugal to release 

these resources for other purposes. We develop two possible heuristics for the 

independence phase: delta and orbital-harvesting. 

 
Figure 4.13: Pseudo-code for the coordination protocol 

In delta-harvesting (Figure 4.14a), the sensors spiral outwards from their 

optimal positions. There are two reasons behind this approach. First, in reality, due to 

estimation and measurement errors, it is unlikely that we are exactly at the optimal 

Procedure Coordinator () 
Initialize: nos_of_sensors_threshold, moving_average_q = FIFOqueue 
(qsize=3), members_moving_average = array (moving_average_q)(arraysize = 
numberofmember),Phase=“Cooperate”  
1.sensor_count = 0; 
2.For Each Member 

a. moving_average_q =  members_moving_average (current_member); 
b.Compute average_change_position = current_position - average (elements 

in moving_average_q); 
c. Remove first element in moving_average_q; 
d.Insert current_ position into moving_average_q; 
e. if (average_changePosition <  
   locationerror){sensor_count=sensor_count+1}; 

    Next Member 
3.If (sensor_count > nos_of_sensors_threshold & Phase = “Cooperate”) 

a. Set Phase to “Independent”; 
b.Inform members to transit; 

4.Else {Set Phase to “Cooperate”}; 
End Procedure Coordinator 
Procedure Member () 
Initialize: Phase = “Cooperate”   
1.If (Phase of Coordinator’s Message = “Independent”) 

a. Set Phase to “Independent”; 
b.Set InitialIndependentStateInformation =  
   FinalCooperativeStateInformation; 
c. Execute Independent Heuristic; 

2.Elseif (No Coordinator’s Message and Phase= “Cooperative”) {Execute 
Cooperative Algorithm}; 

3.Elseif (No Coordinator’s Message and Phase= “Independent”){Execute 
Independent Heuristic}; 

End Procedure Member 
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positions. The heuristic increases the probability that the actual optimal positions are 

harvested successfully in the localities. Second, additional harvesting in region where 

temperature variation is greater reduced the distortion error of the reconstructed 

distribution.  

 

Figure 4.14a: The trajectory for the delta-harvesting heuristic 

In figure 4.14a, notice that sensor 2, 3, 4 and 8 have been propelled towards 

the information fertile region during the cooperative phase. At each step, the sensor 

computes the gradient either in the x or y direction and compared with 

GradientThreshold. If (current gradient > GradientThreshold), the step size is halved 

up to a maximum of three times and vice versa. The method is similar to adaptive 

delta modulation in [89]. Notice that sensor 5 moves with a smaller step size as it is 

inside the information fertile region where the temperature variation is the greatest.  

Due to the high energy consumption of delta-harvesting, we implement two 

measures to curb their movements in order to conserve energy. First, the sensors stop 

moving when there are negligible detected temperature variations after moving for a 
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while. This behavior is observed in sensor 1, 3, 7 and 9. Second, a radius constraint is 

imposed s.t. the sensors stop moving when the maximum radius is reached. This 

behavior is observed in sensor 2, 4, 6 and 8. 

The pseudo-code for the delta-harvesting heuristic is shown in figure 4.14b-d. 

Due to the tree-like decision structure used to control the orderly spiraling 

movements, we develop the main portion of the algorithm in the compact recursive 

form. Altogether, it consists of three functions: main function which examines the 

initial condition and calls the recursive function accordingly, the recursive function 

which determines the next direction and the adaptive step size function which 

determines the next step size. The algorithm is self-explanatory in figure 4.14b-d. 
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Figure 4.14b: Pseudo-code for the main function of the delta-harvesting heuristic 

Function Main () { 
1.Initialize: StepSize, TerrainBoundaries, CurrentRingBounds = {LeftBound, 
   RightBound, BottomBound, TopBound} 
2.For Each Iteration, k { 

a. Record Current Position in Cartesian Coordinate Form and Temperature of  
   sensor i: ],,[ k

i
k
i

k
i yx θ  

b.Compute previous change in position and temperature: ],,[ 111 −−− ΔΔΔ k
i

k
i

k
i yx θ  

= ],,[ k
i

k
i

k
i yx θ − ],,[ 111 −−− k

i
k
i

k
i yx θ  

c. If (k = 1) { 
i. Test the next move in the following anti-clockwise order: {Right, Top, Left, 

Bottom}, to check whether it is blocked by the TerrainBoundaries. Repeat 
this test until a successful direction is found. 

ii. Increase CurrentPosition and CurrentRingBounds by one StepSize in the 
direction of the successful move } 

d.Else { 
i. Initialise: nTry = 3, PreviousTryDirection = None, CurrentMoveDirection.

ii. Set PreviousDirection {Right, Top, Left, Bottom} based on ],[ 11 −− ΔΔ k
i

k
i yx .

iii. Compute new adaptive step size: ],[ k
i

k
i yx ΔΔ = AdaptiveStepSize ( 1−Δ k

ix , 
1−Δ k

iy , 1−Δ k
iθ ) 

iv. Call Function ExpandingRing ( k
ixΔ , k

iyΔ , TerrainBoundaries,  
   CurrentRingBounds, CurrentPosition, PreviousDirection,    
   PreviousTryDirection, nTry) }  

} (Next Iteration, k) 
} (End Function Main) 
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Figure 4.14c: Pseudo-code for the recursive function of the delta-harvesting 

heuristic 
 

 

 

 

 

 

Function ExpandingRing (Δx, Δy, TerrainBoundaries, CurrentRingBounds, 
CurrentPosition, CurrentTryDirection, PreviousTryDirection, nTry) { 
1. Choose the corresponding element from CurrentRingBounds to test depending 

on the PreviousDirection. (For eg., if PreviousDirection = Right, RightBound 
is chosen from CurrentRingBounds) 

2. TestPosition =  CurrentPosition + PreviousDirection × [Δx, Δy] 
3. If (TestPosition ≤ CurrentRingBounds) (Move Forward) { 

d.Return NewPosition = TestPosition }  
4. If (TestPosition > CurrentRingBounds) (We are blocked!) { 

a. If (nTry > 0) (We first try to spiral without expanding the ring boundaries by 
trying the other orthogonal directions) { 
i. Choose nextCurrentTryDirection from the following list in the anti-

clockwise order: {Right, Top, Left, Bottom}depending on the value of 
CurrentTryDirection. (For eg., if CurrentTryDirection = Right,  then 
nextCurrentTryDirection = Top).  

ii. Recursively Call Function ExpandingRing (Δx, Δy, TerrainBoundaries, 
   CurrentRingBounds, CurrentPosition, newCurrentTryDirection,  
   CurrentTryDirection, (nTry-1)) } 

b.Else (We have exhausted our try and is still block in the orthogonal directions, 
therefore we expand the ring boundaries) { 
i. Increase one of the elements in CurrentRingBounds either by Δx or Δy 

depending on PreviousDirection. (For eg., if PreviousDirection = Right, 
RightBound is chosen from CurrentRingBounds and new RightBound = 
RightBound + Δx). Denote this current element as testRingBound. 

ii. Also choose the elements in TerrainBoundaries depending on  
   PreviousDirection. Denote this current element as testTerrainBound. 

iii. Set NewPosition = TestPosition 
iv. If (testRingBound > testTerrainBound) { 

• Set testRingBound = testTerrainBound 
• Adjust NewPosition upto the terrain boundary limits } 

v. Return NewPosition } 
       } (End If Step 4) 

} (End Function ExpandingRing) 
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Figure 4.14d: Pseudo-code for the adaptive step size function of the delta-
harvesting heuristic 

 

In orbital-harvesting shown in figure 4.15a, the sensors orbit around heat 

sources by moving along the isotherms or contours. Again, we observe that sensor 2, 

4, 6 and 8 have been propelled towards the information fertile region during the 

cooperative phase. Note that Matlab has problems displaying the quivers. However, 

we can still observe the orbital band formed by the trajectories. The orbital band is 

shown as many small dots representing the positions of the sensors over time. It 

resembles the asteroid belt of the solar system.   

In the orbital-harvesting heuristic shown in figure 4.15b, the sensors compute 

the source direction and locked into the current temperature as the reference 

temperature. The source directions are estimated by the difference between the final 

and initial cooperative positions. The initial harvesting direction of the movement is 

Function AdaptiveStepSize (Δx, Δy, Δθ) { 
1.Initialize: maxStepSize, factor, nReduce, gradientthreshold 
2.minStepSize =  maxStepSize ÷ (factor)nReduce 
3.If (Δx ≠ 0) { 

a. Estimate  dθ/dx ≈ Δθ /Δx 
b.If (dθ/dx > gradientthreshold)  {  

i. Δx = Max ((Δx ÷ b), minStepSize) } 
c. If (dθ/dx < gradientthreshold)  {  

i. Δx = Min ((Δx × b), maxStepSize) }  
} 

4.If (Δy ≠ 0) { 
a. Estimate  dθ/dy ≈ Δθ /Δy 
b.If (dθ/dy > gradientthreshold)  {  

i. Δy = Max ((Δy ÷ b), minStepSize) } 
c. If (dθ/dx < gradientthreshold)  {  

i. Δy = Min ((Δy × b), maxStepSize) }  
} 

5.Return [Δx, Δy]  
} (End Function AdaptiveStepSize) 
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set perpendicular to the source direction. Ideally, we want the sensors to move 

perpendicular to the source direction all the time if the orbit is circular in shape. 

Since, in practical situations, the contours may come in any shape, we implement a 

self-correcting control loop to make our sensors adaptive. Essentially, after every 

small step, the sensor measures the current temperature. If the current temperature is 

greater than the reference temperature, it means that currently, it has deviated from 

the contour and is moving towards the source and vice versa. It will then adjust its 

current direction by an additional angle φ so as to maintain an approximate orbit.  

 

Figure 4.15a: The trajectory for the orbital-harvesting heuristic 

These constant adjustments result in the characteristic zigzag appearance. As a 

result, their trajectories create an uncertainty orbital band. The reason for the creation 

of the band is the same as the first reason for the delta-harvesting heuristic. That is, in 

reality, due to estimation and measurement errors, it is unlikely that we are exactly at 

the optimal positions.  Therefore, the orbital band increases the probability that the 

actual optimal positions are harvested. However, the main motivation for this 
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heuristic is to smooth out the distortion in the xy-plane which causes the reconstructed 

distribution to look pyramid-like.  

 

Figure 4.15b: Pseudo-code for the orbital-harvesting heuristic 

 

4.2.3 Tracking Mechanism 

We have incorporated a tracking mechanism in our algorithm. Consequently, 

our sensor has two states: Optimize and Track. There are three motivations behind 

the mechanism. First, although we have shown that the sensors at optimal positions 

are stable, the sizes of the surrounding convergence regions are determined solely by 

environmental parameters such as the intensity of the sources. It is desirable from the 

perspective of control that stability and speed of tracking is determined also by system 

parameters. Second, in reality, the hotpot may move anytime during optimization. 

Consequently, there is confusion among the sensors as some over-respond while 

others under-respond to the movement. In scenarios where many hotspots move in 

different directions and at different speeds, further confusion arises when the sensors 

Heuristic Orbital harvesting 
Initialize: Orbiting direction = Rotate 90 degree from source direction, 
Stepsize, φ 
1. Compute: source direction = Final cooperative position – Initial cooperative 

position 
2. Set Reference Temperature = Final cooperative measurement  // We will 

lock into this temperature when moving 
For each iteration 
3. If (current Temperature < Reference Temperature) // We are deviating too 

far away from the source direction 
a. Rotate current orbiting direction by φ towards source direction 
b. Move in current orbiting direction by stepsize 

4. Else // We are deviating too close to the source direction 
a. Rotate current orbiting direction by φ away from the source direction 
b. Move in current orbiting direction by stepsize 

End 
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have to decide on which hotspots to follow. Third, the movement of the hotspot may 

result in some variation of intensity of the source, for example, if the source is a fire.  

We make two assumptions. First, the generation of hotspots over time is rare 

or accompanied by extinguishing of hotspots. This is because constant generation will 

eventually deplete the sensors allocated to track them. Second, the hotspots move 

within the terrain in random manner and stop so that optimization can resume. This is 

a valid assumption because in reality, when we are monitoring forest fires or 

underwater toxic leakage from sunken containers, it is unlikely that they have large 

constant movements. They are more likely to be jittery in the random manner around 

the locality. The dynamic clustering, tracking and state transitions of the algorithm are 

discussed in the subsections. Finally, although the concept of dynamic clustering is 

used by static sensor networks to track discrete targets [9], our novelty is in its use in 

mobile sensor networks to track distributions that are continuous in space.  

4.2.3.1 Dynamic Clustering 

The sensors start at the Optimize state and the same dissemination mechanism 

used in figure 4.10a-b is leveraged on to perform dynamic clustering simultaneously 

with the optimization. The main idea is to have the sensors clustered around the 

individual hotspots based on their proximity to the hotspots. The cluster formation 

begins with the election of the cluster-head based on the lowest sensor id. The criteria 

for the choice of the cluster-head is that it must be a local maximum w.r.t. its 

neighbors. The local maximum is close to the actual peak of the hotspot and the most 

prominent landmark that is robust to intensity variation of the source. The cluster-

head id is used as the cluster id for the members to identify with.  

 

Figure 4.16a: Format of communication packet 
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Figure 4.16a shows the format of the communication packets. State indicates 

the state of the sender. NosInfo indicates the number of state information transmitted 

in the variable size packet. ClusterID indicates the current cluster that the sender 

belongs to. LMFlag indicates whether the state information of a local maximum is 

transmitted. If LMFlag=1, the state information of the local maximum is always 

appended as the last information in the transmitted packet. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16b: Dynamic clustering algorithm 

 

The clustering algorithm is shown in figure 4.16b. Sensor i first checks 

whether its current temperature, θi is above the ambient temperature threshold, 

AmbientThreshold. If (θi ≤ AmbientThreshold), it is far from the hotspots and will 

remain in sentry position for sensing coverage. This is to cater for the contingency of 

spontaneous generation of new hotspots in the locality. Otherwise, it collects potential 

If (θi > AmbientThreshold) 
1.Perform Clusters Collection: ClustersArray. 

First Pass: Elect Tentative New Cluster-Heads  
a. Construct LDM from the primary and secondary state information obtained 

from the received packets.  
b.For Each Sensor  in LDM 

i. If (Local Maximum w.r.t. adjacent neigbors) store the sensor id and its 
state information into ClustersArray 

    Next Sensor 
    Second Pass: Collect Existing Cluster-Heads  

a. If (it is a member of existing cluster) insert cluster id and state information of 
local maximum that it is tracking into ClustersArray. 

b.For Each Packet with(LMFlag=1) 
i. Store the sensor id and state information of the last appended information 

in the packet into ClustersArray. 
Next Packet 

   Third Pass: Merge Same Clusters 
a. Scan ClustersArray for clusters tracking the same local maximums − those 

with same state information. Only the smallest cluster id is retained in 
ClustersArray, the others are removed. 

2.Choose the nearest cluster in ClustersArray to join. 
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new clusters and existing clusters from the information in the received packets into 

ClusterArray. It then joins the nearest tracking cluster. Merging of clusters is required 

because due to the delayed dissemination of the packets that are more than one hop 

away, it is possible for new clusters to form around a local maximum that is tracked 

by existing clusters during transience. 

4.2.3.2 Transition from Optimize to Track state 

Once a cluster is formed around a local maximum, the tracking operation is 

essentially a re-centering operation except for the case of crossover of multiple 

hotspots which will be discussed later. There are two conditions for transition. A 

normal condition occurs when the cluster-head discovers that it is no longer a local 

maximum, that is, the peak has shifted. It sets its state to Track and informs its 

member by sending the packet as follows: State=Track, NosInfo=1, 

ClusterID=SenderID, LMFlag=0. Upon receiving this packet, each member sets its 

state to Track, pauses optimization and detects whether it is a local maximum.  If it is 

a local maximum and previously it is not, it sends the packet as follows: 

State=Track, NosInfo=1, ClusterID= CurrentClusterID, LMFlag=1 appending its 

state information. Otherwise, it disseminates the received packet. Note that it only 

disseminates on condition that its current cluster ID is the same as ClusterID in the 

packet and its original state is Optimize. Therefore, total message overhead is O(Nc) 

where Nc is the number of members in a cluster. The special condition occurs if there 

is a blind spot problem. 

A blind spot problem occurs when a small hotspot hides in between the 

sensors. It may occur in the initial stage of optimization and lead to sluggish sensor 

movements because of small temperature variations. This is detected by examining 

the temperature of the local maximum. If the temperature is below or equal to 
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AmbientThreshold defined in section 4.2.3.1, the special condition is triggered and the 

problem is handled by the algorithm in section 4.2.3.4. 

