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Summary 

Solid foams have certain properties that cannot be elicited from many 

homogeneous solids; these include a low stiffness, low thermal conductivity, high 

compressibility at a constant load and adjustability of strength, stiffness and density. 

These properties have made solid foams useful for various applications, such as 

cushioning, thermal insulation, impact absorption and in lightweight structures. The 

employment of solid foams for load-bearing applications has motivated studies into 

their mechanical properties and this has involved experiments as well as theoretical 

modelling. However, many aspects of foam behaviour still remain to be fully 

understood. 

This investigation is directed at identifying the mechanical properties of 

anisotropic rigid polyurethane foam and its response to tensile loading, as well as 

developing a simplified cell model that can describe its behaviour. The investigation 

encompasses experimental tests, visual observation of foam cells and their 

deformation and development of an idealized cell model. Three rigid polyurethane 

foams of different density are fabricated and subjected to tension in various directions. 

Quasi-static tensile tests are performed on an Instron® universal testing machine, 

while dynamic tension is applied using a split Hopkinson bar arrangement. The results 

show that the stiffness and tensile strength increase with density, but decrease with 

angle between the line of load application and the foam rise direction. Dynamic 

tensile test data indicates that for the rates of deformation imposed, the foam is not 

rate sensitive in terms of the stiffness and strength. 

Observations are made using micro-CT scanning and optical microscopy to 

examine the internal structure of the rigid polyurethane and its behaviour under 

compressive and tensile loads. Micro-CT images of cells in the foam indicate that the 
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cells exhibit a good degree of resemblance with an elongated tetrakaidecahedron. 

Images of the cell struts show that their cross-sections are similar to that of a Plateau 

border [1], while microscopic examination of rigid polyurethane foam samples under 

tensile and compressive loading shows that cell struts are both bent and axially 

deformed, with bending being the main deformation mechanism. The images also 

reveal that strut segments immediately adjoining the cell vertices do not flex during 

deformation because they have a larger cross-section there and are constrained by the 

greater thickness of the cell wall membrane in that vicinity. With regard to fracture, 

the images show that fracture in foam occurs by crack propagation through struts and 

membranes perpendicular to the direction of loading. 

Idealized foam cell models based on elongated rhombic dodecahedron and 

elongated tetrakaidecahedron cells are proposed and analysed to determine their load 

and deformation properties – elastic stiffness, Poisson’s ratio, and tensile strength. A 

parametric study carried out by varying the values of structural parameters indicates 

that: 

• The elastic stiffness and strength of foam are not influenced by cell size; they are 

governed by density, geometric anisotropy of the cells, shape of the cells and their 

struts, as well as the length of the rigid strut segments.  

• Foam strength and stiffness increase with density but decreases with angle 

between the loading and foam rise directions. 

• The anisotropic stiffness and strength ratios increase with greater anisotropy in 

cell geometry. 

• The Poisson’s ratios are primarily determined by the geometric anisotropy of the 

cells. 
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A comparison between the cell models with cells in actual foams indicates that the 

tetrakaidecahedron has a greater geometric resemblance with cells in actual foam 

compared to the rhombic dodecahedron. Moreover, good correlation between the 

tetrakaidecahedron cell model and actual foam in terms of elastic stiffness was 

observed. 

Finite element simulations are undertaken to examine the behaviour of foam 

based on the tetrakaidecahedron cell model for cases that were not amenable to 

analytical solution – i.e. tensile loading in various directions and nonlinearity in cell 

strut material properties. The simulations show that although thin membranes in 

foams do not have much effect on the stiffness, they affect the fracture properties by 

influencing the direction of crack propagation. A comparison between foam properties 

predicted by the model and those of actual foam shows that they correlate reasonably 

well in terms of stiffness and the anisotropy ratio for tensile strength. FEM 

simulations are also performed to examine the influence of variations in cell geometry 

on the mechanical properties. The results show that the variations incorporated do not 

have much effect on the overall stiffness, but decrease the predicted tensile strength. 

In essence, this study provides greater insight into the mechanical properties of 

rigid polyurethane foam and the mechanisms governing its deformation and failure. 

The proposed idealized cell models also constitute useful approaches to account for 

specific properties of foam. 



viii 

List of figures 

Fig. 2.1 (a) Close cell foam and (b) open cell foam ......................................................6 

Fig. 2.2 Stress-strain relationships for foams under compression .................................7 

Fig. 2.3  Stress-strain curves of foams under tension [2]...............................................9 

Fig. 2.4 Cubic cell model proposed by Gibson et al. [21], Triantafillou et al. [8], 

Gibson and Ashby [2, 20], Maiti et al. [31], Huber and Gibson [26] ..................17 

Fig. 2.5 Tetrakaidecahedral foam cell model...............................................................20 

Fig. 2.6 Voronoi tessellation cell model [34] ..............................................................21 

Fig. 2.7 Closed cell Gaussian random field model [34] ..............................................21 

Fig. 2.8 Comparison of yield surface based on several models for foam [49] ............22 

Fig. 3.1 Dog-bone shaped specimen ............................................................................26 

Fig. 3.2 Foam specimen attached to acrylic block.......................................................27 

Fig. 3.3 Typical stress-strain curve ..............................................................................27 

Fig. 3.4 Stiffness ..........................................................................................................28 

Fig. 3.5 Tensile strength...............................................................................................28 

Fig. 3.6 Strength and stiffness anisotropy ratio ...........................................................30 

Fig. 3.7 Split Hopkinson bar arrangement ...................................................................31 

Fig. 3.8 Typical stress-strain curve ..............................................................................31 

Fig. 3.9 Stiffness ..........................................................................................................32 

Fig. 3.10 Tensile strength.............................................................................................32 

Fig. 3.11 3-D images of cell structure..........................................................................34 

Fig. 3.12 Elongated tetrakaidecahedron cell model.....................................................35 

Fig. 3.13 Cross-sections of cell struts in rigid polyurethane foam (foam B; 

3mkg5.29=ρ ) ..................................................................................................36 



ix 

Fig. 3.14 Plateau border ...............................................................................................38 

Fig. 3.15 Size measurement .........................................................................................38 

Fig. 3.16 Foam specimen loaded using screw driven jig .............................................39 

Fig. 3.17 Micrographs of fracture propagation for tension along the foam rise 

direction ...............................................................................................................40 

Fig. 3.18 Micrographs of cell deformation for tension along the foam rise direction .41 

Fig. 3.19 Micrographs of fracture propagation for tension along the transverse 

direction ...............................................................................................................41 

Fig. 3.20 Micrographs of cell deformation for tension along the transverse direction42 

Fig. 3.21 Micrographs of fracture for tension along the 45o to the foam rise direction

..............................................................................................................................42 

Fig. 3.22 Micrographs of cell deformation for tension along the 45o to the foam rise 

direction ...............................................................................................................43 

Fig. 3.23 Micrographs of cell deformation for compression along the foam rise 

direction ...............................................................................................................44 

Fig. 3.24 Micrographs of cell deformation for compression along the transverse 

direction ...............................................................................................................45 

Fig. 3.25 Micrographs of cell deformation for compression in the 45o to the foam rise 

direction ...............................................................................................................45 

Fig. 3.26 Thick membrane at struts interconnection....................................................46 

Fig. 3.27 Measurements of rigid strut segments ..........................................................46 

Fig. 3.28 Compression specimen .................................................................................47 

Fig. 3.29 Tension specimen .........................................................................................48 

Fig. 3.30 Three point bending test ...............................................................................48 

Fig. 3.31 Compression stress-strain curve for Specimen 1..........................................49 



x 

Fig. 3.32 Compression stress-strain curve for Specimen 2..........................................49 

Fig. 3.33 Load-displacement curve for three-point bending test of Specimen 1 .........51 

Fig. 3.34 Load-displacement curve for three-point bending test of Specimen 2 .........51 

Fig. 3.35 Load-displacement curve for three-point bending test of Specimen 3 .........52 

Fig. 3.36 Three-point bending test and its finite element model .................................52 

Fig. 3.37 Stress-strain curves from tension tests..........................................................53 

Fig. 3.38 Determination of yield strength ....................................................................53 

Fig. 4.1 Elongated rhombic dodecahedron cell............................................................58 

Fig. 4.2 Elongated FCC structure made from rhombic dodecahedron cells ................58 

Fig. 4.3 Repeating unit for the analysis of an elongated rhombic dodecahedron cell 

loaded in the z-direction.......................................................................................59 

Fig. 4.4 Three-dimensional view of repeating unit in the analysis of an elongated 

rhombic dodecahedron cell loaded in the z-direction ..........................................60 

Fig. 4.5 Two-dimensional view of repeating unit in the analysis of an elongated 

rhombic dodecahedron cell loaded in the z-direction ..........................................60 

Fig. 4.6 Strut OC..........................................................................................................61 

Fig. 4.7 Deformation of strut OC in plane OBCD.......................................................61 

Fig. 4.8 Bending moment distribution along strut OC.................................................65 

Fig. 4.9 Repeating unit for the analysis of an elongated rhombic dodecahedron cell 

loaded in the y-direction.......................................................................................67 

Fig. 4.10  Three-dimensional view of repeating unit for analysis of an elongated 

rhombic dodecahedron cell loaded in y-direction ................................................67 

Fig. 4.11  Two-dimensional view of repeating unit for analysis of an elongated 

rhombic dodecahedron cell loaded in the y-direction ..........................................68 

Fig. 4.12 Strut OC........................................................................................................69 



xi 

Fig. 4.13 Deformation of strut OC in plane OGCH.....................................................69 

Fig. 4.14 Elongated tetrakaidecahedral cell .................................................................78 

Fig. 4.15 Elongated BCC structure made from tetrakaidecahedron cells....................79 

Fig. 4.16 Repeating unit for the analysis of an elongated tetrakaidecahedron cell 

loaded in the z-direction.......................................................................................80 

Fig. 4.17 Three-dimensional view of repeating unit in the analysis of an elongated 

tetrakaidecahedron cell loaded in the z-direction.................................................81 

Fig. 4.18 Two-dimensional view of repeating unit for the analysis of an elongated 

tetrakaidecahedron cell loaded in the z-direction.................................................81 

Fig. 4.19 Deformation of strut OB...............................................................................82 

Fig. 4.20 Repeating unit for the analysis of an elongated tetrakaidecahedron cell 

loaded in the y-direction.......................................................................................86 

Fig. 4.21 Three-dimensional view of repeating unit for the analysis of an elongated 

tetrakaidecahedron cell loaded in the y-direction ................................................87 

Fig. 4.22 Two-dimensional view of repeating unit used for the analysis of elongated 

tetrakaidecahedron cell loaded in the y-direction ................................................87 

Fig. 4.23 Deformation of strut OS ...............................................................................88 

Fig. 4.24 Deformation of strut OH...............................................................................90 

Fig. 4.25 Plateau border ...............................................................................................98 

Fig. 4.26 Elongated rhombic dodecahedron and tetrakaidecahedron cells..................99 

Fig. 4.27 Actual foam cell..........................................................................................100 

Fig. 4.28 Variation of foam stiffness with relative density based on an isotropic 

rhombic dodecahedron cell model .....................................................................103 

Fig. 4.29 Variation of foam stiffness with relative density based on an isotropic 

tetrakaidecahedron model ..................................................................................104 



xii 

Fig. 4.30 Variation of foam stiffness with relative density based on an anisotropic 

rhombic dodecahedron cell model .....................................................................106 

Fig. 4.31 Variation of foam stiffness with relative density based on an anisotropic 

tetrakaidecahedron cell model ...........................................................................106 

Fig. 4.32 Variation of foam stiffness with cell anisotropy based on a rhombic 

dodecahedron cell model ...................................................................................107 

Fig. 4.33 Variation of foam stiffness with cell anisotropy based on a 

tetrakaidecahedron cell model ...........................................................................107 

Fig. 4.34 Variation of anisotropy in foam stiffness with cell anisotropy based on a 

rhombic dodecahedron cell model .....................................................................108 

Fig. 4.35 Variation of anisotropy in foam stiffness with cell anisotropy based on a 

tetrakaidecahedron cell model ...........................................................................109 

Fig. 4.36 Variation of anisotropy in foam stiffness with relative density based on a 

rhombic dodecahedron cell model .....................................................................109 

Fig. 4.37 Variation of anisotropy in foam stiffness with relative density based on a 

tetrakaidecahedron cell model ...........................................................................110 

Fig. 4.38 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model ...................................................................................113 

Fig. 4.39 Variation of foam tensile strength with relative density based on a 

tetrakaidecahedron cell model ...........................................................................113 

Fig. 4.40 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model ...................................................................................115 

Fig. 4.41 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model ...................................................................................116 



xiii 

Fig. 4.42 Variation of foam tensile strength with cell anisotropy based on a rhombic 

dodecahedron cell model ...................................................................................117 

Fig. 4.43 Variation of foam tensile strength with cell anisotropy based on a 

tetrakaidecahedron cell model ...........................................................................117 

Fig. 4.44 Variation of foam anisotropy in tensile strength with cell anisotropy based 

on a rhombic dodecahedron cell model .............................................................118 

Fig. 4.45 Variation of foam anisotropy in tensile strength with cell anisotropy based 

on a tetrakaidecahedron cell model....................................................................119 

Fig. 4.46 Variation of foam tensile strength anisotropy with relative density based on 

a rhombic dodecahedron cell model ..................................................................119 

Fig. 4.47 Variation of foam tensile strength anisotropy with relative density based on 

a tetrakaidecahedron cell model.........................................................................120 

Fig. 4.48 Open celled cubic model (GAZT) loaded in the transverse direction........121 

Fig. 4.49 Variation of Poisson's ratios with cell geometric anisotropy ratio for a 

rhombic dodecahedron cell model .....................................................................125 

Fig. 4.50 Variation of Poisson's ratios with cell geometric anisotropy ratio for a 

tetrakaidecahedron cell model ...........................................................................125 

Fig. 4.51 Influence of cell anisotropy on ( )zxzy υυ = .................................................127 

Fig. 4.52 Influence of cell anisotropy on yxυ  and yzυ  for tetrakaidecahedron cells..128 

Fig. 4.53 Influence of cell anisotropy on yxυ  and yzυ  for rhombic dodecahedron cells

............................................................................................................................129 

Fig. 4.54 Influence of axial elongation and flexure of struts on Poisson's ratio ........131 

Fig. 4.55 Variation of Poisson's ratios with relative density for a rhombic 

dodecahedron cell model ( 2tan =θ ) ................................................................132 



xiv 

Fig. 4.56 Variation of Poisson's ratios with relative density for a tetrakaidecahedron 

cell model ( 2tan =θ )........................................................................................132 

Fig. 4.57 Stiffness of actual foam and that based on a rhombic dodecahedron cell 

model..................................................................................................................133 

Fig. 4.58 Stiffness of actual foam and that based on a tetrakaidecahedron cell model

............................................................................................................................134 

Fig. 4.59 Normalized stiffness of actual foam and that based on a rhombic 

dodecahedron cell model ...................................................................................134 

Fig. 4.60 Normalized stiffness of actual foam and that based on a tetrakaidecahedron 

cell model...........................................................................................................135 

Fig. 5.1 Elongated tetrakaidecahedron cells packed together in an elongated BCC 

lattice..................................................................................................................140 

Fig. 5.2 Elements a tetrakaidecahedral cell model.....................................................141 

Fig. 5.3 Star shape for beam cross section.................................................................142 

Fig. 5.4  Localised area of weakness in a finite element model ................................143 

Fig. 5.5 Loading condition in the finite element model.............................................143 

Fig. 5.6 Stress-strain curve for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 

2) ........................................................................................................................144 

Fig. 5.7 Crack pattern for tension in the cell elongation/rise direction......................144 

Fig. 5.8 Crack pattern for tension in the transverse direction....................................145 

Fig. 5.9 Cell model loaded in the transverse (y) direction .........................................149 

Fig. 5.10 Cell model loaded in the rise (z) direction..................................................150 

Fig. 5.11 Single cell loaded in the cell elongation (foam rise) direction ...................150 

Fig. 5.12 Single cell loaded in the transverse direction .............................................151 

Fig. 5.13 Struts in a tetrakaidecahedron cell..............................................................151 



xv 

Fig. 5.14 Crack propagation for loading in the 30o, 45o, 60o, and 82.5o directions ...152 

Fig. 5.15 Single cell loaded 30o to the cell elongation (foam rise) direction.............152 

Fig. 5.16 Single cell loaded 45o to the cell elongation (foam rise) direction.............152 

Fig. 5.17 Single cell loaded 60o to the cell elongation (foam rise) direction.............153 

Fig. 5.18 Single cell loaded 82.5o to the cell elongation (foam rise) direction..........153 

Fig. 5.19 FEM simulation results for foam A ( 3mkg3.23=ρ ; geometric anisotropy 

ratio = 2.5)..........................................................................................................156 

Fig. 5.20 FEM simulation results for foam B ( 3mkg5.29=ρ ; geometric anisotropy 

ratio = 2).............................................................................................................157 

Fig. 5.21 FEM simulation results for foam C ( 3mkg2.35=ρ ; geometric anisotropy 

ratio = 1.7)..........................................................................................................158 

Fig. 5.22 Stress-strain curves for foam A ( 3mkg3.23=ρ ; geometric anisotropy 

ratio = 2.5)..........................................................................................................159 

Fig. 5.23 Stress-strain curves for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio 

= 2) .....................................................................................................................159 

Fig. 5.24 Stress-strain curves for foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio 

= 1.7) ..................................................................................................................160 

Fig. 5.25 Stiffness of foam A ( 3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) .160 

Fig. 5.26 Stiffness of foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 2) ....161 

Fig. 5.27 Stiffness of foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) .161 

Fig. 5.28 Comparrison between stiffness predicted by FEM and analytical model ..162 

Fig. 5.29 Tensile strength for foam A ( 3mkg3.23=ρ ; geometric anisotropy ratio = 

2.5) .....................................................................................................................163 



xvi 

Fig. 5.30 Tensile strength for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 

2) ........................................................................................................................164 

Fig. 5.31 Tensile strength for foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio = 

1.7) .....................................................................................................................164 

Fig. 5.32 Normalized tensile strength for foam A ( 3mkg3.23=ρ ; geometric 

anisotropy ratio = 2.5)........................................................................................165 

Fig. 5.33 Normalized tensile strength for foam B ( 3mkg5.29=ρ ; geometric 

anisotropy ratio = 2)...........................................................................................165 

Fig. 5.34 Normalized tensile strength for foam C ( 3mkg2.35=ρ ; geometric 

anisotropy ratio = 1.7)........................................................................................166 

Fig. 5.35 Model with random variations in cell geometric anisotropy ratio..............168 

Fig. 5.36 Model with random variations in cell vertex location ................................169 

Fig. 5.37 Random cell model for loading in the rise and transverse directions.........170 

Fig. 5.38 Stress-strain curves for uniform  and random cell models for loading in the 

rise direction.......................................................................................................171 

Fig. 5.39 Stress-strain curves for uniform  and random cell models for loading in the 

transverse direction ............................................................................................171 

Fig. 5.40 Elastic stiffness of uniform and random cell models..................................172 

Fig. 5.41 Tensile strength of uniform and random cell models .................................172 

Fig. A.1 Split Hopkinson bar arrangement ................................................................188 

Fig. A.2  SPHB specimen with two reference points along the centre-line...............189 

Fig. A.3 Example of strain-time data and application of linear regression ...............189 

Fig. B.1 Stress-strain curves for loading in the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) ..........................................190 



xvii 

Fig. B.2 Stress-strain curves for loading 30o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) ..........................................190 

Fig. B.3 Stress-strain curves for loading 45o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) ..........................................191 

Fig. B.4 Stress-strain curves for loading 60o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) ..........................................191 

Fig. B.5 Stress-strain curves for loading in the transverse direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) ..........................................192 

Fig. B.6 Stress-strain curves for loading in the rise direction (foam B 3mkg5.29=ρ ; 

geometric anisotropy ratio = 2)..........................................................................192 

Fig. B.7 Stress-strain curves for loading 30o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................193 

Fig. B.8 Stress-strain curves for loading 45o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................193 

Fig. B.9 Stress-strain curves for loading 60o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................194 

Fig. B.10 Stress-strain curves for loading in transverse direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................194 

Fig. B.11 Stress-strain curves for loading in the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) ..........................................195 

Fig. B.12 Stress-strain curves for loading 30o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) ..........................................195 



xviii 

Fig. B.13 Stress-strain curves for loading 45o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) ..........................................196 

Fig. B.14 Stress-strain curves for loading 60o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) ..........................................196 

Fig. B.15 Stress-strain curves for loading in the transverse direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) ..........................................197 

Fig. B.16 Stress-strain curves for loading in the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................197 

Fig. B.17 Stress-strain curves for loading in the 45o direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................198 

Fig. B.18 Stress-strain curves for loading in transverse direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) .............................................198 

Fig. B.19 Cross-section of struts in rigid polyurethane foam A ( 3mkg3.23=ρ ; 

geometric anisotropy ratio = 2.5).......................................................................199 

Fig. B.20 Cross-section of struts in rigid polyurethane foam B ( 3mkg5.29=ρ ; 

geometric anisotropy ratio = 2)..........................................................................200 

Fig. B.21 Cross-section of struts in rigid polyurethane foam C ( 3mkg2.35=ρ ; 

geometric anisotropy ratio = 1.7).......................................................................201 

 



xix 

List of tables 

Table 3.1 Solid foam data ............................................................................................26 

Table 3.2 Average dimensions of rigid polyurethane foam struts ...............................37 

Table 3.3 Stiffness from compression tests .................................................................50 

Table 3.4 Stiffness and yield strength from three point bending tests.........................52 

Table 3.5 Mechanical properties from tensile tests......................................................54 

Table 5.1 Values of parameters in finite element cell models ...................................140 

Table B.1 Strut dimensions........................................................................................202 

Table B.2 Dimensions of rigid segments in struts in foam B ( 3mkg5.29=ρ ; 

geometric anisotropy ratio = 2)..........................................................................203 

 



xx 

List of symbols 

A  area of strut cross-section 

yA  area corresponding to load in the y-direction 

zA  area corresponding to load in the z-direction 

bA  area of bar cross-section 

sA  area of specimen cross-section 

1C  constant relating second moment of area to the area of the strut cross-section 

2C  constant relating distance from centroid to the extremities and the area of the 

strut cross-section 

3C  constant relating the length of the rigid strut segment to the distance from 

centroid to the extremities of the strut cross-section 

fC  constant relating the mechanical properties to the density of foam 
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Chapter 1 Introduction 

A cellular material is defined as “one which is made of an interconnected 

network of solid struts or plates which form edges and faces of cells” [2]. Cellular 

materials can be natural occurring as well as man-made. They have been used in many 

engineering applications, e.g., sandwich structures, kinetic energy absorbers, heat 

insulators, etc. Man-made cellular materials generally come in two forms – solid 

foams with some variations in cell geometry and structures with regular cells such as 

honeycombs. Solid foams are cellular materials with a three-dimensional structural 

arrangement, while honeycombs essentially posses a two-dimensional pattern. Solid 

foams made from metals or polymers have been used in structural applications and 

kinetic energy absorptions devices, whereby they are subject to static and dynamic 

loads. Hence, the mechanical behaviour of foams under different rates of loading, as 

well as their failure properties, must be considered in engineering designs that 

incorporate their usage. Although numerous investigations on foams have been 

performed, their mechanical behaviour, especially with regard to failure, is still not 

fully understood. This motivates continued research with regard to these aspects. 

