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Summary

In this thesis, we first explain the motivations behind this work and listed the

type the array processing problems, which will be dealt with. Mathematical back-

ground and preliminary concepts, which are useful to this work, are reviewed in

Chapter 2. In Chapter 3, two algorithms for parameter estimation of wideband

LFM array signals are devised. Parameters of interest are the DOAs, initial fre-

quencies and frequency rates. The new algorithm that uses least squares method

is presented, and is extended to another algorithm by using total least squares

method. In Chapter 4, a parameter estimation algorithm for the general PPS,

in which LFM signal is a subclass of it, is devised. The estimation parameters

are the highest-order frequency parameters and DOA. Spatial Higher-order In-

stantaneous Moment (SHIM) and its property are introduced and a search-free

algorithm is devised. In Chapter 5, a non-parametric estimation algorithm for

time-frequency signals, which is even a wider class of signals than PPS, is devised.

The primary interest is to recover each of the original signals when the channel is

non-invertible (resulting from the underdetermined condition of more inputs than

outputs). Properties of Spatial Time-Frequency Distributions (STFDs) are dis-

cussed. Following that, the algorithm is outlined and proposed. In Chapter 6, two

parametric estimation algorithms for random signals in the presence of unknown

Gaussian noise are proposed. The first one is a fourth-order-statistics (FOS) -based

vii



algorithm. The second one is a mixed-order-statistics-based algorithm, which is

extended from the first algorithm. The well-known root-multiple signal classifica-

tion (Root-MUSIC) algorithm is incorporated in the proposed algorithms. Finally,

Chapter 7 summarizes the main contributions of the dissertation and provides the

future research direction.
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Chapter 1

Introduction

1.1 Background

Generally, this thesis focused on the parametric and non-parametric estimation of

signals in array systems. The parameters to be estimated include DOA and the fre-

quency parameters of signals. The most classical frequency parameter estimation

is the signal spectral estimation, which is still of interests in many applications. In

addition to that, research scope on spectral estimation has been broadened over

the last decades, not only just applying to sinusoidal signals but also applying to

wider class of signals which are more suitable in the real world settings. In the fol-

lowing subsection, we will introduce polynomial phase signals (PPS), which is the

class of signals that this thesis is focused in. Thereafter, three non-classical array

processing problems which will be studied from Chapter 2 onward are introduced.

1



CHAPTER 1. INTRODUCTION 2

1.1.1 Polynomial Phase Signals

Most of the research focused in spectral estimation of sinusoid signals. This class

of signals consists of signals with their phases being a linear function of time, or

equivalently, their (instantaneous) frequencies are constant. Estimation of the fre-

quency of this class of signals has been well investigated. A more general class of

signals consists of PPS where, as its name implies, its phase, φ(t), is a polynomial

function of time (see Eqn. (1.1)). Furthermore, this class of signals also has its fre-

quency varies as a polynomial function of time, because its angular instantaneous

frequency, φ′(t), is just the derivative of the phase with respect to time.



s(t) , Aejφ(t)

φ(t) ,
∑K

i=0 ait
i

φ′(t) = dφ(t)
dt

=
∑K

i=0 iait
i−1

(1.1)

A very common example in this class of signals is the linear chirp signal, where the

phase is a quadratic function of time (K = 2 in Eqn. (1.1)). Thus, the frequency

of this chirp signal is a linear function of time and hence it is also referred as LFM

signal.

Polynomial phase signals occur in natural phenomena, e.g., gravity waves [1]

and seismography. Bats’ sonar-like maneuver and their way of navigating relying

on chirp (second-order PPS) are of interest to researchers for a long time. Aside
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from that, applications of chirp signals have also been reported in radar [2] and

sonar [3].

The thesis also looks into multi-component PPS signal, which is defined as

r(t) =
K∑
i=1

si(t)

where each si(t) is of the form of Eqn. (1.1) with its own set of frequency parame-

ters.

1.1.2 Radar Applications

Generally, radar can be classified as two major groups, i.e. pulse radar and FMCW

radar. A pulse radar transmits the pulse wave such that when the reflected wave

received by radar, the propagation time can be measured from the duration from

the moment the pulse is transmitted to the moment the the reflected pulse is

received. On the other hand, a FMCW radar does not transmit a short pulse signal

but transmits continuous signal. This radar changes the frequency of the sinusoid

signal linearly as a sawtooth function within a frequency band. To extract the

propagation time, the received signal, and transmitted signal are multiplied and

passed through a low pass filter. The output signal after passing through a filter

will be a single sinusoid with frequency ∆f directly proportional to the distance

from the target (see Fig. 1.1). This operation together with Fourier transform
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1

 
T ransm itted  
Frequency 

R eceived 
Frequency 

∆ f 
f1 

f2 

∆ f 

tim e 

freq 

T  

Figure 1.1: The FMCW radar transmitted (solid) and received signal frequency
(dashed). The region where the ∆f is valid is in region T

(FT) for frequency analysis is actually called ambiguity function (AF); we will

generalize AF to higher-order ambiguity function (HAF) in the following chapters.

Mathematically, this AF operation in the complex form is written in the form

Af(k) , FT{s(∆n)r∗(∆n)} (1.2)

where s(∆n) are the samples of the current transmitted signal and r(∆n) the

samples of the reflected/received signal. The more general form of AF is defined

as

Af(γ, τ) ,
∫
x(t− τ)x∗(t+ τ)e−jtγdt (1.3)

where x(t) is the signal or data for the analysis, τ is delay parameter, and γ is a

dummy variable.
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If there is only one FMCW radar operating in a certain frequency band, the

radar is capable of detecting multiple objects and estimating their relative positions

from radar. However, in the case of multiple transmitting radars operating in the

same frequency band, such as in anti-collision warning system of automobiles, each

radar will create interference burying the signal reflected from the targets. This is

critical as it could create collisions on the road.

In order to understand this vividly, suppose that there are one main radar,

one interference radar, and one object. The signals transmitted by the main radar

and the interference radar during period T are so(t) , Aoe
jωot+νot2 and si(t) ,

Aie
jωit+νit

2
, respectively. Assuming also that the signal scattered by the object

to main radar is only the signal transmitted from main radar, then the noise-free

received signal by the main radar is r(t) = so(t − τ) + si(t), where, without loss

of generality, the delay time for si(t) to reach the receiver has been ignored. The

result from the radar ambiguity function would be the FT of the following y(t),

y(t) = A1exp{j(2νoτt+ ωoτ − νoτ 2)}+ A2exp{j((ωo − ωi)t+ (νo − νi)t2)}

where A1 and A2 contain the attenuated amplitudes of A2
o and AoAi. The second

term of y(t) will not appear if there is no interference radar. The second term is a

chirp signal, which will bury the signal of interest if its received amplitude is large,

because the chirp component has energy spreads over the entire frequency band

of interest. Hence, suppression of this chirp component would be important. This
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could be done by estimating the frequency rate and removing the second term

through filtering (advert to Chapter 3).

Another example is in the application of Doppler radar, where the relative

velocity of the object toward or away from the radar is proportional to the Doppler

frequency shift of the object. Furthermore, if the object is accelerating radially

then the radial acceleration is proportional to the Doppler frequency sweep rate,

i.e., frequency rate. Hence, estimation of frequency rate is essential to extract

the acceleration of the object. Therefore, the knowledge of initial frequencies and

frequency rates will give the knowledge of the distance of the objects from the

radar, the radial acceleration, and the radial velocity of the object. Consequently,

estimation of these parameters, or in general the parameters of PPS, would be

essential for various radar applications.

1.1.3 Array Processing

Basically, all of the problems covered by this thesis are in the area of array pro-

cessing, which can also be treated as multiple-input and multiple-output (MIMO)

problems. From practical standpoint, the setting can be interpreted as multiple-

antenna base station receiving signals from multiple users, or the antenna array of

radar receiving signals reflected from multiple targets. There are many more prob-

lems can be interpreted from this array processing setting. Figure 1.2 summarizes

the general model considered in this thesis.



CHAPTER 1. INTRODUCTION 7

As(t) x(t)+

v(t)

Figure 1.2: The Channel Input-Output Model

Classically, sources are assumed to be narrowband, such that the channel (mix-

ing matrix or array manifold) A is undergone flat fading. The channel is further

assumed to be unchanged within the estimation period. The noise is assumed to

be spatially and temporally white Gaussian noise. The literature survey of the

classical parametric DOA estimation methods could be found, for example in [4].

In this thesis, the channel is assumed to be non-convolutive. Furthermore, there

are three different types of non-classical problems that are under consideration,

and are illustrated in Fig. 1.3 (b), (c) and (d).

In the first type is the array processing problem shown in Fig. 1.3 (b) the chan-

nel, A(θθθ, t), and the multiple input or transmitted signals, sθθθ(t), are modeled to

be function of parameters, θθθ. The objective in parametric array processing is to

estimate these parameters. In this thesis, the parameters, θθθ, include DOAs, fre-

quencies, frequency rates, and other frequency-related parameters of the sources.

If the interest is to recover these signals, they could be constructed by estimating

these parameters. Alternatively, the estimated parameters could also be used in
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beamforming. The main difference from the classical parametric array process-

ing, owing to the wideband LFM or PPS case, is that the channel A(θ, t) is also

function of time, which is theoretically a very challenging problem to deal with

compared to the classical case in Fig. 1.3 (a). This is because the estimation of the

signal covariance matrix is difficult, attributable to non-ergodicity of the observed

signal covariance. The noise v(t) is assumed to be spatially and temporally white

Gaussian noise.

The second type is the parametric array processing of random sources with

possibly correlated noise (Fig. 1.3 (c)). However, here the sources, s(t), are nar-

rowband random signals, which are not parametrically modeled and only the chan-

nel, A(θθθ) is assumed to be a function of parameters, which are DOAs. Here, the

objective is to estimate DOAs. The main difference from the classical parametric

array processing is that the noise, v(t), is not restricted to spatially and temporally

white Gaussian noise. In fact, in many applications, the noise is not always white

spatially and temporally. If one is interested in restoring the original signals, it

could be done by solving the least squares problem (by using pseudo-inverse of the

channel, ŝ(t) = A†(θ̂θθ)x(t) ), because the channel, A(θθθ), is independent of time and

has a known structure. Again, one could use the estimated DOAs for beamforming

applications if the interest is not to restore the original source signals.

The third type is the non-parametric estimation of time-frequency signals or

non-stationary signals (Fig. 1.3 (d)). The signals s(t) is assumed to be narrow-
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A(θ)s(t) x(t)+

v(t)

A(θ,t)sθ(t) x(t)+

v(t)

Random signals

PPS signals

White Gaussian Noise

White Gaussian Noise

(a)

(b)

Goal

Estimate θ, i.e. DOAs

Estimate θ, i.e. DOAs and 
PPS frequency parameters

As(t) x(t)+

v(t)

TF signals

White Gaussian Noise

(d) Estimate s(t)

unknown,
non-parametric
and wide matrix 

known structure,
time invariant

known structure,
time varying

A(θ)s(t) x(t)+

v(t)

Random signals

Gaussian Noise

(c) Estimate θ, i.e. DOAs

known structure,
time invariant

Figure 1.3: (a). Classical parametric array processing, (b). First case: PPS array pro-
cessing, (c). Second case: array processing in presence of unknown zero-mean Gaussian

noise, (d) Third case: non-parametric (blind) array processing

band, and the channel, A, is assumed to be independent of time and parameters,

however, it is unknown. Besides that, it is assumed that there are more sources
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than receiving antennas, and hence, the channel can be represented by a wide ma-

trix. Practically, this could happen when there are more users transmitting than

base station’s antennas in a single cell. In this condition, even if A is known, one

cannot obtain s(t) directly by solving least squares problem described briefly in

the second type of array processing. Here, the objective is to obtain s(t), which is

unknown, but each signal is assumed to have a distinct time-frequency signature.

This type of non-parametric estimation where the channel is unknown is called

blind source separation (BSS) and its literature surveys could be found in [5]. The

BSS problem that assume more sources than sensors is called underdetermined

BSS (UBSS).

1.2 Organization of the Thesis and Contributions

The organization of the thesis is as follows: In Chapter 2, mathematical back-

ground and preliminary concepts are covered. Time-frequency distributions, which

are the core for analyzing the non-stationary signals, are discussed. The quadratic

time-frequency distributions and some of their properties are briefly discussed.

Higher-order statistics employed in this thesis, such as cumulants and moments,

are also explained. The signal models that were explained in the previous section

will be elaborated in detail in Chapter 2. Following that, some of subspace-based

DOA estimation techniques are reviewed.
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In Chapter 3, two algorithms for parameter estimation of wideband LFM array

signals for the first type of array processing setting are devised. Parameters of

interest are the DOAs, initial frequencies and frequency rates. Initially, a review

of the existing algorithms, as well as, their strengths and weaknesses, are presented.

Following that, the mathematical model is reviewed for the LFM signals in order

to demonstrate the idea behind the proposed algorithm. The first algorithm that

uses least squares method is presented, and is extended to the second algorithm by

using total least squares method. Simulation results are presented and comparison

with an existing algorithm is made. Finally, Cramer-Rao Bound (CRB) and the

performance analysis are derived.

Most of the materials in Chapter 3 have been published in

• S. Lie, A. R. Leyman and Y. H. Chew, “Parameter estimation of wideband

chirp signals in sensor arrays through DPT,” in Proc. 37th Asilomar Conf.

on Sign., Syst. and Comp., Pacific Grove, CA, Nov. 2003.

• S. Lie, A. R. Leyman and Y. H. Chew, “Wideband chirp parameter estima-

tion in sensor arrays through DPT,” IEE Electronic Letters, vol. 39, no. 23,

pp. 1633-1634, Nov. 2003.

In Chapter 4, a parameter estimation algorithm for the class of PPS, in which

LFM signal is a subclass of, is devised. The estimation parameters are the highest-

order frequency parameter and DOA. In the case of LFM signal, and quadrature
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FM signal, the highest-order frequency parameters are frequency rate for LFM

signal, and frequency acceleration for quadrature FM signal. Spatial Higher-order

Instantaneous Moment (SHIM) and its property are introduced in Chapter 4. Fur-

thermore, a review on the joint angle-frequency estimation algorithms is also pre-

sented. The proposed algorithm is devised using SHIM. Thereafter, a brief analysis

and the identifiability condition are discussed. Finally, results are presented and

comparison with Maximum Likelihood (ML) estimation is demonstrated.

Most of the materials in Chapter 4 have been published in

• S. Lie, A. R. Leyman and Y. H. Chew, “Wideband polynomial-phase pa-

rameter estimation in sensor array,” in Proc. of the 3rd IEEE International

Symposium on Sign. Proc. and Info. Tech., Darmstadt, Germany, Dec 2003.

In Chapter 5, a non-parametric estimation algorithm for time-frequency sig-

nals, even wider class than PPS, is devised. The primary interest is to recover each

of the original signals even if the channel is unknown and non-invertible (resulting

from the underdetermined condition of more inputs than outputs). This chapter

starts with a brief review of existing algorithms and introduction to the prob-

lem. Properties of Spatial Time-Frequency Distributions (STFDs) are discussed.

Following that, the algorithm is outlined and proposed. A new property of the

existing subspace separation method is discussed and employed in the proposed

algorithm. Simulation results are presented to show its effectiveness. The results

are also compared with the existing algorithm.
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Most of the materials in Chapter 5 have been published in

• S. Lie, A. R. Leyman and Y. H. Chew, “Underdetermined source separation

for non-stationary signal,” The 32nd International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Hawaii, USA, April 2007.

In Chapter 6, two parametric estimation algorithms for random signals in the

presence of unknown Gaussian noise are proposed. Introduction and review of the

existing algorithms are discussed. A fourth-order-statistics (FOS) -based algorithm

is devised and it is extended to mixed-order-statistics-based algorithm. Simulation

results are demonstrated and compared to an existing fourth-order (FO) algorithm

and an existing second-order (SO) algorithm. Root-multiple signal classification

(Root-MUSIC) algorithm is incorporated in the proposed algorithms. Thereafter,

we end the chapter with a short discussion.

Most of the materials in Chapter 6 have been published in

• S. Lie, A. R. Leyman and Y. H. Chew, “Fourth-order and weighted mixed

order direction of arrival estimators,” IEEE Signal Processing Letters, vol.

13, no.11, Nov 2006.

Finally, Chapter 7 summarizes the main contributions of the dissertation. The

directions of the future research are discussed.



Chapter 2

Mathematical Preliminaries

In this chapter, we review some of the background and mathematical theories,

which will be used in the thesis. The scopes to be covered include time-frequency

distributions (TFDs), cumulants, moments, and subspace-based direction-of-arrival

estimation methods. Readers are assumed to have some basic understanding in pa-

rameter estimation theory and time-frequency analysis, hence the review on these

topics is only minimally elaborated.

2.1 Time-Frequency Distributions

In this section we define the TFD of a signal. The reason why the TFD of a signal

is important is because most signals encountered in many real-life situations are

not necessarily stationary, e.g., speech, music, and PPS. A signal is said to be

non-stationary if its intrinsic characteristics vary with time [6]. For example, in

speech and music, we could clearly hear the variations of frequencies or notes over

14
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time. If we apply FT to this type of signal, we can only observe the frequency

content of the signal. To observe vividly, see the following illustration in Fig.

2.1. In the illustration, we show how the frequency of a signal with time-varying

frequency changes with time in the ω − t plane. Applying FT to the signal only

gives the three frequencies shown along the ω-axis. Hence, FT does not allow one

to observe how the frequencies vary in time. Therefore, the FT is not suitable to

analyze the non-stationary signals. The preferred method to analyze this type of

signals is to use a description of the signal that involves both time and frequency.

This method is called time-frequency (TF) analysis, which maps a signal (i.e., a

one-dimensional function of time) onto an image (i.e., a two-dimensional function

of time and frequency) that displays the spectral components of the signal as a

function of time (see the illustration on the box in Fig. 2.1). Conceptually, one

may think of this mapping as a time-varying spectral representation of the signal,

analogous to musical score.

2.1.1 Definitions

In general, let us define this time-varying spectral representation as P (t, ω). The

definition of the moments or global averages of time and frequency are

〈ω〉 ,
∫ ∫

1

|s(t)|2
ωP (t, ω)dtdω

〈t〉 ,
∫ ∫

1

|S(ω)|2
tP (t, ω)dtdω (2.1)
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t

ω

Figure 2.1: Signal with varying frequencies over time

where s(t) and S(ω) are the signal and its Fourier-tranformed pair. The definition

of the conditional moments or local averages of time and frequency are

〈ω〉(t) ,
1

|s(t)|2

∫
ωP (t, ω)dω

〈t〉(ω) ,
1

|S(ω)|2

∫
tP (t, ω)dt (2.2)

Moments of the function of time and frequency, are defined as follows

〈g(ω)〉(t) ,
1

|s(t)|2

∫
g(ω)P (t, ω)dω

〈h(t)〉(ω) ,
1

|S(ω)|2

∫
h(t)P (t, ω)dt (2.3)
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where g(.) and h(.) are continuous functions. With these definitions, we have the

conditional spread in time and frequency defined as,

σ2
t|ω , 〈t2〉(ω)− 〈t〉2(ω)

σ2
ω|t , 〈ω2〉(t)− 〈ω〉2(t) (2.4)

Assuming that the signal has a model as follows: s(t) = A(t) exp(jφ(t)), which

is the typical model of speech and communication signals, where A(t) is the slow

time-varying amplitude and φ(t) is the time-varying phase. The instantaneous

angular frequency is then defined as φ′(t) , ∂φ(t)
∂t

.

2.1.2 Types of TFD

Generally, TFDs could be classified into two classes. One class is known as the

linear TFD, such as spectrogram of windowed FT and scalogram of wavelets trans-

form. It is called linear because the operator applied to the sum of signals is equal

to the sum of the operators applied to each of the signals. The operator in this case

could be windowed FT or wavelets transform. In the next section, we will briefly

describe the windowed FT because it is related to the well-established FT. The

other class of distribution is called quadratic distribution, such as Cohen’s Class

distribution and Wigner-Ville distribution (WVD). It is called quadratic because

the operator applied to, e.g., sum of two signals, will lead to sum of the operators
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applied to each of the signals plus the operators applied to the product of the two

signals. We will express this quadratic property mathematically when defining the

Cohen’s Class distributions.

2.1.3 Windowed Fourier Transform

Windowed Fourier transform, or Short-time Fourier transform, of the signal f(t)

is defined as follows

F (t, ω) ,
∫ ∞
−∞

f(u)g(u− t)e−jωudu (2.5)

with a symmetric window g(t) = g(−t) which is also normalized§, i.e., ‖g‖L2 = 1.

The multiplication window g(u − t) = δ(u − t) localizes the Fourier integral in

the neighborhood of t = u. Hence, the window determines the TF support or the

resolution of the transform, which is independent of the signal f(t) and location

of signal in TF plane. In the following examples, we will illustrate this property.

Example 1. Suppose the signal is f(t) = ejω0t then its windowed FT is

F (t, ω) = G(ω − ω0)e−jt(ω−ω0) (2.6)

For a given time instant, its energy is spread over interval [ω0−σω|t/2, ω0 +σω|t/2].

Here G(ω) is the FT of g(t), and σ2
ω|t is the conditional frequency spread of G(ω).

§L2-norm: ‖g‖2L2 =
∫
|g(t)|2dt
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Example 2. The windowed FT of a Dirac f(t) = δ(t− t0) is given by

F (t, ω) = g(t0 − t)e−jft0 (2.7)

Hence, for a given frequency, its energy is spread over the time interval [t0 −

σt|ω/2, t0 + σt|ω/2]. Here σ2
t|ω is the conditional time spread of g(t).

Example 3. Consider a chirp (LFM) with a Gaussian envelope and a Gaussian

window,

s(t) = (α/π)1/4e−αt
2/2+jβt2/2+jω0t and g(t) = (a/π)1/4e−at

2/2 (2.8)

where 1
2α

and 1
2a

are the variances of Gaussian distributions. The spectrogram,

which is defined as

S(t, ω) , ‖F (t, ω)‖2, (2.9)

is given by [7]

S(t, ω) =
P (t)√
2πσ2

ω|t

exp

[
−(ω − 〈ω〉(t))2

2σ2
ω|t

]
(2.10)

=
P (ω)√
2πσ2

t|ω

exp

[
−(t− 〈t〉(ω))2

2σ2
t|ω

]
(2.11)
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where

P (t) =

√
aα

π(α + a)
exp

[
− aα

α + a
t2
]

(2.12)

P (ω) =

√
aα/π

αa2 + a(α2 + β2)
exp

[
− aα

αa2 + a(α2 + β2)
ω2

]
(2.13)

and

〈ω〉(t) =
a

a+ α
βt+ ω0 (2.14)

σ2
ω|t =

1

2
(α + a) +

1

2

β

α + a
(2.15)

〈t〉(ω) =
aβ

αa2 + a(α2 + β2)
ω (2.16)

σ2
t|ω =

1

2

(α + a)2 + β2

αa2 + a(α2 + β2)
(2.17)

The concentration of energy for an instantaneous time is along the estimated

instantaneous frequency, 〈ω〉(t), given by Eqn. (2.14). Similarly, for a given fre-

quency, its concentration of energy is along estimated group delay, 〈t〉(ω), given

by Eqn. (2.16). As the window gets narrow, i.e. a → ∞, the estimate of instan-

taneous frequency approaches βt + ω0. However, with this limit, the estimate of

group delay approaches zero. This is understandable, because as a→∞ we have

a flat window in frequency domain, which corresponding to the case where there

is no windowing.

Conversely, if we want to focus on temporal properties for a given frequency,
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we must take a → 0. In this case 〈t〉(ω) → β/(α2 + β2), which gives the correct

group delay. Thus, we conclude that in spectrogram, 〈ω〉(t) does not always give

the actual instantaneous frequency and group delay. They are dependent on the

window function chosen.

2.1.4 Cohen’s Class Distribution

The Cohen’s class of quadratic distribution [8] is defined as follows

P (t, ω) ,
1

4π

∫ ∫ ∫
e−j(θt+τω−θu)κ(θ, τ)s∗(u− τ

2
)s(u+

τ

2
) du dτ dθ (2.18)

where τ , θ and u are the dummy variables, and κ(θ, τ) is the kernel. The choices

of kernels and their properties could be found in [7, 9]. When the kernel is equal

to one, i.e., κ(θ, τ) = 1, Eqn. (2.18) gives the WVD, which is given by

WVs(t, ω) ,
1

2π

∫
s∗(t− τ/2)s(t+ τ/2)e−jωτdτ (2.19)

This can be shown by noting that
∫
e−jθ(t−u)dθ = 2πδ(t− u). Meanwhile, we will

consider only WVD in order to observe its properties, which are also inherited by

some members of the Cohen’s class distributions. The WVD has many properties

[7, 10]. Only three of them are shown here, because these properties distinguish

WVD and some of the Cohen’s class members from the windowed FT.
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Property 1: WVD Time-Frequency Support

Time-frequency support means that the distribution is zero whenever signal or

spectrum is zero. Suppose that a signal s(t) has energy that is concentrated around

(t0, ω0), then the WVD of s(t) also has its energy centered at (t0, ω0), with equal

time and frequency support (spread of s(t) and its spectrum). This is illustrated

by the following proposition [10]:

Proposition 1. If the support of s(t) is [t0 − T/2, t0 + T/2], then for all ω the

support in t of WVs(t, ω) is included in this interval. If the support of signal

spectrum, S(ω) is [ω0−∆/2, ω0 +∆/2], then for all t the support in ω of WVs(t, ω)

is included in this interval. (see Mallat’s [10] for a proof)

Hence, the direct consequences of the above proposition are:

If s(t) = δ(t− t0) =⇒ WVs(t, ω) = δ(t− t0)

If s(t) = exp(jω0t) =⇒ WVs(t, ω) =
1

2π
δ(ω − ω0)

This implies that WVD does not spread the time or frequency support of Dirac

or sinusoid functions, unlike windowed FT (c.f. Examples 1 and 2 )
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Property 2: The Local Average Frequency of WVD at t0 gives φ′(t0)

The instantaneous frequency of FM signals at any fixed time instant t0 is just the

local average of the frequency computed relative to the WVD. A frequency modu-

lated signal is defined as s(t) = a(t)exp(jφ(t)), where a(t) is the slow time-varying

amplitude and φ′(t) is the frequency modulation or the instantaneous frequency.

Therefore, for a fixed t0, the mass or energy of WVD is concentrated around the

instantaneous frequency. Formally, this property is given by the following propo-

sition [10].

Proposition 2. If s(t) = a(t)exp(jφ(t)), then

φ′(t) =

∫
ωWVs(t, ω)dω

|s(t)|2
(2.20)

(see Mallat’s [10] for the proof)

For example, from the same chirp signal with Gaussian envelope in Example

3, we obtain its WVD as,

WV (t, ω) =
1

π
e−αt

2−(ω−βt−ω0)2)/α (2.21)

From Eqn. (2.21), the energy is concentrated at ω = βt+ω0 which is the instanta-

neous frequency of the signal. This is not the case in Example 3 when windowed

FT is used. However, in Example 1, the energy is concentrated along the instan-
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taneous frequency. We can conclude that in windowed FT, local average of the

distribution does not guarantee to give instantaneous frequency (this also applies

to the group delay, which is not discussed here).

Properties 1 and 2 are the main advantages of some of the Cohen’s class mem-

bers, including the WVD, over the windowed FT. In the following, we will show

the drawback of quadratic distributions.

Property 3: The Interferences or Cross-Term

Interference or cross-term is quite a severe issue because it could become nuisance

in some applications, for example, one might detects more signals are present than

there are, because the interference appears like signal after being processed by

the quadratic TFD. This topic has generated many interests from many people

[8, 11–15]. All of them try various ways to suppress the interference or the cross-

terms. However, these cross-terms could be useful if one knows how to exploit

them, which will be shown in Chapter 5. The cross-terms arise when the WVD is

applied to a composite signal, which is formed by the linear combination of two

or more distinct signals. For example, if s(t) = g(t) + h(t) then the WVD will

produce two cross-terms, i.e., WVg,h(t, ω) + WVh,g(t, ω), mathematically,

WVs(t, ω) = WVg(t, ω) + WVg,h(t, ω) + WVh,g(t, ω) + WVh(t, ω)

= WVg(t, ω) + 2<{WVg,h(t, ω)}+ WVh(t, ω)

(2.22)
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where the cross-term is defined as

WVh,g(t, ω) ,
∫
h(t+ τ/2)g∗(t− τ/2)e−jωτdτ (2.23)

2.1.5 Ambiguity Function

Ambiguity Function (AF) is defined as follows,

AF(θ, τ) ,
∫
s∗(u− τ/2)s(u+ τ/2)ejθu du (2.24)

where u is a dummy variable, and τ is the delay variable. Ambiguity Function is

related to Cohen’s class distribution in Eqn. (2.18) as follows,

P (t, ω) =
1

4π2

∫ ∫
M(θ, τ)e−jθt−jτω dθ dτ (2.25)

where

M(θ, τ) = κ(θ, τ)AF(θ, τ) (2.26)

From Eqn. (2.25), P (t, ω) is related to M(θ, τ) through 2-dimensional (2-D) FT.

Hence, the multiplication of kernel in the ambiguity domain (θ − τ domain) in

Eqn. (2.26) with appropriate low-pass masking will lead to cross-terms smoothing

in TF domain (t − ω domain), e.g. by Choi-Williams kernel κ(θ, τ) = e−σ
2τ2θ2 .