4.2.3.3 Behavior at Track state 

In Track state, each member concurrently detects for the local maximum and 

monitors for received packets. When a member detects that it is a local maximum and 

previously it is not, it sends a packet as follows: State=Track, NosInfo=1, ClusterID 

= CurrentClusterID, LMFlag=1 with its state information. Upon receiving a packet, 

other members perform tracking shown in figure 4.17. 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Tracking algorithm 
 

The Clusters Collection procedure in step 2a is similar to step 1 of figure 

4.16b except that now only the most updated packet based on timestamp is used to 

track the current position of the local maximum. Step 2b causes the members to 

perform a mathematical translation parallel to each other, as a result, the relative 

positions of the members remain unchanged and optimization can resume after 

tracking ends.  

1.If (θi  ≤ AmbientThreshold) De-join the cluster, return to Sentry Position and 
Set State = Optimize. 

2.Else  
a. Perform Clusters Collection with timestamp filtering: ClustersArray. 
b.Compute change of position, Δpi

(k) w.r.t. the position of cluster-head, ptrack
(k) 

based on the position of the local maximum, plm
(k)  for each element in 

ClustersArray: Δpi
(k) = plm

(k) − ptrack
(k). 

c. Select the element with the smallest , Δpi
(k). 

d.If (Δpi
(k)  violates maximum cooperative constraint) De-join the cluster, return 

to Sentry Position and Set State = Optimize. 
e. Otherwise 
i. Perform the Move. 

ii. If (New Position is Local Minimum) Transmit Packet as: State= Track, 
NosInfo=1, ClusterID=CurrentClusterID, LMFlag=1. 

iii. Else retransmit the packet containing the local maximum. 
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Three exceptional conditions are handled in figure 4.17. In the context of our 

application where we foresee no large movements in the sources, the exceptional 

conditions are rare events which are incorporated into our algorithm for contingency 

purposes. The first two exceptional conditions (step 1 and 2d) cause sensor i to de-

join the cluster, return to its sentry position which is the initial position and transit to 

Optimize state. They are for the same purpose of maintaining minimal sensing 

coverage for spontaneous events discussed in section 4.2.1.2. Additionally, step 2d 

prevents the sensors from performing the energy inefficient wild goose chase, the 

sensors return to their initial sentry positions once they move beyond the maximum 

radius mentioned in section 4.2.1.2 on cooperative constraints.  

In figure 4.18, we illustrate the unstable condition that leads to loss of sensing 

coverage if we do not impose a maximum cooperative constraint radius mentioned in 

section 4.2.1.2 and allow the sensors to perform wild goose chases. Initially, the 

sensors are well spread out (Figure 4.18a). Later, they cluster around the hotspot at 

the top region which starts to move downwards (Figure 4.18b). Without imposing the 

maximum radius, it will lead to a collapsing cluster with loss of coverage as shown in 

figure 4.18c as the sensors chase after the hotspot. In figure 4.18d, with the 

cooperative constraint in place, the sensors at the top region do not follow the hotspot 

once it moves out of range. Instead, they return to their original sentry positions. 

 

Figure 4.18:  Stability condition during tracking 
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Figure 4.19: Crossover condition of hotspots and handover effect of tracking 
algorithm 

 

Step 2c handles the third exceptional condition known as the crossover 

problem. In the crossover problem, two or more hotspots move towards each other 

and momentarily coalesce as illustrated in figure 4.19a-b. Afterwards, they separate 

and continue moving as illustrated in figure 4.19c. Consequently, the trackers are 

confused on which hotspots they initially track. In our algorithm, the cluster chooses 

the hotspot that is currently nearest to the position of the cluster-head regardless of 
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which hotspot the cluster initially tracks, that is, the smallest Δpi
(k).  This creates a 

handover effect (Figure 4.19c) where the cluster handovers the hotspot that is moving 

away from the sentry positions of the members towards the maximum radii and 

receives the hotpot that is moving towards their sentry positions. One benefit is that it 

reduces the likelihood of cooperative constraint violations.  

These exceptional conditions may prolong the optimization depending on the 

stage of optimization in exchange for the benefit of sensing coverage and stability 

when the cluster resumes optimization. This is because some sensors that are 

originally converging towards their optimal positions may be reset to their sentry 

positions. Therefore, the optimization now begins at an earlier stage. Finally, sensor i 

only disseminates the received packet once when it starts to move. If it has moved and 

later, it receives the same packet again, it does not disseminate. Therefore, total 

message overhead is again, O(Nc). 

4.2.3.4 Transition from Track to Optimize state 

A cluster-head initiates a normal transition to Optimize state when it is 

currently a local maximum and duration, TimeLimit has elapsed without further 

change. At this stage, the blind spot problem where the source is hiding between the 

sparsely distributed sensors adjacent to the cluster-head may occur (see Figure 4.20).  

In reality, it is unlikely that the hotspot is undetectable, as the heat of the 

source permeates through space. Thus, there is always small temperature variation 

that is sufficient to be detected by a modern electronic thermometer with temperature 

sensitivity of around 1°C. However, small temperature variations lead to slow 

responses during optimization. This is improved by first locating the source of the 

hotspot. The resultant increase in magnitude of the gradient will hasten the response.  
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Figure 4.20: Blind spot problem 
 

In figure 4.20, we illustrate the blind spot problem. If we are to construct a 

Local Delaunay Map (LDM) over the cluster, the location of the source can be 

narrowed to triangle Tab which has the cluster-head as one of the vertices. This is 

because we can test it by summing up the temperatures at the vertices of the triangle 

for all the triangles with the cluster-head as one of the vertices. The source will be 

located in the triangle with the greatest sum. We can narrow down the position of the 

source by taking the weighted centroid of the triangle using the temperatures as the 

weights. This is because the source should be nearer to the vertices with higher 

temperatures. This method for locating the initial search position is used in our 

algorithm for the cluster-head to search for the peak in figure 4.21.  

Once an initial value for the search is computed, the cluster-head can move to 

this position. Using the stationary sensors: a and b as two neighbors and its previous 

position at T as the third virtual neighbor, it performs a rapid modified cooperative 

optimization inside triangle Tab. The cluster-head is silent until the search is 

completed since it is energy-inefficient for its members to move together. Once the 

center of the source is located, the cluster-head transmits one final packet to inform 
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others the location of the center and set its state to Optimize. Upon receiving this 

packet, the members make one final translational moves, set their states to Optimize 

and resume optimization. As in section 4.2.3.2, they only disseminate the received 

packets if their original states are still Track and not yet transit to Optimize. 

 

 

 

 

 

 

 

Figure 4.21: Cluster-head peak search algorithm 

4.2.3.5 Stability of Tracking Mechanism 

We now briefly discuss the stability of the tracking mechanism. The detailed 

derivation and analysis are given in appendix E. Let the maximum speeds of the 

hotspot and the sensor be: Vh, Vs, respectively. Let the total delay in the response of 

the sensor be T0. It is shown in appendix E that the maximum separation, σmax 

between the centers of the tracking cluster and the hotspot is bounded by: 

σmax = T0Vh  ÷ (1 − VhVs
−1)         (4.10a) 

The total delay is given as: 

T0 = Tθ  + NhopsTcomm        (4.10b) 

Where, Nhops is the maximum number of communication hops in the networks, 

Tθ is the measurement delay and Tcomm is the communication delay. Tθ is determined 

from the specification of the thermometer. A fast electronic thermometer has a delay 

1.Construct the LDM from the positions of Network Neighbors and own 
position, pi

(k) =  (xi
(k), yi

(k)). 
2.Search the adjacent triangles (Those with one of the vertices as pi

(k)) to locate 
the triangle which the sum of the temperatures at its vertices is the largest, Δmax. 
The hotspot is hiding inside this triangle. 

3.Compute initial search position as the weighted centroid of Δmax with vertices j 
= 1, 2, 3 as: pi

(k+1) = (Σθ j
 (k) pj

(k))÷ Σθ j
(k) 

4.Perform cooperative search using (4.3)-(4.7) by setting the vertices j of Δmax as 
the fixed surrounding neighbors and a fixed ugoal = [0 0] (a local maximum is a 
stationary point with zero gradient). 

5.Set its state=Optimize and transmit packet: State=Optimize, NosInfo=1, 
ClusterID=SensorID, LMFlag=1 appending its current state information. 
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that is less than 1 s. Tcomm is given as: Tcomm =  P ÷ Sdata where P is the packet length in 

bits and Sdata is the the data throughput per node. Sdata [see List of Publications: P2, 

P3] [94] is affected by channel conditions such as: noise, fading, shadowing, the 

MAC protocol used, data traffic load, maximum communication rate, etc.  

Therefore, the tracking mechanism is stable as long as Vs > Vh. Furthermore, 

as Vh increases and approaches Vs, σmax also increases. 

4.2.4 Our Research Contributions 

In this subsection, we summarize our five research contributions highlighted 

in section 4.2 during the detailed description of our algorithm. 

In adapting the independent pseudo-Newtonian method to our problem, we 

encounter several problems which lead to our contributions. 

First, optimal placements require the sensors to spread out and position 

themselves in areas of high curvature where the gradients have different values. 

Independent Newtonian methods search for a fixed goal–positions of zero gradients. 

Even if we assume that we can know the values of the gradients to search for in 

advance and modify the independent methods to handle fixed non-zero gradients, the 

sensors using the independent methods still cannot spread out properly as they tend to 

overlap each other in their search and end up chasing after same few goals. Therefore, 

we introduce a novel improvement on the method where the search for positions of 

high curvature is adaptive and cooperative. It is cooperative because the current 

position of the sensor is also influenced by the current state information of the 

neighbors. Consequently, the sensors are better spread out while optimizing and there 

are no chasings after the same goals among the sensors.  

Second, independent pseudo-Newton methods perform badly in harsh 

environments because of estimation errors incurred due to localization noise. This is 
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exacerbated by the accumulation of past errors in the computations which causes the 

sensors to persist in the erroneous directions even though current estimates are 

accurate until the influence of past information has faded in the computations. 

Therefore, we introduce the memory-less local RBF interpolation [21][22] to estimate 

the gradient and hessian values. This is to eliminate the adverse memory effect in 

harsh environments.  

Third, the initial value problem in independent optimizations in which the rate 

and probability of convergence are dependent on the initial position is more severe for 

our application. This is because we cannot make a good starting guess for the initial 

positions of the sensors as we have no advance knowledge of the actual distribution. 

Therefore, we develop a dissemination mechanism to mitigate the initial value 

problem. 

Fourth, the fixed line search used by some independent methods such as 

BFGS to stabilize the search is inefficient as it introduces rigidity in the search. In a 

line search approach, after a direction is determined, the search is conducted along the 

straight line until a local minimum or maximum point is located. Only then will there 

be a change of direction. Therefore, we develop the concept of orientation 

stabilization in which the stabilized direction is adaptive to current states of the 

neighbors and may vary from one iterative step to another. 

Finally, our fifth contribution is from the development of a robust tracking 

mechanism for our algorithm, we contribute by applying the principle of dynamic 

clustering onto mobile sensor networks for tracking the continuous distribution. 

Dynamic clustering is previously used in static sensor network to track discrete targets 

[9]. 
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4.3 Theoretical perspective on our design 

In analyzing and improving the design of our cooperative algorithm, we look 

at our problem from two different theoretical perspectives. 

In the microscopic perspective, we view our problem as individual sensors 

attempting to maximize their metrics when they have only partial knowledge in a 

cooperative setting. In game theory and related theories in philosophy and sociology 

such as spontaneous order and social contract theories, one approach to achieve order 

or global stability is by ensuring that individual agents adhere to certain common 

rules. Our use of orientation stabilization to restraint the movements of individual 

sensors in order to achieve orderly behaviors at the global systemic level can be seen 

as the application of such a bottom-up approach. This approach has the advantage that 

it can be implemented in a distributed algorithm. To digress, it is interesting to note 

that many social animals and insects also appear to use this approach in achieving 

order. Spontaneous order theory also seems to provide an interesting explanation for 

swarm intelligence. It is through these views that we see the important role of 

information, both in providing global stability and improving the optimality. Both the 

use of orientation stabilization which steers the sensor more towards the neighbors 

that have higher information content and information dissemination can be seen as our 

strategies to improve the knowledge of the individual sensors on their surroundings. 

In the macroscopic perspective, we look at the collective behavior of the 

whole group in response to external stimuli. Our cooperative sensor group is 

analogous to a mechanical system where many individual metal balls are coupled 

together by metal springs. In our context, the couplings refer to the communication 

channels that the sensors have with each other. While these couplings are where the 

cooperative shared information is transmitted, it is also through these couplings that 
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local instabilities can propagate and negatively affect the overall performance of our 

sensor harvesting group. This form of instability occurs when the energy consumption 

of the sensor is translated to useless oscillation or agitation. From control theory, we 

are made aware of the presence of a finite Lyapunov’s stability limit in all constrained 

dynamic systems. At a systemic level, we can view these as the natural behavior of 

the system as we gradually drive or load the system toward its stability limit. It is 

usually observed as a deterioration of performance in the system when we 

increasingly load the system.  

To reconcile the later perspective with the former one, our simulation study 

suggests that the stability limit is affected by the availability of quality information to 

the sensors as a whole. By quality, we refer to all three aspects of information as 

discussed in section 4.1.3. This stems from the observation that after the 

implementation of the information dissemination block in the main algorithm, there is 

a decrease in the oscillations of the sensors and simultaneous increase in 

responsiveness and more accurate forward movements among the sensors. In other 

words, the performance has improved because at the systemic level, the energy 

consumption is now converted to actual work done in the system.  

 

4.4 Conclusion 

In this chapter, we discuss our novel two-phase cooperative optimal harvesting 

algorithm that attacks the problem from the source, by mobilizing the sensors to 

harvest data with high information content through optimal placements of sensors. In 

the overview, we explain generally the three possible structures: coordination (or 

centralized control), independence (or distributed control) and cooperative (or 

distributed control with cooperative shared information), to organize our mobile 
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sensors and how it affects the design of our algorithm. The motion control and 

information processing aspects of the algorithm are also discussed.  

Next, we elaborate in detail the two phases of our optimization algorithm: 

cooperative and independence phases and the tracking mechanism. In the cooperative 

phase, our novel approach is to introduce cooperation into the pseudo-Newton method 

and adapt the method to propel the sensors rapidly into the optimal positions. In the 

independence phase, we develop two alternative versions of independent heuristics: 

delta and orbital-harvesting. We also develop a novel tracking mechanism that uses 

dynamic clustering of mobile sensors to track continuous distributions. The stability 

of our optimization and tracking mechanisms is then theoretically analyzed. 

Furthermore, we examine and discuss briefly the design of our algorithm from the 

theoretical perspectives.  

Finally, our five research contributions, we have adopted: adaptive 

cooperative search goals in optimization, local RBF interpolation in estimations, 

dissemination to mitigate the initial value problem, the concept of orientation 

stabilization to provide adaptive stabilized search direction and the principle of 

dynamic clustering onto mobile sensor networks for robust tracking of continuous 

distribution. 
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Chapter 5: Performance Studies 
 

 

In this chapter, we examine the performance of our cooperative algorithm 

using simulations. The comparative study with mobile sensor networks using other 

algorithms will be based on two metrics: relative global error and total energy 

consumption per sensor. The comparative study with static sensor network is based on 

resource utilization efficiency. In section 5.1, we present the overview where the 

followings are discussed: setup, assumptions, parameters and metrics used in the 

simulations. In section 5.2, we present the results of our comparative study with 

mobile sensor networks using other algorithms and static sensor networks. In section 

5.3, we present a more focused study on the optimization and tracking stability of our 

algorithm. In section 5.4, we examine the effect of non-ideal communication channels 

on the performance. Finally, in section 5.5, we conclude the chapter.  

5.1 General Overview 

In this section, we discuss the followings: setup, assumptions, parameters and 

metrics used in the simulations. 

5.1.1 Simulation Setup 

Altogether nine simulation scenarios grouped into three cases are simulated: 

hills and valleys with irregular shapes and sizes (Figure 5.1), sparse terrains with four 

hotspots (Figure 5.2) and sparse terrains with eight hotspots (Figure 5.3).  Figure 5.2-

5.3 are used for more controlled simulations in order for us to better understand the 

stability of our algorithm. Furthermore, the sparseness of the terrains is used to 

demonstrate the ability of the sensors to cooperatively locate the hotspots through 
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information dissemination and orientation stabilization. We have also hidden some 

hotspots in the blind spots of the network to test the ability of the sensors to locate the 

hotspots. 

