
DIRECTION-OF-ARRIVAL ESTIMATION
USING MULTIPLE SENSORS

LIM WEI YING
(B.Eng. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR
INTEGRATIVE SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors Prof.

Lye Kin Mun, Dr. A. Rahim Leyman and Dr. See Chong Meng Samson for their

professional guidance, encouragement and support throughout my graduate study. They

demonstrated great freedom and patience on my research. I would also like to thank my

TAC member A/Prof. Hari Garg for his helpful discussions.

I would also like to thank all my friends and colleagues who have helped and encour-

aged me throughout the whole course. I would like to acknowledge the Agency for

Science, Technology and Research (A*STAR), the Institute for Infocomm Research

(I2R) and National University of Singapore (NUS) for their generous financial support

and facilities.

Finally I would like to thank my family for their love, encouragement and support.

i



Abstract

Sensor arrays are used in many applications where localization of sources is essen-

tial. For many applications, it is necessary to estimate the directions-of-arrival (DOAs).

Although there are many DOA estimation algorithms, most of them are not able to re-

solve correlated signals adequately. This thesis proposes a narrowband method – the

pilot-aided subarray (PAS) technique – which utilize a priori knowledge of the incident

signals to overcome problems associated with signal coherence. The PAS technique

performs close to the Cramer-Rao lower bound (CRLB) at low SNRs and for small ar-

ray size and data samples. It is extended to include an iterative procedure to resolve

correlated signals better. This technique, termed pilot-aided subarray iterative (PASI)

technique, requires only a small number of iterations for accurate DOA estimates. This

thesis also proposes a new coherent signal subspace method for wideband signals –

the combined frequency signal subspace method (CFSSM) – which does not require

the focusing stage and thus computational complexity is greatly reduced. The method

is extended to the case where a priori knowledge of the impinging signals is available

and is termed modified M-CFSSM (M-CFSSM). Its detection performance is robust at

low SNRs for both uncorrelated and correlated signals. Moreover the estimation per-

formance is close to the CRLB. The proposed narrowband and wideband techniques

are also modified for the case of time-varying channels. Their performances are more

robust to fading by the utilization of time and gain diversities.
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Chapter 1

Introduction

1.1 Objectives & Contributions

Array signal processing is a subset of signal processing which uses independent sensors

that are organized in patterns termed as arrays to detect signals from an environment of

interest, and extracts as much information as possible about the signals. The array of

sensors provides an interface between the environment in which it is embedded and the

signal processing part of the system (see Figure 1.1). These sensors can be antennas

used in radar, radio communications or radio astronomy, hydrophones used in sonar,

geophones used in seismology or ultrasonic probes and X-ray detection used in medi-

cal imaging [1]. The environment of interest can be air (e.g. wireless communications

applications), water (e.g. underwater sonar applications) or even solid ground (e.g. X-

ray imaging). The sensors are placed judiciously at different locations to capture the

signals. This is, in effect, a means of sampling the received signals in space. Array

signal processing can be classified into active and passive processing. In the former,

a transmitter is used to illuminate the environment and the array listens to the signals

scattered by the environment and/or the object of interest(s). In the latter, the array

merely listens to the environment. In either case, the objective of array signal process-

ing is to estimate from the measurements a set of constant parameters upon which the

received signals depend. This is achieved by fusing temporal and spatial information

and exploiting prior information such as array geometry and sensor characteristics. The

constant parameters to be estimated include:
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• the number of incident sources,

• the direction(s)-of-arrival (DOAs) of incident sources,

• inter-sensor delays of incident signals impinging onto the array, and

• incident source waveforms.

The estimation of the number of incident sources is known as detection while the esti-

mation of their DOAs is known as localization.

Signal
Processing
System

Measurements
Estimates of

Object
Parameters

Priors

Array of
Sensors

Environment

Object of
Interest

Figure 1.1: System model of array signal processing

Direction-of-arrival (DOA) is one of the most important signal parameters that

needs to be estimated in most applications, e.g., radar and wireless communications.

There are many existing narrowband algorithms for DOA estimation. Maximum like-

lihood (ML) and subspace-based methods are two of the most commonly used ap-

proaches. The former yields DOA estimates of sufficient accuracy [2]. However, ML

methods are computationally intensive as they often require multidimensional search

over the parameter space. The latter relies on the decomposition of the received data

into signal and noise subspaces [3–7]. The subspace-based methods can provide high-

resolution DOA estimates with good estimation accuracy. However, as these methods

typically involve eigendecomposition of the array covariance matrix, the computational

cost can be costly, especially for large arrays.
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In friendly communications e.g., wireless communications and general position-

ing systems, some a priori knowledge of the incident signals is available to the re-

ceiver [8, 9]. This a priori knowledge may or may not be explicit. In a packet radio or

mobile communications system, a known preamble may be added to the message for

training purposes. On the other hand, in a digital communications system, the modula-

tion format of the transmitted symbols is known to the receiver but the actual transmit-

ted symbols are unknown. By exploiting the a priori knowledge of the incident signals,

better DOA accuracy can be achieved. There are existing methods which utilize such

information [8–12]. In [11], the ML criterion is derived under the assumption that the

waveforms are known. Consequently iterative methods that use alternating maximiza-

tion (AM) and expectation maximization (EM) are developed to minimize this ML cri-

terion. In [9], a multistage Wiener filter (MSWF) uses reference signals to estimate the

signal and noise subspaces without eigendecomposition of the array covariance matrix.

In [8,10–12], it is assumed that the desired signal is uncorrelated with the interfering

signals. However, in practice, either partially or perfectly correlated interference may

be present, e.g., paths that are generated as a result of multipath propagation. In [9],

the MSWF-based algorithm is able to resolve correlated signals by making use of the

known waveforms.

In this thesis, we propose a narrowband method, termed pilot-aided subarray (PAS)

technique, which makes use of preambles available to the receiver. The received sig-

nal at the array is divided into subarray outputs and correlated with the preambles. A

structure similar to the conventional narrowband signal model is then obtained. A high-

resolution subspace-based method, MUSIC (MUltiple SIgnal Classification), is used

next to carry out the DOA estimation. The proposed PAS technique yields DOAs of

sufficient accuracy with few data samples and small array size. A similar algorithm has

been derived independently in [13]. An important differentiating factor from [13] is our

extension of the algorithm by adding an iterative procedure to improve the accuracy of

the DOAs of correlated signals. This extended algorithm is termed pilot-aided subarray

iterative (PASI) technique. The proposed PASI technique is able to handle correlated

3



signals and resolves them adequately at low SNRs and with few iterations. Moreover,

the maximum number of detectable DOAs using the proposed PAS and PASI tech-

niques is no longer bounded by the number of antennas in the array. In the case where

the channel is non-stationary, the proposed PAS and PASI techniques are modified and

their performances are studied.

Wideband signals have received more attention as they are replacing narrowband

signals in many applications, e.g., the ultra wideband (UWB) wireless communication

can reduce channel fading effects due to multipath propagation [14]. The above narrow-

band algorithms cannot be applied directly to wideband signals as they have bandwidth

much larger than that of narrowband signals. The narrowband algorithms can be ap-

plied to wideband signals if we first decompose the wideband signal into multiple nar-

rowband signals. There are two main approaches of applying narrowband algorithms to

the decomposed wideband signal – incoherent and coherent methods. In the former, the

narrowband algorithms are applied independently to the multiple narrowband signals,

e.g., the incoherent MUSIC (IMUSIC) [15]. In the latter, the multiple signals are com-

bined coherently before the narrowband algorithms are applied, e.g., the coherent signal

subspace method (CSSM) [16, 17]. Incoherent methods are computationally expensive

and require high signal-to-noise ratios (SNRs) to ensure the final combination is effec-

tive [17], leading to the development of CSSM. CSSM is one of the most well-known

coherent methods which carries out a pre-processing step called focusing. In this pre-

processing step, the focusing matrix is used to average the correlation matrices of all

frequency bins of the multiple decomposed signals. The focusing matrix requires initial

DOA estimates that are as close as possible to the true DOAs. If the initial DOA esti-

mates are too far from the true values, the estimation can be biased even if the number

of data samples becomes infinite [18].

In this thesis, we also propose a wideband method, termed combined frequency

signal subspace method (CFSSM), that does not require focusing matrices. The CFSSM

exploits the structure of the combined correlation matrices of all the frequency bins

which has a structure similar to the conventional narrowband signal model (it will be

4



shown in later chapters). A high-resolution subspace-based method, MUSIC, is used

next to carry out the DOA estimation. The performance of CFSSM is comparable

to existing methods and is computationally less intensive than the existing methods.

CFSSM does not require any initial DOA estimates and can work as an initialization for

existing algorithms that use focusing matrices. CFSSM is modified in the case where

the preambles are known and is termed modified combined frequency signal subspace

method (M-CFSSM). The detection performance is robust at low SNRs and requires

only small number of data samples. The performance of M-CFSSM is also investigated

in the case of time-varying channels.

The proposed PAS and PASI techniques provide new approaches to solve signal co-

herence problems, and the proposed CFSSM and M-CFSSM provide solutions to han-

dle wideband signals without the use of focusing matrices which are computationally

costly.

1.2 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, the basics of array signal processing

are introduced. The propagation model, wireless channels, antenna arrays are discussed

briefly before the development of signal models for both narrowband and wideband

signals.

In Chapter 3, we review some existing DOA algorithms for narrowband and wide-

band signals, highlighting their strengths and weaknesses. The narrowband estima-

tion algorithms are classified broadly into spectral-based and parametric approaches,

whereas the wideband estimation algorithms are categorized into incoherent and coher-

ent methods.

In Chapter 4, we propose two spectral-based methods, the PAS and PASI techniques,

which use pilot signals to estimate DOAs of both uncorrelated and correlated narrow-

band signals in time-invariant channels. The formulations of both techniques are first

presented, followed by the numerical simulation to analyze their performances.
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In Chapter 5, we present a coherent method, termed CFSSM, to estimate the DOAs

of both uncorrelated and correlated wideband signals in time-invariant channels. The

formulation is first presented and its applicability for both uncorrelated and correlated

signals is next demonstrated. Simulation results are provided to illustrate its detection

and estimation capabilities.

In Chapter 6, the proposed method in Chapter 5 is modified in the case where pilot

signals are available. This formulation of the method, termed M-CFSSM, is first de-

rived. Next its detection and estimation capabilities are illustrated by simulation results.

In Chapter 7, the proposed methods in Chapter 4 and 6 are extended to time-varying

channels. The effects of time-varying channels on the performances of the proposed

algorithms are investigated.

Finally, Chapter 8 concludes this thesis with our contributions and directions for

future work.
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Chapter 2

Mathematical Preliminaries

The basics of array signal processing are discussed in this chapter. First, the propagation

model is derived from first principles in physics. Next, signal distortions experienced

by signals in wireless channels are examined, followed by discussion on antenna arrays.

Finally, the signal models for both narrowband and wideband signals are developed.

2.1 Propagating Waves

Many physical phenomena are either a result of waves propagating through a medium

or exhibit a wave-like physical manifestation. A wave propagation, which may take

various forms (with variations depending on the phenomenon and on the medium, e.g.,

an electromagnetic wave in free space or an acoustic wave in a pipe), generally follows

from the homogeneous solution of the wave equation [2].

In a vacuum where there are no currents and charges, an electromagnetic wave

satisfies the following Maxwell’s equations [2, 19], :

∇ • E = 0 (2.1)

∇ •B = 0 (2.2)

∇× E = −∂B

∂t
(2.3)

∇× B = ε0µ0
∂E

∂t
(2.4)

where • and × denote divergence and curl respectively. ∇ is the derivative of multidi-
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mensional space. B is the magnetic field intensity and E is the electric field intensity,

whereas µ0 and ε0 are the magnetic and dielectric constants respectively. By invoking

(2.1), the following curl property results:

∇× (∇× E) = ∇ (∇ • E)−∇2E

= −∇2E (2.5)

whereas by using (2.3) and (2.4) lead to:

∇× (∇× E) = − ∂

∂t
(∇× B)

= −ε0µ0
∂2E

∂t2
(2.6)

Upon combining (2.5) and (2.6), the fundamental wave equation results:

∇2E− 1

c2

∂2E

∂t2
= 0 (2.7)

where the constant c is generally referred to as the speed of propagation, and it follows

from the above derivation c = 1/
√

ε0µ0 = 3× 108m/s. The homogeneous (no forcing

function) wave equation (2.7) constitutes the physical motivation for the development

of signal models.

Though (2.7) is a vector equation, we consider only its radial component E (r, t),

where r is the position vector of any point in space. Denoting the carrier frequency by

fc and a plane wave by x̃ (t) [2]:

E (r, t) = x̃
(
t− rT α

)
ej2πfc(t−rT α) (2.8)

satisfies the wave equation (2.7) provided |α| = 1/c, where (·)T represents the trans-

pose of a vector. Since the solution of the wave equation in (2.8) depends only on rT α,

it can be interpreted as a plane wave traveling in the direction α with the speed of prop-

agation 1/|α| = c. The vector α is sometimes referred to as the slowness vector. The
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solution, which carries both spatial and temporal information, is adequate for modeling

signals with distinct spatio-temporal parameters [2].

Assuming the measured sensor output is proportional to E (r, t), the received signal

at a sensor can be modeled as [2]:

y (t) = α (t) x̃
(
t− rT α

)
ej2πfc(t−rT α) (2.9)

where α (t) is the complex gain of the signal x̃ (t). This is the basis for the development

of both narrowband and wideband signal models in Section 2.4.

2.2 Wireless Channels

In wireless channels, an information-bearing signal not only travels in a direct (line-

of-sight (LOS)) path, but also via other non-LOS paths from the transmitter to the re-

ceiver [20–22]. The presence of reflecting objects and/or scatterers causes the signal to

propagate along more than one path between the transmitter and the receiver. This phe-

nomenon is known as multipath propagation [20–22]. The multipath waves experience

random attenuation, and they arrive at the receiver from different directions-of-arrival

(DOAs) at different times. These attenuated and time-delayed versions of the transmit-

ted signal combine vectorially (either constructively or destructively) at the receiver to

give a resultant signal which can vary widely in amplitude and phase [20–23]. These

fluctuations in the strength of the received signal result in signal distortion due to time

dispersion.

Moreover, the multipath structure of wireless channels is constantly changing with

time due to moving transmitters, receivers and/or scatterers. The relative motion be-

tween transmitters, receivers and/or reflectors causes a continuous change in the propa-

gation path lengths of each multipath and thus introduces relative phase shifts between

the multipaths. The rate of change of phase, due to motion, is apparent as a frequency

shift in each multipath. This results in spectral broadening in the frequency domain of
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the transmitted signal at the receiver. This phenomenon is known as the Doppler ef-

fect [20–22]. The received signal experiences an apparent change in frequency (known

as Doppler shift), resulting in signal distortion due to frequency dispersion.

The type of fading experienced by an information-bearing signal traveling through

a wireless channel depends on the nature of the transmitted signal with respect to the

characteristics of the channel. The effects of time dispersion and frequency dispersion,

which are independent of one another, lead to frequency selectivity and time selectivity

respectively [20–22].

2.2.1 Frequency Selectivity

The time dispersive nature of the channel can be characterized by delay spread στ or

coherence bandwidth Bc. The delay spread, which is the time difference between the

arrival times of the first and last multipaths, is a natural phenomenon caused by reflec-

tion and scattering propagation paths in the channel [20–22]. Coherence bandwidth is

the frequency domain dual of delay spread. It is a statistical measure of the range of

frequencies over which a channel passes all spectral components with approximately

equal gain and linear phase. In other words, coherence bandwidth is the range of fre-

quencies over which two frequency components have strong amplitude correlation. A

channel can thus be categorized into two types: flat fading and frequency selective fad-

ing [20–22].

A channel is considered flat fading if the channel has a constant gain and linear

phase response over a bandwidth which is greater than the bandwidth of the transmitted

signal, i.e., Bc >> B. Moreover, the delay spread of the channel is much smaller than

the symbol period of the transmitted signal, i.e., στ << T . Under such conditions, the

spectral characteristics of the transmitted signal are preserved at the receiver. However,

the strength of the received signal varies with time, due to fluctuations of the channel

gain in the multipaths. Flat fading channels are also known as amplitude-varying chan-

nels but are more commonly referred to as narrowband channels, since the bandwidth
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of the signal is much smaller than that of the channel.

A channel is said to be frequency selective fading if it has a constant gain and linear

phase response over a bandwidth which is smaller than the bandwidth of the transmitted

signal, i.e., Bc << B. In addition, the delay spread of the channel is much larger than

the symbol period of the transmitted signal, i.e., στ >> T . In such a channel, the

received signal has multiple time-delayed versions of the attenuated transmitted signal,

as multipath propagation increases the time required for the transmitted signal to reach

the receiver. As a result, signal smearing occurs due to intersymbol interference (ISI).

Correspondingly, the frequency components of the received signal experience different

gains. Frequency selective fading channels are known as wideband channels, since the

bandwidth of the signal is much larger than that of the channel.

2.2.2 Time Selectivity

The frequency dispersive nature of the channel can be characterized by Doppler spread

BD or coherence time Tc. The Doppler spread, which is a measure of spectral broaden-

ing, is caused either by the relative motion between the transmitter and the receiver, or

by the movement of objects in the channel [20–22]. Coherence time is the time domain

dual of the Doppler spread. It is a statistical measure of the time duration over which

a channel is deemed to be approximately invariant. In other words, coherence time is

the time duration over which two received signals have strong amplitude correlation. A

channel can thus be classified into two types: slow fading and fast fading [20–22].

A channel is slow fading if its characteristics is constant over one or several symbol

periods, i.e., Tc >> T . In other words, the channel variations are slower than the

baseband signal variations. Viewed in the frequency domain, the Doppler spread of the

channel is much smaller than the bandwidth of the baseband signal, i.e., BD << B.

A channel is fast fading if its characteristics changes rapidly within the symbol

period, i.e., Tc < T . In other words, the channel variations are faster than the baseband

signal variations. Correspondingly, the Doppler spread of the channel is larger than the
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bandwidth of the baseband signal, i.e., BD > B.

2.3 Antenna Arrays

An antenna is a device used for transmitting and/or receiving electromagnetic waves.

Each antenna exhibits a specific radiation pattern, which is a plot of power transmit-

ted from or received by the antenna per unit solid angle. A radiation pattern plot for

a generic directional antenna is shown in Figure 2.1, illustrating the main lobe, a back

lobe diametrically opposite the main lobe, and several side lobes separated by nulls

where no radiation occurs. The main lobe indicates the direction of maximum radia-

tion (sometimes called the boresight direction) [24–26]. The radiation patterns of such

single antennas are unable to meet the gain or radiation requirements in some applica-

tions e.g., satellite communications. One way of overcoming this problem is to employ

antenna arrays.

Side lobes

Nulls

Back lobe

Main lobe

Figure 2.1: Radiation pattern of a generic directional antenna

Antenna arrays consist of single antennas, called elements, which are arranged in

a specific geometry. Antenna arrays, besides providing a SNR gain proportional to the

number of elements, can also separate signals from different sources transmitting at

12



the same frequency. Moreover, antenna arrays can combat multipath delay spread and

fading fluctuations, and improve signal quality [24–26]. By using appropriate ampli-

tude and phase weights, they are able to focus on the reception of one or more strong

signals with low relative delays while signals with large excess delays can be attenu-

ated [24–26]. The amplitude and phase weights can be controlled electronically (i.e.

no physical antenna motion required) without experiencing any time delay due to me-

chanical constraints. These characteristics of antenna arrays enhance the capacity of

wireless channels [27–29]

2.3.1 Array Geometries

Common array configurations include uniform linear arrays (ULAs) [3–5, 24–26, 30]

and uniform circular arrays (UCAs) [24–26, 31, 32]. Before examining the array ge-

ometries in greater detail, we first examine the Cartesian coordinate system used to

describe the spatial variations of electromagnetic waves.

O

( , , )P x y z

φ

θ

x

y

z

Figure 2.2: Three-dimensional coordinate system
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Consider a three-dimensional coordinate system. A point P can be represented as

(x, y, z), and is illustrated in Figure 2.2. From Figure 2.2, φ is the angle measured

from the x-axis, and θ is the angle between the z-axis and the position vector of P .

φ and θ are also known as the azimuth and elevation angles respectively. Suppose the

reference antenna is at the origin, and another antenna is at point P with position vector

r = [x y z]T . The direction vector of a plane wave coming from direction (φ, θ) is

given by [19, 24–26]:

α =
1

c

[
cos φ sin θ sin φ sin θ cos θ

]T

(2.10)

The time delay of the plane waves between the antenna at P and the reference antenna

is [24–26]:

κ = rT α

=
1

c
(x cos φ sin θ + y sin φ sin θ + z cos θ) (2.11)

2.3.1.1 Uniform Linear Arrays

The simplest array type is the ULA, which is a linear array with equal inter-element

spacing δ, as depicted in Figure 2.3. Suppose an ULA of M elements is placed along

the y-axis, i.e., x = z = 0. The position vector of the mth antenna is thus given by

r = [0 (m− 1) δ 0]T . It is further assumed that all impinging plane waves lie in the

yz plane, i.e., φ = π/2. Hence, the direction vector of a plane wave coming from

direction θ is:

α =
1

c

[
0 sin θ cos θ

]T

(2.12)
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and the time delay between the mth antenna and the reference antenna is given by:

κm =
(m− 1) δ sin θ

c
(2.13)

Note that the time delay between any two consecutive antennas is the same. In other

words, there is a linear progressive phase shift across the array [24–26].

O

θ

x

y

z

δ δ
thM

antenna

thm
antenna

st1
antenna

(reference antenna)

Figure 2.3: Uniform linear array geometry

Ambiguities in terms of the maximum peak in the radiation pattern are introduced

when there are additional lobes having similar transmitted/radiated power compared

to the main lobe. These are called the grating lobes. To avoid spatial aliasing, the

phase delay between any two consecutive antennas, 2πfcκ2, should be restricted to

±π [24–26]:

∣∣∣∣
2πfcδ sin θ

c

∣∣∣∣ ≤ π

∣∣∣∣
2πδ sin θ

λc

∣∣∣∣ ≤ π (2.14)
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where λc = c/fc is the wavelength of the carrier frequency. For −π
2
≤ θ ≤ π

2
, the

inter-element spacing must thus satisfy the relation:

δ ≤ λc

2
(2.15)

If the range of θ is reduced, then it is possible to increase the inter-element spacing [24,

25].

2.3.1.2 Uniform Circular Arrays

Uniform circular arrays (UCAs) are used when a 360◦ field of view is required in the az-

imuthal plane. In applications such as surveillance and cellular communications, UCA

is the natural choice [33, 34]. The elements of a UCA lie uniformly on the circumfer-

ence of a circle of radius r, each separated by an angle ξ, as shown in Figure 2.4.

O

θ

x

y

z

thMantennathmantenna reference antenna st1antennaξ
rξ

Figure 2.4: Uniform circular array geometry

Suppose we have a UCA of M elements in the yz plane, i.e., x = 0 and φ = π/2. The
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position vector of the mth antenna is given by r = [0 r cos ξm r sin ξm]T where ξm =

2π (m− 1) /M . Hence, the direction vector of a plane wave coming from direction θ

is given by:

α =
1

c

[
0 sin θ cos θ

]T

(2.16)

and the time delay between the mth antenna and the reference antenna is:

κm =
r cos ξm sin θ + r sin ξm cos θ

c
(2.17)

2.4 Signal Models

The point source signal model is used to model the signals of interest. This model, in-

voking reasonable assumptions, makes the DOA estimation problem analytically trac-

table [6, 7]. For simplicity, we consider the signal model in a two-dimensional plane.

The assumptions made in this section will apply throughout the thesis.

The point sources are assumed to be isotropic. Hence the signals propagate uni-

formly in all directions. These isotropic sources give rise to spherical traveling waves

whose amplitudes are inversely proportional to the distance traveled [30]. All the points

lying on the surface of a sphere of a certain radius share a common phase, and is re-

ferred to as a wavefront [2,24]. The distance between the sources and the antenna array

will determine whether the sphericity of the waves should be taken into account [2].

In this thesis, we assume the sources to be far-field, i.e., they lie in the Fraunhofer

region [6, 7, 23–25]:

R ≥ 2D2

λc

(2.18)

where R is the radius of propagation, and D is the diameter of the smallest sphere which

completely encloses the array. Hence, signals arriving at the array have constant phase,
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resulting in plane waves. Consequently, signals from each source have the same DOA

at the array. Here, the DOA is defined with respect to the broadside (i.e. normal) of the

array.

The signal sources are assumed to have the same bandwidth, which is common

in wireless communications [22]. Note that the bandwidth and the symbol period are

related by the relation: B = 1/T . The receiver is assumed to be equipped with an

antenna array of M elements in a known arbitrary geometry whereby each element is

omni-directional with unity gain. The transmitters and the receiver are assumed to be

perfectly synchronized. The wireless channel is assumed to be a linear medium which

implies the validity of the superposition principle. It is further assumed that the wireless

environment is slow-varying or stationary during the period of observation.

2.4.1 Narrowband Signals

We consider the general case of a wireless communication system consisting of K in-

dependent narrowband sources. The fractional bandwidth, Bf , of these narrowband

sources satisfies the condition [35]:

Bf =
B

fc

≤ 1

125
(2.19)

where fc is the carrier frequency. The complex representation of the modulated signal

originating from the kth source is:

x(k)(t) =
Ns∑
i=1

g (t− (i− 1) T ) s(k) (i) ej2πfct (2.20)

where Ns is the number of symbols, s(k) (i) is the ith symbol of the kth source, and g (t)

is the pulse-shaping waveform with finite support of length LgT .

The scatterers in the vicinity of the kth source disperse the energy of the trans-

mitted electromagnetic wave in each propagation path with a random amplitude and
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Figure 2.5: Propagation geometry for the multipath channel model

phase [23]. Each of these transmitted electromagnetic waves may encounter dominant

reflectors in the far-field region of the receiver, thereby re-radiating the energy that ar-

rives from the local scattering to the receiver [23]. Hence, each propagation path is

characterized by a DOA θ
(k)
p , an interpath delay τ

(k)
p (defined as the arrival time of the

pth multipath from the kth source at the reference antenna relative to that of the first mul-

tipath from the same source at the same antenna), and a complex gain α
(k)
p . The propa-

gation geometry of the multipath channel model is depicted in Figure 2.5. The electro-

magnetic waves from each source arrive at the receiver as Pk (Pk ≥ 1, k = 1, 2, . . . , K)

plane waves. Consequently, the total number of impinging plane waves at the receiver

is given by
∑K

k=1 Pk = P , where P ≥ K. The received signal at the mth antenna can

be written as a superposition of all the impinging plane waves [23, 36]:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p x(k)

(
t− τ (k)

p − κ(k)
p,m

)
+ wm (t)

=
K∑

k=1

Pk∑
p=1

α(k)
p

{
Ns∑
i=1

g
(
t− (i− 1) T − τ (k)

p − κ(k)
p,m

)
s(k) (i)

× e
j2πfc

(
t−τ

(k)
p −κ

(k)
p,m

)}
+ wm (t) (2.21)
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where κ
(k)
p,m is the antenna delay of the pth multipath from the kth source at mth antenna

relative to the arrival time of the same path at the reference antenna. It can be expressed

as:

κ(k)
p,m =

d
(k)
p,m

c
(2.22)

where d
(k)
p,m is defined as the distance between the mth antenna and the reference antenna

of the pth multipath from the kth source, and c is the speed of propagation. wm (t) is

the additive noise at the mth antenna. It is assumed to be uncorrelated with any of the

impinging plane waves, and is temporally and spatially white.

Since the bandwidth of the narrowband sources is much smaller than the carrier

frequency, the sources can be approximated as single-frequency sources of carrier fre-

quency fc [30]. The wavelength of the sources is thus approximately equal to the wave-

length of the carrier frequency, λc = c/fc. Now it can be shown that κ
(k)
p,m is much

smaller than T :

κ(k)
p,m =

d
(k)
p,m

c

=

(
d

(k)
p,m

λcfcT

)
T

=

(
d

(k)
p,mBf

λc

)
T

<< T (2.23)

since Bf is much smaller than 1 (see (2.19)). Hence, the effect of κ
(k)
p,m is negligible on

the pulse-shaping waveform, i.e., g
(
t− κ

(k)
p,m

)
≈ g (t). However, the presence of κ

(k)
p,m

is not negligible on the carrier waveform as its phase is a linear function of d
(k)
p,m:

e−j2πfcκ
(k)
p,m = e−j

2πfcd
(k)
p,m

c

= e−j
2πd

(k)
p,m

λc (2.24)
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Now the received signal at the mth antenna can be simplified to:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p

Ns∑
i=1

g
(
t− (i− 1) T − τ (k)

p

)
s(k) (i)

× ej2πfcte−j2πfcτ
(k)
p e−j2πfcκ

(k)
p,m + wm (t) (2.25)

The received signal is next down-converted to baseband and sampled at the Nyquist

rate, i.e., at multiples of T (t = bT ):

ym (bT ) =
K∑

k=1

Pk∑
p=1

α(k)
p

Ns∑
i=1

g
(
bT − (i− 1) T − τ (k)

p

)
s(k) (i) e−j2πfcτ

(k)
p e−j2πfcκ

(k)
p,m

+ wm (bT ) (2.26)

where b is a scalar.

2.4.1.1 Flat Fading Channels

Consider the case when the channel is flat fading, i.e., τ
(k)
p << T . The baseband

received signal at the mth antenna can be further reduced to:

ym (bT ) =
K∑

k=1

Pk∑
p=1

α(k)
p

Ns∑
i=1

g (bT − (i− 1) T ) s(k) (i) e−j2πfcκ
(k)
p,m + wm (bT )

(2.27)

Thus the effect of an antenna delay κ
(k)
p,m on the narrowband signals is simply a phase

shift.

