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SUMMARY

This dissertation presents the development of advanced control algorithms based

on model-based nonlinear velocity-observers. Several controllers have been developed

and used for trajectory tracking, joint friction identification and compensation, and

force control.

In Chapter 3, the first operational space observer-controller for trajectory track-

ing is introduced. The controller is designed in conjunction with a velocity observer

using an observed integrator-backstepping procedure. With link position measure-

ments only, the overall observer-controller system achieves semi-global exponential

stability for the position, orientation and velocity tracking errors as well as velocity

observation errors. Experimental results indicate that compared with the estimated

velocities obtained from the backward difference algorithm used in conjunction with

a lowpass filter, the observed velocities using the proposed velocity observer are less

noisy. Under parametric uncertainties and payload variations, the proposed observer-

controller can achieve higher position tracking accuracy than the controller employing

filtered velocity.

Based on the formulation of the observer-controller introduced in Chapter 3, a

robust observer-controller is presented in Chapter 4. The overall robust observer-

controller system achieves semi-global exponential stability result for the position

and velocity tracking errors as well as position and velocity observation errors. Under

xi



system uncertainties, by adjusting controller gains, position and orientation estima-

tion errors can be confined within a narrow boundary so that the variation of the

observed velocity can be much smaller, hence the velocity observer becomes more

robust.

To make use of the merits of the “cleaner” observed velocity proposed in Chapter

4, an observer-controller with adaptive friction compensation capability is introduced

in Chapter 5. The adaptive observer-controller consists of a model-based velocity

observer, a controller that is formulated in operational space, plus friction adaptation

law. Experimental results using PUMA 560 indicate that the proposed adaptive

controller is able to achieve higher tracking accuracy than the observer-controller

without friction compensation.

In Chapter 6, an adaptive controller using filtered velocity for friction identification

and compensation is presented. The overall adaptive control system can achieve

a global asymptotical stability for the position and velocity tracking errors in the

presence of uncertainties in friction coefficients.

In Chapter 7, an adaptive observer-controller incorporating both observed and

desired velocity is presented. The adaptive controller is designed to make use of the

merits of “cleaner” observed velocity and smoother desired velocity. Without veloc-

ity measurements, the overall adaptive observer-controller can achieve a semi-global

asymptotic stability for the position and velocity tracking errors, and position and

velocity estimation errors, with estimated friction coefficients converging asymptoti-

cally.

xii



Both the adaptive controllers proposed in Chapters 5 and 7 can achieve higher

tracking accuracy than the adaptive controller presented in 6, which verify the effec-

tiveness of the controllers using observed velocity information.

In Chapter 8, a parallel force and motion controller employing observed velocity

is proposed. The controller can achieve better control performance in both force and

motion subspace as compared with the controller using filtered velocity.

Finally, an adaptive parallel force and motion controller using observed velocity

is proposed in Chapter 9. The controller is able to perform friction adaptation and

compensation, and at the same time, achieve better control performance in both force

and motion subspaces as compared with the controller using filtered velocity and the

adaptive parallel force and motion controller using observed velocity without friction

adaptation capability.
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NOMENCLATURE

q Joint positions vector
q̇ Joint velocities vector
q̈ Joint accelerations vector
A Joint space inertia matrix
B Centrifugal and Coriolis matrix in joint space
g Gravity vector in joint space
Γ Joint torques vector
x Positions vector of an end-effector
ẋ Velocities vector of an end-effector
ẍ Accelerations vector of an end-effector
Λ Kinetic energy matrix
Ψ Centrifugal and Coriolis matrix expressed in operational

space
p Gravity vector in operational space
F Forces vector at the operational point
FFF Forces vector at the operational point
J Basic Jacobian matrix
τ f Frictions vector in joint space
τ vis Diagonal coefficient matrix of viscous frictions in joint space
f Frictions vector in operational space
fvis Diagonal coefficient matrix of viscous frictions in opera-

tional space
Ω Task specification matrix, on which axes are in force and

which in motion control
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CHAPTER 1

INTRODUCTION

1.1 Robot Control Algorithms

At present, most commercial robotic control systems use linear controllers, such

as conventional PID controllers. These controllers can control a robot with moderate

accuracy. However, in precision motion control, high performance force control, and

applications requiring high speed in robot motion, nonlinearities cannot be ignored

because they can greatly degrade the system performance. Linear control theory can-

not adequately cope with nonlinearities such as dead zone or friction. Hence, linear

controllers are simply not capable of providing satisfactory performance and robust-

ness against parameter variations and many nonlinearities. In order to fully realize

the capabilities of robotic systems, existing development algorithms that appear in

research community should be developed, or existing approaches should be modified

to improve the performance of robotic control systems.

This thesis cover the topics of the estimation of velocity and its applications

in robot control, adaptive friction identification and compensation using observed

velocity, and force control with the help of a velocity observer. In the following

sections, the literature survey on these three aspects are presented.
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1.1.1 Observer-Controller

Advanced nonlinear controllers for robot manipulators have been dealt with in

great detail by many robotics researchers. Although the design of many of these con-

trollers is elegant, their implementation is hindered by the fact that they often require

the measurements of both link position and link velocity, even for the implementation

of a simple PD controller. But most robot manipulators are only equipped with link

position sensors (e.g. optical encoder) as they give us very accurate measurements of

joint position. Measurement of the link velocity is possible by using a velocity sensor,

e.g. a tachometer, but the measurements are often contaminated by noise. This will

reduce the dynamic performance of the manipulator, since, in practice, the values of

the controller gains are limited by the noise present in the velocity measurements [1].

Besides, the addition of tachometers makes the whole robotic system more complex.

To provide for a means of incorporating link velocity information into a control

algorithm, most researchers resort to filtering (e.g. a backwards difference algorithm

used in conjunction with a low pass filter) of the joint position information to estimate

the link velocity. However, this approach cannot guarantee the closed-loop stability

of the overall system. Moreover, it ignores the dynamic effect because of the position

linearization across each sampling interval.

To overcome this drawback, some researchers have proposed advanced robot con-

trollers that do not rely on link velocity measurements. For example, Nicosia et al. [2]

designed an exact knowledge model-based observer-controller that yielded an asymp-

totic stability result for the closed loop observer-tracking error system. In addition

to Nicosia et al. [3], experimental work was presented to verify the feasibility of using

high gain observers in conjunction with several different control techniques. Based
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on the mechanical model of the robot manipulator and link position measurements,

the estimates of link velocity have been achieved using a nonlinear, second-order

observer [4, 5].

For the compensation of system uncertainty, Canudas de Wit et al. developed

variable structure model-based observers for the design of adaptive [6] and robust

[7] controllers. Erlic et al. designed reduced-order observers for use in an exact

knowledge-based controller [8] and an adaptive controller [9] that were shown to have

applications for impedance control [10].

Zhu et al. presented a variable structure controller that utilized a model-based

observer with fixed parameter estimates [11]. Combing the controller development

with the observer design, Berghuis et al. developed a robust control [12] that utilized

the velocity estimates from a linear high-gain observer and an observer-controller

combination [13, 14] for robotic manipulators based on Lyapunov and passivity type

arguments.

Using an observed backstepping approach, Lim et al. [15] presented theoretical

development and experimental results for an output feedback position tracking robot

controller that incorporated an exact knowledge model-based velocity observer, this

controller can achieve a semi-global exponential stability (SGES) result for the link

position tracking error and the velocity observation error. Semi-global means that

controller gains must satisfy certain condition in order to make a system stable.

Exponential stability means that the link position tracking error and the velocity

observation error will approach zero exponentially. The controller has then been

further extended to the robot manipulator models that include actuator dynamics

[16–18]. Hsu et al. [19] proposed a variable structure adaptive control scheme without
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velocity measurements. Yuan et al. [20] applied a filtering scheme to the position

signal to create a new signal that is used to design a robust controller consisting of a

linear feedback term and a nonlinear feedforward term with fixed parameter estimates.

Burg et al. [21] used a similar filtering scheme to develop an adaptive controller that

yielded a semi-global asymptotic stability result for the link position tracking error.

Kaneko et al. [22] used repetitive and adaptive motion control schemes for rigid-link

robot manipulators.

The above mentioned controllers were designed in joint space. However, in many

robotic applications, tasks are defined in operational space [23]. The basic idea in the

operational space approach is to control motions and contact forces through the use

of control forces that act directly at the end-effector. Task specification for motion

and contact forces, dynamics, and force sensing feedback, are most closely linked to

the end-effector’s motion. Thus, high performance control of motions and contact

forces requires the formulation of controllers directly in operational space. Many

works have been done on the formulation of controllers in operational space based on

the availability of actual link velocity measurements [24, 25]. But it seems that little

work has been done with regards to the development of observer-controllers in opera-

tional space. Only recently, a method for task space position tracking via quaternion

feedback was presented in [26]. Pagilla et al. designed an adaptive observer-controller

which is shown to be semi-global asymptotically stable [27]. An observer-controller

design for task space tracking control using unit quaternion was proposed in [28].
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1.1.2 Friction Identification and Compensation

Due to mechanical contact, friction will present in robot servo-mechanisms and

causes tracking lags, steady state errors and undesired stick-slip motion. In most

industrial robots, motor torques are transformed through gears to links. The dy-

namic behavior of robots is significantly affected by gears, which introduce significant

friction.

Precise control of robot manipulators in the presence of friction-related effects

is a very challenging task. The coefficients of the various friction-related effects are

usually very difficult to measure. In addition, the friction-related coefficients usually

exhibit time-dependent characteristics; therefore, effective compensation for friction

effects via adaptive control seems are well motivated. Friction in robot manipulators

is one of the major limitations in achieving high precision motion control. It has many

diverse aspects giving rise to control problems such as steady state errors, tracking

errors, limit cycles, and stick-slip. If not compensated properly, it may cause stability

problems. For these reasons, friction modelling, identification, and compensation

have been addressed by a number of researchers. For example, a dynamic friction

compensator was derived for position-force visual servoing [29], two discrete-time

models of friction for the purpose of fixed-step numerical simulations were proposed in

[30], an adaptive controller that considers both static and dynamic friction effects was

proposed in [31], a robust adaptive friction compensation in the presence of bounded

disturbances and/or modelling uncertainties was addressed in [32], and a variable

structure control scheme for the robot with nonlinear friction and dynamic backlash

was investigated in [33]. To deal with stick-slip friction, an integrated adaptive-robust

approach along with a smooth friction compensation strategy was presented in [34],
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and a robust nonlinear controller was designed for the regulation of a rigid robot

with internal joint stick-slip friction [35]. In terms of flexible manipulators, some

researchers investigated limit cycles phenomena in flexible joint mechanisms [36], and

friction compensation algorithm based on LuGre’s model was proposed in [37]. To

achieve precise tracking control, virtual friction field and iterative learning control

architecture to compensate friction effect were developed [38], [39].

1.1.3 Force Control

Research on robot force control has flourished in the past two decades. Such a

wide interest is motivated by the general desire of providing robotic systems with

enhanced sensory capabilities. The purpose of force control could be quite diverse,

such as applying a controlled force needed for a manufacturing process (e.g. deburring

or grinding), pushing an external object using a controlled force, or dealing with

geometric uncertainty by establishing controlled contacts (e.g. in assembly).

The two most common basic approaches to force control are Hybrid force/position

control, and impedance control. Both approaches can be implemented in many dif-

ferent ways. Hybrid control is based on the decomposition of the workspace into

purely motion controlled directions and purely force controlled directions [23, 40].

Many tasks, such as inserting a peg into a hole, and force-controlled deburring are

described in the ideal case by such task decomposition [41]. Impedance control, on

the other hand, does not regulate motion or force directly, but instead regulates the

ratio of force to motion, which is the mechanical impedance [42–44]. Both Hybrid

control and impedance control are highly idealized control architectures. The de-

composition into purely motion controlled and purely force controlled directions is
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based on the assumption of ideal constraints, i.e., rigid and frictionless contacts with

perfectly known geometry. In order to overcome some of the fundamental limitations

of the basic approaches, the following improvements have been proposed: The com-

bination of force and motion control in a single direction has been introduced in the

Hybrid control approach [45,46], where a feedforward motion command was injected

in a force controlled direction. Parallel force/position control schemes were also pre-

sented in [46–49], where the force and motion commands coexist in the force control

direction, with force command dominating the force control performance.

In [50], hybrid and impedance control was combined into hybrid impedance control

to simultaneously regulate impedance and either force or motion.

To deal with uncertainty, some adaptive and robust force/position controllers were

presented in [51,52]. An adaptive compliant control algorithm was presented in [53].

An adaptive parallel force/position control scheme was presented in [54]. Because

sliding mode control is insensitive against system perturbation and modeling uncer-

tainties, recently, some researchers used this control scheme for robotic force control,

e.g., a force controller with an inner-loop position-based sliding mode controller, and

an outer-loop force compensator was presented in [55], a sliding mode controller for a

robot in contact with an isotropic and homogenous environment was presented in [56].

All the above mentioned force and position control schemes require full-state feed-

back of the contact force and the joint position and velocity. A problem exist, however,

for those robots having only joint encoders or resolvers for measuring positions, but

no tachometers for measuring joint velocities. Recently, an output feedback parallel

force/position regulator for a robot manipulator was presented in [57, 58], and the
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use of a nonlinear observer does not compromise the tracking and steady-state per-

formance of the system, and thus presents a valid solution when joint velocities are

not available.

1.2 Objective and Summary of Contributions

Filtered velocity has two limitations: first, the introduction of a low-pass filter

will cause tracking delay; second, even with the help of a low-pass filter, the noise in

filtered velocity cannot be completely removed. The objective of the Ph.D research

is to design a velocity observer without use of a low-pass filter, and at the same time,

to minimize the noise level in observed velocity.

Based on this objective, two observer-controllers have been developed. Experi-

mental results indicate that, the noise level in observed velocity is lower than the

filtered velocity. Under parametric uncertainty and payload variations, the proposed

observer-controllers can achieve higher position tracking accuracy than the controller

employing filtered velocity.

Encouraged by the performance of the observer-controllers, two adaptive observer-

controllers have been designed to perform friction identification and compensation

function. Experimental results indicate that both the proposed adaptive observer-

controller are able to achieve much higher tracking accuracy than the observer-

controller without friction compensation.

Velocity observers can also help in force control applications. Two parallel force

and motion controllers using observed velocity have been developed. Experimental

results also show their better control performance in both force and motion subspace

as compared with the controller using filtered velocity.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Robot Dynamic Model

The dynamic equation of a robot in free motion (no contact with environment)

can be expressed in joint space

A(q)q̈ + B(q, q̇)q̇ + g(q) = Γ (2.1)

where Γ is the n× 1 vector of joint torques, q is the n× 1 vector of joint positions,

A(q) is the n× n inertial matrix, B(q, q̇) is the n× n centrifugal and Coriolis matrix,

and g(q) is the n× 1 vector of gravitational torques. For a non-redundant robot, the

corresponding end-effector equation of motion (in operational space) can be expressed

as [23]

Λ(x)ẍ + Ψ(x, ẋ)ẋ + p(x) = F (2.2)

where F is the n× 1 operational forces vector, x is the n× 1 vector describing the

position and orientation of the end-effector, Λ(x) is the n× n kinetic energy matrix,

Ψ(x, ẋ) is the n× n centrifugal and Coriolis matrix expressed in operational space,

and p(x) is the n× 1 vector of gravitational forces. In the nonsingular region and the

domain of one to one mapping of a robot, the relationships between the components
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of the joint space dynamic model and those of the operational space dynamic model

can be expressed as [59]:

Λ(x) = J−T (q)A(q)J−(q)

Ψ(x, ẋ) = J−T (q)
[
B − A(q)J−(q)J̇(q,

.
q)

]
J−(q)

p(x) = J−T (q)g(q)
Γ = JT (q)F

(2.3)

where J(q) is the basic Jacobian of the robot.

These equations apply when the robot is operating in a non-singular region and the

mapping between joint (q) and operational space (x) coordinates is one to one. These

conditions are necessary for the operational space (x) to be considered generalized

coordinates.

2.2 Robot Dynamic Model with Friction

In the presence of joints friction, Eq (2.1) can be written as:

A(q)q̈ + B(q, q̇)q̇ + g(q) + τ f = Γ (2.4)

where τ f is the n× 1 vector of friction torques.

In this thesis, the following friction model is used (as shown in Fig. 2.1) [60]:

τ f = τ visq̇ +
[
τ cou + τ sti exp(−τ decq̇

2)
]
sgn(q̇) (2.5)

where τ vis denotes the diagonal coefficient matrix of viscous friction; τ cou denotes the

Coulomb friction-related diagonal coefficient matrix; τ sti denotes the static friction-

related diagonal coefficient matrix; τ dec is a positive diagonal coefficient matrix cor-

responding to Stribeck effect; and the signum function sgn(·) is defined as:

sgn(q̇) =





+1, q̇ > 0

0, q̇ = 0

−1, q̇ < 0

(2.6)
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Figure 2.1: Friction model

In the presence of joint friction, the corresponding end-effector equation of motion

in operational space can be expressed as [23]:

Λ(x)ẍ + Ψ(x, ẋ)ẋ + p(x) + f = F (2.7)

where f is the n× 1 friction vector expressed in operational space.

The relationships between the joint space and operational space friction vector

can be expressed as:

f = J−T (q)τ f (2.8)

2.3 Operational Space Formulation

The Operational Space Formulation [61] is a control approach where free motion

and contact forces are expressed in operational space (Cartesian space as seen from

the end-effector or tool), and transformed into operational space forces that includes

the dynamic effects of the manipulator. This force is then transformed into equivalent

torque values to be exerted by each joint to result in the desired operational forces at

the end effector.
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The force is obtained by multiplying the mass/inertia of the robot with the de-

sired acceleration. The mass/inertia of the robot can be obtained by experiments

as described in [62, 63] and can also be verified in [64]. In free motion, the desired

acceleration is generated by the control law that minimizes the error between the

desired and the actual trajectories. Other dynamic parameters can be included into

the generated force, such as the gravity, Coriolis, and Centrifugal forces to better

model the dynamics of the robot.

An obvious advantage of this formulation is that it is a very natural framework

for combined position and force control, which is used when the end effector comes

into contact with the environment. Forces are generally expressed in the Cartesian

space, and having free motion generated as forces in the Cartesian space provides an

elegant framework for a hybrid motion/force control.

The total force f is therefore a combination of the force for free motion control

and force for constrained motion (force control). It is then converted to joint torques

by

τ = JT f +N T τ 0

N = [I − J#J ]
(2.9)

where τ is the joint torque command vector, and J is the Jacobian matrix. N and

τ 0 are used to control the null space motion of the Jacobian and is useful when the

manipulator is redundant with respect to the task. They will be elaborated in the

later parts of the chapter. J# is a generalized inverse of the J matrix.
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2.3.1 Motion Control

The control law to generate the required force is computed from the required

acceleration, f ∗motion:

f ∗motion = Iẍd −Kvm(ẋ− ẋd)−Kpm(x− xd) (2.10)

f ∗motion is then multiplied with the inertia matrix Λ̂, and added with the Coriolis and

Centrifugal forces µ̂ and gravitational vector p̂, to yield the required force:

fmotion = Λ̂(x)f ∗motion + µ̂(x, ẋ) + p̂(x) (2.11)

The operational space control can be compared with computed-torque control in joint

space, which is described as:

τ = Â(q)q̈ + b̂(q, q̇) + ĝ(q) (2.12)

where Â is the joint space inertial matrix of the manipulator, b̂(q, q̇) is the Coriolis and

centrifugal vector, and ĝ is the gravity compensation vector in joint space. Methods

of dynamics identification can be found in [62] and [63, 65]. In the work involved in

this dissertation, we use the PUMA 560 manipulator as a test bed. The dynamic

model of PUMA 560 is obtained from [63].