 

Figure 5.1: Scenarios with hills and valleys of irregular shapes 
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Figure 5.2: Scenarios with 4 hotspots 
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Figure 5.3: Scenarios with 8 hotspots 
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Two versions of our cooperative algorithms described in chapter 4 are 

simulated: Cooperative-Delta and Cooperative-Orbital. Furthermore, in order for us to 

understand the benefit of the second independence harvesting phase, we develop a 

pure cooperative version where the second independence harvesting phase is omitted 

for comparison purpose. There are two versions of this pure cooperative version. In 

the practical version, we have no advance knowledge of the distribution. Therefore, 

the gradient and hessian are estimated using (4.4) in chapter 4. In the ideal version, 

the sensors have complete knowledge of the distribution. The gradient and hessian are 

computed directly from the distribution without estimation error. Therefore, this 

would represent the lower bound for our pure cooperative algorithm. 

We examine the relative performance of mobile sensors using our cooperative 

algorithm w.r.t. those deployed in EDG and using the following independent methods: 

RWM, BFGS and our independent delta harvesting heuristic.  

In RWM, the sensors randomly select a speed uniformly distributed between 0 

and Vmax m/s and a direction uniformly distributed between 0 and 360°. The 

movements of the sensors are confined within circular regions centered at the initial 

EDG positions. The confinement is to simulate the cooperative constraints mentioned 

in chapter 4, section 4.2.1.2. This is to simulate the worst case scenario of the 

algorithm where no information is acquired by the sensors.  

Also, we modify an independent Pseudo-Newton algorithm using BFGS to 

accept a fixed non-zero gradient as a search goal. The goals for the sensors are 

obtained by running the ideal cooperative algorithm and computing the gradients at 

the optimal positions at the 20th iterative step. Furthermore, BFGS requires the current 

gradient as the input to calculate the hessian. Like the pure cooperative version of our 

algorithm, we have two versions. In the ideal version, the current gradient is 
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computed from the actual distribution. In the practical version, the current gradient is 

estimated using a five-point stencil maneuver shown in figure 5.4.  

 

Figure 5.4: Five-point stencil maneuver 

 

In figure 5.4, the actual destination of the sensor is shown as location 5. Prior 

to reaching location 5, the sensor has to stop at location 1 to 4 to perform 

measurements. The current gradient is then computed using numerical differentiation 

[92]. To be accurate in the estimation of current gradient without interpolations, we 

want location 1-4 to be as near as possible to the center location 5. This is limited by 

the position accuracy, εp. As the sensor does not travel in a straight path from location 

1 to 5 and instead takes a longer path, there is an increase in energy consumption as 

well as a decrease in effective speed. Furthermore, five measurements are required per 

iteration. Therefore, the measurement delay is increased by a factor of five. 

Nevertheless, we will ignore the delay for conservative performance studies. 

 The independent delta heuristic described in figure 4.11b-d, chapter 4 can be 

used alone. Therefore, we use it as one of the independent methods for comparison 

purpose. Figure 5.5 illustrates the trajectories of the sensors executing the algorithm 
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for a simple scenario where there is one hotspot and nine sensors. The delta-

harvesting heuristic has a simple discrete type of adaptive mechanism where as long 

as the gradient is above a certain threshold, it will continuously reduce its speed by 

half up to a maximum of three times and vice versa. The direction is also constrained 

to spiral outwards to prevent directional instability and to ensure that the region near 

the sensor is explored thoroughly first before venturing further.  Notice that all the 

sensors harvest data by spiraling outwards. The nodes at the boundaries are confined 

to move within the boundaries. Once the sensors touch the boundaries, they are 

reflected back into the terrain of interest. Also, the sensors in the boundaries move 

faster than node 5 at the center as they are in the localities that have essentially flat 

temperature gradients, indicating that they are far from information fertile region.  

 

Figure 5.5: Trajectory plot of 9 sensors using the independent delta-heuristic 
 

Comparing with the trajectories of the sensors using the cooperative-delta 

algorithm in figure 4.11a, chapter 4, we observe that the main difference is that there 

is no cooperative phase to propel the sensors towards the information fertile region. A 
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second difference is that we set the maximum speed of the independence phase by 

half in cooperative-delta algorithm to conserve energy. 

Our simulation is done using Matlab. For fair comparison, the same cubic 

spline interpolation available in Matlab is used to reconstruct the distributions from 

the data harvested by the various algorithms. The interpolation function provides a 

simple localization noise filtering by averaging. 

Finally, we consider a common initial setup where we have four small groups 

of 25 sensors distributed over four quadrants of the terrain. Each group has its own 

coordinator and executes their harvesting tasks in isolation from each other. There is 

no sharing of cooperative state information between the four groups. This is to 

simulate actual deployments. For the stability study, we also examine an initial setup 

where we have 100 sensors equally distributed in the square terrain. In this setup, we 

assume that there is only one coordinator. The purpose is to examine the effect of 

dividing one large group into four smaller groups on the overall performance for the 

cooperative algorithms.  

5.1.2 Assumptions 

The followings are the assumptions used in our simulations. 

First, for fair comparison with our cooperative network, the sensors start 

initially with EDG positions. The assumption is that all mobile sensors would have 

executed any one of the maximal coverage algorithms [15]-[18]. Note that by 

assuming that the mobile network is equally distributed, our estimate on the relative 

performance is conservative. This is because this is the best that a non-adaptive 

mobile sensor network can achieve in real life as explained in chapter 4, section 

4.2.1.5.  
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Second, there is sufficient memory for the sensors to remember the previous 

measurements. All the memories collected will be used for the reconstruction of the 

distribution. We will assume that the distribution is stationary to ignore the need to 

expire outdated data in the memory. This will not lead to unfair comparisons as the 

same assumption is used for all algorithms. The main reason is that past information 

is essential for independent algorithms to both ensure the consistency of their 

performance and improve their performance. This is especially true for the RWM and 

independent delta harvesting heuristic. As an example for the independent delta 

harvesting heuristic in figure 5.6, sensor 6 is moving away from the hotspot after 

entering it. If we use only the current measurements of all the sensors to construct the 

distribution for the scenario in figure 5.6, it will lead to the impression that the 

independent algorithm has erratic and poor performance. In practical situations, even 

if the hotspot does move, it will move very slowly. If the expiration of data is 

required, it can be implemented using any number of expiration techniques, for 

example, using a FIFO queue of a certain length in which old data can be gradually 

pushed out of the queue. 

Third, there is a networking or dissemination mechanism to send the data of 

the sensors to a final sink node for reconstruction. We will assume that each cluster-

head aggregates the information of the sensors at a fixed interval and sends via multi-

hop communications to the final sink node. This approach aligns well with the greater 

scheme discussed in chapter 1, section 1.1. Furthermore, our analysis in chapter 3, 

section 3.2, shows that the best approach to organize the communications used to 

facilitate the harvesting task is to have more intra-group communications and 

minimum inter-group communications. This is consistent with theoretical results 

reported in the literature such as [69].  
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Fourth, the mobile sensor is able to obtain its position with higher accuracy 

than the static sensor through robotic localization. This is because unlike static 

sensors, mobile sensors can use heterogeneous fusion of measurements (odometry, 

sonar and laser scanners, etc) to improve the accuracy of its position as mentioned in 

chapter 1, section 1.4. Particularly, in [90] published in year 1999, an accuracy of less 

than 5 cm has already been reported from actual mobile robot experiments. For static 

sensors, [66] published in year 2005 obtained an accuracy of 9 cm for simulation 

results and 2.27m for experimental results which is two orders of magnitude worst 

than the accuracy reported in robotic localization. Hence, in reality, the performance 

of the static sensor network will be much worse. Nevertheless, in our simulation, we 

use an accuracy of 1 m for all mobile sensor networks in consideration of harsh 

environments. 

5.1.3 Metrics 

We use two metrics in our performance studies: relative global error and total 

energy consumption per sensor.  

The relative global error provides the quantitative measure of the total 

distortion in the distribution. It is expressed as a percentage. Let θ(x,y) and ),,(ˆ kyxθ  

represent the actual distribution and interpolated bi-variate distribution at the kth 

iteration respectively. Let h be the step size used in the error computations. Let xmax 

and ymax be the maximum values of the x and y coordinates of the terrain. Also, 

m=xmax/h, n=ymax/h. The relative global error in the kth iteration, ξ(k) is computed as: 
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  We compute the total energy consumption per sensor in joules using a linear 

energy consumption model. This metric is used to demonstrate that cooperative 

algorithms consume far lesser energy than independent algorithms. We assume that 

all sensors are of the same weight of one kilogram. Note that since we are interested 

in the relative performance, the actual weight or energy unit is not of significant 

concern. In our energy consumption model, we assume that the sensors are moving 

along a fairly leveled ground with only the frictional forces to overcome. We also 

assume that the air resistance is negligible due to the low speed and small footprint of 

the sensors. The total energy consumption at the kth iteration is given in (5.2). The 

constants introduced in the equation are: uf which is the coefficient of friction, the 

smaller the value of uf , the less energy is consumed, a typical value for uf is 0.1. ms is 

the mass of the sensor and g is the gravitational acceleration which has the value of 10 

m/s2. dn(t) is the distance travelled in the time interval between (t−1)th and tth iteration. 

As communications consume energy in magnitude of microjoules [94], it is ignored. 

The total energy consumption per sensor in joules (J), E(k) is given as: 
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 As an extra note, this model gives a more conservative estimate in the relative 

performance gain of our cooperative algorithms for two practical reasons. First, in 

practical situations, the battery provides the energy for the mobile sensor. This battery 

occupied a significant proportion of the body weight of the sensors. The more energy 

the sensor needs, the heavier will be the sensor. As a result, we need even more 

batteries (or equivalently, energy) just to carry the extra burden generated. In other 

words, the energy consumption is significantly higher and non-linear in practical 

situations because our model does not account for the extra increase in the weight of 
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the batteries when the energy consumption increases. Second, if we examine the 

trajectory plot of the independent delta-harvesting heuristic in figure 5.5, most of the 

time, the sensors are travelling at maximum speed. In practical situations where air 

and especially water resistances are not negligible. The additional energy 

consumption required to overcome the resistances are proportional to the squared or 

even cubed of the speed, depending on the empirical models used. Therefore, the 

practical energy consumption of the independent algorithms is much higher than 

cooperative algorithms then suggested in (5.2). 

5.1.4 Simulation Parameters 

The values of parameters used for our simulation is listed in table 5.1. 

 

Table 5.1: Values of the parameters for the performance studies 

Parameter Value 
Number of Runs 20 
Dimension of Terrain 205 × 205 m2 
Number of Sensors, Ns 100 
Constrained Radius 40 m 
Maximum Speed of Sensor, Vs 10 m/s 
Duration of 1 Iterative Step 1 s 
Radial Basis Function constant, σ 100 
Mean Location Accuracy, εp 1 m 
Temperature Accuracy, εθ 1 °C 
Error Computation Step Size, h 2.5 m 
Coefficient of friction, uf 0.1 
Weight of the Sensor, msg 1 kg × 10 m/s2 

Coordination – nos_of_sensors_threshold  85% 
Maximum Harvesting Speed at Independence Phase 5 m/s 
Delta-Harvesting – GradientThreshold  10 °C /m 
Cooperative-Delta – Maximum Harvesting Radius 25 m 
Cooperative-Delta – no gradient detected stop radius 12.5 m 
Cooperative-Orbital – Angle of Deviation, φ ±15° 
Tracking – Measurement Delay, Tθ  1 s 
Tracking – AmbientThreshold  35 °C 
Tracking – Communication Delay, Tcomm  0.1 s 
Tracking – TimeLimit  1 s 
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5.2 Comparative Study 

In this section, we first examine the relative average performance in terms of 

relative global error and total energy consumption per sensor of mobile sensors using 

three different versions of our cooperative algorithms: Cooperative, Cooperative-

Delta and Cooperative-Orbital with mobile sensors deployed in EDG and those using 

the independent algorithms: RWM, BFGS, and our delta-harvesting. Next, we 

examine the relative average performance of the mobile sensors using the 

abovementioned harvesting algorithms w.r.t. a static sensor network in terms of 

resource utilization efficiency.  

5.2.1 Relative Performance with Mobile Sensor Networks using 

different harvesting algorithms 

 

Figure 5.6a: Relative global errors for the different algorithms for the 9 
scenarios 
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Figure 5.6a-b examine the average relative global error and total energy 

consumption per sensor. The plots are obtained by taking the average performance 

over all the nine scenarios. As can be seen from figure 5.6a, our approximate upper 

bound, ξub in (4.12), chapter 4, for 40 iterations is tight.  

 

Figure 5.6b: Total energy consumption per sensor for the different algorithms 
for the 9 scenarios 

 

First, we examine the performance of RWM. In figure 5.6a, we see that RWM 

is slow, especially beyond the 10th iterative step. In general, sensors moving with 

random mobility models tend to cluster near the centers of the circular regions. Over 

time, the sensors tend to repeatedly harvest data points that they have harvested 

previously around the same locality. As a result, their performance diminishes rapidly 

over each iterative step. Moreover, in scenarios from figure 5.2-5.3 where there are 

sparse regions, there are sensors that harvest data of low information content. In 



 

 142

figure 5.6b, the average total energy consumption of RWM increases linearly. In fact, 

the analytical average total energy consumption per sensor at the kth iterative step, 

ξ(k) can be obtained trivially by observing that the average speed of the sensor is 5 

m/s for each step for all scenarios. This is because their mobility is not dependent or 

adaptive to the environment. 

Second, we examine both the ideal and practical versions of BFGS in figure 

5.6a. BFGS is generally slow and only the ideal BFGS performs slightly better than 

RWM. The slow performance of the ideal BFGS is because of the followings. First, 

the hessian is estimated from current and past gradients. Thus, it has a warm up time 

before it acquires enough past gradients of high information content. Second, a fixed 

line search is used for stability which constrains the movement to a straight line 

inefficiently for a period of time. This is especially true when the search direction is at 

an angle from the goal. Third, as there is no communications, in some runs, in regions 

where optimal positions are near and their gradients have approximately the same 

value, the sensors ended up chasing after the same search goals. In addition to the 

general problems of BFGS, the poor performance of the practical BFGS is also caused 

by the followings. First, the five-point stencil maneuver in each step reduces the 

effective speed of the sensor, slowing the algorithm further. Second, due to the 

memory effect, the estimation error of the gradient in each step accumulates in the 

estimation of hessian. From figure 5.6a, this memory effect causes the practical BFGS 

to perform worse than the memory-less RWM when εp = 1 m. Thus, we infer that the 

use of past information is infeasible for BFGS in a harsh environment. In figure 5.6b, 

we noted that practical BFGS consumes the most energy. This is because the five-

point stencil maneuver consumes energy. We clearly see that the extra energy effort 

and delay incurred in taking the extra measurements are ineffective in improving the 
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performance w.r.t. RWM. We expect the BFGS to be even slower in a realistic 

environment as we have ignored the measurement delay in our simulation. 

Third, we examine the independent delta-harvesting heuristic without the 

cooperative phase (labeled as Delta) in figure 5.6a. Although it is simpler than BFGS, 

it outperforms BFGS. It even outperforms both the pure cooperative and cooperative-

delta algorithms towards the final stage. Note that pure cooperative algorithm is still 

faster than the independent delta-harvesting heuristic before the 12th iterative step. 

However, after the 12th iterative step, sensors using the independent delta heuristic 

can continuously reduce the global error because those using the pure cooperative 

algorithm are locked into the optimal positions. For the cooperative-delta algorithm, it 

outperforms the independent delta-harvesting heuristic up to 24th iterative step. This is 

because, in the interval between the 12th and 24th iterative step, the cooperative-delta 

has a head-start in using the delta-harvesting heuristic to harvest the data in the 

information fertile region as the sensors are propelled into this region at around the 

12th iterative step. Beyond, the 24th iterative step, the independent delta-harvesting 

heuristic, which is moving at twice the maximum speed of cooperative-delta 

algorithm during the independence phase (see Table 5.1), is able to catch up with 

cooperative-delta algorithm in terms of error reduction. However, independent delta-

harvesting heuristic achieves this with greater brute force and lesser intelligent as can 

be seen in figure 5.6b. Independent delta-harvesting heuristic consumes more energy 

than cooperative algorithms in general. Particularly, it also has higher energy 

consumption than RWM. Referring to the trajectory in figure 5.5, we observed that 

sensors in region with gradients of almost zero magnitudes traveled at a constant 

maximum speed of 10 m/s compared to the average speed of 5 m/s by sensors with 

RWM. Hence, we infer that the sparser the region, the higher is the energy 
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consumption for independent delta-harvesting heuristic.  