To avoid ISI, an appropriate pulse-shaping waveform such as the raised cosine

waveform with a roll-off factor β (see Figure 2.6) can be used [21]:

g (t) =
sin

(
πt
T

)
πt
T

cos
(

πβt
T

)

1− 4β2t2

T 2

(2.28)
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where it exhibits the following property:

g (bT − (i− 1) T ) =





1, b− i + 1 = Lg/2

0, otherwise
(2.29)

0  0.5T 1T 1.5T 2T 2.5T 3T 3.5T 4T
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.6: Raised cosine waveform of length 4T with roll-off factor β = 0.5

Considering only non-zero antenna outputs, the nth sample of the baseband received

signal at the mth antenna is thus as follows:

ym (n) =
K∑

k=1

Pk∑
p=1

α(k)
p s(k) (n) e−j2πfcκ

(k)
p,m + wm (n) (2.30)

for n = 1, 2, . . . , N . Note that the number of snapshots is equal to the number of

transmitted symbols, i.e., N = Ns.

For each snapshot, the noisy signals received by the array can be cast into a vector

form [3–7, 26]:

y (n) = A (θ)Λs (n) + w (n) (2.31)
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where

y (n) =

[
y1 (n) y2 (n) · · · yM (n)

]T

(2.32)

w (n) =

[
w1 (n) w2 (n) · · · wM (n)

]T

(2.33)

s (n) =

[
s(1) (n) · · · s(1) (n) · · · s(k) (n) · · · s(K) (n) · · · s(K) (n)

]T

(2.34)

Λ = diag

{
α

(1)
1 , · · · α

(1)
P1

, · · · α
(k)
p , · · · α

(K)
1 , · · · α

(K)
PK

}
(2.35)

θ =

[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

(2.36)

y (n) is the M×1 noisy received signal at the array whereas w (n) is the M×1 additive

white noise at the array. s (n) is the P × 1 vector comprising of the repetitions of the K

signal sources according to the number of impinging plane waves for each source (i.e.

Pk repetitions for the kth source). Λ is the P ×P diagonal matrix of the complex gains

with entries equal to α
(k)
p . θ is the P × 1 vector containing the DOAs of all impinging

plane waves and the M × P array response matrix A (θ) is defined as:

A (θ) =

[
a

(
θ

(1)
1

)
· · · a

(
θ

(1)
P1

)
· · · a

(
θ

(k)
p

)
· · · a

(
θ

(K)
1

)
· · · a

(
θ

(K)
PK

) ]

(2.37)

where each M × 1 steering vector is given by:

a
(
θ(k)

p

)
=

[
e−j2πfcκ

(k)
p,1 e−j2πfcκ

(k)
p,2 · · · e−j2πfcκ

(k)
p,M

]T

(2.38)

By concatenating the array outputs at different snapshots, the received signals can

be written compactly in the following matrix structure [3–5]:

Y = A (θ)ΛS + W (2.39)
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where

Y =

[
y (1) y (2) · · · y (N)

]
(2.40)

S =

[
s (1) s (2) · · · s (N)

]
(2.41)

W =

[
w (1) w (2) · · · w (N)

]
(2.42)

The aim is to estimate all the DOAs θ =
[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

from the N snapshots.

2.4.1.2 Frequency Selective Channels

Consider the case of a frequency selective channel, i.e., τ
(k)
p >> T . In this case, the

effect of interpath delay τ
(k)
p cannot be disregarded on the pulse-shaping waveform

g (t) [37]. Thus the baseband received signal at the mth antenna from (2.25) is given

by:

ym (bT ) =
K∑

k=1

Pk∑
p=1

α(k)
p

Ns∑
i=1

g
(
bT − (i− 1) T − τ (k)

p

)
s(k) (i) e−j2πfcτ

(k)
p e−j2πfcκ

(k)
p,m

+ wm (bT ) (2.43)

The presence of the interpath delay τ
(k)
p causes manifestation of the ith symbol from

the kth source for a duration as long as LcT seconds, where LcT = LgT + d∆τe is the

length of the channel, and the temporal spread ∆τ is the time difference of the arrival

times between the first and the last multipaths. The exponential term containing the

interpath delay τ
(k)
p can be absorbed into the complex gain α

(k)
p . Hence, the nth sample

of the baseband received signal at the mth antenna can be re-written as:

ym (n) =
K∑

k=1

Pk∑
p=1

α̃(k)
p

Lc∑

l=1

g
(
(l − 1) T − τ (k)

p

)
s(k) (n + Lc − l)

e−j2πfcκ
(k)
p,m + wm (n) (2.44)
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where n = 1, 2, . . . , N . Note that the number of snapshots N is equal to Ns + Lc − 1.

For each sample, the received signal at the array can be cast into the following form:

y (n) = A (θ)ΛGT (τ )S (n) + w (n) (2.45)

where

y (n) =

[
y1 (n) y2 (n) · · · yM (n)

]T

(2.46)

w (n) =

[
w1 (n) w2 (n) · · · wM (n)

]T

(2.47)

Λ = diag

{
α

(1)
1 , · · · α

(1)
P1

, · · · α
(k)
p , · · · α

(K)
1 , · · · α

(K)
PK

}
(2.48)

θ =

[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

(2.49)

τ =

[
τ

(1)
1 · · · τ

(1)
P1

· · · τ
(k)
p · · · τ

(K)
1 · · · τ

(K)
PK

]T

(2.50)

y (n) is the M × 1 noisy received signal at the array, whereas w (n) is the M × 1

additive white noise at the array. Λ is the P × P diagonal matrix of the complex gains

with entries equal to α̃
(k)
p . θ and τ are the P × 1 vectors containing the DOAs and

interpath delays of all impinging plane waves respectively. S (n) is the KLc × 1 vector

containing the transmitted symbols from all sources, which is defined as follows:

S (n) =

[
s(1) (n) s(2) (n) · · · s(K) (n)

]T

(2.51)

where

s(k) (n) =

[
s(k) (n + Lc − 1) s(k) (n + Lc − 2) · · · s(k) (n)

]T

(2.52)
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The G (τ ) is the KLc × P diagonal block matrix with the following structure:

G (τ ) =




G
(
τ (1)

)
0 · · · 0

0 G
(
τ (2)

) · · · 0

...
... . . . ...

0 0 · · · G
(
τ (K)

)




(2.53)

where

τ (k) =

[
τ

(k)
1 τ

(k)
2 · · · τ

(k)
Pk

]T

(2.54)

G
(
τ (k)

)
=

[
g

(
τ

(k)
1

)
g

(
τ

(k)
2

)
· · · g

(
τ

(k)
Pk

) ]
(2.55)

g
(
τ (k)
p

)
=

[
g

(
−τ

(k)
p

)
g

(
T − τ

(k)
p

)
· · · g

(
(Lc − 1) T − τ

(k)
p

) ]T

(2.56)

The M × P array response matrix A (θ) is defined as:

A (θ) =

[
a

(
θ

(1)
1

)
· · · a

(
θ

(1)
P1

)
· · · a

(
θ

(k)
p

)
· · · a

(
θ

(K)
1

)
· · · a

(
θ

(K)
PK

) ]

(2.57)

where each M × 1 steering vector is given by:

a
(
θ(k)

p

)
=

[
e−j2πfcκ

(k)
p,1 e−j2πfcκ

(k)
p,2 · · · e−j2πfcκ

(k)
p,M

]T

(2.58)

By concatenating the array outputs at different snapshots, the received signals can

be written compactly in the following matrix structure:

Y = A (θ)ΛGT (τ )S + W (2.59)
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where

Y =

[
y (1) y (2) · · · y (N)

]
(2.60)

S =

[
S (1) S (2) · · · S (N)

]
(2.61)

W =

[
w (1) w (2) · · · w (N)

]
(2.62)

The aim is to estimate all the DOAs θ =
[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

from the N snapshots.

2.4.2 Wideband Signals

We consider the general case of a system consisting of K independent wideband sources.

The fractional bandwidth, Bf , of these wideband sources satisfies the condition [35]:

Bf =
B

fc

>
1

125
(2.63)

where fc is the carrier frequency.

Keeping to the same notations in Section 2.4.1, the received wideband signal at the

mth antenna can be written as a superposition of all the impinging plane waves [23,36]:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p x(k)

(
t− τ (k)

p − κ(k)
p,m

)
+ wm (t) (2.64)

Unlike the case for narrowband signals, where the bandwidth is small relative to the

carrier frequency, the time delay cannot be modeled as a simple phase shift [35]. The

most common approach to wideband signal formulation, which is used in this thesis,

is to decompose the wide frequency band into non-overlapping narrow bands through

a bank of bandpass filters [17, 18, 38, 39]. An alternative approach is to make use of

interpolating sequence in the time domain to model the wideband sources [40, 41].
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In this thesis, we consider Discrete Fourier Transform (DFT) bandpass filters which

can be efficiently implemented by Fast Fourier Transform (FFT). However, the reso-

lution of the filter bank (i.e. the bandwidth of each frequency bin) is dependent on the

length of the kernel. The higher the resolution, and hence more accurate representa-

tion of the frequency spectrum can only be obtained by using long kernels. Moreover,

there is no flexibility given in shaping the transfer function of the filter bank. Despite

these limitations, DFT bandpass filters are adopted due to its design simplicity and its

high-speed implementation.

We assume that the observation time is much larger than the correlation time of

sources so that the Fourier Transform of the antenna outputs have good resolution,

and the sub-bands are independent of one another with respect to both time and fre-

quency [18, 38, 39]. The Fourier Transform of the received signal at the mth antenna

from (2.64) can be written as:

Ym (fq) =

∫ ∞

−∞
ym (t) e−j2πfqtdt

=
K∑

k=1

Pk∑
p=1

α(k)
p

∫ ∞

−∞
x(k)

(
t− τ (k)

p − κ(k)
p,m

)
e−j2πfqtdt +

∫ ∞

−∞
wm (t) e−j2πfqtdt

=
K∑

k=1

Pk∑
p=1

α(k)
p X(k) (fq) e−j2πfqτ

(k)
p e−j2πfqκ

(k)
p,m + Wm (fq) (2.65)

The antenna array output is observed over a total duration of T0 seconds. The ob-

servation window is divided into N intervals each with duration ∆T = T0/N seconds.

The received signal is sampled at the Nyquist rate, and a Q-point DFT is applied to the

samples to obtain the Q frequencies output for each interval. In other words, we have

N snapshots of the Q frequency bins. The aim is to estimate all the P DOAs θ
(k)
p from

these data.

For each decomposed narrowband frequency fq, the signals at the array can be writ-

ten in the conventional narrowband structure [26]:

Y (fq) = A (fq)ΛX (fq) + W (fq) (2.66)
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where

Y (fq) =

[
Y1 (fq) Y2 (fq) · · · YM (fq)

]T

(2.67)

W (fq) =

[
W1 (fq) W2 (fq) · · · WM (fq)

]T

(2.68)

X (fq) =

[
X(1) (fq) · · · X(1) (fq) · · · X(k) (fq) · · ·

· · · X(K) (fq) · · · X(K) (fq)

]T

(2.69)

Λ = diag

{
α

(1)
1 , · · · α

(1)
P1

, · · · α
(k)
p , · · · α

(K)
1 , · · · α

(K)
PK

}
(2.70)

θ =

[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

(2.71)

Y (fq) is the M×1 noisy received signal at the array whereas W (fq) is M×1 frequency

domain additive white noise at the array. X (fq) is the P × 1 vector comprising of the

repetitions of the K signal sources according to the number of arrival paths for each

source (i.e. Pk repetitions for the kth source). Λ is the P × P diagonal matrix of the

complex gains with entries equal to α
(k)
p . θ is the P × 1 vector containing the DOAs of

all impinging plane waves and the M × P frequency-dependent array response matrix

A (fq,θ) is defined as:

A (fq, θ) =

[
a

(
fq, θ

(1)
1

)
· · · a

(
fq, θ

(1)
P1

)
· · · a

(
fq, θ

(k)
p

)
· · ·

· · · a
(
fq, θ

(K)
1

)
· · · a

(
fq, θ

(K)
PK

) ]
(2.72)

with each M × 1 frequency-dependent steering vector given by:

a
(
fq, θ

(k)
p

)
=

[
e
−j2πfq

(
τ
(k)
p +κ

(k)
p,1

)
e
−j2πfq

(
τ
(k)
p +κ

(k)
p,2

)
· · · e

−j2πfq

(
τ
(k)
p +κ

(k)
p,M

) ]T

(2.73)
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Chapter 3

DOA Estimation – Existing Techniques

In this chapter, we review the existing DOA algorithms for both narrowband and wide-

band signals. We discuss each algorithm briefly and identify their strengths and weak-

nesses.

3.1 Narrowband Algorithms

Narrowband DOA estimation methods can be broadly categorized into two types, namely

spectral-based and parametric methods. In the former, a spectrum-like function of the

DOAs is formed and the estimates are given by the locations of the highest (resolvable)

peaks of the function. The latter often requires a simultaneous search for all parameters

of interest, e.g., the DOAs and the complex gains.

3.1.1 Spectral-Based Methods

Spectral-based methods can be further classified into two groups – beamforming and

subspace-based techniques. In beamforming, the array is steered (either manually or

electronically) in one direction at a time and the output power is measured. The maxi-

mum output power yields the directions of the signals. For subspace-based techniques,

a well-known method is the MUSIC algorithm [3–5]. It is a superresolution algorithm

as it has the ability to resolve sources separated by 0.1 beamwidth [42]. With its high

resolution detection capability, we utilize the MUSIC algorithm together with our pro-
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posed techniques in later chapters. Hence the MUSIC algorithm is examined in details

in the following section. However, the DOAs estimated from the MUSIC algorithm

are not associated with the sources, making their localization impossible. To over-

come this and to improve the accuracy of DOA estimation, reference signals (either

pilot signals or decision-directed signals) are used in the development of some algo-

rithms. Two relatively new techniques – subarray beamforming-based DOA (SBDOA)

and MSWF-based – assume some a priori knowledge about the sources were proposed

in [43] and [9] respectively.

3.1.1.1 MUSIC

A significant breakthrough in spectral-based methods came when Schmidt developed

the MUSIC algorithm [3–5]. Similar approaches have also been reported in [44–48].

Unlike previous works which were mostly derived in the context of time series analysis

and later applied to sensor array problems, Schmidt developed MUSIC in the context

of array signal processing. Till mid-1970s, direction finding techniques required the

knowledge of the array directional sensitivity pattern in analytical form. With the in-

troduction of MUSIC, it relieved the designers from designing an array of elements

with a pre-specified sensitivity pattern [45, 49]. The reduction in analytical complexity

was achieved by calibrating the array. In other words, the highly non-linear problem

of calculating the array response to a signal from a given direction was reduced to that

of measuring and storing the array response [3–5]. Moreover, the MUSIC algorithm is

applicable to any configuration of the array. In addition, the MUSIC algorithm asymp-

totically yields unbiased parameter estimates [7]. As the number of available samples

tends to infinity, the estimated signal and noise subspaces converge to the true signal

and noise subspaces, and the parameter estimates converge to the true values as well [7].

The Geometric Approach

Schmidt developed the MUSIC algorithm by taking a geometric view of the signal

parameter estimation problem [3–5]. Consider a noiseless environment and that there
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is an array of M elements. Thus the complex signal at the array can be visualized and

characterized by a vector in CM . In the case of one impinging plane wave, the received

signal vector:

y (n) = αa (θ) s (n) (3.1)

is confined to a 1-dimensional subspace ofCM characterized by a (θ). Generalizing this

key observation to the case of P (P ≤ M) impinging wavefronts, the received signal

vector:

y (n) = A (θ)Λs (n) (3.2)

is confined to a P -dimensional subspace of CM , termed the signal subspace SY . It

is spanned by the P steering vectors a (θ), the column vectors of A (θ), i.e., SY =

R (A (θ)). These steering vectors are elements of a set, termed array manifold A,

consisting of all the possible steering vectors in the M -dimensional space. The array

manifold A is completely determined by the array directional sensitivity patterns and

the array geometry. It can be computed analytically for simple arrays, but it is generally

obtained by calibration of the array [3–7]. Hence the estimates of signal parameters

can be obtained by finding the intersections of the array manifold A with the signal

subspace SY .

Estimation of the Signal Subspace

In order to locate the intersections between the array manifoldA and the signal subspace

SY , the latter has to be estimated from the noisy measurements y (n):

y (n) = A (θ)Λs (n) + n (n) (3.3)

In other words, it is to estimate the set of vectors that spans the signal subspace [49].
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To obtain such a set, first consider the M ×M covariance matrix of y (n):

Ry = E
[
y (n)yH (n)

]

= A (θ)RxA
H (θ) + Rw (3.4)

where

Rx = ΛE
[
s (n) sH (n)

]
ΛH (3.5)

Rw = E
[
w (n)wH (n)

]
(3.6)

For spatially and temporally white noise, the noise covariance matrix is diagonal, i.e.,

Rw = σ2I. Next, consider the eigendecomposition of Ry [50, 51]:

RyE = EΦ

A (θ)RxA
H (θ) = E

[
Φ− σ2I

]
EH (3.7)

where

E =

[
e1 e2 · · · eM

]
(3.8)

Φ =




λ1 0 · · · 0

0 λ2 · · · 0

...
... . . . ...

0 0 · · · λM




(3.9)

The columns of E are eigenvectors of Ry and Φ contains the corresponding eigenvalues.

Note that E is a unitary matrix, i.e., EEH = EHE = I.

Since A (θ) is a full column rank matrix and Rx is positive definite, the matrix

A (θ)RxA
H (θ) has a rank of P and is non-negative definite. Therefore the eigenvec-

tors {ei, i = 1, 2, . . . , P} corresponding to the P largest eigenvalues span the signal

subspace, and the remaining eigenvectors {ei, i = P + 1, P + 2, . . . ,M} correspond-
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ing to the (M − P ) remaining eigenvalues span the noise subspace. As the measure-

ments are noisy, the estimated signal and noise subspaces are given by:

ŜY = R (ES) where ES =

[
e1 e2 · · · eP

]
(3.10)

Ŝ⊥Y = R (EW ) where EW =

[
eP+1 eP+2 · · · eM

]
(3.11)

where R (·) denotes the range/column space.

In practical situations, the covariance matrices are usually unknown. Thus the co-

variance matrix Ry has to be estimated from the finite samples of the received signals.

A natural estimate of Ry is the sample covariance matrix [2]:

R̂y =
1

N

N∑
n=1

y (n)yH (n) (3.12)

The noise covariance matrix Rw can be estimated from measurements without the pres-

ence of desired signals.

Estimation of the Signal Parameters

The DOA estimates can be obtained by the intersections of the array manifold A and

the signal subspace SY , or equivalently, finding vectors from the array manifold A that

are orthogonal to the noise subspace S⊥Y . However, the computational effort in locating

the intersections is costly, especially for multidimensional parameters (e.g. elevation,

azimuth and range). The problem is further complicated by noise. In the presence of

noise, with probability one, the array manifoldA does not intersect with the signal sub-

space SY . Consequently there are no vectors that are orthogonal to the noise subspace

S⊥Y . Clearly, vectors from the array manifold A that are closest to the signal subspace

SY should be potential solutions. Schmidt proposed the following cost function as a

measure of closeness [3–5]:

P (θ) =
aH (θ) a (θ)

aH (θ)EWEH
Wa (θ)

(3.13)
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The measure is termed the MUSIC spectrum. In the absence of noise, the MUSIC

spectrum is infinite for vectors which span the signal subspace SY . In the presence

of noise, the MUSIC spectrum shows peaks for vectors that are closest to the signal

subspace SY , i.e., vectors that are almost orthogonal to the noise subspace S⊥Y .

MUSIC is computationally prohibitive as it requires multidimensional search over

the parameter space [7]. Even though the MUSIC spectrum is used, thereby reducing

the search to 1-dimensional, the process of estimating the signal parameters is not opti-

mal. The parameter estimates are not sought simultaneously; instead they are found one

at a time. Furthermore, the capacity of detection of MUSIC is bounded by the number

of antennas. The maximum number of detectable DOAs is no more than M − 1. More-

over, MUSIC fails to resolve correlated signals. Correlatedness is defined as follows:

two signals xi (n) and xj (n) are correlated when:

E
[
xi (n) x∗j (n)

] 6= 0, i 6= j (3.14)

In cases of fully correlated signals, they are known as coherent signals, i.e.,

xi (n) = αxj (n) (3.15)

Despite these drawbacks, MUSIC is a superresolution algorithm (defined as the ability

to resolve sources separated by only 0.1 beamwidth) and has been shown to outperform

other techniques such as maximum entropy method (MEM) [42].

3.1.1.2 SBDOA

A relatively recent technique that uses reference signals known as SBDOA was devel-

oped [43]. It uses similar array geometry as ESPRIT (Estimation of Signal Parameters

via Rotational Invariance Technique) [6, 7]. ESPRIT retains most of the essential fea-

tures of arbitrary arrays, but achieves a significant reduction in computational complex-

ity by employing two arrays where the elements in each array are separated by a fixed
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translational distance. SBDOA differs from ESPRIT in that it utilizes virtual subarrays

to obtain the doublets. The array is divided into two virtual subarrays of equal elements,

through the use of either maximum overlapping subarrays (MOSs) [43,52] or conjugate

subarrays (CSs) [43, 53]. For each element in the subarray, there is a corresponding el-

ement in the other subarray displaced by a fixed translational distance. Thus, the phase

shift between the two subarray signals is a function of the DOA [43].

The two subarray signals yA (n) and yB (n) are fed into beamformers A and B

separately. For the kth source, the weight vector w
(k)
A of beamformer A is obtained by

minimizing the mean-square error between its output signal yA (n) and the reference

signal r(k) (n):

arg min
w

(k)
A

E

[∣∣∣∣
(
w

(k)
A

)H

yA (n)− r(k) (n)

∣∣∣∣
2
]

(3.16)

and it is given in a closed form:

w
(k)
A = R−1

A h
(k)
A (3.17)

where

RA = E
[
yA (n)yH

A (n)
]

(3.18)

h
(k)
A = E

[(
r(k)(n)

)∗
yA (n)

]
(3.19)

The weight vector w
(k)
A obtained from beamformer A is the same weight vector that

minimizes the mean-square error between the output signal of beamformer B yB (n)

and the reference signal r(k) (n) [43]:

arg min
w

(k)
B

E

[∣∣∣∣
(
w

(k)
B

)H

yB (n)− ejφ(k)

r(k) (n)

∣∣∣∣
2
]

(3.20)
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and the weight vector w
(k)
B is thus given by:

w
(k)
B = w

(k)
A (3.21)

It has been proven that the output signal of beamformer B is an optimum estimation of

the phase-shifted reference signal r̂(k) (n), and its phase relative to that of the reference

signal is a function of the DOA [43]. Let:

r(k) =

[
r(k) (1) r(k) (2) · · · r(k) (N)

]T

(3.22)

r̂(k) =

[
r̂(k) (1) r̂(k) (2) · · · r̂(k) (N)

]T

(3.23)

denote vectors with N snapshots of the reference signal and the estimated phase-shifted

reference signal respectively. The estimation of the DOA is then obtained based on

the computation of the phase shift between the phase-shifted reference signal and the

reference signal [43], i.e.,

φ̂(k) = arg
((

r(k)
)H

r̂(k)
)

(3.24)

Subspace estimation, eigendecomposition and multidimensional optimization are

not required in the SBDOA technique. Hence, it is computationally simpler and can be

easily implemented in terms of hardware [43]. Moreover, its capacity of DOA estima-

tion is larger than the number of antennas in the array [43]. More significantly, the effect

of co-channel interference on DOA estimation is reduced as the DOAs are estimated af-

ter interference rejection through subarray beamforming [43]. This is not the case for

subspace-based methods using eigendecomposition of array covariance matrix. Steer-

ing vectors or the signal subspace spanned by the steering vectors have to be computed

for DOA estimation [54], and information pertaining to such steering vectors exists only

before interference rejection. As a result, the performance of such methods is signifi-

cantly degraded by the interference. Hence, the estimation resolution and accuracy of

SBDOA technique are better than those of methods using eigendecomposition of array
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covariance matrix [43].

However, the SBDOA technique is not able to handle correlated signals due to the

limited capability of optimum beamformers [26, 55–57]. The conventional beamform-

ers not only fail to form nulls in the direction of correlated interferences, but they also

tend to cancel desired signal in their outputs [26, 55–57].

3.1.1.3 MSWF-based Algorithm

A computationally efficient method for DOA estimation, based on partial a priori knowl-

edge of signal sources, was proposed in [9]. Unlike other subspace-based techniques

which use eigendecomposition to obtain the signal and noise subspaces [3–5], this tech-

nique estimates these subspaces by forward recursion of the MSWF.

It is well-known that the Wiener filter (WF) can be used to estimate the desired

signal from the received signals in the minimum mean-square error (MMSE) sense [25,

26, 58, 59]:

wwf = arg min
wwf

E
{∣∣wH

wfy (n)− r (n)
∣∣2

}
(3.25)

where r (n) is the pilot signal. The solution to (3.25) leads to the Wiener-Hopf equa-

tion [25, 26, 58, 59]:

Rywwf = Ryr (3.26)

where Ry = E
[
y (n)yH (n)

]
and Ryr = E [y (n) r∗ (n)]. The solution to the Wiener-

Hopf equation is given by [25, 26, 58, 59]:

wwf = R−1
y Ryr (3.27)

where it is computationally intensive for large arrays as the inverse of the array covari-

ance matrix Ry has to be computed. The authors overcame this difficultly by employing

the MSWF developed in [60]. The MSWF approximates the solution to the Wiener-
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Hopf equation, thereby eliminating the need to find the inverse of the array covariance

matrix. Furthermore, by exploiting the orthogonal property of the matched filters of

the MSWF, the signal and noise subspaces can be spanned by the matched filters [61].

Hence the computational complexity in estimating the noise subspace is reduced com-

pared to that of eigendecomposition of the array covariance matrix. The estimated noise

subspace is then used in the cost function of MUSIC to locate the DOA peaks. Alter-

natively, the DOA estimates can be estimated using root-MUSIC algorithm [62]. In

the case of correlated signals, spatial smoothing technique is used to decorrelate them.

Since the array covariance matrix is not estimated to obtain the noise subspace, spatial

smoothing technique is applied to the array data matrix and the reference signal vec-

tor instead of the array covariance matrix. The MSWF-based technique can be used

for small number of snapshots where the array covariance matrix cannot be estimated

accurately and efficiently.

3.1.2 Parametric Methods

While the spectral-based methods are computationally attractive, they are suboptimal

and do not always yield sufficient accuracy, especially in the case of correlated sig-

nals [2]. An alternative is to more fully exploit the underlying signal model, leading to

the so-called parametric methods. The price to pay for is increased computational load

as it requires a multidimensional search over the parameter space [2].

The most common model-based technique is the ML. There are two types of ap-

proaches depending on the assumption of incident signals. If the transmitted signals

are deterministic (i.e. signal waveforms are known), deterministic ML results; if the

transmitted signals are random, stochastic ML results. Since the proposed algorithms

utilize reference signals, we concentrate our reviews on deterministic signals.

Under the additive white Gaussian noise (AWGN) assumption, the ML estimate

of the DOAs and complex gains are obtained by solving the non-linear least squares
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problem [2, 11, 63]:

arg min
θ,α

N∑
n=1

‖y (n)−A (θ)Λs (n)‖2 (3.28)

The ML function is highly non-linear in the unknown signal parameters. Hence direct

maximization of the ML function requires a computationally expensive multidimen-

sional search. Computational savings are achieved by applying the result in [64] and

the least squares problem can be re-expressed as:

arg min
θ

tr
[
P⊥

A (θ) R̂y

]
(3.29)

where P⊥
A (θ) is the projection matrix onto the orthogonal complement of the range

space of A (θ), R̂y is the sample covariance matrix, and tr (·) is the trace of a matrix.

As the ML criterion in (3.29) is multimodal, it still requires a computationally expen-

sive multidimensional search for a global minimum. Thus the authors in [65] and [11]

proposed iterative algorithms to reduce the computational load in estimating the ML

solution.

3.1.2.1 IQML

In [65], the authors expressed the ML criterion in (3.29) in terms of the prediction

polynomial of the noiseless signal before developing an iterative algorithm that solves

for the minimization of the ML criterion.

The signal components ym (n) in y (n) obey the special autoregressive moving av-

erage (ARMA) [66]:

b0ym (n) + b1ym−1 (n) + · · ·+ bP ym−P (n) =

b0nm (n) + b1nm−1 (n) + · · ·+ bP nm−P (n) (3.30)
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where

b(z) = b0z
P + b1z

P−1 + · · ·+ bP (3.31)

is the linear prediction polynomial for the noiseless signal. By the invariance principle

of the ML estimate, the roots of the polynomial are the ML estimates of the signal

exponential parameters [65]. Thus the ML criterion can be re-written in terms of the

polynomial coefficients:

min
b

bH

[
N∑

n=1

YH
1 (n)

(
BHB

)−1
Y1 (n)

]
b (3.32)

where

b =

[
b0 b1 · · · bP

]T

(3.33)

B =




b∗P 0 · · · 0 0

...
... . . . ...

...

b∗0 b∗1 · · · b∗P 0

0 b∗0 · · · b∗P−1 b∗P
...

... . . . ...
...

0 0 · · · 0 b∗0




(3.34)

Y1 (n) =




yP+1 (n) yP (n) · · · y1 (n)

yP+2 (n) yP+1 (n) · · · y2 (n)

...
... . . . ...

yM (n) yM−1 (n) · · · yM−P (n)




(3.35)

To avoid direct minimization of the ML criterion in (3.32), an iterative quadratic

maximum likelihood (IQML) algorithm was developed. The algorithm requires only

the solution of a quadratic minimization problem at each step and usually converges in

a small number of steps. However, it is not guaranteed that the ML estimate will always

converge to the global minimum, especially so at low SNRs. A noteworthy point is that
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IQML is able to perform even in the case of multipath propagation.