The “ ˆ ” above the parameter represents our estimate of actual dynamic param-

eters. The actual dynamic model of the robot is represented by:

fmotion = Λ(x)ẍ + µ(x, ẋ) + p(x) (2.13)

13



2.3.2 Force Control

As the robot end-effector is in contact with the environment, reaction forces and

moments are generated at the end-effector. These forces/moments are then trans-

mitted to the robot joints where the driving torques can be generated to impose the

desired contact forces/moments to the robot environment.

The force control in operational space can be transformed to the robot joint space

by the same transformation as the operational space motion control.

The operational space force applied at the end-effector can be expressed as

fforce = Λ̂(x)f ∗force + µ̂(x, ẋ) + p̂(x) + fcontact (2.14)

where
f∗force = Kpf (fd − fcontact) + Kif

∑
(fd − fcontact) (2.15)

is the control law and fcontact is the force exerted on the environment and is related

to the force sensor reading, fsensor, by

fcontact = −fsensor (2.16)

Note that the force sensor reading is the force exerted by the environment on the

end-effector.

The µ̂ and p̂ vectors are the Coriolis and centrifugal vector and gravitational vector

as defined in motion control. With contact to the environment, the actual dynamic

model becomes

fforce = Λ(x)ẍ + µ(x, ẋ) + p(x) + fcontact (2.17)
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2.3.3 Unified Force and Motion Control

In unified force and motion control, operational space is divided into two sub-

spaces: force control and motion control subspaces. We need to specify which degrees-

of-freedom will be assigned for force and motion control. Appropriate control algo-

rithms are then applied respectively.

The resulting force and motion control is done by selecting the desired force or

motion response of the robot and adding them together to get the effective robot

response (Fig. 2.2). This is expressed as

f = fmotion + fforce (2.18)

where

fmotion = Λ̂(x)Ωf ∗motion + µ̂(x, ẋ) + p̂(x) (2.19)

and

fforce = Λ̂(x)Ω̄f ∗force − fsensor. (2.20)

f ∗motion and f ∗force are the force applied for motion and force control respectively (de-

fined in (2.10), (2.15)). Ω and Ω̄ are the selection matrices to switch the application

between force or motion whichever is desired and to specify the direction of appli-

cation. µ̂(x, ϑ) represents the estimated Coriolis and centrifugal forces, and p̂(x)

the estimated Gravitational force, which are the same as those defined for force and

motion control, and are therefore only included once.

To specify the selection matrices, consider a reference Frame {P} at the opera-

tional point that is always parallel to the base (global) reference Frame {O} (see Fig.

2.2). We then consider an operational space (tool) force Frame {T} whose orientation

is obtained from Frame {P} by the 3×3 rotation matrix P RT . Frame {T} is attached
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to the end-effector while the origin of Frame {P} translates with the operational point

and always coincides with the origin of Frame {T}.

Figure 2.2: Tool frame assignment

The generalized task specification matrices Ω is then defined as

Ω =

(
T RT

P SF
T RP 0

0 T RT
P SM

T RP

)
(2.21)

where

SF =




σFX 0 0
0 σFY 0
0 0 σFZ


 (2.22)

SM =




σMX 0 0
0 σMY 0
0 0 σMZ


 (2.23)

and

σFX , σFY , σFZ , σMX , σMY , σMZ are binary values where “1” signifies application

of free motion (motion control) along the corresponding axis and “0” for constraint

motion (force control) along the corresponding axis.
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Eq 2.21 was derived to consistently match the frames that different components

are expressed in. SF and SM are expressed in the end-effector frame (Frame{T}.

However, f ∗motion and f ∗force are all expressed in Frame{0}, consistent with system

dynamics expressed in Frame {P} (which is parallel to Frame{0}). Therefore, they

have to be first transformed to Frame{T} (by T RP ) before the application of S.

They are then transformed back to Frame{P} by P RT after the application of S. Ω̄

is obtained using S̄F and S̄M which are the complements of SF and SM.

The equations are reproduced below for convenience.

f ∗motion = Iẍd −Kvm(ẋ− ẋd)−Kpm(x− xd) (2.10)

f ∗force = Kpf (fd − fcontact) + Kif

∑
(fd − fcontact) (2.15)

These commands are then compensated for the dynamic effect according to the

dynamic model of the manipulator and assigned to its associated degrees-of-freedom.

The resulting forces are added together to form the total force to be displayed at the

end-effector.

fmotion = Λ̂(x)Ωf ∗motion + µ̂(x, ẋ) + p̂(x) (2.19)

fforce = Λ̂(x)Ω̄f ∗force − fsensor (2.20)

f = fmotion + fforce (2.18)

The force is then converted to joint space command to be sent to the respective

joints, by:

τ = JT f +N T τ 0 (2.9)

The operational space formulation is capable of unified force and motion control.

Desired contact force with the environment and the desired end-effector motion is
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generated by task specification. The task specification also includes the description

of which degrees-of-freedom are to be assigned to force control and which to motion

control. The control law that compares the input and the generated output forces and

motion at the end-effector provides the actuation command in task space required to

close the tracking error. For more details in unified motion and force control, please

refer to [61].
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CHAPTER 3

CONTROL ALGORITHM 1: OBSERVER-CONTROLLER
FORMULATION

3.1 Introduction

The control objective is to develop an end-effector position and orientation track-

ing controller in operational space so that the end-effector position and orientation

tracking errors and velocity observation (velocity estimation) errors can be driven to

zero with link position information only. Based on the assumption that the exact

model is available, we design a velocity observer to estimate the robot end-effector

velocities, the observed velocities will be used for the development of a force input

controller. The force generated by the force input controller will then be used to drive

the velocity observer and to generate the corresponding torque that is used to drive

the robot. The schematic diagram of the proposed observer-controller is shown in

Fig. 3.1. The end-effector position and orientation information can be obtained from

link position measurements by forward kinematics (only for serial link mechanism) of

the robot.
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Figure 3.1: Schematic Diagram of the proposed observer-controller

3.2 Observer-Controller Formulation

To begin the controller development, we define the n×1 end-effector position and

orientation tracking error as:

e = xd − x (3.1)

where xd represents the desired end-effector position and orientation trajectory. For

the system to be stable, the requirement for the trajectory is that xd and its first

and second derivatives are all bounded functions of time. More specifically, for the

desired velocity, we may assume that:

‖ẋd‖ ≤ ζd ∀t (3.2)

where ζd is a known positive scalar constant. This property will be used for stability

analysis in Sec 3.3.
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3.2.1 Formulation of Velocity Observer

To estimate the end-effector velocity, we utilize the following second order velocity

observer:

˙̂x = y+kx̃, y(0)= −kx̃(0) (3.3)

ẏ = Λ−1
[
F − Ψ(x, ˙̂x) ˙̂x− p(x)

]
(3.4)

where

x̃ = x− x̂ (3.5)

˙̂x and x̂ are the estimates of a robot end-effector velocity and position using the

proposed velocity observer.

The motivation of this controller is to mimic the dynamic behavior of a robot as

indicated by (2.2). Here x is the position and orientation of the end-effector, which

can be obtained from the forward kinematics of a robot.

The variable ẏ is an n × 1 auxiliary variable that can be viewed as acceleration.

When a robot starts to move from standstill, we can set y(0)= −kx̃(0) so that the

estimated initial end-effector velocity ˙̂x(0) is 0. F is the force control input to the

observer, it is the force generated by the controller (as will be indicated in (3.8)).

Here k is a positive scalar constant defined by:

k =
1

m1

[ζcζd + ζck0 + ζcksk0 + ks + 2kn] (3.6)

where k0, ks and kn are positive scalar control gains, ζc and ζd are defined in (A.4)

and (3.2) respectively. m1 is a known positive scalar constant as defined in (A.1).

The values of all these gains are difficult to estimate due to the complexity of a robot
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dynamic model. However, we can still choose controller gains that are large enough

to make a system stable, as indicated by Theorem 1 in this chapter. The inequality

expressed (A.1) will be used in system stability analysis.

To facilitate the subsequent analysis, (3.5) is differentiated with respect to time

to form the following velocity observation error:

˙̃x = ẋ− ˙̂x (3.7)

3.2.2 Formulation of Observer-Based Controller

Based on the structure of the above observer, and the subsequent stability analysis,

we propose the following controller to generate the required driving force:

F = (ks + knd)ηp + we (3.8)

where knd is a positive controller gain defined as:

knd = 2kn + ζck0 + (ksm2 + km2)
2kn (3.9)

m2 is a known positive scalar constant as defined in (A.1). The inequality expressed

(A.1) will be used in system stability analysis. The n × 1 observed filtered tracking

error signal ηp and we are defined as:

ηp = ẋd + kse− ˙̂x (3.10)

we = Λ(x)[ẍd + ks(ẋd − ˙̂x)] + Ψ(x, ˙̂x)(ẋd + kse) + p(x) (3.11)

The force command F will be used in the observer indicated by (3.4). And the

torque commands for driving the robot can be obtained by:

Γ = JT F
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3.3 Overall System Stability Result and Analysis

For the observer and controller presented in the previous section, if the exact

model of a robot is known, then the position and orientation tracking error defined

in (3.1) is semi-global exponentially stable according to the following theorem:

Theorem 1 Provided the observer-controller gains satisfy the following sufficient

conditions:
ks > 1

kn

k0 >
√

λ2

λ1
‖ err(0) ‖ (3.12)

the closed-loop observation tracking error system is exponentially stable:

‖ err(t) ‖≤
√

λ2

λ1

‖ err(0) ‖ e−λt (3.13)

where
λ1 = min{m1, 1}
λ2 = max{m2, 1}
λ3 = ks − 1

kn

λ = λ3

λ2

(3.14)

and

err =
[
ηT

p eT ˙̃xT
]T ∈ <3n (3.15)

m1 and m2 are known positive scalar constants that satisfy the inequality indicated

by (A.1) in Appendix A. The values of m1 and m2 will affect the stability of the

system, and k0 needs to be large enough, as indicated by (3.12). The values of m2,

ks, and kn will affect the convergence speed of err, as indicated by (3.13) and (3.14).

kn, ks and k0 are the controller gains indicated by (3.6) and (3.9). The gains need

to satisfy (3.12), thus the observer-controller achieves semi-global stability. Eq (3.13)

indicates that err(t) approach zero exponentially. Hence, the whole system is a semi-

global exponentially stable system.
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It is noted from (3.13) that, with err(0) = 0, err(t) = 0 for all t. However, if

err(0) is not zero initially, as indicated by this theorem, err(t) will approach zero as t

approaches infinity. But (3.13) only holds with perfect knowledge of robot dynamics

(as shown in the proof). It is therefore practical to choose gains indicated by (3.12)

for robustness, assuming a bound for err(0).

In the stability analysis, we will break up this analysis into three parts, i.e.,

observer stability analysis, tracking error system stability analysis, and controller

stability analysis. We will then combine the three analysis to complete the overall

stability proof.

To prove the stability result indicated by Theorem 1, we define the following

composite Lyapunov function:

V = V0 + V1 + V2 (3.16)

and V̇ can be obtained by:

V̇ = V̇0 + V̇1 + V̇2 (3.17)

V0, V1, and V2 are used for observer stability analysis, tracking error system analy-

sis, and controller stability analysis respectively.

3.3.1 Observer Stability Analysis

To analyze the stability of the above observer error system, the following sub-

Lyapunov function is defined:

V0 =



˙̃xT Λ(x) ˙̃x (3.18)

From second-order observer shown in (3.3), we differentiate it and then substitute

the expression for ẏ in (3.4) to give:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x)− kΛ(x) ˙̃x = F (3.19)
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We use properties of dynamic model (in Appendix A) in the subsequent derivation.

Subtract (3.19) from the robot dynamic model (2.2), use (A.3) and (3.7) to yield

the following closed-loop observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x = 0 (3.20)

Differentiate V0 in (3.18) with respect to time and combine (3.20) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T
Λ̇(x) ˙̃x + ˙̃x

T
kix̃ (3.21)

Utilizing (3.20) and dynamic property (A.2) to get:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x (3.22)

Properties (A.1) and (A.4) are used to get the upper bound of V̇0:

V̇0 ≤
(
ζc‖ ˙̂x‖ − km

)
‖ ˙̃x‖ (3.23)

Substituting ˙̂x from (3.10) into (3.23), and using (3.2) results in a new upper

bound for V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km

) ‖ ˙̃x‖ (3.24)

3.3.2 Tracking Error System Stability Analysis

From the form of (3.24), we are motivated to design a controller which ensures

that the ‖e‖ and ‖ηp‖ terms in (3.24) are both driven to zero; hence, we are motivated

to develop tracking error systems and the corresponding sub-Lyapunov functions to

facilitate the goal. The position tracking error system can be formed by differentiating

(3.1) with respect to time to yield:

ė = ẋd − ẋ
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Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (3.25)

Add and subtract a fictitious controller [66] to the right-hand side of (3.25) to

yield:

ė = ẋd − [ẋd + kse] + [ẋd + kse]− ˙̂x− ˙̃x (3.26)

where ks is a positive controller gain defined in (3.6).

Equ (3.26) can be simplified by utilizing (3.10) and get:

ė = −kse + ηp − ˙̃x (3.27)

To analyze the stability of the above position tracking error system, the following

sub-Lyapunov function is defined:

V1 =



eT e (3.28)

Differentiating V1 with respect to time and get:

V̇1 = eT ė (3.29)

The upper bound for the time derivative of V1 along (3.27) is given by:

V̇1 ≤ −ks‖e‖ + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (3.30)

3.3.3 Controller Stability Analysis

From the form of (3.30) and the fact that the form of (3.24) indicates that ‖ ˙̃x‖ can

be driven to zero, we are motivated to design a force input controller which ensure

that ηp can be driven to zero.
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The tracking error system for ηp can be formed by differentiating (3.10) with

respect to time, multiplying both sides of the resulting expression by Λ(x), and sub-

stituting ¨̂x obtained from (3.19) to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

+Ψ(x, ˙̂x) ˙̂x + p(x)− F (3.31)

Substituting the force input given by (3.8) into (3.31), and using the definitions

of we and ηp, we get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (3.32)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (3.32) in terms of ˙̃x, and

utilize (A.3) and (3.7) results in:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(ks + knd)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (3.33)

Define another sub-Lyapunov function:

V2 =



ηT

p Λ(x)ηp (3.34)

Differentiating V2 along (3.33), and utilizing (A.2) results in:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (3.35)

27



From (3.35), and using (A.1) and (A.4), we obtain the following upper bound for

V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖ + (k + ks)m‖‖ηp‖ ˙̃x‖

+ζc‖ηp‖‖ ˙̃x‖ (3.36)

3.3.4 Overall System Stability Analysis

From the results indicated in Sections 3.3.1, 3.3.2, and 3.3.3, we can obtain the

following inequality:

1

2
λ1(

∥∥ ˙̃x
∥∥2

+ ‖e‖2 +
∥∥ηp

∥∥2
) ≤ V ≤ 1

2
λ2(

∥∥ ˙̃x
∥∥2

+ ‖e‖2 +
∥∥ηp

∥∥2
) (3.37)

Using the definitions of λ1, λ2 and err(t) defined in (3.14) and (3.15), we place

the following bounds on V :

1

2
λ1 ‖err‖2 ≤ V ≤ 1

2
λ2 ‖err‖2 (3.38)

Using the upper bounds of V̇0, V̇1 and V̇2, and using (3.6), (3.9), and (3.15), we

can form the upper bound on V̇ :

V̇ ≤ −ks ‖e‖2 − ks

∥∥ηp

∥∥2 − ks

∥∥∥∥
·
x̃

∥∥∥∥
2

+
[∥∥ηp

∥∥ (‖e‖ − 2kn

∥∥ηp

∥∥)]
+

[∥∥∥∥
·
x̃

∥∥∥∥
(
‖e‖ − 2kn

∥∥∥∥
·
x̃

∥∥∥∥
)]

+

[
(k + ks) m2

∥∥ηp

∥∥
(∥∥∥∥

·
x̃

∥∥∥∥− (k + ks) m2kn

∥∥ηp

∥∥
)]

+

(
ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2

− ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2
)

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

)

− km1‖ ˙̃x‖2 (3.39)

where we have used the fact derived from (3.15) that ‖err‖ ≥ ‖e‖, ‖η‖, and ‖ ˙̃x‖.
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By applying Lemma 2 on the three bracketed terms in (3.39), a new upper bound

on can be formed as:

V̇ ≤ −(ks − 1
kn

) ‖e‖2 − ks

∥∥ηp

∥∥2 − (ks − 1
kn

)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (3.40)

From (3.40), it is easy to get:

V̇ ≤ −λ3 ‖err‖2 for ‖err(t)‖ ≤ k0 (3.41)

where λ3 and err(t) are defined in (3.14) and (3.15), respectively.

Finally, from (3.38), we can obtain:

V̇ ≤ −2λ3

λ2
V for

√
2V (t)

λ1

< k0 (3.42)

Standard Lyapunov method [67] can now be applied to (3.38) and (3.42) to yield

the result indicated by Theorem 1.

3.4 Estimation Error Formulation

To facilitate the estimation error formulation, we rewrite (3.3) as follows:

˙̂x = y + kx̃ = y + k(x− x̂) (3.43)

It is easy to see that for some kinds of robots with simple configuration, the

formulation of estimation error x̃ is straightforward, for example, a three-link planar

robot, from
.

x̂ we can get x̂, which is the estimated end-effector position in X and Y

direction, and the estimated end-effector orientation about Z axis; from the forward

kinematics of a robot, we can get the actual end-effector position information, and the

summation of the three joint angles gives us the actual orientation of the end-effector.
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From the above information, we can easily formulate the position and orientation

estimation error x̃ in closed form. But for other kinds of robots, like 6DOF PUMA-

like robots, if use (3.43) directly, the formulation of orientation estimation error is

not straightforward; from
.

x̂ we can get x̂, which is the estimated position in X,

Y, and Z direction, and the estimated relative rotation changes about X, Y, and Z

axis; from the robot homogeneous transformation matrix, we can get the actual end-

effector position information in X, Y, and Z direction, and the actual end-effector

orientation information, but expressed by a 3×3 rotation matrix. So the formulation

of orientation estimation error in closed form is not trivial.

To formulate the position and orientation estimation error in closed form, we

rewrite (3.43) as following:

J(q)
.

q̂ = y + k [x(q)− x̂(q̂)] (3.44)

where J(q) is the basic Jacobian of the robot, q̂ is the n× 1 vector of the estimated

joint positions,
.

q̂ is the vector of the observed joint velocities.

We assume that a robot works in a non-singular region, so the inverse of J(q) is

always possible, and for a non-redundant robot, the mapping from
.

x̂ to
.

q̂ is unique.