Fourth, we examine the ideal and practical versions of the pure cooperative 

algorithm in figure 5.6a. The practical version is closer to the ideal cooperative 

algorithm than RWM. This shows that (4.4) in chapter 4 provides a good estimation. 

It also performs better than BFGS. Furthermore, before the 12th iterations, the 

practical cooperative algorithm is able to reduce the global error at a faster rate 

compare to independent algorithms. In figure 5.6b, we observe that pure cooperative 

algorithm consumes the least amount of energy. The ability to make use of 

cooperatively shared information to economically move the sensors to conserve 

energy has resulted in high energy efficiency.  The faster rate of error reduction and 

high energy efficiency are the two motivations for using cooperation in our algorithm. 

The ideal cooperative algorithm shows that without any errors, we could achieve a 

global error as low as 8% at the 15th iterative steps. Cooperative-delta and 

cooperative-orbital algorithms are our practical way to achieving a better global error 

reduction. 

Fifth, we examine the cooperative-delta algorithm in figure 5.6a. By 

introducing an independence phase into the algorithm, we overcome the limitation of 

practical pure cooperative algorithm which has no further error reduction after the 

sensors are locked into optimal positions at the 12th iterative step thereby achieving an 

error close to that of the ideal pure cooperative algorithm.  However, it is still not 

good enough w.r.t. the independent delta-harvesting heuristic. The effectiveness of 

delta-harvesting at the independence phase is reduced because the sensors are 

crowded closer when they are propelled into the information fertile region. Thus, 

there are more overlaps during delta-harvestings. Another reason is that the delta-

harvestings in the independence phase of the cooperative-delta algorithm are done at 
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half the maximum speed of 10 m/s to conserve energy. This is because the 

cooperative-delta algorithm inherits the undesirable high energy consumption 

property of the delta-harvesting heuristic. In chapter 4, section 4.2.2, we discuss ways 

to curb the movements of the sensors using the delta-harvesting heuristic in the 

independence phase in order to conserve energy. Figure 5.6b shows that even with the 

curbing, the cooperative-delta algorithm consumes the highest energy in the 

cooperative category. Nevertheless, it still consumes much lesser energy than the 

independence category. 

Sixth, we examine the cooperative-orbital algorithm in figure 5.6a. This 

algorithm performs outstandingly compared to the rest of the algorithms. It is able to 

achieve an error less than that of the ideal pure cooperative algorithm. In figure 5.6b, 

it consumes lesser energy than the cooperative-delta algorithm while slightly higher 

energy than the pure cooperative algorithm. However, for that extra small amount of 

energy consumed w.r.t. the pure cooperative algorithm, we are able to achieve an 

additional 8-9% reduction in error. Therefore, we believe it is a worthwhile effort. 

We now examine more closely the average overall relative performance of the 

cooperative-orbital algorithm tabulated in Table 5.2.  

Table 5.2: Relative performance of cooperative-orbital algorithm 

 Relative Global Error Energy Consumption  
EDG +737.5% N.A. 
Independent RWM +273.8% −73.6%
Independent BFGS +314.3% −84.4%
Independent Delta-Harvesting +34.9% −81.1%
Cooperative +133.7% +72.9%
Cooperative-Delta +60.8% −18.8%

 

 From Table 5.2, we see that cooperative-orbital algorithm reduces 737.5% 

more error (with a range of 625% to 885%) than mobile sensors deployed in EDG. 
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Therefore, the use of our optimal harvesting algorithm in mobile sensor network can 

improve data harvesting. In comparison with the best approach in the independent 

category, it reduces 34.9% more error while consuming 81.1% lesser energy than 

independent delta-harvesting. In the cooperative category, it reduces 133.7% more 

error while consuming 72.9% more energy than cooperative algorithm. In absolute 

terms, that represents a mere increase from 30.2J to 52.1J which is still a substantial 

saving comparing with independent delta-harvesting which consumes 275J (Figure 

5.6b). Moreover, as explained in the previous paragraph, this additional increase of 

21.9J is used to reduce 8-9% more error than pure cooperative algorithm. Therefore, 

our cooperative-orbital algorithm is an energy efficient way to improve the 

performance of mobile sensor networks. As explained in section 5.1.4, our energy 

comparison is conservative. In reality, sensors using independent methods consume 

even more energy. Consequently, we can achieve a much higher energy efficiency 

gain. 

Figure 5.7-5.9 show the reconstructed distributions from data harvested from 

EDG sensors and those obtained after executing our cooperative-orbital algorithm for 

40 iterations. The actual distributions are in figure 5.1-5.3. Prior to the execution of 

our algorithm, mobile sensors deployed in EDG extracted the distribution with wrong 

shape, height and number of peaks and valleys. After the execution, approximately 

correct shape, height and number of peaks and valleys are obtained. In particular, in 

figure 5.7, scenario 1 and 2 prior to the execution of our algorithm appear identical 

(Figure 5.7a and 5.7c). After execution of our algorithm, the two distributions are 

markedly different as scenario 1 has a small hill and no valleys (Figure 5.7b) whereas 

scenario 2 has no small hill and two valleys (Figure 5.7d). Furthermore, in some 

scenarios where hotspots are hidden at the blind spots of which the most prominent is 
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scenario 3 in figure 5.9, mobile sensors deployed in EDG fail to detect the four 

smaller hotspots (Figure 5.9e). However, our cooperative-orbital algorithm is able to 

extract the correct number of hotspots (Figure 5.9f).  

 
 

Figure 5.7: Reconstructed distributions of scenarios with hills and valleys of 
irregular shapes using data obtained from cooperative-orbital algorithm 
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Figure 5.8: Reconstructed distributions of scenarios with 4 hotspots using data 
obtained from cooperative-orbital algorithm 
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Figure 5.9: Reconstructed distributions of scenarios with 8 hotspots using data 
obtained from cooperative-orbital algorithm 

 
 

. 
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5.2.2 Relative Performance with Static Sensor Networks  

We examine the performance of static w.r.t. mobile network. The static 

sensors are uniformly distributed to simulate actual deployment. For realistic and 

conservative comparison, we use the best experimental εp of 2.27m [66] which is 

achieved at the expense of high communication costs. Moreover, in accordance to 

static sensor localization [66], the reduction in εp as node density increases is 

simulated.  A linear model is used to estimate the localization error of the static sensor 

network. Generally, assuming all parameters in the localization algorithm are 

identical, the square of the mean localization error, εp
2 will be inversely proportional 

to the node density, ρs (exclusive of the four anchor nodes). In particular, using the 

method in [66], it is also proportional to area, dr
2 of the neighbors’ selection region 

(assuming that the static sensors are uniformly distributed) as follows: 

2
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Note that dr is the neighbors’ selection range which is the radius of the circular 

selection region centered at the sensor. This model allows us to compute the 

localization error based on any actual experiment conducted. In particular, in the 

experiment conducted in [66], the values for the mean location error, node density and 

neighbors’ selection range are respectively as follows: ε0,p = 2.27 m, ρ0,p = 44 ÷ 142 

sensors/m2 and d0,r = 8.5 m. Note that the experiment is conducted in the open plan 

office building where communication channel is good and using the typical 

specification for the static wireless sensors. The minimum mean error of 2.27m is 

obtained using maximum communication costs.  For conservative purpose, we will 

use this data and vary only the node density. As a result, our localization error for the 

static sensors decreases linearly as the node density increases. In reality, localization 
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error saturates at higher density and may even increase [95]. The reasons that this 

approach is conservative are as follows: 

1. The error is obtained at maximum communication costs in a good 

communication environment. 

2. In reality, as the number of sensors increases, as a result of network 

congestion, the effective node density as seen by the network is much lower. 

3. The localization method in general required dissimilar data to increase 

diversity and hence improve the estimate. Starvation reduces the diversity of 

data that is required to obtain a good estimate. Congestion at higher density 

increases the probability of starvation as more aggressive nodes tend to 

hoard the communications. 

4. The approach to combat harsh communication environment is to reduce the 

neighbor selection range, d0,r to limit the data collected for estimation from 

neighbors that are inside the circular selection region centered at the sensor 

[66]. This is because the closer the neighbors are to the sensor, the better is 

the received signal strength and the more reliable is the data. In a harsh 

communication environment, we will have to reduce the radius of the 

selection region, d0,r further below 8.5 m in order for us to obtain a better 

estimate. 

In comparing the relative performance of the mobile to static networks, we use 

the Resource Utilization Efficiency which is defined as the ratio of the number of 

static sensors required to achieve the same relative global error as the mobile sensors 

executing a specific harvesting algorithm for 40 iterative steps to the number of the 

mobile sensors used in the harvesting.  

Figure 5.10 shows the average relative global error over the same nine 
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scenarios used in section 5.2.1 for the static sensor network. The errors obtained for 

the various harvesting algorithms at the 40th iterative step in section 5.2.1 are plotted 

into figure 5.10 together with their resource efficiency gains. From figure 5.10, 

without any post-processing, at least 2.5×104 static sensors are required to obtain the 

same performance as mobile sensors using the cooperative-orbital algorithm. 

Therefore, mobile sensors using the cooperative-orbital algorithm is 250 times more 

efficient than static sensors in utilizing resources. This suggests that mobile sensor 

networks using our optimal harvesting algorithm are an attractive environmental 

friendly and reusable substitute to some static sensor applications. It also suggests that 

our approach is cost effective enough for us to install sophisticated equipments such 

as GPS per sensor, resulting in a virtue cycle of further improving their accuracies and 

efficiencies. 

 

Figure 5.10: Relative global error of static sensor network 
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5.3 Stability Study  

In this section, we examine the stability of the cooperative optimization and 

tracking mechanism in our algorithm separately.  

5.3.1 Optimization Stability  

Our approach makes use of gradient and hessian information to navigate the 

terrain. Physically, these are translated as the steepness and curvature of the 

distribution. Therefore, we postulate that an increase in steepness and undulating 

surface in the distribution will result in increase in oscillatory or agitated behaviors in 

the sensors. From control perspective, the rapid rate of change in state information 

input due to the undulating surface when the system is in a dynamic state of flux put a 

strain on or load the system. We can study the strain on the system by the 

deterioration in its performance in error reduction and energy consumption. The 

simulation results from 4-hotspot and 8-hotspot scenarios (Figure 5.2-5.3) are used for 

our study. For clarity of presentation, the error and energy consumption spreads of the 

scenarios (Figure 5.11a-b) are used. The error and energy consumption spreads are 

obtained by subtracting the individual metrics at the 40th iteration for each scenario by 

the average value over the six scenarios. By doing so, the spreads are centered at the 

zero point on the vertical axis. We can then observe clearly the widening and 

narrowing of spreads in all the methods.  

First, we examine the RWM method in data harvesting. From figure 5.11a, we 

observe that it has the widest error spread. However, this does not imply that sensors 

using the RWM method are under strain due to an increase in undulating surface 

when the hotspots are increased from four to eight. We observe further that the order 

of performance is random over the six scenarios for the RWM method in figure 5.11a. 



 

 154

Sensors using RWM method do not make use of any external environmental 

information to decide their next moves. Thus, they are insensitive to any external 

stimuli. Generally, the wide spread or volatility is merely a reflection of the 

unpredictable nature of random harvesting method. The insensitivity of RWM method 

to environment is confirmed by observing the energy consumption spread in figure 

5.11b. This method has zero energy consumption spread because the average speed 

for the sensor is constant at 5 m/s for all the scenarios, regardless of the number of 

hotspots.  

 

Figure 5.11a: Error spread for different methods 

 

Second, we observe a trend in all the intelligent harvesting methods: BFGS, 

Independent Delta-Harvesting (labeled as IndeptDelta), Cooperative (labeled as 

Coop), Cooperative-Delta (labeled as CoopDelta) and Cooperative-Orbital (labeled as 
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CoopOrbit4) in figure 5.11a. Generally, the relative global error increases when the 

number of hotspots is increased from four to eight. In particular, BFGS appears to be 

least tolerant to increase in strain as the increase in the number of hotspots causes a 

large deterioration in performance. We observe that our cooperative-orbital algorithm 

is most robust to increase in the number of hotspots as it has the narrowest spread. 

This is followed by our independent delta heuristic in the independence category. 

When we cross-examine with figure 5.6a, we observe that there is a strong correlation 

between the error reduction performance of the system and its error spread (stability). 

That is, the cooperative-orbital algorithm is the best performing algorithm with the 

largest error reduction and simultaneously the smallest error spread. This is followed 

by the independent delta-harvesting heuristic, cooperative-delta, pure cooperative and 

BFGS algorithm in the performance order from best to worst. Particularly, if we focus 

on error spreads among those in the cooperative category, the incorporation of an 

independence phase in our cooperative algorithm helps to improve the robustness of 

optimization. 

Next, we examine figure 5.11b. All the cooperative methods exhibit similar 

trends in that an increase in the number of hotspots causes the energy consumption to 

increase. This is generally due to increase in oscillatory behaviors when the system is 

under strain as mentioned in chapter 4, section 4.3. BFGS also follows similar trend 

although there is one aberration (8 hotspots – Scenario 3). The aberration is due to 

sensitivity of BFGS to a number of other factors such as initial positions of the 

sensors and accumulated estimation error from past information. Finally, independent 

delta-harvesting heuristic exhibits an opposite trend w.r.t. other intelligent methods. 

This has been explained in section 5.2.1 and is merely a peculiarity of the heuristic. 

The reason is that the sensors will move at maximum speed in the locality with flat 
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temperature gradients. We observe in figure 5.2 and 5.3 that the 4-hotspot scenarios 

have a larger proportion of the terrain that has flat temperature gradients than 8-

hotspot scenarios. As a result, there are more sensors residing in regions of flat 

distribution harvesting at maximum speed in the 4-hotspot scenarios than those in the 

8-hotspot scenarios. Similarly, the smaller energy spread of cooperative-delta 

algorithm is also due to the individual peculiarity. That is, it is because of the special 

energy curbing measure taken in the independence phase of the algorithm as 

mentioned in chapter 4, section 4.2.2.  

 

Figure 5.11b: Energy consumption spread for different methods 
 

Generally, in figure 5.11b, there is a trend showing that when the sensors 

using cooperative intelligent method are under environmental strain, the energy 

consumption increases. However, there is no strong correlation between the 

magnitude of energy consumption spread and stability of the algorithm among the 
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different algorithms due to the peculiarity of the individual algorithms. Particularly, 

zero energy consumption spread in sensors using RWM method does not imply that 

the sensors are stable and predictable.  

Third, as mentioned in chapter 1, section 1.1, in the greater scheme, the 

sensors are deployed in small groups in consideration of difficult terrains where there 

may be partitions. Therefore, we are interested in the effect of deploying the sensors 

in four small groups (labeled as CoopOrbit4 in figure 5.11a-b) w.r.t. deploying them 

as one large single group (labeled as CoopOrbit1 in figure 5.11a-b). We present the 

result for sensors using our cooperative-orbital algorithm as similar trends are 

observed for those that use the cooperative and cooperative-delta algorithms.  

In figure 5.11a-b, we observe that sensors that are deployed in four small 

groups have smaller spreads than those in one large single group. Therefore, we infer 

that those deployed in four small groups are more stable than those that are deployed 

in one large single group. Note that although, in the previous paragraph, we explain 

that there is no correlation between energy spread and stability when we compare 

with different methods due to individual peculiarities, we are now comparing with the 

same method.  

The reason that those deployed in four small groups are more stable than those 

that are deployed in one large single group is because of the coupling effect due to the 

sharing of the cooperative state information as mentioned in chapter 4, section 4.3. In 

the previous section, we have seen the importance of cooperative shared state 

information in improving the error performance and energy efficiency of the 

cooperative mobile sensor groups. However, the same communication channels also 

allow the oscillations of individual sensors under strain to be propagated globally. By 

dividing the sensors into four small groups and ensuring that there is no inter-group 
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transmission of cooperative shared information to facilitate the harvesting task, we 

have decoupled and isolated the four groups. Consequently, any intra-group instability 

is contained. From the result, we infer that while increasing the number of sensors in a 

cooperative group allows us to reap the benefits of increasing cooperative shared 

information, it will eventually be counterbalanced by the detrimental coupling effects. 

Therefore, to conclude, our greater scheme of using small groups of sensors has three 

benefits: easier deployment in difficult terrains, more robust communications 

(discussed in chapter 3) and more stable cooperative behaviors among the sensors.  