3.1.2.2 Modified AM & EM

As direct minimization of the ML function in (3.28) involves large dimensional search,

iterative procedures were developed using the AM [67] and EM [68] algorithms. Ini-

tial estimates are necessary and they are provided by the IQML algorithm. Instead of

searching over the parameter space, the angle estimates are obtained by polynomial

roots [62]. The AM algorithm estimates the DOAs and complex gains serially at each

iteration, whereas the EM algorithm splits up the search for the ML estimate into a

set of parallel searches. However, there is no guarantee of convergence to the global

minimum of the ML criterion.

The authors consider two possible scenarios of the signal waveforms. In the case of

multiple signals with known waveforms, when the two waveforms are perfectly corre-

lated, it is assumed they are identical. In the case of a signal with known waveform in

the presence of interfering signals, the desired signal is assumed to be uncorrelated with

the interfering signals and there is no knowledge of the waveforms for these interfering

signals. Hence, the iterative procedures employing AM and EM algorithms are not able

to resolve the correlated signals.

3.1.3 Computational Complexity

In this section, we give a comparative view of the computational complexity of the

various algorithms. Here, we are primarily concerned about the computational cost of

the algorithms in relation to the number of elements in the antenna array M and the

number of snapshots used N as they invariably affect the estimation accuracy. For ease

of comparison, the complexity of each algorithm is presented by the number of matrix

operations required and their corresponding complexity order.
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3.1.3.1 MUSIC

To use MUSIC algorithm to estimate P angles using an antenna array of M elements

and N snapshots of observed data, we first need to obtain the sample covariance matrix

R̂y which requires N operations of order O (M2). Next, we need to estimate the noise

subspace through SVD of R̂y which is followed by the matrix multiplication EWEH
W .

Each of the two operations requires a computational complexity of order O (M3). Fi-

nally, the search process requires an operation with O(M2) computation cost for each

hypothesized angle.

3.1.3.2 SBDOA

SBDOA is a relatively less complex algorithm compared to MUSIC as it eliminates the

need of the estimation of noise subspace and the subsequent computationally expensive

search process. Instead, it only requires an inverse operation of order O (M3) and an

additional matrix multiplication of order O (M) to compute the cross-correlation vector

between the output signal and the reference signal, the weight vectors w
(k)
A and w

(k)
B

from the estimated covariance matrix R̂y. Subsequently, the phase-shifted reference

signal for each of the N snapshots can be computed using a matrix multiplication of

complexity order O (M). Finally, the phase shift which carries the DOA information

can be estimated using a matrix multiplication of order O(N).

3.1.3.3 MSWF-based Algorithm

The MSWF-based algorithm uses a multistage filter bank with a lattice structure to es-

timate the noise subspace in place of the SVD operation used by MUSIC algorithm to

reduce the computational cost required. The estimation of each noise eigenvector only

requires a vector-vector product with the complexity order of O (MN). Hence to calcu-

late all M eigenvectors (including those for signal subspace as the vectors are obtained

recursively), only M operation of order O (MN) is required. This compares favorably

to MUSIC where the noise subspace is estimated through SVD with complexity order
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of O(M3).

3.1.3.4 IQML

To perform the iterative minimization required in IQML, the coefficient matrix in (3.33)

needs to be updated in each iteration. This requires N matrix multiplication of complex-

ity order O (M3). The minimization itself requires an inverse of a (P + 1) × (P + 1)

matrix with a complexity cost of order O (P 3). Note that these computational costs are

for a single iteration. The total computational cost will be determined by the number

of iterations required for the termination of the minimization. After the iterative mini-

mization has reached the terminating condition, the DOAs are estimated by solving for

the roots of the polynomial with coefficients given in the final estimated vector b. To

solve for these roots, an eigenvalue decomposition of a (P + 1) × (P + 1) matrix can

be used with a computational cost of order O (P 3).

3.1.3.5 Modified AM & EM

Both AM and EM algorithms use IQML to obtain the initial DOA estimates and hence

the computational complexity listed here need to be compounded with the computa-

tional cost of IQML to form the total computational cost of these algorithms. In each

iteration of the minimization procedure after the initial IQML estimation, a matrix

multiplication of complexity order O (MN) is used to derive the coefficients of the

polynomial function used for DOA estimation. Each of the P DOAs is estimated

from the roots of the polynomial which can be solved by eigendecomposition of a

2 (M − 1) × 2 (M − 1) matrix with a computational cost of order O (M3). Each of

the P complex gains can be solved for using an matrix multiplications with complexity

order of O (M).
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3.2 Wideband Algorithms

Subspace-based estimation approach has been used extensively for DOA estimation of

wideband sources [15, 16, 18, 38–40, 69, 70]. There are also ML estimation techniques

using decomposed narrowband frequency data [71–73]. Algorithms, which utilize this

subspace-based estimation approach, can be further classified into two main categories

using narrowband decomposition as the classification criterion. Methods developed

in [40,41,69,74] do not decompose the wide bandwidth of the sources into narrowband

frequency bins, whereas methods in [17, 18, 38, 39, 75] use narrowband decomposition

and are built upon the foundation of well-established narrowband subspace-based esti-

mation methods. As the newly proposed DOA estimation method in this thesis belongs

to the latter group, we concentrate our reviews on the methods involved therein.

The corresponding correlation matrix used for signal subspace estimation for the

received data in (2.66) is given by:

Ry (fq) = A(fq,θ)ΛRx (fq)Λ
HAH(fq, θ) + Σ (fq) (3.36)

where

Rx (fq) = E
[
X(fq)X

H(fq)
]

(3.37)

and Σ (fq) is the noise spectral density matrix. For spatially and temporally white noise,

the matrix is diagonal, i.e., Σ (fq) = σ2(fq)I.

Note that there are Q correlation matrices, one for each of the Q decomposed nar-

rowband frequencies. The various methods make use of these Q matrices to perform

DOA estimation. The methods are further categorized into two subgroups based on

whether the decomposed signals are used independently or combined coherently in

some ways to generate new statistics.
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3.2.1 Incoherent Estimation Methods

A rather direct and brute force way to apply narrowband signal subspace estimation

technique to wideband sources is to estimate the DOAs using each narrowband fre-

quency bin independently, and then combine the estimates into an average final re-

sult [15, 76–78]. In [15], the IMUSIC algorithm was introduced which performs signal

subspace estimation at each frequency bin and the final estimates of the DOAs are ob-

tained from the combination of the search in the array manifolds for different frequency

bins. Mathematically, the DOA estimates using IMUSIC are given by [18, 39]:

θ̂ = arg min
θ

Q−1∑
q=0

aH (fq, θ)EW (fq)E
H
W (fq) a (fq, θ) (3.38)

where EW (fq) is the noise subspace at frequency fq. Other narrowband techniques

such as the ESPRIT technique as described in [77, 78] can be used in place of IMUSIC

for the DOA estimation.

These incoherent methods have been shown to perform well under high SNR con-

ditions and for uncorrelated signal sources [15, 18, 39, 78]. However, they are unable to

separate correlated signal sources completely [17], and require singular value decompo-

sition (SVD) of M×M matrix for each individual frequency bin, resulting in significant

increase in computational complexity [18, 39]. Moreover, in low SNR environments,

the combination of the estimates becomes ineffective due to the threshold effect [17] as

a single outlier in one of the frequency bins can degrade the final estimates in the averag-

ing process [18,39]. Thus at low SNRs, the increase in complexity due to the processing

of more frequency bins not only does not guarantee better performance of the estimator,

it may even degrade it. To address these problems, a coherent estimation method using

focusing matrices was proposed in [16]. In addition, a series of subsequent coherent

methods which uses different focusing matrices were proposed [18, 38, 39, 75, 79].
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3.2.2 Coherent Estimation Methods

Wang and Kaveh proposed the first coherent estimation method for wideband sources

in 1984 [16] and showed that it can be used to detect and estimate the DOAs for both

uncorrelated and correlated signal sources [17, 80]. They introduced the use of focus-

ing matrices in their CSSM to average the correlation matrices of various frequency

bins coherently and estimate the DOAs from the resulting signal subspace. The au-

thors of [81] later extended CSSM to the use of ESPRIT instead of MUSIC considered

in [16]. Considerable works have been done on designing the focusing matrices used in

CSSM to improve the estimator’s performance in terms of minimizing bias and focusing

error [75, 82–84]. Variations of CSSM have also been proposed [79, 85–88]. The sim-

plified implementation of CSSM for linear arrays through the use of spatial sampling

have also been proposed in [89–91]. More recently, the weighted average of signal

subspace (WAVES) [38] method based on the weighted subspace fitting (WSF) [30,92]

approach and the test of orthogonality of projected subspaces (TOPS) [18, 39] method

were proposed.

3.2.2.1 CSSM

CSSM was the first method to introduce a processing step, known as focusing, to com-

bine the correlation matrices from different frequency bins coherently to form a single

signal subspace [16, 17]. Focusing is achieved by first transforming the correlation ma-

trices Ry (fq) using transformation matrices known as focusing matrices Tq to trans-

form the signal subspace of a certain frequency to that of a pre-determined frequency

(usually the carrier frequency), and then averaging them into a single combined corre-

lation matrix Rcom. The combined correlation matrix is thus as follows:

Rcom =

Q−1∑
q=0

γqTqRy (fq)T
H
q (3.39)

where γq is a normalized weight proportional to the SNR in qth frequency bin and Q is
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the number of frequency bins. Without loss of generality, we can assume γq = 1 (i.e.

identical SNR for all frequency bins).

Perfect focusing is achieved when focusing matrices for each frequency bin can be

found which satisfy [17]:

A(fc, θ) = TqA(fq,θ) (3.40)

However, perfect focusing has been shown to be unattainable due to finite dimen-

sion of the transformation matrix [93, 94] and an irreducible focusing error is intro-

duced [38]. A practical approach to design the focusing matrices is hence [75]:

arg min
Tq

‖A(fc, θf )−TqA(fq,θf )‖F (3.41)

where ‖ · ‖F is the Frobenius matrix norm [50], fc is the carrier frequency and θf is

the set of focusing angles which could be preliminary angle estimates or strategically

chosen anchor points [17].

For θf = θ and Tq that satisfies ‖A(fq,θf )−TqA(fq, θf )‖F ' 0, the combined

correlation matrix in (3.39) can be rewritten into:

Rcom =

Q−1∑
q=0

TqRy (fq)T
H
q

=

Q−1∑
q=0

Tq

{
A(fq, θ)Rx (fq)A

H(fq,θ) + Σ (fq)
}
TH

q

' A(fc,θ)

Q−1∑
q=0

Rx (fq)A
H(fc, θ) + Tq

Q−1∑
q=0

Σ (fq)T
H
q (3.42)

From (3.42), we can see that the noiseless combined correlation matrix has exactly

the same matrix structure as that of narrowband signals at the carrier frequency fc.

Hence, any narrowband signal subspace method can be readily applied to Rcom to es-

timate the DOAs. Note that even if the noise is spatially white for each frequency bin,

the noise covariance matrix in (3.42) is not a diagonal matrix unless TqT
H
q = I.

The performance of CSSM is greatly dependent on the choice of the focusing angles

θf and the design of focusing matrices Tq. For spatially white noise (i.e. Σ (fq) =
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σ2(fq)I), the focusing loss, gfocus, defined in [75] as the ratio of the array SNR after

and before focusing operation, is given by:

gfocus =
tr

{
R−1

w

∑Q−1
q=0 TqA(fq,θ)Rx (fq)A

H(fq, θ)TH
q

}

tr
{∑Q−1

q=0 A(fq,θ)Rx (fq)AH(fq,θ)
} (3.43)

where

Rw =

∑Q−1
q=0 σ2 (fq)TqT

H
q∑Q−1

q=0 σ2 (fq)
(3.44)

A class of focusing matrices that minimizes the focusing loss is the subspace trans-

formation (SST) matrix [82]. Rotational signal subspace (RSS) focusing matrix which

was proposed in [75] adds the constraint TqT
H
q = I to the minimization problem in

(3.41). Since gfocus = 1 when TqT
H
q is independent of fq [82], RSS focusing matrices

can be considered as a type of SST matrices.

A solution to the constrained minimization problem of (3.41) which uses the RSS

focusing matrix is given by [75]:

Tq = V (fq)U
H (fq) (3.45)

where the columns of V (fq) and U (fq) are the left and right singular vectors of

A(fq,θf )A
H(fc, θf ).

Therefore, by using the RSS focusing matrices, the twin problem of finding appro-

priate focusing matrices and focusing angles reduces to that of finding accurate focusing

angles, θf which is exactly the problem we set out to solve, that is to estimate the DOAs,

θ. Low-resolution DOA estimation techniques such as the Capon’s ML estimator [95]

have been proposed to obtain the initial DOA estimates [18, 39, 75] that would be close

enough to the actual DOAs for the subsequent focusing step. However, these methods

has been shown to have poor resolution [17] and poor initial DOAs estimates can lead to

biased estimates [96]. Moreover, focusing error cannot be completely eliminated [38]

even if the focusing process is applied iteratively.

In [88], beamforming invariance CSSM (BI-CSSM) was proposed that uses beam-
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forming matrices that align the beams of multiple frequency bins instead of the sig-

nal subspace. Therefore, there is no requirement of initial focusing angles. However,

BI-CSSM requires a robust design of reference beamformer applied to the carrier fre-

quency. Practical reference beamformers requires high directional gain in the interested

spatial band while having uniformly low sidelobes. The beam pattern must also be

invariant across the different frequency bins.

3.2.2.2 WAVES

A relatively recent coherent signal subspace estimation method, WAVES, was proposed

in [38]. The method applies WSF algorithm [30, 92] in the coherent combining of

the signal subspace of the different frequency bins. WAVES uses the same focusing

matrices as that of CSSM but unlike CSSM, the matrices are not applied directly to the

correlation matrices of the different narrowband frequencies. Instead they are applied

to the estimated signal subspace of each frequency to form the pseudodata matrix given

by [38]:

Z =

[
T0ES (f0)P0 T1ES (f1)P1 · · · TQ−1ES (fQ−1)PQ−1

]
(3.46)

where ES (fq) and Pq is the signal subspace and weighting matrix for the qth frequency

bin respectively. If the signal and noise are Gaussian distributed, Pq is diagonal with

elements given by [38, 92]:

Pq[i, i] =
λi (fq)− σ2

w√
λi (fq)− σw

(3.47)

where λi (fq) is the ith largest eigenvalue of ES (fq) and σ2
w is the noise power which is

assumed to be constant over all frequency bins. The noise subspace EW for WAVES is
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obtained by the reduced-size SVD [50] of Z which is given by:

Z =

[
ŨS ŨW

]



Σ̃S 0

0 Σ̃W




[
ṼS ṼW

]H

(3.48)

The eigenvectors ŨW is used in place of the CSSM noise subspace in any narrow-

band subspace-based estimation algorithm such as MUSIC. WAVES has been shown

to perform better than CSSM [38] but the explicit use of all of the narrowband signal

subspace eigenvalues requires Q SVD of M ×M matrix which can be computationally

costly.

3.2.2.3 TOPS

Another recent coherent signal subspace estimation method known as TOPS was pro-

posed in [18, 39]. Like WAVES, the method applies the focusing matrix on the signal

subspace of individual narrowband frequency bins instead of their correlation matri-

ces. However, unlike WAVES which uses a final combined noise subspace for DOA

estimation, TOPS uses an orthogonality test between the transformed signal and noise

subspaces to determine the true DOAs in a one-dimensional search through the field of

hypothesized angles.

SVD is performed on the individual narrowband frequency bins to obtain the signal

subspace ES (fq) and noise subspace EW (fq) for q = 0, 1, . . . , Q−1. Similar to CSSM,

a reference frequency bin (i.e. q = 0) is chosen. The signal subspace eigenvectors

matrix ES (f0) of the reference frequency bin is used as the converging point for the

testing statistic. For a hypothesized angle φ, a decision P × (Q − 1)(M − P ) matrix,

D(φ), is formed as:

D(φ) =

[
FH

1 EW (f1) FH
2 EW (f2) · · · FH

Q−1EW (fQ−1)

]H

(3.49)
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where

Fq = Pq(φ)Φ (∆fq, φ)ES (f0) (3.50)

Φ (∆fq, φ) = diag

{
e−j2π∆fq

d1
c

sinφ, e−j2π∆fq
d2
c

sinφ, · · · e−j2π∆fq
dM

c
sinφ

}

(3.51)

Pq(φ) = I− [
aH (fq, φ) a (fq, φ)

]−1
a (fq, φ) aH (fq, φ) (3.52)

with ∆fq = fq − f0 and dm is the distance between the mth antenna and the reference

antenna. Φ (∆fq, φ) is a RSS focusing matrix [75] with a single focusing angle and

Pq(φ) is the projection matrix [18, 39]. The latter is used to reduce the error terms

in the decision matrix due to error in estimating the correlation matrix from limited

snapshots. The DOAs are then estimated as:

θ̂ = arg max
φ

1

σmin(φ)
(3.53)

where σmin(φ) is the smallest singular value of D(φ).

TOPS is a computationally expensive algorithm with the search process of each hy-

pothesized angle requiring a SVD of P × P matrix. The performance of TOPS sits

between the conventional incoherent and coherent estimation methods [18, 39]. How-

ever, the use of both signal and noise subspaces make the TOPS method more robust

against degradation of the range space spanned by the steering vectors due to bandpass

filtering compared to CSSM [18, 39].
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Chapter 4

Pilot-Aided Narrowband DOA
Estimator

In this chapter, we propose a high-resolution DOA estimation method for narrowband

sources by utilization of pilot signals, which we term the PAS technique. In the case of

correlated signals, we incorporate an iterative procedure to the proposed PAS technique,

which is termed the PASI technique. We first derive the formulation of the methods and

then discuss the parameters that affect their performance. Numerical results are pro-

vided at the end of the chapter to illustrate the estimation capability of both techniques.

4.1 Formulation of Proposed Method

In this section, we derive the formulation of the proposed PAS technique used for DOA

estimation of narrowband signals. Recall from Section 2.4.1.1 that for the general case

of a wireless communication system consisting of K independent narrowband sources,

the received signal at the array in a flat fading channel is:

y (n) = A (θ)Λs (n) + w (n) (4.1)
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where

y (n) =

[
y1 (n) y2 (n) · · · yM (n)

]T

(4.2)

w (n) =

[
w1 (n) w2 (n) · · · wM (n)

]T

(4.3)

s (n) =

[
s(1) (n) · · · s(1) (n) · · · s(k) (n) · · · s(K) (n) · · · s(K) (n)

]T

(4.4)

Λ = diag

{
α

(1)
1 , · · · α

(1)
P1

, · · · α
(k)
p , · · · α

(K)
1 , · · · α

(K)
PK

}
(4.5)

θ =

[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

(4.6)

y (n) is the M×1 noisy received signal at the array, whereas w (n) is the M×1 additive

white noise at the array. s (n) is the P × 1 vector comprising of the repetitions of the K

signal sources according to the number of impinging plane waves for each source (i.e.

Pk repetitions for the kth source). Λ is the P ×P diagonal matrix of the complex gains

with entries equal to α
(k)
p . θ is the P × 1 vector containing the DOAs of all impinging

plane waves, and the M × P array response matrix A (θ) is defined as:

A (θ) =

[
a

(
θ

(1)
1

)
· · · a

(
θ

(1)
P1

)
· · · a

(
θ

(k)
p

)
· · · a

(
θ

(K)
1

)
· · · a

(
θ

(K)
PK

) ]

(4.7)

where each M × 1 steering vector is given by:

a
(
θ(k)

p

)
=

[
e−j2πfcκ

(k)
p,1 e−j2πfcκ

(k)
p,2 · · · e−j2πfcκ

(k)
p,M

]T

(4.8)

From this point onwards, we consider a ULA with an inter-element spacing δ. Note

that the formulation can be adapted accordingly for other array geometries. Thus, the

antenna delay of the pth multipath from the kth source between the mth antenna and the

reference antenna from (2.13) is:

κ(k)
p,m =

(m− 1) δ

c
sin θ(k)

p (4.9)
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Correspondingly, the steering vector in (4.8) is simplified to:

a
(
θ(k)

p

)
=

[
1 e−j 2πδ

λc
sin θ

(k)
p · · · e−j 2πδ

λc
(M−1) sin θ

(k)
p

]T

(4.10)

where λc is the wavelength of the carrier frequency.

We divide the M -element ULA into L overlapping subarrays of size M0, where

M0 = M − L + 1. The first subarray consists of 1st to M th
0 antennas, the second

subarray consists of 2nd to (M0 + 1)th antennas, and so on. Hence, the lth subarray

output yl (n), which are the lth to (M0 + l − 1)th antenna outputs, can be written as:

yl (n) = A1 (θ)Dl−1Λs (n) + wl (n) (4.11)

where wl (n) is M0×1 additive white noise at the lth subarray, D is the P ×P diagonal

matrix with entries equal to e−j 2πδ
λc

sin θ
(k)
p and A1 (θ) is the M0×P submatrix consisting

of the first M0 rows of A (θ):

A1 (θ) =

[
a1

(
θ

(1)
1

)
· · · a1

(
θ

(1)
P1

)
· · · a1

(
θ

(k)
p

)
· · ·

· · · a1

(
θ

(K)
1

)
· · · a1

(
θ

(K)
PK

) ]
(4.12)

where

a1

(
θ(k)

p

)
=

[
1 e−j 2πδ

λc
sin θ

(k)
p · · · e−j 2πδ

λc
(M0−1) sin θ

(k)
p

]T

(4.13)

Suppose there are N snapshots. By concatenating the lth subarray outputs at differ-

ent snapshots, the received signal can be written compactly as:

Yl = A1 (θ)Dl−1ΛS + Wl (4.14)
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where

Yl =

[
yl (1) yl (2) · · · yl (N)

]
(4.15)

S =

[
s (1) s (2) · · · s (N)

]
(4.16)

Wl =

[
wl (1) wl (2) · · · wl (N)

]
(4.17)

We consider the case where the transmitted signals are known at the receiver. Note

that the receiver only has the knowledge of transmitted symbols, but not other param-

eters that characterize each signal path from each source. In other words, the receiver

only has the knowledge of transmitted symbols s(k)(n) from the kth source, while the

DOA θ
(k)
p , the interpath delay τ

(k)
p , and the complex gain α

(k)
p are unknown parameters

at the receiver. We can ensure that the transmitted symbols from different sources are

designed such that they are uncorrelated within the period while the DOAs are being

estimated, i.e.,the pilot symbols from the different sources are designed ideally such

that:

1

N

N∑
n=1

s(k1)(n)
[
s(k2) (n)

]∗
=





1, k1 = k2

0, k1 6= k2

(4.18)

where (·)∗ denotes the complex conjugate.

As pilot symbols are used, the DOAs of each source can be estimated separately,

i.e., parallel processing. Now we consider the pilot symbols of the kth source:

s(k) =

[
s(k)(1) s(k)(2) · · · s(k)(N)

]T

(4.19)

We correlate the noiseless received signals at the lth subarray with the pilot symbols:

z
(k)
l =

1

N
Yl

[
s(k)

]∗

= A2

(
θ(k)

)
Λ(k)bl

(
θ(k)

)
(4.20)
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where

θ(k) =

[
θ

(k)
1 θ

(k)
2 · · · θ

(k)
Pk

]T

(4.21)

A2

(
θ(k)

)
=

[
a1

(
θ

(k)
1

)
a1

(
θ

(k)
2

)
· · · a1

(
θ

(k)
Pk

) ]
(4.22)

Λ(k) = diag

{
α

(k)
1 , α

(k)
2 , · · · α

(k)
Pk

}
(4.23)

bl

(
θ(k)

)
=

[
e−j 2πδ

λc
(l−1) sin θ

(k)
1 e−j 2πδ

λc
(l−1) sin θ

(k)
2 · · · e

−j 2πδ
λc

(l−1) sin θ
(k)
Pk

]T

(4.24)

θ(k) is the Pk × 1 vector containing all the DOAs of the kth source, and A2

(
θ(k)

)
is

the M0 × Pk submatrix of A1 (θ) which consists of the Pk steering vectors of the kth

source. Λ(k) is the Pk × Pk diagonal matrix of the complex gains of the signal paths

from the kth source and bl

(
θ(k)

)
is as defined in (4.24).

By concatenating Z
(k)
l at different subarrays, we arrive at the following matrix:

Z(k) =

[
z

(k)
1 z

(k)
2 · · · z

(k)
L

]

= A2

(
θ(k)

)
Λ(k)B

(
θ(k)

)
(4.25)

where B
(
θ(k)

)
is a Pk × L Vandermonde matrix expressed as:

B
(
θ(k)

)
=

[
b1

(
θ(k)

)
b2

(
θ(k)

)
· · · bL

(
θ(k)

) ]

=




1 e−j 2πδ
λc

sin θ
(k)
1 · · · e−j 2πδ

λc
(L−1) sin θ

(k)
1

1 e−j 2πδ
λc

sin θ
(k)
2 · · · e−j 2πδ

λc
(L−1) sin θ

(k)
2

...
... . . . ...

1 e
−j 2πδ

λc
sin θ

(k)
Pk · · · e

−j 2πδ
λc

(L−1) sin θ
(k)
Pk




(4.26)

Note that B
(
θ(k)

)
is a submatrix of AT (θ), which consists of the first L rows of the
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Pk steering vectors of the kth source:

B
(
θ(k)

)
=

[
a2

(
θ

(k)
1

)
a2

(
θ

(k)
2

)
· · · a2

(
θ

(k)
Pk

) ]T

(4.27)

where

a2

(
θ(k)

p

)
=

[
1 e−j 2πδ

λc
sin θ

(k)
p · · · e−j 2πδ

λc
(L−1) sin θ

(k)
p

]T

(4.28)

A2

(
θ(k)

)
is a full column matrix for M0 > Pk, while B

(
θ(k)

)
is a full row matrix

for L ≥ Pk. Therefore, under these two conditions, the DOAs associated with the kth

source can be estimated from the left null space of Z(k) sinceR (
Z(k)

)
= R

(
A2

(
θ(k)

))
,

where R (·) denotes the range/column space. The left null space of Z(k) can be esti-

mated by existing techniques such as the high-resolution MUSIC algorithm. MUSIC

estimates the DOAs by exploiting the orthogonality between signal and noise sub-

spaces [3–5]:

[
Z(k)

]H
ei = 0, i = Pk + 1, . . . , M (4.29)

where ei is the noise eigenvector. The DOA estimates obtained are denoted by θ̂
(k)

=
[
θ̂

(k)
1 θ̂

(k)
2 · · · θ̂

(k)
Pk

]T

.

In cases of signal coherence, i.e., Pk > 1, an iterative procedure is carried out

to refine the DOA estimates. This method, termed the PASI technique, does so by

exploiting the structure of B
(
θ(k)

)
. First, the estimates of the matrices A2

(
θ(k)

)
and

B
(
θ(k)

)
, denoted by Â2

(
θ̂

(k)
)

and B̂
(
θ̂

(k)
)

respectively, are formed accordingly to

(4.22) and (4.26) respectively. Next, the complex gains Λ̂
(k)

are estimated from (4.25):

Λ̂
(k)

=
[
Â2

(
θ̂

(k)
)]†

Z(k)
[
B̂

(
θ̂

(k)
)]†

(4.30)

where (·)† denotes the Moore-Penrose pseudo-inverse of a matrix. We define the interference-
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nulled array response matrix Hp as follows:

Hp = Z(k) −
Pk∑

i6=p,i=1

a1

(
θ̂

(k)
i

)
Λ̂

(k)
(i, i) aT

2

(
θ̂

(k)
i

)
(4.31)

where a1

(
θ̂

(k)
i

)
and a2

(
θ̂

(k)
i

)
are as defined in (4.13) and (4.28) respectively. The pth

DOA is then estimated from the left null space of Hp using MUSIC. For only a small

number of iterations, the accuracy of DOA estimates improves significantly, as seen in

the later section.

4.2 Proposed DOA Estimation Algorithm

From the discussion in Section 4.1, we can now list in details the steps of the basic al-

gorithm for DOA estimation using the proposed PAS technique, together with the nar-

rowband signal subspace estimation method, MUSIC. The proposed PASI technique,

the extension of the proposed PAS technique, is carried in the case of correlated signals.

To estimate the DOAs of the kth source:

1. Down-convert the received signal at the array to baseband and sample the base-

band signal at the Nyquist rate, T seconds.

2. Divide the M -element ULA into L(k) overlapping subarrays of size M
(k)
0 , where

M
(k)
0 = M − L(k) + 1.

3. For each snapshot (n = 1, 2, . . . , N ), form the lth subarray output yl (n) in (4.11)

for l = 1, 2, . . . , L(k).

4. Concatenate all the lth subarray outputs at different snapshots to form Yl in (4.14)

for l = 1, 2, . . . , L(k).

5. Correlate each Yl with the pilot signals to form z
(k)
l in (4.20) for l = 1, 2, . . . , L(k).

6. Concatenate all the vectors z
(k)
l to form the matrix Z(k) in (4.25).
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7. Obtain the initial DOA estimates θ̂
(k)

from the left null space of Z(k) using

MUSIC.

8. Refine the DOA estimates by the iterative procedure:

For i = 1, 2, . . . , Liter (where Liter is the maximum number of iterations)

For p = 1, 2, . . . , Pk

(a) Form the estimates of

• A2

(
θ̂

(k)
)

using (4.22)

• B
(
θ̂

(k)
)

using (4.26)

• Λ(k) using (4.30)

(b) Form the interference-nulled array response matrix Hp in (4.31).

(c) Obtain the new pth DOA estimate from the left null space of Hp

using MUSIC.

(d) Update the pth DOA estimate in θ̂
(k)

.

End

End

Note that the iterative procedure in Step 8 is carried out in cases of signal coherence.

In other words, the proposed PASI technique is used only in the presence of correlated

signals.

The inclusion of the iterative procedure does not increase the time taken to estimate

DOAs significantly. The search process in the MUSIC algorithm is greatly reduced

since the searching range is carried out over a much smaller interval due to the knowl-

edge of initial DOA estimates.

The maximum number of iterations is arbitrarily set in the iterative procedure. As

shown in later sections, only a small number of iterations is required to achieve good

performance. Alternatively, the stopping condition for the iterative procedure can be

determined by the absolute difference between the current estimated DOA and the pre-
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vious DOA estimate lesser than a pre-determined threshold whereby this threshold de-

termines the resolution of the detected DOAs.