(3.44) is therefore rewritten as:

.

q̂ = J−1(q) {y + k [x(q)− x̂(q̂)]} (3.45)

From here we can get q̂ through integrating (3.45) with respect to time, and this q̂

will be used in (3.49).

The relationship between joint space velocity and operational space velocity can

be expressed as:
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ẋ = Jq̇ (3.46)

If we assume that the sampling time ∆t is small, (3.46) can be written as:

∆x

∆t
= J

∆q

∆t
(3.47)

Both sides multiplied by ∆t to obtain:

∆x = J∆q (3.48)

From (3.48) and q̂ obtained from the integration of (3.45), the closed form of the

instantaneous estimation error x̃ can be formulated as:

x̃ = J(q)(q − q̂) (3.49)

Using (3.49), we can rewrite (3.43) as:

˙̂x = y + kx̃ = y + kJ(q)(q − q̂) (3.50)

3.5 Experimental Results

The experiments were performed using PUMA 560 robot. In the experiments,

we bypassed the original motion controller card of PUMA 560 and used Servo To

Go (www.servotogo.com) data acquisition card to control the robot. The real-time

robotic control software runs under Windows NT 4.0 with RTX 4.3.2.1 (Venturcom

Real-Time Extension). The PC used is a dual-processor 800MHz PC, and the sam-

pling time is selected to be 1ms.

Our task is to move the end-effector in XYZ direction with the following desired

position trajectory while maintaining the initial end-effector orientation constant all
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the time.
pxd

= px0 + 50.0 sin(2πft)
(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(2πft)

(
1− e−0.05t3

)
mm

pzd
= pz0 + 50.0 cos(2πft)

(
1− e−0.05t3

)
mm

xd =
[

pxd
pyd

pzd

]T

(3.51)

where (px0 , py0 , pz0) is the initial position of the robot. The exponential terms are to

ensure that the initial desired velocities and accelerations are all zeros.

In our experiments, we use the combination of (3.45) and (3.4) to form our velocity

observer, and use (3.49) to form the position and orientation estimation error.

3.5.1 Tracking Error Formulation

For tracking control in operational space, the tracking error e consists of position

and orientation tracking errors:

e =
[

ex ey ez eφx
eφy

eφz

]T
(3.52)

Here we define epos as the 3× 1 vector of position tracking errors along X, Y, and

Z axis, and eori as the 3 × 1 vector of orientation tracking errors about X, Y, and Z

axis, respectively:

epos =
[

ex ey ez

]T
(3.53)

eori =
[

eφx
eφy

eφz

]T
(3.54)

In section 3.2.2, the proposed controller needs to use xd, ẋd and ẍd to generate the

required force commands. For position control, we can get the desired end-effector

position, linear velocities and accelerations from (3.51). The instantaneous position

tracking errors epos can be easily obtained by:

epos =
[

pxd
− px pyd

− py pzd
− pz

]T
(3.55)
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where pxd, pyd and pzd are the desired positions, and px, py and pz are the positions

of the robot.

The direction cosines representation of the initial end-effector orientation is given

by:
xrini = [ nT

ini oT
ini aT

ini ]T

nini = [ nxini nyini nzini ]T

oini = [ oxini oyini ozini ]T

aini = [ axini ayini azini ]T

(3.56)

The direction cosines representation of the end-effector orientation is given by:

xr = [ nT oT aT ]T

n = [ nx ny nz ]T

o = [ ox oy oz ]T

a = [ ax ay az ]T

(3.57)

For orientation control, since the task is to maintain the initial end-effector orien-

tation during position tracking, the desired end-effector angular velocities and accel-

erations are just zeros. And the instantaneous orientation tracking errors eori (in the

unit of radian) can be expressed as:

eori =
1

2
(ŝ1nini + ŝ2oini + ŝ3aini) (3.58)

where

ŝ1 = 1
2




0 −nz ny

nz 0 −nx

−ny nx 0


 (3.59)

ŝ2 = 1
2




0 −oz oy

oz 0 −ox

−oy ox 0


 (3.60)

ŝ3 = 1
2




0 −az ay

az 0 −ax

−ay ax 0


 (3.61)
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3.5.2 Experimental Results under Parametric Uncertainty

In the work involved in this dissertation, we use the PUMA 560 manipulator as

a test bed. The dynamic model of PUMA 560 is obtained from [63]. This model

does not include friction model. For our experiments, there are definite parameter

uncertainties.

To test what are the smallest tracking errors that can be achieved by the proposed

controller, we increased the controller gains until the robot started to vibrate, the

gains used are listed in (3.62):

knd = diag{220, 220, 220, 66, 66, 66}
k = diag{200, 200, 200, 60, 60, 60}
ks = diag{180, 180, 180, 54, 54, 54}

(3.62)

all these gains are in the unit of 1/s.

In order to make fair comparison, we also implemented the controller indicated

in Section 3.2.2, but the observed velocities
.

x̂ were replaced by that obtained from

backwards difference plus a low pass filter with cutoff frequency of 100Hz. We refer

to this as the backwards difference controller. During the experiments, we found

that, due to large inherent noise ripple of filtered velocity, the controller gains values

indicated in (3.62) were too high for the backwards difference controller, they caused

the robot to vibrate. In order to reduce vibration, the possibly highest gains were

selected as listed in (3.63):

knd = diag{20, 20, 20, 12, 12, 12}
ks = diag{90, 90, 90, 30, 30, 30} (3.63)

The experimental results are shown in Fig. 3.2 and Table 3.1. Where OC stands

for the observer-controller, and BD for the backwards difference controller. The

position tracking errors ex, ey, and ez, orientation tracking errors eφx
, eφy

, and eφz

are defined in (3.52).
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Figure 3.2: Observer controller - Tracking errors under parametric uncertainty

The results show that, using the proposed observer-controller, the maximum po-

sition and orientation tracking errors are about 1.4 to 3.5 times smaller than that of

the backwards difference controller.

3.5.3 Experimental Results under Payload Variations

To examine the performance of the proposed observer-controller and the back-

wards difference controller under payload variations, a payload of 1.5kg, which is
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Table 3.1: Observer controller - Maximum tracking errors under parametric uncer-
tainty

ex ey ez eφx
eφy

eφz

OC 0.68mm 0.53mm 0.49mm 0.08o 0.04o 0.09o

BD 1.02mm 0.75mm 1.55mm 0.20o 0.14o 0.22o

Table 3.2: Observer controller - Maximum tracking errors under payload variations

ex ey ez eφx
eφy

eφz

OC 0.74mm 0.53mm 0.71mm 0.08o 0.04o 0.09o

BD 1.96mm 1.40mm 3.12mm 0.30o 0.38o 0.33o

about 60 percent of the maximum allowable payload of the robot, was attached to

the end-effector of PUMA 560. Using the same gains as listed in (3.62) and (3.63)

for the observer-controller and the backwards difference controller, respectively, the

experimental results are shown in Fig. 3.3 and Table 3.2.

The results show that, using the observer-controller, the maximum position and

orientation tracking errors are about 2.6 to 9.5 times smaller than that of the back-

wards difference controller.

Remark 1 The experimental results indicate that, compared with the backwards dif-

ference controller, the observer-controller seems less sensitive to payload variations,

which indicates that the proposed observer-controller maybe robust against parametric

uncertainty and payload variations. The limitation of the backwards difference con-

troller in compensation of parametric uncertainty and payload variations is because

of its linear behavior (lack of dynamic information). While the observer-controller
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Figure 3.3: Observer controller - Tracking errors under payload variations
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is designed to mimic the dynamic behavior of a robot, the position and orientation

tracking performance can be better if the robot dynamic model is accurate enough.

Remark 2 The proposed observer-controller seems a little bit complex, but it is easy

to see from (3.3), (3.4) and (3.8) that this controller only requires the selection of

three controllers gains knd, k, and ks. From Theorem, 1 we know that in order to

make the system stable, the controller gains ks, kn, and k0 need to satisfy certain

conditions. But in our experiments, even if the gains selection does not meet the

above mentioned constrain, the robot still works well. We mention it here to indicate

that, owing to the conservative nature of the Lyapunov stability analysis, the gains

condition is treated as selection guideline rather than an absolute mandate.

Remark 3 The gain condition given by (3.12) implies that k0 can be selected to cover

any set of initial condition of the error vector err(t). In addition, from (3.41) we can

see that, the transient response of end-effector position tracking errors can be improved

by increasing the controller gains ks and knd.

Remark 4 As compared with the joint space observer-controller, the main advantage

of the operational space observer-controller is to avoid solving the inverse kinematics

problem of a robot manipulator.

3.5.4 Quality of the Observed Velocities

To exam the velocity observation quality of the proposed velocity observer, we let

the robot to follow the trajectory defined by (3.51), and at the same time, calculate

the filtered joint velocities, i. e., to obtain the joint velocities using backwards dif-

ference approach used in conjunction with a lowpass filter. The backwards difference
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algorithm can be expressed as:

˙̂q(kT ) =
q(kT )− q [(k − 1)T ]

T
(3.64)

where q represents the robot joint angles; ˙̂q represents the calculated joint velocities;

k represents the sampling instant; and T represents the sampling time.

After obtaining ˙̂q(kT ), we use a second order 100Hz Butterworth filter to reduce

the noise in ˙̂q(kT ). The reason of using 100Hz cutoff frequency is because lower cutoff

frequency will introduce tracking delay further. Fig. 3.4 illustrates the delay caused

by using a 10Hz Butterworth filter, where Vxdes, Vydes, Vzdes, and ωxdes, ωydes, ωzdes

are the desired end-effector linear and angular velocities, and Vx, Vy, Vz, and ωx, ωy,

ωz are the filtered end-effector linear and angular velocities, respectively.

Using the controllers gains given in (3.62), the joint velocities obtained from the

proposed velocity observer is shown in Fig. 3.5. The joint velocities obtained from

the filtering method is shown in Fig. 3.6.

It is clear that the joint velocities estimation obtained from the proposed velocity

observer is smoother than that of the filtering approach, which is critical for high

precision motion control.

To compare the quality of observed and filtered end-effector velocities in oper-

ational space, first we introduce a term called pseudo velocity tracking error, it is

defined as:

ėpseu = ẋd − ˙̂x (3.65)

where ˙̂x is either observed or filtered end-effector velocity.
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Figure 3.4: Observer controller - Tracking delay due to low cutoff frequency
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Figure 3.6: Observer controller - Joint velocities obtained from filtering method
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Figure 3.7: Observer controller - Pseudo velocity tracking errors using the velocity
observer

The plot of the pseudo velocity tracking errors between the desired and the ob-

served end-effector velocities is shown in Fig. 3.7, and that between the desired and

the filtered velocities is shown in Fig. 3.8.

From the results we can see that the pseudo velocity tracking errors ėpseu obtained

from the proposed velocity observer are much smoother than that from the filtered
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Figure 3.8: Observer controller - Pseudo velocity tracking errors using filtering method
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joint velocities, hence higher gains can be used for the proposed observer-controller

to achieve higher tracking accuracy.

Remark 5 It is interesting to make comparison between the observed velocity and

the filtered velocity here. There are two major differences between the two approaches.

First, the observed velocity is computed based on the robot dynamic model plus feed-

back terms as illustrated by (3.3) and (3.4), while the filtered velocity is obtained

purely from joint positions information as indicated by (3.64), there is no utiliza-

tion of the robot dynamic information; second, the observed velocity is obtained from

the integration of the computed end-effector acceleration ẏ in (3.4), and the inherent

feature of integration tends to suppress noise. While the filtered velocity is obtained

through differentiation as shown by (3.3), and the inherent feature of differentiation

tends to amplify noise. Hence, due to the two major differences, our proposed velocity

observer is able to obtain more accurate and less noisy velocity information. Based

on the better-quality observed velocity, we are able to choose higher gains for our

observer-controller to achieve more accurate trajectory tracking, even under paramet-

ric uncertainties and payload variations, which is verified by our experimental results.

Remark 6 From the formulation of the proposed velocity observer we know that the

estimated velocity information is obtained directly from the robot dynamic model, no

filtering process, hence there is no delay in observed velocity information. However, in

order to remove part of the noise component in the velocity information computed by

backwards difference algorithm, a low-pass filter is needed, which introduces tracking

delay as illustrated by Fig. 3.4. This is another advantage of velocity observer.
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Remark 7 The observer-controller is developed based on perfect knowledge of robot

dynamics. However, experimental results show that, in the case of modelling errors,

the whole system is still a stable system. Theoretical analysis indicates that, if a robot

dynamic model is exactly known, tracking errors will approach zero as time approached

infinity. Due to parametric uncertainties and payload variations, tracking errors will

converge to certain values, but won’t approach zero, as shown in Figs. 3.2 and 3.3.

Remark 8 In our experiments, fourth order Runge-Kutta algorithm was used to solve

the nonlinear differential equation, thereby allowing us to estimate the joint velocity

and position.

3.6 Conclusions

In this chapter, we proposed an operational space observer-controller to achieve

velocity observation and position tracking. This operational space controller is more

practical as compared with the controller used in joint space. Under parametric un-

certainties and payload variations, the proposed observer-controller is able to achieve

higher tracking accuracy than the controller using filtered velocity. The experimental

results done on PUMA 560 verify the effectiveness of the proposed nonlinear model-

based controller. Compared with the estimated velocities obtained from backwards

difference algorithm plus a lowpass filter, the observed velocities using the proposed

velocity observer are less noisy, hence high gains can be used to achieve higher tracking

accuracy. The result of the controller has been published in [68,69].

The observer-based controllers introduced in this thesis is semi-global stable, its

gains selection have some conditions. Under large degree of parametric uncertainties,

payload variation, and contact force, the controller gains need to be large enough in
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order to make the system stable. However, a robot may vibrate if the gains become

too high, hence, it may not be suitable to use the controller under large degree of

uncertainties.

47



CHAPTER 4

CONTROL ALGORITHM 2: ROBUST
OBSERVER-CONTROLLER FORMULATION

4.1 Introduction

The control objective is to further improve the performance of the observer-

controller presented in Chapter 3 so that it is more robust under parametric un-

certainties and payload variations.

4.1.1 Formulation of Robust Velocity Observer

The velocity observer discussed in Chapter 3 is modified by adding a term kix̃

in Eq (3.4) to ensure robustness in terms of parametric uncertainties and payload

variations. The following equations describe the robust velocity observer where equa-

tions in Chapter 3 are repeated and assigned new equation numbers for expository

convenience.

˙̂x = y+kx̃, y(0)= −kx̃(0) (4.1)

ẏ = Λ−1
[
F − Ψ(x, ˙̂x) ˙̂x− p(x) + kix̃

]
(4.2)
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where

x̃ = x− x̂ (4.3)

where ˙̂x, y, k, and F have been defined in Chapter 3.

ki is a positive scalar constant. Compared with Eq (3.4), the purpose of the

term kix̃ in Eq (4.2) is: when x̃ is greater than zero, it indicates that the estimated

robot end-effector position x̂ is less than the actual position, the term kix̃ becomes

positive and ẏ will increase. Consequently, ˙̂x will increase, and x̃, the error between

the estimated robot end-effector position x̂ and the actual position x will be smaller.

4.1.2 Formulation of Robust Observer-Based Controller

Based on the controller introduced in Chapter 3, an additional term −kix̃ is added

in (3.8) to formulate the the following new controller:

F = (ks + knd)ηp + we − kix̃ (4.4)

where knd is defined by (3.9).

Compared with Eq (3.8), the purpose of the term −kix̃ in Eq 4.4 is: when x̃ is

greater than zero, it indicates that the estimated robot end-effector position x̂ is less

than the actual position, the term −kix̃ becomes negative and the driving force F

will decrease. Consequently, the robot will move slowly, and the error between the

estimated robot end-effector position x̂ and the actual position x will be smaller.

The force command F will be used in the observer indicated by (4.2). And the

torque commands for driving the robot can be obtained by:

Γ = JT F
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4.2 Overall System Stability Result and Analysis

Theorem 2 Under the assumption that the exact model of a robot is known, if the

observer-controller gains satisfy the following sufficient conditions :

ks > 1/kn

k0 > ‖err(0)‖ (4.5)

the closed-loop tracking error system is stable and the errors e(t), ė(t), x̃(t), and ˙̃x(t)

are bounded where

err =
[
ηT

p eT ˙̃xT x̃T
]T ∈ <4n (4.6)

We will now present the proof using Lyapunov stability analysis. To determine

the stability of the overall closed-loop control system, we use the following Lyapunov

function.

V = V0 + V1 + V2 (4.7)

where the three sub-Lyapunov function V0, V1, and V2 are defined as:

V0 =
1

2
˙̃xT Λ(x) ˙̃x +

1

2
x̃T kix̃ (4.8)

V1 =
1

2
eT e (4.9)

V2 =
1

2
ηT

p Λ(x)ηp (4.10)

V̇ can be obtained by:

V̇ = V̇0 + V̇1 + V̇2 (4.11)
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4.2.1 Lyapunov Function for Observation Error x̃ and ˙̃x

To form the bound of V̇0, first, take the time derivative of (4.1) and then substitute

(4.2) into the resulting expression to yield:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x)− kΛ(x) ˙̃x− kix̃ = F (4.12)

where the velocity observation error ˙̃x is obtained by differentiating (4.3) with respect

to time:

˙̃x = ẋ− ˙̂x (4.13)

Subtract (4.12) from (2.2), use (A.3) and (3.7) to yield the following closed-loop

observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x + kix̃ = 0 (4.14)

Differentiate V0 along (4.14) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T
Λ̇(x) ˙̃x + ˙̃x

T
kix̃ (4.15)

Utilize (A.2) to yield:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x (4.16)

Then utilize (A.1) and (A.4) to get the upper bound of V̇0:

V̇0 ≤
(
ζc‖ ˙̂x‖ − km1

)
‖ ˙̃x‖2 (4.17)

Substitute for ˙̂x from (3.10) into (4.17), and utilize (3.2) to get the new upper

bound for V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km1

) ‖ ˙̃x‖2 (4.18)
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4.2.2 Lyapunov Function for Tracking Error e

From the form of (4.18), we are motivated to design a controller which ensures

that the ‖e‖ and ‖ηp‖ terms in (4.18) are both driven to zero; hence, we are motivated

to develop tracking error systems and the corresponding sub-Lyapunov functions to

facilitate the goal.

The position tracking error system can be formed by differentiating (3.1) with

respect to time to yield:

ė = ẋd − ẋ

Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (4.19)

Add and subtract a fictitious controller [66] to the right-hand side of (4.19) to

yield:

ė = ẋd − [ẋd + kse] + [ẋd + kse]− ˙̂x− ˙̃x (4.20)

where ks is a positive controller gain.

Simplify (4.20) by utilizing (3.10) to get:

ė = −kse + ηp − ˙̃x (4.21)

The upper bound for the time derivative of V1 along (4.21) is given by:

V̇1 ≤ −ks‖e‖2 + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (4.22)
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4.2.3 Lyapunov Function for ηp

From the form of (4.22) and the fact that the form of (4.18) indicates that ‖ ˙̃x‖ can

be driven to zero, we are motivated to design a force input controller which ensures

that ηp can be driven to zero.