The idea of smoothing is based on the fact that cross-terms are oscillatory in TF
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domain (see [10]).

2.1.6 Higher-order Ambiguity Function (HAF)

The higher-order variant of AF is called higher-order ambiguity function (HAF)

[16, 17], and its discrete-time implementation is called discrete polynomial trans-

form (DPT) [18] . The DPT is defined as follows,

DPTK [s(n), τ ] , DTFT{DPK [s(n), τ ]} (2.27)

where DTFT denotes the discrete-time Fourier transform and DPK [·] is the higher-

order instantaneous (HIM) operator. The HIM operator [19] is defined as follows,

DP1[s(n), τ ] , s(n)

DP2[s(n), τ ] , s(n)s∗(n− τ) (2.28)

...

DPK [s(n), τ ] , DP2[DPK−1[s(n), τ ], τ ]

and τ is an arbitrary positive integer parameter which could be chosen according

to [18]. The main usage of DPT or HAF is in PPS applications as we will see in

Chapters 3 and 4.
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2.2 Moments and Cumulants

In this section, we review the definitions of statistical moments and cumulants,

because we will use them throughout the thesis. When random variables are

non-Gaussian, the first two moments are not sufficient to define their probability

density functions or cumulative distribution functions (pdf or cdf). Consequently,

higher-order statistics (HOS), can reveal other information about them than just

second-order statistics (SOS) can provide. Ideally, the entire pdf is needed to

characterize a non-Gaussian random variable, however, in practice this may not

be always available. Under these circumstances, the pdf may be characterized

by its moments or cumulants. It should be noted that some distributions do not

possess finite moments of all orders. Fortunately, for sufficiently large number of

the sources of randomness and under certain conditions stated in page 538 of [20],

the cdf of the random variable could be approximated by Edgeworth’s expansion

involving HOS to up to fourth-order [21]. In fact, if the number of the sources of

randomness is n, then the error of approximation is in the order of less than 1/n.

Thus, with just up to fourth-order statistics, one could approximate the cdf very

well. In practice, the approximations often turn out to be remarkably good even

when only the first three or four moments are used [22].
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2.2.1 Definitions and Properties

We focus our presentation on real random variables. For the complex case, readers

can refer to [22, 23] and the references therein. Let {y(n)}, n = 0,±1,±2,±3, . . .

be a random process, stationary up to order q; then, the pth-order moment (p ≤

q), Mp,y(τ1, τ2, . . . , τp−1), is defined as the joint pth-order moment of the random

variables, y(n), y(n+τ1), . . . , y(n+τp−1). Because of the assumed stationarity, the

pth-order moment is a function only of the (p− 1) lags, {τi}p−1
i=1 . We now write the

moment of a stationary random process as

Mp,y(τ1, τ2, . . . , τp−1)
4
= Mom[y(n), y(n+ τ1), . . . , y(n+ τp−1)]

= E[y(n)y(n+ τ1) . . . y(n+ τp−1)] (2.29)

where E[·] is the statistical expectation operator. The pth-order cumulant exists,

if all absolute moments of qth-orders q ≤ p exist (and are bounded). Similarly, all

the pth-order cumulants of {y(n)} are (p− 1)-dimensional functions, which can be

written in the form

Cpy(τ1, τ2, . . . , τp−1)
4
= Cum[y(n), y(n+ τ1), . . . , y(n+ τp−1)]. (2.30)

The general relationship between moments and cumulants of any order can be

found in [24]. Cumulants of orders greater than one are invariant to shift of mean.

We will assume that the processes of interest are all with zero-mean.
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Hence, the second-order moment (autocorrelation) of the zero-mean random

process {y(n)} is defined as

M2,y(τ)
4
= E[y(n)y(n+ τ)]. (2.31)

In this case, the second-order cumulants C2,y(τ) are the same as M2,y(τ), i.e.

C2,y(τ) = M2,y(τ) ∀τ . The third-order moment is defined as

M3,y(τ1, τ2)
4
= E[y(n)y(n+ τ1)y(n+ τ2)] (2.32)

and again C3,y(τ1, τ2) = M3,y(τ1, τ2) ∀τ1, τ2, where C3,y(τ1, τ2) is the third-order

cumulant. The fourth-order moment is defined as

M4,y(τ1, τ2, τ3)
4
= E[y(n)y(n+ τ1)y(n+ τ2)y(n+ τ3)] (2.33)

and the fourth-order cumulant is

C4,y(τ1, τ2, τ3) = M4,y(τ1, τ2, τ3)

−C2,y(τ1)C2,y(τ2 − τ3)− C2,y(τ2)C2,y(τ3 − τ1)

−C2,y(τ3)C2,y(τ1 − τ2). (2.34)

As we have seen above, although the second- and third-order cumulants (of zero-

mean processes) are identical with the autocorrelation and the third-order mo-
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ments, respectively, the fourth-order moments are different from the fourth-order

cumulants. The third- and higher-order cumulants of Gaussian processes are zero

(proof can be found in Appendix A). Since cumulants of order p > 2 of a Gaus-

sian process are zero, the cumulants provide a quantitative measure of its deviation

from Gaussianity.

The properties of moments and cumulants can be summarized as follows (the

proof could be found in [23]):

P1 If λi, i = 1, . . . , p are constants, and yi, i = 1, . . . , p are random variables,

then

Mom(λ1y1, . . . , λpyp) = (

p∏
i=1

λi)Mom(y1, . . . , yp)

and

Cum(λ1y1, . . . , λpyp) = (

p∏
i=1

λi)Cum(y1, . . . , yp).

P2 Moments and cumulants are symmetric functions in their arguments, i.e.

Mom(y1, . . . , yp) = Mom(yj+1, . . . , yp, y1, . . . , yj)
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and

Cum(y1, . . . , yp) = Cum(yj+1, . . . , yp, y1, . . . , yj).

P3 If the random variables {yi}pi=1 are independent of the random variables

{zi}pi=1, then

Cum(y1 + z1, . . . , yp + zp) = Cum(y1, . . . , yp) + Cum(z1, . . . , zp)

whereas in general

Mom(y1 + z1, . . . , yp + zp) , E[(y1 + z1)(y2 + z2) · · · (yp + zp)]

6= Mom(y1, . . . , yp) + Mom(z1, . . . , zp).

However, for random variables {z1, y1, y2, . . . , yp}, we have

Cum(y1 + z1, y2, . . . , yp) = Cum(y1, y2, . . . , yp) + Cum(z1, y2, . . . , yp)

and

Mom(y1 + z1, y2, . . . , yp) = Mom(y1, y2, . . . , yp) + Mom(z1, y2, . . . , yp).
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P4 If a subset of the random variables {yi}pi=1 is independent from the rest, then

Cum(y1, y2, . . . , yp) = 0

whereas in general

Mom(y1, y2, . . . , yp) 6= 0.

2.2.2 Ergodicity and Moments

Ergodicity deals with the relationship between statistical averages and sample

averages. A process {y(n)} is ergodic in the most general form if, with probability

one, all of its moments can be determined from a single realization [25]. In other

words, the expected value E[·] (or ensemble averages) can be replaced by time

averages, i.e.,

E[y(n)y(n+ τ1) · · · y(n+ τp−1)] = 〈y(n)y(n+ τ1) · · · y(n+ τp−1)〉

= lim
T→∞

1

2T + 1

+T∑
n=−T

y(n)y(n+ τ1) · · · y(n+ τp−1) (2.35)

where 〈·〉 is the time-average operator, which has the same properties as the en-

semble average operation E[·] if the process is ergodic.

We see from Eqn. (2.35) that time-averages of higher-order moments are func-
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tions of infinitely many random variables and, therefore, can be viewed as random

variables themselves. Ergodicity implies that the time averages of all possible sam-

ple sequences are equal to the same constant which, in turn, equals the ensemble

average. Throughout this thesis we assume that if the process is ergodic, then

Eqn. (2.35) holds for all orders up to p.

In practice, when we are given a finite length single realization of an ergodic

process, i.e., {y(n)}, n = −T, . . . ,+T , we cannot compute the limits of Eqn. (2.35)

but the estimates are

〈y(n)y(n+ τ1) · · · y(n+ τp−1)〉 ≈ 1

2T + 1

+T∑
n=−T

y(n)y(n+ τ1) · · · y(n+ τp−1) (2.36)

The estimation of higher-order moments of a stochastic process can be found in

detail in [21–23, 25]. In Chapter 6, we explicitly use HOS and the mixture of

HOS-SOS. The main reason HOS is used because no matter if the Gaussian noise

is colored or not, higher-order cumulants of the noise is zero. We discuss more on

the use of HOS in Chapter 6.

2.3 Array Processing

The objective of array processing is to extract as much information as possible

from the signals impinged on an antenna array or to recover each of the source

signals that have been transmitted. Information of interest includes e.g., DOAs,
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source frequencies and the number of sources. Basically, there are two types of

array processing models.

The first type is non-parametric array processing, which does not assume any

parameter-dependent structure on the signal and the array manifold. An example

is given in Fig. 1.3 (d). Normally, the non-parametric array manifold is classified

into convolutive and non-convolutive [5]. In this thesis, we limit the subject to non-

convolutive or linear array manifold. Mathematically, the received signal, x(n), is

described as

x(n) = As(n) + v(n) (2.37)

where A is the M×K linear array manifold matrix, s(n) is the K×1 vector consists

of K source signals and v(n) is the M × 1 vector of the complex noise which has

zero mean. If the array processing is to recover each source signal without prior

knowledge of the channel, this is known as blind beamforming or BSS [26,27]. If the

objective is to estimate the array manifold, then it is called blind identification.

When the array manifold matrix is long or square, solving blind identification

problem is also directly solving BSS, through the use of pseudo-inverse as follows,

ŝ(n) = Â†x(n) (2.38)

As we will see in Chapter 5, the array manifold could be wide matrix. In this

case, estimating array manifold (solving blind identification) does not solve BSS,



CHAPTER 2. MATHEMATICAL PRELIMINARIES 35

because there are many solutions for ŝ(n) that satisfy Eqn. (2.37) (assuming no

noise), and pseudo-inverse only solves for the minimum-normed ŝ(n), which is not

necessary anywhere close to actual s(n). We will see in detail for this type of BSS

method in Chapter 5.

The second type is the parametric array processing, which assume that ei-

ther the array manifold or both the array manifold and signals have parameter-

dependent structure. The structure is known to the receiver, but the parameters

are unknown. Recently, parametric array processing algorithms have been devel-

oped for various kind of problems [4, 28–32]. The most classical array processing

problems involve estimation of DOA and number of sources in the presence of spa-

tially white Gaussian noise [4,33–39]. Hence, in the following subsections, we will

only review on the classical DOA estimation algorithms, especially the subspace-

based algorithms, because they are known for their low computational complexity

and yet superb performance.

2.3.1 Parametric Signal Model

In this section, we will briefly review the techniques of classical subspace DOA

estimation techniques. These techniques are indirectly incorporated or modified

to suit to applications to be presented later. The signal received by M -sensor array
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is typically modeled as follows,

x(n) = A(θθθ)s(n) + v(n) n = 0, 1, . . . , N − 1 (2.39)

where N is the number of snapshots, A(θθθ) is the M ×K array manifold matrix,

s(n) is the K×1 vector of source signals and v(n) is the M×1 vector of circularly

complex Gaussian noise having zero mean, and its elements are temporally and

spatially white with autocorrelation Rv = σ2
nI. The vector of source signals, s(n),

is unknown to receiver.

The array manifold matrix A(θθθ) = [a(θθθ1), . . . , a(θθθK)] consists of the steering

vector of each source a(θθθi). Assuming the sources are far away from the sensors

such that the resulting waves are plane waves, then the array steering vector of

the ith source has the following structure

a(θθθi) ,
[
1, ej2πτ2(θθθi), . . . , ej2πτM−1(θθθi)

]T
, (2.40)

where the propagation delay between the first and the mth sensor is given as

τm(θθθi) =
υυυT (θθθi)dm

c
, m = 1, . . . ,M. (2.41)

In Eqn. (2.41),

• θθθi = [φi, ψi]
T , where φi is the elevation and ψi is the azimuth with respect
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to the coordinate system.

• υυυ(θθθi) = [cosφi sinψi, sinφi sinψi, cosψi]
T is the unit vector in the direction

of θθθi.

• dm = [αm, βm, γm]T is the coordinate of the physical antenna sensor relative

to sensor 1, which is set as the origin of the coordinate. The values of the

coordinate are normalized by the carrier wavelength.

• c is the speed of propagation of carrier in the medium, e.g. propagation of

electromagnetic waves in the air is 3 · 108m
s

and propagation of sound in the

water is 1500m
s

.

In Fig. 2.2, we illustrate the plane wave from source i impinging on the antenna

array.

For uniform linear array (ULA) and if the signal is from far-field, the array

steering vector of the ith source simplifies to the following structure

a(θi) ,
[
1, ej2πτ2(θi), . . . , ej2πτM−1(θi)

]T
, (2.42)

where the propagation delay between the first and the mth sensors is given as

τm(θ) = (m− 1)
d sin θ

c
, m = 1, . . . ,M (2.43)

where d is the physical antenna spacing normalized by the carrier wavelength (see
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Fig. 2.3). Note that for the estimated DOA, θ ∈ [−π
2
, π

2
], to be unambiguous,

the d < λ/2 condition must be satisfied, which is analogous to Nyquist sampling

theorem for time series.

For convenience, we construct a data matrix, X, by stacking the data vectors∗,

∗Data matrix (vector) and observed/received signal matrix (vector) are used interchangeably

z

x

y

d1

dm

Sensor 1

Sensor 2

Sensor m

φi

ψi

direction
from

source i

Figure 2.2: Plane wave impinging from (φi, ψi) direction to antenna array
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d d d d d d

Figure 2.3: Plane wave impinging from θ direction to ULA with d element interspacing

x(n), as follows,

X = [x(0), . . . ,x(N − 1)]

= A(θθθ)S + V (2.44)

where S = [s(0), . . . , s(N −1)] and V = [v(0), . . . ,v(N −1)] are the source signals

and noise matrices resulted from stacking, respectively. From now on for simplicity,

we will consider only ULA. The weighted subspace fitting and MUSIC algorithm

could be used for any array settings. However, root-MUSIC algorithm is limited

to ULA, while ESPRIT algorithm is required to have a pair identical subarrays.

2.3.2 Review of Weighted Subspace Fitting Algorithm

The first algorithm we will contemplate on is the Weighted Subspace Fitting algo-

rithm [33, 34]. It is basically based on geometrical interpretation of the data, i.e.

the signal subspace. The subspace spanned by column vectors of A(θθθ) is termed
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as the signal subspace. In the absence of noise, the subspace spanned by X is the

same signal subspace spanned by column vectors of A(θθθ). Suppose that the true

covariance matrix of x(n) is available, i.e. Rx , E[x(n)x(n)H ], then its eigenvalue

decomposition (EVD) is expressed as

Rx = UΛUH = USΛSUS
H + σ2

nUNUN
H (2.45)

which reveals that a basis for signal subspace is formed by the columns of theM×K

matrix US. Since the noise is assumed to be white, uncorrelated with the source

signals, and of equal variance, then UN is the matrix of eigenvectors correspond

to the M − K smallest eigenvalues, which is all equal to σ2
n. These eigenvectors

(columns of UN) serve as the bases for noise subspace, which is orthogonal to the

signal subspace. The orthogonality between signal and noise subspace is exploited

not only in the weighted subspace algorithm, but also in other subspace algorithms

[33–38]. Since the true covariance matrix is not accessible in practice, one can use

the consistent estimate of the covariance matrix which is the sample covariance

matrix R̂x , XX
H
/N . Thus, its EVD is given by

R̂x = ÛΛ̂Û
H

= ÛSΛ̂SÛS
H

+ ÛNΛ̂NÛN
H

(2.46)

and the estimate for the signal subspace is ÛS. As the name subspace fitting

implies, the method is to fit subspace spanned by the columns of X to that of
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span{A(θθθ)}. Since span{US} = span{A(θθθ)}, then US = A(θθθ)T where T is a

square and non-singular matrix of size K × K. Finally, we can formulate the

subspace fitting estimation as follows

[θ̂θθ, T̂] = arg min
θθθ,T
‖ÛS −A(θθθ)T‖F (2.47)

However since each column of ÛS is perturbed differently, a modified version of

the above formulation with weighting will perform better [33, 34]. The modified

version is given by

[θ̂θθ, T̂] = arg min
θθθ,T
‖ÛSW

1
2 −A(θθθ)T‖F (2.48)

where W is the weighting matrix, which is a diagonal and positive definite matrix.

Solving for T, we obtain T = A(θθθ)†ÛSW
1
2 . After the substitution of T into Eqn.

(2.48), we obtain

θ̂θθ = arg min
θθθ
‖ÛSW

1
2 −A(θθθ)A(θθθ)†ÛSW

1
2‖F

= arg min
θθθ
‖(I−A(θθθ)A(θθθ)†)ÛSW

1
2‖F

= arg min
θθθ
‖P⊥A(θθθ)ÛSW

1
2‖F

= arg min
θθθ

tr{P⊥A(θθθ)ÛSWÛS
H} (2.49)
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It has been shown in [33,34,39], that the optimal weighting which gives the lowest

asymptotic error variance is Wo = (Λ̂S − σ̂2
nI)2Λ̂−1

S , where σ̂2
n is any consistent

estimate of the noise variance, e.g., average of the diagonal elements of Λ̂N. To

implement this algorithm, one would require a multidimensional search algorithm

such as Gauss-Newton, which is fast but requires a relatively accurate initial guess.

Therefore, this algorithm suffers from computational complexity (because of mul-

tidimensional search) and from the possibility to be trapped at a local minimum

point, which leads to wrong estimates. One way to reduce occurrence of being

trapped in local minimum is by using Genetic Algorithms [40] or Simplex algo-

rithm [41], however it will not completely remove the possibility of being trapped.

In the next subsection, we introduce a DOA estimation method which uses only

one-dimensional search. It is computationally inexpensive and one could even plot

the cost function and locate the smallest minima which correspond to the estimate.

2.3.3 Review of MUSIC Algorithm

MUltiple SIgnal Classification algorithm (MUSIC) was introduced in [35,42]. MU-

SIC is similar to the weighted subspace fitting algorithm, except that it involves

only one dimensional search. The basic idea is that the steering array in the di-

rections of true DOAs is perpendicular to noise subspace, provided that access to
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true noise subspace is available. Mathematically,

a(θi)
HUN = 0 i = 1, . . . , K (2.50)

where 0 is the zero vector. MUSIC spectrum uses its inverse, as follow

PMUSIC(θ) =
1

‖a(θ)HUN‖2
(2.51)

so that if θ = θi, the so called MUSIC spectrum, gives a very sharp peak for

each impinging DOA. There is also a search-free and improved version of MUSIC,

which is called root-MUSIC and was proposed in [36]. Root-MUSIC basically

solves the denominator in Eqn(2.51) for the K complex roots which are closest to

unit circle. With the elements of the steering vector set as ej2πτ1(θ) = z, the ULA

steering vector is a(z) = [z0, z1, · · · , zM−1]T . Thus, denominator of Eqn. (2.51)

is a polynomial of z and the phases of its K roots closest to the unit circle on a

complex plane give the estimates {τ(θi)}Ki=1, which eventually lead to the estimates

of DOAs. This algorithm will be used in Chapter 6 to perform DOA estimation

together with HOS and mixture of HOS-SOS.

2.3.4 Review of ESPRIT Algorithm

The Estimation of Signal Parameters via Rotational Invariance Techniques (ES-

PRIT) was introduced in [38]. It was originally meant for two identical sets of
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sensor arrays with any geometry. Its variant, which we will discuss here, applies

to sensor arrays for which one could choose two subsets of the sensor arrays such

that they are identical. In harmonic retrieval of time series data, this variant from

ESPRIT is called matrix pencil method [37].

Assuming ULA settings, then the array manifold matrix would be of the form

A(θθθ) =



1 · · · 1

ψ1 · · · ψK

...
. . .

...

ψM−1
1 · · · ψM−1

K


(2.52)

where ψi = ej2πτ1(θi). In fact, multiple identical subarrays could be chosen from

this ULA setting, such as choosing the first M − 1 sensors and the last M − 1

sensors. Assuming no noise for the time being, the response or the data matrix

observed from the first and the second subarrays could be shown as follows

X1 = ÃS (2.53)

X2 = ÃΨS

where Ψ = diag{ψ1, · · · , ψK} is a diagonal matrix, and Ã is the array manifold

matrix A(θθθ) with the last row deleted. This property is called shift invariance,

because both the data matrix observed by the first subarray (first (M−1) sensors)
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and the shifted subarray (the last (M−1) sensors) have the same invariant subspace

span{Ã}.

In ESPRIT, the received signal X is low-rank approximated at initial step upon

successive estimation of the number of sources, K̂. Suppose that the singular value

decomposition of data matrix X is given by

X = PΣQH (2.54)

where P and Q are (M×M)-matrix consist of the left singular vectors and (N×N)-

matrix consist of the right singular vectors, respectively. The (M ×N)-matrix, Σ,

contains the singular values in its diagonal. Let the (K̂ × K̂)-matrix, Σ̂, contains

only K̂-largest singular values in its diagonal, while P̂ and Q̂ are (M × K̂)-matrix

and (N × K̂)-matrix consist of the left and right singular vectors corresponding to

the K̂-largest singular values, respectively. The low rank approximation of data

in Eqn. (2.44) is then given by

X ≈ X̂ , P̂Σ̂Q̂H . (2.55)

Subsequently, the span of signal subspace is equal to the span of array manifold,

i.e., span{A(θθθ)} = span{P̂}. Thus, the array manifold matrix is related to signal

subspace by

P̂ = A(θθθ)T (2.56)
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where T is an invertible square matrix of size (K̂× K̂). By forming two subarrays

as described for Eqn. (2.53), its effect to the signal subspace is given by

P̂1 = ÃT (2.57)

P̂2 = ÃΨT

where P̂1 and P̂2 are matrices derived from P̂ with the first and the last row

deleted, respectively. These matrices correspond to subspaces of the subarray 1

(formed by first (M − 1) sensors) and subarray 2 (formed by the last (M − 1)

sensors), respectively. Thus, by combining this pair of equations, we have

P̂†1P̂2 = T−1Ã†ÃΨT

= T−1ΨT (2.58)

We observe that Eqn. (2.58) shows a non-symmetric EVD. Thus, the diagonal

matrix Ψ is the eigenvalue matrix of P̂†1P̂2, which means the estimate of ψi is the

eigenvalue. Finally, the estimate of DOAs can be obtained from the phase of ψi.

More complete background estimation theory and array processing can be found

in [4, 43–45].



Chapter 3

Wideband LFM Array
Parameters Estimation Method

3.1 Background

This chapter discusses on the parameter estimation of several wideband PPS

sources in sensor arrays. PPS is a more accurate model for signals having continu-

ous instantaneous phase/frequency over a finite extent time interval. According to

Weierstrass’ approximation theorem [46], the instantaneous phase/frequency can

be well approximated by a polynomial within a finite observation interval. The

estimation of PPS parameters is an important problem because they arise in di-

verse practical communication applications. For example, in SAR, SAS, inverse

SAR, inverse SAS, Doppler radar, and sonar imaging, the returned signals are

continuous frequency modulated signals [2, 47–50]. Aside from that, LFM signals

are widely used in pulse-compression radar and sonar, particularly the ones using

chirp pulse, i.e. FMCW radar [2, 47].

47
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There has been much attention put into both the constant amplitude and slow

time-varying PPS signals [18, 49–56]. However, most of these efforts are with

one receiver sensor. There have been growing interests in estimating the PPS

parameters and DOAs in sensor array systems [31,32,57–61]. Some authors solved

this problem by using the narrowband assumption and by assuming the array

manifold (mixing matrix or spatial signature) is unchanged over the observation

period. Particularly, in [32, 57], STFD has been introduced and used for DOA

estimation of narrowband FM sources. However, this requires a few time-frequency

points which correspond to the sources’ time-frequency signatures. Several exact

and approximate ML algorithms have been proposed in [31]. Several authors have

attempted to extend these narrowband assumption to the case of wideband FM

sources [58–60,62]. In [58], LFM source parameters are estimated by the subspace

method, however, the approach is limited by the need for all sources to have the

same central frequency. In [59, 60] the wideband extension of STFD is severely

restricted by the short sliding data window size. In [62], an iterative approach is

proposed, but it could lead to strongly biased DOA estimates [59], and convergence

is not guaranteed. In [61], DOAs of LFM sources are estimated more efficiently,

however, all of the algorithms proposed require the knowledge on the frequency rate

of all sources. In [63], the wideband technique, also known as the chirp beamformer

(CBF), which is free from the restrictions in the techniques mentioned above, was

devised to extract the parameters of interest through making a 3-D search. The

CBF is exactly equivalent to the ML estimation technique for a single PPS source,



CHAPTER 3. ESTIMATION OF LFM ARRAY 49

however, the authors in [63] directly extended it to multiple sources scenario. Since

this method is ML based, which requires to perform 3-D search, the computational

complexity is very high.

It is also worthwhile to note that, the conventional wideband array processing

techniques such as coherent-subspace MUSIC [64,65] and wideband ML approaches

[66], which are meant for general wideband signals, are underperformed when

dealing with PPS. This is because these algorithms do not take advantage of the

PPS structure. As reported in [59], these methods also suffer severely from limited

window length.

In this chapter, we describe a simple parameter estimation technique for wide-

band chirp signals. We exploit the distinctiveness of the initial frequencies, and

the invariance of the frequency rates observed from different sensors. The pro-

posed technique is effective and computationally inexpensive. Simulation results

and comparative results are included to validate the proposed algorithm.

In the next chapter, we describe a subspace-based parameter estimation method

for wideband PPS source. The new operator named as SHIM is introduced and

used to transform a PPS received by array sensors into a classical narrowband

sinusoid estimation problem. One could estimate the highest-order frequency pa-

rameter and DOA separately, but we use a subspace algorithm [28] to jointly

estimate both parameters.
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3.2 Parametric PPS Models

There are many models can be used to describe PPS impinged on sensor arrays,

depending on the type of array structures. In this thesis, only the ULA structure

is considered, and it can be extended to a rectangular array or any other ULA

based structure. For the PPS model, there are constant amplitude PPS, slow

time-varying amplitude PPS, and fast time-varying amplitude PPS. Again, in

this thesis, we consider only the constant amplitude PPS. The algorithms for the

constant amplitude PPS could be extended with some degradations to slow time-

varying amplitude PPS [19]. For the array manifold model, we consider the non-

stationary array manifold. The array manifold can be either (quasi-)stationary if

the PPS impinged on the sensor array are narrowband signals, or non-stationary

if the PPS impinged on the sensor array are wideband signals. Of course, the non-

stationary (wideband) model is more generalized than the stationary (narrowband)

model, and that is the reason we consider the non-stationary model.

The signal model for a constant amplitude PPS from L sources arriving at an

ULA composed of M sensors can be delineated as:

x(n) = A(n)s(n) + v(n) n = 0, 1, . . . N (3.1)

where N is the number of snapshots, A(n) is the M × L array manifold matrix,

s(n) is the L × 1 vector of PPS, and v(n) is the M × 1 vector of complex cir-
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cularly Gaussian noise that is of zero mean, temporally and spatially white with

autocorrelation Rv , σ2
nI. The vector of PPS is modeled as

s(n) ,
[
s1(n), s2(n), . . . , sL(n)

]T
(3.2)

where the PPS of order K of ith source is modeled as

si(n) = Aie
jαi exp (j

K∑
k=1

ai,k(n∆)k) (3.3)

In Eqn. (3.3), Ai is the unknown constant amplitude of the ith source, ai,k = 2πfi,k

is the kth-order angular frequency coefficient of the ith source, αi is the unknown

phase and ∆ is the sampling interval. The kth-order frequency coefficient of the

ith source is fi,k and has the unit of Hz/sk.

The array manifold matrix is A(n) = [a(θ1, n), . . . , a(θL, n)]. The array steering

vector of the ith source is modeled as

a(θi, n) ,
[
1, ejϕ

′
i(n)ψi , . . . , ejϕ

′
i(n)ψi(M−1)

]T
, (3.4)

where the instantaneous frequency is given by ϕ′i(n) ,
∑K−1

k=0 (k + 1)ai,k+1(n∆)k,

which is assumed to be constant during the time interval for the signal to propagate

across the array aperture. The DOA, θi, which lies inside the range from −π
2

to
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+π
2
, is related to ψi by

ψi =
d

c
sin(θi), (3.5)

where d is the spacing between adjacent sensors of the ULA and c is the propaga-

tion speed in the medium (see Fig. 2.3 for the ULA figure).

3.3 Review of Chirp Beamformer

Since v(n) ∼ N (0, σ2
nI), then x(n) ∼ N (A(n)s(n), σ2

nI). Given the distribution of

x(n), the optimal estimates could be obtained from ML method. The estimates of

ML method are obtained by maximizing the logarithm of the probability density

function of the received signals with respect to all the unknowns, including the

unknown parameters of interest, and the unknown nuisance parameters. The log

likelihood function is given by,

L(ψψψ) = −
N−1∑
n=0

‖x(n)−A(θθθ,$$$, n)G($$$,n)βββ‖2 (3.6)

where the new definitions are θθθ , [θ1, · · · , θL]T , $$$ , [$$$T
1 , · · · ,$$$T

L]T , G($$$,n) ,

diag{g($$$1, n), · · · , g($$$L, n)}, βββ , [A1e
jα1 , · · · , ALejαL ]T and ψψψ , [θθθT ,$$$T ,βββT ]T .