4.3 Effect of Subarrays

From Section 4.1, the signal subspace of the kth source is estimated from the left null

space of Z(k) under two conditions:

M
(k)
0 > Pk (4.32)

L(k) ≥ Pk (4.33)

The number of antennas must thus satisfy:

M ≥ max
k
{2Pk} (4.34)

which is independent of the total number of impinging plane waves. In other words, the

maximum detectable DOAs using the proposed PAS and PASI techniques is no longer

bounded by the number of antennas in the array. Hence the capacity of DOA estimation

is increased. In addition, the antenna array can be partitioned into subarrays of different

sizes for each source since the proposed PAS and PASI techniques estimate the DOAs

of each source separately. This results in an optimal usage of antennas for each source.

It follows that for the kth source, the antenna is divided into L(k) overlapping subarrays

of size M
(k)
0 = M − L(k) + 1, where M

(k)
0 and L(k) satisfy the conditions in (4.32).

Consider two independent signals arising from two uncorrelated sources, i.e., Pk =

1, arrive at an array of M = 4 elements. In order to resolve these signals, L(k) = 2

subarrays of size M
(k)
0 = 3 are deployed, satisfying the conditions in (4.32). Consider

another example where a signal arrives at an array of M = 10 antennas via Pk = 4

multipaths. To resolve these multipaths, L(k) = 7 subarrays are chosen accordingly to

(4.32) and hence the number of elements in each subarray will be M
(k)
0 = 4.

We now investigate the effect of subarray size on the performance of both proposed
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Figure 4.1: RMSE performance against subarray size for uncorrelated signals

techniques. Firstly, two uncorrelated sources, each having a single path, are considered.

The two independent sources transmit binary phase shift keying (BPSK) sequences

which are known to the receiver. The DOAs of the two paths are randomly generated

with a fixed angle separation of 10◦. The magnitudes of their complex gains are set to

2, i.e.,
∣∣∣α(1)

1

∣∣∣ =
∣∣∣α(2)

1

∣∣∣ = 2; the phases of their complex gains are randomly generated

with uniform distribution between 0 and 2π. The size of each subarray is varied from

2 to 6. Correspondingly, the number of subarrays is varied from 1 to 5. The subarray

size and the number of subarrays are chosen such that they satisfy the conditions in

(4.32). The receiver has a 6-element ULA with inter-element spacing δ = 1
2
λc where

λc is the wavelength of the carrier frequency. The noise at the array is assumed to be

AWGN. The number of snapshots is set to 30 and the SNR is fixed at 0 dB. The results

are obtained through Monte Carlo simulation of 2000 independent trials (for which the

statistical performance converges). From Figure 4.1, it is seen that the performance

of the proposed PAS technique is very close to the Cramer-Rao lower bound (CRLB),

regardless of subarray size. Hence, the subarray size of uncorrelated signals will be
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chosen to be 5 with negligible impact on the performance analysis of the proposed

algorithm in later sections.
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Figure 4.2: RMSE performance against subarray size for correlated signals

Next consider the case of two perfectly correlated signals which arrive at the receiver

simultaneously. The correlated signals are as a result of two impinging plane waves

from the same source that arrive at the receiver through two independent multipaths.

The two DOAs are randomly generated with a fixed angle separation of 20◦. The size

of each subarray is varied from 3 to 6. Correspondingly, the number of subarrays is

varied from 1 to 4. The subarray size and the number of subarrays are chosen such that

they satisfy the conditions in (4.32). The rest of the parameters are unchanged. From

Figure 4.2, the performance of the proposed PASI is better than that of the proposed PAS

as the former is able to decorrelate the correlated signals through the use of subarrays. It

is observed that the proposed PASI technique exhibits performance close to the CRLB

of subarray size ranging from 3 to 5. Hence, the subarray size will be set to 5 for

correlated signals in later sections.
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4.4 Detection of The Number of Multipaths Per Source

The number of sources is known since we utilize their pilot signals. However, the

derivation in Section 4.1 assumes the number of multipaths per source Pk is known so

as to estimate the signal subspace. We can estimate the value of Pk from the test profile

of how the rank of Z(k) in (4.25) varies with the number of subarrays L(k). The value of

Pk corresponds to the smallest value of L(k) where the rank of Z(k) stays constant. The

rank of Z(k) is estimated from the number of dominant eigenvalues.

We consider the case of two perfectly correlated signals which arrive at the receiver

simultaneously. The correlated signals are the result of two impinging plane waves

from the same source that arrive at the receiver through two independent multipaths.

The signal source transmits BPSK sequences which are known to the receiver. The

DOAs of the two multipaths are set to θ
(1)
1 = 20◦ and θ

(1)
2 = 40◦ respectively. The

magnitudes of their complex gains are set to 2, i.e.,
∣∣∣α(1)

1

∣∣∣ =
∣∣∣α(1)

2

∣∣∣ = 2; the phases of

their complex gains are randomly generated with uniform distribution between 0 and

2π. The receiver has a 6-element ULA with inter-element spacing δ = 1
2
λc where λc is

the wavelength of the carrier frequency. The noise at the array is assumed to be AWGN.

The number of snapshots is set to 30 and the SNR is fixed at 20 dB.

From Figure 4.3, the rank of Z(1) stays constant at 2 when the number of subarrays

is varied from 2 to 5. We conclude that the number of multipaths for the first source is

2, which verifies our simulation. When there is only 1 subarray, the rank of Z(1) is 1

as the correlated signals are not resolved. The rank of Z(1) is also 1 when there are 6

subarrays (i.e. 1 element in the subarray) as the condition M
(1)
0 > Pk is not satisfied.

Next, the performance of the detection algorithm is investigated against SNR. The

results are obtained through Monte Carlo simulation of 2000 independent trials (for

which the statistical performance converges). From Figure 4.4, the detection algorithm

is able to detect with 100% correct rank detection from 1 dB onwards.
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Figure 4.4: Probability of correct rank detection against SNR for correlated signals

4.5 Simulation Results

In this section, we provide some numerical results to compare the performance of the

proposed PAS and the PASI techniques with other algorithms available in the literature.
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We first investigate the performance of the proposed PAS technique for uncorrelated

signals from independent sources. We next demonstrate the robustness of both proposed

techniques for correlated signals from the same source that arrive at the receiver through

different multipaths. We establish, through a series of simulations, the robustness of

both proposed algorithms in testing conditions such as low SNRs, small array size and

closely-spaced DOAs.

4.5.1 Uncorrelated Signals

For uncorrelated signals, the performance of the proposed PAS technique is compared

with the existing algorithms: IQML estimator, the modified AM estimator, the modi-

fied EM estimator, the SBDOA estimator as well as the MSWF-based estimator. We

compare the performance of the various algorithms with the CRLB derived for known

waveforms given in [11]. Monte Carlo simulation of 2000 independent trials are con-

ducted to obtain the statistical performance. Note that the CRLB is a tight bound derived

for Gaussian signals. Hence in the simulation plots that follow, some of the points may

appear to be lower than that of the CRLB as BPSK signals are considered.

We consider the case where there are two uncorrelated sources, each having a single

impinging wavefront at the receiver. The two independent sources transmit BPSK se-

quences which are known to the receiver. The DOAs of the first and second sources are

randomly generated with a fixed angle separation of 10◦. The magnitudes of their com-

plex gains are set to 2, i.e.,
∣∣∣α(1)

1

∣∣∣ =
∣∣∣α(2)

1

∣∣∣ = 2; the phases of their complex gains are

randomly generated with uniform distribution between 0 and 2π. We set the number of

subarrays to L = 2 (this is for fair comparison with the SBDOA algorithm which uses

2 subarrays) and thus the size of each subarray is M0 = 5. The number of snapshots

is set to N = 30. We consider a 6-element ULA with inter-element spacing δ = 1
2
λc

where λc is the wavelength of the carrier frequency. The noise at the array is assumed

to be AWGN.

The effect of SNR on the performance of all algorithms is first investigated. From
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Figure 4.5: RMSE performance against SNR for uncorrelated signals
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Figure 4.6: Bias performance against SNR for uncorrelated signals

Figure 4.5, the proposed PAS technique performs the best among all the algorithms. It

is the only algorithm that approaches the CRLB in the low SNR region. The modified

AM and modified EM algorithms converge to the CRLB after a SNR threshold of 11
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dB and 20 dB respectively. The performance of the SBDOA algorithm is displaced

from the CRLB by approximately 10 dB across all SNRs. Both the IQML and MSWF-

based algorithms are not close to the CRLB from −10 dB to 20 dB. However, they may

converge to the CRLB at much higher SNRs.

The bias performance against SNR of these algorithms is also plotted. From Fig-

ure 4.6, the proposed PAS technique exhibits the lowest bias across all SNRs. The

SBDOA algorithm has the next best bias performance, followed by the MSWF-based

algorithm. The remaining three algorithms have almost zero bias after a threshold of

approximately 15 dB.

Next, we fix the SNR to 20 dB and investigate the performance of the algorithms

with array size varying from 3 to 20. The number of subarrays is kept constant at L = 2.

The rest of the parameters are unchanged. From Figure 4.7, the proposed PAS technique

and modified AM algorithm exhibit performance close to the CRLB regardless of the

array size. The modified EM algorithm is also close to the CRLB from approximately

9 dB onwards. However, as shown from Figure 4.5, these two algorithm perform close

to the CRLB when the operating SNRs are larger than 11 dB and 20 dB respectively

so that their iterative processes can converge [11]. The performance of the IQML and

the MSWF-based algorithms approach the CRLB when the array size is larger than 14

while the performance of the SBDOA algorithm saturates when the array size is larger

than 10, with a significant performance gap compared to other algorithms.

The correspondingly bias performance against array size is plotted in Figure 4.8.

The performance of the proposed PAS technique has the lowest bias, closely followed

by the SBDOA and the modified AM algorithms. The MSWF-based algorithm has

a slightly worse bias performance below 7 dB compared to the proposed PAS, the

SBDOA and the modified AM algorithms. The remaining algorithms – modified EM

and IQML – have almost zero bias only from approximately 12 dB onwards.

Lastly, we demonstrate the resolution capability of the proposed PAS algorithm. We

fix array size at M = 6 and set the number of subarrays to L = 2 with the elements

in each subarray to M0 = 5. The number of snapshots is set to N = 30 and the SNR
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Figure 4.7: RMSE performance against number of antennas for uncorrelated signals
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Figure 4.8: Bias performance against number of antennas for uncorrelated signals

is kept at 20 dB. The DOA for first path is randomly generated while the DOA for the

second path is varied from the first DOA by an angle separation of 1◦ to 20◦.
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From Figure 4.9, the proposed PAS technique proves to be the algorithm with the

best resolution performance. Even at an angle separation of 1◦, the performance of

the proposed PAS technique is comparable to the CRLB. The modified AM algorithm

also exhibits good performance as it is able to resolve the two signals accurately when

they are separated by more than 3◦. The modified EM algorithm is able to resolve the

signals accurately from an angle separation of approximately 15◦ onwards. The MSWF-

based, SBDOA and IQML algorithms do not approach the CRLB for the SNR under

consideration. The ability of the IQML and MSWF-based estimators to resolve closely-

spaced angles is dependent on the number of antennas as illustrated in Figure 4.7. Using

a small array size, they are not able to resolve the signals.
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Figure 4.9: RMSE performance against angle separation for uncorrelated signals

The bias performance against angle separation is plotted in Figure 4.10. The pro-

posed PAS technique displays the best bias performance. It is closely followed by the

SBDOA, the modified AM and EM algorithms. The MSWF-based and IQML algo-

rithms exhibit bias close to zero from an angle separation of 5◦ onwards.

Summarizing the insights we gain from the three different simulation configura-

tions, we come to the conclusion that the proposed PAS technique has significant ad-
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Figure 4.10: Bias performance against angle separation for uncorrelated signals

vantages over existing algorithms in terms of performance. It is able to achieve per-

formance close to the CRLB as it makes use of a priori knowledge of the transmitted

symbols. It is robust at low SNRs and has the ability to resolve closely-spaced angles.

Moreover, the proposed PAS algorithm does not require a large number of antenna at the

receiver to achieve good performance, hence relaxing the implementation constraints.

The proposed PAS technique is able to achieve such excellent performance as the sig-

nal subspace used in the DOA estimation contains negligible interference from other

sources after the received signals are correlated with the pilot signals of the desired

source.

4.5.2 Correlated Signals

We now investigate the performance of the proposed algorithms in the context of corre-

lated signals. We compare the performance of the proposed PAS and PASI techniques

with existing algorithms that are able to handle correlated signals, namely the IQML

algorithm and the MSWF-based algorithm. Note that the best performing algorithms
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among the existing algorithms in Section 4.5.1, the modified AM and modified EM

algorithms, cannot handle correlated signals [11] and are not be used for comparison.

Similarly, the SBDOA algorithm is not used for comparison [43]. We compare the per-

formance of the remaining algorithms with the CRLB given in [11]. Monte Carlo sim-

ulation of 2000 independent trials are conducted to obtain the statistical performance.

We consider the most demanding but common operating scenario where two per-

fectly correlated signals arrive at the receiver simultaneously. The correlated signals

are the result of two impinging wavefronts from the same source that arrive at the

receiver through two independent multipaths. The signal source transmits BPSK se-

quences which are known to the receiver. The DOAs of the two multipaths are randomly

generated with a fixed angle separation of 20◦. The magnitudes of their complex gains

are set to 2, i.e.,
∣∣∣α(1)

1

∣∣∣ =
∣∣∣α(1)

2

∣∣∣ = 2; the phases of their complex gains are randomly

generated with uniform distribution between 0 and 2π. The receiver has a 6-element

ULA with inter-element spacing δ = 1
2
λc where λc is the wavelength of the carrier fre-

quency. The noise at the array is assumed to be AWGN. We set the number of subarrays

to L = 2 and hence the size of each subarray is M0 = 5. The number of snapshots is

set to N = 30. The number of iterations used in the proposed PASI technique is set to

2.

We first investigate the performance of the algorithms against SNR. Here the root-

mean-square error (RMSE) is averaged over the two paths. From Figure 4.11, we

see that the proposed PAS technique has performance nearer to the CRLB from 4 dB

onwards. However, the proposed PASI technique has better performance, which ap-

proaches the CRLB across all SNRs. The proposed iterative process is able to decorre-

late the two correlated signals even at low SNRs. This improves the estimation accuracy

and results in consistent performance of the proposed PASI technique. The MSWF-

based algorithm is nearer to the CRLB from 8 dB onwards. The IQML algorithm may

converge to the CRLB from 20 dB onwards which is not plotted here.

The bias performance against SNR is plotted in Figure 4.12. The proposed PASI

technique has almost zero bias across all SNRs. The proposed PAS technique has the
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Figure 4.11: RMSE performance against SNR for correlated signals
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Figure 4.12: Bias performance against SNR for correlated signals

next best bias performance which exhibits zero bias from 5 dB onwards. The IQML

has the worse bias among all the algorithms and exhibits zero bias only from 20 dB
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onwards.
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Figure 4.13: RMSE performance against number of antennas for correlated signals
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Figure 4.14: Bias performance against number of antennas for correlated signals

Next, we investigate the effect of array size on the estimation performance of the
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various algorithms. We set the SNR to 20 dB. The rest of the parameters are unchanged.

The estimation performance of all algorithms is plotted in Figure 4.13 together with

the CRLB. From Figure 4.13, we see that the proposed PASI technique achieves the

best performance and approaches the CRLB even with 4 antennas. This is closely

followed by the proposed PAS technique and the MSWF-based algorithm. They have

similar performances as both correlate received signals with pilot signals and hence

the corresponding signal subspaces contain limited interference from undesired sources

which thus results in more accurate DOA estimation. The IQML algorithm has much

poorer performance compared to the MSWF-based algorithm for array size less than

12.

The corresponding bias performance against array size is plotted in Figure 4.14.

The proposed PAS, the proposed PASI and the MSWF-based algorithms have almost

zero bias across all array sizes. The IQML has bias close to zero from 14 dB onwards.

Lastly, we illustrate the ability of the proposed algorithms to resolve the closely-

spaced multipaths impinging at the array. We keep the SNR at 20 dB and set the array

size and the number of subarrays to M = 6 and L = 2 respectively. The DOA for the

first path is randomly generated while the DOA for the second path is varied from the

first DOA by an angle separation of 1◦ to 20◦. The rest of the parameters are unchanged.

In Figure 4.15, the performance of various algorithms is plotted against angle sepa-

ration. Comparing Figure 4.15 to Figure 4.9, we see that for correlated signals, a min-

imum angle separation of 11◦ is required even for the best performing PASI technique.

The proposed PASI technique is the best performing algorithm in terms of RMSE as

well as minimum angle separation. The proposed PAS and MSWF-based algorithms

have reasonable performance as they approach the CRLB for large angle separation.

The RMSE performance of the IQML algorithm does not approach the CRLB across

the angle separation under consideration.

The bias performance against angle separation is shown in Figure 4.16. The pro-

posed PASI technique exhibits zero bias for all angle separation. The IQML has the

next best bias performance. It only displays non-zero bias when the angle separation is
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Figure 4.15: RMSE performance against angle separation for correlated signals
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Figure 4.16: Bias performance against angle separation for correlated signals

less than 10◦. Moreover, its deviation is much smaller compared to that of the proposed

PAS technique and the MSWF-based algorithm.
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We have shown through various simulation that by using the proposed PASI tech-

nique, we can achieve the CRLB at low SNRs which none of the existing algorithms

being compared is able to achieve. Moreover, the proposed PASI technique is able to re-

solve correlated signals adequately provided that the angle separation of the multipaths

paths is greater than 10◦. The required array size can be small as long as it satisfies the

criteria M
(k)
0 > Pk and L(k) ≥ Pk. The total number of antennas is independent of the

total number of impinging plane waves P and thus relaxes the hardware requirement of

the proposed algorithms.

4.6 Conclusion

We introduced two new DOA estimation methods for narrowband sources. The first

method, termed PAS technique, shows good performance in the low SNR region for

uncorrelated signals. It is able to separate uncorrelated paths that are as close as 1◦

apart. To further improve the performance of the proposed PAS technique in the case

of correlated signals, the technique is extended to include an iterative procedure which

is termed the PASI technique. Both the proposed PAS and PASI techniques perform

close to the CRLB, even at low SNRs and with small number of antennas. We also

showed through simulation that there is negligible effect of subarray size and number

on the performance of the proposed PAS and PASI techniques provided the conditions

M
(k)
0 > Pk and L(k) ≥ Pk are satisfied for each source.
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Chapter 5

CFSSM: New Wideband DOA
Estimator

In this chapter, we introduce a computationally attractive, coherent DOA estimation

method for wideband sources which we term combined frequency signal subspace

method (CFSSM). We first discuss the formulation of the DOA estimation method

and demonstrate the applicability of the proposed method for both uncorrelated and

correlated wideband signals. We then quantify the computational efficiency of CFSSM

over existing methods [17, 38, 39]. Numerical results are provided at the end of the

chapter to exemplify the detection and estimation capabilities of the proposed method.

5.1 Formulation of Proposed Method

In this section, we derive the theoretical formulation of the proposed CFSSM used for

DOA estimation of wideband signals. Recall from Section 2.4.2 that for the general case

of a wireless communication system consisting of K independent wideband sources, the

received signal at the mth antenna can be written compactly as:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p x(k)

(
t− τ (k)

p − κ(k)
p,m

)
+ wm (t) (5.1)

where x(k)(t) is the modulated signal from the kth source. τ
(k)
p and α

(k)
p denote the

interpath delay and the complex gain of the pth multipath from the kth source respec-

tively. κ
(k)
p,m is the antenna delay of the pth multipath from the kth source at mth antenna
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relative to the arrival time of the same path at the reference antenna. It can be expressed

as:

κ(k)
p,m =

d
(k)
p,m

c
(5.2)

where d
(k)
p,m is defined as the distance between the mth antenna and the reference antenna

of the pth multipath from the kth source, and c is the speed of propagation. wm(t) is the

additive noise at the mth antenna which is assumed to be uncorrelated with any of the

impinging plane waves, and is temporally and spatially white.

At the receiver, the signal is down-converted to baseband and sampled at the Nyquist

rate, B Hz. The antenna array output is observed over a total duration of T0 seconds.

The observation window is divided into N intervals whereby each interval has a du-

ration of ∆T = T0/N seconds. For each interval, a Q-point DFT is applied to the

Q samples to obtain Q frequency bins. Hence, the bandwidth of the signal sources

B is given by Q/∆T Hz. The ith sample within each interval at the mth antenna for

i = 0, 1, . . . , Q− 1 is given by:

ym (i) =
K∑

k=1

Pk∑
p=1

α(k)
p x̃(k)

(
i

B
− τ̃ (k)

p,m

)
e−j2πfcτ̃

(k)
p,m + wm (i) (5.3)

where τ̃
(k)
p,m = τ

(k)
p + κ

(k)
p,m and x̃(k) (t) is the baseband signal of the kth source. The

Q-point DFT output at the mth antenna for q = 0, 1, . . . , Q− 1 is thus [26]:

Ym (q) =

Q−1∑
i=0

K∑

k=1

Pk∑
p=1

α(k)
p x̃(k)

(
i

B
− τ̃ (k)

p,m

)
e−j2πfcτ̃

(k)
p,me−j2π iq

Q + Wm (q)

=
K∑

k=1

Pk∑
p=1

α(k)
p X̃(k)(q)e−j2π q

Q
Bτ̃

(k)
p,me−j2πfcτ̃

(k)
p,m + Wm (q)

=
K∑

k=1

Pk∑
p=1

α(k)
p X̃(k) (q) e−j2π(fc+

q
Q

B)τ̃
(k)
p,m + Wm (q) (5.4)

where X̃(k) (q) and Wm (q) are the baseband signal of the kth source and the additive

white noise in the frequency domain respectively.
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Note that there exists a linear relationship between the array manifolds of the dif-

ferent frequency bins regardless of the array geometry. We exploit this fact for our

proposed estimation method. To simplify the derivations and illuminate the formula-

tion of the proposed method clearly, we shall consider from this point onwards that the

antenna array at the receiver is a ULA with inter-element spacing δ. Note that the pro-

posed method is equally applicable to other array geometries and can be easily derived

accordingly.

Hence, taking into account of a ULA array configuration, (5.2) becomes:

κ(k)
p,m =

(m− 1) δ

c
sin θ(k)

p (5.5)

We also rewrite the frequency-dependent steering vector from (2.73) as:

a
(
q, θ(k)

p

)
=

[
e
−j2π(fc+

q
Q

B)
(
τ
(k)
p

)
e
−j2π(fc+

q
Q

B)
(
τ
(k)
p + δ

c
sin θ

(k)
p

)
· · ·

· · · e
−j2π(fc+

q
Q

B)
(
τ
(k)
p +

(M−1)δ
c

sin θ
(k)
p

) ]T

(5.6)

We can separate each entry in (5.6) into a frequency-independent portion given by:

Cm (k, p) = e−j2πfcτ
(k)
p e−j2π δ

λc
(m−1) sin θ

(k)
p (5.7)

and a frequency-dependent portion given by:

D(q)
m (k, p) = e−j2π q

Q
Bτ

(k)
p e−j2π δ

λc
(m−1) q

Q
Bf sin θ

(k)
p (5.8)

where Bf = B/fc is the fractional bandwidth of the signals and λc is the wavelength of

the carrier frequency.

Using top-down approach, we first split the general problem stated in Section 2.4.2

into two classes: uncorrelated signals and correlated signals. The case of uncorrelated

signals arises if all the signal sources have one and only one impinging wave at the

receiver (i.e. Pk = 1 for all k). The scenario of correlated signals occurs when the
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signal from a source arrives at the receiver through multiple paths. Obviously, the

general problem is simply an amalgamation of the two classes.

5.1.1 Uncorrelated Signals

For uncorrelated signals, the correlation matrix of the signals in (3.37) is simply a diag-

onal matrix of the complex gains for each source [16] (assuming unity power for each

source):

Rx (q) =




∣∣α(1)
∣∣2 0 · · · 0

0
∣∣α(2)

∣∣2 · · · 0

...
... . . . ...

0 0 · · · ∣∣α(k)
∣∣2




(5.9)

For clarity, the subscripts have been removed from all descriptions of angles, interpath

delays and complex gains since each source has only one impinging wave.

The element in the ith row and lth column of the noiseless correlation matrix of the

qth frequency bin is given as:

[Ry (q)]il =
K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l)(1+ q

Q
Bf) sin θ(k)

(5.10)

Note that the above noiseless correlation matrix of the received data is a Hermitian

matrix, i.e., Ry (q) = RH
y (q). Consequentially, if we are to sum each element in

Ry (q) across q, we have:

Q−1∑
q=0

[Ry (q)]il =

Q−1∑
q=0

K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l)(1+ q

Q
Bf) sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l) sin θ(k)

Q−1∑
q=0

e−j2π δ
λc

(i−l) q
Q

Bf sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l) sin θ(k)

GPsum (5.11)
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where GPsum is the summation of a geometric series given by:

GPsum = F1

(
i− l, θ(k)

)
exp

{
−j2π

δ

λc

(i− l)

(
Q− 1

2Q
Bf

)
sin θ(k)

}
(5.12)

where

F1

(
i− l, θ(k)

)
=

sin
(

πδ
λc

(i− l) Bf sin θ(k)
)

sin
(

πδ
Qλc

(i− l) Bf sin θ(k)
) (5.13)

To avoid grating lobes, δ ≤ λc/2 and hence (δ/λc) Bf sin θ(k) << 1. This leads

to the following approximation: F1

(
i− l, θ(k)

) ≈ 1 for i, l = 1, 2, . . . , M , thus the

element in the ith row and lth column simplifies to:

[Ry]il =
K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l)(1+Q−1

2Q
Bf) sin θ(k)

(5.14)

The combined correlation matrix Ry is thus:

Ry = A (θ)RxA
H (θ) + Σ (5.15)

where

A (θ) =

[
a

(
θ(1)

)
a

(
θ(2)

) · · · a
(
θ(K)

) ]
(5.16)

with each column of (5.16) given by:

a
(
θ(k)

)
=

[
1 e−jφ(k) · · · e−j(M−1)φ(k)

]T

(5.17)

and

φ(k) = 2π
δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θ(k) (5.18)

The details of the derivation for the structure in (5.15) can be found in Appendix A.
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Since (5.15) has an identical structure to that of narrowband signal model, we can

apply any of the signal subspace estimation methods developed for narrowband signals,

e.g. MUSIC, to estimate the DOAs. Note that the array response matrix given by (5.16)

is different from the array response matrix of any of the individual frequency bin. So

unlike CSSM [17], we do not convert the signal subspace of different frequency bins

into a pre-determined one. Instead, we establish a new signal subspace which can be

viewed as the combined frequency signal subspace, hence the name of the proposed

method. Once a set of preliminary DOA estimates, θ̂ =

[
θ̂(1) θ̂(2) · · · θ̂(K)

]T

is

obtained, we can use them to form a weighting matrix F that can be used to create a

refined combined frequency correlation matrix R̃y to estimate the DOAs iteratively:

R̃y = F¯Ry (5.19)

where ¯ is the Hadamard (element-by-element) product of matrices.

For example, if the complex gains are known, the element in the ith row and lth

column of the weighting matrix F denoted by [F]il is given by:

[F]il =

∑K
k=1

∣∣α(k)
∣∣2 ej(l−i)φ(k)

∑K
k=1 F1 (l − i, θ(k)) |α(k)|2 ej(l−i)φ(k)

(5.20)

Note that the diagonal elements of F are always unity as F1

(
0, θ(k)

)
= 1 for all

θ(k). Since the noise correlation matrix Σ is a diagonal matrix for spatially uncorrelated

noise, the application of the weighting matrix will not result in noise amplification.

Subspace estimation methods can be applied to the new combined correlation matrix

R̃y to get the refined DOA estimates. Note that this process can be applied iteratively.

5.1.2 Correlated Signals

In the preceding section, we showed that CFSSM can be used for uncorrelated signals.

In this section, we show that a similar structure for the combined correlation matrix

of received signals exists for correlated signals. For clarity, we consider the case of
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a single source with two impinging waves at the receiver after passing through two

independent multipaths. Though we only consider two paths, the derived expression is

equally valid for three or more paths, and can be easily extended to the general case. As

we are considering only a single source, we drop the superscripts of the source index in

all descriptions of angles, time delays and complex gains in this section.

For the case of two multipaths, the correlation matrix of the signals in (3.37) be-

comes:

Rx (q) =



|α1|2 α1α

∗
2

α2α
∗
1 |α2|2


 (5.21)

The element in the ith row and lth column of the noiseless correlation matrix of the qth

frequency bin is then given as:

[Ry (q)]il = |α1|2 e−j(i−l)ψ1(q) + |α2|2 e−j(i−l)ψ2(q)

+ α∗1α2e
−j2π(fc+

q
Q

B)∆τe−j2π δ
λc

(1+ q
Q

Bf)[(i−1) sin θ2−(l−1) sin θ1]

+ α1α
∗
2e

j2π(fc+
q
Q

B)∆τej2π δ
λc

(1+ q
Q

Bf)[(l−1) sin θ2−(i−1) sin θ1] (5.22)

where ∆τ = τ2 − τ1 and

ψp (q) = 2π
δ

λc

(
1 +

q

Q
Bf

)
sin θp (5.23)

Summing the various correlation matrices together as in (5.11), we get the elements of

the combined correlation matrix:

[Ry]il = |α1|2 F1 (i− l, θ1) e−j(i−l)ψ̃1 + |α2|2 F1 (i− l, θ2) e−j(i−l)ψ̃2

+ α∗1α2F2 (i, l, θ2, θ1) e−j2π[fc∆τ+ δ
λc

ϕ1]e−jπ(Q−1
Q )[B∆τ+ δ

λc
Bf ϕ1]

+ α∗2α1F2 (l, i, θ2, θ1) ej2π[fc∆τ+ δ
λc

ϕ2]ejπ(Q−1
Q )[B∆τ+ δ

λc
Bf ϕ2] (5.24)

where ϕ1 = (i− 1) sin θ2 − (l − 1) sin θ1, ϕ2 = (l − 1) sin θ2 − (i− 1) sin θ1, and ψ̃p
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is given by the following:

ψ̃p = 2π
δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θp (5.25)

F1 (i− l, θ) is as defined in (5.13), and F2 (i, l, θp1 , θp2) is defined as follows:

F2 (i, l, θp1 , θp2) =
sin

[
π

{
B∆τ + δ

λc
Bf ((i− 1) sin θp1 − (l − 1) sin θp2)

}]

sin
[

π
Q

{
B∆τ + δ

λc
Bf ((i− 1) sin θp1 − (l − 1) sin θp2)

}] (5.26)

For multipaths that are well separated in their arrival times at the receiver (i.e.