1.1 Properties of solid foam and its applications 

Solid foams possess certain unique properties that are different from those of 

homogeneous solid materials. Some of these properties and how they facilitate 

application are: 

• Relatively low stiffness – Low stiffness foams made from elastic polymers are 

useful in cushioning applications such as bedding and seats. 
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• Low thermal conductivity – Non metallic foams are useful for thermal insulation, 

which are employed in applications ranging from lagging of industrial pipes to 

encapsulating frozen food. 

• High compressibility at a constant load – Foams can be compressed to a relatively 

high strain under an approximately constant load. This makes them very useful for 

impact absorption because they can dissipate significant kinetic energy while 

limiting the magnitude of the force transferred to more fragile components that 

they shield. Hence, they are used in the packaging of electronic products and in 

car bumpers. 

• Adjustable strength, stiffness and weight – The strength, stiffness and weight of 

foams depend on their density, which can be varied. Hence, the mechanical 

properties of foams can be controlled, making them attractive in structural 

application requiring particular strength or stiffness to weight ratios – e.g., 

composite structures used in aircraft. 

The use of foams in kinetic energy absorption and structural applications, 

whereby they are subjected to static and dynamic loading, motivates the need to study 

their mechanical properties. Various approaches have been employed and these are 

briefly discussed in the following section. 

1.2 Studies on mechanical behaviour 

The mechanical behaviour of foam has been studied and analysed using several 

approaches. These include experimentation, analysis based on simplified cell models 

and development of constitutive relationships. Experiments involving three-

dimensional mechanical tests have been performed by several researchers [3-10]. 

These yielded results in the form of empirical failure criteria of the foam. The failure 

criteria do not seem to agree with each other, and different researchers have defined 
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their failure criteria based on different types of stress. Experimental investigations 

have contributed significantly to understanding the mechanical behaviour of foam; 

however, they have not yielded much information on the micromechanics involved in 

the deformation and failure of foam material. 

A number of researchers [2, 8, 11-46] have proposed simplified cell models for 

foam. They used these to predict mechanical properties such as stiffness, Poisson’s 

ratio, failure criteria, etc. This approach is useful in describing some of the 

micromechanics involved in the deformation and failure of foam. However, most 

models involve some empirical constants that need to be determined from 

experiments and hence they do not give direct relationship between the properties of 

the cells – e.g. the overall foam density, the mechanical properties of the material the 

struts and membranes are made from, cell geometry and strut cross-section – with the 

overall mechanical properties of actual foam. Some of the models proposed are also 

not realistic because of several reasons – e.g. the models cannot fill space in three 

dimensions (i.e. they cannot be arranged to form large cell assemblies) and the cells 

do not resemble those in actual foams. Moreover, most of these cell models are 

isotropic and hence cannot be used to describe anisotropic foam behaviour, which 

often results from the manufacturing process. 

Constitutive models for foams have been developed and analysed by several 

researchers [3, 47-51]. Some of them have also been implemented in finite element 

codes such as ABAQUS and LS-DYNA. These models seem to differ from one 

another because they are developed based on different types of stress and strain – e.g. 

Miller [50] used the von Mises stress and mean stress with a hardening model defined 

by a function of the volumetric and plastic strains; Deshpande and Fleck [3] on the 

other hand, used their own definitions of equivalent stress and strain based on a von 
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Mises criterion combined with a volumetric energy criterion. Hanssen et al. [49], who 

have examined several constitutive models and compared them with experiments on 

aluminium foam, suggested that these models are inaccurate because they do not 

consider local and global fracture for shear and tension. 

1.3 Objectives 

The extensive use of foam in many engineering applications, especially for 

kinetic energy absorption and in advanced structures, has motivated the study of their 

mechanical behaviour. Although many such investigations have been undertaken, 

various aspects of the mechanical behaviour of foam have yet to be fully understood, 

especially with regard to its response and failure under tension. Researchers have 

proposed constitutive models based on experimental results, cell model analysis, or 

combinations of both. However, these models do not seem to agree with one another 

particularly with regard to the types of stress and strain used to define the constitutive 

relationship. Moreover, a study by Hansenn et al. [49] shows that some of the models 

which have been implemented in finite element packages cannot represent actual 

foam, mainly because the models do not include fracture criteria for tension and shear. 

Simplified cell models have also been proposed, analysed and compared with actual 

foam; however, they do not seem to be able to fully represent and explain the 

mechanical behaviour observed. Moreover, the simplified cell models have 

limitations, such as the dependence on empirical constants, lack of geometrical 

realism, and current applicability only to isotropic foam. 

Experimental studies and development of idealized cell models for solid foam 

have their particular distinctive advantages. Experimental studies provide good insight 

into the mechanical behaviour of foam but they are not able to explain the 

micromechanics behind its behaviour. On the other hand, idealized cell models are 
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able to explain the micromechanics. Thus, a study that combines both is expected to 

give a fuller insight into foam behaviour. 

Consequently, this study aims to provide an understanding of several aspects 

that appear to be lacking in information; these include: 

• the mechanical properties of rigid polyurethane foam under static and dynamic 

tension 

• microscopic features of the rigid polyurethane foam, such as the size and 

geometry of constituent cells and cell struts, as well as stiffness and tensile 

strength of the struts 

• micromechanics of the deformation and fracture of cells within foam subjected to 

tension, as revealed by microscopic observations 

• development of a simplified cell geometry that can model the behaviour of rigid 

polyurethane foam under tension and which directly relates the overall mechanical 

properties of rigid polyurethane foam with the mechanical behaviour of the 

constituent cells 

This study combines experimental testing, visual observation of cell 

deformation, and development of an idealized cell model. The information generated 

will help facilitate future development of constitutive models for foam. The focus 

includes an understanding of how rigid polyurethane responds to tension and the 

development of an idealized cell model. It is envisaged that the results of this study 

and the cell model proposed can be applied to investigation of other types of foam and 

loading. 

The following chapter provides an overview of the basic mechanical properties 

of foam, aspects that influence their behaviour and other studies that have been 

conducted on the properties of foam.  
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Chapter 2 Literature review 

2.1 Microstructure of polymer foam 

Solid foams comprise cells with solid material defining their edges, and 

membrane walls in some cases (see Fig. 2.1). Foams that have membrane cell walls 

are considered closed cell foams (see Fig. 2.1(a)) while foams that do not have such 

membrane are called open cell foams (see Fig. 2.1(b)). Due to its structure, closed cell 

foams can have liquid or gas trapped inside it cells while open cell foam does not. 

 
Fig. 2.1 (a) Close cell foam and (b) open cell foam 

Fig. 2.1 shows that the dimensions and shapes of cells in foams vary even 

within a small area. This is because it is not possible to control the foaming process to 

produce uniform cells. Thermosetting polymeric foams are made by introducing a 

gassing agent to a mixture of polymer resin and hardener. This results in foaming 

process whereby the mixture expands and rises as the result of cell/bubble formation. 

This process produces foam cells that are elongated in the foam rise direction. Other 

processing parameters such as gravity [49] can also causes cells that have larger or 

smaller dimensions in certain directions. Cells with larger or smaller dimensions in 

one direction give rise to anisotropy in foam properties, such as a higher stiffness and 

strength in the direction of elongation.  

a b
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2.2 Basic mechanical properties of solid foam 

2.2.1 Compression 

The mechanical behaviour of solid foam under compressive loading is probably 

the primary property that distinguishes it from non-cellular solids. Typical stress-

strain curves for solid foams made from three different kinds of solid material – 

elastomeric foam, elastic-plastic foam and elastic-brittle foam – are shown in Fig. 2.2. 

They all have similar characteristics i.e. linear elasticity at low stresses, followed by 

an extended plateau terminating in a regime of densification, whereby the stress rises 

steeply. These characteristics are different from those of common solid materials such 

as metals, which normally do not have an extended stress-strain plateau under 

compression. 

a. elastomeric foam

ε

σ

b. elastic-plastic foam

ε

σ

c. elastic-brittle foam

ε

σ

 
Fig. 2.2 Stress-strain relationships for foams under compression 

 
 In all the three types of solid foam, initial linear elasticity arises primarily 

from the bending of cell struts, and in closed cell foams, stretching of the membranes 

in the cell walls and changes in fluid pressure inside the cells [2]. On the other hand, 

densification

plateau

linear elastic 
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the mechanisms corresponding to the stress-strain plateau are different for the three 

types of foam – elastic buckling for elastomeric foams, formation of plastic hinges in 

elastic-plastic foams and brittle crushing in elastic-brittle foams [2]. 

The long plateau in the compressive stress-strain curve endows foams with a 

very high compressibility and enables them to exert a relatively constant stress up to a 

very high strain. These two characteristics make foam an ideal material for cushioning 

purposes because the low and constant stress contribute to comfort and for crash 

protection (e.g. in helmets), because the foam is able to absorb kinetic energy while 

limiting the stress transmitted to relatively low levels. 

2.2.2 Tension 

Typical stress-strain curves for three kinds of solid foam, i.e. elastomeric foam, 

elastic-plastic foam and elastic-brittle foam are shown in Fig. 2.3. At low strains, all 

the foams exhibit linear elasticity, similar to their compressive behaviour [2]. On the 

other hand, at higher strains, different deformation mechanisms occur in the three 

types of foam, causing differences in the shapes of their stress-strain curves. An 

increase in the modulus is experienced by elastomeric foams because of cell 

struts/wall re-alignment, whereby the deformation mechanism changes from bending 

to tension in cell struts. On the other hand, plastic yielding occurs in elastic-plastic 

foams, creating a short plateau in the stress-strain curve followed by a rapid increase 

of stress due to cell wall re-alignment.  For brittle foams, their stress strain curves do 

not show any non-linearity, as brittle fracture occurs immediately at the end of the 

linear elasticity. [2] 
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a. elastomeric foam

ε

σ b. elastic-plastic foam

ε

σ

 

c. elastic-brittle foam

ε

σ

 
Fig. 2.3  Stress-strain curves of foams under tension [2] 

 
Note that these behaviours typical of foams are not all-encompassing, since each 

foam has its own distinctive characteristics. Banhart and Baumeister [52] asserted that 

the linear portion is not really elastic, as some of the deformation is irreversible. The 

tensile stress-strain curve obtained by Motz and Pippan [53] for a closed-cell 

aluminium foam (an elastic-plastic foam) shows no rapid increase of stress after 

plastic collapse, which is expected according to Fig. 2.3. Instead, fracture occurs after 

plastic yielding resulting in a stress-strain curve which is similar to that for solid 

aluminium. 

2.3 Factors influencing mechanical properties of solid foam 

The mechanical properties of solid foams are influenced by several factors – the 

mechanical properties of the solid material defining the cell edges (struts) and walls 

(membranes), cell structure and properties of fluid inside the cells.  
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• Mechanical properties of the solid material – The mechanical properties of solid 

foams, such as stiffness, strength and viscoelasticity, depend largely on the 

mechanical properties of the solid material in the cell edges and walls – e.g. the 

stiffer and stronger the cell strut and wall material, the stiffer and the stronger the 

solid foam. 

• Cells structure of the foam – The mechanical properties of solid foam depend not 

only on the mechanical properties of the solid material in the cell edges and walls, 

but also on cell structure. This is because how the cell struts and walls deform 

determines the overall mechanical behaviour of foam. When solid foams are 

loaded by compression/tension, the struts at the cell edges deform, and they 

undergo bending and tension/compression. Their compliance in bending is much 

higher than that in tension/compression; and hence, bending is the primary 

deformation mechanism [2] and consequently, stiffness of solid foam is strongly  

influenced by the bending of cell edges. As highlighted in Section 2.1, cells in 

many foams are usually geometrically anisotropic, with a larger dimension in one 

direction. Consequently, this causes anisotropy in the mechanical properties of 

foam. Usually, the foam is stiffer and stronger in the direction of cell elongation. 

Poisson’s ratio is another mechanical property of solid foam that depends on cell 

structure, with values ranging from -0.5 to a large positive values [2].  

• Fluid inside the foam cells – As mentioned in Section 2.1, solid foam can be 

classified into two types – closed celled and open celled. Due to the difference in 

their microstructure, these two types of foam behave differently when loaded. 

Closed cell foams have fluid trapped inside their cells and hence their mechanical 

properties are influenced by the properties of the fluid contained – e.g. a fluid with 

low compressibility can stiffen the foam. On the other hand, fluids can flow freely 
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through open cell foams, but, this does not mean that the fluid does not affect its 

mechanical properties. At high strain rates, the viscosity of the fluid flowing 

through the cells when foam is loaded can increase its stiffness, thus, introducing 

strain rate sensitivity. 

2.4 Studies on mechanical properties of solid foam 

The extensive use of foams in engineering applications, especially in kinetic 

energy absorption and composite structures, has motivated investigations into their 

mechanical behaviour. Different approaches have been used – experimentation, 

development of simplified cell models and formulation of continuum constitutive 

relationships for numerical modelling; some of these are now discussed 

2.4.1 Experimental studies 

Researchers, such as Zaslawsky [9], McIntyre and Anderton [7], Zhang et al. 

[10], Triantafillou et al. [8], Doyoyo and Wierzbicki [5], Deshpande and Fleck [3, 4] 

and Gdoutos et al. [6], have performed experiments on solid foam. These include 

uniaxial tension and compression, shear, and multiaxial loading, with most of these 

efforts are aimed at obtaining empirical failure criteria. Zaslawsky [9] carried out tests 

on thin walled tubes of rigid polyurethane foam to simulate multiaxial loading by 

imposing internal pressure together with axial tension or compression. These tests 

yielded an empirical failure criterion in form of a rectangular envelope with respect to 

axes defined by the two principal stresses, suggesting that the foam follows a 

maximum principal stress failure criterion. As with Zaslawsky [9], Zhang et al. [10, 

54] also tested several polymeric foams. Their experiments included uniaxial 

compression, shear, and hydrostatic compression to establish a failure criterion and a 

constitutive model. Unlike the failure criterion by Zaslawsky [9] which is only 
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defined by the maximum principal stress, the failure criterion by Zhang et al. [10, 54] 

is quantified by the effective stress and hydrostatic pressure. 

Triantafillou et al. [8]  studied polymeric foams and determined a failure 

envelope based on the von Mises effective stress and mean stress. This failure 

envelope was then compared with analytical failure criteria derived from a cubic open 

cell model developed by Gibson et al. [21].  Triantafillou et al. [8] suggested that their 

model is able to describe yield in open cell polyurethane and closed cell polyethylene 

foams quite well, showing that the principal stress criterion proposed by Zaslawsky 

[9] is inadequate. Unlike Zaslawsky [9], Zhang et al. [10, 54] and Triantafillou et al. 

[8] who studied polymeric foam, Doyoyo and Wierzbicki [5] examined metallic foam 

and performed biaxial tests on isotropic Alporas® and anisotropic Hydro® closed cell 

aluminium foams. From these tests, they also proposed a failure criterion based on 

mean stress and von Mises effective stress. As with Zaslawsky [9], Zhang et al. [10, 

54] and Doyoyo and Wierzbicki [5], Gdoutos et al. [6] also studied the mechanical 

behaviour of foam in order to propose failure criteria. They performed uniaxial 

tension, compression, shear and biaxial loading tests on Divinycell™ foam and found 

that failure could be described by the Tsai-Wu failure criterion [55] which is 

expressed as a second-order polynomial equation with principal stresses as the 

parameters. Again, this failure criterion differs from those described earlier, as it is 

defined using different stresses. Deshpande and Fleck [3, 4] performed multiaxial 

mechanical tests on PVC and aluminium foams, and compared their results with a 

phenomenological yield surface they proposed [3]. Their criterion also uses the von 

Mises-mean stress plane, similar to the failure criterion proposed by Gibson et al. 

[21], Triantafillou et al. [8] and Doyoyo and Wierzbicki [5]. 
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The studies discussed so far have concentrated on obtaining empirical failure 

criterion. McIntyre and Anderton [7] and McCullough et al. [56]  chose to use another 

approach, employing fracture mechanics and carried out fracture toughness tests on 

rigid polyurethane foams. They concluded that fracture in the foams they studied 

could be characterized by GIc, KIc and a crack opening displacement criterion. 

Although the foam used in their tests was anisotropic, they neglected this factor in 

their study. McCullough et al. [56], investigated aluminium foam and performed 

fracture toughness tests to get J-integral curve. They found that crack propagation in 

foams is interrupted by crack bridging by cell edges. This differentiates crack 

propagation in foams from that in solid material. Their approach of using fracture 

mechanics to analyse the properties of foam seems to be somewhat peculiar because 

fracture mechanics is a continuum-based approach while foam is not really a 

continuum material. 

The experimental studies discussed have focused mainly on finding appropriate 

failure criteria. Some of these criteria have also been developed into a constitutive 

model and this is discussed later. It is noted that researchers have proposed failure 

criteria that differ one another because different types of stress are used.  Although 

these studies have provided insights into the mechanical behaviour of foams, they 

have not yielded information on the micromechanics governing foam behaviour. An 

understanding of the underlying micromechanics is important in explaining the 

response of foam, thus leading to improved failure criteria and constitutive models.  

Hence, some researchers have also tried to describe the micromechanics governing 

foam deformation by analyzing idealized cell models. Some of these studies are now 

discussed. 
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2.4.2 Cell models 

Cell models for solid foams have been proposed and analysed both analytically 

and numerically to find generic relationships between the overall mechanical 

properties of solid foam and its microstructural characteristics, such as cell shape and 

size, density and the mechanical properties of the solid defining cell struts and walls. 

This approach is also useful for relating the overall deformation of solid foam to the 

tension, bending and torsion experienced by cell struts and walls and describing how 

failure is governed by buckling, plastic deformation and fracture in cells. 

Early cell models for foam by Gent and Thomas [18, 19], Lederman [29], 

Cunningham [15], Christensen [14] and Kanakkanatt [27] suggest that elastic 

deformation of foam is caused mainly by the stretching of cell struts/walls which 

leads to a linear dependence of stiffness on foam density. However, later 

developments by Ko [28], Gibson et al. [21], Triantafillou et al. [8], Gibson and 

Ashby [2, 20], Huber and Gibson [26], Maiti et al. [31] and Zhu et al. [40, 41] have 

shown that bending of cell struts/walls plays a major role in foam deformation. This 

results in a quadratic dependence of foam stiffness on density, which bears better 

correlation with actual foam. 

Gent and Thomas [18] and Lederman [29] considered models in which struts 

with random orientations are interconnected via spheres; similarly, Cunningham [15] 

and Christensen [14] have also examined interconnected struts with random 

orientations. Gent and Thomas [18], Lederman [29], Cunningham [15], and 

Christensen [14] analysed these structures by determining the average stiffness of the 

struts that are randomly oriented. They took the stretching of struts to be the main 

mechanism governing foam deformation, while other modes of struts deformation – 

bending and torsion – were not considered. This led to a (nearly) linear relationship 
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between stiffness and density which is found to be unsatisfactory for actual foam, 

especially open cell foams and closed cell foams with thin cell walls.  

Gent and Thomas [19] have proposed a simple cubic structure which 

Kanakkanatt [27] further developed to include geometric anisotropy. As with Gent 

and Thomas [18], Lederman [29] Cunningham [15] and Christensen [14], Gent and 

Thomas [19] and Kanakkannat [27] considered the stretching of cell struts as the main 

deformation mechanism in foam. Thus, they also found a linear relationship between 

stiffness and foam density. Kanakkannat [27] concluded that his model differs from 

experimental results on actual foams because it neglected bending of struts. 

Warren and Kraynik [22] and Wang and Cuitino [38] analysed struts in a 

prescribed intersection pattern to represent foam. Warren and Kraynik [22] considered 

a tetrahedral arrangement of four struts intersecting at one point as the basic repeating 

unit. They considered stretching and bending of struts as well as random orientation 

of the tetrahedral units to model the variation of cells in actual foam. Their model 

could be arranged to fill space in three dimensions but lacked geometrical similarity 

with actual foam. This model was extended by Sahraoui [36] to account for 

anisotropy. Wang and Cuitino [38] derived equations for any number of struts 

originating from one point in their model and considered the stretching and bending of 

struts in their models. These models are semi isotropic with equal strut lengths and 

hence, cannot be used for anisotropic foams. They also lack geometric similarity with 

cells in actual foams. 

The development of cell models also includes employing simplified repeating 

cell units and researchers have utilized such models to identify the main mechanisms 

governing foam deformation and failure, and devise equations to describe the 

mechanical properties of foams. A simplified cell model based on open cubic cells 
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have been proposed by Gibson et al. [21], Triantafillou et al. [8], Gibson and Ashby 

[2, 20], Maiti et al. [31] and Huber and Gibson [26] to describe the mechanical 

behaviour of foam (see Fig. 2.4). From these cell models, they suggested that the main 

mechanism for foam deformation is the bending of cell struts and walls. Other 

deformation mechanisms, such as cell wall stretching and compression of fluid inside 

cells, have also been incorporated into their models. They also developed a yield 

surface/failure model based on three distinctive mechanisms that can initiate 

nonlinearity in the stress-strain curve for foam, i.e. elastic buckling, plastic yielding 

and brittle crushing or fracture. They proposed constitutive models for anisotropic 

foams based on elongated versions of these cell models. Most of the constitutive 

models proposed for open or closed cell foams with thin cell walls were able to relate 

the properties of actual foam to the properties of the solid material and relative density 

of the foams via power law relationship of the form 

n
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(2.1) 
where fP , sP , fρ  and sρ  are respectively property of the foam, property of the solid 

defining the cells, foam density and density of the strut materials; fC  is a constant 

defined empirically from experiments, while n is a constant derived analytically. This 

model has been further extended by Andrews et al. [11] to analyse creep in foam. 

Although this cell model manages to describe the mechanical behaviour of foam, it 

does not provide a direct explanation for the value of the constant fC  for each 

mechanical property. The cell model is also not realistic because it cannot be 

assembled in three dimensions, i.e. this model cannot be arranged to fill space. 
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Fig. 2.4 Cubic cell model proposed by Gibson et al. [21], Triantafillou et al. [8], 

Gibson and Ashby [2, 20], Maiti et al. [31], Huber and Gibson [26] 

Researchers have also made use of polyhedra to model cells in foam. Ko [28] 

considered a trapezo rhombic dodecahedron – a polyhedron with six equilateral 

trapezoids and six congruent rhombic faces arranged in a hexagonal closest packing 

arrangement, as well as a rhombic dodecahedron – a polyhedron with twelve rhombic 

faces arranged in a face-centred cubic packing arrangement. Ko [28] and Dawson and 

Shortall [57] suggested that actual rigid polyurethane foam cells are mostly 

pentagonal dodecahedra, i.e. polyhedra with twelve pentagonal faces each. However, 

pentagonal dodecahedra cannot be assembled in three-dimensions to fill space.  