The array manifold matrix A(θθθ,$$$, n) is the same as†† A(n) in Eqn. (3.4). We

have also defined $$$i , [ai,1, · · · , ai,K ]T , and g($$$i, n) , exp (j
∑K

k=1 ai,k(n∆)k).

All these new definitions are used only in this section in order to simplify the

††Here we explicitly denote its dependency on θθθ and $$$ for derivation purpose
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derivation and to show the dependency of the functions on parameters of interest.

Expanding Eqn. (3.6) gives,

L(ψψψ) = −βββH
(
N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)HA(θθθ,$$$, n)G($$$,n)

)
βββ

+2<

(
N−1∑
n=0

x(n)HA(θθθ,$$$, n)G($$$,n)βββ

)
−

N−1∑
n=0

x(n)Hx(n). (3.7)

Maximizing Eqn. (3.7) above with respect to βββ yields

β̂̂β̂β =

(
N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)HA(θθθ,$$$, n)G($$$,n)

)−1

.

(
N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)Hx(n)

)
. (3.8)

This value of β̂̂β̂β is the optimum estimate of βββ given that the other parameters

are known. Substituting Eqn. (3.8) into Eqn. (3.6) gives the simplified likelihood

function

L(θθθ,$$$) =

(
N−1∑
n=0

x(n)HA(θθθ,$$$, n)G($$$,n)

)
.(

N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)HA(θθθ,$$$, n)G($$$,n)

)−1

.(
N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)Hx(n)

)
−

N−1∑
n=0

x(n)Hx(n) (3.9)

which is independent of βββ. Furthermore, by removing the last term in the last
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equation, it can be simplified to

L(θθθ,$$$) =

(
N−1∑
n=0

x(n)HA(θθθ,$$$, n)G($$$,n)

)
.(

N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)HA(θθθ,$$$, n)G($$$,n)

)−1

.(
N−1∑
n=0

G($$$,n)HA(θθθ,$$$, n)Hx(n)

)
(3.10)

Mathematically, ML estimation for multiple wideband polynomial phase signals is

given by

[θ̂̂θ̂θ, $̂̂$̂$] = arg max
θθθ,$$$
L(θθθ,$$$) (3.11)

However, due to significant number of unknown parameters involved when max-

imizing Eqn. (3.11), a very large dimensional search is required. Hence, authors

of [63] proposed to use the log likelihood function in Eqn. (3.10) with the assump-

tion that only single source is present. By assuming only source i is present, Eqn.

(3.10) simplifies to

L(θi,$$$i) =
1

NM

∣∣∣∣∣
N−1∑
n=0

x(n)Ha(θi,$$$i)g($$$i, n)

∣∣∣∣∣
2

(3.12)

Since the chirp beamformer (CBF) is meant only for chirp (LFM) signal, Eqn.
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(3.12) is simplified further to‡

L(θ, a1, a2) =
1

NM

∣∣∣∣∣
N−1∑
n=0

x(n)Ha(θ, a1, a2)eja1∆n+ja2(∆n)2

∣∣∣∣∣
2

(3.13)

Equation (3.13) is the CBF cost function and has only three parameters involved

in the search/maximization. Although in the derivation, single source is assumed,

the CBF could be applied to multiple sources case (see [63]).

3.4 The Proposed Algorithms

3.4.1 Algorithm Utilizing (Weighted) Least Squares

We begin by defining, y(n) = A(n)s(n), which is the noise-free signal compo-

nents of Eqn. (3.1). Since the signals in this chapter are second-order PPS, for

convenience the notation of frequency rates and initial frequencies are redefined

as ai,2 , bi and ai,1 , ai, respectively (c.f. Eqn. (3.3) for the notation of frequency

parameters in PPS). Hence, it can be easily seen that

y(n) = [a(θ1, n), . . . , a(θL, n)]


A1e

j(α1+a1∆n+b1(∆n)2)

...

ALe
j(αL+aL∆n+bL(∆n)2)


= y1(n) + · · ·+ yL(n)

(3.14)

‡subscript i has been dropped because CBF is an ML estimation technique for single source
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where we have yi(n) = Aie
j(αi+ai∆n+bi(∆n)2)a(θi, n). Rearranging the latter equa-

tion, we obtain the following expression

yi(n) = Aie
jαi



ej(ai∆n+bi(∆n)2)

ejψiaiej[(ai+2biψi)∆n+bi(∆n)2]

...

ej(M−1)ψiaiej[(ai+2biψi(M−1))∆n+bi(∆n)2]


(3.15)

To vividly observe the main thrust of the proposed algorithm, we define the fol-

lowing,

Definition 1. Observing from the mth sensor, the frequency rate, the initial fre-

quency and the phase of the ith source are respectively given by:

i. νm,i , bi, as the frequency rate at sensor m

ii. ωm,i , (ai + 2biψim), as the initial frequency at sensor m

iii. φm,i , αi + ψiaim, as the phase at sensor m.

Rewriting Eqn. (3.15) by using the definitions given above, we obtain

yi(n) = Ai


ej[φ0,i+ω0,i∆n+ν0,i(∆n)2]

...

ej[φM−1,i+ωM−1,i∆n+νM−1,i(∆n)2]

 (3.16)

Note that from (i), (ii),and (iii) given in Definition 1, the frequency rates are con-
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stant from one sensor to another, while the initial frequencies and phases vary

linearly from one sensor to the adjacent one. Given the above definition, we com-

mence by processing the output of each array element data individually to obtain

the estimates of {ω̂m,i, ν̂m,i, φ̂m,i}, for i = 1, 2, . . . , L and m = 0, 1, . . . ,M−1. This

can be done by appealing to a modified version of multi-component Discrete Poly-

nomial phase Transform (MC-DPT) method [67], which exploits the sensor array

structure. We further process {ω̂m,i, ν̂m,i} to retrieve the values of {âi, b̂i, ψ̂i} for

i = 1, 2, . . . L.

To obtain the estimate of b̂i, we propose the following averaging

b̂i =
1

M

M−1∑
m=0

ν̂m,i (3.17)

which will result in an improved estimate of b̂i because of multiple sensors. To

extract ai from ω̂m,i, we utilize the relationship observed from (ii). Stacking (ii)

over m = 0, . . . ,M − 1,

ωωωi =AAAiγγγi (3.18)

where AAAi , [1, 2biζζζ], ζζζ , [0, 1, . . . ,M − 1]T , 1 = [1, 1, . . . , 1]T with size of M × 1

and γγγi , [ai, ψi]
T . By substituting the ωωωi and bi with their estimates, ω̂ωωi and b̂i,

we obtain estimate of γγγi, as

γ̂γγi = Â̂ÂA†iω̂ωωi (3.19)

where Â̂ÂA†i is the pseudo-inverse of Â̂ÂAi = [1, 2b̂iζζζ].
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From Eqn. (3.19), one could directly obtain the estimate of ψi from the second

component of γ̂̂γ̂γi. However, the estimate of ψi obtained this way is of poor accuracy

as we will show this in the following. Assume ω̂̂ω̂ωi = ωωωi + δωδωδωi, where δωδωδωi is the

estimation error vector or perturbation vector, and substitute into Eqn. (3.19), it

yields

γ̂γγi = Â̂ÂA†iAAAiγγγi + Â̂ÂA†iδωδωδωi (3.20)

Since Â̂ÂAi is a M×2-matrix, then its pseudo-inverse is given by Â̂ÂA†i = (Â̂ÂATi Â̂ÂAi)−1Â̂ÂATi .

We next show how the inverse 2×2-matrix of (Â̂ÂATi Â̂ÂAi) could be derived analytically.

Â̂ÂATi Â̂ÂAi =

 1T

2b̂iζζζ
T

[ 1 2b̂iζζζ

]
=

 1T1 2b̂i1
Tζζζ

2b̂iζζζ
T1 4b̂2

iζζζ
Tζζζ

 (3.21)

=

 M b̂iM(M − 1)

b̂iM(M − 1) 2
3
b̂2
i (M − 1)M(2M − 1)

 (3.22)

Here we make use of the fact that

1Tζζζ =
M−1∑
l=0

l = (M − 1)M/2 (3.23)

ζζζTζζζ =
M−1∑
l=0

l2 =
1

6
(M − 1)M(2M − 1)

Hence, by evaluating the inverse of Eqn. (3.22), the pseudo-inverse of Â̂ÂAi is then
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given as

Â̂ÂA†i = (Â̂ÂATi Â̂ÂAi)−1Â̂ÂATi

=
1

%

 2
3
b̂2
i (M − 1)M(2M − 1) −b̂iM(M − 1)

−b̂iM(M − 1) M


 1T

2b̂iζζζ
T

 (3.24)

where the determinant of matrix Â̂ÂATi Â̂ÂAi is % , 1
3
b̂2
iM

2(M2 − 1). Meanwhile, we

will consider the first term on the right hand side of Eqn. (3.20) only. This term

involves Â̂ÂA†iAAAi, which could be simplified to

Â̂ÂA†iAAAi = (Â̂ÂATi Â̂ÂAi)−1(Â̂ÂATi AAAi) (3.25)

= (Â̂ÂATi Â̂ÂAi)−1

 M biM(M − 1)

b̂iM(M − 1) 2
3
b̂ibi(M − 1)M(2M − 1)

 (3.26)

=
1

%

 1
3
b̂2
iM

2(M2 − 1) 0

0 1
3
b̂ibiM

2(M2 − 1)

 (3.27)

=

 1 0

0 bi/b̂i

 (3.28)

By substituting of Eqn. (3.28) into Eqn. (3.20), we have the following,

 âi

ψ̂i

 = γ̂γγi =

 ai

ψibi/b̂i

+ Â̂ÂA†iδωδωδωi (3.29)

In Appendix C (see Eqn. (C.26)), we show that the second term of the right hand
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side of Eqn. (3.29) is of zero mean. Therefore, the first element of γ̂γγi will give the

unbiased estimate of ai. On the contrary, the second element γ̂γγi gives an estimate

of ψi, which depends on the value of bi, and hence does not necessarily unbiased.

By the first-order perturbation analysis of ψibi/b̂i, we can analyze the bias of the

estimate, as follows

ψ̂i =
1

bi + δbi
biψi

≈ ψi − ψi
δbi
bi

(3.30)

where δbi are perturbations on bi. From Eqn. (3.30), it can be seen that if the value

of bi is so small such that δbi
bi

is of order of 10−1 or more, then the error will be of

the same order times ψi, which is rather large in this case because the conversion

back to θ̂i = sin−1( c
d
ψ̂i) is very sensitive to error. To overcome this problem

when estimating ψi, we use ν̂m,i, ω̂m,i and φ̂m,i to reconstruct the non-parametric

estimate of single source data, x̂i(n), as follows

x̂i(n) =


ej[φ̂0,i+ω̂0,i∆n+ν̂0,i(∆n)2]

...

ej[φ̂M−1,i+ω̂M−1,i∆n+ν̂M−1,i(∆n)2]

 . (3.31)

Following that, to estimate the DOAs, we can now appeal to CBF technique [63],

which is the compressed likelihood function of ML estimation method for one

source chirp signal. The idea is to search for the DOA of the ith source through
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CBF while assuming the other unknown parameters are equal to the estimated

parameters. Mathematically, this is done by performing one-dimensional search

on the CBF cost function (Eqn. (3.13)) with x̂i(n), âi, and b̂i have been substituted

in, i.e.,

ψ̂i = arg max
ψi

1

N2

∣∣∣∣∣
N−1∑
n=0

x̂Hi (n)â(θi, n)ej(âi∆n+b̂i(∆n)2)

∣∣∣∣∣
2

(3.32)

where â(θi, n) = [1, ej(âi+2b̂i∆n)ψi , . . . , ej(âi+2b̂i∆n)ψi(M−1)]T . The original CBF is a

3-D search algorithm for ai, bi and ψi applied to multiple chirp signals. On the

contrary, here is a 1-D search algorithm for DOA applied to single chirp signal.

Application of MC-DPT

In this chapter, the MC-DPT is used with some modifications to obtain {ω̂m,i,

ν̂m,i, φ̂m,i} of each sensor. The reasons that MC-DPT is used are the close-to-CRB

performance, the capability to estimate parameters of multiple chirp signals, the

low computation complexity and the capability to provide automatically the non-

parametric estimates of single source data. The last listed reason above will be

demonstrated in the proposed algorithm steps because the non-parametric estimate

is by the product of the MC-DPT steps. There are methods other than MC-DPT,

such as Radon transform-based technique [68] and the product of higher-order am-

biguity function-based technique [49], which can be used to estimate multiple LFM

signal parameters. However, both techniques aiming at estimating the frequency

rates only, but not the frequencies. In order to estimate the frequencies, one might
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have to resort to MC-DPT steps. That is the reason we prefer MC-DPT over these

two existing techniques. Additionally, both techniques are more computationally

complex compared to MC-DPT.

The modifications that could be made to improve the estimates are as follows:

1. In the first estimation stage of original MC-DPT [67], to remove the ith

chirp of the signal at each sensor’s measurement, the data are multiplied

with exp{−jb̂i(n∆)2}, where b̂i is obtained from Eqn. (3.17).

2. In the second estimation stage, the non-parametric estimate of ith compo-

nent, x̂i(n), is obtained through following steps:

(a) The data are modulated with negative of estimated initial frequencies

and rate of the kth source, as

˜̃xk(n) , x(n) exp{−jb̂k(n∆)2} ◦ e−jω̂ωωkn∆ (3.33)

where ◦ is the Schur-Hadamard (element-wise) matrix product. This

step is used to shift the kth component to dc.

(b) The kth source is filtered out by its averaged data as follows,

X = ˜̃Xk −
1

N

(
N−1∑
n=0

˜̃xk(n)

)
1T (3.34)

where X , [x(0), . . . ,x(N − 1)] and ˜̃Xk , [˜̃xk(0), . . . , ˜̃xk(N − 1)].
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(c) The non-parametric estimate of the signal with kth source removed is

retrieved by

x̂i(n) , x(n)ejb̂k(n∆)2 ◦ ejω̂ωωkn∆ (3.35)

(d) Repeating these steps (a)–(c) for all {k : k 6= i, 1 ≤ k ≤ L} and

replacing x(n) in Eqn. (3.33) with x̂i(n), we will get the data which

contain only the ith component.

3. Following that, root-MUSIC is used instead of fast FT (FFT) to extract finer

estimate of frequencies and frequency rates.

Now, we summarize the algorithm as follows:

1. To obtain {ω̂̂ω̂ω1, . . . , ω̂̂ω̂ωL}, {b̂1, . . . , b̂L}, and {x̂1(n), . . . , x̂L(n)} for n = 0 to

N − 1, we perform the modified MC-DPT on the data, x(n).

2. Compute Eqn. (3.19) for each i = 1 to L, then âi = [γ̂γγi]1,1, which is the first

element of γ̂γγ.

3. To get ψ̂i, perform the 1-D search for each i = 1, . . . , L using Eqn. (3.32).

Subsequently, the estimate of DOAs, θ̂i are found by sin−1 ( c
d
ψ̂i).

It should however be noted that like most of the other harmonic retrieval esti-

mators, the proposed estimator given in Eqn. (3.17) and (3.19) is formulated par-

ticularly based on spatially white and equal sensor gain/attenuation assumptions.

It is possible to generalize the least squares (LS) approach in Eqns. (3.17) and
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(3.19) by using the weighted LS approach in order to cope with different sensors

gain/attenuation and noise variances. In the weighted LS case, Eqn. (3.17) and

(3.19) should be replaced by
∑
m

wmν̂m/
∑
m′
wm′ and (Â̂ÂATW−1Â̂ÂA)−1Â̂ÂAW−1ωωω respec-

tively, where W = diag[κ0, .., κM−1], and {κm}, {wm} are the weights. Of course,

perfect knowledge of these heteroscedastic model’s relative variance weights, {wm}

and {κm}, are needed or to be estimated. One way to do the estimation is to mea-

sure the noise variance when no signal is transmitted.

3.4.2 Algorithm Utilizing TLS - LS

Further improvement could be made in the estimation of ai and possibly ψi. This

could be achieved by noting that the structure of [Â̂ÂAi, ω̂̂ω̂ωi] is error-free in the first

column, and contains errors in the second and third column. This leads to a

solution using mixed total least squares - least squares (TLS-LS) approach as

presented in [69]. The initial step of solving this problem, similar to the total least

squares (TLS) approach, is to find a new estimate of [Â̂ÂA, ω̂̂ω̂ω] such§ that it has a

rank of two and the first error-free column of Â̂ÂA is unchanged. The reason to have

a rank of two is that under noiseless condition, span(ωωω) = span(AAA) due to Eqn.

(3.18).

§The subscript i has been suppressed for notational convenience in this chapter. The algorithm
in this chapter are to be applied to each source individually.
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Hence, mathematically it can be stated as

min
ααα,ωωω

rank{[1,ααα,ωωω]}=2

‖[1,ααα,ωωω]− [1, α̂̂α̂α, ω̂̂ω̂ω]‖ (3.36)

under unitarily invariant norm. In Eqn. (3.36), α̂̂α̂α and ω̂̂ω̂ω are our estimates obtained

previously using MC-DPT. Furthermore, α̂̂α̂α is‡ the second column of Â̂ÂA. The

solution to Eqn. (3.36) is obtained by directly applying the result presented in [70],

and is given as follows,

[αααo,ωωωo] = qqq1qqq
T
1 [α̂̂α̂α, ω̂̂ω̂ω] +QQQ2H1{QQQT

2 [α̂̂α̂α, ω̂̂ω̂ω]} (3.37)

where [qqq1,QQQ2] = QQQ denotes the Q-part (unitary matrix) of the full QR factorization

of matrix [1, α̂̂α̂α, ω̂̂ω̂ω] and Hr{M} is an operator that gives the low rank-r matrix

approximation to M, which is obtained by performing SVD to M.

The following step to solve this TLS-LS problem is to find γγγ which can satisfy

‡The variable ααα is different from αi, which is the complex phase of source i defined in Eqn.
(3.3)
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[111,αααo]γγγ = ωωωo. Equivalently, the solution could be obtained by solving

000 = [111,αααo,ωωωo][γγγ
T ,−1]T

000 = QQQT [111,αααo,ωωωo]

 γγγ

−1



=

 r11 qqqT1 [α̂̂α̂α, ω̂̂ω̂ω]

000 H1{QQQT
2 [α̂̂α̂α, ω̂̂ω̂ω]}


︸ ︷︷ ︸

R


a

ψ

−1

 (3.38)

where r11 is just the (1, 1)th element of R. This equation could be decomposed

into

H1{QQQT
2 [α̂̂α̂α, ω̂̂ω̂ω]}[ψ,−1]T = 000 (3.39)

and

r11a+ qqqT1 [α̂̂α̂α, ω̂̂ω̂ω][ψ,−1]T = 000 (3.40)

The solution for ψ can be obtained by using the right singular vector corresponding

to the second largest singular value of QQQT
2 [α̂̂α̂α, ω̂̂ω̂ω] and normalizing the last element

of the singular vector to −1. The reason to use the right singular vector corre-

sponding to the second largest singular value is that H1{.} nulls the second largest

singular value, thus the corresponding right singular vector belongs to the null

space. Furthermore, by using the second largest singular value, one does not re-

quire an additional SVD, which will result in additional computation complexity.
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Finally, the Eqn. (3.40) could be solved for a, given that the estimate ψ is known.

Mathematically, it can be summarized as follows,

ψo = −v21

v22

(3.41)

ao = − 1

r11

qqqT1

[
α̂̂α̂α ω̂̂ω̂ω

] ψo

−1

 (3.42)

where v2 , [vT21, v
T
22]T is the right singular vector corresponding to the second

largest singular value.

3.5 Results and Discussion

Frequency spreading is very common in sonar due to non-stationarity of the wa-

ter [72]. Therefore, in the subsequent examples, we will use the sonar settings to

demonstrate the advantage of the proposed algorithms. Simulation results were

plotted in Fig. 3.1 – Fig. 3.3, with mean square error (MSE) estimates versus SNR.

The MSE for each SNR was obtained through 500 Monte Carlo runs. The num-

ber of samples is N = 256, with sampling interval ∆ = 0.001. The number of

ULA sensors is M = 10, with inter-element spacing of d = 1.5m. The speed of

propagation is assumed to be c = 1500m
s

, which is a sonar propagation applica-

tion. The first signal has initial frequency, frequency rate and direction of arrival,

which are 420Hz,−50Hz
s

and 10o correspondingly. The second signal parameters

are 300Hz, 20Hz
s

and 20o, with the signal power of 0.8 relative to the first signal.
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Figure 1

Figure 3.1: Comparison of MSE of f1 (Hz)2 vs. SNR(dB) among CBF, proposed
LS-based algorithm and CRB
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Figure 2

Figure 3.2: Comparison of MSE of f2 (Hz/s)2 vs. SNR(dB) among CBF, proposed
LS-based algorithm and CRB
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Figure 3: Comparison of DOA estimation MSE of the CBF estimator and proposed method with
CRB versus the SNR

Figure 3.3: Comparison of MSE of θ (o)2 vs. SNR(dB) among CBF, proposed LS-based
algorithm and CRB
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For comparative purposes, CBF is implemented with two simplex search algo-

rithms initiated at the true parameters to prevent it from being trapped at the

local maxima. In addition to that CRB is also computed, and the derivation can

be found in Appendix B.

All the three figures show that when the SNR is above 15 dB, the performance of

the proposed algorithm remains close to CRB. On the other hand, the performance

of CBF does not improve much as SNR increases, due to the bias of the estimates

which does not vanish when SNR increases [63]. The MSE of an estimate is

given by the variance of the estimate plus the square of the bias. By first-order

perturbation analysis, the variance of the estimates diminishes when the noise

variance diminishes or when SNR increases. Mathematically, it can be expressed

as

MSE(SNR) = Variance(SNR) + Bias2

Hence, the reason that CBF performance does not improve when SNR increases

is because its bias is constant with respect to SNR.

The close-to-CRB performance of the proposed technique in frequency and

frequency rate estimation is inherited from the close-to-CRB performance of MC-

DPT algorithm. In fact, the detailed analysis given in Appendix C shows that

the proposed algorithm is unbiased. The close-to-CRB performance in estima-

tion of DOAs is because the proposed method has the capability to isolate the

interferences due to other sources. This is because the proposed algorithm uses
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non-parametric estimates of each source’s data in CBF cost function for DOA

estimation (Eqn. (3.32)). On the other hand, the original CBF [63] uses the un-

processed data from multiple signal sources in its cost function (Eqn. (3.13)). It can

be verified through analysis that the estimates of DOA by the proposed method is

unbiased under high SNR assumption. The details can be found in Appendix D.

From computation complexity perspective, the proposed method uses multi-

ple 1-D searches if one incorporated FFT in the estimation of frequencies and

frequency rates, and one 1-D search if one incorporated root-MUSIC instead

of FFT. Hence, the proposed method is less complex than CBF which uses a

3-D search. Assuming that all of the 1-D searches are performed on N grid

points, then the computation complexity of the proposed method is of order

O(2K2MN + 2KMN log2N + N2M) had one incorporated FFT, and of order

O(2K2MN + 6K3MN + N2M) had one incorporated root-MUSIC with window

length of 2K (default window length in MATLAB). On the other hand, assuming

that the 3-D search is performed on the N ×N ×N three-dimensional grid points,

then the computational complexity of CBF method is of order O(N4M), which is

significantly larger than the proposed method. Alternatively, one could use sim-

plex or genetic algorithm to reduce number of searches in CBF method, however,

without proper initial iteration points these algorithms will easily converge to one

of the many spurious local maximum points and lead to incorrect estimation.

The only disadvantage of the proposed algorithm is in estimating multiple
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sources that have the same frequency rates and/or frequencies. This limitation is

inherited from MC-DPT algorithm which is incorporated in our proposed method.

The above mentioned results are for the LS method. As for the TLS-LS method,

we did a simulation using the same parameters as in LS method. It could be

observed from Fig. 3.4–Fig. 3.6 that the performance of TLS-LS-based method

performs better when SNR is small. The reason is that TLS-LS, when computing

the solution, takes into account the model error whilst LS does not.
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Figure 3.4: Comparison of MSE of f1 (Hz)2 among CBF, proposed LS-based and
TLS-LS based algorithms
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Figure 3.5: Comparison of MSE of f2 (Hz/s)2 among CBF, proposed LS-based and
TLS-LS based algorithms

3.6 Summary

In this chapter, we have demonstrated a new wideband array processing technique

based on LS estimation, and an improved technique based on TLS-LS estimation,

for the estimation of multiple LFM signal parameters. The proposed method is

compared to recently developed CBF algorithm. The proposed method is better

in terms of accuracy, i.e. lower MSE and lower computational cost. However, the

proposed algorithm in this chapter can only apply to second-order PPS. In the

following chapter, we will devise a new algorithm that address PPS in general.
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Chapter 4

Joint Estimation Method for
Wideband PPS Impinged on
Array Sensors

4.1 Introduction

After dealing with LFM signals in the previous chapter, we look into a more general

class of PPS in this chapter. Herein, we estimate the parameters of a PPS impinged

on array sensors. In this chapter, we describe a simple and search-free parame-

ter estimation technique of wideband PPS, primarily to estimate its highest-order

phase/frequency coefficient and DOA, which are the two main parameters of in-

terest in many applications. The other frequency-related parameters of PPS are

all dependent on the unknown propagation delay between the transmitter and the

receiver and will not be estimated [18]. In the proposed algorithm in this chapter,

we exploit the dual shift-invariance property in SHIM, which is a spatial variant of

HIM [19]. After performing SHIM, the output are post-processed with ESPRIT-

based joint angle-frequency estimation (JAFE) algorithm [28]. JAFE is originally

76
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intended for narrowband sinusoidal signals impinging on an array of sensors. The

proposed technique in this chapter is computationally inexpensive, because it is

search-free. Simulation results are presented and comparisons are made to validate

the strength of the proposed algorithm.

4.2 Single-Component PPS Model and SHIM

In Section 3.2 of the previous chapter, we have defined the general model of mul-

tiple wideband PPS impinging on a ULA in Eqn. (3.1). Assuming no noise for

the time being, the wideband signal model for a single PPS impinging on the mth

sensor of a ULA is therefore given by

[z(n)]m,A exp

{
j

[
aK(n∆)K +

K−1∑
k=0

(ak+(k+1)ak+1ψ(m−1))(n∆)k

]}
(4.1)

where [z(n)]m denotes the mth component of z(n).

Our proposed method is motivated by the works reported in Chapter 3 on

second-order PPS, and particularly from Definition 1. Specifically, the first and

second definitions imply that the highest-order frequency parameters are invariant

from one sensor to another, and the electrical angle (ψ) appears in the second

highest order frequency parameter varies linearly from one sensor to another in

ULA setting, respectively. To exploit these properties, we introduce the spatial

higher-order instantaneous moment (SHIM).
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Definition 2. Suppose w(n) is the time-sampled data vector, then the operator

DPK [·, τ ] is defined as the SHIM operator of order K with delay τ applied to w(n),

mathematically,

DPK [w(n), τ ] ,

[
DPK [(w(n))1, τ ], . . . , DPK [(w(n))M , τ ]

]T
, (4.2)

for Ni ≤ n ≤ N − 1. DPK [·] is the (HIM) operator defined in [19] i.e.,

DP1[s(n), τ ] , s(n)

DP2[s(n), τ ] , s(n)s∗(n− τ)

... (4.3)

DPK [s(n), τ ] , DP2[DPK−1[s(n), τ ], τ ].

The initial sample is defined∗ as Ni , (K − 1)τ ; and τ is an arbitrary positive

integer less than the number of samples, N , and it could be chosen according to [18].

4.3 Proposed Algorithm

Here we will see how the newly introduced SHIM operator can be applied to a

wideband PPS impinged on ULA. Because the SHIM operator basically operates

at each sensor independently, all the temporal properties of DPK [·] hold. Hence,

∗It is called initial sample because for n′ < Ni the DPK [s(n′), τ ] could not be constructed
(see Eqn. (4.3))
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the following theorem from [18], can be applied to signal measured from every

sensor.

Theorem 1. Let s(n) be a polynomial-phase signal of order K, such that, s(n) =

ejα exp (j
∑K

k=1 ak(n∆)k) (c.f. Eqn. (3.3)), for 0 ≤ n ≤ N−1, where am is the mth-

order frequency parameter, which takes a real value. Then for all positive integers

τ

DPK [s(n), τ ] = exp{j(φ0∆n+ γ0)} (4.4)

for Ni ≤ n ≤ N − 1, where φ0 and γ0 are the sinusoidal frequency and phase in

DPT domain, and they are given as follows

φ0 = K!(τ∆)K−1aK (4.5)

γ0 = (K − 1)!(τ∆)K−1aK−1 − 0.5(K − 1)K!(τ∆)KaK (4.6)

Therefore, by Definition 2 and by applying Theorem 1 to Eqn. (4.1), we obtain

the following proposition.