B∆τ > 1), F2 (i, l, θ2, θ1) and F2 (l, i, θ2, θ1) are approximately zero. Hence the com-

bined correlation matrix reduces to the same structure as that of uncorrelated signals

given in (5.15). The details of the derivation for the structure can be found in Appendix

A. Narrowband subspace estimation can be carried out using the combined correlation

matrix to estimate the DOAs like in the case of uncorrelated signals.

5.2 Proposed DOA Estimation Algorithm

From the discussion in Section 5.1, we can now list in details the steps of the algo-

rithm for DOA estimation using CFSSM together with the narrowband signal subspace

estimation method, MUSIC:

1. Down-convert the received signal at the array to baseband and sample the base-

band signal at the Nyquist rate, B Hz.

2. Divide the total number of sampled data into N snapshots of Q samples each.

3. For each snapshot, convert the sampled time domain data into frequency domain

data of Q frequency bins using Q-point DFT.

4. For each frequency bin, estimate the correlation matrix Ry (q) by averaging the
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cross-product of Y(n) (q) of each snapshot, n = 1, 2, . . . , N :

R̂y (q) =
1

N

N∑
n=1

Y(n) (q)
[
Y(n) (q)

]H
(5.27)

where Y(n) (q) =

[
Y

(n)
1 (q) Y

(n)
2 (q) · · · Y

(n)
M (q)

]T

with Y
(n)
m (q) as de-

fined in (5.4).

5. Form the combined correlation matrix R̂y by averaging the different R̂y (q) across

q:

R̂y =
1

Q

Q−1∑
q=0

R̂y (q) (5.28)

6. Estimate the combined frequency signal subspace ÊS and noise subspace ÊW by

SVD of the estimated combined correlation matrix R̂y.

7. Estimate the DOAs θ̂
(k)
p using the MUSIC algorithm which is given by:

θ̂(k)
p = arg min

θ
aH (θ) ÊW ÊH

Wa (θ) (5.29)

where

a (θ) =

[
1 e−j2π δ

λc
(1+Q−1

2Q
Bf) sin θ · · · e−j2π δ

λc
(M−1)(1+Q−1

2Q
Bf) sin θ

]T

(5.30)

Note that unlike CSSM [17] and WAVES [38], CFSSM does not require any preliminary

DOA estimates, and it can actually be used in combination with these methods. In other

words, the preliminary estimates can first be obtained using the proposed estimation

algorithm, and then these estimates can be used to form the required transformation

matrix T(q) [17, 38].
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5.3 Computational Complexity

The exact computational complexity of the proposed method is dependent on the actual

implementation and is difficult to be determined without the implementation details.

Our objective in this section is to provide an estimation of computational complexity

in terms of the number of arithmetic operations required [50] to illustrate the compar-

atively computational simplicity of our proposed algorithm to existing algorithms. We

compare the computational complexity of our proposed algorithm with the traditional

CSSM [17, 75], WAVES [38] and TOPS [39]. We assume that the Capon’s algorithm

is used as the initial estimator of the DOAs to construct the required transformation

matrix in CSSM and WAVES. Since Steps 1 to 4 of the algorithm are common to all

the considered algorithms, we shall disregard their computational complexity in our

discussion.

5.3.1 CSSM

The computational cost of CSSM can be divided into two parts: pre-processing and

actual estimation [39]. We assume that the Capon estimator [95] is used in the pre-

processing stage to obtain the initial DOA estimates for a chosen frequency bin. The

overhead in forming the Capon estimator [97] includes the inversion of the estimated

correlation matrix which requires O (M3) [50] arithmetic operations. The search pro-

cess using the Capon estimator requires a computational cost of order O (M2) for each

hypothesized angle.

In the formation of RSS transformation matrix [75], we consider the simplest case

where there is only one preliminary angle estimate so as to avoid the use of SVD for

each frequency bin. The total computational cost of transforming the signal subspace of

each frequency bin to the signal subspace of a pre-determined frequency, resulting from

matrix multiplications, is thus Q operations of order O (M2). The overhead in using

the MUSIC algorithm, consisting of two operations (i.e. SVD of correlation matrix and

matrix multiplication EWEH
W ), is a computational cost of order O (M3) each while the
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search process requires a computational cost of order O (M2) for each hypothesized

angle.

5.3.2 WAVES

The pre-processing stage of WAVES is similar to CSSM and thus it has similar com-

putational complexity. However, in the formation of the pseduodata matrix Z [38], Q

additional SVD operations (one for each frequency bin) of the correlation matrix are

required. This results in a drastic increase in computational cost since each SVD oper-

ation requires O (M3) arithmetic operations. The computational costs of forming the

noise subspace and search process for WAVES are similar to CSSM when both use the

MUSIC algorithm.

5.3.3 TOPS

The TOPS algorithm does not require an initial estimate of the focusing angles unlike

the CSSM and WAVES [39]. However, the computation of each hypothesized angle

matrix D (φ) requires the knowledge of the signal and noise subspaces at each fre-

quency bin. Hence, the computational cost arising from Q SVD operations cannot be

eliminated. Moreover, the search process requires a SVD of P × P matrix [39] with a

computational cost of O (P 3) operations. For large values of P , the search process may

become much more computational costly than WAVES and CSSM.

5.3.4 Proposed CFSSM

The averaging of the correlation matrices of the different frequency bins to form the

combined correlation matrix requires only (M2 + 1) arithmetic operations. The SVD of

R̂y requires 12M3 operations while the construction of EWEH
W requires 2 (M − P ) M2

operations [50]. The one-dimensional search process in Step 7 of the proposed algo-

rithm requires (2M2 + 3M) operations for each hypothesized angle. Equivalently, we
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can regard the overhead computational cost of forming the DOA cost function consist-

ing of an operation with complexity order of O (M2) and another two operations with

complexity order of O(M3) each, while the search process requires an operation with

O (M2) computation cost for each hypothesized angle.

The computational complexity of the existing methods and the proposed CFSSM is

summarized in Table 5.1. From our discussions, we can see that the proposed method

has the least computational cost, and is much more efficient in terms of computational

complexity. The savings in the computational load become crucial when real-time pro-

cessing is required. In fact, the proposed algorithm has about the same computational

cost as that of CSSM and WAVES in the pre-processing stage. Coupled with the fact

that CFSSM does not require any preliminary DOAs estimation, the proposed algorithm

can be implemented in place of the Capon estimator and be used in tandem with CSSM

or WAVES.
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5.4 Detection of the Total Number of Multipaths

In this section, we discuss the problem of determining the total number of signals P

impinging at the array using our proposed combined correlation matrix in CFSSM.

The value of P is required in MUSIC algorithm for the separation of the signal and

noise subspaces [2]. Estimation error in the value of P will therefore result in the

wrong estimation of these subspaces. Two popular methods are used for narrowband

signal source detection: Akaike information criterion (AIC) and Rissanen minimum

description length criterion (MDL) [2, 98, 99].

In [17], a coherent form of AIC, termed minimum Akaike information criterion es-

timate (MAICE), is derived for wideband signal sources detection using the combined

correlation matrix in CSSM. Here, we adapt the algorithm in [17] by using the com-

bined correlation matrix in our proposed CFSSM to determine the value of P . First we

write the estimated combined frequency correlation matrix R̂y as:

R̂y =
1

NQ

N∑
n=1

Q−1∑
q=0

Y(n) (q)
[
Y(n) (q)

]H
(5.31)

We denote the eigenvalues of the estimated combined frequency correlation matrix

as λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂M . Following the derivation in [17], the total number of multi-

paths is estimated as P̂ where:

P̂ = arg min
P

{
NQ (M − P ) log

(
a0

b0

)
+ P (2M − P )

}
(5.32)

where

a0 =
1

M − P

M∑
i=P+1

λ̂i (5.33)

b0 =

(
M∏

i=P+1

λ̂i

) 1
M−P

(5.34)

In Section 5.6.2, we study the performance of the proposed detection in comparison

with the coherent AIC detection in [17].
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5.5 Asymptotic Performance

The asymptotic performance of MUSIC estimator with large number of snapshots has

been derived previously in [100, 101] for the narrowband signals. Since the correlation

matrix Ry and hence the estimated correlation matrix R̂y approximate to that of the

narrowband signal source (with equality when fractional bandwidth is equal to zero),

we can approximate the variance of asymptotic estimation error by [101]:

E

[(
θ(k)

p − θ̂(k)
p

)2
]

=
1

2NQ

aH
(
θ

(k)
p

)
La

(
θ

(k)
p

)

h
(
θ

(k)
p

) (5.35)

where

L = σ

P∑
i=1

λi

(σ − λi)
2uiu

H
i (5.36)

and

h
(
θ(k)

p

)
=

M∑
i=P+1

∥∥dH
(
θ(k)

p

)
ui

∥∥2
(5.37)

where dH
(
θ

(k)
p

)
= ∂

∂θ
(k)
p

a
(
θ

(k)
p

)
and λi and ui are the ith largest eigenvalues and the

corresponding eigenvector of Ry.

5.6 Simulation Results

In this section, we provide some numerical results where the proposed CFSSM is com-

pared with some existing methods. We consider the operating scenario of a future cel-

lular system with large system bandwidth of 100 MHz [102, 103]. The signal sources

are modeled as zero-mean Gaussian processes with a carrier frequency of 2 GHz and

a bandwidth of 100 MHz, and are assumed to be uncorrelated. The noise at the array

is assumed to be AWGN. The antenna array is assumed to be a ULA of 11 omni-

directional antennas with inter-element spacing δ = 1
2
λc where λc is the wavelength of
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the carrier frequency. The Rayleigh angle resolution limit for the array is approximately

2/ (M − 1) ' 11.46◦ (0.2 radians). Monte Carlo simulation of 2000 independent trials

are conducted to obtain the statistical performance.

The received signal is down-converted to baseband and sampled at a frequency of

100 MHz. The total observation time is T0 = 20.48 µs and are divided into 64 intervals

with a duration of ∆T = 320 ns each. Using DFT, the samples in each interval are

converted into Q = 32 narrowband frequency bins.

5.6.1 Resolution of Signals

We consider K = 2 uncorrelated signal sources, each having two impinging wavefronts

at the receiver (i.e. P1 = P2 = 2). The magnitudes of the complex gains for all the

paths are assumed to be equal and the SNRs are set to 0 dB. For the first source, θ
(1)
1 =

21◦ and θ
(1)
2 = 26◦. The angle separation is 5◦ which is less than half the Rayleigh

angle resolution of 11.46◦. The complex gains are set to α
(1)
1 = β and α

(1)
2 = βej π

5

respectively, where β is a constant such that the SNRs for both paths are equal to 0

dB. The time delays are expressed in terms of the sampling period T : τ
(1)
1 = 0T and

τ
(1)
2 = 4.2T . For the second source, the angle separation between the two arrival paths

is set to 5◦ with θ
(2)
1 = 46◦ and θ

(2)
2 = 51◦. The complex gains are set to α

(2)
1 = βe−j π

4

and α
(2)
2 = βej π

3 while the time delays are τ
(2)
1 = 0.1T and τ

(2)
2 = 6T .

For comparison, the spatial spectrums of the three different methods – the proposed

CFSSM method, Wang and Kaveh’s CSSM method [17] and the IMUSIC method [15]

– are plotted in Figure 5.1, Figure 5.2 and Figure 5.3 respectively. In each method, the

true number of signals P = 4 is used for processing. In each figure, the results from

ten independents trials are plotted together. For ease of reference, the true DOAs are

indicated by the vertical lines in the figures.

From Figure 5.1 and Figure 5.2, we see that our proposed CFSSM and CSSM es-

timation methods are able to resolve the different arrival paths from each source. The

IMUSIC algorithm, however, is unable to resolve the different arrival paths from each
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Figure 5.1: Spatial periodogram for two signal sources using CFSSM
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Figure 5.2: Spatial periodogram for two signal sources using CSSM

source despite knowing the true number of impinging wavefronts. Hence, we can con-

clude that both CFSSM and CSSM estimation methods, which are coherent methods,

are superior to IMUSIC in terms of resolving correlated signals at the receiver.
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Figure 5.3: Spatial periodogram for two signal sources using IMUSIC

5.6.2 Detection Performance of Signals

In this section, we compare the statistical performance of the proposed detection algo-

rithm described in Section 5.4 with the coherent AIC and incoherent AIC from [17,98].

First, we compare the detection performance for two uncorrelated signal sources each

having a single path at the receiver. Both sources are assumed to have equal received

power and the angle separation between the two sources is set to 7◦.

In Figure 5.4, the detection performance against SNR for each method is plotted for

comparison. The proposed detection algorithm and the coherent AIC [17] have similar

performance, which are much better than that of incoherent AIC in low SNR conditions.

For 100% correct detection, the SNR threshold of our proposed detection algorithm and

coherent AIC is −13 dB, while the SNR threshold of incoherent AIC is −7 dB, which

is much higher than the former. In incoherent AIC, the detection is carried out at each

frequency bin as compared to coherent AIC where the detection is carried out for the

coherent signal subspace of all frequency bins. As such, a single outlier in one of the

frequency bins can degrade the detection performance greatly in low SNRs.

Next, the detection performance of the proposed algorithm and coherent AIC for

two correlated received signals (arising from two received signal paths from a single
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Figure 5.4: Detection performance against SNR for uncorrelated signals
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Figure 5.5: Detection performance against SNR for correlated signals

source) are compared. The signals from the two paths are assumed to arrive at the re-

ceiver with a relative delay of 4.2T and the angle separation for these correlated signals
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is kept at 7◦. The received power for each path is assumed to be equal as in the case for

uncorrelated sources.

In Figure 5.5, the detection performance of the proposed detection algorithm and

the coherent AIC for different SNRs are plotted for comparison. Once again the perfor-

mances of the two schemes are identical, and have similar SNR thresholds. Note that

the incoherent AIC cannot make the correct detection of the number of signals regard-

less of the SNR because of its inability to resolve correlated signals. As such, we omit

the performance of incoherent AIC in Figure 5.5. Our proposed detection algorithm is

better than that of coherent AIC as it does not require initial DOA estimates and has a

lower computational complexity in the formation of the combined correlation matrix.

5.6.3 Performance of the DOA Estimators

The statistical estimation performance of our proposed method, in terms of estima-

tion error deviation and estimation bias, is studied through Monte Carlo simulation in

this section. The performances of coherent estimation methods like the CSSM [17],

WAVES [38], TOPS [39], as well as the IMUSIC are also simulated for comparison.

Monte Carlo simulation of 2000 independent trials are conducted to obtain the statistical

performance.

5.6.3.1 Uncorrelated Signals

We investigate the estimation performance for two uncorrelated received signals using

the various estimation methods. Two equal-power uncorrelated signal sources whose

DOAs are randomly generated with a fixed angle separation of 7◦ are simulated with the

following parameters: α
(1)
1 = βej π

5 , α
(2)
1 = βej π

3 and τ
(1)
1 = τ

(2)
1 = 0T . Note that the

complex gains for the two sources have equivalent power so the received SNRs for both

sources are the same. For CSSM and WAVES, the initial DOAs are estimated using the

Capon’s estimator which only provides a single DOA estimate, and the RSS focusing

matrix [75] is chosen as the focusing matrix.
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Figure 5.6: RMSE performance against SNR for uncorrelated signals
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Figure 5.7: Bias performance against SNR for uncorrelated signals

In Figure 5.6, the RMSE performance for CFSSM, CSSM, WAVES, TOPS and

IMUSIC is plotted against SNR. Here, the RMSE is averaged over the two multipaths.
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The CRLB as calculated in [17] is also included for reference. In the low SNRs, the per-

formances of proposed CFSSM, CSSM and WAVES are similar, and are significantly

better than that of IMUSIC. The RMSE of the proposed CFSSM estimation method

is also very near to the CRLB in the low SNRs. In high SNR region, IMUSIC per-

forms better due to the bias in all the coherent methods [39, 96]. Note that the IMUSIC

cannot resolve the two signals below the SNR detection threshold of −7 dB. Therefore

the performance of IMUSIC below −7 dB (as seen from Figure 5.4) is not included in

Figure 5.6 due to unreliable estimates.

In Figure 5.7, the bias performances for the different estimation methods are pro-

vided where the estimates from the different trials are averaged. Note that CFSSM,

CSSM and WAVES exhibit an estimation bias even at high SNRs while the estimates

from TOPS and IMUSIC tend to converge to the true DOAs with increasing SNR as

reported in [39].

The proposed method is the best performing estimator which does not require initial

DOA estimates (similar to IMUSIC and TOPS) in low SNR region. Either in terms of

estimation variance or estimation bias, the performance of the proposed CFSSM esti-

mation algorithm is comparable to existing coherent estimation methods such as CSSM

and WAVES but is computationally less expensive. Moreover, the CFSSM estimation

variance performance is close to the CRLB in low SNR region.

5.6.3.2 Correlated Signals

We next investigate the estimation performance for two correlated received signals for

each of the various estimation methods. We consider the case where two signals from

the same source arrive at the receiver through two different paths with the following

parameters: α
(1)
1 = βej π

5 , α
(1)
2 = βej π

4 and τ
(1)
1 = 0T , τ

(1)
2 = 6.2T . Their DOAs are

randomly generated with a fixed angle separation of 7◦. Note that the complex gains for

the two paths have equivalent power so the received SNRs for both paths are the same.

As in the case for uncorrelated signals in Section 5.6.3.1, the initial DOA estimates for

CSSM and WAVES are estimated by the Capon estimator which only provides a single
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DOA estimate, and the RSS focusing matrix [75] is chosen as the focusing matrix.
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Figure 5.8: RMSE performance against SNR for correlated signals
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Figure 5.9: Bias performance against SNR for correlated signals

In Figure 5.8, the RMSE performance for CFSSM, CSSM, WAVES and IMUSIC
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are plotted against SNR. Both TOPS and IMUSIC are not able to resolve correlated

signals [17, 39]. The performance of IMUSIC is included for illustration only, demon-

strating the incapability of incoherent methods to handle correlated signals. IMUSIC is

only able to obtain a single DOA estimate instead of the required two estimates. The

single estimates are always around the average of the two true DOAs, hence resulting

in a constant estimation error as reflected in Figure 5.8. The performances of the re-

maining three coherent methods, namely the proposed CFSSM, CSSM and WAVES,

are similar to that of uncorrelated signals. These three algorithms are able to resolve the

correlated signals effectively due to the coherent combining of data from all frequency

bins. In the low SNR region, the proposed CFSSM, CSSM and WAVES have similar

performances and are very near to the CRLB. In the high SNR region, the error floor

appears again for all three methods due to the bias, clearly illustrated in Figure 5.9.

5.7 Conclusion

We introduced a new, computationally attractive, coherent DOA estimation method

for wideband sources, that does not require initial DOA estimates for focusing unlike

conventional methods. The proposed method, termed CFSSM, has significantly lower

computational requirements than existing estimation methods and can be used for both

uncorrelated and correlated signals. We also demonstrated through simulation that the

coherent detection performance using the combined correlation matrix in the proposed

CFSSM is comparable to existing coherent AIC using the combined correlation matrix

in CSSM. Moreover, as no initial DOA estimates are required for CFSSM, it can be

used in tandem with some of the existing methods like CSSM and WAVES, replac-

ing the initial low-resolution estimation process like the Capon estimator. The savings

in computational load using the proposed method would make the necessary real-time

estimation, in applications such as cellular mobile systems, more efficient.
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Chapter 6

M-CFSSM: New Wideband DOA
Estimator for Known Signals

In Chapter 5, we discussed the DOA estimation of wideband signals without a pri-

ori knowledge of the transmitted signals. Though this assumption makes the proposed

CFSSM less restrictive in its application, it requires a significant number of snapshots so

as to ensure the sample correlation matrix converges to the true correlation matrix [38].

Given short allocated estimation time, its detection and estimation performance may

degrade significantly especially in low SNR region. In this chapter, we introduce an

estimation algorithm that makes use of the knowledge of transmitted signals at the re-

ceiver to lower the requirement on the number of available snapshots. Transmission of

short bursts of pre-determined preambles is a popular approach in cellular communi-

cations among other wireless systems [22]. Here, we consider the use of such known

transmitted preambles for DOA estimation of wideband signals, as opposed to narrow-

band signals considered in [11,13]. The proposed algorithm, modified from the CFSSM

introduced in Chapter 5, is termed modified CFSSM (M-CFSSM). We first formulate

the estimation method and then use numerical results to illustrate the detection and

estimation capabilities of the proposed method for a system with a small number of

preambles.
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6.1 Modified CFSSM

In this section, we modify the CFSSM algorithm in Chapter 5 to the case where the

transmitted signals are known at the receiver. Note that the receiver only has the knowl-

edge of transmitted signals, but not other parameters that characterize each signal path

from each source. In other words, given the general expression in Section 2.4.2 for the

received signal at the mth antenna with K independent wideband sources:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p x(k)

(
t− τ (k)

p − κ(k)
p,m

)
+ wm (t) (6.1)

the receiver only has the knowledge of transmitted signals x(k)(t) from the kth source,

while the interpath delay τ
(k)
p and the complex gain α

(k)
p are unknown parameters at the

receiver.

Recall from Section 5.1 that the received signal is down-converted to baseband and

sampled at the Nyquist rate, producing N intervals of Q samples each. In each interval,

a Q-point DFT is applied to the samples to obtain Q frequency bins. We recall the

Q-point DFT output at the mth antenna for q = 0, 1, . . . , Q− 1 from (5.4) is given by:

Ym (q) =
K∑

k=1

Pk∑
p=1

α(k)
p X̃(k) (q) e−j2π(fc+

q
Q

B)τ̃
(k)
p,m + Wm (q) (6.2)

where Pk is the total number of impinging plane waves at the receiver from the kth

signal source, Wm (q) is the additive white noise and τ̃
(k)
p,m = τ

(k)
p + κ

(k)
p,m. For a ULA

with inter-element spacing δ, the signal in each frequency bin can be written in the

conventional matrix form:

Y (q) = A(q, θ)ΛX (q) + W (q) (6.3)
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where

Y (q) =

[
Y1 (q) Y2 (q) · · · YM (q)

]T

(6.4)

W (q) =

[
W1 (q) W2 (q) · · · WM (q)

]T

(6.5)

X (q) =

[
X̃(1) (q) · · · X̃(1) (q) · · · X̃(k) (q) · · ·

· · · X̃(K) (q) · · · X̃(K) (q)

]T

(6.6)

Λ = diag

{
α

(1)
1 , · · · α

(1)
P1

, · · · α
(k)
p , · · · α

(K)
1 , · · · α

(K)
PK

}
(6.7)

θ =

[
θ

(1)
1 · · · θ

(1)
P1

· · · θ
(k)
p · · · θ

(K)
1 · · · θ

(K)
PK

]T

(6.8)

Y (q) is the M × 1 noisy received signal at the array, whereas W (q) is the M × 1

additive white noise at the array. X (q) is the P × 1 vector comprising of the repetitions

of the K signal sources according to the number of arrival paths for each source (i.e. Pk

repetitions for the kth source). Λ is the P×P diagonal matrix of the complex gains with

entries equal to α
(k)
p . θ is the P × 1 vector containing the DOAs of all impinging plane

waves and the M × P frequency-dependent array response matrix A (q, θ) is defined

as:

A (q, θ) =

[
a

(
q, θ

(1)
1

)
· · · a

(
q, θ

(1)
P1

)
· · · a

(
q, θ

(k)
p

)
· · ·

· · · a
(
q, θ

(K)
1

)
· · · a

(
q, θ

(K)
PK

) ]
(6.9)

where

a
(
q, θ(k)

p

)
=

[
e
−j2π(fc+

q
Q

B)
(
τ
(k)
p

)
e
−j2π(fc+

q
Q

B)
(
τ
(k)
p + δ

c
sin θ

(k)
p

)
· · ·

· · · e
−j2π(fc+

q
Q

B)
(
τ
(k)
p +

(M−1)δ
c

sin θ
(k)
p

) ]T

(6.10)

From this point onwards, we denote the received signal at different snapshots with a

subscript n for n = 1, 2, . . . , N . Hence the received signal at the nth snapshot is given
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by:

Yn (q) = A (q, θ)ΛXn (q) + Wn (q) (6.11)

Since we are transmitting deterministic known signals at the different sources, we

can ensure that the signals from different sources are designed such that they are un-

correlated within the DOA estimation period. In other words, we want to design the

preambles from the different sources ideally such that:

1

N

N∑
n=1

X(k1)
n (q)

[
X(k2)

n (q)
]∗

=





1, k1 = k2

0, k1 6= k2

(6.12)

for all q. Other than using preambles, the receiver can acquire knowledge of the trans-

mitted signals through receiver estimation. The receiver estimates the transmitted sig-

nals and then uses these estimated signals for DOA estimation as in decision-directed

estimation [104]. Obviously for this case, the requirement in (6.12) will not be easily

fulfilled if N is small given that the transmitted signals from different sources are in-

dependent. In this scenario, the only requirement is that the transmitted signals from

different sources are uncorrelated and for sufficiently large N , the following is satisfied:

1

N

N∑
n=1

X(k1)
n (q)

[
X(k2)

n (q)
]∗ → E

{
X(k1) (q)

[
X(k2) (q)

]∗}
=





1, k1 = k2

0, k1 6= k2

(6.13)

However, since we are concerned with DOA estimation using small N , we assume

that the transmitted signals satisfy (6.12) during the estimation period. We can form K

different data sets, one for each signal source, by correlating the received signals with

each of the known transmitted signals. Each data set consists of Q vectors denoted by
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Z(k) (q) for q = 0, 1, . . . , Q− 1, where Z(k) (q) is defined as follows:

Z(k) (q) =
1

N

[
Y1 (q) Y2 (q) · · · YN (q)

]




X
(k)
1 (q)

X
(k)
2 (q)

...

X
(k)
N (q)




∗

= A
(
q, θ(k)

)
Λ(k)1Pk

+ W(k) (q) (6.14)

where

A
(
q, θ(k)

)
=

[
a

(
q, θ

(k)
1

)
a

(
q, θ

(k)
2

)
· · · a

(
q, θ

(k)
Pk

) ]
(6.15)

θ(k) =

[
θ

(k)
1 θ

(k)
2 · · · θ

(k)
Pk

]T

(6.16)

Λ = diag

{
α

(k)
1 α

(k)
2 · · · α

(k)
Pk

}
(6.17)

A
(
q, θ(k)

)
is the reduced size matrix consisting of the columns of A (q, θ) with DOAs

belonging to the kth source only, Λ(k) is the Pk × Pk diagonal matrix of the complex

gains of the kth source, θ(k) is the Pk× 1 vector containing the DOAs of the kth source,

1Pk
is a Pk × 1 vector whose entries are all ones, and W(k) (q) is the M × 1 additive

white noise at the array.

Hence, instead of estimating the DOAs of all the different sources simultaneously,

we can estimate the DOAs of the individual sources separately by using Zk (q) as de-

fined in (6.14). For clarity, we drop the source index in the rest of the derivations since

the DOA estimation is carried out for each source individually.

Like in CFSSM, we seek to combine the various frequency bins together to form

a single combined frequency signal subspace. However, unlike the case of CFSSM,

we do not combine the correlation matrix of each frequency bin. Instead, we first try

to separate signals that arrive through different multipaths which are well-separated in
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their arrival times (i.e. B(τp1 − τp2) > 1). Define the following vector H (i) as follows:

H (i) =

Q−1∑
q=0

Z (q) ej2π iq
Q (6.18)

for i = 0, 1, . . . , Q− 1. The mth element in the noiseless vector H is thus:

[H (i)]m =

Q−1∑
q=0

P∑
p=1

αpe
−j2π(fc+

q
Q

B)(τp+
(m−1)δ

c
sin θp)ej2π iq

Q

=
P∑

p=1

αpe
−j2πfc(τp+

(m−1)δ
c

sinθp)
Q−1∑
q=0

e−j2π q
Q(Bτp−i+

(m−1)δ
λc

Bf sin θp)

=
P∑

p=1

αpe
−jφp(i,m)F (i,m, p) (6.19)

where

φp (i,m) = π

{
2fcτp +

Q− 1

Q
(Bτp − i) + 2 (m− 1)

δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θp

}

(6.20)

and

F (i, m, p) =
sin

[
π

(
Bτp + δ

λc
(m− 1) Bf sin θp − i

)]

sin
[

π
Q

(
Bτp + δ

λc
(m− 1) Bf sin θp − i

)] (6.21)

The details in the simplification process from the second equality to the third equality in

(6.19) can be found in Appendix B. Observe that when Bτp ≈ i, |F (i,m, p)| ≈ 1 and

when |Bτp − i| ≥ 1, |F (i, m, p)| ≈ 0. Hence we can use the various H (i) to estimate

the different DOAs individually. First, we have to determine which of the different

vectors H (i), i = 0, 1, . . . , Q− 1, should be used for DOA estimation.