5.3.2 Tracking Stability  

Figure 5.12 shows the average separation between the centers of the tracking 

clusters and the sources when four hotspots with constant speeds and uniformly 

distributed random directions move independently and continuously. It is observed 

that the average separation is bounded and stable over time. Moreover, as the speed of 

the hotspot, Vh approaches the maximum speed of the sensor, Vs the separation 

increases. These are corroborated by our stability analysis of the tracking mechanism 

in chapter 4, section 4.2.3.5 and appendix E. 

Finally, we briefly discuss on the issues of reconstructions of distributions. 

Past data are useful in the reconstructions as they reduce global distortions. However, 

their direct use in non-stationary distributions leads to ghost or smeared images due 

to: space-time distortion and discrete time monitoring process. One method to 

mitigate the problem is to expire past data after some time. A more effective method 

requires post-processing which is beyond the scope of this thesis. In the simple case 

of one hotspot, we can apply affine transforms on the past data to use them. In cases 

with many sources of varying intensities, more sophisticated post-processing is 
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required in order to use the past data. This is because the temperature at any point is 

the superposition of the effects of all sources. 

 

Figure 5.12: Average separations between the centers of the tracking clusters 
and the hotspots 

 

5.4 The effect of non-ideal communications and sensor 

failures 

In this section, we examine the effect of non-ideal communications on the 

performance and permanent sensor failures. Initially, we examine the scenario where 

there are no sensor failures. This is followed by the scenario with sensor failures. 

5.4.1 Effect of non-ideal communications  

   Based on our work in chapter 3, the most suitable MAC protocol for our 

network is the DS/CDMA protocol. Two communication scenarios discussed in our 
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theoretical analyses in chapter 3 are examined.  

The first scenario is a terrestrial scenario. The terrestrial channel with Additive 

White Gaussian Noise (AWGN) described in [96] is used. The theoretical probability 

of a successful packet transmission by a sensor using DS/CDMA when there are N 

concurrent transmissions in a one-hop neighborhood can be obtained in [96]. To 

obtain N, we modify our simulation program to include the effect of AWGN and run 

the program to obtain the average number of network neighbors, Φ. Φ is also affected 

by the type of node mobility as discussed in chapter 3. We then assume the worst case 

scenario where all the network neighbors transmit concurrently. Therefore, N = Φ. 

Based on: N = 8, the maximum packet length (see chapter 4, figure 4.13a) of 64 bytes 

and the 16-bit Walsh-Hadamard code, the probability of a successful packet 

transmission by a sensor is 0.7177. 

The second scenario is the harsh underwater scenario discussed in chapter 3. 

The UWA channel with Rayleigh fading and alpha-stable distributed noise is used. 

The probability of a successful packet transmission by a sensor using DS/CDMA can 

be obtained from our work in [see List of Publications: P2, P3]. Using similar 

modifications, we obtain N = Φ = 5. The smaller number for Φ is due to the harsher 

communication environment. Based on: N = 5, the maximum packet length of 64 

bytes and the 16-bit Walsh-Hadamard code, the probability of a successful packet 

transmission by a sensor is 0.4592. 

The nine hotspot scenarios with the mobile sensors harvesting using our 

cooperative-orbital algorithm are then run for the two communication scenarios. Our 

result is shown in figure 5.13. Generally, the performance of our algorithm 

deteriorates in the non-ideal communication scenarios. In the terrestrial scenario, the 

global error increases slightly from 6.64% to 8.12%. In the harsh underwater scenario, 
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the global error increases more rapidly from 6.64% to 12.01%. Particularly, the 

deterioration is most severe in approximately the first 15 iterative steps when the 

sensors are in the cooperative phase. As there are no communications in the 

independence phase, the non-ideal communication channels appear to have negligible 

effect on the performance. All in all, our algorithm is still fairly robust against non-

ideal communications. This is due to the beneficial diversity effect when there are 

more than three network neighbors which help to alleviate the deteriorating effect of 

the non-ideal communications shown in figure 5.14. 

 

Figure 5.13: Relative global errors for the terrestrial and underwater DS/CDMA 
communication scenarios 

 

In our algorithm, a sensor stops moving if it cannot receive packets from at 

least three enclosing network neighbors. We now suppose that in one of the iterative 

steps during the cooperative phase, sensor 3 in figure 5.14 fails to transmit to sensor i. 
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Sensor i is still able to receive the transmissions from the three network neighbors: 1, 

2 and 4. As a result, as far as sensor i is concerned, sensors: 1, 2 and 4, are its three 

closest enclosing neighbors. Therefore, it still can continue to harvest data. 

Furthermore, notice that sensor 4 is nearer to the hotspot than sensor 3 and therefore, 

has a greater temperature difference w.r.t. sensor i. Consequently, in this case, the 

non-ideal communications actually improve the performance!  

 

Figure 5.14: Beneficial diversity effect when there are more than three network 
neighbors 

 

The diversity effect increases when the average number of neighbors increases 

beyond three. This is because there are a greater number of permutations. This 

explains the more rapid deterioration in performance in the underwater scenario 

because the diversity effect is weaker due to the smaller average number of neighbors. 

Generally, we can increase the average number of neighbors by increasing the 

transmission power. However, we cannot increase the power indefinitely as it causes 

MAI in DS/CDMA communications discussed in chapter 3 to increase. An increase in 

MAI causes the probability of a successful packet transmission to decrease. We can 

reduce MAI by better synchronizations in the transmissions using base stations. 

However, this may not be a feasible solution in a harsh underwater environment.  
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In future work, we can investigate into the use of predictive techniques in our 

algorithm to predict the likely positions of network neighbors which temporally 

cannot communicate. This may further improve the performance of our algorithm in 

non-ideal communications scenarios. 

5.4.2 Effect of sensor failures  

We now examine the addition of sensor failures on the performance of the 

cooperative-orbital algorithm. In the setup, at beginning of the simulation, each sensor 

is randomly failed with a given failure probability. The sensors that have failed will 

remain so throughout the simulation and no longer participate in the harvestings.  

 

Figure 5.15: Effect of sensor failures on the error reduction performance 
 

The simulation result is shown in figure 5.15 for the three cases: ideal 

communications, terrestrial with DS/CDMA communications and underwater with 
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DS/CDMA communications. The error factor for each scenario is obtained by 

dividing the relative global errors for each failure probability by the relative global 

error when there are no sensor failures at the 40th iteration. The result shows that there 

is a gradual degradation of performance as the failure probability increases. 

Particularly, the degradation increases more rapidly when the failure probability is 

greater than 20%. The gradual rather than abrupt nature of the degradation shows that 

the network is robust and has the ability to realign itself and operate continuously 

without been affected by missing sensors.  

 

5.5 Conclusion 

In this chapter, we studied the performance of our cooperative algorithm. In 

our comparative study, the results show that our cooperative-orbital algorithm is an 

energy efficient way to optimize the performance of mobile sensor networks because 

it reduces 738% more error (with a range of 625% to 885%) than mobile sensors 

deployed in EDG and 35-314% more error than independent methods while 

consuming 74-81% lesser energy. It is also an attractive environmental friendly and 

reusable substitute to some static sensor applications because it utilizes resources 250 

times more efficiently than static sensors. Furthermore, the high resource utilization 

suggests that our approach is cost effective enough for us to install sophisticated 

equipment such as GPS on each mobile sensor to further improve their accuracies and 

efficiencies. In the stability study, the simulation results show that incorporation of an 

independence phase helps to improve the robustness of optimization. Also, we 

observe that the approach of dividing the sensors into small groups leads to more 

stable cooperative behaviors among the sensors. Our simulation results further show 

that the tracking mechanism is stable. Finally, we show that when our sensors use the 
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DS/CDMA MAC protocol to communicate, the performance is robust against non-

ideal terrestrial and underwater communication channels and permanent sensor 

failures.  
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Chapter 6: Conclusion 
 

 

To conclude, in our work, we have studied the problem of improving the 

quality of reconstructed distribution of environmental spatiotemporal data harvested 

by mobile sensors that can communicate with each other using wireless 

communications. Our approach is to attack the problem from the source, by 

mobilizing the sensors to harvest data of high information content so that the 

reconstructed distribution has minimum distortion. Four realistic constraints are 

considered in our design: limitations of wireless communications, limited supply of 

energy, limited sensor resources, and to a lesser extent, difficult terrains. In order for 

us to use the scarce energy and sensor resources economically, we have leveraged on 

cooperation to perform optimal harvesting. The possible presence of difficult terrains 

with barriers and obstacles means it is more feasible to divide our sensors into 

separate groups. 

In our literature survey, we first examined the communication and networking 

issues by surveying the literature on wireless ad-hoc networking of mobile nodes in 

harsh environments which is the most relevant to our application. The key finding is 

that there are four main problems that deteriorate the performance of the networks as 

follows: poor connectivity due to node mobility and imperfect wireless channels, node 

contentions, hidden and exposed node problems and excessive routing overheads are 

generated from broken links. The weakness of maintaining a stable route for multi-

hop networking in a harsh environment motivates us to explore alternatives in 

communications for our cooperative mobile sensor network.  
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Next, we examined the issues related to monitoring, detection and sensing by 

surveying work on wireless sensor networks. The key finding is that there are three 

main problems that deteriorate their performance as follows: poor connectivity due to 

node mobility and imperfect wireless channels, network congestions and high 

localization errors. The survey also showed that there are two environmental-

unfriendly weaknesses in static WSN: poor reusability and the need to be deployed in 

large number. As environmental issues are great concerns of our times, we are 

motivated to survey mobile sensors as suitable substitutes. 

Our survey on coverage control of mobile sensor networks showed that there 

is an increasing trend to adopt the behavioral based paradigm which is biologically 

inspired. In this approach, each individual sensor adopts a cooperative, self-regulating 

and adaptive behavior that leads to orderly group movements. The advantages are 

scalability and ability to respond rapidly in group movements. Our three key findings 

are: coverage control results in equal spacing of mobile sensors over the terrain, the 

targets that the sensors monitor are assumed to be single discrete entities and 

sophisticated centralized control schemes are not scalable with the number of sensors. 

For our application, in order to maximize the quality of measurements, the sensors are 

likely to be spread out unevenly. Specifically, the sensors will cluster more tightly in 

regions where the temperature gradients are steep, and vice versa. Furthermore, we 

are monitoring continuous distributions that we do not have advance knowledge of. 

Therefore, we are motivated to develop a new scalable approach while embracing the 

behavioral based paradigm in the design of our cooperative algorithm. 

 In our theoretical analysis on communications, we examined three problems. 

The first problem is poor connectivity due to node mobility and fading channel 

conditions. When poor connectivity is due to independent random node mobility, the 
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solution is to ensure that there is coordinated orderly movement. For the poor fading 

channel condition, one approach is to use DS/CDMA which is known to be robust to 

fading channels. Finally, to further improve the robustness of our algorithm to the 

connectivity problem, our algorithm makes use of only three closest neighbors out of 

the other network neighbors. The second problem is contentions and interference. One 

approach is to organize the sensors into small cooperative groups and design our 

algorithm in such a way as to minimize inter-group communications. Another 

approach is to use DS/CDMA which is known to be robust to interference in the 

MAC layer. The third problem is route breakages in networking resulting in increased 

routing overheads that may lead to network congestion. We concluded that it is better 

to organize our sensors into small isolated cooperative groups and use intra-group 

communications to facilitate the harvesting tasks. The routing overheads can be 

further minimized if most communications are one-hop communications. We also 

analyzed the throughput of an underwater multi-hop ad-hoc sensor network using 

DS/CDMA in UWA channel with Rayleigh fading and alpha-stable distributed noise.  

 In the development of our cooperative optimal harvesting algorithm, we 

assumed each mobile sensor to be an intelligent cooperative autonomous agent, 

capable of processing cooperative shared information independently in order to carry 

out its harvesting task in an optimal manner. The optimization consists of two phases: 

cooperative and independence phases. In the cooperative phase, our novel approach is 

to introduce cooperation into the pseudo-Newton method and adapt the method to 

propel the sensors rapidly into the optimal positions. In the independence phase, we 

developed two alternative versions of independent heuristics: delta and orbital-

harvesting. Additionally, we incorporated a tracking mechanism so that our mobile 

sensors can track moving hotpots.  
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In the development of our algorithm, we have adopted: adaptive cooperative 

search goals in optimization, local RBF interpolation in estimations, dissemination to 

mitigate the initial value problem, the concept of orientation stabilization to provide 

adaptive stabilized search direction and the principle of dynamic clustering in mobile 

sensor networks for robust tracking of continuous distribution. 

Our performance study is divided into two aspects: comparative study (with 

other algorithms) and stability study. Additionally, we also examined the effect of 

non-ideal communications of the performance. 

In the comparative study, the simulation results showed that our cooperative-

orbital algorithm is an energy efficient way to optimize the performance of mobile 

sensor networks because it reduces 738% more error (with a range of 625% to 885%) 

than mobile sensors deployed in EDG and 35-314% more error than independent 

methods such as: BFGS, RWM and Independent delta-harvesting while consuming 

74-81% lesser energy. It is also an attractive environmental friendly and reusable 

substitute to some static sensor applications because it utilizes resources 250 times 

more efficiently than static sensors.  Furthermore, the high resource utilization 

suggests that that our approach is cost effective enough for us to install sophisticated 

equipment such as GPS on each mobile sensor to further improve their accuracies and 

efficiencies. 

In the stability study, the simulation results showed that our cooperative-

orbital algorithm is most robust compared to other methods. Therefore, incorporation 

of an independence phase helps to improve the robustness of optimization. 

Furthermore, we observed that our approach of dividing the sensors into small groups 

for ease of deployment in difficult terrains and robustness in harsh communication 

environments has one additional benefit. It leads to more stable cooperative behaviors 
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among the sensors. Therefore, for these three reasons, the recommended approach is 

to deploy the sensors into small self-contained cooperative groups for data harvesting. 

Moreover, the simulation results showed that the tracking mechanism of our 

algorithm is stable.  

Finally, we showed that when our sensors use the DS/CDMA MAC protocol 

to communicate, the performance is robust against non-ideal terrestrial and 

underwater communication channels. It is also robust against sensor failures. 

 

6.1 Future Work 

There remain many areas that we can explore further in this research as 

follows. 

First, we can investigate ways to improve the communication, control and 

information processing mechanisms of our algorithm in the following areas: 

1. Bandwidth and energy efficient approaches to disseminate information can be 

explored.  

2. Approaches in communications to facilitate the harvesting task can also be 

explored.  

3. Distributed control methods to stabilize the cooperative groups while 

simultaneously increase the responsiveness of the groups can be explored.  

4. Predictive methods to further improve on the robustness of the sensors in 

harsh communication environment.  

5. Since in reality, we may have more than three network neighbors, we can 

explore the use of cooperative techniques to process the information in order 

to improve its reliability. If heterogeneous data are available, we can even use 

data fusion techniques.  
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Second, alternative methods to optimize data harvesting such as non-

computational optimization can be explored. We can even draw inspirations from 

nature or agriculture. 

Third, it will be interesting to investigate other ways or combinations to 

organize the sensor groups so as to make them more robust and efficient in the 

harvesting tasks. This may lead to novel ways to control the mobile sensors. 

Fourth, some issues need further theoretical analysis. One possible issue will be 

the optimal number of sensors to be deployed in a terrain of a particular size and the 

factors that affect this optimal number. Another possible issue is optimal number of 

sensors per group if we are to divide our sensors into several small groups. Some 

empirical investigations will likely be required in order to provide empirical data and 

highlight practical problems. This is to ensure that the theoretical analysis is as 

realistic as possible. Another possible theoretical analysis is the global convergence 

analysis that takes into account of different factors such as: link failures, sensor noises 

and random distributions of system parameters.  

 Fifth, we acknowledge that it is not possible to explore all issues given the 

limited time and that our research spans several areas. For example, further 

investigations to examine the data throughput and energy consumption in 

communications may be needed by implementing our harvesting algorithm into a 

simulation program that simulates actual wireless sensor hardware specifications and 

networking protocols. In actual implementations, there will be other practical issues 

depending on the applications and environments. An example will be further 

investigations into the interaction between the lower layers and application layer. 
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Appendix A: CSMA/CA Throughput Analysis of a 
MANET of cooperative autonomous mobile 
agents under the Rayleigh Fading Channel 

 
 
 

A.1 Theoretical Model 
 
CSMA/CA protocol adopted in IEEE 802.11 MAC is distinguished by two 

salient features: 4-way handshaking and the exponential backoff algorithm. Their 
details can be found in [75][27][86]. In particular, [75] provides the description on the 
use of 4-way handshaking to mitigate the hidden node problem. Briefly, the operation 
of 4-way handshaking is shown in Figure A1.  The abbreviations are listed in Table 
A1. 