Tetrakaidecahedra – a polyhedron with 14 faces – as shown in Fig. 2.5, have attracted 

many researchers such as Dement’ev and Tarakanov [16, 17], Zhu et al. [40], Warren 

and Kraynik [39], Choi and Lakes [13], Simone and Gibson [37], Grenestedt [24], 

Grenestedt and Tanaka [23], and Ridha et al. [44-46]. They have utilized this to model 

open and closed cell foam. This cell model can be arranged to fill space in a body-

centred cubic arrangement. Patel and Finnie [33] asserted that in actual foam, five 

sided faces are found in abundance, while four and six sided faces are also found in a 

considerable quantities. This suggests that pentagonal dodecahedra and 

tetrakaidecahedra are similar to cells in actual foam.   
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Menges and Knipschild [30] carried out a theoretical analysis of the stiffness 

and strength of foam based on the pentagonal dodecahedron model. They consider 

bending and axial deformation of struts as the deformation mechanisms. Compressive 

strength was derived based on the buckling load, while the tensile strength was 

derived from the axial loading of struts. Their assumption of using only axial loading 

on struts as the main failure criterion for tensile loading seems to contradict with their 

assumption of employing both axial loading and bending as the main deformation 

mechanisms. This is because the bending of beams/struts usually initiates fracture 

earlier than axial loading. As with Menges and Knipschild [30], Chan and Nakamura 

[12] have also used pentagonal dodecahedra for their foam model. They used it to 

model the stiffness and yield strength of open and closed cell foam under compressive 

loading. The bending of cell struts and walls was considered the primary deformation 

mechanism while buckling was associated with yield. Both Menges and Knipschild 

[30] and Chan and Nakamura [12] only studied isotropic foam using their model. 

Zhu et al. [40], Warren and Kraynik [39] and Choi and Lakes [13] used a 

tetrakaidecahedral geometry to model an open cell foam. Zhu et al. [40] asserted that 

a tetrakaidecahedron is the only polyhedron that can be assembled  with identical 

units to fill space, and it nearly satisfies the minimum surface energy criterion. 

Warren and Kraynik [39] also concurred with this. They stated that “it is the only 

polyhedral bubble known that fills space to form dry soap foam (one that contains 

very little liquid) with perfect order”, and also suggested that other polyhedra can fill 

space but do not satisfy the energy conditions stated in Plateau’s law [1]. Both Zhu et 

al. [40] and Warren and Kraynik [39] obtained analytical expressions for the 

mechanical properties, i.e. Young’s modulus, shear modulus, bulk modulus and 

Poisson’s ratio, based on small deformation of this cell. Their model shows that for 
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low density foams, bending is the main deformation mechanism in the foam. The 

stiffness of this model can also be approximated using Eq. (2.1) with values of fC  

and n approaching 1 and 2 when the cross section of the cell struts corresponds to a 

Plateau border [1], which is defined by three circular arc that touch each other. This is 

consistent with the semi empirical equation proposed by Gibson et al. [21], 

Triantafillou et al. [8], Gibson and Ashby [2, 20], Maiti et al. [31], Huber and Gibson 

[26].  Zhu et al. [40] concluded that the mechanical properties of this model are 

approximately isotropic. The model has also been used to analyse large deformation 

[41] and creep behaviour [58] and appears more realistic than the cubic cell model [2, 

8, 20, 21, 26, 31]  because the cells can be arranged to fill space. However, due to its 

geometric isotropy, this model can only be applied to isotropic foam. 

Mills and Zhu [32], Simone and Gibson [37], Grenestedt [24], and Grenestedt 

and Tanaka [23] used a tetrakaidecahedron cell model for closed-cell foams. Mills and 

Zhu [32] derived equations that describe the mechanical properties of foam for high 

compressive strains. Simone and Gibson [37] performed numerical simulations using 

this model in order to see the influence of material distribution in metallic foams. 

Grenestedt [24] employed FEM simulation to obtain elastic properties based on this 

model, while the finite element analysis of Grenestedt and Tanaka  [23] was directed 

at examining the effect of cell irregularity on the mechanical properties of closed cell 

foams. As with the model by Zhu et al. [40], those by Mills and Zhu [32], Simone and 

Gibson [37], Grenestedt [24] and Grenestedt and Tanaka [23] are isotropic. 
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Fig. 2.5 Tetrakaidecahedral foam cell model 

Other researchers such as Roberts and Garboczi [34, 35], Huang and Gibson 

[25], Zhu et al. [42] and Zhu and Windle [43] preferred to use a more random cell 

model because actual foams do not comprise identical repeating cells. Roberts and 

Garboczi [34] generated a foam model using Voronoi tessellations of distributed seed 

points in space to form a closed cell foam with planar faces. Fig. 2.6 shows the 

Voronoi model used by Roberts and Garboczi [34] who also employed other types of 

random cell models called Gaussian random fields to model closed cell foams with 

curved cell walls; Fig. 2.7 shows such a model. They performed FEM simulations of 

these models to obtain their elastic properties. Both models were for isotropic foam 

and cannot be applied to anisotropic cells. 

In contrast to Roberts and Garboczi [34] who analysed random cell models for 

closed cell foams, Roberts and Garboczi [35], Huang and Gibson [25], Zhu et al. [42] 

and Zhu and Windle [43] have used random cells to model open cell foams. Roberts 

and Garboczi [35] used Voronoi tessellations, a node-bond model that connects 

random nodes to their nearest neighbours and Gaussian random fields to develop 

random cells for open cell foam model. They performed FEM simulations based on 

these models to obtain elastic properties. Zhu et al. [42], Zhu and Windle [43] used 
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the Voronoi tessellation technique to build foam models. They applied FEM 

simulations to these models to study the influence of cell irregularity in foams on their 

elastic properties and response to high strain compressive loading. Similarly, Huang 

and Gibson [25] used the Voronoi tessellation technique to build closed cell models 

and employed FEM simulation to study creep behaviour. 

Although random cell models appear to better represent the microstructure of 

actual foams, these models cannot be analysed easily due to their complex geometries. 

Thus, numerical simulation is required. Moreover, the random models proposed have 

only been applied to isotropic foams and cannot be used to model anisotropic foams 

which commonly occur. 

 
Fig. 2.6 Voronoi tessellation cell model [34] 

 
Fig. 2.7 Closed cell Gaussian random field model [34] 
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2.4.3 Constitutive models 

A knowledge of constitutive material behaviour is essential in structural design 

involving foams. Implementation of appropriate constitutive material models into 

computer simulation codes facilitates the design and analysis of components. The 

development of constitutive models for foams has been of interest to researchers such 

as Deshpande and Fleck [3], Schreyer et al. [51], Ehlers [47] and Miller [50]. Some of 

the constitutive models developed have been implemented in finite element packages 

– e.g. LS-DYNA and ABAQUS. Hanssen et al. [49] have briefly described some 

constitutive models developed for solid foam, i.e. material models 26, 126, 63 and 75 

in LS-DYNA, the crushable foam model in ABAQUS and the models by Deshpande 

and Fleck [3], Miller [50], Schreyer et al. [51] and Ehlers [47]. A comparison among 

the models is shown in Fig. 2.8 [49]. 

 
Fig. 2.8 Comparison of yield surface based on several models for foam [49] 

 
 Material models 26 and 126 in LS-DYNA use the orthogonal directions of the 

material (principal directions of anisotropy) as the basis for their hardening functions. 

Yield criterion is defined for each of the six stress components. The difference 

between the two is the hardening model: material model 26 uses the engineering 



 

23 

volumetric strain as the variable, while material model 126 uses the engineering 

strain. The main feature of both is that they can be used to model anisotropic foams. 

[49] 

 Material model 63 in LS-DYNA uses the principal stresses as the base of its 

strain hardening function. This model essentially employs a maximum principal stress 

criterion, whereby the compressive principal stress is a function of volumetric stress, 

while the tensile principal stress follows an elastic-perfectly plastic curve. This model 

cannot be used for anisotropic foams [49]. Material model 75 in LS-DYNA and the 

crushable foam model in ABAQUS involve yield functions that can be described by 

an ellipse in the von Mises-mean stress plane. The major difference between the two 

models is that the ellipse in ABAQUS has a fixed ratio between its major and minor 

axis, while the ratio is not fixed for material model 75 in LS-DYNA. Hence material 

model 75 in LS-DYNA requires a larger number input parameters than the crushable 

foam model in ABAQUS. The ABAQUS crushable foam model only requires the 

hardening curve in the form of a relationship between hydrostatic stress and 

volumetric strain, while material model 75 in LS-DYNA requires not only a definition 

of the hardening curve via a relationship between hydrostatic stress and volumetric 

strain, but also the uniaxial compressive stress-strain hardening curve. [49]   

Deshpande and Fleck [3] modified the von Mises criterion by including the 

effect of elastic volumetric strain energy in the criterion (note that the von Mises 

criterion only considers elastic shear strain energy). Deshpande and Fleck’s [3] 

criterion results in an ellipse when it is drawn in the von Mises-mean stress plane. 

Strain hardening is modelled via a function of equivalent plastic strain defined as the 

energy conjugate of Deshpande and Fleck’s [3] equivalent stress. This criterion only 
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needs data from a uniaxial compression test on foam and can only be used to describe 

isotropic foam  [3, 49]. 

 Miller [50] combined the Drucker-Prager criterion and the yield surface 

proposed by Gibson et al. [21], Triantafillou et al. [8], and Gibson and Ashby [2, 20]. 

The result was a criterion in the form of a polynomial of the stress invariants – first 

order in the von Mises stress and second order in the mean stress. Miller’s strain 

hardening model is defined in terms of a function of the volumetric strain and plastic 

strain. [49, 50] 

Gioux et al. [48] presented a physical basis for the criterion proposed by Miller 

[50] and Deshpande and Fleck [3]. They found that the Miller [50] criterion can be 

derived from the mechanistic failure surface criterion developed by Gibson et al. [21], 

Triantafillou et al. [8], and Gibson and Ashby [2, 20], by taking into account the 

influence of cell wall curvature. They also found that Deshpande and Fleck’s [3] 

criterion can be derived from the Miller [50] criterion by neglecting the effect of the 

linear term for the mean stress. Gioux et al. [48] suggested that both criteria, i.e. 

Deshpande and Fleck’s [3] and Miller’s [50], are able to describe the multiaxial 

failure surface for aluminium foam. 

 Hanssen et al. [49] have compared results from LS-DYNA models 26, 126, 

75, and 63 with experimental results for aluminium foams under specific loading 

configurations. They concluded that none of the models can describe the experimental 

results with convincing accuracy. They believe that inaccuracy occurs because the 

models do not consider local and global fracture. Hence, an accurate, efficient and 

robust fracture criterion is needed to enhance the accuracy of the material models.  
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Chapter 3 Rigid Polyurethane Foam 

As highlighted in Chapter 1, this study focuses on the tensile mechanical 

properties of rigid polyurethane foam and establishment of an appropriate cell model. 

The mechanical and structural properties of rigid polyurethane foam are discussed in 

this chapter, and the fabrication of rigid polyurethane foam is first presented. 

3.1 Fabrication of rigid polyurethane foam 

Rigid polyurethane foam blocks were fabricated by mixing polyurethane resin 

(polyol), a hardener (diisocyanate) and a gassing agent together. The chemicals used 

were DALTOFOAM® MM 6775 for the resin, SUPRASEC® 5005 for the hardener 

and HCFC 141b for the gassing agent. Three foam blocks were made by first mixing 

the resin and the gassing agent together thoroughly, followed by introducing the 

hardener to the mixture, which was then poured into a mould and left to cure. Mixing 

of the components caused a reaction, which resulted in a foaming process whereby 

bubbles are formed and rises causing the bubbles to elongate in the foam rise direction 

while the mixture hardens. The density of the three foam blocks was varied by using 

different amounts of gassing agent.  

The foam made by this technique comprised primarily closed cells with struts 

defining the cell edges and thin membrane for cell walls. The cells were elongated in 

the foam rise direction, generating geometric anisotropy quantified by a geometric 

anisotropy ratio (i.e. the ratio between the cell length in the rise direction to that in the 

transverse direction) that varied with foam density. The material in each block was 

denser and less uniform near the outer surface. Thus, these portions at the surface 

were cut away and discarded. Nearer the middle of each block, the cell dimensions 

perpendicular to the rise direction were generally similar, making them roughly 
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axisymmetric. The overall density of the solid foam, average cell size and cell 

geometric anisotropy ratio are presented in Table 3.1. The characteristics of the foams 

are consistent with the conclusion by Dawson and Shortall [57] that the cell 

anisotropy ratio of rigid polyurethane foam decreases with a higher density. 

Table 3.1 Solid foam data 
 Foam A Foam B Foam C 
Density (kg/m3) 23.3 29.5 35.2 
Average cell size ( )mmmm ×  4.01×  5.01×  53.09.0 ×   
Average cell geometric anisotropy ratio 2.5 2 1.7 

3.2 Quasi-static Tensile tests 

Quasi–static tensile tests were performed on foam specimens to study the 

influence of loading direction, foam density and cell anisotropy ratio on the 

mechanical properties. Dog-bone shaped specimens were cut from foam blocks 

according to five directions – along the foam rise direction and 30o, 45o, 60o and 90o 

to the foam rise direction. Fig. 3.1 shows the specimen dimensions. The ends of the 

specimens were glued to acrylic blocks to facilitate gripping by an Instron® (model 

5500) universal testing machine used to apply tension (see Fig. 3.2).  

 
Fig. 3.1 Dog-bone shaped specimen 
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Fig. 3.2 Foam specimen attached to acrylic block 

Results from these tests are presented in the form of engineering stress-strain 

curves and a typical stress-strain curve for these foams is illustrated in Fig. 3.3. The 

curve shows that the foam has an initial linear response followed by a shorter 

nonlinear response before fracture. 
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Fig. 3.3 Typical stress-strain curve 

The stress-strain curves are converted into stiffness and tensile strength data as 

functions of loading direction. Foam stiffness was determined from the gradient of the 

initial linear portion, while foam strength was defined by the maximum stress before 

failure. Fig. 3.4 shows the stiffness as a function of loading direction, while Fig. 3.5 

shows tensile strength as function of loading direction for the three foams.  
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Fig. 3.4 Stiffness 
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Fig. 3.5 Tensile strength 

All the foams exhibited anisotropy in their mechanical properties – the stiffness 

and tensile strength depend on loading direction. The stiffness is highest in the rise 

direction (0o) and decreases with the angle to the rise direction. Minimum stiffness 

corresponds to loading perpendicular to the foam rise direction, i.e. the transverse 

direction. As with stiffness, foam strength is also highest in the foam rise direction 

and decreases with angle to the rise direction. Consequently, foam is also weakest in 

the transverse direction. These results are expected because the foam cells are 

anisotropic and elongated in the rise direction. The cell struts that are aligned in the 
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foam rise direction are longer; hence, they are relatively easier to bend when loaded in 

the transverse direction, making the foam more compliant in that direction. This also 

causes the foam to be weaker in the transverse direction. Moreover, the foam is also 

weaker in the transverse direction because fewer struts are required to be broken when 

failure occurs, as there is a smaller number of struts per unit area perpendicular to the 

transverse direction. 

Foam C is stiffer and stronger than foam B, while foam B is stiffer than stronger 

than foam A, i.e. fAfBfC EEE >>  and maxmaxmax fAfBfC σσσ >> . This is expected 

because foam C is denser than foam B, while foam B is denser than foam A 

( fAfBfC ρρρ >> ). The amount of solid material to carry the load increases with 

density, thus, increasing the stiffness and strength of the foam. Notable scatter in the 

stiffness and strength data was found from tests on the foam specimens, as presented 

via the I-shaped bars in Figs. 3.4 and 3.5 . This is expected because the cells within 

each type of foam were not uniform. Fig. 3.6 shows the average anisotropy ratios for 

strength and stiffness as a function of cell geometric anisotropy. It indicates that the 

cell geometric anisotropy ratio governs the degree of anisotropy in the mechanical 

properties of the foams – anisotropy in the strength and stiffness increases with cell 

geometric anisotropy. 
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Fig. 3.6 Strength and stiffness anisotropy ratio 

3.3 Dynamic tensile tests 

In addition to quasi-static tensile tests, dynamic tensile tests were also 

undertaken. These tests were performed on foam B ( )3mkg5.29=ρ  to examine if 

strain rate influences its tensile mechanical properties. The specimens in these tests 

were also dog-bone shaped, similar to those in quasi-static tensile tests (see Fig. 3.1). 

Specimens were dynamically stretched using a tensile split Hopkinson bar 

arrangement (SPHB), as shown in Fig. 3.7. The input/output bars used in this 

experiment were made of polycarbonate (with stiffness GPa2.2=E ; diameter = 16.5 

mm) to reduce mismatch in impedance with the compliant specimens. A pendulum-

driven system was employed, whereby a pendulum strikes anvil, generating a tensile 

pulse in the input bar, which propagates and loads the specimen. The load applied to 

the specimen was calculated from the strain gauge signal of the output bar. 

Deformation of the specimen was recorded using a high speed camera (PHOTRON™ 

ultima APX) and the strain induced was derived from this visual data. 



 

31 

 
Fig. 3.7 Split Hopkinson bar arrangement 

The tests yielded dynamic engineering stress-strain data and a typical stress-

strain curve for foam is shown in Fig. 3.8. The initial part of the curve (up to a strain 

of about 0.008) shows a slightly nonlinear increase (note that the stress in the 

specimen is not yet uniform during this early phase and hence the data may not be 

accurate – see [59]). Neglecting this initial phase, the curve shows that the foam has 

an essentially linear initial response followed by some nonlinearity before fracture. 

This is similar to its behaviour under quasi-static loading. 
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Fig. 3.8 Typical stress-strain curve 

The stress-strain curves were then converted into tensile stiffness and strength 

data. Fig. 3.9 shows stiffness as a function of strain rate while Fig. 3.10 shows 



 

32 

strength as a function of strain rate. Data from quasi-static tensile tests performed 

using the Instron® (model 5500) universal testing machine are included for 

comparison with responses at low strain rates. 
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Fig. 3.9 Stiffness 
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Fig. 3.10 Tensile strength 

As with the data from quasi-static tensile tests, the foam also displayed 

anisotropy in mechanical properties for dynamic loading – the stiffness and strength 

depend on loading direction. Again, the foams are stiffest in their rise direction (0o) 

and the stiffness decreases with angle with the rise direction. Minimum stiffness 

corresponds to loading in the transverse direction. With regards to strength, this is also 

o 

   o 

   o 

o 

   o 

   o 
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highest in the foam rise direction and decreases with alignment to the transverse 

direction, where it is lowest. The reasons for these are the same as those for quasi-

static tests (Section 3.2.) Figs. 3.9 and 3.10 appear to indicate no obvious dependence 

of tensile strength and stiffness on strain rate. The strength at low strain rates (e.g. less 

than 0.1/s) does not show any significant difference with that at higher strain rates 

(higher than 10/s). The stiffness corresponding to these two ranges do not show any 

notable difference as well. Although the glass transition temperature of rigid 

polyurethane is 200-250K [2], the foam exhibits insignificant rate sensitivity probably 

because it is loaded in tension; it is relatively brittle and hence fracture occurs before 

any rate sensitivity becomes apparent.  

3.4 Micro CT imaging of rigid polyurethane foam cells 

As described in Chapter 2, the cell structure within a foam plays an important 

role in determining its mechanical properties. Micro CT scanning of foam cells was 

therefore performed to study the cell structure. Micro CT scan was performed on rigid 

polyurethane foam samples using a SkyScan™-1076 machine with a resolution of 

18 mμ ; this resulted in two-dimensional images of the sample cross-sections, which 

were then converted to three-dimensional images using software (CTAN). Fig. 3.11 

shows images of cells obtained from CT scanning and they resemble an elongated 

tetrakaidecahedron cell model shown in Fig. 3.12. Both the actual cells and the model 

have: 

• horizontal faces at the upper and lower ends 

• slanted faces adjacent to upper and lower faces 

• vertical faces at the sides 

This probably arises because during the foaming process, the foam bubbles generated 

tend towards the minimum surface energy conditions [40] and the energy criteria 
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stated in Plateau’s law [39].  Tetrakaidecahedra, as suggested by Zhu et al. [40] and 

Warren and Kraynik [39], are the only polyhedra that can fill space (arranged in three 

dimensions) and that approximately satisfy both energy criteria. This is consistent 

with Patel and Finnie’s [33] suggestion that cells in actual foam are similar to 

pentagonal dodecahedra and tetrakaidecahedra. 

 
Fig. 3.11 3-D images of cell structure 
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Fig. 3.12 Elongated tetrakaidecahedron cell model 

3.5 Microscopic observation of cell struts 

In addition to microscopic observations of foam cells using CT scanning, 

microscopic observations were made on foam struts that define the cell edges. This 

was undertaken to examine the shape and size of their cross-sections. For this 

purpose, specimens cut from the foam blocks were examined using an optical 

microscope set to a magnification of 1000X or 1500X and photographic images were 

taken.  
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Fig. 3.13 Cross-sections of cell struts in rigid polyurethane foam (foam B; 

3mkg5.29=ρ ) 

Fig. 3.13 shows several typical images of cross-sections of cell struts in rigid 

polyurethane foam. They indicate that the cross-sections is similar in shape to that of 

the Plateau border [1] geometry shown in Fig. 3.14, which is defined by three circular 

arcs that touch each other. This is consistent with Plateau’s law [1] that proposes that 

soap bubble surfaces always meet in threes and do so at an angle of 120o, forming an 

edge called a Plateau border. The same phenomenon is likely to occur in the foaming 

process in fabricating rigid polyurethane foam, whereby adjacent bubbles in the foam 

adjust to a stable configuration as the polyurethane hardens (cures). Thus, a Plateau 
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border shape is assumed by the struts as the material sets. Zhu et al. [40] also 

observed Plateau border shapes in the cross-sections of struts in foam cells.  

To measure the size of these cross-sections, an inscribed circle of radius r was 

drawn for each image (see Fig. 3.14), and a sample of taking a measurement is shown 

in Fig. 3.15. The relationship between the inscribed radius r and the outer dimension 

R, shown in Fig. 3.14, is 

⎟
⎠

⎞
⎜
⎝

⎛ −
=

1
3

23

rR  

(3.1) 
The average results from these measurements are presented in Table 3.2 

Table 3.2 Average dimensions of rigid polyurethane foam struts 
 

⎟
⎠
⎞⎜

⎝
⎛

3mm
kgρ  ( )mμR  

Foam A 23.3 49 
Foam B 29.5 51.4 
Foam C 35.2 59 

  
Fig. 3.14 also suggests that the thickness of membranes that constitute cell walls 

is much smaller than the thickness of the struts. Hence, the presence of membranes 

has minimal influence of the mechanical properties of the foam, which is mainly 

governed by the response of the struts. This is because the very thin cell walls can 

easily be broken, folded, or buckled under load [30]. 
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Fig. 3.14 Plateau border 

 
Fig. 3.15 Size measurement 

3.6 Microscopic observation of deformation and failure of 

polyurethane foam  

Microscopic observations of foam were carried out to study the nature of its 

internal structure, as well as its response under tensile and compressive loading. 

Cuboid specimens cut from foam B ( 3mkg5.29=ρ ) were placed under a 

microscope and loaded using a screw-driven jig (see Fig. 3.16).  During the tests, 

images were recorded using a high speed camera, resulting in photographic sequences 

of deformation in the cells. Several modes of loading were carried out, i.e. tension and 
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compression along the foam rise direction (0o), the transverse direction (90o) and 45o 

to the rise and transverse directions.  