The tracking error system for ηp can be formed by differentiating (3.10) with

respect to time, multiplying both sides of the resulting expression by Λ(x), and sub-

stituting the right-hand side of (4.12) for ¨̂x to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

−kix̃ + Ψ(x, ˙̂x) ˙̂x + p(x)− F (4.23)

Substitute the force input given by (4.4) into (4.23), use the definitions of we and

ηp to get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (4.24)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (4.24) in terms of ˙̃x, and

utilize (A.3) and (3.7) to yield:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(ks + knd)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (4.25)

In section 4.2, V2 was defined as:

V2 =
1

2
ηT

p Λ(x)ηp
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Differentiate V2 along (4.25), and utilize (A.2) to get:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (4.26)

From (4.26), utilize (A.1) and (A.4), we can obtain the following upper bound for

V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖2 + (k + ks)m2‖‖ηp‖ ˙̃x‖

+ζc‖ηp‖2‖ ˙̃x‖ (4.27)

4.2.4 Overall System Stability Analysis

Use the upper bound of V̇0, V̇1 and V̇2, and utilize (3.6), (3.9), and (4.6), we can

form the upper bound on V̇ :

V̇ ≤ −ks ‖e‖2 − ks

∥∥ηp

∥∥2 − ks

∥∥∥∥
·
x̃

∥∥∥∥
2

+
[∥∥ηp

∥∥ (‖e‖ − 2kn

∥∥ηp

∥∥)]

+

[∥∥∥∥
·
x̃

∥∥∥∥
(
‖e‖ − 2kn

∥∥∥∥
·
x̃

∥∥∥∥
)]

+

[
(k + ks) m2

∥∥ηp

∥∥
(∥∥∥∥

·
x̃

∥∥∥∥− (k + ks) m2kn

∥∥ηp

∥∥
)]

+

(
ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2

− ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2
)

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

)

(4.28)

where we have used the fact derived from (4.6) that ‖err‖ ≥ ‖e‖, ‖η‖, and ‖ ˙̃x‖.

By applying the nonlinear damping tool [66] on the three bracketed terms in

(4.28), a new upper bound on V̇ can be formed as:

V̇ ≤ −(ks − 1/kn) ‖e‖2 − ks

∥∥ηp

∥∥2 − (ks − 1/kn)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (4.29)
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From (4.29), it is easy to get:

V̇ ≤ −(ks − 1/kn)(‖e‖2 +
∥∥ηp

∥∥2
+

∥∥∥∥
·
x̃

∥∥∥∥
2

)

for ‖err‖ ≤ k0

(4.30)

where err was defined in (4.6).

From (4.30) we can see that, if ks > 1/kn and k0 ≥ ||err(0)||, we can get:

V̇ ≤ 0 (4.31)

From (4.31), we can get the conclusion that, the position tracking errors e, position

estimation errors x̃, velocity estimation errors
.

x̃, and the observed filtered tracking

error signal ηp of the observer-controller are bounded. Furthermore, the end-effector

velocity tracking error is also bounded. In fact, after adding and subtracting ẋ to the

right-hand side of (3.10) and rearranging the terms, we can formulate the following

inequality:

‖ .
e‖ = ‖ẋd − ẋ‖ ≤

∥∥ηp

∥∥ + ks ‖e‖+ ‖ .
x‖ (4.32)

Since each of the terms on the right-hand side of the above equation is bounded,

‖ .
e‖ is also bounded. This yields the result indicated by Theorem 2.

4.3 Experimental Results

The experiments were performed using PUMA 560 robot.

Our task is to move the end-effector in XYZ direction with the following desired

position trajectory while maintaining the initial end-effector orientation all the time.

pxd
= px0 + 50.0 sin(0.2πt)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(0.2πt)

(
1− e−0.05t3

)
mm

pzd
= pz0 + 50.0 cos(0.2πt)

(
1− e−0.05t3

)
mm

xd =
[

pxd
pyd

pzd

]T

(4.33)
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where (px0 , py0 , pz0) is the initial position vector of the robot. The exponential terms

are to ensure that the initial desired velocities and accelerations are all zeros.

In our experiments, we use the combination of (3.45) and (4.2) to form our velocity

observer, and use (3.49) to form the position and orientation estimation error.

4.3.1 Experimental Results under Parametric Uncertainty

For our experiments, in order to make comparison with the controller proposed in

Chapter 3, the same gain values for knd, k, and ks were used, ki was selected as:

ki = diag{2000, 2000, 2000, 3000, 3000, 3000} (4.34)

all these gains are in the unit of 1/s.

In order to make fair comparison, we also implemented the controller indicated

in Section 4.1.2, but the observed velocities
.

x̂ were replaced by that obtained from

backwards difference plus a low pass filter with cutoff frequency of 100Hz. We called

it the backwards difference controller. During the experiments, we found that, due

to large inherent noise ripple of filtered velocity, the controller gains values indicated

in (4.34) were too high for the backwards difference controller, they caused the robot

to vibrate. In order to reduce vibration, the possibly highest gains were selected as

listed in (4.35):

knd = diag{20, 20, 20, 12, 12, 12}
ks = diag{90, 90, 90, 30, 30, 30} (4.35)

The experimental results are shown in Fig. 4.1 and Table 4.1. Where ROC

stands for the observer-controller, and BD for the backwards difference controller.

The position tracking errors ex, ey, and ez, orientation tracking errors eφx
, eφy

, and

eφz
are defined in (3.52).
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Figure 4.1: Robust observer controller - Tracking errors under parametric uncertainty

The results show that, using the proposed observer-controller, the maximum po-

sition and orientation tracking errors are about 1.7 to 4.7 times smaller than that of

the backwards difference controller.

4.3.2 Experimental Results under Payload Variations

To examine the performance of the proposed observer-controller and the back-

wards difference controller under payload variations, a payload of 1.5kg, which is
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Table 4.1: Robust observer controller - Maximum tracking errors under parametric
uncertainty

ex ey ez eφx
eφy

eφz

ROC 0.57mm 0.44mm 0.40mm 0.04o 0.03o 0.06o

BD 1.02mm 0.75mm 1.55mm 0.20o 0.14o 0.22o

Table 4.2: Robust observer controller - Maximum tracking errors under parametric
uncertainty

ex ey ez eφx
eφy

eφz

ROC 0.70mm 0.48mm 0.67mm 0.03o 0.03o 0.07o

BD 1.96mm 1.58mm 3.12mm 0.30o 0.38o 0.33o

about 60 percent of the maximum allowable payload of the robot, was attached to

the end-effector of PUMA 560. Using the same gains as listed in (4.34) and (4.35)

for the observer-controller and the backwards difference controller, respectively, the

experimental results are shown in Fig. 4.2 and Table 4.2.

The results show that, using the observer-controller, the maximum position and

orientation tracking errors are about 2.8 to 12.7 times smaller than that of the back-

wards difference controller.

Compared with the observer-controller introduced in Chapter 3, the controller

presented in this Chapter can achieve higher tracking accuracy under parametric

uncertainties and payload variations. This is due to the introduction of the two

terms kix̃, and −kix̃ in (4.2), and (4.4), respectively, as explained in Section 4.1.1.
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Figure 4.2: Robust observer controller - Tracking errors under payload variations
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4.3.3 Quality of the Observed Velocities

To exam the velocity observation quality of the proposed velocity observer, we let

the robot to follow the trajectory defined by (4.33), and at the same time, calculate

the filtered joint velocities. Using the controllers gains given in (4.34), and select the

desired trajectory as indicated by (4.33), under different frequencies of the desired

position trajectories (f = 0.1, 0.5, and 1.0Hz), the velocities in operational space

obtained from the proposed velocity observer and the filtering method are shown in

Fig. 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8, respectively.

It is clear that the velocities estimation obtained from the proposed velocity ob-

server is smoother than that of the filtering approach, which is critical for high pre-

cision motion control.

Remark 9 Based on the observer-controller presented in Chapter 3, we introduce a

gain ki in the observer-controller presented in this chapter. The gain ki is used in

both the velocity observer and the force controller to make correction to the observed

velocity and the force command based on the position estimation error. As explained

in Section 4.1.1, because of this gain, under the assumption that the dynamic model of

a robot is exactly known, the position estimation error x̃(t) can also be driven to zero.

Under system uncertainties, by adjusting ki, x̃(t) can be confined within a narrow

boundary so that the variation of the observed velocity can be much smaller, hence

the velocity observer becomes more robust.

Remark 10 In the observer-controller presented in Chapter 3, we used fourth order

Runge-Kutta algorithm to obtain robot velocity and position. First order Euler algo-

rithm is less accurate than fourth order Runge-Kutta method. However, in order to
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Figure 4.3: Robust observer controller - Velocities obtained from the velocity observer
(f=0.1Hz)
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Figure 4.4: Robust observer controller - Velocities obtained from filtering method
(f=0.1Hz)
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Figure 4.5: Robust observer controller - Velocities obtained from the velocity observer
(f=0.5Hz)
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Figure 4.6: Robust observer controller - Velocities obtained from filtering method
(f=0.5Hz)
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Figure 4.7: Robust observer controller - Velocities obtained from the velocity observer
(f=1.0Hz)

65



0 1 2
−300

−200

−100

0

100

200

300

 V
x
 (mm/s)

0 1 2
−300

−200

−100

0

100

200

300

 V
y
 (mm/s)

0 1 2
−300

−200

−100

0

100

200

300

 V
z
 (mm/s)

0 1 2
−6

−4

−2

0

2

4

6

 ω
x
 ( °/s )

Time (s)
0 1 2

−6

−4

−2

0

2

4

6

 ω
y
 ( °/s )

Time (s)
0 1 2

−6

−4

−2

0

2

4

6

 ω
z
 ( °/s )

Time (s)

Figure 4.8: Robust observer controller - Velocities obtained from filtering method
(f=1.0Hz)
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reduce computational burden, in the experiments presented in this chapter, we used

first order Euler method for velocity and position estimation and found that, the con-

troller could still achieve higher tracking accuracy. This is due to the introduction of

the two terms kix̃ in (4.2), and −kix̃ in (4.4), which produced more accurate joint

velocity and position estimation.

4.4 Conclusions

Based on the observer-controller structure proposed in Chapter 3, we developed

a robust operational space observer-controller for trajectory tracking. Experimental

results indicate that the performance of the controller is better than the controller in-

troduced in Chapter 3. In addition, compared with the estimated velocities obtained

from backwards difference algorithm used in conjunction with a lowpass filter, the

observed velocities using the proposed velocity observer are less noisy. Under para-

metric uncertainty and payload variations, the robust observer-controller can achieve

higher position tracking accuracy than the controller employing filtered velocity. The

result of the controller has been published in [70].

The controller developed in Chapter 3 has the control over three kinds of errors,

i.e. position and velocity tracking errors, plus velocity observation errors, while the

proposed controller in this chapter further improve the control performance through

gaining control over four kinds of errors, i.e. position and velocity tracking errors,

plus position and velocity observation errors.

The controller presented in this chapter can provide more accurate velocity infor-

mation than the controller in Chapter 3. However, it is also semi-global stable, hence,

it may not be suitable to use it under large degree of uncertainties.
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CHAPTER 5

CONTROL ALGORITHM 3: ADAPTIVE FRICTION
IDENTIFICATION AND COMPENSATION VIA ROBUST
OBSERVER-CONTROLLER

5.1 Introduction

An operational space controller that employs a velocity observer and a friction

adaptation law to achieve higher tracking accuracy is presented in this chapter. With-

out velocity measurements, the overall observer-controller system can achieve a semi-

global asymptotic stability for the position and velocity tracking errors, and position

and velocity estimation errors, with estimated friction coefficients converging asymp-

totically. Experimental results indicate that the proposed adaptive observer-controller

is able to achieve much higher tracking accuracy than the observer-controller without

friction compensation, which verify the effectiveness of the adaptive controller.

5.2 Adaptive Observer-Controller Formulation

Our proposed adaptive observer-controller consists of a model-based velocity ob-

server, a controller that is formulated in operational space, plus friction adaptation

law.
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5.2.1 Formulation of Operational Space Velocity Observer

Based on the observer-controller presented in Chapter 4, we introduce the friction

estimation term f̂ in (4.2) to formulate the following new velocity observer:

˙̂x = y+kx̃ (5.1)

ẏ =Λ(x)−1
[
F − Ψ(x, ˙̂x) ˙̂x− p(x)− f̂ + kix̃

]
(5.2)

where f̂ is the estimated friction term given later in (5.20). ˙̂x, y, and F have been

defined in Chapter 3, and ki defined in Chapter 4.

k is a positive scalar constant defined by:

k =
1

m1

[ζcζd + ζck0 + ζcksk0 + ks + 2kn + ζe] (5.3)

where k0, ks and kn, ζc, and ζd were defined in Chapter 3. ζe is defined in (5.9).

5.2.2 Formulation of Friction Adaptation Law

We assume that the friction term τ f in (2.5) is uncoupled among the joints, so

that

τ f = vec{τ fi
(q̇i)} ≡




τ f1(q̇1)
.
.
.

τ fn(q̇n)




(5.4)

with τ fi
(·) known scalar functions that may be determined for any given arm. Here

we have defined the vec{·} function for future use.

We assume that the viscous frictions have the form:

τ visq̇ = vec{τ visi
q̇i} (5.5)

with τ visi
constant coefficients. Then τ vis =diag{τ visi

}, a diagonal matrix with entries

τ visi
.
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The viscous friction term has the following property [71]:

‖τ visq̇‖≤ζv‖q̇‖ (5.6)

where ζv is a positive scalar.

The relationship between a robot end-effector velocity ẋ and joint velocity q̇ can

be expressed as:

ẋ = J(q)q̇

For a non-redundant robot, in the non-singular region, the joint velocity q̇ can be

obtained by:

q̇ = J−1(q)ẋ (5.7)

and from (5.7) we can get [72]:

‖q̇‖≤‖J−1‖i2‖ẋ‖

thus the following result can be obtained:

‖τ visq̇‖≤ζe‖ẋ‖ (5.8)

where ζe is defined as:

ζe = ζv‖J−1‖i2 (5.9)

We will use this property for our controller development.

Assume that the Coulomb friction has the form:

τ cousgn(q̇) = vec{τ coui
sgn(q̇i)} (5.10)

with τ coui
constant coefficients, and τ cou =diag{τ coui

}.
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The friction term τ sti exp(−τ decq̇
2)sgn(q̇) in (2.5) is the combination of static

friction and Stribeck effect, and we assume that it can be written in the following

form [60]:

τ sti exp(−τ decq̇
2)sgn(q̇) = vec{τ stii exp(−τ deci

q̇2
i )sgn(q̇i)} (5.11)

with τ stii and τ deci
constant coefficients, and τ sti =diag{τ stii}, τ dec =diag{τ deci

}.

The joint space robot friction model (2.5) can be written in the following linear-

in-the-parameters form:

τ f = Wj(q̇)θ (5.12)

where Wj(q̇) is the n× 3n regression vector given by:

Wj(q̇) =
[

wj1(q̇) wj2(q̇) wj3(q̇)
]

wj1(q̇) = diag(q̇)
wj2(q̇) = diag(sgn(q̇))
wj3(q̇) = diag(sgn(q̇) exp(−τ decq̇

2))

(5.13)

and θ is the 3n× 1 vector of constant parameters defined as:

θ =
[

vecT{τ visi
} vecT{τ coui

} vecT{τ stii}
]T

(5.14)

Here we assume that the coefficients τ vis, τ cou and τ sti are unknown constants,

but the Stribeck parameters τ dec are assumed to be known.

The friction parameter estimate vector θ̂ is updated using the following adaptation

algorithm:

˙̂
θ = −KadW

T
j ( ˙̂q) ˙̃q (5.15)

where Kad is a 3n × 3n diagonal, positive-definite, adaptation gain matrix; the

joint velocity observation error ˙̃q is defined as the difference between the actual joint

velocity and the observed joint velocity:

˙̃q = q̇ − ˙̂q (5.16)
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In the non-singular region of a robot, the observed joint velocity ˙̂q can be obtained

by:

˙̂q = J−1(q) ˙̂x (5.17)

where the observed end-effector velocity ˙̂x is calculated by ( 5.1).

Wj( ˙̂q) is the n× 3n regression vector given by:

Wj( ˙̂q) =
[

ŵj1( ˙̂q) ŵj2( ˙̂q) ŵj3( ˙̂q)
]

ŵj1( ˙̂q) = diag( ˙̂q)

ŵj2( ˙̂q) = diag(sgn( ˙̂q))

ŵj3( ˙̂q) = diag(sgn( ˙̂q) exp(−τ dec
˙̂q
2
))

(5.18)

and the estimated joint frictions are obtained by:

τ̂ f = Wj( ˙̂q)θ̂ (5.19)

From (5.19), the estimated frictions in operational space can be obtained by:

f̂ = J−T τ̂ f (5.20)

5.2.3 Formulation of Operational Space Controller

By using the estimated velocity ˙̂x proposed in section 5.2.1, the following model-

based controller is formulated to generate the required driving force:

F = (ks + knd)ηp + we − kix̃ (5.21)

where knd is a positive controller gain defined as:

knd = 2kn + ζck0 + (ksm2 + km2)
2kn (5.22)

The n× 1 observed filtered tracking error signal ηp is defined as:

ηp = ẋd + kse− ˙̂x (5.23)
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and the n× 1 auxiliary vector we is defined as:

we = Λ(x)[ẍd + ks(ẋd − ˙̂x)] + Ψ(x, ˙̂x)(ẋd + kse) + p(x) + f̂ (5.24)

where the n× 1 end-effector position and orientation tracking error e is defined as:

e = xd − x (5.25)

The force command F will be used in the observer indicated by (5.2). And the

torque commands for driving the robot can be obtained by:

Γ = JT (q)F

5.3 Overall System Stability Result and Analysis

Theorem 3 Under the assumption that the exact model of a robot except friction is

known, if the observer-controller gains satisfy the following sufficient conditions :

ks > 1/kn + ηe

k0 > ‖err(0)‖ (5.26)

the closed-loop tracking error system is stable and the errors e(t), ė(t), x̃(t), ˙̃x(t), and

(θ̂(t)− θ) are bounded

where

err =
[
ηT

p eT ˙̃xT x̃T
]T ∈ <4n (5.27)

We will now present the stability proof using Lyapunov stability analysis. To de-

termine the stability of the overall closed-loop control system, we define the following

Lyapunov function:

V = V0 + V1 + V2 (5.28)
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where the three sub-Lyapunov functions V0, V1, and V2 are defined as:

V0 =
1

2
˙̃xT Λ(x) ˙̃x +

1

2
x̃T kix̃ +

1

2
θ̃

T
K−1

ad θ̃ (5.29)

where θ̃ is the difference between the actual θ and the estimated θ̂, and the velocity

observation error ˙̃x is defined as the difference between the actual end-effector velocity

ẋ and the observed end-effector velocity ˙̂x, it is obtained by differentiating (3.5) with

respect to time:

˙̃x = ẋ− ˙̂x (5.30)

V1 =
1

2
eT e (5.31)

V2 =
1

2
ηT

p Λ(x)ηp (5.32)

Hence, V̇ can be obtained by:

V̇ = V̇0 + V̇1 + V̇2 (5.33)

We will formulate the bound of V̇0, V̇1 and V̇2 separately, and then combine them

together to get the bound of V̇ .