A possible way to determine the number of arrival paths (i.e. the number of imping-

ing plane waves with significant powers) and the corresponding vectors to use for the

DOA estimation is to search for peaks of |H (i)|2 across i = 0, 1, . . . , Q− 1 which are

greater than a threshold, ζ . If |H (i)|2 ≥ ζ , DOA estimation can be performed using
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this particular vector; if |H (i)|2 < ζ , no DOA estimation is carried out. For P << Q,

a possible candidate for ζ is the arithmetic mean of |H (i)|2, i = 0, 1, . . . , Q− 1:

ζ =
1

Q

Q−1∑
i=0

|H (i)|2 (6.22)

Without loss of generality, we assume that a peak is detected at i = 0 (i.e. |H (0)|2 ≥
ζ). We now discuss the estimation of θ1 using H (0) as an illustration of the DOA

estimation algorithm. From (6.19), we can rewrite the vector noiseless H (0) as:

H (0) = ÃH(0)




α1

α2

...

αP




(6.23)

where the array response matrix ÃH(0) is given by:

ÃH(0) =




[
aH(0) (θ1) e−jπ[2fcτ1+Q−1

Q
(Bτ1)]

]T

[
aH(0) (θ2) e−jπ[2fcτ2+Q−1

Q
(Bτ2)]

]T

...
[
aH(0) (θP ) e−jπ[2fcτP +Q−1

Q
(BτP )]

]T




T

(6.24)

with the steering vectors given by:

aH(0) (θp) =




F (0, 1, p) e−jφ̃p(1)

F (0, 2, p) e−jφ̃p(2)

...

F (0,M, p) e−jφ̃p(M)




(6.25)

and φ̃p (m) is a variation of φp (i,m) in (6.20) without the portion which is independent

of m (it will be canceled out during the correlation process at a later stage). More
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formally:

φ̃p (m) = 2π
δ

λc

(m− 1)

(
1 +

Q− 1

2Q
Bf

)
sin θp (6.26)

We denote the correlation matrix of H (0) as RH(0) where:

RH(0) = E
[
H (0)HH (0)

]

= AH(0)




|α1|2 · · · α1α
∗
p · · · α1α

∗
P

... . . . ... . . . ...

αpα
∗
1 . . . |αp|2 · · · αpα

∗
P

... . . . ... . . . ...

αP α∗1 · · · αP α∗p · · · |αP |2




AH
H(0) + σ2I (6.27)

where σ2 is the noise variance and AH(0) is the simplified form of the array response

matrix in (6.24) and is given by:

AH(0) =

[
aH(0)(θ1) aH(0)(θ2) · · · aH(0)(θP )

]
(6.28)

Using the fact that |F (i,m, p)| ≈ 1 for Bτp ≈ i and |F (i,m, p)| ≈ 0 for |Bτp − i| ≥ 1,

we can approximate RH (0) as:

RH (0) ≈ aH(0) (θ1) |α1|2
[
aH(0) (θ1)

]H
+ σ2I (6.29)

Note that the magnitude of each element in the steering vectors is no longer constant as

in the classical MUSIC algorithm. Instead, the magnitude is not only dependent on the

DOA θp, it also depends on the interpath delay τp. Another consequence of the varying

magnitude is that the steering vectors for the different angles are no longer of the same

form, resulting in another key difference as compared to the classical MUSIC algorithm.

However, as mentioned previously, DOA estimation is performed separately for each

source and we can see from (6.29) that RH (0) is used to estimate for θ1 exclusively.

Considering RH (0) in (6.29), we note that we have two unknowns: θ1 and τ1. We
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can make use of an iterative process to estimate these two unknowns. First, using the

fact that for Bτ1 ≈ 0, we can approximate F (0, m, 1) by:

F (0,m, 1) ≈
sin

[
π

(
δ
λc

(m− 1) Bf sin θ1

)]

sin
[

π
Q

(
δ
λc

(m− 1) Bf sin θ1

)] (6.30)

and form an initial estimate θ̂
(0)
1 of θ1 using the MUSIC algorithm. With this initial es-

timate θ̂
(0)
1 , we form an estimate τ̂

(0)
1 of τ1 by considering the cost function L

(
u, θ̂

(0)
1

)
:

L
(
u, θ̂

(0)
1

)
=

M∑
m=1

∣∣∣∣∣
Q−1∑
q=0

[Z (q)]m e
j2π q

Q

(
u+

(m−1)δ
λc

Bf sin θ̂
(0)
1

)∣∣∣∣∣

2

=
M∑

m=1

∣∣∣∣∣e
jπ Q−1

Q

(
u+

(m−1)δ
λc

Bf sin θ̂
(0)
1

) P∑
p=1

αpe
−jϕp(m)F1 (u,m, p)

∣∣∣∣∣

2

(6.31)

where

ϕp (m) = 2π

[(
fc +

Q− 1

2Q
B

)
τp +

(m− 1) δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θp

]
(6.32)

and

F1 (u,m, p) =
sin

[
π

(
u−Bτp + (m−1)δ

λc
Bf

(
sin θ̂

(0)
1 − sin θp

))]

sin
[

π
Q

(
u−Bτp + (m−1)δ

λc
Bf

(
sin θ̂

(0)
1 − sin θp

))] (6.33)

τ1 is estimated by maximizing the cost function L
(
u, θ̂

(0)
1

)
for −1 < u < 1. For

single signal case, u = Bτ1 maximizes the cost function L
(
u, θ̂

(0)
1

)
provided that

θ̂
(0)
1 → θ1. For multiple signals, u ≈ Bτ1 will be the maximization point with the

offset limits dependent on the number of signals and their separation in arrival times.

The discussion on the offset limits is given in Appendix C. With the initial estimate

τ̂
(0)
1 , we form F (0,m, 1) to carry out the one-dimensional search process of the DOA

θ1 again. The process can then be re-iterated several times to get DOA estimates of

desired accuracy.
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If we denote the iteration index as l then the steps of the iterative process can be

formally listed as below:

1. Using the approximation F (0,m, 1) ≈ sin[π( δ
λc

(m−1)Bf sin θ1)]
sin[ π

Q( δ
λc

(m−1)Bf sin θ1)]
, form an initial

estimate θ̂
(0)
1 of θ1 by performing the MUSIC algorithm on RH (0).

2. Using θ̂
(l−1)
1 , l = 1, 2, . . . , Liter (where Liter is the maximum number of itera-

tions), form the estimate τ̂
(l−1)
1 of τ1 from the cost function L

(
u, θ̂

(l−1)
1

)
where:

τ̂
(l)
1 =

1

B
arg max

u
L

(
u, θ̂

(l−1)
1

)
(6.34)

3. Using τ̂
(l)
1 , form F (l) (0,m, 1)

4. Using F (l) (0,m, 1), estimate θ̂
(l)
1 by performing the MUSIC algorithm on RH (0).

Repeat Step 2 to Step 4 for l < Liter.

The maximum number of iterations Liter is preset. For only a small number of itera-

tions, the accuracy of DOA estimates is high, as shown in later sections. Alternatively,

the stopping condition for the iterative procedure can be determined by the absolute

difference between the current estimated DOA and the previous DOA estimate lesser

than a pre-determined threshold whereby this threshold determines the resolution of the

detected DOAs.

6.2 Proposed DOA Estimation Algorithm

From the discussion in Section 6.1, we now formulate the algorithm for DOA esti-

mation of uncorrelated and correlated signals using the M-CFSSM together with the

narrowband signal subspace estimation method, MUSIC. Note that we assume that the

receiver has the knowledge of the total number of wideband signal sources. The signals

from the sources are assumed to be uncorrelated which satisfy (6.12).

1. Down-convert the received signal at the array to baseband and sample the base-

band signal at the Nyquist rate, B Hz.
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2. Divide the total number of sampled data into N snapshots of Q samples each.

3. For each snapshot, convert the sampled time domain data into frequency domain

data of Q frequency bins using Q-point DFT.

4. For each frequency bin, correlate the received signal with the different transmitted

signals to form Z(k) (q) in (6.14).

5. For each Z(k) (q), form the corresponding H(k) (i) using (6.18) and determine the

number of received signals from the kth source by finding the number of peaks in

the plot of
∣∣H(k) (i)

∣∣2 for i = 0, 1, . . . , Q− 1 greater than a threshold ζ designed

accordingly to (6.22).

6. Using each of the H(k) (i) that corresponds to the peaks found in Step 5, form the

correlation matrix R
(k)
H (i) as follows:

R
(k)
H (i) = E

[
H(k) (i)

[
H(k) (i)

]H
]

(6.35)

7. The DOA estimation for each arrival path is carried out using the iterative process

detailed at the end of Section 6.1.

Note that in the proposed estimation algorithm, the DOAs of all the impinging wave-

fronts from each source are estimated separately. In addition, the search through the

hypothesized DOAs can be narrowed down after the initial estimate – only a single an-

gle is expected and the initial estimate is near to the true DOA unlike the preliminary

DOA estimates in CSSM [17] and WAVES [38].

6.3 Simulation Results

In this section, we provide some numerical results using the proposed M-CFSSM. We

consider the same operating environment as that in Section 5.6 – a future cellular system

with large system bandwidth of 100 MHz [102, 103]. The signals from each source are
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modeled in the frequency domain as random variables with constant amplitudes and

uniformly distributed random phases. The sources have a carrier frequency of 2 GHz

and a bandwidth of 100 MHz. They are designed accordingly to (6.12) so that they are

uncorrelated within the observation window. The frequency domain signal from each

source is generated randomly for a single snapshot. The signals are then repeated for

N = 4 snapshots and are multiplied by different rows of the 4 × 4 Hadamard matrix

for different signal sources to guarantee the signals from the sources satisfy (6.12). The

signals are assumed to be known to the receiver. The noise at the array is assumed

to be AWGN. The antenna array at the receiver is assumed to be a ULA of 11 omni-

directional antennas with inter-element spacing δ = 1
2
λc where λc is the wavelength of

the carrier frequency. The Rayleigh angle resolution limit for the array is approximately

2/(M − 1) ' 11.46◦ (0.2 radians).

The received signal is down-converted to baseband and sampled at a frequency of

100 MHz. The total observation time is T0 = 1.28 µs and are divided into 4 intervals

each with duration ∆T = 320 ns. Here, the number of intervals is chosen to be small so

as to illustrate the capability of the proposed algorithm when small number of snapshots

is available. The samples in each interval are converted into Q = 32 narrowband fre-

quency bins using DFT. Note that the number of snapshots considered is much smaller

than that used in Chapter 5 which is 64.

6.3.1 Detection Performance of Correlated Signals

Since the sources are designed to be uncorrelated and the number of sources is assumed

to be known, we only need to determine the number of correlated signals at the receiver

due to the different multipaths of each source. Without loss of generality, we consider

the case of a single source with two impinging wavefronts at the receiver (i.e. P1 = 2).

The magnitudes of complex gains for all the paths are assumed to be equal and the

SNRs are set to −10 dB. The two multipaths, with the DOAs randomly generated with

an angle separation of 7◦, have the following parameters: α
(1)
1 = βej π

5 , α(1)
2 = βej π

4 and
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τ
(1)
1 = 0T , τ

(1)
2 = 6.2T . Note that the complex gains for the two paths have equivalent

powers so that the received SNRs for both paths are the same. We plot the graph of
∣∣H(k) (i)

∣∣2 against i, i = 0, 1, . . . , Q − 1 for ten independent trials in Figure 6.1. For

ease of reference, the thresholds ζ as defined in (6.22) (indicated by the horizontal lines)

are plotted as well.
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Figure 6.1: Plot of |Hk (i)|2 against i

As seen from Figure 6.1, we can correctly detect two peaks in the plot correspond-

ing to the two arrival paths (indicated by the vertical lines) even at a low SNR of −10

dB. We compare the performance of the proposed detection method to that of the coher-

ent AIC proposed in [17]. From Figure 6.2, our proposed detection algorithm performs

better than the coherent AIC [17] at low SNRs. For 100% correct detection, the SNR

threshold of our proposed detection algorithm is around −12 dB while the SNR thresh-

old of coherent AIC is −8 dB, which is higher than that of our proposed detection

algorithm.
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Figure 6.2: Detection performance against SNR for correlated signals

6.3.2 Performances of the DOA Estimators

In this section, we study the statistical estimation performance of the proposed M-

CFSSM in terms of RMSE and estimation bias. The WAVES algorithm has similar

performance to the CSSM algorithm as seen from the previous chapter. Hence the per-

formance of proposed M-CFSSM is compared to that of the blind coherent estimation

method CSSM [17] only. Monte Carlo simulation of 2000 independent trials are con-

ducted to obtain the statistical performance.

6.3.2.1 Correlated Signals

We investigate the estimation performance for two correlated received signals which

arrive at the receiver simultaneously. The correlated signals are the result of two im-

pinging wavefronts from the same source that arrive at the receiver through two inde-

pendent multipaths. The DOAs of the two multipaths are randomly generated with an

angle separation of 7◦ with other parameters as follows: α
(1)
1 = βej π

5 , α
(1)
2 = βej π

4
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and τ
(1)
1 = 0T , τ

(1)
2 = 6.2T . Note that the complex gains for the two paths have

equivalent powers so the received SNRs of both paths are the same. For the CSSM esti-

mation method, the initial DOAs are estimated using the Capon’s estimator which only

provides a single DOA estimate, and the RSS focusing matrix is used as the focusing

matrix. For our proposed M-CFSSM, the number of iterations is set to 1 (i.e. Liter = 1).
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Figure 6.3: RMSE performance against SNR for correlated signals

In Figure 6.3, the RMSE for M-CFSSM and CSSM are plotted against SNR. We

compare the performance of the algorithms with the CRLB derived for known wave-

forms given in [17]. Note that for CSSM, even though the coherent AIC is able to de-

tect the number of correlated signals correctly from −8 dB onwards, the spatial plot of

CSSM occasionally shows a single peak for SNRs below 0 dB. Hence from Figure 6.4,

we can see that CSSM has a large bias at −8 dB. This, in turn, affects the estimation

performance in terms of RMSE. As seen from Figure 6.3, the performance of the CSSM

is much worse than that of M-CFSSM in the low SNR region. On the other hand, the

proposed M-CFSSM exhibits good estimation performance and has performance close

to the CRLB at low SNRs. In Figure 6.5, the RMSE for the estimation of Bτ
(1)
2 is

shown. Note that at high SNRs the plot exhibits an error floor, signifying a small offset
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Figure 6.4: Bias performance against SNR for correlated signals
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Figure 6.5: RMSE performance against SNR for Bτ
(1)
2 = 6.2T

in the estimation.
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6.3.2.2 Uncorrelated Signals

We next investigate the estimation performance for two uncorrelated signals. The

two signals are assumed to have equal power and their DOAs are randomly gener-

ated with an angle separation of 7◦. They are simulated with the following parameters:

α
(1)
1 = βej π

5 , α
(2)
1 = βej π

3 and τ
(1)
1 = τ

(2)
1 = 0T . Note that the complex gains for

the two signals have equivalent powers so the received SNRs of both signals are the

same. We compare the performance of the proposed M-CFSSM to CSSM. Similar to

Section 6.3.2.1, the initial DOAs for CSSM are estimated using the Capon’s estimator

which only provides a single DOA estimate. The RSS focusing matrix is used as the

focusing matrix for CSSM .
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Figure 6.6: RMSE performance against SNR for uncorrelated signals

In Figure 6.6, the RMSE for M-CFSSM and CSSM are plotted against SNR. We

compare the performance of the algorithms with the CRLB derived for known wave-

forms given in [17]. Similar to the case of correlated signals, the proposed M-CFSSM

performs better than CSSM in the low SNR region. Moreover, there is no error floor in

the RMSE plot unlike the case for correlated signals in the high SNR region. This is
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Figure 6.7: Bias performance against SNR for uncorrelated signals

shown more clearly in Figure 6.7.

The proposed M-CFSSM method proves to have good estimation performance at

low SNRs even with only a small number of snapshots. Its estimation performance is

close to the CRLB and it is able to resolve the signals correctly at low SNRs.

6.4 Conclusion

In this chapter, we modified the CFSSM introduced in Chapter 5 to the case when the

receiver has the knowledge of transmitted signals. The modified CFSSM (M-CFSSM)

method can be used for both uncorrelated and correlated signals and is useful for DOA

estimation in systems with small amount of observation data provided the transmitted

signals are designed appropriately. We demonstrated through simulation that the de-

tection performance of the proposed M-CFSSM is robust at low SNRs for correlated

signals. The estimation performance is also close to the CRLB at low SNRs. Moreover,

the M-CFSSM exhibits small estimation bias for SNRs as low as 0 dB. These charac-
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teristics make the proposed M-CFSSM suitable for implementation in systems using

preamble transmission such as cellular mobile systems.

120



Chapter 7

Direction-of-Arrival Estimation in
Time-Varying Channels

In Chapters 4 and 6, we discussed the DOA estimation using known transmitted signals

akin to the use of pilot symbols or preambles in conventional packet transmission in

cellular communications among other wireless systems [22]. An underlying assump-

tion made in those chapters is that the wireless multipath channel remains stationary

during the course of the estimation process. This assumption is valid for stationary

or slow-moving mobile transmitters and/or receivers. However, if any of them is fast-

moving, the assumption breaks down and the channel can no longer be considered as

time-invariant [23, 105, 106]. In this chapter, we extend the algorithms developed in

Chapters 4 and 6 to the case of time-varying and investigate the effects of time-varying

channels on the proposed algorithms.

7.1 Time-Varying Channels

We first modify the general expression (2.64) in Section 2.4 to reflect the time-varying

characteristics of the complex gains of the multipaths, or equivalently the channel gains.

Keeping to the same notations in Section 2.4, where x(k)(t) is the kth signal source, τ
(k)
p

and α
(k)
p are the interpath delay and the complex gain of the pth multipath from the

k(k) source respectively, wn (t) is the additive noise at the mth antenna, and κ
(k)
p,m is the

antenna delay of the pth multipath from the k(k) source at the mth antenna relative to

the arrival time of the same path at the reference antenna, the received signal at the mth
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antenna is given by:

ym (t) =
K∑

k=1

Pk∑
p=1

α(k)
p (t) x(k)

(
t− τ (k)

p − κ(k)
p,m

)
+ wm (t) (7.1)

The changes in the channel gain are brought about by the movement of mobile trans-

mitters and/or receivers, which change the phases of the transmitted signals impinging

on the local scatterers (see Figure 2.5) and result in a time-domain fading phenomena

along the different dominant reflector paths [23]. The channel variations with time or

the time selectivity of wireless multipath channels has been covered in details in Sec-

tion 2.2. Suffice to repeat here that the rate of the variations is dependent on the speed

of the mobile transmitters/receivers and the rate of transmission. Baring high mobility

of more than 300 km/h, we can safely assume that the channel is quasi-stationary during

each observation period [23], or equivalently the period of pilot symbols or preamble

transmission. However, the channel characteristics between different preamble trans-

mission periods cannot be assumed to be the same as the time separation between con-

secutive preamble transmission periods is usually large to avoid too much overhead in

the transmission. In this chapter, we assume that the time separation between consec-

utive preamble transmission periods (i.e. observation periods) is large enough that the

channel characteristics among the different observation periods are independent and

identically distributed (iid). We further assume the channel under consideration is non-

frequency selective.

7.2 Narrowband Signals

Recall from Chapter 4 where we consider a single observation period with N snapshots.

We now extend the model to the case of multiple observation periods where the channel

gains are assumed to be stationary within each observation period but are statistically

independent among the different observation periods. We introduce the observation pe-

riod index o = 1, 2, . . . , O where O is the total number of observation periods. For
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simplicity, we assume that the different sources transmit the same signals in all the ob-

servation periods. However, this is not a strict requirement. The minimum requirement

is that the transmitted signals satisfy (4.18) for all the observation periods. For the oth

observation period, the matrix in (4.14) is thus re-written as:

Y
(o)
l = A1 (θ)Dl−1Λ(o)S + W

(o)
l (7.2)

where Y
(o)
l is the M

(k)
0 ×N matrix formed by the concatenation of all the lth subarray

outputs at different snapshots and Λ(o) is the P × P diagonal matrix of the complex

gains with entries equal to α
(o,k)
p .

For the kth source, we form the source signal dependent decision matrix in a similar

fashion as in (4.25) by concatenating all the L correlations between Y
(o)
l and the pre-

determined transmitted signals of the kth source. The noiseless decision matrix in the

oth observation period is thus given by:

Z(o,k) = A2

(
θ(k)

)
Λ(o,k)B

(
θ(k)

)
(7.3)

where θ(k) is the Pk×1 vector containing all the DOAs of the kth source, and A2

(
θ(k)

)

is the M0 × Pk submatrix of A1 (θ), which consists of the Pk steering vectors of the

kth source. Λk = diag
{

α
(o,k)
1 , α

(o,k)
2 , · · · α

(o,k)
Pk

}
is a Pk×Pk diagonal matrix where

α
(o,k)
p is the channel gain for the oth observation period. B

(
θ(k)

)
is as defined in (4.27).

We consider the noiseless correlation matrix of the decision statistic matrix Z(o,k):

RZ(o,k) = Z(o,k)
[
Z(o,k)

]H

= A2

(
θ(k)

)
Λ(o,k)B

(
θ(k)

) [
B

(
θ(k)

)]H [
Λ(o,k)

]H [
A2

(
θ(k)

)]H

= A2

(
θ(k)

)
[RΛ(o,k) ¯RB(k) ]

[
A2

(
θ(k)

)]H

(7.4)
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where

RΛ(o,k) =




∣∣∣α(o,k)
1

∣∣∣
2

α
(o,k)
1

(
α

(o,k)
2

)∗
· · · α

(o,k)
1

(
α

(o,k)
Pk

)∗

α
(o,k)
2

(
α

(o,k)
1

)∗ ∣∣∣α(o,k)
2

∣∣∣
2

· · · α
(o,k)
2

(
α

(o,k)
Pk

)∗

...
... . . . ...

α
(o,k)
Pk

(
α

(o,k)
1

)∗
α

(o,k)
Pk

(
α

(o,k)
2

)∗
· · ·

∣∣∣α(o,k)
Pk

∣∣∣
2




(7.5)

and

RB(k) = B
(
θ(k)

) [
B

(
θ(k)

)]H

=




1 F
(
θ

(k)
1 − θ

(k)
2

)
· · · F

(
θ

(k)
1 − θ

(k)
Pk

)
[
F

(
θ

(k)
1 − θ

(k)
2

)]∗
1 · · · F

(
θ

(k)
2 − θ

(k)
Pk

)

...
... . . . ...

[
F

(
θ

(k)
1 − θ

(k)
Pk

)]∗ [
F

(
θ

(k)
2 − θ

(k)
Pk

)]∗
· · · 1




(7.6)

The function F (θp1 − θp2) is the summation of a geometric series and is given by:

F (θp1 − θp2) =
L−1∑
i=0

[
e−j 2πδ

λc
(sin θp1−sin θp2)

]i

=
sin

[
πδL
λc

(sin θp1 − sin θp2)
]

sin
[

πδ
λc

(sin θp1 − sin θp2)
] e−j πδ

λc
(L−1)(sin θp1−sin θp2) (7.7)

Now we sum up the different correlation matrices across the different observation

periods and we get:

RZ(k) =
1

O

O∑
o=1

RZ(o,k)

= A2

(
θ(k)

) {[
1

O

O∑
o=1

RΛ(o,k)

]
¯RB(k)

} [
A2

(
θ(k)

)]H

(7.8)

Assuming that the channel gains among the observation periods are independent and O
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is sufficiently large, then:

1

O

O∑
o=1

RΛ(o,k) → E [RΛ(k) ]

=




E

[∣∣∣α(o,k)
1

∣∣∣
2
]

0 · · · 0

0 E

[∣∣∣α(o,k)
2

∣∣∣
2
]
· · · 0

...
... . . . ...

0 0 · · · E

[∣∣∣α(o,k)
Pk

∣∣∣
2
]




(7.9)

Therefore, (7.8) simplifies to:

RZ(k) = A2

(
θ(k)

)




E

[∣∣∣α(o,k)
1

∣∣∣
2
]

0 · · · 0

0 E

[∣∣∣α(o,k)
2

∣∣∣
2
]
· · · 0

...
... . . . ...

0 0 · · · E

[∣∣∣α(o,k)
Pk

∣∣∣
2
]




[
A2

(
θ(k)

)]H

(7.10)

Equation (7.10) has two important implications. Firstly, the use of independent

observation data in time-varying channels decouple perfectly correlated signals without

the need of spatial smoothing technique. Secondly, the received power of each path

tends to a constant average power unlike the case for time-invariant channels where the

received power is Rayleigh distributed. The availability of time diversity makes the

DOA estimation more robust to the fading effects.

7.2.1 Proposed DOA Estimation Algorithm

We now formalize the DOA estimation algorithm for multiple observation periods by

extending the iterative algorithm introduced in Section 4.2. For the kth source,

1. For each observation period, down-convert the received signal at the array to

baseband and sample the baseband signal at the Nyquist rate, T seconds.
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2. Divide the M -element ULA into L overlapping subarrays of size M0, where

M0 = M − L + 1.

3. For each observation period, concatenate all the lth subarray outputs at different

snapshots to form Y
(o)
l in (7.2) for l = 1, 2, . . . , L.

4. Correlate each Y
(o)
l with the pilot signals for l = 1, 2, . . . , L, and concatenate the

resultant vectors to form Z(o,k) in (7.3).

5. For each observation period, form the correlation matrix RZ(o,k) in (7.4).

6. Average all the correlation matrices RZ(o,k) to form RZ(k) in (7.8).

7. Obtain the initial DOA estimates θ̂
(k)

from the left null space of RZ(k) using the

MUSIC algorithm.

8. Refine the DOA estimates by the iterative procedure detailed in Section 4.2.

7.2.2 Simulation Results

We provide some numerical results for the case of a time-varying channel and highlight

the differences between the performance of the proposed algorithm in time-varying

and time-invariant channels. We consider a 7-element ULA with inter-element spacing

δ = 1
2
λc where λc is the wavelength of the carrier frequency. The noise at the array is

assumed to be AWGN. The observation periods are assumed to be far apart from each

other so that the complex gains in the different observation periods can be assumed to

be independent complex random variables. The amplitudes of the random variables are

Rayleigh distributed and the phases are uniformly distributed between 0 and 2π. The

number of iterations is set to 2 in the proposed PASI technique.
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7.2.2.1 Resolution of Correlated Signals

We first illustrate the use of different observation periods with independent channel

gains to resolve different arrival paths from the same source without the use of spatial-

smoothing technique in Chapter 4 (i.e. L = 1). We set the total number of observation

periods to O = 10.

We consider two paths whose angle separation is less than 20◦: θ
(1)
1 = 20◦ and

θ
(1)
2 = 30◦. We normalize the power of the two paths so that their averaged received

SNRs are equal. The SNR of each path is set to 5 dB. Figure 7.1 and Figure 7.2 show

the spatial spectrums from ten independent trials for time-varying and time-invariant

channels respectively. For ease of reference, the true DOAs are indicated by the vertical

lines in the figures.
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Figure 7.1: Spatial periodogram for time-varying channel

As shown in Figure 7.1, by combining independent observations of the time-varying

channel, the correlated signals from the same source can be separated without any spa-

tial smoothing technique. However, the correlated signals from the same source cannot

be separated in the time-invariant channel as indicated in Figure 7.2 where no distinct

peaks can be observed.
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Figure 7.2: Spatial periodogram for time-invariant channel

In Figure 7.3, we plot the RMSEs of the proposed PAS and PASI techniques against

number of observation periods and compare them to the CRLB. Here the RMSE is

averaged over the two paths. The performance is plotted in Figure 7.3. The statisti-

cal performance is obtained through Monte Carlo simulation (for which the statistical

performance converges) of 2000 independent trials. We see that for small number of

observation periods, there is a significant gain in the performance of the proposed PASI

technique over that of the proposed PAS technique. The use of the iterative process

eliminates the correlation between the two paths by canceling the interference path from

the decision matrix. The signal subspace thus formed consists only of the desired signal

path, resulting in a more accurate estimation. However, with the increase in the number

of observation periods, the gain provided by the proposed PASI technique becomes less

significant. The two signal paths become uncorrelated due to the independent fading

over the different observation periods. Therefore, the benefit of the iterative process for

reducing correlation becomes less significant. Note that for the special case of O = 1,

which corresponds to the case of the time-invariant channel, the two paths cannot be

separated as shown in Figure 7.2. Hence the performance of the both algorithms are

significantly worse off.
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Figure 7.3: RMSE performance against number of observation periods in time-varying
channel (L = 1)

7.2.2.2 Statistical Performance in Time-Varying and Time-Invariant Channels

Next, we compare the estimation performance of the proposed algorithm against num-

ber of observation periods in the time-invariant and time-varying channels. We consider

a source with two impinging plane waves at the receiver whose DOAs have an angle

separation of 10◦. As shown in the previous section, the use of subarrays is required

for accurate estimation in the time-invariant channel. Therefore, we use subarrays of

size 3 (i.e. M0 = 3, L = 5). Note that for fair comparison, we set the average received

power in the time-varying channel to be equal to the received power in the time-invariant

channel. The SNR is set to 5dB. The statistical performance is obtained through Monte

Carlo simulation (for which the statistical performance converges) of 2000 independent

trials. We report the performance of the proposed algorithm in time-invariant and time-

varying channels in Figure 7.4 and Figure 7.5 respectively where the RMSE is averaged

over the two paths.

Comparing the CRLB in Figure 7.4 and Figure 7.5, we note that the achievable
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Figure 7.4: RMSE performance against number of observation periods in time-invariant
channel (L = 5)
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Figure 7.5: RMSE performance against number of observation periods in time-varying
channel (L = 5)

estimation accuracy for the time-varying channel is higher than that of the time-invariant

channel. This is the consequence of the inherent diversity of the time-varying channel.

More importantly, Figure 7.4 and Figure 7.5 illustrate the importance of the iterative
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Figure 7.6: RMSE performance against subarray size in time-invariant channel
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Figure 7.7: RMSE performance against subarray size in time-varying channel

process for improving the estimation performance in the time-invariant channel and for

small number of observation periods in the time-varying channel.