 
Fig. 3.16 Foam specimen loaded using screw driven jig 

3.6.1 Tensile response 

Figs. 3.17 and 3.18 show foam behaviour under tension along the rise direction 

(0o), Figs. 3.19 and 3.20 depict tension along the transverse direction (90o) and Figs. 

3.21 and 3.22 illustrate tension along the 45o direction. The pictures indicate that the 

deformation mechanisms in cells comprise bending and stretching of cell walls and 

struts, with bending being dominant. Bending can be identified from the change in 

angle between struts at their interconnections. Several reports – e.g. Ko [28], Gibson 

et al. [21], Triantafillou et al. [8], Gibson and Ashby [2, 20], Huber and Gibson [26], 

Maiti et al. [31] and Zhu et al. [40, 41] – have also stated that bending of cell struts is 

the primary deformation mechanism in foam. It is also evident from the pictures that 

fracture occurs by crack propagation through struts and cell wall membranes, 

perpendicular to the loading direction.  
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Fig. 3.17 Micrographs of fracture propagation for tension along the foam rise 

direction 

rise direction
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Fig. 3.18 Micrographs of cell deformation for tension along the foam rise direction 

 
Fig. 3.19 Micrographs of fracture propagation for tension along the transverse 

direction  

        rise direction 

rise  

direction 
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Fig. 3.20 Micrographs of cell deformation for tension along the transverse direction 

 
Fig. 3.21 Micrographs of fracture for tension along the 45o to the foam rise direction 

rise  

direction 
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Fig. 3.22 Micrographs of cell deformation for tension along the 45o to the foam rise 

direction 

3.6.2 Compressive response 

Fig. 3.23 shows the deformation in cells for compression along the rise direction 

(0o), while Fig. 3.24 shows the response for compression in the transverse direction 

(90o). Fig. 3.25 depicts the response for compression along the 45o direction. These 

pictures demonstrate that deformation initiates via bending and contraction of struts, 

followed primarily by buckling of compressed struts or plastic bending of struts. The 

bending and shortening of struts, with bending as the main mechanism, correspond to 

linear elastic deformation, while the buckling and plastic deformation of the struts are 

associated with inelastic behaviour in plateau phase of the stress-strain response.  

Note that during deformation, the segments of the struts at their interconnections 

do not exhibit much bending. This implies that deformation occurs away from these 

end segments because the portions near the interconnections are stiffer and the struts 

are thicker there. Moreover, the membranes attached to these intersections are also 

thicker and thus contribute to the bending resistance (see Fig. 3.26). The length of 

these rigid portions were measured and Fig. 3.27 shows some of these measurements. 

The average length of the rigid segment is 48.6 μm or about 95 % of the average outer 

dimension of the strut cross-section R (see Section 3.5) 
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Fig. 3.23 Micrographs of cell deformation for compression along the foam rise 

direction 

 

rise direction
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Fig. 3.24 Micrographs of cell deformation for compression along the transverse 

direction 

 
Fig. 3.25 Micrographs of cell deformation for compression in the 45o to the foam rise 

direction 
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Fig. 3.26 Thick membrane at struts interconnection 

 
Fig. 3.27 Measurements of rigid strut segments 

3.7 Mechanical properties of solid polyurethane 

Other than the cell structure, the material properties of the solid material in the 

struts and walls also determine the mechanical properties of the foam. Several 

mechanical tests were therefore performed on solid polyurethane specimens to obtain 

their mechanical properties – i.e. stiffness and tensile strength. The tests included 

compression, tension and three-point bending. Solid polyurethane was made by 

mixing the polyurethane resin with the hardener and curing it inside a closed tube to 

thicker membrane

thicker membrane
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prevent foaming. The resulting samples were essentially solid, but not entirely 

homogeneous, because there was still a small amount of gas produced that could not 

be totally expelled.  Nevertheless, the samples showed a good degree of homogeneity 

near the wall of the container. Consequently, the central portion was cored out to yield 

tubular samples with an average density of around 1200 kg/m3; this is consistent with 

published values of the density of solid polyurethane [2]. The solid polyurethane 

samples were then prepared for compression, tension, and three point bending tests.  

• For compression tests – Tubular samples were cut to an appropriate length and 

strain gauges were attached to the sides; Fig. 3.28 shows one of the specimens. 

The specimens were then loaded in compression using a Shimadzu (model AG-

25TB) universal testing machine. 

 
Fig. 3.28 Compression specimen 

• For tensile tests – Tubular solid polyurethane samples were split lengthwise and 

cut into dog-bone shaped specimens. The ends of the specimens were glued onto 

aluminium plates to facilitate gripping. Strain gauges were then attached to the 

specimens; Fig. 3.29 shows one of the specimens. The specimens were then 

loaded using an Instron® (model 5500) universal testing machine. 
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Fig. 3.29 Tension specimen 

• For three-point bending tests – Rectangular specimens were cut out from the solid 

tubular polyurethane sample. The specimens were then loaded transversely using 

the Instron® universal testing machine with a special jig to facilitate three-point 

bending; Fig. 3.30 shows one of the specimens being tested.  

 
Fig. 3.30 Three point bending test 

Two specimens were subjected to elastic compression, and each specimen was 

loaded three times. Results from the compression tests are presented in form of 

engineering stress-strain curves. Figs. 3.31 and 3.32 show the stress-strain response 

for loading and unloading of Specimens 1 and 2. Overlapping of the loading and 

unloading curves indicates elasticity and the behaviour appears linear. The initial parts 

of the curve ( 002.0<ε  for Specimen 1 and 002.0<ε  for Specimen 2) are not linear 

probably because contact between the loading plates and the specimens were not 

perfect. 
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Fig. 3.31 Compression stress-strain curve for Specimen 1 
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Fig. 3.32 Compression stress-strain curve for Specimen 2 

The stiffness of solid polyurethane calculated from the stress-strain curve is 

shown in Table 3.3. Specimens 1 and 2 show a difference in their stiffness; on 

average, Specimen 1 has a stiffness of 3.175 MPa, while that of specimen 2 is 3.365 

MPa. This difference is relatively small and some variation is expected because the 

solid polyurethane produced for the fabrication of test specimens was not perfectly 

homogeneous.  Even though no gassing agent was used in making these specimens, 

the reaction between the polyurethane resin and hardener did generate some small 

bubbles which remained trapped inside the specimens. Moreover, the mechanical 
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properties of polymers also depend on the molecular polymer-chain alignment, ageing 

and oxidation which are not easy to control [2]. The average stiffness of the two 

specimens is 3.365 MPa.  

Table 3.3 Stiffness from compression tests 
Specimen 1 (MPa) Specimen 2 (MPa) 

3.169 3.411 
3.175 3.309 
3.180 3.375 

 
The results from the three-point bending tests are in the form of load-

displacement curves. Figs. 3.33 – 3.35 show the results obtained from these tests. In 

order to obtain the stress-strain curve corresponding to this mode of loading, finite 

element simulations of the tests were performed using ABAQUS. Structural model 

having similar dimensions with the three-point bend specimens were established using 

100 linear Timoshenko beam elements available in ABAQUS-Standard (B21). The 

structure was loaded transversely, as shown schematically in Fig. 3.36. Bilinear 

elastic-plastic material properties were assumed and adjusted to obtain responses 

similar to the actual specimens in terms of load-displacement curves shown in Figs. 

3.33-3.35. It was found that the mechanical properties of solid polyurethane could be 

approximated by an isotropic elastic-plastic material model with a bilinear stress-

strain response. Table 3.4 shows the stiffness and the yield strength determined from 

results based on comparing FEM simulations and test data.  
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Fig. 3.33 Load-displacement curve for three-point bending test of Specimen 1 
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Fig. 3.34 Load-displacement curve for three-point bending test of Specimen 2 
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Fig. 3.35 Load-displacement curve for three-point bending test of Specimen 3 

 
Fig. 3.36 Three-point bending test and its finite element model 

Table 3.4 Stiffness and yield strength from three point bending tests 
 Dimension: length ; 

width ; thickness 
(mm) 

Stiffness (MPa) Yield 
strength 
(MPa) 

Tensile 
strength 
(MPa) 

Specimen1 17.93 ; 3.29 ; 2.23 2610 68 73 
Specimen2 17.93 ; 2.89 ; 2.4 2520 70 72 
Specimen3 17.93 ; 1.99 ; 2.48 2340 67.50 74 

Average  2490 68.5 73 
 

As with compression tests, engineering stress-strain curves were obtained from 

tension tests. Fig. 3.37 shows the results, whereby the curve is initially approximately 

linear, followed by some non-linearity before fracture. The curves for the three 

specimens show little scatter in term of their initial linear slope (i.e. the stiffness), but 

shows significant scatter in terms of the fracture strain.  This is due to the lack of 

(a) Three point bending test 

(a) Finite element model
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perfect homogeinity of the specimens, whereby the gas bubbles inside the specimens 

introduce stress concentration during the tests and hence affects the fracture 

properties. These curves were used to calculate the stiffness and the yield strength of 

the specimens. The stiffness was obtained from the slope of the linear portion of the 

curve, while the yield strength was obtained using a 0.002 offset strain line from the 

linear response and tensile the strength was derived from the maximum stress 

attained. 
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Fig. 3.37 Stress-strain curves from tension tests 
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Fig. 3.38 Determination of yield strength 
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Table 3.5 Mechanical properties from tensile tests 
 Stiffness (MPa) Yield Strength 

(MPa) 
Tensile 

Strength (MPa) 
Fracture strain 

Specimen 1 2718 48 59 0.041 
Specimen 2 2952 54 67 0.054 
Specimen 3 3387 50 66 0.028 

Average 3019 51 64 0.041 
 

Table 3.5 shows the stiffness, yield strength, tensile strength, and failure strain 

values derived from tensile tests on solid polyurethane. Although there is scatter in the 

data, the variation is smaller than that from bending tests. The data from tensile tests 

are more consistent, especially for the stiffness, the yield strength and the tensile 

strength. Thus, this data is used in subsequent development of a cell model in this 

investigation. 

3.8 Summary 

The mechanical properties of rigid polyurethane foam were investigated by 

performing tensile tests on foam samples. The influence of loading direction, foam 

density, and cell anisotropy on these mechanical properties was examined. Results 

show that foam stiffness and strength decrease with angle between the loading and the 

foam rise direction. This arises from the orientation of the struts in cells that make 

them harder to bend for loading in rise direction. Moreover, more struts are required 

to be broken to initiate failure for loading in the rise direction, making the foam 

stronger in this direction. The results also show that foam stiffness and strength 

increase with density, and that anisotropy in the mechanical properties increases with 

anisotropy in cell geometry.  

Microscopic observations of the cross-section of cell struts show that they have 

a shape similar to that of a Plateau border [1]. This is probably because cell formation 

during the foaming process follows Plateau’s law [1] that relates minimum energy 

with a stable structure. Microscopic observation of polyurethane foam loaded under 
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tension and compression show that the main mechanism governing foam deformation 

is the bending of cell struts and walls; other researchers [2, 8, 20, 21, 26, 28, 31, 40, 

41] have also reported similar findings. The images also reveal that the portions of the 

struts near their interconnections with other struts are stiffer and do not flex during 

deformation, because the thickness of these portions are relatively larger and their 

deformation is constrained by thicker membranes at the interconnections. They also 

show that fracture in the foams occurs by crack propagation through struts and cell 

wall membranes, perpendicular to the loading direction  

Micro CT scan images show that the shape of polyurethane foam cells bears a 

high degree of resemblance to an elongated tetrakaidecahedron, probably because a 

tetrakaidecahedron is a stable polyhedral geometry when the minimum surface energy 

and the energy criteria defined in Plateau’s law [1] are considered [39, 40].  

Compression, three-point bending, and tensile tests were performed on solid 

polyurethane to obtain the stiffness, yield strength and tensile strength properties. 

These data will be used in the development of a cell model for foam. The 

experimental data exhibited some scatter because the solid polyurethane samples were 

not completely homogeneous, as some tiny gas bubbles generated from reaction 

between the polyurethane resin and the hardener were still trapped inside. 

Nevertheless the data obtained is considered valid for the formulation of foam models 

in the following chapters.  
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Chapter 4 Analytical Model of Idealized Cell 

This chapter describes the development of idealized cell models for the rigid 

polyurethane foam studied.  Simplified cell assemblies comprising identical cells are 

established to facilitate analysis and derive the essential load-deformation 

characteristics of foam. Variations to the model will be examined in Chapter 5. Two 

analytical open cell models are proposed – a rhombic dodecahedron and a 

tetrakaidecahedron. Both are open celled even though the actual rigid polyurethane 

foam has closed cells, because the membranes that make up the walls are very thin 

compared to the thickness of the cell struts and corners; hence, the foam behaves as if 

it is open celled [26, 30] (see Section 3.5). These two geometries are selected because 

both of them can be assembled in three dimensions to fill space. Small deformation 

analysis based on linear elastic-brittle fracture material behaviour will be developed. 

This is aimed at obtaining expressions to define the mechanical properties of foam 

such as stiffness, tensile strength, and Poisson’s ratio. 

4.1 Rhombic dodecahedron cell model 

Fig. 4.1 shows an elongated rhombic dodecahedron open cell (i.e. polyhedron 

comprising twelve parallelograms). The cell model is elongated in the z-direction, 

corresponding to the foam rise direction, in order to incorporate the geometric 

anisotropy observed in actual foam cells. This model can be assembled such that it 

fills space in three dimensions, forming a structure that consists of cells positioned 

along an elongated FCC lattice, as shown in Fig. 4.2. The foam properties based on 

this cell model – i.e. density, stiffness, Poisson’s ratio, and tensile strength – will be 

derived and discussed. For this analysis, the following definitions and assumptions are 

made: 
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• The lengths L̂  of the struts at the edges of each rhombic dodecahedron are the 

same.  

• The geometric anisotropy ratio, i.e. the ratio between the cell dimension in the rise 

direction to that in the transverse direction, can be defined by θtan  where θ  is 

shown in Fig. 4.5 (see Figs. 4.3-4.5). 

• The struts have a constant cross-sectional area A  and a constant second moment 

of area I, such that 

21 A
IC =  

(4.1) 
• The maximum distance from the surface of the strut to its centroidal axis is R and 

the relationship between R and A is 

A
RC =2  

(4.2) 
• The struts are assumed to be made of an isotropic linear elastic material with 

stiffness sE  and tensile fracture stress smaxσ .  

• The struts follow the Bernoulli-Euler beam theory when they deform. 

• Failure of the model is assumed to occur when any location in a strut attains the 

tensile fracture stress smaxσ . 
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Fig. 4.1 Elongated rhombic dodecahedron cell 

 
Fig. 4.2 Elongated FCC structure made from rhombic dodecahedron cells 

4.1.1 Relative density 

The length of the struts in the cell model is assumed to be much longer than the 

size of the vertices; hence, the volume of the struts can be approximated by taking the 

total length of the struts multiplied by their cross-section area. By using the repeating 

unit shown in Figs. 4.3-4.5, the foam relative density, i.e. ratio of the overall foam 

density ( )ρ  to the density of the solid material in the cell struts and walls ( )sρ , can be 

defined. 
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4.1.2 Mechanical properties in the z-direction 

The z-direction is the direction of cell elongation in this model, which 

corresponds to the foam rise direction in actual foam. To derive the elastic stiffness 

and the Poisson’s ratios for this cell model in the z-direction, an analysis of structural 

deformation for loading in this direction is performed. From symmetry and similarity, 

the analysis can be simplified such that only the fundamental repeating unit (shown in 

bold lines in Fig. 4.3) is considered. Symmetry of this repeating unit with its 

neighbours will be considered in imposing boundary conditions. More detailed views 

are shown in Figs. 4.4 and 4.5, which depict three-dimensional and two-dimensional 

views respectively. Fig. 4.5 also defines the geometrical quantities used in the 

analysis. 

 
Fig. 4.3 Repeating unit for the analysis of an elongated rhombic dodecahedron cell 

loaded in the z-direction 
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Fig. 4.4 Three-dimensional view of repeating unit in the analysis of an elongated 

rhombic dodecahedron cell loaded in the z-direction 

 
Fig. 4.5 Two-dimensional view of repeating unit in the analysis of an elongated 

rhombic dodecahedron cell loaded in the z-direction 

Taking into consideration similarity and symmetry, the analysis can be further 

simplified to the analysis of just one of the struts – e.g. OC – and then applying it to 

other similar struts (Fig. 4.4). Fig. 4.6(a) and (b) show respectively, a 3-dimensional 

view of OC and its projection onto the plane ODCB. For the purpose of analysis, the 

angle α  is defined as a parameter. It can be seen from Fig. 4.6(a) that the geometric 

quantities L , L̂ , θ , and α  are interrelated via the following: 
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(4.8) 
 

 
Fig. 4.6 Strut OC 

 
Fig. 4.7 Deformation of strut OC in plane OBCD 

For convenience, analysis of the deformation of strut OC can be done with 

respect to the plane ODCB (see Figs. 4.6 and 4.7) and then expressed in terms of the 
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Cartesian space defined by the coordinates xyz. When the rhombic dodecahedron 

structure is loaded in the z-direction, point C moves upwards and left to point C’ (Fig. 

4.7). Note that there is no force in the horizontal planes (i.e. parallel to the xy-plane) 

because the struts are free to move in the x and y directions. Because of symmetry 

about the line CD (Fig. 4.6) with another strut in the adjacent repeating unit, the slope 

of the strut at point C with respect to the plane ODCB does not change during 

deformation, i.e. the slope remains equal to α  with respect to the xy-plane. Hence, the 

bending moment M in the strut at point C is related to the vertical force zF  at that 

cross-section by 

0
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(4.10) 
Thus, the respective displacements of point C in the axial (n) and transverse (t) 

directions are 
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These displacements can be related to the deformation of the repeating units in the x, y 

and z-directions by using the geometrical relationships inferred from Figs. 4.6 and 4.7, 

and considering symmetry and similarity of the struts in Fig. 4.4 . The results are: 
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Substituting Eqs. (4.5)-(4.8) into Eqs. (4.14) and (4.15) replacing L̂  and α  by L  

andθ : 
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Consequently, the strains are obtained by dividing the deformation by the initial 

lengths. 
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The stress in the z-direction is given by the ratio of the applied force zF4  to the area 

zA  over which it acts  

θ
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The stiffness in the z-direction is obtained by dividing the stress by the strain in the z-

direction, while the Poisson’s ratios are obtained from the ratios between the 

appropriate strains. 
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For foams with a low overall density, the term 
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struts; hence, the elastic stiffness and the Poisson’s ratios can be approximated by 
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 The stiffness and the Poisson’s ratios can also be defined in terms of the 

relative density (ratio between the overall density of the foam to that of the solid 

material in the cells) by substituting Eqs. (4.1) and (4.4) into Eqs. (4.21) and  

(4.22). The results are:  
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Fig. 4.8 Bending moment distribution along strut OC 

The tensile strength of this cell model in the z-direction can also be derived 

using the repeating unit shown in Figs. 4.3-4.5. Again, the analysis is simplified by 

considering the failure of one strut, as shown in Fig. 4.6. It can be seen that the 

maximum normal stress in a strut is attained at the outer surface at both ends because 

the bending moment is highest there (note that the bending moment along a beam 

loaded as shown in Fig. 4.7 varies linearly with distance from its ends, as shown in 
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Fig. 4.8;  the maximum bending moment thus occurs at both ends). The stress at these 

points can be derived by considering a combination of the axial force and the bending 

moment. 
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Substitution of Eq. (4.10) into (4.27) and equating the stress σ  to the failure stress 

smaxσ  yields 
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L̂  and α  are replaced by L  and θ  by using Eqs. (4.5)-(4.8): 
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Finally, by substituting Eq. (4.20), which defines the overall stress, into (4.29), the 

tensile strength in the z-direction is defined by 
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Eqs. (4.30) can also be expressed in terms of the relative density by substituting Eqs. 

(4.1)-(4.4) into it.  
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4.1.3 Mechanical properties in the y-direction 

The y-direction is the transverse direction for this cell model, which corresponds 

to the direction perpendicular to the rise direction in actual foam. In order to derive 

the stiffness and the Poisson’s ratios for the y-direction, loading of the cell in this 
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direction is analysed. As with loading in the z-direction, the analysis of loading in the 

y-direction can also be reduced to the analysis of a single repeating unit, as shown in 

bold lines in Fig. 4.9. Figs. 4.10 and 4.11 show respectively, more detailed three-

dimensional and two-dimensional views of the unit. Although the repeating unit looks 

the same as that used for the analysis of loading in the z-direction, this unit cell is 

extracted in a different way to simplify the analysis (see Fig. 4.10). 

 
Fig. 4.9 Repeating unit for the analysis of an elongated rhombic dodecahedron cell 

loaded in the y-direction 

 
Fig. 4.10  Three-dimensional view of repeating unit for analysis of an elongated 

rhombic dodecahedron cell loaded in y-direction 
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Fig. 4.11  Two-dimensional view of repeating unit for analysis of an elongated 

rhombic dodecahedron cell loaded in the y-direction 

This analysis can also be further simplified to the analysis of one strut – i.e. OC 

– and then applying it to the other struts. Fig. 4.12(a) and (b) show respectively, the 

strut OC in a 3-dimensional view and its projection onto the plane OGCH. For the 

purpose of analysis, an angle β  is defined, as illustrated in Fig. 4.12, which also 

shows that the geometric parameters L , L̂ , θ , and β  are related by 

θβ costan =  
(4.32) 
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θ
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(4.34) 
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Fig. 4.12 Strut OC 

 
Fig. 4.13 Deformation of strut OC in plane OGCH 

Analysis of the deformation of strut OC can be done with respect to the plane 

OGCH (see Figs. 4.12 and 4.13) and then relating it to the x, y and z coordinate axes. 