Proposition 3. If z(n) is the noise-free received wideband PPS of order K at the

antenna array, then the result when applying the Kth-order SHIM to this signal is

given by

y(n, τ) = DPK [z(n), τ ], n = Ni, . . . , N − 1 (4.7)

= a(µ)Bej(φn+γ) (4.8)
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where

a(µ) = [1, ejµ, . . . , ejµ(M−1)]T , (4.9)

[y(n, τ)]m = B exp {j(φn+ µm+ γ)}, (4.10)

φ = K!τK−1∆KaK , (4.11)

µ = φψ/∆, (4.12)

γ = (K−1)!(τ∆)K−1aK−1 −0.5(K−1)K!(τ∆)KaK , (4.13)

B = A2K−1

. (4.14)

After SHIM operation, we can obtain φ and γ, which are the frequency and

phase of the signal, respectively, and the vector a(µ), which is the narrowband

steering array vector with electrical angle, µ. Therefore, the original data vectors

of wideband PPS impinged on array are transformed into data vectors of narrow-

band sinusoidal impinged on array, which are given in Eqn. (4.8). Applying SHIM

has dual advantages. Firstly, wideband steering array is transformed into narrow-

band steering array. Secondly, the PPS is transformed into sinusoidal signal, which

can readily use the existing classical array processing algorithms or harmonic re-

trieval algorithms. Hereafter, the notation of τ in y(n, τ) will be suppressed for

simplification purpose. By exploiting Proposition 3 and by stacking together all
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the N −Ni samples, we get the following expression

Ỹ = [y(Ni),y(Ni + 1), . . . ,y(N − 1)]

= Bejγa(µ)
[
ejφNi , ejφ(Ni+1), . . . , ejφ(N−1)

]
(4.15)

which possesses the shift-invariant property in two directions, i.e. along column

direction and row direction (see Chapter 2 for the shift-invariant property). The

(M×(N−Ni))-matrix in Eqn. (4.15) is shift-invariant in column direction because

the column subspace of the matrix formed by deleting the first row is the same as

the column subspace of the matrix formed by deleting the last row. Similarly, the

(M × (N − Ni))-matrix in Eqn. (4.15) is shift-invariant in row direction because

the row subspace of the matrix formed by deleting the first column is the same as

the row subspace of the matrix formed by deleting the last column.
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By constructing p-factor temporal smoothed data matrix as follow,

Yp =



y(Ni) y(Ni + 1) · · · y(N − p)

y(Ni + 1) y(Ni + 2) · · · y(N − p+ 1)

...
...

...

y(Ni + p− 1) y(Ni + p) · · · y(N − 1)


∈ CpM×(N−p−Ni+1)

= Bej(φNi+γ)



a(µ) a(µ)ejφ · · · a(µ)ej(N−Ni−p)φ

a(µ)ejφ a(µ)ej2φ · · · a(µ)ej(N−Ni−p+1)φ

...
...

. . .
...

a(µ)ej(p−1)φ a(µ)ejpφ · · · a(µ)ej(N−Ni−1)φ


(4.16)

we obtain a more general form of dual-shift invariant to appear in the column

direction by deleting or selecting four distinct sets of rows, which will be shown

next. The process of selecting certain rows of a matrix could be performed by

left multiplication of the matrix with the selection matrix. The selection matrices,

which will be used to to form the two pairs of shift-invariance matrices, are

Jx,φ = [Ip−1 01]⊗ IM

Jy,φ = [01 Ip−1]⊗ IM

Jx,µ = Ip ⊗ [IM−1 01] (4.17)

Jy,µ = Ip ⊗ [01 IM−1]
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where 01 is a column vector containing zeros. A pair of selection matrices, Jx,φ

and Jy,φ, select the 1st to ((p− 1)M)th rows, and the (M + 1)th to (pM)th rows of

the matrix they applied to, respectively. The other pair of selection matrices, Jx,µ

and Jy,µ, select the (IM + 1)th to (IM + M − 1)th rows, and the (IM + 2)th to

(IM +M)th rows, for I = 0, . . . , p− 1, of the matrix they applied to, respectively.

Therefore, applying the selection matrices to Eqn. (4.16) gives two pairs of shift-

invariant matrices, given by


Jx,φYp = a′Bej(φNi+γ)a′′′T

Jy,φYp = a′Bej(φNi+γ+φ)a′′′T

,


Jx,µYp = a′′Bej(φNi+γ)a′′′T

Jy,µYp = a′′Bej(φNi+γ+µ)a′′′T

where

a′ , [a(µ)T , a(µ)T ejφ, . . . , a(µ)T ej(p−2)φ]T , (4.18)

a′′ , [ã(µ)T , ã(µ)T ejφ, . . . , ã(µ)T ej(p−1)φ]T , (4.19)

a′′′ , [1, ejφ, . . . , ej(N−Ni−p)φ]T , (4.20)

ã(µ) , [1, ejµ, . . . , ej(M−2)µ]T . (4.21)

However, since in practice the matrix Yp contains noise, it becomes full-rank
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rather than rank-one (or low-rank in general), it is preferably to perform low-rank

approximation using singular value decomposition (SVD) of Yp, i.e.,

Yp = UΣVT (4.22)

where its rank-one approximation is given by

Ŷp = us1ννν
H (4.23)

Here s1 is the largest singular value, u and ννν are the corresponding left- and right-

singular vectors. In the case of no noise, u = [a(µ)T , a(µ)T ejφ, . . . , a(µ)T ej(p−1)φ]T t,

where t is a complex scaling constant. Therefore, the application of selection

matrices onto the left-singular vector corresponding to the largest singular value

leads to the following sets of equations,


Jxφu = a′t

Jyφu = a′λφt = a′ejφt


Jxµu = a′′t

Jyµu = a′′λµt = a′′ejµt

(4.24)

where λφ , ejφ and λµ , ejµ. Let us define uxφ , Jxφu, uyφ , Jyφu, uxµ , Jxµu

and uyµ , Jyµu, by using these definitions and Eqn. (4.24), we have the following

equations,

u†xφuyφ = λφ = ejφ u†xµuxµ = λµ = ejµ (4.25)
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Therefore, we can estimate φ and µ by φ̂ = ∠λφ and µ̂ = ∠λµ after we perform

three steps: initially transform the PPS by SHIM, secondly perform a rank-one

approximation through SVD of its p-temporally smoothened data matrix, and

finally apply the proper selection matrices (Eqn. (4.17)) to its left-singular vector

corresponding to the largest singular value. Using φ̂ and µ̂, the estimate of the Kth-

order frequency parameter and DOA can be extracted by the following relations,

âK =
φ̂

K!τK−1∆K
(4.26)

θ̂ = arcsin

(
c∆µ̂

dφ̂

)
(4.27)

where we have made used of Eqn. (3.5), Eqn. (4.11), and Eqn. (4.11).

For better estimation of φ and µ, spatiotemporal smoothing and forward-

backward averaging could be performed instead of just using temporal smooth-

ing [28]. Spatiotemporal smoothed data matrix is constructed as

Yp,L′ = [J1Yp,J2Yp, . . . ,JL′Yp] ∈ Cp(M−L′+1)×L′(N−p+1) (4.28)

where the selection matrix, Jl ∈ Rp(M−L′+1)×pM , selects a number of rows from the

data matrix Yp that corresponds to the lth subarray. The first subarray in our ULA

model, basically consists of data received from 1st sensor to (M −L′+ 1)th sensor.

The data for lth subarray, would be data received from lth sensor to (M −L′+ l)th

sensor.
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Furthermore, whitening could be incorporated to improve the performance at

the cost of additional computational complexity. However, as shown in [28], there

is only slight improvement in estimating frequency parameter at low signal-to-noise

ratio (SNR). Hence, in Section 4.5, we will assume whitening is incorporated to

simplify the results reported in [28].

However, in practice, the estimation of λφ and λµ by using Eqn. (4.25) may

not be accurate, because the SHIM-operated data is not noise free and, hence, uxφ

and uyφ might not be sharing common subspace. Similarly, uxµ and uyµ might

not be sharing common subspace either. Thus, it is recommended to use JAFE

method [28], which will be reviewed in the next section.

4.4 Review of Joint Angle Frequency Method

In this section, we review the JAFE algorithm. In this algorithm [28], super-

generalized Schur decomposition is used. It basically solves generalized Schur

problem for more than two matrices that share a common subspace. In [73], the

super-generalized Schur decomposition is introduced and is used in the analytical

constant modulus algorithm to blindly separate different source signals. In [74],

the super-generalized Schur decomposition was applied to jointly estimate DOAs

and delays. In [28], the decomposition is applied to jointly estimate DOAs and

frequency of signals. The material presented in this section outlines the procedure
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to convert the problem in estimating the DOAs and the frequencies of the sources

into a form which can be solved by the super generalized Schur decomposition

algorithm.

When estimating DOAs and frequencies, the observed L source signals from

the M sensors are given by

y(n, τ) = A(ψψψ)s(n) (4.29)

where A(ψψψ) = [a(ψ1), . . . , a(ψL)] is the array manifold matrix,

s(n) = [B1e
j(φ1n+γ1), . . . , BLe

j(φLn+γL)]T are the sinusoidal signal sources, and

a(ψi) = [1, ejψi , . . . , ejψi(M−1)]T is the steering array. The objective here is to

estimate ψi and φi. The setup and the objective are the same for our single

source model given in Eqn. (4.8). We have seen that for the single source case in

Eqn.(4.16), the p-factor temporally smoothed data matrix, as well as spatiotempo-

rally smoothed data matrix, possesses two shift-invariant properties in the column

direction. By left-multiplicating the selection matrices in Eqn. (4.17) to the p-

factor temporal smoothed data, we get two pairs of shift-invariant matrices (Eqn.

(4.18)). By left-multiplicating the selection matrices to left-singular vector of the

signal, we obtain Eqn. (4.24). Similarly, for the case of multiple sources, after form-

ing p-temporally smoothed data matrix, Yp, we find the rank-L approximation of
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Yp. Suppose that its SVD is Yp = UΣVH , then

Ŷp = ÛΣ̂V̂H (4.30)

is the low-rank-L approximation of the data matrix. Here, Σ̂ is a (L×L)-diagonal

matrix with up to L largest singular values of Yp in its diagonal; and the matrices

Û and V̂ contain the left- and right-singular vectors corresponding to the L-largest

singular values.

In the case of no noise, Û = A(φφφ,ψψψ)T for a unique non-singular matrix T and

A(φφφ,ψψψ) , [ă(φ1, ψ1), . . . , ă(φL, ψL)], where

ă(φi, ψi) , [a(ψi)
T , a(ψi)

T ejφi , . . . , a(ψi)
T ej(p−1)φi ]T (4.31)

a(ψi) , [1, ejψi , . . . , ej(M−1)ψi ]T (4.32)

Similar to the single source scenario given in Eqn. (4.24), we have the following

two pairs of shift-invariant matrices,


Uxφ , JxφÛ = AxφT

Uyφ , JyφÛ = AxφΦT
Uxψ , JxψÛ = AxψT

Uyψ , JyψÛ = AxψΨT

(4.33)
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where ΦΦΦ , diag{λφ1 , . . . , λφL} and ΨΨΨ , diag{λψ1 , . . . , λψL} are the complex di-

agonal matrices. In Eqn. (4.33), we have Axφ , [a′(φ1, ψ1), . . . , a′(φL, ψL)] and

Axψ , [a′′(φ1, ψ1), . . . , a′′(φL, ψL)], where

a′(φi, ψi) , [a(ψi)
T , a(ψi)

T ejφi , . . . , a(ψi)
T ej(p−2)φi ]T (4.34)

a′′(φi, ψi) , [ã(ψi)
T , ã(ψi)

T ejφi , . . . , ã(ψi)
T ej(p−1)φi ]T (4.35)

ã(ψi) , [1, ejψi , . . . , ej(M−2)ψi ]T (4.36)

In fact, Eqn. (4.33) gives two matrix pencil problems, each of them could be

solved independently by using generalized Schur decomposition. However, in prac-

tice, the data is noisy and, hence, Û ≈ A(φφφ,ψψψ)T. As such, Uxφ and Uyφ might

not be sharing a common subspace, and also Uxµ and Uyµ might not be shar-

ing a common subspace. The estimated T also might not be the same in both

matrix pencil problems, therefore, solving them independently with generalized

Schur decomposition is not desireable. In order to solve this set of equations, the

two pairs of matrices in Eqn. (4.33) should be reformulated so that the two ma-

trix pencil problems share a common subspace and a common unknown T. The

super-generalized Schur decomposition algorithm can be used to find the eigenval-

ues of the modified problem. Note that the requirement to have a common T is

to provide automatic pairing of the eigenvalues that belong to the same source.

Firstly, we will form a new set of four data matrices which ensure that there
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are two common subspaces. Let us use span{M} to denote the space spanned by

column vectors of M, then by considering the following facts from Eqn. (4.33),

span{Uxφ} = span{Uyφ} = span{Axφ}

span{Uxψ} = span{Uyψ} = span{Axψ} (4.37)

rank{Uxφ} = rank{Uyφ} = rank{Uxψ} = rank{Uyψ} = k

which implied

span{[Uxφ Uyφ]} = span{Axφ}

span{[Uxψ Uyψ]} = span{Axψ} (4.38)

rank{[Uxφ Uyφ]} = rank{[Uxψ Uyψ]} = k

Following that, let us consider the QR decompositions of the matrices as follows

[Uxφ Uyφ] = Axφ

[
T ΦT

]
= Qφ

 Exφ Eyφ

0 ∗

 (4.39)

[Uxψ Uyψ] = Axψ

[
T ΨT

]
= Qψ

 Exψ Eyψ

0 ∗

 (4.40)

where ∗ denotes some upper-triangular matrices. Let Q̃φ = [qφ1 . . .qφL], Q̃ψ =

[qψ1 . . .qψL] denote the first L-column vectors of Qφ and Qψ, respectively, and

˜̃Qφ, ˜̃Qψ denote the last L-column vectors of Qφ and Qψ, respectively. From Eqn.
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(4.38) and the QR decomposition properties, we obtain

span{Q̃φ} = span{Axφ}

span{Q̃ψ} = span{Axψ} (4.41)

Therefore, by rearranging Eqns.(4.39) and (4.40), we get

Qφ
H [Uxφ Uyφ] =

 Exφ Eyφ

0 ∗

=

 Q̃H
φ AxφT Q̃H

φ AxφΦT

0 ˜̃Q
H

φ AxφΦT

 (4.42)

Qψ
H [Uxψ Uyψ] =

 Exψ Eyψ

0 ∗

=

 Q̃H
ψ AxψT Q̃H

ψ AxψΨT

0 ˜̃Q
H

ψ AxψΨT

 (4.43)

where ˜̃Q
H

φ AxφΦT and ˜̃Q
H

ψ AxψΨT are zero matrices if the data are noise free

because ˜̃Qφ and ˜̃Qψ span the orthogonal spaces of span{Q̃φ} and span{Q̃ψ}. The

QR decomposition step has implicitly formed two new matrices pairs, i.e., (Exφ,

Eyφ) and (Exψ, Eyψ) which lie on span{Q̃H
φ Axφ} and span{Q̃H

ψ Axψ}, respectively,

from the original matrices pairs, Uxφ, Uyφ, Uxψ and Uyψ, which are not necessary

lying on any common spaces due to the presence of noise. This idea is similar

to TLS approximation, where a new set of matrices with common subspace is

constructed from the original set of data matrices which do not have any common

subspace (see [69]).

Secondly, we will use the newly derived matrices, i.e., (Exφ, Eyφ) and (Exψ,
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Eyψ), to establish two new matrix pencil problems. Note that Q̃H
φ Axφ and Q̃H

ψ Axψ

are non-singular because Q̃φ, Axφ, Q̃ψ and Axψ are all full column rank matrices.

Hence, by retaining only two sets of equations in the following


Exφ = Q̃H

φ AxφT

Eyφ = Q̃H
φ AxφΦT


Exψ = Q̃H

ψ AxψT

Eyφ = Q̃H
ψ AxψΨT

(4.44)

we established two sets of matrix pencil problems, and within each set has common

subspace being enforced. Subsequently, we can form two eigenvalue decomposition

equations by using Eqn. (4.44), i.e.,


E−1
xφEyφ = T−1ΦT

E−1
xψEyψ = T−1ΨT

(4.45)

and both equations have a common matrix T. This common matrix T forces

these equations to have common eigenvectors and as a result, it gives automatic

pairing of the eigenvalues belonging to the same source. However, solving these two

eigenvalue decomposition problems in Eqn. (4.45) are numerically unstable because

they involve matrix inversions in the left-hand side of Eqn. (4.45). Therefore, it

is more desirable to solve the original version of the problem in the matrix pencil
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form (Eqn. (4.44)) given by


Eyφq = λφExφq

Eyψq = λψExψq

(4.46)

The super-generalized Schur decomposition algorithm can then be used to maintain

automatic pairing of eigenvalues λφi , λψi , which will be shown later.

Finally, we will rearrange Eqn. (4.44) into the QZ-structures. In other words, we

transform the problem Eqn. (4.46) into a generalized Schur decomposition problem.

Let us perform the full QR decompositions as follows

T−1 = ZHR−1
T (4.47)

Q̃H
φ Axφ = Q′

H
φ Rφ (4.48)

Q̃H
ψ Axψ = Q′

H
ψ Rψ (4.49)

where ZH , Q′Hφ and Q′Hψ are unitary matrices (the Q-part of QR decomposition),

and R−1
T , Rφ and Rψ are square upper-triangular matrices (the R-part of QR

decomposition). These upper-triangular matrices have non-zero diagonal elements

because of the non-singularity of left-hand sides of the above equations. Thus, we
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have the following set of matrices


Exφ = Q′Hφ RφRTZ , Q′Hφ RxφZ

Eyφ = Q′Hφ RφΦRTZ , Q′Hφ RyφZ
Exψ = Q′Hψ RψRTZ , Q′Hψ RxψZ

Eyψ = Q′Hψ RψΨRTZ , Q′Hψ RyψZ

(4.50)

where Rxφ, Ryφ, Rxψ and Ryψ are also square upper-triangular matrices with non-

zero diagonal elements. The set of equations in (4.50) is basically of the form of

two sets of generalized Schur decomposition [70] with a common factor Z which

is derived from the common matrix T. Hence the generalized eigenvalues are the

ratio of the diagonals i.e. (λφi, λψi) = ([Ryφ]ii/[Rxφ]ii, [Ryψ]ii/[Rxψ]ii ). Automatic

pairing between the eigenvalues is ensured because the eigenvalues are linked by

the common matrix Z defined in Eqn. (4.50). Given that there are more than

one pair of matrices E’s in Eqn. (4.50), the super generalized Schur decomposition

algorithm can be used to solve for all the Q’s, R’s and Z (see [73] for the algorithm

steps). Subsequently the estimates of ΦΦΦ and ΨΨΨ, are given by

Φ̂ΦΦ = diag{Ryφ}diag{Rxφ}−1

Ψ̂ΨΨ = diag{Ryψ}diag{Rxψ}−1 (4.51)

with the ith diagonal element of Φ̂ΦΦ being paired with ith diagonal element of Ψ̂ΨΨ.
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In summary, in this section, we have given the steps how DOAs and frequencies

can be estimated simultaneously. It is done by forming the low-rank approximated

data matrix in Eqn. (4.30) into Eqn. (4.50) which has four QZ-structured matrices

with two common Q matrices and one common Z matrix. These two pairs of

QZ structures could be solved simultaneously by super generalized Schur decom-

position algorithm or also called extended QZ algorithm [73]. In fact, the super

generalized Schur algorithm could solve for any number of QZ-structured matrices

with one or many common factors of Q’s or Z. However, the details on the super

generalized Schur algorithm will not be described in this thesis but it can be found

in [73].

4.5 Analysis and Identifiability Condition

The performance of the JAFE algorithm under zero-mean Gaussian noise or error

perturbation has been studied in [28]. However, in our proposed algorithm, the

noisy data x(n) in Eqn. (3.1), which contains zero-mean Gaussian noise, is first

operated with SHIM. The noisy SHIM-operated data, DPK [x(n), τ ], is then used

in JAFE algorithm to perform estimation. Therefore, to study the performance

in DOA and frequency estimation in the first step, we will analyze the perturba-

tion error of the SHIM-operated data. The second step is to analyze the JAFE

algorithm’s performance when estimating the phases, µ and φ, using the SHIM-

operated data. Here, we will simply recall the results in [28] and apply to our
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algorithm. The third step is to relate the performance in estimating phases to

performance in estimating of DOA and frequency parameters. Subsequently, we

will show the identifiability conditions on ∆, τ , aK and d/c, which have to be met

for JAFE algorithm to estimate unambiguously. Finally, the optimal choice of ∆

that minimizes the MSE is derived.

4.5.1 The Statistics of δy(n)

Since SHIM is a non-linear operator, there will be many cross-terms generated

between signal and noise resulted from its application to noisy signal x(n) of Eqn.

(3.1). Hence, the easiest way to access the statistics of the perturbation error or

the noise in the transformed domain, δy(n), is to deal with the difference between

SHIM of x(n) (the noisy signal data) and SHIM of z(n) (the noiseless data signal

of Eqn. (4.1)). Mathematically, δy(n) can be obtained by

δy(n) = DPK [x(n), τ ]−DPK [z(n), τ ] (4.52)
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Let us recall from [18] the perturbation error of the HIM-operated data in the

single antenna scenario, which we label it mth antenna, as follows,

[δy(n)]m = DPK [[x(n)]m, τ ]−DPK [[z(n)]m, τ ]

=
K−1∏
q=0

[(
[x{q}(n− qτ)]m

)(K−1
q ) −

(
[z{q}(n− qτ)]m

)(K−1
q )
]

= η(m)(n)DPK [[z(n)]m, τ ]

= Bej(φn+γ)η(m)(n)[a(µ)]m (4.53)

where

η(m)(n) ,
K−1∏
q=0

[
1 +

[v{q}(n− qτ)]m
[z{q}(n− qτ)]m

](K−1
q )
− 1

=
K−1∏
q=0

[
1 +

[v{q}(n− qτ)]m
s{q}(n− qτ)[a{q}(θ, n− qτ)]m

](K−1
q )
− 1 (4.54)

=
K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)(
[v{q}(n− qτ)]m

s{q}(n− qτ)[a{q}(θ, n− qτ)]m

)i− 1,

s(n) is the PPS given in Eqn. (3.3), a(θ, n) is the wideband steering array given in

Eqn. (3.4), and [v(n)]m is the white Gaussian noise observed in sensor m given in

Eqn. (3.1). We have also used the following notations: the even/odd-conjugation

notation is given as

s{q}(n) =


s(n), q even

s∗(n), q odd

(4.55)
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and the binomial coefficient is given as
(
p
q

)
= p!

q!(p−q)! . Let us consider τ = N/K,

which is the value that DPT can achieve the lowest MSE in estimating aK . With

this optimal value of τ , we have the following statistics of ηm(n):

E{ηm(n)} = 0 (4.56)

E{]ηm(n)]2} = 0 (4.57)

E{ηm(n)η∗m(n)} = KaK (K, SNR) (4.58)

(see Eqns.(C.9), (C.12) and (C.13)), where

KaK (K, SNR) ,

K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)2

i!

(
1

SNR

)i− 1 (4.59)

and SNR =, A2/σ2
n.

By stacking the perturbation errors in Eqn. (4.53) into vector δy(n), we obtain

δy(n) = Bej(φn+γ)(a(µ) ◦ ηηη(n)) (4.60)

where ◦ denotes the Schur-Hadamard (element-wise) matrix product and

ηηη(n)) = [η0(n), . . . , ηM−1(n)]T . By using Eqn. (4.56), we have

E{δy(n)} = Bej(φn+γ)(a(µ) ◦ E{ηηη(n)}) = 000 (4.61)
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Furthermore, because the noise is also assumed to be spatially white, its autocor-

relation matrix is given by

Rv , E{δy(n)δy(n)H} = B2E{ηηη(n)ηηη(n)H}

= B2E{ηm(n)η∗m(n)}I = B2KaK (K, SNR)I (4.62)

where I is the identity matrix.

4.5.2 Performance of JAFE in our Proposed Algorithm

With the first and second-order statistics of the noise in the SHIM domain, which

is also zero mean and spatially white as well as temporally white (assuming τ =

N/K), the performance analysis of JAFE is can be applied to noisy version of

y(n). We now recall the results for whitened and spatially-temporally smoothed

data matrix from [28], which are

E{|δµ|2} =
σ2
n′

ξ

2

p(N ′ − p+ 1)

1

L′(M − L′)2
(4.63)

E{|δφ|2} =
σ2
n′

ξ

1

(p− 1)2(N ′ − p+ 1)

1

L′(M − L′ + 1)
(4.64)

where L′ and p are the spatial and temporal smoothing factors, respectively. The

number of antennas is M , and N ′ is the effective number of samples in the trans-
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formed domain. Effectively, the number of samples, N ′, is given as

N ′ = N −Ni = N − (K − 1)τ (4.65)

where, K is the order of PPS. The effective SNR is defined as ξ/σ2
n′ , where

σ2
n′ = A22K−2K(K,SNR), (4.66)

1

ξ
=

σ2
Y

|t|2(σ2
Y − σ2

n′)
, (4.67)

and t is the complex scaling factor and σ2
Y = |s1|2 is the largest eigenvalue of the

covariance matrix of the spatiotemporally smoothed data matrix, Yp,L′ , which is

noisy and whitened. The largest singular value, s1 and t are the same if the data

matrix used is noise-free and not spatiotemporally smoothed.

4.5.3 The Performance Analysis of θ and aK

It is noteworthy to see that in the angle-frequency estimation model (JAFE prob-

lem) given in [28], DOA and frequency of interest are related to µ and φ, respec-

tively, and independent of each other. While on the other hand, in the wideband

PPS problem, as seen in Eqns.(4.26) and (4.27), the DOA is related to both µ and

φ, and Kth-order frequency parameter is only related to φ. This would stifle an

accurate DOA estimation. To observe the effect of the parameters on estimation

accuracy, the first-order perturbation approximation of ψ̂, derived by first-order
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Taylor approximation for Eqn. (4.12) (a function of two variables, φ and µ), is

given by

δψ ≈ δµ∆

φ
− µ∆δφ

φ2
(4.68)

Thus, by using Eqn. (4.68), we obtain the MSE as follows,

E(δψ2) ≈ ∆2

φ2
E(δµ2) +

µ2∆2

φ4
E(δφ2)

=
∆2

φ2
E(δµ2) +

ψ2

φ2
E(δφ2) (4.69)

We have used Eqn. (4.12) to get Eqn. (4.69). Since ψ = d
c

sin θ, we have δθ ≈ cδψ
d cos θ

,

and by substituting Eqn. (4.11) into Eqn. (4.69), we obtain

E(δθ2) ≈ (∆c/d)2E(δµ2) + (sin θ)2E(δφ2)

(K!τK−1∆KaK cos θ)2
(4.70)

Similarly, the MSE of âK can be obtained straightforwardly from Eqn. (4.11) as

follows,

E(δa2
K) ≈ E(δφ2)

(K!τK−1∆K)2
(4.71)

From Eqns.(4.69) and (4.70), it can be observed that the MSE of ψ̂ and θ̂ are

dependent upon the MSE of φ̂. By increasing ∆c/d, we will reduce the effect of

estimation error, δφ2. Furthermore, if we increase ∆, we are relaxing the hardware

requirement from sampling fast, and concurrently reducing the MSE of DOA and

aK .
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It should also be noted that the performance of DOA relies on the actual

parameter aK . The larger aK is, which roughly corresponds to larger bandwidth,

the better the performance of DOA. As for smaller aK , one might still be able to

compensate the performance by increasing ∆, but it is not possible for very small

aK because ∆ is upper bounded as we will see in Subsection 4.5.4. In this case,

we apply the following steps:

1. Estimate aK by applying the harmonic estimator to DPK [[x(n)]m, τ ]

2. By using âK estimated from the previous step, a non-parametric estimate of

the PPS data of order (K−1), [x̃(n)]m, can be constructed

[x̃(n)]m = [x(n)]me
−jâK(∆n)K for n = 0, . . . , N−1 (4.72)

3. Apply SHIM of order K−1 to the non-parametric estimate of the (K−1)th-

order PPS data, we have

y(n, τ) = DPK−1[x̃(n), τ ], n = (K−2)τ, . . . , N−1 (4.73)

4. Apply JAFE algorithm to Eqn. (4.73) and extract the DOA estimate by using

Eqn. (4.27).
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For completeness, the theoretical performance of the algorithm is given by

E(δθ2) ≈
(∆c/d)2 2

p(M−L′)2 + (sin θ)2 1
(p−1)2(M−L′+1)

(K!τK−1∆KaKcosθ)2(N ′ − p+ 1)L′

(
σ2
n′

ξ

)
(4.74)

and,

E(δa2
K) ≈ 1

(K!τK−1∆K(p− 1))2(N ′ − p+ 1)L′(M − L′ + 1)

(
σ2
n′

ξ

)
(4.75)

which are obtained by substituting Eqn. (4.63) and (4.64) into Eqn. (4.70) and

(4.71), respectively.