5.3.1 Lyapunov Function for Observation Error x̃, ˙̃x and θ̃

V0 is defined in (5.29). To form the bound of V̇0, first, take the time derivative of

(5.1) and then substitute (5.2) into the resulting expression to yield:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − kΛ(x) ˙̃x− kix̃ = F (5.34)

Subtract (5.34) from (2.7), use (A.3) and (5.30) to yield the following closed-loop

observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x + kix̃ + f − f̂ = 0 (5.35)
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Differentiate V0 along (5.35) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T .

Λ(x) ˙̃x + ˙̃x
T
kix̃− ˙̃x

T
(f − f̂)

(5.36)

Utilizing (A.2) to get:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x− ˙̃x

T
(f − f̂) (5.37)

Then utilize (A.1) and (A.4) to get the upper bound of V̇0:

V̇0 ≤
(
ζc‖ ˙̂x‖ − km1

)
‖ ˙̃x‖2+ζe‖ ˙̃x‖2 (5.38)

Substitute for ˙̂x from (5.23) into (5.38), and utilize (3.2) to get the new upper

bound for V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km1

) ‖ ˙̃x‖2+ζe‖ ˙̃x‖2 (5.39)

5.3.2 Lyapunov Function for Tracking Error e

The evolution of the position tracking error with time can be derived by differen-

tiating (5.25) with respect to time to yield:

ė = ẋd − ẋ

Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (5.40)

Simplify (5.40) by utilizing (5.23) to get:

ė = −kse + ηp − ˙̃x (5.41)

V1 is defined in (5.31), and the upper bound for the time derivative of V1 along

(5.41) is given by:

V̇1 ≤ −ks‖e‖2 + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (5.42)
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5.3.3 Lyapunov Function for ηp

The evolution of ηp with time can be derived by differentiating (5.23) with respect

to time, multiplying both sides of the resulting expression by Λ(x), and substituting

the expression from (5.34) for ¨̂x to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

−kix̃ + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − F (5.43)

Substitute the force input given by (5.21) into (5.43), use the definitions of we and

ηp to get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (5.44)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (5.44) in terms of ˙̃x, and

utilize (A.3) and (5.30) to yield:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(k + ks)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (5.45)

V2 is defined in (5.32). Differentiating V2 along (5.45) and utilizing (A.2) yields:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (5.46)

From (5.46), and using (A.1) and (A.4), we can obtain the following upper bound

for V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖2 + (k + ks)m2‖ηp‖‖ ˙̃x‖

+ζc‖ηp‖2‖ ˙̃x‖ (5.47)
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5.3.4 Overall System Stability Analysis

Use the upper bound of V̇0, V̇1 and V̇2, and utilize (5.3), (5.22), and (5.27), we can

form the upper bound on V̇ :

V̇ ≤ −ks ‖e‖2 − ks

∥∥ηp

∥∥2 − ks

∥∥∥∥
·
x̃

∥∥∥∥
2

+
∥∥ηp

∥∥ (‖e‖ − 2kn

∥∥ηp

∥∥)
+

∥∥∥∥
·
x̃

∥∥∥∥
(
‖e‖ − 2kn

∥∥∥∥
·
x̃

∥∥∥∥
)

+ (k + ks) m2

∥∥ηp

∥∥
(∥∥∥∥

·
x̃

∥∥∥∥− (k + ks) m2kn

∥∥ηp

∥∥
)

+

(
ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2

− ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2
)

+ζe‖ ˙̃x‖2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

)

(5.48)

where we have used the fact derived from (5.27) that ‖err‖ ≥ ‖e‖, ‖η‖, and ‖ ˙̃x‖.

By applying the nonlinear damping tool [66] on the terms in the second and third

lines on the right hand side of (5.48), a new upper bound on V̇ can be formed as:

V̇ ≤ −(ks − 1
kn

) ‖e‖2 − ks

∥∥ηp

∥∥2 − (ks − 1
kn
− ζe)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (5.49)

From (5.49) we can see that, if ks > 1/kn + ζe and k0 ≥ ||err||, we can get:

V̇ ≤ 0 (5.50)

From (5.50), we can get the conclusion that, friction coefficients estimation error

θ̃, position tracking errors e, position estimation errors x̃, velocity estimation errors
.

x̃, observed filtered tracking error signal ηp of the observer-controller are all bounded.

Furthermore, the end-effector velocity tracking error is also bounded. In fact, after

adding and subtracting
.
x to the right-hand side of (5.23) and rearranging the terms,
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we can formulate the following inequality:

‖ .
e‖ = ‖ẋd − .

x‖ ≤
∥∥ηp

∥∥ + ks ‖e‖+ ‖ .
x‖ (5.51)

Since each of the terms on the right-hand side of the above equation is bounded,

‖ .
e‖ is also bounded. This yields the result indicated by Theorem 3.

5.4 Implementation of Friction Adaptation Law

The friction adaptation law indicated by (5.15) consists of the actual joint velocity

and the observed joint velocity. Since we assume that the actual joint velocity is

unknown, in order to implement this friction adaptation law, both sides of (5.15) are

integrated, giving:

θ̂(t) = θ̂(t−∆t)−Kad

t∫

t−∆t

W T
j (

.

q̂)(
dq

dt
−

.

q̂)dt (5.52)

where ∆t represents the sampling time of the system.

In our experiment, the sampling time ∆t is selected to be a reasonably small value

of 1ms. Based on this condition, from (5.52) we can get the following form:

θ̂(t) = θ̂(t−∆t)−KadW
T
j (

.

q̂(t−∆t))Dq

Dq = q(t)− q(t−∆t)−
.

q̂(t−∆t)∆t
(5.53)

where q̂ is obtained from (5.7).

We will use (5.53) as our friction adaptation algorithm.

5.5 Experimental Results

The experiments were performed using PUMA 560 robot, and the sampling time

is selected to be 1ms.
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The defined trajectory is to move the end-effector in XYZ direction with the

desired position trajectory indicated by (5.54), while maintaining the initial end-

effector orientation constant all the time.

pxd
= px0 + 50.0 sin(0.4πt)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(0.4πft)

(
1− e−0.05t3

)
mm

pzd
= pz0 + 50.0 cos(0.4πft)

(
1− e−0.05t3

)
mm

(5.54)

where px0 , py0 and pz0 are the initial positions of the robot. The exponential terms

are to ensure that the initial desired velocities and accelerations are all zeros.

The controller gains were selected as diagonal gains matrices as following:

knd = diag{120, 120, 120, 35, 35, 35}
k = diag{108, 108, 108, 32, 32, 32}
ks = diag{97, 97, 97, 30, 30, 30}
ki = diag{2000, 2000, 2000, 3000, 3000, 3000}

(5.55)

All the diagonal terms of the 18× 18 friction adaptation gains Kad were selected

to be 500, all the diagonal terms of τ dec were selected to be 1, and all the initial

estimated friction coefficients are set to zeros.

5.5.1 Friction Identification and Compensation Performance

Using the trajectory defined by (5.54), the experimental result is shown in Figs.

5.1, 5.3, 5.2, and 5.4. Figs. 5.1 and 5.2 show the initial tracking errors and the

identified friction coefficients when the robot just start to move, and Figs. 5.3 and

5.4 shows the parameters when friction adaptation algorithm is activated for about

two minutes, respectively. Where Ji stands for Joint i, and ex, ey, and ez are the

position tracking errors along X, Y, and Z axis, and eφx
, eφy

, and eφz
are the orientation

tracking errors about X, Y, and Z axis, respectively.

Tables 5.1 and 5.2 show the tracking errors and the identified friction coefficients

after the robot ran for about two minutes.
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Figure 5.1: Adaptive friction identification and compensation - Initial tracking errors
with adaptive friction compensation

Table 5.1: Adaptive friction identification and compensation - Maximum tracking
errors with adaptive friction compensation

ex ey ez eφx
eφy

eφz

0.37mm 0.44mm 0.27mm 0.06o 0.04o 0.06o
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Figure 5.2: Adaptive friction identification and compensation - Initial identified joints
friction coefficients

Table 5.2: Adaptive friction identification and compensation - Identified friction co-
efficients of each joint

J1 J2 J3 J4 J5 J6

τ visi
(N.m.s/rad) 5.8 3.7 6.0 0.1 1.9 0.7

τ coui
(N.m) 4.9 4.8 3.0 1.0 0.6 1.2

τ stii (N.m) 4.1 4.3 0.6 1.5 0.4 1.0
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Figure 5.3: Adaptive friction identification and compensation - Tracking errors with
adaptive friction compensation
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Figure 5.4: Adaptive friction identification and compensation - Final identified joints
friction coefficients
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Figure 5.5: Adaptive friction identification and compensation - Tracking errors with-
out friction compensation

Under the same conditions, using the same controllers gains listed in (5.55) but

without friction compensation, the result is shown in Fig. 5.5 and Table 5.3.

The results indicate that the tracking errors of the controllers with adaptive fric-

tion compensation is about 2 to 5 times smaller than the controller without friction

compensation, which verify the effectiveness of the proposed adaptive controller.
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Table 5.3: Adaptive friction identification and compensation - Maximum tracking
errors without friction compensation

ex ey ez eφx
eφy

eφz

1.84mm 1.58mm 1.30mm 0.11o 0.09o 0.19o

5.6 Conclusions

Based on the observer-controller presented in Chapter 4, in this chapter, we pro-

pose an operational space observer-controller with adaptive friction compensation

capability. The friction adaptation algorithm is designed to make use of the merits of

the “cleaner” observed velocity to achieve better performance. Experimental results

using PUMA 560 indicate that the proposed adaptive controller is able to achieve

higher tracking accuracy than the observer-controller without friction compensation,

which verifies the effectiveness of the control algorithm. The result of the controller

has been published in [73].

The main contributions of this controller is that, we have successfully incorporated

adaptive friction compensation law into the observer-controller presented in Chapter

4 to achieve friction identification and compensation.

When developing this adaptive controllers, we assumed that we possessed exact

knowledge of a robot dynamic model except friction. However, when a robot model

is not accurate enough, the accuracy of friction identification will be affected.
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CHAPTER 6

CONTROL ALGORITHM 4: ADAPTIVE FRICTION
IDENTIFICATION AND COMPENSATION VIA
FILTERED VELOCITY

6.1 Introduction

There are many ways of compensating joint frictions. In this chapter, we introduce

an adaptive controller that employs a friction adaptation law. Different from the

adaptive controller presented in Chapter 5, which used observed velocity information,

the controller in this chapter makes use of filtered velocity. The overall adaptive

control system can achieve a global asymptotical stability for the position and velocity

tracking errors in the presence of friction coefficients uncertainties. Experimental

results indicate that the proposed adaptive controller is able to achieve much smaller

tracking errors than the controller without friction compensation.

6.2 Adaptive Controller Formulation

The control objective is to achieve position/velocity tracking despite the uncer-

tainty associated with the parameter vector θ defined in (5.14).
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The n × 1 end-effector position and orientation tracking error e is defined as the

difference between the desired end-effector position and orientation xd, and the actual

end-effector position and orientation x:

e = xd − x (6.1)

Let the ∞-norm (denoted by ‖ · ‖∞) of f(t) be defined as:

‖f(t)‖∞ = sup
t
| f(t) | (6.2)

If ‖f(t)‖∞ < ∞, then we say that the function f(t) belongs to the subspace £∞

of the space of all possible functions (i.e., f(t) ∈ £∞).

The desired end-effector position and orientation xd must be constructed to ensure

that xd(t), ẋd(t), and ẍd(t) ∈ £∞.

We define ė as the difference between the desired end-effector velocity ẋd and the

filtered end-effector velocity ˙̂x:

ė = ẋd − ˙̂x (6.3)

The filtered end-effector velocity ˙̂x is computed from the filtered joint velocity ˙̂q

by forward kinematics of the robot as follows:

˙̂x = J(q) ˙̂q

where ˙̂q is the estimated joint velocity obtained from backwards difference algo-

rithm used in conjunction with a low pass filter.

The filtered tracking error r is defined as:

r = ė + Kfe (6.4)

where Kf is a n× n diagonal, positive-definite, and constant control gain matrix.
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6.2.1 Formulation of Friction Adaptation Law

The friction parameter estimate vector θ̂ is updated using the following adaptation

algorithm:

˙̂
θ = KadW

T
j ( ˙̂q)J−1(q)r (6.5)

where r is defined by (6.4), and J−1(q) is the inverse of the basic Jacobian of a

robot. We assume that a robot works in a non-singular region so that J−1(q) exists.

Kad is a 3n× 3n diagonal, positive-definite adaptation gain matrix, and Wj( ˙̂q) is

the n× 3n regression vector given by:

Wj( ˙̂q) =
[

ŵj1( ˙̂q) ŵj2( ˙̂q) ŵj3( ˙̂q)
]

ŵj1( ˙̂q) = diag( ˙̂q)

ŵj2( ˙̂q) = diag(sgn( ˙̂q))

ŵj3( ˙̂q) = diag(sgn( ˙̂q) exp(−τ dec
˙̂q
2
))

(6.6)

The estimated joint frictions can be obtained by:

τ̂ f = Wj( ˙̂q)θ̂ (6.7)

From (6.7), the estimated frictions in operational space can be obtained by:

f̂f = J−T τ̂ f (6.8)

6.2.2 Formulation of Operational Space Controller

By using the estimated velocity ˙̂x, the model-based controller is formulated to

generate the required driving force:

F = Λ(x)[ẍd + Kf ė] + kΛ(x)r

+Ψ(x, ˙̂x)( ˙̂x + r) + p(x) + f̂ f

(6.9)

where k is a positive constant gain.

The torque commands for driving the robot can be obtained by:

Γ = JT F
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6.3 Overall System Stability Analysis

We will now present the proof using Lyapunov stability analysis. To determine the

stability of the overall closed-loop control system, we define the following Lyapunov

function.

V =
1

2
rT Λ(x)r +

1

2
θ̃

T
K−1

ad θ̃ (6.10)

where θ̃ is defined as the difference between the actual θ and the estimated θ̂:

θ̃ = θ − θ̂ (6.11)

In order to facilitate the stability analysis, we assume that θ remains unchanged

over a certain period of time 1. Differentiating (6.11) with respect to time to get:

˙̃θ = − ˙̂
θ

Differentiating (6.10) with respect to time:

V̇ = rT Λ(x)ṙ +
1

2
rT Λ̇(x)r + θ̃

T
K−1

ad
˙̃θ (6.12)

From (6.4) we can get:

Λ(x)ṙ = Λ(x)[ẍd + Kf ė] + Ψ(x, ˙̂x) ˙̂x

+p(x)+W T
j ( ˙̂q)J−1θ − F

(6.13)

Substitute (2.3) into (6.13) to yield:

Λ(x)ṙ = −Ψ(x, ˙̂x)r − kΛ(x)r+W T
j ( ˙̂q)J−1θ̃ (6.14)

Substitute (6.14) into (6.12) and cancel out some terms gives:

V̇ = −krT Λ(x)r+θ̃
T
(W T

j ( ˙̂q)J−1r + K−1
ad

˙̃θ) (6.15)

1This assumption is realistic since friction characteristics are in general constant in longer periods
of time compared to the time the adaptation is achieved. Changes in friction characteristics happen
over much longer periods of time
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Selecting the adaptive update rule as indicated by (6.5), finally we can get:

V̇ = −krT Λ(x)r (6.16)

From (6.16) it is clear that V̇ (t) is a non-positive function; hence, we know that

V (t) is either decreasing or constant. Since V (t) is a nonnegative function, we can

conclude that V (t) ∈ £∞.

Using the fact that V (t) ∈ £∞ and that Λ(x) is a positive-definite matrix, we can

state that r(t) ∈ £∞ and θ̃(t) ∈ £∞.

From the definition of r given in (6.4), we can use the arguments from standard

linear control theory to state that e and ė are bounded; hence, owing to the bound-

edness of xd(t) and ẋd(t), we can conclude that x(t), ẋ(t) ∈ £∞.

Since θ̃(t) ∈ £∞ and θ is assumed to be a constant vector over a certain period

of time, it is clear that θ̂(t) ∈ £∞.

From the above boundness statements and the fact that ẍd is assumed bounded,

we can see that ṙ is bounded, hence V̈ obtained by differentiating (6.16) is bounded.

Since V is lower bounded, V̇ is negative semi-definite, and V̈ is bounded, we can

use Barbalat’s lemma [71] to state that

lim
t→∞

V̇ (t) = 0

which means that by the Rayleigh-Ritz Throrem [71]

lim
t→∞

r(t) = 0 (6.17)

Note that (6.4) is a stable first-order differential equation driven by the input

r(t), therefore, using linear control theory and the result indicated by (6.17), we can

conclude that

lim
t→∞

e(t) = 0, and lim
t→∞

ė(t) = 0
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This results indicates that the tracking errors e(t) and ė(t) are global asymptoti-

cally stable.

6.4 Experimental Results

The experiments were conducted on PUMA 560 robot, and the sampling time

is selected to be 1ms. The defined trajectory is to move the end-effector in XYZ

direction with the desired position trajectory indicated by (6.18), while maintaining

the initial end-effector orientation constant all the time.

pxd
= px0 + 50.0 sin(2πft)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(2πft)

(
1− e−0.05t3

)
mm

pzd
= pz0 + 50.0 cos(2πft)

(
1− e−0.05t3

)
mm

f = 0.2Hz

(6.18)

where px0 , py0 and pz0 are the initial positions of the robot. The exponential terms

are to ensure that the initial desired velocities and accelerations are all zeros.

6.4.1 Experimental Result without Friction Adaptation

First, we show the experimental result without friction compensation. The diag-

onal controller gain Kf in (6.9) was selected as follows:

Kf = diag{32, 37, 43, 53, 77, 50} (6.19)

k was selected to be 50, and f̂f in (6.8) was set to zero so that no friction com-

pensation is involved.

Using the trajectory defined by (6.18), the experimental result is shown in Fig.

6.1 and Table 6.1. Where ex, ey, and ez stand for the position tracking errors along

X, Y, and Z axis, and eφx
, eφy

, and eφz
for the orientation tracking errors about X, Y,

and Z axis, respectively.
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Figure 6.1: Adaptive friction identification and compensation via filtered velocity -
Tracking errors without friction compensation

Table 6.1: Adaptive friction identification and compensation via filtered velocity -
Tracking errors without friction compensation

ex ey ez eφx
eφy

eφz

1.88mm 1.73mm 1.90mm 0.18o 0.18o 0.19o
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Table 6.2: Adaptive friction identification and compensation via filtered velocity -
Tracking errors with adaptive friction compensation

ex ey ez eφx
eφy

eφz

0.65mm 0.47mm 0.40mm 0.09o 0.04o 0.07o

Table 6.3: Adaptive friction identification and compensation via filtered velocity -
Identified friction coefficients of each joint (Ji)

J1 J2 J3 J4 J5 J6

τ visi
(N.m.s/rad) 0.2 0.4 0.6 0.01 0.01 0.01

τ coui
(N.m) 4.0 5.3 3.0 0.8 0.4 0.5

τ stii (N.m) 4.0 5.0 2.0 0.8 0.5 0.6

6.4.2 Experimental Result with Friction Adaptation

The diagonal controller gain Kf was selected to be the same as indicated in (6.19),

k was also selected to be 50, all the diagonal terms of τ dec in (6.6) were selected to

be 1, and all the initial estimated friction coefficients are set to zeros.