When the rhombic dodecahedron is loaded in the y-direction, point C moves to point 

C’ (see Fig. 4.13). Note that there is no force in the xz-plane because the struts are free 

to move in the x and z direction. Because of symmetry about the line CG (Fig. 4.13) 

with another strut in the adjacent repeating unit, the slope of the strut at point C with 

respect to the plane OGCH does not change during the deformation, i.e. the slope 

remains equal to β  with respect to the xz-plane. Thus, the relationship between the 

bending moment M and the horizontal force yF  at point C is given by 
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Hence, the displacements of point C in the axial (n) and transverse (t) directions are 

respectively, 
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These displacements can be related to the deformation of the repeating unit in the x, y 

and z directions by determining the change in length of the repeating unit projected 

onto those axes. The results are 
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Replacing all  L̂  and β  with L  and θ  by using Eqs. (4.32)-(4.35): 
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(4.46) 
Hence, the strains can be obtained by dividing the deformations by the appropriate 

initial lengths. 
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The stress in the y-direction is 
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The stiffness and the Poisson’s ratios can then be obtained from considering the stress 

and strains in the respective directions using Eqs. (4.47)-(4.50) 
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As highlighted, for foams with a low density, the term 
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Eqs. (4.51)-(4.54) can be expressed in terms of the relative density by 

substituting Eqs. (4.1)-(4.4) into them, resulting in: 
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(4.59) 
The repeating unit shown in Figs. 4.9-4.11 can also be used to analyse the 

tensile strength for loading in the y-direction. As with the analysis of the stiffness and 

the Poisson’s ratios, determination of the tensile strength can be simplified by 

considering one strut, as shown in Fig. 4.12. Following the same approach for the 

tensile strength in the z-direction, the maximum stress in the strut also occurs at the 

outer surface at both ends; its value being: 
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Substituting Eq. (4.37) into (4.60) and equating the stress σ  to the tensile failure 

stress smaxσ : 
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Eliminating L̂  and β  using Eqs. (4.32)-(4.35) results in 
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Finally by substituting Eq. (4.50), which defines the overall stress, into Eq. (4.62), the 

tensile strength in the z-direction is given by 



 

74 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

=

I
RL

A
L

s
y 32

2

2
max

max

cossin
1cos

cossin2 θθ
θ

θθ

σ
σ  

(4.63) 
Eq. (4.63) can also be written in terms of the relative density by using Eqs. (4.1)-(4.4).  
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4.1.4 Correction for rigid strut segments 

It was highlighted in Section 3.6 that the strut segments adjoining the 

interconnection (cell corner) with adjacent struts do not exhibit noticeable bending 

during deformation. This shortening of the effective flexural length of the struts 

influences the mechanical properties of the foam. Thus, the equations derived in 

Sections 4.1.2 and 4.1.3 that define the deformation of the rhombic dodecahedron cell 

should be modified to incorporate the influence of these rigid strut segments. This 

modified model will be referred to as the “semi-flexible strut model”.  

As discussed in Section 3.6, shortening of the effective flexural length of the 

struts occurs because the struts are larger near their interconnections. Thus, in this 

study, the length of the rigid portion of each strut is assumed to be determined by the 

cross-sectional dimension R , which is the maximum distance from the surface of the 

strut to its centroidal axis. Based on this, the strut segment of length d  immediately 

adjoining the interconnection with neighbouring struts is assumed to be rigid (they do 

not stretch nor flex) during cell deformation, where d  is related to R  by 

RCd 3=  
(4.65) 

The foam stiffness, Poisson’s ratios and tensile strengths based on this cell model then 

take on the following expressions: 
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Denoting 1X  as the fraction of the strut that deforms; i.e. 
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Eqs. (4.66)-(4.72) can also be expressed in terms of the relative density by 

substituting Eqs. (4.1)-(4.4) and (4.65) into them; thus: 
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4.2 Tetrakaidecahedron cell model 

The preceding section described an elongated rhombic dodecahedron cell 

model. Another polyhedron that can be assembled in three-dimensions is the 

tetrakaidecahedron, which has hexagonal and square faces, and can be arranged in a 

BCC lattice to fill space. Zhu et al. [40] and Warren and Kraynik [22] have analysed 

an isotropic tetrakaidecahedron open cell model in terms of its elastic properties and 

asserted that a tetrakaidecahedron is the only polyhedron that can be assembled in 

three dimensions to fill space and satisfy approximately the surface energy criterion 

and Plateau’s law [1]. Tetrakaidecahedra are also similar to cells in actual foam [33]. 

Zhu et al. [40] and Warren and Kraynik [22] showed that the mechanical properties of 

their model are approximately isotropic; hence, it cannot be used to describe the foam 

in the present study. 

As with the rhombic dodecahedron cell model, the tetrakaidecahedron model is 

elongated in the z-direction (see Fig. 4.14) to facilitate investigation of the actual foam 

cells which are larger in the foam rise direction. The elongated tetrakaidecahedron 

cells can be packed in an elongated BCC lattice, as shown in Fig. 4.15. 
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Fig. 4.14 Elongated tetrakaidecahedral cell 

The following definitions and assumptions are made in deriving foam density, 

stiffness, Poisson’s ratio and tensile strength based on this model: 

• The length of struts other than those that lie on horizontal planes (parallel to the 

xy-plane) is L.  

• The geometric anisotropy ratio, i.e. the ratio between the cell length in the rise 

direction to that in the transverse direction, can be described by θtan , where θ  is 

defined in Fig. 4.18 (see Figs. 4.16-4.18).  

• The struts lying on horizontal planes have the same length l related to L by 

θcos2Ll =  
(4.81) 

• The struts have a constant cross-sectional area A  and a constant cross-sectional 

second moment of area I; relationship between I and A being 

21 A
IC =  

(4.82) 
• The maximum distance from the surface of a strut to its centroidal axis is R and 

the relationship between R and A is 
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A
RC =2  

(4.83) 
• The struts are assumed to be made from an isotropic material with elastic stiffness 

sE  and tensile fracture stress smaxσ .  

• The struts follow Bernoulli-Euler beam theory when they deform. 

• Failure occurs when any location in a strut attains the tensile fracture stress smaxσ . 

 
Fig. 4.15 Elongated BCC structure made from tetrakaidecahedron cells 

4.2.1 Relative density 

As with the rhombic dodecahedron cell, the lengths of the struts in this model 

are assumed to be much larger than the size of the cell vertices. Thus, the relative 

density of the foam based on the repeating unit shown in Figs. 4.16-4.18 can be 

approximated by considering the strut lengths. 
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4.2.2 Mechanical properties in the z-direction 

As with the rhombic dodecahedron model, the z-direction is also the direction of 

cell elongation for this model, which corresponds to the foam rise direction in actual 

foam. An analysis of structural deformation for loading in the z-direction is performed 

to derive the elastic stiffness and the Poisson’s ratios of this cell model for this 

direction. The analysis is simplified such that it only considers the fundamental 

repeating unit (shown in bold lines in Fig. 4.16) due to symmetry and similarity. Figs. 

4.17 and 4.18 show respectively, the three-dimensional and two-dimensional view of 

the unit. The geometrical quantities used in the analysis are defined in Fig. 4.18.  

 
Fig. 4.16 Repeating unit for the analysis of an elongated tetrakaidecahedron cell 

loaded in the z-direction 
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Fig. 4.17 Three-dimensional view of repeating unit in the analysis of an elongated 

tetrakaidecahedron cell loaded in the z-direction 

 
Fig. 4.18 Two-dimensional view of repeating unit for the analysis of an elongated 

tetrakaidecahedron cell loaded in the z-direction 

Because there is no loading in the horizontal planes (i.e. planes parallel to the 

xy-plane), all the struts lying on the horizontal planes do not deform. Hence, the 

analysis can be simplified to just analyzing struts OB, OS, OT and OU (Fig. 4.17). 

Taking into consideration similarity and symmetry of these struts, the analysis can be 

further reduced to an analysis of just one of the struts – e.g. OB – and then applying it 

to the others (see Fig. 4.19).  
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Fig. 4.19 Deformation of strut OB 

Fig. 4.19 shows strut OB in the yz-plane. When the tetrakaidecahedron structure 

is loaded in the z-direction, point B moves upwards and left to point B’, but due to 

symmetry along the z-direction, the slope of the strut at point B does not change. 

Consequently, the bending moment M and vertical force zF  at point B are related by 
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Hence, the displacements of point B in the axial (n) and transverse (t) directions are: 
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These displacements can be related to the deformation of the repeating unit in the x, y 

and z-directions by projecting them onto the corresponding axes and considering the 

symmetry and similarities of the units as shown in Fig. 4.17. The results are: 
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The strains are obtained by dividing the deformation by the initial lengths. 
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The stress in the z-direction is obtained by dividing the applied force zF2  by the area 

zA  over which it acts. 
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The stiffness and the Poisson’s ratios of this model can then be found by dividing the 

stress by the strain in the z-direction, and taking the ratio between the appropriate 

strains: 
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As highlighted in the rhombic dodecahedron model, the term 
A
L2

 is much smaller 

than 
I

L4

 for low density foams because L  is much larger than the lateral dimensions 

of the strut cross-section; hence, the stiffness and the Poisson’s ratios can be 

approximated by 
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Eqs. (4.96) and (4.97) can also be expressed in terms of the relative density by 

substituting Eqs. (4.82) and (4.85) into them.  
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(4.101) 
The tensile strength of this cell model in the z-direction can be derived from the 

repeating unit shown in Figs. 4.16-4.18. The analysis is simplified by considering the 

failure of one strut, as shown in Fig. 4.19. As with the rhombic dodecahedron model, 

the maximum normal stress in a strut is attained at its outer surface at both ends of the 
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struts and its value is obtained by considering a combination of the axial force and 

bending moment. 
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Substitution of Eq. (4.87) into Eq. (4.102) and equating the stress σ  to the failure 

stress smaxσ  yields: 
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Finally, by substituting Eq. (4.95), which defines the overall stress, into Eq. (4.102), 

the tensile strength in the z-direction is defined. 
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Eq. (4.104) can also be expressed in terms of the relative density by incorporating 

Eqs. (4.82), (4.83), and (4.85) into it. 
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(4.105) 

4.2.3 Mechanical properties in the y-direction 

As with the analysis of the rhombic dodecahedron cell model, the y-direction for 

the tetrakaidecahedron cell model corresponds to the transverse direction for actual 

foam. In order to derive the stiffness and the Poisson’s ratios in the y-direction, 

loading of the cell in this direction is analysed. As with loading in the z-direction, the 

analysis of loading in the y-direction can also be reduced to the analysis of the single 

repeating unit shown in bold lines in Fig. 4.20. The deformation of struts lying in 

planes parallel to the vertical xz-plane need not be considered because there is no 
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force in those planes. This analysis is further simplified to an analysis of two struts – 

one lying in the horizontal xy-plane and one in the yz-plane (see Figs. 4.21 and 4.22). 

Thus, the analysis of the mechanical properties of this cell model in the y-direction is 

performed in two parts – an analysis of a strut in the vertical yz-plane and one in the 

xy-plane, followed by a combination of the two. 

In this analysis, it is assumed that a force F2  is pulling the repeating units in 

the y-direction; hence, each strut has to sustain a load of F . The overall stress in the 

y-direction can then be expressed as 
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(4.106) 
 

 
Fig. 4.20 Repeating unit for the analysis of an elongated tetrakaidecahedron cell 

loaded in the y-direction 
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Fig. 4.21 Three-dimensional view of repeating unit for the analysis of an elongated 

tetrakaidecahedron cell loaded in the y-direction 

 

Fig. 4.22 Two-dimensional view of repeating unit used for the analysis of elongated 
tetrakaidecahedron cell loaded in the y-direction 
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Analysis of struts in the vertical yz-plane 

 

Fig. 4.23 Deformation of strut OS 

Arising from symmetry, the analysis of struts lying in the yz-plane can be 

further simplified to an analysis of just one strut – e.g. OS (Figs. 4.21 and 4.22) – and 

then applying it to other similar struts. When the tetrakaidecahedron structure is 

loaded in the y-direction, Fig. 4.23 shows that point S moves in the axial (n1) and 

transverse (t1) directions. However, the slope of the strut at point F does not change 

due to symmetry with another repeating unit in the y-direction. Thus, the bending 

moment M  and the horizontal force yF   at point S are related by 
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The displacements of point S in the axial (n1) and transverse (t1) directions are: 
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Therefore, the displacement of point S in the y and z-directions can be obtained by 

projecting them onto these axes. 
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 (4.113) 
Strut OF in Fig. 4.23 can also be used to determine the tensile strength of this 

cell model, governed by failure of struts in the vertical yz-plane. The maximum stress 

occurs at the outer surface of strut OS at both ends, where the bending moment is 

highest, and its value being: 
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(4.114) 
Substitution of Eq. (4.108) into Eq. (4.114) and equating the stress σ  to the tensile 

failure stress smaxσ  yields 
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Finally, by incorporating Eq.(4.106) for stress in the y-direction into Eq. (4.115), the 

tensile strength in the y-direction is given by. 
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Eq. (4.116) can also be expressed in terms of the relative density by using Eqs. (4.82), 

(4.83) and (4.85). 
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(4.117) 
Analysis of struts in the xy-plane  

 
Fig. 4.24 Deformation of strut OH 

As with the analysis of struts in the yz-plane, the analysis for struts lying in the 

xy-plane can also be simplified to the analysis of one strut – e.g. OH – as shown in 

Fig. 4.24. When the tetrakaidecahedron structure is loaded in the y-direction, point H 

moves in the axial (n2) and transverse (t2) directions. However, the slope of the strut at 

point H does not change due to repeating symmetry in the y-direction. Consequently 

the bending moment M  and the horizontal force yF  at point A are related by 
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The displacements of point H in the axial (n2) and transverse (t2) directions are: 
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Therefore, the displacements of point H in the x and y-directions are 
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(4.124) 
Strut OH can also be used to ascertain the tensile strength in the y-direction, 

which corresponds to the failure of struts in the xy-plane. Following the previous 

analysis, the maximum stress in this strut is 
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Substitution of Eq. (4.118) into Eq. (4.125) and equating the stress σ  to the failure 

stress smaxσ  yields: 
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Finally by using Eq. (4.106), which describes the overall stress in the y-direction, in 

the preceeding expression, the tensile strength in the y-direction is defined by. 

I
rL

A
L

s
y 3

2
2

max
2max

cossin2cossin22 θθθθ

σ
σ

+
=  

(4.127) 
Eq. (4.127) can also be expressed in terms of the relative density by substituting Eqs. 

(4.82), (4.83) and (4.85) into it. 
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(4.128) 
Summary 

The total deformation of the tetrakaidecahedron cell model in the x, y and z-

directions is obtained by combining the deformation of the struts in the vertical yz and 

horizontal xy-planes. 
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The strains are then calculated by dividing the deformations by their corresponding 

initial lengths. 
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Thus, the stiffness is given by the ratio of the tensile stress yyσ  (Eq. (4.106)) to the 

corresponding strain yyε  (Eq. (4.115)) 

( ) ( )
I

L
A
L
E

E s

yy

yy
yy

6
cossin2sincossin2cossin2

4
33

2
2 θθθθθθθ

ε
σ

+++
==  

(4.136) 
The Poisson’s ratios are derived by taking the ratio of the appropriate strains. 
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Eqs. (4.136)-(4.138) can also be expressed in terms of the relative density by 

substituting Eqs. (4.82), (4.83) and (4.85) into them. 
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(4.141) 
The overall tensile strength is determined by comparing Eqs. (4.116) and 

(4.129), which describe the tensile strength corresponding to failure of struts in the yz 

and xy-planes, respectively. The struts in the yz-plane are more vulnerable than the 

struts in the xy-plane, i.e. 2max1max yy σσ ≤ , if the geometric anisotropy ratio 1tan ≥θ . 

For foams with a low density, the ratio between the two failure stresses can be 

approximated by: 

θ
σ
σ

tan
1max

2max ≈
y

y  

(4.142) 
Hence, the overall tensile strength of this model is governed by the failure of struts in 

the vertical yz-plane. 
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4.2.4 Correction for rigid strut segments 

As with the rhombic dodecahedron cell model, the equations defining the 

mechanical properties of the tetrakaidecahedron model derived in Sections 4.2.2 and 

4.2.3 should be modified to include the influence of rigid segments at the ends of each 

strut. Following the rhombic dodecahedron model, this modified model will also be 

referred to as the “semi-flexible strut model”. Similar assumptions are used, i.e. strut 
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segments of length d  adjacent to the interconnection with neighbouring struts do not 

deform during cell deformation, where d  is related to R  by 

RCd 3=  
(4.145) 

Consequently, the foam stiffness, Poisson’s ratio and tensile strengths based on this 

cell model are modified to: 
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These expressions can also be written in terms of the relative density by 

substituting Eqs. (4.82)-(4.86) and (4.145) into them, thus: 
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denotes the fraction of strut that that is rigid. 
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4.3 Constants C1, C2 and C3 

As suggested in Section 3.5, the cross-section of the struts in rigid polyurethane 

foam is similar in shape to the Plateau border [1] shown in Fig. 4.25. Thus, the model 

developed will adopt the Plateau border as the shape of the strut cross-section. Based 

on this, the constants 1C  and 2C  defined in Sections 4.1 and 4.2 can be determined. 
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The value of 2C  is calculated based on the maximum distance R  from the centroid of 

the Plateau border (Fig. 4.25). Failure however might not occur at that point; it 

depends on the direction and orientation of the strut cross-section relative to the 

applied bending moment. To account for this variation, 2C  should be determined by 

using the average maximum distance R  from the centroid of the Plateau border, thus: 
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Fig. 4.25 Plateau border 

3C , which is the ratio of the rigid strut segment lengths to the maximum 

distance of the strut surface from the centroidal axis of the cross-section, is 

determined from experimental observations of the size of the struts and the length of 

the rigid segments at the vertices of the cells inside actual foam (see Sections 3.5 and 

3.6). This showed that on average 95.03 =C . However, because 2C  is determined by 

using the average maximum distance ( R ) from the cross-section centroidal axes, 3C  

also has to be based on this average distance so that the length of the rigid segments 

and the area of the strut cross-section are still related by 

ACCd 32=  
(4.164) 

Hence, 3C  becomes: 

149.195.0
33

2
3 ≈×=

πC  

(4.165) 
The constants 1C , 2C  and 3C  and the data derived from the experiments 

discussed in Chapter 3 facilitate calculation of the mechanical properties of foam 

based on the models. Parametric studies and comparison of these models with actual 

foam can then be performed; this will be discussed in Section 4.4. 
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4.4 Results and discussion 

4.4.1 Cell geometry and parametric studies 

Fig. 4.26 shows an elongated rhombic dodecahedron and an elongated 

tetrakaidecahedron cell, while Fig. 4.27 shows cells in actual foam. The figures 

indicate that the geometry of the rhombic dodecahedron cell model has some distinct 

differences with the cells in rigid polyurethane foam. Actual cells have slanted faces 

adjacent to the upper and lower ends, vertical faces on the sides and horizontal faces 

at the top and bottom; the rhombic dodecahedron cell model only has slanted faces 

and pointed apices at the top and bottom. On the other hand, as highlighted in Section 

3.4, an elongated tetrakaidecahedron cell displays great similarity with actual foam 

cells, much better than that of a rhombic dodecahedron cell. 

a. Rhombic dodecahedron b. Tetrakaidecahedron 

  
Fig. 4.26 Elongated rhombic dodecahedron and tetrakaidecahedron cells 
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Fig. 4.27 Actual foam cell 

The mechanical properties of an idealized foam model based on rhombic 

dodecahedron and tetrakaidecahedron cells in term of its stiffness, Poisson’s ratios 

and tensile strength can be determined by using the equations derived in Sections 4.1-

4.3. The parameters required are the elastic stiffness ( )sE  and tensile strength ( )smaxσ  

of the solid material that constitutes the struts, the relative density of the foam ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ  

and the geometric anisotropy ratio of the cells ( )θtan . A parametric study was 

undertaken by varying these parameters to analyse their influence on the overall 

mechanical properties of foam based on these models. 
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Stiffness 

The stiffness of foam predicted by the rhombic dodecahedron cell model can be 

calculated using the following equations defined in Sections 4.1: 

• Neglecting the correction for rigid segments at the strut ends (fully flexible struts) 

o The stiffness in the rise direction is given by 
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o The stiffness in the transverse direction is 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
+

=
2

1
4

2
32 1

cossin96
1cos

2
1

ρ
ρ

θθ
θ

ρ
ρ ss

s
yy

C

E
E  

(4.167) 
• Considering the correction for rigid segments at the strut ends (semi-flexible 

struts) 

o The stiffness in the rise direction is 
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o The stiffness in the transverse direction is 
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where 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−=

s

CCX
ρ
ρ

θ

θθ
32

4
12

1
1cos

cossin41  

(4.170) 



 

102 

The stiffness of foam predicted by the tetrakaidecahedron cell model derived in 

Section 4.2 are given by: 

• For fully flexible struts 

o The stiffness in the rise direction is 
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o The stiffness in the transverse direction is 
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• For semi-flexible struts 

o The stiffness in the rise direction is 
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o The stiffness in the transverse direction is 
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where 
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(Differences arising from consideration of rigid strut segment will be highlighted 

later.) 
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Note that all the expressions have the terms ⎟⎟
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denominators, which represent respectively the contribution from the axial force and 

the bending moment in the struts.  For low density foams, 
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ρ s  showing that the dominant deformation mechanism in foam is bending of the 

struts. This is consistent with the observations described in Section 3.6 as well as with 

results by some previous researchers [2, 8, 20, 21, 28, 33, 40, 41]. It is also worth 

noting that cell size does not affect foam stiffness, which depends only on the stiffness 

sE  of the solid strut material, the relative density ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , the cell geometric anisotropy 

ratio ( )θtan , the strut cross-section shape represented by 1C  and 2C , and the length 

of the rigid strut segments represented by 3C . 
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Fig. 4.28 Variation of foam stiffness with relative density based on an isotropic 

rhombic dodecahedron cell model 
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Fig. 4.29 Variation of foam stiffness with relative density based on an isotropic 

tetrakaidecahedron model 
 

Figs. 4.28 and 4.29 show respectively the variation of foam stiffness with 

relative density based on an isotropic ( )1tan =θ  rhombic dodecahedron and an 

isotropic tetrakaidecahedron cell model. As expected, the stiffness in the foam rise 

direction is the same as that in the transverse direction because the models are 

isotropic. Another expected result is that the foam stiffness based on both cells with 

rigid strut segments (semi-flexible struts) is higher than that without this correction 

and this difference increases with density because the length of the rigid strut 

segments also increases with density.  

Foam stiffness predicted by the models increases with relative density, as shown 

in Figs. 4.28 and 4.29. This is expected, as a higher density means that there is more 

solid material to bear the applied load, making the structure stiffer. The stiffness E  of 

foam based on a cell model without rigid segment (fully flexible struts) can be 

approximated by a power law relationship in terms of the relative density. 

n

s
f

s

C
E
E

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ  

(4.176) 
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where sE  is the stiffness of the solid strut material, and ρ  and sρ  are respectively the 

densities of the foam and the solid strut material, and fC  and n are constants that are 

governed by the shape of the cells and the strut cross-section, as well as the 

deformation mechanism in the foam (bending and stretching of the struts). It turns out 

that 175.1=fC  and 99.1=n  for the fully flexible rhombic dodecahedron cell model, 

while fC  and n for the fully flexible tetrakaidecahedron cell model are 0.893 and 

1.98, respectively. This is similar to the values for the semi-empirical model by 

Gibson et al. [21], Triantafillou et al. [8] and Gibson and Ashby [2, 20], which had 

fC = 1 and n = 2, but were not derived from any particular cell structure and strut 

cross-section. Hence, the proposed model has yielded the basis for the values of fC  

and n, which the earlier researchers determined empirically from experimental results. 