4.5.4 The Identifiability Condition

Before proceeding to the choice of optimal parameters, the conditions or the

bounds for these parameters to be estimated unambiguously are analyzed. The

conditions to estimate DOA and aK unambiguously are |φ| < π and |µ| < π. If

one of these conditions is not satisfied, e.g. when φ = υπ + ε, where −π < ε < π

is a real-valued variable and υ is any integer, then φ is estimated as ε, assuming

perfect estimation. This is called ambiguous estimation because for any value of

υ, φ’s are estimated as ε. These conditions for DOA and ak, could be rewritten
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using Eqn. (4.11) and (4.12) as,

τK−1∆K−1K! <
π

|aK |∆
(4.76)

τK−1∆K−1K! <
π

|aK |(d/c)
(4.77)

These inequalities could be combined into one inequality,

τK−1∆K−1K! <
π

|aK |
min(

c

d
,

1

∆
) (4.78)

This inequality upper bounds the choices of the parameter ∆ one can use, if all

the other parameters are held constant. Practically, the choice of d (antenna array

spacing) could not be varied on the fly because the hardware is fixed. The choice

of τ and ∆ could be varied on the fly simply by regenerating the data matrix of

SHIM and by down-sampling assuming that the data have been densely sampled

and collected. The choice of optimum τ suggested by [18] is independent of ∆,

hence it is selected first. In the next subsection, together with the upper bound of

∆, the optimum choice of ∆ is derived.

E. The Optimum ∆

To quantify the performance when jointly estimating the two parameters, the

geometric mean between the MSE of θ and aK is computed. The geometric mean

is used because it alleviates the need of proper scaling factor. On the other hand,
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proper scaling factor is needed if the arithmetic mean had been used. Thus the

joint performance measure is expressed as follows,

C̄θ,aK (∆) ,
√
E{δθ2}E{δa2

K} (4.79)

=

√
((∆c/d)2E(δµ2) + (sin θ)2E(δφ2))E(δφ2)

(K!τK−1∆K)2|aK cos θ|
(4.80)

It is clear from Eqn. (4.78) that ∆ is upper bounded by

∆ < min

( π

|aK |τK−1K!

) 1
K

,

(
π

|aK |dc τK−1K!

) 1
K−1

 (4.81)

Since ∆ is upper bounded by Eqn. (4.81) and lower bounded by 0, the optimum

choice of ∆, such that Eqn. (4.80) is globally minimized, could be either within

the boundary or at the boundary points. If it is within the boundary points, then

the necessary condition for it to be minimum is that its derivative should equal to

0. From Eqn. (4.80), it would be better to use logarithmic cost function to find its

derivative. Taking the derivative of Eqn. (4.80) with respect to ∆ give

∂

∂∆
log(C̄θ,aK (∆)) =

∂

∂∆

(1

2
log((∆c/d)2E(δµ2) + (sin θ)2E(δφ2))

−2K log(∆) + constants
)

=
∆(c/d)2E(δµ2)

(∆c/d)2E(δµ2) + (sin θ)2E(δφ2)
− 2K

∆
(4.82)

=
(1− 2K)(∆c/d)2E(δµ2)− 2K(sin θ)2E(δφ2)

((∆c/d)2E(δµ2) + (sin θ)2E(δφ2))∆
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However the numerator is always negative for K > 1 and the denominator is always

positive. Because logarithm is a monotonically increasing function, Eqn. (4.80)

monotonically decreases as ∆ increases. However the identifiability conditions in

Eqn. (4.78) restrict ∆ to be strictly less than its upper bound. Hence, we conclude

that there is no optimal ∆. The more ∆ is closer to its upper bound, the better

the performance of the algorithm.

4.6 Results and Discussion

4.6.1 Simulation Examples

In the following, we apply the proposed algorithm to sonar. Frequency spreading is

very common in sonar because signals travelled under the water are non-stationary

[72]. In these simulation examples, we consider a ten-element ULA with inter-

element spacing of d = 1.5m and the propagation speed of sonar in water c =

1500m/s. In Fig. 4.1, root mean square error (RMSE) of a LFM signal, i.e. K = 2,

is computed through 100 Monte-Carlo runs. The signal parameters† are f0 = 0,

f1 = 420Hz, f2 = 100Hz
s

, θ = 40o with sampling interval ∆ = 4×10−3s, number of

samples, N = 256, and τ = 128. In addition to that, the spatiotemporal smoothing

of factor m = 64 and L′ = 3 together with forward-backward data extension

have been incorporated in the algorithm. In Fig. 4.1, the RMSE of f2 and DOA

are plotted against the SNR. For performance comparison, the results of the ML

†here we use the frequency parameters instead of angular frequency parameters which are
related by ai = 2πfi
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method‡ and the simulation results of the proposed method, as well as theoretical

results of the proposed method, are shown in Fig. 4.1. The performance of the

ML method is included just to show how close the performance of the proposed

method to the performance of the ML method, although ML method is not a fair

estimation method to be compared with. It is not fair for performance comparison

because ML method estimates the three parameters, i.e., f2, DOA and f1, where

f1 is an unknown nuisance parameter [44], while the proposed method does not

estimate f1. By estimating nuisance parameter, ML improves the performance

in estimating the parameters of interests. Therefore, the proposed method is

performing much poorer than ML method as seen on right side of Fig. 4.1. Hence,

in the figures following Fig. 4.1, we will not include the performance of the ML

method, because in the estimation of PPS of order three, there are two unknown

nuisance parameters (f2 and f1), which will cause the performance of the proposed

method become even worse than the ML method.

In Fig. 4.2, the RMSE of both f2 and θ are plotted against ∆, while SNR is held

at 30dB, to show the dependency of RMSEs toward the choice of ∆. Note that the

simulation for ∆>4 ·10−3 is not shown because it violates the ambiguity condition

in Eqn. (4.78), and hence will result in significant RMSE. It can be clearly seen

that the simulation results plotted are very close to the theoretical results.

In the following simulation, we show that the algorithm works well for PPS of

‡The ML method for single component PPS of order 2 is actually CBF method (see Section
CBFsection).
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Figure 4.1: Comparison of simulation results between the ML and the proposed
method. RMSE of f2 (Hz/s) and DOA (o) as function of SNR are in (a) and (b)

respectively

order K = 3, too. The signal parameters for the third-order PPS are f0 = 0, f1 =

300Hz, f2 = 100Hz
s

, f3 = 100Hz
s2

, θ = 400 with a sampling interval ∆ = 4 · 10−3,

number of samples N = 255 and delay τ = 85. The spatiotemporal smoothing

factors are m = 42 and L′ = 3. The RMSE results are plotted against SNR in Fig.

4.3.

4.6.2 Discussion

The proposed algorithm demonstrates the possible application of ESPRIT-based

JAFE algorithm in estimation of DOA and frequency parameters of wideband PPS.

This is primarily due to SHIM, which transforms the originally wideband PPS into

a narrowband sinusoidal signal. In other words, SHIM has two-fold advantages, i.e.

the wideband steering array is transformed to the classical narrowband steering
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Figure 4.2: RMSE of f2 (Hz/s) and DOA (o) as function of ∆ at SNR=30dB

array and simultaneously PPS is transformed to sinusoidal signal.

Since the algorithm here is only applied to single source, the JAFE algorithm

becomes very simple, because the joint diagonalization step is not necessary. How-

ever, the joint QR-decompositions in Eqn. (4.42) are still needed to obtain Exφ,

Eyφ, Exψ and Eyψ, which are all complex scalars in single source scenario. There-

fore, we obtain λφ=Eyφ/Exφ and λψ=Eyψ/Exψ.

The optimum choice of τ is assumed to have the same value as that of DPT.

There is no optimum choice of ∆, but the value that is closer to upper bound of its

identifiable condition would give lower MSE. Large value of ∆ is not recommended

because one does not know how large is the actual value of aK . If it is too large

such that user’s choice of ∆ is larger than the upper bound, then the estimated
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results will be completely erroneous.

The algorithm presented here is primarily for single component PPS. Directly

extending SHIM to multi-component PPS and using JAFE algorithm to extract

all of their parameters simultaneously is problematic due to the cross-terms that

arise because of the non-linearity of SHIM (See Property 3 in Section 2.1.4).

4.7 Summary

In this chapter we have demonstrated a new algorithm to estimate the parameters

of PPS that impinged on ULA, whilst in Chapter 3, the proposed algorithm only

applicable for the second-order PPS. Here, we introduced the SHIM operator,

which essentially transforms the wideband array problem with one PPS into the

classical narrowband array problem with one sinusoidal signal. In the following

chapter, we will deal with array processing with a more general class of signals,

i.e. time-frequency signals, and the mixing channel is assumed to be unknown.



Chapter 5

Underdetermined Blind Source
Separation of Time-Frequency
Signals

5.1 Introduction

In the previous two chapters, the problems that have been dealt with are ar-

ray processing of PPS with mixing matrix (channel or array manifold) of known

structure. In this chapter, we deal with a more generalized class of signals than

PPS, the non-stationary signals that are highly localized in TF plane or have

distinct TF signatures. Also, the mixing matrix (the channel) is also completely

unknown, but it is assumed to be stationary and non-convolutive. The sources

are essentially non-stationary signals. Subsequently, the channel linearly mixes

these signals and thereafter a set of linear sensors is used to collect the observa-

tions. The objective in this chapter is to recover each source signal from these

multiple observations (mixtures) without the knowledge of the mixing matrix and

112
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sources. This is called the blind source separation (BSS) problem. Blind source

separation has been used in many applications in engineering [75], for example in

radar and sonar applications [76], in communication for multiuser detection [77],

in audio/speech processing [78], and in biomedical signal processing to separate

EEG signals [79]. Useful theories of BSS can be found in [5,80–84]. A fundamental

and necessary assumption of the BSS problem is that these sources are statisti-

cally independent, and many solutions are obtained using HOS information [82].

However, one possibly can use only SOS without resolving to HOS, if the other

source information is available, such as temporal coherency [27], non-stationarity

of signals [85], cyclostationarity of the signals [86] and constant modulus property

of the signals [73].

BSS for non-stationary signals were introduced in [85, 87]. They are based

on the methods that combine spatial diversity with TF diversity by using STFD.

The first advantage of using STFD is the capability of STFD in exploiting non-

stationary information of the signals. The second advantage is the capability of

STFD in separating Gaussian sources with identical spectral shape but without

identical TF localization, where the use of second- and higher-order statistics al-

gorithms are likely to fail (see [83]). The third advantage is the increase in SNR

due to its capability to spread noise energy but yet localize signal energy in the

TF plane [88]. Since we are dealing with the non-stationary signals, the TF-based

BSS method is used in this chapter.
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Generally BSS algorithms, such as those mentioned in the references above,

work only in determined and overdetermined systems, where the original sources

are unmixed by multiplying the inverse or pseudoinverse of the mixing matrix to

the received signal vector. In these algorithms, BSS is achieved by first performing

blind identification of the mixing matrix, and subsequently the signals are recov-

ered by applying the inverse (pseudoinverse) of the determined (overdetermined)

mixing matrix to the received signals. In the determined (overdetermined) system,

the mixing matrix is a full column rank square (tall) matrix.

BSS of underdetermined system is a challenging problem even if its wide matrix

is available through blind identification algorithms such as those reported in [89–

91], because separating sources by the inversion of the mixing matrix is impossible.

Hence, obtaining the unmixed source signals would require additional assumptions

and processing steps. The problem of underdetermined BSS in general has been

studied in [92–97]. Source signals are assumed and limited to a finite set of possible

signals [92, 93]. Prior knowledge of source probability density function is needed

in [94–96]. However, none of them are TF-based. Similar to [97], sparseness

in the TF domain is exploited in the proposed algorithm here, which does not

require to know the pdf of source signals or to assume a finite set of possible

signals. The methods in [85,87] could be extended for the underdetermined system

with condition that the signal signatures in the TF plane could be masked, or

partitioned into groups so that each group contains only fewer or equal number of
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signals than antenna array sensors. After performing the masking or partitioning,

the BSS techniques [85, 87] are then applied to each of the partitioned group. In

addition, there are some extra algorithmic steps that are essential to mitigate the

cross-terms (CTs) generated between these groups. In this chapter we propose a

method for source separation of underdetermined systems with the possibility that

signal signatures in the TF plane are non-disjoint, where grouping and partitioning

are not applicable.

Authors in [98] proposed to mitigate UBSS problem with disjoint signal sig-

natures in TF plane. The algorithm uses the clustering algorithm and exploits

the STFD [85] structure at the single auto points (SAPs), i.e., the location in TF

plane where individual source exists alone. Also, the same algorithm was applied

to signals with few overlappings in their TF signatures, and it performs well except

at the multiple auto points (MAP), i.e., the location where TFDs of two or more

sources intersect in TF plane [98]. In [99], the authors proposed a new subspace-

based algorithm to perform separation on both the SAPs and MAPs, assuming at

MAPs there are fewer number of overlapped sources than the number of sensors.

However, applying this subspace-based algorithm to each of the SAPs and the

MAPs could be computationally expensive.

In this chapter, we propose a separation technique which relies on pseudoinverse

of the virtual array structure [100] of the vectorized STFD matrices of the SAPs.

It assumes that the mixing matrix has been obtained through other means, such
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as [101]. Herein, we also extend the method in [99] to cross points (CPs). The

CPs are the locations of CTs. In addition to that, we also propose a new method

for selecting mixtures of CPs and MAPs. With the mixture of MAPs and CPs

selected, STFD matrices at these TF points are processed in a way similar to [99],

at the lower computational cost resulting from fewer points being processed since

only MAPs and CPs, and not the SAPs, need to be processed. Because of lower

computation cost and extensibility of the subspace method, we have the luxury

to use Wigner-Ville (WV)-based STFD. WV-based STFD has many unsuppressed

CTs, which are advantageous for source synthesis of multicomponent signal from

any single source, such as audio sources which contain harmonics.

5.2 Signal Model

Assume instantaneous mixing matrix A , [a1, a2, . . . , aL] with L narrowband

signals impinging on a set ofM sensors. Since we are dealing with underdetermined

system, we therefore have L > M . It is also assumed that any M of the L columns

of A are linearly independent. The received signal is modeled as

x(t) , As(t) + v(t), (5.1)

where v(t) is the M×1 additive white Gaussian noise vector with zero mean. The

vector s(t) , [s1(t), . . . , sL(t)]T is the source signal vector of size L×1 and each of
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the si(t) is a non-stationary source signal. Without loss of generality, the first row

of A is assumed to be real-valued and each column of A has been normalized. This

is to provide unique solution when estimating the mixing matrix. Before making

assumptions on the sources, we first define STFD of the received signals, x(t), as

follows:

Dxx(t, f) ,
∞∑

l=−∞

∞∑
m=−∞

φ(m, l)x(t+m+ l)xH(t+m− l)e−j4πfl (5.2)

where φ(m, l) is the TFD time-lag kernel which is applied to all received sensors

equally and (·)H denotes the Hermitian transpose. There are various TFD time-lag

kernels to be chosen from, depending on how the cross-terms are to be suppressed.

Assuming from now no noise is presence, which is also a practical assumption

because noise power always spreads out evenly on the TF plane, the received

signal STFD is related to the source signal STFD, Dss(t, f), in the following way,

Dxx(t, f) = ADss(t, f)AH (5.3)

Basically, elements of the STFDs, e.g. [Dss(t, f)]i,j , Dsisj(t, f) =∑
l

∑
m φ(m, l)si(t + m + l)s∗j(t + m − l)e−j4πfl, is an auto-TFD (if i = j) or

cross-TFD (if i 6= j).

Definition 3. The two sources, si(t) and sj(t), are disjoint if and only if Ωi∩Ωj =

∅, where Ωk is the TF support∗ of the source k’s TFD. Conversely, the two sources

∗Assume source si(t) has TFD, Dsi,si(t, f), then Ωi denotes its TF support, if and only if
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are called non-disjoint.

Definition 4. Suppose there are only two sources, si(t) and sj(t), then the TF

points such that (t, f) ∈ {(Ωi∪Ωj)− (Ωi∩Ωj)} is called the SAP, and the TF such

that (t, f) ∈ {Ωi ∩ Ωi} is called the MAP. (Note that if the sources are disjoint,

then {Ωi ∩ Ωi} = {Ø}.)

Source signals in this chapter are allowed to be either disjoint or non-disjoint.

It is assumed that the SAPs of each source exist, which is the requirement when

estimating A. We further assumed that at most M − 1 sources intersect at any

MAPs, or mathematically Ωi1∩Ωi2∩ . . .∩ΩiM = ∅ for any sets of M sources. This

assumption is essential for estimating the TFDs of sources at the MAPs. Before

we proceed to the next section, we define the following,

Definition 5. The (t, f) point such that Dsisj(t, f) 6= 0, for i 6= j, and is not a

MAP, is defined as the CP. Both the Dsisj(t, f) which are evaluated at the CP and

at the MAP are called the CT.

It is important to note that, the definitions for CP and CT arise when there are

at least two sources. However, CT also arise due to multicomponent signal within

one source, and, it will appear as the SAP. From now on, unless it is specifically

mentioned, CP and CT refer to the definition above and CT of a multicomponent

signal is processed in the same way as processing STFD at the SAPs.

∀(t, f) ∈ Ωi, Dsi,si(t, f) 6= 0.
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5.3 Properties of Distributions at the Time-Frequency

Points

We first look at the property of STFDs at the SAPs. It has been studied in [102]

that Dss(t, f) have a diagonal structure only at the SAPs. In fact, only at the ith

diagonal element where Dsisi(t, f) is non-zero, and the rest of the entries are zero.

Hence, Eqn. (5.3) becomes Dxx(t, f) = Adiag{[0 . . . , 0, Dsisi(t, f), 0, . . . 0]}AH =

aia
H
i Dsisi(t, f), which is rank one and semi-positive definite since Dsisi(t, f) > 0.

Note that the CT due to the multicomponent signal within one source will also

have this property. We next look at the property of Dss(t, f) at the MAPs. In

general Dss(t, f) at the MAPs are not diagonal because the CTs at the MAPs are

non-zeros, and rank{Dss(t, f)} = rank{Dxx(t, f)} = k if it is at the MAP of k

sources, i.e. (t, f) ∈ {Ωi1∩Ωi2∩. . .∩Ωik}. In addition to that, STFDs at the MAPs

are Hermitian symmetric and indefinite matrices. Lastly, we study the property

of Dss(t, f) at the CPs. It will only have off-diagonal entries, because only the

CTs are non-zeros. The rank{Dss(t, f)} = rank{Dxx(t, f)} = k if there exist CTs

resulting from k sources. Note that, regardless of the kernel, the CTs near or at

the MAPs are difficult to be suppressed without suppressing the signal TFD itself.

We will see how these CPs will not affect the performance of the source separation

in the Section 5.5. This gives the flexibility to use the original WV distribution

without any suppression of the CTs.
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5.4 TF Points for Blind Identification

There is no intention to propose a new blind identification method in this chapter,

however, we will discuss briefly the method of selecting TF points for the blind

identification algorithms, such as [101]. These blind identification algorithms rely

on the diagonal form of the sources’ STFD matrices. The objective of blind iden-

tification is to have sufficient TF points such that their sources’ STFDs can be

in diagonal form. This implies we need to select STFDs at the SAPs. However,

only sufficient and small numbers of the SAPs are needed for blind identification.

Hence, we could use a detection scheme that has low error probability when de-

tecting for the SAPs, such as the scheme reported in [102], to avoid STFDs, which

are not approximately diagonal matrices, from being processed in the blind iden-

tification. This high selectivity of the detection will also lower the computation

cost of the blind identification, as a result of fewer STFDs are being processed.

The rationale behind the detection scheme in [102] is to exploit the rank one

property of the STFDs at the SAPs. Therefore, we have

C(t, f) ,
max |eig{Dxx(t, f)}|∑
|eig{Dxx(t, f)}|

(5.4)

with C(t, f) = 1 for t, f that belong to the SAPs. However, in practice there are

almost no TF points which will satisfy C(t, f) = 1, hence the authors in [102]

suggested to search for the TF locations such that C(t, f) is high, i.e., the local
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maxima points of C(t, f). Thus, the criteria is to categorize TF points as the SAPs

if they satisfy the following


‖GradC(t,f)‖2 ≤ εGrad

HC(t,f) ≤ 0

(5.5)

where GradC(t,f) and HC(t,f) are the gradient function and the Hessian matrix of

C(t, f), respectively. The threshold, εGrad adjusts the number of the TF points,

that are categorized as the SAPs, in the neighborhood of a local maximum.

5.5 Proposed Source Separation Algorithm

5.5.1 Algorithm Overview

The objective of source separation is to estimate all the individual time-domain

source signals. However, if one has the source’s TFD, one can invert it uniquely,

up to a complex constant, to yield the source signal in time domain [103]. Thus,

the estimation of sources’ TFDs from STFDs is the main issue in this chapter.

Initially, TF points that contain only noise are ignored and their TFDs have to

be zeroed out. This is called noise-thresholding. The remaining TF points would

be either SAPs, MAPs or CPs. Here, we propose a method to use the STFDs

at the SAPs to obtain the individual source’s TFDs at the SAPs. Apparently,
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the separation method also prompts a new technique to separate the SAPs from

MAPs and CPs. Now, only the STFDs at MAPs and CPs have not been treated

yet. A subspace method, which is originally meant for TFD separation at MAPs

and SAPs only [99], is analyzed at the CPs and then its property are exploited

to process STFDs at mixture of MAPs and CPs that remained from the previous

step. Finally, one could construct individual TFDs at SAPs, MAPs and CPs (the

other TF points are zeros after noise-thresholding) and inverting them to estimate

the source signals in time domain. In the following subsections, we will elaborate

the procedure of the algorithm.

5.5.2 Proposed Simultaneous TFDs Separation at SAPs

Preceding any processing, the noise-thresholding step is performed by selecting the

TF points that satisfy the following,

trace{Dxx(t, f)} ≥ ε1mean
(t,f)

{trace{Dxx(t, f)}} (5.6)

where the value of ε1 typically is 1 (see [102]). Following the noise-thresholding,

blind identification of A is performed as discussed in Subsection 5.4. Thereafter,

the proposed source separation algorithm is performed on the SAPs, in which the

method of separating SAPs from the mixture of SAPs, MAPs and CPs will be

presented in the next subsection. The algorithm exploits the diagonal structure at
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the SAPs, and hence, by vectorizing Eqn. (5.3) gives

y(t, f) , vec{Dxx(t, f)} = (A∗ �A)z(t, f) (5.7)

where z(t, f) , diag{Dss(t, f)} is the vector that contains the diagonal entries of

sources STFD, and � is the Khatri-Rao product (see [104]). Note that the size of

the virtual array, A∗�A, is M2×L. Even when M < L, the condition M2 > L is

easily achievable to form a full rank virtual array matrix [100], and hence solving

for z(t, f) in Eqn (5.7) becomes a full-rank (overdetermined) least squares problem

now. For example, with only three sensors, it is possible to perform separation of

TFDs up to eight sources at all SAPs. Mathematically, the estimate of separated

TFDs at SAPs is simply

ẑ(t, f) = (Â∗ � Â)†y(t, f) (5.8)

where (Â∗ � Â)† is the pseudoinverse of the virtual array in this full-rank least

squares case, i.e. (Â∗ � Â)† = [(Â∗ � Â)H(Â∗ � Â)]−1(Â∗ � Â)H , where Â

denotes an estimate of A. Note also, one could stack y(t, f) from different SAPs

column-wise into matrix, as follows

Y , [y(t1, f1), . . . ,y(tK5 , fK5)] (5.9)
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where K5 is the number of SAPs selected by the technique to be discussed in

next subsection. Hence, with Eqn. (5.9), we can batch processes Y to obtain the

stacked ẑ(t, f) from different SAPs, Ẑ , [ẑ(t1, f1), . . . , ẑ(tK5 , fK5)], just by one

matrix multiplication, as follows

Ẑ = (Â∗ � Â)†Y. (5.10)

5.5.3 Proposed SAPs, MAPs and CPs Detection

Now, suppose that pseudoinverse of the virtual array is applied to the vectorized

STFD matrix at the MAPs or the CPs as in Eqn. (5.8), then it will lead to the

following equation

ẑ(t, f) = (Â∗ � Â)†(Ã∗ ⊗ Ã)w(t, f) (5.11)

where ⊗ is the Kronecker product. Without lost of generality, we assumed that

the MAPs or the CPs are the points where the first L′ sources are overlapping.

Hence, Ã , [a1, . . . , aL′ ] and the vectorized non-diagonal STFD matrix of the first

L′-sources at the MAPs or the CPs is given by w(t, f) , vec{D̃ss(t, f)}. The

Kronecker product arises due to non-diagonal structure of the sources’ STFD at

MAPs and CPs. Assuming perfect estimation of A, some of the columns of the

virtual array A∗ �A = [a∗1 ⊗ a1, a
∗
2 ⊗ a2, . . . , a

∗
L ⊗ aL] are contained in Ã∗ ⊗ Ã =
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[a∗1 ⊗ a1, a
∗
1 ⊗ a2, . . . , a

∗
1 ⊗ aL′ , . . . , a

∗
L′ ⊗ aL′ ]. This leads to

(A∗ �A)†(Ã∗ ⊗ Ã) = [e1, ?, . . . , ?, e2, ?, . . . , ?, eL′ ] (5.12)

where ?’s are the arbitrary column vectors and ek = [0, . . . , 0, 1, 0, . . . 0]T is a unit

vector with all the elements equal zeros except the kth element. Every (k + (k −

1)L′)th column of (A∗�A)†(Ã∗⊗ Ã) gives ek. Substituting Eqn. (5.12) into Eqn.

(5.11) results in

ẑ(t, f) =



Ds1s1(t, f) + cross-terms

Ds2s2(t, f) + cross-terms

...

DsL′sL′
(t, f) + cross-terms


(5.13)

at the MAPs and similarly for the CPs except that Dsksk(t, f) = 0 for all k.

This prompts a new way of separating the MAPs and the CPs out from the mix-

ture of MAPs, CPs and SAPs. Keep (t, f) as the SAPs and maxi{ẑi(t, f)} as

D̂simaxsimax
(t, f) if,

maxi{ẑi(t, f)}∑
i |ẑi(t, f)|

≥ 1− ε2, (5.14)

otherwise group (t, f) as a mixture of MAPs and CPs. Here, ẑi(t, f) is the ith

element of ẑi(t, f) and imax is the index that maximizes the numerator of the Eqn

(5.14). The value of ε2 is chosen to be a small value less than 1, typically is chosen

to be 0.1 ∼ 0.5. We will see in the next subsection the reason that this value is

not that critical.
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5.5.4 Subspace Separation Method at MAPs and CPs

and Its Property

Originally, the subspace method is intended for source separation at the SAPs and

the MAPs, but not at the CPs, which was described [99]. However, here we will

show that subspace method is also applicable for source separation at the CPs

as well, which means that suppression of CTs is not that crucial now. Another

advantage when dealing with a source with multicomponent signal is in estimating

its original TFD that contains the CTs, where suppression of CTs in this case is

in disadvantage. This also means the choice of ε2 is not that crucial if all the

SAPs, MAPs and CPs can be processed by using the subspace method. However,

the subspace algorithm processes STFDs at each of the TF points and hence it is

computationally expensive. Thus, processing more SAPs by the proposed method

in subsection 5.5.2 can reduce the computational load due to its batch processing

nature in Eqn. (5.10).

Now, we will observe the property of the subspace method at the MPs and the

CPs. It is assumed that the number of signal sources involved in the CT at CPs,

L′, are less than M − 1, which is the same assumption used for MAPs previously.

Thus, at any MPs or CPs, we perform the EVD to obtain the subspace of Ã,

Dxx(t, f) = ÃD̃ss(t, f)Ã = UΛUH (5.15)
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where U corresponds to the L′-largest eigenvalues in magnitude. Magnitude of

the eigenvalues is used due to the Hermitian symmetric indefiniteness of MPs and

CPs. Next, Ã could be identified by

Ã = min
{i1,...,iL′}

‖(I−UUH)ai‖ (5.16)

which, basically finding a set of L ai’s, which is obtained from Â, such that their

orthogonal projections to subspace of Ã are minimized. Following that, the TFDs

at the MAPs or CPs can be extracted from the diagonal elements of the following,

D̃ss(t, f) = Ã†Dxx(t, f)(Ã†)H (5.17)

If it is the STFD of the CPs, then the diagonal entries will be small and near to

zero. This is the property that allows the subspace method to be applied to STFDs

at CPs. Note that CT due to multicomponent signal will not be zero because it

has the spatial structure of STFDs at the SAPs as mentioned in previous section.
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5.5.5 Synthesis of Sources

Finally the source separated TFDs are formed as follows,

D̂srsr(t, f) =


ẑr(t, f) at SAPs by (5.8)

D̃sir sir
(t, f) at MAPs/CPs by (5.17)

0 elsewhere

(5.18)

where all the STFDs used in the algorithm is chosen to be Wigner-Ville-based

(WV) or Modified WV-based (MWV) [88], which is needed in order to perform

the inversion. Finally, source signals could be synthesized from the separated

TFDs, by inverting the WVD as follows, si(t) = 1
s∗i (0)

∫∞
−∞Dsisi(

t
2
, f)ej2πftdf where

its discrete time implementation could be found in [103]. It is also noteworthy to

use WVD rather than the modified WVD (MWVD) in the case when sources have

multicomponent signal, because the MWVD suppresses the CTs while WVD does

not. The proposed algorithm is summarized in Table 5.1.