In Figure 7.6 and Figure 7.7, we investigate the effect of subarray size (and cor-

respondingly the number of subarrays given a fixed number of antenna elements in a
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ULA) on the estimation performance. We set the number of observation periods to

O = 5 and the SNR to 5 dB. From Figure 7.6, we see that for the time-invariant chan-

nel, the size of the subarrays must be as small as possible limited by the constraints

M0 > Pk and L ≥ Pk so that the corresponding increase in the number of subarrays

can be used to decorrelate the correlated signals. The opposite is true for the time-

varying channel as shown in Figure 7.7. Without the need for subarrays to decorrelate

signals, the best performing arrangement is to use the data from the full array instead of

splitting them into subarrays.

From the simulation results presented in Figure 7.4 to Figure 7.7, we can draw

the conclusion that an adaptive algorithm would work best to cater for different chan-

nel time selectivity. In practical operating environment, the interdependency of the

data in different observation periods are determined by the speed of mobile transmit-

ter [23,107]. For observation periods not well-spaced apart or for slow moving transmit-

ter/receiver, the best strategy is to maximize the number of subarrays used. On the other

hand, if the observations periods are well-spaced out in time or the transmitter/receiver

is moving at a relatively high speed, spatial smoothing technique need not be applied.

7.3 Wideband Signals

Given our assumption that the channel within each observation period is considered to

be constant, we can reuse the matrix notations in Chapter 6 with a slight alternation.

We introduce the observation period index o = 1, 2, . . . , O where O is the total number

of observation period in (6.11) to form:

Y(o)
n (q) = A (q, θ)Λ(o)Xn (q) + W(o)

n (q) (7.11)

Recall that we are transmitting deterministic known signals at the different sources
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designed so that:

1

N

N∑
n=1

X(k1)
n (q)

[
X(k2)

n (q)
]∗

=





1, k1 = k2

0, k1 6= k2

(7.12)

for all q. The K different data sets in each observation period, one for each signal

source, is formed by correlating the received signals with each of the known transmitted

signals. The data sets in the oth observation period consists of Q vectors denoted as

Z(o,k) (q), q = 0, 1, . . . , Q− 1, where:

Z(o,k) (q) =
1

N

[
Y

(o)
1 (q) Y

(o)
2 (q) · · · Y

(o)
N (q)

]




X
(k)
1 (q)

X
(k)
2 (q)

...

X
(k)
N (q)




∗

= A
(
q, θ(k)

)
Λ(o,k)1Pk

+ W(o,k) (q) (7.13)

where A(q, θ(k)) is the reduced size matrix consisting of the columns of A (q, θ) with

DOAs belonging to the kth source only. Λk = diag

{
α

(o,k)
1 , α

(o,k)
2 , · · · α

(o,k)
Pk

}

is the Pk × Pk diagonal matrix where α
(o,k)
p is the channel gain for the oth observation

period. 1Pk
is the Pk × 1 vector whose entries are all ones.

As mentioned in Chapter 6, the DOA estimation is carried out for each source sep-

arately. For clarity, we drop the source index k in the rest of the derivations. In a

time-varying channel, the combined frequency signal subspace vector H (i) in (6.18)

for different arrival paths, which are also dependent on the channel gains, is rewritten

as:

H(o) (i) =

Q−1∑
q=0

Z(o) (q) ej2π iq
Q (7.14)
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with the mth element in the noiseless H(o) vector given by

[
H(o) (i)

]
m

=
P∑

p=1

α(o)
p e−jφp(i,m)F (i,m, p) (7.15)

where φp (i, m) and F (i,m, p) are defined in (6.20) and (6.21) respectively.

Recall that in Chapter 6, to determine which of the different H (i), i = 0, . . . , Q−1,

should be used for estimation, we search for peaks of |H (i)|2 across i = 0, 1, . . . , Q−1

which is greater than the arithmetic mean of |H (i)|2. Similarly, we can search for the

peaks of 1
O

∑O
o=1 H(o) (i) and use it as the criterion to determine the number of arrival

paths and which corresponding set of vectors H(o) (i), o = 1, . . . , O, to be used. The

threshold ζ is changed from the arithmetic mean to the averaged arithmetic mean across

the different observation periods. In other words,

ζ =
1

O

O∑
o=1

1

Q

Q−1∑
i=0

∣∣H(o) (i)
∣∣2 (7.16)

Without loss of generality, we assume that a peak is detected at i = 0 and the set

of vectors 1
O

∑O
o=1 H(o) (0) ≥ ζ . The estimation of θ1 is thus made by using the set

of vectors, H(o) (0), o = 1, 2, . . . , O. We consider the summation of the correlation

matrices of the different H(o) (0) given by:

RH (0) =
1

O
E

[
O∑

o=1

H(o) (0)
[
H(o) (0)

]H

]

= AH(0)EαA
H
H(0) + σ2I (7.17)
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where

Eα =
1

O
E





O∑
o=1




∣∣∣α(o)
1

∣∣∣
2

· · · α
(o)
1

(
α

(o)
p

)∗
· · · α

(o)
1

(
α

(o)
P

)∗

... . . . ... . . . ...

α
(o)
p

(
α

(o)
1

)∗
· · ·

∣∣∣α(o)
p

∣∣∣
2

· · · α
(o)
p

(
α

(o)
P

)∗

... . . . ... . . . ...

α
(o)
P

(
α

(o)
1

)∗
· · · α

(o)
P

(
α

(o)
p

)∗
· · ·

∣∣∣α(o)
P

∣∣∣
2








=
1

O

O∑
o=1




E

[∣∣∣α(o)
1

∣∣∣
2
]

· · · E
[
α

(o)
1

(
α

(o)
p

)∗]
· · · E

[
α

(o)
1

(
α

(o)
P

)∗]

... . . . ... . . . ...

E
[
α

(o)
p

(
α

(o)
1

)∗]
· · · E

[∣∣∣α(o)
p

∣∣∣
2
]

· · ·
[
α

(o)
p

(
α

(o)
P

)∗]

... . . . ... . . . ...

E
[
α

(o)
P

(
α

(o)
1

)∗]
· · · E

[
α

(o)
P

(
α

(o)
p

)∗]
· · · E

[∣∣∣α(o)
P

∣∣∣
2
]




=




E

[∣∣∣α(o)
1

∣∣∣
2
]
· · · 0 · · · 0

... . . . ... . . . ...

0 · · · E

[∣∣∣α(o)
p

∣∣∣
2
]
· · · 0

... . . . ... . . . ...

0 · · · 0 · · · E
[|αP |2

]




(7.18)

since α
(o)
p1 and α

(o)
p2 are independent for p1 6= p2 and α

(o)
p are zero-mean random variables

for p = 1, 2, . . . , P . The array response matrix AH(0) and φ̃p (m) are as defined in

(6.28) and (6.26) respectively and σ2 is the noise variance. In the case of time-invariant

channels, (7.17) reduces to (6.27).

Comparing (7.17) to (6.27), we note two main differences for the signal subspaces

between time-varying and time-invariant channels. Firstly, the time-varying channel

adds a dimension of diversity in the received signal power. Secondly, it eliminates the

correlations between signals from different arrival paths. In a time-invariant channel,

we use the time separation between arrival paths to lower the correlation between differ-

ent paths by combining the different frequency bins, and estimate the DOAs separately

using data from different time instances. In a time-varying channel, however, the dif-
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ferent paths are uncorrelated regardless of their separation in arrival times provided that

the channel gains α
(o)
p are uncorrelated which is usually the case. This implies that the

estimated correlation matrix R̂H(0) can thus be used to estimate DOAs of arrival paths

whose arrival times are near to each other (i.e. |B(τp1 − τp2)| < 1). The condition for

effective estimation is that the number of observation periods O must be sufficiently

large such that:

1

O

O∑
o=1

α(o)
p1

(
α(o)

p2

)∗ → E
[
α(o)

p1

(
α(o)

p2

)∗]
=





E

[∣∣∣α(o)
p1

∣∣∣
2
]

, p1 = p2

0 , p1 6= p2

(7.19)

In other words, in a time-varying channel, M-CFSSM can be applied to estimate the

DOAs of different multipaths. However, if the channel is stationary across the different

observation periods, the different arrival paths must be well separated in time (i.e. in

frequency-selective channel) for accurate and distinct estimation of the different DOAs.

7.3.1 Proposed DOA Estimation Algorithm

We now extend the algorithm in Section 6.2 to the case of multiple observations. Note

that the receiver does not need to have knowledge about the time selectivity of the

channel because the algorithm is the same regardless of the channel time selectivity.

For the kth source:

1. In each observation period, down-convert the received signal at the array to base-

band and sample the baseband signal at the Nyquist rate, B Hz.

2. Divide the total number of sampled data into N snapshots of Q samples each.

3. For each snapshot, convert the sampled time domain data into frequency domain

data of Q frequency bins using Q-point DFT.

4. For each frequency bin, correlate the received signal with the different transmitted

signals to form Z(o) in (7.13) for o = 1, 2, . . . , O.
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5. For each Z(o), form the corresponding H(o) using (7.14).

6. Determine the number of received signals by finding the number of peaks in the

plot of 1
O

∑O
o=1 H(o) (i) across i = 0, 1, . . . , Q − 1 greater than a threshold ζ

designed accordingly to (7.16).

7. Using each set of vectors H(o) (i), o = 1, 2, . . . , O that corresponds to the peaks

found in Step 6, estimate the correlation matrix RH (i):

RH (i) =
1

O
E

[
O∑

o=1

H(o) (i)
[
H(o) (i)

]H

]
(7.20)

8. The DOA estimation for each arrival path is carried out by performing the MUSIC

algorithm on the estimated correlation matrix.

Note that if there is more than one path within the specific RH (i), the iterative process

in Chapter 4 is not carried for estimation of τp because the offset may be too large to

justify the iterative process.

7.3.2 Simulation Results

We provide some numerical results for the case of time-varying channels in the same

operating scenario as that in Section 6.3. The sources have an identical carrier frequency

of 2 GHz and bandwidth of 100 MHz and are designed accordingly to (6.12) so that they

are uncorrelated within each observation window. The transmitted signals are generated

in the same way as in Section 6.3. For each observation period, there are N = 4

snapshots. The signals are identical for all observation periods and are assumed to be

known at the receiver. The noise at the array is assumed to be AWGN. The receiver is a

11-element ULA with inter-element spacing δ = λc/2 where λc is the wavelength of the

carrier frequency. The received signal is converted into Q = 32 narrowband frequency

bins using DFT.
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7.3.2.1 Resolution of Correlated Signals

We illustrate the ability of M-CFSSM to resolve different arrival paths that are not well-

separated in time by using data collected from different observation periods in a time-

varying channel. The complex gains in the different observation periods are assumed

to be independent and are modeled as complex random variables. The amplitudes of

the random variables are Rayleigh distributed and the phases are uniformly distributed

between 0 and 2π. We set the total number of observation periods to O = 10.

We will consider two mulitpaths arising from the same source which are not well

separated in time: θ
(1)
1 = 21◦, θ

(1)
2 = 28◦ and τ

(1)
1 = 0T , τ

(1)
2 = 0.2T . For fair

comparison, we normalize the powers of the two paths so that the averaged received

SNRs of the two paths are equal. The SNRs of the paths are set to 4 dB. Figure 7.8

shows the spatial spectrum from ten independent trials of the time-varying channel.

Figure 7.9 shows the spatial spectrum from ten independent trials of the time-invariant

channel where the channel gains are constant for all observation periods. For ease of

reference, the true DOAs are indicated by the vertical lines in both figures.
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Figure 7.8: Spatial periodogram for time-varying channel
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Figure 7.9: Spatial periodogram for time-invariant channel

By comparing Figure 7.8 and Figure 7.9, we can see that the two DOAs are sepa-

rated and accurately estimated in the time-varying channel but not in the time-invariant

channel. Note that the peaks in Figure 7.9 (if there are distinct peaks), are relatively

smaller in magnitude and less distinct than those in Figure 7.8. This shows that in

a time-invariant channel, the two DOAs cannot be accurately estimated without more

pre-processing such as using spatial smoothing [108, 109]. The time-varying channel

characteristics, introducing diversity gain, allows the separation of multipaths that are

not well separated in time.

We plot the statistical estimation performance of the proposed method in Figure 7.10

for different number of observation periods. The results are obtained through Monte

Carlo simulation of 2000 independent trials. With an increase of number of observation

periods, the RMSE performance becomes better across all SNRs.
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Figure 7.10: RMSE performance against SNR for varying number of observation peri-
ods

7.3.2.2 Diversity Gains

Next we investigate the benefits of the diversity gains under time-varying channel char-

acteristics. Diversity gain is defined as the ratio of the signal strength obtained by

averaging over the multipaths to the signal strength obtained by a single path. We con-

sider two arrival paths with a angle separation of 7◦ from a single source that are well

separated in time with the following parameters: τ
(1)
1 = 0T and τ

(1)
2 = 6.2T . The

number of observation periods is set to O = 10. Unlike previous simulation where we

normalize the channel gain, we set the expected received SNR which in turn determines

the expected variance of the complex gain. The expected variance is then used to gen-

erate the different complex gains randomly. The expected variances of the gains of both

paths are set to be the same. We set the number of snapshots to N = 4.

In Figure 7.11, we compare the RMSE in both time-varying and time-invariant chan-

nels. The RMSE performance is averaged over two paths and is obtained through Monte

Carlo simulation of 2000 independent trials. From Figure 7.11, we can see that with the

diversity gain from the time-varying channel, the RMSE is much lower compared to
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Figure 7.11: RMSE performance against SNR
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Figure 7.12: RMSE performance against number of observation periods

that of time-invariant channel.

In Figure 7.12, we investigate the effect of number of observation periods at the
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expected SNR of 10 dB. Note that with increasing number of observation periods, the

RMSE decreases for the time-varying channel. This is because the diversity increases

with the number of observation periods. Conversely, for the time-invariant channel, the

increase in number of observation periods has little or no effect on the RMSE perfor-

mance since there is no diversity gain.

7.4 Conclusion

From our preceding discussions, we identified two key differences affecting DOA esti-

mation performance between time-invariant and time-varying channels. The first is the

availability of time diversity which makes the estimation more robust against fading.

The second is the decorrelation of correlated signals which is useful in the separation of

the DOAs of these signals. The proposed algorithms when extended to multiple obser-

vation periods, were able to latch on to these two benefits to provide more robust DOA

estimation as shown in the various simulation results.
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Chapter 8

Conclusion

8.1 Contributions

In this thesis, two DOA estimation methods for narrowband signals using multiple sen-

sors are presented. They are the PAS and the PASI techniques. In addition, two DOA

estimation methods for wideband signals using multiple sensors are proposed. They are

the CFSSM and the M-CFSSM.

The proposed PAS technique is developed to overcome the problem of multipath

propagation. The technique characterizes each impinging plane wave at the array, where

some of the plane waves may come from the same source. To decorrelate signal coher-

ence among the impinging plane waves, the array is divided into overlapping subarrays

and correlated with the pilot signals of the desired source. This process is equivalent

to forward spatial smoothing. The proposed PAS technique has significant advantages

over existing algorithms in terms of performance. In the case of uncorrelated signals,

it is robust and has the ability to resolve closely-spaced DOAs of uncorrelated incident

signals. It does not require large number of antennas to achieve performance close to

the CRLB, hence the cost of hardware implementation is greatly reduced. In the case

of correlated signals, the PAS technique exhibits performance close to the CRLB from

5 dB onwards, regardless of array size. To further improve the performance of the PAS

technique in the low SNR region for correlated signals, the proposed PASI technique

is developed by including an additional iterative procedure to the PAS technique. With

the iterative procedure, it is able to achieve RMSE much closer to the CRLB and is the
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best performing algorithm among those algorithms being compared. Moreover, only a

small number of iterations is required, without much increase in complexity. For both

proposed techniques, the array size is no longer bounded by the total number of imping-

ing plane waves at the array. Instead it is constrained by twice the maximum number of

impinging wavefronts of the sources (see (4.34)). This greatly reduces the overall array

size.

The proposed CFSSM takes a different approach from conventional coherent sig-

nal subspace methods to estimate the DOAs of wideband signals. It does not require

the use of any focusing matrix which needs initial DOA estimates, usually provided by

low-resolution estimators. Instead the proposed CFSSM exploits the structure of the

combined correlation matrices of all frequencies bins. The resulting structure is of a

similar form to the conventional narrowband model. The signal subspace and hence

the DOAs can be estimated by existing narrowband techniques such as MUSIC and

ESPRIT. The proposed CFSSM works well for both uncorrelated and correlated sig-

nals. It has significantly lower computational load compared to existing algorithms that

use focusing matrices. Moreover, it can work in tandem with existing algorithms us-

ing focusing matrices by providing high-resolution initial DOA estimates. In the case

where pilot signals are available, the proposed M-CFSSM is modified from the pro-

posed CFSSM. The detection performance of the proposed M-CFSSM is robust at low

SNRs for both uncorrelated and correlated signals. The estimation performance of the

proposed M-CFSSM is also close to the CRLB at low SNRs. Moreover, the proposed

M-CFSSM exhibits small estimation bias for SNRs as low as 0 dB.

The proposed algorithms PAS, PASI and M-CFSSM are extended to time-varying

channels. Numerical simulation shows that the proposed algorithms are able to utilize

time diversity and gain diversity to provide robust DOA estimation.
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8.2 Future Work

Several directions for future work are suggested. First, the performance of the proposed

CFSSM is comparable to existing techniques. However, its performance is likely to

be improved if spatial smoothing is applied for the case of correlated signals. Inves-

tigations can be carried out to study the effects of spatial smoothing to the proposed

CFSSM.

Second, we assume that the multiple observations are independent to one another.

However, in practice, this is generally not the case. The correlation between multiple

observations are determined by the relative speed between the receiver and the trans-

mitter [107]. We can study the performance of the proposed algorithms under real-time

fading.

Third, pilot signals are used in the DOA estimation. In situations where pilot sig-

nals are not available, decision-directed estimation of DOAs can be performed using

estimated transmitted signals. We can investigate the performance of the proposed al-

gorithms with the use of estimated transmitted signals which are not entirely reliable as

a result of noisy received signals. Possible extension of the proposed algorithms can be

added to take into account the use of such unreliable reference signals.
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Appendix A

Derivation of CFSSM Structure

Recall from Section 2.4.2, the received signal for the decomposed narrowband fre-

quency fq can be written in the conventional matrix notation:

Y (q) = A (q)ΛX (q) + W (q) (A.1)

and the corresponding correlation matrix is given by:

Ry (q) = E
[
Y (q)YH (q)

]

= E
[
A (q, θ)ΛX (q)XH (q)ΛHAH (q, θ)

]
+ Σ (q)

= A (q, θ)ΛE
[
X (q)XH (q)

]
ΛHAH (q, θ) + Σ (q)

= A (q, θ)Rx (q)AH (q, θ) + Σ (q) (A.2)

Uncorrelated Signals

For K uncorrelated signals (assuming each source has only 1 impinging plane wave at

the array),

Rx (q) =




∣∣α(1)
∣∣2 0 · · · 0

0
∣∣α(2)

∣∣2 · · · 0

...
... . . . ...

0 0 · · ·
∣∣α(K)

∣∣2




(A.3)

146



Substituting into (A.2), we can write element in the ith row and lth column of Ry (q)

as:

[Ry (q)]il =
K∑

k=1

∣∣α(k)
∣∣2 e−j2π(fc+

q
Q

B)(τ (k)+
(i−1)δ

c
sin θ(k))ej2π(fc+

q
Q

B)(τ (k)+
(l−1)δ

c
sin θ(k))

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π(fc+

q
Q

B)( (i−1)δ
c

sin θ(k)− (l−1)δ
c

sin θ(k))

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π(fc+

q
Q

B)( (i−l)δ
c

sin θ(k))

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2πfc( (i−l)δ

c
sin θ(k))e−j2π q

Q
B( (i−l)δ

c
sin θ(k))

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

sin θ(k)

e−j2π
(i−l)δ

λc

q
Q

Bf sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

(1+ q
Q

Bf) sin θ(k)

(A.4)

Summing the elements across the different frequency bins, we get:

Q−1∑
q=0

[Ry (q)]il =

Q−1∑
q=0

K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

(1+ q
Q

Bf) sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

sin θ(k)
Q−1∑
q=0

e−j2π
(i−l)δ

λc

q
Q

Bf sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

sin θ(k)

GPsum (A.5)
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The sum of geometric progression given as GPsum can be evaluated as:

GPsum =

Q−1∑
q=0

e−j2π
(i−l)δ

λc

q
Q

Bf sin θ(k)

=
1−

[
e−j2π

(i−l)δ
λc

1
Q

Bf sin θ(k)
]Q

1− e−j2π
(i−l)δ

λc
1
Q

Bf sin θ(k)

=
1− e−j2π

(i−l)δ
λc

Bf sin θ(k)

1− e−j2π
(i−l)δ
Qλc

Bf sin θ(k)

=
e−jπ

(i−l)δ
λc

Bf sin θ(k)
[
ejπ

(i−l)δ
λc

Bf sin θ(k) − e−jπ
(i−l)δ

λc
Bf sin θ(k)

]

e−jπ
(i−l)δ
Qλc

Bf sin θ(k)
[
ejπ

(i−l)δ
Qλc

Bf sin θ(k) − e−jπ
(i−l)δ
Qλc

Bf sin θ(k)
]

= e−j2π
(i−l)δ

λc
(Q−1

2Q )Bf sin θ(k)
sin

(
π (i−l)δ

λc
Bf sin θ(k)

)

sin
(
jπ (i−l)δ

Qλc
Bf sin θ(k)

)

= e−j2π
(i−l)δ

λc
(Q−1

2Q )Bf sin θ(k)

F1

(
i− l, θ(k)

)
(A.6)

where

F1

(
i− l, θ(k)

)
=

sin
(
π (i−l)δ

λc
Bf sin θ(k)

)

sin
(
jπ (i−l)δ

Qλc
Bf sin θ(k)

) (A.7)

For δ
λc

Bf sin θ(k) << 1 ( δ
λc

is usually in the magnitude of ≈ 1/2), F1

(
i− l, θ(k)

) ≈ 1

for i, l = 1, 2, . . . ,M , thus the element in the ith row and lth column simplifies to:

GPsum ≈ e−j2π
(i−l)δ

λc
(Q−1

2Q )Bf sin θ(k)

(A.8)
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Consequently,

[Ry]il =

Q−1∑
q=0

[Ry (q)]il

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

sin θ(k)

GPsum

≈
K∑

k=1

∣∣α(k)
∣∣2 e−j2π

(i−l)δ
λc

sin θ(k)

e−j2π
(i−l)δ

λc
(Q−1

2Q )Bf sin θ(k)

=
K∑

k=1

∣∣α(k)
∣∣2 e−j2π δ

λc
(i−l)(1+Q−1

2Q
Bf) sin θ(k)

(A.9)

Hence the combined correlation matrix Ry can be written as:

Ry = A (θ)RxA
H (θ) + Σ (A.10)

where

A (θ) =

[
a

(
θ(1)

)
a

(
θ(2)

) · · · a
(
θ(K)

) ]
(A.11)

with each column of (A.11) given by:

a
(
θ(k)

)
=

[
1 e−jφ(k) · · · e−j(M−1)φ(k)

]T

(A.12)

and

φ(k) = 2π
δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θ(k) (A.13)
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Correlated Signals

Considering K = 1 source with P1 = 2 multipaths,

Rx (q) =



|α1|2 α1α

∗
2

α2α
∗
1 |α2|2


 (A.14)

The element in the ith row and lth column of the noiseless correlation matrix of the qth

frequency bin is then given as:

[Ry (q)]il = |α1|2 e−j2π(i−l) δ
λc

sin θ1e−j2π(i−l) δ
λc

q
Q

Bf sin θ1

+
{

α∗1α2e
−j2πfc(τ2−τ1)e−j2π δ

λc
[(i−1) sin θ2−(l−1) sin θ1]

×e−j2π q
Q

B(τ2−τ1)e−j2π δ
λc

q
Q

Bf [(i−1) sin θ2−(l−1) sin θ1]
}

+
{

α1α
∗
2e

j2πfc(τ2−τ1)ej2π δ
λc

[(l−1) sin θ2−(i−1) sin θ1]

×ej2π q
Q

B(τ2−τ1)ej2π δ
λc

q
Q

Bf [(l−1) sin θ2−(i−1) sin θ1]
}

+ |α2|2 e−j2π(i−l) δ
λc

sin θ2e−j2π(i−l) δ
λc

q
Q

Bf sin θ2

= |α1|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ1

+ α∗1α2e
−j2π(fc+

q
Q

B)(τ2−τ1)e−j2π δ
λc

(1+ q
Q

Bf)[(i−1) sin θ2−(l−1) sin θ1]

+ α1α
∗
2e

j2π(fc+
q
Q

B)(τ2−τ1)ej2π δ
λc

(1+ q
Q

Bf)[(l−1) sin θ2−(i−1) sin θ1]

+ |α2|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ2 (A.15)

Summing the various correlation matrices together as in (5.11) results in the summation

of the individual elements across the different frequency bins. Hence,

[Ry]il =

Q−1∑
q=0

[Ry (q)]il

=

Q−1∑
q=0

|α1|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ1

︸ ︷︷ ︸
Exp1
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+

Q−1∑
q=0

α∗1α2e
−j2π(fc+

q
Q

B)(τ2−τ1)e−j2π δ
λc

(1+ q
Q

Bf)[(i−1) sin θ2−(l−1) sin θ1]

︸ ︷︷ ︸
Exp2

+

Q−1∑
q=0

α1α
∗
2e

j2π(fc+
q
Q

B)(τ2−τ1)ej2π δ
λc

(1+ q
Q

Bf)[(l−1) sin θ2−(i−1) sin θ1]

︸ ︷︷ ︸
Exp3

+

Q−1∑
q=0

|α2|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ2

︸ ︷︷ ︸
Exp4

(A.16)

Evaluating the first expression in (A.16), we get:

Exp1 =

Q−1∑
q=0

|α1|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ1

= |α1|2 e−j2π(i−l) δ
λc

sin θ1

Q−1∑
q=0

e−j2π(i−l) δ
λc

q
Q

Bf sin θ1

= |α1|2 e−j2π(i−l) δ
λc

sin θ1

1−
[
e−j2π(i−l) δ

λc
1
Q

Bf sin θ1

]Q

1− e−j2π(i−l) δ
λc

1
Q

Bf sin θ1

= |α1|2 e−j2π(i−l) δ
λc

sin θ1
1− e−j2π(i−l) δ

λc
Bf sin θ1

1− e−j2π(i−l) δ
λc

1
Q

Bf sin θ1

=
{
|α1|2 e−j2π(i−l) δ

λc
sin θ1

×
e−jπ(i−l) δ

λc
Bf sin θ1

[
ejπ(i−l) δ

λc
Bf sin θ1 − e−jπ(i−l) δ

λc
Bf sin θ1

]

e−jπ(i−l) δ
λc

1
Q

Bf sin θ1

[
ejπ(i−l) δ

λc
1
Q

Bf sin θ1 − e−jπ(i−l) δ
λc

1
Q

Bf sin θ1

]




=
{
|α1|2 e−j2π(i−l) δ

λc
sin θ1e−jπ(i−l) δ

λc
(1− 1

Q)Bf sin θ1

×
sin

(
π (i− l) δ

λc
Bf sin θ1

)

sin
(
π (i− l) δ

λc

1
Q
Bf sin θ1

)




= |α1|2 e−j2π(i−l) δ
λc

(1+Q−1
2Q ) sin θ1

sin
(
π (i− l) δ

λc
Bf sin θ1

)

sin
(
π (i− l) δ

λc

1
Q
Bf sin θ1

) (A.17)
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si
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2
−
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+

δ λ
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B
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si
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−
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−
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+
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q Q
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π
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q Q
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−
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π
1 Q
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π
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1 Q
B

f
[(
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si
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−

e−
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π
{B

(τ
2
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)+

δ λ
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B

f
[(
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1
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si
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−
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2
π Q
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B
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1
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jπ
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(τ
2
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1
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δ λ
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B

f
[(
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θ 2
−(
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si
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] }
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2
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−

e−
jπ
{B

(τ
2
−τ

1
)+
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−
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+
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The last expression is similar to the first equation and can be evaluated as:

Exp4 =

Q−1∑
q=0

|α2|2 e−j2π(i−l) δ
λc

(1+ q
Q

Bf) sin θ2

= |α2|2 e−j2π(i−l) δ
λc

(1+Q−1
2Q ) sin θ2

sin
(
π (i− l) δ

λc
Bf sin θ2

)

sin
(
π (i− l) δ

λc

1
Q
Bf sin θ2

) (A.21)

Combining the four expressions in (A.17), (A.18), (A.20) and (A.21), we get:

[Ry]il = |α1|2 F1 (i− l, θ1) e−j(i−l)ψ̃1 + |α2|2 F1 (i− l, θ2) e−j(i−l)ψ̃2

+ α∗1α2F2 (i, l, θ2, θ1) e−j2π[fc∆τ+ δ
λc

ϕ1]e−jπ(Q−1
Q )[B∆τ+ δ

λc
Bf ϕ1]

+ α∗2α1F2 (l, i, θ2, θ1) ej2π[fc∆τ+ δ
λc

ϕ2]ejπ(Q−1
Q )[B∆τ+ δ

λc
Bf ϕ2] (A.22)

where ∆τ = τ2 − τ1 , ϕ1 = (i− 1) sin θ2 − (l − 1) sin θ1, ϕ2 = (l − 1) sin θ2 −
(i− 1) sin θ1, and ψ̃p is given by the following:

ψ̃p = 2π
δ

λc

(
1 +

Q− 1

2Q
Bf

)
sin θp (A.23)

F1 (i− l, θ) is defined as:

F1 (i− l, θ) =
sin

(
πδ
λc

(i− l) Bf sin θ
)

sin
(

πδ
Qλc

(i− l) Bf sin θ
) (A.24)

and F2 (i, l, θp1 , θp2) is defined as follows:

F2 (i, l, θp1 , θp2) =
sin

[
π

{
B∆τ + δ

λc
Bf ((i− 1) sin θp1 − (l − 1) sin θp2)

}]

sin
[

π
Q

{
B∆τ + δ

λc
Bf ((i− 1) sin θp1 − (l − 1) sin θp2)

}] (A.25)

For multipaths that are well separated in their arrival times at the receiver, (i.e. B∆τ >

1), F2 (i, l, θ2, θ1) and F2 (l, i, θ2, θ1) are approximately zero. Hence the combined cor-
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relation matrix reduces to:

Ry = A (θ)



|α1|2 0

0 |α2|2


AH (θ) + Σ (A.26)

where

A (θ) =

[
a (θ1) a (θ2)

]
(A.27)

with each column of (A.27) given by:

a (θp) =

[
1 e−jψ̃p · · · e−j(M−1)ψ̃p

]T

(A.28)

and ψ̃p is defined in (A.23)
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Appendix B

Derivation of Vector H (i)

In Chapter 6, we introduced the vector H (i) in (6.18) and is reproduced here for con-

venience:

H (i) =

Q−1∑
q=0

Z (q) ej2π iq
Q (B.1)

where Z (q) is given in (6.14). The mth element of vector Z (q) is given by:

[Z (q)]m =
P∑

p=1

αpe
−j2π(fc+

q
Q

B)(τp+
(m−1)δ

c
sin θp) (B.2)

Therefore the element in vector H (i) can be derived as:

[H (i)]m =

Q−1∑
q=0

P∑
p=1

αpe
−j2π(fc+

q
Q

B)(τp+
(m−1)δ

c
sin θp)ej2π iq

Q

=
P∑

p=1

αpe
−j2πfc(τp+

(m−1)δ
c

sin θp)
Q−1∑
q=0

e−j2π q
Q(Bτp−i+

B(m−1)δ
c

sin θp)

=
P∑

p=1

αpe
−j2πfc(τp+

(m−1)δ
c

sin θp)
Q−1∑
q=0

e−j2π q
Q(Bτp−i+

(m−1)δ
λc

Bf sin θp)

︸ ︷︷ ︸
GP

=
P∑

p=1

αpe
−j2πfc(τp+

(m−1)δ
c

sin θp)
1−

[
e−j 2π

Q (Bτp−i+
(m−1)δ

λc
Bf sin θp)

]Q

1− e−j 2π
Q (Bτp−i+

(m−1)δ
λc

Bf sin θp)
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=
P∑
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αpe
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Appendix C

Offset Limits of Cost Function L (u, θ)
for Multiple Signals

We rewrite the equation in (6.31) assuming that θ̂
(0)
1 = θ1 as:

L (u, θ1) =
M∑

m=1

∣∣∣∣∣
P∑

p=1

αpe
−jϕp(m)F1 (u,m, p)

∣∣∣∣∣

2

=
M∑

m=1

∣∣∣∣∣α1e
−jϕ1(m)

P∑
p=1

αp

α1

e−j(ϕp(m)−ϕ1(m))F1 (u,m, p)

∣∣∣∣∣

2

= |α1|2
M∑

m=1

∣∣∣∣∣F1 (u,m, 1) +
P∑

p=2

αp

α1

e−j(ϕp(m)−ϕ1(m))F1 (u,m, p)

∣∣∣∣∣

2

(C.1)

We need to find the u that maximize L (u, θ1) under the condition of −1 < u < 1.