Using the same trajectory defined by (6.18), the experimental result is shown

in Figs. 6.2 and 6.3, where tracking errors are shown for the first 10 seconds and

after 88 seconds, respectively. It is clear that the position and orientation tracking

errors have been greatly reduced because of the introduction of the adaptive friction

compensation.

Tables 6.2 and 6.3 show the tracking errors and the identified friction coefficients

after the robot ran for about 90 seconds.

93



0 2 4 6 8 10
−4

−2

0

2

4
Pos tracking errors (mm)

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2
Ori tracking errors ( ° )

Time (s)

X 

Y 

Z 

X 

Z Y 

Figure 6.2: Adaptive friction identification and compensation via filtered velocity -
Initial tracking errors of the system
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Figure 6.3: Adaptive friction identification and compensation via filtered velocity -
Tracking errors with friction compensation
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The results indicate that the tracking errors of the controllers with adaptive fric-

tion compensation is about 3 to 5 times smaller than the controller without friction

compensation.

Remark 11 It is noted that we do not include stiction term in the friction model,

this is because the estimated joint velocities are obtained from backwards difference

algorithm, and the chance of obtaining zero velocity is very little. Hence, even if we

include the stiction term in the friction adaptation algorithm, it will get little chance

to be updated, and the friction identification process will take a long time.

6.5 Conclusions

In this chapter, we propose an operational space controller with adaptive friction

compensation capability to achieve better tracking performance. The errors between

actual joint frictions and estimated joint frictions are bounded. Experimental results

using PUMA 560 indicate that, the proposed adaptive controller is able to achieve

much higher tracking accuracy that the one without friction compensation. The result

of the controller has been published in [74].

The improvement of this controller over the one used for SISO system presented

in [60] are: first, the new controller is designed to be used for n degree-of-freedom

robot manipulators; second, the controller has been redeveloped for operational space

instead of joint space control; and third, two additional terms have been added to

take into consideration of the centrifugal and Coriolis force, and the gravitational

effect of a robot manipulator.

Compared with the adaptive friction compensation controller presented in Chapter

5, the tracking errors of the controller proposed in this chapter is slightly larger. The
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reason being that the filtered velocity is less accurate than the observed velocity, as

indicated in Chapters 3 and 4. However, due to its global stability nature, the gains

selection of the adaptive controller using filtered velocity is easier. In addition, its

controller is simpler than the one introduced in Chapter 5.

97



CHAPTER 7

CONTROL ALGORITHM 5: ADAPTIVE FRICTION
IDENTIFICATION AND COMPENSATION USING
BOTH OBSERVED AND DESIRED VELOCITY

7.1 Introduction

Based on the adaptive observer-controller presented in Chapter 6, we developed a

new adaptive controller in this chapter. Since desired velocity is not contaminated by

noise, the friction adaptation will also become smoother if we use desired instead of

filtered velocity information in our friction adaptation law. Based on this motivation,

our proposed friction adaptation law is formulated by utilizing both observed and

desired velocity information. Without velocity measurements, the overall observer-

controller system can achieve a semi-global asymptotic stability for the position and

velocity tracking errors, and position and velocity estimation errors, with estimated

friction coefficients converging asymptotically. Experimental results indicate that the

proposed adaptive observer-controller is able to achieve much higher tracking accuracy

than the observer-controller without friction compensation. It can also achieve higher

tracking accuracy than the adaptive controller using filtered velocity, which verify the

effectiveness of the controller proposed in this chapter.
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7.2 Adaptive Observer-Controller Formulation

Similar to the adaptive controller structure in Chapter 5, our proposed adaptive

observer-controller in this chapter also consists of a model-based velocity observer, a

controller that is formulated in operational space, plus friction adaptation law.

7.2.1 Formulation of Robust Velocity Observer

The velocity observer used in this chapter has the same structure as the one

in Chapter 5. The equations are repeated and assigned new equation numbers for

expository convenience:

˙̂x = y+kx̃ (7.1)

ẏ =Λ(x)−1
[
F − Ψ(x, ˙̂x) ˙̂x− p(x)− f̂ + kix̃

]
(7.2)

where

x̃ = x− x̂ (7.3)

where f̂ has been defined in (5.20). ˙̂x, y, and F defined in Chapter 3, and ki defined

in Chapter 4.

k is a positive scalar constant defined by:

k =
1

m1

[
ζcζd + ζck0 + ζcksk0 + ks + 2kn + k2

sζ
2
f + ζ2

f + ζf

]
(7.4)

where k0, ks and kn, ζc, and ζd were defined in Chapter 3. ζe is defined in (5.9), ζf

defined in (7.7).

7.2.2 Formulation of Friction Adaptation Law

We still use the same formula for joint friction as defined by (5.4).
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We assume that the viscous frictions have the form:

τ visq̇ = vec{τ visi
q̇i} (7.5)

with τ visi
constant coefficients. Then τ vis =diag{τ visi

}, a diagonal matrix with entries

τ visi
.

The corresponding operational space viscous friction fvis can be obtained by:

fvis = J−T τ vis (7.6)

The operational space viscous friction term fvis has the following property [71]:

‖fvisẋ‖≤ζf‖ẋ‖ (7.7)

We will use this property for our controller development.

θ is the 3n× 1 vector of constant parameters defined in Chapter 5 and repeated

here:

θ =
[

vecT{τ visi
} vecT{τ coui

} vecT{τ stii}
]T

(7.8)

The friction parameter estimate vector θ̂ is updated using the following adaptation

algorithm:

˙̂
θ = −KadWj( ˙̂q, ˙̂qd) ˙̃q (7.9)

where Kad and ˙̃q were defined in Chapter 5, and Wj( ˙̂q, ˙̂qd) is the n × 3n regression

vector given by:

Wj( ˙̂q, ˙̂qd) =
[

ŵj1( ˙̂qd) ŵj2( ˙̂q) ŵj3( ˙̂q)
]

ŵj1( ˙̂qd) = diag( ˙̂qd)

ŵj2( ˙̂q) = diag(sgn( ˙̂q))

ŵj3( ˙̂q) = diag(sgn( ˙̂q) exp(−τ dec
˙̂q
2
))

(7.10)

From (5.15) in Chapter 5, we know that
˙̂
θ is the function of ˙̂q. If ˙̂q is contaminated

with lesser noise,
˙̂
θ will become smoother. Since we can define a motion trajectory

100



that is smooth, there will be no noise component in desired velocity. To make use of

the merit of no-noise desired velocity, we develop a friction adaptation law as shown

by Equ 7.9, with the regression vector the function of both observed and desired

velocity.

The estimated joint frictions are then obtained by:

τ̂ f = Wj( ˙̂q, ˙̂qd)θ̂ (7.11)

From (7.11), the estimated frictions in operational space can be obtained by:

f̂ = J−T τ̂ f (7.12)

7.2.3 Formulation of Operational Space Controller

By using the estimated velocity ˙̂x proposed in Section 7.2.1, the following model-

based controller is formulated to generate the required driving force:

F = (ks + knd)ηp + we − kix̃ (7.13)

where knd is a positive controller gain defined as:

knd = 2kn + ζck0 + (ksm2 + km2)
2kn (7.14)

The n× 1 observed filtered tracking error signal ηp is defined as:

ηp = ẋd + kse− ˙̂x (7.15)

and the n× 1 auxiliary vector we is defined as:

we = Λ(x)[ẍd + ks(ẋd − ˙̂x)] + Ψ(x, ˙̂x)(ẋd + kse) + p(x) + f̂ (7.16)

where the n× 1 end-effector position and orientation tracking error e is defined as:

e = xd − x (7.17)
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The force command F will be used in the observer indicated by (7.2). And the

torque commands for driving the robot can be obtained by:

Γ = JT (q)F

7.3 Overall System Stability Result and Analysis

Theorem 4 Under the assumption that the exact model of a robot except friction is

known, if the observer-controller gains satisfy the following sufficient conditions :

ks > 1/kn + ηe

k0 > ‖err(0)‖ (7.18)

the closed-loop tracking error system is stable and the errors e(t), ė(t), x̃(t), ˙̃x(t), and

(θ̂(t)− θ) are bounded where

err =
[
ηT

p eT ˙̃xT x̃T
]T ∈ <4n (7.19)

We will now present the stability proof using Lyapunov stability analysis. To de-

termine the stability of the overall closed-loop control system, we define the following

Lyapunov function:

V = V0 + V1 + V2 (7.20)

where the three sub-Lyapunov functions V0, V1, and V2 are defined as:

V0 =
1

2
˙̃xT Λ(x) ˙̃x +

1

2
x̃T kix̃ +

1

2
θ̃

T
K−1

ad θ̃ (7.21)

where θ̃ is the difference between the actual θ and the estimated θ̂, and the velocity

observation error ˙̃x is defined as the difference between the actual end-effector velocity

ẋ and the observed end-effector velocity ˙̂x, it is obtained by differentiating (7.3) with

respect to time:

˙̃x = ẋ− ˙̂x (7.22)
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V1 =
1

2
eT e (7.23)

V2 =
1

2
ηT

p Λ(x)ηp (7.24)

Hence, V̇ can be obtained by:

V̇ = V̇0 + V̇1 + V̇2 (7.25)

We will formulate the bound of V̇0, V̇1 and V̇2 separately, and then combine them

together to get the bound of V̇ .

7.3.1 Lyapunov Function for Observation Error x̃, ˙̃x and θ̃

V0 is defined in (7.21). To form the bound of V̇0, first, take the time derivative of

(7.1) and then substitute ( 7.2) into the resulting expression to yield:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − kΛ(x) ˙̃x− kix̃ = F (7.26)

Subtract (7.26) from (2.7), use (A.3) and (7.22) to yield the following closed-loop

observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x + kix̃ + f − f̂ = 0 (7.27)

Differentiate V0 along (7.27) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T .

Λ(x) ˙̃x + ˙̃x
T
kix̃− ˙̃x

T
(f − f̂)

(7.28)

Utilizing (A.2) to get:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x− ˙̃x

T
(f − f̂) (7.29)

Then utilize (A.1), (A.4), and (3.2) to get the upper bound of V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km1

) ‖ ˙̃x‖2

+ζfks‖ ˙̃x‖‖e‖+ ζf‖ ˙̃x‖‖ηp‖+ ζf‖ ˙̃x‖2 (7.30)
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7.3.2 Lyapunov Function for Tracking Error e

The evolution of the position tracking error with time can be derived by differen-

tiating (7.17) with respect to time to yield:

ė = ẋd − ẋ

Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (7.31)

Simplify (7.31) by utilizing (7.15) to get:

ė = −kse + ηp − ˙̃x (7.32)

V1 is defined in (7.23), and the upper bound for the time derivative of V1 along

(7.32) is given by:

V̇1 ≤ −ks‖e‖2 + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (7.33)

7.3.3 Lyapunov Function for ηp

The evolution of ηp with time can be derived by differentiating (7.15) with respect

to time, multiplying both sides of the resulting expression by Λ(x), and substituting

the expression from (7.26) for ¨̂x to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

−kix̃ + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − F (7.34)
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Substitute the force input given by (7.13) into (7.34), use the definitions of we and

ηp to get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (7.35)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (7.35) in terms of ˙̃x, and

utilize (A.3) and (7.22) to yield:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(k + ks)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (7.36)

V2 is defined in (7.24). Differentiating V2 along (7.36) and utilizing (A.2) yields:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (7.37)

From (7.37), and using (A.1) and (A.4), we can obtain the following upper bound

for V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖2 + (k + ks)m2‖ηp‖‖ ˙̃x‖

+ζc‖ηp‖2‖ ˙̃x‖ (7.38)

7.3.4 Overall System Stability Analysis

Use the upper bound of V̇0, V̇1 and V̇2, the upper bound of V̇ can be formed as:

V̇ ≤ −(ks − 1
kn
− 1) ‖e‖2 − (ks − 1)

∥∥ηp

∥∥2 − (ks − 1
kn

)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (7.39)
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From (7.39) we can see that, if ks > 1 + 1/kn and k0 ≥ ||err||, we can get:

V̇ ≤ 0 (7.40)

From (7.40), we can get the conclusion that, friction coefficients estimation error

θ̃, position tracking errors e, position estimation errors x̃, velocity estimation errors
.

x̃, observed filtered tracking error signal ηp of the observer-controller are all bounded.

Furthermore, the end-effector velocity tracking error is also bounded. In fact, after

adding and subtracting
.
x from the right-hand side of (7.15) and rearranging the terms,

we can formulate the following inequality:

‖ .
e‖ = ‖ẋd − .

x‖ ≤
∥∥ηp

∥∥ + ks ‖e‖+ ‖ .
x‖ (7.41)

Since each of the terms on the right-hand side of the above equation is bounded,

‖ .
e‖ is also bounded. This yields the result indicated by Theorem 4.

7.4 Implementation of Friction Adaptation Law

Like what we have done in Chapter 5, we follow the same procedure to obtain our

new friction adaptation algorithm. Integrating both sides of (7.9) giving:

θ̂(t) = θ̂(t−∆t)−Kad

t∫

t−∆t

W T
j ( ˙̂q, ˙̂qd)(

dq

dt
−

.

q̂)dt (7.42)

where ∆t represents the sampling time of the system.

Assuming that ∆t is small enough, from (7.42) we can get the following form:

θ̂(t) = θ̂(t−∆t)−KadW
T
j (

.

q̂(t−∆t), ˙̂qd(t−∆t))Dq

Dq = q(t)− q(t−∆t)−
.

q̂(t−∆t)∆t
(7.43)

We will use (7.43) as our friction adaptation algorithm.
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7.5 Experimental Results

The experiments were performed using PUMA 560 robot, and the sampling time

is selected to be 1ms. The defined trajectory is to move the end-effector in XYZ

direction with the desired position trajectory indicated by (7.44), while maintaining

the initial end-effector orientation constant all the time.

pxd
= px0 + 50.0 sin(0.4πt)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(0.4πt)

(
1− e−0.05t3

)
mm

pzd
= pz0 + 50.0 cos(0.4πt)

(
1− e−0.05t3

)
mm

xd =
[

pxd
pyd

pzd

]T

(7.44)

where (px0 , py0 , pz0) is the initial position vector of the robot. The exponential terms

are to ensure that the initial desired velocities and accelerations are all zeros.

The controller gains were selected as diagonal gains matrices as following:

knd = diag{120, 120, 120, 35, 35, 35}
k = diag{108, 108, 108, 32, 32, 32}
ks = diag{97, 97, 97, 30, 30, 30}
ki = diag{2000, 2000, 2000, 3000, 3000, 3000}

(7.45)

All the diagonal terms of the 18× 18 friction adaptation gains Kad were selected

to be 100, all the diagonal terms of τ dec were selected to be 1, and all the initial

estimated friction coefficients are set to zeros.

7.5.1 Friction Identification and Compensation Performance

Using the trajectory defined by (7.44), the experimental result is shown in Figs.

7.1, 7.3, 7.2, and 7.4. Figs. 7.1 and 7.2 show the initial tracking errors and the

identified friction coefficients when the robot just starts to move, and Figs. 7.3

and 7.4 shows the parameters when friction adaptation algorithm is activated for

about two minutes, respectively. Where Ji stands for Joint i, and ex, ey, and ez
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Figure 7.1: Adaptive friction identification and compensation using both observed
and desired velocity - Initial tracking errors with adaptive friction compensation

are the position tracking errors along X, Y, and Z axis, and eφx
, eφy

, and eφz
are the

orientation tracking errors about X, Y, and Z axis, respectively.

Tables 7.1 and 7.2 show the tracking errors and the identified friction coefficients

after the robot ran for about two minutes.

Under the same conditions, using the same controllers gains listed in (7.45) but

without friction compensation, the result is shown in Fig. 7.5 and Table 7.3.
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Figure 7.2: Adaptive friction identification and compensation using both observed
and desired velocity - Initial identified joints friction coefficients

Table 7.1: Adaptive friction identification and compensation using both observed and
desired velocity - Maximum tracking errors with adaptive friction compensation

ex ey ez eφx
eφy

eφz

0.45mm 0.62mm 0.37mm 0.04o 0.04o 0.11o
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Figure 7.3: Adaptive friction identification and compensation using both observed
and desired velocity - Tracking errors with adaptive friction compensation

Table 7.2: Adaptive friction identification and compensation using both observed and
desired velocity - Identified friction coefficients of each joint

J1 J2 J3 J4 J5 J6

τ visi
(N.m.s/rad) 0.2 0.5 1.3 0.3 0.1 0.1

τ coui
(N.m) 3.5 4.8 2.3 0.8 0.2 0.5

τ stii (N.m) 3.5 4.7 2.0 0.7 0.2 0.5
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Figure 7.4: Adaptive friction identification and compensation using both observed
and desired velocity - Final identified joints friction coefficients

Table 7.3: Adaptive friction identification and compensation using both observed and
desired velocity - Maximum tracking errors without friction compensation

ex ey ez eφx
eφy

eφz

2.14mm 1.59mm 1.51mm 0.08o 0.07o 0.14o
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Figure 7.5: Adaptive friction identification and compensation using both observed
and desired velocity - Tracking errors without friction compensation
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The results indicate that the tracking errors of the controllers with adaptive fric-

tion compensation is about 1.3 to 4.7 times smaller than the controller without friction

compensation, which verify the effectiveness of the proposed adaptive controller.

Remark 12 The joint friction coefficients identification rate is depended on trajec-

tories, but eventually the identified coefficients are more or less the same.

Remark 13 When a robot comes to a standstill, ideally, q(t)−q(t−∆t) should equal

zero. However, due to sensor noise, it seldom equals zero. From (7.43) we know that

θ̂(t) will be updated by q(t)−q(t−∆t) even if none of the robot joints is moving, which

will cause wrong identification. In order to eliminate the problem, we can temporarily

stop friction adaptation and identification when a robot is close to a standstill.

Remark 14 From Tables 5.2 and 7.2, we can see that the identified friction coeffi-

cients are different. The reasons being that the errors between the actual joint frictions

and the estimated joint frictions are bounded, and the controller can not guarantee

that the estimated joint frictions will eventually approach the actual joint frictions.

7.6 Conclusions

In this chapter, we proposed an operational space observer-controller with adap-

tive friction compensation capability. The friction adaptation algorithm is designed

to make use of the merits of the smooth desired velocity and “cleaner” observed ve-

locity information to achieve better performance. For friction compensation, some

researchers use desired velocity to replace the noisy filtered velocity information in

their friction adaptation algorithms, but are unable to provide stability proof. In this

chapter, we have incorporated desired velocity information into our adaptive friction
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compensation law, the overall stability result is also given to prove the feasibility of

the proposed algorithm. The result of the controller has been published in [75].

Compared with the adaptive friction compensation controller presented in Chapter

6, the tracking errors of the controller proposed in this chapter is smaller. The

reason being that the filtered velocity is less accurate than the observed velocity, as

explained in Chapters 3 and 4. However, the controller in this chapter is a semi-global

asymptotic stable controller, while the one in Chapter 6 is a global stable controller.

Besides, the controller structure in Chapter 6 is simpler than the one introduced in

this chapter, and gains selection is also easier.

Compared with the results shown in Figs. 5.1 and 7.1, it is clear that, by adopting

both desired and observed velocity information in the friction adaptation law, the

friction adaptation process is smoother than that using observed velocity information

only.