Note that the algorithm in [99] only involves steps 1-3 and 6-7, and step 6

in [99] is used to obtain TFDs at the SAPs and MAPs (c.f. step 6 of proposed

method is applied to MAPs and CPs).
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Table 5.1: Summary of the new STFD-based underdetermined BSS

Given sensors output x(n)

1. Compute WV-based or MWV-based STFD in Eqn. (5.2)

2. Noise thresholding using Eqn. (5.6) to obtain signal TF points

3. Select STFDs at SAPs by [102] and estimate A by [101]

4. Separate MAPs/CPs from SAPs for BSS by applying Eqn. (5.10) and

(5.14) to the STFDs at signal TF points obtained from step 2

5. Obtain source separated TFDs at SAPs using maxi ẑi(t, f), which has

been evaluated in the previous step

6. Obtain TFDs at MAPs/CPs using Eqn. (5.15), (5.16) and (5.17)

7. Form source separated TFDs as in Eqn. (5.18)

8. Synthesize the source separated signals by inverting TFDs [103]

5.6 Simulation Results

In this section, the simulations are performed to show the effectiveness of the

proposed algorithm and it is compared to the existing subspace algorithm proposed

in [99]. The subspace algorithm is used for comparison, because other existing
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algorithms are not applicable to the situation where TF signatures are non-disjoint.

In the proposed algorithm, WV-based STFD is used while in [99] the MWV-based

STFD is used. In order to make a fair comparison, both algorithms are assumed to

have perfect estimation of A, which is randomly generated. There are four sources

(L = 4) and three sensors (M = 3). Three sensors are needed for both algorithms

to work, because there are two sources involved at MPs/CPs and more sensors

than sources are required for the subspace method to work at MPs/CPs.

In the first example, the additive noise is assumed to be zero-mean white

Gaussian and the SNR is assumed to be 5 dB. There are 256 number of snapshots

collected each with sampling rate one sample every second and ε2 = 0.4. The

parameter ε1 is chosen to be the same for both algorithms. The sources are two

single tones with frequencies of 0.2 rad
s

and 2.4 rad
s

and two linear FM signals with

instantaneous frequencies of −0.007t + 2.7 rad
s

and 0.006t rad
s

. With these types

of sources, it is impossible to mask or to partition the TF plane into TF planes

that contain less than four sources without partitioning any source’s TF signature.

Thus, one cannot apply the method in [85] onto each partition.

Figure 5.1 shows the original sources’ TFDs in the first row, the TFDs at

each sensor output in the second row, the estimated sources’ TFDs using the

proposed method in the third row, and the estimated sources’ TFDs using the

method similar to [99] in the last row. The results of both algorithms are almost

identical if one observes from these plots. In fact, based on the normalized mean
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square error (NMSE) with Nmc = 100 Monte Carlo runs, the performance in

estimating of sources 1, 2, 3, 4 are -17.64, -16.95, -17.85, -17.07 dB, respectively

for the proposed algorithm, and -16.88, -16.37, -17.21, -16.45 dB, respectively for

the existing subspace algorithm. The NMSE of source i is defined as

NMSE =
1

Nmc

Nmc∑
r=1

‖ŝ(Ωr)
i (t)− αisi(t)‖2

‖si(t)‖2

where αi is a complex valued scalar to take care of the scaling invariance in the BSS,

since the objective of BSS is to estimate the signals as accurate as possible while

allowing scaling ambiguity. The notation si(t) , [si(0), . . . , si(N − 1)] defines

the N snapshots of the source i signal. The N snapshots estimated source i

signal for the rth Monte-Carlo run is denoted as ŝ
(Ωr)
i (t). From the results of the

first example, it can be concluded that their performances are almost the same.

However, in this example the proposed algorithm is demonstrated to have the

advantage of less computation speed while keeping the same performances. The

reduced computation speed is due to the significantly less number of TF points

at which STFD matrices need to be eigen-decomposed as in step 6 of Table 5.1,

which causes most of the computational load. Denote the number of TF points

selected from step 2 as K2, and the total number of MAPs and CPs selected from

step 4 as K4, then the number of flops in step 6 in order to obtain the TFDs of

MAPs and SAPs are dominated by K2 times the complexity of EVD O(K2M
3) for

the algorithm in [99]. On the other hand, the number of flops in step 6 in order to
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obtain TFDs of MAPs and CPs is K4 times the complexity of EVD (O(K4M
3))

in the proposed algorithm. All the other steps are the same in both algorithms

except the extra steps 4 and 5 used in the proposed algorithm. However, these

two steps contribute very little to the complexity. From the MATLAB profiling

function, step 6 of the proposed algorithm is 2.7 times faster than that of algorithm

in [99] because of the difference in computational complexity of EVD in step 6. The

additional step 4 and 5 only took up 7% of the total computational time. Although

step 4 and 5 cost more due to its complexity, these steps are fast, because we can

perform batch processing through Eqn. (5.10).

In the second and third examples, the additive noise is assumed to be zero-

mean Gaussian and the SNR is varied up to 30 dB. Furthermore, the values of

ε1 and ε2 are tuned such that the computational speeds of both algorithms are

the same (using MATLAB profiling function) for comparison of their performance

gains. The number of snapshots collected is the same as the first example. In the

second example, the four sources are two single tones with frequencies of 0.2 rad
s

and

2.2 rad
s

and two linear FM signals with instantaneous frequencies of 0.0074t rad
s

and

−0.008t+2.7 rad
s

, respectively. In the third example, the four sources are two single

tones with respective frequencies of 0.2 rad
s

and 2.2 rad
s

, one linear FM signal with

instantaneous frequency of −0.008t+ 2.7 rad
s

and one multicomponent source that

consists of two linear FM signals crossing each other with instantaneous frequencies

of 0.009t rad
s

and −0.009t+ 1.148 rad
s

. With these types of sources, it is impossible
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to partition the TF plane into smaller TF planes such that each plane contains

less than four sources without partitioning any source’s TF signature. Thus, one

also cannot apply the method in [85] to each partition in these examples.

Figures 5.2 and 5.4 show the overall normalized mean square error (ONMSE)

performance over Nmc = 100 Monte Carlo runs. The ONMSE is just

ONMSE =
1

Nmc

Nmc∑
r=1

‖Ŝ(Ωr) − diag{α1, . . . , αK}S‖2
F

‖S(t)‖2
F

where, Ŝ(Ωr) = [ŝ
(Ωr)
1 (t)T , . . . , ŝ

(Ωr)
L (t)T ]T and S = [s1(t)T , . . . , sL(t)T ]T . In Fig. 5.2,

the results of the second example show that the proposed method is better than the

existing subspace method [99] by about 1 dB at SNR 30 dB. In Fig. 5.3, the result

of the existing subspace method suffers from restoring the original sources TFDs,

particularly for sources 2 and 4. The sources in this example are non-disjoint,

however, each of them is still mono-component LFM signal. The results of the

proposed method are expected to be even more dramatic in the third example as

shown in Fig. 5.4. The performance gains at SNR 20 dB to 30 dB are almost 3 dB.

This is because the proposed algorithm uses WV-based STFD, where the useful

CTs—the CTs belonging to multicomponent signal source—are not suppressed at

all; on the contrary, MWV-based STFD suppresses all of the CTs indiscriminately.

The strength of the proposed algorithm is its capability to retain the useful CTs

and to dispose the unwanted CTs. With WV-based STFD, some of the useful

TF points at the CTs are processed as SAPs because they have the same STFD
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structure as SAPs. The other useful TF points at the CTs, with the proposed

algorithm speed maintained at the same speed as the existing subspace algorithm

through the control of ε1 and ε2, could be allowed to be included in the subspace

processing in Subsection 5.5.4 (or in step 6). Fig. 5.5 shows the severe degradation

in restoring source 2 occurs to the existing subspace algorithm. Especially in the

region proximity to the MAPs of source 2, TFD is almost nulled completely.

5.7 Discussions

This chapter has demonstrated a better underdetermined source separation tech-

nique by the use of time-frequency distributions. The gain in performance is

achieved without loss of the computational speed is mainly attributed by two

factors. The first factor is caused by the use of WV-based STFD which do not

suppress CTs resulting from either the product between different sources or from

the multicomponent signal of a given source, where the latter type of CTs are not

nuisance signals. To exploit these CTs from multicomponent signal, we leverage

on the spatial structure of STFD, which can reveal the distinctions between these

two types of CTs, by utilizing the subspace method at CPs which has not been

exploited in [99]. This property of using subspace method to distinguish the CPs,

whether are they resulting from multicomponent, was not discovered in [99]. With

the WV-based STFD and subspace algorithm applied to SAPs, MPs and CPs, the

source separation will perform well even when there is a multicomponent source.
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However, now the computational speed is severely reduced if one uses the sub-

space algorithm alone because many CPs are included for processing. The second

factor is caused by the new batch processing of (5.8), which off-loads the compu-

tational burden of the subspace method, especially for the TF points, where they

are detected as SAPs.

5.8 Summary

In this chapter, an underdetermined blind source separation method was proposed

for signals that have distinct time-frequency signatures. It exploited the sparseness

of time-frequency signatures in time-frequency domain. The algorithm is robust

averse to signals which overlapped in their time-frequency signatures. There are

several main ideas in this proposed algorithm. Firstly, the TFDs that contains

cross-terms are useful if they can be exploited properly. We have demonstrated by

applying the subspace method to the CTs, one can distinguish and keep the CTs

due to multicomponent signal from the CTs due to the product of two different

sources. Secondly, we proposed a batch separation method at SAPs, which allowed

us to increase the processing speed.

In this chapter and previous two chapters, the noise has always been assumed

to be additive white Gaussian noise. In the following chapter, we will deal with

Gaussian noise that could be either white or colored. Also the signal sources are



CHAPTER 5. UNDERDETERMINED BSS OF TF SIGNALS 136

not assumed to be time-frequency signals, but just zero-mean signals.
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Figure 5.2: NMSE for example 2. All sources are llinear FMs
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Figure 5.4: NMSE for example 3. Sources are 3 linear FMs and one multicompo-
nent signal
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Chapter 6

Higher- and Mixed-Order
Statistics based DOA Estimators

6.1 Introduction

In this chapter, we deal with parametric DOA estimation of non-Gaussian signal

sources. The main difference between the problem in this chapter and the classical

DOA estimation problem is that the noise observed by each sensor is assumed to

be unknown Gaussian and spatially correlated or colored. In many applications

such as in sonar, radar and seismology, neither the statistics of the signal nor the

noise covariance is known [105–108]. Additionally, in many wireless communica-

tion applications, the signals usually have non-Gaussian statistics while the noise

statistics often remain unknown. Although from central limit theorem, it is rea-

sonable to assume the noise observed by each sensor to be Gaussian distributed,

however the noise observed from one sensor to another may be correlated, which

means that the noise is non-white.

142
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Fourth-order cumulant statistics have been exploited for non-Gaussian signals

in many situations especially in the presence of Gaussian noise with unknown

correlation [109]. In this situation, SOS-based DOA estimator fails to perform

well. Another key motivation of using FOS is its ability to estimate DOA in a

scenario with more sources than sensors. Furthermore, we can observe an increase

in the resolution of these estimates by using FOS [100,110]. The existing FO DOA

estimators which make use of the full set of FO cumulants, as in [111], are com-

putationally intensive due to the very large set of statistics to be processed. On

the other hand, downsizing the FO cumulants to a single contracted quadricovari-

ance matrix or a diagonal slice quadricovariance matrix [112] always leads to poor

estimates. In general, contracted quadricovariance can be steered to optimally

estimate one particular DOA. However, this choice of contracted quadricovariance

is not necessarily optimal to estimate other DOAs. In [113], a steering technique

was proposed by using the inverse of signal covariance matrix. However, the SO

covariance of the signal cannot be consistently estimated if the Gaussian noise has

a peak power from a certain direction. This can lead to a suboptimal choice of

quadricovariance when performing DOA estimation.

In this chapter, we propose a new FO DOA estimator that is based on the mul-

tiple contracted quadricovariance matrices i.e. eigenmatrices. Following that, we

extend the proposed FO DOA estimator to a joint second- and fourth-order DOA

estimator, which will compromise the disadvantages of SOS and FOS, and lead to
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a more robust algorithm. This is particularly useful in the case when FO DOA es-

timator alone degrades or performs worse than SO DOA estimator, such as in the

situation when the signal statistics are nearly Gaussian and in the situation when

the Gaussian noise covariance is known or nearly white [42,114]. This is because in

these situations, the estimates of HOS have higher variances than the estimates of

SOS. In [115], the concept of exploiting both SOS and FOS is applied to multiuser

detection. Similar concept has also been applied to equalization [116], segmenta-

tion of textured surfaces [117,118], and blind source separation [119]. In the blind

source separation applications [119], the FOS and SOS are weighted optimally to

obtain the best estimate of the channel mixing matrix, however, the algorithm

requires one column of the non-parametric channel mixing matrix to be known,

which might not always available in practice. In [120], root-MUSIC algorithm is

used twice, one to the quadricovariance matrix and the other to the covariance

matrix, to obtain their roots respectively. These roots are classified and used to

determine whether to exploit the DOA estimates from the quadricovariance-based

root-MUSIC, or from the covariance-based root-MUSIC, or from both. Hence, the

estimates could come from either the SOS-based estimation, the FOS-based esti-

mation, or the average of both estimations. In this chapter, our estimates come

from the weighted average of covariance and quadricovariance matrices. It is not

simply by choosing one among SOS, FOS and the averaging of both (three dis-

crete choices), but rather a linear combination of SOS and FOS. Finally, simulation

results are included to justify our claims.



CHAPTER 6. HIGHER-&MIXED-ORDER DOA ESTIMATION 145

6.2 Signal Model

Assume an ULA of M sensors and L narrowband signals, with L < M . The

random circular vector of the sensors output is modeled as

x(n) , As(n) + v(n), n = 1, . . . , N (6.1)

where A , [a(θ1), . . . , a(θL)] is the M×L array manifold matrix with {θi} denotes

the DOAs. The steering vector is defined as a(θ) , [1, ej
2πd
λ

sin θ, . . . , ej
2πd
λ

(L−1) sin θ]T .

The zero-mean non-Gaussian source signals s(n) are arranged in a L × 1 vector

and v(n) is the M × 1 complex zero-mean Gaussian noise vector. The variable N

is the number of snapshots, d is the inter-element spacing of the array, λ is the

signal source wavelength and (·)T denotes the transpose. The array covariance

matrix can therefore be expressed as

R , E[x(n)xH(n)] = ARsA
H + Rv, (6.2)

where Rs , E[s(n)sH(n)] is the L×L covariance matrix of the signal sources, Rv ,

E[v(n)vH(n)] is the M ×M noise covariance matrix, E[·] denotes the expectation

operator and (·)H denotes the Hermitian transpose. The quadricovariance is given
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by the set of FO circular cumulants, which are defined as

κx(i, j, k, l) , Cum(xi, x
∗
j , xk, x

∗
l ) , E[xix

∗
jxkx

∗
l ]− E[xix

∗
j ]E[xkx

∗
l ]

− E[xix
∗
l ]E[xkx

∗
j ]− E[xixk]E[x∗l x

∗
j ] for 1 ≤ i, j, k, l ≤M (6.3)

where (·)∗ denotes the complex conjugate, xi denotes the ith element of vector

x and the last term vanishes if the random multivariate is circularly complex.

The contracted quadricovariance matrix of x is defined as Qx(M) with its (i, j)th

element given by

[Qx(M)]i,j =
M∑

k,l=1

κx(i, j, k, l) [M]l,k , (6.4)

where [M]i,j is the (i, j)th element of the free parameter matrix M. A full quadrico-

variance is formed by the set of parallel slices of quadricovariance matrices defined

by QP , {Qx(Zl,m), 1 ≤ l,m ≤ M} where Zl,m is a matrix with zero entries

everywhere except the (l,m)th entry is one.

6.3 Second-Order Estimator

As we have reviewed in Section 2.3, the SO DOA algorithms rely on the covariance

matrix R which can be estimated (consistently) from its samples

R̂ =
1

N

N∑
n=1

x(n)xH(n) (6.5)
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Its eigen-decomposition is given by

R̂ ,

[
Us Uv

]Λs 0

0 Λv


Us

H

Uv
H

 = UsΛsUs
H + UvΛvUv

H (6.6)

where matrices Λs,Us,Λv,Uv contain the eigenvalues and eigenvectors of signal

subspace and the eigenvalues and eigenvectors of noise subspace, respectively. Sub-

space algorithms exploit either the matrix Us or Uv to estimate the DOAs. This

is because columns of Us and Uv form orthonormal bases for span{A} and noise

subspace, respectively. In this chapter, we use root-MUSIC algorithm because it

is a search-free approach. The DOA of ULA structure can be found by computing

the L roots which are closest to the unit circle of the following polynomial,

f(z) = aT (1/z)UvUv
Ha(z) (6.7)

which is the denominator of the search-based MUSIC spectrum given in Eqn.

(2.51) with z = ej
2πd
λ

sin θ. This algorithm performs well in the situation where

either white or known colored noise is present. However, in the situation when the

noise is unknown colored Gaussian noise, the FO cumulant-based DOA algorithms

will perform better. In the following section, we propose a new FO cumulant-based

DOA algorithm.
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6.4 Proposed Fourth-Order DOA Estimator

The FO DOA algorithms hinge on the quadricovariance statistics which are esti-

mated consistently by their sample estimates as follows,

κ̂x(i, j, k, l) = µ̂ijkl − σ̂ijσ̂kl − σ̂ilσ̂kj − ζ̂ikζ̂∗lj (6.8)

where µ̂ijkl , 1
N

∑N
n=1 xi(n)x∗j(n)xk(n)x∗l (n), σ̂ij , 1

N

∑N
n=1 xi(n)x∗j(n) and

ζ̂ij , 1
N

∑N
n=1 xi(n)xj(n). For clarity, we have ignored the noise, which is a rea-

sonable assumption because FO cumulant statistics are insensitive to Gaussian

noise. The contracted quadricovariance of x defined in Eqn. (6.4) is related to the

quadricovariance of s (after Gaussian noise rejection) by

[Qx(M)]i,j =
∑

k,l,α,β,γ,δ

κs(α, β, γ, δ)ai,αa
∗
j,βak,γa

∗
l,δ [M]l,k

with ai,j = [A]i,j. The equation above could be written in matrix form as

Qx(M) = AWAH (6.9)

where [W]i,j ,
∑

k,l κs(i, j, k, l)a
H(θl)Ma(θk). This is of the same form as in the

SO covariance matrix case, except that W might not necessarily be Hermitian

symmetric. In general, because of this Hermitian property, the covariance matrix

possesses symmetric eigen-decomposition, which gives unitary eigenvectors that
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are used by many subspace-based DOA estimation methods. Furthermore, due

to positive definiteness, the covariance matrix possesses positive real eigenvalues,

which can be used to determine the dominant signal subspace in the presence of

noise. However, the contracted quadricovariance, W, is Hermitian if and only if

M is Hermitian, which is due to the super-symmetry property of the FO circular

cumulant. Hence, if M is Hermitian, then Qx(M) will have real eigenvalues which

may be either positive or negative. However, for a weaker condition of Qx(M)

that does not possess the Hermitian symmetry, it would then be a normal matrix

(i.e. B is normal matrix when BBH = BHB). This property allows Qx(M) to

possess unitary eigenvectors with possibly complex eigenvalues.

Contracted quadricovariance is a method of downsizing the full quadricovari-

ance to M ×M matrix with M as the free parameter matrix. For example, the

contracted quadricovariance Qx(I) is used for DOA estimations in [112] by choos-

ing M = I. Another method of downsizing the quadricovariance is by diagonal

slicing. The subspace algorithms based on the diagonal slice of quadricovariance

perform worse than the subspace algorithms based on Qx(I). In spite of that,

choosing M = I does not exploit the freedom to choose the suitable M’s which

can be derived from eigenmatrices using the received signals. We will explain this

shortly.

Eigenmatrices of FO tensor were introduced in [113]. Since the circular cu-

mulant κx(i, j, k, l) acts as a linear operator Qx(·) : CM×M 7→ CM×M , which is a
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compact† and self-adjoint‡ operator with inner-product 〈A,B〉 = trace{ABH}, it

then takes the following eigen-structure,

κx(i, j, k, l) =
M2∑
r=1

λr[E
(r)]i,j[E

(r)]∗l,k (6.10)

where λr is the eigenvalue and E(r) is the eigenmatrix pair. The eigenmatrices are

orthonormal, i.e. trace{E(r)E(s)H} = δr,s and invariant, i.e. Q(E(r)) = λrE
(r). In

general the eigenmatrices span CM×M . However, assuming no noise and the steer-

ing vectors of the signal are linearly independent, the dimension of the subspace

spanned by the eigenmatrices is L2, which could be much smaller than M2 [113]. In

the special case of statistically independent sources, the dimension of the subspace

spanned by eigenmatrices is only L. Hence, the dimension of this subspace is in

[L,L2]. The subspace spanned by these eigenmatrices is called FO signal subspace,

while the orthogonal subspace from the signal subspace is called FO noise subspace,

though the noise is asymptotically zero. This leads to the MUSIC-like algorithm

in tensor domain [111, 113]. This type of processing is computationally expen-

sive because it is search-based, which requires large computational power even for

single search due to the large matrix multiplication involved in each search.

This chapter utilizes the tensor eigen-decomposition in a different way. The

eigenmatrices are also the contracted quadricovariances of the form of Eqn. (6.9).

†because the range of the operator is finite dimension space
‡self-adjoint if the operator satisfies 〈Q(A),B〉 = 〈Q(B),A〉,∀(A,B), this is satisfied by

super-symmetry property of the circular cumulant
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This suggests us to find an approach to estimate the common subspace, span{A},

or its bases from the eigenmatrices. Following that, the DOAs can be extracted in

the similar fashion as the SO subspace algorithms. With Qe , {λrE(r), 1 ≤ r ≤

L2}, we only need to find the common subspace from L2 matrices (or L matrices

if sources are known to be statistically independent) instead of M2 matrices from

QP . Finding orthonormal bases of span{A} could be made through performing

simultaneous eigen-decomposition of

Q(E(r)) = λrE
(r) = AW(r)AH = UsΓΓΓ

(r)UH
s , 1 ≤ r ≤ L2 (6.11)

where Us is a M ×L matrix that contains the eigenvectors of signal subspace and

ΓΓΓ(r) is a L×L diagonal matrix that contains the eigenvalues of the signal subspace

of the rth eigenmatrix. This eigen-decomposition with unitary eigenvector is guar-

anteed by the normality of the eigenmatrices. In fact, because of the horizontal

symmetry of FO circular cumulants, the eigenmatrices could be chosen to be Her-

mitian [113], but the eigenmatrices are unique up to a phase factor. Suppose E(r) is

Hermitian then there exists an E′(r) that is not Hermitian such that E′(r) = ejφE(r).

However, if E(r) is Hermitian, then we have E′(r)E′(r)H = E′(r)HE′(r). This guar-

antees that eigenmatrices obtained through Eqn. (6.10) are normal.

In practice, the simultaneous eigen-decomposition is performed by the joint ap-

proximate diagonalization of eigenmatrices (JADE) algorithm [26], which has been

successfully exploited for blind source separation. The eigenvectors of signal sub-
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space, Us, is determined by a slightly different manner from the SO counterpart.

Assuming the full eigenvectors as U = [u1, . . . ,uM ], then

Us = [us1 , . . . ,usL ] (6.12)

In Eqn. (6.12), {s1, . . . , sL} is taken such that γs1 ≥ γs2 ≥ . . . ≥ γsL ≥ . . . ≥ γsM ,

where γi ,
∑

r |[ΓΓΓ(r)]i,i|. The sum of the magnitude of the eigenvalues across

different eigenmatrices is used because the eigenvalues are complex numbers. It

can be shown that the magnitudes of the eigenvalues of a normal eigenmatrix are

the same as the eigenvalues of the its equivalent Hermitian eigenmatrix, except

for a difference in sign. After obtaining Us, DOAs could be estimated, in general,

regardless of the structure of the array, by many existing subspace algorithms.

Particularly, in this chapter root-MUSIC in (6.7) is used (assuming array structure

is ULA).

6.5 Joint Second- and Fourth-Order DOA Esti-

mator

Observing the structure in Eqn. (6.6) and Eqn. (6.11), a new estimator based on

SOS and FOS could be derived by simultaneously performing eigen-decomposition

of the eigenmatrices and autocovariance matrix, i.e. QFSO , {R, λ1E
(1), . . . , λL2E(L2)}.
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In fact, as we will see later in the cost function of the JADE algorithm, it is possi-

ble to weigh the matrices, and hence, it is possible to ascertain whether can SOS

be used more predominantly than FOS or vice versa, depending on whether the

noise is white or colored Gaussian noise.

Assume joint diagonalization algorithm for 2 × 2 matrices (it can be easily

extended to square matrices of any size, see Appendix E for the complete un-

weighted algorithm), for example, matrices of set Quw = {G(r), 1 ≤ r ≤ L2} with

the entries,

G(r) =

ar br

cr dr

 (6.13)

The objective of joint diagonalization is to get the unitary matrix V such that

matrices G′(r) = VHG(r)V are as ”diagonal” as possible. Mathematically, it is

the same as maximizing C, where

C ,
∑
r

|a′r|2 + |d′r|2
1
=

1

2

∑
r

|a′r − d′r|2 (6.14)

where a′r, d
′
r are the diagonal elements of G′(r). Equality 1 above is due to the

invariance in the trace of G′(r). The joint diagonalization uses complex Givens

rotation technique,

V =

 cos θ −ejφ sin θ

e−jφ sin θ cos θ


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and hence C relates the new parameters to the earlier ones by,

a′r − d′r = (ar − dr) cos 2θ + (br + cr) sin 2θ cosφ+ j(cr − br) sin 2θ sinφ (6.15)

From Eqns.(6.14) and (6.15), weighting each diagonalization of Gr by wr could

be done by multiplying it with wr such that the weighted joint diagonalization

algorithm is just a joint diagonalization on set Qw = {wrG(r), 1 ≤ r ≤ L2}. Table.

6.1 enumerates the steps of the proposed algorithms, i.e., the new fourth-order

(NFO) statistics-based algorithm and the joint fourth- and second-order (FSO)

statistics-based algorithm.

Table 6.1: Summary of the new fourth-order (NFO) and mixed fourth- and second-
order (FSO) algorithms steps

Given sensors output x(n)

1. Estimate R̂ and κ̂(i, j, k, l) as in (6.5) and (6.8)

2. Compute L or L2 largest eigen-value and -matrices of κ̂(i, j, k, l) as in [26]

3. Perform JADE [26] on matrices in:

(a) Qe for NFO algorithm

(b) QFSO with weight for FSO algorithm

4. Determine Us from (6.12), and then perform the subspace-based DOA
estimation on Us, such as root-MUSIC
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6.6 Simulation Results

In this section, two simulations are provided to illustrate the effectiveness of the

NFO algorithm and the FSO algorithm. For both simulations, root-MUSIC al-

gorithm is used on the estimated subspace and the ULA of 13 sensors with

λ/2 spacing is employed. It is assumed that two sources are emitting from di-

rections −25o, 17o normal to broadside of antenna and the number of samples

collected is 1000. Weights for the FSO algorithm are chosen to be 1 for co-

variance matrix and 10−3 for eigenmatrices such that JADE is performed on

QFSO = {R, 10−3λ1E
(1), . . . , 10−3λL2E(L2)}.

For the first simulation, signals emitted by the non-Gaussian sources are mod-

eled as

s(n) = diag{f1(n), . . . , fL(n)}r(n)

r(n) = [r1(n), . . . , rL(n)]T

The zero-mean Gaussian processes fi(n) and ri(n) have unit-variance and σ2
s -

variance, respectively. This type of non-Gaussian signal is common in sonar and

other applications [107]. Note that the source signals are independent and have

equal power in the first simulation. The unknown colored Gaussian additive noise

is assumed to have covariance matrix [Rv]lk = σ2ρ|l−k|, with ρ = 0.9. The noise is

further assumed to be temporally correlated as, E{vi(n)vi(n + m)} = σρ̃m with
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ρ̃ = 0.5. The SNR is defined as SNR , 10 log(σ2
s/σ

2) dB which is varied from

−10 dB to 15 dB. The simulation results in Fig. 6.1 show that at lower SNR, the

NFO algorithm and FSO algorithm perform better than both the SO root-MUSIC

algorithm and the fourth-order contracted quadricovariance (FO QC)-based root-

MUSIC algorithm. The FO QC algorithm has been previously described in Section

6.4, which is based on evaluating the root-MUSIC of Qx(I) [112]. The performance

of the SO algorithm is severely affected in low SNR by the colored Gaussian noise

while all FO cumulant statistics based algorithms are not significantly affected

by the noise. The FSO algorithm is not affected because the weights allow the

inference drawn from covariance to be minimized, yet still useful. The FO QC

algorithm performed worse than the NFO and FSO algorithm because it relies on

a single slice of the quadricovariance matrix which might not necessary be the best

slice chosen. Note that only RMSE of one DOA is shown and the RMSE of the

other DOA is similar to what is shown here.

For the second simulation, signals emitted by the sources are modeled similarly

as before, except that the sources are correlated with correlation coefficient of 0.4.

The noise is also assumed to be the same as in the previous simulation, except that

the SNR is now fixed at 0 dB, while the correlation coefficient, ρ, is varied from 0

to 1. The results in Fig. 6.2 show the robustness of the proposed FSO algorithm

with only slight performance degradation in the region of ρ < 0.6 as compared to

the SO algorithm. The NFO and FO QC algorithms are performing reasonably
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Figure 6.1: DOA estimation RMSE’s vs. SNR for two independent sources.

well for higher ρ values, because they are using FOS in the presence of unknown

correlated Gaussian noise. Nevertheless, NFO still performs better than FO QC.