In contrast with the stiffness of cells without the correction for rigid strut 

segments, foam stiffness based on cells with rigid strut segments (Figs. 4.28 and 4.29) 

cannot be approximated using a power law equation of the form of Eq. (4.176) 

because introduction of the correction for rigid strut segments to the expressions for 

stiffness results in an additional term 
m

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

 with different specific values of m. The 

values of the stiffness are also not similar to those of the semi-empirical model by 

Gibson et al. [21], Triantafillou et al. [8], Gibson and Ashby [2, 20] if the length of 

the rigid strut segments is significant compared to the length of cell struts (greater 

than 0.1 of the strut length). This is probably because the foams they studied in 

deriving their empirical equation have relatively short rigid strut segments compared 

to the strut length. 
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Fig. 4.30 Variation of foam stiffness with relative density based on an anisotropic 

rhombic dodecahedron cell model 
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Fig. 4.31 Variation of foam stiffness with relative density based on an anisotropic 

tetrakaidecahedron cell model 

Figs. 4.30 and 4.31 show respectively the variation of foam stiffness with 

relative density based on the anisotropic rhombic dodecahedron and the anisotropic 

tetrakaidecahedron cell model. The anisotropy ratio ( θtan ) in this instance is taken as 

2 and as with the isotropic models, the anisotropic models also yield a higher value of 

stiffness when the relative density is higher. The stiffness is greater in the foam rise 

direction because struts in the cells are more aligned in this direction, making them 

harder to bend when loaded in this direction but easier to bend when loaded 
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transversely. These trends are in agreement with the experimental results described in 

Section 3.2. 
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Fig. 4.32 Variation of foam stiffness with cell anisotropy based on a rhombic 

dodecahedron cell model 
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Fig. 4.33 Variation of foam stiffness with cell anisotropy based on a 

tetrakaidecahedron cell model 

Figs. 4.32 and 4.33 show respectively, the variation of stiffness with geometric 

cell anisotropy ratio for foam with a relative density 0246.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , based on a 

rhombic dodecahedron and a tetrakaidecahedron cell model. As the geometric 

anisotropy increases, the stiffnesses in the rise and transverse directions diverge, 
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resulting in an increase in the anisotropic stiffness ratio, as shown in Figs. 4.34 and 

4.35. Figs. 4.32 and 4.33 also show that the stiffness in the rise direction increases 

with the geometric anisotropy ratio, but the rate of increase diminishes. In the case of 

rhombic dodecahedron cells with semi flexible struts, the stiffness actually decreases 

after a certain point. The elevation in stiffness is due mainly to the orientation of cell 

struts, whereby a higher anisotropy ratio implies that struts are more aligned towards 

the rise direction, making them harder to bend for loading in this direction. This 

enhancement of stiffness due to strut orientation is however reduced by the reduction 

in cross-sectional area of the struts due to a higher anisotropy ratio, as implied by Eqs. 

(4.4) and (4.85). The effect of a smaller cross-section ultimately dominates, resulting 

in the convex curves shown in Figs. 4.32 and 4.33. On the other hand, the stiffness in 

the transverse direction decreases with cell geometric anisotropy and this arises from 

the orientation of the struts as well as the decrease in the cross-sectional area as the 

cell geometric anisotropy increases. With a larger geometric anisotropy ratio, struts 

are more aligned towards the rise direction, making them easier to bend when the 

foam is loaded in the transverse direction, resulting in a lower stiffness.  
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Fig. 4.34 Variation of anisotropy in foam stiffness with cell anisotropy based on a 

rhombic dodecahedron cell model 
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Fig. 4.35 Variation of anisotropy in foam stiffness with cell anisotropy based on a 

tetrakaidecahedron cell model 
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Fig. 4.36 Variation of anisotropy in foam stiffness with relative density based on a 

rhombic dodecahedron cell model 
 
 



 

110 

0
1
2
3
4
5
6
7
8
9

10

0 0.01 0.02 0.03 0.04 0.05

ρ /ρ s

E
zz

/E
yy fully flexible struts

semi-flexible struts
GAZT

 
Fig. 4.37 Variation of anisotropy in foam stiffness with relative density based on a 

tetrakaidecahedron cell model 
 

Figs. 4.34 and 4.35 depict respectively the variation of foam stiffness anisotropy 

ratio with geometric anisotropy for foam with a relative density 0246.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ  based 

on a rhombic dodecahedron and a tetrakaidecahedron cell model, while Figs. 4.36 and 

4.37 illustrate the variation of anisotropy in stiffness with relative density for foam 

with a geometric anisotropy ratio of 2tan =θ  based on the same two cell models. The 

graphs indicate that the influence of the relative density on the stiffness anisotropy 

ratio is relatively small compared to that of the cell geometric anisotropy (Fig. 4.35). 

This is similar to the prediction based on the cell model by Gibson et al. [21], 

Triantafillou et al. [8], Gibson and Ashby [2, 20], marked as GAZT, in the graphs. 

However, the present study gives higher values of the stiffness anisotropy ratio due to 

the difference in cell geometry with the GAZT model. Figs. 4.34 and 4.35 also show 

that cell models with and without correction for rigid strut segments predicts similar 

trends for the stiffness anisotropy ratio. 

Tensile strength 
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The tensile strength of foam based on the models is governed by failure of the 

most vulnerable strut. The foam tensile strengths based on the rhombic dodecahedron 

cell model, as derived in Section 4.1, are: 

• For fully flexible struts 

o Tensile strength in the rise direction 
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o Tensile strength in the transverse direction 
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• For semi-flexible struts 

o Tensile strength in the rise direction 
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o Tensile strength in the transverse direction 
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(4.180)  
where 

( ) ⎟
⎟
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−=

s

CCX
ρ
ρ

θ
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(4.181) 
Correspondingly, the expressions for foam tensile strengths based on the 

tetrakaidecahedron cell model, as derived in Section 4.2, are: 

• For fully flexible struts 
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o Tensile strength in the rise direction 
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o Tensile strength in the transverse direction 
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• For semi-flexible struts 

o Tensile strength in the rise direction 
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(4.184) 
o Tensile strength in the transverse direction 
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These expressions have the terms ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  and 

2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  in their denominators, and 

they represent respectively the effects of axial stretching and bending of struts.  For 

low density foams, 
2

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  is much larger than ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  indicating that the dominant 

factor for tensile fracture in the foam is the bending of struts. As with the elastic 

stiffness, the tensile strength is not influenced by the size of the cells; it is determined 
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by the tensile strength smaxσ  of the cell strut material, the relative density ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , cell 

geometric anisotropy ratio ( )θtan , the shape of the strut cross-section represented by 

1C  and 2C , and the length of the rigid strut segments represented by 3C . 
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Fig. 4.38 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model 
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Fig. 4.39 Variation of foam tensile strength with relative density based on a 

tetrakaidecahedron cell model 

Figs. 4.38 and 4.39 show respectively the variation of foam tensile strength with 

relative density predicted by an isotropic ( )1tan =θ  rhombic dodecahedron and an 
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isotropic tetrakaidecahedron cell model. Coincidence of the strength values in the 

foam rise and transverse directions confirm isotropy. The tensile strength of the 

models incorporating the correction for rigid strut segments is higher than that of the 

model without this correction. This is because the deformable portion of the struts is 

reduced when their ends are considered rigid, thus changing the position of the 

maximum bending moment from the ends of the struts to the boundary between the 

rigid and the flexible portions, hence resulting in a higher strength. 

Another similarity between foam strength and stiffness predicted by these 

models is that the tensile strength increases with relative density because more 

material is required to be broken at failure when the density is higher. The tensile 

strength maxσ  of foam based on the fully flexible strut model can be approximated by 

n

s
f

s

C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
ρ

σ
σ

max

max  

(4.187) 
  
where smaxσ  is the tensile strength the solid material in the cell struts, ρ  and sρ  are 

respectively the density of the foam and the solid strut material, and fC  and n are 

constants that are governed by the shape of the cells and the strut cross-section, as 

well as the mechanisms governing the failure (bending and stretching of struts). The 

values of the constants based on the fully flexible rhombic dodecahedron cells are 

265.0=fC  and 493.1=n , while those based on the fully flexible tetrakaidecahedron 

cells are 135.0=fC  and 489.1=n . Gibson et al. [21], Triantafillou et al. [8] and 

Gibson and Ashby [2, 20] have expressed the tensile plastic collapse of foam, which 

is essentially similar to tensile fracture in this study, using the same expression, but 

with 3.0=fC  and 5.1=n ; however, the value of fC  in their model is determined 

using empirical data instead of an analytical solution. The values of n based on the 
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three models are close to each other because the main cause of failure in all the 

models is common – the bending of the struts. As with foam stiffness, the foam 

strength based on the cell models with the correction for rigid strut segments cannot 

be approximated by such a power law equation because the introduction of this 

correction makes the relationship between the strength and the density more 

complicated because of the additional term 
m

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ

 which has different specific values 

of m. 
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Fig. 4.40 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model 
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Fig. 4.41 Variation of foam tensile strength with relative density based on a rhombic 

dodecahedron cell model 

Figs. 4.40 and 4.41 show respectively the variation of foam tensile strength with 

relative density based on a rhombic dodecahedron and a tetrakaidecahedron cell 

model. The anisotropy ratio ( θtan ) is 2, in this instance. The tensile strength exhibits 

a trend similar to that for foam stiffness (Figs. 4.34 and 4.35), i.e. it increases with 

foam density and is higher in the foam rise direction. This correlates with the 

experimental results described in Section 3.2. The tensile strength is lower in the 

transverse direction because struts are more aligned towards the rise direction, making 

them easier to bend for loading in the transverse direction and hence, easier to fail. 

Moreover, more struts need to be broken for loading in the rise direction, resulting in 

a higher strength in this direction. 
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Fig. 4.42 Variation of foam tensile strength with cell anisotropy based on a rhombic 

dodecahedron cell model 
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Fig. 4.43 Variation of foam tensile strength with cell anisotropy based on a 

tetrakaidecahedron cell model 
 

Figs. 4.42 and 4.43 show respectively the variation of foam stiffness with cell 

geometric anisotropy ratio for foam with a relative density 0246.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , based on a 

rhombic dodecahedron and a tetrakaidecahedron cell model. As with stiffness, these 

graphs illustrate that the tensile strengths in the rise and transverse directions diverge, 

causing an increase in the tensile strength anisotropy ratio with geometric anisotropy, 

as shown in Figs. 4.44 and 4.45. Another expected similarity with stiffness is that 
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although the strength in the rise direction increases with the geometric anisotropy 

ratio, the rate of increase diminishes. In the same way, the strength in the transverse 

direction decreases with geometric anisotropy ratio. The reasons for this are also the 

orientation of the struts and the reduction in their cross-sectional area with greater cell 

anisotropy. The increase in cell geometric anisotropy ratio means that the struts are 

more aligned in the rise direction, thus making them harder to bend and stronger when 

loaded in that direction; however they bend more easily and are weaker when loaded 

in the transverse direction. The reduction in strut cross-sectional area when the cell 

anisotropy increases described by Eqs. (4.4) and (4.85), causes the rate of increase in 

strength in the rise direction to diminish.  
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Fig. 4.44 Variation of foam anisotropy in tensile strength with cell anisotropy based 

on a rhombic dodecahedron cell model 
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Fig. 4.45 Variation of foam anisotropy in tensile strength with cell anisotropy based 

on a tetrakaidecahedron cell model 
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Fig. 4.46 Variation of foam tensile strength anisotropy with relative density based on 

a rhombic dodecahedron cell model 
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Fig. 4.47 Variation of foam tensile strength anisotropy with relative density based on 

a tetrakaidecahedron cell model 
 

Figs. 4.44 and 4.45 show respectively the variation of foam tensile strength 

anisotropy with geometric anisotropy for a foam with a relative density 

0246.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , based on a rhombic dodecahedron and a tetrakaidecahedron cell 

model, while Figs. 4.46 and 4.47 show the variation of foam tensile strength 

anisotropy with relative density for foam with a cell geometric anisotropy ratio of 

2tan =θ  for the same two cell models. As with stiffness, the graphs indicate that the 

influence of relative density on the anisotropic tensile strength ratio is relatively low 

and that anisotropy in foam strength is primarily dependent on cell geometric 

anisotropy. Gibson et al. [21], Triantafillou et al. [8], Gibson and Ashby [2, 20] found 

similar results, which are denoted by GAZT in the graphs. Figs. 4.44 and 4.45 also 

show that cell models with and without the correction for rigid strut segments exhibit 

similar behaviour in terms of their tensile strength anisotropy ratio.  However, the 

values of the anisotropic tensile strength ratio based on the rhombic dodecahedron and 

tetrakaidecahedron cell models are higher than those based on the cubic cell model by 

Gibson et al. [21], Triantafillou et al. [8] and Gibson and Ashby [2], because different 
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assumptions were incorporated in determining the failure in the models – tensile 

failure of the models in the present study is assumed to occur when any strut fails, 

while failure in the GAZT model is assumed to occur at the average stress needed to 

break all loaded struts. The assumption made in the GAZT model mainly influences 

the strength in the transverse direction, whereby two types of struts with different 

lengths are deformed (Fig. 4.48). Based on their assumption, the overall tensile 

strength in the transverse direction is the average stress needed to break both types of 

struts; this is higher than the stress needed to break the longer struts which are more 

vulnerable. On the other hand, based on the assumption in the present study, the 

tensile strength of the foam is governed by the stress to break the most vulnerable 

struts. This is more reasonable because once the more vulnerable struts break, the 

overall strength of the foam is decreased. 

 
Fig. 4.48 Open celled cubic model (GAZT) loaded in the transverse direction 

Poisson’s ratio 

The Poisson’s ratios for foam based on a rhombic dodecahedron cell model can 

be calculated using the following expressions: 

• For fully flexible struts 
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Note that z denotes the foam rise (cell elongation) direction 

• For semi-flexible struts 
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where 
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While the Poisson’s ratios for foam based on a tetrakaidecahedron cell are: 



 

123 

• For fully flexible struts 
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• For semi-flexible struts 
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As with foam stiffness and strength, the Poisson’s ratios based on these models 

are not influenced by cell size. All the expressions for the Poisson’s ratios have two 

terms in their numerators and denominators; the first term does not contain the 

relative density ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  while the second term does. The first term represents the 

influence of the axial force in the struts, while the second term captures the effect of 

bending in the struts. For low density foams, the term ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ
ρ s  is large and hence, the 

second term in the numerator and denominator becomes dominant, showing that 

bending of the struts is the main mechanism governing the Poisson’s ratios. If the 

axial force (first term) is neglected, the expressions simplify to: 

• For the rhombic dodecahedron cell model 
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2
1
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• For the tetrakaidecahedron cell model 
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Eqs. (4.202)-(4.207) show that for low density foams, the main factor 

determining the Poisson’s ratio is the geometric anisotropy ratio defined by θtan ; the 

density of the foam, the shape of the strut cross section, the length of the rigid edge, 
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and the properties of the solid material do not have much influence. Gibson and 

Ashby [2] reported that the Poisson’s ratios of a foam depend on the shape of its 

constituent cells rather than the properties of the solid material, but they did not 

explain how the Poisson’s ratios vary with cell anisotropy. In fact, an analysis based 

on their open celled cubic model suggests that the Poisson’s ratios for foam are zero 

and do not depend on cell anisotropy.  
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Fig. 4.49 Variation of Poisson's ratios with cell geometric anisotropy ratio for a 

rhombic dodecahedron cell model 
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Fig. 4.50 Variation of Poisson's ratios with cell geometric anisotropy ratio for a 

tetrakaidecahedron cell model 
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Figs. 4.49 and 4.50 show the variation of the Poisson’s ratios with cell 

geometric anisotropy ratio for a foam with a relative density of 0246.0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sρ
ρ , based 

respectively on a rhombic dodecahedron and a tetrakaidecahedron cell model. 

( )zxzy υυ =  increases while yxυ  and yzυ  decrease with anisotropy because of the 

difference in strut orientation length, which can be accounted for as follows: 

• The increase in ( )zxzy υυ =  with anisotropy can be explained by Fig. 4.51, which 

shows the deformation of repeating units in rhombic dodecahedron and 

tetrakaidecahedron cells, together with the projection of a deformed cell strut on 

the yz-plane when the cell is loaded in the z-direction (note that the z-direction 

corresponds to the foam rise/cell elongation direction). Fig. 4.51 shows that the 

ratio between foam deformation in the y-direction to that in the z-direction 

increases with cell anisotropy, resulting in a larger value of  ( )zxzy υυ = . 
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3D cell deformation Strut deformation in the yz-plane 

rhombic dodecahedron 

 
tetrakaidecahedron 

 

            isotropic                   anisotropic          

 

Fig. 4.51 Influence of cell anisotropy on ( )zxzy υυ =  

• The influence of cell anisotropy on yxυ  for tetrakaidecahedron and rhombic 

dodecahedron cells can be explained using Figs. 4.52 and 4.53, respectively.  Fig. 

4.52 shows the deformation of the struts in a repeating unit of a 

tetrakaidecahedron cell, with respect to the yz and xy-planes when the cell is 

loaded in the y-direction. Note that the total deformation of the unit can be 

considered as the sum of four components – deformation of struts OS to OS’ and 

OT to OT’ in the yz-plane, as well as deformation of struts OU to OU’ and OV to 

OV’ in the xy-plane. For an elongated rhombic dodecahedron, the repeating cell 

unit has eight struts which are essentially identical, as shown Fig. 4.53. Hence, the 

deformation of a cell comprises the sum of the contributions from these struts. Fig. 

4.53 shows that the deformation of each strut can be considered a sum of two 



 

128 

components – one in the yz-plane (for strut OC, deformation in the yz-plane causes 

point C to move to point C’’) and the other in the xy-plane (deformation in the xy-

plane moves point C’’ to C’). Figs. 4.52 and 4.53 show that the total deformation 

of the cell in the x-direction does not change with cell anisotropy, while the 

deformation in the y-direction increases with anisotropy because the struts are 

more aligned towards the z-direction and hence are more compliant when loaded 

in the y-direction; this results in a lower value of yxυ . 

Strut deformation in the yz and xy-planes 3D cell deformation isotropic anisotropic  

 
Fig. 4.52 Influence of cell anisotropy on yxυ  and yzυ  for tetrakaidecahedron cells 
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Strut deformation in the yz and xy-planes 3D cell deformation isotropic anisotropic  

 

 

 

Fig. 4.53 Influence of cell anisotropy on yxυ  and yzυ  for rhombic dodecahedron cells 
 

• Figs. 4.52 and 4.53 also illustrate the influence of cell anisotropy on yzυ . The 

figures show that cell deformation in the y-direction increases with cell anisotropy 

because the struts become more compliant in that direction. Thus, the ratio 

between the deformation in the z-direction to that in the y-direction decreases with 

greater cell anisotropy, causing a decrease in yzυ . 

The Poisson’s ratios for models with semi-flexible struts tend to be lower than 

those with fully-flexible struts because the axial elongation of struts in the semi-

flexible strut model contributes proportionally more to the deformation of cell struts. 

The axial elongation of struts enlarges the foam cell in all directions, thus, decreasing 

the Poisson’s ratios (Fig. 4.54). On the other hand, bending of the struts increases the 

cell dimension in one direction while decreasing it in another, causing an increase in 
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the Poisson’s ratios (Fig. 4.54). This is because cell deformation associated with the 

bending of struts decreases more markedly with a longer rigid strut segment, 

compared to the reduction in stretching – deformation via bending decreases by the 

cube of the length of the rigid strut segments, while deformation via stretching 

decreases linearly – see Eqs. (4.68)-(4.70) and (4.148)-(4.150); the terms that contain 

the second moment of area I are associated with bending while those with the cross-

sectional area A are linked to stretching. The difference between the semi-flexible 

strut model and the fully flexible strut model increases with density, because the 

length of the rigid strut segments in the semi-flexible strut model also increases with a 

higher density, as implied by Eqs. (4.73) and (4.160) (see Figs. 4.55 and 4.56). This 

trend applies to all the Poisson’s ratios except for yzυ  for the tetrakaidecahedron cell 

model, because calculation of yzυ  for this model involves two types of struts (Fig. 

4.52) and hence the mechanism cannot be simply described by Fig. 4.54. In this case, 

there are two competing effects that influences yzυ : 

• Mechanism that decreases yzυ  – As described previously, the greater contribution 

of strut elongation in the yz-plane to cell deformation because of longer rigid strut 

segments decreases yzυ . 

• Mechanism that increases yzυ  – For tetrakaidecahedron cells loaded in the y-

direction, deformation in the z-direction arises only from the deformation of struts 

lying in the yz-plane – e.g. struts OS and OT in Fig. 4.52 – while deformation in 

the y-direction is due not only to the deformation of struts lying in the yz-plane, 

but also to that of struts in the xy-plane – e.g. struts OU and OV in Fig. 4.52. 

Because the struts in the xy-plane for anisotropic tetrakaidecahedron cells are 

shorter than those in the yz-plane, the compliance of these struts in the xy-plane 
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decreases more significantly when the rigid strut segments are longer, compared 

to the compliance of the struts in the yz-plane. This causes a greater decrease in 

cell deformation in the y-direction than in the z-direction when the length of the 

rigid strut segments increases, thus, resulting in an increase in yzυ . This effect is 

more significant when the struts in the yz-plane are longer than the ones in the xy-

plane, i.e. when the cell has a higher geometric anisotropy 

Since the second effect is more prominent when the cell geometric anisotropy is 

higher, yzυ  for anisotropic tetrakaidecahedron cells with semi-flexible struts is larger 

than that for fully flexible struts when the cell geometric anisotropy ratio of the cells 

exceeds a threshold value (e.g. 1.33 in Fig. 4.50).  

 
Fig. 4.54 Influence of axial elongation and flexure of struts on Poisson's ratio 

   a. axial elongation                             b flexure 
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Fig. 4.55 Variation of Poisson's ratios with relative density for a rhombic 

dodecahedron cell model ( 2tan =θ ) 
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Fig. 4.56 Variation of Poisson's ratios with relative density for a tetrakaidecahedron 

cell model ( 2tan =θ ) 

4.4.2 Comparison between model and actual foam 

Figs. 4.57 and 4.58 show respectively comparisons between the stiffness of 

actual foam and that predicted by the rhombic dodecahedron and tetrakaidecahedron 

cell model. Figs. 4.59 and 4.60 show the normalized version of  Figs. 4.57 and 4.58, 

whereby the predicted stiffnesses are divided by the stiffness of the actual foam. 

Experimental scatter in the stiffness of the actual foam is presented via the I-shaped 

bars. The cell models without the correction for rigid strut segments (fully flexible 
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strut model) predict lower stiffnesses than the actual foam. The tetrakaidecahedron 

cell model with the rigid strut segments (semi-flexible strut model) shows fairly good 

agreement with the actual foams, especially for foam B.  This is because the shape of 

the actual cells is more similar to a tetrakaidecahedron than to a rhombic 

dodecahedron. This also confirms the significance of the rigid strut segments 

observed in the deformation of actual foams (see Chapter 3). The difference in 

stiffness predicted by the tetrakaidecahedron cell model with that of actual foam can 

be attributed to variations in the stiffness of the solid polyurethane material 

constituting the struts and membranes in actual foam. Moreover, Gibson and Ashby 

[2] asserted that the stiffness of the solid material in polymeric foams are rarely 

known with precision because it depends on “the degree of polymer-chain alignment, 

on chemical change brought about by the foaming agent and on gradual ageing and 

oxidation of the polymer”.   
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Fig. 4.57 Stiffness of actual foam and that based on a rhombic dodecahedron cell 

model 
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Fig. 4.58 Stiffness of actual foam and that based on a tetrakaidecahedron cell model 
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Fig. 4.59 Normalized stiffness of actual foam and that based on a rhombic 

dodecahedron cell model 
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Fig. 4.60 Normalized stiffness of actual foam and that based on a tetrakaidecahedron 

cell model 

The strength of actual foam and that predicted by the analytical models cannot 

be compared directly because the model assumes that the solid material has linear 

elastic mechanical and brittle fracture properties while actual foam exhibits some 

nonlinearity before fracture (see Section 3.7). The Poisson’s ratios determined from 

the cell models are not compared because such data is difficult to obtain for actual 

foam. 