In Figure A1, the channel is first reserved using the RTS-CTS packet 
exchanges between the transmitter and receiver. Failed transmissions occurred when 
there is a collision of RTS packets when transmitting nodes contend to reserve the 
channel. The contending nodes realize that there is a collision when there is no CTS 
packet after the maximum waiting duration. The vulnerable period for collisions is 
shown in Figure A1. When a collision is detected, each node executes the exponential 
backoff algorithm [75][86]. The algorithm determines a random backoff period in 
time slots that the node must wait before it can retransmit its data packet again. Prior 
to our analysis, we need the throughput of a slotted CSMA/CA protocol using the 
exponential backoff algorithm for a 1-hop network with M nodes having poisson 
packet arrival rates with mean, λ. This scenario is well analyzed and the result is 
obtained [75] as: 
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Figure A1: Timing diagram for a successful followed by a failed transmission 
 

Note that in [75], the notation S(M) is used instead of S(M,λ). We add λ to 
emphasize that the throughput is also dependent on the traffic load. πi(M) is the 
stationary probability distribution of the backlogged nodes given that there are M 
nodes. A node is backlogged if it has a packet to retransmit after a collision. i is the 
state of the Markov chain which represents the number of backlogged nodes in the 
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neighborhood. PBs B(i) is the probability of successful packet transmissions given that 
there are i backlogged nodes. iI is the average idle period in the channel given that 
there are i backlogged nodes. T and C are the periods of successful and failed 
transmissions. 
 

Table A1: Abbreviation in the timing diagram 
 

 Description 
TDIFST DCF Inter Frame Space. Listening time prior to transmitting a RTS 

packet. 
TRTST TRequest-To-Send packet. Used by transmitter to reserve the channelT. 
TDelayT TPropagation and synchronization delayT. 
TSIFS T Short Inter Frame Space. Listening time prior to transmitting CTS, 

DATA or ACK. 
TCTST TClear-To-Send packet. Used by receiver to indicate which node can send 

its data.T 
TDATAT TData packet from the transmitter. 
TACKT TAcknowledgement packet from the receiver to indicate successful receipt.TTT 

 
The time-varying connectivity in the network is due to node mobility and 

fading channel. In [P1], the node mobility model based on the Probabilistic Mobility 
Model (PMM) and Rayleigh fading channel radio model are used to derive the 
connectivity probability. The result in [P1] also considered the free space transmission 
loss. The result for the pair-wise link connectivity probability, c BabB in [P1] denoted as 
c BlinkB is given as follows:  
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where, RBab B is the Euclidean separation of two arbitrary nodes,  a and b and η is the 
transmission range. In a fading channel, η is a random variable that is dependent on 
the fading statistic. ),Pr( ηη bRab ≤  is the pair-wise connectivity probability conditioned 
on the position of node b and η also denoted as η,babc . The discrete nature of the 

expectations is due to the discrete nature of PMM. At each time step, the node can 
either move to one of the adjacent north, south, east, west, northeast, northwest, 
southeast, and southwest positions by one discrete step or remain in the same position. 
The node movement at each time step is given by a constant transition probability 
matrix.  As a result, the position probability of the node in the enclosed region at 
steady state is stationary. The result is based on node mobility in an enclosed square 
region. For analysis purpose, without loss of generality, the discrete step is 
normalized to 1. The length of the square region is then expressed as S number of 
discrete steps. ayax ππ  and bybx ππ  are the stationary position probabilities of node a 
and b at coordinates (xBa B, y BaB) and (xBb B, y Bb B) respectively given in [P1]. 

An important quantity is the average number of temporal neighbors in a time-
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varying connectivity environment, Φ . Temporal neighbors are neighbors at one 
discrete time step. Let NBs B be the node count in the square region and babΦ  be the 

conditional random variable representing the number of temporal neighbors of node b. 
The probability distribution and conditional expectation of babΦ  and Φ  are derived 

as: 
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Figure A2: Expanding ring search for the first two tries. 
 

AODV routing protocol [78] is a reactive routing protocol which builds 
routing tables on demand adopted by the Mobile Ad Hoc Networking Working Group 
of the Internet Engineering Task Force (IETF).  There are two types of behavior 
which give rise to routing overheads. First, when either there is no route to a 
destination or the routes in the routing table expire, the routing protocol initiates a 
new route search. This behavior dominates at transient state of network where many 
route tables are empty. It also dominates at low traffic condition where the mean 
packet inter-arrival time is long and the routes in the table expired. At steady state, 
with moderate to high traffic conditions, whenever there are unrecoverable link 
breakages due to disconnections, the routing protocol initiates local repairs which 
dominate the overheads. Local repairs use an expanding ring broadcast search. It is 
illustrated in Figure A2 for first two tries. When a route is found, it is unicast back. 
The default setting for the search is three tries with increasing ring radii in numbers of 
hop: 1, 3 and 5. Referring to Figure A2, intermediate node IN which detects the 
breakage at downstream always initiates the search at each try. Also the broadcast is 
in the outward direction because nodes that receive multiple copies of the same search 
packet suppress sending them.  

In our approximate model, we assume that the network is at steady state and 
only local repairs are initiated by the routing protocol. This assumption does not hold 
under severe disconnections where there are new route searches. Each node is equally 
likely to initiate a local repair when it detects a disconnection with disconnection 
probability given by (1−c BlinkB). We ignore the cost of unicast packets as it is negligible 
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compares to that of broadcast packets. Our cost is represented by λ BrouteB. It is the total 
AODV route traffic load generated per node per second. λBrouteB is normalized to the 
data packet transmission time. It is derived as: 
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  NBhopB is the estimated average number of hops per route. η B0B is the nominal 
transmission range when there is no Rayleigh fading defined in [P1]; it is dependent on 
the transmission loss only. )12( −hopN  is the count of all combinations of multi-hop 
routes from 1 to NBhopB hops. ωBjB is the number of local repair packets generated when ring 
radius is (2j+1) hops in current try. r is the ratio of routing to data packet transmission 
time; it is use to normalize λBrouteB. I(a,b) is the indicator function; it is 1 if (a ≠ b), 0 
otherwise. min(a,b) is the minimum function that returns the minimum of {a,b}. 
 
A.2 Derivation of Data Throughput per Node 

 
In this section, we initially develop the throughput in an ideal ad-hoc network 

where the 1-hop neighborhoods are isolated. This allows us to isolate the effect of 
time-varying connectivity. We then consider the case where the neighborhoods are 
overlapped in which we examine the hidden and exposed node problems. Finally, we 
present the data throughput which accounts for the additional overheads in multi-hop 
communications. 

One of the benefits of multi-hop communications is the spatial diversity gain 
in capacity. First, we examine the upper limit of this gain by using an ideal ad-hoc 
network. In Figure A3, we reduce the transmission ranges of all the nodes such that a 
1-hop network is reduced into an ideal ad-hoc network where there are four isolated 
neighborhoods. Furthermore, we assume that the nodes are stationary and the channel 
is non-fading. Finally, there are only intra-neighborhood communications.  Clearly, 
under these ideal assumptions, the spatial diversity gain is at maximum. In fact, it is 
observed in [69] from info-theoretic perspective that for a stationary multi-hop 
network, if there are more intra than inter-neighborhood communications, the capacity 
can be increased further. We derive the maximum gain, GBS,maxB by looking at the 
throughputs per node for the 1-hop and ideal ad-hoc network: 1

nodeS , ideal
nodeS . Let Φ be 

the average number of neighbor in a 1-hop neighborhood of the ideal ad-hoc network. 
GBS,maxB is derived using equation (A1) as: 
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Figure A3: Evolution of ideal ad-hoc network 

 
We now remove the stationary nodes and ideal channel assumptions by 

considering Probabilistic Mobility Model (PMM) and Rayleigh fading channel. 
However we assume again that there are only intra-neighborhood communications 
and the neighborhoods are isolated when communications take place. The stationary 
nature of Φ  in equation (A3) implies that at steady state, the number of nodes leaving 
and entering a neighborhood is the same. In Figure A3, in neighborhood A, there is a 
lost communications when a node leaves the neighborhood A. In neighborhood B, the 
center node loses its communications to the neighbor because of the diminishing 
transmission range due to fading. Packet transmissions are successful between a pair 
of nodes in a neighborhood only when they are temporally connected. We can now 
derive the throughput per node, SBnodeB under this scenario. Using equation (A3), it is 
derived as: 
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Substituting equation (A6) into (A5), the maximum gain under time-varying 

connectivity is G’ BS,maxB≈1! The reason for the loss of spatial diversity gain is due to the 
node mobility and fading. While the average number of neighbors is the same in the 
temporal neighborhood, the neighbors are always changing due to movement of nodes 
in and out of the neighborhood. Hence, there are disruptions to the communications. 
This is exacerbated by the fading fluctuations. This is different from the stationary 
case where nodes can be assured of communicating to the same neighbors without 
disruptions. Nevertheless, we will verify our analysis by simulation. On the positive 
note, there is still much to gain from ad-hoc communications because of improvement 
in delay. This is because the number of nodes contending for the channel in the 
smaller neighborhood is reduced. Therefore, the mean waiting time per node before it 
gets to use the channel is reduced also by the original factor, GBS,maxB (equation (A5)). 

Overlapping neighborhoods give rise to two known problems when 
CSMA/CA protocol is used: hidden and exposed nodes. For clarity of presentation, 
we assume again that there are only intra-neighborhood (1-hop) communications. 
Note that such interference is a feature of communications in an environment with 
overlapping neighborhoods. It is present even when there is no multi-hop 
communications. We define an interfering neighborhood as the adjacent 
neighborhood of the typical neighborhood and they overlap each other. The typical 
neighborhood is defined in [75]. We will adopt the approach of using a typical 
neighborhood in our analysis and test the validity of this approach through simulation. 
In Figure A4, we see that a typical neighborhood (shaded circle) is wholly covered by 
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at most three independent interfering neighborhoods. In Figure A5, we separate the 
interfering neighborhood into two disjoint areas: the overlapping exposed node area 
(horizontal stripes) which it shares with the typical neighborhood and the 
complementary hidden node area (vertical stripes). Briefly, a hidden node problem 
occurs (see Figure A5) whenever node b tries to transmit to node a and node c from 
the hidden node area also transmits. Hence, there is a collision at node a. An exposed 
node problem occurs when node a wants to transmit to node b and is blocked from 
transmission because of on-going transmission in node c.  Node a may be exposed to 
up to three independent regions. 

 

 
 

Figure A4: Maximum independent interfering neighborhoods covering a typical 
neighborhood. 

 
First, we evaluate the average numbers of exposed and hidden nodes in one 

interfering neighborhood. In Figure A5, node b is centered at the typical 
neighborhood. Therefore, we first evaluate the number of exposed nodes. Let ηBxyB be 
the pair-wise transmission range of node x transmitting to node y and RBxyB be pair-wise 
separation of node x and y. Let pBexp B be the probability that an arbitrary node a is an 
exposed node. 
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Figure A5: Exposed and hidden node areas 
 
The first term is simplified by noting that the joint probability is independent 

as they are not transmitted to the same node. The second term, cBabcB represents the 
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probability that node a is the neighbor of node b and c and simultaneously, node b and 
c are also neighbors of each other. We first derive the c BabcB conditioned on the 
transmission ranges: ηBabB, η BcbB and η Bca B using the approach of [P1] as follows:  
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where ),( ηxyRΘ  is the indicator function; it is 1 if (RBxyB ≤ η), 0 otherwise. We will take 
the expectation of c BabcB(η BabB, ηBcb B, η Bca B) over ηBabB, η BcbB and η Bca B. However, two of the 
random variables are dependent.  
 

 
 
Figure A6: Relationship among fading gains, free space transmission ranges and 

separations of node a, b and c. 
 
In Figure A6, node a, b and c experience independent and identically 

distributed (i.d.d.) fading gains: κBa B, κ BbB and κ BcB respectively. As all the nodes have the 
same transmission powers, the free space transmission ranges, ηB0 B are the same. Both 
node a and c are directed towards the node b. Node b is connected to node a and c if:  
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Taking the expectation of equation (A8), we have,  
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Let nE~  be the random variable representing the number of exposed nodes. nE~  

is binomial when conditioned over the positions of node b and c with the binomial 
probability, pBexp B. Hence using the similar approach for the evaluation of average 
number of neighbors in equation (A3), the average numbers of exposed nodes is 
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derived. The average numbers of exposed and hidden nodes in an interfering 
neighborhood: EBnB and HBn B are derived as: 

 
nnsn EHpNE −Φ=−= ;)2( exp     (A10) 

 
The exposed nodes in the typical neighborhood have two effects. First, as the 

transmissions of exposed nodes are suppressed by hidden nodes outside the typical 
neighborhood, the throughput of the typical neighborhood is reduced. Second, due to 
fewer neighbors contending for the channel, the throughput is increased. These two 
effects can be characterized by estimating the effective number of neighbors due to 
exposed node problem, effΦ . To compute effΦ  we need to estimate the probability that 
a node is idle in one time slot. The average idle probability, idlep , is derived as follows: 
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where, )(Φiπ  is known as the stationary probability distribution of the backlogged 
nodes given that there are Φ  nodes. g is the probability of a new packet arrival in a 
time slot. It is a function of the traffic load. vBiB is the retransmission probability of a 
backlogged node in a time slot given that there is currently i backlogged nodes in the 
neighborhood. v BiB is dependent on the type of retransmission policy which is, in our 
case, the exponential backoff. The formula for )(Φiπ , g and v BiB are obtained in [75]. 
The effective number of neighbors effΦ is estimated as: 
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Hidden node problem is investigated in [75]. Briefly, in [75], a uniformly 

distributed stationary network is used. The hidden node problem is then accounted for 
by examining the probability that a node in the hidden node area from one interfering 
neighborhood will transmit to a typical neighborhood, pBhtB. It is assumed that 
transmissions of hidden nodes from one interfering neighborhood can collide with all 
nodes in the typical neighborhood. Referring to Figure A4 and A5, their assumptions 
appear too conservative as hidden nodes from one interfering neighborhood can only 
interfere in their respective exposed node area and three independent interfering 
neighborhoods are required to cover a typical neighborhood. Another observation 
made in Figure A5 is, while node c is a hidden node, it is itself exposed to another 
neighborhood. This suggests that the probability of hidden node transmissions is 
much lower. Due to the differences with [75], we extend the work of [75] by re-
deriving pBhtB for our scenario. In Figure A5, a collision occurs if node c transmits while 
node a is receiving packets from node b. The vulnerable period (see Figure A1), TBh B in 
units of time slot, is a period when the hidden node transmissions will cause a 
collision. The moment when there is a hidden node transmission in one of the time 
slots, the other hidden nodes will not transmit in the subsequent time slots. This is 
because they will sense the channel to be busy in the subsequent slots. Let pBht,effB be the 
effective hidden node transmission probability over the typical neighborhood. pBhtB and 
pBht,effB are derived as: 
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where, δBh B is the probability that at least one hidden node transmits data in one time 
slot and is derived in [75]. 

There are two effects of multi-hop communications which reduce the data 
throughput per node. First, multi-hop communications require multi-hop routes to be 
setup by routing protocols. This incurs overheads from route packets generated. Route 
packets generated consume a portion of the link capacity. Second, each node is 
obliged to carry the traffic of others in addition to its own data load. Hence, the 
effective traffic load per node, λ BeffB is higher than the actual data traffic load arriving at 
each node, λ BdataB. Therefore, these two effects tend to saturate the throughput more 
rapidly.  