The main contributions of this controller is that, instead of using observed velocity

information only (the controller in Chapter 5), the proposed controller here used both

desired and observed velocity information for friction adaptation.

Both the controllers in Chapter 5 and this chapter can achieve similar tracking

accuracy.

Similar to the adaptive controllers in Chapters 5 and 6, when a robot model is

not accurate enough, the accuracy of friction identification will be affected.
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CHAPTER 8

CONTROL ALGORITHM 6: PARALLEL FORCE AND
MOTION CONTROL USING OBSERVED VELOCITY

8.1 Introduction

In Chapter 4, we presented a robust observer controller that was designed to make

use of the merits of “cleaner” observed velocity. For force control, the operational

space formulation provides a framework for the analysis and control of robotic systems

with respect to interactions with their environments. Combining our proposed robust

observer-controller and force control algorithm, we present in this chapter a parallel

force and motion controller to achieve force and position tracking. Impact control

algorithm has also been implemented to remove oscillation when the end-effector

comes into contact with stiff environment.

8.2 Parallel Force and Motion Control

Our proposed parallel force and motion controller consists of a motion controller

and a force controller. The motion controller is designed to use observed velocity,

while the force controller is a PD controller. To begin with, task must be defined:

which degrees of freedom are assigned to force control and which to motion control.

Then appropriate control algorithms are applied respectively.
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The resulting force and motion control is done by selecting the desired force or

motion response of the robot and adding them together to get the effective robot

response. This is expressed as,

f = fmotion + fforce (8.1)

where

fmotion = Ωf ∗motion (8.2)

where f ∗motion is the force control input to the proposed observer-controller.

and

fforce = Λ̂(x)Ω̄f ∗force + Ω̄fsensor (8.3)

Ω and Ω̄ are the selection matrices to switch the application between force or motion

whichever is desired and to specify the direction of application. f ∗motion takes into

account robot dynamics and computes the required force for motion control (details

are in Section 8.2.2). f ∗force represent the desired end-effector accelarations in force

control subspace. The Coriolis and gravity vectors Ψ̂(x, ẋ)ẋ and p̂(x) only need to be

compensated once. Since the two terms are included in f ∗motion command, there is no

need to put them in fforce command one more time.

The force control algorithm can be selected as:

f ∗force = Kpfeforce + Kif

∫
eforcedt (8.4)

where eforce is defined as

eforce = fd − fcontact (8.5)

The formulation of unified force and motion control has been explained in Chapter

2. Fig 2.2 illustrated the tool frame assignment.
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The generalized task specification matrices Ω can be defined as:

Ω =

(
T RT

P

∑
F

T RP 0
0 T RT

P

∑
M

T RP

)
(8.6)

where

∑
F

=




σFX 0 0
0 σFY 0
0 0 σFZ


 (8.7)

∑
M

=




σMX 0 0
0 σMY 0
0 0 σMZ


 (8.8)

and

σFX , σFY , σFZ , σMX , σMY , σMZ are positive values between 0 and 1, and “1”

signifies application of purely motion control along the corresponding axis, and “0”

purely force control.

Based on Khatib’s unified force and motion control, we modified the task spec-

ification matrix so that it can be used for our proposed parallel force and motion

controller. For this kind of controller, the value of “σ” along a force control axis is

very small, this is to guarantee that force control has a stronger control over mo-

tion control along the axis. The weak motion control along force control subspace is

applied to improve system stability and force control performance.

For force control, since the desired force and sensor readings are expressed in

Frame{T}, they do not need to perform transformation before the application of
∑̄

F

and
∑̄

M , which are the complements of
∑

F and
∑

M . Hence Ω̄ is obtained by:

Ω̄ =

(
T RT

P

∑̄
F 0

0 T RT
P

∑̄
M

)
(8.9)
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8.2.1 Formulation of Robust Velocity Observer

As with before, to estimate the end-effector velocity, we utilize the following second

order velocity observer:

˙̂x = y+kx̃, y(0)= −kx̃(0) (8.10)

ẏ = Λ−1
[
f ∗motion − Ψ(x, ˙̂x) ˙̂x− p(x) + kix̃

]
(8.11)

where y, x̂, k, and ˙̂x have been defined in Chapter 3, ki defined in Chapter 4.

f ∗motion is the force control input to the observer, it is the force generated by the

controller (indicated in Eq (9.4) later).

8.2.2 Formulation of Robust Observer-Based Controller

Based on the structure of the above observer, we propose the following controller

to generate the required driving force:

f ∗motion = (ks + knd)ηp + we − kix̃ (8.12)

where knd is a positive controller gain defined as:

knd = 2kn + ζck0 + (ksm2 + km2)
2kn (8.13)

and the n× 1 observed filtered tracking error signal ηp and we are defined as:

ηp = ẋd + kse− ˙̂x (8.14)

we = Λ(x)[ẍd + ks(ẋd − ˙̂x)] + Ψ(x, ˙̂x)(ẋd + kse) + p(x) (8.15)

The force command f ∗motion will be used in the observer indicated by (8.11).
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Combining the force commands in motion and force subspace, the torques that

are send to a robot joints can be obtained by:

Γ = JT [Ωf ∗motion + Λ̂(x)Ω̄f ∗force + Ω̄fsensor]

8.3 Overall System Stability Result and Analysis

Define the following Lyapunov function.

V = V0 + V1 + V2 (8.16)

where the three sub-Lyapunov function V0, V1, and V2 are defined

V0 =
1

2
˙̃xT Λ(x) ˙̃x +

1

2
x̃T kix̃ (8.17)

V1 =
1

2
eT e (8.18)

V2 =
1

2
ηT

p Λ(x)ηp (8.19)

V̇ can be obtained by

V̇ = V̇0 + V̇1 + V̇2 (8.20)

8.3.1 Lyapunov Function for Observation Error x̃ and ˙̃x

To form the bound of V̇0, first, take the time derivative of (9.1) and then substitute

(8.11) into the resulting expression to yield:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x)− kΛ(x) ˙̃x− kix̃ = fmotion (8.21)

where the velocity observation error ˙̃x is obtained by differentiating (3.5) with respect

to time:

˙̃x = ẋ− ˙̂x (8.22)
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Subtract (8.21) from (2.2), use (A.3) and (3.7) to yield the following closed-loop

observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x + kix̃ = 0 (8.23)

Differentiate V0 along (8.23) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T
Λ̇(x) ˙̃x + ˙̃x

T
kix̃ (8.24)

Utilize (A.2) to yield:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x (8.25)

Then utilize (A.1) and (A.4) to get the upper bound of V̇0:

V̇0 ≤
(
ζc‖ ˙̂x‖ − km1

)
‖ ˙̃x‖2 (8.26)

Substitute for ˙̂x from (8.14) into (8.26), and utilize (3.2) to get the new upper

bound for V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km1

) ‖ ˙̃x‖2 (8.27)

8.3.2 Lyapunov Function for Tracking Error e and ηp

From the form of (8.27), we are motivated to design a controller which ensures

that the ‖e‖ and ‖ηp‖ terms in (8.27) are both driven to zero; hence, we are motivated

to develop tracking error systems and the corresponding sub-Lyapunov functions to

facilitate the goal.
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The position tracking error system can be formed by differentiating (3.1) with

respect to time to yield:

ė = ẋd − ẋ

Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (8.28)

Add and subtract a fictitious controller [66] to the right-hand side of (8.28) to

yield:

ė = ẋd − [ẋd + kse] + [ẋd + kse]− ˙̂x− ˙̃x (8.29)

where ks is a positive controller gain.

Simplify (8.29) by utilizing (8.14) to get:

ė = −kse + ηp − ˙̃x (8.30)

The upper bound for the time derivative of V1 along (8.30) is given by:

V̇1 ≤ −ks‖e‖2 + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (8.31)

From the form of (8.31) and the fact that the form of (8.27) indicates that ‖ ˙̃x‖ can

be driven to zero, we are motivated to design a force input controller which ensures

that ηp can be driven to zero.

The tracking error system for ηp can be formed by differentiating (8.14) with

respect to time, multiplying both sides of the resulting expression by Λ(x), and sub-

stituting the right-hand side of (8.21) for ¨̂x to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

−kix̃ + Ψ(x, ˙̂x) ˙̂x + p(x)− fmotion (8.32)
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Substitute the force input given by (9.4) into (8.32), use the definitions of we and

ηp to get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (8.33)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (8.33) in terms of ˙̃x, and

utilize (A.3) and (3.7) to yield:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(ks + knd)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (8.34)

In section 8.3, V2 was defined as:

V2 =
1

2
ηT

p Λ(x)ηp

Differentiate V2 along (8.34), and utilize (A.2) to get:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (8.35)

From (8.35), utilize (A.1) and (A.4), we can obtain the following upper bound for

V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖2 + (k + ks)m2‖‖ηp‖ ˙̃x‖

+ζc‖ηp‖2‖ ˙̃x‖ (8.36)
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8.3.3 Overall System Stability

Use the upper bound of V̇0, V̇1 and V̇2, and utilize (3.6), (8.13), and (4.6), we can

form the upper bound on V̇ :

V̇ ≤ −ks ‖e‖2 − ks

∥∥ηp

∥∥2 − ks

∥∥∥∥
·
x̃

∥∥∥∥
2

+
[∥∥ηp

∥∥ (‖e‖ − 2kn

∥∥ηp

∥∥)]

+

[∥∥∥∥
·
x̃

∥∥∥∥
(
‖e‖ − 2kn

∥∥∥∥
·
x̃

∥∥∥∥
)]

+

[
(k + ks) m2

∥∥ηp

∥∥
(∥∥∥∥

·
x̃

∥∥∥∥− (k + ks) m2kn

∥∥ηp

∥∥
)]

+

(
ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2

− ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2
)

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

)

(8.37)

where we have used the fact derived from (4.6) that ‖err‖ ≥ ‖e‖, ‖η‖, and ‖ ˙̃x‖.

By applying the nonlinear damping tool [66] on the three bracketed terms in

(8.37), a new upper bound on V̇ can be formed as:

V̇ ≤ −(ks − 1/kn) ‖e‖2 − ks

∥∥ηp

∥∥2 − (ks − 1/kn)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (8.38)

From (8.38), it is easy to get:

V̇ ≤ −(ks − 1/kn)(‖e‖2 +
∥∥ηp

∥∥2
+

∥∥∥∥
·
x̃

∥∥∥∥
2

)

for ‖err‖ ≤ k0

(8.39)

where err was defined in (4.6).

From (8.39) we can see that, if ks > 1/kn and k0 ≥ ||err(0)||, we can get:

V̇ ≤ 0 (8.40)

From (8.40), we can get the conclusion that, the position tracking errors e, position

estimation errors x̃, velocity estimation errors
.

x̃, and the observed filtered tracking
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error signal ηp of the observer-controller are all bounded. Furthermore, the end-

effector velocity tracking error is also bounded. In fact, after adding and subtracting

ẋ to the right-hand side of (8.14) and rearranging the terms, we can formulate the

following inequality:

‖ .
e‖ = ‖ẋd − ẋ‖ ≤

∥∥ηp

∥∥ + ks ‖e‖+ ‖ .
x‖ (8.41)

Since each of the terms on the right-hand side of the above equation is bounded,

‖ .
e‖ is also bounded.

8.4 Experimental Setup and Results

For our experiment, a JR3 force/torque sensor was installed on the end-effector

of the PUMA robot.

Our task is to perform force control along Z axis, and at the same time, move

the end-effector in XY plane with the following desired position trajectory while

maintaining the initial end-effector orientation all the time.

pxd
= px0 + 50.0 sin(0.4πt)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(0.4πt)

(
1− e−0.05t3

)
mm

xd =
[

pxd
pyd

]T

(8.42)

where px0 and py0 are the initial positions in X and Y direction, respectively. The

exponential terms are to ensure that the initial desired velocities and accelerations

are all zeros.

The selection matrixes were selected to be:

∑
F

=




1 0 0
0 1 0
0 0 0.1


 (8.43)
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∑
M

=




1 0 0
0 1 0
0 0 1


 (8.44)

The controller gains were selected as diagonal gains matrices as following:

knd = diag{120, 120, 120, 35, 35, 35}
k = diag{108, 108, 108, 32, 32, 32}
ks = diag{97, 97, 97, 30, 30, 30}
ki = diag{2000, 2000, 2000, 3000, 3000, 3000}

(8.45)

8.4.1 Damping Control Algorithm

In order to reduce impact effect, the force/motion control will be switched to

damping control when the contact force exceeds a predefined value. The damping

control algorithm is shown below:

fmotion = Λ̂ΛΛ(x)Ωf ∗damp + Ψ(x, ẋ)ẋ + p̂(x) (8.46)

where,

f ∗damp = −Kdẋ (8.47)

and Kd is a damping gain.

When switching back to force/moton control, the following algorithm is introduced

to insure smooth transition of control command:

fforce = Λ̂ΛΛ(x)Ω̄f ∗force + Ω̄fsensor (8.48)

where

f ∗force = fsigmoid(Kpfeforce + Kif

∫
eforcedt) (8.49)

where eforce is defined as

eforce = fd − fcontact (8.50)
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Table 8.1: Tracking errors during impact moment with hard surface - Using observed
velocity

ex ey eφx
eφy

eφz

4.69mm 3.09mm 0.20o 0.97o 0.48o

The sigmoid function fsigmoid is defined as:

fsigmoid = K(1− e−at)/(1 + e−at) (8.51)

where K and a are positive scalars.

8.4.2 Experimental Results

The desired force is set to be -10N along Z-axis. With damping control, the force

measurements are shown in Fig. 8.1. The results show that the contact force was

maintained around -8.6N, fluctuating between 5N and -56N. In our experiment, the

force sensor is mounted between a fixture and robot end-effector. When the robot

end-effector bounced backwards from the contact surface, the inertia force of the

fixture generated a positive sensor reading, in this case, a 5N reading.

The tracking errors of the end-effector are shown in Fig. 8.2. Table 8.1 shows

the tracking errors at the moment the end-effector comes into contact with the hard

surface.

If there is no damping control along the direction of force control, the robot will

become unstable. The reason is that, during impact, the force reading is very high,

and high force reading will drive the robot end-effector to retract from contact surface

very fast. Due to high acceleration of the end-effector, the force/torque sensor’s iner-

tial force and moment will generate additional reading on the sensor, and the robot
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Figure 8.1: Force control response - Using observed velocity (lower graph shows re-
sponse immediately after impact)

will react in high speed in order to offset the reading. Again, the high speed mo-

tion will generate high force/torque reading in the opposite direction, and this cyclic

interaction will eventually cause stability problem of the robot. Fig. 8.3 indicates

that the end-effector is unable to maintain its desired position immediately after the

impact.
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Figure 8.2: End-effector tracking errors - Using observed velocity

In order to make comparisons, we also implemented the controller indicated in

Section 8.2.2, but the observed velocities
.

x̂ were replaced by that obtained from

backwards difference plus a low pass filter with cutoff frequency of 100Hz. We called

it backwards difference controller.

During the experiments, we found that, due to large inherent noise ripple of filtered

velocity, the controller gains values indicated in (8.45) were too high for the backwards

difference controller, they caused the robot to vibrate. In order to reduce vibration,
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Figure 8.3: End-effector tracking errors - No damping control

the possibly highest gains were selected as listed in (8.52):

knd = diag{20, 20, 20, 12, 12, 12}
ks = diag{90, 90, 90, 30, 30, 30}
ki = diag{100, 100, 100, 120, 120, 120}

(8.52)

The force measurements are shown in Fig. 8.4. The results show that the contact

force maintain around -8.2N, fluctuating between 16N and -69N.
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Figure 8.4: Force control response - Using filtered velocity (lower graph shows re-
sponse immediately after impact)

The tracking errors of the end-effector are shown in Fig. 8.5. Table 8.2 shows the

tracking errors at the moment when the end-effector comes into contact with hard

surface.

From the results we can see that, in force control subspace, the force variation

range using our proposed observer-controller is smaller than that using the back-

wards difference controller; in motion control subspace, the tracking errors using the
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Figure 8.5: End-effector tracking errors - Using filtered velocity

observer-controller is much smaller than that using the backwards difference con-

troller.

8.5 Conclusions

Both parallel force/motion control, and unified force and motion control have their

advantages. By modifying Khatib’s task specification matrix, we are able to select

force and motion control subspaces in a systematic way. Meanwhile, by injecting weak
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Table 8.2: Tracking errors during impact moment with hard surface - Using filtered
velocity

ex ey eφx
eφy

eφz

8.68mm 5.20mm 0.80o 4.33o 1.98o

motion control element along force control direction, the system becomes more stable

and less sensitive to noisy force readings. Experimental results also indicate that

the proposed observer-controller is able to achieve better motion and force control

performance than the filtered backwards difference controller.

We would like to highlight here that Raibert’s hybrid position/force control divide

the whole space into motion and force subspaces, but does not use selection matrix to

do this work [76]; Chiaverini’s parallel force/position control approach does not use

selection matrix either [48]; Khatib’s unified force/motion control algorithm adopts

a selection matrix to choose completely decoupled motion and force subspace in a

systematic way [23]; while in our proposed algorithm, we modify Khatib’s selection

matrix in order to achieve parallel force/motion control along force control direction.

Again, this observer-based parallel force and motion controller is a semi-global

controller, when the contact force is large and the controllers gains are not big enough,

the system may face stability problems.
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CHAPTER 9

CONTROL ALGORITHM 7: PARALLEL FORCE AND
MOTION CONTROL USING ADAPTIVE
OBSERVER-CONTROLLER

9.1 Introduction

In Chapter 5, we introduced an adaptive robust observer controller. In Chapter

8, we presented a parallel force and motion controller using observed velocity. In

this chapter, we introduce a new controller that combines the adaptive controller in

Chapter 5, and the force control algorithm in Chapter 8 to achieve parallel force and

motion control.

9.2 Parallel Force and Motion Control

The proposed parallel force and motion controller consists of an adaptive motion

controller and a force controller. The adaptive motion controller is designed to esti-

mate joint velocity and compensate joint frictions, while the force controller is a PD

controller.

9.2.1 Formulation of Operational Space Velocity Observer

The structure of the velocity observer is shown below. The difference between this

observer and the one in Chapter 8 is that, there is an additional term f̂ , the estimated
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friction expressed in operational space (given in Eq (5.20)), in the new controller.

˙̂x = y+kx̃, y(0)= −kx̃(0) (9.1)

ẏ = Λ−1
[
f ∗motion − Ψ(x, ˙̂x) ˙̂x− p(x)− f̂ + kix̃

]
(9.2)

˙̂x, y, and F have been defined in Chapter 3, ki defined in Chapter 4, f ∗motion defined

in Eq (9.4), and k defined by Eq (5.3).

The friction adaptation law is the same as that used in Chapter 5, and we repeat

here for easy reference:

θ̂(t) = θ̂(t−∆t)−KadW
T
j (

.

q̂(t−∆t))Dq

Dq = q(t)− q(t−∆t)−
.

q̂(t−∆t)∆t
(9.3)

By adding an estimated friction term f̂ in the controller in Eq (8.15),we formulate

the following controller:

f ∗motion = (ks + knd)ηp + we − kix̃ (9.4)

we = Λ(x)[ẍd + ks(ẋd − ˙̂x)] + Ψ(x, ˙̂x)(ẋd + kse) + f̂ + p(x) (9.5)

where knd, ηp have been defined in Chapter 3.