4.4.3 Summary 

This chapter described the development of an analytical cell model to define the 

mechanical behaviour of rigid polyurethane foam under tensile loading. Two open 

cell models were established and investigated – a rhombic dodecahedron cell and a 

tetrakaidecahedron cell. Both cell models can be arranged in three-dimensions to fill 

space and form a large structure.  An open cell structure is assumed because even 

though actual rigid polyurethane foam has primarily closed cells, the membranes 

defining the walls are very thin compared to the size of the struts and vertices (see 

Section 3.5). Hence, the foam behaves as if it is open celled; such a perspective and 

approach have also been accepted and adopted by others [2, 30]. The mechanical 
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properties of the proposed models – tensile stiffness, Poisson’s ratios and tensile 

strength – were derived analytically, resulting in expressions that relate the cell 

geometric anisotropy ratio, foam relative density, mechanical properties of the solid 

strut material and mechanical properties of foam to one another. The existence of 

rigid strut segments (see Chapter 3) was incorporated into the model. 

A comparison of the geometry of the cell models with cells in actual foam 

shows that the tetrakaidecahedron cell has greater similarity than the rhombic 

dodecahedron cell.  This is probably because a tetrakaidecahedron is a more stable 

geometry, based on satisfying minimum surface energy conditions as well as energy 

conditions stated in Plateau’s law [1, 22, 40]. A study of the expressions describing 

the mechanical properties of foam shows that the bending of struts is the primary 

mechanism governing deformation and failure in low density foams. This is in line 

with observations on the deformation of actual foam discussed in Chapter 3, and with 

the findings of others [2, 8, 20, 21, 26, 28, 31, 40, 41]. The expressions for Poisson’s 

ratios suggest that for low density foams, Poisson’s ratio depends primarily on cell 

geometric anisotropy, indicating that the Poisson’s effect arises from a structural 

geometry response rather than from material behaviour. As expected, the stiffness and 

strength of foam increase with relative density, because there is more solid material to 

sustain the load. Also, anisotropy in stiffness and strength increases with cell 

geometric anisotropy because of the change in the orientation of cell struts as the cells 

becomes more elongated in the rise direction. 

For isotropic foam, a comparison between the stiffness predicted by both cell 

models without correction for rigid strut segments (fully flexible struts) with a semi-

empirical model based on a open cubic cell proposed by Gibson et al. [21], 

Triantafillou et al. [8], Gibson and Ashby [2, 20] shows a strong agreement. This 
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demonstrates that the expressions developed in this study are able to provide an 

explanation for the numerical constants in the earlier semi-empirical models. The 

stiffness of foam predicted by the tetrakaidecahedron cell model with correction for 

rigid strut segments exhibits good agreement with actual foam. This is probably 

because the shapes of actual foam cells are similar to a tetrakaidecahedron cell. 

Moreover, the results show that inclusion of the correction for rigid strut segment is 

important in arriving at good correlation with experimental results. The foam 

strengths predicted by the two models developed in this study were not compared with 

that of actual foam because the assumption of linear elastic-brittle failure material for 

the cell struts is not totally applicable, as the polyurethane in actual foam exhibits 

some nonlinearity in its stress-strain response.  

The cell models in this investigation are able to describe the mechanical 

behaviour of actual foam, especially in terms of the stiffness; moreover the idealized 

cell geometries are reasonably realistic because they are similar to those of cells in 

actual foam and the cells can be assembled together in three dimensions. However, 

these analytical models have only been utilized to describe the mechanical properties 

for two directions, i.e. the foam rise and transverse directions. The analytical 

equations defining the mechanical properties of these models derived are not 

amenable to describing the mechanical response of foam when loaded in other 

directions or loaded multi-axially as these situations are too complex. The tensile 

strength criterion established is also specific to linear elastic-brittle failure material 

and not fully applicable to the rigid polyurethane foam tested. Nevertheless, the 

analysis is still useful in demonstrating how the mechanical properties of foam relate 

to parameters such as foam density, cell anisotropy and the strength and stiffness of 

the strut material. Moreover, the expressions can be used to provide an estimate of the 
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mechanical properties of foam. These geometric cell models can be utilized to 

examine loading in directions other than the foam rise and transverse directions, to 

study multi-axial loading and cells made of non-linear material. These can be effected 

via finite element modelling and this is discussed in the following chapter. 
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Chapter 5 Finite Element Model 

To augment the theoretical analysis described in Chapter 4, finite element 

modelling of a cellular structure based on tetrakaidecahedral cells was undertaken. 

The software ABAQUS-Explicit was used to facilitate a study of the effect of loading 

direction, the incorporation of non-linear mechanical behaviour of the solid cell 

material, as well as random variations in cell parameters. The FEM results are 

compared to those from experiments on actual foam, presented in Chapter 3.  

5.1 Modelling of cells 

Cellular structures comprising elongated tetrakaidecahedron open cells were 

modelled using linear Timoshenko beam elements (type B31) available in the explicit 

version of ABAQUS. This version of the code for transient dynamic analysis was 

employed although the simulation was for quasi-static loading, because ABAQUS-

Standard, which is normally used to simulate quasi-static situations, does not 

accommodate material failure. The FE model consists of elongated 

tetrakaidecahedron cells packed together in an elongated BCC lattice (Fig. 5.1) and 

subjected to tension in five directions – rise (0o), transverse (90o), as well as 30o, 45o 

and 60o to the foam rise direction – for comparison with the experimental results in 

Section 3.2. These cell models were formulated to correspond to the three foam 

densities of the specimens described in Section 3.2. Values for the parameters in these 

models are presented in Table 5.1. Note that the strut cross-sectional dimension (R) 

based on this model is not exactly the same as that of the actual foam discussed in 

Section 3.5 because the shape of the cells in the actual foam are not exactly identical 

to tetrakaidecahedra and the cell sizes vary. 
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Fig. 5.1 Elongated tetrakaidecahedron cells packed together in an elongated BCC 

lattice 

Table 5.1 Values of parameters in finite element cell models 
 Foam A Foam B Foam C 

Relative density ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

sρ

ρ
 

 
0.0198 

 
0.0246 

 
0.0294 

Cell size 1.0 ×  0.4 mm 1.0 ×  0.5 mm 0.9 ×  0.53 
mm 

Geometric cell anisotropy ratio 
( )θtan  

2.5 2 1.7 

Strut cross sectional area ( )A  0.582 ×  10-3 
mm2 

1.045 ×  10-3 
mm2 

1.310 ×  10-3 
mm2 

2nd area moment of inertia of 
strut cross-section ( )I  

0.454 ×  10-7 

mm4 
1.460 ×  10-7 

mm4 
2.296 ×  10-7 

mm4 
Strut thickness ( )R (see Fig. 
3.14) 

35 mμ  46 mμ   52 mμ  

 
The cross-section of the beam elements defining the flexible segment of the 

struts is a twelve pointed star comprising two components, as shown in Fig. 5.3. It has 

a total area A, a second moment of area I and the average distance R  from its centroid 

to the point farthest away in its cross-section (see Section 4.3) which are equal to that 

for the Plateau border cross-section calculated (Table 5.1). A Plateau border was not 

employed as the cross-section because it only has three axes of symmetry; the beam 

elements would have been sensitive to orientation if they were defined using this 
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shape, especially with regard to fracture, thus making it necessary to define the 

orientation of each element. On the other hand, the twelve pointed star has 12 axes of 

symmetry and hence is much less sensitive to orientation. Consequently, the cross-

sectional orientation of every strut does not have to be defined. Simpler cross-sections 

such as a circle and an annulus cannot yield the same cross-sectional area A and 

second moment of area I simultaneously as the Plateau border. The rigid segments at 

the strut ends have an annular circular cross-section with a much higher area and 

second moment of area than the flexible segments; this yields a higher rigidity. Five 

B31 beam elements were used to model the flexible segment of each strut.  A larger 

number of elements was avoided to limit the cost of the simulation in terms of running 

time and computing resources. On the other hand, only one element was used for each 

rigid strut segment because its deformation is considered insignificant. Fig. 5.2 shows 

the elements in a tetrakaidecahedral cell model 

 
Fig. 5.2 Elements a tetrakaidecahedral cell model 
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Fig. 5.3 Star shape for beam cross section 

An isotropic material with a bilinear stress-strain relationship was selected for 

the struts. Fracture was defined using a shear failure option in ABAQUS-Explicit, 

whereby fracture is assumed to occur when the plastic strain at an element integration 

point attains a critical value (note that a fracture criterion based on stress and strain 

yields identical results because the stress state is uniaxial). The values of the 

parameters in the material model were derived from tests on solid polyurethane 

specimens (Section 3.7), i.e.: 

• Stiffness GPa3=E  

• Density 3mkg1200=ρ  

• Yield strength MPa51=ysσ  

• Tensile fracture strength MPa64max =σ  

• Plastic strain at fracture 02.0max =plε  

Loading of the cell assembly was prescribed through boundary conditions – 

defining a simple support at one side and imposing a constant velocity condition at the 

other (Fig. 5.5). Periodic boundary conditions were imposed on the models for 

loading in the rise and transverse directions by prescribing rotational constraints at the 

R 
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boundaries. This makes the analysis essentially the same as modelling an assembly of 

infinite number of cells. Strain rates were limited to a maximum of 60/s to minimize 

non-uniformity of stress due to stress wave propagation within the structure. This 

facilitates approximation of quasi-static loading conditions (strain rates which are too 

low were also avoided to limit computational time).  A localised area of weakness was 

introduced into the model to initiate failure. This was done by lowering the tensile 

strength of struts in a cell at the edge of the model (Fig. 5.4). 

 

localised weakness 

 
Fig. 5.4  Localised area of weakness in a finite element model 

0o 30o 45o 60o 90o 

Fig. 5.5 Loading condition in the finite element model 
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5.2 Results and discussion 

5.2.1 Response to tensile loading 
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Fig. 5.6 Stress-strain curve for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 

2)  

Fig. 5.6 shows the stress-strain curve for the model corresponding to foam B 

( 3mkg5.29=ρ ) loaded in the rise (0o) and transverse (90o) directions. The graph 

shows that as with the actual foam (Section 3.2), the stress-strain curves exhibit a 

linear response followed by a shorter phase of non-linearity before fracture. The 

figure also shows that the stiffness (i.e. gradient of the initial linear portion) and the 

tensile strength (maximum stress before fracture) are higher in the rise direction. 

Unloaded, 2D view Unloaded, 
isometric view 

Failure initiation, 
2D view 

Failure initiation, 
isometric view 

Fig. 5.7 Crack pattern for tension in the cell elongation/rise direction 

 

 

o 

   o 
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Unloaded, 2D view Unloaded, 
isometric view 

Failure initiation, 
2D view 

Failure initiation, 
isometric view 

Fig. 5.8 Crack pattern for tension in the transverse direction 

Figs. 5.7 and 5.8 show respectively, the response of the model corresponding to 

foam B for loading in the rise/elongation and transverse directions. The figures 

illustrate that the crack for loading in the transverse direction follows a slanted/zigzag 

pattern. This contrasts with the crack propagation in actual foam, whereby a crack 

propagates perpendicular to the direction of loading (see Figs. 3.17, 3.19 and 3.21 in 

Section 3.6.1). This phenomenon and its implications, particularly with regard to the 

fracture characteristics of the model, will be discussed in the next section. 

5.2.2 Influence of cell wall membrane on crack propagation 

Initial simulation results based on the proposed model (Fig. 5.6) showed an 

overestimation of the ratio of the tensile strength in the rise direction to that in the 

transverse direction for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 2); the 

predicted anisotropy ratio was 4.05, while that of the actual foam was 1.95. It is also 

noted that the plastic collapse model for foam by Gibson et al. [21], Triantafillou et al. 

[8], and Gibson and Ashby [2, 20], which is essentially similar to the fracture model 

in this study, also overestimates this anisotropy ratio with a value of 2.6. An 

examination of how fracture develops in the models indicates that the behaviour 

differs somewhat from that in actual foam. In actual foam, the crack propagates 

sequentially through cell wall membranes and struts, resulting in crack propagation 

that is perpendicular to the loading direction (see Figs. 3.17, 3.19 and 3.21 in Section 
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3.6.1), while fracture predicted by the model occurs by failure of the most highly 

loaded struts without any accompanying crack propagation through membranes, 

resulting in a zigzag or slanted crack pattern, particularly for loading in the transverse 

direction (Figs. 5.7 and 5.8). In actuality, a crack which is initiated in a membrane 

facilitates continued crack propagation perpendicular to the direction of loading, thus 

driving the crack tip to the centre of the struts the membrane is connected to. On the 

other hand, cracking in the FEM models follows any direction that leads to vulnerable 

struts, i.e. struts that attain the highest stress. For loading in the transverse direction, 

two types of struts are loaded – struts lying in horizontal planes (planes that are 

parallel to the xy-plane) and struts lying in vertical planes (planes that are parallel to 

the yz-plane). These two types of struts have different lengths and orientations and 

thus they attain different stress levels when the foam is loaded in the transverse 

direction. According to the analysis in Section 4.2.3, the struts lying in the vertical 

planes attain a higher maximum stress than those lying in the horizontal planes and 

thus the struts in the vertical planes fail earlier – i.e. they are more vulnerable (see Fig. 

5.9). This results in crack propagation that follows a zigzag or slanted pattern, cutting 

the struts lying in the vertical planes (Fig. 5.8). On the other hand, for loading in the 

rise direction, the struts that deform are of the same type and hence have the same 

vulnerability (Fig. 5.10).  

FEM simulations were carried out using ABAQUS-Explicit to examine the 

influence of the presence of membranes on the direction of crack propagation. A 

single tetrakaidecahedron cell with beam elements (type B31) defining its edges and 

membrane elements (type S4R) for its walls was modelled to investigate loading in 

the rise and transverse directions. The size of the cell was 1 mm x 0.5 mm. Each strut 

was defined using 20 beam elements and the total number of membrane elements was 
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8800. The cross-section of the beam elements is assumed to be circular with a radius 

of 0.1 mm and the cell wall membranes were 0.001 mm thick. A linear elastic-brittle 

failure material model was assumed for the struts and cell wall membranes, and the 

failure of the elements was defined using a stress failure criterion whereby an element 

is assumed to fail whenever the hydrostatic stress value at its integration point attains 

a critical value. The following parameter values were used to define the material in 

the struts and walls.  

• Stiffness GPa1000=E  

• Density 3mkg1000=ρ  

• Tensile fracture strength MPa1.0max =σ  

Loading of the cell assembly was prescribed through boundary conditions – by 

defining a simple support at one side and imposing a constant velocity condition at the 

other. 

Figs. 5.11 and 5.12 illustrate respectively, simulation results for loading in the 

rise and transverse directions. They show that crack propagation through the 

membranes tends to constrain the crack to cut struts that are perpendicular to loading 

direction, although these struts are less vulnerable according to the analysis in 

Sections 4.2.2 and 4.2.3. Fig. 5.12 shows that for loading in the transverse direction, 

cracks initiate from the slanted struts but continue to cut the struts lying in the 

horizontal planes (i.e. planes parallel to the xy-plane) resulting in a crack 

perpendicular to the loading direction. (Note that simulations for loading in the 

transverse direction were performed in two steps – the first step resulted in initiating 

failure of the membrane parallel to the rise direction, this was then followed by the 

second step whereby this membrane was deleted and failure in a strut was triggered 

by deleting an element at its centre, where the tip of the crack from the membrane met 
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the strut.). This indicates that the influence of crack propagation in the membrane has 

to be incorporated in the FEM model for foam. In this study, this is achieved by 

assuming that the strength of the struts that are broken during crack propagation is 

reduced by the crack that propagates through the membranes. Thus, the following 

assumptions are made. 

• Loading in the transverse direction – the crack that propagates through the 

membranes tends to cut the struts lying in horizontal planes (Fig. 5.13); thus the 

strength of these struts is reduced so that they fail before the inclined struts do. 

From the analytical solution discussed in Section 4.2, the strut strength should be 

reduced by at least about ⎟
⎠
⎞

⎜
⎝
⎛

θtan
1  (see Eq. (4.142)) – i.e. the strength should be 

made smaller than the original strength divided by the cell geometric anisotropy 

ratio, to match the vulnerability of the inclined struts. Consequently, the tensile 

strength and yield strength of the material in struts lying in the horizontal planes 

are reduced by ⎟
⎠
⎞

⎜
⎝
⎛

θtan
1 . (Note that failure of a strut occurs whenever an 

integration point in any element attains a critical plastic strain value corresponding 

to the tensile strength). 

• Loading in the rise (cell elongation) direction – results from the single cell FEM 

analysis shows that the crack initiated in a membrane is likely to propagate to and 

cut the inclined struts. Thus, to be consistent with the modification for loading in 

the transverse direction, the strength of these struts is reduced by lowering both 

the tensile and yield strength of the material by ⎟
⎠
⎞

⎜
⎝
⎛

θtan
1 . 

• Loading 30o, 45 o, and 60o to the rise  direction – the crack is assumed to cut the 

inclined struts whenever the crack propagation perpendicular to the loading 
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direction, does not require it to cut struts which are parallel to the xy-plane (see 

Fig. 5.14). This results in cracks propagating through the inclined struts for all the 

loading directions considered in this study except for loading in the transverse 

direction. Hence, as with loading in the rise direction, the strength of the inclined 

struts for loading 30o, 45 o, and 60o to the rise direction is also reduced by 

⎟
⎠
⎞

⎜
⎝
⎛

θtan
1 . FEM simulations were also performed to examine this assumption. A 

single tetrakaidecahedron cell, similar to the one used to examine loading in the 

rise and transverse directions, was stretched at 30o, 45 o, 60o, and 82.5o to the rise 

direction. Loading was imposed through a constant velocity boundary condition at 

the cell edges, so that the deformation resembles uniform extension in the loading 

direction.  Figs. 5.15-5.18 show the results of the simulations and confirms the 

assumption made. These figures indicate that, for cells corresponding to foam B 

(cell anisotropy ratio = 2) loaded 30o, 45o, and 60o to the rise direction, the crack 

propagates through the inclined struts. On the other hand, for loading 82.5o to the 

rise direction, the crack first intersects the inclined struts and then propagates 

through the membrane to meet the struts in the horizontal plane. 

 
Fig. 5.9 Cell model loaded in the transverse (y) direction 
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Fig. 5.10 Cell model loaded in the rise (z) direction 

 

 
Fig. 5.11 Single cell loaded in the cell elongation (foam rise) direction 

y 

z 
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Fig. 5.12 Single cell loaded in the transverse direction 

 
Fig. 5.13 Struts in a tetrakaidecahedron cell 

y 

z 
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Fig. 5.14 Crack propagation for loading in the 30o, 45o, 60o, and 82.5o directions  

 
Fig. 5.15 Single cell loaded 30o to the cell elongation (foam rise) direction 

 
Fig. 5.16 Single cell loaded 45o to the cell elongation (foam rise) direction  
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Fig. 5.17 Single cell loaded 60o to the cell elongation (foam rise) direction 

 

 
Fig. 5.18 Single cell loaded 82.5o to the cell elongation (foam rise) direction 

y 

z 

y 
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5.2.3 Response to tensile loading after modification 

Figs. 5.19-5.21 show FE simulation results for cell assemblies corresponding to 

foams A, B, and C; they depict the foam structure initially load-free, then undergoing 

loading. The figures show that for loading in the transverse direction, the crack 

propagates in a direction approximately perpendicular to the line of load application, 

confirming that the correction incorporated to account for the influence of crack 

propagation in membranes results in correlation with experimental results (Figs. 3.17, 

3.19 and 3.21). For loading in the rise direction as well as 30o, 45o, and 60o to this 

direction, the crack propagates generally perpendicular to the load direction with 

minor deviations in the middle 

The FEM simulations are employed to generate stress-strain relationships for 

loading in the various directions; Figs. 5.22-5.24 show predicted stress-strain curves 

corresponding to foams A, B and C. They exhibit an initial linear response followed 

by a shorter non-linear phase before fracture. This is consistent with results from tests 

on actual foams presented in Chapter 3. As with the experimental data, the stiffness 

and strength predicted by FEM modelling are highest in the rise direction and 

decrease as the angle between the loading and rise directions increases. There are 

small oscillations in the stress-strain curves, especially for loading in the 30o, 45o, and 

60o directions, because of premature failure in some struts at the loading boundaries 

due to variations in the load distribution among the struts. These oscillations appear 

noticeable because the number of cells in the model is relatively small and hence, the 

failure of individual struts causes oscillations in the stress-strain curve. The stress-

strain curves for loading in the rise and transverse directions are much smoother 

because the loads are uniformly distributed among the struts at the loading boundaries 

and hence, early failure of struts at these edges does not occur. Note that the 



 

155 

boundaries where the loads are applied for loading in the rise and transverse directions 

consists of repeating cell surface which are regular, and thus the velocity boundary 

condition applied yields an evenly distributed load among the struts in that area.   

Stiffness and tensile strength values were derived from the stress-strain curves – 

the stiffness was obtained from the gradient of the initial linear portion of the curve, 

while the strength correspond to the maximum stress attained before failure. Figs. 

5.25-5.27 show comparisons between stiffness values from the FEM models with 

experimental data for foams A, B, and C. There is reasonably good agreement for 

foams B and C, but noticeable discrepancy for foam A, which exhibits a higher 

stiffness than the FEM model. This is probably because the stiffness of the cell strut 

material of foam A is higher than that in the model (the stiffness value in the model 

was based on tests on solid polyurethane samples, as discussed in Section 3.7). This 

might be because of a greater degree of polymer molecular chain alignment caused by 

cell stretching during the foaming process, as well as chemical changes due to the 

effect of a high gassing agent content [2].  

Fig. 5.28 shows a comparison of the foam stiffness predicted by FEM and by 

the analytical solution; reasonable agreement is observed. The stiffness predicted by 

FEM simulation tends to be lower because the rigid strut segments in the FEM model 

are not fully rigid; they were simulated by making the cross-sectional area and the 

second moment of area much larger than the Plateau border. Moreover, a localised 

area of weakness was introduced in the FEM model by reducing the strength of some 

struts in a cell at the edge of the foam model. These struts thus yielded earlier than the 

others, decreasing the overall stiffness of the model. 
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view 

Unloaded, 
isometric view 

Failure initiation, 
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Fig. 5.19 FEM simulation results for foam A ( 3mkg3.23=ρ ; geometric anisotropy 
ratio = 2.5) 
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Fig. 5.20 FEM simulation results for foam B ( 3mkg5.29=ρ ; geometric anisotropy 
ratio = 2) 
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Fig. 5.21 FEM simulation results for foam C ( 3mkg2.35=ρ ; geometric anisotropy 
ratio = 1.7) 
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Fig. 5.22 Stress-strain curves for foam A ( 3mkg3.23=ρ ; geometric anisotropy 

ratio = 2.5) 
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Fig. 5.23 Stress-strain curves for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio 

= 2) 
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Fig. 5.24 Stress-strain curves for foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio 

= 1.7) 
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Fig. 5.25 Stiffness of foam A ( 3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. 5.26 Stiffness of foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. 5.27 Stiffness of foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
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Fig. 5.28 Comparrison between stiffness predicted by FEM and analytical model 

Figs. 5.29-5.31 show comparisons between the tensile strength predicted by the 

FEM model with actual values for foam A, B, and C. The models underestimate the 

actual tensile strength, probably because the yield and tensile strength data obtained 

from tests on solid polyurethane samples (Section 3.7) do not reflect fully the actual 

material in the cell struts because: 

• The solid polyurethane specimens tested (Chapter 3) contain tiny bubbles that 

reduce the actual cross-sectional area and generate stress concentration; hence, the 

measured strength is lower. 