The network traffic consists of superposition of different traffic streams. 
Therefore, at any instance of time, the nodes play three roles: as source, intermediate 
and destination nodes simultaneously for different traffic streams. The nodes are 
assumed to be identically distributed in our analysis. The 1-hop link traffic per node, 
λ BlinkB is derived by examining the traffic carried for two cases: when there is no link 
disconnection and when there is link disconnection during one data packet 
transmission derive as: 
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The ambient traffic λBambB beyond 1-hop neighborhood that a node is obliged to 

carry is computed by aggregating the link traffic λ BlinkB over the h-hop neighborhood. 
As h increases, the traffic is attenuated by the factor, h

linkc . The number of nodes in a 
h-hop neighborhood, Φest,h is estimated by using similar figures ratio. Therefore, 
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The effective traffic load per node, λBeffB is derived as: 

 
amblinkeff λλλ +=     (A16) 

 
By analyzing the typical neighborhood, the total throughput per node, SBmhopB is 

derived by combining all the factors affecting it, based on discussions from section 
IV-A to IV-C, using equation (A1), (A6), (A12), (A13) and (A16). 
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Notice, that we have replaced M, λ by effeff λ,Φ in the original expression for 

S(⋅) in equation (A1). effλ affects S(⋅) through g which is the probability of a new 
packet arrival in a time slot defined in section IV-B. TBslotB is the time of one slot in 
seconds. Finally the data throughput per node, data

mhopS  is derived from the 
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proportionality of traffics as: 
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Appendix B: Derivation of the Motion Control 

Equations for One-Dimensional Topology 
 
 
 
In a control problem, we want to control and adjust the behavior of a system 

so that the behavior moves towards one that can attain a desired outcome or system 
goal. The principle requires that the selected behavior is controllable and observable. 
In our context, the system is the individual mobile sensor and the behavior of the 
mobile sensor that we desire to control is the position of the sensor. We will first 
define our cooperative control problem from control-theoretic perspective using the 
difference equation since our control is performed at discrete time step instead of 
continuous time. The general expression for our cooperative control problem is 
defined as follows:  
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Where: 
 

)(k
ip  The position of sensor i in the kth time step. 

)(k
iθ  The measurement made by sensor i in position )(k

ip  in the kth time 
step.  

)(k
is  The state vector of sensor i in the kth time step. It is defined as the 

concatenation of )(k
ip and )(k

iθ . [ ])()()( , k
i

k
i

k
i ps θ=∴ . 

)(k
snC  The set that represents the states of the sensors belonging to the 

same cooperative group in the kth time step. 
( ))()( k

sn
k

i CpΔ  This is the position control function in the kth time step. It takes 
)(k

snC  as the input and computes the amount of adjustment to be 

added to the current position )(k
ip  in order to obtain the next 

position. 
)(

,
k
sniV  The set that represents the states of the Voronoi neighbors of sensor 

i in the kth time step, exclusive of sensor i. 
 

The control equation describes the dependency of the position of sensor i with 
the states of all the sensors within the same cooperative group of sensor i. It can be 
implemented in a distributive manner by having each sensor performs the 
computation in equation (B1) based on information gathered from its cooperative 
group. Therefore, there is no central authority that gathers information on behalf of 
the group and assigns the set of next positions for the mobile sensors in the 
cooperative group.  

At one end of the spectrum, we observe that for autonomous control, 

{ })()( k
i

k
sn sC = . That is, in autonomous control, each sensor adjusts its future behavior 

purely on what it observes alone. This is different from a cooperative control problem 
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in which there is sharing of state information within the cooperative group. In doing 
so, we achieve a higher level of efficiency and effectiveness in control. At the other 
end of the spectrum, the cooperative group encompasses the whole sensor network. 
However, the dissemination of global state information in pure ad-hoc multi-hop 
network is very costly and non-scalable. Therefore, it is wiser for us to examine the 
smallest possible communications group to see whether we can still solve our control 
problem with such a group. In fact, we show in the subsequent sections that the 
smallest group that is required for us to achieve our control goal is 

{ })()(
,

)( k
i

k
sni

k
sn sVC ∪= .  

Finally, before we move on, it is instructive for us to examine the basic structure 
of the simplest form of equation (B1). We look at the structure of the simplest linear 
autonomous control equation: 
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In equation (B2), the control function consists of a goal function, ugoal. The 

principle dictates that the control goal must be observable and measurable by the 
system (that is, the sensor i). At position )(k

ip , sensor i computes a value, ( ))(k
ii su  

which is dependent only on the current state of sensor i for autonomous control. The 
amount of adjustment or control requires for the behavior (that is, the position) of 
sensor i depends on the deviation of ( ))(k

ii su  from the goal. The larger the deviation, 
the more adjustment we need to make to its position. The value Ku is known as the 
control gain and is a constant in linear control. If Ku is too small, the system takes a 
long time to converge to its desired behavior and if Ku is too large, the system is 
highly oscillatory and may never converge to its desired behavior. One approach to 
ensure fast convergence and simultaneously alleviate the oscillatory behavior is to use 
a damper as in the PID controller. Another approach is to use adaptive gain control. In 
the later case, our controller is no longer linear.  Clearly, from the discussion, before 
we can solve equation (B1), we must first define and express our control goal in the 
form that is both observable and measurable. 

The goal of our sensor network is to sense and reproduce an accurate map of the 
distribution of the temperature. Since we have a constraint of Ns sensors, we could 
only sample the distribution of the temperature at discrete point in space. However, 
we are allowed to position the sensors arbitrarily to obtain the most accurate map. 
Note that this problem is different from traditional curve fitting problem. In curve 
fitting problem the sampling points are evenly spaced and we are allowed to increase 
the number of points in order to improve the accuracy.  

In Figure B1a-b, we use 2 different placement strategies of the sensors to 
obtain the mappings of the temperature distribution, θ in the 1-D enclosed space, E. A 
visual comparison between Figure B1a and Figure B1b shows that by using uneven 
placement of sensors, we are able to reproduce a more accurate map of θ.  

Finally, we observe that the approximate maps appear crude and jagged. It is 
true that there are techniques to smooth out the jagged edges. However, this is not our 
main concern, as ours is to ensure that there is minimum distortion or loss of 
information in the raw data collection. Notice that once the information is lost as in 
Figure B1a, no technique can restore back the loss even if we can smooth the 
approximate map at the later stage. 
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Figure B1a: Mapping the temperature distribution, θ using sensors placed evenly 
in the 1-D enclosed region, E 

 

 
 

Figure B1b: Mapping the temperature distribution, θ using sensors placed 
optimally in the 1-D enclosed region, E 

 
Let θ̂  be the piecewise linear approximation map of θ based on the sensor 

readings. We shall now formally define our measure of distortion by the global 
distortion error metric, De in two variations as follows: 
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The second variation of De in equation (B3b) which is derived from equation 

(B3a) is more important for a practical reason because it expresses the global 
distortion error as the sum of local distortion errors. This form suggests that it is 
sufficient for the distributed algorithm to use the local distortion error to adjust the 
individual node positions in order to achieve the global minimum. 

Referring to Figure B2, De can be visualized as the area between the actual 
temperature distribution θ and the approximate map θ̂  from the sensor reading. θ is 
composed of a concave region follow by a convex region. Clearly, our objective is to 
select the positions of the mobile sensors, P such that the total area is minimized. 

An important observation is that for concave/convex regions, our approximate 
map θ̂  is lower/upper bounded by θ. For example, in the concave region, to minimize 
the distortion, we only need to choose the position p2 so that it minimizes the local 
area of θ̂ . This is because we know that this local area of θ̂  must be lower bounded 
by the local area of θ and vice versa. The second observation is that whether the 
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region is concave or convex can be determined by testing the sign of the second 
derivative of the locality. The local area of the approximate map as seen by sensor i, is 
given as: 

 

( )( ) ( )( )[ ]iiiiiiiii ppppLA −++−+= ++−− 11112
1 θθθθ   (B4) 

 

 
 

Figure B2: Distortion error 
 
 

Referring to Figure B2 again, our optimization strategy can be briefly described as 
follows: 

• For the concave region, sensor 2 should adjust its position p2 with respect to 
its 2 Voronoi neighbors in order to minimize LA2. Since, we know that our 
approximate map is lower bounded by θ. 

• For the convex region, sensor 4 should adjust its position, p4 with respect to its 
2 Voronoi neighbors in order to maximize LA4. Since we know that our 
approximate map is upper bounded by θ. 

 
We now examine the condition for minimum/maximum. We differentiate equation 

(B4) w.r.t. pi.  
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To obtain the condition for minimum/maximum, we set 0=
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The condition in equation (B6) states that in order for us to obtain a minimum 

/maximum point, we should adjust the position of sensor i such that the gradient at the 
tangent point (pi, θi) is equal to the gradient of the secant line bounded by the Voronoi 
neighbors of sensor i. In other words, the tangent is parallel to the secant line at the 
minimum/maximum. The optimal condition for Figure B2 is illustrated in Figure B3. 
 

 
 

Figure B3: Optimal condition of minimum distortion error 
 
For a continuous function, equation (B6) holds and we can always find an 

intermediate point that has a tangent which is parallel to the secant line based on 
Mean Value Theorem. Therefore, it shows us that it is possible for intermediate node i 
to adjust its position in between its two neighbors to minimize distortion without 
changing the relative topological relationship with its Voronoi neighbors. Applying 
the argument inductively, it is feasible for us to develop a distributive algorithm that 
preserves the network topology.  

We now take the second derivative of LAi using equation (B5), 
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Note that by virtue of the ordering ( )11 −+ − ii pp  is always positive. For the concave 

region, 00 2

2

2

2
>
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⇒>
∂
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i
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p
LA

p
θ . Therefore, the optimal point is a minimum and vice 

versa. This is in agreement with our observation in Figure B2 and B3 that we should 
minimize/maximize the area in the concave/convex region in order to minimize 
distortion because they are bounded by θ. 
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We are now in the position to derive an expression for the control equation stated 
in equation (B1) for our cooperative mobile sensors. Upon examination of equation 
(B6), we find that it is a suitable control goal for us to use to control the mobile 
sensor. The form in equation (B6) suggests that we could use the efficient Newton’s 
method of zero-finding [91] with order of convergence of 2 to compute the next 
position that sensor i should take. Let us first define the following variables: 
 

)(k
iLA  The local area of sensor i in the kth time step. 

)(k
p

LA

i

i
∂

∂  
The first derivative of local area of sensor i in the kth time step. We also 
denote it as ( )kpy i ,  for clarity of presentation. That is, 
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∂θ  The first derivative of sensed value θi of sensor i in the kth time step. 
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The second derivative of sensed value θi of sensor i in the kth time step. 

 
From equation (B5) and (B7), and the Newton’s method we obtain the main result as 
follows: 
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Note that there is an important difference between the original Newton’s 

method and equation (B8). In one time step, the adjustment is made using 3 
simultaneous measurements (obtained from cooperation). In the original form, there is 
only 1 measurement (corresponding to autonomous behavior) in one time step. The 
original method has to make use of additional values from the past 2 time steps. In 
other words, an autonomous approach will converge 3 times slower than the 
cooperative approach since it requires 3 time steps to obtain the same amount of 
measurements as 1 time step in the cooperative approach.  

Since, we have the readings for 3 sensors: (i – 1), i, (i + 1), we should fully 

utilize the values to accurately evaluate )(k
pi

i
∂
∂θ  and )(2

2
k

pi

i

∂
∂ θ . We first construct the 

Lagrange polynomial [92] through the 3 sensor positions: 
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Taking the first and second derivatives of ( )pl2  w.r.t. p,   
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Therefore, )(k
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We shall now interpret the main result in equation (B8). Comparing equation 
(B8) with (B1) and (B2), we observe that: 
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The first observation is our position control function, ( ))()( k
sn

k
i CpΔ  in equation 

(B11) is a non-linear function of the set of state variables, )(k
snC .  The second 

observation is that its structure fits the general structure of a control equation. In 
particular, we know that the amount of position adjustment depends on the deviation 
of ui from ugoal. Obviously, the adjustment stops when the control goal is reached: ui = 
ugoal. The control goal is in alignment with the optimality condition stated in equation 
(B6). The third observation is that the control gain, Ku is adaptive. It is the reciprocal 

of 2

2

i

i

p∂
∂ θ . 2

2

i

i

p∂
∂ θ  is a measure for the curvature of θ at pi. 2

2

i

i

p∂
∂ θ is positive when the 

curve is concave and otherwise. Furthermore, the absolute magnitude of 2

2

i

i

p∂
∂ θ  

indicates the sharpness in the turn of the curve at pi. When the absolute magnitude of 

2

2

i

i

p∂
∂ θ  is small, the curve is relatively gentle and flat and vice versa. Hence, Ku is large 

when the curve is gentle and small when the curve is sharp.  
 

 
 

Figure B4: Adjustments in the region of high curvature 
 
This is intuitively satisfying as shown in Figure B4a-b. In Figure B4a, Ku is 

constant. As a result, the sensor i tends to overshoot the optimum point, pi,opt and has 
to backtrack its position several times, resulting in an oscillatory behavior with large 
amount of energy expended. In Figure B4b, Ku is adaptive. This time, Ku acts as a 
braking mechanism, it decelerates the sensor i around the sharp turn so that it 
approaches pi,opt cautiously. The movement is smoother than Figure B4a and follows 
closely with the shape of the curve. This allows the algorithm to converge rapidly. In 
fact, it converges with an order of convergence of around 2, since it is adopted from 
Newton’s method. 
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Appendix C:  Derivation of the Motion Control 
Equations for Two-Dimensional Topology 

 
 
 
Recall that in the derivation for the 1D case, we examine the area of the 

distribution under a node bounded by two referencing neighbors. Therefore, based on 
the current state information, the node chooses the best position to move towards so 
as to either maximize or minimize the area of the distribution. The individual goal 
turns out to be to seek a position such that the temperature gradient in that position is 
equal to the mean gradient taken over the two reference points and the intermediate 
node. 

We use the same argument to obtain the expression for the 2D case, by 
considering the volume bounded by an intermediate node and three referencing 
neighbors. 

 
The volume of the tetrahedron with four vertices: ( )111 ,, θyx , ( )222 ,, θyx , ( )333 ,, θyx  
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Substituting the above into the gradient equation, we have our objective function as: 
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Let ][1 CBAugoal −= − .  
 

goali u=∇∴ θ          (C2) 
 

Therefore, simply stated, the equation requires the node to search for a point in 
the triangular region bounded by its three neighbors such that the gradient at that point 
is equal to the mean gradient taken over the triangular region. Recall that for the 1D 
case, the goal is given by, 
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Figure C1: Optimal control goal for the intermediate node in a 1D scenario 
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Figure C1 and C2 illustrate the similarity between the expression for the 1D 
and 2D case. As explained, the RHS of equation (C2) and (C3) is actually mean 
gradient. An analogy is obtaining the mean speed of a vehicle from a distance-time 
graph. The speed of the vehicle is the gradient of the distance-time graph. The mean 
speed of a vehicle after travelling from point 1 to point 2 is the ratio of the total 
distance over the total time. Similarly, in Figure C1, the mean temperature gradient 
over the two reference point 1 and 2 is the ratio of the total temperature range over the 
total distance. Another interpretation from Figure C1 is that the mean gradient is the 
ratio of the line segment bounded by point 1 and 2 projected on the θ-axis over that of 
the x-axis. Similarly, in equation (C2), A, B and C is the areas of the triangle (green 
colour) bounded by point 1, 2 and 3 projected onto the xy, xθ and yθ planes. The areas 
are positive when taken anti-clockwise w.r.t. the 3 reference points. The mean partial 
gradients along the two orthogonal x and y directions are therefore the ratios of the 
areas of the respective projected triangles as shown in Figure C2. 
 

 
Figure C2: Optimal control goal for the intermediate node in a 2D scenario 

 
Since, we are looking at a continuous temperature distribution, an appropriate 

class of search methods will be the descent method. Newton search method is the 
search method in this class that offers a rapid second order of convergence.  The rapid 
convergence is due to the use of more information (first and second order derivatives) 
in the search method. The assumption in this method is that we have a-priori perfect 
knowledge of the distribution. We will look at the modifications required for the case 
where we do not have a priori perfect knowledge of the distribution. A discussion of 
the Newton Search Method can be found in [5]. 
 
From Equation (C1), the volume is given by 
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Ignoring the constant term, 
6
1 , we let  
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The idea of Newton’s method is to maximize V ′  w.r.t. ),( iii yxp =  by maximizing the 
quadratic approximation of V ′  about ),( iii yxp = . This maximization is performed at 
each iteration of the algorithm. Specifically, using a second-order Taylor series 
expansion around the point ),( iii yxp = , we may write: 
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symmetric. The change )( ipV ′Δ  is minimized or maximized when [ ] 0)( =′Δ∇ ipV . 
Therefore, differentiating equation (C4) w.r.t ipΔ  to obtain [ ])( ipV ′Δ∇ , we have, 
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We will need to compute the first and second partial derivatives of ( )kV ′  and 
substitute them into equation (C4). 
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Note that: 
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(C7)– (C12) into (C5) and (C6), we have,  
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iAkH θ2)( ∇=⇒         (C14) 

 
The form presented in equation (C5) is the form used in Newton Search Method. We 
write equation (C5) in the standard control equation form for the purpose of 
stabilization. 
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Where 12 )( −∇= iuK θ  is the control gain.  
 

iθ∇  and iθ2∇  are the temperature partial derivatives about pi and can be obtained 
from the measurement data. Therefore we need to evaluate first and second partial 
derivatives of iθ , however, we do not have any a-priori information on the 
temperature distribution except that iθ  is smooth and continuous. Let •  be the norm 
of a vector. To obtain an approximation of iθ , we perform a local interpolation of the 
measurements available at the four points: pi, p1, p2 and p3 using the Radial Basis 
Function Interpolation and derive the approximate partial derivatives. 
Let ( ) ( )22 2exp σϕ hh pppp −−=− , where h = i, 1, 2, and 3. Then,  
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where, the weight vector, [ ]Ti wwwww 321=  is obtained from the interpolation 
matrix, Φ as follows: 
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( )hilh pp −= ϕϕ ,  l = i, 1, 2, and 3. 