6.7 Discussion

In this chapter, we have proposed two algorithms for DOA estimations in the

presence of unknown Gaussian noise. The SO root-MUSIC, which is used in the

comparison study, is search-free and requires O(M3) computational complexity.

If M < L2, the computational complexity of the SO root-MUSIC is smaller than
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Figure 6.2: DOA estimation RMSE’s vs. spatial correlation coefficient of noise

the computational complexity of our proposed methods, i.e. O(L2M2), which

are also search-free. Whenever robustness against unknown Gaussian noise is re-

quired, FO based algorithms would be preferred at the expense of having additional

computational complexity. Note that our proposed FO and FSO algorithms are

search-free, hence, they are computationally less demanding than FO search-based

algorithms [111,113], which require O(L2M2) computational load for every search.

Therefore, for Nsearch, they require O(NsearchL
2M2) computational load.

We have shown that the application of (weighted) joint approximate diago-

nalization applied directly to FOS or both FOS and SOS could be utilized for
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estimating DOAs. The performance of the proposed algorithms, especially the

FSO algorithm, are very promising. In the development of FSO, it is discovered

that different weightings could improve the performance of the algorithm. We

will discuss the optimum weights and its analysis in our future work. Another

possible extension of this weighting is to weigh various autocorrelation matrices

{R(τ), τ = 0, . . . , L2}, as in SO blind identification (SOBI) algorithm [27], and

various eigenmatrices (quadricovariance matrices).

Albeit [121] proposed a weighted joint diagonalization in LS formulation, the

weighting in this chapter is different from [121]. Suppose that H is any ma-

trix, the weighting in [121], W , is based on weighted LS with norm, ‖H‖W ,√
vec{H}HWvec{H}. In this chapter, it is based on the weighted LS with norm,

‖H‖W ,
√
tr{HHWH} and W is restricted to be a diagonal matrix with wr as

the diagonal entries.

Generally, the SOS subspace algorithms require the number of sources to be

less than the number of sensors. Therefore, because the proposed NFO and FSO

algorithms, as well as the existing contracted quadricovariance algorithms, use the

quadricovariance matrices which are analogous to the structure of SOS’s autocorre-

lation (see Eqn. (6.9)), the proposed algorithms may not work properly when there

are more sources than sensors. The reason is that the SOS autocorrelation matrix

and contracted quadricovariance matrices of the source signals are full-rank and

generally non-diagonal. Therefore, the noise subspace cannot be estimated and
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subsequently, DOA also cannot be estimated. However, if the sources are inde-

pendent, which make W becomes diagonal, estimating A for more sources than

sensors using the proposed FO and FSO algorithm is possible by utilizing the di-

agonalization algorithms given in [101,121]. These algorithms formulate and solve

for mixing matrix A through minimizing the LS error, hence solving wide matrix

A is still possible. Assuming source signals are independent, there are also other

blind identification methods which can be used to estimate the wide-matrix A,

such as those reported in [90, 122, 123]. Following that, by techniques similar to

MUSIC or weighted subspace fitting algorithms, DOAs can be elicited from the

estimate of A, i.e., Â. For example, using MUSIC-like algorithm given by

θ̂i = arg max
θi

1

ã(θi)H(I−PÂ∗�Â)ã(θi)
(6.16)

where ã(θi) = a∗(θi)� a(θi).

6.8 Summary

In this chapter, two new algorithms for DOA estimation that are robust to any

unknown Gaussian noise have been proposed. Both algorithms exploit the in-

sensitivity of the FOS to the Gaussian noise. Compared to existing algorithms

which exploit FOS through a contracted quadricovarince matrix, our algorithms

perform better, because we exploit more than one quadricovariance matrices. The
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eigenmatrices we use, parsimoniously capture all the FO statistics of the observa-

tions that have significant power, which is analogous to low-rank approximation

of autocorrelation matrix.



Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis, we have presented a variety of novel array processing algorithms to

handle three problems. The approaches are mainly based on higher-order statistics

and time-frequency distributions.

In Chapter 3, we considered the case where wideband LFM signals from mul-

tiple sources impinging on sensor arrays. The objective is to estimate DOAs,

frequency rates and frequencies for each of the sources. The proposed solution is

devised by using the DPT. The properties that received signal frequencies vary

linearly and frequency rates remain constant across the antenna sensors, are ex-

ploited to estimate their DOAs, frequency rates and initial frequencies. The pro-

posed algorithm is efficient because it does not require a multidimensional search as

compared to the ML estimation method and CBF. Furthermore, it is search-free

by incorporating root-MUSIC algorithm, except for the part to estimate DOAs

162
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which uses the variant of CBF, and only one-dimensional search is needed instead

of three-dimensional search as in the original CBF. From the presented simulation

results, the algorithm essentially can perform near to the Cramer-Rao Bound.

In Chapter 4, the SHIM operator is formulated and derived from HIM. HIM

is also using HOS, because it is basically a product between more than or equal

to two realizations each of different delays. The non-linear SHIM operator trans-

forms a wideband PPS of any order that impinged on an antenna array into a

narrowband sinusoidal signal that impinged on an antenna array, which then can

be processed directly by many classical array processing and harmonic retrieval

algorithms. With the harmonic retrieval algorithm, one can estimate the highest-

order frequency rate, followed by using array processing algorithm to estimate the

spatial parameter. Classical array processing and harmonic retrieval algorithms

are the same except for the difference in rearranging the data before processing.

However, we opted to use a closed-form subspace algorithm that simultaneously

estimates the highest-order frequency parameter and DOA because it is a search-

free algorithm and performs joint estimation in one step. We also examined the

theoretical performance and the identifiability of the algorithm. It was discovered

that lower sampling rate would deliver better performance in DOA estimation,

provided that the identifiability conditions are satisfied.

In Chapter 5, we turned to the problem in separating/recovering more time-

frequency signal sources received than receiving antenna sensors. Note that a PPS
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is subset of the time-frequency signals. Assuming that the mixing matrix is non-

parametric, we could apply the solution to this type of problem to the problem of

recovering signals either when the sensor array is poorly calibrated or when the

sensor array’s structure/geometry is unknown. The structures of STFD at three

different TF locations, i.e. SAPs, MAPs and CPs, are analyzed and exploited.

The structures of STFDs at SAPs were exploited to form a computationally ef-

ficient algorithm and to formulate a detection algorithm to separate SAPs from

MAPs and CPs. Following that, the existing subspace method, which is meant

for SAPs and MAPs [99], was analyzed for its property at CPs. With a newly

discovered property, the abundance of CPs in WVD-based STFD, and the sim-

plicity of the proposed technique for SAPs, we devised a superior algorithm. While

keeping the computational speed the same as the existing subspace algorithm, the

proposed algorithm outperforms the existing algorithms especially when there is

a multicomponent source. The existing algorithms assumed that all of the CTs

are useless interfering source signals, and hence they are suppressed. However,

we have selectively taken CTs that belong to multicomponent source into account

through the newly discovered property of subspace algorithm at CPs, as presented

in Chapter 5.

Finally in Chapter 6, we developed a new FOS-based and a mixed SOS-FOS-

based DOA estimation algorithm. The FOS is advantageous because it is insensi-

tive towards any Gaussian noise and applicable to the situation with more sources
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than antenna sensors. However, many of the FOS-based DOA estimation algo-

rithms are either too computationally expensive or performing too badly. When

one uses all of the FOS, it gets computationally expensive. On the other hand,

some FOS-based algorithms perform poorly because they only use a smaller set

of FOS, known as the quadricovariance matrix. There are useful FOS that are

not contained in the quadricovariance, and are not being utilized. In Chapter

6, we proposed a better way to choose FOS, i.e. through eigenmatrix decomposi-

tion, which gives multiple quadricovariance matrices. This method parsimoniously

captures all the FO statistics that have significant energy, in the analogous way

that low-rank approximation of autocorrelation matrix parsimoniously captures

the statistics of the signals. Therefore, the resulting new FOS-based DOA algo-

rithm is not too computationally expensive and yet the set of the FOS chosen is not

too small. Following that, because of the similar structure between quadricovari-

ance of FOS and covariance of SOS, we developed a mixed-order DOA estimator

in addition to the FOS-based approach. This mixed-order algorithm indeed inher-

its the advantages of both FOS and SOS. We showed using simulations that this

algorithm performs well in spatially white Gaussian noise environment as well as

in spatially colored Gaussian noise environment. Although FOS-based algorithms

work well in spatially white Gaussian environment, SOS-based algorithms are nor-

mally superior to FOS counterpart. The mixed-order algorithm, on the other hand,

outperforms FOS-based algorithm in spatially white Gaussian noise environment.

In Chapter 6, we also introduced weighting to weigh the quadricovariance and co-
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variance matrices. This framework allows one to adjust the statistics information

according to the level of significance between the SOS and FOS.

7.2 Future Works

From the comparison of the work in Chapter 3 and Chapter 4, we see that param-

eter estimation of multiple PPS (with order larger than two) impinging on sensor

array from multiple sources has not been completely solved. The hindrance of us-

ing SHIM for multiple sources is the cross-terms generated. Further investigation

is needed to understand: whether the estimation of highest-order frequency pa-

rameters alone from SHIM is always possible even in the presence of cross-terms;

whether the estimation of DOAs alone from SHIM is possible. If one of these is pos-

sible, we could devise an algorithm that can estimate the highest-order frequency

parameters and DOAs, of course additional processing may incur.

The work in Chapter 5 has assumed that the estimates of a wide mixing matrix

is available. New algorithm can be developed to estimate the mixing matrix. In

addition to that, since we only utilized quadratic TF distribution, we can explore

the application of the linear TF distributions or other transformations, such as

fractional Fourier transform. Linear transformation is appealing because naturally

there is no cross-term interference.

In Chapter 6, the performance analysis and optimal weights were not provided.
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The future work is to analyze the performance of the NFO and FSO algorithms,

which will involve sixth- and eighth-order statistics. With this analysis, we could

find the optimal weights, which will allow us to achieve the optimum performance

regardless of whether the noise is spatially white. The optimal performance, re-

gardless of whether the Gaussian is colored, is possible if the optimal weights rely

on the data or on the statistics that could be estimated directly from the data [33],

such as sample cumulants of order sixth. With these optimum weights, there is

a possibility to devise mixed FO-SO blind source separation algorithm, which is

expected to be more robust in unknown Gaussian noise.
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Appendix A

Proof that Cumulants of a

Gaussian distribution is zero

We prove that the cumulant of a Gaussian distribution is zero. Suppose x is a

random vector and is Gaussian distribution with mean m and covariance R, then

its pdf is given by

f(x) =
1

(2π)n/2|R|1/2
exp

{
−1

2
(x−m)TR−1(x−m)

}
(A.1)

If y is a random vector of length n, then its moment generating function is defined

as

My(λλλ) , E{exp(λλλTy)} (A.2)

and its cumulant generating function is defined as

Cy(λλλ) , lnMy(λλλ) (A.3)

where λλλ = [λ1, · · · , λn]T is a real-valued vector of size n. The kth order cumulant

of y is defined as

Cum(y) ,
∂kCy(λλλ)

∂λi1 · · · ∂λik

∣∣∣∣∣
λλλ=0

(A.4)

with i1, · · · , ik ∈ {1, · · · , n} and repetitive indices are allowed, e.g. i1 = · · · = ik.

Hence, to prove that the cumulant of a Gaussian distribution of order greater than

two is zero, one only need to show Eqn. (A.4) equals zero for n > 2. The moment
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generating function of a Gaussian vector x is derived as follows (by substitution

of Eqn. (A.1) into Eqn. (A.2))

Mx(λλλ) =

∫
exp(λλλTx)

1

(2π)n/2|R|1/2
exp{−1

2
(x−m)TR−1(x−m)}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
[(x−m)TR−1(x−m)− 2λλλTx]}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
[xTR−1x− 2mTR−1x + mTR−1m− 2λλλTx]}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
[xTR−1x− 2(mTR−1 + λλλT )x + mTR−1m]}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
[xTR−1x− 2(mT + λλλTR)R−1x + mTR−1m]}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
[(x− (m + Rλλλ))TR−1(x− (m + Rλλλ))

+mTR−1m− (m + Rλλλ)TR−1(m + Rλλλ)]}dx

=

∫
1

(2π)n/2|R|1/2
exp{−1

2
(x− (m + Rλλλ))TR−1(x− (m + Rλλλ))}dx

× exp(λλλTm + 0.5λλλTRλλλ)

= exp(λλλTm + 0.5λλλTRλλλ) (A.5)

Thus, the cumulant generating function is given by

Cx(λλλ) = λλλTm + 0.5λλλTRλλλ (A.6)

Since Eqn. (A.6) is a quadratic function of λλλ, then its third-order and higher-order

derivatives vanish. Q.E.D.



Appendix B

Derivation of Cramer-Rao Bound

for Array PPS Estimation

In this appendix, we derive Cramer-Rao bound (CRB) when estimating the param-

eters of wideband PPS signals impinged on ULA. We first introduce the notations

used in the derivation. We rearrange Eqn. (3.3) such that,

si(n) = Aie
jαig($$$i, n) (B.1)

where

g($$$i, n) , exp (j
K∑
k=1

ai,k(n∆)k) (B.2)

and $$$i , [ai,1, · · · , ai,K ]T . Define G($$$,n) , diag{g($$$1, n), · · · , g($$$L, n)} and

βββ , [A1e
jα1 , · · · , ALejαL ]T such that, the PPS impinged on ULA is given by

x(n) = A(θθθ,$$$, n)G($$$,n)βββ + v(n) (B.3)

where θθθ , [θ1, · · · , θL]T , $$$ , [$$$T
1 , · · · ,$$$T

L]T , and A(θθθ,$$$, t) is the same as∗ A(n)

in Eqn. (3.4). Since we have assumed that v(n) ∼ N (0, σ2
nI) (complex circularly

and white Gaussian distributed), then

x(n) ∼ N (A(θθθ,$$$, n)G($$$,n)βββ, σ2
nI) (B.4)

∗Here we explicitly denote its dependency on θθθ and $$$ for derivation purpose
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We group all the unknown parameters, including σ2
n which is not of our interest in

this estimation, as follows

ψψψ , [βββT‖ ,βββ
T
∠, θθθ

T ,$$$T , σ2
n]T (B.5)

where βββ‖ , |βββ| = [A1, · · · , AL]T and βββ∠ , ∠{βββ} = [α1, α2, · · · , αL]T

In order to get CRB, we need Fisher Information Matrix (FIM) because its inverse

is the CRB. The elements of the FIM, Fl,k, of a complex circularly Gaussian process

x(n) ∼ N (µµµ(n),R) are given by [24,44],

Fl,k = Ntr

(
R−1 R

∂ψψψl
R−1 R

∂ψψψk

)
+ 2<

(
N−1∑
n=0

∂µµµ(n)H

∂ψψψl
R−1∂µµµ(n)H

∂ψψψk

)
(B.6)

Applying above Eqn. (B.6) to our model in Eqn. (B.4), gives

Fl,k =
MN

σ4
n

∂σ2
n

∂ψψψl

∂σ2
n

∂ψψψk

+
2

σ2
n

<

(
N−1∑
n=0

∂{βββHG($$$,n)HA(θθθ,$$$, n)H}
∂ψψψl

∂{A(θθθ,$$$, n)G($$$,n)βββ}
∂ψψψk

) (B.7)

Below, we will derive the elements that is required to build each FIM sub-block.

First, we derive the expression related to the derivative with respect to βββ‖. Direct

computations yield,

∂{βββHG($$$,n)HA(θθθ,$$$, n)H}
∂βββ‖

= diag(e−jβββ∠)G($$$,n)HA(θθθ,$$$, n)H (B.8)

where e−jβββ∠ , [e−jα1 , e−jα2 , · · · , e−jαL ]T and, hence, diag(e−jβββ∠) is a diagonal

matrix containing elements of vector e−jβββ∠ on its diagonal.

Next expression related to the derivative with respect to βββ∠, also by straightfor-

ward computations, is given by

∂{βββHG($$$,n)HA(θθθ,$$$, n)H}
∂βββ∠

= −jBHG($$$,n)HA(θθθ,$$$, n)H (B.9)

where B , diag(βββ). Subsequent expression related to the derivative with respect
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to θl is given by

∂{βββHG($$$,n)HA(θθθ,$$$, n)H}
∂θl

= βββHG($$$,n)H
{
∂a(θl,$$$l, n)H

∂θl

}
(B.10)

= βββHG($$$,n)Hele
T
l

{
∂

∂θθθT
�A(θθθ,$$$, n)

}H
= βββHele

T
l G($$$,n)H

{
∂

∂θθθT
�A(θθθ,$$$, n)

}H
where� is Khatri-Rao column-wise Kronecker product and el is a vector containing

one in the lth position and zeros elsewhere. Note that,

∂

∂θθθT
�A(θθθ,$$$, n) =

[
∂a(θ1,$$$1, n)

∂θ1

, · · · , ∂a(θL,$$$L, n)

∂θL

]
(B.11)

where
∂a(θl,$$$l, n)

∂θl
= p(θl,$$$l, n)Ua(θl,$$$l, n) (B.12)

In Eqn. (B.12) above, we have used the following definitions

U ,
d

c
diag{0, 1, · · · ,M − 1} (B.13)

p(θl,$$$l, n) , j cos θl

(
K∑
k=1

kal,k(∆n)k−1

)
(B.14)

By stacking Eqn. (B.10) over different l’s and using Eqn. (B.13) and (B.14), yields

∂{βββHG($$$,n)HA(θθθ,$$$,n)H}
∂θθθ

=


βββHe1e

T
1 G($$$,n)H

{
∂
∂θθθT
�A(θθθ,$$$,n)

}H
...

βββHeLeTLG($$$,n)H
{

∂
∂θθθT
�A(θθθ,$$$,n)

}H


= BHG($$$,n)H
(

∂

∂θθθT
�A(θθθ,$$$,n)

)H
= BHP(θθθ,$$$,n)HG($$$,n)HA(θθθ,$$$,n)HUH (B.15)

where

P(θθθ,$$$,n) = diag{p(θ1,$$$1, n), · · · , p(θL,$$$L, n)} (B.16)

Before proceeding with the last expression related to the derivatives with respect
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to al,k, let us define the following notations:

ηηηk , [a1,k, a2,k, · · · , aL,k]T (B.17)

hk($$$l, n) ,
∂g($$$l, n)

∂al,k

= j(∆n)kg($$$l, n) (B.18)

g($$$,n) , [g($$$1, n), g($$$2, n), . . . , g($$$L, n)]T (B.19)

Hk($$$,n) ,
∂gT ($$$,n)

∂ηηηk
= diag{hk($$$1, n), hk($$$2, n), · · · , hk($$$L, n)}
= j(∆n)kG($$$,n) (B.20)

bk(θl,$$$l, n) ,
∂a(θl,$$$l, n)

∂al,k

= jk(∆n)k−1 sin θlUa(θl,$$$l, n) (B.21)

Bk(θθθ,$$$, n) , [bk(θ1,$$$1, n), · · · ,bk(θL,$$$L, n)]

= jk(∆n)k−1UA(θθθ,$$$, n)C (B.22)

C , diag{sin θ1, sin θ2 · · · , sin θL} (B.23)

Tk(n) , jk(∆n)k−1

(
∆n

k
1M1TL + ucT

)
(B.24)

u , diag{U} =
d

c
[0, 1, · · · ,M − 1]T (B.25)

c , diag{C} = [sin θ1, sin θ2 · · · , sin θL]T (B.26)

where 1M is a (M×1)-vector containing ones in all rows. Using above Eqns.(B.17)–

(B.26), we derive the following

∂{βββHG($$$,n)HA(θθθ,$$$,n)H}
∂al,k

=
∂{g($$$,n)HBHA(θθθ,$$$,n)H}

∂al,k

=
∂{g($$$,n)H}

∂al,k
BHA(θθθ,$$$,n)H

+g($$$,n)HBH ∂{A(θθθ,$$$,n)H}
∂al,k

= eTl Hk($$$,n)HBHA(θθθ,$$$,n)H

+g($$$,n)HBHele
T
l Bk(θθθ,$$$, n)H (B.27)
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By stacking Eqn. (B.27) over different l’s into vector form, we obtain

∂{βββHG($$$,n)HA(θθθ,$$$,n)H}
∂ηηηk

= Hk($$$,n)HBHA(θθθ,$$$,n)H

+G($$$,n)HBHBk(θθθ,$$$, n)H (B.28)

By using the relationship given in Eqn. (B.20) and (B.22), Eqn. (B.28) simplifies

to

∂{βββHG($$$,n)HA(θθθ,$$$,n)H}
∂ηηηk

= −j(∆n)kGk($$$,n)HBHA(θθθ,$$$,n)H (B.29)

−jk(∆n)k−1G($$$,n)HBHCHA(θθθ,$$$,n)HUH

By exploiting diagonal structure of C, U and B, as well as the definitions given in

Eqn. (B.25) and (B.26), we can rewrite

G($$$,n)HBHCHA(θθθ,$$$,n)HUH = (BHG($$$,n)HA(θθθ,$$$,n)H) ◦ (cuT ) (B.30)

where ◦ is Schur-Hadamard (element-wise) matrix product. Using Eqn. (B.30)

above, we obtain Eqn. (B.29) as follows,

∂{βββHG($$$,n)HA(θθθ,$$$,n)H}
∂ηηηk

= (BHG($$$,n)HA(θθθ,$$$,n)H) ◦Tk(n)H (B.31)

Now, we are ready to derive sub-blocks of FIM by using Eqn. (B.7), (B.8), (B.9),

(B.15), and (B.31), as follows:

Fσ2
nσ

2
n

=
NM

σ4
n

(B.32)

Fθθθσ2
n

= Fβββ‖σ2
n

= Fβββ∠σ2
n

= Fηηηkσ2
n

= 0 (B.33)

Fβββ‖βββ‖ =
2

σ2
n

<

{
N−1∑
n=0

diag(e−jβββ∠)Ã(θθθ,$$$, n)HÃ(θθθ,$$$, n)diag(ejβββ∠)

}
(B.34)

Fβββ‖βββ∠ =
2

σ2
n

<

{
j

N−1∑
n=0

diag(e−jβββ∠)Ã(θθθ,$$$, n)HÃ(θθθ,$$$, n)B

}
(B.35)

Fβββ‖θθθ =
2

σ2
n

<

{
j

N−1∑
n=0

diag(e−jβββ∠)Ã(θθθ,$$$,n)HU˜̃A(θθθ,$$$, n)B

}
(B.36)
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Fβββ‖ηηηk =
2

σ2
n

<

{
j

N−1∑
n=0

diag(e−jβββ∠)Ã(θθθ,$$$,n)H

·{Tk(n)◦(Ã(θθθ,$$$,n)B)}

}
(B.37)

Fβββ∠βββ∠ =
2

σ2
n

<

{
N−1∑
n=0

BHÃ(θθθ,$$$, n)HÃ(θθθ,$$$, n)B

}
(B.38)

Fβββ∠θθθ =
2

σ2
n

<

{
N−1∑
n=0

BHÃ(θθθ,$$$, n)HU˜̃A(θθθ,$$$, n)B

}
(B.39)

Fβββ∠ηηηk =
2

σ2
n

<

{
N−1∑
n=0

BHÃ(θθθ,$$$, n)H{Tk(n) ◦ (Ã(θθθ,$$$,n)B)}

}
(B.40)

Fθθθθθθ =
2

σ2
n

<

{
N−1∑
n=0

BH ˜̃A(θθθ,$$$, n)HUHU˜̃A(θθθ,$$$, n)B

}
(B.41)

Fθθθηηηk =
2

σ2
n

<

{
N−1∑
n=0

BH ˜̃A(θθθ,$$$, n)HUH{Tk(n) ◦ (Ã(θθθ,$$$,n)B)}

}
(B.42)

Fηηηmηηηk =
2

σ2
n

<

{
N−1∑
n=0

{BH(Ã(θθθ,$$$,n)H) ◦Tm(n)H}

·{Tk(n) ◦ (Ã(θθθ,$$$,n)B)}

}
(B.43)

where

Ã(θθθ,$$$, n) , A(θθθ,$$$, n)G($$$,n) (B.44)
˜̃A(θθθ,$$$, n) , Ã(θθθ,$$$,n)P(θθθ,$$$,n) (B.45)

With Eqn. (B.7) and Eqns.(B.32)–(B.43), the FIM possesses the following block

structure

F =

[
FFF 0

0T Fσ2
nσ

2
n

]
(B.46)
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where

FFF =



Fβββ‖βββ‖ Fβββ‖βββ∠ Fβββ‖θθθ Fβββ‖ηηη1 · · · Fβββ‖ηηηK

FT
βββ‖βββ∠

Fβββ∠βββ∠ Fβββ∠θθθ Fβββ∠ηηη1 · · · Fβββ∠ηηηK

FT
βββ‖θθθ

FT
βββ∠θθθ

Fθθθθθθ Fθθθηηη1 · · · FθθθηηηK

FT
βββ‖ηηη1

FT
βββ∠ηηη1

FT
θθθηηη1

Fηηη1ηηη1 · · · Fηηη1ηηηK

...
...

...
...

. . .
...

FT
βββ‖ηηηK

FT
βββ∠ηηηK

FT
θθθηηηK

FT
ηηη1ηηηK

· · · FηηηKηηηK


(B.47)

Finally, the CRB could be obtained as follows

CRB , F−1 =

[
FFF−1 0

0T 1
F
σ2
nσ

2
n

]
(B.48)

where the second equality came from the partitioned matrix inversion formula [44].
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Statistical Analysis for the

Estimates of PPS frequency

parameters in Array Setting

We analyze the asymptotic mean and variance of the estimated highest-order fre-

quency parameter, which is the estimated frequency rate in case of LFM. Following

that, we will analyze the asymptotic mean and variance of the estimated frequency

in LFM. The analysis in this appendix is assumed focused on the single source case.

The multicomponent or multiple sources case is too complicated to be analyzed.

However, we can still make inferences from the result of single component case.

C.1 Statistical Analysis of Estimated Highest-

order Frequency Parameters

Let us define

δa
(m)
i,K , âi,K,(m) − ai,K,(m) (C.1)

which is the error perturbation on the estimated highest-order (Kth order) fre-

quency parameter of source ith at sensor m (advert to Eqn. (3.3) for PPS signal

model). We will drop notation i from here on, since we consider only single compo-

nent. Under first-order perturbation analysis, we recall the explicit expression of

(C.2) from [18], which is for single sensor case and being adopted to multi-sensor

190
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case here∗, as follows

δaK,(m) ≈
12

K!τK−1L′(L′2 − 1)∆K

·=


N−1∑

n=(K−1)τ

((K − 1)τ + 0.5L′ − 0.5− n)η∗(m)(n)

 (C.2)

where L , N − (K − 1)τ ,

η(m)(n) ,
K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)(
[v{q}(n− qτ)]m

s{q}(n− qτ)[a{q}(θ, n− qτ)]m

)i− 1 (C.3)

and s(n) is the PPS given in Eqn. (3.3), a(θ, n) is the wideband steering array given

in Eqn. (3.4). We have also used the following notations: the even/odd-conjugation

notation is given as

s{q}(n) =

s(n) , q even

s∗(n) , q odd
(C.4)

and the binomial coefficient is given as
(
p
q

)
= p!

q!(p−q)! , as well as the mth element

of vector v(n) is [v(n)]m. Under high SNR, where SNR is defined as SNR ,

A2/σ2
n with A is the PPS amplitude as defined in Eqn. (3.3), Eqn. (C.3) could be

approximated as follows,

η(m)(n) ≈
K−1∑
q=0

(
K − 1

q

)
[v{q}(n− qτ)]m

s{q}(n− qτ)[a{q}(θ, n− qτ)]m
(C.5)

Hence, under high SNR assumption, E{η(m)(n)} = 0. Consequently, from Eqn.

(C.2), we have

E{δaK,(m)} = 0 for all m (C.6)

which means the estimate of the Kth order frequency parameter is asymptotically

unbiased. Similarly, by taking expectation of the squared Eqn. (C.2) and with Eqn.

(C.5) substituted in Eqn. (C.2), we could obtain the covariance of the perturbation

error as

E{δaK,(m)δaK,(l)} = δm,lE{(δaK,(m))
2} (C.7)

∗The notation (m) is appended here and it denotes the observation at the mth sensor.
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where

E{(δaK,(m))
2} ≈ 6

(K!)2τ 2K−2L′(L′2 − 1)∆2KSNR

(
2K − 2

K − 1

)
1(L− 1)

− 12

(K!)2τ 2K−2L′2(L′2 − 1)2∆2KSNR

K−1∑
k=1

(−1)k+1(L′ − kτ)

×(L′2−2L′kτ−2k2τ 2 −1)

(
2K−2

K−1− k

)
1(L′−kτ−1), (C.8)

δm,l is the Kronecker delta function (it equals to one if m = l, and zero otherwise)

and 1(n) is the discrete step function (it equals to one if n ≥ 0, and zero ,other-

wise). The derivation of Eqn. (C.8) is lengthy, hence, is not going to be reproduced

here, but the details can be found in [18]. Note that, because the noise is spatially

uncorrelated the E{η(m)(n)η(l)(n)} = 0 and E{η(m)(n)η∗(l)(n)} = 0. Consequently,

the covariance of the perturbation error is also spatially uncorrelated as denoted

by δm,l in Eqn. (C.7).