To determine the offset limits due to the interference terms
∑P

p=2 αpe
−jϕp(m)F1 (u,m,

p), we consider the worst case scenario when the interference terms are parallel to the

desired signal path, α1e
−jϕ1(m)F1 (u,m, 1) and the rate of change of the desired signal

is opposite to that of the interference terms. This is the worst case scenario as the

rate of change of individual interference terms affect the rate of change of L (u, θ) the

greatest when this occur. Since we are assuming the worst case scenario, we ignore the

contribution of the antenna index. In other words, the offset limits are independent of

m.

Under these assumptions, the solution to the maximization of L (u, θ1) with respect
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to u is given by:

dF1 (u,m, 1)

du
+

P∑
p=2

∣∣∣∣
αp

α1

∣∣∣∣
dF1 (u,m, p)

du
= 0 (C.2)

where the dF1(u,m,p)
du

are of opposite signs to dF1(u,m,1)
du

. If we let:

Cp,m = Bτp − (m− 1) δ

λc

Bf

(
sin θ̂

(0)
1 − sin θp

)
(C.3)

We can write dF1(u,m,p)
du

as:

dF1 (u,m, p)

du
=

π(
sin

[
π
Q

(u− Cp,m)
])2

{
sin

[
π

Q
(u− Cp,m)
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cos [π (u− Cp,m)]

− 1

Q
sin [π (u− Cp,m)] cos

[
π

Q
(u− Cp,m)

]}

= π





cos [π (u− Cp,m)]

sin
[

π
Q

(u− Cp,m)
] −

cos
[

π
Q

(u− Cp,m)
]

Q sin
[

π
Q

(u− Cp,m)
]F1 (u,m, p)




(C.4)

Without loss of generality, we plot
∣∣∣dF1(u,m,p)

du

∣∣∣ for the case Cp,m = 0 and Q = 32 in

Figure C.1.

Note that the rate of changes corresponding to the desired signal is within the region

of −1 < u < 1 (as indicated in Figure C.1) while those corresponding to the interfer-

ence signals is outside this region. Since the maximum value of the rate of change of

the interference signals are significantly smaller than those of the desired signal, the

offset from the true Bτ1 will be small provided that the signal-to-interference power

ratio (SIR) is not too small. Moreover, note that there is a decrease in the maximum

value of the rate of change as u moves away from 0. This means that the offset limits

reduces as the separation of different arrival path is increased.

For example, it is assumed that there is only one interference signal with equal

power to the desired signal. We assume that the largest rate of change across all m

occurs when C2,m = 5. The greatest rate of change is 2.121 and the corresponding
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Figure C.1:
∣∣∣dF1(u,m,p)

du

∣∣∣ for the case Cp,m = 0 and Q = 32

offset is hence 0.065 from Figure C.1.

160



Bibliography

[1] S. Haykin, J. P. Reilly, V. Kezys, and E. Vertatschitsch, “Some Aspects of Array

Signal Processing,” IEE Proceedings F on Radar and Signal Processing, vol.

139, no. 1, pp. 1–26, Feb 1992.

[2] H. Krim and M. Viberg, “Two Decades of Array Signal Processing Research —

The Parametric Approach,” IEEE Signal Processing Magazine, vol. 13, no. 4,

pp. 67–94, Jul 1996.

[3] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” in

Proc. RADC Spectrum Estimation Workshop, Rome, New York, USA, Oct. 3–5,

1979, pp. 234–258.

[4] R. O. Schmidt, “A Signal Subspace Approach to Multiple Emitter Location and

Spectral Estimation,” Ph.D. dissertation, Standford University, Standford, Cali-

fornia, USA, 1981.

[5] R. O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,”

IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280,

Mar 1986.

[6] R. H. Roy, “ESPRIT — Estimation of Signal Parameters via Rotational Invari-

ance Techniques,” Ph.D. dissertation, Standford University, Standford, Califor-

nia, USA, 1987.

161



[7] R. Roy and T. Kailath, “ESPRIT — Estimation of Signal Parameters via Ro-

tational Invariance Techniques,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 37, no. 7, pp. 984–995, Jul 1989.

[8] J. Li, B. Halder, P. Stoica, and M. Viberg, “Computationally Efficient Angle

Estimation for Signals with Known Waveforms,” IEEE Transactions on Signal

Processing, vol. 43, no. 9, pp. 2154–2163, Sep 1995.

[9] L. Huang, S. Wu, D. Feng, and L. Zhang, “Computationally Efficient Direction-

of-Arrival Estimation Based on Partial A Priori Knowledge of Signal Sources,”

EURASIP Journal on Applied Signal Processing, pp. 1–7, 2006.

[10] B. Halder, M. Viberg, and T. Kailath, “An Efficient Non-Iterative Method for

Estimating The Angles of Arrival of Known Signals,” in Conference Record of

The Twenty-Seventh Asilomar on Signals, Systems & Computers, vol. 2, Pacific

Grove, California, USA, Nov. 1–3, 1993, pp. 1396–1400.

[11] J. Li and R. T. Compton, Jr., “Maximum Likelihood Angle Estimation for Sig-

nals with Known Waveforms,” IEEE Transactions on Signal Processing, vol. 41,

no. 9, pp. 2850–2862, Sep 1993.

[12] M. Cedervall and R. L. Moses, “Efficient Maximum Likelihood DOA Estima-

tion for Signals with Known Waveforms in The Presence of Multipath,” IEEE

Transactions on Signal Processing, vol. 45, no. 3, pp. 808–811, Mar 1997.

[13] L. Najjar-Atallah and S. Marcos, “Subspace-Based Approach for DOA Estima-

tion Using Pilot Symbol Channel Identification,” IEE Proceedings on Vision,

Image and Signal Processing, vol. 152, no. 1, pp. 20–28, Feb 2005.

[14] M. Z. Win and R. A. Scholtz, “Ultra-Wide Bandwidth Time-Hopping Spread-

Sprectum Impulse Radio for Wireless Multiple-Access Communications,” IEEE

Transactions on Communications, vol. 48, pp. 679–691, Apr 2000.

162



[15] G. Su and M. Morf, “The Signal Subspace Approach for Multiple Wide-Band

Emitter Location,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 31, no. 6, pp. 1502–1522, Dec 1983.

[16] H. Wang and M. Kaveh, “Estimation of Angles-of-Arrival for Wideband

Sources,” in Proc. IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP’84), vol. 9, San Diego, Calfornia, USA, Mar. 19–21,

1984, pp. 279–282.

[17] H. Wang and M. Kaveh, “Coherent Signal-Subspace Processing for Detection

and Estimation of Angles of Arrival of Multiple Wide-Band Sources,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp.

823–831, Aug 1985.

[18] Y.-S. Soon, “Direction-of-Arrival Estimation of Wideband Sources Using Sensor

Arrays,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, Georgia,

USA, 2004.

[19] M. N. O. Sadiku, Elements of Electromagnetics. New York, USA: Oxford

University Press, 2001.

[20] J. D. Parsons, The Mobile Radio Propagation Channel. New York, USA: John

Wiley & Sons, 2000.

[21] J. G. Proakis, Digital Communications. New York, USA: McGraw-Hill, 2001.

[22] T. S. Rappaport, Wireless Communications: Principles and Practice. New

Jersey, USA: Pearson Education International, 2002.

[23] G. G. Raleigh and T. Boros, “Joint Space-Time Parameter Estimation for

Wireless Communication Channels,” IEEE Transactions on Signal Processing,

vol. 46, no. 5, pp. 1333–1343, May 1998.

[24] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems.

New York, USA: John Wiley & Sons, 1999.

163



[25] P. S. Naidu, Sensor Array Signal Processing. Florida, USA: CRC Press, 2001.

[26] H. L. van Trees, Optimum Array Processing - Part IV of Detection, Estimation

and Modulation Theory. New York, USA: John Wiley & Sons, 2002.

[27] A. J. Goldsmith and P. P. Varaiya, “Capacity of Fading Channels with Channel

Side Information,” IEEE Transactions on Information Theory, vol. 45, no. 6, pp.

2007–2019, Nov 1997.

[28] G. J. Foshini and M. J. Gans, “On Limits of Wireless Communications in A

Fading Environment When Using Multiple Antennas,” Wireless Personal Com-

munications, vol. 6, pp. 311–335, Mar 1998.

[29] N. Chiurtu, B. Rimoldi, and E. Telatar, “On The Capacity of Multi-Antenna

Gaussian Channels,” in Proc. IEEE International Symposium on Information

Theory, Washington, D.C., USA, Jun. 24–29, 2001, p. 53.

[30] J. A. Cadzow, “Multiple Source Location: The Signal Subspace Approach,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 10,

pp. 1110–1125, Jul 1990.

[31] A. H. Tewfik and W. Hong, “On The Application of Uniform Linear Array Bear-

ing Estimation Techniques to Uniform Circular Arrays,” IEEE Transactions on

Signal Processing, vol. 40, no. 4, pp. 1008–1011, Apr 1992.

[32] J.-J. Fuchs, “On The Application of The Global Matched Filter to DOA Esti-

mation with Uniform Circular arrays,” IEEE Transactions on Signal Processing,

vol. 49, no. 4, pp. 702–708, Apr 2001.

[33] P. Ioannides and C. Balanis, “Uniform Circular Arrays for Smart Antennas,”

IEEE Antennas and Propagation Magazine, vol. 47, no. 4, pp. 192–206, Aug

2005.

[34] J.-I. Xie and Z.-S. He, “Beamforming of Coherent Signals for Weighted Two

Concentric Ring Arrays,” in Proc. International Symposium on Intelligent Signal

164



Processing and Communication Systems (ISPACS 2007), Xiamen, China, Nov.

28 –Dec. 1, 2007, pp. 850–853.

[35] M. Zatman, “How Narrow Is Narrowband?” IEE Proceedings on Radar, Sonar

and Nagivation, vol. 145, no. 2, pp. 85–91, Apr 1998.

[36] M. J. D. Rendas and J. M. F. Moura, “Cramér-Rao Bound for Location Systems

in Multipath Environments,” IEEE Transactions on Signal Processing, vol. 39,

no. 12, pp. 2593–2610, Dec 1991.

[37] A. A. DAmico and U. Mengali, “DOA and Channel Parameter Estimation for

Wideband CDMA Systems,” IEEE Transactions on Wireless Communications,

vol. 3, no. 6, pp. 1942–1947, Nov 2004.

[38] E. D. D. Claudio and R. Parisi, “WAVES: Weighted Average of Signal Subspaces

for Robust Wideband Direction Finding,” IEEE Transactions on Signal Process-

ing, vol. 49, no. 10, pp. 2179–2191, Oct 2001.

[39] Y.-S. Yoon, L. M. Kaplan, and J. H. McClellan, “TOPS: New DOA Estimator for

Wideband Signals,” IEEE Transactions on Signal Processing, vol. 54, no. 6, pp.

1977–1989, Jun 2006.

[40] M. Agrawal and S. Prasad, “Broadband DOA Estimation Using Spatial-Only

Modeling of Array Data,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 48, no. 3, pp. 663–670, Mar 2000.

[41] W. Ng, J. P. Reilly, T. Kirubarajan, and J.-R. Larocque, “Wideband Array Signal

Processing Using MCMC Methods,” IEEE Transactions on Signal Processing,

vol. 53, no. 2, pp. 411–426, Feb 2005.

[42] A. J. Barabell, J. Capon, D. F. Delong, J. R. Johnson, and K. Senne, “Per-

formance Comparison of Superresolution Array Processing Algorithms,” Mas-

sachusetts Institute of Technology Lincoln Lab, Lexington, Massachusetts, USA,

Tech. Rep., May 9, 1984.

165



[43] N. Wang, P. Agathoklis, and A. Antoniou, “A New DOA Estimation Technique

Based on Subarray Beamforming,” IEEE Transactions on Signal Processing,

vol. 54, no. 9, pp. 3279–3290, Sep 2006.

[44] N. L. Owsley, “Adaptive Data Orthogonalization,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Procesing (ICASSP’78), vol. 3,

Tulsa, Oklahoma, USA, Apr. 10–12, 1978, pp. 109–112.

[45] G. Bienvenu and L. Kopp, “Adaptivity to Background Noise Spatial Coherence

for High Resolution Passive Methods,” in Proc. IEEE International Conference

on Acoustics, Speech and Signal Procesing (ICASSP’80), vol. 5, Denver, Col-

orade, USA, Apr. 9–11, 1980, pp. 307–310.

[46] D. H. Johnson and S. R. DeGraff, “Improving The Resolution of Bearing in

Passive Sonar Arrays by Eigenvalue Analysis,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 30, no. 4, pp. 638–647, 30 1982.

[47] D. W. Tufts and R. Kumaresan, “Estimation of Frequencies of Multiple Sinu-

soids: Making Linear Prediction Perform Like Maximum Likelihood,” IEEE

Proceedings, vol. 70, no. 9, pp. 975–989, Sep 1982.

[48] R. Kumaresan and D. W. Tufts, “Estimating The Angles of Arrival of Multiple

Plane Waves,” IEEE Transactions on Aerospace and Electronic Systems, vol. 19,

no. 1, pp. 134–139, Jan 1983.

[49] H. Wang and M. Kaveh, “On The Performance of Signal-Subspace Processing —

Part I: Coherent Wide-Band Systems,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 34, no. 5, pp. 1201–1209, Oct 1986.

[50] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore, Maryland,

USA: Johns Hopkins University Press, 1984.

[51] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra. Philadelphia, USA:

Society for Industrial and Applied Mathematics, 1997.

166



[52] V. C. Soon and Y. F. Huang, “An Analysis of ESPRIT under Random Sensor Un-

certainities,” IEEE Transactions on Signal Processing, vol. 40, no. 9, pp. 2353–

2358, Sep 1992.

[53] N. Tayem and H. M. Kwon, “Conjugate ESPRIT (C-SPRIT),” IEEE Transactions

on Antennas and Propagation, vol. 52, no. 10, pp. 2618–2624, Oct 2004.

[54] J. Xin and A. Sano, “Direction Estimation of Coherent Narrowband Signals Us-

ing Spatial Signatures,” in Proc. IEEE Workshop on Sensor Array and Multichan-

nel Signal Processing, Rosslyn, Virginia, USA, Aug. 4–6, 2002, pp. 523–527.

[55] Y. Bresler, V. U. Reddy, and T. Kailath, “Optimum Beamforming for Coherent

Signal and Interferences,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 36, no. 6, pp. 833–843, Jun 1988.

[56] T.-T. Lin, “A Novel Beamforming for Coherent Signal Reception,” in Proc. 5th

IEEE International Symposium on Antennas, Propagation and EM Theory (IS-

APE 2000), Beijing, China, Aug. 15–18, 2000, pp. 599–602.

[57] L. Zhang, H. C. So, L. Ping, and G. Liao, “Effective Beamformer for Coherent

Signal Reception,” IEE Electronic Letters, vol. 39, no. 13, pp. 949–951, Jun

2003.

[58] S. Haykin, Modern Filters. New York, USA: Macmillan Publishing Company,

1989.

[59] J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communica-

tions, and Control. New Jersey, USA: Prentice Hall, 1995.

[60] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A Multistage Representation of

The Wiener Filter Based on Orthogonal Projections,” IEEE Transactions on In-

formation Theory, vol. 44, no. 7, pp. 2943–2959, Nov 1998.

[61] L. Huang, S. Wu, D. Feng, and L. Zhang, “Low Complexity Method for Signal

Subspace Fitting,” IEE Electronic Letters, vol. 40, no. 14, pp. 847–848, Jul 2004.

167



[62] A. J. Barabell, “Improving The Resolution Performance of Eigenstructure-

Based Direction-Finding Algorithm,” in Proc. IEEE International Conference

on Acoustics, Speech and Signal Procesing (ICASSP’83), vol. 8, Boston, Mas-

sachusetts, USA, Apr. 14–16, 1983, pp. 336–339.

[63] J. Li, “Array Signal Processing for Polarized Signals and Signals with Known

Waveforms,” Ph.D. dissertation, Ohio State University, Columbus, Ohio, USA,

1991.

[64] G. H. Golub and V. Pereyra, “The Differentiation of Pseudo-Inverses and Non-

Linear Least Squares Problems Whose Variables Separate,” SIAM Journal on

Numerical Analysis, vol. 10, no. 2, pp. 413–432, Apr 1973.

[65] Y. Bresler and A. Macovski, “Exact Maximum Likelihood Parameter Estimation

of Superimposed Exponential Signals in Noise,” IEEE Transactions on Acous-

tics, Speech, and Signal Processing, vol. 34, no. 5, pp. 1081–1089, Oct 1986.

[66] T. J. Ulrych and R. W. Clayton, “Time Series Modeling and Maximum Entropy,”

Physics of the Earth and Planetary Interiors, vol. 12, no. 2-3, pp. 188–200, Aug

1976.

[67] I. Ziskind and M. Wax, “Maximum Likelihood Localization of Multiple Sources

by Alternating Projection,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 36, no. 10, pp. 1553–1560, Oct 1988.

[68] M. Feder and E. Weinstein, “Parameter Estimation of Superimposed Signals Us-

ing The EM Algorithm,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 36, no. 4, pp. 477–489, Apr 1988.

[69] K. Buckley and L. Griffiths, “Broad-Band Signal-Subspace Spatial-Spectrum

(BASS-ALE) Estimation,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 36, no. 7, pp. 953–964, Jul 1998.

168



[70] B. Friedlander and A. Weiss, “Direction Finding for Wideband Signals Using An

Interpolated Array,” IEEE Transactions on Signal Processing, vol. 41, no. 4, pp.

1618–1634, Apr 1993.

[71] M. A. Doron, A. J. Weiss, and H. Messer, “Maximum-Likelihood Direction Find-

ing of Wideband Sources,” IEEE Transactions on Signal Processing, vol. 41,

no. 1, pp. 411–414, Jan 1993.

[72] D. Maiwald, D. V. Sidorovitch, and J. Bohme, “Broadband Maximum Likelihood

Wave Parameter Estimation Using Polarization Sensitive Arrays,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, vol. 4, pp. 356–359, Apr

1993.

[73] J. Chen, R. Hudson, and K. Yao, “Maximum-Likelihood Source Localization and

Unknown Sensor Location Estimation for Wideband Signals in The Near-Field,”

IEEE Transactions on Signal Processing, vol. 50, no. 8, pp. 1843–1854, Aug

2002.

[74] K. Buckley and L. Griffiths, “Eigenstructure Based Broadband Source Loca-

tion Estimation,” in Proc. IEEE International Conference on Acoustics, Speech

and Signal Procesing (ICASSP’86), vol. 11, Tokyo, Japan, Apr. 8–11, 1986, pp.

1869–1872.

[75] H. Hung and M. Kaveh, “Focusing Matrices for Coherent Signal-Subspace

Processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 36, no. 8, pp. 1272–1282, Aug 1988.

[76] G. Bienvenu, “Eigensystem Properties of The Sampled Space Correlation

Matrix,” in Proc. IEEE International Conference on Acoustics, Speech and Sig-

nal Procesing (ICASSP’83), vol. 8, Boston, Massachusetts, USA, Apr 1983, pp.

332–335.

169



[77] M. Wax, T.-J. Shan, and T. Kailath, “Spatio-Temporal Spectral Analysis by

Eigenstructure Methods,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 32, no. 4, pp. 817–827, Aug 1984.

[78] B. Ottersten and T. Kailath, “Direction-of-Arrival Estimation for Wide-Band Sig-

nals Using The ESPRIT Algorithm,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 38, no. 2, pp. 317–327, Feb 1990.

[79] S. Valaee and P. Kabal, “Wideband Array Processing Using A Two-Sided Corre-

lation Transformation,” IEEE Transactions on Signal Processing, vol. 43, no. 1,

pp. 160–172, Jan 1998.

[80] H. Wang and M. Kaveh, “On The Performance of Signal-Subspace Processing —

Part II: Coherent Wide-Band Systems,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 35, no. 11, pp. 1583–1591, Nov 1987.

[81] H. Hung and M. Kaveh, “Coherent Wide-Band ESPRIT Method for Directions-

of-Arrival Estimation of Multiple Wide-Band Sources,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 354–356, Feb 1990.

[82] M. Doron and A. Weiss, “On Focusing Matrices for Wide-Band Array Process-

ing,” IEEE Transactions on Signal Processing, vol. 40, no. 6, pp. 1295–1302,

Jun 1992.

[83] S. Valaee and P. Kabal, “The Optimal Focusing Subspace for Coherent Signal

Subspace Processing,” IEEE Transactions on Signal Processing, vol. 44, no. 3,

pp. 752–756, Mar 1996.

[84] S. Valaee, B. Champagne, and P. Kabal, “Localization of Wideband Signals Us-

ing Least-Squares and Total Least-Squares Approaches,” IEEE Transactions on

Signal Processing, vol. 47, no. 5, pp. 1213–1222, May 1999.

[85] J. Krolik and D. Swingler, “Multiple Wide-Band Source Location Using Steered

Covariance Matrices,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 37, no. 10, pp. 1481–1494, Oct 1989.

170



[86] E. Doron and M. Doron, “Coherent Wideband Array Processing,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Procesing

(ICASSP’92), vol. 2, San Francisco, California, USA, Mar. 23–26, 1992, pp.

497–500.

[87] M. A. Doron and A. J. Weiss, “Coherent Wide-Band Processing for Arbitrary

Array Geometry,” IEEE Transactions on Signal Processing, vol. 41, no. 1, pp.

414–417, Jan 1993.

[88] T.-S. Lee, “Efficient Wideband Source Localization Using Beamforming Invari-

ance Technique,” IEEE Transactions on Signal Processing, vol. 42, no. 6, pp.

1376–1387, Jun 1994.

[89] G. Bienvenu, P. Fuerxer, G. Vezzosi, L. Kopp, and F. Florin, “Coherent Wide

Band High Resolution Processing for Linear Array,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 4, pp. 2799–2802, May 1989.

[90] H. Clergeot and O. Michel, “New Simple Implementation of The Coherent

Signal Subspace Method for Wide Band Direction of Arrival Estimation,” in

Proc. IEEE International Conference on Acoustics, Speech and Signal Procesing

(ICASSP’89), vol. 4, Glasgow, Scotland, May 22–25, 1989, pp. 2764–2767.

[91] J. Krolik and D. Swingler, “Focused Wide-Band Array Processing by Spatial

Resampling,” IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 38, no. 2, pp. 356–360, Feb 1990.

[92] M. Viberg, B. Ottersten, and T. Kailath, “Detection and Estimation in Sensor

Arrays Using Weighted Subspace Fitting,” IEEE Transactions on Signal Pro-

cessing, vol. 39, no. 11, pp. 2436–2449, Nov 1991.

[93] M. A. Doron and E. Doron, “Wavefield Modeling and Array Processing, Part I

— Spatial Sampling,” IEEE Transactions on Signal Processing, vol. 42, no. 10,

pp. 2549–2559, Oct 1994.

171



[94] M. A. Doron and E. Doron, “Wavefield Modeling and Array Processing, Part II

— Algorithms,” IEEE Transactions on Signal Processing, vol. 42, no. 10, pp.

2560–2570, Oct 1994.

[95] J. Capon, “High-Resolution Frequnecy-Wavenumber Spectrum Analysis,” IEEE

Proceedings, vol. 57, no. 8, pp. 1408–1418, Aug 1969.

[96] D. N. Swingler and J. Krolik, “Source Location Bias in The Coherently Fo-

cused High-Resolution Broadband Beamformer,” IEEE Transactions on Acous-

tics, Speech, and Signal Processing, vol. 37, no. 1, pp. 143–145, Jan 1989.

[97] M. R. Azimi-Sadjadi, A. Pezeshki, L. L. Scharf, and M. Hohil, “Wideband DOA

Estimation Algorithms for Multiple Target Detection and Tracking Using Unat-

tended Acoustic Sensors,” in Proc. SPIE Symposium on Defense & Security, vol.

5417, no. 1, Orlando, Florida, USA, Apr. 12, 2004, pp. 1–11.

[98] M. Wax and T. Kailath, “Determining The Number of Signals by Informa-

tion Theoretic Criteria,” in Proc. IEEE International Conference on Acoustics,

Speech and Signal Procesing (ICASSP’84), vol. 9, San Diego, California, USA,

Mar. 19–21, 1984, pp. 232–235.

[99] M. Wax and I. Ziskind, “Detection of The Number of Coherent Signals by The

MDL Principle,” IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, vol. 37, no. 8, pp. 1190–1196, Aug 1989.

[100] M. Kaveh and A. Barabell, “The Statistical Performance of The MUSIC and The

Minimum-Norm Algorithms in Resolving Plane Waves in Noise,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, vol. 34, no. 2, pp. 331–341,

Apr 1986.

[101] P. Stocia and A. Nehorai, “MUSIC, Maximum Likelihood and Cramér-Rao

Bound,” IEEE Transactions on Acoustics, Speech, and Signal Processing,

vol. 37, no. 5, pp. 720–741, May 1989.

172



[102] S. Ohmori, Y. Yamao, and N. Nakajima, “The Future Generations of Mobile

Communications Based on Broadband Access Technologies,” IEEE Communi-

cations Magazine, vol. 38, no. 12, pp. 134–142, Dec 2000.

[103] H. Taoka, K. Higuchi, and M. Sawahashi, “Field Experiment on Real-Time 1-

Gbps High-Speed Packet Transmission in MIMO-OFDM Broadband Packet Ra-

dio Access,” in Proc. 63rd IEEE Vehicular Technology Conference (VTC 2006),

vol. 4, Melbourne, Australia, May 7–10, 2006, pp. 1812–1816.

[104] A. L. Swindlehurst, S. Daas, and J. Yang, “Analysis of A Decision Directed

Beamformer,” IEEE Transactions on Signal Processing, vol. 43, no. 12, pp.

2920–2927, Dec 1995.

[105] Z. Gu and E. Gunawan, “Joint Space-Time Estimation for DS-CDMA System

in Fast Fading Multipath Channel,” IEE Electronics Letters, vol. 37, no. 23, pp.

1407–1408, Nov 2001.

[106] A. Dogandzic and A. Nehorai, “Space-Time Fading Channel Estimation and

Symbol Detection in Unknown Spatially Correlated Noise,” IEEE Transactions

on Signal Processing, vol. 50, no. 3, pp. 457–474, Mar 2002.

[107] W. C. Jakes, Microwave Mobile Communications. New York, USA: Wiley,

1974.

[108] T. J. Shan, M. Wax, and T. Kailath, “On Spatial Smoothing for Direction-

of-Arrival Estimation of Coherent Signals,” IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 33, no. 4, pp. 806–811, Aug 1985.

[109] S. U. Pillai and B. H. Kwon, “Forward/Backward Spatial Smoothing Technique

for Coherent Signal Identification,” IEEE Transactions on Acoustics, Speech, and

Signal Processing, vol. 37, no. 1, pp. 8–15, Jan 1989.

173