[ ]Ti 321 θθθθθ =  
 
We can now, obtain the gradients from equation (C16) 
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Therefore, at pi,  
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Let [ ]Thihiih yyxxd )()(2 −−−=′ −σ  and )( 2

2 Iddd T
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−−′′=′′ σ . Equation (C22) to 
(C24) can be expressed in compact matrix form as, 
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Before we discuss the method to set the steering direction for the node, we 

would briefly digress on the three basic strategies in statistical decision theory when 
there is a diversity of redundant unreliable choices that is used to make a decision: 
Equal Ratio Combining (ECG), “most reliable choice” and Maximal Ratio Combining 
(MRC). Our objective is to make a choice in manner that minimizes the cost of the 
decision error. The cost is assumed to be quantifiable. It is also assumed that we could 
measure the reliability of a choice, usually through a metric.  

In ECG strategy, we use the average of all choices to determine our decision. 
This strategy is best when there is no good measure for reliability or it is difficult to 
obtain the measure in the current situation. It is sometimes known as the 
“diversification of risk”. 

In “most reliable choice” strategy, if a measure of reliability is available, we 
would choose the most reliable choice. This strategy works best when there are too 
many unreliable choices and one of the choices is overwhelmingly reliable than the 
myriad rest. The obvious risk is that the burden of making a correct decision is placed 
solely on one choice. 

  In MRC strategy, this strategy is most appropriate when there is a group of 
reliable choices and the standard deviation is not too large among them. In this 
strategy, we use a weighted average of the choices. The average is weighted such that 
the most reliable choice is given the highest weight. It is considered the best of both 
strategies above because it provides diversification of risks as well as minimization of 
the cost of decision error due to the use of unreliable choice.  

In our problem, a good measure of reliability is the magnitude of the mean 
temperature gradient along the path leading to one of the neighbors. This is because it 
indicates the likelihood that there are minimum or maximum points in that direction. 
We would use this to help the node decides on the best direction to move. First, we 
define the mean directional derivative from point, pi to pj as follows: 
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where uij is the unit steering directional vector pointing from point i to point j, given 
as: 
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The mean directional derivative Dij describes the average temperature change 

when a point moves along the straight path from point i to j. 



 

 202

To perform the orientation stabilization, we use the mean directional 
derivative as a criterion to choose a steering direction. Let Dst and ust be the 
directional derivative and the unit directional vector for the steering node respectively. 
The new change in position with orientation stabilization obtained by the positive 
projection of the original change in position onto ust is as follows: 

 

sti
T
stist upup Δ=Δ ,         (C30)  

 
Where 
 

1−= ststst DDu         (C31) 
 

Here, we describe two approaches use in our simulation to set a steering 
direction. 
 
Electing a leading node: 
 

In this approach, we “elect” one of the neighboring nodes to be the leading 
node. Figure C3 shows three vectors radiating from the intermediate node i. They 
represent the 3 possible steering directions for node i. The criterion for choosing the 
leading node is the neighboring node which has the largest magnitude of directional 
derivative pointing from node i to it. That is, the most reliable node.  

 

 
 

Figure C3: Directional derivatives 
 
Therefore,  
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Maximal Ratio approach: 
 

The above approach has the risky effect that the burden of leading node i, is 
placed squarely on one node.  If the difference in magnitudes between the directional 
derivative of the leading node and the other nodes is not large, the above method is 
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not the best approach. Since all of them are capable of setting the steering direction 
albeit to varying degrees, it is better to use the weighted combination of the three 
directional derivatives to minimize the decision error, especially in the context of 
unreliable noisy information which we will investigate in the future. For optimal 
decision, we use MRC (Maximal Ratio Combining) as follows: 

 

∑
=

=
3

1

2

j
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Note that this approach still places more bias or weight on a leading node (that 

is, the node with the largest magnitude in the directional derivative), because of the 
squares in the weightings.  However, the method reduces the risk of setting the wrong 
steering direction by diversifying the role of setting the steering direction over three 
neighbors. In fact, if one of the neighbors has an overwhelmingly large directional 
derivative, this approach is approximately similar to the earlier approach in equation 
(C32).   
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Appendix D: Stability Analysis of Optimization 

 
 
 

We now examine the stability of the optimization phase of our algorithm.  
Fundamentally, for our distributed algorithm, the variation of temperature as 

observed by a sensor i can be decomposed into the following: 
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The right hand side of Equation (D1) states that the variation of the temperature 
observed by sensor i, is actually the superposition or sum of the variations of 
temperature represented by the three terms. The first term states that the variation is 
due to the movement of sensor i. The second term states that the variation is due to the 
movement of the source. The third term states that the variation is due to the varying 
intensity of the source. (D1) sums up the challenges of the sensor at the individual 
ground level in a realistic scenario. The temperature change observed by a sensor is 
actually the aggregate of the three possible abovementioned changes. 

The stability of the controlled system under perturbations means its ability to 
restore back the equilibrium state under environmental perturbations. In our context, 
the equilibrium state is the state where all the sensors are locked into the optimal 
stationary positions. In this context, the first factor at RHS is zero since the sensor is 
not moving. Therefore, there are two types of environmental perturbations that will 
disturb the system equilibrium state: variation in intensity of the sources of the 
hotspots and movement of the sources of the hotspots. The first perturbation is trivial 
because variation in intensity is a form of mathematical scaling where all points in the 
hotspots are symmetrically scaled by factor. The second perturbation may disturb the 
stability of the network.  

We will first examine visually the stability behavior of the sensors under our 
original algorithm when the hotspot moves in figure 1 prior to our actual detailed 
analysis in section 3.3. This examination will set the context and rationale behind the 
new design of our algorithm. First, we assume that there is no variation of intensity. 
Hence, when the sensors observe a change in temperature, it is caused by the 
movement of the hotspot. We ignore the problem of acquiring information and 
information processing for the sensor and assume that it is always able to obtain good 
information to compute the gradient and hessian for the Newtonian equation.  Let k be 
the time step. )(k

ip  be the position of the sensor i at time step k. We assume that sensor 
i attempts to reach the local maximum for clarity of presentation and without loss of 
generality as it is one of the optimal positions. 

In the topmost plot, the hotspot is initially stationary during the optimization. 
So at initial step k = 0, sensor i is at location A of the hotspot, at k = 1, it moves to 
location B, finally at k =3, it converges to location D which is the optimal position. 
We have assumed that all the locations of the hotspot fall within the speed limit of the 
sensor so that it can reach the location in one time step.  

In the middle plot, we show the sensor settles at location D at k=3.  
 



 

 205

 
 

Figure D1: Optimization Scenario prior and after movement of the hotspot 
 
In the last plot, the hotspot starts to move at a constant velocity to the right of 

the plot such that at k=4, the sensor is back at location C of the hotspot. We assume 
that the hotspot stops at k=4 and cross-examine the first plot. Notice that the effect of 
the moving hotpot in this scenario is to rollback the sensor by one iteration step back 
to k=2. As the intensity of the source does not change, at location C of the hotspot at k 
=4 in the second plot, the sensor experiences the same condition as location C of the 
hotspot at k=2 in the first plot. Therefore, it will take exactly one iteration step for the 
sensor to reach the optimal location D again. In fact, as long as the sensor is inside the 
shaded region, the sensor will be able to restore back to the original position. Finally, 
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we see in this illustration that the absolute movement of the sensor and the hotspot is 
not important, what matters is the difference between the positions of the sensor and 
the hotspot. That is, the relative movements.  

Back to the last plot again, if the hotspot stops moving, the sensor will be able 
to catch up the hotspot in the next time step. Therefore, there is one time step lag in 
response. Now if the hotspot is moving at a constant velocity in a straight line, by the 
time the sensor reach the location at k =5, the hotspot will have already moved again 
such that the sensor ended up at location C of the hotspot again. In other words, in the 
worst case, when the hotspot continuously moves, there is a constant time lag and 
hence a separation with the hotspot. For such a scenario to be stable, a sufficient 
condition is that the separation is bounded and does not increase with time.   
 To illustrate an unbounded case, we consider the case where the hotspot is 
moving much faster than the previous discussion such that at k=4, the sensor now 
ends at location B. On cross-examination with the first plot, the effect is similar to 
rolling back the sensor by two iteration steps to time k=1. Therefore, under similar 
assumption discuss previously, the sensor will now require two iteration steps to 
restore back to location D if the hotspot stops moving at k=4. We now examine the 
general effect when the hotspot moves at a constant speed. Let Tstep be the time step. 
Let the separation between location D of the hotspot and the current position of the 
sensor be dk, in units of time step. Let the speed the hotspot be vh, in units of time 
step. Similarly the speed travelled by the sensor, vs is also given in time step.  
 
Therefore, vs = 1 (This is always true)  
 
Let vh = n  
 
At time k = 0, the sensor detects a change of temperature in the environment, by then 
the hotspot has already moved, so the separation is: 
 

stephstep nTvTd =×=∴ 0  
 
At time k = 1,  
 

stepstepstepstepsstephstep TnnTTnTdvTvTd )12(01 −=+−=+×−×=∴  
 
At time k = 2,  
 

stepstepstepstepsstephstep TnTnTnTdvTvTd )23()12(12 −=−+−=+×−×=∴  
 
At time k, 
 

stepk Tknkd ])1[( −+=∴  
 
Consider the first scenario, where the speed of the hotspot is n =1, 

stepk Td =∴  which is stable and bounded when the iteration increases.  
 
However, if n =2, 

stepk Tkd ]2[ +=∴  ,  
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The separation is unbounded and increases when k increases because the 
sensor is unable to catch up. 

Therefore, a sufficient condition for stability is to prove that there exist a 
convergence region (indicated as the shaded region) such that sensor can converge 
back after been disturbed by small movement in the sources in one iteration step.  

The objective is to show that an arbitrary sensor i is stable to movement in 
sources at steady state once it has locked into its optimal position. Let θ[pi(t) − popt(t)] 
represents the temperature distribution over the entire terrain w.r.t. popt(t). pi(t) is the 
position of sensor i at time t. t is measured when the sensors are in optimal positions. 
popt(t) is an optimal position on the distribution that sensor i occupied at time t = 0. 
Therefore, the separation: λ(t) = |pi(t) − popt(t)| at t = 0 is 0. If the distribution moves 
continuously, λ(t) ≥ 0 when t > 0. For stability, we are to prove that ∃ρ > 0 such that 
(s.t.) λ(t) < ρ  ∀t. Recall that the objective of sensor i in our optimization is to locate a 
position in a region enclosed by the three surrounding neighbors j, where j =1, 2, 3 s.t. 
the volume of the tetrahedron with the four vertices: (xi, yi, θi) and (xj, yj, θj) is 
maximum. The actual volume, V is given as: 
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Ignoring the factorial and expanding the determinant, V’ directly using the 

Taylor’s expansion about pi(t), we have,  
 

V’ = Vi + ∇Vi (Δpopt)T + 0.5(Δpopt)∇2Vi (Δpopt) T + O(Δpopt)   (D2b) 
 
O(Δpopt) is the sum of the higher order terms. Vi, ∇Vi and ∇2Vi are evaluated at 

t = 0 when pi(t) = popt(t). Particularly, ∇Vi and ∇2Vi are evaluated by differentiating V’ 
in (D2a) w.r.t. pi(t) in appendix C reproduced here as:  

 
∇Vi = [B  (−C)] + A∇θi       (D3a) 
∇2Vi =  A∇2θi         (D3b) 
 
Where, A, B, C are given in appendix C reproduced here as: 
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At t > 0, due to the movement of the sources, there is a change in both popt(t) 

and the temperature measured at the stationary sensors: θi, θj. Therefore, there is a 
change in V’ as given by (D2a-b). Consider the movement, Δpopt = ρ to be sufficiently 
small so that O(Δpopt) is negligible and can be ignored. The objective of sensor i is to 
move Δpopt so pi(t) = popt(t) once again. Since at popt(t), V’ is maximum, we 
differentiate (D2b) w.r.t. Δpopt(t),  
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∂V’/∂ (Δpopt)= ∇Vi + (Δpopt)∇2Vi   
 
Setting ∂V’/∂ (−Δpopt) = [0 0], 
 
Δpopt  = −∇Vi (∇2Vi ) −1       (D4a) 
 
Substituting (D3a-b) into (D4a), we have, 
 
Δpopt  = {A−1[ (−B)  C] − ∇θi}∇2θi      (D4b) 
 
Comparing with (C15) in appendix C reproduced here as: 
 
Δpi

(k) = [ugoal − ∇θi
(k)] Ku 

 
And note that ][1 CBAugoal −= −  as defined in appendix C. Under the condition that 
ρ is small s.t. O(Δpopt) is negligible and consequently, (D2b) is quadratic, restoring 
sensor i to its optimal position given by (D4a-b) is equivalent to executing our 
algorithm for one step. As Taylor’s series exists for a continuous distribution, there 
always exists a stable region centered at popt(t) with radius, ρ. 
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Appendix E: Stability Analysis of Tracking 
Mechanism 

 
 

We now examine the stability of the tracking mechanism. Let the maximum 
number of communications hops in the networks be Nhops. The two costs are 
measurement delay, Tθ and communication delay, Tcomm. Tθ is determined from the 
specifications of the thermometer. A fast electronic thermometer has a delay that is 
less than 1s. Tcomm is given as: Tcomm =  P ÷ Sdata where P is the packet length in bits 
and Sdata is the the data throughput per node. Sdata [P2][P3][93] is affected by channel 
conditions such as: noise, fading, shadowing, the type of MAC protocols, data traffic 
load, maximum communication rate, etc. In the tracking algorithm (figure 4.12, 
chapter 4), any member that first locates the hotpot can respond immediately after a 
delay of Tθ. In the worst case, the last member responses with a delay of T0 given as: 
T0 = Tθ  + NhopsTcomm. Let the maximum speed of the hotspot and the sensor be: Vh, Vs. 
Let D(k) be the separation between the center of the cluster and the hotspot at kth 
iteration. Let )(kT  be the delay at the kth iteration. Let U be a random variable 
uniformly distributed at the interval [−0.5Ds 0.5Ds], where Ds is the maximum 
separation of the sensors adjacent to the cluster-head. U represents the uncertainty due 
to the possibility that the hotspot is at the blind spot at the kth step. In the worst case 
scenario where the hotspot moves continuously at constant speed, Vh and direction, 
D(k) is derived by induction as follows: 

 
At k = 0, the hotspot starts to move, the delay in the first response is T0. Due to this 
delay, by the time the sensor starts to move, the hotspot would have already moved: 
 
D(0) = T0Vh + U 
 
Note that we have examined the worst case by assuming that the hotspot continues to 
move in the same direction. The assumption here is that there is at least some 
coverage around the region to detect the approximate location of the hotspot. To close 
up, the sensor moves at maximum speed, Vs.  

0
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At k = 1, one of the members measures and detects movement, it informs others, due 
to this total delay, in the worst case, the hotspot would have moved. 
 
D(1) = (D(0)Vs

−1+T0)Vh  + U 
 
Therefore to close up again, we have, 
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Similarly at k = 2, 
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Let 1−= shVVr . The RHS is recognized to be the sum of Geometric Progression.  
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⇒ D(k) = T0Vh [1 − (VhVs

−1)k+2] ÷ (1 − VhVs
−1)  + U     (E1a) 

 
Equation (E1a) is obtained by summing the geometric progression terms. 

Taking expectation, we obtain the maximum separation, σmax by letting VhVs
−1 < 1 and 

k →∞, 
 

∴E[D(k)] < σmax = T0Vh  ÷ (1 − VhVs
−1)        (E1b) 

 
Therefore, from (E1b), the tracking is stable as long as Vs > Vh because the 

separation is bounded by σmax. 
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