Combining the force commands in motion and force subspace, the torques that

are send to a robot joints can be obtained by:

Γ = JT [Ωf ∗motion + Λ̂(x)Ω̄f ∗force + Ω̄fsensor]

9.3 Overall System Stability Result and Analysis

To determine the stability of the control system, the following Lyapunov function

is used:

V = V0 + V1 + V2 (9.6)
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where the three sub-Lyapunov functions V0, V1, and V2 are defined as:

V0 =
1

2
˙̃xT Λ(x) ˙̃x +

1

2
x̃T kix̃ +

1

2
θ̃

T
K−1

ad θ̃ (9.7)

where θ̃ is the difference between the actual θ and the estimated θ̂, and the velocity

observation error ˙̃x is defined as the difference between the actual end-effector velocity

ẋ and the observed end-effector velocity ˙̂x, it is obtained by differentiating (3.5) with

respect to time:

˙̃x = ẋ− ˙̂x (9.8)

V1 =
1

2
eT e (9.9)

V2 =
1

2
ηT

p Λ(x)ηp (9.10)

Hence, V̇ can be obtained by:

V̇ = V̇0 + V̇1 + V̇2 (9.11)

9.3.1 Lyapunov Function for Observation Error x̃, ˙̃x and θ̃

V0 is defined in (9.7). To form the bound of V̇0, first, take the time derivative of

(3.3) and then substitute (9.2) into the resulting expression to yield:

Λ(x)¨̂x + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − kΛ(x) ˙̃x− kix̃ = fmotion (9.12)

Subtract (9.12) from (2.2), use (A.3) and (9.8) to yield the following closed-loop

observer error system:

Λ(x)¨̃x + Ψ(x, ẋ) ˙̃x + Ψ(x, ˙̂x) ˙̃x + kΛ(x) ˙̃x + kix̃ + f − f̂ = 0 (9.13)
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Differentiate V0 along (9.13) to get:

V̇0 = ˙̃x
T

[
−Ψ(x, ẋ) ˙̃x− Ψ(x, ˙̂x) ˙̃x− kΛ(x) ˙̃x− kix̃

]

+
1

2
˙̃x
T .

Λ(x) ˙̃x + ˙̃x
T
kix̃− ˙̃x

T
(f − f̂)

(9.14)

Utilizing (A.2) to get:

V̇0 = − ˙̃x
[
Ψ(x, ˙̂x) + kΛ(x)

]
˙̃x− ˙̃x

T
(f − f̂) (9.15)

Then utilize (A.1) and (A.4) to get the upper bound of V̇0:

V̇0 ≤
(
ζc‖ ˙̂x‖ − km1

)
‖ ˙̃x‖2+ζe‖ ˙̃x‖2 (9.16)

Substitute for ˙̂x from (3.10) into (9.16), and utilize (3.2) to get the new upper

bound for V̇0:

V̇0 ≤
(
ζcζd + ζc‖ηp‖+ ζcks‖e‖ − km1

) ‖ ˙̃x‖2+ζe‖ ˙̃x‖2 (9.17)

9.3.2 Lyapunov Function for Tracking Error e and ηp

The evolution of the position tracking error with time can be derived by differen-

tiating (3.1) with respect to time:

ė = ẋd − ẋ

Since ẋ is not measurable, we use the estimated term ˙̂x to eliminate ẋ and get the

following equation:

ė = ẋd − ˙̂x− ˙̃x (9.18)

Simplify (9.18) by utilizing (3.10) to get:

ė = −kse + ηp − ˙̃x (9.19)
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V1 is defined in (9.9), and the upper bound for the time derivative of V1 along

(9.19) is given by:

V̇1 ≤ −ks‖e‖2 + ‖e‖‖ηp‖+ ‖e‖‖ ˙̃x‖ (9.20)

The evolution of ηp with time can be derived by differentiating (3.10) with respect

to time, multiplying both sides of the resulting expression by Λ(x), and substituting

the expression from (9.12) for ¨̂x to yield:

Λ(x)η̇p = Λ(x)ẍd + ksΛ(x)(ẋd − ẋ)− kΛ(x) ˙̃x

−kix̃ + Ψ(x, ˙̂x) ˙̂x + p(x) + f̂ − fmotion (9.21)

Substitute the force command given by (9.4) into (9.21), use the definitions of we

and ηp to get:

Λ(x)η̇p = −(ks + knd)ηp − (k + ks)Λ(x) ˙̃x

−Ψ(x, ˙̂x)ηp (9.22)

Rewrite the term Ψ(x, ˙̂x)ηp on the right-hand side of (9.22) in terms of ˙̃x, and

utilize (A.3) and (9.8) to yield:

Λ(x)η̇p = −Ψ(x, ẋ)ηp − (ks + knd)ηp

−(k + ks)Λ(x) ˙̃x + Ψ(x, ˙̃x)ηp (9.23)

V2 is defined in (9.10). Differentiating V2 along (9.23) and utilizing (A.2) yields:

V̇2 = −(ks + knd)η
T
p ηp − (k + ks)ηpΛ(x) ˙̃x

+ηT
p Ψ(x, ˙̃x)ηp (9.24)
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From (9.24), and using (A.1) and (A.4), we can obtain the following upper bound

for V̇2:

V̇2 ≤ −(ks + knd)‖ηp‖2 + (k + ks)m2‖ηp‖‖ ˙̃x‖

+ζc‖ηp‖2‖ ˙̃x‖ (9.25)

9.3.3 Overall System Stability Analysis

Use the upper bound of V̇0, V̇1 and V̇2, and utilize (3.6), (3.9), and (3.15), we can

form the upper bound on V̇ :

V̇ ≤ −ks ‖e‖2 − ks

∥∥ηp

∥∥2 − ks

∥∥∥∥
·
x̃

∥∥∥∥
2

+
∥∥ηp

∥∥ (‖e‖ − 2kn

∥∥ηp

∥∥)
+

∥∥∥∥
·
x̃

∥∥∥∥
(
‖e‖ − 2kn

∥∥∥∥
·
x̃

∥∥∥∥
)

+ (k + ks) m2

∥∥ηp

∥∥
(∥∥∥∥

·
x̃

∥∥∥∥− (k + ks) m2kn

∥∥ηp

∥∥
)

+

(
ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2

− ζcζd

∥∥∥∥
·
x̃

∥∥∥∥
2
)

+ζe‖ ˙̃x‖2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

)

(9.26)

where we have used the fact derived from (3.15) that ‖err‖ ≥ ‖e‖, ‖η‖, and ‖ ˙̃x‖.

By applying the nonlinear damping tool [66] on the terms in the second and third

lines on the right hand side of (9.26), a new upper bound on V̇ can be formed as:

V̇ ≤ −(ks − 1
kn

) ‖e‖2 − ks

∥∥ηp

∥∥2 − (ks − 1
kn
− ζe)

∥∥∥∥
·
x̃

∥∥∥∥
2

− (ko − ‖err‖)
(

ζc

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζcks

∥∥∥∥
·
x̃

∥∥∥∥
2

+ ζc

∥∥ηp

∥∥2

) (9.27)

From (9.27) we can see that, if ks > 1/kn + ζe and k0 ≥ ||err||, we can get:

V̇ ≤ 0 (9.28)

From (9.28), we can get the conclusion that, estimation errors of friction coeffi-

cients θ̃, position tracking errors e, position estimation errors x̃, velocity estimation
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errors
.

x̃, observed filtered tracking error signal ηp of the observer-controller are all

bounded. Furthermore, the end-effector velocity tracking error is also bounded. In

fact, after adding and subtracting
.
x to the right-hand side of (3.10) and rearranging

the terms, we can formulate the following inequality:

‖ .
e‖ = ‖ẋd − .

x‖ ≤
∥∥ηp

∥∥ + ks ‖e‖+ ‖ .
x‖ (9.29)

Since each of the terms on the right-hand side of the above equation is bounded,

‖ .
e‖ is also bounded.

9.4 Experimental Results

For our experiment, a JR3 force/torque sensor was installed on the end-effector

of the PUMA robot.

Our task is to move the end-effector in XY plane with the following desired position

trajectory while maintaining the initial end-effector orientation all the time.

pxd
= px0 + 50.0 sin(0.4πt)

(
1− e−0.05t3

)
mm

pyd
= py0 + 50.0 cos(0.4πt)

(
1− e−0.05t3

)
mm

xd =
[

pxd
pyd

]T

(9.30)

where px0 and py0 are the initial positions in X and Y direction, respectively. The

exponential terms are to ensure that the initial desired velocities and accelerations

are all zeros.

The controller gains were selected as diagonal gains matrices as following:

knd = diag{120, 120, 120, 35, 35, 35}
k = diag{108, 108, 108, 32, 32, 32}
ks = diag{97, 97, 97, 30, 30, 30}
ki = diag{2000, 2000, 2000, 3000, 3000, 3000}

(9.31)
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All the diagonal terms of the 18× 18 friction adaptation gains Kad were selected

to be 500, all the diagonal terms of τ dec were selected to be 1, and all the initial

estimated friction coefficients are set to zeros.

The desired force is set to be -10N along Z-axis. The force measurements are

shown in Fig. 9.1. The results show that the contact force maintained around -9.5N,

fluctuating between -3N and -40N.
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Figure 9.1: Force control response - Using adaptive observer-controller
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The tracking errors of the end-effector are shown in Fig. 9.2. Table 9.1 shows the

tracking errors at the moment when the end-effector comes into contact with hard

surface.
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Figure 9.2: End-effector tracking errors - Using adaptive observer-controller

Compared with the results presented in Chapter 8, we can see that, in force control

subspace, the force variation range using our proposed adaptive observer-controller is

smaller than the controller without adaptation capability; in motion control subspace,
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Table 9.1: Tracking errors during impact with hard surface - Using adaptive observer-
controller

ex ey eφx
eφy

eφz

2.55mm 1.22mm 0.07o 0.38o 0.13o

the tracking errors using the adaptive controller is also much smaller than the one

without adaptation.

9.5 Conclusions

The proposed adaptive observer-controller is able to achieve much smaller tracking

errors than the observer-controller (presented in Chapter 8) that is not equipped with

adaptation capability. It is also able to achieve better force control performance than

that controller.

The improvement over the one developed in Chapter 8 is that, an adaptive con-

trol algorithm has been incorporated into the controller to achieve better control

performance.

Like the controller in Chapter 8, when the contact force is large and the controllers

gains are not big enough, the system may also face stability problems.
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CHAPTER 10

CONTRIBUTIONS & FUTURE WORKS

This thesis derives from the development of advanced control algorithms based

on observed velocity. Several controllers have been introduced in the thesis. Our de-

veloped observer-controllers are designed to mimic the dynamic behavior of a robot,

hence, if the dynamic model of a robot is accurate enough, the observed velocity

information can be more accurate than the filtered velocity information. In addition,

the observed velocity is obtained from the integration of the calculated acceleration,

the effect of integration is to reduce noise level, while the filtered velocity has to use

backwards difference algorithm. The differentiation algorithm tends to amplify noise.

Hence the observed velocity is “cleaner” than the filtered velocity. Our observer-based

controllers are designed to make use of the merits of the “cleaner” observed veloc-

ity information. The performance of all the controllers are verified by experimental

results.

Basically, three types of observer-controllers are introduced in the thesis. The first

type of controllers are developed for trajectory tracking, as presented in Chapters 3

and 4; the second type of controllers are developed to compensate joint frictions, and

at the same time, to achieve higher tracking accuracy, as introduced in Chapters 5
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and 7; the third type of controllers are used for force control, which are presented in

Chapters 8 and 9.

All these controllers can achieve a higher tracking accuracy and better force control

performance than the controllers using filtered velocity, which verify the effectiveness

of the developed controllers, thanks to the model-based velocity observers.

All the observer-based controllers introduced in this thesis are semi-global stable,

and gains selections must satisfy some conditions. Under large degree of parametric

uncertainties, payload variation, and contact force, the controller gains need to be

large enough in order to make the system stable. However, a robot may vibrate if

the gains become too high, hence, it may not be suitable to use an observer-based

controller under large degree of uncertainties.

The observer-based controllers proposed in Chapters 3 and 4 were developed based

on the assumption that the robot dynamic model was exactly known. Although ex-

perimental results indicate that the controllers are robust under parametric uncertain-

ties and payload variations. It is still a challenging work to analyze the robustness of

the controllers theoretically. When developing the adaptive controllers introduced in

Chapters 5 and 6, we assumed that we possessed exact knowledge of a robot dynamic

model except friction, and the adaptation algorithms were developed to identify and

compensate joint friction. To design an adaptive controller that can identify not only

joint friction, but also other parametric uncertainties still remains a challenge. In

Chapters 8 and 9, parallel force and motion control algorithms based on observed

velocity information were proposed. However, the force control performance was af-

fected due to the noisy force sensor reading. In order to avoid using noisy force sensor
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reading, how to estimate contact force based on the dynamic model of a robot and its

environment around its contact point is an interesting and challenging future work.
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APPENDIX A

PROPERTIES OF ROBOT DYNAMIC MODEL

For all the proposed observer-controller stability analysis, the following properties

of the robot dynamic model need to be used:

Property 1 - The n× n kinetic energy matrix Λ(x) defined in (2.2) satisfies the

following inequality [77]:

m1‖z‖2 ≤ zT Λ(x)z ≤m2‖z‖2 = ‖Λ(x)‖i2‖z‖2 ∀z ∈ <n (A.1)

where m1 and m2 are known positive scalar constants. ‖ · ‖ represents the standard

Euclidean norm, and ‖ · ‖i2 represents the matrix induced two norm [72].

Property 2 - In joint space dynamic model (2.1), the centrifugal and Coriolis

matrix satisfies the following relationship [2]:

B(q, y)z = B(q, z)y ∀y, z ∈ <n

Property 3 - In operational space dynamic model (2.2 ), the centrifugal and Coriolis

matrix Ψ(x, ẋ) satisfies the following relationships:

zT

[
1

2
Λ̇(x)− Ψ(x, ẋ)

]
z = 0 ∀z ∈ <n (A.2)

Ψ(x, y)z = Ψ(x, z)y ∀y, z ∈ <n (A.3)
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and

‖Ψ(x, ẋ)‖i∞ ≤ ζc‖ẋ‖ (A.4)

where ζc is a known positive scalar constant and ‖ ·‖i∞ represents the matrix induced

infinity norm [72].

The proof of the property indicated by (A.3) is given in Lemma 1 (Appendix B).
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APPENDIX B

LEMMAS FOR STABILITY ANALYSIS

To facilitate the overall system stability analysis, we provide the following two

lemmas here.

Lemma 1 : In operation space, Ψ(x, ẋ) in (2.2) satisfies the following relationship:

Ψ(x, y)z = Ψ(x, z)y ∀y, z ∈ <n

To prove this lemma, the robot manipulator’s geometric model associated with

the end-effector configuration parameters x can be written as:

x = G(q) =
[

G1(q) G2(q) ... Gn(q)
]T

where q is the n× 1 vector of joint position defined in (2.1).

At a given configuration q, ẋ can be expressed as linear function of the joint

velocities q̇ :

ẋ = J(q)q̇

=




∂
∂q1

G1(q)
∂

∂q2
G1(q) ... ∂

∂qn
G1(q)

∂
∂q1

G2(q)
∂

∂q2
G2(q) ... ∂

∂qn
G2(q)

... ... ... ...
∂

∂q1
Gn(q) ∂

∂q2
Gn(q) ... ∂

∂qn
Gn(q)







q̇1

q̇2

...
q̇n




(B.1)

Define

Jij , ∂

∂qj

Gi(q)
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Equ (B.1) can be rewritten as:

ẋ =




J11(q) J12(q) ... J1n(q)
J21(q) J22(q) ... J2n(q)

... ... ... ...
Jn1(q) Jn2(q) ... Jnn(q)







q̇1

q̇2

...
q̇n




Then we can get:

J̇(q, q̇)
.

q̂ =




J̇11(q, q̇) J̇12(q, q̇) ... J̇1n(q, q̇)

J̇21(q, q̇) J̇22(q, q̇) ... J̇2n(q, q̇)
... ... ... ...

J̇n1(q, q̇) J̇n2(q, q̇) ... J̇nn(q, q̇)







.

q̂1.

q̂2

...
.

q̂n


 (B.2)

where q̂ =
[

q̂1 q̂2 ... q̂n

]T
is the n× 1 vector of the estimated joint positions.

Define J̇i(q, q̇)
.

q̂ as:

J̇i(q, q̇)
.

q̂ , J̇i1(q, q̇)
.

q̂1 + J̇i2(q, q̇)
.

q̂2 + ... + J̇in(q, q̇)
.

q̂n (B.3)

Using (B.3), rewritten (B.2) as compact form:

J̇(q, q̇)
.

q̂ =




J̇1(q, q̇)
.

q̂

J̇2(q, q̇)
.

q̂
...

J̇n(q, q̇)
.

q̂


 (B.4)

Since
J̇1(q, q̇)

.

q̂ = J̇11(q, q̇)
.

q̂1 + J̇12(q, q̇)
.

q̂2 + ... + J̇1n(q, q̇)
.

q̂n

= J̇11(q,
.

q̂)q̇1 + J̇12(q,
.

q̂)q̇2 + ... + J̇1n(q,
.

q̂)q̇n

= J̇1(q,
.

q̂)q̇

Similarly, we can get:

J̇2(q, q̇)
.

q̂ = J̇2(q,
.

q̂)q̇ ... J̇n(q, q̇)
.

q̂ = J̇n(q,
.

q̂)q̇

Written in compact form:

J̇(q, q̇)
.

q̂ = J̇(q,
.

q̂)q̇ (B.5)
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For a non-redundant robot, Ψ(x, ẋ) ˙̂x can be written as:

Ψ(x, ẋ) ˙̂x = J−T
[
B(q, q̇)− A(q)J−1J̇(q, q̇)

]
J−1J

.

q̂

= J−T
[
B(q, q̇)

.

q̂ − A(q)J
−1

J̇(q, q̇)
.

q̂
] (B.6)

where the relationship between Ψ(x, ẋ) and B(q, q̇) indicated in (2.3) is utilized.

Using Property 2 and the result indicated by (B.5), (B.6) can be rewritten as:

Ψ(x, ẋ) ˙̂x = J−T
[
B(q,

.

q̂)− A(q)J
−1

J̇(q,
.

q̂)
]
q̇

= J−T
[
B(q,

.

q̂)− A(q)J
−1

J̇(q,
.

q̂)
]
J−1Jq̇

(B.7)

Since ẋ = J(q)q̇, substituting this equation into (B.7), finally we can get the

following property indicated by Lemma 1.

Lemma 2: If a function Nd(x, y) ∈ < is given by:

Nd = f(x)xy − kdf
2(x)x2

where x, y ∈ <, f(x) ∈ < is a function dependent only on x, and kd is a positive

constant, then Nd(x, y) can be upper bounded as follows:

Nd ≤ y2

kd

The bounding of Nd(x, y) in the above manner is often referred to as nonlinear

damping [78] since a nonlinear control function, kdf
2(x)x2 can be used to damp-

out an unmeasurable quantity (e.g., y) multiplied by a known, measurable nonlinear

function f(x).
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