• The stretching of polyurethane during the foaming process might align the 

molecular polymer chains preferentially, resulting in a higher strength compared 

to the solid polyurethane specimens, in which foaming was prevented. 

• The gassing agent used to enhance foaming might have affected the property of 

the foams [2]. 

Nevertheless, when comparisons are made in terms of the normalized tensile 

strength, i.e. the tensile strength divided by the strength in the rise direction, 

agreement between the model and actual foam is quite good, as shown in Figs. 5.32-
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5.34. This demonstrates that the adjustment of the strength of cell struts to take into 

account the influence of crack propagation in cell walls is valid and yields a closer 

correlation in terms of the anisotropic tensile strength ratio. This also indicates that 

although the thin cell wall membranes do not have much effect on foam stiffness [26, 

30], they play an important part in determining its fracture characteristics by 

influencing the direction of fracture propagation. In contrast with actual foam, 

whereby the tensile strength decreases with angle between the loading and the rise 

directions, the tensile strength predicted by the FEM model for loading 60o to the rise 

direction is slightly lower than that in the transverse direction (Figs. 5.29-5.34). This 

is because different struts fail for loading in the two directions due to the adjustment 

of strut strength to incorporate the effect of crack propagation in cell walls – for 

loading 60o to the rise direction, the inclined struts in the FEM model fail, whereas for 

loading in the transverse direction, struts lying parallel to the horizontal xy-plane fail. 

Actual foams do not have cells with geometries exactly identical to the idealized FEM 

model and hence there is no abrupt change in the struts that fails; thus, the crack 

propagation direction and the tensile strength change gradually with loading direction.  
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Fig. 5.29 Tensile strength for foam A ( 3mkg3.23=ρ ; geometric anisotropy ratio = 
2.5) 
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Fig. 5.30 Tensile strength for foam B ( 3mkg5.29=ρ ; geometric anisotropy ratio = 
2) 
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Fig. 5.31 Tensile strength for foam C ( 3mkg2.35=ρ ; geometric anisotropy ratio = 
1.7) 
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Fig. 5.32 Normalized tensile strength for foam A ( 3mkg3.23=ρ ; geometric 
anisotropy ratio = 2.5) 
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Fig. 5.33 Normalized tensile strength for foam B ( 3mkg5.29=ρ ; geometric 
anisotropy ratio = 2) 
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Fig. 5.34 Normalized tensile strength for foam C ( 3mkg2.35=ρ ; geometric 
anisotropy ratio = 1.7) 

5.2.4 Influence of randomness in cell geometric anisotropy and shape 

The influence of randomness in cell parameters on the mechanical behaviour of 

a tetrakaidecahedron cell assembly was examined using finite element simulation. 

Two modes of randomization were employed, i.e. 

• Variation in cell geometric anisotropy – the four struts forming the edges of 

squares at the top and bottom of each tetrakaidecahedron cell were randomly 

moved in the rise (z-) direction, resulting in variations in cell geometric anisotropy 

of individual cells. These adjustments were limited so that the modified strut 

positions do not result in interpenetration between struts and the general shape of 

the tetrakaidecahedron is maintained. The following procedure was employed: 

o The coordinates of the nodes at the corners of the squares were modified 

using the following expression: 

( )hhzz oldnew 2375.0,2375.0rand −+=  
(5.1) 

where ( )ba ,rand  is a random number that is evenly distributed between a 

and b, while h is the height of the original cell. 
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o The coordinates of the other nodes were adjusted such that each strut 

remains straight and the length of the rigid segments is the same as that 

before the randomization process.  

Fig. 5.35 shows a cell assembly incorporating this variation in cell geometric 

anisotropy. To facilitate the application of loading, the top and bottom surfaces of 

the model were not adjusted. 

• Variations in the interconnections between struts – the position of each vertex or 

corner of a cell, where the struts are interconnected, was randomly adjusted in 

three dimensions. Again, these adjustments were limited so that the modified strut 

positions do not result in interpenetration between struts and the general shape of 

the tetrakaidecahedron is maintained. The following procedure was employed: 

o The coordinates of the nodes at the vertices were modified via the 

following expressions: 

( )flexflexoldnew xxxx 2375.0,5.0rand −+=  
(5.2) 

( )flexflexoldnew yyyy 2375.0,5.0rand −+=  
(5.3) 

( )flexflexoldnew zzzz 2375.0,5.0rand −+=  
(5.4) 

where again, ( )ba ,rand  is a random number evenly distributed between a 

and b, while flexx , flexy , and flexz  are the lengths of the flexible segment of 

the inclined struts in the original model projected onto the x, y, and z axes, 

respectively. 

o The coordinates of the other nodes were adjusted such that each strut is 

straight and the length of the rigid segment remains the same as that before 

the randomization process. 
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As with the variation in cell geometric anisotropy ratio, no adjustments were made 

at the outer surfaces of the cell assembly. Fig. 5.36 shows a cellular structure 

corresponding to this mode of cell randomization.  

These two modes of randomization were applied to the cell model corresponding to 

foam B ( 3mkg5.29=ρ ). 

 Fig. 5.37 shows the response of the model with random cell variations, for 

loading in the rise and transverse directions. The direction of crack propagation is 

approximately perpendicular to the loading direction and does not exhibit any obvious 

zigzag path in the middle. The modified model exhibits better resemblance with the 

behaviour of actual foams compared to the original model which shows some 

unevenness in the fracture lines. This closer correlation is due to randomness in the 

strut lengths which causes variations in their strength. Thus the crack is not 

constrained to run at specific angles in order to cut particular struts, but can cause 

failure in any struts that is oriented close to the loading direction, resulting in a 

fracture line perpendicular to the loading direction. 

 
Fig. 5.35 Model with random variations in cell geometric anisotropy ratio 
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Fig. 5.36 Model with random variations in cell vertex location 
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Unloaded, 2D view Unloaded, 
isometric view 

Failure initiation, 
2D view 

Failure initiation, 
isometric view 

a. Model with variation in geometric anisotropy (loading in the rise direction) 

b. Model with variation in cell vertex location (loading in the rise direction) 

c. Model with variation in geometric anisotropy (loading in the transverse direction) 

d. Model with variation in cell vertex location (loading in the transverse direction) 

Fig. 5.37 Random cell model for loading in the rise and transverse directions 

Figs. 5.38 and 5.39 show respectively comparisons between the original model 

and the ones with cell variations, in terms of the stress-strain response for loading in 

the rise and transverse directions. The figures show that the stiffness defined by the 

initial slope for loading in each direction remains approximately the same, but the 

tensile strength of the models with random cell variations tends to be lower than that 
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of the original model; Figs. 5.40 and 5.41 show respectively comparisons between the 

models in terms of their stiffness and tensile strength. The results indicate that the 

overall foam stiffness is independent of randomness in cells; however, foam strength 

is affected by such randomness. This is because the lengths and orientations of the 

struts in cells with random variations possess different vulnerabilities and hence, 

failure is determined by the weaker struts. This causes the overall tensile strength to 

be lower than that of the models with uniform cells. 
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Fig. 5.38 Stress-strain curves for uniform  and random cell models for loading in the 

rise direction 
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Fig. 5.39 Stress-strain curves for uniform  and random cell models for loading in the 

transverse direction 
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Fig. 5.40 Elastic stiffness of uniform and random cell models 
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Fig. 5.41 Tensile strength of uniform and random cell models 

5.3 Summary 

Finite element simulations of foam behaviour based on tetrakaidecahedron cells 

were undertaken to examine foam stiffness and tensile strength for comparison with 

values from experimental tests. The modelling of cells was based on beam elements 

available in ABAQUS-Explicit and material properties derived from actual foam 

(Chapter 3). The model was loaded in the rise (0o) and transverse (90o) directions, as 

well as 30o, 45o and 60o to the rise direction. Models that do not consider the effect of 

crack propagation in cell membranes overestimate the strength anisotropy ratio of 
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actual foam. Subsequently, this influence was incorporated by reducing the strength of 

struts at locations where the cracks in the membranes meet them. 

The stress-strain characteristics predicted by the models are similar to those of 

actual foam: 

• There is an initial linear elastic response followed by some nonlinearity before 

fracture. 

• The stiffness and strength are highest in the foam rise (cell elongation) direction 

and decrease with angle between the loading and the foam rise direction. 

Foam stiffness predicted by the models displays generally good agreement with 

actual foams despite some discrepancies which arise because the stiffness of the strut 

material in the models may not be identical to that of the polyurethane in the struts 

and walls of actual foam cells. Although the model underestimates the tensile 

strength, there is good agreement in terms of values normalized with respect to the 

strength in the foam rise direction. As with the stiffness, the underestimation of foam 

tensile strength might be because the yield and tensile strengths defined in the models 

are not exactly the same as those of the polyurethane in actual foam cells. Agreement 

between the FEM model and the actual foam in terms of their normalized tensile 

strength shows that although cell membranes do not have much influence on the 

stiffness of closed cell foams with very thin cell walls such as rigid polyurethane foam 

[26, 30], they are significant in determining the tensile strength by influencing the 

direction of crack propagation.  

An examination of the influence of randomness in cell parameters on stiffness 

and tensile strength indicate that crack propagation in FEM models with some degree 

of randomness in cells resembles that in actual foam more closely, whereby a crack 

propagates along a line perpendicular to the loading direction without any significant 
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deviation in path. This is because models with random cells have struts with a range 

of vulnerabilities to failure, thus the crack is not constrained to cut particular struts, 

but can cause failure in any struts that is oriented close to the loading direction, 

resulting in a fracture line perpendicular to the loading direction. Comparisons 

between the stiffness and tensile strength predicted by the uniform and random cell 

models show that the effect of variation in cell geometry on stiffness is negligible, but 

causes a noticeable decrease in foam strength. This is because tensile strength is 

governed by the weaker struts and the random cell models have a range of struts 

vulnerabilities compared to the uniform properties of the model with identical cells. 
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Chapter 6 Conclusions and Recommendations 

for future work 

This study has focused on identifying and explaining the mechanical properties 

of rigid polyurethane foam under tensile loading, through an experimental 

investigation and the development of geometric cell models. Quasi-static and dynamic 

tensile loading in various directions on foam samples were undertaken to examine the 

influence of strain rate and loading direction on the mechanical properties of the foam 

studied. Observations using optical microscopy and micro-CT scanning were 

undertaken to examine the structure of foam cells, as well as their behaviour under 

tensile and compressive loads. The experimental investigation was accompanied by 

development of geometric models for the cells within the foam and these were studied 

both analytically and via finite element simulations.   

6.1 Conclusions 

Experimental tests and observations of the response of polyurethane foam 

specimens to tensile loading applied at various angles relative to the foam rise (cell 

elongation) direction were conducted to identify the overall mechanical properties as 

well as the behaviour of the cells within them. The results have yielded a fuller 

understanding of the structure of polyurethane foam and and its behaviour. The 

primary findings are as follows: 

• The tensile strength and stiffness of the rigid polyurethane foams studied are 

highest in the foam rise (cell elongation) direction and decrease with angle 

between the loading and foam rise directions, indicating that the mechanical 

properties are anisotropic because of anisotropy in the cell geometry.  
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• The primary mechanism governing foam deformation is the bending of cell struts 

and walls. A significant observation is that a short segment at each end of a strut, 

where it is connected to neighbouring struts, essentially does not deform. This is 

because the strut cross-section there is larger and the interconnection with adjacent 

struts and cell membranes at these cell vertices restrict movement. The study has 

shown that this feature must be considered in developing geometric cell models 

for foam. 

• Micro CT-scan images reveal that the cells in rigid polyurethane foam bear a 

reasonable resemblance with an elongated tetrakaidecahedron, while the cross-

section of cell struts has a geometry similar to that of a Plateau border  [1]. 

Two analytical models based on elongated rhombic dodecahedral and elongated 

tetrakaidecahedral cells were formulated to facilitate analysis of the mechanical 

properties of foam. The stiffness, tensile strength, and Poisson’s ratio in the rise (cell 

elongation) and transverse directions were calculated and compared to actual foams. 

The presence of rigid strut segments near their ends, as observed in actual foam 

specimens, was taken into account in the analysis and shown to influence the results 

predicted by the models. A parametric study of the mechanical properties of foam 

based on the analytical models shows that: 

• The elastic stiffness and strength of foam are not influenced by cell size; they are 

governed by density, geometric anisotropy of the cells, cell shape, strut cross-

section geometry, as well as the length of the rigid strut segments.  

• The bending of cell struts is the primary deformation mechanism in foams. 

• Tensile strength and stiffness increase with density. 

• Anisotropy of mechanical properties – tensile strength and stiffness – increases 

with anisotropy in the geometry of the constituent cells. 
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• The Poisson’s ratio of a cellular structure is governed by the geometry of the 

internal structure and does not depend on the material it is made of. 

A comparison between the cell models and actual foam shows that an elongated 

tetrakaidecahedron resembles the cells in actual foam more closely than a rhombic 

dodecahedron. Moreover, the prediction of foam stiffness based on elongated 

tetrakaidecahedron cells incorporating the correction for rigid strut segments agrees 

well with experimental results from tests on the foams studied. This shows that 

similarity between the idealized cell model geometry and the geometry of actual foam 

cells determines the effectiveness of a model in predicting actual foam behaviour.  

The analytical model enables identification of the influence of several parameters – 

overall foam density, cell anisotropy, stiffness and strength of the solid material in cell 

struts and walls – on the overall mechanical behaviour of a foam. Moreover, the 

model serves as a means to estimate mechanical property values of foam 

Finite element simulations of foam behaviour based on elongated 

tetrakaidecahedron cells, were also undertaken to examine the mechanical properties 

for loading directions that were not amenable to analytical solution, and to facilitate 

incorporation of non-linear material properties and variations in cell geometry. The 

simulations yielded the following findings: 

• Although cell membranes have little influence on the stiffness of closed cell foam 

with very thin cell walls, they play an important part in determining the tensile 

strength by influencing the direction of crack propagation. This must be taken into 

account in utilizing idealized cell geometries to model foam. 

• The stiffness predicted by the tetrakaidecahedron cell model agrees quite well 

with values from tests on actual foam. Differences occur because stiffness values 
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obtained from tensile tests on solid polyurethane may not be identical to that of 

the polyurethane in the cell struts and walls of the foam specimens. 

• The model underestimates the actual tensile strength for the different directions of 

loading; however, agreement is good when normalized tensile strength is 

considered (i.e. tensile strength normalized with respect to the tensile strength in 

the foam rise direction). As with foam stiffness, this underestimation is probably 

because the yield and tensile strength data obtained from tests on solid 

polyurethane specimens may not be exactly the same as that of the polyurethane in 

the actual foam. Close correlation between the model and actual foam behaviour 

in terms of normalized tensile strength shows that incorporation of the influence 

of crack propagation in cell wall membranes is justified and necessary. 

• FEM modelling demonstrates that random variations in the geometry of individual 

cells do not exert a significant influence on the overall stiffness of foam, but 

decreases the predicted tensile strength. 

Finite element simulations based on tetrakaidecahedron cells are able to model 

specific features of rigid polyurethane foam under tensile loading – i.e. stiffness and 

fracture characteristics. This method can be used for analysis of more complex 

problems in foam behaviour that are not amenable to analytical solution, such as 

inclusion of non-linear material properties, large deformation, variation of cell 

geometry, influence of cell membranes, etc; however, these may require extensive 

computational resource and time. 

In essence, this study demonstrates that use of detailed experimental observation 

of the response of cellular material to formulate an idealized cell model, followed by 

subsequent finite element simulation, is an effective approach to understanding the 
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mechanical behaviour of foam. The cell model established in this study constitutes a 

basis for further development of constitutive models for foam 

6.2 Recommendations for future work 

This study has focused primarily on the mechanical behaviour of rigid 

polyurethane foam under tension and the development of idealized geometric cell 

models. This can be extended to examine other aspects of the mechanical behaviour 

of foam: 

• The bulk and shear moduli can be analytically derived from the cell model. For 

this purpose, the method employed by Zhu et al. [40]  for analyzing the bulk 

modulus and shear modulus for isotropic tetrakaidecahedron cells can be used as a 

basis, but has to be modified to incorporate cell anisotropy. 

• The Poisson’s ratio of foam can be measured and compared with values predicted 

by the model. A non-contact technique to measure strain could be used for this 

purpose, because the surfaces of polyurethane foam specimens are not flat and are 

easily deformed/crushed, making attachment of measurement devices difficult.  

• Failure criteria based on the buckling of cell struts for foam under compression 

can be analysed using the cell model; Euler buckling analysis could be applied to 

cell struts.  

• Compression involving large deformation and multi-axial loading can be 

examined to identify foam behaviour and to determine if the cell model proposed 

is able to represent the compressive response of actual foam. However, this 

requires non-linear deformation analysis; the method used by Zhu et al. [41] in 

analyzing high strain compression of an isotropic tetrakaidecahedron cell model 

could facilitate such a study. Numerical methods such as finite element modelling 

could also be employed; however, FEM simulation might be costly in terms of 
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computational time and resources as much longer simulation times would be 

needed to model large deformation and more elements are required for accurate 

results. 

• The cell model can be examined for applicability to other types of foam with 

similar characteristics, i.e. open celled or closed celled with thin walls, such as 

flexible polyurethane foam, open celled aluminium foam, etc. 
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Appendix A: SPHB experiments data 

processing procedure 

 
Fig. A.1 Split Hopkinson bar arrangement 

Calculations for stress in SPHB specimens were performed using the following 

procedure.  

• Strain-time data from the strain gauge on the output bar was obtained (see Fig. 

A.1) 

• The data was then converted into stress imposed on the specimen using the 

following expression: 

bb
b

s
s E

A
A

εσ =  

(A.1) 
where sσ  is the stress in the specimen, sA  and bA  are respectively the cross-

sectional areas of the specimen and the input/output bars, bE  is the stiffness of the 

bars, and bε  is the strain in the output bar. 

The strain in the specimen was calculated as follows. 

• Two reference points were marked along the centre-line of the specimen (see Fig. 

A.2) 
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• The initial distance and subsequent relative displacement between the two points 

were obtained from high-speed photographs, using a PHOTRON™ ultima APX 

high-speed camera, operating at a framing rate of 30,000 frames per second. 

• The specimen strain was then calculated by dividing the relative displacement by 

the initial distance between the two reference points. 

• It was found that the variation of strain with time was essentially linear; hence, 

linear regression was employed to calculate the strain rate (see Fig. A.3). This 

strain rate was integrated to calculate the specimen strain corresponding to the 

stress data. 

 
Fig. A.2  SPHB specimen with two reference points along the centre-line 
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Fig. A.3 Example of strain-time data and application of linear regression 
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Appendix B: Figures and Tables 
 

Figs. B.1-B.15 show the results of quasi-static tensile tests on foams A, B and 

C. 
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Fig. B.1 Stress-strain curves for loading in the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. B.2 Stress-strain curves for loading 30o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. B.3 Stress-strain curves for loading 45o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. B.4 Stress-strain curves for loading 60o to the rise direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. B.5 Stress-strain curves for loading in the transverse direction (foam A 

3mkg3.23=ρ ; geometric anisotropy ratio = 2.5) 
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Fig. B.6 Stress-strain curves for loading in the rise direction (foam B 3mkg5.29=ρ ; 

geometric anisotropy ratio = 2) 
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Fig. B.7 Stress-strain curves for loading 30o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.8 Stress-strain curves for loading 45o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.9 Stress-strain curves for loading 60o to the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.10 Stress-strain curves for loading in transverse direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.11 Stress-strain curves for loading in the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
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Fig. B.12 Stress-strain curves for loading 30o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
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Fig. B.13 Stress-strain curves for loading 45o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
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Fig. B.14 Stress-strain curves for loading 60o to the rise direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
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Fig. B.15 Stress-strain curves for loading in the transverse direction (foam C 

3mkg2.35=ρ ; geometric anisotropy ratio = 1.7) 
 

Figs. B.16-B.18 show the stress-strain curves obtained from Split Hopkinson 

bar tests on foam B. 
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Fig. B.16 Stress-strain curves for loading in the rise direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.17 Stress-strain curves for loading in the 45o direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
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Fig. B.18 Stress-strain curves for loading in transverse direction (foam B 

3mkg5.29=ρ ; geometric anisotropy ratio = 2) 
 

Figs. B.19 and B.21 show microscopic images of the cross-section of struts in 

foam A, B and C. 
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Fig. B.19 Cross-section of struts in rigid polyurethane foam A ( 3mkg3.23=ρ ; 

geometric anisotropy ratio = 2.5) 
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Fig. B.20 Cross-section of struts in rigid polyurethane foam B ( 3mkg5.29=ρ ; 

geometric anisotropy ratio = 2) 
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Fig. B.21 Cross-section of struts in rigid polyurethane foam C ( 3mkg2.35=ρ ; 

geometric anisotropy ratio = 1.7) 

Table B.1 shows measurements of strut cross-section dimensions obtained from 

microscopic observation discussed in Section 3.5. Table B.2 shows measurements of 

the length of rigid segments in struts in foam B ( 3mkg5.29=ρ ; geometric 

anisotropy ratio = 2), obtained from the observations discussed in Section 3.6.2. 



 

202 

Table B.1 Strut dimensions 
Foam A Foam B Foam C 

r R r R r R 
11.0 41.1 10.0 37.3 17.1 63.8 
15.5 57.8 10.0 37.3 15.0 56.0 
14.0 52.2 12.5 46.7 17.5 65.3 
15.0 56.0 12.0 44.8 24.5 91.4 
11.5 42.9 15.5 57.8 13.2 49.2 
12.5 46.7 13.5 50.4 15.1 56.5 

  17.0 63.4 13.9 51.9 
  16.5 61.6 12.6 47.1 
  17.0 63.4 16.9 63.1 
    12.2 45.5 

average      
13.3 49.4 13.8 51.4 15.8 59.0 
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Table B.2 Dimensions of rigid segments in struts in foam B ( 3mkg5.29=ρ ; 
geometric anisotropy ratio = 2) 

Length of strut ( )mμ  Length of rigid segment ( )mμ  
659.3 60.4 44.0 
648.4 60.4 44.0 
461.5 60.4 44.0 
362.6 44.0 60.4 
379.1 54.9 44.0 
538.5 54.9 49.5 
527.5 49.5 49.5 
302.2 60.4 44.0 
379.1 49.5 44.0 
368.1 44.0 44.0 
423.1 49.5 49.5 
439.6 54.9 38.5 
329.7 44.0 44.0 
390.1 49.5 54.9 
274.7 44.0 44.0 
373.6 44.0 44.0 
395.6 49.5 38.5 
456.0 54.9 38.5 
560.4 49.5 49.5 

average 45.6 
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