The asymptotic mean and variance (MSE) of the estimate derived above are under

the assumption SNR is high and for any values of τ . However, it has been studied

in [124] that the optimum value for τ , which produces smallest MSE of the estimate

in Eqn. (C.8), is τ ≈ N/K. With these optimum values of τ , the authors in [18]

have derived the MSE of the estimates without assuming high SNR.

Without assuming high SNR, the mean of Eqn. (C.3) is given by

E{η(m)(n)} = E


K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i
− 1

=
K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)
E

{(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i}− 1

= 1− 1 = 0 (C.9)

where the equality in the second line above is due to [v{q}(n−qτ)]m are statistically

independent for different q’s, and the equality in the third line is because for any

i, E{v{q}(n− qτ)]m} = 0 except for i = 0 takes a value of 1. Hence, Eqn. (C.2) is

also of zero mean and consequently the estimates of aK,(m) are unbiased.

Similarly, by using the fact that [v(n)]m and [v(l)]m are independent for n 6= l
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and the facts that E{([v(n)]m)i} = 0 and E{([v(n)]m)i([v∗(n)]m)i} = i!σ2i
n for all

i > 0, using the results from [18] gives

E{(δaK,(m))
2} ≈ − 36K2K+4

(K!)2N2K(N2 −K2)2∆2K

×
N−1∑

n=(K−1)τ

N−1∑
l=(K−1)τ

((K−1)τ + 0.5L′−0.5−n)

× ((K−1)τ + 0.5L′−0.5−l) (C.10)

×
(
E{η(m)(n)η(m)(l)} − 2E{η(m)(n)η∗(m)(l)}+ E{η∗(m)(n)η∗(m)(l)}

)
≈ − 36K2K+4

(K!)2N2K(N2 −K2)2∆2K

×
N−1∑

n=(K−1)τ

((K−1)τ + 0.5L′−0.5−n)
2

(C.11)

×
(
E{[η(m)(n)]2} − 2E{η(m)(n)η∗(m)(n)}+ E{[η∗(m)(n)]2}

)
We have that

E{[η(m)(n)]2} =

E


K−1∏

q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i− 1

2


= 0 (C.12)
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and

E{η(m)(n)η∗(m)(n)} =

E


K−1∏

q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i− 1


×

K−1∏
q=0

(K−1
q )∑

j=0

((K−1
q

)
j

)(
[v{q+1}(n−qτ)]m

s{q+1}(n−qτ)[a{q+1}(θ, n−qτ)]m

)j− 1




= E


K−1∏
q=0

(K−1
q )∑
i=0

(K−1
q )∑

j=0

((K−1
q

)
j

)((K−1
q

)
i

)(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i
(

[v{q+1}(n−qτ)]m
s{q+1}(n−qτ)[a{q+1}(θ, n−qτ)]m

)j}
− 1− 1 + 1

= KaK (K, SNR) (C.13)

where

KaK (K, SNR) ,
K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)2

E

{(
[v{q}(n−qτ)]m

s{q}(n−qτ)[a{q}(θ, n−qτ)]m

)i

×
(

[v{q+1}(n−qτ)]m
s{q+1}(n−qτ)[a{q+1}(θ, n−qτ)]m

)i}
− 1

=

K−1∏
q=0

(K−1
q )∑
i=0

((K−1
q

)
i

)2

i!

(
1

SNR

)i− 1 (C.14)

Hence, by assuming τ = N
K

and using summation of series equality given in Eqn.

(3.23), and Eqn. (C.14), we can obtain MSE estimate of the highest order frequency

parameter as follows,

E{(δaK,(m))
2} ≈ 6K2K+1

(K!)2N2K−1(N2 −K2)∆2K
KaK (K, SNR) (C.15)

Considering only the second order PPS as in Chapter 3, we will derive the bias

and MSE estimate of the frequency rate of the signal using the optimal value of

τ = N/2. Combining Eqns.(3.17) and (C.9) with K = 2, we obtain the bias of the
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estimate as follows,

E{δb} = b̂− b

=
1

M

M−1∑
m=0

E(νm + δνm)− b

=
1

M

M−1∑
m=0

E{δνm}

= E{δνm} = 0 (C.16)

where νm , a2,(m) and δνm , δa2,(m) are the frequency rate measured at sensor

m and its perturbation error, respectively. Hence, the estimate of b is unbiased.

Finally, by using Eqn. (C.15) with K = 2, the MSE of estimate of the frequency

rate of the signal is straightforwardly given by

E{(δb)2} = E


(

1

M

M−1∑
m=0

δνm

)2


=
1

M2

M−1∑
m=0

E{(δνm)2}

≈ 48

MN3(N2 − 4)∆4
Ka2(2, SNR)

≈
(

1 +
1

2SNR

)
96

MN3(N2 − 4)∆4

≈
(

1 +
1

2SNR

)
96

MN5∆4
(C.17)

C.2 Statistical Analysis of Estimated Initial Fre-

quency Parameters

Statistical performance analysis of the estimated initial frequency for second-order

discrete polynomial transform (DPT) algorithm in single sensor case has been

derived in [125]. Let us recall from [125] the error perturbation analysis on the

initial frequency estimate at the mth sensor, δωm , ω̂m−ωm, which is adopted for
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multi-sensors case, as follows

δωm =
12

∆A2N3
(={ϑm} − 8={χm}) (C.18)

where A is the amplitude of PPS as defined in Eqn. (3.3) with the subscript i,

which denotes ith source, dropped. Similarly, the subscripts i in the observed

initial frequency at sensor mth and its estimate, ωm and ω̂m, are also dropped (see

Definition 1 in Chapter 3 for the original definition). The other parameters, ϑm

and χm, are defined as follows,

ϑm ,
N∑
n=1

(n− N

2
)s∗(n)[v(n)]m (C.19)

χm , κ
N−τ∑
n=1

[
n− 1

2
(N − τ)

]
× (C.20)

(s∗(n+τ)[v(n)]m + s(n)[v∗(n+τ)]m + [v∗(n+τ)]m[v(n)]m) ej2a2(m)τ∆2n

where κ , eja1τ∆+a2τ2∆2
. The means and joint moments the last two parameters

are given as follows,

E{χm} = E{ϑm} = 0 (C.21)

E{χmχ∗l } ≈
1

96
(2A2 + σ2

n)σ2
nN

3δm,l (C.22)

E{ϑmϑ∗l } ≈
1

12
A2σ2

nN
3δm,l (C.23)

E{χ2
m} = E{ϑ2

m} = 0 (C.24)

E{χmϑ∗l } = E{χmϑl} ≈
1

96
A2σ2

nN
3δm,l (C.25)

where δm,l is being used again due to spatially uncorrelated noise assumption in

our problem. Thus, by Eqn. (C.21), the initial frequency estimate at sensor m, ω̂m,

is unbiased and the mean of the vectorized errors in initial frequencies estimation,

δωδωδω = [δω0, · · · , δωM−1]T , is given by

E{δωδωδω} = E{ω̂ωω} −ωωω = 0 (C.26)

where ωωω = [ω0, · · · , ωM−1]T .

The joint covariance of the perturbation error between two sensors could be ob-
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tained by substituting Eqns.(C.22)–(C.25) into Eqn. (C.18) as follows,

E{δωmδωn} = E{δω2
m}δm,n (C.27)

where the MSE of the initial frequency estimate at sensor mth is given by

E{δω2
m} = E

{[
6

∆A2N3
2(={ϑm} − 8={χm})

]2
}

≈ 36

∆2A4N6
E
{

[−j(ϑm − ϑ∗m) + j8(χm − χ∗m)]2
}

≈ 36

∆2A4N6
E
{
−(ϑm − ϑ∗m)2 − 8(χm − χ∗m)2 + 2(ϑm − ϑ∗m)8(χm − χ∗m)

}
≈ 36

∆2A4N6
[E {2ϑmϑ∗m}+ E {128χmχ

∗
m}]

≈
(

17

16
+

1

2SNR

)
96

SNR∆2N3
(C.28)

Hence, the covariance matrix of the perturbation error is given as,

E{δωδωδωδωδωδωT} ≈
(

17

16
+

1

2SNR

)
96

SNR∆2N3
I = Kω(N, SNR)I (C.29)

where Kω(N, SNR) ,
(

17
16

+ 1
2SNR

)
96

SNR∆2N3 .

Finally, given the perturbation error of the initial frequency at each sensor, we can

now derive the perturbation error of the initial frequency of signal ai. Looking at

Eqn. (3.29), the perturbation error of the initial frequency, ai, is given by the first

row of Â†δωiδωiδωi. To simplify notation, we drop the subscript i. Using the result in

Eqn. (C.28) and Eqn. (3.24), we get

Â†δωδωδω =
1

%

[
2
3
b̂2(M − 1)M(2M − 1) −b̂M(M − 1)

−b̂M(M − 1) M

][
1T

2b̂ζζζT

]
δωδωδω (C.30)

Thus, the perturbation error of the initial frequency of the signal is given by the
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first row of Eqn. (C.30) above as follows

δa =
1

%

[
2
3
b̂2(M − 1)M(2M − 1) −b̂M(M − 1)

] [ 1Tδωδωδω

2b̂ζζζTδωδωδω

]

=
3

b̂2M2(M2 − 1)

[
2

3
b̂2(M − 1)M(2M − 1)1Tδωδωδω − 2b̂2M(M − 1)ζζζTδωδωδω

]
=

3

M(M + 1)

[
2

3
(2M − 1)1Tδωδωδω − 2ζζζTδωδωδω

]
=

6

M(M + 1)

[
(2M − 1)

3

M−1∑
m=0

δωm −
M−1∑
m=0

mδωm

]
(C.31)

Subsequently, by the Eqn. (C.26), the bias of initial frequency estimate of the

source signal is given by

E{δa} =
6

M(M + 1)

[
(2M − 1)

3

M−1∑
m=0

E{δωm} −
M−1∑
m=0

mE{δωm}

]
= 0 (C.32)

Using Eqn. (C.29), the MSE of â is, therefore, given by

E{δa2} =
36

M2(M + 1)2
E


[
M−1∑
m=0

(
(2M − 1)

3
−m

)
δωm

]2


=
36

M2(M + 1)2

[
M−1∑
m=0

(
(2M − 1)

3
−m

)2

E
{
δω2

m

}]

≈ 36Kω(N, SNR)

M2(M + 1)2

M−1∑
m=0

(2M − 1)2

9
− 2m

(2M − 1)

3
+m2 (C.33)

By using summation of series equalities in Eqn. (3.23), we get

E{δa2} ≈ Kω(N, SNR)
2(2M − 1)

M(M + 1)

≈
(

17

16
+

1

2SNR

)
192(2M − 1)

SNRM(M + 1)∆2N3
(C.34)

In summary, the proposed estimation method in Chapter 3, which uses the second-

order DPT, gives unbiased estimates for frequency rate and initial frequency. Their

MSE are given by Eqns.(C.17) and (C.34), respectively.
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Statistical Analysis for DOA

Estimate of DPT-based

Algorithm

We analyze the asymptotic performance of the proposed algorithm presented in

Chapter 3 in estimating DOA. Firstly, since DOA estimation method in Eqn. (3.32)

is given by the maxima of a random function, we will review the perturbation anal-

ysis for maxima of random functions in general. Secondly, first-order perturbation

analysis of the non-parametric estimate of source k’s data is detailed. Finally,

based on perturbation analysis on the maxima of random functions, we derive the

perturbation analysis of the proposed DOA estimation in Chapter 3.

D.1 First Order Perturbation Analysis of Max-

ima of Random Functions

Let g(ψ) be a complex function of a real variable ψ, and

f(ψ) , |g(ψ)|2 = g(ψ)g∗(ψ). (D.1)

199
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Supposed that f(ψ) achieves global maximum at ψ = ψk. Let us denote the

random perturbation of g(ψ) as δg(ψ), which is relatively small, i.e.,

lim
N→∞

∣∣∣∣δg(ψ)

g(ψk)

∣∣∣∣ = 0 with probability 1, for all ψ (D.2)

Note that the dependency of the functions f(ψ), g(ψ) and δg(ψ) on the number

of samples N will not be explicitly expressed hereafter to simplify the notations.

Since ψk is a maximum point, we have

∂f(ψ)

∂ψ

∣∣∣∣
ψ=ψk

= 2<
{
g(ψk)

∂g(ψk)

∂ψ

}
= 0 (D.3)

If the random perturbation function δg(ψ) is added to g(ψ), then the global max-

ima’s point will shift accordingly, say to ψk + δψ. Hence,[
∂f(ψ)

∂ψ
+
∂δf(ψ)

∂ψ

]
ψ=ψk+δψ

= 0 (D.4)

The first-order perturbation δf(ψ) is given by

δf(ψ) ≈ g(ψ)δg∗(ψ) + g∗(ψ)δg(ψ)

= 2<{g(ψ)δg∗(ψ)} (D.5)

By applying first-order Taylor expansion of Eqn. (D.4) about ψk we get

∂f(ψk)

∂ψ
+
∂2f(ψk)

∂ψ2
δψ +

∂δf(ψk)

∂ψ
≈ 0 (D.6)

By rearranging Eqn. (D.6) and by substitution of Eqn. (D.3), we obtain the per-

turbation error of the parameter estimate,

δψ ≈ −
[
∂2f(ψk)

∂ψ2

]−1
∂δf(ψk)

∂ψ
(D.7)

where

∂2f(ψk)

∂ψ2
= 2<

{
g(ψk)

∂2g∗(ψk)

∂ψ2
+
∂g(ψk)

∂ψ

∂g∗(ψk)

∂ψ

}
(D.8)

∂δf(ψk)

∂ψ
= 2<

{
g(ψk)

∂δg∗(ψk)

∂ψ
+
∂g(ψk)

∂ψ
δg∗(ψk)

}
(D.9)
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Therefore, the bias and the mean square error of the estimate are given by

E{δψ} ≈ −
[
∂2f(ψk)

∂ψ2

]−1

E

{
∂δf(ψk)

∂ψ

}
(D.10)

and

E{(δψ)2} ≈ −
[
∂2f(ψk)

∂ψ2

]−2

E

{[
∂δf(ψk)

∂ψ

]2
}
, (D.11)

respectively.

D.2 First Order Perturbation Analysis of Non-

parametric Estimate of kth Source’s Data

In this section, we will first analyze the first-order perturbation analysis of x̂k(n),

the non-parametric estimate of the source k’s data, (see Eqn. (3.32)), which will

be used in the next section. Meanwhile, assuming there are only two sources, i.e.

source k and l, then the non-parametric estimate of the source l’s data obtained

by using Eqns.(3.33), (3.34) and (3.35) is summarized as follows,

[x̂l(n)]m = [xl(n)]m+[xk(n)]m+[v(n)]m−
1

N

∑
n′

{[x(n′)]m+[v(n′)]m}e−jϕ̃k(n′)ejϕ̃k(n)

(D.12)

where

ϕ̃l(n) = b̂l(∆n)2 + ω̂m,l∆n (D.13)

and b̂l and ω̂m,l are the estimated frequency rate of the source signal l and the

estimated initial frequency of source signal l for mth sensor, respectively (refer to

Definition 1 in Chapter 3). Note that, if we use the non-parametric estimate of

source l’s data to get the non-parametric estimate of source k, we will obtain the
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following,

[x̂k(n)]m = [xk(n)]m + [xl(n)]m + [v(n)]m −
1

N

∑
n′

[x̂l(n
′)]me

−jϕ̃l(n′)ejϕ̃l(n)

= [xk(n)]m + [xl(n)]m + [v(n)]m

− 1

N

∑
n′

{[xl(n′)]m + [xk(n
′)]m + [v(n′)]m}e−jϕ̃l(n

′)ejϕ̃l(n)

+
1

N2

∑
n′′

∑
n′

{[x(n′)]m + [v(n′)]m}e−jϕ̃k(n′)ejϕ̃k(n′′)e−jϕ̃l(n
′′)ejϕ̃l(n)

[x̂k(n)]m ≈ [xk(n)]m + [xl(n)]m + [v(n)]m −
1

N

∑
n′

[xl(n
′)]me

−jϕ̃l(n′)ejϕ̃l(n) (D.14)

The last approximation gives the estimated source l’s data, x̂l(n
′), is assumed to

be approximately equal to its source data. This assumption is reasonable for large

value of N . For large N , the following terms in the second equality

of Eqn. (D.14), i.e. 1
N2

∑
n′′,n′ [x(n′)]me

−jϕ̃k(n′)ejϕ̃k(n′′)e−jϕ̃l(n
′′)ejϕ̃l(n) and

1
N

∑
n′ [xk(n

′)]me
−jϕ̃l(n′)ejϕ̃l(n), diminish asymptotically. This is the result of apply-

ing the Absolute Convergence Test using the facts that the absolute

values of the terms inside these two sums, i.e.,
∣∣[xk(n′)]me−jϕ̃l(n′)∣∣ and∣∣[x(n′)]me

−jϕ̃k(n′)ejϕ̃k(n′′)e−jϕ̃l(n
′′)ejϕ̃l(n)

∣∣ are finite and the fact that 1
N
→ 0 and

1
N2 → 0 for large N .

By the Weak Law of Large Numbers, the following random variable terms in the

second equality of Eqn. (D.14) are given by,

1

N

∑
n′

[v(n′)]me
−jϕ̃l(n′)ejϕ̃l(n) p−→ 0 (D.15)

1

N2

∑
n′′,n′

[v(n′)]me
−jϕ̃k(n′)ejϕ̃k(n′′)e−jϕ̃l(n

′′)ejϕ̃l(n) p−→ 0 (D.16)

i.e., converge in law (probability) to zeros as N → ∞. By rearranging the Eqn.

(D.14), we obtain

[δxk(n)]m , [x̂k(n)]m−[xk(n)]m ≈ [xl(n)]m−
1

N

∑
n′

[xl(n
′)]me

−jϕ̃l(n′)ejϕ̃l(n)+[v(n)]m

(D.17)

If there are more than two sources, the equation above could be simply modified
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to

[δxk(n)]m ≈
L∑
l=1
l 6=k

{
[xl(n)]m −

1

N

∑
n′

[xl(n
′)]me

−jϕ̃l(n′)ejϕ̃l(n)

}
+ [v(n)]m (D.18)

where L is the number of sources.

Note that
∑

n′ [xl(n
′)]me

−jϕ̃l(n′) is intuitively estimate of Ale
jφm,l , mathematically

Âle
jφ̂m,l =

1

N

∑
n′

[xl(n
′)]me

−jϕ̃l(n′) (D.19)

because, e−jϕ̃l(n
′) removes the second order phase and first-order phase using the

estimates of frequency rate and initial frequency and 1
N

∑
n′ is just sample aver-

aging that is applied to complex variables that approximately contain only the

zeroth order phase. The bias of the estimates, Âl and φ̂m,l, are asymptotically

zeros (for derivation see [125]), mathematically

E{δAl} , E{Âl − Al} = 0 and E{δφm,l} , E{φ̂m,l − φm,l} = 0 (D.20)

Therefore, the first two terms on the right-hand side of Eqn. (D.18) give the es-

timation error between source l’s data, [xl(n)]m, and its estimate, Âle
jφ̂m,lejϕ̃l(n),

which is constructed by the estimated parameters, i.e., Âl, φ̂m,l, ω̂m,l and b̂l. Hence,

we can approximate these two terms with first-order perturbation analysis of esti-

mation error of source l’s data, as follows,

1

N

∑
n′

[xl(n
′)]me

−j{ϕ̃l(n′)+ϕ̃l(n)} − [xl(n)]m ≈(δAl
Al

+ j(δφ̂m,l + δbl(∆n)2 + δωl,m∆n)
)

[xl(n)]m (D.21)

where

E{ 1

N

∑
n′

[xl(n
′)]me

−j{ϕ̃l(n′)+ϕ̃l(n)} − [xl(n)]m} ≈ 0 N →∞ (D.22)

as a result of Eqns.(D.20), (C.32) and (C.16). Subsequently, we have unbiased

estimate of source k’s data

E{[δxk(n)]m} ≈ 0 (D.23)
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as a result of Eqn. (D.22) and E{[v(n)]m} = 0.

D.3 First Order Perturbation Analysis of DOA

Estimate

In the first section of this appendix, we have seen the first-order perturbation

analysis of maxima of random functions. Herein this section, we will apply it to

DOA estimate. Observing Eqn. (3.32), we identified that

g(ψ) =
1

N

N−1∑
n=0

M−1∑
m=0

[xk(n)]∗me
j{ψϕ′k(n)m+ϕk(n)} (D.24)

where ψ , d
c

sin θ, ϕ′k(n) , ak + 2bk∆n and ϕk(n) , ak∆n + bk(∆n)2. Hence, by

evaluating g(ψ) at ψ = ψk, we obtain the following

g(ψk) = MAke
−jαk (D.25)

because [xk(n)]∗me
j{ψkϕ′k(n)m+ϕk(n)} = Ake

−jαk . Subsequently, the first-order error

perturbation on g(ψ) is given as

δg(ψ) =
1

N

N−1∑
n=0

M−1∑
m=0

[δxk(n)]∗me
j{ψϕ′k(n)m+ϕk(n)} (D.26)

+[xk(n)]∗mj
[
(2ψ∆mn+ (∆n)2)δbk + (ψm+ ∆n)δak

]
ej{ψϕ

′
k(n)m+ϕk(n)}

and, for ψ = ψk, simplified to

δg(ψk) =
Ake

−jαk

N

N−1∑
n=0

M−1∑
m=0

[δxk(n)]∗m
[xk(n)]∗m

+j
[
(2ψ∆mn+ (∆n)2)δbk + (ψm+ ∆n)δak

]
(D.27)

The first-order partial derivative of g(ψ) with respect to ψ is given by

∂g(ψ)

∂ψ
=

1

N

N−1∑
n=0

M−1∑
m=0

[xk(n)]∗mjϕ
′
k(n)mej{ψϕ

′
k(n)m+ϕk(n)} (D.28)



Appendix D 205

By evaluating Eqn. (D.28) at ψ = ψk and using Eqn. (3.23), we obtain

∂g(ψk)

∂ψ
= jAke

−jαkM(M − 1)(ak + bk∆(N − 1)

2
(D.29)

Next, the second order partial derivative of g(ψ) with respect to ψ is given by

∂2g(ψ)

∂ψ2
= − 1

N

N−1∑
n=0

M−1∑
m=0

[xk(n)]∗m(ϕ′k(n))2m2ej{ψϕ
′
k(n)m+ϕk(n)} (D.30)

Again by evaluating it at ψ = ψk and using the series summation formulas in Eqn.

(3.23), we obtain

∂2g(ψk)

∂ψ2
= −Ake

−jαk(M−1)M(2M−1){3a2
k+6akbk∆(N−1)+2b2

k∆
2(N−1)(2N−1)}

18
(D.31)

Therefore, Eqn. (D.8) for DOA estimation is derived, by using Eqns.(D.25), (D.29),

(D.31) and (3.23), as follows

∂2f(ψk)

∂ψ2
=

A2
kM

2(M−1)

6

[
(7M−5)a2

k + 2(7M−5)akbk∆(N−1)

+
1

3
(25NM−17N−17M+13)(N−1)b2

k∆
2

]
(D.32)

which could be approximated by

∂2f(ψk)

∂ψ2
≈ A2

kM
2(M−1)

6

[
(7M−5)a2

k+2(7M−5)akbk∆N+
1

3
(25M−17)N2b2

k∆
2

]
(D.33)

for N �M , i.e. the number of samples is much greater than the number of sensors

(which is typically the case in practice). The partial derivative of the perturbation

error δg(ψ) with respect to ψ is given by

∂δg(ψ)

∂ψ
=

1

N

N−1∑
n=0

M−1∑
m=0

{
[δxk(n)]∗me

j{ψϕ′k(n)m+ϕk(n)}jϕ′k(n)m (D.34)

+jm[xk(n)]∗m
[
2∆nδbk+δak+jϕ′k(n)

[
(2ψ∆mn+(∆n)2)δbk+(ψm+∆n)δak

] ]
×ej{ψϕ′k(n)m+ϕk(n)}

}
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and for ψ = ψk it is simplified to

∂δg(ψk)

∂ψ
=
Ake

−jαk

N

N−1∑
n=0

M−1∑
m=0

{
[δxk(n)]∗m
[xk(n)]∗m

jϕ′k(n)m (D.35)

+jm(2∆nδbk+ δak)−mϕ′k(n)
[
(2ψ∆mn+(∆n)2)δbk+(ψm+∆n)δak

]}

Therefore, Eqn. (D.9) for DOA estimation is derived, by using Eqns.(D.25), (D.29),

(D.27), (D.35) and (3.23), and by assuming N �M ,

∂δf(ψk)

∂ψ
≈ A2

kM

N

N−1∑
n=0

M−1∑
m=0

[δxk(n)]∗m
[xk(n)]∗m

{
M−1

2
(ak+bk∆N)− (ak+2bk∆n)m

}
−Kaδak −Kbδbk (D.36)

where

Ka ,
A2
kM

2(M−1)

12

[
akψk(M+1) + bkψk∆N(M+1)− bk∆2N2

]
(D.37)

Kb ,
A2
kM

2(M−1)N∆

36

[
3akψk(M+1)+bkψk∆N(7M+1)−3bk∆

2N2

]
(D.38)

By Eqn. (C.32) and (C.16), the mean of Eqn. (D.36) is simplified to

E

{
∂δf(ψk)

∂ψ

}
≈ A2

kM

N

N−1∑
n=0

M−1∑
m=0

E{[δxk(n)]∗m}
[xk(n)]∗m

{
M−1

2
(ak+bk∆N)−(ak+2bk∆n)m

}
.

(D.39)

However, due to Eqn. (D.23),

E

{
∂δf(ψk)

∂ψ

}
= 0 (D.40)

Subsequently, the bias of the estimate of ψ is given by Eqn. (D.10) for large N , as

follows

E{δψ} ≈ −
[
∂2f(ψk)

∂ψ2

]−1

E

{
∂δf(ψk)

∂ψ

}
= 0 (D.41)

and hence ψ̂k is asymptotically unbiased. By Taylor expansion, we have δψ ≈
d
c

cos θkδθ, which implies that θ̂k is also asymptotically unbiased.

The analysis of the MSE of the estimate of ψ is not performed here because of the
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complexity in calculating the cross correlations between many error perturbation

parameters.



Appendix E

Joint Approximate

Diagonalization Algorithm

In this appendix we review the joint diagonalization algorithm [26] for 2×2 matrices

only. However, it can be easily extended to square matrices of any size in an

analogous way as Jacobi technique (see [70]). Suppose that we want to diagonalize

a set matrices Quw = {G(r), 1 ≤ r ≤ L′} with the entries,

G(r) =

[
ar br

cr dr

]
(E.1)

The objective of the joint diagonalization is to get unitary matrix V such that

G′(r) = VHG(r)V is as diagonal as possible. Mathematically, it is the same as

maximizing C, where

C ,
∑
r

|a′r|2 + |d′r|2
‡
=

1

2

∑
r

|a′r − d′r|2 (E.2)

where a′r, d
′
r are the diagonal elements of G′(r). Equality ‡ above is due to the

invariance of the trace of G′(r). The joint diagonalization uses complex Givens

rotation technique,

V =

[
cos θ −ejφ sin θ

e−jφ sin θ cos θ

]

208
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and hence C relates the new parameters to the old ones as follows,

a′r − d′r = (ar − dr) cos 2θ + (br + cr) sin 2θ cosφ+ j(cr − br) sin 2θ sinφ (E.3)

for r = 1, . . . , L′.

Let us define the following notations,

u , [a′1 − d′1, . . . , a′L′ − d′L′ ]T (E.4)

v , [cos 2θ, sin 2θ cosφ, sin 2θ sinφ]T (E.5)

gr , [ar − dr, br + cr, j(cr − br)]T (E.6)

GT , [g1, . . . ,gL′ ] (E.7)

With these definitions, we can rewrite Eqn. (E.3) as u = Gv. Therefore, the cost

function, C, in Eqn. (E.2) can be rewritten as follows

C = uHu = vTGHGv = vT<{GHG}v (E.8)

where the last equality of the Eqn. (E.8) is due to the fact that GHG is Hermi-

tian by construction, which means its imaginary part is antisymmetric, and hence

contributes nothing to the above quadratic form.

Finally, since ‖v‖ = 1, finding v that maximize Eqn. (E.8) is equivalent to solving

for eigenvector that corresponds to largest eigenvalue of <{GHG}. With this

optimum v , [v1, v2, v3]T , we can get the entries of V, without the need to find θ

and φ, as follows

cos θ =

√
1 + v1

2
(E.9)

e−jφ sin θ =
v2 − jv3

2 cos θ
=

v2 − jv3√
2(1 + v1)

(E.10)

To get Eqn. (E.9), one could use cos 2θ = 1 + 2 cos2 θ, and to get Eqn. (E.10) one

could use e−jφ = cosφ− j sinφ and sin 2θ = 2 sin θ cos θ.

The algorithm could be summarized as follows:

1. Construct <{GHG} by using Eqns.(E.6) and (E.7)

2. Find eigenvector, v = [v1, v2, v3]T , that corresponds to the largest eigenvalue
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of <{GHG}

3. Form V by its entries by using Eqns.(E.9) and (E.10).
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